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General introduction and specific objectives 

  

Tooth development results from reciprocal inductive interactions between the 

ectomesenchyme and oral epithelium and proceeds through a series of well-defined stages 

including the initiation, bud, cap and bell stages (Ruch, Karcher-Djuricic, and Gerber 1973; 

Slavkin 1974; Catón and Tucker 2009; Miletich and Sharpe 2003; I Thesleff and Hurmerinta 

1981; Mitsiadis and Luder 2011). At the bell stage which is the last step of tooth crown 

formation, signals from the dental epithelium (i.e., inner enamel epithelium) instruct dental 

mesenchymal cells to differentiate into odontoblasts. Differentiated odontoblasts signal back 

to inner enamel epithelial cells and induce their differentiation into ameloblasts, which are 

responsible for enamel matrix synthesis. Ameloblast terminal differentiation necessitates the 

presence of an extracellular matrix that is secreted by odontoblasts and forms the predentin 

(Zeichner-David et al. 1995). The degradation of the basement membrane (BM) separating 

the dental epithelium from the mesenchyme is a key step in this process that allows direct 

contact of ameloblasts with both odontoblasts and the unmineralized dentin matrix (Catón 

and Tucker 2009; Olive and Ruch 1982). Matrix metalloproteinases (MMPs) are involved in 

all stages of tooth formation (Bourd-Boittin et al. 2005; Chaussain-Miller et al. 2006). At the 

bell stage, MMPs have a major role in BM degradation (Heikinheimo and Salo 1995; 

Sahlberg et al. 1992a), thus allowing direct cross-talk between odontoblasts and ameloblasts 

(Heikinheimo and Salo 1995; Sahlberg et al. 1999). It has been shown that at more advanced 

stages MMPs also regulate the processing of dental extracellular matrix (ECM) proteins prior 

to mineralization. Indeed, it has been demonstrated that MMPs regulate amelogenin (AMEL) 

cleavage by enamelysin (MMP-20) during early enamel maturation (Bourd-Boittin et al. 

2005; Bourd-Boittin et al. 2004; Lu et al. 2008; Nagano et al. 2009; Turk et al. 2006; Simmer 

and Hu 2002; J. D. Bartlett and Simmer 1999). The notion of direct epithelial-mesenchymal 

(or epithelio-stromal) interactions was first introduced in the cancer field when EMMPRIN, a 

membrane glycoprotein also known as CD147, was identified as a MMP inducer present at 

the cell surface of tumor cells which can activate stromal cells through direct contact and 

signal them to increase MMP production (Toole 2003). Recently accumulating data also 

advocate a role for EMMPRIN in modulating MMP expression during non-tumorigenic 

pathological conditions as well as in physiological situations such as tissue remodeling and 

cytodifferentiation events (Gabison, Hoang-Xuan, et al. 2005; Huet, Gabison, et al. 2008; 

Mohamed et al. 2011; Kato et al. 2011; Nabeshima et al. 2006; L. Liu et al. 2010; Gabison et 
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al. 2009; Zhu et al. 2014) . The expression of EMMPRIN in the developing tooth germs was 

previously described (Schwab et al. 2007; Xie et al. 2010). EMMPRIN expression was shown 

to increase gradually in the forming molar germ in mice from E14 to P1(Xie et al. 2010). 

However, the in vivo role of EMMPRIN in tooth development and homeostasis is still 

unknown. In this PhD, our first specific objective was to investigate EMMPRIN 

functions in tooth formation using EMMPRIN KO mice by exploring the modifications 

occurring in their dental phenotype and the consequences on EMMPRIN’s molecular targets, 

in particular on MMPs.  

In parallel, EMMPRIN has been shown to be involved in the repair process of 

different injured tissues. Indeed, the role of EMMPRIN in wound healing through MMP 

induction and increase in myofibroblast contractile activity has been established (Gabison, 

Mourah, et al. 2005; Huet, Vallée, et al. 2008). As our team has developed several pulp injury 

models to follow-up the repair process, and as we had access to EMMPRIN KO mice it was 

tempting to study the repair process in this model. Therefore, our second specific objective 

was to investigate for a potential role of EMMPRIN in the pulp dentin repair process by 

comparing the healing of injured pulps of EMMPRIN KO and WT mice.  

MMPs were shown to be expressed during tooth development and to be necessary for 

normal dentin formation (Bourd-Boittin et al. 2005). After dentin mineralization, they remain 

trapped in the calcified matrix either under active or proenzyme forms (Palosaari et al. 2003), 

which may explain their persistent presence within the dentin of adult teeth (A Mazzoni 

2007; Tjäderhane et al. 1998). The role of these trapped MMPs in the progression of the 

carious process within dentin matrix has been proposed by several studies (Tjäderhane et al. 

1998; Sulkala et al. 2001). Indeed, MMPs have been proposed to have an important role in 

the dentin organic matrix degradation following demineralization by bacterial acids 

(Tjäderhane et al. 1998; Chaussain-Miller et al. 2006). Cariogenic bacteria are essential to 

initiate the carious process but they cannot degrade the dentin organic matrix. After 

dissolution of the mineral part, the organic part of dentin becomes exposed to degradation by 

host-derived enzymes, including salivary and dentinal MMPs, and cysteine cathepsins 

(Nascimento et al. 2011; van Strijp et al. 2003). Because MMPs have been suggested to 

contribute to dentin caries progression, the hypothesis that MMP inhibition would affect 

dentin caries progression is appealing. This hypothesis was supported by in vivo studies in rat 

caries models where dentin caries progression was delayed by intra-oral administration of 

chemical MMP inhibitors, modified tetracylines and zoledronate (Sulkala et al. 2001; 
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Tjäderhane et al. 1999). Several natural molecules have been previously reported to have 

MMP inhibitory properties. Grape-seed extracts (GSE) have been shown to suppress 

lipopolysaccharide-induced MMP secretion by macrophages and to inhibit MMP-1 and 

MMP-9 activities in periodontitis (La et al. 2009). The MMP-inhibitory effects of these 

natural substances suggest, therefore, that they could be effective in inhibiting dentin caries 

progression. Recently, a new daily mouthrinse composed of grape-seed extracts and amine 

fluoride has been developed. As grape-seed extracts are known to be natural inhibitors of 

MMPs, our last specific objective was to evaluate the capacity of these natural agents to 

prevent the degradation of demineralized dentin matrix by MMP-3.  
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1 Introduction  

1.1 Tooth description 

Tooth is the hardest organ of the mammalian body and it provides several functions such as 

mastication, and phonation. 

Anatomically, tooth structure can be distinguished in a visible part (crown) and a hidden part 

embedded in the alveolar bone of the jaw (root) (Figure 1). Instead of a considerably 

different shape and size (e.g., an incisor compared with a molar), teeth are histologically 

similar. 

 

Figure 1 : The tooth and its supporting structure. Adapted from (Antonio Nanci and Cate 

2013) 

 

Tooth consists of several layers: enamel, dentine, cement, and dental pulp. The enamel is a 

hard, and acellular structure formed by epithelial cells and supported by dentin. This less 

mineralized, more resilient, and vital hard connective tissue, is formed and supported by the 

dental pulp, a soft connective tissue (Figure 1).   
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In mammals, teeth are attached to the bones of the jaw by the periodontium, consisting of the 

cementum, periodontal ligament (PDL) and alveolar bone, which provide an attachment with 

enough flexibility to withstand the forces of mastication.  

Human and most of the mammals have two generations of teeth, primary and permanent; 

since the size of teeth cannot increase after formation, the primary dentition becomes 

inadequate and must be replaced by more and larger teeth (permanent dentition). 

Otherwise, mice have only one generation highly reduced dentition having one incisor, 

separated from three molars by an edentulous region in each semi-maxilla (Figure 2.A). 

Incisor growth is continuous throughout the animal’s life (Figure 2.B). 

 

Figure 2 : Adult mouse mandible (own data). 

1.2 Tooth development 

Since toothed vertebrate have conserved tooth development process stages, data obtained 

from rodents studies may provide a lot of information about  dental development in diverse 

species, including humans (Streelman et al. 2003).  

Organogenesis results from three fundamental processes: I) initiation, within positional 

information are provided and interpreted to initiate organ formation at the right place; II) 
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morphogenesis, in which cells build up a rudimental organ; finally, III) differentiation where 

cells form organ-specific structures.  

As also showed in mouse tooth development model (Irma Thesleff and Nieminen 1996), teeth 

are vertebrate-specific structures which, like many other organs, develop through a series of 

reciprocal interactions between two adjacent tissues, an epithelium and a mesenchyme (I 

Thesleff, Vaahtokari, and Partanen 1995).  Tissue-recombination experiments have shown 

that the oral epithelium isolated from the mandibular arch of a mouse embryo, between 

embryonic day 9.0 and 11.5 (E9.0–E11.5), can stimulate a non-dental neural crest-derived 

mesenchyme to form a tooth. After E11.5, the odontogenic potential subsequently  shifts 

from the epithelium to the mesenchyme, which can induce dental formation  when combined 

with a non-dental epithelium, whereas the dental epithelium has lost this ability(Mina and 

Kollar 1987; Lumsden 1988).  

1.2.1 Stages of tooth development  

Tooth development takes place through a series of well-defined stages: epithelial thickening 

of the dental lamina, bud, cap and bell. 

1.2.1.1 Dental lamina Stage 

The thickening of the mouse oral epithelium is first visible at around E11.5 (Figure 3). The 

epithelial thickening forms the dental and vestibular lamina on the lingual and buccal aspect, 

respectively. The vestibular lamina forms a sulcus between the cheek and the teeth, and the 

dental lamina gives rise to the teeth. During this stage, dental lamina expresses several 

important signaling molecules such as (Sonic Hedgehog) Shh that increases cell proliferation 

at the tooth development site (Hardcastle et al. 1998). 

 

Figure 3 : Dental lamina of tooth development. Adapted from (Antonio Nanci and Cate 

2013) 
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1.2.1.2 Bud stage  

After the dental lamina stage, an epithelial structure that has a bud shape results from 

proliferating and invagination of the epithelium within the underlying ectomesenchyme. The 

bud is clearly formed at E13.5 and it consists in several layers: the dental follicle made by 

condensed mesenchymal cells, oriented in a radial pattern and encasing the dental papilla and 

the enamel organ; enamel organ, in which the internal epithelial cells meets the external 

epithelial cells and form a structure called the cervical loop; finally, dental papilla, which is a 

ball of densely packed ectomesenchyme (Figure 4).  

 

 

Figure 4 : Bud stage of tooth development. Adapted from (Antonio Nanci and Cate 2013) 

1.2.1.3 Cap stage 

Around E14.5, the condensing mesenchyme signals back to the enamel organ and induces the 

formation of a specific group of signaling epithelial cells known as the enamel knot which 

takes control of odontogenesis processes (Irma Thesleff, Keranen, and Jernvall 2001). The 

enamel knot is visible as a bulge in the center of the inner enamel epithelium at the cap stage 

(Figure 5). Enamel knot expresses a host of signaling molecules, such as Shh, Fgf4, Bmp4 

and Wnt10b (Vaahtokari et al. 1996; Sarkar and Sharpe 1999). 

