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Résumé

Inflation Cosmologique: Aspects Théoriques et Contraintes Observationelles

Résumé

Dans cette thèse sur articles nous nous intéressons aux contraintes observationnelles sur les
modèles d’inflation cosmologique et nous étudions certains aspects fondamentaux liés à la na-
ture quantique de la physique inflationnaire. L’inflation est une période d’expansion accélérée
intervenant dans l’Univers primordial à très hautes énergies. En plus d’être une solution possi-
ble aux problèmes du modèle standard de la cosmologie dit du “big bang chaud”, combinée à
la mécanique quantique, l’inflation permet la production causale de fluctuations cosmologiques
sur les grandes échelles, qui sont à l’origine des structures cosmiques actuelles. Mettant en jeu
des énergies colossales au regard de ce qui peut être réalisé dans un accélérateur de particules,
l’inflation est devenue un objet d’intérêt majeur en cosmologie pour tester la physique des hautes
énergies au delà de son modèle standard.

Nous commençons par analyser de façon systématique tous les modèles inflationnaires à un
champ scalaire et avec terme cinétique standard, à la lumière des mesures du fonds diffus cos-
mologique les plus récentes. Dans l’approximation du roulement lent, et en intégrant les con-
traintes venant de la phase de réchauffement, nous dérivons les prédictions associées à environ
75 potentiels. Nous utilisons ensuite les techniques d’inférence Bayésienne pour classer près de
200 modèles inflationnaires et contraindre leurs paramètres. Cela permet d’identifier les modèles
favorisés par les observations et de quantifier les niveaux de tensions entre les différents jeux de
données. L’intérêt d’une telle approche est renforcé par l’étude de méthodes indépendantes du
modèle telle que le “flot de Hubble”, qui se révèle biaisé. Nous calculons également le spectre de
puissance au deuxième ordre pour les modèles d’inflation-k, afin de permettre leur intégration
future dans notre analyse numérique.

Dans une deuxième partie, nous décrivons certains aspects liés à la nature quantique de la
physique inflationnaire. Le formalisme de l’inflation stochastique, qui incorpore les corrections
quantiques aux dynamiques inflationnaires, est notamment utilisé dans le cadre du modèle à deux
champs d’inflation hybride. Nous discutons l’impact de ces corrections sur les prédictions de ce
modèle, et à l’aide d’un formalisme récursif, nous nous intéressons à la façon dont elles modifient
l’amplitude des perturbations. Finalement, la transition quantique-classique, et le problème de
la mesure quantique, sont étudiés dans un contexte cosmologique. Un modèle de réduction
dynamique du paquet d’onde est appliqué à la description des perturbations inflationnaires.

Mots Clés: cosmologie, inflation, fonds diffus cosmologique, inflation stochastique, inférence
Bayésienne et comparaison de modèles, perturbations quantiques.
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Abstract

Cosmological Inflation: Theoretical Aspects and Observational Constraints

Abstract

This thesis by publication is devoted to the study of the observational constraints on cosmological
inflationary models, and to the investigation of fundamental aspects related to the quantum
nature of the inflationary physics. Inflation is an early phase of accelerated expansion taking
place at very high energy. On top of being a solution for the hot big bang model problems,
combined with quantum mechanics, inflation provides a causal mechanism for the production
of cosmological fluctuations on large scales, that later give rise to today’s cosmic structures.
Given that it takes place at energy scales many orders of magnitude larger than what can be
achieved in conventional particle physics experiments, inflation has become of great interest to
test beyond standard model physics.

We first present a systematic analysis of all single-scalar-field inflationary models with canonical
kinetic terms, in light of the most up-to-date Cosmic Microwave Background (CMB) measure-
ments. Reheating consistent slow-roll predictions are derived for ⇠ 75 potentials, and Bayesian
inference and model comparison techniques are developed to arrange a landscape of ⇠ 200 in-
flationary models and associated priors. In this way, we discuss what are the best models of
inflation in light of the recent observations, and we properly quantify tension between data
sets. Related to this massive sampling, we highlight the shortcomings of model independent
approaches such as the one of “horizon-flow”. We also pave the way for extending our com-
putational pipeline to k-inflation models by calculating the power spectrum at next-to-next-to
leading order for this class of models.

In a second part, we describe some aspects related to the quantum nature of the inflationary
setup. In particular, we make use of the stochastic inflation formalism, which incorporates the
quantum corrections to the inflationary dynamics, in the two-field model of hybrid inflation. We
discuss how the quantum diffusion can affect the observable predictions in such models, and we
design a recursive strategy that incorporates its effects on the perturbations amplitude. Finally,
we investigate the quantum-to-classical transition and the quantum measurement problem in a
cosmological context. We apply a dynamical wavefunction collapse model to the description of
inflationary perturbations.

Keywords: cosmology, inflation, cosmic microwave background radiation, stochastic inflation,
Bayesian inference and model comparison, quantum perturbations.
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Introduction

Inflation is a phase of accelerated expansion that took place in the early Universe at very high
energy. Originally intended to dispose of some of the hot big bang shortcomings, it was soon
realized that inflation may be responsible for a powerful manifestation of our Universe’s quantum
nature. Indeed, the deviations from homogeneity and isotropy that give rise to today’s cosmic
structures (galaxies, clusters, filaments, etc.) can be traced back to the quantum fluctuations of
gravitational and matter fields during inflation. Stretched by the quasi-exponential expansion of
space-time to distances of cosmological interest today, these fluctuations serve as the primordial
seeds for inhomogeneities that later grow under the influence of gravitational instability. Inflation
has become a very active field of research in the past years, since the energy scales involved during
this early epoch are many orders of magnitude greater than those accessible in particle physics
experiments. Therefore, the early Universe is certainly one of the most promising probes to test
beyond standard model physics.

Another consequence of the fact that inflation takes place at energy scales where particle physics
remain unknown, is that the physical nature of the fields driving inflation, and their relation with
the standard model of particle physics, is still unclear. There have been a crowd of inflationary
candidates proposed so far, and an important task is to discriminate between them. On the
other hand, there is now a flow of increasingly accurate astrophysical data which provides us
with a unique opportunity to constrain the inflationary landscape. These data mostly consist
in measurements of the Cosmic Microwave Background (CMB), but they also concern other
astrophysical probes such as supernovae, galaxy surveys, and 21 cm observations. It becomes
therefore of paramount importance to be able to process such a huge amount of observational
data, comprising measurements that are very different in nature, with hundreds of inflationary
scenarios, often equally different. It is the first purpose of this thesis to design scientific and
technical tools enabling to carry out such a programme, and to determine which inflationary
models the data seem to prefer.

