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Résumé

Cette these est une contribution a la théorie des modeles des corps valués. Les principaux résultats
de ce texte sont des résultats d’éliminations des quantificateurs et des imaginaires.

Le premier chapitre contient une étude des imaginaires dans les extensions finies de Q,,. Ony dé-
montre que ces corps ainsi que leurs ultraproduits éliminent les imaginaires dans le langage géo-
métrique. On en déduit un résultat de rationalité uniforme pour les fonctions zéta associées aux
familles de relations d’équivalences définissables dans les extensions finies de Q,,.

o . AN . Yy ——al .
La motivation premiére du deuxiéme chapitre est I'étude de W(F," ®) en tant que corps valué analy-
tique de différence. Plus généralement, on démontre un théoréeme d’élimination des quantificateurs
de corps dans le langage RV pour les corps valués analytiques o-Henséliens de caractéristique nulle.

On donne aussi une axiomatisation de la théorie de W(Ealg) ainsi qu'une preuve quelle est NIP.
Dans le troisieme chapitre, on prouve la densité des types définissables dans certains enrichisse-
ments d’ACVF. On en déduit un critere pour I'élimination des imaginaires et la propriété d’exten-
sion invariante. Ce chapitre contient aussi des résultats abstraits sur les ensembles extérieurement
définissables dans les théories NIP.

Dans le dernier chapitre, les résultats du chapitre précédent sont appliqués a VDF, la modéle com-
plétion des corps valués munis d’'une dérivation qui préserve la valuation, pour obtenir I'élimination
des imaginaires dans le langage géométrique ainsi que la densité des types définissables et la pro-
priété d’extension invariante. Ce chapitre contient aussi des considérations sur les fonctions défi-
nissables, les types et les groupes définissables dans VDF.

Mots-clefs : Théorie des modeles, corps valués, élimination des quantificateurs, élimination des
imaginaires, structure analytique, dérivation, différence, métastabilité.

ELIMINATIONS IN VALUED FIELDS
Abstract

This thesis is about the model theory of valued fields. The main results in this text are eliminations
of quantifiers and imaginaries.

The first chapter is concerned with imaginaries in finite extensions of Q,,. 1 show that these fields
and their ultraproducts eliminate imaginaries in the geometric language. As a corollary, 1 obtain
the uniform rationality of zeta functions associated to families of equivalence relations that are
definable in finite extensions of Q,,.

The motivation for the second chapter is to study W(]F_palg) as an analytic difference valued field.
More generally, 1 show a field quantifier elimination theorem in the RV -language for o-Henselian
characteristic zero valued fields with an analytic structure. 1 also axiomatise the theory of W(]I*Tpalg)
and I show that this theory is NIP.

In the third chapter, 1 prove the density of definable types in certain enrichments of ACVF. From
this result, 1 deduce a criterion for the elimination of imaginaries and the invariant property. This
chapter also contains abstract results on externally definable sets in NIP theories.

In the last chapter, the previous chapter is applied to VDF, the model completion of valued fields
with a valuation preserving derivation, to obtain the elimination of imaginaries in the geometric
language, as well as the density of definable types and the invariant extension property. This chap-
ter also contains considerations about definable functions, types and definable groupes in VDF.

Keywords : Model theory, valued fields, elimination of quantifiers, elimination of imaginaries, an-
alytic structure, derivation, difference, metastability.






Exterminate! Exterminate!
Any random Dalek

Plus il y a demmental, plus il y a de trous ;
plus il y a de trous, moins il y a demmental ;
donc plus il y a demmental, moins il y a demmental.

Sagesse populaire
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Introduction

LE LOGICIEN
Permettez moi de me présenter... Logicien professionnel : voici ma carte d’identité.

E. lonesco, Rhinocéros, Acte 1

Ce texte a pour sujet I'étude modele théorique des corps valués. La théorie des modeles est
‘étude des structures et des ensembles définissables au premier ordre dans ces structures.
On distingue souvent la théorie des modeles pure, qui est I'étude abstraite de théories et
de la combinatoire des ensembles définissables, et la théorie des modeles appliquée dont
le but est d’étudier certaines structures concretes provenant du reste des mathématiques;
ici, les corps valués. Mais la distinction est relativement arbitraire, les questions de théorie
des modeles pure provenant souvent d’applications et les considérations plus « pures »
permettant souvent de mieux comprendre les cas concrets qui nous intéressent.

De fait, ce texte est clairement un exemple de théorie des modeles appliquée mais certains
des résultats présentés répondent a des préoccupations beaucoup plus « pures ».

Les corps valués et le principe d’Ax-Kochen-ErSov

Parmi les premiers résultats de théorie des modeles des corps valués, il y en a un en parti-
culier qui préfigure le développement ultérieur du domaine : le théoréme d’Ax-Kochen-
Ersov [AKGs; Ersos]. S'il serait déraisonnable de négliger I'aspect fondateur des travaux
d’Abraham Robinson [Rob77] sur les corps valués algébriquement clos (ACVF), ce théo-
réme contient en germe un principe qui s'est révélée d’'une extréme importance : un corps
valué est une structure « contrdlée » d’'une part par un groupe ordonné (son groupe de
valeur) et d’autre part par un corps (son corps résiduel). Les corps de Hahn illustrent par-
faitement cette idée : a partir de n'importe quel corps k et de n'importe quel groupe abélien
ordonné I, on peut construire le corps valué k((¢t")) dont les éléments sont les séries for-
melles Y. .- a,t7 a coefficient dans k telles que I'ensemble {y € I' : a,, # 0} est bien ordonné.
Le corps résiduel de k((#!)) est exactement k et son groupe de valeur est exactement I'.

Certes, tout corps valué K de groupe de valeur I" et de corps résiduel k nest pas isomorphe
ak((t")). Mais, d’apres le théoreme d’Ax-Kochen-ErSov, s'il est Hensélien (cest-a-dire que
la valuation peut étre étendue de facon unique a toute extension algébrique) et si k est de
caractéristique nulle, la théorie au premier ordre de K est contrdlée par celle de ket I :

Théoréme o.1 (théoréme d’Ax-Kochen-Er$ov, 1965) :

Soient K et L des corps valués Henséliens déquicaractéristique nulle. Les corps valués K et
L sont élémentairement équivalentssi et seulement si leurs corps résiduels et leurs groupes
de valeur le sont.

3Cest-a-dire tout énoncé du premier ordre dans le langage des corps valués vrai dans I'un des corps valués
est vrai dans l'autre.

iii



Introduction

Dong, si K est Hensélien d’équicaractéristique nulle il est élémentairement équivalent a
k((t")), ou k est son corps résiduel et I est son groupe de valeur.

Le théoréeme d’Ax-Kochen-Ersov sétend tel quel a la caractéristique mixte non ramifiée,
cest-a-dire quand K est de caractéristique nulle, k est de caractéristique p positive et val(p)
est le plus petit élément strictement positif. Avec quelques complications supplémentaires,
il s’étend aussi a la caractéristique mixte finiment ramifiée (quand val(p) est un multiple
fini du plus petit élément strictement positif du groupe de valeur). Dans la suite, on di-
ra plus généralement qu'un corps valué de caractéristique nulle est finiment ramifié si sa
caractéristique résiduelle est nulle ou s’il est de caractéristique mixte finiment ramifiée.
L'un des corollaires les plus marquants du théoreme d’Ax-Kochen-Ersov est que, si {l est un
ultrafiltre non principal sur I'ensemble des nombres premiers, alors les deux ultraproduits
[1,Q,/Uet]],F,((t))/sont élémentairement équivalents en tant que corps valués. Au-
trement dit, un énoncé (du premier ordre) est vérifié dans tout Q, pour p assez grand, si
et seulement s’il est vérifié dans tout F,((¢)) pour p assez grand. La motivation premiere
d’Ax et Kochen lorsqu’ils ont prouvé ce principe de transfert était de répondre a la question
suivante d’Artin : est-il vrai que tout polynome sur Q, homogene de degré d en au moins
d? + 1 variables a une racine non triviale. D’apres un théoréme de Lang, ce résultat est vrai
dans IF,((t)), pour tout p. On en déduit donc que pour tout d il existe un nombre premier
po tel que la réponse a la question d’Artin est positive dans tout Q,, tel que p > py. On sait
depuis que ce résultat est « optimal » car on connait des contre-exemples pour p petit.
Récemment ce type de résultats de transfert a été étendu, au-dela des langages du premier
ordre, aux égalités d’intégrales p-adiques contenant des caractéres additifs [CL10], par le
biais de l'intégration motivique. Cela a permis, par exemple, a Cluckers, Hales et Loeser
[CHLI11] de transférer le lemme fondamental du programme de Langlands de la caractéris-
tique positive a la caractéristique nulle.

L'idée sous-jacente au théoréme d’Ax-Kochen-Ersov de contréle d’'un corps valué Hensélien
par son groupe de valeur et son corps résiduel a de nombreux avatars dans la théorie des
modéles des corps valués telle qu’elle a été développée depuis. L'un de ceux-ci est le résultat
de Delon [Del81] (en équicaractéristique nulle) et Bélair [Bélgg] (en caractéristique mixte
finiment ramifiée) sur la « modération » des corps valués finiment ramifiés.

Avant d’expliciter ce résultat, il est nécessaire d’expliquer ce quon entend ici par modé-
ration. Dans ses travaux sur la classification, Shelah a introduit, des les années 1970, un
certain nombre de classes de théories plus ou moins modérées, liées a la présence (ou non)
de configurations combinatoires dans leurs modéles. La premiere qu’il ait définie, et de loin
la plus étudiée de ces classes, est celle des théories stables :

Définition o.2 (Théorie stable) :

Soient o(x,y) une L-formule et M une L-structure. On dit que  a la propriété de l'ordre dans
M sil existe des suites de uples (a;);en et (b;)ien € M tels que M = ¢(a;,b;) si et seulement si
i< 7.

Une L-théorie T est dite stable si aucune L-formule n'a la propriété de l'ordre dans aucun modéle
deT.

Cette condition, qui semble particuliérement combinatoire, a, en fait, un grand nombre de
conséquences, qui font de la stabilité un « paradis » de la théorie des modeles dans lequel de

iv



nombreux outils ont été développés (les types définissables, la déviation, 'indépendance,
etc). Lexemple le plus classique de théorie stable est celui des corps algébriquement clos
(ACF) mais il en existe d’autres. Certaines n'ont que peu de contenu algébrique comme la
théorie des ensembles infinis dans le langage de I'égalité ou encore la théorie d’'une relation
d’équivalence avec un nombre infini de classes infinies. Mais d’autres, les modules sur un
anneau donné, les corps séparablement clos (SCF) ou encore les corps différentiellement
clos de caractéristique nulle (DCF), sont des structures algébriques. Cependant, de nom-
breuses structures qui apparaissent en mathématiques sont instables, limitant de fait les
applications possibles des résultats obtenus grace a la stabilité.

Par exemple, le corps R (plus généralement les corps réels clos) ou les corps valués ne
peuvent pas étre stables puisqu'on y trouve un ordre définissable. Mais depuis la défini-
tion de la stabilité, d'autres notions de modération ont été introduites. Nous ne parlerons,
ici, que d’'une seule d’entres elles, compatible avec la présence d'un ordre définissable, la no-
tion de théorie NIP. Cette notion avait également été définie par Shelah, mais avait été peu
étudiée jusqu'au début des années 2000. Elle a fait depuis l'objet d’'une attention croissante.

Définition 0.3 (Théorie NIP) :

Soient p(x,y) une L-formule et M une L-structure. On dit que o a la propriété de l'indépen-
dance dans M s'il existe des suites de uples (a;)en et (by) jen € M tels que M = p(a;,by) si et
seulement sii € J.

Une L-théorie T est dite NIP (not the independence property), ou dépendante, si aucune L-
formule n'a la propriété de l'indépendance dans aucun modéle de T

Parmi les théories NIP, on trouve un grand nombre d’exemples naturels. 11 y a d’abord
toutes les théories stables, ainsi que la théorie des corps réels clos (RCF) ou plus générale-
ment toute théorie o-minimale, comme par exemple la théorie de R muni de I'exponentielle
et des fonctions analytiques a support compact. On y trouve aussi de nombreuses théories
de corps valués : la théorie des corps valués algébriquement clos, la théorie de Q, et plus
généralement la théorie de toute extension finie de Q,,.

Ceci nous ramene au « principe d’Ax-Kochen-Ersov » relatif a la modération des corps va-
lués que I'on a déja mentionné :

Théoréme 0.4 ([Del81 ; Bélgg]) :

Soit T une théorie de corps valués Henséliens de caractéristique nulle finiment ramifiés.
Alors T est NIP si et seulement si la théorie induite sur le corps résiduel l'est.

Ce théoreme est une instance d'un principe plus général qui peut s’énoncer ainsi : un corps
valué Hensélien de caractéristique nulle finiment ramifié n’est pas plus compliqué que ne
le sont son groupe de valeur et son corps résiduel. Toute mention du groupe de valeur a
disparu du théoréme ci-dessus parce que, d’apres un théoréme de [GS84], tous les groupes
abéliens ordonnés sont NIP.

Comme on l'a déja mentionné, les théories stables ont de trés bonnes propriétés. L'une
d’entre elles est que tous les types sont définissables. Rappelons qu'un type sur M est un
ultrafiltre sur I'algebre de Boole des ensembles définissables a parametres dans M. 11 est
dit définissable si pour toute formule ¢(z; s) il existe une formule 6(s) telle que, pour tout
m, 6(m) est vrai si et seulement si p(z;m) € p. De maniere équivalente, dans tout modele



Introduction

M d’une théorie stable, tout ensemble extérieurement définissable4, est en fait définissable
dans M (avec parameétres). Cette propriété caractérise la stabilité et ne peut donc pas étre
vraie dans toutes les théories NIP. Mais les ensembles extérieurement définissables ont
toujours de trés bonnes propriétés dans ces derniéres. La principale d’entre elles est I'exis-
tence des définitions honnétes (uniformes), introduites par Chernikov et Simon [CS13; CS]
et qui feront leur apparition dans la Section 111.1 de ce texte.

On considere souvent quune théorie NIP est controlée par une partie stable et une par-
tie ordonnée. Dans le cas des corps valués, ce principe qui n’est pas sans rappeler celui
d’Ax-Kochen-Ersov, peut étre illustré précisément. Dans les corps locaux de caractéristique
nulles, le corps résiduel étant fini, la structure est essentiellement contrélée par le groupe
de valeur. On aimerait alors dire que ces théories sont « purement instables », ce qui est
formalisé par Simon [Sim13] sous le nom de distalité.

Pour ce qui est ’ACVF, il y a une partie ordonnée (le groupe de valeur I') et une partie
extrémement stable, le corps résiduel qui est algébriquement clos. Haskell, Hrushovski et
Macpherson [HHMo6 ; HHMo8] ont formalisé cette intuition en introduisant la notion
de métastabilité : pour tout uple a le type de a sur I' est « dominé » par la partie stable.
Dans [Hruc], Hrushovski utilise la métastabilité pour dévisser les groupes définissables
dans ACVF a partir de groupes internes au groupe de valeur, de groupes internes au corps
résiduel et de schémas en groupe sur I'anneau de valuation.

Remarquons enfin qu'une forme du principe d’Ax-Kochen-ErSov apparait dans le cadre de
I'intégration motivique, dont I'un des buts est de trouver des invariants additifs des variétés
algébriques définies sur des corps valués. En particulier, en suivant Hrushovski et Kazh-
dan [HKo6], on peut trouver un tel invariant en associant a une variété sa classe dans le
semi-anneau de Grothendieck des définissables dans ACVF®. Ils démontrent alors que ce
semi-anneau est essentiellement isomorphe au produit tensoriel du semi-anneau de Gro-
thendieck du corps résiduel et de celui du groupe de valeur.

Elimination des quantificateurs

Le théoreme d’Ax-Kochen-ErSov (0.1) est, en fait, une conséquence naturelle de résultats
d’élimination des quantificateurs ; bien qu’Ax, Kochen et ErSov ne donnent jamais explici-
tement de tels résultats.

Plus généralement, la question de I'élimination des quantificateurs est une question fon-
damentale lorsqu’on étudie une théorie spécifique. En effet, la classe des ensembles défi-
nissables dans une structure donnée est obtenue a partir d'ensembles de base, déterminés
par le langage choisi, par des combinaisons booléennes finies et des projections. Mais les
projections sont des opérations beaucoup plus compliquées que les opérations booléennes
et il est idéal, pour avoir une bonne compréhension des ensembles définissables, de savoir

4Clest-a-dire les M -points d’'un ensemble définissable avec paramétres dans une extension élémentaire de
M.

SIci, par corps local de caractéristique nulle, on veut dire corps local non-archimédien de caractéristique
nulle, autrement dit une extension finie de Q,, pour un certain premier p.

Clest-a-dire le semi-anneau des classes d’isomorphismes définissables d’ensembles définissables dans
ACVF muni de la somme disjointe comme addition et du produit comme multiplication.
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que les opérations booléennes suffisent ; cest exactement le contenu de I’élimination des
quantificateurs. Par exemple dans le cas ’ACF, les ensembles des bases sont les variétés
algébriques affines et les combinaisons booléennes d’ensembles de base sont les ensembles
constructibles dans la topologie de Zariski. L'élimination des quantificateurs pour ACF est
donc équivalente a un théoréme de Chevalley selon lequel 'image par une fonction régu-
liere d’'un ensemble constructible est encore constructible.

Dans le cas des corps valués, il existe une grande diversité de résultats d’élimination des
quantificateurs. Le premier d’entre eux est celui qui est essentiellement prouvé dans les tra-
vaux d’Abraham Robinson [Rob77] sur les corps valués algébriquement clos dans le langage
le plus simple possible pour les corps valués’. Dans ce cas, comme dans beaucoup d’autres,
ce résultat délimination des quantificateurs permet de démontrer des résultats de modé-
ration. En l'occurrence, il permet de démontrer que la théorie ACVF est C-minimale. La
C-minimalité est une notion qui généralise a la fois la notion de forte minimalité et celle
d’o-minimalité et qui comme toute notion de minimalité concerne les ensembles définis-
sables en une variable. Dans les théories fortement minimales on demande que les en-
sembles définissables unaires soient les mémes que dans I'ensemble infini sans structure
(autrement dit ils sont soit finis soit cofinis). Dans les théories o-minimales, on demande
que ces ensembles soient les mémes que ceux définis sans quantificateurs dans un ordre
(Cest-a-dire des unions finies d’intervalles). Enfin dans les théories C'-minimales, on de-
mande que ces ensembles soient les mémes que ceux définis sans quantificateurs dans les
feuilles d'un arbre. Dans le cas d'un corps valué, cet arbre est I'arbre des boules fermées et
la C-minimalité requiert que tout ensemble définissable unaire soit une combinaison boo-
léenne de boules. Une notion de modération n’est intéressante que parce qu'elle donne des
outils avec lesquels travailler. Dans le cas de la C-minimalité, on obtient, par exemple, une
notion de décomposition cellulaire ainsi qu'une notion, associée, de dimension.

Pour ce qui est de la théorie de Q,,, on peut montrer que le langage de Robinson ne suffit
pas pour éliminer les quantificateurs, autrement dit, il faut rajouter de nouveaux ensembles
de base pour espérer éliminer les quantificateurs. Macintyre [Mac76] montre qu’il suffit de
rajouter les ensembles de la forme P, (K) := {x € K : 3y, x = y™} pour tout n.

Plus récemment, des résultats d’élimination des quantificateurs ont été démontré pour une
classe de corps valués beaucoup plus large : les corps valués Henséliens de caractéristique
nulle (non ramifiés). Ces résultats viennent essentiellement en deux grandes familles sui-
vant les ensembles de base que l'on choisit : les résultats avec composantes angulaires et
les résultats avec termes dominants. Pour suivre le développement historique du domaine,
commengons par les composantes angulaires. Une composante angulaire d'un corps valué
K est un morphisme de groupe ac : K* — k tel que la restriction de ac 2 O* coincide avec
lerésidures: O —» k,ou O := {x € K : val(x) > 0} est 'anneau de valuation de K. On peut
munir les séries de Laurent sur k (ou plus généralement sur tout corps de Hahn), les corps
locaux et les vecteurs de Witt sur un corps parfait, d'une composante angulaire naturelle,
mais tout corps valué ne peut pas étre muni d'une composante angulaire. Toutefois, il suffit
de supposer que le corps valué est X -saturé pour en construire une.

7Les ensembles de base dans ce langage sont de la forme {x : val(P(x)) > val(Q(x))}, out P et @ sont des
polynémes en plusieurs variables.
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D’apres un théoreme de Pas [Pas89], les corps valués Henséliens d’équicaractéristique nulle
éliminent les quantificateurs de corps dans le langage (a trois sortes K, k et I') des corps
valués muni d'une composante angulaire, aussi connu sous le nom de langage de Denef-
Pas. Si l'on rajoute des « composantes angulaires d’ordre supérieur », ce théoréme sétend
aux corps valués Henséliens de caractéristique mixte finiment ramifiés.

Le principal défaut des composantes angulaires est, quen général, méme quand des com-
posantes angulaires naturelles existent, elles ne sont pas définissables dans le langage des
corps valués; il existe quelques exceptions notables comme les corps locaux de caracté-
ristique nulle ot le systéme classique de « composantes angulaires d'ordre supérieur » est
définissable. Les langages avec termes dominants, aussi connus sous le nom de congruences
amc ou encore fonctions RV, ont pour but de pallier ce manquement des composantes an-
gulaires en considérant un langage qui ne rajoute aucun ensemble définissable sur le corps
valué lui-méme. On définit le groupe RV := K*/(1 + ). 1l existe une suite exacte courte
1 - k" - RV - I' - 0 définissable dans tout corps valué. 1l s'avere alors, par des travaux
de Basarab et Kuhlmann [Basg1 ; BK92], qu’avec ces termes dominants, on peut éliminer
les quantificateurs de corps dans les corps valués Henséliens d’équicaractéristique nulle.
Comme précédemment, on obtient qu’en caractéristique mixte (possiblement infiniment
ramifié), on peut éliminer les quantificateurs de corps, quitte a rajouter des « termes domi-
nants d’'ordre supérieur ».

Au cours des vingt-cinqg derniéres années, ces théorémes d’élimination des quantificateurs
ont été étendus a divers enrichissements des corps valués apparaissant naturellement en
mathématiques. Tout d’abord, la plupart des corps valués que I'on considere, que ce soient
des corps locaux ou des corps de séries formelles, sont complets. 1ls sont donc naturel-
lement munis d’une structure analytique donnée par la spécialisation, sur leur domaine
de convergence, de séries formelles. Les premiers résultats d’élimination des quantifica-
teurs pour les corps valués munis d’'une telle structure analytique remontent aux travaux
de Denef et van den Dries [DD88] sur le corps Q,,. 1ls ont été suivis d'un grand nombre de
travaux dans un cadre de plus en plus général, parmi lesquels on peut citer ceux de van
den Dries, Haskell, Macpherson, Lipshitz, Robinson et Cluckers [Drig2 ; DHMg9 ; LRoo;
LRos5; CLR0G6; CL11]. Par exemple, dans [Drig2], van den Dries démontre I'élimination des
quantificateurs de corps pour tout corps Hensélien d’équicaractéristique nulle avec struc-
ture analytique dans un langage avec composantes angulaires et en déduit un théoréme
d’Ax-Kochen-Ersov analytique.

Lautre enrichissement de corps valué qu'’il est naturel de considérer consiste a rajouter un
opérateur, que ce soit une dérivation ou un automorphisme de corps valuéd. Les premiers
résultats (construction de modele-complétion et élimination des quantificateurs de corps)
remontent a Scanlon [Scaoo] ou il étudie, sous certaines hypotheses techniques supplé-
mentaires, les corps valués munis d'un opérateur D (notion qui généralise a la fois le cas
d’'une dérivation et celui d'un automorphisme) qui préserve la valuation, c’est-a-dire tel
que pour tout x, val(D(x)) > val(x). 1l montre en particulier I'existence de la modéle-
complétion des corps valués différentiels dont la dérivation préserve la valuation (VDF).

8Ceci étant, la complétude n'est pas une propriété exprimable au premier ordre.
9Un automorphisme de corps tel que o(O) = O.
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L'étude de cette théorie a motivé les Chapitres 111 et IV de ce texte.

Dans des travaux ultérieurs, Bélair, Macintyre, Scanlon, Durhan et van den Dries [Scao3;
BMSo7 ; AD10] étendent les résultats d’élimination des quantificateurs de corps aux isomé-
tries, cest-a-dire aux automorphismes de corps tels que pour tout x, val(o(x)) = val(z).
Par ailleurs, des automorphismes qui ne sont pas des isométries, mais tels que pour tout
tel que val(z) > 0 et tout n € N, val(o(x)) > nval(x), qu'on appelle des automorphismes
w-croissants, apparaissent dans les travaux de Hrushovski [Hrub] sur les approximations
tordues de Lang-Weil. Lélimination des quantificateurs de corps pour les corps valués mu-
nis d’'un tel automorphisme est démontrée par Durhan dans [Azg1o]. Pal a ensuite étendu
dans [Pal12] ces résultats a des automorphismes plus généraux et enfin Durhan et Onay
[DO] ont récemment montré que ces résultats sont vérifiés pour un automorphisme quel-
conque de corps valué.

Le but du Chapitre 11 de ce texte est de réconcilier ces deux grandes tendances en étudiant
les corps valués munis a la fois d’'une structure analytique et d'un automorphisme de corps
valué. Ony démontre, entre autres choses, un résultat d’élimination des quantificateurs de
corps pour les corps o-Henséliens analytiques. La motivation premiere de ces résultats est

I'étude modele théorique du corps des vecteurs de Witt sur JFT,alg muni 2 la fois de sa struc-
ture analytique et du relévement du Frobenius. Une bonne connaissance de cette théorie
peut permettre par exemple de donner une version modeéle théorique de la géométrie p-
différentielle de Buium et de traiter certains problemes de géométrie diophantienne (voir
[Scao06]).

Pour revenir aux corps valués munis d'une dérivation, deux autres cas relativement dis-
tincts ont été étudiés. Le premier, I'étude au long cours du corps des transséries (voir par
exemple [ADH13]), a amené a considérer des corps valués différentiels qui ne sont pas D-
Henséliens et dont la dérivation, bien que ne préservant pas la valuation, est continue.
Le second est celui de corps valués différentiels dans lesquels il n’y a aucune interaction
entre la valuation et la dérivation. En particulier, cette dérivation est discontinue (voir par
exemple [GP10]). Mais, mis a part les techniques liées au fait qu'on étudie des corps valués,
ces deux autres cas ont en fait peu de choses en commun avec le cas étudié par Scanlon ou
avec le cas d’'un automorphisme de corps valué qui lui est étroitement lié.

Elimination des imaginaires

Lorsque l'on veut étudier une théorie donnée, une fois que la question de I'élimination
des quantificateurs a été résolue, une autre question se pose, celle de la description des
quotients définissables. En effet, pour de multiples raisons, on est naturellement amené a
considérer des relations d’équivalence définissables et donc les quotients par ces relations
d’équivalence. Mais ces quotients, qu'on appelle les ensembles interprétables, sortent de
la catégorie des ensembles définissables et on perd alors 'essentiel de I'information quon
avait pu établir jusqu’ici sur les ensembles définissables.

Des relations déquivalence définissables apparaissent de la fagon suivante. Soient X ¢
Y x Z des ensembles @-définissables dans une structure M. On peut voir X comme la
famille (XX, ),y des fibres de X sur Y. On peut alors se demander s’il existe une autre para-
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métrisation (U, ), de cette famille telle que chaque ensemble de la famille X apparaisse
une et une seule fois dansla famille U. Cette notion, proche de celle d'un espace de modules,
est fondamentale car elle permet d'identifier l'ensemble des X, avec 'ensemble définissable
W. On dit alors que le point de W qui correspond a une fibre X, de X est un paramétre
canonique de X . Ce parametre canonique est alors le « plus petit » ensemble au-dessus du-
quel X, peut étre défini; un ensemble dont I'existence n'est pas assurée dans une théorie
quelconque.

On peut construire W et U de maniére « canonique » en considérant la relation d’équi-
valence y; By, sur Y définie par Vz,z € X, <= 2z € X,, etenprenant W = Y /E et
U={(2,9):zeX,} ouTestla E-classe de y. Mais les ensembles " et U sont interpré-
tables et non définissables. Une telle construction n'est possible a I'intérieur de M que si
les quotients interprétables dans M sont représentables par des ensembles définissables.
Cest exactement cette propriété que 'on nomme I'élimination des imaginaires dans M et
qui est équivalente a I'existence, dans M, d'un plus petit ensemble de définition pour tout
ensemble définissable.

La notion d’élimination des imaginaires, introduite par Poizat dans [Poi83] est beaucoup
plus récente que celle d’élimination des quantificateurs, qui a été fondamentale, pendant
de longues années, dans toutes les applications de la théorie des modéles. 1l n'est donc guere
surprenant qu’il existe moins de résultats d’élimination des imaginaires. Parmi les exemples
de théories éliminant les imaginaires, on trouve, tout d’abord, les deux théories qui ont
motivé la définition de cette notion : ACF et DCF,. L'élimination des imaginaires dans
ces théories découle de I'existence, pour toute variété algébrique (respectivement différen-
tielle), d'un plus petit corps (respectivement différentiel) de définition et de la définissabilité
des polynomes symétriques. Parmi les autres exemples notables, on trouve aussi les groupes
divisibles ordonnés, les corps réels clos (Cest-a-dire les corps élémentairement équivalents
a R) et plus généralement toutes les théories o-minimales de groupes ordonnés.

En général, pour une théorie qui nélimine pas les imaginaires, la question est de savoir
quels sont les parametres canoniques d’ensembles définissables qu’il suffit de rajouter aux
modéles de la théorie pour obtenir I'élimination des imaginaires. En rajoutant tous les pa-
rametres canoniques de tous les ensembles définissables dans une théorie 7, on obtient la
théorie 74 (dont les modeles seront notés Med) définie par Shelah qui élimine les imagi-
naires. Mais cette construction, si elle est tres utile d'un point de vue abstrait, n'a que peu
d’intérét pour une théorie donnée car elle ne fournit aucune information sur les ensembles
interprétables. Ce que l'on recherche dans les résultats délimination des imaginaires c'est
une description « concrete » des ensembles interprétables. Par exemple, on peut vérifier
que la théorie des ensembles infinis sans structure dans le langage contenant seulement
'égalité n’élimine pas les imaginaires ; en effet, a part les singletons, aucun ensemble fini
n’a de parametre canonique. Mais il suffit de rajouter, pour tout n € N, une sorte .S,, dont
les éléments sont les sous-ensembles a n éléments de la sorte principale.

Considérons maintenant les corps valués algébriquement clos dans le langage avec une
seule sorte pour le corps valué lui-méme. 1l découle de I'élimination des quantificateurs que
tout ensemble infini définissable est de méme cardinalité que le corps valué. Or, il existe
des corps valués algébriquement clos de cardinal 2% dont le groupe de valeur I" est dénom-
brable. 1l est donc impossible que I'ensemble interprétable I' = K* /O soit en bijection avec



un sous-ensemble définissable du corps. Des contre-exemples plus élaborés permettent de
montrer qu’il ne suffit pas de rajouter le groupe de valeur, le corps résiduel ni méme l'en-
semble des boules du corps valué pour obtenir 'élimination des imaginaires. 1l en est de
méme pour les corps locaux de caractéristique nulle.

Le premier résultat d’élimination des imaginaires pour des corps valués a été démontré
par Haskell, Hrushovski et Macpherson dans [HHMo6]. 1ls démontrent que dans les corps
valués algébriquement clos, il suffit de rajouter les parametres canoniques de certains en-
sembles, qui peuvent étre vus comme des équivalents en dimension supérieure des boules.
Ces ensembles sont, d’'une part, les sous-O-modules libres de rang n de K", aussi connus
sous le nom de réseaux et, d’autre part, pour tout réseau s, les ensembles de la forme a + s
ol a € s. Le langage dans lequel on a rajouté des parametres canoniques pour ces deux fa-
milles d’ensembles est connu sous le nom de langage géométrique.

1l a été démontré depuis par Mellor [Melo6] que les corps valués réels clos éliminent aussi
les imaginaires dans le langage géométrique. Dans le Chapitre 1 de ce texte, on démontre de
nouveaux résultats d'’élimination des imaginaires dans le langage géométrique : d’'une part
pour les corps locaux de caractéristique nulle et d’autre part pour les corps pseudo-locaux
(Cest-a-dire les ultraproduits de corps locaux) d’équicaractéristique nulle.

Pour ce qui est des corps valués enrichis, les résultats sont encore plus rares. Dans le cas des
corps valués algébriquement clos avec structure analytique, il est démontré dans [HHM1i3]
qu’ils n’éliminent pas les imaginaires dans le langage géométrique. Mais aucune description
concrete des parameétres canoniques qu’il faudrait rajouter n’est connue. Dans ce texte, on
prouve un résultat pour l'autre famille d’enrichissements décrite plus tot, les corps valués
avec opérateurs. Plus précisément, le Chapitre 111 contient des considérations générales sur
les imaginaires dans les enrichissements ' ACVF qui sont appliqués dans le Chapitre IV
pour démontrer que VDF élimine les imaginaires dans le langage géométrique augmenté
d’'un symbole pour la dérivation.

Nous avons remarqué précédemment que les résultats d’élimination des quantificateurs
permettent de démontrer des résultats de modération. Pour ce qui est de I'élimination des
imaginaires, cest plutdt le contraire : la modération d’'une théorie peut aider a comprendre
ses imaginaires. Par exemple, la stabilité des théories ACF, DCF et SCF joue un role non
négligeable dans les preuves d’élimination des imaginaires. De méme, la théorie des types
stablement dominés et de la métastabilité a été développée pour étudier les imaginaires
dans ACVF. Dans une preuve plus récente [Hrua; Joh] de I'élimination des imaginaires
dans ACVF dans le langage géométrique , la densité des types définissables joue un role
central. Enfin, dans la preuve de Iélimination des imaginaires pour VDF dans le langage
géométrique présentée dans ce texte, les types définissables sont tout aussi importants,
mais un autre ingrédient central de la preuve est le bon comportement, dans les théories
NIP, des ensembles extérieurement définissables.

Apres I'élimination

Une fois que l'on connait I'élimination des quantificateurs et des imaginaires pour une
théorie donnée, tout un champ de possibilités souvre a nous, et il n’y a plus vraiment d’étape
suivante « canonique ». Par exemple, pour ce qui est ’ACVF, Hrushovski et Loeser [HL]
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étudient I'espace des types stablement dominés et montrent qu’il permet, non seulement,
de redéfinir la notion d’espace de Berkovich mais aussi de prouver de nouveaux résultats
sur leur topologie. Plus classiquement, on peut vouloir étudier les groupes et les corps défi-
nissables dans une théorie : les classifier mais aussi montrer comment certaines propriétés
géométriques des ensembles définissables permettent d’en construire. Ces considérations
sont centrales a la théorie dite géométrique de la stabilité et, appliquées a DCF et SCF, ont
permis a Hrushovski [Hrug6] de démontrer certains résultats diophantiens dont la conjec-
ture de Mordell-Lang pour les corps de fonctions.

Dans les corps valués algébriquement clos, d’apres un résultat de Weil, ou plus précisément
I'interprétation modele théorique de ce résultat par Hrushovski (cf. [Poi87, Section 4.e]) ou
van den Dries [Drigo], tout groupe définissable est définissablement isomorphe a un groupe
algébrique. D’apres un résultat de Bouscaren et Delon [BDor1], les groupes définissables
dans un corps K séparablement clos de degré d'imperfection fini sont définissablement
isomorphes aux K -points d’'un groupe algébrique. Dans les corps pseudo-finis, d’apres Hru-
shovski et Pillay [HP94], la situation est similaire, a certains groupes finis prés : tout groupe
définissable dans un corps pseudo fini K contient un sous-groupe définissable d’indice fi-
ni, isogéne aux K -points d’'un groupe algébrique. Dans les corps différentiellement clos
de caractéristique nulle, d’apreés un théoreme de Pillay [Pilg7], tout groupe définissable se
plonge définissablement dans un groupe algébrique. Enfin, dans les corps algébriquement
clos avec un automorphisme générique, Hrushovski et Chatzidakis [CH99], dans le cas de
rang fini, puis Kowalski et Pillay [KPo2], dans le cas général, montrent un résultat similaire
a des groupes finis preés. La SectionIV.5 de ce texte contient les premiers pas d’'une telle
classification des groupes définissables dans les corps valués différentiels a la Scanlon.

Apercu des résultats

Les principaux résultats de ce texte sont des résultats d'‘élimination des quantificateurs et
des imaginaires dans les corps valués, des purs corps valués comme les corps locaux de
caractéristique nulle ou les corps pseudo-locaux d’équicaractéristique nulle, et des corps
valués enrichis par une dérivation, un automorphisme ou encore une structure analytique.
Le premier chapitre, écrit avec Ehud Hrushovski et Ben Martin, contient [HMR]. Ses prin-
cipaux résultats modeles théoriques sont 'élimination des imaginaires dans le langage géo-
métrique pour les corps locaux de caractéristique nulle (Théoréme A) et pour les corps
pseudo-locaux d’équicaractéristique nulle (Théoréme B). On en déduit alors, dans le Corol-
laire (1.2.7) que I’élimination des imaginaires dans les corps locaux de caractéristique nulle
est uniforme quand la caractéristique résiduelle est assez grande.

Ces résultats d’élimination sont ensuite appliqués pour compter des classes dans une fa-
mille de relations d’équivalence parametrées par le groupe de valeur et définissables dans un
corps local de caractéristique nulle. En utilisant des techniques, développées entre autres
par Denef, qui relient ces problémes a des calculs d'intégrales p-adiques, on démontre le
Théoréme C selon lequel les fonctions zéta associées a ces problémes de comptage sont
uniformément rationnelles. Ce chapitre contient aussi les applications du Théoreme C a
I'étude de certaines fonctions zéta qui apparaissent en théorie de la croissance des sous-
groupes et des représentations.
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Dans le Chapitre 11, on prouve un résultat (Théoreme D) d’élimination des quantificateurs
de corps dans des corps valués avec a la fois une structure analytique et un automorphisme.

Bien que la motivation premiére ait été d’étudier le corps des vecteurs de Witt sur Ealg
muni de sa structure analytique et du relévement du Frobenius (qui est une isométrie), le
Théoréme D est prouvé pour tous les automorphismes de corps valués. Ce chapitre tente
aussi, dans les Sections 11.A et 11.B, de donner une approche plus systématique des preuves
d’élimination des quantificateurs dans les corps valués enrichis, par le biais de certaines
considérations plus abstraites.

Le sujet du ChapitreIll est élimination des imaginaires dans certains enrichissements
d’ACVF. Lathéorie VDF est le principal exemple motivant cette section. Plus précisément,
on prouve un résultat de densité des types définissables (Théoreme E) qui implique a la fois
I'éliminations des imaginaires et I'existence d’extensions globales invariantes. Ce chapitre
commence, dans la Section I1L.1, par un travail en commun avec Pierre Simon, que je re-
mercie d’accepter que je présente ici ces résultats, sur des considérations plus abstraites a
propos des ensembles extérieurement définissables dans les théories NIP. Ces considéra-
tions sont essentielles pour démontrer les autres résultats de ce chapitre.

Enfin, le Chapitre IV contient plusieurs résultats sur VDF. Le principal (Théoréme F) est
'élimination des imaginaires et la propriété d’extension invariante pour VDF dans le lan-
gage géométrique. Cest une application directe des résultats du chapitre précédent. On
montre aussi que le corps des constantes est stablement plongé dans les modeles de VDF,
et on étudie les clotures définissables et algébriques. Le lien entre les types dans VDF et
ceux dans ACVF est formalisé par la définition d'un analogue des prolongations de la géo-
métrie algébrique différentielle. Enfin, la derniére section de ce chapitre est consacrée a
I'étude des groupes définissables dans VDF et leurs liens avec les groupes définissables dans
ACVF.

Description détaillée des résultats

Chapitre I. Imaginaires dans les corps p-adiques : Outre leur intérét intrinseque pour
les théoriciens des modeles, la principale motivation derriere les résultats de ce chapitre est
'étude de certaines fonctions de comptage en théorie des groupes. Commengons donc par
un petit historique de ces questions de comptage et de leur lien a la théorie des modéles.
Commengons par les séries de Poincaré associées aux points p-adiques de variétés. Soit
X une variété affine définie sur Z,. On appelle a,, le nombre de ces Z /p" Z-points et @,
le nombre de points dans I'image de la fonction canonique X(Z,) - X(Z /p"Z). Pour
étudier la croissance de ces deux suites, on définit les deux séries de Poincaré Px(t) :=
Y, a;ti et Py(t) := ¥,a;t'. La principale question concernant ces séries est celle de leur
rationalité. Dans le cas de Py (t), cela est démontré par Igusa dans les années 1970. Pour ce
qui est de Py (t), la présence d’une image (et donc d’'un quantificateur) rend les choses plus
compliquées mais Denef démontre sa rationalité dans [Den84] en utilisant I'élimination
des quantificateurs pour Q, prouvée par Macintyre [Mac76].
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Dans sa preuve, Denef considere les ensembles A,, := {z € Z, : x est dans X modulo p"Z,}
et A, = {z € Z,:il existe y € X(Z,) tel que z =y mod p"Z,}, qui sont définissables dans
Q,, et prouve que a,, = p1(A,)p" et @, = 1(A,)prd ot d € N dépend de X ety est la mesure
de Haar sur Q, telle que x(Z,) = 1. 1l montre ensuite que la Q-algebre des fonctions en-
gendrée par les fonctions f : Q,xZ - Z et x — p/ (*) ot1 f est définissable dans Q, est close
par intégration. Le théoréme de rationalité suit alors facilement. En utilisant un théoréme
d’élimination des quantificateurs pour Q,, uniforme, Pas [Pasg1] et Macintyre [Macgo] dé-
montrent que, quand X est définie sur Z, la rationalité de ces séries est uniforme.

Dans [GSS88], Grunewald, Segal et Smith utilisent le résultat de Denef sur la définissabilité
des intégrales p-adiques pour traiter un probléeme de comptage qui vient directement de
la théorie des groupes. Soit G un groupe nilpotent, finiment engendré, sans torsion. Le
nombre de sous-groupes de G d’indice n est fini ; on le note b,,. On trouve alors une famille,
définissable dans Q,, de fonctions parametrées par le groupe de valeur telle que I'intégrale
de la fonction d’indice n est exactement b,». En utilisant le résultat de Denef, on obtient
alors la rationalité de la série (¢ ,(t) == X, b,it’. Par des considérations similaires a celles de
Pas et Macintyre, ou plus généralement la spécialisation p-adique de résultats d’'intégration
motivique, on obtient aussi des informations sur le comportement quand p varie. L'un des
intéréts de ces résultats uniformes en p est que 'on peut définir la fonction zéta globale
associée a GG, (¢(s) = ¥; bii~* et qu'on a, comme pour la fonction zéta de Riemann qui nest
autre que (z, une décomposition d’Euler en fonctions zéta locales :

Ca(s) = [T Can(@™)-

Une compréhension uniforme des fonctions zéta locales peut donc permettre de com-
prendre la fonction zéta globale.

La méthode pour associer a b, une fonction définissable dans Q,, consiste a trouver, uni-
formément en n, un ensemble D,/ E,, interprétable dans Q, qui soit en bijection avec I'en-
semble des sous groupes de G d’indice p” et a trouver une fonction f,, définissable dans Q,
telle que pour tout = € D,, si ZP» denote la E,,-classe de x, u(ZF») = p~val/»(#)), Ainsi le
résultat de Grunewald, Segal et Smith, tout comme celui de Denef sur les séries de Poinca-
ré, peut se voir comme une instance d’un probléme plus général qui consiste a compter les
classes dans une famille (E, ),y de relations d’équivalence, définissable dans Q,,. Dans le
cas des résultats que 'on a déja mentionnés, les relations d’équivalences en question sont
suffisamment simples pour qu'on puisse trouver les fonctions f;, de fagon explicite. Cepen-
dant, dans le cas général, tant qu'on ne sait pas exactement quelle est la forme des ensembles
interprétables, il est impossible de trouver de tels f,,, d'oti la nécessité de prouver un résul-
tat d'élimination des imaginaires pour Q,, de préférence uniforme en p, pour pouvoir en
déduire des informations sur les fonctions zéta globales.

Dans ce chapitre on prouve deux théoremes d’é¢limination des imaginaires. Un théoreme
sur les corps locaux :

Théoréme A :

Soit K un corps local de caractéristique mixte (0, p). Si on rajoute une constante pour un
générateur de K n @alg sur Q,, n@alg, alors la théorie de K dans le langage géométrique
élimine les imaginaires.
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Et un théoréme sur leurs ultraproduits :

Théoréme B :
La théorie des corps pseudo-locaux de caractéristique résiduelle nulle élimine les imaginaires
dans le langage géométrique, si on rajoute une infinité de constantes.

Dans les deux cas, comme la valuation est discréte, les parameétres canoniques d’ensembles
de la forme a+9s, ot s est un réseau, ne sont, en fait, pas nécessaires. On déduit du second
théoréme, dans le Corollaire (1.2.7), que 'élimination des imaginaires pour les corps locaux
est uniforme quand la caractéristique résiduelle est grande.

1l s’en suit que tout ensemble interprétable dans un corps local K de caractéristique nulle
peut étre identifié avec un sous-ensemble définissable de K" x (GL,,(K)/GL,,(O)) pour
certains n et m € N, uniformément en p. On peut alors trouver assez facilement les fonc-
tions f, telles que précédemment, en utilisant le fait que la mesure de Haar sur GL,,(K)
a une densité relative 4 la mesure de Haar sur K™ qui est une fonction définissable, et en
déduire un résultat (Théoréme C) de rationalité uniforme pour toute famille de relations
d’équivalence uniformément définissables dans les corps locaux de caractéristique nulle.
Ce théoréme permet, non seulement, de retrouver plusieurs résultats déja connus de ra-
tionalité pour des fonctions zéta locales issues de la théorie des groupes, mais aussi d'en
prouver de nouveaux pour lesquels les relations d’équivalence qui rentrent en jeu sont plus
compliquées, comme par exemple le comptage des représentations a isotwist pres.

Pour ce qui est des résultats d’élimination des imaginaires eux-mémes, ils sont prouvés
en utilisant des criteres abstraits, Proposition (l.2.11) et Corollaire (1.2.15), qui permettent
de transférer un résultat d’élimination des imaginaires d’'une certaine théorie, ici ACVF,
a une autre. Dans ce chapitre, le transfert est rendu possible par le fait que les fonctions
définissables dans les théories, pour lesquelles on veut éliminer les imaginaires, peuvent
étre recouvertes par des correspondances, définissables dans ACVF, qui, a chaque point,
associent un nombre fini de points. L'existence d’extensions invariantes des types sur de
petits ensembles de parametres algébriquement clos ainsi qu'une description complete de
tous les 1-types jouent aussi un role central.

Chapitre ll. Corps analytiques de différence : Comme mentionné précédemment, ce
chapitre a pour but I'étude des corps valués enrichis a la fois par une structure analytique
et un automorphisme de corps valué. L'étude de ces structures n’est cependant pas seule-
ment motivée par I'envie de comprendre les interactions entre deux types d’enrichissement
de corps valués que I'on comprend bien et de donner un traitement modéle théorique de
structures de plus en plus complexes, mais aussi parce que c’est un cadre modele théorique
qui permet de comprendre certains problémes de géométrie diophantienne et de théorie
des nombres. Par exemple, clest le cadre dans lequel traiter la géométrie p-différentielle de

. . P . (Cs ——al . .
Buium. En effet, toute fonction p-différentielle définie sur W(F," ") est une fonction défi-

nissable dans la structure W(Fpalg) munie du relevement du Frobenius, ainsi que des sym-
boles pour toutes les fonctions analytiques p-adiques Y ; a; X' ot a; — 0 quand |I| > oo.

Dans [Scao6], Scanlon montre comment une bonne connaissance de la théorie des mo-
deéles des corps analytiques de différence peut permettre de montrer que certains résultats
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diophantiens sont uniformes. En particulier, il montre qu'on peut déduire une version en
famille de la conjecture de Manin-Munford pour les variétés abéliennes sur W[k] a partir
dela conjecture classique (C’est-a-dire du théoréeme de Raynaud), en utilisant, d'une part des
résultats de Buium sur le lien entre ces questions et la géométrie p-différentielle et, d'autre
part un théoreme d’Ax-Kochen-Ersov pour les corps analytiques de différence.

Le résultat principal de ce chapitre est un résultat d’élimination des quantificateurs de corps
pour une certaine classe de corps valués analytiques de différence :

Théoréme D :
La théorie des corps valués o-Henséliens de caractéristique nulle avec structure analytique
élimine les quantificateurs de corps dans le langage avec des termes dominants

Dans le cas des corps valués munis de structure analytique, I'idée sur laquelle repose en
grande partie les résultats de théorie des modeles est que, par le biais de la préparation de
Weierstrass, la valuation, et méme le terme dominant, d’'une fonction analytique en une
variable est en fait donnée par celle, ou celui, d'un polyndme. On peut alors démontrer que
tout ensemble définissable unidimensionnel du corps valué est déja définissable dans le
langage des corps valués analytique. Dans le cas de la preuve originale de Denef et van den
Dries, I'une des complications est liée au fait qu’ils disposent de la préparation de Weiers-
trass uniquement pour les fonctions analytiques mais pas pour tous les termes du langage
(qui font potentiellement intervenir I'inverse). On utilise ici une préparation de Weierstrass
qui fonctionne pour tous les termes, prouvée par Cluckers et Lipshitz [CL11].

Par ailleurs, dans le cas des corps valués de différence sans structure analytique, le coeur
des preuves consiste, tout d'abord, a adapter la notion d'Hensélianité au cas des polynomes
de différence pour obtenir la notion de o-Hensélianité, ainsi qu'a généraliser 'étude des 1-
types utilisée pour démontrer I'élimination des quantificateurs dans le cas de corps valués
sans opérateur, a I'étude de certains n-types spécifiques de corps valué qui correspondent
au type de (z,0(x),...,0" 1 (z)) pour des éléments x € K bien choisis. Ce dernier point
apparait relativement explicitement dans la Section 11.6.

La preuve du Théoréme D consiste a marier ces deux approches. Dans [Scao6], Scanlon
avait déja tenté de le faire dans le cas d'une isométrie mais la notion de o-Henselianité qu’il
utilise est trop faible, bien que cela soit caché par des erreurs dans certains calculs. L'axio-
matisation et les preuves ont du étre entiérement refaites (et ont été généralisée au cas
d’'un automorphisme de corps valué quelconque) mais certaines idées de cet article restent
fondamentales dans 'approche présentée ici.

Pour mener a bien ce mélange, 1l y a plusieurs difficultés. La premiere est que la notion
habituelle de o-Henselianité, telle que définie dans [BMSo7] par exemple, n'est vraiment
utilisable que si I'on considere des termes dont le développement de Taylor est fini, autre-
ment dit des polynomes. L'autre difficulté est liée au fait que, comme expliqué ci-dessus,
I’élimination des quantificateurs en présence d’'un automorphisme nécessite d’étudier cer-
tains n-types de corps valués analytiques, mais que la technique principale utilisée dans
le cadre analytique ne nous renseigne vraiment que sur les 1-types. L'ingrédient principal
pour surmonter ces problemes est de considérer les propriétés différentielles des termes,
ce qui permet, entre autre, de définir une nouvelle notion de o-Henselianité adaptée au
cadre analytique de différence.
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Vu que c’est notre exemple principal, on donne aussi dans ce chapitre une axiomatisation de

£ ——al . . \ .
la théorie du corps W (F," ®) muni de sa structure analytique et du relévement du Frobenius
(dorénavant appelé W,) ainsi qu'un résultat de modération :

Proposition 0.5 (Proposition (11.6.31) et Corollaire (11.7.5)) :

La théorie de W, est axiomatisée par le fait que cest un corps valué o-Hensélien de caractéris-
tique mixte non ramifié avec structure analytique, que le corps résiduel est algébriquement clos,
que l'automorphisme induit sur le corps résiduel est le Frobenius et que le groupe de valeur est
élémentairement équivalent a 7.

De plus la théorie de W, est NIP.

Enfin, ce chapitre se veut aussi une approche systématique de certains faits bien connus au-
tour de la question de I'élimination des quantificateurs dans les corps valués enrichis mais
qui sont, en général, redémontrés dans chaque cas spécifique. Tout d’abord, pour mon-
trer 'élimination en caractéristique mixte il suffit de le faire en équicaractéristique nulle.
Ensuite, les résultats avec composantes angulaires découlent des résultats avec termes do-
minants. Enfin, les résultats d’élimination des quantificateurs de corps sont resplendissants,
cest-a-dire que l'on peut enrichir arbitrairement les sortes autres que le corps valué sans
perdre I'élimination des quantificateurs de corps. Les Section 11.A et 11.B contiennent donc
des considérations plus abstraites qui permettent de prouver ces trois faits dans la plupart
des enrichissements de corps valués que 'on pourrait vouloir étudier.

Chapitre lll. Imaginaires dans certains enrichissements de ACVF : La motivation
principale de ce chapitre est la résolution de la question de la propriété d’extension in-
variante dans la théorie VDF. Comme nous l'avons déja mentionné, lorsqu’ils étudiaient
les imaginaires dans ACVF, Haskell, Hrushovski et Macpherson [HHMo6] ont dévelop-
pé la notion de type stablement dominé, notion qui a ensuite été étudiée en détail dans
[HHMo8] et a amené ala définition de la métastabilité. L'exemple emblématique de théorie
métastable est ACVF mais il serait intéressant de disposer d’autres exemples dans laquelle
la partie stable est plus compliquée que ne l'est ACF. La théorie VDF est un bon candidat.
L'un des problemes liés aux types stablement dominés est qu'on ne sait prouver qu'une
forme de descente™ relativement compliquée, qui suppose I'existence d’extensions globales
invariantes, ce qu'on appelle communément la propriété d'extension invariante. Cest pour
cette raison que la définition de la métastabilité donnée par Haskell, Hrushovski et Mac-
pherson ne contient pas uniquement une propriété qui traduit la présence de nombreux
types stablement dominés mais aussi la propriété d’extension invariante.

Pour prouver que VDF est aussi un exemple de métastabilité et pouvoir, par exemple, y
étudier les groupes comme le fait Hrushovski pour ACVF dans [Hruc], il faut donc d’abord
démontrer la propriété d’extension invariante dans VDF. Cette propriété n’étant pas sans
rapport avec les imaginaires, la question de leur élimination se pose donc aussi naturelle-
ment. Par analogie avec DCF\, il est raisonnable de penser que VDF n’a pas plus d'imagi-
naires qu ACVF et donc quelle élimine les imaginaires dans le langage géométrique.

'°Le fait que tout type global stablement dominé sur B et invariant sur C' ¢ B est stablement dominé sur C.
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Les techniques développées dans ce chapitre pour étudier VDF s’adaptent a un cadre plus
général. L'un des résultats que I'on obtient est un critére abstrait pour I'élimination des
imaginaires et la propriété d’extension invariante dans certains enrichissements de ACVF.
On démontre au Chapitre 1V, que ce critére sapplique 2 VDF. La raison pour laquelle on se
place dans un cadre aussi général est qu'il est vraisemblable que ces techniques s’avereront
utiles dans d’autres cas que VDF, par exemple VDF avec une structure analytique ou bien

les vecteurs de Witt sur " .

Comme C’est le cas dans la version de la preuve de I'élimination des imaginaires dans ACVF
[Hrua;Johl], les types définissables jouent un role central dans I’élaboration de ce critere. En
fait, le principal résultat de ce chapitre (Théoréme E) est un résultat de densité des types
définissables dont la base canonique est controlée. Pour la théorie VDF dans le langage
géométrique, ce résultat peut sénoncer ainsi :

Théoréme 0.6 (Théoréme E dans le cas de VDF) :

Soient M = VDF, A c M¢4 définissablement clos et X un ensemble A-définissable, alors il
existe un type définissable p qui est Aut(M | G(A))-invariant et consistant avec X, ou par
G(A) on entend l'ensemble des points de A qui sont dans les sortes du langage géométrique.

L'un des ingrédients qui joue un réle déterminant dans le controle de la base canonique des
types que l'on construit dans ce chapitre est le résultat abstrait prouvé dans la Section 111.1
a propos des ensembles extérieurement définissables dans les théories NIP, et qui a pour
corollaire I'énoncé suivant :

Théoréme 0.7 (Théoréme (111.1.4) dans le cas de VDF) :

Soient M = VDF, A ¢ M définissablement clos. Si X est un ensemble A-définissable au
sens de VDF qui est aussi extérieurement définissable au sens ’ACVF, alors il est G(A)-
définissable au sens de ACVF.

Cela peut se reformuler de la maniere suivante : soit p un type de ACVF, supposons qu’il
existe un schéma de définition pour p qui soit composé de formules de VDF, alors il existe
un schéma de définition pour p qui est donné par des formules ’ACVF.

ChapitrelV. Un peu de théorie des modeles des corps valués différentiels :
Le dernier chapitre de ce texte contient plusieurs résultats sur la théorie VDF. Le plus
important d’entre eux est le théoréme suivant :

Théoréme F :
La théorie VDF élimine les imaginaires dans le langage géométrique et a la propriété d'ex-
tension invariante.

On étudie aussi dans ce chapitre certaines questions qui se posent quand on veut étudier
VDF. La premiére d’entres elles est de montrer que le corps des constantes est bien stable-
ment plongé et est un pur modele d’ ACVF. La preuve de ce résultat sadapte naturellement
ala théorie de W(Ealg) muni du relévement du Frobenius. La deuxieme question est celle
des clotures définissables et algébriques. On démontre que la cloture définissable nest pas
aussi simple que I'on pourrait espérer. Elle contient, en général, strictement la cl6ture Hen-
sélienne du corps différentiel engendré. On montre, tout de méme, que :
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Proposition 0.8 (Corollaires (IV.3.3) et (1V.3.4)) :

Soient M £ VDF et A ¢ K(M). Le corps K(dcl(A)) est une extension immédiate du corps
différentiel engendré par A et le corps K(acl(A)) est une extension immédiate de la cléture
algébrique du corps différentiel engendré par A.

On formalise aussi dans ce chapitre la relation entre les types dans VDF et les types dans
ACVF en introduisant une notion de prolongation au niveau de 'espace des types qui est
un analogue de celle définie dans DCF. La principale différence est que, dans DCFy, la
prolongation d’'un ensemble définissable est un ensemble définissable dans ACF alors que,
pour VDF, clest un type partiel de ACVF.

Enfin, dans la Section 1V.5, on étudie les groupes définissables dans VDF et leurs liens avec
les groupes définissables dans ACVF. La quasi-totalité de cette section consiste a montrer,
en suivant [Hruc], que certains outils développés dans les théories stables pour étudier et
construire des groupes se généralisent au contexte instable tant que les groupes que l'on
considére ont des génériques définissables. On montre en particulier 'analogue du résultat
de Hrushovski [Hrugo] qu'un groupe *-définissable dans une théorie stable est une pro-
limite de groupes définissables. On donne aussi un théoréme de construction de groupes
a partir de « group chunks ». La notion de « group chunk » que nous utilisons ici est un
peu plus générale que celle considérée habituellement en théorie des modeles, ce qui nous
permet de traiter directement les groupes définissables non connexes.

A partir de ces considérations « néo-stables », on montre que la preuve du fait qu'un groupe
définissable dans DCF, s’injecte définissablement dans un groupe définissable dans ACF
(et donc dans un groupe algébrique), peut étre reproduite dans un cadre abstrait et on en
déduit que certains groupes définissables dans VDF s’injectent définissablement dans des
groupes définissables dans ACVF.
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CHAPTER o

Preliminaries

BERENGER, au Logicien.
Cela me semble clair, mais cela ne résout pas la question.

LE LoGICIEN, a Bérenger, en souriant d’'un air compétent.
Evidemment, cher Monsieur, seulement, de cette facon, le probléme est posé de facon correcte.
E. lonesco, Rhinocéros, Acte 1

First of all, let me recall some notations and conventions. When « is a (potentially infinite)
tuple of elements from some set X, we will often write a € X when we should write a € X/
where [ is the set of indices of the tuple.

When we assume that a structure M is x-saturated (i.e. all types over set of parameters
A ¢ M with |A| < k are realized in M) or strongly k-homogenous (every elementary iso-
morphism between substructures of cardinal strictly less than x extends to automorphism
M) for some cardinal x, whenever we consider A ¢ M, it is understood that A is “small”, i.e.
|A| < k. Similarly if we consider a tuple, a substructure or a submodel it will be assumed
to be small. When we assume that a structure M is saturated or homogeneous enough,
it means that M is k-saturated or strongly xk-homogeneous for some cardinal s greater
than the cardinality of any tuple, subset, substructure or submodel of M we might have to
consider.

When ¢ is an L-formula with (tuple of) variables = and s, we will often write ¢(x;s) to
specify that s is intended to be a tuple of parameters. Let M be some £-structure, A ¢ M
and m € M be a tuple, we will write o(A;m) = {a € A: M E p(a;m)}. Similarly if X is an
L(M)-definable set, we will write X (M) for the M-points of X and X(A) := X(M)n A.
Usually in this notation there is an implicit definable closure, but we want to avoid that
because more often than not there will be multiple structures and languages around and
hence multiple definable closures that could be implicit.

Let M be some L-structure, A(z; s) be a set of £-formulas, A< B<c M and p € S5(B) bea
A-type (i.e. a maximal consistent set of formulas of the form ¢(z;b) for ¢ € A and b € B).
We will denote p|, € S5 (A) the restriction of p to A: the set {(2;a) € p:ae A}. When p
is definable (and the defining scheme also defines a global extension, cf. Remark (0.3.10)),
and C" ¢ M contains B, we will also write p|, for the extension of p to C.

Finally, when we say that a set is £-definable, we mean it is definable without parameters
and when we say it is £( A)-definable, this will obviously mean it is definable with param-
eters in A.

Most of the time, we will be working in multi-sorted languages.

"Because C is for Cookie, and that’s good enough for me [Fat].



0. Preliminaries

0.1. Imaginaries

Let us begin these preliminaries by recalling the notion of imaginaries whose elimination is
quite central to this work. All of the definitions and results in this section are classical, but
we will try to be very precise as terminology and notations tend to vary from one author
to another.

In model theory, an imaginary is a point in a interpretable set or equivalently a class of a
definable equivalence relation and, just as quantifier elimination results are about giving a
simpler description of definable sets in term of boolean combination of certain atomic for-
mulas, elimination of imaginaries is about giving a simpler description of interpretable sets
in terms of definable sets (cf. Proposition (0.1.7)). Elimination of imaginaries is also linked
to the question of finding canonical parameters for definable sets (cf. Definition (0.1.4)).

0.1.1. Codes

Let £ be a language, 7" an L-theory and M = T be a saturated and homogeneous enough
structure.

Definition o.1.1 (Code):
Let M =T and X be L(M)-definable. We say that A < M is a code for X if forall o € Aut(M):

o stabilizes X globally if and only if o fixes A pointwise.

We allow a code to be @ to be able to code £-definable sets in theories without constants.
Following [Hod93], we want to distinguish between uniform and non-uniform versions of
codes. To do so we introduce the closely related (but more syntactic) notion of canonical
parameter. These two notions are not usually distinguished but the definition of canonical
parameter forces a canonical parameter to a be a finite tuple whereas we want to allow
potentially infinite sets as codes.

Definition o.1.2 (Canonical parameter):

Let M = T, X be L(M )-definable and 0(x; s) be an L-formula. We say that a tuple a € M is a
canonical parameter for X via 0 if for all m € M 0(M;m) = X if and only if m = a.

Let X = (X))xea be an L-definable family of sets, i.e. there exists an L-formula p(x; s) and an
L-definable set A such that forall \ € A, X, is defined by p(x; \). We say that X admits uniform
canonical parameters via 0 if for all A € A(M), there exists ay € M a canonical parameter for
X via 6.

Proposition 0.1.3:
Let X be L(M)-definable and A € M be a finite tuple, then the following are equivalent:

(i) The set Ais a code for X;

(ii) There exists a finite tuple a € A which is a canonical parameter for X via some L-formula
0 and such that A c dcl(a).



0.I. Imaginaries

Proof .

(i)=(ii) Let us assume that A is a code for X. Let p(x;m) be an L(M )-formula such that
X = ¢(M;m) and p := tp(m/A). For all ¢ £ p, there exists o € Aut(M/A) such
that o(m) = c¢. As o fixes A, it stabilizes X globally and it follows that ¢(M;c) =
o(M;o(m)) =c(p(M;m)) =0(X) =X =@(M;m). We have just proved that:

p(s) Yz p(z;s) <= p(z;m).

By compactness, there is an £(A)-formula ¢ (s;a) where a is a tuple from A such
that ¢ (s;a) = (Ve o(x;s) <= @(x;m)). 1t follows that X is defined by 0(x;a) :=
Vsi(s;a) = ¢(z; ).

Let now ¢ := tp(a/@). Let ¢ £ ¢ be such that §(M;c) = (M;a) = X. There exists
o € Aut(M) such that o(a) = ¢. Moreover o(X) = o(60(M;a)) = 6(M;c) = X.
Hence o must fix A pointwise and ¢ = o(a) = a. It follows that:

q(t) - (Vzb(z;t) < 0(z;a)) =1 =a.

By compactness, we can find an £-formula £(¢) such that ({(¢) A (V2 0(z;t) <—
0(x;a))) =t = a. Then a is a canonical parameter for X via () A 0(x;t).

(ii)=(i) Let #(x;s) be an L-formula such that a € A is a canonical parameter for X via 6.
Then X is L(A)-definable and hence any o € Aut(M/A) must stabilize X globally.
Conversely, let o € Aut(M ) be any automorphism which stabilizes X globally. Then
O(M;o(a))=0c(0(M;a))=0(X)=X=0(M;a) and hence o(a) = a. ]

0.1.2. Elimination of imaginaries

Definition o.1.4 (Elimination of imaginaries):

We say that T eliminates imaginaries if every definable set in every model of T' is coded (equiva-
lently has a canonical parameter via some L-formula 0).

We say that T uniformly eliminates imaginaries if every L-definable family of sets admits uni-
form canonical parameters via some L-formula 6.

If S is a set of sorts from £, we will sometime say that 7" (uniformly) eliminates imaginar-
ies up to S to mean that every set definable in any model of 7" has a (uniform) canonical
parameter (via some L-formula 6) which is a tuple of points from the sorts S.

In [Poi83], where the notion of elimination of imaginaries was first introduced, it is shown
that if there are enough constants in the theory, non uniform and uniform version of elim-
ination of imaginaries are equivalent.

Proposition 0.1.5:
If L is such that there is a sort containing two constants and every sort contains at least one
constant, then T eliminates imaginaries if and only if T' eliminates imaginaries uniformly.
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Proof . Let M = T be saturated enough and ¢ (z; s) be an L-formula. For all tuples m € M
there exists a formula 0,,(z;t,,) and a tuple a,,, such that a,, is a canonical parameter for
©(M;m) via 0,,. By compactness, there exists (6;(x;t;) )o<i<x such that for all tuples m € M
there exists i, < k and a,, such that a,, is a canonical parameter for p(M;m) via 6; .
Adding variables to t; and specifying in 6; that they must be equal to a given constant in
the right sort, we may assume that all the ¢; are equal to some ¢. Replacing 0;(x;t) by
Oi(x;t) A Nji =(V2 0;(2;t) <= 0;(x;t)) for all m € M there is a unique 4,, and a,, such
that a,, is a canonical parameter for o (M;m) is via 6; . Let ¢; and ¢, be two constants in
the same sort and let 6(x;t,u) = V,;0;(x;5) A Njeiutj = ¢1 Au; = co. Then for all m € M,
the tuple a,,d;, , is a canonical parameter for (M ;m) via § where d; is a tuple where every
element is ¢; except the i-th which is c,. ]

A theory T uniformly eliminates imaginaries if and only if the inclusion functor from the
category of definable sets in 7" into the category of interpretable sets in 7" is an equiva-
lence of categories. To reformulate that statement in a more model theoretic way, let me
introduce the notion of a representable quotient.

Definition 0.1.6 (Representable equivalence relation):

Let M =T, D be L-definable and E ¢ D? be an L-definable equivalence relation in M. We say
that E is represented in M if there exists an L-definable function f with domain D such that
the fibers of f are exactly the E-classes, i.e. forall z,y € D(M), xEyifand only if f(z) = f(y).

If an equivalence relation £ on some set D is represented by the definable function f, then
the interpretable quotient D/E is definably isomorphic to the definable set Im( f).

Proposition 0.1.7:
The theory T uniformly eliminates imaginaries if and only for all M = T, every L-definable
equivalence relation in M is represented in M.

Proof . Assume T eliminates imaginaries uniformly and let £ be an £-definable equivalence
relation on some D in some M & 7. Then for all a € D, let E, be the F-class of a. By uni-
form elimination of imaginaries, there exists a formula 0(z; s) such that for all a € D(M),
E, admits a canonical parameter via f. Let f(a) be the canonical parameter of F, via 6.
Then f is an £-definable function and f(a,) = f(ay) ifand onlyif £, (M) = 0(M; f(ay)) =
Q(M, f(ag)) = EGQ(M), i.e. CLlECLQ.

Conversely, let p(z;s) be an L-formula. Let sy Es, hold if Va (p(x;s1) <= ¢(x;52)).
Then F is an L-definable equivalence relation in any model of 7" and hence it must be
represented by some L-definable function f. Let 0(x;s) := Vt (f(t) = s = ¢(x;t)). Then
e(M;m) =0(M; f(m))andif ¢ + f(m), for any a such that f(a) = ¢, p(M;a) + p(M;m)
and so O(M;c) # p(M;m),i.e. f(m) is a canonical parameter for (M;m) via 6. [

0.1.3. Shelah’s eq construction

The notion of imaginaries first appeared in work by Shelah (e.g. [She78]) through the fol-
lowing construction which consists in adding new sorts so that all interpretable sets be-
come definable. For the sake of simplicity, let us assume that 7" is complete until the end
of Section o.1.
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Definition 0.1.8 (7¢9):

For every L-definable E c (1;¢;, Si)? where S; is an L-sort, such that T' implies that E is an
equivalence relation, let S be a new sort and fr be a new symbol fr : [1; S; = Sg. Let L be
the language L to which we add all the sorts S and all the function symbols fg. Let T4 be the
L-theory:

T u {fgisonto: Eisan L-definable equivalence relation}
u {VaVy fe(x) = fe(y) < xFEy: Eisan L-definable equivalence relation}

Every M &= T can be extended in a unique way into a model M®4 of T4 by interpreting Sg as
(I1; Si(M))/E(M) and fg as the canonical projection.

Note that 74 is also complete.

Definition 0.1.9 (Dominant sorts):
Let S be a set of L-sorts. We say that the sorts in R are dominant in T if for every L-sort S there
exists a tuple of sorts (R;)o<i<k € R and an L-definable surjective function f : ], R; - S.

Remark o.1.10:

1. Let R be the set of L-sorts. They are dominant in 7°°4. We usually call them the real
sorts while the new sorts Sp are usually called the imaginary sorts;

2. Let M = T°4. The L% (Me9)-structure induced on R is exactly the £(M)-structure,
i.e. for all £°(Med)-formula () where all the variables in x are in the real sorts,
there exists an £(M)-formula 6 such that Vz o(z) < 0(z);

3. The theory T4 uniformly eliminates imaginaries;
4. If N<x M then Ned< Meg;

5. If Tis model complete then so is 7°4. However, if 7" eliminates quantifiers, 7°4 might
not.

We will denote the definable closure in 7°4 by dcl® (similarly for the algebraic closure acl®).

Proposition o.1.11:
Let M & T, X be L(M)-definable and A and A’ € M®4 be codes for X. Then dcl*(A) =
dcl®d(A").

Proof. We may assume M is saturated and homogeneous enough. Let o € Aut(M®4). Then,
by definition, o fixes A pointwise if and only if it stabilizes X globally, if and only if it fixes
A’ pointwise. It follows that A and A’ are interdefinable. [ ]

Notation o.1.12 ("X '):

It follows that the set "X ' := dcl®!(A) does not depend on the actual choice of code for X
but just on X itself. It is also the largest (with respect to the inclusion) code for X. We call
it the code of X.