Then, in multi-cusped teeth, secondary enamel knots guides the differentiation at each cusp 

tip, during the bell and crown formation stages (Irma Thesleff, Keranen, and Jernvall 2001; 

Matalova et al. 2005).  
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Figure 5 : Cap stage tooth germ showing the position of the enamel knot. Adapted from 

(Antonio Nanci and Cate 2013) 

 

By E 15, the differentiation of enamel organ central cells forms the stellate reticulum cells 

(Figure 6) having a star shape with large intercellular spaces potentially playing a role in 

enamel-secreting ameloblasts nutrition. Another layer of cells known as “stratum 

intermedium”, at E16.0 in the incisor and E17.0 in the molar, becomes recognizable  from the 

internal dental epithelial cells as flattened epithelial cells, between the stellate reticuIum and 

the internal dental epithelium whose cells, progressively, lengthened to become 

preameloblasts. 
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Figure 6 : Cap stage, beginning of cellular differentiation within the enamel organ. 

Central cells form the stellate reticulum. Adapted from (Antonio Nanci and Cate 2013) 

1.2.1.4 Bell stage  

During this stage (EI7.0 for incisor and by E17.5-18.0 for molars), dental papilla cells 

differentiate into odontoblasts, beginning in the most anterior mesenchymal cells (Figure 7). 

The external dental epithelial cells thickness decreases and becomes a one or two cuboidal 

cell layer.  

The preameloblasts about double in height and differentiate into ameloblasts and their nuclei 

peripherally placed, this differentiation firstly occurs in the most anterior regions. The lingual 

side of the incisors does not become coated with enamel because that the internal dental 

epithelial cells do not differentiate into ameloblasts on this side. At El7.0 these non-

differentiating internal dental epithelial cells, diminish and become cuboidal in shape in 

subsequent stages of development, then merge with adjacent connective tissue cells.  

By EI8 in the incisors and El9 in molars, odontoblasts begin to secrete predentin (Figure 7). 

After 24 hours of development, the predentin starts mineralizing and enamel matrix will be 

secreted by ameloblasts. Mineralization of the enamel matrix is postnatal and the incisors and 

the first molar erupt by day 20 after birth (P20). Tooth shape will be established when 

mineralization of dentin and enamel starts. 
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Figure 7 : Early bell stage of tooth development (own data) 

 

1.2.1.5 Second and Third Molar Development  

When the jaws elongate enough, the second and third molars start developing. Second molar 

development starts with the dental lamina, which can be seen at E15.5 forming as an 

outgrowth of the first molar tooth germ epithelium.  By E18.5 the second molar is at the cap 

stage and erupts approximately at P25. The lamina of  the third molar appears at P4, reaches 

the cap stage by P7-9 and the bell stage by P10, the third molar erupts by P35 (Rossant and 

Tam 2002).  

1.2.2 Basement membrane 

The basement membranes (BM) are the first extracellular matrices to appear and they are 

critical for organ formation and tissue repair (Martin and Timpl 1987; Kleinman et al. 1986). 

They act like scaffolds for cells and play an essential role in morphogenesis that affects cell 

adhesion, migration, proliferation, and differentiation.  

The structure and components of BMs vary among tissues, resulting in tissue-specific 

structures and functions. BMs consist of supramolecular structure which is formed by 

reciprocal interaction of collagen IV, laminin, perlecan, nidogen/entactin, and other 

molecules (Martin and Timpl 1987; Kleinman et al. 1986).  
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BM components play an important role in tooth development. They control proliferation, 

polarity, attachment and determine tooth germ size and morphology (I. Thesleff et al. 1981; 

Fukumoto and Yamada 2005; Fukumoto et al. 2006).  

For example, laminin α5 (Lama5), is a component of the major laminin chain in tooth 

basement membranes. Absence of Lama5 in  KO mice lead to a small tooth germ with no 

cusps, in which the inner dental epithelium is not polarized and enamel knot formation is 

defective (Fukumoto et al. 2006).   

Another laminins such as laminin α2 (Lama2) are expressed in odontoblasts during the late 

stage of germ development (Yuasa et al. 2004; Salmivirta, Sorokin, and Ekblom 1997). Its 

deficiency in mice manifests in thin dentin and defective dentinal tube structure (Yuasa et al. 

2004). These phenotypes are similar to dentinogenesis imperfecta (DI) in humans. It was 

found that laminin-2, increases dentin sialoprotein expression in odontoblasts in cell culture, 

but its deficiency in mutant mice, reduces dentin sialoprotein expression in odontoblasts, 

suggesting that Lama2 is required for odontoblast differentiation. 

 Perlecan (HSPG2) is a major heparan sulfate proteoglycan in BMs. Its expression in 

developing teeth, was detected in BMs, intercellular spaces of the enamel organ, and the 

dental papilla including odontoblasts (Ida-Yonemochi et al. 2005). Overexpression of 

perlecan in transgenic mice results in abnormal tooth morphology and deregulation of growth 

factors such as TGF-b1 and bFGF (Ida-Yonemochi et al. 2011). 
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1.2.3 Dentin  

1.2.3.1 Dentin structure   

Dentin has a complex structure, similar to bone for mineralization ratio of about 70% 

mineral. In contrast with bone, dentin is not vascularized, and has not remodeling process. 

During the secretory stage, odontoblasts polarize, elongate and start to display two distinct 

parts: a cell body and a process. During the next step of evolution, the cell bodies stay outside 

the mineralized dentin, along the border of the mineralization front and the processes occupy 

the lumen of dentin tubules. Tubule diameter varies between 2 and 4 micrometers and its 

number is about 18 000 and 21 000 tubules per mm2 (Schilke et al. 2000). They are more 

numerous in the inner third layer than the outer third layer of the dentin. 

1.2.3.1.1 Outer mantel dentin layer  

Outer mantel dentin is a thin atubular layer with thickness of 15–30µm, at the periphery of 

coronal region. It is less mineralized than the rest of dentin and consequently the resilient 

mantle dentin allow dentin to dissipate pressures which otherwise would induce enamel 

fissures and detachment of the fragmented enamel from the dentin-enamel junction(R. Z. 

Wang and Weiner 1998). 

1.2.3.1.2 Circumpulpal dentins  

The circumpulpal dentin appears as a thin layer at initial stages of dentinogenesis, its 

thickness continuously increases at the expense of the pulp and then it becomes the largest 

part of the dentin layer. The circumpulpal dentin is formed by circles of peritubular dentin 

around the lumen of the tubules separated by the intertubular dentin. The ratio between inter 

and peritubular dentin is species dependent, it is about 50% in horses and about 10-20% in 

humans, and in the continuously growing rodent incisors no  peritubular dentin can be found.  

Several differences in the structure and composition of these two types of dentin are found. In 

the intertubular dentin, the major protein is type I collagen (90%), whereas in the peritubular 

dentin no collagen is observed. The differences in the composition of noncollagenous 

proteins (NCPs) of the two types of dentin have been reported. (M. Goldberg, Molon Noblot, 

and Septier 1980; Weiner et al. 1999; Gotliv, Robach, and Veis 2006; Gotliv and Veis 2007). 

Intertubular dentin (Figure 9) results from transformation of predentin into dentin (Figure 8). 

It is compound of dense network of collagen fibrils, coated by NCPs, where needle like-

crystallites locate at the collagen fibrils parallel to their axes and other crystallites fill inter-

fibrillar spaces (M. Goldberg and Boskey 1996).  
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Figure 8 : Characteristics of dentin formation. Odontoblasts secrete an ECM composed 

of type I collagen and NCPs. Within the predentin type I collagen molecules are 

assembled as fibrils. Mineralization occurs at the mineralization front by growth and 

fusion of calcospherites formed by hydroxyapatite (HAP) crystals. This mineralization 

process is controlled by NCPs and by mineral ion availability. Cell processes remain 

entrapped within dentin whereas cell bodies remain at the periphery of the pulp. 

Adapted from (Vital et al. 2012) 

Peritubular dentin result from a passive deposit of serum-derived molecules along the tubule 

walls and the crystals form a ring around the tubules lumen (Figure 9). In  this type of dentin 

no collagen fibrils are detectable, but a thin network of non-collagenous proteins and 

phospholipids are visible (M. Goldberg, Molon Noblot, and Septier 1980; Gotliv and Veis 

2007; M. Goldberg and Boskey 1996). 
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Figure 9 : Human dentin by scanning electronic microscopy (SEM). A. cutting line is 

parallel to dentin tubules, B. cutting line is perpendicular to dentin tubules. PtD: 

peritubular dentin, ItD: intertubular dentin. (Own data) 

1.2.3.2 Dentin proteins  

1.2.3.2.1 Collagens  

In the dentin ECM, collagens form a 3D scaffold which is very important in dentinogenesis. 

Type I collagen is the major type in dentin matrix collagens (90%), other types of collagen 

were identified but at lower levels (1-3%) like types III and V collagens (Michel Goldberg 

and Smith 2004; Vital et al. 2012).  

Collagen I formed by gathering of two α1 (I) chains and one α2 (I) chain. These chains 

entwine to form a triple helix of coiled coil framework (Rest and Garrone 1991). The 
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odontoblasts secrete thin collagen fibril subunits at their apical pole. Lateral fibril subunits 

assembly leads to fibrillar growth and then straight integration leads to the collagen 

lengthening.  

1.2.3.2.2 Noncollagenous proteins (NCPs) 

Noncollagenous proteins (NCPs) constitute the remaining 10% of the ECM scaffold and play 

an essential role in the regulation of bone and dentin mineralization. NCPs are divided into 

phosphorylated and nonphosphorylated NCPs. 

1.2.3.2.2.1 Phosphorylated NCPs 

SIBLINGs (Small Integrin Binding LIgand N-linked Glycoproteins), are a phosphoprotein 

family in which mutations are associated with abnormal phenotypes in the mineralization of 

bone and/or dentin (Qin, Baba, and Butler 2004; Vital et al. 2012). This family includes 

dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein 

(BSP), matrix extracellular phosphorylated glycoprotein (MEPE), and osteopontin (OPN). 

All SIBLINGs were identified in dentin and bone ECM, but a high rate of DSPP expression 

was shown to be specific to dentin. The SIBLING members carry an arginine– glycine–

aspartate cell adhesion domain (RGD)  and a highly conserved acidic serine and aspartate-

rich motif (ASARM) (P. S. Rowe et al. 2000; Fisher and Fedarko 2003). Noteworthy, the 

function of ASARM domain in bone and teeth mineralization (apatite crystals nucleator or 

inhibitor) is at present debated by the scientific community, in particular its implication in 

pathological processes such as inherited rickets (Addison and McKee 2010; David and 

Quarles 2010; P. S. N. Rowe 2012). It is of interest that, in addition to binding integrins 

SIBLINGs, may also specifically bind and activate several MMPs in the ECM suggesting that 

they could be involved in dentin matrix degradation (Fedarko et al. 2004). 

1.2.3.2.2.2 Nonphosphorylated NCPs 

The second group of NCPs is nonphosphorylated proteins, such as osteonectin (SPARC 

protein or BM40) and proteins with gamma-carboxylated glutamates (Gla) residues 

(osteocalcin and matrix Gla protein-MGP-). While osteonectin may contribute to the 

mineralization process, osteocalcin and MGP have been suggested to regulate HAP crystal 

nucleation (Bronckers et al. 1998; Onishi et al. 2005; Kaipatur, Murshed, and McKee 2008). 

