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Cross-fertilizing formal approaches for Protocol Conformance and

Performance Testing
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While today’s communications are essential and a huge set of services is available online,

computer networks continue to grow and novel communication protocols are continu-

ously being defined and developed. De facto, protocol standards are required to allow

different systems to interwork. Though these standards can be formally verified, the de-

velopers may produce some errors leading to faulty implementations. That is the reason

why their implementations must be strictly tested.

However, most current testing approaches require a stimulation of the implementation

under tests (IUT). If the system cannot be accessed or interrupted, the IUT will not

be able to be tested. Besides, most of the existing works are based on formal models

and quite few works study formalizing performance requirements. To solve these issues,

we proposed a novel logic-based testing approach to test the protocol conformance and

performance passively.

In our approach, conformance and performance requirements can be accurately formal-

ized using the Horn-Logic based syntax and semantics. These formalized requirements

are also tested through millions of messages collected from real communicating environ-

ments. The satisfying results returned from the experiments proved the functionality

and efficiency of our approach. Also for satisfying the increasing needs in real-time

distributed testing, we also proposed a distributed testing framework and an online

testing framework, and performed the frameworks in a real small scale environment.

The preliminary results are obtained with success. And also, applying our approach

under billions of messages and optimizing the algorithm will be our future works.
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Chapter 1

Introduction

“Wonder is the beginning of wisdom.”

– Socrates (469 BC – 399 BC)

1.1 General Context

While today’s communications are essential and a huge set of services is available online,

computer networks continue to grow and novel communication protocols are continu-

ously being defined and developed. De facto, protocol standards are required to allow

different systems to interwork. Though these standards can be formally verified, the de-

velopers may produce some errors leading to faulty implementations. That is the reason

why their implementations must be strictly tested using appropriate testing approaches.

Testing is mainly known as the process of operating a system or component under

specified conditions to observe the results and provide an evaluation of such system or

component [1]. In the industry, many non-formal testing tools are still used for testing

protocols. However, with the growing significance of protocols within new internet

architectures, techniques that assist in the production of reliable protocol are becoming

increasingly important. The use of formal testing approaches can eliminate ambiguity

and thus reduce the chance of errors being introduced during protocol development. Two

main types of formal approaches can be applied to test the communicating protocols:

Active and Passive testing. While active testing techniques are based on the analysis of

the protocol answers when it is stimulated, the passive ones focus on the observation of

input and output events of the implementation under test (IUT) in run-time.

Active testing is based on the execution of specific test sequences against the implemen-

tation under test. As shown in Figure 1.1, the test sequences can be obtained from the

1
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formal model according to different test coverage criteria. These criteria can be applied

on the specification, e.g. coverage of all logical conditions, coverage of all paths. This

allows us to set if we have covered the specification as well as the code in testing. The

tests may be generated automatically or semi-automatically from test criteria, hypoth-

esis, and test goals. When generating the tests, we are faced to the feasibility problem,

the problem of deciding the feasibility of a path is undecidable. The format of these

sequences which is commonly used by the testing community is TTCN3 [2], from which

their execution are performed through Points of Control and Observation (PCOs) ex-

ecution interfaces. These PCOs are installed in the context of a testing architecture,

which means the way to put the testers (e.g. upper and lower testers to test a specific

stack layer, the different interfaces, and the oracle in order to provide a verdict on the

executed tests).

Figure 1.1: Active Testing

On the other hand, passive testing consists in observing the input and output events of

an implementation under test in run-time. The term “passive” means that the tests do

not disturb the natural run-time of a protocol, it is not intrusive as the implementation

under test is not stimulated. This concept is sometimes also refereed to as monitoring

in the literature. The record of the event observation is called an event, execution or log

trace. In order to check the IUT, this trace will be compared to its expected behavior

through the formal model or/and expected properties.

The passive testing techniques are applied especially because the active ones require

important testing architectures, whose the testers need to control the system at some

specific points. This is sometimes not feasible or even undesired. Nevertheless, while

test sequences in active testing may give concrete verdicts (except for “inconclusive”

ones), an event trace that satisfies the model does not mean that the whole implemen-

tation satisfies the specification. On the other hand, if a trace does not satisfy, then

neither does the implementation. Passive testing may also successfully be used when

the implementation cannot be shutdown or stopped for a long period of time.
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Passive testing is often confused with run-time verification, they are both aiming to ob-

serve or monitor a run of the system and attempt to determine the satisfaction of a given

correctness property [3]. Nevertheless, while passive testing has the specific purpose of

delivering a verdict about the conformance of a black-box implementation, run-time

verification deals with the more general aspects of property evaluation and monitor

generation, without necessarily attempting to provide a verdict about the system.

Passive and active testing have their own advantages and drawbacks, the results that

may be obtained depend on the system under test and essentially on the testing goals, the

testing type. The testing type considers the whole testing process of the protocol, which

consists of different steps: unit, conformance, interoperability, performance testing, and

so on. Most of these testing types are normalized. For instance the active conformance

testing is standardized by the ISO [4] in which common testing architectures, interfaces

or points of control and observation are mentioned and specified. Nevertheless, these

standards are mainly designed for wired systems and most of the time, the new inher-

ent constraints of protocols in complex networks are omitted from these documents.

In our work, we concentrate on the non-normalized passive conformance testing and

performance testing.

1.2 Motivations and Contributions

Although passive testing does lack some of the advantages of active techniques, such

as test coverage, it provides an effective tool for fault detection when the access to the

interfaces of the system is unavailable, or in already deployed systems, where the system

cannot be interrupted. In order to check conformance of the IUT, the record of the ob-

servation during runtime (called trace) is compared with the expected behavior, defined

by either a formal model (when available) or as a set of formally specified properties [5]

obtained from the requirements of the protocol.

In the context of black-box testing of communicating protocols, executions of the system

are limited to communication traces, i.e. inputs and outputs to and from the IUT. Since

passive testing approaches derive from model-based methodologies [6], such input/out-

put events are usually modeled as: a control part, an identifier for the event belonging

to a finite set, and a data part, a set of parameters accompanying the control part. In

these disciplines, properties are generally described as relations between control parts,

where a direct causality between inputs and outputs is expected (as in finite state-based

methodologies) or a temporal relation is required. In modern message-based protocols

(e.g. Session Initiation Protocol [7]), while the control part still plays an important role,

data is essential for the execution flow. Input/output causality cannot be assured since
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many outputs may be expected for a single input. Moreover when traces are captured on

centralized services, many equivalent messages can be observed due to interactions with

multiple clients. That is why temporal relations cannot be established solely through

control parts. Furthermore, although the traces are finite, the number of related pack-

ets may become huge and the properties to be verified complex. In some conformance

testing works, the researchers try to tackle these problems [8–11]. However, they still

have some problems, such as based on models, language is still propositional in nature,

data relation between multiple packets is not allowed.

For solving these issues, inspired from these previous works, we firstly present a pas-

sive conformance testing approach for communicating protocols based on the formalized

functional requirements. We also add flexibility to the definition of formulas by con-

sidering data as the central part of communications, and our contributions are listed

below.

• A Horn based logic is defined to specify the properties to be verified by taking into

consideration the data values.

• The syntax and a three-valued semantics are provided, to define satisfaction within

the truth values {true, false, inconclusive}, respectively indicating that the prop-

erty is satisfied on the trace, not satisfied and no conclusion can be provided.

Moreover, in the literature, many performance related properties (e.g. package latency,

loss rate, etc.) cannot be formalized, which raises our interests on accommodating our

formalism for testing the non-functional requirements. In most of the protocol testing

processes, performance testing is applied separately to the conformance testing. It is

mainly applied to validate or verify the scalability and reliability of the system. Many

benefits can be brought to the test process if both conformance and performance testing

inherit from the same approach. Our main objective is then to adapt our conformance

approach to performance testing. Also note that our work concentrates on performance

testing, not on performance evaluation. Performance evaluation of network protocols

focuses on the evaluation of its performance, while performance testing approaches aim

at testing performance requirements that are expected in the protocol standard.

Generally, performance testing characteristics are: volume, throughput and latency [12],

where volume represents ”total number of transactions being tested”, throughput rep-

resents ”transactions per second the application can handle” and latency represents

”remote response time”. But for comprehensively testing the performance of a protocol,

more performance requirements need to be formalized and tested. In this work, we aim

at formalizing these time related requirements. Meanwhile, we introduce a four-valued
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semantics {‘Pass’, ‘Con-Fail ’, ‘Per-Fail ’, ‘Inconclusive’} in our formalism, in order to

solve the indeterminacy problems existed in non-positive verdicts. Based on these above

mentioned challenges, our main contributions are:

• The definition of an extended language syntax and semantics, which provide the

possibility to formalize and test performance requirements by taking into consid-

eration the data values.

• A common ground for both conformance testing and performance testing, and a

four-valued semantics for accurately determining non-positive verdicts.

• A proposal of detailed customized benchmark system for testing the performance

of Session Initiation Protocol.

• A distributed framework is designed for testing Session Initiation Protocol and

Extensible Messaging and Presence Protocol.

Among the well known and commonly applied approaches, the passive testing techniques

are divided in two main groups: online and offline testing approaches. Offline testing

computes test scenarios before their execution on the IUT and gives verdicts afterwards,

while online testing provides continuously testing during the operation phase of the IUT.

With online testing approaches, the collection of traces is avoided and the traces are

eventually not finite. Indeed, testing a protocol at run-time may be performed dur-

ing a normal use of the system without disturbing the process. Several online testing

techniques have been studied by the community in order to test systems or protocol

implementations [10, 13, 14]. These methods provide interesting studies and have their

own advantages, but they also have several drawbacks such as the presence of false nega-

tives, space and time consumption and often related to a needed complete formal model.

Although they bring solutions, new results and perspectives to the protocol and system

testers, they also raise new challenges and issues. The main ones are the non-collection

of traces and their on-the-fly analysis. The traces are observed (through an interface

and an eventual sniffer) and analyzed on-the-fly to provide test verdicts and no trace

sets should be studied a posteriori to the testing process. And the processes of some

approaches are still offline with finite traces that are considered as very long

Due to these issues, we herein extend our previous proposed methodology and we de-

velop our approach to test conformance and performance of protocols in an online way

in considering the above mentioned inherent constraints and challenges. Furthermore,

our framework is designed to test them at runtime, with new required verdicts defi-

nitions of ‘Time-Fail ’, ‘Data-Inc’ and ‘Inconclusive’ representing unobserved message
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within timeout, untested data portion and uncertain status respectively. In order to

demonstrate the efficiency of our online approach, we apply it on a real communicating

environment for assessing its preciseness and efficiency.

• We provide a formal online passive testing approach to avoid stopping the execu-

tion of the testing process when monitoring a tested protocol. The analyzed traces

are never cut which improves the accuracy of the test verdicts.

• Our approach allows the testing process to be executed in a transparent way

without overloading, overcharging the CPU and memory of the used equipment

on which the tester will be run.

• Data portion of the messages is taken into account in our online testing approach,

and new definitions of online testing verdicts are introduced.

1.3 Thesis plan

Figure 1.2: Chapters overview

As shown in Figure 1.2, the manuscript is organized as follows:
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• In the second chapter, we present a state of the art of the passive conformance,

performance testing techniques. We go from the general concepts of conformance

and performance, to a brief overview of existing techniques for testing conformance

and performance. We also provide some relevant works to online testing area.

• In the third chapter, we present our approach for conformance testing, through a

real communicating environment. We also provide an overview of SIP, its entities

and some of their behavior, along with the message syntax and relevant data

carried by SIP messages. The experiment serves to describe the premier results

and limitations of our approach, and it provides some motivation and inspiration

for the further work.

• The fourth chapter contains our main contribution. We first detail on the modified

syntax and semantics of formulas for satisfying the needs in performance testing.

Then we describe the algorithm for evaluation of formulas in traces and we provide

the relevant experiments results tested in a complex network environment. After,

we design a distributed testing framework and verify our approach on another

protocol, XMPP in IoT environment. Also, a brief description of XMPP with

message syntax is provided. Finally, we provide the relevant experiments results

and the motivations of further work.

• In the fifth chapter, we present an ongoing work on online testing. We describe

our online testing architecture with new verdicts we defined. Then, we present a

premier experimental result in a real case study.

• Finally, in the final chapter, we conclude the presentation of our work, provide a

summary of our contributions and make some perspectives for future works.



Chapter 2

State of the Art

“We can be knowledgeable with other men’s knowledge,

but we cannot be wise with other men’s wisdom.”

– Michel de Montaigne (1533 – 1592)

Testing is the process of operating a system or component under specified conditions to

observe the results and provide an evaluation of such system or component [1]. Many

types of testing exist, depending on the property being evaluated, for instance, it is

possible to test for conformance, performance, usability, scalability, etc. Testing for

conformance and performance is the main concern of our current work. Two main

types of formal approaches can be applied to test the conformance and performance of

communicating protocols: Active and Passive testing. While active testing techniques

are based on the analysis of the protocol answers when it is stimulated, the passive ones

focus on the observation of input and output events of the implementation under test

(IUT) in run-time. In our work, we focus on passive testing techniques, these different

types of passive testing approaches will be detailed in the following sections.

2.1 Overview of Passive Testing

Passive Testing consists in observing the input and output events of an implementation

under test in run-time. The term “passive” means that the tests do not disturb the

natural run-time of a protocol, it is not intrusive as the implementation under test is

not stimulated. This concept is sometimes also refereed to as monitoring in the literature.

The record of the event observation is called an event, execution or log trace. In order to

check the conformance of the IUT, this trace will be compared to its expected behavior

8
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through the formal model or/and expected functional properties, as shown in Figure 2.1.

Figure 2.1: Passive Testing

The passive testing techniques are applied especially because the active ones require

important testing architectures, whose the testers need to control the system at some

specific points. This is sometimes not feasible or even undesired. Nevertheless, while

test sequences in active testing may give concrete verdicts (except for “inconclusive”

ones), an event trace that satisfies the model does not mean that the whole implemen-

tation satisfies the specification. On the other hand, if a trace does not satisfy, then

neither does the implementation. Passive testing may also successfully be used when

the implementation cannot be shutdown or stopped for a long period of time.

2.1.1 Runtime Verification

A number of different approaches for verifying formulas in traces exist in the literature

for passive testing. However, there is another similar researching domain we need to

mention: runtime verification. Although the verification and testing communities have

usually dealt with different issues and through different methodologies, in the last couple

of decades there has been increased work in using verification techniques for testing [15].

Runtime verification is a discipline, derived from model checking, that deals with the

study, development and application of verification techniques that allow checking whether

a run of a system under evaluation satisfies or violates a given correctness property [16].

It is portrayed in the literature as a lightweight verification technique, dealing only

with the aspects of the system that can be evaluated during runtime, in opposition to

traditional verification, which deals with all possible runs of a system.
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In general terms, the methodology for runtime verification is the following: the system or

implementation is assumed to behave as some model, M , some part of which is available

during runtime. As with model checking, satisfiability of a given correctness property

φ, must be determined on the runtime observations of the visible part of the model.

Determining the satisfaction of a correctness property, involves the creation of amonitor.

The monitor incrementally reads the trace of the system and yields a verdict, usually

in the form of a truth value in some range (e.g. {true, false} or a probability [0,1]). A

big part of works in this area deals with the generation of monitors for different types of

properties and systems. An overview of different works in this area is provided by the

authors of [17].

Depending on the context, runtime verification could be a revival of passive testing [18].

Runtime monitoring can achieve what passive testing can do, but the theoretical frame-

work would be unnecessarily involved and it would be more difficult for classical testers.

In the following, we describe works in both categories in relation with their ability to

express data relations for defining properties.

2.1.2 Passive testing works

Formal testing methods have been used for years to prove correctness of implementations

by combining test cases evaluation with proofs of critical properties. In [6, 19] the authors

present a description of the state of the art and theory behind these techniques. Within

this domain, and in particular for network protocols, passive testing techniques have to

be used to test already deployed platforms or when direct access to the interfaces is not

available. Some examples of these techniques using Finite State Machine derivations

are described in [20, 21]. Most of these techniques consider only control portions, in

[10, 11], data portion testing is approached by evaluation of traces in EEFSM (Event-

based Extended Finite State Machine) and SEFSM (Simplified Extended Finite State

Machine) models, testing correctness in the specification states and internal variable

values. Our approach, although inspired by it, is different in the sense that we test

critical properties directly on the trace without any models of the tested protocol. A

study of the application of invariant to an IMS service was also presented in [19, 22].

In recent work, the authors of [9] defined a methodology for the definition and testing

of time extended invariants, where data is also a fundamental principle in the definition

of formulas and a packet (similar to a message in our work) is the base container data.

In this approach, the satisfaction of the packets to certain events is evaluated, and

properties are expressed as e1
When,n,t−−−−−−→ e2, where e1 and e2 are events defined as a set

of constraints on the data fields of packets, n is the number of packets where the event
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e2 should be expected to occur after finding e1 in the trace, and t is the amount of time

where event e2 should be found on the trace after (or before) event e1. This work served

as an inspiration for the approaches described in the thesis.

Although closer to runtime monitoring, the authors of [23] propose a framework for

defining and testing security properties on Web Services using the Nomad [24] lan-

guage, based on previous works by the authors of [25, 26]. As a work on web services,

data passed to the operations of the service is taken into account for the definition of

properties, and multiple events in the trace can be compared, allowing to define, for

instance, properties such as “Operation op can only be called between operations login

and logout”. Nevertheless, in web services, operations are atomic, that is, the invocation

of each operation can be clearly followed in the trace, which is not the case with network

protocols where operations depend on many messages and most of the time on the data

associated with the messages.

2.1.3 Runtime monitoring works

Runtime monitoring and runtime verification techniques have gained momentum in the

latest years, particularly using model checking techniques for testing properties on the

trace. The authors of [16] provide a good survey and introduction of methodologies in

this area. The usual approach, consists on the definition of some logic (LTL is commonly

used), which is used to create properties from which a monitor is defined to test on the

trace. The authors of [3] describe the definition of monitors as finite state machines for

LTL formulas, they introduce a 3-valued semantics (true, false, inconclusive) in order

to test formulas for finite segments of the trace1, in [27] they expand their analysis on

inconclusive results, by proposing a 4-value semantics to distinguish cases where the

property is most likely to become true or become false on the continuation of the trace.

Regarding the inclusion of data, the concept of parameterized propositions is intro-

duced by the authors of [8]. Propositions can contain data variables and quantifiers

can be defined for the data variables by the introduction of a → operator, formulas

of type Q1x1 · · ·Qmxm : p(x1, . . . , xn) → ψ, where Q1, . . . , Qm are quantifiers and

x1, . . . , xm, . . . , xn are variables. In this approach, valid data values in formulas are

fixed, so if p(x) is used on the left side, the set {p(1), p(2), . . .} with valid values must

have been defined previously.

Another work, defined to test message based work-flows, is provided in [28] by the

definition of the logic LTL-FO+. Here, data is a more central part of the definition of

1In their work, a trace segment is considered a finite word with an infinite continuation, so formulas
that deal with the future of the trace have to take into account that the property can become true (or
false) on the continuation of the trace.
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formulas and LTL temporal operators are used to indicate temporal relations between

messages in the trace. Messages are defined as a set of pairs (label, value), similarly to

our work, and formulas are defined with quantifiers specific to the labels. As an example,

the formula G(∃methodx1 : x1 = INVITE → ∃callIdx2 : F(∃statusy1 : y1 = 200 ∧ ∃callIdy2 :

y2 = x2)) indicates that generally, if a message with method INVITE is found, then there

exists a field Call-ID in that message, such that a future message with status 200 exists

with the same Call-ID. Although the syntax of the logic is flexible, it can quickly lose

clarity as the number of variables required increases. The authors improved their work

in [29] by separating the extraction of event data from the monitored system and from

the property. Though this approach claims to be efficient, the current works presented

in this thesis are not constrained to any extractions while the constraints are grouped

with clause definitions.

In [30], the authors present a Java-based tool-supported software development and anal-

ysis framework: Monitoring-oriented programming (MOP), where monitoring is a foun-

dational principle. MOP users can add their favorite or domain-specific requirements

specification formalism into the framework by means of logic plug-ins, which essentially

comprise monitor synthesis algorithms for properties expressed as formulas. The prop-

erties are specified together with declarations stating where and how to automatically

integrate the corresponding monitor into the system, as well as what to do if the prop-

erty is violated or validated. Based upon a carefully designed specification schema and

upon several logic plug-ins, Java-MOP allows users to specify and monitor properties

which can refer not only to the current program state, but also to the entire execution

trace of a program, including past and future behaviors. However, from their paper, it

is unclear that concrete verdicts will be given to each property after the evaluation. And

the expressiveness of their approach is still based on the logic plug-ins they choose.