If we want to specify the theory (or the language) in which the code is considered, we will

9

write "X '*. Note that, by definition, « is a code for X if and only if dcl*(a) = "X =
del®("X7).
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0.1.4. Weak elimination

Sometimes (see Example 0.1.18.3) sets are not exactly coded, but are coded up to finite per-
mutation. This is known as a weak code.

Definition o.1.13 (Weak code):

Let M & T be saturated and homogeneous enough and let X be L( M )-definable. We say that
A € M is a weak code for X if there exists a finite number of (A;)o<i<k € M such that Ay = A
and for all o € Aut(M):

o stabilizes X globally if and only if o stabilizes { A; : 0 < i < k} globally.

Definition o.1.14 (Weak canonical parameter):

Let M = T, X be L(M)-definable and 0(x; s) be an L-formula. We say that a tuple a € M is
a weak canonical parameter for X via 0 if there exists a finite number of tuples (a;)o<i<k € M
such that ag = a and for all tuples m € M, p(M;m) = X if and only if there exists i such that
m = a;.

We also define a uniform weak canonical parameter in the obvious way.

Proposition 0.1.15:
Let M = T be saturated and homogeneous enough. Let X be L(M )-definable and a € M be a
finite tuple. The following are equivalent:

(i) The tuple a is a weak canonical parameter for X via some L-formula 6.
(ii) The tuple a (seen as a set) is a weak code of X;

(iti) We have "X € dcl®(a) and a € acl®l("X");

Proof . We obviously have (i) = (ii) and (ii) = (iii) follows from the fact that a € dcl®(c)
if and only if a is fixed by Aut(Me4/c) and a € acl®(c) if and only if the orbit under
Aut(Me4/c) of a is finite. Now, if (iii) holds, by Proposition (0.1.3), there exists ¢ € "X
a canonical parameter of X via some £°I-formula 6. In particular, we have ¢ € dcl*(a) and
a € acl®(dcl®(c)) = acl®(c). Then, there is a finite to one £°'-definable map f such that
f(a)=c.

Let p(x;t) := 0(x; f(t)). By Remark 0.1.10.2, we may assume that ¢ is an £-formula. Then
for all m € M, o(M;m) = X if and only if O(M; f(m)) = X if and only if f(m) = ¢,i.e. m
is in the finite fiber of f above c. ]

Definition 0.1.16 (Weak elimination of imaginaries):

We say that T weakly eliminates imaginaries if every definable set in every model of T admits a
weak canonical parameter via some L-formula 6.

We say that T uniformly weakly eliminates imaginaries if every L-definable family of sets admits
a uniform weak canonical parameter via some L-formula 6.

Let us now show that the one difference between weak elimination of imaginaries and
elimination of imaginaries is the ability to code finite sets.



0.2. Valued fields

Proposition 0.1.17:
Let T' be a theory such that in every M = T, any finite set (of finite tuples) is coded. Let X be
L(M)-definable. Then X is weakly coded in M if and only if it is coded in M.

Proof . Let a be a weak canonical parameter of X viasome £-formula §. Thena € acl®(" X ")
and let A = {a; : 0 < i < k} be the finite orbit of « under the action of Aut(M¢/"X"). For
all 4, there exists o € Aut(M®4/" X ") such that o(a) = a;. Then X = o(X) =0(M;0(a)) =
0(M;a;). 1t follows that any automorphism o € Aut(M) that stabilizes A globally, sends
X = 6(M;a) to X = 0(M;a;) for some i and thus stabilizes X globally. Therefore, o
stabilizes X globally if and only if o stabilizes A globally, if and only if o fixes e pointwise,
where e is a code for A. Thus e is also a code for X. [ ]

Finally, let us give some examples.

Example 0.1.18:

I. The theory ACF of algebraically closed fields in the language of rings £,, uniformly
eliminates imaginaries and so does the theory DCF|, of differentially closed fields of
characteristic zero in L,; 9 := L,y U {0}. These are in fact the two examples that
motivated the definition of the elimination of imaginaries in [Poi83].

2. The theory DOAG of divisible ordered abelian groups, i.e. the theory of (Q, +, 0, <),
and the theory RCF of real closed fields both eliminate imaginaries, as they are o-
minimal groups. But, in the first case, the elimination is not uniform. Indeed, let
o(x;s,t) = s =t where |z| =|s| = |t| = 1. Then for all M = (Q,+,0,<) and a, c € M,
o(M;a,c)=Morp(M;a,c) =@. If the elimination were uniform, there would exist
a formula 0(z;u) and unique ¢y, co € M such that (M;c;) = M and 0(M; ;) = @.
In particular ¢; and ¢, are distinct elements in dcl(@) = {0}, a contradiction. In fact,
if the language is one sorted, we have just proved a converse to Proposition (0.1.5).

3. The theory of infinite sets weakly eliminates imaginaries. It cannot eliminate imag-
inaries because finite sets are not coded. For reasons similar to those in the previous
example, the weak elimination cannot be uniform either because acl(@) = @. But
infinite sets with two distinct constants uniformly weakly eliminate imaginaries.

0.2. Valued fields

We will now consider the other central subject in this work: valued fields. They have been
studied by model theorists for more than half a century now, leading to a profusion of
results and applications. In this section, we will describe the different languages used in
model theory of valued fields and some of the most classical results of elimination. For
more detail on various topics we will refer the reader to the preliminaries included in the
relevant chapters of this text.
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0.2.1. Definition and examples

Definition o.2.1 (Valued Field):
A valued field is a field K with a group morphism val from K* to some ordered abelian group I’
such that for all z, y € K the ultrametric inequality holds:

val(z +y) > min{val(x), val(y)}.

Remark 0.2.2:

1. The valuation of 0 is usually defined to be some new point +oo, bigger than any point
inl.

2. Theset O := {x € K :val(x) > 0} is a subring of K that is called the valuation ring.
The ring O is a local ring whose unique maximal ideal is 91 := {x € K : val(z) > 0}
and such that for all = € Frac(O) = K, either x € O or 7! € O. In fact, any local ring
O with this property is called a valuation ring and is the valuation ring of a unique
valuation on K = Frac(O): the canonical projection K* - K*/O".

3. The field k := O/ is called the residue field and the canonical projection is usually
denoted res: O — k.

Let us now consider classical examples of valued fields.

Example 0.2.3:

1. Let K be any field. For every irreducible polynomial P € K[X], the ring K[X]p, <
K(X) is a valuation ring associated to the P-adic valuation valp(P"Q/R) :=n € Z
whenever QA R = PA@Q = PA R = 1. For all e € R strictly greater than one, |x| =
e~valr(7) defines an ultrametric norm on K (X)) and all these norms are equivalent.
Let us now consider P = X. The completion of K[X | for the X-adic norm is the
field K((X)) of Laurent series over K whose valuation ring is K[[X]] the ring of
power series. The value group of K(X) and K((X)) is Z and their residue field is
K.

2. The Laurent series construction is in fact a special case of a more general construc-
tion: Hahn fields. Let k be a field and I" be an ordered abelian group. Then, let £((¢"))
be the field whose elements are the formal series ). a,t” such that { : a, # 0} is
well-ordered. The valuation on k((t")) is defined by val(¥. - at7) = min{y € I" :
a, # 0}. The value group of k£((¢"')) is I' and its residue field is k. The Laurent series
field over K is exactly K ((t%)).

3. Both of the previous examples have equicharacteristic, i.e. the characteristic of the
residue field equals the characteristic of the field. It is also possible to have a charac-
teristic zero valued field with a positive characteristic residue field. We then talk of
mixed characteristic.
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Let p be a prime. The ring Z,) ¢ Q is a valuation ring. It is associated to the p-adic
valuation val,(p"a/b) :=n € Zwhenanb=anrp = bap = 1. The completion of Q with
respect to the p-adic norm associated to the p-adic valuation is called Q, the field of
p-adic numbers. Its valuation ring is Z, = lim7Z /p" Z the ring of p-adic integers. The
value group of both Q and Q,, for the p-adic valuation is Z and their residue fields is

F,.

More generally, for any number field L whose ring of integers is R and any prime
ideal £ in R, L can be endowed with an ¢-adic valuation and the completion of L for
the associated /-adic norm is a finite extension of Q, where p is such that /nZ = (p).

4. A mixed characteristic field is said to be unramified if val(p) has minimal positive
valuation in the value group. There is a construction similar to the Hahn field con-
struction in unramified mixed characteristic: the Witt vectors. Let k be a perfect
field of positive characteristic. There is a unique, up to unique isomorphism, unram-
ified mixed characteristic complete valued field with residue field k£ that we denote
W (k). Its valuation ring is denoted W[k] and its value group is Z. Note that W(IF,)
is exactly Q,,.

0.2.2. Algebraically closed valued fields

The theory ACVF of (non trivially valued) algebraically closed valued fields is the first the-
ory of valued fields to have been studied by model theorists. In the past fifteen years, various
new aspects of this theory were studied extensively [HHMo6; HHMo8; HKo6; HL]. There
are many languages in which one can work depending on whether one wants a sort for the
value group, the residue field or none of them.

Definition 0.2.4 (One sorted language):
The language L, has one sort K and consists of the ring language L., := {+,—,-,0, 1} enriched
with a predicate | ¢ K which is interpreted as val(z) < val(y).

Definition o0.2.5 (Two sorted language):
The language Lt has two sorts K and T" and consists of the language of rings on K, the language
of ordered groups L., := {+,-,0,<} on T and a function val : K - T.

Definition 0.2.6 (Three sorted language):

The language Lr x has three sorts K, I' and k and consists of the language of rings on K and
k, the language of ordered groups on T, a function val : K — T and a function res : K* — k
interpreted as the residue of xy.

Theorem o0.2.7:

The theory ACVF eliminates quantifiers in the one sorted, the two sorted and the three
sorted languages. Its completions are given by fixing the characteristic of the valued field
and of its residue field.
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Proof . All these results follow from work by Abraham Robinson in [Rob77] although he only
stated model completeness (in any of the three languages as they are equivalent). The elimi-
nation of quantifiers in the one sorted language follows immediately from model complete-
ness and the existence of prime models (which are none other than the algebraic closures).
Quantifier elimination in the two sorted language is stated in [Wei84, Theorem 3.2] and
quantifier elimination in the three sorted language follows from more general results in
[Del82].

The description of the completions follows from quantifier elimination. ]

Note that it also follows from the quantifier elimination results that k and IT" are stably
embedded, that k is a pure algebraically closed field and I is a pure divisible ordered abelian
group. Another consequence of these quantifier elimination results is that unary sets inside
the sorts K have a very specific form.

Definition 0.2.8 (Swiss cheese):

Let (K, val) be a valued field. The open ball of center a € K and radius ~ € val(K) is the set
{x ¢ K : val(x — a) > v}. The closed ball of center a € K and radius v € val(K) is the set
{z € K :val(z — a) > v}. We also consider the whole valued field K to be an open ball. Let b be
a ball and (b; )o<i<k be subballs of b. Then the set b\ |U; b; is called a swiss cheese.

Note that balls of radius +oco are singletons. In particular the outer ball or the holes of a
swiss cheese can be singletons. We say that two swiss cheeses are trivially nested if the
outer ball of one coincides with one of the holes of the other.

Theorem o0.2.9 ([Holgs]):

Any unary set X < K definable in ACVF with parameters can be expressed in a unique
way as a finite union of non trivially nested swiss cheeses.

0.2.3. Henselian fields

A larger class of valued fields that is also widely considered in model theory and is the set-
ting of a great variety of model theoretic results, is the class of characteristic zero Henselian
fields. For the more algebraic considerations around Henselian fields, we refer the reader
to [EPos].

Definition o.2.10 (Henselianity):
Let (K, val) be a valued field. It is said to be Henselian if any of the following equivalent prop-
erties hold:

(i) Forall polynomials P € Ox and a € O such that res(P(a)) = 0 # res(P’(a)), there exists
¢ € O such that P(c) = 0 and res(c) = res(a);

(ii) For all polynomials P € Ox and a € O such that val(P(a)) > 2val(P’(a)), there exists
¢ € O sucht hat P(c) = 0 and val(c-a) > val(P(a)) — val(P’'(a));

(iii) There is a unique extension of val to any finite extension of K;

(iv) There is a unique extension of val to any algebraic extension of K;

10
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Example o.2.11:
All complete fields (Q,, K((t)) for example) are Henselian — this result is called Hensel’s
lemma and gave its name to the notion. Hahn fields are also Henselian.

Foremost among the classic results on the model theory of Henslian valued fields is the
Ax-Kochen-Ersov principle (cf. [AKO65; Er$6s]) which was one of the first model theoretic
results to be proved about Henselian valued fields, was essential in creating the great in-
terest we witness today for the model theory of valued fields and still influences our vision
of this subject.

Theorem o.2.12 (Ax-Kochen-ErSov principle):

Let K and L be two characteristic zero Henselian valued fields which are unramified if they
have mixed characteristic. We have K = L as valued fields if and only if T'(K) = T'(L) as
ordered groups and k(K') = k(L) as fields.

The Ax-Kochen-Ersov principle is an immediate consequence of some quantifier elimina-
tion theorems (e.g. (0.2.17)) but the original proof of the principle is 25 years older than
these quantifier elimination results.

Before considering more general Henselian fields, let me state another fundamental result
of Macintyre in the model theory of valued fields that is only concerned with a very specific
Henselian field: Q,,. For a generalization of this result to finite extensions of Q,,, we refer
the reader to [PR84].

Theorem o0.2.13 ([Mac76)):

Let Laiy p := Laiy U{ P, : n € Ny} where for all n € N, P, is interpreted as the set of n-th
powers. The Lq;, p-theory of Q, eliminates quantifiers.

Let us now define the leading term language, also known as amc-congruences in [Basgr;
BKo92; Kuhg4] or as the RV -language in [HKo06] for example.

Definition o0.2.14 (Leading term language):

Let LY be a language with a sort K, sorts RV, for all n € Ny, the ring language of K, for
all n € N,q a function symbol rv,, : K — RV, and for all m|n a function symbol rv,, , :
RV, — RV,,. The sort RV,, is interpreted as K* /(1 + n9) u {0} and the function symbols rv,,
and rv,, , are interpreted as the canonical projections. We also add to the language a constant
symbol 0,, € RV, interpreted as 0, a binary predicate |,, interpreted as val,,(z) < val, (y) where
val, is the function induced by val on RV,, and functions +,,, : RV;> - RV, for all m|n
interpreted as the trace of the addition on RV.> x RV,

For more precisions on this language, the reader should refer to Section 11.1.

Theorem o0.2.15 ([Basgr; BKg2].):

The ERV+-theory Then of characteristic zero Henselian fields eliminates field quantifiers
resplendently.

Resplendent field quantifier elimination is essentially the property that whatever the en-
richment on the RV, sorts, any formula is equivalent to a formulas without field quanti-
fiers. This notion is explained at length in Section 11.A. In equicharacteristic zero, one can
work in the restriction of L& to K and RV;.

II
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0.2.4. Angular components

Historically, characteristic zero Henselian valued fields have not been considered in the
leading term language but first with a cross-section and then with angular components.
The latter are still used nowadays because, although they add new definable sets, they sep-
arate the value group from the residue field.

Definition 0.2.16 (Angular component language):

The angular component language L% has a sort K, a sort T and sorts R,, for all n € N, the
ring language on K and each of the R, the ordered group language on T, for all n a function
symbol ac,, : K - R,, and for all m|n a function symbol res,, ,, : R,, = R,,,. Foralln € N,o, R,,
is interpreted as the ring O/(n9N). The maps res,, ,, are interpreted as the canonical projections
and the maps ac,, as angular components, i.e. group morphisms K* - R that send 0 to 0 and
such that acy|,- = res,

o
This language is usual known as the Denef-Pas language. Note that Ry is the residue field
k. For more precisions and the relation between this language and leading terms, one may
look at Section 11.1. As with leading terms, in equicharacteristic zero, one may work with
the restriction of £ to K, I" and k = R,,.

Let Tfy,, be the £*-theory of Henselian valued fields with angular components, Tf,, o be
the £*“-theory of equicharacteristic zero Henselian valued fields with angular components
and for all pand e the £**-theory T?_féfl;fr of characteristic (0, p) Henselian valued fields with
ramification index at most e, i.e. val(p) is at most e times bigger than the smallest positive
element of . In the latter case we add a constant symbol for a uniformizer =, i.e. val(r) is
the smallest positive element of I and we assume that, for all n € N, ac,(7) = 1.

Theorem o0.2.17 ([Pas89]):

The theories Tty o and T?_féijr eliminate field quantifiers resplendently.

Note that, although angular components sometime enlarge the class of definable sets, any
saturated enough valued field can be equipped with angular components (cf. [Pasgo, Corol-
lary 1.0]).

0.2.5. Geometric sorts

Let me introduce one last language, the geometric language of [HHMo8] that was intro-
duced in order to prove elimination of imaginaries in ACVF.

Definition 0.2.18 (Geometric language):

The geometric language LY consists of the sort K, for all n € N, sorts S,, and T,,, the ring
language on K and functions s, : K" - S,andt, :S, xK" - T,. Thesort S,, is interpreted
as the sort of all O-lattices in K", i.e. rank n free O-modules in K". The sort T,, is interpreted
as Uses, s/9Ms, the function s, sends a K-linearly independent tuple (b;)o<i<n € K" to the O-
modules generated by the b; and any other tuple to, for example, O™ and t,, sends a lattice s and
a point a € s to the coset a + Ms. If a ¢ s, t,(s,a) = Ms, for example.

The sort S, is in fact I' and s, is exactly the valuation. There is also an £?-definable map
T, : Tp = S,, sending a + Ms to s and the fiber of 7 above O is k. A more detailed account

12
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of those geometric sorts can be found in Sectionl.2.2. Let ACVFY be the £%-theory of
algebraically closed valued fields.

Theorem o.2.19 ((HHMo8]):
The theory ACVFY eliminates imaginaries.

0.3. The independence property

Because the value group is ordered, valued fields cannot be stable or even simple. But pro-
vided the residue field is tame enough, valued fields are still reasonably tame. In particu-
lar, many of the interesting theories of valued fields are NIP, a tameness assumption that
appeared independently in work of Shelah in [She71] and in learning theory as finite VC-
dimension in [VC71].

0.3.1. Definitions and examples

Definition 0.3.1 (Independence property):

Let M be an L-structure. An L-formula ¢(x,y) has the independence property in M if there
exist tuples (a;)ien € M and (b;) jepv) € M such that for all i and j, M = ¢(a;, b;) if and only
ifiej.

An L-theory T is said to be NIP (not the independence property) or dependent if no L-formula
has the independence property in any model of T.

Definition 0.3.2 (VC-dimension):
Let X beaset and S € B(X). The VC-dimension of S is defined as the greatest n € N such that
there exists A ¢ X of cardinal at most nand {AnY :Y € S} =B(A).

As announced earlier, these two notions are closely linked.

Proposition 0.3.3:

Let M be Rq-saturated. An L-formula p(x,y) has the independence property in M if and only
if the family {o(M, m) : m € M is a tuple } has infinite VC-dimension.

Example 0.3.4:

I. Let X be a set and S be the set of all sets of cardinal at most n, then S has VC-
dimension n.

2. The theory ACF is NIP (as are all strongly minimal theories, cf. Definition (0.3.19)).

3. Let (X, <) be a totally ordered set and S be the set of all intervals. Then S has VC-
dimension 2.

4. Real closed fields are NIP (as are all o-minimal theories, cf. Definition (0.3.20)).

3
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5. Let (K, val) be a valued field and S be the set of all balls. Then S has VC-dimension
2.

6. The theory ACVF is NIP (as are all C-minimal theories, cf. Definition (0.3.22)).

7. By a theorem of [GS84], the theory of ordered abelian groups is NIP.

Let us now give a theorem that formalizes the principle, mentioned earlier, that a Henselian
valued field is tame if its residue field is tame (which, because the value groups is always
NIP, is a form of Ax-Kochen-ErSov principle for NIP). This theorem was first proved in
equicharacteristic zero by Delon in [Del81].

Theorem 0.3.5 ([Bélgo]):

Let T be any completion of T1y.,,, or Tyen that implies either equicharacteristic zero or non
ramification in mixed characteristic. Then T is NIP if and only if k, as a field, is NIP.

0.3.2. Some properties of NIP theories

First let us give a combinatorial result about families of finite VC-dimension known as the
(p, q)-theorem that will be used in Section 11L.1. To be precise, the statement we give here
is a special case of the dual version of the (p, ¢)-theorem (see [Sim, Corollary 6.13]). For the
full statement, one can look at [Mato4] or [Sim, Theorem 6.10].

Theorem 0.3.6:

For all k € N, there exists g and n € N such that for any set X, any finite A ¢ X and any
S cPB(X) of VC-dimension at most k, if for all Ag € A of size at most q there exists Y € S
containing A, then there exists Y, ...Y, € S such that A c U, Y;.

The other result about NIP theories that we will be using is the existence of uniform honest
definitions.

Definition 0.3.7 (Externally definable set):
Let M be an L-structure and A ¢ M. We say that X ¢ A is externally definable if there exists
an L-formula p(x; s) and a tuple m € M such that X = p(A;m).

Definition 0.3.8 (Stable embdedness):
Let M be an L-structure and A ¢ M. We say that A is stably embedded if every externally
definable subset of A is in fact of the form X (A) where X is L( A)-definable.

Before we go any further, let us recall a notion central to stable theories: definable types.
Not only will it allow to fix some notations, it will also shed some light on some later con-
ventions.

Definition 0.3.9 (definable type):

Let M be an L-structure, A ¢ M, A(z; s) be a set of L-formulas and p € S5 (A). We say that
the A-type p is L( A)-definable if for all p(x;s) € A(x;s), there exists an L(A)-formula 0(s)
such that for all tuples m € M, ¢(x;m) € p if and only if M = 0(m).
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We will denote 0(s) by d,x o(z; s).
Remark o.3.10:
1. Assume A< M, and A is closed under boolean combinations. For all ¢ € A, we have
M= Vs (dpyx (p(;5) A(x35)) = (dprp(a;5) Adpz (23 5))),

M & Vs (dyx—p(x;8) <= —~dyxo(x;5s))

and
M eVsdyro(x;s) = 3z o(z;s).

It follows that p has a (unique) global definable extension and this extension has the
same defining scheme.

2. If A is not a model, the situation is more complicated. There is no reason for the
defining scheme of p to be compatible with - and A or to be consistent, i.e. M E
Vsd,r p(z;s) = 3z p(x;s). Therefore, we have to distinguish two notions of de-
finability: those definable types that have a global definable extension given by the
defining scheme and those that do not. Most of the time in this work, we will be
considering global definable types, but the rare time types are not over a model, we
will specify which notion we are considering.

One can check that a set A is stably embedded if every type over A is definable (by a defining
scheme that might not define a global type). Hence, in a stable theory 7', every set A ¢
M & T is stably embedded (and that is equivalent to stability). The existence of honest
definitions in NIP theories tells us that this fact remains “finitely” true in a uniform way:

Theorem o.3.11 ([CS13]):

Let T be an NIP L-theory and p(x; s) be an L-formula, M =T, A< M and b € M. There
exists a formula ) (z;t) such that for any finite Ay € p(A;b), there exists a tuple d € A
such that Ay € ¥(A;d) € p(A;D).

In fact, the (p, ¢)-theorem can be used to show that these honest definitions are even more
uniform:
Theorem o0.3.12 ([CS]):

Let T' be an NIP L-theory and p(x;s) be an L-formula. There exists a formula v (x;t)
such that forany M = T, any A ¢ M, any tuple b € N and any Ay € p(A;b) finite, there
exists a tuple d € A such that Ay € Y(A;d) € p(A;b).

We now want to define types that behave generically as if one were in a stable theory. But
first, we need some more definitions.

Definition 0.3.13 (p ® ¢):

Let M be a saturated enough L-structure. Let p and q € S(M) be such that q is Aut(M/A)-
invariant for some A ¢ M. The type p® q € S(M) is the type such that for all C' ¢ M containing
A, p®ql|s =tp(ab/C) forany a = p|, and b= q|.,.
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One can check that because ¢ is Aut(M /A)-invariant, this is well-defined. Note that if p is
also Aut(M/A)-invariant, p® g is Aut(M /A)-invariant and that if p and ¢ are both defin-
able, p® q is defined by d,x d,y¢(x,y; s) where d,zp(z,y; s) is the formula in the defining
scheme of p corresponding to ¢ and similarly for .

Let 7' be an NIP L-theory.

Proposition 0.3.14:
Let (a;):er be an indiscernible sequence and o(x) be an L(M )-formula. Then there exists an
end segment I, € I such that either for all i € Io, M = p(a;) or foralli € Io, M = -p(a;)

Definition 0.3.15 (lim(Z)):

Let T = (a;)<; be an indiscernible sequence. We define lim(Z) to be the global type such that for
all L-formula o(x;s) and m € M, o(x;m) € im(Z) if and only if ¢(x;m) holds on an end
segment of Z. By Proposition (0.3.14), this is a complete type.

For any Aut(M /A)-invariant type p, we define p®! := p, p®n*l := p®" @ p and p®“(z,.,) =
U, p®"(Z;<n ). Note that because p®™(x;<,) € p®"*1(<n41) this is a well-defined type. We
call its realisations Morley sequences of p.

Definition 0.3.16 (Generically stable type, [Sheo4; HP11]):
Let M & T be a saturated enough and let A ¢ M and p € S(M) be Aut(M | A)-invariant, then
p is generically stable if any of the following equivalent properties hold:

(i) pis L(M)-definable and finitely satisfiable in some (small) N < M;
(ii) Forall q € S(M) which is Aut(M /C)-invariant for some small C ¢ M, p®q = q®p;

(iii) p*2(x,y) = p**(y, x);
(iv) Any Morley sequence of p is totally indiscernible;

(v) Forall T = p®«|,, lim(Z) = p.

Definition 0.3.17 (f.p):

Let p € S(C) and f be an L(C')-definable function defined on p. The type f.pis tp(f(a)/C)
forany a & p.

One can check that if p € S(M) is Aut(M/C)-invariant and f is £(C')-definable, then
fop is also Aut(M/C)-invariant. Similarly if p € S(M) is L(C')-definable and f is £L(C')-
definable, f.pis £(C')-definable and we can take dy, ,y¢(y;s) = dyxe(f(x);s). Similarly,
when (f;)i is a tuple of £(C)-definable functions (what is usually called a x-definable
function cf. Definition (IV.5.2)), f.p also makes sense.

Lemma 0.3.18:
Let M =T, Ac M, peS(M) be Aut(M|A)-invariant and generically stable and f be L(A)-
definable and defined on p, then f,p is generically stable.

Proof.Let C' 2 A, a = p|loand b &= p|,,. Then (a,b) = p®?|,. As p is generically sta-
ble, we also have (b,a) £ p®2. 1t follows that tp(f(a), f(b)/C) = tp(f(b), f(a)/C). But

16



0.3. The independence property

f(a) & fiplcand f(b) & fiplosa- It follows that both (f(a), f(b)) and (f (D), f(a)) are
realisations of (f.p)®?|.. ]

0.3.3. C-minimality

This section is not exactly about NIP, but about subclasses of NIP, among them the class of
C'-minimal theories, which are all defined by asking that the unary sets definable in mod-
els of a given theory are all quantifier free definable in a particularly simple sublanguage.
The most simple of these minimality notions (and by far the oldest, it is already central
to the proof of the Baldwin-Lachlan theorem, cf. [BL71]) is minimality with respect to the
language of equality:

Definition 0.3.19 (Strong minimality):
An L-theory T is strongly minimal if every unary set definable in models of T is either finite or
cofinite.

Strongly minimal theories are the tamest theories possible (they are, in some sense, w-stable
theories of dimension one). Amongst them, we find infinite sets, infinite k-vector spaces
for some fixed field k and algebraically closed fields.

The next notion of minimality we will consider is minimality with respect to an order. It
was first studied in [PS86], based on previous work by van den Dries in [Dri84b].

Definition 0.3.20 (0-minimality):

Let L be a language containing a binary relation symbol < and T' be an L-theory which implies
that < is a linear order. The theory T is o-minimal if every unary set definable in models of T is
a finite union of intervals.

Among o-minimal theories, one can find the theory of discrete orders with or without end
points, dense orders with or without end points, the theories DOAG (divisible ordered
abelian groups) and RCF (real closed fields), the theory of the field R with the exponential
function and even the theory of the field R with the exponential function and analytic
functions on compact domains.

The last class we want to consider is somehow a mix of the two previous ones that was
introduced in [MS96].

Definition o0.3.21 (C-relation):
Let X be a set, a C-relation on X is a relation C' ¢ X3 that verifies the following axioms:

(D) Ya¥yVz (C(z;y;2) = C(x;239));
(if) YoVy¥z (Clzy; 2) = ~C(y; 252));
(iii) VaVyVzVw (C(z;y;2) = (C(w;y; 2) v C(z;w; 2)));

(iv) VaVy (x +y = zz 2y A C(x;y;2)).
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A C'-relation is essentially linked to the presence of a tree with meets. Indeed for any C'-
relation on a set X there exists a tree (7', <) with meets (where the root is at the bottom)
such that the leaves of 7" are exactly the points in X and C(z,y, z) holds if and only if
x Az <ynz 1f (K,val)is avalued field, the relation val(x — z) < val(y — z) is a C-relation
and the associated tree is the tree of closed balls. By analogy with valued fields, in a set X
with a C'-relation, an open ball is a set of the form {x € X : C'(a,z,b)} (we also consider
the whole set X to be an open ball), a closed ball in a set of the form {z € X : =C(z,a,0)}
and a swiss cheese is a ball from which a finite number of balls have been removed.

Definition 0.3.22 (C'-minimality):

Let L be a language containing a ternary relation symbol C and T' be an L-theory which implies
that C'is a C-relation. The theory T is C'-minimal if every unary set definable in models of T is
a finite union of swiss cheeses.

It follows from Theorem (0.2.9), that ACVF is a C-minimal theory for the C'-relation de-
scribed above. Algebraically closed valued fields with analytic structure (cf. Section 11.3) are
also C-minimal. To finish, let us give a formal statement, in the case of valued fields, of the
previous somewhat vague statement that C'-minimality is a mix of strong minimality and
o-minimality.

Proposition 0.3.23:

Let T be a C-minimal L-theory of valued fields, where C'is defined as above. Then k and I are
stably embedded, the induced structure on k is strongly minimal and the induced structure on T
is o-minimal.

Proof.Let M = T and X c T be a unary £-definable set. The set val ' (X) is both a (po-
tentially infinite) union of annuli around 0 and a finite union of swiss cheeses, hence it is a
finite union of annuli around 0 and X must be a finite union of intervals. Therefore, I" is
o-minimal in 7" and by [HO10], I" is stably embedded in models of 7.

Similarly, let X ¢ k be a unary £-definable set. The set val "' (X) is both a (potentially
infinite) union of disjoint open balls of radius 0 inside O and a finite union of swiss cheeses,
hence it must either be a finite union of disjoint open balls of radius 0 or O minus a finite
number of open balls of radius 0. In the first case, X is finite and in the other X is cofinite.
Thus k is strongly minimal in 7" and that easily implies that k is stably embedded. ]

0.4. Stable domination

In ACVF, the value group, being ordered, is obviously unstable and the residue field, being
strongly minimal, is stable. To build on this idea that a valued field is controlled by its
residue field and value group, one would like to show that in some sense the theory is
stable-like over the value group. Let 7" be an L-theory.
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0.4.1. Definition and properties

Let us first begin with some equivalent definitions of stable embeddedness for partial types
(cf. the appendix of [CH9g]). Let M be a sufficiently saturated and homogeneous L-
structure.

Proposition 0.4.1:
Let P be a partial L-type. The following are equivalent:

(i) P(M) is stably embedded in M;
(ii) Forall tuples a € M, tp(a/dcl®d(a) ndcl®(P(M))) + tp(a/P(M));
(iii) For all tuples a € M, tp(a/Py) + tp(a/P(M)) for some (small) Py ¢ P(M);
(iv) Forall tuples a € M, tp(a/acl®(Fy)) + tp(a/P(M)) for some (small) Py ¢ P(M);
(v) For all tuples a € M, tp(a/P(M)) is L(P(M))-definable.
Definition 0.4.2 (Stable stably embedded sets):

Let C ¢ M and P be a partial L(C')-type. We say that P is stable, stably embedded if any of the
following statements hold:

(i) Thereis no L(M)-formula p(x,y), tuples (a;)i«, € P(M) and tuples (b;);<., € M such
that M & p(a;,b;) if and only if i < j;

(ii) P is stably embedded and the L(C')-induced structure on P is stable;
(iii) For all tuples a € P(M) and A < M, tp(a/A) is definable;

(iv) Let k > | L] +|C|with k = k® and B ¢ M which contains C and has cardinality , then
there are at most r 1-types over B realized in P(M).

In ACVFY stable, stably embedded definable sets can all be described, and they are closely
linked to the residue field:

Proposition 0.4.3 ((HHMo06, Lemma 2.6.2 and Remark 2.6.3]):
Let M = ACVFY, C ¢ M and P be an L9 (C)-definable set. The following are equivalent:

(i) P is stable, stably embedded;
(ii) P isk-internal, i.e. there exists a finite A € M such that P ¢ dcl(Auk);
(iii) P c dcl(E u k) for some finite E C P;

(iv) There is no L9 (M )-definable map from P! for some | € N onto an infinite interval in T.
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Let us go back to a more general setting and let £ be a language, M be a saturated and
homogeneous enough £-structure that eliminates imaginaries and C' € M.

Definition 0.4.4 (Stc):
The stable part over C, denoted St, is a structure whose sorts are all the L(C')-definable stable,
stably embedded sets with their L(C')-induced structure.

Remark 0.4.5:

1. Finite sets are stable, stably embedded, hence acl(C') ¢ Stc.

2. The structure St¢ is stably embedded in M and its theory is stable. We will denote
by | the independence relation in St.

3. At some point we might have two or more languages around so we will specify the
language by writing St¢.

Definition 0.4.6 (Stable domination):
Let p € S(C), we say that p is stably dominated if for every a = p and B < M such that
Ste(del(CB)) Le Ste(del(Ca)),

tp(B/Ste(del(Ca))) + tp(B/Ca).

Let me now give some properties of stably dominated types.

Lemma 0.4.7:

Let R be a set of dominant sorts in T and p € S(C'). Assume that for all B ¢ R(M) such
that Sto(del(CB)) Lo Ste(del(Ca)), we have tp(B/Ste(del(Ca))) + tp(B/Ca). Then p
is stably dominated.

Proof.Let a £ pand B ¢ M be such that Stc(del(CB)) Le Ste(del(Ca)). By domina-
tion of R, there exists D ¢ R(M) such that B ¢ dcl(D). As St is stably embedded, we
may assume that the Sto(dcl(CD)) Le Ste(del(Ca)) and hence tp(D/Ste(del(Ca))) +
tp(D/Ca). Let B’ be such that B’ =g (qc1(ca)) B- There exists o € Aut(M /Sto(del(Ca)))
such that o(B) = B’. We have 0(D) =s;.(daci(ca)) D and hence o(D) =¢, D. Because
B c dcl(D), it follows that B’ = 0(B) =¢, B. []

Proposition 0.4.8 ((HHMo8, Proposition 3.13]):
Let p € S(C') be stably dominated, then p has a global L(acl(C'))-definable extension.

Proposition 0.4.9 ((HHMo8, Proposition 3.31.(iii)]):
Let a € M be a tuple. The type tp(a/C') is stably dominated if and only if tp(a/ acl(C')) is.

Proposition o0.4.10 ((HHMo8, Proposition 3.32.(iii)]):
Let c € M be a tuple and f be an L(C')-definable function. If tp(c/C') is stably dominated then
soistp(f(c)/C).
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Proposition o0.4.11 ((HHMo8, Proposition 4.1]):
Let p € S(M) be Aut(M /C)-invariant and let B ¢ M contain C. If p| is stably dominated,
so is p|p.

The other direction (i.e. a positive answer to the question whether a global C-invariant
type p is stably dominated over B 2 (' is stably dominated over C) is called descent and is
much more complicated. In fact, we only know how to prove it under the assumption that
the type of B over C has a global invariant extension:

Proposition 0.4.12 ((HHMo8, Theorem 4.9]):
Let p and q € S(M) be Aut(M [C)-invariant. Assume that for all b = q|., p|c, is stably domi-
nated. Then p|, is also stably dominated.

Let us now define the invariant extension property:

Definition 0.4.13 (Invariant extension property):

Let T be an L theory that eliminates imaginaries, A ¢ M for some M = T. We say that T has
the invariant extension property over A if, for all N & T, every type p € S(A) can be extended
to an Aut(N/A)-invariant type.

We say that T' has the invariant extension property if T has invariant extensions over any A =
acl(A)c M e T.

Lemma 0.4.14:

Let T be an L theory that eliminates imaginaries. Assume that T" has the invariant extension
property. Let pand g € S(M ) be Aut(M /C)-invariant and B ¢ M, C' € B, be such that p| is
stably dominated. Then p|, is also stably dominated.

Proof . Let g be an Aut(M/ acl(C'))-invariant extension of tp(B/acl(C)). Let B' E g0y
Then there is an automorphism 7 € Aut(M/acl(C)) such that 7(B’) = B. Because p is
Aut(M/C)-invariant p|5 = 7(p|z). 1t follows that p|, is stably dominated. Hence, by
Proposition (0.4.12), p|, .y is stably dominated. We conclude by Proposition (0.4.9). =

In [HHMOo8], it is shown that there are many stably dominated types in ACVF. In fact,
ACVF is what is called a metastable theory. Let 7" be an NIP L-theory eliminating imagi-
naries and let I be a stably embedded £L-definable set with an £-definable linear order.

Definition 0.4.15 (Maximally complete field):
A valued field K is said to be maximally complete if for every chain of balls (b;); in K, the
intersection N;e; b;(K) is non empty.

This is also often referred to as spherical completeness. Equivalently, K is maximally com-
plete if every pseudo-convergent sequence from K has a pseudo-limit in K (see Defini-
tion (I1.4.12)). Note that a maximally complete field is in particular Henselian and that
Hahn fields are maximally complete.

Definition 0.4.16 (Metastability):
We say that T is metastable over T if:

(i) The theory T has the invariant extension property.
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(ii) Existence of metastability bases: For all A ¢ M, there exists C' ¢ M containing B such
that for all tuples a € M, tp(a/CT (dcl(Ca))) is stably dominated.

Theorem 0.4.17 ((HHMo8, Theorem 12.18.(ii) and Corollary 8.16]):

The theory ACVF is metastable over I. In fact, the metastability bases are exactly the
maximally complete models of ACVF.

0.4.2. Orthogonality to I

The following definition of orthogonality is only equivalent to classical notions if I" is stably
embedded and eliminates imaginaries for the £-induced structure.

Definition 0.4.18 (Orthogonality to I'):
Let T be an L-definable set and p € S(M ) be an Aut(M /C')-invariant type. It is orthogonal to
I" if any of the following equivalent statements hold:

(i) Forall B ¢ M containing A and a = p|g, I'(dcl(Ba)) = T'(dcl(B)).

(ii) For all L(M)-definable functions f whose domain contains p and whose codomain is T,
the type f.pis realized in M.

The three notions we have defined: stable domination, generic stability and orthogonality
to I'; are related.

Proposition 0.4.19:
Let T be an NIP L-theory eliminating imaginaries and let T" be a stably embedded L-definable
set with an L-definable linear order. Let p € S(M) be an Aut(M /C)-invariant type. We have:

(i) If pis stably dominated then it is generically stable;

(ii) If p is generically stable it is orthogonal to T".

Proof .

(i) By Definition (0.3.16), we have to show that p® p(z,y) =p® p(y,x). Let A = acl(A) ¢
M contain C, a £ p|, and b = p|,,. We have to show that a = p|,,. We have
Sta(dcl(Ab)) & (Sta.p)|,, Where St is considered as a *-definable function send-
ing x to St (dcl(Az)). As pis Aut(M/C) invariant and C' ¢ A, (Sta,p)|,, does not
fork over A. In particular St4(dcl(Ab)) L4 Sta(dcl(Aa)). By, Lemma (0.4.14), p| , is
stably dominated and hence tp(a/ASt 4 (dcl(Ab))) + tp(a/Ab).

Let a’ E p| ,,. Then, as above St 4(dcl(Ab)) L4 Sta(dcl(Aa’)) and hence

StA(dCl(Aa,)) =L(ASt 4 (dcl(Ab))) StA(dcl(Aa))

Because St is stably embedded, we have, in fact, a’ =£(ast ,(dci(4p))) @ and hence
tp(a/Ab) = tp(a'/Ab) = p| 4
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0.4. Stable domination

(ii) Let f be any £L( M )-definable function into I" defined on p. By Lemma (0.3.18) f.p is
generically stable. But because I has an £-definable order, the only generically stable
types in I" are realized. [ ]

In ACVF, the instability is essentially contained in I" and the three notions coincide. The
equivalence of (i) and (iii) is already proved in [HHMo8, Section 10].

Proposition 0.4.20 ([HL, Proposition 2.8.1]):
Let M = ACVFY, C ¢ M and p € S(M) be an Aut(M /C)-invariant type. The following are
equivalent;

(i) pis stably dominated;
(ii) pis generically stable;
(iii) pis orthogonal to T.
Proof . By Proposition (0.4.19), it suffices to prove that (iii)=(i). Let Cy< M contain C' and
be maximally complete. Let a = p|., . By Theorem (0.4.17), tp(a/CoI'(dcl(Coa))) is stably

dominated. But, because p is orthogonal to I, I'(dcl(Cya) ) = I'(Cy) and hence tp(a/Cp) =
pl, is stably dominated. We can now conclude by Proposition (0.4.11). [ ]
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CHAPTER1

Imaginaries in p-adic fields

LE LOGICIEN
La logique méne au calcul mental.

E. lonesco, Rhinocéros, Acte 1

This chapter contains [HMR], joint with Ehud Hrushovski and Ben Martin. In the paper,
one can also find an appendix by Raf Cluckers that is not included here. The Appendix
consists of a complete proof of the rationality results in Section 1.6 for fixed p, which also
extends to the analytic case, while avoiding an explicit elimination of imaginaries.
Although 1 was not directly involved in the elaboration of sections 1.7 and 1.8 either, they
are included here both to keep the paper as a whole and to show an application of the model
theoretic results.

1.1. Introduction

This paper concerns the model theory of the p-adic numbers Q,, and applications to cer-
tain counting problems arising in group theory. Recall that a theory (in the model-theoretic
sense of the word) is said to have elimination of imaginaries (El) if the following holds: for
every model M of the theory, for every definable subset D of some M™ and for every de-
finable equivalence relation R on D, there exists a definable function f: D — M™ for some
m such that the fibers of f over f(D) are precisely the equivalence classes of R. In other
words, elimination of imaginaries states that every pair (D, E) (consisting of a definable
set D and a definable equivalence relation E on it) reduces to a pair (D', E’) where E' is
the equality—where, as in descriptive set theory, we say that (D, F') reduces to (D, F) if
there exists a @-definable map f: D' - D with xE'y < f(x)Ef(y).

The theory of Q,, (in the language of rings with a predicate for v(x) > v(y)) does not admit
El [SMo3]: for example, no such f exists for the definable equivalence relation R on Q,
given by 2 Ry if val(x —y) > 1, because Q, / R is countably infinite but any definable subset
of Q)" is either finite or uncountable. We show that the theory of Q,, (and even of any finite
extension) with some extra sorts for Z,-lattices admits El (cf. Theorem A). In Theorem B,
we show that the theory of ultraproducts of Q,, also eliminates imaginaries if we add similar
sorts. It follows that the elimination in Q,, is uniform in p (see Corollary (1.2.7) for a precise
statement of the uniformity). In fact, we prove a more general result (Corollary (1.2.15)):
given two theories 7', T satisfying certain hypotheses, T has E1 if T does. In our application,
T is the theory of algebraically closed valued fields of mixed characteristic (ACVF,) or
equicharacteristic zero (ACVF o) and T is either the theory of a finite extension of Q, or
the theory of an ultraproduct of Q,, where p varies, with appropriate extra constants in each
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L. Imaginaries in p-adic fields

cases (in fact in the latter case Corollary (1.2.15) does not apply immediately but a variant
does).

The notion of an invariant extension of a type plays a key part in our proof. If 7" is a theory,
M =T, Ac M and pis atype over A then an invariant extension of p is a type g over M such
that ¢|, = p and ¢ is Aut(M/A)-invariant. The theory ACVF is not stable; in [HHMoG6;
HHMo8], Haskell, the first author and Macpherson used invariant extensions of types to
study the stability properties of ACVF and to define notions of forking and independence.
They proved that ACVF plus some extra sorts admits EI.

Let us now come back to the meaning of our elimination of imaginaries result. It shows
that any (D', E') can be reduced to a (D, E') of a special kind—namely, the equivalence
relation on GLy(Q,) for some N whose equivalence classes are the left GLy(7Z,)-cosets.
The quotients D/FE have a specific geometric meaning; but can one explain abstractly in
what way they are special? One useful statement is that an arbitrary equivalence relation
is reduced to a quotient by a definable group action. Another property concerns volumes;
the F-classes have volumes that are motivically invertible; indeed, they are equivalent to a
polydisk of an appropriate dimension and size.

Indeed, it is only this property of the geometric imaginaries that is actually used in the ap-
plication in Section 1.6 where we show an abstract uniform rationality result, Theorem C,
for zeta functions counting the number of classes in some definable family of equivalence
relations. The proof of this result relies on representing the number of classes of some de-
finable relation £ on some definable set D as an integral. The idea, going back to Denef and
Igusa, is simple: the number of classes of £ on D equals the volume of D, for any measure
such that each F-class has measure one. The question is how to come up (definably) with
such a measure. The setting is that we already have the Haar measure 1 on Q, (normalized
so that ;1(Z,) = 1), and for simplicity (one can easily reduce to this case) let us assume each
E-class [z]g € D/E has finite, nonzero measure. The question then is to show that there
exists a definable function f: D — Q, such that the measure of each E-class [z]g is of the
form:

pe]e) = |f (@)l (L1)

and then replace p by f~!u. In practice, f is usually given explicitly (cf. [GSS88, Section 2]).
This is straightforward for the case of p-power index subgroups of I' coded in the usual
way. For more complicated equivalence relations, however, it is not clear a priori that such
an f can be found, even in principle.

Given EI to the geometric sorts, we can represent F as the coset equivalence relation of
GL,.(Z,). In this case we can take Haar measure on GL,(Z,) where automatically each
class has measure one. Equivalently, with respect to the additive Haar measure, we use
the explicit factor 1/|det(M)|. In other words for this canonical E, the reciprocal of the
(additive) Haar measure of any F-class is represented.

We illustrate the power of Theorem C by using it to prove rationality results for certain
zeta functions of finitely generated nilpotent groups. Grunewald, Segal and Smith [GSS88]
showed that subgroups of p-power index of such a group I' can be parametrized p-adically.
More precisely, these subgroups can be coded: that is, placed in bijective correspondence
with the set of equivalence classes of some definable equivalence relation on a definable
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subset D of some Q). Let a, < oo denote the number of subgroups of I of index n. Using
p-adic integration over D and results of Denef and Macintyre, Grunewald, Segal and Smith
showed that the p-local subgroup zeta function ), a,»t" is a rational function of ¢, and
that the degrees of the numerator and denominator of this rational function are bounded
independently of p. Du Sautoy and others have calculated subgroup zeta functions explic-
itly in many cases [Sauor; SWo8; Volo4] and studied uniformity questions (the behavior
of the p-local subgroup zeta function as the prime p varies). For instance, du Sautoy and
Grunewald proved a uniformity result by showing that the p-adic integrals that arise in
the calculation of subgroup zeta functions fall into a special class they call cone integrals
[SGoo]. See the start of Section 1.7 for further discussion of uniformity in the context of
subgroup zeta functions.

We also consider situations where it is not clear how to construct suitable definable p-adic
integrals. The main one, and the original motivation for our results, is in the area of repre-
sentation growth. This is analogous to subgroup growth: one counts not the number a,,,
of index p" subgroups of a group I', but the number b,, ,, of irreducible p"-dimensional com-
plex characters of I' (modulo tensoring by one-dimensional characters if ' is nilpotent).
Jaikin [JaioG6] proved, under mild technical restrictions, that the p-local representation zeta
functions of semi-simple compact p-adic analytic groups are rational (the second author
is grateful to him for explaining his work). Representation growth of finitely generated
pro-p groups was studied by Jaikin [Jaio6]; Lubotzky and the second author gave a partial
criterion for an arithmetic group to have the congruence subgroup property in terms of
its representation growth [LMo4, Theorem 1.2]. We prove that the p-local representation
zeta function (r () := Yo bpnp™™ of a finitely generated nilpotent group I' is a rational
function of p~* and has good uniformity properties as p varies (Theorem 1.8).

The results in Sections 1.7 and 1.8 both follow the same idea: we show how to interpret
(definably) in Q,, the sets we want count. More precisely, in Section 1.7 we show how to
interpret in Q,, the set of finite-index subgroups H of I' and we show that the equivalence
relations that arise are uniformly definable in p. This allows us to apply Theorem C. The
same idea is used in Section 1.8, but the details are more complicated. We show how to
interpret in Th(Q,) the set of pairs (N, o), where N is a finite-index normal subgroup
of I' and o is an irreducible character of I'/N, up to twisting by one-dimensional char-
acters. The key idea is first to code triples (H, N, x), where H is a finite-index subgroup
of I', N is a finite-index normal subgroup of H and y is a one-dimensional character of
H /N —the point is that finite nilpotent groups are monomial, so any irreducible character
is induced from a one-dimensional character of a subgroup. The equivalence relation of
giving the same induced character can be formulated in terms of restriction, and shown to
be definable. Inspecting these constructions shows that they are all uniform in p, so again
Theorem C applies.

Since the first draft of this paper [HMo8] was circulated, there has been considerable ac-
tivity in the field of representation growth. Jaikin (loc. cit.) used the coadjoint orbit formal-
ism of Howe and Kirillov to parametrize irreducible characters of p-adic analytic groups;
rationality of the representation zeta function then follows from the usual arguments of
semi-simple compact p-adic integration. Voll used similar ideas to parametrize irreducible
characters of finitely generated torsion-free nilpotent groups, and showed that represen-
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tation zeta functions are rational and satisfy a local functional equation [Vol1o] (in fact,
he proved this for a very general class of zeta functions that includes representation zeta
functions and subgroup zeta functions as special cases). Stasinski and Voll [SV14] proved
a uniformity result for representation zeta functions and calculated these zeta functions
for some families of nilpotent groups. Ezzat [Ezz12] and Snocken [Sno13] have calculated
further examples of representation zeta functions of nilpotent groups. For work on repre-
sentation growth for other kinds of group, see [LL08; Avn+12; Avn+13; AvnIi].

The Kirillov orbit method has the advantage that it linearises the problem of parametrizing
irreducible representations and simplifies the form of the imaginaries that appear. The
disadvantage is that the proof of rationality only applies to (r,(s) for almost all p—one
must discard a finite set of primes. We stress that our result Theorem 1.8 is the only known
proof of rationality of (r ,,(s) that works for every p.

This paper falls naturally into two parts. The first part is model-theoretic: in Sectionl.2
we establish an abstract criterion, Proposition (1.2.11), for elimination of imaginaries and
apply it in Sections 1.4 and 1.5 to prove Theorems A and B. Section 1.3 consists of a study of
unary types in henselian valued fields, which is used extensively in Sections1.4 and 1.5. In
Section 1.6 we establish the general rationality result Theorem C.

In the second part (Sections 1.7 and 1.8), we apply Theorem C to prove rationality of some
group-theoretic zeta functions, including the representation zeta functions of finitely gen-
erated nilpotent groups (Theorem 1.8). The main tools are results from profinite groups;
no ideas from model theory are used in a significant way beyond the notion of definability.

1.2. Elimination of imaginaries

1.2.1. Definition and first properties

We denote by N (NN,,y) the nonnegative (positive) integers, respectively. For standard model-
theoretic concepts and notation such as dcl (definable closure) or acl (algebraic closure) we
refer the reader to any introduction to model theory, e.g. [Poioo].

Notation l.2.1:
If X is a definable (possibly co-definable) set in some structure M and A ¢ M, we will write
X(A)={aeA: ME X(a)}. If we want to make the parameters of X explicit, we will
write X (A;b).

We say that the definable set X is coded (in M) if it can be written as R(M;b), where b is a
tuple of elements of M, and where b # b’ implies that R(M;b) # R(M;b"). In this situation
dcl(b) only depends on X and is called a code for X. Itis denoted "X . We say T eliminates
imaginaries (El) if every definable relation in every model of 7" is coded. Equivalently, if
there are at least two constants, 7" eliminates imaginaries if for any equivalence relation £
there is a definable function whose fibers are exactly the equivalence classes of E (cf. [P0i83,
Lemme 2]).

For any theory T, by adding sorts for every definable quotient we obtain a theory 74 that
has elimination of imaginaries. These new sorts are called imaginary sorts and the old sorts
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from T are called the real sorts. Similarly, to any model M of T' we can associate a (unique)
model M¢d of T4 that has the same real sorts as M. In general, we use the notation "X ' to
refer to the code of X with respect to 7°4. We will denote by dcl®® the definable closure in
Me4 and similarly for acl®.

We will consider many-sorted theories with a distinguished collection S of sorts, referred
to as the dominant sorts; we assume that for any sort S, there exists a @-definable partial
function from a finite product of dominant sorts onto S (and this function is viewed as part
of the presentation of the theory). The set of elements of dominant sorts in a model M is
denoted dom(M).

The following lemma and remark—which reduce elimination of imaginaries to coding cer-
tain functions—will not be used explicitly in the p-adic case, but they are essential guide-
lines as unary functions of the kind described in the remark are central to the proof of
Proposition (L.2.11).

Lemma 1.2.2 (cf. [HHMo6, Remark 3.2.2]):
Atheory T admits elimination of imaginaries if every function definable (with parameters) whose
domain is contained in a dominant sort is coded in any model of T.

Proof . 1t suffices to show that every definable function f is coded. Indeed, to code a set, it
suffices to code the identity on this set. Pulling back by the given @-definable functions,
it suffices to show that every definable function whose domain is contained in a product
M x...x M, of dominant sorts is coded. For n = 1, this is our assumption. For larger n, we
use induction, considering a definable function f : My x ... x M,, > M* as the function f’
mapping c € M; to the code of the function y — f(c,y). By compactness there are finitely
many definable functions h; covering f’. The codes of these h; allow us to code f. [ ]

Remark 1.2.3:

In Lemma (I.2.2), it suffices to consider definable functions f = f. on a definable subset D of
a dominant sort, defined with a parameter e from an imaginary sort Y, such that either f is
the identity on its domain (unary El), or there exists an A ¢ M such that e € dcl*(A4, f.(¢c))
for any c € D—i.e. f. is determined by any one of its values—and tp(e/ A) implies the type
of e over Ac forany c € D.

Indeed, let e be imaginary. There exist ¢y, ..., ¢, € dom(M) such that e € dcl*(cq, ..., ¢p).
Forall [, 0 < [ < n,let A; := dcl®Y(e, cq,...,¢) n M. We know that e € dcl*!(A4,,) and we
want to show that e € dcl®(Ay) = dcl®(dcl®(e) n M); i.e. e is interdefinable with a tuple
of real elements.

Let us proceed by reverse induction. Suppose e € dcl®(A;,1), let A := A; and let ¢ := ¢}41.
Then over Ag, e is interdefinable with a real tuple d; so d = f(e,¢) and e = h(d) for some A-
definable functions f, h. By unary El, any Ae-definable subset of a dominant sort has a code
in dcl®(Ae) n M = dcl®(A) n M = A and hence is A-definable. Thus, tp(c/A) + tp(c/Ae)
and, for any ¢’ = tp(c/A), e = h(f(e,c’)). Let D be an A-definable set with ¢ € D and such
thate = h(f(e,c')) for any ¢’ € D. Then f.(y) = f(e,y) has a code in A = A; and we have
e € dcl®(A;).
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Definition 1.2.4:

We will say that a theory T eliminates imaginaries up to uniform finite imaginaries (E1/UFI)
if forall M £ T and e € M¢9, there exists a tuple d € M such that e € acl®(d) and d € dcl®I(e).
The theory T is said to eliminate finite imaginaries (EFI) if any e € acl®!(@) is interdefinable
with a tuple from M.

Let us now give a criterion for elimination of imaginaries from [Hruog].

Lemma l.2.5:
A theory T eliminates imaginaries if it eliminates imaginaries up to uniform finite imaginaries
and for every set of parameters A, T eliminates finite imaginaries.

Proof . Let e € M¢4 = T4, Then by EI/UF], there exists d € M such that e € acl®!(d) and d ¢
dcl®d(e). Hence e is a finite imaginary in 7;; and there exists d’ € M such that e € dcl®(dd’)
and dd' € dcl®(ed) = dcl®(e), i.e. e is coded by dd'. ]

1.2.2. Valued fields

Let L be a valued field, with valuation ring O(L), maximal ideal M (L) and residue field
k(L). We will find it convenient to consider the value group I'(L) in both an additive
notation (with valuation val : L — I'(L) u {0 }) and a multiplicative notation (with reverse
order and absolute value |.|), depending on the setting. In fact the latter notation will only
be used when L is a finite extension of Q, and in that case we will take |z| to be ¢~v2!(=)
where ¢ = |res(L)|.

We will consider valued fields in the geometric language whose sorts (later referred to as
the geometric sorts) are as follows. We take a single dominant sort K, for the field L itself.
The additional sorts S,,, T, for n € N are given by

S, =GL,(K)/GL,(0) ~B,(K)/B,(0),

the set of lattices in K", and

T, = GLy(K)/ GLyn(O) = | Bu(K)/Brum(0) = | ¢/ Me.

msn eeS,,

Here a lattice is a free O-submodule of K" of rank n, B,, is the group of invertible upper
triangular matrices, GL,, ,,,(O) is the group of matrices in GL,,(O) whose mth column
reduces mod M to the column vector of k having a one in the mth entry and zeroes else-
where, and B,, ,,,(O) := B,,(O)nGL,, ,,(O). There is a canonical map from T, to S,, taking
f € e/ Me to the lattice e.

It is easy to see, using elementary matrices, that GL,(K) = B, (K) GL,(O), justifying
the equivalence of the first two definitions of S,,. Equivalently, it is shown in [HHMo0,
Lemma 2.4.8] that every lattice has a basis in triangular form.

Note that there is an obvious injective @-definable function S,, x S,,; — S,,4m/, namely
(A, \) = Ax )\, so we can identify any subset of a product of S,,, with a subset of S,,, where

n=y,;n.
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Note also that S; can be identified with I" by sending the coset cO" to v(c). Then k can
be identified with the fiber of 7} — S; above the zero element of S; = I. More generally,
let B := {{z : val(z —a) > val(b)} : a,b € K} and B := {{z : val(z — a) > val(b)} :
a,b € K} be the sets of closed (respectively open) balls with center in K and radius in v(K).
Then B embeds into S, U K and B into T5. Indeed, the set of closed balls of radius +oo is
identified with K. The group G(K) of affine transformations of the line acts transitively on
the closed balls of nonzero radius; the stabilizer of © € Bis G(0),so B\K = G(K)/G(0) ¢
GLy(K)/GLy(0). The group G(K) also acts transitively on B and the stabilizer of M ¢ B
is G(K) n GLy2(0). We will write B := B u B for the set of all balls. Note, however, that
if I" has a smallest positive element, the open balls are also closed balls.

In Sections 1.3 and 1.5, we will also consider the sort RV := K*/(1 + M) and the canonical
projection rv : K* - RV. The structure on RV is given by its group structure and the
structure induced by the exact sequence k™ — RV — I" where the second map is denoted
val,,—i.e. we have a binary predicate interpreted as val,, (z) < val,,(y), a unary predicate
interpreted as k™ and the ring structure on k (adding a zero to k”). This exact sequence
induces on each fiber of val,, the structure of a k-vector space (if we add a zero to the fiber).
When 7" 2 Tiyep o (the theory of henselian valued fields with a residue field of characteristic
zero), RV is stably embedded and the structure induced on RV is exactly the one described
above. Note that RV and T} can be identified (if we add a zero to each fiber of val,,).

The theory of a structure is determined by the theory of the dominant sorts; so, for any
field L we can speak of Th(L) in the geometric sorts. We take the geometric language £9
to include the ring structure on the sort K, the natural maps GL,,(K) - S,,(K), GL, (K) x
K" - T,(K).

In [HHMo0], it is shown that ACVF eliminates imaginaries in LY. Let us now give the
counterpart of this theorem for p-adic fields.

By L9, we denote the restriction of £9 to the sorts K and S,,. For all sets N € N.,, we will
also consider an expansion L%, of £ by a constant a and for all n € N a tuple of constants
¢, of length n in the field sort.

By an uniformizer of a valued field we mean an element a € O whose valuation generates
the value group. By an (unramified) n-Galois uniformizer we mean a tuple c of elements of
the valued field whose residue generate 7'(k)/(T'(k))™ where T is the restriction of scalar
of G,,, from k[w,, ] to k for w,, some primitive nth root of unity and 7'(k)™ denotes the nth
powers in T'(k). Note that because k[w,, ] is of degree at most n over k, c is a tuple of length
at most n. Adding some zeroes at the end of the tuple, we may assume it is a tuple of length
exactly n.

Let PL be the theory of pseudo-local fields of residue characteristic 0, i.e. henselian fields
with value group a Z-group (i.e. an ordered group elementarily equivalent to (Z, 0, <)) and
residue field a pseudo-finite field of characteristic 0. So PLy is the theory of ultraproducts
[1Q, /U of p-adics over non-principal ultrafilters on the set of primes. In fact, let £, be
a set of finite extensions of Q, and £ := U, £,. Any ultraproduct [];.. L/U of residue
characteristic zero— i.e. the ultrafilter &/ does not contains any set included in some £, —
is a model of PL,. Note that if £, is nonempty for infinitely many p there actually is an
ultrafilter on £ such that ;.. L/U has residue characteristic zero.

Let L = PLg be an £9 -structure. A proper expansion of L to L%, is a choice of a and ¢,
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for each n € N such that a is a uniformizer and c¢,, is an unramified n-Galois uniformizer.
Note that because there are only finitely many possibilities for the minimal polynomial of
wy, over k, the class of proper expansions to £, of models of PL is elementary. Let us call
it PLoY.

A proper expansion of L € £, to L%, is a choice of a and ¢, for each n € N such that a is a
uniformizer and if n is prime with p, ¢, is an unramified n-Galois uniformizer. If n is not
prime to p take all of the other constants to be zero except for one, in ¢, for example, which
is a generator of L over Q,,. Note that a residue characteristic zero ultraproduct of proper
expansions to £, of L € £ is a model of PL,".

The two main elimination of imaginaries results in this paper are the following. The first
is for finite extensions of Q,,:

Theorem A:
The theory of Q, eliminates imaginaries in LY. The same is true for any finite extension L

of Q,, provided one adds a constant symbol for a generator of L n Qalg over Q, m@alg.

The second is for their ultraproducts of residue characteristic zero:

Theorem B:

PL," eliminates imaginaries in £§>0.

Remark 1.2.6:

1. Although the T}, are needed to obtain El in algebraically closed valued fields, they are
not needed here. Indeed, if a valued field L has a discrete valuation (i.e. the value
group has a smallest positive element val()\)), then for any lattice e, \ge is itself a
lattice, and a coset h of A\ge— a typical element of T,,—can be coded by the lattice in
K"*! generated by h x {1}. Hence all elements of T},(L) are coded in S,,,,(L).

2. In Theorem A, we need to add constants for elements of a subfield /" with a certain
number of properties:

a. I contains a uniformizer;
b. res(F') = k;

—alg  —al ) . . .

c. K% = F*®K (in fact, we need that for every finite extension L of K there is a
generator of O(L) whose minimal polynomial is over F)).

It suffices to take F' = Q[c], where c generates L over Q,. Note that we can choose

—alg
suchaceQ .

Note also that a proper expansion of some finite extension L of Q, to EI%W contains a
generator of L over Q. Hence proper extensions of L eliminate imaginaries in L§T>O.

3. In Theorem B, we need to name elements of a subfield F' satisfying (a), (c) as above,
and:

d. res(F) (k™)™ =k for all n;
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e. k admits El in the language of rings augmented by constants for elements of
res(F).

We can choose F' to be generated by a uniformizer a and unramified n-Galois uni-

. . ) —al
formizers c,, for all n. 1t is clear that such an F satisfies (a). Furthermore, k = =

— .
res(F’) *k. Indeed, let w,, be a primitive nth root of unity, and let d,, := ¥, ¢,,.;wp.
The degree n extension of k[w, ] is contained in k[w,,, {/d,, ] by Kummer theory and
it contains the degree n extension of k.

Now (c) is a consequence of (a) and the above statement and (e) also follows as any ex-

tension of degree n is generated by an element in res( F’ )alg, so there is an irreducible
polynomial of degree n with res(F')-definable parameters; this is the hypothesis of
[CH99, Proposition B.(3)]. Finally for any n, there is a d such that {z e k : 2" = 1} =
{x € k : 2% = 1} and k contains primitive dth roots of unity. Then ¢, € k generates
k*/(k*)4=k"/(k")™, so (d) holds.

4. It would be nice to find a more precise description of the imaginaries if no constants
are named. For finite extensions of Q,,, this is done in Remark (1.4.6).

Before going any further, let us show that Theorem B allows us to prove a uniform version
of Theorem A.

Corollary 1.2.7:
Let £, be any set of finite extensions of Q, and let £ := U, £,. Let E(x,y) be an E%w—formula
(where x, y range over definable sets X,Y'). Then there exist integers m, l, a set of integers N, a
prime py and some £§T>O -formula p(x,w) such that the following uniform statement of elimi-
nation of imaginaries holds. For all p > p, and all proper expansions to LS, of L, € £, o(z, w)
defines a function

fr, : X > Sp(Ly) x K(L,)'

and
Ly (Vo,2")(f1,(z) = fr,(2) = (Vy)E(z,y) = E(z",y))

Proof . Assume £, is nonempty for infinitely many p, otherwise the statement is trivial. The
formula Yy E(z,y) = E(a’,y) defines an equivalence relation in any ultraproduct L of
fieldsin £. By Theorem B, there is a formula ¢ (z, w) (which works for any proper expansion
to £§>0 of any such ultraproduct of residue characteristic zero) such that ¢(z,w) defines a
function f and f(z) = f(«') ifand only if Vy E(x,y) = E(x',y). By compactness, for some
N, this equivalence is valid in proper expansions to £%,.

Let us now assume there is an infinite set / ¢ £ such that / has a nonempty intersec-
tion with infinitely many £, and for every L € I, there is a proper expansion of L to L7,
such that we do not have f(z) = f(2') if and only if Vy E(z,y) = E(2',y) in L. Then
there exists an ultrafilter on £ containing / but containing no set included in some £,
and [1,.c L/U = PL"; but we do not have f(z) = f(2') ifand only if Yy E(x,y) = E(2',y)
in this ultraproduct, a contradiction. [ |

Remark 1.2.8:
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L. Imaginaries in p-adic fields

I. In particular, whenever E(x,y) is interpreted in L, as an equivalence relation, f,(x)
codes the E-class of X.

2. Assume £, is finite for all p. Then U,.,, £, is finite and, using Theorem A (and Re-
mark 1.2.6.2), we can find a ¢ and an N that work for all L € U, £, and not just for p
big enough.

The proof of Theorems A and B uses elimination of imaginaries and the existence of in-
variant extensions in the theory of algebraically closed valued fields. Recall that a theory
T has the invariant extension property if whenever A = acl(A) ¢ M = T and ¢ € M,
tp(c/A) extends to an Aut(M /A)-invariant type over M. This holds trivially for any finite
field, and by inspection, for Th(Z, +,<) and, although we will only use a weaker version
of the extension property (Corollary (1.3.10)) in the proof of Theorem A, we will show that
the theory of a finite extension of Q,, (with the geometric sorts) enjoys the stronger version
(Remark (1.4.7)).

1.2.3. Real elimination of imaginaries

To illustrate the idea of transferring imaginaries from one theory to the other, consider the
following way of deducing El for RCF (the theory of real closed fields) from EI for ACF (the
theory of algebraically closed fields).

Example 1.2.9:
Let F be a field considered in a language extending the language of rings. Assume for all
M & Th(F):

(i) (Algebraic boundedness): Let A ¢ M; then acl(A) ¢ A (where A denotes the
ACF algebraic closure);

(ii) (Rigidity of finite sets): No automorphism of M can have a finite cycle of size > 1.
Equivalently, for each n, there exists g-definable functions r; (1, ..., x,) that are
symmetric in the z;, such that S = {r;,(S5),...,7..(5)}. (Here r;,(5) denotes
Tin(Z1,...,x,) when S = {x1,..., x,}, possibly with repetitions.);

(iii) (Unary El): Every definable subset of M is coded.
Then Th(F) eliminates imaginaries (in the single sort of field elements).

Proof . Let f : M — M be a definable function. By Lemma (1.2.2), it suffices to prove that f
is coded. Let H be the Zariski closure of the graph of f. Since the theory is algebraically
bounded, the set H(x) := {y : (z,y) € H} is finite for any x, of size bounded by some n.
Let U, ; be the set of = such that f(x) = r;,,(H(z)). Then, by elimination of imaginaries

in ACF, H—being a Zariski closed set—is coded in M. But the code is definable over M
and hence is in the perfect closure of M. Replacing this code by some p"th power in the
characteristic p case, we can suppose it belongs to M. Moreover, each U; (being unary) is
coded; these codes together give a code for f. [ ]
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L2. Elimination of imaginaries

Note that RCF satisfies the hypotheses of Example (L.2.9), but Th(Q,) (in the field sort
alone) does not. More precisely, as shown in the introduction, the value group cannot be
be definably embedded into Q,. Hence hypothesis (iii) fails for Th(Q,) in the field sort
alone.

Remark 1.2.10:

If F is a field satisfying (i), (iii), then F" has EI/UFI. This is an immediate consequence of
Proposition (1.2.11) as hypotheses (ii) and (iv) of Proposition (I.2.11) are true if 7" is the theory
of algebraically closed fields in the language of rings.

1.2.4. Criterion for elimination of imaginaries

Let 7" be a complete theory in a language £. Assume 7" eliminates quantifiers and imagi-
naries. Let 7' be a complete theory in a language £ 2 £; assume T contains the universal
part of T

In a model M of the theory T, three kinds of definable closure can be considered: the
usual definable closure dclz, the definable closure in M4, denoted dcl%Gl and the imaginary

definable closure restricted to real points dcls n\M. As dcl2? nM and dcl; take the same
value on sets of real points, we will denote botfl of them dclz. One must take care however
that if A contains imaginary elements, A ¢ dclz(A).

As T eliminates imaginaries, these distinctions are not necessary in models of 7" and we
will only need dcl;. One should note that, as T" eliminates quantifiers, dcl, is the closure
under quantifier-free £-definable functions and hence that, for any A ¢ M, delz(A) n M ¢
dClZ ( A) .

Analogous statements hold for acl, aclz, aclezq, tp,, tpz, etc.

One should also be careful that if M & T is contained in some M & T, there is no reason
in general that M4 should be contained in M. In fact, the whole purpose of the following
proof is to show that under certain hypotheses every element of M is interdefinable with
a tuple in M.

Since we are describing notation, let us also point out that we will write interchangeably
dcl(A,b) = dcl(Ab) = del(Au {b}).

Proposition L.2.11: .
Assume that T and T' are as above. Let M be an |L|*-saturated and | L|*-homogeneous model of
T and let M = T be such that mLSgM and such that any automorphism of M extends to an

automorphism of M. If conditions (i)-(iv) below hold for any A = aclz(A) ¢ M, then T admits
elimination of imaginaries up to uniform finite imaginaries (see Definition (1.2.4)).

(i) (Relative algebraic boundedness) For all elements c € dom(]\Af ) and M' <M, dclz(]T[ ‘c) €
aclg(M'c).

(i) (Internalizing L-codes) Let e € dclz(M). Then there exists a tuple €' of elements of M
such that an automorphism of M stabilizing M globally fixes e if and only if it fixes €.