At the fundamental level, inflation is also probably one of the only cases in physics where an
effect based on General Relativity and Quantum Mechanics leads to predictions that, given our
present day technological capabilities, can be tested experimentally. This makes inflation an
ideal playground to discuss deep questions related to its quantum aspects. The other purpose
of this thesis is to study some of them, ranging from the quantum-to-classical transition of
cosmological perturbations, to the quantum corrections to the inflationary dynamics by means
of the stochastic inflation formalism.

The present manuscript is a thesis by publication. It presents the works realized at the Institut
d’Astrophysique de Paris between September 2011 and September 2014 under the direction of
Jérôme Martin. It first contains a brief presentation of the cosmological groundwork for our
analysis, which introduces the main aspects of the cosmological standard model and of inflation.
Mainly, this part I aims at providing the reader with the conceptual and technical tools that
may be helpful to the understanding of the results presented in part II. This second part collects
the research articles published during this thesis time (except from section 3.4 which, at the
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Introduction

time of drafting this manuscript, is going through the reviewing process).

More precisely, this document is organized as follows. In chapter 1, we review the cornerstones
of the standard model of modern cosmology. In the framework of General Relativity, we describe
homogeneous and isotropic universes and derive the associated Einstein equations. By an ex-
plicit comparison with the corresponding Newtonian physics, we highlight the deeply relativistic
nature of the expansion, especially its possible acceleration. We then give a brief description of
the main constituents of the Universe, and of the main lines of its history. Finally, we turn to
the presentation of the problems of the hot big band model, namely the horizon, flatness and
monopole problems. For each of these problems, we give a detailed calculation of its formula-
tion and show how it can be solved with a phase of accelerated expansion. In particular, we
characterize the number of e-folds that is required in each case.

In chapter 2, we review some aspects of cosmological inflation, the physical setups it relies on,
the predictions it makes and the fundamental issues it raises. We explain why and under which
conditions a single scalar field can support a phase of inflation and we present the “slow-roll”
approximation which enables to solve its dynamics perturbatively. It also provides us with a
convenient frame of calculation to compare inflationary predictions with observational data,
which we make widely use of in chapter 3. We then turn to the description of inflationary
perturbations, and show how cosmological fluctuations need to be quantized. For illustrative
purpose, we provide a detailed calculation of the power spectrum of scalar perturbations, at
first order in slow roll. Finally, we devote a large part of this second chapter to the presentation
of the stochastic inflation formalism which is used in chapter 4. We first present a detailed
heuristic derivation of the Langevin equation which is at the heart of this formalism, before
turning to the question of the time variable that should be used when solving such equations,
in order to reproduce results from Quantum Field Theories. Lastly, we address the issue of the
calculation of physical observable quantities in stochastic inflation, such as the power spectrum
of adiabatic perturbations. We show that the stochastic setup allows to reproduce the standard
result, before providing complete solutions which do not rely on an expansion in the noise term.
To our knowledge, this is the first time that such a non perturbative calculation of the power
spectrum in stochastic inflation is presented. It has not been pre-printed or published yet since
it has been derived in the course of drafting this manuscript.

We then turn to part II where the articles published during this thesis are presented and dis-
played. The first chapter, chapter 3, deals with a systematic analysis of all single-field inflation-
ary models with minimal kinetic terms, in light of the most up-to-date CMB data, especially
the ones coming from the Planck experiment and more recently from BICEP2. This somewhat
“industrial” project aims at deriving reheating consistent slow-roll predictions for ⇠ 75 infla-
tionary potentials, and using Bayesian inference and model comparison techniques to arrange
a landscape of ⇠ 200 inflationary models and well studied priors. In this way, one can discuss
which are the best models of inflation. This also allows us to assess the compatibility level of the
two data sets (Planck and Bicep2) given inflation, or given a specific inflationary model. The
relevance of such an approach is further advocated for in an article pointing out the shortcom-
ings of model independent parametrizations of inflation such as the one of “horizon flow”, and
another one paves the way for including single field k-inflation (i.e. non minimal kinetic terms)
models in our analysis, by calculating the power spectrum at next-to-next-to leading order for
this class of models.

In chapter 4, we turn to the description of some aspects related to the quantum nature of the
inflationary setup. In particular, the stochastic inflation formalism incorporates the quantum
corrections to the inflationary dynamics by means of stochastic Langevin equations. This gives
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rise to non trivial inflationary trajectories, especially when multiple fields are present. This
is why we study stochastic effects in hybrid inflation, a two-field model where inflation ends
by tachyonic instability, and we discuss how the quantum diffusion can affect the observable
predictions in such models. Making use of a recursive formalism for backreacting effects, we
also address the issue of evolving cosmological perturbations on top of stochastically shifted
backgrounds, in the same type of models. Finally, we investigate the quantum-to-classical
transition and the quantum measurement problem in a cosmological context. More precisely, we
apply the continuous spontaneous localization modification of the Schrödinger equation to the
case of inflationary perturbations. We establish what an efficient collapse of the wavefunction
implies for the inflationary predictions, and which constraints can be derived on the collapse
models themselves.

Finally, in a last section, we sum up our results and present some concluding remarks and
possible prospects for the present work.
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Part I.

Cosmology and Inflation
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1. The Cosmological Standard Model

In this chapter, we review the cornerstones of the standard model of modern cos-
mology. The Hot Big Bang scenario describes a series of events that occurred since
an initial singularity 13.7 billion years ago, and for which we now have accurate ob-
servational evidence. Questions left unanswered by this model are discussed, which
are solved by the introduction of an era of accelerated expansion in the early Uni-
verse. In this section, only a brief and partial overview of the standard cosmological
model is given, the various aspects of which are further detailed in a broad range of
textbooks [1, 2, 3, 4, 5, 6, 7, 8].

Considerations about the extent and the structure of the Universe exist in almost every culture
and seem to be intrinsic to the development of human awareness. In this sense, Cosmology is a
matter of concern which may be considered as old as mankind itself. However, for a very long
time, it consisted in a very speculative approach to metaphysical (more than physical) issues in
which philosophy or even religion were also at stake. This radically changed only in the first half
of the twentieth century with the advent of the theory of general relativity, which provided for
the first time a mathematical consistent framework for describing space and time. Cosmological
models, in which space is expanding, were derived from this theory and enabled to understand
many observations starting with galaxies receding. During these years, Cosmology was mainly
about describing and reconstructing a posteriori observational effects of this expansion. Then, in
the second half of the twentieth century, was formulated the hot big bang model, which includes
the description of physical processes occurring in this expanding space-time, and the associated
thermal history of the Universe. More recently, Cosmology has entered a precision era with the
inflow of high accuracy observational data such as the Cosmic Microwave Background (CMB)
measurements, galaxy and supernova surveys, 21 cm astrophysics data, forthcoming cosmic rays
and gravitational waves detectors, etc. Together with theoretical developments in high energy
and gravitational physics, this enabled to upgrade Cosmology to the status of a genuine Science,
i.e. a field of research in which falsifiable predictions can be made and tested.

