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Within the last decades, aviation industry literally exploded and became highly compet-
itive. Since, new problems such as human activity environment threatening and global
warming rose up. In Europe, this issue has been defined as one of the highest priorities
in the aviation industry for the next 40 years. Indeed, relative to the capabilities of a
typical new aircraft in 2000, the Flightpath 2050 Europe’s Vision for Aviation targets a
75% reduction in CO2 emissions, 90% in NOx emissions and 65% of the perceived noise
emission of flying aircrafts [Commission 2011]. To achieve such reductions, increasing
the efficiency of current technologies will certainly not be sufficient.

New technology such as active flow control has been pointed out by industries, such
as Airbus, as a key enabling technology to match the requirements of gas emissions
by 2050. Flow control consists in altering the state of a natural flow to reach a new
state characterized by interesting properties. In other words, actuators are introduced
in a flow to obtain some desirable characteristics. This is not a recent idea as, at the
beginning of the last century, Ludwig Prandtl applied flow control to explain his bound-
ary layer theory [Prandtl 1904] by completely suppressing boundary layer separation
past a circular cylinder using constant suction. Fig. 1 illustrates an active flow control
strategy to attach the flow around an airfoil, which naturally generates vortex shed-
ding [Glezer 2004, Amitay 2001].

Flow control can be passive or active. Passive flow control is achieved using actuators
that do not involve any external power to be driven. These actuators are typically
fixed mechanical facilities acting on the boundary layer, such as surface riblets, vortex
generators, etc. They are easy to implement but their efficiency is limited and they suffer
from a lack of flexibility.

Active flow control, on the other hand, needs to supply additional energy. Steady
momentum injection, fluid blowing or suction [Prandtl 1904, Hoarau 2006] are part of
this category. Unfortunately, steady fluid blowing has a low efficiency and requires air
supply systems, keeping it away from practical industrial use. Alternately, unsteady
active actuators exploit natural flow instability phenomena and have been a growing
research area for the last decades, since their ability to improve aerodynamic perfor-
mance [Gad-el Hak 1998] was demonstrated. Effective control can be achieved using
periodic actuators to interact with the large-scale coherent structures. These periodic
flow excitations may be driven using synthetic jets, plasma actuators, dielectric bar-
rier discharge, etc. Several investigations have been carried out, experimentally as well
as numerically, to apply this technology for various purposes, such as separation delay
[Seifert 1996], mixing enhancement [Ritchie 2000], flow vectorization [Smith 1997], etc.

A major difficulty in active flow control is the choice of control parameters such as
amplitude, frequency, as illustrated in Fig. 1. Furthermore, doing everything with ex-
perimental studies on such large scale is inconceivable. On a real aircraft, hundreds of
actuators would be necessary and doing the choice by hand is not possible.

Lately, numerical capabilities and computational fluid dynamics algorithms have reached
a maturity level allowing numerical experiments to replace regular wind tunnel campaigns
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Figure 1: Phase-averaged smoke-visualization images of the flow above the surface of a
stalled airfoil: (a) baseline characterized by a large recirculating area (in grey), (b) to
(f) periodic actuation using suction/blowing at the leading edge for different frequencies.
Actuation generates various flow patterns, the flow being completely re-attached for case
(f). [Glezer 2004]

and postponing models validation at a later stage in the design process. As the aim is
to exploit natural instability phenomena to manipulate flow characteristics, active flow
control is very sensitive to actuator parameters and finding the best effective parameters
actuators is thus a requirement. While numerous studies have been focused on parametric
studies [Ekaterinaris 2003], advanced optimization algorithms are gaining an interest as
they can assist in determining such parameters. By coupling simulation of actuated flows
with optimization algorithms, one could hope to determine efficient control parameters
for a reasonable cost.

Unfortunately, simulation is still limited. The first difficulty is related to turbulence
modeling. Three levels of turbulence modeling are used in practice. The first one is the
DNS, for Direct Numerical Simulation [Spalart 1986]. It makes no assumption about
turbulence physics and solve the smallest possible eddies in the flow. This level of
modeling is computationally intractable for the considered industrial flows due to grid
requirements. The second level of modeling is the LES/DES, for Large Eddy Simu-
lation [Lesieur 2005, Sagaut 2002] or Detached Eddy Simulation [Spalart 2009]. They
model small scales of turbulent eddies and make no assumption about the large scales.
These two models are more affordable in terms of CPU cost, but their requirements are
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still in the order of a few weeks for only one simulation. Furthermore, their applicability
in industry is still problematic because of requirements in terms of grid and compu-
tational cost. The last level of modeling is the RANS, for Reynolds Averaged Navier-
Stokes equations. This modeling technique consists in applying a filtering operator to the
Navier-Stokes equations to solve the mean flow only. This model is the most affordable
one and is commonly used in industry. The main drawback is that most of the time, the
physics is not well reproduced when the simulations are run too far away from calibration
cases. Despite of these drawbacks, many simulations of unsteady controlled flows using
RANS models can be found in the literature [Donovan 1998, Ekaterinaris 2003].

Regarding optimization, the main difficulties in the context of turbulent flow control is
the CPU time and possible local optima. Gradient based optimization methods such
as the simple steepest descent method, can reduce the number of necessary evaluations
for a complete optimization. That leads to a low CPU time but these methods are
known to be trapped in local optima. In addition, computing objective function gra-
dients with respect to control parameters, because of solver evaluation cost, excludes
the use of finite differencing. Adjoint approaches are typically used to efficiently com-
pute such quantities with steady flows, but they become really cumbersome and difficult
to apply in case of unsteady flows [Belme 2011]. Meta-heuristic methods (Evolution
Strategy [Michalewicz 1996], Genetic Algorithm [Goldberg 1989], Particle Swarm Opti-
mization [Eberhart 1995]) can reach global optima but are too costly as they require
hundreds to thousands of function evaluations.

Therefore, the objective of this thesis is to explore the feasibility of an alternative global
optimization technique based on unsteady simulations to determine actuation parameters
in the context of turbulent flows. More precisely, we will focus on the Efficient Global
Optimization (EGO) [Jones 1998] approach, which is based on an adaptive statistical
modeling of the cost functional, allowing to account for observation errors. Moreover,
a particular attention will be paid to the impact of the physical modeling level in the
optimization process. One intends to assess the capability of RANS models to determine
efficient control parameters in this context.

This manuscript is structured as follows. Chapter 1 presents the computational fluid
dynamics methods with an optimization perspective. Chapter 2 provides the description
of the optimization procedure and theory with the perspective of optimizing functions
evaluated using highly costly simulations. Chapter 3 presents the application of the
methods on industrial relevant problems of active flow control (proposed in the framework
of MARS project).





Part II

Simulation of actuated flows





Chapter 1

Context and issues

Simulation of actuator-induced flows is still a challenge nowadays. The encountered dif-
ficulties result from the large ranges of space and time scales involved in actuated flow
simulations. Indeed, different physical scales are involved near the actuator and within
the separated regions. Turbulence phenomenon further complicates the problem as it
introduces strong requirements in terms of computational power and modeling, leading
to uncertainties in the simulations. Turbulent flows are usually solved using Reynolds
Averaged Navier-Stokes (RANS) equations, Large-Eddy Simulation (LES) or Direct Nu-
merical Simulation (DNS). These three approaches have an increasing precision and
computational cost. The DNS method denotes solutions of the Navier-Stokes equations
with all space-time scales resolved. It is the most accurate method but is simply not
applicable at high Reynolds numbers and on complex problems. On the other hand,
LES involves spatially filtered variables depending on the grid resolution and usually
outclass RANS models for such problems. However, LES methods are still unable to
predict actuated flows in a computational time that would be reasonable in an industrial
context. RANS methods use time filtering allowing computation at a lower expense, but
the resulting models are calibrated on typical flow problems, which make them usually
deficient when the flow conditions are outside the range of calibration. The reason why
the cost of simulation is a big concern with an optimization perspective is that, in aver-
age, solving an optimization problem with a gradient free method takes at least dozens
of unsteady computations. This excludes the use of complex turbulence models such as
LES. However, in a recent study [Garnier 2012], four RANS and one LES models have
been compared in the case of a separated flow including a synthetic jet actuator, for a
set of thirteen frequencies. It has been found that RANS models are not in a position to
predict the correct characteristics of the separation, but some of them are able to iden-
tify the best actuation frequency, among those tested, to reduce the separation length.
The decrease of the recirculation length is under-estimated by RANS models, but the
ranking of the actuation parameters has been correctly established. This encouraging
result indicates that RANS models could possibly be employed in a design phase to select
control parameters. An objective of this thesis is to establish if RANS models can be
used in an optimization framework, which is more ambitious.

In this thesis, the main interest is focused on synthetic jet actuators only. Synthetic jets
are devices which periodically suck and blow surrounding fluid from a slot usually trig-
gered by a diaphragm placed at the bottom of a cavity. This periodical fluid movement
locally perturbs the flow and allows to manipulate some characteristics of the flow. They
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have been extensively studied, and they represent one of the most promising technologies
in the near future for flow control applications. Apart from the problem of turbulence
closures for detached flows, it has been demonstrated, in particular during the CFDVAL
Workshop [Rumsey 2006], that the prediction of actuator-induced flows is still tedious,
because of the actuator model itself. In [Yamaleev 2005], N. K. Yamaleev makes a re-
view of multiple possibilities for numerical synthetic jets modeling and it is shown that
a common consensus is not yet established. Moreover, cost to simulate the actuator
can be non negligible because of the mesh refinement and the internal description of the
actuator. A wide range of simplified models have been developed and studied, such as:

• imposing simplified boundary conditions at the orifice exit,

• partially modeling the problem including the synthetic jet slot, and applying simple
boundary condition,

• modeling the entire problem including the cavity and the synthetic jet slot, and
applying simple boundary condition at the cavity bottom,

• modeling the orifice actuator using unsteady pipe-flow theory,

• using ordinary differential equations describing a resonant fluid actuator,

• applying a reduced order model using the lumped element model simulating a
piezoelectric-driven synthetic jet actuator,

• describing the entire actuator geometry and simulating the diaphragm as a moving
boundary,

• using localized body forces along desired points in the computational mesh.

All of these models of various fidelity have advantages and drawbacks. For example, the
full description of the fluid actuator employing a moving boundary is too costly in terms
of computational resources. Especially, in the perspective of considering a large number
of actuators. At a reduced cost, the reduced order model and the ordinary differential
equations approaches can give satisfactory results but might lack some features to truly
represent the actuator [Rumsey 2006]. In this thesis, we focus on the three first models,
based on applying simplified boundary conditions with an increasing complexity in terms
of geometrical representation. A second objective of this thesis is thus to quantify the
impact of the actuator model, in the perspective of design optimization.

In the following, the mathematical model and the underlying hypothesis for the simula-
tion of compressible turbulent flows are first described. Then different turbulence models
are exposed, and an overview of actuation modeling is given.
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Fluid and actuation modeling
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2.1 Fluid mechanics equations

Fluid mechanics equations are based on the continuum hypothesis considering a fluid as
a continuous medium instead of composed of discrete molecules. This assumption is true
under the condition that the Knudsen number, defined as the ratio of molecule mean
free path length to a representative length scale (i.e: the discretization length scale), is
lower than 0.01. Typical aerodynamic flows considered here satisfy this condition.
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2.1.1 Conservation laws

The Navier-Stokes equations are the macroscopic view of fluid mechanics equations based
on this continuum hypothesis. These partial differential equations are established con-
sidering conservation of mass, momentum and energy principles. The partial differential
equations describe the temporal evolution of definite quantities due to the convection,
the diffusion, the surface sources and the volume sources. A fluid at the time t and
position x, in the domain Ω, can be described by its density ρ(x, t), velocity V (x, t),
pressure p(x, t) and temperature T (x, t) fields. By assuming that the rate of change of
mass of the fluid is equal to the mass fluxes, the conservation of mass equation is derived.
The conservation of mass is written as:

∂tρ+ ∇( ρV︸︷︷︸
Fc

) = 0. (2.1)

The second conservation equation, as a result of Newton’s law, stipulates that the mo-
mentum rate of is the consequence of the net force applied to it. Here, the external forces
are split into two main groups: the volume forces, denoted by fe, and the surface forces
defined by the stress tensor σ. The equation of momentum conservation is written as:

∂t(ρV ) + ∇(ρV ⊗ V︸ ︷︷ ︸
Fc

) = ∇( σ︸︷︷︸
Qs

) + ρfe︸︷︷︸
Qv

, (2.2)

with σ the stress tensor, V = (u, v, w)T the velocity, V ⊗V the tensorial product of V :

V ⊗ V =

u2 uv uw

vu v2 vw

wu wv w2

 . (2.3)

Finally, the last Navier-Stokes equation is the conservation of energy. The rate of vari-
ation of energy depends on the work of external and internal forces and heat flux. The
conservation of energy is written as:

∂t(ρE) + ∇((ρE)V︸ ︷︷ ︸
Fc

) = ∇( q︸︷︷︸
Fd=−K∇(e)

) + ∇(σ · V︸ ︷︷ ︸
Qs

) + ρ(fe · V ) + qH︸ ︷︷ ︸
Qv

(2.4)

with q the heat flux, qH the heat volume source, the total energy by unity of mass
E = e + 1

2V · V
1 and e the internal energy. We refer the reader to specialized refer-

ences [Hirsch 2007] for the establishment of such equations.

To close the Navier-Stokes equations, one needs to model the stress tensor σ, the heat
flux q and to link them with the state variables. This is the purpose of the following
subsections.

1Note that for some authors, the total energy by unity of volume is used
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2.1.2 Thermodynamic and perfect gas modeling

The perfect gas model, established upon observations, expresses the relationship between
the pressure, the volume and the temperature. It is valid for a wide range of gazes and
is written as:

p = ρrT

with r a constant depending on the considered gas. Typically, for the air in normal
conditions, r = 287Jkg−1K−1.

To complete the description of a gas, one needs to specify the capacity of a gas to
absorb or release energy. This property is given by the specific heat capacity coefficient
at constant volume cv and the heat coefficient at constant pressure cp in Jkg−1K−1.
They describe the variation of energy of 1kg of fluid when the temperature is raised or
decreased by 1K under a constant volume or pressure. For a perfect gas, the specific
heat capacity at constant pressure is:

cp =
γr

γ − 1
.

The Meyers’ relations complete the description of the perfect gas by linking the previous
two coefficients, with the constant:

γ =
cp

cv
.

From this, the internal energy e and sound speed c are derived using:

e = cvT =
1

γ − 1

p

ρ
,

c =
√
γrT =

√
γp

ρ
.

2.1.3 Stress tensor modeling

For a solid, the stress tensor is related to the material deformation, or strain tensor. A
strain-stress σ(E, ...) relation can be observed from experiments. For a fluid, a strain
rate-stress relation σ(D, ...) is observed, with D the strain rate tensor defined as:

D =
1

2

(
∇V + (∇V )T

)
. (2.5)

The stress tensor σ can be decomposed in a spherical and a deviator part, respectively
representing dilatation and distortion. Considering a fluid particle, the deviator tensor,
which models a stress independent of the rotation, comes from the hydrostatic pressure
and the deviator tensor from viscous forces. Thus, the stress tensor is written as:

σ = τ︸︷︷︸
Deviator tensor

− pIn︸︷︷︸
Spheric tensor

(2.6)
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The pressure in the spheric tensor is expressed using a state law equation while the
deviator tensor with material law properties. The component τij of the shear stress
tensor τ can be seen as:

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 (2.7)

2.1.3.1 Newtonian fluid model

The Newtonian fluid model assumes a shear stress tensor τ proportional to the strain
rate tensor D, or velocity gradient. The involved proportional coefficient is the viscosity
µ. Under homogeneous and isotropic medium assumption, the shear stress tensor only
depends on the local thermodynamic state:

τ = 2µD− 1

3
(tr(2µD))In (2.8)

τxx =
2

3
µ(2∂xu−∂yv−∂zw), τyy =

2

3
µ(2∂yv−∂zw−∂xu), τzz =

2

3
µ(2∂zw−∂xu−∂yv),

τxy = µ(∂yu− ∂xv), τyz = µ(∂zv − ∂yw), τzx = µ(∂xw − ∂zu).

2.1.3.2 Viscosity model

For simple cases, the viscosity is usually taken as a constant. For more complex cases,
where the range of temperature and pressure is large, state variables such as the tem-
perature can be involved. As long as the temperature is kept reasonably low, a typical
viscosity model is defined by the Sutherland law :

µ(T ) = µref

(
T

Tref

)3/2 Tref + Ts
T + Ts

,

with the reference viscosity µref = 1.716 · 10−5N.s.m−2, the reference temperature
Tref = 273.15K and the Sutherland temperature Ts = 110.4K.

2.1.4 Heat flux model

The remaining unknown in the equations is the heat flux q. The heat flux is modeled
by a function of the temperature gradient ∇T and material thermal conductivity κ in
WK−1m−1:

q(∇T, κ) = −κ∇T

i.e:
q = (qx, qy, qz)

T = −κ (∂xT, ∂yT, ∂zT )T
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The conductivity κ is a function of the material properties. For our purpose, a dimen-
sionless number Pr, called the Prandtl number, is introduced and expresses the ratio of
momentum diffusivity (µ/ρ) to the thermal diffusivity (κ/(ρcp)):

Pr =
cpµ

κ
,

with cp the specific heat at constant pressure, µ the fluid viscosity and κ the thermal
conductivity. From this equation, the thermal conductivity is extracted and used to
define the heat flux:

κ =
cpµ

Pr
.

The Prandtl number is usually taken as a constant Pr = 0.72 but the following formula
can also be used [Toro 2009]:

Pr(γ) =
4γ

9γ − 5

2.2 Filtered Navier-Stokes equations

Flow behaviors have been studied by Osborne Reynolds in details in the late 18th cen-
tury. He extracted a very important non-dimensional number which characterize the
complexity of a flow. This number, called the Reynolds number, is the ratio of the
inertial forces over the viscous forces, or the ratio of viscous to convective time scales:

Re =
ρref‖V ∞‖2L2

µref‖V ∞‖Lref︸ ︷︷ ︸
forces ratio

=
ρrefL

2
ref/µref

L/‖V ∞‖︸ ︷︷ ︸
time scales ratio

=
ρref‖V ∞‖Lref

µref
,

with a reference density ρref , a conventional characteristic length Lref , the mean infinite
velocity V ∞ and a reference viscosity µref . When the Reynolds number is small, viscous
forces are dominating the flow and the resulting flow is laminar. When the Reynolds
number is large, inertial forces are dominating the flow and the flow becomes turbulent. In
between, at moderate Reynolds number, the flow has laminar-turbulence intermittency
behavior and is much more difficult to characterize.

With some simplifications and simple configurations, analytical solutions of the Navier-
Stokes equations can be derived. Such solutions for incompressible laminar flows on
Poiseuille (flow in a tube) or Blasius (flow over a plate) configuration are well known.
Unfortunately, no general analytical solution of the Navier-Stokes solutions exists, espe-
cially in the turbulent regime. As a consequence, numerical computation is the only way
to approach these solutions.

2.2.1 Turbulence phenomenon and computational burden

In most of engineering cases, even with the best computer/cluster, the Direct Numerical
Simulation (DNS) where the smallest eddies are solved, is out of reach because the
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grid has to be extremely fine to capture such eddies. If we assume the exponential
growth of supercomputing power or Moore’s Law holds, DNS computation in external
aerodynamics will only be viable in 2080 [Spalart 2012]. Some turbulence modeling
techniques, as pure Large Eddy Simulation (LES) where the influence of eddies smaller
than the grid size is modeled, can reduce this date down to 2045. Fortunately, some
other turbulence modeling techniques that are computationally tractable exist, but their
domain of validity and underlying hypothesis can be a major concern in the optimization
framework. These models are the ones we focus on in this thesis as they are the only
ones that are compatible with the required computational time for the optimization.

2.2.2 Equations filtering

To reduce the computational cost of solving turbulent flows, one idea is to solve only a
part of the flow and to model what remains. To do so, the Navier-Stokes equations are
filtered using an operator < . >. Statistical methods aim to solve the mean flow and to
model fluctuations coming from the turbulence. The main properties of this filter are:

• constants conservation: < c >= c

• linearity: < f + g >=< f > + < g >

• commutation with derivative (spatial and time): ∂s < f >=< ∂sf >, s = {x, t}

with f and g two random variables and c a constant.

With such a filter, any variable x can be decomposed in a resolved and an unresolved
part. In example, for the mean filter, x = x + x′ with x the mean or resolved part and
x′ the fluctuations or unresolved part of x.

An examples of filter commonly used in turbulence modeling is the statistical mean filter:

< f(x, t) >= lim
T→∞

1

T

∫ t0+T

t0
f(x, t)dt

By applying such a filter to the Navier-Stokes equations [Mohammadi 1994], the conser-
vation of mass becomes:

< ∂tρ+ ∇ρV > =

∂t < ρ > +∇ < ρV > = 0.
(2.9)

The conservation of momentum:

< ∂t(ρV ) + ∇(ρV ⊗ V )−∇(σ)− ρfe > =

∂t(< ρV >) + ∇(< ρV ⊗ V > − < σ >)− < ρfe > = 0.
(2.10)

And the conservation of energy:

< ∂t(ρE) + ∇((ρE)V )−∇(q)−∇(σ · V )− ρ(fe · V )− qH > =

∂t < ρE > +∇(< (ρE)V > − < q > − < σ · V >)− < ρ(fe · V ) > − < qH > = 0.

(2.11)
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To simplify the set of variables, the Favre density-weighted filtering operation is intro-
duced:

Ã =< ρA > / < ρ >,

with the associated non resolved part A′′ = Ã−A. The filtered Navier-Stokes equations
then read:

∂t(< ρ >) + ∇(< ρ > Ṽ ) = 0

∂t(< ρ > Ṽ ) + ∇(< ρV ⊗ V > − < σ >)− < ρ > f̃e = 0

∂t(< ρ > Ẽ) + ∇(< ρEV > − < q > − < σ · V >)− < ρ > ˜(fe · V )− < qH >= 0

It remains to develop the different parts of the equations using the filter properties by
focusing respectively on the terms < ρV ⊗ V >, < ρEV > and < σ · V >. It can be
shown using the filters properties that < ρV ⊗ V > is decomposed as:

< ρV ⊗ V >=< ρ > Ṽ ⊗ Ṽ + < ρV ′′ ⊗ V ′′ > .

With this decomposition, the Reynolds stress tensor R = − < ρV ′′ ⊗ V ′′ > is naturally
derived.

In the same manner, using the filtering properties, < ρEV > is decomposed as:

< ρEV >=< ρ > ẼṼ + < ρE′′V ′′ > .

The turbulent transport of E′′ represented by the term < ρE′′V ′′ > needs to be further
developed by expressing the term E′′ with Ẽ and E. The expression of Ẽ is found by
using the total energy definition:

E = e+
1

2
V · V , (2.12)

and by averaging it:

< ρE > =< ρe > +
1

2
< ρV · V >

=< ρ > Ẽ =< ρ > ẽ+
1

2
< ρṼ · Ṽ > +

1

2
< ρV ′′ · V ′′ >

⇔ Ẽ = ẽ+
1

2

< ρṼ · Ṽ >

< ρ >
+

1

2

< ρV ′′ · V ′′ >
< ρ >

(2.13)

Thus

Ẽ = ẽ+
1

2
Ṽ · Ṽ +

1

2
˜V ′′ · V ′′︸ ︷︷ ︸

Turbulent kinetic energy

(2.14)

which is the definition of the Favre filtered total energy. From this averaging, the tur-
bulent kinetic energy 1

2
˜V ′′ · V ′′ is naturally showing up.



18 Chapter 2. Fluid and actuation modeling

The term < ρE′′V ′′ > can finally be developed by expressing E′′:

E′′ = E − Ẽ

= (e− ẽ) +
1

2
V · V − 1

2
Ṽ · Ṽ − 1

2
˜V ′′ · V ′′

= e′′ +
1

2
(Ṽ + V ′′) · (Ṽ + V ′′)− 1

2
Ṽ · Ṽ − 1

2
˜V ′′ · V ′′

= e′′ + Ṽ · V ′′ + 1

2
(V ′′ · V ′′ − ˜V ′′ · V ′′)

(2.15)

And with some algebra manipulation:

< ρE′′V ′′ >=< ρe′′V ′′ > +Ṽ < ρV ′′ ⊗ V ′′ >︸ ︷︷ ︸
−R

+
1

2
< ρV ′′(V ′′ · V ′′) >︸ ︷︷ ︸

Neglected

The term < ρV ′′(V ′′ · V ′′) > is considered to be small compared to the other terms
and is thus neglected in practice.

Finally, the averaged conservation of mass is

∂t < ρ > +∇(< ρ > Ṽ ) = 0, (2.16)

the averaged conservation of momentum

∂t(< ρ > Ṽ ) +∇(< ρ > Ṽ ⊗ Ṽ + < ρV ′′ ⊗ V ′′ >︸ ︷︷ ︸
Reynolds stress tensor

) = ∇ < σ > + < ρ > f̃e, (2.17)

and the averaged conservation of energy

∂t(< ρ > Ẽ) +∇(< ρ > ẼṼ +< ρe′′V ′′ >︸ ︷︷ ︸
−Kt∇(ẽ)

+Ṽ < ρV ′′ ⊗ V ′′ >︸ ︷︷ ︸
Reynolds stress tensor

− < q >︸ ︷︷ ︸
Fd=−κ∇(ẽ)

− < σ · V >) =< ρ > (Ṽ · fe)+ < qH > .
(2.18)

These filtered equations are formally identical to the non filtered Navier-Stokes equations
with two terms in addition. The term < ρe′′V ′′ > is modeled as a turbulent heat flux:

< ρe′′V ′′ >= −κt∇(ẽ).

with κt the thermal turbulent conductivity. The Reynolds stress tensor < ρV ′′ ⊗V ′′ >
needs to be modeled to close the equations.

2.2.2.1 RANS and URANS approach

The Reynolds Averaged Navier-Stokes (RANS) equations and Unsteady Reynolds Av-
eraged Navier-Stokes (URANS) equations are derived from this formal Navier-Stokes
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equations filtering. RANS equations consider a time average filter applied to the Navier-
Stokes equations:

< f(x, t) >= lim
T→∞

1

T

∫ t0+T

t0
f(x, t)dt.

With this filter, the statistical averaging is similar to time averaging under ergodicity
hypothesis.

Unfortunately, this last hypothesis doesn’t hold with non stationary flows, which are the
ones in our concern. Thus, instead of using a time average filter, phase average filtering
is preferred. The URANS equations are identical to the RANS equations but explicitly
including a time dependance when solving the equations. This filter is defined by the
mean of a convolution[Gatski 2007]:

< f(x, t) >=

∫
G(x− r, t− τ)f(x, t)drdτ,

where

G(x, t) = δ(x)

[
lim
N→∞

1

N + 1

N∑
n=0

δ(t+ nT )

]
.

with δ the Dirac delta function and T is the period of the cycle considered. This filter
assumes that the averaged quantity is statistically periodic in time. This is questionable
but can be reasonably assumed if the studied flow is excited with a periodic source.

To close the filtered Navier-Stokes equations, one needs to model the reynolds stress
tensor and link it to known variables. The following describes some turbulence models
used to close the equations.

2.3 Turbulence flow models

Turbulence modeling consists in defining the Reynolds stress tensor to close the resulting
equations from the filtering process. Three main families exist within the RANS frame-
work to model this term: the linear eddy viscosity models, the non linear eddy viscosity
models and the Reynolds Stress Models. The linear and non linear eddy viscosity mod-
els use a relationship involving the mean strain rate, the vorticity fields and some other
turbulence variables to the Reynolds Stress Tensor:

R = − < ρV ′′ ⊗ V ′′ >= f (Dij ,wij , µt, k, . . . )

with the strain rate tensor Dij , the vorticity tensorwij , the turbulent viscosity µt and the
turbulent energy k. On the other side, Reynolds Stress Models do not make assumption
on the structure of the Reynolds stress tensor but uses transport equations to model its
evolution.

Similar to the Newtonian fluid model defining the shear stress tensor, the linear eddy
viscosity models, based on the so-called Boussinesq eddy viscosity assumption, define the
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Reynolds stress tensor as:

R =

(
2µtD−

1

3
(tr(2µtD))In

)
− 2

3
< ρ > kIn

with k = 1
2

˜V ′′ · V ′′ the turbulent kinetic energy. By omitting the averaging notation,
the Reynolds tensor R can be rewritten as:

τ turb = µt

(
2D− 2

3
(∇ · V )In

)
− 2

3
ρkIn.

Turbulence modeling based on the Boussinesq assumption consists in determining the
turbulent viscosity µt and the turbulent kinetic energy k. These quantities are described
using 0, 1 or 2 transport equations.

The non linear eddy viscosity models rely on the same principles, the relationship between
the Reynolds stress, the mean strain rate and vorticity tensors being more complicated
which allows the Reynolds stress tensor to be non aligned with the strain rate. This is
possible by introducing a tensor a(ex) to define the Reynolds stress tensor τ turb:

τ turb = µt

(
2D− 2

3
∇ · V

)
− ρkIn − ρka(ex).

These models are based on two-equation turbulence models.

The transport equations for the turbulent quantity have the form:

∂t(ρφ) + ∇(ρV φ) = ∇(µte∇φ) + St. (2.19)

with φ the transported quantity, µte the turbulent effective viscosity and St a source term.

The turbulence models used in this thesis and their main characteristics are described
below.