(iii) (Unary EI) Every L(M )-definable unary subset of dom (M) is coded in M.
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L. Imaginaries in p-adic fields

(iv) (Invariant types) For all ¢ € dom(M), there exists an Aut(M /A)-invariant type p over
M such that p|3z is consistent with tpz(c/A).

Moreover, for any L(M )-definable function r whose domain contains p, let 0,1 be the
p-germ of r (where two L( M )-definable functions r, r'" have the same p-germ if they agree
on a realization of p over M). Then:

(%) There exists a directed order I and a sequence (&;);c1, with e; € dclz (A, "r") such that
o € Aut(M/A) fixes O,r if and only if o fixes almost every c;,—i.e. o fixes all i > i, for
some ig € 1.

Some comments on the proposition:

1. There are two ways to ensure that automorphisms of M extend to automorphisms
of M. The first is to take M homogeneous enough. The other is to take M atomic
over M; in the case of valued fields, we could take M to be the algebraic closure of
M.

2. In fact, we will only need (iv) for |A] < |L].

3. 1f pis definable then, for a uniformly defined family of functions r;, 9,7 is an imag-
inary (and we could take ¢; to be that imaginary). Nevertheless, if p is not definable
and say (g;) is countable then Condition (iv) implies that the germ is a 39-hyper-
imaginary, i.e. an equivalence class of sequences indexed by I where the equivalence
relation is given by a countable union of countable intersections of definable sets (al-
though each definable set will involve only a finite number of indices, the countable
union of countable intersections can involve them all). In the case of ACVF one also
has that o fixes d,r if and only if o fixes cofinally many ¢;; in this case the equivalence

relation is also a countable intersection of countable unions of definable sets, so it is
AY.

4. Hypotheses (ii) and (iii) are special cases of elimination of imaginaries. It would be
nice to move (iii) from the hypotheses to the conclusion, i.e. assuming only (i), (ii)
and (iv), to show that every imaginary is “equivalent” to an imaginary of M definable

over M.

First let us clarify how Aut(2) acts on dclz (M) as this action will be used implicitly
throughout the proof. Any & € Aut(}M) can be extended to an automorphism o € Aut(M)
and all these extensions are equal on dcl (1), hence we have a well-defined action of & on
dclz (M) and the notation Aut()M/B) makes sense even if B ¢ dcl(M). Similarly, if p is
an Aut(M /B)-invariant type, Aut(1/B) acts on p-germs of £( 1M )-definable functions.
We begin our proof with elimination of finite sets:

Lemma l.2.12: .
Assume (ii) holds in Proposition (1.2.11). Then every finite set 2 € M is coded.

Proof . By El for T, the finite set F is coded by a tuple e’ € M; e’ may consist of elements
in dclz (M) but outside M. By (ii), there exists a tuple e of elements of M such that an
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L2. Elimination of imaginaries

automorphism of dcl (M) leaving M invariant fixes E if and only if it fixes ¢’ if and only
if it fixes e. Thus £ and e € M are interdefinable. [ ]

Proof (Proposition (L2.11)). Let e € Med. There exists ¢y, ..., ¢, € dom(M), we have e ¢
del(cr, ..., n). Let A i=delz(e, e, .0 6) © M. The claim is that e € acl!(Ao). We have
e € acl!(A,) and show by reverse induction on [ < n that e € acl!(4;). Assume inductively
thate ¢ aclczq(Al+1). Let A:= A, ¢:= ¢;41. Itis easy to check that

A = dch(Ae).

As e € acl!(Ap.1), for some tuple d € A,y = dclz(Ace), some L(A)-definable function f
and some £(A)-definable, finite-set-valued function g, we have

eeg(d),d= f(c,e).

Let f.(z) := f(z,€). Let A := aclz(A) and P':= tpz(c/A).

Let My < M such that ]Tﬁ’q contains Ae. Note that for all ¢’ in the domain of f,, f.(¢') €
dclz(Mqc). By (i), there exists an £(Mj)-definable finite-set-valued function (. such that
fo(¢)epq(c'). By compactness, for some finite set Iy and £( M, )-definable finite-set-valued
functions (¢ );e1,, the following holds: for any ¢’ in the domain of f., f.(c¢’)ep;(c’) for some
i€ 1y Let () = Ujes, 0i(x); so fe(c")ep(c’) for all ¢’ in the domain of f.. Hence if ® is
the set of all £(M)-definable, finite-set-valued functions 1) with a domain containing that
of f. and such that for all ¢’ in the domain of f., f.(c)ey(c), then ® is nonempty.

Let p be an Aut(M /A)-invariant type over M extending 7, as in (iv). For m € N, let ®,, be
the set of all £( M )-definable functions ¢ € ® such that for ¢ = p, p(c) is an m-element
set. Note that as p is a complete type, m does not depend on c. Let m be minimal such that
®,,, is nonempty. Clearly all ¢ € ®,, share the same p-germ: if ¢, ¢’ do not have the same
p-germ, then "' () := p(z)ny’(z) liesin ®,,, for some m’ < m. Pick Fi € ,,, defined over
E c M. So Fg covers fes Fr is L(E)-definable, and the p-germ of F is invariant under
Aut(M/ Ae).

Claim 1.2.13: The p-germ of Fy, is invariant under Aut(M/A).

Proof . Let (&;) be a sequence as in (iv), coding the germ of F; on p. Note that ¢; € dcl (M)
(since Fi is £(E)-definable and E ¢ M). By (ii), we may replace «; by a tuple of M, without
changing Aut(M /e, ); we do so.

Now, almost all ¢; must be in aclz(Ae). For otherwise, by moving to a subsequence we may
assume all £; are outside aclz(Ae). So Aut(M/Aee;) has infinite index in Aut(M/Ae). By
Neumann’s Lemma, for any finite set X of indices, there exists 7 € Aut(M/Ae) with 7 (e;) #
e;, foralli e X. By compactness (and homogeneity of M), there exists 7 € Aut(M/ Ae) with
7(e;) # ¢, for all i. But then 7 fails to fix the p-germ of F, contradicting the Aut(M/Ae)-
invariance of this germ.

So for almost all i, some finite set &; containing ¢; is defined over Ae. By Lemma (1.2.12),
the finite set &; is coded in M. But A = dclz(Ae), so &; is defined over A. Hence ¢, € 4, i.e.
e; is fixed by Aut()/A). This being the case for almost all 4, the p-germ of FJ; is invariant
under Aut(DM/A). ¢
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: . eq
Claim L.2.14: € € acl/(A).

Proof . 1t suffices to show that if ((e;, F;) : i € N) is an indiscernible sequence over A with
ep = e, Ey = E, thene; = ¢; forsomei # j. Letc E p|A(Ei)ieN such that ¢ = p. By (iii) and
because A = dclz(Ae), tpz(c/A) implies tpz(c/Ae); hence tpz(e/A) implies tpz(e/Ac).
So tpz(e;/Ac) = tpz(e/ Ac).

By Claim (1.2.13), the p-germs of the F'g, are equal; so F'g, (¢) is a finite set F’ that does not
depend on i. But f(c,e;)eF, so f(c,e;) takes the same value on some infinite set I’ of
indices . Hence so does the finite set g(f(c,e;)). Ase € g(f(c,e)), it follows that e; €

g(f(c,ei)), so infinitely many e; lie in the same finite set and e; = e; for some i # j. ¢
We have just shown that e lies in acl®(A) = acl®(dcl®(e) n M). This concludes the proof
of Proposition (I.2.11). u

Let us now show that this first criterion can be turned into a criterion for elimination of
imaginaries.

Corollary 1.2.15:
Let T'and T be as in Proposition (I.2.11) and let us suppose moreover that:

(v) (Weak rigidity) For all A = aclz(A) and ¢ € dom(M), aclz(Ac) = delz( Ac).

Then T eliminates imaginaries.

Proof. Let e € M¢d be an imaginary element. There exists ¢y, ..., Cy, € dom(M) such that
e € del(cr,...,¢y). Foralll < n,let 4; = aclz(e,c1,....¢) € M. Then e € dcl(4,);
we show by reverse induction on [ < n that e € dcl%q(Al). We assume inductively that
eedcl X (Ap). Let A= A ci=cppq € dom (D). It is easy to check that

A = aclz(Ae)
and that, for some tuple d,
d € A = aclz(Ace), e € del ! (Ad).

By Proposition (1.2.11), e € acl!(Ay), so d € aclz(Ac). By weak rigidity (v), d € delz(Ac).
Thus e € del7!(Ac).

Say e = h(c), where hisan L (A)-definable function. Then h~'(e) is an £(M)-definable
subset of dom(M), hence by (iii) it has a code ¢’ € M. Clearly e and ¢’ are interdefinable
over A. As e’ € M, wehave e’ € dclz(Ae) = A. So e € dcl(A) = del7(A4;). This finishes the
induction and shows that e € dcl7!(Ao).

Let a be a tuple from A such that e is Zeq(a)-deﬁnable. Let a’ be the (finite) set of conju-
gates of a over e. Then dcl%!(e) = dcl(a’) and, by Lemma (1.2.12), @’ is coded, hence e is

interdefinable with some sequence from M. ]

Keeping (v) out of Proposition (1.2.11) makes the proof of the El criterion messier than
strictly necessary. Nonetheless, distinguishing the case without (v) is important for ul-
traproducts of the p-adics where (v) fails.
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The following lemma will be used to prove (v) in the p-adic case.

Lemma 1.2.16: . .
Assume that for any a € M, there exists a tuple ¢ from dom(M ) with a € dclz(c) and such that
tpz(c/ aclz(a)) extends to an Aut(M [ aclz(a))-invariant type over M. Then (v) follows from:

(') If B ¢ dom(M) then aclz(B) ¢ dclz(B).

Proof.Let A = {a; : i < r}. For each i, pick a tuple ¢; of elements of dom(M) with a; €
delz(¢;), and extend tpz(c;/ aclz(a;)) to an Aut(M/aclz(a;))-invariant type p;. Let Ay :=
A, and recursively let A;,; := A; U {b;}, where b; = 13}|adz(Aic), and A = U;<\ A; for limit \.

Claim L.2.17: aclz(Ac) ndelz(A;c) € delz(Ac).

Proof . We proceed by induction on i. The limit case is trivial. To move from i to i + 1,
let d € aclz(Ac) ndclz(A;, c) and let o € Aut(M/A;c). As tpz(bs/ aclz(A;c)) is invariant
under o, d € aclz(A;c) and d is definable over A;cb;, we have o(d) = d, i.e. d is definable
over A;c and hence d € dclz(Ac) by induction. ¢

Now A, ¢ delz(A, ndom(M)) and so dclz(Ac) = delz((Axc) ndom(M)). By (v/) this set
contains aclz(A,c) and hence aclz(Ac). Applying Claim (1.2.17) with i = x, we obtain (v).
[

1.3. Extensible 1-types in intersections of balls

The goal of this section is to establish some results about unary types in henselian fields
(specifically, finite extensions of Q, and ultraproducts of such fields), which will be useful
to prove that Proposition (I.2.11) can be applied to these fields.

In this section, we will not be considering valued fields in the geometric language as we
need quantifier elimination and not elimination of imaginaries. Let R be a set of sym-
bols; we will be working in the countable language £ := {K,+,-, ', val : K > T',r : K —
K,,...},er where the K, are new sorts, each r is such that (. is a surjective group ho-
momorphism K* - K, that vanishes on 1 + M" for some v = v(r) e N and the ... refer to
additional constants on K and additional relations on the sorts K, and I'. Let T" be some
theory of discretely valued fields in this language that eliminates quantifiers. Throughout
this section M will be a sufficiently saturated model of T"and \q € K(M) a uniformizer.
We will write 7 for the (possibly infinite) tuple of all » € R.

Assume T is definably well-ordered (every nonempty definable subset with a lower bound
has a least element). Let

Qr ={(u,vr,... )rer : (Fr e K)val(z) = u,Vr e R,r(z) = v, }.

We write val(x) > val(y) if val(x) > val(y) + mval()) for all m € N.
Finite extensions of the p-adics fit in this setting, by Prestel-Roquette [PR84], if we take the
r, to be the canonical projections K* — K*/(K*)™. Note that every element of these finite
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groups is in dcl®(@). In the case of ultraproducts of p-adic fields of residue characteristic
zero and more generally of henselian valued fields with residue characteristic zero (denoted
as Then ), one map r suffices: the canonical projection rv : K* - RV.

Observe that val(x — y) > val(xz - z) implies r(z — 2) = r(y — z) for all » € R. Indeed
(y-2)/(x=z)=1+(y-2)/(z-2)el+ M.

Notation 1.3.1:

Ifbe B(M), x € dom(M) and x ¢ b, the valuation val(x — y) takes the same value for all
y € b. We denote it val(z — b). By rad(b) we denote the infimum of val(y - y'), y,y’ € b.
Moreover for all 7 € R, if val(z — b) + v(r)val()\g) < rad(b), then r(z —y) = r(z —y') for all
y,y" € b. We write r(z — b) = r(z — y) in this case.

Definition 1.3.2:

Let f = (f;)ic1 be a family of A-definable functions for some A ¢ M¢®4. A partial type p over A
is complete over A relative to f if the map tp(c/A) — tp(f(c)/A) is injective on the set of
extensions of p to S(A).

Remark 1.3.3:
The partial type p(x) is complete over A relative to f if and only if for every formula ()
over A, there exists a formula #(u) over A such that p+ (p(z) < 0(f(x))).

For the rest of the section we are going to study generic types of intersections of balls.
Let b = {b; : i € I} be a descending sequence of balls in B(M). Let P := M, b;. Let
Pr:={yeIl':Vielvy>rad(b;)}. Forany A with b; € dcl®)(A), we define the generic type
of P over A ¢ M*®dto be

qrl = P(z)u{z ¢b:beB(acl®(A)),bstrictly included in P}.

In Section 1.4, we will also be considering the ACVF-generic of such an intersection P, i.e.
the same notion of genericity but considered in algebraically valued fields. Note that if L is
avalued field, A ¢ L and P is an intersection of balls in B(A), then the difference between

. . . Falg . .
the generic type of P over Ain Landin L™ is that the latter must also avoid balls that do
c. . 7al
not have a center or a radius in L butin Z"°.

Remark 1.3.4:

If P is a strict intersection, i.e. P is not equal to a ball or equivalently b does not have a
minimal element, then for an element to be generic in P over A it suffices to check that x is
not contained in any ball b € B(dcl®*(A)) contained in P. Indeed, if b € B(acl®*(A)), then
the smallest ball containing all A-conjugates of b is strictly included in P and is definable
over A.

In what follows, we will consider A ¢ M containing all constants in K, and b a decreasing
sequence of balls in B(dcl*!(A)) (indexed by some ordinal). Unless otherwise mentioned,
until Proposition (1.3.9), we will suppose that P = N, b; is strict.

Lemma 1.3.5:
Suppose A ¢ K(M). Fix a € Awitha € b, for each i. Then qp| , is complete relative to val(z-a)
and to T(x — a). Moreover, if P(dcl®'(A)) = @ then gp|, is complete.
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Proof . Taking into account quantifier elimination, we must show the following: let ¢, ¢’ €
M be two realizations of ¢ := ¢p|, such that (val(c - a),7(c - a)) has the same type over
A as (val(¢’ — a),7(c¢' - a)); then the substructures A(c), A(c") generated by ¢, ¢’ over A
(which are simply the fields generated by ¢, ¢’ over A) are isomorphic over A.

Extend the valuation from K(M) to L := K(M )alg—the algebraic closure of K(M). The
intersection of K* (M) with ker(r) - (1 + A5 O(L)) is ker(r): indeed ker(r) ¢ K*(M)
and (1+ X 0(L)) nK* (M) = (1+ A O(K)) < ker(r). It follows that the natural map
K*(L) » K*(L)/ker(r) - (1 + X" O(L)) extends r. We also call the extended map . By
construction, the following still holds: for all x,y,z € L, val(x — y) > val(z - z) implies
r(x-2)=r(y-2).

Then it suffices to show that A" ° (c), Zalg(c’) are Zalg—isomorphic, by an isomorphism com-
muting with the extensions of the maps r (one can then restrict the isomorphism to A(c)).
As (val(c¢—a),7(c-a)) and (val(¢’ — a),7(¢’ — a)) realize the same type over A, by taking
a conjugate of ¢’ over A, we may assume the tuples are equal.

Take any d € A% 1fd ¢ b; for some i, then val(c — d) = val(¢’ — d). Moreover, for any
ke N,val(c—c') > rad(b;yx) > rad(b;) + kval(Ag) > val(c—d) + kval(\g); and it follows that
7(c—d) =7(c - d).

If d € b; for each i, then the smallest ball b € B(L) containing a and all the conjugates of
d over A is (quantifier-free) A-definable in L. As T is definably well-ordered, the K(M)-
points of b form a ball v’ € B(dcl*!(A)) which is included in P. Hence ¢ and ¢’ are not
in b’ nor, in fact, in any of the balls centered around b’ with radius rad(d’) — kval()g). It
follows that val(c — d) = val(c - a) and 7(¢ — d) = 7(c - a), and similarly for ¢’. Thus
val(¢' = d) =val(c—d) and 7(c - d) =7(c' - d).

As any rational function g over A is a ratio of products of constant or linear polynomials,
it follows that val(g(c)) = val(g(c')),7(g(c)) = T(g(c")). This proves the first part of the
lemma.

If P does not contain any point in A, then there cannot be any d ¢ A" such that d « b;
for each i. Indeed, let d;<, be the L-conjugates of d over A; then e := 1/n}; d; € dcI*(A)
and for all ¢, d; € b, where k is such that kval()\) > val(n) and val(e - d) > val(1/n) +
rad(b;,x) > rad(b;). 1t follows that e € P(dcl®*(A)), a contradiction. But the hypothesis
about (val(x — a),r(z — a)) is only used when d € P. Thus the second assertion follows. m

Remark 1.3.6:

Suppose T" extends Te, o and A € K(M). Without any assumption on P (it can be strict,
a closed ball or an open ball), if P(A) = @ then P is a complete type. The exact same proof
works as balls are convex in residue characteristic zero and the unique r = rv we need has
kernel 1+ M, i.e. val(x —y) > val(x — z) alone implies r(x — 2) = r(y - 2).

We now want to prove (in Proposition (1.3.9)) that Lemma (1.3.5) is true without the assump-
tion that A ¢ K(M).

Lemma 1.3.7:
Suppose A ¢ Me4 is such that P contains no b € B(dcl*(A)). Then gp| , is a complete type.
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Proof . Let us suppose A is countable. Then the partial type P = (,,_1 5, b, is not isolated
over A; for if the formula 6(x) with parameters in A implies x € b; for all 7, then, as T" is
definably well-ordered, there is a smallest ball b containing é. This ball is strictly contained
in P and is A-definable, a contradiction. Then by the omitting types theorem, there exists
a model M, such that A ¢ Mg® and P(Mo) = @. By Lemma (13:5), gp|i(yy, is @ complete
type, and, as K is dominant in M, P is a complete type over M and hence over A.

If A is not countable, let ¢ and ¢’ be generic in P over A and let (M, Ay) < (M°4, A) be
countable (in the language where we add a predicate for A) and contain c and ¢'. Let ) be
the intersection of all Ay-definable balls in M, that contain ¢; then () is strict, it contains
no Ap-definable ball and also contains ¢’ (all of this is expressed in the type of ¢, ¢’ in the
language with the new predicate). By the countable case, ¢ and ¢’ have the same type over
Ap in M and hence, they have the same type over A in M¢d. ]

Lemma 1.3.8:
Let qr be a complete type over A extending QQr. Suppose qr implies both that u € Pr, and that,
for any v € Pr(dcl®(A)), v > u. Then

QP|]V[ U U QR(Val(x - CL),F(I - a’))
aeP(M)

is consistent.

Proof. We may assume M has an element o’ with a’ € b; for each i. Note that ¢r is consistent
with {7y > u : v € Pr(M)}. Indeed, for any v € Pr(M), if ¢, + u > 7, then some ) € ¢, is
bounded below by v; but then the minimum ~’ < v of ¢ in M exists as I' is definably well-
ordered, 7" is in Pr(dcl®d(A)) and gz + 7' < u, contradicting our hypothesis.

Let ¢’ be such that (val(¢'),7(¢")) E gqru{y <u:ve Pr(M)} and d := a' + ¢. Clearly
d = qpl,;; indeed val(d - a’) = val(¢’) € Pr and thus d € b; for all i. Now, let us assume
there exist b € B(dcl®d(M)) included in P and containing d. Taking a bigger ball, we can
suppose that a’ € b, too; but then val(d - a’) = val(¢’) > rad(b) € Pr(M) contradicting
the choice of ¢/. Moreover for any a € P(M), val(d - a’) = val(¢’) < val(a — a’). Thus
val(d - a) = val(d - a’) = val(¢’) and 7(d — a) = 7(d — a’) = 7(c’), and d realizes the given
type. ]

Proposition 1.3.9:

Assume P is strict and fix a € B(dcl®l(A)) with a € b; for each i. Then qp| , is complete relative
to val(x — a) and to 7(x — a). Moreover, if P does not contain any ball in B(dcl®‘(A)) then
qp| 4 is complete.

Proof . The second case is tackled in Lemma (1.3.7). So we can suppose that such an a «
B(dcl*(A)) exists. Let ¢, ¢’ E ¢pl|, such that gz := tp(val(c — a)7(c - a)/A) = tp(val(c¢' -
a)r(c’ —a)lA). Let My < M such that A ¢ M. 1t follows from Lemma (1.3.8) that there
exists co = ¢p|yyea U qr(val(z — a)7(z — a)). Taking conjugates of ¢ and ¢’ over A, we can
suppose that (val(c — a)7(c—a)) = (val(co — a)7(co — a)) = (val(c' = a)T(c¢' — a)) as these
three tuples have the same type over A.
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Then, as shown in the proof of Lemma (1.3.8), ¢, ¢’ = qp g By Lemma (1.3.5), c and ¢’ have

the type over M and hence over A. ]

Corollary 1.3.10:
Let L be a finite extension of Q,, M & Th(L) and A ¢ M such that B(acl®(A)) ¢ A. Let
c e dom(M). Then tp(c/A) extends to an Aut(M | A)-invariant type.

Proof .Let W(c; A) := {b € B(A) : ¢ € b}, P := Mew(c;a) b. As the residue field of M
is finite, P cannot reduce to a single ball (that ball would be the union of finitely many
proper subballs, each in B(acl®(A)), hence in A and one of them would contain ¢). Note
that c = ¢p| 4.

If there is no ball a € B(dcl®*(A)) contained in P, then let gz be any Aut(M/A)-invariant
type extending )z which implies u € Pr and a > u for all &« € Pp(M). If such a ball a exists,
we suppose gr also extends tp(v(c - a),7(c — a)/A). By Lemma (1.3.8), ¢* := QP|M(z) u
Uaer(ar) gr(val(z — a),7(z, a)) is consistent. Clearly ¢* is Aut()/A)-invariant. It follows
from Proposition (1.3.9) that ¢* is complete and that it extends tp(c/A). [ ]

Let N, be the group of matrices of the form I,,+b, where I, is the identity matrix in GL,,, and
b is an upper triangular matrix with all entries having valuation > 0. Thus N,, = B,,(O) n
N (L + A5 BR(0)).

Lemma 1.3.11:

There exists an Aut(M )-invariant type p|,, of matrices a € N,, invariant under right multi-
plication: for all A ¢ Medand b € N,(A), if ¢ £ p|,, then cb & p|,. The type p is complete
relative to the norms and 7-values of the entries. Moreover, if Qr has an Aut(M )-invariant
1-type t extending the cut defined by (val(\g),2val()\y),...) on the left, then p can be taken to
be complete.

Proof . Let P := N;(\;0) and q := ¢p|,,; then ¢ is Aut(M )-invariant and complete relative
to val and 7 by Proposition (1.3.9) (as P contains 0). If ¢ as above exists, then take ¢ := ¢p|,,U
t(val(z),7(z)) which is consistent by Lemma (1.3.8), complete and Aut(M )-invariant.
Let p be the type of upper-triangular matrices obtained by taking the n(n + 1)/2th tensor
power of ¢ (where by tensor product, here we mean the tensor product of types; see just
below for a more explicit statement), using the lexicographic order on the matrix entries,
and adding 1 on the diagonal: thus for all A ¢ M4, if a € M, then I,, + a = p|, if and only
ifan & qly,a12 F q|dc19q(Aa11)> -G F q|dcleQ(Aa11...a1,n)a ey Onpn F q|dcleq(Aa11,‘.‘an,n,1)’ while
a;; = 0fori>j.
The fact that p is an Aut(M )-invariant (partial) type of elements of N, is clear. As for the
right translation invariance, let I, + b € N,(A) and I, + a & p|,; we have to show that
(In+a)(I,+b)=I,+a+b+abE p|,. Letd:= a+b+ab. Thendy; = asy +byy + a1b11. We
have

val(aq11b11) > val(by1) > val(ai;) > 0.

Soval(dy) = val(ay;) and hence dy; also realizes ¢p| ,. Furthermore, we also have 7(d;,) =
7(a11); it follows that dy; E ¢l ,. Similarly

dy2 = a1z + big + a11b12 + G12b99;
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here a1, has strictly bigger valuation than any of the other summands, so again val(d;,) =
val(a1z) and 7(d12) = 7(a12), thus dys E q|dcleQ(Aan). But since b € dcl®‘(A), we have dy; €
del*(Aarr), so diz F qlggea aq,,)- Continuing in this way we see that I, + d = p) ;. [

Corollary 1.3.12:
Let R be a left coset of N,, in B,,(K). There exists an Aut(M /" R")-invariant type of elements
of R.

Proof . Pick g € R, let p be the right- N,,-invariant type of Lemma (1.3.11), and for all A ¢ M4,
let p9, = tp(cg/Ag), where c & p|ygea  a,)- Then pd|, = p"9| , for h € N,,(dcl**(A)), since p
is right- N, -invariant. Thus any automorphism fixing "R" must fix the global type p9|,,. m

Corollary 1.3.13:
Let L be a finite extension of Q, and let M & Th(L), e € S,,(M), E := acl*(e). Then there
exists an Aut(M [ E)-invariant type of bases for e.

Proof . 1t was noted in Section 1.2.2 that any lattice e has a triangular basis; this basis can
be viewed as the set of columns of a matrix in B,,(K). Let b,0’ be two such bases, and
suppose V' = o(b), o € Aut(M/E). Then as e/ e is finite for all m, the columns of b, o’
must be in the same coset of \J'e for each m. Thus if we write ¥’ = ab with a € B,,(0),
then a = I,, modulo A\J'O for each m, so a € N,, and Aut(M/E) preserves the coset N,,b.
So it suffices to take the Aut(M/"N,b")-invariant type of elements of V,,b guaranteed by
Corollary (1.3.12). [ ]

Let us now suppose that 7" extends Ty, 0. Using similar techniques, we can extend the
previous results to the case when P is a closed ball (this case is only relevant to Section Ls).
For the last result, though, we will also need the residue field to be pseudo-finite.

Let b be a closed ball. We will write res;, for the map that sends x € b to x + rad(b) M, the
maximal open subball of b containing .

Lemma 1.3.14:
Let b € B(dcl*(A)) a closed ball and q a complete type over A extending res,(b) such that
g+ x b forall b €resy(b)(acl®(A)). Then

blpr Y q(resy())

is consistent.

Proof . Let us first show that ¢ is consistent with {z # b’ : V' € res;(b) (M®4) }. If not there is a
finite number of balls b; € res, (b) (M¢4) such that g + \/; x = b;. If we take a minimal number
of such balls, each of them must realize ¢ and hence be algebraic over A, a contradiction.

Now, let ¢ be such that res,(c) £ qu{x # b": b eres,(b)(Me9)}; thenc = ¢l,,. Indeed c € b
and if cis in b’ € B(M¢9) such that &’ € b, then c € res, (V') € res,(b)(Me9), contradicting
the choice of c. L]

Lemma 1.3.15:
Suppose P = b is a closed ball. Then g/ ,, the generic type of b, is complete relative to res;.
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Proof . 1f A ¢ K(M) then, by the same considerations as in Lemma (1.3.5) (and, as Ten o € 7,
taking 7 = rv is enough), it suffices to show that if ¢ and ¢’ are realizations of ¢| , such that
resy(c) =resy(¢’) then forall d e Zalg, rv(c—d) =rv(c' —d). If d e resy(c), then ¢ € resy(¢) =
resy(d) € B(acl®(A)) asd e A" This contradicts the fact that ¢ £ @l 4- Hence d ¢ resy(c).
As cand ¢’ e resy(c) =resy(c’), val(c - ¢) > val(¢ — d) and rv(c — d) =rv(c' - d).

If A is not contained in K, let ¢, ¢’ £ ¢ , such that ¢ := tp(res;(c)/A) = tp(resy(c’)/A). By
Lemma (1.3.14), there exists ¢, = ¢3|,, U ¢. Taking A-conjugates of ¢ and ¢/, we can suppose
that res,(c) = res,(co) = resy(¢’). Then, as seen in the proof of Lemma (1.3.14), ¢, ¢’ E gy|,,-
By the previous paragraph c and ¢’ have the same type over M and hence over A. [ ]

Corollary 1.3.16:
Suppose P = b is a closed ball and let a € B(dcl®*(A)) be contained in b. Then g,/ , is complete
relative to rv(x — a).

Proof .1f ¢, ¢’ = gl 4, then val(c—a) = val(¢’ —a) = rad(b) and hence res;(¢) = res,(¢’) if and
only if rv(c —a) =rv(c¢’ — a). Thus the corollary follows immediately from Lemma (1.3.15).
[

Corollary 1.3.17:
Suppose k is pseudo-finite, k( A) contains the constants needed for k to have El and P = bis a
closed ball that contains no ball a € B(dcl®d(A)). Then x € b generates a complete type over A.

Proof . By Lemma (1.3.15), it suffices to show that res,(b) is a complete type over A. But
resy(b) is a definable 1-dimensional affine space over k—i.e. a V' := yO/yM-torsor where
~ = rad(b). Hence H := Aut(res,(b)/k, A) is a subgroup of a semi-direct product of
V' and the multiplicative group G,,(k). The subgroup H n V' (i.e. the group of trans-
lations of res;(b) that also are automorphisms over A and k) is co-definable over A. In-
deed, it is the set {u € V : VyVa(z € resy(b) Ay € k) = (¢(z,7) <= o(z+
u,y)) for all A-formulas ¢(z,7)}.

As k is a pseudo-finite field, V' has no nontrivial proper definable subgroup. And because
in a pseudo-finite field any co-definable group is an intersection of definable groups, V" has
no nontrivial proper co-definable subgroup either. If H NV = V then H acts transitively
on res,(b) (by translation) and, as H < Aut(res,(b)/A), we are done. On the contrary, if
HnV ={1}, then H contains no translations and must either have exactly one fixed point
or be the trivial group and hence fix all points in res;,(b).

Suppose H has only one fixed point a € res,(b) and let 6 € Aut(res,(b)/A). Forany o € H,
0looofe Handhence (f-'ocof)(a)=a,ie. O(a)is fixed by 0. As a is the only point
fixed by H, 0(a) = a and a € dcl®d(A): but this is a contradiction. It follows that H fixes
every point in res,(b) and hence, because k is stably embedded, res,(b) < dcl®!(k, A). But
then we must also have V' c dcl®!(k, A). Hence (V,res,(b)) is A-definably isomorphic to a
definable (regular) homogeneous space (G, R) of k! = k. As k is stably embedded, (G, R)
is definable over A’ := k*1(dcl®¥(A)) = k(dcl®*I(A)).

Hence we only have to show that any A’-definable 1-dimensional affine space in a pseudo-
finite field has an A’-point to obtain a contradiction. Let us consider k elementarily em-
bedded in the fixed field of L = ACFA and let A’ be the algebraic closure of A’ in L.
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Note that A is algebraically closed in AC'F'A and is a model of AC'F'. By usual arguments
(e.g., [KPo2]) there exists an AC'F A’-definable homogeneous space (G’, S’) and interal-
gebraic group configurations in (G, R) and (G’,S’). Replacing G’ with its identity com-
ponent G and S’ with the G/-orbit of any A’-point in S’ (there is such a point because
A’ £ AC'F), we can suppose that G’ is connected. By some additional classical arguments
(although the literature mainly concerns itself with groups and not homogeneous spaces
at this point: see [KPo2] again), there is an A’-definable subgroup H of G x G’, such that
Hy:={zxeG:(z,0) e H} and H} := {x € G’ : (0,x) € H} are finite central subgroups
and the left and right projections of H must have finite index in G (respectively G’). But
as G and G’ are connected, these projections must be the groups themselves. As G has no
torsion (we are in characteristic 0), H is trivial. Taking the quotient of (G’, S") by H/—i.e.
considering the group G’/ H acting on the H| orbits of S’—the group H is in fact (the graph
of) an isomorphism. In particular, as G has no proper definable subgroup, this implies that
the action of G’ on " is also regular, i.e. S’ is a G'-torsor.

Let (a,a’) be genericin R x S’, let X be the H-orbit of (a,a’) and let P := tp(aa’/A’). As P
and X have the same dimension (equal to 1), P cannot be covered with infinitely many H-
orbits (pseudo-finite fields have the (E) property of [HP94]) and as A’ is algebraically closed
(including imaginaries), X must contain P and hence is A’-definable. Moreover, it is quite
easy to see that X is (the graph of) an isomorphism between R and S’. As S’ contains A’-
points, so does R. Let d be one of these points, and let (d;);-1..., be its A’-conjugates. Then
1/nY,;d; € R(A"), and we have the A’-point we have been looking for. ]

To conclude this section, let me summarize the classification of unary types in PLj.

Proposition 1.3.18:

Suppose T' extends PLy and k(A) contains the constants needed for k to have EL Let a ¢
B(dcl*(A)) with a c b; for eachi. Then qp| , is complete relative to val(z —a) and to 7(z - a).
Moreover, if P does not contain any ball in B(dcl®'(A)) then gp| , is complete.

Proof . If P is strict we can apply Proposition (1.3.9). 1f not apply Corollary (1.3.16) or Corol-
lary (1.3.17). [ ]

1.4. The p-adic case

Let L be a finite extension of Q,. As stated in Remark 1.2.6.2, it can be shown that there
exists a number field ' ¢ L that contains a uniformizer A\, of L, such that res(L) = res(F’)
and such that every finite extension L’ of L is generated by an element oo whose minimal
polynomial is defined over F' and such that « also generates the valuation ring O(L’) over
O(L). Let T}, denote the theory of L in £9 U {P, : n € N,o} U {c}, where the predicates
P, stand for the nonzero nth powers (in the sort K) and ¢ generates F' over Q. Then T}, is
model complete (cf. [PR84]) and it is axiomatized by the fact that K is a henselian valued
field with value group a Z-group and residue field FF,,, by the isomorphism type of F’ and by
the definition of the P, predicates.
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We now check the hypotheses of Corollary (1.2.15) for 7' = T}, and T' = ACVngpv 7 (the the-
ory of algebraically closed valued fields of mixed characteristic in the geometric language
with a constant for ¢; the F in the subscript is there to recall that we added a constant for
a generator of F' to the theory). We use the same notation as in Proposition (1.2.11).

(i) Relative algebraic boundedness: By model completeness and the nature of the ax-
ioms (the only axioms that are not universal are the fact that the field is henselian and the
definition of the predicates P, ; but both state the existence of algebraic points) acl, (M’c)n
M is an elementary submodel of M, hence certainly £-definably closed.

(i) Internalizing L-codes: As K(A1) is henselian, K (dclz(M)) = K(M), hence if e €
K, there is nothing to do. For any element e of S, (M) let us write A(e) ¢ K" for the
lattice represented by e. If e € S,,(dclz(DM)), A(e) has a basis in some finite extension
Lo of L :== K(M). Say [Lo : L] = mg; let L’ be the join of all field extensions of L of
degree my. Then L’ is a finite extension of L such that any o € Aut(M) stabilizing M
globally, stabilizes L’ globally; let [L’ : L] = m. By hypothesis, there is a generator a of L’
over L whose characteristic polynomial over L is defined over F. One has an a-definable
isomorphism f, : L' - L™ (as vector spaces over L), with f,(O(L’)) = O(L)™ (i.e. O(L') is
a free O(L)-module of rank m). The morphism f, further induces an isomorphism of the
lattice A(e)(L') with a lattice f,(A(e)(L')) = A(e’)(L) for some €’ € S, (M). As any o/
of the (finitely many) that are Aut(L’/F')-conjugate to a is also Aut(L’/L)-conjugate to a,
we see that A(e’)(L) = fo(A(e)(L')) as well. Thus e and e’ are interdefinable in the sense
required in (ii).

Similarly for T, (alternatively, for finite extensions L’ of L, the value group also has a least
element, hence we can apply Remark 1.2.6.1).

Remark 1.4.1:
We have proved something slightly stronger than (ii): we also have e € dcl;(e’). The inverse
of f,is alinear map L™ — L/, say g,(au,...,an) == ¥ aza*. From the viewpoint of M, g,

is an a-definable linear map with g,(A(e’)) = A(e) (as g, is K-linear, this remains true for
the lattices generated by the L- or L’- points of A(e) and A(e’)). Moreover this is also true
for any of the finitely many conjugates of a. Thus e € dcl.(e’).

The following corollary of this stronger version of (ii) is not needed for what follows but
it sheds some light on the interaction between automorphisms of M and £(M )-definable
sets.

Corollary L.4.2: o
Let A = dclz(A) € M. Let G be the group of automorphisms of M that stabilizes M globally
and fixes A point-wise. Let e € M, and assume g(e) = e forall g € G. Then e € dcl;(A).

Proof. We have e € dclz (M), since APVt(M/M) fixes e. Let ¢’ be as in (ii). Then G fixes
e’; since GG maps surjectively to Aut(M/A), we have ¢’ € A. By the above Remark (1.4.1),
eedclz(e). Soeedcl.(A). [ ]
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(iii) Unary El: In[Sco97] P. Scowcroft has proved a weak version of this, where the sets
are classes of equivalence relations in two variables. R. Cluckers has suggested that a strong
version may be true: every unary subset can be coded in B. This is what we prove here.

Let e be an imaginary code for a unary subset D ¢ K (). Let A := acl!(e) and B := B(4).

Claim 1.4.3: For all ¢ e K(M), tpz(c/B)  tpz(c/A).

Proof . Following the notation of Corollary (1.3.10), recall that W (c; A) = {be B(A) : c € b}.
Let P := NW(c;A) = NW(c; B), a strict intersection. Then tpz(c/B) + qplg = qpl4-
By Proposition (1.3.9), either ¢p|, is a complete type and we are done, or there is some
a € B such that a« ¢ P and g¢pl|, is complete relative to 7(z — a) and val(z - a). As
K" = F(K")" for all n, tpz(7(c — a)/A) follows from its type over F, i.e. over dclz(2).
Moreover I'(dclz(B)) = I'(dclz(A)) (as elements of I are coded by balls). Thus, as I is
stably embedded and has unary El, tpz(val(c-a)/B) + tpz(val(c—a)/A) and we have the
expected result. ]

As D is L(A)-definable, D is also Aut(}M/B)-invariant, so that by compactness D is de-
finable over B. Hence e € dcl(B). We conclude as in Corollary (L.2.15): there is a tuple
a from B with a € aclz(e) and e € dcl(a); so dely!(e) = deli!(a’), where @’ is the finite
set of £(e)-conjugates of a. We already know that finite sets are coded (e.g., by (ii) and
Lemma (L.2.12)).

(iv) Invariant types and germs: The main ingredient for this proof is the C-minimality
of ACVF.

Let A = aclz(A), c € K(M), W(c; A) = {b; :i € I} and P = N; b;. The balls b; are lin-
early ordered by inclusion, and we order I correspondingly: i < j holds if b; € b;,. As seen
previously, P is a strict intersection. Let p be the ACVF generic of P.

If r(z,0) is an L-definable function, let X (V/,0") := {z : r(z,V") # r(z,0")}. Then X (V',b")
is a finite Boolean combination of balls and there exists i = ¢(’,0") such that X (b',0") n P
is contained in a proper subball of P if and only if for each j > ¢, X (b',b") nb; is contained
in a proper subball of b;.

Define an equivalence relation E; by ' E;b" if and only if X (&',0") n b; is contained in a
proper subball of b; (i.e. 7(x,b’) and r(x,b") have the same germ on the ACVF-generic of
b;). Let e; := b/ E;. Then:

o € Aut(M/A) fixes the germ of r(z,b)
<= r(z,b) and r(z,ob) have the same p-germ
<= X(b,0b) n P is contained in a proper subball of P
< forsomei, forall j >, bE;o(b)
< forsomei,forall j > i, ofixese;.

As for the consistency of p|3; with tpz(c/A): by definition of the ACVF generic, p|3; is
generated by P along with all formulas x ¢ b, where b € B(dcl;(M)) is a proper subball of
P. As P is part of tpz(c/A), it suffices to show that tpz(c/A) does not imply any formula
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x € d with d an £(M)-definable finite union of balls d; € B(dcl.(M)) strictly included in
P.

Claim 1.4.4: Forall b € B(dclz(M)), such that b(M) # @, there exists b’ € B(M) such that
b(M) =V (M).

Proof . As T is definably well-ordered, inf{val(a—c) : a, gﬁb(ﬁ)} =~ e I'(M). We can now
take b’ to be the ball of radius  around any point in b(M). [ ]

1t follows that d(]) is equal to a finite union d’ of balls in B(3) and tpz(c/A) implies
x € d' ¢ P. But this would contradict Lemma (1.3.8).

(v) Weak rigidity: We use Lemma (L.2.16). The hypothesis that for all a € M there is a
tuple ¢ e K (M) such that a € dclz(c) and tpz(c/ aclz(a)) extends to an Aut(M/ aclz(a))-
invariant type, holds trivially when a € K(M) and follows from Corollary (L.3.13) when
a € A(M). For a € T(M), as the value group has a least element, a is coded by an element
of S(M) (see Remark 1.2.6.1) and hence, applying Corollary (1.3.13) to the code in (1), we
are done.

The assumption (v') of Lemma (1.2.16) is proved for Q,, by van den Dries in [Dri84a]. Let us
briefly recall his proof to check that it adapts to the finite extension of Q,, case.

Let B ¢ K(M) (we can assume that B = dclz(B) n K(M) is a field and contains F).
Let 0 € Aut(M/B) and let B' = {¢ € K(aclz(B) n M) : o(c) = ¢}. It suffices to show
that B’ & T}. Indeed, by model completeness, B’ < M will then contain aclz(B), hence
aclz(B) is rigid over B.

As noted in the proof of (i), in order to show that B’ = T, we only have to show that B’ is
henselian and that the definition of the P, is preserved.

By the universal property of the henselization, B’ is an algebraic extension of B" and hence
it is henselian. Moreover, let z € B’ n P, (M) and let y € K(M) such that = y». Note first
that (y/o(y))" = z/o(x) = 1 and thus that y/o(y) € aclz(2). Furthermore, for all m € N,
there exists ¢ € F such that yq € P,,(M) (because K(M ) is henselian, " = val(F*) + mI’
and O = O(F) + A" O). But then y/o(y) = y4/0(yg) € Pu(M). As N, Pr(aclz(2)) = {1},
it follows that y = a(y), ie.yeB.

Remark 1.4.5:
Asin [Dri84al, it follows from this proof that the restriction of 77, to the sort K has definable
Skolem functions.

Proof of Theorem A: By Corollary (l.2.15), we have EI to the sorts K, S,,, T,,. But as is
explained in Remark 1.2.6.1, the sorts T, are not actually needed.

We finish the section with some additional remarks.

Remark 1.4.6:
If we do not want to add a constant ¢ to the language, then it suffices to add “Galois-twisted
S,.”, interpreted as S,,(K") for K’ ranging over the finite extensions of K.
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Indeed, by Theorem A, any imaginary e is interdefinable over ¢ with some tuple of real ele-
ments e’. So we have an e-definable function f, with f.(c¢) = ¢’ and a @-definable function
h with h(c, f.(c)) = e. As cis algebraic over Q, restricting to e-conjugates of ¢, we can take
the graph of f. (a finite set) to be a complete type over e.

With the new sorts, it is clear that (ii) holds without adding a constant and f. is coded by
some tuple d € M. Let us now show that d is a code for e. If ¢’ is £(d)-conjugate to e there
is some o € Aut(M/d) such that o(e) = €. As o fixes d, o(c) is also in the domain of f, and
hence tpz(c’/e) = tpz(c/e), ie. € = a(e) = a(h(c, fe(c))) = h(o(c), fe(o(c))) = e. This
implies that d is a code for e.

Remark 1.4.7: N L
Let A = aclz(A) ¢ M e T}. Then every type over A extends to an Aut(M /A)-invariant

type.

Proof . Let ¢ € M; then ¢ = f(aq,...,a,), where a; € dom(]\Af), and f is g-definable. It
suffices to extend tpz(as,...,a,/A) to an Aut(M/A)—inEriant type. If tpz(¢/M) and
tpz(d/Mc) are Aut(M/A)-invariant, then so is tpz(cd/M); so it suffices to show that
tpz(ai/A;) extends to an Aut(M/A;)-invariant type for each i, where A; := dclz(A;_1a;_1).
But (by hypothesis (v) of Corollary (1.2.15)) we have that A; = aclz(A;), so Corollary (1.3.10)
applies. ]

Remark 1.4.8:

Rigidity of finite sets fails for the theory of the p-adics in the geometric language, i.e. acly #
dclz.

Proof . As the value group is stably embedded, one can find a non-trivial automorphism
o fixing the value group in a sufficiently saturated model. By definability of the angular
component function ac, it follows that x and o (x) have the same angular coefficient. Take
a € Owitho(a) # a. Lety :=val(o(a) —a),ac(c(a) — a) =t a. Then val(c?(a) - o(a)) =,
ac(02(a)-o(a)) = o, etc. As p-a = 0 in the residue field, (07 (a)-a) = ¥V (071 (a)-0'(a))
has valuation ¢ > +. Thus in the ring O/§O, the image of a is not a fixed point, but has an
orbit of size p under o. This set of size p is not rigid. [ ]

Remark 1.4.9:

The same techniques developed here to prove elimination of imaginaries in Q, can also be
used to give an alternative proof for elimination of imaginaries in real closed valued fields
(see [Melo6]). Hypothesis (i) of Corollary (1.2.15) also follows from the fact that the algebraic
closure is a model, (ii) follows as in the p-adic case, (iii) follows from the description of 1-
types given in [Melo6, Proposition 4.8]; and so does the existence of the type in (iv). The
rest of (iv) is proved exactly as here and so is (v).

1.5. The asymptotic case

Recall that Tyen ¢ denotes the theory of henselian fields of residue characteristic 0 and PLy,
is the theory of henselian fields with value group a Z-group and residue field a pseudo-finite
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field of characteristic 0. Our goal is now to prove that any completion 7y of PL, in the
language £ with constants added for some subfield F' ¢ K (see Remark 1.2.6.2) eliminates
imaginaries. We will be using Proposition (L.2.11) with 7" = T and T = ACVFOQ,Q - Westill
follow the notation of this proposition.

It is worth noting that we will not, in general, be able to use Corollary (1.2.15) as there are
some ultraproducts of p-adics where (v) is false. Indeed, it is shown in [BH12, Theorem 7]
that there exist a characteristic zero pseudo-finite field L, A ¢ L,and b € L such that bhasa
finite orbit over A. Then A can be identified with the set A = {at®:a € A} ¢ L((t)) £ PLy
and b is algebraic but not definable over A’. It is easy to build a counter-example to (v) using
A’ and b.

(i) Relative algebraic boundedness: The proof is not as simple as in the p-adic case
and needs some preliminary lemmas and definitions.

Definition L5.1:

We will say that that T is algebraically bounded (with respect to T') within the sort S if for
all M & T and A ¢ dom(M), S(aclz(A)) € S(aclz(A)).

Even if S is stably embedded, one must beware that this is, in general, slightly different from
saying that Thz(.S) (the theory induced by T on the sort S) is algebraically bounded (with respect
to Th.(S)), as in the latter case, one requires that S(aclz(A)) ¢ S(aclz(A)) holds for all
AcS.

Lemma L.5.2:
Let Tr 2 Tyeno be such that k™ [ (k™)™ is finite and k™ = (k") "res(F'). Then:

(i) If A =acl(K(A))n M, then T'(A) = val(K(A));

(ii) If Thz(k) and Thz(T) are algebraically bounded, then T is algebraically bounded within
kandT.

Proof .

(i) Foranya e K(M)* and y € T'(M) such that nvy = val(a) for some n € N, there exist
x € K(M) such that val(az™) = 0 and ¢ € F such that res(az™"c™!) € k™. As M
is an equicharacteristic zero henselian field, az"c¢! ¢ (K(M)*)™ and hence ac™? €

(K(M)*)™, i.e. there exists a’ € F(aL)alg n M ¢ aclz(a) n M such that val(a’) = 7. As
I'(aclz(K(A))) = Q@®(val(K(A))), the statement follows.

(ii) Delon showsin [Del82, Theorem 2.1] that in the three-sorted language (K, k, I') with
val and res, field quantifiers can be eliminated up to formulas of the form

©*(z,r) =y e K Ayiw; € (K*)™ aval(y;) = 0 @(r,res(y)),

where 7 is a tuple of variables from k. It follows immediately that if A ¢ K (M)
then I'(aclz(A)) c aclz(val(A)) < aclg(val(A)) € aclz(A), where the first inclusion
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follows from field quantifier elimination and the second from algebraic boundedness
of Thz (F) .

The presence of the p* makes it a little more complicated for k, but ¢*(a,r) implies
that a;y; € (K*)™ for some y; such that val(y;) = 0 and hence that n;|val(a;). By
first statement, there exists b; € aclz(A) n M such that nval(b;) = val(a;) and thus
that p*(a,7) < 3Jy € k A\;yires(a;b;™) € (k")™ A p(r,y). It is now clear that
k(aclz(A)) c aclz(res(aclz(A) n M)) and we can conclude as for T ]

In the next three lemmas, we will suppose that the hypotheses of the previous lemma apply
toT.

Lemma 1.5.3: . _
Forall Ac K(M), RV (aclz(A)) c RV (aclg(A)), ie. T is algebraically bounded within RV.

Proof . Let ¢ € RV (aclz(A)) and let 7 := val,y(c). Then by Lemma (L5.2), v € Q® val(A).
It follows that there exist ¢’ € K(aclz(A) n M) and n € N such that val(¢’) = ny. Then
cfrv(c') e k(aclz(A)) € k(aclg(A))—also by Lemma (L.5.2)—and hence c € acl;(4). m

Lemma 1.5.4: .
Forany A = aclz(K(A)) n M, B(aclz(A)) = B(A). Moreover, any ball b € B(aclz(A))
contains a point in A.

Proof . Let b € B(aclz(A)) and let () be the intersection of all balls in B(A) that contain b.
As @) is Aut(M [ A)-invariant, it suffices to show that b contains () (and hence is equal to Q)
to show it is Aut(M/A)-invariant and thus in dclz(A) n M = A.

If Q(A) = @, it follows from Remark (1.3.6) that Q is a complete type over A in M, so Q is
contained in b. Hence we can assume that we have a point a € Q)(A). We can suppose a ¢ b,
or, because rad(b) € I'(aclz(A)) c T'(aclz(A) n M) =T'(A), we would be done.

If @ is a closed ball that strictly contains b, then b is contained in a unique maximal open
subball ¢’ of (). This ¥’ is interdefinable over A (in M) with rv(b - a) € RV (aclz(A)) ¢
RV (aclz(A) n M) = RV(A), where the first inequality follows from Lemma (1.5.3). Hence
b’ is in A, contains b and is strictly contained in @), contradicting the definition of Q.
Finally, if @) is a strict intersection or an open ball, then val(b — a) € I'(aclz(A4)) = T'(A4),
thus the closed ball of radius val(b—a) around a would be in A, would contain b and would
be strictly contained in (), a contradiction.

As for the second point, once we know that b € B(A), since acl;(A) is a model of ACVF,

b contains a point ¢ in K(acl(A)) = K(A)alg and, as balls are convex in residue charac-
teristic zero, the average of the Aut(M, A)-conjugates of ¢ is in b(dclz(A) n M) = b(A).
]

Lemma l.5.5:

For any A ¢ dcl.(K(A)) sz aclz(A) < aclz(A). In particular, for any M’ < M and c ¢
K(), aclz(M'c) < acl(M'c).
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Proof .Let C' = aclz(A) n M, then C = acl (K (C))n M, andlet e € aclz(A). Ifee K¢ B,
then Lemma (1.5.4) applies to e—viewed as a ball with an infinite radius—and we have e ¢
C caclg(A).

The remaining sorts S,, and T, can be viewed as B,,(K)/H (or a union of such in the case
of T,,) where H is an L-definable subgroup. Note that there exists an increasing sequence
of L-definable subgroups (G );-1..m of B,,(K) with Gy = {1} and G,, = B,,(K) such that
for every i, there exists an £-definable morphism ¢; : G; - G with kernel G;_;, where G
is either the additive group G,(K), or the multiplicative group G,,(K), and such that for
every point a € G(C'), ¢~'(a) contains a point in G;(C'). 1t suffices to show by induction
on i thatif H; = G;n H is an £-definable subgroup of G;; and e € (G;/H;)(acl(C)) thene
is £(C')-definable.

Let ¢ : G; -» G, where G = G,(K) or G = G,,(K), be a group homomorphism with
kernel G;_;. Then e € (G;/H;)(acl!(C')) can be viewed as an almost L£(C)-definable coset
eH; ¢ G;—i.e. a finite union of these cosets is £(C')-definable—and ((eH;) is an almost
L(C')-definable coset of p( H;). Moreover, the group H := ¢( H,) is an £-defined subgroup
of G. If G = Gy, H has the form yO or yM and if G = G,,, H = O* or H = 1 + I where I is
some proper ideal of O. Thus the cosets of H are either balls or annuli of the form yO~. In
both cases, ¢(eH;) has a point a € C' (in the ball case, apply Lemma (1.5.4), and in the other
case, this is because such an annulus is equal to some val™' () where v € T'(aclz(C)) =
I'(C) =val(K(C)), by Lemma (L5.2)).

Leta’ € o (a) N G;(C) = (a’'G;-1) n G;(C); then a’~*(eH; n a’'G;_1) is a coset of H; | =
H; nG;_; in G;_; that is almost Z(C)—deﬁnable. By induction, a''(eH; na’G;_1) is L(C)-
definable, but then (e H;na'G;_1) is also L(C')-definable and hence e H;—the only coset of
H; that contains eH; n a’G,;_1—is £(C')-definable. [ ]

(i) Internalizing £-codes: Let L = []Q, /U be an non principal ultraproduct. Provided
we have a subfield of constants F’ such that every finite extension of L is generated by an
element whose minimal polynomial is over F' and which also generates the valuation ring
over O(L), the proof for finite extensions of Q,, goes through for Th(L).

(iii)) Unary El: In the following lemmas, we will consider a theory 7 extending PL
where we have added constants F' containing a uniformizer )\, such that res( F') contains
the necessary constants for k to have El and for all n € N,o, k* = (k*)™res(F). Let M £ Tr
be saturated and homogeneous enough.

We will first study the imaginaries in RV. For all € T'(M), let us write RV, := val.! (7).
Let H be a (small’) subgroup of T'(M) containing 1 := val()\o), and let RVy = U,y RV,
where a point 0, is added to every RV,,. The structure induced by T z on RVy is that of an
enriched family of (1-dimensional) k-vector spaces and we view it as a structure with one
sort for each RV, u {0, }. As H is a group, RVy is closed under tensor products and duals.
These k-linear structures are studied in [Hru1z2]. Let us recall some of the definitions there.

"With respect to the saturation and homogeneity of M.
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Definition 1.5.6:
Let A = (V;)icr be a k-linear structure.

(i) We say that A has flags if for any vector space V; in A with dim(V;) > 1, there are vector
spaces V; and V; in A with dim(V}) = dim(V;) - 1, dim(V;) = 1 and a &-definable exact
sequence 0 -V, -» V; - V; - (.

(ii) We say that A has roots if for any 1-dimensional V; and any m > 2, there exist V; and
V) in A and @-definable k-linear embeddings | : Vf’m - Viand g : V; - V] such that
Im(g) € Im(f).

Lemma 1.5.7:
The theory of RVy with the structure induced by Ty i eliminates imaginaries.

Proof . 1t follows from [Hrurz, Proposition 5.10] that it suffices to show that RVy has flags
and roots. As every RV, is 1-dimensional, the structure trivially has flags. But it does not
have roots. Let us extend H to some H’ such that RVy- has roots.

Let R := {r € N,q : k(M) contains nontrivial rth roots of unity}, L := K(M) [2\5/7' 7 € R]
and H' := (H,1/r :r € R) € val(L). Note that L is a ramified extension of K(A) and that
res(L) = k(M), hence RVy (M) = RVy(L). Now RV; has rth roots in RVy for any r.
Indeed, if r € R then RV;, is an rth root and if r ¢ R, then as the map RV - RV : z > 27
is injective, V] is its own rth root.

Let us show that for any v € H’ and any r > 2, RV, has an rth root. As y € H’, there exists
n € N such that ny € H ¢ T'(M), a Z-group. Hence there exist a € H and m € N such that
ny = rna + m. Let RVj be an nrth root of RV;; then RV, ® RV;®™ is an rth root of RV,
By [Hrurz, Proposition 5.10], RV has elimination of imaginaries.

Any automorphism & of RVy can be extended to an automorphism of RVy.. Indeed, if h €
RVy then val,,(h) = v +n/r wherey € H,n € Zand r € R, and hrv()\g) ™" € RVy. Taking
o(h) = (hrv(Xo) ™" )rv(Xo)™" will work. Moreover, we can find an automorphism of
RVy fixing only RVy;. Consider the homomorphism ¢ : H' - k(M) sending y +n/r to d»
where (d,) oy € k(M) is such that for all r and /, we have d” = 1,d, # 1ifr € Rand d! = d..
Then 6 : h — ho(val,,(h)) is a group automorphism of RVy: inducing the identity on both
k and H’ hence an automorphism of the full structure of RVy.. It is easy to see that 0 fixes
only RVy.

Note that because each fiber is a sort, if X ¢ RV}ZI for some [ € N and X is definable in
RVy, then it is defined by the same formula in RVy.. Hence it is coded by some = € RVy:.
But as there are isomorphisms of RV fixing only RVy, we must have © € RVy, and as
automorphisms of RVy extend to RVy, x is also a code for X in RVy. [

Proposition 1.5.8:
The theory induced by Ty on the sort RV (see Section 1.2.2) eliminates imaginaries to the sorts
RV andT.

Proof . First let us show that for all n € N,o, RV/RV™ is finite and RV = RV"rv(F).
Let a € RV. As T is a Z-group, there exist y € RV and r € N such that » < n and
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valyy(a) = val,(y™) + val(A\j). Hence val,,(ay™1v(Xg)™") = 0, i.e. ay™rv(Ag)™" € k™.
As k* = (k")mres(F'), there exists m € res(F) such that ay™m-rv(A\;") € (k")7, ie.
aemrv(A)RV™.

Moreover, for any A ¢ RV (M), val,,(dclz(A)) € Q@ val,,(A). Indeed, let v € T'(M) \
Q@val,(A) and d € N (k(M)*)™ ~ {1}, then there exists a group homomorphism ¢ :
(M) — k*(M) such that ¢g(val,(A)) = {1}, wa(7) = dand 1 : t = tpg(val(t))
defines an automorphism of RV (M) fixing A, k and T', which sends any z € val_! () to
dx # x. Hence val_} () cannot contain any point definable over A.

Let us now code finite sets. For any tuple -y € I, let RV, denote []; RV,,.

Claim 1.5.9: In the theory induced by T on the sorts RV U T, finite sets are coded.

Proof . Let X ¢ RV’ x IV be finite. As I" is ordered, we can suppose that there are tuples y
and 7’ € I" such that X ¢ RV, x{7'}. By Lemma (1.5.7), the projection of X on RV, is coded
(over ) by some x € RV,; ). It is easy to see that 2y’ is a code for X. ¢

To prove elimination of imaginaries in RV to the sorts RV and I, by Lemma (1.2.2), it
suffices to code £(A)-definable functions f : RV — R, where R is either RV or I', for any
A < RV(M). Let us first consider the case R = RV. Let D be the domain of f and X its
graph.

Lemma l.5.10:
If there exist n. and m € Z such that for all x € D, nval,,(f(z)) - mval,,(x) is constant, then f
is coded.

Proof . Let v := nval,, (f(z)) — mval,y(z) € T(dclz("f")). Forally € k™ and z, z € RV, let
y- (z,2) = (y"x,y™z). This defines an action of k™ on any RV, where ~ is a 2-tuple. Let
y € N, (k*)™ and y € T'(M)? be such that ny, — my, = 77 and v, ¢ Q®(val,,(A)). By a
similar automorphism construction as above, there is 1) € Aut(RV (M )/A) such that for
all z € RV, ¥(z) = y - and hence x € X implies y - € X. By compactness, there exists
N € N,q such that for any x € RV with val,(z) ¢ Q®(val,,(A)) and for any y € (k*)*, if
reXtheny-xeX. Let X' :={xeX:Vye (k)N y-xe X}. Then it suffices to code X’
and X \ X'. Note that (z,y) € X \x X’ implies val,,(z) € Q ®(val,,(A)).

Claim L.5.11: Suppose that X is stable under the action of (k*)N. Then f is coded.

Proof . Let E ¢ rv(F) intersect all the classes of RV modulo RV "™ Fix v ¢ I. For any
z € D, = DnRV,, there are y ¢ RV" and ¢ € E such that z = yme. As X is (k*)-stable,
one can check that g,(e) := y™™ f(z) depends only on e and . One can also check that
val,y(g(€)) = 1/n(ys +mval,,(e)) e T(dclz("f")) =t H and g, is in fact a function (with a
finite graph G.,) definable in RVy. By Lemma (1.5.7) and compactness, there is a definable
function g : T' - RVy' for some [ € N such that g(7) codes g (over H). Itis quite clear that
gis L("f")-definable, but as X = User (K°)NG,, fisalso L(H"g")-definable.

Now, as I has Skolem functions, we can definably order Im(g), and, because RV} is inter-
nal to k and the induced theory on k is simple, Im(¢) must be finite (a simple theory cannot
have the strict order property). Thus Im(g) < aclz("f"). For any e € Im(g), g7'(e) c I'is
coded. Let d be the tuple of all codes of fibers and corresponding images, then d € aclz("f")
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and " f7 € dcl5!(vd) for some v € H = T'(dclz("f7)). We can conclude by coding the finite
set of " f '-conjugates of vd (by Lemma (1.5.9)). A

Claim L.5.12: Suppose that for all x € D, val,,(x) € Q®(val,,(A)). Then f is coded.

Proof . By compactness, D must be contained in only finitely many RV,,. All of these ~; are
L("f")-definable and hence f lies inside RVy, where H := I'(dclz(" f')). By Lemma (1.5.7),
f is coded by some d over H, hence there is some tuple v € H such that dv codes f. A

Now, Claim (L5.11) allows us to code X’ and Claim (1.5.12) allows us to code X \ X'. This
concludes the proof of Lemma (1.5.10). ¢

Let us now show that we can reduce to Lemma (1.5.10). As f(x) € dclz(Az), we have
val,y (f(z)) € Q®(val,,(Az)). By compactness, for all 7 in some finite set /, there exist
ng, m; € Z and v; € Q®val,.,(A) n I‘(M) such that for all x € D, there exists 7 € [ with
gi(z) = nyval,y (f(x)) — myval, () = ;. Define E; , to be the fiber of g; above 4. Then
D € Uit Ei ;- Let us assume that || is minimal such that this inclusion holds.

Claim L.5.13: The set X := {(7i)ies €' : D € Uses B 4, } is finite.

Proof . We proceed by induction on |I|. Let us assume X is infinite, and pick any = € D.
By the pigeon hole principle, there exists iy € / and an infinite set Y ¢ X such that for all
(Vi)ier €Y, x € Eig iy 1€- Gig (z) = i, 1t follows that for all (+;)ic; and (6;)ier € Y, 73 = 0i

and Ej, -, = Ei, s, = E. By minimality of |I|, D \ E is nonempty and the set {(7i)ier(io) €
I': DN E S Uer iy Eiy, ) is finite by induction, but it contains {(7; )ier«gio} : (7i)ier € Y}
which is infinite, a contradiction. ¢

Then any (7i)ier € X isin aclz("f"), fi = flp, . satisfies the conditions of Lemma (L.5.10)
and it suffices to code each f;. Indeed let d be the tuple of the codes for those functions;
then d € aclz("f") and, as [ = User fi, "f" € dcl%q(d). The code of the finite set of "f -
conjugates of d—which exists by Claim (1.5.9)—is a code for f.

Finally, if R = T, then for all y € T'(7M), f~1(v) € RV is coded by the case R = RV. Hence
f is interdefinable with a function from I' to RV' x I'™ for some [ and m. So we have to
code functions from I" to I" (which we already know how to code) and from I" to RV. Let
g : T' > RV be a definable function and let A := g o val,,. Then h : RV — RV is coded as
we have just shown and, as for all v € T, h(val;} (7)) = {g(7)}, a code for A is also a code
for g. This concludes the proof of Proposition (1.5.8). ]

Remark 1.5.14:

I. Let B,, := RV/(k")™. We have a homomorphism B,, - I' whose finite kernel is
k*/(k™)™. Hence B;™ maps injectively into I', and our assumptions on constants
imply that there is a set of @-definable representatives for the cosets of B, in B,,.
Thus the theory (and imaginaries) of B,, reduce to those of I.

2. On the other hand, it can be shown that every unary definable subset D of RV is
a finite union of pullbacks from B,, for some m and subsets of val_ (a) for a lying
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in some finite subset I'p of I'. This m is uniform in families, and F'p can be defined
canonically as the set of a € I" such that val! (a) is not a pullback from B,,. This gives
another proof of unary El in RV (with the stated constants), given El in any RVy.

A similar (but slightly more complicated) decomposition is also true in higher dimen-
sion (e.g., adapt [HKo06, Lemma 3.25] to our case by replacing I" by a suitable B,,).
Moreover, El in RV also follows from this decomposition.

Let us come back to unary El in 7 (in fact, the proof given here would work in any theory
T 2 Tenp such that I is definably well-ordered and RV has unary El). We will proceed as
in the case of finite extensions of Q,,. First let us show that the analogue of Claim (1.4.3) is
still true in this case.

Claim L5.15: Let A = acl/(A), B:=B(A) and c e K(M). Then tpz(c/B) + tpz(c/A).

Proof . As any element in RV is coded by a ball, RV is stably embedded and has unary El, the
claim is true if ¢ € RV(M1). Recall that W (c; A) := {be B(A) : ce b}. If P:=NW(c; A) =
N W (c; B) does not contain any ball in B then P is a complete type over A and B (by Propo-
sition (1.3.18)) and we are done. If P does contain a ball b € B, then, by Proposition (1.3.18),
P is complete relative to rv(z - b). But tpz(rv(z - b)/B) + tpz(rv(z - b)/A) and we are
also done. [ ]

Unary El in T follows as for finite extensions of Q.

(iv) Invariant types and germs: The same proof as for finite extensions of Q, (nearly)
works as we only used there that T is definably well-ordered. The one difference is that
P can be a closed ball. But in that case p, the ACVF generic of P, is definable, thus the
p-germ of any r is an imaginary element e, and one may take / = {0} and e, = e. Moreover,
the inconsistency of tp(c/A) and p|37 would—by Claim (1.4.4)—contradict Lemma (1.3.14).

Corollary 1.5.16:

Let Tr 2 Tyeno be an L-theory such that Thz(k) and Th;(T') are algebraically bounded, T
is definably well-ordered, RV has unary El, K has a finite number of extensions of any given
degree and k” [(k™)™ is finite. Suppose also that we have added constants for a field F' ¢ K
such that k™ = (k™ )™res(F') and any finite extension of K is generated by an element whose
minimal polynomial is over F' and which also generates the valuation ring over O(K). Then Tr
has EI/UFI in the sorts K and S,,.

In particular this is true of ultraproducts of the p-adics (if we add some constants as in Re-
mark L.2.0.2).

Proof . By Proposition (1.2.11) we have E1/UFl in the sorts K, S,, and 7;, but as noted earlier
the sorts 7, are not needed when the value group has a smallest positive element. [ ]
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Elimination of finite imaginaries: As we already know that RV eliminates imaginaries,
it suffices to show that every finite imaginary in PL, (over arbitrary parameters) can be
coded in RV (the proof is adapted from [Hruog, Lemma 2.10]).

Definition 1.5.17:
If C ¢ C, we say that C" is stationary over C' if dcl*!(C") n acl®(C') = dcl®(C). A type
p =tp(c/C) is stationary if cC'is stationary over C.

Remark 1.5.18:

1. ltis clear that is C" is stationary over C’ and C” over C, then so is C" over C.

2. If tp(c/C') generates a complete type over acl®(C'), then tp(c¢/C) is stationary. In-
deed, let x € dcl®d(Cc) nacl®l(C); then there is a C'-definable function f such that
f(c) =x. As tp(c/C') generates a complete type over acl!(C'), there is a C'-definable
set D such that forall ¢’ € D, f(¢’) = x, hence x € dcl®Y(C).

Lemma 1.5.19:

Let T be a theory extending PLy (in the geometric language with possibly new constants). For
all M = T and A c M, there exists C < M containing RV (M) u A and stationary over
RV (M) u A.

Proof . Let us first prove the following claim.

Claim 1.5.20: Let B = dclz(B) < M such that RV(M) ¢ B and b € B(M). Then there exists
a tuple c e K(M ) with tpz(c/B) stationary, b € dclz(c) and b(M) nc # @.

Proof . Let us first suppose that b e RV (M), i.e. that b is of the form ¢(1+ M). Let P ¢ bbe
aminimal (for the inclusion) intersection of balls in B(B). For any ¢ = P we have b = rv(c),
hence it suffices to show that P is a complete stationary type over B.

As P does not strictly contain any ball in B(B) by definition, it cannot contain balls in
B(acl'(B)) (we are in residue characteristic zero) and by Proposition (1.3.18), P is a com-
plete type over acl%q(B). By Remark 1.5.18.2, P is stationary over B.

Now if b e B(M), pick any r e RV (M) such that val,, () = rad(b). Applying the claim to
7, we find ¢ € K(M) such that tpz(c/B) is stationary and rad(b) € dclz(c). It now suffices
to find a point d € b whose type is stationary over dclz(Bc), but we can proceed as in the
first case. Then b € dclz(cd) and tp(cd/B) is stationary. ¢

Starting with B := dclz(RV(M ) u A), and applying the claim iteratively, we find C' 2
AURV (M) such that C'is stationary over AURV (M), dclz(C) = C,B(M) < dclz(K(C))
and every ball in B(M') has a point in C.

Claim L.5.21: We have C' ¢ dclz(K(C)).

Proof . Lete € C. If e € K then the result is trivial, thus we only have to considere € S,, ore ¢
T,.. Let us consider the same decomposition of S,, aEg T, as in the proof of Lemma (1.5.5)
and show by induction on i that for all e € (G;/H;)(M), e is L(K(C'))-definable.
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If we write e as e H; then, as proved in Lemma (L5.5), v;(eH;) is either a ball or a set of the
form yO* and hence is definable over B(M) and has a point a’ € K(C). Leta € ;' (a/)(C).
Then a~leH;nG;_; is a coset of H;_; in G;_; which is £(K(C'))-definable by induction, and
hence so is eH,. ¢

As dclz(C) = C, K(C) = K(C)" £ Tenp and, as rv(K(C)) = RV (M), it follows from
field quantifier elimination in Tyen o in the language with sorts the K and RV, that K(C') <
K (M). But this implies that C' = dclz(K(C')) < M. ]

Lemma 1.5.22:

Let T be a theory that extends PLy (in the geometric language) and A ¢ M = T. Then every
finite imaginary sort of T, is in definable bijection with a finite imaginary sort of RV (with the
structure induced by T').

Proof.Let Y = D/E be a finite imaginary sort (in 74) and 7 : D — Y be the canonical
surjection. As the field sort is dominant, we can assume that D is a definable subset of
K" for some n. Let C' 2 A be as in Lemma (L5.19). As Y is finite and C' < M, Y (C) =
Y (M) and there exists a finite set H ¢ K"(C') meeting every E-class. Let IV be some
finite set in RV (C'), of bigger cardinality than H,and h : W — H any surjection. Note that
any such surjection is £(C)-definable. Composing, we have an £(C')-definable surjection
Y : W — Y. But there are finitely many maps W — Y, hence they are all algebraic over
RV (C)u A = RV (M) U A and by stationarity of C over RV (M) U A, ¢ is L(RV (M) U A)-
definable. Let ¢ e RV (M) be such that ¢» and W are £( Ae)-definable.