1.1. The Homogeneous and Isotropic Universe

The distribution of galaxies and cosmological structures in space around us appears to be
isotropic on large scales [⇠ O(100) Mpc] , which implies that space-time possesses a spher-
ical symmetry around us. This observational fact, combined with the Copernican principle1

which states that we should not live in a central or specially favoured position in the Universe,
leads to the conclusion that the Universe must be homogeneous on large scales. This is the

1The Copernican Principle is to be understood as opposed to the anthropocentrist view that human beings
should be at the center of the Universe. For example, the Aristotelian model of the solar system in the Middle
Ages placed the Earth at the center of the solar system, a unique place since it “appeared” that everything
revolves around the Earth. Nicolaus Copernicus demonstrated that this view was incorrect and that the Sun
was at the center of the solar system with the Earth in orbit around the Sun.
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Chapter 1. The Cosmological Standard Model

Figure 1.1.: Hubble diagram (i.e. velocity against distance) for extra-galactic nebulae, from the
1929 original paper [13] by Edwin Hubble. Such diagrams lead to the hypothesis
of an expanding universe with a linear expansion law v = Hr. The radial velocities
are obtained from redshift measurements and are corrected for solar motion, and
distances are estimated from involved stars and mean luminosities of nebulae in a
cluster. The black discs and full line represent the solution for solar motion using the
nebulae individually; the circles and broken line represent the solution combining
the nebulae into groups; the cross represents the mean velocity corresponding to the
mean distance of 22 nebulae whose distances could not be estimated individually.

so-called cosmological principle.

1.1.1. The Friedmann-Lemâıtre-Robertson-Walker Metric

The cosmological principle is a statement about the amount of symmetry present in the observ-
able Universe. As always in physics, this symmetry constrains and simplifies the mathematical
description of the system under consideration. In this manner, under the cosmological principle
symmetry, the metric of space-time ds2 = gµ⌫dx

µdx⌫ can be shown to be entirely determined
up to a free function of time, the scale factor a(t), and a discrete parameter K = −1, 0, 1 which
encodes the spatial curvature (open, flat or closed). With the (−,+,+,+) signature convention,
it is of the form [9, 10, 11, 12]

ds2 = −dt2 + a2(t)



dr2

1−Kr2 + r2
(

d✓2 + sin2 ✓dφ2
)

]

(1.1)

and is called the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. In this parametriza-
tion, t is the cosmic time, r is the comoving radial coordinate which is unitless, ✓ and φ are the
comoving angular coordinates, and a(t) has units of length.2

1.1.1.1. The Hubble Law

From the FLRW metric (1.1), one can see that the physical distance Lphys between two points
measured on a constant t hypersurface scales as the scale factor a, that is to say

Lphys = a(t)Lcom , (1.2)

2Hereafter and unless stated otherwise, we work in the unit system where c = ~ = kB = 1.
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1.1. The Homogeneous and Isotropic Universe

Figure 1.2.: Comparison of H0 measurements, with estimated of ±1σ errors, from a number
of different astrohphysical techniques, and compared with the spatially-flat ΛCDM
model constraints from Planck and WMAP9. Image Credit: Ref. [15].

where Lcom is the so-called comoving distance, which is constant in time for still objects in the
FLRW frame. The scale factor a thus sets the overall expansion (or contraction) level of space
hypersurfaces, hence its name. Another consequence of the FLRW metric is a linear relation
between distance and velocity. Indeed, from differentiating Eq. (1.2) with respect to cosmic time
t, one obtains

v =
dLphys

dt
=
ȧ

a
Lphys = HLphys , (1.3)

where we have defined the Hubble parameter H ⌘ ȧ/a. This is the so-called Hubble law. It was
first observed in 1929, as presented in Fig. 1.1, where the current value of H, that we denote H0,
was determined to be of the order of 500 km/sec/Mpc. As we will see below, this value contains
valuable information about the content of the Universe and this is why it has been the object
of much research effort. The first good estimation was realized in 1958 in Ref. [14], where the
value 75 km/sec/Mpc was obtained. Finally, the most up to date measurements provided by
the Planck mission [15] gave the value 67.80± 0.77 km/sec/Mpc for the value of H0. This value
is rather low compared with previous measurements, see Fig. 1.2, and the tension between the
CMB-based estimates in the ΛCDM model and the astrophysical measurements of H0 is still
intriguing [15, 16, 17, 18, 19, 20, 21].

The reduced Hubble parameter h is also often used, and is defined as

H0 = 100h km/sec/Mpc . (1.4)

The Hubble parameter sets the fundamental physical scale of space-time. It provides a charac-
teristic time scale H−1

0 ' 4.551⇥ 1017 sec called the “Hubble time” and a characteristic length
scale H−1

0 ' 1.364 ⇥ 1026m called the “Hubble radius”. As we will see later, the Hubble time
sets the scale for the age of the Universe, and the Hubble length sets the scale for the size of the
observable Universe. These values are displayed in table 1.2 where we collect all the numerical
values given and used throughout this section 1.
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Chapter 1. The Cosmological Standard Model

1.1.1.2. Redshift and Comoving Coordinates

Another interesting property of FLRW space-times is that light gets redshifted as its travels,
due to the time dependence of the scale factor. Let us consider an emitting object at rest in the
comoving coordinates system, with radial coordinate r1, while an observer is located at r0 = 0.
Light is emitted from this first object at time t1 with frequency ⌫1, and received by the observer
at time t0 with frequency ⌫0. Let us determine the relation between ⌫0 and ⌫1. Since light travels
along geodesics with ds = 0, radial light path traveling towards the observer (d✓ = dφ = 0 and
dr/dt < 0) follows

dt

a (t)
=

drp
1−Kr2

. (1.5)

Now consider the emission of two subsequent crests of a light wave. The first one is emitted at
(t1, r1) and received at (t0, 0) while the second one is emitted at (t1 + δt1, r1) and received at
(t0 + δt0, 0). From Eq. (1.5), one has

Z 0

r1

drp
1−Kr2

=

Z t0

t1

dt

a(t)
=

Z t0+δt0

t1+δt1

dt

a(t)
. (1.6)

Subtracting the third integral from the second, in the limit δt0 , δt1 ⌧ a/ȧ, one obtains

δt0
a (t0)

=
δt1
a (t1)

. (1.7)

Since the time delay δt between two crests is nothing but the inverse frequency, one obtains

⌫1
⌫0

=
a (t0)

a (t1)
= 1 + z , (1.8)

where the last equality defines the redshift z. This quantity only depends on the ratio of the
scale factor at reception to the scale factor at emission.