The small leucine-rich proteoglycans (SLRPs), such as decorin, biglycan, fibromodulin, 

lumican, and osteoadherin, have also been identified in predentin and dentin (M. Goldberg, 

Septier, and Escaig-Haye 1987; M. Goldberg et al. 2003). They are thought to be involved in 

the transport of collagen fibrils through the predentin and in collagen fibrillogenesis (M. 



23 
 

Goldberg et al. 2003). Predentin is also rich in dermatan and chondroitin sulphate-containing 

(PG). It is of interest that adjacent to the mineralization front, predentin contains a large 

quantity of keratan sulphate-containing PG associated with a dramatic decrease in dermatan 

and chondroitin sulphate-containing PG. This switch in the proteoglycan type was attributed 

to MMP-3, which is closely related to a control of the dentin mineralization process (Hall et 

al. 1999).  

1.2.3.3 Dentinogenesis 

At the early stage of tooth development, the dental mesenchyme originates from the neural 

crest-derived mesenchyme migrate to the oral cavity under the oral epithelium and contribute 

to the tooth bud formation. During the last mitosis of the proliferate  mesenchymal cells the 

cell located in contact with the basement membrane become preodontoblasts, whereas the 

daughter cells away from the basement membrane form the Hoehl’s layer which constitutes a 

reservoir for replacing the damaged odontoblasts. After the differentiation odontoblasts 

become polarized and start to secret the extra cellular matrix components which will be the 

scaffold for hydroxyapatite (HAP) crystals deposition to form at the end the dentin. 

Another classification showed that there are four dentins: Primary dentin, which is formed by 

odontoblasts which secret this dentin until the tooth becomes functional. Secondary dentin, is 

secreted by odontoblasts immediately after the end of primary dentin secretion (when the 

contact of antagonistic cusps is established), and continues throughout life. The major 

difference between primary and secondary dentins is morphological; in the secondary dentin 

the S-curve of the tubules is more accentuated. Tertiary reactionary dentin, is synthesized by 

odontoblasts or, if these cells are destroyed, by the subjacent cells of the Höehl‘s layer, as a 

reaction to carious decay, to abrasion or as a response to the release of some components of 

dental material fillings. Depending the severity and speed of the carious lesion, the age of the 

patient and the progression of the reaction, it appears as a layer of the osteodentin type, or as 

a tubular or atubular orthodentin. Tertiary reparative dentin is formed by pulp progenitors, 

implicated in the formation of a bone-like or in structure-less mineralization (pulp diffuse 

mineralization or pulp stones). These structures are closer to bone (osteodentin) rather than to 

dentin (Michel Goldberg et al. 2011). 

1.2.4 Enamel 

Enamel is the hardest and outer layer of tooth crown that protects the mammalian tooth from 

external chemical and physical effects. Enamel properties are associated with its special 

structural organization and connection with underlying dentin.(Janet Moradian-Oldak 2012). 
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Mature enamel consists of approximately 4% water and organic material and 96% inorganic 

materials (Table 1). Enamel inorganic content is a crystalline calcium phosphate 

(hydroxyapatite) which also is found in dentin, cementum, bone, and calcified cartilage 

(Antonio Nanci and Cate 2013). 

 

Table 1 : Percentage Wet Weight Composition of Rat Incisor Enamel. From (Antonio 

Nanci and Cate 2013) 

 

 

The principal structural units of enamel are the rods (prisms) and interrod enamel 

(interprismatic substance) (Figure 10). 

 

 

Figure 10 : Scanning electron microscope views of (A) the enamel layer covering 

coronal dentin, (B) the complex distribution of enamel rods across the layer, (C and D) 
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and perspectives of the rod-interrod relationship when rods are exposed longitudinally 

(C) or in cross section (D). Interrod enamel surrounds each rod. DEJ: Dentinoenamel 

junction; IR: interrod; R,rod. Adapted from (Antonio Nanci and Cate 2013)  

1.2.4.1 Enamel proteins 

Enamel proteins are synthesized by ameloblasts. During tooth development, the ameloblasts 

control the synthesis and secretion of the organic extracellular matrix (ECM) and then the 

biomineralization of this ECM. Enamel proteins are hydrophobic proteins known such as 

amelogenins and nonamelogenin proteins including  ameloblastin, enamelin, tuftelin, tuft 

proteins, sulfated proteins and enamel proteases such as enamelysin (MMP-20) and KLK-4. 

 

1.2.4.1.1 Amelogenin  

Amelogenin gene exists only on the X chromosome in rodents (Snead et al. 1983; Chapman et 

al. 1991), while it exists on both X and Y chromosomes In human and cow (Lau et al. 1989).  

Amelogenin constitutes more than 90% of the enamel protein content. It is secreted as a 

variety of isoforms because of alternative splicing of the amelogenin gene and processing of 

the parent molecules (C. W. Gibson et al. 1991; Lau et al. 1992), the major isoform is about 

25 kDa. Amelogenin has a bipolar nature: it contains highly hydrophobic domains and 

hydrophilic N- and C-terminal sequences and this bipolar nature allows amelogenin 

monomers by self-assembly to form supramolecular resulting in the formation of nanospheres 

which regulate crystal spacing (Fincham et al. 1994; Fincham and Simmer 1997). The N-

terminal A-domain is involved in the formation of nanospheres, whereas the carboxy-

terminal B-domain prevents their fusion to larger assemblies (J. Moradian-Oldak et al. 2000).  

Amelogenin has signaling activities (Carolyn W. Gibson 2008; Veis 2003), especially the 

small isoform; leucine-rich amelogenin peptide (LRAP) (Warotayanont et al. 2008). Because 

of its potential to promote cell differentiation and its interaction with bone cells, it has been 

used in periodontal regenerative therapies.  

Amelogenin is not essential for the initiation of mineralization, but is essential for the 

elongation of enamel crystals and the achievement of proper enamel formation, because in 

spite of its absence in KO mice, a thin layer of mineralized enamel is formed. 

1.2.4.1.2 Ameloblastin  

Ameloblastin constitutes about 5% of enamel protein. Its expression significantly decrees 

during enamel maturation. The isolation of this protein is so difficult for several reasons, the 
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limitations in expression and hydrolysis by enamel proteinase MMP-20 as soon as secreted 

(Iwata et al. 2007; Yasuo Yamakoshi, Hu, Zhang, et al. 2006). In the ameloblastin KO mice, 

ameloblasts detach from the surface of the developing teeth, suggesting a potential role for 

ameloblastin in ameloblasts adhesion to the forming enamel (Fukumoto et al. 2004).  

1.2.4.1.3 Enamelin  

Enamelin is the largest enamel protein and constitutes about (3–5%) of enamel proteins. It is 

a phosphorylated, glycosylated protein and is rapidly cleaved following its secretion. The 

intact protein is only observed at the mineralization front, so it proposed to be implicated in 

crystal elongation (C. C. Hu et al. 1997; C. C. Hu et al. 2000).  

Enam gene mutations cause an autosomal dominant forms of amelogenesis imperfecta AI 

(Hart et al. 2003) and no true enamel layer is formed in the Enam KO mice(J. C.-C. Hu et al. 

2008). 

Recently, it was reported that a large increase or decrease in enamelin expression impairs the 

production of enamel crystals and the prism structure (J. C.-C. Hu et al. 2014).  

Enamelin and ameloblastin appear to have similar roles like crystallite initiation and 

elongation, whereas amelogenin appears to form a framework to allow the continued 

elongation of the already initiated crystallites (John D. Bartlett 2013). 

 

1.2.4.1.4 Tuftelin 

Tuftelin is expressed early at the bud stage of tooth development (several days befor the onset 

of mineralisation) so it is suggested to play a nucleator role during crystals formation. Its 

expression is also detected in several organs  kidney, lung, liver, and testis (Zeichner-David 

et al. 1997; MacDougall et al. 1998).  

1.2.4.1.5 Sulfated enamel proteins 

Sulfated enamel proteins constitute an acidic nature family of proteins with unknown roles. 

They are difficult to be detected because of their presence in a small amount (C. E. Smith et 

al. 1995). 

1.2.4.1.6 Amelotin 

Amelotin is a glycoprotein recently discovered, its role is not yet clear (Iwasaki et al. 2005). 

It is expressed during the secretory stage of enamel development (Gao et al. 2010). 

Alternatively spliced variants lead to several isoform of amelotin. 
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1.2.4.1.7 Biglycan  

Biglycan expression is in the dentin and the enamel (Septier et al. 2001). It is expressed by 

ameloblasts during tooth development, (M. Goldberg, Septier, Rapoport, et al. 2002), where 

it acts as an amelogenin expression repressor (M. Goldberg, Septier, Rapoport, et al. 2002; 

M. Goldberg et al. 2005b). 

1.2.4.2 Enamel proteinases 

Enamel proteinases are so important for the digestion of enamel proteins and enamel 

maturation. It was found that some of these proteinases have an ameloblast differentiation- 

dependent expression (Lu et al. 2008). 

1.2.4.2.1 Matrix metalloproteinase 20 (MMP-20) 

Enamelysin (MMP-20) is expressed by ameloblasts and odontoblasts (J. D. Bartlett et al. 

1996; Fukae and Tanabe 1998), it is expressed from the beginning of secretion stage through 

the beginning of maturation stage of enamel and cleaves amelogenin, enamelin, and 

ameloblastin into stable intermediate products (Lacruz et al. 2011). In vitro studies showed 

that Mmp-20 stimulates the formation of nanorod structures formed by co-assembly of the 

parent amelogenin with its proteolytic products (X. Yang et al. 2011). Such assembly 

alteration was proposed to be related with the elongated growth of apatite crystals. It has been 

proposed that Mmp-20 activity produces protein intermediate products that will stimulate 

phase transformation of amorphous calcium phosphate nanoparticles into mineralized 

hydroxyapatite (Kwak et al. 2009).  

1.2.4.2.2 Kallikrein-4 (KLK4) 

Klk-4 is expressed from the end of secretory stage and throughout the maturation stage of 

enamel (Lacruz et al. 2011). Its function is to digest the intermediate products of amelogenin, 

enamelin and ameloblastin resulting from the MMP-20 action and facilitates enamel proteins 

removal which is necessary for enamel maturation and hardening (O. Ryu et al. 2002). 

KLK-4 digests the 32-kDa enamelin fragment which is resistant to Mmp-20 action, (Yasuo 

Yamakoshi, Hu, Fukae, et al. 2006) and its activity is not affected like MMP-20 by the 

presence of apatite crystals in vitro (Z. Sun et al. 2010). 

1.2.4.2.3 Other proteinases  

1.2.4.2.3.1 Caldecrin (Ctrc) 

Caldecrin Ctrc expression pattern in enamel is similar to Klk4, but lower, and it is 

predominantly expressed in the maturation stage of amelogenesis (Lacruz et al. 2011). 
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1.2.4.2.3.2 MMP-2 

It has been demonstrated that recombinant MMP-2 cleave amelogenin into several fragments 

in vitro (Caron et al. 2001). MMP-2 also degraded most forms of amelogenin, suggesting that 

MMP-2 can participate, with MMP-20, to achieve complete amelogenin processing (Bourd-

Boittin et al. 2005). 