Let W be defined by the £(Ae)-formula ¢(z,e) and ¢ by the £(Ae)-formula ¢ (x,y, )
(which implies that for any ¢/, (M, M,e') is the graph of a function whose domain is
©(M,e")). Then the formulas ¢(z, z) and ¢(x,y, z) define, respectively, a subset D’ of
RV'“I*! and a surjection ¢ : D’ - Y. Let E' be defined by E'((z, 2), (¢, 2")) <= (z,2) =
Y(z',2'). Then we have an £( A)-definable bijection D’/E’ - Y and, as RV is considered
with the structure induced by T4, D’/E" is a finite imaginary sort of RV. [ ]

Proof of TheoremB: Let K = PLjand T := Th(K) (with constants added as in Corol-
lary (1.5.16)). As we have already proved El/UFI in Corollary (1.5.16), by Lemma (1.2.5) it is
enough to show that for any A, Ty eliminates finite imaginaries in the sorts K, S,,. Let
e € acl%q(A); then, by Lemma (1.5.22), there exists an RV-imaginary e’ interdefinable over
A with e. By El in RV to the sorts RV and I' (Proposition (1.5.8)), there exists a tuple
d € RV uT such that ¢’ is interdefinable with d, hence ¢ is interdefinable with d over A. We
have shown that any finite imaginary of T4 is coded (over A) in RV uT' = S; u T; which
are themselves coded in S; U S,.

For a more canonical treatment of the parameters F'in the pseudo-finite case, see [CH99]—
it would be interesting to adapt it to the pseudo-local setting.
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1.6. Rationality

Let r € N. Forall tuples [ € N", when t = (;) <<, we write ! for [],., t"". We say a power se-
ries Yo ast! € Q[[t1, . . ., t,.]] with each a; € N is rational if it is equal to a rational function
intq,...,t,. with coefficients from Q. In this section we prove that certain zeta functions
that come from counting the equivalence classes of definable equivalence relations are ra-
tional.

Let L, be a finite extension of Q,. By a definable family Ry, = (Rp, )iz of subsets of
L} we mean a definable subset 12y, of L)' x Z"—where val(L) is identified with Z—and
we write Ry, ; for the fiber above [ of the projection from Ry, to Z". By a definable family
Er, = (Er, )iz of equivalence relations on R, we mean a definable equivalence relation
Ep, on Ry, such that for every x,y € Ry, if v y then there exists [ € Z" such that
x,y € Rp, ;. We then have a definable equivalence relation £y, ; on Ry, ; for every [, and
by a slight abuse of notation we can regard (E7, )iz~ as a definable family of subsets of
Qf)N . The set N" is a definable subset of Z", so it makes sense to talk of definable families
Rp, = (RLp,l)leNTy etc.

Let £, be a set of finite extensions of Q, and £ := U, £,. We will say that (Rr,)r,ec and
(Er,)r,ec are uniformly @-definable in L, if there exists two L9 -formulas ¢ and 6 inde-
pendent of L, such that forall L, € £, Ry, = o(L,) and Er = 0(Ly).

Now we come to the main result of this section.

Theorem C:

Let £, and £ be as above (note that we do not assume £, is nonempty for infinitely many p).
Forall L, € £, let Ry, = (Rr,,)iene be a family of subsets of LY and let Er, = (Er,1)ienr
be a family of equivalence relations on (Ry,,;)ien uniformly @-definable in L,. Suppose
that for each | e N" and L,, ar,; = |Ry,1/Er, | < co. Then, for every L, € £, the power
series

Sp, =Y ar,t' € Q[[t1,...,t,]]is rational
leN”

Moreover, there exist k,n,d € N, there exist tuples (a;) ;< of integers and (b;) <. of ele-
ments of N, and for all tuples | ¢ N" with || := 3., [; < d there exist q; € Q and varieties
X, over Z, such that the following holds:

(1) forall j, aj and b; are not both o;

(2) forallp > 0andall L, € £, we have

B std QI|Xl(reS(Lp))|tl
Ly, = TR
[res(Lp)|" T (1 - [res(Ly)|%it%)

We say that a family of power series Y, - a, it € Q[[t1, . . ., t,]] for each prime p is uniformly
rational if it is of the form given in (l.2).

Remark 1.6.1:
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I. Assume £, is finite for all p. Let £,, be the language of rings. At the cost of replacing
X, by quantifier-free £,,-definable sets, we can make (1.2) hold for all L,,. In particular,
suppose we are given definable R, and E,, as above, but just for a single prime p,
and a single L,,. Then taking £ = {L,, }, we obtain that the power series

SLP() = Z aLpo’ltl € Q[[tl, .. ,tr]]

leN”

and is of the form (1.2) where X, can be assume to be a single point.

2. Note that the level of uniformity we obtain in Theorem C is very similar to the one
obtained in [SV14, Theorem A].

3. Usually, in this kind of rationality theorem, we can take ¢; = 1 for all . There are two
reasons why more complicated rational coefficients appear here. The first reason is
to turn the X; into varieties instead of definable sets and the other reason is to get
rid of the residual constant symbols that appear due to elimination of imaginaries.

For any finite extension L, of Q,, it is natural here to consider the invariant Haar measure
pr, on GLy(Ly). In terms of the additive Haar measure /vog;& on LY o 1, can be de-
fined thus: for any continuous f:GLy(L,) - C with compact support, [ f(z)du., () =
[ f(z)|det(z)|™N dug;(x). As det(z) is definable (uniformly in p), Denef’s results on de-
finability of p-adic integration [Denoo] extend immediately to dy:;,, and the motivic coun-
terpart of this result—see [DLo2], although the result we will be needing is already implicit
in older work by Denef and Pas (see, e.g., [Pas89])—also extends to dy,, .

By left invariance, i1, (A-GL, (O(L,))) = iz, (GL,(O(Ly)) ), anumber that depends only
on the normalization. We choose a normalization for yi,, . and pp, such that for any A ¢
GLy(L,), we have

pir, (A GLy(O(Ly))) = 1. (L3)

Proof (Theorem C). By uniform EI (Corollary (1.2.7)) there exist integers m; and ms, some
N ¢ N, and some L,-formula ¢(x,w) such that forall p > 0, forall L, € £,, for any choice
of uniformizer a;, € L, and, for all n € N, an unramified n-Galois uniformizer b, 1, € L,
¢ defines a function f] : Ry, - Ly x Sy, (L) such that for every 2,y € Ry, 2EL,y <=
fi, (@) = [ (y). Let f; = (ff ,fu,) where f{ : Ry, — Ly and fi, : Ry, > Sy, (L)
Forle N',let &, = {fip(x) rwxe Ry yand &, = Uy €r,05 50 0,0 € Ly x Spy (L) is
finite, and it is the series }; |1, ,[t' we wish to understand. Let 7y, : £, - Sy, (L) be the
projection, and let Fy,; = 77, (Er,.)-

It follows from Lemma (1.5.5) and the fact that on the valued field sort the model-theoretic
algebraic closure in ACVF coincides with the field-theoretic algebraic closure, that the size
of the fiber ey () = ‘WZ; (z) n&r,,| is bounded by some positive integer N uniformly in
p > 0. We may thus partition F,,; into finitely many pieces F} ;= {z € F,;: ey, (x) =

v}; then
AR WANLA

v<N
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so it suffices to prove that the series for £, has the form (L.2).
Fix v and let [} ; = = F7 ;5 we need to retam only the information that Fj, ; is a family of

finite subsets of Sm(Lp) uniformly @-definable in L,. We can identify each element of
Sim(L,) with an element of GL,,,(L,)/ GL,,(O(L,)), i.e. with a left coset of GL,,,(O(L,));
let G, be the union of these cosets. By Equation (1.3), we have

ILLLp(Gprl) = ’FLp,l|'

Thus
Do NFLltt =Yy, (Gr, )t € Q[[t, ..., 1]
l l

Uniform rationality now follows by Theorem [DLo2, Theorem 1.1 and Theorem 3.1], up to
the fact that because the sets G, ; are £ -definable, the varieties X, are over Z[ T'] where
T is specialized in res(L,) to any tuple (k, : n € N and k, is the residue of an unramified
n-Galois uniformizer).

Let C,,(Ly,) = {k, € res(L,) : k, is the residue of an unramified n-Galois uniformizer}. If
res(L,)[wy] is of degree d = d,, 1, over res(L,), then

p(n)(lres(Ly)[? - 1)

n

Cn(Lp)| =

where ¢ is the Euler totient function. Let C' = [],,.y C,, and for all c € C(L,), let X.;(L,)
be the L,-points of the specialization of X; to c. ThenY; := [[..c X, is an L,,-definable set
such that

. —n_ |Yi(res(Ly))|
[ Xi(res(Ly))| = dZn La, 1,=d o(n) 1-|res(L,)|?

where 14, , -4 =1ifd, 1, = d and 0 otherwise. Replacing | X;(res(L,))| by this expression,
we obtain a rational function of the right form where the X; are £,,-definable, but, by
[DLo2, Theorem 2.1], X; may be assumed to be a Z-variety for p > 0.

For L, such that pis too small, we can still prove the rationality of Sy, by the same argument
using results for finite extensions of p-adic fields instead of those for ultraproducts: replace
Corollary (1.2.7) by Theorem A, Lemma (1.5.5) by the proof of (i) in Section l.4 and [DLo2,
Theorem 1.1] by [Denoo, Theorem 1.5 and Theorem 1.6.1]. [

It follows from the uniform formula 1.2 we gave for S, in Theorem C, that there exists a
tuple of polynomials (P;)i«;< from Q[ X ] and a polynomial ) € Q[ X ] such that we have
the following uniform growth estimate on ar,,;: forallp > 0 andall L, € £,

ar,, < Q(q)Pi(q)"P(q)", (L4)

where ¢ = |res(L,)|.

Below we consider uniformly @-definable (in p) families that arise in the following way.
Take £, tobe {Q, } forall p. Let D, < Q;V be uniformly @-definable and let £, be a uniformly
@-definable equivalence relation on D,. Suppose that f,1,..., f,,+ D, - Q, {0} are uni-
formly @-definable functions such that for every [ € Z", the subset {z € D,, : val(f,;(z)) =
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l;} is a union of £,-equivalence classes. Set D, = {(x,val(f,1(x)),...,val(fo-(z))) : x €
D,} € Q) xZ" and define E, ¢ D, x D, by (z,s1,...,5.)Ep(a’,s},...,s,) if 6,2’ and
s; = s for all i. Then we can regard D,, as a uniformly @-definable family of subsets of Q;V
and £, as a uniformly @-definable family of equivalence relations on D,,.

1.7. Zeta functions of groups

We now consider some applications to some zeta functions that arise in group theory. Most
of the examples in this section come from the theory of subgroup growth of finitely gen-
erated nilpotent groups. In Section 1.8 we consider the representation zeta function of
finitely generated nilpotent groups. We use Theorem C to prove uniform rationality of
these zeta functions. In the subgroup case this gives alternative proofs of results of [GSS88]
and [SGoo].

Throughout this section I' is a finitely generated nilpotent group. For any n € N, the num-
ber a,, of index n subgroups of I' is finite (for background on subgroup growth, see [LS03]).
The (global) subgroup zeta function of I is defined by &r(s) := Y7, a,n~* and the p-local
subgroup zeta function by &, (s) = Y07 a,np™* (the symbol ¢ is commonly used to de-
note the subgroup zeta function but we reserve this for the representation zeta function
in Section 1.8). These expressions converge if Re(s) is large enough. Grunewald, Segal and
Smith observed in [GSS88] that Euler factorization holds: we have

&r(s) = [Téra(s),

where p ranges over all primes. Theorem 1.7 below (and [GSS88, Theorem 1]) says that
&rp(s) is a rational function of p~*. Hence {1 (s) enjoys many of the properties of the Rie-
mann zeta function.

To understand the behavior of the global subgroup zeta function, one needs to study the
behaviour of the rational function &1 ,,(s) as p varies (cf. [Avnr1]). Du Sautoy and Grunewald
introduced a class of p-adic integrals they called cone integrals. They showed [SGoo, The-
orem1.3] that if 7,(s) = Yo7 b,,p™™ is the zeta function arising from an Euler prod-
uct of suitable cone integrals then 7,(s) is uniformly rational (in the variable ¢ := p~%) in
the sense of Section 1.6. In fact, they proved a considerably stronger result [SGoo, Theo-
rem 1.4] and deduced various analytic properties of 7(s) [SGoo, Theorem 1.5]: for instance,
they showed that 7(s) can be meromorphically continued a short distance to the left of
its abscissa of convergence [SGoo, Theorem1.1]. It follows from these results on cone
integrals that &r ,(s) is uniformly rational [SGoo, Sections]. For I' a finitely generated
free nilpotent group of class 2, a stronger uniformity result holds: there is a polynomial
W(X,Y) e Q[X,Y] such that & ,(s) = W (p,p~*) for every prime p [GSS88, Theorem 2].
Du Sautoy, however, has given an example showing that this stronger result does not hold
in general [Sauor1].

Theorem 1.7 below deals with some variations on the subgroup zeta function. In order to
formulate the problem in terms of definable equivalence relations, we need to recall some
facts about nilpotent pro-p groups, including the notion of a good basis for a subgroup of
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a torsion-free nilpotent group [GSS88, Section 2]; we will need these ideas in Section 1.8 as
well. We write G, for the pro-p completion of a group G. Let j:T' - T, be the canonical
map. Then T, is finitely generated as a pro-p group, so every finite-index subgroup of T, is
open (cf. [Dix+99, Theorem 1.17]) and has p-power index (cf. [Dix+99, Lemma1.18]). Since
' is finitely generated nilpotent, every subgroup of p-power index is open in the pro-p
topology on T'; in particular, there is a bijection H ~ j(H) between index p" subgroups
of I and index p" subgroups of T',, and j(H) = H, (see [GSS88, Proposition 1.2]). For any
H 9T of index p", we have I'/H = T,/j(H).

Let A be a finitely generated torsion-free nilpotent group. A tuple ay,...,ar of elements
of A is a Mal'ev basis if any element of A can be written uniquely in the form ai\l---a}‘f,
where the \; € Z. We call the \; Malcev coordinates. Moreover, we require that group
multiplication and inversion in A are given by polynomials in the \; with coefficients in
Q, and likewise for the map A x Z - A, (g, \) ~ g*. We may regard the a; as elements
of the pro-p completion A, and analogous statements hold, except that A and the Mal'cev
coordinates \; now belong to Z, (see [GSS88, Section 2]). In particular, the map j: A — Ep
is injective and we may identify A, with Zf.

Now let H be a finite-index subgroup of A, of index pn, say. In [GSS88], a good basis for
H is defined as an R-tuple hy,...,hr € H such that every element of H can be written
uniquely in the form h?l---h}\f (A € Z,), and satisfying an extra property which does not
concern us here. We say that hy, ..., hg € A, is a good basis if it is a good basis for some
finite-index subgroup H of A,. For each 4, we can write

hi = aytaj® (Ls)
and we recover ‘Zp: H| = p" from the formula
|A11 A2 Arg| = p7". (1.6)

Any finite-index subgroup of A, admits a good basis. Often we will identify a good basis
hi, ..., hg with the R?-tuple of coordinates (\;;).

Proposition 1.7.1:
The set D,, of good bases (\;;) S Z]}f of A, is uniformly @-definable in p.

Proof . This follows from the proof of [GSS88, Lemma 2.3]. [ ]

For each nonnegative n consider the following:

(a) the number of index p" subgroups of A;

(b) the number of normal index p™ subgroups of A;

(c) the number of index p™ subgroups A of A such that Zp ; Ep;

(d) the number of conjugacy classes of index p™ subgroups of A;

(e) the number of equivalence classes of index p" subgroups of A, where we define A ~ B
if A,=B,.

The rationality statement in (a)-(d) of the following result are due to Grunewald, Segal, and
Smith [GSS88, Theorem 1]; for uniformity statements in (a)-(d), see [SGoo, Section 1] and
the start of this section. Here we give a different proof.
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Theorem 1.7.2:

Let by, ,, be as described in any of (a)-(e) above. Then the power series Y. b, ,t" is uniformly
rational.

Proof . Consider case (a). Let D, be as in Proposition1.7. Define f,:D, - Z, by f,(\i;) =
A11---Agg; note that f, is uniformly @-definable in p. Define an equivalence relation &, on
D, as follows: two R-tuples (\;;), (;), representing good bases hy, ..., hgand k1, ..., kg
for subgroups H, K respectively, are equivalent if and only if H = K.

Now &, is uniformly @-definable in p: it is the subset of D, x D,, given by the conjunction
for 1 <i,7 < R of the formulae

(i) (i) o1 R
(30y7,...,05" €Zy) ki =hy* hp

and @ L)

3D ez) by = Kk
and these become polynomial equations independent of p over Q in the \;;, the p;;, the o;
and the 7; when we write the h; and k; in terms of their Mal'cev coordinates (Equation (1.5)).
Construct D, and £, from &, and D, as at the end of Section 1.6. Using Equation (1.6), we
see that for eachn ¢ N, D, ,,/E,, ,, consists of precisely b, ,, equivalence classes. We deduce
from Theorem C (taking £, = {Q, }) that 72, b, ,t" is uniformly rational.
The proofs in cases (b)-(e) are similar, modifying the definitions of D, and £, appropriately.
For example, in (b) we replace D, by the set D3 of tuples (\;;) that define a normal finite-
index subgroup H; a tuple (\;;) corresponding to a finite-index subgroup H belongs to Ds
if and only if it satisfies the formula

(VgeA)(Yhe H)(3w,...,vp € Z,) ghg™ = by RYE,

which is made up of polynomial equations independent of p over Q in the v;, the \;; and
the Mal'cev coordinates of g and h. In case (d), the equivalence relation is the subset of
D, x D, given by the formula:

N N o) o)
there exists g € A, there exist 0, 79) ¢ 7, for 1 < j < R such that gh;g~! = k7! kg

OB G) '

and g 'k;jg=h,' --hg forl1<j<R.
This is made up of polynomial equations independent of p over Q in the Mal’cev coor-
dinates of g and of the h; and the k;. In cases (c) and (e), we can express the isomorphism
condition in terms of polynomials in the Mal’cev coordinates; compare the proof of Propo-

sition 1.7 below. ]

Remark 1.7.3:

Du Sautoy and Grunewald prove that Theorem 1.7 (a) and (b) actually hold for an arbitrary
finitely generated nilpotent group I, possibly with torsion. To prove this in our setting,
write I" as a quotient A/O of a finitely generated torsion-free nilpotent group A. Theo-
rem 1.7 now follow for cases (a)-(e) from our arguments above with suitable modifications:
for example, for case (a), we count not all index p" subgroups of A, but only the ones that
contain ©. For details, compare the argument of the last two paragraphs of Lemma1.8.
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The proof for case (d) of Theorem 1.7 is not given explicitly in [GSS88], but the appropri-
ate definable integral can be constructed using the methods in the proof of [Sauos, The-
orem 1.2]; what makes this work is that the equivalence classes are the orbits of a group
action. The language of [Sauos] contains symbols for analytic functions, but our methods
still apply there because we can use the results of Cluckers from the Appendix, which do
hold in the analytic setting.

Observe that Theorem 1.7 for case (e) is new; here the equivalence relation does not arise
from any obvious group action, and Theorem C gives a genuinely new way of proving uni-
form rationality.

Here is another application, to the problem of counting finite p-groups.

Proposition 1.7.4:

Fix positive integers c,d. Let c,,, be the number of finite p-groups of order p™ and nilpotency
class at most c, generated by at most d elements. Then the power series Y., ¢, ,t" is uniformly
rational.

Proof . Let A be the free nilpotent group of class ¢ on d generators (note that A is torsion-
free). Any finite p-group of order p" and nilpotency class at most ¢ and generated by at
most d elements is a quotient of A, by some normal subgroup of index p". Let D3 and f,
be as in the proof of Theorem 1.7. Define an equivalence relation &, on Dj as follows: two
R-tuples (\;;), (wij), representing good bases hy, ..., hg and ki, ..., kg for subgroups H,
K respectively, are equivalent if and only if A,/H = A, /K.

The result will follow as in Theorem 1.7 if we can show that &, is uniformly @-definable in
p. Let aq,...,ar be the Mal'cev basis of Zp, as before. We claim that &, ¢ D3 x D3 is given
by the following conditions:

| fo(Nij)] =1 fp (i)l (L7)
(31, 0, € A (Y, vy €Zy) aaF € H <= B ViR e K (L.8)
and
(Voi,...,00, Ty .oy T € Zy) (301, ..., 0r € Z)
(af'-aSFalt a7 = att--af) A (BT bTRDT b7 = B bR, (L9)

To prove this, suppose Equations (1.7), (1.8) and (L.9) hold. Then |A,: H| = |A,: K| and the
map a;H ~ b;K defines an isomorphism from A,/H onto A,/K. Conversely, if g is an
isomorphism from A,/H onto A, /K then ‘KP:H‘ = ‘ZP:K , 80 | f(Nij)| = | fp(pij)]- More-
over, we can choose b; € Zp such that g(a;H) = b; K for 1 <i < R. Thenforalluy,... v, €Z
we have

vy VR V1 VR
(+) a*ap' e H < b0 e K

andforall oy,...,0,,71,...,7, € Z there exist v1, ..., v, € Z such that
o1 OR Tl TR _ ,V1...,VR o1, . hWORKTL,. TR _ BV, LVR).
(#x) (al'-aZfal-ay =ai*-—apy') A (b7 b7 bt = b0 );

since H, K are closed and the group operations are continuous, (*) and (**) hold with
Z replaced by Z,. This proves the claim. The formulae above involve only the function
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f—which is uniformly @-definable in p—and polynomials independent of p over Q in the
Mal’cev coordinates, so £ is uniformly @-definable in p, as required. [

Du Sautoy’s proof [Saugg, Theorem 2.2], [Sauoo, Theorems 1.6 and 1.8] uses the fact that
an isomorphism A,/H - A,/K lifts to an automorphism of A, which implies that the
equivalence relation &, arises from the action of the group Aut(A,), a compact p-adic ana-
lytic group. This allows one to express the power series Y. ¢, ,t" as a cone integral, from
which uniform rationality follows (see the start of this section). Our proof is simpler in its
algebraic input, as elimination of imaginaries allows us to use less information about &,.

Remark 1.7.5:

Let I" be a finitely generated nilpotent group and let ¢, ,, be the number of isomorphism
classes of quotients of I' of order p”. Then the power series )., ¢, " is uniformly rational.
If T is torsion-free then this follows immediately from the proof of Proposition 1.7. If " has
torsion then we write I as a quotient A/© of a finitely generated torsion-free nilpotent
group A and modify the proof of Proposition 1.7 accordingly (cf. Remark 1.7).

1.8. Twist isoclasses of characters of nilpotent groups

By arepresentation of a group GG we shall mean a finite-dimensional complex representation,
and by a character of G we shall mean the character of such a representation. A character is
said to be linear if its degree is one. We write (, ), for the usual inner product of characters
of G. If y is linear then we have

(xo1,X02) = (01,02) ¢ (L.1o)

for all characters o, and o5. If G’ < G has finite index then we write Ind%,- and Res$- for the
induced character and restriction of a character respectively. For background on represen-
tation theory, see [CR81]. Below when we apply results from the representation theory of
finite groups to representations of an infinite group, the representations concerned always
factor through finite quotients.

We denote the set of irreducible n-dimensional characters of G by R,,(G). If N < GG then
we say the character x of an irreducible representation p factors through G/N if p factors
through G/N (this depends only on x, not on p).

Notation 1.8.1:
We say a character o of G is admissible if o factors through a finite quotient of G. 1f p is
prime then we say o is p-admissible if o factors through a finite p-group quotient of G. We

write R24(@) (R?)(@)) for the set of admissible (p-admissible) characters in R,,(G). Note
that R%”)(G) is empty if n is not a p-power [CR8I, (9.3.2) Proposition].

Given 01,09 € R,,(G), we follow [LM85] and say that o, and o, are twist-equivalent if oy =
X02 for some linear character x of G. Clearly this defines an equivalence relationon R,,(G);
we call the equivalence classes twist isoclasses.

Observation 1.8.2:
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Let 01, 05 be two irreducible degree n characters of G that are twist-equivalent: say oo = xo1. If
N < G such that o1, 04 both factor through G| N, then x also factors through G| N.

If N1, Ny 4 G have finite (p-power) index then N; n N, also has finite (p-power) index. This
implies that when we are working with twist isoclasses in R24(G) (R (G)), we need only
consider twisting by admissible (p-admissible) linear characters.

Fix a finitely generated nilpotent group I'. The set R,,(I") can be given the structure of a
quasi-affine complex algebraic variety. Lubotzky and Magid analyzed the geometry of this
variety and proved the following result [LM85, Theorem 6.6].

Theorem 1.8.3:

There exists a finite quotient I'(n) of I such that every irreducible n-dimensional represen-
tation of T factors through T'(n) up to twisting. In particular, there are only finitely many
twist isoclasses of irreducible n-dimensional characters.

Thus the number of degree n twist isoclasses is a finite number a,,.

Definition 1.8.4:
We define the (global) representation zeta function (r(s) by (r(s) = Y074 a,n~* and the p-local
representation zeta function (r ,(s) by Crp(s) := Yo Qprp™™.

It is shown in [SV14, Lemma 2.1] that (1-(s) converges on some right-half plane. Voll noted
[Voli1, Section 3.2.1] that (r-(s) has an Euler factorization

¢r(s) =[Tcra(s)

for any finitely generated nilpotent group (cf. the proof of Lemma 1.8).
Theorem 1.8.5:

The power series Y., a,»t" is uniformly rational.

Note that we do not have to assume that I is torsion-free.

We prove Theorem 1.8 by showing how to parametrize twist isoclasses in a definable way.
The equivalence relation in the parametrization is not simply the twist-equivalence rela-
tion, which arises from the action of a group—the group of linear characters of I'—but a
more complicated equivalence relation.

The correspondence between index p™ subgroups of I' and index p" subgroups of T, gives a
canonical bijection between RZ(,’Z) (I') and Rz(ﬁ) (T,), and it is clear that this respects twisting
by p-admissible characters.

Lemma 1.8.6:
For every n € N, there is a bijective correspondence between the sets R, (I")/(twisting) and

Rgfl) (T,)/(twisting).

Proof . 1t suffices to show that given any o € R,»(I"), some twist of ¢ factors through a
finite p-group quotient of I'. By Theorem 1.8, we can assume that o factors through some
finite quotient F of I". Then F, being a finite nilpotent group, is the direct product of its
Sylow [-subgroups F}, where [ ranges over all the primes dividing |F'|. Moreover [CR8I,
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Theorem 10.33], o is a product of irreducible characters o;, where each o is a character of
F,. Since the degree of an irreducible character of a finite group divides the order of the
group [CR81, Proposition 9.3.2], all of the o, for [ # p are linear. We may therefore twist o by
a linear character of F' to obtain a character that kills F; for [ # p, and this linear character
is admissible by Observation 1.8. The new character factors through F),, and we are done.
]

The key idea is that finite p-groups are monomial: that is, every irreducible character is in-
duced from a linear character of some subgroup. We parametrize p-admissible irreducible
characters of I, by certain pairs (H, x), where H is a finite-index subgroup of I, and  is

a p-admissible linear character of H: to a pair we associate the induced character Indg" X-
We can parametrize these pairs using the theory of good bases for subgroups of T, and this
description is well-behaved with respect to twisting. Two distinct pairs (H, x) and (H’, x’)
may give the same induced character; this gives rise to a definable equivalence relation on
the set of pairs.

If ¢ is a character of H then we denote by g.¢) the character of g.H := gHg~! defined by
(9-0)(ghg™) =¥ (h).

Lemma 1.8.7:

(a) Let 0 € R(p )(T,). Then there exists H < T, such that T, H| = p, together with a p-
admissible linear character x of H such that o = Indgf X-

(b) Let H be a p-power index subgroup of T, and let x be a p-admissible linear character of H.
Thez Indgp X is a p-admissible character of T, and Ind?f X is irreducible if and only if for gll
gel, \AH , Resg:gﬂ ng-X * Resf HAHX: Mi)reover, ifyisa ?—admissible linear character of T',,
and Ind?j’x is irreducible then Indrf’ ((ReSFH”w> ) =) IndF”

(c)Let H H' < F have index p™, and let x, x' be p-admissible lmear characters of H, H' respec-

tively such that Ind x and Ind'? X" are irreducible. Then Ind = Ind"” X' if and only if there
exists g € Fp such that Resg,HnH,g.X Resg,HnH,X’.

Proof . (a) Since o is p-admissible, it factors through some finite p-group F. Since finite
p-groups are monomial [CR81, Theorem 11.3], there exist L < F' of index p" and a linear
character x of L such that c—regarded as a character of F—equals Ind y. Let H be the
pre-image of L under the canonical projection I', - F'. Regarding x as a character of H, it
is easily checked that ‘fp: H|=prando = Ind}?y.

(b) Since x is p-admissible, the kernel K of x has p-power index in fp, so K contains a
p-power index subgroup N such that N g T,. Clearly N < ker (Indz” X), SO Indzp X is p-
admissible. The irreducibility criterion follows immediately from [CR81, Theorem 10.25].
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By Frobenius reciprocity,
In FP((ResI;; ) ) Y Tnd% )

(

() ey o )

= E(RGSH ) x, (Res}y ) Resyy (Indjy Y)),,
(

X ResH”(Ind )) by Equation (1.10)

IndH X, IndH X>

Now Ind%’x is irreducible, because Indgpx is, and the degrees of Ind%’ ( (Res%’w) X) and
P Indzf’x are equal. We deduce that ¢ IndEpX = Indl;}”((ResE”?ﬁ) X)-
(c) The Mackey Subgroup Theorem [CR81, Theorem 10.13] gives

ReSFHZ’,(IndI;fx) = Z Indg;mH'(ReSz:Zan g.x). (L.11)

geH\Tp/H

Here the sum is over a set of double coset representatives g for H'\T,,/H (the characters
on the RHS of the formula are independent of choice of representative). Since Ind?j’x and

Indg”, X' are irreducible, they are distinct if and only if their inner product is zero. We have

<IndH X, Indff,x’)ﬁp

<Res§fi (Ind%x) X,>H’ by Frobenius reciprocity

> (Indg Hn H,(Resgzgm w9 X), X’>H, by the Mackey Subgroup Theorem

geH\Tp/H

g.H ' / - . -
. H%ﬁ: . (Res o Hna9-X Resg g x )g. 1 DY Frobenius reciprocity.
geH'\I'p

This vanishes if and only if each of the summands vanishes, which happens if and only
if Reszzgﬁ wg-X * Resf X' for every g, since the characters concerned are linear. The
result follows. ]

Write I" as a quotient A/© of a finitely generated torsion-free nilpotent group A: for exam-
ple, we may take A to be the free class ¢ nilpotent group on N generators for appropriate
N and c. Let m: A — I be the canonical projection, and let i:© — A be inclusion. Let
A,, ©, be the pro-p completions of A, © respectively. Then 7 (respectively i) extends to a
continuous homomorphism 7,: A, - T, (respectively 7,: ©, - A,), and the three groups
1,(0,), ker 7, and the closure of @ in A, all coincide (compare [Dix+99, Chapter 1, Ex. 21];

because A is finitely generated nilpotent, it can in fact be shown that i, is injective, and
hence an isomorphism onto its image). Clearly p-admissible representations of T, corre-
spond bijectively to p-admissible representations of A, that kill ker7,. Now © is finitely
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generated (see, e.g., [Wag97, Lemma 1.2.2]);\50 we can choose a Mal'cev basis 0, .. ., 6, for
©. We identify the 6; with their images in A,,.
Let 11,» be the group of all complex p"th roots of unity, and let z,~ be the group of all

complex p-power roots of unity.

Lemma 1.8.8:
The groups ji,- and Q,, | Z,, are isomorphic.

Proof . Let p~ Z < Q be the group of rational numbers of the form np~ for n € Z and r a
nonnegative integer. Thenp=~ZnZ,=ZandZ,p > Z =Q,,s0Q, [ Z, = p~> Z [ Z,by one
of the standard group isomorphism theorems. The map ¢ ~ €27 gives an isomorphism
from p=°7Z/7Z to piye. [

Let ®: i, — Q, /Z, be the isomorphism described above. Any p-admissible linear char-
acter of a pro-p group takes its values in -, so we use ® to identify p-admissible linear
characters with p-admissible homomorphisms to Q,, / Z,,.

Lemma 1.8.9:

Let D, ¢ ZF x Q}} be the set of tuples (X\ij,yy,), where 1 <i,j < Rand 1 < k < R, satisfying the
following conditions: R

(a) the \;j form a good basis hy, . . ., h for some finite-index subgroup H of A, such thatker 7, <
H;

(b) the prescription h; — y; mod Z, gives a well-defined p-admissible homomorphism x: H —
Q, / Z,, that kills ker 7,;

(¢) the induced character Indg” X is irreducible.

Then D, is uniformly @-definable in p. Moreover, Indff’x isa p-admissible character of A, that
kills ker 7, and hence induces a p-admissible character of I',,, and every p-admissible irreducible
character of I, arises in this way.

Notation 1.8.10:
Given (\ij, yx) € D,, we write W(\;;, yy) for the pair (H, x). Since the h; generate H topo-
logically, the p-admissible homomorphism x defined by the y; is unique.

Proof . Condition (a) is uniformly @-definable in p, by Proposition 1.7 (to the formulae that
define the set of good bases we add the formulae (3vy;,...,v,; € Z,) 0; = h{V--h}." for
1 < j < s). Given that (a) holds, we claim that (b) holds if and only if there exists an R2-
tuple (14;;) such that:

(i) (pi;) defines a good basis k1, .. ., k for a finite-index subgroup K of Ep;

(i) K < H;

(iii) ker 7, ¢ K

(iv) there exist y € Q,, 71, ...,7r € Zy, h € H such that |y| = [/ K| and for every i we have
hri = h; and r;y = y; mod Z,. (Here 7 denotes the image of x € H under the canonical
projection H - H/K.)

To see this, note that if (b) holds then ker x is a finite-index subgroup of H which satisfies
(ii) and (iii). Take (y;) to be any tuple defining a good basis for K. Then H/K, being
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isomorphic to a finite subgroup of Q, / Z,, is cyclic, so choose h € H that generates H /K
and choose y € Q, such that x(h) = y mod Z,. We can choose ry,...,7z € Z such that

h;=h" foreach i, and it is easily checked that (iv) holds.

Conversely, suppose there exists a tuple (14;;) satisfying (i)-(iv). The map Z, - H, A » h*is
continuous because it is polynomial with respect to the Mal'cev coordinates, so there exists
an open neighborhood U of 0 in Z, such that h* € K for all A € U. Since Z is dense in Z,,
we may therefore find n,,...,ng € Z such that h; = h™ for each i. Hence H/K is cyclic
with generator .

We have a monomorphism : H/K - Q, / Z, given by j3 (R") = ny mod Z,. Let y be the

composition H - H/K L Q,/Z,. The canonical projection H — H/K is continuous
[Dix+99, 1.2 Proposition], so we have x(h*) = Ay mod Z, for every X € Z,. Condition (iv)
implies that x(h;) = y; mod Z, for every i, as required.

Now condition (i) is uniformly @-definable in p, by Proposition l.7. Condition (iii) can be
expressed as

(Vvr,...,vs€Zy) [(3ov,...,05 € Z,)07 -0 = h]'---h7* ]
= (371,...,Ts € Zp) 07 -0 = k'K (L.12)

Equation (1.12) can be expressed in terms of polynomials independent of p over Q in the
Aij, the 115, the vy, the o), and the 74, so condition (iii) is uniformly @-definable in p. (Note
that the 6, are fixed elements of A, so their Mal'cev coordinates are not just elements of Z,
but elements of Z.)

Similar arguments show that conditions (ii) and (iv) are also uniformly @-definable condi-
tions in p. In (iv), note that the conditions A" = h,; imply by the argument above that / is a
generator for H/K, so the condition |y| = |H/K| can be expressed as

(W e K)A((VzeQ,) |z <y = h* ¢ K).

This shows that (condition (a))A(condition (b)) is uniformly @-definable in p.

Condition (iii) implies that y kills ker 7,. Hence Indfl” x kills ker 7, so Indﬁ” X gives rise to
an irreducible p-admissible character of fp. By Lemma 1.8 (b), irreducibility of the induced
character can be written as

(Vge A~ H)(3h e H) ghg™ € H and x(ghg™") # x(h).

Writing this in terms of the Mal’cev coordinates, we see that condition (c) is uniformly -
definable in p. ~

By Lemma 1.8 (a), any p-admissible irreducible character o of fp is of the form IndE” x for
some finite-index subgroup L of I', and some p-admissible linear character x of L. Let H
be the pre-image of L under the canonical projection A, - I',,. Regarding o, x as represen-
tations of A, H respectively, it is easily checked that o = Indﬁ” X- Choose ()\;;) defining
a good basis hy, ..., hg for H, and choose y, such that x(h;) = v mod Z, for all k. The
above argument shows that (\;;, yx) € D,. This completes the proof. ]
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Define f,:D, — Z, by fp()\”,yk) = /\11 ‘Arg. Define an equivalence relation &, on D, by
(Nijr yi) ~ (N ) if IndH x and IndH,X are tw1st equivalent, where (H, x) = U (\;;, yx)

and (H',x') = V(Aj;,4;)- The degree of Ind x equals |f, (i, yr)|,t, and likewise for
(N> Y, s if (Aij, ye) ~ (A, ;) then fp()‘myk) Fo(N yp)-

Construct D, and E, from &, and D, as at the end of Section 1.6. 1t follows from Lemma 1.8
and the deﬁmtlon of &y that Dy, , is the union of precisely a,» £, ,-equivalence classes (note
that if one representation of T', is the twist of another by some linear character ¢ of A,
then v is automatically a character of T, by Observation 1.8). To complete the proof of
Theorem 1.8, it suffices by Theorem C to show that E,, is a family of equivalence relations
on D, that is uniformly definable over p. Hence it is enough to prove the following result.

Proposition 1.8.11:
The equivalence relation &, is uniformly @-definable in p.

Proof . Let D}, ¢ Qf be the set of R-tuples (z1,...,zr) such that the prescription a; ~

z; mod Z, gives a well-defined p-admissible linear character of A, that kills ker7,. We
denote this character by =(z1,...,2g) (or just Z(z;)). Similar arguments to those in the

proof of Lemma 1.8 show that D is definable. Let (z1, ..., zr) € D}, let (H,x) = ¥(Aij, Yx)

andlet ..., hy be corresponding the good basis for /. Then hy, = aF a0 Z(z) =

Ae121+ -+ A\erzpr. Hence Resﬁ =(zk) X = V(Nij, Y+ A1 21+ +Akrzr). Applying Lemma 1.8
(b) and (c), we see that if (H’, x') = U(A j,yk) then (\ij, yx) ~ (A J,yk) if and only if

(3(21,...,2r) €D,) (g € A,) (Yhe H) ghg™ e H'
Ay P
= (Resy=(2) x) (h) = X' (ghg™).
Writing this in terms of the Mal'cev coordinates, we obtain an equation independent of p
involving D, and p-adic norms of polynomials over Q in the \;;, the yy, the A i» the y;, the

2k, and the Mal cev coordinates of g and h. We deduce that £, is uniformly @-definable in
p, as required. [ ]

We give a simple example. Let # be the Heisenberg group (a,b,c: [a,b] = ¢,[a,c] = [b,c] =
1). Nunley and Magid [NM89] explicitly calculated the twist isoclasses of 7 and showed
that

Crp(s) =1+ Z(p Dp"~ip.

The formula for the sum of a geometric progression gives

—S

1
CH,;D(S) = 1 _pl_s

Hence

1-p= ((s-1)

Cu(s) = HCHp(S) Hl O
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where ((s) denotes the Riemann zeta function. Ezzat [Ezz14, Theorem 1.1] and Stasinski
and Voll [SV14, Theorem B] calculated (r(s) for various generalizations I of H.
The subgroup zeta function of the Heisenberg group is given by

((s)C(s = 1)((2s -2)¢(2s - 3)
((3s-3)
[SGoo, Section1]. This and other calculations of [SV14] suggests that the representation

zeta function is better behaved than the subgroup zeta function. The same is true for
semisimple arithmetic groups [LMo4].
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CHAPTER 11

Analytic difference fields

LE LOGICIEN, au Vieux Monsieur.
La logique na pas de limites !

E. lonesco, Rhinocéros, Acte 1

This chapter contains [Rid].

Introduction

Since the work of Ax, Kochen and ErSov on valued fields (e.g. [AK65]) and their proof that
the theory of a Henselian valued field is essentially controlled (in equicharacteristic zero)
by the theory of the residue field and the value group, model theory of Henselian valued
fields has been a very active and productive field. Among later developments one may note
Macintyre’s result in [Mac76] of elimination of quantifiers for p-adic fields and the proof by
Pas of valued fields quantifier elimination for equicharacteristic zero Henselian fields with
angular components in [Pas89], which implies the Ax-Kochen-ErSov principle. Another
notable result is the one by Basarab and Kuhlmann (see [Basg1; BK92; Kuhg4]) of valued
field quantifier elimination for Henselian valued fields with amc-congruences, a language
that does not make the class of definable sets grow (as angular components do). Another
result in the Ax-Kochen-Ersov spirit is the proof by Delon in [Del81] — extended by Bélair
in [Bélgg] — that Henselian valued fields do not have the independence property if and
only if their residue field does not have it (their value group never has the independence
property by [GS84].)

But model theorists have not limited themselves to giving an increasingly refined descrip-
tion of the model theory of Henselian valued fields, there have also been attempts at ex-
tending those results to valued fields with more structure. The two most notable enrich-
ments that have been studied are, on the one hand, analytic structures as initiated by
[DD88] and studied thereafter by a great number of people (among many others [Drigz;
DHMogo9; LRoo; LRos; CLRo6; CL11]) and, on the other hand, D-structures (a generaliza-
tion of both difference and differential structures), first for differentials and certain isome-
tries in [Scaoo] but also for greater classes of isometries in [Scao3; BMSo7; AD10] and then
for automorphisms that might not be isometries [Azgro; Pali2; Hrub; GP1o; DO]. The
model theory of valued differential fields is also quite central to the model theoretic study
of transseries (see for example [ADH13]) but the techniques and results in this last field
seem quite orthogonal to those in other references given above and to our work here.
The goal of the present paper is to study valued fields with both an analytic structure and an
automorphism. The main result of this paper is Theorem D, which states that o-Henselian
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II. Analytic difference fields

(cf. Definition (11.4.10)) valued fields with analytic structure and any automorphism o elim-
inate field quantifiers resplendently in the leading term language (cf. Definition (IL1.1)).
We then deduce various Ax-Kochen-Ersov type results for analytic difference fields (both
with respect to the theory and the independence property). We also try to give a systematic
and comprehensive approach to quantifier elimination in (enriched) valued fields through
some more abstract considerations (mainly in the appendix).

In [Scao6], Scanlon already attempted to study analytic difference fields in the case of an
isometry, but the definition of o-Henselianity given there is too weak to actually work, al-
though some incorrect computations hide this fact. The axiomatization and all the proofs
had to be redone entirely but, as stated earlier, this paper does not only contain a corrected
version of the results in [Scao0], it also generalizes these results from the isometric case to
the case of any valued field automorphism.

Some ideas from [Scao6] could be salvaged though, among them the fact that Weierstrass
preparation (see Definition (11.3.22)) allows us to be close enough to the polynomial case to
adapt the proofs from the purely valued difference setting. Nevertheless this adaptation
is not as straightforward as one would hope, essentially because Weierstrass preparation
only holds in one variable, but one variable in the difference world actually gives rise to
many variables in the non difference world. The main ingredient to overcome this obsta-
cle is a careful study of differentiability of terms in many variables (see Definition (11.4.4))
that allows us to give a new definition of o-Henselianity in (11.4.10). These techniques can
probably be used to prove results in greater generality, for example: valued fields with both
analytic structure and D-structure, a notion, defined in [Scaoo], that encompasses both
the differential and the difference case.

As explained in [Scao6], our interest in the model theory of valued fields with both ana-
lytic structure and difference structure is not simply a wish to see Ax-Kochen-Ersov type
of results extended to more and more complicated structures and in particular to the com-
bination of two structures where things are known to work well. It is also motivated by
the fact that this is the right model-theoretic setting in which to understand Buium’s p-

differential geometry. More precisely any p-differential function over W(Ealg) can be de-

fined in W(Ealg) equipped with the lifting of the Frobenius and symbols for all p-adic
analytic functions Y a;x! where val(a;) — oo as |I| - co. See [Scao0, Section 4] for an
example of how a good model theoretic understanding of this structure can help to show
uniformity of certain diophantine results.

The organization of this text is as follows. Section 11.1is a description of the languages, with
either angular components or RV -structure, that we will be using. In Section 11.2, we show
that it is possible to transfer elimination of quantifier results from equicharacteristic zero
to mixed characteristic (using the theoretical framework of Appendix 11.B). Sections 11.3 and
11.4 describe the class of analytic difference fields we will be studying. Section 115 is con-
cerned with purely analytical matters, it describes the link between analytic 1-types and the
underlying algebraic 1-type. In Section 11.6 we prove the main result of this paper, Theo-
rem D: a field quantifier elimination result for o-Henselian analytic difference fields. We
also prove an Ax-Kochen-Ersov principle for these fields. Finally Section 11.7 shows how
this quantifier elimination result also allows us to give conditions (on the residue field and
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IL.1. Languages of valued fields

the value group) for such fields to have (or not have) the independence property. The ap-
pendix contains an account of the more abstract model theory at work in the rest of the
paper to help smooth out the arguments. Appendix 11.B, in particular, sets up a general
setting for transfer of elimination of quantifier results.

1 would like to thank Elisabeth Bouscaren and Tom Scanlon for our numerous discussions.
Without them none of the mathematics presented here would be understandable, correct
or even exist. 1 also want to thank Raf Cluckers for having so readily answered all my ques-
tions about analytic structures as 1 was discovering them. Finally, I would like to thank
Koushik Pal for taking the time to discuss the non-isometric case with me. Our discus-
sions led to the generalization of the proofs to the non-isometric case.

I.1. Languages of valued fields

We will be considering valued fields of characteristic zero. They will mainly be considered
in two kinds of languages. On the one hand, the language with leading terms, also known
in the work of Basarab and Kuhlmann (cf. [Basg1; BK92; Kuhg4]) as amc-congruences and
in later work as RV -sorts (e.g. [HK06]) and on the other hand the language with angular
components, also known as the Denef-Pas language.

Definition 1L.1.1 (Leading term language):

The language L%V has the following sorts: a sort K and a family of sorts (RV,,)nen.,. On
the sort K, the language consists of the ring language. The language also contains functions
v, : K = RV, forall n e N,y and 1v,, , : RV,, > RV,, for all m|n.

Any valued field can be considered as an L%V -structure by interpreting K as the field and
RV, as (K*/1 + n9) u {0} where 91 is the maximal ideal of the valuation ring O. We
will write RV," for (K*/1 + n9t) = RV,, \ {0}. Then rv, is interpreted as the canonical
surjection K* - RV, and it sends 0 to 0; rv,, ,, is interpreted likewise. We will denote the
LRV -theory of characteristic zero valued fields by T.¢. 1f we need to specify the residual
characteristic, we will write Ty oo or Tyt .
We will be denoting RV := U,, RV,,. These sorts are closed in L& (see Definition (1L.A.7)).
The sorts in RV have a lot of structure given by the following commutative diagram (where
R, = O/nIN):

|0 K

o,

‘/resn 'V I'—0
resm | ‘

/ A
I'Vin | /

< valp /

1 — R, —RV,
\'\ \Lresm,n \* ¢I‘V"%alm
1—R,, — RV,

and all of this structure is definable in L%V, although not without quantifiers. In order to

eliminate K-quantifiers, we will have to add some structure on the RV sorts.

Definition I1.1.2:
The language LY i

is the enrichment of with, on each RV, the language of (multiplicative)
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II. Analytic difference fields

groups {1,,,}, a symbol 0,, and a binary predicate |,,, and functions +,, ,, : RV,> - RV, for all

The multiplicative structure on RV, is interpreted as its multiplicative (semi-)group struc-
ture, i.e. the group structure of RV," and 0,,-,z = z-,0,, = 0,,, x|,y is interpreted as val,, (z) <
val,(y) and for all 2,y € K such that val(z + y) < min{val(z),val(y)} + val(n) — val(m),
1V () +mp 10 (y) = 1V, (2 + y) and 0, otherwise. This is well defined.

We will denote by Ty, the theory of characteristic zero Henselian valued fields in LRV

Remark 11.1.3:

1. If K has equicharacteristic zero, then for all m|n, rv,,, is an isomorphism. Hence if
we are working in equicharacteristic zero, we will only need to consider RV;. In that
case we also have that R; = Rju{0} < RV;"u{0} = RV;. The additive structure is also
simpler: we only need to consider the +; ; function on RV;. It extends the additive
structure of R; and makes every fiber of val; into an R;-vector space of dimension 1
(if we consider 0; to be the zero of every fiber).

2. If K has mixed characteristic p, then whenever m|n and val(n) = val(m) — i.e. when
p does not divide n/m — rv,,,, is an isomorphism. In particular for all n € N,
IV, pval(n) is an isomorphism (where we identify val(p) and 1).

3. One could wonder then why consider all the RV,, when the only relevant ones are the
RV,» in mixed characteristic p and RV; in equicharacteristic zero. The main reason
is that we want enough uniformity to be able to talk of T,; without specifying the
residual characteristic or adding a constant for the characteristic exponent (in par-
ticular if one wishes to consider ultraproducts of valued fields with growing residual
characteristic, although we will not do so here).

The use of this language is mainly motivated by the following result that originates in
[Basgr; BK92], although the phrasing in terms of resplendence first appears in [Scag7]. By
resplendent quantifier elimination relative to RV, we mean that quantifiers on the sorts
other than those in RV can be elimated (namely the field quantifiers here) and that this
result is true whatever the enrichment on the RV -sorts (see Appendix 11.A for precise def-
initions).

Theorem 11.1.4:

The theory Ty, eliminates K-quantifiers resplendently relative to RV.

Later, we will add analytic and difference structures, hence we will consider an enrichment
of LBV by new terms on K and predicates and terms on RV (although none on both K and
RV this is what we call in Appendix 11.A an RV-enrichment of a K-term enrichment of
L®Y). Let £ be such a language and let Yy denote the new sorts coming from the RV -
enrichment.

Remark IL.1.5:
Any quantifier free £L-formula ¢(7,y) where T are K-variables and 7 are RV -variables, is
equivalent modulo T to a formula of the form ¢ (rv5(u(T)),y) where ¢ is a quantifier
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free L|gy, sy, -formulaand u are L] -terms. Indeed the only predicate involving K is the
equality and ¢(T) = s(¥) is equivalent to rv{(t(Z) — s(T)) = 0. The statement follows
immediately.

Here is an easy lemma that will be very helpful later on to uniformize certain results.

Corollary 11.1.6:

Let T be an L-theory that eliminates K-quantifiers, M & T, C<M — i.e. C is a substructure
of M — and 7, y € K(M) be such that for all L|;(C)-terms u, and all n € N, rv,,(u(T)) =
v, (u(y)). Then T and y have the same L(C')-type.

Proof.Let f : M — M be the identity on RV u Xy (M) and send u () to u(y) for all
L], (C)-term u. By Remark (ILL5), f is a partial L% M"-isomorphism. But K-quantifiers
elimination implies that f is in fact elementary. ]

The other kind of language, the one with angular components, essentially boils down to
giving oneself a section of the short sequences defining the RV,,. That statement is made
explicit in (1L.1.8).

Definition I1L.1.7 (£*):

The language L has the following sorts: sorts K and I'*° and a family of sorts (R,,)nen.,- The
sorts K and R, come with the ring language and the sort T'° comes with the language of ordered
(additive) groups and a constant oo. The language also contains a function val : K - I'™®, for
all n, functions ac,, : K - R, res,, : K - R, valg ,, : R;, > '™, sg,, : I'” - R,, and for all
m|n, functions res,, , : R, > R, and tg smn : Ry, = R,

As one might guess, the R,, are interpreted as the residue rings O/n9t. As with RV, we will
write R := U, R,,. The res,, and res,, ,, denote the canonical surjections O - R,, and R,, —
R.,,. The function ac,, denotes an angular component, i.e a multiplicative homomorphism
K* - R/ that extend the canonical surjection on O* and send 0 to 0,,. Moreover, the
system of the ac,, should be consistent, i.e. res,,, o ac, = ac,. The function valg, is
interpreted as the function induced by val on R,, \ {0} and sending 0,, to co. The function
SR is defined by sg ,,(val(z)) = res,(x)ac, ()~ and finally, the function tgr , ,, is defined
by tr m.n(res,(z)) = ac,, () when val(z) < val(n) —val(m) and 0,,, otherwise (this is well-
defined).

It should be noted that any valued field that is saturated enough can be endowed with
angular components (cf. [Pasgo, Corollary 1.0]).

Let L2V be the enrichment of L%V U (£ \ {val, res,, ac, : n € N,o}) with symbols val,, :
RV, — I'* for the functions induced by the valuation, symbols i,, : R,, - RV, for the
injection of R, — RV, extended by 0 outside R, symbols resgy ,, : RV,, - R,, for the
canonical projection, s, : ' — RV, for a coherent system of sections of val,, compatible
with the 1v,,,, and symbols t,, : RV, - R,, interpreted as t,,(z) = i,'(zs,(val,(z))™").
Let T%; be the LBV -theory of characteristic zero valued fields and T% the £*-theory of
characteristic zero valued fields.

Let £*° be an RV -enrichment (with potentially new sorts Xgy) of a K-enrichment (with
potentially new sorts Yk) of L&Y and T be an £3°-theory extending L8V, We define £
to be the language containing:
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(D) L%0 Lk n,
(ii) The new sorts Yry;

(iii) For each new function symbol f : [T .S; - RV, two functions symbols fgr : [17; —
R, and fr : [1T; —» ' where T; = R,,, x I'” whenever S; = RV,, and T; = S,
otherwise;

(iv) For each new function symbol f : [T S; - S, where S # RV, the same symbol f but
with domain [] 7; as above;

(v) For each new predicate R c [].S;, the same symbol R but as a predicate in [] 7; for T;
as above.

We also define T*“¢ to be the theory containing:
(i) T35

(ii) For all new function symbol f, whenever f or fg and fr (depending on the case)
is applied to an argument — corresponding to an RV,,-variable of f — outside of
R; xT'u{0, 00}, then f has the same value as if f were applied to (0, co) instead;

(iii) For all new symbol f with image RV,,, Im(fr, fr) SR, xT'u (0, 00);

(iv) For all new predicate R, R applied to an argument outside of R}, x I" U {0, 00} is
equivalent to R applied to (0, o0) instead;

(v) The theory T translated in £*““ as explained in the following proposition.

In the following proposition, Str(7") denote the category of substructures of models of 7',
i.e. models of Ty. See Appendix 11.B, for precise definitions.

Proposition 11.1.8:

There exist functors F' : Str(T**°) — Str(7°) and G : Str(T¢) — Str(T**®) that respect
models, cardinality up to 1 and elementary submodels and induce an equivalence of categories
between Str(T*““) and Str(T¢). Moreover G sends RuT'” to RVURUT®.

Proof . Let C' be an L£**“-structure (inside some M = T*¢), we define F'(C') to have the
same underlying sets for all sorts common to £ and £>“ and RV,,(F(C)) = (R, < C >
x(T'*(C) N {o0})) u{(0,,00)}. All the structure on the sorts common to £>° and £L**¢ is
inherited from C. We define rv,,(z) = (ac,(z),val(x)) and rv,, »(x,7) = (vespmn(z),7)-
The (semi-)group structure on RV, is the product (semi-)group structure, 0, is interpreted
as (0, ). We set (x,7)],(y,d) to hold if and only if y < 0 and we define (z,7) +,.n (y,9)
as (respyn(x),7) if v < 0, (resyn(y),d) if § < v and (trmn(z +y),7 + valg,(z + y)) if
0 = v. The functions val, are interpreted as the right projections and the functions t,, as
the left projections. Finally, define i,,(z) = (z,0) on R} and i,,(z) = (0, 00) otherwise,
resrv.n(2,7) = TSR A(7), sn(7) = (1,7) if v # 00 and s,(o0) = (0, ). For each function
f:T1S; = RV, for some n, define u : [T S; — [17; to be such that u;(7) = z; if S; #+ RV,
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and u;(T) = (tm(x;),val,(2;)) if S; = RV,,. Then fF(O)(7) = (f§(u(®)), ff(u(z))). 1f
f : IIS; - S where S # RV, for any n, then define f¥()(7) = f¢(u(7)) and finally
F(C) = R(7) ifand only if C' £ R(u(%)).

If f:Cy - Cyis an L**“-isomorphism, we define F'(f) to be f on all sorts common
to £2““ and £>° and F(f)(z,v) = (f(z), f(7)). ltis easy to check that F'(f) is an £>*-
isomorphism.

Let D be an £>“-structure (inside some N & 7°), define G(D) to be the restriction of D to
all £*““-sorts enriched with val = val,, o rvy, res,, = resgy , orvy,, ac, = t, orv,. Moreover,
for any function f : [].S; — RV, for some n, let v : []7T; - [1S; to be such that v;(7) = x; if
S; + RV, for any m and v;(T) = 1,,,(v;) sm (7 ) where x; = (y;,v:), if S; = RV,,,. Then define
fa (@) = ta(fP(0(2))) and f77 () = val, (f2(5(2)))- If f : T1S; - S where S # RV,
for any n, then f¢(P)(7) = fP(v(7)) and finally G(D) £ R(T) if and only if D £ R(v(T)).
If f: Dy - Dsyisan L>-isomorphism, it is easy to show that the restriction of f to the
L“-sorts is an L£*“-isomorphism.

Now, one can check that for any £>°-formula ¢ () there exists an £**°-formula ¢¢(7)
such that for any C' € Str(T**“) and ¢ € C, C & () if and only if F(C) £ ¢*¢(u(c))
where u is as above (for the sorts corresponding to 7). Similarly, to any £*“°-formula ¢ (7)
we can associate an £>°-formula ¢%¢(T) such that for any D € Str(7T) andd € D, D E
¥(d) if and only if G(D) & %¢(d). One can also check that for all £>-formula ¢, T'
(p*€)>¢(u(T)) <= () and for all £L**-formula 1), T*¢ £ (¢5¢)2%¢ <= 1. The rest
of the proposition follows. =

Remark 11.1.9:

1. The functions tg ,, , are actually not needed, if we Morleyize on R uI'®, as they are
definable using only quantification in the R,,.

2. As with leading terms structure, in equicharacteristic zero, the angular component
structure is a lot simpler. We only need val and ac; (and none of the val,, sg, or

tR,m,n)-

3. In mixed characteristic with finite ramification — i.e. T" has a smallest positive el-
ement 1 and val(p) = k- 1 for some k € N,y — the structure is also simpler. The
functions valg ,, S, and tgr ., can be redefined (without K-quantifiers) knowing
onlysg ,(1). Let L7 be the language (£~ {valgr n,SR.n, tRm.n : M, 1 € NygP)u{c, }
where ¢, will be interpreted as sg ,,(1) — i.e. as res,, (z)ac,(z)! for z with minimal
positive valuation. This is the language in which finitely ramified mixed character-
istic fields with angular components are usually considered — and eliminate field
quantifiers.

To finish this section let us define balls and Swiss cheeses.

Definition 11.1.10 (Balls and Swiss cheeses):

Let (K, v) be avalued field, v € val(K) and a € K. Write f)’v(a) ={rxe K(M):val(z-a) >~}
for the open ball of center a and radius ~, and B, (a) = {x € K(M) : val(z — a) > v} for the
closed ball of center a and radius .
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A Swiss cheese is a set of the form b~ (U1 ..., b;) where b and the b; are open or closed balls.

We allow closed balls to have radius co — i.e. singletons are balls — and we allow open balls
to have radius —co — i.e. K itself is an open ball.

Definition I1L1.11 (Lg4;):

The language L 4;, has a unique sort K equipped with the ring language and a binary predicate
|

In a valued field (K, val), the predicate z|y will denote val(z) < val(y). If C' ¢ K, we will
denote by SC(C), the set of all quantifier free Lg4;,(C')-definable sets in one variable. Note
that all those sets are finite unions of swiss cheeses.

Note that later on, our valued fields may be endowed with more than one valuation. In
that case, we will write BS (a) or SC°(C) to specify that we are considering the valuation

associated to 0. We will also extend the notation for balls by writing B, (@) := {b: val(b -
@) >~} and B,(a) := {b: val(b-a) > v} where val(a) := min;{val(a;)}.

11.2. Coarsening

The goal of this section is to provide the necessary tools for the reduction to the equichar-
acteristic zero case. This is a classical method , which underlies most existing proofs of
K -quantifier elimination for enriched mixed characteristic Henselian fields. We present it
here on its own, as a general transfer principle which we will then be able to invoke directly,
in order, 1 hope, to make the proofs clearer.

Definition 11.2.1 (Coarsening valuations):
Let (K,val) be a valued field, A ¢ T'(K) a convex subgroup and = : T'(K') — T'(K)/A the
canonical projection. Let val® := 7 o val, extended to 0 by val®(0) = co.

Remark 11.2.2:
The valuation val® is a valuation coarser than val. Its valuation ring is 0> := {z € K : 3 ¢

A, § <val(z)} 2 O(K) and its maximal ideal is M := {z € K : val(z) > A} ¢ M(K). Its
residue field R{ is in fact a valued field for the valuation wl” defined by wt (z+IM2) =
val(z) for all € O < M2 and val” (IM2) = co. Then val (R2) = A® = AU {co}. The
valuation ring of R is " = O/M?, its maximal ideal is /9> and its residue field is
R,. Moreover, if rv2 : K - K*/(1+n9*) u {0} =t RV is the canonical projection, rv,,
factorizes through rv2; i.e. there is a function 7, : RV — RV, such that rv,, = 7, orv2.

0" ——(0%)"——K"

lresf Lrv1
~A A A v Valn*> re
o[ (B (R (RV)*
A l,\’lA valA
\ 1 va, A .
i 1 RV; (F/A)
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Before we go on let us explain the link between open balls for the coarsened valuations and
open balls for the original valuation.

Proposition 11.2.3:
Let (K, val) be a valued field and A a convex subgroup of its valuation group. Let S be an O-

Swiss cheese, b an O~-ball, ¢, d € K such that b = B 1A(d)(C) Ifb c S, there exists d’ € K such
that val®(d’) = val®(d) and b ¢ Bval(d,)(c) cS.

Proof . Let (g,) be a cofinal (ordinal indexed) sequence in A. We have b = N, l%’?al(dga)(c).

A
Indeed, valA(dga) = val®(d) and hence b = Biya gy, (€) € Bongay
zeN. B val(dg( y(c), then val((x - ¢)/d) > val(ga) for all a, hence (z - c)/d € M=,
Let &’ be any O-ball, then b = N, l%’f)al(dgu)(c) c V' if and only if there exists oy such that

(¢). Conversely, if

o O o O
B ai(dgy) (€) € 0 and b b = Ny Bygiag, ) (c) N V' = @ if and only if there exists g such that

. O

Bval(dgao)(c) N b’ = @. These statements still hold for Boolean combinations of balls hence
- O

there is some oy such that B4, )(¢) € S. [ |

When ([, val) is a mixed characteristic valued field, the coarsened valuation we are inter-
ested in is the one associated to A, the convex group generated by val(p) as (K, val®*) has

equicharacteristic zero. We will write val,, = val®?, Re, 1= Ry”, O 1= O*? = 0,1 and
Moo 1= IMAP = M,yeny PN As the coarsened field has equicharacteristic zero, all RV.2” are
the same and we will write RV, := K*/(1+ M) u {0} = RVlA”.

Remark 11.2.4:

We can — and we will — identify RV,, (canonically) with a subgroup of 1<£1 RV, and the
canonical projection K - RV, then coincides with h(ill"vn K~ l(i_mRVn, in particular,

RV, = (limrv,)(K). Similarly, @™ can be identified with a subring of lim R;, and R, =

Frac(@Ap) ¢ Frac(limR,) = (imR,)[rve(p)~']. The inclusions are equalities if K is
Rj-saturated. In particular, h(ll rv,, is surjective.

K —""-> RV,
/ l hm I'Vp [
hm RV,

m rvm n
TTm

Hence (K, val,,) is prodefinable — i.e. a prolimit of definable sets — in (K, val) with its
L™ structure.

Let £ be an RV -enrichment of a K-enrichment of with new sorts Yk and Ygy resp..
We will write still K for K u Xk and RV for U,, RV,, u Xry (and rely on the context for it
to make sense). Let T 2 Ty, an L-theory. Let L&Y be a copy of L&Y (as LFV> will only
be used in equicharacteristic zero, we will only need its RV}, which we will denote RV,,

ERV

83



II. Analytic difference fields

to avoid confusion with the original RV;). Let £ be L8> UL| U L]y U {m, 1 1 € Nog}
where 7, is a function symbol RV,, - RV,,. Let T be the theory containing:

« T30, L. the theory of equicharacteristic zero valued fields in £LV=;
« The translation of 7" into L™ by replacing rv,, by 7,, o rv..

Recall that Str(7) is the category of substructures of models of 7. See Appendix I1.B for
precise definitions. The main goal of the following proposition is to show that quantifier
elimination results in equicharacteristic zero can be transferred to mixed characteristic
using result from Appendix 11.B.

Proposition 11.2.5 (Reduction to equicharacteristic zero):
We can define functors € : Str(T') - Str(7) and A€ : Str(T*°) — Str(T") which respect
cardinality up to R and induce an equivalence of categories between Str(T") and Stre= x, (T).

Moreover, € respects X1 -saturated models and 1€ respects models and elementary submodels
and sends RV to RV,, uRV (which are closed).

Proof.Let C<M £ T be L-structures. Then € (C') has underlying sets K(€*(C)) =
K(C), RV&(€7(C)) = im RV, (C) and RV (€*(C)) = RV(C), keeping the same struc-
ture on K and RV, defining rv., to be £1_m rv, and 7, to be the canonical projection RV,, —
RV,. Now, if f : C} - (5 is an L-embedding, let us write f., := l(in f |RVn‘ By def-
inition, we have 7, o foo = flgy © T, and by immediate diagrammatic considerations,
I'Veo © flg = foo 01V and fo is injective. Then, let €*(f) be flx U foo U flgy- As fisan
L-embedding, f|; respects the structure on K, f|y respects the structure on RV and, as
we have already seen, € ( f) respects rv,, and 7,,. Hence €% ( f) is an £L*-embedding.

If M = T is ®;-saturated, it follows from Remark (11.2.4) that €= (M) = T>. Beware though
that € (M) is never Rg-saturated because if it were, we would find z # y € RV, (M;) such
that for all n € N, 7,(z) = 7,(y), contradicting the fact that RV, (M) = li(ERVn(Ml).
Let C be a substructure of M. We will denote i the injection. Then €% (7) is an embedding
of € (C) into € (M) and €™ is indeed a functor into Str(7).

The functor UE™ is defined as the restriction to K u RV. It is clear that if C' is an L-
structure in some model of 7', then Y& o €= (') is trivially isomorphic to C. Now if D
is in Str(7*°) there will be three leading term structures (and hence valuations): the one
associated with the LB -structure of C' (which is definable), whose valuation ring is O,
the one given by rv,, = 7, o rv., (which is definable), whose valuation ring is O.., and the
one given by limrv, (which is only prodefinable), whose valuation ring is O,-1. In general,
we have O ¢ O,1 ¢ O, butif D = €7(C') — or D embeds in some €% (C') — Op-1 = O
and limrv, (D) = rve(D). Hence, if C' embeds in some €% (M) then €% o L€ (C) is
(naturally) isomorphic to C.

Functoriality of all the previous constructions is a (tedious but) easy verification [ ]
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11.3. Analytic structure

11.3. Analytic structure

In [CLi11], Cluckers and Lipshitz study valued fields with analytic structure. Let us recall
some of their results. From now on, A will be a Noetherian ring separated and complete in
its I-adic topology for some ideal /. Let A{X ) be the ring of power series with coefficients in
A whose coefficients I-adically converge to 0. Let us also define A,, , := A(X)[[Y]] where
|X| =mand Y] = nand A = U,,,, Ap.. Note that A is a separated Weierstrass system
over (A, 1) as in [CL11, Example 4.4.(1)]. The main example to keep in mind here will be

W[Fpalg] (X)[[Y']] which is a separated Weierstrass system over (W[I[*Tpalg] ,pW [Fpalg]).

Definition 11.3.1 (Q):
We will extensively use a quotient symbol Q : K> — K that is interpreted as Q(z,y) = x/y,
when y # 0 and Q(x,0) = 0.

Definition 11.3.2 (R):

Let R be a valuation ring of K included in O, let N be its maximal ideal and val® its valuation.
We have M € M c R ¢ O. Also, note that 1 + nM ¢ 1 +nMN ¢ R* and hence the valuation val™
corresponding to R factors through rv,, i.e. there is some function f,, such that val™ = f, orv,.
We will also be using a new predicate x|y on RV, interpreted by f1(z) < f1(y).

Note that O is the coarsening of R associated to the convex subgroup O’JR* of K’/R". Note
also that R is then definable by the (quantifier free) formula, rv;(1)[Frv;(z). In fact the
whole leading term structure associated to R is quantifier free interpretable in L&Y u {|R}.

Definition 11.3.3 (Fields with separated analytic .A-structure):

Let L4 be the language L™V enriched with a symbol for each element in A (we will identify the
elements in A and the corresponding symbols). For each E € A}, let also Ej, : RV,""" — RV,
be a new symbol and L 4o = L4 U{|}, Q} u{E,: E€ A, ,, m,n, k € N}. The theory T 4 of

m,mn’

fields with separated analytic A-structure consists of the following:
(@) Ty
(i) Q is interpreted as in Definition (11.3.1);
(iii) |} comes from a valuation subring R ¢ O with fraction field K;

(iv) Each symbol f € A,,,, is interpreted as a function R™ x N" — R (the symbols will be
interpreted as 0 outside R™ x N");

(v) Theinterpretations i, , : Amn = R* ™" are morphisms of the inductive system of rings
Unm.n Amon to Upn RE™N where the inclusions are the obvious ones.

(vi) to0(1) €O

(Vii) iy, (X;) is the i-th coordinate function and i, ,,(Y;) is the (m + j)-th coordinate func-
tion;

*

(viii) Forevery E € A, ,, E}, is interpreted as the function induced by E on RV, (we will see in
Corollary (11.3.19) that E does induce a well defined function on RVj,).
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II. Analytic difference fields

To specify the characteristic we will write T 400 or T 4 .
Remark 11.3.4:

o These axioms imply a certain number of properties that it seems reasonable to re-
quire. First (iv) implies that every constant in A = A is interpreted in R. By (v)
and (vii) polynomials in A are interpreted as polynomials. And (v) implies that any
ring equality between functions in A,, ,, for some m and n are also true in models
of T 4. Using Weierstrass division (see Proposition (11.3.9)) one can also show that
compositional identities in A are also true in models of T 4.

o We have the analytic structure over a smaller valuation ring in order to be able to
coarsen the valuation while staying in our setting of analytic structures.

From now on, we will write (C) := (C)., , and C(¢) := C(c)
generated by C' and C%¢ (cf. Definition (11.A.12)).

We could be working in a larger context here. What we really need in the proof is not that
Ais a separated Weierstrass system, as in [CL11], but the consequences of this fact, namely:
Henselianity, (uniform) Weierstrass preparation, differentiability of the new function sym-
bols and extension of the analytic structure to algebraic extensions. One could give an ax-
iomatic treatment along those lines, but to simplify the exposition, we restrict to a more
concrete case.

Also note that if A is not countable we may now work with an uncountable language

Let us now describe all the nice properties of models of T 4.

Lo for the £ 4 o-structures

Proposition 11.3.5:
Let M & T 4, then M is Henselian.

