Introduction

Background

Image segmentation, one of the fundamental problems in computer vision and image processing, is the process of grouping pixels of image into multiple sets, such that pixels within the same set share certain visual characteristics. A wide range of practical applications, such as semantic web, intelligent video coding, mobile robots, medical imagery and military surveillance, benefit from image segmentation. In semantic web system, one of the biggest barriers is to associate visual content with a semantic label which describes a category of objects. According to the comprehensive study of InfoTrends [1], in the U.S. alone, 11 billions digital images were shared on social networking sites (e.g., Facebook, Twitter and Flickr) in 2010, and this amount will double in 2015. It is laborious and impracticable to manually annotate such huge volume of images. Image segmentation enables automatic object categorization. In video coding system, globally lower bite-rate coding can be achieved by adaptively allocating more bits to highlight the desired objects like faces in the scenario of video conference, and less bits to background which is considered less important compared to target objects. In addition, image segmentation also helps to find the best matching reference frames/blocks for current coding frame/block and to improve the encoding efficiency.

Another application can be found in robotic system. A mobile robot is typically equipped with a camera to perceive environments where it evolves. Floor segmentation is essential for robot navigation. To manipulate specific objects, like medical instruments in the operating room, the robot needs to know exactly which pixels belong to the object. In addition, the precisely segmented objects masks are also useful for identifying objects.

According to the goals of segmentation, existing approaches can be broadly classified into three categories: region segmentation, object segmentation and semantic segmentation. As shown in Figure 1.1, region segmentation partitions an image into a set of homogeneous regions; object segmentation, also termed as figure-ground segmentation, aims at separating objects from background; and semantic segmentation intends to assign a meaningful label, which describes a category of objects, to each pixel in a image. Region segmentation has been extensively studied for several decades and a number of approaches have been proposed, e.g. watersheds [2], active contours [3], mean-shift [4] and graph-based 1.2. Overview of the thesis segmentation [5,[START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF]. Object segmentation and semantic segmentation are more challenging than the region segmentation and have not been fully investigated.

This thesis mainly focuses on object segmentation and semantic image segmentation.

Overview of the thesis

Depending on whether or not training on the manually labeled images or human intervention is required, object segmentation methods also can be broadly classified as unsupervised or supervised segmentation.

In practice, it is still not very feasible, in a fully unsupervised manner, to segment any objects in any images since what is defined as object depends on specific context and applications. Therefore, we only focus on salient object segmentation in an unsupervised manner, i.e., segmenting relatively outstanding objects from background by modeling the low-level data of image itself without using any top-down cues. Moreover, we also address a more difficult case with the objective to extract all foreground objects in an image by leveraging a set of manually segmented exemplar images. As the objects to be segmented maybe never appear in the exemplar images, this approach can be considered as a weakly supervised segmentation approach. Both of the aforementioned approaches produce a binary segmentation mask, where one label indicates objects and the other label represents background.

In addition, we also address the problem of assigning a meaningful label (like cat, dog, car or road) to each pixel in the image, which is so-called semantic segmentation. In this connection we propose a feature representation method to bridge the gap between local features and semantics. Semantic segmentation requires a set of semantically pixel-wise labeled images for semantic prediction, and each pixel in a test image only can be assigned to one of the pre-defined categories. Such an approach is categorized to the supervised segmentation.

In the following subsections, we overview the content of this thesis and its main contributions for the purpose of leading readers to understand it. Two proposed approaches to object segmentation will be briefly introduced in Section 1.2.1 and Section 1.2.2, respectively. Then the proposed semantic segmentation approach is summarized in Section 1.2.3. Finally the key aspects in our conclusion are presented in Section 1.2.4.

Chapter 2: Saliency-based object segmentation

Chapter 2 presents a novel saliency detection model which aims at identifying relatively outstanding regions in an image, and a unified framework for jointly addressing unsupervised salient object segmentation and saliency boosting.

For the saliency detection, we propose a segmentation driven low-rank matrix recovery (SLR) model, in which a prior matrix, derived from region segmentation, is proposed to highlight potential salient objects and suppress typical background regions, and is efectively exploited to modulate low-rank matrix recovery model.

In such a model, the feature matrix input image is decomposed into a low-rank matrix which naturally represents background regions, and a sparse matrix which potentially captures salient objects. The output of the saliency detection model is a saliency map, in which each pixel is labeled by a real value within the range of [0, 1] to indicate its saliency probability.

For object segmentation, we derive object location information from the detected saliency map and seamlessly integrate it into our object segmentation model which is formulated within Markov random field (MRF) framework. Moreover, observing the fact that saliency detection model might generate an imperfect saliency map where background regions may be highlighted and object regions may be suppressed as well, we propose a saliency boosting model which aims to improve the quality of saliency map by effectively exploiting the segmentation result. The boosted saliency map is then used as a new constraint for object segmentation. Therefore, iteratively optimizing the segmentation model and the saliency boosting model leads to the optimal saliency map and final segmentation.

Extensive evaluations on MSRA-B dataset and PASCAL-1500 dataset, demonstrate that the proposed approach outperforms the state-of-the-art techniques for both saliency detection and salient object segmentation. shows some saliency maps and the corresponding segmentation results generated by the proposed approach.

The main contributions of this chapter are:

-a saliency detection model based on low-rank matrix decomposition, which is shown to outperform the state-of-the-art saliency detection models in both objectively and subjectively evaluations.

-a unified framework for joint saliency-based object segmentation and saliency boosting, which iteratively and mutually addresses one of the two tasks and leads to optimal object segmentation and saliency detection.

-a collected publicly available dataset containing 1500 images with ground truths for the performance evaluation of saliency detection and salient object segmentation.

Chapter 3: Exemplar-based object segmentation

Chapter 3 presents an exemplar-based object segmentation approach. The underlying idea of this approach is to transfer segmentation masks of similar exemplar images into the input image.

So the first and critical problem is how to find the most matching exemplar images for segmentation transfer.

We propose a novel high-level image representation method named as object-oriented descriptor (OOD) which is able to highlight local objects and to represent global geometric layout of the image. By using this descriptor, a set of exemplar images globally and locally (glocally) similar to the query image is retrieved. Then, the exemplar images are segmented into regions, and a discriminative classifier of support vector machine (SVM) is learned on-the-fly from these exemplar regions and is subsequently used to predict foreground probability for each region in the query image. Therefore, we can obtain a probabilistic SVM map, from the SVM classifier, which carries important semantic information. Such an SVM map is exploited to define a robust segmentation model based on Markov random field (MRF) framework, which associates each pixel with a random variable indicating "object" or "background", and the final segmentation is achieved by finding the maximum a posteriori (MAP) configuration in the MRF.

The proposed approach has been extensively evaluated on three challenging datasets including Pascal VOC 2010, VOC 2011 segmentation dataset and iCoseg dataset. Experiments demonstrate that: the proposed approach outperforms the state-of-the-art object segmentation methods, and has the potential to segment large-scale images containing unknown objects, which never appeared in the exemplar images. Figure 1.3 shows some segmentation results generated by the proposed approach.

The main contributions of this chapter are:

-A novel high-level image descriptor which enable finding most matching exemplar images for segmentation transfer.

-A generic object segmentation framework combining online prediction and MRF energy optimization, which is shown to be superior to existing exemplarbased object segmentation approaches.

-Potential application to extracting objects in large-scale internet images by leveraging a set of available exemplars.

Chapter 4: Semantic image segmentation

Chapter 4 presents a unified framework for semantic image segmentation which aims to assign a semantic label to each pixel in an image.

For the purpose of capturing objects as completely as possible using unsupervised region segmentation, we generate a region bank for the input image and for training images, respectively. The region bank is a collection of regions generated from multiple scales of hierarchical segmentation. The region hierarchy provides a natural constraint for feature extraction. For robust and compact region representation, we propose a sparse coding method which represents each local feature within a region by several basic vectors in a learned visual dictionary, and each region is described by a sparse histogram. With the sparse-based region description, we apply SVM classifiers for semantic inference and fuse all regions in the region bank to generate a semantic labeling map.

The proposed approach is evaluated on the standard Microsoft Research Cambridge (MSRC 21) dataset. Experiments demonstrate that the proposed approach obtains competitive performance compared to recent studies reported in the literature. Figure 1. 4 shows some examples of semantic segmentation results generated by the proposed approach.

The main contributions of this chapter are:

-A simple yet effective framework for semantic image segmentation, which obtains competitive results on a standard evaluation dataset.

-A sparse-based image representation method which compacts local feature descriptors into a single histogram and is shown more robust compared to the traditional bag of visual-words method.

Chapter 5: Conclusion

Chapter 5 concludes this thesis by summarizing the proposed approaches for both object segmentation and semantic image segmentation. Some reflections for further improvement based on our approaches will be presented in this chapter as well.

Saliency-based object segmentation

Introduction

Saliency detection and object segmentation are two of the fundamental problems of computer vision. The problem of detecting visual saliency consists of identifying what mostly captures the human perceptual attention in an image. This is a core problem with a variety of applications such as image quality evaluation, image summarization and picture collage. The object segmentation aims to segment out foreground objects from background. This often serves as a key preprocessing step for many applications, e.g., object recognition, object tracking, content-based image retrieval, etc.

While the saliency detection and object segmentation are seemingly independent; in fact, an inextricable connection exists between them. Since objects are generally salient relative to their surrounding background regions in terms of visual properties, solving any one of them leads to addressing the other one either explicitly or implicitly. Indeed, many object segmentation approaches are built on the result of saliency detection model which is the so-called saliency map. A typical solution is to derive location information of objects from the saliency map for the segmentation. For instance, we can at least appropriately localize objects by thresholding the saliency map.

On the contrary, object segmentation may be helpful to identify saliency in the image as well. As a matter of fact, accurate object segmentation is the ultimate goal of object-level saliency detection. If object segmentation model is sufficiently robust, Chapter 2. Saliency-based object segmentation saliency can be boosted by highlighting regions of the segmented objects. However, to the best of our knowledge, none of previous work exploited object segmentation cues for saliency detection, perhaps it is difficult to judge whether an unsupervised segmentation is sufficiently good or not.

In this chapter, we investigate to jointly address the saliency detection and object segmentation together by exploiting beneficial cues from each of them. To achieve this goal, we propose a system consisting of two key components and also corresponding to our two main contributions. The first one is a saliency detection model, called segmentation driven low-rank matrix recovery (SLR) model and originally appeared as [START_REF] Zou | Segmentation driven lowrank matrix recovery for saliency detection[END_REF]. This model proposed a bottom-up segmentation prior, which highlights potential objects in the image, to guide the feature matrix decomposition from which salient regions can be discovered. The second one is a unified scheme which jointly addresses saliency boosting and object segmentation.

This scheme works iteratively and mutually to improve the quality of saliency map and to segment out objects from background.

This chapter is organized as follows: in Section 2.2, we briefly survey the relevant literature in saliency detection and saliency-based object segmentation.

Then we describe, in detail, a saliency detection model which generates initial saliency map, and a unified framework for jointly addressing saliency boosting and object segmentation in Section 2.3 and Section 2.4, respectively. Experimental evaluation and discussion are presented in Section 2.5. Finally, we conclude this chapter in Section 2.6.

Related work

This section briefly introduces the related work on saliency detection and saliency-based object segmentation.

Saliency detection

Existing saliency models can be broadly classified into two categories: biological models and computational ones.

Related work

The biological model is pioneered by Koch and Ullman [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF] who derived visual saliency from a set of topographical maps of elementary features like orientation of edges, color and luminance. The biological model is usually implemented using the center-surround scheme with different formulations on a set of features [START_REF] Itti | A model of saliency-based visual attention for rapid scene analysis[END_REF][START_REF] Walther | Modeling attention to salient proto-objects[END_REF][START_REF] Gao | The discriminant centersurround hypothesis for bottom-up saliency[END_REF]. As the objective of biological models is to find some points that mostly catch human attention, the resulting saliency maps are typically sparse and blurry, and limit their applications mainly for prediction of eye fixations.

Instead, the computational models, inspired by the biological models, aim at discovering objects standing out from surrounding regions.

A number of computational models measure the saliency based on global, local and regional contrasts with different forms [START_REF] Achanta | Frequency-tuned salient region detection[END_REF][START_REF] Cheng | Global contrast based salient region detection[END_REF][START_REF] Goferman | Context-aware saliency detection[END_REF][START_REF] Jiang | Automatic salient object segmentation based on context and shape prior[END_REF][START_REF] Liu | Saliency detection using regional histograms[END_REF]. A variety of theories and methods, including information theory [START_REF] Bruce | Saliency based on information maximization[END_REF][START_REF] Zhang | Sun: A bayesian framework for saliency using natural statistics[END_REF], graph theory [START_REF] Harel | Graph-based visual saliency[END_REF][START_REF] Avraham | Esaliency (extended saliency): Meaningful attention using stochastic image modeling[END_REF], machine learning [START_REF] Liu | Learning to detect a salient object[END_REF][START_REF] Jiang | Salient object detection: A discriminative regional feature integration approach[END_REF],

statistical model [START_REF] Liu | Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut[END_REF][START_REF] Gopalakrishnan | Salient region detection by modeling distributions of color and orientation[END_REF][START_REF] Zhang | An adaptive computational model for salient object detection[END_REF], Bayesian model [START_REF] Xie | Bayesian saliency via low and mid level cues[END_REF], frequency domain analysis [START_REF] Hou | Saliency detection: A spectral residual approach[END_REF][START_REF] Guo | Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform[END_REF][START_REF] Jung | A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[END_REF],

have been exploited to build saliency models. Recently, some saliency models such as [START_REF] Cheng | Global contrast based salient region detection[END_REF][START_REF] Liu | Saliency detection using regional histograms[END_REF][START_REF] Liu | Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut[END_REF][START_REF] Perazzi | Saliency filters: Contrast based filtering for salient region detection[END_REF][START_REF] Yan | Hierarchical saliency detection[END_REF] benefit from measuring the saliency on the basis of region segmentation to effectively incorporate global information at region level, in order to improve the saliency detection performance. Besides, some recent saliency models also exploit some form of priors such as background prior [START_REF] Wei | Geodesic saliency using background priors[END_REF], generic objectness [START_REF] Chang | Fusing generic objectness and visual saliency for salient object detection[END_REF] and object-level shape prior [START_REF] Jiang | Automatic salient object segmentation based on context and shape prior[END_REF]. A recent benchmark on saliency detection performance of different saliency models can be found in [START_REF] Borji | Salient object detection: A benchmark[END_REF]. Although these saliency models may work well for images with consistent scenes like the images in MSRA-1000 dataset [START_REF] Achanta | Frequency-tuned salient region detection[END_REF], they still lack robustness to detect objects in complex images with cluttered background and/or low contrast between objects and background.

Recently, a new trend is to formulate the problem of saliency detection with low-rank matrix recovery (LRMR) model, in which an image is decomposed into a low-rank matrix which corresponds to the background, and a sparse one which links to salient objects. In [START_REF] Yan | Visual saliency detection via sparsity pursuit[END_REF], sparse coding is used as an intermediate representation of image features and then fits to LRMR model to recover salient objects. As pointed out in [START_REF] Shen | A unified approach to salient object detection via low rank matrix recovery[END_REF], the sparse coding can not guarantee that, in the entire image representation, the sparse codes of salient objects are sparse and those Chapter 2. Saliency-based object segmentation of the background are of low-rank. Therefore, [START_REF] Shen | A unified approach to salient object detection via low rank matrix recovery[END_REF] proposed to modulate the image features with the learned transform matrix and high-level priors to meet the low-rank and sparse properties. This sounds reasonable and remarkable experiment results have been demonstrated. Unfortunately, the supervised training is required and the learned transform matrix is somewhat biased toward the training dataset, therefore it suffers from the limited adaptability.

Based on the aforementioned issues, we present an unsupervised LRMR model for saliency detection. The key idea is to derive a bottom-up prior to constrain image features so that they can fit well to the LRMR model. For this purpose, we propose a novel generic prior named as segmentation prior which is created from a bottomup segmentation. The segmentation prior softly separates objects from background so that the objects are highlighted and the background is highly redundant in the feature domain.

Object segmentation

A number of methods derived useful information from saliency map for unsupervised object segmentation. In [START_REF] Ko | Object-of-interest image segmentation based on human attention and semantic region clustering[END_REF], salient regions are selected in a saliency map by a trained support vector machine using image segment features, and then the selected regions are merged to form the object segmentation result. In [START_REF] Han | Unsupervised extraction of visual attention objects in color images[END_REF],

segmentation seeds are derived from the saliency map and standard Markov random field framework is applied to object segmentation by integrating image features in terms of color, luminance and edge orientation. In [START_REF] Achanta | Frequency-tuned salient region detection[END_REF], salient objects are extracted by using a thresholding method, in which those segments with average saliency values greater than the twice the mean of saliency values in the entire saliency map are composed of objects, and the other segments are considered as background.

Many methods are built under the framework of graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], in which a graph is associated with each pixel and is constructed based on a data term, which measures the likelihood of a pixel to be labeled as object, and a smoothness term, which ensures overall label smoothing. The binary segmentation is achieved by finding the minimum cut between object and background nodes in the graph. In [START_REF] Rahtu | Segmenting salient objects from images and videos[END_REF], the data term is defined as the summation of saliency and color similarity, and conditional random field learning is employed to train the balance weight between the data term and smoothness term. In [START_REF] Liu | Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut[END_REF], segmentation process consists of two phases, in which saliency map is exploited to generate an initial segmentation, and then iterative graph cuts with adaptive seed adjustment and parameter refinement leads to the final segmentation. In [START_REF] Jiang | Automatic salient object segmentation based on context and shape prior[END_REF], graph cuts is also performed iteratively using a histogram-based data term and a shape constraint smoothness term. In [START_REF] Cheng | Global contrast based salient region detection[END_REF], an initial segmentation is obtained by thresholding the saliency map at a fixed value which gives 95% recall rate in the total dataset, and final segmentation result is obtained by using GrabCut [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF], which iteratively predicts foreground/background appearance with Gaussian Mixture Models and segments image with the graph cuts.

Although a number of approaches exploited saliency map for object segmentation in different forms, a key fact seems to be ignored that the saliency map itself may contain noises and might lead to error propagation in the process of object segmentation, and there is no feedback from the segmentation result to gauge the saliency map. In contrast to the previous unidirectional saliency-based object segmentation methods, in which only the detected saliency map is utilized to guide object segmentation, we also aim to boost the quality of saliency map by leveraging the object segmentation results. Our hypothesis is that saliency optimization and object segmentation can be mutually reinforced, as objects can be localized more accurately with both of them. Therefore, our framework interactively performs object segmentation and saliency boosting. mutually optimizing the defined objective functions of saliency boosting model and object segmentation model leads to the optimal saliency map and the final object segmentation result.

Saliency detection model

In this section, we present a saliency detection model called as segmentation driven low-rank matrix recovery (SLR) model which is used to generate a saliency map from input image. fine-grained (FG), medium-grained (MG) and coarse-grained (CG). The FG segmentation significantly over-segments the image into a number of superpixels (to avoid confusion, the segments of FG segmentation are called "superpixels rather than "regions"used in MG and CG segmentations).

The MG segmentation also over-segments the image but generates regions as few as possible. The CG segmentation aims at maximally separating objects from the background, thus the image may be over-segmented or under-segmented. Based on these three-level segmentations, image features are extracted from the superpixels, and segmentation priors are derived from the MG and CG segmentations. Then, the low-rank matrix recovery (LRMR) model is applied to generate the raw saliency map. Finally, the raw saliency map is smoothed by using the MG segmentation prior to generate an optimal saliency map.

Low-rank matrix recovery model

Given an input image I, let P = {p 1 , p 2 , • • • , p N } be a set of N superpixels created by FG segmentation, and a n ∈ R d×1 be the feature vector of the superpixel p n , where d is the dimension of feature descriptor. The image I is represented by a

feature matrix A = [a 1 , a 2 , • • • , a N ] ∈ R d×N .
In real images, the background pixels generally show similar appearance, and have strong correlation in the feature space. This suggests that the feature matrix A might have low-rank property, and it can be decomposed into two parts, a low-rank

matrix U = [u 1 , u 2 , • • • , u N ] ∈ R d×N , and a sparse one E = [e 1 , e 2 , • • • , e N ] ∈ R d×N A = U + E (2.1)
Applying this model to saliency detection, the background is naturally represented by the low-rank matrix U, and the objects might be captured by the sparse matrix E.