1.2.4.2.3.3 MMP-9 

Recently, it was proposed that MMP-9 involved in enamel formation and controlling the 

processing of amelogenin (Feng et al. 2012) 

1.2.4.3 Enamel formation 

1.2.4.3.1 Pre-secretory stage  

At this stage, ameloblasts start expressing very small amounts of enamel proteins even before 

the basement membrane break up and send cytoplasmic projections through the gaps directly 

after basement membrane disintegrate. With the disappearance of the basement membrane, 

dentin starts to mineralize and the apical surfaces of ameloblasts connect with the superficial 

collagen fibrils of the mantle dentin (Meckel, Griebstein, and Neal 1965; Cevc et al. 1980) 

(Figure 12).  

1.2.4.3.2 Secretory Stage  

At the beginning, ameloblasts secrete enamel proteins on top of and around existing dentin 

crystals initially and then around enamel crystals and into the space of disappeared basement 

membrane (Figure 11.A). With the continued secretion of enamel matrix, ameloblasts move 

back to create the necessary space for continuous deposition of enamel end this moment we 

can distinguish the initial enamel layer which is aprismatic (not separated into rod and 

interrod enamel) 

Secretory ameloblasts develop a novel cell extension called Tomes’ process at their apical 

(secretory) ends. This extension which has secretory and nonsecretory regions provides the 

architectural basis for organizing enamel crystals into rod and interrod enamel, (Meckel, 

Griebstein, and Neal 1965; Cevc et al. 1980).  

Secretory ameloblasts secrete enamel proteins which concentrate along the ameloblast 

secretory membrane and form a mineralization front (there is no pre-enamel like the 

predentin in dentin or osteoid in bone). The mineralization front retreats with the Tomes’ 

process as the enamel crystals grow in length (4µm/day) (Risnes 1986), and the ameloblasts 
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continue their secretion of enamel proteins (Figure 12). During this stage enamel crystals 

grow primarily in length and the enamel layer thickens.  

 

Figure 11 : Semi-thin (0.5 µm) sections from glutaraldehyde-fixed, decalcified, and 

plastic embedded mandibular incisors of wild-type mice stained with toluidine blue to 

illustrate the appearance of enamel and enamel organ cells at mid-secretory stage (A) 

and near-mid-maturation stage (B) of enamel development. Abbreviations: E, enamel; 

Am, ameloblast; Si, stratum intermedium; pd, predentin; D, dentin; ae, apical end; be, 

basal end; bv, blood vessel; as, artifact space; b, bone; c, cementum. Adapted from (J. 

D. Bartlett and Smith 2013) 

1.2.4.3.3 Maturation Stage  

At the end of secretory stage, enamel layer has its final thickness and ameloblasts reduce their 

secretion of enamel proteins (Figure 11.B), and start the secretion of KLK-4 which finishes 

the degradation of the organic matrix. The degradation and removal of growth-inhibiting 

enamel proteins terminate the growth of enamel crystallites in length, and accelerate their 

growth in width and thickness by the ion deposition on the thin crystals sides until they press 

against one another (C. E. Smith 1998). This process is necessary to have a harde and mature 
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enamel layer, and is directed by modulating ameloblasts that cycle through smooth and 

ruffle-ended phases. 

  During maturation stage a basal lamina is secreted at the base of the ameloblasts (Figure 

12). Recently amelotin ( AMTN ) has been identified as one of the components of this basal 

lamina (Iwasaki et al. 2005; Moffatt et al. 2006). 

 

Figure 12 : Schema present incisor enamel and denin formation. p-Am: pre-ameloblast; 

pOd: pre-odontoblast; s-Am: secreting Ameloblasts; od: odontoblasts; pos-Am: post-

secretory  ameloblasts; pD: predentin; D: dentin; pm-E: premature enamel; E: enamel. 

Adapted from (Khaddam et al. 2014) 

1.3 Matrix MetalloProteinases MMPs 

MMPs is subdivided into soluble and membrane-type MMPs (MT-MMPs). The soluble 

MMPs are expressed as pro-enzymes that will be activated in the extracellular environment. 

MT-MMPs are intracellularly activated and identified as activators of soluble MMPs and 

were shown to be able to degrade extracellular matrix proteins ECM (Hamacher, Matern, and 

Roeb 2004). 
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In addition to the inhibition by endogenous inhibitors (tissue inhibitor of MMPs TIMP) or  to 

the proteolytic activation of pro-MMPs, MMPs are regulated by cytokines or growth factors 

transcriptionally (Tsuruda, Costello-Boerrigter, and Burnett 2004) 

MMPs are implicated in inflammation by regulating the availability and the activity of 

cytokines, chemokines, and growth factors, as well as integrity of tissue barriers. MMPs are 

also involved in tumors (Nissinen and Kähäri 2014). 

1.3.1 MMPs and teeth 

1.3.1.1 In physiological processes (development)  

Several MMPs have been detected in developing tooth tissues (Michel Goldberg et al. 2003). 

They play a central role in the disruption of basement membrane. MMPs are also implicated 

in the functional regulation of growth factors and their receptors, cytokines and chemokines, 

adhesion receptors and cell surface proteoglycans, and a variety of enzymes (H. Li et al. 

2002). MMPs participate in the remodeling of the ECM during tooth development to 

facilitate the migration of cells and the mesenchymal  condensation  (Chin and Werb 1997) 

and participate in the regulation of the mineralization process of dental hard tissues by 

cleaving the matrix proteins of the dentin and the enamel matrix (Simmer and Hu 2002; 

Fanchon et al. 2004). 

MMP-1, -2, -3, -9 and MT1-MMP have been detected during tooth development, indicating 

that these MMPs have roles in tooth morphogenesis and eruption (Chin and Werb 1997; 

Sahlberg et al. 1992b; Caron, Xue, and Bartlett 1998; Randall and Hall 2002; Yoshiba et al. 

2003).  

1.3.1.2 In pathological processes 

1.3.1.2.1 Periodontitis  

High MMPs levels were detected in the periodontitis and apical periodontitis leading to 

accelerated matrix degradation, (de Paula e Silva et al. 2009; Paula-Silva, da Silva, and 

Kapila 2010). Collagenases (MMP-1, MMP-8, and MMP-13) and gelatinases (MMP-2 and 

MMP-9) are implicated in the digestion of collagen in the bone and periodontal ligament 

(Andonovska, Dimova, and Panov 2008; Corotti et al. 2009).  

1.3.1.2.2 In the caries process 

We developed this point (Figure 13) in Chaussain, Boukpessi, Khaddam et al, 2013 (end of 

introduction).  
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Figure 13 : Schematic representation of MMP activity during the dentin carious 

process. Cariogenic bacteria present in the caries cavity release acids such as lactic acid 

that reduce the local pH. The resulting acidic environment demineralizes the dentin 

matrix and induces the activation of host MMPs derived from dentin or saliva (which 

bathes the caries cavity). Once the local pH is neutralized by salivary buffer systems, 

activated MMPs degrade the demineralized dentin matrix. Adapted from (Chaussain et 

al. 2013) 

1.4 EMMPRIN (Basigin,CD147) 

1.4.1 Historic 

Extra cellular matrix metalloproteinase inducer EMMPRIN (CD147), a member of the 

immunoglobulin superfamily, was described for the first time on the surface of solid 

tumor cells as an inducer of a various (MMPs in adjacent fibroblasts (Biswas 1982). 

Based on these latter properties it was named extracellular matrix metalloproteinase 

inducer EMMPRIN (Biswas et al. 1995). Previously EMMPRIN had different names 

including tumor cell-derived collagenase stimulatory factor (TCSF), Basigin, CD147, 

gp42, HT7, neurothelin, 5A11, OX-47 and M6 (T. Muramatsu and Miyauchi 2003).  

1.4.2 Structure 

1.4.2.1 Transmembrane form 

EMMPRIN (Basigin) has four isoforms (basigin-1 to -4), caused by alternative transcription 

initiation and variation in splicing (Figure 14)(Belton et al. 2008) and the major isoform is 

basigin-2. EMMPRIN is highly glycosylated, Its protein portion is 27 kDa, and its 
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glycosylated form is 43 to 66 kDa (Miyauchi et al. 1990) and the nonglycosylated form has 

the ability to induce MMP expression in fibroblasts as the glycosylated form(Belton et al. 

2008) 

 

Figure 14: Basigin isoforms. Characteristic features of isoforms are mentioned within 

blanket. Carbohydrates are shown by light grey color. Adapted from (Takashi 

Muramatsu 2012)  

EMMPRIN is largely composed of three domains, extracellular immunoglobulin domain, a 

transmembrane domain and a cytoplasmic domain. 

The extracellular domain has two immunoglobulin domains (a N-terminally located D1 

domain and a more C-terminally located D2 domain) (Figure 15) and three potential 

Asparagine (Asn)-glycosylation sites; one in D1 domain and two in D2 domain (Miyauchi et 

al. 1990; Miyauchi, Masuzawa, and Muramatsu 1991). 

The transmembrane domain has glutamic acid in its center, and is completely conserved 

between human, mouse and chicken (Miyauchi, Masuzawa, and Muramatsu 1991), this 

domain is important for interactions with other proteins in the same membrane. 
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Figure 15: Scheme of EMMPRIN structure. EMMPRIN contains an extracellular 

domain composed of two Ig loops with three Asn-linked oligosaccharides and short 

single transmembrane domain (TM) and a cytoplasmic domain (Cyt). The first Ig 

domain is required for counter-receptor activity, involved in MMP induction. Adapted 

from (Gabison et al. 2009). 

1.4.2.2 Soluble form  

The soluble form of CD147 has been detected in conditioned media as: 

 full-length protein (Taylor et al. 2002)  

 or as part of shed microvesicles (Sidhu et al. 2004)  

 as well as in forms lacking the transmembrane and cytoplasmic domain derived from 

MMP mediated cleavage of CD147 from the cell surface (Haug et al. 2004; Y. Tang 

et al. 2006; Egawa et al. 2006) 
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1.4.3 Phenotypes of EMMPRIN knock out (KO) mice 

EMMPRIN KO mice have a low reproduction level which is at a much lower frequency than 

that expected by Mendelian segregation, KO embryos develop normally during blastocyst 

stage but at the time of implantation, about 75% of the null embryos are lost (Igakura et al. 

1998) and half of the surviving mice had interstitial pneumonia and died within 4 weeks after 

birth (Igakura et al. 1998). EMMPRIN KO mice have a defect in the capability of 

implantation of the uterus (female), arrested spermatogenesis (male) (Igakura et al. 1998; 

Kuno et al. 1998), abnormal behavior (Naruhashi et al. 1997), deficits in vision (Hori et al. 

2000) and a decreased response to odor (Igakura et al. 1996).  

1.4.4 EMMPRIN interactions 

Three possible EMMPRIN interactions were descriped (Figure 16): 

- Homophilic cis interaction between EMMPRIN molecules within the plasma 

membrane of the same tumor cell (Yoshida et al. 2000). 

- Homophilic trans interaction between EMMPRIN molecules on tumoral cells.(J. Sun 

and Hemler 2001) 

- Heterophilic interactions between EMMPRIN molecule on a tumor cell and a putative 

EMMPRIN receptor on a fibroblast. 

 

Figure 16: Possible EMMPRIN-mediated interactions stimulating MMP production. 

