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“Inspiration exists, but it has to find you working.”

Pablo Picasso

“ Все равно истины нет на свете или, быть может, она и была в каком-нибудь

растении или в героической твари, но шел дорожный нищий и съел то растение

или растоптал гнетущуюся низом тварь, а сам умер затем в осеннем овраге, и

тело его выдул ветер в ничто. ”

Андрей Платонов, “Котлован”

To my grandpa.
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General introduction

The development of non-linear optical devices, such as up-conversion frequency systems

and high speed optical-switches, has induced a great interest for materials exhibiting high

linear and non-linear optical properties. Among these materials, the inorganic glasses

based on the heavy metals are very interesting for application as systems with fast linear

and non-linear optical response on the one hand and weak absorption on the other hand.

Even if they do not have an optimal non-linear performance compared to some crystals or

organic polymers, they present a commutation times significantly smaller (of picosecond

or femtosecond order) than their concurrents (of nanosecond order).

Tellurium oxide-based glasses are among the most promising candidates, since their

non-linear properties are the highest among the known oxide glasses. In particular their

susceptibilities χ(3) are 50–100 times higher than glassy SiO2.

The origin of these properties, which is of great interest for material science, has

been early attributed to the electronic (5s2) lone pair (LP) of tellurium (IV) atoms when

bonded to oxygen atoms. Recent works however suggest that the structure of the glass

itself and in particular the nature of the Te–O–Te bridges is responsible to a large extend

for these particular features.

Tellurium dioxide is known as a conditional glass former and requires fast-quenching

techniques to form a glass. The resulting amorphous material is not stable to

devitrification, but could be stabilised by adding modifier oxides. This is contrary to

classical glass formers such as SiO2, P2O5 and B2O3, where the modifiers usually break

the glass network. But at the same time, the addition of modifiers oxides into TeO2 system

degrades the desired optical properties. A better understanding of these phenomena thus

requires a good knowledge of the glass structure. The work on the pure amorphous TeO2

system has been represented very poorly in the literature to date. The main aim of this

work is to improve the knowledge of the structure of pure tellurium dioxide glass.

This study has been extended to the case of the disordered δ−TeO2 phase, which is

formed during the crystallisation process of the TeO2 glass. This phase is very interesting

more from the fundamental point of view. It was discovered at the SPCTS laboratory

about 15 years ago and seems to be similar to anti-glass phases described by Trömel et

al. [1]. The description of δ−TeO2 phase made only with experimental techniques (X-ray

17



General introduction

diffraction and Raman spectroscopy) is incomplete.

The structural study of TeO2 glass and δ−TeO2 phase requires the use of appropriate

experimental techniques such as X-ray total scattering coupled with atomistic simulation

methods such as molecular dynamics. The ab initio molecular dynamics methods are

limited by the size of the simulated system and the simulation time. The classical

molecular dynamics requires the knowledge of the interatomic potentials for a given

system, and there are no established potentials for TeO2 system in the literature.

The development of the empirical interatomic potentials for TeO2 system is a very

complicated problem. The local tellurium atom environment strongly varies in different

structures. Tellurium atom can be three-, four-, five- and even six-coordinated in mixed

TeO2-based compounds, and the Te–O bond lengths and O–Te–O bond angles can vary

in very large ranges (1.8 – 2.2 Å and 80 – 170○ respectively for structures considered in

this work). So it is a great challenge to derive the potentials for such a system as they

should be highly transferable in order to represent all possible TeOx units. A model should

take into account such physical-chemical peculiarities as stereo-chemical active electronic

lone pair of TeIV atom when bonding to oxygen atoms, polarisability of oxygen atoms,

covalency of Te–O bond, etc.

This work is organised as follows.

The first chapter is consecrated to the description of the investigated materials and

structural characterisation methods. In the first part we consider the structure and

the local TeIV atom environment in pure and several mixed TeO2 polymorphs. We

demonstrate that the TeIV atom coordination varies for different pure TeO2 polymorphs

and with the addition of modifiers oxides. We then overview the literature on the TeO2-

based glasses and δ−TeO2 phase. In the second part we give a necessary theoretical

background for the experimental and simulation methods used in this work.

In the second chapter we report the results on the synthesis of γ− and δ−TeO2

polymorphs. They are metastable phases difficult to obtain without secondary α−TeO2

phase. We performed X-ray diffraction and Raman spectroscopy measurements with

temperature for four glassy systems: 92.5%TeO2 + 7.5%WO3, 90%TeO2 + 10%WO3,

95%TeO2 + 5%NbO2.5, and 95%TeO2 + 5%PbO. We then report a method for obtaining

the pure samples of γ− and δ−TeO2. We propose a hypothesis explaining the mechanism

of pure samples formation and perform X-ray diffraction, Raman spectroscopy and

differential scanning calorimetry characterisation in order to test it.

The third chapter is consecrated to the development of interatomic potentials

for the TeO2 system. In this chapter we discuss the role of tellurium and oxygen

atoms polarisation, Te–O and O–O pair interactions in the formation of various TeIV

coordinations. We then apply the derived potentials to several mixed TeO2-based systems

and investigate the potentials transferability. In such a way we convince ourselves that
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various tellurium atom environments could be well modelled and that the potentials are

appropriate for application to molecular dynamics simulations of TeO2-based disordered

systems.

Finally, in the fourth chapter we use the results obtained in all previous chapters in

order to investigate the structures of the pure TeO2 glass and the δ−TeO2 polymorph.

For the glass we perform the molecular dynamics simulations and compare the results

with the neutron scattering data obtained in our group earlier. For δ−TeO2 phase we

perform both the X-ray total scattering experiment and molecular dynamics simulations.

The analysis of the obtained simulations data was performed with the help of self-made

programs.
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Chapter 1

Presentation of the investigated

materials and structural

characterisation methods

1.1 Crystalline polymorphs and TeO2-based glasses

1.1.1 Te(IV) atom environments in pure TeO2 polymorphs

Tellurium dioxide is present in various polymorphic forms. The various polymorphs

identified and characterised at this time are following. The α−TeO2 (paratellurite) is

a stable at ambient pressure and temperature phase [2, 3, 4, 5]. The natural form of

the tellurium dioxide is β variety [6]. It is metastable and transforms irreversibly to α

variety at 600 ℃. Worlton et al. [7] reported a high pressure (19.8 kbar) TeO2 polymorph,

which corresponds to an orthorhombic deformation of α−TeO2 polymorph. The γ− and

δ−TeO2 are the metastable phases obtained during crystallisation of TeO2-rich glasses

[8, 9, 10, 11, 12]. They also transform irreversibly to α−TeO2 at temperature about 450

℃.

In this section we will regard the environments of tellurium (IV) atoms in crystalline

α−, β−, γ− and δ−TeO2 polymorphs. We are particularly interested in the γ polymorph,

as in our group it is considered as the crystalline structure closest to glass, and in δ

polymorph, as it seems to represent a class of "anti-glasses" reported by Trömel et al. [1]

and has never been thoroughly investigated.

1.1.1.1 α−TeO2 polymorph

The most studied TeO2 polymorph is α-TeO2. Its structure was thoroughly investigated

by X-ray diffraction methods and described in 1986 by I.P.Kondratyuk [4] and in 1988

20



Chapter 1 : Presentation of the investigated materials and structural characterisation
methods

by P.A. Thomas [5]. The work of Kondratyuk reports the P 43212 space group and cell

parameters: a = b = 4.810 Å and c = 7.613Å.

It is often described with TeO4 disphenoids connected in chains (Fig. 1.1a). In the

disphenoid shown in Fig. 1.1b two equatorial bonds are shorter (1.879 Å) and two axial

bonds are longer (2.121 Å). Each oxygen atom is connected with two tellurium atoms by

one axial bond and one equatorial bond. The interconnection of the disphenoids by the

vertexes allows to describe a three-dimensional network of the paratellurite phase. Hence,

the tellurium atoms are connected via the asymmetrical Te–O–Te bridges.

When considering the more distant oxygen atoms (2.867 Å), we get a strongly distorted

octahedral environment of Te atoms, so that α-TeO2 can be thought of as a derived from

rutile-type structure.

(a) Projection along the c-axis.

!"

(b) Representation of the basic unit. The
arrow points the LP (E) direction, solid
lines represent the short and intermediate
bonds (< 2.02 Å) and dashed lines represent
the long bonds (> 2.02 Å).

Figure 1.1: The structure of α−TeO2.

1.1.1.2 β−TeO2 polymorph

This is the natural form of tellurium dioxide, which transforms irreversibly to α variety

at 600 ℃. The β-TeO2 polymorph crystallises in a orthorhombic system with the space

group Pbca and the cell parameters: a = 12.035 Å, b = 5.464 Å and c = 5.607 Å [6].

This phase can also be described with TeO4 disphenoid. However, in this phase two

shorter equatorial bonds and two longer axial bonds do not have the same lengths. The

Te–O distances are 1.877 Å and 1.927 Å for the equatorial bonds and 2.070 Å and 2.196
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Å for the axial bonds. The interconnection of TeO4 units in this phase is different from

the α-TeO2 phase. The units are alternatively connected via a common vertex and an

(axial-equatorial) edge forming the folded layers parallel to the (1 0 0) plane. Hence,

in the β−TeO2 polymorph the tellurium atoms are connected via the double Te–O–Te

bridges.

(a) Projection in c−axis direction.

!"

(b) Representation of the basic unit. The arrow
points the LP (E) direction, the solid lines
represent the short and intermediate bonds (<
2.02 Å) and dashed lines represent the long
bonds (> 2.02 Å).

Figure 1.2: The structure of β−TeO2.

1.1.1.3 γ−TeO2 polymorph

The metastable γ-TeO2 polymorph was discovered at the SPCTS laboratory in 1999 [8].

It was obtained as the result of the crystallisation of TeO2-rich glasses within TeO2–WO3

and TeO2–Nb2O5 systems. The γ-TeO2 polymorph is characterised by orthorhombic

system (space group P 21 21 21) with Z = 4 TeO2 units per unit cell and cell parameters:

a = 4.898 Å, b = 8.576 Å and c = 4.351 Å (Fig. 1.3a).

The three-dimensional structure of γ-TeO2 polymorph can be described with TeO4

disphenoid reported in Fig. 1.3b. This disphenoid, however, is strongly deformed with
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respect to the one in α− polymorph. The Te–O distances are 1.859 Å and 1.948 Å for the

equatorial bonds and 2.019 Å and 2.197 Å for the axial bonds. The one of the two axial

bonds (Te–O1

1
=2.197 Å) is much longer than the other one (Te–O1

2
=2.019 Å). This type

of structural unit is usually assigned a notation TeO3+1 as an intermediate between TeO4

trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp). Such intermediate units occur

quite often in mixed tellurium oxides (a detailed study of TeOx units distribution could

be found in the PhD thesis of D. Hamani [13]).

(a) Three-dimensional view.

!"

(b) Representation of the basic unit. The arrow
points the LP (E) direction, the solid lines
represent the short and intermediate bonds (<
2.02 Å) and dashed lines represent the long
bonds (> 2.02 Å).

Figure 1.3: The structure of γ−TeO2.

The TeO4 structural units in γ-TeO2 are connected by the vertexes creating the zigzag

chains and large tunnels. The tellurium atoms LPs (E) are directed towards the centres

of these tunnels. The tellurium atoms are connected via Te–eqOax–Te bridges like in
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α−TeO2. However, in contrast to α−TeO2, in γ-TeO2 there are two types of bridges:

essentially asymmetrical (1.859 Å – 2.197Å) and almost symmetrical (1.948 Å – 2.019 Å).

1.1.1.4 δ−TeO2 polymorph

The δ−TeO2 polymorph is the less studied polymorph among all the pure TeO2 structures.

It was discovered at the SPCTS laboratory about 15 years ago [9, 14, 10, 11, 12]. The

δ−TeO2 has never been obtained from pure TeO2 glass, but was successfully synthesised

from glassy samples containing 5–10 mol % of WO3 or 2.5–10 mol % of Nb2O5. Its X-ray

diffraction (XRD) pattern (Fig. 1.4) could be unambiguously indexed with a cubic cell (F

m3̄m, a = 5.690(1) Å) and its unit cell contains four TeO2 units. However, the description

of this structure with fluorite model is inconsistent. Indeed, an ideal fluorite structure

with a cell parameter a = 5.690(1) Å requires Te–O bond lengths of about 2.464 Å, which

is much larger then the usual Te–O bond lengths (∼1.8–2.2 Å). In addition, each cation

is coordinated by eight anions, whereas in all known tellurites, Te(IV) atom is commonly

coordinated by three or four oxide ions. The unit cell and basic structural unit of idealised

δ−TeO2 polymorph are presented in Fig. 1.5a and 1.5b.
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Figure 1.4: XDR powder diagram of the δ−TeO2 obtained.

The aspects discussed above bring us to comparison of δ−TeO2 polymorph with the

cubic phase (a = 5.54 Å) formed within the 15K2O-15Nb2O5-70TeO2 system [15], the

anti-glass phases and other lanthanoid tellurites IV (a = 5.49 − 5.7 Å reported by Trömel

et al.) [1], and a metastable β polymorph of Bi2Te4O11 (a = 5.64 Å) [16]. The last one was

studied by Masson et al. in [17] by both neutron powder diffraction and reverse Monte

Carlo modelling (RMC). The authors showed that the cations form a fairly well-defined
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(a) Three-dimensional view.

(b) Representation of the
basic unit.

Figure 1.5: The structure of the ideal fluorite δ−TeO2 model.

Figure 1.6: The RMC model of β−Bi2Te4O11 and its average structure (upper right corner)
with Te/Bi atoms in green and O atoms in blue.
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FCC lattice, whereas the oxygen sub-lattice is very disordered (positional disorder). It

was also shown that β−Bi2Te4O11 consists of mainly TeO3 and TeO4 polyhedra connected

in a conner-sharing way, contains long cooked and branched chains, rings and few double

oxygen bridges. The RMC model model of β−Bi2Te4O11 is reported on Fig. 1.6. A similar

model could have described the average structure of δ−TeO2.

1.1.2 TeO2-based glasses

The structure of modified TeO2-glasses has been relatively well investigated by different

techniques: Infrared (IR) and Raman spectroscopy [18, 19], Magic Angle Spinning

(MAS)–Nuclear Magnetic Resonance (NMR)[20, 21], NMR, Neutron and X-ray diffraction

combined with Reverse Monte Carlo (RMC) simulations [22, 23, 24, 25]. These studies

describe the tellurite glasses as complex systems composed of various TeOx structural

units with either bridging oxygens (BO) or non bridging oxygen (NBO) atoms. These

units are described in terms of Qn
m units, where m is the total number of BO and NBO

atoms (within a chosen Rcutoff ) and n is the number of BO atoms. More precisely, the

authors in [22, 23] established that the presence of five tellurite polyhedra (Q0

3
, Q1

3
, Q2

3
,

Q3

4
, Q4

4
, see Fig. 1.7) in the glass model is necessary to achieve a good agreement between

experimental data and RMC model of modified TeO2 glasses. All these Qn
m polyhedra are

found in modified tellurite crystals, whereas the pure TeO2 polymorphs (α- and γ-TeO2)

consist of only Q4

4
and Q4

3+1 units, as we saw in previous sections.

The work on the pure amorphous TeO2 system has been represented with only few

studies in the literature to date [26, 27, 28, 29, 30, 31]. Let us now consider only two of

them. The first one is in an ab initio molecular dynamics (MD) studies by Pietrucci et

al. [26]. These authors report a glass model that consists of various Qn
m units like those

determined by RMC modelling, but also of other Q3

3
and Q5

5
units, and Q3

3
units make

up an important contribution (20.4 %) in Qn
m population. Also the authors report the

presence of 14% of terminal oxygen atoms, which does not fit well with the continuous glass

network model of Zachariasen [32]. The second work on pure amorphous TeO2 system by

Barney et al. [27] is based on recent neutron diffraction experiment. The authors made

the precise measurements of tellurium coordination number nTeO and obtained a value

3.68(4), that implies that the glass structure is formed from about 2/3 four-coordinated

units and 1/3 three-coordinated units, that gives, in turn, about 16% of terminal oxygen

atoms. Further they propose a simple connectivity model for the glass, where TeO3 and

TeO4 units in ratio 1 : 2 form the rings like in crystalline K2Te4O9 structure.

These results are highly unusual and require deeper understanding. However, ab initio

MD methods are limited in size of simulated system and simulation time. The glass model

in [26] consisted of only 32 TeO2 units and was obtained as a result of 16 ps cooling
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the liquid at a rate of ≈ 1014 K/s. The authors themselves consider that such a high

concentration of NBO atoms might be due to a too high cooling rate used in ab initio

MD simulation. In other words, the system might have not reached a fully equilibrated

glass structure and resembles more a frozen liquid.

In contrast, classical MD allows bigger size-scale and longer time-scale simulations in

comparison with ab initio MD and is chosen in this work as an atomistic simulations

method for TeO2-based glasses structure.

Figure 1.7: Structural units Qn
m found in tellurite crystals, where m is the number of

bonded oxygen atoms and n is the number of bridging oxygen atoms. Taken from [22]
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1.1.3 Environments of the Te(IV) atom found in tellurite

materials

In Sec. 1.1 of this chapter we reviewed the local environment in some TeO2-based materials

(α−, β−, γ− and δ−TeO2 pure polymorphs and TeO2-based glasses). Contrary to silicates,

for example, the local arrangement is influenced by a high stereo-chemical activity of the

Te(IV) electronic LP and differs from one pure polymorph to another. Moreover, in

δ−TeO2 polymorph and glasses the local Te(IV) atom environment remains not really

clear.

Although, we did not consider the mixed TeO2-based compounds, it is worth noting,

that the local environment strongly varies when adding modifiers. The detailed study of

Te(IV) atom environment variation with modifiers edition is reported in the PhD thesis

of D. Hamani [13], which comprises an overview of more than 100 TeO2-based compounds

and develops a new nomenclature for TeOx units and some regularities in Te(IV) atom

coordination.

Many authors propose that the TeO2-based structures consist of the TeO4, TeO3+1

and TeO3 units and their proportion depends on the quantity of the added modifier oxide

[33, 18, 34, 35, 36]. The TeO4 unit (disphenoids) transforms to the TeO3 units via the

intermediate TeO3+1 units, which causes the decrease of BO atoms quantity and leads to

the change of Te coordination number from 4 to 3.

However, the TeO4 to TeO3 transformation is not general case. We will give here

the examples of two peculiar cases of Te(IV) atom coordination. These are the BaTe2O6

and Cs2Te4O12 structures with atypical symmetrical environment of Te(IV) atom. Fig.

1.8 and Fig. 1.9 show the unit cell and Te(IV) atom coordination for BaTe2O6 and

Cs2Te4O12 structures respectively. In the BaTe2O6 structure Te(IV) atom is coordinated

to five oxygen atoms, where four of them form a square pyramid with edge of 2.126 Å

and the fifth bond is much shorter (1.830 Å). The LP points in the opposite direction of

the shortest bond. In the Cs2Te4O12 structure Te(IV) atom is located in the centre of a

perfect octahedron TeO6 formed with six oxygen atoms (distance Te–O = 2.112 Å) and

Te LP does not present any stereochemical activity (i.e. the LP is not polarised).
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Figure 1.8: Spacial view of the BaTe2O6 structure unit cell and its Te(IV) atom
environment. Te(IV) atoms are represented in deep grey, Te(VI) atoms in light grey,
O atoms in red and Ba atoms in green. The arrow points the LP (E) direction, solid lines
represent the short and intermediate bonds (< 2.02 Å) and dashed lines represent the long
bonds (> 2.02 Å).
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Figure 1.9: Spacial view of the Cs2Te4O12 structure unit cell and its Te(IV) atom
environment. Te(IV) atoms are represented in deep grey, Te(VI) atoms in light grey,
O atoms in red and Cs atoms in teal. Solid lines represent the short and intermediate
bonds (< 2.02 Å) and dashed lines represent the long bonds (> 2.02 Å).
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1.2 Structure characterisation using the simulation

methods

The problem of performing MD simulations falls into two parts: firstly, it is necessary to

establish the way the atoms interact with each other, i.e. the interatomic potential (IAP)

and then we can proceed to MD simulation itself. There are already established IAPs for

a number of element pairs, which could be found in literature as for example in the IAP

data base composed by the Department of Chemistry of University College London staff

[37]. However, for the element pairs of our interest (Te, O) the IAP does not exist. For

this reason, we consecrate the first part of this section to background of IAP derivation

methods. In the second part of this section we will recall general MD method background

and consider particular algorithms, models and features used in this work.

1.2.1 Interatomic potential derivation: presentation of the

methodology

When deriving an IAP, it is necessary to take into account all physical peculiarities

of studied material. For TeO2 system we have to consider the Te–O bond covalency,

stereoactivity of tellurium IV electronic LP, strong polarisability of both Te and O

atoms. Also an accurate IAP should be transferable, i.e. able to describe such a

large bond lengths distribution presented in TeO2-based materials and flexible enough

to reproduce correspondingly large bond-angles distribution and different coordination

numbers. Hence, it is important to chose an appropriate form of the IAP and atomic

model.

To our knowledge the IAPs for pure TeO2 system have never been presented in the

literature. The only work reported the classical MD simulations for TeO2 system is MD

simulations of ZnO–TeO2 glasses [38]. The authors used the three-body IAP for Te–

O interaction, which could have prevented them to reproduce all the variety of TeOx

structural units by fixing the minimum of potential energy at a certain angle value. In

addition, the envelope of the resulting pair distribution function (PDF) does not fit very

well experimental data in medium-range order (3–6 Å). The PDFs obtained in [38] are

reported in Fig. 1.10.

1.2.1.1 Potential form

The IAPs were derived in the framework of the Born model of solids, in which the lattice

is constructed as an infinite array of charged spherical ions. The total potential energy

Utot for the interaction between two ions i and j is given as
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Figure 1.10: Comparison of the PDFs derived from glass structure models of MD
construction (dotted lines) and those obtained by neutron diffraction (solid lines) for
xZnO–(1–x)TeO2 glasses (x = 0.1, 0.2, 0.3). Taken from [38].

Utot = Ucoul +Usr. (1.1)

The first term represents the long range Coulombic interaction

Ucoul(rij) = qiqj

4πǫ0

1

rij
(1.2)

with qi for the ion charge on species i and rij for the interatomic distance between ion

i and ion j. The second term Usr is the short-range interaction energy, which has both

repulsive and attractive components (see Fig. 1.11).The Buckingham potential model

has previously proved to be successful in modelling of various materials [39, 40] and was

chosen in this work:

Usr(rij) = Ae−rij/ρ −Cr−6ij (1.3)

where the A parameter can be approximated as a measure of a number of electrons

within the ion; ρ can be approximated as a measure of the electron density and C is

an approximate description of the polarisability of the ion [41]. However, sometimes a

simple two-body potential form is not enough to correctly model the studied system.

Thus, for example, when modelling the tetrahedral SiO4 coordination, the angular forces

are important and a simple harmonic function of bond angle [42] is often included in the

model:
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Figure 1.11: Interatomic potential energy of the pair of atoms resulting of repulsive and
attractive components.

U(θ) = 1

2
(θ − θ0)2, (1.4)

where θ0 is the nominal equilibrium angle (109.47○ for a tetrahedral coordination).

1.2.1.2 Polarizability

All the functions for potential energy described above assume that ions are rigid. This

means that the model does not allow for ionic polarisation in response to local electrical

fields. In our case, as we will see later, neglecting the strong polarisation effect of Te (IV)

electronic LP in tellurites would lead to failure in modelling of correct structure.

The simplest way to introduce the ion polarisation is the core-shell model, which was

presented for the first time by Dick and Overhause [43]. Its schematic representation

is reported in Fig. 1.12. In this model the atom is divided into a core and a shell,

where all the atom mass is assigned to the core and the massless shell models the atom

polarizability. The core and shell are Coulombicaly screened from each other, but coupled

by a harmonic spring of force constant kcs
2

, which has a potential form [44]:

Ucs =
1

2
kcs
2 x2 (1.5)

where x is the core-shell distance. If the shell charge is qs, then the polarisability of
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Figure 1.12: Schematic representation of core-shell model. The atom on the left is
polarised, i.e. its shell is shifted with respect to the core at distance x.

the ion in vacuum in harmonic approach is given by

α =
q2s
kcs
2

(1.6)

As J.D. Gale noted, it is impossible to distinguish from a phenomenological point of

view between on site ion polarisation and charge transfer between ions. This may explain

why the combination of formal charges with the shell model has been so successful for

modelling materials that are quite covalent, such as silica polymorphs.

By convention, the short-range forces are specified to act on the shell, while the

Coulomb potential acts on both the core and the shell, which is not the case in the

present work, as we will see later.

In some cases an anharmonic spring can be used, which is quartic in form:

Ucs =
1

2
kcs
2 x2 + 1

24
kcs
4 x4 (1.7)

One of the rare examples of using a higher-order constraining force on the core-shell

interaction is discussed in details in [45]. Wojcik et al. claim that many of the published

sets of shell model potentials for oxides exhibit an unphysical collapse when the anion-

cation pair is allowed to attain its minimum energy configuration. They discuss the effect

of adding a quartic term to the core-shell potential in the failed models and show that

it could be a remedy to the problem of the pathological shell model ions. But there is

no universal method because of the variety of effects on relative permittivities and elastic

constants.
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1.2.1.3 Transferability

In order to use all abilities of atomistic modelling with empirical IAP, the functions set

for interaction between atoms of certain type should be transferable. This means that

once the IAP is set for one system, we do not need to retune the model for each new

application.

For example, supposing that we want to perform a calculation of some crystalline

phase under pressure. If the model correctly reproduces the elastic constants, there is a

chance that the low-pressure results will be reasonable. But once the bond lengths have

changed appreciably, there is no guarantee at all that the model will match experiment

because the model has not been tuned to reproduce the energy function for these new

interatomic distances.