To recover the matrices U and E, the problem can be formulated with the Lagrangian representation

min rank(U) + λ E 0 s.t. A = U + E (2.2)
where λ is a coefficient to balance U and E, and

• 0 indicates l 0 -norm.
Unfortunately, this is a NP-hard problem as the matrix rank and l 0 -norm are not convex.

Recent theoretic analysis in [START_REF] Candes | Robust principal component analysis?[END_REF] shows that, under rather weak assumptions, the low-rank matrix U and the sparse matrix E can be exactly recovered by With the optimal sparse matrix E, the saliency value of superpixel p n is given by the l 1 energy of the vector e n

min U * + λ E 1 s.t. A = U + E (2.
s n = d i=1 |e n (i)| (2.4)
The saliency value s n represents the probability of superpixel p n to belong to an object, i.e., a larger value indicates a higher probability, and vice versa. The saliency map of image I is then generated by assigning the saliency value of each superpixel to all pixels in the superpixel.

LRMR with segmentation prior

Directly fitting the LRMR model to the problem of saliency detection is under the assumption that the background is homogeneous and has a high contrast with objects. In the reality, however, many backgrounds are cluttered and objects may be similar to part of the background regions. This results in false positive detection results. To improve the robustness of saliency detection, a feasible method is to adopt high-level priors to modulate input features [START_REF] Shen | A unified approach to salient object detection via low rank matrix recovery[END_REF][START_REF] Lang | Saliency detection by multitask sparsity pursuit[END_REF], so that the feature matrix has a lower rank. The underlying idea of the modulation is to give small weights to feature vectors of those superpixels which are more likely to be background and large weights to those corresponding to objects.

Many priors have been proposed for saliency detection, such as center prior, color prior and learnt transform prior [START_REF] Shen | A unified approach to salient object detection via low rank matrix recovery[END_REF]. The main drawback of these priors is the lack of adaptability, since they are either obtained by empirical statistics or trained from the annotated images. For example, center prior assumes that objects always appear in the center of image, and color prior believes that the objects are in warm colors. Obviously, these assumptions are not always valid in practice. In addition, the learnt transform prior tends to fail when the test image has a high difference with the training images.

Here we introduce a bottom-up segmentation driven prior, named as Therefore, we propose the segmentation prior according to the connectivity between each region and image border. Let r m be a segmented region of image I, the segmentation prior of region r m is defined as

h m = exp(- |r m ∩ C| σψ m ) (2.5)
where | • | denotes the length of intersection, C is the border of image I, ψ m is the Chapter 2. Saliency-based object segmentation outer perimeter of region r m , and σ is a balance parameter which is set to 0.3 in our experiments. Clearly, if a region touches the image border, its prior value is in the range of (0, 1), otherwise it is equal to 1. In other words, the segmentation prior gives a small weight to the region touching the image border. By using (2.5), segmentation priors of all regions can be computed, and form the prior of the input image.

In Figure 2.2, one might observe that, on one hand, there are still some regions of the background without connection with the image border, on the other hand, some regions of objects are inevitably merged with the background. Indeed, such a strategy can not perfectly separate the objects from the background. However, the segmentation prior derived from CG segmentation can serve as a guidance cue for LRMR model to address the task of saliency detection.

Suppose an input image I is segmented into N superpixels by FG segmentation, and represented by a feature matrix

A = [a 1 , a 2 , • • • , a N ]. Let H c = [h c 1 , h c 2 , • • • , h c N ]
denote a set of CG segmentation prior values of the superpixels. In order to recover salient objects well with the LRMR model, the feature matrix A is firstly modulated by the CG segmentation prior

H c B = [h c 1 a 1 , h c 2 a 2 , • • • , h c N a N ]. (2.6)
Then, the modulated feature matrix B is used as the input of the standard LRMR model min

U * + λ E 1 s.t. B = U + E (2.7)
As the segmentation prior assigns small weights to most of background feature vectors in B, the l 1 energies of the corresponding vectors in the recovered matrix E are inclined to be small. Therefore, objects are highlighted more effectively in the matrix E.

Post-smoothing

Raw saliency map generated by the LRMR model might still contain some noises: some large saliency values in background area and/or small values in objects. There are mainly two reasons for this phenomenon: on one hand, some superpixels of background might be strongly similar to those of objects in the feature domain; on the other hand, the LRMR model decomposes the feature matrix without considering spatial constraint. To remove the noises, the raw saliency map is smoothed at two scales: FG and MG levels.

Let S = {s 1 , s 

s ′ n = s n + α j∈N s j • exp(-a n -a j 2 2 ) (2.8)
where N is a set of adjacent neighbours of superpixel p n , • 2 denotes l 2 -norm. The weight α is used to balance the impact of neighbours on the current superpixel, and is set to 0.5 in our experiments. Obviously, neighbours with appearance more similar to the current superpixel are considered to give more contribution to compute the saliency, and vice versa. Therefore, the FG level smoothing ensures the saliency of each superpixel is coherent with its neighbours showing a high similarity on features.

The FG level smoothing might be still far from labelling saliency at object level.

We also perform a MG level processing on the FG smoothed saliency map S ′ . To do this, segmentation prior of the MG segmentation is also computed.

Let

S ′ = {s ′ 1 , s ′ 2 , • • • , s ′ K },R = {r 1 , r 2 , • • • , r L } and H m = {h m 1 , h m 2 , • • • , h m K } denote the FG
smoothed saliency map, MG segmentation and MG segmentation prior of the input image, respectively, where K is the number of pixels, L is the number of regions. The saliency value of region r l is computed by

s l = 1 T l k∈r l s ′′ k (2.9)
where T l is the number of pixels in the region r l , s ′′ k is the weighted saliency value Chapter 2. Saliency-based object segmentation

of pixel k s ′′ k = h m k s ′ k . (2.10)
Therefore, the final saliency map of image is obtained by distributing saliency values of all regions into corresponding pixels. Notice that, the parameters of MG segmentation are set to ensure an image is over-segmented with as few regions as possible. Thus, this process generates more smooth saliency map than assigning saliency values based on superpixels; in addition, object contours are also preserved well.

Joint object segmentation and saliency boosting

In this section, we describe a unified scheme which jointly segments foreground objects from background and optimizes the saliency map obtained in the previous section.

Given an input image X = {x 1 , x 2 , • • • , x N }, x n ∈ R 3 and its saliency map

S = {s 1 , s 2 , • • • , s N }, s n ∈ R 1 ,
where N is the number of pixels in the image, our goal is, (i) to generate a new saliency map

S * = {s * 1 , s * 2 , • • • , s * N }, s * n ∈ R 1 in
which objects are more highlighted and irrelevant background regions are more suppressed, (ii) and to find a label array L = {l 1 , l 2 , • • • , l N }, l n ∈ {0, 1} , which represents a segmentation of the input image X such that

l n =      1 if pixel n belongs to the foreground 0 otherwise
As illustrated in Figure 2.3, we address both object segmentation and saliency optimization jointly as follows:

1. Propose a candidate solution for image saliency map S.

2. Using the saliency map S, segment out objects from background by using the segmentation model described in Section 2.4.1. 4. Repeat the processing from step 2 until convergence or at the maximal iterations.

In the following three subsections, we firstly detail the object segmentation model and the saliency optimization model respectively, and then summarize the procedure of the iterative and interactive optimization scheme.

Object segmentation model

The widely acknowledged standard object segmentation methods, e.g. [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF][START_REF] Lempitsky | Image segmentation with a bounding box prior[END_REF], are based on Markov random field (MRF) framework, which associates each pixel with a random variable representing the segmentation label of a pixel. The optimal segmentation is achieved by minimizing a binary pairwise energy function defined over the random variables, which can be efficiently solved via graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. We also employ the MRF framework for object segmentation. In contrast to previous methods, we mainly focus on how to obtain a robust segmentation model by the optimum use of saliency information. In the rest of this subsection, we briefly introduce the basic knowledge of MRF for object segmentation, and then we show how to leverage useful saliency information to derive a robust segmentation model.
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MRF for object segmentation

An input image is a discrete array X = {x 1 , x 2 , • • • , x N }, x n ∈ R 3 of color pixels.
The MRF framework, with a neighborhood system N , defines a random variable l n over each pixel n and each random variable l n represents a segmentation label which is either 1 or 0. The neighborhood system N of MRF consists of a set of N n , ∀n ∈ P, where N n denotes a set of all 4-connectivity or 8-connectivity neighbors of pixel n and P denotes the set of all pixels in the image. An energy function E is defined with respect to the set of segmentation labels (random variables)

L = {l 1 , l 2 , • • • , l N }, so
that its minimum should lead to the optimal segmentation by finding the maximum a posteriori (MAP) configuration in an MRF. The standard form of MRF model for object segmentation is defined as:

E(L) = n∈P Λ n (l n ) + {n,j}∈N Θ n,j (l n, , l j ) (2.11)
where Λ n is the data term which measures the consistency between a segmentation label l n and a pixel n by evaluating the extracted data (like color feature) from the image, Θ n,j is the smoothness term which ensures the overall segmentation smoothing by penalizing neighboring pixels assigned with different labels.

Object segmentation with saliency information

Though the MRF model is shown to be successful to address the problem of object segmentation, its two components, i.e. data term and smoothness term, should be defined appropriately. Our data term and smoothness term are described as follows.

Data term

The data term Λ n is a function measuring the negative log of likelihood degree of labeling pixel n as foreground or background. Typically it is computed from the appearance model of foreground/background. We propose a new data term which consists of a location model Φ and an appearance model Ω

Λ n (l n ) = -log Φ n (l n ) -log Ω(x n |l n ). (2.
12)

The location model Φ estimates the probability of pixel n to be labeled as foreground/background according to its location in the image. As objects appear more salient relative to surrounding background, we derive the location model from saliency map. Accordingly, foreground location model is defined as

Φ n (l n = 1) = max s n , l t-1 n (2.13)
where, s n is the saliency value of pixel n of the saliency map S, and l t-1 n denotes the segmentation label of pixel n produced by the previous segmentation in the iterative optimization, which is set to 0 in the initialization (see Section 2.4.3). Similarly, the background location model is defined as

Φ n (l n = 0) = 1 -Φ n (l n = 1). (2.14) 
The appearance model Ω computes the probability of pixel n to be labeled as foreground/background based on color distributions in the image. We adopt two Gaussian Mixture Models (GMMs) to formulate the foreground/background appearance. The GMM is a parametric probability density function represented as a weighted sum of Gaussian densities

Ω(x n |ϑ) = Q i=1 w i g(x n |µ i , Σ i ) (2.15)
where

x n ∈ R 3 is a color pixel value vector, Q is the number of Gaussian components, ϑ = {w i , µ i , Σ i }, i = (1, • • • , Q) is a set of GMM parameters, g(x n |µ i , Σ i ) is a Gaussian probability density function g(x n |µ i , Σ i ) = 1 (2π) 3 |Σ i | exp - 1 2 (x n -µ i ) ′ Σ -1 i (x n -µ i ) (2.16)
here µ i ∈ R 3 is the mean vector of data vectors in the same Gaussian component, Σ i ∈ R 3×3 is the covariance matrix. w i is the weight of Gaussian component, such that the sum of all components weights is unity. The GMM parameters for foreground/background apparence modeling are learned from the initially or Chapter 2. Saliency-based object segmentation prevously separated foreground/background pixels.

Smoothness term

While foreground objects might be partly similar to background regions, the data term along is not sufficient to separate objects from background. The smoothness term promotes the pixels to be labeled smoothly, and thus coupling with the data term enables to group pixels into real objects.

Following previous works [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF] the smoothness term is defined as

Θ n,j (l n , l j ) =      0 if l n = l j Ψ(n, j) otherwise (2.17)
where Ψ(n, j) is a function defined based on color contrast

Ψ(n, j) = ϕ dis(n, j) exp -β x n -x j 2 (2.18) 
here dis(•) indicates spatial Euclidean distance between neighboring pixels, the constant parameter ϕ is moderately set to 50, β is color contrast adaptive parameter defined as

β = 1 2 • mean x n -x j 2 • dis(n, j) . (2.19)

Saliency boosting model

In this subsection, we present how to improve the quality of saliency map by taking object segmentation result into consideration. We assume that objects are at least partly extracted by the segmentation model described in the previous subsection. Pixels spatially near to the labeled foreground regions, and pixels similar to the labeled foreground regions in appearance should be assigned with a higher saliency value, and vice versa. Based on this assumption, the saliency boosting model is defined as

S * = S ⊙ (M + C) (2.20)
where, ⊙ indicates element-wise multiplication, M is the spatial prior matrix and C is the appearance prior matrix.

Recall that the saliency map S, generated by the segmentation driven low-rank matrix recovery (SLR) model described in Section 2.3, is finally computed based on medium-grained (MG) segmentation. We also compute the spatial prior and appearance prior for each region of MG segmentation, and assemble the spatial/appearance priors of all regions to form spatial/appearance prior of the entire image.

Let R = {r 1 , r 2 , • • • , r K } denote the MG segmentation of image X, and

O = {O 1 , O 2 , • • • , O P }
denote a set of the separated foreground objects and B denote the background in the segmentation result L generated by using the method described in Section 2.4.1, where K is the number of MG regions, and P is the number of the segmented objects. We want to compute a set of spatial priors

M = {m 1 , m 2 , • • • , m K } and a set of appearance priors A = {a 1 , a 2 , • • • , a K }.

Spatial prior

The spatial prior of region r k is defined as

m k = 1 P P p exp -α • ρ • η • D(r k , O p ) (2.21)
where α is a constant balance parameter, and set to 10 in our experiments, 

ρ = 1 |B| n∈B (s n ) is
D(r k , O p ) = d ′ kp max{d ′ 1p , d ′ 2p , • • • , d ′ Kp } (2.22)
where

d ′ kp = 1 |E k | j∈E k z j -c p 2 2 (2.23)
where E k is a set of boundary pixels in region r k , z j is the coordinate of boundary pixel j , and c p is the centroid of object O p .

From Eq. (2.21), we can observe that the spatial prior is adaptive to the quality of saliency map and object size. On one hand, the quality of saliency map is measured by ρ. The smaller ρ means higher quality of saliency map as most background pixels are assigned with small saliency values, which leads to larger value of the spatial prior. On the other hand, object size information is represented by η. A large η means small objects in the image, and spatial distance function D(•) is multiplied by a large weight. Thus, spatial prior is more sensitive to the distance between region to object centroid.

Appearance prior

The appearance prior computes the similarity between regions and the segmented objects. 

a ′ k = P p=1 |O p | • K(h t k , h p ) (2.24)
where K(•) is a similarity kernel function. In our experiment, the intersection kernel is adopted, thus

K(h t k , h p ) = T i=1 min h t k (i), h p (i) (2.25)
where T is the dimensionality of the histogram. By using Eq. (2.24), the nonnormalized appearance priors of all regions are computed. Then the final appearance prior of region r k is computed by a normalization function, i.e.,

a k = a ′ k max{a ′ 1 , a ′ 2 , • • • , a ′ K } . (2.26)
Notice that, in Eq. (2.24), the similarity kernel K(•) is weighted by object size

|O p |.
This implies that larger objects give more contribution to the appearance prior when there are multiple objects. In addition, this also significantly decreases the impact of segmentation noises, in which very few pixels form a region and are labeled as foreground. Therefore, taking the object size into consideration improves the robustness of appearance prior.

Iterative and joint optimization

The proposed scheme for joint object segmentation and saliency optimization works in an iterative manner, and is summarized in Algorithm 1. To launch the overall process of joint object segmentation and saliency optimization, the initial saliency map S is thresholded to obtain the initial label map L, which can roughly separate foreground pixels from background. The threshold is set to a value that ensures those pixels occupying 75% saliency of the whole image to be labeled as foreground. During the iterative optimization process, the saliency map S and the label map L are mutually refined with the update of GMM parameters, data term for graph cuts, spatial prior and appearance prior. If the label map L does not change any more, the iterative optimization reaches the convergence and output the optimal saliency map and final segmentation result. For reducing time consumption, we set the maximal iterations to 4.

The advantages of the proposed scheme are twofold. On one hand, the iterative MRF energy minimization allows to make use of previous segmentation results to learn the refined parameters for the next round of segmentation. On the other hand, interaction between object segmentation and saliency optimization enables to derive more reliable object cues, and promote both to achieve the optimality.

Algorithm 1 Joint object segmentation and saliency boosting - 

Input: image X = {x 1 , • • • , x N }, x n ∈ R 3 and its initial saliency map S = {s 1 , • • • , s N }, s n ∈ R 1 . -Output: a labeled map L = {l 1 , • • • , l N }, l n ∈ R 1 ,

Experimental evaluation

The proposed joint saliency detection and object segmentation approach is evaluated on two datasets including the popular MSRA-B [START_REF] Liu | Learning to detect a salient object[END_REF] and the newly introduced but more challenging PASCAL-1500 [START_REF] Zou | Segmentation driven lowrank matrix recovery for saliency detection[END_REF].

MSRA-B dataset 1 includes 5000 images, most of which contain a single salient object typically appearing in the center of the image. The original MSRA-B dataset annotates salient objects with bounding boxes and suffers from the limited accuracy in the performance evaluation of saliency detection and object segmentation. Thus, we use the pixel-wise segmented ground truths 2 provided by [START_REF] Jiang | Salient object detection: A discriminative regional feature integration approach[END_REF] for an accurate evaluation.

While MSRA-B may have the limited variations of salient objects, we also validate the performance of saliency detection and object segmentation on a more challenging PASCAL-1500 dataset 3 . This dataset contains 1500 real-world images from PASCAL VOC 2012 segmentation dataset [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF], in which each image is accurately annotated at pixel-level for performance evaluation. In PASCAL-1500 dataset, many images show highly cluttered background, and about 40% of the images contain multiple objects (on average 3 objects) which appear at a variety of locations and scales.

In the rest of subsections, we first give the relevant implementation details of the proposed approach, and then discuss the results of saliency detection and object segmentation, respectively.

Implementations

For image description in saliency detection, we use three visual features including color, responses of steerable pyramids filters [START_REF] Simoncelli | The steerable pyramid: a flexible architecture for multi-scale derivative computation[END_REF] and responses of Gabor filters [START_REF] Feichtinger | Gabor Analysis and Algorithms: Theory and Applications[END_REF].

Color: R, G, B color values, saturation and hue components are computed for each pixel, thus this forms a 5-dimensional color feature vector. To make it more discriminative, we also perform a mean normalization, i.e., each color feature vector is subtracted by the mean of all color feature vectors in the image.

Steerable pyramids filters:

the input color image is first transferred to grayscale image and decomposed into 3 pyramid scales, and then derivative operations are applied at 4 orientations to each pyramid scale. This results in a 12-dimensional feature vector.

Gabor filters: Gabor filters are performed on the gray-scale image with 3 wavelet scales and 12 filter orientations, which yields a 36-dimensional feature vector. The wavelength of smallest scale filter is 6, and the scaling factor between successive filters is 2.

These three visual features are accumulated (by average pooling) within the superpixel and stacked together to form a (5 + 12 + 36)-dimensional feature vector to represent the superpixel.

Chapter 2. Saliency-based object segmentation

For region generation, hierarchical segmentation of gPb [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] (globalized probability of boundary) is employed to generate medium-grained (MG) and coarse-grained (CG) segmentations. The output of gPb is a real-valued ultrametric contour map (UCM). The MG and CG segmentations are generated by thresholding the UCM, which is normalized from 0 to 1, at 0.125 and 0.25 respectively. As gPb generally preserves global contours of objects, and it fits well to MG and CG segmentations. However, it can not apply to the fine-grained (FG) segmentation very well, as it tends to group uniform areas into a large region. This makes feature descriptors extracted from superpixels of background to be insufficiently redundant, and thus they lack the low-rank property which is essential for low-rank matrix recovery model. Therefore, the segment-size controllable Mean-shift [4] is used to obtain FG segmentation, where the minimum segment area is set to 200 pixels.

