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Résumé

L’ensemble des contributions de cette thèse s’articule autour de problèmes d’ordonnancement
et d’optimisation dans des contextes probabilistes. Ces contributions se déclinent en deux par-
ties. La première partie est dédiée à l’optimisation de différents mécanismes de tolérance aux
pannes pour les machines de très large échelle qui sont sujettes à une probabilité de pannes
et la seconde partie est consacrée à l’optimisation du coût d’exécution des arbres d’opérateurs
booléens sur des flux de données.

Dans la première partie, nous nous sommes intéressés aux problèmes de résilience pour les
machines de future génération dites «exascales» (plateformes pouvant effectuer 1018 opérations
par secondes).

Alors que la fiabilité des composants prise de manière indépendante augmente, le nombre
de composants aussi augmente de manière exponentielle. Les quatre plateformes les plus puis-
santes dans la liste TOP 500 comprennent chacune plus de 500.000 coeurs et le temps moyen
entre pannes (MTBF) d’une plateforme haute performance est inversement proportionnel à son
nombre de processeurs. Ainsi, on s’attend à ce que les plateformes de future génération soient
victimes en moyenne à plus d’une panne par jour et à ce que leur MTBF soit plus petit que le
temps nécessaire pour faire une sauvegarde. D’où la nécessité d’avoir des mécanismes efficaces
pour minimiser l’impact des pannes et pour les tolérer.

Le premier chapitre de cette partie est dédié à l’état de l’art des mécanismes les plus utilisés
dans la tolérance aux pannes et à une présentation de résultats généraux liés à la résilience.

Dans le second chapitre, nous avons étudié un modèle d’évaluation des protocoles de sauve-
garde de points de reprise (checkpoints) et de redémarrage. Le modèle proposé est suffisam-
ment générique pour contenir les situations extrêmes: d’un côté le checkpoint coordonnée, et
de l’autre toute une famille de stratégies non-coordonnées (avec enregistrement de messages).
Nous avons identifié un ensemble de paramètres cruciaux pour l’instanciation et la comparaison
de l’espérance de l’efficacité des protocoles de tolérance aux pannes, pour un couple donné ap-
plication/plateforme. Nous avons proposé une analyse détaillée de plusieurs scénarios, incluant
certaines des plateformes de calcul existantes les plus puissantes, ainsi que des anticipations sur
les futures plateformes exascales.

Dans le troisième chapitre, nous avons étudié l’utilisation conjointe de la réplication et d’un
mécanisme de checkpoints et de redémarrage. Avec la réplication, plusieurs processeurs exé-
cutent le même calcul de telle sorte que la panne d’un processeur n’implique pas forcément
une interruption de l’exécution de l’application. Dans ce chapitre nous avons considéré deux
mises en œuvre de la réplication. Dans la première approche « Réplication de processus »,

i



ii RÉSUMÉ

chaque processus d’une unique instance d’une application parallèle est répliqué (de manière
transparente). Dans la seconde approche «Réplication de l’application», des instances entières
de l’application sont répliquées. La réplication de processus surpasse largement la réplication
de l’application car la probabilité qu’un processus donné et ses instances répliquées tombent
en panne est largement inférieure à la probabilité qu’une instance entière de l’application et
ses instances répliquées tombent en panne. Cependant, la réplication de processus ne peut pas
toujours être une option possible, car elle nécessite la modification de l’application. La répli-
cation de l’application peut être utilisée chaque fois que la réplication de processus n’est pas
possible car elle est agnostique du modèle de programmation parallèle, et donc elle considère
l’application comme une boîte noire non modifiable. La seule exigence est que l’application
soit malléable et que l’instance soit redémarrable à partir d’un fichier de point de sauvegarde.
Concernant la première approche, nous avons dérivé de nouveaux résultats théoriques (Nombre
Moyen de Pannes avant l’Échec et le Temps Moyen avant l’Échec) pour une distribution expo-
nentielle des pannes. Nous avons étendu ces résultats à n’importe quel type de distribution,
avec notamment des formules closes pour les distributions suivant des lois de Weibull. Concer-
nant la seconde approche, nous avons fourni une étude théorique d’un schéma d’exécution avec
réplication lorsque la distribution des pannes suit une loi exponentielle. Nous avons proposé des
algorithmes de détermination des dates de sauvegarde quand la distribution des pannes suit une
loi quelconque. Nous avons évalué les deux approches au moyen de simulations, basées sur une
distribution de pannes suivant une loi exponentielle, de Weibull (ce qui est plus représentatif des
systèmes réels), ou tirée de logs de clusters utilisés en production. Nos résultats montrent que la
réplication est bénéfique pour un ensemble de modèles d’applications et de coût de sauvegardes
réalistes, dans le cadre des futures plateformes exascales.

Dans le quatrième chapitre, nous avons étudié l’utilisation d’un prédicteur de pannes con-
jointement avec un mécanisme de checkpoints et de redémarrage. Un prédicteur de panne est un
logiciel lié à une machine, qui par l’étude de «logs» (les événements enregistrés) et d’informations
données par des capteurs sur la machine, va tenter de prédire le moment où une panne va ar-
river. Il est caractérisé par son taux de rappel (proportion des pannes effectivement prédites)
et par sa précision (proportion de vraies pannes parmi toutes les pannes annoncées), et il four-
nit des prédictions soit exactes soit avec des intervalles de confiance. Dans ce chapitre, nous
avons pu obtenir la valeur optimale de la période de checkpoint minimisant ainsi le gaspillage
de l’utilisation des ressources dû au coût de prise de ces checkpoints et ce suivant différents
scénarios. Ces résultats nous ont permis d’évaluer analytiquement les principaux paramètres
qui influent sur la performance des prédicteurs de pannes à très grande échelle et de montrer que
les paramètres les plus importants d’un prédicteur est son taux de rappel et non pas sa précision.

Dans le cinquième chapitre, nous avons considéré la technique traditionnelle de checkpoint
et de redémarrage en présence de corruptions mémoires silencieuses. Contrairement aux pannes
qui provoquent un arrêt de l’application, ces erreurs silencieuses ne sont pas détectées au mo-
ment où elles se produisent, mais plus tard, au moyen d’un mécanisme spécifique de détection.
Dans ce chapitre nous avons considéré deux modèles, dans le premier modèle les erreurs sont
détectées après un délai qui lui-même suit une distribution de probabilité (typiquement une loi
exponentielle) et dans le deuxième modèle un appel à un mécanisme de vérification permet de
détecter les erreurs lors de son invocation. Dans les deux cas nous sommes capables de calculer
la période optimale minimisant les pertes, c’est-à-dire la partie du temps où les noeuds ne font
pas de calculs utiles. En pratique, seul un nombre borné de checkpoints peut être gardé en



iii

mémoire, et le premier modèle peut faire apparaître des fautes critiques qui provoquent la perte
de tout le travail réalisé jusque là. Dans ce cas, nous avons calculé la période minimale qui sat-
isfait une borne supérieure sur le risque. Pour le second modèle, il n’y a pas de risque de fautes
critiques, grâce au mécanisme de vérification, mais le coût induit est reporté dans les pertes.
Enfin, nous avons instancié et évalué chacun des modèles sous des scénarios et des paramètres
d’architectures réalistes.

Dans la seconde partie de la thèse, nous avons étudié le problème de la minimisation du
coût de récupération des données par des applications lors du traitement d’une requête exprimée
sous forme d’arbres d’opérateurs booléens appliqués à des prédicats sur des flux de données de
senseurs. Les données doivent être transférées des senseurs vers l’appareil de traitement des
données, par exemple un smartphone. Transférer une donnée induit un coût, par exemple une
consommation énergétique qui diminuera la charge de la batterie de l’agent mobile. Comme
l’arbre de requêtes contient des opérateurs booléens, des pans de l’arbre peuvent être court-
circuités en fonction des données récupérées. Un problème intéressant est de déterminer l’ordre
dans lequel les prédicats doivent être évalués afin de minimiser l’espérance du coût du traite-
ment de la requête. Ce problème a déjà été étudié sous l’hypothèse que chaque flux apparaît
dans un seul prédicat.

Dans le sixième chapitre, nous avons présenté l’état de l’art de la seconde partie et dans le
septième chapitre, nous avons étudié le problème de la minimisation du coût de récupération
des données par des applications lors du traitement d’une requête exprimée sous forme normale
disjonctive. Dans ce chapitre, nous avons éliminé l’hypothèse que chaque flux apparaît dans un
seul prédicat et nous avons considéré le cas plus général où chaque flux peut apparaître dans
plusieurs prédicats. Pour ce cas général, nous avons étudié deux modèles, le modèle où chaque
prédicat peut accéder à un seul flux et le modèle où chaque prédicat peut accéder à plusieurs
flux.

Pour le modèle où chaque prédicat peut accéder à un seul flux, nos principaux résultats sont
un algorithme optimal pour les arbres avec un seul niveau, et une preuve de NP-complétude
pour les arbres sous forme normale disjonctive. Cependant, pour les arbres sous forme normale
disjonctive, nous avons montré qu’il existe un ordre optimal d’évaluation des prédicats qui
correspond à un parcours en profondeur d’abord. Ce résultat nous a servi à concevoir toute
une classe d’heuristiques. Nous avons montré que l’une de ces heuristiques a de bien meilleurs
résultats que les autres heuristiques et a des résultats proches de l’optimale quand celui-ci
peut-être calculer en temps raisonnable.

Pour le modèle où chaque prédicat peut accéder à plusieurs flux, on a proposé un algorithme
glouton pour les arbres avec un seul niveau, cet algorithme est inspiré de l’algorithme optimal
pour les arbres avec un seul niveau où chaque prédicat peut accéder à un seul flux. Nous avons
présenté aussi une preuve de NP-complétude pour les arbres sous forme normale disjonctive et
nous avons proposé aussi plusieurs heuristiques, les résultats de simulations ont montré qu’une
heuristique a de bien meilleurs résultats que les autres heuristiques.
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Introduction

As plans are made for deploying post-petascale high performance computing (HPC) sys-
tems [92, 95], solutions need to be developed to ensure that applications on such systems are
resilient to faults. Resilience is particularly critical for large Petascale systems and future Ex-
ascale ones. These systems will typically gather from half a million to several millions of CPU
cores. Table 1 presents the number of cores of the five fastest supercomputers which appeared
at the top of the TOP500 list in June 2014 [1]. Future exascale supercomputers, which are
expected by 2020, will be capable of at least one exaFLOPS (1018 floating point operations
per second) which is 100 times the processing power of the fastest supercomputer currently
operational, the Chinese Tianhe-2 supercomputer.

The mean-time between faults of a platform is inversely proportional to its number of com-
ponents. For future generation platforms, processor failures are projected to be common occur-
rences [24, 25, 26], the mean-time between faults is expected to be so small that any application
running for a non trivial duration on a whole platform will be the victim of at least one fail-
ure per day on average. For instance, the Jaguar platform had an average of 2.33 faults per
day during the period from August 2008 to February 2010 [2]. So, fault-tolerance techniques
become unavoidable for large-scale platforms.

Failures occur because not all faults are automatically detected and corrected in current
production hardware. To tolerate failures, the standard protocol is Coordinated Checkpointing
where all processors periodically stop computing and save the state of the parallel application
onto resilient storage throughout execution, so that when a failure strikes some process, the
entire application rolls back to a known consistent global state. More frequent checkpointing
leads to higher overhead during fault-free execution, but less frequent checkpointing leads to a
larger loss when a failure occurs. A checkpointing strategy specifies when checkpoints should be
taken. A large literature is devoted to identifying good checkpointing strategies, including both
theoretical and practical efforts. In spite of these efforts, the necessary checkpoint frequency
for tolerating failures in large-scale platforms can become so high that processors spend more
time checkpointing than computing. Consider an ideal moldable parallel application that can
be executed on an arbitrary number of processors and that is perfectly parallel. The makespan

Supercomputers Cores Location
Tianhe-2 (MilkyWay-2) NUDT 3,120,000 Guangzhou, China

Titan - Cray XK7 Cray 560,640 Oak Ridge, USA
Sequoia - BlueGene/Q IBM 1,572,864 Livermore, USA

K computer Fujitsu 705,024 Kobe, Japan
Mira - BlueGene/Q IBM 786,432 Argonne, USA

Table 1: The five fastest supercomputers of TOP500 list in June 2014

v



vi INTRODUCTION

with p processors is the sequential makespan divided by p. In a failure-free execution, the
larger p the faster the execution. But in the presence of failures, as p increases so does the
frequency of processor failures, leading to more time spent in recovering from these failures
and leading to more time spent in more frequent checkpoints to allow for an efficient recovery
after each failure. Beyond some threshold values, increasing p actually increases the expected
makespan [24, 25, 26, 69]. This is because the MTBF (Mean Time Between Failures) of the
platform becomes so small that the application performs too many recoveries and re-executions
to make progress efficiently.

The main contributions of this thesis come in two parts. The common point between these
two parts is that they both deal with scheduling and optimization problems in a probabilistic
context. The first part of the thesis is devoted to the study of resilience on Exascale platforms.
In this part we focus on the efficient execution of applications on failure-prone platforms. We
typically address questions such as: Given a platform and an application, which fault-tolerance
protocols should be used, when, and with which parameters? Here, we use probability dis-
tributions to describe the potential behavior of computing platforms, namely when hardware
components are subject to faults. The second part is devoted to the optimization of the ex-
pected sensor data acquisition cost when evaluating a query expressed as a tree of disjunctive
boolean operators applied to boolean predicates. Here, we evaluate a disjunctive normal form
(DNF) tree assuming that we know the energy cost for retrieving each type of data, and the
probability of success of each boolean operator.

The second part of this thesis is motivated by the fact that there is a growing interest in ap-
plications that use continuous sensing of individual activity via sensors embedded or associated
with personal mobile devices. Solutions need to be developed to reduce the energy overheads
of sensor data acquisition and processing and to ensure the successful continuous operation of
such applications, especially on battery-limited mobile devices.

For instance, smartphones are equipped with increasingly sophisticated sensors (e.g., GPS,
accelerometer, gyroscope, microphone) that enable near real-time sensing of an individual’s
activity or environmental context. A smartphone can then perform embedded query processing
on the sensor data streams, e.g., for social networking [101], remote health monitoring [102].
The continuous processing of streams, even when data rates are moderate (such as for GPS
or accelerometer data), can cause commercial smartphone batteries to be depleted in a few
hours [103]. Hence the necessity to reduce the amount of sensor data acquired for mobile query
processing devices.

Another example comes from automotive applications. These applications achieve their
goals by continuously monitoring sensors in a vehicle, and fusing them with information from
cloud databases, in order to detect events that are used to trigger actions (e.g., alerting a
driver, turning on fog lights, screening calls). These sensors describe the instantaneous state and
performance of many subsystems inside a vehicle, and represent a rich source of information, for
assessing both vehicle behavior and driver behavior. For these applications, the queries describe
specific rules of interest to a user, and the continuous processing of these queries requires the
acquisition of the sensor data, which incurs a cost, e.g., energy cost due to byte transfers,
latency, and bandwidth usage.

In this context, we consider query processing, when queries are modeled as a tree of disjunc-
tive boolean operators, where the leaf nodes are the data sources and the root emits the result
of the query. The evaluation of the query stops as soon as a truth value has been determined,
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possibly shortcircuiting part of the query tree. For instance, the result of an AND operator is
known as soon as one of its inputs evaluates to false. Such a pruning reduces the amount of data
to be retrieved and processed, and thus decreases the incurred costs of the query processing.

The objectif of our study is to reduce the incurred costs by minimizing the expected sensor
data acquisition when evaluating the query. Each predicate is computed over data items from
a particular data stream generated periodically by a sensor, and as a certain probability of
evaluating to true. Some of the difficulties of the problem are that the leaf nodes may share
some input data with other leaves or may use severals streams. These difficulties are well studied
in the second part.

We now summarize the different chapters of this thesis briefly below.

Chapter 1: Foreword on resilience
This chapter discusses related work for Part I and introduces new general results for resilience

on exascale systems.

Chapter 2: Unified Model for Assessing Checkpointing Protocols [J2]
In this chapter we present a unified model for several well-known checkpoint/restart pro-

tocols. The proposed model is generic enough to encompass both extremes of the check-
point/restart space, from coordinated approaches to a variety of uncoordinated checkpoint
strategies (with message logging). We identify a set of crucial parameters, instantiate them and
compare the expected efficiency of the fault tolerant protocols, for a given application/platform
pair. We then propose a detailed analysis of several scenarios, including some of the most pow-
erful currently available HPC platforms, as well as anticipated Exascale designs. The results
of this analytical comparison are corroborated by a comprehensive set of simulations. Alto-
gether, they outline comparative behaviors of checkpoint strategies at very large scale, thereby
providing insight that is hardly accessible to direct experimentation.

Chapter 3: Combining Replication and Coordinated Checkpointing [J3, RR6]
In this chapter, we study the mechanism of replication, which we used in addition to coor-

dinated checkpointing. Using replication, multiple processors perform the same computation so
that a processor failure does not necessarily mean application failure. While at first glance repli-
cation may seem wasteful, it may be significantly more efficient than using solely coordinated
checkpointing at large scale. In this chapter we investigate two approaches for replication. In
the first approach "Group replication", entire application instances are replicated. In the second
approach "Process replication", each process in a single application instance is (transparently)
replicated. Process replication largely outperforms group replication due to dramatically in-
creased MTBF for each replica set. However, process replication may not always be a feasible
option because it must be provided transparently as part of the runtime system. Group repli-
cation can be used whenever process replication is not available because it is agnostic to the
parallel programming model, and thus views the application as an unmodified black box. The
only requirement is that the application be moldable and that an instance be startable from a
saved checkpoint file. In this chapter we provide a theoretical study of these two approaches,
comparing them to the pure coordinated checkpointing approach in terms of expected applica-
tion execution times.



viii INTRODUCTION

Chapter 4: Combining Fault Prediction and Coordinated Checkpointing [J1, C3]

This chapter deals with the impact of fault prediction techniques on checkpointing strategies.
In this chapter we deal with two problem instances, one where the predictor system provides
"exact dates" for predicted events, and another where it only provides "prediction windows"
during which events take place.

With a predictor with exact prediction dates, we extend the classical first-order analysis of
Young and Daly in the presence of a fault prediction system, characterized by its recall and its
precision. We provide optimal algorithms to decide whether and when to take predictions into
account, and we derive the optimal value of the checkpointing period. These results allow to
analytically assess the key parameters that impact the performance of fault predictors at very
large scale.

With a predictor with a prediction window, the analysis of the checkpointing strategies is
more complicated. We propose a new approach based upon two periodic modes, a regular mode
outside prediction windows, and a proactive mode inside prediction windows, whenever the size
of these windows is large enough. We are able to compute the best period for any size of the
prediction windows, thereby deriving the scheduling strategy that minimizes platform waste.
In addition, the results of the analytical study are nicely corroborated by a comprehensive set
of simulations, which demonstrates the validity of the model and the accuracy of the approach.

Chapter 5: Combining Silent Error Detection and Coordinated Checkpointing [C2]

In this chapter, we revisit traditional checkpointing and rollback recovery strategies, with a
focus on silent data corruption errors. Contrarily to fail-stop failures, such latent errors cannot
be detected immediately, and a mechanism to detect them must be provided. We consider two
models: (i) errors are detected after some delays following a probability distribution (typically,
an Exponential distribution); (ii) errors are detected through some verification mechanism. In
both cases, we compute the optimal period in order to minimize the waste, i.e., the fraction
of time where nodes do not perform useful computations. In practice, only a fixed number of
checkpoints can be kept in memory, and the first model may lead to an irrecoverable failure.
In this case, we compute the minimum period required for an acceptable risk. For the second
model, there is no risk of irrecoverable failure, owing to the verification mechanism, but the
corresponding overhead is included in the waste. Finally, both models are instantiated using
realistic scenarios and application/architecture parameters.

Chapter 6: Related Work

This chapter discusses in details the related work for Part II.

Chapter 7: Cost-Optimal Execution of Boolean DNF Trees with Shared Streams [C1,
RR1]

The objective of this chapter is to determine the order in which predicates should be eval-
uated so as to shortcut part of the query evaluation and minimize the expected cost. This
problem has been studied assuming that each data stream occurs at a single predicate. In this
chapter we remove this assumption since it does not necessarily hold in practice. We study two
cases in which a stream can occur in multiple leaves. In the first case, we consider Boolean
DNF Trees with leaves accessing a single stream and in the second case, we considered Boolean
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DNF Trees with leaves accessing multiple streams. We term the first case single-stream case
and the second case multi-stream case.

For AND query trees, we give a polynomial-time greedy algorithm that is optimal in the
single-stream case, and show that the problem in NP-complete in the multi-stream case. For
the multi-stream case we propose an extension of the single-stream greedy algorithm. This
extension is not optimal but computes near-optimal leaf evaluation orders in practice.

For DNF query trees, we show that the problem is NP-complete in the single-stream case
(and thus also in the multi-stream case). In both the single-stream and multi-stream case
we show that there exists an optimal leaf evaluation order that is depth-first. This result
provides inspiration for a class of heuristics that we evaluate in simulation and compare to the
optimal solution (computed via an exhaustive search on small instances). We show that one of
these heuristics largely outperforms other sensible heuristics, including a heuristic proposed in
previous work.
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Resilience on exascale systems
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Chapter 1

Foreword on resilience

In this chapter, we start by discussing the related work for Part I, and then we introduce
some general results that are useful for resilience on exascale systems. The first of these results is
relative to the MTBF µ of a platform made of N individual components whose individual MTBF
is µind: µ = µind

N . This result is widely used, but to the best of our knowledge, no proof has
ever been published before. The second result is a refined first-order analysis for instantaneous
fault detection. When faults follow an exponential distribution, it leads to similar periods as
those obtained by Young [53] and Daly [54], but leads to better performance when faults follow
a Weibull distribution.

1.1 Related work
The standard fault tolerance protocol is Coordinated Checkpointing. It has been widely

studied in the literature. The major appeal of the coordinated checkpointing protocol is its
simplicity, because a parallel job using n processors of individual MTBF µind can be viewed as
a single processor job with MTBF µ = µind

n (as will be shown in Section 1.2.1). Given the value
of µ, an approximation of the optimal checkpointing period can be computed as a function of
the key parameters (downtime D, checkpoint time C, and recovery time R).

As already mentioned, the first estimate had been given by Young [53] and later refined
by Daly [54]. Both use a first-order approximation for Exponential failure distributions. Daly
extended his work in [30] to study the impact of sub-optimal checkpointing periods. In [41],
the authors develop an “optimal” checkpointing policy, based on the popular assumption that
optimal checkpointing must be periodic. In [77], Bouguerra et al. prove that the optimal
checkpointing policy is periodic when checkpointing and recovery overheads are constant, for
either Exponential or Weibull failures. But their results rely on the unstated assumption that
all processors are rejuvenated after each failure and after each checkpoint. In [61], the authors
have shown that this assumption is unreasonable for Weibull failure and they have developed
optimal solutions for Exponential failure distributions. Dynamic programming heuristics for
arbitrary distributions are proposed in [78, 79, 61].

The literature proposes different works [80, 81, 82, 83, 84] on the modeling of coordinated
checkpointing protocols. In particular, [81] and [80] focus on the usage of available resources:
some may be kept as backup in order to replace the down ones, and others may be even shutdown
in order to decrease the failure risk or to prevent storage consumption by saving fewer checkpoint
snapshots.

The major drawback of coordinated checkpointing protocols is their lack of scalability at

3
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extreme-scale. These protocols will lead to I/O congestion when too many processes are check-
pointing at the same time. Even worse, transferring the whole memory footprint of an HPC
application onto stable storage may well take so much time that a failure is likely to take place
during the transfer! A few papers [84, 68] propose a scalability study to assess the impact of a
small MTBF (i.e., of a large number of processors).

The mere conclusion is that checkpoint time should be either dramatically reduced for
platform waste to become acceptable, or that checkpointing should be coupled with other fault
tolerant mechanisms. The latter option has motivated the chapters of the first part of this
thesis.

We present hereafter the related work of each chapter of Part I.

Models for assessing checkpointing protocols. There are two approaches of fault tolerant
protocols; On one extreme, coordinating checkpoints, where after a failure, the entire application
rolls back to a known consistent global state; On the opposite extreme, message logging, which
allows for independent restart of failed processes but logs supplementary state elements during
the execution to drive a directed replay of the recovering processes. The interested reader
can refer to [18] for a comprehensive survey of message logging approaches, and to [96] for a
description of the most common algorithm for checkpoint coordination.

Although the uncoordinated nature of the restart in message logging improves recovery
speed compared to the coordinated approach (during the replay, all incoming messages are
available without jitter, most emissions are discarded and other processes can continue their
progress until they need to synchronize with replaying processes) [16], the logging of message
payload incurs a communication overhead and an increase in the size of checkpoints directly
influenced by the communication intensity of the application [19]. Recent advances in message
logging [20, 22, 21] have led to composite algorithms, called hierarchical checkpointing, capable
of partial coordination of checkpoints to decrease the cost of logging, while retaining message
logging capabilities to remove the need for a global restart.

These hierarchical schemes partition the application processes into groups. Each group
checkpoints independently, but processes belonging to the same group coordinate their check-
points and recovery. Communications between groups continue to incur payload logging. How-
ever, because processes belonging to a same group follow a coordinated checkpointing protocol,
the payload of messages exchanged between processes within the same group is not required to
be logged.

The optimizations driving the choice of the size and shape of groups are varied. A simple
heuristic is to checkpoint as many processes as possible, simultaneously, without exceeding the
capacity of the I/O system. In this case, groups do not checkpoint in parallel. Groups can also
be formed according to hardware proximity or communication patterns. In such approaches,
there may be opportunity for several groups to checkpoint concurrently. The model that we
propose in Chapter 2 captures the intricacies of all such strategies, thereby also representing
both extremes, coordinated and uncoordinated checkpointing. In Section 2.3, we describe the
meaningful parameters to instantiate these various protocols for a variety of platforms and
applications, taking into account the overhead of message logging, and the impact of grouping
strategies.

The question of the optimal checkpointing period for sequential jobs (or parallel jobs un-
dergoing coordinated checkpointing) has seen many studies presenting different order of esti-
mates: see [53, 54], and [75, 76] that consider Weibull distributions, or [14] that considers parallel
jobs. This is critical to extract the best performance of any rollback-recovery protocol. However
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in Chapter 2, although we use the same approach to find the optimal checkpoint interval, we
focus our study on the comparison of different protocols that were not captured by previous
models.

The literature proposes different works [80, 81, 82, 83, 84] on the modeling of coordinated
checkpointing protocols. [79] focuses on refining failure prediction; [81] and [80] focus on the
usage of available resources. [84] proposes a scalability model where they evaluate the impact
of failures on application performance. A significant difference with these works lies in the
inclusion of several new parameters to refine the model.

The uncoordinated and hierarchical checkpointing have been less frequently modeled. [15]
models periodic checkpointing on fault-aware parallel tasks that do not communicate. From
our point of view, this specificity does not match the uncoordinated checkpointing with mes-
sage logging that we consider. In Chapter 2, we consistently address all the three families of
checkpointing protocols: coordinated, uncoordinated, and hierarchical ones. To the best of
our knowledge, it is the first attempt at providing a unified model for this large spectrum of
protocols.

Replication. Replication has long been used as a fault-tolerance mechanism in distributed
systems [42]. The idea to use replication together with checkpoint-recovery has been studied in
the context of grid computing [31]. One concern about replication in HPC is the induced resource
waste. However, given the scalability limitations of pure checkpoint-recovery, replication has
recently received more attention in the HPC literature [26, 33, 32].

In Chapter 3 we study two replication techniques, group replication and process replication.
While, to the best of our knowledge, no previous work has considered group replication, process
replication has been studied by several authors. Process replication is advocated in [34] for HPC
applications, and in [35] for grid computing with volatile nodes. The work by Ferreira et al. [69]
has studied the use of process replication for MPI (Message Passing Interface) applications,
using 2 replicas per MPI process. They provide a theoretical analysis of parallel efficiency, an
MPI implementation that supports transparent process replication (including failure detection,
consistent message ordering among replicas, etc.), and a set of experimental and simulation
results. Partial redundancy is studied in [36, 37] (in combination with coordinated checkpoint-
ing) to decrease the overhead associated to full replication. Adaptive redundancy is introduced
in [38], where a subset of processes is dynamically selected for replication.

In Section 3.4, we provide a full-fledge theoretical analysis of the combination of process
replication and checkpoint-recovery. While some theoretical results are provided in [69], they
are based on an analogy between the process replication problem and the birthday problem.
This analogy is appealing but, as seen in Section 3.4.1, does not make it possible to compute
exact MNFTI and MTTI values. In addition, the authors of [69] use Daly’s formula for
the checkpointing period, even for Weibull or other distributions, simply using the mean of the
distribution in the formula. This is a commonplace approach. However, a key observation is that
using replication changes the optimal checkpointing period, even for Exponential distributions.
Chapter 3 provides the optimal value of the period for Exponential and Weibull distributions
(either analytically or experimentally), taking into account the use of replication.

Fault Prediction. Considerable research has been devoted to fault prediction, using very dif-
ferent models (system log analysis [51], event-driven approach [48, 51, 52], support vector ma-
chines [50, 47], nearest neighbors [50], etc). We give a brief overview of existing predictors,
focusing on their characteristics rather than on the methods of prediction. For the sake of
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Paper Lead Time Precision Recall Prediction Window
[52] 300 s 40 % 70% -
[52] 600 s 35 % 60% -
[51] 2h 64.8 % 65.2% yes (size unknown)
[51] 0 min 82.3 % 85.4 % yes (size unknown)
[48] 32 s 93 % 43 % -
[49] 10s 92 % 40 % -
[49] 60s 92 % 20 % -
[49] 600s 92 % 3 % -
[47] NA 70 % 75 % -
[50] NA 20 % 30 % 1h
[50] NA 30 % 75 % 4h
[50] NA 40 % 90 % 6h
[50] NA 50 % 30 % 6h
[50] NA 60 % 85% 12h

Table 1.1: Comparative study of different parameters returned by some predictors.

clarity, we sum up the characteristics of the different fault predictors from the literature in
Table 1.1.

A predictor is characterized by two critical parameters, its recall r, which is the fraction of
faults that are indeed predicted, and its precision p, which is the fraction of predictions that
are correct (i.e., correspond to actual faults).

The authors of [52] introduce the lead time, that is the duration between the time the
prediction is made and the time the predicted fault is supposed to happen. This time should be
sufficiently large to enable proactive actions. The distribution of lead times is irrelevant. Indeed,
only predictions whose lead time is greater than Cp, the time to take a proactive checkpoint,
are meaningful. Predictions whose lead time is smaller than Cp, whenever they materialize as
actual faults, should be classified as unpredicted faults; the predictor recall should be decreased
accordingly.

The predictor of [52] is also able to locate where the predicted fault is supposed to strike.
This additional characteristics has a negative impact on the precision (because a fault happening
at the predicted time but not on the predicted location is classified as a non predicted fault;
see the low value of p in Table 1.1). The authors of [52] state that fault localization has a
positive impact on proactive checkpointing time in their context: instead of a full checkpoint
costing 1, 500 seconds, they can take a partial checkpoint costing only 12 seconds. This led
us to introduce a different cost Cp for proactive checkpoints, which can be smaller than the
cost C of regular checkpoints. Gainaru et al. [49] also stated that fault-localization could help
decrease the checkpointing time. Their predictor also gives information on fault localization.
They studied the impact of different lead times on the recall of their predictor.

The authors of [51] also consider a lead time, and introduce a prediction window indicating
when the predicted fault should happen. The authors of [50] study the impact of different
prediction techniques with different prediction window sizes. They also consider a lead time,
but do not state its value. These two latter studies motivate the work of Section 4.3, even
though [51] does not provide the size of their prediction window.

Most studies on fault prediction state that a proactive action must be taken right before
the predicted fault, be it a checkpoint or a migration. However, we show in Section 4.2 that it
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is beneficial to ignore some predictions, namely when the predicted fault is announced to strike
less than Cp

p seconds after the last periodic checkpoint.
Unfortunately, much of the work done on prediction does not provide information that could

be really useful for the design of efficient algorithms. Missing information includes the lead time
and the size of the prediction window. Other information that could be useful would be: (i) the
distribution of the faults in the prediction window; and (ii) the precision and recall as functions
of the size of the prediction window (what happens with a larger prediction window). In the
simpler case where predictions are exact-date predictions, Gainaru et al [49] and Bouguerra et

al. [71] have shown that the optimal checkpointing period becomes Topt =
√

2µC
1− r , but their

analysis is valid only if µ is very large in front of the other parameters and their computation of
the waste is not fully accurate [RR2]. In Section 4.2, we have refined the results of [49], focusing
on a more accurate analysis of fault prediction with exact dates, and providing a detailed study
on the impact of recall and precision on the waste. As shown in Subsection 4.3.2, the analysis
of the waste is dramatically more complicated when using prediction windows than when using
exact-date predictions.

Li et al. [70] considered the mathematical problem of when and how to migrate. In order
to be able to use migration, they assumed that at any time 2% of the resources are available as
spares. This allows them to conceive a Knapsack-based heuristic. Thanks to their algorithm,
they were able to save 30% of the execution time compared to a heuristic that does not take
the prediction into account, with a precision and recall of 70%, and with a maximum load of
0.7. In our study, we do not consider that we have a batch of spare resources. We assume that
after a downtime the resources that failed are once again available.

To the best of our knowledge, this work is the first to focus on the mathematical aspect of
fault prediction, and to provide a model and a detailed analysis of the waste due to all three
types of events (true and false predictions and unpredicted failures).

Silent Error Detection. All the above approaches maintain a single checkpoint. If the check-
point file includes errors, the application faces an irrecoverable failure and must restart from
scratch. This is because error detection latency is ignored in traditional rollback and recov-
ery schemes. These schemes assume instantaneous error detection (therefore mainly targeting
fail-stop failures) and are unable to accommodate silent errors.

Considerable efforts have been directed at error-checking to reveal latent errors. Error
detection is usually very costly. Hardware mechanisms, such as ECC memory, can detect
and even correct a fraction of errors, but in practice they are complemented with software
techniques. The simplest technique is triple modular redundancy and voting [73]. For high-
performance scientific applications, process replication (each process is equipped with a replica,
and messages are quadruplicated) is proposed in the RedMPI library [89]. Application-specific
information can be very useful to enable ad-hoc solutions, that dramatically decrease the cost
of detection. Many techniques have been advocated. They include memory scrubbing [88], but
also ABFT techniques [90, 87, 3], such as coding for the sparse-matrix vector multiplication
kernel [3], and coupling a higher-order with a lower-order scheme for PDEs [4]. These methods
can only detect an error but do not correct it. Self-stabilizing corrections after error detection
in the conjugate gradient method are investigated in [5]. See also [86] for the design of a fault-
tolerant GMRES capable of converging despite silent errors, and [85] for a comparative study
of detection costs for iterative methods. Lu, Zheng and Chien [74] give a comprehensive list of
techniques and references. In Chapter 5, our work is agnostic of the underlying error-detection
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technique and takes the cost of verification as an input parameter to the model (see Section 5.3).

1.2 General results
1.2.1 MTBF of a platform

When considering a platform prone to failures, the key parameter is µ, the MTBF of the
platform. If the platform is made of N components whose individual MTBF is µind, then
µ = µind

N . This result is true regardless of the fault distribution law.

Proposition 1. Consider a platform comprising N components, and assume that the inter-
arrival times of the faults on the components are independent and identically distributed random
variables that follow an arbitrary probability law whose expectation is finite and µind > 0. Then
the MTBF µ of the platform (whose inverse is defined as the expectation of the sum of failure
numbers of the N processors over time), is equal to µind

N .

Proof. Consider first a single component, say component number q. Let Xi, i ≥ 0 denote
the IID random variables for fault inter-arrival times on that component, with E (Xi) = µind.
Consider a fixed time bound F . Let nq(F ) be the number of faults on the component until time
F is exceeded. In other words, the (nq(F )− 1)-th fault is the last one to happen strictly before
time F , and the nq(F )-th fault is the first to happen at time F or after. By definition of nq(F ),
we have

nq(F )−1∑
i=1

Xi ≤ F ≤
nq(F )∑
i=1

Xi

Using Wald’s equation [58, p. 486], with nq(F ) as a stopping criterion, we derive:

(E (nq(F ))− 1)µind ≤ F ≤ E (nq(F ))µind

and we obtain:
lim

F→+∞

E (nq(F ))
F

= 1
µind

(1.1)

Consider now the whole platform, and let Yi, i ≥ 0 denote the IID random variables for
fault inter-arrival times on the platform, with E (Yi) = µ. Consider a fixed time bound F as
before. Let n(F ) be the number of faults on the whole platform until time F is exceeded.
Let mq(F ) be the number of these faults that strike component number q. Of course we have
n(F ) =

∑N
q=1mq(F ). By definition, except for the component hit by the last failure, mq(F ) + 1

is the number of failures on component q until time F is exceeded, hence nq(F ) = mq(F )+1 (and
this number is mq(F ) = nq(F ) on the component hit by the last failure). From Equation (1.1)
again, we have for each component q:

lim
F→+∞

E (mq(F ))
F

= 1
µind

Since n(F ) =
∑N
q=1mq(F ), we also have:

lim
F→+∞

E (n(F ))
F

= N

µind
(1.2)

�
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1.2.2 Revisiting Daly’s first-order approximation
Young proposed in [53] a “first order approximation to the optimum checkpoint interval”.

Young’s formula was later refined by Daly [54] to take into account the recovery time. We
revisit their analysis using the notion of waste. We recall that in the following, C is the time
to execute a checkpoint, D the duration of a downtime, and R the duration of the recovery of
a checkpoint (following a downtime).

Let Timebase be the base time of the application without any overhead (neither checkpoints
nor faults). First, assume a fault-free execution of the application with periodic checkpointing.
In such an environment, during each period of length T we take a checkpoint, which lasts for a
time C, and only T − C units of work are executed. Let TimeFF be the execution time of the
application in this setting. Following most works in the literature, we also take a checkpoint at
the end of the execution. The fault-free execution time TimeFF is equal to the time needed to
execute the whole application, Timebase, plus the time taken by the checkpoints:

TimeFF = Timebase +NckptC (1.3)

where Nckpt is the number of checkpoints taken. We have

Nckpt =
⌈Timebase
T − C

⌉
≈ Timebase

T − C

When discarding the ceiling function, we assume that the execution time is very large with
respect to the period or, symmetrically, that there are many periods during the execution.
Plugging back the (approximated) value Nckpt = Timebase

T−C , we derive that

TimeFF = Timebase
T − C

T (1.4)

The waste due to checkpointing in a fault-free execution, WasteFF, is defined as the fraction
of the execution time that does not contribute to the progress of the application:

WasteFF = TimeFF −Timebase
TimeFF

⇔
(
1−WasteFF

)
TimeFF = Timebase (1.5)

Combining Equations (1.4) and (1.5), we get:

WasteFF = C

T
(1.6)

Now, let Timefinal denote the expected execution time of the application in the presence
of faults. This execution time can be divided into two parts: (i) the execution of “chunks”
of work of size T − C followed by their checkpoint; and (ii) the time lost due to the faults.
This decomposition is illustrated by Figure 1.1. The first part of the execution time is equal
to TimeFF. Let Nfaults be the number of faults occurring during the execution, and let Tlost be
the average time lost per fault. Then,

Timefinal = TimeFF +Nfaults × Tlost (1.7)

On average, during a time Timefinal, Nfaults = Timefinal
µ faults happen. We need to estimate Tlost.

The instants at which periods begin and at which faults strike can be considered independent,
as a first order approximation. Therefore, the expected time elapsed between the completion



10 CHAPTER 1. FOREWORD ON RESILIENCE

of the last checkpoint and a fault is approximated as T
2 for all distribution laws, regardless of

their particular shape. This approximation has been proven exact by Daly [54] for exponential
laws, and we use it in the general case. We conclude that Tlost = T

2 +D+R, because after each
fault there is a downtime and a recovery. This leads to:

Timefinal = TimeFF + Timefinal
µ

×
(
D +R+ T

2

)
Let Wastefault be the fraction of the total execution time that is lost because of faults:

Wastefault = Timefinal −TimeFF
Timefinal

⇔ (1−Wastefault) Timefinal = TimeFF (1.8)

We derive:
Wastefault = 1

µ

(
D +R+ T

2

)
. (1.9)

TimeFF =TimeFinal (1-WasteFail) TimeFinal ×WasteFail

TimeFinal

T -C C T -C C T -C C T -C C T -C C

T -C C T -C C T -C C T -C C T -C C

Figure 1.1: An execution (top), and its re-ordering (bottom), to illustrate both sources of waste.
Blackened intervals correspond to work destroyed by faults, downtimes, and recoveries.

In [54], Daly uses the expression

Timefinal =
(
1 + Wastefault

)
TimeFF (1.10)

instead of Equation (1.8), which leads him to his well-known first-order formula

T =
√

2(µ+ (D +R))C + C (1.11)

Figure 1.1 explains why Equation (1.10) is not correct and should be replaced by Equation (1.8).
Indeed, the expected number of faults depends on the final time, not on the time for a fault-
free execution. We point out that Young [53] also used Equation (1.10), but with D = R =
0. Equation (1.8) can be rewritten Timefinal = TimeFF/ (1−Wastefault). Therefore, using
Equation (1.10) instead of Equation (1.8), in fact, is equivalent to write 1

1−Wastefault ≈ 1 +
Wastefault which is indeed a first-order approximation if Wastefault � 1.

Now, let Waste denote the total waste:

Waste = Timefinal −Timebase
Timefinal

(1.12)

Therefore

Waste = 1− Timebase
Timefinal

= 1− Timebase
TimeFF

TimeFF
Timefinal

= 1− (1−WasteFF)(1−Wastefault).
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Altogether, we derive the final result:

Waste = WasteFF + Wastefault −WasteFFWastefault (1.13)

= C

T
+
(

1− C

T

) 1
µ

(
D +R+ T

2

)
(1.14)

We obtain Waste = u
T + v+wT where u = C

(
1− D+R

µ

)
, v = D+R−C/2

µ , and w = 1
2µ . Thus

Waste is minimized for T =
√

u
w . The Refined First-Order (RFO) formula for the optimal

period is thus:
TRFO =

√
2(µ− (D +R))C (1.15)

It is interesting to point out why Equation (1.15) is a first-order approximation, even for
large jobs. Indeed, there are several restrictions to enforce for the approach to be valid:
— We have stated that the expected number of faults during execution is Nfaults = Timefinal

µ ,
and that the expected time lost due to a fault is Tlost = T

2 . Both statements are true
individually, but the expectation of a product is the product of the expectations only
if the random variables are independent, which is not the case here because Timefinal
depends upon the failure inter-arrival times.

— We have used that the computation time lost when a failure happens is T
2 which has been

proven true for exponential and uniform distributions only.
— In Equation (1.6), we have to enforce C ≤ T to have WasteFF ≤ 1.
— In Equation (1.9), we have to enforce D + R ≤ µ and to bound T in order to have

Wastefault ≤ 1. Intuitively, we need µ to be large enough for Equation (1.9) to make
sense. However, regardless of the value of the individual MTBF µind, there is always a
threshold in the number of components N above which the platform MTBF µ = µind

N
becomes too small for Equation (1.9) to be valid.

— Equation (1.9) is accurate only when two or more faults do not take place within the same
period. Although unlikely when µ is large in front of T , the possible occurrence of many
faults during the same period cannot be eliminated.

To ensure that the latter condition (at most a single fault per period) is met with a high
probability, we cap the length of the period: we enforce the condition T ≤ αµ, where α is some
tuning parameter chosen as follows. The number of faults during a period of length T can be
modeled as a Poisson process of parameter β = T

µ . The probability of having k ≥ 0 faults is
P (X = k) = βk

k! e
−β, where X is the number of faults. Hence the probability of having two

or more faults is π = P (X ≥ 2) = 1 − (P (X = 0) + P (X = 1)) = 1 − (1 + β)e−β. If we
assume α = 0.27 then π ≤ 0.03, hence a valid approximation when bounding the period range
accordingly. Indeed, with such a conservative value for α, we have overlapping faults for only 3%
of the checkpointing segments in average, so that the model is quite reliable. For consistency, we
also enforce the same type of bound on the checkpoint time, and on the downtime and recovery:
C ≤ αµ and D +R ≤ αµ. However, enforcing these constraints may lead to use a sub-optimal
period: it may well be the case that the optimal period

√
2(µ− (D +R))C of Equation (1.15)

does not belong to the admissible interval [C,αµ]. In that case, the waste is minimized for
one of the bounds of the admissible interval: this is because, as seen from Equation (1.14), the
waste is a convex function of the period.

We conclude this discussion on a positive note. While capping the period, and enforcing a
lower bound on the MTBF, is mandatory for mathematical rigor, simulations (see Chapter 4.2
for both Exponential and Weibull distributions) show that actual job executions can always
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use the value from Equation (1.15), accounting for multiple faults whenever they occur by
re-executing the work until success. The first-order model turns out to be surprisingly robust!

To the best of our knowledge, despite all the limitations above, there is no better ap-
proach to estimate the waste due to checkpointing when dealing with arbitrary fault distribu-
tions. However, assuming that faults obey an Exponential distribution, it is possible to use
the memory-less property of this distribution to provide more accurate results. A second-order
approximation when faults obey an Exponential distribution is given in Daly [54, Equation (20)]
as Timefinal = µeR/µ(e

T
µ − 1)Timebase

T−C . In fact, in that case, the exact value of Timefinal is pro-
vided in [61, 62] as Timefinal = (µ + D)eR/µ(e

T
µ − 1)Timebase

T−C , and the optimal period is then
1+L(−e−

C
µ −1)

µ where L, the Lambert function, is defined as L(z)eL(z) = z.
To assess the accuracy of the different first order approximations, we compare the periods

defined by Young’s formula [53], Daly’s formula [54], and Equation (1.15), to the optimal period,
in the case of an Exponential distribution. Results are reported in Table 1.2. To establish these
results, we use the same parameters as in Section 4.2.3: C = R = 600 s, D = 60 s, and
µind = 125 years. One can observe in Table 1.2 that the relative error for Daly’s period is
slightly larger than the one for Young’s period. In turn, the absolute value of the relative error
for Young’s period is slightly larger than the one for RFO. More importantly, when Young’s and
Daly’s formulas overestimate the period, RFO underestimates it. Table 1.2 does not allow us to
assess whether these differences are actually significant. However we also report in Chapter 4.2
some simulations that show that Equation (1.15) leads to smaller execution times for Weibull
distributions than both classical formulas (Tables 4.3 and 4.4).

N µ Young Daly RFO Optimal
210 3849609 68567 (0.5 %) 68573 (0.5 %) 67961 (-0.4 %) 68240
211 1924805 48660 (0.7 %) 48668 (0.7 %) 48052 (-0.6 %) 48320
212 962402 34584 (1.2 %) 34595 (1.2 %) 33972 (-0.6 %) 34189
213 481201 24630 (1.6 %) 24646 (1.7 %) 24014 (-0.9 %) 24231
214 240601 17592 (2.3 %) 17615 (2.5 %) 16968 (-1.3 %) 17194
215 120300 12615 (3.2 %) 12648 (3.5 %) 11982 (-1.9 %) 12218
216 60150 9096 (4.5 %) 9142 (5.1 %) 8449 (-2.9 %) 8701
217 30075 6608 (6.3 %) 6673 (7.4 %) 5941 (-4.4 %) 6214
218 15038 4848 (8.8 %) 4940 (10.8 %) 4154 (-6.8 %) 4458
219 7519 3604 (12.0 %) 3733 (16.0 %) 2869 (-10.8 %) 3218

Table 1.2: Comparing periods produced by the different approximations with optimal value.
Beside each period, we report its relative deviation to the optimal. Each value is expressed in
seconds.



Chapter 2

Unified Model for Assessing Checkpointing
Protocols

2.1 Introduction

A significant research effort is focusing on the characteristics, features, and challenges of
High Performance Computing (HPC) systems capable of reaching the Exaflop performance
mark [92, 95]. The portrayed Exascale systems will necessitate billion way parallelism, resulting
not only in a massive increase in the number of processing units (cores), but also in terms of
computing nodes.

Considering the relative slopes describing the evolution of the reliability of individual com-
ponents on one side, and the evolution of the number of components on the other side, the
reliability of the entire platform is expected to decrease, due to probabilistic amplification. Ex-
ecutions of large parallel applications on these systems will have to tolerate a higher degree of
errors and failures than in current systems. Preparation studies forecast that standard fault
tolerance approaches (e.g., coordinated checkpointing on parallel file system) will lead to un-
acceptable overheads at Exascale. Thus, it is not surprising that improving fault tolerance
techniques is one of the main recommendations isolated by these studies [92, 95].

In this chapter we focus on techniques tolerating the effect of detected errors that prevent
successful completion of the application execution. Undetected errors, also known as silent
errors, are out-of-scope of this analysis. There are two main ways of tolerating process crashes,
without undergoing significant application code refactoring: replication and rollback recovery.
An analysis of replication feasibility for Exascale systems was presented in [69]. In this chapter
we focus on rollback recovery, and more precisely on the comparison of checkpointing protocols.

There are three main families of checkpointing protocols: (i) coordinated checkpointing;
(ii) uncoordinated checkpointing with message logging; and (iii) hierarchical protocols mixing
coordinated checkpointing and message logging. The key principle in all these checkpointing
protocols is that all data and states necessary to restart the execution are regularly saved in
process checkpoints. Depending on the protocol, these checkpoints are or are not guaranteed to
form consistent recovery lines. When a failure occurs, appropriate processes rollback to their
last checkpoints and resume execution.

Each protocol family has serious drawbacks. Coordinated checkpointing and hierarchical
protocols suffer a waste in terms of computing resources, whenever living processes have to
rollback and recover from a checkpoint in order to tolerate failures. These protocols may
also lead to I/O congestion when too many processes are checkpointing at the same time.

13
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Message logging increases memory consumption, checkpointing time, and slows down failure-
free execution when messages are logged. Our objective is to identify which protocol delivers
the best performance for a given application on a given platform. While several criteria could
be considered to make such a selection, we focus on the most widely used metric, namely, the
expectation of the total parallel execution time.

Fault-tolerant protocols have different overheads in fault-free and recovery situations. These
overheads depend on many factors (type of protocols, application characteristics, system fea-
tures, etc.) that introduce complexity and limit the scope of experimental comparisons con-
ducted in the past [16, 17]. In this chapter, we approach the fault tolerant protocol comparison
from an analytical perspective. Our objective is to provide an accurate performance model
covering the most suitable rollback recovery protocols for HPC. This model captures many
optimizations proposed in the literature, but can also be used to explore the effects of novel
optimizations, and to highlight the most critical parameters to be considered when evaluating
a protocol.

The main contributions of this chapter are: (1) a comprehensive model that captures many
rollback recovery protocols, including coordinated checkpoint, uncoordinated checkpoint, and
the composite hierarchical hybrids; (2) a closed-form formula for the waste of computing re-
sources incurred by each protocol. This formula is the key to assessing existing and new proto-
cols, and constitutes the first tool that can help the community to compare protocols at very
large scale, and to guide design decisions for given application/platform pairs; and (3) an instan-
tiation of the model on several realistic scenarios involving state-of-the-art and future Exascale
platforms, thereby providing practical insight and guidance.

This chapter is organized as follows. In Section 2.2, we describe our model that unifies
coordinated rollback recovery approaches, and effectively captures coordinated, partially and
totally uncoordinated approaches as well as many of their optimizations. We then use the model
to analytically assess the performance of rollback recovery protocols. We instantiate the model
with realistic scenarios in Section 2.3, and we present corresponding results in Section 2.4. These
results are corroborated by a set of simulations (Section 2.5), demonstrating the accuracy of the
proposed unified analytical model. Finally, we conclude and present perspectives in Section 2.6.

2.2 Model and Analytical Assessment

In this section, we discuss the unified model, together with the closed-form formulas for the
waste optimization problem. We start with the description of the abstract model (Section 2.2.1).
Processors are partitioned into G groups, where each group checkpoints independently and
periodically. To help follow the technical derivation of the waste, we start with one group
(Section 2.2.2) before tackling the general problem with G ≥ 1 groups (Section 2.2.3), first
under simplified assumptions, before tackling last the fully general model, which requires three
additional parameters (payload overhead, faster execution replay after a failure, and increase
in checkpoint size due to logging). We end up with a complicated formula that characterizes
the waste of resources due to checkpointing. This formula can be instantiated to account for
checkpointing protocols, see Section 2.3 for examples. Note that in all scenarios, we model
the behavior of tightly coupled applications, meaning that no computation can progress on the
entire platform as long as the recovery phase of a group with a failing processor is not completed.
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2.2.1 Abstract model

In this section, we detail the main parameters of the model. We consider an application
that executes on ptotal processors.

Units– To avoid introducing several conversion parameters, we represent all the parameters
of the model in seconds. The failure inter-arrival times, the duration of a downtime, checkpoint,
or recovery are all expressed in seconds. Furthermore, we assume (without loss of generality)
that one work unit is executed in one second, when all processors are computing at full rate.
One work-unit may correspond to any relevant application-specific quantity. When a processor
is slowed-down by another activity related to fault-tolerance (writing checkpoints to stable
storage, logging messages, etc.), one work-unit takes longer than a second to complete.

Failures and MTBF– The platform consists of ptotal identical processors. We use the term
“processor” to indicate any individually scheduled compute resource (a core, a socket, a cluster
node, etc) so that our work is agnostic to the granularity of the platform. These processors are
subject to failures. Exponential failures are widely used for theoretical studies, while Weibull
or log-normal failures are representative of the behavior of real-world platforms [64, 63, 65, 66].
The mean time between failures of a given processor is a random variable with mean (MTBF) µ
(expressed in seconds). Given the failure distribution of one processor, it is difficult to compute,
or even approximate, the failure distribution of a platform with ptotal processors, because it is
the superposition of ptotal independent and identically distributed distributions (with a single
processor). However, there is an easy formula for the MTBF of that distribution, namely
µ = µ

ptotal
.