We can fall into the same trap in the case of tellurites but even at zero-pressure. As

was discussed above, the range of the interatomic distances in tellurites is very large for

different structures. The IAP model tuned for α−TeO2 (with Te–O bond lengths of 1.8795

Å and 2.121 Å) will not necessarily work for γ−TeO2 (with Te–O bond lengths of 1.859

Å – 2.197 Å) or for a mixed compound like Cs2TeO3 (with Te–O bond lengths of 1.846

Å[46]). This problem becomes even more evident in glasses, where Te atom can have

really diverse coordination.

In order to tackle this problem, we used two independent structural data values for α−
and γ−TeO2 polymorphs, which contain the bond lengths in the range 1.86–2.2 Å, and

performed simultaneous tuning of the model. In such a way, these two phases comprise

a large bond lengths range, which also includes the bond lengths in a majority of mixed

TeO2-based compounds.

1.2.1.4 Fitting of potential parameters

Empirical potential derivation consists in a least squares procedure, whereby the difference

between experimentally observed and calculated properties is minimised. The sum of

squares, F, is defined as follows:

F = ∑
all observables

w(fcalc − fobs)2 (1.8)

where fcalc and fobs are the calculated and observed quantities and w is a weighting

factor. In this work we used a Newton-Raphson functional minimisation approach option

in GULP software [47] to solve the least squares problem. We carried out empirical fitting

to the experimental structural data.

Almost all properties of the material can be used in the derivation process, including

elastic and dielectric constants, lattice energy and phonon data. However, it is often the
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case with empirical fitting that only the experimental crystal structural data is known.

To improve the reliability and transferability of IAPs we used the elastic constants

data as energy second derivative information. For α-TeO2 we used the experimental

elastic constants data [48] and for γ-TeO2 the calculated ones by ab initio [49] and

lattice dynamics [8] methods. For the other investigated TeO2-based compounds only

experimental structural data was considered.

1.2.1.5 Fit quality and stability of the system. Elastic constants criterion.

A fit is considered as "good" if it is able to reproduce the lattice parameters and

interatomic distances within a small error with respect to experimental values. In this

work we accepted an error of 5% and preferred, hence, the capability of IAPs to reproduce

the diverse tellurium(IV) environments rather than very precise cell parameters.

When fitting the potential parameters, one has to ensure the stability of the optimised

structure. We referred to two criteria of stability. Firstly, the calculated phonon

modes should be positive. The frequencies are obtained through calculating the second

derivatives of energy, which constitute the hessian matrix. The eigenvalues of this matrix

correspond to squared harmonic frequencies of normal vibrations. Hence, a negative

eigenvalue corresponds to an imaginary frequency. This means that corresponding normal

coordinate has a negative curvature and the system has not reached a minimum of the

potential energy.

The second criterion of stability is the elastic constants matrix. For a stable structure,

elastic constants should satisfy the well-known Born-Huang stability criteria [50], namely,

the energy density must be a positive definite quadratic form, so that the energy is

raised by any small strains. This leads to the requirement that all the eigenvalues of

elastic constant matrix should be positive. We report here the restrictions on the elastic

constants for crystal systems in special cases, which were used in this work (from [50] and

[51]).

Hexagonal crystals (C11, C33, C44, C12 and C13 independent constants)

C44 > 0, C11 > ∣C12∣, (1.9)

(C11 + 2C12)C33 > 2C2

13

Tetragonal crystals (C11, C33, C44, C66, C12 and C13 independent constants)
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C11 > 0, C33 > 0, C44 > 0, C66 > 0,
C11 −C12 > 0, C11 +C33 − 2C13 > 0, (1.10)

2(C11 +C12) +C33 + 4C13 > 0
Orthorhombic crystals (C11, C22, C33, C44, C55, C66, C12, C13 and C23

independent constants)

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,
C11 +C22 +C33 + 2(C12 +C13 +C23) > 0,

C11 +C22 − 2C12 > 0, (1.11)

C11 +C33 − 2C13 > 0,
C22 +C33 − 2C23 > 0

Monoclinic crystals (C11, C22, C33, C44, C55, C66, C12, C13, C23, C15, C25, C35

and C46 independent constants)

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0,
C11 +C22 +C33 + 2(C12 +C13 +C23) > 0,

C33C55 −C2

35 > 0, (1.12)

C44C66 −C2

46 > 0,
C22 +C33 − 2C23 > 0

1.2.2 Theoretical Background of Classical Molecular Dynamics

Method

Molecular dynamics simulation consists in the numerical, step-by-step, solution of the

classical Newtonian equations of motion. A general ’recipe’ of its performance is quite

simple: it suffices to define a starting configuration (i.e. atoms positions and velocities),

the interatomic interaction within the system, the working conditions (temperature,

pressure) and numerically solve the equations of motion. In this section we will briefly

review how to embody this simple idea in terms of computational methods and algorithms.

The more detailed discussion on MD theory can be found in the classic books of M.P. Allen

and D.J. Tildesley "Computer simulation of liquids" [52] and in "Molecular dynamics
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simulation" by J.M. Haile [53].

1.2.2.1 Equations of motion

The first MD simulation was accomplished for a system of hard spheres, by Alder and

Wainwright [54, 55]. In this case, the particles move at a constant velocity between

perfectly elastic collisions, and it is possible to solve the dynamic problem without making

any approximation. Several years later, a successful attempt was made to solve the

equations of motion for a realistic system, a set of Lennard-Jones particles [56]. Here, an

approximate, step-by-step procedure is needed, since the forces change continuously as

the particles move.

The classical Newtonian equations of motion can be written as

mi:ri = fi fi = − B

Bri
U, (1.13)

where the particles are consdered as point masses mi that interact via the interatomic

potential U . Thus we can calculate the forces fi and the accelerations for all the particles

in the system for each moment.

A standard method for solution of ordinary differential equations such as 1.13 is the

finite difference approach. The general idea is the following: given the molecular positions,

velocities, and other dynamics information at time t, we attempt to obtain the positions,

velocities etc. at a later time t + δt, to a sufficient degree of accuracy. The equations are

solved on a step-by-step basis. The time interval δt should be significantly smaller than

the typical time taken for a molecule to travel its own length [52]. Typical values of MD

timestep are of the order of 10−12 − 10−15 seconds.

1.2.2.2 Verlet algorithm

In this work we used DL_POLY software [57] to carry out MD simulations. It uses

the algorithms based on the Verlet scheme [58] to numerically integrate the equations of

motion. This algorithm generates trajectories in the micro canonical (NVE) ensemble in

which the total energy (kinetic plus potential energy) is conserved. We used the leapfrog

(LF) algorithm version.

The LF algorithm requires the knowledge of position (r) and force (f) at a time t while

the velocities (v) are half a timestep behind. The first step is to calculate the velocities

at t + (1/2)δt by integrating of the force:

v(t + 1

2
δt) ←Ð v(t − 1

2
δt) + δtf(t)

m
(1.14)

where m is the mass of a site.
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The positions are then calculated using the new velocities:

r(t + δt) ←Ð r(t) + δtv(t + 1

2
δt) (1.15)

1.2.2.3 Core-shell model treatment

The IAPs derived in this work include the core-shell model [43] for both Te and O atoms.

This model requires a special treatment in MD simulations, as the shells are supposed

to be massless point charges that makes solving of the equations of motion impossible.

Two methods of incorporating atom polarisability into MD simulation are included in

DL_POLY Classic software [57]. The first one is the devised by Fincham et al. [59]

and known as the adiabatic shell model. In this method a fraction of the atomic mass is

assigned to the shell in order to permit a dynamical description. The fraction of the mass

is chosen in a manner to ensure that the natural frequency of vibration ν of the harmonic

spring (i.e.

ν =
1

2π
[ kcs

2

x(1 − x)m]
1/2

, (1.16)

where m and kcs
2

are the atomic mass and the harmonic spring constant (see 1.2.1.2)),

is well above the frequency of vibration of the whole atom in the system. From the

dynamical point of view, the core-shell unit resembles a diatomic molecule with harmonic

bond. However, the high vibration frequency of the bond prevents effective exchange

of the kinetic energy between the core-shell unit and the remaining system [57]. Such

implementation of a core-shell model doubles the number of the particles in the system

and correspondingly increases the computation time.

The second method is the relaxed shell model described by Lindan and Gillan in

[60]. It is based on the same electrostatic principles as described in 1.2.1.2 and the shell

is assigned a zero mass. This means that the shell cannot be driven dynamically and

instead, firstly, we relax it to a condition of zero (or at least negligible) force at the start

of the integration of the atomic motion and then we integrate the motion of the finite

mass core by conventional molecular dynamics. Since each timestep of the algorithm

entails a minimisation operation, the cost per timestep becomes considerably more than

for rigid-ion MD simulation.

1.2.2.4 Thermostats

The discussion above concerned the ’typical’ MD simulations with constant particles

number, system volume and total energy, i.e. the NVE or ’microcanonical’ ensemble.

In many practical cases we might wish to keep other quantities constant, for example,

temperature or/and pressure. In those cases the MD system must be coupled to
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a thermostat or/and barostat to ensure that the average system temperature or/and

pressure is/are maintained close to the requested ones.

There are several ways to perform the MD simulations in other than microcanonical

ensemble (Langevin [61], Andersen [62], Evans (Gaussian constraints)[63], Berendsen

[64], Nosé-Hoover [65] thermostats). The most used are the Berendsen and Nosé-Hoover

algorithms. We will briefly discuss here Berendsen thermostat and barostat used in this

work. More detailed information on realisation of different algorithms can be found in

the literature (for example, in [52, 57, 66]).

In Berendsen thermostat the system is coupled to an external heat bath with fixed

temperature T0. The velocities are scaled at each step, such that the rate of temperature

change is proportional to the difference in temperature:

dT (t)
dt
= 1

τ
(T0 − T (t)) (1.17)

where τ is the coupling parameter, which determines how tightly the bath and the

system are coupled together. The change in temperature between successive time steps

is:

∆T = δt

τ
(T0 − T (t)). (1.18)

Thus, the scaling factor for the velocities is

λ =√T0/T (t) = 1 + δt

τ
{ T0

T (t − δt
2
) − 1}. (1.19)

Similar to the temperature coupling, in Berendsen barostat an extra term is added to

the equations of motion that effects the pressure change

(dp
dt
) = p − p0

τp
(1.20)

where τp is the time constant of coupling. A simple proportional coordinate scaling

accompanies volume scaling and minimises local disturbances. An extra term is added to

the equations of motion:

9r = v + αr, (1.21)

while the volume changes accordingly:

9V = 3αV. (1.22)

The pressure change is related to isothermal compressibility β
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dp

dt
= − 1

βV

dV

dt
= −3α

β
. (1.23)

With Eq. 1.20 α evaluates to

α = −β(p0 − p)
3τp

. (1.24)

Thus the modified equation of motion is

9r = v − β(p0 − p)
3τp

r (1.25)

and represents a proportional scaling of coordinates.

1.2.2.5 Periodic boundary conditions (PBC)

Computer simulations are usually performed on a small number of molecules, 10 ≤ N ≤
10 000. Although, nowadays the computational facilities increase from year to year

owing to new powerful supercomputers and new fast algorithms and the size of simulated

systems can achieve 10 million-atom size [67], the majority of the studied systems remains

relatively small. Small system size leads to significant influence of the surface effects. For

1000 atoms arranged in a 10×10×10 cube, no less than 488 atoms appear on the cube

faces, so that atoms on the surface will experience quite different forces from atoms in the

bulk. The problem of surface effects can be overcome by implementing periodic boundary

conditions [68]. The cubic (or rectangular) box is replicated through space to form an

infinite lattice. In the course of the simulation, as an atom moves in the original box, its

periodic image in each of the neighbouring boxes moves in exactly the same way. Thus,

as an atom leaves the central box, one of its images will enter through the opposite face

[52].

In this work the size of the box was chosen in order to model the glass up to "medium"

limit distances where the atoms positions are no more correlated. In our case, this value

was set to 12 Å. This means that simulation box should have the L/2 > 12 Å (where L –

the side of the simulation box), which results in system with > 850 particles (1700 working

with core-shell model) considering the atomic density of about 0.06 atoms/Å3.
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1.3 Experimental Approach

1.3.1 Conventional X-ray powder diffraction characterisation

The phase identification for the synthesised TeO2 polymorphs was made with the help

of X-ray powder diffraction (XRD). This is a well-known technique and the general

presentation of the method and its theoretical background could be found elsewhere (for

example, in the book of B.E. Warren, X-ray diffraction [69]). We just recall here that

the principle of powder diffraction consists in irradiating a polycrystalline sample with

a (quasi)monochromatic X-ray beam and measuring the scattered intensities on a large

(2θ) angular domain. The diffraction peaks and the background constitute the diffraction

diagram, the former serve as the characteristics of the compound structure (metrics and

symmetry of crystalline lattice, nature and positions of atoms in the cell).

In this work we used a Brucker D8 Advance diffractometer with Bragg-Brentano θ−2θ
geometry equipped with X-ray tube with copper anode and a Guinier/Johansson type

germanium monochromator cut along the planes (111). This monochromator allows one

to work with the monochromatic Kα1
(1.5406 Å) copper radiation. The set-up is also

equipped with a furnace that allows performing measurements at various temperatures.

The resolution and refinement of a structure were performed using the Rietveld [70]

method. The position, height and width of the reflections in the diffraction pattern are

used to determine the crystalline lattice metric and atomic positions. This method is well-

known and its detailed description could be found in The Rietveld Method by R. A. Young

[71]. The refinement reported in this work was made with Jana2006 [72] and Fullprof [73]

softwares. The adjusted parameters were: the cell parameters, atomic positions, atomic

displacement parameters, background and peak profile parameters.

1.3.2 X-ray total scattering

The X-ray total scattering technique is routinely used for 7 years at the SPCTS laboratory.

The theoretical background and set-up have already been discussed in previous SPCTS

PhD thesis [74, 75, 76]. We recall below the main points.

Conventional X-ray diffraction methods (or neutron diffraction) focus mainly on

precise measurement of the positions and the intensities of Bragg peaks and, hence, on

the average structure only. (The peak position depends on the crystalline lattice metric,

whereas the intensities provide the information about the averaged atoms positions in the

cell.) No attention is paid on the background. Nevertheless, the background contains the

diffuse scattering signal coming from the sample. This signal contains information about

the deviation of the real structure with respect to the average structure and provides some

interesting structural information, namely about the nature of the structural disorder
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[77, 69, 78]. The total X-ray scattering principle consists in measuring whole scattered

signal, i.e. the Bragg peaks and the diffuse scattering. These measurements allow us to

obtain the PDF of the studied material.

For the long time this technique was the way to obtain structural information in glasses

and liquids. In the 1980s, it was applied to the crystalline solids [77]. This evolution was

favoured by availability of the sources of the intense synchrotron radiation with the short

wavelength which allowed us to obtain the good quality PDFs, and by improving of the

structure simulation methods, which permit to analyse these functions. The complete

review of the total scattering is given in the book of Egami and Billinge, Underneath

the Bragg peaks: structural analysis of complex materials [77]. We will precise here the

theoretical background of X-ray total scattering emphasising the quantities that we can

obtain with this technique. Then we will present the manner, in which we obtained the

PDFs at SPCTS for the samples synthesised in Chapter 2.

1.3.2.1 Theoretical background

1.3.2.1.1 Bragg scattering and diffuse scattering In the total scattering

experiment we measure the elastic scattering differential cross-section dσ
dΩ

of the sample

in the directions of the scattering vector Q⃗. This cross-section represents the number

of elastically scattered photons per time per solid angle dΩ. The vector Q⃗ is defined as

Q⃗ = k⃗final − k⃗initial, where k⃗initial and k⃗final represent the wave vectors of incident and

scattered waves (Fig. 1.13).
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Figure 1.13: Quantities used in description of X-ray diffusion phenomenon.

The norm of this vector is equal to 4πsinθ
λ

, where λ is the wavelength of the incident

radiation and θ is the half of the scattering angle 2θ. The expression 1.26 gives the

amplitude of the wave scattered in the direction Q⃗, where N represents the number of

atoms in the sample, fj is the scattering factor of an atom j and r⃗j is the position vector

of this atom.
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A(Q⃗) = N

∑
j=1

fje
iQ⃗r⃗j (1.26)

The elastic scattering differential cross-section measured in the direction Q⃗ is given by

the square of the scattered amplitude [79, 80]:

dσ

dΩ
= I(Q⃗) = ⟨A(Q⃗)A∗(Q⃗)⟩ = N

∑
j=1

N

∑
k=1

fjf
∗
k ⟨eiQ⃗(r⃗j−r⃗k)⟩ (1.27)

As it can be seen, the intensity provides information on the interatomic vectors r⃗j − r⃗k.
As the averaged crystalline structure could be defined and as we consider only

displacement disorder, we can decompose the vector position of an atom j as follows:

r⃗j = R⃗j + δ⃗j, (1.28)

where R⃗ represents the average position of atom j in the structure (the ideal position)

and δ⃗j is the displacement with respect to this average position. Substituting this to

expression 1.27 gives:

I(Q⃗) = ∑
j

∑
k

fjf
∗
k e

iQ⃗(R⃗j−R⃗k)⟨eiQ⃗(δ⃗j−δ⃗k)⟩ (1.29)

Given uj the projection of the vector δ⃗j on the scattering vector, this expression

becomes:

I(Q⃗) = ∑
j

∑
k

fjf
∗
k e

iQ⃗(R⃗j−R⃗k)⟨eiQ(uj−uk)⟩. (1.30)

It could be written in the form:

I(Q⃗) = IB(Q⃗) + ID(Q⃗), (1.31)

where IB(Q⃗) and ID(Q⃗) represent Bragg scattering and diffuse scattering respectively

and given as:

IB(Q⃗) = ∑
j

∑
k

fjf
∗
k e

iQ⃗(R⃗j−R⃗k)⟨eiQuj⟩⟨e−iQuk⟩ (1.32)

ID(Q⃗) = ∑
j

∑
k

fjf
∗
k e

iQ⃗(R⃗j−R⃗k)(⟨eiQ(uj−uk)⟩ − ⟨eiQuj⟩⟨e−iQuk⟩). (1.33)

The second term in the equation 1.31 gives the continuous distribution of the intensity

scattered by the reciprocal lattice; it corresponds to diffuse scattering. It can be divided

into two terms (j = k and j ≠ k):

Page 44



Chapter 1 : Presentation of the investigated materials and structural characterisation
methods

ID(Q⃗) = ∑
j

∣fj ∣2(1 − ⟨eiQuj⟩⟨e−iQuk⟩)
+∑

j

∑
k≠j

fjf
∗
k e

iQ⃗(R⃗j−R⃗k)(⟨eiQ(uj−uk)⟩ − ⟨eiQuj⟩⟨e−iQuk⟩) (1.34)

The first term of this new equation yields to the increase of diffuse scattering with

Q. It depends on the atomic displacement factor that means that the intensity lost

in the Bragg peaks is found in this term. It converges to ∑j ∣fj ∣2 at large Q values

(while the Bragg peaks disappear). The second term, that contains information about

the correlations of displacements (through the term eiQ(uj−uk)), yields to the modulations

of the diffuse scattering. It turns into zero when the displacements are not correlated

(since ⟨eiQ(uj−uk)⟩ = ⟨eiQuj⟩⟨e−iQuk⟩).
It is easily clear now, why it is important to measure the ensemble of scattered signal

and not only Bragg scattering, loosing a part of the information about structural disorder

present in the sample.

1.3.2.1.2 Pair distribution functions In the case of homogeneous samples, as it is

the case on this work, the scattering signal depends only on the modulus of Q⃗ but not on

its direction.

Thus, the relation 1.29 for the intensity could be given in the form (Debye formulae):

I(Q) = ∑
j

∑
k

fjf
∗
k

sin(Qrjk)
Qrjk

(1.35)

which, in turn, can be expressed with respect to the pair distribution function G(r)
of the material with the use of sine Fourier transform:

Q(S(Q) − 1) = ∫ ∞

0

4πrρ0(G(r) − 1)sin(Qr)dr (1.36)

where ρ0 represents the atomic density (in atom/Å3) and S(Q) the structure factor

or structure function defined as:

S(Q) − 1 = I(Q) −∑j ∣fj ∣2∣∑j f
2

j ∣ = I(Q)/N − ⟨∣f ∣2⟩∣⟨f⟩∣2 (1.37)

We shall note that S(Q) should not be confused with the crystallographic structure

factor Fhkl(Q), which represents the amplitude scattered by the crystalline unit cell.

The pair distribution function is obtained experimentally by truncated sine Fourier

transform of the structure factor (measured by total scattering):

4πrρ0(G(r) − 1) = 2

π
∫

Qmax

0

Q(S(Q) − 1)sin(Qr)dQ, (1.38)
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where Qmax is maximum experimentally reachable magnitude value of the scattering value.

The pair distribution function G(r) represents the probability to find in the structure

a pair of atoms separated by a distance r. It is one-dimensional function, which presents

the peaks at the values of r corresponding to interatomic distances. Fig. 1.14 illustrates

the construction of such a function, each atom is taken as an origin and the average is

over the ensemble of the atoms in the sample.

)(rG

dr

r

r

1

c
r

Figure 1.14: Scheme representing the construction of the pair distribution function G(r).

Let us note, that for the distances smaller than rc the function is equal to zero. This

distance characterises the shortest interatomic distances present in the structure. We

can also point out that G(r) converges to 1 (oscillating around this value) for great r

values. Thus, each peak of the PDF is directly associated with pairs of atoms present in

the material, and peak area is proportional to the probability of the presence of the pair.

The PDF is very intuitive and permits simple description of the short- and medium-range

order in studied material.

In this work we will also use the reduced form of the PDF denoted g(r) and defined

as:

g(r) = 4πrρ0(G(r) − 1). (1.39)

This function is zero at r = 0, then it follows negative slope until r = rc, and oscillates

around 0 when r →∞. The main advantage of this function is a nice development of the

correlation peaks at intermediate distances.

1.3.2.1.3 Multi-component systems In the case when the system under study (like

in this work) is composed of more than one kind of atom, the structure factor and the
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pair distribution function appear as the function of partial quantities Sαβ(Q) and Gαβ(r),
which represent the partial structure factor and partial PDF for the pairs of atoms of type

α and β respectively. The relation between the structure factor and the partial functions

is as follows:

S(Q) = n

∑
α=1

n

∑
β=1

γαβSαβ(Q) (1.40)

with γαβ Faber-Ziman coefficients, defined as:

γαβ(Q) = cαcβfαf
∗
β∣⟨f⟩∣2 (1.41)

where cα and cβ represent the atomic concentrations of species α and β and fα and

f∗β their corresponding atomic scattering factors.

In the same manner, we can express the total pair distribution function as a function

of the partial pair distribution functions:

g(r) ≈ n

∑
α=1

n

∑
β=1

γαβ[gαβ(r) − 1]. (1.42)

Meanwhile, the last equation is only an approximation (Warren, Krutter and

Morningstar (WKM) approximation), which considers the Faber-Ziman factors as

constant. The exact expression was recently obtained in [81]. The functions g(r) and

gαβ(r) are constructed in the similar way, in particular they tend to 0 at large distances.

We can also note that the partial functions depend only on the atomic structure of

the material, whereas the function g(r) besides this depends on experimental technique

because of the presence of γαβ.

1.3.2.2 Presentation of the experimental set-up, acquisition and data

treatment

The diffractometer used in this work was developed 7 years ago in the SPCTS laboratory

in collaboration with Pierre Lecante from CEMES in Toulouse. The detailed description

is given in the thesis of Richard Mayet [75]. It consists of the following elements (Fig.

1.15): a molybdenum sealed X-ray tube (1); a graphite monochromator (2) cut along the

planes (002) that permits the selection of the molybdenum doublet (Kα1
,Kα2

) wavelength

(λKα1
= 0.7093); a goniometric head (3), which supports the capillary containing the

powder and which should be adjusted in such a way that the axis of the capillary coincide

with the rotational axis of the goniometer; two collimators comprised of the splits of 1

and 2 mm (the front collimator (4) permits to define a quasi-parallel incident beam, while

the back collimator (5) defines the direction of 2θ); a scintillation detector (6) permits to
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count the photons scattered by the sample.

Figure 1.15: Diffractometer set up used in X-ray total scattering.

To limit the absorption of the incident X-ray beam by the sample and, hence, to

minimise the absorption corrections, it is necessary to determine the linear attenuation

coefficients µ for each component and to foresee an adequate capillary diameter. To this

end, we calculate the mass attenuation coefficient µ/ρ for each studied compound following

the equation 1.43. Xi represents the mass fraction and (µ/ρ)i the mass attenuation

coefficient of each element i. The latter could be easily found in the international tables

for crystallography. The density ρ is calculated considering that the compactness of the

powder inside the capillary is about 40 %.

(µ
ρ
)
total
= ∑

i

Xi(µ
ρ
)
i

(1.43)

Thus, one needs to define the radius of the capillary, r, so that µr ≈ 1. However,

generally it is difficult to get the capillary of exactly obtained value, so we chose a greater

diameter than calculated one in oder to avoid the difficulties when filling the capillary,

which can lead to decrease of the local compactness. In this work we used the capillaries

with the diameter 0.3 mm for δ− and γ−TeO2 samples.

Filled capillary is put on the goniometric head and adjusted in such a way to remain

fixed in the centre of the incident beam during its rotation. For this purpose we adjust

the angles and the translations of the goniometric head with the help of a microscope.

The acquisition of the diagrams is carried out then directly to a computer connected with
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the diffractometer using the XTSScan software developed in the laboratory [82]. The

scattered by the sample intensity is collected by the detector mounted on the 2θ holder.