(A) Homophilic cis interaction between EMMPRIN molecules within the plasma 

membrane of a tumor cell. (B) Homophilic trans interaction between EMMPRIN 

molecules on apposing tumor cells. (C) Heterophilic interactions between EMMPRIN 
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on a tumor cell and a putative EMMPRIN receptor on a fibroblast. Adapted from 

(Toole 2003) 

1.4.4.1 EMMPRIN Interactions with its binding partners within cell membrane  

1.4.4.1.1 Monocarboxylic acid transporters (MCTs( 

EMMPRIN has multiple binding partners, one of them, a family of monocarboxylic acid 

transporters (MCTs) (Kirk et al. 2000; Halestrap 2012) which transport monocarboxylic acids 

such as lactate, pyruvate and ketone bodies into and from the cells. Among the four MCTs 

(MCT1, MCT2, MCT3 and MCT4), EMMPIN binds to MCT1, MCT3 and MCT4 in the 

same membrane, and is essential for their transfer to the cell surface. An EMMPRIN dimer 

binds two MCT1 (Wilson, Meredith, and Halestrap 2002).  

1.4.4.1.2 Integrins 

It was shown that EMMPRIN associates with integrin α3 β1 and α6 β1 in the same 

membrane (Berditchevski et al. 1997), for example in extraembryonic membrane apposition 

in D. melanogaster (Reed et al. 2004) and in the visual system of D. melanogaster (Curtin, 

Meinertzhagen, and Wyman 2005).  

1.4.4.1.3 Caveolin-1 

Caveolin is a family of proteins form the major constituents of caveolae, within the plasma 

membranes of most cells that mediate the transcytosis of macromolecules in a clathrin-

independent manner (Williams and Lisanti 2005) and comprised of three isoforms (caveolins 

1, 2 and 3), only one of them caveolin-1 has been shown to associate with EMMPRIN. The 

association starts within the Golgi apparatus, where caveolin-1 binds to and guard the lower 

glycosylated forms of EMMPRIN to the plasma membrane, thus prevents the formation of, 

highly glycosylated species of EMMPRIN by the self-aggregating, which is responsible for 

MMP production (W. Tang, Chang, and Hemler 2004).  

Caveolin-1 serves as a negative regulator of EMMPRIN; by the direct association with the 

second Ig domain of EMMPRIN which decrease EMMPRIN clustering and resulted in 

decreased MMP production (W. Tang and Hemler 2004).  

Recently, an opposite effect of caveolin-1 is demonstrated.  The increased caveolin-1 

expression results in an increased proportion of highly glycosylated EMMPRIN relative to 

the lower glycosylated form and increased production of MMP-11 and higher invasiveness. 

In the same study down-regulation of caveolin-1 resulted in a decrease in highly glycosylated 
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EMMPRIN (Jia et al. 2006). Regardless of the outcome of these studies, the expression of 

EMMPRIN glycosylation forms is functionally linked with caveolin-1 expression. 

1.4.4.2 EMMPRIN interactions with external molecules 

1.4.4.2.1 Cyclophilin 

Cyclophilin A is secreted from cells exhibit high level chemotactic activity to leukocytes and 

is involved in the inflammation, so it is the target protein of an immunosuppressive drug, 

cyclosporine A. Several studies confirmed that EMMPRIN is the receptor for cyclophilin A 

(V. Yurchenko et al. 2010; Vyacheslav Yurchenko et al. 2002), and for cyclophilin B (V. 

Yurchenko et al. 2010). The affinity between cyclophilin A and the extracellular region of 

EMMPRIN is weak, but it is strong with the transmembrane region (Schlegel et al. 2009). 

1.4.4.2.2 EMMPRIN 

Recently it has shown that nonglycosylated EMMPRIN ectodomains form dimer, and then 

interact with EMMPRIN on target cells (Belton et al. 2008). During internalization, 

EMMPRIN associates with another form of EMMPRIN (basigin-3 (Belton et al. 2008). 

 

1.4.4.2.3 Platelet glycoprotein VI (GPVI)  

Recently, platelet glycoprotein VI (GPVI) has been identified as a novel receptor for 

EMMPRIN and can mediate platelet rolling via (Seizer et al. 2009).  

1.4.5 EMMPRIN functions 

1.4.5.1 In physiological processes 

1.4.5.1.1 Tissue repair/remodeling 

The balance between MMP-induced stromal remodeling/restoration and stromal destruction 

is so delicate. EMMPRIN has been proposed as a mediator for this balance directly via a 

feedback mechanism that links the affected epithelial cells with neighboring fibroblasts 

(Gabison, Hoang-Xuan, et al. 2005).  

In corneal ulcerations the protective epithelial barrier of the eye is damaged, leaving eye open 

to infection by bacteria, viruses and fungi and, if left untreated, they can result in blindness. 

EMMPRIN has been detected in both healthy and ulcerated corneas but was found at greater 

levels within ulcerated specially at the areas of greater MMP expression (Gabison, Mourah, 

et al. 2005). 
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Within the cardiovascular system, the balance is also delicate. MMP expression is critical for 

the prevention of hypertension and, at the same time, implicated in the progression of 

congestive heart failure (CHF) (Spinale et al. 2000; Ergul et al. 2004).  

1.4.5.1.2 Chaperone functions 

It was shown that In MCT-transfected cells, the MCT1 and MCT4 expressed protein 

accumulated in a perinuclear compartment, and it was found that co-transfection with CD147 

enabled plasma membrane expression of active MCT1 or MCT4. Showing  that EMMPRIN 

facilates proper expression of MCT1 and MCT4 at the cell surface and have a chaperone 

function (Kirk et al. 2000). 

1.4.5.1.3 Implantation 

Since MMPs are required in implantation (Alexander et al. 1996; Werb 1997), defective 

implantation result from mis-regulation of MMP production due to lack of EMMPRIN 

stimulation in EMMPRIN KO mice. 

1.4.5.1.4 Spermatogenesis 

EMMPRIN is strongly expressed in spermatocytes (Igakura et al. 1998) and its absence in 

EMMPRIN KO mice, leads to arrest spermatogenesis at the stage of differentiation of 

primary spermatocytes into secondary spermatocytes at the metaphase of the first meiosis 

(Igakura et al. 1998).  

1.4.5.1.5 Retinal development and maintenance 

EMMPRIN mediates MCTs transport to the plasma membrane so MCT1, MCT3 and MCT4 

were found to be deficient at the plasma membrane of the retinal pigment epithelia, which 

leads abnormal photoreceptor function and blindness (Hori et al. 2000; Philp et al. 2003).  

1.4.5.1.6 Cell interactions 

EMMPRIN mediates the adhesive cell interactions, like in the embryonic retinal cell 

aggregation and influences glial cell maturation (Fadool and Linser 1993).  

1.4.5.1.7 Hematopoetic cell activation and erythrocytes circulation 

It was found that EMMPRIN plays a role in hematopoietic cell activation as during dendritic 

cell differentiation (Cho et al. 2001; Spring et al. 1997). Furthermore, It has been shown that 

EMMPRIN is expressed in erythrocyte lineage cells, including mature erythrocytes and 

blocking  EMMPRIN by the injection of a monoclonal antibody in the mice causes selective 

trapping of erythrocytes in the spleen (Coste et al. 2001).  
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1.4.5.1.8 Other  

EMMPRIN is implicated in other several physiological processes like neural network 

formation and development (Schlosshauer 1991; Fadool and Linser 1993), restriction of 

synaptic bouton size (Besse et al. 2007), calcium transport (J. L. Jiang et al. 2001), neutrophil 

chemotaxis (Vyacheslav Yurchenko et al. 2002), and blood –brain barrier development 

(Schlosshauer 1993).  

1.4.5.2 In pathological processes 

1.4.5.2.1 Cancer   

High levels of EMMPRIN were reported in numerous malignant tumors including bladder, 

skin, lung and breast carcinoma, and lymphoma (Polette et al. 1997; Bordador et al. 2000; 

Thorns, Feller, and Merz 2002), and were also associated with poor prognosis (Kanekura, 

Chen, and Kanzaki 2002; Davidson, Givant-Horwitz, et al. 2003; Davidson, Goldberg, et al. 

2003; Ishibashi et al. 2004).  

EMMPRIN induces several malignant properties associated with cancer. These include: 

1.4.5.2.1.1 MMPs 

Tumorigenic cells expressing EMMPRIN induce MMP expression by neighboring stromal 

cells (Figure 17) (Biswas 1982; Kataoka et al. 1993; Biswas et al. 1995) and regulates MMP 

production at the transcription level by a mitogen activated protein kinase(MAPK) p38 

pathway (Lim et al. 1998; Lai et al. 2003). Both recombinant EMMPRIN and tumoral 

EMMPRIN have been shown to induce the expression of collagenase I (MMP-1), gelatinase 

A (MMP-2), stromelysin-1 (MMP-3), and membrane type 1- and type 2-MMPs (MT1- and 

MT2-MMP) by fibroblasts (Cao, Xiang, and Li 2009; J. Sun and Hemler 2001; R. Li et al. 

2001; Sameshima et al. 2000).  

In situ hybridization analyses of both tumor and peri-tumoral fibroblasts in different organs 

like breast, colon, lung, skin and head/neck tumors showed that EMMPRIN expression is 

primarily tumor associated, while MMP expression is fibroblast associated (Pyke et al. 1992; 

Majmudar et al. 1994; Noël et al. 1994; Heppner et al. 1996; Polette et al. 1997). 

EMMPRIN can induce EMMPRIN and MMP expression in far stromal cells by its soluble 

form which result from proteolytic cleavage of the carboxy terminus, and is thought to help 

metastasis to distant sites (Y. Tang et al. 2004).  
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Recently, another mechanism for MMP stimulation in distant cells was described. It was 

found that EMMPRIN expressed by malignant testicular cells by membrane vesicles (MVs) 

secreted from these cells, can exert its MMP inducing effect on distant cells within the tumor 

microenvironment to promote tumor invasion (Milia-Argeiti et al. 2014). 

These properties make EMMPRIN a good target in cancer therapy. It has been shown that  

antibodies to EMMPRIN can decrease MMP expression leading to an inhibition of tumor cell 

invasion (Bordador et al. 2000; J. Sun and Hemler 2001; Kanekura, Chen, and Kanzaki 

2002).  

 

Figure 17 : Tumor-cell induced activation of adjacent fibroblasts by homophilic 

EMMPRIN signaling. Adapted from (Joghetaei et al. 2013) 

 

1.4.5.2.1.2 VEGF 

VEGF works as a major regulator of the angiogenic process in different circumstances, 

including tumor formation. EMMPRIN, in addition to increasing tumor invasion through 

MMP induction, it induces angiogenesis by the up-regulation VEGF expression (Y. Tang et 

al. 2005) as well as the stimulation of cell survival signaling, including Akt, Erk and FAK, 

through the increased production of the pericellular polysaccharide hyaluronan (Toole and 
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Slomiany 2008). EMMPRIN regulates VEGF production in tumor and fibroblast cells via the 

PI3K-Akt pathway (Y. Tang et al. 2006). 