The low-rank matrix recovery model is solved by the augmented Lagrange multiplier method proposed in [START_REF] Lin | The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[END_REF], and the balance parameter λ of the model is set to 0.05. The MRF energy minimization for object segmentation is solved via standard graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF].

Performance evaluation of saliency detection

In this subsection, we first present evaluation metrics for saliency detection, and then we analyze different components of the segmentation driven low-rank matrix recovery (SLR) model, described in Section 2.3, and show how the SLR-based saliency boosting (SB) model, described in Section 2.4.2, helps to achieve higher-quality saliency map. After that, the proposed SLR and SB models are compared with the state-of-the-art saliency detection models.

Evaluation Metrics

To objectively evaluate the performance of saliency detection, we adopt the widely used metrics: receiver operator characteristic (ROC) curve to measure the similarity between the saliency map and the ground-truth, and the area under the typically very sparse, thus it is far from to highlight the total salient objects.

Second, the LRMR model with segmentation prior suppresses some background regions, especially those regions connecting with image border (see the 3rd column). Third, adding post-smoothing component to the LRMR model with segmentation prior ensures the overall saliency map smoothing, and the salient objects are more completely highlighted (see the 4th column). Last but not the least, the saliency boosting model is able to effectively suppress difficult background regions, and ensures to discovery salient objects from complex scenes (see the last column).

Comparison with the state-of-the-art saliency models

For performance comparison, we first consider the top five saliency models ranked in the benchmarking report [START_REF] Borji | Salient object detection: A benchmark[END_REF], i.e., Chapter 2. Saliency-based object segmentation -fusing generic objectness (GO) model [START_REF] Chang | Fusing generic objectness and visual saliency for salient object detection[END_REF] which integrates object detection measure of Objectness [START_REF] Alexe | What is an object?[END_REF] in into a graphical model for saliency evaluation, -context-aware (CA) model [START_REF] Goferman | Context-aware saliency detection[END_REF] which combines local contrast, global uniqueness of color feature and some visual organization rules for saliency measuring.

-context and shape prior based (CBS) model [START_REF] Jiang | Automatic salient object segmentation based on context and shape prior[END_REF] which generates object-level saliency maps by modeling regional context and object shape prior from multiscale segmentations,

-region contrast based model (RC) [START_REF] Cheng | Global contrast based salient region detection[END_REF] which computes saliency from global contrast and spatial weighted regional contrast, -kernel density estimation based (KDE) model [START_REF] Liu | Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut[END_REF] which associates color saliency and spatial saliency with a set of KDE models constructed from over-segmented regions.

Moreover, we also compare our SLR and SB models with three recent saliency models, which are not evaluated in the benchmarking report [START_REF] Borji | Salient object detection: A benchmark[END_REF], including -Bayesian saliency (BS) model [START_REF] Xie | Bayesian saliency via low and mid level cues[END_REF] which evaluates saliency from convex hull analysis on interest points and Laplacian subspace clustering on superpixels, -hierarchical saliency (HS) model [START_REF] Yan | Hierarchical saliency detection[END_REF] which exploits hierarchical inference to fuse three saliency maps computed from multiple scales of region segmentation,

-training based low-rank matrix recovery (TLR) model [START_REF] Shen | A unified approach to salient object detection via low rank matrix recovery[END_REF] which integrates transformation prior learnt from MSRA-B dataset, semantic prior (face detection), color prior and center prior to LRMR model for saliency detection.

Therefore, there are eight reference saliency models in total. The most relative to our saliency models is TLR model which required supervised learning. In contrast, our models only use a single bottom-up segmentation prior, without using any supervisory information.

The proposed SLR and SB models are compared with the eight state-of-the-art models on MSRA-B dataset and PASCAL-1500 dataset in the-art models are weak to detect multiple salient objects in the image, such as the 2nd-4th columns. However, the proposed SLR and SB models show their potential to identify all of them. Last but not the least, the proposed models are able to detect objects in the cluttered scenes, while the reference models suffer from limited robustness. For example, in the 2nd-4th columns, the sheep, the persons and the horse are within cluttered backgrounds. The reference models either fail or only partly highlight these objects, but our models show the abilities to discover them.

Performance evaluation of object segmentation

In this subsection, we first present the evaluation metrics for object segmentation, then, we compare our approach with the state-of-the-art methods.

Evaluation metrics

To objectively evaluate the performance of object segmentation, we adopt the widely used measures of average precision, recall and F-score for the entire dataset.

The average precision (AvP) and average recall (AvR) are computed as

AvP = 1 T T t=1 S t ∩ G t S t (2.27) AvR = 1 T T t=1 S t ∩ G t G t (2.28)
where, T is the number of images in the dataset, S t is the segmented salient objects of image t and G t is the ground-truth of image t. The average F-score (AvF) is defined as AvF = 1

T T t=1 (1 + β)P t R t βP t + R t (2.29)
where P t and R t are precision and recall of image t respectively, the coefficient β balances the importance between precision and recall. As in previous works [START_REF] Cheng | Global contrast based salient region detection[END_REF][START_REF] Achanta | Saliency detection using maximum symmetric surround[END_REF],

β is set to 0.3 in our experiments.

Comparison with the sate-of-the-art segmentation approaches

We compare the proposed segmentation method with three state-of-the-art approaches for salient object segmentation, i.e., (i) KDEseg [START_REF] Liu | Unsupervised salient object segmentation based on kernel density estimation and two-phase graph cut[END_REF] in which saliency detection model is based on kernel density estimation and object segmentation is achieved using two phases graph cuts with adaptive seed adjustment; (ii) CBSseg [START_REF] Jiang | Automatic salient object segmentation based on context and shape prior[END_REF] in which saliency detection is based on regional context as well as object shape prior, and histogram-based iterative graph cuts is employed for object segmentation; and (iii) RCseg [START_REF] Cheng | Global contrast based salient region detection[END_REF] in which saliency is computed from bothe global and local region contrast and standard GrabCut [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF] is used for object segmentation. The results of these methods for comparison are provided by authors or produced by their publicly available implementations with the best parameters.

Figure 2.9 compares the AvP, AvR and AvF of different saliency-based object segmentation methods on MSRA-B and PASCAL-1500 datasets. First of all, let us take a look at the common ground in all approaches. The AvP in these approaches is typically higher than AvR, perhaps because precision is more important in many applications, such as attention detection. Then we see the performance difference in these methods. From Figure 2.9, we can observe that the proposed method consistently outperforms other methods in both of the evaluation datasets.

Compared to the best performance in the reference methods, our approach obtains background or totally/partly fail to extract the objects. In contrast, our approach separates the objects from most irrelevant background regions. Third, for images containing multiple salient objects, e.g., the 3rd 4th rows in Figure 2.11, the three reference methods tend to segment only a single object which is considered as the most salient in their saliency models. However, our approach can extract all salient objects in the image. Finally, for images with object occlusion, e.g. the last three rows Figure 2.11, the three reference methods only segment part of object regions or merge background regions into objects, while the proposed method shows its ability to extract well the occluded objects. Therefore, the proposed approach is much more robust and outperforms the state-of-the-art methods.

Conclusion

In this chapter, we have detailed a novel approach for jointly addressing the problem of saliency detection and object segmentation.

As the first contribution, a segmentation driven low-rank matrix recovery (SLR) model is proposed to detect salient object in an image. The key idea of this model is to decompose an image feature matrix into a low-rank matrix and a sparse one, where the decomposed low-rank matrix naturally corresponds to the background, and the sparse one captures salient objects. In order to improve the robustness of low-rank matrix recovery model for saliency detection, a bottom-up prior called segmentation prior, which is defined base on region's connectivity with image border, is proposed as an important constraint cue for the matrix Chapter 2. Saliency-based object segmentation decomposition and is shown to significantly improve the saliency detection performance. In addition, a simple yet effective post-smoothing method is presented to ensure the overall saliency smoothing and to generate visually higher-quality saliency map. Moreover, a challenging dataset named as PASCAL-1500, which contains 1500 images with pixel-wise ground truth, is introduced to evaluate the performance of saliency detection.

Second, a unified scheme is proposed to jointly segment foreground objects from background and to boost saliency map generated by SLR model. On one hand, the segmentation model is based on the standard Markov random field (MRF) framework which consists of a data term and a smoothness term. We have proposed a robust data term via the optimum use of saliency information. On the other hand, the saliency boosting (SB) model improves the quality of saliency map by effectively leveraging object location and appearance information from the segmentation result. Mutually performing object segmentation and saliency optimization promotes to obtain a better segmentation result and a higher-quality saliency map.

To validate the performance of saliency detection and object segmentation, extensive evaluation has been carried out on two datasets, including MSRA-B containing 5000 images and the newly introduced PASCAL-1500 (6500 images in total for the two datasets). Experiments demonstrate that: i) SLR model already outperforms the state-of-the-art saliency models, ii) SB model further improves the saliency detection performance, iii) the proposed segmentation approach is superior to the state-of-the-art object segmentation methods as well.

Exemplar-based object segmentation

Introduction

In the previous chapter we have discussed the salient object segmentation.

However, objects are not always salient in real images and saliency-based segmentation approaches may suffer limited robustness to segment un-salient objects. In this chapter, we concentrate on the objective of extracting all foreground objects from the background, which is usually called as figure-ground segmentation. The figure-ground segmentation is essential for many applications, e.g., image editing [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF], object recognition [START_REF] Van De Sande | Segmentation as selective search for object recognition[END_REF], image retrieval [START_REF] Chen | Object segmentation of database images by dual multiscale morphological reconstructions and retrieval applications[END_REF], target tracking [START_REF] Zhang | Segmentation and tracking multiple objects under occlusion from multiview video[END_REF][START_REF] Chen | Multiphase joint segmentationregistration and object tracking for layered images[END_REF], adaptive compression [START_REF] Xue | Proto-object based rate control for jpeg2000: an approach to content-based scalability[END_REF], etc.

According to the number of object classes within an image, existing figure-ground segmentation algorithms can be broadly classified into two categories: class-specific and class-independent. The class-specific segmentation [START_REF] Bertelli | Kernelized structural svm learning for supervised object segmentation[END_REF][START_REF] Alexe | Classcut for unsupervised class segmentation[END_REF][START_REF] Jojic | Stel component analysis: Modeling spatial correlations in image class structure[END_REF][START_REF] Mairal | Discriminative sparse image models for class-specific edge detection and image interpretation[END_REF][START_REF] Winn | Locus: learning object classes with unsupervised segmentation[END_REF][START_REF] Borenstein | Class-specific, top-down segmentation[END_REF] requires the input images to contain only a single class of objects. One of the main solutions for class-specific segmentation uses the learned top-down priors of specific category (e.g., shape templates and object parts configuration) to guide bottom-up segmentation. Even though impressive results are demonstrated, the class-specific segmentation lacks adaptivity which limits the range of its applications. Recently, growing attention has been paid to class-independent segmentation due to the rising demands of applications like large-scale object annotation [START_REF] Kuettel | Segmentation propagation in imagenet[END_REF]. The class-independent segmentation is a generic approach which aims at segmenting out any class of objects from background. This Chapter 3. Exemplar-based object segmentation is a more difficult case: challenges mainly come from intra and inter variations of objects, object occlusion and truncation.

There are mainly two strategies to address the class-independent segmentation.

The first one is based on multiple segmentations or hierarchical segmentation [START_REF] Carreira | Cpmc: Automatic object segmentation using constrained parametric min-cuts[END_REF][START_REF] Endres | Category independent object proposals[END_REF][START_REF] Zou | Semantic segmentation via sparse coding over hierarchical regions[END_REF]. Typically, a large set of regions is generated by varying segmentation parameters, and then offline learned ranking model is used to select regions likely to cover objects. This strategy exclusively depends on the bottom-up segmentation which usually lacks robustness, and thus it is more applicable to consistent scenes. The second strategy is exemplar-based segmentation transfer, such as the recently proposed approaches [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF][START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF]. In [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF], exemplars are picked from the annotated training images which are geometrically similar to the query image. Then the object locations are predicted, by merging segmentation masks of exemplars, to serve as seeds for graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] to create spatially consistent segmentation. Unfortunately, retrieving exemplars by scene layout matching suffers from the limited robustness of global image descriptor (e.g., GIST [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF]) to handle geometric deformations [START_REF] Douze | Evaluation of gist descriptors for web-scale image search[END_REF]. More importantly, their location model is sensitive to object variations, e.g., rotation, scale and position. Instead, in [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF],

exemplars are gathered from windows predicted by object detection, and then segmentation masks of exemplar windows are transferred into the query image.

The window-based segmentation transfer is instinctively determined by the performance of generic object detection algorithm. However, it is not easy to obtain a reliable class-independent detection model, since the state-of-the-art object detection approaches still have difficulties to handle cluttered background.

Based on the aforementioned issues, this chapter proposes a novel exemplar-based segmentation approach named as Online glocal transfer. As illustrated in Figure 3. image representation method, object-oriented descriptor (OOD), is proposed to implicitly represent geometric information and to highlight objects in the image. Therefore OOD enables to effectively find glocally similar images.

-A novel scheme is proposed to obtain the optimal segmentation that harmoniously combines online prediction and Markov random field (MRF) energy optimization. A discriminative classifier is learned on-the-fly from the retrieved k nearest neighbors. The classifier initially predicts foreground probability of the query image which serves as high-level prior for further pixel-wise segmentation. While the online learning has been shown successful in exemplar-based image classification [START_REF] Zhang | Svm-knn: Discriminative nearest neighbor classification for visual category recognition[END_REF], to the best of our knowledge, it has not been applied to the figure-ground segmentation yet.

The proposed approach has been extensively evaluated on three challenging datasets including Pascal VOC 2010, VOC 2011 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF], and iCoseg [START_REF] Batra | icoseg: Interactive co-segmentation with intelligent scribble guidance[END_REF]. Experiments demonstrate that the proposed approach outperforms the state-of-the-art methods and has the potential to segment large-scale images containing unknown objects, which never appear in the exemplar images.

Overview

The objective of this chapter is to automatically segment out all objects from background. The underlying idea is to transfer foreground/background labels of glocally similar exemplars to a query image. Figure 3.2 shows the framework of the proposed approach. There are three core algorithmic modules:

1. Glocal scene retrieval, by using the proposed object-oriented descriptor (OOD), finds a set of glocally nearest neightbors for the query image. In such neighbors, both the appearance of objects and the scene layouts are similar to those in the query image.

2. Online prediction predicts foreground probability for the query image. The retrieved k nearest neightbors as well as the query image are over-segmented into regions. A discriminative classifier of support vector machine (SVM), which is learned on-the-fly from the regions of the retrieved exemplars, predicts initial foreground probability for each region of the query image.

3. Segmentation with SVM prior produces the optimal segmentation by combining the probabilistic SVM map, created by the online prediction, and the Markov random field (MRF) energy optimization.

The proposed framework is generic, since any algorithm that fits the above modules can be plugged into the framework. For instance, the typical PHOG [START_REF] Bosch | Image classification using random forests and ferns[END_REF] (pyramid of 3.3. Image features 59 histograms of oriented gradients) can be applied for scene retrieval. The performance of using PHOG has been evaluated in experiments (see Section 3.7.1) and is shown to outperform the previous approaches as well. Moreover, we use the SVM for online prediction, and random forest may be an alternative choice for this.

The remainder of this chapter is organized as follows: image features used in the proposed approach are firstly introduced in Section 3.3. After that, the three key algorithmic modules are detailed in Section 3.4, Section 3.5 and Section 3.6, respectively. Then experimental evaluations are presented in Section 3.7. Finally, the chapter is concluded in Section 3.8.

Image features

In this section, low-level and middle-level features used in our approach are briefly introduced.

Low-level features

The methods of low-level image representation have been significantly advanced in the past years. Nevertheless, it is fare to say that none is perfect for all types of images. To propose a generic solution, we make use of the following three descriptors:

-Color GIST descriptor [START_REF] Oliva | Modeling the shape of the scene: A holistic representation of the spatial envelope[END_REF]. The GIST is computed from Gabor filters responses on a 4 × 4 grid over the entire image. They are extracted at 3 scales, with 8, 8 and 4 orientation bins respectively from each of the CIE L*, a* and b* channels. Thus, the GIST descriptor is a 960-dimensional vector

(3 × (8 + 8 + 4) × (4 × 4)).
-Scale-invariant feature transform (SIFT) [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF]. Histograms of gradients are computed, with 8 orientation bins, on a 4 × 4 grid over a patch. This results in a 128-dimensional vector (8 × 4 × 4). The SIFT descriptors are extracted densely with a step size of 2 pixels.

-Self-similarity feature (SSIM) [START_REF] Shechtman | Matching local self-similarities across images and videos[END_REF]. The SSIM descriptor computes correlation values between a 5 × 5 patch and a larger surrounding one which is 20 × 20 in our experiments. They are firstly transformed into the log-polar space, then quantized into 32 bins (8 orientations with 4 radial intervals). Hence an SSIM descriptor is a 32-dimensional vector. The SSIM descriptors are also extracted densely with a step size of 2 pixels.

In this chapter, the three descriptors are used for image representation in the module of glocal scene retrieval. Moreover, SIFT and SSIM are also used for region representation in the module of online prediction.

Middle-level representation

The SIFT and SSIM descriptors are further represented by the standard bag-ofvisual-words (BOV) [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. K-means is used to create visual dictionaries for SIFT and SSIM with the sizes of 2000 and 800, respectively. To capture global geometric layout or object configuration, spatial pyramid is also adopted to accumulate visual words, where 3 levels are applied to image description and 2 levels to region representation.

We have empirically observed that increasing the pyramid levels does not improve the performance in our application.

Glocal scene retrieval

In this section, we describe how to retrieve a set of glocally nearest neighbors for a query image. First, a novel high-level image descriptor, named as object-oriented descriptor (OOD), is presented, and then the retrieval method is introduced by using this new descriptor.

Object-oriented descriptor

The middle-level image representation based on BOV might be not sufficient to capture semantic meaning; researchers, therefore, propose to transform the middle-level representation into high-level descriptor by leveraging machine learning techniques. A recent method is attribute descriptor [START_REF] Farhadi | Describing objects by their attributes[END_REF][START_REF] Parikh | Relative attributes[END_REF] that describes an object by its parts (e.g., mouth), shape (e.g., cylindrical) and materials (e.g., furry). The attribute descriptor of an image is a set of responses of discriminative Firstly, a pseudo-category is created to gather objects sharing similar appearance together. Objects within manually segmented training images are extracted, and each of them is represented by a BOV vector. The BOV vectors of all objects are collected together and classified into N subsets. Clearly, objects within the same subset share similar appearance. However, it does not mean that they belong to the same real category, since objects of intra-category may show high variation (e.g., chair), and objects from different categories may be similar in appearance ( e.g., horse and cow). So we call this subset pseudo-category. To classify objects, as shown in Figure 3.3, we make use of agglomerative hierarchical clustering [START_REF] Johnson | Hierarchical clustering schemes[END_REF], in which each object forms a cluster and pairs of clusters are grouped together to form a new one moving up through the hierarchy. In order to decide which clusters should be merged, one has to define a distance function for measuring similarity between clusters. We employ χ 2 distance defined as

χ 2 (f i , f j ) = D d=1 (f i (d) -f j (d)) 2 f i (d) + f j (d) (3.1)
where f i and f j are BOV vectors of a pair of objects, D is the dimension of BOV vector. The main reason accounting for choosing the hierarchical clustering rather than typical K-means is the fact that the K-means does not support χ 2 distance metric, which is powerful for clustering histograms of BOV vectors. 

h i = v ′ i v ′ i 2 (3.2)
where

• 2 indicates l 2 -norm, v ′ i
is the vector difference between v i and the mean of all score vectors computed from the training images

v ′ i = v i - 1 P P p=1 v p (3.3)
Here, the normalized score vector h i is termed as object-oriented descriptor (OOD).