In our theoretical analysis, we do not assume to know the failure distribution of the platform,
except for its mean value (the MTBF). Nevertheless, consider any time-interval I = [t, t + T ]
of length T and assume that a failure strikes during this interval. We can safely state that
the probability for the failure to strike during any sub-interval [t′, t′ + X] ⊂ I of length X
is X

T . Similarly, we state that the expectation of the time m at which the failure strikes is
m = t+ T

2 . Neither of these statements rely on some specific property of the failure distribution,
but instead are a direct consequence of averaging over all possible interval starting points, that
will correspond to the beginning of checkpointing periods, and that are independent of failure
dates.

Tightly-coupled application–We consider a tightly-coupled application executing on the ptotal
processors. Inter-processor messages are exchanged throughout the computation, which can
only progress if all processors are available. When a failure strikes a processor, the application
is missing one resource for a certain period of time of length D, the downtime. Then, the
application recovers from the last checkpoint (recovery time of length R) before it re-executes
the work done since that checkpoint and up to the failure. Under a hierarchical scenario,
the useful work resumes only when the faulty group catches up with the overall state of the
application at failure time. Many scientific applications are tightly-coupled and obey such a
recovery scheme. Typically, the tightly-coupled application will be an iterative application
with a global synchronization point at the end of each iteration. However, the fact that inter-
processor information is exchanged continuously or at given synchronization steps (as in BSP-
like models) is irrelevant: in steady-state mode, all processors must be available concurrently
for the execution to actually progress. While the tightly-coupled assumption may seem very
constraining, it captures the fact that processes in the application depend on each other and
exchange messages at a rate exceeding the periodicity of checkpoints, preventing independent
progress.
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Blocking or non-blocking checkpoint– There are various scenarios to model the cost of check-
pointing, so we use a flexible model, with several parameters to specify. The first question is
whether checkpoints are blocking or not. On some architectures, we may have to stop executing
the application before writing to the stable storage where the checkpoint data is saved; in that
case checkpoint is fully blocking. On other architectures, checkpoint data can be saved on the
fly into a local memory before the checkpoint is sent to the stable storage, while computation
can resume progress; in that case, checkpoints can be fully overlapped with computations. To
deal with all situations, we introduce a slow-down factor α: during a checkpoint of duration C,
the work that is performed is αC work units, instead of C work-units if only computation takes
place. In other words, (1− α)C work-units are wasted due to checkpoint jitter perturbing the
progress of computation. Here, 0 ≤ α ≤ 1 is an arbitrary parameter. The case α = 0 corre-
sponds to a fully blocking checkpoint, while α = 1 corresponds to a fully overlapped checkpoint,
and all intermediate situations can be represented.

Periodic checkpointing strategies– For the sake of clarity and tractability, we focus on periodic
scheduling strategies where checkpoints are taken at regular intervals, after some fixed amount
of work-units have been performed. This corresponds to an infinite-length execution partitioned
into periods of duration T . Without loss of generality, we partition T into T = W +C, whereW
is the amount of time where only computations take place, while C corresponds to the amount
of time where checkpoints are taken.

Let Timebase be the application execution time without any fault tolerance mechanism
and without failures. If we assume that TimeFF is the execution time when checkpoints are
introduced and WasteFF is the waste due to checkpoints, Timebase would be equal to TimeFF
minus the waste due to checkpoints, thus:

(1−WasteFF)TimeFF = Timebase (2.1)

With the same idea, if we assume that Timefinal is the time needed to complete the execution
with failures and fault tolerance techniques:

(1−Wastefail)Timefinal = TimeFF (2.2)

By replacing the equation 2.2 in the equation 2.1 and if we assume that Waste is the total
waste:

(1−WasteFF)(1−Wastefail)Timefinal = Timebase (2.3)

We define Waste as being the amount of time not performing useful computations,

Waste = (Timefinal −Timebase)/Timefinal (2.4)

Finally, we deduce the following formula for the global waste:

Waste = 1− (1−WasteFF)(1−Wastefail) (2.5)

If not slowed down for other reasons by the fault tolerant protocol (Section 2.2.3), the total
amount of work units that are executed during a period of length T is thus Work = W + αC
(recall that there is a slow-down due to the overlap). In a failure-free environment, the waste
of computing resources due to checkpointing is

WasteFF = T −Work
T

= (1− α)C
T

(2.6)
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As expected, if α = 1 there is no overhead, but if α < 1 (actual slowdown, or even blocking if
α = 0), checkpointing comes with a price in terms of performance degradation.

For the time being, we do not further quantify the length of a checkpoint, which is a
function of several parameters. Instead, we proceed with the abstract model. We envision
several scenarios in Section 2.3, only after setting up the formula for the waste in a general
context.

Processor groups– As described above, we assume that the platform is partitioned into G
groups of the same size. Each group contains q processors, hence ptotal = Gq. When G = 1,
we speak of a coordinated scenario, and we simply write C, D and R for the duration of a
checkpoint, downtime and recovery. When G ≥ 1, we speak of a hierarchical scenario. Each
group of q processors checkpoints independently and sequentially in time C(q). Similarly, we
use D(q) and R(q) for the durations of the downtime and recovery. Of course, if we set G = 1 in
the (more general) hierarchical scenario, we retrieve the value of the waste for the coordinated
scenario. As already mentioned, we derive a general expression for the waste for both scenarios,
before further specifying the values of C(q), D(q), and R(q) as a function of q and the various
architectural parameters under study.

2.2.2 Waste for the coordinated scenario (G = 1)

The goal of this section is to quantify the expected waste in the coordinated scenario where
G = 1. The waste is the fraction of time that the processors do not compute at full rate, either
because they are checkpointing, or because they are recovering from a failure. Recall that we
write C, D, and R for the checkpoint, downtime, and recovery using a single group of ptotal
processors. We obtain the following equation for the waste, which we explain briefly below
explanation is available to the reader and illustrate with Figure 2.1:

(a)

∆

αC CT − CRDTlost

P2

P1

P0

P3

Time spent checkpointingTime spent working Time spent working with slowdown
Re-executing slowed-down workRecovery timeDowntime

T

Time

(b)

∆

CT − CαCRDTlostT − C

T

P3

P0

P1

P2

Time spent checkpointingTime spent working Time spent working with slowdown
Re-executing slowed-down workRecovery timeDowntime Time

Figure 2.1: Coordinated checkpoint: illustrating the waste when a failure occurs (a) during the
work phase; and (b) during the checkpoint phase.
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WasteFF = (1− α)C
T

(2.7)

Wastefail = 1
µ

(
R+D + (2.8)

T − C
T

[
αC + T − C

2

]
(2.9)

+ C

T

[
αC + T − C + C

2

])
(2.10)

• (2.7) is the portion of the execution lost in checkpointing, even during a fault-free execution,
see Equation (2.6).
• (2.9) is the overhead of the execution time due to a failure during work interval (T − C)(see
Figure 2.1(a)).
• (2.10) is the overhead due to a failure during a checkpoint (see Figure 2.1(b)).

After simplification of Equations (2.7) to (2.10), we get:

Wastefail = 1
µ

(
D +R+ T

2 + αC

)
(2.11)

Plugging this value back into Equation (2.5) leads to:

Wastecoord = 1− (1− (1− α)C
T

)(1− 1
µ

(
D +R+ T

2 + αC

)
) (2.12)

We point out that Equation (2.12) is valid only when T � µ: indeed, we made a first-order
approximation when implicitly assuming that we do not have more than one failure during the
same period. This hypothesis is required to allow the expression of the model in a closed form.
In fact, the number of failures during a period of length T can be modeled as a Poisson process
of parameter T

µ ; the probability of having k ≥ 0 failures is 1
k!(

T
µ )ke−

T
µ . Hence the probability

of having two or more failures is π = 1− (1 + T
µ )e−

T
µ . Enforcing the constraint T ≤ 0.1µ leads

to π ≤ 0.005, hence a valid approximation when capping T to that value. Indeed, we have
overlapping faults every 200 periods in average, so that our model is accurate for 99.5% of the
checkpointing segments, hence it is quite reliable.

In addition to the previous constraint, we must enforce the condition C ≤ T , by con-
struction of the periodic checkpointing policy. Without the constraint C ≤ T ≤ 0.1µ, the
optimal checkpointing period Topt that minimizes the expected waste in Equation (2.12) is
Topt =

√
2(1− α)(µ− (D +R))C. However, this expression for Topt (which is known as Young’s

approximation [53] when α = 0) may well be out of the admissible range. Finally, note that the
optimal waste may never exceed 1, since it represents the fraction of time that is “wasted”. In
this latter case, the application no longer makes progress.

2.2.3 Waste for the hierarchical scenario (G ≥ 1)
In this section, we compute the expected waste for the hierarchical scenario. We have G

groups of q processors, and we let C(q), D(q), and R(q) be the duration of the checkpoint,
downtime, and recovery for each group. We assume that the checkpoints of the G groups take
place in sequence within a period (see Figure 2.2(a)). We start by generalizing the formula
obtained for the coordinated scenario before introducing several new parameters to the model.



2.2. MODEL AND ANALYTICAL ASSESSMENT 19

Generalizing previous scenario with G ≥ 1

We obtain the following intricate formula for the waste, which we illustrate with Figure 2.2
and the discussion below:

Wastehier = 1−
(

1− T −Work
T

)(
1− 1

µ

(
D(q) +R(q) + Re-Exec

))
(2.13)

Work = T − (1− α)GC(q) (2.14)

Re-Exec =

T−GC(q)
T

1
G

G∑
g=1

[
(G−g+1)αC(q) + T−GC(q)

2

]
(2.15)

+ GC(q)
T

1
G2

G∑
g=1

[
(2.16)

g−2∑
s=0

(G− g + s+ 2)αC(q) + T −GC(q) (2.17)

+GαC(q) + T −GC(q) + C(q)
2 (2.18)

+
G−g∑
s=1

(s+ 1)αC(q)
]

(2.19)

• The first term in Equation (2.13) represents the overhead due to checkpointing during a fault-
free execution (same reasoning as in Equation (2.6)), and the second term the overhead incurred
in case of failure.
• (2.14) provides the amount of work units executed within a period of length T .
• (2.15) represents the time needed for re-executing the work when the failure happens in a
work-only area, i.e., during the first T −GC(q) seconds of the period (see Figure 2.2(a)).
• (2.16) deals with the case where the fault happens during a checkpoint, i.e. during the last
GC(q) seconds of the period (hence the first term that represents the probability of this event).
We distinguish three cases, depending upon what group was checkpointing at the time of the
failure:
- (2.17) is for the case when the fault happens before the checkpoint of group g (see Fig-
ure 2.2(b)).
- (2.18) is for the case when the fault happens during the checkpoint of group g (see Fig-
ure 2.2(c)).
- (2.19) is the case when the fault happens after the checkpoint of group g, during the checkpoint
of group g + s, where g + 1 ≤ g + s ≤ G (See Figure 2.2(d)).

Of course this expression reduces to Equation (2.12) when G = 1. Just as for the coordinated
scenario, we enforce the constraint

GC(q) ≤ T ≤ 0.1µ (2.20)

The first condition is by construction of the periodic checkpointing policy, and the second is to
enforce the validity of the first-order approximation (at most one failure per period).
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(a)
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∆
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(d)

∆
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Figure 2.2: Hierarchical checkpoint: illustrating the waste when a failure occurs (a) during the
work phase (Equation (2.15)); and during the checkpoint phase (Equations (2.16)–(2.19)), with
three sub-cases: (b) before the checkpoint of the failing group (Equation (2.17)), (c) during
the checkpoint of the failing group (Equation (2.18)), or (d) after the checkpoint of the failing
group (Equation (2.19)).
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Refining the model

We introduce three new parameters to refine the model when the processors have been
partitioned into several groups. These parameters are related to the impact of message logging
on execution, re-execution, and checkpoint image size, respectively.

Impact of message logging on execution and re-execution– With several groups, inter-group
messages need to be stored in local memory as the execution progresses, and event logs must
be stored in reliable storage, so that the recovery of a given group, after a failure, can be done
independently of the other groups. This induces an overhead, which we express as a slowdown
of the execution rate: instead of executing one work-unit per second, the application executes
only λ work-units, where 0 < λ < 1. Typical values for λ are said to be λ ≈ 0.98, meaning that
the overhead due to payload messages is only a small percentage [22, 23].

On the contrary, message logging has a positive effect on re-execution after a failure, because
inter-group messages are stored in memory and directly accessible after the recovery. Our model
accounts for this by introducing a speed-up factor ρ during the re-execution. Typical values for
ρ lie in the interval [1; 2], meaning that re-execution time can be reduced by up to half for some
applications [16].

Fortunately, the introduction of λ and ρ is not difficult to account for in the expression of
the expected waste: in Equation (2.13), we replace Work by λWork and Re-Exec by Re-Exec

ρ
and obtain

Wastehier = 1−
(

1− T − λWork
T

)(
1− 1

µ

(
D(q) +R(q) + Re-Exec

ρ

))
(2.21)

where the values of Work and Re-Exec are unchanged, and given by Equations (2.14)
and (2.15 – 2.19) respectively.

Impact of message logging on checkpoint size– Message logging has an impact on the execu-
tion and re-execution rates, but also on the size of the checkpoint. Because inter-group messages
are logged, the size of the checkpoint increases with the amount of work per unit. Consider the
hierarchical scenario with G groups of q processors. Without message logging, the checkpoint
time of each group is C0(q), and to account for the increase in checkpoint size due to message
logging, we write the equation

C(q) = C0(q)(1 + βλWork)⇔ β = C(q)− C0(q)
C0(q)λWork (2.22)

As before, λWork = λ(T − (1 − α)GC(q)) (see Equation (2.14)) is the number of work
units, or application iterations, completed during the period of duration T , and the parameter
β quantifies the increase in the checkpoint image size per work unit, as a proportion of the
application footprint. Typical values of β are given in the examples of Section 2.3. Combining
with Equation (2.22), we derive the value of C(q) as

C(q) = C0(q)(1 + βλT )
1 +GC0(q)βλ(1− α) (2.23)

The first constraint in Equation (2.20), namelyGC(q) ≤ T , now translates into GC0(q)(1+βλT )
1+GC0(q)βλ(1−α) ≤

T , hence

GC0(q)βλα ≤ 1 and T ≥ GC0(q)
1−GC0(q)βλα (2.24)
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2.3 Case Studies

In this section, we use the previous model to evaluate different case studies. We propose
three generic scenarios for the checkpoint protocols, three application examples with different
values for the parameter β, and four platform instances.

2.3.1 Checkpointing algorithm scenarios

Coord-IO– The first scenario considers a coordinated approach, where the duration of a check-
point is the time needed for the ptotal processors to write the memory footprint of the application
onto stable storage. Let Mem denote this memory, and bio represents the available I/O band-
width. Then

C = CMem = Mem
bio

(2.25)

In most cases we have equal write and read speed access to stable storage, and we let R =
C = CMem, but in some cases we have different values, for example with the K-Computer (see
Table 2.1). As for the downtime, the value D is the expectation of the duration of the downtime.
With a single processor, the downtime has a constant value, but with several processors, the
duration of the downtime is difficult to compute: a processor can fail while another one is
down, thereby leading to cascading downtimes. The exact value of the downtime with several
processors is unknown, even for failures distributed according to an exponential law; but in
most practical cases, the lower bound given by the downtime of a single processor is expected
to be very accurate, and we use a constant value for D in our case studies.
Hierarch-IO– The second scenario uses a number of relatively large groups. Typically, these
groups are composed to take advantage of the application communication pattern [22, 21]. For
instance, if the application executes on a 2D-grid of processors, a natural way to create processor
groups is to have one group per row (or column) of the grid. If all processors of a given row
belong to the same group, horizontal communications are intra-group communications and need
not to be logged. Only vertical communications are inter-group communications and need to
be logged.

With large groups, there are enough processors within each group to saturate the available
I/O bandwidth, and the G groups checkpoint sequentially. Hence the total checkpoint time
without message logging, namely GC0(q), is equal to that of the coordinated approach. This
leads to the simple equation

C0(q) = CMem
G

= Mem
Gbio

(2.26)

where Mem denotes the memory footprint of the application, and bio the available I/O band-
width. Similarly as before, we use R(q) for the recovery (either equal to C(q) or not), and a
constant value D(q) = D for the downtime.
Hierarch-Port– The third scenario investigates the possibility of having a large number of
very small groups, a strategy proposed to take advantage of hardware proximity and failure
probability correlations [20]. However, if groups are reduced to a single processor, a single
checkpointing group is not sufficient to saturate the available I/O bandwidth. In this strategy,
multiple groups of q processors are allowed to checkpoint simultaneously in order to saturate
the I/O bandwidth. We define qmin as the smallest value such that qminbport ≥ bio, where bport
is the network bandwidth of a single processor. In other words, qmin is the minimal size of
groups so that Equation (2.26) holds.
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Small groups typically imply logging more messages (hence a larger growth factor of the
checkpoint per work unit β, and possibly a larger impact on computation slowdown λ). For an
application executing on a 2D-grid of processors, twice as many communications will be logged
(assuming a symmetrical communication pattern along each grid direction). However, let us
compare recovery times in the Hierarch-Port and Hierarch-IO strategies; assume that
R0(q) = C0(q) for simplicity. In both cases Equation (2.26) holds, but the number of groups is
significantly larger for Hierarch-Port, thereby ensuring a much shorter recovery time.

2.3.2 Application examples

We study the increase in checkpoint size due to message logging by detailing three application
examples that are typical scientific applications executing on 2D-or 3D-processor grids, but that
exhibit a different checkpoint increase rate parameter β.
2D-Stencil– We first consider a 2D-stencil computation: a real matrix of size n × n is par-
titioned across a p × p processor grid, where p2 = ptotal. At each iteration, each element is
averaged with its 8 closest neighbors, requiring rows and columns that lie at the boundary of
the partition to be exchanged (it is easy to generalize to larger update masks). Each processor
holds a matrix block of size b = n/p, and sends four messages of size b (one in each grid direc-
tion) . Then each element is updated, at the cost of 9 double floating-point operations. The
(parallel) work for one iteration is thus Work = 9b2

sp , where sp is the speed of one processor.
Here Mem = 8n2 (in bytes), since there is a single (double real) matrix to store. As already

mentioned, a natural (application-aware) group partition is with one group per row (or column)
of the grid, which leads to G = q = p. Such large groups correspond to the Hierarch-
IO scenario, with C0(q) = CMem

G . At each iteration, vertical (inter-group) communications are
logged, but horizontal (intra-group) communications are not logged. The size of logged messages
is thus 2pb = 2n for each group. If we checkpoint after each iteration, C(q)− C0(q) = 2n

bio , and
we derive from Equation (2.22) that β = 2npsp

n29b2 = 2sp
9b3 . We stress that the value of β is unchanged

if groups checkpoint every k iterations, because both C(q)−C0(q) and Work are multiplied by
a factor k. Finally, if we use small groups of size qmin, we have the Hierarch-Port scenario.
We still have C0(q) = CMem

G , but now the value of β has doubled since we log twice as many
communications.
Matrix-Product– Consider now a typical linear-algebra kernel involving matrix products.
For each matrix-product, there are three matrices involved, so Mem = 24n2 (in bytes). The
matrix partition is similar to previous scenario, but now each processor holds three matrix
blocks of size b = n/p. Consider Cannon’s algorithm [13] which has p steps to compute a
product. At each step, each processor shifts one block vertically and one block horizontally,
and Work = 2b3

sp . In the Hierarch-IO scenario with one group per grid row, only vertical
messages are logged: β = sp

6b3 . Again, β is unchanged if groups checkpoint every k steps, or
every matrix product (k = p). In the Coord-Port scenario with groups of size qmin, the value
of β is doubled.
3D-Stencil– This application is similar to 2D-Stencil, but with a 3D matrix of size n par-
titioned across a 3D-grid of size p, where 8n3 = Mem and p3 = ptotal. Each processor holds
a cube of size b = n/p. At each iteration, each pixel is averaged with its 26 closest neighbors,
and Work = 27b3

sp . Each processor sends the six faces of its cube, one in each direction. In
addition to Coord-IO, there are now three hierarchical scenarios: A) Hierarch-IO-Plane
where groups are horizontal planes, of size p2. Only vertical communications are logged, which
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represents two faces per processor: β = 2sp
27b3 ; B) Hierarch-IO-Line where groups are lines, of

size p. Twice as many communications are logged, which represents four faces per processor:
β = 4sp

27b3 ; C) Hierarch-Port (groups of size qmin). All communications are logged, which
represents six faces per processor: β = 6sp

27b3 . The order of magnitude of b is the cubic root of
the memory per processor for 3D-Stencil, while it was its square root for 2D-Stencil and
Matrix-Product, so β will be larger for 3D-Stencil.

2.3.3 Platforms and parameters

We consider multiple platforms, existing or envisioned, that represent state-of-the-art tar-
gets for HPC applications. Table 2.1 presents the basic characteristics of the platforms we
consider. The machine named Titan represents the fifth phase of the Jaguar supercomputer,
as presented by the Oak Ridge Leadership Computing Facility (http://www.olcf.ornl.gov/
computing-resources/titan/). The cumulated bandwidth of the I/O network is targeted to
top out at 1 MB/s/core, resulting in 300GB/s for the whole system. We consider that all exist-
ing machines are limited for a single node output by the bus capacity, at approximately 20GB/s.
The K-Computer machine, hosted by Riken in Japan, is the second fastest supercomputer of
the Top 500 list at the time of writing. Its I/O characteristics are those presented during the
Lustre File System User’s Group meeting, in April, 2011 [12], with the same bus limitation for
a single node maximal bandwidth. The two Exascale machines represent the two most likely
scenarios envisioned by the International Exascale Software Project community [92], the largest
variation being on the number of cores a single node should host. For all platforms, we let the
speed of one core be 1 Gigaflops, and we derive the speed of one processor sp by multiplying by
the number of cores.

Table 2.1 also presents key parameters for all platform/scenario combinations. In all in-
stances, we use the default values: ρ = 1.5, λ = 0.98 and α = 0.3. These values lead to results
representative of the trends observed throughout the set of tested values.

2.3.4 Checkpoint duration

The last parameter that we consider is the duration of the checkpoint. Equation (2.25) states
that C = CMem = Mem

bio , hence the duration of the checkpoint is proportional to the volume of
data written to stable storage, and inversely proportional to the cumulated I/O bandwidth that
is available on the platform. As for the volume of data written, it can range from the entire
memory available on the platform (for those applications whose footprint is maximal), down
to a small percentage of this value. As for the cumulated I/O bandwidth, it can range from
the values given in Table 2.1 down to a small fraction of these values, if one can use advanced
checkpointing techniques, like incremental checkpointing [8, 9] to reduce the checkpoint size,
or multi-level checkpointing [6], diskless checkpointing [10, 11], or new generation hardware,
providing local remanent memory [7] to increase the I/O bandwidth. To account for the wide
range of both parameters (volume and bandwidth), we propose several scenarios:
Cmax In this scenario, which represents the worst case, the duration of a checkpoint is Cmax =

C = CMem as in Equation (2.25): here we use the values of Table 2.1, both for Mem
(the application uses the entire platform memory, and no technique such as incremental
checkpointing, or compressive checkpointing, can be used to reduce the amount of memory
that needs to be saved), and for bio (the checkpoint is stored in the remote reliable file
storage system, and its transfer speed is limited by the I/O bandwidth of the platform);

http://www.olcf.ornl.gov/computing-resources/titan/
http://www.olcf.ornl.gov/computing-resources/titan/


2.4. RESULTS FROM THE MODEL 25

Cmax
X In these scenarios, the duration of a checkpoint is Cmax

X , where X ∈ {10, 100, 1000}. Note
that this does not mean that a single technique allows to reduce the data volume by a
factorX; instead, the ratio Mem

bio is divided byX, by combining all available techniques and
hardware, and both the numerator (smaller volume) and the denominator (faster transfer)
can contribute to the reduction of checkpoint duration. The objective is to investigate
whether, and to what extent, faster checkpointing can prove useful, or necessary, at very
large scale.

2.4 Results from the model
This section covers the results of our unified model on the previously described scenarios.

In order to grant fellow researchers access to the model, results and scenarios proposed in
this chapter, we made our computation spreadsheet available at http://icl.cs.utk.edu/
~herault/UnifiedModel/.

We start with some words of caution. First, the applications used for this evaluation exhibit
properties that makes them a difficult case for hierarchical checkpoint/restart techniques. These
applications are communication intensive, which leads to a noticeable impact on performance
(due to message logging). In addition, their communication patterns create logical barriers
that make them tightly-coupled, giving a relative advantage to all coordinated checkpointing
methods (due to the lack of independent progress). However, these applications are more
representative of typical HPC applications than loosely-coupled (or even independent) jobs,
and their communication-to-computation ratio tends to zero with the problem size (full weak
scalability). Next, we point out that the theoretical values used in the model instances, and
summarized in Table 2.1, are overly optimistic, based on the values released by the constructors
and not on measured values. Finally, we stress that the horizontal axis of all figures is the
processor MTBF µ, which ranges from 1 year to 100 years, a choice consistent with the usual
representation in the community.

Section 2.3 above presented in detail how the values of Table 2.1 were obtained. We started
with the basic numbers of the different platforms (number of cores, processors, amount of
memory and I/O capacity), and derived for each platform and Scenario the corresponding
number of groups (for hierarchical protcols), their size, and from this the costs of taking a
group checkpoint. We then derived, for each target application, the value of β, which depends
on the group size.

The first observation is that when C = Cmax, only Titan is a useful platform! Indeed,
we obtain a waste equal to 1 for all scenario/application combinations, throughout the whole
range of the MTBF µ, for both the K-Computer or Exascale platforms. This was expected and
simply shows that for such large platforms, the checkpoint time must be significantly smaller
than Cmax, the time needed to write the entire platform memory onto stable storage.

Along the same line, we only report values for C = Cmax on Titan, for C = Cmax
10 on Titan

and the K-computer, for C = Cmax
100 on Exascale-Fat, and for C = Cmax

1,000 on Exascale-Fat and
Exascale-Slim. Unreported values correspond to situations where the checkpoint duration is
too large for the platform to be useful. A few comments apply to all platforms:
— Hierarchical protocols are very sensitive to message logging: a direct relationship between

β, and the observed waste can be seen when moving from one application to another, and
even for different protocols within the same application.

— Hierarchical protocols tend to provide better results for small MTBFs. Thus, they seem
more suitable for failure-prone platforms. While they struggle when the communication

http://icl.cs.utk.edu/~herault/UnifiedModel/
http://icl.cs.utk.edu/~herault/UnifiedModel/
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intensity increases (the case of the 3D-Stencil), they provide limited waste for all the other
cases.

— The faster the checkpointing time, the smaller the waste. This conclusion is quite expected,
but our results allow quantifying the gain.

On Titan, when using Cmax, the key factors impacting the balance between coordinated
and hierarchical protocols are the communication intensity of the applications (2D-Stencil,
Matrix-Product, and 3D-Stencil), and the I/O capabilities of the system. The coordi-
nated protocol has a slow startup, preventing the application from progressing when the plat-
form MTBF µ is under a system limit directly proportional to the time required to save the
coordinated checkpoint. Hierarchical protocols have a faster startup. However, as the MTBF in-
creases, the optimal interval between checkpoints increase, and the cost of logging the messages
(and the increase in checkpoint size it implies) becomes detrimental to the hierarchical proto-
cols (even considering the most promising approaches). The vertical segments on the graphs
correspond to cut-off values where we enforce the condition T ≤ 0.1µ (see Equation (2.20)).
Values of µ for which no waste is reported correspond to configurations for which no period can
satisfy Equation (2.20).

Moving to Cmax
10 , the same remarks can be made about the shape of the figures. Compared

to a checkpointing time of Cmax, the waste is significantly smaller, leading to a very good yield
of the platform as soon as the MTBF µ exceeds 10 years. The K-Computer shows similar
behavior. However, the waste is still important even for large MTBF values for all application
scenarios. This can be attributed to the low I/O bandwidth and high amount of total memory
of the parameters used for the K-computer, when compared to the parameters considered for
the Titan setup.

Moving to Exascale platforms, the Exascale-Fat platform starts to show application progress
when Cmax

100 is used. However, just like the K-Computer, the waste is still important even for
large MTBF. When checkpointing becomes ten times faster, the results are more promising. The
Exascale-Slim platform starts to be useful when using Cmax

1,000 , which corresponds to checkpointing
the application within a few seconds. Overall, Exascale-Fat leads to a smaller waste (or better
resource usage) than Exascale-Slim; the main reason is that the Fat version has fewer processors,
hence a larger platform MTBF. Indeed, the individual processor MTBF is assumed to be the
same for both Exascale-Fat and Exascale-Slim, which may be unfair since there are 10 times
more cores per node in the Fat version.

Setting aside the expected conclusion that an efficient process checkpointing strategy will be
critical to enable rollback/recovery at exascale, the model leads to an important prediction for
Exascale machines (Fat or Slim scenarios): unless extremely high reliability of the components
can be guaranteed (MTBF per component of 30 to 50 years for the Stencil applications), hierar-
chical checkpointing approaches will (i) exhibit a lower waste than coordinated checkpointing,
and (ii) allow for an efficiency two to four times higher than replication. This conclusion holds
even for applications as tightly-coupled and as communication-intensive as the ones evaluated
in this study.

2.5 Validation of the model
To validate the mathematical model, we wrote a simulator that generates a random trace

of errors (parameterized by an Exponential failure distribution or a Weibull one with a shape
parameter of 0.7 or 0.5). On this error trace, we simulate the behavior of the various fault
tolerance protocols. In the simulator, there is no assumption on when errors can happen: an
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error can strike a processor while another or the same processor is already subject to a failure
and during a recovery phase.

We arbitrarily set the failure-free duration of the parallel application execution to 4 days.
This guarantees that enough failures happen during each simulation run to evaluate the waste.
We measure the simulated execution time of each application on each platform and on each
error trace using a time-out of one year: if an execution does not complete before the one
year deadline, we consider it never completes and do not report any result for this particular
platform/application setting. From the simulated execution times, we compute the average
waste.

All protocols use the same parameters in the simulator as the ones fed to the mathematical
model: checkpoint durations, overheads of message logging and consequences in the checkpoint
size, amount of work that can be done in parallel, are simulated by increasing accordingly the
duration of the execution. The checkpoint interval is set in each case to the optimal value,
as provided by the mathematical model. In order to evaluate the accuracy of the optimal
checkpoint interval forecasted by the model, we also ran a set of experiments that investigate
other random checkpoint interval values around the forecasted best value, and keep the best
value in the experiments denoted BestPer.

Figure 2.4 reports the waste for various application/platform scenarios for a Weibull failure
distribution with k = 0.7. Results for an Exponential failure distribution and for a Weibull with
k = 0.5, are provided at http://icl.cs.utk.edu/~herault/UnifiedModel/. Each point on
the graphs is an average over 20 randomly generated instances.

Overall, Figures 2.3 and 2.4 present similar trends and conclusions. The main differences
are seen for low MTBFs, in the vicinity of cut-offs values for Figure 2.3. There, either the
first-order assumption could no longer be satisfied, or coordinated protocols were assessed not
to allow for any application progress. Simulations show that, in these extreme settings, our
analytical study was pessimistic: coordinated protocols have indeed very bad performance, but
often applications still make progress (albeit at unsatisfactory rate); coordinated protocols have
an advantage over hierarchical protocols for slightly lower MTBFs than predicted. However,
the simulations validate the relative performance, and the general efficiency, of the different
protocols.

For each scenario and each protocol, we plot (in solid line) the average waste for the check-
pointing period computed with our model (the one minimizing Equation (2.21)). In Figure 2.4
we also plot (in dotted line) the average waste obtained for the best checkpointing period (Best-
Per), numerically found by generating, and evaluating through simulations, a set of 480 periods
representative of a very large neighborhood of the period computed with our model. The very
good adequation between solid and dotted lines show that our model enables to compute near-
optimal checkpointing periods, even when its underlying assumptions cannot be guaranteed.

2.6 Conclusion
Despite the increasing importance of fault tolerance in achieving sustained, predictable per-

formance, the lack of models and predictive tools has restricted the analysis of fault tolerant
protocols to experimental comparisons only, which are painfully difficult to realize in a consis-
tent and repeated manner. This chapter introduces a comprehensive model of rollback recovery
protocols that encompasses a wide range of checkpoint/restart protocols, including coordinated
checkpoint and an assortment of uncoordinated checkpoint protocols (based on message log-
ging). This model provides the first tool for a quantitative assessment of all these protocols.

http://icl.cs.utk.edu/~herault/UnifiedModel/
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Instantiation on future platforms enables the investigation and understanding of the behavior
of fault tolerant protocols at scales currently inaccessible. The results presented in Section 2.4,
and corroborated by Section 2.5, highlight the following tendencies:
• Hardware properties will have tremendous impact on the efficiency of future platforms. Under
the early assumptions of the projected Exascale systems, rollback recovery protocols are mostly
ineffective. In particular, significant efforts are required in terms of I/O bandwidth to enable
any type of rollback recovery to be competitive. With the appropriate provision in I/O (or
the presence of distributed storage on nodes), rollback recovery can be competitive and signif-
icantly outperform full-scale replication [69] (which by definition cannot reach more than 50%
efficiency).
• Under the assumption that I/O network provision is sufficient, the reliability of individual
processors has a minor impact on rollback recovery efficiency. This suggests that most research
efforts, funding and hardware provisions should be directed to I/O performance rather than
improving component reliability in order to increase the scientific throughout of Exascale plat-
forms.
• The model outlines some realistic ranges where hierarchical checkpointing outperforms coor-
dinated checkpointing, thanks to its faster recovery from individual failures. This early result
had already been outlined experimentally at smaller scales, but it was difficult to project at
future scales. Our study provides a theoretical foundation and a quantitative evaluation of
the drawbacks of checkpoint/restart protocols at Exascale; it can be used as a first build-
ing block to drive the research field forward, and to design platforms with specific resilience
requirements. Throughout the simulations, we have checked (by an extensive brute-force com-
parison) that our model could predict near-optimal checkpointing periods for the whole range
of the protocol/platform/application combinations; this gives us very good confidence that this
model will prove reliable and accurate in other frameworks. As we are far from a comprehen-
sive understanding of future Exascale applications and platform characteristics, we hope that
the community will be interested in instantiating our publicly available model with different
scenarios and case-studies.
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Name Number of Number of Number of cores Memory
cores processors ptotal per processor per processor

Titan 299,008 18,688 16 32GB
K-Computer 705,024 88,128 8 16GB

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB
Exascale-Fat 1,000,000,000 100,000 10,000 640GB

Name I/O Network Bandwidth (bio) I/O Bandwidth (bport)
Read Write Read/Write per processor

Titan 300GB/s 300GB/s 20GB/s
K-Computer 150GB/s 96GB/s 20GB/s

Exascale-Slim 1TB/s 1TB/s 200GB/s
Exascale-Fat 1TB/s 1TB/s 400GB/s

Name Scenario G (C(q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561
Coord-IO 1 (14,688s) / /

K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113
Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (68,719s) / /
Exascale-Slim Hierarch-IO 1,000 (68.7s) 0.0002599 0.001013

Hierarch-Port 200,000 (0.32s) 0.0005199 0.002026
Coord-IO 1 (68,719s) / /

Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203
Hierarch-Port 33,333 (1.92s) 0.00016440 0.0006407

Name Scenario G β for 3D-Stencil
Coord-IO 1 /

Titan Hierarch-IO-Plane 26 0.001476
Hierarch-IO-Line 676 0.002952

Hierarch-Port 1,246 0.004428
Coord-IO 1 /

K-Computer Hierarch-IO-Plane 44 0.003422
Hierarch-IO-Line 1,936 0.006844

Hierarch-Port 17,626 0.010266
Coord-IO 1 /

Exascale-Slim Hierarch-IO-Plane 100 0.003952
Hierarch-IO-Line 10,000 0.007904

Hierarch-Port 200,000 0.011856
Coord-IO 1 /

Exascale-Fat Hierarch-IO-Plane 46 0.001834
Hierarch-IO-Line 2,116 0.003668

Hierarch-Port 33,333 0.005502

Table 2.1: Basic characteristics of platforms used to instantiate the model, and all parameters
for each platform/scenario combination. The equations C0(q) = C/G and R0(q) = R/G always
hold.
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Figure 2.3: Model: waste as a function MTBF µ (years per processor).
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Figure 2.4: Waste as a function of processor MTBF µ, for a Weibull distribution with k=0.7
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Chapter 3

Combining Replication and Coordinated
Checkpointing

3.1 Introduction

For applications that enroll large numbers of processors, processor failures are projected to be
common occurrences [24, 25, 26]. Failures occur because not all faults are automatically detected
and corrected in current production hardware. To tolerate failures the standard approach is to
use rollback and recovery for resuming application execution from a previously saved fault-free
execution state, or checkpoint. In spite of these efforts, the necessary checkpoint frequency for
tolerating failures in large-scale platforms can become so large that processors spend more time
checkpointing than computing. This is because the MTBF (Mean Time Between Failures) of the
platform becomes so small that the application performs too many recoveries and re-executions
to make progress efficiently.

One possible solution to this problem is to increase the reliability of individual components,
e.g., with more hardware redundancy. But this increase comes at a higher cost. Since system
acquisition costs are typically constrained when designing a parallel platform, vendors must
instead use commercial-of-the-shelf (COTS) components. The reliability of these COTS com-
ponents is defined by the product lifetime, as driven by the market. HPC systems with COTS
components will thus experience higher failure rates at higher scales [29], thereby limiting paral-
lel efficiency if only checkpoint-recovery is used at these scales. Furthermore, even if the MTBF
of an individual component is a high µcomp, then the MTBF of a platform with p components is
µ = µcomp

p . No matter how reliable the individual components, there is thus a value of p above
which errors are so frequent that they can prevent any application progress.

In this chapter we focus on replication: several processors perform the same computation
synchronously, so that a fault on one of these processors does not lead to an application failure.
Replication is an age-old fault-tolerant technique, but it has gained traction in the HPC context
only relatively recently. While replication wastes compute resources in fault-free executions, it
can alleviate the poor scalability of checkpoint-recovery.

We study two replication approaches. Consider a parallel application that ismoldable, mean-
ing that it can be executed on an arbitrary number of processors, which each processor running
one application process. In the first approach, group replication, multiple application instances
are executed. For example, 2 distinct n-process application instances could be executed on
a 2n-processor platform. Each instance runs at a smaller scale, meaning that it has better
parallel efficiency than a single 2n-process instance due to a smaller checkpointing frequency.

33



34 CHAPTER 3. COMBINING REPLICATION AND COORDINATED CHECKPOINTING

Furthermore, once an instance saves a checkpoint, another instance can use this checkpoint im-
mediately to “jump ahead” in its execution. Hence group replication is more efficient than the
mere independent execution of several instances: each time one instance successfully completes
a given “chunk of work”, all the other instances immediately benefit from this success.

In the second approach, process replication, a single instance of an application is executed
but each application process is (transparently) replicated. For the same example, one executes
the application with n processes so that there are two replicas of each process, each running on
a distinct physical processor. This approach is sensible because the mean time to failure of a
group of two replicas is larger than that of a single processor, meaning that the checkpointing
frequency can be lowered thus improving parallel efficiency. In [69] Ferreira et al. have studied
process replication, with a practical implementation and some analytical results.

Process replication largely outperform group replication, simply because process replica-
tion leads to dramatically increased MTBF for each replica set. However, process replication
may not always be a feasible option. This is because process replication must be provided
transparently as part of the runtime system. There are several popular programming models
and runtimes (e.g., message passing, concurrent objects, distributed components, workflows,
algorithmic skeletons). In some cases, e.g., for the Message Passing Interface (MPI) runtime,
proof-of-concept implementations that provide process replication are available [69]. But in gen-
eral, many existing and popular runtimes do not (yet) provide transparent process replication
for the purpose of fault-tolerance, and enhancing them with this capability may be non trivial.
A solution could be to implement process replication explicitly as part of the application, but
this would be labor-intensive, especially for legacy applications. Group replication can be used
whenever process replication is not available because it is agnostic to the parallel programming
model, and thus views the application as an unmodified black box. The only requirement is
that the application be moldable and that an instance be startable from a saved checkpoint file.

We note that (process or group) replication prevents the execution of an application that
requires the aggregate memory of the full platform, and in this sense limits the scale of the
application execution. However, such full-scale execution is likely impractical in the first place
due to the need for a high checkpointing frequency. The processors would spend more time
saving state than computing state, thus leading to low parallel efficiency.

At first glance, it may seem paradoxical that better performance can be achieved by using
(process or group) replication. After all in the above example, 50% of the platform is “wasted”
to perform redundant computation. As a result the application instance runs at a smaller
scale. But, precisely because the scale is smaller, the application can use a lower checkpoint-
ing frequency, and can thus have better parallel efficiency when compared to an application
instance running at full scale. The application makespan can then be comparable to or even
shorter than that obtained when running a single application instance. In the end, the cost of
wasting processor power for redundant computation can be offset by the benefit of the reduced
checkpointing frequency.

In this chapter we study group and process replication from a theoretical perspective, with
the following highlights:
— For group replication:

— We propose a simple yet effective algorithm for group replication.
— For exponentially distributed failures, we derive a checkpointing period that mini-

mizes an upper bound on application makespan.
— For non-exponentially distributed failures we propose a Dynamic Programming ap-

proach that computes non-periodic checkpoint dates in a view to minimizing makespan.
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— For non-exponentially distributed failures we also propose a periodic checkpointing
approach in which the period is computed based on a numerical search.

— We perform simulation experiments assuming that failures follow Exponential or
Weibull distributions, the latter being more representative of real-world failure be-
haviors [64, 63, 65, 27], and using failure logs from production clusters and the results
demonstrate that group replication can be beneficial at large scale.

— For process replication:
— We derive exact expressions for the MNFTI (Mean Number of Failures To Interrup-

tion) and the MTTI (Mean Time To Interruption) for arbitrary numbers of replicas
assuming Exponential failures.

— We extend these results to arbitrary failure distributions, notably obtaining closed-
form solutions in the case of Weibull failures.

— We perform simulation experiments and the results show that the choice of a good
checkpointing period is no longer critical when process replication is used.

— Based on our results, we can determine in which conditions the use of process repli-
cation is beneficial.

This chapter is organized as follows. Section 3.2 defines our models and states our key as-
sumptions. Section 3.3 presents our results for group replication. Section 3.4 presents our results
for process replication. Finally, Section 3.5 provides concluding remarks and perspectives.

3.2 Models and assumptions
We consider the execution of a tightly-coupled parallel application, or job, on a large-scale

platform composed of p processors. We use the term processor to indicate any individually
scheduled compute resource (a core, a multi-core processor, a cluster node), so that our work
is agnostic to the granularity of the platform. We assume that standard checkpoint-recovery
is performed (with checkpointing either at the system level or at the application level, with
some checkpointing overhead involved). At most one application process (replica) runs on one
processor.

The job must complete W units of (divisible) work, which can be split arbitrarily into
separate chunks. We define the work unit so that when the job is executed on a single processor
one unit of work is performed in one unit of time. The job can execute on any number q ≤ p
processors. Defining W (q) as the time required for a failure-free execution on q processors, we
consider three models:
— Perfectly parallel jobs: W (q) = W/q.
— Generic parallel jobs: W (q) = (1 − γ)W/q + γW . As in Amdahl’s law [43], γ < 1 is the

fraction of the work that is inherently sequential.
— Numerical kernels: W (q) = W/q+γW 2/3/

√
q, which is representative of a matrix product

or a LU/QR factorization of size N on a 2D-processor grid, where W = O(N3). In the
algorithm in [39], q = r2 and each processor receives 2r blocks of size N2/r2 during the
execution; γ is the platform’s communication-to-computation ratio.

Each participating processor is subject to failures that each cause a downtime. We do not
distinguish between soft and hard failures, with the understanding that soft failures are handled
via software rejuvenation (i.e., rebooting [55, 56]) and that hard failures are handled by processor
sparing, a common approach in production systems. For simplicity we assume that a downtime
lasts D time units, regardless of the failure type. After a downtime the processor is fault-
free and begins a new lifetime. In the absence of replication, when a processor fails, the whole
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execution is stopped, and all processors must recover from the previous checkpointed state. The
recovery lasts the time needed to restore the last checkpoint from persistent storage. We assume
coordinated checkpointing [82] so that no message logging/replay is needed for recovery. We
allow failures to happen during recovery or checkpointing, but not during downtime (otherwise,
the downtime could be considered part of the recovery). We assume that processor failures
are independent and identically distributed (i.i.d.). This assumption is commonplace in the
literature because it makes analysis more tractable. In the real world, instead, failures are
bound to be correlated. Obtaining theoretical results for non-i.i.d. failures is beyond the scope
of this work. One source of failure correlation is the hierarchical structure of compute platforms
(each rack comprises compute nodes, each compute node comprises processors, each processor
comprises cores), which leads to simultaneous failures of groups of processors.

We let C(q) denote the time needed to perform a checkpoint, and R(q) the time needed
to perform a recovery. Assuming that the memory footprint of an application checkpoint is V
bytes, with each processor holding V/q bytes, we consider two scenarios:
— Proportional overhead: C(q) = R(q) = αV/q = C/q for some constant α. This is repre-

sentative of cases where the bandwidth of the network card/link at each processor is the
I/O bottleneck.

— Constant overhead: C(q) = R(q) = αV = C, which is representative of cases where the
bandwidth to/from the resilient storage system is the I/O bottleneck.

Since we consider tightly coupled parallel jobs, all q processors operate synchronously. These
processors execute the same amount of work W (q) in parallel, chunk by chunk. The total time
(on one processor) to execute a chunk of duration, or size, ω and then checkpoint it, is ω+C(q).

3.3 Group replication
Group replication consists in executing multiple application instances on different processor

groups. All groups compute the same chunk simultaneously, and do so until one of them suc-
ceeds, potentially after several failed trials. Then all other groups stop executing that chunk
and recover from the checkpoint stored by the successful group. All groups then attempt to
compute the next chunk. Group replication can be implemented easily with no modification to
the application, provided that the recovery implementation allows a group to recover immedi-
ately from a checkpoint produced by another group. Hereafter we formalize group replication
as an execution protocol we call ASAP (As Soon As Possible).

We consider g groups, where each group has q processors, with g×q ≤ p. A group is available
for execution if and only if all its q processors are available. In case of a failure at a processor
in a group, the downtime of this group is a random variable XD(q) ≥ D. This random variable
can take values strictly larger than D because while a processor in a group is experiencing a
downtime, another processor in that group can experience a failure, thus prolonging the groups’
downtime beyond D seconds. If a group encounters a first processor failure at time t, we say
that the group is down between times t and t+XD(q).

ASAP proceeds in k macro-steps, with a chunk of work processed during each macro-step.
More formally, during macro-step j, 1 ≤ j ≤ k, each group independently attempts to execute
the j-th chunk of size ωj and to checkpoint, restarting as soon as possible in case of a failure.
As soon as one of the groups succeeds, say at time tendj , all the other groups are immediately
stopped, macro-step j is over, and macro-step (j + 1) starts (if j < k). The only two necessary
inputs to the algorithm are (i) the number of chunks, k, and (ii) all chunk sizes, the ωj ’s, chosen
so that

∑k
j=1 ωj = W (q).
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C(q)(q)

ω1

ω2

C(q)(q)R(q)(q)

Failure

Group 1

Group 2

Downtine (of a processor)R(q)(q)

Recover

Downtine (of a group)

Group 3

time tend2tend1

Figure 3.1: Execution of chunks ω1 and ω2 (macro-steps 1 and 2) using the ASAP protocol.
At time tend1 , Group 1 is not ready, and Group 2 is the only one that does not need to recover.

Algorithm 1: ASAP (ω1, . . . , ωk)
1 for j = 1 to k do
2 for each group do in parallel
3 repeat
4 Finish current downtime (if any);
5 Try to perform a recovery, then a chunk of size ωj , and finally to checkpoint;
6 if execution successful then
7 Signal other groups to immediately stop their attempts;
8 until one of the groups has a successful attempt;

Before being able to start macro-step (j + 1), a group that has been stopped must execute
a recovery so that it can resume execution from the checkpoint saved by a successful group.
Furthermore, this recovery may start later than time tendj , in the case where the group is down
at time tendj . This is shown on an example execution in Figure 3.1. At time tend1 , Group
2 completes the computation and checkpointing of the chunk for macro-step 1. During that
macro-step, Group 1 experiences two downtimes, each of duration D, while Group 3 experiences
a single downtime of duration > D due to a failure at a first processor followed by a failure at
a second processor before the end of the first processor’s downtime. At time tend1 , Group 1 is
down (experiencing a downtime caused by a sequence of three processor failures), so it cannot
begin the recovery from the checkpoint saved by Group 2 immediately. Group 3, instead, can
begin the recovery immediately a time tend1 , but due to a failure it must reattempt the recovery.
At time tend2 it is Group 3 that completes the chunk for macro-step 2. As seen in the figure, the
only groups that do not need to recover at the beginning of the next macro-step are the groups
that were successful for the previous macro-step (except for the first macro-step for which all
groups can start computing right away).
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Group 3

X2
1

Group 1

Group 2

Job2

Job3
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2Y 2
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3L R(q)(q) + ω2 + C(q)(q)

Attempt i (of step 2) has size X2
i

and is followed by a downtime of size Y 2
i

tend1 tend2

Job1

Figure 3.2: Zoom on macro-step 2 of the execution depicted in Figure 3.1, using the (X,Y )
notation of Algorithm 2. Recall that Jobi has size X2

i + Y 2
i for 1 ≤ i ≤ 3, and Job4 has size

R(q) + ω2 + C(q).

3.3.1 Exponential failures

In this section we provide an analytical evaluation of ASAP assuming Exponential failures.
More specifically, we are able to compute the optimal number of macro-steps k and the optimal
values of the chunk sizes ωj . Assume that individual processor failures are distributed following
an Exponential distribution of parameter λ. For the sake of the theoretical analysis, we introduce
a slightly modified version of the ASAP protocol in which all groups, including the successful
ones, execute a recovery at the beginning of all macro-steps, including the first one. This version
of ASAP is described in Algorithm 1. It is completely symmetric, which renders its analysis
easier: for macro-step j to be successful, one of the groups must be up and running for a
duration of R(q) + ωj + C(q). Note however that all experiments reported in Section 3.3.4 use
the original version of ASAP, without any superfluous recovery during execution (as depicted
in Figure 3.1).

Consider the j-th macro-step, number the attempts of all groups by their start time, and let
Nj be the index of the earliest started attempt that successfully computes chunk ωj . Figure 3.2
zooms in on the execution of the second macro-step (j = 2). Each attempt is called Jobi in
the order of its start time, and is followed by a downtime but for the last attempt, which is
successful. In that example the successful computation of the chunk of size R + ω2 + C is the
fourth attempt, Job4, executed by Group 3. Consequently, N2 = 4, meaning that macro-step
2 requires 4 attempts. The duration of each attempt is the sum of a sample of two random
variablesXj

i and Y
j
i , 1 ≤ i ≤ Nj . Xj

i corresponds to the duration of the ith attempt at executing
the chunk. Y j

i corresponds to the duration of the ith downtime that follows the ith attempt (if
i 6= Nj). Note that Xj

i < R(q)+ωj+C(q) for i < Nj , and Xj
Nj

= R(q)+ωj+C(q). All the Xj
i ’s

follow the same distribution DX , namely an Exponential distribution of parameter qλ. And all
the Y j

i ’s follow the same distribution DXD(q), that of the random variable XD(q) corresponding
to the downtime of a group of q processors. The main idea is to view the Nj execution attempts
as jobs, where the size of job i is Xj

i +Y j
i , and to distribute them across the g groups using the

classical online list scheduling algorithm for independent jobs [40, Section 5.6], as stated in the
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Algorithm 2: Step j of ASAP (ω1, . . . , ωk)
1 i← 1 ; /* number of attempts for the job */
2 L ← ∅ ; /* list of attempts for the job */
3 Sample Xj

i and Y ji using DX and DXD(q), respectively;
4 while Xj

i < R(q) + ωj + C(q) do
5 Add Jobi, with processing time Xj

i + Y ji , to L;
6 i← i+ 1;
7 Sample Xj

i and Y ji using DX and DXD(q), respectively;
8 Nj ← i;
9 Add JobNj , with processing time R(q) + ωj + C(q), to L;

; /* the first successful job has size R(q) + ωj + C(q), not Xj
Nj

+ Y jNj
*/

10 From time tendj−1 on, execute a List Scheduling algorithm to distribute jobs in L to the different
groups (recall that some groups may not be ready at time tendj−1);

tendj−1

T
(R(q)(q)+ωj+C(q)(q))
truestart R(q)(q) + ωj + C(q)(q)

Xj
Nj

tendj

tendj − tendj−1

Figure 3.3: Notations used in Proposition 3.

following proposition:

Proposition 2. The j-th ASAP macro-step can be simulated using Algorithm 2: the last job
scheduled by Algorithm 2 ends exactly at time tendj .