Proof . 1f O = R, this is proved exactly as in [LR99, Lemma3.3]. The case R + O follows as
coarsening preserves Henselianity. [ ]

Remark 11.3.6:
As T 4 implies Tyey, by resplendent elimination of quantifiers in Ty, (cf. Theorem (11.1.4)),
any L 40~ (Au{Q})-formula is equivalent modulo T 4 to a K-quantifier free formula.

Let us now (re)prove a well-known result from papers by Cluckers, Lipshitz and Robinson.
There are two main reasons for which I reprove this result. The first reason is that although
the proof 1 give here is very close to the classical Denef-van den Dries proof as explained
in [LRos, Theorem 4.2], the proof there only shows quantifier elimination for algebraically
closed fields with analytic structures over (Z,0). The second reason is to make sure that
O # R does not interfere.

Theorem 11.3.7:

T 4 eliminates K-quantifiers resplendently.

The proof of this theorem will need many definitions and properties that will only be used
here and 1 will introduce them now.
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11.3. Analytic structure

For all m, n € N, we define .J,,, ,, to be the ideal {},, , aW,YMYD € Appiau, €I} of Ay
Most of the time we will only write J and rely on context for the indices. We will also write
X .p, for the tuple X without its n-th component.

Definition 11.3.8 (Regularity):
Let f € Ay g, M < Mo, n < ng. We say that:

() f=3;0;(Xem,Y)X0 is regular in X, of degree d if f is congruent to a monic polynomial
in X, of degree d modulo J + (Y');

(i) f =72, a;(X,Y )Y, is regular in Y, of degree d if f is congruent to Y4 modulo J +
(Yen) + (V).

If we do not want to specify the degree, we will just say that f is regular in X, (resp. Y;,).

Proposition 11.3.9 (Weierstrass division and preparation):
Let f, g € Ay no and suppose f is reqularin X, (resp. inY,,) of degree d, then there exists unique

qeApmnandr e A(X ) [[Y]][X0n] (resp. v € A(X)[[Y 2 ]1[Y2]) of degree strictly lower than
dsuch that g = qf +r.

Moreover, there exists unique P € A(X ..} [Y]][Xn] (resp. P € AAX)[Y 2n]][Yy]) regular in
X (resp. in'Y),) of degree at most d and u € A, ,, such that f = uP.

Proof . See [LRos, Corollary 3.3]. [ ]

We will be ordering multi-indices p of the same length by lexicographic order and we write
ul = i -

Definition 11.3.10 (Preregularity):

Let f =%, fu,y(72,72)71f7: € Ay +mynyiny- We say that f is preregular in (71,71) of
degree (o, vo, d) when:

(l) fuo,u() = 1;
(ii) Forall p,and v such that ||+ |v| > d, f.., € J +(Y3);
(iii) Forall v < vy and forall 1, f,,, € J + (Ys);

(iv) Forall ju > puo, fun, € J +(Y2).

Remark I1.3.11: o o
Note thatif f = ¥, f,(X)Y" is preregular in (X,Y) of degree (110, %, d) then f,, is pre-
regular in X of degree (u,0,d).

Let Ty(X) = (Xo+ X2, X+ X9 Xpo + X2 X,.1) where m = [X|. We

call T; a Weierstrass change of variables. Note that Weierstrass changes of variables are
bijective.

Proposition 11.3.12:
Let f =Y, fur(Xo,Y2)X1Y] € sy ning. Then:
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II. Analytic difference fields

(i) If f is prereqular in (X,Y ) of degree (j19,0,d) then f(T4(X,),Xs,Y) is regular in
Xl,ml—l-

(i) If f is preregular in (X1,Y 1) of degree (0,vy,d) then f(X,Ty(Y1),Y?) is regular in
}/1,111—1-

Proof.Let m = my — 1 and n = n; — 1. First assume f is preregular in (X,Y;) of degree
(10,0, d), then
f= Y fuoXi mod J+(Y2)+ (V7).
p<po,|pl<d

Furthermore, T;(X )" = ([T7" (X1 + X& " )m ) X{7 is a sum of monomials whose high-
est degree monomial only contains the var1able X1.m and has degree Y%y d™ ;. 1t now
suffices to show that this degree is maximal when p = 110, but that is exactly what is shown
in the following claim.

Claim 11.3.13: Let ;o and v be two multi-indices such that ;1 < v and || < d then

i dm—zMZ < i dm—zyZ
1=0 1=0

Proof . Let iy be minimal such that y; < v;. Then for all j < i, ;1; = v;. Moreover,

Zz =i0+1 dm ZN’Z < Zz 20+1 dm l(d 1)
= dmio -1
< dmTio,
hence ‘ ‘ A _ _
ZZO dm—zui < 210_1 dm ’LM + dm—zoﬂio + dm—zo
< Z;OOI d™ iy + dm oy,
S Zz:O dm ZVi
and we have proved our claim. ¢

Let us now suppose that f is preregular in (X,Y ;) of degree (0, vy, d). Then
f= 7?0 + Z fM7V7f7: mod J + (Y5).

vV,
Now,
Tu(Y1)" = H(YM FYETOYG YT mod S+ (12) + (Vi)
and we conclude again by Claim (11.3.13). ]

Proposition 11.3.14 (Bound on the degree of preregularity):
Let

f = Z f,u,l/ (y% VQ)YT?Z € Am1+m2,n1+n2~

v
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There exists d such that for any (pu, v) with |u| + |v| < d, there exists g,,,, € A, +ms n1+ns PTETEG-
ularin (X1,Y1) of degree (y1,v,d) and L 4 0|y -terms u,,, and s, such that for all M & T 4
and every@ e R(M) and b e (M), if f(X1,@, Y 1,b) is not the zero function, then there exists
(o, vo) with |o| + |vo| < d and

f(yla a? 71 ) Z_)) = fuo,I/o (aa E)guo,l/o (yla ﬂﬂo,l/@ (67 5) ) ?1 3 guo,l/o (67 B) ) .

Proof . This follows from the strong Noetherian property [CL11, Theorem 4.2.15 and Re-
mark 4.2.16] as in [LRos, Corollary 3.8]. [

The natural setting to prove this quantifier elimination is to consider a language with three
sorts R, 9tand RV and then transport this elimination to the language £ 4 o we have been
considering all along. But to avoid introducing yet another language we will prove the
result directly in £ 4 ¢ at the cost of a certain heaviness of the proof.

A K-quantifier free £ 4-formula ¢(X,Y, Z, R) will be said to be well-formed if X, Y, Z
are K-variables and R are RV -variables, symbols of functions from A are never applied to
anything but variables and (X, Y, Z, R) implies that A; val™ (X;) > 0, A; val®(Z;) > 0 and
A; val®(Y;) > 0. The (X,Y)-rank of ¢ is the tuple (|X|,[Y]). We order ranks lexicograph-
ically.

Lemma 11.3.15:

Let o(X,Y,Z, R) be a well-formed K-quantifier free L 4-formula. Then there exists a finite
set of well- formed K-quantifier free L 4-formulae %(Xz, Y, Zi, R) of (X;,Y;)-rank strictly
smaller than the (X,Y )-rank of ¢ and L 4 ol -terms w;(Z) such that

T4EIXIYp — \/HYﬁ?i%(yi,?iﬁi(?)aﬁ)-

Proof . Let m := | X| and n := |Y|. As polynomials with variables in R are in fact elements of
Aand Ais closed under composition (for the R-variables), we may assumes that any £ 4| -
term appearing in ¢ is an element of A. Let f;(X,Y, Z) be the L 4| -terms appearing in
©. Splitting ¢ into different cases, we may assume that whenever a variable S appears as
an MN-variable of an f; then ¢ implies that val™(S) > 0 (in the part of the disjunction where
val®(S) < 0 we replace this f; by zero).

If an X; appears as an 0N variable in an f;, then ¢ implies that val™(X;) > 0 and hence we
can safely rename this X; into Y,, and we obtain an equivalent formula of lower rank. If Y;
appears as an R-variable in an f;, we can change this f; so that Y; appears as an J1-variable.
Thus we may assume that the X; only appear as R-variables and the Y; as 1-variables.
Similarly adding new Z; variables, we may assume that each Z; appears only once (and in
the end we can put the old variables back in) and that ¢ implies that val(Z;) > 0 if it is an
M-variable.

Applying Proposition (11.3.14) to each of the fi(X,Y,Z) = ¥, ., JZ2)X'Y", we find d,
i and u; ., (Z) such that t gi v is preregular in (X,Y) of degree (;,v, d) and for every
M =Ty anda e M,if fZ(X Y, @) is not the zero function, then there exists (1, /) such that
|+ v| < dand £i(X,Y,a) = fi (@) gi (X, Y, W, (@)). Splitting the formula into the
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II. Analytic difference fields

different cases, we may assume that for each i, there are x; and v; such that f; (7, Y, a) =
Fispiiws (@) Gi s (X,Y,u;(@)) (in the case where no such y; and ; exist, then we can replace
fi by 0). Let us consider that every argument of a g; ,,, that is not in X or Y is named by
a new variable 7} (and for each of these new T} we add to the formula val®(7}) > 0if T}
is an R-argument of g; ., or val®(T}) > 0 if it is an MN-argument). Let us write g; ,, ,, =
> gm,?y. Note that g;,,, is preregular in X of degree (1,0, d). We can split the formula
some more (and still call it o) so that for each i, one of the the two conditions val”® (gin;) >0
or val®(g;,,) = 0 holds.

If a condition valR( giv.) > 0 occurs, let us add valR(Yn) >0 A gi,, — Y, =0 to the formula.
By Proposition (I1.3.12), after a Weierstrass change of variable on the X, we may assume
that ¢, ,, - Y, is regular in X,,,_;. By Weierstrass division, we can replace every f; by a term
polynomial in X,,_; and by Weierstrass preparation we can replace the equality g; ,, - Y,, = 0
by the equality of a term polynomial in X,,,_; to 0. In the resulting formula, no f € A is
ever applied to a term containing X,,_; and we can apply Remark (11.3.6) to the formula
where every f € A is replaced by a new variable S; to obtain a K-quantifier free formula

If for all 7 we have ValR(gm) =0, we add valR(Xm) > 0A X, IT; iw, — 1 = 0 to the formula.
As every g; . is preregular in X of degree (1,0, d), g = X, I1; gi, — 1 is preregular in X of
degree (11,0, d") for some y and d’. After a Weierstrass change of variables in X, we may
assume that g and each g, ,, are in fact regular in X,,,. Hence by Weierstrass preparation
we may replace g in g = 0 by a term polynomial in X,,. Furthermore, by Remark (11.1.5)
the f; appear as rv,,,( f;) for some n; in the formula. Replacing f; by f,, .9 u,.,, we only
have to show that 1v,,,(g; .,.,,) can be replaced by a term polynomial in Y,,_; (and X,,). Let
hi = Xn(nthi v, )giﬂzi,m = Zy hi,l/Y’/- Then hi,l/i = X, Hz Jiy; = landif v < Vi, hi,l/ =
Xn(ITj4i 9jw;)9iv = 0 mod J + (Z; : Z; is an M-argument). Hence h; is preregular in
(X,Y) of degree (0,v;,d). After a Weierstrass change of variables of the Y, we may assume
that h; is in fact regular in Y,,_;.

Note that rvy, (i) = ™Vn, (X0n) " T1jwi 1V, (Gi, ) 1V, (hs). By Weierstrass preparation
we can replace h; by the product of a unit and p; a polynomial in Y;,_;. As we have included
the trace of units on the RV, in our language, the unit is taken care of and by Weierstrass
division by g, we can replace each coefficients in the p; and each of the g, ,. by a term poly-
nomial in X,,. Note that because we allow quantification on RV, although the language
does not contain the inverse on RV, the inverses can be taken care of by quantifying over
RV. Hence we obtain a formula where X,, and Y,,_; only occur polynomially and we can
proceed as in the previous case to eliminate them. [ ]

Corollary 11.3.16:
Let o(X,Y, Z, R) be a well-formed K-quantifier free L s-formula. Then there exists an L 4,o-
formula (7, R) such that T 4 £ 3X3Y ¢ < .

Proof . This follows from Lemma (11.3.15) and an immediate induction. [ ]
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Proof (Theorem (11.3.7)). Resplendence comes for free (see Proposition (11.A.9)). Hence, it
suffices to show that if (X, Z) is a quantifier free £ 4 o-formula, then there exists a quan-
tifier free £ 4 o-formula v/(Z) such that T4 £ 3X¢ <= 1. First, splitting the formula ¢,
we can assume that for any of its variables S, o implies either val™(S) > 0 or val®(S) <0,
in the second case replacing S by S-! we also have val®(S) > 0. We also add one vari-
able X; (resp. Y;) per R-argument (resp. Dt-argument) of any f € A applied to some non
variable term u and we add the corresponding equality X; = u (resp. Y; = u) and the cor-
responding inequalities val™ (X;) > 0 (resp. val®(Y;) > 0) and quantify existentially over
this variable. Splitting the formula further — whether denominators in occurrences of Q
are zero or not — we can transform ¢ such that it contains no Q. Now 3X ¢ is equivalent
to a disjunction of formulas 3X 3Y¢) where 1) is well-formed and we conclude by applying
Corollary (11.3.16).

This concludes the proof of Theorem (11.3.7). [ ]

Let us now show that functions from A have nice differential properties.

Definition 11.3.17:
Let K be a valued field and f : K™ — K. We say that [ is differentiable at @ € K™ if there exists
de K" and £ and vy € val(K") such that for all 2 € B¢(a),

val(f(a+2) - f(a) —d-g) > 2val(g) + 7.

There is a unique such d and we will denote it d f5. The d; are usually called the derivatives
of f at @. We will denote them 0 f/0x;(a).

Proposition 11.3.18:
Let M £ T gand f € A,, ,, for some m and n. Then for all i < m +n thereis g; € Ay, , such that
foralla e K™+, f is differentiable at @ and 0 f [0x;(a) = g;(a).

Proof .1f @ ¢ R™ x " then f is equal to 0 on By (@) and the statement is trivial. If not, as

f e A(X)[[Y]], it has a (formal) Taylor development which implies differentiability of f in
K(M) ata. m

Corollary 11.3.19:
Let M = Ty, E(T) € Apnand S € K(M)™* . If, for all T € S, val(E(T)) = 0 then, for all
T €S, rv,(E(T)) only depends on res, (T).

In particularif £ € A7, ,, then forall e R™ xN", val®(E(7)) = 0 and hence val(E(Z)) = 0
and thus rv,,(E(7)) is a function of res, (%) which is a function of rv, (7). Outside of
R™xN", rv,,(E(T)) is constant equal to 0 and hence it is also a function of rv,,(Z). Hence,

as announced earlier, £/ does induce a function on RV;, for any &.

Proof (Corollary (11.3.19)). Any element with the same res,, residue as 7 is of the form 7 +nm
for some 77 € M. By Proposition (11.3.18), E(Z + nm) = E(T) + G(Z) - (nm) + H(T,nm)
where G(7) € R € O and val(H (Z,nm)) > 2val(nm) > val(n), hence res, (E(T + nm)) =
res, (E(T)). Asforall z € S, val(E(Z)) = 0, rv,,(E(Z)) = res,(E(z)) and we have the
expected result. [ ]
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Recall that we denote by SC™(C) the set of all quantifier free Lg;, (C)-definable sets (where
x|y is interpreted by val™(z) < val®(y)).

Definition 11.3.20 (Strong unit):
Let M = T4, C = K((C)) and S € SC*(C). We say that an L 40|, (C)-term E : K - K

is a strong unit on S if for any open O-ball b := Biﬂ(d)(c) C S, there exists a, e € C(cd) and
F(t,Z) € Asuch that e # 0 and for all x € b,

val(F((z-c¢)/d,a)) =0

and
E(x)=eF((x-c)/d,a).

It is not quite clear that being a strong unit is a first order property but if M is taken satu-
rated enough — i.e. atleast (|A|+|C|)*-saturated — if F is a strong unit on S then, by com-
pactness, there exist a tuple a(y, 2) of £ 0|, (C)-terms, a finite number of £ 4 o/, (C)-
terms e;(y, z) and F;[t,u] € A such that for all balls b = Eval(d)(c) c S, there is an ¢ such
that for all z € b,

E(x) =ei(c,d)F;((x - c)/d,a(c,d))

and
Fi((x-c¢)/d,a(c,d)) e O".

Hence if E is a strong unit on S there is an £ 4 o(C')-formula that says so. If F and S are
defined using some parameters y and for all y in some definable set Y, £ = Ej is a strong
unit on S = Sy then we can choose this formula uniformly in .

We will say that E is an R-strong unit on S if it verifies all the requirements of a strong
unit, where all references to O are replaced by references to R (and references to R remain
the same).

Proposition 11.3.21:
If E is an R-strong unit on S then it is also a strong unit on S.

Proof .1f b € S is an O-ball, then by Proposition (11.2.3) there exists d and ¢ such that b =
B’S)al(d) (c) c f)’;’;lﬂ(d) (c) € S. But E being a strong unit on S for R, it has the expected form

o R o O
on B,z 4 (c) and hence also on B4 (c). ]

Definition 11.3.22 (Weierstrass preparation for terms):

Let M be an L 4. o-structure, C = K((C)) ¢ M, t : K - Kan L4 o|(C)-term and S €
SCR(C'). We say that t has a Weierstrass preparation on S if there exists an L 4,0l (C)-term
E that is a strong unit on S and a rational function R € C'(X') with no poles in S(K(M)dlg)
such that forall x € S, t(x) = E(x)R(z).

The structure M has a Weierstrass preparation if for any C' = K({C)) and L 4 o| (C)-terms t
and u: R - K we have:

(i) There exists a finite number of S; € SC*(C') that cover R such that t has a Weierstrass
preparation on each of the S;.
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(ii) Ift and uhave a Weierstrass preparation on some open ball b, and for all x € b, val(t(x)) >
val(u(x)), then t + u also has a Weierstrass preparation on b.

Remark 11.3.23:

1. An immediate consequence of Weierstrass preparation is that all £ 4 o[ (M )-terms
in one variable have only finitely many isolated zeroes. Indeed a zero of ¢ is the zero
of one of the R; appearing in its Weierstrass preparation. That zero is isolated if R; is
non-zero or the corresponding S, is discrete, i.e. is a finite set. In particular, let 7 be
the parameters of ¢, then any isolated zero of ¢ is in the algebraic closure (in ACVF) of
K ((m)). As the algebraic closure in ACVF coincides with the field theoretic algebraic
closure, any isolated zero of ¢ is in fact also the zero of a polynomial (with coefficients
in K( (7).

2. As for strong units, for each choice of term ¢ (with parameters ), thereis an £ 4 o ()-
formula that states that (i) holds for ¢; in M and we can choose this formula to be
uniform in y. For each choice of terms ¢, u and formula defining S, there also is a
(uniform) formula saying that (ii) holds for ¢, u and b in M.

Proposition 11.3.24:
Any M = T 4 has Weierstrass preparation.

Proof .1f R = O, then the proposition is shown in [CL11, Theorems.5.3] and (ii) — called
from now on invariance under addition — is clear from the proof given there. The one
difference in the Weierstrass preparation is that in [CL11], there is a finite set of points
algebraic over the parameters where the behavior of the term is unknown. But this finite
set can be replaced by discrete S; and as these exceptional points are common zeroes of
terms v and v such that Q(u, v) is a subterm of ¢, it suffices to replace Q) (u, v) by 0 and apply
the theorem to the new term to obtain the Weierstrass preparation also on the discrete S;.
The fact that the strong units in [CL11] have the proper form on open balls follows, for
example, from the proof of [CL11, Lemma 6.3.12].

If R # O, the proposition follows from the O = R case and Proposition (11.3.21). [ ]

Remark 11.3.25:

I. Let t; be an L4 oy -term with parameters 7. As shown in Remark 11.3.23.2, there is
an L 4 o-formula 6 that states that Weierstrass preparation holds for ¢; in models of
T'. More explicitly, there are finitely many choices of S¥, E¥ and R} (with parameters
u(y) where ware L 4 ¢|-terms) such that for each j there is a k such that the SF, E¥
and RF work for t;. As T 4 eliminates K-quantifiers, for each & there is a K-quantifier
free £ 4 o formula 6, (7) that is true when the k-th choice works for ¢ (and not the
ones before). Hence taking S; ;, to be S¥ A 6, we could suppose that Weierstrass
preparation for terms is uniform, but we will not be using that fact.
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II. Analytic difference fields

2. The converse is also true, i.e. the proof of Proposition (11.5.3) can be adapted to show
that uniform Weierstrass preparation for terms implies K-quantifier elimination.
This is exactly the proof of quantifier elimination given in [CL11], although its au-
thors did not see at the time that they were relying on a more uniform version of
Weierstrass preparation for terms than what they had actually showed. Hence it
would be interesting to know if one could prove uniform Weierstrass preparation
for terms without using K-quantifier elimination to recover their proof (see [CL] for
more on this subject).

Proposition 11.3.26:

Let M & T 4, then the L 4 o-structure of M can be extended (uniquely) to any algebraic extension
of K(M), so that it remains a model of T 4. Moreover, if C<M and a € K(M) is algebraic over
K(C), then K(C{(a)) = K(C)[a].

Proof . The case R = O is proved in [CLR0o6, Theorem 2.18]. The same proof applies when
R+0O. ]

To finish this section, let us show that under certain circumstances analytic terms have a
linear behavior.

Proposition 11.3.27:

Let M = T 4 and suppose that K(M ) is algebraically closed. Lett : K - K be an L 4 o(M)-
term and b be an open ball in M with radius £ + co. Suppose that t has a Weierstrass preparation
on b — hence t is differentiable at any a € b — and rv(dt, ) is constant on b. Also assume that
val(t(z)) is constant or t(x) is polynomial. Then for all a, e € b, rv(t(a) —t(e)) = rv(dt,) -
rv(a—e).

Moreover, if v(t(x)) is constant on b then val(t(a)) < val(dt,) +&.

Proof . 1f val(t(x)) is constant on b, then val(¢(x)) — val(t(a)) > 0 and by invariance under
addition, t(x) — t(a) has a Weierstrass preparation on b. If () is polynomial this is also
clear. Hence there is F,, € A (with other parameters in K(M)), P,, Q, € K(M)[X] such
that for all z € b,

P,(x)
Qa(2)

where val( F,(y)) = 0 for all y € 9t and val(g) = &. If ¢ is constant on b, i.e. P, = 0, then the
proposition follows easily. If not, P, has only finitely many zeroes. Let a; be the zeros of
P, in K(M) — recall that M is assumed algebraically closed — and m; be the multiplicity
of a;. Let ¢; be the zeroes of @), and n; be their multiplicities. Note that every zero of
Q. () is outside b, hence for all j, val(c; — a) < . For all e € b, note that ¢(z) — t(a) is also
differentiable at e with differential d¢, and hence, if e is distinct from all a;, then:

1) t(a) = F(%)
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11.3. Analytic structure

rv (L) = 1v
tle) -t(a)) t(e) - t(a

0(F.(%52)) 10z:(e) a(p,), d(Qa>e)

(7“) TPe) " Qule)

= Iv

d(Fa)e;a N

For any y € 9, val(d(F,),) > 0 = val(F,(y)), hence val(d(F.),/(9Fu(y))) > —val(g) >
—val(e —a). We also have that for all j, val(1/(e —¢;)) = —val(e - ¢;) > —val(e — a). Finally,
suppose that there is a unique a;, such that val(e - a;,) is maximal, then, for all i # i,
val(1/(e-a;)) > val(1/(e— aZO)) and hence rv(m;, )rv(e—a;,)~! = rv(dt,)rv(t(e) —t(a)),
ie. rv(t(e) - t(a)) = rv(dtem;' (e - a;,)).

Ast(e) # t(a), this 1mmed1ately implies that dt, # 0. Let us now show that if a; € bit cannot
be a multiple zero.

o, = d(Fa((2 = a)/¢)[Qa(2)) g, Falai) + Fy(ai) Fa((ai = a)[¢)/Qa(ai) = 0

which is absurd. Hence for all a; € b, m; = 1 and if we could show that there is a unique
a; € b — namely a itself — we would be done.

Suppose there are more that one q; in b and let v := min{val(a; — a;) : a;,a; € bAi # j}. We
may assume val(ag—aq) = 7. Let us also assume the a; have been numbered so that there is
ig such that for all 7 < ig, val(a; — ag) =y and for all ¢ > ig, val(a; — ag) < 7. In particular, for
alli # j <ip, val(a; —a;) = . For each i < iy, let e; be such that val(e; —a;) > . Then we can
apply the previous computation to e; and we get that rv(¢(e;) — t(a)) = rv(dt,)rv(e; — a;).
But

rv(t(e;) —t(a)) =rv(F, ( ~ Lao+l ))rv(p) 1_[(1r\/((5Z —ag))™rv(q)” 1_[(1rv(eZ —-¢j))

where p and ¢ are the dominant coefficients of respectively P, and ), and hence

rv(dm:w(Fa(%) () [Trv(er =)y v (@) TT0v e - )™

k+i

Astv(Fo((e; = Tag+1)/9)), rv(e; — ay) for all k > iy and rv(e; - ¢;) do not depend on ¢, and
for all k <ig, k # 1, rv(e; — ax) = rv(a; — ay), we obtain that for all i, j < i¢:

[T rv(ai—ar) = ] rv(a; - ax).

i#k<io Jj*k<io

Replacing a; by (a; — ag)/g where val(g) = 7, we obtain the same equalities but we may
assume that for all i < ip, a; € O and for all ¢ # j, a; — a; € O". The equations can now
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II. Analytic difference fields

be rewritten as [],., res(a; — ar) = [1;.x(res(a;) — res(ax)) = ¢ for some ¢ € R(M). Let
P = [1,(X —res(ay)) then our equations state that P’(res(a;)) — ¢ = 0 for all i < 4y. But
P’ - cis a degree iy polynomial, it cannot have i, + 1 roots.

Finally, if val(¢()) is constant on b, then, for all @ and e € b, val(t(a)) < val(t(a) - t(e)) =
val(dt,) + val(a — e). As this holds for any e, we must have val(¢(a)) < val(dt,) + C. [ ]

Remark 11.3.28:

The conclusion of Proposition (11.3.27) seems very close to the Jacobian property (e.g. [CL11,
Definition 6.3.5]). In fact, this lemmas is very similar (both in its hypothesis and its conclu-
sion) to [CL11, Lemma 6.3.9].

11.4. o-Henselian fields

Definition 11.4.1 (Analytic field with an automorphism):

Let us suppose that each A,, ,, is given with an automorphism of the inductive system t ~ 17 :
A n = Ay n. An analytic field M with an automorphism is a model of T 4 with a distinguished
L™ u {|R}-automorphism o such that for symbols t € A,,, and T € K(M)™", ¢(t(Z)) =
t7(o(T)).

Let L4g,:=LagU{o}u{o,:neN}. An analytic field M with an automorphism 7 can
be made into an £ 4 ¢ ,-structure by interpreting o as 7|, and 0, as 7|gy, . Note that o also
induces a ring automorphism on every R,, and an ordered group morphism on I". We will
write T 4, for the £ 4 ¢ ,-theory of analytic fields with an automorphism. We will most
often write o instead of ¢,, and ot as there should not be any confusion.

If K is a field with an automorphism o, we will write Fix(K) := {x € K : 0(x) = x} for its
fixed field. For all x € K, we will write 7(z) for the tuple x,0(x),...,0"(z) where the n
should be explicit from the context.

Remark 11.4.2:
In fact o induces an action on all £ 4 ¢y -terms and we have T4, £ o(¢(Z)) = t°(0(Z)).
It follows immediately that for any £ 4 ¢ ,|,-term ¢ there is an £ 4 ol -term u such that

Tas EHT) =u(a(T)).
Definition 11.4.3 (Linearly closed difference field):

A difference field (K, o) is called linearly closed if every equation of the form Y.\ ya;,c*(z) = b,
where a,, = 0, has a solution.

Definition 11.4.4 (Linear approximation): B
Let K be a valued field with an automorphism o, f : K™ — K" a (partial) function and d € K™.

(i) Let b be a tuple of open balls in M. We say that d linearly approximates f on b if for all a
and ¢ € b we have:

val(f(¢) - f(a)-d-(c-a)) > miin{val(di) +val(e; —a;)}.
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11.4. o-Henselian fields

(ii) Let b an open ball of M. We say that d linearly approximates f at prolongations on b if
for all a, c € b we have:

val(f(7(c)) - f(@(a)) —-d-F(c-a)) > miin{val(di) +val(o'(c-a))}.

Remark I1.4.5:

I. Let M £ T 4,. Suppose that ¢ is an isometry, i.e. op =id. Let t be an £ 4| (O(M))-
term and a € O(M ), we can show that dtz linearly approximates ¢ on B, (a) where

v = min{val(df/dx;(a))}.

2. We allow a slight abuse of notation by saying that terms constant on a ball is lin-
early approximated (at prolongations) by the zero tuple, even though the required
inequality does not hold as oo # co.

Let us first show that it suffices to show linear approximation variable by variable to obtain
linear approximation for the whole function. We will write (a.;, z;) for the tuple @ where
the i-th component is replaced by x; (with a slight abuse of notations as the x; does not
appear in the right place) and @ for the tuple @ where the j-th components for j > i are
replaced by zeroes.

Proposition 11.4.6: 3 B B
Let (K, val) be a valued field, f : K™ -~ K, d € K™ and b a tuple of balls. If for all a € b and
j <, d; linearly approximates f(a.;,z;) on bj, then d linearly approximates f on b.

Proof.Let @ and € € b and & = € — @. Then, we have

val(f(a+2) - f(a) - d-%) val(}; f(6+5$j) — f(a+§§j*1) - dje;)
min;{f(@+g¥) - f(@a+z97") - dje;}
min;{val(d;) + val(e;)}.

And that concludes the proof. [ ]

AR\

Although linear approximation (at prolongations) looks like differentiability, one must be
aware that linear approximations are not uniquely determined, because, among other rea-
sons, we are only looking at tuples that are prolongations but also because the error term
is only linear. But when o is an isometry, we can recover some uniqueness, and give an
alternative definition (perhaps of a more geometric flavor) of linear approximation at pro-
longations.

Definition 11.4.7 (R, ,):
Let (K, val) be a valued field and ~y € val(K). We define R, ., := B,(0)/B,(0) and let res, .,

denote the canonical projection B.,(0) - R, ,. Note that R, ., can be identified (canonically)
with val, ' (7) u {0} ¢ RV,.

Proposition 11.4.8:

Let (K, val) be a valued field with an isometry o and a linearly closed residue field. Let f : K™ —
K, d be a linear approximation of f at prolongations on some open ball b with radius £, ¢ € K™,
§ = val(d) and 1 := val(€). The following are equivalent:
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II. Analytic difference fields

(i) eis a linear approximation of f at prolongations on b;
(ii) val(d -€) > min{d,n};

(iii) 1 = 0 and res; 5(d) = res; 5(€).

Proof .

(i)=(ii) Suppose d # €. Let ¢ be such that val(¢) > ¢ and let g € K be such that val(g) =
val(d - €). Then P(7(z)) = ¥,(d; — ;)0 (e)gLe to(x) is a linear difference poly-
nomial with a non zero residue. As K is residually linearly closed, the residue of P
cannot always be zero and hence there exists ¢ € 0" such that val(P(c(c))) =0, i.e.
val((d - €)-a(ec)) = val(g) + val(¢). But then, for all a € b:

val(g) + val(e)
= val((d-¢)-a(ec))
= val(f(a(a+ec)) - f(o(a)) —2-a(eb))
-f(@(a+ec))+ f(o(a))+d-7(eb)
> val(e) + min{d,n}

i.e. val(d —€) > min{é, n}.

(ii)=(iii) First, suppose that ¢ < n, then if val(d;) is minimal, val(d;) = § < n < val(e;) and
hence val(d; - e;) = val(d;) = 6 = min{d,n} contradicting our previous inequality.
Hence we must have, by symmetry, § = 7. Now inequality (ii) can be rewritten val(d -
) > ¢ which exactly means that res; 5(d) = res; 5(€).

(iii)=(i) For all ¢ such that val(¢) > &, as val(d - €) > , we have:

val(f(a(a+¢)) - f(T(a)) -2-0(c)) _
val(f(a(a+¢)) - f(a(a)) -d-7(e) + (d-€) -T(¢))
d +val(e)

n+val(e).

v

This concludes the proof. ]

Remark 11.4.9:

1. In the isometry case, linear approximations describe the trace of a given function on
RYV,. More precisely, a function f is linearly approximated at prolongations on some
open ball b with radius ¢ if and only if there exists ¢ € val(K) and d € R ;(K) such
that for all v > € tand a € b he function res; ,(¢) = resy ,1s5(f(T(a+¢)) - f(T(a))) :
R, ., = R 4.5 is well defined and coincides with the function = c_l-E(x) (where the
sum is given by + ;).

08



11.4. o-Henselian fields

2. If we are working in a valued field with a linearly closed residue field, it follows from
Proposition (11.4.8), that ¢ and d from (i) are actually uniquely defined.

Definition 11.4.10 (0-Henselianity): B
Let M= Tag thea Lagl(M), de K(M),aeK(M)and§ e'(M). Say that (t,a,d,§) is
in o-Hensel configuration if d linearly approximates f at prolongations on Bg(a) and:

val(t(a(a))) > miin{val(di) +0'(€)}.

We say that M is o-Henselian if for all (t,a,d,¢) in o-Hensel configuration, there exists c €
K(M) such that t(c(c)) = 0 and val(c — a) > max;{val(c~(t(c(a))d;'))}.

Remark I1.4.11:

By Remark 11.4.5.1, when o is an isometry, this form of the o-Hensel lemma is equivalent to
classical forms for difference polynomials — i.e without any analytic structure — as stated
in [Scaoo; Scao3; AD10] for example. In particular, it implies Hensel’s lemma (for polyno-
mials).

Definition 11.4.12 (Pseudo-convergence):
Let M =T 4.

(i) Asequence (4 )aep of (distinct) points in K(M') indexed by an ordinal is said to be pseudo-
convergent if for all o, 7y, 0 € 3 such that o < y < § we have val(z,, — x5) < val(z, — 5);

(i) We say that a € K(M) is a pseudo-limit of the pseudo-convergent sequence (z,) — and
we write x, ~ a — if forall o <y < 5, val(z, — a) < val(z., — a);

(iii) A pseudo-convergent sequence of elements of C' ¢ K (M) is said to be maximal if it has
no pseudo-limit in C;

(iv) We say that a sequence () of tuples pseudo-solves an L 4 oy (M )-term tif t = 0 or for
a > 0 — ie. for ain a final segment — t(z,,) ~ 0.

(v) We say that a sequence () o-pseudo-solves an L 4 g|y (M )-term t if (7 (x,)) pseudo-
solves t.

(vi) We say that M is maximally complete if any pseudo-convergent sequence in M (indexed
by a limit ordinal) has a pseudo-limit in M;

(vii) We say M is o-algebraically maximally complete if any pseudo-sequence (x,,) from M
(indexed by a limit ordinal) o-pseudo-solving an L 4 ol (M)-term t # 0 has a pseudo-
limitin M.

Remark 11.4.13:
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I. Let (z,) be a pseudo-convergent sequence, then forall o« < 3, val(z, —x5) = val(z, —
Tas1) =t Ya- They, formastrictly increasing sequence. If z,, ~ a thenval(a—z,) = 7,
and if b is such that for all 7, val(b - a) > -, then we also have x,, ~ b.

2. As, in any valued field, balls with a non infinite radius always have more than one
point, if (z,) is maximal pseudo-convergent sequence then either ~, is cofinal in
val(K") and (x,) is indexed by the successor of a limit ordinal or (z,,) is indexed by
a limit ordinal.

Proposition 11.4.14:
If M is o-algebraically maximally complete and R, (M) is linearly closed then M is o-Henselian.
Proof . First an easy claim:

Claim 11.4.15: Let (¢, a, d, &) be in o-Hensel configuration, then

111lax{val(o‘i(t(5(a) Ya; )} > €

Proof. As (t,a, d, £) is in o-Hensel configuration, there exists an i, such that val(t(7(a))) >
val(dy,) + 0™ (&) and hence val(o (t(7(a))d;')) = o7 (val(t(5(a))) - val(di,)) >&. ¢

And now, two lemmas about finding better approximations to zeros of terms.

Lemma 11.4.16:

Let (t,a,d, ¢) be in o-Hensel configuration such that t(5(a)) # 0. Then there exists c such that
val(c - a) = max;{val(o~(t(7(a))d;"))}, val(t(5(c))) > val(t(7(a))) and (t,c,d, €) is also
in o-Hensel configuration.

Proof . Choose any ¢ € K(M) with val(e) = max;{val(c~(t(c(a))d;'))}. By Claim (11.4.15),
val(e) > €. Forall z € O, let R(a, ¢, x) == t(5(a) +7(ex)) - t(7(a)) - d-(cx) and

t(a(a) +a(ex)) 1. di(E(a))ai(s)Ui o)+ R(a,e,x)
G@) T i@ W G

u(x) :=

For all 4,

Mva»+va a)) —val(d;) —val(t(a)) =
Val(t(ﬁ(a)))> 1(d;) 1(t(a)) 1(d;) 1(t(a)) =0

and for any iy such that val(e) = val(o~(t(7(a))d;")) it is an equality. As d linearly ap-
proximates ¢ at prolongations on loig(a), we also have

val(R(a,e,x)) > min{val(c’(¢)) + val(d;)} > val(t(7(a)))
and res; (u(z)) = 0is a non trivial linear equation in the residue field. As R, (M) is linearly

closed, this equation has a solution res; (¢). Note that we must have res; (e) # 0.
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Let ¢ = a +ee. Itis clear that val(c - a) = val(e) = max;{val(c~"(¢(g(a))d;'))} > { and that

val(t(a(c))) = val(t(c(a))u(e)) > val(t(a(a))) > min;{val(d;) + 0;(&)}. ¢

Lemma I1.4.17:

Let (z,,) be a pseudo-convergent sequence (indexed by a limit ordinal). Assume that for all «,
(t,74,d,€) is in o-Hensel configuration, val(z.1 — o) > max;{val(c~(t(7(z))d;))} and
forall B > o, val(t(5(z5))) > val(t(5(xa))). If ¢ is such that x, ~ ¢, then (t,c,d, &) is in
o-Hensel configuration and for all o, val(t(a(c))) > val(t(c(x4)))-

Proof . First of all, as (,x,d,£) is in o-Hensel configuration, d continuously linearly ap-
proximates ¢ at prolongations on B¢ (). By Claim (11.4.15), val(c — o) = val(z; — o) > &.
Moreover, let R(z,c) :=t(c(c)) —t(c(z)) —d-7(c—x). Then for all a,

val(t(7(c))) = val(t(a(xa)) +d(a(xa)) -T(c—4) + R(zq,c))
> ming{val(t(c(x,))),val(d;) + val(c?(c - x4))}
> val(t(7(za)))-
Finally, as val(t(7(c))) > val(t(a(z0))) > ming{val(d;) + 0i(€)}, (t,c,d,€) is also in o-
Hensel configuration. ¢

Let (t,a,d, &) bein o-Hensel configuration. If ¢ = 0, we are done, if not let () nes be a max-
imal sequence (with respect to the length) such that z = a and for all a, (¢, 24, d, ) is in
o-Hensel configuration, val(z,.1 — ©4) > max;{val(c7(t(c(z,))d; 1))} and t(7(x,)) ~ 0.
If v is a limit ordinal, as M is o-algebraically maximally complete, and ¢ # 0, (x,) has a
pseudo-limit z3. By Lemma (11.4.17), the sequence (,)qes+1 Still meets the same require-
ments, contradicting the maximality of (2, )aes. It follows that § = v + 1. If t(5(x,)) # 0,
then applying Lemma (11.4.16), to (¢, z.,), we obtain an element x4 such that (x,)qep+1 still
meets the same requirements, contradiction the maximality of (x,)4es Once again. Hence
we must have that ¢(¢(z,)) = 0 and ¢ = z, is a solution to the o-Hensel configuration
(t,a,d,§). [ ]

Definition 11.4.18 (T 4 ;_fien):
Let T 4 5—pien be the L 4 o »-theory of analytic fields with an automorphism that are o-Henselian
and have a non-trivial valuation group. To specify the characteristic we will write T 4 ,_pien 0,0

or TA,U—Hen,O,p-

Proposition 11.4.19:
Let A=Uxy W[I[Tpalg] (X)[[Y]] and let W, be the L 4 o-structure with base set VV(IET;ng ), the
obvious valued field structure and analytic structure and taking o to be the lifting to W(fpalg)

. . ——al
of the Frobenius automorphism on Fpa ¢ Then W, & T4 o—Hen,0,p-

Proof . 1t is clear that W, = T 4. As W(Ealg) is complete with a discrete valuation it is
maximally complete and o-Henselianity follows from Proposition (11.4.14). [ ]

In the definition of T 4 ,_nen, We have not required the residue field to be linearly closed,
since it comes for free:
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Proposition 11.4.20:
Let M & T 4 o_t1en, then K(M) is linearly closed.

Proof.Let P(x) = ¥, a;x' = c be a non zero linear equation. Let ¢ € K(M) be such that
val(e) < val(c)-val(ag). Then P(ex) = ¥ a;0'(e)o’(z) and min;{val(a;c?(¢))} < val(ag) +
val(e) < val(c). Finding a solution to P(ex) = c being the same as finding one for P(z) = ¢,
we may assume that min;{val(a;)} < ¢ = val(P(0) — ¢). But, as P is linear, @ linearly
approximates P at prolongations on 9t and (P - ¢, 0, @, 0) is in c-Hensel configuration. As
M is o-Henselian, there exists e € K(M) such that P(e) = c. [

To conclude this section, let us show that T 4 ,_p., behaves well with respect to coarsen-
ing. Let £ be an RV -enrichment of £ 4 ¢, and 7" be an £-theory containing T 4 ,—ten,0,
Morleyized on RV. By Sectionll.2 we can find an RV,,-enrichment £* of £~ — the
in £%V> is there to recall that the leading term structure is given by RV,, and not the
RV, although, to add to the general confusion, the RV, are indeed present in the en-
richment — an £%-theory T7° 2 T3, and two functors €7° : Str(T) — Str(77°) and
UET : Str(T7°) — Str(T'). For any C' in Str(T") we enrich €7°(C') by defining:

e - and 1, to be the multiplicative group structure of RV,;
e 0o tobe (0)nen.os
« z|_y to hold if for some n, m;(x)|,rvi(p™)m1 (y) holds;

o T+oo.00Y tobe (T () +mnm Tmn (V) )men,, if there exists n € N such that m, () +,, 1
7 (y) # 01 and O, otherwise;

o z|Ry to hold if 7 (x)[RFm (y) holds;

e FEo(z) tobe (Ex(x))ren,, for all E in some A7

m,n’
LS to be (Jn(x))WENM);

and we obtain a new functor &3° : Str(T") — Str(73°) where T5° := T u'T% ;. One can
check that we still have an equivalence of categories induced by €5° and $¢7° and that €°
also respects cardinality up to X, and ®;-saturated models. Finally, by Corollary (11.B.4),
as T is Motleyized on RV, we obtain functors €5 : Str(T) — Str(T3%V="FV)Mery and
U : Str(TIV="RVITMory Gt (T)). Note that in this case, because we only enrich by
predicates, the full subcategory § of Str(7") is not actually needed.

Let us now show that for all M & T', €5 (M) & T3 ;_en0,0-

Proposition 11.4.21:

Lete M Tandt: K" —Kbean L4 0|y (M)-term, d e K(M) and b an open O -ball. Then
if, in €5° (M), d linearly approximates t at prolongations on b, then for any open O-ball b’ < b,
d also linearly approximates t at prolongations on b’ in M.

Proof . Forallaand e € b’ € b, we have val, (£((a))-t(7(e))~d-7(a—e)) > min;{vals (d;)+
vale (0?(a—e))}. Letig be such that vals, (d;, ) + vale (0% (a —€)) is minimal, then we have
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val(t(7(a))-t(z(e))~d-z(a—e)) > val(dy,)+val(cio(a—e)) > min;{val(d;)+val(ci(a—e))}.
|

Proposition 11.4.22:
Let M & T, then € (M) is o-Henselian (for the valuation val,,).

Proof . Let (t,a,d, &) bein o-Hensel configuration in €5° (M). Let iy be such that vale, (d;, ) +
o (&) is minimal. As (¢,a,d, &) be in o-Hensel configuration, val(t(a(a))) > val.(d;,) +
o (). Letr = o7 (t(a(a))d;'p~"). Then

val(t(a(a))) > val(dy,) + val(a™(r)) > miin{val(di) +val(a'(r))}.

Moreover,
vale, (00(1)) = valo (t(a)) — vale (di,) > 0 (€),

i.e. val,(r) > &£ It follows that la)’fzﬂ(T)(a) c B?w(a) and hence, by Proposition (11.4.21),

d linearly approximates ¢ at prolongations on B y(a) and (%, a, d,val(r)) is in o-Hensel
configuration.
It follows that we can find ¢ € K(M) such that val(c - a) > max;{val(c=(t(5(a))d;*))}

and t(o(c)) = 0. But then we have that for all i, vale (¢ — a) > vale (07 (¢(T(a))d;')). m

val(r

(RVo URV)—-Mor
T2

It follows from those two propositions that we can further enrich so that

it is an RV -enrichment of T3 , g, ¢,o- Hence we have proved:

Proposition 11.4.23:

Let L be an RV -enrichment of L 4.0, and ' be an L-theory containing T 4 ;_tien,0,, Morley-
ized on RV. There exists an RV,-enrichment L™ of L7 o , — with new sorts RV = U,, RV,, —
and an L7 -theory T* 2 T% , yen 00 Morleyized on RV, URV, and functors €* : Str(T") —
Str(7°°) and €™ : Str(7°°) — Str(T") that respect cardinality up to R, and induce an equiva-
lence of categories between Str(1") and Stre= (| £ s1)+ (1'*°) and such that $& respects models
and elementary submodels and sends RV,, URV to RV and €% respects (| A|*1)*-saturated
models.

Similarly, we can prove the existence of these functors in the analytic and in the algebraic
setting, and these functors are actually induced by those in the analytic difference case.

Proposition 11.4.24:
Let L., be any RV -extension of L 4 ¢ contained in L and L, be any RV -extension of LRV
contained in L,,. Define T,, := T| Lo and Ty, = T| Lo’ Assume that both T,, and T, are
Morleyized on RV.
(i) There exists an RV,-enrichment L, of L7 o and an L -theory T3 2 T, o Morleyized
on RV, URV, and functors €, : Str(T,,) — Str(72) and €, - Str(Ty,) = Str(Thn)
with the same properties as in Proposition (11.4.23).

Moreover € (- |, ) = €7 ()| and similarly for UTZ;.
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(i) There exists an RV.,-enrichment L, of LB and an Lorg-theory T3 2 Ty, 0o Mor-
leyized on RV, URV, and functors &3, : Str(To,) — Str(T) and UET, < Str(T3) —
Str(T,y ) with the same properties as in Proposition (11.4.23).

)= C€L( ) e = €7 ()| o= and similarly for UCT,.

oo
Lal

Moreover €3y (- | Lo

11.5. Reduction to the algebraic case

In the following section, let £, be an RV -enrichment of £ 4 ¢ and let T},,, be an £,,,-theory
containing T 4, Morleyized on RV. We define £, = L., N(A U {Q}) — it is an RV-
enrichment of L2V — and Tag = Tanl Lotg” As previously, if there are new sorts Ygy, we
write RV for RV u Yry.

Remark I1.5.1:

Let My and My E T,,, C; € M; and f : C; — Cs an L,,-isomorphism. Then f extends
uniquely to (C1). As L., contains Q, K({C})) is a field. Hence any partial £,,-isomorphism
with domain C has a unique extension to Frac(K(C)).

Although it is well-known, the algebraic case (i.e. in £,,) is a bit more complicated because
we do not have Q in L.

Proposition 11.5.2:
Let My and M, & T, be two Ly,-structures, C; € M; and f : C; - Cyan LR -isomorphism.
Ifrv(Frac(K(CY))) € RV(C)), then f has a unique extension to Frac(K(Ch)).

Proof . Let f’|) be the unique extension of f|y to Frac(K(Cy)). Itis a ring morphism. By
Lemma (ILA.13), it suffices to show that f/|, U f|gy respects therv,,. Asrv(Frac(K(C1))) ¢
RV (C), flgy commutes with the inverse on any rv,, and hence

v (f'(a/b)) = 1vi(f(a) f(0)71) = f(rva(a)) f(xva(b) ") = f(rva(a/b)).
This concludes the proof. ]

In the following proposition we will be working in equicharacteristic zero, hence, to avoid
needlessly cluttered notations, we will write R, res, RV and rv for Ry, res;, RV; and rv;.

Proposition 11.5.3 (Reduction to the algebraic case):

Suppose Ty, 2 T 400. Let My and My = Ty, f 2 My - M, a partial L,,-isomorphism with
domain C1<M, and ay € M. If f can be extended to an L,z-isomorphism f’ whose domain
contains ay, then f can be extended to an L., -isomorphism whose domain contains a;.

Proof . First, because Tiglgyy = Tanlgy» Tulg is also Morleyized on RV. By Lemma (1LA.11),
we can extend f’ on RV and we may assume that RV (C;(a;)) € RV (C}). Moreover, as f/
respects |, f’ respects R and by Remark (1L.5.1) and Proposition (11.5.2), replacing, if need
be, a; by its inverse, we can assume that a; € R.

Let ay = f'(a;) and let us define f” on K({C})a;) by f"(t(a1)) = tf(ay) — clearly co-
inciding with f’ on K(C})[a;]. This is well defined. Indeed, it suffices to check that if
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t(ay) = 0 then t/(ay) = 0. But, by Weierstrass preparation, there exists S € SC™(C), an
L 4,0l (Ch) term E (a strong unit on S) and P, @ € K(C,)[X] such that () does not have

any zero in S(K(Ch)" %), a1 € S and forall z € S, t(z) = E(x)P(2)/Q(x). As t(a) = 0 and
E(x) # 0, we must have P(a;) = 0. As f’ is a partial £,),-isomorphism, we have a, € S/
and P/ (ay) = 0. As f is an L,,-isomorphism, by Theorem (1L.3.7) it is in fact an elementary
partial £,,-isomorphism and we also have that for all x € S/, t/(x) = Ef (z)P/(2)/Qf(x)
and E/ is a strong unit on S/. Hence, t/(as) = E/(a2) P/ (a2)/Qf (az) = 0.

Let us show that f” U f|gy is an L4 o-isomorphism. By Lemma (IL.A.13), it suffices to
show that for all £ 4 ol (C1)-terms t, 1v(t/(az)) = f(rv(t(a1))). By Remark (IL15), S is
defined by a formula of the form (rv(R(z))) where 0 is an Lajs|g, -formula and the R;
are polynomials in K(C)[X]. By [CLo7, proof of Theorem 7.5], there exists an L, (C})-
definable function g : K — []; RV, such that every fiber is an open O-ball and for any
polynomial 7" equal to P, @) or one of the R;, rv(7T'(x)) is constant on any fiber of g. It
follows immediately that every fiber of g is either in S or in its complement. Let & =
g(ay) and 8 = rv(t(ay)). As E is a strong unit, on g~'(a) = lgp’val(d)(c) it is of the form
eF((z-c)/d) withval(F((x - c¢)/d)) = 0. Asres((x - ¢)/d) = 0 on all of g~ (@), by Corol-
lary (11.3.19), rv(E(z)) is constant on g~ (@), and hence rv(¢(x)) is constant on g~!(@). As
f is a partial elementary £,,-isomorphism and @ and 3 € RV (C), the £ 4 o(C})-formula
Vz,g(x) = @ = rv(t(x)) = [ is preserved by f. And as f’ is a partial elementary L,,-
isomorphism (by Theorem (11.1.4)) and g is £,,(C})-definable, g/ (a2) = f(@) and we have
that rv(t/ (a2)) = F(8) = F(rv(t(ar)). .

Corollary 11.5.4:
The previous proposition holds without any assumption on residue characteristic.

Proof . Recall Proposition (11.4.24) and assume M, and M, have mixed characteristic and f
and f’ are as in Proposition (11.5.3).
Then €}, (f') is an extension of €, (f) whose domain contains a;. Applying Proposi-

alg
tion (IL5.3), we obtain f” an £, -isomorphism extending €., (f) whose domain contains
a; and we conclude by applying U, . [ ]
Corollary 11.5.5:

Let p(x,y,T) be any L,,-formula where = and y are K-variables and 7 are RV u ¥ gy -variables,
then there exists a K-quantifier free L,,-formula 1)(x,Z,7) and L,y |«-terms u(y) such that

Tan = gO(.Z’,@,F) — ¢($7ﬂ(y)7F)

Proof . This follows from the previous corollary by a (classic) compactness argument. For
the sake of completeness (and also because the uniformization part of that argument may
be less usual), let us state it. Consider the set of formulae

Tan U {(10(1'17@7 F)) _‘90(1’2’@’ F)}U
{(z1,0(y),7) <= Y(x2,u(y),T):1pisa Ly, -formula and the ware £ 4 g -terms}.

By Corollary (11.5.4), this set of formulas cannot be consistent. Hence there is a finite set
of L,,-formulae (v;)o<i<,, — that we can take K-quantifier free by Theorem (1L.1.4) — and
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L 4,0y -terms ; such that:
Tan = Vgxle(Awl(xlvﬂl(y)vF) — wz(l??al(g)af)) = (¢($17E7F) — 90(x2vva))

Forall € € 27, let 0. := Ay (x,u; (), 7)) where ¢! =+ and ¢° = —). For fixed 7 and 7, the
0.(x,y,y) form a partition of K compatible with p(z,7,7). For all n € 22", let x,,(y, ) be
a K-quantifier free £,,,-formula equivalent to A. (32 0-(z,7,7) A p(z,7,7))"). Note that
for any choice of j and 7 there is exactly one 7 such that y, (7, 7) holds. It is now quite easy
to show that p(2,7,7) <= V,(xy(¥.7) A Vee, 0=(2,7,7)). ]

Remark 11.5.6:

1. This corollary is a stronger version of [DHMgg, Theorem B]. Not only is it resplen-
dentbutitalso has better control of the parameters (essentially due to a better control
of the parameters in Weierstrass preparation in [CL11]). In particular, it is uniform.

2. Let L% o be L enriched with symbols for all the functions from A, a symbol Q :
K? - K, for all units £ € A a symbol Ej : R;, - Ry, a symbol |R ¢ (I'™)2. Then, any
‘s o-formula (or even formulae in an R u I'-enrichment of L% ) can be translated
into an RV -enrichment of £ 4 ¢ (see Proposition (11.1.8)), and hence Corollary (1L.5.5)
also holds (resplendently) for the L% 5-theory T% ., of Henselian valued fields with
separated A-structure and angular components. Note that some of the symbols we
should have added have disappeared, like the trace of E; on I'** which is constant
equal to 0. Similarly the F and |} are missing one of their arguments — the I'**-
argument in the case of E, and the R,,-argument for |® — but they depend trivially
on it.

11.6. K-quantifier elimination in T 4 ,_pe,

Until Section 11.6.3, we will be working in equicharacteristic zero, hence, we will once again
write RV and rv for RV; and rv;. We will also be considering that variables are indexed
by N and we will sometime identify a variable and its index. But hopefully no confusion
should arise.

Let M =T 4 and C<M.

Definition 11.6.1 (Order-degree):

We say that an L.4.gly (C)-term t = Yo ti(Twp )i, is polynomial of order (at most) d in x.,.
If t is not of this form, we take the convention that t has infinite degree in x.,,. Let T (C') be the
set of tuples (t,1,m,d) where [ is a finite set of variables, m € I, d € Nu{oo} and t + 0 is an
L 4,0l (C)-term whose variables are contained in I and which is polynomial in x,,, of degree at
most d. Let To(C) = T(C) u{0}.

We (partially) order T (C') by saying that (u, J,n,e) has lower order-degree than (t,1,m,d) if
one of the following holds:
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(i) max(J) < max(7);
(i) max(J) =max(I)and J ¢ I;
(iii) J=1andn >my
(ivi J=Iandn=mande<d.
We extend this order to To(C') by making the zero term greater than any element of T (C').

Remark 11.6.2:

1. This is a well-founded (partial) order.

2. In condition (iii), the order is inverse of what one would expect but that is because
we want minimal terms to be polynomial in the last variable.

3. We will also write J < I to mean that conditions (i) or (ii) hold.

When @ is indexed by some set / € N and n € I, we will denote by @..,, the tuple @ missing its
n-th component and (@, x,,) for the tuple @ where the n-th component is replaced by x,,.
We define 7., (a) and (.,(a), z,,) similarly and let 5¢,,(a) := (a,0(a),...,0™(a)). Finally,
we will write (C), :=(C)z, ., and C(¢), := C(C)r , o, (cf. Definition (ILA.12)).

11.6.1. Residual and ramified extensions

Definition 11.6.3 (Regularity):
Let t(T) = 3, ti(Tem )z, bean L4 o(M) term and a € K(M). We say that t is reqular at @ in
T Bf

val(t(@)) = min{val(t;(@sy)) + ival(an,)}-

By convention the zero term is never reqular.
First, we state a proposition which has nothing to do with automorphisms:

Proposition 11.6.4:

Let @ € tv(R(M)), a € rv (@) and (t,1,m,d) € To(C) be of minimal order-degree such
that t(T) is polynomial in x,,, and t is not regular at a. Then for all (u, J,n,e) < (t,1,m,d),
rv(u(Z)) is constant on rv=t(a@). Moreover for all a.,, € v~ (@), u(@sn, T, ) has Weierstrass
division on rv=1(ay,).

Proof . First, we may assume that K (M )alg =K (M) (see Proposition (11.3.26)). We work by
induction on J. The proposition is trivial for constant terms. Now, assume the proposition
is true for any (v, K,p, f) with K < J. Let us first assume that u is polynomial in z,,.
Then, u = ¥, u;(T., )i, must be regular at @ and hence val(u(a)) = min;{val(u;(a.,)) +
ival(a,)} and hence rv(u(a)) = ¥, rv(u;(Gsn))ad, # 0. For any € € rv-!(@) and any 1,
rv(u;(€sn))rv(en)’ = rv(u;(as,))ad,. Moreover, if 3, rv(c;) # 0 thenrv(Y,; ¢;) = ¥, rv(¢;)
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hence we must also have rv(u(e)) = ¥, rv(u;(a.,))ad, # 0. As u is polynomial in z,,, it has
a Weierstrass preparation. Hence for polynomial u, the proposition is proved.

Suppose now that u is of infinite degree in z,, and hence that all terms (v, J, n,e) with
e # oo are smaller than (¢, I, m, d) (and thus have been taken care of in the previous para-
graph). By Weierstrass preparation, there exists S € SC*(C(a.,,)) such that u(@.,, z,) has
a Weierstrass preparation on S and a,, € S. But then either rv~'(«a,,) € S or rv ()
contains a K(C' (@n))alg—ball and hence a point ¢ € K(C (@n))alg. Let P = ¥ pi(Gun)X? €
K(C(a.,))[X] be its minimal polynomial, then for all e € rv-!(a,), rv(P(e)) = 0 — i.e.
P(e) = 0 — but that is absurd. Hence ¢ has a Weierstrass preparation on rv=!(«,, ) and there
exists F'(z,Z) e A,c e K(C(a)), P and Q € K(C(a.,))[X] such that for all z,, € rv=!(av,):

) - (0 ) P

and val(F'((x,, - ap)/an,¢)) = 0. But rv(P(x,)) and rv(Q(z,)) do not depend on x,, and
rv(F((z,—ay)/an,c)) only depends onres((z,—a,)/a,) = 0(see Corollary (11.3.19)). Hence
B :=1v(u(@sn, v,)) does not depend on z,, € rv=(a,). The L4 o-formula

Vo, rv(x,) = ap = vv(u(len, 1,)) =

is in the £ 4 o-type of @.,, over C'a,, 3. By induction (and Corollary (11.1.6)), all tuples a.,, €
rv-!(a,,) have the same £ 4 o(Caf)-type and rv(u(a)) = f for alla e rv=1(@). ]
Let us now prove the first embedding theorem we will need for elimination of quantifiers.
Let M, and M5 be models of T 4 ,_pen, Ci<M; and f : Cy - Cyan Eﬁjfgjyor—isomorphism.
Proposition 11.6.5:
Let a e tv(R(M;1)) nRV(CY), a e rv () and (t,1,m,d) € To(C) be polynomial in x,, for
some m € N. Assume that (t,1,m,d) is of minimal order-degree such that t is not reqular at
o(a). Then:

(i) There exists a; € R(M;) and ay € R(M,) such that t(c(ay)) =0 =t/ (5(az)), rv(ay) =

aandrv(as) = f(a).

(ii) For any such a;, f can be extended to an Ef},\gyor-isomorphism sending a; to as.

Proof . Lett = Y% t;(T.p )zt . By minimality of ¢, we cannot have t4( .., (a)) = 0. Dividing
by ¢4, we may assume that ¢, = 1.

Claim 11.6.6: There exists ¢ € K(M ) that linearly approximates t on rv='(«) at prolongations
and such that

mjin{val(cj) +val(o?(a))} = miin{val(ti(ﬁ(a))) +ival(oc™(a))}.

Proof.Let N; = Malg (see Proposition (IL.3.26)). Let s, := Y, t;x¢ and s := s4. For all
i and j # m, by Proposition (11.6.4) applied in Ny, #;(7.;(a),x;) has Weiestrass prepa-
ration on the ball b; := 1v~(¢;) and constant valuation. By Proposition (11.6.4), for all

108



11.6. K-quantifier elimination in T 4 ,_pen

e < d, s, also has constant valuation on rv=!(a(«)). By invariance under addition — and
an induction on e — we can show that s(7.;(a), z;) also has Weiestrass preparation on
b;. Moreover 0s/0x;(T) is also given by an L4 o(C1)-term of degree d — 1 in z,, hence
1v(0s/0x;(G.j(a),x;)) is constant on b; (equal to some rv(c;), where ¢; € K(M;)). By
Proposition (11.3.27), for all y; and z; € b;:

rv(U(@+j(a), y5) = 1(T25(a), 2)) = 1v(s(T+(a), y;) = s(T+5(a), ;) = rv(c;)rv(y - 2).

This last statement is in the £ 4 o-type of 7.;(a) over C rv(c;). By Proposition (11.6.4) and
Corollary (1L.1.6), any €.; € rv-}(7.;(a)) has the same £ 4 o(C11v(c;))-type and hence the
same c; works for any € € rv=1(7(«)).

Asval(s(c.j(a),z;)) = min,4{val(t;(.;(a))) +ival(z;)} is constant on b;, we also have:

val(c;) + val(o?(a)) > val(s(7(a))) > Ilzin{val(ti(ﬁ(a))) +ival(o™(a))}.

When j = m, astis polynomial in z,,, and 0t/Jz,,,(T) is of degree d—1 in x,,,, we can also find
¢m € K(My) that linearly approximates t(€.,, ©.,) onrv-1(o™(«)) forany e e rv-1(a(a)).
And

val(cy,) +val(o™(a)) = val(0t/0x,,(T)) +val(c™(a)) = miin{val(ti(ﬁ(a))) +ival(a™(a))}.

It now follows from Proposition (11.4.6) that ¢ linearly approximates ¢ on rv-!(«) at pro-
longations. ¢

If t # 0, we have proved that (¢,a,¢,val(«)) is in o-Hensel configuration. Hence there
exists a; € Mj such that ¢(a;) = 0 and val(a; — a) > max;{c~(t(c(a)c;'))}. In particular,
val(c™(a; —a)) 2 val(t(a(a))) — val(c,,) > min;{val(¢;(c(a))) + ival(c™(a)) } - val(c,,) =
val(c™(a)),i.e. rv(a;) = rv(a).

If x,, is not the highest variable appearing in ¢ — that we call x,, — then, applying Propo-
sition (11.6.4) to (t,I,n,00) < (t,I,m,d), we get that rv(¢(¥)) is constant equal to 0 on
all of rv71(a(«)). As t(G4m(a), T, ) is polynomial and has infinitely many zeros, we must
have t;(c(a)) = 0 for all ¢, but that contradicts the non-regularity of ¢ in x,, at 5(a). Thus
x,, must be the highest variable appearing in ¢. For the same reasons, we cannot have
rv(cn) = 0.

Note that we have also proved that for all € € rv=1(7(«)), t is minimal such that it is not
regular in €, hence the £ 4 o-type of («) says so and hence, as T 4 eliminates field quan-
tifiers, ¢/ has the same minimality property (relative to f(«a)) and we find a; in the exact
same way. If ¢ = 0 then any a; and a; € rv=!(«) will work.

Let us now show that f can be extended to send a; to as. First, extending f on RV, we can
assume that RV (C1(a;),) € RV(Cy). Let C;,, := Ci(Tcn(ar)) and f-4 := f: Cy - Cy. Let
us show that, for all n, we can extend f, to f,, : Cy, - Cs, sending c"(a;) to c"(as).
If n < m, for any term u polynomial in z,, of order-degree strictly smaller than (¢, I, m,d),
let us define fn(Zz U (eqn(al))o-n(al)i) = Zz fn—l(ui (Eatn(al)))o-n(a?)i' It follows from
regularity of u in z,, at 3(a;) that if for some ¢ u;(7.,(a;)) # 0 then u(g(ay)) # 0. Thus
o"(a;) is transcendental over C; ,,_; and f,, is a field isomorphism. To show that this is an
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LBV _isomorphism, it suffices, by Lemma (11.A.13), to show that it respects rv. But this is

true, as for all terms of order-degree strictly smaller than (¢,1,m,d), rv(u(c(a1))) = 3
does not depend on the choice of a; and the formula “Vzrv(7) =5(a) = rv(u(7)) = 7 is
an L 4 o(C1)-formula respected by f.

Claim 11.6.7: Let P := (T (1), ) € K(Ch1m-1)[X]. Foralln > m, 0™(ay) is the only zero
of P whose leading term is " ().

Proof . Because o is an automorphism of valued fields, it suffices to prove the case n = m.
Lete ervi(o™(a)), thenrv(P(e)) =rv(P(e) — P(a)) =rv(cy)rv(e—o™(ay)) # 0. ¢

The same claim is true of 0" (a,) with respect to f(P°"™) and f(o™(«)). Thus, it suffices
to extend f,,—; to the £ 4 o-definable closure of C ,,,_1, which we can certainly do as f,,_1
is an £ 4 o-elementary isomorphism (by resplendent field quantifier elimination in T 4).

Then f' = U, f, is an £ 4 g ,-isomorphism between C}({a;), and Cs(as),. It is also an

E}}Y@gk’r—isomorphism by Lemma (11.A.13), =

Corollary 11.6.8:
Let a € RV (C)), then there exists a; € M such that rv(a;) = « and [ extends to an isomor-
phism on C'(ay),.

Proof . 1f v € res(R(M;)), then Proposition (11.6.5) applies. If not apply Proposition (11.6.5)
to a~! and conclude by extending the isomorphism to the analytic field generated by its
domain by Remark (11.5.1). [ ]

11.6.2. Immediate extensions

Let M = T 4 be saturated enough and C'<M.

Definition 11.6.9 (pseudo-convergent *-sequences):

Let (T,,) be a sequence of tuples of the same length. We say that it is a pseudo-convergent se-
quence if for all i, (T; ., ) is pseudo-convergent. Moreover, we will say that a is a pseudo-limit of
(To) if forall i, @; o ~ a;.

Definition 11.6.10 (Equivalent pseudo-convergent sequences):
We will say that two pseudo-convergent sequences are equivalent if they have the same pseudo-
limits.

Lemma I1.6.11:

Let T, be a pseudo-convergent sequence, a a pseudo-limit of this sequence and vy, such that
for all i, val(a; — y; o) = val(a; — x; ), then (y,) is also a pseudo-convergent sequence that is
equivalent to (x,,).

Proof . We may assume that |z, | = 1. Note that forall 8 > o, val(ys-v.) = val(ys—a+a-y,) =

val(a—x,) = val(zs—x,),as val(a—xg) > val(a—z,). Hence (v, ) is also pseudo-convergent.
Moreover, if bis any pseudo-limit of (z,,), then val(b-y,) = val(b—x 441 +Tor1 —a+a—y,) =
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val(a - yo) = val(a — z,) = val(b - x,) and y, ~ b. The symmetric argument shows that if
Yo ~ b then z, ~ b. [ ]

Definition 11.6.12 (Rich enough families):

We say that a family F of equivalent pseudo-convergent sequences of C'is rich enough if for any
linear polynomial P(X) = ¥, m;X; € wv(K(C))[X], there exists (T,) € F such that for all
pseudo-limit @ and all o, P(rv(a —7,)) # 0, i.e. if rv(p;) = m; then val(¥; pi(a; — Ti0)) =
min;{val(p;) + val(a; — ;) }-

We will say that a term v = Y% %; (. )o™ () is monic if uy = 1. As in section 11.6.1, let us
begin by a proposition that does not seem to have anything to do with automorphisms.

Proposition 11.6.13:

Let F be arich enough family of equivalent pseudo-convergent sequences of C' that are eventually
inRand (t,I,m,d) € To(C). Suppose that (t, I, m,d) has minimal order-degree such that t is
a monic polynomial in x,,, and there exists a pseudo-convergent sequence (T,,) € F that pseudo-
solves t. Then for all (u, J,n,e) < (t,1,m,d), there exists cy such rv(u(Z)) is constant on by :=
B% (Tag+1), Where 3y := val(Toy11 — To, ) — it follows immediately that rv(u(T)) € rv(K(C))
— and for any @ € by, u(@sn, ©,,) has a Weierstrass preparation on b, .

Proof . We may assume that K(M )ang = K(M). The proof proceeds by induction on J.
Suppose that Proposition (11.6.13) holds for any term (v, K, p, f) such that K < J. Let us
prove a few claims to take care of some induction steps.

Claim 11.6.14: Fix e and n € N. Suppose the lemma holds for all (u, J,n,e), then it holds for
any (u,J,n,e+ 1) where u is a monic polynomial in x,,.

Note that the case e = 0 does not require any hypothesis (other than the induction hypoth-
esis on J).

Proof . Let u = 28" + ¥ ui(Tepn )t and for all f < e, sy = ¥, ui(Ten)xl. Let@bea
pseudo limit of (Z,). Then we can find « such that, for all j # n, val(ss(a.;,z;)) and
val(u 41 (a.j,x;)) are constant on b; o and us.1(a.;, x;) has a Weierstrass preparation. By
induction on f and invariance under addition, s.(a.;,z;) has a Weierstrass preparation
on b;o. Let s := s.. Making o bigger we can also assume that val(9s/0z;(a.;,z;)) is
constant on b;o. By Proposition (11.3.27), we find ¢; e K(C') such that for all y; and z; € b,
v (u(@ej, y5) —u(@sj, 25)) = 1v(8(@ej, y5) = 5(@ej, 25)) = 1v(c;)rv(y; —2;). By field quantifier
elimination, this statement only depends on the value of rv(v(a.,)) for a finite number of
L 4,0l (C)-terms v and hence, by induction, making o bigger, we may assume that this
statement is true of all @ € by. When j = n, the same arguments yields some c,, € K(C') as u
is already polynomial in z,, and Ju/dx,(¥) is polynomial in z,, of degree at most e. It now
follows from Proposition (11.4.6) that  linearly approximates u on by.

Let (y,) € F be such that for any pseudo-limit @, val(¢- (@ -7, )) = min;{val(c;) + val(a; -
Yja)}- Then val(u(a) — u(y,)) = min;{val(c;) + val(a; — y;q)}. If for all o, val(u(a)) >
min;{val(c;)+val(a;-y;)}, thenval(u(y,)) = min;{val(c;)+val(a;-y;)} and u(y,) ~ 0
contradicting the minimality of ¢. Hence val(u(a)) < min;{val(c;) + val(a; — y; )} for
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a > 0and rv(u(a)) = rv(u(ya)) € rv(K(C)). By compactness, making o, bigger, this is
true for any a € by. ¢

Claim 11.6.15: Fix e and n € N. Suppose the lemma holds for (u, J, n, e) monic polynomial in
T, then it holds for any (u, J,n, e).

Proof . Dividing by the dominant coefficient u, (which has constant rv on b, by induction),
we obtain a term v monic polynomial of degree at most ¢ in x,, and which must also have
constant rv on by if we take « big enough. ¢

Claim 11.6.16: Fix n € N. Suppose that for all e € N, the lemma holds for all (u, J,n,e). Then
it also holds for all (u, J,n, o).