The acquisition parameters are as follows:

• Qmin = 0 Å−1 (or 2θ = 0○)

• Qmax = 17 Å−1 (or 2θ ≈ 147.29○)
• step ∆Q = 0.02 AA−1

• pause time t = 240 s

For each sample we carried out several measurements to improve the count statistics,

in particular for the large angles. To obtain the structure factor, it is necessary to

perform a certain number of corrections for the raw data, in particular to eliminate the

signals, which were not scattered by the sample and to keep only the elastic scattering,

I(Q). The different corrections are estimated either with calculations or with additional

measurements. We will briefly recall the correction type to be carried out here. The

scattered intensity measured experimentally from the sample, Isample, is related to I(Q)
by:

I(Q) = 1

P (Q) 1

A(Q)[Isample(Q) −αA′(Q)IF luo −Y (Q)A′′(Q)IComp(Q) − IMul(Q)], (1.44)

where

• P (Q) is the polarisation factor,

• A(Q), the absorption factor of the sample for the incident radiation of the

wavelength λ,

• IF luo, the fluorescent radiation intensity,

• A′(Q), the absorption factor of the sample for the incident radiation of the

wavelength λ′(λ′ > λ),
• α, the fraction of the fluorescent radiation intensity effectively measured by the

detector,

• IComp(Q), the Compton scattering intensity,

• A′(Q), the absorption factor of the sample for the Compton scattering of the

wavelength λ′′(λ′′ > λ),
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• Y (Q), the fraction of the Compton scattering intensity effectively measured by the

detector,

• IMul(Q), the intensity resulting from the multiple scattering in the sample.

The total intensity scattered by the sample Isample(Q) is obtained from the

experimentally measured intensity Iexp with the following expression:

Isample(Q) = Iexp − β(Q)IEV (Q) −AC,CE(Q)IC(Q), (1.45)

where

• IEV (Q is the scattering from empty environment (no sample),

• β(Q), scattering measured in the presence of the sample,

• IC(Q), the scattering from the capillary only,

• AC,CE(Q), the absorption of scattering by the capillary with the sample.

The procedures for corrections, normalisation and obtaining the pair distribution

function concerning the X-ray total scattering are performed using a home-made program

[83] and are not given here.

1.3.3 Raman scattering

Raman spectroscopy is a spectroscopic technique used to observe vibrational, rotational,

and other low-frequency modes in a system. The principle of the Raman spectroscopy

is based on the Raman scattering phenomenon discovered by C. V. Raman and K. S.

Krishnan in liquids [84] and by G. Landsberg and L. I. Mandelstam in crystals [85] in

1928. The effect had been predicted theoretically by Adolf Smekal in 1923 [86]. When the

laser beam interacts with a material, it will scatter the part of the incident light. Most

photons are elastically scattered (Rayleigh scattering), such that the scattered photons

have the same energy (frequency and wavelength) as the incident photons. However, a

small fraction of the scattered photons are scattered by an excitation, with the scattered

photons having a frequency different from, and usually lower than, that of the incident

photons. This excitations (also called phonons) are the vibrational modes of the system.

Hence, with Raman scattering we can determine the vibrational modes of a material by

measuring the difference in energy between the excitation and scattered photons. But not

all the vibration modes are Raman-active. They will be Raman-active only if they obey

the selection rules [87].
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In our study we used the Jobin-Yvon 6400 spectrometer facility supplied with a CCD

camera and an ionised argon excitation source of 514.532 nm wavelength. As our samples

are metastable, in order to avoid their decomposition under laser exposure, we set the

following parameters: a weak laser power of 300 mW, a yellow filter D1 and a short

acquisition time of 10 s. The Raman spectra were registered between 10 and 1000 cm−1

through a microscope (x50). The diameter of a laser spot is about 1 µm. The evolution

with temperature of the samples was studied with the a furnace LINKAM THS600.

1.3.4 Differential scanning calorimetry

The differential calorimetry analysis measures the difference in the heat flux between the

sample and the reference (that could be air, for example) during the temperature cycle.

It permits to determine the glass transition temperature (Tg), melting temperature (Tm),

crystallisation temperature (Tc) and the reaction enthalpies.

The powdered samples (≈ 15–20 mg) were introduced into covered aluminium crucibles

and the DSC curves were recorded between 40 and 600 ○C using a heating rate of

10 ○C/min. In order to avoid the reaction of the studied material with the furnace

atmosphere, the analysis were held under inert gas (nitrogen with the flux of 50 ml/min).

We considered the glass transition temperature as the inflection point of the steep change

of the calorimetric signal associated with this transition. The crystallisation temperature

was taken as the intersection of the slope of the exothermic peak with the baseline.
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Synthesis of δ− and γ−TeO2 polymorphs

The metastable δ− and γ−TeO2 polymorphs are very interesting from a structural point

of view. However, they are both very difficult to synthesise as pure as possible, i.e.

without any secondary phases, as was discussed in Chapter 1. In this chapter, we aim

to present our work about the optimisation of the synthesis parameters for such samples

by crystallising the modified TeO2 glassy systems. For each chosen system we studied

the phase evolution using temperature in situ X-ray diffraction and Raman spectroscopy

and then we discuss the conditions of preparation of pure δ−TeO2 and γ−TeO2 crystalline

polymorphs and their Raman spectroscopic and thermal analysis. The δ−TeO2 structure

will be further studied in Chapter 4.

2.1 Previous studies on δ− and γ−TeO2 synthesis

The choice of the compositions was based on previous studies of our group in the SPCTS

laboratory. It was shown [9, 14, 10, 11, 12, 88] that δ− and γ−TeO2 polymorphs can be

obtained from the modified TeO2 glassy systems like TeO2–WO3, TeO2–Nb2O5 and TeO2–

PbO. Namely, in TeO2–WO3 system γ−TeO2 crystallises from the glasses with 5–20 molar

% of WO3 in 325–475 ℃ range, according to the diagram of evolution with composition

of Tg and Tc from [9] (Fig. 2.1). δ−TeO2 crystallises in more narrow range: 5–15 molar %

of WO3 and 325–425 ℃ range. In all cases γ−TeO2 and δ−TeO2 polymorphs appear with

a small quantity of α−TeO2 polymorph, which increases when Tc augments.

These polymorphs also appear within the TeO2–Nb2O5 system [14]. Blanchandin et

al. studied the equilibrium and non-equilibrium phase diagrams and showed that γ−TeO2

forms within the 2.5–25 molar % range and in 390–540 ℃ temperature range (Fig. 2.2).

Similarly to the WO3-modified system, the δ−TeO2 forms in a more narrow region: 2.5–

12.5 molar % and 390–430 ℃.

For the TeO2–PbO system, γ−TeO2 and δ−TeO2 crystallise in the ranges close to those
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Figure 2.1: Evolution with composition of the glass transition temperature Tg (∗), of the
various crystallisation temperatures Tc (l: γ− and α−TeO2; Ĳ: δ−TeO2, ●: WO3) and of
mono tropic transition temperatures (△: δ → α, ○: γ → α) of the TeO2–WO3 glasses.

Figure 2.2: Evolution with composition of the glass transition temperature Tg (×), of
the various crystallisation temperatures Tc (∎: δ−TeO2; ∗: γ−TeO2; ●: α−TeO2, ◆:
Nb2Te4O13) and of polymorphic transformation Tt (▲: γ → α) temperatures of the TeO2–
NbO2.5 glasses.
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of the TeO2–Nb2O5 system. Fig. 2.3 reports the evolution of Tg and Tc of the TeO2–PbO

glasses with composition [88].

Figure 2.3: Evolution with composition of the glass transition temperature Tg (●), of the
various crystallisation temperatures Tc (∎: δ−TeO2 and γ−TeO2; ▲: α−TeO2 or mixture
of PbTe5O11 and Pb2Te3O8 according to the initial composition of the sample) of the
TeO2–PbO glasses.

We aimed to define the optimal conditions for crystallisation of γ−TeO2 and δ−TeO2

polymorphs with the minimum content of α−TeO2 polymorph. To this end we intended

to minimise the modifiers percentage (but at the same time to add enough modifier

to improve the glass stability) for the four following systems: 92.5%TeO2 + 7.5%WO3

(δ−TeO2 exists in a too narrow temperature range for the system with 5%WO3), 90%TeO2

+ 10%WO3, 95%TeO2 + 5%NbO2.5, and 95%TeO2 + 5%PbO.
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2.2 Preliminary temperature in situ X-Ray

diffraction and Raman spectroscopy studies of

the crystallisation of δ− and γ−TeO2 from glasses.

We used the commercial materials for all modifiers : WO3 (Alfa Aesar 99.8%), Nb2O5

(Sigma-Aldrich 99.9%) and PbO (Aldrich 99.9%). TeO2 was prepared from thermal

decomposition of orthotelluric acid H6TeO6 (Aldrich 99.9%) at 550 ℃ for 12h following

the chemical reaction:

H6TeO6 Ð→ TeO2 + 3H2O + 1/2O2.

The as-obtained tellurium dioxide corresponds to α−TeO2 polymorph.

The powders were milled during 20–30 minutes in an agate mortar in proportions

that correspond to the chosen compositions. Then, the samples were melted in platinum

crucibles during half an hour at 800 ℃ and quenched using the method proposed by

Kim et al. [89]. In this method, the bottom of platinum crucible was quickly dipped in

a freezing mixture (at temperature of about −10○C) which consists of ice, ethanol and

NaCl. Each obtained glassy sample was checked by XRD and Raman spectroscopy for

the absence of the crystallised phases.

Further we performed in situ X-Ray diffraction and Raman spectroscopy

measurements in order to precisely define the crystallisation temperatures for TeO2

polymorphs. In both experiments the furnace was heated at 10 ℃/min to the required

temperature. We waited 5 minutes before each acquisition in order to stabilise the

temperature within the whole sample. The acquisition time of one Raman spectrum

was set to 60 seconds in order to avoid a long term laser exposure on the sample. The

X-ray diffraction acquisition required about 55 minutes for the chosen 2θ range.

For Raman spectroscopy measurements the acquisitions were made in three different

sample points in order to ensure of the sample homogeneity. After the measurements

the data were normalised, averaged for each temperature and corrected for Bose-Einstein

factor.
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2.2.1 The 92.5%TeO2 + 7.5%WO3 system

The in situ X-Ray diffraction with temperature shows, that three TeO2 polymorphs

crystallise from the TeO2-glass with 7.5 mol % of WO3. Firstly, we observe (Fig. 2.4) that

α−TeO2 begin to crystallise already at 320 ℃ when the most part of the sample is still

in a glassy state. Then δ−TeO2 polymorph appears in a very narrow temperature region

of 340-350 ℃. It is well crystallised and has narrow and intense diffraction peaks. The

enlarged part of the XRD pattern in the insert demonstrates the weak peaks of secondary

α−TeO2 phase. The intensity of these peaks remains constant until approximately 410

℃.

As the sample is heated up to 360 ℃, we observe how δ−TeO2 polymorph transforms

to γ−TeO2 polymorph. These phases co-exist at 360-370 ℃ and starting from 380 ℃ we

only have a well crystallised γ−TeO2 polymorph (accompanied by small quantity of α

phase). The quantity of α−TeO2 polymorph in the sample starts to increase from 420 ℃

and at 450 ℃ γ−TeO2 polymorph has completely disappeared.
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Figure 2.4: XRD powder patterns at various temperatures for a TeO2 glassy sample
containing 7.5WO3 mol % (●: δ−TeO2, ▼: γ−TeO2, ∎: α−TeO2).

The crystallisation of 92.5%TeO2 + 7.5%WO3 glassy sample evolves in the same

manner according to the in situ Raman spectroscopy with temperature (see Fig. 2.5), but
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with a certain shift in crystallisation temperature values. This difference appears for all

studied samples and is due to different acquisition conditions (60 seconds acquisition

for Raman spectroscopy and 55 minutes for XRD) and, hence, to kinetic effect of

crystallisation.

According to the Raman spectroscopy analysis, the 92.5%TeO2 + 7.5%WO3 sample

stays in glassy state under 370℃ and crystallises directly to γ−TeO2 polymorph (with

secondary α−TeO2 phase) at 380℃. We cannot observe δ−TeO2 crystallisation, as its

Raman spectrum is hardly distinguishable from the one of a glassy sample (see the Raman

spectrum of δ−TeO2 in Fig. 2.16). The sample fully transforms to α−TeO2 at 500℃.
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Figure 2.5: Raman spectra of the 92.5%TeO2 + 7.5%WO3 system at various temperatures
and reference spectra of α−TeO2 and γ−TeO2.
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2.2.2 The 90%TeO2 + 10%WO3 system

Temperature in situ X-Ray diffraction results for the 90%TeO2 + 10%WO3 system are

reported in Fig. 2.6. Here γ−TeO2 starts to crystallise at 320 ℃ and at 340 ℃ appears well

crystallised accompanying by secondary α−TeO2 phase (as shown in the enlarged insert).

Contrary to 92.5%TeO2 + 7.5%WO3 system, the transition glass Ð→ γ−TeO2 happens

directly, without δ−TeO2 crystallisation. The quantity of α−TeO2 starts to increase earlier

(at 380 ℃) in the system with larger amount of WO3 modifier. However, the temperature

of complete transformation to α−TeO2 stays the same as in previous system, i.e. 450 ℃.

As in previous system, in situ Raman spectroscopy with temperature shows the same

sequence of polymorphs crystallisation, but the crystallisation temperatures are ≈40℃
higher than those defined by X-ray diffraction (see Fig. 2.7). That way, γ−polymorph

appears at 380℃ together with secondary α−polymorph and fully transforms into it at

500℃.
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Figure 2.6: XRD powder patterns at various temperatures for a TeO2 glassy sample
containing 10WO3 mol % (▼: γ−TeO2, ∎: α−TeO2).
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Figure 2.7: Raman spectra of the 90%TeO2 + 10%WO3 system at various temperatures
and reference spectra of α−TeO2 and γ−TeO2.
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2.2.3 The 95%TeO2 + 5%NbO2.5 system

For the TeO2-glassed modified with 5 molar % of Nb2O5 the behaviour with temperature

surprisingly differs from the results reported in [14]. X-ray diffraction shows (Fig. 2.8)

that δ−TeO2 crystallises in very narrow temperature range 320–340 ℃ and then it

fully transforms into α−TeO2 already at 350 ℃. As in both previous systems, δ−TeO2

crystallises simultaneously with α−TeO2 as secondary phase from the very beginning (as

shown in the enlarged insert).

Similarly to the other systems, for the 95%TeO2 + 5%NbO2.5 system we cannot

observe the crystallisation of δ−TeO2 by Raman spectroscopy, as its spectrum resembles

the spectrum of the glass (Fig. 2.16), so that we observe only α−TeO2 crystallisation at

370℃ (Fig. 2.9).
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Figure 2.8: XRD powder patterns at various temperatures for a TeO2 glassy sample
containing 5NbO2.5 mol % (●: δ−TeO2, ∎: α−TeO2).
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Figure 2.9: Raman spectra of the 95%TeO2 + 5%NbO2.5 system at various temperatures
and reference spectra of α−TeO2 and γ−TeO2.
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2.2.4 The 95%TeO2 + 5%PbO system

The studies for TeO2-glass modified with 5 molar % of lead oxide show that γ−polymorph

crystallises in a wide temperature range 280–400 ℃ (Fig. 2.10) and is always accompanied

with small quantity of secondary α−polymorph (see the enlarged insert). The peaks of

the latter phase are well remarkable only at 270 ℃. The quantity of α−TeO2 start to

increase at 410 ℃ so that at 450 ℃ the α−TeO2 phase predominates in the crystallised

sample (410–440 ℃ range is not shown in Fig. 2.10).

Raman spectroscopy confirms once again these results and shows that γ−TeO2

crystallises starting from 300℃ and completely transforms into α−TeO2 at 460℃ (Fig.

2.11).
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Figure 2.10: XRD powder patterns at various temperatures for a TeO2 glassy sample
containing 5PbO mol % (▼: γ−TeO2, ∎: α−TeO2).
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Figure 2.11: Raman spectra of the 95%TeO2 + 5%PbO system at various temperatures
and reference spectra of α−TeO2 and γ−TeO2.
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2.2.5 Discussion

We performed X-ray diffraction and Raman spectroscopy analysis of the glassy samples

in order to define the optimal composition and conditions for crystallisation of γ− and

δ−TeO2 polymorphs. In all the studied cases, the secondary α−TeO2 polymorph always

appears simultaneously with desired γ− or δ−polymorph.

We would like to recall from [9] that crystallisation from pure TeO2-glass is extremely

difficult for γ−TeO2 polymorph and unsuccessful for δ−TeO2 polymorph. This implies

that generally pure TeO2 glass tends to crystallise directly into α−TeO2. Whereas small

quantities of modifiers oxides stabilise the pure TeO2-glass and somehow help to form γ−
and δ−TeO2 polymorphs.

These peculiarities of TeO2-glasses behaviour allow us to suppose, that our

unsuccessful attempts to obtain completely pure γ− or δ−TeO2 polymorphs rise from

inhomogeneities of the glassy samples. In other words, some parts of our sample, which

are well mixed with a modifier, crystallise to γ− or δ−TeO2, while other parts (pure TeO2-

glass) directly give α−TeO2 polymorph at the same time. We will develop this hypothesis

in the next section consecrated to the δ−TeO2 polymorph synthesis.
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2.3 δ−TeO2 synthesis

As we have shown in the previous section, the 95%TeO2 + 5%NbO2.5 composition provide

the widest temperature range of crystallisation for δ−TeO2 polymorph and the lowest

percentage of a modifier contest. Thus, we chose this composition for δ−TeO2 synthesis.

Firstly, the glassy sample called here and after Glass_1D (about 0.5 g) was put in platinum

crucible into tubular furnace for 1 hour at 340 ℃. The heating rate of the furnace was

set to 2 ℃/min. The X-ray diffraction pattern for the obtained sample is reported in Fig.

2.12. We can see, that the sample is still in a glassy state but has a small quantity of

the simultaneously crystallised α− and δ−TeO2 polymorphs. Hence, 1 hour is a too short

time for the conventional furnace conditions. (Note, that during XRD measurements the

sample was annealed primarily for 1 hour at 300 ℃ and 1 hour at 320 ℃.) Then the same

sample was put in the same furnace at the same conditions for 5 hours more. In the

XRD pattern of final sample (Fig. 2.13) we observe a well crystallised δ−TeO2 polymorph

with a small quantity of α−TeO2 polymorph. The intensity of the first peak attributed

to α−TeO2 makes about 5% of the intensity of the first δ−TeO2 peak.
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Figure 2.12: XRD powder pattern of the 95%TeO2 + 5%NbO2.5 glassy sample annealed
in the furnace for 1 hour at 340 ℃ (l – α−TeO2, ● – δ−TeO2).

The α−TeO2 phase can crystallise together with δ−TeO2 polymorph because of a too

high annealing temperature. To ensure the right choice of the temperature, we attempted

to make δ−TeO2 polymorph from the other sample (called here and after Glass_2D)

by annealing it at a lower (320 ℃) temperature for 20 hours. From the XRD pattern

in Fig. 2.14 we conclude that this temperature was not enough for crystallisation of

δ−TeO2 in conventional furnace, but in the same time was well enough for crystallisation
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Figure 2.13: XRD powder pattern of the δ−TeO2 obtained by annealing of the 95%TeO2

+ 5%NbO2.5 glassy sample in the furnace for 6 hour at 340 ℃ (l – α−TeO2, ● – δ−TeO2).
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Figure 2.14: XRD powder pattern of the 95%TeO2 + 5%NbO2.5 glassy sample annealed
in the furnace for 20 hour at 320 ℃ (l – α−TeO2).
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of undesirable α−TeO2.
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Figure 2.15: XRD powder pattern of the δ−TeO2 obtained by annealing of the 95%TeO2

+ 5%NbO2.5 glassy sample (milled and melted four times) in the furnace for 6 hour at
340 ℃.

The last factor that could be a reason of such a behaviour is a possible compositional

inhomogeneity within the glassy sample. In order to check this hypothesis, we tried

to homogenise the glassy sample as well as possible. To this end, we repeated the

preparation procedure (milling the powder for about 30 minutes, melting at 800 ℃, cooling

and crushing the obtained glass) for the sample Glass_2D four times more. After this

procedure, this sample was annealed at 340 ℃ for 6 hours and its resulting XRD pattern

is reported in the Fig. 2.15. We can state, that this pattern has peaks corresponding only

to δ−TeO2 polymorph. In such a manner, we obtained for the first time a perfectly pure

(without secondary phase) δ−TeO2 polymorph.

In Fig. 2.16 we present the Raman spectra for different glassy samples and δ−TeO2

crystallised polymorphs. The black line represents the spectrum of the glassy sample

milled and melted only one time and used to prepare δ−TeO2 sample called here and after

Delta_1_bis, which contains secondary phase. The red line represents the spectrum

of the glassy sample milled and melted four times and used to prepare δ−TeO2 sample

without traces of α−TeO2 polymorph (called here and after Delta_2_bis). The spectra of

the original glassy samples look like the spectra of homogeneous glasses and do not differ

at all. Whereas the spectra of the δ−TeO2 samples crystallised from these original glasses

have remarkable differences. The Raman spectrum of the δ−TeO2 sample Delta_1_bis is

presented in blue and has obvious discrete lines superposed on the continuous background.

These lines in the 150-200 cm−1 interval and near 680 cm−1 could be attributed to the
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Figure 2.16: Raman spectra of the 95%TeO2 + 5%NbO2.5 glassy sample Glass_1D milled
and melted only once (black), glassy sample Glass_2D milled and melted four times
(red), δ−TeO2 obtained from the glass Glass_1D (blue), δ−TeO2 obtained from the glass
Glass_2D (magenta).

presence of α−TeO2 polymorph in the sample according to the Raman spectrum of α−TeO2

(see Fig. 2.17) and to the XRD pattern of the sample (Fig. 2.13). Whereas, the spectrum

of the pure sample Delta_2_bis (in magenta) really resembles the TeO2-glass spectrum

and does not have any discrete lines indicating the presence of any crystalline phases

(contrary to XRD powder pattern (Fig. 2.15) with thin and intense peaks). All samples

were prepared with 5 mol % of NbO2.5 modifier and present a band near 880 cm−1, which

corresponds to the vibration of the NbO6 polyhedra [90].

2.3.1 DSC analysis

Fig. 2.18 reports the DSC curves of the 95%TeO2 + 5%NbO2.5 glassy samples milled

and melted ones (black line) and four times (red line). The DSC peaks were identified

by variable temperature XRD studies. We are mostly interested in two peaks in the

350–380 ℃ range. For the glassy sample milled and melted only once they are not

well separated and correspond to consequential crystallisation of δ−TeO2 and α−TeO2

polymorphs, whereas for the homogenised glassy sample these peaks are clearly more

separated. The mechanism explaining the effect of homogenisation on phase crystallisation

temperature could be the following: the non-homogenised glass contains zones more or

less rich in modifier, that causes simultaneous δ−TeO2 (from rich in modifier grains) and

α−TeO2 (from pure TeO2-glass grains) crystallisation and, therefore, lower (367 ℃) δ → α
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Figure 2.17: Raman spectra of the 95%TeO2 + 5%NbO2.5 glassy sample (black), δ−TeO2

(red), γ−TeO2 (blue), α−TeO2 (magenta).
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Figure 2.18: DSC curves for the glassy samples 95%TeO2 + 5%NbO2.5 milled and melted
only once (black) and four times (red).
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transition temperature. On the other hand, when the glass is homogenised, the modifier

atoms are uniformly distributed in the sample that, in turn, prevents early α−TeO2

crystallisation, as there is no more grains with different modifier concentration. This

shifts the peak on the DSC curve (Fig. 2.18) corresponding to α−TeO2 crystallisation to

the higher temperature 377 ℃.

Note that the difference in the crystallisation temperatures defined by DSC method

and by in situ XRD is due to the kinetic effect. As the time of one acquisition in XRD

was about 55 minutes, atoms had enough time to arrange in crystalline structure at lower

temperatures, while DSC measurements are continuous (with a constant heating rate of

10℃/min) and the crystallisation takes place at higher temperatures.
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Figure 2.19: DSC curve for the δ−TeO2 sample Delta_2_bis crystallised from 95%TeO2

+ 5%NbO2.5 glass at 340 ℃ for 6 hours.

Fig. 2.19 shows the DSC curve for crystallised δ−TeO2 sample. It resembles more the

curve for the glassy sample than for the crystallised phase. Apparently, the sample is not

completely crystallised and still has a glassy part, which is confirmed by the continuous

background on the XRD pattern (Fig. 2.15). In such a way, the first observed phenomenon

on the DSC curve is the glass transition (the steep change of the calorimetric signal)

followed by crystallisation into δ−TeO2 polymorph (356 ℃) with following crystallisation

of the whole sample into α−TeO2 (379 ℃).

However, as we already mentioned, δ−TeO2 is a metastable phase which is difficult

to obtain and can have different behaviour from sample to sample. To back up this

observation, let us now present some results for another δ−TeO2 sample. Sample called

here and after Delta_3 was obtained from the glass of the same composition (with
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Figure 2.20: XRD powder patterns of the δ−TeO2 Delta_2_bis (black) and δ−TeO2

Delta_3 (red). The difference of the signals is shown in blue.

the same milling and melting procedure) and in the same conditions (annealing time

and temperature) as sample Delta_2_bis. The only difference was in the quantity of

crystallised powder: ≈ 0.4 g for sample Delta_2_bis and ≈ 0.2 g or sample Delta_3. We

present the XRD patterns made in the same acquisition conditions for both samples in

the Fig. 2.20. These are δ−TeO2 samples without secondary α−TeO2 polymorph, but

with some quantity of the glassy powder. The curve hump at 15–20 degrees corresponds

to the signal from the plastic sample holder. These patterns are almost the same, but

the difference curve (blue) shows, that the peaks intensity of sample Delta_3 is higher,

whereas the continuous background is slightly weaker. As the acquisition conditions were

identical, we can qualitatively estimate, that sample Delta_3 is better crystallised than

sample Delta_2_bis. This hypothesis can explain the DSC curve for sample Delta_3

(Fig. 2.21), which differs quite strongly from the one for sample Delta_2_bis (Fig. 2.19).