Proof. The List Scheduling algorithm distributes the next job to the first available group. Be-
cause of the memoryless property of Exponential laws, it is equivalent (i) to generate the at-
tempts a priori and greedily schedule them, or (ii) to generate them independently within each
group. �

Proposition 3. Let T (R(q)+ωj+C(q))
truestart be the time elapsed between tendj−1 and the beginning of JobNj

(see Figure 3.3). We have E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y ) + E(Nj)E(X)−E(X

Nj
j )+(E(Nj)−1)E(Y )
g where

X and Y are random variables corresponding to an attempt (sampled using DX and DXD(q)

respectively). Moreover, we have E(Nj) = eλq(R(q)+ωj+C(q)) and E(XNj
j ) = 1

qλ+R(q)+ωj+C(q).
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Proof. For group x, 1 ≤ x ≤ g, let Ỹx denote the time elapsed before it is ready for macro-step
j. For example in Figure 3.2, we have Ỹ1 > 0 (group 1 is down at time tendj−1), while Ỹ2 = Ỹ3 = 0
(groups 2 and 3 are ready to compute at time tendj−1). Proposition 2 has shown that executing
macro-step j can be simulated by executing a List Schedule on a job list L (see Algorithm 2).
We now consider g “jobs” ˜Jobx, x = 1, . . . , g, so that ˜Jobx has duration Ỹx. We now consider the
augmented job list L′ = L ∪

⋃g
x=1

˜Jobx. Note that L′ may contain more jobs than macro-step
j: the jobs that start after the successful job JobNj are discarded from the list L′. However,
both schedules have the same makespan, and jobs common to both systems have the same

start and completion dates. Thus, we have T (R(q)+ωj+C(q))
truestart ≤

∑g

x=1(Ỹx)+
∑Nj−1

i=1 (Xj
i +Y ji )

g : this key
inequality is due to the property of list scheduling: the group which is assigned the last job is
the least loaded when this assignment is decided, hence its load does not exceed the average
load (which is the total load divided by the number of groups). Given that E(Ỹx) ≤ E(Y ), we
derive

E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y ) +

E
(∑Nj−1

i=1 Xj
i

)
+ E

(∑Nj−1
i=1 (Y j

i )
)

g

But Nj is the stopping criterion of the (Xj
i ) sequence, hence using Wald’s theorem we have

E(
∑Nj
i=1X

j
i ) = E(Nj)E(X) which leads to E(

∑Nj−1
i=1 Xj

i ) = E(Nj)E(X)−E(XNj
j ). Moreover, as

Nj and Y j
i are independent variables, we have E(

∑Nj−1
i=1 Y j

i ) = (E(Nj) − 1)E(Y ), and we get
the desired bound for E(T (R(q)+ωj+C(q))

truestart ).
Finally, as the expected number of attempts when repeating independently until success an

event of probability α is 1
α (geometric law), we get E(Nj) = eλq(R(q)+ωj+C(q)). The value of

E(XNj
j ) can be directly computed from the definition, recalling that XNj

j ≥ R(q) + ωj + C(q)
and each Xi

j follows an Exponential distribution of parameter qλ. �

Theorem 1. The expected makespan of ASAP has the following upper bound:
g−1
g W (q) + 1

g

(
1
qλ + E(Y )

)
eλq(R(q)+C(q))k∗eλq

W (q)
k∗ + k∗

(
g−1
g (E(Y ) +R(q) + C(q))− 1

g
1
qλ

)
, where Y

is a random variable with distribution DXD(q). This bound is obtained when using k∗ =
max(1, bk0c) or k∗ = dk0e same-size chunks, whichever leads to the smaller value, where

k0 = λqW (q)
1 + L

((
g − 1 + (g−1)qλ(R(q)+C(q))−g

1+qλE(Y )

)
e−(1+λq(R(q)+C(q)))

) ·
L, the Lambert function, is defined as L(z)eL(z) = z.

Proof. From Proposition 3, the expected execution time of ASAP has upper bound TASAP =∑k
j=1 αj , where

αj = E(Y ) +
E(Nj)E(X)− E(XNj

j ) + (E(Nj)− 1)E(Y )
g

+ (R(q) + ωj + C(q)).

Our objective now is to find the inputs to the ASAP algorithm, namely the number k of macro-
steps together with the chunk sizes (ω1, . . . , ωk), that minimize this TASAP bound.

We first have to prove that any optimal (in expectation) policy uses only a finite number of
chunks. Let α be the expectation of the ASAP makespan using a unique chunk of size W (q).
According to Proposition 3,

α = E(T (R(q)+W (q)+C(q))
truestart ) + C(q) +W (q) +R(q),
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and is finite. Thus, if an optimal policy uses k∗ chunks, we must have k∗C(q) ≤ α, and thus k∗
is bounded.

In the proof of Theorem 1 in [61], we have shown that any deterministic strategy uses the
same sequence of chunk sizes, whatever the failure scenario, thanks to the memoryless property
of the Exponential distribution. We cannot prove such a result in the current context. For
instance, the number of groups performing a downtime at time tend1 depends on the scenario.
There is thus no reason a priori for the size of the second chunk to be independent of the
scenario. To overcome this difficulty, we restrict our analysis to strategies that use the same
sequence of chunk sizes whatever the failure scenario. We optimize TASAP in that context, at
the possible cost of finding a larger upper bound.

We thus suppose that we have a fixed number of chunks, k, and a sequence of chunk sizes
(ω1, . . . , ωk), and we look for the values of (ω1, . . . , ωk) that minimize TASAP =

∑k
j=1 αj . Let

us first compute one of the αj term. Replacing E(Nj) and E(XNj
j ) by the values given in

Proposition 3, and E(X) by 1
qλ , we get

αj = g − 1
g

ωj + 1
g
eλq(R(q)+ωj+C(q))

( 1
qλ

+ E(Y )
)

+ g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

TASAP = g − 1
g

W + 1
g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q))

k∑
j=1

eλqωj

+ k

(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
By convexity, the expression

∑k
j=1 e

λqωj is minimal when all ωj ’s are equal (to W (q)/k). Hence
all the chunks should be equal for TASAP to be minimal. We obtain:

TASAP = g − 1
g

W + 1
g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q))keλq

W (q)
k

+ k

(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
.

Let f(x) = τ1xe
λq

W (q)
x + τ2x, where

τ1 = 1
g

( 1
qλ

+ E(Y )
)
eλq(R(q)+C(q)) and

τ2 =
(
g − 1
g

(E(Y ) +R(q) + C(q))− 1
g

1
qλ

)
.

A simple analysis using differentiation shows that f has a unique minimum, and solving f ′(x) =
0 leads to τ1e

λq
W (q)
k

(
1− λqW (q)

k

)
+ τ2 = 0, and thus to k = λqW (q)

1+L
(

τ2
τ1·e

) = k∗, which concludes

the proof. �

This theorem can in turn be used to compute numerically the number of chunks and an upper
bound on the expected makespan, provided that E(Y ) = E(XD(q)) can be itself bounded. The
following proposition provides such a bound:
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Proposition 4. Let XD(q) denote the downtime of a group of q processors. Then

D ≤ E(XD(q)) ≤ e(q−1)λD − 1
(q − 1)λ · (3.1)

Proof. In [61], we have shown that the optimal expectation of the makespan is computed as:

E∗(q) = K∗(q)
( 1
qλ

+ E(Trec(q))
)(

e
qλW (q)
K∗(q) +qλC(q) − 1

)
(3.2)

where E(Trec(q)) denotes the expectation of the recovery time, i.e., the time spent recovering
from failure during the computation of a chunk. All chunks have the same recovery time
because they all have the same size and because of the memoryless property of the Exponential
distribution. It turns out that although we can compute the optimal number of chunks (and
thus the chunk size), we cannot compute E∗(q) analytically because E(Trec(q)) is difficult to
compute. We write the following recursion:

Trec(q) =


XD(q) +R(q) if no processor fails

during R(q) units of time,
XD(q) + Tlost(R(q)) + Trec(q) otherwise.

(3.3)

XD(q) is the downtime of a group of q processors, that is the time between the first failure of
one of the processors and the first time at which all of them are available (accounting for the
fact a processor can fail while another one is down, thus prolonging the downtime). Tlost(R(q))
is the amount of time spent computing by these processors before a first failure, knowing that
the next failure occurs within the next R(q) units of time. In other terms, it is the compute
time that is wasted because checkpoint recovery was not completed. The time until the next
failure of a group of q processors is the minimum of q iid Exponentially distributed variables,
and is thus Exponential with parameter qλ. We can compute E(Tlost(R(q))) = 1

qλ −
R(q)

eqλR(q)−1
(see [61] for details). Plugging this value into Equation 3.3 leads to:

E(Trec(q)) = e−qλR(q)(E(XD(q)) +R(q))

+ (1− e−qλR(q))
(
E(XD(q)) + 1

qλ
− R(q)
eqλR(q) − 1

+ E(Trec(q))
)

(3.4)

Equation 3.4 reads as follows: after the downtime XD(q), either the recovery succeeds for
everybody, or there is a failure during the recovery and another attempt must be made. Both
events are weighted by their respective probabilities. Simplifying the above expression we get:

E(Trec(q)) = E(XD(q))eqλR(q) + 1
qλ

(eqλR(q) − 1) (3.5)

Plugging back this expression in Equation 3.2, we obtain the Equation:

E∗(q) = K∗(q)
( 1
qλ

+ E(XD(q))
)
eqλR(q)

(
e
qλW (q)
K∗(q) +qλC(q) − 1

)
(3.6)

Now we establish the desired bounds on E(XD(q)) We always have XD(q) ≥ XD(1) ≥ D,
hence the lower bound. For the upper bound, consider a date at which one of the q processors,
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say processor i0, just had a failure and initiates its downtime period for D time units. Some
other processors might be in the middle of their downtime period: for each processor i, 1 ≤ i ≤ q,
let ti denote the remaining duration of the downtime of processor i. We have 0 ≤ ti ≤ D for
1 ≤ i ≤ q, ti0 = D, and ti = 0 means that processor i is up and running. Let Xt1,..,tq

D (q) be the
remaining downtime of a group of q processors, knowing that processor i, 1 ≤ i ≤ q, will still
be down for a duration of ti, and that a failure just happened (i.e., there exists i0 such that
ti0 = D). Given the values of the ti’s, we have the following equation for the random variable
X
t1,..,tq
D (q):

X
t1,..,tq
D (q) =



D

if none of the processors of the group
fails during the next D units of time

T
t1,..,tq
lost (D) +X

t′1,..,t
′
q

D (q)
otherwise.

In the second case of the equation, consider the next D time-units. Processor i can only fail
in the last D − ti of these time-units. Here the values of the t′i’s depend on the ti’s and on
T
t1,..,tq
lost (D). Indeed, except for the last processor to fail, say i1, for which t′i1 = D, we have
t′i = max{t′i − T

t1,..,tq
lost (D), 0}. More importantly we always have T t1,..,tqlost (D) ≤ TD,0,...,0lost (D) and

X
t1,..,tq
D (q) ≤ XD,0,..,0

D (q) because the probability for a processor to fail during D time units is
always larger than that to fail during D − ti time-units. Thus, E(Xt1,..,tq

D (q)) ≤ E(XD,0,..,0
D (q)).

Following the same line of reasoning, we derive an upper-bound for XD,0,..,0
D (q):

XD,0,..,0
D (q) ≤



D

if none of the q − 1 running processors of the group
fails during the downtime D

TD,0,..,0lost (D) +XD,0,..,0
D (q)

otherwise.

Weighting both cases by their probability and taking expectations, we obtain

E
(
XD,0,..,0
D (q)

)
≤ e−(q−1)λDD + (1− e−(q−1)λD)

(
E
(
TD,0,..,0lost (D)

)
+ E

(
XD,0,..,0
D (q)

))
hence E

(
XD,0,..,0
D (q)

)
≤ D + (e(q−1)λD − 1)E

(
TD,0,..,0lost (D)

)
, with

E
(
TD,0,..,0lost (D)

)
= 1

(q − 1)λ −
D

e(q−1)λD − 1
.

We derive

E
(
X
t1,..,tq
D (q)

)
≤ E

(
XD,..,0
D (q)

)
≤ e(q−1)λD − 1

(q − 1)λ .

which concludes the proof. As a sanity check, we observe that the upper bound is at least D,
using the identity ex ≥ 1 + x for x ≥ 0. �
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3.3.2 General failures

The analytical derivations in Section 3.3.1 hold only for Exponential failures. In the case
of non-Exponential failures we propose two algorithms for determining an execution of ASAP
that achieves good makespan in practice: a “brute-force” approach called BestPeriod and a
Dynamic Programming approach called DPNextFailure.

Brute-force algorithm

The BestPeriod algorithm enforces a periodic execution of ASAP, meaning that all chunk
sizes are identical. For a given number of groups, the period is computed via a numerical search
among a set of candidate periods generated as follow. The work in [61] makes it possible to
compute an optimal period, τ , for an application executed without replication on n processors
subjected to Exponential failures. In our case, with g groups and p processors, we compute this
period for n = bp/gc processors. Besides τ , we then generate 360 candidates as τ(1 + 0.05× i)
and τ/(1 + 0.05 × i) for i ∈ {1, ..., 180}, and 120 candidates as τ × 1.1j and τ/1.1j for j ∈
{1, ..., 60}, for a total of 481 candidate periods. When then evaluate each candidate period
in simulation (see Section 3.3.3 for details on our simulation methodology) over 50 randomly
generated experimental scenarios. We pick the candidate period that achieves the best average
makespan over these 50 scenarios.

BestPeriod has two potential drawbacks. First, it enforces a periodic execution even
though there is no theoretical reason why the optimal should correspond to a periodic execu-
tion if failures are non-Exponential. Second, it requires running a large number of simulations
(50 × 481 = 24, 050). With our current implementation each individual set of 481 simulations
requires between 3 and 24 minutes on one core of a Quad-core AMD Opteron running at 2400
MHz. While this may indicate that BestPeriod is impractical, when compared to application
makespans that can be several days the overhead of searching for the period may not be signif-
icant. Furthermore, the search for the period can be done in parallel since all simulations are
independent. The search for the best period to execute an application on a large-scale platform
can thus be done in a few seconds on that same large-scale platform.

Dynamic Programming algorithm

As an alternative to the brute-force algorithm in the previous section, one can resort to
Dynamic Programming (DP). We initially developed a DP algorithm to compute chunk sizes
for each group at each step of the application execution. Even though this seems like a natural
approach, it is only tractable (in terms of number of DP states) if the chunk sizes for each
group are computed independently of those for the other groups. As a result, we found that
the resulting algorithm does not achieve good results in practice.

In our previous work [61], when faced with an exponential number of DP states when using
DP to minimize expected makespan, we opted for maximizing the expected amount of completed
work before the next failure. We generalize this idea to the context of replication, doing away
with the concept of chunk sizes altogether. More specifically, since the first failure only interrupts
a single group, the objective is to maximize the expected amount of work completed before all
groups have failed. This can be achieved with the DP algorithm presented hereafter. We make
one simplifying assumption: we ignore that once a group has failed, it will eventually restart
and resume computing. This is because keeping track of such restarts would again lead to an
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Algorithm 3: DPNextCheckpoint(W , T , T0, τ1, ..., τgq)
1 if W = 0 then return 0;
2 best_work ← 0;
3 next_chkpt ← T ;
4 (W1, ...,Wg)←WorkAlreadyDone(T ); /* Work done since last recovery or

checkpoint */
5 Sort groups by non-increasing of work done (W1 is maximum);
6 for t = T to T +W −Wg step quantum; /* Loop on checkpointing date */
7 do
8 cur_work ← 0;
9 for x = 1 to g; /* Loop on the first group to successfully work until t+ C(q) */

10 do
11 δ ← (t+ C(q))− T0; /* Total time elapsed until the checkpoint completion */

12
proba ←

(∏x−1
y=1 Pfail(τ(y−1)q+1 + δ, ..., τ(y−1)q+q + δ | τ(y−1)q+1, ..., τ(y−1)q+q)

)
×Psuc(τ(x−1)q+1 + δ, ..., τ(x−1)q+q + δ | τ(x−1)q+1, ..., τ(x−1)q+q)

;

13 ω ← min{W −Wx, t− T}; /* Work done between T and t by group x */
14 (rec_ω, rec_t)← DPNextCheckpoint(W−Wx−ω, T+ω+C(q)+R(q), T0, τ1, ..., τgq);
15 cur_work ← cur_work + proba × (Wx + ω + rec_ω)
16 if cur_work > best_work then
17 best_work ← cur_work;
18 next_chkpt← t

19 return (best_work, next_chkpt)

exponential number of DP states. The hope is that our approach will work well in spite of this
simplifying assumption.

Our DP algorithm, DPNextCheckpoint, is shown in Algorithm 3. It does not define
chunk sizes, i.e., amounts of work to be processed before a checkpoint is taken, but instead it
defines checkpoint dates. The rationale is that one checkpoint date can correspond to different
amounts of work for each group, depending on when the group has started to process its chunk,
after either its last failure and recovery, or its last checkpoint, or its last recovery from another
group’s checkpoint. Input to the algorithm is the amount of work that remains to be done (W ),
the current time (T ), the time at which the application started (T0), and the times since the
latest failure at each processor before time T0 (the τi’s). The output is the next checkpoint date
and the expected amount of work completed before the next failure occurs.

DPNextCheckpoint proceeds as follows. At Line 4 function WorkAlreadyDone is
called which returns, for each group, the time since it has started processing its current chunk
(i.e., the amount of work it has done to date). The groups are sorted in decreasing order of work
performed to date (Line 5). The algorithm then picks the next checkpoint date for all possible
dates between the current time T and time T +W −Wg, i.e., the time at which the last group
would finish computing if no failure were to occur (Line 6). At the checkpointing date, the
amount of work completed is the maximum of the amount of work done by the different groups
that successfully complete the checkpoint. Therefore, we consider all the different cases (Line 9),
that is, which group x, among the successful groups, has done the most work. We compute
the probability of each case (Line 12). All groups that started to work earlier than group x
have failed (i.e., at least one processor in each of them has failed) but not group x (i.e., none
of its processors have failed). We compute the expectation of the amount of work completed
in each case (Lines 13 and 14). We then sum the contributions of all the cases (Line 15)
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Algorithm 4: DPNextFailure(W ).
1 for each group x = 1 to g do in parallel
2 while W 6= 0 do
3 (τ1, ..., τgq)← Alive(1, ..., gq);
4 T0 ← Time() ; /* Current time */
5 (work, date)← DPNextCheckpoint(W, T0, T0, τ1, . . . , τgq);
6 Signal all processors that the next checkpoint date is now date;
7 Try to work until date and then checkpoint;
8 if successful work until date and checkpoint then
9 Let y be the longest running group without failure among the successful groups;

10 Let ω be the work performed by y since its last recovery or checkpoint;
11 W ←W − ω;
12 if group x’s last recovery or checkpoint was strictly later than that of y then
13 Perform a recovery;
14 if failure then Complete downtime;
15 if failure or signal then Perform recovery from last successfully completed checkpoint

and record the checkpointing date leading to the largest expectation (Line 16). Note that the
probability computed at Line 12 explicitly states which groups have successfully completed the
checkpoint, and which groups have not. We choose not to take this information into account
when computing the expectation (recursive call at Line 14) so as to avoid keeping track of which
groups have failed, thereby lowering the complexity of the dynamic program. This is why the
conditions do not evolve in the conditional probability at Line 12.

Algorithm 4 shows the overall algorithm, DPNextFailure, which uses DPNextCheckpoint
(the Alive function returns, for a list of processors, the amount of time each has been up and
running since its last downtime). Each time a group is affected by an event (a failure, a suc-
cessful checkpoint by itself or by another group), it computes the next checkpoint date and
broadcasts it to the g group leaders. Hence, a group may have computed the next checkpoint
date to be t, and that date can be either un-modified, postponed, or advanced by events occur-
ring at other groups and by their re-computation of the best next checkpoint date. In practice,
as time is discretized, at each time quantum a group can check whether the current date is a
checkpoint date or not.

Both Algorithms 3 and 4 have a complexity in O
(
gq
(

W
quantum

)2
)
. The term in gq comes

from the computation of the probabilities at Line 12 in Algorithm 3. This complexity can be
lowered using the methodology outlined in [61].

3.3.3 Simulation methodology

In this section we detail our simulation methodology. Source codes and simulation scenarios
are publicly available at http://perso.ens-lyon.fr/frederic.vivien/Data/Resilience/
Replication.

Evaluated algorithms

Our simulator implements two versions of the ASAP protocol in the case of exponentially
distributed failures. The first version, OptExp, simply uses for each group the optimal and
periodic policy established in [61] for Exponential failure distributions and no replication. To

http://perso.ens-lyon.fr/frederic.vivien/Data/Resilience/Replication
http://perso.ens-lyon.fr/frederic.vivien/Data/Resilience/Replication
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use OptExp with g groups we use the period from [61] computed with bp/gc processors. The
second, OptExpGroup, uses the periodic policy defined by Theorem 1. Both OptExp and
OptExpGroup compute the checkpointing period based solely on the MTBF, assuming that
failures are exponentially distributed. We nevertheless include them in all our experiments, sim-
ply using the MTBF value even when failures are not exponentially distributed. The simulator
also implements BestPeriod (Section 3.3.2) and DPNextFailure (Section 3.3.2). Note that
the execution times reported when using DPNextFailure include the time needed to run Al-
gorithms 3 and 4. Based on the results in [61], we do not consider any additional checkpointing
policy, such as those defined by Young [53] or Daly [54] for instance.

Platform and job parameters

We target two types of platforms, depending on the type of the failure distribution. For
synthetic distributions, we consider platforms containing from 32,768 to 4,194,304 processors.
For platforms with failures based on failure logs from production clusters, because of the limited
scale of those clusters, we restrict the size of the platforms to a maximum of 131,072 processors,
starting with 4,096 processors. For both platform types, we determine the job size W so that
a job using the whole platform would use it for a significant amount of time in the absence of
failures, namely ≈ 21 hours on the largest platforms for synthetic failures (W = 10, 000 years),
and ≈ 2.8 days on those for log-based failures (W = 1, 000 years). In experiments with synthetic
failures we use D = 60 s, and C = R = 60 s, 600 s, and 6000 s, thus spanning the spectrum from
relatively fast to relatively slow checkpointing/recovery. We also ran experiments with a very
short C = R = 6 s, but the results are virtually identical to those obtained with C = R = 60 s
and we do not present them. In experiments with log-based failures, we use the parameters :
C = R = 600 s, D = 60 s. Finally, for all experiments we use γ = 10−6 for generic parallel
jobs, and γ = 0.1 for numerical kernels (see Section 3.2).

Failure distributions

Synthetic failure distributions – To choose failure distribution parameters that are represen-
tative of realistic systems, we use failure statistics from the Jaguar platform. Jaguar contained
45, 208 processors and is said to have experienced on the order of 1 failure per day [46]. Assum-
ing a 1-day platform MTBF leads to a processor MTBF equal to 45,208

365 ≈ 125 years. We generate
both Exponential and Weibull failures, the former serving as a best case yet unrealistic scenario
and the latter being representative of failure behavior in production systems [64, 63, 65, 27].
For the Exponential distribution of failure inter-arrival times, we simply set λ = 1

MTBF . For the
Weibull distribution, which requires two parameters, a shape parameter k and a scale parameter
λ, and has density k

λ(xλ)k−1e−(x/λ)k for x ≥ 0, we have λ = MTBF/Γ(1 + 1/k). Based on the
results in [64, 63, 65, 27] we use k = 0.5 and k = 0.7. For small values of the shape parameter
k, the Weibull distribution is far from an Exponential distribution, meaning that it is far from
being memoryless.
Log-based failure distributions – We also consider failure distributions based on failure logs
from production clusters. We used logs from the largest clusters among the preprocessed logs
in the Failure trace archive [67], i.e., from clusters at the Los Alamos National Laboratory [63].
In these logs, each failure is tagged by the node —and not just the processor— on which the
failure occurred. Among the 26 possible clusters, we opted for the only two clusters with more
than 1,000 nodes, as we needed a sample history sufficiently large to simulate platforms with
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Figure 3.4: Average makespan vs. number of processors, Exponential failures, MTBF = 125
years.

more than 10,000 nodes. The two chosen logs are for clusters 18 and 19 in the archive (referred
to as 7 and 8 in [63]). For each log, we record the set S of availability intervals. A discrete
failure distribution for the simulation is then generated as follows: the conditional probability
P(X ≥ t | X ≥ τ) that a node stays up for a duration t, knowing that it has been up for a
duration τ , is set to the ratio of the number of availability durations in S greater than or equal
to t, over the number of availability durations in S greater than or equal to τ .

Generation of failure Scenarios

Given a p-processor job, a failure trace is a set of failure dates for each processor over a
fixed time horizon h (set to 2 years). The job start time is assumed to be 1 year for synthetic
distribution platforms, and 0.25 year for log-based distribution platforms. We use a non-null
start time to avoid side-effects related to the synchronous initialization of all nodes/processors.
Given the distribution of inter-arrival times at a processor, for each processor we generate
a trace via independent sampling until the target time horizon is reached. Finally, the two
clusters used for computing our log-based failure distributions consist of 4-processor nodes.
Hence, to simulate a 131,072-processor platform we generate 32,768 failure traces, one for each
four-processor node.

3.3.4 Simulation results

In this section, we only present simulation results for perfectly parallel applications under
the constant overhead model (see Section 3.2). All trends and conclusions are similar regardless
of the application and overhead models. All results are averages over at least 50 instances, and
all graphs show one-standard-deviation error bars.

Exponential failures

Figure 3.4 shows average makespan vs. the number of processors for our algorithms, using
g = 1, 2, or 3 groups, and assuming Exponential failures. A first observation is that many
curves overlap each other: for a given g all algorithms lead to similar average makespan. For
instance, for C = R = 600 s and g = 2, and taking OptExp as a reference, the relative
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Figure 3.6: Failures based on the failure log
of LANL cluster 19 (C = R = 600 s).

difference between the average makespan of OptExp and that of the other three algorithms
is at most 6.81% (and only 2.31% when averaged over all considered numbers of processors).
In spite of such small differences, several trends emerge. OptExp almost always leads to
higher average makespan than OptExpGroup (note that for g = 1 the two algorithms are
equivalent). Over the 8 numbers of processors considered, the 3 values for R = C, and the
3 values for g, i.e., 72 scenarios, OptExp leads to average makespans shorter than that of
OptExpGroup only 4 times (for R = C = 6000 s, for 218 to 221 processors, and by at most
3.27%). BestPeriod never leads to an average makespan higher than that of OptExp or
OptExpGroup, and outperforms them by up to several percent across all the R = C and g
values. DPNextFailure leads to mixed results, with equal or shorter average makespan than
OptExpGroup, resp. BestPeriod, for 31, resp. 24, of the 72 different scenarios.

A second observation is that the use of g > 1 (i.e., multiple groups) often does not help
and can even lead to larger average makespans. For R = C = 60 s, increasing g from 1
to 2, or from 2 to 3, never leads to a lower average makespan for any of our algorithms. For
R = C = 600 s, the only improvements are seen when going from 1 to 2 groups, for the OptExp,
OptExpGroup, and BestPeriod algorithms, and only with more than 221 processors. The
relative improvements are at most 7.75% for 221 processors, and between 25.40% and 41.09%
for 222 processors. No improvements are achieved when going from 2 to 3 groups. More
improvements are seen for C = R = 6000 s. When going from 1 to 2 groups, improvements
are achieved starting at 218 processors, with improvements up to between 93.64% and 95.17%
at large scale, for all four algorithms. When going from 2 to 3 groups, relative improvements
are seen starting at 219 processors, reaching up to between 85.09% and 85.78% for all four
algorithms.

For low and moderate checkpointing overheads, C = R = 60 s or 600 s, the average makespan
decreases as the number of processors increases. Instead, for high checkpointing overheads,
C = R = 6000 s, the average makespan initially decreases but starts increasing at large scale.
This is particularly noticeable when using g = 1 group. For instance, the average makespan
using OptExp goes from 21.83 s with 220 processors to 249.39 s with 221 processors, or an
increase by a factor 11.42. The increase is similar with BestPeriod and marginally lower with
DPNextFailure (a factor 9.72). The reason for this makespan increase is simply that with
a high checkpointing overhead, the parallel efficiency is low as processors spend more time in
checkpointing activities than in actual computation. This observation is precisely the motivation
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Figure 3.7: Average makespan vs. number of processors, Weibull failures, k = 0.7, MTBF =
125 years.

for using g > 1 (see Section 3.1). With g = 2, we still see increases in average makespans, but
only by a factor between 2.46 and 2.53 when going from 220 processors to 221 processors for all
algorithms. With g = 3, this factor is between 1.34 and 1.39 for all algorithms. Therefore, the
use of group replication improves parallel efficiency and can lead to scalability improvements.
For instance, with g = 1 or g = 2, regardless of the algorithm in use, it is not advisable to use
220 processors as the makespan is lower when using 219 processors. With g = 3, instead, there
is a reduction in average makespan when going from 219 processors to 220 processors for all our
algorithms (the relative percentage reductions are between 14.58% and 18.81%).

Based on the above, we conclude that for Exponential failures group replication can be useful
when the checkpointing overhead is relatively large and/or when the scale of the execution
is large. While large checkpointing overheads decrease parallel efficiency, the use of group
replication makes it possible to limit this decrease or even to increase parallel efficiency at
some scales. All our algorithms lead to comparable performance, with BestPeriod leading
to good results even though marginally outperformed by DPNextFailure in some instances.
While these results are interesting, and although Exponential failures have been studied in all
previously published works, their relevance to practice is not clear given that real-world failures
follow non-memoryless distributions. In the next section we present results for Weibull failures,
which are more representative of real-world failure scenarios.

Log-based failures

For log-based failures with the constant overhead scenario, using all the available processors
to run a single application instance leads to significantly larger makespans. This is seen in
Figures 3.5 and 3.6, the no-replication strategies, shoot upward when p reaches a large enough
value. For instance, with traces based on the logs of LANL cluster 18, the increase in makespan
is more than 37% when going from p = 216 to p = 217.

Weibull failures

Figures 3.7 and 3.8 show results for Weibul failures with k = 0.7 and k = 0.5, respectively.
For low R = C = 60 s and for k = 0.7 (Figure 3.3.4), results are similar to those seen in
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Figure 3.8: Average makespan vs. number of processors, Weibull failures, k = 0.5, MTBF =
125 years.

the previous section for Exponential failures: the use of multiple groups does not help, and all
algorithms lead to sensibly the same performance. The gaps between the algorithms become
larger for k = 0.5, i.e., when the failure distribution is farther from the Exponential distribution,
with the advantage to BestPeriod (Figure 3.3.4). For instance, for k = 0.5, 220 processors, and
using g = 2 groups, BestPeriod leads to an average makespan lower than that of OptExp,
OptExpGroup, and DPNextFailure by 10.46%, 51.04%, and 2.08%, respectively. A general
observation in all the results for replication (g > 1) with Weibull failures, regardless of the value
of C = R, is that OptExpGroup leads to much poorer results than all the other algorithms.
This is because the analytical development of Theorem 1 relies heavily on the Exponential failure
assumption. As a result, OptExpGroup is even outperformed by OptExp, even though this
algorithm also assumes Exponential failures. In all that follows we no longer discuss the results
for OptExpGroup.

For C = R = 600 s and k = 0.7, and unlike the results for Exponential failures, at large scale
the average makespan of the g = 1 executions increases sharply while the average makespans for
g > 1 executions remain more stable (Figure 3.3.4). In other words, even when checkpointing
overheads are moderate, group replication is useful for increasing parallel efficiency once the
scale is large enough. This result is amplified when failures are further from being Exponential,
i.e., for k = 0.5 (Figure 3.3.4). For k = 0.5, going from g = 1 to g = 2 groups is beneficial
for OptExp starting at 217 processors and for BestPeriod and DPNextFailure starting at
218 processors. Going from g = 2 to g = 3 groups is beneficial for OptExp andBestPeriod
starting at 219 processors, and for DPNextFailure starting at 220 processors. In terms of
comparing the algorithms with each other, in Figure 3.3.4 all algorithms experience a makespan
increase after the initial decrease. Only BestPeriod and DPNextFailure, when using g = 3
groups, have a decreasing makespan up to 220 processors. When going to 221 processors, these
algorithms lead to relative increases in makespan of 18.50% and 14.99%, and larger increases
when going from 221 to 222 processors. Across the board, BestPeriod with g = 3 groups leads
to the lowest average makespan, with DPNextFailure with g = 3 groups a close second. The
average makespan of DPNextFailure is at most 15.66% larger than that of BestPeriod,
and in fact is shorter at low scales (for 215 and 216 processors).

Results for C = R = 6000 s show similar but accentuated trends. For k = 0.7 (Figure 3.3.4)
the main results are similar to those obtained for k = 0.5 with C = R = 600 s. The best two
algorithms are BestPeriod and DPNextFailure using g = 3 groups, but both algorithms
show an increase in makespan starting at 219 processors. For k = 0.5 (Figure 3.3.4) this increase



52 CHAPTER 3. COMBINING REPLICATION AND COORDINATED CHECKPOINTING

occurs at 218 processors and is sharper for DPNextFailure than BestPeriod. Even though
group replication helps, with such large checkpointing overheads parallel efficiency cannot be
maintained beyond 217 processors.

We conclude that although with Exponential failures all our algorithms are more or less
equivalent (see Section 3.3.4), with more realistic Weibul failures BestPeriod emerges as the
best algorithm. The only algorithm that leads to makespans comparable to those of BestPe-
riod is DPNextFailure, but it never leads to a lower average makespan than BestPeriod
at large scale. Even though DPNextFailure relies on a sophisticated DP approach, the
brute-force but pragmatic approach used by BestPeriod turns out to be more effective. Even
when using BestPeriod, our results show that application scalability is hindered by higher
checkpoint overheads, which is expected, but also by lower k values, i.e., by less exponentially
distributed failures.

Checkpointing contention

The results presented so far are obtained assuming that the checkpointing overhead (R = C)
does not depend on the number of groups. There are cases in which this assumption could give
an unfair advantage to group replication. Consider an application with a given memory footprint
V , in bytes, running on a platform with a total of q processors. With no replication (g = 1)
the total volume of data involved in a checkpoint is V . Assuming that V is no larger than
the aggregate RAM capacity of q/g processors, then group replication can be used with g > 1
groups. In this case, since each group executes the application, the total volume of data involved
in a checkpoint at each group is also V . Since groups may checkpoint/recover at the same time,
the amount of data involved can be up to g × V , or a factor g larger than in the no-replication
case.

To evaluate the impact of group replication on checkpointing overhead, we introduce a
checkpointing contention model in our simulation. Whenever multiple checkpointing/recovery
operations are concurrent, they receive a fair share of the checkpointing/recovery bandwidth.
For instance, if n checkpointing operations begin at the same time, and no other checkpointing
or recovery occurs over the next n × C time units, then all n checkpointing operations finish
after n × C time units. More generally, considering that a checkpointing/recovery operations
requires C units of activity, over a time interval ∆t during which there are n ongoing such
operations each operation performs 1

n/∆t units of activity (if one of these operations requires
fewer units of work to complete, consider a shorter ∆t interval).

Our objective in this section is to determine whether group replication can still be benefi-
cial when considering checkpointing contention. We repeated all the experiments presented in
Sections 3.3.4 and 3.3.4. For C = R = 60 s, checkpointing contention has negligible impact on
the results, and the impact for C = R = 600 s is lower than that for C = R = 6000 s. This
is expected since the larger the checkpointing/recovery overhead, the more likely that more
than one group is engaged in checkpointing or recovery at the same time. Thus, among all our
results, those for C = R = 6000 s should be the most disadvantageous for group replication.
These are the results presented in Figure 3.9, which shows average makespan vs. number of
processors for BestPeriod without and with contention (denoted by BestPeriod-Cont), for
g = 1, 2, and 3, for C = R = 6000 s, for Exponential failures and for Weibull failures with
k = 0.7 and k = 0.5.

As expected the average makespan of BestPeriod is increased due to checkpointing con-
tention when multiple groups are used. However, even with contention, group replication out-
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Figure 3.9: Average makespan vs. number of processors, C = R = 6000 s, MTBF = 125 years.

performs the no-replication case at large scale. For Exponential failures, using g = 2 groups
outperforms using g = 1 group as soon as the number of processors reaches 218, both with
and without contention. Using g = 3 groups outperforms using g = 2 groups when there are
either 219 or 220 processors with contention. The lowest average makespans with contention are
achieved using either 218 processors split in g = 2 groups, or 219 processors split in g = 3 groups.
For Weibull failures with k = 0.7, using g = 2 groups outperforms using g = 1 group starting at
216 processors, with or without checkpointing contention. With contention, using g = 3 groups
never outperforms using g = 2 groups, and ties its performance starting at 218 processors. For
Weibull failures with k = 0.5, using g = 2 groups outperforms using g = 1 group starting at 215

processors with or without contention. With contention, using g = 3 groups is beneficial over
using g = 2 groups when there are 217 processors but the lowest makespan overall is achieved
with g = 2 groups and 215 processors.

We conclude that although checkpointing contention increases the makespan of group repli-
cation executions, the makespans of these executions are still shorter than that of no-replication
execution at the same or slightly higher scales than when no contention takes place. One dif-
ference due to contention is that in our experiments using g = 3 groups is never worthwhile.

3.4 Process Replication
While in the previous section we replicate application instances, in this section we replicate

processes within an instance with each each process running on a distinct processor. Process
replication was recently studied in [69], in which the authors propose to replicate each appli-
cation process transparently on two processors. Only when both these processors fail must
the job recover from the previous checkpoint. One replica performs redundant (thus wasteful)
computations, but the probability that both replicas fail is much smaller than that of a single
replica, thereby allowing for a drastic reduction of checkpoint frequency.

We consider the general case where each application process is replicated g ≥ 2 times. We
call replica-group the set of all the replicas of a given process, and we denote by ptotal the
number of replica-groups. Altogether, if there are p available processors, there are ptotal× g ≤ p
processes running on the platform. We assume that when one of the g replicas of a replica-
group fails it is not restarted, and the execution of the application proceeds as long as there is
still at least one running replica in each of the replica-groups. In other words, for the whole
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application to fail, there must exist a replica-group whose g replicas have all been “hit” by a
failure. One could envision a scenario where a failed replica is restarted based on the current
state of the remaining replicas in its replica-group. This would increase application resiliency
but would also be time-consuming. A certain amount of time would be needed to copy the state
of one of the remaining replicas. Because all replicas of a same process must have a coherent
state, the execution of the still running replicas would have to be paused during this copying.
In a tightly coupled application, the execution of the whole application would be paused while
copying. Consequently, restarting a failed replica would only be beneficial if the restarting cost
were very small, when taking in consideration the frequency of failures and the checkpoint and
restart costs. The benefit of such an approach is doubtful and, like [69], we do not consider it.

3.4.1 Theoretical results

Two important quantities for evaluating the quality of an application execution, when repli-
cation is used, are: (i) the Mean Number of Failures To Interruption (MNFTI ), i.e., the mean
number of processor failures until application failure occurs; and (ii) the Mean Time To Inter-
ruption (MTTI ), i.e., the mean time elapsed until application failure occurs. In this section,
we compute exact expressions of these two quantities. We first deal with the computation of
MNFTI values in Section 3.4.1. Then we proceed to computing MTTI values, for Exponential
failures in Section 3.4.1, and for arbitrary failures in Section 3.4.1. Note that the computation
of MNFTI applies to any failure distribution, while that of MTTI is strongly distribution-
dependent.

Computing MNFTI

We consider two options for “counting” failures. One option is to count each failure that
hits any of the g · ptotal initial processors, including the processors already hit by a failure.
Consequently, a failure that hits an already hit replica-group does not necessarily induce an
application interruption. If the failure hits an already hit processor, whose replica had already
been terminated due to an earlier failure, the application is not affected. If, on the contrary,
the failure hits the other processor, in the case g = 2, then the whole application fails. This is
the option chosen in [69]. Another option is to count only failures that hit running processors,
and thus effectively kill replicas. This approach seems more natural as the running processors
are the only ones that are important for the application execution.

We use MNFTI ah to denote the MNFTI with the first option (“ah” stands for “already
hit”), and MNFTI rp to denote the MNFTI with the second option (“rp” stands for “running
processors”). The following theorem gives a recursive expression for MNFTI ah in the case g = 2
and for memoryless failure distributions.

Theorem 2. If the failure inter-arrival times on the different processors are i.i.d. and in-
dependent from the failure history, then using process replication with g = 2, MNFTI ah =
E(NFTI ah|0) where E(NFTI ah|nf ) ={

2 if nf = ptotal,
2ptotal

2ptotal−nf + 2ptotal−2nf
2ptotal−nf E

(
NFTI ah|nf + 1

)
otherwise.

Proof. Let E(NFTI ah|nf ) be the expectation of the number of failures needed for the whole
application to fail, knowing that the application is still running and that failures have already
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hit nf different replica-groups. Because each process initially has 2 replicas, this means that
nf different processes are no longer replicated, and that ptotal − nf are still replicated. Overall,
there are nf + 2(ptotal − nf ) = 2ptotal − nf processors still running.

The case nf = ptotal is the simplest. A new failure will hit an already hit replica-group,
that is, a replica-group where one of the two initial replicas is still running. Two cases are then
possible:

1. The failure hits the running processor. This leads to an application failure, and in this
case E(NFTI ah|ptotal) = 1.

2. The failure hits the processor that has already been hit. Then the failure has no im-
pact on the application. The MNFTI ah of this case is then: E(NFTI ah|ptotal) = 1 +
E
(
NFTI ah |ptotal

)
.

The probability of failure is uniformly distributed between the two replicas, and thus between
these two cases. Weighting the values by their probabilities of occurrence yields:

E
(
NFTI ah |ptotal

)
= 1

2 × 1 + 1
2 ×

(
1 + E

(
NFTI ah |ptotal

))
= 2.

For the general case 0 ≤ nf ≤ ptotal−1, either the next failure hits a new replica-group, that
is one with 2 replicas still running, or it hits a replica-group that has already been hit. The latter
case leads to the same sub-cases as the nf = ptotal case studied above. As we have assumed
that the failure inter-arrival times on the different processors are i.i.d. and independent from
the processor failure history the failure probability is uniformly distributed among the 2ptotal
processors, including the ones already hit. Hence the probability that the next failure hits a
new replica-group is 2ptotal−2nf

2ptotal . In this case, the expected number of failures needed for the
whole application to fail is one (the considered failure) plus E

(
NFTI ah|nf + 1

)
. Altogether we

have:

E
(
NFTI ah|nf

)
= 2ptotal − 2nf

2ptotal
×
(
1 + E

(
NFTI ah|nf + 1

))
+ 2nf

2ptotal
×
(1

2 × 1 + 1
2
(
1 + E

(
NFTI ah|nf

)))
.

Therefore, E
(
NFTI ah|nf

)
=

2ptotal
2ptotal−nf + 2ptotal−2nf

2ptotal−nf E
(
NFTI ah|nf + 1

)
. �

We obtain a very similar recursive formula for MNFTI rp.

Theorem 3. If the failure inter-arrival times on the different processors are independent
and identically distributed, then under the process replication scheme, with g = 2, we have
MNFTI rp = E(NFTI rp|0) where

E(NFTI rp|nf ) =
{

1 if nf = ptotal,

1 + 2ptotal−2nf
2ptotal−nf E(NFTI rp|nf + 1) otherwise.

It turns out that there is a simple (and quite unexpected) relationship between both failure
models:

Proposition 5. If the failure inter-arrival times on the different processors are i.i.d. and
independent from the processor failure history then, for g = 2,

MNFTI ah = 1 + MNFTI rp.
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Proof. We prove by induction that E(NFTI ah|nf ) = 1 + E(NFTI rp|nf ), for any nf ∈ [0, ptotal].
The base case is for nf = ptotal and the induction uses non-increasing values of nf .

For the base case, we have E(NFTI rp|ptotal) = 1 and E(NFTI ah|ptotal) = 2. Hence the
property is true for nf = ptotal. Consider a value nf < ptotal, and assume to have proven that
E(NFTI ah|i) = 1+E(NFTI rp|i), for any value of i ∈ [1+nf , ptotal]. We now prove the equation
for nf . According to Theorem 2, we have:

E(NFTI ah|nf ) =
2ptotal

2ptotal − nf
+ 2ptotal − 2nf

2ptotal − nf
E
(
NFTI ah|nf + 1

)
.

Therefore, using the induction hypothesis, we have:

E(NFTI ah|nf )
= 2ptotal

2ptotal−nf + 2ptotal−2nf
2ptotal−nf (1 + E (NFTI rp|nf + 1))

= 2 + 2ptotal−2nf
2ptotal−nf E (NFTI rp|nf + 1)

= 1 + E (NFTI rp|nf )

the last equality being established using Theorem 3. Therefore, we have proved by induction
that E(NFTI ah|0) = 1 +E(NFTI rp|0). To conclude, we remark that E(NFTI ah|0) = MNFTI ah

and E(NFTI rp|0) = MNFTI rp. �

We now show that Theorems 2 and 3 can be generalized to g > 2. Because the proofs are
very similar, we only give the one for the MNFTI rp accounting approach (failures on running
processors only), as it does not make any assumption on failures besides the i.i.d. assumption.

Proposition 6. If the failure inter-arrival times on the different processors are i.i.d. then using

process replication for g ≥ 2, MNFTI rp = E

NFTI rp| 0, ..., 0︸ ︷︷ ︸
g−1 zeros

 where:

E
(
NFTI rp|n(1)

f , ..., n
(g−1)
f

)
= 1

+
g ·
(
ptotal −

∑g−1
i=1 n

(i)
f

)
g · ptotal −

∑g−1
i=1 i · n

(i)
f

·E
(
NFTI rp|n(1)

f , n
(2)
f , ..., n

(g−1)
f

)
+
g−2∑
i=1

(g − i) · n(i)
f

g · ptotal −
∑g−1
i=1 i · n

(i)
f

·E
(
NFTI rp|n(1)

f , ..., n
(i−1)
f , n

(i)
f −1,

n
(i+1)
f +1, n(i+2)

f , ..., n
(g−1)
f

)

(3.7)

Proof. Let E
(
NFTI rp|n(1)

f , ..., n
(g−1)
f

)
be the expectation of the number of failures needed for

the whole application to fail, knowing that the application is still running and that, for i ∈
[1..g − 1], there are n(i)

f replica-groups that have already been hit by exactly i failures. Note
that a replica-group hit by i failures still contains exactly g− i running replicas. Therefore, in a



3.4. PROCESS REPLICATION 57

system where n(i)
f replica-groups have been hit by exactly i failures, there are still overall exactly

g · ptotal −
∑g−1
i=1 i · n

(i)
f running replicas, g ·

(
ptotal −

∑g−1
i=1 n

(i)
f

)
of which are in replica-groups

that have not yet been hit by any failure. Now, consider the next failure to hit the system.
There are three cases to consider.

1. The failure hits a replica-group that has not been hit by any failure so far. This happens
with probability:

g ·
(
ptotal −

∑g−1
i=1 n

(i)
f

)
g · ptotal −

∑g−1
i=1 i · n

(i)
f

and, in that case, the expected number of failures needed for the whole application to
fail is one (the studied failure) plus E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

)
. Remark that we

should have conditioned the above expectation with the statement “if ptotal >
∑g−1
i=1 n

(i)
f ”.

In order to keep Equation (3.7) as simple as possible we rather do not explicitly state the
condition and use the following abusive notation:

g ·
(
ptotal −

∑g−1
i=1 n

(i)
f

)
g · ptotal −

∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

))
considering than when ptotal =

∑g−1
i=1 n

(i)
f the first term is null and thus that it does not

matter that the second term is not defined.
2. The failure hits a replica-group that has already been hit by g− 1 failures. Such a failure

leads to a failure of the whole application. As there are n(g−1)
f such groups, each containing

exactly one running replica, this event happens with probability:

n
(g−1)
f

g · ptotal −
∑g−1
i=1 i · n

(i)
f

.

In this case, the expected number of failures needed for the whole application to fail is
exactly equal to one (the considered failure).

3. The failure hits a replica-group that had already been hit by at least one failure, and by
at most g − 2 failures. Let i be any value in [1..g − 2]. The probability that the failure
hits a group that had previously been the victim of exactly i failures is equal to:

(g − i) · n(i)
f

g · ptotal −
∑g−1
i=1 i · n

(i)
f

as there are n(i)
f such replica-groups and that each contains exactly g − i still running

replicas. In this case, the expected number of failures needed for the whole applica-
tion to fail is one (the studied failure) plus E

(
NFTI rp|n(1)

f , ..., n
(i−1)
f , n

(i)
f − 1, n(i+1)

f + 1,

n
(i+2)
f , ..., n

(g−1)
f

)
as there is one less replica-group hit by exactly i failures and one more

hit by exactly i+ 1 failures.
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We aggregate all the cases to obtain:

E
(
NFTI rp|n(1)

f , ..., n
(g−1)
f

)
=

g ·
(
ptotal −

∑g−1
i=1 n

(i)
f

)
g · ptotal −

∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

))
+
g−2∑
i=1

(g − i) · n(i)
f

g · ptotal −
∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|n(1)

f , ..., n
(i−1)
f , n

(i)
f − 1,

n
(i+1)
f + 1, n(i+2)

f , ..., n
(g−1)
f

))
+

n
(g−1)
f

g · ptotal −
∑g−1
i=1 i · n

(i)
f

· 1

which can be rewritten as Equation (3.7). �

Using Proposition 6 and 5, here is the recursion to compute MNFTI ah for g = 3:

Proposition 7. If the failure inter-arrival times on the different processors are i.i.d. and
independent from the failure history, then using process replication with g = 3, MNFTI ah =
E(NFTI ah|0, 0) where

E
(
NFTI ah|n2, n1

)
=
1

3ptotal − n2 − 2n1

(
3ptotal + 3(ptotal − n1 − n2)E

(
NFTI ah|n2 + 1, n1

)
+2n2E

(
NFTI ah|n2 − 1, n1 + 1

))
One can solve this recursion using a dynamic programming algorithm of quadratic cost

O(p2) (and linear memory space O(p)).

Proposition 8. If the failure inter-arrival times on the different processors are i.i.d. and
independent from the failure history, then using process replication with g = 3, MNFTI rp =
E(NFTI rp|0, 0) where

E (NFTI rp|n2, n1) =

1 + 1
3ptotal − n2 − 2n1

(3(ptotal − n1 − n2)E (NFTI rp|n2 + 1, n1)

+2n2E (NFTI rp|n2 − 1, n1 + 1))

Given the simple additive relationship that exists between MNFTI ah and MNFTI rp for g = 2
(Proposition 5), one may expect a similar relationship for large g. Table 3.1 shows MNFTI ah

and MNFTI rp values and the difference between them for g = 3. The difference is not constant
and increases as ptotal increases, and no simple relationship seems to exist between MNFTI ah

and MNFTI rp.
We can now evaluate our approach for computing the MNFTI value and compare it to that

in [69]. The authors therein observe that the generalized birthday problem is related to the
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Table 3.1: MNFTI ah and MNFTI rp computed using Proposition 7 and Proposition 8 and the
difference between them, for ptotal = 20, . . . , 220, with G = 3.

ptotal 20 21 22 23 24 25 26

MNFTI ah 5.5 7.3 10.1 14.6 21.6 32.4 49.4
MNFTI rp 3.0 4.5 6.9 10.9 17.1 27.1 42.9
(MNFTI ah-MNFTI rp) 2.5 2.8 3.2 3.7 4.4 5.3 6.4
ptotal 27 28 29 210 211 212 213

MNFTI ah 75.9 117.6 183.3 286.8 450.2 708.5 1117.0
MNFTI rp 68.1 108.0 171.5 272.2 432.1 685.8 1088.7
(MNFTI ah-MNFTI rp) 7.8 9.6 11.8 14.6 18.2 22.7 28.3
ptotal 214 215 216 217 218 219 220

MNFTI ah 1763.5 2787.6 4410.2 6982.3 11060.6 17528.6 27788.6
MNFTI rp 1728.1 2743.2 4354.6 6912.5 10972.9 17418.4 27650.1
(MNFTI ah-MNFTI rp) 35.4 44.3 55.6 69.8 87.7 110.2 138.6

problem of determining the number of processor failures needed to induce an application failure.
The generalized birthday problem asks the following question: what is the expected number
of balls BP (m) to randomly put into m (originally empty) bins so that there is a bin with
two balls? This problem has a well-known closed-form solution [44]. In the context of process
replication, it is tempting to consider each replica group as a bin, and each ball as a processor
failure, thus computing MNFTI = BP (ptotal). Unfortunately, this analogy is incorrect because
processors in a replica group are distinguished. Let us consider the case g = 2, i.e., two replicas
per replica group, and the two failure models described in Section 3.4.1. In the “already hit”
model, which is used in [69], if a failure hits a replica group after that replica group has already
been hit once (i.e., a second ball is placed in a bin) an application failure does not necessarily
occur. This is unlike the birthday problem, in which the stopping criterion is for a bin to contain
two balls, thus breaking the analogy. In the “running processor” model, the analogy also breaks
down. Consider that one failure has already occurred. The replica group that has suffered that
first failure is now twice less likely to be hit by another failure as all the other replica groups
as it contains only one replica. Since probabilities are no longer identical across replica groups,
i.e., bins, the problem is not equivalent to the generalized birthday problem. However, there
is a direct and valid analogy between the process replication problem and another version of
the birthday problem with distinguished types, which asks: what is the expected number of
randomly drawn red or white balls BT (m) to randomly put into m (originally empty) bins so
that there is a bin that contains at least one red ball and one white ball? Unfortunately, there
is no known closed-form formula for BT (m), even though the results in Section 3.4.1 provide a
recursive solution.

In spite of the above, [69] uses the solution of the generalized birthday problem to compute
MNFTI . According to [45], a previous article by the authors of [69], it would seem that the
value BP (ptotal) is used. While [69] does not make it clear which value is used, a recent research
report by the same authors states that they use BP (g · ptotal). For completeness, we include
both values in the comparison hereafter.