2.3.1 Spalart-Allmaras

The Spalart-Allmaras closure [Spalart 1992] is a one-equation closure calibrated on sim-
ple flows which is intensively used in aerodynamics. It provides satisfactory results on
attached flows and gives a better description of velocity fields for detached flows than
zero-equation models. Several versions and variants of this model, including curvature
corrections, have been developed since the original version was drawn up. The imple-
mented compressible and incompressible versions correspond to the standard Spalart-
Allmaras model where the turbulent viscosity is a function of the variable ν̃:

µt = fv1ρmax(ν̃, 0)

with fv1 = χ3

χ3+C3
v1
, χ = ν̃

µ/ρ and Cv1 a model constant defined below. Note that the
effects of the turbulent kinetic energy k is neglected in this model.
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The Spalart-Allamaras variable ν̃ is transported using:

∂t(ρν̃) + ∇(ρV ν̃) = ∇(µte∇ν̃) + SSAt . (2.20)

with µte the turbulence effective viscosity defined as

µte =
µ+ ρν̃

σm
(2.21)

with σm a model constant.

The components of the turbulence source flux are decomposed into P, D and d, respec-
tively the production, destruction and diffusion terms:

SSAt = P −D + d

The production, destruction and diffusion terms are defined by:

P = cb1ρν̃S̃, D = cw1fwρ

(
ν̃

dwall

)2

, d =
cb2
σm

ρ‖∇ν̃t‖22

with S̃ = ‖w‖2 + ν̃
κ2d2wall

fv2 limited to be positive, dwall the distance to the wall and the
vorticity w defined as w = ∇× V .

The missing model variables are set to:

fv1 =
χ3

χ3 + C3
v1

, fv2 = 1− χ

1 + χfv1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

g = r + cw2(r6 − r), r = min

[
ν̃

S̃κ2d2
wall

, 10

]
, χ =

ν̃

µ/ρ

with the calibrated constants: κ = 0.41, cb1 = 0.1355, σm = 2/3, cb2 = 0.622, κ = 0.41,
cw2 = 0.3, cw3 = 2, cv1 = 7.1, cw1 = cb1

κ2
+ 1+cb2

σm
.

The boundary conditions are set to:

ν̃∞ = 3
µ∞
ρ∞

,

ν̃wall = 0.

2.3.2 k-ε Launder Sherma

The k-ε Launder-Spalding [Launder 1974] is a two-equation turbulence closure. The aim
of this closure is to predict the length scale and the time reversal of the largest turbulent
eddies in the flow. To determine these characteristics, the k-ε model is based on solving
the turbulent energy k and the dissipation rate ε. Its coefficients are calibrated on simple
flows at equilibrium. The turbulent viscosity is a function of k and ε:

µt = Cµfµρ
k2

ε
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The baseline closure of k-ε Launder-Spalding is:{
∂t(ρk) + ∇(ρV k) = ∇(µ

t(k)
e ∇k) + Skt

∂t(ρε) + ∇(ρV ε) = ∇(µ
t(ε)
e ∇ε) + Sεt

, (2.22)

with the respective turbulent effective viscosity defined as: µ
t(k)
e =

(
µ+ µt

σk

)
µ
t(ε)
e =

(
µ+ µt

σε

) . (2.23)

As for the Spalart-Allmaras model, the source term is decomposed in production, de-
struction and diffusion terms: {

Skt = P k −Dk + dk

Sεt = P ε −Dε + dε
(2.24)

These terms are defined by:{
P k = τ turbij

∂V i
∂xj

,

P ε = Cε1f1
ε
kP

k
,
Dk = 2 ρν

(
∂
√
k

∂y

)2

Dε = 2 ρν νt

(
∂2u
∂y2

)2 ,
dk = −ρε
dε = Cε2f2

ε
kd

k . (2.25)

And finally, the calibrated constants are set as cµ = 0.09, σk = 1, σε = 1.3.

2.3.3 k-ω SST

As for the k-ε Launder-Spalding, the k-ω model is a two-equation turbulence closure
that aims at predicting the length scale and the time reversal of the largest turbulent
eddies in the flow. While the k-ε model is based on solving the turbulent energy k

and the dissipation rate ε, the k-ω uses the turbulent energy k and the characteristic
frequency ω of the largest eddies. It is well known that the simple k-ω closure is sensitive
to boundary conditions, but can be integrated to the wall, while the k-ε closure is not
sensitive to boundary conditions, but cannot be integrated to the wall unless using
damping functions. By taking both advantages of the k-ε and k-ω closures, the k-ω-SST
closure from Menter [Menter 1993] is deduced by mixing the k-ε closure far away from
walls to k-ω closures close to the walls.

The turbulent viscosity is a function of k and ω:

µt =
ρa1k

max(a1ω,Ωf2)
,

with a1, f2 some constants defined below and Ω is the vorticity norm. The vorticity is
defined by ω = ∇× V .

The baseline closure of k-ω-SST Menter is described by:{
∂t(ρk) + ∇(ρV k) = ∇(µ

t(k)
e ∇k) + Skt

∂t(ρω) + ∇(ρV ω) = ∇(µ
t(ω)
e ∇ω) + Sωt

, (2.26)
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with the respective turbulent effective viscosity defined as:{
µ
t(k)
e = (µ+ σkµt)

µ
t(ω)
e = (µ+ σωµt)

. (2.27)

The source term is decomposed in production, destruction and diffusion terms:{
Skt = P k −Dk + dk

Sωt = Pω −Dω + dω
, (2.28)

defined as{
P k = min(P, 20Dk),

P ε = γ
νt
P

Dk = β∗ρωk

Dε = βρω2 ,
dk = 0

dε = 2(1− f1)(ρσw2

ω )(∇k ·∇w)
, (2.29)

with
P = τ turbij

∂V i

∂xj
.

The missing constants are set to β∗ = 0.09, κ = 0.41, a1 = 0.31.

The other coefficients used in the previous equations are blended using the inner and
outer values via the blending function:

φ = f1φ1 + (1− f1)φ2,

with the blending function f1 defined as:{
f1 = tanh

(
arg4

1

)
f2 = tanh

(
arg2

2

) . (2.30)

arg1 and arg2 are defined such as: arg1 = min
[
max

( √
k

β∗ωd ,
500ν
d2ω

)
, 4ρσω2k

CDkωd
2
wall

]
arg2 = max

(
2

√
k

β∗ωdwall
, 500ν
d2wallω

) . (2.31)

with
CDkω = max

(
2ρσω2

1

ω
∇k ·∇ω, 10−20

)
As example for the coefficient β:

β = f1β1 + (1− f1)β2.

And finally, the blended coefficients are:{
σk1 = 0.85

σk2 = 1.0
,
σω1 = 0.5

σω2 = 0.856
,
β1 = 0.075

β2 = 0.0828
, (2.32)

{
γ1 = β1

β∗ −
σω1κ2√
β∗
≈ 0.553167

γ2 = β2
β∗ −

σω2κ2√
β∗
≈ 0.440355

. (2.33)
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The boundary conditions are set to:{
k∞ = 9e−9c2

∞

ω∞ = 1e−6 ρc
2
∞
µ

, (2.34)

{
kwall = 0

ωwall0 = 10 6ν
β1(∆1dwall)2

. (2.35)

2.3.4 k-ω EASM

Explicit and Implicit Algebraic Stress Models belong to the larger class of Algebraic
Stress Models. They are based on an extension of the linear Boussinesq assumption,
designed to add anisotropic behaviors to two-equation closures, corresponding to the
previously described models in section 2.3. These models are non-linear and are built
upon a full Reynolds Stress estimation, on the basis of a transport equation for a two-
equation closure.

Contrary to two-equation closures, the Algebraic Stress Models can handle negative pro-
duction of energy, rotational effects, etc. Furthermore, unsteady flows are characterized
by a misalignment between the anisotropy tensor and the strain tensor [Carpy 2006].
As a consequence, two-equation closures are not able to predict these features, due to
their linear nature, while Algebraic Stress Models can better predict such complex flows.
Finally, an advantage of the formulations of Algebraic Stress Models is that they do not
need to be calibrated.

The considered Explicit Algebraic Stress Model is based on the k-ω closure by Gatski &
Speziale [Gatski 1993] with a near-wall formulation [Deng 1999]. As this model requires
a complex decomposition of the Reynolds stress tensor, and that the aim of this work is
not to derive new turbulence models, the reader is referred to the previously cited papers
concerning the mathematical formulation of the model.

In turbulent flows including control mechanism, models of actuators are also needed.
The following describes some of these models.

2.4 Actuation modeling - Synthetic jet

A synthetic jet is a fluidic actuator that injects momentum in the boundary layer by
the mean of oscillatory blowing and suction phases. It has been found efficient for flow
vectorization, mixing enhancement or detachment delay [Gilarranz 2002, Seifert 1996,
Smith 1997]. This actuator is especially interesting for real-life flow control problems,
because it is compact and does not require air supply, contrary to pulsating jets for
instance.

As illustrated in the previous references, practical synthetic jets can be of different
types. Nevertheless, they are usually composed by a cavity with a moving surface,
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which generates inflow or outflow through a slot, as shown in Fig. (2.1). In prac-
tice, multiple technologies are known to develop such actuators and were the origin
of several patents (US6056204, EP1040736, US 2010/0044459A1, US 2010/0045752A1,
etc.). The principle of such actuators is to move a membrane or diaphragm up and
down at high frequency to suck and blow the surrounding air. Examples of such
technologies, are small membrane driven by piezoelectric actuators [Glezer 2002], reg-
ular speakers, pistons, etc. The numerical simulation of a synthetic jet in interac-
tion with the flow in the outer domain is tedious, for several reasons. If one in-
tends to represent exactly the device, the simulation of the flow in the deformable
cavity [Rizzetta 1999, Holman 2005, Xia 2005, Utturkar 2002, Mittal 2001] should be
achieved, which requires to use sophisticated methods like automated grid deformation,
ALE (Arbitrary Lagrangian Eulerian) formulation, etc. Moreover, a significant part of
the computational time could be devoted to the simulation of the flow inside the cavity,
which is usually not the main purpose. Obviously, the introduction of the actuator makes
the grid generation step more complex and the automatization of the process could be
tedious, if possible. This is especially damageable in a design optimization framework, if
one intends to optimize the actuator location, for instance. These reasons motivate the
development and the use of simplified models in an industrial context. Some of them are
detailed below.

Figure 2.1: Synthetic jet principle.

2.4.1 Cavity model

A first simplification consists in using a fixed computational domain. In that case, the
movement of the bottom surface of the cavity is modeled by imposing a prescribed
boundary condition for the flow velocity [Dandois 2006] and possibly for the normal
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pressure gradient [Kral 1997], as illustrated in Fig. (2.2). In this study, we impose the

Figure 2.2: Cavity model.

value of the velocity at the bottom surface, as:

U = UcAc(ξc) sin(2πft) ηc (2.36)

where Uc is the oscillation amplitude of the velocity at the cavity bottom surface, (ξc, ηc)

a local frame system and f is the actuation frequency. Ac(ξc) describes the velocity
profile along the surface, which is here defined as:

Ac(ξc) = sin2

(
2π

ξc − ξminc

ξmaxc − ξminc

)
(2.37)

with ξmins and ξmaxs the minimum and maximum bottom slot abscissae of the boundary
considered.

Thus, the actuation is finally defined by the two parameters (Uc, f).

2.4.2 Slot model

The major drawback of the cavity model is related to the computational time used to
simulate the flow inside the cavity, which is usually not negligible due to the necessity
to use a refined grid in the cavity. Therefore, a subsequent simplification level consists
in replacing the cavity by a simple boundary condition located at the slot extremity, as
illustrated by Fig. (2.3). This shortcut reduces the computational burden, but does not
allow to describe the flow in the cavity and the possible Helmholtz resonance phenomenon
that can occur inside [Dandois 2007].

Figure 2.3: Slot model.

The boundary condition is formally equivalent to (2.37), but with different parameters:

U = UsAs(ξs) sin(2πft) ηs (2.38)
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As(ξs) = sin2

(
2π

ξs − ξmins

ξmaxs − ξmins

)
(2.39)

The local frame (ξs, ηs) is now attached to the bottom slot surface. To impose an
equivalent flow rate, the following relationship should be verified:

Us = Uc
ξmaxc − ξminc

ξmaxs − ξmins

(2.40)

2.4.3 Boundary condition model

Finally, the simplest model just consists in imposing a boundary condition for the
velocity at the slot exit, as illustrated by Fig. (2.4). This model makes the grid
generation process slightly easier, but the benefit is not significant, because the mesh
should anyway account for the jet, as shown in the following numerical study. This
model does not allow to describe the interaction between the flow in the outer domain
and the flow exiting the slot. However, this model is certainly the most used in the lit-
erature [Rumsey 2006, Kral 1997, Vadillo 2002, Vadillo 2002, Pes 2002, Mallinson 1999,
Capizzano 2005] due to its implementation ease.

Figure 2.4: Boundary model.

In practice, the boundary condition is the same as previously, defined by (2.38-2.39).

The practical numerical implementations of these models are further described in the
chapters that follow.
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Numerical methods for simulation
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In this chapter, the numerical methods for solving the URANS equations are presented.
Two different solvers have been used in this thesis to carry out the simulations. The thesis
work has been focused on the development of an in-house compressible flow solver, which
is part of the NUM3SIS simulation platform developed at INRIA. This chapter describes
the platform and the numerical methods implemented to solve URANS equations. The
second solver is an incompressible flow solver provided by the LHEEA (Laboratoire
de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique) from
CNRS UMR 6598 / ECN in France in the context of a collaborative work on flow control.
This code has been used for a specific study on the BFS case and will be briefly described
in the corresponding chapter.

3.1 Num3sis - a platform for numerical simulation

Most of the current industrial and research CFD codes are developed on the basis of
a software architecture architecture coming from the 70s and 80s. This architecture is
traditionnaly composed of a main program built with some static libraries for which the
former describes the workflow and the latter contains the functions necessary for each
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task in the workflow. This architecture has not really been questioned so far, although
the complexity of the computations has grown significantly and that it appears clearly
that it has several drawbacks.

First, the achievement of numerical experiments requires modularity, which allows to
easily test different numerical methods (e.g. Roe flux v.s. HLLC flux), or modify physical
parameters (e.g. inlet velocity profile). This ability to modify some parts of the code is
critical to precisely benchmark numerical methods or models and easily prototype new
methods. Obviously, traditional static architectures are not well suited to this purpose:
usually, the implementation of a new method foo2 yields the addition of new functions
and variables, that will juxtapose the existing ones foo0, foo1. Then, the code is always
growing and becoming less and less readable.

Secondly, developments in CFD are now mainly collaborative projects, because it is
increasingly difficult for one isolated person to master all modeling, numerical and com-
putational aspects related to complex simulations. Unfortunately, a monolithic architec-
ture is a real burden for collaborative development: since these codes are always growing
(as explained above), the exchange of pieces of code and the maintenance is time con-
suming for long term and large scale projects. Typically, for each new method foo2,
someone should verify if the proposed implementation is correct and will not generate
conflicts with all other existing methods foo0, foo1 (for instance in case of addition of
an argument).

Finally, the complexity of these codes makes the introduction of a new user tedious and
time consuming: to modify a unique method, a new user should usually understand a
large part of the code, even if it is not of interest for his study.

To overcome these limitations, the development of the NUM3SIS platform
(http://num3sis.inria.fr) was initiated at INRIA. The software architecture is based on
a new paradigm with a clear distinction between the platform and plugins.

The platform, written in C++ language, gathers all components dedicated to numerical
simulation, that are considered as common to various disciplines. In practice, it consists
of a set of abstractions, that can represent data or processes, commonly used in simulation
like mesh, field, finite element, control cell, etc. As abstraction, numerical methods
related to these objects are not implemented in the platform. On the contrary, a plugin
contains a possible implementation of an abstraction defined in the platform. Note that
a library written in a different language can be embedded into a plugin. In practice,
plugins are dynamic libraries used by the platform at runtime.

This approach has several advantages: first, all the methods are not aggregated in
a unique code, which improves readability and modularity. Then, it proposes a nice
framework for collaborative development, because development of new plugins can be
conducted independently from the platform or other plugins. Finally, an easy bench-
marking procedure can be carried out by implementing the methods to be compared into
different and independent plugins. One should underline that it is possible to change a
parameter of a plugin, or the plugin itself, at runtime. This modifies the forthcoming
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computation and enables the user to interact with the simulation.

During this thesis, all necessary developments required for the simulation of actuated
flows have been implemented in the NUM3SIS platform. More specifically, I have ex-
tended the existing Eulerian code to solve unsteady turbulent RANS equations. These
numerical methods are presented below. Although these methods are well known, a
significant work has been achieved for their implementation in an object-oriented frame-
work.

3.2 Mean turbulent flow

The equations solved for the turbulent compressible flow simulations are the Unsteady
Favre-Averaged Navier-Stokes equations. We recall that for any variable x, with x the
mean part and x′ the fluctuations of x, the Reynolds average or filter is denoted by
x = x+x′ with x′ = 0. The density weighted average, called Favre averaging, is denoted
by x̃ = ρx/ρ with the related fluctuation part x′′ = x− x̃.

In conservative form, the averaged turbulent compressible equations can be written as
(section 2.2.2):

∂tW
c + ∇ ·F(W c) = ∇ ·N (W c) + S(W c) (3.1)

with the averaged conservative variables W c = (ρ, ρũ, ρṽ, ρw̃, ρẼ)T , the invis-
cid flux F(W c) = (F (W c),G(W c),H(W c))T , the viscous flux N (W c) =

(R(W c),S(W c),T (W c))T and the source term S(W c).

The components of the inviscid flux in the global frame R0(x̂, ŷ, ẑ) are:

F (W c) =


ρũ

ρũ2 + p

ρũṽ

ρũw̃

ũ(ρẼ + p)

 , G(W c) =


ρṽ

ρṽũ

ρṽ2 + p

ρṽw̃

ṽ(ρẼ + p)



H(W c) =


ρw̃

ρw̃ũ

ρw̃ṽ

ρw̃2 + p

w̃(ρẼ + p)


The components of the viscous flux are:

R(W c) =


0

τxx
τxy
τxz

ũτxx + ṽτxy + w̃τxz − qx

 , S(W c) =


0

τyx
τyy
τyz

ũτyx + ṽτyy + w̃τyz − qy
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T (W c) =


0

τzx
τzy
τzz

ũτzx + ṽτzy + w̃τzz − qz


The averaged shear stress tensor τ is composed of a laminar and turbulent tensor: τ =

τ lam + τ turb. The laminar part is modeled considering Newtonian fluid:

τ lam = µ

(
∇Ṽ + ∇Ṽ

T
− 2

3
(∇ · Ṽ )In

)
The turbulent part uses the Boussinesq eddy-viscosity assumption (section 2.3):

τ turb = −ρV ′′ ⊗ V ′′ ≈ µt
(
∇Ṽ + ∇Ṽ

T
− 2

3
(∇ · Ṽ )In

)
− 2

3
ρkIn

As for the shear stress tensor, the heat flux q is split in two parts: q = qlam + qturb.
Both the laminar and turbulent parts are modeled by using a Fick or Fourier law:

qlam(ε, κ) = −γ µ
Pr

∇ε̃

qturb(ε, κ) = ρV ′′h′′ ≈ −γ µt
Prt

∇ε̃

with ε̃ = p
(γ−1)ρ and the specific enthalpy h = cpT where cp is the specific coefficient at

constant pressure and T the temperature.

Finally, to close the equations, the total energy Ẽ = ε̃+ 1
2 Ṽ · Ṽ + k, the adiabatic index

is set to γ = 1.4, the Prandtl number is set to Pr = 0.72, the turbulent Prandtl number
is set to Prt = 0.9 and the laminar viscosity µ is modeled by the Sutherland law, unless
explicitly specified as being a constant.

For simplicity purpose, the average notations . and .̃ are omitted in the following.

3.3 Turbulent equations

As for the mean equations, the turbulent equations in conservative form are written as:

∂tW
c
(t) + ∇ ·Ft(W c,W c

(t)) = ∇ ·Nt(W
c,W c

(t)) + St(W c,W c
(t)) (3.2)

with in example for the Spalart-Allamars turbulence model W c
(t) = (ρν̃), the inviscid

turbulence flux Ft(W c,W c
(t)) = (ρν̃u, ρν̃v, ρν̃w)T , the viscous flux Nt(W

c,W c
(t)) =

µte∇ν̃ with µte = µ+ρν̃
σm

, σm a model constant and the source flux St(W c,W c
(t)).

The components of the turbulence source flux in the global frame R0(x̂, ŷ, ẑ) are:

St(W c,W c
(t)) = P −D + d

with P, D and d respectively the production, destruction and diffusion terms defined by
the turbulence equations.
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3.4 Space discretization

All the transport equations defined above are solved using Mixed finite-Element/finite-
Volume (MEV) discretization with a vertex centered approach, developed by Dervieux
and his collaborators at INRIA [Dervieux 1985, Debiez 2000, Desideri 1988]. Within
the MEV framework, inviscid fluxes and source fluxes are discretized with a finite-
volume approach while the viscous fluxes are discretized with a finite-element approach
[Fezoui 1989, Francescatto 1998].

A polygonal bounded domain Ω ⊂ Rn is considered with a boundary Γ, sub-divided into
a tetrahedrization or triangulation Th with elements Ti. Around each vertex si a finite-
volume control cell Ci of a measure m(Ci) is constructed. The finite-volume control cell
is built around the node si by joining the barycenter of the triangles containing si and
midpoint of the edges adjacent to si. The set of vertices which are joined to the vertex
si is denoted by N (si). The subset of all the highest topological dimension polygons
sharing the vertex si is denoted by T (si).

The inviscid and sources fluxes are computed on the dual control cells Ci while the
viscous fluxes are computed on the elements Ti. A weak formulation of the Navier-
Stokes equations can be expressed using a Galerkin approach.

By integrating the equation (3.1) over a control cell Si (dual control cell or element)
after multiplying by a test function ϕi, the weak formulation can be written as:∫

Si

(∂tW
c + ∇ ·F(W c))ϕidΩ =

∫
Si

(∇ ·N (W c))ϕidΩ +

∫
Si

(S(W c))ϕidΩ (3.3)

The finite-volume method can be interpreted as a Galerkin method with the control cell
Si = Ci and with the test function equals 1 inside the dual control cell and 0 outside.
This test function, related to the control cell Ci is defined as:

ϕCi (x) =

{
1, if x is in Ci
0, else

The variables W c are considered to be constant on each control cells Ci, which is sim-
ilar of having averaged states stored on each control cells, just as in the finite-volume
methods. These constants are denoted by W c

i on the cell Ci (see Fig. 3.4). The finite-
element method is retrieved by using the control cell Si = Ti. The polygon Ti is defined
as a Lagrange P1 finite-element with the canonical basis functions denoted ϕTi for each
vertex si. Thus, ϕTi is equal to unity at the vertex si and zero at the other vertices of
the element. The P1 approximation of any function f on a polygon Ti can be obtained
by:

f(X)|Ti =
∑
k∈Ti

fkϕ
T
k (X)

where fi is the value of f at the vertex si.
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Figure 3.1: Illustration of a control cell in 2D and 3D.

The gradient for the function f on the finite elements are obtained using:

∇f(X)|Ti =
∑
k∈Ti

fk∇ϕTk (X)

From this element gradient, the nodal P1-Galerkin gradient ∇f(X)|si is computed as
the weighted average of the element gradients T ∈ T (si) linked to the vertex si such as

∇f(X)|si =
1

m(Ci)

∑
T∈T (si)

m(T)

Ns(T)

∑
k∈T

fk∇ϕTk (X) (3.4)

which can be expressed as

∇f(X)|si =
∑

T∈T (si)

αT∩Ci
Ns(T)

∑
k∈T

fk∇ϕTk (X) (3.5)

by introducing the cell volume fraction αT∩Ci = m(T)
m(Ci)

for the element T and Ns(T) the
number of vertices of the element T.

Finally, to reach a better accuracy within the boundary layer, control cells are con-
structed following Barth method [Barth 1995, Viozat 2001] by using the triangle circum-
center instead of barycenter for highly stretched elements. This approach gives regular
instead of highly stretched control cells as shown on Fig. 3.4.

3.4.1 Convective fluxes

By using the Green-Ostrogradski theorem, the left term of 3.3 becomes:∫
Ci

(∂tW
c + ∇ ·F(W c))ϕCi dΩ = m(Ci)∂tW

c
i +

∫
∂Ci

(F(W c) · η̂))dσ (3.6)

with η̂ the outward unit normal on ∂Ci, the boundary of the cell Ci.
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Figure 3.2: Illustration of a control cell in 2D using the Barth method.

Furthermore, as the domain is discretized,∫
∂Ci

(F(W c) · η̂))dσ =
∑

sj∈N (si)

∫
∂Ci∩∂Cj

(F(W c) · η̂))dσ

=
∑

sj∈N (si)

F(W c)|ij ·
∫
∂Ci∩∂Cj

η̂dσ

=
∑

sj∈N (si)

F(W c)|ij · ηij

To obtain a high-order approximation in space, a MUSCL reconstruction technique is
used [Van Leer 1979]. Any reconstructed primitive variables wpij and w

p
ji from their initial

state wpi and wpj at the common interface of the cells Ci and Cj read:{
wpij = wpi + 1

2αij(∇wp)ij · IJ
wpji = wpj −

1
2αji(∇wp)ji · IJ

The slopes (∇wp)ij · IJ and (∇wp)ji · IJ are approximated using the upwind nodal
scheme [Camarri 2004]:

∆wpij =
1

2
((1 + κ)∆|Cw

p
ij + (1− κ)(2∆|Nw

p
i −∆|Cw

p
ij))

with the coefficient κ = 1
3 that ensures to get the maximum accuracy for cartesian grids.

The nodal slope ∆|Nw
p
i is the projection of the nodal gradient on the edge IJ:

∆|Nw
p
i = ∇|siw

p
i · IJ

And the centered slope ∆|Cw
p
ij is computed as:

∆|Cw
p
ij = wpj − w

p
i .

We denote by αij(∆|Nw
p
i ,∆|Cw

p
ij) the limiting coefficient. This limiter is ruled using

a multidimensional limiting process (MLP) [Kim 2005, Yoon 2008] used in conjunction
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with the Debiez limiter [Debiez 1998]:

αij(∆|Nw
p
i ,∆|Cw

p
ij)

Debiez =

0 if ∆|Nw
p
i ∆|Cw

p
ij < 0

min(|∆|Nw
p
i |,min(αMLP |∆|Cw

p
ij |,αMLP |∆|Nw

p
i |))

∆|Nw
p
i

else
(3.7)

When the coefficient, αMLP = 2, the standard Debiez scheme is recovered. The MLP
strategy is expressed as:

αMLP =

2 if |∆|Nw
p
i | ≤ ε or |∆|Cw

p
ij | ≤ ε

2 min(|∆|maxw
p
i |,|∆|minw

p
i |)

min(|∆|Nw
p
i |,|∆|Cw

p
ij |)

else
(3.8)

with

∆|maxw
p
i = (max

k∈Ni
wpk)− w

p
i

and with Ni the set of connected neighbors to the vertex si including the vertex itself.
From our experience with Euler computations with shocks, the advantage of this limit-
ing process is its robustness compared to classical TVD limiting approach. Moreover, it
doesn’t require any limiter freezing technique to ensure a good convergence of the com-
putations to machine accuracy. Finally, the limiter is not necessary for subsonic flows
and is typically set to αij = 1 for such cases. If shocks occur during the transient state
in the flow, using a limiter increases the robustness of the method.

The F(W c)|ij term is estimated using an approximate Riemann solver for which the
associated numerical flux is Φij = Φ(W c

i ,W
c
j ,ηij). Riemann solvers have been designed

to solve the Riemann problem, which consists in finding the solution of the unsteady
Euler problem with an initial configuration where two constant states W p

L and W p
R are

separated by a discontinuity or interface at x = 0. At t = 0, the interface is removed, and
the solution pattern generated from the two initial states WL and WR typically consists
of traveling rarefaction, contact discontinuity and shock waves. Such solution is shown
on Fig. 3.3. Next to the rarefaction and shock waves, constant intermediate states W ∗L
andW ∗R are generated. Approximate Riemann solvers consists in estimating waves speed
and in providing an approximation of the W ∗L and W ∗R states. The rarefaction wave is
replaced by a single traveling wave. The resulting formulation is condensed to provide
a flux at an interface separating two states. Each facet in the computational domain is
thus regarded as a discontinuity where a Riemann problem is solved, given a left state,
a right state and a normal.

The resulting high-order numerical flux is simply computed using the extrapolated states
Φij

High order = Φ(W c
ij ,W

c
ji,ηij).

In the mean flow equations, the HLLC [Toro 1994] numerical flux is used for the internal
domain and a modified version of the Steger-Warming flux [Steger 1981, Fezoui 1989] is
used for boundaries.
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Figure 3.3: Typical solution of a Riemann problem, consisting in a rarefaction, disconti-
nuity and shock wave. The initial configuration was composed of two separated left and
right states, WL and WR.

3.4.1.1 HLLC flux

The HLLC flux approximates the rarefaction wave, contact discontinuity and shock waves
into 3 distinct waves as on Fig. 3.4: a single left traveling wave at the speed SL, a contact
wave at the speed S∗ and a right traveling wave at the speed SR.

Figure 3.4: Riemann problem approximation and notation for the HLLC flux.
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The HLLC numerical flux is defined as

Φij
HLLC =


ΦL if 0 ≤ SL
Φ∗L if SL ≤ 0 ≤ S∗
Φ∗R if S∗ ≤ 0 ≤ SR
ΦR else

(3.9)

ΦL =

 ρLV L · ηij
ΦL[0]V L + pLηij
ΦL[0](εL + pL

ρL
)

 (3.10)

All of the work to construct this flux relies on the estimation of the left fastest traveling
wave speed SL, the contact discontinuity wave speed S∗ and the right fastest traveling
wave speed SR.