In terms of wavelength λ, Eq. (1.8) gives λ0/λ1 = a(t0)/a(t1). We see that the wavelength of
light just contracts and stretches with the scale factor λ / a. Another way to look at this is
to say that a photon traveling through an FRLW space-time loses momentum as the Universe
expands,

p = h⌫ / a−1 (t) . (1.9)

As shown in appendix 1.A, see Eqs. (1.95) and (1.96), this momentum loss applies to massive
particles as well as photons, and any particle moving in an expanding FLRW space-time loses
momentum as p / a−1. This means that a massive particle asymptotically comes to rest relative
to the comoving coordinates system. Thus, comoving coordinates represent a preferred reference
frame which is such that any free body with a peculiar velocity relative to the comoving frame
eventually comes to rest in this frame.

1.1.1.3. Einstein Equations

The Einstein-Hilbert action [22, 23, 24] describes the dynamics of space-time metrics, and reads

Sgrav =
1

2

Z

d4x
p−g (R− 2Λ) , (1.10)

where  ⌘ 8⇡G = 8⇡/m2
Pl = 1/M2

Pl, where G is the Newton gravitational constant, mPl is the
Planck mass and MPl ' 2.4 ⇥ 1018 GeV is the reduced Planck mass. In the above expression,
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1.1. The Homogeneous and Isotropic Universe

Λ is a cosmological constant, g is the determinant of gµ⌫ and R is the Ricci curvature scalar
R ⌘ gµ⌫Rµ⌫ . It is constructed from the Ricci tensor Rµ⌫ = 2Γ⇢

µ[⌫,⇢] + 2Γ⇢
λ[⇢Γ

λ
⌫]µ, where brackets

mean anti-symmetrization over the indices and where the Christoffel symbols are given by Γ⇢
µ⌫ =

1
2g

⇢λ (@⌫gλµ + @µgλ⌫ − @λgµ⌫).

To this action should be added a part Smatter =
R

Lmatter
p−gd4x describing matter in the

Universe. When varying these two action terms with respect to gµ⌫ , one obtains two tensors,
namely the Einstein tensor Gµ⌫ defined as

Gµ⌫ + Λgµ⌫ ⌘ 2p−g
@Sgrav

@gµ⌫
= Rµ⌫ −

1

2
Rgµ⌫ + Λgµ⌫ (1.11)

for the gravity part, and the energy-momentum tensor

Tµ⌫ ⌘ − 2p−g
@Smatter

@gµ⌫
= gµ⌫Lmatter − 2

δLmatter

δgµ⌫
(1.12)

for the matter part. This leads to the well-known Einstein equations

Gµ⌫ + gµ⌫Λ = Tµ⌫ . (1.13)

Let us now work out the two tensors Gµ⌫ and Tµ⌫ for an FLRW metric. When the metric (1.1)
is plugged into the definition (1.11), one obtains (a detailed calculation is provided in appendix
1.A)

G00 = 3

✓

H2 +
K
a2

◆

, Gij = −
✓

H2 + 2
ä

a
+

K
a2

◆

gij , (1.14)

where the index 0 is for time t, and the indexes i and j are for space coordinates so that gij is
just the spatial part of the full metric gµ⌫ .

Given the symmetries of space-time, one can show that the most generic form of the energy-
momentum tensor is given by

Tµ⌫ = ⇢uµu⌫ +
p

a2
gµ⌫ , (1.15)

where gµ⌫ = gij when µ and ⌫ are space indexes and 0 otherwise. In the above expression,
⇢ and p are two constants depending on time only, and uµ is the four velocity of a comoving
observer for whom space is homogeneous and isotropic. One thus has uµ = δµ,0, where δ is the
Krönecker symbol. Since p is associated to the spatial part of the tensor, it can be interpreted
as the pressure of matter, while ⇢ = Tµ⌫u

µu⌫ is the energy density measured by a comoving
observer. The above form of Tµ⌫ is entirely fixed by the cosmological principle. Finally, let us
mention that the time component of the conservation relation rµT

µ⌫ = 0 leads to

⇢̇+ 3H (⇢+ p) = 0 . (1.16)

Heuristically, this equation can be understood as a translation of the first law of thermodynamics,
dU = −pdV , with U = ⇢V and V = a3.

1.1.2. An Expanding Universe

Let us now detail how this general relativistic framework allows to relate the dynamics of the
expansion of space-time to the matter content properties of the Universe.
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Chapter 1. The Cosmological Standard Model

1.1.2.1. Friedmann and Raychaudhuri Equations

If one plugs the above expressions for Gµ⌫ , Eqs. (1.14), and for Tµ⌫ , Eq. (1.15), in the Einstein
equation (1.13), one obtains the two following dynamical equations

H2 =


3
⇢− K

a2
+

Λ

3
, (1.17)

ä

a
= −

6
(⇢+ 3p) +

Λ

3
. (1.18)

These two equations are known as the Friedmann [25] and the Raychaudhuri [26] equations,
respectively. Because of the Bianchi identities, when combined together, one can check that
they account for the conservation equation (1.16).

The Friedmann equation relates the change of the scale factor of the Universe to its energy
density, spatial curvature and cosmological constant. If the Universe is assumed to be flat
(K = 0) and if the cosmological constant vanishes (Λ = 0), this means that the only presence
of energy will cause the Universe to expand (H > 0) or to contract (H < 0). In the following,
we shall mostly consider expanding universes, even if contracting universes are key ingredients
of some cosmological models [27, 28, 29, 30, 31, 32, 33, 34].

From the Raychaudhuri equation, one can notice that in absence of a cosmological constant,
any form of matter such that ⇢+ 3p < 0 will cause an acceleration of the scale factor ä > 0 if it
dominates the energy budget of the Universe. The energy density is always positive, but in some
cases the pressure can be negative and the inequality ⇢ + 3p < 0 may be realized. This simple
property is deeply rooted in the inflationary scenario and will be discussed in more details in
chapter 2. As we shall now see, it is intimately related to the fundamental principles of general
relativity.