Table 3.2 shows the MNFTI ah values computed as BP (ptotal) or as BP (g · ptotal), as well as
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Table 3.2: MNFTI ah computed as BP (ptotal), BP (g · ptotal), and using Theorem 2, for ptotal =
20, . . . , 220, with G = 2.

ptotal 20 21 22 23 24 25 26

Theorem 2 3.0 3.7 4.7 6.1 8.1 11.1 15.2
BP (ptotal) 2.0 (-33.3%) 2.5 (-31.8%) 3.2 (-30.9%) 4.2 (-30.3%) 5.7 (-30.0%) 7.8 (-29.7%) 10.7 (-29.6%)
BP (g · ptotal) 2.5 (-16.7%) 3.2 (-12.2%) 4.2 (-8.8%) 5.7 (-6.4%) 7.8 (-4.6%) 10.7 (-3.3%) 14.9 (-2.3%)
ptotal 27 28 29 210 211 212 213

Theorem 2 21.1 29.4 41.1 57.7 81.2 114.4 161.4
BP (ptotal) 14.9 (-29.5%) 20.7 (-29.4%) 29.0 (-29.4%) 40.8 (-29.4%) 57.4 (-29.3%) 80.9 (-29.3%) 114.1 (-29.3%)
BP (g · ptotal) 20.7 (-1.6%) 29.0 (-1.2%) 40.8 (-0.8%) 57.4 (-0.6%) 80.9 (-0.4%) 114.1 (-0.3%) 161.1 (-0.2%)
ptotal 214 215 216 217 218 219 220

Theorem 2 227.9 321.8 454.7 642.7 908.5 1284.4 1816.0
BP (ptotal) 161.1 (-29.3%) 227.5 (-29.3%) 321.5 (-29.3%) 454.4 (-29.3%) 642.4 (-29.3%) 908.2 (-29.3%) 1284.1 (-29.3%)
BP (g · ptotal) 227.5 (-0.1%) 321.5 (-0.1%) 454.4 (-0.1%) 642.4 (-0.1%) 908.2 (-0.04%) 1284.1 (-0.03%) 1815.7 (-0.02%)

the exact value computed using Theorem 2, for various values of ptotal and for G = 2. (Recall
that in this case, MNFTI ah and MNFTI rp differ only by 1). The percentage relative differences
between the two BP values and the exact value are included in the table as well. We see that the
BP (ptotal) value leads to relative differences with the exact value between 29% and 33%. This
large difference seems easily explained due to the broken analogy with the generalized birthday
problem. The unexpected result is that the relative difference between the BP (g · ptotal) value
and the exact value is below 16% and, more importantly, decreases and approaches zero as ptotal
increases. The implication is that using BP (g · ptotal) is an effective heuristic for computing
MNFTI ah even though the birthday problem is not analogous to the process replication problem!
These results thus provide an empirical, if not theoretical, justification for the approach in [69],
whose validity was not assessed experimentally therein.

Computing MTTI for Exponential failures

With the “already hit” assumption, and assuming Exponential failures, the MTTI can be
computed easily as

MTTI = systemMTBF(G× ptotal)×MNFTI ah (3.8)
where systemMTBF(p) denotes the mean time between failures of a platform with p processors
and MNFTI ah is given by Theorem 2. Recall that systemMTBF(p) is simply equal to the
MTBF of an individual processor divided by p. A recursive expression for MTTI can also be
obtained directly. While the MTTI value should not depend on the way to count failures, it
would be interesting for compute it with the “running processor” assumption as a sanity check.
It turns out that there is no equivalent to Equation (3.8) for linking MTTI and MNFTI rp. The
reason is straightforward. While systemMTBF(2ptotal) is the expectation of the date at which
the first failure will happen, it is not the expectation of the inter-arrival time of the first and
second failures when only considering failures on processors still running. Indeed, after the first
failure, there only remain 2ptotal − 1 running processors. Therefore, the inter-arrival time of
the first and second failures has an expectation of systemMTBF(2ptotal − 1). We can, however,
use a reasoning similar to that in the proof of Theorem 3 and obtain a recursive expression for
MTTI :

Theorem 4. If the failure inter-arrival times on the different processors follow an Exponential
distribution of parameter λ then, when using process replication with g = 2, MTTI = E(TTI |0)
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where E(TTI |nf ) ={ 1
ptotal

1
λ if nf = ptotal
1

(2ptotal−nf )
1
λ + 2ptotal−2nf

2ptotal−nf E(TTI |nf+1) otherwise

Proof. We denote by E(TTI |nf ) the expectation of the time an application will run before
failing, knowing that the application is still running and that failures have already hit nf
different replica-groups. Since each process initially has 2 replicas, this means that nf different
processes are no longer replicated and that ptotal − nf are still replicated. Overall, there are
thus still nf + 2(ptotal − nf ) = 2ptotal − nf running processors.

The case nf = ptotal is the simplest: a new failure will hit an already hit replica-group and
hence leads to an application failure. As there are exactly ptotal remaining running processors,
the inter-arrival times of the ptotal-th and (ptotal + 1)-th failures is equal to 1

λptotal
(minimum of

ptotal Exponential laws). Hence:

E (TTI |ptotal ) = 1
λptotal

.

For the general case, 0 ≤ nf ≤ ptotal − 1, either the next failure hits a replica-group with
still 2 running processors, or it strikes a replica-group that had already been victim of a failure.
The latter case leads to an application failure; then, after nf failures, the expected application
running time before failure is equal to the inter-arrival times of the nf -th and (nf + 1)-th
failures, which is equal to 1

(2ptotal−nf )λ . The failure probability is uniformly distributed among
the 2ptotal − nf running processors, hence the probability that the next failure strikes a new
replica-group is 2ptotal−2nf

2ptotal−nf . In this case, the expected application running time before failure is
equal to the inter-arrival times of the nf -th and (nf + 1)-th failures plus E (TTI |nf + 1). We
derive that:

E (TTI |nf ) =
2ptotal − 2nf
2ptotal − nf

×
(

1
(2ptotal − nf )λ + E (TTI |nf + 1)

)

+ nf
2ptotal − nf

× 1
(2ptotal − nf )λ.

Therefore,

E (TTI |nf ) =
1

(2ptotal − nf )λ + 2ptotal − 2nf
2ptotal − nf

E (TTI |nf + 1) .

�

The above results can be generalized to g ≥ 2. To compute MTTI under the “already
hit” assumption one can use Equation (3.8) replacing NF (ptotal) by the MNFTI ah value given
by Theorem 2. To compute MNFTI rp under the “running processors,” Theorem 4 can be
generalized using the same proof technique as when proving Proposition 6.

The linear relationship between MNFTI and MTTI , seen in Equation (3.8), allows us to
use the results in Table 3.2 to compute MTTI values. To quantify the potential benefit of
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Table 3.3: MTTI values achieved for Exponential failures and a given number of processors
using different replication factors (total of p = 20, . . . , 220 processors, with G = 1, 2, and 3).
The individual processor MTBF is 125 years, and MTTIs are expressed in hours.
p 20 21 22 23 24 25 26

g = 1 1 095 000 547 500 273 750 136 875 68 438 34 219 17 109
g = 2 1 642 500 1 003 750 637 446 416 932 278 726 189 328
g = 3 1 505 625 999 188 778 673 565 429 432 102
p 27 28 29 210 211 212 213

g = 1 8555 4277 2139 1069 535 267 134
g = 2 130 094 90 135 62 819 43 967 30 864 21 712 15 297
g = 3 326 569 251 589 194 129 151 058 117 905 92 417 72 612
p 214 215 216 217 218 219 220

g = 1 66.8 33.4 16.7 8.35 4.18 2.09 1.04
g = 2 10 789 7615 5378 3799 2685 1897 1341
g = 3 57 185 45 106 35 628 28 169 22 290 17 649 13 982

replication, Table 3.3 shows these values as the total number of processors increases. For a
given total number of processors, we show results for g = 1, 2, and 3. As a safety check,
we have compared these predicted values with those computed through simulations, using an
individual processor MTBF equal to 125 years. For each value of ptotal in Table 3.3, we have
generated 1, 000, 000 random failure dates, computed the Time To application Interruption
for each instance, and computed the mean of these values. This simulated MTTI , is in full
agreement with the predicted MTTI in Table 3.3

The main and expected observation in Table 3.3 is that increasing g, i.e., the level of repli-
cation, leads to increased MTTI . The improvement in MTTI due to replication increases as
ptotal increases, and increases when the level of replication, g, increases. Using g = 2 leads to
large improvement over using g = 1, with an MTTI up to 3 orders of magnitude larger for
ptotal = 220. Increasing the replication level to g = 3 leads to more moderate improvement
over g = 2, with an MTTI only about 10 times larger for ptotal = 220. Overall, these results
show that, at least in terms of MTTI , replication is beneficial. Although these results are for a
particular MTBF value, they lead us to believe that moderate replication levels, namely g = 2,
are sufficient to achieve drastic improvements in fault-tolerance.

Computing MTTI for arbitrary failures

The approach that computes MTTI from MNFTI ah is limited to memoryless (i.e., Exponen-
tial) failure distributions. To encompass arbitrary distributions, we use another approach based
on the failure distribution density at the platform level. Theorem 5 quantifies the probability
of successfully completing an amount of work of size W when using process replication for any
failure distribution, which makes it possible to compute MTTI via numerical integration:

Theorem 5. Consider an application with ptotal processes, each replicated g times using process
replication, so that processor Pi, 1 ≤ i ≤ g ·ptotal, executes a replica of process

⌈
i
g

⌉
. Assume that

the failure inter-arrival times on the different processors are i.i.d, and let τi denote the time
elapsed since the last failure of processor Pi. Let F denote the cumulative distribution function
of the failure probability, and F (t|τ) be the probability that a processor fails in the next t units
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of time, knowing that its last failure happened τ units of time ago. Then the probability that the
application will still be running after t units of time is:

R(t) =
ptotal∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
, (3.9)

Let f denote the probability density function of the entire platform (f is the derivative of the
function 1−R): the MTTI is given by:

MTTI =
∫ +∞

0
tf(t)dt =

∫ +∞

0
R(t)dt =

∫ +∞

0

ptotal∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
dt. (3.10)

This theorem can then be used to obtain a closed-form expression for MTTI when the failure
distribution is Exponential (Theorem 6) or Weibull (Theorem 7):

Theorem 6. Consider an application with ptotal processes, each replicated g times using process
replication. If the probability distribution of the time to failure of each processor is Exponential
with parameter λ, then the MTTI is given by:

MTTI = 1
λ

ptotal∑
i=1

i·g∑
j=1

(ptotali

)(i·g
j

)
(−1)i+j

j

 .
The following corollary gives a simpler expression for the case g = 2:

Corollary 1. Consider an application with ptotal processes, each replicated 2 times using process
replication. If the probability distribution of the time to failure of each processor is Exponential
with parameter λ, then the MTTI is given by:

MTTI = 1
λ

ptotal∑
i=1

i·2∑
j=1

(ptotali

)(i·2
j

)
(−1)i+j

j


= 2ptotal

λ

ptotal∑
i=0

(−1
2

)i (ptotal
i

)
(ptotal + i) ·

Theorem 7. Consider an application with ptotal processes, each replicated g times using process
replication. If the probability distribution of the time to failure of each processor is Weibull with
scale parameter λ and shape parameter k, then the MTTI is given by:

MTTI = λ

k
Γ
(1
k

) ptotal∑
i=1

i·g∑
j=1

(ptotal
i

)(i·g
j

)
(−1)i+j

j
1
k

.

While Theorem 6 is yet another approach to computing the MTTI for Exponential dis-
tributions, Theorem 7 is the first analytical result (to the best of our knowledge) for Weibull
distributions. Unfortunately, the formula in Theorem 7 is not numerically stable for large values
of ptotal. As a result, we resort to simulation to compute MTTI values. Table 3.4, which is the
counterpart of Table 3.3 for Weibull failures, show MTTI results obtained as averages computed
on the first 100, 000 application failures of each simulated scenario. The results are similar to
those in Table 3.3. The MTTI with with g = 2 is much larger than that using g = 1, up to
more than 3 orders of magnitude at large scale (ptotal = 220). The improvement in MTTI with
g = 3 compared to g = 2 is more modest, reaching about a factor 10. The conclusions are thus
similar: replication leads to large improvements, and a moderate replication level (g = 2) may
be sufficient.
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Table 3.4: Simulated MTTI values achieved for Weibull failures with shape parameter 0.7
and a given number of processors p using different replication factors (total of p = 20, . . . , 220

processors, with G = 1, 2, and 3). The individual processor MTBF is 125 years, and MTTIs
are expressed in hours.
p 20 21 22 23 24 25 26

g = 1 1 091 886 549 031 274 641 137 094 68 812 34 383 17 202
g = 2 2 081 689 1 243 285 769 561 491 916 321 977 214 795
g = 3 2 810 359 1 811 739 1 083 009 763 629 539 190
p 27 28 29 210 211 212 213

g = 1 8603 4275 2132 1060 525 260 127
g = 2 144 359 98 660 67 768 46 764 32 520 22 496 15 767
g = 3 398 410 296 301 223 701 170 369 131 212 101 330 78 675
p 214 215 216 217 218 219 220

g = 1 60.1 27.9 12.2 5.09 2.01 0.779 0.295
g = 2 11 055 7766 5448 3843 2708 1906 1345
g = 3 61 202 47 883 37 558 29 436 23 145 18 249 14 391

3.4.2 Empirical evaluation

In the previous section, we have obtained exact expressions for the MNFTI and MTTI
quantities, which are of direct relevance to the performance of the application and are amenable
to analytical derivations. The main performance metric of interest to end-users, however, is
the application makespan, i.e., the time elapsed between the launching of the application and
its successful completion. But since it is not tractable to derive a closed-form expression of
the expected makespan, in this section we compute the makespan empirically via simulation
experiments. One of our goals here is to verify that the performance advantage of process
replication seen in Sections 3.4.1 and 3.4.1 in terms of MTTI are also seen when considering
the makespan.

Simulation framework and models

In this section we provide details on our simulation methodology for evaluating the benefits
of process replication. The source code and all simulation results are publicly available at
http://graal.ens-lyon.fr/~fvivien/DATA/ProcessReplication.tar.bz2.
Failure distributions and failure scenarios – We use the methodology described in Sec-
tion 3.3.3 to generate synthetic and log-based failure distributions, the methodology described
in Section 3.3.3 to generate failure scenarios,
Checkpointing policy – Replication dramatically reduces the number of application failures,
so that standard periodic checkpointing strategies can be used. The checkpointing period can
be computed based on the MTTI value using Young’s approximation [53] or Daly’s first-order
approximation [54], the latter being used in [69]. We use Daly’s approximation in this work
because it is classical, often used in practice, and used in previous work [69]. It would be also
interesting to present results obtained with the optimal checkpointing period, so as to evaluate
the impact of the choice of the checkpointing period on our results. However, deriving the
optimal period is not tractable. However, since our experiments are in simulation, we can
search numerically for the best period among a sensible set of candidate periods. To build the

http://graal.ens-lyon.fr/~fvivien/DATA/ProcessReplication.tar.bz2
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candidate periods, we use the period computed in [61] (called OptExp) as a starting point.
We then multiply and divide this period by 1 + 0.05× i with i ∈ {1, ..., 180}, and by 1.1j with
j ∈ {1, ..., 60} and pick among these the value that leads to the lowest makespan. For a given
replication level (g=x), we present results with the period computed using Daly’s approximation
(Daly-g=x) and with the best candidate period found numerically (BestPeriod-g=x).
Replication overhead – In [69], the authors consider that the communication overhead due
to replication is proportional to the application’s communication demands. Arguing that, to be
scalable, an application must have sub-linear communication costs with respect to increasing
processor counts, they consider an approximate logarithmic model for the percentage replication
overhead: log(p)

10 + 3.67, where p is the number of processors. The parameters to this model are
instantiated from the application in [69] that has the highest replication overhead. When g = 2,
we use the same logarithmic model to augment our first two parallel job models in Section 3.2:
— Perfectly parallel jobs: W (p) = W

p × (1 + 1
100 × ( log(p)

10 + 3.67)).

— Generic parallel jobs: W (p) = (Wp + γW )× (1 + 1
100 × ( log(p)

10 + 3.67)).
For the numerical kernel job model, we can use a more accurate overhead model that does not
rely on the above logarithmic approximation. Our original model in Section 3.2 comprises a
computation component and a communication component. Using replication (g = 2), for each
point-to-point communication between two original application processes, now a communication
occurs between each process pair, considering both original processors and replicas, for a total
of 4 communications. We can thus simply multiply the communication component of the model
by a factor 4 and obtain the augmented model:

— Numerical kernels: W (p) = W
p + γ×W

2
3√

p × 4.

When g = 3, we (somewhat arbitrarily) multiply by 9/4 the overhead for perfectly parallel and
generic parallel jobs, because the number and volume of communications are multiplied by 4
when g = 2 and by 9 when g = 3. When g = 3, we multiply the communication component by
a factor 9 for numerical kernels.
Parameter values – We use the following default parameter values to instantiate the simula-
tions: C = R = 600 s, D = 60 s and W = 10, 000 years (except for log-based simulations for
which W = 1, 000 years).

Choice of the checkpointing period

Our first set of experiments aims at determining whether using Daly’s approximation for
computing the checkpointing period, as done in [69], is a reasonable idea when replication is
used. In the g = 2 case (two replicas per application process), we compute this period using the
exact MTTI expression from Corollary 1. Given a failure distribution and a parallel job model,
we compute the average makespan over 100 sample simulated application executions for a range
of numbers of processors. Each sample is obtained using a different seed for generating random
failure events based on the failure distribution. We present results using the best period found
via a numerical search in a similar manner. In addition to the g = 2 and g = 3 results, we also
present results for g = 1 (no replication) as a baseline, in which case the MTTI is simply the
processor MTBF. In the three options the total number of processors is the same, i.e., g× n/g.

We show experimental results for five failure distributions: (i) Exponential with a 125-year
MTBF; (ii) Weibull with a 125-year MTBF and shape parameter k = 0.70; (iii) Weibull with
a 125-year MTBF and shape parameter k = 0.50; (iv) Failures drawn from the failure log of



66 CHAPTER 3. COMBINING REPLICATION AND COORDINATED CHECKPOINTING
av

er
ag

e
m

ak
es

pa
n

(in
da

ys
)

218 219216 217 220215

number of processors

0

100

200

BestPeriod-g = 1
BestPeriod-g = 2
BestPeriod-g = 3

Daly-g = 3
Daly-g = 2
Daly-g = 1

Figure 3.10: Average makespan vs. number of processors for two choices of the checkpoint-
ing period, without process replication (Daly-g=1 and BestPeriod-g=1) and with process
replication (Daly-g=2 or 3 and BestPeriod-g=2 or 3), for generic parallel jobs subject to
Exponential failures (MTBF = 125 years).

LANL cluster 18; and (v) Failures drawn from the failure log of LANL cluster 19. For each
failure distribution, we use five parallel job models as described in Section 3.2, augmented with
the replication overhead model described in Section 3.4.2: (i) perfectly parallel; (ii) generic
parallel jobs with γ = 10−6; (iii) numerical kernels with γ = 0.1; (iv) numerical kernels with
γ = 1; and (v) numerical kernels with γ = 10. We thus have 5× 5 = 25 sets of results.

Figures 3.10 through 3.13 show average makespan vs. number of processors. It turns out
that, for a given failure distribution, all results follow the same trend regardless of the job
model, as illustrated in Figure 3.13 for Weibull failures with k = 0.7. But for Figure 3.13 we
show results only for generic parallel jobs.

Figures 3.10, 3.11, and 3.12 show average makespan vs. number of processors for generic
parallel jobs subject to each of the five considered failure distributions. We first note that,
except for Exponential failures, the minimum makespan is not achieved on the largest platform.
The fact that in most cases the makespan with 219 processors is lower than the makespan with
220 processors suggests that duplicating processes should be beneficial. This is indeed always
the case for the largest platforms: when using 220 processors, the makespan without replication
is always larger than the makespan with replication, the replication factor being either g = 2 or
g = 3. However, in none of the configurations, using a replication with f g = 3 is more beneficial
than with g = 2. More importantly, in each configuration, the minimum makespan is always
achieved while duplicating the processes (g = 2) and using the maximum number of processors.

The two curves for g = 1 are exactly superposed in Figure 3.10. For g = 2 and for g = 3
the two curves are exactly superposed in all three figures. Results for the case g = 1 (no
replication) show that Daly’s approximation achieves the same performance as the best periodic
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(b) k = 0.50

Figure 3.11: Same as Figure 3.10 (generic parallel jobs) but for Weibull failures (MTBF = 125
years).
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(b) LANL cluster 19

Figure 3.12: Same as Figure 3.10 (generic parallel jobs) but for real-world failures.

checkpointing policy for Exponential failures. For our two real-world failure datasets, using
the approximation also does well, deviating from the best periodic checkpointing policy only
marginally as the platform becomes large. For Weibull failures, however, Daly’s approximation
leads to significantly suboptimal results that worsen as k decreases (as expected and already
reported in [61]). What is perhaps less expected is that in the cases g = 2 and g = 3, using Daly’s
approximation leads to virtually the same performance as using the best period even for Weibull
failures. With replication, application makespan is simply not sensitive to the checkpointing
period, at least in a wide neighborhood around the best period. This is because application
failures and recoveries are infrequent, i.e., the MTBF of a pair of replicas is large. To quantify
the frequency of application failures Table 3.5 shows the percentage of processor failures that
actually lead to failure recoveries when using process replication. Results are shown in the case
of Weibull failures for k = 0.5 and k = 0.7, C = 600s, and for various numbers of processors.
We see that very few application failures, and thus recoveries, occur throughout application
execution (recall that makespans are measured in days in our experiments). This is because a
very small fraction of processor failures manifest themselves as application failures (below 0.4%
in our experiments). This also explains why using g = 3 replicas does not lead to any further
performance improvements (recall that the expectation was that further improvement would
be low anyway given the results in Tables 3.3 and 3.4) . While this low number of application
failures demonstrates the benefit of process replication, the interesting result is that it also
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Figure 3.13: Same as Figure 3.11(a) (Weibull failures with k = 0.7, MTBF = 125 years) but
for other job types.

makes the choice of the checkpointing period not critical.
When setting the processor MTBF to a lower value so that the MTBF of a pair of replicas

is not as large, then the choice of the checkpointing period matters. Consider for instance a
process replication scenario with Weibull failures of shape parameters k = 0.7, a generic parallel
job, and a platform with 220 processors. When setting the MTBF to an unrealistic 0.1 year,
using Daly’s approximation yields an average makespan of 22.7 days, as opposed to 19.1 days
(an increase of more than 18%) when using the best period. Similar cases can be found for
Exponential failures.

We summarize our findings so far as follows. Without replication, a poor choice of check-
pointing period produces significantly suboptimal performance. When using replication, a poor
choice can also theoretically lead to poor results, but this is very unlikely in practice because
replication drastically reduces the number of failures. In fact, in practical settings, the choice of
the checkpointing period is simply not critical when replication is used. Consequently, setting
the checkpointing period based on an approximation, Daly’s being the most commonplace and
oft referenced, is appropriate.

When is process replication beneficial?

In this section we determine under which conditions process replication is beneficial, i.e.,
leads to a lower makespan, when compared to a standard application execution that uses only
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Table 3.5: Number of application failures and fraction of processor failures that cause application
failures with process replication (g = 2) assuming Weibull failure distributions (k = 0.7 or 0.5)
for various numbers of processors and C=600s. Results are averaged over 100 experiments.

# of app. failures % of proc. failures
# of proc. k = 0.7 k = 0.5 k = 0.7 k = 0.5

214 1.95 4.94 0.35 0.39
215 1.44 3.77 0.25 0.28
216 0.88 2.61 0.15 0.19
217 0.45 1.67 0.075 0.12
218 0.20 1.11 0.034 0.076
219 0.13 0.72 0.022 0.049
220 0.083 0.33 0.014 0.023
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Figure 3.14: Break-even point curves for replication (g = 2) vs. no-replication for various
checkpointing overheads, as computed using the best checkpointing periods (solid lines) and
Daly’s approximation (dashed lines), assuming Weibull failure distributions.

checkpoint-recovery. We restrict our study to duplication (g = 2) as we have seen that the case
g = 3 was never beneficial with respect to the case g = 2.

In a 2-D plane defined by the processor MTBF and the number of processors, and given
a checkpointing overhead, simulation results can be used to construct a curve that divides the
plane into two regions. Points above the curve correspond to cases in which process replication is
beneficial. Points below the curve correspond to cases in which process replication is detrimental,
i.e., the resource waste due to replication is not worthwhile because the processor MTBF is too
large or the number of processors is too low. Several such curves are shown in [69] (Figure 9
therein) for different checkpointing overheads, and, as expected, the higher the overhead the
more beneficial it is to use process replication.

One question when comparing the replication and the no-replication cases is that of the
checkpointing period. We have seen in the previous section that when using process replication
the choice of the period has little impact and that Daly’s approximation can be used safely.
In the no-replication case, however, Daly’s approximation should only be used in the case
of exponentially distributed failures as it leads to poor results when the failure distribution
is Weibull (see the g = 1 curves in Figure 3.11). Although our results for two particular
production workloads show that Daly’s approximation leads to reasonably good results in the
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no-replication case (see the g = 1 curves in Figures 3.12), there is evidence that, in general,
failure distributions are well approximated by Weibull distributions [64, 63, 65, 27], while not at
all by exponential distributions. Most recently, in [27], the authors show that failures observed
on a production cluster, over a cumulative 42-month time period, are modeled well by a Weibull
distribution with shape parameter k < 0.5. In other words, the failure distribution is far from
being Exponential and thus Daly’s approximation would be far from the best period (compare
Figure 3.11(a) for k = 0.7 to Figure 3.11(b) for k = 0.5).

Given the above, comparing the replication case to the no-replication case with Weibull
failure distributions and using Daly’s approximation as the checkpointing period gives an unfair
advantage to process replication. To isolate the effect of replication from checkpointing period
effects, we opt for the following method: we always use the best checkpointing period for each
simulated application execution, as computed by a numerical search over a range of simulated
executions each with a different checkpointing period. These results, for g = 2, are shown
as solid curves in Figure 3.14, for Weibull failures with k = 0.7 and k = 0.5, each curve
corresponding to a different checkpointing overhead (C) value.

Each curve corresponds to the break-even point and the area above the curve corresponds to
settings for which replication is beneficial. As expected, replication becomes detrimental when
the number of processors is too small, when the checkpointing overhead is too low, and/or
when the processor MTBF is too large. For comparison purposes, the figure also shows a set
of dashed curves that correspond to results obtained when using Daly’s approximation as the
checkpointing period instead of using our numerical search for the best such period. We see
that, as expected, using Daly’s approximation gives an unfair advantage to process replication.
This advantage increases as k decreases, since the Weibull distribution is then further away
from the Exponential distribution. (For exponential distributions, all curves match.) For
instance, for k = 0.5 (Figure 3.14(b)), the break-even curve for C = 600s as obtained using
Daly’s approximation is in fact, for most values of the MTBF, below the break-even curve for
C = 900s as obtained using the best checkpointing period. Note that the results presented
in [69] are obtained using Daly’s approximation as the checkpointing period.

3.5 Conclusion
In this chapter we have presented a rigorous study of replication techniques for large-scale

platforms. These platforms are subject to failures, the frequencies of which increase dramat-
ically with platform scale. We have investigated replication as a technique to better use all
the resources provided by the platform. Replication comes in two flavors, Group replication
and Process replication. Group replication consists in partitioning the platform into several
groups, which each executes an instance of the application concurrently in phases. All groups
synchronize as soon as one of them completes a phase. Instead, Process replication replicates
each application process onto several processors (a replica-group), thereby reducing the need to
recover from a failure only when all processors in a replica-group have failed. Process replication
is the approach followed in [69] with two processors per replica-group.

While both replication techniques improve reliability, they have very different characteristics.
Group replication can be used for any kind of parallel application, while Process replication is
much more intrusive than Group replication, in that it requires a sophisticated replication-aware
implementation of the MPI library. Also, the total communication volume is increased by a
factor proportional to the square of the replication degree, while the increase is only linear for
Group replication.



3.5. CONCLUSION 71

We also have provided a detailed analysis of group replication for large-scale platforms.
We have defined an execution protocol for group replication, ASAP. We have derived a bound
on the expected application makespan using this protocol when failures are exponentially dis-
tributed, which suggests a checkpointing period that can be used in practice. We have also
proposed two approaches to minimize application makespan that are applicable regardless of
the failure distribution: (i) a brute-force search for a checkpointing period, called BestPeriod;
and (ii) a Dynamic Programming algorithm, called DPNextFailure. Using simulation, and
for a range of failure and checkpointing overheads, we have evaluated our proposed approaches
and compared them to no-replication approaches from previous work. Our main findings are
that (i) when considering realistic failures (e.g., Weibull distributed) group replication can sig-
nificantly lower application makespan on large-scale platforms; (ii) our pragmatic BestPeriod
approach outperforms the more sophisticated DPNextFailure Dynamic Programming ap-
proach; (iii) even when accounting for the contention due to concurrent checkpointing/recovery
by multiple groups, group replication remains beneficial at large scale. Note that our group
replication approaches lead to particularly good results when failures are far from being ex-
ponentially distributed, which several studies have shown to be the case in production plat-
forms [64, 63, 65, 27].

We have provided a thorough analysis of Process replication for large-scale platforms. We
have obtained recursive expressions for MNFTI , and analytical expressions for MTTI with
arbitrary distributions, which lead to closed-form expressions for Exponential and Weibull dis-
tributions. We have also identified an unexpected relationship between two natural failure
models (already hit and running processors) in the case of process duplication (g = 2).

We have conducted an extensive set of simulations for Exponential, Weibull, and trace-based
failure distributions. These results have shown that although the choice of a good checkpointing
period can be important in the no-replication case, namely for Weibull failure distributions, this
choice is not critical when process replication is used. This is because with process replication
few processor failures lead to application failures (i.e., rollback and recovery). This effect is
essentially the reason why process replication was proposed in the first place. But a surprising
and interesting side-effect is that choosing a good checkpointing period is no longer challenging.
Finally, we have determined the break-even point between replication and no-replication for
Weibull failures. Unlike that in previous work, this determination is agnostic to the choice of
the checkpointing period, leading to results that are not as favorable for process replication. Our
results nevertheless point to relevant scenarios, defined by instantiations of the platform and
application parameters, in which replication is worthwhile when compared to the no-replication
case. This is in spite of the induced resource waste, and even if the best checkpointing period
is used in the no-replication case.

An interesting direction for future work on Group replication would be to compare the
checkpoints saved by multiple groups as a way to detect silent errors or corrupted data. This
would require modifying the Group replication approach so that at least 2 groups among g > 2
groups compute a chunk of work successfully, thereby trading off performance for reliability.
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Chapter 4

Combining Fault Prediction and Coordinated
Checkpointing

4.1 Introduction

In this Chapter, we assess the impact of fault prediction techniques on checkpointing strate-
gies. When some fault prediction mechanism is available, can we compute a better checkpointing
period to decrease the expected waste? and to what extent? Critical parameters that charac-
terize a fault prediction system are its recall r, which is the fraction of faults that are indeed
predicted, and its precision p, which is the fraction of predictions that are correct (i.e., corre-
spond to actual faults).

The major objective of this Chapter is to refine the expression of the expected waste as
a function of these new parameters, and to design efficient checkpointing policies that take
predictions into account.

In this chapter, we deal with two problem instances, one where the predictor system provides
exact dates for predicted events, and another where it only provides prediction windows during
which events take place.The key contributions of this chapter are :
— With a Predictor with exact prediction dates :

— The design of new checkpointing policies that takes optimal decisions on whether
and when to take the predictions into account (or to ignore them).

— For policies where the decision to trust the predictor is taken with the same proba-
bility throughout the checkpointing period, we show that we should always trust the
predictor, or never, depending upon platform and predictor parameters.

— For policies where the decision to trust the predictor is taken with variable probability
during the checkpointing period, we show that we should change strategy only once
in the period, moving from never trusting the predictor when the prediction arrives
in the beginning of the period, to always trusting the predictor when the prediction
arrives later on in the period, and we determine the optimal break-even point.

— For all policies, we compute the optimal value of the checkpointing period thereby
designing optimal algorithms to minimize the waste when coupling checkpointing
with predictions.

— An extensive set of simulations that corroborates all mathematical derivations. These
simulations are based on synthetic fault traces (for Exponential fault distributions,
and for more realistic Weibull fault distributions) and on log-based fault traces. In
addition, they include exact prediction dates and uncertainty intervals for these dates.

73
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Note that the subsection on uncertain intervals is thoroughly studied in Section 4.3.
— With a Predictor with a prediction window :

— The design of several checkpointing policies that account for the different sizes of
prediction windows.

— The analytical characterization of the best policy for each set of parameters.
— The validation of the theoretical results via extensive simulations, for both Exponen-

tial and Weibull failure distributions.
In the Table 4.1, we summarize the main notations used in this chapter.

p Predictor precision: proportion of true positives among the number of predicted faults
r Predictor recall: proportion of predicted faults among total number of faults
q Probability to trust the predictor

MTBF Mean Time Between Faults
N Number of processors in the platform
µ Platform MTBF

µind Individual MTBF
µP Rate of predicted faults
µNP Rate of unpredicted faults
µe Rate of events (predictions or unpredicted faults)
D Downtime
R Recovery time
C Duration of a regular checkpoint
Cp Duration of a proactive checkpoint
T Duration of a period

Table 4.1: Table of main notations.

4.2 Predictor with exact prediction dates

In this section, we present an analytical model to assess the impact of predictions on periodic
checkpointing strategies. We consider the case where the predictor is able to provide exact
prediction dates, and to generate such predictions at least Cp seconds in advance, so that a
proactive checkpoint of length Cp can indeed be taken before the event.

This Section is organized as follows. We first detail the framework in subsection 4.2.1.
We provide optimal algorithms to account for predictions in subsection 4.2.2: we start with
simpler policies where the decision to trust the predictor is taken with the same probability
throughout the checkpointing period (subsection 4.2.2) before dealing with the most general
approach where the decision to trust the predictor is taken with variable probability during
the checkpointing period (subsection 4.2.2). subsection 4.2.3 is devoted to simulations: we first
describe the simulation framework (subsection 4.2.3) and then discuss synthetic and log-based
failure traces in subsections 4.2.3 and 4.2.3 respectively. Finally, we provide concluding remarks
in subsection 4.4.
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4.2.1 Framework

Checkpointing strategy

We consider a platform subject to faults. Our work is agnostic of the granularity of the
platform, which may consist either of a single processor, or of several processors that work
concurrently and use coordinated checkpointing. Checkpoints are taken at regular intervals, or
periods, of length T . We denote by C the duration of a checkpoint (all checkpoints have same
duration). By construction, we must enforce that C ≤ T . When a fault strikes the platform,
the application is lacking some resource for a certain period of time of length D, the downtime.
The downtime accounts for software rejuvenation (i.e., rebooting [55, 56]) or for the replacement
of the failed hardware component by a spare one. Then, the application recovers from the last
checkpoint. R denotes the duration of this recovery time.

Fault predictor

A fault predictor is a mechanism that is able to predict that some faults will take place, either
at a certain point in time, or within some time-interval window. In this Section, we assume
that the predictor is able to provide exact prediction dates, and to generate such predictions
early enough so that a proactive checkpoint can indeed be taken before the event.

The accuracy of the fault predictor is characterized by two quantities, the recall and the
precision. The recall r is the fraction of faults that are predicted while the precision p is the
fraction of fault predictions that are correct. Traditionally, one defines three types of events:
(i) True positive events are faults that the predictor has been able to predict (let TrueP be
their number); (ii) False positive events are fault predictions that did not materialize as actual
faults (let FalseP be their number); and (iii) False negative events are faults that were not
predicted (let FalseN be their number). With these definitions, we have r = TrueP

TrueP+FalseN and
p = TrueP

TrueP+FalseP .
Proactive checkpoints may have a different length Cp than regular checkpoints of length C.

In fact there are many scenarios. On the one hand, we may well have Cp > C in scenarios
where regular checkpoints are taken at time-steps where the application memory footprint is
minimal [57]; on the contrary, proactive checkpoints are taken according to predictions that can
take place at arbitrary instants. On the other hand, we may have Cp < C in other scenarios [52],
e.g., when the prediction is localized to a particular resource subset, hence allowing for a smaller
volume of checkpointed data.

To keep full generality, we deal with two checkpoint sizes in this Section: C for periodic
checkpoints, and Cp for proactive checkpoints (those taken upon predictions).

In the literature, the lead time is the interval between the date at which the prediction is
made available, and the actual prediction date. While the lead time is an important parameter,
the shape of its distribution law is irrelevant to the problem: either a fault is predicted at
least Cp seconds in advance, and then one can checkpoint just in time before the fault, or the
prediction is useless! In other words, predictions that come too late should be classified as
unpredicted faults whenever they materialize as actual faults, leading to a smaller value of the
predictor recall.
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Fault rates

In addition to µ, the platform MTBF (see subsection 1.2.1), let µP be the mean time
between predicted events (both true positive and false positive), and let µNP be the mean time
between unpredicted faults (false negative). Finally, we define the mean time between events
as µe (including all three event types). The relationships between µ, µP, µNP, and µe are the
following:
— Rate of unpredicted faults: 1

µNP
= 1−r

µ , since 1 − r is the fraction of faults that are
unpredicted;

— Rate of predicted faults: r
µ = p

µP
, since r is the fraction of faults that are predicted, and

p is the fraction of fault predictions that are correct;
— Rate of events: 1

µe
= 1

µP
+ 1

µNP
, since events are either predictions (true or false), or

unpredicted faults.

Objective: waste minimization

The natural objective is to minimize the expectation of the total execution time, makespan,
of the application. Instead, in order to ease mathematical derivations, we aim at minimizing
the waste. The waste is the expected percentage of time lost, or “wasted”, during the execution.
In other words, the waste is the fraction of time during which the platform is not doing useful
work. This definition was introduced by Wingstrom [60]. Obviously, the lower the waste, the
lower the expected makespan, and reciprocally. Hence the two objectives are strongly related
and minimizing one of them also minimizes the other.

4.2.2 Taking predictions into accounts

For the sake of clarity, we start with a simple algorithm (subsection 4.2.2) which we refine
in subsection 4.2.2. We then compute the value of the period that minimizes the waste in
subsection 4.2.2.

Simple policy

In this subsection, we consider the following algorithm:
— While no fault prediction is available, checkpoints are taken periodically with period T ;
— When a fault is predicted, there are two cases: either there is the possibility to take

a proactive checkpoint, or there is not enough time to do so, because we are already
checkpointing (see Figures 4.1(b) and 4.1(c)). In the latter case, there is no other choice
than ignoring the prediction. In the former case, we still have the possibility to ignore the
prediction, but we may also decide to trust it: in fact the decision is randomly taken. With
probability q, we trust the predictor and take the prediction into account (see Figures 4.1(f)
and 4.1(g)), and with probability 1 − q, we ignore the prediction (see Figures 4.1(d)
and 4.1(e));

— If we take the prediction into account, we take a proactive checkpoint (of length Cp) as
late as possible, i.e., so that it completes right at the time when the fault is predicted to
happen. After this checkpoint, we complete the execution of the period (see Figures 4.1(f)
and 4.1(g));
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— If we ignore the prediction, either by necessity (not enough time to take an extra check-
point, see Figures 4.1(b) and 4.1(c)), or or by choice (with probability 1−q, Figures 4.1(d)
and 4.1(e)), we finish the current period and start a new one.

The rationale for not always trusting the predictor is to avoid taking useless checkpoints
too frequently. Intuitively, the precision p of the predictor must be above a given threshold for
its usage to be worthwhile. In other words, if we decide to checkpoint just before a predicted
event, either we will save time by avoiding a costly re-execution if the event does correspond
to an actual fault, or we will lose time by unduly performing an extra checkpoint. We need a
larger proportion of the former cases, i.e., a good precision, for the predictor to be really useful.
The following analysis will determine the optimal value of q as a function of the parameters C,
Cp, µ, r, and p.

We could refine the approach by taking into account the amount of work already done in the
current period when deciding whether to trust the predictor or not. Intuitively, the more work
already done, the more important to save it, hence the more worthwhile to trust the predictor.
We design such a refined strategy in subsection 4.2.2. Right now, we analyze a simpler algorithm
where we decide to trust or not to trust the predictor, independently of the amount of work
done so far within the period.

We analyze the algorithm in order to compute a formula for the expected waste, just as in
Equation (1.13) (which we remind here):

Waste = WasteFF + Wastefault −WasteFFWastefault (4.1)

While the value of WasteFF is unchanged (WasteFF = C
T ), the value of Wastefault is

modified because of predictions. As illustrated in Figure 4.1, there are many different scenarios
that contribute to Wastefault that can be sorted into three categories:
(1) Unpredicted faults: This overhead occurs each time an unpredicted fault strikes, that
is, on average, once every µNP seconds. Just as in Equation (1.9), the corresponding waste is

1
µNP

[
T
2 +D +R

]
.

(2) Predictions not taken into account: The second source of waste is for predictions that
are ignored. This overhead occurs in two different scenarios. First, if we do not have time to
take a proactive checkpoint, we have an overhead if and only the prediction is an actual fault.
This case happens with probability p. We then lose a time t + D + R if the predicted fault
happens a time t after the completion of the last periodic checkpoint. The expected time lost
is thus

T 1
lost = 1

T

∫ Cp

0
(p(t+D +R) + (1− p)0) dt

Then, if we do have time to take a proactive checkpoint but still decide to ignore the prediction,
we also have an overhead if and only the prediction is an actual fault, but the expected time
lost is now weighted by the probability (1− q):

T 2
lost = (1− q) 1

T

∫ T

Cp
(p(t+D +R) + (1− p)0) dt

(3) Predictions taken into account: We now compute the overhead due to a prediction
which we trust (hence we checkpoint just before its date). If the prediction is an actual fault,
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TimeT -C T -C Tlost T -C

fault

C C C D R C

(a) Unpredicted fault

TimeT -C T -C

Predicted fault

T -C T -C

C C C C C

(b) Prediction cannot be taken into account - no actual fault

TimeT -C Tlost

fault Predicted fault

T -C T -C T -C

C C D R C C C

(c) Prediction cannot be taken into account - with actual fault

TimeT -C T -C

Predicted fault

T -C T -C

C C C C C

(d) Prediction not taken into account by choice - no actual fault

TimeT -C Tlost

fault Predicted fault

T -C T -C

C C D R C C

(e) Prediction not taken into account by choice - with actual
fault

TimeT -C Wreg

Predicted fault

T -Wreg-C T -C T -C

C C Cp C C C

(f) Prediction taken into account - no actual fault

TimeT -C Wreg

fault Predicted fault

T -Wreg-C T -C

C C Cp D R C C

(g) Prediction taken into account - with actual fault

Figure 4.1: Actions taken for the different event types.
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we lose Cp +D+R seconds, but if it is not, we lose the unnecessary extra checkpoint time Cp.
The expected time lost is now weighted by the probability q and becomes

T 3
lost = q

1
T

∫ T

Cp
(p(Cp +D +R) + (1− p)Cp) dt

We derive the final value of Wastefault:

Wastefault = 1
µNP

[
T

2 +D +R

]
+ 1
µP

[
T 1
lost + T 2

lost + T 3
lost

]
This final expression comes from the disjunction of all possibles cases, using the Law of Total
Probability [59, p.23]: the waste comes either from non-predicted faults or from predictions;
in the latter case, we have analyzed the three possible sub-cases and weighted them with their
respective probabilities. After simplifications, we obtain

Wastefault = 1
µ

(
(1− rq)T2 +D +R+ qr

p
Cp −

qrC2
p

pT
(1− p/2)

)
(4.2)

We could now plug this expression back into Equation (4.1) to compute the value of T that
minimizes the total waste. Instead, we move on to describing the refined algorithm, and we
minimize the waste for the refined strategy, since it always induces a smaller waste.

Refined policy

In this subsection, we refine the approach and consider different trust strategies, depending
upon the time in the period where the prediction takes place. Intuitively, the later in the
period, the more likely we are inclined to trust the predictor, because the amount of work that
we could lose gets larger and larger. As before, we cannot take into account a fault predicted
to happen less than Cp units of time after the beginning of the period. Therefore, we focus on
what happens in the period after time Cp. Formally, we now divide the interval [Cp, T ] into
n intervals [βi;βi+1] for i ∈ {0, · · · , n − 1}, where β0 = Cp and βn = T . For each interval
[βi;βi+1], we trust the predictor with probability qi. We aim at determining the values of n,
βi, and qi that minimize the waste. As mentioned before, intuition tells us that the qi values
should be non-decreasing. We prove below a somewhat unexpected theorem: in the optimal
strategy, there is either one or two different qi values, and these values are 0 or 1. This means
that we should never trust the predictor in the beginning of a period, and always trust it in the
end of the period, without any intermediate behavior in between.

We formally express this striking result below. Let βlim = Cp
p . The optimal strategy is

provided by Theorem 8 below. We first prove the following proposition:

Proposition 9. The values of βi and qi that minimize the waste satisfy the following conditions:
(i) For all i such that βi+1 ≤ βlim, qi = 0.
(ii) For all i such that βi ≥ βlim, qi = 1.

Proof. First we compute the waste with the refined algorithm, using Equation (4.1). The
formula for Wastefault is similar to Equation (4.2) on each interval:
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Waste = C

T
+
(

1− C

T

)[ 1
µNP

(
T

2 +D +R

)

+ 1
µP

n−1∑
i=0

(
qi

∫ βi+1

βi

(p(Cp +D +R) + (1− p)Cp)
T

dt

+ (1− qi)
∫ βi+1

βi

p(t+D +R)
T

dt

)]

Now, consider a fixed value of i and express the value of Waste as a function of qi:

Waste = K +
(

1− C

T

)
qi
µP

∫ βi+1

βi

(
Cp
T
− pt

T

)
dt

where K does not depend on qi. From the sign of the function to be integrated, one sees that
Waste is minimized when qi = 0 if βi+1 ≤ βlim = Cp

p , and when qi = 1 if βi ≥ βlim. �

Theorem 8. The optimal algorithm takes proactive actions if and only if the prediction falls
in the interval [βlim, T ].

Proof. From Proposition 9, the values for qi are optimally defined for every i but one: we do
not know the optimal value if there exists i0 such that βi0 < βlim < βi0+1. Then let us consider
the waste where qi0 is replaced by q(1)

i0
on [βi0 , βlim] and by q(2)

i0
on [βlim, βi0+1]. The new waste

is necessarily smaller than the one with only qi0 , since we relaxed the constraint. We know from
Proposition 9 that the optimal solution is then to have q(1)

i0
= 0 and q(2)

i0
= 1. �

Let us now compute the value of the waste with the optimal algorithm. There are two cases,
depending upon whether T ≤ βlim or not. For values of T smaller than βlim, Theorem 8 shows
that the optimal algorithm never takes any proactive action; in that case the waste is given by
Equation (1.14) in Chapter 1. For values of T larger than βlim = Cp

p , we compute the waste due
to predictions as

1
µP

1
T

(∫ Cp/p

0
p(t+D +R)dt+

∫ T

Cp/p
(p(Cp +D +R) + (1− p)Cp)dt

)

= r

pµ

(
p(D +R) + Cp −

C2
p

2pT

)

Indeed, in accordance with Theorem 8, no prediction is taken into account in the interval [0, Cpp ],
while all predictions are taken into account in the interval [Cpp , T ]. Adding the waste due to
unpredicted faults, namely 1

µNP

[
T
2 +D +R

]
, we derive

Wastefault = 1
µ

(
(1− r)T2 + r

p
Cp

(
1− 1

2p
Cp
T

)
+D +R

)
.
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Plugging this value into Equation (4.1), we obtain the total waste when Cp
p ≤ T :

Waste = C

T
+ 1
µ

(
(1− r)T2 + r

p
Cp

(
1− 1

2p
Cp
T

)
+D +R

)(
1− C

T

)
=
rCC2

p

2p2
1
µT 2 +

(
µC −

rC2
p

2p2 − C
(
rCp
p

+D +R

)) 1
µT

+ 1− r
2µ T

+
−(1− r)C2 + rCp

p +D +R

µ

Altogether, the expression for the total waste becomes:
Waste1(T ) =

C
(

1−D+R
µ

)
T + D+R−C/2

µ + 1
2µT if Cpp ≥ T

Waste2(T ) = rCC2
p

2µp2
1
T 2 +

(
C

(
1−

rCp
p +D+R

µ

)
−
rC2
p

2µp2

)
T +

−(1−r)C2 + rCp
p

+D+R
µ + 1−r

2µ T if Cpp ≤ T
(4.3)

One can check that when r = 0 (no error predicted, hence no proactive action in the algorithm),
then Waste1 and Waste2 coincide. We also check that both values coincide for T = Cp

p . We
show how to minimize the waste in Equation (4.3) in subsection 4.2.2.

Waste minimization

In this subsection we focus on minimizing the waste in Equation (4.3). Recall that, by
construction, we always have to enforce the constraint T ≥ C. First consider the case where
C ≤ Cp

p . On the interval T ∈ [C, Cpp ], we retrieve the optimal value found in Chapter 1, and
derive that Waste1, the waste when predictions are not taken into account, is minimized for

TNoPred = max
(
C,min

(
TRFO,

Cp
p

))
(4.4)

Indeed, the optimal value should belong to the interval [C, Cpp ], and the function Waste1 is
convex: if the extremal solution

√
2(µ− (D +R))C does not belong to this interval, then the

optimal value is one of the bounds of the interval.
On the interval T ∈

[
Cp
p ,+∞

)
, we find the optimal solution by differentiating twice Waste2

with respect to T . Writing Waste2(T ) = u
T 2 + v

T +w+xT for simplicity, we obtain Waste′′2(T ) =
2
T 3

(
3u
T + v

)
. Here, a key parameter is the sign of :

v =

C
1−

rCp
p +D +R

µ

− rC2
p

2µp2


We detail the case v ≥ 0 in the following, because it is the most frequent with realistic parameter
sets; we do have v ≥ 0 for all the whole range of simulations in subsection 4.2.3. For the sake
of completeness, we will briefly discuss the case v < 0 in the comments below.

When v ≥ 0, we have Waste′′2(T ) ≥ 0, so that Waste2 is convex on the interval
[
Cp
p ,+∞

)
and admits a unique minimum Textr. Note that Textr can be computed either numerically or
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using Cardano’s method, since it is the unique real root of a polynomial of degree 3. The
optimal solution on

[
Cp
p ,+∞

)
is then: TPred = max

(
Textr,

Cp
p

)
.

It remains to consider the case where Cp
p < C. In fact, it suffices to add the constraint that

the value of TPred should be greater than C, that is:

TPred = max
(
C,max

(
Textr,

Cp
p

))
(4.5)

Finally, the optimal solution for the waste is given by the minimum of the following two values:

C
(

1−D+R
µ

)
TNoPred

+ D+R−C/2
µ + 1

2µTNoPred

rCC2
p

2µp2
1

T 2
Pred

+

(
C

(
1−

rCp
p +D+R

µ

)
−
rC2
p

2µp2

)
TPred

+
−(1−r)C2 + rCp

p
+D+R

µ + 1−r
2µ TPred

We make a few observations:
— Just as for Equation (1.15) in Chapter 1, mathematical rigor calls for capping the values

of D, R, C, Cp and T in front of the MTBF. The only difference is that we should replace
µ by µe: this is to account for the occurrence rate of all events, be they unpredicted faults
or predictions.

— While the expression of the waste looks complicated, the numerical value of the optimal
period can easily be computed in all cases. We have dealt with the case v ≥ 0, where
v is the coefficient of 1/T in Waste2(T ) = u

T 2 + v
T + w + xT . When v < 0 we only

needs to compute all the nonnegative real roots of a polynomial of degree 3, and check
which one leads to the best value. More precisely, these root(s) partition the admissible
interval

[
Cp
p ,+∞

)
into several sub-intervals, and the optimal value is either a root or a

sub-interval bound.
— In many practical situations, when µ is large enough, we can dramatically simplify the

expression of Waste2(T ): we have T = O(√µ), the term u
T 2 becomes negligible, check-

point parameters become negligible in front of µ, and we derive the approximated value√
2µC
1−r . This value can be seen as an extension of Equation (1.15) giving TRFO, where µ

is replaced by µ
1−r : faults are replaced by non-predicted faults, and the overhead due to

false predictions is negligible. As a word of caution, recall that this conclusion is valid
only when µ is very large in front of all other parameters.

4.2.3 Simulation results
We start by presenting the simulation framework (subsection 4.2.3). Then we report results

using synthetic traces (subsection 4.2.3) and log-based traces (subsection 4.2.3). Finally, we
assess the respective impact of the two key parameters of a predictor, its recall and its precision,
on checkpointing strategies (subsection 4.2.3).

Simulation framework

Scenario generation – In order to check the accuracy of our model and of our analysis, and
to assess the potential benefits of predictors, we study the performance of our new solutions
and of pre-existing ones using a discrete-event simulator. The simulation engine generates a
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random trace of faults. Given a set of p processors, a failure trace is a set of failure dates for
each processor over a fixed time horizon h (set to 2 years). Given the distribution of inter-
arrival times at a processor, for each processor we generate a trace via independent sampling
until the target time horizon is reached. The job start time is assumed to be one-year to avoid
side-effects related to the synchronous initialization of all nodes/processors. We consider two
types of failure traces, namely synthetic and log-based.
Synthetic failure traces – The simulation engine generates a random trace of faults param-
eterized either by an Exponential fault distribution or by Weibull distribution laws with shape
parameter either 0.5 or 0.7. Note that Exponential faults are widely used for theoretical studies,
while Weibull faults are representative of the behavior of real-world platforms [64, 63, 65, 66].
For example, Heien et al. [66] have studied the failure distribution for 6 sources of failures (stor-
age devices, NFS, batch system, memory and processor cache errors, etc.), and the aggregate
failure distribution. They have shown that the aggregate failure distribution is best modeled
by a Weibull distribution with a shape parameter that is between 0.5841 and 0.7097.

