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Résumé

L’objet de cette thèse est d’étudier plusieurs modèles probabilistes reliant les marches aléa-
toires et les arbres aléatoires issus de processus de branchement critiques.

Dans la première partie, nous nous intéressons au modèle de marche aléatoire à valeurs
dans un réseau euclidien et indexée par un arbre de Galton–Watson critique conditionné par
la taille. Sous certaines hypothèses sur la loi de reproduction critique et la loi de saut centrée,
nous obtenons, dans toutes les dimensions, la vitesse de croissance asymptotique du nombre de
points visités par cette marche, lorsque la taille de l’arbre tend vers l’infini. Ces résultats nous
permettent aussi de décrire le comportement asymptotique du nombre de points visités par une
marche aléatoire branchante, quand la taille de la population initiale tend vers l’infini. Nous
traitons également en parallèle certains cas où la marche aléatoire possède une dérive constante
non nulle.

Dans la deuxième partie, nous nous concentrons sur les propriétés fractales de la mesure har-
monique des grands arbres de Galton–Watson critiques. On comprend par mesure harmonique
la distribution de sortie, hors d’une boule centrée à la racine de l’arbre, d’une marche aléatoire
simple sur cet arbre. Lorsque la loi de reproduction critique appartient au domaine d’attraction
d’une loi stable, nous prouvons que la masse de la mesure harmonique est asymptotiquement
concentrée sur une partie de la frontière, cette partie ayant une taille négligeable par rapport à
celle de la frontière. En supposant que la loi de reproduction critique a une variance finie, nous
arrivons à évaluer la masse de la mesure harmonique portée par un sommet de la frontière choisi
uniformément au hasard.

Mots clés : arbre de Galton–Watson critique, marche aléatoire indexée par un arbre, marche
aléatoire branchante, nombre de points visités, mesure ISE, serpent brownien, super-mouvement
brownien, marche aléatoire sur un arbre, mesure harmonique, dimension de Hausdorff, mesure
invariante.
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Abstract

The aim of this Ph. D. thesis is to study several probabilistic models linking the random
walks and the random trees arising from critical branching processes.

In the first part, we consider the model of random walk taking values in a Euclidean lattice
and indexed by a critical Galton–Watson tree conditioned by the total progeny. Under some
assumptions on the critical offspring distribution and the centered jump distribution, we obtain,
in all dimensions, the asymptotic growth rate of the range of this random walk, when the size
of the tree tends to infinity. These results also allow us to describe the asymptotic behavior of
the range of a branching random walk, when the size of the initial population goes to infinity.
In parallel, we treat likewise some cases where the random walk has a non-zero constant drift.

In the second part, we focus on the fractal properties of the harmonic measure on large
critical Galton–Watson trees. By harmonic measure, we mean the exit distribution from a ball
centered at the root of the tree by simple random walk on this tree. If the critical offspring
distribution is in the domain of attraction of a stable distribution, we prove that the mass of the
harmonic measure is asymptotically concentrated on a boundary subset of negligible size with
respect to that of the boundary. Assuming that the critical offspring distribution has a finite
variance, we are able to calculate the mass of the harmonic measure carried by a random vertex
uniformly chosen from the boundary.

Keywords: critical Galton–Watson tree, tree-indexed random walk, branching random walk,
range, ISE, Brownian snake, super-Brownian motion, random walk on trees, harmonic measure,
Hausdorff dimension, invariant measure.
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Chapitre 1

Introduction

1.1 Arbres généalogiques aléatoires

1.1.1 Arbres de Galton–Watson

Un arbre discret est un graphe connexe sans cycle, et un arbre de Galton–Watson est un
arbre discret aléatoire qui décrit la généalogie d’une population gouvernée par un processus de
Galton–Watson.

Commençons par présenter le formalisme introduit par Neveu [79] pour les arbres planaires
(enracinés et ordonnés). Soit U l’ensemble des mots d’entiers défini par

U :=
∞⋃
n=0

Nn,

où, par convention, N = {1, 2, . . .}, et N0 = {∅} est réduit à un seul élément que l’on interprète
comme la racine ou l’ancêtre de la population. Un élément de U est une suite u = (u1, u2, . . . , un),
et l’on pose |u| = n de sorte que |u| représente la génération de u. En particulier, |∅| = 0.
Nous noterons ≺ l’ordre lexicographique sur U , tel que ∅ ≺ 1 ≺ (1, 1) ≺ 2 par exemple. Si
u = (u1, u2, . . . , un) ∈ U\{∅}, alors on appelle ǔ := (u1, u2, . . . , un−1) le parent de u. Lorsque
u = (u1, . . . , um) et v = (v1, . . . , vn) sont des éléments de U , on définit la concaténation de u
et v par uv = (u1, . . . , um, v1, . . . , vn). En particulier, u∅ = ∅u = u.

Définition 1. Un arbre planaire τ est un sous-ensemble (fini ou infini) de U vérifiant les trois
propriétés suivantes :
(i) ∅ ∈ τ ;
(ii) si u ∈ τ\{∅}, alors ǔ ∈ τ ;
(iii) pour tout u ∈ τ , il existe un entier ku(τ) ≥ 0 tel que, pour chaque j ∈ N, uj ∈ τ si et

seulement si 1 ≤ j ≤ ku(τ).

Pour u ∈ τ , nous appellerons ku(τ) le nombre d’enfants de u. On note T l’ensemble des
arbres planaires, et Tf le sous-ensemble contenant tous les arbres planaires finis. Si τ ∈ Tf , on
appelle son nombre total de sommets (noté #τ) la taille de τ , et h(τ) désignera la hauteur de τ ,
c’est-à-dire

h(τ) := sup{|u| : u ∈ τ}.

Pour un arbre τ infini, on pose par convention #τ = h(τ) = ∞. Si τ ∈ T et u ∈ τ , on note
τ [u] := {w ∈ U : uw ∈ τ} le sous-arbre de τ issu de u. Par la suite, on considère un arbre τ ∈ T

11



12 Chapitre 1 Introduction

toujours comme un graphe dont les sommets sont les éléments de τ et les arêtes sont les couples
{ǔ, u} pour tout u ∈ τ\{∅}.

Tout arbre planaire fini est codé par une fonction continue appelée la fonction de contour.
Pour définir la fonction de contour C(τ) d’un arbre planaire fini τ , imaginons que τ soit plongé
sur le demi-plan supérieur de sorte que toutes ses arêtes soient de longueur unité, et considérons
une particule qui explore l’arbre en partant de la racine à vitesse unité. Elle se déplace tout
autour de τ dans le sens des aiguilles d’une montre. Chaque arête est visitée deux fois par la
particule si bien qu’il lui faut un temps 2(#τ − 1) pour parcourir entièrement τ . Pour chaque
entier t ∈ [0, 2(#τ − 1)], on définit Ct(τ) comme la hauteur du sommet visité par la particule
à l’instant t. Puis on interpole linéairement C(τ) sur l’intervalle [0, 2(#τ − 1)], et l’on pose
Ct(τ) = 0 pour tout t > 2(#τ − 1).

On peut aussi coder un arbre planaire fini d’une façon légèrement différente. Si τ ∈ Tf ,
énumérons les sommets de τ dans l’ordre lexicographique u0 = ∅ ≺ u1 ≺ . . . ≺ u#τ−1. Pour
chaque n ∈ {0, 1, . . . ,#τ − 1}, on définit Hn(τ) comme la hauteur du sommet un. On pose
Hm(τ) = 0 pour m ≥ #τ , et l’on prolonge alors H(τ) à R+ par interpolation linéaire. La
fonction H(τ) = (Ht(τ), t ≥ 0) est appelée fonction de hauteur de τ .

∅

1

11 12

2 3

31 32

321 Ct(τ) Ht(τ)

t t0 0

1

2

3

1

2

3

Figure 1.1 – Un arbre planaire τ , sa fonction de contour C(τ), et sa fonction de hauteur
H(τ)

Nous rappelons à présent la définition d’un arbre de Galton–Watson. Soit µ une mesure de
probabilité sur Z+ telle que µ(1) < 1. Un arbre de Galton–Watson de loi de reproduction µ
(abrégé en µ-GW arbre) est un arbre planaire aléatoire tel que chaque sommet de l’arbre ait
un nombre d’enfants de loi µ, et tel que les nombres d’enfants de sommets différents soient des
variables aléatoires indépendantes. On peut vérifier que la loi Πµ d’un µ-GW arbre est l’unique
mesure de probabilité sur T vérifiant les deux conditions suivantes :

(i) Πµ(k∅(τ) = k) = µ(k) pour tout k ≥ 0 ;

(ii) pour tout k ≥ 1 tel que µ(k) > 0, sous la mesure Πµ(dτ | k∅(τ) = k), les sous-arbres
τ [1], . . . , τ [k] sont i.i.d. de loi Πµ.

Il est bien connu qu’un arbre aléatoire de loi Πµ est p.s. fini si et seulement si la moyenne de µ
est inférieure ou égale à 1. Lorsque

∑
k≥0 kµ(k) = 1, Πµ est donc une loi de probabilité sur Tf ,

et l’on dira que µ (et, par extension, un µ-GW arbre) est critique.
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1.1.2 Arbres de Galton–Watson conditionnés

Fixons une loi de reproduction µ. Sans mention contraire, nous supposons dans cette intro-
duction que le pgcd du support de µ est égal à 1. Pour tout entier n suffisamment grand tel
que Πµ(#τ = n) > 0, on note Tn un arbre de Galton–Watson conditionné à avoir n sommets,
c’est-à-dire un arbre aléatoire de loi Πµ(dτ |#τ = n).

Plusieurs classes combinatoires d’arbres aléatoires à n sommets peuvent être réalisées comme
des arbres de Galton–Watson conditionnés à avoir n sommets pour des lois de reproduction
particulières. Par exemple,

– lorsque µ est la loi géométrique de paramètre 1/2, i.e. µ(k) = 2−(k+1) pour tout entier
k ≥ 0, Tn est uniformément distribué sur l’ensemble des arbres planaires à n sommets ;

– lorsque µ(0) = µ(2) = 1/2, Tn est uniformément distribué sur l’ensemble des arbres
binaires à n sommets ;

– lorsque µ est la loi de Poisson de paramètre 1, i.e. µ(k) = e−1/k! pour tout entier k ≥
0, Tn est uniformément distribué sur l’ensemble des arbres étiquetés non ordonnés à n
sommets (souvent appelés « arbres de Cayley »).

Nous renvoyons à Le Gall [58, Section 1.5] pour plus d’explications et de précisions.
Remarque 1. Soit γ > 0 un paramètre fixé tel que Zγ =

∑
k≥0 µ(k)γk < ∞. On définit une

nouvelle loi de probabilité µ(γ) en posant, pour tout k ≥ 0,

µ(γ)(k) := µ(k)γk

Zγ
.

On dit alors que les deux lois µ et µ(γ) appartiennent à la même famille exponentielle. D’après
Kennedy [42, Section 2], un µ-GW arbre conditionné à avoir n sommets a la même loi qu’un
µ(γ)-GW arbre conditionné à avoir n sommets. Donc, s’il existe γ > 0 tel que Zγ < ∞ et µ(γ)
soit critique, alors étudier un arbre de Galton–Watson non critique conditionné revient à étudier
un arbre de Galton–Watson critique conditionné. Dans le cas où cette réduction est impossible,
on dit que µ est non générique, et nous renvoyons à [37, 38, 40, 46] pour l’étude des phénomènes
différents qui se produisent dans ce cas.
Remarque 2. Quand µ est non critique, on peut démontrer la décroissance exponentielle de
la probabilité Πµ(#τ = n) lorsque n tend vers l’infini, alors que si µ est critique, la même
probabilité décroît à une vitesse polynomiale. Selon Aldous [4], le cas critique est en ce sens plus
naturel pour un modèle d’arbre aléatoire à n sommets.

De façon similaire, pour chaque entier n ≥ 1 tel que Πµ(h(τ) ≥ n) > 0, on note T(n) un
arbre de Galton–Watson conditionné à avoir une hauteur supérieure à n, c’est-à-dire un arbre
aléatoire de loi Πµ(dτ |h(τ) ≥ n).

Dans toute cette thèse, nous nous concentrons sur le cas où µ est critique.

1.1.3 Théorèmes de convergence pour les fonctions de codage

Soit µ une loi de reproduction critique et σ2
µ la variance de µ.

Théorème 1 (Aldous [5]). Supposons que σµ = (varµ)1/2 ∈ (0,∞). Alors on a la convergence
en loi (

σµ
2
√
n
C2nt(Tn)

)
0≤t≤1

(loi)−→
n→∞

(et)0≤t≤1,
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qui a lieu dans l’espace des fonctions continues C ([0, 1],R) muni de la topologie uniforme. Dans
la limite, e = (et)0≤t≤1 désigne une excursion brownienne normalisée (i.e. de durée égale à 1),
voir e.g. le livre de Revuz et Yor [82, Chapitre XII] pour sa définition.

Une application directe de ce théorème concerne la hauteur h(Tn) de l’arbre Tn. En remar-
quant que h(Tn) est le maximum de C(Tn), on en déduit que h(Tn)/

√
n converge en loi, lorsque

n→∞, vers 2
σµ

max e.
Une généralisation du théorème d’Aldous au cas où µ est dans le domaine d’attraction d’une

loi stable a été obtenue par Duquesne [25]. Rappelons que, si α ∈ (1, 2], on dit que la loi de
reproduction critique µ appartient au domaine d’attraction d’une loi stable d’indice α s’il existe
une suite croissante (an)n≥1 telle que an →∞ et

Z[n]− n
an

(loi)−→
n→∞

Y,

où Z[n] est une somme de n variables aléatoires indépendantes de même loi µ, et la transformée
de Laplace de la variable limite Y est donnée par E[e−λY ] = e−λ

α . Selon les résultats classiques
de [31, Chapitres XIII et XVII], µ appartient au domaine d’attraction d’une loi stable d’indice α
si et seulement si µ(1) < 1 et∑

k≥0
µ(k)rk = r + (1− r)αL(1− r) pour tout r ∈ [0, 1), (1.1)

où la fonction L(x) est à variation lente lorsque x→ 0+, i.e. L est une fonction réelle mesurable,
positive dans un voisinage de 0, telle que

lim
x→0+

L(tx)
L(x) = 1 pour tout t > 0.

Lorsque µ a une variance finie et non nulle, la condition (1.1) est satisfaite avec α = 2.

Théorème 2 (Duquesne [25]). Soit µ une loi de reproduction critique dans le domaine d’attrac-
tion d’une loi stable d’indice α ∈ (1, 2]. Il existe une suite de nombres réels strictement positifs
An →∞ telle que la convergence conjointe(

An
n
C2nt(Tn), An

n
Hnt(Tn)

)
0≤t≤1

(loi)−→
n→∞

(
Hexc
t , Hexc

t

)
0≤t≤1

a lieu dans C ([0, 1],R)2. Dans la limite, (Hexc
t )0≤t≤1 désigne une excursion normalisée du pro-

cessus de hauteur stable d’indice α, voir [25, Section 3] pour sa définition.

De plus, on peut montrer que la suite (An/n1/α)n≥1 est à variation lente, de sorte que An
est grosso modo de l’ordre de n1/α. Il est aussi possible d’expliciter An en terme de la loi de
reproduction µ, cf. [47, Theorem 1.10]. Lorsque α = 2, le processus Hexc a la même loi que

√
2e.

1.1.4 Arbres continus aléatoires

Les résultats présentés ci-dessus qui concernent les limites d’échelle des fonctions codant Tn
peuvent être interprétés comme des convergences des arbres discrets aléatoires vers certains
« arbres continus aléatoires ».
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Par définition, un arbre réel est un espace métrique (T , d) tel que pour chaque couple de
points u, v ∈ T , il existe à reparamétrisation près un unique chemin injectif continu reliant u à v,
et de plus ce chemin [u, v] est isométrique au segment [0, d(u, v)]. L’ensemble des arbres continus
que nous considérerons par la suite est l’ensemble des arbres réels compacts et enracinés, c’est-
à-dire ayant un point ρ ∈ T distingué appelé racine. Deux arbres réels compacts et enracinés
T et T ′ sont dits équivalents s’il existe une bijection isométrique entre T et T ′ préservant la
racine. On note T l’ensemble des classes d’équivalence d’arbres réels compacts enracinés.

Si (E, δ) est un espace métrique, rappelons que δH est la distance de Hausdorff entre les
compacts de E. L’espace T est muni de la distance de Gromov–Hausdorff dGH définie de la
façon suivante : si (T , ρ, d) et (T ′, ρ′, d′) sont deux arbres réels compacts de racines respectives
ρ et ρ′, on pose

dGH
(
(T , ρ, d), (T ′, ρ′, d′)

)
:= inf

{
δH(φ(T ), φ′(T ′)) ∨ δ(φ(ρ), φ′(ρ′))

}
,

où l’infimum est pris sur toutes les injections isométriques φ : T → E et φ′ : T ′ → E dans un
même espace métrique (E, δ). Il est clair que dGH((T , ρ, d), (T ′, ρ′, d′)) ne dépend que des classes
d’équivalence de (T , ρ, d) et (T ′, ρ′, d′). Evans, Pitman et Winter [30, Theorem 2] ont montré
que l’espace métrique (T, dGH) ainsi obtenu est complet et séparable.

On peut construire un arbre réel par un codage similaire au codage d’un arbre planaire
par sa fonction de contour. Plus précisément, si f : R+ → R+ est une fonction continue (non
identiquement nulle) à support compact telle que f(0) = 0, pour s, t ≥ 0 on définit

df (s, t) := f(s) + f(t)− 2 min
r∈[s∧t,s∨t]

f(r).

Il est facile de vérifier que df est une pseudo-distance sur R+. On peut alors introduire une
relation d’équivalence sur R+ en disant s ∼f t si df (s, t) = 0. L’arbre continu codé par f est
l’espace métrique quotient

Tf := [0,+∞)/∼f

muni de la distance df et enraciné en la classe d’équivalence de 0. On note pf : [0,+∞)→ Tf la
projection canonique. Pour tout s ∈ R+, pf (s) est donc un sommet de Tf à distance f(s) de la
racine.

Remarquons qu’un arbre planaire fini τ peut être vu comme un arbre réel compact enraciné
T (τ) si l’on remplace les arêtes de τ par des segments de longueur 1. Par ailleurs, si C(τ) est la
fonction de contour de τ , on vérifie que l’arbre continu T (τ) coïncide avec l’arbre continu TC(τ)
construit à partir de C(τ) à isométrie près. Signalons toutefois que l’arbre planaire τ ne peut
être reconstruit à partir de l’arbre réel T (τ), car il n’y a pas d’ordre entre les enfants d’un même
individu dans T (τ). Par la suite, on utilisera la même notation τ pour désigner T (τ) s’il n’y a
pas de risque d’ambiguité dans le contexte.

1.1.5 Limites d’échelle d’arbres de Galton–Watson conditionnés

D’après [58, Lemma 2.4], si f et f ′ sont deux fonctions (excursions) du type considéré
précédemment, alors dGH(Tf , Tf ′) ≤ 2‖f−f ′‖∞. En utilisant cette propriété, on peut reformuler
les théorèmes d’Aldous et de Duquesne en termes de convergence (au sens de Gromov–Hausdorff)
des arbres de Galton–Watson conditionnés proprement renormalisés .

D’abord, si (T , d) est un arbre réel et si r > 0, notons rT l’arbre réel obtenu de T en
multipliant par r la distance d. Rappelons que Tn désigne un µ-GW arbre conditionné à avoir



16 Chapitre 1 Introduction

(a) l’arbre brownien Te (b) l’arbre stable T1.5

Figure 1.2 – Simulations approchées des arbres continus aléatoires (© I. Kortchemski)

n sommets. Quand la loi de reproduction µ est critique et de variance σ2
µ finie non nulle, le

Théorème 1 entraîne que
σµ

2
√
n

Tn
(loi)−→
n→∞

Te ,

la convergence ayant lieu en loi dans l’espace (T, dGH). Dans la limite, l’arbre continu aléatoire
Te codé par l’excursion brownienne normalisée e est appelé arbre brownien continu (abrégé en
CRT pour « Continuum Random Tree »). Il a été introduit par Aldous [3, 4, 5] ∗ au début des
années 1990.

Plus généralement, si la loi de reproduction critique µ appartient au domaine d’attraction
d’une loi stable d’indice α ∈ (1, 2], le Théorème 2, dont nous gardons les notations, implique
alors la convergence en loi

An
n

Tn
(loi)−→
n→∞

THexc

dans l’espace (T, dGH). On appelle l’objet limite THexc l’arbre de Lévy stable de paramètre α, qui
a été introduit par Le Gall et Le Jan [60], ainsi que par Duquesne et Le Gall [26] †. Pour rendre
la notation plus claire, on écrit désormais Tα pour un arbre de Lévy stable de paramètre α. En
particulier, T2 a la même loi que T√2e.

Soit T un arbre continu. Le degré d’un point u ∈ T est par définition le nombre de com-
posantes connexes de T \{u}. Un point de degré 1 est appelé une feuille, et un point de degré
supérieur ou égal à 3 est un point de branchement. Il est bien connu que l’arbre brownien est
p.s. un arbre binaire au sens où les points de branchement sont de degré 3. En revanche, les
points de branchement de Tα sont p.s. tous de degré infini quand α ∈ (1, 2).

Notons que Curien et Haas [19] ont prouvé que les arbres stables (Tα, 1 < α ≤ 2) peuvent
être construits sur un même espace de probabilité en étant emboités les uns dans les autres (à
des facteurs multiplicatifs près).

∗. Remarquons que dans cette série d’articles, Aldous a plutôt pris T2e pour la définition du CRT.
†. La définition de THexc en tant qu’arbre se trouve dans un article ultérieur de Duquesne et Le Gall [27].
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1.2 Autour de la marche aléatoire classique sur Zd

1.2.1 Théorème de Dvoretzky et Erdös

Soit θ une mesure de probabilité sur le réseau euclidien Zd. Si Y1, Y2, . . . est une suite de
variables aléatoires indépendantes de même loi θ, on définit la marche aléatoire X = (Xn)n≥0
issue de l’origine 0 ∈ Zd avec la loi de saut θ en posant X0 = 0 et Xn = Y1 + · · · + Yn pour
tout entier n ≥ 1. On note Rn := #{X0, X1, . . . , Xn} le nombre de points visités par la marche
jusqu’à l’instant n.

L’étude du comportement asymptotique de Rn lorsque n → ∞ a fait l’objet de nombreux
travaux, à commencer par le travail pionnier [29] de Dvoretzky et Erdös en 1951.

Théorème 3 (Dvoretzky et Erdös [29]). Supposons que la loi de saut θ sur Zd est uniforme sur
les 2d voisins de l’origine.
• Si d = 2, alors

logn
n

Rn
p.s.−→
n→∞

π . (1.2)

• Si d ≥ 3, on note qd > 0 la probabilité que la marche aléatoire X ne retourne plus à son
point de départ, alors

1
n

Rn
p.s.−→
n→∞

qd . (1.3)

En dimension d = 1, grâce au théorème de Donsker, selon lequel la marche aléatoire simple
renormalisée (n−1/2Xbntc)t≥0 converge vers un mouvement brownien réel standard (Bt)t≥0, on
a immédiatement

Rn√
n

(loi)−→
n→∞

sup
0≤t≤1

Bt − inf
0≤t≤1

Bt.

L’argument de Dvoretzky et Erdös pour le théorème précédent consiste à estimer les moments
d’ordre 1 et d’ordre 2 de Rn. Cette méthode se généralise au cas où θ est centrée et de variance
finie. En particulier, si d = 2, leur résultat (1.2) est lié au fait que la marche aléatoire simple
sur Z2 ne retourne pas à l’origine avant l’instant n avec une probabilité (π+ o(1))/ logn lorsque
n→∞.

Quand d ≥ 3, nous pouvons obtenir la convergence (1.3) de Rn/n comme une conséquence
simple du théorème ergodique sous-additif de Kingman [45]. Pour tous m,n ≥ 0, le nombre de
sites visités entre 0 et n + m par la marche X est inférieur au nombre de sites visités entre
0 et n plus le nombre de sites visités entre n et n + m. Cela se traduit comme la relation
Rn+m ≤ Rn + Rm ◦ τn, où τn est l’opérateur de shift sur les trajectoires : Xk ◦ τn = Xn+k −Xn.
En utilisant le théorème ergodique sous-additif de Kingman, on a donc

1
n

Rn
p.s.−→
n→∞

qd ,

où qd = limn→∞
1
nE[Rn] = P (X1 6= 0, X2 6= 0, . . .). Cette approche due à Kesten, Spitzer

et Whitman [85] s’applique à toutes les marches aléatoires, et l’on voit que la constante limite
qd > 0 si et seulement si la marche aléatoire X est transitoire (i.e. d ≥ 3 dans le cadre de la
marche aléatoire simple).

Nous renvoyons le lecteur à Jain et Pruitt [33, 35] pour un théorème de fluctuation du
nombre de points visités Rn en dimension d ≥ 3. L’analogue en dimension d = 2 se trouve dans
Le Gall [54]. Lorsque la marche aléatoire est dans le domaine d’attraction d’une loi stable, voir
un panorama des théorèmes limites pour Rn dans Le Gall et Rosen [64].
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1.2.2 Principe d’invariance des temps locaux de la marche aléatoire

Soit (Xn)n≥0 une marche aléatoire simple sur Z avec X0 = 0. Pour tous n ≥ 1, p ∈ Z, notons

λpn := #{0 ≤ k ≤ n : Xk = p}

qui représente le nombre de visites du point p par la marche X avant l’instant n+ 1.
Le principe d’invariance de Donsker suggère fortement l’existence des analogues browniens

comme limite en loi des nombres de visites de la marche aléatoire X en différents points conven-
ablement renormalisés. Cela nous conduit à la notion de temps local du mouvement brownien.

Théorème 4. Soit (Bt)t≥0 un mouvement brownien réel issu de 0. Il existe un processus aléatoire
(Lat , a ∈ R, t ≥ 0) à valeurs dans R+, unique à indistinguabilité près, tel que
(i) p.s., l’application (t, a) 7→ Lat est continue, et croissante en la variable t ;
(ii) p.s., pour toute fonction ϕ : R→ R+ mesurable, pour tout t ≥ 0,∫ t

0
ϕ(Bs) ds =

∫
daϕ(a)Lat .

La variable Lat est appelée temps local au niveau a, à l’instant t du mouvement brownien B.

Remarquons que le temps local Lat peut être vu comme la densité de temps d’occupation
en a, et défini comme la limite

lim
ε→0

1
2ε

∫ t

0
1{a−ε<Bs<a+ε} ds .

Pour plus de renseignements sur le temps local brownien, voir e.g. le chapitre VI du livre de
Revez et Yor [82].

En utilisant les marches aléatoires plongées dans un mouvement brownien, on peut établir
le résultat classique suivant. Voir par exemple [78, Theorem 6.19] pour une version plus forte.

Théorème 5. Soit un entier k ≥ 1. Pour tous a1, . . . , ak ∈ R, on a( 1√
n
λbn

1/2a1c
n , . . . ,

1√
n
λbn

1/2akc
n

)
(loi)−→
n→∞

(
La1

1 , . . . , L
ak
1
)
. (1.4)

Cette convergence a lieu conjointement avec la convergence en loi de (n−1/2Xbntc)t≥0 vers le mou-
vement brownien (Bt)t≥0. On peut même avoir une version fonctionnelle de la convergence (1.4),
i.e. ( 1√

n
λ
bn1/2a1c
bntc , . . . ,

1√
n
λ
bn1/2akc
bntc

)
t≥0

(loi)−→
n→∞

(
La1
t , . . . , L

ak
t

)
t≥0 .

1.3 Marches aléatoires sur Zd indexées par un arbre

1.3.1 Arbres de Galton–Watson spatiaux

Un arbre spatial discret (d-dimensionnel) est un couple (τ, (zu)u∈τ ) où τ ∈ Tf et zu ∈ Zd
pour tout u ∈ τ . On note T ∗f l’ensemble des arbres spatiaux discrets.

Soit θ une mesure de probabilité sur Zd. On supposera toujours que son support n’appartient
pas à un sous-groupe strict de Zd. Étant donné un arbre τ ∈ Tf , on définit la marche aléatoire
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(Zτ (u), u ∈ τ) sur Zd indexée par τ et de loi de saut θ de la façon suivante : d’abord, pour la
racine ∅, on pose Zτ (∅) = 0. Puis, à chaque arête e de l’arbre τ , nous attribuons de manière
indépendante une variable aléatoire Ye à valeurs dans Zd de loi θ. La position spatiale Zτ (u)
d’un sommet u différent de la racine est définie comme la somme des Ye sur toutes les arêtes e
le long du chemin simple de la racine à u dans l’arbre τ .

∅

0

v Zτ (v)

v′ Zτ (v
′)

Figure 1.3 – Un arbre planaire τ et une marche aléatoire Zτ sur Z2 indexée par τ

Soit µ une loi de reproduction critique. On écrit maintenant Π∗µ,θ la mesure de probabilité
sur T ∗f sous laquelle τ est distribué selon Πµ et, conditionnellement à τ , les positions spatiales
(zu)u∈τ sont distribuées comme une marche aléatoire indexée par τ et de loi de saut θ. On dit que
la mesure Π∗µ,θ est la loi d’un arbre de Galton–Watson spatial issu de 0, de loi de reproduction
µ et de loi de déplacement spatial θ.

Rappelons que Tn désigne un µ-GW arbre conditionné à avoir n sommets. Notons ZTn une
marche aléatoire sur Zd indexée par Tn. Le couple (Tn, ZTn) ∈ T ∗f est alors distribué selon la
loi de probabilité conditionnelle Π∗µ,θ(· |#τ = n).

1.3.2 Mouvement brownien indexé par Te et serpent brownien

En s’inspirant du théorème d’Aldous, on cherche à définir le mouvement brownien indexé
par l’arbre brownien Te, qui apparaîtra comme la limite d’échelle de la marche aléatoire ZTn .

Considérons d’abord un arbre réel déterministe (T , d) enraciné en ρ. Si u, v ∈ T , on note
u ∧ v le plus proche ancêtre commun à u et v, c’est-à-dire le sommet de T vérifiant l’équalité
[ρ, u ∧ v] = [ρ, u] ∩ [ρ, v]. Le mouvement brownien indexé par T est défini comme un processus
gaussien centré (Zu)u∈T à valeurs dans Rd, dont la distribution est caractérisée par les propriétés
Zρ = 0 et

cov(Zu,Zv) = d(ρ, u ∧ v)·Id
pour tous les u, v ∈ T , où Id désigne la matrice identité de taille d. Intuitivement, Zu correspond à
la valeur au temps d(ρ, u) d’un mouvement brownien standard d-dimensionnel, et Zv également.
Mais Zv partage le même mouvement brownien avec Zu entre temps 0 et d(ρ, u∧ v), et il utilise
ensuite un mouvement brownien indépendant entre les temps d(ρ, u ∧ v) et d(ρ, v).

Si l’arbre continu T = Tf est codé par une fonction f höldérienne, le processus (Zu)u∈Tf a
une modification continue. Cela s’applique en particulier p.s. à chaque réalisation de l’excursion
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brownienne normalisée e. On peut donc définir un processus gaussien centré ZTe à trajectoires
continues qui, conditionnellement à Te, est un mouvement brownien indexé par l’arbre brownien.

Intimement lié à ZTe , le serpent brownien est un objet très productif, introduit par Le
Gall. Nous nous contentons ici d’une introduction concise, et nous renvoyons le lecteur à la
monographie [57] pour une présentation détaillée. Commençons par quelques définitions. Une
trajectoire arrêtée dans Rd est une application continue w : [0, ζ(w)]→ Rd, où le nombre ζ(w) est
appelé temps de vie de la trajectoire w. De plus, on note ŵ = w(ζ(w)) le point terminal de w.
Lorsque ζ(w) = 0, la trajectoire w est identifiée à son point de départ w(0) ∈ Rd. Notons W
l’ensemble de toutes les trajectoires arrêtées.

Définition 2. Le serpent brownien standard (Ws)s≥0 issu de 0 est un processus à valeurs dans
C (R+,W) dont la loi est caractérisée de façon suivante :
(i) le processus du temps de vie (ζs := ζ(Ws), s ≥ 0) suit la loi d’un mouvement brownien

réfléchi dans R+ issu de 0.
(ii) W0 = 0 p.s., et, conditionnellement à (ζs)s≥0, (Ws)s≥0 est un processus de Markov inho-

mogène, dont le noyau de transition est spécifié comme suit. Pour tous 0 ≤ s < s′,
• Ws′(t) = Ws(t) pour tout 0 ≤ t ≤ mζ(s, s′) := min{ζr : s ≤ r ≤ s′} ;
• (Ws′(mζ(s, s′) + t)−Ws′(mζ(s, s′)))0≤t≤ζs′−mζ(s,s′) est indépendant de Ws, et suit la
loi d’un mouvement brownien dans Rd partant de 0.

En utilisant la théorie des excursions, on peut définir le serpent brownien (W (1)
s )0≤s≤1 dirigé

par une excursion brownienne normalisée e et issu de 0, qui vérifie des propriétés similaires aux
(i) et (ii) ci-dessus, avec la seule différence que le processus du temps de vie(

ζ(1)
s := ζ(W (1)

s ), s ≥ 0
)

est maintenant donné par l’excursion brownienne normalisée e. Notons (Ŵ (1)
s )0≤s≤1 le processus

de la “tête” du serpent brownien W (1), et observons que Ŵ (1)
s = Ŵ

(1)
t si de(s, t) = 0. Alors le

mouvement brownien ZTe indexé par l’arbre brownien peut être construit à partir de (Ŵ (1)
s )0≤s≤1

modulo la relation d’équivalence ∼e.
La mesure d’occupation I du serpent brownien W (1) dirigé par e est une mesure de proba-

bilité définie sur Rd par la formule

〈 I, ϕ 〉 =
∫ 1

0
dsϕ

(
Ŵ (1)
s

)
pour toute fonction ϕ mesurable positive. Cette mesure aléatoire I s’appelle l’ISE (abrégée pour
« Integrated Super-Brownian Excursion »), et a été initialement introduite par Aldous dans [6]
avec une normalisation légèrement différente. La mesure ISE en grande dimension intervient dans
divers résultats asymptotiques en mécanique statistique ou en combinatoire. Voir e.g. l’article
de vulgarisation [84] de Slade pour plus de références.

Rappelons que l’on peut coder un arbre planaire fini τ par sa fonction de contour C. De
même, on peut définir la fonction de contour spatial V d’un arbre spatial (τ, (zu)u∈τ ) ∈ T ∗f en
posant pour tout entier t ∈ [0, 2(#τ − 1)], Vt((zu)u∈τ ) = zv où v est le sommet visité par C au
temps t, puis en interpolant linéairement V sur l’intervalle [0, 2(#τ − 1)]. Le couple (C, V ) code
alors l’arbre spatial (τ, (zu)u∈τ ).

Revenons maintenant à la marche aléatoire ZTn indexée par Tn, et supposons que
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Hypothèse (H) :
(i) la loi de reproduction critique µ est différente de la masse de Dirac en 1, et il

existe un réel η > 0 tel que
∑
k≥0 e

ηkµ(k) <∞.

(ii) la loi de saut θ est une mesure de probabilité sur Rd, de moyenne nulle et
vérifiant la condition de moments suivante :

lim
r→+∞

r4 θ({x ∈ Zd : |x| > r}) = 0.

Le prochain résultat est une extension multi-dimensionnelle du théorème 2 de l’article de
Janson et Marckert [39].

Théorème 6. Soit σµ = (varµ)1/2 et Mθ la matrice de covariance de θ. On écrit M1/2
θ pour

l’unique matrice symétrique définie positive telle que Mθ = (M1/2
θ )2, et l’on note M−1/2

θ son
inverse. Sous l’hypothèse (H), on a alors la convergence conjointe(

σµ
2
C2nt(Tn)√

n
, M

−1/2
θ

(σµ
2
)1/2V2nt(ZTn)

n1/4

)
0≤t≤1

(loi)−→
n→∞

(
et, Ŵ (1)

t

)
0≤t≤1.

Figure 1.4 – Simulation de la mesure aléatoire ∑u∈Tn δZTn (u), où l’endroit sombre
représente une masse supérieure, et l’arc vert a pour rayon n1/4 (Image tirée de [84]
© G. Slade).

Pour tout u ∈ Tn, on note Z̃Tn(u) = M
−1/2
θ (σµ/2)1/2ZTn (u)

n1/4 . Soit In la mesure de probabilité
empirique associée à Z̃Tn , i.e.

In := 1
n

∑
u∈Tn

δ
Z̃Tn (u).

Sous l’hypothèse (H), le théorème précédent entraîne la convergence en loi de In vers la mesure
ISE I, lorsque n→∞. Cette convergence a lieu dans l’espace M1(Rd) des mesures de probabilité
sur Rd muni de la topologie faible.
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1.3.3 Le nombre de points visités par la marche aléatoire ZTn

Les résultats présentés dans cette section sont détaillés dans les chapitres 2 et 3.
Ces chapitres sont basés sur nos deux articles [61, 62] écrits en collaboration avec
J.-F. Le Gall.

Notons Rn := #{ZTn(u) : u ∈ Tn} ≤ n le nombre de points visités par la marche aléatoire
ZTn indexée par un arbre de Galton–Watson conditionné Tn de taille n.

Rappelons que si la loi de reproduction µ est géométrique de paramètre 1/2 , le µ-GW arbre
conditionné Tn est uniformément distribué sur l’ensemble des arbres planaires à n sommets. Dans
ce cas particulier, nous avons établi, en analogie avec le Théorème 3 de Dvoretzky et Erdös, le
théorème suivant, qui concerne le comportement asymptotique de Rn pour notre modèle de la
marche aléatoire ZTn .

Soit θ une mesure de probabilité sur Zd symétrique et de support fini. Pour chaque
entier n ≥ 1, soit Tn un arbre planaire uniforme de taille n. Sachant Tn, on prend
ZTn une marche aléatoire dans Zd de loi de saut θ indexée par Tn, et l’on note Rn son
nombre de points visités. Alors,
• si d ≥ 5,

1
n
Rn

(P)−→
n→∞

cθ ,

où cθ > 0 est une constante dépendant de θ, et (P)−→ indique la convergence en
probabilité ;
• si d = 4,

logn
n
Rn

L2
−→
n→∞

8π2 σ4 , (1.5)

où σ2 = (detMθ)1/4, Mθ désignant la matrice de covariance de θ ;
• si d ≤ 3,

n−d/4Rn
(loi)−→
n→∞

2d/4(detMθ)1/2 λd(supp(I)) , (1.6)

où λd(supp(I)) > 0 représente la mesure de Lebesgue du support de la mesure
aléatoire ISE I.

Théorème ([61, Theorem 1]).

Remarquons que la dimension critique pour le comportement deRn est maintenant d = 4, au
lieu de d = 2 pour la marche aléatoire ordinaire. D’après le Théorème 6, l’ensemble des positions
spatiales de ZTn est inclus dans une boule centrée à l’origine d’un rayon d’ordre n1/4 . Donc
Rn est au plus de l’ordre de nd/4 en dimension d ≤ 4. Signalons néanmoins que le Théorème 6
n’implique pas directement la convergence (1.6) lorsque d ≤ 3.

Nous voudrions souligner le fait que, dans le théorème ci-dessus, les asymptotiques de Rn en
différents régimes restent valides pour un cadre beaucoup plus général. D’abord, en appliquant
le théorème ergodique sous-additif de Kingman d’une façon non triviale, on peut démontrer la
croissance linéaire de Rn dans le contexte suivant :
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Soit µ une loi de reproduction critique dans le domaine d’attraction d’une loi stable
d’indice α ∈ (1, 2]. Pour tout entier n suffisamment grand, soit Tn un µ-GW arbre
conditionné à avoir n sommets, et soit ZTn une marche aléatoire dans Zd de loi de saut
θ indexée par Tn. Si Rn désigne le nombre de points visités par ZTn , on a

1
n
Rn

(P)−→
n→∞

cµ,θ , (1.7)

où cµ,θ ∈ [0, 1] est une constante dépendante de µ et de θ.

Théorème ([61, Theorem 7]).

De plus, nous avons trouvé une condition suffisante pour que la constante limite cµ,θ > 0 :

Supposons en plus que la loi de saut θ est centrée et a des moments d’ordre (d− 1)∨ 2
finis. Alors

cµ,θ > 0 lorsque d > 2α
α− 1 .

En particulier, si la loi de reproduction µ est de variance finie, alors cµ,θ > 0 lorsque
d ≥ 5.

Proposition ([61, Proposition 5]).

Lorsque d = 4, la convergence (1.5) est en fait établie en supposant que la loi de saut θ est
symétrique et a des moments exponentiels finis ([61, Theorem 14]). Cependant, nous devons nous
restreindre au cas où µ est géométrique de paramètre 1/2 (et donc Tn est uniforme sur les arbres
planaires de taille n), parce que nos arguments s’appuient fortement sur l’utilisation d’une chaîne
de Markov qui permet d’engendrer les arbres spatiaux discrets aléatoires appropriés. Ce processus
à valeurs dans l’espace des trajectoires semi-infinies dans Z4 est un analogue discret du serpent
brownien, que l’on appelle le serpent discret. Une estimation cruciale ([61, Proposition 8]) indique
que la probabilité que la “tête” du serpent discret ne revienne pas à l’origine avant l’instant
n se comporte comme (4π2σ4 + o(1))/ logn quand n → ∞. Cette estimation est analogue à
l’asymptotique pour la probabilité que la marche aléatoire ordinaire dans le plan ne revienne
plus à son point de départ avant l’instant n, mais la preuve se révèle beaucoup plus compliquée
dans notre cadre.

Lorsque d ≤ 3, nous avons prouvé le résultat suivant :
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Supposons que d ≤ 3. Pour tout entier n suffisamment grand, soit Tn un µ-GW arbre
conditionné à avoir n sommets, et soit ZTn une marche aléatoire dans Zd de loi de saut
θ indexée par Tn. Soit σµ = (varµ)1/2 et Mθ la matrice de covariance de θ. On note
Rn le nombre de points visités par ZTn . Sous l’hypothèse (H), on a

n−d/4Rn
(loi)−→
n→∞

( 2
σµ

)d/2
(detMθ)1/2 λd(supp(I)) , (1.8)

où λd(supp(I)) est la même variable aléatoire figurant dans la convergence (1.6).

Théorème ([62, Theorem 5]).

Notons que le support de la mesure aléatoire ISE I a une mesure de Lebesgue strictement
positive si et seulement si d ≤ 3. Le cœur de nos arguments pour le théorème ci-dessus est un
principe d’invariance des temps locaux de la marche aléatoire ZTn . Pour chaque a ∈ Zd, soit

Ln(a) :=
∑
u∈Tn

1{ZTn (u)=a}

le nombre de visites en site a par la marche ZTn . En utilisant les résultats de Sugitani [86], on
peut établir l’existence p.s. d’une densité (`x, x ∈ Rd) continue sur Rd pour la mesure ISE I,
par rapport à la mesure de Lebesgue ([62, Proposition 1]), et, de plus, pour tout x ∈ Rd\{0}, il
y a l’égalité p.s. {`x > 0} = {x ∈ supp(I)} ([62, Proposition 2]). Observons que

Rn =
∑
a∈Zd

1{Ln(a)>0}.

Le théorème suivant nous permettra de démontrer la convergence (1.8) par un calcul de mo-
ment. Avant de l’énoncer, on introduit la notation bxc := (bx1c, . . . , bxdc) ∈ Zd pour tout
x = (x1, . . . , xd) ∈ Rd, et la constante

cd := 1
(detMθ)1/2

(σµ
2
) d

2
.

Supposons d ≤ 3 et soit un entier k ≥ 1. Pour tous a1, . . . , ak ∈ Rd\{0}, sous l’hy-
pothèse (H), on a(
n
d
4−1Ln

(
b
√

2
σµ
M

1
2
θ n

1
4a1c

)
, . . . , n

d
4−1Ln

(
b
√

2
σµ
M

1
2
θ n

1
4akc

)) (loi)−→
n→∞

(
cd `a1 , . . . , cd `ak

)
.

Théorème ([62, Theorem 4]).

On s’attend à ce que le résultat ci-dessus reste valable même si l’on enlève la condition ai 6= 0,
et que l’on puisse avoir une convergence fonctionnelle au lieu de celle au sens des marginales
de dimension finie. En dimension d = 1, ce renforcement a été obtenu par Bousquet-Mélou et
Janson [15, Theorem 3.6] dans un cas particulier, puis par Devroye et Janson [24, Theorem 1.1]
dans un cadre plus général.
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1.3.4 Le nombre de points visités par la marche aléatoire branchante

Les résultats présentés dans cette section sont détaillés dans les chapitres 2 et 3.
Ces chapitres sont basés sur nos deux articles [61, 62] écrits en collaboration avec
J.-F. Le Gall.

Au lieu de considérer une marche aléatoire indexée par un µ-GW arbre conditionné à un
nombre fixe de sommets, il est aussi intéressant d’étudier la situation où la structure généalogique
est codée par un nombre fini de µ-GW arbres non conditionnés et indépendants.

Considérons p arbres de Galton–Watson spatiaux(
τ (1), (Z(1)(u))u∈τ (1)

)
, . . . ,

(
τ (p), (Z(p)(u))u∈τ (p)

)
issus de 0, indépendants et identiquement distribués selon Π∗µ,θ. Pour chaque entier n ≥ 0, on
définit la mesure ponctuelle aléatoire

X [p]
n :=

p∑
j=1

( ∑
u∈τ (j),|u|=n

δZ(j)(u)

)
,

qui représente la somme des mesures de Dirac aux points où se situent les sommets de généra-
tion n. On appelle X [p] = (X [p]

n , n ≥ 0) la marche aléatoire branchante sur Zd avec la configura-
tion initiale X [p]

0 = p δ0. Le nombre de points visités R(X [p]) est alors

R(X [p]) := #
{
a ∈ Zd : a = Z(j)(u) pour un j ∈ {1, . . . , p} et u ∈ τ (j)}.

On définit la fonction de hauteur (H [p]
k , k ≥ 0) de la forêt τ (1), . . . , τ (p) comme la concaténation

des fonctions de hauteur de chaque arbre (Hi(τ (j)), 0 ≤ i ≤ #τ (j) − 1), et l’on pose H [p]
k = 0

pour k ≥ #τ (1) + · · · + #τ (p). De la même manière, on définit la fonction (Z [p]
k , k ≥ 0) par la

concaténation des fonctions (Z(j)
i , 0 ≤ i ≤ #τ (j)− 1). Enfin, on prolonge les deux fonctions H [p]

et Z [p] à R+ par interpolation linéaire. Nous pouvons maintenant énoncer notre analogue du
Théorème 6.

Sous l’hypothèse (H), on a((σµ
2p H

[p]
p2s,

√
σµ
2p Z

[p]
p2s

)
s≥0

, p−2(#τ (1) + · · ·+ #τ (p))
) (loi)−→
p→∞

(
(ζs∧ξ,M

1/2
θ Ŵs∧ξ)s≥0, ξ

)
,

où (Ws)s≥0 est le serpent brownien standard issu de 0, et ξ désigne le premier temps
d’atteinte de 2/σµ par le temps local en 0 du processus du temps de vie (ζs)s≥0, la
convergence des processus ayant lieu pour la topologie de la convergence uniforme sur
tout compact.

Proposition ([62, Proposition 6]).

Lorsque d ≤ 3, on déduit une estimation importante pour la probabilité d’atteinte d’un point
éloigné pour la marche aléatoire indexée par un µ-GW arbre.



26 Chapitre 1 Introduction

Sous la mesure de probabilité Π∗µ,θ, notons R := {zu : u ∈ τ} l’ensemble des points
visités par la marche aléatoire indexée par τ . Si d ≤ 3, en supposant l’hypothèse (H),
on a

lim
|a|→∞

|M−1/2
θ a|2 Π∗µ,θ(a ∈ R) = 2(4− d)

σ2
µ

.

Théorème ([62, Theorem 7]).

Grâce au théorème précédent, nous avons obtenu un résultat analogue à la convergence (1.8)
pour la marche aléatoire branchante en petites dimensions.

Supposons que d ≤ 3. Sous l’hypothèse (H), on a

p−d/2 R(X [p]) (loi)−→
p→∞

( 2
σµ

)d(detMθ)1/2 λd

( ⋃
t≥0

suppXt

)
,

où λd désigne la mesure de Lebesgue sur Rd, (Xt)t≥0 est un super-mouvement brownien
en dimension d issu de δ0 avec le mécanisme de branchement ψ(u) = 2u2, et suppXt

signifie le support topologique de Xt.

Théorème ([62, Theorem 8]).

Le super-mouvement brownien (Xt)t≥0 ci-dessus est un processus de Markov homogène à
valeurs dans l’espace des mesures finies sur Rd. Nous renvoyons le lecteur à Le Gall [57] pour
voir ses liens avec le serpent brownien. Notons à nouveau que ∪t≥0 suppXt a une mesure de
Lebesgue strictement positive si et seulement si d ≤ 3.

En grande dimension (d ≥ 5), on a aussi l’analogue de la convergence (1.7).

Soit d ≥ 5. On suppose que la loi de reproduction critique µ est de variance σ2
µ > 0

finie, et la loi de saut θ est centrée avec des moments d’ordre d− 1 finis. Avec la même
constante cµ,θ > 0 apparaissant dans (1.7), on a

1
p2 R(X [p]) (loi)−→

p→∞
cµ,θ
σ2
µ

J,

où la variable aléatoire J > 0 a pour densité (2πs3)−1/2 exp(− 1
2s) sur (0,∞).

Théorème ([61, Proposition 20]).

La dimension critique reste encore d = 4. Comme précédemment, on se restreint à la loi de
reproduction géométrique.
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Soit d = 4. On suppose que µ est la loi de reproduction critique géométrique, et θ est
symétrique avec des moments exponentiels finis. Alors,

log p
p2 R(X [p]) (loi)−→

p→∞
4π2 det(Mθ))1/2 J,

où J est la même variable aléatoire que dans le théorème précédent.

Théorème ([61, Proposition 21]).

Remarques. (1) Par un calcul des moments d’ordre 1 et 2, on sait que si d ≥ 5, il existe des
constantes C1, C2 > 0 dépendant de d, µ et θ telles que

C1|a|2−d ≤ Π∗µ,θ(a ∈ R) ≤ C2 |a|2−d lorsque |a| → ∞.

Si d = 4, lorsque |a| → ∞, on s’attend à ce que

Π∗µ,θ(a ∈ R) ≈ C

|a|2 log |a| .

Notons que la minoration pourrait être donnée par la même méthode de calcul des moments,
tandis que la majoration reste ouverte.

(2) Dans l’article [61], nos résultats sur le comportement asymptotique de R(X [p]) quand
d ≥ 5 ou d = 4 sont en effet plus forts que ceux que nous avons présentés ci-dessus, au sens où
ils sont corrects pour une configuration initiale quelconque de la marche aléatoire branchante,
à condition que 〈X [p]

0 , 1〉 = p. Cependant, ce n’est plus le cas lorsque d ≤ 3 (cf. les discussions
dans la Section 3.5.3).

(3) Signalons que, en dimensions 2 et 3, Lalley et Zheng [49, Theorem 1] ont obtenu un
principe d’invariance des temps locaux de la marche aléatoire branchante quand la loi de repro-
duction µ est Poisson de paramètre 1.

1.3.5 Et si l’on ajoute une dérive constante ?

Les résultats présentés dans cette section sont détaillés dans le chapitre 4. Ce chapitre
est basé sur l’article [67] en préparation.

Revenons à la marche aléatoire ZTn indexée par Tn. Dans la Section 1.3.3, où la loi de
saut θ considérée est centrée, on a vu que la dimension 4 est critique pour le comportement
asymptotique de Rn (le nombre de points visités par ZTn). On peut maintenant se demander
comment Rn se comporte si l’on ajoute une dérive constante à chaque pas de ZTn . Dans cet
objectif, soit D ∈ Zd\{0} la dérive fixée, et l’on définit une nouvelle mesure de probabilité θ̃ sur
Zd comme la mesure-image de θ par la translation x 7→ x + D. Donc si l’on remplace la loi de
saut θ par θ̃, chaque déplacement spatial de ZTn sera composé d’un saut aléatoire selon θ et
d’une dérive D déterministe.

D’abord, les arguments généraux développés pour la croissance linéaire de Rn au cas centré
s’adaptent bien au cas avec dérive, et l’on obtient le théorème suivant :
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Soit µ une loi de reproduction critique dans le domaine d’attraction d’une loi stable
d’indice α ∈ (1, 2]. Pour tout entier n suffisamment grand, soit Tn un µ-GW arbre
conditionné à avoir n sommets, et soit ZTn une marche aléatoire dans Zd avec la loi
de saut θ̃ indexée par Tn. Si Rn désigne le nombre de points visités par ZTn , il existe
alors une constante cµ,θ̃ ∈ [0, 1] dépendante de µ et de θ telle que

1
n
Rn

(P)−→
n→∞

cµ,θ̃ .

Supposons en plus que θ est centrée et a des moments d’ordre 2d ∨ 3 finis. Alors

cµ,θ̃ > 0 lorsque d > α+ 1
α− 1 .

En particulier, si la loi de reproduction µ est de variance finie, alors cµ,θ̃ > 0 lorsque
d ≥ 4.

Théorème ([67, Theorem 1]).

Lorsque d ≤ 2, en supposant que la loi de reproduction critique µ est de variance finie et que
la loi de saut θ̃ est assez “bonne”, nous nous attendons à ce que Rn se comporte comme n(d+1)/4

quand n tend vers l’infini. Nous renvoyons le lecteur à la Section 4.4 pour voir les discussions
correspondantes.

Nous pensons que la dimension critique devient 3 pour le comportement asymptotique du
nombre de points visités Rn dans le cas avec dérive. Malheureusement, nous sommes incapables
de traiter la dimension 3 dans un cadre général. Néanmoins, nous parvenons à traiter le cas très
particulier où les deux premières coordonnées évoluent comme une marche aléatoire centrée sur
Z2, alors que la troisième augmente d’une unité à chaque pas. Cela conduit au résultat suivant.

Soit ZTn une marche aléatoire sur Z2 indexée par un arbre uniforme Tn avec n sommets.
Supposons que sa loi de saut θ est symétrique et a des moments exponentiels finis. On
note Mθ sa matrice de covariance. Pour chaque entier k ≥ 0, notons Ω(n)

k le nombre de
points visités dans Z2 par les sommets en génération k de Tn, i.e.

Ω(n)
k := #{ZTn(u) : u ∈ Tn, |u| = k}.

Par convention #∅ = 0. Pour la somme finie Rn :=
∑
k≥0 Ω(n)

k , on a la convergence

logn
n

Rn L2
−→
n→∞

8π(detMθ)1/2.

Théorème ([67, Theorem 4]).

Notre théorème ci-dessus est étroitement lié au travail récent de Lalley et Zheng [50], qui ont
étudié diverses statistiques d’occupation d’une marche aléatoire sur Zd, d ≥ 2 indexée par T(n).
Rappelons que T(n) est un µ-GW arbre conditionné à atteindre la hauteur n. Soit maintenant
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d = 2. On note Ωn le nombre de points dans Z2 visités par les sommets de T(n) en génération n.
Sous l’hypothèse que la loi de reproduction µ est critique de variance finie, et que la loi de saut θ
est uniforme sur les 5 sites de distance ≤ 1 de l’origine, leur résultat [50, Theorem 7] montre que
la famille de variables aléatoires ( logn

n Ωn, n ≥ 1) est tendue. Rappelons que la hauteur de l’arbre
Tn est de l’ordre de

√
n. Alors Rn peut être interprété comme une somme de

√
n quantités,

toutes de l’ordre de
√
n

logn . Cet argument heuristique fournit le même ordre de grandeur de Rn
que celui indiqué dans le théorème précédent.

1.4 La mesure harmonique sur un arbre de Galton–Watson cri-
tique

Dans la théorie des fonctions harmoniques, et notamment la résolution du problème de
Dirichlet classique, la mesure harmonique est un concept mathématique extrêmement important.
D’un point de vue probabiliste, la mesure harmonique sur le bord d’un domaine borné de Rd
(d ≥ 2) est la loi de sortie d’un mouvement brownien démarré à l’intérieur du domaine. Dans
le cas d’un graphe discret, la mesure harmonique sur le bord d’un ensemble fini se définit de la
même façon, mais le mouvement brownien est remplacé par la marche aléatoire simple.

Il a été observé dans plusieurs contextes que la mesure harmonique sur un ensemble fractal
est portée par un sous-ensemble de dimension strictement plus petite. En particulier, le fameux
théorème de Makarov [74] montre que la mesure harmonique sur la frontière d’un domaine
simplement connexe de R2 est toujours portée par un ensemble de dimension de Hausdorff 1,
quelle que soit la dimension de Hausdorff de la frontière. Voir l’article de Bourgain [14] pour des
analogues en dimension supérieure. Dans le cas discret de Zd, des résultats similaires se trouvent
dans [52] et [13]. Ce phénomène de la « chute de dimension » a également été observé par Lyons,
Pemantle et Peres [71, 72] dans le cas de la mesure harmonique à l’infini pour des marches
aléatoires sur des arbres de Galton–Watson sur-critiques. Par la suite, nous allons présenter des
résultats similaires dans le cas des arbres de Galton–Watson critiques.

Soit µ une loi de reproduction critique telle que µ(1) < 1. Sous la probabilité P, on note T(n)

un µ-GW arbre conditionné à avoir une hauteur supérieure à n, et T(n)
n l’ensemble des sommets

à hauteur n de l’arbre T(n). Conditionnellement à T(n), considérons une marche aléatoire simple
sur T(n) partant de la racine de l’arbre jusqu’à son premier temps d’atteinte de T(n)

n . La loi du
premier point à hauteur n de T(n) visité par la marche est donc une mesure de probabilité µn
sur T(n)

n , appelée la mesure harmonique au niveau n.

1.4.1 La mesure harmonique sur la frontière

Les résultats présentés dans cette section sont détaillés dans le chapitre 5. Ce chapitre
est basé sur l’article [66] publié.

On suppose dans cette partie que la loi de reproduction critique µ appartient au domaine
d’attraction d’une loi stable d’indice α ∈ (1, 2]. Alors il est connu que, modulo une fonction
multiplicative à variation lente,

#T(n)
n ≈ n

1
α−1 quand n→∞.

Dans le cas particulier où µ a une variance finie, le théorème classique de Yaglom montre
que n−1#T(n)

n converge en loi vers une variable exponentielle, alors que récemment, Curien et
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Le Gall [20] ont prouvé qu’il existe une constante β ≈ 0, 78 qui ne dépend pas de µ et telle que
« presque toute » la masse de µn est concentrée sur approximativement nβ sommets de T(n)

n . Le
théorème suivant généralise à toutes les valeurs de α ∈ (1, 2] le résultat qu’ils ont obtenu dans
le cas de variance finie (α = 2).

Supposons que la loi de reproduction critique µ appartient au domaine d’attraction
d’une loi stable d’indice α ∈ (1, 2]. Il existe alors une constante βα ∈ (0, 1

α−1), qui ne
dépend que de α, telle que, pour tout δ > 0, nous avons la convergence en probabilité

µn
({
v ∈ T(n)

n : n−βα−δ ≤ µn(v) ≤ n−βα+δ}) (P)−−−→
n→∞

1 .

Ainsi, pour tout ε ∈ (0, 1), il existe avec P-probabilité tendant vers 1 quand n→∞, un
sous-ensemble An,ε de T(n)

n tel que #An,ε ≤ nβα+δ et µn(An,ε) ≥ 1− ε. Inversement, la
plus grande µn-mesure d’un ensemble de cardinal inférieur à nβα−δ tend en probabilité
vers 0 quand n→∞.

Théorème ([66, Theorem 1]).

On observe que la distribution d’atteinte µn au niveau n pour la marche aléatoire simple
sur T(n) reste la même si l’on élague T(n) des branches n’atteignant pas le niveau n. Donc, il
suffit de considérer la marche aléatoire simple sur l’arbre réduit T∗n obtenu en ne gardant que
les sommets de T(n) ayant un descendant au niveau n. Si l’on multiplie la distance de graphe
sur T∗n par un facteur n−1, les arbres réduits renormalisés n−1T∗n convergent en loi, au sens de
Gromov–Hausdorff, vers un arbre réel compact aléatoire ∆(α) que nous décrivons maintenant.

Pour chaque α ∈ (1, 2], on définit une loi de reproduction θα de la façon suivante : si α = 2,
on pose θ2 = δ2 la masse de Dirac en 2. Si α < 2, on pose

θα(0) = θα(1) = 0,

θα(k) = α(2− α)(3− α) · · · (k − 1− α)
k! , ∀k ≥ 2,

Soit U∅ une variable aléatoire uniformément distribuée sur [0, 1], et K∅ une variable aléatoire
distribuée selon θα, indépendante de U∅. Pour construire ∆(α), on commence avec un segment
orienté de longueur U∅, dont l’origine sera la racine de l’arbre. À l’autre extrémité de ce segment,
on attache les origines de K∅ segments orientés de longueur U1, U2, . . . , UK∅ , où, conditionnelle-
ment à U∅ etK∅, U1, U2, . . . , UK∅ sont indépendantes et uniformément distribuées sur [0, 1−U∅].
Cela termine la première étape de la construction. Dans la deuxième étape, on prend une nou-
velle variable aléatoire indépendante K1 distribuée selon θα, et au premier de ces K∅ segments
on attache K1 nouveaux segments, dont les longueurs sont à nouveau indépendantes et uni-
formément distribuées sur [0, 1 − U∅ − U1], conditionnellement à toutes les variables aléatoires
apparues avant. Pour les K∅ − 1 autres segments, on répète cette procédure de façon indépen-
dante. On continue alors la construction par récurrence. Après une infinité d’étapes, on obtient
à la fin un arbre réel non-compact, dont le complété est l’arbre réel compact ∆(α). On l’appellera
l’arbre réduit stable de paramètre α. Notons que tous les nombres de descendants K∅,K1, . . .
impliqués dans la construction de ∆(2) sont p.s. égaux à 2, ce qui correspond au mécanisme de
branchement binaire. En revanche, ce n’est plus le cas lorsque 1 < α < 2. Voir la Figure 1.5
pour une illustration.
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∅

n 1

1 2
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∅

U∅

U1

U2

Figure 1.5 – À gauche, un grand arbre de Galton–Watson réduit T∗n ; à droite, la limite
d’échelle ∆(α) l’arbre réduit stable de paramètre 1 < α < 2

La frontière ∂∆(α) de ∆(α) est définie comme l’ensemble de tous les points à hauteur 1.
Conditionnellement à ∆(α), on peut définir le mouvement brownien sur ∆(α) issu de la racine
jusqu’au premier temps d’atteinte de ∂∆(α). Il se comporte comme un mouvement brownien
linéaire tant qu’il reste à l’intérieur d’un segment. Il est réfléchi à la racine de l’arbre, et lorsqu’il
arrive à un point de branchement, il choisit chacun des segments adjacents avec des probabilités
égales. La distribution aléatoire du point d’atteinte de ∂∆(α) par le mouvement brownien est
donc la mesure harmonique sur ∂∆(α), notée µα. Le résultat suivant dans ce cadre continu est
un ingrédient clé dans la preuve du théorème précédent.