1.1.2.2. The Newtonian Expanding Sphere

In order to highlight the relativistic effects in the above setup more clearly, let us derive the
Newtonian version [35, 36, 37] of the Friedmann and Raychaudhuri equations. In Fig. 1.3, we
sketch the case of an expanding sphere of radius a filled with uniform matter with mass density
⇢. Let us consider a particle of massm sitting on the out-shell of this sphere. The Gauss theorem
states that the gravitational attractive force seen by such a particle is given by GmM/a, where
M = 4/3⇡⇢a3 is the integrated mass of the sphere. Its acceleration being simply ä, the second
Newton law gives rise to mä = −MGm/a, i.e.

ä

a

∣

∣

∣

∣

Newton

= −4

3
⇡⇢G = −

6
⇢ . (1.19)

This matches the Raychaudhuri equation (1.18) without cosmological constant and without the
pressure term. This is why in Newtonian mechanics, one must have ä < 0 and the expansion of
the sphere can only decelerate. The reason why acceleration is allowed in the general relativistic
setup is because all forms of energy gravitate, including pressure.3 As a consequence, the
presence of pressure in the Raychaudhuri equation is a crucial signature of the relativistic nature

3Acceleration of FRLW space-times is actually one of the only manifestations of pressure’s self-gravity [38],
otherwise tested only in the context of big bang nucleosynthesis [39] where it is necessary to account for
current light element abundances. For example, even in compact objects such as neutron stars, pressure’s
self-gravity is immeasurable given uncertainties on the equation of state [40, 41].
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1.1. The Homogeneous and Isotropic Universe

Figure 1.3.: Homogeneous sphere in Newtonian radial expansion.

of the setup. Indeed, in newtonian mechanics, masses source the gravity field, but relativity
relates mass to energy. Since energy is not a relativistic invariant but mixes up with momentum
when changing frames, momentum, hence pressure, naturally comes into play in a relativistic
context.

It is also interesting to calculate the newtonian energy ENewton of the sphere of Fig. 1.3. In order
to do this, we first need to derive the velocity profile v(r) of the sphere radial expansion. When
diluting, let us assume that the mass density scales as the inverse of the volume to some power
1 + w, ⇢ / V −(1+w) (where for ordinary “newtonian” matter, w = 0). One can first show4 that
its evolution is given by

⇢̇ = − (w + 1)



v0 (r) + 2
v (r)

r

]

⇢ . (1.20)

In order for the sphere to remain homogeneous (i.e. to be such that ⇢, hence ⇢̇, does not depend
on r), the term factorizing ⇢ in the right hand side of the previous relation should not depend
on r, i.e. one must have v0 + 2v/r = constant. This leads to the two-branch solution

v (r) = Ar +
B

r2
(1.21)

for the radial velocity, where A and B are two integration constants that can only depend on
time. In this manner the sphere is and remains homogeneous. However, there is no reason why
it should be isotropic. Indeed, even if the sphere is taken to be infinite, the direction pointing
towards its center is a priori a privileged direction. This is not the case only if the velocity
law (1.21) v(r) is valid not only for r being the distance between the center of the sphere and
one of its shells, but for r being the distance between any two points within the sphere. As we
shall now see, this selects out one of the two branches of the solution (1.21). Let us thus consider

4Two shells of radius r1 and r2 = r1 + dr respectively become, after a dt long expansion, two shells of radius
r01 = r1 + v(r1)dt and r02 = r1 + dr + [v(r1) + v0(r1)dr] dt. The volume contained between these two shells
thus evolves from V = 4⇡r21dr to V 0 = 4⇡r01

2
(r02 − r01) ' V [1 + 2v(r1)/r1dt+ v0(r1)dt]. From here one gets

dV/dt = V (v0 + 2v/r), and with ⇢V w+1 = constant, Eq. (1.20).
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Chapter 1. The Cosmological Standard Model

two points of radial distances r1 and r2 respectively, and with angular separation ✓ as in Fig. 1.3.
The distance between these two points is simply given by d12 =

p

r21 + r22 − 2r1r2 cos ✓. Since ✓
is conserved through the radial expansion, its time variation is

ḋ12 =
r1v (r1) + r2v (r2)− [r2v (r1) + r1v (r2)] cos ✓

d12
. (1.22)

On the other hand, if the velocity law (1.21) is isotropic, one must have

ḋ12 = v (d12) . (1.23)

When the velocity law (1.21) is used in the identification of Eqs. (1.22) and (1.23), it is straight-
forward to see that B = 0. Only the first branch remains, and one has

v (r) = Hr , (1.24)

where we have renamed H ⌘ A = ȧ/a = ṙ/r, which can only depend on time. In a cosmological
context, one recovers the Hubble law previously mentioned. In particular, it is in order to stress
that it eventually does not depend on the volume scaling power index w.

We are now in a position where we can calculate the energy of the sphere. It is given by the
sum of its integrated kinetic energy and its integrated potential energy, that is

ENewton =

Z a

0

1

2
(4⇡r2dr⇢)(rH)2 −

Z a

0

G

r

(

4⇡r2dr⇢
)

✓

4

3
⇡r3⇢

◆

=
2

5
⇡⇢a5H2 − 16⇡2

15
G⇢2a5

=
2

5
⇡a5⇢

⇣

H2 − 

3
⇢
⌘

. (1.25)

Remembering that ⇢ scales as V −(w+1) / a−3(w+1), one obtains

H2 =


3
⇢+

5ENewton

2⇡⇢0a
3(w+1)
0

1

a2−3w
. (1.26)

When the Newtonian energy vanishes, one obtains the Friedmann equation (1.17) in absence of
cosmological constant and curvature, the presence of which is therefore a truly relativistic effect.
In passing, let us notice that when ENewton 6= 0 and for ordinary matter (such that w = 0), the
second term in the right hand side of Eq. (1.26) plays a role similar to the one of curvature in
Eq. (1.17), which scales as a−2 and which can be either positive or negative.