It has a small steep change of the calorimetric signal (glass transition) and a thin peak

at 382 ℃ corresponding to δ → α transition.

In summary, in this section we described the procedure for obtaining the pure δ−TeO2

polymorph and emphasised the subtleties of its thermal behaviour. In spite of identical

manipulations, it is extremely difficult to synthesise completely identical samples, as

shown with XRD patterns (Fig. 2.20) and DSC curves (Fig. 2.19 and Fig. 2.21) for

samples Delta_2_bis and Delta_3.
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Figure 2.21: DSC curve for the δ−TeO2 sample Delta_3 crystallised from 95%TeO2 +
5%NbO2.5 glass at 340 ℃ for 6 hours.

2.4 γ−TeO2 synthesis

For γ−TeO2 synthesis we have chosen the 95%TeO2 + 5%PbO system, as it has a really

wide forming range in temperature and the lowest percentage of modifier oxide. In this

section we present the XRD patterns of two samples called here and after Gamma_1

(Fig. 2.22) and Gamma_2 (Fig. 2.23). We obtained the first sample by annealing a

glassy sample Glass_1G in the platinum crucible at 380 ℃ for 10 hours. We obtained a

well crystallised γ−TeO2 but with a small quantity of α−TeO2 like in the case of previous

system. Then, in order to homogenise the sample, we repeated five times the preparation

procedure (milling the powder for about 30 minutes, melting at 800 ℃ cooling and

crushing) for the glassy sample Glass_2G. The Fig. 2.23 reports the XRD pattern of

perfectly pure (without secondary phase) γ−TeO2 polymorph prepared by the annealing

of 95%TeO2 + 5%PbO glassy sample at 320 ℃ for 14 hours.

Fig. 2.24 reports the Raman spectra of samples Gamma_1 (γ−TeO2 with a small

quantity of α−TeO2) and Gamma_2 (γ−TeO2 without secondary phase). Let us recall

now the analysis of the vibrational Raman spectrum of γ−TeO2 polymorph made by A.P.

Mirgorodsky et al. [10].

The conclusions are the following: the intense band (TeO2-pulsation) near 680 cm−1

expresses highly asymmetric linkage Te–O⋅ ⋅ ⋅Te. The other intense band near 430 cm−1

(symmetric stretching vibration TeOTe) corresponds to the other type of linkage in

γ−TeO2 – symmetric Te–O–Te bridges build up of two chemically equivalent Te–O bonds.

The corresponding asymmetric stretching vibration TeOTe leads to a weaker band at

Page 73



Chapter 2 : Synthesis of δ− and γ−TeO2 polymorphs

 ! "! #! $! %! &! '! (! )!  !!   !  "!  #!

!

#

&

)

 "

 %

 
!

"
#

!
$
%
"
&
'
(
)
*

+
+

+
,

 !"#!!$

$%&'(!)*%&&%+,

Figure 2.22: XRD powder pattern of the γ−TeO2 obtained by annealing of the 95%TeO2

+ 5%PbO glassy sample in the furnace for 14 hour at 320 ℃ (l – α−TeO2).
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Figure 2.23: XRD powder pattern of the γ−TeO2 obtained by annealing of the 95%TeO2

+ 5%PbO glassy sample (milled and melted four times) in the furnace for 14 hour at 320
℃.
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about 820 cm−1.

The profiles of Raman spectra for samples Gamma_1 (with small quantity of α−TeO2)

and Gamma_2 (pure) are very alike apart from some subtle differences as, for example, at

≈ 750 cm−1. It is difficult to emphasise the differences between these spectra like we have

done for δ−TeO2 in the previous section, as the Raman spectra of α−TeO2 and γ−TeO2

polymorphs are rather close (see Fig. 2.17).
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Figure 2.24: Raman spectra of the γ−TeO2 samples Gamma_1 obtained by annealing of
the 95%TeO2 + 5%PbO glassy sample milled and melted only once (black) and Gamma_2
obtained by annealing of the 95%TeO2 + 5%PbO glassy sample milled and melted five
times (red).
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2.4.1 DSC analysis

DSC results for 95%TeO2–5%PbO glassy sample are reported in Fig. 2.25. The black

curve represents the result for normal glass (milled and melted only once) and the red one

for homogenised glass (milled and melted five times). The first exothermic peak (313–

320 ℃) corresponds to γ−TeO2 crystallisation and follows by the second exothermic peak

(438 ℃) that corresponds to γ → α transition, according to XRD studies with temperature

reported in Sec. 2.2.4. The endothermic peak at 510 ℃ corresponds to peritectic reaction

of incongruent melting (according to phase equilibrium diagram from [88] reported in Fig.

2.27). For the normal glass γ−TeO2 crystallisation peak is larger and less intense than one

for homogenised glass and shifted to 7 ℃ on the left. This phenomenon could be explained

by the effect of homogenisation in the same manner as described for 95%TeO2–5%NbO2.5

glasses in Sec. 2.3.1.

DSC curve for γ−TeO2 sample Gamma_2 (pure) is reported in Fig. 2.26. The

exothermic peak at 437 ℃ corresponds to γ → α transition and follows by endothermic

peak of incongruent melting at 508 ℃.
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Figure 2.25: DSC curves for the glassy samples 95%TeO2 + 5%PbO milled and melted
only once (black) and four times (red).
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Figure 2.26: DSC curve for the γ−TeO2 sample crystallised from 95%TeO2 + 5%PbO
glass at 320 ℃ for 14 hours.

Figure 2.27: Phase equilibrium diagram of the TeO2–PbO system.
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2.4.2 Evolution of the cell parameters during crystallisation of

γ−TeO2

We investigated the thermal expansion of the γ−TeO2 polymorph in the 30–370 ℃

temperature range. The experimental results and the results of the linear fitting are

reported in Fig. 2.28 and in Table 2.1 respectively. This is a normal thermal expansion

with slopes in the range 10−5 − 10−4 Å/℃ depending on the crystalline direction.
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Figure 2.28: Evolution of the γ−TeO2 cell parameters with temperature during thermal
expansion. The cell parameters are presented in black (a), red (b) and blue (c). The lines
represent the linear fitting.

In contrast to the normal thermal expansion of the crystallised γ−TeO2 polymorph,

the evolution with temperature of the γ−TeO2 cell parameters during crystallisation from

the glass surprisingly differs. We found out that the cell parameters ratio does not settle

definitively at the first moment of crystallisation. Fig. 2.29 shows the evolution of the

cell parameters with temperature during crystallisation of the γ−TeO2 polymorph from

the glassy sample. The b and c cell parameters increase linearly up to 380 ℃, where the

line slope decreases and the cell parameters tend to reach their settled values. The a cell

parameter exhibits a surprising behaviour decreasing with the increase of temperature.

The results of the linear fitting (excluding the points at 390 ℃ and 400 ℃) are reported
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Table 2.1: Parameters for the linear fitting of the data for γ−TeO2 thermal expansion.

y = y0 + kx

Cell parameter y0, Å k, Å/ ℃
a 4.886 1.7⋅10−4

b 8.565 2.8⋅10−5

c 4.340 5.1⋅10−5

in Table 2.2. In addition to the negative slope for a cell parameter, the absolute slope

values for all cell parameters are significantly higher than for γ−TeO2 thermal expansion.
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Figure 2.29: Evolution of the cell parameters with temperature during crystallisation from
the glassy sample. The cell parameters are presented in black (a), red (b) and blue (c).
The lines represent the linear fitting (excluding the points at 390℃ and 400℃).

We recall here that in this XRD experiment each acquisition took 55 minutes. This

means that the evolution shown in Fig. 2.29 corresponds to ≈ 11 hours. In such a way,

this phenomenon has not necessarily only thermal character but also kinetic. In order

to demonstrate the kinetic effect in γ−TeO2 polymorph crystallisation, we performed an

XRD experiment with long temperature plateau as shown in the upper part of Fig. 2.30.

Fig. 2.30 reports the results of the cell parameters evolution with time at three different

temperatures (300 ℃, 350 ℃, 370 ℃). The data show that the dependency character is
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Table 2.2: Parameters for the linear fitting of the data for γ−TeO2 crystallisation from
the glass (excluding the points at 390℃ and 400℃).

y = y0 + kx

Cell parameter y0, Å k, Å/ ℃
a 5.365 -1⋅10−3

b 8.173 1⋅10−3

c 4.169 4.9⋅10−4

not linear at all: the cell parameters change significantly during the first 10 hours and

then continue to change slowly during the next 14 hours.
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Figure 2.30: Evolution of the cell parameters with time and at different temperatures.
The heating scheme is given on the top of the figure. The cell parameters are presented
in black (a), red (b) and blue (c).

The combined results for thermal expansion and for crystallisation with temperature

for each cell parameter separately are given in Fig. 2.31. We can clearly see, as was

discussed above, that the first crystallised phase is rather different from the one at room

temperature. Only after heating for several hours (at the same or different temperatures)

the crystallising γ−TeO2 phase reaches the stable state (i.e. the state with the same ratio

in cell parameters as for γ−TeO2 at the room temperature).
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Figure 2.31: The results for thermal expansion (black points) and for crystallisation with
temperature (red points) for γ−TeO2 cell parameters.
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2.5 Conclusion

In this chapter we presented the synthesis of δ−TeO2 and γ−TeO2 polymorphs of

high purity (without secondary α−TeO2 phase). The δ−TeO2 was synthesised from

95%TeO2 + 5%NbO2.5 glassy sample and γ−TeO2 from 95%TeO2 + 5%PbO glassy

sample. We performed the X-ray diffraction and Raman spectroscopy studies with variable

temperature to define the optimal composition and temperature for synthesis.

We demonstrated, that the homogenisation of the glassy samples leads to improvement

of the crystallised samples quality. Basing on X-ray diffraction and DSC studies and

on synthesis attempts, we proposed the hypothesis about the mechanism explaining the

effect of homogenisation of glassy samples on purity of crystallised phases. It consists

in a sumption, that non-homogenised glasses contain powder grains more or less rich in

modifier. Some grains (of pure glass) directly crystallise in α−TeO2 polymorph, while

other grains (rich in modifier) crystallise in δ−TeO2 or γ−TeO2 polymorph.

We have also studied the evolution of the γ−TeO2 cell parameters during glass

devitrification and during heating the crystallised sample. When crystallising from the

glass, γ−TeO2 cell parameters ratio changes during several hours before reaching the stable

state.

In perspective, it is interesting to deepen the understanding of the factors influencing

on the crystallisation of pure δ−TeO2 and γ−TeO2 samples. The quantity of the sample

and quenching technique can strongly impact on crystallisation result. On the one hand,

it is more difficult to homogeneously cool down a larger sample by conventional method

and on the other hand, such techniques as twin-roller quenching allow to perform a faster

quenching of the sample.
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Chapter 3

Interatomic potentials for TeO2 system

3.1 Interatomic Interactions in TeO2 system

We discussed the theoretical background of derivation of the IAP in Chapter 1. In

this chapter, we want to minimise the difference between calculated and experimental

structures (i.e. cell parameters and atomic positions) by changing the IAP parameters.

We recall that we have chosen the Buckingham potential for short-range interaction and

a core-shell model for both Te and O atoms of the forms:

Uij(r) = Aije
−r/ρij −Cijr

−6

U i
cs = 1

2
ki
2x

2

where index i or j is for the atom type (Te or O). As we consider two short-range

interaction types (Te–O and O–O), this leads to 10 unknown variables: Aij, ρij, Cij for

each pair interaction and ki
2

and qish (shell charge) for each atom type. A simultaneous

fitting of 10 parameters is somewhat cumbersome and prevents understanding the role

of each parameter in the structure optimisation. Hence, a solution this problem requires

several simplified steps.

The first obvious step is the use of the IAP from existing libraries for O–O interaction,

considering that it is transferable for our system. We used the one from the Catlow library

[37] and it is reported in Table 3.1.

3.1.1 Te4+–O2− interaction

In order to simplify more our problem, we first used a rigid ion model for Te atoms to

estimate short-range interaction parameters for Te4+–O2− interaction. Such an idealisation

is possible in the Cs2Te4O12 structure, where TeIV atom electronic LP does not present
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Table 3.1: Parameters of the Buckingham and shell model potentials for O2−–O2−

interaction from the Catlow library [37]

Buckingham potential
AOO, eV ρOO, Å COO, eVÅ6

O2−
sh–O

2−
sh 22764.000 0.14900 27.87900

Shell model
kcs
2

, eVÅ−2 qs, e
O2− 74.92 -2.86902

any stereochemical activity, as TeIV atom is located in the centre of a perfect octahedron

(see Fig. 1.9 in Section 1.1).

However, this complex oxide contains four species and the IAPs for Te4+–O2-, Te6+–

O2- and Cs1+–O2- interactions are not established. For this reason we had to make some

assumptions in order to have a kind of starting point. In such a manner, we used the

IAPs of the neighbour elements for Te4+–O2-, Te6+–O2- and Cs1+–O2- interactions.

Primary fitting results showed that potentials for TeIV (that has a LP) and TeVI (that

has no LP) atoms are quite close to each other in the framework of the rigid-ion model.

This implies that the short-range interaction between tellurium (IV and VI) atoms and

oxygen atoms is very similar. At the same time, this implies that we can transfer the

potential between rigid Te6+ ion and O2− ion to (core-shell) Te4+ ion and O2− ion when

TeIV atom is highly polarised (in the α−TeO2 structure, for example). In this way, the

highly polarised TeIV atom consists of a denuded core with a charge +6 and a shell with

a charge -2, which is strongly shifted with respect to the core.

The short-range forces are set between Te core and O shell only, whereas the Te shell

contributes only to Coulombic energy. We have also tested the conventional interaction

when the short-range interatomic interaction is set between the shells, but this did not

work well. In other words, we did not succeed to model the correct asymmetric TeIV

atom environments in β− and γ-TeO2. This is the first time that the short-range forces

are applied to the core while using the core-shell model (the interactions scheme is reported

in Fig. 3.1).

It is worthwhile to note here, that a direct application of potential model in the

rigid ion frameworks gives a rutile-type structure for α−TeO2 with perfect octahedron

coordination of TeIV atoms.

Then, we included the core-shell model for TeIV atoms with the shells superimposed

on the cores and fitted the spring constant and shell charge for Te atom. We performed

iterative fitting and optimisation procedures for α- and γ-TeO2 polymorphs (Fig. 3.2) to
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Te core 

Te shell 

O core 

O shell 

Figure 3.1: The scheme of considered interactions between atoms in TeO2 system. The
short-range interatomic interactions are indicated with arrows and intra-atomic core-shell
interactions are illustrated with springs.

refine the Buckingham and core-shell parameters.

The as-obtained potential for Te4+–O2− interaction reproduced α− and γ−TeO2

structures not very well (see Table 3.7 for the cell parameters comparison). In addition,

this potential could not reproduce the correct tellurium atom coordination in γ−TeO2.

However, there is an important point to discuss. While fitting α−TeO2 structure, the

short-range parameters ATeO and ρTeO did not change significantly, unlike kTe
2

. One can

imagine the rigid ion model as a core-shell model with an infinite spring constant value;

thus by decreasing this parameter up to 35.736418 eVÅ−2 (i.e. by releasing the movement

of Te atom shell ’LP’) we observe transition of the TeIV environment from octahedron

to disphenoid. This fact confirms by means of empirical methods that the electronic LP

is responsible for distorted rutile-type structure of α−TeO2 and the formation of TeO4

disphenoid.

3.1.2 O2−–O2− interaction

The polarisation effect of oxygen atoms has a strong influence on TeIV atoms environment.

While fitting α− and γ−TeO2 structures, we found that it is impossible to reproduce

certain particularities in TeIV atoms environment in γ−TeO2 structure without changing

the IAP for O–O pair. In γ−TeO2, as we saw in section 1.1 of Chapter 1, TeIV atom

is coordinated with three short-bonded (< 2.02 Å) O atoms and one O atom with

intermediate bond length (2.191 Å).

After refining the Catlow’s O–O IAP, we obtained new Buckingham and core-shell

Page 85



Chapter 3 : Interatomic potentials for TeO2 system

Figure 3.2: The scheme represents the fitting procedure of Buckingham potential
parameters (A, ρ) and Te core-shell model parameters (kcs

2
, qs) for Te4+–O2−. Parameters

with an asterisk were derived in the frameworks of the rigid ion model against a Cs2Te4O12

compound. While fitting α- and γ-TeO2 polymorphs core-shell model for Te atom was
included and iterative simultaneous fitting of all parameters was performed. Te atoms
are represented in (light) grey and oxygen atoms in red (dark grey), solid lines stand for
short (<2.02 Å) Te–O bonds and dotted lines for intermediate and elongated bonds (2.02
Å < Te–O distance < 2.36 Å). The Te atom shell (white circle) is shifted from the Te atom
core and connected with it by spring, O atom’s shells are not represented.
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parameters, which allow to reproduce the correct TeIV atoms coordination. If we compare

the values in Table 3.1 and 3.5, we can see that all the parameters (AOO, ρOO, kO
2
, qOsh)

changed significantly. Let us consider in detail the core-shell parameters. The calculated O

atom polarisability (the formulae 1.6 from the Chapter 1) has values of αO = 0.11 e Å2/eV

and αO = 0.16 e Å2/eV for Catlow IAP and our potential respectively. This implies that

the oxygen atoms polarisability in our potential model plays a more important role and is

indeed responsible for a strong asymmetry in TeIV atoms environment in γ-TeO2 structure.

3.1.3 Te core-shell interaction

As we intend to model a glass structure with various Te–O bond lengths and bond angles,

the transferability of the IAP is a property of crucial importance. This implies that the

potential parameters related to a given ion-ion interaction in a specific crystal structure

are likely to work fine for different crystal structures and mixed compounds.

In order to verify the transferability towards other chemical systems, we applied the

derived IAPs to several TeO2-based compounds (see Table 3.8 for the exhaustive list).

Our potentials worked well for structures containing TeO4, TeO5 and TeO6 units: the cell

parameters and Te atom coordination were modelled correctly. However, for the structures

in the M2TeO3 group (M = Li, Na, K, Cs) it was not the case. These structures contain

TeO3 trigonal pyramid units with short and strong Te–O bonds and strongly polarised

TeIV atom (see Fig. 3.3 for example).

It turned out, for these structures that the optimisation was not successful because

the total energy convergence could not be achieved. The structure collapse was caused

by a strong displacement of tellurium shell from its core, since the spring force was not

enough strong to keep it. (See the left structure in Fig. 3.3, where the cell parameter c

is 18.6 % less than the experimental value (see Table 3.6). Te atoms shells are shifted at

1.1 Å with respect to their cores and the minimum distance between Te and Cs atoms is

unphysical small (2.168 Å)). Hence, the lack of the core-shell energy prevented the total

energy convergence and lead to the instability of the system. Indeed, the increase of Te

spring value up to 42.259877 and 46.123789 eVÅ−2 for Cs2TeO3 and K2TeO3 respectively

lead to stabilisation of the systems (see the middle structure in Fig. 3.3 an Table 3.6 for

the cell parameters comparison). The respective Te shells displacements with respect to

their cores are 0.669 Å for Cs2TeO3 and 0.666 Å for K2TeO3. However, the set of different

spring values for different structures is not satisfactorily from the transferability point of

view.

Let us now consider the core-shell energy, Ucs, as a function of the core-shell distance

for Te atom for different spring constant values (Fig. 3.4). As we can see, Cs2TeO3 and

K2TeO3 structures are stable when the Ucs values are higher than the ones obtained with
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the smaller spring constant (35.736418 eVÅ−2). Whereas, for α− and γ−TeO2 the Ucs

corresponding to the latter spring constant value is just enough sufficient.

Figure 3.3: Cs2TeO3 structure modelled with different spring values for Te atoms core-
shell model. The other IAPs parameters are from Table 3.5. The values of Te core-shell
spring constants for the left, middle and right structures are kcs

2
= 42.259877 eVÅ−2, kcs

2

= 46.123789 eVÅ−2, and kcs
2

= 35.736418 eVÅ−2 and kcs
4

= 90 eVÅ−4 respectively.

This means that none of the values of harmonic spring constant, kcs
2

, can fit all the

various TeOx units with various shell separation distances. Thereby to compensate the

lack of Ucs energy in the structures, where Te shell displacement is very significant (0.6–

0.7 Å) and to avoid the excess of Ucs energy in the structures with smaller Te shell

displacements, we fitted kcs
2

and kcs
4

parameters for anharmonic spring potential of the

form:

Ucs = 1

2
kcs
2 x2 +

1

24
kcs
4 x4. (3.1)

The Cs2TeO3 was successfully optimised with the new spring potential form (see the right

structure in Fig. 3.3 and Table 3.6 for the cell parameters comparison). In such a manner,

the anharmonic potential form smooths the transition between curves corresponding to

different harmonic spring parameters.
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3.1.4 Summary

In order to summarise and illustrate the main features of the derived IAPs, let us now

demonstrate the development of the interaction model.

Firstly, if we use the rigid-ion model for Te atoms and Catlow IAP for O–O interaction,

as in Table 3.2, we obtain a rutile-type structure for α−TeO2 with Te atoms coordinated

to eight O atoms forming an octahedron. Fig. 3.5 shows a spatial view (on the left) and

a c-axis projection (on the right) of such a structure.

Table 3.2: Parameters for Buckingham potential for TeO2 system with Te atom
represented in rigid-ion model and O2−–O2− IAP from Catlow library [37]

Buckingham potential
A, eV ρ, Å C, eVÅ6

Te4+–O2−
sh 1595.266748 0.345867 1.0

O2−
sh–O

2−
sh 22764.000 0.14900 27.87900

Shell model
kcs
2

, eVÅ−2 qs, e
O2− 74.92 -2.86902

When we add the core-shell model for Te atoms and use the IAPs as reported in Table

3.3, we obtain a good for for of the α−TeO2 structure (Fig. 3.6 shows a spacial view

(on the left) and a c-axis projection (on the right) of the resulting fit). However γ−TeO2

structure is not correctly modelled: the cell parameters have large errors with respect to

the experimental values (see Table 3.7) and TeO4 units are connected with symmetrical

double bridges (see Fig. 3.7).

Table 3.3: Parameters for Buckingham potential for TeO2 system with Te atom
represented in core-shell model with harmonic spring potential and O2−–O2− IAP from
Catlow library [37]

Buckingham potential
A, eV ρ, Å C, eVÅ6

Te4+–O2−
sh 1595.266748 0.345867 1.0

O2−
sh–O

2−
sh 22764.000 0.14900 27.87900

Shell model
kcs
2

, eVÅ−2 qs, e
Te4+ 35.736418 -1.975415
O2− 74.92 -2.86902
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Figure 3.4: The core-shell potential energy for tellurium atom as a function of core-shell
separation according to various kcs

2
and kcs

4
spring constants. Dashed-dotted, dashed and

dotted lines correspond to kcs
2

= 32.058712, 42.259877, 46.123789 eVÅ−2 harmonic spring
value. Bold solid line corresponds to core-shell potential including anharmonic term kcs

2
=

35.736419 eVÅ−2, kcs
4

= 90 eVÅ−4 which provides smooth transition from low energies at
short core-shell separation and higher energies at more significant core-shell separations.

Figure 3.5: α−TeO2 structure modelled with rigid-ion model for Te atoms and Catlow
potential for O–O interaction (see Table 3.2). The spacial view is presented on the left
and the c-axis projection on the right.
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Figure 3.6: α−TeO2 structure modelled with core-shell model for Te atoms and Catlow
potential for O–O interaction (see Table 3.3). The spacial view is presented on the left
and the c-axis projection on the right. The transparent spheres in blue represent the Te
atoms shells and in red represent the O atoms shells.
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The change of the O–O IAP (Table 3.4) and particularly the increase of oxygen atoms

polarisation strongly improves the fitting results for γ−TeO2 structure. Fig. 3.8 illustrates

the results for α−TeO2 (on the left) and γ−TeO2 (on the right) structures. In order to

emphasise the role of oxygen atom shells, they are shown in this figure as well. The

values of core-shell distances for O atoms are 0.19 Å for α−TeO2 and 0.17 Å / 0.23 Å

(for different oxygen atoms sites) for γ−TeO2. This is 2 to 8 times larger than for the

structures optimised using Catlow potential (0.05 Å for α−TeO2 and 0.02 Å / 0.11 Å for

γ−TeO2, see Fig. 3.6 and 3.7).

Figure 3.7: γ−TeO2 structure modelled with core-shell model for Te atoms and Catlow
potential for O–O interaction (see Table 3.3). The transparent spheres in blue represent
the Te atoms shells and in red represent the O atoms shells.

Finally, as we discussed above, the addition of a quartic term to the core-shell

interaction potential improves the IAPs transferability and helps to optimise the M2TeO3

(M = Li, Na, K, Cs) structures. Fig. 3.3 reports the Cs2TeO3 structures before

introducing the kcs
4

term (left) and after (right) as an example. At the same time, it

has no significant influence on the structures that were well modelled with only harmonic

spring potential. The final parameters for derived IAPs are listed in Table 3.5.
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Table 3.4: Parameters for Buckingham potential for Te4+–O2− and new O2−–O2−

interaction and for core-shell model with harmonic spring potential for both Te and O
atoms.

Buckingham potential
A, eV ρ, Å C, eVÅ6

Te4+c –O2−
sh 1595.266748 0.345867 1.0

O2−
sh–O

2−
sh 82970.688434 0.16099 31.361954

Shell model
kcs
2

, eVÅ−2 qs, e
Te4+ 35.736418 -1.975415
O2− 61.776616 -3.122581

Figure 3.8: α−TeO2 (left) and γ−TeO2 (right) structures modelled with core-shell model
for Te atoms and modified potential for O–O interaction (see Table 3.4). The transparent
spheres in blue represent the Te atoms shells and in red represent the O atoms shells.
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Table 3.5: Parameters for Buckingham potential for Te4+–O2− and O2−–O2− interaction
and for shell model for both Te (anharmonic spring potential) and O atoms.