The Jaguar platform, which comprised N = 45, 208 processors, is reported to have experi-
enced about one fault per day [46], which leads to an individual (processor) MTBF µind equal
to 45,208

365 ≈ 125 years. Therefore, we set the individual (processor) MTBF to µind = 125 years.
We let the total number of processors N vary from N = 16, 384 to N = 524, 288, so that the
platform MTBF µ varies from µ = 4, 010 min (about 2.8 days) down to µ = 125 min (about 2
hours). Whatever the underlying failure distribution, it is scaled so that its expectation corre-
sponds to the platform MTBF µ. The application size is set to Timebase = 10, 000 years/N.
Log-based failure traces – To corroborate the results obtained with synthetic failure traces,
and to further assess the performance of our algorithms, we also perform simulations using
the failure logs of two production clusters. We use logs of the largest clusters among the
preprocessed logs in the Failure trace archive [67], i.e., for clusters at the Los Alamos National
Laboratory [63]. In these logs, each failure is tagged by the node —and not the processor—
on which the failure occurred. Among the 26 possible clusters, we opted for the logs of the
only two clusters with more than 1,000 nodes. The motivation is that we need a sample history
sufficiently large to simulate platforms with more than ten thousand nodes. The two chosen logs
are for clusters 18 (LANL18) and 19 (LANL19) in the archive (referred to as 7 and 8 in [63]).
For each log, we record the set S of availability intervals. The discrete failure distribution for
the simulation is generated as follows: the conditional probability P(X ≥ t | X ≥ τ) that a node
stays up for a duration t, knowing that it has been up for a duration τ , is set to the ratio of the
number of availability durations in S greater than or equal to t, over the number of availability
durations in S greater than or equal to τ .

The two clusters used for computing our log-based failure distributions consist of 4-processor
nodes. Hence, to simulate a platform of, say, 216 processors, we generate 214 failure traces, one
for each 4-processor node. In the logs the individual (processor) MTBF is µind = 691 days for
the LANL18 cluster, and µind = 679 days for the LANL19 cluster. The LANL18 and LANL19
traces are logs for systems which comprised 4,096 processors. Using these logs to generate traces
for a system made of 524, 288 processors, as the largest platforms we consider with synthetic
failure traces, would lead to an obvious risk of oversampling. Therefore, we limit the size of the
log-based traces we generate: we let the total number of processors N varies from N = 1, 024
to N = 131, 072, so that the platform MTBF µ varies from µ = 971 min (about 16 hours) down
to µ = 7.5 min. The application size is set to Timebase = 250 years/N.
Predicted failures and false predictions – Once we have generated a failure trace, we need
to determine which faults are predicted and which are not. In order to do so, we consider all
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faults in a trace one by one. For each of them, we randomly decide, with probability r, whether
it is predicted.

We use the simulation engine to generate a random trace of false predictions. The main
problem is to decide the shape of the distribution that false predictions should follow. To the
best of our knowledge, no published study ever addressed that problem. For synthetic failure
traces, we report results when false predictions follow the same distribution than faults (except,
of course, that both distributions do not have the same mean value). Results are quite similar
when false predictions are generated according to a uniform distribution. For log-based failures,
we only report results when false predictions are generated according to a uniform distribution
(because we believe that scaling down a discrete, actual distribution may not be meaningful).

The distribution of false predictions is always scaled so that its expectation is equal to
µP

1−p = pµ
r(1−p) , the inter-arrival time of false predictions. Finally, the failure trace and the false-

prediction trace are merged to produce the final trace including all events (true predictions, false
predictions, and non predicted faults). Each reported value is the average over 100 randomly
generated instances.

Checkpointing, recovery, and downtime costs – The experiments use parameters that are
representative of current and forthcoming large-scale platforms [68, 69]. We take C = R = 10
min, and D = 1 min for the synthetic failure traces. For the log-based traces we consider smaller
platforms. Therefore, we take C = R = 1 min, and D = 6s. Whatever the trace, we consider
three scenarios for the proactive checkpoints: either proactive checkpoints are (i) exactly as
expensive as periodic ones (Cp = C), (ii) ten times cheaper (Cp = 0.1C), and (iii) two times
more expensive (Cp = 2C).

Heuristics – In the simulations, we compare four checkpointing strategies:

— RFO is the checkpointing strategy of period T =
√

2(µ− (D +R))C (see Chapter 1).
— OptimalPrediction is the refined algorithm described in subsection 4.2.2.
— To assess the quality of each strategy, we compare it with its BestPeriod counterpart,

defined as the same strategy but using the best possible period T . This latter period is
computed via a brute-force numerical search for the optimal period (each tested period is
evaluated on 100 randomly generated traces, and the period achieving the best average
performance is elected as the “best period”).

Fault predictors – We experiment using the characteristics of two predictors from the lit-
erature: one accurate predictor with high recall and precision [51], namely with p = 0.82 and
r = 0.85, and another predictor with intermediate recall and precision [52], namely with p = 0.4
and r = 0.7.

In practice, a predictor will not be able to predict the exact time at which a predicted
fault will strike the system. Therefore, in the simulations, when a predictor predicts that a
failure will strike the system at a date t (true prediction), the failure actually occurs exactly
at time t for heuristic OptimalPrediction, and between time t and time t+ 2C for heuristic
InexactPrediction (the probability of fault is uniformly distributed in the time-interval).
OptimalPrediction can thus be seen as a best case. The comparison between Optimal-
Prediction and InexactPrediction enables us to assess the impact of the time imprecision
of predictions, and to show that the obtained results are quite robust to this type of imprecision.
The choice of an interval length of 2C is quite arbitrary. For synthetic traces, this corresponds
to 1,200 s, which is quite a significant imprecision.
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Simulations with synthetic traces

Figures 4.2 and 4.3 show the average waste degradation for the two checkpointing policies,
and for their BestPeriod counterparts, for both predictors. The waste is reported as a function
of the number of processors N . We draw the plots as a function of the number of processors
N rather than of the platform MTBF µ = µind/N , because it is more natural to see the waste
increase with larger platforms. However, recall that this work is agnostic of the granularity of
the processing elements and intrinsically focuses on the impact of the MTBF on the waste.

We also report job execution times, in Table 4.2 when fault distribution follows an Expo-
nential distribution law, and in Tables 4.3 and 4.4 for a Weibull distribution law with shape
parameter k = 0.7 and k = 0.5 respectively.
Validation of the theoretical study – We used Maple to analytically compute and plot the
optimal value of the waste for both the algorithm taking predictions into account, Optimal-
Prediction, and for the algorithm ignoring them, RFO. In order to check the accuracy of our
model, we have compared these results with results obtained with the discrete-event simulator.

We first observe that there is a very good correspondence between analytical results and
simulations in Figures 4.2 and 4.3. In particular, the Maple plots and the simulations for
Exponentially distributed faults are very similar. This shows the validity of the model and
of its analysis. Another striking result is that OptimalPrediction has the same waste as
its BestPeriod counterpart, even for Weibull fault distributions, in all but the most extreme
cases. In the other cases, the waste achieved by OptimalPrediction is very close to that of
its BestPeriod counterpart. This demonstrates the very good quality of our checkpointing
period TPred. These conclusions are valid regardless of the cost ratio of periodic and proactive
checkpoints.

In Tables 4.2 through 4.4 we report the execution times obtained when using the expres-
sion of T given by Young [53] and Daly [54] (denoted respectively as Young and Daly) to
assess whether TRFO is a better approximation. (Recall that these three approaches ignore the
predictions, which explains why the numbers are identical on both sides of each table.) The
expressions of T given by Young, Daly, and RFO are identical for Exponential distributions
and the three heuristics achieve the same performance (Table 4.2). This confirms the analytical
evaluation of Table 1.2 in Chapter 1. For Weibull distributions (Tables 4.3 and 4.4), RFO
achieves lower makespan, and the difference becomes even more significant as the size of the
platform increases. Moreover, it is striking to observe in Table 4.4 that job execution time in-
creases together with the number for processors (from N = 216 to N = 219) if the checkpointing
period is Daly or Young. On the contrary, job execution time (rightfully) decreases when
using RFO, even if the decrease is moderate with respect to the increase of the platform size.
Altogether, the main (striking) conclusion is that RFO should be preferred to both classical
approaches for Weibull distributions.
The benefits of prediction – The second observation is that the prediction is useful for the
vast majority of the set of parameters under study! In addition, when proactive checkpoints are
cheaper than periodic ones, the benefits of fault prediction are increased. On the contrary, when
proactive checkpoints are more expensive than periodic ones, the benefits of fault prediction
are greatly reduced. One can even observe that the waste with prediction is not better than
without prediction in the following scenario: Cp = 2C, and using the limited-quality predictor
(p = 0.4, r = 0.7) with 219 processors, see Figures 4.3(i),(j),(k), and (l).

In Tables 4.2 through 4.4 we compute the gain (expressed in percentage) achieved by Op-
timalPrediction over RFO. As a general trend, we observe that the gains due to predictions
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Figure 4.2: Waste (y-axis) for the different heuristics as a function of the platform size (x-axis),
with p = 0.82, r = 0.85, Cp = C (first row), Cp = 0.1C (second row), or Cp = 2C (third row)
and with a trace of false predictions parametrized by a distribution identical to the distribution
of the failure trace.
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Figure 4.3: Waste (y-axis) for the different heuristics as a function of the platform size (x-axis),
with p = 0.4, r = 0.7, Cp = C (first row), Cp = 0.1C (second row), or Cp = 2C (third row) and
with a trace of false predictions parametrized by a distribution identical to the distribution of
the failure trace.
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are more important when the distribution law is further apart from an Exponential distribution.
Indeed, the largest gains are when the fault distribution follows a Weibull law of parameter 0.5.
Using OptimalPrediction in conjunction with a “good” fault predictor we report gains up
to 66% when there is a large number of processors (219). The gain is still of 37% with 216

processors. Using a predictor with limited recall and precision, OptimalPrediction can still
decrease the execution time by 47% with 219 processors, and 31% with 216 processors. In all
tested cases, the decrease of the execution times is significant. Gains are less important with
Weibull laws of shape parameter k = 0.7, however they are still reaching a minimum of 13%
with 216 processors, and up to 38% with 219 processors. Finally, gains are further reduced with
an Exponential law. They are still reaching at least 5% with 216 processors, and up to 19%
with 219 processors.

The performance of InexactPrediction shows that using a fault predictor remains largely
beneficial even in the presence of large uncertainties on the time the predicted faults will ac-
tually occur (see Tables 4.2, 4.3, and 4.4). When N = 216 the degradation with respect to
OptimalPrediction is of 3% for a Weibull law with shape parameter k = 0.7, and the mini-
mum gain over RFO is still of 10%. When the shape parameter of the Weibull law is k = 0.5,
the degradation is of 7% when, for a minimum gain of 26% over RFO.

Execution time (in days) Execution time (in days)
Cp = C (p = 0.82, r = 0.85) (p = 0.4, r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 65.2 11.7 65.2 11.7
Daly 65.2 11.8 65.2 11.8
RFO 65.2 11.7 65.2 11.7

OptimalPrediction 60.0 (8%) 9.5 (19%) 61.7 (5%) 10.7 (8%)
InexactPrediction 60.6 (7%) 10.2 (13%) 62.3 (4%) 11.4 (3%)

Table 4.2: Job execution times for an Exponential distribution, and gains due to the fault
predictor (with respect to the performance of RFO).

Execution time (in days) Execution time (in days)
Cp = C (p = 0.82, r = 0.85) (p = 0.4, r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 81.3 30.1 81.3 30.1
Daly 81.4 31.0 81.4 31.0
RFO 80.3 25.5 80.3 25.5

OptimalPrediction 65.9 (18%) 15.9 (38%) 69.7 (13%) 20.2 (21%)
InexactPrediction 68.0 (15%) 20.3 (20%) 72.0 (10%) 24.6 (4%)

Table 4.3: Job execution times for a Weibull distribution with shape parameter k = 0.7, and
gains due to the fault predictor (with respect to the performance of RFO).

Simulations with log-based traces

Figure 4.4 shows the average waste degradation for the two checkpointing policies, and for
their BestPeriod counterparts, for both predictors, both traces, and the three scenarios for
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Execution time (in days) Execution time (in days)
Cp = C (p = 0.82, r = 0.85) (p = 0.4, r = 0.7)

216 procs 219 procs 216 procs 219 procs
Young 125.5 171.8 125.5 171.8
Daly 125.8 184.7 125.8 184.7
RFO 120.2 114.8 120.2 114.8

OptimalPrediction 75.9 (37%) 39.5 (66%) 83.0 (31%) 60.8 (47%)
InexactPrediction 82.0 (32%) 60.8 (47%) 89.4 (26%) 76.6 (33%)

Table 4.4: Job execution times for a Weibull distribution with shape parameter k = 0.5, and
gains due to the fault predictor (with respect to the performance of RFO).

proactive checkpoints. Tables 4.5 and 4.6 present job execution times for RFO, OptimalPre-
diction, and InexactPrediction, for both traces and for platform sizes smaller than as the
ones reported in Tables 4.2 through 4.4 for synthetic traces. The waste for RFO is closer to
its BestPeriod counterpart with log-based traces than with Weibull-based traces. As a con-
sequence, when prediction with OptimalPrediction is beneficial, it is beneficial with respect
to both RFO, and to RFO’s BestPeriod.

Overall, we observe similar results and reach the same conclusions with log-based traces as
with synthetic ones. The waste of OptimalPrediction is very close to that of its BestPeriod
counterpart for platforms containing up to 216 processors. This demonstrates the validity of our
analysis for the actual traces considered. The waste of OptimalPrediction is often signifi-
cantly larger than that of its BestPeriod counterpart for platforms containing 217 processors.
The problem with the largest considered platforms may be due to oversampling. Indeed, the
original logs recorded events for platforms comprising only 4,096 processors and respectively
contained only 3,010 and 2,343 availability intervals.

As with synthetic failure traces, prediction turns out to be useful for the vast majority of
tested configurations. The only cases when prediction is not useful is with the “bad” predictor
(r = 0.7 and p = 0.4), when the cost of proactive checkpoint is larger than the cost of periodic
checkpoints (Cp = 2C), and when considering the largest of platforms (N = 217). This extreme
case is, however, the only one for which prediction is not beneficial. It is not surprising that
predictions are not useful when there are a lot of false predictions that require the use of
expensive proactive actions. Looking at Tables 4.5 and 4.6, one could remark that performance
gains due to the predictions are similar to the ones observed with Exponential-based traces,
and are significantly smaller than the ones observed with Weibull-based traces. However, recall
that we remarked that gains increase with the size of the platform, and that we consider smaller
platforms when using log-based traces.

Finally, the imprecision related to the time where predicted faults strike, induces a perfor-
mance degradation. However, this degradation is rather limited for the most efficient of the two
predictors considered, or when the platform size is not too large.
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Figure 4.4: Waste (y-axis) for the different heuristics as a function of the platform size (x-axis)
with failures based on the failure log of LANL clusters 18 and 19.
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Execution time (in days) Execution time (in days)
Cp = C (p = 0.82, r = 0.85) (p = 0.4, r = 0.7)

214 procs 217 procs 214 procs 217 procs
RFO 26.8 4.88 26.8 4.88

OptimalPrediction 24.4 (9%) 3.89 (20%) 25.2 (6%) 4.44 (9%)
InexactPrediction 24.7 (8%) 4.20 (14%) 25.5 (5%) 4.73 (3%)

Table 4.5: Job execution times with failures based on the failure log of LANL18 cluster, and
gains due to the fault predictor (with respect to the performance of RFO).

Execution time (in days) Execution time (in days)
Cp = C (p = 0.82, r = 0.85) (p = 0.4, r = 0.7)

214 procs 217 procs 214 procs 217 procs
RFO 26.8 4.86 26.8 4.86

OptimalPrediction 24.4 (9%) 3.85 (21%) 25.2 (6%) 4.42 (9%)
InexactPrediction 24.6 (8%) 4.14 (15%) 25.4 (5%) 4.71 (3%)

Table 4.6: Job execution times with failures based on the failure log of LANL19 cluster, and
gains due to the fault predictor (with respect to the performance of RFO).

Recall vs. precision

In this subsection, we assess the impact of the two key parameters of the predictor, its recall
r and its precision p. To this purpose, we conduct simulations with synthetic traces, where one
parameter is fixed while the other varies. We choose two platforms, a smaller one with N = 216

processors (or a MTBF µ = 1, 000 min) and a larger one with N = 219 processors (or a MTBF
µ = 125 min). In both cases we study the impact of the predictor characteristics assuming a
Weibull fault distribution with shape parameter either 0.5 or 0.7, under the scenario Cp = C.

In Figures 4.5 and 4.6, we fix the value of r (either r = 0.4 or r = 0.8) and we let p
vary from 0.3 to 0.99. In the four plots, we observe that the precision has a minor impact on
the waste, whether it is with a Weibull distribution of shape parameter 0.7 (Figure 4.5), or a
Weibull distribution of shape parameter 0.5 (Figure 4.6). In Figures 4.7 and 4.8, we conduct the
converse experiment and fix the value of p (either p = 0.4 or p = 0.8), letting r vary from 0.3 to
0.99. Here we observe that increasing the recall significantly improves performance, in all but
one configuration. In the configuration where improving the recall does not make a (significant)
difference, there is a very large number of faults and a low precision, hence a large number of
false predictions which negatively impact the performance whatever the value of the recall.

Altogether we conclude that it is more important (for the design of future predictors) to
focus on improving the recall r rather than the precision p, and our results can help quantify
this statement. We provide an intuitive explanation as follows: unpredicted faults prove very
harmful and heavily increase the waste, while unduly checkpointing due to false predictions
(usually) turns out to induce a smaller overhead.
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Figure 4.5: Waste (y-axis) as a function of the precision (x-axis) for a fixed recall (r = 0.4 and
r = 0.8) and for a Weibull distribution of faults (with shape parameter k = 0.7).
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Figure 4.6: Waste (y-axis) as a function of the precision (x-axis) for a fixed recall (r = 0.4 and
r = 0.8) and for a Weibull distribution of faults (with shape parameter k = 0.5).
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Figure 4.7: Waste (y-axis) as a function of the recall (x-axis) for a fixed precision (p = 0.4 and
p = 0.8) and for a Weibull distribution (k=0.7).
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Figure 4.8: Waste (y-axis) as a function of the recall (x-axis) for a fixed precision (p = 0.4 and
p = 0.8) and for a Weibull distribution (k=0.5).

4.3 Predictor with a prediction window
In this section, we refine the work on the impact of fault prediction techniques on coordinated

checkpointing strategies.
Assume now that some fault prediction system is available. We remind that such a system

is characterized by two critical parameters, its recall r, which is the fraction of faults that are
indeed predicted, and its precision p, which is the fraction of predictions that are correct (i.e.,
correspond to actual faults). In the simple case where predictions are exact-date predictions,
Gainaru et al. [49] and our previous work (Section 4.2) have independently shown that the

optimal checkpointing period becomes Topt =
√

2µC
1− r . This latter expression is valid only when

µ is large enough. This expression can be seen as an extension of Young’s formula where µ
is replaced by µ

1−r : faults are replaced by non-predicted faults, and the overhead due to false
predictions is negligible. A more accurate expression for the optimal checkpointing period is
available in Chapter 1.

This Section deals with the realistic case (see [51, 50] and related work in section 1.1) where
the predictor system does not provide exact dates for predicted events, but instead provides
prediction windows. A prediction window is a time interval of length I during which the predicted
event is likely to happen. Intuitively, one is more at risk during such an interval than in the
absence of any prediction, hence the need to checkpoint more frequently. But with which period?
Should we take into account all predictions? And what is the size of the prediction window
above which it proves worthwhile to use a different (smaller) checkpointing period during the
prediction windows? It turns out that the answer to those questions is dramatically more
complicated than when using exact-date predictions.

This Section is organized as follows. First we detail the framework in subsection 4.3.1. In
subsection 4.3.2 we describe the new checkpointing policies with prediction windows, and show
how to compute the optimal checkpointing periods that minimize the platform waste. subsec-
tion 4.3.3 is devoted to simulations. Finally, we present concluding remarks in subsection 4.4.

4.3.1 Framework
This Section uses a very similar model to the one introduced in subsection 4.2.1. The only

difference is the definition of the fault predictor.
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Fault predictor

A fault predictor is a mechanism that is able to predict that some faults will take place,
within some time-interval window. Again, we assume that the predictor is able to generate its
predictions early enough so that a proactive checkpoint can indeed be taken before or during
the event. A first proactive checkpoint will typically be taken just before the beginning of the
prediction window, and possibly several other ones will be taken inside the prediction window,
if its size I is large enough.

As in Section 4.2, the accuracy of the fault predictor is characterized by two quantities,
the recall and the precision. The recall r is the fraction of faults that are predicted while the
precision p is the fraction of fault predictions that are correct.

4.3.2 Checkpointing strategies

In this subsection, we introduce the new checkpointing strategies, and we determine the
waste that they induce. We then proceed to computing the optimal period for each strategy.

Description of the different strategies

We consider the following general scheme:
1. While no fault prediction is available, checkpoints are taken periodically with period T ;
2. When a fault is predicted, we decide whether to take the prediction into account or not.

This decision is randomly taken: with probability q, we trust the predictor and take the
prediction into account, and, with probability 1− q, we ignore the prediction;

3. If we decide to trust the predictor, we use various strategies, depending upon the length
I of the prediction window.

Before describing the different strategies in situation (3), we point out that the rationale for not
always trusting the predictor is to avoid taking useless checkpoints too frequently. Indeed, the
precision p of the predictor must be above a given threshold for its usage to be worthwhile. In
other words, if we decide to checkpoint just before a predicted event, either we will save time
by avoiding a costly re-execution if the event does correspond to an actual fault, or we will lose
time by unduly performing an extra checkpoint.

Now, to describe the strategies used when we trust a prediction (situation (3)), we define
two modes for the scheduling algorithm. The Regular mode is used when no fault prediction is
available, or when a prediction is available but we decide to ignore it (with probability 1−q). In
regular mode, we use periodic checkpointing with period TR. Intuitively, TR corresponds to the
checkpointing period T of Section 4.2. The Proactive mode is used when a fault prediction is
available and we decide to trust it, a decision taken with probability q. Consider such a trusted
prediction made for a prediction window [t0, t0 + I]. Several strategies can be envisioned:
(1) Instant, for Instantaneous– The first strategy (see Figure 4.9) is to ignore the time-window
and to execute the same algorithm as if the predictor had given an exact date prediction at time
t0. The algorithm interrupts the current period (of scheduled length TR), checkpoints during
the interval [t0 − Cp, t0], and then returns to regular mode: at time t0, it resumes the work
needed to complete the interrupted period of the regular mode.
(2) NoCkptI, for No checkpoint during prediction window– The second strategy (see Fig-

ure 4.10) is intended for a short prediction window: instead of ignoring it, we acknowledge
it, but make the decision not to checkpoint during it. As in the first strategy, the algorithm
interrupts the current period (of scheduled length TR), and checkpoints during the interval
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Figure 4.10: Outline of strategy NoCkptI.
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Figure 4.11: Outline of strategy WithCkptI.

[t0 − Cp, t0]. But here, we return to regular mode only at time t0 + I, where we resume the
work needed to complete the interrupted period of the regular mode. During the whole length
of the time-window, we execute work without checkpointing, at the risk of losing work if a fault
indeed strikes. But for a small value of I, it may not be worthwhile to checkpoint during the
prediction window (if at all possible, since there is no choice if I < Cp).
(3) WithCkptI, for With checkpoints during prediction window– The third strategy (see Fig-
ure 4.11) is intended for a longer prediction window and assumes that Cp ≤ I: the algorithm
interrupts the current period (of scheduled length TR), and checkpoints during the interval
[t0 − Cp, t0], but now also decides to take several checkpoints during the prediction window.
The period TPred of these checkpoints in proactive mode will presumably be shorter than TR,
to take into account the higher fault probability. In the following, we analytically compute the
optimal number of such periods. But we assume that there is at least one period here, hence,
that we take at least one checkpoint (in the absence of faults), which implies Cp ≤ I. We return
to regular mode either right after the fault strikes within the time window [t0, t0 + I], or at
time t0 + I if no actual fault happens within this window. Then, we resume the work needed to
complete the interrupted period of the regular mode. The third strategy is the most complex
to describe, and the complete behavior of the corresponding scheduling algorithm is shown in
Algorithm 5.

Note that, for all strategies, we insert some additional work for the particular case where
there is not enough time to take a checkpoint before entering proactive mode (because a check-
point for the regular mode is currently on-going). We account for this work as idle time in
the expression of the waste, to ease the analysis. Our expression of the waste is thus an upper
bound.

Strategy WithCkptI

In this subsection we evaluate the execution time under heuristic WithCkptI. To do so, we
partition the whole execution into time intervals defined by the presence or absence of events.
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Algorithm 5: WithCkptI.
1 if fault happens then
2 After downtime, execute recovery;
3 Enter regular mode;
4 if in proactive mode for a time greater than or equal to I then
5 Switch to regular mode;
6 if Prediction made with interval [t, t+ I] and prediction taken into account then
7 Let tC be the date of the last checkpoint under regular mode to start no later than

t− Cp;
8 if tC+C<t−Cp then (enough time for extra checkpoint)
9 Take a checkpoint starting at time t− Cp

10 else (no time for the extra checkpoint)
11 Work in the time interval [tC + C, t]
12 Wreg ← max (0, t− Cp − (tC + C)) ;
13 Switch to proactive mode at time t;
14 while in regular mode and no predictions are made and no faults happen do
15 Work for a time TR-Wreg-C and then checkpoint;
16 Wreg ← 0;
17 while in proactive mode and no faults happen do
18 Work for a time TPred-Cp and then checkpoint;

An interval starts and ends with either the completion of a checkpoint or of a recovery (after a
failure). To ease the analysis, we make a simplifying hypothesis: we assume that at most one
event, failure or prediction, occurs within any interval of length TR + I +Cp. In particular, this
implies that a prediction or an unpredicted fault always take place during the regular mode.

We list below the four types of intervals, and evaluate their respective average length, to-
gether with the average work completed during each of them (see Table 4.7 for a summary):

1. Two consecutive regular checkpoints with no intermediate events. The time
elapsed between the completion of the two checkpoints is exactly TR, and the work done
is exactly TR − C.

2. Unpredicted fault. Recall that, because of the simplifying hypothesis, the fault happens
in regular mode. Because instants where the fault strikes and where the last checkpoint
was taken are independent, on average the fault strikes at time TR/2. A downtime of
length D and a recovery of length R occur before the interval completes. There is no work
done.

3. False prediction. Recall that it happens in regular mode. There are two cases:
(a) Taken into account. This happens with probability q. The interval lasts TR +

Cp+I, since we take a proactive checkpoint and spend the time I in proactive mode.
The work done is (TR − C) + (I − I

TPred
Cp).

(b) Not taken into account. This happens with probability 1− q. The interval lasts
TR and the work done is TR − C.

Considering both cases with their probabilities, the average time spent is equal to: q(TR+
Cp+I)+(1−q)TR = TR+q(Cp+I). The average work done is: q(TR−C+I− I

TPred
Cp)+

(1− q)(TR − Cr) = TR − C + q(I − I
TPred

Cp).
4. True prediction. Recall that it happens in regular mode. There are two cases:
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Mode Number of intervals Time spent Work done
(1) w1 TR TR − C
(2) w2 = TimeFinal

µNP
TR/2 +D +R 0

(3) w3 = (1−p)TimeFinal
µP

TR + q(I + Cp) TR − C + q(I − I
TPred

Cp)

(4) w4 = pTimeFinal
µP

q(TR + E(f)
I + Cp) q

(
TR − C +

(
E(f)
I

TPred
− 1

)
(TPred − Cp)

)
+(1− q)TR/2 +D +R

Table 4.7: Summary of the different interval types for WithCkptI.

(a) Taken into account. Let E(f)
I be the average time at which a fault occurs within

the prediction window (the time at which the fault strikes is certainly correlated to
the starting time of the prediction window; E(f)

I may not be equal to I/2). Up to time
E(f)
I , we work and checkpoint in proactive mode, with period TPred. In addition, we

take a proactive checkpoint right before the start of the prediction window. Then
we spend the time E(f)

I in proactive mode, and we have a downtime and a recovery.
Hence, such an interval lasts TR + Cp + E(f)

I + D + R on average. The total work
done during the interval is TR−C +x(TPred−Cp) where x is the expectation of the
number of proactive checkpoints successfully taken during the prediction window.
Here, x ≈ E(f)

I
TPred

− 1.
(b) Not taken into account. On average the fault occurs at time TR/2. The time

interval has duration TR/2 +D +R, and there is no work done.
Overall the time spent is q(TR + Cp + E(f)

I + D + R) + (1 − q)(TR/2 + D + R), and the

work done is q(TR − C + ( E(f)
I

TPred
− 1)(TPred − Cp)) + (1− q)0.

We want to estimate the total execution time, TimeFinal. So far, we have evaluated the length,
and the work done, for each of the interval types. We now estimate the expectation of the
number of intervals of each type. Consider the intervals defined by an event whose mean time
between occurrences is ν. On average, during a time T , there will be T/ν such intervals. Due
to the simplifying hypothesis, intervals of different types never overlap. Table 4.7 presents the
estimation of the number of intervals of each type.

To estimate the time spent within intervals of a given type, we multiply the expectation
of the number of intervals of that type by the expectation of the time spent in each of them.
Of course, multiplying expectations is correct only if the corresponding random variables are
independent. Nevertheless, we hope that this will lead us to a good approximation of the
expected execution time. We will assess the quality of the approximation through simulations
in subsection 4.3.3. We have:

TimeFinal = w1 × TR + w2

(
TR
2 +D +R

)
+ w3 (TR + q(I + Cp))

+ w4

(
q(TR + E(f)

I + Cp) + (1− q)TR2 +D +R

)
(4.6)

We use the same line of reasoning to compute the overall amount of work done, that must be
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equal, by definition, to Timebase, the execution time of the application without any overhead:

Timebase =w1(TR − C) + w2 × 0 + w3

(
TR − C + q

(
I − I

TPred
Cp

))
(4.7)

+ w4

(
q

(
TR − C +

(
E(f)
I

TPred
− 1

)
(TPred − Cp)

))
This equation gives the value of w1 as a function of the other parameters. Looking at Equa-
tions (4.6) and (4.7), and at the values of w2, w3, and w4, we remark that TimeFinal can be
rewritten as a function of q as follows: TimeFinal = αTimebase + βTimeFinal + qγTimeFinal,
that is TimeFinal = α

1−β−qγTimebase, where neither α, nor β, nor γ depend on q. The derivative
of TimeFinal with respect to q has constant sign. Hence, in an optimal solution, either q = 0
or q = 1. This (somewhat unexpected) conclusion is that the predictor should sometimes be
always trusted, and sometimes never, but no in-between value for q will do a better job. Thus
we can now focus on the two functions TimeFinal, the one when q = 0 (Time{0}Final), and the one
when q = 1 (Time{1}Final).

When q = 0, from Table 4.7 and Equations (4.6) and (4.7), we derive that

Time{0}Final = TR
TR − C

Timebase + Time{0}Final
µ

(
TR
2 +D +R

)
, i.e., that

(
1− C

TR

)(
1− TR/2 +D +R

µ

)
Time{0}Final = Timebase (4.8)

This is exactly the equation from Section 4.2 in the case of exact-date predictions that are never
taken into account (a good sanity check!). When q = 1, we have:

Time{1}Final = Timebase
TR

TR − C

− Time{1}Final
µP

TR
TR−C

(
(TR−C)+(1−p)

(
I− I

TPred
Cp

)
+p

(
E(f)
I

TPred
−1
)

(TPred−Cp)
)

+ Time{1}Final
µNP

(
TR
2 +D +R

)
+ (1− p)Time{1}Final

µP
(TR + I + Cp)

+ pTime{1}Final
µP

(
TR + Cp + E(f)

I +D +R
)

After a little rewriting we obtain:

Timebase

Time{1}Final
= r

pµ

(
1− Cp

TPred

)(
(1− p)I + p

(
E(f)
I − TPred

))
+
(

1− C

TR

)(
1− 1

pµ

(
p(D +R) + rCp + (1−r)pTR2 + r

(
(1−p)I+pE(f)

I

)))
Finally, the waste is equal by definition to TimeFinal−Timebase

TimeFinal . Therefore, we have:

Waste = 1− r

pµ

(
1− Cp

TPred

)(
(1− p)I + p

(
E(f)
I − TPred

))
−
(

1− C

TR

)(
1− 1

pµ

(
p(D +R)+rCp+(1−r)pTR2 +r

(
(1−p)I+pE(f)

I

)))
(4.9)
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Mode Number of intervals Time spent Work done
(1) w1 TR TR − C
(2) w2 = TimeFinal

µNP
TR/2 +D +R 0

(3) w3 = (1−p)TimeFinal
µP

TR + q(I + Cp) TR − C + qI

(4) w4 = pTimeFinal
µP

q(TR + E(f)
I + Cp) q (TR − C)+(1− q)TR/2 +D +R

Table 4.8: Summary of the different interval types for NoCkptI.

Waste minimization When q = 0, the optimal period can readily be computed from Equa-
tion (4.8) and we derive that the optimal period is

√
2(µ− (D +R))C. This defines a periodic

policy we call RFO, for Refined First-Order approximation. We now minimize the waste of the
strategy where q = 1. In order to compute the optimal value for TPred, we identify the fraction
of the waste in Equation (4.9) that depends on TPred. We can rewrite Equation (4.9) as:

Waste{1} = α+ r

pµ

((
(1− p) I + pE(f)

I

) Cp
TPred

+ pTPred

)
where α does not depend on TPred. The waste is thus minimized when TPred is equal to

T extr
Pred =

√(
(1−p)I+pE(f)

I

)
Cp

p . Note that we always have to enforce that TPred is larger than Cp
and does not exceed I. Therefore, the optimal period T opt

Pred is defined as follows: T opt
Pred =

min{I, max{Cp, T extr
Pred}}. The rounding only occurs for extreme cases.

In order to compute the optimal value for TR, we identify the fraction of the waste in
Equation (4.9) that depends on TR. We can rewrite Equation (4.9) as:

Waste{1} = β + C

TR

(
1− 1

pµ

(
p(D+R)+r

(
Cp+(1−p) I+pE(f)

I

)))
+ 1−r

µ

TR
2 (4.10)

where β does not depend on TR because T opt
Pred does not depend on TR. Therefore, Waste{1}

is minimized when TR is equal to

T extr
R =

√√√√2C
(
pµ−

(
p(D +R) + r

(
Cp +

(
(1− p) I + pE(f)

I

))))
p(1− r) (4.11)

Recall that we must always enforce that T opt
R is always greater than C. Also, note that when

r = 0, we do obtain the same period as without a predictor. Finally, if we assume that, on
average, fault strikes at the middle of the prediction window, i.e., E(f)

I = I
2 , we obtain simplified

values:

T extr
Pred =

√
(2− p)ICp

p
and T extr

R =
√

2C
(
pµ−

(
p(D +R) + r

(
Cp +

(
1− p

2
)
I
)))

p(1− r)

Strategy NoCkptI

In this subsection we evaluate the execution time under heuristic NoCkptI. For clarity,
we only summarize results and refer to [RR3] for details. The analysis is similar to that for
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Mode Number of intervals Time spent Work done
(1) w1 TR TR − C
(2) w2 = TimeFinal

µNP
TR/2 +D +R 0

(3) w3 = (1−p)TimeFinal
µP

TR + qCp TR − C

(4) w4 = pTimeFinal
µP

q(TR + E(f)
I + Cp) q (TR − C)+(1− q)TR/2 +D +R

Table 4.9: Summary of the different interval types for Instant.

WithCkptI. Table 4.8 provides the estimation of the number of intervals of each type. As for
WithCkptI, one shows that in an optimal solution, either q = 0 or q = 1. When q = 0, we
derive that

Time{0}Final = TR
TR − C

Timebase + Time{0}Final
µ

(
TR
2 +D +R

)
, i.e., that

(
1− C

TR

)(
1− TR/2 +D +R

µ

)
Time{0}Final = Timebase (4.12)

This is exactly the equation from Section 4.2 in the case of exact-date predictions that are
never taken into account, what we had already retrieved with WithCkptI (same sanity check!).
When q = 1, we derive that:

Waste = 1− r

pµ
(1− p)I −

(
1− C

TR

)
× (4.13)(

1− 1
pµ

(
p(D +R)+rCp+(1−r)pTR2 +r

(
(1− p)I+pE(f)

I

)))

Waste minimization The waste is minimized as follows:
— When q = 0, the optimal value for TR is the same as the one we computed for WithCkptI

in the case q = 0.
— When q = 1, the value of TR that minimizes the waste is T extr

R , the value given by
Equation (4.11).

Strategy Instant

In this subsection we evaluate the execution time under heuristic NoCkptI. For clarity, we
only summarize results and refer to [RR3] for details. The analysis is similar to the previous
ones. Table 4.9 provides the estimation of the number of intervals of each type. As before, one
shows that in an optimal solution, either q = 0 or q = 1. When q = 0, we derive, once again,
that

Time{0}Final = TR
TR − C

Timebase + Time{0}Final
µ

(
TR
2 +D +R

)
, i.e., that

(
1− C

TR

)(
1− TR/2 +D +R

µ

)
Time{0}Final = Timebase (4.14)
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This is exactly the equation from Section 4.2 in the case of exact-date predictions that are
never taken into account, what we had already remarked with WithCkptI and NoCkptI (yet
another good sanity check!). When q = 1, we obtain

Waste =1−
(

1− C

TR

)
×(

1− 1
pµ

(
p(D+R)+rCp+(1−r)pTR2 +prE(f)

I

))
(4.15)

Waste minimization The waste is minimized as follows:
— When q = 0, the optimal value for TR is the same as for WithCkptI and for NoCkptI

in the case q = 0.
— When q = 1, the optimal value for TR is

T extr
R =

√√√√2C
(
pµ−

(
p(D +R) + rCp + prE(f)

I

))
p(1− r)

Again, recall that we must always enforce that T opt
R is always greater than C. Finally,

if we assume that, on average, fault strikes at the middle of the prediction window, i.e.,
E(f)
I = I

2 , we have:

T extr
R =

√√√√2C
(
pµ−

(
p(D +R) + rCp + pr I2

))
p(1− r) .

4.3.3 Simulation results
An experimental validation of the models at targeted scale would require running a large

application several times, for each checkpointing strategy, for each fault predictor, and for each
platform size. This would require a prohibitive amount of computational hours. Furthermore,
some of the targeted platform sizes currently exist only as reasonable projections. Therefore,
we resort to simulations. We present the simulation framework in subsection 4.3.3. Then we
report results using the characteristics of two fault predictors (subsection 4.3.3). Additional
figures and data results are available in [RR3].

Simulation framework

In order to validate the model, we have instantiated it with several scenarios. The sim-
ulations use parameters that are representative of current and forthcoming large-scale plat-
forms [68, 69]. We take C = R = 600 seconds, and D = 60 seconds. We consider three scenarios
where proactive checkpoints are (i) exactly as expensive as periodic checkpoints (Cp = C); (ii)
ten times cheaper (Cp = 0.1C); and (iii) two times more expensive (Cp = 2C). The individ-
ual (processor) MTBF is µind = 125 years, and the total number of processors N varies from
N = 216 = 16, 384 to N = 219 = 524, 288, so that the platform MTBF µ varies from µ = 4, 010
min (about 2.8 days) down to µ = 125 min (about 2 hours). For instance the Jaguar platform,
with N = 45, 208 processors, is reported to have experienced about one fault per day [46], which
leads to µind = 45,208

365 ≈ 125 years. The application size is set to Timebase = 10, 000 years/N.
We use Maple to analytically compute and plot the optimal value of the waste for the three

prediction-aware policies, Instant, NoCkptI, and WithCkptI, for the prediction-ignoring
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policy RFO (corresponding to the case q = 0), and for the reference heuristic Daly (Daly’s [54]
periodic policy). In order to check the accuracy of our model, we have compared the analytical
results with results obtained with a discrete-event simulator. The simulation engine generates a
random trace of faults, parameterized either by an Exponential fault distribution or by Weibull
distribution laws with shape parameter 0.5 or 0.7. Note that Exponential faults are widely
used for theoretical studies, while Weibull faults are representative of the behavior of real-
world platforms [64, 63, 66]. In both cases, the distribution is scaled so that its expectation
corresponds to the platform MTBF µ. With probability r, we decide if a fault is predicted or
not. The simulation engine also generates a random trace of false predictions, whose distribution
is identical to that of the first trace (results are similar when false predictions follow a uniform
distribution [RR3]). This second distribution is scaled so that its expectation is equal to µP

1−p =
pµ

r(1−p) , the inter-arrival time of false predictions. Finally, both traces are merged to produce the
final trace including all events (true predictions, false predictions, and non predicted faults).
The source code of the fault-simulator and the raw simulation results are freely available [72].
Each reported value is the average over 100 randomly generated instances.

In the simulations, we compare the five checkpointing strategies listed above. To assess the
quality of each strategy, we compare it with its BestPeriod counterpart, defined as the same
strategy but using the best possible period TR. This latter period is computed via a brute-force
numerical search for the optimal period. Altogether, there are four BestPeriod heuristics, one
for each of the three variants with prediction, and one for the case where we ignore predictions,
which corresponds to both Daly and RFO. Altogether we have a rich set of nine heuristics,
which enables us to comprehensively assess the actual quality of the proposed strategies. Note
that for computer algebra plots, obviously we do not need BestPeriod heuristics, since each
period is already chosen optimally from the equations.

We experiment with two predictors from the literature: one accurate predictor with high
recall and precision [51], namely with p = 0.82 and r = 0.85, and another predictor with more
limited recall and precision [52], namely with p = 0.4 and r = 0.7. In both cases, we use five
different prediction windows, of size I = 300, 600, 900, 1200, and 3000 seconds. Figure 4.12
shows the average waste degradation of the nine heuristics for both predictors, as a function
of the number of processors N . We draw the plots as a function of the number of processors
N rather than of the platform MTBF µ = µind/N , because it is more natural to see the waste
increase with larger platforms; however, this work is agnostic of the granularity of the processors
and intrinsically focuses on the impact of the MTBF on the waste.

Analysis of the results

We start with a preliminary remark: when the graphs for Instant and WithCkptI cannot
be seen in the figures, this is because their performance is identical to that of NoCkptI, and
their respective graphs are superposed.

We first compare the analytical results, plotted by the Maple curves, to the simulations
results. As shown in Figure 4.12, there is a good correspondence between the analytical curves
and the simulations, especially those using an Exponential distribution of failures. However,
the larger the platform (or the smaller the MTBF), the less realistic our assumption that no two
events happen during an interval of length TR + I +Cp, and the analytical models become less
accurate for prediction-aware heuristics. Therefore, the analytical results are overly pessimistic
in the most failure-prone platforms. Also, recall that an exponential law is a Weibull law of
shape parameter 1. Therefore, the further the distribution of failures is from an exponential
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Figure 4.12: Waste as a function of number N of processors, when p = 0.82, r = 0.85, Cp = C.
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Figure 4.13: Waste as function of the period TR, with p = 0.82, r = 0.85, Cp = C, I = 3000s,
and a platform of 219 processors.
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Figure 4.14: Waste as function of the period TR, with p = 0.4, r = 0.7, Cp = C, I = 3000s, and
a platform of 219 processors.

law, the larger the difference between analytical results and simulated ones. However, in all
cases, the analytical results are able to predict the general trends.

A second assessment of the quality of our analysis comes from the BestPeriod variants
of our heuristics. When predictions are not taken into account, Daly, and to a lesser extent
RFO, are not close to the optimal period given by BestPeriod (a similar observation was
made in [61]). This gap increases when the distribution is further apart from an Exponential
distribution. However, prediction-aware heuristics are very close to BestPeriod in almost all
configurations. The only exception is with heuristics Instant when Cp = 2C, the total number
of processors N is equal to either 218 and 219, and I is large. However, when I = 3000s and
N = 219, the platform MTBF is approximately equal to 6Cp which renders our hypothesis
and analysis invalid. The difference in this case between Instant and its BestPeriod should
therefore not come as a surprise.

To better understand why close-to-optimal periods are obtained by prediction-aware heuris-
tics (while this is not the case without predictions), we plot the waste as a function of the
period TR for RFO and the prediction-aware heuristics (Figure 4.14). On these figures one can
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see that, whatever the configuration, periodic checkpointing policies (ignoring predictions) have
well-defined global optimum. (One should nevertheless remark that the performance is almost
constant in the neighborhood of the optimal period, which explains why policies using different
periods can obtain in practice similar performance, as in [77].) For prediction-aware heuristics,
however, the behavior is quite different and two scenarios are possible. In the first one, once
the optimum is reached, the waste very slowly increases to reach an asymptotic value which is
close to the optimum waste (e.g., when the platform MTBF is large and failures follow an ex-
ponential distribution). Therefore, any period chosen close to the optimal one, or greater than
it, will deliver good quality performance. In the second scenario, the waste decreases until the
period becomes larger than the application size, and the waste stays constant. In other words,
in these configurations, periodic checkpointing is unnecessary, only proactive actions matter!
This striking result can be explained as follows: a significant fraction of the failures are pre-
dicted, and thus taken care of, by proactive checkpoints. The impact of unpredicted failures is
mitigated by the proactive measures taken for false predictions. To further mitigate the impact
of unpredicted faults, the period TR should be significantly shorter than the mean-time between
proactive checkpoints, which would induce a lot of waste due to unnecessary checkpoints if the
mean-time between unpredicted faults is large with respect to the mean-time between predic-
tions. This greatly restrict the scenarios for which the periodic checkpointing can lead to a
significant decrease of the waste.

Figure 4.15 and 4.16 presents a comparison of the checkpointing strategies for different values
of Cp and I. When the prediction window I is shorter than the duration Cp of a proactive
checkpoint (i.e., when I = 300 s and Cp ≥ C = 600 s), there is no difference between NoCkptI
and WithCkptI. When I is small but greater than Cp (say, when I is around 2Cp), WithCkptI
spends most of the prediction window taking a proactive checkpoint and NoCkptI is more
efficient. When I becomes “large” with respect to Cp, WithCkptI can become more efficient
than NoCkptI, but becomes significantly more efficient only if the proactive checkpoints are
significantly shorter than regular (see also Table 4.10). Instant can hardly be seen in the
graphs as its performance is most of the time equivalent to that of NoCkptI.

As expected, the smaller the prediction window, the more efficient the prediction-aware
heuristics. Also, the smaller the number of processors (or the larger the platform MTBF),
the larger the impact of the size of the prediction window. A surprising result is that taking
prediction into account is not always beneficial! The analytical results predict that prediction-
aware heuristics would achieve worse performance than periodic policies in our settings, as
soon as the platform includes 218 processors. In simulations, results are not so extreme. For the
largest platforms considered, using predictions has almost no impact on performance. But when
the prediction window is very large, taking predictions into account can indeed be detrimental.
These observations can be explained as follows. When the platform includes 219 processors, the
platform MTBF is equal to 7500s. Therefore, any interval of duration 3000s has a 40% chance
to include a failure: a prediction window of 3000s is not very informative, unless the precision
and recall of the predictor are almost equal to 1 (which is never the case in practice). Because
the predictor brings almost no knowledge, trusting it may be detrimental. When comparing
the performance of, say, NoCkptI for the two predictors, one can see that when failures follow
a Weibull distribution with shape parameter k = 0.7, I = 600s, and N = 218, NoCkptI
achieves better performance than RFO when r = 0.85 and p = 0.82, but worse when p = 0.4
and r = 0.7. The latter predictor generates more false predictions —each one inducing an
unnecessary proactive checkpoint— and misses more actual failures —each one destroying some
work. The drawbacks of trusting the predictor outweigh the advantages. If failures are few and
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Figure 4.15: Waste with p = 0.82, r = 0.85, and Weibull law of parameter 0.7.
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Figure 4.16: Waste with p = 0.4, r = 0.7, and Weibull law of parameter 0.5.
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apart, almost any predictor will be beneficial. When the platform MTBF is small with respect
to the cost of proactive checkpoints, only almost perfect predictors will be worth using. For
each set of predictor characteristics, there is a threshold for the platform MTBF under which
predictions will be useless or detrimental, but above which predictions will be beneficial.

In order to compare the impact of the heuristics ignoring predictions to those using them,
we report job execution times in Table 4.10 when failures follow a Weibull law of parameter 0.7.
For each setting, the best performance is presented in bold if it is achieved by a prediction-aware
heuristics. For the strategies with prediction, we compute the gain (expressed in percentage)
over Daly, the reference strategy without prediction. We first remark that RFO achieves
lower makespans than Daly with gains ranging from 1% with 216 processors to 18% with 219

processors. Overall, the gain due to the predictions decreases when the size of the prediction
window increases, and increases with the platform size. This gain is obviously closely related to
the characteristics of the predictor. When I = 300s, the three prediction-aware strategies are
identical. When I increases, NoCkptI achieves slightly better results than Instant. For low
values of I, WithCkptI is the worst prediction-aware heuristics. But when I becomes large
and if the predictor is efficient, then WithCkptI becomes the heuristics of choice (I = 3000s,
p = 0.82, and r = 0.85). The reductions in the application executions times due to the predictor
can be very significant. With p = 0.85 and r = 0.82 and I = 3000s, we save 25% of the total
time with N = 219, and 13% with N = 216 using strategy WithCkptI. With I = 300s, we
save up to 45% with N = 219, and 18% with N = 216 using any strategy (though NoCkptI
is slightly better than Instant). Then, with p = 0.4 and r = 0.7, we still save 33% of the
execution time when I = 300s and N = 219, and 14% with N = 216. The gain gets smaller with
I = 3000s and N = 216 but remains non negligible since we can save 8%. When I = 3000s and
N = 219, however, the best solution is to ignore predictions and simply use RFO (we fall-back
to the case q = 0). If we now consider a Weibull law with shape parameter 0.5 instead of 0.7 (see
Table 4.11), keeping all other parameters identical (I = 3000s, N = 219, p = 0.4 and r = 0.7),
then the heuristics of choice is WithCkptI and the gain with respect to Daly is 57.9%.

I = 300 s I = 1200 s I = 3000 s
216 procs 219 procs 216 procs 219 procs 216 procs 219 procs

Daly 81.3 31.0 81.3 31.0 81.3 31.0
RFO 80.2 (1%) 25.5 (18%) 80.2 (1%) 25.5 (18%) 80.2 (1%) 25.5 (18%)

p = 0.82, r = 0.85
Instant 66.5 (18%) 17.0 (45%) 68.0 (16%) 20.3 (34%) 70.9 (13%) 24.1 (22%)

NoCkptI 66.4 (18%) 17.0 (45%) 67.9 (16%) 20.2 (35%) 71.0 (13%) 24.7 (20%)
WithCkptI 66.4 (18%) 17.0 (45%) 68.3 (16%) 20.6 (33%) 70.6 (13%) 23.1 (25%)

p = 0.4, r = 0.7
Instant 70.3 (13%) 20.9 (33%) 72.0 (11%) 24.6 (21%) 75.0 (8%) 27.7 (11%)

NoCkptI 70.2 (14%) 20.6 (33%) 71.8 (12%) 24.2 (22%) 75.0 (8%) 28.7 (7%)
WithCkptI 70.2 (14%) 20.6 (33%) 73.6 (9%) 25.5 (18%) 75.1 (8%) 26.6 (14%)

Table 4.10: Job execution times (in days) under the different checkpointing policies, when
failures follow a Weibull distribution of shape parameter 0.7. Gains are reported with respect
to Daly.
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I = 300 s I = 1200 s I = 3000 s
216 procs 219 procs 216 procs 219 procs 216 procs 219 procs

Daly 125.7 185.0 125.7 185.0 125.7 185.0
RFO 120.1 (4%) 114.8 (38%) 120.1 (4%) 114.8 (38%) 120.1 (4%) 114.8 (38%)

p = 0.82, r = 0.85
Instant 77.4 (38%) 45.2 (76%) 82.0 (35%) 60.8 (67%) 89.7 (29%) 70.6 (62%)

NoCkptI 77.4 (38%) 44.9 (76%) 81.8 (35%) 60.7 (67%) 90.0 (28%) 71.5 (61%)
WithCkptI 77.4 (38%) 44.9 (76%) 83.6 (33%) 64.4 (65%) 89.8 (29%) 66.2 (64%)

p = 0.4, r = 0.7
Instant 84.5 (33%) 59.6 (68%) 89.4 (29%) 76.6 (58%) 97.7 (22%) 81.9 (56%)

NoCkptI 84.4 (33%) 58.3 (68%) 89.1 (29%) 76.8 (58%) 97.9 (22%) 83.7 (55%)
WithCkptI 84.4 (33%) 58.3 (68%) 93.8 (25%) 75.4 (59%) 97.8 (22%) 77.7 (58%)

Table 4.11: Job execution times (in days) under the different checkpointing policies, when
failures follow a Weibull distribution of shape parameter 0.5. Gains are reported with respect
to Daly.
4.4 Conclusion

In this work, we have studied the impact of fault prediction on checkpointing strategies. The
importance of good prediction techniques is increasing with the advent of exascale platforms, for
which current checkpointing techniques will not provide efficient solutions any longer [91, 92].

We have studied the impact of a predictor with exact prediction dates on periodic check-
pointing strategies. We have proven that the optimal approach is to never trust the predictor in
the beginning of a regular period, and to always trust it in the end of the period; the cross-over
point Cp

p depends on the time to take a proactive checkpoint and on the precision of the pre-
dictor. This striking result is somewhat unexpected, as one might have envisioned more trust
regimes, with several intermediate trust levels smoothly evolving from a “never trust” policy to
an “always trust” one. We have conducted simulations involving synthetic failure traces follow-
ing either an Exponential distribution law or a Weibull one. We have also used log-based failure
traces. In addition, we have used exact prediction dates. Through this extensive experiment
setting, we have established the accuracy of the model, of its analysis, and of the predicted
period (in the presence of an exact fault predictor). These simulations also show that even
a not-so-good exact fault predictor can lead to quite a significant decrease in the application
execution time. We have also shown that the most important characteristic of an exact fault
predictor is its recall (the percentage of actually predicted faults) rather than its precision (the
percentage of predictions that actually correspond to faults): better safe than sorry, or better
prepare for a false event than miss an actual failure!