Pour chaque α ∈ (1, 2], avec la même constante βα ∈ (0, 1
α−1) que précédemment, on a

P p.s. µα(dx) p.p.,

lim
r↓0

logµα(B(x, r))
log r = βα ,

où B(x, r) est la boule fermée de centre x et de rayon r dans ∆(α). En particulier, la
dimension de Hausdorff de µα est P p.s. égale à βα (alors que la dimension de Hausdorff
de ∂∆(α) est égale à 1

α−1).

Théorème ([66, Theorem 2]).

La constante βα apparaissant dans les deux théorèmes précédents peut être exprimée en
termes de la conductance de ∆(α). Si l’on voit l’arbre aléatoire ∆(α) comme un réseau de ré-
sistances avec un ohm par unité de longueur, la conductance équivalente entre la racine et la
frontière ∂∆(α) est une variable aléatoire continue que nous noterons C(α). D’un point de vue
probabiliste, elle est la masse, sous la mesure d’excursion en dehors de la racine pour le mouve-
ment brownien sur l’arbre, des excursions qui atteignent la hauteur 1. D’après la définition de
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∆(α) et l’interprétation du réseau électrique ci-dessus, C(α) satisfait l’équation récursive en loi

C(α) (loi)==
(
U + 1− U

C(α)
1 + C(α)

2 + · · ·+ C(α)
Nα

)−1
, (1.9)

où (C(α)
i )i≥1 sont des copies i.i.d. de C(α), la variable aléatoire Nα est distribuée selon θα, et U

est uniformément distribuée sur [0, 1]. Toutes ces variables aléatoires impliquées sont supposées
indépendantes. Nous montrons que, pour tout α ∈ (1, 2], la loi γα de la conductance C(α) est
caractérisée dans la famille de toutes les mesures de probabilité sur [1,∞) par l’équation (1.9).

– Pour tout α ∈ (1, 2], la constante βα apparaissant dans les deux théorèmes précédents
est donnée par

βα = 1
2

( ( ∫
γα(ds)s

)2∫∫
γα(ds)γα(dt) st

s+t−1
− 1

)
.

– Il existe une constante M > 0 telle que pour tout α ∈ (1, 2], βα < M .

Théorème ([66, Theorem 3 & Proposition 4]).

Notons que la dimension de la frontière ∂∆(α) tend vers l’infini quand α ↓ 1. Néanmoins,
la dimension de la mesure harmonique µα reste toujours bornée. Il est aussi intéressant de
remarquer que, pout tout α ∈ (1, 2], la constante βα s’exprime par la même fonction de la
distribution γα, bien que les arbres réduits stables (∆(α), α ∈ (1, 2]) aient des mécanismes de
branchement différents.

1.4.2 La mesure harmonique près d’un point typique de la frontière

Les résultats présentés dans cette section sont détaillés dans le chapitre 6. Ce chapitre
est basé sur l’article [68] en préparation.

Nous allons étudier le comportement local de la mesure harmonique près d’un point typique
sur la frontière T(n)

n . Supposons dans cette section que la loi de reproduction critique µ est
de variance finie. Nous écrivons donc β = β2,∆ = ∆(2) et C = C(2) pour alléger la notation.
Cependant, afin de ne pas confondre avec la loi de reproduction µ, nous continuerons d’écrire
µ2 la mesure harmonique sur ∂∆.

Notre théorème principal dans le cadre discret est le suivant :

Soit Ωn un sommet uniformément choisi au hasard de T(n)
n . Il existe alors une constante

universelle a λ ∈ (1,∞), qui ne dépend pas de la loi de reproduction µ, telle que, pour
tout δ > 0, nous avons

lim
n→∞

P
(
n−λ−δ ≤ µn(Ωn) ≤ n−λ+δ) = 1.

a. Les simulations numériques montrent que λ ≈ 1.21.

Théorème ([68, Theorem 1]).
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Pour énoncer le résultat analogue dans le continu, on introduit un nouvel arbre réel (non-
compact) binaire Γ, tel que chaque point à hauteur y ∈ [0,∞) dans cet arbre correspond, de
façon bijective, à un point dans ∆\∂∆ à hauteur 1 − e−y ∈ [0, 1). Cet arbre continu aléatoire
s’appelle l’arbre de Yule, car il décrit la généalogie du processus de Yule classique, où chaque
individu a un temps de vie exponentielle de paramètre 1, ces temps de vie sont indépendants
les uns des autres, et de plus chaque individu a exactement deux enfants. Par définition, la
frontière à l’infini ∂Γ de Γ est l’ensemble des géodésiques infinies partant de la racine. Grâce au
branchement binaire, ∂Γ peut s’identifier avec {1, 2}N. Pour tout r > 0, soit Γr l’ensemble des
points de Γ à hauteur r. Par un argument de martingale, on peut définir

W := lim
r→∞

e−r#Γr,

et il est bien connu queW suit une loi exponentielle de paramètre 1. Pour tout x ∈ Γ, soit H(x)
la hauteur de x, et Γ[x] le sous-arbre de descendants de x dans Γ. On définit de manière similaire

Wx := lim
r→∞

e−r#Γr[x].

La mesure uniforme ω̄ sur ∂Γ est une mesure de probabilité (aléatoire) sur ∂Γ qui vérifie les
deux propriétés suivantes :
(1) p.s. ω̄ n’a pas d’atome, et son support topologique est ∂Γ ;
(2) pour tout x ∈ Γ et pout chaque géodésique infinie v passant par x,

ω̄(B(v, H(x))) = e−H(x)Wx

W
,

où B(v, H(x)) désigne l’ensemble de tous les géodésiques infinies dans Γ qui coïncident
avec v jusqu’à hauteur H(x).

Puisque les frontières ∂∆ et ∂Γ peuvent être identifiées par la bijection expliquée ci-dessus, on
note ω la mesure de probabilité (aléatoire) sur ∂∆ induite par ω̄, qui sera appelée la mesure
uniforme sur ∂∆.

Avec la même constante λ que précédemment, on a P p.s. ω(dx) p.p.,

lim
r↓0

logµ2(B(x, r))
log r = λ ,

lim
r↓0

logω(B(x, r))
log r = 1 ,

où B(x, r) est la boule fermée de centre x et de rayon r dans ∆.

Théorème ([68, Theorem 2]).

Comme corollaire direct, on obtient que P p.s., la mesure harmonique µ2 est singulière par
rapport à la mesure uniforme ω.

Pour démontrer les deux derniers théorèmes, notons d’abord que, choisir uniformément au
hasard un sommet de T(n)

n est, dans un certain sens, équivalent à biaiser la loi de T(n) par
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#T(n)
n . Cette observation nous amène à introduire l’arbre de Galton–Watson biaisé par la taille,

noté T̂, cf. [43, 70]. Écrivons µ̂ la loi biaisée de µ, définie par µ̂(k) = kµ(k) pour tout k ≥ 1
(remarquons que µ̂ est bien une mesure de probabilité car µ est critique). Soit (N̂k)k≥1 une
suite de variables aléatoires i.i.d. de même loi µ̂. Elles sont toutes égales ou supérieures à 1. La
racine ∅ de l’arbre T̂ donne naissance à N̂1 enfants. Prenons un des ses enfants uniformément au
hasard, que l’on note v1. Les autres engendrent indépendamment les uns des autres des µ-GW
arbres ordinaires. L’individu v1, quant à lui, donne naissance à N̂2 enfants. De même, on prend
un de ces nouveaux enfants au hasard, que l’on note v2. Les autres sont les racines de µ-GW
arbres ordinaires. On peut répéter cette procédure une infinité de fois, et l’arbre infini aléatoire
obtenu est l’arbre biaisé T̂ (voir la Figure 1.6). Il est clair par construction que T̂ a un unique
chemin infini (∅,v1,v2, . . .) partant de la racine, que l’on appelle l’épine dorsale.

∅

µ-GW µ-GW µ-GW

µ-GW

µ-GW µ-GW

µ-GW

N̂1 = 4

N̂2 = 2

N̂3 = 3

N̂4 = 2

v1

v2

v3

v4

Figure 1.6 – Un arbre de Galton–Watson biaisé par la taille T̂

De même, afin d’obtenir une meilleure compréhension d’un point distingué choisi au hasard
selon la mesure uniforme ω sur ∂∆, on construit un arbre réduit continu biaisé par la taille ∆̂
de la façon suivante : d’abord, la racine ∅ de ∆̂ a une ligne de descendants distinguée qui est
un segment de longueur 1. Soit V∅ une variable aléatoire à valeurs dans [0, 1] de loi 2(1− x)dx.
À la hauteur V∅ de la ligne de descendants distinguée, on greffe un sous-arbre qui est une
copie indépendante de ∆ normalisée par le facteur (1 − V∅). Ensuite, on se donne une copie
indépendante V1 de V∅, et à la hauteur V∅ +(1−V∅)V1 de la ligne de descendants distinguée, on
greffe une autre copie indépendante de ∆, mais cette fois normalisée par le facteur (1−V∅)(1−V1).
Notons que, pour chacune des greffes, on choisit le coté gauche ou le coté droite de la ligne de
descendants distinguée avec équiprobabilité. Nous continuons cette procédure pour greffer une
infinité de sous-arbres sur la ligne de descendants distinguée, avec la hauteur de la position de
greffe tendant vers 1, et nous obtenons à la fin une réalisation de ∆̂.

La constante λ apparaissant dans les deux théorèmes précédents peut aussi être exprimée
en termes de la conductance de ∆̂. Si l’on regarde l’arbre ∆̂ comme un réseau électrique avec
un ohm de résistance par unité de longueur, la conductance équivalente entre la racine et la
hauteur 1 est une variable aléatoire Ĉ à valeurs dans [1,∞). On peut montrer que la distribution
de Ĉ est caractérisée par l’équation récursive en loi

Ĉ (loi)==
(
V + 1− V

Ĉ + C

)−1
, (1.10)
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hauteur 1

hauteur 0
∅

V∅

(1− V∅)V1

Figure 1.7 – Un arbre réduit continu biaisé par la taille ∆̂

où la loi de la variable aléatoire V a densité 2(1 − x) sur [0, 1], et V, C, Ĉ sont supposées être
indépendantes. On en déduit que la conductance Ĉ a des moments finis de tous les ordres, et,
elle admet une densité f̂ continue sur [1,∞), qui atteint un maximum global à 3/2.
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Figure 1.8 – Un histogramme de la distribution de Ĉ sur (1,∞) obtenu à partir des
simulations basées sur (1.10). Les courbes rouges et bleues correspondent respectivement
aux formules explicites pour la densité f̂ sur [1, 2] et [2, 3].

Nous terminons avec la belle formule suivante pour la constante λ.

La constante λ apparaissant dans les deux théorèmes précédents est donnée par

λ = E[ Ĉ ]− 1.

Proposition ([68, Proposition 4]).
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Bien entendu, on s’attend à ce que nos résultats dans cette section se généralisent au cas où
la loi de reproduction µ appartienne au domaine d’attraction d’une loi stable d’indice α ∈ (1, 2).
Cela fera l’objet d’un futur projet de recherche.
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Chapitre 2

The range of tree-indexed random
walk in high dimensions

Les résultats de ce chapitre sont issus de l’article [61], écrit en collaboration
avec Jean-François Le Gall et accepté pour publication dans le Journal of the
Institute of Mathematics of Jussieu.

We provide asymptotics for the range Rn of a random walk on the d-dimensional lattice
indexed by a random tree with n vertices. Using Kingman’s subadditive ergodic theorem, we
prove under general assumptions that n−1Rn converges to a constant, and we give conditions
ensuring that the limiting constant is strictly positive. On the other hand, in dimension 4 and
in the case of a symmetric random walk with exponential moments, we prove that Rn grows like
n/ logn. We apply our results to asymptotics for the range of branching random walk when the
initial size of the population tends to infinity.

2.1 Introduction

The main goal of this work is to derive asymptotics for the number of distinct sites of the
lattice visited by a tree-indexed random walk. Asymptotics for the range of an ordinary random
walk on the d-dimensional lattice Zd have been studied extensively since the pioneering work of
Dvoretzky and Erdös [29]. Consider for simplicity the case of a simple random walk on Zd, and,
for every integer n ≥ 1, let Rn be the number of distinct sites of Zd visited by the random walk
up to time n. When d ≥ 3, let qd > 0 be the probability that the random walk never returns to
its starting point. Then,
• if d ≥ 3,

1
n

Rn
a.s.−→
n→∞

qd ,

• if d = 2,
logn
n

Rn
a.s.−→
n→∞

π ,

• if d = 1,
n−1/2 Rn

(d)−→
n→∞

sup
0≤t≤1

Bt − inf
0≤t≤1

Bt ,

where (d)−→ indicates convergence in distribution and (Bt)t≥0 is a standard linear Brownian
motion. The cases d ≥ 3 and d = 2 were obtained in [29], whereas the case d = 1 is a very

39
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easy consequence of Donsker’s invariance theorem (see e.g. [34]). The preceding asymptotics
have been extended to much more general random walks. In particular, for any random walk
in Zd, an application of Kingman’s subadditive ergodic theorem [45] shows that the quantity
Rn/n converges a.s. to the probability that the random walk does not return to its starting point
(which is positive if the random walk is transient). See also [34] for the almost sure convergence
of the (suitably normalized) range of an arbitrary recurrent random walk in the plane, [33] for
a central limit theorem for the range of transient random walk, [54] for a non-Gaussian central
limit theorem in the plane and [64] for a general study of the range of random walks in the
domain of attraction of a stable distribution.

In the present work, we discuss similar asymptotics for tree-indexed random walk. We
consider (discrete) plane trees, which are rooted ordered trees that can be viewed as describing
the genealogy of a population starting with one ancestor or root, which is usually denoted by
the symbol ∅. Given such a tree T and a probability measure θ on Zd, we can consider the
random walk with jump distribution θ indexed by the tree T . This means that we assign a
(random) spatial location ZT (u) ∈ Zd to every vertex u of T , in the following way. First, the
spatial location ZT (∅) of the root is the origin of Zd. Then, we assign independently to every
edge e of the tree T a random variable Xe distributed according to θ, and we let the spatial
location ZT (u) of the vertex u be the sum of the quantities Xe over all edges e belonging to the
simple path from ∅ to u in the tree. The number of distinct spatial locations is called the range
of the tree-indexed random walk ZT .

Let us state a particular case of our results.

Theorem 2.1. Let θ be a probability distribution on Zd, which is symmetric and has finite
support. Assume that θ is not supported on a strict subgroup of Zd. For every integer n ≥ 1,
let Tn be a random tree uniformly distributed over all plane trees with n vertices. Conditionally
given Tn, let ZTn be a random walk with jump distribution θ indexed by Tn, and let Rn stand for
the range of ZTn. Then,
• if d ≥ 5,

1
n
Rn

(P)−→
n→∞

cθ ,

where cθ > 0 is a constant depending on θ, and (P)−→ indicates convergence in probability;

• if d = 4,
logn
n
Rn

L2
−→
n→∞

8π2 σ4 ,

where σ2 = (detMθ)1/4, with Mθ denoting the covariance matrix of θ;
• if d ≤ 3,

n−d/4Rn
(d)−→
n→∞

aθ λd(supp(I)) ,

where aθ = 2d/4(detMθ)1/2 is a constant depending on θ, and λd(supp(I)) stands for the
Lebesgue measure of the support of the random measure on Rd known as ISE (Integrated
Super-Brownian Excursion).

Notice the obvious analogy with the results for the range of (ordinary) random walk that
were recalled above. At an intuitive level, Rn is likely to be smaller than the range Rn of ordinary
random walk, because one expects many more self-intersections in the tree-indexed case. This is
reflected in the fact that the “critical dimension” is now d = 4 instead of d = 2. In the same way
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as d = 2 is critical for the recurrence of random walk on Zd, one may say that d = 4 is critical
for the recurrence of tree-indexed random walk, in the sense that for random walk indexed by
a “typical” large tree of size n, the number of returns to the origin will grow logarithmically
with n. Furthermore, one may notice that the set of all spatial locations of Tn is contained in
the ball of radius Cn1/4 centered at the origin, with a probability close to 1 if the constant C
is sufficiently large (see Janson and Marckert [39] or Kesten [44] in a slightly different setting),
so that the range Rn is at most of order nd/4 in dimension d ≤ 3. We finally mention that the
limiting constant cθ in dimension d ≥ 5 can again be interpreted as a probability of no return
to the origin for random walk indexed by a certain infinite random tree: See Section 2.2 below
for more details.

Let us emphasize that asymptotics of the type of Theorem 2.1 hold in a much more gen-
eral setting. Firstly, it is enough to assume that the jump distribution θ is centered and has
sufficiently high moments (a little more is needed when d = 4). Our argument to get the case
d ≥ 5 of Theorem 2.1 relies on an application of Kingman’s subadditive ergodic theorem, which
gives the convergence of 1

nRn to a (possibly vanishing) constant in any dimension d, without
any moment assumption on θ. Secondly, in all cases except the critical dimension d = 4, we
can handle more general random trees. Our methods apply to Galton–Watson trees with an
offspring distribution having mean one and finite variance, which are conditioned to have ex-
actly n vertices. In the special case where the offspring distribution is geometric with parameter
1/2, we recover uniformly distributed plane trees, but the setting of conditioned Galton–Watson
trees includes other important “combinatorial trees” such as binary trees or Cayley trees (see
e.g. [58]). Some of our results even hold for an offspring distribution with infinite variance in
the domain of attraction of a stable distribution.

In the present work, we deal with the cases d ≥ 5 and d = 4 of Theorem 2.1, and the
extensions that have just been described. The companion paper [61] addresses the “subcritical”
case d ≤ 3, which involves different methods and is closely related to the invariance principles
connecting branching random walk with super-Brownian motion.

Let us turn to a more precise description of our main results and of our methods. In
Section 2.2 below, we discuss the convergence of 1

nRn in a general setting. The basic ingredient
of the proof is the introduction of a suitable probability measure on a certain set of infinite
trees. Roughly speaking, for any offspring distribution µ with mean one, we construct a random
infinite tree consisting of an infinite “spine” and, for each node of the spine, of a random number
of Galton–Watson trees with offspring distribution µ that branch off the spine at this node. This
construction is related to the infinite size-biased Galton–Watson tree (see [70] and references
therein), with the difference that we consider only subtrees branching off the right side of the
spine. For a more precise description, see subsection 2.2.3. The law of our infinite tree turns out
to be invariant under a shift transformation, which basically involves re-rooting the tree at the
first vertex (in lexicographical order) that does not belong to the spine. If we consider a random
walk (with an arbitrary jump distribution θ) indexed by this infinite tree, the number of distinct
locations of the random walk at the first n vertices of the infinite tree yields a subadditive process
Rn, to which we can apply Kingman’s theorem in order to get the almost sure convergence of
1
nRn to a constant (Theorem 2.4). One then needs to discuss the positivity of the limiting
constant, and this leads to conditions depending both on the offspring distribution µ and on the
jump distribution θ. More precisely, we give a criterion (Proposition 2.5) involving the Green
function of the random walk and the generating function of µ, which ensures that the limiting
constant is positive. In the case when µ has finite variance and if the jump distribution θ is
centered (with sufficiently high moments), this criterion is satisfied if d ≥ 5. The preceding



42 Chapitre 2 The range of tree-indexed random walk in high dimensions

line of reasoning is of course very similar to the classical application of Kingman’s theorem to
the range of ordinary random walk. In the present setting however, additional ingredients are
needed to transfer the asymptotics from the case of the infinite random tree to a single Galton–
Watson tree conditioned to have n vertices. At this point, we need to assume that the offspring
distribution µ has finite variance or is in the domain of attraction of a stable distribution, so
that we can use known results [26] on the scaling limit of the height process associated with a
sequence of Galton–Watson trees with offspring distribution µ: Applying these results to the
sequence of trees that branch off the spine of the infinite tree yields information about the
“large” trees in the sequence, which is essentially what we need to cover the case of a single
Galton–Watson tree conditioned to be large (Theorem 2.7). The case d ≥ 5 of Theorem 2.1
follows as a special case of the results in Section 2.2.

Section 2.3, which is the most technical part of the paper, is devoted to the proof of a
generalized version of the case d = 4 of Theorem 2.1 (Theorem 2.14). We restrict our attention
to the case when the offspring distribution is geometric with parameter 1/2, and we assume that
the jump distribution θ is symmetric with small exponential moments. While the symmetry
assumption can presumably be weakened without too much additional work, the existence of
exponential moments is used at a crucial point of our proof where we rely on the multidimensional
extension of the celebrated Komlós-Major-Tusnády strong invariance principle. Our approach
is based on the path-valued Markov chain called the discrete snake. In our setting, this process,
which we denote by (Wn)n≥0, takes values in the space of all infinite paths w : (−∞, ζ]∩Z −→ Z4,
where ζ = ζ(w) ∈ Z is called the lifetime of w. If ζn denotes the lifetime of Wn, the process
(ζn)n≥0 evolves like simple random walk on Z. Furthermore, if ζn+1 = ζn − 1, the path Wn+1
is obtained by restricting Wn to the interval (−∞, ζn − 1] ∩ Z, whereas if ζn+1 = ζn + 1,
the path Wn+1 is obtained by adding to Wn one step distributed according to θ. We assume
that the initial value W0 is just a path (indexed by negative times) of the random walk with
jump distribution θ started from the origin. Then the values of the discrete snake generate a
random walk indexed by an infinite random tree, which corresponds, in the particular case of
the geometric offspring distribution, to the construction developed in Section 2.2. Note however
that, in contrast with Section 2.2, the Markovian properties of the discrete snake play a very
important role in Section 2.3. A key estimate (Proposition 2.8) states that the probability that
the “head of the discrete snake” (that is the process (Wk(ζk))k≥0) does not return to the origin
before time n behaves like c/ logn for a certain constant c. This is analogous to the well-known
asymptotics for the probability that simple random walk in Z2 does not come back to its starting
point before time n, but the proof, which is developed in subsection 2.3.2, turns out to be much
more involved in our setting. The main result of Section 2.3 (Theorem 2.14) gives the case d = 4
of Theorem 2.1 under slightly more general assumptions. It would be of interest to extend this
result to more general offspring distributions, but this would require a different approach.

Section 2.4 applies the preceding results to asymptotics for the range of a branching random
walk in Zd, d ≥ 4, when the size of the initial population tends to infinity. This study is related
to the recent work of Lalley and Zheng [50], who discuss the number of distinct sites occupied
by a nearest neighbor branching random walk in Zd at a fixed time. Note that the genealogical
structures of descendants of the different initial particles are described by independent Galton–
Watson trees, which makes it possible to apply our results about the range of tree-indexed
random walk. Still one needs to verify that points that are visited by the descendants of two
distinct initial particles give a negligible contribution in the limit. The analogous problem for
low dimensions d ≤ 3 is addressed in [61].
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Let us finally mention that there are certain analogs of our results in a continuous setting. In
particular, Delmas [22] considers the Lebesgue measure of the tubular neighborhood of radius ε
of the range of a super-Brownian measure in Rd, d ≥ 4, and proves that this measure behaves like
εd−4 when d ≥ 5 and like | log ε|−1 when d = 4. This is analogous to our results for branching
random walk in Section 2.4. An exact analog of the cases d ≥ 4 in Theorem 2.1 is obtained
by considering the Lebesgue measure of the tubular neighborhood of radius ε of the support
of the so-called integrated super-Brownian excursion (ISE). Asymptotics for this quantity when
ε→ 0 are derived in [22, Corollary 2.4]. We do not know of any analog of Proposition 2.8 in the
continuous setting. Abraham and Werner [1] discuss a very similar problem for the Brownian
snake and super-Brownian motion in Rd, but only when d ≤ 3.

Notation. We use the notation Ja, bK := [a, b]∩Z for a, b ∈ Z, with a ≤ b. Similarly, K−∞, aK :=
(−∞, a] ∩ Z for a ∈ Z. For any finite set A, #A denotes the cardinality of A.

2.2 Linear growth of the range

2.2.1 Finite trees

We use the standard formalism for plane trees. We set

U :=
∞⋃
n=0

Nn,

where N = {1, 2, . . .} and N0 = {∅}. If u = (u1, . . . , un) ∈ U , we set |u| = n (in particular
|∅| = 0). We write ≺ for the lexicographical order on U , so that ∅ ≺ 1 ≺ (1, 1) ≺ 2 for instance.

If u, v ∈ U , uv stands for the concatenation of u and v. In particular ∅u = u∅ = u. The
genealogical (partial) order � is then defined by saying that u � v if and only if v = uw for
some w ∈ U .

A plane tree (also called rooted ordered tree) T is a finite subset of U such that the following
holds:
(i) ∅ ∈ T .
(ii) If u = (u1, . . . , un) ∈ T \{∅} then û := (u1, . . . , un−1) ∈ T .
(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every

j ∈ N, (u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).
The notions of a child and a parent of a vertex of T are defined in an obvious way. The

quantity ku(T ) in (iii) is the number of children of u in T . If u ∈ T , we write [T ]u = {v ∈ U :
uv ∈ T }, which corresponds to the subtree of descendants of u in T . We denote the set of all
plane trees by Tf .

Throughout this work, we consider a probability measure µ on Z+, which is critical in the
sense that ∞∑

k=0
k µ(k) = 1.

We exclude the degenerate case where µ(1) = 1. The law of the Galton–Watson tree with
offspring distribution µ is a probability measure on the space Tf , which we denote by Πµ (see
e.g. [58, Section 1]).

We also let θ be a probability measure on Zd, which is adapted in the sense that it is not
supported on a strict subgroup of Zd.
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A (d-dimensional) spatial tree is a pair (T , (zu)u∈T ) where T ∈ Tf and zu ∈ Zd for every
u ∈ T . Let T∗f be the set of all spatial trees. We write Π∗µ,θ for the probability distribution on T∗f
under which T is distributed according to Πµ and, conditionally on T , the “spatial locations”
(zu)u∈T are distributed as random walk indexed by T , with jump distribution θ, and started
from 0 at the root ∅ (see the definition given in Section 1). We then set

aµ,θ := Π∗µ,θ(zu 6= 0, ∀u ∈ T \{∅}),

and, for every y ∈ Zd,
hµ,θ(y) := Π∗µ,θ(zu 6= −y, ∀u ∈ T ).

Notice that aµ,θ > 0, simply because with positive probability a tree distributed according to
Πµ consists only of the root.

2.2.2 Infinite trees

We now introduce a certain class of infinite trees. Each tree in this class will consist of an
infinite ray or spine starting from the root, and finite subtrees branching off every node of this
infinite ray. We label the vertices of the infinite ray by nonpositive integers 0,−1,−2, . . .. The
reason for labelling the vertices of the spine by negative integers comes from the fact that −1 is
viewed as the parent of 0, −2 as the parent of −1, and so on.

More precisely, we consider the set

V := Z− × U

where Z− = {0,−1,−2, . . .}. For every j ∈ Z−, we identify the element (j,∅) of V with the
integer j, and we thus view Z− as a subset of V. We define the lexicographical order on V as
follows. If j, j′ ∈ Z−, we have j ≺ j′ if and only if j ≤ j′. If u ∈ U\{∅}, we have always
j′ ≺ (j, u). If u, u′ ∈ U\{∅}, we have (j, u) ≺ (j′, u′) if either j > j′, or j = j′ and u ≺ u′.
The genealogical (partial) order � on V is defined in an obvious way: in agreement with the
preceding heuristic interpretation, the property j � j′ for j, j′ ∈ Z− holds if and only if j ≤ j′.

Let T be a subset of V such that Z− ⊂ T . For every j ∈ Z−, we set

Tj := {u ∈ U : (j, u) ∈ T }.

We say that T is an infinite tree if, for every j ∈ Z−, Tj is a (finite) plane tree, and furthermore
T \Z− is infinite. We write T for the set of all infinite trees. By convention, the root of an
infinite tree T is the vertex 0. Clearly, T is determined by the collection (Tj)j∈Z− . Note that
the lexicographical order of vertices corresponds to the order of visit when one “moves around”
the tree in clockwise order, starting from the “bottom” of the spine and assuming that the
“subtrees” Tj are drawn on the right side of the spine, as in Fig. 1.

We next define a shift transformation τ on the space T. Starting from an infinite tree T , its
image τ(T ) = T ′ is obtained informally as follows. We look for the first vertex (in lexicographical
order) of T \Z−. Call this vertex v. We then “re-root” the tree T at v and, in the case when
v is not a child of 0 (or equivalently if T0 = {∅}), we remove the vertices of the spine that are
strict descendants of the parent of v.

For a more formal definition, let k ∈ Z− be the unique integer such that v ∈ Tk (necessarily,
v = (k, 1)). Then, T ′ is determined by requiring that:

– T ′j = Tj+k+1 if j ≤ −2;
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– T ′0 = [Tk]1;
– T ′−1 is the unique plane tree such that there exists a bijection from Tk\{u ∈ Tk : 1 � u}
onto T ′−1 that preserves both the lexicographical order and the genealogical order.

0

−1

−2

−3

0

−1

−2

−3

−4

0

−1

−2

−3

−4

0

−1

−2

−3

(0, 1)
(−1, 1)

(−2, 1)

(0, 1)

T T ′ = τ(T ) τ ◦ τ(T ) τ3(T )

Figure 2.1: The first 3 iterations of the shift transformation on an infinite tree T . At
each step, the marked vertex will become the new root after the shift.

Fig. 2.1 explains the construction of T ′ better than the formal definition.

2.2.3 The invariant measure on infinite trees

Let Pµ be the probability measure on T that is determined by the following conditions.
Under Pµ(dT ),

– the trees T0, T−1, T−2, . . . are independent;
– T0 is distributed according to Πµ;
– for every integer j ≤ −1,

Pµ(k∅(Tj) = n) = µ([n+ 1,∞)),

for every n ≥ 0; furthermore, conditionally on k∅(Tj) = n, the trees [Tj ]1, [Tj ]2, . . . , [Tj ]n
are independent and distributed according to Πµ.

Notice that
∑
n≥0 µ([n + 1,∞)) = 1 due to the criticality of the probability measure µ. The

reason for introducing the probability measure Pµ comes from the next proposition.

Proposition 2.2. The probability measure Pµ is invariant under the shift τ .

Proof. Suppose that T is distributed according to Pµ and set T ′ = τ(T ) as above. We need
to verify that T ′ is also distributed according to Pµ, or equivalently that the trees T ′0 , T ′−1, . . .
satisfy the same properties as T0, T−1, . . . above. The key point is to calculate the distribution
of (k∅(T ′j ), j ≤ 0). Fix an integer p ≥ 1, and let n0, n1, . . . , np ∈ Z+. Also let k be the element
of Z− determined as in the definition of T ′ = τ(T ) at the end of subsection 2.2.2. The event

{k = 0} ∩
{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
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holds if and only if we have

k∅(T0) = n1 + 1, k1(T0) = n0, k∅(T−1) = n2, . . . , k∅(T−p+1) = np,

which occurs with probability

µ(n1 + 1)µ(n0)µ([n2 + 1,∞)) . . . µ([np + 1,∞)).

Let ` ∈ Z−\{0}. Similarly, the event

{k = `} ∩
{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
holds if and only if we have

k∅(T0) = 0, . . . , k∅(T`+1) = 0, k∅(T`) = n1+1, k1(T`) = n0, k∅(T`−1) = n2, . . . , k∅(T`−p+1) = np,

which occurs with probability

µ(0)µ([1,∞))−`−1µ([n1 + 2,∞))µ(n0)µ([n2 + 1,∞)) . . . µ([np + 1,∞)).

Summarizing, we see that the event{
k∅(T ′0 ) = n0, k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
has probability

µ(n0)µ(n1 + 1)µ([n2 + 1,∞)) . . . µ([np + 1,∞))

+ µ(n0)µ(0)
( −∞∑
`=−1

µ([1,∞))−`−1
)
µ([n1 + 2,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))

= µ(n0)µ([n1 + 1,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))

as desired. An immediate generalization of the preceding argument shows that, if t0 and tj,i,
1 ≤ j ≤ p, 1 ≤ i ≤ nj are given plane trees, the event

{
k∅(T ′−1) = n1, . . . , k∅(T ′−p) = np

}
∩
{
T ′0 = t0

}
∩
( p⋂
j=1

( nj⋂
i=1
{[T ′−j ]i = tj,i}

))

has probability

µ([n1 + 1,∞))µ([n2 + 1,∞)) . . . µ([np + 1,∞))×Πµ(t0)×
p∏
j=1

( nj∏
i=1

Πµ(tj,i)
)
.

This completes the proof.

2.2.4 Random walk indexed by the infinite tree

Let T ∈ T. The definition of random walk indexed by T requires some extra care because
we need to specify the orientation of edges: The (oriented) edges of T are all pairs (x, y) of
elements of T such that there exists j ∈ Z− such that

– either x = (j, u), y = (j, v), where u, v ∈ Tj and u is the parent of v;
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– or x = j − 1, y = j.
See Fig. 2.2. We write E(T ) for the collection of all oriented edges of T . The random walk
indexed by T is a collection (ZT (u))u∈T of random variables with values in Zd, such that
ZT (0) = 0 and the random variables (ZT (y)−ZT (x))(x,y)∈E(T ) are independent and distributed
according to θ. Let P(T ) stand for the distribution of the collection (ZT (u))u∈T .

Let T∗ be the set of all pairs (T , (zu)u∈T ) where T ∈ T and zu ∈ Zd for every u ∈ T . We
define a probability measure P∗µ,θ on T∗ by declaring that P∗µ,θ is the law of the random pair
(T , (Zu)u∈T ) where T is distributed according to Pµ and conditionally on T = T , (Zu)u∈T

is distributed according to P(T ).
We next define a shift transformation τ∗ on T∗. For (T , (zu)u∈T ) ∈ T∗, we set τ∗(T , (zu)u∈T ) =

(T ′, (z′u)u∈T ′), where T ′ = τ(T ) and the spatial locations of vertices of T ′ (which may be viewed
as a subset of T ) are obtained by shifting all original locations zu so that the location of the root
of T ′ is again 0. More precisely, if k ∈ Z− is defined as above in the definition of T ′ = τ(T ),
there is a unique bijection φT from T ′ onto T \{k + 1, k + 2, . . . , 0} that maps 0 to (k, 1) and
preserves both the lexicographical order and the genealogical order, and we set

z′u = zφT (u) − zφT (0)

for every u ∈ T ′.

Proposition 2.3. The probability measure P∗µ,θ is invariant under τ∗.

This is an easy consequence of Proposition 2.2 and the way the spatial positions are con-
structed. We leave the details to the reader.

u0(T ) = 0

−1

−2

−3

T

u1(T )

u2(T )

u3(T ) u4(T )

u5(T )

u6(T )

u7(T )
u8(T )

Figure 2.2: The orientation of edges of T , and the sequence u0(T ), u1(T ), u2(T ), . . .

Let T ∗ = (T , (zu)u∈T ) ∈ T∗. We define a sequence (ui(T ))i≥0 of elements of T as follows.
First, u0(T ) = 0 is the root of T . Then u1(T ), u2(T ), . . . are all elements of T \Z− listed in
lexicographical order (see Fig. 2.2). We set, for every integer n ≥ 1,

Rn(T ∗) := #{zu0(T ), zu1(T ), . . . , zun−1(T )}.

We let S = (Sk)k≥0 be a random walk in Zd with jump distribution θ, which starts from x
under the probability measure Px, for every x ∈ Zd.

Recall the notation aµ,θ and hµ,θ introduced at the end of subsection 2.2.1.
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Theorem 2.4. We have
Rn
n
−→
n→∞

cµ,θ, P∗µ,θ-a.s.

where the limiting constant cµ,θ ∈ [0, 1] may be defined as

cµ,θ = aµ,θ E0

[ ∞∏
j=1

Φµ,θ(−Sj)
]
,

with

Φµ,θ(x) =
∞∑
k=0

µ([k + 1,∞))
( ∑
y∈Zd

θ(y)hµ,θ(x+ y)
)k
,

for every x ∈ Zd.

Proof. Set τ∗n = (τ∗)n for every integer n ≥ 1. We claim that, for every n,m ≥ 1,

Rn+m ≤ Rn +Rm ◦ τ∗n.

Indeed, Rn(T ∗) is the number of distinct elements among zu0(T ), zu1(T ), . . . , zun−1(T ), and simi-
larly Rn+m(T ∗) is the number of distinct elements among zu0(T ), zu1(T ), . . . , zun+m−1(T ). On the
other hand, from the construction of the shift transformation, it is fairly easy to verify that
Rm ◦ τ∗n(T ∗) is the number of distinct elements among zun(T ), zun+1(T ), . . . , zun+m−1(T ). The
bound of the preceding display follows immediately.

Since 1 ≤ Rn ≤ n, we can then apply Kingman’s subadditive ergodic theorem to the sequence
(Rn)n≥1, and we get that Rn/n converges almost surely. The fact that the limit is constant
is immediate from a simple zero-one law argument (we could also verify that τ∗ is ergodic).
Furthermore, the limiting constant cµ,θ is recovered by

cµ,θ = lim
n→∞

1
n

E∗µ,θ[Rn].

However, with the preceding notation,

E∗µ,θ[Rn] = E∗µ,θ

[
n−1∑
i=0

1{zuj 6=zui ,∀j∈Ji+1,n−1K}

]

=
n−1∑
i=0

P∗µ,θ(zuj 6= zui , ∀j ∈ Ji+ 1, n− 1K)

=
n−1∑
i=0

P∗µ,θ(zuj 6= 0, ∀j ∈ J1, n− i− 1K)

using the shift invariance in the last equality. It now follows that

cµ,θ = lim
n→∞

1
n

E∗µ,θ[Rn] = P∗µ,θ(zuj 6= 0, ∀j ≥ 1),

and the right-hand side is easily computed in the form given in the theorem, using the definition
of P∗µ,θ.
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Theorem 2.4 does not give much information when the limiting constant cµ,θ is equal to 0.
In the next proposition, we give sufficient conditions that ensure cµ,θ > 0. We let gµ denote the
generating function of µ,

gµ(r) :=
∞∑
k=0

µ(k) rk , 0 ≤ r ≤ 1.

In the remaining part of this subsection, we assume that the random walk S is transient (it is
not hard to see that cµ,θ = 0 if S is recurrent). We denote the Green function of S by Gθ, that
is

Gθ(x) := E0
[ ∞∑
k=0

1{Sk=x}
]
, x ∈ Zd.

Proposition 2.5. (i) The property cµ,θ > 0 holds if

∞∏
j=1

(1− gµ((1−Gθ(Sj))+)
Gθ(Sj)

)
> 0 , P0-a.s.

(ii) Suppose that the random walk S is centered and has finite moments of order (d − 1) ∨ 2.
Then,

– if µ has finite variance, then cµ,θ > 0 if d ≥ 5.
– if µ is in the domain of attraction of a stable distribution with index α ∈ (1, 2), then
cµ,θ > 0 if d > 2α

α−1 .

Proof. (i) We have already noticed that aµ,θ > 0. We then observe that, for every r ∈ [0, 1),

∞∑
k=0

µ([k + 1,∞)) rk = 1− gµ(r)
1− r . (2.1)

Next we can get a lower bound on the function hµ,θ(y) by saying that the probability for tree-
indexed random walk to visit the point −y is bounded above by the expected value of the number
of vertices at which the random walk sits at −y. Since µ is critical, it follows that

hµ,θ(y) ≥ 1−Gθ(−y)

for every y ∈ Zd. Hence, for every x ∈ Zd,∑
y∈Zd

θ(y)hµ,θ(x+ y) ≥ 1−
∑
y∈Zd

θ(y)Gθ(−x− y).

However,

∑
y∈Zd

θ(y)Gθ(−x− y) =
∑
y∈Zd

θ(y)Ex+y
[ ∞∑
k=0

1{Sk=0}
]

= Ex
[ ∞∑
k=1

1{Sk=0}
]
≤ Gθ(−x).

Consequently, using (2.1), we have, for all x such that Gθ(−x) > 0,

Φµ,θ(x) ≥ 1− gµ((1−Gθ(−x))+)
Gθ(−x) .

The assertion in (i) follows, noting that Gθ(Sj) > 0 for every j ≥ 0, P0-a.s.
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(ii) If S is centered with finite moments of order (d − 1) ∨ 2, then a standard bound for the
Green function (see e.g. [54, Théorème 3.5]) gives the existence of a constant Cθ such that, for
every x ∈ Zd,

Gθ(x) ≤ Cθ |x|2−d (2.2)

(recall that we assume that S is transient, so that necessarily d ≥ 3 here).
Suppose first that µ has a finite variance σ2

µ. Then,

gµ(1− s) = 1− s+
σ2
µ

2 s2 + o(s2)

as s→ 0. Consequently,
1− gµ(1− s)

s
= 1−

σ2
µ

2 s+ o(s)

as s→ 0. By taking s = Gθ(Sj), we see that the condition in (i) will be satisfied if
∞∑
j=1

Gθ(Sj) <∞ , P0-a.s.

However, using the local limit theorem and the preceding bound for Gθ, it is an easy matter to
verify that the property

E0
[ ∞∑
j=1

Gθ(Sj)
]
<∞

holds if d ≥ 5. This gives the desired result when µ has a finite variance.
Suppose now that µ is in the domain of attraction of a stable distribution with index α ∈

(1, 2). Then the generating function of µ must satisfy the property

gµ(1− s) = 1− s+ sα L(s)

where L is slowly varying as s ↓ 0 (see e.g. the discussion in [26, p.60]). By the same argument
as above, we see that the condition in (i) will be satisfied if

∞∑
j=1

Gθ(Sj)α−1 L(Gθ(Sj)) <∞ , P0-a.s.

and this holds if
(α− 1)(d− 2)/2 > 1,

which completes the proof.

Remarks. 1. The moment assumption in (ii) can be weakened a little: According to [51],
the bound (2.2) holds provided the random walk S (is centered and) has moments of order
(d− 2 + ε) ∨ 2 for some ε > 0. However moments of order d− 2 would not be sufficient for this
bound.

2. Suppose that the random walk S satisfies the conditions in part (ii) of the proposition. If
µ has finite variance, it is not hard to verify that cµ,θ = 0 if d ≤ 4. Let us briefly sketch the
argument. It is enough to consider the case d = 4. Under the probability measure Π∗µ,θ, write
Nx for the number of vertices whose spatial location is equal to x. Then, if x 6= 0,

Π∗µ,θ[Nx] = Gθ(x) ≥ C ′θ|x|−2
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for some constant C ′θ > 0. On the other hand, standard arguments for Galton–Watson trees
show that there exists a constant Kµ such that

Π∗µ,θ[(Nx)2] ≤ Kµ

∑
z∈Z4

Gθ(z)Gθ(x− z)2.

Using (2.2) and simple calculations, we obtain the existence of a constant K ′µ,θ such that, for
every x ∈ Z4 with |x| ≥ 2,

Π∗µ,θ[(Nx)2] ≤ K ′µ,θ |x|−2 log |x|.

Hence, for every x ∈ Z4 with |x| ≥ 2,

1− hµ,θ(x) = Π∗µ,θ(N−x ≥ 1) ≥
(Π∗µ,θ[N−x)])2

Π∗µ,θ[(N−x)2] ≥ (C ′θ)2(K ′µ,θ)−1 |x|−2 (log |x|)−1.

The property cµ,θ = 0 now follows easily. In the next section, we will see (in a particular case)
that the proper normalization factor for Rn is (logn)/n when d = 4.

3. The paper [67] considers certain random walks with drift on Zd, for which the property
cµ,θ > 0 holds if d ≥ 4 although the bound (2.2) no longer holds.

4. It is an interesting question whether the condition d > 2α
α−1 is also sharp when µ is in the

domain of attraction of a stable distribution of index α. We will not discuss this problem here
as our main interest lies in the case when µ has finite variance.

2.2.5 Conditioned trees

Our goal is now to obtain an analog of the convergence of Theorem 2.4 for random walk
indexed by a single Galton–Watson tree conditioned to be large. Recall from subsection 2.2.1
the notation T∗f for the set of all spatial trees. If T ∗ = (T , (zu)u∈T ) is a spatial tree with at least
n vertices, we keep the same notation Rn(T ∗) for the number of distinct points in the sequence
zu0 , zu1 , . . . , zun−1 , where u0, u1, . . . u#T −1 are the vertices of T listed in lexicographical order.
Also recall from subsection 2.2.1 the definition of the probability measure Π∗µ,θ on T∗f .

Proposition 2.6. Assume that µ has finite variance σ2
µ, or that µ is in the domain of attraction

of a stable distribution with index α ∈ (1, 2). For every n ≥ 1, let T ∗(>n) be a random spatial tree
distributed according to the probability measure Π∗µ,θ(· | #T > n). Then, for every a ∈ (0, 1],

1
n
Rbanc(T ∗(>n)) −→n→∞ cµ,θ a

in probability.

Proof. We first consider the case when µ has finite variance σ2
µ. Let T ∗ = (T , (Zu)u∈T )

be a T∗-valued random variable distributed according to P∗µ,θ under the probability measure
P . Recall the notation Tj , for j ∈ Z−, introduced in subsection 2.2.2. By construction, the
“subtrees”

T0, [T−1]1, [T−1]2, . . . , [T−1]k∅(T−1), [T−2]1, [T−2]2, . . . , [T−2]k∅(T−2), [T−3]1, . . .

then form an infinite sequence of independent random trees distributed according to Πµ. To
simplify notation we denote this sequence by T(0),T(1),T(2), . . .. We then introduce the height
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process (Hk)k≥0 associated with this sequence of trees (see [58, Section 1]). This means that, for
every j ≥ 0, we first enumerate the vertices of T(j) in lexicographical order, then we concatenate
the finite sequences obtained in this way to get an infinite sequence (vk)k≥0 of elements in U ,
and we finally set Hk := |vk| for every k ≥ 0. Note that the infinite sequence of vertices (vk)k≥0
thus obtained is essentially the same as the sequence (uk(T ))k≥0 introduced in subsection 2.2.4.

Then (see e.g. [58, Theorem 1.8]), we have the convergence in distribution( 1√
n
Hbntc

)
t≥0

(d)−→
n→∞

( 2
σµ
|βt|

)
t≥0

, (2.3)

where (βt)t≥0 denotes a standard linear Brownian motion. Next, for every integer n ≥ 1, set

kn := inf
{
k ≥ 0 : #T(k) > n

}
.

Clearly, the tree T(kn) is distributed according to Πµ(· | #T > n). Also set

dkn :=
∑

0≤j<kn
#T(j).

Using the convergence (2.3), it is not hard to prove (see e.g. the proof of Theorem 5.1 in [59])
that

1
n
dkn

(d)−→
n→∞

D1 , (2.4)

where D1 denotes the initial time of the first excursion of β away from 0 with duration greater
than 1.

By Theorem 2.4 and an obvious monotonicity argument, we have for every integer K > 0,

lim
n→∞

sup
0≤t≤K

∣∣∣ 1
n
Rbntc(T ∗)− cµ,θ t

∣∣∣ = 0 , a.s.

and it follows that

lim
n→∞

∣∣∣ 1
n
R(dkn+banc)∧Kn(T ∗)− 1

n
Rdkn∧Kn(T ∗)− cµ,θ

(
(dkn
n

+ a) ∧K − dkn
n
∧K

)∣∣∣ = 0 , a.s.

Since K can be chosen arbitrarily large, we deduce from the last convergence and (2.4) that we
have

lim
n→∞

1
n

(
Rdkn+banc(T ∗)−Rdkn (T ∗)

)
= cµ,θ a

in probability.
Let T ∗(kn) stand for the spatial tree obtained from T(kn) by keeping the spatial positions

induced by T ∗. Then, by construction, we have

Rbanc(T ∗(kn)) ≥ Rdkn+banc(T ∗)−Rdkn (T ∗).

Therefore, using the preceding convergence in probability, we obtain that, for every fixed ε > 0,

P
(
Rbanc(T ∗(kn)) ≥ (cµ,θa− ε)n

)
−→
n→∞

1. (2.5)

We claim that we have also

P
(
Rbanc(T ∗(kn)) ≤ (cµ,θa+ ε)n

)
−→
n→∞

1. (2.6)
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To see this, we argue by contradiction and suppose that for all n belonging to a sequence (nj)j≥1
converging to infinity, we have

P
(
Rbanc(T ∗(kn)) > (cµ,θa+ ε)n

)
≥ δ

for some δ > 0 independent of n. We suppose that cµ,θ > 0 (the case when cµ,θ = 0 is easier).
We observe that, for every fixed n, the tree T(kn) and the quantity Rbanc(T ∗(kn)) are independent
of the random variable dkn . Notice that T ∗(kn) is not independent of dkn , because the value of
dkn clearly influences the distribution of the spatial location of the root of T(kn). However, if we
simultaneously translate all spatial locations of T ∗(kn) so that the new location of the root is 0,
the new locations become independent of dkn , and the translation does not affect Rbanc(T ∗(kn)).
On the other hand, from the convergence in distribution (2.4), we can find δ′ > 0 such that, for
every sufficiently large n,

P
(
dkn ≤

ε

2cµ,θ
n
)
≥ δ′.

Using the preceding independence property, we conclude that, for every sufficiently large n in
the sequence (nj)j≥1,

P
(
Rb(εn/2cµ,θ)+anc(T ∗) ≥ (cµ,θa+ε)n

)
≥ P

(
dkn ≤

ε

2cµ,θ
n
)
P
(
Rbanc(T ∗(kn)) > (cµ,θa+ε)n

)
≥ δδ′.

However Theorem 2.4 implies that

1
n
Rb(εn/2cµ,θ)+anc(T ∗) −→n→∞ cµ,θ a+ ε

2 , a.s.

and so we arrive at a contradiction, which completes the proof of (2.6).
By construction, the tree T(kn) is distributed according to Πµ(· | #T > n), and if we shift

all spatial locations of T ∗(kn) so that the new location of the root is 0, we get a random spatial
tree distributed according to Π∗µ,θ(· | #T > n). The convergence of the proposition thus follows
from (2.5) and (2.6).

The proof in the case when µ is in the domain of attraction of a stable distribution with
index α ∈ (1, 2) is essentially the same, noting that Theorems 2.3.1 and 2.3.2 in [26] give an
analog of the convergence (2.3), where the role of reflected Brownian motion is played by the
so-called height process associated with the stable Lévy process with index α. We omit the
details.

We now would like to get a statement analogous to Proposition 2.6 for a tree conditioned to
have a fixed number of vertices. This will follow from Proposition 2.6 by an absolute continuity
argument. Before stating the result, we need to introduce some notation. Let G be the smallest
subgroup of Z that contains the support of µ. Plainly, the cardinality of the vertex set of a tree
distributed according to Πµ belongs to 1 + G. On the other hand, for every sufficiently large
integer p ∈ 1 + G, we have Πµ(#T = p) > 0, so that the definition of Πµ(· | #T = p) makes
sense.

If T ∗ = (T , (zu)u∈T ) is a spatial tree, we write R(T ∗) for the number of distinct elements in
{zu : u ∈ T }.

Theorem 2.7. Assume that µ has finite variance σ2
µ, or that µ is in the domain of attraction

of a stable distribution with index α ∈ (1, 2). For every sufficiently large integer n ∈ G, let T ∗(n)
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be a random spatial tree distributed according to the probability measure Π∗µ,θ(· | #T = n + 1).
Then,

1
n
R(T ∗(n)) −→

n→∞, n∈G
cµ,θ

in probability.

Proof. We assume in the proof that G = Z. Only minor modifications are needed to deal with
the general case.

We first consider the case when µ has finite variance σ2
µ. The arguments needed to derive

Theorem 2.7 from Proposition 2.6 are then similar to the proof of Theorem 6.1 in [59]. The
basic idea is as follows. For every a ∈ (0, 1), the law under Πµ(· | #T = n + 1) of the subtree
obtained by keeping only the first banc vertices of T is absolutely continuous with respect to the
law under Πµ(· | #T > n) of the same subtree, with a density that is bounded independently of
n. A similar property holds for spatial trees, and so we can use the convergence of Proposition
2.6, for a tree distributed according to Π∗µ,θ(· | #T > n), to get a similar convergence for a
tree distributed according to Π∗µ,θ(· | #T = n + 1). Let us give some details for the sake of
completeness.

As previously, we write u0(T ), u1(T ), . . . , u#T −1(T ) for the vertices of a plane tree T listed
in lexicographical order. The Lukasiewisz path of T is then the finite sequence (X`(T ), 0 ≤ ` ≤
#T ), which is defined inductively by

X0(T ) = 0 , X`+1(T )−X`(T ) = ku`(T )(T )− 1 , for every 0 ≤ ` < #T ,

where we recall that, for every u ∈ T , ku(T ) is the number of children of u in T . The tree T
is determined by its Lukasiewisz path. A key result (see e.g. [58, Section 1]) states that under
Πµ(dT ), the Lukasiewisz path is distributed as a random walk on Z with jump distribution ν
determined by ν(j) = µ(j + 1) for every j ≥ −1, which starts from 0 and is stopped at the first
time when it hits −1 (in particular, the law of #T under Πµ(dT ) coincides with the law of the
latter hitting time). For notational convenience, we let (Yk)k≥0 be a random walk on Z with
jump distribution ν, which starts from j under the probability measure P(j), and we set

T := inf{k ≥ 0 : Yk = −1}.

Next take n large enough so that Πµ(#T = n + 1) > 0. Fix a ∈ (0, 1), and consider a tree
T such that #T > n. Then, the collection of vertices u0(T ), . . . , ubanc(T ) forms a subtree of T
(because in the lexicographical order the parent of a vertex comes before this vertex), and we
denote this subtree by ρbanc(T ). It is elementary to verify that ρbanc(T ) is determined by the
sequence (X`(T ), 0 ≤ ` ≤ banc). Let f be a bounded function on Zbanc+1. Using the Markov
property at time banc for the random walk with jump distribution ν, one verifies that

Πµ

[
f((Xk)0≤k≤banc)

∣∣∣#T = n+ 1
]

=
P(0)(T > n)

P(0)(T = n+ 1) Πµ

[
f((Xk)0≤k≤banc)

ψn(Xbanc)
ψ′n(Xbanc)

∣∣∣∣∣#T > n

]
(2.7)

where, for every integer j ≥ 0,

ψn(j) = P(j)(T = n+ 1− banc) , ψ′n(j) = P(j)(T > n− banc).
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See [59, pp.742-743] for details of the derivation of (2.7). We now let n tend to infinity. Using
Kemperman’s formula (see e.g. Pitman [81, p.122]) and a standard local limit theorem, one
easily checks that, for every c > 0,

lim
n→∞

(
sup
j≥c
√
n

∣∣∣∣∣ P(0)(T > n)
P(0)(T = n+ 1)

ψn(j)
ψ′n(j) − Γa

( j

σµ
√
n

)∣∣∣∣∣
)

= 0, (2.8)

where for every x ≥ 0,

Γa(x) = 2(2π(1− a)3)−1/2 exp(−x2/2(1− a))∫∞
1−a ds (2πs3)−1/2 exp(−x2/2s)

.

See again [59, pp.742-743] for details. Note that the function Γa is bounded over R+. Further-
more, from the local limit theorem again, it is easy to verify that

lim
c↓0

lim sup
n→∞

Πµ(Xbanc ≤ c
√
n |#T = n+ 1) = 0 , lim

c↓0
lim sup
n→∞

Πµ(Xbanc ≤ c
√
n |#T > n) = 0.

(2.9)
(We take this opportunity to point out that the analogous statement in [59, p.743] is written
incorrectly.) By combining (2.7), (2.8) and (2.9), we obtain that, for any uniformly bounded
sequence of functions (fn)n≥1 on Zbanc+1, we have

lim
n→∞

∣∣∣Πµ

[
fn((Xk)0≤k≤banc)

∣∣∣#T = n+ 1
]
−Πµ

[
fn((Xk)0≤k≤banc) Γa(

Xbanc
σµ
√
n

)
∣∣∣#T > n

]∣∣∣ = 0.

(2.10)
This convergence applies in particular to the case when, for every n, fn((Xk)0≤k≤banc) is a
function of the tree ρbanc(T ). If we now replace Πµ by Π∗µ,θ, the same convergence still holds,
and we can even allow the function of the tree ρbanc(T ) to depend also on the spatial locations of
the vertices of ρbanc(T ) (the point is that the conditional distribution of these spatial locations
given the tree T only depends on the subtree ρbanc(T )). Consequently, if ε > 0 is fixed, we have

lim
n→∞

∣∣∣Π∗µ,θ[1{|Rbanc−cµ,θan|>εn} ∣∣∣#T = n+1
]
−Π∗µ,θ

[
1{|Rbanc−cµ,θan|>εn} Γa(

Xbanc
σµ
√
n

)
∣∣∣#T > n

]∣∣∣ = 0.

Recalling that the function Γa is bounded, and using Proposition 2.6, we now obtain that

lim
n→∞

Π∗µ,θ
(
|Rbanc − cµ,θan| > εn

∣∣∣#T = n+ 1
)

= 0.

Since 0 ≤ R(T ∗) − Rbanc(T ∗) ≤ n + 1 − banc, Π∗µ,θ(· | #T = n + 1)-a.s., and a can be chosen
arbitrarily close to 1, the convergence in Theorem 2.7 follows.

Very similar arguments can be used in the case when µ is in the domain of attraction of a
stable distribution with index α ∈ (1, 2). We now refer to the proof of Lemma 3.3 in [48] for
the exact analogs of the properties (2.7) – (2.10) used in the finite variance case. We leave the
details to the reader.

The case d ≥ 5 of Theorem 2.1 follows from Theorem 2.7 and Proposition 2.5, noting that
when µ is the critical geometric distribution, a tree distributed according to Πµ(· | #T = n) is
uniformly distributed over the set of all plane trees with n vertices (see e.g. [58, Section 1.5]).
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2.3 The critical dimension
In this section, we discuss the dimension d = 4, which is critical in the case of random walks

that are centered and have sufficiently high moments. We restrict our attention to the case when
the offspring distribution is geometric with parameter 1/2. Our main tool is the discrete snake,
which is a path-valued Markov chain that can be used to generate the spatial positions of the
tree-indexed random walk.

2.3.1 Limit theorems

We now let θ be a symmetric probability distribution on Z4. We assume that θ has small
exponential moments and is not supported on a strict subgroup of Z4. As previously, we write
S = (Sk)k≥0 for the random walk in Z4 with jump distribution θ, and we now assume that
S starts from 0 under the probability measure P . We will also assume for simplicity that the
covariance matrix Mθ of θ is of the form σ2 Id, where Id is the four-dimensional identity matrix
and σ > 0. This isotropy condition can be removed, and the reader will easily check that all
subsequent arguments remain valid for a non-isotropic random walk: the role of σ2 is then played
by (detMθ)1/4.

We first introduce the free discrete snake associated with θ. This is a Markov chain with
values in the space W that we now define. The space W is the set of all semi-infinite discrete
paths w = (w(k))k∈K−∞,ζK with values in Z4. Here ζ = ζ(w) ∈ Z is called the lifetime of w. We
often write ŵ = w(ζ(w)) for the endpoint of w.

If w ∈ W, we let w stand for the new path obtained by “erasing” the endpoint of w, namely
ζ(w) = ζ(w) − 1 and w(k) = w(k) for every k ∈K − ∞, ζ(w) − 1K. If x ∈ Z4, we let w ⊕ x
be the path obtained from w by “adding” the point x to w, namely ζ(w ⊕ x) = ζ(w) + 1,
(w ⊕ x)(k) = w(k) for every k ∈K−∞, ζ(w)K and (w ⊕ x)(ζ(w) + 1) = x.

The free discrete snake is the Markov chain (Wn)n≥0 inW whose transition kernel is defined
by

Q(w,dw′) = 1
2 δw(dw′) + 1

2
∑
x∈Z4

θ(x) δw⊕(ŵ+x)(dw
′).

We will write ζn = ζ(Wn) to simplify notation. It will also be convenient to write W ∗n for the
path Wn shifted so that its endpoint is 0: W ∗n(k) = Wn(k)− Ŵn for every k ∈K−∞, ζnK.

If w ∈ W, P(w) will denote the probability measure under which the discrete snake W starts
from w. For every integer m ∈ Z, we also write Pm for a probability measure under which
ζ0 = m a.s. and the initial value W0 of the discrete snake is distributed as (−Sm−k)k∈K−∞,mK
(since S is symmetric we could omit the minus sign here). We write P for P0. As usual, the
expectation under Pm, resp. under P, is denoted by Em, resp. by E. Note that (ζn)n≥0 is a
simple random walk on Z started from m under Pm. We will use the notation

τp := inf{n ≥ 0 : ζn = ζ0 − p}

for every integer p ≥ 0.
Furthermore, from the form of the transition kernel of the discrete snake, it is easy to verify

that for every n ≥ 0, for every integer ` ∈ Z such that Pm(ζn = `) > 0, the conditional
distribution of W ∗n under Pm( · | ζn = `), coincides with the distribution of W0 under P`.

Proposition 2.8. We have

lim
n→∞

(logn)P(Ŵk 6= 0, ∀k ∈ J1, nK) = 4π2σ4.
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Figure 2.3: The discrete snake under Pm. In this illustration, S′1 is an independent
copy of S1.

Furthermore,
lim
p→∞

(log p)P(Ŵk 6= 0,∀k ∈ J1, τpK) = 2π2σ4.

The proof of Proposition 2.8 is given in subsection 2.3.2 below. Our first theorem is concerned
with the range of the free snake.

Theorem 2.9. Set Rn := #
{
Ŵ0, Ŵ1, . . . , Ŵn

}
for every integer n ≥ 0. We have

logn
n

Rn
L2(P)−→
n→∞

4π2σ4.

Proof. We first observe that

E[Rn] = E
[ n∑
i=0

1{Ŵj 6=Ŵi ,∀j∈Ji+1,nK}

]
=

n∑
i=0

P
(
Ŵj 6= Ŵi ,∀j ∈ Ji+ 1, nK

)
.

Then, by applying the Markov property of the free snake, we have

E[Rn] =
n∑
i=0

E
[
P(Wi)(Ŵj 6= Ŵ0 ,∀j ∈ J1, n− iK)

]
=

n∑
i=0

E
[
P(W ∗i )(Ŵj 6= Ŵ0 , ∀j ∈ J1, n− iK)

]
=

n∑
i=0

P(Ŵj 6= 0,∀j ∈ J1, n− iK),
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where the second equality is easy by translation invariance, and the last one is a simple conse-
quence of the remark before the statement of Proposition 2.8. Using now the result of Proposi-
tion 2.8, we get

lim
n→∞

logn
n

E[Rn] = 4π2σ4. (2.11)

Let us turn to the second moment. We have similarly

E
[
(Rn)2] = E

[ n∑
i=0

n∑
j=0

1{Ŵk 6=Ŵi ,∀k∈Ji+1,nK;Ŵ` 6=Ŵj ,∀`∈Jj+1,nK}

]
= 2

∑
0≤i<j≤n

P
(
Ŵk 6= Ŵi ,∀k ∈ Ji+ 1, nK; Ŵ` 6= Ŵj ,∀` ∈ Jj + 1, nK

)
+ E[Rn]

= 2
∑

0≤i<j≤n
E
[
P(Wi)(Ŵk 6= Ŵ0 ,∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i ,∀` ∈ Jj − i+ 1, n− iK)

]
+ E[Rn]

= 2
∑

0≤i<j≤n
P
(
Ŵk 6= 0 , ∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK

)
+ E[Rn],

where the last equality again follows from the observation preceding Proposition 2.8. Let us fix
α ∈ (0, 1/4) and define

σn := inf
{
k ≥ 0 : ζk ≤ −n

1
2−α

}
.

By standard estimates, we have

lim
n→∞

(logn)2 P
(
σn ≤ n1−3α or σn ≥ n1−α) = 0.