Buckingham potential
A, eV ρ, Å C, eVÅ6

Te4+c –O2−
sh 1595.266748 0.345867 1.0

O2−
sh–O

2−
sh 82970.688434 0.16099 31.361954

Shell model
kcs
2

, eVÅ−2 kcs
4

, eVÅ−4 qs, e
Te4+ 35.736418 90.0 -1.975415
O2− 61.776616 0.0 -3.122581

Table 3.6: Characteristics for Cs2TeO3 structure modelled with different spring values for
Te atoms core-shell model. The other IAPs parameters are from Table 3.5. The errors in
percents with respect to experimental values are indicated in brackets.

Parameter, Å kcs
2

, eVÅ−2 42.259877* 46.123789 35.736418
kcs
4

, eVÅ−4 0 0 90
a, b 7.251(-6.79) 6.887 (-1.43) 6.911 (-1.78)
c 6.490 (18.59) 7.920 (0.65) 7.802 (2.14)
Te–O bond length 1.825 (1.14) 1.834 (0.65) 1.827 (1.03)
Te (c)–Te (sh) distance 1.1 0.669 0.719
*We give an example of failed modelling with this spring value, as using
kcs
2

= 35.736418 eVÅ−2 leads to abortion of the program, so that it does not provide
an output file with final configuration.

Table 3.7: Cell parameters for α−TeO2 and γ−TeO2 structures modelled with different
IAPs from Tables 3.3, 3.4 and 3.5. The error in percents with respect to experimental
values are indicated in the brackets.

Parameter, Å IAP from Table 3.3 IAP from Table 3.4 IAP from Table 3.5
α−TeO2

a, b 4.656 (3.20) 4.847 (-0.77) 4.831 (-0.44)
c 7.103 (6.70) 7.546 (0.88) 7.349 (3.46)
γ−TeO2

a 5.149 (5.13) 4.929 (-0.65) 5.084 (-3.79)
b 7.458 (13.04) 8.641 (-0.76) 8.312 (3.08)
c 3.673 (15.59) 4.286 (1.49) 4.196 (3.55)
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3.2 Results and discussion

Several relatively simple ternary TeO2-based systems were investigated. They represent

all various TeIV atom environments: TeO3 units in M2TeO3 (M = Li, Na, K, Cs) and

MgTe2O5 compounds; TeO3+1 units in γ−TeO2; TeO4 units in α−, β−TeO2 and CaTe2O5;

TeO5 units in Ag2Te4O11 (Ag2TeIV
2

TeVI
2

O11), BaTe2O6 (BaTeIVTeVIO6), K2Te4O12

(K2TeIVTeVI
3

O12), Na2Te4O9, P2Te3O11 and SrTe3O8 (SrTeIV
2

TeVIO8) compounds; TeO6

units in Cs2Te4O12 (Cs2TeIVTeVI
3

O12); and combinations of TeO3, TeO4 and TeO5 units

in Bi2Te4O11, Co6Te5O16 and NiTe2O5 compounds. The references on the experimental

structural data for these compounds are listed in Table 3.8.

Table 3.8: Pure and mixed tellurite compositions optimised with derived potential

Structural unit Compound Reference Space group

TeO3

Cs2TeO3 [46] P 3 2 1
Li2TeO3 [91] C 1 2/C 1
K2TeO3 [92] P -3
Na2TeO3 [93] P 1 21/A 1
MgTe2O5 [94] P B C N

TeO3+1 γ-TeO2 [8] P 21 21 21

TeO4

α-TeO2 [4] P 43 21 2
β-TeO2 [6] P B C A
CaTe2O5 [95] P 1 21/C 1’

TeO5

BaTe2O6 [96] C M C M
Na2Te4O9 [97] P -1
Ag2Te4O11 [98] P -1
SrTe3O8 [99] P 42/M
K2Te4O12 [100] C 2/M
P2Te3O11 [101] P 1 21/C 1

TeO6 Cs2Te4O12 [102] R -3 M

TeO3, TeO4, TeO5

Bi2Te4O11 [103] P 1 21/N 1
Co6Te5O16 [104] P N M A
NiTe2O5 [105] P N M A

The Buckingham and core-shell potentials parameters used for other cation-oxygen

interactions are reported in Table 3.9. They were transferred from previous studies of

binary oxides [106, 107, 37]. The comparison between calculated and experimental lattice

parameters is reported in Table 3.10.

In general, there is a good agreement between calculated and experimental structures.

The errors in cell parameters do not exceed 5% and all various of TeOx structural units are

well represented. We list the Te–O bond lengths and angles for all investigated structures

in Table 3.11. One can point out that the general feature of the derived potentials is an
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Table 3.9: Buckingham IAP and shell model parameters used for optimised structures

Buckingham potential
Interaction A, eV ρ, Å C, eVÅ6 Reference
Ag1+–O2− 962.197 0.3 0.0 [106]
Ba2+–O2− 4818.416 0.3067 0.0 [107]
Bi+3–O2− 49529.35 0.2223 0.0 [108]
Ca2+–O2− 2272.741 0;2986 0.0 [107]
Cs1+–O2− 4013.582581 0.318831 0.0 this work
Co2+–O2− 778.020 0.3301 0.0 [41]
K1+–O2− 3587.570 0.3 0.0 [107]
Li1+–O2− 426.480 0.3 0.0 [107]
Mg2+–O2− 946.627 0.31813 0.0 [37]
Na1+–O2− 1271.504 0.3 0.0 [107]
Ni2+–O2− 1582.500 0.28820 0.0 [37]
Sr2+–O2− 1956.702 0.3252 0.0 [107]
Te6+–O2− 2296.526581 0.333786 1.0 this work
P5+–O2− 1273.42017 0.32272 0.0 [109]

Shell model kcs
2

, eVÅ−2 qs, e Reference
Ba2+ 34.05 1.831 [107]
Bi+3 359.55 -5.51 [108]
Ca2+ 34.05 1.281 [107]
Ni2+ 93.70 3.344 [37]
Sr2+ 21.53 1.831 [107]

underestimation of short Te–O bond lengths and a slight overestimation of intermediate

Te–O bond lengths. In Table 3.11 we list the total bond-valences for each Te atom site

calculated with Brown and Altermatt formulae [110] as well. As we can see, calculated

values for optimised structures are overestimated because of the important contribution

of the short bonds into the total atom bond-valence.

In Table 3.11 we give the values of Te core-shell distances as well. They vary in

the range from 0.394 Å for one of the tellurium (IV) sites in P2Te3O11 to 0.719 Å in

Cs2TeO3. These distances are quite significant and much larger than those found for

other cations with lone pairs (for example, 0.125 Å for Pb2+ cations in several Aurivillius-

type structures [111]). Thereby TeIV atom polarizes strongly in all investigated structures

except in Cs2Te4O12, where the core-shell distance is zero, which confirms that TeIV LP

does not present any stereochemical activity in this environment.

The localisation of Te electronic LP was studied experimentally in α-TeO2 [4] and by

ab initio methods in TeO4H4 and TeO3H+3 molecules [112]. Both these works estimate the

distance of the electronic LP at 0.6 Å from the Te atom core, which is in a good agreement
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with our results (0.504 Å for α-TeO2 and 0.394–0.719 Å for the whole set of type of units).

Average core-shell distance for the oxygen atoms is about 0.2 Å. In spite of much less

significant core-shell distance for the oxygen atoms in comparison with tellurium atoms,

it still remains very remarkable. This implies that oxygen polarisation effect strongly

contributes to the forming of TeIV atom coordination in TeO2-based materials as well.

This result confirms that it is necessary to explicitly include the polarisation effect of

oxygen atoms for reliable empirical modelling of TeO2-based materials.

We have also calculated the elastic constants for all investigated structures and they

are reported in Table 3.12. The experimental elastic constants data are difficult to obtain

and they do not exist in literature for most of the investigated structures. Nevertheless

the values calculated with our model are physically realistic and all the eigenvalues of the

elastic constants matrices are positive. The experimental elastic constants for α-TeO2 [48]

and those calculated by density functional theory (DFT) methods for γ-TeO2 [49] are in

good agreement with values obtained with our potentials.

a) b) 

Figure 3.9: Spatial view of γ-TeO2 structure: a) Experimental structure and b) Optimised
structure. Solid lines represent the short and intermediate bonds (< 2.02 Å) and dashed
lines represent the long bonds (> 2.02 Å). In a) the arrows indicate the direction of the
Te LP and in b) the big blue spheres correspond to the Te shells. The bond lengths are
in Å.

Let us now point out some subtle structural peculiarities of the γ-TeO2 polymorph

which we managed to reproduce using our IAP. This polymorph is especially interesting

because in our research group it is considered the closest crystalline structure to glass.
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Indeed, γ-TeO2 polymorph crystallises first while heating the glass and the glass Raman

spectra has much more common bands with γ-TeO2 than with α-TeO2 or β-TeO2

polymorphs [8]. As was discussed above, γ-TeO2 is constructed with TeO3+1 structural

units with three short (< 2.02 Å) Te–O bonds and one elongated bond (2.197 Å), which

form the three-dimensional network by sharing O1 and O2 corners (Fig. 3.9). Such a

network forms wide rectangular tunnels containing the LPs of tellurium (IV) atoms [8].

Let us now compare the structure of the γ-TeO2 with that of the paratellurite, α-

TeO2 (Fig.3.10). In both structures basic units are interconnected via Te–O–Te bridges.

In α-TeO2 there are only the essentially asymmetric bridges (1.880–2.121 Å), whereas

in γ-TeO2, the TeO3+1 units are alternately linked by nearly symmetric (1.948–2.019 Å)

and highly asymmetric (1.859–2.197 Å) bridges. According to Champarnaud et al. the

resemblance of Raman spectra of γ-TeO2 and of glass comes from vibrations of symmetric

Te–O–Te bridges; thus it appears that such bridges represent one of the main structural

features of TeO2 glasses. Although the errors in bond lengths exaggerate a bit the subtle

difference in symmetric and asymmetric bridges in optimised structures, our IAP model

has a critical ability for distinction between TeO4 and TeO3+1 units for further successful

application of the IAPs to glass simulation.

a) b) 

Figure 3.10: Spatial view of α-TeO2 structure: a) Experimental structure and b)
Optimised structure. Solid lines represent the short and intermediate bonds (< 2.02

Å) and dashed lines represent the long bonds (> 2.02 Å). In a) the arrows indicate the
direction of the Te LP and in b) the big blue spheres correspond to the Te shells. The
bond lengths are in Å.

Among all the investigated structures there are two structures that we did not manage
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to optimise: K2TeO3 and K2Te4O12. In the first case, as was discussed above, the

optimisation was not successful even with improved Te core-shell anharmonic potential.

In K2Te4O12 case, a different problem occurred. In spite of a good agreement in cell

parameters the local environment of TeIV atom was incorrect. It represents a perfect

TeO6 octahedron completely similar to Cs2Te4O12, whereas from experimental structural

data it is a TeO5 structural unit. The additional experimental data (elastic constants, etc.)

could have helped to resolve this problem, but unfortunately we did not find any works

on K2Te4O12 compound except the first article on its synthesis and structure refinement

[100] in 1978.

3.3 Conclusion

We derived the set of interatomic potentials for Te4+–O2− and O2−–O2− interactions which

represent the structures of all known pure TeO2 polymorphs and a set of mixed TeO2-

based compositions. All the cell parameters and bond lengths are reproduced with errors

less than 5%. Generally our potentials underestimate short Te–O bonds and overestimate

intermediate bonds. Our potentials are able to model all various TeOx structural units

found in investigated structures and to reflect the difference between TeO4 unit with two

short and two intermediate bonds and TeO3+1 unit with three short and one intermediate

bonds. We found some difficulties in representing K2TeO3 and K2Te4O12 structures,

which seem to be rather particular. Our model does not manage to reproduce some

subtle structural features in these phases, which would call for further studies.

Tellurium and oxygen electronic LPs are represented with a core-shell model. The

short-range interaction set between Te core and O shell and the anharmonic spring

potential is used for Te core-shell interaction. The tellurium atoms core-shell distance

of 0.394–0.719 Å for different unit types is much larger than found in the literature for

other atoms with electronic LPs and in a good agreement with values obtained by other

methods. Oxygen atoms are also strongly polarised in all studied structures and their

polarisation effect plays an important role in forming asymmetrical TeOx units.

Table 3.10: Calculated and experimental lattice parameters for investigated structures

Parameter Exp. Calc. Difference, %

Ag2Te4O11

a, Å 7.287 7.201 1.19

b, Å 7.388 7.304 1.14

c, Å 9.686 9.619 0.69

V olume, Å3 521.459 505.884 2.99

Continued on next page
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Table 3.10 – Continued from previous page

Parameter Exp. Calc. Difference, %

α 95.67 95.82 -0.16

β 94.10 96.38 -2.42

γ 119.40 119.50 -0.09

BaTe2O6

a, Å 5.569 5.5378 0.56

b, Å 12.796 13.285 -3.82

c, Å 7.320 7.279 0.55

V olume, Å3 521.629 535.589 -2.68

α,β, γ 90 90 0.0

Bi2Te4O11

a, Å 6.991 6.797 2.78

b, Å 7.959 7.836 1.55

c, Å 18.896 18.299 3.16

V olume, Å3 1047.1526 973.246 7.06

α, γ 90 90 0.0

β 95.176 93.049 2.23

CaTe2O5

a, Å 9.382 9.3755 0.07

b, Å 5.709 5.6792 0.53

c, Å 11.132 11.0546 0.70

V olume, Å3 539.953 534.479 1.01

α, γ 90 90 0.0

β 115.109 114.764 0.30

Co6Te5O16

a, Å 11.032 11.146 -1.03

b, Å 10.295 10.188 1.04

c, Å 12.876 12.807 0.54

V olume, Å3 1462.385 1454.209 0.56

α,β, γ 90 90 0.0

Cs2TeO3

a, b, Å 6.790 6.911 -1.78

c, Å 7.972 7.802 2.14

V olume, Å3 367.542 372.608 -1.38

α,β 90 90 0.0

γ 120 120 0.0

Continued on next page
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Table 3.10 – Continued from previous page

Parameter Exp. Calc. Difference, %

Cs2Te4O12

a, b, Å 7.279 7.234 0.61

c, Å 18.299 18.057 1.33

V olume, Å3 839.614 818.386 2.53

α,β 90 90 0.0

γ 120 120 0.0

K2Te4O12

a, Å 12.360 12.452 -0.74

b, Å 7.248 7.189 0.81

c, Å 11.967 12.594 -5.24

V olume, Å3 1032.171 1064.409 -3.12

α, γ 90 90 0.0

β 105.680 109.243 -3.37

Li2TeO3

a, Å 5.069 4.847 4.37

b, Å 9.566 9.306 2.71

c, Å 13.727 13.798 -0.52

V olume, Å3 662.669 616.464 6.97

α, γ 90 90 0.0

β 95.40 97.96 -2.68

MgTe2O5

a, Å 7.239 7.258 -0.26

b, Å 10.658 10.614 0.42

c, Å 5.988 5.964 0.40

V olume, Å3 462.000 459.433 0.56

α,β, γ 90 90 0.0

Na2TeO3

a, Å 6.882 7.017 -1.96

b, Å 10.315 10.740 -4.12

c, Å 4.961 4.873 1.77

V olume, Å3 352.171 367.247 -4.28

α,β 90 90 0.0

γ 91.66 91.9378 -0.30

Na2Te4O9

a, Å 7.336 7.486 -2.04

Continued on next page
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Table 3.10 – Continued from previous page

Parameter Exp. Calc. Difference, %

b, Å 10.449 10.750 -2.88

c, Å 6.876 6.849 0.40

V olume, Å3 527.072 551.147 -4.57

α 90.11 89.66 0.50

β 110.95 111.95 -0.90

γ 69.52 69.47 0.07

NiTe2O5

a, Å 8.868 8.448 4.74

b, Å 12.126 12.376 -2.06

c, Å 8.452 8.451 0.02

V olume, Å3 908.872 883.505 2.79

α,β, γ 90 90 0.0

P2Te3O11

a, Å 12.375 11.895 3.88

b, Å 7.317 7.077 3.29

c, Å 9.834 9.738 0.98

V olume, Å3 881.695 807.998 8.36

α, γ 90 90 0.0

β 98.04 99.69 -1.68

SrTe3O8

a, b, Å 6.826 6.829 -0.06

c, Å 6.760 6.636 1.83

V olume, Å3 314.964 309.557 1.72

α,β, γ 90 90 0.0

α-TeO2

a, b, Å 4.810 4.831 -0.44

c, Å 7.613 7.349 3.46

V olume, Å3 176.135 171.548 2.60

α,β, γ 90 90 0.0

β-TeO2

a, Å 12.035 11.550 4.03

b, Å 5.464 5.473 -0.17

c, Å 5.607 5.549 1.03

V olume, Å3 368.712 350.814 4.85

α,β, γ 90 90 0.0

Continued on next page
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Table 3.10 – Continued from previous page

Parameter Exp. Calc. Difference, %

γ-TeO2

a, Å 4.898 5.084 -3.79

b, Å 8.576 8.312 3.08

c, Å 4.351 4.196 3.55

V olume, Å3 182.765 177.326 2.98

α,β, γ 90 90 0.0

Table 3.11: Bond lengths, angles (only for α,β, γ-TeO2), bond-valences for each tellurium
site and value of Te and O shells displacements (xTe and xO) according to corresponding
cores for experimental and optimised structures

Bond Exp., Å Calc., Å Diff., % V∗exp V∗calc Diff., % xTe, Å x∗∗O , Å

Ag2Te4O11

Te(3)–O 2.094 2.062 1.53 4.17 4.54 8.84 0.472 0.189

Te(3)–O 2.044 2.006 1.86

Te(3)–O 1.892 1.808 4.44

Te(3)–O 2.087 2.092 -0.24

Te(3)–O 2.130 2.154 -1.13

Te(4)–O 2.000 1.953 2.35 3.93 4.17 -5.99 0.4638

Te(4)–O 2.174 2.088 3.96

Te(4)–O 2.092 2.160 -3.25

Te(4)–O 2.311 2.391 -3.46

Te(4)–O 1.878 1.823 2.93

BaTe2O6

Te–Oax 2.126 2.092 1.58 4.13 4.47 -8.13 0.547 0.217

Te–O 1.830 1.792 2.08

Bi2Te4O11

Te(1)–O 1.872 1.853 1.01 3.91 4.22 -7.79 0.543 0.169

Te(1)–O 1.876 1.856 1.07

Te(1)–O 1.93 1.916 0.73

Te(2)–O 1.895 1.866 1.53 3.96 4.23 -6.83 0.544

Te(2)–O 2.498 2.519 -0.84

Te(2)–O 1.972 1.943 1.47

Te(2)–O 1.870 1.842 1.50

Te(3)–O 2.284 2.352 -2.98 3.83 4.30 -12.24 0.559

Te(3)–O 2.074 1.989 4.10

Te(3)–O 1.899 1.832 3.53

Te(3)–O 1.870 1.833 1.98

Te(4)–O 1.955 1.903 2.66 4.07 4.28 -4.98 0.543

Continued on next page
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Table 3.11 – Continued from previous page

Bond Exp., Å Calc., Å Diff., % V∗exp V∗calc Diff., % xTe, Å x∗∗O , Å

Te(4)–O 1.848 1.846 0.11

Te(4)–O 1.890 1.890 0.00

Te(4)–O 2.408 2.539 -5.44

CaTe2O5

Te(1)–O 1.852 1.838 0.76 4.04 4.25 -5.19 0.609 0.204

Te(1)–O 1.832 1.815 0.93

Te(1)–O 1.979 1.992 -0.66

Te(1)–O 2.450 2.276 7.10

Te(2)–O 2.009 1.949 2.99 4.01 4.15 -3.67 0.595

Te(2)–O 1.853 1.833 1.08

Te(2)–O 1.898 1.856 2.21

Te(2)–O 2.179 2.310 -6.01

Co6Te5O16

Te(1)–O 1.866 1.851 0.80 4.03 4.20 -4.17 0.629 0.181

Te(1)–O 1.886 1.874 0.64

Te(1)–O 1.863 1.841 1.18

Te(2)–O 1.904 1.884 1.05 4.03 4.20 -4.14 0.58

Te(2)–O 1.904 1.884 1.05

Te(2)–O 1.833 1.846 -0.71

Te(3)–O 1.858 1.857 0.05 4.17 4.37 -4.69 0.604

Te(3)–O 1.858 1.857 0.05

Te(3)–O 1.894 1.848 2.43

Te(4)–O 2.060 1.985 3.64 3.86 4.29 -10.94 0.624

Te(4)–O 2.060 1.985 3.64

Te(4)–O 1.921 1.875 2.39

Te(4)–O 1.888 1.896 -0.42

Cs2TeO3

Te–O 1.846 1.827 1.03 3.97 4.15 -4.74 0.719 0.236

Cs2Te4O12

Te–O 2.112 2.084 1.33 4.15 4.44 -7.07 0.0 0.184

K2Te4O12

Te–O(5) 1.973 2.074 -5.12 3.64 4.55 -24.93 0.0 0.188

Te–O(5) 2.017 2.074 -2.83

Te–O(5) 2.017 2.074 -2.83

Te–O(5) 2.275 2.074 8.83

Te–O(5) 2.275 2.074 8.83

Te–O(5) – 2.074 100

Li2TeO3

Te–O 1.848 1.838 0.54 3.72 4.14 -11.28 0.649 0.200

Te–O 1.929 1.843 4.45

Te–O 1.871 1.842 1.55

MgTe2O5

Te–O 1.859 1.828 1.66 4.01 4.23 -5.46 0.5606 0.181

Continued on next page
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Table 3.11 – Continued from previous page

Bond Exp., Å Calc., Å Diff., % V∗exp V∗calc Diff., % xTe, Å x∗∗O , Å

Te–O 1.990 1.982 0.40

Te–O 1.850 1.832 0.97

Te–O 2.405 2.366 1.62

Na2TeO3

Te–O 1.882 1.858 1.27 3.92 4.16 -6.13 0.648 0.214

Te–O 1.875 1.853 1.17

Te–O 1.874 1.848 1.38

Na2Te4O9

Te(1)–O 1.964 1.870 4.78 4.16 4.24 -2.05 0.5294 0.204

Te(1)–O 2.054 2.061 -0.34

Te(1)–O 2.238 2.344 -4.73

Te(1)–O 1.899 1.859 2.10

Te(1)–O 2.146 2.255 -5.08

Te(2)–O 2.450 2.502 -2.12 3.93 4.19 -6.84 0.575

Te(2)–O 1.889 1.862 1.43

Te(2)–O 1.919 1.863 2.92

Te(2)–O 1.905 1.877 1.47

Te(3)–O 1.823 1.809 0.76 3.85 4.09 -6.03 0.579

Te(3)–O 2.013 2.09 -3.82

Te(3)–O 1.934 1.845 4.60

Te(3)–O 2.319 2.236 3.57

Te(4)–O 1.902 1.871 1.63 4.01 4.20 -4.74 0.570

Te(4)-O 2.119 2.060 2.78

Te(4)–O 1.821 1.799 1.21

Te(4)–O 2.123 2.176 -2.50

NiTe2O5

Te(1)–O 1.944 2.011 -3.45 3.96 4.25 -7.34 0.543 0.1828

Te(1)–O 1.863 1.817 2.47

Te(1)–O 1.877 1.854 1.23

Te(1)–O 2.472 2.302 6.88

Te(2)–O 1.886 1.845 2.17 4.07 4.36 -6.98 0.539

Te(2)–O 1.996 1.902 4.71

Te(2)–O 1.996 1.902 4.71

Te(2)–O 2.247 2.398 -6.72

Te(2)–O 2.247 2.398 -6.72

Te(3)–O 1.895 1.859 1.90 3.90 4.20 -7.55 0.563

Te(3)–O 1.877 1.862 0.80

Te(3)–O 1.877 1.862 0.80

P2Te3O11

Te(1)–O 1.876 1.821 2.93 4.12 4.25 -3.05 0.394 0.254

Te(1)–O 2.080 2.066 0.67

Te(1)–O 2.104 2.131 -1.28

Te(1)–O 2.164 2.202 -1.76

Continued on next page
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Table 3.11 – Continued from previous page

Bond Exp., Å Calc., Å Diff., % V∗exp V∗calc Diff., % xTe, Å x∗∗O , Å

Te(1)–O 2.145 2.241 -4.48

Te(2)–O 2.093 2.086 0.33 4.31 4.45 -3.41 0.406

Te(2)–O 1.894 1.842 2.75

Te(2)–O 1.973 1.977 -0.20

Te(2)–O 2.090 2.101 -0.53

Te(2)–O 2.202 2.259 -2.59

Te(3)–O 2.485 2.603 -4.75 4.16 4.25 -2.02 0.461

Te(3)–O 1.984 2.018 -1.71

Te(3)–O 1.830 1.805 1.37

Te(3)–O 1.956 1.948 0.41

Te(3)–O 2.293 2.284 0.39

SrTe3O8

Te–O 1.917 1.901 0.83 4.07 4.31 -5.94 0.476 0.175

Te–O 2.083 2.065 0.86

Te–O 2.212 2.153 2.66

Te–O 2.075 2.061 0.67

Te–O 1.908 1.962 -2.83

Te–O 1.936 1.96 -1.24

α-TeO2

Te–O1,2 1.879 1.836 2.31 4.06 4.32 -6.39 0.504 0.182

Te–O3,4 2.121 2.130 -0.42

Angles, ○

O1–Te–O2 103.34 110.45 -6.87

O3–Te–O4 167.94 174.49 -3.90

β-TeO2

Te–O 1.877 1.836 2.34 3.93 4.20 -6.95 0.501 0.194

Te–O 1.927 1.886 2.28

Te–O 2.070 2.025 2.17

Te–O 2.196 2.299 -4.97

γ-TeO2

Te–O1 1.859 1.819 2.15 3.99 4.27 -7.20 0.525 0.199

Te–O2 1.948 1.865 4.26

Te–O1

1
2.197 2.253 -2.55

Te–O2

1
2.019 2.06 -2.03

Angles, ○

O1–Te–O2 99.13 102.18 -3.00

O1

1
–Te–O2

1
153.62 147.88 3.72

*Bond-valences are calculated using re-determined bond-valence parameters for Te4+ – O2−:

r0 = 1.9605, b = 0.41 [113] and neighbours out to 3.5 Å were included

**Core/shell distances for O atoms are averaged over all oxygen sites in the structure
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Table 3.12: Calculated and experimental (if exist) elastic constants for investigated
structures