We have also studied the impact of a predictor with prediction windows on periodic check-
pointing strategies. We have designed several heuristics that decide whether to trust predictions
or not, when it is worth taking preventive checkpoints, and at which rate. We have introduced
an analytical model to capture the waste incurred by each strategy, and provided a closed-form
formula for each optimization problem, giving the optimal solution. Contrarily to the cases
without prediction, or with exact date predictions, the computation of the waste requires a
sophisticated analysis of the various events, including the time spent in the regular and proac-
tive modes. We have proposed a model that is quite accurate and its validity goes beyond the
conservative assumption that requires a single event per time interval; even more surprising,
the accuracy of the model for prediction-aware strategies is much better than for the case with-
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out predictions, where Daly can be far from the optimal period in the case of Weibull failure
distributions [61]. We have also conducted simulations that fully validate the model, and the
brute-force computation of the optimal period guarantees that our prediction-aware strategies
are always very close to the optimal. This holds true both for Exponential and Weibull failure
distributions. With the analytical computations and the simulations, we are able to characterize
when prediction is useful, and which strategy performs better, given the key parameters of the
system: recall r, precision p, size of the prediction window I, size of proactive checkpoints Cp
versus regular checkpoints C, and platform MTBF µ.

Altogether, the analytical model and the comprehensive results provided in this work enable
to fully assess the impact of fault prediction on (optimal) checkpointing strategies.

Future work will be devoted to refine the assessment of the usefulness of prediction with
trace-based failures and prediction logs from current large-scale supercomputers. Another di-
rection for future work would be to study the impact of fault prediction on uncoordinated or
hierarchical checkpointing protocols.



112 CHAPTER 4. COMBINING FAULT PREDICTION AND COORDINATED CHECKPOINTING



Chapter 5

Combining Silent Error Detection and
Coordinated Checkpointing

5.1 Introduction

This work is motivated by a recent paper by Lu, Zheng and Chien [74], who introduce a
multiple checkpointing model to compute the optimal checkpointing period with error detection
latency. More precisely, Lu, Zheng and Chien [74] deal with the following problem: given errors
whose inter arrival times Xe follow an Exponential probability distribution of parameter λe, and
given error detection times Xd that follow an Exponential probability distribution of parameter
λd, what is the optimal checkpointing period Topt in order to minimize the total execution time?
The problem is illustrated on Figure 5.1: the error is detected after a (random) time Xd, and
one has to rollback up to the last checkpoint that precedes the occurrence of the error. Let
k be the number of checkpoints that can be simultaneously kept in memory. Lu, Zheng and
Chien [74] derive a formula for the optimal checkpointing period Topt in the (simplified) case
where k is unbounded (k = ∞), and they propose some numerical simulations to explore the
case where k is a fixed constant.

The first major contribution of this Chapter is to correct the formula of [74] when k is
unbounded, and to provide an analytical approach when k is a fixed constant. The latter
approach is a first-order approximation but applies to any probability distribution of errors.

While it is very natural and interesting to consider the latency of error detection, the model
of [74] suffers from an important limitation: it is not clear how one can determine when the
error has indeed occurred, and hence to identify the last valid checkpoint, unless some verifi-
cation system is enforced. Another major contribution of this Chapter is to introduce a model
coupling verification and checkpointing, and to analytically determine the best balance between
checkpoints and verifications so as to optimize platform throughput.

The rest of the Chapter is organized as follows. First we revisit the multiple checkpointing
model of [74] in Section 5.2; we tackle both the case where all checkpoints are kept, and the case
with at most k checkpoints. In Section 5.3, we define and analyze a model coupling checkpoints
and verifications. Then, we evaluate the various models in Section 5.4, by instantiating the
models with realistic parameters derived from future exascale platforms. Finally, we conclude
and discuss future research directions in Section 5.5.

113
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TimeXe Xd

fault Detection

Figure 5.1: Error and detection latency.

5.2 Revisiting the multiple checkpointing model
In this section, we revisit the approach of [74]. We show that their analysis with un-

bounded memory is incorrect and provide the exact solution (Section 5.2.1). We also extend
their approach to deal with the case where a given (constant) number of checkpoints can be
simultaneously kept in memory (Section 5.2.2).

5.2.1 Unlimited checkpoint storage

Let C be the time needed for a checkpoint, R the time for recovery, and D the downtime.
Although R and C are a function of the size of the memory footprint of the process, D is
a constant that represents the unavoidable costs to rejuvenate a process after an error (e.g.,
stopping the failed process and restoring a new one that will load the checkpoint image). We
assume that errors can take place during checkpoint and recovery but not during downtime
(otherwise, the downtime could be considered part of the recovery).

Let µe = 1
λe

be the mean time between errors. With no error detection latency and no
downtime, well-known formulas for the optimal period (useful work plus checkpointing time
that minimizes the execution time) are Topt ≈

√
2Cµe +C (as given by Young [53]) and Topt ≈√

2C(µe +R) + C (as given by Daly [54]). These formulas are first-order approximations and
are valid only if C,R� µe (in which case they collapse).

With error detection latency, things are more complicated, even with the assumption that
one can track the source of the error (and hence identify the last valid checkpoint). Indeed, the
amount of rollback will depend upon the sum Xe + Xd. For Exponential distributions of Xe

and Xd, Lu, Zheng and Chien [74] derive that Topt ≈
√

2C(µe + µd) +C, where µd = 1
λd

is the
mean of error detection times. However, although this result may seem intuitive, it is wrong,
and we prove that the correct answer is Topt ≈

√
2Cµe + C, even when accounting for the

downtime: this first-order approximation is the same as Young’s formula. We give an intuitive
explanation after the proofs provided in Section 5.2.1. Then in Section 5.2.1, we extend this
result to arbitrary laws, but under the additional constraint that µd +D +R� µe.

Exponential distributions

In this section, we assume that Xe and Xd follow Exponential distributions of mean µe and
µd respectively.

Proposition 10. The expected time needed to successfully execute a work of size w followed by
its checkpoint is

E(T (w)) = eλeR (D + µe + µd) (eλe(w+C) − 1).

Proof. Let T (w) be the time needed for successfully executing a work of duration w. There are
two cases: (i) if there is no error during execution and checkpointing, then the time needed is
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exactly w+C; (ii) if there is an error before successfully completing the work and its checkpoint,
then some additional delays are incurred. These delays come from three sources: the time spent
computing by the processors before the error occurs, the time spent before the error is detected,
and the time spent for downtime and recovery. Regardless, once a successful recovery has been
completed, there still remain w units of work to execute. Thus, we can write the following
recursion:

E(T (w)) = e−λe(w+C)(w+C)+(1−e−λe(w+C)) (E(Tlost) + E(Xd) + E(Trec) + E(T (w))) . (5.1)

Here, Tlost denotes the amount of time spent by the processors before the first error, knowing
that this error occurs within the next w+C units of time. In other terms, it is the time that is
wasted because computation and checkpoint were not both completed before the error occurred.
The random variable Xd represents the time needed for error detection, and its expectation is
E(Xd) = µd = 1

λd
. The last variable Trec represents the amount of time needed by the system

to perform a recovery. Equation (5.1) simplifies to:

E(T (w)) = w + C + (eλe(w+C) − 1)(E(Tlost) + µd + E(Trec)). (5.2)

We have
E(Tlost) =

∫ ∞
0

xP(X = x|X < w + C)dx

= 1
P(X < w + C)

∫ w+C

0
xλee

−λexdx,

and P(X < w + C) = 1− e−λe(w+C).
Integrating by parts, we derive that

E(Tlost) = 1
λe
− w + C

eλe(w+C) − 1
. (5.3)

Next, to compute E(Trec), we have a recursive equation quite similar to Equation (5.1) (remem-
ber that we assumed that no error can take place during the downtime):

E(Trec) = e−λeR(D +R) + (1− e−λeR)(E(Rlost) + E(Xd) +D + E(Trec)).

Here, E(Rlost) is the expected amount of time lost to executing the recovery before an error
happens, knowing that this error occurs within the next R units of time. Replacing w + C by
R in Equation (5.3), we obtain

E(Rlost) = 1
λe
− R

eλeR − 1 .

The expression for E(Trec) simplifies to

E(Trec) = DeλeR + (eλeR − 1)(µe + µd). (5.4)

Plugging the values of E(Tlost) and E(Trec) into Equation (5.2) leads to the desired value. �

Proposition 11. The optimal strategy to execute a work of size W is to divide it into n equal-
size chunks, each followed by a checkpoint, where n is equal either to max(1, bn∗c) or to dn∗e.
The value of n∗ is uniquely derived from y = λeW

n∗ − 1, where L(y) = −e−λeC−1 (L, the Lambert
function, defined as L(x)eL(x) = x). The optimal strategy does not depend on the value of µd.
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Proof. Using n chunks of size wi (with
∑n
i=1wi = W ), by linearity of the expectation, we have

E(T (W )) = K
∑n
i=1(eλe(wi+C) − 1) where K = eλeR (D + µe + µd) is a constant. By convexity,

the sum is minimum when all the wis are equal (to W
n ). Now, E(T (W )) is a convex function of

n, hence it admits a unique minimum n∗ such that the derivative is zero:

eλe(W
n∗+C)

(
1− λeW

n∗

)
= 1. (5.5)

Let y = λeW
n∗ − 1, we have yey = −e−λeC−1, hence L(y) = −e−λeC−1. Then, since we

need an integer number of chunks, the optimal strategy is to split W into max(1, bn∗c) or dn∗e
same-size chunks, whichever leads to the smaller value. As stated, the value of y, hence of n∗,
is independent of µd. �

Proposition 12. A first-order approximation for the optimal checkpointing period (that mini-
mizes total execution time) is Topt ≈

√
2Cµe + C. This value is identical to Young’s formula,

and does not depend on the value of µd.

Proof. We use Proposition 11 and Taylor expansions when z = y + 1 = λeW
n∗ is small: from

yey = −e−λeC−1, we derive (z − 1)ez = −e−λeC . We have (z − 1)ez ≈ z2

2 − 1, and −e−λeC ≈
−1 + λeC, hence z2 ≈ 2λeC. The period is

Topt = W

n∗
+ C = z

λe
+ C ≈

√
2Cµe + C.

�

An intuitive explanation of the result is the following: error detection latency is paid for
every error, and can be viewed as an additional downtime, which has no impact on the optimal
period.

Arbitrary distributions

Here we extend the previous result to arbitrary distribution laws for Xe and Xd (of mean
µe and µd respectively):

Proposition 13. When C � µe and µd + D + R � µe, a first-order approximation for the
optimal checkpointing period is Topt ≈

√
2Cµe + C.

Proof. Let Tbase be the base time of the application without any overhead due to resilience
techniques. First, assume a fault-free execution of the application: every period of length T ,
only W = T − C units of work are executed, hence the time Tff for a fault-free execution is
Tff = T

W Tbase. Now, let Tfinal denote the expectation of the execution time with errors taken
into account. In average, errors occur every µe time-units, and for each of them we lose F
time-units, so there are Tfinalµe

errors during the execution. Hence we derive that

Tfinal = Tff + Tfinal
µe
F , (5.6)

which we rewrite as

(1−Waste)Tfinal = Tbase,

with Waste = 1−
(

1− F
µe

)(
1− C

T

)
. (5.7)
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The waste is the fraction of time where nodes do not perform useful computations. Minimizing
execution time is equivalent to minimizing the waste. In Equation (5.7), we identify the two
sources of overhead: (i) the term Wasteff = C

T , which is the waste due to checkpointing in a
fault-free execution, by construction of the algorithm; and (ii) the term Wastefail = F

µe
, which

is the waste due to errors striking during execution. With these notations, we have

Waste = Wastefail + Wasteff −WastefailWasteff. (5.8)

As a sanity check, this is the same equation as Equation 1.13. There remains to determine the
(expected) value of F . Assuming at most one error per period, we lose F = T

2 + µd + D + R
per error: T

2 for the average work lost before the error occurs, µd for detecting the error, and
D +R for downtime and recovery. Note that the assumption is valid only if µd +D +R� µe
and T � µe. Plugging back this value into Equation (5.8), we obtain

Waste(T ) = T

2µe
+
C(1− D+R+µd

µe
)

T
+
D +R+ µd − C

2
µe

(5.9)

which is minimal for
Topt =

√
2C(µe −D −R− µd). (5.10)

We point out that this approach based on the waste leads to a different approximation formula
for the optimal period, but Topt =

√
2C(µe −D −R− µd) ≈

√
2Cµe ≈

√
2Cµe + C up to

second-order terms, when µe is large in front of the other parameters, including µd. For example,
this approach does not allow us to handle the case µd = µe; in such a case, the optimal
period is known only for Exponential distributions, and is independent of µd, as proven by
Proposition 11. �

To summarize, the exact value of the optimal period is only known for Exponential distri-
butions and is provided by Proposition 11, while Young’s formula can be used as a first-order
approximation for any other distributions. Indeed, the optimal period is a trade-off between
the overhead due to checkpointing (CT ) and the expected time lost per error ( T

2µe plus some
constant). Up to second-order terms, the waste is minimum when both factors are equal, which
leads to Young’s formula, and which remains valid regardless of error detection latencies.

5.2.2 Saving only k checkpoints
Lu, Zheng and Chien [74] propose a set of simulations to assess the overhead induced when

keeping only the last k checkpoints (because of storage limitations). In the following, we derive
an analytical approach to numerically solve the problem. The main difficulty is that when error
detection latency is too large, it is impossible to recover from a valid checkpoint, and one must
resume the execution from scratch. We consider this scenario as an irrecoverable failure, and we
aim at guaranteeing that the risk of irrecoverable failure remains under a user-given threshold.

Assume that a job of total size W is partitioned into n chunks. What is the risk of ir-
recoverable failure during the execution of one chunk of size W

n followed by its checkpoint?
Let T = W

n + C be the length of the period. Intuitively, the longer the period, the smaller
the probability that an error that has just been detected took place more than k periods ago,
thereby leading to an irrecoverable failure because the last valid checkpoint is not one of the k
most recent ones.

Formally, there is an irrecoverable failure if: (i) there is an error detected during the period
(probability Pfail), and (ii) the sum of Tlost, the time elapsed since the last checkpoint, and of
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Xd, the error detection latency, exceeds kT (probability Plat). The value of Pfail = P(Xe ≤ T )
is easy to compute from the error distribution law. For instance with an Exponential law,
Pfail = 1− e−λeT . As for Plat, we use an upper bound: Plat = P(Tlost +Xd ≥ kT ) ≤ P(T +Xd ≥
kT ) = P(Xd ≥ (k − 1)T ). The latter value is easy to compute from the error distribution law.
For instance with an Exponential law, Plat = e−λd(k−1)T . Of course, if there is an error and the
error detection latency does not exceed kT (probability (1-Plat)), we have to restart execution
and face the same risk as before. Therefore, the probability of irrecoverable failure Pirrec can be
recursively evaluated as Pirrec = Pfail(Plat + (1 − Plat)Pirrec), hence Pirrec = PfailPlat

1−Pfail(1−Plat) . Now
that we have computed Pirrec, the probability of irrecoverable failure for a single chunk, we can
compute the probability of irrecoverable failure for n chunks as Prisk = 1− (1− Pirrec)n. In full
rigor, these expressions for Pirrec and Prisk are valid only for Exponential distributions, because
of the memoryless property, but they are a good approximation for arbitrary laws. Given a
prescribed risk threshold ε, solving numerically the equation Prisk ≤ ε leads to a lower bound
Tmin on T . Let Topt be the optimal period given in Theorem 12 for an unbounded number of
saved checkpoints. The best strategy is then to use the period max(Tmin, Topt) to minimize the
waste while enforcing a risk below threshold.

In case of irrecoverable failure, we have to resume execution from the very beginning. The
number of re-executions due to consecutive irrecoverable failures follows a geometric law of
parameter 1−Prisk, so that the expected number of executions until success is 1

1−Prisk . We refer
to Section 5.4.1 for an example of how to instantiate this model to compute the best period
with a fixed number of checkpoints, under a prescribed risk threshold.

5.3 Coupling verification and checkpointing
In this section, we move to a more realistic model where silent errors are detected only when

some verification mechanism (checksum, error correcting code, coherence tests, etc.) is executed.
Our approach is agnostic of the nature of this verification mechanism. We aim at solving the
following optimization problem: given the cost of checkpointing C, downtime D, recovery R,
and verification V , what is the optimal strategy to minimize the expected waste as a function
of the mean time between errors µe? Depending upon the relative costs of checkpointing and
verifying, we may have more checkpoints than verifications, or the other way round. In both
cases, we target a periodic pattern that repeats over time.

Consider first the scenario where the cost of a checkpoint is smaller than the cost of a
verification: then the periodic pattern will include k checkpoints and 1 verification, where k is
some parameter to determine. Figure 5.2(a) provides an illustration with k = 5. We assume
that the verification is directly followed by the last checkpoint in the pattern, so as to save
results just after they have been verified (and before they get corrupted). In this scenario,
the objective is to determine the value of k that leads to the minimum platform waste. This
problem is addressed in Section 5.3.1.

Because our approach is agnostic of the cost of the verification, we also envision scenarios
where the cost of a checkpoint is higher than the cost of a verification. In such a framework,
the periodic pattern will include k verifications and 1 checkpoint, where k is some parameter
to determine. See Figure 5.2(b) for an illustration with k = 5. Again, the objective is to
determine the value of k that leads to the minimum platform waste. This problem is addressed
in Section 5.3.2.

We point out that combining verification and checkpointing guarantees that no irrecoverable
failure will kill the application: the last checkpoint of any period pattern is always correct,
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because a verification always takes place right before this checkpoint is taken. If that verification
reveals an error, we roll back until reaching a correct verification point, maybe up to the end of
the previous pattern, but never further back, and re-execute the work. The amount of roll-back
and re-execution depends upon the shape of the pattern, and we show how to compute it in
Sections 5.3.1 and 5.3.2 below.

Timew w w w w

V C C C C C V C

(a) 5 checkpoints for 1 verification

Timew w w w w

V C V V V V V C

(b) 5 verifications for 1 checkpoint

Figure 5.2: Periodic pattern.

5.3.1 With k checkpoints and 1 verification

We use the same approach as in the proof of Proposition 13 and compute a first-order
approximation of the waste (see Equations (5.7) and (5.8)). We compute the two sources of
overhead: (i) Wasteff, the waste incurred in a fault-free execution, by construction of the
algorithm, and (ii) Wastefail, the waste due to errors striking during execution.

Let S = kw+kC+V be the length of the periodic pattern. We easily derive that Wasteff =
kC+V

S . As for Wastefail, we still have Wastefail = D+E(Tlost)
µe

. However, in this context, the time
lost because of the error depends upon the location of this error within the periodic pattern, so
we compute averaged values as follows. Recall (see Figure 5.2(a)) that checkpoint k is the one
preceded by a verification. Here is the analysis when an error is detected during the verification
that takes place in the pattern:
— If the error took place in the (last) segment k: we recover from checkpoint k − 1, and

verify it; we get a correct result because the error took place later on. Then we re-
execute the last piece of work and redo the verification. The time that has been lost is
Tlost(k) = R+ V + w + V . (We assume that there is at most one error per pattern.)

— If the error took place in segment i, 2 ≤ i ≤ k − 1: we recover from checkpoint k − 1,
verify it, get a wrong result; we iterate, going back up to checkpoint i − 1, verify it, and
get a correct result because the error took place later on. Then we re-execute k − i + 1
pieces of work and k− i checkpoints, together with the last verification. We get Tlost(i) =
(k − i+ 1)(R+ V + w) + (k − i)C + V .

— If the error took place in (first) segment 1: this is almost the same as above, except
that the first recovery at the beginning of the pattern need not be verified, because the
verification was made just before the corresponding checkpoint at the end of the previous
pattern. We have the same formula with i = 1 but with one fewer verification: Tlost(1) =
k(R+ w) + (k − 1)(C + V ) + V .
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Therefore, the formula for Wastefail writes

Wastefail =
D + 1

k

∑k
i=1 Tlost(i)
µe

, (5.11)

and (after some manipulation using a computer algebra system) the formula simplifies to

Wastefail = 1
2kµe

((R+V )k2+(2D+R+2V +S−2C)k+S−3V ) (5.12)

Using Wasteff = kC+V
S and Equation (5.8), we compute the total waste and derive that

Waste = aS+b+ c
S , where a, b, and c are some constants. The optimal value of S is Sopt =

√
c
a ,

provided that this value is at least kC + V . We point out that this formula only is a first-order
approximation. We have assumed a single error per pattern. We have also assumed that errors
did not occur during checkpoints following verifications. Now, once we have found Waste(Sopt),
the value of the waste obtained for the optimal period Sopt, we can minimize this quantity as a
function of k, and numerically derive the optimal value kopt that provides the best value (and
hence the best platform usage).

Due to lack of space, computational details are available in [93], which is a Maple sheet
that we have to instantiate the model. This Maple sheet is publicly available for users to
experiment with their own parameters. We provide two example scenarios to illustrate the
model in Section 5.4.3.

Finally, note that in order to minimize the waste, one could do a binary search in order to
find the last checkpoint before the fault. Then we can upper-bound Tlost(i) by (k − i + 1)w +
log(k)(R+V )+(k−i)C+V , and Equation (5.12) becomes Wastefail = 1

2kµe ((R+V )2k log(k)+
(2D +R+ 2V + S− 2C)k + S− 3V ).

5.3.2 With k verifications and 1 checkpoint
We use a similar line of reasoning for this scenario and compute a first-order approximation

of the waste for the case with k verifications and 1 checkpoint per pattern. The length of the
periodic pattern is now S = kw + kV + C. As before, for 1 ≤ i ≤ k, let segment i denote
the period of work before verification i, and assume (see Figure 5.2(b)) that verification k is
preceded by a checkpoint. The analysis is somewhat simpler here.

If an error takes place in segment i, 1 ≤ i ≤ k, we detect the error during verification i,
we recover from the last checkpoint, and redo the first i segments and verifications: therefore
Tlost(i) = R+ i(V +w). The formula for Wastefail is the same as in Equation (5.11) and (after
some manipulation) we derive

Wastefail = 1
2µe

(
D +R+ k + 1

2k (S− C)
)
. (5.13)

Using Wasteff = kV+C
S and Equation (5.8), we proceed just as in Section 5.3.1 to compute the

optimal value Sopt of the periodic pattern, and then the optimal value kopt that minimizes the
waste. Details are available within the Maple sheet [93].

5.4 Evaluation
This section provides some examples for instantiating the various models. We aimed at

choosing realistic parameters in the context of future exascale platforms, but we had to restrict
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Figure 5.3: Risk of irrecoverable failure as a function of the checkpointing period, and corre-
sponding waste. (k = 3, λe= 105

100y , λd = 30λe, w = 10d,C = R = 600s, and D = 0s.)

to a limited set of scenarios, which do not intend to cover the whole spectrum of possible
parameters. The Maple sheet [93] is available to explore other scenarios.

5.4.1 Best period with k checkpoints under a given risk threshold

We first evaluate Prisk, the risk of irrecoverable failure, as defined in Section 5.2.2. Figures 5.3
and 5.4 present, for different scenarios, the probability Prisk as a function of the checkpointing
period T on the left. On the right, the figures present the corresponding waste with k checkpoints
and in the absence of irrecoverable failures. This waste can be computed following the same
reasoning as in Equation (5.9). For each figure, the left diagram represents the risk implied
by a given period T , showing the value Topt of the optimal checkpoint interval (optimal with
respect to waste minimization and in the absence of irrecoverable failures, see Equation (5.10))
as a blue vertical line. The right diagram on the figure represents the corresponding waste,
highlighting the trade-off between an increased irrecoverable-failure-free waste and a reduced
risk. As stated in Section 5.2.2, it does not make sense to select a value for T lower than Topt,
since the waste would be increased, for an increased risk.

Figure 5.3 considers a machine consisting of 105 components, and a component MTBF of
100 years. This component MTBF corresponds to the optimistic assumption on the reliabil-
ity of computers made in the literature [91, 92]. The platform MTBF µe is thus 100 × 365 ×
24/100, 000 ≈ 8.76 hours. The times to checkpoint and recover (10 min) correspond to reason-
able mean values for systems at this size [61, 69]. At this scale, process rejuvenation is small,
and we set the downtime to 0s. For these average values to have a meaning, we consider a run
that is long enough (10 days of work), and in order to illustrate the trade-off, we take a rather
low (but reasonable) value k = 3 of intervals, and a mean time error detection µd significantly
smaller (30 times) than the MTBF µe itself.

With these parameters, Topt is around 100 minutes, and the risk of irrecoverable failure at
this checkpoint interval can be evaluated at 1/2617 ≈ 38·10−5, inducing an irrecoverable-failure-
free waste of 23.45%. To reduce the risk to 10−4, a Tmin of 8000 seconds is sufficient, increasing
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Figure 5.4: Risk of irrecoverable failure as a function of the checkpointing period, and corre-
sponding waste. (k = 3, λe = 105

100y , λd = 30λe, w = 10d,C = R = 60s, and D = 0s.)

the waste by only 0.6%. In this case, the benefit of fixing the period to max(Topt, Tmin) is
obvious. Naturally, keeping a bigger amount of checkpoints (increasing k) would also reduce
the risk, at constant waste, if memory can be afforded.

We also consider in Figure 5.4 a more optimistic scenario where the checkpointing technology
and availability of resources is increased by a factor 10: the time to checkpoint, recover, and
allocate new computing resources is divided by 10 compared to the previous scenario. Other
parameters are kept similar. One can observe that Topt is largely reduced (down to less than 35
minutes between checkpoints), as well as the optimal irrecoverable-failure-free waste (9.55%).
This is unsurprising, and mostly due to the reduction of failure-free waste implied by the
reduction of checkpointing time. But because the period between checkpoints becomes smaller,
while the latency to detect an error is unchanged (µd is still 30 times smaller than µe), the risk
that an error happens at the interval i but is detected after interval i+k is increased. Thus, the
risk climbs to 1/2, an unacceptable value. To reduce the risk to 10−4 as previously, it becomes
necessary to consider a Tmin of 6650 seconds, which implies an irrecoverable-failure-free waste
of 15%, significantly higher than the optimal one, which is below 10%, but still much lower than
the 24% when checkpoint and availability costs are 10 times higher.

5.4.2 Periodic pattern with k verifications and 1 checkpoint

We now focus on the waste induced by the different ways of coupling periodic verification
and checkpointing. We first consider the case of a periodic pattern with more verifications than
checkpoints: every k verifications of the current state of the application, a checkpoint is taken.
The duration of the work interval S, between two verifications in this case, is optimized to
minimize the waste. We consider two scenarios. For each scenario, we represent two diagrams:
the left diagram shows the waste as a function of k for a given verification cost V , and the right
diagram shows the waste as a function of k and V using a 3D surface representation.

In the first scenario, we consider the same setup as above in Section 5.4.1. The waste
is computed in its general form, so we do not need to define the duration of the work. As
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Figure 5.5: Case with k verifications, and one checkpoint per periodic pattern. Waste as function
of k, and potentially of V , using the optimal period. (V = 20s, C = R = 600s,D = 0s, and µ = 10y

105 .)

represented in Figure 5.5, for a given verification cost, the waste can be optimized by making
more than one verifications. When k > 1, there are intermediate verifications that can enable to
detect an error before a periodic pattern (of length S) is completed, hence, that can reduce the
time lost due to an error. However, introducing too many verifications induces an overhead that
eventually dominates the waste. The 3D surface shows that the waste reduction is significant
when increasing the number of verifications, until the optimal number is reached. Then, the
waste starts to increase again slowly. Intuitively, the lower the cost for V , the higher the optimal
value for k.

When considering the second scenario (Figure 5.6), with an improved checkpointing and
availability setup, the same conclusions can be reached, with an absolute value of the waste
greatly diminished. Since forced verifications allow to detect the occurrence of errors at a
controllable rate (depending on S and k), the risk of non-recoverable errors is nonexistent in
this case, and the waste can be greatly diminished, with very few checkpoints taken and kept
during the execution.

5.4.3 Periodic pattern with k checkpoints and 1 verification

The last set of experiments considers the opposite case of periodic patterns: checkpoints are
taken more often than verifications. Every k checkpoints, a verification of the data consistency
is done. Intuitively, this could be useful if the cost of verification is large compared to the cost of
checkpointing itself. In that case, when rolling back after an error is discovered, each checkpoint
that was not validated before is validated at rollback time, potentially invalidating up to k − 1
checkpoints.

Because this pattern has potential only when the cost of checkpoint is much lower than the
cost of verification, we considered the case of a greatly improved checkpoint / availability setup:
the checkpoint and recovery times are only 6 seconds in Figure 5.7. One can observe that in this
extreme case, it can still make sense to consider multiple checkpoints between two verifications
(when V = 100 seconds, a verification is done only every 3 checkpoints optimally); however the
3D surface demonstrates that the waste is still dominated by the cost of the verification, and
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Figure 5.6: Case with k verifications, and one checkpoint per periodic pattern. Waste as function
of k, and potentially of V , using the optimal period. (V = 2s, C = R = 60s,D = 0s, and µ = 10y

105 .)

Figure 5.7: Case with k checkpoints, and one verification per periodic pattern. Waste as function
of k, and potentially of V , using the optimal period. (V = 100s, C = R = 6s,D = 0s, and µ = 10y

105 .)
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Figure 5.8: Case with k checkpoints, and one verification per periodic pattern. Waste as function
of k, and potentially of V , using the optimal period. (V = 300s, C = R = 60s,D = 0s, and µ = 10y

105 .)

little improvement can be achieved by taking the optimal value for k. The cost of verification
must be incurred when rolling back, and this shows on the overall performance if the verification
is costly.

This is illustrated even more clearly with Figure 5.8, where the checkpoint costs and machine
availability are set to the second scenario of Sections 5.4.1 and 5.4.2. As soon as the checkpoint
cost is not negligible compared to the verification cost (only 5 times smaller in this case), it is
more efficient to validate every other checkpoint than to validate only after k > 2 checkpoints.
The 3D surface shows that this holds true for rather large values of V .

All the rollback / recovery techniques that we have evaluated above, using various parameters
for the different costs, and stressing the different approaches to their limits, expose a waste that
remains, in the vast majority of the cases, largely below 66%. This is noticeable, because the
traditional hardware based technique, which relies on triple modular redundancy and voting [73],
mechanically presents a waste that is at least equal to 66% (two-thirds of resources are wasted,
and neglecting the cost of voting).

5.5 Conclusion

In this Chapter, we revisit traditional checkpointing and rollback recovery strategies. Rather
than considering fail-stop failures, we focus on silent data corruption errors. Such latent errors
cannot be neglected anymore in High Performance Computing, in particular in sensitive and
high precision simulations. The core difference with fail-stop failures is that error detection is
not immediate.

We discuss and analyze two models. In the first model, errors are detected after some delay
following a probability distribution (typically, an Exponential distribution). We compute the
optimal checkpointing period in order to minimize the waste when all checkpoints can be kept
in memory, and we show that this period does not depend on the distribution of detection
times. In practice, only a few checkpoints can be kept in memory, and hence it may happen
that an error was detected after the last correct checkpoint was removed from storage. We
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derive a minimum value of the period to guarantee, within a risk threshold, that at least one
valid checkpoint remains when a latent error is detected.

A more realistic model assumes that errors are detected through some verification mech-
anism. Periodically, one checks whether the current status is meaningful or not, and then
eventually detects a latent error. We discuss both the case where the periodic pattern includes
k checkpoints for one verification (large cost of verification), and the opposite case with k ver-
ifications for one checkpoint (inexpensive cost for verification). We express a formula for the
waste in both cases, and, from these formulas, we derive the optimal period.

The various models are instantiated with realistic parameters, and the evaluation results
clearly corroborate the theoretical analysis. For the first model, with detection times, the
tradeoff between waste and risk of irrecoverable error clearly appears, hence showing that a
period larger than the one minimizing the irrecoverable-failure-free waste should often be cho-
sen to achieve an acceptable risk. The advantage of the second model is that there are no
irrecoverable failures (within each period, there is a verification followed by a checkpoint, hence
ensuring a valid checkpoint). We compute the optimal pattern of checkpoints and verifications
per period, as a function of their respective cost, to minimize the waste. The pattern with more
checkpoints than verification turns out to be usable only when the cost of checkpoint is much
lower than the cost of verification, and the conclusion is that it is often more efficient to verify
the result every other checkpoint.

Overall, we provide a thorough analysis of checkpointing models for latent errors, both
analyzing the models analytically, and evaluating them through different scenarios.

A future research direction would be to study more general scenarios of multiple checkpoint-
ing, for instance by keeping not the consecutive k last checkpoints in the first model, but rather
some older checkpoints to decrease the risk. In the second model, more verification/checkpoint
combinations could be studied, while we focused on cases with an integer number of checkpoints
per verification (or the converse).



Part II

Cost-Optimal Execution of Boolean
Trees
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Chapter 6

Related Work

The problem of computing the truth value of a Boolean query tree while incurring the
minimum cost is known as Probabilistic AND-OR Tree Resolution (PAOTR) and has been
studied extensively in the literature.

Several works in literature assume that each data stream occurs in at most one leaf of the
query tree. This assumption is termed read-once queries therein. In this part we study the
more general queries, which we term shared queries, in which a stream can occur in multiple
leaves of the tree.

For read-once queries the complexity of the PAOTR problem is unknown for general AND-
OR trees. Smith et al. [104] propose a simple O(n logn) greedy algorithm (n is the number of
leaves in the query tree) that produces an optimal leaf evaluation order for AND trees (i.e.,
single-level trees with an AND operator at the root node). Greiner et al. [105] survey known
theoretical results and present several new results. They consider a depth-first approach that
recursively replaces rooted subtrees with a single equivalent single node. They show that this
approach can be arbitrarily sub-optimal for trees with 3 levels or more. For DNF trees (i.e.,
collections of AND trees whose roots are the children of a single OR node), they show that this
approach is dominant, meaning that there is always one optimal strategy that corresponds to
a depth-first traversal. They proposed a O(n logn) depth-first traversal of the tree that reuses
the algorithm in [104] to order leaves within each AND, which produces an optimal evaluation
order for any DNF tree.

Kaplan et al. [111] have studied a problem closely related to the PAOTR problem for the
read-once queries. They have studied an extension of the standard learning models to settings
where observing the value of an attribute has an associated cost. Their goal is to design a
strategy to decide what attribute of x to observe next so as to minimize the expected evaluation
cost of a function f(x). The authors present approximation algorithms to solve this optimization
problem. They evaluate a given function f on input x by specifying a decision tree of the
attributes. This decision tree is used to decide what attributes of x to observe next, given the
outcome of the attributes that they observe. The costs of evaluating an input x using a tree is
the sum of the costs of the attributes along the path that x follows in the tree.

Shared queries, the focus of this work, are important in practice and have been introduced
and investigated by Lim et al. [100]. In that work the authors do not give theoretical results,
but instead develop heuristics to determine an order of operator evaluation that hopefully leads
to low data acquisition costs. To the best of our knowledge, the complexity of the PAOTR
problem for shared queries has never been addressed in the literature, likely because re-using
stream data across leaves dramatically complicates the problem. When picking a leaf evaluation
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order, interdependences between the leaves must be taken into account. In fact, even when
given a leaf evaluation order, computing the expected query cost is intricate while this same
computation is trivial for read-once queries.

Several problems studied in the literature are closely related to the PAOTR problem and
fall in the area of system testing [97], and in particular the evaluation of priced functions [109]
and the Discrete Function Evaluation Problem (DFEP) [106].

Charikar et al. [109] and Cicalese et al. [110] study the evaluation of “priced functions.” In
this context an algorithm seeks to read a subset of the function’s inputs so that the function’s
output can be determined with minimum price. When the function is an AND/OR tree there
exist algorithms that achieve the best possible competitive ratio in pseudo-polynomial [109] and
polynomial [110] time. In this context, no knowledge of the Boolean variables (which correspond
to our predicates) is assumed. In the context of our work this would correspond to all predicates
having the same probability of success of 1

2 . However, ignoring probabilities of success can lead
to solutions that are no better than L-competitive for functions with L inputs, even for a single
AND tree 1.

Cicalese et al. [106] have studied the Discrete Function Evaluation Problem (DFEP). An
instance of DFEP is defined by a set S of objects, a partition C of these objects into classes
(which represent the values taken by the function), a probability distribution p on S, a set T of
tests, and a cost function assigning a cost to each test. The goal of DFEP is to design a testing
procedure that uses tests from T to identify the class that includes the unknown object, while
minimizing the expectation of the testing cost (or the worst-case testing cost). DFEP has also
been studied under the names of the Equivalence Class Determination problem [107] and of the
Group Identification problem [108].

Evaluation of AND/OR trees is a special case of DFEP where the set of objects is the
set of the possible instantiations of the vector of predicates, where the probability distri-
bution is the probability of occurrences of the different instantiations, where there are only
two classes corresponding to instantiations leading to the AND/OR tree evaluating to True
or False, and where tests correspond to the evaluation of predicates. There exist approx-
imation algorithms for the minimization of the expectation of the testing cost with ratio
O(log(|S|)) [106] or O

(
log

(
1

pmin

))
[107, 108], where pmin is the minimum probability of an

object (pmin = mins∈S p(s)). For AND/OR trees, |S| = 2L and pmin ≤
(

1
2

)L
. Therefore, all

these approximations algorithms are O(L)-approximation algorithms for AND/OR tree evalu-
ation. However, for single-stream AND/OR trees without reuse where all costs are identical
(what is often called the uniform case), any schedule is a O(L)-approximation if the AND/OR
tree is neither a tautology nor a false statement: in the best case at least one predicate must be
evaluated, and in the worst case all L predicates must be evaluated. Therefore, existing results
for DFEP do not lead to efficient solutions for the AND/OR tree evaluation problem.

Moret et al. [112] have studied decision trees and diagrams, also known as sequential eval-
uation procedures. A decision tree is a model of the evaluation of a discrete function, wherin
the value of a variable is determined and the next action is chosen accordingly. The authors

1. Consider an AND node with L leaves of unit cost, L−1 having a probability of success of 1− ε and the last
one having a probability of success of ε. If the ε-probability leaf is evaluated first the expectation of the cost of the
evaluation of the query is 1+ ε(1+(1− ε)(1+(1− ε)(...+(1− ε)1))) = 1+ ε((1− ε)0 +(1− ε)1 + ...+(1− ε)L−2) =
1 + (1 − (1 − ε)L−1) ≈ 1 + (L − 1)ε when ε tends to zero. When probabilities are ignored, all leaves are
absolutely equivalent and a probability-agnostic leaf evaluation order can evaluate the ε-probability leaf last,
leading to a leaf evaluation order with expected cost equal to: 1 + (1 − ε)(1 + (1 − ε)(1 + ...(1 + (1 − ε)(1)))) =
(1 − ε)0 + (1 − ε)1 + ...+ (1 − ε)L−1 = 1−(1−ε)L

1−(1−ε) ≈ L. Hence the lower bound on the competitive ratio.
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present a tutorial survey with recent results and extensions and provide a unified framework of
definition and notations for decision trees and diagrams. A decision tree can be regarded as a
deterministic algorithm for deciding which variable to test next, based on the previously tested
variables and the results of their evaluation, until the function’s value can be determined. The
evaluation of a discrete function represented as a decision tree starts by ascertaining the value
of the variable associated with the root of the tree. It then proceeds by repeating the process
on the kth subtree, where k is the value assumed by the root variable, until a leaf is reached; the
label of the leaf gives the value of the function. Each variable has an associated testing cost,
which measures the expense incurred each time that variable is evaluated, and a storage cost,
which measures the expense due to the presence of each test node labeled by that variable.
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Chapter 7

Cost-Optimal Execution of Boolean DNF Trees
with Shared Streams

7.1 Introduction

An increasing number of applications are being developed or envisioned that continuously
process data generated via sensors embedded in or associated with mobile devices. Smartphones
are equipped with increasingly sophisticated sensors (e.g., GPS, accelerometer, gyroscope, mi-
crophone) that enable near real-time sensing of an individual’s activity or environmental context.
A smartphone can then perform embedded query processing on the sensor data streams for, e.g.,
social networking [101], remote health monitoring [102]. Automotive applications running on a
smartphone can acquire data from sensors in a vehicle (e.g., engine status, speed, angular speed)
as well as from remote databases (e.g., weather, traffic, road works) so as to perform continuous
queries that trigger appropriate responses (e.g., alerting the driver that driving conditions are
dangerous) [98].

In the above applications there is a cost associated to the acquisition of sensor data.
Even moderate data rates can cause commercial smartphone batteries to be depleted in a few
hours [103]. In the automotive application scenario, the acquisition of sensor data incurs a cost
in terms of bandwidth usage on the sensor network in the vehicle [98]. Consequently, solutions
must be developed to reduce the cost of sensor data acquisition when processing continuous
queries.

In this work we study the problem of minimizing the (expected) cost of sensor data ac-
quisition when evaluating a query expressed as a tree of conjunctive and disjunctive Boolean
operators applied to Boolean predicates on the data. Each predicate is computed over data
items from different data streams generated periodically by sensors, and has a certain probabil-
ity of evaluating to true. The evaluation of the query stops as soon as a truth value has been
determined, possibly shortcircuiting part of the query tree. A “push” model by which sensors
continuously transmit data to the device maximizes the amount of acquired data and is thus not
practical. Instead, a “pull” model has been proposed [100], by which the query engine carefully
chooses the order and the numbers of data items to acquire from each individual sensor. This
choice is based on a-priori knowledge of operator costs and probabilities, which can be inferred
based on historical traces obtained for previous query executions. Such intelligent processing is
possible thanks to the programming and data filtering capabilities that are emerging on sensor
platforms [99, 98].

Three example query trees are shown in Figure 7.1, assuming streams named A, B, and C,
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OR

AND

l3 : C < 3

l1 : AVG(A, 5) < 70

l2 : MAX(B, 4) > 100

(a)

AND AND

OR

AVG(A, 5) < 70 MAX(A, 10) > 80C < 3MAX(B, 4) > 100

(b)

AND

OR

MIN(B, 7) < MAX(A, 10)

AVG(A, 5) < 70

AVG(B, 10) > 10

(c)

Figure 7.1: Three query tree examples: (a) a read-once query; (b) a shared query in the single-
stream case; (c) a shared query in the multi-stream case.

which produce integer data items. Each leaf corresponds to a Boolean predicate. A predicate
may involve no operator, e.g., “C < 3” is true if the last item from stream C is strictly lower
than 3, or based on an arbitrary operator (in this example MAX, MIN, or AVG) which is applied
to a time-window for a stream, e.g., “AVG(A, 5) < 70” is true if the average of the last 5 items
from A is strictly lower than 70), or multiple operators (e.g., “MIN(B, 7) < MAX(A, 10)”).

Most results in the literature are for read-once queries, i.e., when each data stream occurs in
at most one leaf of the query tree. The example query tree in Figure 7.1-(a) is a read-once query
since no stream occurs in two leaves. In this work we study the more general case, which we
term shared, in which a stream can occur in multiple leaves. Figure 7.1-(b) shows a shared query
in which stream A occurs at two leaves. Such queries are easily envisioned in most domains.
For instance, in a telehealth example, an alert may be generated either if the heart rate is high
and the acceleration is zero or if the heart rate is low and the SPO2 (blood oxygen saturation) is
low. Shared queries relevant to an automotive application are considered in [98]. We also study
the case in which multiple streams can occur in a single predicate. An example is shown in
Figure 7.1-(c), in which streams A and B occur in multiple leaves, and together in one leaf. We
term the scenarios in Figure 7.1-(a) and 7.1-(b) single-stream and the scenario in Figure 7.1-(c)
multi-stream.

Considering shared queries has important algorithmic implications that we explore in this
work. The device that processes the query acquires data items from streams and holds each
data item in memory until the query has been processed. Each time a leaf of the query must
be evaluated, one can then compute the number of data items that must be retrieved from the
relevant stream given the time-windows of the operators applied to that stream and the data
items from that stream that are already in the device’s memory. For example, considering the
query in Figure 7.1-(b), assume the predicate “AVG(A, 5) < 70” is evaluated first, thus acquiring
5 items from stream A. If later the predicate “MAX(A, 10) > 80” needs to be evaluated then
only 5 additional items must be acquired.
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In this work we study the shared queries and make the following contributions:
— For AND query trees:

— We give a polynomial-time greedy algorithm (which is not as straightforward as the
optimal algorithm for read-once queries) that is optimal in the single-stream case,
and show that the problem in NP-complete in the multi-stream case.

— For the multi-stream case we propose an extension of the single-stream greedy al-
gorithm. This extension is not optimal but computes near-optimal leaf evaluation
orders in practice.

— For DNF query trees:
— We show that the problem is NP-complete in the single-stream case (and thus also

in the multi-stream case).
— In both the single-stream and multi-stream case we show that there exists an optimal

leaf evaluation order that is depth-first;
— We develop heuristics that we evaluate in simulation and compare to the optimal

solution (computed via an exhaustive search on small instances) and to the single-
stream heuristic proposed in [100].

Section 7.2 defines the problem and our assumptions formally. Section 7.3 gives a method
for computing the expected cost of a leaf evaluation order. We then study the problem for AND
trees and DNF trees in Section 7.4 and Section 7.5, respectively, for both the single-stream and
multi-stream cases. Section 7.6 concludes the chapter with a brief summary of our findings.

7.2 Problem statement / Framework
A query is an AND-OR tree, i.e., a rooted tree whose non-leaf nodes are AND or OR

operators, and whose leaves are labeled with probabilistic Boolean predicates. Each predicate
is evaluated over data items generated by data streams. The evaluation of each predicate has
a known success probability, i.e., the probability that the predicate evaluates to TRUE. In
practice, the success probability can be estimated based on historical traces obtained from
previous query evaluations. As in [105], we assume independent predicates, meaning that two
predicates at two leaves in a query are statistically independent. Evaluating a predicate incurs
has a cost determined by the number of data items required to perform the evaluation and a
per data item cost for the stream. For instance, the cost of a data item could correspond to the
energy cost, in joules, of acquiring one data item based on the communication medium used for
the stream and the data item size.

More formally, we consider a set of streams, S = {s1, . . . , sS}. Stream sk has a cost per
data item of c(sk). A query on these streams, T , is a rooted AND-OR tree with L leaves
L = {l1, . . . , lL}. Leaf lj has success, resp. failure, probability pj , resp. qj = 1 − pj , and
requires the last dsklj items from each stream sk ∈ S. dsklj is zero if lj does not require items from
sk. The objective is to compute the truth value of the root of the query tree by evaluating the
leaves of the tree. Because each non-leaf node is either an OR or an AND operator, it may
not be necessary to evaluate all the leaves due to shortcircuiting. In other words, as soon as
any child node of an OR, resp. AND, operator evaluates to TRUE, resp. FALSE, the truth
value of the operator is known and can be propagated toward the root. For a given query, we
define a schedule as an evaluation order of the leaves of the query tree, represented as a sorted
leaf sequence.

We define the cost of a schedule as the expected value of the sum of the costs incurred for
all leaves that are evaluated before the root’s truth value is determined. For instance, consider
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the query in Figure 7.1-(a), in which leaves are labeled l1, l2, l3, and consider the schedule l2, l3, l1.
Query processing begins with the acquisition of the data items necessary for evaluating l2, which
has cost 4 ·c(B). With probability p2, l2 evaluates to TRUE, thus shortcircuiting the evaluation
of l3. Therefore, the expected evaluation cost of the OR operator is: 4 · c(B) + q2 · c(C). If the
OR operator evaluates to FALSE, which happens with probability q2q3, then the evaluation of
l1 is shortcircuited. Otherwise, l1 must be evaluated. The overall cost of the schedule is thus:
4 · c(B) + q2 · c(C) + (1− q2q3) · 5 · c(A). Recall that this query tree corresponds to a read-once
query.

The PAOTR problem consists in determining a schedule with minimum cost. For read-once
queries the complexity of PAOTR is unknown for general AND-OR query trees, while optimal
polynomial-time algorithms are known for AND trees [104] and DNF trees [105]. In this work,
we focus on these two types of trees as well but for shared queries.

7.3 Evaluation of a schedule

Our overall objective is to study the problem of computing an optimal schedule for AND
and DNF trees for shared queries. First, in this section we explain how the expected cost of
a given schedule can be computed. This computation is non-trivial, as seen on an example
(Section 7.3.1), but can be performed in polynomial time (Section 7.3.2).

7.3.1 Schedule evaluation examples

The single-stream DNF tree example

In this section, we illustrate on an example what is involved when computing the expected
cost of a schedule. Consider the DNF tree in Figure 7.2 with three AND nodes, for four streams
A, B, C, and D. For each leaf we indicate how many data items it requires from each stream
and its probability of success. In this example each leaf requires a single data item from a
stream. Since each leaf requires data items from a single stream this tree Leaves are labeled l1
to l7, in the order in which they appear in a given schedule. Computing the cost of a schedule
is much more complicated than for read-once queries due to inter-leaf dependencies. Let Cj be
the cost of evaluating leaf lj , and C the overall cost of the schedule. We consider the 7 leaves
one by one, in order:
Leaf l1 – The first leaf is evaluated: C1 = c(A).
Leaf l2 – This is the first leaf in its AND, no AND has been fully evaluated so far, and l2 is
the first encountered leaf that requires stream B. Therefore, l2 is always evaluated, requiring a
data item from stream B: C2 = c(B).
Leaf l3 – This is the second leaf from its AND, no AND has been fully evaluated so far, and l3
is the first encountered leaf that requires stream C. Therefore, a data item from C is acquired
if and only if l1 evaluates to TRUE: C3 = p1c(C).
Leaf l4 – This is the third leaf from its AND, no AND has been fully evaluated so far, and l4
is the first encountered leaf that requires stream D. Therefore, one data item is acquired from
D if and only if l1 and l3 both evaluate to TRUE: C4 = p1p3c(D).
Leaf l5 – This is the second leaf from its AND, and AND1 has been fully evaluated so far.
However, one of the leaves of that AND, l3, requires a data item that is also needed by l5, from
stream C. If l3 has been evaluated, then the evaluation cost of l5 is 0 because the necessary data
item from C has already been acquired and is available “for free” when evaluating l5. If l3 has
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Figure 7.2: Example single-stream DNF tree.

not been evaluated (with probability 1 − p1), it means that AND1 has evaluated to FALSE.
Then, if l2 has evaluated to TRUE, l5 must be evaluated thus requiring the data item from
stream C. We obtain C5 = (1− p1)p2c(C).
Leaf l6 – Since l2 is always evaluated the data item from stream B required by l6 is always
available for free: C6 = 0.
Leaf l7 – This is the second leaf from its AND, and AND1 and AND2 have been fully evaluated
so far. However, one of the leaves of AND1, l4, but none of those of AND2, requires the data
item that is needed by l7 from stream D. Therefore, l7 must be evaluated and its evaluation
is not free if and only if l4 has not been evaluated, AND2 has evaluated to FALSE, and the
evaluation of AND3 went as far as l7. Therefore, C7 = (1− p1p3)(1− p2p5)p6c(D).

Overall, we obtain the cost of the schedule:

T C = c(A) + c(B) + (p1 + (1− p1)p2)c(C) + (p1p3 + (1− p1p3)(1− p2p5)p6)c(D).

Given the complexity of the above cost computation on a small example, one might expect the
PAOTR problem to be NP-complete for shared queries (recall that it is polynomial for read-once
queries). We confirm this expectation in Section 7.5.

The multi-stream DNF tree example

Figure 7.3 shows a multi-stream DNF tree with three AND nodes, for five streams A, B, C,
D, and E. Each leaf requires one or two data items from multiple streams. Leaves are labeled l1
to l6, in the order in which they appear in a given schedule. This example is meant to illustrate
the difficulty of the PAOTR problem in the case of multi-stream DNF trees in the shared case.
In particular, computing the cost of a schedule is much more complicated than in the read-once
single-stream case due to inter-leaf dependencies and to the multiple access to several streams.
Let Cj be the cost of evaluating leaf lj , and C the overall cost of the schedule. We consider the
6 leaves one by one, in order:
Leaf l1 – The first leaf is evaluated: C1 = c(A) + c(C).
Leaf l2 – This is the first leaf in its AND, no AND has been fully evaluated so far and since
l1 is always evaluated the first data item from stream C required by l2 is always available for
free. l2 is the first encountered leaf that requires stream D. Therefore, l2 is always evaluated,
requiring a data item from stream D: C2 = c(D).
Leaf l3 – This is the second leaf in its AND, no AND has been fully evaluated so far, and l3 is
the first encountered leaf that requires stream B and stream E. Therefore, a data item from B
and a data item from E are acquired if and only if l1 evaluates to TRUE: C3 = p1(c(B)+c(E)).
Leaf l4 – This is the second leaf in its AND, and it requires a data item from stream D.
This data item has already been acquired by l2 and is available “for free” because l2 is always
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Figure 7.3: Example multi-stream DNF tree.

evaluated. l4 also requires a data item from stream B and a data item from stream E. These
data items are also required by leaf l3 in AND1, which has been fully evaluated. If l3 has not
been evaluated (with probability 1− p1), it means that AND1 has evaluated to FALSE. Then,
if l2 has evaluated to TRUE (with probability p2), l4 must be evaluated thus requiring the data
item from stream B and the first data item from stream E. Finally, l3 is the first encountered leaf
that requires the second data item from stream E, so if l2 has evaluated to TRUE, then we must
also require the second data item from stream E. We obtain C4 = p2[(1−p1)(c(B)+c(E))+c(E)].
Leaf l5 – Since l2 is always evaluated, the data item from stream C and the first data item from
stream D required by l5 are always available for free. l5 is the first encountered leaf that requires
the second data item from stream D, so if AND1 and AND2 have evaluated to FALSE, then
the second data item from D is acquired by l5. We obtain C5 = (1− p1p3)(1− p2p4)c(D)
Leaf l6 – This is the second leaf in its AND, and AND1 and AND2 have been fully evaluated
so far. However, one of the leaves of AND1, l3, and one of the leaves of AND2, l4, require
a data item from stream B and a data item from stream E that are needed by l6. Leaf l6
must be evaluated if l5 has evaluated to TRUE (with probability p5) and must acquire a data
item from stream B and the first data item from stream E if and only if l3 and l4 have not
been evaluated (with probability (1 − p1)(1 − p2)). l6 must also acquire the second data item
from stream E if and only if l4 has not been evaluated (with probability (1 − p2)). We obtain
C6 = p5[(1− p1)(1− p2)(c(B) + c(E)) + (1− p2)c(E)].