In [31], the authors propose a logic for runtime monitoring of programs, called EAGLE,

that uses the recursive relation from LTL Fφ ≡ φ∨Xφ (and its analogous for the past),

to define a logic based only on the operators next (represented by ©) and previous

(represented by
⊙

). Formulas are defined recursively and can be used to define other

formulas. Constraint on the data variables and time constraints can also be tested by

their framework. However, their logic is propositional in nature and their representation

of data is aimed at characterizing variables and variable expressions in programs, which

makes it less than ideal for testing message exchanges in a network protocol as required

in our work. We have however to mention that this approach has been studied by the

community and several rule-based systems have been implemented. We have thus to

mention [32], a recent publication denoting that an efficient runtime verification imple-

mentation is now used to process telemetry from the Mars Curiosity rover at NASA’s Jet
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Propulsion Laboratory. But no results demonstrating these assessments are currently

available.

Finally, some differences and similarities can be pointed between the concepts of runtime

verification and the objectives of passive testing described before. In general terms, the

application of runtime verification techniques can be considered as a form of testing, in

particular, since the behavior of the system is being evaluated against some correctness

property. While testing techniques have as objective to provide an evaluation of the

system with respect to its requirements, runtime verification in general deals with the

technical aspects of evaluation of properties on particular executions and generation of

monitors, without necessarily attempting to provide a specific verdict on the system.

2.2 Passive Conformance Testing

The obtained passive testing results may depend on the system under test and essen-

tially on the testing types. The testing type considers the whole testing process of the

protocol, which consists in different steps: unit, conformance, interoperability, perfor-

mance testing, and so on [33]. In our work, we mainly focus on passive conformance

testing and performance testing.

Conformance testing of communicating protocols is a functional test which verifies

whether the behaviors of the protocol satisfy the defined requirements. In the pas-

sive testing techniques, passive conformance testing is one of the crucial way to verify

the IUT’s functionality. A general definition of conformance is provided in [34], and we

briefly introduce it here.

Conformance relates to specifications and implementations. The universe of specifica-

tions is defined by the set SPECS and the universe of all IUTs is denoted by IMPS.

Considering this, conformance is defined as the relation:

conforms-to ⊆ IMPS × SPECS

where given an IUT IUT ∈ IMPS and a specification S ∈ SPECS, IUT conforms-to S

expresses that IUT is a correct implementation of the specification S.

In order to relate real implementation with specifications, the assumption is made

that every IUT (IUT ∈ IMPS) can be modeled by a formal object IIUT ∈ MODS,

where MODS is the universe of formal objects. This assumption is known as a test

hypothesis [35]. Under this assumption, an implementation relation is defined be-

tween models and specifications as imp ⊆ MODS × SPECS. An implementation
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IUT ∈ IMPS is said to conform to a specification S ∈ SPECS if and only if the model

of the implementation IIUT ∈MODS is implementation related with S

IUT conforms-to S ⇔ IIUT imp S

Since in passive conformance testing, the implementation is tested as a black box, the

strongest conformance relation that can be tested is trace equivalence: two traces are

equivalent if they cannot be distinguished by any sequence of inputs. In other words,

both implementation and specification will generate the same outputs (“trace”) for all

specified input sequences. To prove trace equivalence it suffices to show that there is a set

of implementation states {p1, p2, ..., pn} respectively isomorphic to specification states

{s1, s2, ..., sn}, and every transition in the specification has a corresponding isomorphic

transition in the implementation. Formal methods for conformance testing have been

used for years to prove correctness of implementations by combining test cases evaluation

with proofs of critical properties. In [6] the authors present a description of the state

of the art and theory behind these techniques. Passive conformance testing techniques

are used to test already deployed platforms or when direct access to the interfaces is not

available.

In [5], an invariant approach taking into account control parts has been presented.

They introduced a new methodology and a relevant tool TESTINV for passive testing.

This methodology includes the definition of a novel concept of invariant as well as a

corresponding test architecture to deal with them. Two types of invariant have been

defined: simple and obligation invariants. They can be used to express a wide range

of properties. Another interesting work is in [36]. Since in passive testing, the tester

does not interact with the implementation under test, and execution traces are observed

without interfering with the behavior of the system. Invariants are used to represent the

most relevant expected properties of the implementation under test. The authors of [36]

give two algorithms to decide the correctness of proposed invariants with respect to a

given specification and algorithms to check the correctness of a log, recorded from the

implementation under test, with respect to an invariant. Based on the algorithms, they

develop a tool called PASTE, which take advantage of mutation testing techniques in

order to evaluate the goodness of an invariant according to its capability to detect errors

in logs generated from mutants. These researchers did excellent works and embedded

innovative passive testing algorithms in their approaches. However, in their approaches,

the causality between the data portions in a trace is not considered.

Also, most of the existed techniques only consider control portions [10] [11], data portion

testing is approached by evaluation of traces in state based models, testing correctness

in the specification states and internal variable values. In [9], the authors have defined
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a methodology for the definition and testing of time extended invariants, where data

is also a fundamental principle in the definition of formulas and a packet (similar to a

message in our work) is the base container data. In this approach, the packet satisfaction

to certain events is evaluated. However, data relation between multiple packets is not

allowed.

Our approach, although inspired by all the mentioned works, is different in the sense that

we test critical properties directly on the trace, and only consider a model (if available)

for potential verification of the properties. Our research is also inspired from the run-

time monitoring domain. Though run-time monitoring techniques are mainly based on

model checking while we do not manipulate any models, some proposed languages to

describe properties are relevant for our purpose. The authors of [16] provide a good

survey in this area.

There are also some interesting related works. The authors of [23] propose a framework

for defining and testing security properties on Web Services using the Nomad [24] lan-

guage. As a work on Web services, data passed to the operations of the service is taken

into account for the definition of properties, and multiple events in the trace can be

compared, allowing to define, for instance, properties such as “Operation op can only

be called between operations login and logout”. Nevertheless, in Web services opera-

tions are atomic, that is, the invocation of each operation can be clearly followed in the

trace, which is not the case with network protocols, where operations depend on many

messages and sometimes on the data associated with the messages. And in [31], the

authors propose a logic for run-time monitoring of programs, called EAGLE, that uses

the recursive relation from LTL, to define a logic based only on the operators next and

previous. Since we already described in above, we will not repeat their works here.

2.3 Passive Performance Testing

Performance testing of communicating protocols is a qualitative and quantitative test,

aiming at checking whether the performance requirements of the protocol have been

satisfied under certain conditions. As shown in Figure 2.2, the test process in testing

defined by [37] illustrates that the performance testing normally comes after the black

and white box testing. In the testing process, developers and test engineers use black-

box test methods to check incorrect and incomplete functions and behaviors based on

the given specifications, and they use white-box test methods to uncover the internal

errors in program logic and structure, data objects, and data structure. When these

steps are ended, test engineers will exercise various component usage patterns through

component interfaces to confirm that the correct functions and behaviors are delivered
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Figure 2.2: Test Process in Testing

through the given contract-based interfaces. After this step, test engineers and quality

assurance staff will validate and test the performance of the system.

Figure 2.3: Performance Testing Process

The process of testing the performance of the system is shown in Figure 2.3. As shown

in the figure, before carrying out any performance testing and evaluation activities,

test engineers must firstly understand the system performance requirements. This is a

crucial research point in this thesis, we try to provide an efficient approach for testers

to formally define and test performance requirements. In many cases, the performance

requirements are not clearly specified. Hence, performance engineers and testers need
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to review system specification documents to identify, check, define, and enhance system

performance requirements. And then, according to the requirements, they will define

and write test plans. Based on the test plans, test cases and testing tools are developed

and generated. Finally, performance tests are executed and performance analysis will

be returned.

In the literature, many studies have investigated the performance of systems. However,

few works on formally modeling requirements for performance testing have been studied,

we can nevertheless cite the following ones.

A method for testing the functional behavior and the performance of programs in dis-

tributed systems is presented in [38]. In the paper, the authors discuss event-driven

monitoring and event-based modeling. They use hybrid monitoring, a technique which

combines advantages of both software monitoring and hardware monitoring. As an

application of our monitoring and evaluation system, they described the analysis of a

parallel ray tracing program running on the SUPRENUM multiprocessor. It is shown

that monitoring and modeling both rely on a common abstraction of a system’s dynamic

behavior and therefore can be integrated to one comprehensive methodology. However,

no evaluation of the methodology has been performed, but they provide a pioneer work

on performance testing.

Later, in [39], performance testing is defined with performance requirements. In this

book, performance tests are designed to validate performance requirements which are

expressed either as time intervals in which the SUT must accomplish a given task, as

performance throughput, volume or resource utilization. All the basic performance is-

sues are well explained. Further, in [37], the authors provide a more accurate definition

of performance testing. They define it as the activity to validate the system perfor-

mance and measure the system capacity. They also define three major goals: validate

the system ability to satisfy the performance requirements, find information about the

capacity and boundary limits and assist the system designers and developers in find-

ing performance issues, bottlenecks and improve the performance of the system. Their

works provide prospective definitions of performance testing. Also in [40], the author

presents a framework to perform passive testing for systems where time aspects affect

their behavior. She raises the point that temporal aspects can be associated with both

performance of actions and delays/timeouts. Inspired and based on their works, we

define a formal passive formalism for formalizing the performance requirements and to

provide a novel performance testing approach.

Since the formalism used in performance testing is the crucial part of our work, before

introducing other related works on performance testing, we will briefly introduce some

important similar related works on Temporal Logic and explain the difference between
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our formalism. The authors of [16] introduce the methodologies in this area. The usual

approach consists on the definition of some logic (such as LTL, TLTL, etc.), which is used

to create properties from which a monitor is defined to test on the trace. The authors

of [3] describe the definition of monitors as finite state machines for LTL formulas. They

introduce a 3-valued semantics (true, false, inconclusive) in order to test formulas for

finite segments of the trace. Moreover, in [27], they expand the analysis on inconclusive

results by proposing a 4-value semantics. Although there are interesting approaches to

data testing, they are still propositional in nature.

Furthermore, another similar work is provided by the authors of [41]. They present

an algorithm for the run-time monitoring of data-aware workflow constraints. Sample

properties taken from run-time monitoring scenarios in existing literature are expressed

using LTL-FO+, an extension of Linear Temporal Logic that includes first-order quan-

tification over message contents. Similarly to our work, data are a more central part

of the definition of formulas, and formulas are defined with quantifiers specific to the

labels. Although the syntax of the logic they used is flexible, it can quickly lose clarity

as the number of variables required increases.

After reviewing of similar works in temporal logic area, we return to the related works

in performance testing. In [42], the authors present a performance monitoring tool for

clusters of PCs which is based on the simple concept of accounting for resource usage

and on the simple idea of mapping all performance related states. They identify several

interesting implementations related to the collection of performance data on clusters of

PCs and show how a performance monitoring tool can efficiently deal with all incurring

problems. Besides, in [43], the authors present a distributed performance testing frame-

work, which aimed at simplifying and automating service performance testing. They

applied Diperf to two GT3.2 job submission services, and several metrics are tested,

such as Service response time, Service throughput, Offered load, Service utilization and

Service fairness. Similarly, in [10], the authors study network protocol system moni-

toring for fault detection using extended finite state machines, and in paper [44], the

authors describe a CONCEPTUAL language which provides primitives for a wide variety

of idioms needed for performance testing and emphasizes a readable syntax and a CON-

CEPTUAL compiler’s novel code-generation framework. Although these techniques are

interesting, they require the complete specification of the tested system.

Recently, there are also some interesting related works in complex event processing do-

main. In [45], the authors present the design, implementation, and evaluation of a system

that executes complex event queries over real-time streams of RFID readings encoded

as events. These complex event queries filter and correlate events to match specific

patterns, and transform the relevant events into new composite events for the use of
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external monitoring applications. They propose a complex event language that extends

existing event languages to meet the needs of a range of RFID-enabled monitoring ap-

plications. Then they describe a query plan-based approach to efficiently implementing

this language. Their approach uses native operators to efficiently handle query-defined

sequences and pipeline such sequences to subsequent operators that are built by lever-

aging relational techniques. Some other researchers also have the same interest. The

authors of [46] present a framework for complex event processing systems. It has five rel-

evant characteristics: flexible, independent of particular workloads, neutral, correctness

check and scalable. Their framework can help identify good design decisions and assist

in improving engines. Likewise, in [47], the authors take an event-oriented approach

to process RFID data, by devising RFID application logic into complex events. Then

they formalize the specification and semantics of RFID events and rules. They discover

that RFID events are highly temporal constrained, and include non-spontaneous events,

and develop an RFID event detection engine that can effectively process complex RFID

events.

Another work presents an adaptive performance testing method for stress testing web

software systems by modeling the system with a two layers Queuing Network Model

in [48]. In addition, a new measurement domain-specific language with specialized con-

structs concerning the automation of measurement procedures are proposed in [49].

The authors present a monitoring algorithm SMon in [50], which continuously reduces

network diameter in real time in a distributed manner. Through simulations and exper-

imental measurements, SMon achieves low monitoring delay, network tree, and protocol

overhead for distributed applications. However, most of these approaches do not provide

a formalism to test a specific performance requirement.

Although some works have been done in the related area. Inspired from and based on

all these works, our work is different from focusing on using model-driven techniques,

evaluating the performance of the system. We concentrate on how to formally and

passively test the conformance and performance requirements written in the standard.

2.4 Online Testing

As we mentioned and introduced in previous sections, the passive testing techniques

are today gaining efficiency and reliability. These techniques are also divided in two

main groups: online and offline testing approaches. In offline testing the evaluation

of the system is done in recorded traces, while in online testing, the tester attempts

to detect faults during the execution of the system. In other words, online testing

provides continuously testing during the operation phase of the IUT. With online testing
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approaches, the collection of traces is avoided and the traces are eventually not finite.

Indeed, testing a protocol at run-time may be performed during a normal use of the

system without disturbing the process.

Figure 2.4: Online Passive Testing

As Figure 2.4 illustrates, the online passive testing process is quite similar to the offline

one. However, the crucial difference is the real-time trace testing. It is a complex and

challenging work. It requires the ability to handle numerous messages in a short time,

and also requires the same offline testing preciseness. Meanwhile, since online testing

is a long term continuously process, the tester has to undergo severe conditions when

dealing with large amount of nonstop traces.

Several online testing techniques have been studied by the community in order to test

systems or protocol implementations [10, 13, 14]. These methods provide interesting

studies and have their own advantages, but they also have several drawbacks such as

the presence of false negatives, space and time consumption, often related to a needed

complete formal model, etc. Although they bring solutions, new results and perspectives

to the protocol and system testers, they also raise new challenges and issues. The main

ones are the non-collection of traces and their on-the-fly analysis. The traces are observed

(through an interface and an eventual sniffer) and analyzed on-the-fly to provide test

verdicts and no trace sets should be studied a posteriori to the testing process. In our

work, we also present a novel formal online passive testing approach applied at run-time

to test the conformance and performance of the IUT.

Some researchers presented a tool for exploring online communication and analyzing

clarification of requirements over the time in [51]. It supports managers and developers

to identify risky requirements. In [52], the authors defined a formal model based on

Symbolic Transition Graph with Assignment (STGA) for both peers and choreography

with supporting complex data types. The local and global conformance properties are

formalized by the Chor language in their works. We should also cite the works [9, 53]

from which an industrial testing tool has been developed. These works are based on
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formal timed extended invariant to analyze run-time traces with deep packet inspection

techniques. However, while most of the functional properties can be easily designed,

complex ones with data causality can not. Moreover, although their approach is effi-

cient with an important data flow, the process is still offline with finite traces that are

considered as very long.

We may also cite some online active testing approaches from which we got inspired.

In [14], the authors presented a framework that automatically generates and executes

tests for conformance testing of a composite of Web services described in BPEL. The

proposed framework considers unit testing and it is based on a timed modeling of BPEL

specification, and an online testing algorithm that assigns verdicts to every generated

state. In [54], they presented an event-based approach for modeling and testing the func-

tional behavior of Web Services (WS). Functions of WS are modeled by event sequence

graphs (ESG) and they raised the holistic testing concept that integrates positive and

negative testing.

Inspired from all these above cited works, we propose an online formal passive testing

approach by defining functional properties of IUT, without modeling the complete sys-

tem, and by considering eventual false negatives. For this latter, we introduce a new

verdict ‘Time-Fail ’ for distinguishing the real faults and the faults caused by timeouts.

In addition, since online protocol testing is a long-term continuously testing process, we

provide a temporary storage for remaining the integrity of incoming traces. Further-

more, for the lacking attention to test data portions of messages in current researches,

our approach provides the ability to test both the data portion and control portion, ac-

companying with another new verdict ‘Data-Inc’ which will be detailed in the Chapter

5.



Chapter 3

Formal Approach for

Conformance Testing

“A great success is made up of an aggregation of little ones.”

– Elbert Hubbard (1856 – 1915)

In the previous chapter, we shortly elaborates the related works in passive testing do-

main. However, in modern message-based protocols, while the control part still plays an

important role, data is essential for the execution flow. Input/output causality cannot be

assured since many outputs may be expected for a single input. Moreover, when traces

are captured on centralized services, many equivalent messages can be observed due

to interactions with multiple entities on clients. Furthermore, although the traces are

finite, the number of related packets may become huge and the properties to be verified

may become complex. For solving these issues, inspired and based on those prospective

works, we present a passive testing approach for communicating protocols based on the

formal specification of functional requirements and their analysis on collected (through

Point of Observations) run-time execution traces. We will detail the approach in this

chapter.

3.1 Basics and Syntax

A communication protocol message is a collection of data fields of multiple domains.

Data domains are defined either as atomic or compound [55]. An atomic domain is

defined as a set of numeric or string values. A compound domain is defined as follows.

22



Chapter 3. Formal Approach for Conformance Testing 23

Definition 1. A compound value v of length n > 0, is defined by the set of pairs

{(li, vi) | li ∈ L ∧vi ∈ Di ∪ {ε}, i = 1...n}, where L = {l1, ..., ln} is a predefined set of

labels and Di are sets of values, meaningful from the application viewpoint, and called

data domains. Let D be a Cartesian product of data domains, D = D1×D2× ...×Dn.

A compound domain is the set of pairs (L, d), where d belongs to D.

Once given a network protocol P , a compound domain Mp can generally be defined by

the set of labels and data domains derived from the message format defined in the pro-

tocol specification/requirements. A message m of a protocol P is any element m ∈Mp.

Example 1. A possible message for the SIP protocol, specified using the previous

definition could be

m = {(method, ‘INVITE’), (time, ‘644.294133000’), (status, ε), (from,

‘alice@a.org’), (to, ‘bob@b.org’), (cseq, {(num, 7), (method, ‘INVITE’)})}

representing an INVITE request from alice@a.org to bob@b.org.

A trace ρ is a sequence of messages of the same domain containing the interactions of a

monitored entity in a network, through an interface (the P.O), with one or more peers

during an arbitrary period of time.

In our work, we define a syntax based on Horn clauses [56] to express properties that

are checked on extracted traces [55]. We choose Horn logic as the formalizing language

since it has the benefit of allowing the re-usability of clauses. Besides, compared with

other LTL based logic, it provides better expressibility and flexibility when analyzing

protocols. It is more suitable for our work on testing protocols. Formulas in this logic

can be defined with the introduction of terms and atoms, as it follows.

Definition 2. A term is defined in BNF as term ::= c | x | x.l.l...l where c is a constant

in some domain, x is a variable, l represents a label, and x.l.l...l is called a selector

variable.

Example 2. Let us consider the following message:

m = {(method, ‘INVITE’), (time, ‘523.231855000ms’), (status, ε), (from,

‘alice@a.org’), (to, ‘bob@b.org’), (cseq, {(num, 10), (method, ‘INVITE’)})}
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In this message, the value ofmethod inside cseq (a way to identify and order transactions,

consists of a sequence number and a method) can be represented by m.cseq.method

by using the selector variable.

Definition 3. An atom is defined as

A ::= p

k︷ ︸︸ ︷
(term, ..., term)

| term = term

| term 6= term

| term < term

| term+ term = term

where p(term, ..., term) is a predicate of label p and arity k.

The relations between terms and atoms are stated by the definition of clauses. A clause

C is an expression of the form

A0 ← A1 ∧ ... ∧An

where A0 is the head of the clause and A1 ∧ ...∧An its body, Ai being atoms. Let K be

the set of clauses K = {C1, ..., Cp}.

A formula φ is defined by the following BNF:

φ ::= A1 ∧ ... ∧An | φ→ φ | ∀xφ | ∀y>xφ

| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, ..., An(n ≥ 1) are atoms, x, y represent for different messages in a trace ρ and

{<, >} indicate the order relations of messages.