The number of SVM classifiers N is determined by the appearance distributions of objects in the training images. If the objects show high variations in the appearance space, N should be set to a relative larger value. In our experiments, N is moderately set to 40. -With the learned SVM classifiers, it is simple to compute OOD from BOV descriptor, since only a multiplication and a normalization are needed to be performed.

Glocal nearest neighbor retrieval via OOD

With the OOD representation, the key problem of retrieving a set of glocally similar exemplars is to define a distance function for similarity measure, which is still an active research area. We have evaluated the OOD with l 2 distance and l 1 distance, and have experimentally observed that, l 2 distance gives more relevant exemplars when query image is simple and contains only a single object; however, l 1 distance obtains better exemplars when the query image is complex and consists of multiple objects from different categories. As our objective is to find exemplars with objects similar to the query image possibly containing multiple objects, we chose l 1 distance for retrieval.

Online prediction

The objective of this module is to initially predict foreground probability for a query image. As similar images generally share similar segmentation, we make use of the retrieved k nearest neighbors as reference samples to predict the foreground probability. This module first segments the query image and its k nearest neighbors into regions, and then a region-based figure-ground classifier is trained to predict foreground probability for each region of the query image.

For region generation, we make use of the contour-based hierarchical segmentation algorithm gPb [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] (globalized probability of boundary), which provides the output as a probability-of-boundary map, so-called ultrametric contour map (UCM). Like other generic bottom-up segmentation methods, gPb is far from perfectly separating objects from background, mainly due to the lack of top-down knowledge about specific objects and image context. To generate regions, we threshold the UCM, normalized from 0 to 1, at 0.125 to ensure that an image is over-segmented.

The figure-ground classifier is learned on-the-fly by using a set of regions segmented from k nearest neighbors. To learn the classifier, we follow our previous work [START_REF] Zou | Semantic segmentation via sparse coding over hierarchical regions[END_REF] and employ support vector machine with multiple kernel learning (SVM-MKL) proposed in [START_REF] Varma | Learning the discriminative power-invariance tradeoff[END_REF]. Positive examples for training are the exemplar regions that mainly belong to objects, and negative examples are the rest of exemplar regions corresponding to background. Let 

f Q = {f 1 q , f 2 q , • • • , f U q } denote a set of BOV vectors of a test region and f T = {f 1 t , f 2 t , • • • , f U t } denote a
C(f Q ) = N n=1 y n a n K(f Q , f n T ) + b (3.4)
where y n ∈ {+1, -1} indicates foreground/background label of the training region, N is the number of training regions, and K(•, •) is the positive definite kernel, calculated as a linear combination of feature kernels A naive approach to segment an image is to threshold its SVM map.

K(f Q , f n T ) = U u=1 w u Ψ(f u q , f u t ) ( 3 
Unfortunately, the SVM classification scores are not always reliable and may lead to noisy segmentation. The reasons are mainly two fold. On one hand, the bottom-up gPb segmentation only partitions an image into homogeneous regions and is far from separating objects from background. Thus some features extracted from the regions are not sufficiently distinctive for the SVM classification. On the other hand, the region-based prediction handles each region separately and might cause unsmoothing labeling. Some segmentation results produced by using SVM only can be found in the fifth column of Figure 5.

Segmentation with SVM prior

To make our approach more robust and obtain coherent segmentation, we leverage SVM scores as a prior for energy optimization of Markov random field (MRF), which not only considers how likely a pixel belongs to an object but also the labels of its neighboring pixels. In this way, the SVM scores provide soft constraint and supplementary information for the MRF optimization through the following segmentation model.

Segmentation model

For segmentation, we use the standard MRF model [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], which defines a Markov random field on pixels of image with a neighborhood system. In such a model, each

Chapter 3. Exemplar-based object segmentation pixel is associated with a random variable, which corresponds to its segmentation label. The optimal segmentation is achieved by finding the maximum a posteriori (MAP) configuration in an MRF and is addressed by minimizing the energy function of a pairwise MRF

E(L) = n∈P Λ n (l n ) + {n,j}∈N Θ n,j (l n, , l j ) (3.6)
where P denotes the set of all image pixels, N corresponds the neighborhood system defined on the pixels which is chosen to be 4 or 8 connecting neighborhood, L =

{l 1 , l 2 , • • • , l N }
is an array of labels (random variables) at pixels, n is the single index of image, l n = {0, 1} with 0 indicating background and 1 indicating foreground objects, Λ n is the data term and Θ n,j is the smoothness term.

Data term

The data term measures consistency between the pixel and its label, and is generally defined as the negative log of the likelihood of a foreground/background label being assigned to a pixel, i.e.,

Λ n (l n ) = -log(Ω(x n |l n )) (3.7)
where x n ∈ R 3 is the color feature vector, Ω is an appearance model predicting the foreground or background probability by modeling color distributions in the image.

However the color feature is not very discriminative and may lead to inaccurate segmentation. To overcome this problem, we propose a novel data term which incorporates an SVM prior and an appearance model

Λ n (l n ) = -log(Φ(l n ) • Ω(x n |l n )) (3.8)
where the SVM prior Φ(l n ) is computed from the figure-ground SVM classification scores. Given the probabilistic SVM map

S = {s 1 , s 2 , • • • , s N }, s n ∈ R 1 , of input
image, which is normalized to [0, 1], the SVM prior of pixel n for foreground model 3.6. Segmentation with SVM prior 67 is defined as

Φ(l n = 1) = s n . (3.9)
Similarly, the SVM prior of pixel n for background model is defined as

Φ(l n = 0) = 1 -s n . (3.10)
Note that, as described in Section V, the SVM figure-ground classifier is online learned from a set of the most similar images, the SVM prior Φ(l n ) naturally links each pixel to the foreground/background of its nearest neighbors. Therefore, the proposed data term carries both intra and inter pixel attributes. This suggests that Eq. (3.8) promotes pixels more similar to foreground objects in the exemplar images to be labeled as foreground, and encourages other pixels more similar to the background in those images to be labeled as background.

The appearance model is defined by two Gaussian mixture models (GMMs),

where one is for foreground modeling and the other one for background modeling.

The GMM is a parametric probability density function represented as a weighted sum of Gaussian densities

Ω(x n |ϑ) = Q i=1 w i g(x n |µ i , Σ i ) (3.11)
where Q is the number of Gaussian components (typically Q = 5), w i is the mixture component weight with the constraint that the sum of all component weights equals

1, g(x n |µ i , Σ i ) is a Gaussian probability density function g(x n |µ i , Σ i ) = 1 (2π) 3 |Σ i | exp{- 1 2 (x n -µ i ) ′ Σ -1 i (x n -µ i )} (3.12)
where µ i ∈ R 3 is the mean vector of data vectors in the same Gaussian component, and Σ i ∈ R 3×3 is the covariance matrix.

Chapter 3. Exemplar-based object segmentation Algorithm 2 Segmentation with SVM prior Input:

test image X = {x 1 , x 2 , • • • , x N }, x n ∈ R 3 and its SVM map S = {s 1 , s 2 , • • • , s N }, s n ∈ R 1 ,
where N is the number of pixels.

Output:

labeled image L = {l 1 , • • • , l N }, l n ∈ {0, 1}.

Initialization

-Compute the smoothness term Θ with (3.13).

-Compute an SVM prior Φ with (3.9) and (3.10).

-Initialize L by thresholding S with (3.15).

Iterative Optimization

-Learn a set of GMM parameters ϑ based on L.

-Compute appearance model with (3.11).

-Compute data term Λ with (3.8).

-Segment image X by minimizing (3.6) and update L.

-Stop the iteration if the convergence is reached or the number of iterations is greater than a predefined threshold.

Smoothness term

The smoothness term is defined within the neighborhood system which consists of all pairs of adjacent pixels. Its goal is to ensure the overall label smoothing by penalizing neighboring pixels assigned with different labels. Like in [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF], the smoothness term is defined based on the spatial distance and color contrast between neighboring pixels

Θ n,j (l n, , l j ) = ϕ dis(n, j) [l n = l j ] exp{-β x n -x j 2 2 } (3.13)
where dis(•) is the spatial Euclidean distance of neighboring pixels, • 2 indicates l 2 -norm. The balance parameter ϕ is set to 50 which has been proved to be suitable for most real images [START_REF] Blake | Interactive image segmentation using an adaptive gmmrf model[END_REF]. The constant β is a contrast-oriented weight. When β is 0, all neighboring pixels are smoothed with fixed degree determined by ϕ. To make the smoothness adaptive to global contrast of neighboring pixels, β is chosen to be

β = 1 2 • mean(( x n -x j 2 2 ) • dis(n, j))
.

(3.14)

Overall segmentation algorithm

The overall algorithm of object segmentation is summarized in Algorithm 2.

The segmentation procedure consists of two key steps including initialization and iterative optimization.

In the initialization step, we pre-compute the smoothness term by considering both color contrast and spatial distance between neighboring pixels, an SVM prior by using the SVM map S, and initially separate foreground pixels from background to launch the subsequent iterative optimization. To obtain an initial segmentation, we propose a new method by thresholding the SVM map S. The threshold is selfadaptively computed by

η = min(τ • mean(S), ̟ • max(S))) (3.15) 
where τ and ̟ are predefined parameters, and are set to 0.8 and 0.6 respectively in our experiments.

The initial segmentation result generated by thresholding the SVM map may be too coarse, so in the second step we refine the segmentation result based on an iterative optimization scheme. First, GMM parameters for foreground/background modeling are estimated via expectation-maximization (EM) [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] using the separated foreground/background pixels. Then an appearance model is computed based on the learned GMM parameters and is coupled with the SVM prior to compute a data term. With the well-prepared data term and smoothness term, a new segmentation is estimated by minimizing the energy function (3.6) via efficient graph cuts [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF].

The obtained segmentation result is employed to learn a set of more precise GMM parameters, and then a new round of optimization is launched accordingly. Although the above iterative optimization model is guaranteed to converge at least to a local minimum energy [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF], we still limit the maximum number of the iterations to 10 for saving the computation cost.

Experimental evaluations

The proposed approach is evaluated on three datasets including Pascal VOC 2010, Pascal VOC 2011 [START_REF] Everingham | The pascal visual object classes (voc) challenge[END_REF] and iCoseg [START_REF] Batra | icoseg: Interactive co-segmentation with intelligent scribble guidance[END_REF]. In order to objectively evaluate the segmentation performance, we adopt two commonly used objective measures: Fscore and average union metric. The F-score is the harmonic mean of precision and recall

F-score = (1 + α)precision • recall α • precision + recall (3.16)
where, α is the parameter to balance precision and recall and is set to 1. The precision and recall are computed over the total dataset and are defined as

precision = T t=1 P t G t T t=1 P t (3.17) recall = T t=1 P t G t T t=1 G t (3. 18 
)
where T is the number of test images, P t is the set of predicted foreground pixels in test image t and G t is the ground-truth of foreground. As in [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF][START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF], we also compute the average union (AvU) score defined as

AvU = 1 T T t=1 P t G t P t G t (3.19)
In the rest of this section, we mainly evaluate in Section 3.7.1 the segmentation performance of the proposed approach on the Pascal VOC 2010, VOC 2011 datasets, and then validate its adaptability on iCoseg dataset in Section 3.7.2.

Pascal VOC experiments

The proposed approach is mainly validated on the Pascal VOC 2010 and VOC 2011 datasets, which are the widely acknowledged difficult datasets for both segmentation and recognition. In this subsection, a brief introduction for the datasets and baselines for performance comparison are given first. Then, we analyse the segmentation performance of the proposed approach with different sets. Note that, we aim at a class-independent segmentation approach, the image category information is not used, therefore, we do not distinguish object classes, but assign all objects as foreground.

As the VOC segmentation datasets are originally designed for the performance evaluation of multi-class object segmentation, each of 20 classes objects is labeled with a unique integer ID within [1,[START_REF] Avraham | Esaliency (extended saliency): Meaningful attention using stochastic image modeling[END_REF] and the background is labeled as 0.

Moreover, there are a few other areas labeled as 255, which are from ambiguous objects, significantly truncated objects and boundary pixels separating different objects and background. Here we name them as difficult areas. In the previously published works [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF][START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF], segmentation accuracies are computed by setting these areas as background. However, since some of them actually belong to the foreground; if we ignore them, as recommended by the dataset designers, the segmentation accuracies will be obviously different from setting them as background. For objective evaluation and consistent comparison, the evaluation scores will be computed in two ways: setting the difficult areas as background or ignoring them.

Baselines

We use three state-of-the-art figure-ground segmentation approaches as baselines.

The first one is the method proposed in [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF], which performs segmentation transfer based on two sets of global similar images. For abbreviation, we call this approach The curve A shows the performance of our full method of online glocal transfer. The curve B shows the performance of online glocal transfer using PHOG for image retrieval rather than using OOD. The curve C shows the performance of online glocal transfer using only SVM prediction (without MRF optimization). The curve D shows the performance of global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] with the proposed OOD for image retrieval. The curve E shows the performance of original global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF]. All results are computed by setting difficult areas of ground-truth as background.

As shown in Figure 3.4, the online glocal transfer with OOD (curve A) obtains a higher performance than with PHOG (curve B). The improvement is very obvious when k is small (less than 60). This also implies that using OOD leads to more efficient online learning as less training exemplars are needed.

In addition, OOD is evaluated in global transfer system [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF], in which GIST is used to retrieve scenes with similar layout for location modeling, and PHOG is employed to find images with similar content for appearance modeling. To validate the performance of OOD, we replace the neighbors retrieved by OOD with those two sets of neighbors retrieved by GIST and PHOG respectively, and compute the segmentation results. From Figure 3.4, we can observe that, in the stable range of k ≥ 20, the global transfer with the OOD (curve D) improves performance about 3% on F-score and 2% on AvU score, compared to original global transfer method (curve E).

Validation of the online glocal transfer scheme: to evaluate the novel segmentation scheme, which combins online prediction and MRF-based segmentation model, we compare the online glocal transfer (using OOD or PHOG) with the global transfer using OOD. As shown in Figure 3.4, even though the online glocal transfer with PHOG (curve B) obtains a lower performance than the online glocal transfer with OOD (curve A), it still outperforms the global transfer using OOD (curve D) by a wide margin: about 4% improvement in terms of both F-score and AvU score. This shows that the proposed scheme of online glocal transfer is superior to global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF].

To see how the MRF optimization contributes to the segmentation, results generated by simply thresholding the SVM map are also computed for comparison.

As shown in Figure 3.4, with the MRF optimization (curve A), about 4% improvement is obtained in terms of F-score and AvU score in the whole range of k. Figure 3.4 also reveals that our approach without the MRF optimization still outperforms the global transfer with OOD. Thus, the advantage of the online glocal transfer scheme is further demonstrated.

In summary, the compelling performance of the proposed approach stems from the novel image descriptor method OOD and the new scheme combining online 

Quantitative comparison

In Table 3 

Qualitative evaluation

Figure 3.5 shows some segmentation results produced by global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF],

window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF] and our approach. We can make some observations from the segmentation results. First of all, combining the MRF optimization with the online SVM prediction achieves a higher segmentation quality than segmenting by directly thresholding the SVM map. As shown in the two rightmost columns, some noise labels are removed while object contours are preserved. Secondly, our approach can recover partially truncated foreground objects. For instance, in the first three rows, the train, the airplane and the motorbike are truncated on the image border, but they are correctly labeled as foreground. Last but not the least, the proposed approach shows its potential to address occlusion and the cluttered scene, which are the most challenging situations in segmentation task. For example, in the fourth, fifth and sixth rows, the car is significantly occluded by the tree trunk, and the cow and the horse are occluded by the barriers; in the last four rows, the car, the sheep, the buses and the boat are in the cluttered environments. Our approach shows the robustness to segment out these objects, while global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] and window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF] either fail or merge some background regions with objects. 

Failure cases and analysis

Though the proposed approach outperforms the sate-of-the-art figure-ground segmentation methods on both qualitative and quantitative evaluations, our approach can not perform well on some difficult cases shown in Figure 3.6. As shown in the first example, a part of side view of the bus totally covers the whole image. The proposed approach only extracts the most outstanding object (the person) with a part of bus regions. Mainly because the segmentation model generally supposes that in an image both foreground objects and background exist, and less confident regions of the bus are labeled as background. For some objects very similar to background in both color and edge orientation, such as the second example in Figure 3.6, our approach can not completely separate the objects from the background, and it merges a part of background regions with objects. Besides, for images containing multiple objects with significant variations in appearance and scale, the too small and blurry objects are missed in the segmentation, e.g., the bird and cars in the second example, and the two distant people in the third example. In addition, our approach also has difficulty to separate an object from its reflection in the water like the fourth example. However, as shown in Figure 3.6, other approaches also can not perform well on such difficult cases.

Computation cost

To analyze the complexity of the proposed approach, we computed the run-time for each of the three components of our approach. On a laptop with Intel i7 CPU (2.2 GHz) and 8GB RAM, the Matlab implementation takes about 2 seconds for glocal scene retrieval, 108 seconds for online prediction and 4 seconds for segmentation with SVM prior. Obviously, the online prediction occupies the main computation cost, since it includes two time-consuming operations, gPb region generation and SVM prediction. The former takes 97 seconds to segment an image with the configuration that the resizing factor for eigenvector computation is set to 0.5, while the latter takes 11 seconds for region-based foreground prediction.

It is clear that the main computation cost of the proposed approach comes from gPb region generation. Fortunately, gPb can be significantly accelerated by using GPU implementation with parallel computing. As reported in [START_REF] Catanzaro | Efficient, high-quality image contour detection[END_REF], the optimized gPb on a NVidia GTX 280 GPU only uses 1.8 seconds to process an image with a resolution of 481 × 321 (approximate 0.15 Megapixels). The other components also can be accelerated by using a parallel GPU implementation, such as in the glocal scene retrieval, the feature extraction can be done in parallel on the basis of pixel.

Therefore, the computation cost of the proposed approach can be substantially reduced with a parallel GPU implementation. Table 3.3 compares the run-time of different approaches. The global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] has an obvious advantage in computation cost: it only takes 4 seconds to segment an image, while window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF], our approach and CPMC [START_REF] Carreira | Cpmc: Automatic object segmentation using constrained parametric min-cuts[END_REF] need 97 seconds, 114 seconds and 230 seconds, respectively. In the rest of this subsection, the baselines including exemplar-based approaches and co-segmentation methods are given first. Then we present and discuss the results generated by exemplar-based approaches. Finally we compare segmentation performance across different methods.

Baselines

We firstly evaluate segmentation performance within exemplar-based figure-ground segmentation approaches, thus global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] and window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF] are used to compare. To see the performance of different kinds of segmentation approaches, we also compare with two state-of-the-art co-segmentation methods [START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF], which simultaneously segment several images containing the same object classes.

Results of exemplar-based approaches

Segmentation accuracies obtained by different exemplar-based approaches are shown in Table 3.4. Surprisingly, all approaches provide consistent good results by transferring exemplar segmentations from Pascal VOC 2011 to images in iCoseg dataset. This suggests that the exemplar-based approaches have the potential to segment large-scale images by using a set of the segmented exemplar images. Among these approaches, the proposed online glocal transfer achieves the best performance.

It improves by 5.3% and 3.3% in terms of F-score and AvU score over the second one, window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF].

Some segmentation examples generated by the proposed approach are shown in the brown bear may be referred to dog due to their similar color. On the other hand, while it is more difficult to find similar objects across different datasets, retrieving similar background is much more easier, e.g., sky, grass and water may not show significant variations in most images. Both the retrieved similar objects and background scenes are helpful for the segmentation transfer. 

Comparison with co-segmentation methods

To validate segmentation performance across different methods, the exemplar-based segmentation approaches are also compared to two state-of-the-art co-segmentation methods [START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF] on iCoseg dataset. As in [START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF], we compute AvU score for each object class rather than for the whole dataset, and compare the AvU scores for 10 classes reported in [START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF]. As shown in Table 3.5, the proposed online glocal transfer achieves the best performance for 7 out of 10 object classes among the five methods. In addition, it also increases the average of the 10 AvU scores to 72.9% and obtains 6.8% improvement compared to the second one [START_REF] Joulin | Multi-class cosegmentation[END_REF]. 