Proof . Let @ be a pseudo-limit of (z,). Any S € SC*(C(a.,)) that contains a,, must con-

tain b, o for a big enough. If not, there exists ¢ ¢ K(C (mn))ag such that z,, , ~c. Let
P(Gup,2n) = X pi(@ep )i be its minimal polynomial. Then, by hypothesis, for all € € b,
(for o big enough), rv(P(€)) = 0 and we must have p;(a.,, ) = 0 for all 7, but that is absurd.
It follows that we can find o such that, u(a.,, x,) has a Weierstrass preparation on b, o,
Le. there exists ' € A, ¢ € K(C(a.,)) and L.4,gl(c)-terms P and @ polynomial in z,, such
that for all z,, € b;,

P(a¢n7 xn)
Q(a;tm Z’n)

— Tp — xn,a(ﬁl —
u(a¢n7$n) :F( , €

xn,ao+1 - xn,ao

and val(F'((2n — Znag+1) (Tna0+1 = Tnyag )s €)) = 0. In turn, this implies that rv(u(a.,, z,))
does not depend on ,, € b,, o and by the usual uniformization argument (making o, bigger),
we can ensure that rv(u(€)) does not depend on € € by. ¢

Proposition (11.6.13) follows by induction. ]
Remark 11.6.17:

Note that the proof of Claim (11.6.14) also shows that there exists d € K(C) that linearly
approximates ¢ on b, for a big enough.

Let M = T 4, be saturated enough and C'<M such that res(K(C)) is linearly closed.

Proposition 11.6.18:
Let x,, be a pseudo-convergent sequence of C. The family {T(y,) : Yo is a pseudo-convergent se-

quence of C equivalent to x, } is a rich enough family of equivalent pseudo-convergent sequences
of C.

Proof.Let P(X) = ¥, piX; € K(C)[X]. If for all i p; = 0, we are done. Otherwise, let
Ea = Tasl — Ta, let ig such that val(p;, ) + val(oi (e, )) is minimal, and let

Qa(T(X)) = pj, 0" (ea) " P(G(0 X)) = 2 pip;, 0" (2a) 0™ (e51) 0" (X).
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As res((Q),) is linear with coefficients in res(K(C')), which is linearly closed, we can find
d, € K(C) such that res(Q.(7(d,))) # res(Q.(a(1))). In particular, res(d,,) # res(1) and
val(d, — 1) = 0. Let yo = x4 + €0dq.
Let @ be such that 5(z,) ~ @, then

v(a; — 0" (ya)) = tv(a; =0 (Tas1) + 0(Tar1) — 0 (2a) + 0 (240) = 04 (Ya))

rv(oi(ea))rv(1l - oi(dy)).

It follows that val(ag — y,) = val(e,) = val(ag — x,). By Lemma (IL.6.11), (1, ) is equivalent
to (z4). Let¢; = (a; — 0%(ya))/0%(€). Then

res(P(a -7 (ya))p;'eat)

res(Q)(res(c))

= res(Q)(res(a(1) -a(da)))

= BGS(Q(E(U))—TeS(Q(E(da)))
£ 0.

Hence, we have val(P(a — 5(ya))) = val(p;,) + val(oio(e,)) = min;{val(p;) + val(a; —
o' (Ya))}- [ |

And now let us prove another embedding theorem for immediate extensions. Let M; and
M; = T A ,-nen be saturated enough, N;<M; have no immediate extension in M; and be
o-Henselian — as we will see in Remark (11.6.21) this second hypothesis follows from the
first one —, C;<N; be such that res(K(C})) is linearly closed and f : C; - Cy an EﬁVQ Mor_
isomorphism.

Definition 11.6.19 (Minimal term of a pseudo-convergent sequence):

Let (x,) be a pseudo-convergent sequence of Cy. We say that (t, 1, m,d) € To(C) is its minimal
term if it is minimal such that it is monic polynomial in x,, and it is o-pseudo-solved by a pseudo-
convergent sequence equivalent to ().

Note that any pseudo-convergent sequence has a minimal term, as any pseudo-convergent
sequence o-pseudo-solves 0.

Proposition 11.6.20:
Let (x4) be a pseudo-convergent sequence of K(C) (indexed by a limit ordinal) which is even-
tually in R. Let (t, I, m,d) be its minimal term. Then:

(i) There exists a; € Ny and as € N such that x,~ a1, f(xy)~as and t(c(ay)) = 0 =
t/(c(az)).
(ii) For any such a1, Ci{ay), is an immediate extension of C4;

(iii) For any such a;, f can be extended into an Lﬁ}gyor—isomorphism sending a; to as.

Proof . 1f t is zero, it suffices to choose any a; and a5 such that 2, ~ a; and f(z,) ~ as. These
exist in M; and we will see in the end why they exist in ;. Let us now assume that ¢ is
not zero. By Remark (11.6.17) — and Propositions (11.6.13) and (11.6.18) — we find oy and
d € K(C) that linearly approximate t at prolongations on by := ZS’VBLI(ZQO+1 zay) (Tag+1)- By
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Proposition (11.6.18), we can find a pseudo-convergent sequence (z,) of C; equivalent to
(z,) such that for all pseudo-limit a of (z,), val(t(c(a)) — t(c(z4))) = min;{val(d;) +
val(oi(a — z,))}. If for all such a, val(t(c(a))) < min;{val(d;) + val(c?(a - z,))} for a big
enough, then val(¢(a(a))) = val(t(c(y.))). By compactness, val(¢(g(x))) is constant on
some by. But this contradicts the fact that we can find y,, equivalent to z,, that o-pseudo-
solves t.

Hence there exists a pseudo-limit a such that val(¢(a(a))) > min;{val(d;) + val(ci(a -
20))} > min;{val(d;) + val(ci(&))} where & is the radius of by and (t,a,d, &) is in o-
Hensel configuration. As N; is o-Henselian, we can find a; € K(N;) such that ¢(a;) = 0
and val(a; - a) > max;{val(c7"(t(5(a))d;'))} > val(zas1 — o), €. To~>as. As fisan
L 4 0,,-isomorphism, (¢/, I, m,d) is the minimal term of (f(x,)) and the same argument
shows that there is a; € K(Ny) such that ¢/ (a) = 0 and f(z,) ~ as.

If t # 0, let us now show that z,, must be the last variable appearing in ¢. If it is not, let
&, be that last variable. By Proposition (11.6.13), we can find £ 4 ol (A)-terms E, P and Q
such that F is a strong unit in ,,, P and Q are polynomial in z,, and for all @ € by, t(a) =
E(a)P(a)/Q(a). Ast(c(ay)) = 0 we also have P(5(a;)) = 0 and because (P, I,n, ) <
(t,1,m,d), we have rv(P(@)) = 0 — and hence rv(¢(@)) = 0 — for all @ € by, contradicting
the fact that we can find y,, equivalent to z,, that o-pseudo-solves ¢.

We can now conclude as in Proposition (I1.6.5) by extending f to C} ,, := C1(G<,(a1)) pro-
gressively, by sending 0™ (a;) to 0"(az). For n < m, it is exactly the same and for n > m,
use the fact that 0™ (a, ) is the only zero of P7"™ (X)) in (b, ) for iy > 0, where P(X,,) =
t(Tem(ar), Xm)-

If n < m, we have proved in Proposition (11.6.13) that the extension is immediate. 1If n > m,
we have just seen that 0" (a;) is ACVF-definable over K(C1(d¢,-1(a1))). It follows that
o"(ay) € K(C1(Ten-1(ar)))™ which is an immediate extension of K(C1(7¢,-1(a;))) and
we conclude by Proposition (11.3.26).

In the case where ¢ is zero, we have yet to show that we can take a; € N;. Let (u, J,n,e) be
minimal over NV; that is o-pseudo solved by a pseudo-converging sequence equivalent to
To. We can find ay in M; such that u((a,)) = 0 and z, ~ a;. But then K(N(a1),) is an
immediate extension of N; and we must have a; € Nj. ]

Remark 11.6.21:

Note that we have just shown that if we only assume that N; has no immediate exten-
sion in M; (and not that N, is o-Henselian), then N; is maximally complete and hence, by
Proposition (11.4.14) it is c-Henselian.

Definition 11.6.22 (Minimal term of a point):

Let a € My. We say that (t,1,m,d) € To(C1) is the minimal term of a over C if it is minimal
such that it is monic polynomial in x,,, and t(c(a)) = 0.

Note that because of Weierstrass preparation, minimal terms will always be polynomial in
their last variable.

Definition 11.6.23 ((¢, I, m, d)-fullness):

Let (t,I,m,d) € To(C1). We will say that C is (t, I, m, d)-full if for all pseudo-convergent se-
quences (x,, ) (indexed by a limit ordinal) of elements in C| that are eventually in R with minimal
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term (u, J,n,e) < (t,I,m,d), (x,) has a pseudo-limit in C.

Corollary 11.6.24:

Let (x,) be a maximal pseudo-convergent sequence in C (indexed by a limit ordinal) pseudo-
converging to some a; € R(My). If (t,1,m,d) € To(Cy) is its minimal term over C; and C}
is (t,1,m,d)-full, then K(C1{a1),) is an immediate extension of K(C) and f extends from
Cl(CLl)U into NQ.

Proof . Since C is (t,1,m,d)-full, (z,) (or any equivalent pseudo-convergent sequence)
cannot pseudo-solve a term of order-degree strictly less than (¢, I, m,d) (this would con-
tradict either (¢, I, m, d)-fullness of C'; or maximality of (x,)). By Propositions (11.6.13) and
(11.6.18), there is a tuple d and a sequence (¥, ) equivalent to (z,) such that

val(t(7(ya))) = val(t(7(a)) - (3 (ya))) = min{val(d;) + val(o*(a - ya))},

i.e. t((ya)) ~ 0. We have just showed that ¢ is the minimal term of the pseudo-convergent
sequence (1, ) and thus we can now apply Proposition (11.6.20). [ ]

From now on, suppose that K(1V;) is an immediate extension of K(C;), hence it is a max-
imal immediate extension of K(C;) in M.

Corollary 11.6.25:
Suppose that all a € R(N;) with a minimal term of order-degree strictly smaller than (t,1,m,d)
are already in C4, then C\ is (t, I, m,d)-full.

Proof . Let (x,) be a pseudo-convergent sequence of C (indexed by a limit ordinal) that
is eventually in R and (u, J,n,e) < (t,1,m,d) that is o-pseudo-solved by (z,). We may
assume that (u, J, n, e) is its minimal term. By Proposition (11.6.20), there is a; € N; such
that 2, ~ a; and u(a;) = 0. Hence a; has a minimal polynomial of order-degree strictly
lower than (¢,1,m,d), so a; € Cy and C| is indeed (¢, I, m, d)-full. [

Corollary 11.6.26:

The isomorphism f extends to an isomorphism N — Ns, i.e. maximum immediate extensions
(in some saturated model) — and hence maximally complete extensions — are unique up to
isomorphism.

We could prove this corollary without using the notion of fullness and without doing the
extensions in the right order — just pick any maximal pseudo-convergent sequence in-
dexed by a limit ordinal, find its minimal term and apply Proposition (11.6.20) to extend f
some more and iterate. But I find the following proof more informative in terms of the
information you need to describe the type of a given point in an immediate extension.

Proof . Let us consider the extensions C1<L,<N; defined by taking L.,1 = L,(c.), Where
Co € R(N1) N L, has a minimal term of minimal order-degree over L., and Ly = Uy Lo
for A limit. Then we can show by induction that we can extend f to L, in a coherent way.
Let us suppose we have extended f to f, on L,. Leta = ¢,. Let 3~ a be a maximal
pseudo-converging sequence of L,. Then if (¢,1,m,d) is a minimal term of a, then by
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Corollary (11.6.25), L, is (¢, I, m, d)-full. Applying Corollary (11.6.24), we obtain that f, can
be extended to L,(a), = L+1. The limit case is trivial.

As N is the field generated by U,, L., by Remark (1L.5.1) we can extend f from N; into Ns.
Now if f is not onto, pick a € K(Ns) ~ K(f(N1)), (z,) maximal pseudo-converging to a
and (¢, 1, m,d) its minimal term. Then applying Proposition (11.6.20) the other way round,
we would find an immediate extension of N; in M;, but that is absurd. [

11.6.3. Relative quantifier elimination

Theorem D:
The theory T 4 ,_nen eliminates quantifiers resplendently relative to RV.

Proof . By Proposition (I1.A.9), it suffices to show that T 4 ,_pe, eliminates quantifiers rel-
ative to RV. Note that if two models of T 4 ,_pen contain isomorphic substructures they
have the same characteristic and residual characteristic, hence it also suffices to prove the
result for T 4 »—pen,0,0 a0d T 4 »_pen 0. Let us first consider the equicharacteristic zero case.

It suffices to show that if M; and M, are sufficiently saturated models of Tﬁzzhﬁgg’ovo, f

a partial ,CRV Mor_jsomorphism with (small) domain C}, and a; € K(M,), f can be ex-
tended to C’l(al)a. Let N;<M; with no immediate extension in ); and containing both
(' and a;. By Morleyization on RV and Lemma (I11.A.11) we can extend f to D;</V; such
that RV(D;) = RV(N,). Then applying Corollary (11.6.8) repetitively we can extend f to
E1<N; such that rv(K(E;)) = RV(E;). Now K(V;) is a maximal immediate extension
of K(£)) and we can extend f to IV, by Proposition (11.6.20).

Now that we know the equicharacteristic zero case, the mixed characteristic case follows
from Propositions (11.B.5) and (11.4.23). [ ]

We also obtain the corresponding results when there are angular components. Let £ o ,,
be L% o enriched with a symbol 0 : K — K, symbols ¢ : R" - R" and a symbol oy :
' — T, Let T% ,_pen be the L% 5 ,-theory of o-Henselian analytic difference fields with
alinearly closed residue field and angular components that are compatible with o, i.e. ac,, o
0 =0,0ac,. Let £acg be the enrichment of £**" with the same symbols and T} | »be
the theory of finitely ramified characteristic (0, p) valued fields as above with ramification

index at most e, i.e. e- 1 > val(p).

Corollary 11.6.27:
T% o—tren and T~ gen pforall p and e, eliminate K-quantifiers resplendently.

Proof . By Proposition (11.A.9), resplendence comes for free once we have K-quantifier elim-
ination. Moreover, by Propositions (11.1.8) and (I11.B.5), we can transfer quantifier elimi-
nation in an RV-enrichment of T 4 ,_gen (cf. Theorem D) to quantifier elimination in a
definable R u I'-enrichment of T% ,_y,, and hence K-quantifier elimination in T% ,_ye,.

The proof for Tfﬁf”j:gen’p now follows by Remark 11.1.9.3. [ ]

Remark 11.6.28:
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I. In a valued field with isometry and val(Fix(K)) = val(K), angular components that
are compatible with ¢ are determined by their restriction to the fixed field. Indeed
if val(z) = val(e) where ¢ € Fix(K), then ac,(z) = R,(ze")ac,(¢). In fact, any
angular components on the fixed field can be extended using this formula to angular
components on the whole field that are compatible with ¢ and hence any valued field
with an isometry and val(Fix(K)) = val(K) can be elementarily embedded into a
valued field with an isometry and compatible angular components.

2. Asa matter of fact, the existence of angular components in a o-Henselian valued field
with an isometry implies that val(Fix(K)) = val(K).

Until the end of this section, we will add constants to L% 5, and Eif’g , for ac,(t) and
val(t) where ¢ is any £ 4 g .| -term without any free variables. The reason for which we
need to add theses constants is that although these are L% 5 ,-terms, we may have no trace
of them in L’iﬁQ’g‘R and EiﬁQ,a"r' Ax-Kochen-Ersov type results now follow by the same
arguments as usual.

Corollary 11.6.29 (Ax-Kochen-Er$ov principle for analytic difference fields):

(i) Let L bean R-extension of al'-extension of L% o ,, T an L-theory containing T , _yen0.0
and M and N = T then:

(@ M = Nifand only if Ro(M) = Ro(NV) as L]y, -structures and T*°(M) =T (N)
as L|p-structures;

(b) Suppose M<N then M < N if and only if Ro(M ) < Ro(M) as L|g, -structures and
I*(M)<T*(N) as L|p-structures.

ac,e—fr

(ii) Let £ be an R-extension of a I'-extension of L o ,, T an L-theory containing T4 "y
and M and N = T then:

(@ M = Nifandonly if R(M) = R(N) as L|g-structures and ' (M) =T*(N) as
L|pe-structures;

(b) Suppose M<N then M <N if and only if R(M)<R(N) as L|g-structures and
I*(M)<T*(N) as L|p-structures.

Remark 11.6.30:

I. In mixed characteristic with finite ramification, if R = O, we have better results.
Indeed, the trace of any unit £ on any RV is given by the trace of a polynomial
(which depends only on F and not on its interpretation) and the Ej, are in fact useless.
Hence the R,, are pure rings with an automorphism. If there is no ramification (i.e.
e = 1), the R,, are ring schemes over R, (the Witt vectors of length n) — the ring
scheme structure does not depend on the actual model we are looking contrary to
the general finite ramification case — and the automorphism on R, can be defined
using the automorphism on R, hence R is definable in Ry. Finally if o is a lifting of
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the Frobenius, o is definable in the ring structure of Ry. It follows that we obtain
Ax-Kochen-Ersov results looking only at Ry as a ring and I'® as an ordered abelian
group (after adding some constants).

2. The fact that the Ej are useless is also true in equicharacteristic zero when R = O.

3. It also follows that in equicharacteristic zero or mixed characteristic with finite ram-
ification (with angular component), R and I'* are stably embedded and have pure
L|g-structure (resp. L|p«-structure) where L is either L% 5 , or L*X’g’g. In particular
it will make sense to speak of the theory induced on R or I'*°.

Proposition 11.6.31:

Let L be the language L 4 ¢ , enriched with predicates P,, on RV interpreted as n|valy(x). The
L-theory of W, is axiomatized by T 4 ;_tien and oy is the Frobenius, the induced theory on Ry is
ACF,, p has minimal positive valuation and I is a Z-group. Moreover Ry is a pure algebraically
closed valued field and T is a pure Z-group and they are stably embedded.

Proof . Any model of that theory has definable angular components compatible with . And
these angular components extend the usual ones on the field of constants W(Ealg). Hence

the only constants we add are for elements of Ealg c Rypand Z c I'. The proposition
now follows from the discussion above (and the fact that ACF and Z-groups are model
complete). ]

11.7. The NIP property in analytic difference fields

Let us first recall what is shown by Bélair and Delon in the algebraic case [Del81; Bélgg].
Let Tf., be the £*°-theory of Henselian valued fields with angular component maps.

Theorem 11.7.1:

Let L be an R-enrichment of a I'**-enrichment of L* and T 2 T}y, be an L-theory im-
plying either equicharacteristic zero or finite ramification in mixed characteristic. Then T
is NIP if and only if R (with its L|g-structure) and T'*° (with its L|p- -structure) are NIP.

Proof . See [Bélgg, Théoréme 7.4]. The resplendence of the theorem is not stated there but
the proof is exactly the same after enriching on R and I'*". ]

This result can be extended first to analytic fields then to analytic fields with an automor-
phism.

Corollary 11.7.2:

Let £ be an R-enrichment of a I'**-enrichment of L% g and T 2 T y.,, be an L theory implying
either equicharacteristic zero or finite ramification in mixed characteristic. Then T is NIP if and
only if R (with its L|g-structure) and I'* (with its L|p~ -structure) are NIP.
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I1.A. Resplendent relative quantifier elimination

Proof . Suppose T' is not NIP. Then there is a formula ¢(x,7) which has the indepen-
dence property. Note that, since for any sort there is an @-definable function from K
onto that sort, we may assume that x and i are K-variables. By Remark 11.5.6.2, there is
an L\ (Au{Q})-formula +(z,Z) and £ 4 ¢|gterms u(7) such that p(z,7) is equivalent to
a1 (z,u(y)). But then ¢ would have the independence property too, contradicting Theo-
rem (1L.7.1). [

Corollary 11.7.3:

Let L be an R-enrichment of a I'*-enrichment of L o , and T' 2 T ,_y., be an L theory
implying either equicharacteristic zero or finite ramification in mixed characteristic. Then T is
NIP if and only if R (with its L|g-structure) and I'™ (with its L|p -structure) are NIP.

Proof . Suppose T is not NIP, then there is a formula ¢(z,7) which has the independence
property (where x and the 3 are K-variables). By Corollary (11.6.27), we may assume that
¢ is without K-quantifiers, i.e. there is a K-quantifier free L o, \ {0 }-formula (7, z)
such that p(x,7) is equivalent to ¢)(a(z),7(y)). But then 1) would have the independence
property too, contradicting Corollary (11.7.2). [ ]

Remark 11.7.4:

In the isometry case with val(Fix(K)) = val(K), this last result also holds without angular
components because any such valued field can be elementarily embedded into a valued
field with angular components compatible with o.

Corollary 11.7.5:
The L 4,0, ,-theory of W, is NIP.

Proof . This is an immediate corollary of Remark (11.7.4), Corollary (11.7.3) and the fact that
R is definable in R which is a pure algebraically closed field (where the Frobenius auto-
morphism is definable) and that I" is a pure Z-group (see Proposition (11.6.31)). [ ]

Il.A. Resplendent relative quantifier elimination

The following section, although it may appear fastidious and nitpicking, is actually an at-
tempt at clarifying some notions and properties that are often assumed to be clear when
studying model theory of valued fields, but may actually need precise and careful presen-
tation. In all this section, £ will denote a language and ¥, II a partition of its sorts.

Definition 11.A.1 (Restriction):
If L' c L be another language and T an L-theory we will denote by T, the L'-theory { an
L'-formula: T = ¢} and if C'is an L-structure, C| . will have underlying set U, S(C') with
the obvious L'-structure. In particular, when ¥ is a set of L sorts, let L], be the restriction of
L to the predicate and function symbols that only concern the sorts in 3. Then we will write
Tly =Tl and Cly = Clyy .
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Note that the restriction is a functor from Str(7") to Str(7|,/) respecting models, cardi-
nality and elementary submodels (see Section 11.B for the definitions).

Definition 11.A.2 (Enrichment):

Let L. 2 L be a another language and . the set of new L.-sorts, i.e. the L.-sorts that are not L-
sorts. The language L. is said to be a Y:-enrichment of Lif L.\ Lely, v, € L, i.e. the enrichment
is limited to the new sorts and the sorts in X.. If, moreover, ¥, = @ and L.\ L consists only of
function symbols, we will say that L. is a >-term enrichment of L.

Let T be an L-theory. An L.-theory T, 2 T is said to be a definable enrichment of T if there are
no new sorts and for every predicate P(T) (resp. function f(T)) symbolin L.~ L, there is an
L-formula o p(T) (resp. ¢ ;(Z,y) suchthat T = VZ3~1y, v;(Z,y))and that T, = Tu{P () <
pp(T)} U {es (T, f(T))}.

Definition 11.A.3 (Morleyization):

The Morleyization of L on Y. is the language L™ = LU{P,(T) : »(T) an L|y-formula}.
If T is an L-theory, the Morleyization of T on X. is the following L= -theory T=Mor := T'y
{P,(Z) < »(T)} and if M is an L-structure, M>-Mor is the £L> M -structure with the same
L-structure as M and where P, is interpreted by (M ).

On the other hand, we will say that an L-theory T is Morleyized on ¥ if every L|-formula is
equivalent, modulo T, to a quantifier free L|s-formula.

Note that T2-Mor ig 3 definable Y-enrichment of 7" and if M = T then M*-Mor |- T'x-Mor

Definition 11.A.4 (Elementary on X):
Let My and M, be two L-structures. A partial isomorphism M, — M, is said to be >:-elementary
ifit is a partial L " -isomorphism.

Definition 11.A.5 (Resplendent relative elimination of quantifiers):

Let T be an L-theory. We say that T eliminates quantifiers relative to 3 if T>-Mer eliminates
quantifiers.

We say that T eliminates quantifiers resplendently relative to . if for any >-enrichment L, of
L (with possibly new sorts ¥..) and any L.-theory T, 2 T, T, eliminates quantifiers relative to
IEDIN

Definition 11.A.6 (Resplendent elimination of quantifiers from a sort):

We will say that an L-theory T eliminates l1-quantifiers if every L-formula is equivalent modulo
T to a formula where quantification only occurs on variables from the sorts in ..

We will say that T eliminates 11-quantifiers resplendently if for any Y.-enrichment L. of L and
any L.-theory T, 2 T, T, eliminates I1-quantifiers.

Definition 11.A.7 (Closed sorts):

We will say that ¥ is closed if L~ (L|; v Lly) only consists of function symbols f : [[; P, > S
where P; € Il and S € X.. Equivalently, any predicate involving a sort in 3 and any function with
a domain involving a sort in 3 only involves sorts in 3.

Remark 11.A.8:
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I1.A. Resplendent relative quantifier elimination

1. Note that if the sorts X are closed then in any ¥-enrichment — with possibly new
sorts X.¢ — of a II-enrichment of L (or vice-versa), the sorts X u 2¢ are still closed.

2. Elimination of quantifiers relative to ¥ implies elimination of II-quantifiers. But the
converse is in general not true. Indeed, if £ is alanguage with two sorts S; and S; and
a predicate on Sy x Sy, then the formula 3z R(z,y) is an Sy-quantifier free formula
but there is no reason for it to be equivalent to any quantifier free £5 ™" -formula.

3. However, if the sorts X are closed, then it follows from Remark 11.A.10.1 that 7" elim-
inates II-quantifiers if and only if 7" eliminates quantifiers relative to . If £, is a
Y-enrichment of £ with new sorts >, then X U, is still closed, thus the equivalence
is also true resplendently.

We will now suppose that ¥ is closed and we will denote by F the set of functions f : []; P; -
S where P, eIland S € X.

Proposition 11.A.9:
Let T' be an L-theory. If T eliminates quantifiers relative to X then T eliminates quantifiers
resplendently relative to 3.

Let us begin with some remarks and lemmas that will have a more general interest.

Remark 11.A.10:

1. Any atomic £-formula ¢(,y) where T are I1-variables and 7 are X.-variables, is either
of the form ¢ (7) where ¢ is an atomic L|;;-formula or of the form ¢ (f(u(7)),y)
where ¢ is an atomic L|;-formula, ware L|;-terms and f are functions from F.

2. If T eliminates quantifiers relative to ¥, it follows from Remark I11.A.10.1 above that
for any M = T, any L(M )-definable set in a product of sorts from ¥ is defined by a
formula of the form ¢ (7, f(@),b) where pisa L|y,-formula. Hence Y. is stably embed-
ded in T, i.e. any L(M )-definable subset of ¥ is in fact £L(¥ (M ))-definable. More-
over, these sets are in fact £|,(X(1/))-definable. In that case, we say that X is a pure
L|s-structure.

Lemma ILA.11:

Suppose T is an L-theory Morleyized on ¥, then for any sufficiently saturated My, M, = T, any
partial L-isomorphism f : M, — M, with small domain C and any ¢; € X(M,), f can be
extended to a partial L-isomorphism whose domain contains c;.

Proof . First we may assume that C;<M; and in particular for all g € F, g(Cy) ¢ X(C)).
Because f is a partial £-isomorphism and 7" is Morleyized on &, f|s, is a partial elementary
L|.-isomorphism. By saturation of M, we can extend f|y, to f’|s,: M|y, > Mol a partial
elementary L|y-isomorphism whose domain contains ¢;. Let ' = f|; U f']s.

As f|y is a partial L|;;-isomorphism, f’ respects formulae ¢(Z) where ¢ is an atomic L|;;-
formula ( f|; also respects L|;-terms). Moreover, as forall g € F, f'| ¢,y = fl,c,) /' still
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respects g. As f'|y. is a partial L|-isomorphism, it respects all atomic L|.-formulae. 1t
follows that f” also respects formulae of the form ¢ (g(@(7)),y) where ¢ is an atomic L|s,-
formula, 7 are L|;;-terms and g € F. By Remark 1L.A.10.1, f’ respects all atomic £-formulae
and hence is a partial £-isomorphism. ]

Definition 11.A.12 (Generated structure):

Let L be a language, M an L-structure and C < M. The L-structure generated by C will be
denoted (C) . If C'is an L-structure and ¢ € M, the L-structure generated by C' and ¢ will be
denoted C(¢) .

Lemma I1.A.13:

Let My, My e T, f: My — M, a partial L-isomorphism with domain C1<M; and ¢, € I1( M)
such that 3(Cy(c1) ) € X(C). Suppose that f'is a partial L|;; U F-isomorphism extending f
whose domain is Cy(c1) ., then f'is also a partial L-isomorphism.

Proof . First, by hypothesis, f’ respects atomic L|;-formulae. Moreover as X(C'(c1)z) S
X(CY), f'ls = fly, and it is a partial £|-isomorphism. As, by hypothesis, f’ respects g € F,
it respects all formulae of the form v(g(@(7)),y) where ¢ is an atomic L|-formula, @ are
L|;-terms and g € . Hence by Remark 11.A.10.1, f” is a partial L-isomorphism. [ |

Proof (Proposition (11.A.9)). We want to show that if L, is a ¥-enrichment of £ (with new
sorts X.)and T, 2 T'an L.-theory, then 7, ZuEe-Mor oliminates quantifiers. It suffices to show
that for all M, and M, & T, that are | £, |*-saturated, for all partial £>*><M°"-isomorphism
f: My - M of domain C; with |Cy] < | L.|, and for all ¢; € M, f can be extended to a
partial £>"> M jsomorphism whose domain contains c;.

Note first that X uX, is closed. If ¢; € YU, (M), then we can conclude by Lemma (IL.A.11)
(where £ is now £Z°<M°r) 1f ¢, e TI(M,), by repetitively applying Lemma (I.A.11), we
can extend f to f’ whose domain contains all of ¥ U X.(Ci{c1),.). Then f’is in partic-
ular an £ M -isomorphism and, as T eliminates quantifiers relative to X, f’ is in fact a
partial elementary £-isomorphism that can be extended to a partial £-isomorphism f”
whose domain contain c;. But, by Lemma(ILA.13), f"|,.,),. is also a partial L5 Mor_
isomorphism. ]

11.B. Categories of structures

May 1 recall that structures are always non empty.

Definition 11.B.1 (Str(7)):

Let L be alanguage, T' an L-theory. We will denote by Str(T") the category whose objects are the
L-structures that can be embedded in a model of T' — i.e. models of Ty — and whose morphisms
are the L-embeddings between those structures.

Moreover, let T; be an L;-theory for i = 1,2, F' : Str(11) — Str(7%) be a functor and k be a
cardinal. We will denote by Strp (1) the full sub category of Str(T5) of structures that embed
into some F'(M) for M & T k-saturated.
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A functor F': Str(7}) — Str(73) is said to respect:
« models if for all M = Ty, F(M) & Ts;
o r-saturated models if for all x-saturated M = T}, F'(M) = Ty;
o cardinality up to « if for all C & Ty, |F(C)| < |C|%;
o elementary submodels if for all M < M, & Ty, F(My) < F(Ms).

Let X; be a closed set of £;-sorts for i = 1,2. We say that f : C} - C5 in Str(7}) is a
¥i-extension if Cy \ f(Cy) € ¥1(C5). We say that the functor F' sends X; to X if for all
Yi-extensions C; — Cy, F(C1) — F(Cy) is a Yp-extension.

Let me recall some basic notions of category theory. A natural transformation « between
functors F, G : C; — C5 associates a morphism «a, € Home, (F(c),G(c)) to every object
c € Cy such that for all morphism f € Home, (¢, d), we have G(f) o, = ago F'(f). Anatural
transformation is said to be a natural isomorphism if for all ¢ € Cy, «. is an isomorphism
in Cy. It is easy to check that when « is a natural isomorphism, its inverse — namely the
transformation that associates o' to any ¢ € C; — is also natural.

A pair of functors F': C; - Cy and G : Cy — C; are said to be an equivalence of categories
between C; and C, if GF and F'G are naturally isomorphic to the identity functor of resp.
C; and Cy. We can always choose the natural isomorphisms o : FG - Id and 5 : GF - 1d
such that ap = F'(f) and e = G(a) where ap : ¢ = ap) and F(a) : ¢~ F(a.).

Until the end of this section, let x be a cardinal, 7} be an £;-theory and ¥; be a set of closed
L;-sorts for i = 1,2 and § be a full subcategory of Str(77) containing ~*-saturated models
such that for any C' - M; £ T; where M, is k*-saturated and |C| < k, there is some D
in § such that C - D - M; and C' - D is a ¥;-extension. Let F' : Str(7y) — Str(73)
and G : Str(73) — Str(7}) be functors that respect cardinality up to x and induce an
equivalence of categories between § and Strz .+ (72). We will also suppose that G respects
models and elementary submodels and sends Y5 to X; and F respects x*-saturated models.
The goal of this section is to show that these (somewhat technical) requirements are a way
to transfer elimination of quantifiers results from one theory to another and to give a mean-
ing to — and in fact extend — the impression that if theories are quantifier free bi-definable
(whatever that means) then elimination of quantifiers in one theory should imply elim-
ination in the other. Proposition (11.B.5) will be used, for example, to deduce valued field
quantifiers elimination with angular components from valued field quantifiers elimination
with sectioned leading terms. It will also be used to reduce the mixed characteristic case
to the equicharacteristic zero case.

Proposition (11.B.2) is only used to prove Corollary (11.B.4) which in turn will be very useful
to show that the functors between mixed characteristic and equicharacteristic zero can be
modified to take in account Morleyization on RV while remaining in the right setting to
transfer elimination of quantifiers.

Proposition 11.B.2:
Suppose Ty is Morleyized on ¥, and let My and M, & T, be (| Ly |*)*-saturated. Then any
partial Lo-isomorphism [ : F(M;) — F(M,) is ¥o-elementary.
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Proof . To show that f is 3;-elementary, it suffices to show that the restriction of f to any
finitely generated structure is Y5-elementary. To do so it suffices to show that the restric-
tion of f can be extended (on both its domain and its image) to any finitely generated 3,-
extension. By symmetry, it suffices to prove the following property: if Dy, Do<F (M) are
such that D; - D, is a Yp-extension, |Dy| < | L2 |and f: Dy - F(Ms) is an Lo-embedding,
then f can be extended to some g : Dy — F/(M>).

Applying G to the initial data, we obtain the following diagram:

B,

GF(My)  My<—-GF(My)

-

G(D2)

|

G(D1)

G()

where g comes from the fact that, as 7" is Morleyized on %, Sa, o G(f)ly;, is in fact ele-
mentary and, as |G(Ds)| < | La|F, My is (| L2 |F)*-saturated and G(D;) - G(Dy) is a ¥;-
extension, by Lemma (11.A.11), 857, o G(f) can be extended to g : G(D3) — Ms. Applying
F', we now obtain:

a-1
Dy —2 FG(D,) "2 P (M)

f

and F'(g) o ap,, is the extension we were looking for. [
Remark 11.B.3:

1. One could hope the proposition to be true without the saturation hypothesis. But
without some saturation, it is not even true that M; < M, implies F'(M;) < F(My).
Take for example the coarsening functor €% of Section11.2 and Q, < M where M is
Ro-saturated, then €*°(Q,)) is trivially valued but ¢* (M) is not.

2. One should beware that as F'(M;) and F'( M) are not saturated, we have not proved
that 75, eliminates quantifiers.

3. We have proved nonetheless that, if ¥; is the set of all £; sorts (in that case we ask
that T, eliminates all quantifiers) then for all M; and M, & T; sufficiently saturated,
M, = M, implies F'(M;) = F(Ms).

Corollary 11.B.4:
Let Ty be a definable Y.5-enrichment of T; (in the language L3). Then F' induces a functor
Fe: Str(Ty) —» Str(T%) and G induces a functor G¢ : Str(1§) — Str(73). We can also find
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a full subcategory §° of § such that F'¢ and G* induce an equivalence of categories between §°
and Sty pe (| 2, 1<)+ (1% ). The functor G still respects cardinality up to r, models and elementary
submodels and sends 5 to 1 and F respects cardinality up to k+| Lo | and (| Lo |*)*-saturated
models. Finally, §° contains all (| Ly |*)*-saturated models and any C' in Str(Ty) has a ¥;-
extension D in §°. Moreover, if C<M; & Ty and M is (| Lo |*)*-saturated, then we can find
such a D<M,.

Proof . Let C<M & T;. We can suppose that M is (| L, |*)*-saturated. As F'(M) = Ty, we
can enrich F'(M) to make it into an £5-structure F/(M )¢ = Ty and we take F¢(C') = (C) c¢.
Note that if M; and M, are two (| Lo |*)*-saturated models containing C, then Proposi-
tion (11.B.2) implies that idp () is a partial isomorphism F (M) - F'(M,) ¥o-elementary
and hence the generated £5-structures are L5-isomorphic. As F'¢(C') does not depend (up
to L5-isomorphism) on the choice of (| L2 |*)*-saturated model containing C, F* is well-
defined on objects. If f : C; — Cyisamorphismin Str(7} ), by the same Proposition (IL.B.2),
F(f) is Xy-elementary and can be extended to a £5-isomorphism on the £5-structure gen-
erated by its domain. Note that if we denote by i the embedding F'(C') - F¢(C'), we have
also defined a natural transformation from F'to F'¢ (a meticulous reader might want to add
the forgetful functor Str(7y¥) — Str(73) for it all to make sense).

We define G° to be G (precomposed by the same forgetful functor). All the statements
about G* follow immediately from those about G. As (F(C'))s has cardinality at most
|C|#| Lo | < |C|5+1£21) F respect cardinality up to x + £y and if M & T} is (| £ |*)*-saturated
then seeing it as a substructure of itself we obtain that F¢(M) £ T%.

We define §° to be the full-subcategory of § containing the C such that i is an isomor-
phism. In particular, it contains (| £, |¥)*-saturated models. Let D be an L5-substructure
of (M) for some (| Ly |*)*-saturated M & Ty. Then F*G*(D) = (FG(D)),s, where the
generated structure is taken in F'(M'). By Proposition (11.B.2), the (natural) isomorphism
D - FG(D) is ¥y-elementary and can be extended (uniquely) into an £5-isomorphism
between D = (D)c and F*G*(D). This new isomorphism is also natural. 1t follows that
FG(D) = FeG¢(D) and that ig(p) is in fact an isomorphism, hence G(D) € §°.

If C € §° Bc o G(ig') : GeF¢(C) - C is a natural isomorphism. Finally, there remains
to show that any C' - M £ Ty, where M is (| £ |*)*-saturated, can be embedded in some
E € §° such that C' - E is a ¥;-extension and £ - M. We already know that there exists
D e §Fsuchthat C - D - M and C' - D is a ¥j-extension. Now F(D) — F¢(D) is
a Yy-extension hence D~GF(D) — GF¢(D) is a ¥;-extension. Moreover GF¢(D) —
GFe¢(M)=xM and, as F'*(D) is an L5-structure of F'¢(M), GF¢(D) € §°. Thus we can take
E = GFe(D). n

Let us now prove a second result in the spirit of Proposition (11.B.2), but the other way
round.

Proposition 11.B.5:
If Ty is Morleyized on %, and T eliminates quantifiers, then T} eliminates quantifiers.

Proof . To show that T; eliminates quantifiers it suffices to show that for all x*-saturated
M; e T, 1 = 1,2, and C1<Cy € M, and f : Cy - M, an L;-embedding, then f can be
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extended to an embedding from C); into some elementary extension of M,. Let D; € § be
such that C; - D; - M; and C} - D, is a ¥1-extension. As T} is Morleyized on ¥, by
Lemma (11.A.11), we can extend f to an embedding from D, into an elementary extension
of M,. Replacing C by Dy, Cy by (D;C5) ., and M, by its elementary extension, we can
consider that C; € §. Applying F', we obtain the following diagram:

F(M;) M3
7

F(Cy) F(My)

A

F(Cy)

where M, is a (|C}[¥)*-saturated extension of F'(M,) and g comes from quantifier elimi-
nation in 75 and saturation of M. Applying G we obtain:

TN

f

and we have the required extension. ]
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CHAPTER 111

Imaginaries in enrichments of ACVF

LE LOGICIEN, au Vieux Monsieur.
Tous les chats sont mortels. Socrate est mortel. Donc Socrate est un chat.

LE VIEUX MONSIEUR
Et il a quatre pattes.

E. lonesco, Rhinocéros, Acte 1

The goal of this chapter is to show that certain enrichments of ACVF have no more imag-
inaries than ACVF itself — the so called geometric imaginaries of [HHMo6] — and have
the invariant extension property, that is types over algebraically closed sets have invariant
global extensions (cf. Definition (0.4.13)). The main example to keep in mind of such an en-
richment (and the only one so far where we can prove all the hypotheses that appear along
the way) is VDF, the model completion of differential valued fields where the derivation
preserves the valuation: for all z, val(0(z)) > val(z) (cf. [Scaoo] and Section IV.1). In fact,
the main motivation behind these results was to prove the elimination of imaginaries and
the invariant extension property in VDF.

To be precise, we will be working in the more general context of a theory T enriching a
theory 7" which is itself a C'-minimal enrichment of ACVF. But for the sake of clarity, in
this introduction, we will focus on the example where T is ACVF and T is VDF. The fact
that the abstract result proved in this chapter applies to VDF is shown in Section IV.1.
Following the general idea of [Hrua; Joh], elimination of imaginaries relative to the geo-
metric sorts is obtained as a consequence of the density of types definable over geometric
parameters (see the conclusion of Theorem E for a precise statement). Furthermore, the
invariant extension property is also a consequence of the density of definable types. Hence
the actual goal of this chapter is, given a set X definable in some model of VDF, to find a
definable type of elements in X which is the most “generic” possible — in particular which
has only boundedly many conjugates under automorphisms that stabilize X globally —
and has a canonical basis in the geometric sorts.

Let us fix some notations. Let L4, be the one sorted language for ACVF and Ly 4iy =
Laiv U {0} be the one sorted language for VDF, where 0 is a symbol for the derivation. It
follows from quantifier elimination in VDF that to describe the £ 4, -type of = (denoted
p) it suffices to give the Lg;,-type of 0,(x) = (0" (2))n<w (denoted Vv, (p)) and that p is
consistent with X if and only if v, (p) is consistent with 9,,(X), the image of X under
the map 0,,. Note that V,,(p) is the pushforward of p by 9, restricted to Lg;,. If V,,(p) is
definable (in ACVF), because ACVF eliminates imaginaries relative to the geometric sorts,
V.,(p) has a canonical basis in the geometric sorts and p is definable (in VDF) with the same
canonical basis. Hence it will be enough to find a “generic” definable Lg;,-type q consistent
with 0,,(X).

Note that 0,,(X) is not at all definable in ACVF but, in fact, it is x-definable in VDF. The
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x-definability is not very hard to deal with, but because 0,,(X) lives in VDF, the defin-
able Lg;,-types we build will more naturally have a defining scheme of £ 4, (M )-formulas,
where M is some model of VDF — what we could call an £ 4;y (M )-definable Lg;,-type.
But, because we do not know yet that VDF eliminates imaginaries in the geometric sorts,
such a type has no reason to have a canonical basis in the geometric sorts. In Section 1111,
however, we show a general result about NIP theories which implies that any Ly g, (M )-
definable Lg4;,-type also has a defining scheme of Lg;,-formulas and hence a geometric
canonical basis. Therefore, we need only find an £ 4, (M )-definable Lg;,-type “generic”
and consistent with 0,(X) (cf. Corollary(11L.6.7)). But a definable Lg;,-type is a consis-
tent collection of definable A-types where A is a finite set of Ly;,-formulas and so we can
ultimately reduce to finding, for any such finite A a “generic” Ly iy (M )-definable A-type
consistent with some L 4, (M )-definable set (cf. Corollary (111.6.5)). 1t follows that most
of the preparatory work in this chapter — Sections111.3 to 111.5 — will attempt to better
understand A-types for finite A in ACVF.

An example of this somewhat convoluted back and forth between two languages Lg;, and
Ly dgiv, is essentially underlying the proof of elimination of imaginaries in DCF, (the model
completion of characteristic zero differential fields) — although, in the classical proofs, it
might not appear clearly. One might think that this example is too simple, but it is, in fact,
quite revealing of what is going on in theses pages. Take any set X definable in DCF( and
let X,, := 0,(X) where 0, () := (0"(x) )o<i<n and let Y}, be the Zariski closure of X,,. Now,
choose a consistent sequence (py, )< of ACF-types such that p,, has maximal Morley rank
in Y,,. Because ACF is stable all the p,, are definable and they all have canonical bases of
field points by elimination of imaginaries in ACF. Then the complete type of points z such
that 0,,(z) E p, is also definable with a canonical basis of field points and it is obviously
consistent with X.

In ACVF, we cannot use the Zariski closure because we also need to take into account val-
uative inequalities. But the balls in ACVF are combinatorially well-behaved, and we can
approximate sets definable in VDF by finite fibrations of balls over lower dimensional sets
— i.e. cells in the C'-minimal setting (cf. Section111.6). And, because C-minimality is re-
ally the core property of ACVF that we are using, this chapter generalizes naturally to any
C-minimal extension of ACVF. Although that might seem like unnecessary generaliza-
tion, we hope it might lead in the future to a proof that VDF with analytic structure has
the invariant extension property and has no more imaginaries than ACVF with analytic
structure (denoted ACVEy), even though we have no concrete idea of what those analytic
imaginaries are (see [HHM13]).

As for the organization of this chapter, in Section 111.1, we show that being externally defin-
able is a first order property in NIP theories (see Proposition (I11.1.2)) leading to the proof
(in Corollary (111.1.5)) that if p is a type in an NIP theory 7" with a defining scheme in an
enrichment T of T such that 7 has a “nice” model, then p has a defining scheme in T'. This
is joint work with Pierre Simon whom 1 would like to thank for allowing me to include
these pages here.

Section 1112 studies the question of uniform stable embeddedness in pairs of valued fields
(following [Del89; Cubi3]) to show that ACVF has “nice” models. To apply the results of
Section 1111 to some enrichment 7 of ACVF, it will then suffice to find a model of 7' whose
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underlying valued field is one of those “nice” models. Note that this is the only section that
we do not know how to generalize to ACVFEy.

In Section 111.3, we consider definable families of functions into the value group, in ACVF
and ACVEy, and show that their germs are internal to the value group.

In Section 111.4 we study certain “generic” A-types, for A finite, in a C'-minimal expansion
T of ACVF (see Definition (111.4.12)). These generic types are the n-ary generalization of
the unary notion of being generic in a ball (cf. [HHMo0, Definition 2.3.4] and Section 1.3 [3
Qpl). We show that any A-type in these theories is implied by a “generic” type, at the cost
of making A a little bigger.

In Section 111.5, we introduce and study the notion of implicatively definable types. Re-
call that a (complete) type is definable if for any formula ¢(z;s) there is a formula 0(s)
such that 0(s) holds if and only if ¢(z; s) is in p — equivalently if p implies ¢(x;s). If p
is not complete, it still makes sense to require that (s) holds if and only if ¢(z;s) is a
consequence of p (even if it is possible that the type implies neither a given formula nor its
complement). This is implicative definability (see Definition (111.5.1)). We show in particu-
lar that the “generic” A-types introduced in Section 111.4 — under some more assumptions
— have this property with respect to sets definable in certain reasonable enrichments of 7'.
In Section 111.6, we put everything together to prove, in Proposition (I11.6.1), that sets de-
finable in reasonable enrichments of 7" can be approximated by finite fibrations of balls and
then go on to prove, as explained at the beginning of the introduction, in Theorem E, the
density of types definable over real parameters. We will check in SectionIV.1 that Theo-
rem E applies to VDF.

Finally, in Section 111.7, we show how this density result can be used to give a criterion for
elimination of imaginaries and the invariant extension property.

I11.1. Definability of externally definable sets in NIP
theories

This section is joint work with Pierre Simon.

In previous work (mainly [CS13; CS]) on the subject, it was shown that external definability
was rather tractable in NIP theories particularly because of the existence of honest defini-
tions. In stable theories, any externally definable set is definable — this, in fact, is equiv-
alent to the stability of the theory. More precisely, in a stable theory, a set is externally
p-definable (see Definition (111.1.1)) if and only if it is definable by an instance of a fixed
formula ). In NIP theories, the picture is a bit more complicated but we show in Proposi-
tion (11L1.2) that external p-definability is — almost — a first order property. We go on to
prove (in Theorem (111.1.4)) that if a set is externally definable in an NIP theory and defin-
able in some enrichment of the theory — under some hypothesis on the enrichment to get
rid of obvious counter-examples — then the set is already definable in the NIP theory.

Definition 11L1.1 (Externally ¢-definable):

Let M be an L-structure and o(x;t) be an L-formula. We say that X is externally p-definable
if there exists N > M and a tuple a € N such that o(M;a) = X.
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Proposition 111.1.2:

Let T be an NIP L-theory. Let U be a new predicate symbol. Let L; := L U{U}. Then for all L-
formulas p(x; ), there is an Ly;-sentence 6 and an L-formula 1)(x; s) such that forall M =T
and any enrichment My of M to Ly, we have:

if U(My) is externally o-definable, then My, = 0y

and
if My & Oy, then U(My ) is externally 1)-definable.

Proof . Let x(x;u) be a uniform honest definition of ¢ (see [Sim, Theorem 6.16]) — i.e. for
any M <N e T, any tuple b € N and any A ¢ p(M;b) finite, there exists a tuple d € M such
that A ¢ x(M;d) € ¢(M;b). Let k be the VC-dimension of x(z;u). By the dual version of
the (p, q)-theorem (see [Sim, Corollary 6.13]) there exists ¢ and n such that for any set X,
any finite A ¢ X and any S ¢ (X)) of VC-dimension at most £, if for all Ay € A of size at
most ¢ there exists S € S containing Ay, then there exists S; ... .5, € S such that A c U; S;.
Let

Oy =Vary...xg NU(x;) = Ju(Vex(z;u) = U(x)) A N\ x(xi;u).

i<q i<q

Now, let M <N £ T and b € N be a tuple. Let U(My ) := ¢(M;b). Forany A ¢ o(M;b) =
U(My) of size at most g, as x is an honest definition of ¢, we find a tuple d € M such that
AEX(M,d) c (p(M,b) = U(MU) ie My = 0y.
Suppose now that M;; = 6. The following set of formulas, where D® denotes the elemen-
tary diagram,

D‘ZIU(MU) U {\n/ x(a;u;) :aeU(My)atuple} u{Vz x(z;u;)) = U(x):1<i<n}
i=1

is finitely consistent. Indeed, let A ¢ U( My ) be finite. The family {x(M;d) : d € M a tuple
and x(M;d) c U(My )} has VC-dimension at most k and — as M, = 0y — forany Ay ¢ A
of size at most ¢, there exists a tuple d € M such that Ay ¢ x(M;d) ¢ U(My). 1t follows
that there are tuples d; ...d, € M such that A c \/; x(M;d;) < U(My).

We can therefore find Ny > My and dy, .. ., d, such that U(My) < V; x(M;d;) cU(Ny) n
M =U(My),ie. U(My) is externally V', x(z; u;)-definable. [

Definition 111.1.3 (Uniform stable embeddedness):
Let M be an L-structure and A < M. We say that A is uniformly stably embedded if for all

formulas p(x;t) there exists a formula x(x; s) such that for all tuples b € M there exists a tuple
a € Asuch that p(A,b) = x(A4,a).

Theorem 111.1.4:

Let T be an NIP L-theory that eliminates imaginaries, 4 L2 Lbe some language and ToT
be a complete theory. Suppose that there exists M = T such that M ‘ - is uniformly stably

embedded in every elementary extension. Then forall N = T and A = dcl%q(ﬁ) c Nea,

any externally L-definable set X thatisalso L = (A)-definable is in fact £L(R(A))-definable
where R denotes the set of all L-sorts.
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Recall that when X is £(V)-definable for some N = T', we denote its code in Ned by "X

Proof . Let @(z; ) be an L-formula and x(z; s) be an L-formula. Let 6(s) be the £-formula
obtained from the formula 0;; of Proposition (111.1.2) by replacing U (z) by x(; s). Equiv-
alently, for any L-structure N and any tuple d ¢ N, we can make N := N ‘ into an Ly-

structure N, by interpreting U as x(N;d). Then there exists an £-formula 6(s) such that
Nyje by — Nk 0(d). By Proposition (11L.1.2) there also exists an L-formula ¢ (z;u)
such that for all N = T and tuple d € N,

x(N; d) externally ¢-definable implies N &= 6(d)

and
N e 0(d) implies x(N; d) externally ¢)-definable.

Let M & T be as in the hypothesis, M := M|a’ 1> M be saturated enough and £(z;v) be
an L-formula such for any tuple ¢ € {(, there is a tuple a € M such that ¢)(M,c) = {(M, a).
Then for all tuples d € M such that M & 6(d), there is some tuple ¢ € { such that y(M; d) =
(M ¢) and hence some tuple a € M such that x(M;d) = £(M;a) = £(M;a), ie.

M EeVs0(s) = Ju(Vz (x(z;5) < E(z,u))).

But as T'is complete, this holds in any N & T and for any tuple d € N such that X := x (N, d)
is externally -definable — and hence N & 6(d) — there exists a tuple a € N := N | - such
that X =¢£(N;a),ie. X is L(N)-definable.

As for X being £( A)-definable, we have just shown that we can find "X “ ¢ N butbecause X
is also £ ' (A)-definable, we also have that "X ¢ dcl%q(;f) =Ajie. "X e AnN=R(A).
]

Corollary 11L.1.5: N

Let T be an NIP L-theory that eliminates imaginaries and let L 2 L be some language and
T 2 T be a complete L-theory. Suppose that there exists M = T such that M| - is uniformly
stably embedded in every elementary extension. Let A(x;t) be a set of L-formulas, NeT,
A= dsl%q(A) c Ned, N := N‘ﬁ and p € SS(N). Ifpis L' (A)-definable, then it is in fact
L(R(A))-definable where R denotes the set of all L-sorts.

Proof .Let a & p and p(z;t) & A. Then {m € N : ¢(x;m) € p} = {m € N := p(a;m)} is
L-externally definable and L (A)-definable. It follows from Theorem (11L1.4) that it is in
fact L(R(A))-definable. [ ]

Remark 111.1.6;

1. The assumption that 7" is NIP is not enough for the conclusion of Theorem (111.1.4)
to hold. Indeed, let 7" be the theory of dense linear orders — in the language £ := {<}
— L = Ly, M = (Q,<,U) where U(M) is the initial segment of a non definable
cut — i.e. U has no maximal element and its complement does not have a minimal
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element — and T := Th(M). Then the conclusion of Theorem (I1L.1.4) cannot hold
as U(M) is not L-definable, but like all cuts it is externally £-definable.

But, it is also clear that in all N =5 M, the cut defined by U is never L-definable and
hence N ‘ - cannot be stably embedded in all its elementary extensions.

. The second assumption is not sufficient either. Take £ := { E', <} and T be the theory

that states that £ is an equivalence relation and x < y implies zEy. For all {<}-
formula p(x), let ¥ (x, y)be the relativization of ¢ to the E class of y:

a. pf(x,y) = p(x) A \; x; Ey for any quantifier free ¢;
b. (3z¢)F(2,y) = JvzEy n P (z, 2,y);
c. (Voo)P(z,y):=Vaozky="(z,2,y).

Let R,(x,y) be a new relation symbol L* := LU{R,, : ¢(z) is an {<}-formula} and
Tr =T u{Vo(Ry(z,y) <= ¢F(x,y))}. Then for all {<}-formula ¢, M = T}
tuples a € M and elements b € M, M & R,(a,b) if and only if all the a; are in the
E-class of b — denoted b — and b(M) £ ¢(a).

Claim 11L.1.7: Any complete L"-theory T' 2 T}, eliminates quantifiers.

Proof.Let M and N £ T be saturated enough, A c M, B< N, f: A - Ban/L"-
isomorphism and c € M. Let Ay := {a € A: aFEc}. Let us first assume that Ay # @ and
let Ay(M) the E-class of Ay in M, By = f(Ay) and By(N) the E-class of By in N.
Then f|,, is a partial elementary {<}-isomorphism between Ag(M) and By(N). 1t
follows that there exists a partial elementary {<}-isomorphism g : Ag(M) - By(N)
with domain Ay N a. It is then easy to check, that g U f is an L*-isomorphism.

If Ag = @, let p(x) be any {<}-formula such that G(M) £ p(c),i.e. M = oF(c,c). Let
n be the number of E-classes containing some a € A such that M = p¥(a,a). In M,
there are at least n + 1 E-classes where p?(z, ) is realized. As T is complete, this is
also the case in /V and there exists a class with no points in B where this formula is
realized. By compactness, we can find d in a class with no intersection with B such
that for all {<}-formulas o, @(M) & ¢(c) if and only if d(N) & ¢(d), i.e. there exists
a partial elementary {<}-isomorphism ¢ : @(M) — ¢(N) with domain c. As before,
gu fisan L"-isomorphism. [ ]

Claim 111.1.8: Any quantifier free L™ -formula is equivalent modulo T}, to a formula of
the form \;(0i(x) AN; Ry, (7,75 5)) where o; are quantifier free { E'}-formulas and ;
are {<}-formulas.

Proof . As formulas have a conjunctive normal form, it suffices to prove that for all
{<}-formulas p(z), ~R,(x,y) is as in the claim. But for all M & T, tuples a € M and
elements b € M, M = -R,(a,b) if and only if there exists i such that -, b or for all
iya; € band b(M) & ~p(a),i.e. M = V;-bEa; v R_,(a,b). ]
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Let M,, be P({0,...,n}) where < is interpreted as the inclusion and M := [[, .y M,
be the L-structure where the classes of E are exactly the M,,. Then Th(M) has IP.
But because of Claims (111.1.7) and (I111.1.8) and because the classes in M do not have
new points in elementary extensions of M, M is uniformly stably embedded in every
elementary extension.

Now, let S(x) be the set of singletons, i.e. points x such that 3='yy < z. In M, every
(finite) subset of S(M) in a given E-class is definable by a formula of the form z < a.
By compactness, it follows that in every infinite £-class C' ¢ N > M, every subset
of S(C) is externally definable by a formula of the form x < a for some external
parameter a. Let ;(x;y;) be an enumeration of all £-formulas such that |z| = 1 and
lyi| < 1 —1log,(i)/i. Then by a simple counting argument, for all n € N, we can find
U, € S(M,,) such that U, ¢ {¢i(M,;m) :i <nandm e M, atuple}. Let £ := Ly and
M be M where U(M) := U, U,. Let N := M~/ be some non principal ultrapower.
For all n € N, pick ¢, € M, and let ¢ = (¢ )nen/U and AN) be its E-class in N. As
we have seen above, U(N) Na(N) ¢ S(@N)) is externally £-definable, it is L(V)-

definable, but it is not £( N ‘ )-definable.

111.2. Uniform stable embeddedness of Henselian valued
fields

The goal of this section is to study stable embeddedness in pairs of valued fields and in
particular show that there exist models of ACVF uniformly stably embedded in every ele-
mentary extension. These models will then be used to prove that there are models of VDF
whose under lying valued field is stably embedded in every elementary extension (see the
proof of Theorem F). Some of the results given here are not necessary to attain this goal
though, but they are of a similar nature and will be used in Section IV.2.

Following Baur, let us first introduce the notion of a separated pair of valued fields.

Definition 111.2.1 (Separated pair):

Let L|K be an extension of valued fields. Call a tuple a € L K-separated if for any tuple ) € K,
val(}; \ia;) = min;{val(\;a;)}. The pair L|K is said to be separated if any finite dimensional
sub- K -vector space of L has a K -separated basis.

Recall that a maximally complete field is a field where every chain of balls has a point, se
Definition (0.4.15). Let us now reprove a well known result of [Bau82].

Proposition 111.2.2:
Let K be a maximally complete field. Then any extension L|K is separated.

Proof . Let us first prove the following result:

Claim 111.2.3: Let xo and z; € L. Then the set {val(zo— Az1) : A € K} has a greatest element.
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Proof . Let t = zo/xzy. Forally € K, let b, = Bu-1)(z). Asy € b,(K), the balls b,(K)
form a chain of non empty balls from K, hence z € Ub,(K). In particular, for all y € K,
val(t - z) > val(t - y) and hence val(zy — zz; ) is the maximal value we were looking for. ¢

Let us now prove by induction on |Z| that for any choice of T € L, we can findj € L separated
and generating the same K-vector space as the x;. The case [z| = 1 is trivial. Let us now
assume that n > 0 and by induction we find y generating the same K -vector space as (z;);-o
and such that the y; are K -separated.

Claim 11L.2.4: The set {val(zo - \-%) : X € K} has a greatest element.

Proof . For any choice of i < n and any choice of \.;, by C Cla1m (I1L.2.3), there exists (i, i) €
val(L) and z(4, i) € K such that (i, M) = val(2g — s - Ty — 2(4, Asi)yi) = max{val(zg -
N i — Ay;) : A € K}. Then any z € K is such that the max1mum is reached if and only
if val(z — 2(4,A\si)) > (4, A\s;). Indeed, if z is such that val(zg — s - Ty — 245) = (i, M),
then;

val(z — (i, Asi)) + val(y;) = val(zo = Aui - T = 2(3, Aet) i = (X0 = Mei Ui — 203)) 2 (i, Asi)
and if val(z - 2(i, \s;)) > v(4, Ass ), then:

val(zo — s Y — 2y;) = val(xg - Aui Yo — 200, M)y + (200, M) = 2) i) = (0, Asy).

Hence the 2 such that the valuation is maximal form a closed ball with radius (i, \.;). Let
b(i, \.;) be this ball. Note that b(i, \.;) (K) # @. Let us show that the b(7, \.;) form a chain.
Suppose that 7z, is such that (i, A;) > v(i, fi,; ), and let X € b(i, \.;) and x € b(i, fi..; ). Then
val(xg — Asi - Ty — Ayi) 2 val(zg — iy, - Uy — y;) and hence

Yo, <val((Mei = Tiey) Ty + (A= p)y;) = min{ A — pi5, A =} < (A= p).

It follows that A € b(i, 7i..;) and b(i, \.;) < b(4, i,;)- B B
As K is maximally complete, there exists z; € Us.. b(i, \si) (K), ie. val(zg — Asi - Uoy — 2iYs)
is maximal for any choice of \.;. It follows that val(z, — Z - 7) is maximal. ¢

Let Z be such that val(zg - Z-¥) is maximal and ¢ = 2o - Z - 7, then (¢,7) generates the same
K -vector space as the z;. Let us now show that (¢,7) is separated. For all z and \ € K, if
1 =0, we have val(ut + X-7) = val(A-7) = min{val(\;;)} = min{val(ut), val(\;;)} as 7 is
K -separated. Otherwise, suppose val(ut + A -7) > min{val(ut), val(\;y;)}. By maximality
of val(zo — Z-y) = val(t) we have:

val(t) + val(p) > val(ut + X -7) > min{val(x) + val(t), val(\;y;) }
and thus val(ut) > min{val(\sy;)} = val(X - 7). But then val(ut + A - 7) = min{val(\iy;)} =
min{val(ut), val(\;y;)}, a contradiction. |

Following [Del89; Cubi3], let us give the links between separation of the pair L|K and uni-
form stable embeddedness of K in L. In fact the proof of Proposition (111.2.5) is taken al-
most word for word from the one in [Cubr3], although we have slightly different assump-
tions and we put more emphasis on uniformity here. Let £ be an RV-extension of L&Y
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and let Ty, be the L’RV—theory of Henselian valued fields of characteristic zero. Recall
that RV, = K*/(1+n9) and that Ty, resplendently eliminates field quantifiers (cf. The-
orem (11.1.4)).

Proposition 111.2.5:
Let M = Tyen be an L-structure and ¢(x;s) an L-formula. There exists an L|gy,~formula
¥ (y;u) and polynomials Q; € Z[ X, T] such that for any N<M, where the pair K(M)K(N)
is separated, and any a € M there exists b € K(N) and ¢ € RV(M) such that ¢(N;a) =
(v (Q(N,0)); ¢).

Proof . By (resplendent) elimination of field quantifiers (and the fact that K is dominant),
we may assume that ¢(z;a) is of the form (RV,,(P(z))) where PeK(M)[X],neN
and v is an L|gy-formula. Let us write each P; as 3, a; HX As the pair K(M)|K(N) is
separated, the K(V)-vector space generated by the a; , is generated by a K(/V)-separated
tuple d € K(M). Note that |d| < |a| and adding zeros to d we may assume |d| = [a|. For
each i and y, find \; ,; € K(NV) such that a;,, = > ; A\, ;d;. We can rewrite each F; as
¥ d;Q;;(X, ), where @Q;; € Z[X,T] does not depend on @, and for all = € K(N) we
have val(P;(x)) = min;{val(d;Q; (z,\))}. As 1v,,(x +y) = rv,,(z) +,.n 1V, () whenever
val(z +y) = min{val(x), val(y)}, it follows immediately that

rv,(Pi(x)) = Z v, (d;)1vi (Qi (X))

jedi(z)

where J;(z) = {j : val(d;)val(Q; ;(x,\)) is minimal}.
The proposition now follow easily with b = X and ¢ = rv,,(d). ]

Let £,, be the language of ordered groups. 1f M is algebraically closed, we can obtain a
stronger statement.

Proposition 111.2.6:

Let M = ACVF and ¢(x,y) an Lai,-formula. Thereis an L,,-formula ) (y; u) and polynomials
Qi € Z[ X, T] such that for any N<M, where the pair K(M)|K (N) is separated, and any a € M
there exists b e K(N) and c € T'(M) such that (N ;a) = 1 (val(Q(N, b)); c).

Proof . The proof is essentially the same as for Proposition (111.2.6) except that we use the
quantifier elimination in the two sorted language. [ ]

Let us now give the two consequences of these computations that we will be using later
on.

Theorem 111.2.7 (AKE for stable embeddedness; algebraically closed case):

Let L|K be a separated pair valued fields such that L is algebraically closed. Then K is
stably embedded in L if and only if T'(K') is stably embedded in T'(L) — as an ordered
abelian group.

Moreover, if I'( K') is uniformly stably embedded in T'( L), then K is uniformly stably em-
bedded in L.

Proof . This follows immediately from Proposition (111.2.6). [ ]
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We will now be considering angular components in mixed characteristic (0, p). Recall that
R, = O/(p"M), R = U, R, and that angular component maps are compatible systems
of group morphisms ac,, : K* — R} such that ac,|,. = res,|,.. Note that we changed
conventions slightly compared to Chapter 11 because we fixed the residual characteristic
and hence we can restrict ourselves to the relevant residual rings.

Theorem 111.2.8 (AKE for stable embeddedness; unramified mixed characteristic with ac):

Let L|K be a separated pair of unramified mixed characteristic valued fields with angular
component maps such that L is Henselian and Ro( L) is perfect. Then K is stably embedded
in L if and only if T'( K) is stably embedded in T'( L) — as an ordered abelian group — and
R (K) is stably embedded in Ro(L) — as a ring.

Moreover if T'( K) is uniformly stably embedded in T'(L) and Ro(K) is uniformly stably
embedded in Ro(L), then K is uniformly stably embedded in L.

Proof . As explained in Section 11.1, an angular component is nothing more than a section of
the short exact sequence R, - RV,” — I'. Therefore, it follows from Proposition (111.2.5)
that we only need to prove that R u I'(K) is (uniformly) stably embedded in R u I'(L).
Because L is unramified, it follows from the quantifier elimination result mentioned in
Remark11.1.9.3 that I and R are orthogonal — i.e. any definable subset of R" x I'"" is a
union of products X x Y where X ¢ R" is definable in R and Y ¢ I'" is definable in
I". Hence it suffices to prove that I'( K') is (uniformly) stably embedded in I'(L) and that
R(K) is (uniformly) stably embedded in R(L).

For all n, the canonical projection resy ,, : R,, > R has a definable section defined by 7,,(z)
is the only y such that Ry ,,(y) = = and y is a p"-th power. Using this residual version of the
Teichmiiller liftings, one can show that R, (L) is @-definably isomorphic to W, (R (L))
and hence that R(K) is (uniformly) stably embedded in R (L) if and only if Ry (K) is (uni-
formly) stably embedded in Ry (L). ]

Corollary 111.2.9:
Let k be any algebraically closed field. The Hahn field K := k((t®)) is uniformly stably embedded
— as a valued field — in any elementary extension.

Proof . The field K is maximally complete — as are all Hahn fields — and so it is Henselian.
Moreover its residue field k is algebraically closed and its value group R is divisible. 1t fol-
lows that K is algebraically closed. By Proposition (111.2.2), any extension L|K is separated.
By Theorem (11L.2.7), it suffices to show that R is uniformly stably embedded — as an or-
dered group — in any elementary extension. But that follows from the fact that (R, <) is
complete and (R, +, <) is o-minimal, see [CS, Corollary 64]. [

111.3. T'-reparametrization
Let £ 2 L4y, T 2 ACVF be an L-theory that eliminates imaginaries. Assume that 7" is

C-minimal, i.e. K is dominant — every L-sort is the image of an £-definable map with
domain some K" — and for all M & T, every L(M )-definable unary set X ¢ K is a finite
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union of swiss cheeses (cf. Definition (0.2.8)). The two main examples of such theories are
ACVFY and ACVE," for some separated Weierstrass system A (cf. Section11.3).

Let M = T, f = (f\)xea be an L(M)-definable family of functions K" — I', A(z;t) be a
finite set of £L-formulas and p € S5 (M). We wish to study the family f and in particular
its germs over p (see Definition (111.3.3)), to show that they are internal to I'. This is later
used as a partial elimination of imaginaries result in enrichments 7" of T where T is stably
embedded: any subset of these germs definable in T is coded in I'°! — where eq is taken
relative to the theory induced by 7. We only achieve this goal in ACVFY and ACVE,* :=
(ACVFuUT4)°d. The idea of the proof is to reparametrize the family of functions (see
Definition (111.3.2)).

Remark 111.3.1:
1. Recall that I' is stably embedded and o-minimal in 7" (cf. Proposition (0.3.23)).

2. As T is an o-minimal group, the induced structure on I' eliminates imaginaries.

Let g = (g, )~ec be an L(M)-definable family of functions K" - T, where G c T'* for some
k.

Definition 111.3.2 (I'-reparametrization):
We say that g T'-reparametrizes f over pif for all \ € A(M), there is v € G(M) such that

p(2) = fa(x) = g,().

We say that T admits T'-reparametrizations if for all L( M )-definable families f = (fx)xen Of
functions K" — T there exists a finite set of L-formulas A(x;s) such that for all M = T and
p € S2(M), there exists an L(M)-definable family g = (g )ec of functions K" — T that
I'-reparametrizes f over p.

We will say that A is adapted to f (resp. to g) when any A-type decides when f),(z) =
frao () (resp. g, () = g, (2)).

Definition 111.3.3 (p-germ):

Assume that A is adapted to [ and that p is L( M )-definable. We say that f, and f,, have the
same p-germ if p(x) + fr,(x) = fi,(2). Let us denote 0, f\ € M* the code of the equivalence
class of )\ under the equivalence relation “having the same p-germ”.

Proposition 111.3.4:

Let us assume that g is a I'-reparametrization of f over p, that A is adapted to both f and g and
that pis L(M )-definable. The set {0, [\ : A € A} isinternalto T, i.e. thereis an L( M )-definable
one to one map from this set into some cartesian power of T".

Proof . As v is a tuple from I' and T is stably embedded in 7" and eliminates imaginaries
(see Remark (111.3.1)), we may assume that 0,9, € I'. Now pick any A. Let v be such that
p(z) - fa(z) = g4(x). Then 0,¢, only depends on J, f, and not on X or ~. 1t follows that
the set {0, f\ : A € A} is in £(M)-definable one to one correspondence with — a subset of
— the set {0,9, : v € G} which is itself a subset of some cartesian power of I. [ ]
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Let 7' now be either ACVFY or ACVF;" and £ be respectively L% or L% o Let us now show
that we can reparametrize the valuation of certain terms.

If Z; and Z, ¢ K are finite sets, we will denote D(Z1, Z5) := {val(z; — 23) : 21 € Z; and
29 € Zo}. Let us order the elements in D(Z;, Zs) asdy > dy > -+ > dy, and let d;(Z1, Z3) := d;.
If Z1 = {z} is singleton we will write d;(z, Z5).