In our approach, while the variables x and y will be used to formally specify messages of

a trace, the quantifiers commonly define “it exists” (∃) and “for all” (∀). The formula

∀xφ is then equivalent to the expression “for all messages x in the trace, φ holds”.

3.2 Semantics

The semantics used in our work is related to the traditional Apt–Van Emdem–Kowalsky

semantics for logic programs [57], from which an extended version has been designed in

order to deal with messages and trace temporal quantifiers [55]. Based on the above
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described operators and quantifiers, we provide an interpretation of the formulas to eval-

uate them to ‘>’ (‘Pass’), ‘⊥’ (‘Fail ’) or ‘?’ (‘Inconclusive’).

Definition 4. A substitution θ is a finite set of bindings θ = {x1/term1, ..., xk/termk}
where each termi is a term and xi is a variable such that xi 6= termi and xi 6= xj if i 6= j.

The application xθ of a substitution θ to a variable x is defined as follows.

xθ =

t if x/t ∈ θ

x otherwise

The application of a particular binding x/t to an expression E (atom, clause, formula)

is the replacement of each occurrence of x by t in the expression. The application of a

substitution θ on an expression E, denoted by Eθ, is the application of all bindings in θ

to all terms appearing in E.

Definition 5. Given K = {C1, ..., Cp} a set of clauses and ρ = m1, ...,mn a trace. An

interpretation1 in logic programming is any function I mapping an expression E that

can be formed with elements (clauses, atoms, terms) of K and terms from ρ to one

element of {>,⊥}. It is said that E is true in I if I(E) = >.

The semantics of formulas under a particular interpretation I, is given by the following

rules.

• The expression t1 = t2 is true, iff t1 equals t2 (they are the same term).

• The expression t1 6= t2 is true, iff t1 is not equal to t2 (they are not the same term).

• The expression t1 < t2 is true, iff t1 is less than t2 (term1 is smaller than the

term2).

• A ground atom2 A = p(c1, ..., ck) is true, iff A ∈ I.

• An atom A is true, iff every ground instance of A is true in I.

• The expression A1 ∧ ...∧An, where Ai are atoms, is true, iff every Ai is true in I.

• A clause C : A0 ← B is true, iff every ground instance of C is true in I.

1Called an Herbrand Interpretation
2An atom where no unbound variables appear.
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• A set of clauses K = {C1, ..., Cp} is true, iff every clause Ci is true in I.

An interpretation is called a model for a clause set K = {C1, ..., Cp} and a trace ρ if

every Ci ∈ K is true in I. A formula φ is true for a set K and a trace ρ (true in K,ρ,

for short), if it is true in every model of K, ρ. It is a known result [57] that if M is a

minimal model for K, ρ, then if M(φ) = >, then φ is true for K, ρ.

The general semantics of formulas is then defined as follows. Let K be a clause set, ρ a

trace for a protocol and M a minimal model, the operator M defines the semantics of

formulas.

M̂(A1 ∧ ... ∧An) =

> if M(A1 ∧ ... ∧An) = >

⊥ otherwise

The semantics for trace quantifiers requires first the introduction of a new truth value

‘?’ (inconclusive) indicating that no definite response can be provided. The semantics

of quantifiers ∀ and ∃ is defined as follows:

M̂(∀xφ) =


⊥

if ∃θ with x/m ∈ θ and m ∈ ρ,

where M̂(φθ) =⊥

? otherwise

M̂(∃xφ) =


>

if ∃θ with x/m ∈ θ and m ∈ ρ,

where M̂(φθ) = >

? otherwise

Since ρ is a finite segment of an infinite execution, it is not possible to declare a ‘>’

result for ∀xφ, since we do not know if φ may become ‘⊥’ after the end of ρ. Similarly,

for ∃xφ, it is unknown whether φ becomes true in the future. Similar issues occur in

the literature of passive testing [5] and run-time monitoring [3], for evaluations on finite

traces. The rest of the quantifiers are detailed in the following, where x is assumed to

be found as a message previously obtained by ∀x or ∃x

M̂(∀y>xφ) =


⊥

if ∃θ with y/m ∈ θ,

where M̂(φθ) =⊥ and m > x

? otherwise
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M̂(∃y>xφ) =


>

if ∃θ with y/m ∈ θ,

where M̂(φθ) = > and m > x

? otherwise

The semantics for ∀y<x and ∃y<x is equivalent to the last two formulas, exchanging >

by <. Finally, the truth value for M̂(φ→ ψ) ≡ M̂(φ)→ M̂(ψ).

3.3 Algorithm and complexity

The algorithm for evaluation of formulas uses a recursive procedure to evaluate formulas,

coupled with a modification of SLD (Selective Linear Definite-clause) resolution algo-

rithm [58] for evaluation of Horn clauses. The SLD resolution algorithm is provided in

the following.

Algorithm 1: SLD resolution algorithm
Input: Set of clause K. Stack S containing the atoms remaining for evaluation. Substitution θ with

the initial bindings
Output: > if the formula has a solution

1 if S is not empty then
2 A← pop(S);
3 solved←⊥;
4 for (B0 ← B1 ∧ ... ∧Bq) ∈ K where B0 matches with A do
5 renameV ars(B0, B1, ..., Bq);
6 a← θ;
7 if unify(A0, B0, a) then
8 if q > 0 then
9 push({B1, ..., Bq}, S);

10 solved← sldSolve(S, a);
11 pop({B1, ..., Bq}, S);

12 end
13 else
14 solved← sldSolve(S, a);
15 end

16 end
17 push(A,S);
18 return solved;

19 end

20 end
21 useSolution(θ);
22 return>;

As shown in algorithm 1, the resolution starts with a formula A1∧ ...∧Ap in the form of

a stack (A1 at the top of the stack). For each atom on the stack it looks for a matching

clause (a clause with the same predicate label and arity) and adds the body of the

clause to the stack to recursively call solve. When the stack is empty, a solution has

been found and it notifies using the procedure useSolution(). An alternative to line
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4 should also check whether A matches ‘=’, ‘6=’, or ‘<’, and respectively evaluate the

equality, inequality or comparison.

We use Teval(ϕ) to represent the worst-case evaluating time of evaluation of a formula φ,

and Tsld(φ) for the SLD evaluation of a formula φ = A1∧ ...∧Ap. Given a formula with k

quantifiers Q1
x1
· · ·Qk

xk
(A1∧ ...∧Ap), where each Qj ∈ {∀,∃} and a trace ρ = m1, ...,mn,

then the relation between Teval and Tsld is described by:

Teval(Q
1
x1
· · ·Qk

xk
(A1 ∧ ... ∧Ap)) =

n∑
i1=1

· · ·
n∑

ik=1

Tsld((A1 ∧ ... ∧Ap)θ1 · · · θk)

where θj = {xj/mij} is the substitution obtained by the evaluation of the quantifier

Qj
xj . For a simple formula, the resolution time is small compared with the evaluating

time on the trace, therefore an upper bound for the SLD resolution time can be used

inside the summation.

Tsld((A1 ∧ ... ∧Ap)θ1 · · · θk) ≤ T, θj = {xj/mij},∀i1, ..., ik

Then, applying this inequality

n∑
i1=1

· · ·
n∑

ik=1

Tsld((A1 ∧ ... ∧Ap)θ1 · · · θk) ≤
n∑

i1=1

· · ·
n∑

ik=1

T = nkT

which shows that the worst case complexity for this type of formula is O(nk), where n

is the length of the trace and k represents the number of quantifiers in the formula.

The complexity of the algorithm corresponds to the time to analyze the complete trace,

and not for obtaining individual solutions, which depends on the type of quantifiers

used. For instance for a property ∀xp(x), individual results are obtained in O(1), and

for a property ∀x∃yq(x, y), results are obtained in the worst case in O(n). Finally, it can

also be shown that a formula with a ‘→’ operator, where Q are quantifiers.

Q . . .Q︸ ︷︷ ︸
k

(Q . . .Q︸ ︷︷ ︸
l

(A1 ∧ . . . ∧Ap)→ Q . . .Q︸ ︷︷ ︸
m

(A′
1 ∧ . . . ∧A′

q))

This formula has a worst-case time complexity of O(nk+max(l,m)), which has advantages

with respect to using formulas without the ‘→’ operator. Although this is an important

point, through the experiments the complexity is evaluated successfully.
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3.4 Comparison with other approaches

For better illustrating our approach, we make a short comparison with other similar

approaches. However, in many solutions, the researchers assume that the current states

of the observed trace are known. In our case, we do not require such assumptions. Our

technique has no effect on the running behavior of the system being tested. Moreover,

as above mentioned, our points of observation are set in a black-box framework which

does not allow any homing phase [5]. Since no specification of the implementation under

test is provided, the extracted traces are not related to any known states.

Because of these concerns, a comparison of the approaches according to their expressive-

ness, efficiency, complexity and capabilities are not easy to settle [59]. Nevertheless, we

try in the following to compare some key aspects of these approaches. Our method can

be compared to the techniques used in PASTE [36] and EAGLE [31]. These two tools

are representative of how to test passively and efficiently a protocol. EAGLE provides

an interesting formalism to express complex properties. However, they assume knowing

the variables’ values of each state in a trace. Furthermore, even if its expressiveness

is close to ours, the design of such properties is difficult given their complex scheme,

making it hard to implement them efficiently. PASTE embeds innovative passive test-

ing algorithms but does not consider the causality between the data portions in a trace.

With our approach, we argue first the need of checking all the packets in a trace since the

states are unknown and second the analysis of data constraints through all the packets

of the trace.

Tool Datamon EAGLE PASTE MOP

Time Complexity nk+max(l,m) n.p422plog2p k.n2 + n.(p− k) *
Memory Complexity nlog(n) n.p22plog(p) n *

States unneeded ! # ! #

Temporal logic # ! # !

Invariant ! # ! !

Condition ! # # !

Actions to IUT # # # !

Data constraints ! ! # #

Table 3.1: Some comparative aspects of passive testing tools

When comparing memory and time complexities of the three algorithms (see Table 3.1),

our tool Datamon presents a high time complexity in comparison to the others. However,

the Datamon memory complexity is much more interesting. The reasons are obvious.

Indeed, in our work we manage some data in the formula and we do not assume any
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knowledge about the implementation states which increases the time complexity. How-

ever, in compensation, our top-down resolution tree leads to a linear memory complexity.

The complexity is not the only key points allowing to compare our approach to others.

Table 3.1 details the comparative aspects of the three above mentioned approaches plus

the software MOP commonly used in benchmarks [60] (unfortunately, we cannot find

the memory and time complexity of MOP in their publications).

Table 3.1 illustrates the advantages and limitations of our approach, where p is the

number of operators in a formula and n, k, l represent the length of the trace, the

number of quantifiers and respectively. Although the time complexity of our algorithm

is higher, the space complexity is quite better.

3.5 Experiments

In this section, our approach has been implemented into an IMS framework. We provide

some experiments results evaluated on large traces, in order to verify the functionality

of our approach.

3.5.1 IP Multimedia Subsystem

The IMS (IP Multimedia Subsystem) is a standardized framework for delivering IP

multimedia services to users in mobility. It was originally intended to deliver Inter-

net services over GPRS connectivity. This vision was extended by 3GPP, 3GPP2 and

TISPAN standardization bodies to support more access networks, such as Wireless LAN,

CDMA2000 and fixed access network. The IMS aims at facilitating the access to voice or

multimedia services in an access independent way, in order to develop the fixed-mobile

convergence. To ease the integration with the Internet world, the IMS heavily makes

use of IETF standards.

The core of the IMS network consists of the Call Session Control Functions (CSCF), that

redirect requests depending on the type of service, the Home Subscriber Server (HSS),

a database for the provisioning of users, and the Application Server (AS), where the

different services run and interoperate. Most communication with the core network and

between the services is done using the Session Initiation Protocol [7]. Figure 3.1 shows

the core functions of the IMS framework and the protocols used for communication

between the different entities.
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Figure 3.1: Core functions of IMS framework

3.5.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application-layer protocol that relies on

request and response messages for communication, and it is an essential part for com-

munication within the IMS (IP Multimedia Subsystem) framework. Messages contain a

header which provides session, service and routing information, as well as an (optional)

body part to complement or extend the header information. Several RFCs have been

defined to extend the protocol with to allow messaging, event publishing and notifica-

tion. These extensions are used by services of the IMS such as the Presence service [61]

and the Push to-talk Over Cellular (PoC) service [62].

3.5.2.1 Overview

The Session Initiation Protocol is an application-layer control protocol specified by the

IETF [7] for creating, modifying and terminating multimedia sessions with one or more

participants, independently of the underlying transport. A typical SIP session is estab-

lished as follows, where a user Alice calls another user Bob. A diagram of the entities in

the communication and the message exchange is provided in Figure 3.2. We will briefly

introduce the communication process in the following:

• Alice uses a SIP client software as a User Agent Client (UAC) to send a request,

while Bob acts as a User Agent Server (UAS) to receive a request. Alice calls Bob

using his SIP identity, a type of Uniform Resource Identifier (URI).
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Figure 3.2: SIP entities and message exchange

• The UAC generates a SIP INVITE message, containing a request line indicating

the method INVITE, the UAS’s identifier (sip:bob@domainB.org) and version,

followed by a number of headers.

• If the software client does not know the IP address of Bob, it locates a proxy server

inside own domain (domainA.org).

• The proxy form the calling domain, sends a 100 Trying response to the UAC to

let it know that the proxy is processing the request.

• The proxy locates another proxy in the reception domain (domainB.org), where it

sends the message, adding its own address to the Via header.

• The proxy in the reception domain, sends a 100 Trying response to the proxy in

the calling domain to let it know that the request is being processed.

• The proxy locates the address of Bob by consulting from a location server, and

transmits the message with its own address in the Via header to that address.

• The client on Bob’s receives the message and returns a 180 Ringing response,

indicating that it is waiting for Bob to answer the call.

• When Bob answers the call, the client software sends a 200 OK to indicate that

the call has been answered.
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• Once the client on Alice’s side receives the OK response, it immediately sends an

ACK request to acknowledge the reception of the message, and starts the media

session.

• When the media session is over, the terminating client sends a BYE message,

which will be replied with a 200 OK response.

3.5.2.2 Entities and Network Elements

Some of the entities and elements that take part in a SIP session are described as follows:

• User Agent: UA is the endpoint in the SIP communication in charge of generating

requests and responses. A UA can take the role of either an UAC (creating and

sending requests) or an UAS (receiving requests and generating responses).

• Proxy Server: An intermediary entity that acts as both a server and client for

the purpose of making requests on behalf of other clients.

• Registrar: A SIP server that receives SIP REGISTER requests and stores the

information in those requests.

• Redirect Server: A user agent server that generates 3xx responses to requests

it receives, directing the client to contact an alternate set of URIs.

3.5.2.3 Message Syntax

Each SIP message begins by a start line, called the request line (if it is a request) or a

status line (if it is a response). The start line is followed by a number of headers and the

message body. The request line is composed by the method of the request, indicating

the type of operation requested, the request URI and the version of SIP used in the

message. A short description of the methods defined in the RFC is provided as follows:

• REGISTER: Used by the UA to indicate its current SIP address and the SIP

URI being used as identifier.

• INVITE: Used to initiate a media session between UAs.

• ACK: Used to acknowledge the reception of a message, usually a 2xx response.

• CANCEL: Used to terminate a previous request.

• BYE: Used to terminate an ongoing media session.
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• OPTIONS: Used to query a server of its capabilities.

A response’s status line is composed by a status code, a 3-digit integer indicating the

outcome of a request, and a reason code, providing a short textual description of the

status code intended for a human user. The different classes of status codes are defined

below.

• 1xx. Provisional: Indicating that the request has been received and the process

is being continued.

• 2xx. Success: Indicating that the action was successfully received, understood

and accepted.

• 3xx. Redirection: Further action needs to be taken in order to complete the

request.

• 4xx. Client error: The request contains bad syntax or cannot be fulfilled.

• 5xx. Server error: The server failed to fulfill an apparently valid request.

• 6xx. Global failure: The request cannot be fulfilled at any server.

SIP headers starts by the header name, followed by a colon and the header value, ending

in a carriage-return line-feed sequence. The following six header fields are the mandatory

minimum for any request formulated by a UAC according to the RFC.

• To: Specifies the desired logical recipient for the request in the form of a SIP

URI or another URI scheme. It is usually composed of the identifier of the target,

display name, as well as other optional parameters.

• From: Indicates the logical identity of the user initiating the request. It also

contains an URI as the identity and an optional display name.

• CSeq: Serves as a way to identify and order transactions. It consists of a sequence

number and a method, where the method matches the method from the request

line.

• Call-ID: Acts as a unique identifier to group together a series of messages. It

identifies uniquely a particular invitation or all registrations of a particular client.

• Max-Forwards: Serves to limit the number of hops a request can transit on its

way to a destination.

• Via: Indicates the transport and addresses of each location where the message

has gone through in order to arrive at its destination. Each time a request goes

through a hop, the local UAC inserts new address in the Via header of the request.
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3.5.3 Testing Framework

We have implemented this testing framework using Java. The implemented system is

composed of three main modules:

• Filtering and conversion of collected traces

• Evaluation of tests

• Evaluation of formulas

Figure 3.3 shows the way the modules interact and the inputs and outputs from each

one.

Figure 3.3: Architecture for the conformance testing framework

The trace processing module takes the raw traces collected from the network exchange,

and it converts the messages from the input format. In our particular implementation,

the input trace format is PDML, an XML format that can be obtained from Wireshark3

traces. In the XML, data values are identified by a field tag, representing an individual

data element in the message (a header, a parameter). Each sub-element in the target

message is related to a field in the XML by its name, for instance, the ‘status.line’

message element with the XML field ‘sip.Status-Line’. In the XML, fields are grouped

by protocol, which also allows the tool to filter messages not relevant to the properties

being tested.

The purpose of the module is to convert each packet in the raw trace into a data

structure (a compound value) conforming to the definition of a message. The format for

the message is defined in a different input file to the module. There, each sub-element for

the target message (e.g. ‘.method’, ‘.cseq.seq’) is associated with the respective element

3http://www.wireshark.org

http://www.wireshark.org
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in the trace source format. This module also performs filtering of the trace, in order

to only take into account messages of the studied protocol. Since this is a separate

module of the implementation, alternative trace formats can be changed or expanded

by modifying this module.

The test evaluation module receives as input a passive test as defined in Section 3.2, as

well as a trace from the trace processing module and produces a verdict from the satis-

faction results of the test and conditional formulas. The formula evaluation module is

implemented as described in Section 3.3. It receives a trace and a formula, along with the

clause definitions and returns a set of satisfaction results for the query in the trace, as well

as the messages and variable bindings obtained in the process. The implementation and

the files used for the experiments can be found at http://www-public.it-sudparis.

eu/~maag/Datamon/web/Datamon.html. The results from the experiments are presented

in the following.

3.5.4 Environments

For the experiments, traces were obtained from SIPp [63]. SIPp is an Open Source test

tool and traffic generator for the SIP protocol, provided by the Hewlett-Packard com-

pany. It includes a few basic SipStone user agent scenarios (User Agent Client (UAC)

and User Agent Server (UAS)) and establishes and releases multiple calls with the IN-

VITE and BYE methods. It can also read custom XML scenario files describing from

very simple to complex call flows. It features the dynamic display of statistics about

running tests, TCP and UDP over multiple sockets or multiplexed with retransmission

management and dynamically adjustable call rates. It also supports IPv6, TLS, SIP

authentication, conditional scenarios, UDP retransmissions, error robustness, call spe-

cific variable, etc. SIPp can be used to test many real SIP equipments like SIP proxies,

B2BUAs and SIP media servers [63]. The traces obtained from SIPp contain all commu-

nications between the client and the SIP core. Tests were performed using a prototype

implementation of the formal approach mentioned above, using an algorithm developed

by us and described in the Section 3.3.

In the experiment, we designed a real Local Area Network (LAN) architecture for testing.

For ensuring the accuracy and authenticity of the results, we construct the environment

by using real laptops. As shown in Figure 3.4, the LAN architecture is an environment

containing several UACs, which can be used to test the correctness, robustness and

reliability under tremendous number of calls. The observation points being are the

UAS.

• Hardware configuration of UAS:

http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
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Figure 3.4: Our LAN Architecture

CPU- Intel Core i5-2520M 2.50 GHz, 4GB DDR3

• Hardware configuration of UACs:

CPU- AMD Atholon 64 X2 5200+, 2GB DDR2

CPU- Intel Core2 Duo T6500 2.10 GHz, 2GB DDR2

3.5.5 Properties and Results

In order to formally design the properties to be passively tested, we studied deeply the

TTCN-3 test suite of SIP [2] and the RFC 3261 of SIP [7]. We designed 7 properties for

the experiments, for the evaluation of each property we used a set of traces {500, 1000,

2000, ... , 512000} in order to get exhaustive results. We provide in the following the

definition of our chosen properties as well as the obtained verdicts on the tested finite

traces.