Let us introduce the ROE average [Roe 1981] for any variable w:

wROE =

√
ρLwL +

√
ρRwL√

ρR +
√
ρR

The fastest signal velocities are computed as:{
SL = min(V L · n̂ij − cL,V ROE · n̂ij − cAV G)

SR = max(V R · n̂ij + cR,V
ROE · n̂ij + cAV G)

(3.11)

with the average sound speed :

cAV G =

√
(γ − 1)(hROE − 1

2
(V ROE · V ROE)− kROE) +

2

3
kROE (3.12)

The contact discontinuity speed is computed as:

S∗ =
pR − pL + ρLV L · n̂ij(SL − V L · n̂ij)− ρRV R · n̂ij(SR − V R · n̂ij)

ρL(SL − V L · n̂ij)− ρR(SR − V R · n̂ij)
(3.13)

The star pressure is computed using:

p∗ = pL + ρL(SL − V L · n̂ij)(S∗ − V L · n̂ij); (3.14)

From these, the star flux is computed as:

Φ∗L =


ρL

SL−V L·n̂ij
SL−S∗ S∗||ηij ||

Φ∗L[0](S∗n̂ij + (V τ )L) + p∗ηij
Φ∗L[0](εL + pL

ρL
+ SL ∗ (S∗ − V L · n̂ij))

(3.15)

with the tangent velocity defined as:

(V τ )L = V L − (V L · n̂ij)n̂ij (3.16)
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3.4.1.2 Modified Steger-Warming flux

The modified Steger-Warming flux [MacCormack 1989] is a non reflexive version of the
original Steger-Warming flux [Steger 1981]. It is essentially used at boundaries instead
of the HLLC flux to correctly filter the entering or exiting characteristics. The Steger-
Warming flux is based on a flux splitting approach for which the flux is split into a
positive flux due to waves moving to the right and a negative flux due to waves moving
to the left of the considered face:

Φij
SW = Fi+(W c

i ) + Fj−(W c
j ) (3.17)

To be able to split this flux, the fluxes homogeneity property for Euler equations is used.
This property is described as:

F(W c) = A(W c)W c (3.18)

with A the inviscid flux Jacobian.

The Steger-Warming is built upon these two properties, which finally is expressed by:

Φij
SW = Fi+(W c

i ) + Fj−(W c
j ) = A(W c

i )+W c
i + A(W c

j )−W c
j (3.19)

The modified non-reflecting Steger-Warming flux alternative considers as incoming
waves/information all the positive eigenvalues from the boundary. This is possible by
modifying the incoming flux Jacobian A(W c

j )− to use the interior state W c
i such that:

Φi
SW = A(W c

i )+W c
i + A(W c

i )−W c
e (3.20)

The details of the Jacobians are found in the appendix A.

3.4.1.3 Passive scalar flux

The passive scalars in the turbulence equations are transported reusing the density flux
computed for the mean flow equations. This approach, introduced by Larrouturou,
ensures positivity of the transported variables [Larrouturou 1989, Batten 1997a] and
the corresponding flux is written as:

Φ(t)ij = Φij [0]

{
W p

(t)i if Φij [0] ≥ 0

W p
(t)j else

(3.21)

3.4.2 Viscous fluxes

By integrating by part and using the Green-Ostrogradski theorem, the diffusive term of
equation (3.3) becomes:∫

Ti

(∇ ·N (W c))ϕTi dΩ = −
∫
Ti

N (W c) ·∇ϕTi dΩ +

∫
∂Ti

(N (W c) · n)ϕTi dσ (3.22)
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In order to build the fluxes for the vertex si and match the finite volume framework,
the integrals have to be rewritten at a vertex si by summation of all the terms that
contributes to the vertex si. The diffusion term for the vertex si becomes:

∑
Tj ,si∈Tj

(−
∫
Tj

N (W c) ·∇ϕ
Tj
i dΩ +

∫
∂Tj

(N (W c) · n)ϕ
Tj
i dσ) =

∑
Tj ,si∈Tj

−
∫
Tj

N (W c) ·∇ϕ
Tj
i dΩ +

∑
Tj ,si∈Tj

∫
∂Tj

(N (W c) · n)ϕ
Tj
i dσ

(3.23)

As the physical variablesW p and the basis function ϕTi are considered to be linear in the
P1 finite element approximation on any tetrahedron T, the gradients of such variables
and basis function gradient ∇ϕTi are constant by element.

Furthermore, in the viscous flux term N , all other unknown quantities are approximated
on the element T following the finite element method. Their averaged value at the
barycenter is directly used in N (W c). The averaging reads in this particular case:

f(X)|T =
1

Ns(T)

∑
k∈T

fk.

The resulting viscous fluxes are then straightforward to evaluate:

∑
Tj ,si∈Tj

−
∫
Tj

N (W c) ·∇ϕ
Tj
i dΩ =

∑
Tj ,si∈Tj

−N (Tj) ·∇ϕ
Tj
i

∫
Tj

dΩ

=
∑

Tj ,si∈Tj

−N (Tj) ·∇ϕ
Tj
i m(Tj)

By denoting ηi,Tj = −∇ϕ
Tj
i m(Tj), the viscous numerical flux is defined as:

ΥTj ,i = N (Tj) · ηi,Tj

Thus, the equation (3.23) reads:

∑
Tj ,si∈Tj

∫
Tj

(∇ ·N (W c))ϕ
Tj
i dΩ =

∑
Tj ,si∈Tj

ΥTj ,i +
∑

Tj ,si∈Tj

∫
∂Tj

(N (W c) · n)ϕ
Tj
i dσ

(3.24)

The term
∫
∂Tj

(N (W c) · n)ϕ
Tj
i dσ ≈ N (∂Tj) · η∂Ti concerns the boundary conditions

contribution and is derived depending on the considered type of boundary condition.
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3.4.3 Source terms

The source terms are discretized in a finite volume way, by considering the variables are
constant on the control cell Ci. The source term of 3.3 becomes:∫

Ci

(S(W c))ϕCi dΩ = m(Ci)S(W c
i )

If the source terms require gradient values, a weighted average of the P1-Galerkin gra-
dients is used, as for the inviscid fluxes MUSCL reconstruction.

3.5 Time discretization

An implicit second-order time discretization is obtained by using a dual time step ap-
proach [Jameson 1991] and a backward time integration. By denoting δ2

1Λ = Λ2 − Λ1

the variation of the variable Λ from the state 1 to the state 2, we obtain as second-order
implicit time integration scheme:

m(Ci)
3W c

i
(n+1) − 4W c

i
(n) +W c

i
(n−1)

2δn+1
n t

+ Ri(W
c(n+1)) = 0 (3.25)

with the computed residual Ri for the control cell Ci.

To solve this problem, we introduce a sub-iteration state of index k, such as:

W c
i
n+1 = lim

k→∞
W c
i

(k+1)

The linearization of equation (3.25) around the state of index k, with a local time step
δk+1
k ti yields: ((

m(Ci)

δk+1
k ti

+
3m(Ci)

2δn+1
n t

)
In + J ∗i (W c(k))

)
δk+1
k W c

i =

−Ri(W
c(k)) +m(Ci)

δnn−1W
c
i − 3δknW

c
i

2δn+1
n t

(3.26)

with J ∗i (W c(k)) an approximate Jacobian of the numerical residuals.

The approximation of the Jacobian does not change the converged solution. It only
affects the rate of convergence of the inner or sub-iterations k towards a stationary state.
Any approximation is acceptable as long as the implicit operator at the left hand side of
the equation can be inverted. Unfortunately, one has to set the balance between rate of
convergence and the easiness of inverting the Jacobian. In particular, the exact Jacobian
leads to a Newton method but the inversion of such matrix is extremely hard even using
the most advanced iterative solvers.
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The construction of approximate Jacobian consists of three parts arising from the inviscid
fluxes, the viscous terms and the source terms. All of these terms are taken independently
to build the full matrix.

The Jacobian of the inviscid fluxes is based on the linearization of a first-order Rusanov
flux [Rusanov 1961] for the inner state and of a first-order modified Steger-Warming flux
at the boundaries. The Rusanov flux is extremely dissipative and allows to increase the
robustness of matrix inversion as it adds diagonal dominance. The use of the Rusanov
flux, or spectral radius Jacobian approximation, coupled with a Jacobi or Symmetric
Gauss Seidel iterative solver, is usually the base of matrix-free approaches [Kloczko 2006,
Dwight 2006].

The Jacobian of the viscous terms is built on an exact linearization, as in [Fezoui 1989].

For the source terms, arising for the turbulence variables, the full source fluxes Jacobian
for Spalart-Allmaras is computed and only the positive contribution to the diagonal are
kept for k-ω SST closure.

The resulting assembled system for the mean flow variables is rewritten as:

A∗(W c(k))δk+1
k W c = −R∗(W c(k)) (3.27)

with A∗(W c(k)) the approximated Jacobian matrix including the dual time stepping
and R∗ the full residual of the mean flow. This system is solved for each sub-iteration
k with a Symmetric Gauss-Seidel (SGS) iterative algorithm. The use of a delta form for
the implicit formulation allows to employ an approximated Jacobian without loosing the
second order accuracy in space reached with the MUSCL extrapolation.

In practice, the time integration of the mean flow equations and the turbulence equations
are carried out using a weak coupling. The turbulence variables are frozen to build the
system for mean flow variables, whereas the system for the turbulence variables is built
with frozen mean flow variables. As a result, at each sub-iterations k, two linear systems
are solved: {

A∗(W c(k))δk+1
k W c = −R∗(W c(k))

A∗(t)(W
c(k),W c

(t)
(k))δk+1

k W c
(t) = −R∗(t)(W

c(k),W c
(t)

(k))
(3.28)

with A∗(t)(W
c(k),W c

(t)
(k)) the approximated Jacobian matrix and R∗(t) the full residual

for the turbulent system.

The states are then updated using:

{
W ck+1 = W ck + δk+1

k

W c
(t)

k+1 = W c
(t)

k + δk+1
k

(3.29)
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3.6 Boundary conditions

Within the implicit MEV framework, multiple possibilities are offered to impose bound-
ary conditions. The strong boundary condition consists in setting the value of the solu-
tion at the boundary. On the counterpart, weak boundary conditions consist of imposing
the boundary fluxes. The following presents these two forms and their use in the current
framework.

3.6.1 Weak approach for inlet, outlet and symmetry conditions

In the weak form, the boundary flux is estimated using a fictive stateW c
b and the interior

state W c
i . Depending on the boundary condition used, the fictive state W c

b can be a
function of the interior W c

i and/or the exterior W c
o states: W c

b = W c
b (W c

i ,W
c
o ). The

resulting flux using the boundary and interior state can be computed with any numerical
flux (independently from the interior domain) as illustrated in the Fig. 3.5.

Figure 3.5: Illustration of the implementation of weak boundary conditions.

The previously described modified Steger-Warming flux is preferred over the interior flux
for all boundary conditions, as it filters the incoming characteristics from the outgoing
ones.

The computation of the fictive state is carried out using imposed density and velocity
with extrapolation from the interior of the pressure for subsonic inlets, imposed pressure
with extrapolation of other state variables for subsonic outlets, and symmetry conditions.
Multiple possibilities can be used for the extrapolation. The simplest one, using the
boundary variable itself is selected here as an example with W c

b = W c
i .

In particular, under assumption of local isentropic flow, exterior states for the freestream
boundary conditions are computed using the Riemann invariants [Hirsch 1990]:

WR =


R−
S

V τ̂

R+

 =


V n̂ − c

γ−1

cv log( p
ργ )

V τ̂

V n̂ + c
γ−1

 (3.30)
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For an inlet, the Riemann invariants coming into the domain, associated with the positive
eigen values (S, V τ̂ , and V τ̂ ) are set to be equals to the infinite Riemann invariants
WR
o . The remaining terms can be extrapolated from the interior of the domain.

This leads to for an inlet:

WR
b =


R−i
So
V τ̂ o

R+
o

 (3.31)

For an outlet, only the Riemann invariant associated with the negative eigen value is
computed from the exterior of the domain:

WR
b =


R−o
Si
V τ̂ i

R+
i

 (3.32)

For symmetry boundary conditions, the boundary state is taken as a symmetry of the
interior state with respect to the boundary unit normal n̂b:

W p
b =

 ρi
V i − 2(V in̂b)n̂b

pi

 (3.33)

3.6.2 Strong approach for wall and jet condition

The strong boundary condition or dirichlet approach consists in imposing the solution at
the boundary. A way to implement it is to modify the Jacobian and the residuals in such
a way that the boundary condition is verified implicitly when solving the linear system.
This boundary condition is used when the value of one particular conservative variable is
completely defined at the boundary. Wall boundary conditions are imposed by setting at
the boundary a zero momentum for the mean flow equations and appropriate turbulent
variables for the turbulence equations. Jet boundary conditions are as well imposed with
this methodology.

For adiabatic walls or other non time varying boundary conditions, the target is to
retrieve δk+1

k W c
i = 0 at boundary during the system resolution. To do so, the residuals

are corrected by imposing a zero residual and identity lines in the flux Jacobian matrix,
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at the corresponding momentum lines:

A∗i =



. . .
...

...
...

...
... . . .

. . . X X X X X . . .

. . . 0 1 0 0 0 . . .

. . . 0 0 1 0 0 . . .

. . . 0 0 0 1 0 . . .

. . . X X X X X . . .

. . .
...

...
...

...
... . . .


, R∗i =



...
X

0

0

0

X
...


(3.34)

The same modifications hold for the jet boundary condition, with an additional extra
diagonal matrix update to impose the velocity value. The Jacobian and residuals cor-
rection follows:

A∗i =



. . .
...

...
...

...
... . . .

. . . X X X X X . . .

. . . −ujeti 1 0 0 0 . . .

. . . −vjeti 0 1 0 0 . . .

. . . −wjeti 0 0 1 0 . . .

. . . X X X X X . . .

. . .
...

...
...

...
... . . .


, R∗i =



...
X

0

0

0

X
...


(3.35)

with ujeti , vjeti and wjeti the jet velocity components defined at cell i. In practice, the jet
velocity is computed as in section 2.4.

3.6.3 Strong iterative approach

In cases where it is cumbersome to modify the linear system to impose implicitly the
value of the solution, an iterative technique can replace the implicit strategy. This can
occur for instance when the user would like to impose a primitive variable while the
Jacobian and residuals are expressed using conservative variables. It is thus possible
to use the dual time step approach to implement iteratively the boundary condition, in
order to reach a target W c

i
target at the boundary at the step n+ 1.

In other words, this boundary condition consists in imposing at each dual time step
sub-iterations the targeted value of the variable. As described in [Ashcroft 2004], the in-
ternal fields and the boundary conditions converge towards the solution with the targeted
boundary condition at the next physical step.

3.6.4 Viscous boundary contribution

The viscous boundary term in 3.24 has to be evaluated. The following describes specific
boundary conditions to evaluate the term

∫
∂Tj

(N (W c) · n)ϕ
Tj
i dσ ≈N (∂Tj) · η∂Ti .
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3.6.4.1 Wall condition

For walls, the following holds:

N (W c) · ηi =


0

τ xxηix + τ xyηiy + τ xzηiz
τ yxηix + τ yyηiy + τ yzηiz
τ zxηix + τ zyηiy + τ zzηiz
−(qxηix + qyηiy + qzηiz)

 (3.36)

As the wall conditions are strongly enforced at the boundaries, the viscous boundary
fluxes corresponding to the momentum equations are not necessary to be computed.
The last term qxηix + qyηiy + qzηiz = 0 in case of adiabatic walls. In the considered
cases, there is thus no viscous contribution of wall boundary conditions as the walls are
considered to be adiabatic.

3.6.4.2 Symmetry condition

Using the Einstein summation convention for the ease of manipulation, the viscous force
on a plane surface is:

τ ijn̂j = (µ+ µt)

(
∂V i

∂xj
+
∂V j

∂xi

)
n̂j −

2

3
(µ+ µt)

∂V k

∂xk
δijn̂j

= (µ+ µt)

(
n̂j
∂V i

∂xj
+
∂V jn̂j
∂xi

)
− 2

3
(µ+ µt)

∂V k

∂xk
n̂i

(3.37)

The symmetry boundary conditions are determined considering that the normal velocity
to the surface and normal gradients for all variables are zero. These two conditions are
written:

V jn̂j = 0 and n̂j
∂

∂xj
= 0 (3.38)

Thus, with these assumptions:

τ ijn̂j = −2

3
(µ+ µt)

∂V k

∂xk
n̂i (3.39)

The viscous and heat flux for the energy equation, are then:

V iτ ijn̂j − qjn̂j = −2

3
(µ+ µt)

∂V k

∂xk
V in̂i −

(
γ
µ

Pr
+ γ

µt
Prt

)
n̂j

∂ε

∂xj

= 0

(3.40)
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Finally, the viscous flux for an adiabatic symmetry condition is written as:

N (W c) · ηi =


0

−2
3(µ+ µt)(

∂u
∂x + ∂v

∂y + ∂w
∂z )ηix

−2
3(µ+ µt)(

∂u
∂x + ∂v

∂y + ∂w
∂z )ηiy

−2
3(µ+ µt)(

∂u
∂x + ∂v

∂y + ∂w
∂z )ηiz

0

 (3.41)

3.6.4.3 Other boundary conditions

For all other boundary conditions, the full viscous term N (∂Tj) · η∂Ti is computed.
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This chapter details some validation exercises of numerical methods implemented in
NUM3SIS on relevant test cases. These test cases are mainly subsonic flow as they
represent the flow regime targeted in the last part about optimization. For all the test
cases, the results are compared to FUN3D and/or CFL3D compressible solvers from the
NASA Langley Research Center, and possibly to experimental databases. These data are
available at the turbulence modeling resource website http://turbmodels.larc.nasa.gov.

4.1 Turbulent subsonic flow over a flat plate

It is a steady test case where a turbulent boundary layer is developing along a flat
plate. The configuration and flow boundary conditions are represented on Fig. 4.1. To

Figure 4.1: Flat plate test case configuration.

match a mach number M = 0.2, a Reynolds number of 5.105 based on the length 1 (half
the size of the plate), the parameters given in the Tab. 4.1 are chosen. The inlet flow
is considered as a subsonic boundary condition, where the density and velocity only
are imposed. The outlet is considered as a subsonic outlet with an imposed pressure.
the free-stream boundary state at the top of the domain is determined using Riemann
invariants. The turbulence models used are both the Spalart-Allmaras and k-ω SST
models. The mesh contains 36100 finite volume cells and the maximal triangle aspect
ratio in the domain is approximately 25700. The residuals are reduced of 7 orders of
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Variable Value
ρ∞ 1.363193
V ∞ 69.437742
p∞ 115056
µ∞ 1.9e-05

Table 4.1: Flat plate test case flow parameters.

magnitude.

The computed flow is compared to the experimental data from Wieghardt and
Tillman [Wieghardt 1951], reported by Coles and Hirst [Coles 1968], to the theoretical
laws describing the viscous sublayer and log-law region layer and to computational
results from CFL3D code. The non-dimensional velocity profile u+ = u

uτ
in the near

wall region with respect to the non-dimensional velocity y+ = y uτ
ν , with uτ =

√
τw
ρ and

τw the wall shear stress, is shown on the Fig. 4.2(a). As seen, the computed velocity
profiles matches CFL3D solution on a their finest finest 545 × 385 grid and theoretical
ones. Surface skin friction coefficient results are good compared to experimental data
using both turbulence models as shown in Fig. 4.2(b). The maximal non dimensional
velocity y+ is kept under 0.4 for both cases with the first point to the wall located at a
distance of 2.10−6.

(a) (b)

Figure 4.2: Flat plate profile at x = 1.90334 (a) and friction coefficient with the S-A
turbulence model (b).
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(a) (b)

Figure 4.3: Flat plate profile at x = 1.90334 (a) and friction coefficient with the k-ω-
SST turbulence model (b). The friction coefficient located at the leading edge shows a
breakdown noticed using CFL3D as well.

4.2 Turbulent subsonic flow around NACA0012 airfoil

For this test case, the configuration at an incidence of 10 deg and 15 deg are chosen
and flow conditions are similar to the case presented by the NASA Langley Research
Center (http://turbmodels.larc.nasa.gov/naca0012_val.html). The NACA0012 used in
this validation is the altered formulation, allowing the airfoil to close at chord= 1 with
a sharp trailing edge. The shape is described by equation:

y =± 0.594689181(0.298222773
√
x−

0.127125232x− 0.357907906x2 + 0.291984971x3 − 0.105174696x4)
(4.1)

The airfoil is then rotated to match the given incidence. The infinite values are considered
as free-stream boundary conditions using Riemann invariants. The O-grid used for the
10 deg computation is represented in the Fig. 4.4. The 15 deg is similar. They contains
48512 points for the 10 deg case and 44870 points for the 15 deg case. They are clustered
around the airfoil surface to resolve the boundary layer, where the first grid point to
the wall is located at a distance of 10−6. To achieve a Mach number of M∞ = 0.15

and a Reynolds number of Re = 106 based on the length 1 (the airfoil chord), the
flow conditions defined on Tab. 4.2 are used. The turbulence models used are both the

Variable Value
ρ∞ 1.4
V ∞ 1
p∞ 44.44
µ∞ 2.33e-7

Spalart-Allmaras and k-ω SST models.
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Figure 4.4: NACA0012 test case grid.
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The residuals convergence history of the 15 degrees case for the Spalart-Allmaras and
k-ω SST models are shown on Fig. 4.5 and Fig. 4.6.

Figure 4.5: NACA0012 at 15 degrees residuals convergence using the Spalart-Allmaras
turbulence model.

Figure 4.6: NACA0012 at 15 degrees residuals convergence using the k-ω SST turbulence
model.

The friction and pressure coefficient distributions for the Spalart-Allmaras and k-ω SST
models are presented on Fig 4.7, Fig. 4.8 for the 10 degrees case and Fig. 4.9, Fig. 4.10 for
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the 15 degrees case. A small flow separation on the upper surface occurs at approximately
92% of the chord with the Spalart-Allmaras model and no separation with the k-ω SST
model. The results show a good agreement with the CFL3D code on a 897×257 grid and
the experimental data, validating the correct implementation of the turbulence models
for subsonic flows around airfoils, when the flow is completely attached.
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(a) Friction coefficient.

(b) Pressure coefficient.

Figure 4.7: NACA0012 at 10 degrees friction coefficient and pressure coefficient using
the Spalart-Allmaras turbulence model.
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(a) Friction coefficient.

(b) Pressure coefficient.

Figure 4.8: NACA0012 at 10 degrees friction coefficient and pressure coefficient using
the k-ω SST turbulence model.



4.2. Turbulent subsonic flow around NACA0012 airfoil 57

(a) Friction coefficient.

(b) Pressure coefficient.

Figure 4.9: NACA0012 at 15 degrees friction coefficient and pressure coefficient using
the Spalart-Allmaras turbulence model.
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(a) Friction coefficient.

(b) Pressure coefficient.

Figure 4.10: NACA0012 at 15 degrees friction coefficient and pressure coefficient using
the k-ω SST turbulence model.
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Steady non-controlled flow have been validated on reference test cases. This chapter
focuses on a first study of unsteady actuated flows using different synthetic jet models.
The prediction of the flow by the different models and the impact of the numerical
parameters are quantified in this study.

To do so, a single synthetic jet located on the previously described flat plate and in-
teracting a boundary layer is considered as a test-case, as illustrated in Fig. (5.1). The
baseline case, without actuator, corresponds to the zero pressure gradient flat plate veri-
fication case proposed by NASA and presented in the previous chapter. The plate length
is 2 m, and the computational domain height is 30 cm. The distance between the inlet
boundary and the plate is 40 cm, and the distance between the stagnation point and the
jet center is 50.25 cm. The slot width measures h = 5 mm. The length of the slot is
twice its width 2h. The cavity dimension is 9h× h.

Figure 5.1: Flat plate with jet test-case description.

The reference flow conditions are the following:
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ρref 1.363 kg/m3

uref 69.437 m/s
pref 115056 Pa
µref 1.9 10−5 Pa s

The resulting Mach and Reynolds number are respectivelyMref = 0.2 and Reref = 5 106.
Note that the resulting boundary layer thickness at the actuation location is about twice
the slot width.

All inlet/outlet boundary conditions are imposed weakly. At the inlet boundary, the
velocity value uref and density ρref are imposed, while the pressure is computed from
the interior domain. On the contrary, an imposed pressure condition of value pref is
prescribed at the outlet boundary. For the far-field condition, boundary values are
computed thanks to Riemann invariants.

Two sets of actuation parameters are tested. The first one corresponds to a rather low
frequency - low amplitude actuation, whereas the second one exhibits high frequency -
high amplitude characteristics:

Actuation 1 f = 50 Hz Us = uref/2 = 34.72 m/s
Actuation 2 f = 500 Hz Us = 2uref = 138.87 m/s

For all the computations below, the time-step is chosen in order to account for 200 steps
for each actuation period. Therefore, the time-step is defined as ∆t1 = 1. 10−4 s for the
first actuation, and ∆t2 = 1. 10−5 s for the second one. The unsteady simulations are
initialized by the steady state solutions corresponding to the flows without actuation.
For each time-step, a stopping criterion corresponding to a reduction of 3 orders of the
non-linear residuals is adopted.

The baseline grids used for the three models are depicted on Figs. (5.2-5.5) and count
Nc = 36848, Ns = 19304 and Nb = 17424 vertices for the boundary model, the slot
model and the cavity model respectively. The maximal aspect ratio of the cells is about
40000. The number of vertices located on the jet exit is 40. Note that the grids are
identical in the outer domain.

Figure 5.2: Global view of the mesh.
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Figure 5.3: Mesh in the vicinity of the actuator, cavity model.

Figure 5.4: Mesh in the vicinity of the actuator, slot model.

Figure 5.5: Mesh in the vicinity of the actuator, boundary model.

5.1 Comparison of the synthetic jet models

Computations are carried out until a periodic flow is observed. Comparisons of the two
velocity components for the three models, in the vicinity of the actuator, are provided
by Figs. (5.6-5.13) for the first actuation, and Figs. (5.14-5.21) for the second actuation.
On these figures, the phase Φ = 0 corresponds to the maximum blowing time and Φ = π

to the maximum suction time.

Clearly, the flows obtained using the three models are close to each other. The boundary
model generates obviously a more symmetric flow at the slot exit, due to the boundary
condition on the velocity. The slot and the cavity models allow to compute the flow in
the slot, which is characterized by strong asymmetry and generates a more intense flow
at the slot corners. One can notice that the cavity and slot models only differ at the
bottom part of the slot, with a negligible influence on the flow in the outer domain. The
second actuation, with high frequency and amplitude, exhibits larger discrepancies.

A comparison of the drag coefficient is also performed, as a more global assessment
criterion. Fig. (5.22) confirms that the cavity and boundary models predict very similar
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flows, whereas the boundary model slightly underestimates the drag coefficient value,
especially for the second actuation parameters.

The conclusions of these comparisons are the following: although the cavity model is far
more CPU-demanding than the slot model, the discrepancy between the two predicted
flows is weak, in terms of local field values and global drag coefficient. The boundary
model predicts similar flows. However, some differences are reported for high-frequency
high-amplitude actuation. In the perspective of more complex studies, the slot model
seems to be the best compromise, in terms of CPU cost and flow prediction. An alternate
approach could be to capture the velocity profile computed at the slot exit using the
cavity model, and use it as boundary condition for the boundary model. However, if one
considers a jet with varying parameters (amplitude, frequency, location), it is not clear
that the selected profile will correspond to the new conditions.
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Figure 5.6: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 0 (50 Hz).
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Figure 5.7: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π/2 (50 Hz).
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Figure 5.8: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π (50 Hz).
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Figure 5.9: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 3π/2 (50 Hz).
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Figure 5.10: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 0 (50 Hz).
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Figure 5.11: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π/2 (50 Hz).
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Figure 5.12: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π (50 Hz).
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Figure 5.13: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 3π/2 (50 Hz).
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Figure 5.14: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 0 (500 Hz).
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Figure 5.15: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π/2 (500 Hz).
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Figure 5.16: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π (500 Hz).
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Figure 5.17: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 3π/2 (500 Hz).
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Figure 5.18: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 0 (500 Hz).
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Figure 5.19: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π/2 (500 Hz).
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Figure 5.20: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = π (500 Hz).
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Figure 5.21: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom)
models, for Φ = 3π/2 (500 Hz).
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Figure 5.22: Time evolution of the drag coefficient, for the first actuation (top) and
second actuation (bottom).
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5.2 Impact of numerical parameters

In this section, the influence of some numerical parameters on the flow prediction is
investigated. In the perspective of design optimization, this study is restricted to the
boundary condition model for the actuation 1 and the drag coefficient is used as the
main comparison criterion. More precisely, the influence of the choice of the boundary
condition type for the jet (weak vs. strong) is tested and the impact of the convergence
criterion used for each time step is measured.
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Figure 5.23: Time evolution of the drag coefficient, for weak and strong boundary con-
ditions.
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Figure 5.24: Time evolution of the drag coefficient, for different non-linear convergence
criteria.

The evolution of the drag coefficient computed using weak and strong boundary condi-
tions is depicted in Fig. (5.23). As seen, the discrepancy is not relevant. Indeed, the
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iterative process carried out at each time-step makes the two approaches nearly identical.

Fig. (5.24) shows the same quantity, when different parameters are used as stopping
criterion for the non-linear iterative process. Here again, the discrepancy is small, which
indicates that the flow at each time-step is well converged.

5.3 Refinement study

To assess the computations, refinement study is finally performed, by reducing the phys-
ical time step by a factor two, while applying a uniform grid refinement by a factor

√
2 in

each direction, yielding a fine mesh counting 32010 vertices. The comparison of the drag
coefficient histories for the two meshes is depicted in Fig. (5.25). As can be observed,
the use of finer grid and time-step slightly modifies the drag coefficient value during the
suction phase. However, the change is rather moderate. In particular, the time-averaged
drag coefficient is not significantly affected by the refinement.
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Figure 5.25: Time evolution of the drag coefficient, for two meshes.

5.4 Impact of turbulence closure

As the synthetic jet generates detached flows, it is of particular interest to compare the
flows predicted by different turbulent closures. We consider for this study the SST k-
ω from Menter and the Spalart-Allmaras closures, using the boundary model for both
actuations.