Proposition 111.3.5:

Lett(z,y,\) : K" = K be an L|, (M )-term polynomial in y where |z| = n, |y| = 1 and |\| =
l. Let Z\(x) := {y : t(x,y, ) = 0}. Then there exists an L(M )-definable family q = (q,))nen of
functions K" — T such that forall N > M, x € K"(N) and y € K(N), there exists jio € A(M)
such that for all \ € A(M) there exists n € H(M') and n smaller than the degree of t in y such
that:

val(t(z,y,\)) = g, (x) +n-di(y, Z,,(2)).

Proof . For all & € Z,(x), let m,, be its multiplicity and let us define:

t(x,y,\)
u(x,\) =
[T w-a)™
aeZy(x)

which is £-definable and does not depend on y, and

Do (@) 1= val(u(z, A)) + 2} d;,(2(x), Zy(x)).

where £k is at most the degree of ¢ in y and j; < (2. Note that because we can code disjunc-
tions on a finite number of integers, ¢ can be considered as an £( M )-definable family of
functions K" - T.

Let N> M,z e K"(N) and y € K(N) and let us first assume that there exists g € A(M)
suchthatd,(y, Z,,,(z)) = max,{d:(y, Z,(x))} andlet oy € Z,,,(x) be such that val(y—cay) =
di(y, Z,,,(x)). Now pick any A € A(M) and « € Z,(x). Let n = puo.

Claim 111.3.6: Either val(y — o) = di(y, Z,,,(x)) or val(y — «) = d;(Zx(z), Z,(z)) for some j.
Proof It val(y—«) # di(y, Z,,()), thenval(y-a) < di(y, Z,,,(z)) and val(y —a) = val(a -
ap) =dj(Zx(x), Z,,(z)) for some j. ¢

In the other case, if there does not exist a maximum in {d; (y, Z,(x))}, pickany A e A(M).
Then there exists € A(M) such that d(y, Z,(z)) > di(y, Zx(x)). Let ag be such that
val(y-ap) = di(y, Z,(x)),thenforalla € Z,(z), val(y—a) = val(a-ap) = d;(Z\(x), Z,(z))
for some j and that concludes the proof.

In both cases, as val(t(z,y,A)) = val(u(z,\)) + X ez, (2) Maval(y — @), it follows that

val(t(z,y, 1)) = val(u(z, ) + Ty d;,(Zx(2), Zy(2)) + n- di(y, Zy, (w))
= q)\,k,j,uo(x)+n'd1(yazﬂo(x))

for some n, k and . [
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Proposition 111.3.7 (Existence of I'-reparametrization):

Let f = (fx)xea be an L( M )-definable family of functions K" — T'. Then there exists an L( M )-
definable family g = (g., - )weqec of functions K" — T where G ¢ T* for some k and a finite set
of L-formulas A(x;t) such that forany p € S (M) there exists wy € Q(M ) such that (gu, - )~ec
is a T'-reparametrization of f over p.

Proof . We work by induction on n. The case n = 0 is trivial as f is nothing more than a fam-
ily of points in I" that can be reparametrized by themselves. Let us now assume thatn = m+
land z = (y, z) where |z| = 1. Because K is dominant, we may assume up to reparametriza-
tion that \ is a tuple from K. If T = ACVFY, the graph of f) is given by an £9 (M )-formula.
If T = ACVFE}Y, by Corollary (IL5.5) there exists an £9(M)-formula (2, w,~) and L|g-
terms 7(x, ) such that M & f\(y, z) = yifand only if M = (z,7(y,\),~). Taking 7 to be
the identity, the graph of f, also has this form when 7' = ACVFY. By elimination of quan-
tifiers in ACVFY (or in the two sorted language), we know that (2,7, 7) is of the form
x((val(P;(z,w)))o<i<k, ) Where x is an Eg‘r—formula and P, e K(M)[Y, W]. We may also
assume that y defines a function h : T'* - T.

Let t;(y, 2, A) = P,(2,7(y,\)) and ¢; = (¢;,)yen, be an L(M)-definable family of functions
K™ — T as in Proposition (111.3.5) with respect to ¢;. By the usual coding tricks we may
assume that there is only one family ¢ = (g,),en such that for all i and n € H; there exists
e € Hsuch that ¢;,, = ¢.. By induction, Proposition (111.3.7) holds for ¢ and there exist a finite
set of L-formulas Z(y; s) and an £( M )-definable family (u. s)cer sep of functions K™ — T,
where D ¢ T for some I, such that for any p € S;(M), for some ¢y € E(M), (usys)sep is a
I'-reparametrization of q. Let Z; \(y) = {z : Pi(y,2,A) =0} and

ge,ﬁ,g,ﬁ(y’ Z) = h((u€,5i ([E) T dl(Z> Zi,#i(y)))oskk)'

Let also on(y, 2; N, €, 11,6):="fr(y, 2) = 9. 52y, 2)" and A(y, 2; s, \e, i, 0,m) = E(y;8) U
{on(y, z;\, e, 11,6) :we N}. Forall p € SiZ(M), there exists ¢y € E(M) such that (ue, s)sen
I'-reparametrizes ¢ over p|-. Let (y,z) & p. By Proposition (111.3.5) there exists a tuple
11y € A(M) such that for all A\ € A(M), there exists tuples 7 € H(M) and 7 such that
val(t;(y,2,A)) = qn, (y) + 15 - di (Y, Zi o, (). As y & pl, there exists 6; € D(M) such that
40, (4) = t1ey 5, () and hence

M, 2) = h((val(ti(y, 2, A)) Josi<k)
h((teg.5:(y) + 120 - di (Y Zipo () Josick)

9507%57%(97 Z)

Because p decides such equalities, this holds in fact for all realizations of p. We have just
shown that (g, 57 )5ep ey Te€Parametrizes f over p. But because 4 is a tuple from I'" and
disjunctions on a finite number of bounded integers can be coded in T, it is in fact a I'-
reparametrization. [ ]

Corollary 111.3.8:
The theories ACVFY and ACVF® admit T'-reparametrizations.
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Proof . This is an immediate consequence of Proposition (111.3.7). [ ]

In fact, in Proposition (111.3.7), we have proved a slightly stronger result. These theories
admit what we could call uniform I'-reparametrizations because the I'-reparametrizations
of a given family f come in a definable family that does not depend on the type p. But we
will not be needing this stronger result afterwards.

Question 111.3.9: Do all C'-minimal extensions of ACVF admit I'-reparametrizations?

I11.4. Types and uniform families of balls

Let £L 2 Ly, and T 2 ACVF be a C-minimal L-theory that eliminates imaginaries. In
this section, we wish to make precise the idea that in C'-minimal theories, n + 1-types can
be viewed as generic types of balls parametrized over realizations of an n-type. This is an
obvious higher dimensional generalization of the unary notion of genericity in a ball (cf.
[HHMo006, Definition 2.3.4] and Section 1.3 [3 Qp]). To do so, we define a class of A-types
(see Definition (111.4.12)) for A a finite set of £-formulas that will play a central role in the
rest of this chapter. We also show that at the cost of enlarging A, we may assume that all
types are of this specific form.

We take the convention that points in K are closed balls of radius +oo and K itself is an
open ball of radius —oo.

Definition 111.4.1 (B!} and Bbt ):

Let B be the set of all closed balls (potentially with radius +o0), B be the set of all open balls
(potentially wzth radius — oo), B:=BuBuandleN,, Wedefine B! := {BcB:|B|<I}. We
also define B .= { B « B : all the balls in B have the same radius and they are either all open
orall closed}

Notation I11.4.2:

For all B € BIY we will be denoting Uy 3 b — i.e. the valued field points in the balls in B —
by S(B). Because the balls can be nested, S is not an injective function. But in each fiber of
S there is a unique element with minimal cardinal — the one where there is no intersection
between the balls. We will denote by B this canonical section of S.

Remark 111.4.3:

1. As B is the disjoint union of the sets of codes for open balls and the set of codes for
closed ones, one can decide wether a given code is the code of an open or a closed ball

and hence BBJ is indeed an interpretable set. In fact, one can also recognize if a ball
b is open or closed by looking if the set {val(x — y) : 2,y € b} has a smallest element
or not.

2. Note that @ ¢ Bg?
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3. Points in Bg? behave more or less like balls. For example if B; and B, € Bgi] are such
that SB; c SB,, where c denotes the strict inclusion, then either all the balls in B;
have smaller radius than the balls in B, or if they have equal radiuses, then the balls
in By must be open and those in B, must be closed, or else the inclusion would not
be strict.

Definition 111.4.4 (Generalized radius):

Let B ¢ BU\ {@). We define the generalized radius of B — denoted grad(B) — to be the pair
(7v,0) when the balls in B are closed of radius v and (-, 1) when they are open of radius ~y. The
set of generalized radii — a subset of (T' U {00, +00}) x {0, 1} — is ordered lexicographically.

We also define the generalized radius of @ to be (+o0, 1), i.e. greater than any generalized radius
(1]

of non empty B € let .
Proposition 111.4.5:
Let (B;)icr < Bg?. Assume that there exists iy such that the balls in B;, have greater — or

equal — generalized radius than in all the other B; — in particular this holds if I is finite. Then
B(N: S(B;)) € Bj,. Moreover, there exists (i;)o<j< € I such that (; S(B;) = N}= S(B;,)-

Proof .For any b € B;,,if N; S(B;) nb + @ then b ¢ N; S(B;). Hence N; S(B;) = S({b € B, :
bnN; B; #+ @}) and B(N; S(B;)) € B,,. Moreover, if N; S(B;) N b = &, then there exists i,
such that bn S(B;,) = @ and N; S(B;) can be obtained by intersecting B;, with the B;, of
which there are at most /. [ ]

Definition 111.4.6 (d;( By, B2)):

Let by and by € B. When by n by = @, we define d(by, by) to be val(xy — x3), where x; € b;, which
does not depend on the choice of the x;, When by C by (and vice versa), we define d(by,by) =
min{rad(b,),rad(b2)}.

For all By and By € B let us define D(B1, Bs) := {d(b1,b3) : by € By and by € By} and let us
list the elements in D(By, By) as dy > dy > -+ > dy. For all i < k, we define d;( By, Bs) := d,.

This definition coincides with the definition in Section 111.3 for finite sets of points. We
also define do( By, Bs) := min{rad(By),rad(By)} — which is equal to d;(B;, By) when
S(B1) nS(By) # @. For later coding purpose we might want d;( By, Bs) to be defined for
all 7 < [2 in which case, for i > k, we set d;( By, Bs) = dy.

Let M =T, F = (F)\)xea be an L( M )-definable family of functions K" — Bg;] — in partic-
ular A is an £( M )-definable set — and A(z,y;t) a finite set of £-formulas where z € K",
y € K and t is a tuple of variables. To simplify notations, we will be denoting S(F)(x)) by
F3(z). Note that if n = 0 all of what we prove in this section and in Section 1115 still hold
(and is in fact much simpler because we are considering fixed balls instead of parametrized
balls).

Definition 111.4.7 (A adapted to F)):
Say that A is adapted to I if there are Ay and Ak € A such that for all v € K", ), (z) = @ and
Fy(x)={K}andforallp e Sﬁy(M), p(x,y) decides:
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(i) Foroe{=,c}, Aand (f1;)o<ict € A(M), if F}(2) @ Upciar FS (x);
(ii) Foroe {=,¢c}, Aand (p;)ocic € A(M), if F\(z) OU;q F,, (z);
(ifi) For A1, A and jue A(M), if FS(x) = F$ (z) n FS (2);
(iv) For A € A(M), if the balls in F\(x) are closed;

(v) Foroe{=,<}, A\, py and p1o € A(M) and i < I?, if rad(F)\, (x)) Od;(F), (x), F,(x));

Note that none of the above formulas (and many later on) actually depends on y so what is
really relevant is not p but the closed set induced by p in S=(M).
Until Proposition (111.4.15), let us assume that A is adapted to F'andletpe S f,y(M ).

Definition 111.4.8 (Generic intersection):
We say that F'is closed under generic intersection over p if for all \y and \y € A(M ), there exists
p € A(M) such that

p(z,y) - Fi(x) = FY, (z) 0 Fy, ().

Let us assume, until Proposition (111.4.15), that F is closed under generic intersection over
P

Definition 111.4.9 (Generic irreducibility):

Forall A € A(M), we say that F), is generically irreducible over p if for all jn € A(M), if p(z,y) +
F(z) ¢ Fx(z) and p(x,y) - F,(z) # @ then p(z,y) v F,(x) = F\(z).

We say that F' is generically irreducible over p if for every A € A(M), F) is generically irreducible
over p.

Let us now show that generically irreducible families of balls behave nicely under generic
intersection.

Proposition 111.4.10:

Let Ay and \y € A(M) be such that F\, and F), are generically irreducible over p and p(z,y)
implies that the balls in F)\, (x) have smaller — or equal — generalized radius than the balls in
P, (). Then either p(w,y) + F} (v) n F (x) = @ or p(x,y) = FY (z) n Fy (x) = F (2).

Proof . Let (a,c) = p. By Proposition (111.4.5), we have that B(F} (a) n F} (a)) € FY (a).
By generic intersection, there exists u such that p(z,y) + F§(x) = Fy (x) n Fy (). Then
F,(a) € F\,(a) and hence, if F,(a) # @, Fj,(a) = F),(a). ]

Corollary I11.4.11:
Assume pis L(M )-definable. Then A, := {\ € A : F), is generically irreducible over p} is L(M)-
definable and the L( M )-definable family (F))xen, is closed under generic intersection over p.

Proof . The definability of A, is a consequence of the definability of p and the closure of
(£\)aea, under generic intersection follows from Proposition (111.4.10). [ ]

Until Proposition (111.4.15), let us also assume that F' is generically irreducible over p.
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Definition 111.4.12 ((A, F')-Generic type of E over p):
Let E c A(M). Let ¥ a p(x,y;t, \) denote the set A(x,y;t) u{y € Fr(x) A X € A}. We define
ag/p(x,y) to be the (A, F')-generic type of I over p to be the following ¥ 5 p-type:

p(z,y) u {yeFi(z): e E}
U {y¢FS(x):pe A(M)andforall \e E, p(x,y) + F$(x) c Fy(x)}.

Note that most of the time, A and F will be obvious from the context and it will not be an
issue that the notation o, mentions neither A nor F.

Proposition 111.4.13:
Let E c A(M) be such that g, is consistent, then «py, generates a complete W 5 p-type.

Therefore, when it is consistent, we will identify o/, with the type it generates.

Proof . Pick any yu € A(M). Either there exists A € E such that p(z,y) = F$(z) n F}(z) = &,
in which case agy,(z,y) - y ¢ F5(x), or there exists A\ € E such that p(x,y) + Fy(z) ¢
F3(x), and then agy,(z,y) -y € FS(x),or forall X € E, p(x,y) + F(x) c Fy(z) and
hence agy,(v,y) -y ¢ F3(x). [ ]

Remark 111.4.14:
Any g € SfﬁF(M) is of the form ag,. Indeed let p == ¢|, and £ = {A e A(M) : q(z,y) +
y € Fx(x)}, then, quite clearly, ¢ = agy,,.

Although this will not be used afterwards, when y does not appear in A, we can also prove
consistency under some obvious hypothesis:

Proposition 111.4.15:

Assume that y does not appear in any of the formulas in A(x,y;t) and let E ¢ A(M) be such
that forall \y and )5 € E, p(z) + F\,(x)nF)\,(z) + @. Then aE/p‘M is consistent and generates
a complete W A p-type over M.

Proof . Let us show consistency — completeness then follows from Proposition (111.4.13). If
this type is not consistent, there exists finitely many \; € E and finitely many p; € A(M)
such that forall A € E, p(x) + F$ (v) c Fy(x) and p(x) = N F5 (2) € U; F5 (). Replacing
N; F} (x) by their generic intersection — which is also in E by Proposition (111.4.10) — we
find A € E such that p(z) + Fy(z) ¢ U; F (). Let z = p and b be one of the balls in
F\(x). This ball is covered by finitely subballs from U; F),,(x) and, as the residue field is
infinite, it must be included in one of those balls. Let us assume that b ¢ F} (z). Then
the balls of F(2) must have smaller generalized radius than those of F},, (z). Hence by
Proposition (11L4.10), F$ (x) n F}{(x) = F}(x),i.e. F§{(z) € FS (x), a contradiction. [
Now that we have found finite sets © of £-formulas, namely those of the form V4 p, for

which we understand the ©-types, let us show that any finite set of formulas with variables
in K" can be decided by some U, r for well chosen A and F'.

Proposition 111.4.16 (Reduction to WA p-types):

Let O(z,y;t) be a finite set of L-formulas where x € K" and y € K. Then there exists an L-
definable family (F))xen of functions K" - B! and a finite set of L-formulas A(z; s) such
that any U A p-type decides all the formulas in ©.
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Proof . Let o(x,y;t) be a formula in ©. For all tuples a € K and ¢ € M, the set p(a, M;c) has
a canonical representation as a swiss cheese, i.e. is of the form U; (b; \ b; ;) where the b, and
b; ; are algebraic over ac. In particular, there exists I € N, and £(c¢)-definable functions
H,.: K" > Bland G, : K" > B such that M = Vy(y € HS (a) \ G5 .(a) <
¢(a,y;c)). By compactness, we can find finitely many £-definable families (H; ). and
(Gipe)e of functions K™ — Bl+! such that for any choice of ¢ and a there is an i such that

pla,y;¢) = ye 0, (a) NG}, (a). Choosing I to be the maximum of the I; , and

using any coding trick, one can find an £-definable family (F}) e of functions K™ — Bl
such that for any ¢ € ©, 7 and c we find yyand v € A such that H; , . = Fj, and G, , . = F,,.

Now let A(xz;t,p,v) = {Vy (p(z,y;t) <= ye FS(x)\ FS(x)) : ¢ € ©}. Then for any
p € S;ijjF(M), ¢ € © and tuple ¢ € M, there exists p and v € A(M) such that p(x,y) +
o(x,y;¢) <= ye Fi(x)\ F5(r) and either p(z,y) -y € F5(x) Ay ¢ FS(x) in which case
p(x,y) + p(z,y;c) or not, in which case p(x,y) + —p(z,y;c). ]

And now let us show that we can refine any A and F' into a family verifying all previous
hypotheses.

Proposition 111.4.17 (Reduction to Bg?):

Let A ¢ M and (F))ea be an L(A)-definable family of functions K — B, Then there
exists an L( A)-definable family (G,),cq of functions K" — Bgi] such that for all X there exist
(wi)oi< Such that F\(z) = U; G, () and for all w there exists A such that G, (z) ¢ F\(z).

Proof . We define G, ; ;(z) := {b € Fx(z) : bis open if j = 0 closed otherwise and b has
the i-th smallest radius among the balls in F)\(x)}. As we can code disjunctions on a finite
number of bounded integers, G = (G, ). can indeed be viewed as an L£(A)-definable
family. Then for all z, G, () ¢ B and for all z and ), Ghij(x) € Fa(z) and Fy(z) =
Ui j G, (x) and at most [ of them are non empty. ]

Definition 111.4.18 (Generic complement):
We say that F is closed under generic complement over p if for all X and y € A(M) such that
p(z) + F,(x) € F\(z), there exists k € A(M) such that

p(z) - Fy(z) = F () u F(x).

Note that p can indeed decide any such statement because it is equivalent to Fy(z) =
F.(r)u F(r)and F3(z) n F3(x) = @.

Lemma 111.4.19:

Let F' = (F))xea be an L(M)-definable family of functions K" — Bg?, A(x;t) a finite set of
L-formulas adapted to F and p € S5 (M). Assume that F is closed under generic complement

over p. Let A, := {\ € A : F}, is generically irreducible over p}, then for all X € A(M) there exists
(/\i)0<i<l € AP(M) SUCh thatp(x) = F,\(ZL’) = Uz F)\7(ZIZ)

Proof.Let x = p. We work by induction on |F)(z)|. If there exists u € A(M) such that
F,(z) c Fy(z)and F,(x) #+ @, then there exists k € A(M ) such that F)\(z) = F,(z)wF,(z).
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We now apply the induction hypothesis to F),(z) and F,,(z). Finally, because |F)(x)| <,
we cannot cut it in more than [ distinct pieces. [ ]

Proposition 111.4.20 (Reduction to irreducible families):

Let A € M, (F))aen be an L( A)-definable family of functions K" — Bgi] and A(z;t) a finite
set of L-formulas. Then, there exists an L( A)-definable family (G,)cq of functions K" — Bglt]
and a finite set of L-formulas ©(z;t,s) 2 A(xz;t) such that © is adapted to G and for any
peSg(M):

(i) G is closed under generic intersection and complement over p;
(ii) Forall w € Q(M) there exists A € A(M) such that p(x) + G, (z) € F)\(x);
(iii) Forall \ € A(M), there exists w € (M) such that p(x) + F\(z) = G, (x);
(iv) Forall w € Q(M), there exists (w;)o<i< € S0, (M) such that p(z) - G, (z) =U; G, (z);
where Q, := {w € Q : G,, is generically irreducible over p}.

Proof . Adding them if necessary, we may assume that F' contains the constant functions
equal to @ and {K} respectively. Let Hx(z) = B(Niq F} (2)). 1t follows from Proposi-
tion (111.4.5), that H = (Hy )y 1 is well-defined and that 111.4.20.(ii) holds for H. Adding
finitely many formulas to A(x;t), we obtain Z(x; s) that is adapted to H. Let p € S (M).
Proposition (111.4.5) also implies that for a given z, the intersection of any number of F7 ()
is given by the intersection of r + 1 of them and hence is an instance of H. As = is adapted
to H, we have proved that H is closed under generic intersection over any =-type p. Con-
dition 111.4.20.(iii) also clearly holds for H.

Let B € BLY we define B! to be B and B to be its complement (in B). As previously, to

st »

simplify notations, for € € {0, 1}, we will write H(x) for (H,(z))".

Claim 111.4.21: Let B € Bgi]. Any boolean combination of sets (C;) <, € B (where the negatlon
is given by the complement in B, i.e. C°n B) livesin Bgi] and can be written as (N, U (C ; 7

B) where the C; . are taken among the C; and €, € {0, 1}.

Proof . Such a boolean combination lives in Bg} because it is a subset of B. The fact that
it can be written as ; Uk(Cj]kk N B) is just the existence of the conjunctive normal form.
Moreover, as in Proposition (111.4.5), any intersection N C%* n B for fixed j can be rewrit-
ten as the interaction of at most [ of then (for each ball from B missing from the intersec-
tion, choose a k such that this ball is not in CEJ *n B). Similarly, the union can be rewritten
as the union of at most [/ of them by choosmg, for all b € B that appears in the union a j
such that b appears in U, (Cj,] "N B). ¢

Let Gunz() = Mia U (2 () 0 H, () whenever all the H,, , < H,(x) and H,(x)
otherwise. Adding some more formulas to =, we obtain a finite set of formulas ©(z; ¢, s, u)
that is adapted to G. It is clear that 111.4.20.(ii) and 111.4.20.(iii) still hold. Furthermore,

G az() NG z5(x) = NU(S(HLS (2) n S(HzL () 0 Hj(x) 0 Hy()).

i7k ]7T
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As H is closed under generic intersection there exists p such that H3(z) = H(z) n H3(x).
By Proposition (111.4.5), we have both B(S(H,.? (x))nH5(x)) € H,(x) and B(S(H77 (2))n
H$(x)) € H,(x) and we can conclude by Claim (111.4.21) that G is also closed under generic
intersection over p. Similarly we show that whenever G, ;. (7) € Go75(2) then G7) ;. _(7)n
G, 77(x) is also an instance of G, i.e. G is closed under generic complement over p and

hence 111.4.20.(iv) is proved in Lemma (111.4.19). [ ]

111.5. Implicative definability

Let us begin with the example that motivated the definition of implicatively definable types.
Let b be an open ball in some model of ACVF and «; be its generic type — i.e. the type
of points that are in b but avoid all its strict subballs. Let X be any set definable in an
enrichment of ACVF. Then o, + x € X if and only if there exists &’ € B such that &’ c b
and b \ b’ ¢ X. Thus, although for most definable sets X, both X and its complement are
consistent with a4, but if it happens that a,(z) + = € X, then there is a formula that says
s0. We have just shown that «, is £-implicatively definable — see Definition (I1L5.1) — for
any enrichment £ of ACVF. If (b;);; is a strict chain of balls, i.e. P := (), b; is not a ball,
the exact same proof shows that the generic type of P is also L-implicatively definable.

If b is a closed ball, the situation is somewhat more complicated because o (z) + x € X
if and only there exists finitely many maximal open subballs (b;)o<;< of b such that for all
reK,xebU;b; = x € X. Because the set of maximal open subballs of a given ball
is internal to the residue field, to obtain that «, is L-implicatively definable, we need to
know that the £-induced structure on k eliminates 3% to bound the number of maximal
open subballs we have to remove. Recall that an £-theory 7" eliminates 3 if for every £-
formulas ¢(z; s) there is an n € N such that for all M = T and m € M, if |p(M;m)| < oo
then |o(M;m)| < n.

The notion of implicative definability will play a fundamental role in Section111.6. The
main result of this section is Corollary (111.5.12) which says that, under some more hypoth-
esis on the families of parametrized balls we consider, the types of the form oy, (cf. Defi-
nition (111.4.12)) are implicatively definable if F is definable and p is implicatively definable.
The proof is essentially a parametrized version of the argument above. We then prove that
we can refine families of parametrized balls so that they have the necessary properties.
Let £ be a language and M an L-structure.

Definition 111.5.1 (L-implicative definability):
Let p be a partial L(M)-type. We say that p is L-implicatively definable if for all L-formulas
o(x; s) there exists an L( M )-formula 6(s) such that for all tuples m € M,

M = 60(m) ifand only if p(x) + @(x;m).

Let A ¢ M. If we want to specify that 0 is an L( A)-formula, we will say that p is L-implicatively
L(A)-definable.

Remark I1L.5.2:
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1. The notion of implicative definability is a generalizes definability of types to partial
types. If pis a complete L-type then it is £-definable if and only if it is £-implicatively
definable.

2. The partial types we will consider here are A-types for some finite set A(x;t) of £L-
formulas. Note that if p € S5 (M) is L-implicatively £( A)-definable, it is in particular
L(A)-definable asa A-type, i.e. for any formula p(x;t) € A, thereisan £L( A)-formula
0(t) such that for all tuples m € M, o(x;m) € pif and only if M E 0(m).

Let us now prove some results on implicative definability that will not be needed afterwards
but that shed some light on this notion.

Proposition 111.5.3:

Let A(x;t) be a set of L-formulas and p € S5 (M) be L-implicatively definable. Assume that M
is (Ro +|Al)*-saturated, then for all N > M, p|y is L-implicatively definable — using the same
formulas.

Proof . Let ¢(x;s) be any L-formula. By L-implicative definability of p, there exists 6(s)
such that for all tuples m € M, pl|,,(x) + p(x;m) if and only if M £ 6(m), which in turn is
equivalent to the existence of a finite number of ¢;(x;m;) € p|,, —i.e. M & d,x;(x;m;)
where d,z 1;(x;t;) is the L(M )-formula in the defining scheme of p relative to ¢; — such
that M = Va A; ;i (x;m;) = @(x;m). Hence

0(s) = \/ Ft(N\dpxi(x;t) n (Ve N\ i(xst) = p(x;5))).

TeA  i<d i<d

Because there are at most X, + |A| parameters involved in the formulas above and M is
(Ro + |A])*-saturated, there exists finitely many tuples (1, )o<;<x such that

0(s) = \/ (A dprijiwitys) n (Vo Nbja(w;tsa) = o(x;5))).
Osj<k  isd i<d
It follows thatinany N £ M, the same implication holds and hence forallm € N, N = 6(m)
implies that p|y + ¢(z;m).
Now assume, assume that there exists m € N such that N = -6(m) but p|y + ¢(z;m).
Then there exists (1;(s;m;))o<i<k € p|y such that N & Vo A ¢;(x;m;) = ¢(a;m). There-
fore

Nk 3s=-0(s) A FE (N dpz pi(z; t;) A (Vo N\ vi(z;m;) = o(x;m))).
Because N > M, this also holds in M, contradicting the L-implicative definability of p. =

Remark 111.5.4:

The saturation hypothesis is not superfluous. Indeed, let £ := E, M be the L-structure
where F is an equivalence relation with exactly one class of every finite cardinality. Let
A(x;t) :=={x =t} and p := {x # m : m € M }. Then by quantifier elimination and the fact
that {m € M : p(z) - xEm} = @ is definable, p is L-implicatively definable. But for all
N>M,{neN:p|y(z)+-xEn} =M is not definable if N + M.
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Proposition 111.5.5:
Let A ¢ M. Assume M is | A|*-saturated and strongly | A|*-homogeneous. If p is L-implicatively
definable and Aut(M | A)-invariant, then it is L-implicatively L( A)-definable.

Proof . Let p(x; s) be any L-formula and 6(s) be the £-formula such that for all tuples m ¢
M, M e 6(m) if and only if p(z) + p(z;m). Let 0 € Aut(M/A) and m € M be such that
M & 6(m). Then p = o(p) + 0(x;0(m)) and hence M = 6(o(m)), i.e. O(M) is stabilized
globally by Aut(M/A). ]
As previously, let now £ 2 Lg;y, T 2 ACVF be a C-minimal £-theory that eliminates imag-
inaries, R be the set of £-sorts, £ be an enrichment of £, T an Z—theory containing 7',
M e T and M := M| ‘ - We will also be assuming that k is stably embedded in T and that
the induced theory on k eliminates 3.

Let A c M, A := R(A), F = (F))aea be an £L(A)-definable family of functions K" — Bgi]
and A(z,y;t) a finite set of L-formulas where x e K" andy e K, p € Sﬁy(M) be definable.
Assume that A is adapted to F' and that F is closed under generic intersection over p and
is generically irreducible over p.

Definition 111.5.6 (Generic covering property):

We say that F' has the generic covering property over p if for any E ¢ A(M ) and any finite set
(Ai)o<i<k € A(M) such that for all i € E, p(w,y) + F (x) ¢ F$(x), there exists (+;)ocja €
A(M) such that:

(i) Forall j, p(w,y) + “the balls in F,, () are closed”;
(i) Forall i€ E and j, p(x,y) + I3 (z) € F(z);
(iii) Forall, p(x,y) + F () € U FS (x);
Note that if £ = {\o} and p(z,y) + “the balls in F)\,(z) are closed”, then the generic cov-

ering property holds trivially as it suffices to take all x; = Ay. 1t will only be interesting if
p(x,y) + “the balls in F)\,(x) are open” or F does not have a smallest element.

Let £ ¢ A be L(A)-definable and assume € ¢ A be £(A)-definable.

Proposition 111.5.7:
Assume that one of the following holds:

(i) E(M) does not have a smallest element over p, i.e. for all \ € E(M) there exists ju € (M)
such that p(x,y) - F$(z) ¢ Fy(x);

(ii) thereisa Xy € E(M) such that forall X e E(M), p(x,y) + FY (x) € F{(z) and p(x,y) +
“the balls in F\,(x) are open”.

Ifpis L-implicatively L(A)-definable and F has generic covering property over p, then Qe (77)/p
is L-implicatively L( A)-definable.

Proof . Let ¢(x,y; t) be an £-formula. Then, for all tuples m € M such that e wyp (T Y) F
o(x,y;m), there exists Ao € £(M) and a finite number of (\;)o<icr € A(M) such that for
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all e E(M)and i >0, p(zx,y) - Y (x) € FS(x) and p(2,y) +y € Fy (2) N Uiso Fy (2) =
¢(x,y;m). By the generic covering property, we can find (#;)o<j« € A(M ) such that, for all
j,p(x,y) +“theballsin F,, () are closed”, forall € £(M) and j, p(x, y) + F¢ () € Fj3(2)
and for all i > 0, p(z,y) v F (x) € U; FE (2).

If £(M) does not have a smallest element over p, for all 4 € (M) and j, we have that
p(z,y) = F2(x) c Fj(x). If £(M) has a smallest element, because the balls in F),(z)
are open and those in () are closed, we also have p(z,y) + F¢ (v) c Fy (2). As the
U, F3, () covers U; FY (), it follows that:

p(z,y) Fye By (2) s U Fe(2) = o(z,y;m).
0gy<l
By L-implicative £(A)-definability of p and £(A)-definability of I there exists an L(A)-
formula 6, (k, 1) equivalent to p(x,y) = F3(x) c Fj3(x) and an L(A)-formula 6 (o, %, m)
equivalent to p(z,y) + y € F}, (2) N Uja FE, () = ¢(z,y;m). We have just shown that,
for all tuples m € M, ag w2 y) F p(x,y;m) implies that:

MIZ I € E IR e A /\VM €& (51(%]‘,/1/) A (52()\0,%,771).
<l
The converse is trivial. ]

Definition 111.5.8 (Maximal open subball property):
Say that F' has the maximal open subball property over p if for all \; and \y € A(M) such that
p(x,y) = F} (x) ¢ F} (), there exists (11;)o<i<t € A(M) such that:

(i) Foralli, p(x,y) + “the balls in F,,,(x) are open”;
(ii) Foralli, p(x,y) +rad(F)\,(x)) = rad(F, (x)).

(iii) p(z,y) - I (z) € U; I (2);

Note that when the balls in F),(z) are open, it suffices to take all y; = \o. Hence this
property is only really useful when the balls in F), () are closed.

Proposition 111.5.9: . .

Assume that there is a Ao € (M) such that for all X € E(M), p(x,y) + Fy (v) € F{(z) and
that p(x,y) + “the balls in F\,(x) are closed”. Assume also that p is L-implicatively L(A)-
definable and that I' has the maximal open subball property over p, then the type g 57y, is
L-implicatively L( A)-definable.

Proof . 1f the balls in F) () have radius +oo, they are singletons. By irreducibility, F),(z)
does not have any strict subset of the form F)(x) and ag 37y, - ¢(z,y;m) if and only if
p(x,y) Fy e F} () = ¢(x,y;m). We can conclude immediately by L-implicative £( A)-
definability of p. We may now assume that the balls in F) (x) have a radius different from
+00. Let us begin with some preliminary results.
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Claim l11.5.10: Let (Yo 2 )aca zekn € {b : b is a maximal open subball of some V' € Fy, ()} be
an L( M )-definable family of sets. Then there exists k such that for all « € A and = € K", either
|Yoz| 2 00o0r Yy | <k

Let B, (a) denote the closed ball of radius y around a.

Proof.Let Y1 g zac = {b € B :beY,,, bisamaximal open subball of Eval(c)(a)}. Note
that for any maximal open subball b of B () (a), the set {(z — a)/c: x € b} is a coset of M
in O, i.e. an element of k that we denote res, .(b). The function res, . is one to one. Let
Yv?,a,x,a,c = resa,c(}/l,a,z,a,c)-

ThenYs = (Yauz.a.c)azaciSan Z(H )-definable family of subsets of k and hence by stable
embeddedness of k in 7" — as well as compactness and some coding — there exists an
L(k(M))-definable family (X,)q4ep where D ¢ k" for some 7 such that for all («, z, a, ),
there exists d € D such that Y, ; .. = X4. Moreover as the theory induced on k eliminates
3%, there exists k such that for all d € D, either | X | > oo or | X4| < k. It follows that for all
(o, z,a,c), either |Y] 4 1. 4c| 2 00 O [Y] 444 < k. But, as there are at most [ balls in F), ()
and that each of these balls contains infinitely or at most £ maximal open subballs from
Y., we have that for all z and o, |Y,, .| > o0 or |V, .| < k. ¢

Let X, := {\ : p(z,y) # y € F{(z) = ¢(z,y;m) and p(x,y) + “the balls in F)(x) are
maximal open subballs of the balls in Fy,(z)” }. By L-implicative definability of p, X, is
an L(M)-definable family. Let Y, , := {b: 3\ € X,,, b € F\(z)}. Then by Claim (I1L5.10),
there exists & such that for all m and z, |Y;,, .| < co implies [V}, .| < k.

Let us now assume that a7, (2, y) F ¢(z,y;m). Then there exists a finite number
of (i)ocicr € A(M) such that p(z,y) + F5 () ¢ F} (x) and p(z,y) + y € Fy (z) N
U; £5.(z) = @(z,y;m). As I has the maximal open subball property over p and is closed
under generic intersection, we may assume that p(z, y) + “the balls in the F),,(z) are max-
imal open subballs of the balls in F},(x)”.

Claim Ls.ax: X,, (M) ¢ {\ € A(M) : for some i, p(z,y) - F\(x) = F,,(z)}. In particular
|Y.z| < 0o and hence |Yy, .| < k.

Proof . Let \ € X,,,. There exists z, y = p such that y € F§(x), the balls in F)\(x) are maximal
open subballs of the balls in F),(z) and & —¢(z,y;m). Hence y € U, F; (v). We may
assume that y € FS () and hence that F$ (z) n F¥(z) # @. By Proposition (111.4.10), we
must have 3 () n F{(x) = F2(z) for both k = X and & = po, i.e. Fx(z) = F,,(x) and
because such an equality is decided by p this holds for all realizations of p.

It follows that Y,,, , € U; F},,(z) and |Y},, .| < rl < oco. ¢

Thus for all (z,y) = p, only & balls among the ones in U; F},,(z) cover p(z, F'Sy,(x);m).
By similar arguments as in Proposition (111.4.5), we may assume that for all ¢, F), (z) ¢
UL, F, (z). It follows that:

o) = ANF (2) € B, () (0 € F3, ()~ U S () = (o, pim),

J=1

We can now conclude as in Proposition (111.5.7). [ ]
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Corollary lll.5.02:
If pis L-implicatively L( A)-definable and F has the generic covering property and the maximal
open subball property over p, then o 57, ,, is L-implicatively L(A)-definable.

Proof . This follows immediately from Propositions (111.5.7) and (I111.5.9) and the fact that
either £(M) is non empty and has no smallest element or it has a smallest element that
consists of open balls or it has a smallest element that consists of closed balls or it is empty
in which case we could also take £ to consist of all the A € A such that F, is constant equal
to K. [ ]

Let us conclude this section by showing that, as previously, we can find families of balls
verifying all the necessary hypotheses. But because both the generic covering property and
the maximal open subball property are instances of more generally being able to find large
balls in the family, let us first consider the following definition. Recall that d;( B, By) is
the i-th distance between balls of B; and balls of B, (see Definition (111.4.6))

Definition 111.5.13 (Generic large ball property):
We say that F' has the generic large ball property over p if for all \; and A\ € A(M ) and i € N,
there exists (f1;)o<j<i € A(M) such that:

(i) Forall j, p(x,y) + “the balls in I, (x) are closed”;
(it) Forall j, p(z,y) + rad(Fuj(x)) =d;(Fy\, (%), F\,(x)).
(iii) p(z,y) = FY, (z) U, Fj (z);

and, if p(x,y) + “the balls in F), (x) are open” or p(x, y) + rad(F\, (z)) < d;(F, (x), F\,(x)),
there exists (p;)j« € A(M) such that:

(i) Forall j, p(x,y) + “the balls in F, (x) are open”;
(ii) Forall j, p(z,y) + rad(ij(:U)) =d;(F)\, (), F\,(x)).
(iii) p(z,y) v F, (x) € U; F} (2);
Definition 111.5.14 (Good representation):
Let A(z,y;t) and O(x,y;s) be two finite sets of L-formulas where x € K" and (F))ex and

(Go)weq be two L-definable families of functions K" — Bgi]. We say that (©,G, x) is a good
representation of (A, F, x) if for all L(M)-definable p € S (M):

(i) © is adapted to G;
(i) (Gu)wen, is closed under generic intersection over p;
(iii) (G )wen, has the generic large ball property over p;

(iv) p decides all formulas in A;
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(v) Forall X\ € A(M), there exists a finite number of (w;)o<i<i € $2,(M) such that p(z,y) +
F\(z) =U; Gy, (2).

where ), := {w € Q : G,, is generically irreducible over p}.

If we only want to say that 111.5.14.(i) to 111.5.14.(iii) hold we will say that (©, G, z) is a good
representation.

Proposition 111.5.15 (Existence of good representations):
Let (F))aen be any L-definable family of functions K" — Bg;] and A(x;t) any finite set of
L-formulas where x € K". Then, there exists a good representation (¥, G, x) of (A, F, x).

Proof . Let us begin with some lemmas.

Lemma 111.5.16:

There exists (H,) ,cp an L-definable family of functions K" — Bg] and =(z;t,s) 2 A(z;t) a
finite set of L-formulas adapted to H such that H has the generic large ball property over any
=-type and for all X € A, there exists p € P such that H, = F)\.

Proof .For all \, pand n € A and i < [?, define H) ,, ,, ;1() to be the closed balls with radius
d;(F,(x), F,(z)) around the balls in F\(z). If the balls in F\(x) are open or if they are
closed of radius strictly smaller than d;(F),(z), F;,(z)), define H) ,,, ;0(z) to be the open
balls with radius d;(F),(z), F,(«)) around the balls in F(z) — which does exist. Other-
wise, define H}, ,, ,,; 0(2) tobe the closed balls with radius d; (F),(z), F},(x)) around the balls
in F(z). By usual coding tricks, we may assume that H is an £-definable family of func-
tions. Adding finitely many formulas to A we obtain =(z;t, s) which is adapted to H. Let
peS=(M)andz E p.

Let us first show the closed ball case of the generic large ball property. For all A, 1 and
n € A(M) and iy, and ji, € Nfor k e {1,2} and r € N, d,(Hx, 1 011,51 (©), Hg o 210,52 (2))
is either the radius of the balls in Hy, ,,, 1, .i,.j. (), 1.e. d;, (F),, (x), F,, (x)) or the distance
between two disjoint balls from the H), ,,, 1, .i\.;. () in which case it is also the distance be-
tween some disjoint balls in the F,, («). In the first case, it is easy to check that Hy, ,, ., .ix.1
has all the suitable properties — and that this one instance suffices. In the second case there
exists some m such that H), \, x,.m.1(x) is suitable.

The same reasoning applies to open ball case (the extra conditions under which we have to
work are just here to ensure that the balls in F), (x) are indeed smaller than those we are
trying to build around them). ¢

Lemma 111.5.17:
Assume that F' has the generic large ball property over any A-type. Let (G,,).cq be any L(M)-

definable family of functions K" — Bgi] and O (x; s) be any finite set of L-formulas adapted to
G such that for all p € S2 (M), we have:

(i) Forall w e Q(M), there exists A € A(M) such that p(z) + G, (x) € FA\(z);

(ii) Forall A € A(M), there exists (w; )ocici € Q(M) such that p(z) + Fy(z) = U; G, ().
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Then G also has the generic large ball property over any ©-type.

Proof . Let wy and wy € Q(M), i € Nyg and x = p. Then there exists \; and \y € A(M)
such that G, (z) ¢ F\ (x). Then d;(G.,(z),Gy,(2)) is either the radius of one of the
balls involved and hence is the radius of one of F), () or the distance between a ball in
G, (z) and a ball in G, (z), i.e. the distance between a ball in F,(z) and one in F},(z).
In both cases, the large closed ball property in F" allows us to find (11;)0<j< € A(M) such
that G5, (v) ¢ FY (z) € U; F (), for all j, the balls in [, (z) are closed and their radius
is di(G., (7),Gu,(x)). But, by hypothesis there are (p; «)ock« € 2(M) such that F, (v) =
Uk G, , (7). By picking one p per ball in G,,, (), we see that [ of them are enough to cover
G, (z) and we are done. The open ball case is proved similarly as the extra conditions hold
for G, and G, if and only if they hold for F, and F),. ¢

Adding them if we have to, we may assume that there is an instance of F' constant equal
to @ and another constant one equal to {K}. Let (H,),p and = be as in Lemma (111.5.16),
(Gy)weq and O(z;u) be as given by Proposition (111.4.20) and p € S2(M). Then Condi-
tions 111.5.14.(i), 111.5.14.(iv) and 111.5.14.(v) hold. Condition 111.5.14.(ii) also holds, by Corol-
lary (111.4.11), and by Lemma (111.5.17) applied to (G.,)weq,, 111.5.14.(iii) also holds. [ ]

Proposition 111.5.18:
Let (A(z;t), (F\)xea, ©) be a good representation and p € S5 (M) be L(M)-definable. Then
Fy, = (Fx)»en, has the generic covering property and the maximal open subball property over p.

Proof . Let x = p, Ay and Az € A, (M) be such that F} (x) c F} . Then by the generic large
ball property — because F (z) c F} , the necessary conditions hold — there exists 1; €
A, (M) such that the balls in F, () are open of radius rad(F),) and Fy (z) € U; F,;(x)®
and we have proved the maximal open subball property.

Let now E ¢ A,(M) and (\;)ocicr € Ap(M) be such that for all p € E, Fy (x) ¢ F$(x).
For any two 4y and py € E, if the balls in F),, (x) are smaller than the balls in F),,(z), by
irreducibility, as 'S, (z) n F5,,(x) 2 F),(z) # @, we must have F} (v) € F$ (v). Let us
define the following equivalence relation on Nz Fy (2): y1 = yo if forall € E, y; and y
are in the same ball from F),(z). If we take two non equivalent points y; and y,, there exists
p € E such that y; and y, are not in the same ball from F},(x) and in fact this also holds for
any 7 such that F¥(z) € F(z). In particular it follows that there are at most / equivalence
classes and that there exists 11 such that each equivalence class is contained in a different
ball from F),,(x). Moreover each of these equivalence classes is in fact the intersection of
balls — from the F),(x) for u € E. We will denote these equivalence classes by () ..
For any j, let B; = {b € U; F)\,(x) : b € P;}. Then the set R; := {d(by,b2) : b1,by € Bj} U
{rad(b) : b € B,} is finite and hence has a minimum ~. By the generic large ball property,
there exists ju; € A, (M) such that the balls in F), (x) are closed of radius vy and one of its
balls — call it by — contains one of the balls in B;. In fact b, contains all of them as  is the
minimum of R;. Forall x € E, all b € B; are such that b ¢ F3(z). If rad(by) = d(by,bs) for
some some b; and b, € B; then, because b, and b, are in the same ball from F, (), rad(bo) =
d(by,be) < rad(Fi(x)). If rad(by) = rad(b) for some b € B;, then because b is inside one
of the balls from Fy (), rad(by) = rad(b) < rad(Fy(z)). In both cases, by € Fj(z). Let
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n; be such that F} (v) = F} (2) N Nyer F3(2). Such an n; exists by generic intersection
and because, by Proposmon (Ill 4.5), this intersection is given by the intersection of a finite
numbers of its elements.

Then, as F}, (z) ¢ I}, (), the balls in ), (x) are closed. Obviously, forall € E, F}) (x) <
F#(x). Moreover, for all 4, Iy (z) € U; Fi§ (z) and for all k € E, Fy, (x) € F(x), hence we
also have I} (v) ¢ U; F§, (). As there are at most r of the 7;, we are done. ]

111.6. Approximating sets with balls

In this section we bring together all the work we have done in Sections 1111, 111.4 and 1115
to actually construct definable types. The core of the work is done in Proposition (111.6.1),
after that, it is only a question of proving the various reductions sketched in the introduc-
tion.

As above, let £ 2 £ 2 Lg;, be languages, R be the set of L-sorts, T' 2 ACVF be a C'-minimal
L-theory that eliminates imaginaries and admits T-reparametrizations, 7' a complete £-
theory containing T, N & T, N := N o A= acl%q(g) c Nedand A := R(A). Let us
assume that k and I are stably embedded in T and that the induced theories on k and
¢ eliminate 3% — where eq is taken for the £-induced structure on I'. Finally we will
also assume that there exists M & T such that M ‘ .- is uniformly stably embedded in every
elementary extension.

Proposition 111.6.1:

Let Y c K" be anonempty L ' (A)-definable set. Let (A(xz,y; 1), (FA)AGA, x) bea good rep-
resentation where x € K". Let p(x,y) € 5A ,(IN') be L(A)-definable, L -implicatively L~ (A)-
definable and consistent with Y. Let g = (gw),yeg be an L(N)-definable family of functions
K" — T that T'-reparametrizes the family (rad o F)\)ep over p.

Then there exists an £(A)-definable q(x,y) € S (N) which is L' -implicatively L ' (A)-
definable and consistent with p and Y.

We are looking for a type ¢ = agy, (see Definition (111.4.12)) so most of the work consists in
finding the right F.

Proof. We define the preorder < on A, := {\ € A : F) is generically irreducible over p}
by A < pif and only if p(z,y) + y € Fy(z) A (x,y) € Y = y € F3(x). Note that, by
£-implicative £ ' (A)-definability of p, < is £ (A)-definable. Let ~ be the associated
equivalence relation, i.e A ~ p if and only if p(z,y) - (y € FY(z) A (z,y) €Y) — (y e
E3(x) A (z,y) € Y). Then < induces a (partial) order on A, /~ that we will also denote <.
For any ), let us denote by X ¢ A, the ~-class of \. The set A,/~ has a greatest element
given by the class of any A € A,(N) such that F(z) = {K} for all x and a smallest element
given by the class of any A € A,(N) such that F(z) = @ for all 2. Let K be the greatest
element of A,/~ and & be its smallest element. Because p is consistent with Y, K # B.

Claim 111.6.2: Let A € A, \ 3, then < totally orders {fi : jr € Ay AN < pu}.
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Proof . 1t suffices to prove this statement in N. Let y1; and s € A,(N) such that A <
Because A ¢ & there exists (z,y) & p such that y € F(z) and (z,y) € Y. As A < ul, we
also have y € I} (r) and hence F} (z) n F};,(v) # @. By Proposition (11L.4.10), we have
S (v) € FS,(x) or F (x) ¢ F, (x) and we may assume that the first one holds. Then
p1 S pho. ¢
Hence ((A,/~)~{@}, <) isatree — with the root on top. Let us now show that the branches
of this tree are internal to I'. Let () := (J,rad(F)),0) if p(z, y) implies that the balls in
F\(x) are closed and h(\) := (J,rad(F)), 1) otherwise — where the p-germ 0, is defined
in (111.3.3). By Proposition (111.3.4), we may assume — after adding some parameters — that
the image of h is in some cartesian power of I'. Let us also define 4, : A = "2(X)". By stable
embeddedness of T, h, takes its values in I"*“.

Claim 111.6.3: Pick any \ € A, \ @, then the function h. is injective on {fi: A < uu}.

Proof . It suffices to prove this statement in N. Let iy and ps be such that A\ < y;. We have
seen in Claim (111.6.2), that we may assume for all (z,y) & p, F$ (z) € F3,(x). Let (z,y) F
p. If fi # [iz then we must have F} (z) c F/i(x) Hence either rad(F),, (z)) <rad(F,,(x))

or the balls in F),, (=) are open and those in F),, (x) are closed. In any case, 2 (1) # h(f2).
In fact for all w; € [i; we obtain by the same argument that h(w;) # h(wy) and hence
ho(fin) # ha(f3)- ¢
Let A € A,(N) be such that "X € A. If a5 ~(#)/p the generic type of A(N) over p is consistent
with Y, it is consistent and it is consistent w1th p. By Proposmon (11L.4.13), it is a complete
W, r-type. By Corollary (11L5.12), a5 ), 18 £-implicatively £ (A)-definable. Then it is

£ (A)-definable. By Corollary (I1LLs), it is in fact £(A)-definable. It follows that taking
q = a5y, Would work. Therefore, it suffices to find a A € A,(N) such that "A" € A and
a5 (i),p IS consistent with Y.

Claim 111.6.4: Let A € A, (N). If X # B and () p IS N0t consistent with Y, there exists i such
that 7 is an immediate <-predecessor of X\ and 'Ti" € acl%q(g ).

Proof . 1f o5, 1s not consistent with Y, there exists 1 € X(N) and (p1)o<icr € Ap(N)
such that for all y € X(NV), p(z,y) - FS (x) c F3(x) and

k
p(z,y) FyeFS () A(zy)eY = yelJF,, (2).
=1

In particular u; < A\. Removing some ji;, we may assume that for all 4, u; ¢ @ and that
p(x,y) = Fp () nFp (x) = @ foralli # j.

Let x € A,(NN) be such that y;, < x < A for some iy. As k < A, we have p(z,y) + (y €
FS(@)n(z,y)eY) = (ye Fi(z) A (z,y)eY) = Vi (ye FS, (z) A (z,y) € X). Because
pio < K, we have p(z,y) = FR(z) n Fj () # @. I p(z,y) = F2(x) ¢ F}, () then r < p,
and hence k ~ ;.

Otherwise, for any i # i, if p(z,y) = F2(z) n F; () # & then we must have p(z,y) +
FS () ¢ Fi(z) and hence for I = {i : F} (v) n F.(7) # @} we have p(z,y) + (y €
FS() A (2.9) €Y) = Vaer(y € FS.(2) A (2.5) € V).
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It follows that the set {% : y1; < x < A for some ¢} is finite. In particular we could choose
p1; such that there is no « such that 7i; < ® < A. The [i; are then the — finite number of —
direct <-predecessors of A and for all 4, 7i; € aclZ!(A"A"). ¢

If there does not exist A such that "\ € A and a3(i),p 18 consistent with Y, then starting

with \g e,I:i(]V ) we construct by induction — using Claim (111.6.4) — a sequence (\;)ie.
such that \;,; is a direct <-predecessor of A;. Foralli, {zi: \; <} =i+ 1=|h.({7: N\ <
71} )| but that contradicts the elimination of 3% in I"*. [ |

Corollary 111.6.5:

LetY c K™ bean L ' (A)-definable set, A(x,y;t) and ©(y; s) be finite sets of L-formulas
where |x| = nand |y| = m. Let p € Sﬁy(l\/') be L(A)-definable, L '-implicatively £ ' (A)-
definable and consistent with Y. Then there exists a finite set of L-formulas =(x,y;s,t,r) 2
A U © and an L(A)-definable type q € Siy(N) which is L "-implicatively L " (A)-definable
and consistent with pand Y.

Proof . We proceed by induction on |y|. The case |y| = 0 is trivial. Let us now assume that y =
(z,w) where |w| = 1. By Proposition (111.4.16) there exists ®(z; u) a finite set of L-formulas
and F' = (F))xca an L-definable family of functions K™ ! - BY such that U4 decides any
formula in ©. By Propositions (111.4.17) and (I11.5.15) we can assume that Fy : K™™' — Bgt]
and (P, F, z) is a good representation. We can easily make F' into an £-definable family of
functions K™™' - BEQ by setting G\(z, z) = F)(z). As T admits I'-reparametrizations,
there exists T'(x, z;v) such that foranyp € S g (NV), there exists a I'-reparametrization (g )
of (rad o G\)ea OVer p.

By induction applied to Ag((z, w), z;t) :== Az, z,w;t), O¢(z;u,v) := P(z;u) U Y (z;v) and
p, we obtain a finite set of £L-formulas Q(z,w, z;7) 2 Au ® u Y and an £(A)-definable
q € Si{z,w(N ) which is £ *-implicatively £ ' (A)-definable and consistent with p and Y.
Let g = (g,) be aI'-reparametrization of (rado G ) xea Over ¢i|y. We can now apply Propo-
sition (11L6.1) to Y, (2, G, (,2)), ¢ and g to find an £(A)-definable type g € Sy (N)
which is £ -implicatively Z ' (A)-definable and consistent with ¢; and Y. As all the for-
mulas in © are decided by W » — and hence by ¥, r — we may assume that ¢, is in fact a
(Vg ruU©O)-type. [

Definition 111.6.6 (Strict x-definable sets):

Let L be alanguage, N an L-structure and x = (x;);c; an (potentially infinite) tuple of variables.
Let P be a set of L-formulas with variables. The set P(N) := {m € N*:VYp e P, N E p(m)}is
said to be (L, z)-definable — or simply (L, )-definable if we do not want to specify x. We say
that an (L, )-definable set is strict (L, )-definable if the projection on any finite subset of x is
L-definable.

When z is finite we often call these sets co-definable sets.

Corollary 111.6.7:
Let X be non empty strict (L ' (A), z)-definable where all the variables in x are K-variables
and || < Ro. Assume also that | L | < Ro. Then there exists an L( A)-definable type p € S5(N)
consistent with X.
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Note that this is the only proof where we need a cardinality hypothesis on L.

Proof . Let {¢;(x;;t;) : j <w} be an enumeration of all £-formulas such that z; is a tuple of
variables from z. Let A_; := @ and p_; := @ and we construct by induction on j a finite set
A(xgj; s;) of L-formulas and an £(A)-definable type p; € S?;j (N) such that for all j < w,
A;U{p;} € Ajiy,pjaris £ -implicatively £ (A)-definable and consistent with p; and X.
Let us assume that p; and A; have been constructed. Let Y},; be the projection of X on
the variables x;.1. Then Y}, is L™ (A)-definable. We can then apply Corollary (111.6.5) to
Aj(zg;85), {p(xji1;tj41)}, pj and Yj,q. As Y., is the projection of X on the variables that
appear in p; and p;,1, and py, p;+1 and Y are consistent, p;, p;+1 and X are also consistent.
We can now take p := Uj, p;. As the p; are L(A)-definable so is p. [ ]

Note that p might not be £ -implicatively definable anymore. Although the fact that D;
is £ '-implicatively £ ' (A)-definable is necessary to carry out the induction, we will not
need £ '-implicative £ (A)-definability afterwards, except if we were to continue the in-
duction. This is exactly why we cannot prove Corollary (111.6.7), and hence Theorem E, if
L is not countable. Nevertheless, we will see later that Theorem E is stronger than what is
needed to prove elimination of imaginaries which we will be able to show even when £ is
not countable.

We now prove the main result we have been aiming for.

Theorem E:

Let £ 2 £ 2 L, be languages such that |Z| < R, R be the set of L-sorts, T 2 ACVF be a
C'-minimal L-theory that eliminates imaginaries and admits I'-reparametrizations and T
a complete L-theory containing T such that, K is dominant in T' and:

(i) The sets k and T are stably embedded in T and the induced theories on k and T'*“
eliminate 3°°;

(ii) There exists M = T such that M| ‘ - is uniformly stably embedded in every elementary
extension;

(iti) For any ]VJ: T, A =K(dclz(A)) ¢ N and any L(A)-definable set X ¢ K", there
exists an L-definable bijection f : K" — Y such that f(X) = Y n Z where Z is
L(A)-definable — note that [ has to be defined without parameters.

Then forall N = T and all non empty L(N)-definable sets X, there exists p € S Z(N ) which
is consistent with X and L(R(aclZ'("X")))-definable.

This really is a result on the density of definable types with canonical basis in R. Indeed let
A= acl%q(;f), the conclusion of Theorem E states that the set {p € S*(A) : pis L(R(A))-

definable} is dense in S“(A). Here, by definable type, we mean that the definable type has
a global definable extension given by the defining scheme.

As we will see later this result is important in two respects. On the one hand, it shows
the density of definable types (and hence invariant types) over algebraically closed sets, and
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on the other hand, because these definable types have a canonical basis in R, it also gives
information on the imaginaries in 7'.

Proof . Let A := acl!("X"). 1t suffices to prove this for X c K" for some n. Indeed, as K is

dominant, there is an £-definable surjection 7 : K" — [].S; for some n where the sorts S;
are such that X c [].S;. 1f we find p consistent with Y := 771(X') and Z(R(aclezq(rY’)))—
definable, then 7, p is consistent with X and Z(R(acl%q( "X")))-definable.

Let F' := {fis an L-definable bijection whose domain is K"} and 0,,(X) = [T;er f(X).
Then 8,,(X) is strict (£ (A), I)-definable for some I with |I| < Ro. By Corollary (111.6.7),
there exists an £(R(A))-definable type p € S5(N) consistent with d,,(X).

Let 0,(x) = (f(x))fer. Then g = {z : 0,(x) E p}. Then ¢ is consistent with X. There only
remains to show that it is a complete type and that it is L(R(A))-definable. Let o(z;s)
be an L-formula where z € K". As K is dominant we may assume s is a tuple of variables
from K too. By (iii), for all tuples m ¢ K(N), there exists (f : K" - Y) € F and an
L-definable map g (into K' for some 1) such that f(¢(N;m)) = Y(N) n Z(N) where Z
is £(g(m))-definable. As N is arbitrary, we may assume that it is saturated enough and
by compactness there exists a finite number of (f; : K® - Y;) € F, L-definable maps
g9i and L-formulas ¢;(y;;t) such that for any tuple m ¢ K(N) there exists i, such that
fio (p(N3m)) = iy (N g3y (m)) 0 Y5 (V).

Let c; and ¢; E ¢ —ie. 9,(cj) F p, for j € {1,2} — and assume that = ¢(ci;m). Then
fio(cl) € wio({\[;gio(m)) n Y;o (A],V) As fzo(gl) =r fio(c2) and fio(cQ) € Y;O(N) we also have
fio(CQ) € ¢10(N; gio(m))ny;'o(N) = fio((IO(N; m)) and, because fio is abijection, E (10(62; m)
As for definability, we have just shown that ¢ (z;m) € g if and only if ¢;, (v;; gi,(m)) € p for
some 4, such that f;, (o(N;m)) = ¥, (N; gi,(m)) n Y;, (N) but that can be stated with an
L(R(A))-formula. [

I11.7. Imaginaries and invariant extensions

As stated earlier, the conclusion of Theorem E is very strong. We will show in this section
that it implies both elimination of imaginaries and the invariant extension property (cf.
Definition (0.4.13)). ] am very much indebted to [Hrua; Joh] for making me realize that the
density of definable types could play an important role in proving elimination of imaginar-
ies. To be precise, both elimination of imaginaries and the invariant extension property
follow from the density of types invariant over real parameters.

Remark 111.7.1:

Because types definable over some parameters A are also A-invariant, the density of defin-
able types over some parameters implies the density of invariant types. But the converse
is false even in NIP theories. Consider M = Q, in the three sorted language with an-
gular components (cf. Sectionll.r). Assume M is Ry-saturated. Let v € I'(AM) be such
that v > n-val(p) foralln € Nand b := {x € K(M) : val(x) = v Aaci(z) = 1}. Note
that b is a ball. Because the residue field is finite, in acl("b") there are all the balls b’ € b
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such that rad(b') — rad(b) € Z-val(p). Let (b;);eny be a chain of balls such that b; < b and
rad(b;) = rad(b) +ival(p). Then for all z, y € N, b;, val(z) = val(y) = v and ac,(x) = ac,(y).
Let P =Y,a,X" € Q[X], let ip be minimal such that a; # 0, then for all i # i, val(a;,z%) =
val(a;,yi) < val(a;x?) = val(a;y?). In fact, val(a;z?) — val(a;,z;,) 2 n-val(p) for all n € N.
Thus val(P(z)) = val(P(y)) and that ac,(P(z)) = ac,(P(y)). It now follows from field
quantifier elimination that x =, y and because any automorphism sending = to y must fix
b they have the same type over b. Thus, there cannot be any ball in N; b; algebraic over b
and hence, by Proposition (1.3.9), = and y have the same type over acl(b). Every type in b is
of this form and none of them can be definable because N); b; is a strict intersection.
Nevertheless, by Remark (1.4.7), Th(Q, ) has the invariant extension property and hence by
Proposition (111.7.4), invariant types are dense over algebraically closed sets.

In the following proposition, we show that the density of A-types invariant over real pa-
rameters for A finite suffices to prove weak elimination of imaginaries.

Proposition 111.7.2:

Let T be an L-theory and R a set of its sorts such that for all N = T, all non empty L(N)-
definable sets X and all L-formulas ¢(x; s), there exists p € S?(IN') which is consistent with X
and L(R(acl®*("X")))-invariant. Then T weakly eliminates imaginaries up to R.

Proof. Let M be a saturated and homogeneous enough model of 7, E be any £-definable
equivalence relation, X be one of its classes in M, ¢(z,y) be an L-formula defining £
and A = R(acl7'("X")). By hypothesis, there exists an £(A)-invariant type p € S (M)
consistent with X. Because X is defined by an instance of y, we have in fact p(z) + z €
X. Forall 0 € Aut(M/A), o(X) is another E-class and o(p) = p + x € X. It follows
that X no(X) # @ and hence X = o(X). We have just proved that "X " € dcl®/(A) =
del*(R(aclZ("X"))), i.e. X is weakly coded in R. ]

Corollary 111.7.3:
In the setting of Theorem E without the cardinality assumption on L, T' eliminates imaginaries.

Proof . By Corollary (111.6.5) and using similar techniques to those used in the proof of the
theorem, we can prove that the assumption of Proposition (11L7.2) holds in 7" and hence
that T weakly eliminates imaginaries up to the sorts R. But because any finite sets in R are
also definable in 7" and hence are coded in T, T eliminates imaginaries up to the sorts R. m

Let us now consider the invariant extension property (cf. Definition (0.4.13) [4.10 prelim]).

Proposition 111.7.4:
Let T be an L-theory, A ¢ M for some M & T. The following are equivalent:

(i) Forall L(A)-definable non empty sets X and N £ T, N c A, there exists p € S(N) such
that p is Aut(N/A)-invariant and is consistent with X;

(ii) T has the invariant extension property over A.
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11l. Imaginaries in enrichments of ACVF

Proof . Let us first show that (ii) implies (i). Let N & T', X be L(A)-definable and p € S(A)
be any type containing X. Let ¢ € S(IV) be an Aut(/N/A)-invariant extension of p. Then ¢
is consistent with X.

Let us now assume (i) and let Inv(N/A) = {p € S(N) : pis Aut(/N/A)-invariant }.

Claim 111.7.5: The set Inv(N/A) ¢ S(N) is closed and hence compact.

Proof.Let p € S(N) \ Inv(N/A). There exists p(x;s), atuple m € N and o € Aut(N/A)
such that p(xz;m) € p and p(x;0(m)) ¢ p. Then, the set {qg € S(N) : ¢(z;m) € g and
o(x;o(m)) € q} = {qe S(N) : p(x;m) A =p(x;0(m)) € q} is open and has empty inter-
section with Inv(N/A). ¢

Let p € S(A). By hypothesis, for all £L( A)-definable sets X # @, there exists gx € Inv(N/A)
which is consistent with X. It follows that for all £( A)-definable sets X, the closed set
Fx := (X)nInv(N/A) # @. Moreover, for any finite number of X; € p, n;Fx, = Fj, x, is
non empty. As Inv(/N/A) is compact, there exists ¢ € Nx, Fx. Then ¢ € Inv(/N/A) and for
all X ep, qe Fx c(X) soqdoes extend p. ]

To conclude:
Theorem 111.7.6:

In the setting of Theorem E, T eliminates imaginaries and has the invariant extension prop-
erty.

Proof . Elimination of imaginaries is proved in Corollary (111.7.3) and the invariant extension
property then follows from Theorem E and Proposition (111.7.4). [ ]
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CHAPTER IV

Some model theory of valued differential

fields

LE VIEUX MONSIEUR
C'est vrai, jai un chat qui sappelle Socrate.

E. lonesco, Rhinocéros, Acte 1

Building on the quantifier elimination result of [Scaoo], this chapter aims at laying the
foundations for a more sophisticated model theoretic study of VDF the model comple-
tion of valued differential fields with a valuation preserving derivation (the definitions can
be found in Section IV.1.1). There are mainly two motivations behind looking at VDF. The
first reason is that it is a somewhat more complicated NIP theory than ACVF, for example.
The analogy with stability theory is quite tempting: among stable fields, ACF is extremely
well understood but is too tame (it is strongly minimal) for any of the more subtle behav-
ior of stability to show. The theory DCF on the other hand is still very reasonable (it is
w-stable) but some pathologies begin to show and in studying DCF, one gets a better un-
derstanding of stability. The theory VDF could play the similar role with respect to ACVE:
it is a more complicated but still very tractable theory in which to experiment with NIP or
metastability.

The other reason why VDF is interesting is much more application oriented. Valued fields
appear naturally in algebraic geometry (among other things when studying singularities).
Similarly, some diophantine questions have been shown to be closely related to differential
fields. It only seems natural to think that the combination of the two should have natural
applications (see for example [Scag7]). Furthermore, the model theory of difference val-
ued fields also plays a role in Hrushovksi’s work [Hrub] on “difference algebraic geometry”.
Difference valued fields also appear naturally in number theory and diophantine geometry,

among them the Witt vectors over I[*Tpalg equipped with the lifting of the Frobenius — al-
though, to be completely honest, this field usual appears with its analytic structure (which
is studied in Chapter 11). We hope that the results in this chapter can also be seen as first
steps in a more general program to study the model theory of valued fields with operators.
This chapter begins, in Section IV.1 with some definitions followed by the most important
result in this chapter, Theorem F: the elimination of imaginaries and the invariant exten-
sion property for VDF. In fact, this question was the motivation for the development of
Chapter 111 and what we actually prove is the stronger result that types definable over geo-
metric parameters are dense in VDF.

In Section 1V.2, we study the field of constants in VDF and show that it is a stably embed-
ded pure model of ACVF. This section also contains the equivalent result for W(}Tpalg)
equipped with the lifting of the Frobenius automorphism.
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1V. Some model theory of valued differential fields

Section 1V.3 is concerned with the definable and algebraic closure in VDF and essentially
shows that it is more complicated than what one could hope for. We do show though that
in the value group, the residue field and the constant field it is what could be expected.

In Section IV.4, we explore more methodically the fact that there is a good notion of pro-
longation on the space of types in VDF and study some of its properties. This idea was
already sketched, in a more abstract setting, in the proof of Theorem E.

Finally, Section IV.5 is about definable groups. Most of this section is an account, following
[Hruc], of how to adapt the proofs of [Hrugo] to the unstable setting as long as there is
a definable generic around. We also generalize somewhat the notion of group chunk to
be able to talk about non connected group more directly. The main goal is to produce
an abstract version (cf. Theorem (IV.5.42)) of the classical proof that a group definable in
DCF (or in separably closed fields) definably embeds into an algebraic group so that we
can apply it in other contexts. For example, we obtain an embedding theorem into groups
interpretable in ACVF for a certain class of groups definable in VDF.

IV.1. Imaginaries in VDF

After defining VDF and recalling the known results about this theory, we will show that all
of the work in Chapter 111 applies to VDF to obtain new results in Theorem F: elimination
of imaginaries, invariant extension property and density of definable types.

IV.1.1. Some background

Let Ly be the three sorted language for valued fields with two new symbols 0 : K - K
and 0 : k - k. We define DVal to be the theory of Ly-structures M such that I'(A/) is an
abelian ordered group, k(M) is a differential field and (K (M), val, k) is a valued field with
a valuation preserving derivation — i.e. for all z € K, val(9(z)) > val(z). Note that the
residual map and the valuation map are not supposed to be onto in DVal.

The notion of 0-Henselianity can take many equivalent forms but 1 will give the one con-

sidered in [Scaoo], which is quite close to the one considered in Definition (11.4.10). Recall
that 0, () is defined to be (0" () )nen-

Definition 1V.1.1 (0-Henselian):

Let (K ,val,0) be a valued differential field. K is 0-Henselian if for all P ¢ O(K)[X] and
a € O(K) such that val(P(0,(a))) > 0 and min,;{val(aiXiP(aw(a)))} = 0, there exists c € O
such that P(0,(c)) = 0 and res(c) = res(a).

Definition IV.1.2 (Enough constants):
Let (K, val, ) be a valued differential field. We say that K has enough constants if val(Cg ) =
val(K') where Cy := {x € K : 9(x) = 0} denotes the field of constants.

Now, let VDF be the Ly-theory of valued fields with a valuation preserving derivation
which are 0-Henselian with enough constants, such that the residue field is differentially
closed of characteristic zero and the value group is divisible — and val and k are onto. Note
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IV.1. Imaginaries in VDF

that we call it VDF and not VDF, or VDF ; because we will only work in equicharacter-
istic zero in this chapter. Similarly we will not specify the characteristic when speaking of
ACVF, but it is understood that we are speaking of ACVF .

As in the case of ACVF, VDF can be considered in the one sorted, two sorted or three
sorted languages (cf section 0.2.2) that are enrichments of the valued field versions with
symbols for the derivation. We will be denoting £ 4;, the one sorted language for VDF.

Theorem 1V.1.3 ([Scaoo]):
(i) The theory VDF is the model completion of DVal;

(ii) The theory VDF eliminates quantifiers (and is complete) in the one sorted language,
the two sorted language and the three sorted language;

(iii) The value group T is stably embedded and a pure divisible ordered abelian group;
(iv) The residue field k is stably embedded and a pure model of DCF;
(v) The theory VDF is NIP.