Thus, using also (2.11),

lim sup
n→∞

( logn
n

)2
E[(Rn)2] = lim sup

n→∞
2
( logn

n

)2 ∑
0≤i<j≤n

P
(
Ŵk 6= 0 ,∀k ∈ J1, n− iK;

Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α
)
.

Clearly, in order to study the limsup in the right-hand side, we may restrict the sum to indices
i and j such that j − i > n1−α. However, if 0 ≤ i < j ≤ n are fixed such that j − i > n1−α,

P
(
Ŵk 6= 0 ,∀k ∈ J1, n− iK; Ŵ` 6= Ŵj−i , ∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α

)
≤ P

(
Ŵk 6= 0 , ∀k ∈ J1, σnK; Ŵ` 6= Ŵj−i ,∀` ∈ Jj − i+ 1, n− iK;n1−3α ≤ σn ≤ n1−α

)
= P

(
Ŵk 6= 0 ,∀k ∈ J1, σnK;n1−3α ≤ σn ≤ n1−α

)
P
(
Ŵ` 6= 0 ,∀` ∈ J1, n− jK

)
.

To derive the last equality, we use the strong Markov property at time σn and then, after
conditioning on σn = m, the Markov property at time j − i −m for the free snake shifted at
time σn and the observation preceding Proposition 2.8. Now obviously,

P
(
Ŵk 6= 0 ,∀k ∈ J1, σnK;n1−3α ≤ σn ≤ n1−α

)
≤ P

(
Ŵk 6= 0 , ∀k ∈ J1, bn1−3αcK

)
,
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and it follows that

lim sup
n→∞

( logn
n

)2
E
[
(Rn)2]

≤ lim sup
n→∞

2
( logn

n

)2 ∑
0≤i<j≤n
j−i>n1−α

P
(
Ŵk 6= 0 , ∀k ∈ J1, bn1−3αcK

)
P
(
Ŵ` 6= 0 , ∀` ∈ J1, n− jK

)

= 1
1− 3α(4π2σ4)2

by Proposition 2.8. Since α can be chosen arbitrarily small, we get

lim sup
n→∞

( logn
n

)2
E
[
(Rn)2] ≤ (4π2σ4)2. (2.12)

Theorem 2.9 is an immediate consequence of (2.11) and (2.12).

We now aim to prove a result similar to Theorem 2.9 for the “excursion” of the discrete
snake. We set

T := inf{k ≥ 0 : ζk = −1}.

For every integer n ≥ 1, we let W (n) = (W (n)
k )0≤k≤2n be a process defined under P, whose

distribution coincides with the conditional distribution of (Wk)0≤k≤2n knowing that T = 2n+ 1.
To simplify notation, we write ζ(n)

k = ζ(W (n)
k ). Note that (ζ(n)

k )0≤k≤2n is the contour function,
also called depth-first walk, of a Galton–Watson tree with geometric offspring distribution of
parameter 1/2, conditioned to have n + 1 vertices (see e.g. [81, Chapter 6]). We have already
noticed that the latter tree is uniformly distributed over plane trees with n+1 vertices. From the
form of the transition mechanism of the discrete snake, it then follows that {Ŵ (n)

k , 0 ≤ k ≤ 2n}
is distributed as the set of all spatial locations of a random walk with jump distribution θ indexed
by a uniform random plane tree with n+ 1 vertices.

We will need two simple estimates that we gather in the next lemma.

Lemma 2.10. (i) Let r ≥ 1 be an integer. There exists a constant C(r) such that, for every
integers n ≥ 1 and m ≥ 0,

E
[
(#{k ∈ J0, 2nK : ζ(n)

k = m})r
]
≤ C(r) (m+ 1)r.

(ii) Let ε > 0. Then, for every r > 0,

P
(

sup
0≤k≤2n

ζ
(n)
k > n

1
2 +ε

)
= O(n−r)

as n→∞.

Part (i) of the lemma can be deduced from Theorem 1.13 in Janson [36] using the connection
between ζ(n) and the critical geometric Galton–Watson tree (it is also possible to give a direct
argument), while Part (ii) is standard. Notice that Part (i) of Lemma 2.10 implies

E
[
(#{k ∈ J0, 2nK : ζ(n)

k ≤ n
1
2−

α
2 })2

]
= o

(( n

logn
)2)

as n→∞.
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We will make a repeated use of Kemperman’s formula for simple random walk (see [81, p.122]
for a more general version): For every choice of the integers m, k such that k > m ≥ 0,

Pm(T = k) = m+ 1
k

Pm(ζk = −1) = m+ 1
k

P0(ζk = m+ 1). (2.13)

Together with this formula, we will use the local limit theorem for simple random walk on Z,
which we state in the form found in Lawler and Limic [53, Proposition 2.5.3, Corollary 2.5.4]:
As k →∞,

P0(ζk = m) =
√

2
πk

exp
(
− m2

2k
)

exp
(
O
(1
k

+ m4

k3
))

(2.14)

uniformly over integers m such that |m| ≤ k and k +m is even.
We fix α ∈ (0, 1/4) and to simplify notation, we write pn = bn

1
2−αc for every integer n ≥ 1.

Recall the notation τp = inf{n ≥ 0 : ζn = ζ0 − p}.

Lemma 2.11. If η > 0 is sufficiently small, we have

lim
n→∞

(
sup

n1−η≤k≤2n
n

1
2−

α
2 ≤m≤n

1
2 +η

∣∣∣(logn)Pm
(
Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK

∣∣∣T = k
)
− 4π2σ4

1− 2α

∣∣∣ ) = 0,

where in the supremum we consider only integers m and k such that k +m is odd.

Proof. We first explain how to choose η. We set qn = bn1− 3α
2 c and note that

P0
(
ζqn > n

1
2−

α
2
)
≤ P0

(
ζqn > q

1
2 +c(α)
n

)
where c(α) = α

4−6α > 0. By a standard bound, the latter probability is bounded (for n large) by
exp(−nγ), where the constant γ = γ(α) > 0 only depends on α. We fix η > 0 such that 3η < γ
and η ∈ (0, α/8).

To simplify notation, we then set

∆n :=
{
(m, k) : n

1
2−

α
2 ≤ m ≤ n

1
2 +η, n1−η ≤ k ≤ 2n and k +m is odd

}
.

Since pn ∼ n−α/4
√
qn, standard estimates give, for every δ ∈ (0, α4 ),

lim
n→∞

nδ P0(τpn ≥ qn) = 0. (2.15)

We claim that we have also, for every δ ∈ (0, α4 ),

lim
n→∞

nδ sup
(m,k)∈∆n

Pm(τpn ≥ qn | T = k) = 0. (2.16)

Let us postpone the proof of (2.16) and derive the estimate of the lemma.
Let us consider (m, k) ∈ ∆n. We have

Pm
(
{Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK} ∩ {τpn ≤ qn} ∩ {T = k}

)
= Em

[
1{τpn≤qn} 1{Ŵj 6=Ŵ0 ,∀j∈J1,τpnK}Pm−pn(T = k − `)`=τpn

]
, (2.17)
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m

ζ

0
T

τpn

bn 1
2
−αc

qn = bn1− 3α
2 c

n
1
2−α

2

n
1
2+η

n1−η 2nk

m− pn

Figure 2.4: Illustration of the proof of Lemma 2.11

where we have used the strong Markov property at τpn . We now would like to say that the
quantity Pm−pn(T = k − `), evaluated at ` = τpn , does not differ too much from Pm(T = k)
under our conditions on m, k and τpn (see Fig. 4 for an illustration). Let k′ be an integer such
that k − qn ≤ k′ ≤ k and k′ +m− pn is odd. By Kemperman’s formula,

Pm−pn(T = k′) = m− pn + 1
k′

P0(ζk′ = m− pn + 1) (2.18)

and by (2.14),

P0(ζk′ = m− pn + 1) =
√

2
πk′

exp
(
− (m− pn + 1)2

2k′
)

exp
(
O( 1
k′

+ (m− pn + 1)4

k′3
)
)
. (2.19)

Next observe that∣∣∣(m− pn + 1)2

2k′ − (m+ 1)2

2k

∣∣∣ ≤ (m+ 1)2

2
( 1
k′
− 1
k

)
+ (m+ 1)2 − (m− pn + 1)2

2k′

≤ qn(m+ 1)2

kk′
+ pn(m+ 1)

k′
,

which tends to 0 as n → ∞, uniformly in m, k, k′. Comparing the estimate for Pm−pn(T =
k′) that follows from (2.18) and (2.19) with the similar estimate for Pm(T = k) that follows
from (2.13) and (2.14), we get

lim
n→∞

(
sup
m,k,k′

∣∣∣∣Pm−qn(T = k′)
Pm(T = k) − 1

∣∣∣∣
)

= 0,

where the supremum is over all choices of (m, k, k′) such that (m, k) ∈ ∆n and k′ satisfies the
preceding conditions. Using (2.17), we obtain that, for any fixed δ > 0, we have for all sufficiently
large n, for every (m, k) ∈ ∆n,

(1− δ)Pm
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK}

)
≤ Pm

(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 , ∀j ∈ J1, τpnK} | T = k

)
≤ (1 + δ)Pm

(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
.
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The quantity Pm
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
does not depend on m ∈ Z, and

(logn)P0(τpn > qn) tends to 0 by (2.15). Using Proposition 2.8, we have thus

lim
n→∞

(logn)P0
(
{τpn ≤ qn} ∩ {Ŵj 6= Ŵ0 ,∀j ∈ J1, τpnK}

)
= 4π2σ4

1− 2α.

The estimate of the lemma follows from the preceding considerations and (2.16).
It remains to prove (2.16). If (m, k) ∈ ∆n, we have

Pm(τpn ≥ qn | T = k) = Pm({τpn ≥ qn} ∩ {T = k})
Pm(T = k) .

Recall formula (2.13) for Pm(T = k) and also note that by (2.14),

P0(ζk = m+ 1) =
√

2
πk

exp
(
− (m+ 1)2

2k
)

exp
(
O( 1
k

+ m4

k3 )
)
, (2.20)

when n → ∞, uniformly in (m, k) ∈ ∆n. Notice that 1
k + m4

k3 −→ 0 as n → ∞, uniformly in
(m, k) ∈ ∆n, and that m2

2k ≤ n
3η if (m, k) ∈ ∆n. By our choice of η, it follows that

Pm(ζqn > m+ n
1
2−

α
2 | T = k) ≤ Pm(ζqn > m+ n

1
2−

α
2 )

Pm(T = k) = k

m+ 1
P0(ζqn > n

1
2−

α
2 )

P0(ζk = m+ 1) = O
( 1
n

)
(2.21)

as n→∞, uniformly in m and k.
On the other hand, by applying the Markov property at time qn, we have

Pm
(
{τpn ≥ qn}∩{ζqn ≤ m+n

1
2−

α
2 }∩{T = k}

)
= Em

[
1
{τpn≥qn}∩{ζqn≤m+n

1
2−

α
2 }

Pζqn (T = k−qn)
]
.

On the event {τpn ≥ qn} ∩ {ζqn ≤ m + n
1
2−

α
2 } we have m − pn ≤ ζqn ≤ m + n

1
2−

α
2 , Pm a.s. If

m− pn ≤ m′ ≤ m+ n
1
2−

α
2 and m′ + k − qn is odd, using again Kemperman’s formula, we have

Pm′(T = k − qn) = m′ + 1
k − qn

Pm′(ζk−qn = −1) = m′ + 1
k − qn

P0(ζk−qn = m′ + 1).

Furthermore, from (2.14),

P0(ζk−qn = m′ + 1) =
√

2
π(k − qn) exp

(
− (m′ + 1)2

2(k − qn)
)

exp
(
O( 1
k

+ m′4

k3 )
)
. (2.22)

Now observe that

−(m′ + 1)2

2(k − qn) + (m+ 1)2

2k ≤ −(m′ + 1)2 − (m+ 1)2

2k = −(m′ −m)(m′ +m+ 2)
2k

and the right-hand side tends to 0 as n → ∞, uniformly in (m, k) ∈ ∆n and m′ such that
m − pn ≤ m′ ≤ m + n

1
2−

α
2 . By comparing (2.20) and (2.22), noting that m′ ≤ 2m under our

assumptions, we get

lim sup
n→∞

(
sup
m,k,m′

Pm′(T = k − qn)
Pm(T = k)

)
≤ 2.
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It follows that, for all n sufficiently large, we have, for every (m, k) ∈ ∆n,

Pm
(
{τpn ≥ qn} ∩ {ζqn ≤ m+ n

1
2−

α
2 } ∩ {T = k}

)
Pm(T = k) ≤ 3Pm(τpn ≥ qn) = 3P0(τpn ≥ qn).

Recalling (2.15), we have thus proved that, for every δ ∈ (0, α4 ),

lim
n→∞

nδ sup
(m,k)∈∆n

Pm
(
{τpn ≥ qn} ∩ {ζqn ≤ m+ n

1
2−

α
2 } | T = k

)
= 0,

and by combining this with (2.21), we get the desired estimate (2.16).

We set, for every n ≥ 1,

R•n := #
{
Ŵ

(n)
0 , Ŵ

(n)
1 , . . . , Ŵ

(n)
2n
}
.

Proposition 2.12. We have

lim sup
n→∞

( logn
n

)2
E
[
(R•n)2] ≤ (8π2σ4)2.

Proof. We note that

R•n =
2n∑
i=1

1{Ŵ (n)
`
6=Ŵ (n)

i ,∀`∈Ji+1,2nK}

and therefore

E
[
(R•n)2] =

2n∑
i,j=1

P(An(i, j)), (2.23)

where An(i, j) is defined by

An(i, j) :=
{
Ŵ

(n)
` 6= Ŵ

(n)
i ,∀` ∈ Ji+ 1, 2nK

}
∩
{
Ŵ

(n)
` 6= Ŵ

(n)
j , ∀` ∈ Jj + 1, 2nK

}
.

We fix α ∈ (0, 1/4), and define pn and qn for every n ≥ 1 as above. We also fix η > 0 so that
the conclusion of Lemma 2.11 holds.

In view of proving the proposition, we will use formula (2.23). In this formula, we can restrict
our attention to values of i and j such that j− i > n1−α2 and j < 2n−n1−η (or the same with i
and j interchanged). Also, when bounding P(An(i, j)), we may impose the additional constraint
that n

1
2−

α
2 ≤ ζ

(n)
i ≤ n

1
2 +η and n

1
2−

α
2 ≤ ζ

(n)
j ≤ n

1
2 +η: Indeed, Lemma 2.10 readily shows that

the event where either of these constraints is not satisfied will give a negligible contribution to
the sum in (2.23).

Let us fix i, j ∈ J1, 2nK such that j − i > n1−α2 and j < 2n − n1−η. By using the definition
of W (n) as a conditioned process and applying the Markov property at time i, we have

P
(
An(i, j) ∩ {n

1
2−

α
2 ≤ ζ(n)

i ≤ n
1
2 +η} ∩ {n

1
2−

α
2 ≤ ζ(n)

j ≤ n
1
2 +η}

)
=

E
[
1
{n

1
2−

α
2 ≤ζi≤n

1
2 +η}

1{T>i} Eζi
[
1
{n

1
2−

α
2 ≤ζj−i≤n

1
2 +η}

1A′n(i,j)1{T=2n+1−i}
]]

P(T = 2n+ 1) , (2.24)

where

A′n(i, j) :=
{
Ŵ` 6= Ŵ0 , ∀` ∈ J1, 2n− iK

}
∩
{
Ŵ` 6= Ŵj−i ,∀` ∈ Jj − i+ 1, 2n− iK

}
.
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Setting r = j − i, we are thus led to bound

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,k−1K} 1{Ŵ` 6=Ŵr ,∀`∈Jr+1,k−1K} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]
, (2.25)

where n
1
2−

α
2 ≤ m ≤ n

1
2 +η, r > n1−α2 and r + n1−η < k ≤ 2n (and moreover k +m needs to be

odd). Recall the notation τpn , and set

τ (r)
pn

:= inf{` ≥ r : ζ` = ζr − pn}.

Thanks to (2.16), we can also introduce the constraint τpn ≤ qn inside the expectation in (2.25),
up to an error that is bounded above by Pm(T = k) o(n−δ) for some δ > 0 (here the term o(n−δ)
is uniform in m, r, k satisfying the preceding conditions). Furthermore, we get an upper bound
by replacing the interval J1, k − 1K, resp. Jr + 1, k − 1K, by J1, τpnK, resp. Jr + 1, τ (r)

pn K. Next,
using the Markov property at time r, and noting that r > qn, we have

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{Ŵ` 6=Ŵr ,∀`∈Jr+1,τ (r)

pn K} 1
{n

1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]

= Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

× E(Wr)
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]]
.

See Fig. 5 for an illustration.
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Figure 2.5: Illustration of the proof of Proposition 2.12

Then the key observation is the following. Let z0 = m, z1, . . . , zr be a simple random walk
trajectory over J0, rK such that 0 ≤ min{z` : 0 ≤ ` ≤ r} ≤ m−pn. Then under Pm, conditionally
on the event {ζ1 = z1, . . . , ζr = zr}, the path (Wr(zr) −Wr(zr − `))`≥0 is independent of the
event {Ŵ` 6= Ŵ0 , ∀` ∈ J1, τpnK}, and distributed as (S`)`≥0. This property easily follows from
the construction of the discrete snake.

Thanks to the latter observation, we may rewrite the right-hand side of the last display, after
conditioning with respect to ζ1, . . . , ζr, in the form

Em
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

Eζr
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]]
.

(2.26)
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Recall that k − r > n1−η, and let ε > 0. It follows from Lemma 2.11 that, for n large enough,
on the event {n

1
2−

α
2 ≤ ζr ≤ n

1
2 +η}, the quantity

Eζr
[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{T=k−r}

]
is bounded above by ( 4π2σ4

1− 2α + ε
)
(logn)−1 Pζr(T = k − r).

Hence the quantity (2.26) is also bounded by( 4π2σ4

1− 2α + ε
)
(logn)−1 Em

[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1{T>r} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

Pζr(T = k − r)
]

=
( 4π2σ4

1− 2α + ε
)
(logn)−1 Em

[
1{Ŵ` 6=Ŵ0 ,∀`∈J1,τpnK} 1{τpn≤qn} 1

{n
1
2−

α
2 ≤ζr≤n

1
2 +η}

1{T=k}
]
,

again by the Markov property at time r. Finally, another application of Lemma 2.11 shows that
the quantity in the last display is bounded above for n large by( 4π2σ4

1− 2α + ε
)2

(logn)−2 Pm(T = k).

Summarizing, we see that the quantity (2.25) is bounded above for n large by(( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ)
)
Pm(T = k).

Finally, from (2.24), we have for n large

P
(
An(i, j) ∩ {n

1
2−

α
2 ≤ ζ(n)

i ≤ n
1
2 +η} ∩ {n

1
2−

α
2 ≤ ζ(n)

j ≤ n
1
2 +η}

)
≤
(( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ)
) E

[
1{T>i} Pζi(T = 2n+ 1− i)

]
P(T = 2n+ 1)

=
( 4π2σ4

1− 2α + ε
)2

(logn)−2 + o(n−δ),

where the term o(n−δ) is uniform in i and j satisfying the preceding conditions. The statement
of the proposition follows by summing this bound over i and j.

Lemma 2.13. We have
lim inf
n→∞

logn
n

E
[
R•n
]
≥ 8π2σ4.

Proof. Let δ > 0 and ε ∈ (0, 1
2). To simplify notation we write n(ε) = b2(1−2ε)nc in this proof.

We fix 0 < a < b such that, if (et)0≤t≤1 denotes a normalized Brownian excursion defined under
the probability measure P , we have

P (eε /∈ (a, b)
)

= P (e1−ε /∈ (a, b)
)
< δ.

Since we know that the sequence of processes ((2n)−1/2ζ
(n)
b2ntc)0≤t≤1 converges in distribution to

(et)0≤t≤1, it follows that, for every sufficiently large n,

P
(
ζ

(n)
b2nεc /∈ [a

√
2n, b
√

2n] or ζ(n)
b2nεc+n(ε) /∈ [a

√
2n, b
√

2n]
)
≤ δ. (2.27)
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Let µ(n)
ε denote the law of ζ(n)

b2nεc. If Fn is a nonnegative function on Zn(ε)+1, the Markov property
gives

E
[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} 1{a√2n≤ζ(n)
b2nεc+n(ε)≤b

√
2n} Fn

(
(ζ(n)
b2nεc+k)0≤k≤n(ε)

)]
= E

[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} Eζ(n)
b2nεc

[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

) ∣∣∣T = 2n+ 1− b2nεc
]]

=
∑

a
√

2n≤m≤b
√

2n

µ(n)
ε (m)

Em
[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T=2n+1−b2nεc}

]
Pm(T = 2n+ 1− b2nεc)

=
∑

a
√

2n≤m≤b
√

2n

µ(n)
ε (m)

Em
[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T>n(ε)} Pζn(ε)(T = ñ(ε))

]
Pm(T = 2n+ 1− b2nεc)

where ñ(ε) := 2n+ 1− b2nεc − n(ε).
Let m,m′ ∈ [a

√
2n, b
√

2n] be such that m + b2nεc and m′ + b2nεc + n(ε) are even. By
Kemperman’s formula (2.13),

Pm′(T = ñ(ε))
Pm(T = 2n+ 1− b2nεc) = 2n+ 1− b2nεc

ñ(ε)
m′ + 1
m+ 1

P0(ζñ(ε) = m′ + 1)
P0(ζ2n+1−b2nεc = m+ 1)

and using (2.14), we easily obtain that there exists a finite constant C(ε, a, b) such that, for
every sufficiently large n, and every m,m′ satisfying the above conditions,

Pm′(T = ñ(ε))
Pm(T = 2n+ 1− b2nεc) ≤ C(ε, a, b).

We thus obtain that, for every large enough n,

E
[
1{a√2n≤ζ(n)

b2nεc≤b
√

2n} 1{a√2n≤ζ(n)
b2nεc+n(ε)≤b

√
2n} Fn

(
(ζ(n)
b2nεc+k)0≤k≤n(ε)

)]
≤ C(ε, a, b)

∑
a
√

2n≤m≤b
√

2n

µ(n)
ε (m)Em

[
1{a√2n≤ζn(ε)≤b

√
2n}Fn

(
(ζk)0≤k≤n(ε)

)
1{T>n(ε)}

]
≤ C(ε, a, b)

∑
a
√

2n≤m≤b
√

2n

µ(n)
ε (m)Em

[
Fn
(
(ζk)0≤k≤n(ε)

)]
.

Let Gn be a nonnegative measurable function on Wn(ε)+1. The preceding bound remains
valid if we replace Fn((ζ(n)

b2nεc+k)0≤k≤n(ε)) by Gn((W (n)
b2nεc+k)0≤k≤n(ε)) in the left-hand side and

Fn((ζk)0≤k≤n(ε)) by Gn((Wk)0≤k≤n(ε)) in the right-hand side (just use the fact that the condi-
tional distribution of W (n) given ζ(n) is the same as the conditional distribution of W given ζ).
In particular, if we let Gn(w0, w1, . . . , wn(ε)) be the indicator function of the set where∣∣∣ logn(ε)

n(ε) #
{
ŵ0, ŵ1, . . . , ŵn(ε)

}
− 4π2σ4

∣∣∣ > δ,

we obtain that

P
(
ζ

(n)
b2nεc ∈ [a

√
2n, b
√

2n], ζ(n)
b2nεc+n(ε) ∈ [a

√
2n, b
√

2n],
∣∣∣ logn(ε)
n(ε) R•,εn − 4π2σ4

∣∣∣ > δ
)

≤ C(ε, a, b)P
(∣∣∣ logn(ε)

n(ε) Rn(ε) − 4π2σ4
∣∣∣ > δ

)
, (2.28)
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where
R•,εn := #

{
Ŵ

(n)
b2nεc, Ŵ

(n)
b2nεc+1, . . . , Ŵ

(n)
b2nεc+n(ε)

}
.

Here we used the (obvious) fact that the distribution of Rn under Pm does not depend on m.
By Theorem 2.9, the right-hand side of (2.28) tends to 0 as n → ∞. Using also (2.27), we

obtain that
lim sup
n→∞

P
(∣∣∣ logn(ε)

n(ε) R•,εn − 4π2σ4
∣∣∣ > δ

)
≤ δ.

Since R•n ≥ R•,εn and since both δ and ε can be chosen arbitrarily small, the statement of the
lemma follows.

Theorem 2.14. We have
logn
n

R•n
L2(P)−→
n→∞

8π2σ4.

Proof. By combining Proposition 2.12 and Lemma 2.13, we get that

lim sup
n→∞

E
[
( logn
n

R•n − 8π2σ4)2
]

≤
(

lim sup
n→∞

E
[
( logn
n

R•n)2])− 16π2σ4
(

lim inf
n→∞

E
[ logn
n

R•n
])

+ (8π2σ4)2 ≤ 0 ,

which gives the desired result.

Theorem 2.14 and the remarks before Lemma 2.10 give the case d = 4 of Theorem 2.1.

2.3.2 Proof of the main estimate

In this subsection, we prove Proposition 2.8, which was a key ingredient of the results of the
previous subsection. We first recall some basic facts. For every x ∈ Z4 and k ≥ 0, we set

pk(x) = P (Sk = x)

and we now denote the Green function of the random walk S by

G(x) =
∞∑
k=0

pk(x)

(G = Gθ in the notation of Section 2). A standard estimate (see e.g. [53, Chapter 4]) states that

lim
x→∞

|x|2G(x) = 1
2π2σ2 . (2.29)

Let p be the period of the random walk S. Since S is assumed to be symmetric, we have p = 1
or 2. Then from the local limit theorem (see e.g. [53, Chapter 2]), we have

lim
j→∞,j∈pZ

j2 pj(0) = p
4π2σ4 . (2.30)

We state our first lemma.

Lemma 2.15. We have P(Ŵk = 0) = 0 if k /∈ pZ, and

lim
k→∞,k∈pZ

k P(Ŵk = 0) = p
4π2σ4 .
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Proof. The first assertion is clear since ζk is odd when k is odd, P a.s. Then, for every integer
k ≥ 0, set

ζ
k

= min
0≤j≤k

ζj ,

and
Xk = ζk − 2ζ

k
.

From the construction of the discrete snake, and the fact that S is symmetric, the conditional
distribution of Ŵk knowing that Xk = m is the law of Sm. Consequently,

P(Ŵk = 0) =
∞∑
m=0

P(Xk = m) pm(0). (2.31)

Asymptotics for P (Sm = 0) = pm(0) are given by (2.30). We then need to evaluate P(Xk = m).
Set X̃k = 1 + Xk for every k ≥ 0. The discrete version of Pitman’s theorem (see [80, Lemma
3.1]) shows that, under the probability measure P, (X̃k)k≥0 is a Markov chain on {1, 2, . . .} with
transition kernel Q given by Q(1, 2) = 1 and for every j ≥ 2,

Q(j, j + 1) = 1
2
j + 1
j

, Q(j, j − 1) = 1
2
j − 1
j

.

This Markov chain is also the discrete h-transform of simple random walk on Z+ (killed upon
hitting 0) corresponding to h(j) = j. Let (Yk)k≥0 stand for a simple random walk on Z that
starts from ` under the probability measure P`, and letH0 = inf{n ≥ 0 : Yn = 0}. It follows from
the preceding observations that, for every integer k ≥ 1 and everym ≥ 1 such that 1 ≤ m ≤ k+1
and k +m is odd,

P(X̃k = m) = mP1(Yk = m,H0 > k)

= m
(
P0(Yk = m− 1)− P0(Yk = m+ 1)

)
= m× 2−k

((
k

k+m−1
2

)
−
(

k
k+m+1

2

))

= 2m2

k +m+ 1 P0(Yk = m− 1)

Hence, for every m ≥ 0,

P(Xk = m) = 2(m+ 1)2

k +m+ 2 P0(Yk = m). (2.32)

From (2.31) and (2.32), we get

P(Ŵk = 0) =
k∑

m=0

2
k +m+ 2

(
(m+ 1)2pm(0)

)
P0(Yk = m),

and the second assertion of the lemma follows using (2.30).

In the next lemma, for every integer k ≥ 0, we use the notation W̃k for the time-shifted path
W̃k = (W̃k(j))j≤0, where W̃k(j) := Wk(ζk + j), for every j ≤ 0.
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Lemma 2.16. Let k ≥ 1 such that P(Ŵk = 0) > 0. Under the conditional probability measure
P(· | Ŵk = 0), the two pairs (W0, W̃k) and (W̃k,W0) have the same distribution.

Proof. Write πk(i, j), i, j ≥ 0 for the joint distribution under P of the pair(
− min

0≤`≤k
ζ`, ζk − min

0≤`≤k
ζ`
)
.

By an easy time-reversal argument, we have πk(i, j) = πk(j, i) for every i, j ≥ 0. On the other
hand, under P, conditionally on(

− min
0≤`≤k

ζ`, ζk − min
0≤`≤k

ζ`
)

= (i, j)

we have W0(−i− `) = Wk(−i− `) = W̃k(−j − `) for every ` ≥ 0, and the two random paths(
W0(−i+ `)−W0(−i)

)
0≤`≤i

and (
W̃k(−j + `)− W̃k(−j)

)
0≤`≤j =

(
Wk(−i+ `)−W0(−i)

)
0≤`≤j

are independent and distributed as the random walk S stopped respectively at time i and at
time j. Note that the event {Ŵk = 0} occurs if and only if the latter two paths have the same
endpoint. The statement of the lemma easily follows from the preceding observations and the
property πk(i, j) = πk(j, i).

Let us fix η ∈ (0, 1/4). Thanks to Lemma 2.15, we may choose δ > 0 small enough so that,
for every sufficiently large n,

n∑
k=b(1−δ)nc

P(Ŵk = 0) < η.

We then observe that

1 =
n∑
k=0

P
(
Ŵk = 0; Ŵ` 6= 0,∀` ∈ Jk + 1, nK

)
=

n∑
k=0

E
[
1{Ŵk=0} P(Wk)

(
Ŵ` 6= 0,∀` ∈ J1, n− kK

)]
=

n∑
k=0

E
[
1{Ŵk=0} P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, n− kK

)]
.

In the second equality, we applied the Markov property of the discrete snake at time k, and in
the third one we used Lemma 2.16.

From the last equalities and our choice of δ, it follows that, for n large,

E
[( b(1−δ)nc∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, bδncK

)]
≥ 1− η.

Next fix ε ∈ (0, 1/2) and write n(ε) = bn
1
2 +εc to simplify notation. For every integer p ≥ 1,

there exists a constant Cp,ε such that, for every n ≥ 1,

P(τn(ε) ≤ n) ≤ Cp,εn−p.
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Hence, we also get, for every sufficiently large n,

E
[( τn(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)]
≥ 1− 2η.

By conditioning with respect to W0, we see that the left-hand side of the preceding display is
equal to

E
[
E(W0)

[ τn(ε)−1∑
k=0

1{Ŵk=0}

]
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)]
.

We now note that, for every integer m ≥ 1,

E(W0)

[
τm−1∑
k=0

1{Ŵk=0}

]
= 2

m−1∑
j=0

G(−W0(−j)) (2.33)

(we could write G(W0(−j)) instead of G(−W0(−j)) because S is symmetric, but the preceding
formula would hold also in the non-symmetric case). To derive formula (2.33), first consider the
case m = 1. By a standard property of simple random walk, we have for every integer i ≥ 0,

E(W0)

[
τ1−1∑
k=0

1{ζk=i}

]
= 2.

Then using the conditional distribution of W given the lifetime process ζ, we obtain

E(W0)

[
τ1−1∑
k=0

1{Ŵk=0}

]
=
∞∑
i=0

E(W0)

[
τ1−1∑
k=0

1{ζk=i} 1{Ŵk=0}

]

=
∞∑
i=0

E(W0)

[
τ1−1∑
k=0

1{ζk=i}

]
pi(−W0(0))

= 2G(−W0(0)).

(Of course here W0(0) = 0, but the previous calculation holds independently of the value of
W0(0).) The same argument shows that, for every j ∈ J1,m− 1K,

E(W0)

[ τj+1−1∑
k=τj

1{Ŵk=0}

]
= 2G(−W0(−j))

and formula (2.33) follows.
From (2.33) and the preceding considerations, we get that, for all sufficiently large n,

2E
[( n(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0, ∀` ∈ J1, bδncK

)]
≥ 1− 2η. (2.34)

Now recall that, under the probability measure P, (−W0(−j))j≥0 has the same distribution as
(Sj)j≥0. At this point we need two other lemmas.

Lemma 2.17. For every integer p ≥ 1, there exists a constant C(p) such that, for every n ≥ 2,

E
[( n∑

j=0
G(Sj)

)p]
≤ C(p) (logn)p.
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Proof. We first observe that

E
[( n∑

j=0
G(Sj)

)p]
= E

[( n∑
j=0

G(Sj) 1{|Sj |≤n}
)p]

+ o(1)

as n→∞, because the event where sup{|Sj | : 0 ≤ j ≤ n} > n has a probability which decreases
to 0 faster than any negative power of n. For every integer k ≥ 1 and x ∈ Z4, set

Gk(x) =
k∑
i=0

pi(x).

Using (2.29) and the standard local limit theorem (see e.g. [53, Chapter 2]) one easily verifies
that, for every sufficiently large n, for all x ∈ Z4 such that |x| ≤ n, the bound Gn3(x) ≥ 1

2G(x)
holds. Thanks to this observation, it is enough to bound

E
[( n∑

j=0
Gn3(Sj) 1{|Si|≤n}

)p]
.

However, if S′ stands for another random walk with the same distribution as S but independent
of S, we have

n∑
j=0

Gn3(Sj) = E
[ n∑
j=0

n3∑
i=0

1{Sj=S′i}
∣∣∣S],

and by Lemma 1 in Marcus and Rosen [76], we know that there exists a constant C ′(p) such
that, for every n ≥ 2,

E
[( n∑

j=0

n3∑
i=0

1{Sj=S′i}
)p]
≤ C ′(p) (logn)p.

The desired bound follows since the conditional expectation is a contraction in Lp.

Lemma 2.18. For every α > 0, there exists a constant Cα such that, for every integer m ≥ 2,
we have

P
(∣∣∣ m∑

k=0
G(Sk)−

1
4π2σ4 logm

∣∣∣ ≥ α logm
)
≤ Cα(logm)−3/2.

We postpone the proof of Lemma 2.18 and complete the proof of Proposition 2.8. An
application of Hölder’s inequality gives for p ≥ 2,

E

[( m∑
j=0

G(Sj)
)

1{∑m

j=0 G(Sj)≥( 1
4π2σ4 +α) logm}

]

≤ E
[( m∑

j=0
G(Sj)

)p]1/p
P
( m∑
j=0

G(Sj) ≥ ( 1
4π2σ4 + α) logm

)1/q

≤ C(p)1/p logm× P
(∣∣∣ m∑

j=0
G(Sj)−

1
4π2σ4 logm

∣∣∣ ≥ α logm
)1/q

where 1
p + 1

q = 1 and we used Lemma 2.17. Choosing p ≥ 4 and using Lemma 2.18, we obtain
that

lim
m→∞

E

[( m∑
j=0

G(Sj)
)

1{∑m

j=0 G(Sj)≥( 1
4π2σ4 +α) logm}

]
= 0.
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From (2.34) and the fact that (−W0(−j))j≥0 has the same distribution as (Sj)j≥0, we then get,
for every sufficiently large n,

2 ( 1
4π2σ4 + α)(logn(ε)) P

(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)
≥ 1− 2η − 2E

[( n(ε)−1∑
j=0

G(−W0(−j))
)

1{∑n(ε)−1
j=0 G(−W0(−j)))≥( 1

4π2σ4 +α) logn(ε)}

]
≥ 1− 3η.

Since logn(ε) ≤ (1
2 + ε) logn, the preceding bound implies that

lim inf
n→∞

(logn)P
(
Ŵ` 6= 0,∀` ∈ J1, bδncK

)
≥ 1− 3η

1 + 2ε ( 1
4π2σ4 + α)−1.

Now note that the ratio logbδnc/ logn tends to 1 as n→∞, and that η, ε and α can be chosen
arbitrarily small. We conclude that

lim inf
n→∞

(logn)P
(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≥ 4π2σ4.

The proof of the analogous result for the limsup behavior is similar. In the same way as we
proceeded above, we arrive at the bound

E
[(

n∑
k=0

1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1.

At this point, we would like to replace the sum from k = 0 to n by a sum from k = 0 to τn′(ε)−1,
where n′(ε) = bn

1
2−εc for some fixed ε ∈ (0, 1/2). Simple arguments give the existence of a

constant C ′ε such that, for every integer n ≥ 1,

P(τn′(ε) ≥ n) ≤ C ′ε n−ε/2.

We can then write

1 ≥ E
[( τn′(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
− E

[
1{τn′(ε)≥n}

( τn′(ε)−1∑
k=0

1{Ŵk=0}

)]
,

and by the Cauchy–Schwarz inequality, we have

E
[
1{τn′(ε)≥n}

( τn′(ε)−1∑
k=0

1{Ŵk=0}

)]
≤ (C ′ε n−ε/2)1/2 × E

[( τn′(ε)−1∑
k=0

1{Ŵk=0}

)2
]1/2

. (2.35)

To bound the expectation in the right-hand side, one can verify that, for every integer m ≥ 1,

E
[( τm−1∑

k=0
1{Ŵk=0}

)2
∣∣∣∣∣W0

]
≤ 4

(
m−1∑
j=0

G(−W0(−j))
)2

+ 4
m−1∑
j=0

Φ(−W0(−j))

where, for every x ∈ Z4,
Φ(x) :=

∑
y∈Z4

G(y)G(x− y)2.
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The proof of the latter bound is similar to that of (2.33) above, and we leave the details to the
reader. One then checks from (2.29) that there exists a constant C̃ such that

Φ(x) ≤ C̃ (|x| ∨ 1)−2 (1 + log(|x| ∨ 1)), for every x ∈ Z4.

It easily follows that

E
[(

τm−1∑
k=0

1{Ŵk=0}

)2]
= O((logm)2)

as m → ∞. Consequently the right-hand side of (2.35) tends to 0 as n → ∞ and if η > 0 is
fixed, we have, for all n sufficiently large,

E
[( τn′(ε)−1∑

k=0
1{Ŵk=0}

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1 + η.

Just as we obtained (2.34), we deduce from the latter bound that

2E
[( n′(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1 + η. (2.36)

Then fix α ∈ (0, (4π2σ4)−1). It follows from (2.36) that

2( 1
4π2σ4 − α)(logn′(ε))E

[
1
{
∑n′(ε)−1

j=0 G(−W0(−j))≥( 1
4π2σ4−α) logn′(ε)}

P(W0)
(
Ŵ` 6= 0, ∀` ∈ J1, nK

)]

≤ 2E
[( n′(ε)−1∑

j=0
G(−W0(−j))

)
P(W0)

(
Ŵ` 6= 0,∀` ∈ J1, nK

)]
≤ 1 + η.

On the other hand,

(logn′(ε))P
( n′(ε)−1∑

j=0
G(−W0(−j)) < ( 1

4π2σ4 − α) logn′(ε)
)
−→
n→∞

0

by Lemma 2.18. By combining the last two displays, we get

lim sup
n→∞

2( 1
4π2σ4 − α)(logn′(ε))P

(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≤ 1 + η.

Since η, ε and α can be chosen arbitrarily small, we get

lim sup
n→∞

(logn)P
(
Ŵ` 6= 0,∀` ∈ J1, nK

)
≤ 4π2σ4,

which completes the proof of the first assertion of Proposition 2.8. The second assertion is
an easy consequence of the first one, noting that, for every ε > 0, both P(τp ≥ p2+ε) and
P(τp ≤ p2−ε) are o((log p)−1) as p→∞. �

Proof of Lemma 2.18. The general strategy of the proof is to derive an analogous result for
Brownian motion in R4, and then to use a strong invariance principle to transfer this result to
the random walk S.

We let B = (Bt)t≥0 be a four-dimensional Brownian motion started from 0 and set ρt = |Bt|
for every t ≥ 0, so that (ρt)t≥0 is a four-dimensional Bessel process started from 0. Here is the
Brownian motion version of Lemma 2.18.



74 Chapitre 2 The range of tree-indexed random walk in high dimensions

Lemma 2.19. Let ε > 0. There exist two constants C(ε) and β(ε) > 0 such that, for every
t > r ≥ 1,

P

(∣∣∣∣ ∫ t

r

ds
ρ2
s

− 1
2 log( t

r
)
∣∣∣∣ > ε log( t

r
)
)
≤ C(ε) ( t

r
)−β(ε).

Let us postpone the proof of Lemma 2.19. We fix α > 0 and consider an integer n ≥ 1.
By an extension due to Zaitsev [89] of the celebrated Komlós–Major–Tusnády strong invariance
principle, we can construct on the same probability space the finite sequence (S1, . . . , Sn) and
the Brownian motion (Bt)t≥0, in such a way that, for some constants c > 0, c′ > 0 and K > 0
that do not depend on n, we have

E
[

exp
(
c max

1≤k≤n
|Sk − σBk|

)]
≤ K exp(c′ logn).

It readily follows that we can find constants C > 0 and a > 0 (again independent of n) such
that

P
(

max
1≤k≤n

|Sk − σBk| > C logn
)
≤ Kn−a.

Let A > 2 be a constant. Then

P
(

inf
t≥(logn)4

σ|Bt| ≤ AC logn
)

= P
(

inf
t≥1

σ|Bt| ≤
AC

logn
)

= O((logn)−2)

by an easy estimate. On the event

En :=
{

max
1≤k≤n

|Sk − σBk| ≤ C logn
}
∩
{

inf
t≥(logn)4

σ|Bt| > AC logn
}

we have, for every integer k such that (logn)4 ≤ k ≤ n,

|Sk| ≥ σ|Bk| − C logn ≥ (1− η)σ|Bk|

and
|Sk| ≤ σ|Bk|+ C logn ≤ (1 + η)σ|Bk|

where η = 1/A. We now fix A so that η ∈ (0, 1
5) and 5η < π2σ4α/2.

Recalling our estimate (2.29), we also see that (provided n is large enough) we have on the
event En, for every integer k such that (logn)4 ≤ k ≤ n,

(1− 3η) 1
2π2σ4 |Bk|

−2 ≤ G(Sk) ≤ (1 + 3η) 1
2π2σ4 |Bk|

−2.

Consequently, we have on the event En,

(1− 3η) 1
2π2σ4

n∑
k=d(logn)4e

|Bk|−2 ≤
n∑

k=d(logn)4e
G(Sk) ≤ (1 + 3η) 1

2π2σ4

n∑
k=d(logn)4e

|Bk|−2.

The next step is to observe that
n∑

k=d(logn)4e
|Bk|−2

is close to ∫ n+1

d(logn)4e

ds
|Bs|2
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up to a set of small probability. Indeed simple estimates show that, for any choice of κ > 0, we
have

sup
0≤k≤n

sup
k≤s≤k+1

|Bs −Bk| ≤ κ logn

outside of a set of probability O(n−1). By choosing κ suitably, we then see that on the event

Ẽn := En ∩
{

sup
0≤k≤n

sup
k≤s≤k+1

|Bs −Bk| ≤ κ logn
}

we have
(1− η)

∫ n+1

d(logn)4e

ds
|Bs|2

≤
n∑

k=d(logn)4e
|Bk|−2 ≤ (1 + η)

∫ n+1

d(logn)4e

ds
|Bs|2

,

and consequently

(1− 5η) 1
2π2σ4

∫ n+1

d(logn)4e

ds
|Bs|2

≤
n∑

k=d(logn)4e
G(Sk) ≤ (1 + 5η) 1

2π2σ4

∫ n+1

d(logn)4e

ds
|Bs|2

. (2.37)

We also need to bound the quantity

d(logn)4e−1∑
k=0

G(Sk).

However, from Lemma 2.17 with p = 2, we immediately get that, for every integer m ≥ 2 and
every h > 0,

P
( m∑
k=0

G(Sk) ≥ h
)
≤ C(2)(logm)2

h2 . (2.38)

Finally,

P
(∣∣∣ n∑

k=0
G(Sk)−

1
4π2σ4 logn

∣∣∣ ≥ α logn
)

≤ P
( d(logn)4e∑

k=0
G(Sk) ≥

α

2 logn
)

+ P
(∣∣∣ n∑

k=d(logn)4e
G(Sk)−

1
4π2σ4 logn

∣∣∣ ≥ α

2 logn
)
.

The first term in the right-hand side is O((logn)−3/2) by (2.38). On the other hand, by (2.37),
the second term is bounded by

P (Ẽcn) + P
(∣∣∣ ∫ n+1

d(logn)4e

ds
|Bs|2

− 1
2 logn

∣∣∣ ≥ α′ logn
)

where α′ = (1
2π

2σ4α) ∧ 1
4 is a constant independent of n, which satisfies

(1 + 5η)(1
2 + α′) 1

2π2σ4 <
1

4π2σ4 + α

2 and (1− 5η)(1
2 − α

′) 1
2π2σ4 >

1
4π2σ4 −

α

2 .

(Here we use our choice of η such that 5η < π2σ4α/2.) From preceding estimates, we have
P (Ẽcn) = O((logn)−2). On the other hand, Lemma 2.19 implies that

P
(∣∣∣ ∫ n+1

d(logn)4e

ds
|Bs|2

− 1
2 logn

∣∣∣ ≥ α′ logn
)

= O(n−b)
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for some b > 0. This completes the proof of Lemma 2.18. �

Proof of Lemma 2.19. By a scaling argument, it is enough to consider the case r = 1, and we
consider only that case. For every integer k ≥ 0, set

γk := inf
{
t ≥ 0 : ρt = ek

}
and

Xk :=
∫ γk+1

γk

ds
ρ2
s

.

A scaling argument shows that the variables Xk, k ≥ 0 are identically distributed. Moreover,
the strong Markov property of the Bessel process implies that the variables Xk, k ≥ 0 are
independent. Furthermore, the absolute continuity relations between Bessel processes can be
used to verify that these variables have small exponential moments. More precisely, using the
explicit form of the density of the law over the time interval [0, t] of the four-dimensional Bessel
process started at 1 with respect to Wiener measure (see question 3 in Exercise XI.1.22 of Revuz
and Yor [82]), it is an easy exercise of martingale theory to verify that

E
[
e3X0/8] = E

[
exp 3

8

∫ γ1

γ0

ds
ρ2
s

]
=
√
e <∞.

Set
c0 = E[X0] = E[Xk]

for every k ≥ 0. We can apply Cramér’s large deviation theorem to the sequence (Xk)k≥0. It
follows that, for every δ > 0, there exists a constant b(δ) > 0 such that for every sufficiently
large n,

P
(∣∣∣ ∫ γn

γ0

ds
ρ2
s

− c0n
∣∣∣ > δn

)
≤ exp(−b(δ)n). (2.39)

On the other hand, it is easy to verify that the variable∫ γ0

1

ds
ρ2
s

has exponential moments. Just use the above-mentioned argument involving the density of the
law of the Bessel process to verify that

E
[

exp
(3

8

∫ γ0

1

ds
ρ2
s

)]
<∞

(deal separately with the cases 1 < γ0 and γ0 < 1). It then follows that, for every δ > 0, and
for all sufficiently large n,

P
( ∫ γ0

1

ds
ρ2
s

> δn
)
≤ exp(−b′(δ)n)

with some constant b′(δ) > 0. The same bound holds for the variable∫ γm

e2m

ds
ρ2
s

,

for any integer m ≥ 0, since this variable has the same law as∫ γ0

1

ds
ρ2
s
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by scaling.
By combining the latter facts with (2.39), we obtain that, for every δ > 0, there exists a

constant b̃(δ) > 0 such that, for every sufficiently large n,

P
(∣∣∣ ∫ e2n

1

ds
ρ2
s

− c0n
∣∣∣ > δn

)
≤ exp(−b̃(δ)n). (2.40)

At this stage, we can identify the constant c0, since the preceding arguments also show that

c0 = lim
n→∞

1
n
E
[ ∫ e2n

1

ds
ρ2
s

]
= 1

by a direct calculation of E[(ρs)−2] = (2s)−1. Once we know that c0 = 1, the statement of
Lemma 2.19 follows from (2.40) by elementary considerations: For every t ≥ 1, choose n such
that e2n ≤ t < e2(n+1) and observe that

{∫ t

1

ds
ρ2
s

− 1
2 log t > ε log t

}
⊆
{∫ e2(n+1)

1

ds
ρ2
s

− n > 2εn
}
,

whereas {∫ t

1

ds
ρ2
s

− 1
2 log t < −ε log t

}
⊆
{∫ e2n

1

ds
ρ2
s

− n− 1 < −2εn
}
.

This completes the proof. �

2.4 The range of branching random walk
In this last section, we apply the preceding results to asymptotics for the range of branching

random walk in Zd, d ≥ 4. We assume that the offspring distribution µ is critical and has finite
variance σ2

µ > 0, and that the jump distribution θ is centered and has finite moments of order
d− 1 (and as usual that θ is not supported on a strict subgroup of Zd).

Let Mp(Zd) stand for the set of all finite point measures on Zd. Let Z = (Zn)n≥0 denote
the (discrete time) branching random walk with jump distribution θ and offspring distribution
µ. This is the Markov chain with values in Mp(Zd), whose transition kernel Q can be described
as follows. If

ω =
p∑
i=1

δxi ∈Mp(Zd),

Q(ω, ·) is the distribution of
p∑
i=1

ξi∑
j=1

δxi+Yi,j ,

where ξ1, . . . , ξp are independent and distributed according to µ and, conditionally on (ξ1, . . . , ξp),
the random variables Yi,j , 1 ≤ i ≤ p, 1 ≤ j ≤ ξi, are independent and distributed according to θ.
More informally, each particle alive at time n is replaced at time n+ 1 by a number of offspring
distributed according to µ, and the spatial position of each of these offspring is obtained by
adding a jump distributed according to θ to the position of its parent.

The range of Z is then defined by

R(Z) := #{x ∈ Zd : ∃n ≥ 0,Zn(x) ≥ 1}.
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We also write N(Z) for the total progeny of Z,

N(Z) :=
∞∑
n=0
〈Zn, 1〉

where 〈Zn, 1〉 is the total mass of Zn. It is well known (and easy to prove using the Lukasiewisz
path introduced in the proof of Theorem 2.7) that N(Z) has the distribution of the hitting time
of −〈Z0, 1〉 by a random walk on Z with jump distribution ν(k) = µ(k+ 1), for k = −1, 0, 1, . . .,
started from 0.

Proposition 2.20. Suppose that d ≥ 5. For every integer p ≥ 1, let Z(p) be a branching random
walk with jump distribution θ and offspring distribution µ, such that 〈Z(p)

0 , 1〉 = p. Then,

lim
p→∞

R(Z(p))
N(Z(p))

= cµ,θ in probability,

where cµ,θ > 0 is the constant in Theorem 2.4. Consequently,

1
p2 R(Z(p)) (d)−→

p→∞
cµ,θ
σ2
µ

J ,

where the positive random variable J has density (2πs3)−1/2 exp(− 1
2s) on (0,∞).

Proof. We may and will assume that there exists a sequence T 1, T 2, . . . of independent random
trees distributed according to Πµ, such that, for every p ≥ 1, the genealogy of Z(p) is coded by
T 1, T 2, . . . , T p, meaning that T i is the genealogical tree of the descendants of the i-th initial
particle of Z(p), for every p ≥ 1 and i ∈ {1, . . . , p}. Notice that we have then

N(Z(p)) = #T 1 + · · ·+ #T p.

For every i ∈ {1, . . . , p}, we will write S(p)
i for the set of all spatial locations occupied by the

particles of Z(p) that are descendants of the i-th initial particle. Note that the location of the
i-th initial particle may depend on p. Clearly, we have

R(Z(p)) ≤ #S(p)
1 + · · ·+ #S(p)

p . (2.41)

Let (Hk)k≥0 be the height process associated with the sequence T 1, T 2, . . . (see the proof
of Proposition 2.6). Then, as an easy consequence of (2.3), we have the joint convergence in
distribution (

(1
p
Hbp2tc∧N(Zp))t≥0,

1
p2 N(Z(p))

) (d)−→
p→∞

(
( 2
σµ
|βt∧J1/σµ

|)t≥0, J1/σµ

)
, (2.42)

where β is a standard linear Brownian motion, and for every s ≥ 0, Js = inf{t ≥ 0 : L0
t (β) > s},

where (L0
t (β))t≥0 is the local time process of β at level 0. See [58, Section 1.4] for details of the

derivation of (2.42).
Fix ε > 0. For α ∈ (0, 1), let ip,1, ip,2, . . . , ip,mp be all indices i ∈ {1, . . . , p} such that

#T i ≥ αp2. It follows from (2.42) that, if α has been chosen sufficiently small, the bound

N(Z(p))− (#T ip,1 + · · ·+ #T ip,mp ) =
∑

i∈{1,...,p}\{ip,1,...,ip,mp}
#T i < εp2 (2.43)
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will hold with probability arbitrarily close to 1, uniformly for all sufficiently large p. On the
other hand, it also follows from (2.42) that mp converges in distribution as p→∞ to a Poisson
distribution with parameter σ−1

µ

√
2/πα (here the quantity

√
2/πα is the mass that the Itô

excursion measure assigns to excursions of length greater than α). In particular, by choosing α
even smaller if necessary, we have P (mp ≥ 1) > 1− ε for all p large enough. We now fix α > 0
so that the preceding properties hold for all p large enough.

Next we observe that, conditionally on mp, the trees T ip,1 , . . . , T ip,mp are independent and
distributed according to Πµ(· | #T ≥ αp2). From Theorem 2.7, we now get that

P

(∣∣∣ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

#T ip,1 + · · ·+ #T ip,mp
− cµ,θ

∣∣∣ > ε

∣∣∣∣∣ mp ≥ 1
)
−→
p→∞

0. (2.44)

Then, on the one hand, we have from (2.41),

R(Z(p)) ≤ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

+
∑

i∈{1,...,p}\{ip,1,...,ip,mp}
#T i,

and on the other hand,

R(Z(p)) ≥ #S(p)
ip,1

+ · · ·+ #S(p)
ip,mp

−
∑

1≤k<`≤mp
#(S(p)

ip,k
∩ S(p)

ip,`
).

Taking into account the bound (2.43) and the fact that p−2N(Z(p)) converges in distribution to
a positive random variable, we see that the first assertion of the proposition will follow from the
last two bounds and (2.44), provided we can verify that

1
p2

∑
1≤k<`≤mp

#(S(p)
ip,k
∩ S(p)

ip,`
) (P )−→
p→∞

0. (2.45)

Recall that mp converges in distribution to a finite random variable. In order to establish
(2.45), it is enough to verify that, if S(p),1, respectively S(p),2, is the set of points visited by a
random walk indexed by a tree distributed according to Πµ(· | #T ≥ αp2), with the spatial
location of the root equal to x1, resp. to x2, and if S(p),1 and S(p),2 are independent, we have

1
p2 E

[
#(S(p),1 ∩ S(p),2)

]
−→
p→∞

0.

However,

E
[
#(S(p),1 ∩ S(p),2)

]
=
∑
y∈Zd

P (y ∈ S(p),1)P (y ∈ S(p),2) ≤
∑
y∈Zd

P (y ∈ S(p),1)2,

using the Cauchy–Schwarz inequality and translation invariance, which also allows us to take
x1 = 0. By a first moment argument, we have then

P (y ∈ S(p),1) ≤ Gθ(y)
Πµ(#T ≥ αp2) ∧ 1 ≤ (c−1

(µ)
√
αpGθ(y)) ∧ 1,

where the constant c(µ) > 0 depends only on µ. Here we used the classical bound

Πµ(#T ≥ k) ≥ c(µ) k
−1/2, k ≥ 1,
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which follows from the fact that the distribution of #T under Πµ coincides with the law of the
first hitting time of −1 by a random walk on Z with jump distribution ν started from 0 (see the
proof of Theorem 2.7). Finally, we have

1
p2 E

[
#(S(p),1 ∩ S(p),2)] ≤

∑
y∈Zd

(c−2
(µ)αGθ(y)2) ∧ 1

p2

and the right-hand side tends to 0 as p→∞ by dominated convergence, noting that∑
y∈Zd

Gθ(y)2 <∞

by (2.2). This completes the proof of the first assertion of the proposition.
The second assertion follows from the first one and the convergence in distribution of

p−2N(Z(p)) to J1/σµ . Just note that J1/σµ has the same law as σ−2
µ J1 by scaling, and that

J1 is distributed as the first hitting of 1 by a standard linear Brownian motion, whose density
is as stated in the proposition.

We now state the result corresponding to Proposition 2.20 in the critical dimension d = 4.
As previously, we must restrict our attention to the geometric offspring distribution.

Proposition 2.21. Suppose that d = 4, and that µ is the critical geometric offspring dis-
tribution. Also assume that θ is symmetric and has small exponential moments, and set σ2 =
(detMθ)1/4. For every integer p ≥ 1, let Z(p) be a branching random walk with jump distribution
θ and offspring distribution µ, such that 〈Z(p)

0 , 1〉 = p. Then,

lim
p→∞

(log p) R(Z(p))
N(Z(p))

= 8π2 σ4 in probability.

Consequently,
log p
p2 R(Z(p)) (d)−→

p→∞
4π2 σ4 J ,

where J is as in Proposition 2.20.

The proof of Proposition 2.21 goes along the same lines as that of Proposition 2.20, using
now Theorem 2.14 instead of Theorem 2.7. A few minor modifications are needed, but we will
leave the details to the reader.



Chapitre 3

The range of tree-indexed random
walk in low dimensions

Les résultats de ce chapitre sont issus de l’article [62], écrit en collabora-
tion avec Jean-François Le Gall et accepté pour publication dans The Annals of
Probability.

We study the range Rn of a random walk on the d-dimensional lattice Zd indexed by a
random tree with n vertices. Under the assumption that the random walk is centered and has
finite fourth moments, we prove in dimension d ≤ 3 that n−d/4Rn converges in distribution
to the Lebesgue measure of the support of the integrated super-Brownian excursion (ISE). An
auxiliary result shows that the suitably rescaled local times of the tree-indexed random walk
converge in distribution to the density process of ISE. We obtain similar results for the range
of critical branching random walk in Zd, d ≤ 3. As an intermediate estimate, we get exact
asymptotics for the probability that a critical branching random walk starting with a single
particle at the origin hits a distant point. The results of the present article complement those
derived in higher dimensions in our earlier work.

3.1 Introduction

In the present paper, we continue our study of asymptotics for the number of distinct sites of
the lattice visited by a tree-indexed random walk. We consider (discrete) plane trees, which are
rooted ordered trees that can be viewed as describing the genealogy of a population starting with
one ancestor or root, which is denoted by the symbol ∅. Given such a tree T and a probability
measure θ on Zd, we can consider the random walk with jump distribution θ indexed by the tree
T . This means that we assign a (random) spatial location ZT (u) ∈ Zd to every vertex u of T ,
in the following way. First, the spatial location ZT (∅) of the root is the origin of Zd. Then we
assign independently to every edge e of the tree T a random variable Ye distributed according
to θ, and we let the spatial location ZT (u) of the vertex u be the sum of the quantities Ye over
all edges e belonging to the simple path from ∅ to u in the tree. The number of distinct spatial
locations is called the range of the tree-indexed random walk ZT .

In our previous work [61], we stated the following result. Let θ be a probability distribution
on Zd, which is symmetric with finite support and is not supported on a strict subgroup of Zd,
and for every integer n ≥ 1, let T ◦n be a random tree uniformly distributed over all plane trees
with n vertices. Conditionally given T ◦n , let ZT ◦n be a random walk with jump distribution θ
indexed by T ◦n , and let Rn stand for the range of ZT ◦n . Then,

81



82 Chapitre 3 The range of tree-indexed random walk in low dimensions

• if d ≥ 5,
1
n
Rn

(P)−→
n→∞

cθ ,

where cθ > 0 is a constant depending on θ, and (P)−→ indicates convergence in probability;
• if d = 4,

logn
n

Rn
L2
−→
n→∞

8π2 σ4 ,

where σ2 = (detMθ)1/4, with Mθ denoting the covariance matrix of θ;
• if d ≤ 3,

n−d/4Rn
(d)−→
n→∞

cθ λd(supp(I)) , (3.1)

where cθ = 2d/4(detMθ)1/2 is a constant depending on θ, and λd(supp(I)) stands for the
Lebesgue measure of the support of the random measure on Rd known as Integrated Super-
Brownian Excursion or ISE (see Subsection 2.3 below for a definition of ISE in terms of
the Brownian snake, and note that our normalization is slightly different from the one in
[6]).

Only the cases d ≥ 5 and d = 4 were proved in [61], in fact in a greater generality than stated
above, especially when d ≥ 5. In the present work, we concentrate on the case d ≤ 3 and we prove
a general version of the convergence (3.1), where instead of considering a uniformly distributed
plane tree with n vertices we deal with a Galton–Watson tree with offspring distribution µ
conditioned to have n vertices.

Let us specify the assumptions that will be in force throughout this article. We always
assume that d ≤ 3 and
• µ is a nondegenerate critical offspring distribution on Z+, such that, for some λ > 0,

∞∑
k=0

eλk µ(k) <∞,

and we set ρ := (varµ)1/2 > 0;
• θ is a probability measure on Zd, which is not supported on a strict subgroup of Zd; θ is
such that

lim
r→+∞

r4 θ({x ∈ Zd : |x| > r}) = 0, (3.2)

and θ has zero mean; we set σ := (detMθ)1/2d > 0, where Mθ denotes the covariance
matrix of θ.

Note that (3.2) holds if θ has finite fourth moments.
For every n ≥ 1 such that this makes sense, let Tn be a Galton–Watson tree with offspring

distribution µ conditioned to have n vertices. Note that the case when Tn is uniformly distributed
over plane trees with n vertices is recovered when µ is the geometric distribution with parameter
1/2 (see, e.g., Section 2.2 in [63]). Let ZTn denote the random walk with jump distribution θ
indexed by Tn, and let Rn be the range of ZTn . Theorem 3.5 below shows that the convergence
(3.1) holds, provided that cθ is replaced by the constant 2d/2σdρ−d/2.

An interesting auxiliary result is an invariance principle for “local times” of our tree-indexed
random walk. For every a ∈ Zd, let

Ln(a) =
∑
u∈Tn

1{ZTn (u)=a}
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be the number of visits of a by the tree-indexed random walk ZTn . For x = (x1, . . . , xd) ∈ Rd,
set bxc := (bx1c, . . . , bxdc). Then Theorem 3.4 shows that the process(

n
d
4−1 Ln(bn1/4xc)

)
x∈Rd\{0}

converges as n → ∞, in the sense of weak convergence of finite-dimensional marginals, to the
density process of ISE (up to scaling constants and a linear transformation of the variable x).
Notice that the latter density process exists because d ≤ 3, by results due to Sugitani [86]. In
dimension d = 1, this invariance principle has been obtained earlier in a stronger (functional)
form by Bousquet-Mélou and Janson [15, Theorem 3.6] in a particular case, and then by Devroye
and Janson [24, Theorem 1.1] in a more general setting. Such a strengthening might also be
possible when d = 2 or 3, but we have chosen not to investigate this question here as it is not
relevant to our main applications. In dimensions 2 and 3, Lalley and Zheng [49, Theorem 1]
also give a closely related result for local times of critical branching random walk in the case of
a Poisson offspring distribution and for a particular choice of θ.