Property 1: For every request there must be a response

This property can be used for a monitoring purpose, in order to draw further conclusions

from the results. Due to the issues relative to testing on finite traces for finite executions,

a fail results can never be given for this context. However inconclusive results can be

provided and conclusions may be drawn from further analysis of the results (for instance

if the same type of message is always without a response). The property evaluated is as

follows:
∀x(request(x) ∧ x.method! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

where nonProvisional(x) accepts all non provisional responses (non-final responses,

with status ≥ 200), to requests with method different than ACK, which does not require
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a response. The results from the evaluation on the traces are shown on Table 3.2. As

Trace No.of messages Pass Fail Inconclusive Time(s)

1 500 150 0 0 0.941
2 1000 318 0 1 1.582
3 2000 676 0 0 2.931
4 4000 1301 0 1 5.185
5 8000 2567 0 1 10.049
6 16000 5443 0 0 20.192
7 32000 10906 0 1 39.016
8 64000 21800 0 0 84.015
9 128000 43664 0 0 155.903
10 256000 87315 0 1 382.020
11 450000 153466 0 0 1972.720
12 512000 ? ? ? ?

Table 3.2: “For every request there must be a response”

expected, most of the traces show only true results for the property evaluation, however

traces 2,4,5,7 and 10 show an unusual number of inconclusive results. Taking a closer

look at trace 10, the inconclusive verdict corresponds to the REGISTER message, with

an Event header corresponding to a conference event [64], this message is at the end

of the trace, which could indicate that the client closed the connection before receiving

the REGISTER message. The same phenomenon can be observed on the other traces

(2,4,5 and 7). The last trace with question mark is too huge to be executed due to the

limitation of the computer memory, the program crashed after 4 hours execution which

raises a first limitation of our approach.

Property 2: No session can be initiated without a previous registration

This property can be used to test that only users successfully registered with the SIP

Core can initiate a PoC session (or a SIP call, depending on the service). It is defined

using our syntax as follows

∀x(∃y>xsessionEstablished(x, y)

→ ∃u<x(∃v>uregistration(u, v)))
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where sessionEstablished and registration are defined as

sessionEstablished(x, y)← x.method = ‘INVITE’

∧y.statusCode = 200

∧responds(y, x)

registration(x, y)← request(x) ∧ responds(y, x)

∧x.method = ‘REGISTER’

∧y.statusCode = 200

The analysis of the results, however depends on the following condition: did the trace

collection begin from a point in the execution of the communication before the user(s)

registration took place? If the answer is positive, then inconclusive results can be treated

as a possible fault in the implementation, otherwise, only inconclusive verdicts can be

given. Unfortunately, in the collected traces such condition does not hold, therefore a

definitive verdict cannot be provided. However it can be shown that the property and

the framework allow to detect when the tested property holds on the trace, as shown in

Table 3.3.

Trace No.of messages Pass Fail Inconclusive Time

1 500 60 0 0 13.690s
2 1000 109 0 0 57.117s
3 2000 182 0 1 207.841s
4 4000 405 0 0 869.322s
5 8000 785 0 0 1.122h
6 16000 1459 0 0 5.660h
7 32000 2905 0 0 27.282h
8 64000 5863 0 1 136.818h
9 128000 ? ? ? ?

Table 3.3: “No session can be initiated without a previous registration”

From the results on Table 3.3, it can also be seen that the evaluation of this property

is much more time consuming than the one on Table 3.2. Based on previous results

and the algorithm complexity, we predict the trace 9 will take approximately 23 days

for the evaluation where the same trace took only 155s in property 1. Although this is

expected given the complexity of evaluation (n2 form the first property vs. n4 in the

current one), the current definition of the property is also quite inefficient, and shows

a limitation of the syntax. During evaluation, all combinations of x and y are tested

until sessionEstablished(x, y) becomes true, and then all combinations of u and v are

evaluated until registration(u, v) becomes true. It would be much more efficient to

look first for a message with method INVITE, then look whether the invitation was
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validated by the server as a response with status 200 to then attempt to look for a

registration. This could be achieved, for instance, by allowing quantifiers on the clause

definitions, unfortunately, the syntax as currently specified does not allow that type of

definition. This limitation is also raised in the following.

Property 3: Subscription to events and notifications

As described in the Section 3.4.2, in the presence service, a user (the watcher) can

subscribe to another user’s (the presentity) presence information. This works by using

the SIP messages SUBSCRIBE, PUBLISH and NOTIFY for subscription, update

and notification respectively. These messages also allow the subscription to other types of

events other than presence, which is indicated in the header Event on the SIP message.

It is desirable then to test, that whenever there is a subscription, a notification MUST

occur upon an update event. This can be tested with the following formula:

∀x(∃y>x(subscribe(x,watcher, user, event) ∧ update(y, user, event))
→ ∃z>ynotify(z, watcher, user, event)))

where subscribe, update and notify hold on SUBSCRIBE, PUBLISH and NOTIFY

events respectively. Notice that the values of the variables watcher, user and event may

not have a value at the beginning of the evaluation, in that case their value is set by the

evaluation of the subscribe clause, shown in the following

subscribe(x,watcher, user, event)

← x.method = ‘SUBSCRIBE’

∧watcher = x.from

∧user = x.to

∧event = x.event

Here, the ‘=’ operator compares the two terms, however if one of the term is an unas-

signed variable, then the operator works as an assignment. In the formula, the values

assigned on the evaluation of subscribe will be then used for comparison in the eval-

uation of update. This is another way of defining formulas, different from using only

message attributes.

The results of evaluating the formula are shown on Table 3.4. The results show no

inconclusive results, although they also show that the full notification sequence is quite

few in most traces. Notice that we are explicitly looking for a sequence subscribe →
update → notify, however the sequence subscribe → notify can also be present for

subscription to server events, therefore SUBSCRIBE and NOTIFY events might

also appear on the trace. To test the capabilities of detection, some SUBSCRIBE
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messages were manually introduced on a trace, matching existing PUBLISH messages.

The lack of notification for the update was correctly detected by the evaluation of the

property.

Trace No.of messages Pass Fail Inconclusive Time

1 500 3 0 0 10.412s
2 1000 7 0 0 42.138s
3 2000 10 0 0 160.537s
4 4000 19 0 0 632.192s
5 8000 30 0 0 2520.674s
6 16000 52 0 0 2.808h
7 32000 74 0 0 11.250h
8 64000 122 0 0 45.290h
9 128000 ? ? ? ?

Table 3.4: “Whenever an update event happens, subscribed users must be notified
on the set of traces”

Similarly to property 2, this property is quite inefficient in its evaluation, due to the same

nesting of quantifiers. The evaluation time can be improved by rewriting the property

as:
∀x(update(x, user, event)

→ (∃y<xsubscribe(y, watcher, user, event)

→ ∃z>xnotify(z, watcher, user, event)))

which can be understood as: “if an update event is found, then if a previous subscription

exists to such event, then a notification must be provided at some point after the update

event”. The results of evaluating this property are shown on Table 3.5. Notice that

Trace No.of messages Pass Fail Inconclusive Time(s)

1 500 4 0 0 0.560
2 1000 7 0 0 1.158
3 2000 11 0 0 3.089
4 4000 19 0 0 6.164
5 8000 30 0 0 12.684
6 16000 52 0 0 25.416
7 32000 75 0 0 50.130
8 64000 122 0 0 99.372
9 128000 198 0 0 202.492
10 256000 342 0 0 394.756
11 512000 ? ? ? ?

Table 3.5: “If an update event is found, then if a previous subscription exists, then a
notification must be provided”

for trace 1,3 and 7, a different number of true results are returned. This is due to the

order of search given by the property, in the previous property it sufficed with one pair
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SUBSCRIBE - PUBLISH, in order to return a result. In the current property, for

each PUBLISH it will look for a matching SUBSCRIBE. Since for every subscription

there can exist multiple updates, the number of true results differs.

Also from the Table 3.4 and Table 3.5, we can observe that the evaluation time are

sharply reduced if we follow an efficient way to write properties. The testers should

avoid to write a property which recursively read the trace, and they should try to add

as many detailed restrictions of the variables as they can. For instance, we just added a

small restriction ‘the message x should satisfy an update event’ for the property 3, but

it saved a lot of evaluation time as you can observe from the Table 3.4 and Table 3.5.

Property 4: Every 2xx response for INVITE request must be responded with

an ACK

This property can be used to ensure that when the IUT (UAC) has initiated an INVITE

client transaction, either it is in the Calling or Proceeding state, on receipt of a Success

(200 OK) response, the IUT MUST generate an ACK request. The ACK request

MUST contain values for the Call-ID, From and Request-URI that are equal to the

values of those header fields in the INVITE request passed to the transport by the

client transaction. The To header field in the ACK MUST equal the To header field

in the 2xx response being acknowledged, and therefore will usually differ from the To

header field in the original INVITE request by the addition of the tag parameter. The

ACK MUST contain a single Via header field, and this MUST be equal to the top Via

header field (the field without the branch parameter) of the original INVITE request.

The CSeq header field in the ACK MUST contain the same value for the sequence

number in the original INVITE request, but the value of Method parameter MUST be

equal to ‘ACK’. This property evaluated is as follows:

∀x(request(x) ∧ x.method = INVITE

→ ∃y>x(responds(y, x) ∧ success(y))

→ ∃z>y(ackResponse(z, x, y)))

where success is defined as

success(y)← y.statusCode >= 200 ∧ y.statusCode < 300
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and ackResponse is defined as

ackResponse(x, y, z)

← x.method = ACK

∧x.Call − id = y.Call − id
∧x.CSeq = y.CSeq

∧x.CSeq.method = ACK

∧x.to = z.to

∧x.From = y.From

∧x.Request− URI = y.Request− URI
∧x.TopV ia = y.TopV ia

Trace No.of messages Pass Fail Inconclusive Time

1 500 60 0 0 1.901s
2 1000 109 0 0 3.665s
3 2000 183 0 0 11.805s
4 4000 405 0 0 40.104s
5 8000 784 0 1 130.611s
6 16000 1459 0 0 522.050s
7 32000 2904 0 1 2237.442s
8 64000 5864 0 0 2.093h
9 128000 11555 0 1 8.630h
10 256000 23154 0 0 37.406h
11 450000 43205 0 0 142.568h
12 512000 ? ? ? ?

Table 3.6: “Every 2xx response for INVITE request must be responded with an
ACK”

The inconclusive messages observed in traces 5,7,9 of Table 3.6 are caused by the same

phenomenon described in property 1. Besides, we observe a regular pattern in the results

of this property: As the Table 3.3 and 3.6 illustrated, with the evaluation of same traces,

the sum of Pass and Inconclusive verdicts of each trace in property 4 equal to the sums

in property 2. This can be interpreted as the continuity of the transactions.

We are looking for a sequence:

sequencea : REGISTER→ 200→ INVITE

in property 2, on the other side, in property 4 we are searching a sequence:

sequenceb : INVITE→ 200→ ACK
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As described in property 2, each INVITE must have a previous REGISTER message.

We can infer a new sequence:

REGISTER→ 200→ INVITE→ 200→ ACK

which means each ACK message in the transaction must be corresponded to one REG-

ISTER request. Under the ordinary condition, the verdict numbers of sequencea should

be equal to the ones of sequenceb.

Property 5: Every 300-699 response for INVITE request must be responded

with an ACK

Similar to the previous one, this property can be used to ensure that when the IUT

(UAC) has initiated an INVITE client transaction, either it is in the Calling state or

Proceeding state, on receipt of a response with status code 300-699, the client transaction

MUST be transited to “Completed”, and the IUT MUST generate an ACK request.

The ACK MUST be sent to the same address and port which the original INVITE

request was sent to, and it MUST contain values for the Call-ID, From and Request-URI

that are equal to the values in the INVITE request. The To header field in the ACK

MUST equal the To header field in the response being acknowledged. The ACK MUST

contain a single Via header field, and this MUST be equal to the Via header field of

the original INVITE request which includes the branch parameter. The CSeq header

field in the ACK MUST contain the same value for the sequence number in the original

INVITE request, but the value of Method parameter MUST be equal to ‘ACK’.

Similarly to the property above, this property can be applied as:

∀x(request(x) ∧ x.method = INVITE

→ ∃y>x(responds(y, x) ∧ fail(y))

→ ∃z>y(ackResponse(z, x, y)))

where fail is defined as

fail(y)← y.statusCode >= 300 ∧ y.statusCode < 700
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and ackResponse is defined as

ackResponse(x, y, z)

← x.method = ACK

∧x.Call − ID = y.Call − ID
∧x.CSeq = y.CSeq

∧x.CSeq.method = ACK

∧x.to = z.to

∧x.From = y.From

∧x.Request− URI = y.Request− URI
∧x.TopV ia = y.TopV ia

Trace No.of messages Pass Fail Inconclusive Time

1 500 10 0 0 3.445s
2 1000 18 0 0 10.798s
3 2000 49 0 0 34.331s
4 4000 91 0 0 137.083s
5 8000 165 0 0 557.803s
6 16000 367 0 1 1950.656s
7 32000 736 0 0 2.103h
8 64000 1403 0 0 8.498h
9 128000 2796 0 0 36.159h
10 256000 5513 0 0 145.088h
11 512000 ? ? ? ?

Table 3.7: “Every 300-699 response for INVITE request must be responded with an
ACK”

As shown in Table 3.7, the only one inconclusive verdict in trace 6 is due to the same

phenomenon described in property 1. This property has the same time complexity as

the previous one (O(n3)), which means the evaluation times in property 5 should equal

or close to the ones in the property 4 on the same traces. However, the actual evaluation

time does not respect it. From the Table 3.6 and 3.7, we can observe that the evaluation

times of property 5 are always one level higher than the times of property 4.

From the experiment results, we observe that the evaluation time is proportional to the

the number of fails. Conversely in property 5, the evaluation time is proportional to the

the number of successes. Considering the success responses are 10 times more than the

fail ones, the phenomenon that property 5 consumes more time than the property 4 can

thus be explained.
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Property 6: A CANCEL request SHOULD NOT be sent to cancel a request

other than INVITE

Since requests other than INVITE are responded to UAC immediately, sending a

CANCEL for a non-INVITE request would always create a race condition. Once

the CANCEL is constructed, the client should check whether it has received any re-

sponse for the request being canceled. If no provisional response has been received, the

CANCEL request must not be sent. Rather, the client must wait for the arrival of a

provisional response (1xx) before sending the request. If the original request has gener-

ated a final response, the CANCEL should not be sent. This property can be used to

ensure when the IUT having received a 1xx response to its INVITE request, to give up

the call, it can send a CANCEL request with the same Request-URI, Call-ID, From,

To headers, Via headers, numeric part of CSeq as in the original INVITE message,

with a method field in the CSeq header set to “CANCEL”.

This property can be defined by using our syntax as follows:

∀x(request(x) ∧ x.method = CANCEL

→ ∃y<x(continues(y, x) ∧ y.statusCode = 1xx)

→ ∃z<y(responds(y, z) ∧ invite(z, x)))

where continues is defined as

continues(y, x)← y.to = x.to

∧y.Call − ID = x.Call − ID
∧y.From = x.From

∧y.Request− URI = x.Request− URI
∧y.TopV ia = x.TopV ia

and invite is defined as

invite(z, x)← z.method = INVITE

∧x.to = z.to

∧x.Call − ID = z.Call − ID
∧x.From = z.From

∧x.Request− URI = z.Request− URI
∧x.CSeq = z.CSeq

∧x.TopV ia = z.TopV ia

As Table 3.8 illustrates, there is no inconclusive verdict. The evaluation time of each

trace almost respect the linear increment of y = 2x (x being the evaluation time of the
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Trace No.of messages True False Inconclusive Time(s)

1 500 5 0 0 0.780
2 1000 11 0 0 1.232
3 2000 21 0 0 2.309
4 4000 43 0 0 4.212
5 8000 87 0 0 8.284
6 16000 172 0 0 16.395
7 32000 344 0 0 32.870
8 64000 689 0 0 65.080
9 128000 1377 0 0 133.380
10 256000 2753 0 0 266.372
11 512000 ? ? ? ?

Table 3.8: “A CANCEL request SHOULD NOT be sent to cancel a request other
than INVITE”

current trace, y being the evaluation time of next trace), which means the complexity

of evaluation is O(n).

3.5.6 Discussions

In this section, we will elaborate some interesting phenomenons observed in the ex-

periments, and also we will introduce some possible improvements for future works on

performance testing. We will start this section with an interesting property.

Property: The session MUST be terminated after a BYE request

In this property, the BYE request is used to terminate a specific session or attempted

session. When a BYE is received on a dialog, any session associated with that dialog

SHOULD terminate. A UAC MUST NOT send a BYE outside of a dialog. Once the

BYE is constructed, the UAC core creates a new non-INVITE client transaction and

passes it to the BYE request. The UAC MUST consider the session terminated as soon

as the BYE request is passed to the client transaction. If the response for the BYE is a

481 or a 408 or no response at all is received for the BYE, the UAC MUST consider the

session and the dialog terminated. This property can be used to ensure that the IUT,

once a dialog has been established, after sending a BYE request, the session MUST

be terminated. As the ‘terminated’ is not clearly defined in the RFC, we define the

‘terminated’ as follows:

• The IUT stops sending messages.

• The IUT stops listening messages except the response for BYE request.



Chapter 3. Formal Approach for Conformance Testing 48

• The IUT transaction transmits to Completed state.

The BYE request must be constructed with a To header set to the same value as in the

last received final response, the same Call-ID, From headers as in the original INVITE

message, an incremented of one CSeq value and a method field in the CSeq header set

to “BYE”.

Differently as the properties before, this one is complicated to be formalized, due to the

difficulty of detecting the ‘terminated’ state. Indeed, in our case we do not have any

complete formal specification available and we can not stimulate the IUT. Moreover,

we should ensure that no more messages will be exchanged after the ‘terminated’ state,

which indicates that we need to keep monitoring the transaction even after it terminates.

It is time consuming and unpredictable.

Time complexity

In the experiment, we observe a phenomenon which occurred in all the properties. The

time complexity of evaluation is proportional to the number of inconclusive verdicts.

Take property 1 and its results for example, its worst time complexity of evaluation is

O(n2) (where n is the number of packets). If the variable n is doubled, the expected

evaluation time should be 4 times greater than the previous one. However, from the

Table 3.2, we can see there is hardly any inconclusive verdict, and the actual evaluation

time is only about twice greater than the previous one, as the Figure 3.5 shows. This

means that the actual time complexity in the evaluation is close to its best complexity

O(n).

In addition, we test the same property with the same number of traces where numerous

inconclusive verdicts can be observed (the inconclusive verdicts accounted for 100%

of the total verdicts). The result can be seen from Figure 3.6, which illustrates the

evaluation time practically equal to our expected time. In other words, the actual time

complexity of evaluation is almost equal to O(n2). This phenomenon can be used to

estimate the evaluation time and the number of inconclusive verdicts in the future.

Integration for Performance Testing

We also found out some possible improvements for integrating our approach to perfor-

mance testing when we worked on the relevant RFCs. As defined in the RFC1242 [65]

and RFC2544 [66], the performance indicators can be indicated as:

• Accessibility: whether the packet can reach a destination.

• Communication bandwidth: the data transfer rate between two nodes.
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Figure 3.5: Evaluation Time Table

Figure 3.6: The evaluation time table of numerous inconclusive verdicts

• Maximum frame rate: the maximum transmission rate of the device under test.

• Communication latency: the time required for delivering the packet to destination.
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• Frame loss rate: the ratio of loss packets and sent packets during the data trans-

port.

We can integrate our approach to performance testing if we are able to measure all these

norms. Currently in our approach, the result of property 1 already showed that we could

certainly test the Accessibility and Frame loss rate by detecting the number of resent

packets from the inconclusive verdicts. However, if we want to test the Communication

latency, Communication bandwidth and Maximum frame rate, a timer function need to

be added in our approach in order to test the arrival time.

3.5.7 Conclusion

In this chapter, we presented our initial approach for conformance testing of IMS services,

through a real communicating environment. The results are positive, the implemented

approach allows to define and test complex data relations efficiently, and evaluate the

properties successfully. Besides, as described in the Section 3.4.6, some improvements

are proposed as future works for performance testing. Meanwhile, we firstly published

our preliminary work in [67] with the syntax and semantics, and then we published our

following work in [55] with completed algorithm and comprehensive experiment results.