1.4.5.2.1.3 HIF-1α and MCT  

The increase of tumor size makes the tumor microenvironment suffering from hypoxia and 

induce the  hypoxia inducible factor, HIF-1 α , a transcription factor which has been shown to 

induce MCT-4 gene expression in cells (Moeller, Dumitrescu, and Refetoff 2005; Moeller et 

al. 2006). Up-regulation of MCTs in tumor cells is necessary for tumor survival and increase 

lactic acid concentration in the tumoral extracelluar microenvironment. This excess lactic 

acid inhibits peritumoral cytotoxic T cell function, and permitting continued uncontroled 

growth of the tumor (Fischer et al. 2007). MCT up-regulation is coordinated with EMMPRIN 

up-regulation which induces MMP production by peritumoral fibroblasts resulting in the 

extracellular matrix degradation and a favorable environment for tumor metastasis.  

1.4.5.2.2 Rheumatoid arthritis 

In rheumatoid arthritis (RA), Cyclophilin A (Cyp-A) up-regulates the expression of MMP-9 

via the EMMPRIN signaling pathway through direct binding to EMMPRIN (Y. Yang et al. 

2008). And recently, it was found that EMMPRIN induces up-regulation of HIF-1α and 

VEGF in RA fibroblast-like synoviocytes, which promotes angiogenesis, and leads to the 

persistence of synovitis (C. Wang et al. 2012). 

1.4.5.2.3 Ischemic disease  

The oxygen level decreases in the heart during myocardial infarction and in the brain during 

stroke. Because of hypoxia and ischemia cells become dependent upon glycolysis for energy 

metabolism, for continued cell viability the EMMPRIN associated lactate transporters MCT-

1 and MCT-4 will be necessary (Kirk et al. 2000). High levels of MCT and EMMPRIN 

expression are detected under ischemic conditions in cardiac and neuronal cells (F. Zhang et 

al. 2005; Han et al. 2006), and it has been reported that EMMPRIN/Cyclofilin A association 

protects neurons from ischemia and hypoxia (Boulos et al. 2007). 

1.4.5.2.4 Graft-versus-host disease 

Using monoclonal antibody to EMMPRIN as a treatment for patients exhibiting acute graft-

versus-host disease, shows promising efficacy, this effect due to suppression of leukocyte 

activation (Deeg et al. 2001) 

1.4.5.2.5 Other diseases 

Role of EMMPRIN is reported in other processes like atherosclerosis (L. Liang, Major, and 

Bocan 2002), heart failure (Y. Y. Li, McTiernan, and Feldman 2000; Spinale et al. 2000), 
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lung injury (Foda et al. 2001), viral infection (Pushkarsky et al. 2001), Alzheimer’s disease 

(Zhou et al. 2005), chronic liver disease (Shackel et al. 2002) and in lymphocyte migration 

and activation (Koch et al. 1999; Renno et al. 2002; X. Zhang et al. 2002) . 
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1.4.6 EMMPRIN and tooth 

1.4.6.1 In physiological processes 

During tooth development, in cap stage, EMMPRIN expression was detected in the cell 

membranes of the inner enamel epithelium, stratum intermedium  cells  of  the  enamel  organ 

and the dental papilla cells underlying the inner epithelium (Figure 18.a) (Kumamoto and 

Ooya 2006; Schwab et al. 2007; Xie et al. 2010; S.-Y. Yang et al. 2012). In bell stage, it was 

detected  in ameloblasts, stratum intermedium, and  in odontoblasts (Figure 18.b) (Schwab et 

al. 2007; Xie et al. 2010; S.-Y. Yang et al. 2012). 

 

Figure 18 : Immunoreactivity (IR) for EMMPRIN. a Cells of the inner enamel 

epithelium (cap stage of the enamel organ) show intense EMMPRIN IR (Alexa-

coupled). b Ameloblasts as well as odontoblasts (bell stage of the enamel organ) exhibit 

strong EMMPRIN IR. Note the IR in the borderline between ameloblasts and the 

stratum intermedium. Mesenchymal cells of the dental papilla are only weakly 

immunoreactive. Abbreviations: A ameloblast; DL dental lamina; EEE external enamel 

epithelium; IEE internal enamel epithelium; EO enamel organ; Od odontoblast; SI 

stratum intermedium; SR stellate reticulum. Adapted from (Schwab et al. 2007) 

EMMPRIN variability during tooth development was investigated, and it was found that 

EMMPRIN mRNA expression was higher in E13.0 mouse mandible than that in E11.0 

(Figure 19.a). and was higher in P1 mouse tooth germ than that in E14.0 (Figure 19.b) (Xie 

et al. 2010). 
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Figure 19 : Transcription level of EMMPRIN in different stages of tooth development. a 

EMMPRIN mRNA was higher in E13.0 mandible than that in E11.0. b The expression 

of EMMPRIN mRNA was higher in P1 tooth germ than that in E14.0. Adapted from 

(Xie et al. 2010) 

At the root formation stage of tooth development, EMMPRIN was expressed strongly in the 

follicular cells overlaying the occlusal region of the rat molar germs. But, the expression was 

not region-specific and was weak in the follicular tissues in molar germs at the cap stage. So 

it was suggested that EMMPRIN play role in dental hard tissue maturation and the formation 

of an eruption pathway (S.-Y. Yang et al. 2012).  

The differentiation-dependent co-expression of EMMPRIN with MMPs in the odontoblasts 

and enamel organ indicates  that EMMPRIN plays role in proteolytic enzymes induction  in 

the rat tooth germ (Schwab et al. 2007). And it was found that EMMPRIN colocalizes with 

caveolin-1 in cell membranes of ameloblasts and in inner enamel epithelial cells (Schwab et 

al. 2007). 

EMMPRIN functional role in tooth germ development was investigated, by an EMMPRIN 

siRNA interference approach. Significant increase in MT1-MMP mRNA expression and a 

reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were 

observed in the mouse mandibles following EMMPRIN abrogation. These results indicate 

that EMMPRIN could be involved in the early stage of tooth germ development and 

morphogenesis (Figure 20), possibly by regulating the MMP expression (Xie et al. 2010).  
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Figure 20 : Examination the role of EMMRIN in early tooth germ development using 

EMMPRIN siRNA in the cultured mandible at E11.0. a After being cultured for 6 days, 

the tooth germ was found to have developed into the cap stage in mandibles cultured 

with scramble siRNA. b Dental epithelial bud was observed in the mandible treated 

with EMMPRIN siRNA after 6 days of culture. c A cap-like mature enamel organ was 

observed in the mandibles with scrambled siRNA supplement at 8-day culture. d 

EMMPRIN siRNAtreated mandible explants also showed a bud-like tooth germ at 8-

day culture. EMMPRIN siRNA had a specific effect on the morphogenesis of tooth 

germ. DE dental epithelium, DM dental mesenchyme, DP dental papilla, EO enamel 

organ, OE oral epithelium, PEK primary enamel knot. Adapted from (Xie et al. 2010) 

1.4.6.2 In pathological processes 

Several  reports have pointed to the relation between periodontitis and EMMPRIN (Dong et 

al. 2009; Xiang et al. 2009; L. Liu et al. 2010; Feldman et al. 2011; D. Yang et al. 2013; J. 

Wang et al. 2014).  

Elevated levels of EMMPRIN have been related to the progression of periodontal disease 

(Dong et al. 2009). EMMPRIN expression level increased from day 3 to  day 7 and then 

gradually decreased from day 11 to day 21 (L. Liu et al. 2010; D. Yang et al. 2013). 

During periodontitis development EMMPRIN was detected in the interdental gingiva, the 

gingival epithelium (Figure 21) and adjacent fibroblasts and in the inter-radicular bone. its 
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inflammation-dependent expression was associated with collagen breakdown and alveolar 

bone loss (L. Liu et al. 2010). 

 

Figure 21 : Temporal expression and localization of EMMPRIN in the gingival 

epithelium during ligature-induced periodontitis in the first mandibular molar of rats. 

(A) On day 0 (health), the immunoreactivity was strong in the basal cells, with a 

decrease toward the upper layers in the attached gingival epithelium (star in a1). (B) On 

day 7, immunoreactivity was greatly enhanced in the attached gingiva (star in b1). (C) 

On day 15, immunoreactivity was similar to that seen in the healthy state in the 

attached gingival epithelium (star in c1). Adapted from (L. Liu et al. 2010) 

EMMPRIN relation with other proteins during periodontitis was studied, it was found that 

EMMPRIN is associated with MMP-13 (higher expression level in day 3) but not with MMP-

8 (higher MMP-8 expression in day 3) (D. Yang et al. 2013), and it was found that the 

increased active MMP-1 and proMMP-1 production in the chronic human periodontitis may 

be associated with elevated HG-EMMPRIN levels (J. Wang et al. 2014). 

Soluble forms of EMMPRIN were shown to be present in gingival crevicular fluid (GCF) of 

patients with different periodontal diseases for the first time by Emingil et al. These authors 

showed that elevated EMMPRIN levels in gingival crevicular fluid were related to the 
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enhanced severity of periodontal inflammation, indicating that EMMPRIN may participate in 

the regulation of periodontal disease progression (Emingil et al. 2006). 

High EMMPRIN level was detected in human ameloblastomas (L.-J. Jiang et al. 2008; 

Kumamoto and Ooya 2006; Er et al. 2001), oral squamous cell carcinoma (Bordador et al. 

2000), and odontogenic cysts (L.-J. Jiang et al. 2008; Ali 2008). EMMPRIN expression was 

significantly higher in ameloblastomas than in odontogenic cysts, and microvessel density 

was positively associated with EMMPRIN expression to some extent (L.-J. Jiang et al. 2008). 

No significant difference in EMMPRIN expression was found among tumor types or 

subtypes (Kumamoto and Ooya 2006). EMMPRIN expression variability in various types of 

odontogenic cysts was studied and it was found that EMMPRIN expression was significantly 

higher in the epithelial lining of odontogenic keratocysts than in the dentigerous and 

periapical cysts (Ali 2008). 
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2 MMPs and dentin matrix degradation 

Chaussain, Catherine, Tchilalo Boukpessi, Mayssam Khaddam, Leo Tjaderhane, Anne 

George, and Suzanne Menashi. 2013. “Dentin Matrix Degradation by Host Matrix 

Metalloproteinases: Inhibition and Clinical Perspectives toward Regeneration.” 

  



49 
 



50 
 



51 
 



52 
 



53 
 



54 
 



55 
 



56 
 

 

  



57 
 

 

 

 

 

3 Results  

3.1 Role of EMMPRIN in tooth formation  

Khaddam, Mayssam, Eric Huet, Benoît Vallée, Morad Bensidhoum, Dominique Le-

Denmat, Anna Filatova, Lucia Jimenez-Rojo, et al. 2014. “EMMPRIN/CD147 

Deficiency Disturbs Ameloblast-Odontoblast Cross-Talk and Delays Enamel 

Mineralization.” Bone  
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3.1.1 Supplementary data  

 

Figure 22 : EMMPRIN expression in the developing incisor of 3 month-old mice 

Immunostaining with EMMPRIN antibody on sagittal section of the mandible shows 

that the secretory ameloblasts, the stratum intermedium and odontoblasts are positive 

for EMMPRIN (A and B). By contrast, no staining is observed in the post-secretory 

ameloblast (C). Am: ameloblast; s-Am: secretory ameloblast; pos-Am: post-secretory 

ameloblast; Od: odontoblast; D: dentin; pD: predentin; pm-E: premature enamel; Si: 

stratum intermedium; fm: forming matrix. From (Khaddam et al. 2014) 
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Figure 23 : KLK-4 expression in tooth germs of EMMPRIN KO mice when compared 

with WT. For mRNA expression, a 33 % increase is observed by qRT-PCR in KO mice. 