The time evolution of the drag coefficient for the two models is represented in Fig (5.26).
As seen, the SST k-ω closure predicts a lower drag than the Spalart-Allmaras one,
especially during the blowing phase and for the high-frequency actuation. Nevertheless,
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Figure 5.26: Time evolution of the drag coefficient for different turbulence closures, for
the first actuation (top) and second actuation (bottom).

the discrepancy between these values is of the same magnitude than that observed for
the steady flow without actuation (about 10−4).

Figs (5.27-5.34) show velocity contours for the two closures at some actuation phases
(maximum blowing and maximum suction). One can notice that the flows are globally
quite close to each other. It is confirmed that they differ mainly during the blowing
phase, the SST k-ω closure generating a more vortical flow, with more intense gradients,
than the Spalart-Allmaras one.
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Figure 5.27: Iso-u contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 0 (50 Hz).

Figure 5.28: Iso-u contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 2 (50 Hz).
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Figure 5.29: Iso-v contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 0 (50 Hz).

Figure 5.30: Iso-v contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 2 (50 Hz).
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Figure 5.31: Iso-u contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 0 (500 Hz).

Figure 5.32: Iso-u contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 2 (500 Hz).
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Figure 5.33: Iso-v contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 0 (500 Hz).

Figure 5.34: Iso-v contours for the SST k-ω (top) and Spalart-Allmaras (bottom) clo-
sures, for Φ = 2 (500 Hz).
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5.5 Synthesis

The objective of this study was to simulate a synthetic jet in a turbulent boundary layer
flow, compare the flows predicted by some actuator models and assess the turbulence
closures in this context.

It has been found that an actuator model including the slot description is a satisfactory
compromise between the complexity of including the cavity and the simplicity of using
only a boundary condition. The numerical parameters (convergence criterion, grid size,
time step, type of boundary condition) have been set to reasonable values for the problem
considered.

Regarding the influence of turbulence closures, a moderate discrepancy between the
Spalart-Allmaras and the SST k-ω models has been reported, the latter model generating
a more intense flow at blowing. This point will be detailed more in depth in the chapter
focused on BFS case.





Part III

Optimization algorithms





Chapter 6

Context and issues

Optimization for systems governed by PDEs consists in finding the best elements in a
set of solutions of a problem under some constraints. The aim is to minimize the cost
function j:

min
x∈D

j(x,W ), subject to the constraints: ψ(x,W ) = 0 (6.1)

with x the optimization variables, D ⊂ Rn the search domain, W the state variables and
ψ the state equations, defining implicitly the relationship W (x).

Optimization in engineering is a domain that may involve several disciplines such as
machine learning, data classification, partial differential equations. Optimization meth-
ods can be classified in gradient [Bonnans 2006, Wright 1999], meta-model [Jones 2001]
and heuristic based methods [Michalewicz 1996] like EA, GA [Goldberg 1989], etc. The
choice of the most adequate technique depends on the number of parameters to opti-
mize, the number of allowed evaluations, the available information about the cost func-
tion derivative, convexity, etc. In the context of computational fluid dynamics, the cost
function typically represents the drag, the lift or some other measurable quantities that
can be accessed from the computed fields. Because of the computational burden (Euler
(min), RANS (hours), URANS (days), DES (weeks), LES (months), DNS (months)),
the best optimization approach would be the one that requires the minimum number of
evaluations to reach optimal parameters.

Gradient based methods would thus be the most suitable. As these methods require cost
function gradients with respect to the design variables, if the number of design variables
is small, direct finite differences can be used. Finite differences approach has some draw-
backs such as the step choice, necessity of high convergence of the simulation. When the
number of variables is large, one can use adjoint methods to compute gradients. The ad-
joint method is very well established and has proven its benefits for steady cases in a large
number of studies [Pironneau 1974, Mohammadi 2001, Jameson 2003, Dwight 2006,
Brezillon 2009]. Unfortunately, adjoint techniques with unsteady flows are very cumber-
some to apply as the adjoint problem has to be solved backward in time and thus necessi-
tates to store all the states for all time steps [Belme 2011]. To reduce the cost of unsteady
adjoint computations, the introduction of checkpoints [Hascoet 2013, Belme 2011] is pos-
sible to partially store the states at specific times and to recompute what is necessary.
Unfortunately, this technique is still tedious to implement, and the issue of turbulence
models differentiation remains problematic. Furthermore, non-linear phenomena in un-
steady computations may yield multi-modality in the cost function. Direct gradient
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based optimizers might get trapped in a local optimum. Thus, gradient based methods
do not appear to be presently the appropriate solutions for unsteady flows optimization.

Heuristic or evolutionary techniques are out of reach because of the required number of
evaluations. Meta-model based optimization appears to be a reasonable candidate and
promising approach [Duvigneau 2012, Laurenceau 2008, Buche 2005], given the restric-
tion on the number of evaluations and the small number of variables to optimize. As this
optimization method is driven by the meta-model, the hard point concerns the accuracy
of the model itself. Multiple possibilities are offered to constructs the meta-model. Such
techniques can involve cubic spline, thin-plate spline, multiquadrics, radial basis function
(RBF), artificial neural networks, etc [Jones 2001]. Most of these meta-modeling tech-
niques have been extensively and successfully applied to machine learning problems in
order to assimilate a large amount of data, to do data classification and make predictions.

The present work is focused on the Efficient Global Optimization (EGO) algo-
rithm [Jones 1998], for reasons that will be developed in this chapter.
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In this chapter, the Efficient Global Optimization (EGO) method is presented, then the
Evolution Strategy (ES) algorithm is detailed and used to solve meta-model training
sub-problems.

7.1 Meta-model based algorithms (Efficient Global Opti-
mization)

The Efficient Global Optimization (EGO) is a global optimization algorithm that
takes advantage of a stochastic process model to drive the optimization [Jones 1998,
Jones 2001]. As a first design of experiment phase, an initial database covering the
bounded search space is generated from simulations. This database contains obviously
the cost function values, but may also gather a variance estimated for each evaluation.
A stochastic model, more specifically a Gaussian Process [Gibbs 1997, MacKay 1998,
Williams 1998, Picheny 2011] or kriging-based model [Huang 2006, Duvigneau 2012,
Duchaine 2009, Ginsbourger 2009], is constructed using this database, which allows to
predict the cost function value in term of expectancy and variance at any point of the
search domain. According to these predictions, the most interesting points are selected
by means of a merit function. The merit function allows at the same time to identify the
minimum of the function and to explore unknown regions. Once evaluated, the corre-
sponding cost function values and the error estimations are added to the database. This
process is repeated until convergence, as illustrated in Fig. 7.1.

The EGO algorithm is summarized as:
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Figure 7.1: Efficient Global Optimization loop.

1. Build an a priori database

2. Construct a kriging or Gaussian process model

3. For i = 1 to p : Find the point x?i that minimizes the merit function to select p
most interesting points

4. Evaluate the p points (x?i )i=1,...,p and add them in the database

5. Return to step 2 until convergence

The following describes the two key elements used in the EGO algorithm: the Gaussian
Process model and the merit functions.

7.1.1 Gaussian Process model

Gaussian processes are a subset of Bayesian inference methods. In statistical analysis and
frequentist view, the probability of an event occurring is a number based on the frequency
measure of the event itself. The interpretation of probability takes a new whole definition
in the Bayesian view. The Bayesian point of view interprets a probability as a measure
of belief, or confidence instead of as a measure of event occurrence.

The Bayesian approach can seem to be much more natural than the frequentists ap-
proach as it mimics the way humans think and make inferences. In his thesis, Mark N.
Gibbs [Gibbs 1997] gives an introduction detailing decision making and model selection
process when new evidences are raised up the ones after the others. Depending on the
experience of the people, they might select one model or another given a limited amount
of information, making experience very valuable.

Bayesian inference methods are able to update beliefs, or the shape of an initial probabil-
ity distribution, when considering new evidences. Instead of returning a single number,
or probability, Bayesian methods usually return a probability distribution.

Let n random variables y1, ..., yn having a joint probability p(y) = p(y1..., yn). Let us
split the random variables into two sets A and B with a non null union. Both sets
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contains at least one element. Two groups yA ∈ A and yB ∈ B can be extracted.
The resulting joint probability is p(y) = p(yA,yB), with y = yA

⋃
yB. The groups of

variables yA and yB both contain at least one element.

To incorporate prior knowledge or belief p(yA) on the element A and determine a new
belief called the posterior probability denoted by p(yA|yB) giving the probability of the
event A occurring knowing B, the Bayes’ theorem is used:

p(yA|yB)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(yB|yA)

prior︷ ︸︸ ︷
p(yA)

p(yB)︸ ︷︷ ︸
evidence

This theorem simply comes from writing the definition of the conditional probabilities of
p(yA|yB) and p(yB|yA):

p(yA|yB) =
p(yA,yB)

p(yB)
, p(yB|yA) =

p(yB,yA)

p(yA)

The Bayes’ theorem is extensively used to tune model parameters as in this thesis or to
select models given prior knowledge. Unfortunately, some terms such as the likelihood
might be not be analytically tractable and one needs to use computational methods.

Gaussian process models [Rasmussen 2006] belong to response surface methods, that
allow to predict a function value f at a given point x, on the basis of a set of observed
values FN = {f1, f2, . . . , fN} at some points XN = {x1, x2, . . . , xN} ⊂ Rd. FN is
assumed to be one realization of a multivariate Gaussian process which has a joint
Gaussian distribution

p(FN |CN ,XN ) =
exp

(
−1

2FN
>C−1

N FN
)√

(2π)N det(CN )
, (7.1)

for any collection of inputsXN . CN is the N×N covariance matrix, whose elements Cmn
give the correlation between the function values fm and fn obtained at points xm and xn.
We assume that these values are correlated, since they correspond to underlying physical
phenomena. This is expressed in terms of a correlation function k, i.e., Cmn(xm, xn; Θ) =

cov(fm, fn) = k(xm, xn; Θ) with Θ a set of hyper-parameters that are supposed to be
known in the following.

Now, we suppose that we would like to evaluate the function value at a new point xN+1.
From Eq. (7.1), the (N + 1)-variable Gaussian process has a joint probability density of

p(FN+1|CN+1,XN+1) =
exp

(
−1

2FN+1
>C−1

N+1FN+1

)√
(2π)N+1 det(CN+1)

. (7.2)

To predict the unknown function value fn+1 given the data FN , one uses the conditional
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probabilities rule p(A|B) = p(A,B)/p(B):

p(fN+1|(XN ,FN ), CN+1, xN+1) =
p(FN+1|CN+1,XN+1)

p(FN |CN ,XN )

=
exp

(
−1

2(FN+1
>C−1

N+1FN+1 − FN>C−1
N FN )

)
√

(2π)N+1 det(CN+1)√
(2π)N det(CN )

.

(7.3)

To simplify the expression, the covariance matrix CN+1 can be related to CN by:

CN+1 =

[
CN kN+1

kN+1
T κ

]
(7.4)

with κ = k(xN+1, xN+1; Θ) and kN+1 = [k(x1, xN+1; Θ), . . . , k(xN , xN+1; Θ)]T .

With this relation, the inverse C−1
N+1 can be rewritten in terms of CN and C−1

N

C−1
N+1 =

[
M m

mT µ

]
(7.5)

with M = C−1
N + 1

µmm
T , m = −µC−1

N kN+1 and µ = (κ− kN+1
TC−1

N kN+1)−1.

It is important to note that at this point, only one inversion of the matrix CN is necessary
to compute C−1

N+1.

The determinant det(CN+1) can be expressed as

det(CN+1) = det(CN ) det(κ− kN+1
TC−1

N kN+1)

= det(CN )
1

µ
.

(7.6)

By substituting 7.5 and 7.6 in 7.3 the probability density for the function value at the
new point is

p(fN+1|(XN ,FN ), CN , xN+1) =
1

σ̂fN+1

√
2π

exp

[
−(fN+1 − f̂N+1)2

2σ̂2
fN+1

]
,

where
f̂N+1 = kN+1

>C−1
N FN , σ̂2

fN+1
= κ− kN+1

>C−1
N kN+1. (7.7)

Thus, the probability density for the function value at the new point xN+1 is also Gaus-
sian with mean f̂N+1 and standard deviation σ̂fN+1

. Therefore, the most likely value
at the new point xN+1 is f̂N+1. This value will be considered as the prediction of
the kriging model. The variance σ̂2

fN+1
can be interpreted as a measure of uncertainty

in the value prediction. The function value can be expected to vary in some range like
[f̂−3σ̂, f̂+3σ̂]. Fig. 7.2 represents such an estimation at a new point with an illustration
of the probability density function.
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Figure 7.2: Illustration of the probability density estimation for a new point using the
Gaussian Process method.

7.1.2 Correlation functions

The choice of the correlation function k is critical for the model, as it contains all the prior
hypotheses, including for example regularity, symmetry, periodicity, etc. The correlation
function must a priori reflect the characteristics of the output of the computer code.

We use here the Matérn class [Stein 1999] of covariance stationary kernels, which gives
a family of correlation functions of different smoothness from the exponential covariance
function to the squared exponential function. The Matérn function is defined by:

Mν(x, x′; r) =
21−ν

Γ(ν)

(√
2ν
|x− x′|

r

)ν
Kν

(√
2ν
|x− x′|

r

)
(7.8)

with ν, r some positive parameter and Kν the modified Bessel function of the second
kind. With specific values of ν = p+1/2, the Matérn function can be expressed in simple
forms:

Mν=1/2(x, x′; r) = e−
|x−x′|
r

Mν=3/2(x, x′; r) =

(
1 +
√

3
|x− x′|

r

)
e−
√

3
|x−x′|
r

Mν=5/2(x, x′; r) =

(
1 +
√

3
|x− x′|

r
+

5

3

(
|x− x′|

r

)2
)
e−
√

5
|x−x′|
r

Mν→∞(x, x′; r) = e
−
(
|x−x′|
r

)2
(7.9)
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By using the Matérn covariance functions of parameter ν, the resulting Gaussian process
is mean-squared differentiable at order k ⇔ ν > k. A process Y (x) is said to be mean-
squared differentiable with the mean-square derivative Y ′(x) if the following relation
holds:

lim
ε→0

E

[(
Y (x+ ε)− Y (x)

ε
− Y ′(x)

)2
]

= 0.

Thus with ν = 1/2 the response process is continuous; with ν = 3/2 it is once differen-
tiable; with ν = 5/2 it is twice differentiable; with ν → ∞ it is infinitely differentiable.
For more information about continuity and differentiability of processes, the reader is
referred to specialized documents [Rasmussen 2006, Diggle 2007, Stein 1999].

Combining covariance functions is possible to define new kernels. For example, to extend
the Matérn functionMν→∞(x, x′; θi) to its multidimensional counterpart, the following
correlation function is employed:

k(x,x′; Θ) = θ1

d∏
i=1

e
−
(
|x−x′|
ri

)2
+ θ2, (7.10)

with Θ = {θ1, θ2, r1, r2, ..., rd} the set of hyper-parameters to be determined. Practical
studies have shown that the use of a non-isotropic scaling is beneficial for the problems
considered here. The parameter θ1 scales this correlation. In the second term, θ2 gives
an offset of the function values from zero. The parameters ri represent the anisotropic
distance at which the correlation decays.

7.1.3 Hyperparameters determination in Bayesian framework

As previously said, the Bayesian framework allows to make inference with prior knowl-
edge. This framework is used here to determine the hyper-parameters Θ in the correlation
function.

The constructed model must be as consistent as possible with the observed data. To do
so, the following probability has to be computed:

p(fN+1|(XN+1,FN ), CN+1) =

∫
p(fN+1|(XN+1,FN ), CN ,Θ)p(Θ|(FN ,XN ), CN )dΘ

(7.11)

This integral is analytically intractable, but a method called the evidence maximiza-
tion [MacKay 1992] is applicable to approach it. Some other ways such as the Monte-
carlo integral approximation can be also used but are described here as only the former
one has been applied.

The evidence maximization makes the assumption that the posterior distribution of
Θ, p(Θ|(FN ,XN ), CN ), is sharply peaked around a maximum Θmax compared to
p(fN+1|(XN+1,FN ), CN ,Θ). The evidence maximization consists in finding the most
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probable set of parameters Θm that maximizes the posterior distribution of Θ given by:

p(Θ|(XN ,FN ), CN )

Using Bayes’ theorem, this distribution can be rewritten as:

p(Θ|(XN ,FN ), CN ) =
p(FN |XN , CN ,Θ)p(Θ)

p(FN |XN , CN )

Because the interest is to optimize the set of parameters Θ, the denominator is ignored
as it is independent with respect to Θ. Maximizing the likelihood times the prior is the
same as maximizing its log:

log(p(FN |XN , CN ,Θ)) + log(p(Θ)) (7.12)

At this point, one has to give a description of the prior p(Θ). The prior p(Θ) helps to
avoid solutions that would not be acceptable. If there are no prior knowledge, this term
has a uniform distribution and can be neglected [Gibbs 1997]. The function to maximize
L becomes:

L = log(p(FN |XN , CN ,Θ)) = −1

2
FN
>C−1

N FN −
1

2
log det(CN )− N

2
log 2π. (7.13)

Therefore, hyper-parameters are finally determined by maximizing the log-likelihood
function L.

This function is known to be multi-modal; hence an evolution strategy that has the
capability to avoid local minima, is employed for this work and described below.

7.1.4 Prediction with noisy observations

In real-life problems, either in experiments or numerical simulations, observations made
on the process are noisy. In case of experiments, the noise related to gauge or instru-
ments can usually be well estimated. In numerical simulations, errors arise from models,
discretization, iterative solvers, human errors, etc. As a consequence, in both cases, we
need to take into account noisy observations in our models.

According to Ginsbourger [Ginsbourger 2009], assuming a Gaussian distributed noise ε,
the process observation can be written as:

fε(x) = f(x) + ε,

with ε ∼ N (0,∆), and ∆ = diag(τ2
i , i ∈ [0, n]), where the error at the observation point

i is thus considered as a centered Gaussian distribution with a variance τ2
i .

By introducing the noise in the process, the covariance matrix CN is
changed [Ginsbourger 2009] to CN + ∆. As a result, the prediction of mean
f̂N+1 and variance σ̂2

fN+1
in Eq. (7.7) need to be modified to:

f̂N+1 = kN+1
>(C−1

N + ∆)FN , σ̂2
fN+1

= κ− kN+1
>(C−1

N + ∆)kN+1. (7.14)
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In addition, the log-likelihood from Eq. 7.13 to be maximized becomes:

L = −1

2
FN

T (CN + ∆)−1FN −
1

2
log(det(CN + ∆)). (7.15)

Using this methodology, the resulting meta-model is non-interpolating with non-null
standard deviation at the observed points as shown on Fig.7.3.

Figure 7.3: Illustration of interpolating (top) and non-interpolating (bottom) metamod-
els built upon 10 noisy observations. The observation error is set to τi = 0.2.

The meta-model can now be built.
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7.1.5 Construction of the Gaussian Process meta-model

All the parts to build the meta-model have been previously described. The construction
of the meta-model follows the following algorithm:

1. A correlation function is selected. This function allows to build the covariance
matrix when requested.

2. An initial set of hyper-parameters is selected.

3. The correlation matrix CN based on the set of parameters and on all the available
data points is computed.

4. The vector FN is computed.

5. The system CNX = FN is solved using a LU decomposition of CN = LU . It
allows to find X = C−1

N FN .

6. The log determinant of CN is computed using the LU decomposition:
log(det(CN ) =

∑N
i=0(logLii + logU ii)

7. The likelihood is evaluated using X and log(det(CN ).

8. The likelihood is maximized by selecting new set of hyper-parameters and going
to point 3 until convergence.

9. The best hyper-parameters maximizing the likelihood are fixed and used as param-
eters of the meta-model.

10. The meta-model is trained and can be used for prediction.

The next step is to find the most interesting points to evaluate on this meta-model. To
do so, merit functions are introduced and are detailed below.

7.1.6 Merit functions

Once the model is constructed, it is used to locate the most interesting set of design
parameters and values of the cost function. The naive choice of the minimum of the
model may yield to non-optimum or even non-stationary points [Jones 2001]. Therefore,
the new point to be evaluated is chosen by minimizing or maximizing a merit function,
which utilizes the variance information given by the model. A comprehensive review of
the different merit functions to locate the optimum for deterministic functions is given
by Jones [Jones 2001]. Four different merit functions are used in this study, which uses
the variance of the model to reach the global optimum.

Lower bound (LB): The simplest criterion is the minimization of the lower bound. This
merit function is defined as:

LB(x) = f̂(x)− ρσ̂(x) (7.16)
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where ρ is a constant typically chosen to be equal to 0, 1 or 2. Note that when ρ = 0,
the criterion reduces to the minimization of the meta-model only.

Probability of Improvement (PI): Maximizing the probability of improvement consists
in choosing a point which maximizes the probability of obtaining a value better than a
given target. To do so, a target value is set, such that T < fmin with fmin = min

1≤i≤N
f(xi).

This merit function is finally computed by:

PI(x) = Φ

(
T − f̂(x)

ŝ(x)

)
, (7.17)

where Φ(y) = 1
2(1 + erf(y/

√
2)) is the cumulative distribution function of the standard

normal distribution. As for LB, several target values T can be chosen.

Expected Improvement (EI): The most popular strategy is the maximization of the Ex-
pected Improvement (EI) [Jones 1998]. This approach consists in locating the point x at
which the maximum reduction of the cost function can be expected. The improvement
obtained by evaluating Y at the point x is defined as:

I := max(fmin − Y (x), 0). (7.18)

If we assume that the function value is the realization of a random variable with mean
f̂(x) and standard deviation σ̂(x), the probability of reducing its value by an amount I
is given by:

1√
2πσ̂(x)

exp

[
−(fmin − I − f̂(x))2

2σ̂(x)2

]
. (7.19)

Then, the EI criterion is the expected value of I:

EI(x) =

∫ I=∞

I=0
I

{
1√

2πσ̂(x)
exp

[
−(fmin − I − f̂(x))2

2σ̂(x)2

]}
dI. (7.20)

After an integration by part, it is shown that:

EI(x) = σ̂(x)[uΦ(u) + φ(u)], u(x) =
fmin − f̂(x)

σ̂(x)
, (7.21)

where φ(y) = 1√
2π

exp(−y2/2) is the standard normal distribution.

Note that a recent result on convergence proof of the EI method under fixed mean and
covariance functions is given in [Vazquez 2010].

Augmented Expected Improvement (AEI): The main drawback of the EI criterion is
that the minimum fmin is not exactly known in the presence of noise. The Augmented
Expected Improvement [Huang 2006] is based on two modifications in case of noisy
functions. First, instead of using the minimum fmin, it uses a surrogate, addressing
the problem that fmin is not exactly known. The used surrogate is T = f̂(x∗∗) with x∗∗

(effective best solution) the minimum of f̂+σ̂ over the over the current database. Then, a
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penalty term is introduced in order to take into account the error for the next evaluation
τN+1. This penalty enhances exploration by penalizing points with small variance σ̂2

with respect to noise τ2
N+1. Finally, the AEI criterion becomes:

AEI(x) = EIT (x)×

1− τN+1√
σ̂(x)2 + τ2

N+1

 ,

EIT (x) = σ̂(x)[uΦ(u) + φ(u)],

u(x) =
T − f̂(x)

σ̂(x)

(7.22)

The AEI criterion has exhibited the best results for the optimization of noisy functions
among many merit functions [Picheny 2011].

All of these merit functions are minimized using the evolution strategy algorithm, which
is detailed in the following.

7.2 Evolution strategy

Evolution strategy (ES) algorithms are used to calibrate or train the hyper-parameters
of the Gaussian Process model and to minimize merit functions. Evolution strategy
algorithms are meta-heuristic optimization methods inspired by natural evolution. Its
first description goes back to the 1960s in Germany by I. Rechenberg and H.-P. Schwefel
and it was applied in a numerical context by D. Hartmann. This optimization technique
is similar to Differential Evolution, Genetic Algorithm, etc., in the sense that they all
belong to the field of evolutionary algorithms. These algorithms can reach global opti-
mum and their cost to reach convergence is usually in the order of some thousands of
evaluations. They are based on iterative evolution of a population, in which individuals
are characterized by a fitness value conditioned by the problem to optimize. The evo-
lution of the population individuals is generally described by reproduction, mutation,
recombination and selection operators.

In ES, an individual I in a population P is composed with a pair of floating point valued
vectors, which contains information about the decision vector x and standard deviation
σ for the mutation process:

I = I(x,σ)

The associated mutation operator of the individual mutates x and σ. If only the muta-
tion of x is considered, it follows a vector of random Gaussian numbers with zero mean
and standard deviations σ denoted by N (0,σ). Considering a parent Ip(xp,σp) that
mutates into a child Ic(xc,σc), then a possible mutation operator is:

Mut(Ip) = Ic(xp +N (0,σp),σp).

With this specific operator, the standard deviation never evolves. On the other side,
by only considering the mutation of σ, the common sense to improve the convergence
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towards the optimum would be that the variation of x decreases with the number of
generations [Michalewicz 1996]. This self-adaptation behavior can be set through the
standard deviation mutation with an exponential decrease of σ:

Mut(Ip) = Ic(xp,σp exp(N (0, τ)).

with τ < 1. In practice [Beyer 2002], the exponential decrease τ = 1/
√

2N , with N the
number of parameters to optimize.

To set the ideas of the ES algorithm, let us define a population of individuals Pp of size
µ that are called the parents, and a population Pc of λ offsprings larger than µ deduced
from the parents that are recombined into µ parents at the next generation. From the
parent population, the mutation operator is applied to generate the λ offsprings. Then
µ parents for the next generation are selected either from the population Pc or from the
population Pp ∪ Pc. These two strategies are respectively called the (µ, λ) − ES and
(µ+ λ)− ES [Beyer 2002].

In this work, the implemented ES algorithm is the (µ, λ)− ES. The full algorithm is:

1. An initial starting temporary individual is specified as a starting point I0
t (x0

t ,σ
0
t )

and stored into the parent population P0
p .

2. At the generation n, the temporary individual Int is mutated by the mean of the
mutation operator to create λ individuals of indices i = 0, ..., (λ− 1):

Inci(x
n
ci
,σnci) =Mut(Int )

with σnci = σnt exp(N (0, τ)) and xnci = xnt +N (0,σnci).

These newly created individuals are stored in the child population Pnc by replacing
the previous ones.

3. The first µ best individuals among Pnc are selected and stored in the parent pop-
ulation Pnp .

4. The parents contained in Pnp are combined to produces a temporary descendant
In+1
t (xn+1

t ,σn+1
t ). The reproduction operator used is based on the average of the

population attributes:

In+1
t (xn+1

t ,σn+1
t ) = Rep(Inp0 , I

n
p1 , ..., I

n
pµ−1

) = In+1
t

(∑µ−1
i=0 x

n
pi

µ
,

∑µ−1
i=0 σ

n
pi

µ

)

5. Return to step 2 until convergence.

Concerning numerical parameters, the population size for the children is set to λ =

4 + 3 log(Np)) with Np the number of parameters to optimize, the population size of the
parents is µ = λ/2 and the initial step is set to σ0 = 1/3 assuming that the parameters
were scaled between 0 and 1. The number of generations is set to 20N to train the
meta-model and 100N to optimize the merit function.
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Within this section, evolution strategy algorithms have been described. A great amount
of work have been conducted in the field and a good review of such algorithms can be
found in [Beyer 2002]. Due to its popularity and its applicability, the evolution strategy
algorithm has been extended in various ways to correct its drawbacks. The last evolution
of the evolution strategy is CMA-ES, for Covariance Matrix Adaptation, developed by
Nikolaus Hansen at INRIA [Hansen 2006]. It uses local statistical information to adapt
its distribution for the mutation operator .

The next chapter aims to validate the implementation of the optimization algorithms on
analytical test functions.
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To validate the meta-model based optimization for deterministic as well as noisy func-
tions, several optimization cases are considered. This part is focused on the optimization
of analytical functions with 1 and 2 parameters. The first two will help us to understand
how the noise affects the convergence, the second one to have a more representative test
case corresponding to the real simulation problem to optimize.

8.1 1D analytical case

The following unconstrained problem [Picheny 2011] is considered:

Minimize f(x) =
1

2

(
sin(20x)

1 + x
+ 3x3 cos(5x) + 10(x− 0.5)2 − 0.6

)
+ εp (8.1)

with εp ∼ N (0, τ2
p ), a random perturbation with a normal distribution of mean 0 and

standard deviation τp. The initial database contains 5 points equally distributed in the
domains.

The analytical function and the repartition of the sample points are shown on the Fig. 8.1.

8.1.1 Deterministic case optimization

First the analytical function is defined without any noise with τp = 0. Four figures among
the first 8 steps of the optimization using the expected improvement merit function are
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Figure 8.1: 1D analytical function and initial database.

shown on Fig. 8.2. As seen the optimization process is very fast and approximates the
global optimum within the first 5 iterations. The merit function in green on the curves
shows how the merit function drives the optimization. The next points to be evaluated
are added where this merit function is maximum.

8.1.2 Optimization with noise

The same case is considered but with some noise on each evaluated points with τp = 0.1.
This model simulates a solver which is not able to give an exact output because of coarse
convergence for example. First of all, the same algorithm using an interpolating meta-
model is used, then a non interpolating one is applied. On the latter, the error variance
is set to τ2

p .

Optimization with an interpolating model: An optimization with an interpolating
meta-model and an EI merit function is considered. Four figures among the first 15 steps
of the optimization are shown on Fig. 8.3. As we could expect, the optimization of a
noisy function using an interpolating meta-model gives a very oscillating model with a
strong uncertainty in the low-sampled regions. Whatever the merit function considered,
this algorithm would fail to find the global minimum in a limited number of iterations
as the meta-model does not account for the noise.
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(a) Optimization iteration 0. (b) Optimization iteration 2.