Conclusion

We have proposed a novel automatic figure-ground segmentation approach by transferring segmentation masks of glocally similar exemplars into query image.

Firstly, object-oriented descriptor (OOD) is proposed as high-level image representation which implicitly encodes geometric information and highlights objects in an image. This descriptor enables to efficiently find better exemplars for segmentation transfer and thus leads to higher segmentation accuracy compared to using the combination of GIST and PHOG descriptors. Secondly, a novel scheme that combines online prediction and energy optimization of Markov random field is proposed to improve the robustness of segmentation model and achieves the optimal segmentation.

Extensive evaluation has been performed on three datasets including Pascal VOC 2010, VOC 2011 segmentation challenges and iCoseg dataset. Experiments demonstrate that: (i) using the scheme of online glocal transfer with typical PHOG for image retrieval can outperform state-of-the-art techniques; (ii) the online glocal transfer with OOD improves the performance further, e.g., compared to the best results of recently proposed window transfer [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF], the segmentation

Semantic image segmentation

Introduction

In this chapter, we focus on the problem of semantic image segmentation, which aims to assign a semantic label, e.g. "car"and "building", to each pixel in an image. This has high practical value in many applications, such as image editing, object retrieval, content-based image coding and large-scale internet image management. A number of approaches have been proposed for semantic image segmentation. These methods are either formulated in terms of pixels [START_REF] Shotton | Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context[END_REF] or regions [START_REF] Lempitsky | Image segmentation with a bounding box prior[END_REF][START_REF] Yang | Multiple class segmentation using a unified framework over mean-shift patches[END_REF][START_REF] Csurka | An efficient approach to semantic segmentation[END_REF][START_REF] Li | Towards total scene understanding: Classification, annotation and segmentation in an automatic framework[END_REF][START_REF] Verbeek | Region classification with markov field aspect models[END_REF][START_REF] Jiang | Efficient scale space auto-context for image segmentation and labeling[END_REF]. As a single pixel feature along, e.g. intensity or color, is not sufficiently discriminant for semantic labeling, region-level inferences are generally considered a better choice.

The region-based prediction is typically combined with high-level knowledge to achieve semantic segmentation. In [START_REF] Csurka | An efficient approach to semantic segmentation[END_REF], Fisher vector is introduced to describe over-segmented regions and image classification is applied to globally predict object classes in an image. In [START_REF] Li | Towards total scene understanding: Classification, annotation and segmentation in an automatic framework[END_REF], image tags and scene information are utilized to infer the existence of an object. In [START_REF] Lempitsky | Image segmentation with a bounding box prior[END_REF], bounding boxes, acquired by object detection are used as a prior of the segmentation. A number of researchers also suggested incorporating different cues into a random field (RF) model [START_REF] Verbeek | Region classification with markov field aspect models[END_REF][START_REF] Jiang | Efficient scale space auto-context for image segmentation and labeling[END_REF][START_REF] He | Multiscale conditional random fields for image labeling[END_REF][START_REF] Batra | Learning class-specific affinities for image labelling[END_REF][START_REF] Kohli | Robust higher order potentials for enforcing label consistency[END_REF][START_REF] Gould | Multi-class segmentation with relative location prior[END_REF][START_REF] Kumar | A hierarchical field framework for unified contextbased classification[END_REF][START_REF] Parikh | From appearance to context-based recognition: Dense labeling in small images[END_REF][START_REF] Rabinovich | Objects in context[END_REF].

For example, in [START_REF] Verbeek | Region classification with markov field aspect models[END_REF], probabilistic latent semantic analysis model is integrated to Markov Random Field (MRF) model for the purpose of fusing region-level labels and image-level assumptions. In addition, in [START_REF] Jiang | Efficient scale space auto-context for image segmentation and labeling[END_REF], image appearances and context information predicted by a set of classifiers are combined within conditional random field model. All these methods suggest that combining different cues might Based on aforementioned observation, this chapter, which partly appeared as [START_REF] Zou | Semantic segmentation via sparse coding over hierarchical regions[END_REF][START_REF] Zou | Semantic image segmentation using region bank[END_REF], explores to extract local features on multi-level regions for both training and testing steps. The region sets used for training and testing are respectively named as training region bank (TRB) and query region bank (QRB). Our motivation is that by fusing multi-level regions one might have more chance to capture objects or discriminative parts of objects; besides, region hierarchy provides natural spatial constraint for region representation. As the second contribution, we propose sparse coding as the high-level region representation. While it has been shown to lead to high accuracy of image classification [START_REF] Yang | Learning the sparse representation for classification[END_REF], the sparse coding has not been applied to semantic image segmentation yet. We demonstrate that, even without using any random field models which are widely used in recent approaches to incorporate multi-cues, our algorithm obtains state-of-the-art results on the standard dataset of semantic segmentation. This chapter is organized as follows. Section 4.2 overviews the framework of the proposed approach. Then, the three key algorithmic components, including region bank generation, sparse-based region description and semantic prediction, are described in Section 4.3, Section 4.4 and Section A.4.3, respectively. After that, the experimental evaluations are presented in 4.6 and finally, the chapter is concluded in Section A.4.4. Region bank generation generates a set of multi-level regions from an input image.

Overview

The motivation of using multi-level regions is based on the observation that the stateof-the-art single-level segmentation algorithm still have difficulty to separate objects from background, however, objects may be captured at certain levels. 

Sparse-based region description extracts local invariant features for each region in

Region bank generation

Region bank is a set of multi-level regions. There are mainly two reasons to use region bank for semantic segmentation. On one hand, single-level segmentation or over-segmentation is unstable and far from precisely separating objects. In most cases, objects are segmented into many regions. On the other hand, hierarchical segmentation might capture objects at some levels, but the optimal segmentation level for objects is unpredictable and may change according to components of images.

As shown in Figure 4.2, the best segmentation for Image-1 is at Level-4, where face, bodies, grass and building are near perfectly separated; while for Image-2 the best one is at Level-8, where cows, grass and building are segmented with very few pixel merging. Based on this observation, we leverage the multi-level regions for semantic segmentation.

To generate region banks, we choose contour-based hierarchical segmentation method gPb proposed in [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]. Because it generally preserves object global contour while providing hierarchical regions. The segmentation result of gPb is a valued ultrametric contour map (UCM), where the contour values reflect contrast between neighboring regions. Hierarchical regions are created by thresholding the UCM with a set of thresholds. The key problem of thresholding is how to define the thresholds.

Considering the fact that over-segmentation might lead to noisy labeling and undersegmentation might result in two or more objects merging into the same region, the 

Sparse-based region description

After obtained the region banks, we aim to each region in a compact and robust representation. to this purpose, we first extract local features from pixels for each region, and represent the extracted local features by the proposed sparse coding. In the rest of this section, we briefly introduce the local features used in our approach, and describe the sparse coding for region representation.

Local features

In experiments, we use two local features, i.e., Scale-Invariant Feature Transform (SIFT) [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] and self-similarity feature (SSIM) [START_REF] Shechtman | Matching local self-similarities across images and videos[END_REF].

SIFT descriptors are extracted on a regular grid with a step-size of 6 pixels. And these descriptors are computed for each RGB component. So one SIFT descriptor is represented with a 3 × 128 dimensional vector. For each grid, the SIFT descriptors are computed respectively at four scales (4,[START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF][START_REF] Achanta | Frequency-tuned salient region detection[END_REF][START_REF] Liu | Saliency detection using regional histograms[END_REF] Both SIFT and SSIM features are extracted in a dense approach instead of sparse approach which only computes descriptors on keypoints. This is because keypoint detectors generally have difficulties to detect keypoints in uniform regions, such as sky, calm water and road, and lead to non-assignment on these areas. Therefore, we prefer to compute the local feature descriptors over the entire image and then project them to each region in the image.

Sparse coding

Since a region may contain a great amount of SIFT/SSIM local descriptors, the remainder problem is how to represent these descriptors in a compact manner without loss of representative information. Generally, this is done by using standard bag-of-visual-word (BOV) model, which first learns a visual dictionary and then represents each local feature descriptor with the nearest basic vector in the dictionary in terms of the predefined distance measure. However, the BOV model results in quantization error, since only a single basic vector is used to represent a local feature vector. To address this problem, we introduce sparse coding for region description.

Given a set of local feature vectors

X = [x 1 , x 2 , • • • , x N ] in R M ×N , our purpose is to construct a dictionary D = [d 1 , d 2 , • • • , d K ] in R M ×K ,
where each column represents a basic vector, and to describe each local feature vector approximately as a weighted linear combination of a few basic vectors

x n ∼ = Da n such that a n 0, ∀n = 1, 2, • • • , N (4.1)
where a n in R K×1 , is weight vector, in which most entries are zero, a n 0 denotes all elements in a n are non-negative. Solving this problem is equivalent to optimizing the cost function

f (D, A) = min D,A N n=1 x n -Da n 2 2 such that a n 0, ∀n = 1, 2, • • • , N (4.2)
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91 where A = [a 1 , a 2 , • • • , a K ] in R K×N , • 2 is the l 2 norm.
To do this we apply positive constrained sparse coding [START_REF] Mairal | Online learning for matrix factorization and sparse coding[END_REF] to Eq. (4.2)

min D,A N n=1 x n -Da n 2 2 + λ a n 1 such that d k 2 ≤ 1, ∀k = 1, • • • , K, a n 0, ∀n = 1, 2, • • • , N (4.3)
where λ is a regularization parameter. 

Semantic Labeling

In this chapter, we aim to assign each sparse coded region in the query region bank (QRB) with a semantic label and generate a semantic label map for the query image. To do this, we first associate each region with a similarity score to each of the predefined semantic categories, and then generate the semantic label map by fusing the scored regions.

Region scoring

We now classify sparse coded regions to relevant object classes. Theoretically, any discriminative classifier may be performed for this task. In this study, we prefer Support Vector Machine (SVM) with Multiple Kernel Learning (MKL) [START_REF] Varma | Learning the discriminative power-invariance tradeoff[END_REF], as it is easy to train classifiers incorporating several kinds of features even if these features are mapped by different kernels.

For classification, we firstly compute normalized histogram of sparse vectors for each region

h i = 1 J i J i j=1 a j (4.4)
where a j denotes sparse vectors in each region R i , J i denotes the dimensionality of sparse vector.

By using Eq. (A.26), we can compute the histogram of SIFT sparse vectors denoted h t i , and that of SSIM sparse vectors denoted as h m i . Let h c i = {h t i , h m i } define as the combination of feature histograms. So the classification function of an SVM in kernel formulation is expressed as:

SV M (h c ) = I i=1 y i a i K(h c , h c i ) + b (4.5)
where h c is feature histogram of a test region; {h c i ∀i = 1, • • • , I} are feature histograms of I training regions; y i ∈ {+1, -1} indicates the class label; and K is the positive definite kernel, which is calculated as a linear combination of feature histogram kernels 

K(h c , h c i ) = d t K(h t , h t i ) + d m K(h m , h m i ) (4.

Region labeling

The most direct approach for labeling scored regions of a test image is to assign these regions with the most likely class labels. However it cannot be directly applied to our algorithm, because the hierarchical regions are overlaid or crossed with each other; in addition, as mentioned in Section 4.3, those regions generated by coarse thresholding might merge several objects. Our solution is to combine the effect of SVM scores with that of sizes of regions.

The labeling process mainly consists of three steps. Firstly, the most likely object classes that have the maximum SVM scores are used to pre-label each region.

Secondly, these regions are sorted by their increasing SVM scores. Finally, the regions are gradually merged, starting from lower scores, to form a complete labeled image by observing their sizes and SVM scores. Thus when a candidate region R j , or its part, locates at the same position as labeled region R i , it can overwrite this one only if its score is greater than a given threshold and its size is not much larger than R i . This strategy avoids labeling small objects as their surrounding environment or neighboring large objects.

Experimental evaluations

The proposed approach is evaluated on the MSRC 21-class dataset [START_REF] Shotton | Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context[END_REF], which can be considered as the standard evaluation dataset for semantic image segmentation.

This dataset contains 591 color images of 21 object classes. Each image has a ground truth segmentation that uses different colors to label each pixel with one of 21 object classes or void (in black). We use the same splitting protocol as previous works [START_REF] Shotton | Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context[END_REF][START_REF] Csurka | An efficient approach to semantic segmentation[END_REF]: 276 images for training and the rest 315 images for testing.

In order to objectively evaluate the segmentation performance, we adopt two widely used evaluation metrics, i.e., pixel-wise global accuracy and per-class accuracy. The global accuracy is defined as

g = 1 
N i i p∈T i 1(φ(p) = s(p), s(p) > 0) (4.7)
where T i is a set of image single index, N i is the number of ground truth labeled pixels in image i; s(p) and φ(p) are the ground truth and segmentation label of pixel p, respectively. If s(p) = 0, the pixel p is ignored to compute the accuracy. The per-class accuracy is defined as

c l = i p∈T i 1(φ(p) = s(p), s(p) = l) i p∈T i 1(s(p) = l) (4.8)
In the remainder subsections, we first validate the proposed sparse coding region descriptor for semantic image segmentation, and then compare our approach with the state-of-the-art methods.

Validation of sparse coding

To evaluate the sparse coding for region description, we compare it against the bag-of-visual-words (BOV) model in feature reconstruction error and the performance of semantic segmentation by using any one of them.

The reconstruction error is evaluated by the Mean Square Error (MSE) between the local feature descriptors (SSIM/SIFT) and the basis vector(s) representing these local feature descriptors in the visual dictionary. The MSE is defined as coding use a learned visual dictionary containing 2000 basic vectors. Obviously, the sparse coding obtains smaller squared error. We also compute the MSE from the randomly selected samples. The MSE of BOV is 6.4 while it is only 2.6 for sparse coding, i.e., sparse coding decreases 59% MSE than BOV. This suggests that the proposed sparse coding method represents the local descriptors better compared to BOV. 

M SE = 1 N N n=1 a n - k∈Γ w k d k 2 2

Comparison with the sate-of-the-art approaches

We compare the proposed approach with five state-of-the-art methods, i.e., -TextonBoost (TB) [START_REF] Shotton | Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context[END_REF] which incorporates texture, layout, and context information into conditional random field, -SemanticFisher (SF) [START_REF] Csurka | An efficient approach to semantic segmentation[END_REF] Table 4.1 summarizes the comparison. From this table, we can observe that all approaches consistently achieve good results for those objects showing more uniform appearance, such as the sky and grass, or being regular in appearance, such as books and bikes. However, all approaches tend to fail to segment and recognize birds and boats. The reason for this phenomenon is that there are very few objects of these classes in the dataset, and these objects show a diversity of variations in appearance and scale. For instance, the boat category includes canoe, raft, steamship, sailing ship, yacht, etc., and each of them only have 2-5 examples. Table 4.1 shows that the proposed approach is able to segment and recognize most of objects. It provides more than 70% accuracy for 15 object classes, and more than 80% accuracy for 8 object classes. Moreover, our approach obtains the best performance for 6 out of 21 object classes among the 6 approaches. More importantly, the proposed approach achieves the highest pixel-wise global accuracy which is computed from the whole dataset.

Compared to the best one in the reference methods, it obtains 4% improvement in hand, all the faces are not correctly labeled. The main reasons come from two aspects. On one hand, the bottom-up segmentation is unstable (even if using hierarchy might overcome some errors) and its errors might migrate to semantic inference. On the other hand, the extracted features on the small scale objects are not sufficiently representative and lead to a more difficult semantic recognizing. 

Conclusion

In this chapter, a novel approach for semantic image segmentation which aims to assign each pixel in the image with a predefined semantic label. This approach is based on a training region bank (TRB) and a query region bank (QRB), which are generated by a hierarchical segmentation on a set of training images and on the testing image, respectively. For robust region description, we proposed the sparse coding method, which softly represents a local feature descriptor in a region with several basic vectors of the learned visual dictionary and describes all local feature descriptors within the region by a single histogram. Support vector machine with multiple kernel learning is employed for region semantic inference.

The proposed approach is evaluated on the standard dataset for semantic segmentation, which is MSRC dataset consisting of 21 object classes. Experiments demonstrate that, i) compared to the standard bag-of-visual-words model, the sparse coding provides a more accurate representation of local features and leads to higher performance for semantic segmentation, ii) the proposed approach is comparable to the state-of-the-art methods.

Conclusion and perspective

This thesis focused on the problems of object segmentation and semantic segmentation which aim at separating objects from background or assigning a specific semantic label to each pixel in an image. We proposed two approaches for the object segmentation and one approach for semantic segmentation.

The first one for object segmentation is based on saliency detection. This approach concentrates on separating salient objects from background. Motivated by our ultimate goal for segmentation, a novel salient object detection model is proposed, which is formulated in the low-rank matrix recovery model by taking the information of image structure derived from a bottom-up segmentation as an important constraint. For the purpose of the performance evaluation of saliency detection, a new dataset consisting of 1500 images with ground-truths is collected also. The segmentation is built within an iterative and interactive optimization framework, which simultaneous performs object segmentation based on the saliency map resulting from saliency detection, and saliency quality boosting based the segmentation. Optimal saliency map and segmentation result are achieved after several iterations. We compared our saliency model and segmentation approach with the state-of-the-art saliency models and saliency-based segmentation algorithms, respectively. Experiments demonstrated that both of them obtain significant improvement over the state-of-the-art approaches.

The second proposed approach for object segmentation is based on exemplar images. This approach aims at segmenting all foreground objects from the background by leveraging a set of available segmented exemplar images. For the the proposed segmentation framework using the typical PHOG for image retrieval already outperforms the state-of-the-art methods, ii) using the proposed OOD representation improves the segmentation performance further, iii) the proposed approach is able to segment large-scale images, e.g. internet images, by only using a small set of segmented exemplar images.

For semantic segmentation, we proposed a new approach which is based on region bank and sparse coding. Region bank is a set of regions generated by multi-level segmentations. This is motivated by the observation that a single-level bottom-up segmentation is hardly to separate objects from background, however, objects might be captured at certain levels in hierarchical segmentation. Therefore, combining multi-level segmentations together may help to improve the performance of semantic segmentation. Once generated the region bank for the input image, we proposed sparse coding method for region description. The sparse coding method represents each local feature descriptor with several basic vectors in the learned visual dictionary, and describes all local feature descriptors within a region by a single histogram. With the sparse coded region bank, support vector machine with multiple kernel learning was employed for semantic inference. We have carried out evaluations on the standard dataset MSRC-21. Experiments demonstrated that, i) the sparse coding produces less quantization errors, compared to the typical bag-of-visual-word model which represents a local feature only by one basic vector in the dictionary, and this sparse coding yields higher semantic segmentation performance, ii) the proposed approach achieves the state-of-the-art performance.

Some reflections of future works can be derived from the previous summary.

First, it is interesting to validate if the bottom-up saliency detection can be integrated with the exemplar-based object segmentation. Although the proposed OOD image representation method is shown to find more relevant exemplar images for segmentation, it certainly retrieves some failure exemplar images also. When most exemplars are irrelevant to the input image, the performance might dramatically drop down. However, the saliency detection may provide complementary information to localize objects in the image, therefore combining the saliency detection with exemplar-based object segmentation may yield a more robust segmentation model.

Second, it is valuable to verify if the nearest saliency maps can help to improve the quality of saliency map of the input image. Similar images generally share similar object locations, thus, saliency may be boosted by exploiting its nearest neighbors.

The proposed OOD image representation method can be considered as the first choice for retrieving a set of nearest neighbors, as it is able to represent both the local objects and the global image structure.

Third, it is worthwhile to further investigate models of Markov random field (MRF) or conditional random field (CRF) for semantic inferring in the proposed semantic segmentation. Context information, which can be partly obtained from the proposed saliency model and the exemplar-based segmentation method, can be considered as an important cue and integrated to the MRF/CRF scheme. As more object-level cues are seamlessly combined, image semantics may be extracted better. 