Overall, we obtain the cost of the schedule:

T C = c(A) + c(C) + [p1 + (1− p1)(p2 + p5(1− p2))]c(B) +
+ (1 + (1− p1p3)(1− p2p4))c(D) + [p1 + (2− p1)(p2 + p5(1− p2))]c(E)

Given the complexity of the above cost computation, one might expect the PAOTR problem to
be NP-complete in the shared multi-stream case. We confirm this expectation for AND trees
in Section 7.4.3.

7.3.2 Schedule evaluation algorithm
Consider a DNF tree with N AND nodes, indexed i = 1, . . . , N . As defined in Section 7.2

the set of leaves is denoted by L and has cardinal L. To capture the structure of the DNF
tree we modify the leaf notation in Section 7.2 as follows. AND node i has mi leaves, denoted
by li,j , j = 1, . . . ,mi. The probability of success of leaf li,j is denoted by pi,j . The query is
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over S streams, ss, s = 1, . . . , S and each leaf can require data from multiple streams as in the
more general multi-stream case. The cost per data item of ss is denoted by c(ss). We define
the “t-th data item” of a stream as the data item produced t time-steps ago, so that the first
data item is the one produced most recently, the second is the one produced before the first,
etc. In this manner, when we say that leaf li,j requires dssli,j data items from stream ss it means
that it requires all t-th data items of the stream ss for t = 1, 2, . . . , dssli,j . Finally, we consider a
schedule ξ, which is an ordering of the leaves, and use lr,t ≺ lu,v to indicate that leaf lr,t occurs
before leaf lu,v in ξ.

Given the above, we define Ls,t as the set of the leaves that require the t-th data item
from stream ss and that are the first of their respective AND nodes to require that data item.
Formally, we have:

Ls,t =
{
li,j ∈ L

∣∣∣ dssli,j ≥ t, and (∀r 6= j, dssli,r < t or li,j ≺ li,r)
}
.

We also define Ai,j , the index set of all AND nodes that have been fully evaluated before leaf
li,j is evaluated, as:

Ai,j = {k | mk = |{lk,r|lk,r ≺ li,j}|}.

If we use Cli,j ,s,t to denote the expected cost of retrieving the t-th data item of stream ss when
evaluating leaf li,j , then the total cost C of the schedule ξ is:

C =
∑
li,j∈ξ

 S∑
s=1

dss
li,j∑
t=1
Cli,j ,s,t

 . (7.1)

The following proposition gives Cli,j ,s,t.

Proposition 14. Given a leaf li,j that does not require the t-th data item from stream ss, then
Cli,j ,s,t = 0. Otherwise, if there exists r such that li,r ≺ li,j and li,r ∈ Ls,t, then Cli,j ,s,t = 0, else:

Cli,j ,s,t =
∏

lr,v∈Ls,t
lr,v≺li,j

1−
∏

lr,u≺lr,v
pr,u



×
∏

a∈Ai,j
6∃r, la,r∈Ls,t

(
1−

ma∏
r=1

pa,r

)

×

 ∏
li,u≺li,j

pi,u

× c(ss).
Proof. Consider a schedule ξ, a stream ss, and an integer t. Consider a leaf in that schedule, li,j ,
which requires the t-th data item from stream ss. Let us prove the first part of the proposition.
If leaf li,j does not require the t-th data item from stream ss, then the acquisition cost is 0.
Otherwise, if a leaf li,r (i.e., a leaf in the same AND node as li,j) occurs before li,j in ξ (li,r ≺ li,j)
and requires the t-th item from stream ss (i.e., li,r ∈ Ls,t), then there are two possibilities. Either
li,r has been evaluated, in which case the evaluation of li,j uses a data item that has already
been acquired previously, hence a cost of 0. Or li,k has not been evaluated, meaning that its
evaluation was shortcircuited. In this case the AND node has evaluated to FALSE and the
evaluation of li,j is also shortcircuited and the cost is 0.
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The second part of the proposition shows the expected cost as a product of three factors,
each of which is a probability, and a fourth factor, c(ss), which is the cost of acquiring the data
item from the stream. The interpretation of the expression for Cli,j ,s,t is as follows: a leaf must
acquire the t-th item from stream ss if and only if (i) the item has not been previously acquired;
and (ii) no AND node has already evaluated to TRUE; and (iii) no leaf in the same AND
node has already evaluated to FALSE. We explain the computation of these three probabilities
hereafter.

The first factor is the probability that none of the leaves that precede li,j in ξ and that
require the t-th item from stream ss have been evaluated. Such a leaf lr,s is evaluated if all the
leaves in the same AND node that precede it in the schedule have evaluated to TRUE, which
happens with probability

∏
lr,u≺lr,s pr,u. Hence, the expression for the first factor.

The second factor is the probability that none of the AND nodes that have been fully
evaluated so far has evaluated to TRUE, since if this were the case the evaluation of li,j would
not be needed, leading to a cost of 0. Given an AND node in Ai,j , say the k-th AND node, the
probability that it has evaluated to TRUE is

∏mk
r=1 pk,r. This is true except if one of the leaves

of that AND node belongs to Ls,t. The first factor assumes that that leaf was not evaluated
and, therefore, that that entire AND node was not evaluated. Hence, the expression for the
second factor.

The third factor is the probability that all the leaves in the same AND node as li,j that have
been evaluated have evaluated to TRUE. Because we are in the second case of the proposition,
none of these leaves requires the t-th item of stream ss. All these leaves must evaluate to TRUE,
otherwise the evaluation of li,j would be shortcircuited, for a cost of 0. Hence, the expression
for the third factor. �

The expected cost of a schedule ξ can be computed from Eq. (7.1) and Proposition 14. We
now derive the complexity of carrying out this computation. Recall that L is the total number
of leaves in the tree. Let D be the maximum number of required data items over all streams.
More formally, L =

∑N
i=1mi and D = max1≤i≤N,1≤j≤mi dli,j . To compute all the sets Ls,t we

need to scan the leaves of each AND node according to schedule ξ while recording the maximum
number of items required from each stream. This can be done with complexity O(L). Each set
Ls,t contains at most N leaves. Computing all the sets Ai,j is also done through a traversal of
the set of leaves, for an overall cost of O(L+N2) (because the sets Ai,j take at most N distinct
values and each contains at most N elements). Computing all the product of probabilities
used in the computation of all the Cli,j ,s,t can also be done in a single traversal of the set of
leaves. Once all these precomputations are done, the first term in the expression of Cli,j ,s,t can
be computed in O(N), the second in O(N2), and the third one in O(1). We compute Cli,j ,s,t for
all the streams required by the leaf li,j and the maximum number of streams required by a leaf
is S. Overall the cost of a schedule can be evaluated with complexity

O(LSDN2).

7.4 AND trees
In this section we focus on AND tree for shared queries. We first show that the optimal

algorithm for read-once queries is no longer optimal for shared queries (Section 7.4.1). We
develop an optimal greedy algorithm in the single-stream case (Section 7.4.2). We show that
the problem is NP-complete in the multi-stream case, for which we propose a heuristic that we
show to be close to the optimal for small instances (Section 7.4.3).



7.4. AND TREES 141

and

A[1]
0.75
l1

A[2]
0.1
l2

B[1]
0.5
l3

Figure 7.4: Example shared AND tree for which the read-once algorithm in [104] is not optimal.

7.4.1 Is the optimal read-once algorithm still optimal?

One valid question is whether the algorithm in [104], which is optimal for read-once queries,
is still optimal for shared queries. It turns out that it is not, and in this section we provide a
counter-example. Consider the AND tree depicted in Figure 7.4 with three leaves labeled l1,
l2, and l3, for two streams A and B. For each leaf (li), we indicate the stream, the number of
data items needed from that stream to evaluate the leaf, and the success probability (pi). For
instance, leaf l2 requires dAl2 = 2 items from stream A and evaluates to TRUE with probability
p2 = 0.1. We assume that retrieving a data item from any stream has unitary cost. There are
6 possible schedules for this tree, each schedule corresponding to one of the 3! orderings of the
leaves. The algorithm in [104] sorts the leaves by non-decreasing dsljc(s)/qj , where s is the only
stream from which lj requires data items. Because 1×c(A)

q1
= 1

1−0.75 = 4, 2×c(A)
q2

= 2
1−0.1 ≈ 2.22,

and 1×c(B)
q3

= 1
1−0.5 = 2, this algorithm schedules leaf l3 first. There are two possible schedules

with l3 as the first leaf:
— l3, l1, l2 whose cost is: c(B) + p3 × (c(A) + p1 × c(A)) = 1 + 0.5× (1 + 0.75× 1) = 1.875;

and
— l3, l2, l1 whose cost is: c(B) + p3× (2× c(A) + p2× 0× c(A)) = 1 + 0.5× (2 + 0.1× 0) = 2.

However, another schedule, l1, l2, l3, has a lower cost: c(A) + p1 × (c(A) + p2 × c(B)) =
1 + 0.75× (1 + 0.1× 1) = 1.825. Therefore, the optimal algorithm for the PAOTR problem for
read-once AND trees is no longer optimal for shared AND trees.

7.4.2 The single-stream case

In this section we give an optimal algorithm for solving the problem for shared AND trees
in the single-stream case. Like the algorithm in [104] for read-once queries, our algorithm is
greedy. But it compares the ratios of cost to failure probability of all sequences of leaves that
use the same stream, instead of only considering pair-wise leaf comparisons. We begin with a
preliminary result on the optimal ordering of leaves that use the same stream.

Ordering same-stream leaves

In the example given in Section 7.4.1 we consider two schedules that begin with leaf l3. In
the first schedule leaf l1 precedes l2, while the converse is true in the second schedule. Leaf
l1 requires one data item from stream A, while leaf l2 requires two data items from the same
stream. Therefore the first schedule is always preferable to the second schedule: if we evaluate
l1 before l2 and if l1 evaluates to FALSE, then there is no need to retrieve the second data item
and the cost is lowered. A general result can be obtained:
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Proposition 15. Consider an AND tree and a leaf li that requires dsli > 0 data items from a
stream s. In an optimal schedule, li is scheduled before any leaf lj that requires dslj > dsli data
items from stream s.

Proof. We prove the proposition by contradiction. Consider an AND-tree and two leaves in
the tree l1 and l2 that require data items from the same stream s such that ds1 > ds2. We terms
these leaves “inverted” because the earlier one, l1, requires more data items than the later one,
l2. Assume that there is an optimal schedule ξ in which l1 is scheduled before l2. Without
loss of generality, we assume that l1 is the first leaf in the schedule that is part of an inverted
pair of leaves (if not, consider the earliest such leaf). Evaluating l2 has always cost zero in this
schedule because all data items required by l2 are also required by l1.

The sequence of leaves in ξ can be written as: lb1 , . . . , lbt , l1, lm1 , . . . , lmu , l2, la1 , . . . , lav . The
cost C of ξ can be written:

C = X + Pb · (ds1 − d
s
LB)c(s) + Pb · p1 · Y + Pb · p1 · Pm · 0 + Pb · p1 · Pm · p2 · Z

where
— Pb =

∏t
i=1 pbi and Pm =

∏u
i=1 pmi ;

— X is the expected cost of evaluating leaves lb1 , . . . , lbt in that order;
— Y is the expected cost of evaluating leaves lm1 , . . . , lmu in that order if leaves lb1 , . . . , llt

and l1 all evaluate to TRUE;
— Z is the expected cost of evaluating leaves la1 , . . . , lav in that order if leaves lb1 , . . . , lbt , l1,

ll1 , . . . , lmu , and l2 all evaluated to TRUE;
— dsLB = maxi=1,...,t(dsbi), or the number of elements of stream s that have been acquired

after evaluating leaves lb1 , . . . , lbt .
Because l1 and l2 are the first two inverted leaves in ξ, ds1 − d

s
LB is non-negative (otherwise a

leaf among lb1 , . . . , lbt and leaf l1 would be inverted).
We now construct another schedule, ξ’, as lb1 , . . . , lbt , l2, l1, lm1 , . . . , lmu , la1 , . . . , lav . The

expected cost C’ of ξ’ can then be written as:

C′ = X + Pb · (ds2 − d
s
LB)c(s) + Pb · p2(ds1 − d

s
2)c(s) + Pb · p2 · p1 · Y + Pb · p2 · p1 · Pm · Z

Because l1 and l2 are the first two inverted leaves in ξ, ds2 − d
s
LB is non-negative (otherwise a

leaf among lb1 , . . . , lbt and leaf l2 would be inverted). Computing the difference of the costs of
both schedules yields:

C − C′ = Pb(1− p2) ((ds1 − d
s
2)c(s) + p1Y )

C − C′ is strictly positive because all costs are positives, all probabilities are between 0 and 1,
and because ds1 > ds2 by assumption. This contradicts the optimality of ξ. �

Optimal schedule

Consider an AND tree with L leaves, l1, . . . , lL, for S streams, s1, . . . , sS . We define
Lk = {lj | dsklj > 0}, i.e., the set of leaves that require data items from stream sk. We
propose a greedy algorithm, SingleStreamGreedy (Algorithm 6). This algorithm, which
is implemented recursively for clarity of presentation, takes as input the Lk sets, an initially
empty schedule ξ, and an array of S integers, NumItems, whose elements are all initially set
to zero. This array is used to keep track, for each stream, of how many data items from that
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stream have been retrieved in the schedule so far. Each call to the algorithm appends to the
schedule a sequence of leaves that require data items from the same stream, in increasing order
of number of data items required. The algorithm stops when all leaves have been scheduled.
The algorithm first loops through all the streams (the k loop). For each stream, the algorithm
then loops over all the leaves that use that stream, taken in increasing order of the number of
items required. For each such leaf the algorithm computes the ratio (variable Ratio) of cost to
probability of failure of the sequence of leaves up to that leaf. The leaf with the minimum such
ratio is selected (leaf lj0 in the algorithm, which requires dsk0

lj0
data items from stream sk0). In

the last loop of the algorithm, all unscheduled leaves that require dsk0
lj0

or fewer data items from
stream sk0 are appended to the schedule in increasing order of the number of required data
items.

Algorithm 6: SingleStreamGreedy({L1, ...,LS}, ξ,NumItems)
1 if ∪Si=1Li = ∅ then return ξ MinRatio ← +∞;
2 for k = 1 to S do
3 Cost ← 0;
4 Proba ← 1;
5 Num ← NumItems[k];
6 for lj ∈ Lk by non-decreasing dsklj do
7 Cost ← Cost + Proba × (dsklj −Num)× c(k);
8 Proba ← Proba × pj ;
9 Num ← dsklj ;

10 Ratio ← Cost
(1−Proba) ;

11 if Ratio < MinRatio then
12 MinRatio ← Ratio;
13 j0 ← j; k0 ← k;
14 for lj in Lk0 by non-decreasing dsk0

lj
do

15 if dsk0
lj
≤ dsk0

lj0
then

16 ξ ← ξ · lj ;
17 Lk0 ← Lk0 \ {lj};
18 NumItems[k0]← d

sk0
lj0

;
19 return SingleStreamGreedy({L1, ...,LS}, ξ,NumItems)

Theorem 9. SingleStreamGreedy is optimal for the shared PAOTR problem for AND
trees.

Proof sketch. We prove the theorem by contradiction. We assume that there exists an instance
for which the schedule produced by SingleStreamGreedy, ξgreedy, is not optimal. Among
the optimal schedules, we pick a schedule, ξopt , which has the longest prefix P in common with
ξgreedy. We consider the first decision taken by SingleStreamGreedy that schedules a leaf
that does not belong to P. Let us denote by lσ(1), ..., lσ(k) the sequence of leaves scheduled by
this decision. The first leaves in this sequence may belong to P. Let P′ be P minus the leaves
lσ(1), ..., lσ(k). Then, ξgreedy can be written as:

ξgreedy = P′, lσ(1), ..., lσ(k),S.
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In turn, ξopt can be written ξopt = P′,Q,R where lσ(k) is the last leaf of Q. In other words, Q
can be written L1, lσ(1), ..., Lk, lσ(k), where each sequence of leaves Li, 1 ≤ i ≤ k, may be empty.
We can write:

ξopt = P′, L1, lσ(1), ..., Lk, lσ(k),R.

From ξgreedy and ξopt , we build a new schedule, ξnew , defined as

ξnew = P′, lσ(1), ..., lσ(k), L1, ..., Lk,R.

P′, lσ(1), ..., lσ(k) is a prefix to both ξgreedy and ξnew . This prefix is strictly larger than P since
P does not contain lσ(k). We compute the cost of ξnew and show that it is no larger than that
of ξopt , thus showing that ξnew is optimal and has a longer prefix in common with ξgreedy than
ξnew , which is a contradiction. This computation is lengthy and technical and the full proof is
provided in the Appendix 7.7.

�

The complexity of SingleStreamGreedy is O(L2). Indeed, the sets L1, ..., LS are built
and sorted in O(L log(L)) time and there are at most L recursive calls to SingleStream-
Greedy, each having a cost proportional to the number of leaves remaining in the AND tree.

One may wonder how the optimal algorithm for read-once queries [104], which simply sorts
the leaves by increasing dsljc(s)/qj , fares for shared queries. In other terms, is SingleStream-
Greedy really needed in practice? Figure 7.5 shows results for a set of randomly generated
AND trees. We define the sharing ratio, ρ, of a tree as the expected number of leaves that use
the same stream, i.e., the total number of leaves divided by the number of streams. For a given
number of leaves L = 2, . . . , 20 and a given sharing ratio ρ = 1, 5/4, 4/3, 3/2, 2, 3, 4, 5, 10, we
generate 1,000 random trees for a total of 157,000 random trees (note that ρ cannot be larger
than the number of leaves). Leaf success probabilities, numbers of data items needed at each
leaf, and per data item costs are sampled from uniform distributions over the intervals [0, 1],
[1, 5], and [1, 10], respectively. For each tree we compute the cost achieved by the algorithm
in [104] and that achieved by our optimal algorithm. Figure 7.5 plots these costs for all in-
stances, sorted by increasing optimal cost. Due to this sorting, the large number of samples,
and the limited resolution, the set of points for the optimal algorithm appears as a curve while
the set of points for the algorithm in [104] appears as a cloud of points. These results show that
the algorithm in [104] can lead to costs up to 1.86 times larger than the optimal. It leads to
costs more than 10% larger for 19.54% of the instances, and more than 1% larger for 60.20% of
the instances. The two algorithms lead to the same cost for only 11.29% of the instances. We
conclude that, for shared queries, SingleStreamGreedy provides substantial improvements
over the optimal algorithm for read-once queries.

7.4.3 The multi-stream case
In this section, we first show the NP-completeness of determining the optimal schedule for a

multi-stream AND tree. Next we show how to extend the greedy algorithm of the single-stream
case. While no longer optimal, this extended greedy algorithm is close to the optimal in practice
and thus proves useful for designing heuristics.

The multi-stream case is NP-complete

Definition 1 (AND-Multi-Decision). Given a multi-stream AND tree and a cost bound K,
is there a schedule whose expected cost does not exceed K?
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Figure 7.5: Cost achieved by the algorithm in [104] and that achieved by the optimal Sin-
gleStreamGreedy algorithm, for 157,000 random AND tree instances sorted by increasing
optimal cost.

Theorem 10. AND-Multi-Decision is NP-complete.

Proof. The problem is clearly in NP: given a schedule, i.e., an ordering of the leaves, one can
compute its expected cost in polynomial time (using the method given in Section 7.3) and
compare it to K. The NP-completeness is obtained by reduction from 2-PARTITION [94]. Let
I1 be an instance from 2-PARTITION: given a set {a1, ..., an} and S =

∑n
i=1 ai, does there exist

a subset I such that
∑
i∈I ai = S

2 ? We assume that S is even, otherwise there is no solution.
The size of I1 is O(n×logM), whereM = max1≤i≤n{ai}. Without loss of generality, we assume
that M ≥ 10. We construct the following instance I2 of AND-Multi-Decision:

— We consider an AND tree with n + 1 leaves `i, 1 ≤ i ≤ n + 1. The set of streams is
S = {A1, . . . , An, B}. The cost of stream si = Ai for i ≤ n is c(i) = 1

2Z , where Z is some
large constant defined hereafter. The cost of stream sn+1 = B is c(n + 1) = C0, where
C0 ≈ 1

2 is a constant defined hereafter.
— The first n leaves have a single stream: for 1 ≤ i ≤ n, leaf `i accesses 2ai elements

of stream Ai, so that the cost of evaluating leaf `i (without re-use) is ai
Z . The success

probability of leaf `i is

pi = 1− ai
Z
− β a

2
i

Z2 ,

where β ≈ 1
2 is a constant defined hereafter.

— Leaf `n+1 accesses all n + 1 streams: one element of the stream B, and ai elements of
each of the n streams Ai. The cost of evaluating leaf `n+1 (assuming no re-use of data
items acquired during the evaluation of other leaves) is C = C0 +

∑n
i=1

ai
2Z = C0 + S

2Z .
The success probability of leaf `n+1 is pn+1 = ε. Constant ε is chosen to be very small,
see below. Intuitively, C would be the cost of a schedule evaluating leaf `n+1 first, and
thereby terminating the evaluation, when ε becomes negligible.

— The bound on the expected evaluation cost is K = C
(
1− S2

8Z2

)
+ 1

9Z2 .
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To finalize the description of I2, we define the constants as follows:
— Z = 10

(
(n+ 1)3n + n3)M3,

— C0 = Z
2Z−S −

S
2Z , so that C = Z

2Z−S ,
— β = 1−C

2C ,
— ε = 1

(n+1)290Z2 .
The size of I2 is polynomial in the size of I1: the greatest value in I2 is Z and log(Z) is linear
in (n+ logM). Because Z is very large relatively to S ≤ nM , we do have that C, C0, and β are
all close to 1

2 . We only use that these constants are all nonnegative, and that β ≤ 1 and C ≤ 1,
in the following derivation, where we bound the expected cost of an arbitrary evaluation of the
AND tree. Then, using this derivation, we prove that I1 has a solution I if and only if I2 does.

Let us start with the cost of an arbitrary evaluation of the AND tree. In such an evaluation,
we evaluate some (possibly none) of the first n leaves before evaluating leaf `n+1. Then, because ε
is small, we can compute an approximation of the cost as follows: we assume that the schedule
terminates after leaf `n+1, because its success probability is close to 0. We will bound the
difference between this approximation and the actual cost later on.

Let I = {`σ(1), `σ(2), . . . , `σ(k)} be the subset, of cardinal k, of leaves that are evaluated, in
that order, before leaf `n+1. Let C be the approximated cost of the schedule (terminating after
completion of leaf `n+1). To simplify notations, we let xi = aσ(i) and ri = pσ(i) for 1 ≤ i ≤ k.
By definition:

C =
k∑
i=1

xi
Z

∏
1≤j<i

rj +
(
C −

k∑
i=1

xi
2Z

) ∏
1≤j≤k

rj .

Note that the cost of leaf `n+1 has been reduced from its original value, due to the sharing of
the streams whose index is in I. To evaluate C, we start by approximating

∏
1≤j<i

rj =
∏

1≤j<i

(
1− xj

Z
− β

x2
j

Z2

)
.

Let

Fi = 1−
i−1∑
j=1

xj
Z
− β

i−1∑
j=1

x2
j

Z2 +
∑

1≤j1<j2<i

xj1xj2
Z2 .

We have ∣∣∣∣∣∣
 ∏

1≤j<i
rj

− Fi
∣∣∣∣∣∣ ≤ 3nM3

Z3 . (7.2)

To see this, we have kept in Fi all terms of the product
∏

1≤j<i rj whose denominators include
a factor strictly inferior to Z3. The other terms of the product are bounded (in absolute value)
by M3/Z3, because β ≤ 1, xj ≤ M , and M ≤ Z. There are at most 3i−1 ≤ 3n such terms.
Hence the desired bound in Equation (7.2). Letting

G =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2
Z2 ,

we prove similarly that ∣∣∣∣∣∣
 k∑
i=1

xi
Z

∏
1≤j<i

rj

−G
∣∣∣∣∣∣ ≤ n3nM3

Z3 . (7.3)
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Indeed, there are k ≤ n terms in the sum, each of them being bounded as before. We deduce
from Equations (7.2) and (7.3), using C ≤ 1, that∣∣∣∣∣C −

(
G+ (C −

k∑
i=1

xi
2Z )Fk+1

)∣∣∣∣∣ ≤ (n+ 1)3nM3

Z3 . (7.4)

Now, we aim at simplifying H = G+(C−
∑k
i=1

xi
2Z )Fk+1 by dropping terms whose denominator

is Z3. We have

H =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2
Z2 +

(
C −

k∑
i=1

xi
2Z

)1−
k∑
j=1

xj
Z
− β

k∑
j=1

x2
j

Z2 +
∑

1≤j1<j2≤k

xj1xj2
Z2

 .
Defining

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + 1
2Z2

(
k∑
i=1

xi

)2

+ C − 1
Z2

∑
1≤j1<j2≤k

xj1xj2 −
βC

Z2

k∑
i=1

x2
i ,

we derive (using β ≤ 1) that:

∣∣∣H − H̃∣∣∣ ≤
∣∣∣∣∣∣ 1
2Z3

(
k∑
i=1

xi

) ∑
1≤j1<j2≤k

xj1xj2 +
k∑
i=1

x2
i

∣∣∣∣∣∣ .
Hence, ∣∣∣H − H̃∣∣∣ ≤ n3M3

Z3 . (7.5)

Developing (
∑k
i=1 xi)2 =

∑k
i=1 x

2
i + 2

∑
1≤j1<j2≤k xj1xj2 in H̃, we obtain

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + C

Z2

∑
1≤j1<j2≤k

xj1xj2 + 1− 2βC
2Z2

k∑
i=1

x2
i .

We have chosen the constants C and β so that H̃ can be reduced to

H̃ = C + C

2Z2

(S
2 −

k∑
i=1

xi

)2

− S2

4

 . (7.6)

Indeed, we have 1−2C
2Z = −SC

2Z2 , and C = 1 − 2Cβ. Altogether, we derive from Equations (7.4)
to (7.6) that∣∣∣∣∣∣C − C

(
1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤
(
(n+ 1)3n + n3)M3

Z3 = 1
10Z2 . (7.7)

Finally, we coarsely bound the difference between the actual cost Cost of the schedule and
the approximated cost C. The actual probability of evaluating some other leaves after leaf `n+1
is ε, there are at most n such leaves, whose individual cost does not exceed M

2Z . We get a
difference bounded by nM2Z ε, from which we derive

|Cost − C| ≤ nM2Z ε ≤ (n+ 1)2ε = 1
90Z2 . (7.8)
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We could easily tighten the bound in Equation (7.8), but we will keep the same notations to
derive a similar bound in the proof of Theorem 12.

Combining Equations (7.7) and (7.8), we finally derive that∣∣∣∣∣∣Cost − C
(

1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤ 1
9Z2 . (7.9)

We now prove that I1 has a solution I if and only if I2 does. Suppose first that I1 has a
solution I:

∑
i∈I ai = S

2 . We evaluate the leaves whose indices are in I before evaluating leaf
`n+1, followed by the remaining leaves in any order. Let Cost be the cost of this evaluation.
From Equation (7.9), we have ∣∣∣∣∣Cost − C

(
1− S2

8Z2

)∣∣∣∣∣ ≤ 1
9Z2 .

Hence, Cost ≤ C
(
1− S2

8Z2

)
+ 1

9Z2 = K, thereby providing a solution to I2.
Suppose now that I2 has a solution whose cost is Cost ≤ K, and let I denote the (index)

set of leaves that are evaluated before leaf `n+1. If (by contradiction) we have
∑
i∈I ai 6= S

2 ,
then

(
S
2 −

∑k
i=1 xi

)2
≥ 1, and Equation (7.9) shows that

Cost ≥ C
(

1− S2

8Z2

)
+ C

2Z2 −
1

9Z2 = K + 9C − 4
9Z2 .

Since 9C − 4 = Z+4S
2Z−S , 9C − 4 > 0. Then, Cost > K and we obtain a contradiction. Therefore∑

i∈I ai = S
2 , and I1 has a solution, which concludes the proof.

�

Greedy heuristic for the multi-stream case

Since AND-Multi-Decision is NP-complete we propose a greedy scheduling heuristics,
MultiStreamGreedy (Algorithm 9), which extends the ideas of SingleStreamGreedy to
the multi-stream case.

SingleStreamGreedy computes a schedule by concatenating sequences of leaves. Each
such sequence consists of leaves that all require data items from the same stream. These
leaves are ordered by non-decreasing number of required data items. We extend this approach
to the multi-stream case thanks to a notion of dominance. We say that leaf li dominates
leaf lj if for each stream s leaf li requires at least as many data items from s as lj (dsli ≥
dslj ). MultiStreamGreedy considers all sequences of yet-to-be-scheduled leaves such that
the (i + 1)-th leaf in the sequence dominates the i-th leaf. Like SingleStreamGreedy,
MultiStreamGreedy picks the sequence that has the lowest ratio of cost to probability of
failure.

Consider an AND tree with a set of leaves L = l1, . . . , lL. MultiStreamGreedy takes L
as input and returns a schedule, ξ, and its expected cost. While there remain leaves to schedule
(while loop at line 6), MultiStreamGreedy computes all dominance relationships among the
yet to be scheduled leaves via a call to DirectDomination.

DirectDomination(Algorithm 7) computes the direct (non-transitive) dominance rela-
tionships between the leaves. It calls TransitiveDomination(Algorithm 8), which computes
the transitive dominance relationships.
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Algorithm 7: DirectDomination(L,NotYetScheduled)
1 (Source, DominatesTrans) = TransitiveDomination(L, NotYetScheduled);
2 for lfirst ∈ L do
3 for lsecond ∈ {lfirst+1, . . . , lL} do
4 DominatesDirect[lfirst][lsecond]← FALSE;
5 for lfirst ∈ L do Check whether lfirst dominates directly lsecond
6 if (NotYetScheduled[lfirst]) then
7 for lsecond ∈ L \ {lfirst} do
8 if (NotYetScheduled[lsecond] and DominatesDirect[lfirst][lsecond]) then
9 NoMiddleLeaf ← TRUE;

10 for lmiddle ∈ L \ {lfirst, lsecond} do
11 if NotYetScheduled[lmiddle]
12 and DominatesDirect[lmiddle][lsecond]
13 and DominatesDirect[lfirst][lmiddle]) then
14 NoMiddleLeaf ← FALSE;
15 DominatesDirect[lfirst][lsecond]← NoMiddleLeaf ;
16 return DominatesDirect;

DirectDomination returns the set of source leaves, i.e., leaves that dominate no other
leaves (boolean array Source), and the set of dominance relationships (boolean array Dominates).
These relationships are direct, i.e., not including transitive dominances. For each source leaf
li, MultiStreamGreedy then examines all possible sequences starting with li (for loop at
line 11). This is done via a call to the recursive GreedyKernel function (Algorithm 10),
which computes the sequence that starts with li that provides the best extension to the current
schedule. MultiStreamGreedy then selects the best extension among all these extensions
for all source leaves (lines 14-18).

The complexity of GreedyKernel is O(2L). This is because GreedyKernel explores
all paths starting from a given source leaf in the dominance relationship graph (in a directed
acyclic graph with n vertices there are at most O(2n) paths). MultiStreamGreedy has
complexity O(L22L). This is because at each step MultiStreamGreedy schedules at least
one leaf and calls GreedyKernel for each unscheduled source leaf. In spite of its exponential
worst-case complexity, for the problem instances used in our experimental evaluations we are
able to execute GreedyKernel in at most 0.03 sec (for a AND node with 40 leaves) on one
core of an 2.1 GHz AMD Opteron processor.

Figure 7.6 shows results for a set of randomly generated AND trees. Instances are gener-
ated using the same method as that described in Section 7.4.2. For a given number of leaves
L = 2, . . . , 10 and a given sharing ratio ρ = 1, 5/4, 4/3, 3/2, 2, 3, 4, 5, 10, we generate 1,000
random trees for a total of 81,000 random trees. The number of streams referenced by each
leaf is sampled from a uniform distribution over the interval [1, 5], and each such stream is
sampled uniformly from the set of streams. For each tree we compute the cost achieved by
MultiStreamGreedy and that achieved by a high-complexity exhaustive search for the op-
timal schedule (of complexity O(L!)). Figure 7.6 plots these costs for all instances, sorted by
increasing optimal cost. The average, resp. maximum, relative difference between the results of
MultiStreamGreedy and the results of the optimal algorithm is 0.60%, resp. 28.53%. The
relative difference is larger than 5% for only 3.73% of the instances, and the two algorithms
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Algorithm 8: TransitiveDomination(L,NotYetScheduled)
1 for li ∈ L do Initialization
2 Source[li]← TRUE
3 for lfirst in L do Computation of the dominance relationship
4 if (NotYetScheduled[lfirst]) then
5 for lsecond ∈ {lfirst+1, . . . , lL} do
6 if (NotYetScheduled[lj ]) then
7 FirstDominatesSecond ← TRUE; SecondDominatesFirst ← TRUE;
8 for s ∈ S do Loop on all streams
9 if (dslfirst > dslsecond) then

10 SecondDominatesFirst ← FALSE;
11 else if (dslfirst < dslsecond) then
12 FirstDominatesSecond ← FALSE;
13 if (SecondDominatesFirst and FirstDominatesSecond) then
14 if (plfirst < plsecond ) then
15 DominatesTrans[lsecond][lfirst]← TRUE;
16 DominatesTrans[lfirst][lsecond]← FALSE;
17 Sourcelsecond ← FALSE;
18 else
19 DominatesTrans[lsecond][lfirst]← FALSE;
20 DominatesTrans[lfirst][lsecond]← TRUE;
21 Sourcelfirst ← FALSE;
22 else
23 DominatesTrans[lfirst][lsecond]← FirstDominatesSecond;
24 DominatesTrans[lsecond][lfirst]← SecondDominatesFirst ;
25 if (FirstDominatesSecond) then
26 Source[lfirst]← FALSE;
27 else if (SecondDominatesFirst) then
28 Source[lsecond]← FALSE;
29 return (Source, DominatesTrans);
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lead to the same cost for 76.75% of the instances. We conclude that MultiStreamGreedy is
likely to provide close-to-optimal schedules in multi-stream case for shared queries.

Algorithm 9: MultiStreamGreedy(L)
1 for li ∈ L do
2 NotYetScheduled[li]← TRUE;
3 NumNotYetScheduled ← |L|;
4 ScheduleCost ← 0;
5 ξ ← ∅;
6 while (NumNotYetScheduled > 0) do
7 (Source, Dominates) = DirectDomination(L, NotYetScheduled);
8 MinRatio ← +∞;
9 BestExt ← ∅;

10 CostBestExtension ← +∞;
11 for li ∈ L do
12 if (NotYetScheduled[li] and Source[li]) then
13 (Cost,Extension,Proba) =

GreedyKernel(L, ξ,ScheduleCost, 1, li,Dominates);
14 Ratio ← (Cost − ScheduleCost)/(1− Proba);
15 if (Ratio < MinRatio) then
16 MinRatio ← Ratio;
17 BestExt ← Extension;
18 CostBestExtension ← Cost;
19 ξ ← ξ · BestExt;
20 ScheduleCost ← CostBestExtension;
21 for li ∈ BestExt do
22 NotYetScheduled[li]← FALSE;
23 NumNotYetScheduled ← NumNotYetScheduled − 1;
24 return (ξ, ScheduleCost)

7.5 DNF trees
In this section we focus on DNF trees for shared queries. We first show that, as for read-once

queries, there is an optimal schedule that is depth-first (Section 7.5.1). This result holds in the
multi-stream case, and thus in the less general single-stream case. We then show that the prob-
lem is NP-complete in the single-stream case (Section 7.5.2), and thus also NP-complete in the
more general multi-stream case. We then propose and evaluate several heuristics (Section 7.5.3).

7.5.1 Dominance of depth-first schedules
Theorem 11. Given a DNF tree, there exists an optimal schedule that is depth-first, i.e., that
processes AND nodes one by one.

Proof. Consider a DNF tree T and a schedule ξ. We use the same notations as in Section 7.3.
Without loss of generality we assume that the AND nodes, AND1, . . . ,ANDN , are numbered
in the order of their completion in ξ. Thus, according to ξ, AND1 is the first AND node
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Algorithm 10: GreedyKernel(L, ξ,BaseCost,BaseProba,Leaf ,Dominates)
1 CostBestSol ← Cost(ξ · Leaf );
2 BestExt ← Leaf ;
3 ProbaBestExt ← pLeaf ;
4 BestRatio ← (CostBestSol − BaseCost)/(1− BaseProba × pLeaf );
5 for lj ∈ L do
6 if Dominates[lj ][Leaf ] then
7 (Cost,Ext,Proba)←

GreedyKernel(L, ξ · Leaf ,BaseCost,BaseProba × pLeaf , lj ,Dominates);
8 Ratio ← (Cost − BaseCost)/(1− BaseProba × pLeaf × Proba);
9 if (Ratio < BestRatio) then

10 BestRatio ← Ratio;
11 CostBestSol ← Cost;
12 ProbaBestExt ← pLeaf × Proba;
13 BestExt ← Leaf · Ext;
14 return (CostBestSol, BestExt, ProbaBestExt)
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Figure 7.6: Cost achieved by MultiStreamGreedy and that achieved by the optimal algo-
rithm, shown for 81,000 random AND tree instances sorted by increasing optimal cost.
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with all its leaves evaluated. We denote by K the number (possibly zero) of AND nodes that
are processed one by one and entirely at the beginning of the query processing according to ξ.
Therefore, if ξ evaluates a leaf li,j , with i 6= 1, in the m1 first steps, then K = 0. Finally, we
assume that the leaves of each AND node are numbered according to their evaluation order in
ξ.

We prove the theorem by contradiction. Let us assume that there does not exist an optimal
schedule with K = N . Let ξ be an optimal schedule that maximizes K. By definition of K and
by the hypothesis on the numbering of the AND nodes, schedule ξ evaluates some leaves of the
AND nodes ANDK+2, ..., ANDN before it evaluates the last leaf of ANDK+1. Let L̂ denote
the set of these leaves. We now define a new schedule ξ′ that starts by executing at least K + 1
AND nodes one by one:

— ξ′ starts by evaluating the first K AND nodes one by one, evaluating their leaves in the
same order and at the same steps as in ξ;

— ξ′ then evaluates all the leaves of ANDK+1 in the same order as in ξ (but not at the same
steps);

— ξ′ then evaluates the leaves in L̂ in the same order as in ξ (but not at the same steps);
— ξ′ finally evaluates the remaining leaves in the same order and at the same steps as in ξ.

The cost of a schedule is the sum, over all potentially acquired data items, of the cost of acquiring
each data item times the probability of acquiring it. Let d be a data item potentially needed
by a leaf in T . We show that the probability of acquiring d is not greater with ξ′ than with ξ.
We have three cases to consider.
Case 1) d is not needed by any leaf of ANDK+1 and not needed by any leaf in L̂. Then d’s
probability to be acquired is the same with ξ and ξ′.
Case 2) d is needed by at least one leaf of ANDK+1. The only way in which a leaf that is
evaluated in ξ would not be evaluated in ξ′ is if ANDK+1 evaluates to TRUE. Since at least one
leaf of ANDK+1 uses d, for ANDK+1 to evaluate to TRUE d must be acquired. Consequently,
the probability that d is acquired is the same with ξ and with ξ′.
Case 3) d is needed by at least one leaf in L̂ but not needed by any leaf of ANDK+1. ξ and ξ′
define the same ordering on the leaves in L̂. For each AND node ANDi, with K + 2 ≤ i ≤ N ,
there is at most one leaf in ANDi ∩ L̂ that can be the leaf responsible for the acquisition of d
with ξ, and it is the same leaf with ξ′. Let F be the set of all these leaves. Then, with ξ, the
leaves in F are responsible for the acquisition of d if and only if:

— AND1, ..., ANDK all evaluate to FALSE;
— None of the evaluated leaves of AND1, ..., ANDK needs d; and
— At least one of the leaves in F is evaluated.

Let us denote by P the probability that all the AND nodes AND1, ..., ANDK evaluate to
FALSE and that none of the evaluated leaves of these AND nodes needs the data item d. Let
us denote by D the probability that d is acquired because of the evaluation of one of the leaves
of the AND nodes AND1, ..., ANDK . Finally, let R be the probability that one of the leaves
evaluated with ξ after lK+1,mK+1 acquires d, knowing that no leaves of AND1, ..., ANDK or in
L̂ acquires it. Then, with ξ, the probability p that d is acquired is:

p = D + P

1−
∏

li,j∈F

1−
j−1∏
k=1

pi,k

+R (7.10)

because leaf li,j is evaluated with probability
∏j−1
k=1 pi,k, that is, if all the leaves from the same
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Figure 7.7: Example DNF tree for which SingleStreamGreedy does not produce an optimal
schedule.

AND node that are evaluated prior to it all evaluate to TRUE. The second term of Equa-
tion (7.10) is the probability that the leaves in F are responsible for acquiring d.

With schedule ξ′, the leaves of F are responsible for the acquisition of d if and only if:
— The AND nodes AND1, ..., ANDK , and ANDK+1 all evaluate to FALSE;
— None of the evaluated leaves of the AND nodes AND1, ..., ANDK need d; and
— At least one of the leaves in F is evaluated.

Thus, with ξ′, the probability p′ that d is acquired is:

p′ = D + P
(

1−
mK+1∏
k=1

pK+1,k

)
×

1−
∏

li,j∈F

1−
j−1∏
k=1

pi,k

 + R.

Comparing this equation with Equation 7.10, we see that p′ is not greater than p. The proba-
bility that a data item is acquired with ξ′ is thus not greater than with ξ. Therefore, in each of
the three cases the cost of ξ′ is not greater than the cost of ξ, meaning that ξ′ is also an optimal
schedule. Since ξ′ starts by executing at least (K + 1) AND nodes one by one, we obtain a
contradiction with the maximality assumption on K, which concludes the proof. �

7.5.2 The single-stream case is NP-complete

For read-once queries an optimal algorithm for DNF trees is built on top of the optimal
algorithm for AND trees in [105]. The same approach cannot be used for shared queries (i.e.,
reusing SingleStreamGreedy). This can be shown by a simple counter-example in the
following paragraph.

In other words, for some DNF trees, the ordering of the leaves of a given AND node in an
optimal schedule does not correspond to the ordering produced by SingleStreamGreedy for
that AND node. In fact, we show that finding an optimal schedule for evaluating a DNF tree
is NP-complete.

Counter-example for Algorithm 6 on DNF trees We provide a counterexample to show that
in the shared case, SingleStreamGreedy (optimal to evaluate a AND tree) cannot be used
to evaluate a DNF tree.

We consider the example of Figure 7.7 where both streams have a cost of 1. There are
two possible orders for evaluating the AND nodes. We consider both of them and explicit the
behavior of SingleStreamGreedy on each of the AND’s.
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— AND1 then AND2. Because of Proposition 15, the leaves of AND1 are always evaluated in
the order l1, l2, l3. The cost of evaluation of AND1 is then α1 = 1+0.9×(1+2/3×3) = 3.7.
We then move to the evaluation of AND2. SingleStreamGreedy first schedules leaf l5
whose cost is null. We then have to compare the ratios for leaves l5 and l6:
— l5. The first element of A was acquired for the evaluation of leaf l1. The second

element of A needs to be acquired for l2 only if leaf l2 was not evaluated and leaf
l4 evaluated to TRUE, which happens with probability (1− 0.9)× 0.9 = 0.09. The
third element of A needs to be acquired only if leaf l3 was not evaluated and leaf l4
evaluated to TRUE, which happens with probability (1 − 0.9 × 2/3) × 0.9 = 0.36.
Therefore, the evaluation cost of l5 is 0 + 0.09 × 1 + 0.36 × 1 = 0.45. The ratio for
leaf l5 is thus 0.45

1−2/3 = 1.35.
— l6. The ratio for l6 is 1

1−2/3 = 3.
Therefore, SingleStreamGreedy schedules l5 and then l6 for the overall cost:

3.7 + 0 + 0.45 + (1− 0.9× 2/3× 1/2)× 0.9× 2/3 = 4.57.

— AND2 then AND1. We first consider the ratios for the three leaves:
— The ratio for l4 is 1

1−0.9 = 10.
— The ratio for l5 is 1+0.9×2

1−0.9×2/3 = 7.
— The ratio for l6 is 1

1−2/3 = 3.
Therefore the first scheduled leaf if l6. Then the overall schedule is l6, l4, l5, l1, l2, l3. We
compute the evaluation cost of each leaf.
— l6. Its cost is 1.
— l4. Its cost is 2/3× 1.
— l5. Its cost is 2/3× 0.9× 2 = 1.2.
— l1. Its cost is (1− 2/3)× 1.
— l2. Its costs is (1− 2/3× 0.9)× 0.9 = 0.36.
— l3. Its costs is (1− 2/3× 0.9)× 1 + (1− 2/3× 0.9× 2/3)× 0.9× 2/3× 2 = 0.96.

The overall cost is thus 4.52.

We now consider the schedule l4, l5, l6, l1, l2, l3. We compute the evaluation cost of each
leaf.
— The cost of l4 is 1.
— The cost of l5 is 0.9× 2 = 1.8.
— The cost of l6 is 0.9× 2/3× 1 = 0.6.
— The cost of l1 is 0.
— The cost of l2 is (1− 0.9)× 0.9 = 0.09.
— The cost of l3 is (1− 0.9)× 0.9× 2/3 + (1− 0.9× 2/3× 2/3)× 0.9× 2/3× 2 = 0.78.

The overall cost of this schedule is thus 4.27. The intuitive explanation is as follows: for AND2
alone, the best evaluation order is l6, l4, l5 (and this is the order chosen by SingleStream-
Greedy). However, because of the re-use of some data items of stream A in AND1, the optimal
order for the whole DNF tree is not the same! This leads to a enormous combinatorial search
space for the optimal ordering, which corroborates the hardness result (NP-completeness stated
in Theorem 12) of the evaluation of DNF trees in the shared case.

Definition 2 (DNF-Single-Decision). Given a single-stream DNF tree and a cost bound
K, is there a schedule whose expected cost does not exceed K?
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Theorem 12. DNF-Single-Decision is NP-complete.

Proof. The problem is obviously in NP: given a schedule, i.e., an ordering of the leaves, one
can compute its expected cost in polynomial time, using the method given in Section 7.3.2.
The NP-completeness is obtained by reduction from 2-PARTITION [94]. Let I1 be an instance
from 2-PARTITION: given a set {a1, ..., an} and S =

∑n
i=1 ai, does there exist a subset I such

that
∑
i∈I ai = S

2 ? We assume that S is even, otherwise there is no solution. The size of I1 is
O(n logM), where M = max1≤i≤n{ai}. Without loss of generality, we assume that M ≥ 10.
We construct the following instance I2 of DNF-Decision:
— We consider a DNF tree with N = n + 1 AND nodes ANDi, 1 ≤ i ≤ n + 1 and a total

of L = 2n+ 1 leaves.
— The set of streams is S = {A1, . . . , An, B}. The cost of stream si = Ai for i ≤ n is

c(i) = 1
2Z , where Z is some large constant defined below. The cost of stream sn+1 = B is

c(n+ 1) = C0, where C0 ≈ 1
2 is a constant defined below.

— Each ANDi node, where i ≤ n, has a single leaf li,1 which has success probability

pi,1 = ai
Z

+ β
a2
i

Z2

where β ≈ 1
2 is a constant defined below, and which requires dAili,1 elements of stream Ai.

Hence the cost to access all items of leaf li,1 is dAili,1c(i) = ai
Z .

— The last AND node ANDn+1 has mn+1 = n+ 1 leaves which are specified as follows:
— Each leaf ln+1,i, where i ≤ n, has success probability pn+1,i = 1 − ε and requires

dAiln+1,i
= ai elements of stream Ai. Hence the cost to access all items of leaf ln+1,i is

ai
2Z .

— The last leaf ln+1,n+1 has success probability pn+1,n+1 = 1−ε and requires dBln+1,n+1
=

1 element of stream B (at cost c(n+1) = C0). Constant ε is chosen to be very small,
see below. Let C =

∑n
i=1

ai
2Z + C0 = S

2Z + C0: Intuitively, C would be the cost of
evaluating node ANDn+1 when starting with this AND node, and when ε becomes
negligible.

— The bound on the expected evaluation cost is K = C
(
1− S2

8Z2

)
+ 1

9Z2

To finalize the description of I2, we define the constants as follows:
— Z = 10

(
(n+ 1)3n + n3)M3

— C0 = Z
2Z−S −

S
2Z , so that C = Z

2Z−S
— β = 1−C

2C
— ε = 1

90(n+1)2Z2

The size of I2 is polynomial in the size of I1: the greatest value in I2 is Z and log(Z) is
linear in (n+ logM). Because Z is very large in front of S ≤ nM , we do have that C, C0 and
β are all close to 1

2 . We only use that these constants are all non-negative, and that β ≤ 1 and
C ≤ 1, in the following derivation, where we bound the expected cost of an arbitrary evaluation
of the DNF tree. Then, using this derivation, we will prove that I1 has a solution I if and only
if I2 does.

Let us start with the cost of an arbitrary evaluation of the DNF tree. Owing to the domi-
nance property stated in Theorem 11, we can assume that the schedule is depth-first. Therefore,
a schedule first evaluates n AND nodes in sequence and completely before starting the evalua-
tion of node ANDn+1. Then, because ε is very small, we can compute an approximation of the
cost by assuming that the schedule terminates after node ANDn+1. This is because all its leaves
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have success probability close to 1. We will bound the difference between this approximation
and the actual cost later on.

Let I = {ANDσ(1),ANDσ(2), . . . ,ANDσ(k)} be the subset, of cardinal k, of AND nodes
that are evaluated, in that order, before node ANDn+1. Let C be the approximated cost of
the schedule (terminating after completion of node ANDn+1). To simplify notations, we let
xi = aσ(i) for 1 ≤ i ≤ k, and let qi = 1− pσ(i),1 for i ≤ n. By definition,

C =
k∑
i=1

xi
Z

∏
1≤j<i

qj +
(
C −

k∑
i=1

xi
2Z

) ∏
1≤j≤k

qj .

Note that the cost of node ANDn+1 has been reduced from its original value, due to the sharing
of the streams whose index is in I. To evaluate C, we start by approximating

∏
1≤j<i

qj =
∏

1≤j<i

(
1− xj

Z
− β

x2
j

Z2

)

Let

Fi = 1−
i−1∑
j=1

xj
Z
− β

i−1∑
j=1

x2
j

Z2 +
∑

1≤j1<j2<i

xj1xj2
Z2 .

We have ∣∣∣∣∣∣
 ∏

1≤j<i
qj

− Fi
∣∣∣∣∣∣ ≤ 3nM3

Z3 (7.11)

To see this, we have kept in Fi all terms of the product
∏

1≤j<i qj whose denominators include
a factor strictly inferior to Z3. The other terms of the product are bounded (in absolute value)
by M3/Z3, because β ≤ 1 and M ≤ Z. There are at most 3i−1 ≤ 3n such terms. Hence, the
desired bound in Equation (7.11). Letting

G =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2
Z2 ,

we prove similarly that ∣∣∣∣∣∣
 k∑
i=1

xi
Z

∏
1≤j<i

qj

−G
∣∣∣∣∣∣ ≤ n3nM3

Z3 . (7.12)

Indeed, there are k ≤ n terms in the sum, each of them being bounded as before. We deduce
from Equations (7.11) and (7.12), using C ≤ 1, that∣∣∣∣∣C −

(
G+ (C −

k∑
i=1

xi
2Z )Fk+1

)∣∣∣∣∣ ≤ (n+ 1)3nM3

Z3 (7.13)

Now, we aim at simplifying H = G+(C−
∑k
i=1

xi
2Z )Fk+1 by dropping terms whose denominator

is Z3. We have

H =
k∑
i=1

xi
Z
−

∑
1≤j1<j2≤k

xj1xj2
Z2 +

(
C −

k∑
i=1

xi
2Z

)1−
k∑
j=1

xj
Z
− β

k∑
j=1

x2
j

Z2 +
∑

1≤j1<j2≤k

xj1xj2
Z2


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Defining

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + 1
2Z2

(
k∑
i=1

xi

)2

+ C − 1
Z2

∑
1≤j1<j2≤k

xj1xj2 −
βC

Z2

k∑
i=1

x2
i ,

we derive (using β ≤ 1) that:

∣∣∣H − H̃∣∣∣ ≤
∣∣∣∣∣∣ 1
2Z3

(
k∑
i=1

xi

) ∑
1≤j1<j2≤k

xj1xj2 +
k∑
i=1

x2
i

∣∣∣∣∣∣ .
Hence, ∣∣∣H − H̃∣∣∣ ≤ n3M3

Z3 (7.14)

Developing (
∑k
i=1 xi)2 =

∑k
i=1 x

2
i + 2

∑
1≤j1<j2≤k xj1xj2 in H̃, we obtain

H̃ = C + 1− 2C
2Z

k∑
i=1

xi + C

Z2

∑
1≤j1<j2≤k

xj1xj2 + 1− 2βC
2Z2

k∑
i=1

x2
i

We have chosen the constants C and β so that H̃ can be reduced to

H̃ = C + C

2Z2

(S
2 −

k∑
i=1

xi

)2

− S2

4

 (7.15)

Indeed, we have 1−2C
2Z = −SC

2Z2 , and C = 1− 2Cβ. Altogether, we derive from Equations (7.13)
to (7.15) that∣∣∣∣∣∣C − C

(
1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤
(
(n+ 1)3n + n3)M3

Z3 = 1
10Z2 (7.16)

Finally, we coarsely bound the difference between the actual cost Cost of the schedule and
the approximated cost C. The actual probability of evaluating the i-th leaf of node ANDn+1
is (1− ε)i so that the error term for that leaf does not exceed

(
1− (1− ε)i

)
max(M2Z , C) ≤ nε.