(c) Optimization iteration 5. (d) Optimization iteration 7.

Figure 8.2: Optimization with the expected improvement of a 1D function using τp = 0

and an interpolating meta-model. The second axis shows the expected improvement
merit function. Note that the axis range is not kept constant as the expected improve-
ment can take very dispersed values.

Optimization with a non interpolating model: As previously seen, increasing the
points in the database for a noisy function yields an oscillating meta-model. To address
this problem, we consider here the meta-model including noisy observations.

First, an optimization with a non-interpolating meta-model using the EI merit function
is considered. Four steps among the 15 optimization iterations are shown on Fig. 8.4.
These figures show that the meta-model converges to the global minimum without noise.
Furthermore, as the number of iteration increases, the meta-model remains stable, which
is not the case with an interpolating meta-model.
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(a) Optimization iteration 0. (b) Optimization iteration 4.

(c) Optimization iteration 9. (d) Optimization iteration 14.

Figure 8.3: Optimization with the expected improvement of a 1D function using τp = 0.1

and an interpolating meta-model.

8.2 Noisy Branin function

The Branin function is a 2D test function for unconstrained global optimiza-
tion [Jones 1998, Jamil 2013]. The minimization problem with additional noise term
is defined by:

Minimize f(x, y) =

(
y − 5.1

4π2
x2 +

5

π
x− 6

)2

+ 10

(
1− 1

8π

)
cos(x) + 10 + εp,

with εp ∼ N (0, τ2
p ), a random perturbation with a normal distribution of mean 0 and

standard deviation τp.

The Branin function has three global optima located at x∗ =

(−π, 12.275), (π, 2.275), (9.42478, 2.475), where the function f(x∗) = 0.397887 with
εp = 0. It is represented on Fig. 8.5 The initial database contains 8 points distributed
in the domains following an optimized Latin Hypercube Sampling unless specified.
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(a) Optimization iteration 0. (b) Optimization iteration 4.

(c) Optimization iteration 9. (d) Optimization iteration 14.

Figure 8.4: Optimization with the expected improvement of a 1D function using τp = 0.1

and non-interpolating meta-model, with an observation uncertainty standard deviation
set to τi = 0.1.

Figure 8.5: The Branin function.
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8.2.1 Deterministic case optimization

First a noise free optimization is considered (τp = 0), with the PI and the EI merit func-
tions. Four figures among the first 40 steps of the optimization are shown on Fig. 8.2.1
and Fig. 8.2.1. For both the PI and EI merit functions, the three optima are located

(a) Optimization iteration 10. (b) Optimization iteration 20.

(c) Optimization iteration 30. (d) Optimization iteration 40.

Figure 8.6: Optimization with the probability of improvement merit function of the
Branin function using τp = 0.

within the first 20 iterations. In both cases, the algorithm converges to the optima
when the number of iterations increases. Furthermore, from the iteration 20, the algo-
rithm converges towards the optima with no difficulty. It is seen on Fig. 8.8 that the
convergence speed using EI is slightly better than the convergence using PI.

8.2.2 Optimization with noise

We consider now a the same case, but with some noise τp = 5.
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(a) Optimization iteration 10. (b) Optimization iteration 20.

(c) Optimization iteration 30. (d) Optimization iteration 40.

Figure 8.7: Optimization with the expected improvement merit function of the Branin
function using τp = 0.

Optimization with an interpolating model: An optimization with an interpolating
meta-model and an EI merit function is first considered. Four figures among the first
20 iterations of the optimization are shown on Fig. 8.2.2. As for the 1D case, the
optimization of a noisy function using an interpolating meta-model gives a very oscillating
model as illustrated on the Fig. 8.2.2 for the iteration 20. The oscillations lead to
convergence issues toward the optimums.

Optimization with a non interpolating model: An optimization with a non-
interpolating meta-model is considered to account for noise. A first case is considered
with the error variance set to τ2

p using LB, EI, PI and AEI merit functions. Then the
error variance is set to (

τp
5 )2, (

τp
2 )2 and (2τp)

2 with the EI merit function to analyze the
influence of τp on the meta-model.

The optimization with error variance set to τ2
p using LB, EI, PI and AEI are respectively

found on the Fig. 8.11(a), Fig. 8.11(b), Fig. 8.11(c) and Fig. 8.11(d) for the first 50
iterations. The figures show a good convergence of the algorithm towards the optima.
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Figure 8.8: Optimization convergence for EI and PI on the Branin function.

For all merit functions, the three optima are well approached and the meta-model is stable
and close to the function without noise thanks to the non-interpolating implementation
of the Gaussian Process. For a complete comparative results of the merit functions
on different analytical problems, we refer the reader to the work of Picheny et al. in
[Picheny 2011].

Finally,the Fig. 8.12 presents the results for the optimization of the noisy Branin function
with τp = 5 and the error variance τi set to (

τp
5 )2, (

τp
2 )2, (τp)

2 and (2τp)
2 in order to

measure the impact of noise estimation. It is clearly seen that the optimization with
a too low error variance τi doesn’t filter enough the noise and lead to an oscillatory
meta-model. On the other side, if the filtering is too high, the meta-model is too much
smoothed leading to a loss of accuracy in the optima locations. From this study, setting
τp
2 ≤ τi ≤ 2τp lead to a reasonable optimization as all the optima are found.

8.3 Conclusion on optimization validation

The validation of EGO techniques shows the importance of introducing a noise filtering
control when optimizing with noisy functionals. In fact, if the noise is not considered,
the optimization does not converge and the meta-model begins to oscillate through the
iterations. In this part, we have shown that the implementation by modifying the co-
variance function of the noise in Gaussian Processes is extremely efficient for all the test
cases. Furthermore, it can be noticed that 30 functions evaluations are usually enough
to find at least one minimum.
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(a) Optimization iteration 5. (b) Optimization iteration 10.

(c) Optimization iteration 15. (d) Optimization iteration 20.

Figure 8.9: Optimization with the expected improvement of the Branin function using
τp = 5 and an interpolating meta-model.
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Figure 8.10: Iteration 20 for the Branin function optimization using an interpolating
meta-model and an EI merit function. The meta-model is very oscillating leading to a
convergence issue.
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(a) Optimization with LB merit function. (b) Optimization with EI merit function.

(c) Optimization with PI merit function. (d) Optimization with AEI merit function.

Figure 8.11: Optimization results after 50 evaluations (around 16 iterations for LB and
PI) of the Branin function using τp = 5 and the meta-model error variance set to τ2

p .
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(a) Optimization with τi =
τp
5
. (b) Optimization with τi =

τp
2
.

(c) Optimization with τi = τp. (d) Optimization with τi = 2τp.

Figure 8.12: Optimization results after 50 evaluations of the noisy Branin function (τp =

5) using the EI merit function. Comparison of error variance τi setting influence.



Part IV

Application to flow control
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In the previous parts, the optimization algorithms and numerical methods to solve PDE
systems have been validated with respect to analytical functions and test cases from
the literature. In the context of the FP7 MARS (Manipulation of Reynolds stress for
separation control and drag reduction) European project, a particular attention has
been raised in the study of detached flow control. Two test cases are considered: the
NACA0015 airfoil and the Backward Facing Step. In the first case, the detachment is
due to the adverse pressure gradient while in the second case, the detachment is imposed
by the geometry.
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NACA0015
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9.1 Test-case configuration

The NACA0015 is a symmetric airfoil with a maximum thickness of 15% of the chord.
Its shape is generated with the equation:

z = ± t

0.2
c

[
0.2969

√
x

c
+ (−0.1260)

(x
c

)
+(−0.3516)

(x
c

)2
+ 0.2843

(x
c

)3
+ (−0.1036)

(x
c

)4
] (9.1)

with c = 1m and the maximum thickness t = 15/100. The last coefficient is a modified
coefficient (originally set to −0.1015) in order to retrieve a sharp trailing edge.

A synthetic jet with a diameter djet = 0.5%c is added to the initial shape at a location
of xjet = 12%c. Its geometrical model is based on a slot with a height of hslot = 2%c.

The grid corresponding to this configuration is composed of 78186 vertices and is rep-
resented on Fig.9.1-9.2. 17 points are placed at the bottom of the jet to allow a good
description of the sinusoidal shape distribution. Approximately 600 points are placed
on the upper surface of the wing. The far-field is located at 100c from the airfoil. The
distance between the first node and the wall is 10−5 to fulfill the y+ < 1 criterion at all
time steps, at all locations on the wing surface and for all closures.

The flow is considered to be fully turbulent, with a Reynolds number of Re = 5 × 106

based on the chord and a Mach number of M = 0.15. The lift polars for such a configu-
ration with Spalart-Allmaras and k-ω SST turbulence closure shown on Fig. 9.3, enhance
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Figure 9.1: NACA0015 configuration - general view.
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Figure 9.2: NACA0015 configuration - slot view.



126 Chapter 9. NACA0015

Figure 9.3: NACA0015 lift polar for the Spalart-Allmaras and k-ω SST turbulence mod-
els.

Jet parameters Min Max
Ujet/Uinf 0.5 2

fjetLref/Uinf 0.5 2

Table 9.1: Jet parameters for the optimization over the NACA0015.

the fact that the wing is stalling after approximately 16 degrees. As a consequence, the
angle of attack is set to α = 18 deg to provide a detached flow with a recirculation on
the suction side of the wing. The farfield boundary condition is modeled using Rie-
mann invariants, the airfoil with adiabatic wall boundary condition and the jet with the
previously described conditions. The Spalart-Allmaras and k-ω SST are selected here.

The objective of the optimization is to maximize the time averaged lift. The optimized
parameters are the jet amplitude and frequency within the intervals described in Tab. 9.1
with Uinf the freestream velocity, and Lref the airfoil chord. These intervals were chosen
following the work of [Duvigneau 2006] to be certain that at least one optimum is present
in the search domain.

The time averaged lift P is computed on the last synthetic jet period using the following
formula:

P = cos(α)Fy − sin(α)Fx

with α the flow angle of attack, Fx and Fy the time averaged aerodynamic forces projected
on the x and y axis.
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Spalart-Allmaras closure k-ω SST closure
Lift coefficient 1.34 1.26

Table 9.2: Lift coefficients for the NACA0015 at 18 degrees using the Spalart-Allmaras
and k-ω SST turbulence closures.

The resulting time averaged lift coefficient Cl is found by:

Cl =
P

1/2ρinfU
2
infLref

with ρinf and Uinf freestream density and velocity, and Lref the airfoil chord.

As numerical parameters, 256 time steps per synthetic jet period and a reduction of
non-linear residuals of 3 orders per time-step are selected.

An initial study of the non controlled flow around the NACA0015 airfoil is first performed
at 18 deg. In this perspective, the jet boundary at the bottom of the slot is replaced by a
wall boundary condition to model a non moving synthetic jet. The unsteady computation
is run with a time step of ∆t = 0.002s until a quasi-stationary flow is finally found for
this configuration.

Fig. 9.4 is a plot of the velocity magnitude for the Spalart-Allmaras closure. The same
quantities for the k-ω SST closure are shown on Fig. 9.5. The initial configuration shows
a primary large clockwise and a small secondary counterclockwise recirculation zones
past the flow detachment point at x ≈ 0.5. The behaviors of the two closures are very
similar with some slight discrepancies within the recirculation area, where the k-ω SST
closure exhibits a slightly larger primary recirculation zone. The lift coefficient for the
closures are detailed on Tab. 9.2. The two closures present similar flow behaviors and
lift coefficients. These values are taken as reference for the optimization process.
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Figure 9.4: NACA0015 velocity at 18 degrees with Spalart-Allamaras turbulence closure.
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Figure 9.5: NACA0015 velocity at 18 degrees with k-ω turbulence closure.
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Point id Amplitude (adim) Frequency (adim)
0 0.71 0.14
1 0.86 0.43
2 0.29 0.29
3 0.14 0.00
4 0.57 1.00
5 0.00 0.71
6 0.43 0.57
7 1.00 0.86

Table 9.3: Initial database sampling for the optimization using the NACA0015.

9.2 Synthetic jet optimization

The initial database for the optimization of the synthetic jet parameters is composed of
8 design points generated using a latin hypercube sampling between 0 and 1. A linear
relation is used to map the optimizer design points to the actuation parameters. This
database is described on Tab. 9.3 and represented on Fig. 9.6.

The initial metamodels for the Spalart-Allmaras and the k-ω SST closures are shown on
Fig. 9.7.

The two meta-models differ in the mid-frequency and low amplitude. This difference
is introduced by the point 2 (0.29, 0.29). This difference gives a first insight on the
turbulence model impact on detached and controlled flow simulations.

9.2.1 Impact of observation variance

Based on this database, optimization using the EI and PI merit functions are performed.
After the first 11th optimization iterations with an error variance of τ2

i = 0 using EI, the
metamodels assuming an error variance of τ2

i = 0 and an error variance of τ2
i = 5×10−3

are compared. The metamodels for the k-ω SST are shown on Fig. 9.8. The selected error
variance of τ2

i = 5 × 10−3 is a threshold value for which the metamodel shape sharply
changes. Increasing the value of the variance then has low impact on the shape of the
model. As seen on the figures, observation errors are polluting the meta-model, leading
to oscillations just as for the noisy Branin function optimization. This error is likely to
come from a lack of proper residuals convergence at each pseudo time steps or a proper
stabilization in time of the cost function despite of the care taken for the simulations.
Exactly the same behavior and error variance level holds for the Spalart-Allmaras closure.
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Figure 9.6: Initial database generated for the optimization of jet amplitude and frequency
on the NACA0015.

Figure 9.7: Initial database metamodels for the k-ω-SST and the Spalart-Allmaras clo-
sures for the NACA0015 configuration.
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Figure 9.8: Metamodels for the k-ω-SST closure after 11 optimization steps with EI on
the NACA0015 configuration. The first figure correspond to an error of τ2

i = 0 and the
second to τ2

i = 5× 10−3

9.2.2 EI/PI comparison

From 11 cost function evaluation, the error being identified, the optimization is resumed
for both EI and PI with an error estimation variance of τ2

i = 5×10−3. The optimization
convergence history for EI and PI are shown on Fig. 9.9. For both EI and PI, the opti-
mization is really effective during the first iterations as the cost function is significantly
reduced. The Spalart-Allmaras with PI was stopped after 6 iterations due to a lack
of evaluation time. The PI merit function tends to reevaluate previously visited points
leading to a slowdown of overall convergence. As PI does 3 evaluations per iterations,
with respect to the number of solver evaluations, EI performs significantly better than
PI.

The optimal points for EI and PI are given on Tab. 9.4. Effective parameters were found
as all the optimal points have a better lift coefficient than the baseline configuration
(Cl = 1.34 for the Spalart-Allmaras closure and Cl = 1.26 for the k-ω SST closure).

Because of the computational time requirement, approximately two days per points, the
optimization could not be run until complete convergence. Nevertheless, the optimizer
with EI has found for the k-ω closure two distinct optima in the search domain. These
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Figure 9.9: Convergence histories for the Spalart-Allmaras and k-ω-SST closures with
EI and PI on the NACA0015 configuration.
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Turbulence closure Ujet/Uinf fjetLref/Uinf Lift coefficient Relative gain
Spalart-Allmaras - EI 0.54 1.99 1.72 22%
Spalart-Allmaras - PI 0.57 1.90 1.71 21%

k-ω-SST - EI 1 0.93 1.14 1.71 26%
k-ω-SST - EI 2 0.58 1.99 1.73 27%
k-ω-SST - PI 1.20 1.12 1.70 25%

Table 9.4: Jet parameters, cost function and relative gain with respect to the baseline
configuration.

optima are located at mid frequency and mid amplitude, and at high frequency and
low amplitude. For the PI merit function, an optimum located at low amplitude and
high frequency near one of the EI optima has been found, but with a higher CPU cost.
Concerning the Spalart-Allmaras closure, only one optimum could be located at high
frequency and low amplitude for both EI and PI merit functions.

Fig. 9.10 and Fig. 9.11 show the meta-models generated using the data from Spalart-
Allmaras and k-ω SST closures for both EI and PI. The Spalart-Allmaras meta-models

Figure 9.10: Metamodels generated from EGO optimization with EI (top) and PI (bot-
tom) merit functions using the Spalart-Allmaras turbulence closure.

using EI and PI are very similar in shape. They are smooth and present only one
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Figure 9.11: Metamodels generated from EGO optimization with EI (top) and PI (bot-
tom) merit functions using the k-ω SST turbulence closure.

optimum, unfortunately, at the border of the search domain. Compared to the k-ω SST
turbulence model, the meta-model does not have any optimum located in the mid-range
amplitude and frequency. Some differences exist between the EI and PI meta-models
in the low amplitude/high frequency area. Indeed, the PI is lacking points within this
region making it very uncertain at this range of amplitudes and frequencies. The PI
merit function tends to cluster the points around specific areas without enough exploring
unknown areas.

It is interesting to note that the turbulence closure seems to have a great impact on the
meta-model and on the optima found by the optimizer. Indeed, the Spalart-Allmaras
closure does not have any mid-range optimum as for the k-ω SST turbulence closure.
The impact of turbulence will be described in more details in the next optimization test
case.

Because of the better results the EI merit function, the following is only based on EI
results only.
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9.2.3 Analysis of optimum controlled flows

Four snapshots of the vorticity and turbulent viscosity or Spalart-Allmaras variable cor-
responding to the zero blowing phase (φ = 0), maximum blowing phase (φ = π/2), zero
suction phase (φ = π) and maximum suction phase (φ = 3π/2) are shown on Fig. 9.12
to Fig. 9.16 for respectively the optimum found using Spalart-Allmaras, k-ω SST at
mid-ranges and k-ω SST at low amplitude and high frequency.

On these figures, it can be seen that the mechanism to increase the lift for the Spalart-
Allmaras and the second optimal point of k-ω SST turbulence models is the same. Small
oscillations are introduced in the flow, leading the birth of small vortices in the separated
flow. The resulting flows look similar to Kelvin-Helmholtz instabilities in mixing layers.
On the other hand, the first point of the k-ω SST turbulence closure shows bigger vortices
leading a more complex flow as based on vortices separation and interaction at the upper
surface, near the trailing edge.

The phase-locked pressure distributions for NACA0015 airfoil are shown of Fig. 9.18,
Fig. 9.19, and Fig. 9.20 for respectively the EI optimum with Spalart-Allmaras turbulence
closure, EI 1 and EI 2 optima with the k-ω SST turbulence closure.

These figures show that the controls with high frequency and low amplitude, for both
Spalart-Allmaras and EI 2 optimum with k-ω SST turbulence closures, give a very regular
pressure distribution past the synthetic jet. These controls provide a very low perturbed
pressure field along the airfoil. On the other side, the EI 1 optimum, with mid-range
control parameters using k-ω SST turbulence closure gives higher variation of pressure
convected downstream, past the synthetic jet.

Time averaged flow pressure coefficient for the Spalart-Allmaras and k-ω SST closures
are shown on Fig. 9.21 and Fig. 9.22. The pressure coefficient past the synthetic jet is
lower compared to the baseline configuration. At the leading edge, the suction peak is
increased by the presence of the jet. The two synthetic jet parameters gives a very similar
pressure coefficient response. The optimum EI 1 has a lower pressure at the trailing edge
and a higher pressure at the leading edge than the optimum EI 2. This effect near the
trailing edge can be explained by the fact that the bigger vortices generated by EI 2 are
not damped as quickly as the perturbations introduced by the control optimum EI 1. For
the optimum found using the Spalart-Allmaras turbulence closure, the same conclusions
as EI 1 hold.

The time averaged velocity are shown on Fig. 9.23, to Fig. 9.28. Compared to
the non controlled case, all the optimum control give a shorter recirculation zone. The
detachment point is slightly delayed and the end of the recirculation bubble is more
vertical.
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Figure 9.12: Vorticity and turbulent viscosity for the optimum (0.54, 1.99) using Spalart-
Allmaras turbulence closure on the NACA0015 configuration. From top to bottom:
Φ = 0, π/2, π, 3π/2.
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Figure 9.13: Close up vorticity for the optimum (0.54, 1.99) using Spalart-Allmaras
turbulence closure on the NACA0015 configuration. From top to bottom: Φ =

0, π/2, π, 3π/2.
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Figure 9.14: Vorticity and turbulent viscosity for the mid-range optimum (0.93, 1.14)
using k-ω SST turbulence closure on the NACA0015 configuration. From top to bottom:
Φ = 0, π/2, π, 3π/2.
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Figure 9.15: Close up vorticity for the mid-range optimum (0.93, 1.14) using k-
ω SST turbulence closure on the NACA0015 configuration. From top to bottom:
Φ = 0, π/2, π, 3π/2.
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Figure 9.16: Vorticity and turbulent viscosity for the optimum (0.58, 1.99) using k-ω
SST turbulence closure on the NACA0015 configuration. From top to bottom: Φ =

0, π/2, π, 3π/2.
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Figure 9.17: Close up vorticity for the (0.58, 1.99) using k-ω SST turbulence closure on
the NACA0015 configuration. From top to bottom: Φ = 0, π/2, π, 3π/2.
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Figure 9.18: Phase-locked pressure distributions at Φ = 0, π/2, π, 3π/2 for the optimum
EI 1 (0.54, 1.99) using Spalart-Allmaras turbulence closure on the NACA0015 configu-
ration.

Figure 9.19: Phase-locked pressure distributions at Φ = 0, π/2, π, 3π/2 for the optimum
EI 1 (0.93, 1.14) using k-ω SST turbulence closure on the NACA0015 configuration.
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Figure 9.20: Phase-locked pressure distributions at Φ = 0, π/2, π, 3π/2 for the optimum
EI 2 (0.58, 1.99) using k-ω SST turbulence closure on the NACA0015 configuration.

Figure 9.21: Pressure distributions for the time averaged flow of the optima found using
EI and Spalart-Allmaras turbulence closure on the NACA0015 configuration.
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Figure 9.22: Pressure distributions for the time averaged flow of the optima found using
EI and k-ω SST turbulence closure on the NACA0015 configuration.

Figure 9.23: Velocity magnitude field for the time averaged flow of the optima found
using EI and Spalart-Allmaras turbulence closure on the NACA0015 configuration.
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Figure 9.24: Velocity magnitude field for the time averaged flow for the optimum EI 1
(0.93, 1.14) using k-ω SST turbulence closure on the NACA0015 configuration.

Figure 9.25: Velocity magnitude field for the time averaged flow for the optimum EI 2
(0.58, 1.99) using k-ω SST turbulence closure on the NACA0015 configuration.
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Figure 9.26: Recirculation zoom for the velocity magnitude field for the time aver-
aged flow of the optima found using EI and Spalart-Allmaras turbulence closure on the
NACA0015 configuration.
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Figure 9.27: Recirculation zoom for the velocity magnitude field for the time aver-
aged flow for the optimum EI 1 (0.93, 1.14) using k-ω SST turbulence closure on the
NACA0015 configuration.
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Figure 9.28: Recirculation zoom for the velocity magnitude field for the time aver-
aged flow for the optimum EI 2 (0.58, 1.99) using k-ω SST turbulence closure on the
NACA0015 configuration.
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The Spalart-Allmaras variable and the turbulent kinematic energy for the k-ω SST tur-
bulence closure are shown on Fig. 9.29 to Fig. 9.33 for the non controlled and controlled
with optimum configurations.

Figure 9.29: Spalart-Allmaras variable field of the non controlled Spalart-Allmaras tur-
bulence closure on the NACA0015 configuration.

The Spalart-Allmaras variable for the Spalart-Allmaras turbulence closure, using the
optimum controlled parameters looks very similar above the airfoil compared to the non
controlled configuration. Furthermore, this quantity is largely reduced just after the
trailing edge. The turbulent kinetic energy fields for the k-ω SST turbulence closure of
the controlled optima configurations are weaker than for the non-controlled configuration.
The type of the control has a great impact on its distribution. As seen here, in general,
the optima controlled configurations have a lower turbulent eddy viscosity than in the
initial configurations.
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Figure 9.30: Spalart-Allmaras variable field for the time averaged flow of the optima
found using EI and Spalart-Allmaras turbulence closure on the NACA0015 configuration.

Figure 9.31: Turbulent kinetic energy field of the non controlled turbulent kinetic energy
using k-ω SST turbulence closure on the NACA0015 configuration.
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Figure 9.32: Turbulent kinetic energy field for the time averaged flow for the optimum
EI 1 (0.93, 1.14) using k-ω SST turbulence closure on the NACA0015 configuration.

Figure 9.33: Turbulent kinetic energy field for the time averaged flow for the optimum
EI 2 (0.58, 1.99) using k-ω SST turbulence closure on the NACA0015 configuration.
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9.3 Discussion

In this study, a global optimization of amplitude and frequency of a synthetic jet have
been performed. It has been shown that taking into account cost function observations
noise is mandatory to retrieve a correct meta-model. After having chosen an appropri-
ate simulation error, EI and PI merit functions have been applied on the optimization
problem with success. Accounting of the limited number of evaluations, using k-ω SST
turbulence closure, the EI merit function showed better results than PI as it was able
to localize two parameters optima while PI only found one optimum without exploring
other interesting part of the search domain.

An increase in lift of approximately 20% could be achieved for both the Spalart-
Allmaras and k-ω SST turbulence closures. Such order of magnitude in lift coeffi-
cient improvements using synthetic jets are experimentally [Seifert 1999] and numeri-
cally [Donovan 1998] observed for post stall configurations, although in the given refer-
ences, synthetic jets for the NACA0015 case are placed at the leading edge and not on the
upper surface as in our experimentations. In these papers, the frequency used to control
the lift provides well detached vortices that are convected downstream the airfoil very
similar to the first optimal point of the k-ω SST turbulence found using EI. Such frequen-
cies tends to excite the natural shedding frequency (not observed here at 18 degrees, using
URANS simulations). The natural shedding frequency for a α = 22 deg NACA0015 con-
figuration at comparable Reynolds number is reported to be fshedLref/Uinf ≈ 0.53, and
an optimal actuation frequency fjetLTE/Uinf ≈ 1 with LTE the distance between the
trailing edge and the actuation. Even if the case considered here is not exactly the same,
the first optimum found by EI (fjetLref/Uinf = 1.14) gives fjetLTE/Uinf = 1.003, being
the reported as an effective frequency close to unity value by Seifert [Seifert 1996]. Du-
vigneau and al. in [Duvigneau 2006] reports optimal frequency of fjetLref/Uinf = 0.85

and an amplitude of Ujet/Uinf = 1.72 for the optimization of a synthetic jet over a
NACA0015 airfoil at 18 degrees using k-ω SST closure. These parameters optima can
not be seen on the present meta-models. This discrepancy between the present work
and the reported optima values might occur because the jet angle was also optimized
and attained a value of 30 degrees. In [Seifert 1999], it also has been reported that lower
forcing levels are only effective with actuation frequency of fjetLTE/Uinf > 2. This
result could also be noticed in our optimization experiments, using the Spalart-Allmaras
closure and the k-ω SST closures (EI 2), where the optima control parameters found are
fjetLref/Uinf ≈ 2 and Ujet/Uinf ≈ 0.5.

The mechanism to increase lift, is the same for the low amplitude and high frequencies by
introducing small perturbation in the flow for both Spalart-Allmaras and k-ω SST clo-
sures. On the other side, for the medium range control parameters, the k-ω SST closures
provides an optimum where bigger vortices are generated and convected downstream,
leading to a different mechanism.

The meta-models differ significantly in the frequency and amplitude middle ranges for
the two turbulence closures, leading to an absent optimum using the Spalart-Allmaras
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meta-model. According to these results, the impact of turbulence closure can have a big
influence on the optimization process. For this reason, a particular study of the impact
of turbulence closure is carried out on the Backward Facing Step case and presented in
the next chapter.
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A second test case is considered for which a detached flow imposed by the geometry
on a simple configuration. This test case is used to further study the influence of tur-
bulence and numerical errors. The study is carried out with the ISIS-CFD solver as a
collaboration on control with the Fluid Mechanics Laboratory, CNRS UMR 6598 / ECN.

10.1 Incompressible turbulent Navier-Stokes equations

The Backward Facing Step flow studies are carried out with the ISIS-CFD solver, devel-
oped by the CFD group of the Fluid Mechanics Laboratory and available as a part of the
FINETM/Marine computing suite. It solves incompressible Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations. Because of it well validated implementation of tur-
bulence models, it is employed to carry out a precise study of turbulence influence on
simulation and optimization of separated flows.

The solver is based on the finite-volume method to build the spatial discretization and
solves the equations with a face-based cell-centered approach.

Within this framework, the incompressible conservation laws under isothermal conditions
are written as

∂

∂t

∫
V
ρdV +

∫
S
ρU · ndS = 0, (10.1)



156 Chapter 10. Backward Facing Step

∂

∂t

∫
V
ρUidV +

∫
S
ρUiU · ndS =

∫
S

(τijIj − pIi) · ndS, (10.2)

where V is the domain of interest or control volume, bounded by the closed surface S
with a unit normal vector n directed outward. U and p represent, respectively, the
velocity and pressure fields. τij are the components of the viscous stress tensor, whereas
Ij is a vector whose components are zero, except for the jth component which is equal
to unity.

All flow variables are stored at geometric centers of the arbitrary shaped cells. Sur-
face and volume integrals are evaluated according to second-order accurate approx-
imations by using the values of integrand that prevail at the center of the face
f , or cell C , and neighbor cells Cnb. The various fluxes appearing in the dis-
cretized equations (10.1) and (10.2) are built using the Gamma Differencing Scheme
(GDS) [Jasak 1996, Queutey 2007]. Other flux determination methods as centered, up-
wind or hybrid schemes are implemented in ISIS-CFD and more details are detailed
by Duvigneau and Visonneau [Duvigneau 2003] and more recently by Queutey and Vi-
sonneau [Queutey 2007]. A pressure equation is obtained in the spirit of the Rhie and
Chow SIMPLE algorithm [Rhie 1982]. As for the compressible solver, unsteady terms
are solved using a dual time stepping approach.