Our tree-indexed random walk can be viewed as a branching random walk starting with a
single initial particle and conditioned to have a fixed total progeny. Therefore, it is not surprising
that our main results have analogs for branching random walks, as it was already the case in
dimension d ≥ 4 (see Propositions 20 and 21 in [61]). For every integer p ≥ 1, consider a
(discrete time) branching random walk starting initially with p particles located at the origin of
Zd, such that the offspring number of each particle is distributed according to µ, and each newly
born particle jumps from the location of its parent according to the jump distribution θ. Let
V [p] stand for the set of all sites of Zd visited by this branching random walk. Then Theorem
3.8 shows that, similarly as in (3.1), the asymptotic distribution of p−d/2#V [p] is the Lebesgue
measure of the range of a super-Brownian motion starting from δ0 (note again that this Lebesgue
measure is positive because d ≤ 3, see [21] or [86]). In a related direction, we mention the article
of Lalley and Zheng [50], which gives estimates for the number of occupied sites at a given time
by a critical nearest neighbor branching random walk in Zd.

Our proof of Theorem 3.8 depends on an asymptotic estimate for the hitting probability of
a distant point by branching random walk, which seems to be new and of independent interest.
To be specific, consider the set V [1] of all sites visited by the branching random walk starting
with a single particle at the origin. Consider for simplicity the isotropic case where Mθ = σ2 Id,
where Id is the identity matrix. Then Theorem 3.7 shows that

lim
|a|→∞

|a|2 P
(
a ∈ V [1]) = 2(4− d)σ2

ρ2 .

See Subsection 5.1 for a discussion of similar estimates in higher dimensions.
Not surprisingly, our proofs depend on the known relations between tree-indexed random

walk (or branching random walk) and the Brownian snake (or super-Brownian motion). In
particular, we make extensive use of a result of Janson and Marckert [39] showing that the
“discrete snake” coding our tree-indexed random walk ZTn converges in distribution in a strong
(functional) sense to the Brownian snake driven by a normalized Brownian excursion. It follows
from this convergence that the set of all sites visited by the tree-indexed random walk converges
in distribution (modulo a suitable rescaling) to the support of ISE, in the sense of the Hausdorff
distance between compact sets. But, of course, this is not sufficient to derive asymptotics for
the number of visited sites.
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Our assumptions on µ and θ are similar to those in [39]. We have not striven for the
greatest generality, and it is plausible that these assumptions can be relaxed. See, in particular,
[39] for a discussion of the necessity of the existence of exponential moments for the offspring
distribution µ. It might also be possible to replace our condition (3.2) on θ by a second moment
assumption, but this would require different methods as the results of [39] show that the strong
convergence of discrete snakes to the Brownian snake no longer holds without (3.2).

The paper is organized as follows. Section 3.2 presents our main notation and gives some
preliminary results about the Brownian snake. Section 3.3 is devoted to our main result about
the range of tree-indexed random walk in dimension d ≤ 3. Section 3.4 discusses similar results
for branching random walk, and Section 3.5 presents a few complements and open questions.

3.2 Preliminaries on trees and the Brownian snake

3.2.1 Finite trees

We use the standard formalism for plane trees. We set

U :=
∞⋃
n=0

Nn,

where N = {1, 2, . . .} and N0 = {∅}. If u = (u1, . . . , un) ∈ U , we set |u| = n (in particular
|∅| = 0). We write ≺ for the lexicographical order on U , so that ∅ ≺ 1 ≺ (1, 1) ≺ 2 for instance.

A plane tree (or rooted ordered tree) T is a finite subset of U such that:

(i) ∅ ∈ T ;

(ii) If u = (u1, . . . , un) ∈ T \{∅} then ǔ := (u1, . . . , un−1) ∈ T ;

(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every
j ∈ N, (u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).

The notions of a descendant or of an ancestor of a vertex of T are defined in an obvious way. If
u, v ∈ T , we will write u ∧ v ∈ T for the most recent common ancestor of u and v. We denote
the set of all planes trees by Tf .

Let T be a tree with p = #T vertices and let ∅ = v0 ≺ v1 ≺ · · · ≺ vp−1 be the vertices of T
listed in lexicographical order. We define the height function (Hi)0≤i≤p of T by setting Hi = |vi|
for every 0 ≤ i ≤ p− 1, and Hp = 0 by convention.

Recall that we have fixed a probability measure µ on Z+ satisfying the assumptions given in
Section 1, and that ρ2 = varµ. The law of the Galton–Watson tree with offspring distribution µ
is a probability measure on the space Tf , which is denoted by Πµ (see, e.g., [58, Section 1]).

We will need some information about the law of the total progeny #T under Πµ. It is well
known (see, e.g., [58, Corollary 1.6]) that this law is the same as the law of the first hitting time
of −1 by a random walk on Z with jump distribution ν(k) = µ(k + 1), k = −1, 0, 1, . . . started
from 0. Combining this with Kemperman’s formula (see, e.g., [81, p.122]) and using a standard
local limit theorem, one gets

lim
k→∞

k1/2 Πµ(#T ≥ k) = 2
ρ
√

2π
. (3.3)
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Suppose that µ is not supported on a strict subgroup of Z, so that the random walk with jump
distribution ν is aperiodic. The preceding asymptotics can then be strengthened in the form

lim
k→∞

k3/2 Πµ(#T = k) = 1
ρ
√

2π
. (3.4)

3.2.2 Tree-indexed random walk

A (d-dimensional) spatial tree is a pair (T , (zu)u∈T ) where T ∈ Tf and zu ∈ Zd for every
u ∈ T . We let T∗f be the set of all spatial trees.

Recall that θ is a probability measure on Zd satisfying the assumptions listed in the introduc-
tion. We write Π∗µ,θ for the probability distribution on T∗f under which T is distributed according
to Πµ and, conditionally on T , the “spatial locations” (zu)u∈T are distributed as random walk
indexed by T , with jump distribution θ, and started from 0 at the root ∅: This means that,
under the probability measure Π∗µ,θ, we have z∅ = 0 a.s. and, conditionally on T , the quantities
(zu − zǔ, u ∈ T \{∅}) are independent and distributed according to θ.

3.2.3 The Brownian snake

We refer to [57] for the basic facts about the Brownian snake that we will use. The Brownian
snake (Ws)s≥0 is a Markov process taking values in the space W of all (d-dimensional) stopped
paths: Here a stopped path w is just a continuous mapping w : [0, ζ(w)] −→ Rd, where the
number ζ(w) ≥ 0, which depends on w, is called the lifetime of w. A stopped path w with zero
lifetime will be identified with its starting point w(0) ∈ Rd. The endpoint w(ζ(w)) of a stopped
path w is denoted by ŵ.

It will be convenient to argue on the canonical space C(R+,W) of all continuous mappings
from R+ intoW, and to let (Ws)s≥0 be the canonical process on this space. We write ζs := ζ(Ws)
for the lifetime ofWs. If x ∈ Rd, the law of the Brownian snake starting from x is the probability
measure Px on C(R+,W) that is characterized as follows:
(i) The distribution of (ζs)s≥0 under Px is the law of a reflected linear Brownian motion on

R+ started from 0.
(ii) We have W0 = x, Px a.s. Furthermore, under Px and conditionally on (ζs)s≥0, the process

(Ws)s≥0 is (time-inhomogeneous) Markov with transition kernels specified as follows. If
0 ≤ s < s′,
• Ws′(t) = Ws(t) for every 0 ≤ t ≤ mζ(s, s′) := min{ζr : s ≤ r ≤ s′};
• (Ws′(mζ(s, s′) + t)−Ws′(mζ(s, s′)))0≤t≤ζs′−mζ(s,s′) is a standard Brownian motion in

Rd independent of Ws.
We will refer to the process (Ws)s≥0 under P0 as the standard Brownian snake.

We will also be interested in (infinite) excursion measures of the Brownian snake, which we
denote by Nx, x ∈ Rd. For every x ∈ Rd, the distribution of the process (Ws)s≥0 under Nx is
characterized by properties analogous to (i) and (ii) above, with the only difference that in (i)
the law of reflected linear Brownian motion is replaced by the Itô measure of positive excursions
of linear Brownian motion, normalized in such a way that Nx(sup{ζs : s ≥ 0} > ε) = (2ε)−1, for
every ε > 0.

We write γ := sup{s ≥ 0: ζs > 0}, which corresponds to the duration of the excursion under
Nx. A special role will be played by the probability measures N(r)

x := Nx(· | γ = r), which are
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defined for every x ∈ Rd and every r > 0. Under N(r)
x , the “lifetime process” (ζs)0≤s≤r is a

Brownian excursion with duration r. From the analogous decomposition for the Itô measure of
Brownian excursions, we have

N0 =
∫ ∞

0

dr
2
√

2πr3
N(r)

0 . (3.5)

The total occupation measure of the Brownian snake is the finite measure Z on Rd defined
under Nx, or under N(r)

x , by the formula

〈Z, ϕ〉 =
∫ γ

0
dsϕ(Ŵs),

for any nonnegative measurable function ϕ on Rd.
Under N(1)

x , Z is a random probability measure, which in the case x = 0 is called ISE for
integrated super-Brownian excursion (the measure I in (3.1) is thus distributed as Z under
N(1)

0 ). Note that our normalization of ISE is slightly different from the one originally proposed
by Aldous [6].

The following result will be derived from known properties of super-Brownian motion via
the connection between the Brownian snake and superprocesses.

Proposition 3.1. Both Nx a.e. and N(1)
x a.s., the random measure Z has a continuous density

on Rd, which will be denoted by (`y, y ∈ Rd).

Remark. When d = 1, this result, under the measure N(1)
0 , can be found in [15, Theorem

2.1].

Proof. By translation invariance, it is enough to consider the case x = 0. We rely on the Brow-
nian snake construction of super-Brownian motion to deduce the statement of the proposition
from Sugitani’s results [86]. Let (W i)i∈I be a Poisson point measure on C(R+,W) with intensity
N0. With every i ∈ I, we associate the occupation measure Z i ofW i. Then Theorem IV.4 in [57]
shows that there exists a super-Brownian motion (Xt)t≥0 with branching mechanism ψ(u) = 2u2

and initial value X0 = δ0, such that ∫ ∞
0

dtXt =
∑
i∈I
Z i.

As a consequence of [86, Theorems 2 and 3], the random measure
∫∞

0 dtXt has a.s. a continuous
density on Rd\{0}. On the other hand, let B(0, ε) denote the closed ball of radius ε centered at
0 in Rd. Then, for every ε > 0, the event

Aε := {#{i ∈ I : Z i(B(0, ε)c) > 0} = 1}

has positive probability (see, e.g., [57, Proposition V.9]). On the event Aε, write i0 for the unique
index in I such that Z i0(B(0, ε)c) > 0. Then, still on the event Aε, the measures

∫∞
0 dtXt and

Z i0 coincide on B(0, ε)c. The conditional distribution ofW i0 knowing Aε is N0(· | Z(B(0, ε)c) >
0), and we conclude that Z has a continuous density on B(0, ε)c, N0(· | Z(B(0, ε)c) > 0) a.s.
As this holds for any ε > 0, we obtain that, N0 a.e., the random measure Z has a continuous
density on Rd\{0}. Via a scaling argument, the same property holds N(1)

0 a.s. This argument
does not exclude the possibility that Z might have a singularity at 0, but we can use the rerooting
invariance property (see [6, Section 3.2] or [65, Section 2.3]) to complete the proof. According to
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this property, if under the measure N(1)
0 we pick a random point distributed according to Z and

then shift Z so that this random point becomes the origin of Rd, the resulting random measure
has the same distribution as Z. Consequently, we obtain that N(1)

0 a.s., Z(dx) a.e., the measure
Z has a continuous density on Rd\{x}. It easily follows that Z has a continuous density on Rd,
N(1)

0 a.s., and by scaling again the same property holds under N0.

Let us introduce the random closed set

R :=
{
Ŵs : 0 ≤ s ≤ γ

}
.

Note that, by construction, Z is supported on R, and it follows that, for every y ∈ Rd\{x},

{`y > 0} ⊂ {y ∈ R}, Nx a.e. or N(1)
x a.s. (3.6)

Proposition 3.2. For every y ∈ Rd\{x},

{`y > 0} = {y ∈ R}, Nx a.e. and N(1)
x a.s.

Proof. Fix y ∈ Rd, and consider the function u(x) := Nx(`y > 0), for every x ∈ Rd\{y}. By
simple scaling and rotational invariance arguments (see the proof of Proposition V.9 (i) in [57]
for a similar argument), we have

u(x) = Cd|x− y|−2

with a certain constant Cd > 0 depending only on d. On the other hand, an easy application of
the special Markov property [56] shows that, for every r > 0, and every x ∈ B(y, r)c, we have

u(x) = Nx
[
1− exp

(
−
∫
XB(y,r)c(dz)u(z)

)]
where XB(y,r)c stands for the exit measure of the Brownian snake from the open set B(y, r)c.
Theorem V.4 in [57] now shows that the function u must solve the partial differential equation
∆u = 4u2 in Rd\{y}. It easily follows that Cd = 2− d/2.

The preceding line of reasoning also applies to the function v(x) := Nx(y ∈ R) (see [57, page
91]), and shows that we have v(x) = (2− d/2)|x− y|−2 = u(x) for every x ∈ Rd\{y} – note that
this formula for v can also be derived from [21, Theorem 1.3] and the connection between the
Brownian snake and super-Brownian motion. Recalling (3.6), this is enough to conclude that

{`y > 0} = {y ∈ R}, Nx a.e. (3.7)

for every x ∈ Rd\{y}.
We now want to obtain that the equality in (3.7) also holds N(1)

x a.s. Note that, for every
fixed x, we could use a scaling argument to get that {`y > 0} = {y ∈ R}, N(1)

x a.s., for λd
a.e. y ∈ Rd, where we recall that λd stands for Lebesgue measure on Rd. In order to get the
more precise assertion of the proposition, we use a different method.

By translation invariance, we may assume that x = 0 and we fix y ∈ Rd\{0}. We set
Ty := inf{s ≥ 0: Ŵs = y}. Also, for every s > 0, we set

˜̀y
s := lim inf

ε→0

(
λd(B(y, ε))

)−1
∫ s

0
dr 1{|Ŵr−y|≤ε}

,
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Note that ˜̀yγ = `y, N0 a.e. and N(1)
0 a.e. We then claim that, for every s > 0,{
Ty ≤ s

}
=
{˜̀y
s > 0

}
, N0 a.e. (3.8)

The inclusion {˜̀ys > 0} ⊂ {Ty ≤ s} is obvious. In order to prove the reverse inclusion, we argue
by contradiction and assume that

N0(Ty ≤ s, ˜̀ys = 0) > 0.

Note that N0(Ty = s) = 0 (because N0(Ŵs = y) = 0), and so we have also N0(Ty < s, ˜̀ys = 0) > 0.
For every η > 0, let

T (η)
y := inf

{
r ≥ Ty : ζr ≤ (ζTy − η)+}.

Notice that, by the properties of the Brownian snake, the path W
T

(η)
y

is just WTy stopped at
time (ζTy − η)+.

From the strong Markov property at time Ty, we easily get that T (η)
y ↓ Ty as η ↓ 0, N0 a.e.

on {Ty <∞}. Hence, on the event {Ty < s}, we have also T (η)
y < s for η small enough, N0 a.e.

Therefore, we can find η > 0 such that

N0
(
Ty < s, ˜̀y

T
(η)
y

= 0
)
> 0.

However, using the strong Markov property at time T (η)
y , and Lemma V.5 and Proposition

V.9 (i) in [57], we immediately see that, conditionally on the past up to time T (η)
y , the event

{Ŵr 6= y , ∀r ≥ T (η)
y } occurs with positive probability. Hence, we get

N0(Ty < s, ˜̀yγ = 0) > 0.

Since ˜̀yγ = `y, this contradicts (3.7), and this contradiction completes the proof of our claim
(3.8).

Finally, we observe that, for every s ∈ (0, 1), the law of (Wr)0≤r≤s under N(1)
0 is absolutely

continuous with respect to the law of the same process under N0 (this is a straightforward
consequence of the similar property for the Itô excursion measure and the law of the normalized
Brownian excursion, see, e.g., [82, Chapter XII]). Hence, (3.8) also gives, for every s ∈ (0, 1),{

Ty ≤ s
}

=
{˜̀y
s > 0

}
, N(1)

0 a.s.,

and the fact that the equality in (3.7) also holds N(1)
0 a.s. readily follows.

3.3 Asymptotics for the range of tree-indexed random walk

Throughout this section, we consider only integers n ≥ 1 such that Πµ(#T = n) > 0 (and
when we let n→∞, we mean along such values). For every such integer n, let (Tn, (Zn(u))u∈Tn)
be distributed according to Π∗µ,θ(· |#T = n). Then Tn is a Galton–Watson tree with offspring
distribution µ conditioned to have n vertices, and conditionally on Tn, (Zn(u))u∈Tn is a random
walk with jump distribution θ indexed by Tn.

We set, for every t > 0 and x ∈ Rd,

pt(x) := 1
(2πt)d/2

√
detMθ

exp
(
−
x ·M−1

θ x

2t
)
,
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where x · y stands for the usual scalar product in Rd.
For every a ∈ Zd, we also set

Ln(a) :=
∑
u∈Tn

1{Zn(u)=a}.

Lemma 3.3. For every ε > 0, there exists a constant Cε such that, for every n and every b ∈ Zd
with |b| ≥ εn1/4,

E
[
(Ln(b))2] ≤ Cε n2− d2 .

Furthermore, for every x, y ∈ Rd\{0}, and for every choice of the sequences (xn) and (yn) in Zd
such that n−1/4xn −→ x and n−1/4yn −→ y as n→∞, we have

lim
n→∞

n
d
2−2E

[
Ln(xn)Ln(yn)

]
= ϕ(x, y),

where

ϕ(x, y) := ρ4
∫

(R+)3
dr1 dr2 dr3 (r1 + r2 + r3)e−ρ2(r1+r2+r3)2/2

∫
Rd

dz pr1(z)pr2(x− z)pr3(y − z).

The function ϕ is continuous on (Rd\{0})2.

Remark. The function ϕ is in fact continuous on (Rd)2. See the appendix at the end of the
chapter for a proof.

Proof. We first establish the second assertion of the lemma. We let un0 , un1 , . . . , unn−1 be the
vertices of Tn listed in lexicographical order. By definition,

Ln(xn) =
n−1∑
i=0

1{Zn(uni )=xn},

so that

E
[
Ln(xn)Ln(yn)

]
= E

[ n−1∑
i=0

n−1∑
j=0

1{Zn(uni )=xn, Zn(unj )=yn}

]
.

Let Hn be the height function of the tree Tn, so that Hn
i = |uni | for every i ∈ {0, 1, . . . , n− 1}.

If i, j ∈ {0, 1, . . . , n−1}, we also use the notation Ȟn
i,j = |uni ∧unj | for the generation of the most

recent common ancestor to uni and unj , and note that∣∣∣Ȟn
i,j − min

i∧j≤k≤i∨j
Hn
k

∣∣∣ ≤ 1. (3.9)

Write πk = θ∗k for the transition kernels of the random walk with jump distribution θ. By
conditioning with respect to the tree Tn, we get

E
[
Ln(xn)Ln(yn)

]
= E

[ n−1∑
i=0

n−1∑
j=0

∑
a∈Zd

πȞn
i,j

(a)πHn
i −Ȟ

n
i,j

(xn − a)πHn
j −Ȟ

n
i,j

(yn − a)
]

= n2E

[ ∫ 1

0

∫ 1

0
ds dt Φn

xn,yn

(
Hn
bnsc, H

n
bntc, Ȟ

n
bnsc,bntc

)]
, (3.10)
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where we have set, for every integers k, `,m ≥ 0 such that k ∧ ` ≥ m,

Φn
xn,yn(k, `,m) :=

∑
a∈Zd

πm(a)πk−m(xn − a)π`−m(yn − a).

In the remaining part of the proof, we assume that θ is aperiodic (meaning that the subgroup
generated by {k ≥ 0: πk(0) > 0} is Z). Only minor modifications are needed to treat the general
case. We can then use the local limit theorem, in a form that can be obtained by combining
Theorems 2.3.9 and 2.3.10 in [53]. There exists a sequence δn converging to 0 such that, for
every n ≥ 1,

sup
a∈Zd

((
1 + |a|

2

n

)
nd/2

∣∣πn(a)− pn(a)
∣∣) ≤ δn. (3.11)

Let (kn), (`n), (mn) be three sequences of positive integers such that n−1/2kn → u, n−1/2`n → v
and n−1/2mn → w, where 0 < w < u ∧ v. Write

nd/2Φn
xn,yn(kn, `n,mn) = n3d/4

∫
Rd

dz πmn(bzn1/4c)πkn−mn(xn − bzn1/4c)π`n−mn(yn − bzn1/4c),

and note that, for every fixed z ∈ Rd,

lim
n→∞

nd/4 πmn(bzn1/4c) = pw(z),

lim
n→∞

nd/4 πkn−mn(xn − bzn1/4c) = pu−w(x− z),

lim
n→∞

nd/4 π`n−mn(yn − bzn1/4c) = pv−w(y − z),

by (3.11). These convergences even hold uniformly in z. It then follows that

lim
n→∞

nd/2Φn
xn,yn(kn, `n,mn) =

∫
Rd

dz pw(z)pu−w(x− z)pv−w(y − z) =: Ψx,y(u, v, w). (3.12)

Indeed, using (3.11) again, we have, for every K > 2(|x| ∨ |y|) + 2 and every sufficiently large n,

n3d/4
∫
{|z|≥K+1}

dz πmn(bzn1/4c)πkn−mn(xn − bzn1/4c)π`n−mn(yn − bzn1/4c)

≤ C
∫
{|z|≥K+1}

dz
( 1

(|z| − 1)2

)3
,

with a constant C independent of n and K. The right-hand side of the last display tends to 0 as
K tends to infinity. Together with the previously mentioned uniform convergence, this suffices
to justify (3.12).

By [58, Theorem 1.15], we have(ρ
2 n
−1/2Hn

bntc
)
0≤t≤1

(d)−→
n→∞

(
et
)
0≤t≤1,

where (et)0≤t≤1 is a normalized Brownian excursion, and we recall that ρ2 is the variance of µ.
The latter convergence holds in the sense of the weak convergence of laws on the Skorokhod
space D([0, 1],R+) of càdlàg functions from [0, 1] into R+. Using the Skorokhod representation
theorem, we may and will assume that this convergence holds almost surely, uniformly in t ∈
[0, 1]. Recalling (3.9), it follows that we have also

ρ

2 n
−1/2 Ȟn

bnsc,bntc −→n→∞ min
s∧t≤r≤s∨t

er =: me(s, t),
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uniformly in s, t ∈ [0, 1], a.s.
As a consequence of (3.12) and the preceding observations, we have, for every s, t ∈ (0, 1)

with s 6= t,

lim
n→∞

nd/2Φn
xn,yn

(
Hn
bnsc, H

n
bntc, Ȟ

n
bnsc,bntc

)
= Ψx,y

(2
ρ

es,
2
ρ

et,
2
ρ
me(s, t)

)
, a.s. (3.13)

We claim that we can deduce from (3.10) and (3.13) that

lim
n→∞

n
d
2−2E

[
Ln(xn)Ln(yn)

]
= E

[ ∫ 1

0

∫ 1

0
ds dtΨx,y

(2
ρ

es,
2
ρ

et,
2
ρ
me(s, t)

)]
. (3.14)

Note that the right-hand side of (3.14) coincides with the function ϕ(x, y) in the lemma. To see
this, we can use Theorem III.6 of [57] to verify that the joint density of the triple(

me(s, t), es −me(s, t), et −me(s, t)
)

when s and t are chosen uniformly over [0, 1], independently and independently of e, is

16(r1 + r2 + r3) exp(−2(r1 + r2 + r3)2).

So the proof of the second assertion will be complete if we can justify (3.14). By Fatou’s
lemma, (3.10) and (3.13), we have first

lim inf
n→∞

n
d
2−2E

[
Ln(xn)Ln(yn)

]
≥ E

[ ∫ 1

0

∫ 1

0
ds dtΨx,y

(2
ρ

es,
2
ρ

et,
2
ρ
me(s, t)

)]
.

Furthermore, dominated convergence shows that, for every K > 0,

lim
n→∞

E

[ ∫ 1

0

∫ 1

0
ds dt

(
nd/2Φn

xn,yn(Hn
bnsc, H

n
bntc, Ȟ

n
bnsc,bntc) ∧K

)]
= E

[ ∫ 1

0

∫ 1

0
dsdt

(
Ψx,y

(2
ρ

es,
2
ρ

et,
2
ρ
me(s, t)

)
∧K

)]
.

Write Γn(s, t) = nd/2Φn
xn,yn(Hn

bnsc, H
n
bntc, Ȟ

n
bnsc,bntc) to simplify notation. In view of the preced-

ing comments, it will be enough to verify that

lim
K→∞

(
lim sup
n→∞

E

[ ∫ 1

0

∫ 1

0
ds dtΓn(s, t) 1{Γn(s,t)>K}

])
= 0. (3.15)

To this end, we will make use of the bound

sup
k≥0

πk(x) ≤M (|x|−d ∧ 1), (3.16)

which holds for every x ∈ Zd with a constant M independent of x. This bound can be obtained
easily by combining (3.11) and Proposition 2.4.6 in [53]. Then let k, `,m ≥ 0 be integers such
that k ∧ ` ≥ m, and recall that

Φn
xn,yn(k, `,m) =

∑
a∈Zd

πm(a)πk−m(xn − a)π`−m(yn − a).
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Fix ε > 0 such that |x| ∧ |y| > 2ε. Consider first the contribution to the sum in the right-hand
side coming from values of a such that |a| ≤ εn1/4. For such values of a (and assuming that n
is large enough), the estimate (3.16) allows us to bound both πk−m(xn − a) and π`−m(yn − a)
by Mε−dn−d/4. On the other hand, if |a| ≥ εn1/4, we can bound πm(a) by Mε−dn−d/4, whereas
(3.11) shows that the sum ∑

|a|≥εn1/4

πk−m(xn − a)π`−m(yn − a)

is bounded above by c1((k −m)−d/2 ∧ (`−m)−d/2 ∧ 1) for some constant c1. Summarizing, we
get the bound

Φn
xn,yn(k, `,m) ≤M2ε−2dn−d/2 + c1Mε−dn−d/4((k −m)−d/2 ∧ (`−m)−d/2 ∧ 1)

≤ c1,εn
−d/2 + c2,εn

−d/4 ((k + `− 2m)−d/2 ∧ 1),

where c1,ε and c2,ε are constants that do not depend on n, k, `,m. Then observe that, for every
s, t ∈ (0, 1),

Hn
bnsc +Hn

bntc − 2Ȟn
bnsc,bntc = dn

(
unbnsc, u

n
bntc

)
,

where dn denotes the usual graph distance on Tn. From the preceding bound, we thus get

Γn(s, t) ≤ c1,ε + c2,εn
d/4 (dn(unbnsc, u

n
bntc)

−d/2 ∧ 1
)
.

It follows that, for every K > 0,∫ 1

0

∫ 1

0
ds dtΓn(s, t) 1{Γn(s,t)>c1,ε+c2,εK}

≤
∫ 1

0

∫ 1

0
ds dt

(
c1,ε + c2,εn

d/4 (dn(unbnsc, u
n
bntc)

−d/2 ∧ 1)
)

1{
nd/4dn(unbnsc,u

n
bntc)

−d/2>K
}

= n−2 ∑
u,v∈Tn

(
c1,ε + c2,εn

d/4 (dn(u, v)−d/2 ∧ 1)
)

1{
dn(u,v)<K−2/d n1/2

}.
By an estimate found in Theorem 1.3 of [24], there exists a constant c0 that only depends on µ,
such that, for every integer k ≥ 1,

E
[
#{(u, v) ∈ Tn × Tn : dn(u, v) = k}

]
≤ c0kn. (3.17)

It then follows that

E

[ ∫ 1

0

∫ 1

0
dsdtΓn(s, t) 1{Γn(s,t)>c1,ε+c2,εK}

]

≤ n−1(c1,ε + c2,εn
d/4) + c0n

−1
bK−2/d n1/2c∑

k=1
k(c1,ε + c2,εn

d/4k−d/2).

It is now elementary to verify that the right-hand side of the preceding display has a limit g(K)
when n→∞, and that g(K) tends to 0 as K →∞ (note that we use the fact that d ≤ 3). This
completes the proof of (3.15) and of the second assertion of the lemma.

The proof of the first assertion is similar and easier. We first note that

E
[
Ln(b)2] = E

[ ∑
u,v∈Tn

Φn
b,b(|u|, |v|, |u ∧ v|)

]
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where the function Φn
b,b is defined as above. Then, assuming that |b| ≥ 2ε n1/4, the same

arguments as in the first part of the proof give the bound

Φn
b,b(|u|, |v|, |u ∧ v|) ≤ c1,εn

−d/2 + c2,εn
−d/4 (dn(u, v)−d/2 ∧ 1).

By summing over all choices of u and v, it follows that

E
[
Ln(b)2] ≤ c1,εn

2−d/2 + c2,εn
−d/4

(
n+ E

[ ∑
u,v∈Tn,1≤dn(u,v)≤

√
n

dn(u, v)−d/2
]

+ n2 × n−d/4
)

≤ (c1,ε + 2c2,ε)n2−d/2 + c2,εn
−d/4

b
√
nc∑

k=1
k−d/2E

[
#{(u, v) ∈ Tn : dn(u, v) = k}

]
,

and the bound stated in the first assertion easily follows from (3.17).
Let us finally establish the continuity of ϕ. We fix ε > 0 and verify that ϕ is continuous on

the set {|x| ≥ 2ε, |y| ≥ 2ε}. We split the integral in dz in two parts:

— The integral over |z| ≤ ε. Write ϕ1,ε(x, y) for the contribution of this integral. We observe
that, if |z| ≤ ε, the function x 7→ pr2(x− z) is Lipschitz uniformly in z and in r2 on the set
{|x| ≥ 2ε}, and a similar property holds for the function y 7→ pr3(y − z). It follows that
ϕ1,ε is a Lipschitz function of (x, y) on the set {|x| ≥ 2ε, |y| ≥ 2ε}.

— The integral over |z| > ε. Write ϕ2,ε(x, y) for the contribution of this integral. Note that
if (un, vn)n≥1 is a sequence in Rd × Rd such that |un| ∧ |vn| ≥ 2ε for every n, and (un, vn)
converges to (x, y) as n→∞, we have, for every fixed r1, r2, r3 > 0,∫

{|z|>ε}
dz pr1(z)pr2(un − z)pr3(vn − z) −→

n→∞

∫
{|z|>ε}

dz pr1(z)pr2(x− z)pr3(y − z).

We can then use dominated convergence, since there exist constants cε and c̃ε that depend
only on ε, such that∫

{|z|>ε}
dz pr1(z)pr2(un − z)pr3(vn − z) ≤ cεpr2+r3(un − vn) ≤ c̃ε(r2 + r3)−d/2,

and the right-hand side is integrable for the measure (r1+r2+r3)e−ρ2(r1+r2+r3)2/2dr1dr2dr3.
It follows that ϕ2,ε is also continuous on the set {|x| ≥ 2ε, |y| ≥ 2ε}.

The preceding considerations complete the proof.

In what follows, we use the notation W (1) = (W (1)
s )0≤s≤1 for a process distributed according

to N(1)
0 . We recall a result of Janson and Marckert [39] that will play an important role below. As

in the proof of Lemma 3.3, we let un0 , un1 , . . . , unn−1 be the vertices of Tn listed in lexicographical
order. For every j ∈ {0, 1, . . . , n − 1} write Znj = Zn(unj ) for the spatial location of unj , and
Znn = 0 by convention. Recalling our assumption (3.2), we get from [39, Theorem 2] that

(√ρ

2 n
−1/4 Znbntc

)
0≤t≤1

(d)−→
n→∞

(
M

1/2
θ Ŵ

(1)
t

)
0≤t≤1, (3.18)

where as usual M1/2
θ is the unique positive definite symmetric matrix such that Mθ = (M1/2

θ )2,
and the convergence holds in distribution in the Skorokhod space D([0, 1],Rd). Note that there
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are two minor differences between [39] and the present setting. First, [39] considers one-
dimensional labels, whereas our spatial locations take values in Zd. However, we can simply
project Zn(u) on the coordinate axes to get tightness in the convergence (3.18) from the results
of [39], and convergence of finite-dimensional marginals is easy just as in [39, Proof of Theorem
1]. Second, the “discrete snake” of [39] lists the labels encountered when exploring the tree
Tn in depth first traversal (or contour order), whereas we are here enumerating the vertices
in lexicographical order. Nevertheless, the very same arguments that are used to relate the
contour process and the height function of a random tree (see [75] or [58, Section 1.6]) show
that asymptotics for the discrete snakes of [39] imply similar asymptotics for the labels listed in
lexicographical order of vertices.

In the next theorem, the notation (lx, x ∈ Rd) stands for the collection of local times of
W (1), which are defined as the continuous density of the occupation measure of W (1) as in
Proposition 3.1. We define a constant c > 0 by setting

c := 1
σ

√
ρ

2 , (3.19)

where σ2 = (detMθ)1/d as previously. We also use the notation M−1/2
θ = (M1/2

θ )−1.

Theorem 3.4. Let x1, . . . , xp ∈ Rd\{0}, and let (x1
n), . . . , (xpn) be sequences in Zd such that√

ρ
2 n
−1/4M

−1/2
θ xjn −→ xj as n→∞, for every 1 ≤ j ≤ p. Then,

(
n
d
4−1Ln(x1

n), . . . , n
d
4−1Ln(xpn)

) (d)−→
n→∞

(
cdlx

1
, . . . , cdlx

p)
,

where the constant c is given by (3.19).

Remarks. (i) As mentioned in the introduction, this result should be compared with The-
orem 1 in [49], which deals with local times of branching random walk in Zd for d = 2 or 3.
See also [15, Theorem 3.6] and [24, Theorem 1.1] for stronger versions of the convergence in
Theorem 3.4 when d = 1.
(ii) It is likely that the result of Lemma 3.3 still holds when x = 0 or y = 0, and then the condition
xi 6= 0 in the preceding theorem could be removed, using also the remark after Lemma 3.3.
Proving this reinforcement of Lemma 3.3 would however require additional technicalities. Since
this extension is not needed in the proof of our main results, we will not address this problem
here.

Proof. To simplify the presentation, we give the details of the proof only in the isotropic case
where Mθ = σ2 Id (the non-isotropic case is treated in exactly the same manner at the cost
of a somewhat heavier notation). Our condition on the sequences (xjn) then just says that
c n−1/4 xjn −→ xj as n→∞.

By the Skorokhod representation theorem, we may and will assume that the convergence
(3.18) holds a.s. To obtain the result of the theorem, it is then enough to verify that, if x ∈
Rd\{0} and (xn) is a sequence in Zd such that c n−1/4 xn −→ x as n→∞, we have

n
d
4−1Ln(xn) (P)−→

n→∞
cd lx. (3.20)

To this end, fix x and the sequence (xn), and for every ε ∈ (0, |x|), let gε be a nonnegative
continuous function on Rd, with compact support contained in the open ball of radius ε centered
at x, and such that ∫

Rd
gε(y) dy = 1.
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It follows from (3.18) (which we assume to hold a.s.) that, for every fixed ε ∈ (0, |x|),∫ 1

0
gε(c n−1/4 Znbntc) dt a.s.−→

n→∞

∫ 1

0
gε(Ŵ (1)

t ) dt.

Furthermore, ∫ 1

0
gε(Ŵ (1)

t ) dt =
∫
Rd
gε(y) ly dy a.s.−→

ε→0
lx,

by the continuity of local times. Let δ > 0. By combining the last two convergences, we can
find ε1 ∈ (0, |x|) such that, for every ε ∈ (0, ε1), there exists an integer n1(ε) so that for every
n ≥ n1(ε),

P

(∣∣∣ ∫ 1

0
gε(c n−1/4 Znbntc) dt − lx

∣∣∣ > δ

)
< δ. (3.21)

However, we have∫ 1

0
gε(cn−1/4Znbntc) dt = 1

n

∑
a∈Zd

gε(cn−1/4a)Ln(a)

= n
d
4−1

∫
Rd
gε(cn−1/4bn1/4yc)Ln(bn1/4yc) dy.

Set
ηn(ε) :=

∫
Rd
gε(cn−1/4bn1/4yc) dy

and note that
ηn(ε) −→

n→∞

∫
Rd
gε(cy) dy = c−d.

By the Cauchy–Schwarz inequality,

E

[( ∫ 1

0
gε(cn−1/4Znbntc) dt− ηn(ε)n

d
4−1Ln(xn)

)2]
= E

[(
n
d
4−1

∫
Rd
gε(cn−1/4bn1/4yc) (Ln(bn1/4yc)− Ln(xn)) dy

)2]
≤ ηn(ε)× n

d
2−2

∫
Rd

dy gε(cn−1/4bn1/4yc)E
[
(Ln(bn1/4yc)− Ln(xn))2].

Using the first assertion of Lemma 3.3, one easily gets that, for every fixed ε ∈ (0, |x|),

n
d
2−2

∫
Rd

dy
∣∣gε(cn−1/4bn1/4yc)− gε(cy)

∣∣E[(Ln(bn1/4yc)− Ln(xn))2] −→
n→∞

0.

On the other hand, by the second assertion of the lemma,

n
d
2−2

∫
Rd

dy gε(cy)E
[
(Ln(bn1/4yc)−Ln(xn))2] −→

n→∞

∫
Rd

dy gε(cy)
(
ϕ(y, y)−2ϕ(x

c
, y)+ϕ(x

c
,
x

c
)
)
.

If γε stands for the limit in the last display, the continuity of ϕ ensures that γε tends to 0 as
ε→ 0.

From the preceding considerations, we have

lim sup
n→∞

E

[( ∫ 1

0
gε(cn−1/4Znbntc) dt− ηn(ε)n

d
4−1Ln(xn)

)2]
≤ c−dγε.
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Hence we can find ε2 ∈ (0, |x|) small enough so that, for every ε ∈ (0, ε2), there exists an integer
n2(ε) such that, for every n ≥ n2(ε),

P

(∣∣∣ ∫ 1

0
gε(cn−1/4Znbntc) dt− ηn(ε)n

d
4−1Ln(xn)

∣∣∣ > δ

)
< δ. (3.22)

By combining (3.21) and (3.22), we see that, for every ε ∈ (0, ε1 ∧ ε2) and n ≥ n1(ε) ∨ n2(ε),

P
(∣∣ηn(ε)n

d
4−1Ln(xn)− lx

∣∣ > 2δ
)
< 2δ.

Our claim (3.20) easily follows, since ηn(ε) tends to c−d as n→∞.

Set Rn = #{Zn(u) : u ∈ Tn}. Recall the constant c from (3.19), and also recall that λd
denotes Lebesgue measure on Rd.

Theorem 3.5. We have
n−d/4Rn

(d)−→
n→∞

c−dλd(S)

where S stands for the support of ISE.

Proof. Again, for the sake of simplicity, we give details only in the isotropic case Mθ = σ2 Id.
From the definition of ISE, we may take S =

{
Ŵ

(1)
t : 0 ≤ t ≤ 1

}
. We then set, for every ε > 0,

Sε := {x ∈ Rd : dist(x,S) ≤ ε}.

As in the preceding proof, we may and will assume that the convergence (3.18) holds almost
surely. It then follows that, for every ε > 0,

P
(
{cn−1/4 Zn(u) : u ∈ Tn} ⊂ Sε

)
−→
n→∞

1.

Fix K > 0, and let B(0,K) stand for the closed ball of radius K centered at 0 in Rd. Also set
S(K)
ε := Sε ∩B(0,K + ε). It follows that we have also

P
(
({Zn(u) : u ∈ Tn} ∩B(0, c−1n1/4K)) ⊂ c−1n1/4 S(K)

ε

)
−→
n→∞

1.

Applying the latter convergence with ε replaced by ε/2, we get

P
(
#({Zn(u) : u ∈ Tn} ∩B(0, c−1n1/4K)) ≤ c−dnd/4 λd(S(K)

ε )
)
−→
n→∞

1.

Write R(K)
n := #({Zn(u) : u ∈ Tn}∩B(0, c−1n1/4K)). Since λd(S

(K)
ε ) ↓ λd(S∩B(0,K)) as ε ↓ 0,

we obtain that, for every δ > 0,

P
(
n−d/4R(K)

n ≤ c−dλd(S ∩B(0,K)) + δ
)
−→
n→∞

1,

and therefore, since the variables n−d/4R(K)
n are uniformly bounded,

lim
n→∞

E

[(
n−d/4R(K)

n − c−dλd(S ∩B(0,K))
)+]

= 0. (3.23)
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On the other hand, we claim that we have also

lim inf
n→∞

E
[
n−d/4R(K)

n

]
≥ c−dE

[
λd(S ∩B(0,K))

]
. (3.24)

To see this, observe that

E
[
R(K)
n

]
=

∑
a∈Zd∩B(0,c−1n1/4K)

P (Ln(a) > 0)

=
∫
B(0,c−1n1/4K)

dxP (Ln(bxc) > 0) +O(n(d−1)/4)

= nd/4
∫
B(0,c−1K)

dy P (Ln(bn1/4yc) > 0) +O(n(d−1)/4)

as n→∞. By Theorem 3.4, for every y 6= 0,

lim inf
n→∞

P (Ln(bn1/4yc) > 0) ≥ P (lcy > 0) = P (cy ∈ S),

where the equality is derived from Proposition 3.2. Fatou’s lemma then gives

lim inf
n→∞

n−d/4E
[
R(K)
n

]
≥
∫
B(0,c−1K)

dy P (cy ∈ S) = c−dE
[
λd(S ∩B(0,K))

]
,

which completes the proof of (3.24).
Using the trivial identity |x| = 2x+ − x for every real x, we deduce from (3.23) and (3.24)

that
lim
n→∞

E
[∣∣n−d/4R(K)

n − c−dλd(S ∩B(0,K))
∣∣] = 0.

However, we see from (3.18) that, for every δ > 0, we can choose K sufficiently large so that
we have both P (S ⊂ B(0,K)) ≥ 1 − δ and P (R(K)

n = Rn) ≥ 1 − δ for every integer n. It then
follows from the previous convergence that n−d/4Rn converges in probability to c−dλd(S) as
n→∞, and this completes the proof of Theorem 3.5.

3.4 Branching random walk

We will now discuss similar results for branching random walk in Zd. We consider a system
of particles in Zd that evolves in discrete time in the following way. At time n = 0, there are p
particles all located at the origin of Zd (we will comment on more general initial configurations
in Subsection 3.5.3). A particle located at the site a ∈ Zd at time n gives rise at time n+ 1 to
a random number of offspring distributed according to µ, and their locations are obtained by
adding to a (independently for each offspring) a spatial displacement distributed according to θ.

In a more formal way, we consider p independent random spatial trees(
T (1), (Z(1)(u))u∈T (1)

)
, . . . ,

(
T (p), (Z(p)(u))u∈T (p)

)
distributed according to Π∗µ,θ, and, for every integer n ≥ 0, we consider the random point
measure

X [p]
n :=

p∑
j=1

( ∑
u∈T (j),|u|=n

δZ(j)(u)

)
,
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which corresponds to the sum of the Dirac point masses at the positions of all particles alive at
time n.

The set V [p] of all sites visited by the particles is the union over all n ≥ 0 of the supports
of X [p]

n , or equivalently

V [p] =
{
a ∈ Zd : a = Z(j)(u) for some j ∈ {1, . . . , p} and u ∈ T (j)}.

In a way similar to Theorem 3.5, we are interested in limit theorems for #V [p] when p→∞. To
this end, we will first state an analog of the convergence (3.18). For every j ∈ {1, . . . , p}, let

∅ = u
(j)
0 ≺ u

(j)
1 ≺ · · · ≺ u

(j)
#T (j)−1

be the vertices of T (j) listed in lexicographical order, and set H(j)
i = |u(j)

i | and Z
(j)
i = Z(j)(u(j)

i ),
for 0 ≤ i ≤ #T (j)−1. Define the height function (H [p]

k , k ≥ 0) of T (1), . . . , T (p) by concatenating
the discrete functions (H(j)

i , 0 ≤ i ≤ #T (j)−1), and setting H [p]
k = 0 for k ≥ #T (1)+· · ·+#T (p).

Similarly, define the function (Z [p]
k , k ≥ 0) by concatenating the discrete functions (Z(j)

i , 0 ≤ i ≤
#T (j)−1), and setting Z [p]

k = 0 for k ≥ #T (1) + · · ·+#T (p). Finally, we use linear interpolation
to define H [p]

t and Z [p]
t for every real t ≥ 0. We can now state our analog of (3.18).

Proposition 3.6. We have

((ρ
2 p
−1H

[p]
p2s,

√
ρ

2 p
− 1

2 Z
[p]
p2s

)
s≥0

, p−2(#T (1) + · · ·+ #T (p))
) (d)−→
p→∞

(
(ζs∧τ ,M1/2

θ Ŵs∧τ )s≥0, τ
)
,

where (Ws)s≥0 is a standard Brownian snake, τ denotes the first hitting time of 2/ρ by the local
time at 0 of the lifetime process (ζs)s≥0, and the convergence of processes holds in the sense of
the topology of uniform convergence on compact sets.

The joint convergence of the processes ρ
2 p
−1H

[p]
p2s and of the random variables p−2(#T (1) +

· · ·+#T (p)) is a consequence of [58, Theorem 1.8], see in particular (7) and (9) in [58] (note that
the local times of the process (ζs)s≥0 are chosen to be right-continuous in the space variable, so
that our local time at 0 is twice the local time that appears in the display (7) in [58]). Given
the latter joint convergence, the desired statement can be obtained by following the arguments
of the proof of Theorem 2 in [39]. The fact that we are dealing with unconditioned trees makes
things easier than in [39] and we omit the details.

We now state an intermediate result, which is of independent interest. Under the probability
measure Π∗µ,θ, we let R := {zu : u ∈ T } be the set of all points visited by the tree-indexed random
walk.

Theorem 3.7. We have

lim
|a|→∞

|M−1/2
θ a|2 Π∗µ,θ(a ∈ R) = 2(4− d)

ρ2 .

Proof. We start by proving the upper bound

lim sup
|a|→∞

|M−1/2
θ a|2 Π∗µ,θ(a ∈ R) ≤ 2(4− d)

ρ2 .
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By an easy compactness argument, it is enough to prove that, if (ak) is a sequence in Zd such
that |ak| → ∞ and ak/|ak| → x, with x ∈ Rd and |x| = 1, then

lim sup
k→∞

|ak|2 Π∗µ,θ(ak ∈ R) ≤ 2(4− d)
ρ2|M−1/2

θ x|2
. (3.25)

Set pk = |ak|2 ∈ Z+ to simplify notation. We note that

P
(
ak ∈ V [pk]) = 1−

(
1−Π∗µ,θ(ak ∈ R)

)pk
. (3.26)

On the other hand, it follows from our definitions that

P
(
ak ∈ V [pk]) ≤ P(∃s ≥ 0: 1

√
pk
Z(pk)
s = ak

|ak|

)
.

We can then use Proposition 3.6 to get

lim sup
k→∞

P
(
ak ∈ V [pk]) ≤ P0

(
∃s ∈ [0, τ ] : M1/2

θ Ŵs =
√
ρ

2 x
)

= 1− exp
(
− 2
ρ
N0
(√ρ

2M
−1/2
θ x ∈ R

))
= 1− exp

(
− 2(4− d)
ρ2|M−1/2

θ x|2
)
.

The second line follows from excursion theory for the Brownian snake, and the third one uses
the formula for N0(y ∈ R), which has been recalled already in the proof of Proposition 3.2. By
combining the bound of the last display with (3.26), we get our claim (3.25), and this completes
the proof of the upper bound.

Let us turn to the proof of the lower bound. As in the proof of the upper bound, it is enough
to consider a sequence (ak) in Zd such that |ak| → ∞ and ak/|ak| → x, with x ∈ Rd and |x| = 1,
and then to verify that

lim inf
k→∞

|ak|2 Π∗µ,θ(ak ∈ R) ≥ 2(4− d)
ρ2|M−1/2

θ x|2
. (3.27)

As previously, we set pk = |ak|2. We fix 0 < ε < M , and we introduce the function gµ defined
on Z+ by gµ(j) = Πµ(#T = j). Then

|ak|2 Π∗µ,θ(ak ∈ R) ≥ p3
k

∫ M

ε
drΠ∗µ,θ(ak ∈ R, #T = bp2

krc)

= p3
k

∫ M

ε
dr gµ

(
bp2
krc
)
P
(
Lbp2

k
rc(ak) > 0

)
,

where we use the same notation as in Lemma 3.3: Ln(b) denotes the number of visits of site
b by a random walk indexed by a tree distributed according to Πµ(· | #T = n). Note that
Theorem 3.4 gives, for every r ∈ [ε,M ],

lim inf
k→∞

P
(
Lbp2

k
rc(ak) > 0

)
≥ P

(
lr
−1/4z > 0

)
,
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where we write z =
√

ρ
2 M

−1/2
θ x to simplify notation. To complete the argument, we consider

for simplicity the aperiodic case where µ is not supported on a strict subgroup of Z (the reader
will easily be able to extend our method to the general case, using (3.3) instead of (3.4)). By
(3.4), we have for every r ∈ [ε,M ],

lim
k→∞

p3
k gµ

(
bp2
krc
)

= 1
ρ
√

2πr3
.

Using this together with the preceding display, and applying Fatou’s lemma, we obtain

lim inf
k→∞

|ak|2 Π∗µ,θ(ak ∈ R) ≥
∫ M

ε

dr
ρ
√

2πr3
P
(
lr
−1/4z > 0

)
. (3.28)

A scaling argument shows that

P
(
lr
−1/4z > 0

)
= N(1)

0
(
`r
−1/4z > 0

)
= N(r)

0
(
`z > 0

)
.

Using this remark and formula (3.5), we see that the right-hand side of (3.28) can be rewritten
as 2

ρ N0(1{ε<γ<M} 1{`z>0}). By choosing ε small enough andM large enough, the latter quantity
can be made arbitrarily close to

2
ρ
N0(`z > 0) = 2

ρ
(2− d

2) |z|−2 = 2(4− d)
ρ2|M−1/2

θ x|2
.

This completes the proof of the lower bound and of Theorem 3.7.

Recall our notation V [p] for the set of all sites visited by the branching random walk starting
with p initial particles located at the origin.

Theorem 3.8. We have

p−d/2 #V [p] (d)−→
p→∞

(2σ
ρ

)d λd
( ⋃
t≥0

suppXt

)
,

where (Xt)t≥0 is a d-dimensional super-Brownian motion with branching mechanism ψ(u) = 2u2

started from δ0, and suppXt denotes the topological support of Xt.

Proof. Via the Skorokhod representation theorem, we may and will assume that the convergence
in Proposition 3.6 holds a.s., and we will then prove that the convergence of the theorem holds
in probability. If ε > 0 is fixed, the (a.s.) convergence in Proposition 3.6 implies that, a.s. for
all large enough p, we have√

ρ

2 p
−1/2V [p] ⊂ Uε

(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ}
)
,

where, for any compact subset K of Rd, Uε(K) denotes the set of all points whose distance from K
is strictly less than ε. It follows that we have a.s.

lim sup
p→∞

p−d/2#V [p] ≤
(2
ρ

)d/2
λd
(
U2ε
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ}
))
.
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Since ε was arbitrary, we also get a.s.

lim sup
p→∞

p−d/2#V [p] ≤
(2
ρ

)d/2
λd
({
M

1/2
θ Ŵs : 0 ≤ s ≤ τ

})
. (3.29)

To get an estimate in the reverse direction, we argue in a way very similar to the proof of
Theorem 3.5. We fix K > 0, and note that a minor modification of the preceding arguments
also gives a.s.

lim sup
p→∞

p−d/2#
(
V [p] ∩B(0, p1/2K)

)
≤
(2
ρ

)d/2
λd
({
M

1/2
θ Ŵs : 0 ≤ s ≤ τ

}
∩B(0,K ′)

)
,

where K ′ =
√

ρ
2 K. Since the variables p−d/2 #(V [p] ∩ B(0, p1/2K)) are uniformly bounded, it

follows that

lim
p→∞

E

[(
p−d/2 #

(
V [p] ∩B(0, p1/2K)

)
−
(2
ρ

)d/2
λd
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ} ∩B(0,K ′)
))+]

= 0.

(3.30)
On the other hand,

p−d/2E
[
#(V [p] ∩B(0, p1/2K))

]
= p−d/2

∑
a∈Zd∩B(0,p1/2K)

P (a ∈ V [p])

= p−d/2
∑

a∈Zd∩B(0,p1/2K)

(
1− (1−Π∗µ,θ(a ∈ R))p

)

−→
p→∞

∫
B(0,K)

dx
(
1− exp

(
− 2(4− d)
ρ2|M−1/2

θ x|2
))
,

where the last line is an easy consequence of Theorem 3.7. Furthermore,

E
[(2
ρ

)d/2
λd
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ} ∩B(0,K ′)
)]

=
(2
ρ

)d/2 ∫
B(0,K′)

dy
(
1− exp

(
− 2
ρ
N0(M−1/2

θ y ∈ R)
))

=
(2
ρ

)d/2 ∫
B(0,K′)

dy
(
1− exp

(
− 4− d
ρ|M−1/2

θ y|2
))

=
∫
B(0,K)

dx
(
1− exp

(
− 2(4− d)
ρ2|M−1/2

θ x|2
))
.

From the last two displays, we get

lim
p→∞

E
[
p−d/2 #(V [p]∩B(0, p1/2K))

]
= E

[(2
ρ

)d/2
λd
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ}∩B(0,K ′)
)]
. (3.31)

From (3.30) and (3.31), we have

lim
p→∞

E

[∣∣∣p−d/2 #(V [p] ∩B(0, p1/2K))−
(2
ρ

)d/2
λd
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ} ∩B(0,K ′)
)∣∣∣] = 0.

Since, by choosing K large enough, P (V [p] ⊂ B(0, p1/2K)) can be made arbitrarily close to 1,
uniformly in p, we have proved that

p−d/2 #V [p] (P)−→
p→∞

(2
ρ

)d/2
λd
(
{M1/2

θ Ŵs : 0 ≤ s ≤ τ}
)

=
(2σ2

ρ

)d/2
λd
({
Ŵs : 0 ≤ s ≤ τ

})
. (3.32)
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The relations between the Brownian snake and super-Brownian motion [57, Theorem IV.4] show
that the quantity λd({Ŵs : 0 ≤ s ≤ τ}) is the Lebesgue measure of the range of a super-Brownian
motion (with branching mechanism 2u2) started from (2/ρ)δ0. Finally, simple scaling arguments
show that the limit can be expressed in the form given in the theorem.

3.5 Open problems and questions

3.5.1 The probability of visiting a distant point

Theorem 3.7 gives the asymptotic behavior of the probability that a branching random walk
starting with a single particle at the origin visits a distant point a ∈ Zd. It would be of interest
to have a similar result in dimension d ≥ 4, assuming that θ is centered and has sufficiently high
moments. When d ≥ 5, a simple calculation of the first and second moments of the number of
visits of a (see, e.g., the remarks following Proposition 5 in [61]) gives the bounds

C1|a|2−d ≤ Π∗µ,θ(a ∈ R) ≤ C2 |a|2−d

with positive constants C1 and C2 depending on d, µ and θ. When d = 4, one expects that

Π∗µ,θ(a ∈ R) ≈ C

|a|2 log |a| .

Calculations of moments give Π∗µ,θ(a ∈ R) ≥ c1(|a|2 log |a|)−1, but proving the reverse bound
Π∗µ,θ(a ∈ R) ≤ c2(|a|2 log |a|)−1 with some constant c2 seems a nontrivial problem. This problem,
in the particular case of the geometric offspring distribution, and some related questions are
discussed in Section 3.2 of [9].

3.5.2 The range in dimension four

With our previous notation Rn for the range of a random walk indexed by a random tree
distributed according to Πµ(· |#T = n), Theorem 14 in [61] states that in dimension d = 4,

logn
n

Rn
L2
−→
n→∞

8π2σ4,

provided µ is the geometric distribution with parameter 1/2, and θ is symmetric and has ex-
ponential moments. It would be of interest to extend this result to more general offspring
distributions. It seems difficult to adapt the methods of [61] to a more general case, so new
arguments would be needed. In particular, finding the exact asymptotics of Π∗µ,θ(a ∈ R) (see
the previous subsection) in dimension d = 4 would certainly be helpful.

3.5.3 Branching random walk with a general initial configuration

One may ask whether a result such as Theorem 3.8 remains valid for more general initial
configurations of the branching particle system: Compare with Propositions 20 and 21 in [61],
which deal with the case d ≥ 4 and require no assumption on the initial configurations. In the
present setting, Theorem 3.8 remains valid for instance if we assume that the initial positions
of the particles stay within a bounded set independently of p. On the other hand, one might
consider the case where we only assume that the image of p−1X

[p]
0 under the mapping a 7→ p−1/2a
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converges weakly to a finite measure ξ on Rd. This condition ensures the convergence of the
(rescaled) measure-valued processesX [p] to a super-Brownian motion Y with initial value Y0 = ξ,
and it is natural to expect that we have, with a suitable constant C,

p−d/2 #V [p] (d)−→
p→∞

C λd

( ⋃
t≥0

suppYt
)
. (3.33)

For trivial reasons, (3.33) will not hold in dimension d = 1. Indeed, for 1
2 < α < 1, we may let

the initial configuration consist of p−bpαc particles uniformly spread over {1, 2, . . . ,√p} and bpαc
other particles located at distinct points outside {1, 2, . . . ,√p}. Then the preceding assumptions
hold (ξ is the Lebesgue measure on [0, 1]), but (3.33) obviously fails since #V [p] ≥ bpαc. In
dimension 2, (3.33) fails again, for more subtle reasons: One can construct examples where
the descendants of certain initial particles that play no role in the convergence of the initial
configurations contribute to the asymptotics of #V [p] in a significant manner. Still, it seems likely
that some version of (3.33) holds under more stringent conditions on the initial configurations
(in dimension 3 at least, the union in the right-hand side of (3.33) should exclude t = 0, as can
be seen from simple examples).

3.6 Appendix
Recall that

ϕ(x, y) = ρ4
∫

(R+)3
dr1 dr2 dr3 (r1 + r2 + r3)e−ρ2(r1+r2+r3)2/2

∫
Rd

dz pr1(z)pr2(x− z)pr3(y − z).

Here we prove the continuity of ϕ on (Rd)2.
For notational ease, we define the norm J on Rd by

J(x)2 = x·M−1
θ x, ∀x ∈ Rd.

First observe that for r1, r2, r3 > 0,

(2π)
3d
2 (detMθ)

3
2 (r1r2r3)

d
2

∫
Rd

dz pr1(z)pr2(x− z)pr3(y − z)

=
∫
Rd

dz exp
(
− J(z)2

2r1
− J(x− z)2

2r2
− J(y − z)2

2r3

)
=
∫
Rd

dz exp
(
− ∆123

2r1r2r3
J
( r1r3
∆123

x+ r1r2
∆123

y − z
)2 − r1 + r3

2∆123
J(x)2 − r1 + r2

2∆123
J(y)2 + r1

∆123
x·M−1

θ y
)
,

where ∆123 := r1r2 + r1r3 + r2r3. Since for every x, y ∈ Rd,

−r1 + r3
2 J(x)2 − r1 + r2

2 J(y)2 + r1 x·M−1
θ y ≤ 0,

we get the following estimate∫
Rd

dz pr1(z)pr2(x− z)pr3(y − z)

≤ 1
(2π)

3d
2 (detMθ)

3
2 (r1r2r3)

d
2

∫
Rd

dz exp
(
− ∆123

2r1r2r3
J
( r1r3
∆123

x+ r1r2
∆123

y − z
)2)

= 1
(2π)d · (detMθ) · (∆123)d/2

,
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and it follows that for every x, y ∈ Rd,

ϕ(x, y) ≤ ρ4

(2π)d · (detMθ)

∫
(R+)3

dr1 dr2 dr3
r1 + r2 + r3

(r1r2 + r1r3 + r2r3)d/2
exp

(
− ρ2(r1 + r2 + r3)2

2
)
.

We claim that the integral∫
(R+)3

dr1 dr2 dr3
r1 + r2 + r3

(r1r2 + r1r3 + r2r3)d/2
exp

(
− ρ2(r1 + r2 + r3)2

2
)

converges when 1 ≤ d ≤ 3. In fact, due to the exponential term in the integrand, it is enough
to show the convergence of

I :=
∫

0<r1,r2,r3<1
dr1 dr2 dr3

r1 + r2 + r3
(r1r2 + r1r3 + r2r3)d/2

. (3.34)

Using the spherical coordinate 
r1 = r sin θ cosψ,
r2 = r sin θ sinψ,
r3 = r cos θ,

we see that

I =
∫ 1

0
r2dr

∫ π/2

0
sin θ dθ

∫ π/2

0
dψ r(sin θ cosψ + sin θ sinψ + cos θ)

rd (sin2 θ sinψ cosψ + sin θ cos θ cosψ + sin θ cos θ sinψ)d/2

=
∫ 1

0
r3−ddr

∫ π/2

0
dθ
∫ π/2

0
dψ sin θ cosψ + sin θ sinψ + cos θ

(sin θ)
d
2−1(sin θ sinψ cosψ + cos θ cosψ + cos θ sinψ)

d
2

= 1
4− d

∫ π/2

0
dθ
∫ π/2

0
dψ sin θ cosψ + sin θ sinψ + cos θ

(sin θ)
d
2−1(sin θ sinψ cosψ + cos θ cosψ + cos θ sinψ)

d
2
,

as 1 ≤ d ≤ 3. Observe that for any fixed ε ∈ (0, π4 ), the denominator

(sin θ)
d
2−1(sin θ sinψ cosψ + cos θ cosψ + cos θ sinψ)

d
2 , θ, ψ ∈

(
ε,
π

2 − ε
)

is uniformly bounded away from 0. Also notice that the integrand in the original definition (3.34)
of the integral I is symmetric with respect to r1, r2 and r3. So we only need to verify the
convergence of

II :=
∫ ε

0
dθ
∫ ε

0
dψ sin θ cosψ + sin θ sinψ + cos θ

(sin θ)
d
2−1(sin θ sinψ cosψ + cos θ cosψ + cos θ sinψ)

d
2
.

As cos θ cosψ ≥ 1/2 for every θ, ψ ∈ (0, ε), we have

II ≤
∫ ε

0
dθ
∫ ε

0
dψ 3

(sin θ)
d
2−1(1

2)
d
2

= 3ε · 2d/2 ·
∫ ε

0
dθ (sin θ)1− d2 <∞,

which finishes the proof of our claim.
Therefore, we have shown for every x, y ∈ Rd, 1 ≤ d ≤ 3 that

ϕ(x, y) ≤ ρ4

(2π)d · (detMθ)

∫
(R+)3

dr1 dr2 dr3
r1 + r2 + r3

(r1r2 + r1r3 + r2r3)d/2
exp

(
−ρ

2(r1 + r2 + r3)2

2
)
<∞,

and the continuity of ϕ on (Rd)2 follows immediately as a simple application of the dominated
convergence theorem.



Chapitre 4

The range of tree-indexed random
walk with drift

Les résultats de ce chapitre sont issus de l’article [67] en préparation.

We study the range Rn of a random walk on the d-dimensional lattice Zd indexed by a
random tree with n edges, under the assumption that the jump distribution is not centered.

4.1 Introduction

We continue our study of the tree-indexed random walk in the d-dimensional lattice Zd,
but this time its jump distribution is no longer centered. Some partial results are presented
in this note concerning the asymptotics for the number of distinct sites in Zd visited by this
non-centered tree-indexed random walk.