A = [a 1 , a 2 , • • • , a N ], et notons H c = [h c 1 , h c 2 , • • • , h c N ]
un ensemble de valeurs de segmentation a priori des superpixels dans la segmentation CG. Afin de récupérer les objets avec le même modèle LRMR, la matrice caractéristique A est d'une part modulée par la segmentation a priori Nous pouvons observer de l'Eq. (A.5) que l'priori spatial est adaptatif à la qualité de la carte de saillance et à la taille de l'objet. D'une part, la qualité de la carte de saillance est mesurée par ρ. Une valeur faible de ρ signifie une meilleure qualité de carte de saillance comme la plupart des pixels du fond sont affectés avec de faibles valeurs de saillance, ce qui conduit à une plus forte valeur de l'a priori spatial. D'autre part, l'information de taille d'objet est représentée par η. Un forte valeur de η indique de petits objets dans l'image, et la fonction de distance spatiale D(•) est multipliée par un poids élevé. Ainsi, l'a priori spatial est plus sensible à la distance entre région et centre de gravité objet. 

H c B = [h c 1 a 1 , h c 2 a 2 , • • • , h c N a N ]. (A.

A priori d'apparence

a k = a ′ k max{a ′ 1 , a ′ 2 , • • • , a ′ K } . (A.8)
Notons que, dans Eq. (A.6), le noyau K(•) de similarité est pondéré par la taille de l'objet |O p |. Cela implique que les objets les plus grands contribuent plus fortement à l'apriori d'apparence quand il y a plusieurs objets. En outre, ceci diminue également considérablement l'impact des erreurs de segmentation dans lesquelles très peu de pixels forment une région et qui sont étiquetées comme objet. Dès lors, la prise en considération de la taille de l'objet améliore la robustesse de l'a priori d'apparence.

A.2.3 Conclusion

Dans ce chapitre, nous avons proposé une nouvelle approche pour assurer conjointement le problème de la détection de saillance et de la segmentation Ainsi, une carte SVM de l'image requête est générée en affectant les valeurs probabilistes des régions à leurs pixels correspondants.

χ 2 (f i , f j ) = D d=1 (f i (d) -f j (d)) 2 f i (d) + f j (d) (A.
h i = v ′ i v ′ i 2 (A.
f Q = {f 1 q , f 2 q , • • • , f U q } qui un ensemble de vecteurs BOV d'une région test et f T = {f 1 t , f 2 t , • • • , f U t }
C(f Q ) = N n=1 y n a n K(f Q , f n T ) + b (A.
K(f Q , f n T ) = U u=1 w u Ψ(f u q , f u t ) (A.

A.3.3 Segmentation avec SVM a priori

Pour la segmentation, nous utilisons le modèle MRF [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], qui définit un champ de Markov sur les pixels de l'image avec un système de voisinage. Comme dans [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF][START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF], le terme de lissage est défini en fonction de la distance spatiale et du contraste de couleur entre les voisins des pixels 

Θ n,j (l n, , l j ) = ϕ dis(n, j) [l n = l j ] exp{-β x n -x j 2 2 } (A.

A.4.3 Etiquetage sémantique

Pour générer une carte de segmentation sémantique dans laquelle chaque pixel est affecté d'une étiquette sémantique prédéfinie, nous associons d'abord chaque région avec un score de similarité des catégories sémantiques prédéfinies, puis générons la carte de segmentation sémantique en fusionnant les régions marquées.

Marquer de la Région

Nous classons maintenant les régions codées en classes d'objets pertinents. 

A.4.4 Conclusion

Dans ce chapitre, une nouvelle approche pour la segmentation sémantique de l'image qui vise à attribuer à chaque pixel une étiquette sémantique prédéfinie. 

Abstract

This thesis focuses on the problems of object segmentation and semantic segmentation which aim at separating objects from background or assigning a speciic semantic label to each pixel in an image. We propose two approaches for the object segmentation and one approach for semantic segmentation.

The irst proposed approach for object segmentation is based on saliency detection. Motivated by our ultimate goal for object segmentation, a novel saliency detection model is proposed.

This model is formulated in the low-rank matrix recovery model by taking the information of image structure derived from bottom-up segmentation as an important constraint. The object segmentation is built in an iterative and mutual optimization framework, which simultaneously performs object segmentation based on the saliency map resulting from saliency detection, and saliency quality boosting based on the segmentation. The optimal saliency map and the inal segmentation are achieved after several iterations.

The second proposed approach for object segmentation is based on exemplar images. The underlying idea is to transfer segmentation labels of globally and locally similar exemplar images to the query image. For the purpose of inding the most matching exemplars, we propose a novel high-level image representation method called object-oriented descriptor, which captures both global and local information of image. Then, a discriminative predictor is learned online by using the retrieved exemplars. This predictor assigns a probabilistic score of foreground to each region of the query image. After that, the predicted scores are integrated into the segmentation scheme of Markov random ield (MRF) energy optimization. Iteratively inding minimum energy of MRF leads the inal segmentation.

For semantic segmentation, we propose an approach based on region bank and sparse coding. Region bank is a set of regions generated by multi-level segmentations. This is motivated by the observation that some objects might be captured at certain levels in a hierarchical segmentation. For region description, we propose sparse coding method which represents each local feature descriptor with several basic vectors in the learned visual dictionary, and describes all local feature descriptors within a region by a single sparse histogram. With the sparse representation, support vector machine with multiple kernel learning is employed for semantic inference. 
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 11 Figure 1.1: Examples of different segmentation categories. Top: region segmentation fuses pixels into homogeneous regions. Middle: object segmentation extract foreground objects. Bottom: semantic segmentation assigns a meaningful label to pixels of image.
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 112 Figure 1.2: Some examples of saliency maps and segmentation results generated by the proposed saliency detection model and segmentation approach. Top: input images. Middle: saliency maps. Bottom: segmentation results.
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 13 Figure 1.3: Some example segmentation results produced by the proposed approach. Top: input images. Middle: manually segmented ground truths. Bottom: our object segmentation results.
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 14 Figure 1.4: Some example semantic segmentation results produced by the proposed approach. Top: input images. Middle: manually annotated ground truths where each object is labeled by a unique color and black indicates void area for accuracy computing. Bottom: our semantic segmentation results.
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 21 Figure 2.1: Framework of the proposed saliency model.Input image is firstly segmented into three levels. Feature descriptors are accumulated within superpixels of fine-grained (FG) segmentation. Segmentation priors are derived from the medium-grained (MG) segmentation and coarse-grained (CG) segmentation, respectively. The final saliency map is obtained by smoothing the raw saliency map generated by LRMR model with the MG segmentation prior.
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 2 Figure 2.1 presents the framework of the proposed segmentation driven low-rank matrix recovery model. An input image is firstly segmented into three-level segmentations: fine-grained (FG), medium-grained (MG) and
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 22 Figure 2.2: Examples of segmentation prior. First row: input images; second row: bottom-up segmentation results; last row: segmentation prior where white indicates a higher weight and black represent a lower weight.
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 23 Figure 2.3: Unified framework of joint object segmentation and saliency boosting.
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 3 Based on the segmentation result, optimize the saliency map S by using the saliency boosting model presented in Section 2.4.2.

  the average of saliency values of background regions, where | • | indicates the number of elements, of the image size to total area of all foreground objects, D(•) is a spatial distance function. The spatial distance function D(r k , O p ) computes the normalized Euclidean squared distances between boundary pixels in region r k and the centroid of object O p

  curve (AUC) for quantitative comparison between different models. To obtain the ROC curve, saliency maps are normalized from 0 to 255 and thresholded using integer values within [0, 255]. Then for each thresholding, the average true positive rate and the average false positive rate over all test images are computed. Finally, the ROC curve is generated by plotting the true positive rate values on the y-axis against false positive rate values on the x-axis.Performance analysisWe analyze, in both objectively and subjectively, the contributions of different components in SLR model and validate the further improvement achieved by the saliency boosting (SB) model. In Figure 2.4, the dashed ROC curves for saliency maps show the saliency performance of SLR model using different components, and the solid ROC curve shows the saliency performance of SB model. As demonstrated in Figure 2.4, the dashed ROC curves are gradually elevated while integrating more components to the SLR model, thus higher AUC scores are obtained. If raw feature extracted from image is directly used as the input of low-rank matrix recovery (LRMR) model, the saliency detection performance is low. With the CG segmentation prior, the AUC scores increase significantly: from 83.9% to 93.3% on MSRA-B, and from 74.0% to 88.0% on PASCAL-1500. By further integrating the post-smoothing component (i.e., full SLR model), the AUC score on MSRA-B increases with 1.4%, while on PASCAL-1500 it increases with 3.1%, compared to when using CG segmentation prior. From Figure 2.4, we can also observe that solid ROC curve of SB model is higher than the ROC curve of full SLR model, and AUC scores on MSRA-B dataset and PASCAL-1500 dataset increase to 95.2% and 91.9%, respectively. This demonstrates that the SB model improves the performance of saliency detection from SLR model.
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 2 Figure 2.5 shows some examples of saliency maps generated by the SLR model using different configurations and by the SB model. Some observations can be derived from these examples. First, the saliency maps in the 2nd column ofFigure 2.5, generated by using raw feature as the input of LRMR model, are
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 24 Figure 2.4: ROC curves and AUC scores OF the proposed model with different configurations on MSRA-B (top) and PASCAL-1500 (bottom) datasets. the dashed curves show the performance of SLR model using different components. The solid curve shows the performance of SB model.
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 25 Figure 2.5: Some examples of saliency maps generated by the proposed saliency model with different configurations. (a) input image; (b) results of LRMR model using raw feature only; (c) results of LRMR model with segmentation prior; (d)results of full SLR model: LRMR model with segmentation prior and postsmoothing component; (e) results of SLR-based saliency boosting (SB) model.
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 226 Figure 2.6: ROC curves and AUC scores of different models on MSRA-B dataset. Top: complete ROC curves; Bottom: the zoomed top left corner of ROC curves. The models are ranked based on AUC scores in the legend.
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 27 Figure 2.7: ROC curves and AUC scores of different models on PASCAL-1500 dataset. Top: complete ROC curves; Bottom: the zoomed top left corner of ROC curves. The models are ranked based on AUC scores in the legend.
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 28 Figure 2.8: Examples of saliency maps generated using the eight state-of-the-art models and the proposed SLR and SB models (in the last two rows).
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 2 Figure 2.8 shows some examples of saliency maps generated using the eight stateof-the-art models and the proposed SLR and SB models. At least three observations can be derived from these examples. To begin with, most models obtain pretty good results when the input image is with high contrast between object and background appearing near uniformly, like the image in the first column. Moreover, the state-of-
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 29 Figure 2.9: Average precision, recall and F-score for different saliency-based segmentation methods on MSRA-B (top) and PASCAL-1500 (bottom) datasets.
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 210 Figure 2.10: Examples of segmentation results generated using three state-of-the-art methods and the proposed approach.

Figure 2 . 11 :

 211 Figure 2.11: Examples of segmentation results generated using three state-of-the-art methods and the proposed approach.

Figures 2 .

 2 Figures 2.10 and 2.11 show some examples of segmentation results generated using the three state-of-the-art methods and the proposed approach. We make some observations from these examples. First, for images containing a single salient object showing obvious contrast with relatively simple background, like the 1st-3rd rows in Figure2.10, all approaches successfully segmented the objects with well preserving their contours. Second, for images with low contrast between salient objects and background regions, such as the 4th-7th rows in Figure2.10 and 1st-2nd rows in Figure2.11, the three reference methods either merge objects into

1 ,Figure 3 . 1 :

 131 Figure 3.1: Given a query image (bottom left), we first retrieve glocally similar exemplars in the annotated dataset (top) and then transfer their segmentation masks to the query image (bottom right).

Figure 3 . 2 :

 32 Figure 3.2: Generic framework of online glocal transfer which consists of three core algorithmic modules: glocal scene retrieval, online prediction and segmentation with SVM prior.

Figure 3 . 3 :

 33 Figure 3.3: Creating pseudo-categories by hierarchical clustering. Objects are clustered by measuring appearance similarity regardless of real category.

  Secondly, N SVM classifiers of pseudo-categories are learned to compute the similarities of an image to each pseudo-category. The SVM classifiers are built by setting images containing objects of specific pseudo-category as positive examples, and the others as negative ones. Note that, since an image may contain objects from different pseudo-categories, one image may belong to positive example for several classifiers. With the learned SVM classifiers, an input image is represented by a score vector v i consisting of N SVM classification scores which are typically within the range of [-3, 3]. These classification scores naturally represent probabilities of an image belonging to each of N pseudo-categories, i.e., the larger score indicates the higher probability, and vice versa. Finally, the high-level image descriptor is created by normalizing the SVM score vector. We normalize each score vector v i by exploiting the distribution of the score vectors extracted from all training images. Let V t = {v 1 , v 2 , • • • , v P } denote a set of score vectors of P training images. The normalization is performed as follows

3. 5 .

 5 Online prediction 63 Some properties can be observed from OOD: -As separating hyperplane of SVM is typically very sparse, SVM classifiers simultaneously perform feature selection and classification. -The feature selection along with spatial pyramid local descriptor aggregation enables OOD to capture global geometric layout and also to highlight local objects in an image.

  collection of BOV vectors of a training region, where U is the number of appearance descriptors. The classification function of an SVM in kernel formulation is expressed as

. 5 )

 5 The kernels Ψ(•, •) are generally chosen by experiments. Typical histogram kernels are from three types: linear, quasi-linear( e.g., intersection and χ 2 ) and non-linear (e.g., Radial basis function). The SVM-MKL learns a set of coefficients a = {a 1 , a 2 , • • • , a N }, a threshold b and a set of non-negative feature weights w = {w 1 , w 2 , • • • , w U }. The learned coefficient vector a, usually termed as separating hyperplane, is typically sparse which suggests that only a representative subset of training features is used for classification. The weight vector w emphasizes more discriminative features and depresses those of less 3.6. Segmentation with SVM prior 65 discriminative features. For instance, SIFT is generally much more discriminative than SSIM, so it is usually assigned with a larger weight. With the learned parameters, each region of the query image can obtain an SVM classification score from the classification function (3.4), which is typically within the range of [-3, 3]. Such an SVM classification score naturally links to the probability of a region belonging to foreground. For post-processing, the SVM classification scores of all regions are converted to probabilistic values by fitting a sigmoid function to them [82]. Thus an SVM map of input image is generated by assigning the probabilistic values of regions to their corresponding pixels.

  proposed approach is compared with the state-of-the-art figure-ground segmentation methods both quantitatively and qualitatively. Finally, we discuss some failure cases and analyse the computation cost. Pascal VOC 2010 and VOC 2011 datasets The Pascal VOC 2010 and VOC 2011 datasets contain 1928 and 2223 images from 20 object classes, and each image is manually annotated. In each dataset, about one half of images contain multiple objects (on average 3 or 4 objects), and about 30% of images are with occlusion. Both datasets are evenly split into training and validation

Figure 3 . 4 :

 34 Figure 3.4: F-score (top) and AvU score (down) on Pascal VOC 2011 by varying the number of nearest neighbors k.The curve A shows the performance of our full method of online glocal transfer. The curve B shows the performance of online glocal transfer using PHOG for image retrieval rather than using OOD. The curve C shows the performance of online glocal transfer using only SVM prediction (without MRF optimization). The curve D shows the performance of global transfer[START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] with the proposed OOD for image retrieval. The curve E shows the performance of original global transfer[START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF]. All results are computed by setting difficult areas of ground-truth as background.

Figure 3 . 5 :

 35 Figure 3.5: Some segmentation results generated by different methods on Pascal VOC 2010 and VOC 2011 segmentation datasets.

Figure 3 . 6 :

 36 Figure 3.6: Some failure cases.

Figure 3 . 7 .

 37 Figure 3.7. Most objects are extracted well, even though they never appear in exemplar images of Pascal VOC 2011. The reasons are two-fold. On one hand, different object classes might be globally or locally similar in appearance, such as

Figure 3 . 7 :

 37 Figure 3.7: Some segmentation results on iCoseg dataset produced by the proposed approach. All results are generated by transferring exemplar segmentations of Pascal VOC 2011 to images of iCoseg dataset.

Chapter 4 .

 4 Semantic image segmentation produce better results. However, while training prediction models, most of existing region-based approaches for semantic segmentation extract local features directly from objects delineated by ground-truth and or single-level regions generated by over-segmentation; and at the testing step, the features are extracted on single-level regions. As known that low-level segmentation is unstable and cannot precisely separate objects, while local features are only extracted on the single-level regions for recognition, errors from the low-level segmentation might directly migrate to semantic inference.

Figure 4 . 1 :

 41 Figure 4.1: Framework of the proposed semantic image segmentation approach.

Figure 4 .

 4 Figure 4.1 illustrates the framework of the proposed approach, which consists of three key algorithmic modules, i.e., region bank generation, sparse-based region description and semantic prediction.

  the region bank, and represents the extracted local features via sparse coding. While many local feature descriptors are available, we emphasize our work on a compact and robust representation of the local feature descriptors using sparse coding, which represents each local feature descriptor with several basis vectors and describes all local feature descriptors in the same region with a single histogram.Semantic labeling assigns each region in the region bank with a predefined semantic label and fuses all labeled regions into a single label map with the same size of original image. We cast the semantic labeling problem as the region classification, which associates a sparse-represented region with a set of classification scores of semantic object categories, and the fusion decision is based on these scores and region size.

Figure 4 . 2 :

 42 Figure 4.2: Two examples of multi-level segmentations.

4. 4 .

 4 Sparse-based region description thresholds should neither be set too small nor too large. In addition, it is inadvisable to fix arbitrarily minimum and maximum thresholds, because the contour values in UCM strongly depend on luminance and contrast of the image. Therefore, we design a self-adapting approach to define the range of thresholding: the minimum and maximum thresholds are computed by multiplying the maximum UCM value of input image by predefined parameters α and β. In our experiments, α and β are set to 0.25 and 0.8 respectively. Contour values in this range are taken as the thresholds to create hierarchical regions. Typically we obtain 5 to 20 thresholds per image. Even such strategy cannot totally avoid the problem mentioned above; we will consider this aspect during the semantic labeling stage.The region set generated from gPb segmentation for a query image is called as query region bank (QRB); and that generated from gPb segmentation and ground truth segmentation for training images is called as training region bank (TRB).

90 Chapter 4 .

 904 pixel radii). SSIM descriptors are extracted from a regular grid with step-size of 4 pixels. The SSIM descriptor is generated by computing correlation map of 5 × 5 pixels patch in Semantic image segmentation a surrounding 20 × 20 pixels patch, and then quantizing it into 40 bins (10 angles, 4 radial intervals). Hence one SSIM descriptor is a 40-dimensional vector.

  l 1 regularization ensures to produce sparse coefficients for a n[START_REF] Ng | Feature selection, l 1 vs. l 2 regularization, and rotational invariance[END_REF]. Constraint l 2 norm of vector d k less or equal to unity is to prevent D from taking arbitrarily large values which would due to arbitrarily small values of A. The dictionary D is obtained by minimizing Eq.(A.25) with respect to D and A (i.e. alternatively minimizing over one while keeping the other one fixed). Once dictionary D is constructed, sparse coefficient vector can be computed by minimizing Eq.(A.25) only with respect to A. Accordingly, each local feature descriptor x n can be approximated by multiplying the dictionary D and a sparse coefficient vector a n . In other words, sparse coding represents one local feature vector with a linear combination of a few basic vectors. We have compared reconstruction performance of sparse coding and BOV methods. The former decreases the Mean Squared Error (MSE) from 6.4 to 2.6 corresponding to 59% reduction in case of reconstructing SIFT feature with a dictionary containing 2000 basic vectors (seeSection 4.6).For compact feature representation, a subset of local feature vectors is randomly chosen to train SIFT and SSIM sparse dictionaries respectively with 2000 and 800 basic vectors (these values are determined experimentally). Then the dictionaries are used to compute sparse vectors of the regions.

(4. 9 )

 9 where Γ denotes a set of basic vectors used to represent the local feature descriptor a n , w k denotes nonzero weight of basic vector d k . Γ only contains a single basic vector for BOV model. In contrast, Γ typically contains 3 ∼ 7 basic vectors for sparse coding.