In the case of turbulent flows, additional transport equations for modeled variables are
solved in a similar form to the momentum equations and are discretized and solved using
the same principles.

10.2 Backward Facing Step

The test-case proposed here corresponds to a classical case of detached flow imposed by
the geometry: we consider the two-dimensional flow over a backwards facing step. This
test-case is selected here to provide detached flows with a simple geometrical configura-
tion. The configuration conditions described in the experiments carried out by Driver
and Seegmiller [Driver 1985] are used in this study. This test case has been documented
using incompressible [Le 1997, Yoder 1999] as well as compressible [Rumsey 2008] flows.
The objective of the actuation is the reduction of the separation length.

The backward-facing step geometry including a control device is represented on Fig. 10.1.
The geometry and parameters set according to Driver case: h = 0.0127m, Uref =

44.2m/s, Mref = 0.128, the Reynolds number based on the boundary layer momen-
tum thickness prior to the step is set to Reθ = 5000 and the boundary layer thickness at
the inlet is δBL = 0.019m. The control device is a suction / blowing jet with a diameter
of h/10 and is located at h/50 from the step.

As boundary conditions, a turbulent velocity profile corresponding to experiments is
imposed at inlet, and a uniform pressure condition at outlet. The jet boundary condition
is imposed using a boundary condition model. The parameters of the actuation are the
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Jet parameters Min Max
Amplitude (m/s) 4 50
Frequency (Hz) 50 1000

Table 10.1: Jet parameters for the optimization over the Backward Facing Step.

amplitude Ujet and the frequency fjet. They are allowed to vary in the following intervals:
4m/s ≤ Ujet ≤ 50m/s and 50Hz ≤ fjet ≤ 1000Hz.

Figure 10.1: Backward-facing step with actuation configuration.

Three different meshes have been designed for this particular configuration to assess grid
convergence. In the incompressible case, the coarse, medium and fine mesh respectively
contains 29778, 45805 and 77064 nodes. In all cases, the boundary layer is refined at the
wall to fulfill the y+ < 1 criterion at all time steps, at all locations and for all closures.
All grids include a refined area between the step and the location 9h, as illustrated in
Fig. 10.2. An external tool is used to fulfill the parameters of the test case. For inlet,
all the primitive variables are imposed from the boundary profile. For the outlet, the
pressure only is imposed and other primitive variables are extrapolated. No-slip wall
boundary condition are used for all walls.

As well, three different time steps based on the jet frequency are selected. The large,
medium and small time steps are defined so that one period contains respectively 64,
128 and 256 time steps.

The actuator has a width of value h/10 and is introduced at a location very close to the
step corner (h/50), generating a vertical suction / blowing actuation

The objective function for this optimization test-case is the recirculation length of the
time-averaged flow. A post treatment locates where the wall shear stress vanishes us-
ing a linear interpolation at the points located at the wall. As design parameters for
the optimization, the jet amplitude and frequency are allowed to vary in the intervals
described in the Tab. 10.1.
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Figure 10.2: Backward-facing step with actuation configuration.

10.2.1 Non controlled case

The characteristics of the flow without actuation are compared for the different turbu-
lence closures considered. In this context, the residuals of the steady solutions on the
fine grid are decreased by at least 5 orders as shown on Fig. 10.3. A grid convergence
study is carried out for all closures, as illustrated in Fig. 10.4, in terms of separation
length. As seen, the discretization error is far lower than the modeling error.

Velocity streamlines different turbulence closures are depicted on Fig. 10.5, velocity pro-
files on Fig. 10.6, turbulent kinematic eddy viscosity on Fig 10.7 for the finest grid.

The pressure coefficient for each turbulent models is shown on Fig. 10.8.

As well, the table 10.2 gives a comparison of the recirculation length for the different
models. Although it deals with a simple test-case, without actuation, turbulence closure
plays already a critical role in the flow prediction. In particular, k-ω SST Menter is
the closest one to the experimental recirculation length, EASM closure overestimates
the separation length, while Spalart-Allmaras and Launder-Sharma k-ε ones predict a
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(a) Spalart-Allmaras closure. (b) k-ε Launder-Sharma closure.

(c) k-ω-SST Menter closure. (d) k-ω-ne-easm closure.

Figure 10.3: Residuals convergence for stationary computations.

too small recirculation region, with respect to experimental measurements. The Spalart-
Allmaras closure has the worst behavior concerning the velocity profiles.

In the next sections, we quantify the effects of the actuation and observe if some common
trends can be established, despite of this initial discrepancy.

Experimental Spalart-Allmaras k-ε Launder-Sharma k-ω SST Menter k-ω ne-easm
6.26 6.05 5.41 6.37 7.56

Table 10.2: Comparison of recirculation length l/h computed on the fine grid against
the experimental results from Driver and Seegmiller.
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Figure 10.4: Grid convergence study without actuation.

(a) Spalart-Allmaras closure. (b) k-ε Launder-Sharma closure.

(c) k-ω-SST Menter closure. (d) k-ω-ne-easm closure.

Figure 10.5: Comparison of velocity streamlines for different turbulence closures for the
flow over the backward facing step without control. Simulation done on the fine grid.
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Figure 10.6: Initial velocity profiles at x = −4, x = 1, x = 4, x = 6 and x = 10 for
different turbulence closures for the flow over the backward facing step without control.
Simulation done on the fine grid.

(a) Spalart-Allmaras closure. (b) k-ε Launder-Sharma closure.

(c) k-ω-SST Menter closure. (d) k-ω-ne-easm closure.

Figure 10.7: Comparison of kinematic eddy viscosity for different turbulence closures for
the flow over the backward facing step without control. Simulation done on the fine grid.
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Figure 10.8: Initial pressure coefficient for different turbulence closures of the flow over
the backward facing step without control. Simulation done on the fine grid.
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10.2.2 Controlled case validation

10.2.2.1 Unsteady convergence validation

Each simulation of actuated flow is performed starting from the steady state flow found
without actuation. Unsteady computations are carried out until transient effects have
vanished, which is approximately 0.025s as seen on Fig. 10.9.

Figure 10.9: Example of the effort Fx response for the simulation of a controlled flow.
The transient effects are vanished after 0.25s.

The time step employed is scaled on the actuation frequency, so that all configurations
count the same number of time steps per actuation period. For each time step, a reduc-
tion of three orders of non-linear residuals is used as stopping criterion. The separation
length is computed afterwards, from the time-averaged flow, on the basis of a four jet
period integration starting after 0.035s. The use of the time averaged flow is justified by
the fact that the location of the reattachment point is a time dependent discontinuous
quantity. Furthermore, even with time averaged flow, the regularity of the location of
the reattachment point with respect to control parameters is not obvious, as periodic
detachment of vortices can appear. The separation length is estimated by locating the
point where the skin friction vanishes as seen on Fig. 10.10.

A convergence study, in terms of grid size, time step and dual time stepping order of
convergence, is first performed to assess the computations validity. Since the optimization
criterion is the separation length, this quantity is used for the comparisons. In the
perspective of optimization, the grid, the time step and the dual time stepping order of
convergence should be selected in such a way that the variations of the separation length,
due to a change of actuation parameters, are accurately quantified. Therefore, a set of
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Figure 10.10: Example of an averaged skin friction coefficient. It vanishes at the reat-
tachment point.

actuation configurations are compared.

This study is conducted for the EASM closure only, which is expected to be the most
demanding one.

To measure the effects of the grid size on the meta-model, three grids are considered,
with a fixed number of 256 time steps per period and a reduction of 4 orders of non
linear residuals. Fig. 10.11 presents the evolution of the separation length as the grid
size increases. The different meta-models obtained using the three grids can be compared
on Fig. 10.12.
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Figure 10.11: Grid convergence study for height different actuations (EASM closure).
From top to bottom (Ujet/Uinf , fjetLref/Uinf ): (1.01, 0.087) (1.13, 0.23) (0.78, 0.29)
(0.16, 0.14) (1.06, 0.20) (0.30, 0.27) (0.50, 0.25) (0.72, 0.16).
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(a) Coarse grid. (b) Medium grid.

(c) Fine grid.

Figure 10.12: Grid refinement effect on the recirculation length with kw-ne-easm turbu-
lence closure and 256 time steps by periods.
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To quantify the effects of the time step, three different discretization of 64, 128 and
256 time steps per period are selected, with the fine grid and a reduction of non linear
residuals of 4 orders. Fig. 10.13 shows the evolution as the time step is reduced, for the
finest grid and smallest dual time stepping order of convergence. The meta-models for

Figure 10.13: Time step convergence study for height different actuations (EASM clo-
sure). From top to bottom (Ujet/Uinf , fjetLref/Uinf ): (1.01, 0.087) (1.13, 0.23) (0.78,
0.29) (0.16, 0.14) (1.06, 0.20) (0.30, 0.27) (0.50, 0.25) (0.72, 0.16).

the three time steps are shown on Fig. 10.14.

Dual time stepping method implies the convergence of the flow equations at each time
step. The effect of the reduction of non linear residuals on the meta-model is quantified
for 1, 2, 3 and 4 orders as stopping criterion. The medium grid, with 256 time steps per
period is selected. The Fig. 10.15 shows the different meta-models obtained.

Height actuation configurations are selected randomly in the admissible domain. As can
be seen, the medium grid provides satisfactory results: for all configurations except one,
the separation length values evolve similarly, as the grid size is refined from the medium
mesh to the fine mesh. Even if a full convergence of the value is not achieved, the
ranking is correctly predicted. Regarding the time step selection, 64, 128 and 256 time
steps per actuation period are tested. As observed, the recirculation length values also
vary similarly as the time step is refined from 128 to 256 time steps per period, except
for two configurations, generating a switch of two neighboring values. The overall meta-
model shape is not really sensitive to grid and time step refinement as the effective control
in medium frequencies and low frequencies is still located around the same location. The
order of convergence has a biggest effect on the meta-model shape especially in high
frequencies. With a low convergence of non linear residuals, the recirculation length is
over-predicted.
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(a) Large time step. (b) Medium time step.

(c) Small time step.

Figure 10.14: Time step refinement effect on the recirculation length with k-ω-ne-easm
turbulence closure and a fine grid and convergence of 4 orders of non linear residuals.

On this basis, the medium grid size, a 128 time steps per period and a reduction of
non linear residuals of 3 orders are chosen for the optimization exercises. This choice is
validated a posteriori: the improvement obtained during the optimization, as well as the
discrepancy observed between the closures, are far larger than the discretization error
reported here.
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(a) Criterion reduction of 1 order. (b) Criterion reduction of 2 orders.

(c) Criterion reduction of 3 orders. (d) Criterion reduction of 4 orders.

Figure 10.15: Non linearities convergence criterion effect on the recirculation length with
k-ω-ne-easm turbulence closure, a fine grid and a 256 time steps per period.
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10.3 A naive optimization neglecting observation error

The objective of the optimization is the reduction of the separation length, by choosing
efficient frequency and amplitude parameters. However, the estimation of this quantity
cannot be more accurate than the local grid size. Therefore, a first optimization using
the compressible solver neglecting observation error is first performed to understand the
effect of neglecting geometrical considerations. To do so, the compressible solver is used
on a mesh that contains 38235 nodes.Inlet boundary flow variables are determined by
extracting the boundary layer from a flat plate computation at 105h from the leading
edge. The inlet velocity profile is shown on Fig. 10.16 presents good agreements with the
theory and the NASA CFL3D code. free-stream conditions based on Riemann Invariants
are used, instead of no-slip conditions at the top boundary to reduce the mesh density.

Figure 10.16: Inlet BFS velocity profile extracted at 105h from the leading edge of a flat
plate.

The first 9 optimization steps are considered using the lower bound merit function, for
the minimization of the BFS mean flow recirculation length with the compressible code.
The turbulence closure is the Spalart-Allmaras model. The initial database contains
15 design points and, for each step, three simulations are run in parallel, so the final
database contains 42 points in total. In this case, the recirculation length is computed
using the closest grid point for which the friction coefficient vanishes. The mesh used
is the coarsest one and the mesh size in the stream-wise direction in the recirculation
area is hcoarse = 1.10−3m, which gives a non dimensional size of hadimcoarse = 0.0787.
Fig. 10.17 shows the final meta-model and one iteration before the final meta-model
obtained with the interpolating formulation. As seen the model oscillates with no real
reason. Furthermore, a deeper look at the evaluation points shows that the optimization
is not converging to a specific optimum indicating that the meta-model changes abruptly
each time a new point is added to the database. This effect is seen where the last
optimization iteration is removed from the final meta-model.
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(a) Final interpolating meta-model. (b) One optimization iteration before the final
interpolating meta-model.

Figure 10.17: Left: final interpolating meta-model for the optimization of the recircu-
lation length. Right: meta-model at one optimization iteration before the final inter-
polating meta-model for the optimization of the recirculation length. The solver is the
compressible one with a Spalart-Allmaras closure. For the optimization, a lower bound
merit function is used and the final database contains 42 points in total. The differ-
ence between the left and right meta-models enhances that the meta-model is not stable
through optimization iterations.

This observation is similar to the one seen with the optimization validation over noisy
analytical functions and with the NACA0015. It validates the necessity of considering
the solver output as noisy and the optimization with noisy functions can be used here.

10.4 Impact of observation variance

The determination of the noise standard deviation still remains. The cost function is
directly related to the mesh grid size. Indeed, the reattachment location is found by
locating where the friction coefficient vanishes at the wall. The friction coefficient is
interpolated between each nodes. The best linear interpolation error that can be done
is in the order of hadimcoarse.

The final database of the section 10.17 is reconsidered to construct non-interpolating
meta-models with different level of error. Fig. 10.18 shows that the oscillating model
becomes more reliable as the error standard deviation is increased. 3τi ≈ hadimcoarse = 0.0787

seems to be a threshold value, indicating that the error is effectively related to the cell
size at reattachment point.
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Figure 10.18: Comparison of meta-models using the same database coming from an
optimization with different level of standard deviation to model the error. From the top
to the bottom, τi = 0.1, τi = 0.05, τi = 0.02, τi = 0.01. As the standard deviation of the
error decreases, the meta-model becomes unstable due to the presence of noise in the
observations.
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Point id Amplitude (adim) Frequency (adim)
0 1.0 0.4
1 0.4 0.8
2 0.0 0.6
3 0.2 0.2
4 0.6 0.0
5 0.8 1.0

Table 10.3: Initial database sampling for the optimization using the Backward Facing
Step.

10.5 Impact of turbulence closures

It is well known that turbulence models have a huge impact on detached flow simulations.
In [Garnier 2012], the drawn conclusion is that URANS turbulence models are not able
to accurately reproduce the uncontrolled flow. Nevertheless, the capability to obtain
similar trends for the optimum actuation is investigated. This study is carried out using
the medium grid, 128 time steps per period and a reduction of non linear residuals of 3
orders, with the ISIS-CFD flow solver.

As described above, the evaluation of the separation length is achieved with great care.
As the resulting noise in the functional evaluation may affect the Gaussian process model,
the model construction includes a filtering process of amplitude ls/2 = 0.01h, where ls
is the cell length at the re-attachment point. Note that this filtering process is far lower
than the separation length value and, therefore, does not affect the results presented
below.

The optimization of the synthetic jet parameters using four different turbulence models is
performed. The chosen turbulence models are the Spalart-Allmaras (SA), k-ε Launder-
Sharma (KE-LS), k-ω-SST Menter (KW-SST-MENTER) and quadratic explicit alge-
braic stress model based on k-ω (KW-NE-EASM).

The optimization procedure starts from a DOE phase, composed of only six points, that
are selected according to a Latin Hypercube Sampling (LHS) [Sacks 1989]. This database
is described on the Tab. 10.3 and represented on Fig. 10.19. Then, additional points
are inserted in the Gaussian process model, according to the lower bound merit func-
tion. About ten enrichment steps are performed before convergence of the optimization
procedure, corresponding to a total of about 40 simulations per optimization exercise.

10.5.1 Optimization results

The result of the previously described optimizations are found on the Fig. 10.20. It
shows the Gaussian process models obtained using the different turbulence closures, as
well as the configurations computed. As can be seen, the initial set of simulations covers
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Figure 10.19: Initial database generated for the optimization of jet amplitude and fre-
quency on the BFS.

the whole admissible domain, while the next evaluations converge towards the optimal
parameters. At first, one can notice that the results based on the Spalart-Allmaras
closure exhibit a behavior very different than other cases. In particular, the variations of
the separation length with respect to the frequency are very irregular. The examination
of the corresponding flows reveals that the Spalart-Allmaras closure predicts for some
configurations a massive vortex shedding, which modifies abruptly the time-averaged
separation length. The optimal configuration found is characterized by such a flow,
as illustrated in Fig.10.21. The results obtained with the three other closures exhibit
some similarities. In particular, only one minimum is identified by the Gaussian process
models. For k-ε Launder-Sharma and EASM closures, it is located in the same region
corresponding to medium actuation parameters. For the k-ω SST closure, the global
shape of the response surface is similar, but the minimum corresponds to higher frequency
and amplitude. One can underline that, for these three closures, the Gaussian process
model exhibits a large flat region for which the actuation is efficient. Nevertheless, the
precise values of the optimized control parameters are significantly different, as shown
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Turbulence closure Ujet/Uinf fjetLref/Uinf Length / Length ini
Spalart-Allmaras 1.13 0.059 0.69

k-ε 0.69 0.14 0.72
k-ω SST 0.40 0.24 0.84
EASM 0.56 0.19 0.70

Table 10.4: Optimum jet parameters found by the optimization over the Backward Facing
Step after approximately 30 evaluations.

in Tab. 10.4.
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(a) Spalart-Allmaras closure.

(b) k-ε Launder-Sharma closure.

(c) k-ω-SST Menter closure.

(d) k-ω-ne-easm closure.

Figure 10.20: Gaussian process models of the separation length w.r.t. actuation fre-
quency and amplitude, and simulated points.
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Spalart-Allmaras k-ε k-ω SST EASM
Optimized by Spal.-All. 4.03 4.24 5.98 5.75

Optimized by k-ε 8.79 3.92 5.73 5.33
Optimized by k-ω SST 8.32 4.03 5.35 5.34
Optimized by EASM 9.63 3.95 5.41 5.27

Table 10.5: Cross-comparison of recirculation lengths found for optimized configurations
and evaluated using different closures.

10.5.2 Cross-validation

A cross-validation exercise is then performed: the optimal configuration found by using
a closure is simulated with other models. Results are shown in Tab. 10.5. One can note
that the minimum value for each closure is obtained for the configuration optimized with
the same closure. This is consistent, since the latter value is supposed to be the optimal
one. The specific behavior of the Spalart-Allmaras closure can also be underlined: all
the configurations found with other models exhibit a very bad performance value (far
larger separation length) when evaluated using this closure. Beyond these observations
regarding the best actuation found by the different closures, the following proposes to
compare characteristics of the corresponding flows, to try to draw some conclusions. In
this perspective, the instantaneous vorticity and turbulent viscosity fields are plotted
for the best actuations found in Fig 10.21 to Fig.10.24. In each case, four snapshots
are proposed, corresponding to the the zero blowing phase (φ = 0), maximum blowing
phase (φ = π/2), zero suction phase (φ = π) and maximum suction phase (φ = 3π/2).
The optimal configuration found by using the Spalart-Allmaras closure corresponds to
a low frequency and large amplitude actuation, which generates a shedding of counter-
rotative vortices. For the three other cases, the best actuation found is characterized
by a higher frequency, yielding the birth of smaller vortices at the step corner. The
three corresponding flows exhibit similar patterns, although the excitation frequency is
different for each case. Especially, the most efficient flows predicted by the k-ω SST
and the EASM closures are close to each other. Nevertheless, the non-linearities of
the EASM closure generates a more vortical flow, with more intense variations of the
turbulent viscosity. The best configuration found by using the k-ε Launder-Sharma
closure has a lower actuation frequency. The corresponding flow exhibits vortices with
larger span and a far higher turbulent viscosity level.

The proximity of the k-ω SST and the EASM closures is retrieved on the skin friction
coefficient and velocity streamlines of the averaged flow figures shown on Fig. 10.25
and Fig. 10.26. The Spalart-Allmaras and k-ε Launder-Sharma closures exhibit a much
different result with a sharper skin friction slope and a peak at x/h ≈ 5. This exhibit
the presence of a more intense recirculation bubble past the step.
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(a) Φ = 0.

(b) Φ = π/2.

(c) Φ = π.

(d) Φ = 3π/2.

Figure 10.21: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with Spalart-Allmaras closure (4.64, 0.014).

10.6 Discussion

For the test-case studied here, the characteristics of the baseline flow depend significantly
on the turbulence closure. This is usual when separated flows are considered. The quan-
tity of interest (separation length), which is also the optimization criterion for active
control, exhibits variations of 25% when different closures are tested. This is obviously
a difficult context for optimization. However, it is underlined that optimization could
be achieved successfully, despite of these discrepancies, if the different closures provide
similar flow changes, as the control parameters are modified. If the same error occurs
during the whole optimization procedure, the different closures can yield the same opti-
mum parameters, although the flow predictions differ. This has been already observed
in shape optimization exercises related to pressure drop for instance: the optimum shape
can be found even if the pressure field is not accurately predicted [Burman 2001].

Unfortunately, the results presented above show that separated flows with actuation are
not a so friendly context. The discrepancies observed for baseline flow yield different
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(a) Φ = 0.

(b) Φ = π/2.

(c) Φ = π.

(d) Φ = 3π/2.

Figure 10.22: Vorticity (left) and turbulent viscosity (right) fields for different actua-
tion phases for control parameters optimized with k-ε Launder-Sharma closure (11.13,
0.0089).

search directions and, finally, significantly different optimum parameters. One can con-
clude that RANS models cannot be employed blindly in a design optimization procedure
to determine actuation parameters. Obviously, the "true" or physical optimal actuation
parameters are unknown. For the baseline flow, the k-ω SST closure provides the best
separation length prediction, according to the experiments. Nevertheless, it is even not
clear if the best parameters predicted by this closure are close to the "true" optimum.
The use of LES could provide some reference results, but optimization based on LES is
still unaffordable, for computational time reasons.

However, some similarities between the flows with optimal actuation have been reported,
except for the Spalart-Allmaras closure. This seems to indicate that the different op-
timization exercises yield the same flow characteristics, whatever the closure. If this
is confirmed, RANS models can still be used in a first design step, to determine the
characteristics of efficient flow actuations.
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(a) Φ = 0.

(b) Φ = π/2.

(c) Φ = π.

(d) Φ = 3π/2.

Figure 10.23: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with k-ω SST Menter closure (18.73, 0.0052).
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(a) Φ = 0.

(b) Φ = π/2.

(c) Φ = π.

(d) Φ = 3π/2.

Figure 10.24: Vorticity (left) and turbulent viscosity (right) fields for different actuation
phases for control parameters optimized with EASM closure (14.77, 0.0072).

Figure 10.25: Skin friction coefficients of the time-averaged flow for the best actuation
parameters with each turbulence closures.
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(a) Spalart-Allmaras closure. (b) Spalart-Allmaras closure - controlled.

(c) k-ε Launder-Sharma closure. (d) k-ε Launder-Sharma closure - controlled.

(e) k-ω-SST Menter closure. (f) k-ω-SST Menter closure - controlled.

(g) k-ω-ne-easm closure. (h) k-ω-ne-easm closure - controlled.

Figure 10.26: Comparison of velocity streamlines for different turbulence closures for
the time-averaged flow over the backward facing step without control (left) and with
optimized flow control (right).



Part V

Conclusion and prospects
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In this thesis, a combination of numerical methods has been presented to tackle the
optimization of active control devices for separated turbulent flows. This problem is hard
in essence as it copes with various disciplines, such as numerical simulation, turbulence
modeling, high performance computing, optimization, etc. Limitations and difficulties
to apply some classical optimization methods, as gradient based or heuristic methods
have been reported. They are mainly due to multi-modality, unsteadiness leading to
cumbersome cost function gradient evaluation using adjoint and CPU time restrictions.

Coupling optimization with unsteady turbulent flow simulations is a big challenge as it
introduces stiff requirements and constraints in terms of optimization techniques and
physical modeling. The choice has been focused on RANS models, due to CPU cost, and
on meta-model based optimization, for its efficiency and global search capability.

In this thesis, computational methods for the simulation of unsteady compressible tur-
bulent flows followed by optimization methods based on meta-models have been first
described. Observation variance was introduced in the meta-model generation to over-
come cost function observation uncertainties. All the implemented methods have been
carefully tested on a certain number of test cases relevant to the considered problems,
before considering two optimization test cases: the NACA0015 and the Backward Facing
Step.

The Efficient Global Optimization strategy applied to the maximization NACA0015
airfoil lift at 18 degrees and to the reduction of the recirculation length past a Backward
Facing Step was really effective to find synthetic jet actuator parameters optima. In
both cases, the optimization exercises were carried out using different RANS turbulence
closures. For the NACA0015, an increase in lift of approximately 20% could be achieved
for both the Spalart-Allmaras and k-ω SST turbulence closures after approximately 15
solver evaluations. The reduction of the recirculation length, past the Backward Facing
Step, achieved by the optimizer was on average 73% of the initial recirculation length
after 30 optimization evaluations using the Spalart-Allmaras, k-ε Launder-Sharma, k-ω
SST Menter and k-ω-ne-easm turbulence closure.

These optimization exercises showed the necessity to account for numerical errors during
the meta-model based optimization. Indeed, the use of interpolating models yields oscil-
lating and unrealistic representations, leading the optimization process to failure. The
introduction of the noisy observation concept allowed to overcome this difficulty. The
numerical error was identified to come from various stages of the simulation process,
such as the grid, the reduction order of the residuals, etc.

Apart from the uncertainty introduced by numerical errors, it has been found that the
turbulence modeling has the greatest impact, yielding to significantly different optimum
parameters. Furthermore, the quantities of interest could exhibit variations of 25% when
different closures were tested. Despite of these discrepancies, some similarities between
the flows with optimum actuation have been reported, for both the control over the
NACA0015 and the Backward Facing Step, indicating that RANS models could still be
employed to determine ranges of effective flow parameters.



186

There are still a lot of open questions for optimization based on unsteady turbulent flows
to be extended to more complex industrial cases.

The first one concerns the optimization point of view and the error management. Indeed,
it has been shown that estimating the error was necessary to conduct a successful opti-
mization in this context. Estimating the error was done approximately by increasing the
level of variance until a satisfactory meta-model was obtained. This aspect is certainly
the most complex problem as one has to derive a specific approach to properly estimate
the error. To handle more than two parameters, having an automatic way to tune the
observation variance, such as in [J. Forrester 2006], is even more necessary as there is no
possibility to see the meta-model.

Another perspective would concern the account of physical uncertainties during the op-
timization. Indeed, the practical use of actuators will be subject to several uncertainties,
arising from flow conditions (Reynolds number, Mach number, incidence, etc.). In this
context, a robust optimization of actuator parameters should be achieved, which consist
in minimizing the expectation of the cost function. For the EGO method, a promising
approach has been proposed in [Janusevskis 2013].

The second open question is to overcome limitations introduced by RANS modeling. Ex-
tending the method to hybrid RANS/LES models is straightforward from computational
point of view, but yield an explosion of CPU time. A good candidate in the perspective
of solving this ambitious problem, is to use partially converged solutions [Picheny 2012]
to loosen a bit the requirements. Of course, this can only be done if the first point (vari-
ance management) is solved. A final perspective would be to have an adaptive algorithm,
that automatically sets the required simulation length, and mixes short simulations with
high variance and long simulations with small variance [Picheny 2013].

The work performed during this thesis has set up the foundations to consider a large
panel of new applications. In a flow simulation point of view, the extension to 3D cases
optimization is of course one of the first exercises that would really make sense for the
industry. Then, the extension of optimization with large number of parameters to be
optimized might be a step forward to solve realistic problems. That could include the
position of the actuator, its orientation, etc. Finally, other actuators than synthetic jets
could be considered. Indeed, a large number of experimental and numerical reports are
available using alternative methods, such as DBD plasma actuators, or pulsated jets.
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Fluxes Jacobians

A.1 Inviscid Jacobians

A.1.1 General problem of finding the Jacobian for a numerical inviscid
flux

A numerical inviscid flux can be expressed as:

Φij = Φ(W c
i ,W

c
j ,ηij) (A.1)
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i and ηij are independent, the Jacobian of a numerical inviscid flux with
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The same equation holds for the Jacobian with respect to the conservative state W c
j .
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j is expressed as W c
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The same holds for the Jacobian with respect to the conservative state W c
j (W c

i ).

A.1.1.1 Application to the Rusanov flux

The spectral radius of a square matrix A is denoted by ρ (A) and defined by:

ρ (A)
def
= max

i
(|λi|)

with λ1, ..., λi the eigenvalues of A.

The Rusanov flux is defined by:
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with the Rusanov numerical dissipation dRUS(W c
i ,W

c
j ,ηij) =
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The Rusanov flux Jacobian calculated here is done by doing the assumption of a frozen
flux Jacobian matrix Ã with respect to W c

i and W c
j . This assumption have demon-

strated to give good results in [Batten 1997b].

Furthermore, it is used here only to demonstrate the comparative results between the
Jacobian for any numerical inviscid flux and the Jacobian of the Rusanov numerical flux
itself with no loss of generality.