We let θ be a centered probability distribution on Zd, which has finite first moments and
is centered. We also assume that θ is not supported on a strict subgroup of Zd. We write
S = (Sk)k≥0 for a random walk in Zd with jump distribution θ. It is assumed that the random
walk S starts from x under the probability measure Px, for every x ∈ Rd. We fix D ∈ Zd \ {0}
and define a new probability distribution θ̃ on Zd as the image of θ under the translation
x ∈ Zd 7→ x+D. If we set for every k ≥ 0 that

S̃k := Sk + kD,

then S̃ = (S̃k)k≥0 is a random walk in Zd with constant drift D, and its jump distribution is θ̃.
Now we consider the random walk with jump distribution θ̃ indexed by a plane tree T . This

means that we assign a (random) spatial location ZT (u) ∈ Zd to every vertex u of T , in the
following way. First, the spatial location ZT (∅) of the root ∅ is the origin of Zd. Then, we
assign independently to every edge e of the tree T a random variable Xe distributed according
to θ̃, and we let the spatial location ZT (u) of the vertex u be the sum of the quantities Xe

over all edges e belonging to the simple path from ∅ to u in the tree T . Due to our definition
of θ̃, this random walk ZT indexed by T has constant drift D. The number of distinct spatial
locations is called the range of the tree-indexed random walk ZT .

Let µ be a probability measure on Z+, which is critical in the sense that it has mean one.
As in [61, 62], we always consider the critical Galton–Watson tree with offspring distribution
µ as a random plane tree. The degenerate case where µ(1) = 1 is excluded. Let G be the
smallest subgroup of Z that contains the support of µ. Then for every sufficiently large integer
n ∈ G, we may define Tn as a µ-Galton–Watson tree conditioned to have exactly n+ 1 vertices.

105
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Conditionally given Tn, let ZTn be a random walk with jump distribution θ̃ indexed by Tn, and
let Rn stand for the range of ZTn . In this work, we show that the asymptotics of Rn as n→∞
exhibit different behaviors depending on the dimension d, and we compare these results with
the corresponding ones shown in [61, 62] for the case where the jump distribution is centered.

4.2 Linear growth of the range

In this section, we use the general results established in [61, Section 2] to show the following
theorem.

Theorem 4.1. Assume that µ has finite variance, or that µ belongs to the domain of attraction
of a stable distribution with index α ∈ (1, 2). For every sufficiently large integer n ∈ G, let Tn
be the µ-Galton–Watson tree conditioned to have n+ 1 vertices. Conditionally given Tn, let ZTn
be a random walk with jump distribution θ̃ indexed by Tn, and let Rn denote the range of ZTn.
Then there exists a constant cµ,θ̃ ∈ [0, 1] depending on µ and θ̃ such that

1
n
Rn −→

n→∞, n∈G
cµ,θ̃ in probability.

Moreover, suppose in addition that θ is centered and has finite moments of order 2d ∨ 3.
– if µ has finite variance, then cµ,θ̃ > 0 if d ≥ 4.
– if µ is in the domain of attraction of a stable distribution with index α ∈ (1, 2), then
cµ,θ̃ > 0 if d > α+1

α−1 .

Proof. The first assertion about the convergence in probability of n−1Rn follows directly from
Theorems 4 and 7 in [61]. In particular, we get from Theorem 4 in [61] that the limiting constant
cµ,θ̃ can be expressed as

cµ,θ̃ = aµ,θ̃ E0

[ ∞∏
j=1

Φµ,θ̃(−S̃j)
]
, (4.1)

in which aµ,θ̃ is a positive constant depending on µ and θ̃, and for every x ∈ Zd,

Φµ,θ̃(x) :=
∞∑
k=0

µ([k + 1,∞))
( ∑
y∈Zd

θ̃(y)hµ,θ̃(x+ y)
)k
,

where hµ,θ̃(x) is the probability that a random walk with jump distribution θ̃ indexed by a
µ-Galton–Watson tree never visits −x. We denote the Green function of S̃ by Gθ̃, that is

Gθ̃(x) := E0
[ ∞∑
k=0

1{S̃k=x}

]
, ∀x ∈ Zd.

By [61, Proposition 5 (i)], we know that the property cµ,θ̃ > 0 holds if P0-a.s.

∞∏
j=1

(1− gµ((1−Gθ̃(S̃j))+)
Gθ̃(S̃j)

)
> 0 , (4.2)

where gµ stands for the generating function of µ. At this point, we need the following lemma
whose proof is postponed to the end of this section.
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Lemma 4.2. If the random walk S is centered with finite moments of order 2d∨ 3, there exists
a constant Cθ̃ such that, for every x ∈ Zd,

Gθ̃(x) ≤ Cθ̃ |x|
1−d

2 . (4.3)

Suppose that µ has a finite variance. Then using the Taylor series expansion of gµ at 1, we
know that the condition (4.2) will be satisfied if

∞∑
j=1

Gθ̃(S̃j) <∞ , P0-a.s. (4.4)

However, for any ε > 0, the law of large numbers shows that P0-a.s. for all sufficiently large n,

|S̃n| ≥ n1−ε|D| .

Combining the latter display with Lemma 4.2, one easily checks that the property (4.4) holds if
d−1

2 > 1, i.e. d ≥ 4.
The case where µ is in the domain of attraction of a stable distribution with index α ∈ (1, 2)

can be treated similarly (see the proof of Proposition 5 (ii) in [61]), and we omit the details.

Proof of Lemma 4.2. We set δ = |D|−1 within this proof, and we assume for technical conve-
nience that the random walk S is aperiodic. Only minor modifications are needed to treat the
general case. We begin by writing for every x ∈ Zd \ {0} that

Gθ̃(x) =
∑

k≥2δ|x|
P0(S̃k = x) +

∑
k<2δ|x|

P0(S̃k = x).

Since k ≥ 2δ|x| implies that |x− kD| ≥ 1
2k|D|, we have

P0(S̃k = x) = P0(Sk = x− kD) ≤ P0
(
|Sk| ≥

1
2k|D|

)
.

Provided the random walk S is centered with finite moments of order d + 1, the Rosenthal
inequality implies the existence of a constant C <∞ such that

E0
[
|Sk|d+1] ≤ Ck d+1

2 for all k ≥ 1.

Thus,

P0
(
|Sk| ≥

1
2k|D|

)
≤
(1

2k|D|
)−(d+1)

E0
[
|Sk|d+1] ≤ C(1

2 |D|
)−(d+1)

k−
d+1

2 ,

and it follows that ∑
k≥2δ|x|

P0(S̃k = x) = O(|x|
1−d

2 ) as |x| → ∞.

Next, we continue the decomposition

∑
k<2δ|x|

P0(S̃k = x) =
( ∑
k<|x|

1
2

+
∑

|x|
1
2≤k≤δ|x|/2

+
∑

δ|x|/2<k<2δ|x|

)
P0(Sk = x− kD) ,
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and we will bound each sum in the right-hand side. Firstly, Proposition 2.4.6 in [53] states that,
if the random walk S is centered with finite moments of order d ∨ 2, then there exists c < ∞
such that for all n and x,

P0(Sn = x) ≤ c

nd/2

(√
n

|x|

)d∨2
.

Using this estimate, one easily shows that∑
k<|x|

1
2

P0(Sk = x− kD) = o(|x|
1−d

2 ) as |x| → ∞.

Then for the second sum, we observe that |x− kD| ≥ k|D| if k ≤ δ|x|/2. As the random walk S
is assumed to have finite moments of order 2d, we can similarly apply the Rosenthal inequality
to show that ∑

|x|
1
2≤k≤δ|x|/2

P0(Sk = x− kD) = O(|x|
1−d

2 ) as |x| → ∞.

Finally, let us complete the proof by showing that∑
δ|x|/2<k<2δ|x|

P0(Sk = x− kD) = O(|x|
1−d

2 ) as |x| → ∞. (4.5)

To this end, we will use the local limit theorem for the random walk S. We write πk(x) :=
P0(Sk = x) for every k ≥ 1 and every x ∈ Zd. We set also

pk(x) := 1
(2πk)d/2

√
detMθ

exp
(
−
x ·M−1

θ x

2k
)
,

whereMθ denotes the covariance matrix of θ, and x ·y stands for the usual scalar product in Rd.
Using the definition of pk, it is not difficult to find constants c1, c2 > 0 such that

∑
δ|x|/2<k<2δ|x|

pk(x− kD) ≤ c1

|x|
d
2

∞∑
j=0

exp
(
− c2j

2

|x|

)
,

and the right-hand side of the last display is bounded by |x|
1−d

2 up to some multiplicative
constant. On the other hand, since S is centered with finite moments of order 3, according
to [53, Theorem 2.3.10], there exists c3 <∞ such that∣∣πk(x− kD)− pk(x− kD)

∣∣ ≤ c3
|x|
k

1−d
2 ,

for all k, x satisfying that |x − kD| ≥ |x|1/2. Besides, we can use [53, Theorem 2.3.9] to show
that ∑

k

′ ∣∣πk(x− kD)− pk(x− kD)
∣∣ = o

(
|x|

1−d
2
)
,

where the sum is taken over all k such that δ|x|/2 < k < 2δ|x| and |x − kD| < |x|1/2. By
combining these two results, one easily verifies that∑

δ|x|/2<k<2δ|x|

∣∣πk(x− kD)− pk(x− kD)
∣∣ = O(|x|

1−d
2 ) as |x| → ∞.
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The bound (4.5) thus follows from the identity

∑
δ|x|/2<k<2δ|x|

P0(Sk = x−kD) =
∑

δ|x|/2<k<2δ|x|
pk(x−kD)+

∑
δ|x|/2<k<2δ|x|

(
πk(x−kD)−pk(x−kD)

)
.

Therefore, we have finished the proof of Lemma 4.2.

Remark. We expect that the estimate (4.3) in Lemma 4.2 should hold under a weaker moment
assumption on θ. More generally, it seems that deriving sharp estimates is still an open problem
for the Green function of a general random walk on Zd with non-zero drift.

4.3 The critical dimension d = 3
For the tree-indexed random walk with non-zero drift, the critical dimension is expected to

be 3, in the same sense as dimension 4 is shown to be critical for the centered tree-indexed
random walk in [61, Section 3]. Unfortunately, we are so far unable to show this statement in its
full generality. In the following discussions, we will restrict our attention to the case when the
offspring distribution µ is geometric with parameter 1/2 (the associated conditioned Galton–
Watson tree Tn is then uniformly distributed over all plane trees with n + 1 vertices), and we
will consider a special case of jump distribution θ̃ that we now describe.

Let θ be a symmetric probability distribution on Z3. Assume that θ is supported on the
subgroup spanned by (0, 1, 0) and (0, 0, 1), and that θ has small exponential moments. Then
we take D = (1, 0, 0) and define θ̃ as the image of θ under the translation x ∈ Z3 7→ x + D.
As previously, we write S = (Sk)k≥0 for the random walk in Z3 with jump distribution θ, and
we now assume that S starts from the origin 0 under the probability measure P . Due to our
assumption on θ, the random walk S actually moves on the 2-dimensional hyperplane spanned
by (0, 1, 0) and (0, 0, 1), which is isomorphic to Z2. By abuse of notation, we let Mθ be the
covariance matrix of the probability distribution on Z2 induced by θ, and we will suppose for
simplicity that Mθ is of the form σ2 Id, where Id is the two-dimensional identity matrix and
σ > 0. This isotropy condition can of course be removed, and the reader will easily check that
all subsequent arguments remain valid for a non-isotropic random walk: the role of σ2 is then
played by (detMθ)1/2. The following result is the analog of the case d = 4 of [61, Theorem 1].

Theorem 4.3. Let Rn be the range of the random walk ZTn in Z3 indexed by the uniform plane
tree Tn with n+ 1 vertices, with jump distribution θ̃. Under the above assumptions on θ and D,
the range Rn satisfies that

logn
n
Rn

L2
−→
n→∞

8πσ2.

The preceding theorem is closely related to Theorem 7 in a recent work of Lalley and
Zheng [50], where they considered a nearest-neighbor critical branching random walk in Z2

initiated by a single particle at the origin, assuming the critical offspring distribution to be of
finite variance. We let Ωn be the number of distinct sites occupied by this two-dimensional
branching random walk at a fixed generation n, and denote by Gn the event that the associated
critical branching process survives up to generation n. It is shown in [50, Theorem 7] that the
conditional distributions of logn

n Ωn given the event Gn are tight. Following the same notation
used in [50], one simply writes this result as

Ωn = Op(n/ logn) given Gn . (4.6)
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Combining (4.6) with [50, Theorem 6], we see that n/ logn is the correct order of magnitude for
Ωn conditionally on Gn. If Fn denotes the event that the critical branching process has exactly
n descendants, one expects that the size of Ωn conditionally on Fn2 should be of the same order
as the size of Ωn conditionally on Gn.

Z2

0 t0 1 2 3 t0 1 2 3

Z2 Z2 Z2

Figure 4.1: Following the construction of ZTn , the vertices of Tn are embedded in
Z2 × Z+, and they are colored differently according to their generation.

Now return to the tree-indexed random walk ZTn considered in the setting of Theorem 4.3.
Since D = (1, 0, 0), for every positive integer k smaller than the height of Tn, we have

{ZTn(u) : u ∈ Tn, |u| = k} ⊂ {(k, y, z) ∈ Z3 : (y, z) ∈ Z2}.

See Fig. 4.1 for an illustration. In this situation, the range of ZTn turns out to be the sum of
the numbers of occupied sites at each generation k, over all integers k from 0 to the maximal
generation of Tn. Theorem 4.3 above can therefore be reformulated as follows.

Theorem 4.4. Let {ZTn(u) : u ∈ Tn} be a two-dimensional random walk indexed by the uniform
plane tree Tn with n + 1 vertices. We assume that its jump distribution θ is symmetric, not
supported on a strict subgroup of Z2, and has small exponential moments. For every integer
k ≥ 0, we write Ω(n)

k for the number of distinct sites in Z2 occupied by the k-th generation of Tn,
i.e.

Ω(n)
k := #{ZTn(u) : u ∈ Tn, |u| = k}.

By convention, Ω(n)
k = 0 if the set {u ∈ Tn : |u| = k} is empty. We define Rn :=

∑
k≥0 Ω(n)

k , then

logn
n

Rn L2
−→
n→∞

8π(detMθ)1/2 ,

where Mθ stands for the covariance matrix of θ.
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Since the tree Tn has height of order
√
n, one may intuitively think of Rn as a sum of

√
n

quantities, all being of order
√
n

logn as suggested by (4.6). In view of Theorem 4.4, this heuristic
argument indeed gives the correct asymptotic growth rate of Rn. We will establish Theorem 4.3
(and thus Theorem 4.4 as well) in the next two subsections.

4.3.1 Proof of Theorem 4.3

Our main tool is the free discrete snake (Wn)n≥0 in Z3 associated with the jump distribu-
tion θ̃. For its definition and the related notation, we refer the reader to [61, Section 3.1]. In
particular, under the probability measure P, the initial value W0 of the discrete snake is dis-
tributed as (−S̃−k)k≤0, where S̃ = (S̃k)k≥0 defined as S̃k = Sk+kD is a random walk with jump
distribution θ̃. As an analog of Theorem 9 in [61], we have the following result concerning the
range of the free snake.

Theorem 4.5. Set Rn := #
{
Ŵ0, Ŵ1, . . . , Ŵn

}
for every integer n ≥ 0. We have

logn
n

Rn
L2(P)−→
n→∞

4πσ2.

The key ingredient for proving the preceding theorem is the next proposition, which is the
analog of Proposition 8 in [61].

Proposition 4.6. We have

lim
n→∞

(logn)P
(
0 /∈ {Ŵ1, Ŵ2, . . . , Ŵn}

)
= 4πσ2. (4.7)

Once Proposition 4.6 is established, Theorem 4.5 can be shown in the same way as Theorem 9
in [61]. Furthermore, we can verify that Theorem 4.3, viewed as a similar result to Theorem 4.5
for the “excursion” of the discrete snake, can be derived from the latter by the same method
developed in [61] (see the arguments between Lemma 10 and Theorem 14 therein). So it is
enough to prove the key estimate (4.7) in the rest of this section. To this end, we shall follow
the outline of Section 3.2 in [61], during which necessary modifications of the proof will be
explained in details.

Our first lemma is the analog of Lemma 15 in [61].

Lemma 4.7. There exists a constant M > 0 such that

lim sup
k→∞

k P(Ŵk = 0) ≤M.

Proof. For every integer k ≥ 0, we set

ζ
k

= min
0≤j≤k

ζj ,

and
Xk = ζk − 2ζ

k
.

Recall that (ζk)k≥0 is a simple random walk on Z started from 0 under P. A discrete analog of
Pitman’s theorem (see e.g. [55]) shows that for every integer m ≥ 0 such that P(Xk = m) > 0
and 0 ≤ j ≤ m,

P(ζk − ζk = j | Xk = m) = 1
m+ 1 .
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From the construction of the discrete snake, the conditional distribution of Ŵk knowing that
ζk − ζk = j and Xk = m is the law of S̃(1)

j − S̃
(2)
m−j , where S̃(1) and S̃(2) are two independent

copies of S̃ under the probability measure P . Using the fact that S is symmetric, we have

P
(
S̃

(1)
j − S̃

(2)
m−j = 0

)
= P

(
Sm + (2j −m)D = 0

)
,

and accordingly,

P
(
Ŵk = 0

)
=
∞∑
m=0

P(Xk = m)
( m∑
j=0

P(ζk − ζk = j | Xk = m)P (Sm + (2j −m)D = 0)
)
.

Then applying formula (32) in [61] for the probability P(Xk = m), we obtain

P
(
Ŵk = 0

)
=

k∑
m=0

2
k +m+ 2

(
(m+ 1)

m∑
j=0

P (Sm + (2j −m)D = 0)
)
P0(Yk = m), (4.8)

where (Yk)k≥0 stands for a simple random walk on Z that starts from 0 under the probability
measure P0. However, observe that P (Sm + (2j −m)D = 0) = P (Sm = 0)1{m=2j} and

(m+ 1)
m∑
j=0

P (Sm + (2j −m)D = 0) = (m+ 1)P (Sm = 0)1{m is even}.

Since the symmetric random walk S is essentially two-dimensional, the local limit theorem
implies that we can find a constant M > 0 such that

lim sup
m→∞

(m+ 1)
m∑
j=0

P (Sm + (2j −m)D = 0) ≤M. (4.9)

The result of the lemma therefore follows by combining (4.8) and (4.9).

Owing to the previous lemma, for any η ∈ (0, 1/4), we can choose δ > 0 small enough so
that, for every sufficiently large n,

n∑
k=b(1−δ)nc

P(Ŵk = 0) < η.

At the same time, one can check that the statement of Lemma 16 in [61] remains valid in the
present setting, and equation (33) in [61] now becomes

E(W0)

[
τm−1∑
k=0

1{Ŵk=0}

]
= 2

m−1∑
j=0

Gθ̃(−W0(−j)),

where τm = inf{k ≥ 0: Sk = S0 −m} and Gθ̃ is the Green function of the non-centered random
walk S̃, namely

Gθ̃(x) =
∞∑
k=0

P (S̃k = x) =
∞∑
k=0

P (Sk = x− kD), ∀x ∈ Z3.

Recall that under P, the random path (−W0(−j))j≥0 has the same distribution as (S̃j)j≥0. The
following lemma is the analog of Lemma 17 in [61].
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Lemma 4.8. For every integer p ≥ 1, there exists a constant C̃(p) such that, for every n ≥ 2,

E
[( n∑

j=0
Gθ̃(S̃j)

)p]
≤ C̃(p) (logn)p.

Proof. If x = (k, x̄) with k ≥ 0 and x̄ ∈ Z2, we have Gθ̃(x) = P (Sk = (0, x̄)). Otherwise,
Gθ̃(x) = 0. Moreover, due to our assumptions on θ, we know that for every ` ≥ 1 there exists a
finite constant C` > 0 such that

P (Sk = (0, x̄)) ≤ C`
(1
k
∧
( k

|x̄|2
)`)

. (4.10)

So in particular, one recovers the estimate (4.3) in the case d = 3, namely

Gθ̃(x) ≤
Cθ̃
|x|
, ∀x ∈ Z3 \ {0}. (4.11)

Notice that P -a.s. |S̃j | ≥ j|D| for every integer j ≥ 0. The required moment estimate thus
follows immediately from (4.11).

Using (4.10) and (4.11), one can check that there exists a positive constant C̃ depending on
θ̃ such that for every x ∈ Z3,

Φθ̃(x) :=
∑
y∈Z3

Gθ̃(y)Gθ̃(x− y)2 ≤
C̃
(
1 + log(|x| ∨ 1)

)
|x| ∨ 1 ,

which entails that

E
[(

τm−1∑
k=0

1{Ŵk=0}

)2]
= O((logm)2) as m→∞.

For the derivation of the last display, we refer the reader to the arguments between displays (35)
and (36) in [61].

We state our last lemma, which is the analog of Lemma 18 in [61].

Lemma 4.9. For every α > 0, there exists a constant Cα such that, for every integer m ≥ 2,
we have

P
( ∣∣∣ m∑

k=0
Gθ̃(S̃k)−

1
4πσ2 logm

∣∣∣ ≥ α logm
)
≤ Cα(logm)−3/2. (4.12)

Notice that, with all the ingredients prepared above, the key estimate (4.7) can be proved in a
similar manner as Proposition 8 in [61]. Hence, in order to complete the proof of Proposition 4.6
(and that of Theorem 4.3), it suffices to prove Lemma 4.9. This will be our objective in the next
subsection.
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4.3.2 Proof of Lemma 4.9

Within this subsection, we slightly abuse our notation by using the same letter to denote
the symmetric probability distribution on Z2 induced by θ. Correspondingly, the random walk
S with jump distribution θ is directly viewed as a random walk on Z2. It is assumed as usual
that S starts from the origin 0 under the probability measure P . For every integer k ≥ 0, we
write its k-step transition probability

πk(x) := P (Sk = x) for every x ∈ Z2.

For technical convenience, we assume additionally that the random walk S is aperiodic. The
arguments below can easily be extended to treat the periodic case.

Recall that under P , the projection of S̃ on the one-dimensional subspace Z×{0}2 is simply
the deterministic walk (|D|k)k≥0, while its projection on the orthogonal two-dimensional sub-
space {0} × Z2 is the random walk S that we described above. Further considerations show
that under P , (Gθ̃(S̃k))k≥0 is identically distributed as (πk(Sk))k≥0. The estimate (4.12) is thus
equivalent to

P
( ∣∣∣ m∑

k=0
πk(Sk)−

1
4πσ2 logm

∣∣∣ ≥ α logm
)
≤ Cα(logm)−3/2. (4.13)

Our strategy for proving the latter estimate is to first derive an analogous result for Brownian
motion in R2, and then to use a strong invariance principle to transfer this result to the random
walk S.

We let B = (Bt)t≥0 be a planar Brownian motion started from 0, also defined under the
probability measure P . We write

pt(x) := 1
2πt exp

(
− |x|

2

2t
)
, ∀x ∈ R2, t > 0,

for its transition density function. The Brownian motion version of (4.13) is given as follows.

Lemma 4.10. Let ε > 0. There exist two positive constants C(ε) and β(ε) such that, for every
t > r ≥ 1,

P

(∣∣∣ ∫ t

r
ps(Bs) ds− 1

4π log
( t
r

)∣∣∣ > ε log
( t
r

))
≤ C(ε)

( t
r

)−β(ε)
.

Proof. By a scaling argument, it is enough to consider the case t > r = 1, and we will only treat
that case. For every u ≥ 0, we set

Xu := e−u/2Beu ,

and then

P

(∣∣∣ ∫ t

1
ps(Bs) ds− 1

4π log t
∣∣∣ > ε log t

)
= P

(∣∣∣ ∫ t

1

1
2πs e

− |Bs|
2

2s ds− 1
4π log t

∣∣∣ > ε log t
)

= P

(∣∣∣ ∫ log t

0

1
2π e

− |Xu|
2

2 du− 1
4π log t

∣∣∣ > ε log t
)
. (4.14)

Note that (Xu)u≥0 is a two-dimensional stationary Ornstein–Uhlenbeck process. It is a
Harris recurrent regular Feller process with the invariant probability measure N (0, Id). By the
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ergodic theory of Feller processes (see e.g. Theorem 20.21 in [41] or Section X.3 in [82]), we have
the pathwise convergence

1
t

∫ t

0
exp(−|Xu|2

2 ) du a.s.−−−→
t→∞

E
[

exp(−|X0|2

2 )
]

= 1
2 .

On the other hand, let M1(R2) be the space of all (Borel) probability measures on R2

equipped with the weak topology. For every t > 0, the empirical measure

Lt := 1
t

∫ t

0
δXu du

is a well-defined M1(R2)-valued random variable. Since the stationary Gaussian process (Xu)u≥0
has a continuous spectral density vanishing at ∞, we can apply Theorem 2.1 in [16] to see that
the family of the laws of (Lt)t≥0 satisfies the large deviation principle in M1(R2) with a good
convex rate function. As the mapping

µ ∈M1(R2) 7→
∫

exp(−|x|
2

2 )µ(dx) ∈ R

is continuous, it follows by the contraction principle (Theorem 4.2.1 in [23]) that the family of
the laws of

Yt := 1
t

∫ t

0
exp(−|Xu|2

2 ) du, t > 0

also satisfies the large deviation principle with a good rate function I. Moreover, noting that
Yt ∈ (0, 1) for any t > 0, we can use [23, Theorem 4.5.10] to check that x = 1/2 is the unique
point such that I(x) = 0. Hence, for every ε > 0, there exist two constants C(ε) > 0 and
β(ε) > 0 such that, for every t > 0,

P

(∣∣∣1
t

∫ t

0
exp(−|Xu|2

2 ) du− 1
2

∣∣∣ > ε

)
≤ C(ε) exp(−β(ε)t). (4.15)

The statement of Lemma 4.10 therefore follows readily from (4.14) and (4.15).

Recall our assumptions that θ has small exponential moments, and that its covariance matrix
is equal to σ2Id. By an extension due to Zaitsev [89] of the celebrated Komlós–Major–Tusnády
strong invariance principle, we can construct on the same probability space the finite sequence
(S1, . . . , Sm) and the Brownian motion (Bt)t≥0, in such a way that, for some constants c >
0, c′ > 0 and K > 0 that do not depend on m, we have

E
[

exp
(
c max

1≤k≤m
|Sk − σBk|

)]
≤ K exp(c′ logm).

It follows that we can find constants C > 0 and a > 0 (again independent of m) such that

P
(

max
1≤k≤m

|Sk − σBk| > C logm
)
≤ Km−a. (4.16)

On the other hand, from the standard estimate of Gaussian tail probability∫ ∞
x

exp(−u
2

2 ) du <
∫ ∞
x

u

x
exp(−u

2

2 ) du = 1
x

exp(−x
2

2 ), ∀x > 0,
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we know that for any integer p ≥ 1,

P

(
∃ k ∈ N ∩ [(logm)10,m] such that |σBk| ≥

k2/3

2

)
= O(m−p),

as m tends to infinity. Together with (4.16), this implies that

P
(
∃ k ∈ N ∩ [(logm)10,m] such that |Sk| ≥ k2/3

)
= O(m−a).

So for the event

Em :=
{

max
1≤k≤m

|Sk − σBk| ≤ C logm
}
∩
{
|Sk| ∨ |σBk| ≤ k2/3,∀k ∈ [(logm)10,m]

}
,

we have P (Ecm) = O((logm)−2) according to the preceding estimates.
Since θ is supposed to have an exponential moment, one has the following local limit theorem

for the θ-random walk S on Z2, which can be found in Lawler and Limic [53, Theorem 2.3.11].
There exists a constant ρ > 0 such that for all n ≥ 0 and all x ∈ Z2 with |x| < ρn,

πn(x) = pσ2n(x) exp
(
O( 1

n
+ |x|

4

n3 )
)
.

Thus for any η > 0, there exists M(η) ∈ N such that for every integer m ≥ M(η), on the
event Em we have

(1− η)
m∑

k=d(logm)10e
pσ2k(Sk) ≤

m∑
k=d(logm)10e

πk(Sk) ≤ (1 + η)
m∑

k=d(logm)10e
pσ2k(Sk). (4.17)

We next observe that on the event Em,∣∣∣∣ m∑
k=d(logm)10e

( pσ2k(Sk)− pσ2k(σBk))
∣∣∣∣ ≤ m∑

k=d(logm)10e

1
2πσ2k

∣∣∣∣ exp(−|Sk|
2

2σ2k
)− exp(−|σBk|

2

2σ2k
)
∣∣∣∣

≤
m∑

k=d(logm)10e

1
2πσ2k

∣∣∣∣ |Sk|2 − |σBk|22σ2k

∣∣∣∣
≤

m∑
k=d(logm)10e

2σC|Bk| logm+ C2(logm)2

4πσ4k2

= o((logm)−2) , as m→∞. (4.18)

Similarly, we can show that the sum

m∑
k=d(logm)10e

pσ2k(σBk)

is close to the integral ∫ m+1

d(logm)10e
pσ2s(σBs) ds = 1

σ2

∫ m+1

d(logm)10e
ps(Bs) ds
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up to a set of small probability. Indeed, outside of a set of probability O(m−1), we have

sup
0≤k≤m

sup
k≤s≤k+1

|Bs −Bk| ≤ logm.

One then verifies that on the event

Ẽm := Em ∩
{

sup
0≤k≤m

sup
k≤s≤k+1

|Bs −Bk| ≤ logm
}
,

it holds that ∣∣∣∣ m∑
k=d(logm)10e

pσ2k(σBk)−
1
σ2

∫ m+1

d(logm)10e
ps(Bs) ds

∣∣∣∣ = o((logm)−2). (4.19)

Furthermore, by symmetry of the jump distribution θ, we notice that for every integer k ≥ 0,

E
[
πk(Sk)

]
= π2k(0).

An application of the local limit theorem yields immediately that

E

[ m∑
k=0

πk(Sk)
]

= 1
4πσ2 logm+O(1) as m→∞.

By analogous arguments (cf. the proof of [50, Lemma 27] in a slightly different setting), we have

E

[( m∑
k=0

πk(Sk)
)2]

=
( 1

4πσ2 logm
)2

+ o((logm)2) as m→∞.

In particular, there exists C ′ > 0 such that for every integer m ≥ 2 and every h > 0,

P
( m∑
k=0

πk(Sk) ≥ h
)
≤ C ′(logm)2

h2 . (4.20)

Finally, for every α > 0,

P

(∣∣∣∣ m∑
k=0

πk(Sk)−
1

4πσ2 logm
∣∣∣∣ ≥ α logm

)

≤ P
( d(logm)10e∑

k=0
πk(Sk) ≥

α

2 logm
)

+ P

(∣∣∣∣ m∑
k=d(logm)10e

πk(Sk)−
1

4πσ2 logm
∣∣∣∣ ≥ α

2 logm
)
.

The first term in the right-hand side is o((logm)−3/2) by (4.20). On the other hand, by (4.17), (4.18)
and (4.19), the second term is bounded by

P (Ẽcm) + P

(∣∣∣ 1
σ2

∫ m+1

d(logm)10e
ps(Bs) ds− 1

4πσ2 logm
∣∣∣ ≥ α′ logm

)
with some constant α′ > 0 independent of m, provided that m is sufficiently large (to be precise,
we need to have chosen a small η > 0 depending on α for this argument to work). We have seen
that P (Ẽcm) = O((logm)−2). Meanwhile, Lemma 4.10 implies that

P

(∣∣∣ 1
σ2

∫ m+1

d(logm)10e
ps(Bs) ds− 1

4πσ2 logm
∣∣∣ ≥ α′ logm

)
= O(m−b)

for some b > 0. The proof of Lemma 4.9 is therefore completed.
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4.4 The lower dimensions d ≤ 2
In this section, we briefly discuss dimensions d = 1 and d = 2, without giving the details of

the arguments. In contrast with the previous setting, we will consider in this section a general
probability distribution θ̃ on Zd, whose mean D ∈ Rd is different from 0. As usual, for n ∈ G,
we denote by ZTn a random walk with jump distribution θ̃ indexed by a µ-Galton–Watson tree
Tn conditioned to have exactly n+ 1 vertices.

4.4.1 The one-dimensional case

We assume that
• µ is a nondegenerate critical offspring distribution on Z+, such that, for some λ > 0,

∞∑
k=0

eλk µ(k) <∞,

and we set σµ = (varµ)1/2 > 0;
• θ̃ is a probability measure on Z, which is not supported on a strict subgroup of Z. The

measure θ̃ satisfies
lim

r→+∞
r2 θ̃({x ∈ Z : |x| > r}) = 0,

and its mean D 6= 0.
Without loss of generality, we may suppose by symmetry that D > 0.

Under the preceding assumptions, Theorem 8 in [39] implies that( 1√
n

max
u∈Tn

ZTn(u), 1√
n

min
u∈Tn

ZTn(u)
)

(d)−→
n→∞,n∈G

(2D
σµ

max
0≤s≤1

es, 0
)
,

where in the limit e = (es)0≤s≤1 denotes a normalized Brownian excursion. As an immediate
corollary, we have

1√
n

(
max
u∈Tn

ZTn(u)− min
u∈Tn

ZTn(u)
)

(d)−→
n→∞,n∈G

2D
σµ

max
0≤s≤1

es . (4.21)

The distribution of the limit variable max[0,1] es was calculated by Chung [18] in the following
form. For every x > 0,

P
(

max
0≤s≤1

es > x
)

= 2
∞∑
k=1

(4k2x2 − 1) exp(−2k2x2).

See e.g. [10, Proposition 2.1] for further information on this distribution.
If the jump distribution θ̃ is supported on the set {0,±1}, then the range Rn of ZTn satisfies

the equality
Rn = max

u∈Tn
ZTn(u)− min

u∈Tn
ZTn(u),

and from (4.21) we obtain that

Rn√
n

(d)−→
n→∞,n∈G

2D
σµ

max
0≤s≤1

es . (4.22)
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In general we have only
Rn ≤ max

u∈Tn
ZTn(u)− min

u∈Tn
ZTn(u),

and the convergence (4.21) merely entailsRn = Op(
√
n), by which we mean that the distributions

of (Rn/
√
n, n ∈ G) are tight. In fact, one can extend the convergence (4.22) to more general

jump distributions. We omit here the details.

4.4.2 The two-dimensional case

For the tree-indexed random walk ZTn on Z2 with jump distribution θ̃, it is not difficult to see
that its range Rn = Op(n3/4), provided we assume some conditions on µ and θ similar to those
in the previous subsection. To further describe the possible distributional limit of n−3/4Rn, we
introduce the one-dimensional Brownian snake W (1) = (W (1)

s )0≤s≤1, which starts from 0 and is
driven by the normalized Brownian excursion e. As explained in [62], it is a random process
in R distributed according to the normalized excursion measure N(1)

0 of Brownian snake. Given
a positive constant c > 0, for every r ≥ 0, we let X(c)

r be the random measure on R defined by
the formula

〈X(c)
r , f 〉 =

∫ 1

0
dLrs(e) f(cW (1)

s )

for any nonnegative measurable function f on R, where (Lrs(e), s ≥ 0) stands for the local time
of e at level r. From this definition, the support of the measure X(c)

r is given as

supp(X(c)
r ) = {cW (1)

s : 0 ≤ s ≤ 1 such that es = r}.

We conjecture that under some mild assumptions on µ and θ̃, there exist two positive con-
stants c1 and c2, both depending on µ and θ̃, such that

Rn
n3/4

(d)−→
n→∞,n∈G

λ2
(
{(c1r, x) ∈ R2 : r ≥ 0 and x ∈ supp(X(c2)

r )}
)
,

where λ2 denotes the Lebesgue measure on R2.
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Chapitre 5

The harmonic measure of balls in
critical Galton–Watson trees

Les résultats de ce chapitre sont issus de l’article [66] publié dans The Elec-
tronic Journal of Probability 19 (2014), no. 97, 1–35.

We study properties of the harmonic measure of balls in large critical Galton–Watson trees
whose offspring distribution is in the domain of attraction of a stable distribution with index
α ∈ (1, 2]. Here the harmonic measure refers to the hitting distribution of height n by simple
random walk on the critical Galton–Watson tree conditioned on non-extinction at generation n.
For a ball of radius n centered at the root, we prove that, although the size of the boundary
is roughly of order n

1
α−1 , most of the harmonic measure is supported on a boundary subset

of size approximately equal to nβα , where the constant βα ∈ (0, 1
α−1) depends only on the

index α. Using an explicit expression of βα, we are able to show the uniform boundedness of
(βα, 1 < α ≤ 2). These are generalizations of results in a recent paper of Curien and Le Gall [20].

5.1 Introduction

Recently, Curien and Le Gall have studied in [20] the properties of harmonic measure on
generation n of a critical Galton–Watson tree, whose offspring distribution has finite variance and
which is conditioned to have height greater than n. They have shown the existence of a universal
constant β < 1 such that, with high probability, most of the harmonic measure on generation n
of the tree is concentrated on a set of approximately nβ vertices, although the number of vertices
at generation n is of order n. Their approach is based on the study of a similar continuous model,
where it is established that the Hausdorff dimension of the (continuous) harmonic measure is
almost surely equal to β.

In this paper, we continue the above work by extending their results to the critical Galton–
Watson trees whose offspring distribution has infinite variance. To be more precise, let ρ be
a non-degenerate probability measure on Z+ with mean one, and we assume throughout this
paper that ρ is in the domain of attraction of a stable distribution of index α ∈ (1, 2], which
means that ∑

k≥0
ρ(k)rk = r + (1− r)αL(1− r) for any r ∈ [0, 1), (5.1)

where the function L(x) is slowly varying as x → 0+. We point out that the finite variance
condition for ρ is sufficient for the previous statement to hold with α = 2. When α ∈ (1, 2),
by results of [31, Chapters XIII and XVII], the condition (5.1) is satisfied if and only if the tail
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probability ∑
k≥x

ρ(k) = ρ([x,+∞))

varies regularly with exponent −α as x → +∞. See e.g. [12] for the definition of regularly
varying functions.

Under the probability measure P, for every integer n ≥ 0, we let T(n) be a Galton–Watson tree
with offspring distribution ρ, conditioned on non-extinction at generation n. Conditionally given
the tree T(n), we consider simple random walk on T(n) starting from the root. The probability
distribution of the first hitting point of generation n by random walk will be called the harmonic
measure µn, which is supported on the set T(n)

n of all vertices of T(n) at generation n.
Let qn > 0 be the probability that a critical Galton–Watson tree T(0) survives up to gen-

eration n. It is shown in [83] that, as n → ∞, the probability qn decreases as n−
1

α−1 up to
multiplication by a slowly varying function, and qn#T(n)

n converges in distribution to a non-
trivial limit distribution on R+, whose Laplace transform can be written explicitly in terms of
the parameter α. The following theorem generalizes the result [20, Theorem 1] in the finite
variance case (α = 2) to all α ∈ (1, 2].

Theorem 5.1. If the offspring distribution ρ has mean one and belongs to the domain of at-
traction of a stable distribution of index α ∈ (1, 2], there exists a constant βα ∈ (0, 1

α−1), which
only depends on α, such that for every δ > 0, we have the convergence in P-probability

µn
({
v ∈ T(n)

n : n−βα−δ ≤ µn(v) ≤ n−βα+δ}) (P)−−−→
n→∞

1 . (5.2)

Consequently, for every ε ∈ (0, 1), there exists, with P-probability tending to 1 as n → ∞,
a subset An,ε of T(n)

n such that #An,ε ≤ nβα+δ and µn(An,ε) ≥ 1− ε. Conversely, the maximal
µn-measure of a set of cardinality bounded by nβα−δ tends to 0 as n→∞, in P-probability.

The last two assertions of the preceding theorem are easy consequences of the conver-
gence (5.2), as explained in [20].

We observe that the hitting distribution µn of generation n by simple random walk on T(n)

is unaffected if we remove the branches of T(n) that do not reach height n. Thus in order to
establish the preceding result, we may consider simple random walk on T∗n, the reduced tree
associated with T(n), which consists of all vertices of T(n) that have at least one descendant at
generation n.

When the critical offspring distribution ρ has infinite variance, scaling limits of the discrete
reduced trees T∗n have been studied in [87] and [88]. If we scale the graph distances by the
factor n−1, the discrete reduced trees n−1T∗n converge to a random compact rooted R-tree ∆(α)

that we now describe. For every α ∈ (1, 2], we define the α-offspring distribution θα as follows.
For α = 2, we let θ2 = δ2 be the Dirac measure at 2. If α < 2, θα is the probability measure on
Z+ given by

θα(0) = θα(1) = 0,

θα(k) = αΓ(k − α)
k! Γ(2− α) = α(2− α)(3− α) · · · (k − 1− α)

k! , ∀k ≥ 2,

where Γ(·) is the Gamma function. We let U∅ be a random variable uniformly distributed over
[0, 1], and let K∅ be a random variable distributed according to θα, independent of U∅. To
construct ∆(α), one starts with an oriented line segment of length U∅, whose origin will be the
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root of the tree. We call K∅ the offspring number of the root ∅. Correspondingly, at the other
end of the first line segment, we attach the origins of K∅ oriented line segments with respective
lengths U1, U2, . . . , UK∅ , such that, conditionally given U∅ andK∅, the variables U1, U2, . . . , UK∅
are independent and uniformly distributed over [0, 1 − U∅]. This finishes the first step of the
construction. In the second step, for the first of these K∅ line segments, we independently
sample a new offspring number K1 distributed as θα, and attach K1 new line segments whose
lengths are again independent and uniformly distributed over [0, 1− U∅ − U1], conditionally on
all the random variables appeared before. For the other K∅ − 1 line segments, we repeat this
procedure independently. We continue in this way and after an infinite number of steps we get
a random non-compact rooted R-tree, whose completion is the random compact rooted R-tree
∆(α). See Fig. 5.1 in Section 5.2.1 for an illustration. We will call ∆(α) the reduced stable tree
of parameter α. Notice that all the offspring numbers involved in the construction of ∆(2) are
a.s. equal to 2, which correspond to the binary branching mechanism. In contrast, this is no
longer the case when 1 < α < 2.

We denote by d the intrinsic metric on ∆(α). By definition, the boundary ∂∆(α) consists
of all points of ∆(α) at height 1. As the continuous analogue of simple random walk, we can
define Brownian motion on ∆(α) starting from the root and up to the first hitting time of ∂∆(α).
It behaves like linear Brownian motion as long as it stays inside a line segment of ∆(α). It is
reflected at the root of ∆(α) and when it arrives at a branching point, it chooses each of the
adjacent line segments with equal probabilities. We define the (continuous) harmonic measure
µα as the (quenched) distribution of the first hitting point of ∂∆(α) by Brownian motion.

Theorem 5.2. For every index α ∈ (1, 2], with the same constant βα as in Theorem 5.1, we
have P-a.s. µα(dx)-a.e.,

lim
r↓0

logµα(Bd(x, r))
log r = βα , (5.3)

where Bd(x, r) stands for the closed ball of radius r centered at x in the metric space (∆(α),d).
Consequently, the Hausdorff dimension of µα is P-a.s. equal to βα.

According to Lemma 4.1 in [71], the last assertion of the preceding theorem follows directly
from (5.3). As another direct consequence of (5.3), we have that P-a.s. for µα(dx)-a.e. x ∈ ∂∆(α),
µα(Bd(x, r))→ 0 as r ↓ 0, which is equivalent to non-atomicity of µα.

Since it has been proved in [28, Theorem 1.5] that the Hausdorff dimension of ∂∆(α) with
respect to d is a.s. equal to 1

α−1 , the previous theorem implies that the harmonic measure has
a.s. strictly smaller Hausdorff dimension than that of the whole boundary of the reduced stable
tree. This phenomenon of dimension drop has been shown in [20, Theorem 2] for the special
case of binary branching α = 2.

We prove Theorem 5.2 in Section 5.2.5, where our approach is different and shorter than the
one developed in [20] for the special case α = 2.

Notice that the Hausdorff dimension of the boundary ∂∆(α) increases to infinity when α ↓ 1.
However, it is an interesting fact that the Hausdorff dimension of the harmonic measure remains
bounded when α ↓ 1.

Theorem 5.3. There exists a constant C > 0 such that for any α ∈ (1, 2], we have βα < C.

Our proof of Theorem 5.3 relies on the fact that the constant βα in Theorems 5.1 and 5.2
can be expressed in terms of the conductance of ∆(α). Informally, if we think of the random
tree ∆(α) as a network of resistors with unit resistance per unit length, the effective conductance
between the root and the boundary ∂∆(α) is a random variable which we denote by C(α). From
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a probabilistic point of view, it is the mass under the Brownian excursion measure for the
excursion paths away from the root that hit height 1. Following the definition of ∆(α) and the
above electric network interpretation, the distribution of C(α) satisfies the recursive distributional
equation

C(α) (d)==
(
U + 1− U

C(α)
1 + C(α)

2 + · · ·+ C(α)
Nα

)−1
, (5.4)

where (C(α)
i )i≥1 are i.i.d. copies of C(α), the integer-valued random variable Nα is distributed

according to θα, and U is uniformly distributed over [0, 1]. All these random variables are
supposed to be independent.

Proposition 5.4. For any α ∈ (1, 2], the distribution γα of the conductance C(α) is character-
ized in the class of all probability measures on [1,∞) by the distributional equation (5.4). The
constant βα appearing in Theorems 5.1 and 5.2 is given by

βα = 1
2

( ( ∫
γα(ds)s

)2∫∫
γα(ds)γα(dt) st

s+t−1
− 1

)
. (5.5)

Interestingly, formula (5.5) expresses the exponent βα as the same function of the distribution
γα, for all α ∈ (1, 2]. In the course of the proof, we obtain two other formulas for βα (see (5.23)
and (5.24) below), but they both depend on α in a more complicated way, which also involves
the distribution θα.

The paper is organized as follows. In Section 5.2 below, we study the continuous model
of Brownian motion on ∆(α). A formal definition of the reduced stable tree ∆(α) is given
in Section 5.2.1. In Section 5.2.2 we explain how to relate ∆(α) to an infinite supercritical
continuous-time Galton–Watson tree Γ(α), and we reformulate Theorem 5.2 in terms of Brownian
motion with drift 1/2 on Γ(α). Properties of the law of the random conductance C(α), including
the first assertion of Proposition 5.4, are discussed in Section 5.2.3, and Section 5.2.4 gives the
coupling argument that allows one to derive Theorem 5.3 from formula (5.5). Section 5.2.5 is
devoted to the proofs of Theorem 5.2 and of formula (5.5). We emphasize that our approach
to Theorem 5.2 is different from the one used in [20] when α = 2. In fact we use an invariant
measure for the environment seen by Brownian motion on Γ(α) at the last passage time of a
node of the n-th generation, instead of the last passage time at a height h as in [20]. We then
apply the ergodic theory on Galton–Watson trees, which is a powerful tool initially developed
in [71].

In Section 5.3 we proceed to the discrete setting concerning simple random walk on the
discrete reduced tree T∗n. Let us emphasize that, when the critical offspring distribution ρ is in
the domain of attraction of a stable distribution of index α ∈ (1, 2), the convergence of discrete
reduced trees is less simple than in the special case α = 2 where we have a.s. a binary branching
structure. See Proposition 5.14 for a precise statement in our more general setting. Apart from
this ingredient, we need several estimates for the discrete reduced tree T∗n to derive Theorem 5.1
from Theorem 5.2. For example, Lemma 5.13 gives a bound for the size of level sets in T∗n,
and Lemma 5.19 presents a moment estimate for the (discrete) conductance Cn(T∗n) between
generations 0 and n in T∗n. Although the result analogous to Lemma 5.19 in [20] is a second
moment estimate, we only manage to give a moment estimate of order strictly smaller than α if
the critical offspring distribution ρ satisfies (5.1) with α ∈ (1, 2]. Nevertheless, this is sufficient
for our proof of Theorem 5.1, which is adapted from the one given in [20].
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Comments and several open questions are gathered in Section 5.4. Following the work of
Aïdékon [2], we obtain a candidate for the speed of Brownian motion with drift 1/2 on the
infinite tree Γ(α), expressed by (5.39) in terms of the continuous conductance C(α). Nonetheless,
the monotonicity properties of this quantity remains open. It would also be of interest to know
whether or not the Hausdorff dimension βα of the continuous harmonic measure µα is monotone
with respect to α ∈ (1, 2].
Acknowledgments. The author is deeply indebted to J.-F. Le Gall and N. Curien for many
helpful suggestions during the preparation of this paper. He also wishes to thank the anonymous
referee for several valuable remarks.

5.2 The continuous setting

5.2.1 The reduced stable tree

We set
V =

∞⋃
n=0

Nn

where by convention N = {1, 2, . . .} and N0 = {∅}. If v = (v1, . . . , vn) ∈ V, we set |v| = n (in
particular, |∅| = 0), and if n ≥ 1, we define the parent of v as v̂ = (v1, . . . , vn−1) and then
say that v is a child of v̂. For two elements v = (v1, . . . , vn) and v′ = (v′1, . . . , v′m) belonging
to V, their concatenation is vv′ := (v1, . . . , vn, v

′
1, . . . , v

′
m). The notions of a descendant and an

ancestor of an element of V are defined in the obvious way, with the convention that every v ∈ V
is both an ancestor and a descendant of itself. If v, w ∈ V, v∧w is the unique element of V such
that it is a common ancestor of v and w, and |v ∧ w| is maximal.

An infinite subset Π of V is called an infinite discrete tree if there exists a collection of
positive integers kv = kv(Π) ∈ N for every v ∈ V such that

Π = {∅} ∪ {(v1, . . . , vn) ∈ V : vj ≤ k(v1,...,vj−1) for every 1 ≤ j ≤ n}.

Recall the definition of the α-offspring distribution θα for α ∈ (1, 2]. It will also be convenient
to consider the case α = 1, where we define θ1 as the probability measure on Z+ given by

θ1(0) = θ1(1) = 0,

θ1(k) = 1
k(k − 1) , ∀k ≥ 2.

If α ∈ (1, 2], the generating function of θα is given (see e.g. [26, p.74]) as

∑
k≥0

θα(k) rk = (1− r)α − 1 + αr

α− 1 , ∀r ∈ (0, 1], (5.6)

while for α = 1, ∑
k≥0

θ1(k) rk = r + (1− r) log(1− r), ∀r ∈ (0, 1]. (5.7)

Notice that for α ∈ (1, 2], the mean of θα is given by

mα = α

α− 1 ∈ [2,∞),



128 Chapitre 5 The harmonic measure of balls in critical Galton–Watson trees

whereas θ1 has infinite mean.
For fixed α ∈ [1, 2], we introduce a collection (Kα(v))v∈V of independent random variables

distributed according to θα under the probability measure P, and define a random infinite discrete
tree

Π(α) := {∅} ∪ {(v1, . . . , vn) ∈ V : vj ≤ Kα((v1, . . . , vj−1)) for every 1 ≤ j ≤ n} .

We point out that Π(2) is an infinite binary tree.
Let (Uv)v∈V be another collection, independent of (Kα(v))v∈V , consisting of independent real

random variables uniformly distributed over [0, 1] under the same probability measure P. We
set now

Y∅ = U∅

and then by induction, for every v ∈ Π(α) \ {∅},

Yv = Yv̂ + Uv(1− Yv̂).

Note that a.s. 0 ≤ Yv < 1 for every v ∈ Π(α). Consider then the set

∆(α)
0 :=

(
{∅} × [0, Y∅]

)
∪
( ⋃
v∈Π(α)\{∅}

{v} × (Yv̂, Yv]
)
.

There is a straightforward way to define a metric d on ∆(α)
0 , so that (∆(α)

0 ,d) is a (noncompact)
R-tree and, for every x = (v, r) ∈ ∆(α)

0 , we have d((∅, 0), x) = r. To be specific, let x = (v, r) ∈
∆(α)

0 and y = (w, r′) ∈ ∆(α)
0 :

• If v is a descendant (or an ancestor) of w, we set d(x, y) = |r − r′|.
• Otherwise, d(x, y) = d((v ∧ w, Yv∧w), x) + d((v ∧ w, Yv∧w), y) = (r − Yv∧w) + (r′ − Yv∧w).

See Fig. 5.1 for an illustration of the tree ∆(α)
0 when α < 2.

Height 1

Height 0

Y∅

Y3Y1 Y2

∅

1 2 3

11 12

21 22 23
31 32

Figure 5.1: The random tree ∆(α)
0 when 1 ≤ α < 2
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We let ∆(α) be the completion of ∆(α)
0 with respect to the metric d. Then

∆(α) = ∆(α)
0 ∪ ∂∆(α)

where by definition ∂∆(α) := {x ∈ ∆(α) : d((∅, 0), x) = 1}, which can be identified with a
random subset of NN. It is immediate to see that (∆(α),d) is an a.s. compact R-tree, which we
will call the reduced stable tree of index α.

The point (∅, 0) is called the root of ∆(α). For every x ∈ ∆(α), we set H(x) = d((∅, 0), x)
and call H(x) the height of x. We can define a (non-strict) genealogical order on ∆(α) by setting
x ≺ y if and only if x belongs to the geodesic path from the root to y.

For every ε ∈ (0, 1), we set

∆(α)
ε := {x ∈ ∆(α) : H(x) ≤ 1− ε},

which is also an a.s. compact R-tree for the metric d. The leaves of ∆(α)
ε are the points of the

form (v, 1 − ε) for all v ∈ V such that Yv̂ < 1 − ε ≤ Yv. The branching points of ∆(α)
ε are the

points of the form (v, Yv) for all v ∈ V such that Yv < 1− ε.
Now conditionally on ∆(α), we can define Brownian motion on ∆(α)

ε starting from the root.
Informally, this process behaves like linear Brownian motion as long as it stays on an “open
interval” of the form {v} × (Yv̂, Yv ∧ (1 − ε)), and it is reflected at the root (∅, 0) and at the
leaves of ∆(α)

ε . When it arrives at a branching point of the tree, it chooses each of the possible line
segments ending at this point with equal probabilities. By taking a sequence εn = 2−n, n ≥ 1
and then letting n go to infinity, we can construct under the same probability measure P a
Brownian motion B on ∆(α) starting from the root, which is defined up to its first hitting time
T of ∂∆(α). We refer the reader to [20, Section 2.1] for the details of this construction. The
harmonic measure µα is then the distribution of BT− under P , which is a (random) probability
measure on ∂∆(α) ⊆ NN.

5.2.2 The continuous-time Galton–Watson tree

In this subsection, we introduce a new tree which shares the same branching structure as
∆(α), such that each point of ∆(α) at height s ∈ [0, 1) corresponds to a point of the new tree
at height − log(1 − s) ∈ [0,∞) in a bijective way. As it turns out, this new random tree is a
continuous-time Galton–Watson tree.

To define it, we take α ∈ [1, 2] and start with the same random infinite tree Π(α) intro-
duced in Section 5.2.1. Consider now a collection (Vv)v∈V of independent real random variables
exponentially distributed with mean 1 under the probability measure P. We set

Z∅ = V∅

and then by induction, for every v ∈ Π(α) \ {∅},

Zv = Zv̂ + Vv.

The continuous-time Galton–Watson tree (hereafter to be called CTGW tree for short) of stable
index α is the set

Γ(α) :=
(
{∅} × [0, Z∅]

)
∪
( ⋃
v∈Π(α)\{∅}

{v} × (Zv̂, Zv]
)
,
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which is equipped with the metric d defined in the same way as d in the preceding subsection.
For this metric, Γ(α) is a.s. a non-compact R-tree. For every x = (v, r) ∈ Γ(α), we keep the
notation H(x) = r = d((∅, 0), x) for the height of the point x.

Observe that if U is uniformly distributed over [0, 1], the random variable − log(1 − U) is
exponentially distributed with mean 1. Hence we may and will suppose that the collection
(Vv)v∈V is constructed from the collection (Uv)v∈V in the previous subsection via the formula
Vv = − log(1− Uv) for every v ∈ V. Then, the mapping Ψ defined on ∆(α)

0 by

Ψ(v, r) :=
(
v,− log(1− r)

)
for every (v, r) ∈ ∆(α)

0 ,

is a homeomorphism from ∆(α)
0 onto Γ(α).

By stochastic analysis, we can write for every t ∈ [0, T ),

Ψ(Bt) = W
( ∫ t

0
(1−H(Bs))−2 ds

)
(5.8)

where (W (t))t≥0 is Brownian motion with constant drift 1/2 towards infinity on the CTGW
tree Γ(α) (this process is defined in a similar way as Brownian motion on ∆(α)

ε , except that it
behaves like Brownian motion with drift 1/2 on every “open interval” of the tree). Note that
again W is defined under the probability measure P . Since all the offspring numbers involved in
the CTGW tree Γ(α) are larger than 2, it is easy to see that the Brownian motionW is transient.
From now on, when we speak about Brownian motion on the CTGW tree or on other similar
trees, we will always mean Brownian motion with drift 1/2 towards infinity.

By definition, the boundary of Γ(α) is the set of all infinite geodesics in Γ(α) starting from
the root (∅, 0) (these are called geodesic rays), and it can be canonically embedded into NN.
Due to the transience of Brownian motion on Γ(α), there is an a.s. unique geodesic ray denoted
by W∞ that is visited by (W (t))t≥0 at arbitrarily large times. We say that W∞ is the exit ray of
Brownian motion on Γ(α). The distribution of W∞ under P yields a probability measure να on
NN. Thanks to (5.8), we have in fact να = µα, provided we think of both µα and να as (random)
probability measures on NN. The statement of Theorem 5.2 is then reduced to checking that for
every 1 < α ≤ 2, P-a.s., να(dy)-a.e.

lim
r→∞

1
r

log να(B(y, r)) = −βα , (5.9)

where B(y, r) denotes the set of all geodesic rays that coincide with y up to height r.

Infinite continuous trees. To prove (5.9), we will apply the tools of ergodic theory to certain
transformations on a space of finite-degree rooted infinite continuous trees that we now describe.
We let T be the set of all pairs (Π, (zv)v∈Π) that satisfy the following conditions:
(1) Π is an infinite discrete tree, in the sense of Section 5.2.1.
(2) We have

(i) zv ∈ [0,∞) for all v ∈ Π ;
(ii) zv̂ < zv for every v ∈ Π\{∅} ;
(iii) for every v ∈ Π∞ := {(v1, v2, . . . , vn, . . .) ∈ NN : (v1, v2, . . . , vn) ∈ Π, ∀n ≥ 1},

lim
n→∞

z(v1,...,vn) = +∞.
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In the preceding definition, we allow the possibility that z∅ = 0. Notice that property (iii)
implies that #{v ∈ Π: zv ≤ r} <∞ for every r > 0.

We equip T with the σ-field generated by the coordinate mappings. If (Π, (zv)v∈Π) ∈ T, we
can consider the associated “tree”

T :=
(
{∅} × [0, z∅]

)
∪
( ⋃
v∈Π\{∅}

{v} × (zv̂, zv]
)
,

equipped with the distance defined as above. The set Π∞ is identified with the collection of all
geodesic rays in Π, and will be viewed as the boundary of the tree T . We keep the notation
H(x) = r for the height of a point x = (v, r) ∈ T . The genealogical order on T is defined as
previously and again is denoted by ≺. If u = (u1, u2, . . .) ∈ Π∞, and x = (v, r) ∈ T , we write
x ≺ u if v = (u1, u2, . . . , uk) for some integer k ≥ 0.

We will often abuse notation and say that we consider a tree T ∈ T: This means that we are
given a pair (Π, (zv)v∈Π) satisfying the above properties, and we consider the associated tree T .
In particular, T has an order structure (in addition to the genealogical partial order) given by
the lexicographical order on Π. Elements of T will be called infinite continuous trees. Clearly,
for every stable index α ∈ [1, 2], the CTGW tree Γ(α) can be viewed as a random variable with
values in T, and we write Θα(dT ) for its distribution.

Let us fix T = (Π, (zv)v∈Π) ∈ T. Under our previous notation, k∅ is the number of offspring
at the first branching point of T . We denote by T(1), T(2), . . . , T(k∅) the subtrees of T obtained
at the first branching point. To be more precise, for every 1 ≤ i ≤ k∅, we define the shifted
discrete tree Π[i] = {v ∈ V : iv ∈ Π}, and T(i) is the infinite continuous tree corresponding to
the pair (

Π[i], (ziv − z∅)v∈Π[i]
)
.

Under Θα(dT ), we know by definition that k∅ is distributed according to θα. Moreover, condi-
tionally on k∅, the branching property of the CTGW tree states that the subtrees T(1), . . . , T(k∅)
are i.i.d. following the same law Θα.

If r > 0, the level set of T ∈ T at height r is

Tr = {x ∈ T : H(x) = r}.

For α ∈ (1, 2], we have the classical result

E
[
#Γ(α)

r

]
= exp

( r

α− 1
)

= exp
(
(mα − 1)r

)
,

which can be derived from the following identity (see e.g. Theorem 2.7.1 in [26]) stating that for
every u > 0,

E
[
exp(−u#Γ(α)

r )
]

= 1−
[
1− e−r(1− (1− e−u)1−α)

] 1
1−α .

5.2.3 The continuous conductance

Recall that, for α ∈ [1, 2], the random variable C(α) is defined as the conductance between
the root and the set ∂∆(α) in the continuous tree ∆(α) viewed as an electric network. One can
also give a more probabilistic definition of the conductance. If T is a (deterministic) infinite
continuous tree, the conductance C(T ) between the root and the boundary ∂T can be defined
in terms of excursion measures of Brownian motion with drift 1/2 on T . Under this definition,
we can set C(α) = C(Γ(α)) ∈ [1,∞). For details, we refer the reader to Section 2.3 in [20].
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In this subsection, we will prove for α ∈ (1, 2] that the law of C(α) is characterized by the
distributional identity (5.4) in the class of all probability measures on [1,∞), and discuss some
of the properties of this law. For u ∈ (0, 1), n ∈ N and (xi)i≥1 ∈ [1,∞)N, we define

G(u, n, (xi)i≥1) :=
(
u+ 1− u

x1 + x2 + · · ·+ xn

)−1
,

so that (5.4) can be rewritten as

C(α) (d)= G(U,Nα, (C(α)
i )i≥1) (5.10)

where U,Nα, (C(α)
i )i≥1 are as in (5.4). Note that (5.10) also holds for α = 1. Let M be the set

of all probability measures on [1,∞] and let Φα : M →M map a distribution σ to

Φα(σ) = Law
(
G(U,Nα, (Xi)i≥1)

)
where (Xi)i≥1 are independent and identically distributed according to σ, while U,Nα are as
in (5.4). We suppose in addition that U,Nα and (Xi)i≥1 are independent.

We write γα for the distribution of C(α), and define for all ` ≥ 0 the Laplace transform

ϕα(`) := E
[
exp(−` C(α)/2)

]
=
∫ ∞

1
e−`r/2 γα(dr).

Proposition 5.5. Let us fix the stable index α ∈ (1, 2]. The law γα of C(α) is the unique fixed
point of the mapping Φα on M , and we have Φk

α(σ)→ γα weakly as k →∞, for every σ ∈M .
Furthermore,

1. If α = 2, all moments of γ2 are finite, and γ2 has a continuous density over [1,∞). The
Laplace transform ϕ2 solves the differential equation

2` ϕ′′(`) + `ϕ′(`) + ϕ2(`)− ϕ(`) = 0.