A last remark is in order about the conservation equation. In Newtonian mechanics, if one
replaces v(r) = Hr in Eq. (1.20), one obtains the conservation equation ⇢̇ + 3(w + 1)H⇢ = 0,
which, in passing, matches Eq. (1.16) if p = w⇢. This relation is fairly trivial since it just states
that ⇢ / V −(1+w). Thanks to this conservation law, one can check that the two equations (1.19)
and (1.26) are actually equivalent when w = 0. This is just a consequence of the fact that the
conservation of mechanical energy is equivalent to the second Newton law, i.e. that Newtonian
mechanics derives from a potential. However, in the case of general relativity, the conservation
equation (1.16) is not trivial at all and is required to relate the Friedmann and Raychaudhuri
equations. One thus really have two independent dynamical equations.
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1.1. The Homogeneous and Isotropic Universe

fluid equation of state parameter w ρ(a) a(t)

cold matter 0 / a−3 / t2/3

radiation 1/3 / a−4 / t1/2

spatial curvature −1/3 / a−2 / t

cosmological constant −1 / a0 / exp (Ht)

scalar field −1 + 2✏1/3 / a−2✏1 t1/✏1

Table 1.1.: Equation of state parameter w for a few fluid examples, with corresponding
⇢(a) (1.27) and a(t) (1.30) profiles.

1.1.2.3. Constant Equations of State

It is interesting to notice that the conservation equation (1.16) can be solved in the simple case of
a single ideal fluid where the energy density and the pressure are related by a constant equation
of state parameter w ⌘ p/⇢. One obtains

⇢ = ⇢in

✓

a

ain

◆−3(1+w)

. (1.27)

The equation of state parameter of cold matter is simply wmat = 0 so that the energy density
scales as the inverse volume ⇢mat / a−3, while the equation of state parameter of radiation
is wrad = 1/3 so that the associated energy density scales as ⇢rad / a−4, which includes both
volume dilution effect (/ a−3) and wavelength redshift (1.8) (/ a−1). From the Friedmann
equation (1.17), one can also associate an energy density to curvature ⇢K ⌘ −3K/(a2) and to
the cosmological constant ⇢Λ ⌘ Λ/, so that the Friedmann equation reads

H2 =


3
(⇢matter + ⇢K + ⇢Λ) ⌘



3
⇢T , (1.28)

where ⇢T denotes the “total” energy density. Here, ⇢matter can include ordinary cold matter,
radiation, or any other Universe constituent. Since ⇢K / a−2, this means that curvature can be
viewed as a fluid constituent with equation of state parameter wK = −1/3. In the same manner,
⇢Λ is constant and can be viewed as a fluid constituent5 with equation of state parameter
wΛ = −1. These values for the equation of state parameters are summarized in table 1.1. The
last entry corresponds to a scalar field and will be further explicated in chapter 2.

Interestingly enough, since pΛ = wΛ⇢Λ = −⇢Λ, the Λ/3 term in the right hand side of Eq. (1.18)
can also be written −/6(⇢Λ+3pΛ). In the same manner, since pK = −⇢K/3, adding a −/6(⇢K+
3pK) = 0 to the right hand side of Eq. (1.18) does not change it, so that similarly to Eq. (1.28),
the Raychaudhuri equation can be written as

ä

a
= −

6
[⇢matter + ⇢Λ + ⇢K + 3 (pmatter + pΛ + pK)] = −

6
(⇢T + 3pT) , (1.29)

where pT denotes the “total” pressure. This is why, as far as the two dynamical equations (1.17)
and (1.18) are concerned, the curvature can be viewed as an ideal fluid constituent with equation

5This should not come as a surprise since the conservation relation rµT
µν = 0 is invariant under the redefinition

Tµν ! Tµν + Λgµν . This is the reason why a cosmological constant can actually be thought of as being part
of the matter side of the Einstein equations.
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Chapter 1. The Cosmological Standard Model

of state parameter wK = −1/3 and the cosmological constant can be viewed as an ideal fluid
constituent with equation of state parameter wΛ = −1.

If the scale factor a evolves monotonously with time, the right hand side of the Friedmann
equation (1.28) soon gets dominated by a single fluid (the one with the smallest w if space
expands, or the one with the largest w if space contracts). In this limit, it can be integrated,
leading to

a (t) =

8

>

>

>

<

>

>

>

:

ain



1± 3

2
(1 + w)

r

⇢in
3

t− tin
MPl

]

2
3(1+w)

if w 6= −1

ain exp

✓

±
r

⇢in
3

t− tin
MPl

◆

if w = −1

, (1.30)

where ain and tin are two integration constants. The sign ± depends on whether space is
expanding (plus sign, H > 0) or contracting (minus sign, H < 0). In what follows, only the case
of an expanding space will be considered. The ⇢(a) shape (1.27) and the a(t) shape (1.30) are
also given in table 1.1 for the fluids mentioned so far.

Finally, it is interesting to notice that the conservation equation (1.16) can also be integrated
when the Universe is made of a collection of ideal independent fluids with equations of state
wi = pi/⇢i. In this case indeed, the conservation equation gives rise to

X

i

[⇢̇i + 3H (1 + wi) ⇢i] = 0 . (1.31)

One of the solutions is of course when all the terms of the above sum vanish. Physically, this
corresponds to a situation of non interacting independent fluids, where there is no energy transfer
from one fluid to another. Obviously, in this case the scaling solution (1.27) applies for all the
fluids, and the total energy density is given by

⇢T =
X

i

⇢ini

✓

a

ain

◆−3(1+wi)

. (1.32)

Unfortunately however, in this case the Friedmann equation H2 = ⇢T/3 cannot be integrated
analytically.

1.2. The Present Composition of the Universe

Thanks to Eq. (1.32), we now know how the energy density of each constituent of the Universe
evolves with time, at least provided its equation of state parameter is constant. Therefore, up
to potential energy transfer between constituents, it is enough to know the energy densities at
a single time (most conveniently, now) to derive their value at any other time. This is why we
now discuss the present composition of the Universe.

To this end, we first define the critical density ⇢crit with respect to the Hubble parameter,

⇢crit =
3


H2 . (1.33)

The total energy density ⇢tot is the sum of all contributions but the curvature one, ⇢tot = ⇢T−⇢K.
If one writes ⇢tot =

P

i ⇢i, each part ⇢i stands for an ideal fluid i with its own equation of state
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1.2. The Present Composition of the Universe

Figure 1.4.: Current Energy Composition of the Universe.

parameter wi. The dimensionless quantities Ωi = ⇢i/⇢crit then allow to re-write the Friedmann
equation (1.28) simply as

Ωtot =
X

i

Ωi = 1− ΩK , (1.34)

where we stress again that the curvature term (which, contrary to the others, can be either
positive or negative) is treated separately. In the present Universe, the components contributing
to this relation have the following weights.6

Radiation

Most of the photons present in the Universe belong to the Cosmic Microwave Background, see

section 1.3.3. They represent a tiny fraction of ⇢tot, with [15] Ω
(0)
rad ⇡ 9.3⇥ 10−5.