Cij , GPa C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Compound

Ag2Te4O11

254.03 87.62 26.45 -4.39 -13.62 1.17

259.29 18.43 -1.49 -6.49 -12.01

175.74 -18.35 -9.77 4.64

35.29 -9.56 0.15

30.97 0.33

88.90

BaTe2O6

276.45 46.03 103.62 0.00 0.00 0.00

104.45 40.83 0.00 0.00 0.00

276.94 0.00 0.00 0.00

29.73 0.00 0.00

5.15 0.00

20.34

Bi2Te4O11

133.01 36.19 35.74 0.00 2.89 0.00

120.03 40.18 0.00 -19.44 0.00

139.77 0.00 -7.35 0.00

50.51 0.00 -7.97

45.37 0.00

77.32

CaTe2O5

69.86 6.03 26.03 0.00 -9.24 0.00

62.15 12.57 0.00 -4.79 0.00

65.68 0.00 -16.83 0.00

16.31 0.00 -2.36

26.09 0.00

9.43

Co6Te5O16

133.73 52.13 29.96 0.00 0.00 0.00

144.96 26.72 0.00 0.00 0.00

113.25 0.00 0.00 0.00

21.45 0.00 0.00

33.53 0.00

33.32

Continued on next page
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Table 3.12 – Continued from previous page

Cij , GPa C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Compound

Cs2TeO3

45.32 18.44 12.04 1.70 0.00 0.00

45.32 12.04 -1.70 0.00 0.00

16.62 0.00 0.00 0.00

4.96 0.00 0.00

4.96 1.70

13.44

Cs2Te4O12

303.80 114.48 96.84 9.09 0.00 0.00

303.80 96.84 -9.09 0.00 0.00

275.12 0.00 0.00 0.00

76.38 0.00 0.00

76.38 9.09

94.66

K2Te4O12

303.14 109.96 86.97 0.00 12.24 0.00

301.07 89.12 0.00 -15.83 0.00

263.99 0.00 1.31 0.00

72.75 0.00 -15.84

70.59 0.00

93.79

Li2TeO3

42.45 38.61 4.92 0.00 0.62 0.00

111.35 7.72 0.00 -3.29 0.00

19.07 0.00 -1.98 0.00

9.25 0.00 -2.69

24.91 0.00

41.28

MgTe2O5

114.47 40.55 56.87 0.00 0.00 0.00

117.20 41.19 0.00 0.00 0.00

98.39 0.00 0.00 0.00

28.04 0.00 0.00

61.97 0.00

42.21

Na2TeO3

67.04 -3.17 27.14 0.00 -9.29 0.00

Continued on next page
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Table 3.12 – Continued from previous page

Cij , GPa C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Compound

78.22 30.17 0.00 0.99 0.00

63.11 0.00 -8.56 0.00

34.03 0.00 -3.87

32.83 0.00

11.74

Na2Te4O9

52.47 16.74 27.25 -5.31 -15.51 12.62

51.05 12.66 -2.31 -3.41 14.41

94.44 6.59 -26.35 0.92

16.49 -1.57 -10.84

21.41 -2.44

20.78

NiTe2O5

77.75 46.76 52.41 0.00 0.00 0.00

129.04 38.49 0.00 0.00 0.00

93.66 0.00 0.00 0.00

55.41 0.00 0.00

39.32 0.00

44.92

P2Te3O11

89.35 20.59 30.99 0.00 -12.84 0.00

74.39 8.55 0.00 -7.09 0.00

81.96 0.00 6.34 0.00

21.40 0.00 -7.39

46.67 0.00

24.09

SrTe3O8

133.62 68.29 47.39 0.00 0.00 7.77

133.62 47.39 0.00 0.00 -7.77

354.17 0.00 0.00 0.00

25.39 0.00 0.00

25.39 0.00

62.59

α-TeO2

62.1982 41.0189 19.1431 0.0000 0.0000 0.0000

62.1982 19.1431 0.0000 0.0000 0.0000

132.9107 0.0000 0.0000 0.0000

Continued on next page

Page 109



Chapter 3 : Interatomic potentials for TeO2 system

Table 3.12 – Continued from previous page

Cij , GPa C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Compound

43.4442 0.0000 0.0000

43.4442 0.0000

80.4861

Exp.*

59.5 55.1 24.7 0.0000 0.0000 0.0000

59.5 24.7 0.0000 0.0000 0.0000

115.6 0.0000 0.0000 0.0000

26.9 0.0000 0.0000

26.9 0.0000

72.9

β-TeO2

47.8665 16.9458 14.2551 0.0000 0.0000 0.0000

71.3909 35.1699 0.0000 0.0000 0.0000

129.5418 0.0000 0.0000 0.0000

49.8254 0.0000 0.0000

31.5029 0.0000

26.0381

γ-TeO2

52.1588 15.9202 10.4847 0.0000 0.0000 0.0000

42.2653 2.6836 0.0000 0.0000 0.0000

65.4133 0.0000 0.0000 0.0000

40.0072 0.0000 0.0000

32.4874 0.0000

48.1753

Calc. (DFT)**

66.42 38.36 18.3 0.0000 0.0000 0.0000

51.95 17.45 0.0000 0.0000 0.0000

67.43 0.0000 0.0000 0.0000

37.03 0.0000 0.0000

32.34 0.0000

51.67

* Reference [48]

**Reference [49]
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Chapter 4

Structure of the pure TeO2 glass and

δ−TeO2 polymorph

In this chapter we perform the classical MD simulations of pure TeO2 glass structure and

δ−TeO2 polymorph. To this end we use the MD methods described in Section 1.2.2 of

Chapter 1 and the IAPs derived in the previous chapter. We also use the experimental

techniques described in Section 1.3 of Chapter 1 in order to obtain the PDF for δ−TeO2

polymorph. We analyse the modelled structures with the help of PDFs and in terms of

bond angle distribution (BAD), structural units distribution, rings distribution, etc.

4.1 Classical Molecular Dynamics Simulations of the

pure TeO2 glass structure

4.1.1 Computational details

The glass model in MD simulations should be normally prepared as much as possible

like the real glass, i.e. the initial configuration is firstly heated and then cooled down

to room temperature with an appropriate cooling rate. The ideal way of creating the

glass model is a slow continuous cooling of the system from the melting temperature

Tm to glass formation temperature Tg. Undoubtedly, classical MD has the advantage

over ab initio MD in terms of simulation times but even though we are still limited

from a technical point of view. Particularly, the use of the relaxation algorithm for the

core-shell model is especially time-consuming and hardly possible at high temperatures.

Technically it means that frequent and random abortions of a simulation job occurred

because of convergence problem in the shell relaxation algorithm in DL_POLY, when the

shell model was "turned on" for all types of atoms. For this reason, we had to simplify

the model during the quenching procedure and we used the rigid-ion model for only one
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Chapter 4 : Structure of the pure TeO2 glass and δ−TeO2 polymorph

atom type while cooling the system.

Using the simplified model, we managed to perform a continuous simulation job. We

preferred to use the core-shell model for tellurium atoms as their polarisation effect has

a stronger influence in TeO2 system. However, the use of shell-model MD for tellurium

atoms required some technical "tricks". As we discussed in the previous chapter, the

distances between Te core and Te shell are very significant (up to 0.719 Å), which could

provoke the mentioned above technical difficulties.

Let us now consider some tips, which we used to overcome the mentioned technical

problems. Normally, one does an equilibration run before MD production. It allows

the system to move in the phase-space from arbitrarily assigned initial conditions to the

region of equilibrium states [53]. However, for the new simulation runs (i.e. they are not

continuation of previous ones by restarting) the shells are moved on to the top of their

respective cores in DL_POLY . As the shells displacements in our system are very large,

this could prevent the shell relaxation algorithm to converge, because the positions "on

the core" are not natural in tellurites case. To bypass this we did no equilibration steps in

simulation jobs, but in the meantime we used reasonable initial conditions and sufficiently

long simulation times.

The other useful feature, which helped to perform the continuous job, is the rlxtol

parameter in the CONTROL file. It resets the force tolerance for the shell relaxation

to a given value. This parameter was increased up to 10 (in DL_POLY units) at the

high temperatures. Sometimes the forces on shells were manually set to zero in output

configuration file (REVCON) when job aborted, and the run was restarted with manually

relaxed shells.

Nevertheless, the test runs showed that the use of polarisable potential for oxygen

atoms at 300 K is necessary even if no diffusion is expected to occur at this temperature.

Indeed, let us compare two total PDFs in Fig. 4.1. PDF presented with dash-dotted line is

calculated for the glass model obtained using rigid-ion oxygen atoms. Further this model

was treated at 300K with the core-shell model for oxygen atoms. The corresponding PDF

is presented with solid line. It is clear that the inclusion of the shell model even at 300 K

improved significantly the short- and medium-range order in the modelled glass structure.

4.1.2 Glass preparation

The final model of the pure TeO2 glass was obtained starting from the draft glass model

obtained after test runs. The simulation box (31.76 Å×34.62 Å×30.58 Å) contained 4032

particles (= 2016 cores and 2016 shells). We used the NPT ensemble and a time step of

1.0 fs for integration of the equations of motion. Firstly, the system was heated up to 2050

K (the γ-TeO2 melting temperature according to the test runs) and kept for about 150 ps

Page 112



Chapter 4 : Structure of the pure TeO2 glass and δ−TeO2 polymorph

 ! " #

$

 

!

"

 
!
"
#

 !"#$

! %&%'(%)*!)+,&-*.

!)+,&-*!./-00.

!-+1

Figure 4.1: Total PDFs for the glass at 300K modelled in the rigid-ion framework (dash-
dotted line) and in the core-shell model (solid line) for oxygen atoms, and an experimental
total PDF.

following which it was cooled down to 1000 K and kept for about 70 ps more, and after it

was cooled down to 500 K and kept at this temperature for about 70 ps more. Then, the

system was cooled down to 300 K and kept at this temperature for about 50 ps. The final

configuration was obtained by annealing the system at 300 K during about 20 ps with

the full shell model, i.e. with harmonic spring potential interaction for O(core)–O(shell)

system and quartic spring potential interaction for Te(core)–Te(shell) system. The fact

that the shell model for oxygen atoms was not activated when the atomic diffusion is

high may induce defects in the medium range-order of the glass model (as discussed in

Sec. 4.1.4.1). The temperature variation as a function of time is shown in Fig. 4.2

and corresponds to 5.4⋅1012 K/s cooling rate in average. The final atomic density of the

modelled glass structure is 0.0626 at/Å3.

One can argue that, in fact, our system was cooled down with infinite rate between

2050 K and 1000 K within the reported preparation procedure. It is possible that Tg

for the modelled glass lies above 1000 K, thus the structural relaxation is expected to be

incomplete and the resulting structure contains more defects than a fully relaxed glass

model. Effectively, the step-wise cooling within this temperature region seems to be more

reasonable, however the choice of the infinite cooling rate is due to some peculiarities of

using the rigid-ion model for oxygen atoms. In fact, we tried to decrease very slowly the

temperature of the melt, as shown in Fig. 4.3. This quenching procedure lead to rather

unusual and interesting results, which would call for a deeper investigation.

Indeed, already at a high temperature (1800 K) we remarked the beginning of
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Figure 4.2: Temperature as a function of time in the TeO2 glass preparation procedure.
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Figure 4.3: Temperature as a function of time in the test TeO2 glass preparation
procedure.
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a crystallisation of a small germ in our system. (We recall here that the starting

configuration was a disordered system, which did not have any "memory" of the crystalline

state.) Fig. 4.4 shows an intermediate configuration at T = 1200 K, where we can see

the layers of Te atoms forming into a crystalline lattice. The partial PDFs corresponding

to this configuration are reported in Fig. 4.5. One can remark that Te–Te partial PDF

looks like the one for FCC lattice with the cell parameter a = 5.22 Å. The Fig. 4.6 reports

the evaluation of total distribution function with temperature during slow cooling. As we

can see, the peaks become thinner and more pronounced, which indicates the ordering of

the germ. That is why we preferred a long annealing at T = 2050 K and an immediate

cooling down to T = 1000 K in order to avoid any nucleation of crystalline germs in our

system.

It is also interesting to note that traces of crystallised germ disappeared when the

oxygen shells were "turned on" at T = 300 K so that the final total PDF became alike to

that one of the final glass configuration, but with final atomic density of 0.0635 at/Å3

Figure 4.4: Projection of a configuration at T = 1200 K in the slow cooling procedure.
The tellurium atoms are represented in grey and the oxygen atoms are represented in red.
The black lines are the guides for an eye.
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Figure 4.5: Partial PDFs for intermediate configuration at T = 1200 K.
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Figure 4.6: Total PDFs for different temperatures during the slow cooling procedure.

Page 116



Chapter 4 : Structure of the pure TeO2 glass and δ−TeO2 polymorph

4.1.3 Experimental PDF

The synthesis of the TeO2 glass sample and the obtaining of its PDF were performed

several years ago in the laboratory. The pure TeO2 glass sample was synthesised starting

from orthotelluric acid H6TeO6 (Aldrich 99.9%). Orthotelluric acid was first thermally

decomposed at 550○C for 24 hours in order to obtain powdered α−TeO2. The powder was

then put in a platinum crucible and melted at 800○C for 30 minutes and finally quenched

using a mixture of water, NaCl and ethanol at about -10 ○C. As only a small quantity of

glass (few decigrams) was obtained after each synthesis, this procedure was repeated in

order to obtain a few grams. The measured density of the sample is ρexp = 5.57 g/cm3,

which corresponds to a atomic density 0.063 at/Å3.

The experimental PDF was obtained thanks to a neutron total scattering experiment

carried out at the 7C2 diffractometer of the LLB (Laboratoire Lèon Brillouin), Saclay,

France. The used wavelength of 0.701 Å enabled us to record intensities up to Qmax =
16Å−1 (Q = 4πsinθ/λ). The powder samples were placed in a thin-walled (2.5 micrometers)

vanadium container of 6 mm in diameter. The experiment was performed under vacuum

at room temperatures. Raw data were corrected for empty cell, absorption, inelastic

and multiple scattering and normalised using the program CORRECT [114]. The total

PDF was then derived from the structure factor using the MCGR program [115]. This

Monte Carlo-based inversion method allows in contrast to the conventional direct Fourier

transform, to correctly handle noise, truncation of data and the finite resolution of the

instrument.

4.1.4 Results

4.1.4.1 Pair distribution functions

In Fig. 4.7 we report the calculated total distribution function T (r) together with the

experimental one. Without going into the details, let us precise that the simulated T (r)

was slightly broadened to take into account the effect of truncation of the experimental

data at Qmax. For this, we first calculated the Fourier transform of T (r), then we

multiplied by a function e−αQ
2 and finally Fourier transform again to obtain the smeared

T (r) corresponding to experiment. Note that only the first peaks of T (r) are affected

by this broadening. The envelope of calculated T (r) is in good agreement with the

experimental one, which lets us conclude that the modelled glass structure is consistent

with the real one. The first peak of the calculated T (r) corresponds to the shortest Te–O

distances and is slightly shifted to smaller r values with respect to the experimental data.

This is in accordance with the underestimation of the Te–O bond lengths found using the

crystalline structures optimised with our IAPs . Also it shows a more explicit shoulder at
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≈ 2.13 Å than the experimental T (r), which is attributed to elongated axial Te–O bonds.

The second peak shows a more significant inaccuracy in calculated T (r). This peak has

the main contribution from the O–O partial distribution function (see Fig. 4.8) and is

shifted to the larger r values (2.83 Å) with respect to the experimental one (2.77 Å).

It implies that in our model the O–O distances are slightly exaggerated, but this does

not affect either Te atom coordination or TeOx units interconnection. The third peak

at 3.47 Å is very representative for TeOx units interconnections, as it corresponds to the

shortest Te–Te distances, and it fits very well the experimental data. The most important

disagreement between calculated and experimental T (r) is in the fourth peak position.

The calculated value is 4.40 Å and corresponding experimental value is 4.67 Å. As seen

in Fig. 4.8, all three partial PDFs contribute to this peak to a large extent, so that it

is difficult to define the origin of this error. Possibly, this error is due to the use of the

rigid-ion model for oxygen atoms during the quenching process.
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Figure 4.7: Total distribution function obtained with MD simulations (solid line)
compared with the neutron diffraction data (dotted line).

Fig. 4.8 shows all the partial PDFs, which have no oscillations in the region for r > 9

Å. This indicates an appropriate choice of the simulation box size. The Te–O partial PDF

has a sharp first peak with the maximum at 1.896 Å and a broad asymmetric shoulder

up to the first minimum at 2.46 Å. The average coordination numbers of Te and O atoms
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Figure 4.8: Partial and total radial pair distribution functions for modelled TeO2 glass.

(nTeO and nOTe) calculated by integrating TTeO(r) = 4πr2ρGTeO(r) with cutoff radius

Rcutoff = 2.46 Å have values of 3.93 and 1.97 respectively. These values are lower than

those in crystalline structures (4 and 2). They are also in a good agreement with the ab

initio MD results of Pietrucci et al. (nTeO = 3.69 and nOTe = 1.85) and with experimental

results of Barney et al. (nTeO = 3.68(4) and nOTe = 1.84(1)) obtained with total neutron

scattering techniques. In these works, a cutoff radius of 2.36 Å (proposed in [22] as well)

was used. If we now calculate the coordination numbers with this cutoff value, we obtain

nTeO = 3.73 for tellurium atom and nOTe = 1.86 for oxygen atom, which are in better

agreement with the literature. As we can see, the Te atoms coordination number in

tellurites is very sensitive to Rcutoff value and we will develop a detailed discussion on

this problem in the next section.

4.1.4.2 Tellurium coordination number

Let us now discuss in more detail the problem of tellurium coordination number and cutoff

radius for Te–O bonds. Fig. 4.9 (solid line) shows coordination number of Te atoms as

a function of the cutoff radius. The coordination number curve keeps increasing without

any flat region indicating a large variety of Te–O distances. This means that there is no

characteristic cutoff radius that could unambiguously define the first coordination sphere

of the tellurium atom and its coordination number. This problem of the broad Te–O

distances distribution and no unequivocal definition of cutoff radius was already raised

in [38, 26], but it has never been considered more elaborately. In this work we propose

to explicitly take into account the presence of the Te LP, when defining the cutoff radius

for Te–O bonds. Each TeOx unit has its stereo-chemically active Te LP on one side and
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the bonded oxygen atoms on the other side. So it is incorrect to consider oxygen atoms

on the LP side as being bonded to the Te atoms even if they lie within the given cutoff

radius.

The explicit treatment of tellurium LP as a shell allows us to distinguish between

bonded and non-bonded oxygen atoms in the Te coordination sphere of given radius.

For this purpose we considered the distribution of the angles (φ) between oxygen atom

inside the Te coordination sphere of the radius Rcutoff = 2.46 Å, Te core and Te shell (the

LP) (Fig. 4.10). As we can see, this distribution consists of three regions: two broad

peaks at 80–100 degrees and at 110–140 degrees which correspond to axial and equatorial

oxygen atoms respectively, and a shoulder between 50 and 80 degrees on the left. This

last interval corresponds to the oxygen atoms that lie on the LP side of the TeOx unit

and should not be taken into account when calculating Te coordination number.

We investigated the Te atom environment in a number of crystalline tellurite structures

and defined a new criterion φcutoff = 75○ for oxygen atoms that contribute to Te

coordination number. The dotted line in Fig. 4.9 shows a new accumulated coordination

number for Te–O pairs considering the new cutoff criterion and this time the curve has

a characteristic flat region that starts from approximately 2.4 Å. Now when calculating

the coordination numbers of Te and O atoms from the glass structure configuration and

taking into account two cutoff criteria φcutoff = 75○ and Rcutoff = 2.46 Å, we obtain

nTeO = 3.63 and nOTe = 1.81. These values are clearly smaller than those obtained with

the same cutoff radius but without the φcutoff criterion. This indicates that not taking

into account this latter criterion systematically overestimates the coordination number

by including incorrect oxygen atoms from a chemical point of view. In addition, using

Rcutoff = 2.36 Å and φcutoff = 75○ does not change so much the coordination numbers

(nTeO = 3.55 and nOTe = 1.77), which confirms the robustness of the φ criterion. From

these remarks it appears that for tellurite glass systems, the first minimum of the TTeO(r)

(2.46 Å) is not the best choice for calculating the coordination number, and that a smaller

cutoff radius value (for example, 2.36 Å) gives a better estimation if the φcutoff criterion

is not considered.

4.1.4.3 Structural units distribution

The structural units distribution of the glass structure model obtained with the best

criteria (Rcutoff = 2.46 Å and φcutoff = 75○) are reported in Table 4.1. It shows that the

structure contains a large variety of Qn
m polyhedra with a large proportion (about 43%)

of threefold units. This directly contributes to the decrease of Te coordination number to

nTeO = 3.63. There is about 50% of four-coordinated Te atoms and a small amount (7%)

of five-coordinated Te atoms. A large content (21%) of terminal oxygen atoms bonded
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Figure 4.9: Accumulated tellurium atom coordination number with only Rcutoff criterion
(solid line) and with two cutoff criteria φcutoff = 75○ and Rcutoff (dotted line).
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Figure 4.10: Normalised O–Te(core)–Te(shell) angle distribution with Rcutoff = 2.46 Å
in the TeO2 glass model. Color vertical lines correspond to these angles in α- (red), β-
(blue) and γ-TeO2 (magenta) crystalline structures (optimised with used IAP).
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only to one Te atom was found in the glass structure and a negligible amount (about 3%)

of three-coordinated oxygen atoms.

In Table 4.1 we also give the Qn
m polyhedra distribution calculated with other cutoff

values discussed in previous section. As we can see, considering the Rcutoff = 2.46 Å

without φ cutoff criterion gives the highest discrepancies, which emphasises the discussion

of Sec. 4.1.4.2.

The O–Te–O and Te–O–Te bond-angle distributions (BAD) are reported in Fig. 4.11.

The O–Te–O BAD has two peaks: one between 70○ – 110○ and the other, much less

intense, between 150○ – 180○. The peak at smaller angles includes the Oeq–Te–Oeq angles

of α−, β− and γ−TeO2 phases (99○ – 103○), but its maximum is shifted to 90○ that

corresponds more to Oeq–Te–Oax angles. The second peak corresponds to Oax–Te–Oax

angles. A quite narrow peak of Te–O–Te BAD argues for rather corner-sharing character

of polyhedra connection and the absence of edge-sharing polyhedra. The BAD statistics

does not differ significantly when considering only Rcutoff criterion.
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Figure 4.11: Normalised BAD. The solid line is for O–Te–O BAD and the dashed line is
for Te–O–Te BAD.

4.1.4.4 Rings statistics

In order to obtain the information on the Intermediate Range Order (IRO) of the glass, we

performed a rings statistics analysis of the final MD configuration. We used the RINGS

code [116] for this purpose. RINGS allows obtaining the following quantities: RC(n), the

number of rings of n nodes per cell in the material, PN(n), the proportion of nodes, which

form at least one ring of size n, and, Pmax(n) and Pmin(n), the probabilities that a ring

with n nodes represents respectively the longest or the shortest ring for given node [116].
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Figure 4.12: A fragment of the TeO2 glass model as-obtained with MD simulations and
illustrating typical chains and rings present in the structure. Oxygen atoms are presented
in the small spheres (red for BO and yellow for NBO), tellurium atoms are the medium
size spheres (black for four-coordinated, indigo for three-coordinated and dark green for
five-coordinated Te) and Te LPs are the big transparent blue spheres. The solid lines
represent the short Te–O bonds (< 2.02 Å) and dashed lines represent intermediate and
long bonds (2.02 < d < 2.36 Å). The black bonds emphasise the rings in the structure and
n in the circles indicates the amount of nodes in each found ring.
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Table 4.1: The Qn
m units distribution in % in the TeO2 modelled glass structure.

Q1
3

Q2
3

Q3
3

Q2
4

Q3
4

Q4
4

Q4
5

Q5
5

This work
(φcutoff and Rcutoff = 2.46 Å) 1.19 18.15 23.96 0.59 19.05 30.51 2.08 4.46
This work
(Rcutoff = 2.46 Å) 0.0 4.76 20.68 0.29 10.27 46.13 3.27 13.99
This work
(φcutoff and Rcutoff = 2.36 Å) 1.49 22.17 26.04 0.74 18.75 25.6 2.08 3.13
This work
(Rcutoff = 2.36 Å) 0.45 12.8 24.4 0.59 14.29 37.95 2.83 6.55
Ab initio MD [26] 0.6 14.9 20.4 0 17.1 35.9 0 9.4
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Figure 4.13: Primitive rings statistics for pure TeO2 modelled glass. RC(n) is the number
of rings of n nodes per cell in the material, PN(n) is the proportion of nodes, which form
at least one ring of size n, and Pmax(n) and Pmin(n) are the probabilities, that a ring
with n nodes represents respectively the longest or the shortest ring for given node.
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A n-membered ring is a ring containing n nodes and the results are reduced to the total

number of nodes in the networks. In such a manner, it is possible to compare the results

for systems with different number and/or nature of nodes.