Chapter 4

Formal Approach for

Performance Testing

“An investment in knowledge always pays the best interest.”

– Benjamin Franklin (1706 – 1790)

In the previous chapter, we elaborated how our approach works on conformance test-

ing, and also we raised some interesting challenges. Since many performance related

properties cannot be specified, and many benefits can be brought to the test process

if both conformance and performance testing inherit from the same approach, here we

extend our proposed methodology to present a passive performance testing approach for

communicating protocols based on the formal specification of the time related require-

ments. Also for solving the indeterminacy problems existed in non-positive verdicts, we

introduce a four-valued semantics {‘Pass’, ‘Con-Fail ’, ‘Per-Fail ’, ‘Inconclusive’} in our

formalism. Finally, we implement our approach in a complex network environment to

test its functionality and flexibility. In this chapter, we will introduce these works into

details.

4.1 Performance Testing

In our previous work, some interesting issues have been raised on how to test the com-

munication latency and how to observe the duration of an interaction. These issues

are mainly due to the fact we did not consider time constraints in the tested protocol

properties. We introduce here some timing aspects which answer to these issues.

51
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4.1.1 Basics and Syntax

For each m ∈ Mp, we add a real number tm ∈ R+ which represents the time when the

message m is received or sent by the monitored entity.

Example 3. A possible message for the SIP protocol, specified using the previous

definition could be

m = {(method, ‘INVITE’), (time, ‘644.294133000’), (status, ε), (from,

‘alice@a.org’), (to, ‘bob@b.org’), (cseq, {(num, 7), (method, ‘INVITE’)})}

representing an INVITE request from alice@a.org to bob@b.org. The value of time

‘644.294133000’ is a relative value (t0 + 644.294133000) since the P.O started its timer

(initial value t0) when capturing traces.

A trace ρ is a sequence of messages of the same domain containing the interactions of a

monitored entity in a network, through an interface (the P.O), with one or more peers

during an arbitrary period of time. The P.O also provides the relative time set T ⊂ R+

for all messages m in each trace ρ.

The timed atom is a particular atom defined as p

k︷ ︸︸ ︷
(termt, ..., termt), where termt ∈ T .

Example 4. Let us consider the message m of the previous example, a time constraint

on m can be defined as ‘m.time < 550ms’. By using this definition, requirements relevant

to timing aspects can be formalized to atoms, which can be used to solve the problems

mentioned in previous chapter.

4.1.2 Semantics

In conformance testing, since a finite trace is a finite segment of an infinite execution,

it is not possible to declare a ‘>’ (‘Pass’) result for ∀xφ as in the infinite case since

we do not know if a ‘⊥’ (‘Fail ’) may come after the end of ρ. Equivalently, for ∃xφ, it

is unknown whether ‘⊥’ (‘Fail ’) in φ becomes ‘>’ (‘Pass’) for future values of x. The

semantics for trace quantifiers requires then the introduction of a new truth value ‘?’

(inconclusive) to indicate that no definite response can be provided.
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Figure 4.1: “Inconclusive” condition in performance testing. (ReqA is a request
message in trace ρ, ResB is a possible response to ReqA in the future trace and t

represents the time requirement bound)

However, different from conformance testing, performance requirements in performance

testing have strict required time bounds. It indicates that there is no indeterminacy

in semantics of quantifiers for finite traces, except one condition: the bounds of time

requirements exceed the end of finite traces (as shown in Figure 4.1). In this case,

‘?’ (inconclusive) verdicts will be used for indicating that no definite response can be

provided. In [57], it is proved that if M is a minimal model1 for a clause set K and

a trace ρ, if M(φ) = >(Pass), then φ is ‘>’ (‘Pass’ ) for K and ρ. Let operator M̂ be

the semantics of formulas, and the semantics of quantifiers ∀x and ∃x are redefined as

follows:

M̂(∀xφ) =


>(Pass) if M̂(φθ) = >,∀θ where x/m ∈ θ and m ∈ ρ

⊥ (Fail) if ∃θ with x/m ∈ θ and m ∈ ρ,where M̂(φθ) =⊥

? otherwise

M̂(∃xφ) =


>(Pass) if ∃θ with x/m ∈ θ and m ∈ ρ,where M̂(φθ) = >

⊥ (Fail) if M̂(φθ) =⊥,∀θ where x/m ∈ θ and m ∈ ρ

? otherwise

The semantics for ∀y>x, ∀y<x, ∃y>x and ∃y<x are equivalent to the two formulas shown

above. Based on the semantics, an algorithm for evaluating formulas is provided in

Section 4.1.4.

4.1.3 Performance testing verdicts

We formalize the performance requirements of the IUT by using the syntax above de-

scribed, and the truth values {Pass, Fail, ?} are provided to the interpretation of the

obtained formulas on real protocol execution traces. However, from our analysis of

standards [66] [7], most of the performance requirements are composed of conformance

1Obtained as ∩M , the intersection of all models for K and ρ
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requirements and strict time constraints. By using the introduced syntax before, we de-

fine the formalized performance requirement, the constituent conformance requirement,

the set of formalized performance requirements and constituent conformance require-

ments by using φcon, φper, Rper and Rcon respectively.

Definition 6. The set of constituent conformance requirements Rcon is defined as

Rcon = {φcon1 , φcon2 , ..., φconn | n ∈ N}, where φconi = {(A1 ∧ A2 ∧ ... ∧ Am) | m ∈ N
| i = 1...n}. The set of performance requirements Rper can be defined as Rper =

{φper1 , φper2 , ..., φpern | n ∈ N}, where φperi = {φconi ∧ (At1 ∧ ... ∧ Atk) | k ∈ N} and

Ati = p(termt, ..., termt).

Example 4. The performance requirement “the message response time should be less

than 5ms”, represented by formalized formula φper1 = ∀x(request(x)→∃y>x(response(y, x)

∧withintime(x, y, 5ms))), is composed of the conformance requirement “The SUT re-

ceives a response message” represented by formalized formula φcon1 = ∀x(request(x)→
∃y>x(response(y, x))), and a required time constraint withintime(x, y, 5ms) = termty−
termtx<5ms.

Once a ‘Pass’ truth value is given to a performance requirement, without doubt, both

the performance and conformance requirements are satisfied. In the Example 4, if a

‘Pass’ is given to φper1 , it means the SUT received a response message and the response

time of this message is less than 5ms, the constituent φcon1 and withintime(x, y, 5ms)

are also sufficed.

However, if a ‘Fail ’ truth value is returned to a performance requirement, we cannot find

out the real cause of it. Since we cannot distinguish whether it is due to the violation of

the constituent conformance requirement or the required time constraint. For instance,

in Example 4, if a ‘Fail ’ is given to φper1 , we cannot distinguish whether it is due to “The

SUT received a response message, but the response time is greater than 5ms”, “There

is an error in the data portion of this response message” or “The SUT never received a

response message”.

Due to these issues, a method is required for clearly differentiating the cause of non-

pass results. Since in our approach, we have a common methodological ground for

conformance testing and performance testing, we can simultaneously test performance

requirements and their constituent conformance requirements, and then combine the

obtained verdicts together to have further analysis. Let comb(φper, φcon) represents
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the combination of verdicts obtained from performance requirements and conformance

requirements. It follows the rules shown in Table 4.1.

φper Pass Pass Pass Fail Fail Fail ? ? ?

φcon Pass Fail ? Pass Fail ? Pass Fail ?

comb(φper, φcon) Pass Con-Fail Pass Per-Fail Con-Fail Per-Fail ? Con-Fail ?

Table 4.1: Combinations of conformance and performance testing verdicts

Inspired from the work of [27] who defined a four-valued semantics for LTL to better

explain “Inconclusive” verdicts, we introduce two new definitions of verdicts “Con-

Fail” and “Per-Fail” in our performance testing formalism for better explaining “Fail”

verdicts. “Con-Fail” represents the failures caused by the constituent conformance re-

quirements, and “Per-Fail” represents the failures truly caused by the violation of the

performance requirements. As shown in the table, “Fail” verdicts finally are separated

to these two kinds of verdicts according to their causes. Followed with the rules in

Table 4.1, the semantics of operator ‘comb(φper, φcon)’ can be formally defined as follows

comb(φper, φcon) =



Pass if eval(φper, θ, ρ) = Pass | φper ∈ Rper and

eval(φcon, θ
′
, ρ) = Pass or ? | φcon ∈ Rcon

Con-Fail if eval(φcon, θ, ρ) = Fail | φcon ∈ Rcon

Per-Fail if eval(φper, θ, ρ) = Fail | φper ∈ Rper and

eval(φcon, θ
′
, ρ) = Pass or ? | φcon ∈ Rcon

? otherwise

where eval(φ, θ, ρ) expresses the evaluation of a formula φ on a finite trace ρ, by using

the substitution θ for performance requirements and θ
′

for conformance requirements.

4.1.4 Evaluating Algorithm

We use a recursive algorithm for evaluating the formalized performance requirements

on a real trace. It is coupled with a modification of the Selective Linear Definite-

clause (SLD) resolution algorithm [58] for the evaluation of Horn clauses presented in

our Algorithm 3. The algorithm starts by checking the existence of a trace ρ and a

formalized performance requirement φper. If any of it does not exist, the algorithm

will terminate since nothing can be tested (Line 1-2, 33-34). Then if φper contains sub

formulas, they will be sequentially tested by using recursive calls (Line 4, 30). For testing

a formula φ on a finite trace ρ, the algorithm will first assign the values to substitution

θ from each message m in the trace (Line 6). Then the obtained θ
′

will be used to
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Algorithm 2: Algorithm for eval(φper, θ, ρ)

Input: Formalized requirement φper, Substitution θ with initial bindings, and finite trace ρ
Output: Pass if the formula has a solution, Fail if exist a violation of the requirements, ‘?’ if no

definite response can be provided
1 if ρ is not empty, φper is not empty then
2 verdict← >;
3 if φper = φ1 → φ2 then
4 for (m0 ∧ ... ∧mn) ∈ ρ do

5 θ
′
← θmi;

6 for (C0 ∧ ... ∧ Cn) ∈ φ1 where verdict 6=⊥ do
7 for (A0 ∧ ... ∧An) ∈ Cj where verdict 6=⊥ do

8 if θ
′
A0 ∧ ... ∧ θ

′
An = > then

9 verdict← verdict ∧ >, next Cj , return verdict;
10 end
11 else
12 verdict← verdict∧ ⊥, return verdict;
13 end

14 end

15 end
16 if verdict = > then
17 next mi, logfile← pass, return logfile;
18 end
19 else
20 logfile← mi, next mi, check end of file(mi);
21 if check end of file(mi) = > then
22 logfile← inconclusive, return logfile;
23 end
24 else
25 logfile← fail, return logfile;
26 end

27 end

28 end
29 save logfile(φ1), eval(φ2, θ, ρ);

30 end
31 Go to loop for (m0 ∧ ... ∧mn) ∈ ρ with φ1=φper, return logfile;

32 end

compare with each atom in the formula φper (Line 7-9). If all the atoms in φper are

satisfied, a truth value ‘>’ will be assigned and the algorithm will step to test the next

message m. Otherwise, any violation of the atoms will result to a truth value ‘⊥’ and the

algorithm will immediately terminate the comparing process and step to test the next

message m (Line 10-14). The truth values ‘>’ and ‘⊥’ will be eventually transformed

to the verdict ‘Pass’, ‘Fail ’ or ‘Inconclusive’ as the semantics defined in Section 3 (Line

17-26). Finally, a final report will be provided when all the sub formulas of φper are

tested through the trace ρ.

Similar to the algorithm we used in conformance testing, the complexity of the algorithm

is decided by the number of quantifiers used in the formula being tested. In the worst-

case, the time complexity of our algorithm with k quantifiers is still O(nk) to analyze

the full trace, where n represents the number of messages in the trace. Although the

complexity seems high, it should be emphasized that it is the worst case complexity,
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where the evaluation of every quantifier for a trace returns ‘?’ and ‘⊥’. And also the

complexity corresponds to an analysis of the whole trace, not for obtaining individual

solutions, which depends on the type of quantifiers used. For instance, for a property

∀xrequest(x), individual results are obtained in O(1).

4.1.5 Experiments

In this section, our approach has been implemented into an IMS framework. We provide

some experiments results evaluated on large traces, in order to verify the functionality

of our approach.

4.1.5.1 Environments

In our experiments, SIPp is still used for obtaining traces. Different from the wired LAN

environment used in previous conformance testing experiments, a simple ad-hoc based

wireless environment has been implemented and tested here. Since compared with wired

network, wireless ad-hoc network supports mobility and freedom in the networks, and

it has been widely used in personal area network (PAN) and wireless sensor networks

(WSNs). The ad-hoc technology almost has been implemented to all the new released

laptops and cellphones. Using the ad-hoc based wireless environment here, can make

our experiment more close to the real daily-life communication environment.

Unlike wired transmission, the wireless transmission in ad-hoc may deal with problems

caused by the characteristic of the electronic wave. The obstacles existing in the physical

environment can cause shadowing, reflection, scattering, fading, refraction, diffraction

of the wave. These propagation may lead to transmitted packets being garbled and

thus received in error, which satisfy our need of variability on the data traffic. Data

errors could happen in the experiments. Besides, the characteristic of wave prevents

wireless communication to transmit data better than wired communication. In other

words, the ad-hoc networks have lower data transmission rate. Since it is our preliminary

experiments on performance testing, the aim of the experiments is to test the accuracy

and the functionality of our approach. The ad-hoc networks still satisfy our needs, and

also it is the reason why the sizes of trace sets in the experiments are much smaller

than the ones in conformance testing. The structure of our environment is shown in

Figure 4.2.

The experiments have been performed on two laptops (2.5GHz Intel Core 2 Duo with

4GB RAM and 2GHz Intel Core 2 Due with 2GB RAM) and a Table PC (2.5GHz AMD

Duo Core with 2GB RAM). The laptop with higher specification plays the role of User
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Figure 4.2: Ad-hoc environment

Agent Server (UAS), while the other two machines act as User Agent Clients (UAC).

The traffic is obtained from the P.O (UAS) by using monitoring tool Wireshark2. In

the traces we collected, only the information of Session Layer has been used in our

experiments. The traces collected in different environments can be found at http:

//www-public.it-sudparis.eu/~che_xiao/TSPSIPpOption.html.

We simulate two scenarios for the data traffic: one is the data traffic under normal

condition (called normal for short), which means sufficient bandwidth is provided and

quite few re-transmissions occur; while the other one is under high data traffic congestion

(called high for short), which simulates the condition that numerous users are calling

at the same time, where numerous re-transmissions and packet-losses occur. Several

sets of traces under normal and high conditions have been collected for the following

experiments.

In the following subsections, performance properties collected from RFC 3261 are for-

malized to formulas. They are evaluated through numerous execution traces, and the

testing verdicts {Pass, Con-Fail, Per-Fail, Inconclusive} are provided in the following.

4.1.5.2 Properties and Results

Property 1: For every request there must be a response, each response should

be received within 0.5 s

This property can be used for a monitoring purpose, which reflects the current traffic

latency condition. By using the syntax mentioned in the Section 3, this performance

property consists of a conformance property ‘For every request there must be a response’

2http://www.wireshark.org

http://www-public.it-sudparis.eu/~che_xiao/TSPSIPpOption.html
http://www-public.it-sudparis.eu/~che_xiao/TSPSIPpOption.html
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and a time requirement ‘Response should be received within 0.5 s’, where the conformance

property can be formalized as follows φcon1 :

∀x(request(x) ∧ x.method ! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))
(4.1)

where nonProvisional(x) accepts all non provisional responses (with status ≥ 200) to

requests with method different than ACK, which does not require a response. The

response time for each request is a crucial indicator for performance, and based on the

previous formula, the performance property can be formalized as follows φper1 (let t be

the value of strict time requirement):

∀x(request(x) ∧ x.method ! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x) ∧ withintime(x, y, t)))
(4.2)

where withintime is defined as

withintime(x, y, t)← y.time < x.time+ 0.5s

Initially, the properties have been tested through the normal traces, the results are as

follows.

Trace Messages
φcon1 φper1 Time(s)

#Pass #Fail #Inc. #Pass #Fail #Inc.

1 500 150 0 0 150 0 0 1.468
2 1000 318 0 1 318 0 1 1.714
3 1500 504 0 1 504 0 1 2.335
4 2000 674 0 0 674 0 0 2.919
5 2500 798 0 1 798 0 1 3.576

Table 4.2: Test results for “For every request there must be a response” and“For
every request there must be a response within 0.5 s ” (normal)

Trace Messages
comb(φper1 , φcon1)

#Pass #Con-Fail #Per-Fail #Inc.

1 500 150 0 0 0
2 1000 318 0 0 1
3 1500 504 0 0 1
4 2000 674 0 0 0
5 2500 798 0 0 1

Table 4.3: Final results for “For every request there must be a response within 0.5 s
” (normal)

As expected, most of the results shown in Table 4.2 show only ‘Pass’ verdicts for the

property evaluation. The column “Time” represents the evaluation time of each trace.
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However, as shown in Table 4.3, still three inconclusive verdicts can be observed after the

combination of both conformance and performance results. Thoroughly looking at trace

2, this inconclusive verdict corresponds to the INVITE request message, this message

is at the end of the trace, which could indicate that the client closed the connection

before receiving the corresponding response message. The same phenomenon happens

for trace 3 and 5.

After analyzing the traces under normal condition, we step to test the traces under

high condition, the results after combination are shown in the Figure 4.3. As men-

tioned before, ‘ACK’ requests are considered as irrelevant messages for this property,

and they account for the rest proportion of messages which are not shown in the figure.

Non-positive verdicts (i.e. that are not Pass) can be observed from the results. The

‘Inconclusive’ verdicts indicate the messages can not be determined which are at the

end of the trace, while the ‘Per-Fail ’ verdicts indicate the response messages received

by the SUT but exceed the expected time ‘t=0.5 s’. More crucially, different from no

‘Fail ’ verdict in the previous normal condition, numbers of ‘Per-Fail ’ verdicts can be

observed in the high condition, but no ‘Con-Fail ’ verdict has been found. They indicate

that the traffic is in a high latency situation.
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Figure 4.3: “For every request there must be a response with in t = 0.5s” (high)

Besides, since in SIP, different values of t correspond to different frequencies of re-

transmission of a message, varying the value of t can be used to detect the frequency

of re-transmission of specific messages. As illustrated in Figure 4.4, for each trace,

the distribution map of the response times is depicted explicitly by different colored

bars. These bars not only represent the response times, but also correspond to different

re-transmission times, where t=0.5s denotes no re-transmission, t=1s denotes one re-

transmission and so on, until the maximum timer t=16s denotes five re-transmissions.

Let us have a look at trace 1 (500 packets) for example, the bars illustrate that 61%

tested messages are responded within 0.5s while the rest 39% are responded between

0.5s and 1s.
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Figure 4.4: Pass percentage for different time intervals. (The x-axis represents dif-
ferent traces, the y-axis roughly estimates the percentage of Pass verdicts)

Moreover, from the figure, more re-transmissions can be observed in the latter traces,

which conform to the condition when we collected the traces. Since the traces are

collected at the beginning of the Ad-hoc communications, as time goes on, more traffic

congestion occurs in the environment, which leads to more re-transmissions and larger

latency of the response messages. It can be observed that response time are getting

faster after the trace of 4500 messages, which indicates the traffic condition in Ad-hoc

network is getting better at that period.

Property 2: Session Establishment Duration

This performance property is used for monitoring the time duration of establishing a

session. It is based on the establishment of a session which can be formalized to a

conformance property φcon2 ‘For each INVITE request, there should be a 2xx response

if the session has been successfully established ’, as follows:

∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(response(y, x) ∧ y.statusCode = 200))
(4.3)

and the performance property φper2 “Session Establishment Duration” (with t = 1.5s)

can be expressed as:

∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(response(y, x) ∧ y.statusCode = 200 ∧ withintime(x, y, t)))
(4.4)

Initially, we still use the normal traces to test the properties, the results are as follows.

From the Table 4.4, numbers of non-positive verdicts can be observed. As we pene-

trate deeply into these verdicts with Table 4.5, all the ‘Fail ’ verdicts are caused by the

violation of required time constraint ‘t=1.5 s’, and they are concluded as ‘Per-Fail ’.
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Trace Messages
φcon2 φper2 Time(s)

#Pass #Fail #Inc. #Pass #Fail #Inc.

1 500 60 0 10 60 9 1 1.488
2 1000 109 0 18 109 15 3 3.210
3 1500 139 0 37 139 32 5 6.768
4 2000 180 0 53 181 52 2 10.971
5 2500 267 0 51 260 53 5 14.548

Table 4.4: Test results for “For each INVITE request there should be a 2xx response”
and “For each INVITE request there should be a 2xx response, within 1.5s” (normal)

Trace Messages
comb(φper2 , φcon2)

#Pass #Con-Fail #Per-Fail #Inc.