Proof . 1tem (i) follows from [Scaoo, Theorem 7.1] and the fact that the theory of divisible
ordered abelian groups is the model completion of abelian ordered groups and the theory
of differentially closed fields is the model completion of differential fields.

By [Scaoo, Theorem 7.1] we also have field quantifier elimination (in the three sorted lan-
guage) relative to k and T (cf. Definition (11.A.5)). The stable embeddedness and purity
results follow. Now, the theory induced on k and T" are, on the one hand, differentially
closed fields and, on the other, divisible ordered abelian groups that both eliminate quan-
tifiers. Quantifier elimination in the three sorted language follows and so does qualifier
elimination in the two other languages.

The fact that VDF is NIP is an easy consequence of elimination of quantifiers (in the one
sorted language for example) because ACVF is NIP. ]

Note that in M £ VDF, the field of constants Ck (M) is relatively algebraically closed
inside K (M) which is algebraically closed, thus Ck (M) is algebraically closed.

IV.1.2. Imaginaries and invariant types in VDF

Using the results of Chapter 111, we can prove new results about VDF. The question of elim-
ination of imaginaries in VDF had remained open since it came up naturally after elimi-
nation of imaginaries to the geometric sorts was proved for ACVF. Apart from the general
importance of describing interpretable sets, the question of the elimination of imaginaries
in VDF was also linked to the question of the existence of invariant extensions in that the-
ory. Itis true that those two questions are quite distinct but a good knowledge of imaginar-
ies usually helps to prove the invariant extension property (see for example Remark (1.4.7)
in the case of Q).



1V. Some model theory of valued differential fields

At the end of [HHMo08], where it is shown that ACVF is metastable (see Theorem (0.4.17))
two other examples of metastable theories are given: the theory of C((¢)), and the theory
of VDF. But the proof sketched there for the invariant extension property in VDF is in-
correct. There are two problems: the first is that it relies on a problematic reduction to the
field sort that is correct when proving the existence of metastability basis but is not in the
case of the invariant extension property. The second is that even when both variables and
parameters are in the valued field, the construction of the invariant type does not take in
account the fact that the derivation in VDF has to preserve the valuation. To recover the
fact that VDF is an example of metastability, it became necessary to find another proof of
the invariant extension property.

The proof that we give here does not, per se, rely on the fact that we also prove elimination
of imaginaries to the geometric sorts but, rather, both results follow from a stronger result
about density of definable types over geometric parameters.

Let L3 be the language £ enriched with a symbol for the derivation 9 : K - K and let
VDFé?be the £§-theory of models of VDF.

Theorem F:

The theory VDFY eliminates imaginaries and has the invariant extension property. More-
over, over algebraically closed parameters, definable types are dense.

Proof . We apply Theorems E and (111.7.6).

Hypothesis E.(i) follows from Theorem IV.1.3.(iii) and 1V.1.3.(iv) and the fact that, because
the algebraic closure in DCFy is the field algebraic closure of the generated differential field
and because DOAG is o-minimal, both of these theories eliminate 3°°.

Hypothesis E.(ii) follows from the fact that if £ £ DCF,, then the Hahn field k((¢®)) with
the derivation 0(}; a;t*) = ¥,0(a;)t?, i.e. O(t) = 0, is a model of VDF and, by Corol-
lary (111.2.9) the underlying valued field is uniformly stably embedded in every elementary
extension.

Finally, Hypothesis E.(iii) is an easy consequence of elimination of quantifiers: let ¢(x; s)
be an L 4iv-formula, then there exists an Lg;,-formula ¢(u;t) and n € N such that ¢(z; s)
is equivalent modulo VDF to ¢(0,(x);0,(s)), i.e. for all m € N, , is an Ly giv-definable
bijection between ¢(N;m) and v (z, 8, (m)) n 9, (K. ]

1IV.2. Stable embeddedness of the field of constants

In this section we wish to study the stable embeddedness of the field of constants Ck in
VDF. We will be using the results of Section 111.2 and we will be working in the one sorted
language L5 qiy-

Proposition 1V.2.1:
Any pair L|K that is elementarily equivalent to a pair L*|K*, where K* is maximally complete,
is separated. In particular, in models of VDF, the pair K|Ck is separated.

Proof . The first part of the corollary is an immediate consequence of Propositions (111.2.2)
and the the fact that separation is preserved by elementary equivalence of the pair. The
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1V.2. Stable embeddedness of the field of constants

rest of the corollary then follows because, as VDF is complete, all the pairs K|Ck are ele-
mentary equivalent and, for any K = DCFy and I' = DOAG, K ((t")) with D(X,r a,t7) =
> er D(a,)t" isamodel of VDI whose constant field is Ck ((¢"') ) which is maximally com-
plete. [ ]

Proposition 1V.2.2:
The field of constants Ck is stably embedded in models of VDF. It follows that it is a pure model
of ACVF.

Proof.Let M = VDF and ¢(z,m) be a formula with parameters in K(M). By quantifier
elimination, we may assume that ¢ is of the form ¢ (0,(x),d,(m)) where ) is an Lg;,-
formula and n € N. For all = € Cg, p(x,m) is equivalent to ¢(z,0,...,0,9,(m)), i.e. an
Laiv (K(M))-formula, hence it suffices to prove that Ckx (M) is stably embedded in K(M)
as a valued field. But K (M) is algebraically closed, the pair K(M)|Ck (M )is separated (cf.
Proposition (IV.2.1)) and, because there are enough constants, val(K(A/)) = val(Ck(M)),
hence we can apply Theorem (111.2.7).

It now follows from quantifier elimination that any subset of Ck definable in M is definable
by a quantifier-free L4;,(Ck (M ))-formula and hence is defined in Cx (M) by the same
formula. [ ]

These result can be transposed easily to the Witt vectors over I[*Tpalg with the lifting of the
Frobenius W (Frob, ). Recall that in this field there are definable angular component maps
acy, for all the residue rings R,, := O/p"I that are compatible with the automorphism.
Indeed, Fix(W(Ealg)) = Q, where angular component maps ac,, (cf. sectionlL1) are de-

finable and for all x € W(Ealg) define ac, (z) := res, (ry!)ac,(y) for any y € Q, such that
val(z) = val(y).

Thus we will consider the theory of this field in the three sorted language £ with the
angular component maps described above and divisibility predicates P, on the value group.

Let WF, denote Thac, (W(Ealg), W (Frob,), ac,).

Theorem 1V.2.3 ((BMSo7]):
The theory WF,, eliminates quantifiers (and is complete).

Proof . By [BMSo7, Theorem 11.4], WF, eliminates quantifiers in £, relative to R and T
The theorem now follows from the fact that algebraically closed fields eliminate quantifiers
and Z-groups eliminate quantifiers once we add divisibility predicates. [ ]

Proposition 1V.2.4:
The fixed field Fix(K) is stably embedded in models of WF,, and is a pure valued field elemen-
tarily equivalent to Q,

Proof . 1t is essentially the same proof as in Proposition (IV.2.2). Let M = WF,,. By quantifier
elimination, the intersection of any definable set in M with Fix(K) is the intersection
with Fix(K) of a set definable in M as a valued field with angular components. Because

(W(Ealg), W (Frob,)) is a model of WF,, whose fixed field is Q,, (which is also maximally

105



1V. Some model theory of valued differential fields

complete), by Proposition (IV.2.1), in models of WF,, the pair K|Fix(K) is separated. We
can now apply Theorem (111.2.8) to conclude. The fact that it is a pure valued field now
follows by elimination of quantifiers (and the fact that the angular component maps we
chose are definable in Th(Q,)). [

1IV.3. Definable closure in VDF

In this section, we investigate the definable and algebraic closure in VDF to show that,
sadly, it is not as simple as one might hope. In DCFy, the definable closure of a is exactly is
field generated by d,,(a). In VDF, we have to, at least, take in account the Henselianization,
but we show that the definable closure of a can be even larger than the Henselianization
of the field generated by 0,(a). The content of this section was already known to Ehud
Hrushovski and Thomas Scanlon but was not written anywhere. The definable closure in
VDF will be a major (as yet unsolved) issue in Section 1V.5 when describing groups in VDF.
We will be denoting by ( A), the differential ring generated by A and (A).-1 5 the differential
field generated by A.

Fact1V3.1:
Let M = VDF be saturated enough. For all C' ¢ M, there exists A ¢ M, C' ¢ A, such that

delz,. ((A)s) = <A),—l,ah ¢ dclg, 4., (A). In fact, there exists a € dclg, . (A) that is transcen-
dent over (A)o. In particular, we also have acl,, ({A)s) ¢ aclz, .., (A).

Proof.Let P(X) e O(M)[X],a € O(M)ande e M(M). Let Q,(0,(x)) = x—a+eP(d.(x)),
then ), has a unique zero in M. Indeed val(Q,(a)) > 0, val(%(a)) = val(1) = 0 and
val(g% (a)) = va1(5)+val(§—£(a)) > 0, hence o-Henselianity applies. If Q. (z) = Q.(y) =0,
then res(z) =res(a) = res(y) and thus val(x - y) > 0. Let ) := = — y, we have

Qu(y)=x+n-a+eP(x+n)=x+n- 6(2}3 Pr(a)n’) =n+ 8(gﬁol’%(a)nl)-

But, if n # 0, val(e P;(a)n’) > |I|val(n) > val(n) and hence val(Q,(y)) = val(n) # oo, a
contradiction. 1 follows that differential equations that have infinitely many solutions in a
differentially closed field have only one in a model of VDF.

Let us now show that, in some cases, we do get new definable functions. We may assume
that C' = dcl(K(C')). Let k be a differential field, @ € k be differentially transcendental and
let us embed k[[£]] with the usual valuation preserving derivation into M such that £ and
k(C') are independent and K(C')(¢) is a transcendental ramified extension of K(C'). To
avoid any confusion, let us denote by a the image of @ by the embedding of k into k[[¢]]
and into M. One can check that for all n € N, res(K(C)(g,0,(a))) = k(C)(9,()).

Let us now try to solve z —a—-cd(x) = 0in k[[e]]. Let x = ¥ x;e? where x; € k, the equation

can then be rewritten as:
Yoaie =ac® + ) 9(x;)e,

and hence 7 = a and 2,1 = 0(z;) = 0"'(a). If x € (C’,a,s)aalg then for some n € N, we
must have z ¢ K(C)(0,(a), 5)wlg. Because 9""!(@) is transcendental over k(C)(9,(@)),
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1V.3. Definable closure in VDF

and any automorphism of o : k U k(C') fixing k(C') can be lifted into an automorphism of
k[[e]]uC fixing C' and sending ¥’ x;c € k[[e]] to ¥ o(x;)e?, it follows that 2 has an infinite
orbit over K(C)(0,(a),¢), a contradiction. [

Nevertheless, by quantifier elimination, the definable closure of K-generated sets in I" and
k is exactly what one could hope for. We will be working in the three sorted language.

Proposition 1V.3.2:
Let M = VDF and A < K(M), then

alg

I'(dcl(A)) =T'(acl(A)) = Q@ val({A).-15) =val({A)-15 ),

alg alg

k(dcl(A)) =res((A)-1 5) and k(acl(A)) =res((A)-15)  =res((A)-19

).

Proof . Let us first show that I'(acl(A)) = Q@®val({(A).-1). By quantifier elimination in
the three sorted language, any formula with variables in I and parameters in A is of the
form ¢(x,val(a)) where a € (A)y is a tuple. In particular, any v € I'(M) algebraic over A
is algebraic over val({A)s) in I" which is a pure divisible ordered abelian group. It follows
immediately that v € Q®val({A4).-1 5). The equality Q® val({A4).-1 5) = val((A),_l,aalg) is
well-known. Finally, as Q ® val({A).-1 ») isrigid over val({A).-1 9) € I'(dcl(A)) the equality
I'(dcl(A)) =T'(acl(A)) also holds.

As for the results concerning k, they are proved similarly. Indeed, any formula with vari-
ables in k and parameters in A is of the form ¢(x,res(a)) where a € (A).-1 5 is a tuple. As
in DCF the definable closure is just the differential field generated by the parameters and
the algebraic closure is its field theoretic algebraic closure, the results follow. [ ]

Concerning the definable closure and algebraic closure in the sort K, although the situation
is not ideal, we can nevertheless say something:

Corollary 1V.3.3:

Let M = VDF and A ¢ K(M) then K(acl(A)) is an immediate extension of (A).-1 5

alg

Proof . We have val(K(acl(A))) c I'(acl(A)) = Val(<A>.7178alg) where the second equality

comes from Proposition (IV.3.2). Similarly res(K(acl(4))) € k(acl(A)) = res({A) 15 7

and hence K(acl(A)) is an immediate extension of (A),—lﬁalg. ]

Corollary 1V.3.4:
h

Let M = VDF and A ¢ K(M) then K(dcl(A)) is an immediate extension of (A).-1 5 and
hence of (A) -1 5.

Proof . By Proposition (IV.3.2), we have that res(K(dcl(A))) ¢ k(dcl(A)) =res({A).-1 5) and

val(K(dcl(A))) c T'(dcl(A)) = Qo val({A)-15). Let L := K(dcl(A)) and F := (A),-gah.
Let ¢ € L. We already know that val(c) € Q ® val(F"). Let n be minimal such that nval(c) =
val(a) for some a € F. Then res(ac™) € res(L) = res(F') and we can find u € F such that
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1V. Some model theory of valued differential fields

res(ac™) = res(u). As L must be henselian (indeed I'-= delg,, (L) =L),wecanfindve L
such that v” = ac™u!, i.e. (cv)™ = au™! € F.. Hence we may assume that ¢” itself is in F..

But derivations have a unique extension to algebraic extensions and, as F' is henselian, the
valuation also has a unique extension to the algebraic closure. It follows that any algebraic
conjugate of ¢ is also an L 4 -conjugate of c¢. As K(M) is algebraically closed, it contains
non trivial n-th roots of the unit and it follows that we must have n = 1. ]

Remark 1V.3.5:
It would be nice to know if there is an “algebraic” description of the definable closure, i.e.
an equivalent of the Henselianisation in the valued case.

In the field of constants, though, we can describe both the definable closure and the alge-
braic closure.

Proposition 1V.3.6:
Let M & VDF and A € Cyc (M), then K(dcl(A)) = Frac(A) and K(acl(A)) = Frac(A) .

Proof . 1t follows from the fact that the pair K|Ck is separated (cf. Proposition (IV.2.1)) that
Ck does not have any immediate extension in K. Hence dcl(A) ¢ Ck (M) and acl(A) ¢
Ck (M). The proposition now follows from the fact that Ck is a pure model of ACVF. =

IV.4. Prolongations of the type space

We will be primarily working in the three sorted language for ACVF and VDF that will be
denoted, respectively, £ and L. If x € K or x € k are elements, 0,,(z) will be (0" (z))nen
and if x € T, 0,(x) will be (x),en. If z is a tuple of variables, we denote by z., the tuple
(2(D);cy where each () is sorted like x. From time to time, we will need to talk about
imaginary parameters and interpretable sets, 1 will then use the geometric languages £°
and L§ in which ACVF and VDF respectively eliminate imaginaries.

Let M = VDF be sufficiently saturated and A<M be a substructure.

Definition 1V.4.1:
We define V,, : S52(A) - S=_(A) to be the map that sends a type p to the (complete) type

Vo (p) = {¢(Teo, a) : pisan L-formula and p(9,,(z),a) € p}.

Proposition 1V.4.2:
The function V,, is a homeomorphism onto its image (which is closed).

Proof . As S52(A) is compact and S=_(A) is HausdorfF, it suffices to show that v, is con-
tinuous and injective. Let us first show continuity. Let U = (p(2.0,a)) € S5_(A), then
Vo U(U) = (p(0,(),a)) € S£2(A). As for v, being injective, let p and g € S52(A) and let
©(z,a) be an Ly-formula in p \ ¢. By quantifier elimination, we can assume that ¢ is of the
form 6(9,,(z),a) for some L-formula 6. Then 0(x,,a) € V.,(p) ~ V.. (q). [
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In fact, we can describe exactly what the closed image is. For every differential ring R let
R{Xi,...,X,,} be the ring of differential polynomials in m variables — i.e. R[ij i€
N 1 <i<m]—andletdalso denote the derivation on thisring. When P € R{X;,..., X},
we will write P* € R[ X i(j ):jeNand1<i< m] for the underlying polynomial.

Notation 1V.4.3:
Let z be a tuple of variables in £. We will denote by xk the subtuple of variables in K, z)
the subtuple of variables in k and xr the subtuple of variables in T.

Proposition 1V.4.4:
Let P, be the following set of L( A)-formulas:

{val(0(P)* (K ) 2 val(P* (1K ,e0)) : P € K(A){zx }}
U P (2x0) = 0= 0(P)" (21,00) = 0: P e k(A) {1 }}
U {xgl) = res((g)*(a:K,oo)) = my”) = res(@(g)*(xKyoo)) :1eN and x; € vy}
o {20 = O

5 =, :xjisal-variable}

Let P, (A) € S5_(A) be the set of types over A containing P,. Then V,,(S=?(A)) = P,(A).

Note that, in the three sorted language, res has two arguments that res(z, y) = res(z/y).
However, there is a slight abuse of notation in the above formulas especially in the expres-
sion res(9( g)* (7K o)) which should read instead

res(Q" (7K ,0) O(P) " (7K 00) = P* (1x,00) Q)" (2K ), (@ (7K 0))?)-

Proof . As, for all P e K(A){X} and c € K(M) of the right length, 9(P(c)) = d(P)(d.(c))
and similarly in k, it is quite obvious that V,,(S5?(A)) ¢ P,(A). Let us now show that this
inclusion is an equality. Let p € P,(A) and ¢ & p. Then, {P ¢ K(A){X} : P*(ck) = 0}
is a differential ideal as for all such P, val(0(P)*(ck)) > val(P*(¢k)) = oo. Hence L =
K(A)(¢k) can be endowed with a (unique) differential ring structure such that d(c;;) =
Cjt1,i-

For any P, € K(A){X}, we have val(0(P)*(¢k)) > val(P*(¢k)) and val(9(Q)*(¢k)) >
val(@Q*(¢k)), and hence

P (ex) )) (P* (k) ) (8(P)*(EK) 2(Q)" (k) )
val| 0 — —val| ———=% | =val — - — > 0.
( (Q*(CK) Q" (k) P (k) Q" (k)
Similarly, there is a unique differential ring structure on [ := k(A)(cx) such that d(c;;) =
c;j+1,; and these two differential structure commute with res. Finally let A be the group
generated by I'(A), val(L) and ¢r. Then C = Lulu A is a valued field with a valuation pre-
serving derivation — in the broader sense where res and val may not be onto. As VDF is the

model completion of such structures (cf. [Scaoo, Theorem 7.1]), we can find an embedding
f: L — M such that f fixes A. Let ¢ = tp(f(co)/A), then V,(q) = p. [ |

We will now look at how V,, and its inverse behave with respect to various properties of
types. Let us begin by two very easy results. One must beware though that however inno-
cent these question might seem to be, their converses actually present real challenges. A
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1V. Some model theory of valued differential fields

converse to Lemma (IV.4.5) is proved in Proposition (IV.4.9) and required the development
of Section 11L.1 to be proved. 1 do not know if the converse of Lemma (IV.4.6) holds or not.

Lemma 1V.4.5:
Let p € P,.(M) be L(A)-definable then V' (p) is L5(A)-definable.

Proof . Let o(x;s) be an Ly-formula that we may assume is of the form (9, (x),d,(s))
where 1)(Zw; So ) is an L-formula. By definability of p, there exists an £L( A)-formula (s )
such that for all tuples m € M, M = 6(0,,(m)) if and only if ¢)(u,d,(m)) € p, if and only
if ¥(0,(x),0,(m)) € v;'(p). Hence for all m € M, p(x;m) € V;'(p) is equivalent to
M = 0(0,(m)). [

Lemma 1V.4.6:
Let p € P.(M) be A-invariant then V;'(p) is also A-invariant.

Proof . Let p(0,(x),0,(c)) € V;'(p) be any Ly(M)-formula, where ¥)(zs; Se0) is an L-
formula. For all 0 € Autg,(M/A) ¢ Autp(M/A), we have p(z.;0(0,(c))) € p, ie.
2(0,(),0.(a(c))) € V5H(p)- u

Proposition 1V.4.7:
Let p € P, (M) be stably dominated then V;'(p) is also stably dominated.

Proof . We will need the following result:

Claim 1V.4.8: Let D be £9(M)-definable. If D is stable and stably embedded in ACVF, then it
is also stable and stably embedded in VDF.

Proof . 1t follows from [HHMo06, Lemma 2.6.2 and Remark 2.6.3], cf. Proposition (0.4.3), that
D c dcl, o (E uk) for some finite E ¢ D. Because k also eliminates imaginaries, is stable
and stably embedded in VDF, it immediately follows that D is stably embedded and stable
in VDF too. ¢

g
Therefore, the stable part over M in VDFY, Stfj, is an enrichment of the stable part over
M in ACVFY, St4]. Now let ¢ = v5!(p) and B ¢ K be such that

g g g
Stiy7 (delg (Me)) Ly7 Sty (delyg (MB))
where i&g denotes independence in Sti[g over M. In particular,
StE7 (del o (MO,(c))) 157 StE (del o (M, (B))).

As M is a model of VDF, it follows that St (dcl o (Ma,,(c))) L5} St5; (el (MO,(B)))
where iﬁ denotes independence in Stﬁf over M. As 0,(c) & p and p is stably dominated,

tpg (B/Sth7 (delgg (Me))) = tpgo(9u(B)/Stf;(dele (MA.(c))))
F tp(MO,(B)/M0.(c))
- tpLB(B/Mc).
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IV5. Groupsin VDF

Here the last implication comes from the fact that v, is one to one on the space of types.
It now follows from Lemma (0.4.7) [4.7 prelim], that V! (p) is stably dominated. [ ]

Let me now give some converses.

Proposition 1V.4.9:
Let p € S52(M) be Ly( A)-definable, then v,,(p) is Eg(dclﬁg (A))-definable.

Proof . Let p(xw;s) be an L-formula. Then exists some L5(A)-formula 6(s) such that
for all tuple m € M, p(xe;m) € V,(p) —ie. ¢(d,(x);m) € p— if and only if M E
0(m). It follows that v,,(p) € S5_(M) is Ly(A)-definable. By Corollary (I1L1.5), it is in fact
Eg(dclﬁg (A))-definable. [ |

Lemma 1V.4.10:
Let p € S5 (M) be finitely satisfiable in A, then V,,(p) is finitely satisfiable in A.

Proof . Let p(Zo; s) be any L-formula and let m € M be such that p(x.;m) € V,(p), i.e.
©(0,(x), m) € p. Then there exists a € A such that M = ¢(0,(a), m),i.e. V,(p) is finitely
satisfiable in A. [ ]

Proposition 1V.4.11:
Assume M sufficiently saturated and homogeneous and let p € S5 (M) be Ly( M )-definable.
The following are equivalent:

(i) pis stably dominated; (iv) V. (p) is stably dominated;
(ii) pis generically stable; (v) V.(p) is generically stable;
(iii) p is orthogonal to T'; (vi) V., (p) is orthogonal to T;

Proof . The equivalence of (iv), (v) and (vi) is well known in ACVF (cf. Proposition (0.4.20)).
It also follows from Proposition (0.4.19), that (i) = (ii) = (iii) also holds in any NIP theory.
We proved in Proposition (IV.4.7) that (iv) implies (i). Let us now prove that (iii) implies
(iv). By Proposition (IV.4.9), V.,(p) is L(A)-definable for some A ¢ M. Let C' = VDF be
maximally complete, and contain A and let ¢ & p| . By Proposition (IV.4.9), V.,(p) is L(C)-
definable. As p is orthogonal to I', we also have I'(C') ¢ I'(dcl.(Cc)) ¢ I'(dclg, (Cc)) =
I'(C). By Theorem (0.4.17), because C' is maximally complete, tp(d,,(c)/CT(dclz(Cc)))
is stably dominated. But tp(0,,(¢)/CT(dclz(Cc))) = tp(d.(c)/C) = Vu(p)|o and hence
V. (p) is also stably dominated. [

IV.5. Groups in VDF

The inspiration for this section is drawn from [Hruc, Section 3] and [KPo2]. In [Hruc],
Hrushovski shows that most of the tools developed in [Hrugo] for stable groups can be
generalized to an unstable setting as long as we have a definable generic around. In this
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1V. Some model theory of valued differential fields

section we give an account of this work, adding the case of x-definable groups (cf. Propo-
sition (IV.5.24)) that is missing from [Hruc] and generalizing the groups chunk theorem
somewhat so as to be able to talk about non connected groups more directly. We then use
those tools to give an abstract analog (in a non stable setting, using definable generics) of
Pillay’s result that groups definable in DCF, can be definably embedded in algebraic groups;
or of the similar result of [BDo1] for the groups definable in separably closed fields (SCF) of
finite imperfection degree. We then apply this abstract group construction in VDF. The
result one could hope for — in analogy to DCF — is the following:

Question 1V.5.1: Is every group interpretable in VDF definably isomorphic to a subgroup
of a group interpretable in ACVF?

But we are far from answering it. We can only cope with groups with d-generics (see Def-
inition (IV.5.8) below) and we cannot cope with complications related to the — quite ugly
— definable closure in VDF. This issue with definable closure has already presented itself
in the case of ACFA (algebraically closed fields with a generic automorphism), but in that
case, the definable closure is still inside the algebraic closure of the generated difference
field and so (both in [CH99] and [KPo2]), replacing the group chunk by a group configura-
tion (and using the supersimplicity of ACFA) a similar proof scheme still worked. In the
case of VDF, coping with the definable closure seems to require new methods.
Nevertheless, the abstract construction presented in this section can probably be used to
describe all definable groups with d-generics in other enriched valued fields where the de-
finable closure would be better understood.

We defined in Definition (111.6.6) the notion of (L, »)-definable set, let us now do the same
with functions.

Definition 1V.5.2 (x-definable functions):

Let L be a language, M an L-structure and x = (x;);e; and y = (y;) jes be (potentially infinite)
tuples of variables. Let S; be the sort in which the variable x; lives, and similarly for S;. A partial
function f : Tl;e; Si(M) — [1;c;S;(M) is said to be (L, x, y)-definable — or simply an (L, x)-
definable function, if we do not want to specify x or y — if for all j € J there exists an L-definable
function f; : [1;e; Si — Sj such that f = [1;c; fj.

Although the definition above seems too restrictive, it is a classical result (cf. [Poi87, Sec-
tion 4.5] for the co-def case) that considering functions whose graph is «-definable does not
actually allow any new function:

Proposition 1V.5.3:
Let M be a saturated enough L-structure. Any function whose graph is (L, x)-definable in M
is in fact the restriction to an (L, x )-definable set of an (L, » )-definable function.

Proof . Let us assume the graph of f is given by N,.p ¢(z,y). We may assume that P is
closed under finite intersections. As N,.p ¢(x,y) is the graph of a function we have:

A e(@y)n N\ e(z,2) = N\y; =2

peP peP

By compactness (and closure of P under intersection) for fixed j, there exists a formula
@; € Psuch that p,;(z,y) A p;(x,2) = y; = 2;, i.e. the formula 0(x,y;) := Jy.; ¢;(x,y) is
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IV5. Groupsin VDF

the graph of an £-definable function f;. It is also clear that the domain is (£, )-definable
as it is given by A ep Iy o(2,7). ]

As one might guess, an (L, »)-definable group will be a group in the category of (L, x)-
definable sets: an (L, »)-definable set equipped with an (L, x)-definable group law.

Example 1V.5.4:

Let (G, )aea be a projective system of L-definable groups, then G := lim G, = {geTl,Gq:
forall f : G, - Gj in the projective system, f(g.) = gg} is an (L, »)-definable set. More-
over, forall g, h € G, (g-h)a = ga - ho and the group law is also (L, » )-definable.

If T is stable, it is shown in [Hrugo] that any (L, x)-definable group is a prolimit of £-
definable groups as in the above Example (IV.5.4). This proof generalizes (cf. Proposi-
tion (IV.5.24)), in the unstable context, to groups with a d-generic (cf. Definition (IV.5.9)).
Let T be any L-theory that eliminates imaginaries and M k T be sufficiently saturated
and homogeneous. Let (G,-) be an (L(M), »)-definable group. Note that there is a slight
abuse of notation here: what I really mean when I say (L(M ), )-definable is (L(A), x)-
definable for some small set of parameters A ¢ M. Let A(x;s) be a (small) set of L(M)-
formulas where z is sorted like the points of G — as for G what I really should say is a set of
L(A)-formulas for some small A ¢ M. Note that contrary to what was done in the previous
chapter the formulas in A can have fixed parameters, to, potentially, take in account the
fact that G is defined with parameters.

Forall p(z;s) € A, let j, be the set of indices from x that actually appear in ¢ and ¢, (z, v, 2)
be an £(M )-formula that defines the graph of (z,y) = (x-y);, . We say that A is closed
under (left) action of G if for all p(x;s) € A, tuple m € M and g € G(M ), there exists and
instance ¢(z) of A such that forall x € G, 321, (g, z, 2) A p(2;m) = P(x).

Lemma 1V.5.5:

Assume G is a definable group. Let A(x; s) be a finite set of L-formulas and A ¢ M be such that
G is L(A)-definable. Then there exists a finite set ©(x; s,t) 2 A(x; s) of L(A)-formulas which
is closed under left action of G.

Proof . The finite set O(z;s,t) = A(z;s) U {t € G ATz (Yy(t,z,2) Ap(2;s)) = ¢ € A} is
closed under left action of GG by associativity of the group law. [ ]

Remark 1V.5.6:

If G is not defined over @ but one wants © to contain £-formulas, it is possible at the cost
of making © infinite. Indeed, for all ¢ € A, let us rewrite the formula v, (y, z, z) above as
Y, (y, x, z;m) where m € M and v, is an L-formula. Similarly , rewrite 6, as 6,,(x; m). Let
Ag(z;s,t,u) = {0,(x;u) Ay (tu) ATz (Yu(t, x, 2;u) Ap(z;8)), A== A, Antl = A% and
O := Upeny A™. Then O is closed under left action of G.

From now on, let A(z; s) be a set of £-formulas closed under left action by G. At the cost
of adding new constants to L, this also covers the case where A is a set of £L( A)-formulas.

Definition 1V.5.7 (9p):
Let p € S2(M) be a type consistent with G and g € G(M). We define 9p := tpx(g - a/M) for
any a & p such that a € G.
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Because A is closed under left action of GG, one can check that 9p is well defined and the
map (g,p) — 9p defines an action of G on A-types consistent with G. For all ¢ € A and
m € M, we have p(z;m) € 9p if and only if (g - x;m) € p where p(g - x;m) is a (slightly
abusive) notation for 3z, (g,z,2) A ¢(z;m). In particular, if A ¢ M is such that G is
(L(A), *)-definable and p is £L(A)-definable, then 9p is £L( Ag)-definable and we can take
dopr (23 8) = dpr (g - 23 5).

There are many definitions of generic types in the unstable context, among them one that
is related to forking (see [NPo6; HP11)):

Recall that, whenever we consider A ¢ M, it is supposed to be small.

Definition 1V.5.8 (f-generic):
Let A c M. We say that p € S5 (M) consistent with G is an f-generic A-type in G over A if for
all g e G(M), 9p does not fork over A.

Although f-genericity is the more usual notion of genericity, what we will be needing here
is a definable version (which appears in [Hruc]):

Definition 1V.5.9 (d-generic):

Let A M and p € S5 (M) be consistent with G. We say that p is a d-generic type in G over A
ifforall g e G(M), 9p is L(A)-definable.

When we do not want to specify the (small) set of parameters A, we will simply say that p
is a d-generic in G.

Proposition 1V.5.10:
Assume T is NIP and A = acl(A). Let p € S (M). The following are equivalent:

(i) pis d-generic over A;

(ii) pis L(M )-definable and f-generic over A.

We define Aut(M/Lstp(A)) to be the group generated by Aut(M/N) for all N < M con-
taining A. It is the group of automorphisms fixing A that preserve Lascar strong type,
where a and ¢ have the same Lascar strong type if there exists V< M containing A such
that a =,(n) c. Note that if (z;),., is an L(A)-indiscernible sequence, x, and z; have the
same Lascar strong type. For more on the matter, see [Sim, Chapters].

Proof . We will be needing the following easy result, which has nothing to do with NIP:
Claim 1V.s.11: Let X be an L( M )-definable set.

X is L(A)-definable < X is Aut(M /Lstp(A))-invariant

Proof . The left to right implication follows from Aut(M/Lstp(A)) € Aut(M/A). Let us
now assume that X is Aut(M / Lstp(A))-invariant and let (e;);.,, be an L( A)-indiscernible
sequence such that eg = "X . Then ¢y and e; have the same Lascar strong type and hence
there exists 0 € Aut(M/N) for some N, A ¢ N <M, such that o(ey) = e;, but because
Aut(M/N) c Aut(M/Lstp(A)), it follows that e; = o(eg) = eg and hence that ey = "X " €
acl(A) = A. ¢
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Recall now that, in an NIP theory, a type p € S5 (M) does not fork over A if and only if it is
Aut(M/Lstp(A))-invariant (cf. [Sim, Proposition 5.21] which clearly works for A-types).
Let us now assume that p is d-generic over A. In particular, p = 'pis £(A)-definable and for
allg e G(M),9pis A-invariant and hence Aut(M /Lstp(A))-invariant. On the other hand,
if p is L(M )-definable and f-generic over A, then for all g € G(M), 9p is L(M )-definable
and Aut(M/Lstp(A))-invariant. By Claim (IV.5.11), 9p is in fact £(A)-definable. |

Proposition 1V.5.12:
Let p € S5 (M) be a d-generic A-type in G. Then for all ¢ € A, the set {9pl, : g € G} is finite.

Proof . There exists some (small) A ¢ M such that for all ¢ € G(M), 9p is L(A)-definable
and hence for all p(z;s) € A, there exists an £L(A)-formula v,(s), depending on g, such
that M = Vsd,p(g-z;5) <= 1,(s). By compactness, there exist a finite number of
L(A)-formulas (1;)o<i<r such that for all g € G(M),

Me \ (Vsdyp(g-x;s) < 1i(s)).
O<i<k
For all i, let ¢; be the (-type defined by ;. Then {9p|,: g € G(M)} € {g;: 0 <i <k} which
is indeed finite. [ ]

Definition 1V.5.13 (Locally finite):
Aset P c 82(M) is said to be locally finite if for all o(z; s) € A, {pl, :p e P}isfinite.

We have just shown that for all p € S*(M) d-genericin G, {9p: g € G} is locally finite.

For the rest of this section, let 2A < Aut (M) be a group. Considering 2(-invariant sets where
2 is not of the form Aut(M/A) for some A ¢ M may seem like an unnecessary gener-
alization, but we will need it to prove the finer considerations about the parameters in
Theorem (IV.5.42). In the proof of that theorem there are two problems: construct a group
definable in some language £ from a group definable in some enrichment £ and control
the parameters over which this new group is defined. But we only control the parameters
in £ and hence we show that everything we construct is invariant under the group of Z-
automorphisms over A (which will be 2( in the proof). Thus, in the end, we obtain that the
group we constructed is definable in £ over dcl'(A).

For simpler statements, one can take 2 = Aut(M/A) and replace any instance of (rela-
tively) L£( M )-definable 2-invariant sets by (relatively) £( A)-definable and any instance of
(L(M), )-definable A-invariant by (L(A), )-definable.

Definition 1V.5.14 (relatively £-definable):
Let X be (L, *)-definable and Y ¢ X (M). We say that'Y is relatively L-definable in X if there
exists an L-definable set Z such that Y = X (M) n Z(M).

Proposition 1V.5.15:

Assume G is A-invariant and A is finite. Let P ¢ S5 (M) be a locally finite set of A-types d-
generic in G which is 2-invariant — i.e. forall p € P and o € 2, o(p) € P. Then Stabg(P) :=
{g € G: forallp € P,9p € P} is a relatively L( M )-definable -invariant subgroup of G of
finite index.
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1V. Some model theory of valued differential fields

It follows that if A is infinite, Stabg(P) is an (L(M ), » )-definable 2(-invariant subgroup
with bounded index.

Proof . As noted earlier (g, p) — 9pis a group action of G on the A-types consistent with G.
Hence for all such P, Stabg(P) is indeed a subgroup. It is defined by

A AV Vs (dyp(z;s) <= dpp(g-x;5)).

peA peP qeP

As P is locally finite, the above seemingly infinite formula is in fact an £( M )-formula and
as P and G are 2-invariant, so is Stabg(P).

Pick any p € P, Stabs(p) < Stabg(P) and the index of Stabg(p) in G is equal to [{9p: g €
G'}| which is finite by Proposition (IV.5.12). [

Remark 1V.5.16:

If Gis (L(A),x)-definable for some A ¢ M and p € S(M) is d-generic in G over acl(A),
then the set P := {o(p) : 0 € Aut(M/A)} is an Aut(M/A)-invariant locally finite set of
types d-generic in G.

If we take A to be the set of all formulas and P to be a singleton, we recover what is usually
called the connected component of G. We will not be using this result afterwards.

Proposition 1V.5.17:

Let p € S(M) be d-generic in G, then Stabg(p) does not contain any proper (L(M), *)-
definable subgroup of bounded index in G.

In particular, for any A ¢ M such that G is (L(A), x)-definable and p € S(M ) is d-generic in
G over A, Stabg(p) is the intersection of all relatively L( A)-definable subgroups of finite index
in G — equivalently the intersection of all (L(A), »)-definable subgroups of bounded index in
G. Moreover Stabg(p) is normal in G and does not depend on the choice of p.

The following proof is taken almost word for word from [HP11, Proposition 5.6].

Proof . Let us begin with the following claim:

Claim 1V.5.18: Let A € M be such that G is (L(A), x)-definable and p is d-generic in G over
A, then Stabg(p) = {a7' - a2 a; € G and ay =4y as}.

Proof . Let ay =(4) as. Then there exists o € Aut(M/A) such that o(a;) = a,. Moreover,
as both p and “1p are Aut(M /A)-invariants and G is (L(A), »)-definable we have:

“p=o(“p) = "o (p) = “p.

It follows that ®1"92p = p. Let now h € Stabg(p), a & plap and ¢ = h-a. Then c & p|,, in
particulara™! =z 4y ctand h=c-a™t = (1)t -a . ¢

Thus, Stabg(p) does not depend on p and is normal. Moreover, for any (a,b) £ p®p|,,,
a~'-b € Stabg(p), i.e. " 'p is consistent with Stabg(p). Therefore, we may assume that p
itself is consistent with Stabg(p). Moreover, if a € G(M) is such that %p € Stabg(p) then
forall g £ pl|,;, a- g = %p and hence “p = ¢9p = p and p is the only type in its orbit that is
consistent with Stabg(p).

176



IV5. Groupsin VDF

Let H<Stabg(p) be an (L(M), »)-definable subgroup of bounded index in G. Then there
isa coset of a- H such that p(z) + x € a- H. Take any b € Stabg(p), thenp=pr 2z €b-a-H.
It follows thatb-a- H =a- H,i.e. bea- H-a'. It follows that Stabg(p) =a-H -a™! = H.

The proposition now follows from the fact that Stabg(p) is the intersection of relatively
L(A)-definable subgroups of finite index by Proposition (IV.5.15). ]

One can find the first version of the following proposition, in the stable context, in [Hrugo,
Theorem 2]. The proof given here follows [Hruc, Proposition 3.14] in a slightly different
context. Recall the notations of Definitions (111.6.6) and (I1V.5.2)

Proposition 1V.5.19:

Let x be a finite tuple of variables and (G, -) an 2-invariant (L(M ), x)-definable group — hence
an oo-definable group. Assume there exists P € S(M ) an A-invariant locally finite set of types
d-generic in G. Then there exists an L( M )-definable -invariant group H such that G<H and
G is the intersection of L( M )-definable A-invariant subgroups of H.

Proof . Replacing P by {9p: g € G(M) and p € P}, we may assume that Stabg(P) = G. Let
(X4 )aea be L(M)-definable sets such that G = N, X,, m be an L(M )-definable function
such that for all a, b € G, a-b = m(a,b) and i an L(M )-definable function such that for
all a € G, a! = i(a). We may assume that (X, )qea is closed under finite intersections.
By compactness there exists aq such that x, y and z € X,,, implies that m(m(z,y), z) and
m(x, m(y, z)) are both defined and equal, that m(x,1) = m(1,z) = z and that m(i(z), x)
and m(x,i(x)) are also both defined and equal to 1. We may also assume that for all « € A
KXoy € Xo

Forallawe A letY, ={ae X, : forallp e P,m(a,X,) € p} which is L(M)-definable and
2A-invariant.

Claim 1V.5.20: G = Ngea Yoo

Proof.Let a € G, then i(a) = a! € G too. Fix some o € A. By compactness, there exists
3 such that m(X3) ¢ X,. Then we have i(a) € X and hence m(i(a), Xs) ¢ X,. For all
x € X5 we have m(i(a),z) € X, and hence m(a,m(i(a),x)) € m(a, X,) but as a, i(a) and
z € Xoy, m(a,m(i(a),z)) = x and it follows that Xg € m(a, X, ). Asforallp € P, Xj € p,
we also have m(a, X,,) € pand hence a € Y,,.

Conversely, let a € N;, Y, and pickany p € P. Forall « € A, m(a, X,,) € p,i.e. N;m(a, X,) €
p. Let b E p. 1t follows that there exists ¢ € N, X, = G such that b = m(a,c). As a, b and
ce Xay,a=m(a,1) =m(a,m(c,i(c))) =m(m(a,c),i(c)) =b-cteqG. )

Note that if X, n Xz = X, then Y, nYs = Y,, ie. (Y,)qea is also closed under finite
intersections. By compactness there exists «; such that for all a and b € Y,,,, m(a,b) and
i(a) € Xy Let Ay :={a e A:Y, cY,, }. Wealso have G = Nyea, Ya-

Let S, ={aeX,, :m(a,Y,) cY,}.

Claim 1V.5.21: For all a € Ay, (S,, m) is a semi-group.

Proof . 1t suffices to prove thatif a and b € S,,, then m(a,b) € S,. Forall z € Y., m(a,z) € Y,
and m(b,x) € Y,, hence m(m(a,b),x) = m(a,m(b,z)) € Y,. Furthermore, as a and b €
Y, €Y., m(a,b) € X,,. ¢
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Claim 1V.5.22: Forallao e A;, G S, €Y,

Proof . Let a € G, then, obviously a € X,,. Let b € Y, and p € P, then ® 'p ¢ P and hence
m(b, X,) €@ 'p. It follows that m(m(a,b), X,) = m(a,m(b, X,)) € p, so m(a,b) € Y, and

a€S, LetnowaeS,, thenae X,,andas1¢eY,,a=m(a,1)€Y,. ¢
Let G, == {a€ S, :i(a) € S,}. Thenforallaw e A, G,isagroupand G < G, € S, € Y,,.
Therefore we also have G = Nyea, Ga- [
Remark 1V.5.23:

There is a classic counter-example to Proposition (IV.5.19) when the group does not have a
d-generic. Let M be an Rg-saturated real closed field. The group Z of infinitesimal elements
{z € M : foralln € N, —-n < x < n} is an oo-definable subgroup of the additive group
G, (M) but there is no proper definable subgroup of G, containing Z.

Proposition 1V.5.24:

Let (G,-) be an (L(M), »)-definable -invariant group. Assume there exists P ¢ S(M) an
A-invariant locally finite set of types d-generic in G. Then there exists a projective system of
L (M )-definable 2A-invariant groups (H)aea and an (L(M ), )-definable A-invariant group
isomorphism f : G - H := lim H,,.

This proof is adapted from the proof of [Hrugo, Proposition 3.4] in the stable context. Re-
call that if p and ¢ € S(M) are two Aut(M /C')-invariant types for some C' ¢ M, for all
D ¢ M we define p® ¢, to be the type of tuples (a,b) such that a = p|., and b = p|.p,.
Note that if p and ¢ are £(C')-definable then p ® ¢ is also £(C')-definable and we can take
dpoo(2,y) p(2,y,5) = dpr (dgy (2, Y, 5)).

Proof . As in the previous proof, we may assume that Stabg(P) = G. Let © = (x;);; be a
tuple of variables sorted as G and J := {j € I : |j| < co}. Forall j € J let ¢, E;c, hold if for
all p; and p, € P,

p®pa(z,y) - (x-cr-y)j=(x-co-y)jA(y-cit-x);=(y ;' - x);

where for any J-tuple a, a; is the tuple of elements from ¢ with indices in j. Let ¢(y; s,t, x)
be the L(M)-formula A;e;(z-5-y); = (z-t-y)in(z-s71-y); = (x-t71-y);. As Pislocally finite,
{d,p : p € P} is finite — up to equivalence. Let (¢;(x;s,t))o<i<k be the L(M )-formulas in
this set. For the same reason {d,¥; : p € Pand 0 < i < k} = {0;(s,t) : 0 < j < l}. Itis
now easy to see that for all s and ¢ € G, sEjt is defined by Ao 6;(s,t),i.e. E;is L(M)-
definable. As P and G are 2(-invariant, it is quite easy to see that £ is also 2(-invariant.

Claim IV.S.ZSZ For all C1,Co € G, ifClEjCQ then 1Ej(01 . 051) and 1EJ(Czl . CQ).

Proof . Let p; and p, € P and (a,b) £ p1 ®palc, ., Then co-bE 2pofp, ., and ;' b E
‘351'92p|06102a. Hence (a-c1-(c3'b)); =(a-ca-(c3'-b)); = (a-1-b);and (a-c;' - (c2-b)); =
(a-c3t-(c2-b))j=(a-1-b)j. As (c1-c3') L = o eyt and (7t - ¢2) 7! = 31 - ¢4 the symmetric
argument allows us to conclude. ¢
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It follows immediately that the E-class of 1 is a normal subgroup G of G and that the
E)-classes are the cosets of G;. Let H; be the co-definable 2-invariant set G/E; = G/G,
and 7; : G - H; be the canonical projection — which is an 2-invariant definable map.
The graph of the group law on Hj is the image under 7; of the graph of G’s group law. It is
therefore co-definable 2(-invariant and hence, by Proposition (IV.5.3) it is in fact a definable
function. Moreover if j; € js, G, € G}, and hence there is a canonical morphism 7;, j,
Hj, - Hj, which is definable and 2l-invariant for the same reason as the group laws. Let
H:= h<£1 H;.

Claim 1V.5.26: Forall ¢; and c; € G, if mj(c1) = w;(¢c2) forall j € J, then ¢y = cs.

Proof . Pick any p € P and let (a,b) = p®?|,, .. Forallj e J, (a-c1-b); = (a-ca-b); —
a-c1-b=a-cy-b— and hence c¢; = cs. ¢

Claim 1V.5.27: For all a € H, there exists c € G such that for all j € J, w;(c) = a;.

Proof . For all (j;)o<i<k € J,let j := U, j; € J. Then there exists ¢ € G such that 7;(c) = a;. It
follows that for all { < &, ;,(¢) = 7, j(7;(¢)) = aj,. We now conclude by compactness. ¢

It follows that (7} ), is an isomorphism between G and H. As H is only a prolimit of co-
definable groups, we are not quite done yet. 1t is obvious that (). P := {(7;).p: p € P}
is an 2-invariant locally finite set of types d-generics in H; and by Proposition (IV.5.19), for
all j e J, Hy =Ny, Hj; for some 2A-invariant £( M )-definable subgroups H;,; of a common
2-invariant £(M )-definable group K. As usual we may assume that the H;; are closed
under intersection — for fixed j — and we order L; by l; ¢; lyif H;;, € H,;,. Let L :=
{(j;1) s j e L;}. Forall j e Jand Iy <; Iy € Lj, let p(;1,),;1,) be the inclusion morphism
Hj;, - Hj,;, and for all j; c js € J,let p¢j, 1), (jo.10) DO 7rj17j2|Hj27l2 whenever 7;, ;,(Hj,1,) €
Hj, ;,. By compactness, for all [y € L, , there exists Iy € L;, such that 7, ;,(Hj,1,) € Hj, 1,
and it follows that there is an (L(M ), »)-definable -invariant isomorphism from H onto
li(£1 H Gl |

Let us now consider group chunks, a tool central to the construction of groups in model
theory. The initial idea is due to Weil [Weiss] in the setting of algebraic groups. It was
then transposed to a more general topological setting in [Drigo] and to the stable setting
in [Hrugo]. The notion of group chunk on a x-type appeared when trying to prove the
aforementioned result that groups definable in DCF, are subgroups of algebraic groups
(see for example [Pilg7]).

Recall that if f is an £(M)-definable function and p € S(M), we define f,p to be the L-type
over M of any f(a) where a E p.

The following definition is a generalization of the standard notion: if one takes P = {p},
one gets a definition equivalent to the one given in [Hruc, p. 3.10]. Note that in the def-
inition below there is an explicit reference to both the left inverse and the right inverse,
which does not appear as explicitly in [Hrugo, Theorem 1].

Definition 1V.5.28 (x-definable group chunk):
Let x = (2;)se; be a tuple of variables and P ¢ S% (M) be a locally finite set of L(M )-definable
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types. An (L, x)-definable group chunk over P is a tuple of (L(M ), x?%, x)-definable functions
(F,G, H) such that for all p,, p; and p3 € P:

(i) Foralla & pi|y, (Fo).p2 € P where F,(z) := F(a,z);
(ii) Forall a & py|,,, there exists p € P such that (F,).p = pa;
(”l) b1 ®p2 = G(SU,F(.T},Q)) =YA H(F(‘T7y)7y) =5

(IV) P1®D2 ®p3(may7’z) FF(.@,F(Q,Z)) ZF(F(.%',:I/),Z)

Example 1V.5.29:
Let G be an (L(M), )-definable group with a d-generic p, then the multiplication of G
induces a natural (£(M), »)-definable group chunk over {9p: g € G}.

Let us now show the converse: any x-definable group chunk is isomorphic to the group
chunk of a x-definable group. The following propositions are improvements to [Hruc,
Paragraph 3.11]. The first improvement is that we consider -definable group chunks and
not just definable group chunks (but that changes nothing to the proof) the other change
is that we consider a group chunk over a locally finite set of types and not a singleton; that
does not change the essence of the proof either but it does make it trickier.

Proposition 1V.5.30:

Let P ¢ S5(M) be a locally finite, A-invariant set of L(M)-definable types and (F, G, H)
be an -invariant (L(M ), x)-definable group chunk over P. Then there is some 2A-invariant
(L(M), x)-definable one to one function f and some -invariant (L(M ), )-definable group
(G,-) such that f,P := {f.p : p € P} is an A-invariant locally finite set of types d-generic in
G = Stabg(f.P) and for all p; and py € P, p1 ®po(x,y) - f(G(x,y)) = f(z)™- f(y).
Before getting into this technical proof, let me just say that the idea is the same as always:
the group we construct is the group generated by the germs g, of multiplication by real-
izations of types in P and we show that this group consists of the elements of the form

Ga - gb_l

Proof . Let P, = {q € S5(M) : for all L-formulas ¢(z;s), ql, € {pl, : p € P}}. Then P is
also a locally finite 2(-invariant set of £( M )-definable types. Moreover, for all ¢;, ¢, and
g3 € Pr,a e gy, (Fo)+q2 = gs if and only if for all £-formulas ¢,

MEed,xVs(du,ye(F(a,y);s) < dgzp(2;5)).

But by definition of Py, there exists p;, p» and p3 such that this formula is equivalent to M =
dp, e Vs (dp,yp(F(z,y);s) <= dy,z¢(z;s)). It follows that 1V.5.28.(i) and 1V.5.28.(ii) also
hold for P,. Similarly 1V.5.28.(iii) and 1V.5.28.(iv) also hold for P;. In particular, we may
assume that P, = P.

Claim IV.5.31: For all py, p, € P and a = p1|,,, (G,).p2 € P where G,(x) = G(a, x).

Proof . By 1V.5.28.(ii), for all a & py|,,, there exists ps € P such that (F,).ps = po. Let C ¢ M
be such that all types in P are defined over C' and G is (£(C'), x)-definable, a = p;|, and
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b & psl, then ¢ = F(a,b) & paf,qa)c, and by IV.5.28.(iii), G(a,c) = G(a, F(a,b)) = b &
p3‘Ca' ¢

Claim 1V.5.32: For all p; and ps € P, p1 ® po(x,y) - F(z,G(x,y)) = v.

Proof . Let a = p|,,. By IV.5.28.(ii), there exists p; € P such that (F,).ps = ps. Letb & psl,;.,
then ¢ := F(a,b) & ps|,,, and F(a,G(a,c)) = F(a,G(a, F(a,b))) = F(a,b) =c. ¢

The goal now is to find an (L£L(M), )-definable set S that contains all realizations of all
p € P but such that it is not too big so that all its points still have similar properties with
respect to F' as the realizations of the types in P.

For all £-formula ¢, let 0,(x) := Apep Vyer Vs (dgy ©(y;8) <= dpyp(F(z,y);s)). As Pis
locally finite the disjunction and conjunction are finite, and this is an £(M )-formula. Be-
cause P is 2-invariant, 6,, is also ™A-invariant. Let x,(x) := Apep Vyer Vs (dgy ¢(y; 5) <=
dyy o(G(x,y);s)). Similarly, there are -invariant £(M )-formulas a(z) and ((z) equiva-
lent respectively to

A N dgydyz F(2,F(y,2)) = F(F(x,y), )

peP qeP

and to
/\dpyG(wa(xay)) :y:F(x,G(x,y))/\H(F(x,y),y) =Z.

Let
S(z) ={a(z), ()} u{b,(z), xp(x): pan L-formula}.

Claim 1V.5.33: Forallpe P, S c p.

Proof . Let a = p|,, and g € P. For all L-formulas ¢ and all m € M, d(g,),,y p(y;m) —
dey o(F(a,y);m) and d(g,).qy (y;m) <= dgyp(G(a,y);m). Moreover, by 1V.5.28.(i)
and Claim (IV.5.31), we have (F;,).¢and (G,).q € P. Thus, we have proved that M & 0,(a)A
Xp(a).

For all ¢; and ¢» € P, by IV.5.28.(iv), ¢1 ® ¢2(y, 2) + F(a, F(y,2)) = F(F(a,y), z) we have
M e dyydy,zF(a,F(y,z)) = F(F(a,y),z). The rest of the proof follows by 1V.5.28.(iii),
Claim (IV.5.32) and similar considerations. ¢

Claim 1V.5.34: Foralla = Sandp e P, (F,).pand (G,).p € P.

Proof . Let ¢ be an L-formula, as M & 6,(a) A x,(a), there exists ¢; and ¢» € P such

that dy,y p(y;s) <= dpyp(F(a,y);s) —ie (Fo).upl, = qil, — and dg,y o(y;5) <=
dpy p(G(a,y);8) — (Ga)spl, = gl 1t follows that (F,).pand (G,).p € P = P. ¢

Claim 1V.5.35: For all types p, and p, € P, a = S and (b,c) & p1 ® pa|,,» G(a, F(b,c)) =
F(G(a,b),c).

Proof .Let d := G(a,b), then F'(a,d) = F'(a,G(a,b)) =band d E ps,,, and F'(d,c) E palysu
for some p; and p, € P and ¢ £ psf,,,,- Moreover, G(a, F(b,c)) = G(a, F(F(a,d),c)) =
G(a,F(a,F(d,c))) =F(d,c) = F(G(a,b),c). ¢
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Claim 1V.5.36: Forall a, b, cand d & S, there exists e and | = S such that for all p € P,
p(z) F F(a,G(b, F(c,G(d, x)))) = F(e,G(l,2)).

Proof .Pick any p; € P and let e & pi|ye- Forall p € P, p(z) = G(d,F(er,2)) =
F(G(d,e1),z) and es := G(d, €1) E P2|yapeq fOT SOmMe po € P. We also have p3, py and p5 € P
such that e3 := F'(c, e2) E P3prapear €4 7= G(b,€3) E Palprapeq and €5 := F(a, ea) E pslprapea-
Moreover, p(z) + F(c, F(es,x)) = F(F(c,ez),x), p(x) - G(b, F(es,x)) = F(G(b,e3),x)
and p(r) = F(a, F'(es, 7)) = F(F(a,e4), ). It follows that for all p € P and = & ply;,p040, 5
as G(e1,7) F qlyapeqe, fOr some q € P,

F(a,G(b, F(c,G(d,))))

F(a,G(b,F(c,G(d, F(e1,G(e1,2))))))
F(F(a,G(b, F(c,G(d,e1)))),G(er,x))
F(65, G(@l,l’))

and by Claim (1V.5.33), we do have e; and e5 € S. ¢

For a and b, let R, ,(z) = F(a,G(b,x)). For all i € I, the i-th component of R, (de-
noted R,;;) is an 2A-invariant £(M )-definable function. Let (a,b)E;(c,d) if and only if
Npdpx Ry p(2) = Req(x). As P is locally finite, £; is £( M )-definable and it is clearly A-
invariant. Let h;(a,b) be an A-invariant £(M )-definable function such that h;(a,b) =
hi(e,d) if and only (a,b) E;(c,d). Then h(a,b) := (h;(a,b) ) is an A-invariant (L(M ), *)-
definable map. Let G := h(S x S) and m(h(a,b),h(c,d)) = h(e,l) for some e and [ are as
in Claim (IV.5.36). Then m is well defined. Indeed, for all i € {1,2}, let a;, b;, ¢;, d;, e; and
l; & S be such that h(ay,by) = h(ag, by) and h(cy,dy) = h(ce,ds) and for all p € P,

p(x) - F(a;, G(b;, F(c;,G(d;,x)))) = Fei, G(l;, ).

Letz & plysca
Hence

for some p € P, then F(cy,G(d1,7)) F qly,,,,, for some g € P.

icidieili)ie1,2)

F(e1,G(ly, 7))

F(ar,G(by, F(er,G(dy,x))))

= F(az,G(bg,F(cl,G(dl,x)))) as h(ahbl) =h(a2,b2)
= F(ag,G(bg,F(Cg,G(dg,l‘)))) as h(Cl,dl) Zh(CQ,dg)
= F(BQ,G(ZQ,[L’)),

i.e. h(ey,l1) = h(ey,ls). Moreover, as GG and the graph of m are the image under an -
invariant (L(M), x)-definable map of an A-invariant (L(M ), »)-definable set, they are
both 2(-invariant (L(M ), »)-definable.

Claim 1V.5.37: (G, m) is a group.

Proof . The function m is obviously associative, as germ composition is. Let us show that
for all a € S, h(a,a) is the unit and for all b € S, h(a,b) is the inverse of h(b,a). Let c € S,
pePandzE ply . F(b,G(c,x)) E q1]y/. for some ¢; € P and

F(a,G(a,F(b,G(c,2)))) = F(b,G(c,x)) = F(b,G(c, F(a,G(a,x))))
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and as G(a, x) & ¢sl,,,, for some ¢, € P,
F(a,G(b, F(b,G(a,x)))) = F(a,G(a,)).
This concludes the proof of the claim. ¢

LetaeS,qe P,bE q|,,, and ¢ := F'(a,b),thenband ce Sandforall pe Pand z £ p|,;,
F(e,G(b,x)) = F(F(a,b),G(b,xz)) = F(a,F(b,G(b,x))) = F(a,z). Let f(a) = h(b,c)
where b and ¢ are as above. Then f is well defined for the same reasons m was and it is
A-invariant (L£(M ), »)-definable. Let a and b € S be such that f(a) = f(b), then for any
pePandzE ply,,, a=H(F(a,z),z) = H(F(b,z),z) = b,ie. fisone to one.

Claim 1V.5.38: Forall p € P and a, b € S, there exists q € P such that "@® (f,p) = f.q.

Proof . Let q := (F,).(Gyp).p € P. For all C ¢ M such that all the types in P are £(C)-
definable and G and f are (L(C), x)-definable and all ¢ £ p|.,,, F(a,G(b,F(c,x))) =
F(a,F(G(b,c),x)) = F(F(a,G(b,c)),x) = F(e,x) where e := F(a,G(b,c)) E |y 1t
follows that m(h(a,b), f(c)) = f(e) E fedlcw- ¢

As f.q is L(M)-definable for all ¢ € P, we have just proved that for all p € P, f,p is d-
generic in G and that G = Stabg( f. P). Finally, let py, p» € P and (a,b) £ p1 ® po|,,. For
allp e Pand x = p|y,, F(b,x) = F(a,G(a,F(b,x))) = F(a, F(G(a,b)),z),ie f(b) =
m(f(a), f(G(a,b))). u

Remark 1V.5.39:

The conclusion that for all p; and p, € P, py ® po(x,y) = f(G(z,y)) = f(x)~' - f(y) might
be a little surprising, but let us show that it implies what one would think to be the more
reasonable conclusion: for all p; and py € P, py®pa(x,y) + f(F(z,y)) = f(x) - f(y).
Indeed, let a = py|,, and p; € P be such that (G,).ps = p2. Let b = ps|,,, and ¢ := G(a,b) =
P2y then F(a,c) = F(a,G(a,b)) =band fy(c) = fo(G(a,b)) = fo(a)™- fo(b) = fo(a)™t-
fo(F(a,c)).

In fact, there is an equivalence of categories between groups with d-generics and group
chunks.

Proposition 1V.5.40:

Let (G,-) and (H,-) be two U-invariant (L(M), x)-definable groups, P ¢ S%(M) be an -
invariant locally finite set of types d-generic in G and f, be an -invariant (L(M), »)-definable
function. If for all p, (fo).p1(y) + y € H and for all p; € P, p1 ®pa(x,y) + folz™t-y) =
f(x)~t - f(y), then there exists a unique 2-invariant (L(M), » )-definable group morphism
f :Stabg(P) - H such that forall p € P, p(x) + f(x) = fo(x).

Moreover, if G and H are both L( M )-definable, f can be extended to some -invariant L( M )-
definable subgroup of G with finite index — of the form Stab¢ ( P| , ) for some finite set of L(M )-
formulas A, where P|, := {p|, :pe P}

Finally, if f, is one to one, so is f.

Proof . Let g € Stabg(P) and p; € P. Then py :=9p; € Pand g = (g-a)-a~! where g-a E pol,,
and a E p;. Therefore, we must have f(g) = f(g-a)- f(a™) = fo(g-a) - fo(a)~'. We have
just proved uniqueness, but let us now prove that this indeed defines a group morphism.
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Claim IV.5.41: Fori € {1,2,3,4}, let p; € P and a; = p;|,, such that a; - a3' = a3 - a;', then

folar) - fo(az)™ = fo(as) - fo(a4) L

Proof .Pick any p € P and let e = p| M(ai)ouics BY Remark (IV.5.39) and the fact that a, - e =

2P| rrayay A0d 2p € P, fo(ar-a3-€) = fo(ar)- fo(az'-€) = fo(ar)- fo(az) ™ fo(e). Similarly,
fo(a -agl -e) = foas- af -e) = folas) - fo(as)™ - fo(e). ¢

It follows that f defined as above is well defined. Note that for all a € Stabg(p), f(a)
is defined by d,z fo(a - z) = f(a) - fo(z) for any p € P and hence f is ™-invariant and
(L(M), ~)-definable. Moreover, for all a; and ay € Stabg(P), p € P and ¢ & ply, o0
a1+ CE P praiay @0 € Pand fo(ar-az-c) = f(a1) - folaz-¢) = f(a1) - f(az) - fo(c) —ie.
flar-az) = f(a1)- f(az) —andif g € P and (a,c) F ¢®p, then fo(a-c) = fo(a) - fo(c) —
Le. f(a) = fo(a).

If f, is one to one and a,b € Stabg(P) are such that f(a) = f(b), then for any p € P,
p(z) F fola-x) = f(a)- fo(z) = f(b)- fo(z) = fo(b-z). As fy is one to one, forall ¢ = p| ;.
a-c=b-candhencea =b.

Now assume that G and H are £L( M )-definable and let A ¢ M be a set of codes for these
groups (and their multiplicative law). Let ¢(x) = Apepdpy (fo(z - y) = fo(x) - fo(y) A
fo(x™t-y) = fo(x)~' - fo(y)) which is indeed an L(M )-formula as P is locally finite. Let
us rewrite ¢ as ¢(z;u) where ¢ is now an £-formula. Similarly let (x;s,¢,u) be an £L-
formula of which fy(s-x) = t- fo(x) is an instance, {(x;u) be an L-formula of which
xr € G is an instance and ((z;u) be an L-formula of which fy(z) € H is an instance.
Let A(z;s,t,u) = {p(x;u),0(x;s,t,u),&(x;u),((x;u) and O(x;s,t,u,v) be a finite set
of L( A)-formulas closed under left action of G as in Lemma (IV.5.5). Note that because G
and H are 2-invariant, A is fixed point-wise by 2-invariant and hence so is ©.

In the proof, we can replace P by P|, which is still 2-invariant. It follows that we can
replace Stabg (P) by Stabg( P|g) — which, by Proposition (IV.5.15) is 2-invariant, £( M )-
definable and has finite index in G. [ ]

Let £ ¢ L be two languages, R be the set of L-sorts, T’ be an £-theory which is NIP and
eliminates imaginaries, T 2 T be an L-theory, N = T be saturated and homogeneous
enoughand N := N | o

Theorem 1V.5.42:

Assume there  exists M = T with M| r unifgrmly staéb/ embedded in every elementary ex-
tension. Let A ¢ N be such that R(dcl'(A)) = R(A), (G, ") be an L(A)-definable group
with a d-generic type p over acly! (A). Assume that there exists an (L(A), »)-definable
one to one function [ and (L’(R(A)) *)-definable functions m and i such that for all

g1 and gy € G, (g1 - g2) = m(f(g1), f(g2)) and f(g;') = i(f(g1)). Then there ex-
ists an L(R(A))-definable group H and an L( A)-definable one to one group morphism

h:G— H.

Proof . Let A := R(A), 2 = Autz(M/A), P = {o(9) : g€ G(M)and o € A} = {9(a(p)) :
geG(M)ando € A} and Q := {(f.p)|; : p € P}. Then Stabg(P) = G and Q ¢ S*(N)
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is an YA-invariant locally finite set of £(N)-definable £-types. By Corollary (I1LL5), each
q € Qo is in fact L(N)-definable. Let m,(z,y) := m(i(x),y) and my(z,y) :== m(x,i(y)).

Claim 1V.5.43: The tuple (m, m;, my) is an A-invariant (L(M ), » )-definable group chunk over
Q.

Proof . Let ¢; and ¢ € ). There exists p; and p, € P such that ¢; = (f.p;)|,, for i € {1,2}.
Leta E p1|ad%q(g), CcNandcke p2|ad%q(;{)aa. Then m(f(a), f(¢)) = f(a-c) and hence
(Mf(a))«fop2 = fop. 1t follows that (mf(a))«q2 = (M)« ((fop2)|) = (fo%p2)l, € Q. Let
also g3 = (f*“71p2)|£ € (). For the same reason as above (m(q))+q3 = g2. Thus IV.5.28.(i)
and 1V.5.28.(ii) hold.

Forall z,y and z € G,

m(f(x),m(f(y), f(2))) = f(z-y-2) =m(m(f(2), f(y)), [(2)),

my(f (), m(f(2), f(y))) = m(i(f(2)),m(f(x), f(y)))
= m(f(z™), f(x-y))

- Jtay)

= f(v)
and, similarly, ms(m(f(z), f(v)), f(y)) = f(x). 1t follows that 1V.5.28.(iii) and 1V.5.28.(iv)
also hold. ¢

By Proposition (IV.5.30), there exists an 2(-invariant (L(/N), )-definable group (L,-) and
an A-invariant (L(N), »)-definable one to one function [ such that [, is an 2(-invariant
locally finite set of d-generics of L and for all ¢; and ¢2 € Q, ¢1 ® g2(x,y) + I(G(z,y)) =
I(m(i(x),y)) = l(x)~ - I(y). By Proposition (IV.5.24), there exists a projective system of
2-invariant £(N)-definable groups (Hg, ) sep and an 2A-invariant (L, «)-definable groups
isomorphism j between L and lim Hg. For all 5 € B, let w3 : lim Hy — Hg be the canonical
projection and hg = w5 0 j ol o f. Then hy is L(A)-definable and for all p;, and p, € P,
p1®p2(2,y) Fhg(a™ - y) = ha(z)™ - ha(y).

Moreover, lim /i3 is a one to one function and by compactness there exists By ¢ B finite
such that A := LiLnﬁeBo hg is already one to one. Let H := liLnBeBg Hg. Because By is finite,

H is A-invariant £(N)-definable and hence we have "H* ¢ R(dcl%q(g)) = dclg(A), ie.

H is £(A)-definable. Similarly, h is £( A)-definable and we still have for all p; and pa€ P,
p1®p2(z,y) - ho(x™'-y) = ho(z)™ - ho(y). By Proposition (IV.5.40), there exists an L(A)-
definable one to one group morphism G = Stabg(P) — H. [ ]

As a first corollary, let me reprove a well known result about groups definable in DCF,,.
Recall that £,, is the language of rings and L, 9 := L., U {0} is the language of differential
rings.

Corollary 1V.5.44:
Let K = DCF, k<K a differential field and G an L., 5(k)-definable group, then G embeds
L,s 5(k)-definably into an L,,(k)-definable group.
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Proof . Note that for all C' ¢ K = DCFy, dclg,, ,(C) = dclg,, (0,(C)). In particular, we
have that dcl., ,(k) = k and the multiplication and inverse in G are of the right form to
apply Theorem (IV.5.42). As DCF and ACF are stable, G has a d-generic over aclg,, , (k)
— the generic type in the connected component of the unit and any model of ACF| is
uniformly stably embedded in any elementary extension. Applying Theorem (IV.5.42), we
find an £,, 5(k)-definable embedding of G into an L,,(k)-definable group H. ]

Remark 1V.5.45:

1. It follows from [Art70, Théoreme3.7.(iii) and corollaire 3.13.(i)] that every L, (k)-
definable group chunk is £,,(k)-definably isomorphic to the group chunk of an al-
gebraic group over k. In particular the group G in Corollary (IV.5.44) is L. 5(k)-
definably embedded in an algebraic group over k.

It is very possible that there is a model theoretic equivalent of the proof that any con-
structible group is an algebraic group over the same parameters in the non connected
case using a group chunk over all the generic types of the group and not just the one
in the connected component (as is the case in [Poi87, Section 4.5]).

2. The usual proof of this result proceeds first by the connected case (which only needs
group chunks over a singleton) and then introduces new parameters in some model
of DCF containing % to embed the whole group in an algebraic group (cf. [BDor;
Poi87] for similar proofs in different settings). So it might be possible that control of
the parameters over any differential field in the non connected case is new.

Finally, let me give a first very partial answer to Question (IV.5.1). Note that there are three
serious restrictions in this result compared to the result in DCF (see Corollary (1V.5.44)):
we have to assume there is a d-generic in G, we have to assume the group law is reason-
able and we do not consider all interpretable groups. Let M = VDFY be saturated and
homogeneous enough and A = dcl 8 (K(A)) < M.

Corollary 1V.5.46:

Let (G,-) be an L§( A)-definable group, with a d-generic, inside the sorts K, k and T. If for all
gand h € G(M), 0,(g-h) € dclps(A,0,(9),0.,(h)) and 0,(g7') € dcl o (A,D,(g)), then
there exists an L9 (A)-definable group H, with d-generic, and an L9 (A)-definable embedding
G - H.

Proof .For all g, h € G(M) and n € N, there exists, by hypothesis an £9(A)-definable
function m,, such that 9" (g - h) = m,(9,(g),0.(h)). By compactness, there are finitely
many £9(A)-definable functions m,,; such that for all g, h € G(M), there exists an i
such that 0"(g - m) = m,(0.,(9),0.,(h)). By quantifier elimination in the three sorted
language, the set “0"(z,y) = m,;(0,(g),0.(h))” is equivalent to 6, ;(x,y) for some L£9-
formula . Hence we can glue the different m,, ; to obtain an yod (A)-definable function m,,.
Then the ((£9(A)), »)-definable function m = [;c 7. is such that for all g, h € G(M),
d.(g-h) =m(d,(g),0,(h)). Similarly, we find an ((£9(A)), )-definable function i such
thatforall g e G(M), 0,(97') =i(0.,(g)). We now apply Theorem (IV.5.42). ]
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LE ViEux MONSIEUR, au Logicien.
Clest trés beau, la logique.

LE LOGICIEN, au Vieux Monsieur.
A condition de ne pas en abuser.
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