Jacobian with assumption of W c
i and W c

j to be independant
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∂W c
i

− 1

2

∂dRUS(W c
i ,W

c
j ,ηij)

∂W c
i

=
1

2

∂F(W c
i )ηij

∂W c
i

+
1

2
In max

k∈{i,j}
ρ
(
Ãk
)

(A.5)

∂Φij
RUS

∂W c
j

=
∂Φ(W c

i ,W
c
j ,ηij)

RUS

∂W c
j

=
∂(1

2(F(W c
i ) + F(W c

j ))ηij − 1
2dRUS(W c

i ,W
c
j ,ηij))

∂W c
j

=
1

2

∂F(W c
j )ηij

∂W c
j

− 1

2

∂dRUS(W c
i ,W

c
j ,ηij)

∂W c
j

=
1

2

∂F(W c
j )ηij

∂W c
j

− 1

2
In max

k∈{i,j}
ρ
(
Ãk
)

(A.6)
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Jacobian with assumption of W c
j (W c

i )

∂Φij
RUS

∂W c
i

=
∂Φ(W c

i ,W
c
j (W c

i ),ηij)
RUS

∂W c
i

=
∂(1

2(F(W c
i ) + F(W c

j (W c
i )))ηij − 1

2dRUS(W c
i ,W

c
j (W c

i ),ηij))

∂W c
i

=
1

2

(
∂F(W c

i )ηij
∂W c

i

+
∂F(W c

j (W c
i ))ηij

∂W c
j

∂W c
j

∂W c
i

)
− 1

2

∂dRUS(W c
i ,W

c
j (W c

i ),ηij)

∂W c
i

=
1

2

(
∂F(W c

i )ηij
∂W c

i

+ In max
k∈{i,j}

ρ
(
Ãk
))

+
1

2

(
∂F(W c

j (W c
i ))ηij

∂W c
j

− In max
k∈{i,j}

ρ
(
Ãk
)) ∂W c

j

∂W c
i

=
∂Φ(W c

i ,W
c
j ,ηij)

RUS

∂W c
i

+
∂Φ(W c

i ,W
c
j ,ηij)

RUS

∂W c
j

∂W c
j

∂W c
i

(A.7)

∂Φij
RUS

∂W c
j

=
∂(1

2(F(W c
i ) + F(W c

j ))ηij − 1
2dRUS(W c

i ,W
c
j ,ηij))

∂W c
j

=
1

2

∂F(W c
j )

∂W c
j

ηij −
1

2

∂dRUS(W c
i ,W

c
j ,ηij)

∂W c
j

=
1

2

∂F(W c
j )

∂W c
j

ηij −
1

2
In max

k∈{i,j}
ρ
(
Ãk
)

=
∂Φ(W c

i ,W
c
j ,ηij)

RUS

∂W c
j

(A.8)

The same approach holds for the Jacobian with assumption of W c
i (W c

j ).

A.1.2 Inviscid flux Jacobian

The inviscid flux on a facet is defined by:

F(W c
i )ηij = F (W c

i )ηijx +G(W c
i )ηijy +H(W c

i )ηijz =


ρ(V · ηij)

ρu(V · ηij) + pηijx
ρv(V · ηij) + pηijy
ρw(V · ηij) + pηijz

(ρE + p)V · ηij


(A.9)

The inviscid flux Jacobian on a facet is defined by:
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∂F(W c
i )ηij

∂W c
j

=


0 ηijx ηijy ηijz 0

ηijxa0 − uVηij Vηij − a3ηijxu ηijyu− a2ηijxv ηijzu− a2ηijxw a2ηijx
ηijya0 − vVηij ηijxv − a2ηijyu Vηij − a3ηijyv ηijzv − a2ηijyw a2ηijy
ηijza0 − wVηij ηijxw − a2ηijzu ηijyw − a2ηijzv Vηij − a3ηijzw a2ηijz
Vηij (a0 − a1) ηijxa1 − a2uVηij ηijya1 − a2vVηij ηijza1 − a2wVηij γVηij


(A.10)

with:
a0 =

1

2
(γ − 1)V · V , a1 = γE − a0, a2 = γ − 1

a3 = γ − 2, Vηij = V · ηij

A.2 Boundary Jacobians

The purpose of this section is to describe the calculation of the Jacobian ∂W c
b

∂W c
i
. Here,

the boundary state is denoted by b and the interior state by i.

A.2.1 Decomposition of the Jacobian

In our framework, the variable used are mainly the primitive variable W p even if the
final update is computed in a conservative form. The main goal is to have the different
Jacobians expressed in conservative variables. The Jacobian ∂W c

b
∂W c

i
can be decomposed

with:

∂W c
b

∂W c
i

=
∂W c

b

∂W p
b

∂W p
b

∂W p
i

∂W p
i

∂W c
i

(A.11)

With this decomposition, the only part that depends on the boundary condition type is
∂W

p
b

∂W
p
i
. The other two transformation Jacobians are detailed below.

A.2.1.1 Computation of conservative over primitive variables Jacobian

The transformation from primitive to conservative variables can be expressed as:

W c =


W p[0]

W p[0] ·W p[1]

W p[0] ·W p[2]

W p[0] ·W p[3]
W p[4]
γ−1 + 1

2
(W p[0]·W p[1])2+(W p[0]·W p[2])2+(W p[0]·W p[3])2

W p[0]

 (A.12)
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Thus, the Jacobian ∂W c

∂W p reads:

∂W c

∂W p =


1 0 0 0 0

W p[1] W p[0] 0 0 0

W p[2] 0 W p[0] 0 0

W p[3] 0 0 W p[0] 0
W p[1]2+W p[2]2+W p[3]2

2 W p[0] ·W p[1] W p[0] ·W p[2] W p[0] ·W p[3] 1
γ−1


(A.13)

A.2.1.2 Computation of primitive over conservative variables Jacobian

The transformation from conservative to primitive variables can be expressed as:

W p =



W c[0]
W c[1]
W c[0]
W c[2]
W c[0]
W c[3]
W c[0]

(γ − 1) · (W c[4]− 1
2 ·W

c[0] · ((W
c[1]

W c[0])
2 + (W

c[2]
W c[0])

2 + (W
c[3]

W c[0])
2))

 (A.14)

Thus, the Jacobian ∂W p

∂W c reads:

∂W p

∂W c =


1 0 0 0 0

−W
p[1]

W p[0]
1

W p[0] 0 0 0

−W
p[2]

W p[0] 0 1
W p[0] 0 0

−W
p[3]

W p[0] 0 0 1
W p[0] 0

1
2 · γ1 · (W p[1]2 +W p[2]2 +W p[3]2) −γ1 ·W p[1] −γ1 ·W p[2] −γ1 ·W p[3] γ1


(A.15)

with γ1 = γ − 1.

A.2.2 Symmetry condition

In the case of a symmetry condition, the boundary state is computed using the interior
state only. For our computation, it is computed in a weak form by setting an opposite
tangential velocity at the boundary state.

Let us define the boundary state vector byW p
b a function of the internal stateW p

b (W p
i ).
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The vector W p
b is defined by:

W p
b =

 W p
i [0]

V i − 2(V i · n̂)n̂

W p
i [4]

 (A.16)

with n̂ a unit vector normal to the boundary pointing outwards the domain and V i the
internal velocity vector of the flow.

The Jacobian matrix ∂W
p
b

∂W
p
i

reads:

∂W p
b

∂W p
i

=


1 0 0 0 0

0 1− n̂2
x n̂yn̂z n̂zn̂x 0

0 n̂xn̂y 1− n̂2
y n̂zn̂y 0

0 n̂zn̂x n̂zn̂y 1− n̂2
z 0

0 0 0 0 1

 (A.17)

A.2.3 Supersonic inlet

In the case of a supersonic inlet, W p
b (W p

∞) = W p
∞ with the freestream state denoted

by W p
∞.

Thus, the Jacobian ∂W
p
b

∂W
p
i

reads:

∂W p
b

∂W p
i

= 0 (A.18)

A.2.4 Supersonic outlet

In the cas of a supersonic outlet, W p
b (W p

i ) = W p
i .

Thus, the Jacobian ∂W
p
b

∂W
p
i

reads:

∂W p
b

∂W p
i

= In (A.19)

A.2.5 Riemann Invariant subsonic inlet

Let us define the Riemann Invariant vector by WR. The boundary state W p
b is a

function of the Riemann Invariant at the boundaryWR
b (W p

i ,W
p
∞) that depends on the

interior state W p
i and the freestream state W p

∞. In other words:

W p
b = W p

b (WR
b (W p

i ,W
p
∞)) (A.20)
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The Jacobian ∂W
p
b

∂W
p
i

is:

∂W p
b

∂W p
i

=
∂W p

b

∂WR
b

∂WR
b

∂W p
i

(A.21)

The Riemann Invariant WR contains the following variables:

WR =


R−
S

V τ̂

R+

 =


V n̂ − c

γ−1

cv log( p
ργ )

V τ̂

V n̂ + c
γ−1

 (A.22)

with V n̂ = V · n̂ and V τ̂ = V · τ̂ . The unit vector normal n̂ is oriented normal to
the boundary facet and towards the flow orientation. Furthermore, in practice, cv is
assumed to be constant through the boundary and S is simplified by s = p

ργ .

For an inlet, the Riemann Invariant at the boundary reads:

WR
b =


(R−)i
(s)∞

(V τ̂ )∞
(R+)∞

 (A.23)

A.2.5.1 Boundary Riemann Invariant over primitive interior state Jacobian

The only dependance of the boundary Riemann Invariant with the primitive interior
state is with the first Riemann Invariant WR

b [0] = WR
i [0] = (V n̂)i − ci

γi−1 with ci =√
γipi
ρi

=

√
γiW

p
i [4]

W
p
i [0]

.

The components of the Jacobian of the sound speed are:

∂ci
∂W

p
i [0]

= (γipi)
1
2 (−1

2)ρ
− 3

2
i = −1

2(
√

γipi
ρi

)ρ−1
i = −1

2
ci
ρi

= −1
2

ci
W

p
i [0]

∂ci
∂W

p
i [4]

= (γiρi )
1
2 (1

2)p
− 1

2
i = 1

2
ci
pi

= 1
2

ci
W

p
i [4]

Thus:
∂ci
∂W p

i

= (−1

2

ci
W p
i [0]

, 0, 0, 0,
1

2

ci
W p
i [4]

) (A.24)

On the other side:
V · n̂ = un̂x + vn̂y + wn̂z (A.25)

That gives:
∂V i · n̂
∂W p

i

= (0, n̂x, n̂y, n̂z, 0) (A.26)
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The Jacobian ∂WR
b

∂W
p
i

becomes:

∂WR
b

∂W p
i

=


ci

(γi−1)W
p
i [0]

n̂x n̂y n̂z − ci
(γi−1)W

p
i [4]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 (A.27)

A.2.5.2 Boundary primitive state over boundary Riemann Invariant Jaco-
bian

We remind the computation of the boundary state from the Riemann Invariant:

W p
b =

 (
c2b

γbW
R
b [1]

)
1

γb−1

1
2(WR

b [0] +WR
b [3])n̂+WR

b [2]τ̂

WR
b [1]W p

b [0]γb

 (A.28)

with cb = γb−1
4 (WR

b [3]−WR
b [0]).

The Jacobian of the sound speed is:

∂cb

∂WR
b [0]

= −γb − 1

4
(A.29)

∂c2b
∂WR

b [0]
= −2

γb − 1

4
(WR

b [3]−WR
b [0]) = −cb

γb − 1

2
(A.30)

Details of the Jacobian computation:

∂W p
b [0]

∂WR
b [0]

=
1

γb − 1

(
1

γbW
R
b [1]

) 1
γb−1

(c2
b)

2−γb
γb−1

∂c2b
∂WR

b [0]
(A.31)

= −1

2
cb

1

c2
b

(
c2
b

γbW
R
b [1]

) 1
γb−1

(A.32)

= −
W p
b [0]

2cb
(A.33)

∂W p
b [1]

∂WR
b [0]

=
1

2
n̂x (A.34)

∂W p
b [2]

∂WR
b [0]

=
1

2
n̂y (A.35)
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∂W p
b [3]

∂WR
b [0]

=
1

2
n̂z (A.36)

∂W p
b [4]

∂WR
b [0]

= WR
b [1]γbW

p
b [0](γb−1) ∂W

p
b [0]

∂WR
b [0]

(A.37)

= γb
W p
b [4]

W p
b [0]

∂W p
b [0]

∂WR
b [0]

(A.38)

= c2
b

∂W p
b [0]

∂WR
b [0]

(A.39)

= −
W p
b [0]cb
2

(A.40)

Thus, the Jacobian ∂cb
∂WR

b [0]
becomes:

∂W p
b

∂WR
b

=


−W

p
b [0]

2cb
X X X

1
2 n̂x X X X
1
2 n̂y X X X
1
2 n̂z X X X

−W
p
b [0]cb
2 X X X

 (A.41)

The terms X of the Jacobian do not need to be computed as during the matrix multi-
plication ∂W

p
b

∂WR
b

∂WR
b

∂W
p
i
, these terms are multiplied by 0 and disapear.

A.2.6 Riemann Invariant subsonic outlet

As for the Riemann Invariant subsonic inlet, the boundary stateW p
b is a function of the

Riemann Invariant at the boundary WR
b (W p

i ,W
p
∞) that depends on the interior state

W p
i and the freestream state W p

∞:

W p
b = W p

b (WR
b (W p

i ,W
p
∞)) (A.42)

The Jacobian ∂W
p
b

∂W
p
i

is:

∂W p
b

∂W p
i

=
∂W p

b

∂WR
b

∂WR
b

∂W p
i

(A.43)

For an outlet, the Riemann Invariant at the boundary reads:

WR
b =


(R−)∞

(s)i
(V τ̂ )i
(R+)i

 (A.44)

The tangential velocity is a vector and is defined by: (V τ̂ )i = V i − 2(V i · n̂)n̂.
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A.2.6.1 Boundary Riemann Invariant over primitive interior state Jacobian

Needed variables:

WR
b [1] =

W p
i [4]

W p
i [0]γi

(A.45)

WR
b [5] = WR

i [5] = (V n̂)i +
ci

γi − 1
(A.46)

with ci =
√

γipi
ρi

=

√
γiW

p
i [4]

W
p
i [0]

.

Details of the Jacobian computation:

∀k,
∂WR

b [0]

∂W p
i [k]

= 0 (A.47)

∂WR
b [1]

∂W p
i [0]

= −γi
(
W p
i [4]

W p
i [0]γi

)
W p
i [0]−1 (A.48)

= − γi
W p
i [0]

WR
b [1] (A.49)

∀k ∈ [1, 3],
∂WR

b [1]

∂W p
i [k]

= 0 (A.50)

∂WR
b [1]

∂W p
i [4]

=
1

W p
i [0]γi

(A.51)

∂WR
b [2]

∂W p
i [0]

= 0 (A.52)

∂WR
b [2]

∂W p
i [1]

=

1− n̂2
x

n̂yn̂x
n̂zn̂x

 (A.53)

∂WR
b [2]

∂W p
i [2]

=

 n̂xn̂y
1− n̂2

y

n̂zn̂y

 (A.54)

∂WR
b [2]

∂W p
i [3]

=

 n̂xn̂y
n̂yn̂z

1− n̂2
z

 (A.55)
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∂WR
b [2]

∂W p
i [4]

= 0 (A.56)

∂WR
b [4]

∂W p
i [0]

= − ci
(γi − 1)W p

i [0]
(A.57)

∂WR
b [4]

∂W p
i [1]

= n̂x (A.58)

∂WR
b [4]

∂W p
i [2]

= n̂y (A.59)

∂WR
b [4]

∂W p
i [3]

= n̂z (A.60)

∂WR
b [4]

∂W p
i [4]

=
ci

(γi − 1)W p
i [4]

(A.61)

Thus, the Jacobian ∂WR
b

∂W
p
i

becomes:

∂WR
b

∂W p
i

=



0 0 0 0 0

− γi
W

p
i [0]
WR
b [1] 0 0 0 1

W
p
i [0]γi

0 1− n̂2
x n̂yn̂x n̂zn̂x 0

0 n̂xn̂y 1− n̂2
y n̂zn̂y 0

0 n̂zn̂x n̂zn̂y 1− n̂2
z 0

− ci
(γi−1)W

p
i [0]

n̂x n̂y n̂z
ci

(γi−1)W
p
i [4]


(A.62)

A.2.6.2 Boundary primitive state over Boundary Riemann Invariant Jaco-
bian

Needed variables:

W p
b =

 (
c2b

γbW
R
b [1]

)
1

γb−1

1
2(WR

b [0] +WR
b [3])n̂+WR

b [2]τ̂

WR
b [1]W p

b [0]γb

 (A.63)

with cb = γb−1
4 (WR

b [3]−WR
b [0]).
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Details of the Jacobian computation:

∂W p
b [0]

∂WR
b [0]

=

(
1

γbW
R
b [1]

) 1
γb−1 2

γb − 1
c

1
γb−1

−1

b

∂cb
∂W p

b [0]
(A.64)

= W p
b [0]

2

(γb − 1)cb

∂cb
∂W p

b [0]
(A.65)

= −
W p
b [0]

2cb
(A.66)

∂W p
b [0]

∂WR
b [1]

=

(
c2
b

γb

) 1
γb−1 −1

γb − 1
WR
b [1]

(− 1
γb−1

−1) (A.67)

= −
W p
b [0]

(γb − 1)WR
b [1]

(A.68)

∂W p
b [0]

∂WR
b [2]

= 0 (A.69)

∂W p
b [0]

∂WR
b [3]

= W p
b [0]

2

γb − 1

∂cb

∂WR
b [3]

(A.70)

=
W p
b [0]

2cb
(A.71)

∂W p
b [1− 2− 3]

∂WR
b [0]

=
1

2
n̂ (A.72)

∂W p
b [1− 2− 3]

∂WR
b [1]

= 0 (A.73)

∂W p
b [1− 2− 3]

∂WR
b [2]

=

1 0 0

1 1 0

1 0 1

 (A.74)

∂W p
b [1− 2− 3]

∂WR
b [3]

=
1

2
n̂ (A.75)

∂W p
b [4]

∂WR
b [0]

=
1

γb

(
c2
b

∂W p
b [0]

∂WR
b [0]

+W p
b [0]2cb

∂cb

∂WR
b [0]

)
(A.76)

= −
W p
b [0]cb
2

(A.77)
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∂W p
b [4]

∂WR
b [1]

=
c2
b

γb

∂W p
b [0]

∂WR
b [1]

(A.78)

=
c2
b

γb

(
−

W p
b [0]

(γb − 1)WR
b [1]

)
(A.79)

=
γbW

p
b [4]

W p
b [0]γb

− W p
b [0]

(γb − 1)
W

p
b [4]

W
p
b [0]γb

 (A.80)

= −
W p
b [0]γb

γb − 1
(A.81)

∂W p
b [4]

∂WR
b [2]

= 0 (A.82)

∂W p
b [4]

∂WR
b [3]

=
c2
b

γb

∂W p
b [0]

∂WR
b [3]

+
W p
b [0]

γb
∂WR

b [3]c
2
b (A.83)

=
cbW

p
b [0]

2
(A.84)

Thus, the Jacobian ∂W
p
b

∂WR
b

becomes:

∂W p
b

∂WR
b

=


−W

p
b [0]

2cb
− W

p
b [0]

(γb−1)WR
b [1]

0 0 0
W

p
b [0]

2cb
1
2 n̂x 0 1 0 0 1

2 n̂x
1
2 n̂y 0 0 1 0 1

2 n̂y
1
2 n̂z 0 0 0 1 1

2 n̂z

−W
p
b [0]cb
2 −W

p
b [0]γb

γb−1 0 0 0
cbW

p
b [0]

2

 (A.85)

A.3 Viscous Jacobians

A.3.1 General problem of finding the Jacobian for a numerical viscous
flux

A numerical viscous flux can be expressed as [Fezoui 1989]:

ΥT,i = Υ((W c
0 ,W

c
1 , ...,W

c
k ), τ (µ,∇|TW c), q(γ, κ(µ,Pr),∇|Tε),η,i,T)

(A.86)

by introducing the element gradient with a P1-Approximation for any variable:

∇|TW c = ∇|TW c((W c
0 ,W

c
1 , ...,W

c
k ), (∇ϕT0 ,∇ϕT1 , ...,∇ϕTk ), (αT∩C0 , αT∩C1 , ..., αT∩Ck))

(A.87)
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the shear stress tensor τ is:

τ (µ,∇|TW c) = 2µD− 1

3
(tr(2µD))In (A.88)

and the heat flux q by:

q(γ, κ(µ,Pr),∇|Tε) = −γκ∇|Tε

= −γ µ
Pr

∇|Tε
(A.89)

The Jacobian of the numerical viscous flux is expressed as following:

∂ΥT,i

∂W c
j

=
∂Υ((W c

0 ,W
c
1 , ...,W

c
k ), τ (µ,∇|TW c), q(γ, κ(µ,Pr),∇|Tε),η,i,T)

∂W c
j

(A.90)

A.3.2 Interior numerical viscous flux Jacobian computation

The numerical viscous flux on a internal tetrahedron T can be expressed as:

∂ΥT,i

∂W c
j

=
∂Υ(W cw

|tetra, τ (µ,∇|TW c), q(γ, κ(µ,Pr),∇|Tε),η,i,T)

∂W c
j

(A.91)

with W cw

|T the weighted average on the tetrahedron:

W cw

|T =

∑
k∈T

αT∩CkW
c
k∑

k∈T
αT∩Ck

=
∑
k∈T

αT∩CkW
c
k

(A.92)

as
∑
k∈T

αT∩Ck = 1.

For a regular cell vertex centered formulation in 2D, the weighted average becomes (i.e.
with no use of Barth cell or similar approach):

W cw

|T =
1

3

∑
k∈T

W c
k (A.93)

This is the arithmetic mean.
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Shear stress tensor Jacobian: The term τ (µm|T ,∇|TW
c) is expressed as:

τ xx =
2

3
µm|T(2(∇|TW p[1])[0]− (∇|TW p[2])[1]− (∇|TW p[3])[2]) (A.94)

τ yy =
2

3
µm|T(2(∇|TW p[2])[1]− (∇|TW p[3])[2]− (∇|TW p[1])[0]) (A.95)

τ zz =
2

3
µm|T(2(∇|TW p[3])[2]− (∇|TW p[1])[0]− (∇|TW p[2])[1]) (A.96)

τ xy = µm|T((∇|TW p[1])[1] + (∇|TW p[2])[0]) (A.97)

τ yz = µm|T((∇|TW p[2])[2] + (∇|TW p[3])[1]) (A.98)

τ zx = µm|T((∇|TW p[3])[0] + (∇|TW p[1])[2]) (A.99)

The shear stress tensor τ is symmetric.

With the P1 element approximation, the shear stress tensor becomes:

τ xx =
2

3
µm|T
∑
k∈T

(2W p
k [1]∂xϕ

T
k −W

p
k [2]∂yϕ

T
k −W

p
k [3]∂zϕ

T
k ) (A.100)

τ yy =
2

3
µm|T
∑
k∈T

(2W p
k [2]∂yϕ

T
k −W

p
k [3]∂zϕ

T
k −W

p
k [1]∂xϕ

T
k ) (A.101)

τ zz =
2

3
µm|T
∑
k∈T

(2W p
k [3]∂zϕ

T
k −W

p
k [1]∂xϕ

T
k −W

p
k [2]∂yϕ

T
k ) (A.102)

τ xy = µm|T
∑
k∈T

(W p
k [1]∂yϕ

T
k +W p

k [2]∂xϕ
T
k ) (A.103)

τ yz = µm|T
∑
k∈T

(W p
k [2]∂zϕ

T
k +W p

k [3]∂yϕ
T
k ) (A.104)

τ zx = µm|T
∑
k∈T

(W p
k [3]∂xϕ

T
k +W p

k [1]∂zϕ
T
k ) (A.105)

Thus, the Jacobian of the shear stress tensor is (for any i ∈ T):

∂τ xx
∂W c

i [0]
= −2

3
µm|T

1

W p
i [0]

(2W p
i [1]∂xϕ

T
i −W

p
i [2]∂yϕ

T
i −W

p
i [3]∂zϕ

T
i ) (A.106)

∂τ xx
∂W c

i [1]
=

4

3
µm|T

1

W p
i [0]

∂xϕ
T
i (A.107)

∂τ xx
∂W c

i [2]
= −2

3
µm|T

1

W p
i [0]

∂yϕ
T
i (A.108)

∂τ xx
∂W c

i [3]
= −2

3
µm|T

1

W p
i [0]

∂zϕ
T
i (A.109)
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∂τ xx
∂W c

i [4]
= 0 (A.110)

∂τ yy
∂W c

i [0]
= −2

3
µm|T

1

W p
i [0]

(2W p
i [2]∂yϕ

T
i −W

p
i [3]∂zϕ

T
i −W

p
i [1]∂xϕ

T
i ) (A.111)

∂τ yy
∂W c

i [1]
= −2

3
µm|T

1

W p
i [0]

∂xϕ
T
i (A.112)

∂τ yy
∂W c

i [2]
=

4

3
µm|T

1

W p
i [0]

∂yϕ
T
i (A.113)

∂τ yy
∂W c

i [3]
= −2

3
µm|T

1

W p
i [0]

∂zϕ
T
i (A.114)

∂τ yy
∂W c

i [4]
= 0 (A.115)

∂τ zz
∂W c

i [0]
= −2

3
µm|T

1

W p
i [0]

(2W p
i [3]∂zϕ

T
i −W

p
i [1]∂xϕ

T
i −W

p
i [2]∂yϕ

T
i ) (A.116)

∂τ zz
∂W c

i [1]
= −2

3
µm|T

1

W p
i [0]

∂xϕ
T
i (A.117)

∂τ zz
∂W c

i [2]
= −2

3
µm|T

1

W p
i [0]

∂yϕ
T
i (A.118)

∂τ zz
∂W c

i [3]
=

4

3
µm|T

1

W p
i [0]

∂zϕ
T
i (A.119)

∂τ zz
∂W c

i [4]
= 0 (A.120)

∂τ xy
∂W c

i [0]
= −µm|T

1

W p
i [0]

(W p
i [1]∂yϕ

T
i +W p

i [2]∂xϕ
T
i ) (A.121)

∂τ xy
∂W c

i [1]
= µm|T

1

W p
i [0]

(∂yϕ
T
i ) (A.122)

∂τ xy
∂W c

i [2]
= µm|T

1

W p
i [0]

(∂xϕ
T
i ) (A.123)

∂τ xy
∂W c

i [3]
= 0 (A.124)

∂τ xy
∂W c

i [4]
= 0 (A.125)

∂τ yz
∂W c

i [0]
= −µm|T

1

W p
i [0]

(W p
i [2]∂zϕ

T
i +W p

i [3]∂yϕ
T
i ) (A.126)

∂τ yz
∂W c

i [1]
= 0 (A.127)



A.3. Viscous Jacobians 203

∂τ yz
∂W c

i [2]
= µm|T

1

W p
i [0]

(∂zϕ
T
i ) (A.128)

∂τ yz
∂W c

i [3]
= µm|T

1

W p
i [0]

(∂yϕ
T
i ) (A.129)

∂τ yz
∂W c

i [4]
= 0 (A.130)

∂τ xz
∂W c

i [0]
= −µm|T

1

W p
i [0]

(W p
i [1]∂zϕ

T
i +W p

i [3]∂xϕ
T
i ) (A.131)

∂τ xz
∂W c

i [1]
= µm|T

1

W p
i [0]

(∂zϕ
T
i ) (A.132)

∂τ xz
∂W c

i [2]
= 0 (A.133)

∂τ xz
∂W c

i [3]
= µm|T

1

W p
i [0]

(∂xϕ
T
i ) (A.134)

∂τ xz
∂W c

i [4]
= 0 (A.135)

Heat flux Jacobian: The heat flux is:

q(γ, κ(µm|T ,Pr),∇|Tε) = −γ
µm|T

Pr
∇|Tε (A.136)

with

ε =
W p[4]

(γ − 1)W p[0]
=

1

W c[0]

(
W c[4]−

W c[1]2 +W c[2]2 +W c[3]2

2W c[0]

)
(A.137)

The variables µm|T , Pr and γ are locally frozen and thus are supposed to not depend on
primitive variables W p (or conservative ones).

With the P1-Approximation:

q(γ, κ(µm|T ,Pr),∇|Tε) = −θ
∑
k∈T

εk∇ϕTk (A.138)

with θ = γ
µm|T
Pr .

Thus, the Jacobian is:

∂q

∂W c
i [0]

= −θ ∂εi
∂W c

i [0]
∇ϕTi

= θ
1

W c
i [0]2

(
W c
i [4]−

W c
i [1]2 +W c

i [2]2 +W c
i [3]2

W c
i [0]

)
∇ϕTi

= θ
1

W p
i [0]

(
E −W p

i [1]2 +W p
i [2]2 +W p

i [3]2
)
∇ϕTi

(A.139)
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with E =
W

p
i [4]

(γ−1)W
p
i [0]

+ 1
2(W p

i [1]2 +W p
i [2]2 +W p

i [3]2)

∂q

∂W c
i [1]

= −θ ∂εi
∂W c

i [1]
∇ϕTi

= θ
1

W p
i [0]

W p
i [1]∇ϕTi

(A.140)

∂q

∂W c
i [2]

= −θ ∂εi
∂W c

i [2]
∇ϕTi

= θ
1

W p
i [0]

W p
i [2]∇ϕTi

(A.141)

∂q

∂W c
i [3]

= −θ ∂εi
∂W c

i [3]
∇ϕTi

= θ
1

W p
i [0]

W p
i [3]∇ϕTi

(A.142)

∂q

∂W c
i [4]

= −θ ∂εi
∂W c

i [4]
∇ϕTi

= −θ 1

W p
i [0]

∇ϕTi

(A.143)

Full Navier-Stokes Jacobian To compute the full internal Jacobian, the only missing
term is the energy term introduced by the shear stress tensor energy:

τ (µm|T ,∇|TW
c) · V m

|T =

τ xxu
m
|T + τ xyv

m
|T + τ xzw

m
|T

τ yxu
m
|T + τ yyv

m
|T + τ yzw

m
|T

τ zxu
m
|T + τ zyv

m
|T + τ zzw

m
|T

 (A.144)

with
V
m
|T =

1

Ns ∈ T
∑
k∈T

V k (A.145)

with Ns ∈ T the number of vertices in the tetra T.