1 500 60 0 9 1
2 1000 109 0 15 3
3 1500 139 0 32 5
4 2000 180 0 52 2
5 2500 260 0 53 5

Table 4.5: Final results for “For each INVITE request there should be a 2xx response
within 1.5 s” (normal)

However, different from the previous property, we can observe that most of them are

due to the packet-loss during the transmission, only one ‘Per-Fail ’ verdict in trace 4 and

seven ‘Per-Fail ’ verdicts in trace 5 are truly caused by their large latency. Although

it seems that there is no apparent difference between the results returned for φper2 and

comb(φper2 , φcon2), the combination of verdicts provide the availability for further anal-

yses which can help us to have a precise result on other relevant performance properties,

such as packet-loss or average latency, etc. Similarly as the previous property, several

“Inconclusive” verdicts are observed and they are still caused by the same reason. “Un-

fortunately”, still no ‘Con-Fail ’ verdict can be observed under this normal condition.

For drawing further conclusions, we test this property under high conditions. Likewise,

all the requests and responses other than ‘INVITE’ and its response are considered as

irrelevant messages, which account for the rest proportion of total messages. As the

Figure 4.5 shows, many ‘Fail ’ verdicts are returned for the traces. It is mainly due to

the high traffic congestion in the Ad-hoc network environment. It is worthwhile to note

that one ‘Con-Fail ’ verdict is observed in the trace of 1500 messages. This verdict is

caused by an error in the data portion of a response message. When we take a closer

look at the message, the data error is due to an unexpected byte in the data portion.

As we introduced in section 4.1.5.1, it is very likely that this phenomenon is caused by

the impact of impulsive noise on the electronic wave. Besides, the ‘Per-Fail ’ verdicts

are still mostly due to packet-losses, and few are caused by the violation of required

time t = 1.5s. Nevertheless, the variety of non-positive verdicts obtained eventually



Chapter 4. Formal Approach for Performance Testing 63

proves the functionality of our approach. It can precisely detect all kinds of failures as

mentioned in Section 3.
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Figure 4.5: “For each INVITE request, there should be a 2xx response within t =
1.5s” (high)

Property 3: Registration Duration Measurement

This performance property is used for monitoring the time duration of successful reg-

istrations. It is based on a session which begins with ‘REGISTER’ request and ends

with a 200 response, which can be formalized to a conformance property φcon3 ‘For each

successfully registration, it should begin with a REGISTER request and end with a 200

response’, as follows:

∀(request(x) ∧ x.method = ‘REGISTER’

→ ∃y>x(success(y) ∧ responds(y, x))))
(4.5)

and the performance property φper3“Registration Duration should less than t = 1s” can

be expressed as:

∀(request(x) ∧ x.method = ‘REGISTER’

→ ∃y>x(success(y) ∧ responds(y, x) ∧ withintime(x, y, t)))
(4.6)

From the evaluation results of previous properties, it can be concluded that compared

to the normal condition, more diversified results can be observed in the high condition.

Therefore, for this property, we only illustrate the verdicts obtained from the traces in

high condition, as Tables 4.6 and 4.7 illustrate below.

From the Table 4.6, numerous ‘Fail ’ verdicts can be observed in the traces. Moreover,

obvious differences between the obtained ‘Pass’ verdicts in φcon3 and φper3 can be ob-

served. After the combination process, all the “Fail” verdicts are separated into different

sets according to their causes. Due to the high congestion and packet-loss in the network
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Trace Messages
φcon3 φper3 Time(s)

#Pass #Fail #Inc. #Pass #Fail #Inc.

1 500 18 0 66 18 40 26 2.534
2 1000 31 0 149 20 117 43 7.983
3 1500 62 0 201 24 184 55 16.952
4 2000 180 1 219 81 243 75 30.792
5 2500 222 5 373 63 421 116 69.042

Table 4.6: Test results for “For each successfully registration, it should begin with a
REGISTER request and end with a 200 response” and “For each successfully registra-

tion, the duration should be within 1 s” (high)

Trace Messages
comb(φper3 , φcon3)

#Pass #Con-Fail #Per-Fail #Inc.

1 500 18 0 40 26
2 1000 31 0 117 43
3 1500 62 0 184 55
4 2000 81 1 243 75
5 2500 63 5 421 116

Table 4.7: Final results for “For each successfully registration, the duration should
be within 1 s” (high)

environment, numbers of ‘Per-Fail ’ verdicts are returned indicating that lots of registra-

tion duration exceeded the time requirement 1s. This also well explains the differences

between ‘Pass’ verdicts in φcon3 and φper3 . Although some registrations exceeded the

time requirement, they still satisfy the conformance requirement and should be assigned

to ‘Pass’ verdicts in φcon3 . Besides, several ‘Con-Fail ’ verdicts can be observed in trace

4 and 5, they are caused by unexpected bytes because of the same reason mentioned in

property 2. We also expand the experiment by testing continuous traces while varying

the time requirement t, a bar chart of the ‘Pass’ verdicts in different time intervals can

be concluded in Figure 4.6.
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Figure 4.6: Pass percentage for different time intervals. (The x-axis denotes the
different traces, the y-axis roughly represents the percentage of Pass verdicts)

Similarly to property 2, this figure explicitly illustrates the registration performance by

measuring the percentage of ‘Pass’ verdicts in different time intervals. For instance,
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in the trace of 500 messages, all of the registrations are performed within 1s; while in

the trace of 2000 messages, only less than 20% registrations satisfy this condition, the

rest are either in the range [1s, 2s] or [2s, 4s]. The more ‘Pass’ verdicts appear in the

rearward time intervals, which means larger response time of the messages, the worse

registration performance will be.

4.1.5.3 Discussions

In this section, a performance benchmark system for SIP is proposed according to

RFC1242 [65] and RFC2544 [66], and some relevant results are discussed. Instead of

simply measuring the global throughput and latency, they are extended into detailed

measuring indicators: Session Attempt Number / Rate / Successful Rate, Session Es-

tablishment Number / Rate / Duration, Session Packet loss Number / Rate, Session

Packet response Latency, Registration Number / Rate / Duration. Sessions are the ba-

sic testing unit we used here, due to the reason that they are the most crucial units of

communications in SIP.

By using our approach introduced before, these indicators can be formalized to formulas.

These formulas will be tested through the testers. After evaluating each formula φ on

a trace ρ, Np, Ncf , Npf and Nin will be returned which represent the number of ‘Pass’,

‘Con-Fail ’, ‘Per-Fail ’ and ‘Inconclusive’ verdicts respectively. In the testing process,

constituent conformance requirement φcon is used for differentiating non-positive results.

Besides, let ttest be the time used for capturing a trace ρ, which is the time duration

between the first and the last captured messages, where ρ = {m0, ...,mn}. The definition

of these symbols are shown below.

Np(φ) =


∑

[eval(φcon, θ, ρ) = Pass ] if φcon ∈ Rcon]∑
[comb(φper, φcon) = Pass ] if φper ∈ Rper and φcon ∈ Rcon]

Ncf (φ) =


∑

[eval(φcon, θ, ρ) = Fail ] if φcon ∈ Rcon]∑
[comb(φper, φcon) = Con-Fail ] if φper ∈ Rper and φcon ∈ Rcon]

Npf (φ) =
∑

[comb(φper, φcon) = Per-Fail ] if φper ∈ Rper and φcon ∈ Rcon]

Nin(φ) =


∑

[eval(φcon, θ, ρ) = Inconclusive ] if φcon ∈ Rcon]∑
[comb(φper, φcon) = Inconclusive ] if φper ∈ Rper and φcon ∈ Rcon]

ttest = mn.time−m0.time
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Except the formalized conformance and performance requirements mentioned in section

4 (φcon1 , φper1 , φcon2 , φper2 , φcon3 , φper3), the following requirements are also used for

the indicators.

φcon4 =

∀(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

φcon5 =

∀(request(x) ∧ x.method = ‘REGISTER’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

According to the definitions and the formulas above, these indicators can be formally

described as:

• Session Attempt Indicators: Session Attempt Number Np(φcon4) + Nin(φcon4),

Session Attempt Rate (Np(φcon4) + Nin(φcon4)) / ttest, Session Attempt Successful

Rate Np(φcon2) / (Np(φcon4) + Nin(φcon4)).

• Session Establishment Indicators: Session establishment Number Np(φcon2), Ses-

sion establishment RateNp(φcon2) / ttest, Session establishment DurationNp(φper2).

• Session Global Indicators: Session Packet loss Number Nin(φcon1), Session Packet

loss RateNin(φcon1) /Np(φcon1) +Ncf (φcon1) +Nin(φcon1), Session Packet latency

Np(φper1).

• Session Registration Indicators: Registration NumberNp(φcon3), Registration Rate

Np (φcon3) / ttest, Registration Duration Np(φper3).

By using the formalized indicators above, an explicit performance analysis can be given

to the trace being tested, as Figure 4.7 shows. Sampling from the traces of 50,000

messages, we obtained ten sets of 5000 messages for each. These sets have been analyzed

in order to test the functionality and efficiency of our approach. In Figure 4.7(a), the

histogram illustrates the percentages of the successful attempts of each trace, while the

double color curves demonstrate the session attempt numbers and rates (per second).

Then in Figure 4.7(b) and Figure 4.8(a)(b), the histograms display the distribution maps

of time duration/latency of each trace, while the green curves (with cross) demonstrate

the throughput numbers and the red curves (with diamond) represent the rates.

In addition, from Figure 4.7(a), the successful attempt rates of trace 4 and 5 are zero

while the numbers/rates of attempts are not, which denotes that in these two traces,

lots of session attempt requests are sent but none of them is responded with ‘200’ suc-

cess response. The ‘0’ session establishment number of trace 4 and 5 in Figure 4.7(b)

also proves this phenomenon. Meanwhile, in Figure 4.8(a)(b), the registration requests



Chapter 4. Formal Approach for Performance Testing 67

Figure 4.7: Performance Indicators (1)
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are responded quickly and not influenced. Which can be concluded that the low per-

formance of session establishment in trace 4 and 5 is due to this service of the server

reach to the maximum load, rather than the massive packet loss during the transmission.

Note that the results of each trace are obtained in a brief time. The aggregate results

illustrated in the figures show that our approach is suitable for complex performance

testing environment with numerous specific performance requirements.

Future works

As the tables shown in the experiments, all the results have been obtained in short times

(evaluation time of a complex property 3 on 2500 messages is less than 70s). However,

in some cases, if the complexity of a formula increases, the result for a trace which

contains numerous messages will be obtained in hours. Let us take the property ‘Every

2xx response for INVITE request must be responded with an ACK in 16s’ for example,

which can be formalized by the formula:

∀x(request(x) ∧ x.method = INVITE→ ∃y>x(responds(y, x) ∧ success(y))

→ ∃z>y(ackResponse(z, x, y) ∧ withintime(z, y, t)))
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Figure 4.8: Performance Indicators (2)
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(b) Session Registration Number/Rate/Duration

The results for testing this formula are shown in Table 4.8. As the table shows, the

execution time will increase to 1 hours when analyzing 64000 messages. Although we

almost managed to reduce 40% of the evaluation time compared to our previous con-

formance testing algorithm, still some improvements can be done and these will be the

issues we will working on in the future. When we test the performance of protocols, lots

Trace No.of messages Pass Con-Fail Per-Fail Inconclusive Time

1 500 60 0 0 0 1.146s
2 1000 109 0 0 0 2.199s
3 2000 183 0 0 0 7.083s
4 4000 405 0 0 0 20.264s
5 8000 784 0 2 1 78.366s
6 16000 1459 0 2 0 313.023s
7 32000 2904 0 4 1 1342.652s
8 64000 5864 0 12 0 1.257h
9 128000 11555 0 35 1 5.17h
10 256000 23154 0 184 0 22.43h
11 450000 43205 0 255 0 85.53h
12 512000 ? ? ? ? ?

Table 4.8: “Every 2xx response for INVITE request must be responded with an
ACK”
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of P.Os are implemented on each IUT in the networks. It provides a perfect environment

for performing distributed testing. Then, how to properly synchronize different testers

is the next aspect we focus on. Also, except SIP, we should test other protocols to prove

the universality of our approach.

4.2 Distributed Performance Testing

Aiming to solve the problems raised from previous section, we introduce a distributed

performance testing method in this section. And the experiments results on Extensible

Message Presence Protocol are introduced afterwards.

4.2.1 Distributed Testing Framework

For the aim of distributively testing conformance and performance requirements, we

introduce a passive distributed testing architecture. Based on the standardized active

testing architectures [4] (master-slave framework), we adapted it with several P.Os.

Figure 4.9: Distributed testing architecture

As Figure 4.9 depicts, the framework consists of one global monitor and several sub

testers. The global monitor is used as a server tester, a console to control sub testers

and a terminal to reflect real-time results. The sub testers are linked to the nodes to

be tested, in order to capture and test the transporting messages. Once the traces are

captured, they will be tested through the predefined requirement formulas, and the test
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results will be sent back to the global monitor. On the other side, the global monitor is

attached to the server to be tested, aiming at collecting and testing the traces from the

server and receiving statistic results from sub testers. The collected aggregate results are

analyzed and displayed on the global monitor. It can reflects the real-time conformance

and performance condition of the protocol during testing procedures.

Figure 4.10: Sequence Diagram between Testers

Initially, as the Figure 4.10 shows, the global monitor sends initial bindings (formalized

requirement formulas, testing parameters) to the sub testers. When the testers receive

these information, they initialize capturing packets and save the traces to readable files

during each time slot. Once the readable files are generated, the testers will test the

traces through the predefined requirements formulas and send the results back to the

global monitor.

The analyzer mentioned here is a part of the Global Monitor, for precisely describing the

testing procedure, we illustrate it separately. This testing procedure will keep running

until the global monitor has to stop or pause a tester, it will send a Stop command to

the tester needed to be stopped.

4.2.2 Synchronization

As we introduced before, synchronization in the distributed testing environment is a cru-

cial problem to be solved. Several synchronization methods are provided in distributed

environment [68]. Network Time Protocol (NTP) [69] is the current standard for syn-

chronizing clocks on the Internet. Applying NTP, time T k
ij is stamped on packet k by
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the sender i upon transmission to node j. The receiver j stamps its local time Rk
ij upon

receiving a packet, and time T k
ji upon re-transmitting the packet back to source. The

source i stamps its local time Rk
ji upon receiving the packet back. Each packet k will

eventually have four time stamps on it T k
ij , R

k
ij , T

k
ji and Rk

ji. The computed round-trip

delay for packet k is RTT k
ij = (Rk

ij − T k
ij) + (Rk

ji − T k
ji). Node i estimates its own clock

offset relative to node j’s clock as (1/2)[(Rk
ij − T k

ij) + (Rk
ji − T k

ji)], and the transmission

process is shown in Figure 4.11.

Figure 4.11: Synchronization

NTP is designed for synchronizing a set of entities in the networks. In our framework,

timers are used for all the testers. However, the non-synchronization between these

timers are ineluctable, especially the non-synchronization between the global monitor

timer and sub tester timers would affect the results, when real-time performance are

analyzed under the influence of network events. Accordingly, the global monitor and

sub testers need to be synchronized, and synchronizations between neighbor testers are

not required. For satisfying the needs, slight modifications have been made to the

transmission process. Rather than exchanging the four time stamps in NTP, two time

duration are computed and exchanged in our approach. Initially, we will use an existing

successful transaction from the captured traces, since the messages are already tagged

with time stamps when captured by the monitors, the redundant tag actions can be

omitted.

As illustrated in the Figure 4.11, the Ts represents the service time of the server (time

for reacting when receiving a message), and T1 represents the time used for receiving a

response in the client side. Benefiting from capturing traces from both Server and Client

sides, the sum (Rk
ij −T k

ij) + (Rk
ji−T k

ji) can be transformed to (Rk
ij −T k

ji)− (T k
ij −Rk

ji) =

T1−Ts. Although relative timers are still used for each device, they are merely used for

computing the time duration.

After capturing the traces, two sets of messages are generated by the global monitor and

sub tester:

Setserver={Reqi,Resi,...,Reqi+n, Resi+n}
Setclient={Reqj ,Resj ,...,Reqj+m,Resj+m | j ≤ i, j +m ≤ i+ n}
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As we mentioned before, a successful transaction (Reqk, Resk| k ≤ j+m) will be chosen

from the Setclient for the synchronization. The time duration T1 of the transaction can

be easily computed and sent to the global monitor with the testing results. Once the

chosen transaction sequence has been found in the Setserver, the time duration Ts can

be obtained, and the time offset (1/2)(T1 − Ts) between the global monitor and a sub

tester can be handled.

Algorithm 3: Algorithm for Testers
Input: Command
Output: Statistic Logs

1 Listening Port n;
2 switch Receive do
3 case Start & Initial bindings:
4 Set Initial bindings to formulas, T imeSlot;
5 Capture(), Test();
6 Send log(i) to Global Monitor;
7 //Send log file to the Global Monitor;
8 Pending;

9 endsw
10 case Continue:
11 Capture(), Test();
12 Send log(i) to Global Monitor;
13 Pending;

14 endsw
15 case Stop:
16 return;
17 endsw
18 case others:
19 Send UnknownError to Global Monitor;
20 Pending;

21 endsw

22 endsw
23 Procedure Capture(timeslot)
24 for (timer=0;timer≤time maximum;timer++) do
25 Listening Port (5060) & Port (5061);
26 //Capture packets;
27 if timer%timeslot==0 then
28 Buffer to Tester(i).xml;
29 //Store the packets in testable formats;

30 end

31 end
32 Procedure Test(formulas)
33 for (j=0;j≤max;j++) do
34 Test formula(j) through Tester(i).xml;
35 //Test the predefined requirement formulas;
36 Record results to log(i);
37 //Save the results to log file;
38 Record first transaction to log(i);
39 //Use the first transaction for synchronization;

40 end
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4.2.3 Testing Algorithm

The distributed testing algorithms are described in Algorithm 3 and 4. Algorithm 3

describes the behaviors of sub testers when receiving different commands. When the

tester receives the initial bindings and a ”Start” command, firstly it initializes the

testing parameters (line 4). Then it starts capturing the traces and tests them (as

mentioned in previous sections) when traces are translated to readable xml files (lines 23-

40). Finally the results are sent back to the global monitor with the chosen transaction

for synchronization.

Algorithm 4: Algorithm for Global Monitor
Input: Log files
Output: Performance Graphs

1 Capture(), Test();
2 Display real-time conformance and performance condition;
3 for (i=0;i<tester-number;i++) do
4 Send Initial bindings to Tester[i];
5 //Send initial bindings to all sub testers

6 end
7 switch receive do
8 case log:
9 if command==Continue then

10 Send Continue to Tester[i];
11 end
12 else
13 Send Stop to Tester[i];
14 end
15 Synchronize(Log[i].transaction);
16 Analyze(Log[i].results);
17 Display real-time conformance and performance condition;

18 endsw
19 case others:
20 Send Continue to Tester;
21 endsw

22 endsw
23 Procedure Synchronize(Log[i].transaction)
24 for (a=0; a≤Message-Number, quit!=1; a++) do
25 find Client.Request(k) in Server.Request(a);
26 if (exists==True) then
27 for (b=a; b≤Message-Number, quit!=1; b++) do
28 find Client.Response(k) in Server.Response(b);
29 if (exists==True) then
30 Calculate Ts;

31 Handle timer deviation T1−Ts
2

;
32 quit=1;

33 end
34 else
35 Return transaction error;
36 quit=1;

37 end

38 end

39 end

40 end
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The Algorithm 4 sketches the global monitor behaviors and the synchronization function.

Initially, the monitor starts to capture and test as the other testers do. Meanwhile, it

sends initial bindings to all the sub testers and waits for their responses (lines 1-5).

Once the server receives the response, it reacts according to the content of the response,

and the synchronization is made during this time (lines 20-37). In the synchronize()

procedure, the monitor finds the chosen transaction in its captured traces, and rectifies

the time offset (1/2)(T1 − Ts).

4.2.4 Experiments

Since Internet of Things (IoT) can provide complex wireless communication environ-

ment, it becomes a perfect platform to verify the functionality of our approach. In this

section, we will introduce the experimental results when our approach are implemented

into an IoT environment.