2. If α ∈ (1, 2), only the first and the second moments of γα are finite. The distribution γα
has a continuous density over [1,∞), and the Laplace transform ϕα solves the differential
equation

2` ϕ′′(`) + `ϕ′(`) + (1− ϕ(`))α + ϕ(`)− 1
α− 1 = 0. (5.11)

Proof. The case α = 2 has been derived in [20, Proposition 6] and is listed above for the sake of
completeness. We will prove the corresponding assertion for α ∈ (1, 2) by similar methods.

Firstly, the stochastic partial order � on M is defined by saying that σ � σ′ if and only if
there exists a coupling (X,Y ) of σ and σ′ such that a.s. X ≤ Y . It is clear that for any α ∈ [1, 2],
the mapping Φα is increasing for the stochastic partial order.

We endow the set M1 of all probability measures on [1,∞] that have a finite first moment
with the 1-Wasserstein metric

d1(σ, σ′) := inf
{
E
[
|X − Y |

]
: (X,Y ) coupling of (σ, σ′)

}
.

The metric space (M1,d1) is Polish and its topology is finer than the weak topology on M1.
From the easy bound

G(u, n, (xi)i≥1) ≤ x1 + x2 + · · ·+ xn
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and the fact that ENα <∞ when α 6= 1, we immediately see that Φα maps M1 into M1 when
α > 1. We then observe that the mapping Φα is strictly contractant on (M1,d1). To see this,
let (Xi, Yi)i≥1 be independent copies of a coupling between σ, σ′ ∈ M1 under the probability
measure P. As in (5.10), let U be uniformly distributed over [0, 1] and Nα be distributed
according to θα. Assume that U,Nα and (Xi, Yi)i≥1 are independent under P. Then the two
variables G(U,Nα, (Xi)i≥1) and G(U,Nα, (Yi)i≥1) give a coupling of Φα(σ) and Φα(σ′). Using
the fact that Xi, Yi ≥ 1, we have

|G(U,Nα, (Xi)i≥1)−G(U,Nα, (Yi)i≥1)|

=
∣∣∣(U + 1− U

X1 +X2 + · · ·+XNα

)−1
−
(
U + 1− U

Y1 + Y2 + · · ·+ YNα

)−1∣∣∣
=

∣∣∣ (X1 +X2 + · · ·+XNα − Y1 − Y2 − · · · − YNα)(1− U)
(U(X1 +X2 + · · ·+XNα) + 1− U)(U(Y1 + Y2 + · · ·+ YNα) + 1− U)

∣∣∣
≤

(
|X1 − Y1|+ |X2 − Y2|+ · · ·+ |XNα − YNα |

) 1− U
(1 + (Nα − 1)U)2 .

Notice that for any integer k ≥ 2,

E
[ k(1− U)
(1 + (k − 1)U)2

]
= 1 + k − 1− k log k

(k − 1)2 .

Taking expected values and minimizing over the choice of the coupling between σ and σ′, we get

d1(Φα(σ),Φα(σ′)) ≤ E
[ Nα(1− U)
(1 + (Nα − 1)U)2

]
d1(σ, σ′)

=
(

1 + E
[Nα − 1−Nα logNα

(Nα − 1)2

])
d1(σ, σ′) = cαd1(σ, σ′) ,

with cα < 1. So for α ∈ (1, 2], the mapping Φα is contractant on M1 and by completeness it has
a unique fixed point γ̃α in M1. Furthermore, for every σ ∈ M1, we have Φk

α(σ) → γ̃α for the
metric d1, hence also weakly, as k →∞.

Since we know from (5.10) that γα is also a fixed point of Φα, the equality γα = γ̃α will
follow if we can verify that γ̃α is the unique fixed point of Φα in M . To this end, it will be
enough to show that we have Φk

α(σ)→ γ̃α as k →∞, for every σ ∈M .
For any α ∈ [1, 2], we apply Φα to the Dirac measure δ∞ at ∞ to see

Φα(δ∞) = Law
(
U−1) ,

Φ2
α(δ∞) = Law

((
U + 1− U

U−1
1 + U−1

2 + · · ·+ U−1
Nα

)−1)
,

where we introduce a new sequence (Ui)i≥1 consisting of i.i.d. copies of U , independent of Nα

and U under P. Thus the first moment of Φ2
α(δ∞) is given by

∑
k≥2

θα(k)
∫ 1

0
du
∫ 1

0
du1 · · ·

∫ 1

0
duk

(
u+ 1− u

u−1
1 + u−1

2 + · · ·+ u−1
k

)−1

=
∑
k≥2

θα(k)
∫ 1

0
du1 · · ·

∫ 1

0
duk

1
1− (u−1

1 + u−1
2 + · · ·+ u−1

k )−1 log
( 1
u1

+ 1
u2

+ · · ·+ 1
uk

)
≤ 2

∑
k≥2

θα(k)
∫ 1

0
du1 · · ·

∫ 1

0
duk log

( 1
u1

+ 1
u2

+ · · ·+ 1
uk

)
,
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in which the integrals can be bounded as follows,∫ 1

0
du1 · · ·

∫ 1

0
duk log

( 1
u1

+ 1
u2

+ · · ·+ 1
uk

)
= k!

∫
0<u1<u2<···<uk<1

du1du2 · · · duk log
( 1
u1

+ 1
u2

+ · · ·+ 1
uk

)

= k!
∫

0<u2<u3<···<uk<1
du2du3 · · · duk

[
u2 log

( 2
u2

+ 1
u3

+ · · ·+ 1
uk

)
+

log
(
2 + u2

u3
+ · · ·+ u2

uk

)
u−1

2 + u−1
3 + · · ·+ u−1

k

]
≤ k!

∫
0<u2<u3<···<uk<1

du2du3 · · · duk
[
u2 log k

u2
+ log k
k − 1

]
= log k + 1

2 + · · ·+ 1
k

+ k log k
k − 1 ≤ (2 + k

k − 1) log k .

Using Stirling’s formula, we know that θα(k) = O(k−(1+α)) as k → +∞. As

∑
k≥2

(2 + k

k − 1) log k
k1+α < +∞

for all α ∈ [1, 2], we get Φ2
α(δ∞) ∈ M1. By monotonicity, we have also Φ2

α(σ) ∈ M1 for every
σ ∈M , and from the preceding results we get Φk

α(σ)→ γ̃α for every σ ∈M . This implies that
γα = γ̃α is the unique fixed point of Φα in M .

For every t ∈ R we set Fα(t) = γα([t,∞]). For every integer k ≥ 2, we write F (k)
α (t) =

P(C(α)
1 + C(α)

2 + · · · + C(α)
k ≥ t), where (C(α)

k )k≥1 are independent and identically distributed
according to γα. Then we have, for every t > 1,

Fα(t) = P
(
U + 1− U

C(α)
1 + C(α)

2 + · · ·+ C(α)
Nα

≤ t−1
)

= P
(
U < t−1 and t− Ut

1− Ut ≤ C
(α)
1 + C(α)

2 + · · ·+ C(α)
Nα

)
= E

[ ∫ 1/t

0
duF (Nα)

α

(
t− ut
1− ut

)]
= t− 1

t

∫ ∞
t

dx
(x− 1)2E

[
F (Nα)
α (x)

]
. (5.12)

By definition, we have F (k)
α (t) = 1 for every t ∈ [1, 2] and k ≥ 2. It follows from (5.12) that

Fα(t) = D(α)

t
+ 1−D(α), ∀t ∈ [1, 2], (5.13)

where
D(α) = 2−

∫ ∞
2

dx
(x− 1)2E

[
F (Nα)
α (x)

]
∈ [1, 2].

We observe that the right-hand side of (5.12) is a continuous function of t ∈ (1,∞), so that Fα
is continuous on [1,∞) (the right-continuity at 1 is obvious from (5.13)). Thus γα has no atom
and it follows that all functions F (k)

α , k ≥ 2 are continuous on [1,∞). By dominated convergence
the function x 7→ E[F (Nα)

α (x)] is also continuous on [1,∞). Using (5.12) again we obtain that Fα
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is continuously differentiable on [1,∞) and consequently γα has a continuous density fα = −F ′α
with respect to the Lebesgue measure on [1,∞).

Let us finally derive the differential equation (5.11). To this end, we first differentiate (5.12)
with respect to t to get that the linear differential equation

t(t− 1)F ′α(t)− Fα(t) = −E
[
F (Nα)
α (t)

]
(5.14)

holds for t ∈ [1,∞). Then let g : [1,∞) → R+ be a monotone continuously differentiable
function. From the definition of Fα and Fubini’s theorem, we have∫ ∞

1
dt g′(t)Fα(t) = E

[
g(C(α))

]
− g(1)

and similarly ∫ ∞
1

dt g′(t)E
[
F (Nα)
α (t)

]
= E

[
g(C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα
)
]
− g(1).

We then multiply both sides of (5.14) by g′(t) and integrate for t running from 1 to ∞ to get

E
[
C(α)

1 (C(α)
1 − 1)g′(C(α)

1 )
]

+ E
[
g(C(α)

1 )
]

= E
[
g(C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα
)
]
. (5.15)

When g(x) = exp(−x`/2) for ` > 0, we readily obtain (5.11) by using the generating function
of Nα given in (5.6). Finally, taking g(x) = x in (5.15), we get

E
[
(C(α))2] = E

[
Nα
]
E
[
C(α)] = α

α− 1E
[
C(α)] .

Nevertheless, by taking g(x) = x2 in (5.15), we see that the third moment of C(α) is infinite since
E
[
(Nα)2] =∞.

The arguments of the preceding proof also yield the following lemma in the case α = 1.

Lemma 5.6. The conductance C(1) of the tree ∆(1) satisfies the bound

E
[
C(1)] ≤ 2

∑
k≥2

(2 + k

k − 1) log k
k(k − 1) < +∞. (5.16)

Additionally, the Laplace transform ϕ1 of the law of C(1) solves the differential equation

2` ϕ′′(`) + `ϕ′(`) + (1− ϕ(`)) log(1− ϕ(`)) = 0.

Proof. The law of C(1) is a fixed point of the mapping Φ1 defined via (5.10) with α = 1. By
the same monotonicity argument that we used above, it follows that the first moment of C(1) is
bounded above by the first moment of Φ2

1(δ∞), and the calculation of this first moment in the
previous proof leads to the right-hand side of (5.16).

As an analogue to (5.15), we have

E
[
C(1)

1 (C(1)
1 − 1)g′(C(1)

1 )
]

+ E
[
g(C(1)

1 )
]

= E
[
g(C(1)

1 + C(1)
2 + · · ·+ C(1)

N1
)
]
.

By taking g(x) = exp(−x`/2) and using (5.7), one can then derive the differential equation
satisfied by ϕ1.
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5.2.4 The reduced stable trees are nested

In this short subsection, we introduce a coupling argument to explain how Theorem 5.3
follows from the identity (5.5) in Proposition 5.4.

Recall the definition of the α-offspring distribution θα. From the obvious fact

1−
k−1∑
i=2

α

i− α
< 0, ∀α ∈ (1, 2), k ≥ 3,

one deduces that for all k ≥ 3,

d
dαθα(k) < 0, ∀α ∈ (1, 2).

This implies that for every k ≥ 3, θα([2, k]) is a strictly increasing function of α ∈ (1, 2). Using
the inverse transform sampling, we can construct on a common probability space a sequence of
random variables (Nα, α ∈ [1, 2]) such that a.s.

Nα2 ≥ Nα1 for all 1 ≤ α2 ≤ α1 ≤ 2.

Then following the same procedure explained in Section 5.2.1, we can construct simultaneously
all reduced stable trees as a nested family. More precisely, there exists a family of compact
R-trees (∆̄(α), α ∈ [1, 2]) such that

∆̄(α) (d)= ∆(α) for all 1 ≤ α ≤ 2 ;
∆̄(α1) ⊆ ∆̄(α2) for all 1 ≤ α2 ≤ α1 ≤ 2 .

Consequently, the family of conductances (C̄(α), α ∈ [1, 2]) associated with (∆̄(α), α ∈ [1, 2]) is
decreasing with respect to α. In particular, the mean E[C(α)] is decreasing with respect to α,
and it follows from (5.16) that (E[C(α)], α ∈ [1, 2]) is uniformly bounded by the constant

C0 := 2
∑
k≥2

(2 + k

k − 1) log k
k(k − 1) < +∞.

Proof of Theorem 5.3. For any α ∈ (1, 2], γα is a probability measure on [1,∞) and∫∫
γα(ds)γα(dt) st

s+ t− 1 ≥
∫∫

γα(ds)γα(dt) st

s+ t

≥
∫∫

γα(ds)γα(dt) st

2(s ∨ t)

= 1
2

∫∫
γα(ds)γα(dt)(s ∧ t) ≥ 1

2 .

So we derive from (5.5) that

βα ≤
1
2
(
2
(
E
[
C(α)])2 − 1

)
≤ 1

2
(
2C2

0 − 1
)
<∞. �
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5.2.5 Proof of Theorem 5.2

The proof of Theorem 5.2 given below will follow the approach sketched in [20, Section 5.1].
We will first establish the flow property of harmonic measure (Lemma 5.7), and then find an
explicit invariant measure for the environment seen by Brownian motion on the CTGW tree Γ(α)

at the last visit of a vertex of the n-th generation (Proposition 5.8). After that, we will rely on
arguments of ergodic theory to complete the proof of Theorem 5.2 and that of Proposition 5.4.

Throughout this subsection, we fix the stable index α ∈ (1, 2] once and for all.
For notational ease, we will omit the superscripts and subscripts concerning α in all the proofs
involved. Recall that P stands for the probability measure under which the CTGW tree Γ(α)

is defined, whereas Brownian motion with drift 1/2 on the CTGW tree is defined under the
probability measure P .

The flow property of harmonic measure

We fix an infinite continuous tree T ∈ T, and write as before T(1), T(2), . . . , T(k∅) for the
subtrees of T at the first branching point. Here we slightly abuse notation by writing W =
(W (t))t≥0 for Brownian motion with drift 1/2 on T started from the root. As in Section 5.2.2,
W∞ stands for the exit ray of W , and the distribution of W∞ on the boundary of T is the
harmonic measure of T , denoted as νT . Let K be the index such that W∞ “belongs to” T(K)
and we write W ′∞ for the ray of T(K) obtained by shifting W∞ at the first branching point of T .

Lemma 5.7. Let j ∈ {1, 2, . . . , k∅}. Conditionally on {K = j}, the law of W ′∞ is the harmonic
measure of T(j).

The proof is similar to that of [20, Lemma 7] and is therefore omitted.

The invariant measure and ergodicity

We introduce the set
T∗ ⊆ T× NN

of all pairs consisting of a tree T ∈ T and a distinguished geodesic ray v in T . Given a
distinguished geodesic ray v = (v1, v2, . . .) in T , we let S(T ,v) be obtained by shifting (T ,v)
at the first branching point of T , that is

S(T ,v) = (T(v1), ṽ),

where ṽ = (v2, v3, . . .) and T(v1) is the subtree of T rooted at the first branching point that is
chosen by v.

Under the probability measure P ⊗ P , we can view (Γ(α),W∞) as a random variable with
values in T∗. We write Θ∗α(dT dv) for the distribution of (Γ(α),W∞). The next proposition gives
an invariant measure absolutely continuous with respect to Θ∗α under the shift S.

Proposition 5.8. For every r ≥ 1, set

κα(r) :=
∞∑
k=2

kθα(k)
∫
γα(dt1)

∫
γα(dt2) · · ·

∫
γα(dtk)

rt1
r + t1 + t2 + · · ·+ tk − 1 .

The finite measure κα(C(T ))Θ∗α(dT dv) is invariant under S.
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Remark. The preceding formula for κα is suggested by the analogous formula in [20, Proposition
25] for α = 2.

Proof. First notice that the function κ is bounded, since for every r ≥ 1,

κ(r) ≤
∞∑
k=2

kθ(k)
∫
t1γ(dt1) <∞.

Let us fix T ∈ T, then for any 1 ≤ i ≤ k∅ and any bounded measurable function g on NN,
the flow property of harmonic measure gives that∫

νT (dv) 1{v1=i} g(ṽ) =
C(T(i))

C(T(1)) + · · ·+ C(T(k∅))

∫
νT(i)(du) g(u).

Recall that Θ∗(dT dv) = Θ(dT )νT (dv) by construction. Let F be a bounded measurable
function on T∗. Using the preceding display, we have∫

F ◦ S(T ,v)κ(C(T )) Θ∗(dT dv) (5.17)

=
∞∑
k=2

θ(k)
k∑
i=1

∫
F (T(i),u)κ(C(T ))

C(T(i))
C(T(1)) + · · ·+ C(T(k))

Θ(dT |k∅ = k) νT(i)(du).

Observe that under Θ(dT | k∅ = k), the subtrees T(1), T(2), . . . , T(k) are independent and dis-
tributed according to Θ, and furthermore,

C(T ) =
(
U + 1− U

C(T(1)) + · · ·+ C(T(k))
)−1

,

where U is uniformly distributed over [0, 1] and independent of (T(1), T(2), . . . , T(k)). Using these
observations, together with a simple symmetry argument, we get that the integral (5.17) is given
by

∞∑
k=2

kθ(k)
∫ 1

0
dx
∫

Θ(dT1) · · ·
∫

Θ(dTk)
∫
νT1(du)F (T1,u)

× C(T1)
C(T1) + · · ·+ C(Tk)

κ
((
x+ 1− x
C(T1) + · · ·+ C(Tk)

)−1)
=
∫

Θ∗(dT1 du)F (T1,u)
[ ∞∑
k=2

kθ(k)
∫ 1

0
dx
∫

Θ(dT2) · · ·
∫

Θ(dTk)

× C(T1)
C(T1) + · · ·+ C(Tk)

κ
((
x+ 1− x
C(T1) + · · ·+ C(Tk)

)−1)]
.

The proof is thus reduced to checking that, for every r ≥ 1, κ(r) is equal to

∞∑
k=2

kθ(k)
∫ 1

0
dx
∫

Θ(dT2) · · ·
∫

Θ(dTk)
r

r + C(T2) + · · ·+ C(Tk)
κ
((
x+ 1− x

r + C(T2) + · · ·+ C(Tk)
)−1)

.

(5.18)
To this end, we will reformulate the last expression in the following way. Under the probability
measure P, we introduce an i.i.d. sequence (Ci)i≥0 distributed according to γ, and a random
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variable N distributed according to θ. In addition, under the same probability measure P, let
U be uniformly distributed over [0, 1], (C̃i)i≥0 be an independent copy of (Ci)i≥0, and Ñ be an
independent copy of N . We assume that all these random variables are independent. Note that
by definition, for every r ≥ 1,

κ(r) = E
[ rÑ C̃1

r + C̃1 + C̃2 + · · ·+ C̃Ñ − 1

]
.

It follows that (5.18) can be written as

∞∑
k=2

kθ(k)E
[

r

r + C2 + · · ·+ Ck

(
U + 1−U

r+C2+···+Ck

)−1
Ñ C̃1(

U + 1−U
r+C2+···+Ck

)−1
+ C̃1 + C̃2 + · · ·+ C̃Ñ − 1

]

= r
∞∑
k=2

kθ(k)E
[

Ñ C̃1

(r + C2 + · · ·+ Ck)
(
1 + (C̃1 + C̃2 + · · ·+ C̃Ñ − 1)(U + 1−U

r+C2+···+Ck )
)]

= r
∞∑
k=2

kθ(k)E
[ C̃1 + C̃2 + · · ·+ C̃Ñ

(C̃1 + C̃2 + · · ·+ C̃Ñ − 1)(U(r + C2 + · · ·+ Ck) + 1− U) + r + C2 + · · ·+ Ck

]

= r
∞∑
k=2

kθ(k)E
[ C̃1 + C̃2 + · · ·+ C̃Ñ

(C̃1 + C̃2 + · · ·+ C̃Ñ )(U(r + C2 + · · ·+ Ck − 1) + 1) + (r + C2 + · · ·+ Ck − 1)(1− U)

]

= r
∞∑
k=2

kθ(k)E
[ 1

(r + C2 + · · ·+ Ck − 1)
(
U + 1−U

C̃1+C̃2+···+C̃Ñ

)
+ 1

]

= r
∞∑
k=2

kθ(k)E
[ C̃
r + C̃ + C2 + · · ·+ Ck − 1

]
= E

[
rN C̃

r + C̃ + C2 + · · ·+ CN − 1

]
,

where
C̃ := (U + 1− U

C̃1 + · · ·+ C̃Ñ
)−1

is independent of (Ci)i≥0 and N . By (5.4), the random variable C̃ is also distributed according
to γ. So the right-hand side of the last long display is equal to κ(r), which completes the proof
of the proposition.

We normalize κα by setting

κ̂α(r) = κα(r)∫
κα(C(T ))Θ∗α(dT dv) = κα(r)∫

κα(C(T ))Θα(dT )

for every r ≥ 1. Then κ̂α(C(T ))Θ∗α(dT dv) is a probability measure on T∗ invariant under the
shift S. To simplify notation, we set Υ∗α(dT dv) := κ̂α(C(T ))Θ∗α(dT dv). Let π1 be the canonical
projection from T∗ onto T. The image of Υ∗α under this projection is the probability measure
Υα(dT ) := κ̂α(C(T ))Θα(dT ).

Proposition 5.9. The shift S acting on the probability space (T∗,Υ∗α) is ergodic.

Proof. Our arguments proceed in a similar way as in the proof of [20, Proposition 13]. We define
a transition kernel p(T , dT ′) on T by setting

p(T ,dT ′) =
k∅∑
i=1

C(T(i))
C(T(1)) + · · ·+ C(T(k∅))

δT(i)(dT
′).
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Informally, under the probability measure p(T , dT ′), we choose one of the subtrees of T obtained
at the first branching point, with probability equal to its harmonic measure.

For every integer n ≥ 1, we denote by Sn the mapping on T∗ obtained by iterating n times
the shift S, and then we consider the process (Zn)n≥0 on the probability space (T∗,Υ∗) with
values in T, defined by Z0(T ,v) = T and

Zn(T ,v) = π1
(
Sn(T ,v)

)
for every n ≥ 1. According to Proposition 5.8 and the flow property of harmonic measure, the
process (Zn)n≥0 is a Markov chain with transition kernel p under its stationary measure Υ(dT ).

We write T∞ for the set of all infinite sequences (T 0, T 1, . . .) of elements in T, and let T̂∞ be
the set of all infinite sequences (T 0, T 1, . . .) in T∞, such that, for every integer j ≥ 1, T j is one
of the subtrees of T j−1 above the first branching point of T j−1. Note that T̂∞ is a measurable
subset of T∞ and that (Zn(T ,v))n≥0 ∈ T̂∞ for every (T ,v) ∈ T∗. If (T 0, T 1, . . .) ∈ T̂∞,
there exists a geodesic ray v in T 0 such that T j = Sj(T 0,v) for every j ≥ 1, and we set
φ(T 0, T 1, . . .) := (T 0,v). Notice that v is a priori not unique, but to make the previous definition
rigorous we can take the smallest possible v in lexicographical ordering (of course for the random
trees that we consider later this uniqueness problem does not arise). In this way, we define a
measurable mapping φ from T̂∞ into T∗ such that

φ(Z0(T ,v), Z1(T ,v), . . .) = (T ,v), Υ∗-a.s. (5.19)

Now given a measurable subset A of T∗ such that S−1(A) = A, we aim at proving that
Υ∗(A) ∈ {0, 1}. To this end, we consider the pre-image B = φ−1(A), which is a measurable
subset of T̂∞ ⊂ T∞. Due to the previous constructions, B is shift-invariant for the Markov
chain Z in the sense that

{(Z0, Z1, . . .) ∈ B} = {(Z1, Z2, . . .) ∈ B}, a.s.

Using Proposition 16.2 in [73], we then obtain a measurable subset D of T, such that

1B(Z0, Z1, . . .) = 1D(Z0) a.s.,

and moreover p(T , D) = 1D(T ), Υ(dT )-a.s. It follows thus from (5.19) that Υ∗-a.s. we have
(T ,v) ∈ A if and only if T ∈ D.

However from the property p(T , D) = 1D(T ), Υ(dT )-a.s., one can verify that Υ(D) ∈ {0, 1}.
First note that this property also implies that p(T , D) = 1D(T ), Θ(dT )-a.s. Hence, Θ(dT )-a.s.,
the tree T belongs to D if and only if each of its subtrees above the first branching point belongs
to D (it is clear that that the measure p(T , ·) assigns a positive mass to each of these subtrees).
Then, the branching property of the CTGW tree shows that

Θ(D) =
∞∑
k=2

θ(k) Θ(D)k

which is only possible if Θ(D) = 0 or 1, or equivalently if Υ(D) = 0 or 1. Therefore Υ∗(A) is
either 0 or 1, which completes the proof.
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Proof of Theorem 5.2

Having established Proposition 5.8 and Proposition 5.9, we can now apply the ergodic theo-
rem to the two functionals on T∗ defined as follows. First let Jn(T ,v) denote the height of the
n-th branching point on the geodesic ray v. One immediately verifies that, for every n ≥ 1,

Jn =
n−1∑
i=0

J1 ◦ Si.

If M =
∫
κ(C(T ))Θ∗(dT dv), it follows from the ergodic theorem that Θ∗-a.s.,

1
n
Jn −→

n→∞
M−1

∫
J1(T,v)κ(C(T ))Θ∗(dT dv). (5.20)

Note that the limit can be written as

M−1E
[
| log(1− U)|κ

((
U + 1− U

C1 + · · ·+ CN

)−1)]
with the notation used in the proof of Proposition 5.8.

Secondly, let xn,v denote the n+1-st branching point on the geodesic ray v. If v = (v1, v2, . . .),
then xn,v = ((v1, . . . , vn), Jn+1(T ,v)) with the notation of Section 5.2.2. We set for every n ≥ 1,

Fn(T ,v) := log νT ({u ∈ ∂T : xn,v ≺ u}).

By the flow property of harmonic measure (Lemma 5.7), we have

Fn =
n−1∑
i=0

F1 ◦ Si,

and by the ergodic theorem, Θ∗-a.s.,

1
n
Fn −→

n→∞
M−1

∫
F1(T ,v)κ(C(T ))Θ∗(dT dv), (5.21)

where the limit can be written as

M−1E
[

NC1
C1 + · · ·+ CN

log
( C1
C1 + · · ·+ CN

)
κ
((
U + 1− U

C1 + · · ·+ CN

)−1)]
.

By combining (5.20) and (5.21), we obtain that the convergence (5.9) holds with limit

−β =
E
[

NC1
C1+···+CN log

(
C1

C1+···+CN

)
κ
((
U + 1−U

C1+···+CN

)−1)]
E
[
| log(1− U)|κ

((
U + 1−U

C1+···+CN

)−1)] .

Proposition 5.10. We have β < 1
α−1 .

Proof. We use the notation
W(T ) = lim

r→∞
e−

r
α−1 #Tr ,

which exists Θ(dT )-a.s. by a martingale argument. Since
∑
θ(k)k log k <∞, the Kesten–Stigum

theorem (for CTGW trees, see e.g. [7, Theorem III.7.2]) implies that the previous convergence
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holds in the L1-sense and
∫
W(T )Θ(dT ) = 1. Moreover, Θ(W(T ) = 0) = 0 and the Laplace

transform ∫
e−uW(T )Θ(dT ) = 1− u

(1 + uα−1)
1

α−1
for any u ∈ (0,∞)

can be obtained by applying Theorem III.8.3 in [7] together with (5.6). In particular, it follows
from a Tauberian theorem (cf. [31, Chapter XIII.5]) that

∫
| logW(T )|Θ(dT ) <∞.

Let T(1), . . . , T(k∅) be the subtrees of T at the first branching point, and let J(T ) = J1(T ,v)
be the height of the first branching point. Then, Θ(dT )-a.s.

W(T ) = e−
J(T )
α−1

(
W(T(1)) + · · ·+W(T(k∅))

)
,

so that we can define a probability measure wT on {1, 2, . . . , k∅} by setting

wT (i) =
e−

J(T )
α−1W(T(i))
W(T ) , 1 ≤ i ≤ k∅.

On the other hand, for 1 ≤ i ≤ k∅, let ν∗T (i) denote the mass assigned by the harmonic measure
νT to the rays “contained” in T(i), that is,

ν∗T (i) =
∫

1{v1=i}νT (dv) =
C(T(i))

C(T(1)) + · · ·+ C(T(k∅))
.

By a concavity argument,
k∅∑
i=1

ν∗T (i) log wT (i)
ν∗T (i) ≤ 0, (5.22)

and the inequality is strict with positive Θ-probability.
Recall that Υ(dT ) = M−1κ(C(T ))Θ(dT ) is the image of the probability measure Υ∗(dT dv)

under the canonical projection π1 from T∗ to T. According to the discussion before Proposi-
tion 5.10, we can write

β =
( ∫

Υ(dT )J(T )
)−1 ∫

Υ(dT )
k∅∑
i=1

ν∗T (i) log 1
ν∗T (i) ,

which by (5.22) is strictly smaller than

( ∫
Υ(dT )J(T )

)−1 ∫
Υ(dT )

k∅∑
i=1

ν∗T (i) log 1
wT (i) .

However, it follows from the definition of wT that∫
Υ(dT )

k∅∑
i=1

ν∗T (i) log 1
wT (i) = 1

α− 1

∫
Υ(dT )J(T ) +

∫
Υ(dT )

k∅∑
i=1

ν∗T (i) log W(T )
W(T(i))

= 1
α− 1

∫
Υ(dT )J(T ) +

∫
Υ∗(dT dv) log W ◦ π1(T ,v)

W ◦ π1(S(T ,v))

= 1
α− 1

∫
Υ(dT )J(T ) ,

where in the last equality we used the fact that Υ∗ is invariant under the shift S, and that
logW(T ) is integrable under Θ(dT ) hence also under Υ∗. Therefore, we have shown β < 1

α−1
and the proof of Theorem 5.2 is completed.
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Proof of Proposition 5.4

We have seen above that

β =
E
[

NC1
C1+···+CN log

(
C1

C1+···+CN

)
κ
((
U + 1−U

C1+···+CN

)−1)]
E
[

log(1− U)κ
((
U + 1−U

C1+···+CN

)−1)] . (5.23)

On account of Proposition 5.5, the proof of Proposition 5.4 will be completed if we can verify
that the preceding expression for β is consistent with formula (5.5). In the following calculations,
we will keep using the same notation introduced in the proof of Proposition 5.8.

Firstly, the numerator of the right-hand side of (5.23) is equal to

E
[

NC1
C1 + · · ·+ CN

log
( C1
C1 + · · ·+ CN

) (
U + 1−U

C1+···+CN
)−1(C̃1 + · · ·+ C̃Ñ )(

U + 1−U
C1+···+CN

)−1 + C̃1 + · · ·+ C̃Ñ − 1

]

= E
[ NC1(C̃1 + · · ·+ C̃Ñ ) log C1

C1+···+CN
C1 + · · ·+ CN + C̃1 + · · ·+ C̃Ñ − 1 + U(C1 + · · ·+ CN − 1)(C̃1 + · · ·+ C̃Ñ − 1)

]
.

For every integer k ≥ 2, we define for x ∈ (1,∞) the function

Gc1,...,ck,u(x) :=
xc1 log c1

c1+···+ck
c1 + · · ·+ ck + x− 1 + (c1 + · · ·+ ck − 1)(x− 1)u ,

where u ∈ (0, 1) and c1, . . . , ck ∈ (1,∞). We can apply (5.15) to get

E
[
GC1,...,Ck,U (C̃1 + · · ·+ C̃Ñ ) | C1, . . . , Ck, U

]
= E

[
C2

0C1(C1 + · · ·+ Ck) log C1
C1+···+Ck(

C0 + C1 + · · ·+ Ck − 1 + (C0 − 1)(C1 + · · ·+ Ck − 1)U
)2
∣∣∣∣∣ C1, . . . , Ck, U

]
.

With help of the last display, the numerator of the right-hand side of (5.23) becomes

E
[ NC2

0C1(C1 + · · ·+ CN ) log C1
C1+···+CN(

C0 + C1 + · · ·+ CN − 1 + (C0 − 1)(C1 + · · ·+ CN − 1)U
)2 ].

We now integrate with respect to U and recall that for a, b, c > 0,
∫ 1
0 du a

(b+cu)2 = a
b(b+c) . So the

numerator of the right-hand side of (5.23) coincides with

E
[NC0C1 log C1

C1+C2+···+CN
C0 + C1 + · · ·+ CN − 1

]
.

On the other hand, the denominator of the right-hand side of (5.23) is equal to

E
[ (C1 + · · ·+ CN )(C̃1 + · · ·+ C̃Ñ ) log(1− U)
C1 + · · ·+ CN + (C̃1 + · · ·+ C̃Ñ − 1)(C1 + · · ·+ CN )U + (C̃1 + · · ·+ C̃Ñ − 1)(1− U)

]

= E
[ (C1 + · · ·+ CN )(C̃1 + · · ·+ C̃Ñ ) log(1− U)
C1 + · · ·+ CN + C̃1 + · · ·+ C̃Ñ − 1 + (C1 + · · ·+ CN − 1)(C̃1 + · · ·+ C̃Ñ − 1)U

]

= E
[ C2

0(C1 + · · ·+ CN )2 log(1− U)(
C0 + C1 + · · ·+ CN − 1 + (C0 − 1)(C1 + · · ·+ CN − 1)U

)2 ]

= −E
[C2

0C2
1
(
− 1 + C0 + C1 − 2C0C1 + (C0 − 1)(C1 − 1)U

)
log(1− U)(

C0 + C1 − 1 + (C0 − 1)(C1 − 1)U
)3 ]

,
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where we have repeatedly used (5.15) in the last two equalities, the first time to replace C̃1 +
· · ·+ C̃Ñ by C0, the second time to replace C1 + · · ·+CN by C1. In order to integrate with respect
to U , we appeal to the identity that for a, b, c > 0,∫ 1

0
du(a+ bu) log(1− u)

(c+ bu)3 =
b(c− a) + (2b+ c+ a)c log c

b+c
2bc(b+ c)2 .

Applying this formula, we see that the denominator of the right-hand side of (5.23) coincides
with

−E
[ C0C1
C0 + C1 − 1

]
.

We have thus obtained the following formula

β =
E
[

NC0C1
C0+C1+···+CN−1 log C1+C2+···+CN

C1

]
E
[
C0C1

C0+C1−1

] . (5.24)

By a symmetry argument, the numerator of the right-hand side of (5.24) is equal to

E
[NC0C1 log(C1 + C2 + · · ·+ CN )

C0 + C1 + · · ·+ CN − 1
]
− E

[ NC0C1 log(C1)
C0 + C1 + · · ·+ CN − 1

]
= E

[C0(C1 + C2 + · · ·+ CN ) log(C1 + C2 + · · ·+ CN )
C0 + C1 + · · ·+ CN − 1

]
− E

[C0(C1 + C2 + · · ·+ CN ) log(C0)
C0 + C1 + · · ·+ CN − 1

]
= E

[
f(C1 + C2 + · · ·+ CN )

]
− E

[
g(C1 + C2 + · · ·+ CN )

]
, (5.25)

where we have set, for every x ≥ 1,

f(x) = E
[ C0x

C0 + x− 1 log x
]

and g(x) = E
[ C0x

C0 + x− 1 log C0

]
.

We can replace E[f(C1 + C2 + · · · + CN )] by E[f(C1)] + E[C1(C1 − 1)f ′(C1)] using (5.15), and
similarly for g, to obtain

E
[
f(C1 + C2 + · · ·+ CN )

]
− E

[
g(C1 + C2 + · · ·+ CN )

]
= 1

2

(
E[C0]2 − E

[ C0C1
C0 + C1 − 1

])
.

Plugging this into (5.25) yields the required formula (5.5), and hence finishes the proof of
Proposition 5.4.

5.2.6 A second approach to Theorem 5.2

In this section, we outline a different approach to Theorem 5.2, which contains certain
intermediate results of independent interest. This approach involves an invariant measure for
the environment seen by Brownian motion on the CTGW tree Γ(α) at the last visit of a fixed
height. This is similar to Section 3 of [20], and for this reason we will leave the proofs to
Section 5.5.

We fix the index α ∈ (1, 2], and we first introduce some additional notation. For T ∈ T and
r > 0, if x ∈ Tr, let T [x] denote the subtree of descendants of x in T . To define it formally, we
write vx for the unique element of V such that x = (vx, r), and define the shifted discrete tree
Π[vx] = {v ∈ V : vxv ∈ Π}. Then T [x] is the infinite continuous tree corresponding to the pair(

Π[vx], (zvxv − r)v∈Π[vx]
)
.
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For a fixed r > 0, we know that Γ(α) has a.s. no branching point at height r. As there is
a unique point x ∈ Γ(α)

r such that x ≺ W∞, we write Γ(α)〈r〉 = Γ(α)[x] for the subtree above
level r selected by harmonic measure.

To describe the distribution of Γ(α)〈r〉, recall that for every x ≥ 0,

ϕα(x) = E
[
exp(−x C(α)/2)

]
= Θα

(
exp(−x C(T )/2)

)
.

Proposition 5.11. The distribution under P⊗P of the subtree Γ(α)〈r〉 above level r selected by
harmonic measure is

Φ(α)
r (C(T )) Θα(dT ),

where, for every c > 0,

Φ(α)
r (c) := E(c)

[
exp−

∫ r

0
ds
(
mα
(
1− ϕα(Xs)

)α−1 − 1
α− 1

)]
.

Here X = (Xs)0≤s≤r stands for the solution of the stochastic differential equation

dXs = 2
√
Xs dηs + (2−Xs)ds

that starts under the probability measure P(c) with an exponential distribution of parameter c/2.
In the previous SDE, (ηs)s≥0 denotes a standard linear Brownian motion.

Now we define shifts (τr)r≥0 on T∗ in the following way. For r = 0, τ0 is the identity mapping
of T∗. For r > 0 and (T ,v) ∈ T∗, we write v = (v1, v2, . . .) and vn = (v1, . . . , vn) for every n ≥ 0
(by convention, v0 = ∅). Also let xr,v be the unique element of Tr such that xr,v ≺ v. Then we
set

τr(T ,v) =
(
T [xr,v] , (vk+1, vk+2, . . .)

)
,

where k = min{n ≥ 0: zvn ≥ r}. Informally, τr(T ,v) is obtained by taking the subtree of T
consisting of descendants of the vertex at height r on the distinguished geodesic ray, and keeping
in this subtree the “same” geodesic ray. It is straightforward to verify that τr ◦ τs = τr+s for
every r, s ≥ 0.

The next proposition gives an invariant measure absolutely continuous with respect to Θ∗α
under the shifts τr. To simplify notation, we set first

C1(α) := 2
∫ ∞

0
dsϕ′α(s)2 es/2 =

∫ ∫
γα(d`)γα(d`′) ``′

`+ `′ − 1 .

Proposition 5.12. For every c > 0,

lim
r→+∞

Φ(α)
r (c) = Φ(α)

∞ (c) := 1
C1(α)

∫
γα(ds) cs

c+ s− 1 .

The probability measure Λ∗α on T∗ defined as

Λ∗α(dT dv) := Φ(α)
∞ (C(T )) Θ∗α(dT dv)

is invariant under the shifts τr, r ≥ 0.

Furthermore, one can easily adapt the proof of Proposition 13 in [20] to show that for every
r > 0, the shift τr acting on the probability space (T∗,Λ∗α) is ergodic. Applying Birkhoff’s
ergodic theorem to a suitable functional (see Section 3.4 of [20]) leads to the convergence (5.3)
in Theorem 5.2, with βα given by formula (5.24). See Section 5.5 for more details.
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5.3 The discrete setting

5.3.1 Galton–Watson trees

Let us first introduce discrete (finite) rooted ordered trees, which are also called plane trees
in combinatorics. A plane tree t is a finite subset of V such that the following holds:
(i) ∅ ∈ t .
(ii) If u = (u1, . . . , un) ∈ t\{∅}, then û = (u1, . . . , un−1) ∈ t .
(iii) For every u = (u1, . . . , un) ∈ t, there exists an integer ku(t) ≥ 0 such that, for every j ∈ N,

(u1, . . . , un, j) ∈ t if and only if 1 ≤ j ≤ ku(t).
In this section we will say tree instead of plane tree for short. The same notation and terminology
introduced at the beginning of Section 5.2.1 will be used in this section: |u| is the generation
of u, uv denotes the concatenation of u and v, ≺ stands for the (non-strict) genealogical order
and u ∧ v is the maximal element of {w ∈ V : w ≺ u and w ≺ v}. A vertex with no child is
called a leaf.

The height of a tree t is
h(t) := max{|v| : v ∈ t}.

We write T for the set of all trees, and Tn for the set of all trees with height n.
We view a tree t as a graph whose vertices are the elements of t and whose edges are the

pairs {û, u} for all u ∈ t\{∅}. The set t is equipped with the distance

d(u, v) := 1
2(|u|+ |v| − 2|u ∧ v|).

Notice that this is half the usual graph distance. We will write Bt(v, r), or simply B(v, r) if
there is no ambiguity, for the closed ball of radius r centered at v, with respect to the distance
d in the tree t.

The set of all vertices of t at generation n is denoted by

tn := {v ∈ t : |v| = n}.

If v ∈ t, the subtree of descendants of v is

t̃[v] := {v′ ∈ t : v ≺ v′}.

Note that t̃[v] is not a tree under the previous definition, but we can turn it into a tree by
relabeling its vertices as

t[v] := {w ∈ V : vw ∈ t}.
If v ∈ t, then for every i ∈ {0, 1, . . . , |v|} we write 〈v〉i for the ancestor of v at generation i.

Suppose that |v| = n. Then Bt(v, i)∩ tn = t̃ [〈v〉n−i]∩ tn, for every i ∈ {0, 1, . . . , n}. This simple
observation will be used repeatedly below.

Let ρ be a non-trivial probability measure on Z+ with mean one, which belongs to the
domain of attraction of a stable distribution of index α ∈ (1, 2]. Therefore property (5.1) at the
beginning of the Introduction holds. For every integer n ≥ 0, we let T(n) be a Galton–Watson
tree with offspring distribution ρ, conditioned on non-extinction at generation n, viewed as a
random subset of V (see e.g. [58] for a precise definition of Galton–Watson trees). In particular,
T(0) is just a Galton–Watson tree with offspring distribution ρ. We suppose that the random
trees T(n) are defined under the probability measure P.



5.3 The discrete setting 147

We let T∗n be the reduced tree associated with T(n), which consists of all vertices of T(n) that
have (at least) one descendant at generation n. Note that |v| ≤ n for every v ∈ T∗n. A priori
T∗n is not a tree in the sense of the preceding definition. However we can relabel the vertices of
T∗n, preserving both the lexicographical order and the genealogical order, so that T∗n becomes
a tree in the sense of our definitions. We will always assume that this relabeling has been done.

Conditionally on T(n), the hitting distribution of generation n is the same for simple random
walk on T(n) and that on the reduced tree T∗n. In view of studying properties of this hitting
distribution, we can consider directly a simple random walk on T∗n starting from the root ∅,
which we denote by Zn = (Znk )k≥0. This random walk is defined under the probability measure
P . Let

Hn := inf{k ≥ 0: |Znk | = n}
be the first hitting time of generation n by Zn, and set Σn = ZnHn to be the hitting point. The
discrete harmonic measure µn is the law of Σn under P , which is a (random) probability measure
on the level set T∗nn .

Set qn = P
(
h(T(0)) ≥ n

)
. If L is the slowly varying function appearing in (5.1), it has been

established in [83, Lemma 2] that

qα−1
n L(qn) ∼ 1

(α− 1)n as n→∞. (5.26)

By the asymptotic inversion property of slowly varying functions (see e.g. [12, Section 1.5.7]), it
follows that

qn ∼ n−
1

α−1 `(n) as n→∞, (5.27)
for a function ` slowly varying at ∞. Moreover, it is shown in [83, Theorem 1] that, as n→∞,
qn#T∗nn converges in distribution to the positive random variable W(Γ(α)) introduced in the
proof of Proposition 5.10.

We will need to estimate the size of level sets in T∗n. The following lemma is an analogue of
Lemma 15 in [20].

Lemma 5.13. For every r ≥ 1, there exists a constant C = C(r, ρ) depending on r and the
offspring distribution ρ such that, for every integer n ≥ 2 and every integer p ∈ [1, n/2],

E
[
(log #T∗nn−p)r

] 1
r ≤ C log n

p
and E

[
(log #T∗nn )r

] 1
r ≤ C logn.

Proof. We can find a = a(r) > 0 such that the function x 7→ (log(a+x))r is concave over [1,∞).
Then as in the proof of [20, Lemma 15],

E
[
(log #T∗nn−p)r

] 1
r ≤ E

[
(log(a+ #T∗nn−p))r

] 1
r ≤ log

(
a+ E[#T∗nn−p]

)
= log(a+ qp

qn
).

Using Potter’s bounds on slowly varying function (see e.g. [12, Theorem 1.5.6]), one can deduce
from (5.27) that there exists a constant C ′ = C ′(ρ) > 0 such that for every n ≥ 2 and every
p ∈ [1, n/2],

log
( qp
qn

)
≤ C ′ log

(n
p

)
,

from which the first bound of the lemma easily follows. The second estimate can be shown in a
similar way.

The goal of this section is to prove Theorem 5.1. We will assume in the rest of this section
that the critical offspring distribution ρ satisfies (5.1) with a fixed α ∈ (1, 2]. Accordingly, we
will omit the superscripts and subscripts concerning α if there is no ambiguity.
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5.3.2 Convergence of discrete reduced trees

We first define truncations of the discrete reduced tree T∗n. For every s ∈ [0, n], we set

Rs(T∗n) :=
{
v ∈ T∗n : |v| ≤ n− bsc

}
.

Recall from Section 5.2.1 the definition of the continuous reduced tree ∆ of index α. For
every ε ∈ (0, 1), we have set ∆ε = {x ∈ ∆: H(x) ≤ 1− ε}. We will implicitly use the fact that,
for every fixed ε, there is a.s. no branching point of ∆ at height 1 − ε. The skeleton of ∆ε is
defined as the following plane tree

Sk(∆ε) := {∅} ∪
{
v ∈ Π\{∅} : Yv̂ ≤ 1− ε

}
= {∅} ∪

{
v ∈ Π\{∅} : (v̂, Yv̂) ∈ ∆ε

}
.

A vertex v of Sk(∆ε) is a leaf of Sk(∆ε) if and only if Yv > 1− ε.
Let t be a tree. We write S(t) for the set of all vertices of t whose number of children is

different from 1. Then we can find a unique tree [t] ∈ T such that there exists a bijection
from [t] onto S(t) that preserves the genealogical order and the lexicographical order of vertices.
Denote the inverse of this canonical bijection by u ∈ S(t) 7→ [u] ∈ [t]. In a less formal way, [t] is
just the tree obtained from t by removing all vertices that have exactly one child.

Proposition 5.14. We can construct the reduced trees T∗n and the (continuous) reduced stable
tree ∆ on the same probability space (Ω,F ,P), so that the following assertions hold for every
fixed ε ∈ (0, 1) with P-probability one.

(1) For every sufficiently large integer n, there exists an injective mapping Ψε
n : u 7→ wn,εu from

Sk(∆ε) into S(Rεn(T∗n)) satisfying the following properties.

(1.a) The mapping Ψε
n preserves both the lexicographical order and the genealogical order.

(1.b) If u is a leaf of Sk(∆ε), [wn,εu ] is a leaf of [Rεn(T∗n)] and |wn,εu | = n − bεnc. The
restricted mapping

Ψε
n �Leaves : Leaves of Sk(∆ε) −→

{
v ∈ S(Rεn(T∗n)) : [v] is a leaf of [Rεn(T∗n)]

}
is bijective.

(1.c) For every vertex u of Sk(∆ε),

lim
n→∞

1
n
|wn,εu | = Yu ∧ (1− ε) ,

lim
n→∞

1
n
|wn,εu | = Yû ,

where û denotes the parent of u in Sk(∆ε), and wn,εu stands for the vertex in S(Rεn(T∗n))
such that [wn,εu ] is the parent of [wn,εu ] in [Rεn(T∗n)]. (Notice that wn,εu does not nec-
essarily coincide with wn,εû .)

(2) The mapping Ψε
n is asymptotically unique in the sense that, if Ψ̃ε

n is another mapping such
that the preceding properties hold, then for n sufficiently large,

Ψε
n(u) = Ψ̃ε

n(u) for every u ∈ Sk(∆ε).
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bεncε

u wn,ε
u

û wn,ε
û

wn,ε
u

Figure 5.2: On the left, the tree ∆, its truncation ∆ε and its skeleton Sk(∆ε). On the
right, a large reduced tree T∗n of height n, its truncation Rεn(T∗n) and the associated
tree [Rεn(T∗n)]. The vertices depicted as filled red disks on the left correspond to the
vertices depicted as filled red squares on the right, via the mapping Ψε

n.

Proposition 5.14 (see Fig. 5.2 for an illustration) essentially results from the convergence in
distribution of the rescaled contour functions associated with the trees T(n) towards the excursion
of the stable height process with height greater than 1 (see [26, Section 2.5]). By using the
Skorokhod representation theorem, one may assume that the trees T(n) and the excursion of the
stable height process are constructed so that the latter convergence holds almost surely. The
various assertions of Proposition 5.14 then easily follow (cf. [26, Section 2.6]), using the relation
between the excursion of the stable height process with height greater than 1 and the limiting
reduced tree ∆, which can be found in [26, Section 2.7].
Remark 1. Let us take 0 < δ < ε. If u is not a leaf of Sk(∆ε), we must have wn,εu = wn,δu for
sufficiently large n. On the other hand, if u is a leaf of Sk(∆ε), then for large n, wn,εu must be
an ancestor of wn,δu .
Remark 2. We expect that a result more precise than Proposition 5.14 should hold. For all
sufficiently large n, the mapping Ψε

n should be a bijection, and the equality wn,εu = wn,εû should
hold for all u ∈ Sk(∆ε) (in other words, there should be no white square in the right part of
Fig. 5.2). However this refinement does not easily follow from the results of [26], and we will
omit it since it is not needed for our purposes.

5.3.3 Convergence of harmonic measures

Recall that µ is the continuous harmonic measure on the boundary ∂∆ of the reduced stable
tree, and that µn is the discrete harmonic measure on T∗nn . For every x ∈ ∂∆ε, we set

µε(x) = µ({y ∈ ∂∆: x ≺ y}) = P (x ≺ BT−).

Similarly, we define a probability measure µεn on T∗nn−bεnc by setting

µεn(u) = µn({v ∈ T∗nn : u ≺ v}),
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for every u ∈ T∗nn−bεnc. Clearly, µεn is the distribution of 〈Σn〉n−bεnc.

Proposition 5.15. Suppose that the reduced trees T∗n and the (continuous) tree ∆ have been
constructed so that the properties of Proposition 5.14 hold, and recall the notation (wn,εu )u∈Sk(∆ε)
introduced therein. Then P-a.s. for every x = (u, 1− ε) ∈ ∂∆ε,

lim
n→∞

µεn(wn,εu ) = µε(x).

Proof. Let δ ∈ (0, ε) and set Tδ = inf{t ≥ 0 : H(Bt) = 1− δ} < T . Define a probability measure
µε,(δ) on ∂∆ε by setting for every x ∈ ∂∆ε,

µε,(δ)(x) = P (x ≺ BTδ).

Similarly, we write µ(δ)
n for the distribution of the hitting point of generation n−bδnc by random

walk on T∗n started from ∅. Then we define a probability measure µε,(δ)n on T∗nn−bεnc by setting

µε,(δ)n (v) = µ(δ)
n ({w ∈ T∗nn−bδnc : v ≺ w}),

for every v ∈ T∗nn−bεnc.
As in the proof of [20, Proposition 18], we have P-a.s.

lim
δ→0

(
sup
x∈∂∆ε

∣∣µε,(δ)(x)− µε(x)
∣∣) = 0,

lim
δ→0

(
lim sup
n→∞

(
sup

v∈T∗n
n−bεnc

∣∣µε,(δ)n (v)− µεn(v)
∣∣)) = 0.

So the convergence of the proposition will follow if we can verify that for every fixed δ ∈ (0, ε),
we have P-a.s. for every x = (u, 1− ε) ∈ ∂∆ε,

lim
n→∞

µε,(δ)n (wn,εu ) = µε,(δ)(x). (5.28)

To this end, we may and will assume that the reduced trees T∗n and the (continuous) tree ∆
have been constructed so that the properties of Proposition 5.14 hold simultaneously for ε and
for δ.

Firstly, by considering the successive passage times of Brownian motion stopped at time Tδ
in the set {(u, Yu ∧ (1 − δ)) : u ∈ Sk(∆δ)}, we get a Markov chain X(δ), which is absorbed in
the set {(v, 1 − δ) : v is a leaf of Sk(∆δ)}, and whose transition kernels are explicitly described
in terms of the quantities Yu, u ∈ Sk(∆δ) by series and parallel circuits calculation.

Secondly, let n be sufficiently large so that assertions (1) and (2) of Proposition 5.14 hold
with ε as well as with δ, and consider simple random walk on T∗n started from ∅ and stopped
at the first hitting time of generation n− bδnc. By considering the successive passage times of
this random walk in the set S(Rδn(T∗n)), we again get a Markov chain X(δ),n, which is absorbed
in the set {

v ∈ S(Rδn(T∗n)) : [v] is a leaf of [Rδn(T∗n)]
}
.

By property (1.b) of Proposition 5.14, this set is exactly {wn,δv : v is a leaf of Sk(∆δ)}. As pre-
viously, the transition kernels of this Markov chain X(δ),n can be written explicitly in terms of
the quantities |v|, v ∈ S(Rδn(T∗n)).
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Recall that by Proposition 5.14,

Ψδ
n(Sk(∆δ)) = {wn,δu : u ∈ Sk(∆δ)}

is a subset of S(Rδn(T∗n)), and that the mapping Ψδ
n is injective. If we let X̃(δ),n be the Markov

chain restricted to the subset Ψδ
n(Sk(∆δ)), then after identifying both sets {(u, Yu∧ (1−δ)) : u ∈

Sk(∆δ)} and Ψδ
n(Sk(∆δ)) with Sk(∆δ), we can view both X(δ) and X̃(δ),n as Markov chains with

values in the set Sk(∆δ). Using property (1.c) of Proposition 5.14, we see that the transition
kernels of X̃(δ),n converge to those of X(δ).

Write X(δ)
∞ for the absorption point of X(δ), and similarly write X(δ),n

∞ for that of X(δ),n.
Notice that X(δ),n

∞ is also the absorption point of the restricted Markov chain X̃(δ),n. We thus
obtain that the distribution of X(δ),n

∞ converges to that of X(δ)
∞ (recall that both X(δ),n

∞ and X(δ)
∞

are viewed as taking values in the set of leaves of Sk(∆δ)). Consequently, for every u ∈ V such
that x = (u, 1− ε) ∈ ∂∆ε, we have

lim
n→∞

P (u ≺ X(δ),n
∞ ) = P (u ≺ X(δ)

∞ ).

However, from our definitions, we have

P (u ≺ X(δ)
∞ ) = µε,(δ)(x),

and, for n sufficiently large, since wn,εu coincides with the ancestor of wn,δu at generation n−bεnc
(see Remark 1 after Proposition 5.14),

P (u ≺ X(δ),n
∞ ) = µε,(δ)n (wn,εu ).

This completes the proof of (5.28) and of the proposition.

Recall that β is the Hausdorff dimension of the continuous harmonic meaure µ.

Proposition 5.16. Let r ≥ 1 and ξ ∈ (0, 1). We can find ε0 ∈ (0, 1/2) such that the following
holds. For every ε ∈ (0, ε0), there exists n0 ≥ 0 such that for every n ≥ n0,

E⊗ E
[∣∣∣ logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣r] ≤ ξ | log ε|r.

Proof. Recall our notation Bd(x, r) for the closed ball of radius r centered at x ∈ ∆. Fix
η ∈ (0, 1). Since BT− is distributed according to µ, it follows from Theorem 5.2 that there exists
ε0 ∈ (0, 1/2) such that for every ε ∈ (0, ε0) we have

P⊗ P
(∣∣∣ logµ(Bd(BT− , 2ε))− β log ε

∣∣∣ > (η/2)| log ε|
)
< η/2. (5.29)

Let us fix ε ∈ (0, ε0) and assume that the reduced trees T∗n and the (continuous) tree ∆ have
been constructed so that the properties of Proposition 5.14 hold. We now claim that, under
P⊗ P ,

µεn(〈Σn〉n−bεnc)
(d)−→
n→∞

µ(Bd(BT− , 2ε)). (5.30)

To see this, let f be a continuous function on [0, 1]. Since the distribution of 〈Σn〉n−bεnc under
P is µεn, we have

E⊗ E
[
f(µεn(〈Σn〉n−bεnc))

]
= E

[ ∑
v∈T∗n

n−bεnc

µεn(v) f(µεn(v))
]
.
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By property (1.b) of Proposition 5.14, we know that P-a.s. for n sufficiently large,∑
v∈T∗n

n−bεnc

µεn(v) f(µεn(v)) =
∑

x=(u,1−ε)∈∂∆ε

µεn(wn,εu ) f(µεn(wn,εu )),

and by Proposition 5.15 the latter quantities converge as n→∞ towards∑
x∈∂∆ε

µε(x) f(µε(x)) = E
[
f(µ(Bd(BT− , 2ε)))

]
,

which establishes the convergence (5.30) as claimed.
By (5.29) and (5.30), we can find n0 = n0(ε) ≥ ε−1 such that for n ≥ n0,

P⊗ P
(∣∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣ > η |log ε|
)
< η.

Using the Cauchy–Schwarz inequality, we have then

E⊗ E
[∣∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣r]
≤ ηr| log ε|r + η

1
2E⊗ E

[ ∣∣∣logµεn
(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣2r ]1/2
≤ ηr| log ε|r + 2rη

1
2 |β log ε|r + 2rη

1
2E⊗ E

[ ∣∣∣logµεn
(
〈Σn〉n−bεnc

)∣∣∣2r ]1/2. (5.31)

Since r ≥ 1, the function
g(x) := (x ∧ e−2r) | log(x ∧ e−2r)|2r

is nondecreasing and concave over [0, 1]. Thus, we obtain

E
[ ∣∣∣logµεn

(
〈Σn〉n−bεnc

)∣∣∣2r ] =
∑

v∈T∗n
n−bεnc

µεn(v)| logµεn(v)|2r

≤
∑

v∈T∗n
n−bεnc

g(µεn(v)) + (2r)2r

≤ #T∗nn−bεnc × g
(
(#T∗nn−bεnc)−1

)
+ (2r)2r

≤
∣∣∣ log #T∗nn−bεnc

∣∣∣2r + 2(2r)2r.

We now use Lemma 5.13 to see

E⊗ E
[ ∣∣∣logµεn

(
〈Σn〉n−bεnc

)∣∣∣2r ] ≤ E
[∣∣∣ log #T∗nn−bεnc

∣∣∣2r]+ 2(2r)2r ≤ C2r
(

log n

bεnc

)2r
+ 2(2r)2r.

By combining the last estimate with (5.31), we get that, for every n ≥ n0(ε),

E⊗ E
[∣∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣r] ≤ (ηr + 2rη
1
2βr)| log ε|r + 2r+1η

1
2
(
(2r)r + Cr| log ε|r

)
.

The statement of the proposition follows since η was arbitrary.
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5.3.4 The flow property of discrete harmonic measure

We briefly recall the flow property of the discrete harmonic measure µn presented in [20,
Section 4.3.1]. Let t ∈ Tn be a plane tree of height n and Z(t) = (Z(t)

k )k≥0 be simple random
walk on t starting from ∅. We set

H(t)
n := inf{k ≥ 0: |Z(t)

k | = n} and Σ(t)
n := Z

(t)
H

(t)
n

.

We write µ(t)
n for the distribution of Σ(t)

n , considered as a measure on t supported by tn.
For 0 ≤ p ≤ n, we set

L(t)
p := sup{k ≤ H(t)

n : |Z(t)
k | = p}.

Clearly Σ(t)
n ∈ t̃[Z(t)

L
(t)
p

], and therefore Z(t)
L

(t)
p

= 〈Σ(t)
n 〉p.

Lemma 5.17 (Lemma 20 in [20]). Let p ∈ {0, 1, . . . , n− 1} and z ∈ tp. Then, conditionally on
〈Σ(t)

n 〉p = z, the process (
Z

(t)
(L(t)
p +k)∧H(t)

n

)
k≥0

is distributed as simple random walk on t̃[z] starting from z and conditioned to hit t̃[z] ∩ tn
before returning to z, and stopped at this hitting time. Consequently, for every integer q ∈
{0, 1, . . . , n− p}, the conditional distribution of

µ
(t)
n
(
Bt(Σ(t)

n , q)
)

µ
(t)
n
(
Bt(Σ(t)

n , n− p)
)

knowing that 〈Σ(t)
n 〉p = z is equal to the distribution of

µ
(t[z])
n−p

(
Bt[z](Σ

(t[z])
n−p , q)

)
.

5.3.5 The subtree selected by the discrete harmonic measure

We begin by introducing the conductance of discrete trees. Let i be a positive integer and
let t ∈ T be a tree such that h(t) ≥ i. Consider the new graph t′ obtained by adding to the
graph t an edge between the root ∅ and an extra vertex ∂. We denote by Ci(t) the effective
conductance between ∂ and generation i of t in the graph t′. In probabilistic terms, it is equal
to the probability that simple random walk on t′ starting from ∅ hits generation i of t before
hitting the vertex ∂.

Recall that for i ∈ {1, . . . , n− 1}, T̃∗n[〈Σn〉n−i] is the subtree of T∗n above generation n− i
that is selected by harmonic measure, and T∗n[〈Σn〉n−i] is the tree obtained by relabeling the
vertices of T̃∗n[〈Σn〉n−i] as explained above.

Lemma 5.18. For every integer i ∈ {1, . . . , n− 1} and every nonnegative function F on T ,

E⊗ E
[
F
(
T∗n[〈Σn〉n−i]

)]
≤ (i+ 1)E

[
Ci(T∗i)F (T∗i)

]
.

This lemma is proved in [20] under the assumption that ρ has finite variance. Actually the
proof uses only the branching property of Galton–Watson trees and remains valid under our
assumptions on ρ.

Meanwhile, we have the following moment estimate for the conductance Cn(T∗n).
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Lemma 5.19. For every r ∈ (0, α), there exists a constant K = K(r, ρ) ≥ 1 depending on r
and the offspring distribution ρ such that, for every integer n ≥ 1,

E
[
Cn(T∗n)r

]
≤ K

(n+ 1)r .

Proof. We can assume n ≥ 2, and set j = bn/2c ≥ 1. An application of the Nash–Williams
inequality [73, Chapter 2] gives

Cn(T∗n) ≤
#T∗nj
j

.

On the other hand,

E
[
(#T∗nj )r

]
= E

[
(#{v ∈ T(0)

j : h(T(0)[v]) ≥ n− j})r | h(T(0)) ≥ n
]

= q−1
n E

[
(#{v ∈ T(0)

j : h(T(0)[v]) ≥ n− j})r
]
.

Notice that given #T(0)
j = k, the conditional distribution of #{v ∈ T(0)

j : h(T(0)[v]) ≥ n− j} is
the binomial distribution B(k, qn−j). Using Jensen’s inequality, we get

E
[
(#{v ∈ T(0)

j : h(T(0)[v]) ≥ n− j})r
]
≤ E

[
E
[
(#{v ∈ T(0)

j : h(T(0)[v]) ≥ n− j})2 | #T(0)
j

] r
2
]

= E
[(
q2
n−j(#T(0)

j )2 + (qn−j − q2
n−j)#T(0)

j

) r
2
]

≤ qrn−j E
[
(#T(0)

j )r
]

+ (qn−j − q2
n−j)

r
2E
[
(#T(0)

j )
r
2
]
.