The Jacobian of this term is expressed as following:

∂(τ (µm|T ,∇|TW
c) · V m

|T)

∂W c
i [0]

=
∂τ (µm|T ,∇|TW

c)

∂W c
i [0]

·V m
|T +τ (µm|T ,∇|TW

c) ·
∂V

m
|T

∂W c
i [0]

(A.146)
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∂(τ (µm|T ,∇|TW
c) · V m

|T)[0]

∂W c
i [0]

=
∂τ xx
∂W c

i [0]
um|T +

∂τ xy
∂W c

i [0]
vm|T +

∂τ xz
∂W c

i [0]
wm|T

− 1

Ns ∈ T
1

W p
i [0]

(τ xxW
p
i [1] + τ xyW

p
i [2] + τ xzW

p
i [3])

(A.147)

∂(τ (µm|T ,∇|TW
c) · V m

|T)[0]

∂W c
i [1]

=
∂τ xx
∂W c

i [1]
um|T +

∂τ xy
∂W c

i [1]
vm|T +

∂τ xz
∂W c

i [1]
wm|T

+
1

Ns ∈ T
1

W p
i [0]

(τ xxW
p
i [1])

(A.148)

∂(τ (µm|T ,∇|TW
c) · V m

|T)[0]

∂W c
i [2]

=
∂τ xx
∂W c

i [2]
um|T +

∂τ xy
∂W c

i [2]
vm|T +

∂τ xz
∂W c

i [2]
wm|T

+
1

Ns ∈ T
1

W p
i [0]

(τ xyW
p
i [2])

(A.149)

∂(τ (µm|T ,∇|TW
c) · V m

|T)[0]

∂W c
i [3]

=
∂τ xx
∂W c

i [3]
um|T +

∂τ xy
∂W c

i [3]
vm|T +

∂τ xz
∂W c

i [3]
wm|T

+
1

Ns ∈ T
1

W p
i [0]

(τ xzW
p
i [3])

(A.150)

∂(τ (µm|T ,∇|TW
c) · V m

|T)[0]

∂W c
i [4]

= 0 (A.151)

with um|T =
1

Ns ∈ T
∑
k∈T

W p
i [1], vm|T =

1

Ns ∈ T
∑
k∈T

W p
i [2] and wm|T =

1

Ns ∈ T
∑
k∈T

W p
i [3].
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Optimization of active control devices for separated turbulent flows

Abstract: Active flow control strategies, such as oscillatory blowing / suction, have
proved their efficiency to modify flow characteristics for various purposes (e.g. skin
friction reduction, separation delay, etc.) in case of rather simple configurations.
To extend this approach to industrial cases, the simulation of a large number of
devices at real scale and the optimization of parameters are required. The ob-
jective of this thesis is to set up an optimization procedure to solve this category of
problems. In this perspective, the organization of the thesis is split into three main parts.

First, the development and validation of an unsteady compressible turbulent flow
solver using the Reynolds-Averaged Navier-Stokes (RANS) using a Mixed finite-
Element/finite-Volume (MEV) framework is described. A particular attention is drawn
on synthetic jet numerical model implementation by comparing different models in the
context of a simulation over a flat plate.

The second axis of the thesis describes and validates the implementation of a
Gaussian Process surrogate model based global optimization method including an
approach to account for some numerical errors during the optimization. This EGO (Effi-
cient Global Optimization) method, is validated on noisy 1D and 2D analytical test cases.

Finally, the optimization of two industrial relevant test cases is considered. The
first case is a compressible turbulent flow over a NACA0015. The time-averaged lift is
regarded as the control criterion to be maximized. The second one is an incompressible
turbulent flow over a Backward Facing Step for which the time-averaged recirculation
length is minimized. Both test cases include a synthetic jet actuator as a control device
to be optimized. The EGO method is shown to be very efficient given a well determined
observation error variance. It is also demonstrated that numerical parameters (grid size,
time step, etc.) may have a significant influence on the results, while the choice of the
turbulence closure is critical.

The simulations are carried out with the in-house compressible flow solver NUM3SIS
developed at INRIA and with the incompressible flow solver ISIS-CFD developed by
the CFD group of the Fluid Mechanics Laboratory at École Centrale de Nantes (ECN).

Keywords: Backward Facing Step, Control device, Efficient Global Op-
timization, Flow control, Gaussian Process, Kriging model, Mixed finite-
Element/finite-Volume (MEV), NACA0015, Synthetic Jet, Turbulence



Optimisation de dispositifs de contrôle actif pour des écoulements
turbulents décollés

Résumé: Les stratégies de contrôle d’écoulement, telles que le soufflage / aspiration,
ont prouvé leur efficacité à modifier les caractéristiques d’écoulement à des fins diverses
en cas de configurations usuellement simples. Pour étendre cette approche sur des cas
industriels, la simulation de dispositifs à échelle réelle et l’optimisation des paramètres
de contrôle s’avèrent nécessaires. L’objectif de cette thèse est de mettre en place
une procédure d’optimisation pour résoudre cette catégorie de problèmes. Dans cette
perspective, l’organisation de la thèse est divisé en trois parties.

Tout d’abord, le développement et la validation d’un solveur d’écoulement turbu-
lent compressible instationnaire, résolvant les équations de Navier-Stokes moyennées
(RANS) dans le cadre d’une discrétisation mixte de type éléments finis / volumes finis
(MEV) sont présentés. Une attention particulière est portée sur la mise en oeuvre de
modèles numériques de jet synthétique à l’aide de simulations sur une plaque plane.

Le deuxième axe de la thèse décrit et valide la mise en oeuvre d’une méthode
d’optimisation globale basée sur un modèle réduit du type processus gaussien (GP),
incluant une approche de filtrage d’erreurs numériques liées aux observations. Cette
méthode EGO (Efficient Global Optimization), est validée sur des cas analytiques
bruités 1D et 2D.

Pour finir, l’optimisation de paramètres de contrôle de jet synthétique sur deux
cas test pertinents pour les industriels est considérée. Le premier cas est un écoulement
turbulent compressible autour d’un profil d’aile NACA0015, dont la portance moyenne
est l’objectif à maximiser. Le second cas est un écoulement turbulent incompressible
sur une marche descendante, pour lequel on souhaite minimiser la longueur moyenne de
recirculation.

Les simulations sont effectuées avec le solveur d’écoulement compressible NUM3SIS
développé au sein d’INRIA et avec le solveur incompressible ISIS-CFD développé par le
groupe CFD du Laboratoire de Mécanique des Fluides de l’École Centrale de Nantes.

Mots-clés: Marche descendante, Dispositif de contrôle, Efficient Global Opti-
mization, Contrôle d’écoulement, Processus Gaussien, Modèle de krigeage, Éle-
ments finis/Volumes finis mixtes (MEV), NACA0015, Jet synthétique, Turbulence
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Introduction translated in French:

Durant les dernières décennies, l’industrie de l’aviation a littéralement explosé et
est devenu un domaine très concurrentiel. Depuis, de nouveaux problèmes menaçant
l’environnement tel que l’activité humaine et le réchauffement climatique ont été
soulevés. En Europe, cette question a été définie comme l’une des priorités de l’industrie
de l’aviation pour les 40 prochaines années. En effet, la vision de l’Europe de l’aviation
vise pour 2050 une réduction de 75% d’émissions de CO2, de 90% en NOx et de
65% l’émission de bruit perçu pour les aéronefs en vol par rapport à la capacité d’un
nouvel avion type de 2000. Pour atteindre de telles réductions, accroître l’efficacité des
technologies actuelles ne sera certainement pas suffisant.

Les nouvelles technologies telles que le contrôle d’écoulement actif a été mis en avant
par les industries, tels que Airbus, comme une technologie clé afin de répondre aux
exigences d’émissions de gaz à effet de serre d’ici à 2050. Le contrôle d’écoulement
consiste à modifier l’état d’un écoulement naturel pour atteindre un nouvel état ayant
des propriétés intéressantes. En d’autres termes, les actionneurs sont introduites dans
un écoulement pour obtenir des caractéristiques souhaitables. Ce n’est pas une idée
récente, au début du siècle dernier, Ludwig Prandtl a utilisé le contrôle d’écoulement
pour expliquer sa théorie de la couche limite en supprimant complètement la séparation
de l’écoulement derrière d’un cylindre circulaire grâce à l’aide aspiration constante.

Le contrôle d’écoulement peut être passive ou actif. Le contrôle d’écoulement passif
est obtenu en utilisant des actionneurs qui ne nécessitent pas d’alimentation externe
pour fonctionner. Ces actionneurs sont généralement des installations fixes mécaniques
agissant sur la couche limite, comme des riblets disposés sur la surface, des générateurs
de vortex, etc. Ils sont faciles à mettre en oeuvre, mais leur efficacité est limitée et ils
souffrent d’un manque de flexibilité.

Le contrôle d’écoulement actifs, d’autre part, utilise une source d’énergie supplémen-
taire. L’injection de momentum en continu, par soufflage ou aspiration de fluide fait
partie de cette catégorie. Malheureusement, le soufflage de fluide en continu a un ren-
dement faible et nécessite des systèmes d’alimentation d’air, ce qui l’éloigne en pra-
tique de l’utilisation industrielle. Alternativement, les actionneurs actifs exploitent les
phénomènes d’instabilités naturelles des écoulements et est un domaine qui a reçu un
grand intérêt dans la recherche au cours de ces dernières décennies, et ce, depuis que leur
capacité à améliorer les performances aérodynamiques ait été démontré. Un contrôle effi-
cace peut être réalisé en utilisant des actionneurs périodiques, qui peuvent interagir avec
les structures cohérentes à grande échelle. Ce type excitations d’écoulement périodiques
peuvent être générés en utilisant des jets synthétiques, actionneurs plasma, actionneurs
de décharge à barrière diélectrique, etc. Plusieurs expériences ont été menées avec succès,
de façon expérimentale ou numérique, afin d’appliquer cette technologie dans divers cas,
tels que le retard de séparation, l’amélioration de mélange, la vectorisation d’écoulement,
etc.

Une difficulté majeure dans le contrôle d’écoulement actif est le choix des paramètres de



contrôle tels que l’amplitude, la fréquence, etc. De plus, mener une étude complète avec
des études expérimentales uniquement sur une telle échelle est inconcevable. En effet,
avec un avion réel, des centaines d’actionneurs seraient nécessaires et faire le choix des
paramètres à la main n’est pas possibles.

Dernièrement, les capacités numériques et de calcul des algorithmes de mécanique des flu-
ides ont atteint un niveau de maturité qui permet de mener des expériences numériques,
remplacant les campagnes régulières de soufflerie et introduisant la validation des modèles
à un stade plus précoce dans le processus de conception. Comme le but est d’exploiter les
phénomènes d’instabilité naturelle pour manipuler les caractéristiques d’écoulement, le
contrôle d’écoulement actif est très sensible aux paramètres de l’actionneur. Trouver les
meilleurs paramètres efficaces actionneurs est donc une exigence. Bien que de nombreuses
études ont porté sur des études paramétriques, les algorithmes d’optimisation avancés
gagnent un intérêt car ils peuvent aider à déterminer efficacement ces paramètres. En
couplant simulation d’écoulements avec actionneurs et des algorithmes d’optimisation,
on pouvait espérer pouvoir déterminer des paramètres de contrôle efficaces pour un coût
raisonnable.

Malheureusement, la simulation est encore limitée. La première difficulté est liée à la
modélisation de la turbulence. Trois niveaux de modélisation de la turbulence sont
utilisés en pratique. Le premier est la DNS, pour Direct Numerical Simulation. Cette
modélisation ne fait aucune hypothèse sur la turbulence physique et résout les plus petits
tourbillons existant dans l’écoulement. Ce niveau de modélisation est mathématiquement
insoluble pour les écoulements industriels considérés en raison des exigences en terme
de maillage. Le deuxième niveau de la modélisation est la LES / DES, pour Large
Eddy Simulation ou Detached Eddy Simulation. Ils modélisent les petites échelles de
tourbillons et ne font aucune hypothèse sur les grandes échelles. Ces deux modèles sont
plus abordables en termes de coût de CPU, mais leurs besoins sont encore de l’ordre de
quelques semaines pour une seule simulation. En outre, leur applicabilité dans l’industrie
est encore problématique en raison des exigences en termes de maillage et coût de calcul.
Le dernier niveau de modélisation est le RANS, pour Reynolds Averaged Navier-Stokes
Equations. Cette technique de modélisation consiste à appliquer un opérateur de filtrage
sur les équations de Navier-Stokes, afin pour résoudre l’écoulement moyen seulement.
Ce modèle est le plus abordable et est couramment utilisé dans l’industrie. Le principal
inconvénient est que la plupart du temps, la physique n’est pas correctement reproduites
si les simulations sont exécutées trop loin des cas de calibration des modèles. Malgré
ces inconvénients, de nombreuses simulations d’écoulements contrôlés instationnaires en
utilisant des modèles RANS peuvent être trouvés dans la littérature.

En ce qui concerne l’optimisation, les principales difficultés dans le cadre du contrôle
d’écoulement turbulent est le temps CPU et les possible optima locaux. Les méthodes
d’optimisation à base de gradient telles que l’algorithme du gradient, peut réduire le nom-
bre d’évaluations nécessaires pour optimisation complète. Cela conduit à un temps de
CPU faible, mais ces méthodes sont connues pour être prises au piège dans un optimum
local. En outre, le calcul des gradients de la fonction objectif par rapport aux paramètres



de contrôle, exclut l’utilisation des différences finie, en raison du coût de l’évaluation du
solveur. Les approches Adjointes sont généralement utilisées pour calculer efficacement
ces quantités avec des écoulements stationnaires, mais ils deviennent lourd et difficile à
appliquer en cas d’écoulements instationnaires. Les méthodes méta-heuristiques (Evo-
lution Stratégie, Algorithme Génétique, essaim de particules, etc.) peuvent atteindre
un optimum global mais sont trop coûteux car ils nécessitent des centaines de milliers
d’évaluations de la fonction.

Par conséquent, l’objectif de cette thèse est d’étudier la faisabilité d’une technique
d’optimisation globale alternative basée sur des simulations instationnaires pour déter-
miner les paramètres d’actuation dans le cadre des écoulements turbulents. Plus précisé-
ment, nous allons nous concentrer sur l’approche d’optimisation globale efficace (EGO),
qui repose sur une modélisation statistique adaptative de la fonctionnelle, permettant
de tenir compte des erreurs d’observation. En outre, une attention particulière sera ac-
cordée à l’impact la modélisation physique dans le processus d’optimisation. La capacité
des modèles RANS pour déterminer les paramètres de contrôle efficaces est étudiée dans
ce contexte.

Ce manuscrit est structuré comme il suit. Le chapitre 1 présente les méthodes de calcul
de mécanique des fluides avec une perspective d’optimisation. Le chapitre 2 présente la
description de la procédure d’optimisation dans la perspective d’utiliser des simulations
très coûteuses pour évaluer la fonction coût. Le chapitre 3 présente l’application de ces
méthodes sur les problèmes industriellement pertinents de contrôle d’écoulement actif
(proposés dans le cadre du projet MARS).



Conclusion translated in French :

Dans cette thèse, une combinaison de méthodes numériques a été présenté afin
de s’attaquer à l’optimisation de dispositifs de contrôle actif pour les écoulements
turbulents séparés. Ce problème est difficile en essence car il fait face à diverses
disciplines, telles que la simulation numérique, la modélisation de la turbulence, le calcul
haute performance, l’optimisation, etc. Les limites et les difficultés pour appliquer des
méthodes d’optimisation classiques, comme les méthodes heuristiques ou de gradient.
Elles sont principalement dues à la multi-modalité, l’instationnarité, ce qui conduit à
l’évaluation du gradient de la fonction coût ardue en utilisant les méthodes adjointes et
des restrictions sur le temps CPU.

Coupler l’optimisation avec des simulations d’écoulement turbulent instaionnaire est un
grand défi, car elle introduit des exigences rigides et des contraintes en termes de tech-
niques d’optimisation et de modélisation physique. Le choix a été porté sur les modèles
RANS, en raison du coût de calcul, et sur l’optimisation à base de méta-modèle, pour
son efficacité et sa capacité de recherche globale.

Dans cette thèse, les méthodes de calcul pour la simulation d’écoulements turbulent
compressible instationnaire suivis par des méthodes d’optimisation basées sur les méta-
modèles ont été décrits en premier lieu. La variance de l’observation a été introduite dans
la génération de méta-modèle pour prendre en compte les incertitudes d’observation de
la fonction de coût. Toutes les méthodes mises en oeuvre ont été soigneusement testés
sur un certain nombre de cas de tests pertinents pour les problèmes considérés, avant
d’envisager deux cas de test d’optimisation : le NACA0015 et la marche descendante.

La stratégie d’EGO appliqué à la maximisation de la portance d’un profil d’aile
NACA0015 à 18 degrés et à la réduction de la longueur de recirculation après une marche
descendante s’est révélé être vraiment efficace pour trouver les paramètres optuma du
jet synthétique. Dans les deux cas, les exercices d’optimisation ont été réalisées avec
différentes fermetures de turbulence de type RANS. Pour le NACA0015, après envi-
ron 15 évaluations du solveur, une augmentation de la portance d’environ 20% a été
observé pour les fermetures de turbulence Spalart-Allmaras et k-Ω SST. La réduction
de la longueur de recirculation après une marche descendante en utilisant l’optimiseur,
était en moyenne de 73% de la longueur de recirculation initiale, après 30 évaluations
d’optimisation pour les fermetures de turbulence Spalart-Allmaras, k-ε Launder-Sharma,
k-ω SST Menter et k-ω-ne-easm.

Ces exercices d’optimisation ont montré la nécessité de tenir compte des erreurs
numériques lors de l’optimisation à base de méta-modèle. En effet, l’utilisation de mod-
èles d’interpolation donne des représentations oscillantes et irréalistes, ce qui conduit à
l’échec du processus d’optimisation. L’introduction de la notion d’observation bruité a
permis de surmonter cette difficulté. La provenance de l’erreur numérique a été identifié
comme venant de diverses étapes du processus de simulation, comme le maillage, l’ordre
de réduction des résidus, etc.



En dehors de l’incertitude introduite par l’erreur numérique, il a été trouvé que la mod-
élisation de la turbulence a le plus d’impact, donnant sensiblement différents paramètres
optimaux. En outre, les quantités d’intérêt présentent des variations de 25% lorsque
les différentes fermetures ont été testés. Malgré ces différences, des similitudes entre les
écoulements avec les paramètres de contrôle optimal ont été signalés, à la fois pour le
contrôle du NACA0015 et la marche descendante, ce qui indique que les modèles RANS
peuvent encore être utilisés pour déterminer des encadrements de paramètres de contrôle
d’écoulement efficaces.

Beaucoup de questions sont encore ouvertes afin d’étendre l’optimisation basée sur les
écoulements turbulents instationnaires à des cas industriels plus complexes.

Le premier concerne le point de vue et la gestion des erreurs au cours de l’optimisation.
En effet, il a été montré dans ce contexte que l’estimation de l’erreur a été nécessaire pour
assurer optimisation réussie. L’estimation de l’erreur qui a été faite expérimentalement
en augmentant le niveau de variance jusqu’à obtention d’un méta-modèle satisfaisant.
Le problème d’estimer correctement l’erreur s’avère être l’aspect certainement le plus
complexe . Pour gérer plus de deux paramètres, avoir d’une manière automatique pour
régler la variance d’observation, est d’autant plus nécessaire qu’il n’y a pas possibilité
d’observer le méta-modèle.

Une autre perspective concernerait la prise en compte des incertitudes physiques lors de
l’optimisation. En effet, l’utilisation pratique des actionneurs sera soumise à plusieurs
incertitudes, découlant des conditions d’écoulement (nombre de Reynolds, nombre de
Mach, incidence, etc.). Dans ce contexte, une optimisation robuste de paramètres de
l’actionneur doit être atteinte, qui consiste à minimiser la moyenne la fonction de coût.

La deuxième question ouverte est de surmonter les limitations introduites par la mod-
élisation RANS. L’extension de la méthode à des modèles hybrides RANS / LES est
simple du point de vue informatique, mais implique une explosion du temps CPU. Un
bon candidat dans la perspective de résoudre ce problème ambitieux, est d’utiliser des
solutions partiellement convergées de façon à réduire légèrement les exigences. Bien sûr,
cela ne peut se faire que si le premier point (de gestion de la variance) est résolu. Une
dernière perspective serait d’avoir un algorithme adaptatif, qui règle automatiquement
la longueur de simulation requise, et le mélanges de simulations courtes avec une grande
variance et de longues simulations avec une variance faible.

Le travail effectué au cours de cette thèse a mis en place les fondations pour envisager un
large panel de nouvelles applications. D’un point de vue de la simulation d’écoulements,
l’extension de l’optimisation pour des cas 3D est bien sûr l’un des premiers exercices qui
aurait vraiment de sens pour l’industrie. Ensuite, l’extension de l’optimisation avec un
grand nombre de paramètres à optimiser pourrait être un pas en avant pour résoudre des
problèmes réalistes. Cela pourrait inclure la position de l’actionneur, son orientation,
etc. Enfin, différents actionneurs que les jets synthétiques pourraient être envisagés. En
effet, un grand nombre de rapports expérimentaux et numériques sont disponibles à ce



jour utilisant des méthodes alternatives, telles que les actionneurs plasma DBD, ou des
jets pulsés.



Development translated in French:

Cette partie regroupe une traduction partielle des sous conclusions tirées dans cette
thèse. Pour de plus ample détails, merci de vous reporter à la version écrite en anglais.

La validation de la mise en œuvre de jet synthétique :

L’objectif de cette étude était de simuler un jet synthétique dans un écoulement de
type couche limite turbulente, et de comparer les prédictions de l’écoulement généré
par certains modèles d’actionneurs ainsi qu’évaluer les fermetures de la turbulence dans
le contexte présent. Il a été constaté que le modèle de l’actionneur comprenant la
description géométrique de la conduite est un bon compromis comparé à la complexité
introduite avec un maillage complet de la cavité et dont la simplicité de mise en place
est de mise en utilisant d’une simple condition aux limites. Les paramètres numériques
(critère de convergence, la taille du maillage, pas de temps, type de condition aux
limites) ont été sélectionnés à des valeurs raisonnables pour le problème considéré. En
ce qui concerne l’influence de la fermeture de la turbulence, un écart modéré entre le
modèle de Spalart-Allmaras et les modèles k-ω SST a été rapporté, le dernier modèle
générant un écoulement plus intense lors de la phase de soufflage.

Optimisation EGO :

La validation des techniques de l’EGO montre l’importance de l’introduction d’un
contrôle de filtrage du bruit lors de l’optimisation des fonctionnelles bruitées. En effet, si
le bruit n’est pas considérés, l’optimisation ne converge pas et le méta-modèle commence
à osciller au cours des itérations. Dans cette partie, nous avons montré que la mise en
oeuvre consistant à modifier la fonction de covariance dans les Processus Gaussiens est
extrêmement efficace pour tous les cas tests. En outre, on peut noter que 30 fonctions
évaluations sont généralement suffisant pour trouver au moins un minimum pour une
optimisation de deux paramètres.

Cas test NACA :

Dans cette étude, une optimisation globale de l’amplitude et de la fréquence d’un jet syn-
thétique a été réalisée. Il a été démontré que la prise en compte du bruit d’observations
de la fonction coût est obligatoire afin d’obtenir un méta-modèle correct. Après avoir
choisi une erreur de simulation, les fonctions de mérite EI et PI ont été appliquées sur
le problème d’optimisation avec succès. Compte tenu du nombre limité d’évaluations,
en utilisant la fermeture de la turbulence k-ω SST, la fonction de mérite EI a montré
de meilleurs résultats que PI car elle a pu localiser deux paramètres optimums alors que
PI n’en a trouvé qu’un seul sans explorer d’autre parties intéressante du domaine de
recherche.

Une augmentation de la portance d’environ 20% pourrait être réalisé à la fois pour
les fermetures Spalart-Allmaras et k-Ω SST. L’ordre de grandeur obtenu pour amélio-
ration des coefficients de portance au moyen de jets synthétiques sont expérimentale-



ment et numériquement observé pour les configurations post-décrochage, bien que dans
les références citées, les jets synthétiques pour le cas NACA0015 sont placés en bord
d’attaque et non sur la surface supérieure comme lors de nos expérimentations. Dans
ces documents, la fréquence utilisée pour contrôler la portance permet d’obtenir des
tourbillons bien détachés qui sont convectés en aval de l’aile. Ce phénomène est très
similaire au premier point optimal trouvé en utilisant EI et la fermeture k-ω SST. Ces
fréquences ont tendance à exciter la fréquence de le lâcher naturelle (non observé ici à
18 degrés, à l’aide de simulations URANS). La fréquence de le lâcher naturelle pour une
configuration NACA0015 à α = 22 deg à nombre de Reynolds comparable, est reporté
d’être fshedLref/Uinf ≈ 0.53, avec une fréquence optimale d’acuation fjetLTE/Uinf ≈ 1,
avec LTE la distance entre le bord de fuite et l’actuateur. Même si le cas considéré ici
est pas exactement le même, le premier optimum trouvé par l’EI (fjetLref/Uinf = 1.14)
donne fjetLTE/Uinf = 1.003, se révélant être une fréquence d’actuation effective proche
de l’unité comme donné par Seifert. Duvigneau et al. rapporte fréquence optimale de
fjetLref/Uinf = 0.85 et une amplitude de Ujet/Uinf = 1.72 pour l’optimisation d’un
synthétique jet sur une aile NACA0015 à 18 degrés à l’aide de le fermeture k-ω SST.
Ces paramètres optimums n’on pas pu être observés sur les présents méta-modèles. Cet
écart entre le travail présenté et les valeurs optima signalés dans l’article de Duvigneau
et al. peut provenir du fait que que l’angle de jet a également été optimisé pour atteindre
atteint une valeur de 30 degrés. Seifert, a également rapporté qu’une faible amplitude
n’est efficaces que si la fréquence d’actuation de jet fjetLTE/Uinf > 2. Ce résultat a
également pu être remarqué dans nos expériences d’optimisation, en utilisant la ferme-
ture Spalart-Allmaras et la k-ω SST (EI 2), où les paramètres de contrôle optimums
trouvés sont fjetLref/Uinf ≈ 2 et Ujet/Uinf ≈ 0.5.

Le mécanisme pour augmenter la portance à faible amplitude et haute fréquence, est
le même à la fois pour la fermeture Spalart-Allmaras et k-ω SST en introduisant une
petite perturbation dans l’écoulement. D’un autre côté, pour les paramètres de contrôle
de moyens, la fermeture k-ω SST fournit un optimum donnant lieu à une génération de
grands tourbillons convectés en aval, conduisant à un mécanisme radicalement différent.

Les méta-modèles diffèrent de façon significative pour les deux fermetures de turbulence
dans les moyennes fréquences et l’amplitudes, ce qui conduit à un optimum absent dans
le méta-modèle en utilisant la fermeture de Spalart-Allmaras. Avec ces résultats, on
observe que l’impact de la fermeture de la turbulence peut avoir une grande influence
sur le processus d’optimisation. Pour cette raison, une étude particulière de l’impact de
la fermeture de la turbulence est réalisée sur la marche descendante et présenté dans le
chapitre suivant.

Cas test BFS:

Pour le test-cas étudié ici, les caractéristiques de l’écoulement de base dépendent de
manière significative de la fermeture de la turbulence. Ceci est usuel lorsque l’on con-
sidère des écoulements séparés. La quantité d’intérêt (longueur de séparation), qui est
également le critère d’optimisation pour le contrôle actif, présente des variations de 25%



suivant les différentes fermetures testées. Ceci est évidemment un contexte difficile dans
le cadre de l’optimisation. Cependant, il est souligné que l’optimisation peut être réal-
isée avec succès, en dépit de ces différences, si les différentes fermetures donnent lieu à
des d’écoulement similaires, lorsque les les paramètres de contrôle sont modifiés. Si la
même erreur de modélisation est produite durant toute la procédure d’optimisation, les
différentes fermetures peuvent mener aux mêmes paramètres de optimale, même si les
écoulements diffèrent. Cela a déjà été observé dans des exercices d’optimisation de forme
liés à la chute de pression par exemple : la forme optimale peut être trouvé même si le
champ de pression n’est pas prédire avec précision.

Malheureusement, les résultats présentés ci-dessus montrent que les écoulements sé-
paré avec actuation n’est pas un cadre très sympathique. Les écarts observés pour
l’écoulement de base non contrôlé donne lieu à différentes directions de recherche et,
pour finir à des paramètres optimaux significativement différents. On peut en conclure
que les modèles RANS ne peuvent pas être utilisées aveuglément dans une procédure
d’optimisation pour déterminer les paramètres d’actuateurs. De toute évidence, les
"vrais" ou paramètres physiques optimaux d’actuation sont inconnus. Pour l’écoulement
de base, la fermeture k-ω SST fournit la meilleure prédiction de longueur de recircula-
tion, comparé aux expériences. Néanmoins, il est encore difficile de savoir si les meilleurs
paramètres prévus par cette fermeture sont proches du «vraie» optimum. L’utilisation
de la LES pourrait fournir des résultats de référence, mais l’optimisation basée sur la
LES est toujours inabordables, pour des raisons de temps de calcul.

Cependant, des similitudes entre les écoulement avec une actuation optimale ont
été rapportés, à l’exception de la fermeture Spalart-Allmaras. Cela semble in-
diquer que les différents exercices d’optimisation donnent lieu à des caractéris-
tiques d’écoulement similaires, quelle que soit la fermeture. Si cela est con-
firmé, les modèles RANS peuvent encore être utilisés dans une première étape de
conception, afin de déterminer les caractéristiques d’actuateurs d’écoulement effi-
caces.
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