In Fig. 4.13 we present the rings statistics of the final MD configuration obtained

for primitive rings search. A ring is primitive [117] if it can not be decomposed into two

smaller rings. It is significant, that for rings statistics analysis with RINGS we could use

only Rcutoff = 2.36 Å criterion, but we suppose that consideration of the φcutoff criterion

would have changed the results not very strongly so that qualitative conclusions would

have rested the same. The rings analysis was carried out using 30 nodes as maximum

search depth.

The RC(n) values for TeO2 system are really low, which indicates the small amount

of rings in the system and hence the weak network connectivity. Furthermore, the rings

with n ≥ 10 predominate in the TeO2 glass configuration. As PN(n), the proportion of

nodes, is high for rings with n ≥ 10, they can be considered as a global characteristic of

the network.

Let us now consider the Pmin(n) and Pmax(n) values. For n < 8 we get Pmin(n) ≅ 1
meaning that the small rings of 4–8 nodes are always the shortest path for the given node

and, hence, one particular node can not be the origin of several small rings. Otherwise it

would be an evidence for a quite compact glass structure. The Pmax(n) reaches the value

of 1 only for 30 nodes search. This implies, that the shortest paths of 30 nodes could be

found and points out on the openness of the network and the presence of voids in the

structure.

4.1.4.5 Te–O–Te bridges distribution

In the previous chapter it was discussed that the γ−TeO2 polymorph is the closest

crystalline structure to pure TeO2 glass as it has common band in Raman spectra, which

corresponds to the vibrations of symmetrical Te–O–Te bridges. We recall here that we

consider the bridge as nearly symmetrical for δ = 2.019 Å−1.948 Å= 0.07 Å (in γ−TeO2)

and as essentially asymmetrical for δ = 2.197 Å−1.895 Å= 0.34 Å (in γ−TeO2) and δ = 2.121
Å−1.880 Å= 0.241 Å(in α−TeO2).

Let us now consider the results for the optimised γ−TeO2 and α−TeO2 structures. We

obtain the following values of δ: δ = 2.060 Å−1.865 Å= 0.20 Å in γ−TeO2 ("symmetrical"

bridges) and δ = 2.253 Å−1.819 Å= 0.43 Å in γ−TeO2 and δ = 2.130 Å−1.836 Å= 0.294
Å in α−TeO2 (essentially asymmetrical bridges). As was discussed in Chapter 3, these

subtle differences are slightly exaggerated as our IAPs tend to underestimate short bond

lengths and to overestimate long bond lengths. In such a manner, the difference between

symmetrical and asymmetrical bridges is shifted to larger δ values. For our modelled glass
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Figure 4.14: Distribution of the differences in bond lengths δ for all BO atoms in the
modelled glass.

structure we will consider the bridges with δ < 0.2 Å as symmetrical.

Let us now consider the distribution of the bridges in the modelled glass structure.

Fig. 4.14 reports the absolute number of bridges with the difference in the bond lengths

δ. The distribution demonstrates the predominance of the bridges with δ < 0.5 Å with

the tail up to 0.7 Å. The nearly symmetrical bridges make up about 48% considering the

δ < 0.2 Å criterion. Hence, the symmetrical bridges make a very important contribution to

bridges distribution, which reinforces the idea that the glass structure is closer to γ−TeO2

polymorph than to α−TeO2 polymorph.

4.1.5 Discussion

Having done the statistics description of the glass structure let us consider a fragment

chosen randomly in the modelled glass structure. In Fig. 4.12 several rings are presented

as well as chains with terminal oxygen (NBO) atoms. TeOx units tend to form large

rings (n ≥ 10), probably, because of the tellurium LP (big blue transparent spheres in Fig.

4.12) steric effect. Indeed, when forming small rings, all the LPs could hardly be oriented

inside the small ring so that each TeOx unit should take into account its orientation with

respect to the other. Accordingly, this could be a reason why TeO2 glass forms such an

open network with voids created by the LP steric effect.

From the rings statistics and from. Fig. 4.12 we can see that a large amount of NBO

atoms (see Sec. 4.1.4.3) in the glass structure plays an important role (together with

electronic LP steric effect) in forming the glass network. This could be due to the high

proportion of terminal oxygen atoms that prevents the closure of the rings and indicates
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a more open network [118].

Our model of the amorphous TeO2 structure agrees in general with the one proposed

in [27], but it is much more irregular and consists of a larger variety of TeOx units.

Indeed, our model of open network with weak connectivity and a large amount of terminal

oxygen atoms supports the concept that NBO atoms and low tellurium coordination

numbers are the reason of facile accommodation of modifier atoms, as expressed in [27].

Possibly, the amount of NBO atoms allows stabilising the glass structure when adding a

modifier (MnOm) by creating M–O bonds with terminal oxygen atoms thus reinforcing

the connectivity of the glass network.

Let us now compare our amorphous TeO2 model with the one obtained by ab initio

MD simulations in [26]. The Qn
m structural units distribution in that work is quite close

to those for our model (particularly if considering only Rcutoff criterion). Pietrucci et al.

report about 14% of NBO atoms which is 7% less than in our model. As mentioned above,

the authors suppose that such a large concentration of NBO atoms is due to a high cooling

rate used in the quenching protocol, which might have brought the system to the frozen

liquid state. The glass model in their work was obtained as a result of 16 ps cooling the

liquid at a rate of ≅ 1014 K/s, as ab initio simulations are very time-consuming. With our

classical MD simulations, we could perform a much longer quenching protocol. As it was

mentioned in Sec. 4.1.2, the total simulated time is about 350 ps which is significantly

longer. Nevertheless, we found even more NBO atoms and weaker connectivity of the

network as in ab initio MD simulated glass structure. Thus we suppose that these are

really characteristics of the TeO2 amorphous state.

4.1.6 Conclusions

MD simulation of the pure TeO2 glass was performed for a system containing 672 TeO2

units and a total simulation time of about 350 ps. The calculated total PDF is in a good

agreement with the experimental one obtained by neutron diffraction method. Hence we

consider our glass structure model as realistic.

The glass structure model has a broad Qn
m units distribution with a large variations of

Te–O bond lengths. We developed a new criterion, which allows us to precisely define the

first coordination sphere of Te atom by explicitly taking into account the stereochemically

active Te electronic LP. This criterion is the angle between oxygen atom inside the Te

coordination sphere of the radius Rcutoff = 2.46 Å, Te core and Te shell (the LP) and it

was set to 75○.

The Te coordination number in the modelled glass is nTeO = 3.63 and is in good

agreement with these ones obtained by ab initio MD simulation [26] and by neutron

diffraction methods [27]. This result together with Qn
m units distribution implies a large

Page 127



Chapter 4 : Structure of the pure TeO2 glass and δ−TeO2 polymorph

amount of NBO atoms (21%) in the glass structure, which confirms the results of the

mentioned above studies as well.

We carried out the rings statistics analysis and investigated the modelled glass

structure. The pure amorphous TeO2 network has a weak connectivity, terminated chains

and large (n ≥ 10) rings. This is due to large number of NBO atoms and the stereochemical

effect of Te electronic LP that the TeO2 glass has such a badly connected network.

Possibly, these peculiarities explain the instability of the glass towards to devitrification

and its good ability to accommodate the modifiers.

The MD simulations of modified TeO2 glasses would be of a great interest. It

could clarify the role of the modifiers oxides in TeO2-based glasses, how modifiers atoms

incorporate into the glass network, the role of the NBO atoms and the changing of the

Te coordination number, etc. There are a number of well studied experimentally systems

and some of them were briefly reviewed in Chapter 1. One can be interested in such

systems as K2O–TeO2, Cs2O–TeO2, V2O5–TeO2, Tl2O–TeO2. However, one have to be

sure in the quality and transferability of the IAPs for modifiers oxide. As we discussed

in Sec. 3.2 of Chapter 3, it seems that IAP for K1+–O2− system is not suitable to use

together with our IAPs for Te4+–O2− system. To the best of our knowledge there are no

established potentials of a good quality and high transferability for V5+–O2− and Tl1+–O2−

systems. In such a manner, the MD study of modified TeO2 glasses is a complex problem

and requires a solid approach.
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4.2 Structure of δ−TeO2 polymorph. Theoretical and

experimental approaches.

4.2.1 Average structure
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Figure 4.15: Rietveld fit of the XRD powder diffraction pattern of the δ−TeO2 sample.
Rp = 4.66%;Rwp = 6.09%;RB = 5.97%;χ2 = 1.40;DW = 1.47.

The X-ray powder diffraction pattern of the δ−TeO2 polymorph is reported in Fig.

4.15. The diffraction lines are relatively thin, indicating that the structure has a fairly

well-defined long-range order. The peaks intensity decreases rapidly with the diffraction

angle θ and is hardly observable above 2θ = 80○.
The fit of the pattern was performed with the Rietveld method using the FULLPROF

[73] software. We used the model of the perfect fluorite lattice (F m3̄m space group) with

cations occupying the positions 4a (0, 0, 0) and anions the positions 8c (0.25, 0.25, 0.25).

The refinement results are presented in Table 4.2. The refined cell parameter is a = 5.679
Å. The atomic displacement parameters (ADPs) are very large (9.89 Å2 for the cations

and 27.12 Å2 for the anions), which clearly indicates the large atomic displacements with

respect to their average positions. In addition, as was discussed in Section 1.1.1.4 of

Chapter 1, the Te–O distances obtained with average atomic positions are equal to 2.46

Å and strongly larger than those usually found in tellurites.

The obtained fit is rather good but not perfect. The fit can be improved with a split
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Table 4.2: Results of the Rietveld refinement of the XRD pattern of δ−TeO2 polymorph.
Two models are reported: perfect fluorite model (4a sites for Te atoms and 8c sites for O
atoms) and split atom refinement (32f sites for both atoms).

Model parameters
Atom type Model x/a y/a z/a Biso, Å2

Te

Perfect 0 0 0 9.89
fluorite

Split atoms 0.043 0.043 0.043 5.55
at 32f

O

Perfect 0.25 0.25 0.25 27.12
fluorite

Split atoms 0.326 0.326 0.326 8.32
at 32f

atom refinement, in which tellurium and oxygen atoms fill the 32f (x, x, x) positions.

The refined positions are x = 0.043 and x = 0.326 for Te and O atom respectively, and the

isotropic displacement parameters drop to BTe = 5.55 Å2 and BO = 8.32 Å2. The reliability

factors are the following: Rp = 4.57%;Rwp = 5.95%;RB = 3.66%;χ2 = 1.33;DW = 1.53.

Split atom refinements generally enable to take into account a non-Gaussian probability

density function of the atomic positions. Thus, the large displacement obtained in the

< 111 > direction indicates that whereas its average position is (0.25, 0.25, 0.25), few

atoms are likely shifted towards the centre of the cell or the middle of the edges [17]. The

structure obtained with such a model is presented in Fig. 4.16. The Te–O distances in

such a model (1.93 Å, 2.16 Å, 2.35 Å and 2.37 Å) are closer to those found in tellurites.

Effectively, the average structure of δ−TeO2 polymorph really resembles the one of

β−Bi2Te4O11 studied in [17] and briefly discussed in Section 1.1.1.4 of Chapter 1. However,

the isotropic ADPs for δ−TeO2 are significantly larger than those for β−Bi2Te4O11 (BTe =
BBi = 4.7 Å2 and BO = 14.6 Å2), indicating that the disorder in δ−TeO2 is much more

important.

Hence, the description of this structure with the fluorite model is incomplete and

require an atomistic modelling approach.

4.2.2 Molecular dynamics simulations

4.2.2.1 Computational details

The starting configuration for MD simulations was build from the perfect fluorite-type

lattice discussed in previous section (F m3̄m, a = 5.679 Å, Te (4a) ∶ x = y = z = 0, O

(8c) ∶ x = y = z = 0.25). The simulation box comprised 6 × 6 × 6 unit cells (34.07 Å×

34.07 Å× 34.07 Å) so that it contained 864 TeO2 units (5184 particles including Te and O

atoms shells). The Te and O atoms shells were initially superposed on the corresponding
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Figure 4.16: Representation of the average structure of the δ−TeO2 polymorph with the
split atom refinement with 32f (x, x, x) positions. BTe = 5.55 Å2 and BO = 8.32 Å2.

cores.

We performed several simulation jobs in order to investigate the evolution of our

model with different MD conditions. Firstly, we performed the simulation job of a total

time of 100 ps at 300K (room temperature (RT)) in the NPT ensemble. Then the

final configuration obtained at RT was heated up to 900K and kept at this temperature

for 200 ps and then cooled down to 300K with infinite cooling rate in one case and

with finite cooling rate in the other case. For the simplicity, the final configurations of

these simulations will be referred to as the: (i) RT configuration; (ii) FC (fast cooling)

configuration; and SC (slow cooling) configuration.

In order to judge the quality of the obtained models, we used the data obtained from

the Rietveld refinement: the cell parameter, average atoms positions and ADPs. Basing

on the refinement results we expected to obtain a final model of δ−TeO2 polymorph with

highly disordered Te atoms around average position x = y = z = 0 and about 3 times (in

terms of B parameters) more disordered O atoms around average position x = y = z = 0.25.
So let us now briefly discuss the way of the calculation of B parameters for the modelled

structures.

4.2.2.2 Calculation of atomic displacement parameters.

By definition (e.g. [119]) the isotropic atomic displacement parameter B is

B = 8π2U = 8π2 < u2 > (4.1)
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where u is the atomic displacement of a given type of atom with respect to an ideal

position. The average <> can be performed both in space and time. The square root of

U provides an r.m.s. (root-mean-square) value for the atomic displacement.

In order to obtain the distribution of the atoms around their perfect atomic positions

in the final configuration, we did as follows. Firstly, the simulation box of 6 × 6 × 6 unit

cells was projected into one unit cell and further we applied the site symmetry operations

to each atom in such a way to bring it to its Wyckoff position. We, hence, calculated the

anisotropic ADPs Bxx,Byy,Bzz for Te and for O atoms as:

Bii = 8π2
1

N
∑
j

(ij − i0)2 (4.2)

where i = x, y, z is the coordinate of the atom j, i0 = x0, y0, z0 is its Wyckoff position

coordinate (x = y = z = 0 for Te atoms or x = y = z = 0.25 for O atoms) and the sum is

over all atoms of considered type. The equivalent isotropic ADPs were calculated as was

proposed by [120] and [119]:

Beq = 1

3
(Bxx +Byy +Bzz). (4.3)

4.2.2.3 Room temperature molecular dynamics simulation

So, the first obtained RT configuration is characterised by the cell parameter a = 5.599
Å, which is 1.4 % less than the experimental value, and by ADPs < BTe >= 9.69 Å2 and

< BO >= 15.03 Å2. The ratio of these values is then 0.645, which is almost twice larger than

the experimental one (0.365). Effectively, our system changed strongly with respect to

the initial configuration. We can clearly see it from the strong decrease of configurational

energy (Ecfg) with the time (Fig. 4.17). (In our model the configurational potential energy

consists of the potential energy of Van der Waals, Coulombic and core-shell interactions.)

However, the estimated 3D diffusion coefficients are rather small at room temperature

(2.6 ⋅ 10−13 m2/s for Te atoms and 9.9 ⋅ 10−13 m2/s for O atoms). Hence, one can suppose

that at RT, the system was just locally relaxed and a more appropriate approach requires

the MD simulation at a higher temperature, when the atoms can better explore the phase-

space. To do so, we aimed to correctly choose the simulation temperature so that the

atoms had enough of mobility and in the same time the chosen temperature was below

the melting point.

4.2.2.4 Molecular dynamics simulation at 900K

We performed several short test MD runs at different temperatures and monitored the

values of system configurational energy with the time. The results are presented in Fig.

4.18. As we can see, at 1700 K, 1600 K and 1500 K the Ecfg(t) function has a remarkable
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Figure 4.17: Configurational energy Ecfg of the system as a function of simulation time.
Room temperature MD simulation.

slope that indicates the expansion of the system, possibly, leading to the system melting.

At 1200 K we still observe a very slight slope, whereas at 900 K one can even remark that

Ecfg tends to slightly decrease with the time. As such a subtle energy changes are very

interesting to observe with the time, we performed a long simulation job of 200 ps at this

temperature.

Fig. 4.19 reports the Ecfg(t) for the simulation at 900 K together with the evolution

of the ADPs ratio. The values of the approximate diffusion coefficients for this run are

3.4 ⋅ 10−11 m2/s for Te atoms and 4.6 ⋅ 10−11 m2/s for O atoms (two orders larger than at

300 K). Indeed, the configurational energy slightly tends to decrease with the time and

it seems that the ADPs ratio is correlated with Ecfg. However, such fluctuations of the

Ecfg(t) and the ADPs ratio are provoked by rather subtle changes in atoms arrangement.

Hence, we cannot expect that the ADPs values will approach to the experimental values.

4.2.2.5 Influence of the cooling rate.

We followed two cooling procedures for the configuration obtained at the end of the 200

ps run at 900 K: an infinite cooling rate, i.e. the temperature was directly set to 300

K, and a finite cooling rate with average cooling rate of 10 K/ps. The temperature as a

function of time for the slow cooling simulation is reported in Fig. 4.20.

Let us now compare the configurational energies for three simulations (RT, FC and

SC) reported in Fig. 4.21. The average values for the FC and SC configurations are clearly

smaller than those for the RT configuration. The difference between Ecfg for FC and SC

configurations is much more subtle. Both FC and SC configurations are the results of
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Figure 4.18: Configurational energy Ecfg of the system as a function of simulation time.
MD simulations at 1700 K (black), 1600 K (red), 1500 K (blue), 1200 K (magenta) and
900 K (green).
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Figure 4.19: Configurational energy Ecfg (black) of the system and the ADPs ratio (blue)
as the functions of simulation time. MD simulation at 900 K.
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Figure 4.20: Temperature as a function of time in the slow cooling procedure for δ−TeO2

MD simulations.
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Figure 4.21: Configurational energy Ecfg of the system as a function of simulation time at
300 K for RT configuration (black), FC configuration (red) and SC configuration (blue).
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Table 4.3: Values of equivalent isotropic displacement parameters < BTe > and < BO >
and their ratios < BTe > / < BO > and cell parameter a for δ−TeO2 modelled structures for
different MD simulations (RT, FC, SC). The error (in %) in the cell parameter compare
to experimental value in indicated in brackets.

< BTe >, Å2 < BO >, Å2 < BTe > / < BO > a, Å
RT 9.69 15.03 0.65 5.599 (1.4)
FC 9.92 16.05 0.62 5.611 (1.2)
SC 9.53 15.90 0.60 5.602 (1.4)

Table 4.4: The Qn
m units distribution and NBO atoms population in % in δ−TeO2 modelled

structures for different MD simulations: RT, FC and SC.

Q1
3

Q2
3

Q3
3

Q2
4

Q3
4

Q4
4

Q4
5

Q5
5

NBO
RT 1.27 21.30 19.91 0.58 22.80 30.21 1.97 1.97 24.9
FC 0.69 19.56 20.14 0.58 22.34 30.09 1.50 4.63 23.1
SC 0.92 18.75 20.95 1.16 21.18 30.32 2.31 4.28 23.3

a much longer MD run compared to the RT configuration. The SC configuration was

furthermore treated for some more time, which allowed our system to find a state with

the smallest (among studied cases) configurational energy at the end.

An interesting question is how this difference in Ecfg is reflected in the statistical

description of atomic arrangement in the modelled δ−TeO2 structures. In Table 4.3 we

report the values of cell parameter a, isotropic APDs for Te and O atoms and their ratios;

and in Table 4.4 we report the Qn
m units distribution and NBO atoms population for

obtained configurations. It is difficult to make any claims about significant changes from

one configuration to another, but one can remark that the RT configuration differs stronger

from the FC and SC configurations than the FC and SC configurations between each other.

We can, however, state that the ratio < BTe > / < BO > and NBO atoms population are

slightly less for the SC configuration. We then consider this latter configuration as the

best one as it has the smallest Ecfg, < BTe > / < BO > and NBO atoms values. Hence,

we will further consider the SC configuration as a δ−TeO2 structure model and use it for

analysis.

4.2.3 Analysis of the final configuration.

4.2.3.1 Average structure.

We report the snapshots of the final SC configuration in Fig. 4.22, where Te and O atoms

are represented in grey and red spheres correspondingly and the atoms shells are not

represented. Fig. 4.22a presents the < 0 0 1 > direction projection of our δ−TeO2 model

and Fig. 4.22b its average structure in the same direction. These figures demonstrate

its disordered nature and its relation to the fluorite structure. The cell parameter of the
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(a) 6 × 6 × 6 unit cells simulation box. (b) Average structure.

Figure 4.22: Projection in < 0 0 1 > direction of the final SC configuration. Te atoms are
represented in grey spheres and O atoms in red.

Table 4.5: Values of anisotropic and isotropic displacement parameters < BTe > and < BO >
and their ratios < BTe > / < BO > for modelled δ−TeO2 structure, experimental δ−TeO2

structure and experimental β−Bi2Te4O11 structure [17].

BTe, Å2 BO, Å2 < BTe > / < BO >

Modelled δ−TeO2

Bxx 8.91 16.02
Byy 9.49 15.76
Bzz 10.21 15.90
< B > 9.53 15.90 0.60

Experimental δ−TeO2 9.89 27.09 0.35
Experimental β−Bi2Te4O11 4.7 14.6 0.32

modelled δ−TeO2 structure is a = 5.602 Å (1.4 % error with respect to the experimental

value).

In Table 4.5 we report the calculated displacement parameters for δ−TeO2 model

together with the values obtained from the Rietveld analysis of X-ray powder diffraction

data for δ−TeO2 and β−Bi2Te4O11. As was discussed above, the ADPs ratio for Te and

O atoms in our model is almost twice larger than experimental values. However, the

Rietveld analysis shows a very important disorder in Te atoms (BTe = 9.89 Å2) and our

model reproduces this result very well (BTe = 9.53 Å2). But according to our model, the

disorder in O atoms is of the same order as in β−Bi2Te4O11, whereas the BO for δ−TeO2

is significantly higher (BO = 27.12 Å2).
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Figure 4.23: Total distribution function for δ−TeO2 structure obtained with X-ray total
scattering (black line) and with MD simulations (blue line).

4.2.3.2 Experimental PDF from X-ray total scattering.

In the previous section we showed that the average structure of our δ−TeO2 model is

in a good agreement with the information obtained with the Bragg scattering. Let us

now consider the real structure, which could be described with the help of PDF. It can

be obtained from the X-ray diffuse scattering signal and calculated from the modelled

configuration.

The experimental PDF was obtained by means of X-ray total scattering experiment as

described in Section 1.3 and reported in Fig. 4.23. The calculated PDF for our δ−TeO2

model is reported in the same figure. The envelope of the calculated PDF is in a very

good agreement with the experimental one, which indicates that the obtained model is

correct. The peaks of the calculated function are very slightly shifted towards the smaller

values of r according to the slight underestimation of the calculated atomic density with

respect to experimental one.

The PDFs obtained with X-ray total scattering experiment focuses mainly on the

tellurium atoms arrangement as their X-ray atomic form factors are more important than

those for oxygen atoms. Hence, the first less intensive PDF peaks at 1.9 Å and at 2.8 Å

correspond to the shortest Te–O distances and to the typical O–O distances found in TeO3

and TeO4 polyhedra respectively. The further more intensive peaks at 3.65 Å and 4.16 Å

correspond to Te–Te atomic distances. The use of the reduced PDF g(r) = 4πρr2(G(r)−1)
reported in Fig. 4.23 allows to better demonstrate the peaks lying at the larger r values.

Hence, the explicit oscillations of the g(r) after 6 Å indicate the periodic character of the

Te atoms arrangement.
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(a) Te–Te partial PDF.
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(b) Te–O partial PDF.
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(c) O–O partial PDF.

Figure 4.24: Partial PDFs for modelled δ−TeO2 structure.

4.2.3.3 The short and intermediate range orders

Let us now consider the partial pair distribution functions obtained from our MD model

and reported in Fig. 4.24. The Te–Te partial PDF exhibits rather broad peaks with

almost the same width and positions corresponding to FCC lattice. The remarkable

intensity oscillations are observed up to the cutoff radius of the PDF. The Te–O partial

PDF has an intensive and sharp maximum at 1.84 Å with an explicit broad shoulder at

2.66 Å and a broad maximum at 4.34 Å. The next coordination shells are barely resolved.

The O–O distribution function exhibits the first maximum at 2.72 Å, which corresponds

to the typical shortest O–O distances. Then it has two broad peaks at 4.28 Å and 6.59 Å

and further becomes almost flat.
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Figure 4.25: Total PDF for δ−TeO2 calculated for neutron scattering (black solid line)
and compared with the calculated (black dashed line) and experimental (blue solid line)
PDFs for pure TeO2 glass.

One can see, that the partial pair distribution functions for δ−TeO2 are very similar
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to those for the pure TeO2 glass (see Fig. 4.8 in Section 4.1.4.1), except the long-range

order in Te-Te sublattice. Indeed, if we compare the calculated total PDF for neutron

scattering for δ−TeO2 and for TeO2 glass (Fig. 4.25), we find the same peaks positions up

to ∼5 Å. These peaks of δ−TeO2 PDF are slightly more intense and narrow than for the

glass, which corresponds to a better atoms ordering in the short-range order in disordered

crystalline phase. Hence, the first Te–O, Te–Te and O–O coordination shells are very

similar for δ−TeO2 and the pure TeO2 glass structure.