At this point, we need the following result proved in [32, Lemma 11] for the unconditioned
Galton–Watson tree. For any γ ∈ (0, α), there is a finite constant C(γ) such that for every
m ≥ 1,

E
[
(#T(0)

m )γ
]
≤ C(γ) q1−γ

m . (5.32)

The original statement of the latter bound in [32] was given for any γ ∈ [1, α), while the case
γ ∈ (0, 1) follows from the (trivial) case γ = 1 by applying the Hölder inequality to

E
[
1{T(0)

m 6=∅}
(#T(0)

m )γ
]

(we can in fact take C(γ) = 1 for any γ ∈ (0, 1)).
With the help of (5.32), we conclude that

E
[
Cn(T∗n)r

]
≤ j−rq−1

n

(
C(r)qrn−jq1−r

j + C(r/2)(qn−j − q2
n−j)

r
2 q

1− r2
j

)
,

and the statement of the lemma readily follows from (5.27).

5.3.6 Proof of Theorem 5.1

Following [20], we will show

E⊗ E
[
| logµn(Σn) + β logn|

]
= o(logn) as n→∞, (5.33)

which is sufficient for establishing Theorem 5.1. The proof given below is adapted from [20,
Section 4.3.2]. For later convenience, we introduce the notation

ᾱ := α+ 1
2 ∈ (1, 3

2)
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and its Hölder conjugate
α∗ := ᾱ

ᾱ− 1 ∈ (3,∞).

Fix ξ > 0. Let ε > 0 and n0 ≥ 1 be such that the conclusion of Proposition 5.16 holds for
every n ≥ n0 with the exponent r = α∗. Without loss of generality, we may and will assume that
ε = 1/N , for some integer N ≥ 4, which is fixed throughout the proof. We also fix a constant
γ > 0, such that γ logN < 1/2.

Let n > N be sufficiently large so that N bγ lognc ≥ n0. Then we let ` ≥ 1 be the unique
integer such that N ` < n ≤ N `+1, and write

logµn(Σn) = log µn(Σn)
µn(B(Σn, N)) +

∑̀
j=2

log µn(B(Σn, N
j−1))

µn(B(Σn, N j)) + logµn(B(Σn, N
`)). (5.34)

To simplify notation, we set

An1 := log µn(Σn)
µn(B(Σn, N)) + β logN,

Anj := log µn(B(Σn, N
j−1))

µn(B(Σn, N j)) + β logN for every j ∈ {2, . . . , `},

An`+1 := logµn(B(Σn, N
`)) + β log(n/N `) .

From (5.34), we see that

E⊗ E
[∣∣ logµn(Σn) + β logn

∣∣] = E⊗ E
[∣∣∣ `+1∑
j=1

Anj

∣∣∣] ≤ `+1∑
i=1

E⊗ E[|Anj |]. (5.35)

We will bound each term in the sum of the right-hand side.
First step: A priori bounds. We verify that, for every j ∈ {1, 2, . . . , `+ 1},

E⊗ E
[
|Anj |

]
≤ (CK1/ᾱ + β) logN, (5.36)

where C = C(α∗, ρ) is the constant in Lemma 5.13 for the exponent r = α∗, and K = K(ᾱ, ρ)
is the constant in Lemma 5.19 for the exponent r = ᾱ.

Suppose first that 2 ≤ j ≤ `. Using the second assertion of Lemma 5.17, with p = n − N j

and q = N j−1, we obtain that, for every z ∈ T∗nn−Nj , the conditional distribution of Anj under
P , knowing that 〈Σn〉n−Nj = z, is the same as the distribution of

logµ(T∗n[z])
Nj (B(Σ(T∗n[z])

Nj , N j−1)) + β logN.

Recalling that µ(T∗n[z])
Nj is the distribution of Σ(T∗n[z])

Nj under P , we get

E
[
|Anj | | 〈Σn〉n−Nj = z

]
≤ E

[∣∣ logµ(T∗n[z])
Nj

(
B(Σ(T∗n[z])

Nj , N j−1)
)∣∣]+ β logN

= Gj(T∗n[z]) + β logN, (5.37)

where for any tree t ∈ TNj ,

Gj(t) :=
∫
µ

(t)
Nj (dy)

∣∣ logµ(t)
Nj (Bt(y,N j−1))

∣∣ =
∑

z∈t
Nj−Nj−1

µ
(t)
Nj (̃t[z])

∣∣ logµ(t)
Nj (̃t[z])

∣∣.
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As explained in [20], we have the entropy bound Gj(t) ≤ log #tNj−Nj−1 for any tree t ∈ TNj .
So we get from (5.37) that

E⊗ E
[
|Anj |

]
≤ E⊗ E

[
log #T∗nNj−Nj−1 [〈Σn〉n−Nj ]

]
+ β logN

≤ (N j + 1)E
[
CNj (T∗Nj ) log #T∗Nj

Nj−Nj−1

]
+ β logN

≤ (N j + 1)E
[(
CNj (T∗Nj )

)ᾱ]1/ᾱ E
[(

log #T∗Nj

Nj−Nj−1
)α∗]1/α∗ + β logN

≤ K1/ᾱ E
[(

log #T∗Nj

Nj−Nj−1
)α∗]1/α∗ + β logN,

using successively Lemma 5.18, the Hölder inequality and Lemma 5.19. Finally, Lemma 5.13
gives

E
[(

log #T∗Nj

Nj−Nj−1
)α∗]1/α∗ ≤ C logN,

and this completes the proof of (5.36) when 2 ≤ j ≤ `. The cases j = 1 and j = ` + 1 can be
treated in a similar manner. For details we refer the reader to [20, Section 4.3.2].

Second step: Refined bounds. Let us prove that, if bγ lognc ≤ j ≤ `,

E⊗ E
[
|Anj |

]
≤ K1/ᾱξ1/α∗ logN. (5.38)

Recall that for j ∈ {bγ lognc, . . . , `} we have N j ≥ n0. From (5.37), we have

E
[
|Anj |

]
= E

[
Fj(T∗n[〈Σn〉n−Nj ])

]
,

where, if t ∈ TNj ,

Fj(t) :=
∣∣β logN −Gj(t)

∣∣ =
∣∣∣∣∫ µ

(t)
Nj (dy)

(
logµ(t)

Nj (Bt(y,N j−1)) + β logN
)∣∣∣∣ .

Using Lemma 5.18 as in the first step, we have

E⊗ E
[
|Anj |

]
= E⊗ E

[
Fj(T∗n[〈Σn〉n−Nj ])

]
≤ (N j + 1)E

[
CNj (T∗Nj )Fj(T∗N

j )
]
.

We then apply the Hölder inequality together with the bound of Lemma 5.19 for r = ᾱ to get

E⊗ E
[
|Anj |

]
≤ K1/ᾱ E

[
Fj(T∗N

j )α∗
]1/α∗

≤ K1/ᾱ E
[(∫

µNj (dy)
∣∣∣logµNj (B(y,N j−1)) + β logN

∣∣∣)α∗ ]1/α∗

≤ K1/ᾱ E
[∫

µNj (dy)
∣∣∣logµNj (B(y,N j−1)) + β logN

∣∣∣α∗]1/α∗

= K1/ᾱ · E⊗ E
[∣∣∣logµ1/N

Nj

(
〈ΣNj 〉Nj−Nj−1

)
+ β logN

∣∣∣α∗]1/α∗

,

where the last equality follows from the definition of the measure µεn at the beginning of Sec-
tion 5.3.3. Now recall that 1/N = ε and note that N j − N j−1 = N j − εN j . Since we have
N j ≥ n0, we can apply Proposition 5.16 with r = α∗ and get that the right-hand side of the
preceding display is bounded above by K1/ᾱξ1/α∗ logN , which finishes the proof of (5.38).

By combining (5.36) and (5.38), and using (5.35), we arrive at the bound

E⊗ E
[∣∣ logµn(Σn) + β logn

∣∣] ≤ bγ lognc(K1/ᾱC + β) logN + `K1/ᾱξ1/α∗ logN
≤
(
γ(K1/ᾱC + β) logN +K1/ᾱξ1/α∗) logn,

which holds for every sufficiently large n. By choosing ξ and then γ arbitrarily small, we see
that our claim (5.33) follows from the last bound, and this completes the proof of Theorem 5.1.
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5.4 Comments and questions

Following [20, Section 5.2], let us consider the supercritical offspring distribution θ(n)
α of index

α ∈ (1, 2], defined as θ(n)
α (1) = 1− 1

n and

θ(n)
α (k) = 1

n
θα(k) for every k ≥ 2.

We let T(n)
α be an infinite Galton–Watson tree with offspring distribution θ

(n)
α , then n−1T(n)

α

viewed as a metric space with the graph distance rescaled by the factor n−1, converges in dis-
tribution in an appropriate sense (e.g. for the local Gromov–Hausdorff topology) to the CTGW
tree Γ(α), as n→∞.

Consider then the biased random walk (Z(n)
k )k≥0 on T(n)

α with bias parameter λ(n) = 1− 1
n

towards the root (see [72] or [2] for a precise definition of this process). Then heuristically the
rescaled process (

n−1Z
(n)
bn2tc

)
t≥0

will converge in distribution in some sense, as n→∞, to Brownian motion (W (t))t≥0 with drift
1/2 on the CTGW tree Γ(α). Furthermore, the rescaled “conductance” n C(T(n)

α , λ(n)) converges
in distribution to the continuous conductance C(α) = C(Γ(α)).

Following this informal passage to the limit, we can find a candidate for the limit of nV(n)
α

as n → ∞, where V(n)
α stands for the speed of the biased random walk Z(n) on T(n)

α . One can
either directly employ an explicit formula of V(n)

α stated in [2, Theorem 1.1], or use the invariant
measure for the environment seen from the random walker ([2, Theorem 4.1]) to calculate the
speed as the proportion of last-exit points. Both methods give rise to the following quantity
which should be interpreted as the speed of Brownian motion W with drift 1/2 on Γ(α),

Vα :=
E
[ C(α)

0 C(α)
1

C(α)
0 +C(α)

1 −1

]
E
[ 2C(α)

0
C(α)

0 +C(α)
1 −1

] , (5.39)

where C(α)
0 and C(α)

1 are two independent copies of C(α) under the probability measure P.
Since the conductance C(α) is a.s. strictly larger than 1, we see immediately from (5.39)

that Vα < 1
2 for any α ∈ (1, 2]. On the other hand, according to the coupling explained in

Section 5.2.4, the denominator of the right-hand side of (5.39)

E
[ 2C(α)

0

C(α)
0 + C(α)

1 − 1

]
= E

[ C(α)
0 + C(α)

1

C(α)
0 + C(α)

1 − 1

]
= 1 + E

[ 1
C(α)

0 + C(α)
1 − 1

]
is increasing with respect to α.
Question 1. If we apply the coupling explained in Section 5.2.4, does the derivative d

dαC
(α) of

the conductance with respect to α exist almost surely?
An affirmative answer to Question 1 would allow us to take the derivative of the numerator

in (5.39) with respect to α, and to see that

d
dαE

[ C(α)
0 C

(α)
1

C(α)
0 + C(α)

1 − 1

]
= E

[C(α)
0 (C(α)

0 − 1) d
dαC

(α)
1 + C(α)

1 (C(α)
1 − 1) d

dαC
(α)
0(

C(α)
0 + C(α)

1 − 1
)2 ]

≤ 0
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because a.s. d
dαC

(α) ≤ 0. Hence, the numerator in the right-hand side of (5.39) would be
decreasing with respect to α, and so would be the speed Vα.
Question 2. Does the speed Vα decrease with respect to α?

A similar question was raised in [8], concerning the monotonicity of the speed with respect
to the offspring distribution for biased random walk on Galton–Watson trees with no leaves. It
has been proved in [77] that this monotonicity holds for high values of bias.

We also want to ask the same question of monotonicity for the Hausdorff dimension of the
continuous harmonic measure µα.
Question 3. Does the Hausdorff dimension βα decrease with respect to α?

Finally, it is interesting to figure out the dimension of the harmonic measure on ∂∆(1). Due
to the fact that θ1 has infinite mean, it may require different methods to treat the case α = 1
in the continuous setting.

5.5 Appendix: proofs postponed from Section 5.2.6
Before starting the proofs, we state first a useful “spine” decomposition of the CTGW tree

Γ(α) for α ∈ (1, 2], which is a reformulation of the standard results about the size-biased Galton–
Watson trees, see e.g. [17]. Recall that mα = α

α−1 is the mean of the α-offspring distribution θα.
The size-biased α-offspring distribution θ̂α is then defined as

θ̂α(k) = (k + 1)θα(k + 1)
mα

for every k ≥ 1. (5.40)

We take T = (Π, (zv)v∈Π) ∈ T. If J0, xK denotes the geodesic segment in T between the root
and x, we can define the subtrees of T branching off J0, xK. To this end, set nx = |vx| and let
vx,0 = ∅, vx,1, . . . , vx,nx = vx be the successive ancestors of vx from generation 0 to generation
nx. For every 1 ≤ i ≤ nx set rx,i = zvx,i−1 , and write kx,i = kvx,i−1 − 1 as the number of siblings
of vx,i in Π. Then, for every 1 ≤ i ≤ nx and 1 ≤ j ≤ kx,i, the j-th subtree branching off the
ancestral line J0, xK at vx,i−1, which is denoted by Tx,i,j , corresponds to the pair(

Π[ṽx,i,j ], (zṽx,i,jv − rx,i)v∈Π[ṽx,i,j ]
)
,

where ṽx,i,j is the j-th child of vx,i−1 different from vx,i. To simplify notation, we introduce the
point measure

ξr,x(T ) =
nx∑
i=1

kx,i∑
j=1

δ(rx,i,Tx,i,j),

which belongs to the setMp(R+ × T) of all finite point measures on R+ × T.

Lemma 5.20. Fix α ∈ (1, 2]. Let F be a nonnegative measurable function on T, and let H be
a nonnegative measurable function onMp(R+ × T). For r > 0,

E
[ ∑
x∈Γ(α)

r

F
(
Γ(α)[x]

)
H
(
ξr,x(Γ(α))

)]
= e(mα−1)r E

[
F
(
Γ(α))]× E

[
H

(∑
i∈I

ki∑
j=1

δ(si,Ti,j)

)]
,

where we assume that, under the probability measure P,

Nα :=
∑
i∈I

δ(si,ki,(Ti,j ,j≥1))
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x

T [x]

Tx,1,2

Tx,2,2

Tx,3,1

(∅, 0)

Tx,1,1

Tx,2,3Tx,2,1

Figure 5.3: Schematic representation of the spine decomposition

is a Poisson point measure on R+ × N× TN with intensity

mα1[0,r](s)ds θ̂α(dk)
∞∏
j=1

Θα(dTj).

From now on we fix the stable index α ∈ (1, 2]. Unless otherwise specified, we will omit the
superscripts and subscripts concerning α in the following proofs.

5.5.1 Proof of Proposition 5.11

Let F be a nonnegative measurable function on T, and consider the quantity

Ir := E⊗ E
[
F (Γ〈r〉)

]
= E⊗ E

[ ∑
x∈Γr

F (Γ[x]) 1{x≺W∞}

]
, (5.41)

where the notation E ⊗ E means that we consider the expectation first under the probability
measure P (under which the Brownian motion W is defined) and then under P.

Let us fix x ∈ Γr and R > r. We write Γ̃[x] := {y ∈ Γ: x ≺ y} to denote the subset of Γ
composed of all descendants of x in Γ. Define

Γx,R := {y ∈ Γ\Γ̃[x] : H(y) ≤ R} ∪ Γ̃[x].

LetW x,R be Brownian motion with drift 1/2 on Γx,R. We assume thatW x,R is reflected both
at the root and at the leaves of Γx,R, which are the points y of Γ\Γ̃[x] such that H(y) = R. Write
(`x,Rt )t≥0 for the local time process ofW x,R at x. From excursion theory, `x,R∞ has an exponential
distribution with parameter C(Γ[x])/2. For details, we refer the reader to [20, Section 3.1].

We then consider for every a ∈ [0, r] the local time process (La,Rt )t≥0 of W x,R at the unique
point of J0, xK at distance a from the root. Note in particular that Lr,Rt = `x,Rt . As a consequence
of a classical Ray-Knight theorem, conditionally on `x,R∞ = `, the process (Lr−a,R∞ )0≤a≤r is
distributed as the process (Xa)0≤a≤r which solves the stochastic differential equation{

dXa = 2
√
Xadηa + (2−Xa)da

X0 = `
(5.42)
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where (ηa)a≥0 is a standard linear Brownian motion. In what follows, we will write P` for
the probability measure under which the process X starts from `, and P(c) for the probability
measure under which the process X starts with an exponential distribution with parameter c/2.

Now write {xi, 1 ≤ i ≤ nx} for the branching points of Γx,R (or equivalently of Γ) that
belong to J0, xK, and set ai = H(xi) for 1 ≤ i ≤ nx. We denote by ki the number of subtrees
branching off J0, xK at xi, and write

(Γx,Ri,j )1≤j≤ki

for the finite subtrees of Γx,R that branch off J0, xK at xi. See Fig. 5.4 for an illustration.

x

(∅, 0)

Height r

Height R

Height 0

W∞

Γx,R
1,1 Γx,R

2,1 Γx,R
2,2Γx,R

3,1 Γx,R
3,2

Γ̃[x]

Figure 5.4: The infinite tree Γx,R and the finite subtrees that branch off J0, xK

Let Ax,R be the event that W x,R never hits the leaves of Γx,R, or equivalently that W x,R

escapes to infinity in Γ̃[x] before hitting any leaf of Γx,R. Excursion theory shows that

P (Ax,R | (La,R∞ )0≤a≤r) = exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Lai,R∞

)
,

where C(Γx,Ri,j ) refers to the conductance of Γx,Ri,j between its root xi and the set of its leaves
(this conductance is defined by an easy adaptation of the definition given at the beginning of
Section 5.2.3).

From the preceding observations, we have thus

P (Ax,R) = E
[

exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Lai,R∞

)]

= E(C(Γ[x]))
[

exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Xr−ai

)]
. (5.43)
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At this point, we let R tend to infinity. It is easy to verify that P (Ax,R) increases to P (Ax), where
Ax := {x ≺W∞}. Furthermore, for every i ∈ {1, . . . , nx} and j ∈ {1, . . . , ki}, C(Γx,Ri,j ) decreases
to C(Γx,i,j), where Γx,i,j is the j-th subtree of Γ branching off J0, xK at xi. Consequently, we
obtain

P (x ≺W∞) = E(C(Γ[x]))
[

exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,i,j)Xr−ai

)]
.

We can now return to the computation of the quantity Ir defined in (5.41).

Ir = E
[ ∑
x∈Γr

F (Γ[x])P (x ≺W∞)
]

= E
[ ∑
x∈Γr

F (Γ[x])E(C(Γ[x]))
[

exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,i,j)Xr−ai

)]]
.

Note that the quantity inside the sum over x ∈ Γr is a function of Γ[x] and of the subtrees of Γ
branching off the segment J0, xK. We can thus apply Lemma 5.20 to get

Ir = e(m−1)r
∫

Θ(dT )F (T )E(C(T ))

[
E
[

exp
(
− 1

2

∫
N
(
dsdk

∞∏
j=1

dTj
) k∑
j=1
C(Tj)Xr−s

)]]
,

where the constant m = α
α−1 is the mean of α-offspring distribution θ. Under the probability

measure P, the random measure N is a Poisson point measure on R+ × N× TN with intensity

m1[0,r](s)ds θ̂(dk)
∞∏
j=1

Θ(dTj),

where the size-biased offspring distribution θ̂ is defined by (5.40).
Now we can use the exponential formula for Poisson measures to arrive at

Ir = e(m−1)r
∫

Θ(dT )F (T )E(C(T ))

[
exp

(
−m

∫ r

0
ds

∞∑
k=1

θ̃(k)
(
1− ϕ(Xs)k

))]

=
∫

Θ(dT )F (T )E(C(T ))

[
exp−

∫ r

0
ds
(
1−m

∞∑
k=1

θ̃(k)ϕ(Xs)k
)]
, (5.44)

where we recall that for every x ≥ 0,

ϕ(x) = E[exp(−x C/2)] = Θ
(

exp(−x C(T )/2)
)

is the Laplace transform (evaluated at x/2) of the distribution of the conductance C(Γ). Observe
that for any r ∈ (0, 1), the identity

∞∑
k=1

θ̂(k)rk = 1− (1− r)α−1

follows by differentiating (5.6). Applying this to (5.44), we have thus proved Proposition 5.11.
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5.5.2 Proof of Proposition 5.12

In order to study the asymptotic behavior of Φr when r tends to +∞, we first observe that,
in terms of the law γ(ds) of C(Γ), we have

ϕ(`) =
∫

[1,∞)
e−`s/2 γ(ds) , ϕ′(`) = − 1

2

∫
[1,∞)

s e−`s/2 γ(ds).

It follows that ϕ(`) ≤ e−`/2 and |ϕ′(`)| ≤ 1
2(
∫
sγ(ds))e−`/2. By differentiating (5.11), we have

2` ϕ′′′(`) + (2 + `)ϕ′′(`) + α

α− 1ϕ
′(`)

(
1− (1− ϕ(`))α−1) = 0. (5.45)

Lemma 5.21. For every ` ≥ 0,

lim
r→∞

E`
[

exp−
∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
= − ϕ′(`)e`/2∫∞

0 dsϕ′(s)2 es/2
.

Additionally, there exists a constant A <∞ such that, for every ` ≥ 0 and r > 0,

E`
[

exp−
∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
≤ A.

Proof. Firstly, under
∫

Θ(dT )P(C(T )), the density of X0 is

q(`) =
∫

[1,∞)
γ(ds) s2 e

−s`/2 = −ϕ′(`). (5.46)

So from Lemma 5.11, we have

1 =
∫

Θ(dT )E(C(T ))
[

exp−
∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
= −

∫
d` ϕ′(`)E`

[
exp−

∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
.

We can generalize the last identity via a minor extension of the calculations of the preceding
subsection. Let L0

∞ be the total local time accumulated by the process W at the root of Γ. Fix
r > 0 and take a nonnegative measurable function F on T. Let h be a bounded nonnegative
continuous function on (0,∞). As an analogue of Ir in the preceding subsection, we set

Ihr := E⊗ E
[
h(L0

∞)
∑
x∈Γr

F (Γ[x]) 1{x≺W∞}

]
.

The same calculations that led to (5.43) give, for every x ∈ Γr and R > r,

E[h(L0,R
∞ ) 1Ax,R ] = E

[
h(L0,R

∞ ) exp
(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Lai,R∞

)]

= E(C(Γ[x]))
[
h(Xr) exp

(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Xr−ai

)]
.
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When R→∞, L0,R
∞ converges to L0

∞, and so we get

E
[
h(L0

∞) 1{x≺W∞}
]

= E(C(Γ[x]))
[
h(Xr) exp

(
− 1

2

nx∑
i=1

ki∑
j=1
C(Γx,Ri,j )Xr−ai

)]
.

We then sum over x ∈ Γr and integrate with respect to P. By the same manipulations as in the
previous proof, we arrive at

Ihr =
∫

Θ(dT )F (T )E(C(T ))
[
h(Xr) exp−

∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
. (5.47)

Note that if F = 1,
Ihr = E⊗ E

[
h(L0

∞)
]

= −
∫ ∞

0
d` ϕ′(`)h(`)

since given Γ = T the local time L0
∞ follows an exponentiel distribution with parameter C(T )/2,

and we use the same calculation as in (5.46). Hence the case F = 1 of (5.47) gives∫ ∞
0

d` ϕ′(`)E`
[
h(Xr) exp−

∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
=
∫ ∞

0
d` ϕ′(`)h(`). (5.48)

By a standard truncation argument, this identity also holds if h is unbounded.

Lemma 5.22. The process

Mt := −ϕ′(Xt) exp
(
Xt

2 −
∫ t

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

))
, t ≥ 0

is a martingale under P`, for every ` ≥ 0.

Proof of Lemma 5.22. From the stochastic differential equation (5.42), an application of Itô’s
formula shows that the finite variation part of the semimartingale −Mt is∫ t

0

(
2Xsϕ

′′′(Xs) + (2 +Xs)ϕ′′(Xs) + ϕ′(Xs)
( α

α− 1 −m(1− ϕ(Xs)α−1))Ys ds, (5.49)

where for any s ≥ 0,

Ys := exp
(Xs

2 −
∫ s

0
du
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

))
.

Recall that m = α
α−1 , and hence (5.49) vanishes thanks to (5.45), whereupon M is a local

martingale. Furthermore, we have already noticed that, for every ` ≥ 0, |ϕ′(`)| ≤ Ce−`/2, where
C := 1

2
∫
sγ(ds). It follows that |M | is bounded by C exp( t

α−1) over the time interval [0, t], and
thus M is a (true) martingale.

We return to the proof of Lemma 5.21. Let ` ≥ 0 and t > 0. On the probability space where
X is defined, we introduce a new probability measure Qt` by setting

Qt` := Mt

M0
· P`.

The fact that Qt` is a probability measure follows from the martingale property derived in
Lemma 5.22. By definition of Mt, we have P`-a.s.

Mt

M0
= ϕ′(Xt)

ϕ′(`) exp
(Xt − `

2 −
∫ t

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

))
,
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so that the martingale part of log Mt
M0

is∫ t

0

√
Xs dηs + 2

∫ t

0

ϕ′′(Xs)
ϕ′(Xs)

√
Xs dηs,

where η is the linear Brownian motion in (5.42). An application of Girsanov’s theorem shows
that under Qt`, the process

η̃s := ηs −
∫ s

0

√
Xu

(
1 + 2ϕ′′(Xu)

ϕ′(Xu)
)

du , 0 ≤ s ≤ t,

is a linear Brownian motion over the time interval [0, t]. Furthermore, on the same time interval
[0, t], the process X satisfies the stochastic differential equation

dXs = 2
√
Xs dη̃s + 2Xs

(
1 + 2ϕ′′(Xs)

ϕ′(Xs)
)
ds+ (2−Xs) ds,

or equivalently, using (5.11),

dXs = 2
√
Xs dη̃s +

(
2−Xs + 2

α− 1
1− ϕ(Xs)− (1− ϕ(Xs))α

ϕ′(Xs)
)
ds. (5.50)

Notice that the function
` 7→ 1− ϕ− (1− ϕ)α

ϕ′
(`)

is continuously differentiable over [0,∞), takes negative values on (0,∞) and vanishes at 0.
Pathwise uniqueness, and therefore also weak uniqueness, holds for (5.50) by an application
of the classical Yamada-Watanabe criterion. The preceding considerations show that, under
the probability measure Qt` and on the time interval [0, t], the process X is distributed as the
diffusion process on [0,∞) started from `, with generator

L = 2r d2

dr2 +
(
2− r + 2

α− 1
1− ϕ− (1− ϕ)α

ϕ′
(r)
) d

dr .

Write X̃ for this diffusion process, and assume that X̃ starts from ` under the probability
measure P`. Note that 0 is an entrance point for X̃, but independently of its starting point, X̃
does not visit 0 at a positive time. By comparing the solutions of (5.42) and (5.50), we know
that X̃ is recurrent on (0,∞).

We next observe that, by (5.48) and a few lines of calculations, the finite measure λ on (0,∞)
defined by

λ(d`) := ϕ′(`)2 e`/2 d`

is invariant for X̃. We normalize λ by setting

λ̂ = λ

λ((0,∞)) .

It is then easy to prove that the distribution of X̃t under P` converges weakly to λ̂ as t→∞,
for any ` ≥ 0. Consequently, for any bounded continuous function g on [0,∞), and every ` ≥ 0,

E`
[
g(X̃t)

]
−→
t→∞

∫
g dλ̂. (5.51)
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By the same argument as in [20, Section 3.2], the preceding convergence remains true if g is a
continuous, increasing and nonnegative function such that

∫
g dλ̂ <∞.

We can thus apply (5.51) to the function

g(`) = − 1
ϕ′(`) e

−`/2,

which satisfies the desired properties and in particular
∫
g dλ = −

∫
ϕ′(`) d` = 1. For this

function g,

E`
[
g(X̃t)

]
= Qt`

[
g(Xt)

]
= −e

−`/2

ϕ′(`) E`
[

exp−
∫ t

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
.

It follows from (5.51) that, for every ` ≥ 0,

lim
t→∞
−e
−`/2

ϕ′(`) E`
[

exp−
∫ t

0
ds
(
m
(
1−ϕ(Xs)

)α−1− 1
α− 1

)]
=
∫
gdλ̂ = 1

λ((0,∞)) = 1∫∞
0 dsϕ′(s)2es/2

,

which gives the first assertion of the lemma. The second assertion of Lemma 5.21 can be shown
in the same way as in [20]. �

By definition, we have

Φr(c) = c

2

∫ ∞
0

d` e−c`/2E`
[

exp−
∫ r

0
ds
(
m
(
1− ϕ(Xs)

)α−1 − 1
α− 1

)]
.

From Lemma 5.21 and an application of the dominated convergence theorem, we get

lim
r→+∞

Φr(c) = c

∫ ∞
0

d` e−c`/2 ×
(
− ϕ′(`)e`/2

C1

)
,

where
C1 := 2

∫ ∞
0

dsϕ′(s)2 es/2 =
∫ ∫

γ(d`)γ(d`′) ``′

`+ `′ − 1 .

By a straightforward calculation, the preceding limit is identified with Φ∞(c) defined in the
statement of Proposition 5.12.

Finally, with all the ingredients prepared above in this appendix, we can show the invariance
of Λ∗(dT dv) under the shifts (τr, r ≥ 0) in the same way as in [20, Proposition 12], and the
proof of Proposition 5.12 is therefore completed.

5.5.3 Another derivation of formula (5.24)

Recall that νT stands for the harmonic measure of a tree T ∈ T. For every r > 0, we consider
the nonnegative measurable function Gr defined on T∗ by the formula

Gr(T ,v) := − log νT (BT (v, r)),

where BT (v, r) denotes the set of all geodesic rays of T that coincide with the ray v over the
interval [0, r]. The flow property of harmonic measure (cf. Lemma 7 in [20]) implies that, for
every r, s > 0, we have

Gr+s = Gr +Gs ◦ τr.
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Since the shift τr acting on (T∗,Λ∗) is ergodic, the Birkhoff ergodic theorem implies that Λ∗-a.s.

lim
s→∞

Gs
s

= Λ∗(G1).

Recall that Λ∗ has a strictly positive density with respect to Θ∗. So the latter convergence also
holds Θ∗-a.s., which gives the convergence (5.9) with β = Λ∗(G1) > 0.

For ε > 0, we define a nonnegative function Hε on T∗ by setting

Hε(T ,v) :=
{

0 if z∅ ≥ ε,
− log νT ({v′ ∈ NN : v1 ≺ v′}) if z∅ < ε,

where we write T = (Π, (zv)v∈Π) as in Section 5.2.2. Clearly, Hε(T ,v) ≤ Gε(T ,v), and
Hε(T ,v) = Gε(T ,v) if zv1 ≥ ε. More generally, Hε ◦ τr(T ,v) = Gε ◦ τr(T ,v) if there is at
most one index i ≥ 0 such that r ≤ zvi < r + ε. It follows from these remarks that, for every
integer n ≥ 1,

G1 ≥
n−1∑
k=0

H1/n ◦ τk/n, (5.52)

and for every (T ,v) ∈ T∗,

G1(T ,v) = lim
n→∞

n−1∑
k=0

H1/n ◦ τk/n(T ,v). (5.53)

Let us then investigate the behavior of Λ∗(Hε) when ε → 0. By considering the subtrees
T(1), . . . , T(k∅) of T obtained at the first branching point, we can write

Λ∗(Hε) = −
∫

Θ(dT ) Φ∞(C(T )) 1{z∅<ε}
k∅∑
i=1

C(T(i))∑k∅
j=1 C(T(j))

log
C(T(i))∑k∅
j=1 C(T(j))

. (5.54)

Recall the branching property of the CTGW tree, and notice that

C(T ) =
∑k∅
j=1 C(T(j))

e−z∅ + (1− e−z∅)
(∑k∅

j=1 C(T(j))
) .

Substituting this into (5.54), we see that Λ∗(Hε) can be expanded as

−
∞∑
k=2

θ(k)
∫

Θ(dT1)
∫

Θ(dT2) · · ·
∫

Θ(dTk)
k∑
i=1

C(Ti)∑k
j=1 C(Tj)

log C(Ti)∑k
j=1 C(Tj)

×
∫ ε

0
dz e−z Φ∞

( ∑k
j=1 C(Tj)

e−z + (1− e−z)
(∑k

j=1 C(Tj)
))

= −
∞∑
k=2

k θ(k)
∫

Θ(dT1)
∫

Θ(dT2) · · ·
∫

Θ(dTk)
C(T1)∑k
j=1 C(Tj)

log C(T1)∑k
j=1 C(Tj)

×
∫ ε

0
dz e−z Φ∞

( ∑k
j=1 C(Tj)

e−z + (1− e−z)
(∑k

j=1 C(Tj)
))
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by a symmetry argument. Since Φ∞ is a bounded continuous function, and∣∣∣∣∣ C(T1))∑k
j=1 C(Tj)

log C(T1)∑k
j=1 C(Tj)

∣∣∣∣∣ ≤ 1,

we can let ε→ 0 in the preceding expression and get

lim
ε→0

Λ∗(Hε)
ε

= −
∞∑
k=2

kθ(k)
∫

Θ(dT1) · · ·
∫

Θ(dTk)
C(T1)∑k
j=1 C(Tj)

log C(T1)∑k
j=1 C(Tj)

Φ∞
( k∑
j=1
C(Tj)

)
.

(5.55)
Note that we used the fact that θ has a finite first moment. Sine the limit in the preceding
display is finite, we can use (5.53) and Fatou’s lemma to get that Λ∗(G1) < ∞, and then use
(5.52) (to justify dominated convergence) and (5.53) again to obtain that

β = Λ∗(G1) = lim
n→∞

nΛ∗(H1/n)

coincides with the right-hand side of (5.55). Using the expression of Φ∞, we can therefore
reformulate β as in formula (5.24).
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Chapitre 6

Typical behavior of the harmonic
measure

Les résultats de ce chapitre sont issus de l’article [68] en préparation.

We study the typical behavior of the harmonic measure of balls in large critical Galton–
Watson trees whose offspring distribution has finite variance. Here the harmonic measure refers
to the hitting distribution of height n by simple random walk on the critical Galton–Watson
tree conditioned to have height greater than n. For a ball of radius n centered at the root,
we prove that, with high probability, the mass of the harmonic measure carried by a random
vertex uniformly chosen from the boundary is approximately equal to n−λ, where λ ∈ (1,∞) is
a universal constant which does not depend on the offspring distribution.

6.1 Introduction
We let θ be a non-degenerate probability measure on Z+, and we assume that θ has mean

one and finite variance σ2 > 0. Under the probability P, for every integer n ≥ 0, let T(n) be a
Galton–Watson tree with offspring distribution θ, conditioned on non-extinction at generation n.
We denote by T(n)

n the set of all vertices of T(n) at generation n. Then the classical Yaglom’s
theorem states that n−1#T(n)

n converges in distribution to an exponential distribution with
parameter 2/σ2.

Conditionally on the tree T(n), we consider a simple random walk on T(n) starting from the
root. Let Σn be the first hitting point of generation n by the random walk. The distribution µn
of Σn, which is called the harmonic measure of T(n), is a random probability measure supported
on the level set T(n)

n .

Theorem 6.1. Let Ωn be a random vertex uniformly chosen from T(n)
n . There exists a universal

constant λ ∈ (1,∞), which does not depend on the offspring distribution θ, such that for every
δ > 0,

lim
n→∞

P
(
n−λ−δ ≤ µn(Ωn) ≤ n−λ+δ) = 1. (6.1)

Numerical simulations show that λ ≈ 1.21.
The convergence (6.1) can be rewritten as

lim
n→∞

E
[

1
#T(n)

n

∑
v∈T(n)

n

1{µn(v) > n−λ+δ or µn(v) < n−λ−δ}
]

= 0.

169
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Using the theorem of Yaglom, it is easy to see that the preceding convergence is equivalent to

lim
n→∞

1
n
E
[ ∑
v∈T(n)

n

1{µn(v) > n−λ+δ or µn(v) < n−λ−δ}
]

= 0. (6.2)

We take δ ∈ (0, λ− 1), and define An := {v ∈ T(n)
n : µn(v) > n−λ+δ}. The convergence (6.2)

implies that for every ε > 0,
P
(#An

n
> ε

)
−→
n→∞

0.

On the other hand, by the definition of An, for any vertex v ∈ T(n)
n \An, we have µn(v) ≤ n−λ+δ,

and it follows that µn(T(n)
n \An) ≤ n−λ+δ#T(n)

n . Using again Yaglom’s theorem, we get that

P
(
µn(T(n)

n \An) > ε
)
−→
n→∞

0.

Therefore, it holds with probability tending to 1 as n → ∞ that, up to a mass of size ε,
the harmonic measure µn is supported on a subset of T(n)

n of cardinality smaller than εn. This
simple consequence of Theorem 6.1 has already been observed in a recent paper of Curien and Le
Gall [20], where they have shown the existence of a universal constant β ∈ (0, 1) independent of
the offspring distribution θ, such that for, every δ > 0, we have the convergence in P-probability

µn
(
{v ∈ T(n)

n : n−β−δ ≤ µn(v) ≤ n−β+δ}
) (P)−−−→
n→∞

1. (6.3)

As pointed out by Curien and Le Gall in [20], for studying the harmonic measure µn on
T(n)
n , we can directly consider simple random walk on the reduced tree T∗n, which consists of

all vertices of T(n) that have at least one descendant at generation n. Moreover, if we scale
the graph distances by n−1, the rescaled discrete reduced trees n−1T∗n converge to a random
compact rooted R-tree ∆, whose structure is described as follows. We take a random variable
U∅ uniformly distributed over [0, 1], and start with an oriented line segment of length U∅,
whose origin will be the root of ∆. At the other end of this initial line segment, we attach the
initial point of two new line segments with respective lengths U1 and U2, in such a way that,
conditionally given U∅, the variables U1 and U2 are independent and uniformly distributed over
[0, 1 − U∅]. At the other end of the first of these 2 line segments, we attach two line segments
whose lengths are independent and uniformly distributed over [0, 1−U∅−U1], again conditionally
on U∅ and U1. We repeat this procedure independently for the second line segment with U1
replaced by U2. We continue this construction by induction, and after an infinite number of
steps we obtain a random non-compact rooted R-tree ∆0 with binary branching (see Figure 6.1),
whose completion with respect to its intrinsic metric d is the continuous reduced tree ∆. We
assume that ∆ is also defined under the probability measure P. Its boundary ∂∆ is defined as
the set of all points of ∆ at height 1 (i.e. at distance 1 from the root). We can define Brownian
motion on ∆ starting from the root and up to the first hitting time of ∂∆. The (continuous)
harmonic measure µ on ∂∆ is the (quenched) distribution of the first hitting point of ∂∆ by
Brownian motion.

We then define another (non-compact) random R-tree Γ with binary branching, such that
each point of Γ at height y ∈ [0,∞) corresponds to a point of ∆0 at height 1 − e−y ∈ [0, 1).
The resulting new tree Γ is the Yule tree which describes the genealogy of the classical Yule
process, where individuals have independent exponential lifetimes with parameter 1 and each



6.1 Introduction 171

Height 1

Height 0

U∅

U2

U1

∅

Figure 6.1: The random tree ∆0

individual has exactly two offspring. By definition, the boundary ∂Γ of Γ is the set of all
infinite geodesics in Γ starting from the root (these are called geodesic rays). Due to the binary
branching mechanism, both ∂∆ and ∂Γ can be canonically identified with {1, 2}N.

For every r > 0, we write Γr for the level set of Γ at height r. By a martingale argument,
we can define

W := lim
r→∞

e−r#Γr,

and it is well known that W follows an exponential distribution of parameter 1. For any x ∈ Γ,
we write Γ[x] for the subtree of descendants of x in Γ, and we similarly define

Wx := lim
r→∞

e−r#Γr[x].

It is immediate to see that for every r > 0,∑
x∈Γr

e−rWx =W.

For every x ∈ Γ, let H(x) denote the height of x. The uniform measure ω̄ on ∂Γ is defined as
the unique random probability measure on ∂Γ satisfying that, for every x ∈ Γ and for every
geodesic ray v ∈ ∂Γ passing through x,

ω̄(B(v, H(x))) = e−H(x)Wx

W
,

where B(v, H(x)) stands for the set of all geodesic rays in Γ that coincide with v up to height
H(x). In earlier work, ω̄ is also named as the branching measure on the boundary of Γ. Recall
that ∂∆ can be identified with ∂Γ as explained above. We let ω be the random probability
measure on ∂∆ induced by ω̄, which will be referred to as the uniform measure on ∂∆.

Theorem 6.2. With the same constant λ as in Theorem 6.1, we have P-a.s. ω(dv)-a.e.

lim
r↓0

logµ(Bd(v, r))
log r = λ , (6.4)

lim
r↓0

logω(Bd(v, r))
log r = 1 , (6.5)
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where Bd(v, r) stands for the closed ball of radius r centered at v in the metric space (∆,d).

Remark. The Hausdorff measure of ∂∆ with respect to d is a.s. equal to 1. An exact Hausdorff
measure function can be found in Duquesne and Le Gall [28, Theorem 1.3].

Corollary 6.3. P-a.s. the two measures µ and ω on the boundary of ∆ are mutually singular.

Proof. With the same constant β as in (6.3), it is shown in Theorem 3 of [20] that P-a.s. µ(dv)-
a.e.,

lim
r↓0

logµ(Bd(v, r))
log r = β.

If we define
B =

{
v ∈ ∂∆: lim

r↓0

logµ(Bd(v, r))
log r = β

}
,

then P-a.s. µ(B) = 1. However, since β < 1 < λ, we get from (6.4) that P-a.s. ω(B) = 0, which
finishes the proof.

Similar results for supercritical infinite Galton–Watson trees can be found in Theorem 3
of [69] and in Theorem 6.3 of [71], where the uniform measure and the visibility measure (defined
as the law of the geodesic ray chosen by forward simple random walk) on the boundary of the
infinite tree are considered.

In order to get a better understanding of the distinguished geodesic ray in the Yule tree Γ
chosen randomly according to the uniform measure ω̄(dv), we follow the ideas of [70] to construct
a size-biased version Γ̂ of Γ, which is the genealogical tree of the following branching process.
Initially, there is one particle having an exponential lifetime with parameter 2, and it reproduces
two offspring simultaneously when it dies. We choose one of them uniformly at random and
the chosen one will continue as the initial ancestor, while the other offspring will independently
evolve as the classical Yule process. The size-biased Yule tree Γ̂ thus defined is an infinite random
R-tree with binary branching. We can apply to Γ̂ the same transformation that relates Γ and
∆0 (essentially, every point of Γ at height y corresponds to a point of ∆0 at height 1 − e−y),
and we get a bounded (yet non-compact) rooted R-tree ∆̂0, which can be interpreted as the
size-biased version of ∆0. The completion of ∆̂0 with respect to its intrinsic metric is denoted
as ∆̂, and we call ∆̂ the size-biased reduced tree. Its boundary ∂∆̂ is similarly defined as the set
of all points in ∆̂ at height 1. We assume that ∆̂ is defined under the probability measure P.

height 1

height 0
∅

V∅

(1− V∅)V1

Figure 6.2: Schematic representation of the size-biased reduced tree ∆̂
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Due to the previous description of Γ̂, one can construct ∆̂ directly as follows. At first, the
root ∅ of ∆̂ has a distinguished descendant line of length 1. Let V∅ be a random variable taking
values in [0, 1] with density 2(1−x), and we graft to the distinguished descendant line at height
V∅ a subtree which is an independent copy of ∆ scaled by the factor (1 − V∅). In the second
step, we take V1 as an independent copy of V∅ and graft to the distinguished descendant line at
height V∅+(1−V∅)V1 another independent copy of ∆ scaled by the factor (1−V∅)(1−V1). Note
that for each grafting, we choose the left-hand side or the right-hand side of the distinguished
descendant line with equal probabilities. We continue this procedure to graft more subtrees to
the distinguished descendant line, with the height of the grafting position increasing to 1. After
an infinite number of steps we obtain a realization of ∆̂. See Figure 6.2 for an illustration.

The constant λ appearing in Theorems 6.1 and 6.2 can be expressed in terms of the (con-
tinuous) conductance of ∆̂. Informally, if we think of the random trees ∆ and ∆̂ as electric
networks of resistors with unit resistance per unit length, the effective conductances between
the root and the boundary in ∆ and ∆̂ are continuous random variables denoted respectively as
C and Ĉ. From a probabilistic point of view, each of these conductances can be obtained as the
mass under the Brownian excursion measure in the corresponding tree for the excursion paths
away from the root that hit height 1. It is easy to see that both C and Ĉ take values in [1,∞).
Following the above construction of ∆̂ and the electric network interpretation, the distribution
of Ĉ satisfies the recursive distributional equation

Ĉ (d)==
(
V + 1− V

Ĉ + C

)−1
, (6.6)

where in the right-hand side V, C and Ĉ are independent, and the distribution of the random
variable V has density 2(1−x) over [0, 1]. We prove that the law γ̂ of Ĉ has finite moments of all
orders, and it has a continuous density f̂ over [1,∞), which reaches its global maximum at 3/2.
The density function f̂ exhibits a singular behavior analogous to that of the density function
of C (see [20, Section 2.3]). Although f̂ is twice continuously differentiable on the interval (1, 3),
it is shown that f̂ is not third-order differentiable at the point 2. A similar singular behavior is
expected at all integer points n ≥ 2. See Figure 6.3.

Proposition 6.4. The distribution γ̂ of the conductance Ĉ is characterized in the class of all
probability measures on [1,∞) by the distributional equation (6.6). The constant λ appearing in
Theorems 6.1 and 6.2 is given by

λ = E
[
Ĉ
]
− 1 ∈ (1,∞). (6.7)

The remainder of this paper is structured as follows. We start the next section by defining
formally the continuous random trees ∆ and Γ. The notation of the random variables involved
will be slightly different from the one used in this Introduction. The distribution γ̂ of the
conductance Ĉ is studied in Section 6.2.4, and the proof of Theorem 6.2 and of formula (6.7)
is given in Section 6.2.5. The size-biased continuous random trees ∆̂ and Γ̂ are introduced
respectively in Section 6.2.6 and in Section 6.2.7. Then, we gather some preliminaries for the
discrete setting in Section 6.3. In the end, Section 6.4 is devoted to the proof of Theorem 6.1.
Acknowledgments. The author gratefully acknowledges many helpful suggestions of J.-F. Le Gall
during the preparation of this paper. He is also indebted to N. Curien for several stimulating
discussions.
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Figure 6.3: A histogram of the distribution γ̂ over (1,∞) obtained from the simulations
based on (6.6). The red and the blue curves correspond respectively to the explicit
formulae for the density of γ̂ over [1, 2] and [2, 3].

6.2 The continuous setting

6.2.1 The reduced tree ∆
We set

V :=
∞⋃
n=0
{1, 2}n,

where {1, 2}0 = {∅}. If v = (v1, . . . , vn) ∈ V, we set |v| = n (in particular |∅| = 0). If
v 6= ∅, we define the parent of v as v̄ = (v1, . . . , vn−1), and we then say that v is a child
of v̄. If both u = (u1, . . . , um) and v = (v1, . . . , vn) belong to V, their concatenation is uv :=
(u1, . . . , um, v1, . . . , vn). The notions of a descendant and an ancestor of an element of V are
defined in the obvious way, with the convention that a vertex v ∈ V is both an ancestor and a
descendant of itself. If v, w ∈ V, v ∧ w is the unique element of V that is an ancestor of both v
and w and such that |v ∧ w| is maximal.

We then consider a collection (Uv)v∈V of independent real random variables uniformly dis-
tributed over [0, 1] under the probability measure P. We set Y∅ = U∅ and then by induction,
for every v ∈ {1, 2}n with n ≥ 1,

Yv = Yv̄ + Uv(1− Yv̄).

Note that a.s., 0 ≤ Yv < 1 for every v ∈ V. Consider then the set

∆0 := ({∅} × [0, Y∅]) ∪
( ⋃
v∈V\{∅}

{v} × (Yv̄, Yv]
)
.

We can define a natural metric d on ∆0, so that (∆0,d) is a (noncompact) R-tree and, for every
x = (v, r) ∈ ∆0, d((∅, 0), x) = r. To be specific, let x = (v, r) ∈ ∆0 and y = (w, r′) ∈ ∆0:
• If v is a descendant of w or w is a descendant of v, we set d(x, y) = |r − r′|.
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• Otherwise, d(x, y) = d((v ∧ w, Yv∧w), x) + d((v ∧ w, Yv∧w), y) = (r − Yv∧w) + (r′ − Yv∧w).
See Figure 6.4 for an illustration of the tree ∆0.

Height 1

Height 0

Y∅

Y2

Y1

Y11
Y12

Y21

Y22

∅

U∅

U1(1− Y∅)

U2(1− Y∅)

Figure 6.4: The random tree ∆0

We let ∆ be the completion of ∆0 with respect to the metric d. Then ∆ = ∆0 ∪ ∂∆, and
the boundary ∂∆ := {x ∈ ∆: d((∅, 0), x) = 1} is canonically identified with {1, 2}N. Note that
(∆,d) is a compact R-tree.

The point (∅, 0) is called the root of ∆. For every x ∈ ∆, we set H(x) = d((∅, 0), x) and
call it the height of x. We can define a genealogical order on ∆ by setting x ≺ y if and only if
x belongs to the geodesic path from the root to y.

For every ε ∈ (0, 1), we set ∆ε := {x ∈ ∆: H(x) ≤ 1 − ε}, which is also a compact R-tree
for the metric d. The leaves of ∆ε are the points of the form (v, 1 − ε) for all v ∈ V such that
Yv̄ < 1 − ε ≤ Yv. The branching points of ∆ε are the points of the form (v, Yv) for all v ∈ V
such that Yv < 1− ε.

Conditionally on ∆, we can take any ε ∈ (0, 1) and define Brownian motion on ∆ε starting
from the root. Informally, this process behaves like linear Brownian motion as long as it stays
on an “open interval” of the form {v} × (Yv̄, Yv ∧ (1 − ε)), and it is reflected at the root (∅, 0)
and at the leaves of ∆ε. When it arrives at a branching point of the tree, it chooses each of
three possible line segments ending at this point with equal probabilities. By taking a sequence
(εn = 2−n)n≥1 and then letting n go to infinity, we can construct under the same probability
measure P a Brownian motion (Bt)t≥0 on ∆ starting from the root up to its first hitting time τ
of ∂∆. We refer the reader to [20] for the details of this construction. The harmonic measure µ
is the distribution of Bτ− under P , which is a (random) probability measure on ∂∆ = {1, 2}N.

6.2.2 The Yule tree Γ
To define the Yule tree, consider a collection (Iv)v∈V of independent real random variables

exponentially distributed with mean 1 under the probability measure P. We set Z∅ = I∅ and
then by induction, for every v ∈ {1, 2}n, with n ≥ 1, Zv = Zv̄ + Iv. The Yule tree is the set

Γ := ({∅} × [0, Z∅]) ∪
( ⋃
v∈V\{∅}

{v} × (Zv̄, Zv]
)
,
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which is equipped with the metric d defined in the same way as d in the preceding section. For
every x = (v, r) ∈ Γ, d((∅, 0), x) = r and we keep the notation H(x) = r for the height of the
point x.

Observe that if U is uniformly distributed over [0, 1], the random variable − log(1 − U) is
exponentially distributed with mean 1. Hence we may and will suppose that the collection
(Iv)v∈V is constructed from (Uv)v∈V in the previous section via the formula Iv = − log(1− Uv),
for every v ∈ V. Then, the mapping Ψ defined on ∆0 by Ψ(v, r) = (v,− log(1 − r)), for every
(v, r) ∈ ∆0, is a homeomorphism from ∆0 onto Γ.

Using stochastic calculus, we can write, for every t ∈ [0, τ),

Ψ(Bt) = W
( ∫ t

0
(1−H(Bs))−2 ds

)
(6.8)

where (W (t))t≥0 is Brownian motion with constant drift 1/2 towards infinity on the Yule tree
(this process is defined in a similar way as Brownian motion on ∆, except that it behaves like
Brownian motion with drift 1/2 on every “open interval” of the tree). Note that W is also
defined under the probability measure P . From now on, Brownian motion on the Yule tree Γ or
on other similar trees will always refer to Brownian motion with drift 1/2 towards infinity.

By definition, the boundary ∂Γ is the set of all geodesic rays in Γ starting from the root
(∅, 0). From the transience of Brownian motion on Γ, there is a.s. a unique geodesic ray denoted
by W∞ that is visited by (W (t), t ≥ 0) at arbitrarily large times. The distribution of W∞ under
P yields a probability measure ν on the boundary ∂Γ. Thanks to (6.8), we have in fact ν = µ,
provided we identify ∂∆ and ∂Γ with {1, 2}N and view both µ and ν as (random) probability
measures on {1, 2}N.

Yule-type trees. We define T to be the set of all collections (zv)v∈V of positive real numbers
such that the following properties hold:
(i) zv̄ < zv for every v ∈ V\{∅};
(ii) for every v = (v1, v2, . . .) ∈ {1, 2}N, limn→∞ z(v1,...,vn) = +∞.

Notice that we allow the possibility that z∅ = 0. We equip T with the σ-field generated by the
coordinate mappings. If (zv)v∈V ∈ T , we consider the associated “tree”

T := ({∅} × [0, z∅]) ∪
( ⋃
v∈V\{∅}

{v} × (zv̄, zv]
)
,

which is equipped with the distance d similarly defined as above. If x = (v, r) ∈ T we still write
H(x) = r for the height of x. The genealogical (partial) order on T is defined as previously and
will again be denoted by ≺. The set of all geodesic rays in T is called the boundary ∂T , which
is naturally identified with {1, 2}N. If u = (u1, u2, . . . , un, . . .) ∈ {1, 2}N, and x = (v, r) ∈ T , we
write x ≺ u if v = (u1, u2, . . . , uk) for some integer k ≥ 0.

We will often say that we consider a tree T ∈ T : this means that we are given a collection
(zv)v∈V satisfying the above properties, and we consider the associated tree T . In particular, T
has an order structure given by the lexicographical order on V. Elements of T will be called
Yule-type trees. The Yule tree Γ can be viewed as a random variable taking values in T , and
we write Θ(dT ) for its distribution.

Let us fix T ∈ T . If r > 0, the level set at height r is Tr := {x ∈ T : H(x) = r}. If x ∈ Tr,
we can then consider the subtree T [x] of descendants of x in T . Formally, we view T [x] as an
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element of T : We write vx for the unique element of V such that x = (vx, r), and define T [x]
as the Yule-type tree corresponding to the collection (zvxv − r)v∈V .

As we have seen in the Introduction, the limit W(T ) = limr→∞ e
−r#Tr exists Θ(dT )-a.s.

For every x ∈ T , we similarly set W(T [x]) = limr→∞ e
−r#Tr[x]. If v ∈ ∂T is a geodesic ray

passing through x, let Bd(v, H(x)) denote the set of geodesic rays in T that coincide with v
up to height H(x). Then Θ(dT )-a.s., the uniform measure ω̄T on ∂T is defined as the unique
probability measure on ∂T satisfying that

ω̄T (Bd(v, H(x))) = e−H(x)W(T [x])
W(T ) , ∀x ∈ T and v ∈ ∂T such that x ≺ v.

On the other hand, for a fixed Yule-type tree T ∈ T , we define the harmonic measure µT
on ∂T as the distribution of the first hitting point of ∂T by Brownian motion on T (with drift
1/2 towards infinity).

6.2.3 The invariant measure

We write
T ∗ := T × {1, 2}N

for the set of all pairs consisting of a tree T ∈ T and a distinguished geodesic ray v. Then
following [20, Section 5.1], we define a shift transformation on T ∗ by shifting (T,v) at the
first branching point of T . More precisely, if T corresponds to the collection (zv)v∈V , we write
T(1) and T(2) for the two subtrees of T obtained at the first branching point, which means, for
i ∈ {1, 2}, T(i) is the tree corresponding to the collection (ziv − z∅)v∈V . For any geodesic ray
v = (v1, v2, . . .) in the tree T , we set S(T,v) := (T(v1), ṽ), where ṽ = (v2, v3, . . .).

The following proposition is the analogue of Proposition 6.1 in [71] for the Yule tree.

Proposition 6.5. The probability measure W(T )Θ(dT )ω̄T (dv) is invariant under S.

Proof. Under Θ(dT ), if T corresponds to the collection (zv)v∈V , then z∅ is exponentially dis-
tributed with mean 1. Conditionally on z∅, the branching property of the Yule tree states that
T(1) and T(2) are i.i.d. of the same law Θ.

Let F be a bounded measurable function on T ∗. By the definition of the shift S and then
the preceding observation, we have

∫
F ◦ S(T,v)W(T )Θ(dT )ω̄T (dv) =

2∑
i=1

∫
F (T(i),u)

(
e−z∅W(T(i))

)
Θ(dT )ω̄T(i)(du)

= 2
( ∫ ∞

0
e−2z dz

)
×
∫
F (T,u)W(T )Θ(dT )ω̄T (du)

=
∫
F (T,u)W(T )Θ(dT )ω̄T (du),

which completes the proof of the statement.

6.2.4 The continuous conductances

For a fixed Yule-type tree T , we consider the excursion measure of Brownian motion (with
drift 1/2) on T away from the root, and define the conductance C(T ) as the mass assigned
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by this excursion measure to the set of trajectories that never return to the root. Note that
1 ≤ C(T ) <∞ for any T ∈ T . For more details we refer the reader to [20, Section 2.3].

To simplify notation, we introduce under the probability measure P a pair of random variables
(W, C) that is distributed as (W(T ), C(T )) under Θ(dT ). In addition, we let Ĉ be a random
variable defined under P that is distributed as C(T ) under the probability measureW(T )Θ(dT ).

Let T be a Yule-type tree corresponding to the collection (zv)v∈V . Recall that T(1) and
T(2) stand for the two subtrees of T obtained at the first branching point. From the identity
W(T ) = e−z∅

(
W(T(1))+W(T(2))

)
for every T ∈ T , it follows that the distribution ofW satisfies

the recursive equation
W (d)== (1− U)(W1 +W2),

in which W1 and W2 are independent copies of W, and, U is uniformly distributed over [0, 1]
and independent of (W1,W2). Moreover, the preceding equation holds jointly with a similar
distributional identity for the conductance C (see equation (2) in [20]). To sum up, we have

(W, C) (d)==
(

(1− U)(W1 +W2),
(
U + 1− U

C1 + C2

)−1)
, (6.9)

where U is as above, while (Wi, Ci)i∈{1,2} are two independent copies of (W, C), and are inde-
pendent of U .

Lemma 6.6. The random variable Ĉ satisfies the distributional identity (6.6).

Proof. By definition, the distribution of Ĉ is determined by

E
[
g(Ĉ)

]
= E

[
W g(C)

]
(6.10)

for every nonnegative measurable function g. Using (6.9) and symmetry, we have

E
[
g(Ĉ)

]
= E

[
(1− U)(W1 +W2) g

((
U + 1− U

C1 + C2

)−1)]
= E

[
2(1− U)W1 g

((
U + 1− U

C1 + C2

)−1)]
.

Recall that the random variable V has density function 2(1 − x) over [0, 1]. The statement of
the lemma therefore follows by applying (6.10) in reverse order.

The law γ of the conductance C has been discussed at length in [20, Proposition 6]. By
similar arguments, we can study the law γ̂ of Ĉ. These properties are collected in the next
proposition.

For every v ∈ (0, 1), x ≥ 0 and c ≥ 1, we define

G(v, x, c) :=
(
v + 1− v

x+ c

)−1
.

Let M be the set of all probability measures on [0,∞] and let Φ̂ : M →M map a probability
measure σ to

Φ̂(σ) = Law
(
G(V,X, C)

)
(6.11)

where V and C are as in (6.6), while X is distributed according to σ, and is independent of the
pair (V, C).
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Proposition 6.7. (1) The distributional equation (6.6) characterizes the law γ̂ of Ĉ in the
sense that, γ̂ is the unique fixed point of the mapping Φ̂ on M , and for every σ ∈M , the
k-th iterate Φ̂k(σ) converges to γ̂ weakly as k →∞.

(2) The law γ̂ has a continuous density over [1,∞), and all its moments are finite.
(3) For any monotone continuously differentiable function g : [1,∞)→ R+, we have

E
[
Ĉ(Ĉ − 1)g′(Ĉ)

]
+ 2E

[
g(Ĉ)

]
= 2E

[
g(Ĉ + C)

]
, (6.12)

where Ĉ and C are always assumed to be independent under the probability measure P.
(4) We define, for all ` ≥ 0, the Laplace transforms ϕ(`) = E[exp(−` C/2)] and

ϕ̂(`) = E[exp(−` Ĉ/2)] =
∫ ∞

1
e−`r/2 γ̂(dr).

Then ϕ̂ solves the linear differential equation

2` φ′′(`) + ` φ′(`)− 2(1− ϕ(`))φ(`) = 0.

The proof of this proposition is very similar to that of the analogous results in [20, Proposi-
tion 6]. We skip the details.

Remark 1. Using assertion (1) in Proposition 6.7, one can approximate the law γ̂ of Ĉ by
iterating the mapping Φ̂. An application of the Monte-Carlo method gives E[Ĉ] ≈ 2.21.

Remark 2. Following the preceding proposition, we discuss here some smoothness properties
of the density of γ̂. For every t ≥ 1, we set F̂ (t) = P(Ĉ ≥ t), and we get from (6.6) that

F̂ (t) = 2
( t− 1

t

)2 ∫ ∞
t

dx x

(x− 1)3 P(Ĉ + C ≥ x). (6.13)

Since P(Ĉ + C ≥ t) = 1 for every t ∈ [1, 2], we obtain from the last display that

F̂ (t) = 4t− 2
t2

A0 − 2A0 + 1, ∀t ∈ [1, 2], (6.14)

where
A0 := 2−

∫ ∞
2

dx x

(x− 1)3 P(Ĉ + C ≥ x) ∈
(1

2 , 2
)
.

Let f̂ = −F̂ ′ be the density of the law γ̂. Then it follows from (6.14) that for all t ∈ [1, 2],

f̂(t) = 4A0 ×
t− 1
t3

and f̂ ′(t) = 4A0 ×
3− 2t
t4

.

In particular, we have f̂(1) = 0, f̂(2) = A0/2 and f̂ ′(3
2) = 0. A numerical approximation of

f̂(2) gives that A0 ≈ 0.976.
For the density f of the law of C, it is shown in [20, Section 2.3] that there exists a constant

K0 ∈ (1, 2) such that f(t) = K0t
−2 for t ∈ [1, 2]. The explicit forms of f and f̂ over [1, 2] can

be used to calculate by convolution the probability P(Ĉ + C ≥ t) for t ∈ [2, 3]. The values of F̂
over [2, 3] are thus determined via the ordinary differential equation

t(t− 1) F̂ ′(t)− 2 F̂ (t) = −2P(Ĉ + C ≥ t), (6.15)
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which is a direct consequence of (6.13). By solving this differential equation, we are able to
get an explicit, yet complicated, expression of F̂ over [2, 3], in terms of the two (unknown)
parameters A0 and K0 (numerical approximations of f(1) show that K0 ≈ 1.477). One can then
verify that the density f̂ is continuously differentiable on (1, 3). Furthermore, it holds that

f̂ ′′(2−) = f̂ ′′(2+) = 0 ,

and that f̂ is twice continuously differentiable on (1, 3). However, f̂ is not third-order differen-
tiable at the point 2, as one has

f̂ ′′′(2−) = 3A0
4 , while f̂ ′′′(2+) = 3A0

4 − 4A0K0.