4.2.4.1 Internet of Things
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Figure 4.12: The evolution of Internet of Things from distributed computing, mobile
computing and ubiquitous computing

The Internet of Things (IoT) refers to a networked interconnection of daily objects, this

requires the objects not only for being interacted, but also for cooperating with each

other at anytime or in anyplace [70] [71]. It opens the door of Internet to the physical

world such that objects can be managed remotely and act as physical access points to

Internet services [72]. IoT transforms the manner of daily activities by real-time tracking
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physical objects. Correspondingly, it opens up massive opportunities for economy and

individuals, accompanying immense technical challenges and risks. The evolution of IoT

from distributed computing, mobile computing and ubiquitous computing is shown in

Figure 4.12.

IoT is established on the basis of proliferation of wireless sensor network, MobiComp

(Mobile Computing), UbiComp (Ubiquitous Computing) and information technologies [73].

Thanks to their diminishing size, declining price and falling energy consumption, sensors

are being increasingly integrated into everyday objects. Thus, IoT is applicable in a wide

spectrum of fields. To get a heightened awareness of real-time events, it deploys sen-

sors in infrastructures [74]. For achieving an enhanced situational awareness, it employs

Radio Frequency IDentification (RFID) to capture object contexts (e.g., location) [75].

For guaranteeing safe driving and green travel, it uses motes to track transportation

systems [76]. For getting user preferences, IoT takes advantage of a recommendation

service in recommend systems (i.e., [77] a kind of virtual sensors). As the trend goes,

we foresee that IoT eventually links the majority of objects into the virtual space and

allows objects to interact in the same place. In this case, the communication protocols

used in the IoT will be a crucial part for testing.

In the recent years, the Extensible Messaging and Presence Protocol (XMPP) [78] has

gained more attention as communication protocol in the Internet of Things, which is

a standardized protocol by the IETF and well established in the Internet. XMPP is

available for common used programming languages and device platforms. Several studies

have investigated the potentialities of applying XMPP in IoT [79] [80] [81]. The authors

of [81] introduce a service platform based on the XMPP protocol for the development

and provision of services for pervasive infrastructures (Figure 4.13), their work perfectly

illustrates the usages of XMPP in IoT.

Figure 4.13: Architecture of XMPP Service in Internet of things [81]
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XMPP is used for communication in this system. All entities including the services are

XMPP clients which can be identified by a Jabber Identifier (JID) in a system-wide

unique manner. XMPP servers are usually necessary to mediate the communication

between XMPP clients. With the tendency that the XMPP is more and more widely

used in many aspects of IoT, the problem of formally testing it in a wireless environment

is coming out in the wash.

4.2.4.2 Extensible Messaging and Presence Protocol

The XMPP is an application profile of the Extensible Mark-up Language that enables the

near-real-time exchange of structured yet extensible data. The purpose of XMPP is to

enable the exchange of relatively small pieces of structured data (called “XML stanzas”)

over a network between any two (or more) entities. XMPP is typically implemented using

a distributed client-server architecture, wherein a client needs to connect to a server in

order to gain access to the network and thus be allowed to exchange XML stanzas with

other entities (which can be associated with other servers). The process whereby a client

connects to a server, exchanges XML stanzas, and ends the connection is:

• Determine the IP address and port at which to connect, typically based on reso-

lution of a fully qualified domain name

• Open a Transmission Control Protocol [TCP] connection

• Open an XML stream over TCP

• Preferably negotiate Transport Layer Security [TLS] for channel encryption

• Authenticate using a Simple Authentication and Security Layer [SASL] mechanism

• Bind a resource to the stream

• Exchange an unbounded number of XML stanzas with other entities on the network

• Close the XML stream

• Close the TCP connection

The communication process is shown in Figure 4.14. In the process, two fundamental

concepts make possible the rapid, asynchronous exchange of relatively small payloads of

structured information between XMPP entities: XML streams and XML stanzas.

An XML stream is a container for the exchange of XML elements between any two

entities over a network. The start of an XML stream is denoted unambiguously by an
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Figure 4.14: Connection process of a XMPP client to a XMPP server

opening “stream header” (i.e., an XML <stream> tag with appropriate attributes and

namespace declarations), while the end of the XML stream is denoted unambiguously by

a closing XML </stream> tag. During the life of the stream, the entity that initiated it

can send an unbounded number of XML elements over the stream, either elements used

to negotiate the stream (e.g., to complete TLS negotiation or SASL negotiation) or XML

stanzas. The “initial stream” is negotiated from the initiating entity (typically a client

or server) to the receiving entity (typically a server), and can be seen as corresponding

to the initiating entity’s “connection to” or “session with” the receiving entity. The

initial stream enables unidirectional communication from the initiating entity to the

receiving entity; in order to enable exchanges of stanzas from the receiving entity to the

initiating entity, the receiving entity MUST negotiate a stream in the opposite direction

(the ”response stream”).

The attributes of the root stream element are defined in the following:

• From: The ‘from’ attribute specifies an XMPP identity of the entity sending the

stream element. For initial stream headers in client-to-server communication, the

’from’ attribute is the XMPP identity of the principal controlling the client, i.e.,

a JID of the form < localpart@domainpart >.

• To: For initial stream headers in both client-to-server and server-to-server com-

munication, the initiating entity MUST include the ’to’ attribute and MUST set
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its value to a domainpart that the initiating entity knows or expects the receiving

entity to service.

• id: The ‘id’ attribute specifies a unique identifier for the stream, called a “stream

ID”. The stream ID MUST be generated by the receiving entity when it sends

a response stream header and MUST BE unique within the receiving application

(normally a server).

• xml:lang: The ‘xml:lang’ attribute specifies an entity’s preferred or default lan-

guage for any human-readable XML character data to be sent over the stream.

• version: The inclusion of the version attribute set to a value of at least “1.0” sig-

nals support for the stream-related protocols defined in this specification, including

TLS negotiation, SASL negotiation, stream features, and stream errors.

An XML stanza is the basic unit of meaning in XMPP. A stanza is a first-level element

whose element name is “message”, “presence”, or “iq” and whose qualifying namespace is

‘jabber:client’ or ‘jabber:server’. By contrast, a first-level element qualified by any other

namespace is not an XML stanza (stream errors, stream features, TLS-related elements,

SASL-related elements, etc.), nor is a <message/>, <presence/>, or <iq/> element

that is qualified by the ’jabber:client’ or ’jabber:server’ namespace but that occurs at a

depth other than one (e.g., a<message/> element contained within an extension element

for reporting purposes), nor is a <message/>, <presence/>, or <iq/> element that is

qualified by a namespace other than ‘jabber:client’ or ‘jabber:server’. An XML stanza

typically contains one or more child elements (with accompanying attributes, elements,

and XML character data) as necessary in order to convey the desired information, which

MAY be qualified by any XML namespace.

The five common attributes of the XML message, presence, and iq stanzas are defined

in the following:

• To: The ‘to’ attribute specifies the JID of the intended recipient for the stanza.

• From: The ’from’ attribute specifies the JID of the sender.

• id: The ’id’ attribute is used by the originating entity to track any response or

error stanza that it might receive in relation to the generated stanza from another

entity.

• type: The ‘type’ attribute specifies the purpose or context of the message, pres-

ence, or iq stanza. The particular allowable values for the ‘type’ attribute vary

depending on whether the stanza is a message, presence, or iq stanza.
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• xml:lang: A stanza SHOULD possess an ‘xml:lang’ attribute if the stanza con-

tains XML character data that is intended to be presented to a human user. The

value of the ‘xml:lang’ attribute specifies the default language of any such human-

readable XML character data.

An example of a presence stanza m from Romeo to Juliet using the introduced attributes

is shown below.

m =< presence from = ‘romeo@example.net/orchard′

to = ‘juliet@im.example.com′

xml : lang = ‘en′ >

< show > dnd < /show >

< status > WooingJuliet < /status >

< /presence >

4.2.4.3 Testing framework and Tsung

For our experiments, XMPP traces were obtained from Tsung3. Tsung is a distributed

load testing tool which is protocol independent and can be used to stress Hypertext

Transfer Protocol (HTTP), WebDAV, Simple Object Access Protocol (SOAP), Post-

greSQL, MySQL, Lightweight Directory Access Protocol (LDAP), and XMPP servers.

It has the ability to simulate a huge number of simultaneous users from a single ma-

chine. When used on cluster, impressive load can be generated on a server with a modest

cluster, easy to set up and maintain.

The implementation has been performed using Java and is composed of two main mod-

ules, as shown in Figure 4.15. The trace processing module receives the raw traces

Figure 4.15: Our architecture for our testing framework.

3http://tsung.erlang-projects.org/
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collected from the network exchange and converts the messages from the input format

into a list of messages compatible with the clause definitions. Although the module

can be adapted to multiple input formats, in our experiments, the inputs are XML files

obtained from Tsung traces.

The tester module takes the resulting trace from the trace evaluation along with the

formula to test, and it returns a set of satisfaction results for the formula in the trace, as

well as the variable bindings and the messages involved in the result. The results from

the experiments are presented in the following sections.

4.2.4.4 Environments

In the experiments, we designed a simulation on wireless ad hoc architecture for test-

ing. For ensuring the accuracy and authenticity of the results, we construct a wireless

environment using real laptops. Each laptop is implemented with a XMPP server and

several XMPP clients. This environment can be used to test the correctness, robust-

ness, and reliability of XMPP protocol under tremendous number of messages. The

observation points being on the XMPP server and clients are shown in Figure 4.16. The

configuration of laptops are CPU- Intel Core i5-2520M 2.50 GHz, 4GB DDR3; CPU-

AMD Atholon 64 X2 5200+, 2GB DDR2; CPU- Intel Core2 Duo T6500 2.10 GHz, 2GB

DDR2; and CPU- Intel Core2 Duo T6500 2.10 GHz, 4GB DDR2.

Figure 4.16: XMPP testing architecture.
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4.2.4.5 Properties and Results

To formally design the properties to be passively tested, we studied the RFC 6120 of

XMPP [78]. We designed several properties for the experiments; for the evaluation of

each property, we used a set of traces collected from P.O (Client1) containing {500,

1000, 2000, ... , 64,000, 128,000} packets to get exhaustive results.

Property 1: For every Roster-GET request there must be a response

This conformance property can be used for a monitoring purpose. Due to the issues

related to testing on finite traces for finite executions, a fail results can never be given

for this context. However, inconclusive results can be provided and conclusions may be

drawn from further analysis of the results. The property evaluated is as follows:

∀x(request(x) ∧ x.iq.type = ‘GET’→ ∃y>x(responds(y, x)))

where responds(y, x) only accepts the responses to GET requests. To verify the effi-

ciency of our approach, we first provide the testing results from a single P.O Client1, as

shown in Table 4.9.

As expected, most traces show only pass results for the property evaluation, but incon-

clusive results can also be observed. After analyzing trace 2, the inconclusive verdict is

found caused by a missing response message to GET request; this GET message is at

the end of the trace, which could indicate that the client closed the connection before

receiving the response message. The same phenomenon can be observed on the trace

6. Besides, other inconclusive verdicts in traces 4, 8, and 9 are caused by the real lost

responses to the GET requests in the transportation.

Trace Number of messages Pass Fail Inconclusive Time (s)
1 500 25 0 0 0.842
2 1000 43 0 1 1.434
3 2000 90 0 0 2.851
4 4000 167 0 5 5.940
5 8000 343 0 0 10.219
6 16,000 679 0 1 20.160
7 32,000 1328 0 0 39.906
8 64,000 2175 0 7 72.489
9 128,000 4031 0 12 157.451

Table 4.9: “For every Roster-GET request, there must be a response.”

Property 2: No ”Presence” message can be received without a previous

subscription
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Here, a more complex conformance property is tested, which can verify that only users

successfully subscribed with the XMPP Server can receive the “Presence” message. It

is defined using our syntax as follows:

∀x(presence(x)→ ∃y<x(∃z>ysubscription(y, z)))

where presence(x) and subscription(y, z) are defined as

presence(x)← x.presence! =‘Null’

subscription(y, z)← request(y) ∧ responds(z, y)

∧y.presence.type = ‘subscribe’

∧z.presence.type = ‘subscribed’

Still, we use the same trace collected from Client1 for testing this property. As shown in

Table 4.10, it can be shown that this property and the framework allow to detect when

the tested property holds on the trace. From the results in Table 4.10, we can observe

Trace Number of messages Pass Fail Inconclusive Time
1 500 82 0 0 18.960 s
2 1000 135 0 0 51.841 s
3 2000 210 0 1 128.364 s
4 4000 392 0 0 402.215 s
5 8000 623 0 0 1179.275 s
6 16,000 1145 0 0 1.032 h
7 32,000 2176 0 2 3.147 h
8 64,000 4081 0 1 6.078 h
9 128,000 8135 0 2 12.984 h

Table 4.10: No ”Presence” message can be received without a previous subscription.

that most of the traces satisfy this property. The inconclusive verdicts in traces 3, 7, 8

and 9 are still caused by the same reasons mentioned in the first conformance property.

It can be seen that the evaluation of this property is much more time consuming than

the one in Table 4.9. This is expected given the complexity of the evaluation (n2 for

property 1 and n3 for the current one).

Property 3: For every request, the response should be received within 8 s

After testing two functional conformance requirements, a nonfunctional performance

property is tested which can be used for reflecting the current packet-delay condition.

The property is designed as follows:

∀x(request(x)→ ∃y>x(responds(y, x) ∧ withintime(x, y, 8s)))
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where withintime(x, y, 8s) will find out the requests responded over the 8s limitation.

However, this performance requirement φper6 is based on the conformance requirement

φcon6-“For every request, the response should be received,” and the evaluation results

for (comb(φper6 , φcon6)) are shown in Table 4.11.

φcon6 comb(φper6 , φcon6)
Trace Number of messages Pass Fail Incon Pass Con-Fail Per-Fail Incon Time (s)

1 500 162 0 7 154 4 8 3 0.745
2 1000 314 0 16 293 13 22 2 1.213
3 2000 671 0 6 658 2 15 2 2.472
4 4000 1189 0 24 1163 10 37 3 4.914
5 8000 2546 0 10 2524 1 29 2 11.462
6 16,000 4397 0 18 4356 5 52 5 21.650
7 32,000 8316 0 32 8248 18 79 3 40.564
8 64,000 15464 0 51 15378 10 125 2 85.721
9 128,000 31981 0 87 31857 22 187 2 173.163

Table 4.11: For every request, the response should be received within 8 s.

From the results in Table 4.11, the formalized performance requirement can be per-

fectly tested. Due to the help of simultaneously testing the constituent conformance

requirement φcon6 , the negative verdicts can be differentiated. The messages exceeded

time limitations are reported as Per-Fail in comb(φper6 , φcon6), while the messages are

reported as Con-Fail due to the reason of detecting unexpected bytes in data portions.

These unexpected bytes are caused by the same reason when testing SIP messages: the

impact of impulsive noise on the electronic wave. Also, the reported inconclusive ver-

dicts for comb(φper6 , φcon6) indicate that the messages cannot be checked since they are

at the end of traces.

Global monitor

Apart from testing a single client, as we described in the previous subsections, each client

will be tested through predefined properties. All the results returned from different P.Os

(Client1, Client2, Client3 and Client4) will be aggregated to the global monitor for a

global view of the testing information.

Figure 4.17-4.19 illustrate an example of the aggregated testing information from four

testers. Charts 4.17 and 4.18 represent the percentages of ‘Pass’ verdicts on properties

“Each Request must be responded with a response” and “For each Request, the response

should be received within 8 s,” respectively. From these two figures, we can observe the

‘Pass’ rate of each client for the two properties. Figure 4.19 illustrates the results of

a performance indicator “Number of Requests per second”. From this figure, we can

observe the performances of server and clients at the same time, the information returned

from global server and sub testers are illustrated in the same graph. In this way, the
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current conformance and performance requirement conditions can be intuitively reflected

to the users.
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Figure 4.17: Testing information on global monitor: “Each Request must be re-
sponded with a response.”

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

90

100

Time (s)

E
a

ch
 r

e
q

u
e

st
 m

u
st

 b
e

 r
e

sp
o

n
d

e
d

 w
it

h
in

 8
 s

 (
%

)

 

 

Tester4

Tester3

Tester2

Tester1

Figure 4.18: Testing information on global monitor: “For each Request, the response
should be received within 8 s.”
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Figure 4.19: Testing information on global monitor: Number of Requests per second.
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4.2.4.6 Discussions

As shown in the experiments, the results from testing several properties on large traces

have been obtained with success. We solved the problem of synchronization and we

successfully performed our approach on another protocol XMPP. The functionality and

flexibility of our approach are shown.

Consequently, building a standardized performance testing benchmark system for pro-

tocols would be the work we will focus on in the future. In that case, the efficiency and

processing capacity of the system when massive sub testers are performed would be the

crucial point to handle, leading to an adaptation of our algorithms to more complex

situations.

Currently, our research is based on collecting traces from the implemented frameworks,

in other words, we are performing an off-line testing process. For satisfying the increasing

need of run-time monitoring and testing process, a good way for practicing our approach

would be to put it online.

4.2.5 Conclusion

In this chapter, we presented a passive performance testing approach for communicating

protocols based on the formal specification of the time related requirements. We detailed

on the modified syntax and semantics of formulas for satisfying the needs in formalizing

performance requirements. Also for solving the indeterminacy problems existed in non-

positive verdicts, we introduce a four-valued semantics {‘Pass’, ‘Con-Fail ’, ‘Per-Fail ’,

‘Inconclusive’} in our formalism. Then we explained our evaluating algorithm and the

preliminary experiments results. The results proved the functionality and flexibility of

our approach, and this preliminary work is published in [82] and [83]. Besides, for solving

the distributed testing issues, we proposed a distributed passive testing framework, and

we implemented and tested it through XMPP properties in IoT environments. The

results from testing several properties on large traces have been obtained with success.

This following work is published in [84] and [85].



Chapter 5

Online Testing Approach

“What one man can invent, another can discover.”

– Arthur Conan Doyle (1859 – 1930)

As the question raised in the previous chapter, online testing approaches are crucial in

complex systems. By that way, testing a protocol at run-time may be performed during

a normal use of the system without disturbing the process. The traces are observed

and analyzed on-the-fly to provide test verdicts and no trace sets should be studied a

posteriori to the testing process. In this chapter, we describe the architecture and testing

process of our approach for online testing. We also explain the new definitions of online

testing verdicts into details.

5.1 Architecture of the approach

The architecture of our online testing approach is illustrated in Figure 5.1. In our ap-

proach, the Horn logic [56] is still used for formally expressing properties as formulas. A

syntax tree generated from the formulas is used for filtering incoming traces and opti-

mizing evaluation processes, in order to reduce the cost of resources. For the evaluation

part, we use the SLD-resolution algorithm for evaluating formulas.

5.2 Testing Process

As shown in Figure 5.1, the testing process consists of eight parts: Formalization, Con-

struction, Capturing, Generating Filters/Setup, Filtering, Transfer/Buffering, Load No-

tification and Evaluation. We describe these processes in the following.

86
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Figure 5.1: Architecture of our online testing approach

Formalization: Initially, informal protocol requirements are formalized using the

syntax and semantics mentioned in previous sections. Then the verdicts {‘Pass’, ‘Con-

Fail ’, ‘Per-Fail ’, ‘Time-Fail ’, ‘Inconclusive’, ‘Data-Inc’} are provided to the interpre-

tation of obtained formulas on real protocol execution traces. However, different from

offline testing, definite verdicts should be immediately returned in online testing process.

This indicates that only ‘Pass’, ‘Con-Fail ’, ‘Per-Fail ’ and ‘Time-Fail ’ should be emit-

ted in the final report, and indefinite verdicts ‘Data-Inc’ and ‘Inconclusive’ will be used

as temporary unknown status, but finally must be transformed to one of the definite

verdicts at the end of the testing process.

Construction: From formalized formulas, a syntax tree is constructed for further

testing processes. In this process, each formula representing a requirement will be trans-

formed to an Abstract Syntax Tree (AST) using the TREEGEN algorithm [86]. The

standard BNF representation of each formula is the input to construct an AST. An

abstract syntax tree example for formula

∀x(request(x) ∧ x.method = ‘INVITE’→ ∃y>x(success(y) ∧ responds(y, x)))

(representing the requirement “Every INVITE request must be responded with a 200

response”) is shown in Figure 5.2.
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Figure 5.2: An example of an abstract syntax tree

All the generated ASTs are finally combined to a syntax tree using a fast merging

algorithm [87], as shown in Figure 5.3. The syntax tree will be transferred to the tester

as requirements and will be used to filter the captured traces.

Capturing: The monitor consecutively captures traces of the protocol to be tested

from points of observations (P.Os) of the IUT, until the testing process finishes. When

messages are captured, they are tagged with a time-stamp tm in order to test the prop-

erties with time constraints and to provide verdicts on the performance requirements of

the IUT.