Baryonic Matter

The contribution from ordinary matter (i.e. the one we find in atoms, nuclei, etc.) to Ωtot

is dominated by cold baryons (strongly interacting composite subatomic particles made up of
three quarks) which are much heavier than leptons (elementary spin 1/2 particles that do not
undergo strong interaction, such as electrons or neutrinos). However, they only amount to [15]

Ω
(0)
b ⇡ 0.049.

Nonbaryonic (or “Dark”) Matter

In order to consistently explain many observational facts, ranging from galaxy rotation curves
and large scale structure formation to the CMB statistics, it is common to postulate the existence
of another non-relativistic matter component in the Universe, with w = 0 as well, referred to as

“dark matter”. Its current contribution is [15] Ω
(0)
dm ⇡ 0.268 and therefore, it strongly dominates

over ordinary matter. The nature of dark matter is obviously the subject of active study.

6All quantities referring to their current (present-day) value are designated by a subscript (or occasionally a
superscript) “0” or “(0)”.
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Chapter 1. The Cosmological Standard Model

Curvature

When K = 0, the Universe is globally flat. If K = ±1 however (K = 1 corresponds to a
closed universe while K = −1 corresponds to an infinite universe), there should be a curvature
component in the current Universe energy budget. However, it has not been detected yet, and all

the observations made so far are still consistent with Ω
(0)
K ' 0. The current constraints give [15]

100Ω
(0)
K = −0.10+0.62

−0.65 at 95% confidence level.

Dark Energy

Evidently, after summing over radiation, baryonic and non-baryonic matter, the bulk part of
the Universe’s energy density is still missing. Together with evidence from a recent acceleration
in the expansion of the Universe, this motivates the introduction of a missing fluid named “dark
energy”, with an equation of state parameter w ' −1. This is why the cosmological constant Λ
(for which w = −1 exactly) is one of the candidates for dark energy, even if as for dark matter,
the nature of dark energy is the subject of active study (for a nice review, see Ref. [42]). It

accounts for the major contribution to Ω
(0)
tot, i.e. [15] Ω

(0)
de ⇡ 0.683 .

The values mentioned here are given in table 1.2. The relative contributions of these constituents
is also displayed in Fig. 1.4. One can see that the Universe is currently dominated by fluids the
physical nature of which is still not well understood (dark matter and dark energy). This gives
us an idea of the theoretical effort still needed to build a complete and standard description of
cosmology.

1.3. The History of the Universe: the Hot Big Bang Model

In the previous section, we have stated the current values of the energy fractions Ω
(0)
i for the

Universe main components. Combined with the dynamical considerations of section 1.1.2, this
enables us to now infer the main lines of the history of the Universe.

1.3.1. Dominant Constituant

Plugging the previously given values for Ω
(0)
i in Eq. (1.32), ⇢tot/⇢cri =

P

iΩ
(0)
i (a/a0)

−3(1+wi),
allows us to discuss the way ⇢tot varies with a. The result is displayed in the left panel of
Fig. 1.5. The black dashed line stands for the total sum, while the coloured lines follow each
of its components. Because of the different scalings with a, each component of the Universe
dominates its content at a different epoch (called “eras” in what follows).

The Universe is currently dominated by dark energy which means that ⇢tot ' constant. Since
cold matter ⇢mat ⌘ ⇢dm+ ⇢b scales as a−3, its contribution increases when moving backwards in
time and becomes larger than the one of dark energy at some point aacc defined by ⇢mat (aacc) =

⇢de (aacc), i.e. aacc/a0 =
h

Ω
(0)
mat/Ω

(0)
de

i1/3
. Here, the subscript “acc” stands for the onset of the

dark energy phase.7 When a < aacc, the Universe is dominated by cold matter and one has

7One should note that contrary to what the notation may suggest, acceleration of the expansion does not begin
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1.3. The History of the Universe: the Hot Big Bang Model

Figure 1.5.: Left panel: energy density (1.32) of the Universe constituents [scaled by the current

critical density ⇢
(0)
cri ] as a function of the scale factor a. The black dashed line stands

for the sum of all contributions. The Universe history is made of a radiation era
(a < aeq), followed by a matter era (aeq < a < aacc) and more recently a cosmological
constant era (a > aacc). Right panel: scale factor a as a function of cosmic time
t. The black line corresponds to the numerical integration of Eq. (1.42), and the
coloured lines stand for the piecewise approximated solution (1.38). Both panels

make use of Ω
(0)
K = 0 and the values of Ω

(0)
i recalled in table 1.2, and dark energy is

described by means of a cosmological constant (wde = wΛ = −1.)

⇢tot / a−3 and a / t2/3, see Eq. (1.30).

It can be more convenient to label time t with the redshift z of a photon emitted at time t and
reaching its observer now, defined in Eq. (1.8) as

1 + z =
a0
a
. (1.35)

With this definition, the transition redshift between matter and dark energy eras is given by

zacc =

"

Ω
(0)
de

Ω
(0)
mat

#1/3

− 1 . (1.36)

With the values of Ω
(0)
i recalled in table 1.2, one obtains zacc ' 0.29.

Then, since radiation decays faster (⇢rad / 1/a4) than matter, its contribution with respect to
matter increases when moving backwards in time. Therefore, it dominates the Universe content
when a < aeq, where aeq is defined by ⇢mat (aeq) = ⇢rad (aeq), giving rise to

zeq =
Ω
(0)
mat

Ω
(0)
rad

− 1 . (1.37)

at aacc exactly, since this occurs slightly before when ⇢de = ⇢mat/2.
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Chapter 1. The Cosmological Standard Model

Figure 1.6.: Age of a flat universe as a function of zeq and zacc. The displayed value correspond
to a numerical integration of Eq. (1.43).

With the values of Ω
(0)
i recalled in table 1.2, one obtains zeq ' 3402. Here, the subscript “eq”

stands for “equality” between matter and radiation. When a < aeq (or equivalently z > zeq),
the Universe is dominated by radiation, ⇢tot / a−4 and a / t1/2.

To conclude, the Universe history is made of three main phases: a radiation era for z > zeq
during which ⇢tot / 1/a4 and a / t1/2, a matter era for zacc < z < zeq during which ⇢tot / 1/a3

and a / t2/3, and a dark energy era for z < zacc during which ⇢tot ' constant and a / eHt.
These three eras can clearly be seen on the left panel of Fig. 1.5. In this discussion, the role
played by curvature has not been included. Indeed, since ⇢K decays slower than, say, ⇢mat,

⇢
(0)
K ⌧ ⇢

(0)
mat implies that this inequality holds at any previous time, and curvature can never

have dominated the Universe content. This is why in Fig. 1.5 and in this section 1.3, we consider

a flat universe for which Ω
(0)
K = 0.