This is similar to the singular behavior of the density f pointed out in [20, Section 2.3], where it is
shown that f ′′(2−) 6= f ′′(2+). One may conjecture that the density f̂ of γ̂ is twice continuously
differentiable on the whole interval (1,∞), but not third-order differentiable at all integers n ≥ 2.

We finally note that 3/2 is the global maximum point for the density f̂ . In fact, we have
seen that f̂ reaches it maximum at 3/2 over the interval [1, 2]. Meanwhile, it is elementary to
verify, by differentiating (6.15), that the function f̂ is strictly decreasing over [3/2,∞).

6.2.5 Proof of Theorem 6.2 and of Proposition 6.4

We have seen in Proposition 6.5 that the probability measure W(T )Θ(dT )ω̄T (dv) on T ∗ is
invariant under the shift S. Recall thatW(T ) follows an exponential distribution of mean 1 under
Θ(dT ). Taking into account that W(T ) > 0, Θ(dT )-a.s., we can then verify, in a similar way as
in [66, Section 2.5], that the shift S acting on the probability space (T ∗,W(T )Θ(dT )ω̄T (dv)) is
ergodic. We shall now apply Birkhoff’s ergodic theorem to the three functionals defined below.

Firstly, let Hn(T,v) denote the height of the n-th branching point on the geodesic ray v.
One immediately verifies that, for every n ≥ 1,

Hn =
n−1∑
i=0

H1 ◦ Si,

where Si stands for the i-th iterate of the shift S. It follows thus from the ergodic theorem that
W(T )Θ(dT )ω̄T (dv)-a.s.,

1
n
Hn −→

n→∞

∫
H1(T,v)W(T ) Θ(dT )ω̄T (dv). (6.16)

Since the density W(T ) is strictly positive, the latter convergence also holds Θ(dT )ω̄T (dv)-a.s.
By definition of H1 and then the branching property of the Yule tree,∫

H1(T,v)W(T ) Θ(dT )ω̄T (dv) =
∫
z∅W(T ) Θ(dT )

=
∫
z∅ e

−z∅(W(T(1)) +W(T(2))) Θ(dT )

= 2
( ∫ ∞

0
ze−2zdz

)
×
∫
W(T ) Θ(dT ) = 1

2 . (6.17)

Secondly, for a fixed geodesic ray v = (v1, v2, . . .) ∈ {1, 2}N, we let xn,v denote the n+1-st
branching point on the geodesic ray v, i.e. xn,v = ((v1, . . . , vn), Hn+1(T,v)). We set, for every



6.2 The continuous setting 181

n ≥ 1, the functional Fn(T,v) := log ω̄T ({u ∈ ∂T : xn,v ≺ u}). In particular,

F1(T,v) = log
W(T(v1))

W(T(1)) +W(T(2))
.

By definition of ω̄T , one can check that

Fn =
n−1∑
i=0

F1 ◦ Si.

Using the ergodic theorem again, we have Θ(dT ) ω̄T (dv)-a.s.,

1
n
Fn −→

n→∞

∫
F1(T,v)W(T ) Θ(dT )ω̄T (dv),

in which the limit can be calculated as follows:∫
F1(T,v)W(T ) Θ(dT )ω̄T (dv)

=
2∑
i=1

∫
e−z∅W(T(i)) log

W(T(i))
W(T(1)) +W(T(2))

Θ(dT )

=
2∑
i=1

∫
e−z∅W(T(i)) logW(T(i)) Θ(dT )−

∫ ( 2∑
i=1

e−z∅W(T(i)) log
(
ez∅W(T )

))
Θ(dT )

= 2
( ∫ ∞

0
e−2zdz

)
×
∫
W(T ) logW(T ) Θ(dT )−

∫
W(T ) log

(
ez∅W(T )

)
Θ(dT )

= −
∫
z∅W(T ) Θ(dT ). (6.18)

Note that we used the fact that
∫
W(T )| logW(T )|Θ(dT ) < ∞ to derive the last equality. In

view of (6.17), we see that Θ(dT ) ω̄T (dv)-a.s., Fn/n converges to −1
2 whereas Hn/n converges

to 1
2 . By considering the ratio Fn/Hn and taking n→∞, we get that Θ(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1
r

log ω̄T (Bd(v, r)) = −1,

from which the convergence (6.5) readily follows.
Thirdly, we turn to the harmonic measure µT and set, for every n ≥ 1, the functional

Gn(T,v) := logµT ({u ∈ ∂T : xn,v ≺ u}). In particular,

G1(T,v) = log
C(T(v1))

C(T(1)) + C(T(2))
.

The flow property of the harmonic measure µT (see Lemma 7 in [66]) yields that

Gn =
n−1∑
i=0

G1 ◦ Si.

Similarly we have the Θ(dT )ω̄T (dv)-almost sure convergence

1
n
Gn −→

n→∞

∫
G1(T,v)W(T ) Θ(dT )ω̄T (dv), (6.19)
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and we calculate the limit as follows:∫
G1(T,v)W(T ) Θ(dT )ω̄T (dv)

=
2∑
i=1

∫
e−z∅W(T(i)) log

C(T(i))
C(T(1)) + C(T(2))

Θ(dT )

= 2
( ∫ ∞

0
e−2zdz

)
×
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT )

=
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT ).

Putting the convergence (6.19) together with (6.16), we see that Θ(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1
r

logµT (Bd(v, r)) = 2
∫
W(T(1)) log

C(T(1))
C(T(1)) + C(T(2))

Θ(dT ).

Using the branching property of the Yule tree and recalling the notation in Section 6.2.4, we
have therefore P-a.s. ω(dv)-a.e. that

lim
r↓0

logµ(Bd(v, r))
log r = 2E

[
log

( Ĉ + C
Ĉ

)]
,

where Ĉ and C are supposed to be independent under the probability measure P. However, by
taking g(x) = log(x) in (6.12), we see that

E
[
Ĉ
]
− 1 = 2E

[
log

( Ĉ + C
Ĉ

)]
. (6.20)

By defining λ := E[Ĉ]− 1, the proof of the convergence (6.4) is hence completed.
Finally, in view of Proposition 6.7, it only remains to verify that λ > 1. In fact, we know

from the display following (6.19) that

λ = 2
∫
e−z∅

( 2∑
i=1
W(T(i)) log

C(T(1)) + C(T(2))
C(T(i))

)
Θ(dT ).

By concavity of the logarithm,

2∑
i=1

W(T(i))
W(T(1)) +W(T(2))

log
(W(T(1)) +W(T(2))

W(T(i))
·

C(T(i))
C(T(1)) + C(T(2))

)
≤ 0,

which entails that
2∑
i=1
W(T(i)) log

C(T(1)) + C(T(2))
C(T(i))

≥
2∑
i=1
W(T(i)) log

W(T(1)) +W(T(2))
W(T(i))

.

Notice that the previous inequality is strict if and only if for i ∈ {1, 2},

W(T(i))
W(T(1)) +W(T(2))

6=
C(T(i))

C(T(1)) + C(T(2))
.
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Since the latter property holds with positive probability under Θ(dT ), we have

λ > 2
∫
e−z∅

( 2∑
i=1
W(T(i)) log

W(T(1)) +W(T(2))
W(T(i))

)
Θ(dT )

= − 2
∫
F1(T,v)W(T ) Θ(dT ) ω̄T (dv).

By (6.18) and (6.17), the right-hand side of the last display is equal to 1. We have therefore
finished the proof of Theorem 6.2 and of Proposition 6.4.

6.2.6 The size-biased Yule tree Γ̂

Let (Γ̂, v̂) ∈ T ∗ be a random variable distributed according to W(T )Θ(dT )ω̄T (dv). We
now give a direct construction of this random variable under the probability measure P. In the
following description, all the random variables involved are supposed to be defined under P.

First, we introduce a sequence (ak)k≥1 of i.i.d. random variables uniformly distributed over
the set {1, 2}, and another sequence (Jk)k≥1 of i.i.d. real random variables exponentially dis-
tributed with mean 1/2. Let (Γ(k))k≥1 be a collection of independent Yule trees, each of
which corresponding respectively to the collection (Z(k)

v )v∈V with the notation introduced in
Section 6.2.2. We assume that (ak)k≥1, (Jk)k≥1 and (Γ(k))k≥1 are independent.

For every integer n ≥ 1, we set vn = (a1, a2, . . . , an) ∈ {1, 2}n and Zvn =
∑n
k=1 Jk. We write

ṽn = (a1, a2, . . . , an−1, 3− an) ∈ {1, 2}n for the unique sibling of vn in V, and define the subtree
Γ〈ṽn〉 grafted at ṽn as

Γ〈ṽn〉 :=
(
{ṽn} × (Zvn , Zvn + Z

(n)
∅ ]

)
∪
( ⋃
v∈V\{∅}

{ṽnv} × (Zvn + Z
(n)
v̄ , Zvn + Z(n)

v ]
)
.

Finally, let Γ̂ be the following Yule-type tree

Γ̂ := ({∅} × [0, Zv1 ]) ∪
( ⋃
n≥1
{vn} × (Zvn , Zvn+1 ]

)
∪
( ⋃
n≥1

Γ〈ṽn〉
)
.

We will call Γ̂ the size-biased Yule tree. See Figure 6.5 for an illustration.

Lemma 6.8. The pair
(
Γ̂, v̂ = (a1, a2, . . .)

)
∈ T ×{1, 2}N constructed above follows the required

distribution W(T )Θ(dT )ω̄T (dv).

The proof of this lemma is based on similar calculations carried out in the previous section.
We leave the details to the reader.

6.2.7 The size-biased reduced tree ∆̂

Recall the bijection Ψ: (v, r) ∈ ∆0 7→ (v,− log(1 − r)) ∈ Γ introduced in Section 6.2.2. We
now apply the inverse mapping Ψ−1(v, s) = (v, 1− e−s) to the size-biased Yule tree Γ̂.

We keep the notation of the preceding section. For every integer n ≥ 1, we set Vn =
1− exp(−Jn), and then by induction,

Ŷvn = Ŷvn−1 + (1− Ŷvn−1)Vn .
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∅

Zv2

Zv1

v̂

J1

J2

Γ〈ṽ1〉

Γ〈ṽ2〉

Figure 6.5: Schematic representation of the size-biased Yule tree Γ̂

Notice that (Vn)n≥1 are i.i.d. random variables with density function 2(1− x)1x∈[0,1], and that
for every n ≥ 1, Ŷvn = 1− exp(−Zvn). Thus,

Ψ−1(Γ̂) = ({∅} × [0, Ŷv1 ]) ∪
( ⋃
n≥1
{vn} × (Ŷvn , Ŷvn+1 ]

)
∪
( ⋃
n≥1

Ψ−1(Γ〈ṽn〉)).
We point out that, independently for every n ≥ 1, Ψ−1(Γ〈ṽn〉) is a rescaled copy of the precom-
pact reduced tree ∆0 with the scaling factor (1− Ŷvn). From now on we will denote Ψ−1(Γ̂) by
∆̂0. See Figure 6.6 for an illustration of ∆̂0.

Height 1

Height 0
∅

v̂

Ŷv2

Ŷv1

V1

(1− Ŷv1)V2

Figure 6.6: Schematic representation of the random tree ∆̂0
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As for ∆0, one can define the intrinsic metric d on ∆̂0 such that (∆̂0,d) is a noncompact
R-tree, and for every x = (v, r) ∈ ∆̂0, we have d((∅, 0), x) = r. Similarly as in Section 6.2.1,
we then let ∆̂ be the completion of ∆̂0 with respect to d, so that (∆̂,d) is a compact R-tree.
In fact, ∆̂ = ∆̂0 ∪ ∂∆̂, and the boundary ∂∆̂ := {x ∈ ∆̂ : d((∅, 0), x) = 1} is canonically
identified with {1, 2}N. We will call ∆̂ the size-biased reduced tree. We keep the same notation
H(x) = d((∅, 0), x) for the height of x ∈ ∆̂. For every ε ∈ (0, 1), we set

∆̂ε := {x ∈ ∆: H(x) ≤ 1− ε}.

One can think of both ∆ and ∆̂ as electric networks of ideal resistors with unit resistance
per unit length, and define C(∆) (resp. C(∆̂)) be the effective conductance between the root and
the set ∂∆ (resp. ∂∆̂) in the corresponding network. As explained in [20, Section 2.3], C(∆) is
identically distributed as the random variable C introduced in Section 6.2.4. Analogously, C(∆̂)
has the same distribution as Ĉ according to Lemma 6.8. We will thus call Ĉ the continuous
conductance of the size-biased reduced tree ∆̂.

6.3 The discrete setting

6.3.1 Notation for discrete trees

We set
U :=

∞⋃
n=0

Nn,

where N = {1, 2, . . .} and N0 = {∅}. If u = (u1, . . . , un) ∈ U , |u| = n is the generation (or
height) of u. In particular, |∅| = 0.

A (rooted ordered) tree T is a subset of U such that the following holds:
(i) ∅ ∈ T ;
(ii) If u = (u1, . . . , un) ∈ T \{∅}, then ū := (u1, . . . , un−1) ∈ T ;
(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every

j ∈ N, (u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).
The notions of a child and a parent of a vertex of T are defined in an obvious way. We write ≺
for the genealogical order on T . The quantity ku(T ) in (iii) is called the number of children of u
in T . We always view a tree T as a graph whose vertices are the elements of T and whose edges
are the pairs {ū, u} for all u ∈ T \{∅}.

If T is finite, we call it a plane tree. The set of all plane trees is denoted by Tf . For an
infinite tree T , we say it has a single infinite line of descent if there exists a unique sequence of
positive integers (un)n≥1 such that (u1, u2, . . . , un) ∈ T for all n ≥ 1. We denote by T∞ the set
of all infinite trees that have a single infinite line of descent.

The height of a tree T is written as h(T ) := sup{|u| : u ∈ T }. The set of all vertices of T at
generation n is denoted by Tn := {u ∈ T : |u| = n}. If u ∈ T , the subtree of descendants of u is
T̃ [u] := {u′ ∈ T : u ≺ u′}. Note that T̃ [u] is not a tree under our definition, but we can relabel
its vertices to turn it into a tree, by setting T [u] := {w ∈ U : uw ∈ T }.

Let T be a tree of height larger than n, and consider a simple random walk X = (Xk)k≥0
on T starting from the root ∅. This random walk is defined under the probability measure P T .
We write τn := inf{k ≥ 0: |Xk| = n} for the first hitting time of generation n by X, and we
define the discrete harmonic measure µTn supported on Tn as the law of Xτn under P T .
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Critical Galton–Watson trees. Let θ be a non-degenerate probability measure on Z+,
and assume that θ has mean one and finite variance σ2 > 0. For every integer n ≥ 0, we let
T(n) be a Galton–Watson tree with offspring distribution θ, conditioned on non-extinction at
generation n, viewed as a random element in Tf . In particular, T(0) is just a Galton–Watson
tree with offspring distribution θ. From our assumption that θ is critical (i.e. of mean 1), it
follows that for all n ≥ 0, T(n) is finite. We suppose that the random trees T(n) are defined
under the probability measure P.

Let T∗n be the reduced tree associated with T(n), which is the random tree composed of all
vertices of T(n) that have descendants at generation n. It is always implicitly assumed that we
have relabeled the vertices of T∗n, preserving both the lexicographical order and the genealogical
order, so that T∗n becomes a plane tree in the sense of our preceding definition.

For every n ≥ 1 we set qn := P(#T(0)
n > 0). By a standard result (see e.g. Theorem 9.1 of [7,

Chapter 1]) on the non-extinction probability up to generation n, we have

qn ∼
2
nσ2 , as n→∞. (6.21)

Size-biased Galton–Watson tree. We introduce a random variable N̂ distributed ac-
cording to the size-biased distribution of θ, that is, for every k ≥ 0, P(N̂ = k) = k θ(k). Let
(N̂k)k≥1 be a sequence of independent copies of N̂ defined under P. Now we follow [43] and [70]
to construct a size-biased Galton–Watson tree T̂ defined under P. First, the root ∅ of T̂ is
given number N̂1 of children. Choose one of these children uniformly at random, say v1. It has
a number N̂2 of children, whereas the other children of the root have independently ordinary
θ-Galton–Watson descendant trees. Again, among the children of v1 we choose one uniformly at
random, call it v2, and give the others independent θ-Galton–Watson descendant trees. Mean-
while the vertex v2 has a number N̂3 of children. Since a.s. N̂ ≥ 1, we can repeat this procedure
infinitely many times. The resulting random infinite tree T̂ is called a size-biased Galton–Watson
tree (see Figure 6.7). It is clear by the construction that T̂ is a random element in T∞ and that
its unique infinite line of descent is (v1,v2, . . .), which we will call the spine of T̂.

∅

θ-GW θ-GW θ-GW

θ-GW

θ-GW θ-GW

θ-GW

N̂1 = 4

N̂2 = 2

N̂3 = 3

N̂4 = 2

v1

v2

v3

v4

Figure 6.7: Schematic representation of a size-biased Galton–Watson tree T̂
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Let [T̂](n) be the plane tree obtained from T̂ by keeping only its first n generations, i.e.,

[T̂](n) := {v ∈ T̂ : |v| ≤ n}.

It is shown in [43] and [70] that [T̂](n) is distributed according to the law of T(n) size-biased
by #T(n)

n . Moreover, conditionally given the first n levels of T̂, the vertex vn on the spine is
uniformly distributed on the n-th level of T̂. Besides, notice that

E
[
#T(n)

n

]
= E[#T(0)

n ]
qn

= 1
qn
.

All these observations are summarized in the following proposition.

Proposition 6.9. Let F (T , v) be a nonnegative measurable function defined on Tf × U . Then
for every integer n ≥ 1,

E
[ ∑
v∈T(n)

n

F (T(n), v)
]

= 1
qn

E
[
F ([T̂](n),vn)

]
.

For every integer n ≥ 1, let [T̂]n be the plane tree obtained from T̂ by erasing the (infinite)
tree of descendants of the vertex vn, and keeping all other vertices. By convention, the vertex
vn is included in [T̂]n. Notice that in general [T̂]n 6= [T̂](n), since the height of [T̂]n can be
strictly greater than n.

At last, we let [T̂]∗n be the reduced tree associated with the plane tree [T̂]n up to generation n,
which consists of all vertices of [T̂]n that have (at least) one descendant at generation n. We
implicitly assume that the relabeling has been done to turn [T̂]∗n into a tree. It is easy to check
that [T̂]∗n is also the reduced tree associated with [T̂](n) up to generation n.

6.3.2 Convergence of discrete reduced trees

We briefly recall in this section the result on the convergence of discrete reduced trees T∗n.
For every real number s ∈ [0, n], we write the truncation of the tree T∗n at level n− bsc as

Rs(T∗n) :=
{
v ∈ T∗n : |v| ≤ n− bsc

}
.

For every ε ∈ (0, 1), we have set ∆ε = {x ∈ ∆: H(x) ≤ 1 − ε}. We know that, for every
fixed ε, there is a.s. no branching point of ∆ at height 1 − ε. The skeleton of ∆ε is defined as
the following plane tree

Sk(∆ε) := {∅} ∪
{
v ∈ V\{∅} : Yv̄ ≤ 1− ε

}
= {∅} ∪

{
v ∈ V\{∅} : (v̄, Yv̄) ∈ ∆ε

}
.

Consider then the set Tf,bin of all plane trees in which every vertex has either 0, 1 or 2
children. For T ∈ Tf,bin we write S(T ) for the set of all vertices of T having 0 or 2 children.
Then there is a unique plane tree 〈T 〉 such that one can find a canonical bijection u 7→ wu from
〈T 〉 onto S(T ) that preserves the genealogical order and the lexicographical order of vertices.

The following result is Proposition 16 in [20].

Proposition 6.10. We can construct the reduced trees T∗n and the (continuous) tree ∆ on the
same probability space (Ω,F ,P) so that the following properties hold for every fixed ε ∈ (0, 1)
with P-probability one.
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(i) For every sufficiently large integer n, we have Rεn(T∗n) ∈ Tf,bin and 〈Rεn(T∗n)〉 = Sk(∆ε).
(ii) For every sufficiently large n, such that the properties stated in (i) hold, and for every

u ∈ Sk(∆ε), let wn,εu denote the vertex of S(Rεn(T∗n)) corresponding to u via the canonical
bijection from 〈Rεn(T ∗n)〉 onto S(Rεn(T ∗n)). Then we have

lim
n→∞

1
n
|wn,εu | = Yu ∧ (1− ε).

6.3.3 Convergence of discrete conductances

Let T ∈ T be a tree of height larger than n, and consider the new graph T ′ obtained by
adding to the graph T an edge between the root ∅ and an extra vertex ∂. We define as before
a simple random walk X on T ′, starting from the root ∅, under the probability measure P T ′ .
Let τ∂ be the first hitting time of ∂ by X, and for every integer 1 ≤ i ≤ n, let τi be the first
hitting time of generation i (of the tree T ) by X. We write

Ci(T ) := P T
′(τi < τ∂).

This notation is justified by the fact that Ci(T ) can be interpreted as the effective conductance
between ∂ and generation i of T in the graph T ′, see e.g. [73, Chapter 2].

Recall the notation that C(∆) stands for the conductance between the root and the set ∂∆
in the reduced tree ∆. Analogously, for every ε ∈ (0, 1), C(∆ε) denotes the conductance between
the root and the set {x ∈ ∆: H(x) = 1 − ε} in ∆. The following proposition is stated in [20].
We provide here a detailed proof.

Proposition 6.11. Suppose that the reduced trees T∗n and the tree ∆ are constructed so that
the properties stated in Proposition 6.10 hold. Then

n Cn(T∗n) a.s.−−−→
n→∞

C(∆).

Proof. By definition, for every ε ∈ (0, 1),

Cn−bεnc(T∗n) = P (T∗n)′(τn−bεnc < τ∂) ≥ P (T∗n)′(τn < τ∂) = Cn(T∗n).

Note that there is probability at least 1 − bεncn+1 that, after hitting the generation n − bεnc, the
simple random walk on (T∗n)′ will hit the generation n before moving down to the extra vertex ∂.
Hence it follows from the strong Markov property of simple random walk that

0 ≤ Cn−bεnc(T∗n)− Cn(T∗n) ≤ bεnc
n+ 1Cn−bεnc(T

∗n).

By similar probabilistic arguments, we also have

0 ≤ C(∆ε)− C(∆) ≤ ε C(∆ε),

which entails particularly that C(∆ε) ≤ 2 C(∆) if ε < 1/2.
Let n be sufficiently large so that assertions (i) and (ii) of Proposition 6.10 hold with ε ∈

(0, 1
2). By calculating the conductances using the series law and parallel law, we see that a.s.

lim
n→∞

|n Cn−bεnc(T∗n)− C(∆ε)| = 0.
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Then it follows from

|n Cn(T∗n)− C(∆)| ≤ |n Cn(T∗n)− n Cn−bεnc(T∗n)|+ |n Cn−bεnc(T∗n)− C(∆ε)|+ |C(∆ε)− C(∆)|
≤ bεncCn−bεnc(T∗n) + |n Cn−bεnc(T∗n)− C(∆ε)|+ ε C(∆ε)

that
lim sup
n→∞

|n Cn(T∗n)− C(∆)| ≤ 2ε C(∆ε) ≤ 4ε C(∆).

Letting ε→ 0, we conclude that |n Cn(T∗n)− C(∆)| → 0 as n→∞.

Similarly, we write C(∆̂ε) for the conductance between the root and the set

{x ∈ ∆̂ : H(x) = 1− ε}

in ∆̂. By the same reasoning as in the previous proof, we point out that, for every ε ∈ (0, 1/2),

0 ≤ C(∆̂ε)− C(∆̂) ≤ 2ε C(∆̂). (6.22)

For future reference, we state the following result, which is Lemma 22 in [20].

Lemma 6.12. There exists a constant K ≥ 1 such that, for every integer n ≥ 1,

E
[(
n Cn(T∗n)

)2] ≤ K.
6.3.4 Backward size-biased Galton–Watson tree

We introduce in this section a new infinite random tree T

̂
, which is a variant of the size-biased

Galton–Watson tree T̂.
First, the random tree T

̂
has a unique infinite ray of vertices (u0,u1,u2, . . .), which will be

referred to as its spine. We declare that, for every n ≥ 0, the vertex un is at generation −n.
This gives a genealogical order on the spine of T

̂

: u1 is viewed as the parent of u0, u2 is viewed
as the parent of u1, and so on.

Next, we describe the finite subtrees in T

̂

branching off every node of the spine. To this
end, we recall that N̂ follows the size-biased distribution of θ, and we denote by L a random
variable which, conditionally on N̂ , is uniformly distributed on the set {0, 1, . . . , N̂ − 1}. Let
(Ln, N̂n)n≥1 be a sequence of i.i.d. copies of the pair (L, N̂), and set Rn = N̂n − Ln − 1 for
every n ≥ 1. To every vertex un we give a number Ln of children to the left of the spine and a
number Rn of children to the left of the spine. Each of these children (there are N̂n− 1 in total)
will independently have an ordinary θ-Galton–Watson descendant tree (later we will say that
these Galton–Watson trees are grafted at un), and we also assume the independence of these
Galton–Watson trees among all n ≥ 1. This finishes the construction of T

̂

. See Figure 6.8 for
an illustration. We remark that T

̂

is not a tree in the sense of Section 6.3.1. However, due to
its obvious tree structure, we will call T

̂

the backward size-biased Galton–Watson tree .
The genealogical (partial) order on T

̂

is defined in the following way. We simply keep the
genealogical orders inherited from the grafted Galton–Watson trees and combine them with the
genealogical order on the spine. For instance, u2 is an ancestor of any vertex in the subtrees
grafted at u1. We can also define in a consistent manner the notion of generation for every
vertex in T

̂

. In fact, for any vertex v not on the spine, there is a unique vertex um on the spine
such that v belongs to a finite subtree grafted at um, then we say that the generation of v in T

̂

is equal to −m+ 1 plus the initial generation of v inside the corresponding grafted plane tree.
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(L4,R4) = (2, 1) u3

u2

u1

u0

θ-GW

θ-GW

θ-GW

θ-GWθ-GW

θ-GW

θ-GW

u4

Generation 0

Generation −1

Generation −2

Generation −3

Generation −4

(L3,R3) = (0, 1)

(L2,R2) = (2, 0)

(L1,R1) = (0, 1)

Figure 6.8: Schematic representation of the backward size-biased Galton–Watson tree Ť

For every n ≥ 1, let [T

̂

]n be the plane tree obtained from T

̂

by only keeping the finite tree
above the vertex un. We take un as the root of [T

̂
]n, and the lexicographical order on the set of

vertices of [T
̂

]n corresponds to the order of visit when one “moves around” the finite tree [T
̂

]n in
clockwise order, starting from the root un. A key observation is that, viewed as a random plane
tree, [T

̂

]n has the same distribution as the random tree [T̂]n defined in Section 6.3.1. Moreover,
the root un of [T

̂

]n corresponds to the root ∅ of [T̂]n, and the vertex u0 in [T

̂

]n corresponds to
the vertex vn in [T̂]n.

6.4 Proof of Theorem 6.1

Recall that λ = E[Ĉ]−1 is the constant greater than 1 that appears in the convergence (6.4).
Let δ > 0. By applying Proposition 6.9 to the indicator function

F (T , v) = 1{n−λ−δ ≤ P T (Xτn = v) ≤ n−λ+δ}c, for T ∈ Tf and v ∈ T ,

we see that

E
[ ∑
v∈T(n)

n

1{n−λ−δ ≤ PT(n)(Xτn = v) ≤ n−λ+δ}c
]

= 1
qn

P
(
{n−λ−δ ≤ P [T̂](n)(Xτn = vn) ≤ n−λ+δ}c

)
.

Notice that in the left-hand side of the last display, PT(n)(Xτn = v) is by definition the harmonic
measure µn(v) at vertex v. In view of (6.2) and (6.21), the proof of convergence (6.1) is thus
reduced to showing that for every δ > 0,

lim
n→∞

P
(
n−λ−δ ≤ P [T̂](n)(Xτn = vn) ≤ n−λ+δ

)
= 1. (6.23)
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Since the hitting distribution of generation n is the same for simple random walk on [T̂](n)

and on its reduced tree [T̂]∗n, we have the equality

P [T̂](n)(Xτn = vn) = P [T̂]∗n(Xτn = vn) = P [T̂]n(Xτn = vn)

under the probability measure P. Furthermore, according to the final remark in Section 6.3.4,
the (random) probability P [T̂]n(Xτn = vn) is distributed under P as

P [Ť]n(Xτn = u0),

by which we mean the probability that a simple random walk on [T

̂

]n starting from the root un
hits level n (of [T

̂

]n) for the first time at u0. So the convergence (6.23) is equivalent to

lim
n→∞

P
(
n−λ−δ ≤ P [Ť]n(Xτn = u0) ≤ n−λ+δ

)
= 1. (6.24)

In order to show the latter convergence, we denote by −M1,−M2, . . . the generations of
the vertices on the spine of T

̂

where there is (at least) one grafted plane tree that reaches the
generation 0, i.e. has a descendant of generation 0. This sequence of negative integers (−Mk)k≥1
is listed in the strict decreasing order, and we set by convention M0 = 0. For every k ≥ 1, we
also set Lk := Mk −Mk−1 ≥ 1.

For every n ≥ 1, let kn := kn(T

̂

) be the index such that Mkn ≤ n < Mkn+1.

Lemma 6.13. We have P-a.s.
lim
n→∞

kn
2 logn = 1.

Proof. Recall that for every j ≥ 1, there are N̂j − 1 Galton–Watson trees grafted at uj in T
̂

.
Consider the event that at least one of those plane trees grafted at uj reaches generation 0, and
let εj be the corresponding indicator function. Then,

P(εj = 0) = E
[
(1− qj−1)N̂j−1

]
= E

[
(1− qj−1)N̂−1

]
.

Let gθ be the generating function of θ, i.e.

gθ(r) :=
∑
k≥0

θ(k)rk , 0 ≤ r ≤ 1.

Since θ has a finite variance σ2,

gθ(1− s) = 1− s+ σ2

2 s
2 + o(s2) as s→ 0.

As the mean of N̂ − 1 is σ2, we have E
[
(1− s)N̂−1] = 1− σ2s+ o(s) as s→ 0, which, together

with (6.21), yields that

P(εj = 0) = 1− 2
j

+ o(j−1) as j →∞. (6.25)

Notice that by definition, kn = ε1 + ε2 + · · ·+ εn. Hence,

E[kn] =
n∑
j=1

(
1− P(εj = 0)

)
∼ 2 logn as n→∞.
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Since ε1, . . . , εn are independent, and we have also var(kn) = O(logn), the L2-convergence of
kn/(2 logn) follows immediately. The a.s. convergence is then obtained by standard monotonicity
and Borel-Cantelli arguments.

We introduce some additional notation before stating the next proposition. For every j ≥ 0,
we write P Ť

j for the (quenched) probability measure under which we consider a simple random
walk X = (Xk)k≥0 on T

̂

starting from the vertex uj . Under P Ť
j , we denote by S0 the hitting time

of generation 0 by the simple random walk X, and for every i ≥ 0, Πi := inf{k ≥ 0: Xk = ui}
denotes the hitting time of vertex ui.

Proposition 6.14. For every δ > 0, there exists an integer n0 ∈ N such that for every n ≥ n0,
we have

P
(
P [Ť]n(Xτn = u0) ≥ n−λ+δ

)
≤ 8P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2
)
,

and
P
(
P [Ť]n(Xτn = u0) ≤ n−λ−δ

)
≤ 8P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≤ n−λ−δ
)
.

Proof. We keep the notation used in the proof of Lemma 6.13, and observe that

P(Mkn+1 − n > n) = P(εn+j = 0 for all 1 ≤ j ≤ n)

=
n∏
j=1

P(εn+j = 0) −→
n→∞

1
4

by (6.25). One can thus find an integer n0 such that for every n ≥ n0,

P(Mkn+1 > 2n) ≥ 1
8 . (6.26)

Since Mkn+1 − n is independent of the finite tree above the vertex un in T

̂
,

P
(
Mkn+1 > 2n, P [Ť]n(Xτn = u0) ≥ n−λ+δ) = P(Mkn+1 > 2n)× P

(
P [Ť]n(Xτn = u0) ≥ n−λ+δ).

(6.27)
On the other hand, it is crucial to note that under the probability measure P, the probability

P [Ť]n(Xτn = u0) has the same distribution as the conditional probability

P Ť
n (XS0 = u0 |S0 < ΠMkn+1),

which can be calculated as

P Ť
n (XS0 = u0 |S0 < ΠMkn+1) =

P Ť
n (XS0 = u0, S0 < ΠMkn+1)

P Ť
n (S0 < ΠMkn+1)

=
P Ť
n (ΠMkn

< ΠMkn+1)× P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1)

P Ť
n (S0 < ΠMkn+1)

by the strong Markov property of the random walk. On the event {Mkn+1 > 2n}, simple
considerations show that P Ť

n (S0 < ΠMkn+1) ≥ 1/2. Hence, we have

P
(
Mkn+1> 2n, P [Ť]n(Xτn = u0) ≥ n−λ+δ) = P

(
Mkn+1> 2n, P Ť

n (XS0 = u0 |S0 < ΠMkn+1) ≥ n−λ+δ)
≤ P

(
Mkn+1> 2n, P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2

)
≤ P

(
P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≥ n−λ+δ/2
)
.
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The last display, together with (6.26) and (6.27), yields the first inequality in the statement of
the proposition.

We can argue in a similar manner for the second inequality stated in the proposition. Its
proof is even simpler because it suffices to use the bound

P Ť
Mkn

(XS0 = u0, S0 < ΠMkn+1) ≤ P Ť
n (XS0 = u0 |S0 < ΠMkn+1),

instead of the estimate P Ť
n (S0 < ΠMkn+1) ≥ 1/2 used above.

According to (6.24) and the preceding result, we can therefore derive Theorem 6.1 from the
following proposition.

Proposition 6.15. For every δ > 0, it holds that

lim
n→∞

P
(
n−λ−δ ≤ P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≤ n−λ+δ

)
= 1. (6.28)

6.4.1 Proof of Proposition 6.15

Under the probability measure P, for every k ≥ 1, we set

pk = pk(T

̂

) := P Ť
Mk

(XS0 = u0, S0 < ΠMk+1).

By the definition of Mk, there exists at least one plane tree grafted to uMk
that reaches gener-

ation 0. The root of this subtree is necessarily a child of uMk
distinct from uMk−1. If such a

subtree is unique, we let ck = ck(T

̂
) be the probability that a simple random walk starting from

its root reaches generation 0 before visiting uMk
. If there is more than one such grafted trees,

we take ck to be the sum of the corresponding probabilities. This definition is justified by the
fact that ck can be interpreted as the effective conductance between uMk

and generation 0 in
the graph that consists only of the vertex uMk

and all the subtrees grafted to it.
We also set, for every k ≥ 1,

hk = hk(T

̂

) := P Ť
Mk−1(S0 < ΠMk

),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0
before visiting uMk

. With the notation of the beginning of Section 6.3.3, it is clear that

hk = CMk−1([T

̂

]Mk−1).

We write `k = 1/Lk = (Mk −Mk−1)−1 for all k ≥ 1. Then simple considerations show that

p1 = `1
`1 + c1 + `2

,

and, for all k ≥ 2,

pk = `k
`k + ck + `k+1

(
pk−1 + `k

`k + ck−1 + hk−1
pk
)
. (6.29)

To establish the last formula, we consider the excursions of simple random walk outside of vertex
uMk

, which are independent of the same law. Under this excursion law, the random walk makes
its first jump with equal probability towards one of its neighbors, which are uMk−1, uMk+1 and
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the children of uMk
distinct from uMk−1. The respective probabilities for an excursion to visit

uMk−1 , to visit uMk+1 , and to reach generation 0 in one of the subtrees grafted at uMk
, are

proportional respectively to 1/Lk = `k, to 1/Lk+1 = `k+1 and to ck. So the probability for the
random walk starting from uMk

to visit uMk−1 before hitting uMk+1 or reaching generation 0 is
`k

`k + `k+1 + ck
.

Next, conditionally on the latter event, the strong Markov property leads us to consider a simple
random walk that starts from uMk−1 . With probability pk−1 it reaches generation 0 by hitting
the vertex u0 before moving down to uMk

. However, we must also add the probability that this
random walk goes back down to uMk

before reaching generation 0, which is equal to
`k

`k + ck−1 + hk−1
,

multiplied by the probability pk that once returning to uMk
the random walk will eventually hit

generation 0 at u0 before moving down to uMk+1 .
We derive from (6.29) that

pk−1 = pk
(`k + ck + `k+1

`k
− `k
`k + ck−1 + hk−1

)
,

from which it follows that

p1 = pk ×
k∏
j=2

(
1 + cj + `j+1

`j
− `j
`j + cj−1 + hj−1

)
.

We define thus, for every j ≥ 2,

Qj = Qj(T

̂
) := log

(
1 + cj + `j+1

`j
− `j
`j + cj−1 + hj−1

)
.

Lemma 6.16. We have
1
k

k∑
j=2

Qj
L2(P)−−−→
k→∞

λ

2 . (6.30)

The proof of this key lemma is postponed to the next section. Now for any δ > 0, let us
consider the event {

(λ− δ) logn ≤
kn∑
j=2

Qj ≤ (λ+ δ) logn
}
.

Using Lemma 6.13 and Lemma 6.16, we see that the last event holds with P-probability tending
to 1 as n→∞. As

pkn = p1 exp
(
−

kn∑
j=2

Qj
)
,

we have
lim
n→∞

P
(
p1n
−λ−δ ≤ pkn ≤ p1n

−λ+δ
)

= 1.

Recalling the definition of pk, we conclude that

lim
n→∞

P
(
p1n
−λ−δ ≤ P Ť

Mkn
(XS0 = u0, S0 < ΠMkn+1) ≤ p1n

−λ+δ
)

= 1.

Since δ is arbitrary, the required convergence (6.28) readily follows from the last display, and
this completes the proof of Proposition 6.15 and Theorem 6.1. It remains to prove Lemma 6.16.
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6.4.2 Proof of Lemma 6.16

From the definition of Qk, we can write for every k ≥ 2

Qk = log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)
.

Lemma 6.17. We have(Lk+1
Mk

,
Lk
Mk−1

,Mkck,Mk−1ck−1,Mk−1hk−1
) (d)−→
k→∞

(
R,R′, C, C′, Ĉ

)
,

where in the limit
– R and R′ are two positive random variables with the same distribution given by

P(R > x) = (1 + x)−2 for all x ≥ 0;

– C and C′ are distributed according to the law γ;
– Ĉ is distributed according to the law γ̂.

Furthermore, we suppose that R,R′, C, C′, Ĉ are all defined under the probability measure P, and
they are independent.

Proof. We first observe that (Mk−1, Lk)k≥1 is a Markov chain on Z+×N whose initial distribution
and transition probabilities are given as follows. Initially M0 = 0 and for every integer ` ≥ 1,

P(L1 > `) =
∏̀
j=1

P(εj = 0),

where εj = 0 means as previously that none of the Galton–Watson trees grafted at uj reaches
generation 0. Then for every k ≥ 1, Mk = Mk−1 + Lk a.s. and conditionally on {Mk = m},

P(Lk+1 > ` |Mk = m) =
∏̀
j=1

P(εm+j = 0) =: F (m, `), for every ` ≥ 1. (6.31)

Using (6.25), it is elementary to verify that for every x > 0,

F (m, bxmc) −→
m→∞

1
(1 + x)2 .

For every k ≥ 1, let Fk = σ(L1, L2, . . . , Lk) be the σ-field generated by (Li, 1 ≤ i ≤ k), so that
(Fk)k≥1 is the natural filtration associated with the Markov chain (Mk−1, Lk)k≥1. As Mk ≥ k,
it is clear that Mk →∞ as k →∞. By dominated convergence and the last display, we get that
for every x, y > 0,

P
( Lk
Mk−1

> x,
Lk+1
Mk

> y
)

= E
[
1
{ Lk
Mk−1

> x
}
P
(
Lk+1
Mk

> y

∣∣∣∣Fk)]
= E

[
1
{ Lk
Mk−1

> x
}
P
(
Lk+1
Mk

> y

∣∣∣∣Mk

)]
−→
k→∞

1
(1 + x)2(1 + y)2 ,
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which entails that ( Lk
Mk−1

,
Lk+1
Mk

) (d)−→
k→∞

(
R′,R

)
. (6.32)

Note that conditionally on Mk and on the number of subtrees grafted at uk that hit genera-
tion 0, these subtrees are Galton–Watson trees conditioned to have height greater than Mk − 1.
Furthermore, the property E[N̂ ] =

∑
k2θ(k) <∞ and the estimate (6.21) entail that a.s. for all

sufficiently large k, there is a unique subtree grafted at uMk
that reaches generation 0. Hence

by Proposition 6.11, we obtain the convergence

(
Mk−1ck−1,Mkck

) (d)−→
k→∞

(
C′, C

)
, (6.33)

which holds jointly with (6.32), provided we let (C′, C) be independent of (R′,R).
Let J ≥ 2 be a fixed integer. We can generalize the preceding arguments to show that the

2J-tuple ( Lk−1
Mk−2

,
Lk−2
Mk−3

, . . . ,
Lk−J
Mk−J−1

,Mk−2ck−2,Mk−3ck−3, . . . ,Mk−J−1ck−J−1
)

converges in distribution as k →∞ to (R1,R2, . . . ,RJ , C1, C2, . . . , CJ). These random variables
appearing in the limit are all independent, and (Rj)1≤j≤J , respectively (Cj)1≤j≤J , have the same
distribution as R, resp. as C. If we set Vj = Rj

1+Rj for all 1 ≤ j ≤ J , then (Vj)1≤j≤J are i.i.d. with
the same law of density 2(1− x) on [0, 1], and the previous convergence can be reformulated as( Lk−j

Mk−j
,Mk−j−1ck−j−1

)
1≤j≤J

(d)−→
k→∞

(Vj , Cj)1≤j≤J . (6.34)

For all integers k ≥ 2 and 1 ≤ j < k, we define

h
(j)
k = h

(j)
k (T

̂

) := P Ť
Mk−1(S0 < ΠMk

∧ΠMk−j−1),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0
before visiting uMk

or uMk−j−1. We set by convention h(0)
k = 0. From the interpretation of h(J)

k−1
as a conductance, we obtain the formula

h
(J)
k−1 =

(
Lk−1 +

(
ck−2 + h

(J−1)
k−2

)−1)−1

by the series law and parallel law. It follows that

Mk−1h
(J)
k−1 =

 Lk−1
Mk−1

+
1− Lk−1

Mk−1

Mk−2ck−2 +Mk−2h
(J−1)
k−2

−1

.

The same calculation can be repeated for Mk−2h
(J−1)
k−2 ,Mk−3h

(J−2)
k−3 , etc. By using (6.34) and

the fact that h(0)
k−J−1 = 0, we see that the law of Mk−1h

(J)
k−1 converges weakly to Φ̂J(δ0) as

k → ∞, where Φ̂ is the mapping defined in (6.11). Moreover, according to assertion (1) in
Proposition 6.7, Φ̂J(δ0)→ γ̂ = Law(Ĉ) weakly as J →∞.

On the other hand,

hk − h
(J)
k = P Ť

Mk−1(ΠMk−J−1 < S0 < ΠMk
) ≥ 0.
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Note that there is probability at least 1 − Mk−J−1
Mk

that, after hitting the vertex uMk−J−1, the
simple random walk on T

̂

will reach generation 0 before hitting uMk
. Hence, by the strong

Markov property of simple random walk, we have

hk − h
(J)
k ≤ P Ť

Mk−1(ΠMk−J−1 < S0 ∧ΠMk
)× Mk−J − 1

Mk
.

Since by similar reasoning,

P Ť
Mk−1(ΠMk−J−1 < S0 ∧ΠMk

) ≤ 1
Mk −Mk−J + 1 ,

it follows that
Mkhk −Mkh

(J)
k ≤ Mk−J − 1

Mk −Mk−J + 1 .

Thus, for any η > 0,

P
(
|Mk−1hk−1 −Mk−1h

(J)
k−1| ≥ η

)
≤ P

( Mk−J−1 − 1
Mk−1 −Mk−J−1 + 1 ≥ η

)
.

But due to the previous discussions, it is clear that

lim
J→∞

lim sup
k→∞

P
( Mk−J−1 − 1
Mk−1 −Mk−J−1 + 1 ≥ η

)
= 0.

So we obtain, for any η > 0, that

lim
J→∞

lim sup
k→∞

P
(
|Mk−1hk−1 −Mk−1h

(J)
k−1| ≥ η

)
= 0.

Finally, by applying [11, Theorem 3.2] we get that

Mk−1hk−1
(d)−→
k→∞

Ĉ. (6.35)

Notice that hk−1 only depends on Mk−1 and the finite tree strictly above the vertex uMk−1

in T

̂

. So conditionally on Mk−1, the latter quantity hk−1 is independent of (Lk, Lk+1, ck−1, ck).
In consequence, the convergence (6.35) holds jointly with (6.32) and (6.33), if we take Ĉ to be
independent of (R,R′, C, C′). The proof of Lemma 6.17 is therefore complete.

Lemma 6.18. It holds that
sup
k≥1

E
[
(Mkhk)2] <∞.

Proof. From the interpretation of hk as a conductance, we know by the series law and parallel
law that

hk =
(
Lk +

(
ck−1 + hk−1

)−1)−1
.

It follows that
Mkhk = Mk−1ck−1 +Mk−1hk−1

Lk
Mk

(Mk−1ck−1 +Mk−1hk−1) + 1− Lk
Mk

.
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From the interpretation of ck−1 and hk−1 as conductances, it is easy to see that Mk−1ck−1 ≥ 1
and Mk−1hk−1 ≥ 1. Hence,

Mkhk ≤
Mk−1ck−1 +Mk−1hk−1

2Lk
Mk

+ 1− Lk
Mk

≤ Mk−1ck−1 + Mk−1hk−1

1 + Lk
Mk

.

For any η > 0, one can take C(η) > 1+ 1
η so that (a+b)2 ≤ C(η)a2 +(1+η)b2 for every a, b > 0.

Applying this inequality to the last display, we obtain

E
[
(Mkhk)2] ≤ C(η)E

[
(Mk−1ck−1)2]+ (1 + η)E

[(Mk−1hk−1

1 + Lk
Mk

)2]
. (6.36)

Notice that

E
[(Mk−1hk−1

1 + Lk
Mk

)2]
= E

[ ∞∑
`=1

P(Lk = ` |Mk−1) (Mk−1hk−1)2

(1 + `
Mk−1+`)2

]
.

According to (6.31), there exists a constant c > 0 such that, a.s. for all integers k ≥ 2, we have
P(Lk ≥Mk−1 |Mk−1) ≥ c. Thus,

∑
`≥1

P(Lk = ` |Mk−1) (Mk−1hk−1)2

(1 + `
Mk−1+`)2

≤
(2
3
)2 ∑

`≥Mk−1

P(Lk = ` |Mk−1)(Mk−1hk−1)2 +
∑

`<Mk−1

P(Lk = ` |Mk−1)(Mk−1hk−1)2

≤
(
1− 5

9c
)
(Mk−1hk−1)2,

and it follows that
E
[(Mk−1hk−1

1 + Lk
Mk

)2]
≤
(
1− 5

9c
)
E
[
(Mk−1hk−1)2].

Together with (6.36), the last display entails that

E
[
(Mkhk)2] ≤ C(η)E

[
(Mk−1ck−1)2]+ (1 + η)(1− 5

9c)E
[
(Mk−1hk−1)2].

Recall that by Lemma 6.12, E
[
(Mk−1ck−1)2] is uniformly bounded with respect to k. So by

choosing η sufficiently small so that (1+η)(1− 5
9c) < 1, we see that there exist positive constants

C <∞ and ρ < 1, both independent of k, such that for all k ≥ 2,

E
[
(Mkhk)2] ≤ C + ρE

[
(Mk−1hk−1)2].

The sequence (E[(Mkhk)2])k≥1 is therefore bounded.

With the notation of Lemma 6.17, we set

Q∞ := log
(

1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉ

)).
Lemma 6.19. (i) We have limk→∞ E[Qk] = E[Q∞].
(ii) We have the equality E[Q∞] = λ/2.
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(iii) It holds that
sup
i,j≥1

E
[
|QiQj |

]
<∞ and sup

i,j≥1
E
[
(QiQj)2] <∞.

Proof. (i) On the one hand, since Mk
Lk

> 1,

Qk ≤ log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

)
≤ log

(
1 +Mkck + Mk

Lk+1

)
.

On the other hand,

Qk ≥ log
(

1−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)

= − log
(

1 +
Mk
Lk

Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)

)
= − log

(
1 +

Mk−1
Lk

Mk−1ck−1 +Mk−1hk−1

)
.

Using the facts that Mk−1ck−1 ≥ 1 and Mk−1hk−1 ≥ 1, we arrive at

|Qk| ≤ max
{

log
(
1 +Mkck + Mk

Lk+1

)
, log

(
1 + Mk−1

2Lk

)}
.

One can find A > 0 such that log(1 + x) ≤ A+ x1/2 for every x > 0. It follows that

|Qk| ≤ A+
(
Mkck + Mk

Lk+1

) 1
2 +

(Mk−1
Lk

) 1
2 ≤ A+ (Mkck)

1
2 +

( Mk

Lk+1

) 1
2 +

(Mk−1
Lk

) 1
2
. (6.37)

Recall the convergence in distribution Mkck
(d)→ C shown in Lemma 6.17. By Lemma 6.12, it

follows that
E[Mkck] −→

k→∞
E[C]. (6.38)

In particular, supk E[Mkck] <∞. Meanwhile, using (6.25) and (6.31), it is not difficult to verify
that there exists a positive constant K such that for every x > 0,

sup
k≥1

P
( Mk

Lk+1
> x

)
≤ K

1 + x
.

So using the formula

E
[( Mk

Lk+1

)α]
=
∫ ∞

0
αxα−1 P

( Mk

Lk+1
> x

)
dx ,

we get the existence of a constant α ∈ (1
2 , 1) such that

sup
k≥1

E
[( Mk

Lk+1

)α]
<∞. (6.39)

Hence, it follows from (6.37) that (Qk)k≥2 is bounded in Lp with some p > 1. The sequence
(Qk)k≥2 is thus uniformly integrable. However, according to Lemma 6.17, Qk converges in
distribution to Q∞. Therefore, Qk → Q∞ in L1 and we have

lim
k→∞

E[Qk] = E[Q∞].
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(ii) Recall that V = R
1+R and V ′ = R′

1+R′ are independent with the same law of density
2(1− x) on [0, 1]. Noting that

log
(

1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉ

)) = log
((
C + 1
R

)
V ′ + V ′(C′ + Ĉ)

1− V ′ + V ′(C′ + Ĉ)

)

= log V ′ + log
(
C + 1
R

+
(
V ′ + 1− V ′

C′ + Ĉ

)−1)
,

we can use the distributional identity (6.6) to obtain

E
[
Q∞

]
= E

[
log V ′

]
+ E

[
log

(
C + 1
R

+ Ĉ
)]
.

Since R = V
1−V , it follows that

log
(
C + 1
R

+ Ĉ
)

= log(1− V + V (C + Ĉ))− log V,

which yields E
[
Q∞

]
= E

[
log(1 − V + V (C + Ĉ)

]
. To complete the proof of assertion (ii), we

apply (6.6) again to see that

E
[
log(1− V + V (C + Ĉ))

]
= E

[
log(Ĉ + C)

]
− E

[
log(Ĉ)

]
= E

[
log

( Ĉ + C
Ĉ

)]
,

which is equal to λ/2 according to (6.20).
(iii) There exists a constant Ã > 0 such that log(1+x) ≤ Ã+x1/4 for every x > 0. It follows

then from the same arguments as in the proof of assertion (i) that

|QiQj | ≤
(

log
(
1 +Mici + Mi

Li+1

)
+ log

(
1 + Mi−1

2Li

))(
log

(
1 +Mjcj + Mj

Lj+1

)
+ log

(
1 + Mj−1

2Lj

))
≤
(

2Ã+
(
Mici + Mi

Li+1

) 1
4 +

(Mi−1
Li

) 1
4
)(

2Ã+
(
Mjcj + Mj

Lj+1

) 1
4 +

(Mj−1
Lj

) 1
4
)
.

In order to prove that supi,j E[|QiQj |] <∞, it is enough to develop the product in the last line
of the preceding display, and to show that the expectation of each term is uniformly bounded
with respect to i and j. In fact, by the Cauchy–Schwarz inequality,

E
[(Mi−1

Li

) 1
4
(Mj−1
Lj

) 1
4
]
≤ E

[(Mi−1
Li

) 1
2
] 1

2
E
[(Mj−1

Lj

) 1
2
] 1

2
,

and the right-hand side is uniformly bounded according to (6.39). Moreover, as

E
[(
Mici + Mi

Li+1

) 1
4
(
Mjcj + Mj

Lj+1

) 1
4
]
≤ E

[(
(Mici)

1
4 +

( Mi

Li+1

) 1
4
)(

(Mjcj)
1
4 +

( Mj

Lj+1

) 1
4
)]
,

we can develop the right-hand side and similarly use (6.38) and (6.39) to show that it is uniformly
bounded. All the other terms can be treated in an analogous way. By similar arguments, one
can also prove that supi,j E[(QiQj)2] <∞. This finishes the proof of assertion (iii).

Using assertions (i) and (ii) of Lemma 6.19, we have thus

lim
k→∞

E
[1
k

k∑
j=2

Qj

]
= lim

k→∞

1
k

k∑
j=2

E[Qj ] = E[Q∞] = λ

2 . (6.40)
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Lemma 6.20. We have

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj
)2]
≤
(
E[Q∞]

)2 = λ2

4 . (6.41)

Proof. We first note that for every δ ∈ (0, 1/2),∣∣∣∣∣E[ ∑
2≤i,j≤k

QiQj
]
− E

[ ∑
δk≤i,j≤k
|i−j|>δk

QiQj
]∣∣∣∣∣ ≤ 4δk2 × sup

i,j
E
[
|QiQj |

]
.

In view of Lemma 6.19 (iii), the estimate (6.41) will be proved if we can show for arbitrarily
small δ ∈ (0, 1/2) that

lim sup
k→∞

1
k2 E

[ ∑
δk≤i,j≤k
|i−j|>δk

QiQj

]
≤
(
E[Q∞]

)2
. (6.42)

We thus fix δ ∈ (0, 1/2) in the following arguments. By symmetry, we can further restrict our
attention to the indices i and j such that δk ≤ i, j ≤ k and j − i > δk.

Notice that by the Cauchy–Schwarz inequality,∣∣∣∣∣ 1
k2 E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1≥εMj−1}

]∣∣∣∣∣ ≤ 1
k2

∑
δk≤i,j≤k
j−i>δk

P(Mi+1 ≥ εMj−1)
1
2E
[
(QiQj)2] 1

2

≤ sup
δk≤i,j≤k
j−i>δk

P(Mi+1 ≥ εMj−1)
1
2 × sup

i,j
E
[
(QiQj)2] 1

2 . (6.43)

However, observe that Lemma 6.13 can be reformulated as

logMk

k
P−a.s.−→
k→∞

1
2 ,

and it follows that for all ε ∈ (0, 1),

lim sup
k→∞

P
(
{there exist i, j ∈ [δk, k] with j − i > δk such that Mi+1 ≥ εMj−1}

)
= 0. (6.44)

Together with Lemma 6.19 (iii), the latter display implies that the right-hand side of (6.43)
converges to 0 as k →∞. The proof of (6.42) is thus reduced to showing that for fixed δ,

lim sup
ε→0

(
lim sup
k→∞

2
k2 E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1<εMj−1}

])
≤
(
E[Q∞]

)2
. (6.45)

To this end, we take ε ∈ (0, 1/2) and define, for every k ≥ 2,

hεk = hεk(T

̂

) := CMk−1−bεMkc([T

̂

]∗(Mk−1))
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where [T

̂

]∗(Mk−1) stands for the reduced tree associated with [T

̂

]Mk−1 up to height Mk − 1.
In other words, hεk is the probability that a simple random walk on T

̂

starting from uMk−1
hits a point of generation −bεMkc that has a descendant at generation 0 before hitting uMk

.
Comparing with the definition of hk, it is clear that hεk ≥ hk. On the other hand, by similar
arguments as in the proof of Proposition 6.11, we obtain

hεk − hk ≤
bεMkc
Mk

hεk,

which entails that
Mkh

ε
k −Mkhk ≤ bεMkchεk ≤ 2εMkhk. (6.46)

We set

Qεk = Qεk(T

̂

) := log
(

1 +
Mkck + Mk

Lk+1
Mk
Lk

−
Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1h
ε
k−1)

)
≥ Qk.

Using the elementary inequality 0 ≤ log x− log y ≤ x−y
y for x ≥ y > 0, we see that

Qεk −Qk ≤
Mk
Lk

Mkck + Mk
Lk+1

( Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1hk−1)
−

Mk
Lk

Mk
Lk

+ Mk
Mk−1

(Mk−1ck−1 +Mk−1h
ε
k−1)

)

≤
(Mk
Lk

)2
Mkck + Mk

Lk+1

·
Mk
Mk−1

(Mk−1h
ε
k−1 −Mk−1hk−1)(Mk

Lk
+ Mk

Mk−1
(Mk−1ck−1 +Mk−1hk−1)

)2 .
Taking account of the easy facts that Mkck ≥ 1 and Mk = Mk−1 + Lk, we obtain

Qεk −Qk ≤
(Mk
Lk

)2 Mk
Mk−1

(Mk−1h
ε
k−1 −Mk−1hk−1)(

Mk
Lk

+ Mk
Mk−1

)2 ≤Mk−1h
ε
k−1 −Mk−1hk−1,

which, together with (6.46), implies that

Qεk −Qk ≤ 2εMk−1hk−1.

This allows us to approximate E[QiQj1{Mi+1<εMj−1}] by E[QiQεj1{Mi+1<εMj−1}], because∣∣∣E[QiQj1{Mi+1<εMj−1}
]
− E

[
QiQ

ε
j1{Mi+1<εMj−1}

]∣∣∣ ≤E
[
|Qi(Qεj −Qj)|

]
≤E

[
(Qεj −Qj)2] 1

2 × E
[
(Qi)2] 1

2

≤ 2εE
[
(Mj−1hj−1)2] 1

2 × E
[
(Qi)2] 1

2 ,

and the right-hand side converges to 0 uniformly with respect to i, j and k when ε→ 0, according
to Lemma 6.18 and assertion (iii) of Lemma 6.19.

Let us consider indices i, j such that δk ≤ i, j ≤ k and j − i > δk, and let F̃i be the σ-field
generated by the variable Mi+1 and the finite part of T

̂

above the vertex uMi+1 . Informally, one
can think of it as the σ-field generated by [T

̂

]Mi+1 . Thus, Qi is F̃i-measurable and

E
[
QiQ

ε
j1{Mi+1<εMj−1}

]
= E

[
Qi E

[
Qεj1{Mi+1<εMj−1} | F̃i

]]
. (6.47)
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At this point, we observe that

E
[
Qεj1{Mi+1<εMj−1} | F̃i

]
= E

[
Qεj1{Mi+1<εMj−1} |Mi+1

]
. (6.48)

On the other hand, one can generalize the proof of Lemma 6.17 to show that(Lj+1
Mj

,
Lj
Mj−1

,Mjcj ,Mj−1cj−1,Mj−1h
ε
j−1

) (d)−→
j→∞

(
R,R′, C, C′, Ĉε

)
, (6.49)

where in the limit, the first four random variables R,R′, C, C′ are the same as in Lemma 6.17,
whereas Ĉε is distributed as C(∆̂ε). It is assumed in addition that R,R′, C, C′, Ĉε are independent
under P. Furthermore, it is not hard to verify that the convergence (6.49) is still valid if, instead
of the distribution of (Lj+1

Mj
,
Lj
Mj−1

,Mjcj ,Mj−1cj−1,Mj−1h
ε
j−1

)
,

we consider the conditional distribution of the same random 5-tuple given Mi+1, and let i and j
tend to infinity satisfying that j − i > δj.

We define thus
Qε∞ := log

(
1 +
C + 1

R
1+R′
R′

− 1
1 +R′

(
C′ + Ĉε

)).
By the same arguments used for assertions (i) and (iii) of Lemma 6.19, we obtain

lim
i,j→∞
j−i>δj

(
sup

` : P(Mi+1=`)>0

∣∣∣E[Qεj |Mi+1 = `
]
− E

[
Qε∞

]∣∣∣) = 0,

and we see that
sup

` : P(Mi+1=`)>0
E
[
(Qεj)2 |Mi+1 = `

]
is uniformly bounded for all i, j satisfying that j− i > δj. In view of (6.44) and (6.48), it follows
that a.s.

lim
i,j→∞
j−i>δj

∣∣∣E[Qεj1{Mi+1<εMj−1} | F̃i
]
− E

[
Qε∞

]∣∣∣ = 0.

Hence, we get from (6.47) and Lemma 6.19 (i) that

lim
k→∞

(
sup

i,j∈[δk,k]
j−i>δk

E
[
QiQ

ε
j1{Mi+1<εMj−1}

])
≤ E[Q∞]E

[
Qε∞

]
.

Finally, it remains to estimate the difference between E
[
Qε∞

]
and E[Q∞]. To do this, we use

a coupling argument by defining both Ĉε and Ĉ from a common reduced tree ∆̂, independent of
(R,R′, C, C′), so that Ĉ = C(∆̂) and Ĉε = C(∆̂ε). Since C ≥ 1 and Ĉε ≥ Ĉ ≥ 1, one can proceed
in the same way as we did for bounding Qεk −Qk, and arrive at

0 ≤ Qε∞ −Q∞ ≤
1 + 1

R′

C + 1
R

R′(Ĉε − Ĉ)
(1 +R′(C′ + Ĉ))2

≤
(
1 + 1
R′
)R′(Ĉε − Ĉ)

(1 +R′)2 ≤ Ĉε − Ĉ.

Taking account of (6.22), the last display gives
∣∣E[Qε∞]− E[Q∞]

∣∣ ≤ 2εE[Ĉ], and the right-hand
side converges to 0 as ε→ 0.
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According to the previous discussions, we can conclude that

lim sup
ε→0

(
lim sup
k→∞

2
k2E

[ ∑
δk≤i,j≤k
j−i>δk

QiQj1{Mi+1<εMj−1}

])

= lim sup
ε→0

(
lim sup
k→∞

2
k2E

[ ∑
δk≤i,j≤k
j−i>δk

QiQ
ε
j1{Mi+1<εMj−1}

])

≤ lim sup
ε→0

E[Q∞]E
[
Qε∞

]
=
(
E[Q∞]

)2
,

which finishes the proof of (6.45). The proof of Lemma 6.20 is therefore completed.

Proof of Lemma 6.16. By combining (6.40) and (6.41), we have

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj −
λ

2
)2]
≤
(

lim sup
k→∞

E
[(1
k

k∑
j=2

Qj
)2])

− λ lim
k→∞

E
[1
k

k∑
j=2

Qj

]
+ λ2

4 ≤ 0,

which gives the desired result.
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