Since there are n+ 1 terms, we get a difference bounded by n(n+ 1)ε. Next we have neglected
the evaluation of the remaining AND nodes after node ANDn+1, but this cost is (similarly)
bounded by (n+ 1)ε SZ ≤ (n+ 1)ε. Altogether, we obtain that

|Cost − C| ≤ (n+ 1)2ε = 1
90Z2 (7.17)

Combining Equations (7.16) and (7.17), we finally derive that∣∣∣∣∣∣Cost − C
(

1− S2

8Z2

)
− C

2Z2

(
S

2 −
k∑
i=1

xi

)2∣∣∣∣∣∣ ≤ 1
9Z2 (7.18)

We now prove that I1 has a solution I if and only if I2 does. Suppose first that I1 has a
solution I:

∑
i∈I ai = S

2 . We evaluate the AND nodes whose indices are in I before evaluating
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node ANDn+1, followed by the remaining AND nodes in any order. Let Cost be the cost of
this evaluation. From Equation (7.18), we have∣∣∣∣∣Cost − C

(
1− S2

8Z2

)∣∣∣∣∣ ≤ 1
9Z2 .

Hence, Cost ≤ C
(
1− S2

8Z2

)
+ 1

9Z2 = K, thereby providing a solution to I2.
Suppose now that I2 has a solution whose cost is Cost ≤ K, and let I denote the (index)

set of AND nodes that are evaluated before node ANDn+1. If (by contradiction) we have∑
i∈I ai 6= S

2 , then
(
S
2 −

∑k
i=1 xi

)2
≥ 1, and Equation (7.18) shows that

Cost ≥ C
(

1− S2

8Z2

)
+ C

2Z2 −
1

9Z2 = K + 9C − 4
9Z2 .

Since 9C − 4 = Z+4S
2Z−S > 0, then Cost > K, which is a contradiction. Therefore

∑
i∈I ai = S

2 ,
and I1 has a solution. This concludes the proof.

It is interesting to point out that instance I2 is constructed so that the ordering of the leaves
inside each AND node has no importance. In fact, only the last AND node has more than
one leaf, and because its leaves have all very high success probability, their ordering does not
matter. This shows that the combinatorial difficulty of the DNF-Decision problem already
lies in deciding the ordering of the AND nodes. �

It is interesting to point out that in the above proof instance I2 is constructed so that the
ordering of the leaves inside each AND node has no importance. In fact, only the last AND
node has more than one leaf, and because its leaves have all high success probability, their
ordering does not matter. This shows that the combinatorial difficulty of the DNF-Decision
problem already lies in deciding the ordering of the AND nodes. However, even if the optimal
order of the AND nodes is given, an optimal schedule cannot be computed by simply using
SingleStreamGreedy (which is optimal for a single AND node) for scheduling the leaves of
each AND node. See a counter-example in 7.5.2.

7.5.3 Heuristics and Evaluation Results
Given the NP-completeness result in the previous section we propose several heuristics. Most

of these heuristics apply to both the single-stream and the multi-stream cases, one heuristic
applies only to the single-stream case, and another applies only to the multi-stream case, as
described in the following sections.

Heuristics common to the single-stream and multi-stream cases

We propose two categories of heuristics, which we term leaf-ordered and AND-ordered. Leaf-
ordered heuristics simply sort the leaves according to costs (C), failure probabilities (q = 1−p),
or the ratio of the two, which leads to three heuristics plus a baseline random one:
— Leaf-ordered, non-increasing q (prioritizes leaves with high chances of shortcutting the

evaluation of an AND node);
— Leaf-ordered, non-decreasing C (prioritizes leaves with low costs);
— Leaf-ordered, non-decreasing C/q (prioritizes leaves with low costs and also with high

chances of shortcutting the evaluation of an AND node);
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— Leaf-ordered, random (baseline).
The above first three heuristics have intuitive rationales. Other options are possible (e.g., sort
leaves by non-increasing C) but are easily shown to produce poor results.

AND-ordered heuristics, unlike leaf-ordered heuristics, account for the structure of the DNF
tree by building depth-first schedules, with the rationale that there is a depth-first schedule
that is optimal (Theorem 11). The heuristics thus proceed in two phases: (i) compute a
schedule for the leaves of each AND node independently, ignoring the other AND nodes, using
SingleStreamGreedy (optimal) in the single-stream case and MultiStreamGreedy (sub-
optimal) in the multi-stream case; (ii) pick an order of the AND nodes and concatenate their
individual leaf schedules. Given the individual schedule of each AND node computed in the first
phase, we can compute the (expected) cost and the probability of success of that AND node
(using the method in Section 7.3). In the second phase, the AND-ordered heuristics simply
order the AND nodes based on their computed costs (C), computed probability of success (p),
or ratio of the two, leading to three heuristics:
— AND-ordered, non-increasing p (prioritizes AND’s with high chances of shortcircuiting

the evaluation of the OR node);
— AND-ordered, non-decreasing C (prioritizes AND’s with low costs);
— AND-ordered, non-decreasing C/p (prioritizes AND’s with low costs and also with high

chances of shortcircuiting the evaluation of the OR node);
There are two approaches to compute the cost of an AND node: (i) consider the AND node in
isolation assuming that the OR node has a single AND node child; or (ii) account for previously
scheduled AND nodes whose evaluation has caused some data items to be acquired with some
probabilities. We terms the first approach “static” and the second approach “dynamic,” giving
us two versions of the last two heuristics above.

A greedy stream-ordered heuristic for the single-stream case

For the single-stream case we propose heuristic a heuristic that orders the streams for data
acquisition. The idea of this heuristic was proposed in [100], and to the best of our knowledge
it is the only previously proposed heuristic for solving the PAOTR problem for shared DNF
query trees.

The stream-ordered heuristic proceeds by ordering the streams from which data items are
acquired, acquiring all items from a stream before proceeding to the next stream, until the
truth value of the OR node has been determined. For each stream ss the heuristic computes a
metric, R(ss), defined as follows:

R(ss) =

∑
i,j|dss

li,j
>0 qi,jni,j

maxi,j|ds
li,j

>0 dssli,jc(ss)
,

where ni,j is the number of leaves whose evaluation would be shortcircuited if leaf li,j was
to evaluate to FALSE. The numerator can thus be interpreted as the shortcutting power of
stream ss. The denominator is the maximum data element acquisition cost over all the leaves
that use stream ss. The heuristic orders the streams by non-decreasing R values. The rationale
is that one should prioritize streams that can shortcut many leaf evaluations and that have
low maximum data item acquisition costs. The heuristic as it is described in [100] acquires the
maximum number of needed data items from each stream so as to compute truth values of all
the leaves that require data items from that stream. In other words, the leaves that require data
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items from stream s are scheduled in decreasing dssli,j order. However, Proposition 15 holds for
DNF trees, showing that it is always better to schedule these leaves in increasing dssli,j order. We
use this leaf order to implement this heuristic in this work. We have verified in our experiments
that this version outperforms the version in [100] in the vast majority of the cases, with all
remaining cases being ties.

A dynamic programming heuristic for the multi-stream case

When faced with an intractable problem, one option is find a related problem for which an
optimal solution can be computed. In this view we propose a dynamic programming heuristic,
MultiStreamDP (Algorithm 11), which computes not an optimal order of the leaves, but an
optimal order of the individual data item retrievals. The hope is that these two objectives are
sufficiently related that the optimal data item retrieval order induces a good leaf schedule.

MultiStreamDP builds a data item retrieval order as follows. Let Max[s] be the maxi-
mum number of data items from stream ss required by any leaf. The algorithm constructs an S-
dimensional array DPCost. DPCost[n1, . . . , nS ] denotes the expectation of the cost to acquire
all the potentially needed data items knowing that ni data items have already been acquired from
stream si for all i = 1, . . . , S. The goal is to compute DPCost[0, . . . , 0]. Algorithm 11 first com-
putes Max[s] for all s (lines 1-6). It then iteratively computes DPCost values by non-increasing
total number of already acquired data item starting with DPCost[Max[1], . . . ,Max[S]] = 0
(lines 7-10). Each computation is accomplish by a call to DPK (Algorithm 12).

DPK begins (lines 1-13) by computing, given the already acquired data items, which leaves
are already evaluated, which AND nodes are already fully evaluated, and which streams have
data items required by AND nodes that are not fully evaluated. From lines 20 to 29, the
algorithm computes for each stream ss the expected cost of retrieving the next data item from
ss. This computation relies on the probability that all fully evaluated AND nodes evaluate to
FALSE (which is computed at lines 14-17). It also relies on the probability that all non-fully
evaluated AND nodes requiring at least one data item from ss so far evaluate to FALSE (which
is computed at lines 22-24). The algorithm computes the lowest expected cost when the next
acquired data item is from stream ss (line 26). The desired DPCost value is the lowest such
cost.

DPK has complexity O(SL). Let D = maxi∈{1,...,S}Max[i]. MultiStreamDP places
(D+ 1)S calls to DPK, for an overall complexity of O(DSLS). This complexity is exponential
in the number of streams, which may preclude the use of MultiStreamDP in practice for
instance with more than a few streams.

From the output of MultiStreamDP we must construct a leaf schedule. Based on the
data item retrieval order we compute a completion order of the AND nodes, and an evaluation
order of the leaves within each AND node. We then construct a depth-first schedule according
to these orders.

Evaluation results for the single-stream case

In total, we consider 4 leaf-ordered, 5 AND-ordered, and 1 stream-ordered heuristics. We
first evaluate these heuristics on a set of “small” instances for which we can compute optimal
schedules using an exponential-time algorithm that performs an exhaustive search. Such an
algorithm is feasible because, thanks to Theorem 11, it only needs to search over all possible
depth-first schedules. Instances are generated using the same method as that described in
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Algorithm 11: MultiStreamDP (T )
1 for s = 1 to S do
2 Max[s]← 0;
3 for c = 1 to N do
4 for i = 1 to mc do
5 if Max[s] < dsslc,i then
6 Max[s]← dsslc,i
7 DPCost[Max[1], ...,Max[S]]← 0;
8 for step =

(∑S
i=1 Max[i]

)
− 1 down to 1 do

9 foreach (n1, ..., nS) such that
∑S
i=1 ni = step, with ni ≤ Max[i] for each i do

10 DPK(T ,DPCost, n1, ..., nS)
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Figure 7.8: Ratio to optimal vs. fraction of the instances for which a smaller ratio is achieved,
computed over 21,600 random “small” DNF tree instances in the single-stream case.
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Algorithm 12: DPK(T ,DPCost, n1, ..., nS)
1 for c = 1 to N do
2 AndCompleted[c]← True;
3 ProbaAndTrue[c]← 1;
4 for s = 1 to S do
5 AndNeedStream[c][s]← False
6 for i = 1 to mc do
7 LeafCompleted[i]← True;
8 for s = 1 to S do
9 if ns < dsslc,i then

10 AndCompleted[c]← False;
11 LeafCompleted[i]← False;
12 AndNeedStream[c][s]← True;
13 if LeafCompleted[i] then ProbaAndTrue[c]← ProbaAndTrue[c]× pc,i
14 ProbaAllCompletedAndsFalse← 1;
15 for c = 1 to N do
16 if AndCompleted[c] then
17 ProbaAllCompletedAndsFalse←

ProbaAllCompletedAndsFalse× (1− ProbaAndTrue[c])
18 DPCost[n1, ..., nS ]← +∞;
19 NextStream[n1, ..., nS ]← 0;
20 for s = 1 to S do
21 ProbaAllNeedingAndsFalse← 1;
22 for c = 1 to N do
23 if (not AndCompleted[c]) and AndNeedStream[c][s] then
24 ProbaAllNeedingAndsFalse←

ProbaAllNeedingAndsFalse× (1− ProbaAndTrue[c])
25 ProbaStreamRead←

ProbaAllCompletedAndsFalse× (1− ProbaAllNeedingAndsFalse);
26 Cost← ProbaStreamRead× c(ss) + DPCost[n1, ..., ns−1, ns + 1, ns+1, ..., nS ];
27 if Cost < DPCost[n1, ..., nS ] then
28 DPCost[n1, ..., nS ]← Cost;
29 NextStream[n1, ..., nS ]← s
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Figure 7.9: Ratio to Best vs. fraction of the instances for which a smaller ratio is achieved,
computed over 32,400 random “large” DNF tree instances in the single-stream case.

Section 7.4.2 for generating AND tree instances in the single-stream case. We generate DNF
trees with N = 2, . . . , 9 AND nodes and up to at most 20 leaves and 8 leaves per AND,
generating 1,000 random instances for each configuration, for a total of 21,600 instances. For
each instance we compute the ratio between the cost achieved by each heuristic and the optimal
cost.

Figure 7.8 shows for each heuristic the ratio vs. the fraction of the instances for which the
heuristic achieves a lower ratio. For instance, a point at (80, 2) means that the heuristic leads
to schedules that are within a factor 2 of optimal for 80% of the instances, and more than a
factor 2 away from optimal for 20% of the instances. The better the heuristic the closer its
curve is to the horizontal axis. These results include a curve for a heuristic called “Best.” This
heuristic runs all other heuristics and returns the generated schedule that achieved the lowest
expected cost.

The trends in Figure 7.8 are clear. Overall the poorest results are achieved by the leaf-
ordered heuristics, with the random such heuristic expectedly being the worst and the increas-
ing C the best. The AND-ordered heuristics, save for the decreasing p version, lead to the best
results overall. For the two AND-ordered heuristics that have both a static and a dynamic ver-
sion, the dynamic version leads to marginally better results than the static version. Finally, the
stream-ordered heuristic leads to poorer results than the best leaf-ordered heuristics, and thus
significantly worse results than the best AND-ordered heuristics. Overall, the most effective
heuristic is to sort the AND’s by increasing C/p.

We also evaluate the heuristics on a set of “large” instances with N = 2, . . . , 10 AND nodes
and m = 5, 10, 15, 20 leaves per AND node, with 100 random instances per configuration, for a
total of 32,400 instances. For most of these instances we cannot tractably compute the optimal
cost. Consequently, we compute ratios to the cost achieved by the Best heuristic. Results are
shown in Figure 7.9. Essentially, all the observations made on the results for small instances
still hold. We conclude that the best approach is to build a depth-first schedule, to sort the
AND nodes by the ratio of their costs to probability of success, and to compute these costs
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dynamically, accounting for previously scheduled AND nodes. This heuristic is the best one in
98.7%, resp. 94.07%, of the cases reported in Figure 7.9, resp. Figure 7.8. It runs in at most
9 seconds on one core of an 2.1 GHz AMD Opteron processor when processing a tree with 10
AND nodes with each 20 leaves.

The source code for all experiments described in this section is available at www.ens-
lyon.fr/LIP/ROMA/Data/DataForRR-8373.tgz.

Evaluation results for the multi-stream case

As in the previous section, we first evaluate our heuristics on a set of “small” instances for
which we can compute optimal schedules using an exponential-time exhaustive search (which
is feasible because, due to Theorem 11, it only needs to search over all possible depth-first
schedules). Instances are generated using the same method as that described in Section 7.4.3
for generating AND tree instances in the multi-stream case. We generate DNF trees with
N = 2, . . . , 8 AND nodes and up to at most 16 leaves in total and 7 leaves per AND, generating
100 random instances for each configuration, for a total of 12,600 instances. Results are shown
in Figure 7.10, and exhibit clear trends that are similar to those seen in the single-stream case.
The most effective heuristic is AND-ordered by increasing C/p, dynamic version. This heuristic
leads to the optimal solution in 48.98% of the instances, and is the best heuristic in 79.96% of
the instances.

These instances are still too large to run the dynamic programming MultiStreamDP
heuristic (described in Section 7.5.3) due to its high computational complexity and to its memory
requirements. To evaluate this heuristic we generate “very small” instances with N = 2, . . . , 5
AND nodes and up to at most 10 leaves in total and 5 leaves per AND, with a sharing ratio
ρ = 3/2, 2, 3, 4, 5, or 10 (hence, we only consider the 6 largest of the ratios used in all the
other simulations). The number of streams referenced by each leaf is sampled from a uniform
distribution over the interval [1, 3] (rather than [1, 5] as in all other multi-stream simulations).
We generate 100 random instances for each configuration, for a total of 4,800 instances. Results
are shown in Figure 7.11. Disappointingly, MultiStreamDP achieves results comparable to
the best Leaf-ordered heuristic and poorer than all AND-ordered heuristics except the AND-
ordered heuristic with decreasing probability of success (p). We conclude that in spite of being
optimal for deciding on a stream order, MultiStreamDP leads to poor results for solving the
original problem (and is computationally expensive).

We also evaluate our heuristics on a set of “large” instances with N = 2, . . . , 10 AND nodes
and m = 5, 10, 15, 20 leaves per AND node, with 100 random instances per configuration,
for a total of 32,400 instances. As in the previous section, we compute ratios to the “Best”
heuristic since we cannot tractably compute the optimal cost. Results are shown in Figure 7.12.
Essentially, all the observations made on the results for small instances hold. The AND-ordered
by increasing C/p, dynamic version, heuristic is the best heuristic in 92.16% of the instances.

We conclude that the best approach is to build a depth-first schedule, to sort the AND nodes
by the ratio of their costs to probability of success, and to compute these costs dynamically,
accounting for previously scheduled AND nodes. This heuristic is the best heuristic in 79.5%,
resp. 92.5%, of the cases reported in Figure 7.10, resp. Figure 7.12. On one core of an 2.1 GHz
AMD Opteron processor, it runs in at most 8 sec when processing trees with 9 AND nodes
with each 15 leaves, and in less than 35 sec when processing tress with 10 AND nodes with
each 20 leaves.



166 CHAPTER 7. COST-OPTIMAL EXECUTION OF BOOLEAN DNF TREES WITH SHARED STREAMS

R
at

io
to

O
pt

im
al

0 10 20 30 40 50 60 70 80 90 100
Percentage of instances

1

2

3

4
5
6
7
8
9

10

Leaf-ord., random
Leaf-ord., dec. q
Leaf-ord., inc. C
Leaf-ord., inc. C/q
AND-ord., dec. p, stat
AND-ord., inc. C, stat
AND-ord., inc. C/p, stat
AND-ord., inc. C, dyn
AND-ord., inc. C/p, dyn
Best

Figure 7.10: Ratio to optimal vs. fraction of the instances for which a smaller ratio is achieved,
computed over 16,200 random “small” DNF tree instances in the multi-stream case.
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Figure 7.11: Ratio to optimal vs. fraction of the instances for which a smaller ratio is achieved,
computed over 4,800 random “very small” DNF tree instances in the multi-stream case.



7.6. CONCLUSION 167

R
at

io
to

Be
st

0 10 20 30 40 50 60 70 80 90 100
Percentage of instances

1

2

3

4
5
6
7
8
9

10

Leaf-ord., random
Leaf-ord., dec. q
Leaf-ord., inc. C
Leaf-ord., inc. C/q
AND-ord., dec. p, stat
AND-ord., inc. C, stat
AND-ord., inc. C/p, stat
AND-ord., inc. C, dyn
AND-ord., inc. C/p, dyn

Figure 7.12: Ratio to the Best heuristic vs. fraction of the instances for which a smaller ratio is
achieved, computed over 32,400 random “large” DNF tree instances in the multi-stream case.

7.6 Conclusion
Motivated by a query processing scenario for sensor data streams, we have studied a version

of the Probabilistic And-Or Tree Resolution (PAOTR) problem [105] in which a single leaf may
reference multiple data streams and a single data stream may be referenced by multiple leaves.
We have given an optimal algorithm in the case of AND trees in the single-stream case. We have
shown that the problem is NP-complete for AND trees in the multi-stream case and for DNF
trees in the single-stream case. However, we have shown that there is an optimal leaf evaluation
order that corresponds to a depth-first traversal. This observation provides inspiration for
designing heuristics that produce depth-first traversals. Numerical results obtained for large
numbers of random trees show that one of the heuristics we have designed leads to good results
in practice.
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Conclusion

In this thesis, we have presented two parts dealing with scheduling and optimization prob-
lems in probabilistic context. The first part is devoted to the study of resilience on Exascale
platforms. In this part we focus on the effecient execution of applications on failure-prone
platforms. We have studied the combination of different fault-tolerance protocols with the Co-
ordinated Checkpointing protocol. We typically address questions such as: Given a platform
and an application, which fault-tolerance protocols should be used, when, and with which pa-
rameters? On the practical side, we conducted simulation experiments to validate each model.

The second part is devoted to the optimization of the expected sensor data acquisition cost
when evaluating a query expressed as a tree of boolean operators applied to boolean predicates.

Our main contributions are stated in the following paragraphs.

Summary

Unified Model for Assessing Checkpointing Protocols

In this chapter, we provide a theoretical foundation and a quantitative evaluation of the
drawbacks of checkpoint/restart protocols at Exascale. Our model outlines some realistic ranges
where hierarchical checkpointing outperforms coordinated checkpointing, thanks to its faster
recovery from individual failures. This early result had already been outlined experimentally
at smaller scales, but it was difficult to project at future scales. Our results also highlight that
significant efforts are required in terms of I/O bandwidth to enable any type of rollback recovery
to be competitive and suggests that most research efforts, funding and hardware provisions
should be directed to I/O performance rather than improving component reliability.

All results presented in this chapter are corroborated by a set of simulations, we have
checked (by an extensive brute-force comparison) that our model could predict near-optimal
checkpointing periods for the whole range of the protocol/platform/application combinations;
this gives us very good confidence that this model will prove reliable and accurate in other
frameworks.

Combining Replication and Coordinated Checkpointing

In this chapter, we have studied group and process replication from a theoretical perspec-
tive comparing them to the pure coordinated checkpointing approach in terms of expected
application execution times. For group replication, we have proposed a simple yet effective al-
gorithm, we have derived a checkpointing period that minimizes an upper bound on application
makespan for exponentially distributed failures and we have proposed a Dynamic Program-
ming approach that computes non-periodic checkpoint dates in a view to minimizing makespan
for non-exponentially distributed failures. Finally, we have performed simulation experiments

169



170 CONCLUSION

assuming that failures follow Exponential or Weibull distributions and using failure logs from
production clusters and the results demonstrate that group replication can be beneficial at large
scale.

For process replication, we have derived exact expressions for the Mean Number of Failures
To Interruption and the Mean Time To Interruption for arbitrary numbers of replicas assuming
Exponential failures, we have extended these results to arbitrary failure distributions, notably
obtaining closed-form solutions in the case of Weibull failures. Finally, we have also performed
simulation experiments and the results show that the choice of a good checkpointing period is
no longer critical when process replication is used.

Combining Fault Prediction and Coordinated Checkpointing

In the first section of this chapter, we assessed the impact of fault prediction on periodic
checkpointing using a Predictor with exact prediction dates. We established analytical condi-
tions stating whether a fault prediction should be taken into account or not. More importantly,
we proved that the optimal approach is to never trust the predictor in the beginning of a regular
period, and to always trust it in the end of the period; the cross-over point Cp

p depends on the
time needed to take a proactive checkpoint and on the precision of the predictor. We conducted
simulations involving synthetic failure traces following either an Exponential distribution law
or a Weibull one. We also used log-based failure traces. Through this extensive experiment
setting, we established the accuracy of the model, of its analysis, and of the predicted period
(in the presence of a fault predictor). The simulations also show that even a not-so-good fault
predictor can lead to quite a significant decrease in the application execution time.

In the second section, we used a Predictor with a prediction window. We proposed a new
approach based upon two periodic modes: a regular mode outside prediction windows, and a
proactive mode inside prediction windows, whenever the size of these windows is large enough.
We were able to fully solve this problem with results corroborated by a full set of simulations.

On the combination of silent error detection and checkpointing

In this chapter, we focused on silent data corruption errors. Contrary to fail-stop failures,
such latent errors cannot be detected immediately, and a mechanism to detect them must
be provided. We provided a general framework to solve, independently of the verification
mechanism, the problem of minimizing the execution time of a schedule. We instantiated the
model using realistic scenarios and application/architecture parameters.

Cost-Optimal Execution of Boolean DNF Trees with Shared Streams

In this chapter, we have studied the problem of minimizing the amount of data acquired
when evaluating a query expressed as a tree of disjunctive boolean operators applied to boolean
predicates of sensor data. We have studied the more general scenario where a stream can occur
in multiple leaves of the tree.

We have given an optimal algorithm in the case of AND trees in the single-stream case.
We have shown that the problem is NP-complete for AND trees in the multi-stream case and
for DNF trees in the single-stream case. However, we have shown that there is an optimal leaf
evaluation order that corresponds to a depth-first traversal. This observation provides inspira-
tion for designing heuristics that produce depth-first traversals. Numerical results obtained for
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large numbers of random trees show that one of the heuristics we have designed leads to good
results in practice.

Perspectives

Throughout the thesis, we pointed out at the end of each chapter some future work that
remains to be done. In this section, we outline some perspectives of future work that could
follow the thesis in the short term. Then we state more general, long-term oriented, research
directions.

Resilience on exascale systems

An interesting direction for future work is to investigate the impact of partial replication in-
stead of full replication. In this approach, replication would be used only for critical components
(e.g., message loggers in uncoordinated checkpoint protocols), while traditional checkpointing
would be used for non-critical components. The goal would be to reduce the overhead of repli-
cation while still achieving some of its benefits in terms of resilience.

Another direction is to generalize the work on Group replication beyond the case of coor-
dinated checkpointing, for instance to deal with hierarchical checkpointing schemes based on
message logging, or with containment domains [28]. Both these techniques alleviate the cost of
checkpointing and recovery, and would dramatically decrease checkpointing contention costs.

Cost-Optimal Execution of Boolean Trees with Shared Streams

A possible future direction is to consider so-called non-linear strategies [105]. Although in
chapter 7 we have considered a schedule as a leaf ordering (called a linear strategy in [105]), a
more general notion is that of a decision tree in which the next leaf to be evaluated is chosen
based on the truth value of the previous evaluated leaf. A practical drawback of a non-linear
strategy is that the size of the strategy’s description is exponential in the number of tree leaves.
In [105], it is shown that in the read-once case linear strategies are dominant for DNF trees,
meaning that there is always one optimal strategy that is linear. Via a simple counter example
it can be shown that this is no longer true in the shared see Appendix 7.8), thus motivating the
investigation of non-linear strategies.

Another possible future direction is to study the problem for periodic query evaluations.
In chapter 7 we have considered a single query evaluation, but in practice queries on sensor
data streams are evaluated periodically. As a result, data items acquired from previous query
evaluations may be re-used for the current evaluation, depending on predicate time-windows
and the query evaluation period. The problem is to determine a schedule that minimizes the
expected cost of the query evaluation in the long run. The computation of the cost of a given
schedule is more complex due to the need to account for data items “left over” from previous
query evaluations, and we expect the problem to be more computationally challenging than
that studied in this chapter.
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General perspectives
Uncoordinated Checkpointing

The Coordinated checkpointing and hierarchical protocols studied in Part 1 suffer a waste
in terms of computing resources, whenever living processes have to rollback and recover from a
checkpoint in order to tolerate failures. These protocols may also lead to I/O congestion when
too many processes are checkpointing at the same time.

An interesting future direction for this thesis would be to study the impact of uncoordinated
checkpointing protocol on reliability and identify if this protocol deliver the best performance
for a given application/platform pair.

Impact of resilience techniques on energy consumption

An interesting future direction is to study the impact of resilience techniques on energy
consumption. Together with fault-tolerance, energy consumption is expected to be a major
challenge for exascale machines [92, 95]. A promising next step in this search is the study of
the interplay between checkpointing, replication, and energy consumption. By definition, both
checkpointing and replication induce additional power consumption, but both techniques lead
to faster executions in expectation. There are thus various energy trade-offs to achieve. The
key question is to determine the best execution strategy given both an energy budget and a
maximum admissible application makespan.
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7.7 Proof of optimality of SingleStreamGreedy for AND trees
In this section, we present the full proof of Theorem 9.

Proof. We prove the theorem by contradiction. We assume that there exists an instance for
which the schedule produced by Algorithm 6, ξgreedy, is not optimal. Among the optimal sched-
ules, let us pick a schedule, ξopt , which has the longest prefix P in common with schedule ξgreedy.
We consider the first decision (i.e., one recursive call to the algorithm) taken by Algorithm 6
that schedules a leaf that does not belong to P. Let k be the number of leaves scheduled by
this decision, and let us denote them lσ(1), ..., lσ(k), scheduled in this order. Recall each call
to the GREEDY algorithm schedules a sequence of leaves that all require data items from the
same stream. Furthermore, the scheduled sequence of leaves is a sub-sequence of the ordered
sequence of all leaves that require data items from that stream, sorted by increasing number of
data items required. Without loss of generality, we assume that lσ(1), ..., lσ(k) all require items
from stream 1. The first of these leaves may belong to P (as the last leaf occurrences in P). Let
P′ be equal to P minus the leaves lσ(1), ..., lσ(k). Then, ξgreedy can be written as:

ξgreedy = P′, lσ(1), ..., lσ(k),S. (7.19)

In turn, ξopt can be written ξopt = P′,Q,R where lσ(k) is the last leaf of Q. In other words, Q can
be written L1lσ(1)L2lσ(2)...Lklσ(k), where each sequence of leaves Li, 1 ≤ i ≤ k, can be empty.
Note that, because of Theorem 15, and because the sequence lσ(1), ..., lσ(k) is a sub-sequence of
the the list of all leaves requiring data items from that stream sorted by increasing number of
data items required, none of the Li sequences can contain a leaf requiring elements from stream
1. Therefore,

ξopt = P′,Q,R where Q = L1lσ(1)L2lσ(2)...Lklσ(k) (7.20)

From ξgreedy and ξopt , we build a new schedule, ξnew , defined as

ξnew = P′,NewOrder ,R where NewOrder = lσ(1), ..., lσ(k), L1, ..., Lk (7.21)

P′, lσ(1), ..., lσ(k) is a prefix to both ξgreedy and ξnew . This prefix is strictly larger than P (since
P does not contain lσ(k)). Therefore, if the cost of ξnew is not greater than that of ξopt , ξnew is
optimal and has a longer prefix in common with ξgreedy than ξnew , which would contradict the
definition of ξopt . We obtain this contradiction by computing the cost of ξnew and showing that
it is no larger than that of ξopt .
Cost notations – To ease the writing of the proof we introduce several notations. If X is a
partial leaf schedule, P (X) denotes the probability that all leaves in X evaluates to TRUE. In
other words, P (X) =

∏
li∈X pi. Let X and Y be two disjoint (partial) leaf schedules, i.e., they
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do not have any leaf in common, such that X is evaluated right before Y. Then Cost(Y | X)
denotes the cost of evaluating Y, assuming that all leaves in X have evaluated to TRUE. Of
course, Cost(Y | X) takes into account all data items acquired during the successful evaluation
of X. With these notations, we can now give the costs of ξnew and ξopt based on their definitions
as sequences of partial leaf schedules in Equations (7.20) and (7.21):

Cost(ξopt) = Cost(P′) + P (P′)Cost(Q | P′) +P (P′)P (Q)Cost(R | P′,Q)
Cost(ξnew) = Cost(P′) + P (P′)Cost(NewOrder | P′)

+P (P′)P (NewOrder)Cost(R | P′,NewOrder)

BecauseQ and NewOrder contain exactly the same leaves, P (Q) = P (NewOrder) and Cost(R | P′,Q) =
Cost(R | P′,NewOrder). Therefore,

Cost(ξopt)− Cost(ξnew) = P (P′)
(
Cost(Q | P′)− Cost(NewOrder | P′)

)
(7.22)

From what precedes, it now suffices to show that Cost(Q | P′) − Cost(NewOrder | P′) ≥ 0 to
prove the theorem.

Initial mathematical formulation – We use Proposition 15 to define notations that make it
possible to obtain a simple expression for the quantity in Equation 7.22. Consider a stream S
and two leaves li and lj that require, respectively, dli and dlj items from stream S, with dli < dlj .
Then, according to Proposition 15, li is always evaluated before lj in an optimal schedule. The
GREEDY algorithm also schedules li before lj . If there does not exist any leaf lk requiring
dlk ∈ [dli ; dlj ] elements from stream s, then each time lj is evaluated, exactly dlj − dli items are
acquired from stream s, because the last dli elements of stream s were acquired when li was
evaluated. In this case, we define ai as the number of data items that must be acquired when
evaluating leaf li. Formally,

ai = dli −max
{
dlj | S(j) = S(i) and dlj < dli

}

Remark: One should note that we can assume without loss of generality that the AND tree does
not contain two leaves requiring the exact same number of items from the same stream. If such
two leaves exist, then one replaces them by a single leaf with the same data item requirement
and with a probability of success that is the product of the probability of success of the two
original leaves. This is because once one of the two original leaves has been evaluated then the
other one can be evaluated for free.

To ease the writing of the proof, we index the leaves in L1, ..., Lk according to the stream
from which they require data items, and introduce the following additional notations. Let Ni

be the number of leaves in L1 ∪ . . . ∪ Lk that require data items from stream i and li,j be
the j-th of these leaves. We then extend the notations defined in Section 7.2 as follows: the
probability of success of li,j is pi,j , li,j requires dli,j elements from stream S(i, j), etc. µ(i,j) is
the index of the leaf sequence Lp to which leaf li,j belongs: li,j ∈ Lµ(i,j) . Qi,j is the product of
the success probabilities of the leaves that precede li,j in Lµ(i,j) , Qm is the product of the success
probabilities of all the leaves in Lm, and Qm =

∏m
n=1Qn. Finally, we define Pm =

∏m
n=1 pσ(n).
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With these notations we can now write Cost(NewOrder | P′) as:

Cost(NewOrder | P′) =
k∑

m=1

(
m−1∏
n=1

pσ(n)

)
aσ(m)

+
S∑
i=2

Ni∑
j=1

(
k∏

m=1
pσ(m)

)µ(i,j)−1∏
m=1

Qm

Qi,jai,jc(S(i, j))

=
k∑

m=1
Pm−1aσ(m) +

S∑
i=2

Ni∑
j=1

PkQµ(i,j)−1Qi,jai,jc(S(i, j)) ,

and Cost(Q | P′) as:

Cost(Q | P′) =
k∑

m=1

(
m−1∏
n=1

pσ(n)

)(
m∏
n=1

Qn

)
aσ(m)

+
S∑
i=2

Ni∑
j=1

µ(i,j)−1∏
m=1

pσ(m)

µ(i,j)−1∏
m=1

Qm

Qi,jai,jc(S(i, j))

=
k∑

m=1
Pm−1Qmaσ(m) +

S∑
i=2

Ni∑
j=1

Pµ(i,j)−1Qµ(i,j)−1Qi,jai,jc(S(i, j)) .

Therefore:

Cost(Q | P′)− Cost(NewOrder | P′) =
k∑

m=1
Pm−1Qmaσ(m) +

S∑
i=2

Ni∑
j=1

Pµ(i,j)−1Qµ(i,j)−1Qi,jai,jc(S(i, j))

−

 k∑
m=1

Pm−1aσ(m) +
S∑
i=2

Ni∑
j=1

PkQµ(i,j)−1Qi,jai,jc(S(i, j))


=

k∑
m=1

Pm−1(Qm − 1)aσ(m)

+
S∑
i=2

Ni∑
j=1

(
Pµ(i,j)−1 − Pk

)
Qµ(i,j)−1Qi,jai,jc(S(i, j)) .

We introduce two additional notations:

α(i,j) = Qµ(i,j)−1
(
Pµ(i,j)−1 − Pk

)
Qi,j , and

A =
∑k
m=1 Pm−1aσ(m)

1− Pk
,

so that we can finally write the expression for the difference of the two costs:

Cost(Q | P′)−Cost(NewOrder | P′) =
(

k∑
m=1

Pm−1 (Qm − 1) aσ(m)

)
+

 S∑
i=2

Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 .

(7.23)
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Accounting for the algorithm’s scheduling decisions – The best decision for the GREEDY
algorithm was to evaluate at once the leaf sequence lσ(1), ..., lσ(k). Therefore, as far as the algo-
rithm is concerned, this was a better decision than evaluating any sequence of leaves from any
other stream. More formally, for any stream i, 2 ≤ i ≤ S, and the set of the first j leaves of
that stream, 1 ≤ j ≤ Ni, we have:

(∑k
m=1

(∏m−1
n=1 pσ(n)

)
aσ(m)

)
(
1−

∏k
m=1 pσ(m)

)
1−

j∏
l=1

pi,l

 ≤
 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 .

These equations express the fact that these other sequence of leaves of a Ratio value (see
Algorithm 6) lower than that of the sequence scheduled by the algorithm, and can be rewritten
as:

Ineq(i, j) : A

1−
j∏
l=1

pi,l

 ≤
 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 . (7.24)

Determining multiplying coefficients – To prove the theorem we combine the Inequali-
ties (7.24) obtained for different values of i and j. The idea is to follow a variable elimination
process. Ineq(i,Ni) is the only inequality in which ai,Ni appears. We multiply Ineq(i,Ni) by
a value λi,Ni such that, in the resulting inequality, the coefficient of ai,Ni is the same than in
Equation (7.23). Next, we multiply Ineq(i,Ni − 1) by a value λi,Ni−1 such that when adding
the resulting inequality to the one previously obtained, the coefficient of ai,Ni−1 is the same
than in Equation (7.23), and so on. This process can be done independently for the different
streams as Ineq(i, j) only contains terms relative to stream i.

We define the λi,j ’s are defined as follows.

λi,j =


α(i,Ni)∏Ni−1
l=1 pi,l

if j = Ni ,

α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

otherwise.

We will later show that this choice of multipliers enable us to achieve our goal. However, as we
want to use the λi,j ’s as multiplying coefficients for inequalities, we must first show that they
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are all non-negative. This is evident for the λi,Ni ’s. Let us consider λi,j for j ∈ [1;Ni − 1]:

λi,j =
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

= 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qm

µ(i,j)−1∏
m=1

pσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j
− 1∏j

l=1 pi,l

µ(i,j+1)−1∏
m=1

Qm

µ(i,j+1)−1∏
m=1

pσ(m)

1−
k∏

m=µ(i,j+1)

pσ(m)

Qi,j+1

= 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qmpσ(m)



×

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j −
µ(i,j+1)−1∏

m=µ(i,j)

Qmpσ(m)

1−
k∏

m=µ(i,j+1)

pσ(m)

 Qi,j+1
pi,j


Let us first consider the case µ(i,j+1) = µ(i,j). Then the above equation can be rewritten:

λi,j = 1∏j−1
l=1 pi,l

µ(i,j)−1∏
m=1

Qmpσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

[Qi,j − Qi,j+1
pi,j

]

By definition, Qi,j+1 is the product of the probabilities of success of all the leaves that are
evaluated before the leaf li,j+1 is evaluated. By definition of the numbering of the leaves, this
includes at least all the leaves that are evaluated before leaf li,j is evaluated and leaf li,j . As all
probabilities are less than or equal to 1, this implies that Qi,j+1 ≤ Qi,jpi,j , and therefore that
λi,j ≥ 0.

We now consider the other case: µ(i,j+1) > µ(i,j). Then, Qµ(i,j) is of the form Qi,jpi,jX
where X is the product of the probabilities of success of the leaves appearing in Lµ(i,j) after the
leaf li,j . Therefore, Qi,jpi,j ≥ Qµ(i,j) . As for all i ∈ [1;S], 0 ≤ pσ(i) ≤ 1,

∏k
m=µ(i,j+1)

pσ(m) ≥∏k
m=µ(i,j)

pσ(m) and 1−
∏k
m=µ(i,j+1)

pσ(m) ≤ 1−
∏k
m=µ(i,j)

pσ(m), pσ(µ(i,j))(
∏µ(i,j+1)−1
m=µ(i,j)+1Qmpσ(m))Qi,j+1 ≤

1 because it is a product of probabilities. Using these inequalities, we have:(
1−

∏k
m=µ(i,j)

pσ(m)
)
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j) Qmpσ(m)

) (
1−

∏k
m=µ(i,j+1)

pσ(m)
)
Qi,j+1
pi,j

≥

(
1−

∏k
m=µ(i,j)

pσ(m)
)
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j) Qmpσ(m)

) (
1−

∏k
m=µ(i,j)

pσ(m)
)
Qi,j+1
pi,j

=

(
1−

∏k
m=µ(i,j)

pσ(m)
) (
Qi,j −

(∏µ(i,j+1)−1
m=µ(i,j) Qmpσ(m)

)
Qi,j+1
pi,j

)
≥

(
1−

∏k
m=µ(i,j)

pσ(m)
) (
Qi,j −Qµ(i,j)

(
pσ(µ(i,j))(

∏µ(i,j+1)−1
m=µ(i,j)+1Qmpσ(m))Qi,j+1

)
1
pi,j

)
≥

(
1−

∏k
m=µ(i,j)

pσ(m)
) (
Qi,j −Qµ(i,j)

1
pi,j

)
≥ 0
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Therefore, all the λi,j ’s are non-negative.

Combining the inequalities – For a given couple of values (i, j), with 2 ≤ i ≤ S and
1 ≤ j ≤ Ni, let Ineq(i, j) be Inequality (7.24) defined for (i, j). Because all the λi,j ’s are
non-negative, we can form the inequality:

S∑
i=2

Ni∑
j=1

(λi,j × Ineq(i, j)) (7.25)

We now show that Inequality (7.25) leads to:

Cost(Q | P′)−Cost(NewOrder | P′) ≥
k∑

m=1
Pm−1 (Qm − 1) aσ(m)+A

S∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)


(7.26)

To prove the Inequality (7.26), we consider the terms relative to stream i in Inequality (7.25):

Ni∑
j=1

(λi,j × Ineq(i, j)) ⇔

A
Ni∑
j=1

λi,j

1−
j∏
l=1

pi,l

 ≤
Ni∑
j=1

λi,j

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 (7.27)



7.7. PROOF OF OPTIMALITY OF SINGLESTREAMGREEDY FOR AND TREES 179

We start by considering the left-hand side of this inequality.

Ni∑
j=1

λi,j

1−
j∏
l=1

pi,l

 =Ni−1∑
j=1

λi,j

1−
j∏
l=1

pi,l

+ λi,Ni

1−
Ni∏
l=1

pi,l

 =Ni−1∑
j=1

(
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

)1−
j∏
l=1

pi,l

+
α(i,Ni)∏Ni−1
l=1 pi,l

1−
Ni∏
l=1

pi,l

 =Ni−1∑
j=1

α(i,j)∏j−1
l=1 pi,l

1−
j∏
l=1

pi,l

−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

1−
j∏
l=1

pi,l

+
α(i,Ni)∏Ni−1
l=1 pi,l

1−
Ni∏
l=1

pi,l

 =Ni−1∑
j=1

α(i,j)∏j−1
l=1 pi,l

1−
j∏
l=1

pi,l

−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

1−
j−1∏
l=1

pi,l

+
α(i,Ni)∏Ni−1
l=1 pi,l

1−
Ni∏
l=1

pi,l

 = Ni∑
j=1

α(i,j)∏j−1
l=1 pi,l

1−
j∏
l=1

pi,l

−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

1−
j−1∏
l=1

pi,l

 =

α(i,1) (1− pi,1) +

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

1−
j∏
l=1

pi,l

−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

1−
j−1∏
l=1

pi,l

 =

α(i,1) (1− pi,1) +
Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

j−1∏
l=1

pi,l −
j∏
l=1

pi,l

 =

α(i,1) (1− pi,1) +
Ni∑
j=2

α(i,j) (1− pi,j) =

Ni∑
j=1

α(i,j) (1− pi,j) .

Therefore,

A
Ni∑
j=1

λi,j

1−
j∏
l=1

pi,l

 = A

 Ni∑
j=1

α(i,j) (1− pi,j)

 . (7.28)
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We now focus on the right-hand side of the inequality:

Ni∑
j=1

λi,j

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


=

Ni−1∑
j=1

λi,j

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

+ λi,Ni

 Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


=

Ni−1∑
j=1

(
α(i,j)∏j−1
l=1 pi,l

−
α(i,j+1)∏j
l=1 pi,l

) j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

+
α(i,Ni)∏Ni−1
l=1 pi,l

 Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


=

Ni−1∑
j=1

α(i,j)∏j−1
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


+

α(i,Ni)∏Ni−1
l=1 pi,l

 Ni∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


=

 Ni∑
j=1

α(i,j)∏j−1
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

−
Ni−1∑

j=1

α(i,j+1)∏j
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 = Ni∑
j=1

α(i,j)∏j−1
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

−
 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

j−1∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 =

= α(i,1)ai,1c(S(i, 1)) +

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


−

 Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

j−1∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))


= α(i,1)ai,1c(S(i, 1)) +

Ni∑
j=2

α(i,j)∏j−1
l=1 pi,l

j−1∏
r=1

pi,r

 ai,jc(S(i, j))

=
Ni∑
j=1

α(i,j)ai,jc(S(i, j)) .

Therefore
Ni∑
j=1

λi,j

 j∑
l=1

(
l−1∏
r=1

pi,r

)
ai,lc(S(i, l))

 =

 Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 . (7.29)

By combining Inequality (7.27) with Equations (7.28) and (7.29), and by summing over all
streams, we obtain:

A
S∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 ≤ S∑
i=2

 Ni∑
j=1

α(i,j)ai,jc(S(i, j))

 . (7.30)

Using Equation (7.23) and Inequality (7.30), we obtain:

Cost(Q | P′)−Cost(NewOrder | P′) ≥
k∑

m=1
Pm−1 (Qm − 1) aσ(m)+A

S∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 .

(7.31)
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Completing the proof – We want to prove that the right-hand side of Inequality (7.31) is
non-negative, i.e., that the following inequality holds:

k∑
m=1

Pm−1 (Qm − 1) aσ(m) +A
S∑
i=2

 Ni∑
j=1

α(i,j) (1− pi,j)

 ≥ 0 . (7.32)

Because of Inequality (7.31), this will enable us to conclude. Let

An =
n∑

m=1
Pm−1aσ(m) .

Therefore, A = Ak
(1−Pk) . We start by focusing on the first term of Inequality (7.32). We prove

that:
k∑

m=1
Pm−1 (Qm − 1) aσ(m) ≥ A

((
k∑
i=1

(Qi −Qi−1)Pi−1

)
+ Pk(1−Qk)

)
. (7.33)

k∑
m=1

Pm−1 (Qm − 1) aσ(m)

=
k∑

m=1
(Qm − 1)

(
m∑
n=1

Pn−1an −
m−1∑
n=1

Pn−1an

)

=
k∑

m=1
(Qm − 1)(Am −Am−1)

=
(

k∑
m=1
Qm(Am −Am−1)

)
−
(

k∑
m=1

(Am −Am−1)
)

=
(

k∑
m=1

(QmAm −QmAm−1)
)
− (Ak −A0)

=
(

k∑
m=1

(QmAm −Qm−1Am−1 +Qm−1Am−1 −QmAm−1)
)
−Ak

=
(

k∑
m=1

(QmAm −Qm−1Am−1)
)

+
(

k∑
m=1

(Qm−1Am−1 −QmAm−1)
)
−Ak

= (QkAk −Q0A0) +
(

k∑
m=1

(Qm−1 −Qm)Am−1

)
−Ak

=
(

k∑
m=1

(Qm−1 −Qm)Am−1

)
+ (Qk − 1)Ak =

(
k∑

m=1
(Qm−1 −Qm)Am−1

)
+ (Qk − 1)A(1− Pk) .

By hypothesis, the best decision for the greedy algorithm was to read at once the leaves a1, ...,
ak. Therefore, this was better than reading any other sequence of leaves from stream 1. So, for
any value of m ≤ k,

A (1− Pm−1) ≤ Am−1 .
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Because Qm = Qm−1Qm with Qm ∈ [0; 1], then Qm−1 −Qm ≥ 0. Therefore, we have:

k∑
m=1

(Qm−1 −Qm)Am−1 +A(1− Pk)(Qk − 1)

≥ A
[(

k∑
m=1

(Qm−1 −Qm)(1− Pm−1)
)

+ (1− Pk)(Qk − 1)
]

= A

[(
k∑

m=1
(Qm−1 −Qm)

)
−
(

k∑
m=1

(Qm−1 −Qm)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[
(Q0 −Qk) +

(
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[
1−Qk +

(
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ (1− Pk)(Qk − 1)

]

= A

[(
k∑

m=1
(Qm −Qm−1)Pm−1

)
− Pk(Qk − 1)

]
.

We now focus on the second term of Inequality (7.32). We prove must prove that:

S∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j) =
(

k∑
m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk) . (7.34)

We have:

S∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

=
S∑
i=2

Ni∑
j=1

µ(i,j)−1∏
m=1

Qmpσ(m)

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)
=

S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1

1−
k∏

m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)
=

 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1

 k∏
m=µ(i,j)

pσ(m)

Qi,j(1− pi,j)


=

 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1PkQi,j(1− pi,j)


=

 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
Pk S∑

i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j)

 .

We concentrate on the second term and its meaning. For any stream i and any of its leaves j,
Qµ(i,j)−1Qi,j is the probability of success of all the leaves evaluated before the studied leaf (not
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considering the leaves of other streams), and Qµ(i,j)−1Qi,jpi,j is the same probability right after
the evaluation of the studied leaf. Therefore, in the inner sum all terms cancel out except the
first one, that is the probability of success if no leaf had been evaluated so far, and the last one,
that is the probability of success if all the leaves have been evaluated. Formally, we have:

S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j) = 1−

(
k∏

m=1
Qm

)
= 1−Qk . (7.35)

Therefore,

S∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

=

 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

−
Pk S∑

i=2

Ni∑
j=1
Qµ(i,j)−1Qi,j(1− pi,j)


=

 S∑
i=2

Ni∑
j=1
Qµ(i,j)−1Pµ(i,j)−1Qi,j(1− pi,j)

− Pk(1−Qk)
=

 S∑
i=2

Ni∑
j=1

(Qµ(i,j)−1Pµ(i,j)−1Qi,j −Qµ(i,j)−1Pµ(i,j)−1Qi,jpi,j)

− Pk(1−Qk)

=


k∑

m=1

∑
(i,j) s.t.
µ(i,j)=m

(Qm−1Pm−1Qi,j −Qm−1Pm−1Qi,jpi,j)

− Pk(1−Qk)

=


k∑

m=1
Qm−1Pm−1

∑
(i,j) s.t.
µ(i,j)=m

(Qi,j −Qi,jpi,j)

− Pk(1−Qk)
=
(

k∑
m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk) .

The last equality above is established using the same type of reasoning as the one we used to
establish Equation (7.35).
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We now combine Inequality (7.33) with Equation (7.34):

k∑
m=1

(Qm − 1)Pm−1aσ(m) +A
S∑
i=2

Ni∑
j=1

α(i,j)(1− pi,j)

≥ A
((

k∑
m=1

(Qm −Qm−1)Pm−1

)
+ Pk(1−Qk)

)
+A

((
k∑

m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk)

)

= A

((
k∑

m=1
(Qm −Qm−1)Pm−1

)
+ Pk(1−Qk) +

(
k∑

m=1
Qm−1Pm−1(1−Qm)

)
− Pk(1−Qk)

)

= A

((
k∑

m=1
(Qm −Qm−1)Pm−1

)
+
(

k∑
m=1
Qm−1Pm−1(1−Qm)

))

= A

(
k∑

m=1
(QmPm−1 −Qm−1Pm−1 +Qm−1Pm−1 −Qm−1Pm−1Qm)

)

= 0 ,

because Qm−1Qm = Qm. We have thus established Inequality (7.32), which concludes the
proof. �

7.8 Dominant Linear Strategy Counter-Example

A more general notion than a schedule, called a strategy, is described in [105]. Although it
may seem counter-intuitive, the processing of a query does not have to follow a defined ordering
of the leaves. Instead, a strategy is a decision tree in which the next leaf to be evaluated is
chosen based on the truth value of the leaves that have been evaluated previously. A schedule,
as defined in this work, is a particular kind of strategy, termed a “linear strategy” in [105].
Therein, the authors prove that for some problem instances the best linear strategy can be far
from being the optimal strategy. Although interesting from a theoretical standpoint, a practical
drawback of a non-linear strategy is that the size of its description is exponential in the number
of tree leaves. Instead, a linear strategy, or schedule, is simply an ordering of the leaves, with a
description size linear in the number of tree leaves. This severe drawback explains why we have
not considered non-linear strategies in this work.

However, from a theoretical point of view, it is interesting to ask the following question:
while linear strategies are dominant (among all possible strategies) for DNF trees in the read-
once case [105], is it still the case in the shared case? We show that the answer is negative by
building a counter-example.

Consider three streams, A, B, and C, with per data item costs c(A) = 1, c(B) = 1.1, and
c(C) = 1. Consider the query tree in Figure 7.13, where for each leaf is indicated the success
probability, the stream needed, and the number of data items required from that stream. We
first compute the best schedule (i.e., leaf ordering). The cost of schedule l1, l2, l3, l4 is

c(A) + p1(c(B) + (1− p2)c(B)) + (1− p1)(2c(B))
+(1− p1p2)(1− p3)(2c(C)) = 1.95 < 2
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or

and and and

A[1]
0.5
l1

B[1]
0.5
l2

B[2]
0.99
l3

C[2]
0.99
l4

Figure 7.13: Example DNF tree for which the best schedule has larger cost than a non-linear
strategy.

The cost of any schedule starting with l3 or l4 is at least 2. The cost of schedule l1, l2, l4, l3 is
larger than

c(A) + p1(c(B) + (1− p1p2)(2c(C)) = 2.15 > 2.

Finally, if we start with the first AND node, it is always better to start with leaf l1 whose cost
is 0. Altogether, the best schedule is l1, l2, l3, l4, of cost 1.95.

Now, consider the non-linear strategy that evaluates l1 first and then:
— if l1 evaluates to TRUE, proceeds with l2, l3, and l4, just as in the optimal schedule;
— if l1 evaluates to FALSE, proceeds with l4, l3, and l2.

The cost of this strategy is

c(A)+
p1[(c(B) + (1− p2)c(B)) + (1− p2)(1− p3)(2c(C))]

+(1− p1)[2c(C)) + (1− p4)(2c(B))] = 1.851,

which is lower than that of the best schedule.
Determining the optimal non-linear strategy for a DNF tree in the shared model is an open

problem. Unless some structural property of this strategy can be proven, the space requires to
describe this optimal non-linear strategy is unknown (and likely exponential).
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