KLK-4 activity is hardly detectable by casein zymography (with 20 mM EDTA in the 

incubation buffer to inhibit MMP activity). No activity is seen for recombinant MMP-

20. From (Khaddam et al. 2014)   

 

Supplementary Table 1  : PCR gene primers and reference. From (Khaddam et al. 2014). 
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Figure 24 : SEM observation of 3 month-old mouse mandible sections. At M1 level, no 

difference in the morphology of either the bone or the teeth is detected between WT and 

KO mice (A, B). Both dentin (E, F) and enamel appear normal and the enamel prisms 

are normally constituted (C, D). From  (Khaddam et al. 2014). 
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3.1.2 Supplementary results  

3.1.2.1 Basement membrane degradation - Transmission electron microscopy 

Basement membrane degradation is delayed in the molar germs of EMMPRIN KO 

when compared to WT mice 

3.1.2.1.1 Materials and methods  

 

Mandibles of post-natal day 1 mice (3 litter-mate mice per group) were analyzed by 

conventional transmission electron microscopy (TEM). Heads were fixed in 2% (w/v) 

glutaraldehyde in 0.15 M cacodylate buffer, pH 7.4, overnight at 4°C. After post-fixation in 

2% OsO4 for 1 h and dehydration in graded ethanol series at 4°C, the samples were 

embedded in Epon 812 (Fluka). Semi-thin sections were stained with toluidine blue and 

fuchsine. After washing the sections were dried and mounted in Eukitt. Ultrathin sections 

were stained with uranyl acetate and lead citrate and were examined with a JEOL 1011 

electron microscope. 

3.1.2.1.2 Results  

 

To explore EMMPRIN role in mediating direct ameloblast-odontoblast interactions, we 

performed transmission electron microscopy analysis on the molar germs of new born mice. 

TEM examination of M1 and M2 germs allowed the observation of the cells located at the tip 

of the cusps which corresponds to the higher differentiation stage (Figure 25). On M2 germs, 

the cell polarization observed in the WT (Figure 25.A) was not visible in the KO in either the 

ameloblasts and the odontoblast layer (Figure 25.B). The basement membrane, which 

separates the pre-ameloblast from the pre-odontoblast compartments, was already partially 

degraded in the WT allowing for direct cell interactions between the two cellular 

compartments (Figure 25.C), whereas it was still continuous in the KO (Figure 25.D), 

suggesting that the differentiation process was delayed in EMMPRIN KO germs. However at 

a later stage of the development (M1 germ), cells were fully polarized with a palisade 

organization in both mice (Figure 25.E, F).  The basement membrane at the tip of the cusp 

was no longer detectable in either mice model (Figure 25.G,H). Dentin matrix was actively 

secreted and mineralized although at a more advanced stage in the WT and mineralizing 

enamel was already detectable (Figure 25.G). 
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Figure 25: TEM analysis was performed on M1 and M2 germs of new born mice. In the 

KO M2 germs, a cell polarization delay is observed in both pre-ameloblasts and pre-

odontoblasts localized at the tip of the cusps (b). In the WT, well-organized ameloblast 

and odontoblast palisades are seen, with a basal localization of the nuclei and long cell 

processes (arrow-heads) (a), whereas in the KO, cells are seen proliferating with 

centrally localized nucleus (b). At higher magnification, the basement membrane (black 

arrows) is partially degraded in WT (white arrows) (c), but appears still intact in the 

KO (d). In M1 germ, the basement membrane which can no longer be detected in the 

WT (e) is partially degraded in the KO (arrow) (f). Dentin matrix (black arrow-heads) 

is secreted in both mice models (e-f-g-h) but at a higher rate in the WT (e) where a 

greater amount of fibrillated collagen is seen associated with hydroxyapatite crystals 

(white arrow heads). In addition, mineralizing enamel matrix can already be observed 

at the secreting pole of WT ameloblasts localized at the tip of the cusp (g) but is not 

detectable in the KO (h). pam: pre-ameloblast; pod: pre-odontoblast; am: ameloblast; 

od: odontoblast; fde: forming dentin; fen: forming enamel. (Own data). 
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3.1.2.2 EMMPRIN expression in the molar germ of mouse embryo  

 

 

Figure 26: EMMPRIN expression in the first molar of mouse embryo. 

Immunoreactivity (IR) for EMMPRIN in paraffin sections of mouse embryo tooth germ 

tissue at 16 day and 17 day (cap stage). Inner enamel epithelium cells show EMMPRIN 

IR, this IR in the buccal side is stronger than in the lingual side of the molar germ. Iee: 

innerenamel epithelium; dp: dental pulp; bs: buccal side; ls: lingual side. (own data) 
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3.1.2.3 Alveolar bone phenotype 

3.1.2.3.1 Materials and methods  

In order to explore the alveolar bone phenotype in EMMPRIN -/- mice, Half mandibles (n=3 

age-matched mice per group) were subjected to a desktop micro-CT, (Skyscan 1172, 

Skyscan, Aartselaar, Belgium). The micro-CT settings were used as follows: 9 μm resolution, 

voltage 80 kV; current 100 μA; exposure time 400 ms; 180° rotation; rotation step 0.4 degree; 

frame averaging 4. The scanning time was approximately 4 hours/sample. A total of 1700 

native slice frames per sample were reconstructed using NRecon software (Skyscan, 

Belgium). Tridimensional images were acquired with an isotropic voxel size of 9.92 μm. Full 

3D high-resolution raw data are obtained by rotating both the X-ray source and the flat panel 

detector 360° around the sample.  

Bone volume rendering was measured using the open-source OsiriX imaging software 

(v3.7.1, distributed under LGPL license, Dr A. Rosset, Geneva, Switzerland) from 2D 

images.  

The microarchitecture of alveolar bone of left mandible was studied. The ventral limit of the 

volume of interest (VOI) was located at the first section containing the mesial root of the first 

left molar; the dorsal limit was located 100 sections after, at the level of the alveolar ridge 

and the buccal surface of the bone jaw (Figure 27). The VOI was designed by drawing 

interactively polygons on the 2D sections. Several polygons were needed to be drawn (e.g. on 

the first section, several at the middle, and on the final section) using the free hand tool with 

“CT analyzer” software (Skyscan, release 1.13.5.1, Kontich, Belgium). The interpolated VOI 

comprised only basal/alveolar bone. A simple global thresholding was determined 

interactively to eliminate background noise and to select bone.  

The parameters analyzed were: Bone volume fraction BV/TV (%), trabecular thickness 

Tb.Th (mm), trabecular number Tb.N (1/mm), and trabecular separation Tb.Sp (mm). 

Numerical variables were expressed as mean ± standard deviation. 
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Figure 27: Alveolar bone density. 

3.1.2.3.2 Results  

3.1.2.3.2.1 Bone density 

Bone density is presented by the percentage of space occupied by the spongy trabecular bone 

in the volume of interest (VOI). It was calculated by measuring the ratio between the Percent 

of trabecular bone volume and bone volume (BV / TV). The BV / TV in +/+ and -/- 

EMMPRIN mice were almost the same (Figure 28). 

 

Figure 28: Percent of bone volume in VOI. 
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3.1.2.3.2.2 Trabecular bone characters 

Trabecular bone characters are presented by measuring the following: 

 Thickness of bone trabeculae (Tb.Th) in the VOI. 

 

The Tb.Th in +/+ and +/- EMMPRIN mice were almost the same (Figure 29). 

 

Figure 29: Trabecular bone thickness in VOI. 

 

 The number of bone trabeculae (Tb.N) in the VOI. 

The Tb.N in -/- EMMPRIN mice were about the same that of +/+ mice (Figure 30). 

 

Figure 30: Trabecular number in VOI. 
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 The separation between bone trabeculae (Tb.Sp) in the VOI. 

The Tb.Sp in the -/- EMMPRIN mice were about the same that of +/+ (Figure 31). 

 

Figure 31: Trabecular separation in VOI. 
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3.2 Role of EMMPRIN in pulp-dentin regeneration 

3.2.1 Background and project aim 

EMMPRIN has been shown to be involved in the repair process of different injured tissues. 

Indeed, the role of EMMPRIN in wound healing through MMP induction and increase in 

myofibroblast contractile activity has been established (Gabison, Mourah, et al. 2005; Huet, 

Vallée, et al. 2008). Therefore, the aim of this project was to investigate EMMPRIN role in 

the pulp dentin repair process by comparing the healing of injured pulps of EMMPRIN KO 

and WT mice. 

3.2.2 Materials and methods  

Twelve young adult mice (3 month-old) were used (6 WT mice and 6 EMMPRIN KO mice; 

ethical agreement Animal Care Committee of the University Paris Descartes 

CEEA34.CC.016.11). Following anaesthesia by intra-peritoneal injection of 2,2,2 

tribromoethanol 2-methyl 2-butanol (Avertine®- Sigma Aldrich Germany) (0,017ml/g), a 

small cavity was prepared with a carbide bur (Dia 0,04mm) (Komet- France) on the acclusal 

aspect of the first upper left and right molars, in the centre of the tooth according to the 

mesio-distal plane until the pulp was visible through the transparency of the dentine floor of 

the cavity. A pulp exposure was mechanically done using an endodontic hand file of 0.15mm 

diameter with a 4% taper (C+file®, Dentsply-Maillefer France). Pulp capping was performed 

using Biodentine cement (septodont France) following the manufacturer’s recommendations. 

Using the tip of a probe, Biodentine was placed in contact with the pulp, and slightly 

condensed with a sterile paper point (XX-Fine, Henry Schein, France). Then, the cavity was 

sealed with glass ionomer cement (GIC). Animals were placed in individual cages until they 

recovered from anesthesia, and ibuprofen (0.06mg/g/day) was added in their drinking water 

for 72 hours. Treated animals were sacrificed at increasing time points following the clinical 

procedure, as follows:  

- Six animals at 1 week post-operatively 

- Six animals at 4 weeks post-operatively  

Following removal of most of the soft tissues, heads of animals were immersed in 4% 

para-formaldehyde (PFA) (Sigma) overnight at 4°C. Before demineralization prior to 

histological analysis, samples were examined by micro-Ct at the same parameters 
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previously reported (page 75, materials and methods.). Micro-Ct data were analyzed 

using the Osirix software and then Ct-analysis software.  

3.2.3 Results  

3.2.3.1 Micro-CT 

In order to explore the tooth reparation, we performed Micro-CT on the maxilla of the treated 

WT and KO mice (Figure 32).  

 

Figure 32: Mouse first upper molar after 7 and 28 days of capping with Biodentine. 7 

days post operatively, dentin formation was detected in +/+ and -/- EMMPRIN mice 

(A,C), but it was more in  -/- (brown arrow C) than in +/+ (brown arrow A). 28 days 

post operatively, dentine bridge was visible, but it was more continuous in -/- (arrow in 

D) than in +/+ (arrow in B) where it was not continued. e: enamel; d: dentin; GIC: glass 

ionomer cement; red *: Biodentine.   
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Improved dentin repair is seen in KO when compared with WT both at Day 7 (P= 0.007 S) 

and day 28 (P= 0.157 NS) (Figure 33).  This data must now be supported by histological 

analysis which are ongoing.  