Figure 4 .

 4 Figure 4.3 shows the squared errors for randomly selected SIFT descriptors by using BOV model and the sparse coding (SC) method. Both of the BOV and sparse

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Squared errors generated by bag of visual-words (BOV) and sparse coding (SC) for randomly selected SIFT descriptors.

Figure 4 .

 4 Figure 4.4 compares the semantic segmentation performance of BOV model and sparse coding method in terms of per-class accuracy and global accuracy. Clearly, the sparse coding method substantial outperforms the BOV model. It obtains the better performance for 18 out of 21 object classes, and it increases the global accuracy to 83% and achieves 3% improvement compared to the BOV model.Figure 4.5

Figure 4 . 5 presentsFigure 4 . 5 :

 4545 Figure 4.5: Confusion matrix of the proposed sparse-based approach on MSRC-21 dataset.
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 984 which employs Fisher descriptor as an intermediate representation of local features for semantic inference, -AncestryContext (AC)[START_REF] Lim | Context by region ancestry[END_REF] which models visual context from a hierarchical segmentation tree, -DAOC[START_REF] Jiang | Efficient scale space auto-context for image segmentation and labeling[END_REF] which employs a data-assisted output code for semantic classification of object categories, -HarmonyCRF (HCRF)[START_REF] Gonfaus | Harmony potentials for joint classification and segmentation[END_REF] which integrates a harmony potential representing possible combination of object classes and visual appearance Semantic image segmentation into conditional random field.
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 474747 Figure 4.7 . However, it still has difficulties to deal with occlusions and the objects with very small scale in image. For instance, the face in sixth example of Figure 4.7 is segmented and labeled with high correct accuracy; but in last exampleFigure 4.7 where faces are in small scale and the rightmost one is occluded with a

Figure 4 . 6 :

 46 Figure 4.6: Some examples of semantic segmentation results on MSRC-21 dataset.

Figure 4 . 7 :

 47 Figure 4.7: Some examples of semantic segmentation results on MSRC-21 dataset.

Chapter 5 .

 5 Conclusion and perspective purpose of finding the most matching exemplar images for segmentation, we proposed a novel high-level image representation method called object-oriented descriptor (OOD). OOD captures both global and local information of image, thus it can implicitly encode the objects in the image and represent image geometric structure. Then a foreground/background predictor is learned on-the-fly using the exemplar images retrieved by OOD. Such a predictor assigns a probabilistic score of foreground to each region of the over-segmented input image. After that, the predicted scores are integrated into the segmentation framework of Markov random field (MRF) optimization. Iteratively finding minimum energy of MRF leads the final segmentation. Extensive evaluation across several datasets, including Pascal VOC 2010, Pascal VOC 2011 and iCoseg, demonstrated that, i)

AAppendix : Résumé étendu français A. 1 Figure A. 1 -

 11 Figure A.1 -Exemples de catégories de segmentation. En haut : la segmentation basée région fusionne les pixels en régions homogènes. En milieu : la segmentation basée objet extrait du fond les objets de premier plan. En bas : la segmentation sémantique attribue un label à chaque pixel de l'image.

Figure A. 2 -

 2 Figure A.2 -Exemples de segmentation a priori. Première ligne : images d'entrée ; deuxième ligne : Résultats de segmentation ; dernière ligne : segmentation a priori où un niveau blanc indique un poids plus élevé d'appartenance à un objet et le noir représente un poids inférieur.

Figure A. 3 -A. 2 . 2

 322 Figure A.3 -Schéma unifié pour obtenir conjointement segmentation d'objets et rehaussement de saillance.

2 . 1 |B|

 21 A partir de cette saillance S, segmentation des objets du fond en utilisant le modèle de segmentation d'objet.3. Sur la base du résultat de la segmentation, optimisation de la carte de saillance S en utilisant le modèle de rehaussement de saillance. 4. Répétition du traitement de l'étape 2 jusqu'à ce que la convergence ou le nombre maximal des itérations soit atteint. De toute évidence, le modèle de segmentation d'objet et le modèle de rehaussement de saillance dans ce schéma fonctionnent de manière itérative et mutuelle. La segmentation et la carte optimale de saillance sont obtenues lorsque la convergence est atteinte.Auparavant, existaient aussi des approches exploitant la carte de saillance pour la segmentation d'objets. Cependant, elles ne réutilisaient pas les informations du résultat de segmentation pour re-évaluer la carte de saillance. Aussi introduisonsnous un nouveau modèle de rehaussement de la saillance dans le paragraphe suivant.Pour le modèle de segmentation d'objet, on peut se référer au chapitre 2 du document principal de cette thèse.Modèle de rehaussement de saillanceNous supposons que les objets sont au moins en partie extraits par le modèle de segmentation d'objets. Les pixels spatialement à proximité des régions marquées comme saillantesainsi que les pixels similaires aux régions marquées saillantes en doivent être assignés à une valeur de saillance plus élevée, et inversement. Sur la base de cette hypothèse, le modèle de renforcement de la saillance est défini commeS * = S ⊙ (M + C) (A.4) où ⊙ indique une opération de multiplication élément par élémment, M est la matrice spatiale a priori et C la matrice d'apparence a priori. Étant donné que la carte de saillance S, générée par le modèle SLR de détection de saillance, est calculée sur la base d'une segmentation de région, nous calculons aussi l'a priori spatial et l'a priori d'apparence pour chaque région dans la carte de saillance S, et montons les a priori spatial/apparence de toutes les régions pour former l'a priori spatial/apparence de l'image entière. Soit R = {r 1 , r 2 , • • • , r K } un ensemble de régions de la segmentation basée région de l'image X, et O = {O 1 , O 2 , • • • , O P } un ensemble d' objets de premier plan séparés et enfin B l'arrière-plan dans la segmentation résultat L, avec K le nombre de régions de la segmentation basée région, et P le nombre d'objets segmentés.Nous voulons calculer un ensemble d'a priori spatiauxM = {m 1 , m 2 , • • • , m K } et un ensemble d'a priori d'apparence A = {a 1 , a 2 , • • • , a K }.A priori spatialeL'priori spatial de la région r k est défini commem k = 1 P P p expα • ρ • η • D(r k , O p ) (A.5) où α est un paramètre d'ajustement constant, et réglée sur 10 dans nos expériences, ρ = n∈B (s n ) est la moyenne des valeurs de saillance des régions d'arrière-plan, où | • | indique le nombre d'éléments, le rapport de la taille de l'image à la surface totale de tous les objets saillants D(•) est une fonction de la distance spatiale.

Figure A. 4 -

 4 Figure A.4 -Schéma générique de transfert glocal en ligne composé de trois principaux modules algorithmiques : récupération glocal de scène, prédiction en ligne et segmentation avec SVM a priori.

13 )

 13 Les noyaux Ψ(•, •) sont généralement choisis sur la base des expériences. Les noyaux d'histogrammes typiques sont de trois types : linéaires, quasi-linéaires et non-linéaires. La SVM-MKL apprend une série de coefficients a = {a 1 , a 2 , • • • , a N }, un seuil b et un ensemble de poids non négatifs de caractéristiques w = {w 1 , w 2 , • • • , w U }.Avec les paramètres appris, chaque région de l'image de requête peut obtenir un score de classification SVM à partir de la fonction de classification (A.12), qui est typiquement dans la plage de[-3, 3]. Un tel score de classification SVM lie naturellement à la probabilité d'appartenance d'une région à l'avant-plan. Pour le post-traitement, les scores de classification SVM de toutes les régions sont convertis en valeurs probabiliste en leur lui appliquant une fonction sigmoïde[START_REF] Platt | Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[END_REF].

Figure A. 5 -

 5 Figure A.5 -Schéma proposé pour la segmentation sémantique d'image.

Figure A. 6 -N n=1 x n -Da n 2 2 N n=1 x n -Da n 2 2 + λ a n 1

 6221 Figure A.6 -Deux exemples de segmentations multi-niveaux.

  Cette approche est basée sur une banque de régions d'apprentissage (TRB) et une banque de régions de la requête (QRB), qui sont respectivement générées par une segmentation hiérarchique sur un ensemble d'images d'apprentissage et sur l'image de test. Pour une robuste description de région, nous avons proposé la méthode de codage parcimonieux, ce qui représente pour un traitement un descripteur de caractéristique locale dans une région avec plusieurs vecteurs de base du dictionnaire visuel appris et décrit tous les descripteurs de caractéristiques locales intérieurs à la région par un seul histogramme. La machine à support de vecteurs avec apprentissage multiple des noyaux est utilisé pour l'inférence sémantique. L'approche proposée est évaluée sur une base de données standard pour la segmentation sémantique, et qui est la base MSRC composée de 21 classes d'objets. Les expériences montrent que, i) par rapport au modèle de sac de mots visuels, le capture des informations à la fois globale et locale de l'image ; il peut donc implicitement décrire les objets dans l'image et représenter la structure géométrique de l'image. Puis un prédicteur de premier plan/arrière-plan est appris en ligne en utilisant les exemples récupérés par OOD. Ce prédicteur attribue un score probabiliste de premier plan à chaque région de l'image d'entrée. Après cela, les scores prédits sont intégrés dans le schéma de segmentation du champ de Markov (MRF) d'optimisation. Trouver itérativement l'énergie minimum de MRF mène la segmentation finale. Une évaluation approfondie à travers plusieurs ensembles de données, y compris Pascal VOC 2010, Pascal VOC 2011 et iCoseg, a démontré que, i) le schéma de segmentation proposé, en utilisant la PHOG typique pour la récupération d'images surpasse déjà les méthodes de l'étatde l'art, ii) en utilisant le descripteur OOD proposé améliore encore les performances de segmentation, iii) l'approche proposée est capable de segmenter les images à grande échelle, par exemple les images sur Internet, en utilisant seulement un petit ensemble d'exemples segmentés. Pour la segmentation sémantique, nous avons proposé une nouvelle approche qui se fonde sur la banque de régions et la représentation parcimonieuse. La banque des régions est un ensemble de régions générées par segmentations multi-niveaux. Ceci est motivé par l'observation que la segmentation à un seul niveau éprouve des difficultés à séparer les objets distincts de fond ; cependant, les objets peuvent être capturés à certains niveaux dans la segmentation hiérarchique. Par conséquent, la combinaison des segmentations multi-niveaux peut aider à améliorer la performance de la segmentation sémantique. Après avoir générer la banque des régions de l'image d'entrée, nous avons proposé la méthode de codage parcimonieux pour la description de région. Le codage parcimonieux représente chaque descripteur de caractéristique locale avec plusieurs vecteurs de base dans le dictionnaire visuel appris, et décrit tous les descripteurs de caractéristiques locales dans une région à l'aide d'un seul histogramme. La machine à support de vecteurs (SVM) avec l'apprentissage de noyaux multiple est utilisée pour l'inférence sémantique. Nous avons effectué des évaluations sur l'ensemble de données norme MSRC-21. Des expériences ont démontré que, i) le codage parcimonieux produit Institut National des Sciences Appliquées de Rennes 20, Avenue des Buttes de Coësmes CS 70839 F-35708 Rennes Cedex 7 Tel : 02 23 23 82 00 -Fax : 02 23 23 83 96 N° d'ordre : 14 ISAR 05 / D 14-05 Résumé Cette thèse porte sur les problèmes de segmentation d'objets et la segmentation sémantique qui visent soit à séparer des objets du fond, soit à l'attribution d'une étiquette sémantique spéciique à chaque pixel de l'image. Nous proposons deux approches pour la segmentation d'objets, et une approche pour la segmentation sémantique. La première approche est basée sur la détection de saillance. Motivés par notre but de segmentation d'objets, un nouveau modèle de détection de saillance est proposé. Cette approche se formule dans le modèle de récupération de la matrice de faible rang en exploitant les informations de structure de l'image provenant d'une segmentation ascendante comme contrainte importante. La segmentation construite à l'aide d'un schéma d'optimisation itératif et conjoint, effectue simultanément, d'une part, une segmentation d'objets basée sur la carte de saillance résultant de sa détection et, d'autre part, une amélioration de la qualité de la saillance à l'aide de la segmentation. Une carte de saillance optimale et la segmentation inale sont obtenues après plusieurs itérations. La deuxième approche proposée pour la segmentation d'objets se fonde sur des images exemples. L'idée sous-jacente est de transférer les étiquettes de segmentation d'exemples similaires, globalement et localement, à l'image requête. Pour l'obtention des exemples les mieux assortis, nous proposons une représentation nouvelle de haut niveau de l'image, à savoir le descripteur orienté objet, qui relète à la fois l'information globale et locale de l'image. Ensuite, un prédicteur discriminant apprend en ligne à l'aide les exemples récupérés pour attribuer à chaque région de l'image requête un score d'appartenance au premier plan. Ensuite, ces scores sont intégrés dans un schéma de segmentation du champ de Markov (MRF) itératif qui minimise l'énergie. La segmentation sémantique se fonde sur une banque de régions et la représentation parcimonieuse. La banque des régions est un ensemble de régions générées par segmentations multi-niveaux. Ceci est motivé par l'observation que certains objets peuvent être capturés à certains niveaux dans une segmentation hiérarchique. Pour la description de la région, nous proposons la méthode de codage parcimonieux qui représente chaque caractéristique locale avec plusieurs vecteurs de base du dictionnaire visuel appris, et décrit toutes les caractéristiques locales d'une région par un seul histogramme parcimonieux. Une machine à support de vecteurs (SVM) avec apprentissage de noyaux multiple est utilisée pour l'inférence sémantique. Les approches proposées sont largement évaluées sur plusieurs ensembles de données. Des expériences montrent que les approches proposées surpassent les méthodes de l'état de l'art. Ainsi, par rapport au meilleur résultat de la littérature, l'approche proposée de segmentation d'objets améliore la mesure d F-score de 63% à 68,7% sur l'ensemble de données Pascal VOC 2011. Mots-clés : segmentation d'objets, segmentation sémantique, détection de saillance

  The proposed approaches have been extensively evaluated on several challenging and widely used datasets. Experiments demonstrated the proposed approaches outperform the stateofthe-art methods. Such as, compared to the best result in the literature, the proposed object segmentation approach based on exemplar images improves the F-score from 63% to 68.7% on Pascal VOC 2011 dataset.
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Table 3 .

 3 1: Segmentation accuracies (in %) on standard validation sets of Pascal VOC 2010 and VOC 2011. (Difficult areas are set to background).

	VOC 2010	VOC 2011

Table 3 .

 3 3: Approximate run-time (in second) per image of Matlab implementations.

		CPMC Global transfer Window transfer Ours
	Run-time	230	4	97	114

Table 3 .

 3 

	Approach	F-score AvU
	Global transfer [67]	69.5	56.4
	Window transfer [68]	74.8	64.2
	Online glocal transfer	80.0	67.5

4: Segmentation accuracies (in percent) on iCoseg dataset.

Table 3 .

 3 5: Average union (AvU) score on iCoseg dataset. The results for[START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF] are taken from Table2in[START_REF] Joulin | Multi-class cosegmentation[END_REF].

	Object class	C o -s e g m e n t a t i o n [ 8 6 ]	C o -s e g m e n t a t i o n [ 8 7 ]	G l o b a l t r a n s f e r [ 6 7 ]	W i n d o w t r a n s f e r [ 6 8 ]	O n l i n e g l o c a l t r a n s f e r
	Baseball player	51.1	62.2	52.7	69.3	65.9
	Brown bear	40.4	75.6	54.1	73.2	91.9
	Elephant	43.5	65.5	62.7	63.8	76.1
	Ferrari	60.5	65.2	51.8	68.1	73.0
	Football player	38.3	51.1	46.7	46.4	51.4
	Kite panda	66.2	57.8	81.2	72.3	93.8
	Monk	71.3	77.6	42.7	63.2	67.2
	Panda	39.4	55.9	74.2	55.7	74.9
	Skating	51.1	64.0	58.6	63.5	78.2
	Stonehenge	64.6	83.3	65.1	67.3	56.0
	Average	52.6	66.1	59.0	64.3	72.9

Table 4 .

 4 1: Segmentation results (in %) on MSRC-21 dataset.

	Class	TB [88] SF [90] AC [105] DAOC [93] HCRF [106] Ours
	building	49	84	30	53	60
	grass	88	95	71	97	78
	tree	79	81	69	83	77
	cow	97	67	68	70	91
	sheep	97	78	64	71	68
	sky	78	89	84	98	88
	plane	82	72	88	75	87
	water	54	77	58	64	76
	face	87	87	77	74	73
	car	74	71	82	64	77
	bike	72	86	91	88	93
	flower	74	66	90	67	97
	sign	36	59	82	46	73
	bird	24	28	34	32	57
	book	93	85	93	92	95
	chair	51	19	74	61	81
	road	78	68	31	89	76
	cat	75	59	56	59	81
	dog	35	47	54	66	46
	body	66	35	56	64	56
	boat	18	9	49	13	46
	global	72	77	-	78	77

1 Modèle de détection de saillance
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	jamais apparaître dans les images exemples, cette approche peut être considérée A.2 Chapitre 2 : segmentation d'objets basée
	comme une approche de segmentation faiblement supervisée. Les deux approches mentionnées ci-dessus produisent un masque de segmentation binaire, où une saillance
	étiquette indique les objets et l'autre représente l'étiquette de fond. Dans ce chapitre, nous nous intéressons à traiter conjointement les problèmes de	
	En outre, nous abordons également le problème de l'affactation d'une étiquette détection de saillance et de segmentation d'objets saillants en exploitant les indices
	significative (comme chat, chien, voiture ou route) à chaque pixel de l'image, ce qui bénéfiques à chacun d'eux. Pour atteindre cet objectif, nous proposons un système
	s'appelle une segmentation sémantique. Dans ce contexte, nous proposons une composé de deux éléments clés correspondant également à nos deux contributions
	méthode de représentation des attributs pour établir une passerelle entre principales, à savoir, un modèle de détection de saillance, appelé segmentation driven
	caractéristiques locales et sémantique. La segmentation sémantique nécessite un low-rank matrix recovery (SLR) et un système unifié améliorant conjointement la
	ensemble d'images étiquetées sémantiquement pixel par pixel pour l'apprentissage qualité de la carte de saillance et la segmentation des objets du fond.
	de l'ensemble des prédicteurs et ainsi chaque pixel d'une image test ne peut se voir
	attribuer que l'une seule des catégories pré-définies. Une telle approche se classée
	dans la catégorie de la segmentation supervisée.	
	Ce résumé en français présente les contenus principaux de la thèse. Il s'organise Le modèle low-rank matrix recovery (LRMR), visant à décomposer une matrice
	comme suit : Deux approches proposées pour la segmentation d'objet sont en une matrice de faible rang et une matrice creuse, a montré son potentiel pour
	brièvement présentées en Section A.2 et Section A.3, respectivement. Ensuite, résoudre le problème de la détection de saillance, où la matrice de faible rang
	notre segmentation sémantique proposée est dans Section A.4. Enfin, les décomposée correspond naturellement au fond, et la matrice creuse aux objets
	conclusions et perspectives sont présentées dans Section A.5. saillants. Cependant, ceci n'est que dans l'hypothèse d'un fond uniforme et	
	Selon l'apprentissage, sur des images manuellement étiquetées, ou en requérant d'objets évidemment distincts. Malheureusement, dans images réelles, le fond peut	
	une intervention humaine ou non, les méthodes de segmentation d'images peuvent présenter différents objets de façon éparse et présenter un faible contraste avec les	
	également se classer comme segmentation supervisée ou segmentation non objets. Ainsi, l'application directe du modèle LRMR pour la détection de saillance	
	supervisée. s'avère d'une robustesse limitée. En conséquence, nous proposons une nouvelle	
	En pratique, il est très difficile de réaliser une segmentation totalement non approche qui exploite une segmentation ascendante pour guider la récupération de	
	supervisée des objets, puisque la notion d'objet dépend du contexte et de la matrice.	
	l'application spécifique Par conséquent, nous nous concentrons uniquement sur la Un élément clé et distinctif de ce modèle est l'utilisation de la segmentation a	
	segmentation non supervisée des objets saillants, c'est-à-direles objets qui se priori proposée s'intégrant dans la récupération de la matrice de faible rang. Tout	
	détachent relativement nettement du fond en modélisant les données de bas niveau d'abord, si l'on observe les images et leurs segmentations à grains grossiers	
	de l'image elle-même sans utiliser d'autres indices d'une analyse descendante. Par (coarse-grained, i.e. CG) dans la Figure A.2. Les objets saillants se localisent à	
	ailleurs, nous abordons un cas plus difficile dont l'objectif est d'extraire tous les différentes positions : centre, bas, gauche, droite ou coin. Les arrière-plans et les	
	objets de premier-plan dans une image en en tirant profit de l'ensemble des images objets sont généralement segmentés en plusieurs régions, et ainsi, on n'espère pas	
	exemples segmentées manuellement. Comme les objets à segmenter peuvent ne de la segmentation ascendante de séparer totalement des objets du fond.	