Let us now consider the total PDF peak at 4.28 Å. We recall here that this peak in the

total PDF for modelled glass structure had the largest position error with respect to the

experimental data. It was supposed in Section 4.1.4.1 that this error could be due to the

use of the rigid-ion model for oxygen atoms and/or high cooling rate during the quenching

process.The δ−TeO2 model was obtained with completely different MD conditions (i.e.

simulations time and temperature) and core-shell model for both atom types (thanks to

the lower working temperatures). However, we find the same position error for the peak

at 4.28 Å, which means that this feature comes from the IAPs rather than from MD

simulation conditions.

4.2.3.4 Distribution of Te and O atoms around their average positions

Let us now discuss in more detail the distribution of Te and O atoms around their average

positions. The calculated anisotropic displacement parameters Bxx,Byy and Bzz (with

respect to 4a and 8c Wyckoff positions) for Te and O atoms are given in Table 4.5. For

both atoms we have Bxx ≈ Byy ≈ Bzz, which corresponds to a spherical distribution with

the probability maximum centred at (0, 0, 0) for Te atoms and at (0.25, 025, 025) for

O atoms. Indeed, it seems to be a reasonable description for Te atoms, as seen in Fig.

4.22b. However, in the same figure one can note that in the < 0 0 1 > projection the

distribution of O atoms have a nearly square form. Moreover, if we now consider the

< 1 0 1 > projection of the average δ−TeO2 structure (Fig. 4.26a), we can see that the O

atoms distribution has a triangle form.

One can imagine this distribution as a tetrahedron with an origin at the 8c position

and the vertices at the 32f positions: (x, x, x), (x,1/2 − x,1/2 − z), (1/2 − x,1/2 − x, z)

and (1/2 − x, x,1/2 − z). Fig. 4.26b shows all the atoms in the simulation box gathered

in the 4a and 8c positions with O atoms represented in transparent red spheres for the

sake of convenience. One can note that the density of such a tetrahedron distribution

is not homogeneous. Such a distribution could be rather modelled with the thermal

anisotropic ellipsoids inscribed in a tetrahedron. This is to say, that thermal anisotropic

ellipsoids have their origins at 32f positions. Such a configuration is shown in figures

4.27a, 4.27b, 4.27c. Indeed, this model for oxygen atoms distribution represents very well
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(a) Projection of average structure in the
< 1 0 1 > direction.

(b) All Te and O atoms in simulation
box assembled in 4a and 8c positions
respectively. O atoms are represented in
transparent red spheres for the sake of
convenience.

Figure 4.26: Modelled δ−TeO2 structure. Te atoms are represented in grey spheres and
O atoms in red.

(a) 3D view.
(b) Projection in the
< 0 0 1 > direction.

(c) Projection in the
< 1 0 1 > direction.

Figure 4.27: Thermal anisotropic ellipsoids with the origin at 32f positions.

the distribution obtained with MD simulations.

The presented description of the oxygen atoms distribution around 32f positions

accords with the results of a split atom refinement of the X-ray powder diffraction pattern

presented in Section 4.2.1. Let us now wonder about the effect of the anisotropic ADPs

on the Rietveld refinement results. We report the results of such a fit in Table 4.6. (We

considered anisotropic ADPs for both atom types.) The equivalent isotropic parameters

are slightly larger than for the case of refinement with isotropic parameters, but the

Table 4.6: Results of the Rietveld refinement of the XRD pattern of δ−TeO2 polymorph
considering split atom model (32f sites for both atoms) and anisotropic Bij.

Model parameters
Atom type x/a y/a z/a Bii, Å2 Bij , Å2

Te 0.0342 0.0342 0.0342 7.35 -1.29
O 0.3194 0.3194 0.3194 12.65 3.55
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(a) Projection in < 0 0 1 > direction.

(b) Projection in < 1 0 1 > direction.

Figure 4.28: Representation of the average structure of the δ−TeO2 polymorph with
the split atom refinement with 32f (x, x, x) positions. Anisotropic ADPs for Te atoms:
Bii = 7.35 Å2, Bij = −1.29 Å2; and for O atoms: Bii = 12.65 Å2, Bij = 3.55 Å2.

reliability factors of the fit are improved a bit: Rp = 4.53%;Rwp = 5.89%;RB = 3.90%;χ2 =
1.31;DW = 1.56. The visualisation of the δ−TeO2 structure obtained with this fit is given

in Fig. 4.28. We report here the projections in < 0 0 1 > (Fig. 4.28a) and < 1 0 1 > (Fig.

4.28b) directions. Such a model with split atoms and anisotropic thermal ellipsoids is in

a perfect agreement with our MD simulations model considering qualitative description

of the atoms distribution around their average positions (compare with figures 4.22b and

4.26a).

4.2.3.5 Structural units distribution

As we have shown in the Section 4.2.3.3, the short range order in modelled δ−TeO2 is

very close to the one in the modelled glass. Namely, the first peak of Te–O partial PDF

with a broad shoulder indicates that the coordination number of Te and O atoms is very

sensitive to the Rcutoff value. That is why we used the same cutoff criteria as in the

modelled glass (Rcutoff = 2.46 Å and φcutoff = 75○) for the structural units analysis in

modelled δ−TeO2. The structural units distribution for δ−TeO2 model compared to the

glass model is reported in Table 4.7. The coordination numbers are nTeO = 3.66 and

nOTe = 1.83. The Qn
m units distribution for δ−TeO2 model is almost the same as for

the glass and shows that the free- and four-fold units are the principal structural units.

The population of the NBO atoms in δ−TeO2 model is very important, which is highly

unusual for pure crystalline TeO2, where all oxygen atoms are bridging and the structural

units form the sinusoidal (in α−TeO2) or zigzag chains (in γ−TeO2) or the double oxygen
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Table 4.7: The Qn
m units distribution and NBO atoms population in % for modelled

δ−TeO2 structure compared with the modelled glass structure.

Q1
3

Q2
3

Q3
3

Q2
4

Q3
4

Q4
4

Q4
5

Q5
5

NBO
δ−TeO2 0.92 18.75 20.95 1.16 21.18 30.32 2.31 4.28 23.3
glass 1.19 18.15 23.96 0.59 19.05 30.51 2.08 4.46 21.0

 ! " # $ %  %! %" %# %$ 

 & 

 &!

 &"

 &#

 &$

%& 

 
!
"
#
!
 
$
%
&
'
(
#
$
&
)
*
+
%
(
,
-
#
.
$
.
,
/
0
*
,
1
2
0
,
)
&

 !"#$%&'$"($$)*

% +,$-

.

%"# ))

(a) O–Te–O BAD
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(b) Te–O–Te BAD

Figure 4.29: Normalised BAD for modelled δ−TeO2 structure (solid line) compared to
the BAD for modelled glass structure (dotted line). The vertical lines correspond to the
angle values found in TeO2 crystalline structures: α− (green), β− (dark blue) and γ−TeO2

(light blue).

bridges like in β−TeO2.

The O–Te–O and Te–O–Te BAD are given in Fig. 4.29. Once again the resemblance

with the glass structure is clearly indicated. Hence, broad O–Te–O BAD comprises all

characteristic angles for α−, β− and γ−TeO2 and Te–O–Te BAD indicates rather a corner-

sharing character of polyhedra connection and a small amount of edge-sharing polyhedra

(double oxygen bridges).

4.2.3.6 Structural units interconnection.

Let us now closely inspect the obtained δ−TeO2 model. Fig. 4.30 reports the slices of

the simulation box in a−, b− and c−axis projections. Each slice was cut in such a way to

contain all Te atoms lying on the one face of FCC lattice, so that the width of each slice

is about 5 Å. The criteria for the bond definition were chosen as for Qn
m units distribution

calculation, i.e. Rcutoff = 2.46 Å and φcutoff = 75○. The bonds are represented as follows:

the short Te–O bonds (< 2.02 Å) are represented in solid yellow lines, the intermediate

Te–O bonds (2.02 Å< d < 2.2 Å) in dashed yellow lines and the long Te–O bonds (> 2.2 Å)

in dashed dark green lines. (The "isolated" TeOx units in Fig. 4.30 are not really isolated,

they are connected with units in other (parallel) slices. It is clear from Table 4.7 that
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(a) Slice in the < 1 0 0 > direction. (b) Slice in the < 0 1 0 > direction.

(c) Slice in the < 0 0 1 > direction.

Figure 4.30: The slices of the final configuration cut in different directions. Each slice has
a width of about 5 Å.
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there is no true isolated Q0
m structural units. The "isolated" Te atoms on the borders

of simulation box are actually coordinated with oxygen atoms via periodic boundaries

conditions.)

As we can see, the units interconnection is indeed very poor. In each projection we

find the fragments of the short chains and a very few of double oxygen bridges. Fig. 4.30

shows that there is no preferred crystallographic direction, where the units are more or

less interconnected. The chains consist of four structural units in average and of eight

structural units maximum. One can note that these chains almost always contain the

long and weak Te–O bonds.

This can explain the instability of the δ−TeO2 polymorph towards re-crystallisation

with heating into γ− or α−TeO2 polymorphs. Possibly, a very subtle changes in

temperature are required to reinforce the existing weak bonds in the chains germs and to

construct the longer chain linkages as in more stable γ− and α−TeO2 polymorphs.

4.2.3.7 The role of tellurium LP.

It was discussed in Section 4.1.5 that the tellurium LP plays a very important role in

our modelled glass structure. Firstly, we define with its help wether the oxygen atom is

bonded to a given tellurium atom and, secondly, the structural units have to take into

account its steric effect when arranging one with respect to another.

Let us now consider the role of the tellurium LP in the modelled δ−TeO2. Fig. 4.31a

reports the LP–LP partial PDF GLPLP (r) compared with Te–Te partial PDF GTeTe(r).

They drastically differ one from another. Surely, the peak positions of the both functions

correspond to the FCC lattice (a = 5.602 Å) formed by tellurium atoms, but the resolution

of the GLPLP (r) peaks is significantly better. Its peaks are thin and intense indicating a

much better ordering of the LPs than of Te cores. Indeed, the calculated ADP for tellurium

LPs is < BLP >= 2.58 Å2, which is almost four times less than < BTe >. Apparently, the

cation FCC lattice is not so disordered as we could conclude considering only tellurium

cores, but ordered in such a way that tellurium shells form a better defined FCC lattice.

The c−axis projection of the average structure with only Te shells and O cores is given in

Fig. 4.32.

In contrast, the O(LP)–O(LP) partial PDF does not really differs from the O(core)–

O(core) partial PDF as shown in Fig. 4.31c. If we consider the Te(LP)–O pair correlation

function (Fig. 4.31b), we observe the shift of the most intensive peaks to the larger r

values, which corresponds to the shift of tellurium LPs with respect to tellurium cores at

0.4–0.6 Å distances.
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(a) Tesh–Tesh partial PDF. (b) Tesh–O partial PDF. (c) Osh–Osh partial PDF.

Figure 4.31: Partial PDFs for pairs containing Te or O shells compared to core-core partial
PDFs.

Figure 4.32: Projection in < 0 0 1 > direction of the averaged SC configuration. Only Te
shells (blue spheres) and O cores (red spheres) are presented.
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4.2.4 Conclusions

In this chapter we presented for the first time a detailed study of the δ−TeO2 polymorph

based on the experimental and theoretical approaches. The X-ray diffraction pattern and

PDF from X-ray diffuse scattering signal were obtained for the δ−TeO2 sample without any

secondary phases. The Rietveld refinement of the X-ray diffraction pattern considering the

perfect fluorite model gives very important ADPs for both Te and O atoms. In addition,

the perfect fluorite model is inconsistent as it gives overestimated values for the shortest

Te–O and Te–Te bonds (2.46 Å and 4.02 Å respectively). The use of the split atoms

model improves the refinement reliability factors and decreases significantly the isotropic

ADPs as well as bond lengths values. The total PDF from X-ray diffuse scattering signal

gives a more precise insight on the interatomic distances. It exhibits the first peaks at 1.9

Å 2.8 Å and 3.65 Å, which can be unambiguously attributed to the shortest Te–O, O–O

and Te–Te distances respectively.

We, then, performed MD simulations of the δ−TeO2 polymorph. The obtained model

is in a very good agreement with experimental data: the calculated ADPs for Te atoms

are in perfect agreement with experimental one, although the ADPs for O atoms are

underestimated. The calculated PDF accords very well with experimental one.
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Figure 4.33: Primitive rings statistics for δ−TeO2 polymorph. RC(n) is the number of
rings of n nodes per cell in the material, PN(n) is the proportion of nodes, which form at
least one ring of size n, and Pmax(n) and Pmin(n) are the probabilities, that a ring with
n nodes represents respectively the longest or the shortest ring for given node.

In general, δ−TeO2 polymorph seems to be very similar to β−Bi2Te4O11 phase: in

both systems the cations form a crystalline (FCC) lattice and the anions exhibit a large

displacement disorder with respect to the tetrahedral sites. Also, the both phases consist

of mainly TeO3 and TeO4 polyhedra connected in a coner-sharing way. However, the
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disorder in δ−TeO2 polymorph is more important for both type of atoms. In addition, a

large concentration of small rings was found in β−Bi2Te4O11 phase in [17]. If we consider

the rings statistics analysis for δ−TeO2 (Fig. 4.33), we find that the distribution of the

rings of different size is very similar to the one in the glass and does not present the

evidences of the high concentration of small rings. We should note, however, that we used

a different way of rings statistics calculations than the authors in [17].

We studied in detail the distribution of Te and O atoms around their average positions

for our δ−TeO2 model. The tellurium atoms are distributed almost isotropically and

form a spherical distribution around 4c (0, 0, 0) position. Whereas the distribution

of the oxygen atoms is more complex and can be described by anisotropic thermal

ellipsoids with the origins at 32f positions (x, x, x). The consideration of the anisotropic

ADPs in Rietveld refinement slightly improves the reliability parameters and gives the

structure model, which is in perfect agreement with the model obtained by means of MD

simulations.

The close inspection of the obtained model showed that the connectivity between

structural units is very weak. In contrast to α−, β− and γ−TeO2 pure polymorphs, our

δ−TeO2 model has a large proportion of the NBO atoms, which is completely similar to

the modelled glass structure. This leads to formation of short and terminated chains.

These chains are often formed with the help of long (> 2.2 Å) and weak Te–O bonds,

which indicates the instability of such structural features. This means that very subtle

changes in temperature are sufficient for initiating the structural rearrangement.

The LPs of tellurium atoms play a surprising role in our δ−TeO2 model. We found

that the Te LPs are rather well organised in crystalline FCC lattice in contrast to Te

cores. The ration of ADPs, Biso, for Te and O atoms is almost four times smaller for

Te LPs than for Te cores. Hence, apparently, the cation sub-lattice is not so disordered

as we could think, but it is ordered in such a way to form a fairly well-ordered Te LPs

sub-lattice.

We presented here a detailed analysis of the modelled δ−TeO2 polymorph. However,

there are still a lot of open questions about this phase. We recall here that this phase has

never been obtained from the pure TeO2 glass but always from slightly modified glass.

The understanding of the role of the modifiers in δ−TeO2 crystallisation requires primarily

a thorough experimental study. For example, this could be the X-ray total scattering

experiments for the δ−TeO2 samples prepared from glasses with different modifiers (e.g.

WO3, Nb2O5) and different modifiers content. On the other hand, the MD simulations of

δ−TeO2 shows that this phase exists within the pure TeO2 system. Hence, this indicates

the processing side of the problem of δ−TeO2 formation from the pure glass.
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This work presents the structural study of the pure TeO2 glass and disordered

δ−TeO2 phase by means of experimental and atomistic simulations methods. The

used experimental techniques are: X-ray diffraction, X-ray total scattering and Raman

spectroscopy. For the structural modelling we use molecular dynamics simulations, which

require the derivation of the empirical interatomic potentials for TeO2 system.

First of all, we performed the study on the synthesis of γ− and δ−TeO2 polymorphs.

These phases are very difficult to synthesise as pure as possible, i.e. without any secondary

phases. We optimised the synthesis parameters in order to improve the quality of the

crystallised samples. We demonstrated that the homogenisation of the glassy samples

improved the crystallised samples quality. We observed the effect of homogenisation of

glassy samples is crucial for the purity of the crystallised phases. According to that we

proposed that different parts of the sample crystallise in different phases: the powder

grains of pure glass directly crystallise in α−TeO2 polymorph, while the grains rich

in modifier crystallise in δ−TeO2 or γ−TeO2 polymorph. The sample of pure δ−TeO2

phase obtained by crystallisation of homogenised glass was then used for the X-ray total

scattering experiment.

The problem of interatomic potentials derivation led us to studying of the local

environment of Te atom in pure α−, β− and γ−TeO2 and some mixed TeO2-based

crystalline structures. In these structures tellurium atom has different oxygen atoms

environment. Consideration of the different crystalline structures helps to understand

how the interaction model effects the TeOx units modelling results. In such a manner,

we showed by means of empirical methods that the electronic LP of tellurium atom

is responsible for distorted rutile-type structure of α−TeO2 and the formation of TeO4

disphenoid with two equal short bonds and two equal elongated bonds. The γ−TeO2

consists of asymmetrical TeO3+1 units with three short Te–O bonds and one elongated

bond. We showed that in this case, the oxygen atoms polarisability in potential model

plays an important role and is responsible for a strong asymmetry in TeIV atoms

environment. We found out that the use of an anharmonic term in Te(core)–Te(shell)

interaction allows a better modelling of TeIV atom coordination in various mixed TeO2-

based compounds.

149



General conclusion

In such a way, we derived a simple but nontrivial potential model, in which the short-

range interatomic interaction in the core-shell model frameworks is set between the Te

atom core and O atom shell and the core-shell model for Te atom uses an anharmonic

spring potential form. This approach is reported for the first time in the literature and

works well for different TeO2-based compounds. The core-shell model for O atom is used

in conventional harmonic spring form.

The application of the derived potentials to 19 TeO2-based compounds (pure and

mixed) demonstrated their high transferability. The cell parameters and TeOx basic units

are reproduced very well for all the investigated structures except K2TeO3 and K2Te4O12

structures. Generally, our potentials underestimate short Te–O bonds and overestimate

intermediate bonds. The subtle difference between TeO4 unit in α−TeO2 and TeO3+1 unit

in γ−TeO2 is well reproduced, which makes our IAPs appropriate for MD simulation glass

modelling.

We considered the effect of the Te atom polarisation on TeOx structural unit

configuration. The core-shell displacement for Te atom varies in 0.394–0.719 Å interval.

Generally, the stronger the polarisation of Te atom, the lower its coordination and the

stronger the Te–O bonds (TeO3 tp in Cs2TeO3, for example), whereas the weaker the

polarisation of Te atom, the higher its coordination (5 to 6) and the weaker some of the

Te–O bonds.

The derived potentials were applied to MD simulations of pure TeO2 glass and

disordered δ−TeO2 phase structures. The glass structure model was obtained for a system

containing 672 TeO2 units and with a total simulation time of about 350 ps. We considered

our glass structure model as realistic as the calculated total PDF is in a good agreement

with the experimental one obtained by neutron diffraction experiment. In order to analyse

correctly the glass structure model, we established a criterion that allows us to precisely

define the first coordination sphere of Te atom by explicitly taking into account the Te

stereochemically active electronic LP. Indeed, the glass structure model has a very broad

bond lengths distribution with a large variations of Te–O bond lengths so that there is

no clear criterion to define the usual cutoff radius. Our criterion is the angle between

oxygen atom inside the Te coordination sphere of the radius Rcutoff = 2.46 Å, Te core and

Te shell (the LP) and it was set to 75○.

The modelled glass network is described as poorly connected, with terminated chains

and large (n ≥ 10) rings. The Qm
n units distribution is broad and presents different units

types: Q1

3
, Q2

3
, Q3

3
, Q2

4
, Q3

4
, Q4

4
, Q4

5
, Q5

5
. The three- and four-coordinated Te atoms make

up the largest contribution into Qm
n units population, which leads to the Te coordination

number decreased with respect to pure crystalline structures (nTeO = 3.63). The units

interconnection has rather corner-sharing character, and the edge-sharing polyhedra are

almost absent. We demonstrated that the large number of NBO (21%) and stereochemical
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effect of Te electronic LP lead to such a badly connected TeO2 glass network.

In this work we also presented for the first time a detailed study of the δ−TeO2

polymorph based on the experimental and theoretical approaches. The experimental

study included the X-ray diffraction, X-ray total scattering and Raman spectroscopy

characteristics of the pure δ−TeO2 sample obtained in this work. The Rietveld refinement

of the X-ray diffraction pattern considering the perfect fluorite model gives very important

ADPs for both Te and O atoms. The perfect fluorite model implies that the shortest Te–O

and Te–Te bond lengths are equal to 2.46 Å and 4.02 Å respectively. However, according

to X-ray diffuse scattering experiment, the shortest interatomic distances in δ−TeO2 have

the values of 1.9 Å 2.8 Å and 3.65 Å, which can be unambiguously attributed to the

shortest Te–O, O–O and Te–Te distances respectively. We performed the MD simulations

in order to clarify the structure of δ−TeO2 polymorph.

The obtained MD model is in a very good agreement with experimental data. The

calculated ADPs for Te atoms are in perfect agreement with those obtained with Rietveld

refinement, although the ADPs for O atoms are underestimated. The average structure

of δ−TeO2 polymorph can be described as follows: the cations form a crystalline (FCC)

lattice and the anions exhibit a large positional disorder with respect to the tetrahedral

sites. The structure consists of mainly TeO3 and TeO4 polyhedra connected in a conner-

sharing way and the distribution of the rings of different size is very similar to the one in

the glass. The tellurium atoms are distributed almost isotropically and form a spherical

distribution around 4c (0, 0, 0) position, whereas the distribution of the oxygen atoms

is more complex and can be described by anisotropic thermal ellipsoids with the origins

at 32f positions (x, x, x). This information permitted to slightly improve the Rietveld

refinement by taking into account the anisotropic ADPs.

The MD study has also demonstrated that the structure of δ−TeO2 polymorph is very

similar to that of the glass and not to the α−, β− and γ−TeO2 pure polymorphs. The

connectivity between structural units is very weak, the model has a large proportion of

NBO atoms, and the chains are short and broken. These chains are often formed with

the help of long (> 2.2 Å) and weak Te–O bonds, which indicates the instability of such

structural features.

Thanks to the accurate interatomic potentials developed in this work we could model

the structure of the pure TeO2 glass and the δ−TeO2 polymorph. The detailed analysis of

the obtained configurations allowed us to improve the description of the glass structure

and to give a deep insight into the δ−TeO2 polymorph structure for the first time.
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Etude structurale du verre de TeO2 et de la variété désordonnée TeO2-δ par

dynamique moléculaire

Résumé : Ce travail a pour but d’améliorer la description structurale du verre de TeO2 pur
et d’étudier en profondeur la structure de la phase désordonnée TeO2-δ au moyen de la dynamique
moléculaire (DM).

Nous avons établi des potentiels interatomiques (IAP), simples mais non triviaux, prenant en compte
la polarisabilité des atomes de tellure et d’oxygène à l’aide du modèle cœur-coquille. Nous avons démontré
le rôle important de la paire libre électronique de l’atome de Te dans la formation d’unités asymétriques
TeOx. Les IAPs précis reproduisent 17 structures cristallines à base de TeO2 et sont appropriés pour les
simulations par DM des systèmes désordonnés.

Les simulations des structures de la phase vitreuse pure et de TeO2-δ ont été effectuées par DM. Il
a été démontré que le verre de TeO2 est principalement constitué d’unités structurales TeO3 et TeO4,
et un grand nombre d’atomes d’oxygène non-pontant (NBO) est observé. La coordinence des atomes de
tellure est plus faible dans le verre que dans les structures cristallines pures.

Dans la phase TeO2-δ, les atomes de tellure forment un réseau cristallin (CFC) bien défini et
les atomes d’oxygène présentent un grand désordre de position. Cette phase est caractérisée par une
population d’unités structurales, une coordinence des atomes de tellure et une proportion d’atomes
d’oxygène non pontant typique du verre. Par conséquent, la structure TeO2-δ est plus proche de celle
du verre que des structures d’autres polymorphes cristallines de TeO2 pures.

Mots clés : tellurites, verres à base de TeO2, phases désordonnées, paire libre, potentiel
interatomique (IAP), simulation par dynamique mol’eculaire (DM), fonction de distribution de paires
(PDF), synthèse de poudres.

Structural study of amorphous TeO2 and disordered δ−TeO2 phase by molecular
dynamics simulations

Abstract: This work aims to improve the structural description of the pure TeO2 glass and to give
a deep insight into the structure of the disordered δ−TeO2 phase by means of molecular dynamics (MD)
simulations.

We derived simple but nontrivial interatomic potentials (IAPs), which take into account the
polarisability of tellurium and oxygen atoms using the core-shell model. We demonstrated the important
role of the electronic lone pair of the tellurium atoms in the formation of asymmetrical TeOx units. The
accurate IAPs is able to reproduce 17 crystalline TeO2-based structures and are appropriate for MD
simulations of disordered systems.

The MD simulations of the pure glass and δ−TeO2 phase structures were carried out. It was
demonstrated that the TeO2-glass consists of mainly TeO3 and TeO4 structural units and a large number
of non-bridging oxygen (NBO) atoms is observed. The coordination number of the tellurium atoms in
the glass is less than in the pure crystalline structures.

In the δ−TeO2 phase, the tellurium atoms form a well-defined crystalline (FCC) lattice and the
oxygen atoms exhibit a large positional disorder. This phase has a structural units distribution and a
tellurium coordination number and a proportion of NBO atoms similar to those of the glass. Hence,
the structure of δ−TeO2 is closer to that of glass than to the structures of other pure TeO2 crystalline
polymorphs.

Keywords: tellurites, TeO2-based glasses, disordered phases, lone pair, interatomic potential (IAP),
molecular dynamics (MD) simulations, pair distribution function (PDF), powder synthesis.
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