 

 

Figure 33: Percent of dentin volume in volume of interest VOI. Significant increase in 

dentin density was detected in -/- EMMPRIN mice when compared with +/+ mice at 7 

days post operatively.  
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3.3 Inhibition of MMP-3 and dentin matrix degradation  
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4 Discussion 

 

Tooth development results from reciprocal inductive interactions between the 

mesenchyme and the oral epithelium and proceeds through a series of well-defined stages 

(Ruch, Karcher-Djuricic, and Gerber 1973; Slavkin 1974; Catón and Tucker 2009; Miletich 

and Sharpe 2003; I Thesleff and Hurmerinta 1981; Mitsiadis and Luder 2011). Basement 

membrane degradation allowing a direct contact between pre-ameloblasts and pre-

odontoblasts and their newly synthesized ECM appeared to be a crucial step of tooth 

development (Meckel, Griebstein, and Neal 1965; Cevc et al. 1980; Zeichner-David et al. 

1995). EMMPRIN, a membrane glycoprotein also named CD147, has been shown to play an 

important role in the direct epithelial-mesenchymal interactions, as highlighted in the cancer 

field (Toole 2003). The expression of EMMPRIN in the developing tooth germs has been 

previously described (Schwab et al. 2007; Xie et al. 2010), increasing  in the forming tooth 

germ from E14 to P1 (Xie et al. 2010). In this thesis, we confirmed that EMMPRIN was first 

expressed by pre-ameloblats and by the stratum intermedium at the early bell stage. At the 

late bell stage, EMMRIN labeling decreased on ameloblasts actively secreting enamel 

proteins, whereas it strongly increased on odontoblasts. Finally, this labeling disappeared in 

postsecretory ameloblasts whose function is to mature the enamel matrix.  

 However, at the beginning of this thesis, the in vivo role of EMMPRIN in tooth 

development and homeostasis was still unknown. By investigating mice KO for EMMPRIN, 

we showed that EMMPRIN, through the induction of several MMPs, may orchestrate the 

epithelial-mesenchymal cross-talk necessary for tooth formation, by enabling cleavage of the 

basement membrane and thus direct cell-cell interactions. Indeed in our mice we showed a 

delay in basement membrane degradation in KO mice when compared with WT.  As a result, 

we observed a delay in ameloblast differentiation, especially detectable on transmission 

electron microscopy images (see Figure 25). As a consequence, MMP-3 and MMP-20 

expression and activity were decreased and resulted in adults in decreased enamel volume 

and subtle abnormalities at the DEJ in both molars and incisors. It is noteworthy that we 

reported for the first time that EMMPRIN regulated the expression of MMP-20. As mice KO 

for MMP-20 display early enamel shedding and severe tooth alterations, our data suggest 

however that the quantity of MMP-20 expressed in the absence of EMMPRIN is sufficient to 

allow correct enamel maturation. Therefore, enamel volume was decreased in EMMPRIN 

KO mice but the maturation was rather-normal as indicated by nano-indentation experiments. 
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Surprisingly, in the tooth, EMMPRIN appeared to have no effect on MMP-2 and MMP-9 

expression and activity. In several other processed such as corneal wound healing (Gabison et 

al, 2009), the absence of EMMPRIN was shown to alter gelatinase expression and activity. 

Our results therefore suggest that the action of EMMPRIN is organ-dependent. 

Previous observations using Si-RNA experiments on mandibles in culture have 

indicated that EMMPRIN was involved in tooth morphogenesis (Xie et al, 2010).  In our 

study, we showed that tooth phenotype was rather normal in EMMPRIN KO mice, which is 

not consistent with these previous ex vivo observations. We therefore propose that the direct 

effect of EMMPRIN on the epithelial-stromal interaction may be limited since it is only 

allowed between basement membrane degradation allowing direct cell contact and before 

calcified matrix deposition which constitutes cell barriers, hence limiting EMMPRIN’s action 

(Figure 34). 

 

Figure 34: Recapitulative schema proposing the role of EMMPRIN in tooth formation. 

At early bell stage, EMMPRIN is expressed by pre-ameloblast (p-Am) and may 

orchestrate basement membrane degradation (black line) to allow direct contact with 

pre-odontoblast (p-Od), which is mandatory for the final cell differentiation. At 

secretory stage, both secreting ameloblasts (s-Am) and odontoblasts (Od) highly express 

EMMPRIN. This expression may enhance MMP-20 synthesis by ameloblasts allowing 

for early enamel maturation. At the enamel maturation stage, post-secretory 

ameloblasts (pos-Am) lose their EMMPRIN expression. The arrows indicate 

EMMPRIN expression by cells. The red line schematizes the time window where a 

direct effect of EMMPRIN is allowed by a direct cell contact. D: dentin; pD: predentin; 

pm-E: premature enamel; E: enamel.  
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EMMPRIN has been shown to be involved in the repair process of different injured 

tissues through MMP induction and increase in myofibroblast contractile activity (Gabison, 

Mourah, et al. 2005; Huet, Vallée, et al. 2008). We investigate for a potential role of 

EMMPRIN in the pulp dentin repair process by comparing the healing of injured pulps of 

EMMPRIN KO and WT mice. The repair process seems to be improved in KO mice but 

these preliminary data must be repeated and supported by histological analysis.  

MMPs have been suggested to contribute to dentin caries progression and the 

hypothesis that MMP inhibition would affect dentin caries progression is clinically 

interesting. This hypothesis was sustained by in vivo studies in rat caries models where dentin 

caries progression was delayed by intra-oral administration of chemical MMP inhibitors, 

modified tetracylines and zoledronate (Sulkala et al. 2001; Tjäderhane et al. 1999). The 

MMP-inhibitory effects of Grape-seed extracts (GSE) suggest that these natural substances 

could be effective in inhibiting dentin caries progression. We therefore evaluated the capacity 

of these natural agents incorporated in a mouthrinse to prevent the degradation of 

demineralized dentin matrix by MMP-3. In this study, we selected MMP-3 because we have 

previously shown that this enzyme was the only MMP among those tested (MMP-2, MMP-3 

and MMP-9) that was able to degrade several NCPs (Boukpessi et al., 2008), known to be 

associated to the collagen fibers in the dentin (Orsini et al., 2006). The removal of these 

NCPs can then permit further matrix degradation by exposing the collagen fibers to more 

collagen-specific MMPs such as collagenases and gelatinases (Malla et al., 2008) which are 

also present in the dentin organic matrix and in the saliva (Tjaderhane et al., 1998).  

Our results show that dentin pretreatment with the tested mouthrinse, and with its active 

principles, inhibited the release by MMP-3 of several NCPs, namely decorin, biglycan and 

DSP from the matrix and the disorganization along the dentinal tubules induced by MMP-3. 

We therefore hypothesized that the inhibition of NCP cleavage by GSE may prevent further 

matrix degradation by protecting the collagen fibers from collagen-specific MMPs such as 

collagenases and gelatinases. Indeed, PGs were initially reported as the major substrates of 

MMP-3. However, the situation may be more complex since PGs are bound to several other 

proteins in the ECM (Qin et al., 2006), and once the degradation of the dentin ECM is 

initiated, it may be more susceptible to further degradation by other proteases. Interestingly, 

amine fluorides appear to have MMP inhibitory properties at a lesser degree than GSEs but at 
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a higher level than NaF. This information is clinically relevant, fluorides being recognized as 

the most efficient tools for preventing dental caries. However, it requires further 

investigations to be confirmed.   

As general conclusion, proteases and their regulator such as EMMPRIN appear to have a 

major role in the formation, pathologies and repair of the tooth. Therefore their understanding 

opens several therapeutic issues, especially for the prevention and the treatment of dentin 

caries.  
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Abstract  

Role of EMMPRIN and MMPs in tooth development, dental caries and pulp-dentin regeneration 

Tooth development is regulated by a series of reciprocal inductive signalings between the dental epithelium and 

mesenchyme, which culminates with the formation of dentin and enamel. EMMPRIN/CD147 is an Extracellular 

Matrix MetalloPRoteinase (MMP) INducer that mediates epithelial-mesenchymal interactions in cancer and other 

pathological processes and is expressed in developing teeth.  

Here we used EMMPRIN knockout (KO) mice to determine the functional role of EMMPRIN on dental tissues 

formation. We demonstrated that EMMPRIN deficiency results in decreased in MMP-3 and MMP-20 expressions, 

delayed in basement membrane degradation in tooth germ, delayed in enamel formation well distinguishable in 

incisor, and in decreased enamel volume and thickness but normal maturation. These results indicate that 

EMMPRIN is involved in the epithelial-mesenchymal cross-talk during tooth development by regulating the 

expression of MMPs. 

Then we tried to investigate the potential role of EMMPRIN in the pulp dentin repair process by comparing the 

healing of injured pulps of EMMPRIN KO and WT mice. 

Finally, we evaluated the capacity of grape-seed extracts (known to be natural inhibitors of MMPs and used in 

new daily mouthrinse) to prevent the degradation of human demineralized dentin matrix by MMP-3. 

KEY WORDS: TOOTH FORMATION, MMPS, CELL INTERACTION, ENAMEL PROTEINS      

 

Résumé 

Rôle d'EMMPRIN et MMPS dans le développement dentaire, la carie dentaire et la régénération 

pulpo-dentinaire 

Le développement dentaire est orchestré par une série de signalisations inductives réciproques entre l'épithélium 

dentaire et le mésenchyme, qui conduit à la formation de la dentine et de l'émail. EMMPRIN/CD147 est un 

INducteur des MetalloPRoteinases de la Matrice Extracellulaire (MMPs) qui régule les interactions épithélio-

mésenchymateuses dans le cancer et d'autres processus pathologiques et est exprimé lors du développement 

dentaire. 

Ainsi, nous avons utilisé des souris KO pour EMMPRIN pour déterminer le rôle d'EMMPRIN dans la formation 

des tissus dentaires. Nous avons démontré que l’absence d’EMMPRIN conduisait dans le germe dentaire à une 

diminution de l’expression de MMP-3 et de MMP-20, à un retard de la dégradation de la membrane basale, à un 

retard de la formation de l’émail bien visible dans l'incisive à croissance continue, à une diminution du volume  et 

de l'épaisseur d'émail, mais à une maturation amélaire normale. Ces résultats indiquent qu'EMMPRIN est 

impliqué dans le dialogue épithélio-mésenchymateuse pendant le développement dentaire, principalement  par la 

régulation de l'expression de certaines MMPS. 

Nous avons ensuite essayé d'évaluer le rôle potentiel d'EMMPRIN dans le processus de réparation dentaire en 

comparant la cicatrisation de blessures pulpaires des souris KO pour EMMPRIN à des souris WT. 

Enfin, dans un souci de transfert vers la clinique, nous avons évalué la capacité d’extraits de pépin de raisin 

(connu pour être des inhibiteurs naturels de MMPs) à empêcher la dégradation de la matrice dentinaire humaine 

déminéralisée et traitée par MMP-3. 

MOTS CLÉS: FORMATION DE LA DENT, MMPS, INTERACTION CELLULAIRE, PROTÉINES DE 

L’ÉMAIL. 
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