A.2.

  L'a priori d'apparence calcule la similarité entre les régions et les objets segmentés. Pour la représentation de l'apparence, nous utilisons les histogrammes des dans l'espace CIE L* a* b* et de teinte de couleur, où les canaux L*, a*, b* et la teinte sont quantifiés sur 8, 16, 16 et 4 bins, respectivement. Ainsi, chaque région/objet est représenté par un histogramme (8 × 16 × 16 × 4)-dimensionnel qui est normalisé à l'unité. Soit {h 1 , h 2 , • • • , h P } qui représentent les histogrammes de couleur des objets segmentés {O 1 , O 2 , • • • , O P }, et h t k qui représente l'histogramme de couleur de la région r k , l'a priori d'apparence non normalisé de r k est défini

	comme		
	P		
	a ′ k =	|O p | • K(h t k , h p )	(A.6)
	p=1		
	où K(•) est une fonction noyau de similarité. Dans notre expérience, le noyau
	d'intersection des histogrammes est adopté, ainsi	
		T	
	K(h t k , h p ) =	min h t k (i), h p (i)	(A.7)
	i=1	
	où T est la dimension de l'histogramme. En utilisant Eq. (A.6), les a priori
	d'apparence non-normalisés de toutes les régions sont calculés. Ensuite, l'a priori
	d'apparence final de la région r k est calculé par une fonction de normalisation,
	c'est à dire,		

  9) où f i et f j sont des vecteurs BOV d'une paire d'objets, D est la dimension du vecteur BOV. La raison principale du choix de la classification ascendante hiérarchique plutôt que des K-means est le fait que K-means ne supporte pas la distance métrique χ 2 qui convient bien puissante pour regrouper des histogrammes.Enfin, le descripteur de haut niveau de l'image est créé en normalisant le vecteur score SVM. Nous normalisons chaque vecteur v i en exploitant la distribution des vecteurs de score extraits de toutes les images de l'apprentissage. .Soit V t = {v 1 , v 2 , • • • , v P }qui un ensemble de vecteurs de score de P image de l'ensemble d'apprentissage. La normalisation est effectuée de la manière suivante

Ensuite, N classifieurs SVM des pseudo-catégories font un apprentissage pour calculer les similarités d'une image avec chaque pseudo-catégorie. Les classifieurs SVM sont construits en mettant comme des exemples positifs les en déclarant positifs les exemples d'images contenant des objets d'une pseudo-catégorie spécifique, et les autres comme négatifs. Notons que, puisqu'une image peut contenir des objets de différentes pseudo-catégories, une image peut appartenir à l'exemple positif de plusieurs classifieurs. Avec les classificateurs SVM appris, une image est représentée par un vecteur score v i constitué de N scores de classification SVM qui sont généralement dans la plage de [-3, 3]. Ces scores de classification expriment naturellement les probabilités pour une image d'appartenir à chacune des N pseudo-catégories, i.e. un score plus élevé indique une plus forte probabilité, et vice versa.

3.2 Prédiction en ligne
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	de tous les vecteurs de scores calculés à partir des images d'apprentissage	
	v ′ i = v i -	1 P	P p=1	v p	(A.11)
	ici, le vecteur de score normalisé h i est nommé descripteur orienté objet (OOD). Le
	nombre N de classificateurs SVM est déterminé par les distributions d'apparition des
	objets dans les images d'apprentissage. Si les objets présentent de fortes variations
	dans l'espace d'apparence, N doit être réglé relativement à une plus grande valeur
	grande. Dans nos expériences, N est modérément fixé à 40.	
	Certaines propriétés peuvent être observées sur le descripteur OOD d'OOD :
	-Comme l'hyperplan de séparation de SVM est généralement très éparpillé, les
	classifieurs SVM effectuent simultanément la sélection de caractéristiques et la
	classification.				
	-la sélection de caractéristique avec l'agrégation de descripteurs locaux en
	pyramide spatiale permet au descripteur OOD de capturer l'arrangement
	géométrique global et aussi de mettre en évidence des objets locaux dans une
	image.				
	-avec les classificateurs SVM ayant appris, il est simple de calculer le descripteur
	OOD de BOV, étant donné que seule une multiplication et une opération de
	normalisation sont nécessaires.				
	L'objectif de ce module est d'initialiser la probabilité de premier plan pour
	l'image de requête. Puisque les images similaires partagent généralement une
	segmentation similaire, nous utilisons les k plus proches voisins comme échantillons
	de référence pour prédire la probabilité d'appartenir au premier plan.	
	Le classifieur figure-fond fait un apprentissage en ligne en utilisant un ensemble
	de régions segmentées à partir des k plus proches voisins. Pour l'apprentissage du

10) où • 2 indique la norme l 2 , v ′ i est le vecteur différence entre v i et le vecteur moyenne

A.

classifieur, nous employons la machine à vecteurs support à noyaux d'apprentissage multiple (SVM-MKL)

[START_REF] Varma | Learning the discriminative power-invariance tradeoff[END_REF]

. Des exemples positifs pour l'apprentissage sont les régions exemples qui appartiennent principalement aux objets, et des exemples négatifs sont le reste de ces régions exemples correspondant au fond. Soient

  qui une collection de vecteurs BOV d'une région d'apprentissage, où U est le nombre de descripteurs d'apparence. La fonction de classification d'un SVM dans la formulation du noyau est exprimée comme

  Dans un tel modèle, indique l'ensemble de tous les pixels de l'image, N correspond au système de voisinage défini sur les pixels, et est choisi en un voisinage à quatre ou à huit connectivités, L = {l 1 , l 2 , • • • , l N } est un ensemble d'étiquettes (variables aléatoires) des) aux pixels, n est indice de l'image, l n = {0, 1} avec 0 indiquant le fond et 1 les objets de premier plan, Λ n est le terme de données et Θ n,j est le terme de lissage.Le terme de lissage est défini dans un système de voisinage qui consiste en toutes les paires de pixels adjacents. Son objectif est d'assurer le lissage global de l'étiquette en pénalisant les pixels voisins affectés avec des étiquettes différentes.
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	chaque pixel est associé à une variable aléatoire, qui correspond à l'étiquette de
	segmentation. La segmentation optimale est obtenue en trouvant le maximum en
	trouvant la de vraisemblance maximum a posteriori (MAP) dans une MRF et elle
	est réalisée en minimisant la fonction de l'énergie d'une paire de MRF	
	E(L) =	Λ n (l n ) +	Θ n,j (l n, , l j )	(A.14)
	n∈P	{n,j}∈N		
	où P Terme modélisant les distributions de couleurs dans l'image. Cependant, la caractéristique
	de la couleur n'est pas très discriminante et peut conduire à une segmentation
	inexacte. Pour surmonter ce problème, nous proposons un nouveau terme de
	données qui intègre un SVM a priori et un modèle d'apparence	
	Λ n (l n ) = -log(Φ(l n ) • Ω(x n |l n ))	(A.16)

de données

Le terme de données mesure la cohérence entre le pixel et son étiquette, et est généralement défini comme le logarithme négatif de la probabilité d'une étiquette de premier plan/arrière-plan assignée à un pixel, à savoir

Λ n (l n ) = -log(Ω(x n |l n )) (A.

15) où x n ∈ R 3 est le vecteur de caractéristique de couleur, Ω est un modèle d'apparence pour prédire la probabilité de premier plan ou d'arrière-plan en où le SVM a priori Φ(l n ) est calculé à partir des scores de classification SVM figurefond. Compte tenu de la carte probabiliste de SVM S = {s 1 , s 2 , • • • , s N }, s n ∈ R 1 de l'image, qui est normalisée à [0, 1], le SVM a priori d'un pixel n pour le modèle de

Chapitre 4 : Segmentation sémantique d'image

  21) où dis(•) est la distance euclidienne spatiale des pixels voisins, • 2 indique la norme l 2 . Le paramètre d'ajustement ϕ est réglé sur 50 ce qui s'est avéré adéquat pour convenir à la plupart des images réelles [83]. La constante β est un poids pour le contraste. Lorsque β est 0, tous les pixels voisins sont lissés avec un degré fixe déterminé par ϕ. Pour rendre le lissage adaptatif au contraste global des pixels voisins, β est choisi pour être
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	(i) l'utilisation du schéma de transfert glocal en ligne avec le descripteur PHOG pour la recherche d'images peut surpasser les techniques de l'état de l'art, (ii) le transfert glocal en ligne avec OOD améliore encore plus la performance, par exemple, par rapport aux meilleurs résultats par transfert de masques de fenêtre [68], la précision de la segmentation en termes des critères F-score augmente de 63,0% à 68,7% sur Pascal VOC 2011 ; (iii) l'approche proposée possède le potentiel pour segmenter sur une grande échelle des images contenant des objets inconnus n'ayant jamais apparu dans les images exemples. Grass Learned classifiers A.4 Sparse-based region description Region bank Semantic Cow Generation labeling
	β =	1 2 • mean(( x n -x j 2 2 ) • dis(n, j))	.	(A.22)
	A.3.4 Conclusion			
	Nous avons proposé une approche automatique de segmentation automatique
	d'objet en transférant des étiquettes de segmentation d'exemples similaires
	glocalement à l'image de requête. Tout d'abord, le descripteur orienté objet (OOD)
	est proposé pour une représentation de haut niveau de d'image qui code
	implicitement l'information géométrique et met en évidence les objets dans une
	image. Ce descripteur permet de trouver efficacement les meilleurs exemplaires
	pour le transfert de segmentation et conduit à une plus grande précision de la
	segmentation par rapport à l'utilisation de combinaison les descripteurs GIST et
	PHOG. Deuxièmement, un nouveau schéma qui combine la prédiction en ligne et
	l'optimisation de l'énergie d'un champ de Markov est proposé pour améliorer la
	robustesse des modèles de segmentation et réaliser une segmentation optimale.
	Une évaluation approfondie a été réalisée sur trois bases de données, à savoir
	Pascal VOC 2010, VOC 2011 segmentation et iCoseg. Les expériences montrent que :

  Théoriquement, n'importe quel classifieur discriminant peut être appliqué pour cette tâche. Dans cette étude, nous préférons la machine à support vecteur (SVM) avec le multiplenoyau d'apprentissage ( multiple kernel learning MKL)[START_REF] Varma | Learning the discriminative power-invariance tradeoff[END_REF], comme il est facile de former des classifieurs intégrant plusieurs types de caractéristiques, même si ces caractéristiques sont adressées par différents noyaux. dénote les vecteurs parcimonieux dans la région R i , J i désigne la dimension du vecteur parcimonieux.En utilisant l'Eq (A.26), nous pouvons calculer l'histogramme des vecteurs parcimonieux SIFT qui est noté h t i , et celui des vecteurs parcimonieux de SSIM qui est noté h m i . Soit h c i = {h t i , h m i } défini comme la combinaison d'histogrammes des vecteurs parcimonieux. De cette façon la fonction de classification d'une SVM dans la formulation du noyau est exprimée comme suit : SV M (h c ) = , I} sont des histogrammes de vecteurs parcimonieux dans les régions d'apprentissage ; y i ∈ {+1, -1} indique l'étiquette de la classe, et K est le noyau défini positif, qui est calculé comme une combinaison linéaire des noyaux d'histogrammeK(h c , h c i ) = d t K(h t , h t i ) + d m K(h m , h m i ) (A.28) où d t et d m représentent les poids non négatifs de noyaux. De nombreux noyaux peuvent être appliqués pour la classification basée sur un histogramme, comme le noyau d'intersection, noyaux Chi2 et RBF. Dans nos expériences, le noyau Chi2 est utilisé pour les deux histogrammes des EIPD et SSIM. MKL apprend les poids du noyau, d t et d m et les paramètres a i , et b pour chaque classe. En utilisant l'Eq (A.27), une région test peut obtenir un score de SVM, indiquant la vraisemblance de la classe de l'objet, à partir de chaque classificateur. Ces scores sont ensuite utilisés pour l'étiquetage des régions. L'approche la plus directe pour l'étiquetage des régions marquées d'un score d'une image de test est d'affecter ces régions avec les étiquettes de classe les plus probables. Cependant,celal ne peut pas être directement appliqué à notre méthode, car les régions hiérarchiques sont superposées ou croisées entre elles, de plus, ces régions générées par un seuillage grossier peuvent couvrir plusieurs objets. Notre solution est de combiner l'effet des scores SVM avec celui des tailles de régions. Le procédé d'étiquetage est principalement constitué de trois étapes. Tout d'abord, les classes d'objets les plus probables qui ont les scores de SVM maximales sont utilisées pour pré-étiqueter chaque région. Deuxièmement, ces régions sont triées selon leurs scores croissants. Enfin, les régions sont fusionnées progressivement, à partir des scores les plus faibles, pour former une image complètement étiquetée par l'observation de leur taille etdes scores SVM. Ainsi, quand une région candidate R j , ou une partie, se localise à la même position que la région marquée R i , elle ne peut remplacer celle-ci que si son score est supérieur à un seuil donné et si sa taille n'est pas beaucoup plus grande que R i . Cette stratégie permet d'éviter l'étiquetage de petits objets par leur environnement ou par de gros objets voisins.

	vecteurs parcimonieux pour chaque région			
	h i =	1 J i	J i j=1	a j	(A.26)
	où a j I				
	i=1 y i a Etiquetage des région		
	Pour la classification, nous calculons tout d'abord l'histogramme normalisé de

i K(h c , h c i ) + b (A.27)

où h c est l'histogramme des vecteurs parcimonieux dans une région de test ;

{h c i ∀i = 1, • • •
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Chapter 3. Exemplar-based object segmentation accuracy in terms of F-score criteria increases from 63.0% to 68.7% on Pascal VOC 2011; (iii) the proposed approach has the potential to segment large-scale images containing unknown objects, which never appear in the exemplar images.

d'objets.Comme première contribution, un nouveau modèle de détection de saillance, appelé segmentation driven low-rank matrix recovery model (SLR), est proposé. L'idée principale de ce modèle est une décomposition d'une matrice de caractéristiques de l'image en une matrice de faible ranget une matrice creuse, et dans laquelle la matrice de faible rang décomposée correspond naturellement à l'arrière-plan, et la matrice creuse aux objets saillants. Pour une amélioration de la robustesse, une segmentation ascendante, appelée segmentation a priori, est définie sur la base de la connectivité des régions avec la frontière de l'image. Cette segmentation est proposée comme unindice de contrainte important pour la décomposition de la matrice et elle a montre une amélioration sensible des performances de détection de saillance.En second, un schéma unifié est proposé pour conjointement extraireles objets et rehausser la carte de saillance générée par le modèle SLR. D'une part, le modèle de segmentation est basé sur le schéma MRF qui se compose d'un terme de données et d'un terme de lissage. Nous avons proposé un terme de données robuste grâce à l'utilisation optimale de l'information de saillance. D'autre part, le modèle de rehaussement de saillance (saliency boosting, i.e. SB), améliore la qualité de la carte de saillance en tirant efficacement partie de l'emplacement de l'objet et de l'information de l'apparence du résultat de la segmentation. Mutuellement, la segmentation d'objets et l'optimisation de saillance favorisent un meilleur résultat de segmentation et une carte de saillance s de qualité supérieure.Pour valider la performance de la détection de saillance et la segmentation d'objets, une évaluation approfondie a été menée sur deux ensembles de données d'images, d'une part la base d'images MSRA-B contenant 5000 images et d'autre part la base d'images PASCAL-1500 que nous avons introduit (soit 6500 images au total) Les expériences montrent que : i) le modèle SLR surpasse les modèles de l'état-de-l'-art pour la saillance, ii) le modèle SB amélioreles performances de détection de saillance, iii) l'approche de segmentation proposée est supérieure aux méthodes de l'état-de-l'-art pour la segmentation d'objetsi..

Chapter 3. Exemplar-based object segmentation global transfer. The second approach is window transfer proposed in [START_REF] Kuettel | Figure-ground segmentation by transferring window masks[END_REF], which realizes the segmentation transfer based on windows detected by off-line learned model of Objectness [START_REF] Alexe | What is an object?[END_REF]. The third approach is CPMC [START_REF] Carreira | Cpmc: Automatic object segmentation using constrained parametric min-cuts[END_REF], which learns a ranking model to select regions mostly covering objects from multiple segmentations. The former two competitors exactly match with our approach, while CPMC is different from ours as it does not generate a single segmentation mask for all objects in an image. To compare with the CPMC, we report its results of the first ranked segmentation. All results of these three approaches are produced by authors' publicly available codes 1 2 3 .

Performance analysis

As shown in Figure 3.4, we evaluate the system performance with different configurations by varying the number of nearest neighbors k. The performance of global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF], which is the most relative to our approach, is also presented in Validation of OOD: OOD is designed for finding a set of exemplars glocally similar to the query image. Note that, the conventional quantitative retrieval evaluation method is not applicable to OOD for at least two reasons. On one hand, OOD aims at finding object's appearance and object layout similar to that of the query image, rather than to find the same category of the object. On the other hand, as the query image might contain multiple objects from different categories, the retrieved image might exactly match with the object categories in the query image, partially match or totally mismatch. In this case, it is difficult to assess the retrieval accuracy. Therefore, we evaluate OOD by its impact on segmentation performance.

First of all, we compare OOD with PHOG [START_REF] Bosch | Image classification using random forests and ferns[END_REF] (pyramid of histograms of oriented gradients). For evaluation, we use two sets of nearest neighbors, retrieved by using OOD and PHOG respectively, for segmentation transfer, and then we compute their segmentation results by varying the number of nearest neighbors k.

premier plan est défini comme étant Φ(l n = 1) = s n .

(A.17)

De la même façon, le SVM a priori du pixel n pour un modèle de fond est défini comme

Notons que, la SVM de figure-fond est apprise en ligne sur un ensemble des images les plus similaires, le SVM a priori Φ(l n ) est relie naturellement à chaque pixel au premier plan/arrière-plan de ses voisins les plus proches. Ceci suggère que l'Eq (3.8) favorise les pixels les plus similaires aux objets de premier plan dans les images exemples à pour être étiquetés comme appartenant à l'avant-plan, et par contre incite les autres pixels plus semblables à l'arrière-plan de ces images pour être étiquetés comme de l'arrière-plan.

Le modèle d'apparence est défini par deux modèles de mélange de gaussiennes (GMMs), où l'un est attribué à la modélisation du premier plan et l'autre à la modélisation du fond. Le GMM est une fonction de densité de probabilité paramétrique représentée comme une somme pondérée de densités gaussiennes

où Q est le nombre de composantes gaussiennes (typiquement Q = 5), w i est le poids de la composante dans le mélange, avec la contrainte que la somme de tous les poids des composantes soit égale à 1, et g(x n |µ i , Σ i ) est une fonction de densité de probabilité gaussienne [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF] with the proposed OOD for image retrieval.
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The curve E shows the performance of original global transfer [START_REF] Rosenfeld | Extracting foreground masks towards object recognition[END_REF]. The results for [START_REF] Kim | Distributed Cosegmentation via Submodular Optimization on Anisotropic Diffusion[END_REF][START_REF] Joulin | Multi-class cosegmentation[END_REF] are taken from Table 2