Generating Filters and Setup: Once the syntax tree is constructed, it will be

applied to captured traces for playing the role of a filter. Meanwhile, the tree will also

be sent to the tester with the definition of verdicts. According to different conditions,

verdicts are defined as below:

• PASS: The trace satisfies the requirements.

• CON-FAIL: The trace does not satisfy the conformance requirements. Different

from our approach in off-line testing, the Con-Fail verdict here is only used to

report violation of data portion requirements.
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Figure 5.3: The process of a syntax tree generated from formulas

• PER-FAIL: The trace does not satisfy the performance requirements. The same

as in off-line testing, the Per-Fail is still used to report violation of performance

requirements.

• TIME-FAIL: The target message cannot be observed within the maximum time

limitation. Since we are working on online testing, a timeout is used to stop

searching target message in order to provide the real-time status. The timeout

value should be the maximum response time written in the protocol standard. If

we cannot observe the target message within the timeout time, then a Time-Fail

verdict will be assigned to this property. It has to be noticed that this verdict

is only provided when no time constraint is required in the requirement. If any

time constraint is required, the violation of this requirement will be concluded as

Per-Fail, not as a Time-Fail verdict.

• INCONCLUSIVE: Uncertain status of the properties. Different from offline test-

ing, this verdict will not appear in the final results. It only exists at the beginning

of the test or when the test is paused, in order to describe the indeterminate state

of the properties (e.g. a property that requires a special occurrence on the protocol

that did not occur yet).
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• DATA-INC (Data Inconclusive): In the testing process, some properties may be

evaluated through traces containing only control portion (there is no data portion

or the latter case mentioned in Step ‘Transferring’). If any property requires for

testing the data portion, Data-Inc verdicts will be assigned to the property, due

to the fact that no data portion can be tested.

However, these Data-Inc verdicts will be eventually updated to Pass or Fail based

on the data (coming from complete traces) analyzed on the tested properties. Cur-

rently we are using worst-case solution (all concluded as Fail verdicts). It will not

affect the overall results, since Data-Inc verdicts only represent a tiny proportion

(less than 0.1%) of the whole traces in our experiments. However, expecting even-

tual contingencies, we plan to apply a support vector machine (SVM) approach [88]

in the future.

Filtering: The incoming captured traces will go through the filtering module, and

messages in the traces are filtered into different sets. As shown in Figure 5.4, the unnec-

essary messages irrelevant to any of the requirements are filtered into the “Unknown”

set, and they will not go through the testing process. Finally, traces will be filtered to

multiple optimized streams. This step will obviously reduce the processing time, since

futile comparisons with irrelevant messages are omitted.

Figure 5.4: Example of Filtered messages

Transferring: The filtered traces are transferred (6a) to the tester when the tester

is capable for testing. If the tester priority has to be decreased (e.g. the CPU and RAM

must be used for another task on this computer of the end-user), a ”load notification”

(7) is provided to the monitor in order to transfer/store incoming traces. Based on the

message format of the protocols to be tested, different buffering methods will be applied.

• If in the message format, the size of its header is larger than its body, as shown in

Figure 5.5. Then the whole message will be buffered in the temporary storage.
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Figure 5.5: Example of a header larger than body

• On the contrary, if the size of its header is equal or less than its body, as shown

in Figure 5.6, and the requirements have no specific needs on the data portion,

then if necessary only the control portion of the packets are buffered (6b) in the

temporary storage. Since not all the protocol requirements have specific needs on

the data portion, only buffering the control portion will save a lot of memory space

when dealing with millions of messages. Also it is shown in our experiments, these

ignored data portions will not influence the general information we get.

Figure 5.6: Example of a header shorter than body

When the tester is available (notification obtained), the stored traces are retransferred

(6c) to the tester. In the latter case mentioned above, only the control portion of packets

are provided. In both cases, the continuity of traces is ensured, since no packet will be

dropped in any condition. If the protocol requirement has specific needs on the data

portion, then the new verdict Data-Inc can be given and will be eventually updated

to final verdicts by future analysis with the entire traces (the tester is indeed available

again).

Load Notification: When the tester reaches its limit regarding the amount of data

processable or is given a lower priority (e.g. to discharge the CPU / RAM), it sends a

”Load Notification Y ” to pause incoming filtered traces and store them in the temporary

storage. When the tester is available back, a ”Load Notification N” to release stored

traces and to pursue incoming packets is sent. A brief description of processes 6 and 7

is shown in Figure 5.7.

As the figure illustrates, when captured traces from the IUT are transferred to the

tester buffer, a checking overflow function will be called. If the buffer already reached to

its maximum capacity, it will notify the IUT to redirect incoming traces to temporary
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Figure 5.7: Process of buffering and notification

storage in order to avoid the overflow. On the contrary, if the buffer is in a stable

condition, it will send the available notification N to the temporary storage for releasing

stored messages and to the IUT for returning back to normal transport process.

Evaluation: The tester checks whether the incoming traces satisfy the formalized

requirements, and provides the final verdicts Pass, Con-Fail, Per-Fail or Time-Fail and

temporary verdicts Inconclusive or Data-Inc.

5.3 Testing algorithm

The online testing algorithm for a tester is described in the Algorithm 5. It describes

the behaviors of an online tester.

Firstly, the tester will capture packets from the predefined interface by using libpcap1,

and report the live condition by using thread init (report live status). Then the pro-

gram will continue with the main thread, and tag time stamps to all the captured packets

at the same time (Line 1-3). The last observed packet time is used for controlling pack-

age timeouts.

1http://www.tcpdump.org/
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Algorithm 5: Algorithm of online tester
Input: open live capture on interface(INTERFACE NAME) //Using libpcap
Output: property verdicts report

1 thread init(timeout thread) //thread to remove packets from packet queues given global timeout.
thread init(report live status) //thread to report the live

2 for each packet on live capture do
3 last observed packet time ← get time(packet);
4 for each prototype on prototype packets do
5 property ← get prototype property(prototype);
6 if match properties of(prototype, packet) then
7 prototype list ← get prototype list(prototype);
8 for each prototype dependency on dependencies(prototype) do
9 matched dependency ← FALSE;

10 for each stored packet on get dependency prototype list(prototype dependency) do
11 if match properties dependency(prototype dependency, packet, stored packet) then
12 associate(packet, stored packet, property), matched dependency ← TRUE;
13 goto next dependency;

14 end

15 end
16 if !matched dependency then
17 goto next prototype
18 end

19 end
20 if prototype determines property(prototype) then
21 associations list ← get associations(packet) report property pass(property, packet,

associations list) delete from prototype lists(associations list)
22 end
23 else
24 push(prototype list, packet)
25 end

26 end
27 next prototype;

28 end

29 end
30 Function timeout thread(), sleep(global timeout value);
31 for each prototype on prototype packets do
32 property ← get prototype property(prototype);
33 for each stored packet on get prototype list(prototype) do
34 associations list ← get associations(stored packet);
35 report property fail(property, stored packet, associations list);
36 delete from prototype lists(associations list);

37 end

38 end

After, it will load all the properties (formalized requirements) that have to be tested

(Line 4-5), and match each packet with the properties in chronological order due to

the grammar lead nodes match properties. In this step, only the packets needed for

the current property will be saved and tackled. The other irrelevant packets will be

discarded in order to accelerate the testing process. In line 6-7, the program will check

the properties that can be matched without the use of any dependencies, and list where

to store packets if it needs to be stored.

In the following loop (Line 8-19), if prototype doesn’t have dependencies then this will

never go inside. In the loop, the program will check all the captured packets with the
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dependencies. Meanwhile, if it is not a type of prototype package, the program will not

keep looking. (Line 11-13). After this loop, the program will report the success and

dropped the packets already tested (Line 20-22). This process will keep running until

all the properties have been checked. When finishing the checking process, it will report

the testing result and empty the buffer immediately in order to make good use of the

limited memory (Line 23-29).

Also, we use a timeout thread to execute timeout function on the packets (Line 30-38),

and the global timeout value is determined by an expert on the protocol.

5.4 Experiments

In the experiments, to verify and test the approach, our methodology are implemented

into a real-time IMS communications environment, and results from testing several prop-

erties online are obtained.

5.4.1 Environment

We still use IMS as our environment, since it aims at facilitating the access to voice or

multimedia services in an access independent way, which is a perfect platform for online

testing. Most communication with its core network and between the services is done

using the Session Initiation Protocol (SIP) [7].

Figure 5.8: Experiments environment

Different from our other experiments on SIPp, the communication traces here were

obtained through ZOIPER2 which is a VoIP soft client, meant to work with any IP-

based communication systems and infrastructure. SIPp is a load testing tool which

simulate client behaviors, and ZOIPER is a real VoIP soft client tool with real human

actions on the softphone. As we mentioned before, we are always pursuing the most

2http://www.zopier.com/softphone/
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suitable environment which satisfies our testing aims. Since we are performing online

testing, apparently the traces obtained from real human actions on the softphones are

more suitable here.

We run four ZOIPER VoIP clients on the virtual machines using VirtualBox for Mac

version 4.2.16. On the other side, the server is provided by Fonality3, which is running

Asterisk PBX 1.6.0.28-samy-r115. As Figure 5.8 shows, the tests are performed in

the virtual machines by opening a live capture on the client local interface. This live

capture is processed by the clients using an implementation of the formal approach above

mentioned and was developed in C code.

5.4.2 Test Results

For better understanding how our approach works, we illustrate a simple use case tested

on one of the clients. As shown in Figure 5.9, we have a SIP requirement to be tested:

“Every 2xx response for INVITE request must be responded with an ACK within 2s”,

which can be formalized to a formula:

∀x(request(x) ∧ x.method = INVITE→ ∃y>x(responds(y, x) ∧ success(y))

→ ∃z>y(ackResponse(z, x, y) ∧ withintime(z, y, 2s)))

Requirement:

Every 2xx response for INVITE request

must be responded with an ACK within 2s

Step 1 Formalization Step 2 Construction

IUT

Step 3 Capturing

Caputured Trace:

Message (80000)

(45231) Request Response (34769)
Unknown

(23115) INVITE (18869)

ACKUnknown

(3247)

Success

(23024)
Unknown

(11745)

... ... ...

Filtered Trace:

Syntax Tree:
Message

Request Response
Unknown

INVITE ACK
Unknown

Success
Unknown

... ... ...

Step 5 Filtering

Step 6(a) Transferring

Step 6(c)

Re-Transferring

Step 6(b) Buffering

Step 7 Load Notification

Step 8 Evaluation

Step 4 Generating Filter

Tester:

Evaluation

Unit

Buffer

Temporary Storage

30798

Messages

Step 4: Setup

Step 7 Load Notification

No. Messages

80000

Pass

18864

Fail

5

Time-Fail

0

Final Result:

Formalized Formula:

Figure 5.9: Use case for Testing Process

This formula is transformed to a syntax tree. When the syntax tree is generated and

transferred to the IUT monitor, it starts to capture the trace and apply the syntax tree

as a filter (step 3 and 4) for captured messages. Meanwhile, the syntax tree will be

applied in the tester as requirement. Once the captured trace is filtered into different

sets (step 5), it checks the Load Notification value first. Currently, the Load Notification

value equals to N, which makes the tester available to test incoming traces. Then all

incoming traces are sent to the tester directly (step 6a).

3http://www.fonality.com
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As soon as the tester receives the trace, it tests the trace through the formalized property.

When the tester is almost reaching to its maximum capacity, it sends a load notification

value Y back to the monitor (step 7 and 8). In this case, all incoming traces will be

stored in the temporary storage (step 6b) until the tester recovers to an available state

(step 6c). Finally, after our 2 hours testing process, we got 18,864 ‘Pass’ verdicts, 5

‘Fail ’ verdicts caused by violation of the time constraint and no Time-Fail verdicts.

Secondly, we test our approach in a more complex environment. It has been performed

to concurrently test five properties on a huge set of messages: “Prop.1: Every request

must be responded”, “Prop.2: Every request must be responded within 8s”, “Prop.3:

Every INVITE request must be responded”, “Prop.4: Every INVITE request must

be responded within 4s” and “Prop.5: Every REGISTER request must be responded”.

Properties Total Msgs Filtered Msgs Rate Pass Con-Fail Per-Fail Time-Fail Incon Data-Inc
Prop.1 2,324,506 1,631,797 70.19% 631,271 0 0 61,432 52 2,164
Prop.2 2,324,506 1,631,797 70.19% 498,124 0 194,579 0 52 2,164
Prop.3 2,324,506 1,979,904 85.17% 314,923 0 0 29,673 14 1,086
Prop.4 2,324,506 1,979,904 85.17% 247,257 0 97,339 0 14 1,086
Prop.5 2,324,506 2,259,032 97.18% 61,550 0 0 3,924 6 371

Table 5.1: Online Testing result for Properties

The table 5.1 shows a snapshot of temporary testing verdicts after 3 hours online contin-

uously testing. Benefited from the filtering function, more than 70% irrelevant messages

are filtered out before testing process, which apparently reduces the cost of computing

resources. Further, numbers of Per-Fail and Time-Fail verdicts can be observed. Time-

Fail verdicts in Prop.1, Prop.3 and Prop.5 indicate that there are 61432, 29673 and 3924

messages respectively that cannot be observed within the timeout, in other words, they

are lost during the communication between the client and the server.

Besides, the ‘0’ Fail verdict indicates there is no error observed in the data portion for

these three properties currently. On the other side, Per-Fail verdicts reported in Prop.2

and Prop.4 indicate that there are 194579 and 97339 messages that cannot satisfy the

time requirement. These Per-Fail verdicts include the Time-Fail verdicts reported in

Prop.1 and Prop.3, since lost messages also violate the time requirement. In the whole

experiment, no Con-Fail verdict is reported which indicates that no error has been found

in the data portion during the test.

Moreover, several ‘Inconclusive’ verdicts indicating the numbers of pending procedures

for each property can be observed. We also used the control-portion-only buffering

mechanism to test the usage of ‘Data-Inc’. All the buffered messages without data

portion are successfully reported as ‘Data-Inc’ shown in Table 5.1. Since they take a
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tiny proportion of whole traces (between 0.015% and 0.09%), we conclude them as Fail

in the worst-case. Meanwhile, during the experiments, the CPU occupancy rate of the

machine we used as tester is always less than 20%, and the memory usage is below 1GB.

During the whole testing process, our approach successfully handled this huge set of

messages and did not suspend.

5.5 Conclusions

In this chapter, we introduces a novel online approach to test conformance and per-

formance of network protocol implementation. Our approach allows to define relations

between messages and message data, and then to use such relations in order to define

the conformance and performance properties that are evaluated on real protocol traces.

The evaluation of the property returns a Pass, Con-Fail, Per-Fail, Time-Fail, Data-Inc

or Inconclusive result, derived from the given trace.

The approach also includes an online testing framework. To verify and test the approach,

we design several SIP properties to be evaluated by our approach. Our methodology

has been implemented into an environment which provides the real-time IMS commu-

nications, and the preliminary results from testing several properties online have been

obtained successfully. This preliminary work on online testing is published in [89].

From the results, we find out that applying our approach under billions of messages

and extending more testers in a distributed environment will be our future works. In

that case, the efficiency and processing capacity of the approach will be scalably tested.

Meanwhile, we will work on the optimization of our algorithms to severe situations in

case of several related P.Os, and try to use SVM for predicating Data-Inc verdicts.



Chapter 6

General Conclusion

“Prediction is very difficult, especially about the future.”

– Niels Bohr (1885 – 1962)

The main objective of the presented work is to address some of the issues related to

passive testing for conformance and performance, particularly in the context of message-

based protocols.

We firstly presented a state of the art of conformance, performance testing techniques in

the Chapter 2. In modern message-based protocols, while the control part still plays an

important role, data is essential for the execution flow. Input/output causality cannot

be assured since many outputs may be expected for a single input. Moreover, when

traces are captured on centralized services, many equivalent messages can be observed

due to interactions with multiple clients. Although the traces are finite, the number

of related packets may become huge and the properties to be verified complex. Thus,

we found out that a passive testing approach for communicating protocols based on the

formal specification of functional requirements is required.

For solving these issues, we presented our initial approach for conformance testing of

IMS protocols, through a real communicating environment in the Chapter 3. The results

are positive, the implemented approach allows to define and test complex data relations

efficiently, and evaluate the properties successfully. Besides, as described in the Sec-

tion Discussion, some improvements can be proposed as future works for performance

testing, such as: Testing the accessibility and loss rate of traces by measuring the time

complexity, Introducing a timer function to the approach for testing the communication

latency.

Moreover, we guess that some properties need, for various reasons as mentioned in the

work, to be specified using timers. Since many performance related properties cannot be

98
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specified, and many benefits can be brought to the test process if both conformance and

performance testing inherit from the same approach, it raised our interest to create a

passive performance testing approach for communicating protocols based on the formal

specification of the time related requirements.

Then, for satisfying the needs, we presented our main contribution – a passive perfor-

mance testing approach for communicating protocols in Chapter 4. We detailed the

modified syntax and semantics of formulas for satisfying the needs in formalizing perfor-

mance requirements. Also for solving the indeterminacy problems existed in non-positive

verdicts, we introduce a four-valued semantics {‘Pass’, ‘Con-Fail ’, ‘Per-Fail ’, ‘Inconclu-

sive’} in our formalism. Then, we explained our evaluating algorithm and the relevant

experiments results. The results showed the functionality and flexibility of our approach.

Meanwhile, we proposed several performance indicators for SIP, and tested them in the

same environment.

During the experiments, we observed that when we are testing the performance of proto-

cols, lots of P.Os are implemented on each IUT in the networks. It can provide a perfect

environment for performing distributed testing. Then, it raised our interest on properly

synchronizing different testers and test other protocols to prove the universality of our

approach. For solving these issues, we proposed a distributed passive testing framework,

and we implemented and tested it through XMPP properties in IoT environments. The

results from testing several properties on large traces have been obtained with success.

The problem of synchronization is tackled and the functionality and flexibility of our

approach are shown.

Since our research is based on collecting traces from the implemented frameworks, we

are performing off-line testing processes. For satisfying the increasing need of run-time

monitoring and testing process, we have to practice our approach online. With online

testing approaches, the collection of traces is avoided and the traces are eventually not

finite. Indeed, testing a protocol at run-time may be performed during a normal use

of the system without disturbing the process. The traces are observed and analyzed

on-the-fly to provide test verdicts and no trace sets should be studied a posteriori to

the testing process. In this case, we described the architecture and testing process of

our approach for online testing in Chapter 5. We also explained the new definitions of

online testing verdicts ‘Time-Fail ’, ‘Data-Inc’ and ‘Inconclusive’ into details.

Our online framework is designed to test them at run-time, with new verdicts ‘Time-

Fail ’, ‘Data-Inc’ and ‘Inconclusive’ representing unobserved message within timeout,

untested data portion and uncertain status respectively. In order to demonstrate the

efficiency of our online approach, we successfully applied it on a real IMS communi-

cating environment. The premier results proved the preciseness and efficiency of our



Bibliography 100

approach. From the experiments, we found out that applying our approach under bil-

lions of messages and extending more testers in a distributed environment will be our

future works. In that case, the efficiency and processing capacity of the approach will

be scalably tested. Meanwhile, we will work on the optimization of our algorithms to

severe situations in case of several related P.Os, and try to use SVM for predicating

Data-Inc verdicts.

6.1 Perspectives

In this subsection, we will briefly describe the perspectives of our future works.

Terminate State

As we mentioned in Chapter 3, the terminate state in a property like “The session

MUST be terminated after a BYE request” is complicated to be formalized, due to the

difficulty of detecting the ‘terminated’ state. Indeed, in our case we do not have any

complete formal specification available and we can not stimulate the IUT. Moreover,

we should ensure that no more messages will be exchanged after the ‘terminated’ state,

which indicates that we need to keep monitoring the transaction even after it terminates.

It is time consuming and unpredictable. But it is still an interesting work we will focus

on in the future.

Standardized Benchmark System on Protocols

As we concluded in Chapter 4, building a standardized performance testing benchmark

system for protocols would be the work we will focus on in the future. Since we already

shown that our approach can test the performance of SIP and XMPP, then extending

more performance indicators based on the RFCs and building benchmark systems for

both protocols will be interesting. In that case, the efficiency and processing capacity of

the system when massive sub testers are performed would be the crucial point to handle,

leading to an adaptation of our algorithms to more complex situations. Also, we will try

to test other interesting protocols, in order to build a universal protocol testing tool.

Online distributed testing

Also from the results we got in Chapter 5, we find out that applying our approach under

billions of messages and extending more testers in a distributed online environment will

be another future work for us. In that case, the efficiency and processing capacity of the

approach will be scalably tested. Meanwhile, we will work on the optimization of our
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algorithms to severe situations in case of several related P.Os, and try to use SVM for

predicating Data-Inc verdicts.
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