1.3.2. Age of the Universe

When the Universe is dominated by an ideal fluid, the a(t) profile has been derived in Eq. (1.30).
Neglecting the transition phases between the three above mentioned eras (during which there
are two equally important main constituents), we can therefore derive an approximated piece-
wise form for a(t) spanning the whole Universe history. The integration constants ⇢in and tin
appearing in Eq. (1.30) can be set by requiring continuity of a and ȧ at the transition times (so
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1.3. The History of the Universe: the Hot Big Bang Model

that H is continuous), and one obtains

a(t)

a0
'

8

>

>

>

>

<

>

>

>

>

:

exp [H0 (t− t0)] if t > tacc

1
1+zacc

⇥

1 + 3
2H0 (t− tacc)

⇤2/3
if teq < t < tacc

1
1+zeq



1 + 2
⇣

1+zeq
1+zacc

⌘3/2
H0 (t− teq)

]1/2

if tBB < t < teq

. (1.38)

Here, tacc is the transition time between the matter era and the dark energy era and teq is the
transition time between the radiation era and the matter era. They are such that

H0(t0 − tacc) = ln (1 + zacc) , (1.39)

H0(tacc − teq) =
2

3
− 2

3

✓

1 + zacc
1 + zeq

◆3/2

. (1.40)

The piecewise function a(t) defined by Eq. (1.38) is displayed in the right panel of Fig. 1.5
(coloured lines, each colour corresponds to a different era). It is interesting to notice that when
moving backwards in time, a goes to 0 in a finite amount of time. The corresponding singularity
is called the Big Bang. Looking at Eq. (1.38), it occurs at the time tBB given by

t0 − tBB ' H−1
0

"

2

3
+ ln (1 + zacc)−

1

6

✓

1 + zacc
1 + zeq

◆3/2
#

. (1.41)

One can see that as mentioned in section 1.1.1, the age of the Universe is of the order of the
Hubble time H−1

0 . More precisely, with the values given in table 1.2, one obtains t0 − tBB '
0.92H−1

0 ' 1.33⇥ 1010 year.

Obviously, the Friedmann equation (1.28) can also be solved exactly, that is the integral

t− t0 = H−1
0

Z a/a0

1

d (ã/a0)
r

P

iΩ
(0)
i

⇣

ã
a0

⌘−1−3wi

(1.42)

can be computed numerically. The result is displayed with the black line in the right panel of
Fig. 1.5. The matching with the piecewise approximation is fairly good. With the parameter
values recalled in table 1.2, this leads to a slightly different value for the age of the Universe, that
is t0 − tBB ' 0.95H−1

0 ' 1.37 ⇥ 1010 year. Actually, since the approximated expression (1.41)
for the age of the Universe is given in terms of zeq and zacc, it can be useful to express the
integral (1.42) in terms of these two variables only. One obtains for the age of the Universe

t0 − tBB = H−1
0

s

1 +
1

1 + zeq
+ (1 + zacc)

3 ⇥

Z 1

0
dz



(1 + z)5 +
1

1 + zeq
(1 + z)6 + (1 + zacc)

3 (1 + z)2
]−1/2

. (1.43)

One can numerically check that Eqs. (1.41) and (1.43) give similar results as soon as zeq > zacc,
and that the age of the Universe increases only mildly with zeq, and more notably with zacc.
The integral (1.43) is displayed in Fig. 1.6 as a function of zeq and zacc.
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Chapter 1. The Cosmological Standard Model

Figure 1.7.: Main events in the Cosmological Standard Scenario.

1.3.3. A Brief Cosmological History

The cosmological redshift (1.8) gives a rule for the behaviour of a black-body spectrum of
radiation with temperature Tγ . Indeed, since all photons redshift as exactly the same rate
λ / a−1, a system which starts out as a black-body stays as a black-body, with a temperature
that decreases with expansion,

Tγ / a−1 . (1.44)

Therefore, when one goes backwards in time during the radiation era, temperature increases as
1/a. In particular, this means that the initial singularity is also a point of infinite temperature.
This leads us to the standard hot Big Bang picture of the Universe: a cosmological singularity
at finite time in the past, followed by a hot, radiation dominated expansion, during which the
Universe gradually cools down as T / a−1 and the radiation dilutes, followed by a period of
matter dominated expansion during which galaxies, stars and planets form. Finally, the vacuum
energy inevitably dominates and the Universe enters a state of exponential expansion.

This simple picture allows us to infer the presence of a few notable events that we now briefly
recap, and that are summarized in Fig. 1.7 with orders of magnitude about time, energy and
temperature at which these events occur. As one goes backwards in time, one can check that
energy or temperature increases.

Inflation takes place at t . 10−35 s and is the object of section 1.4 and chapter 2 (in this section,
times are given as elapsed since the initial singularity). This is why we start out our description
afterwards, when the Universe is made of a hot plasma containing the fundamental particles of
the standard model, at t ⇠ 10−35 s.

At t ⇠ 10−11 s occurs the electroweak phase transition which breaks the SU(2)⇥U(1) symmetry
of the electroweak field into the U(1) symmetry of the present day electromagnetic field [43,
44, 45, 46, 47, 48, 49]. This transition may be important to understanding the asymmetry
between the amount of matter and antimatter in the present Universe through a process of
baryogenesis [50, 51, 52, 53, 54]. It occurs at the electroweak scale which is often taken to be at
the Higgs vev, around 246 GeV.

In the same manner, around t ⇠ 10−6 s, a phase transition (associated with chiral symmetry
breaking) occurs that converts a plasma of free quarks and gluons into hadrons [55, 56, 57, 58,
59, 60]. This quark-hadron transition may play an important role in the generation of primordial
magnetic fields [61]. It may also give rise to important baryon number inhomogeneities which can
affect the distribution of light element abundances from primordial Big Bang nucleosynthesis [62]
(see below). It occurs when the temperature drops below the rest energy of nucleons, around
938 MeV.

18



1.3. The History of the Universe: the Hot Big Bang Model

Figure 1.8.: Big Bang Nucleosynthesis. Light elements abundances (relative to hydrogen) as a
function of the density of ordinary matter Ωb and of its density relative to photons
Ωb/Ωrad at time of nucleosynthesis. The WMAP satellite has been able to directly
measure this ordinary matter density and found a value [63] of 4.6%(±0.2%), in-
dicated by the vertical red line. This leads to predicted abundances shown by the
circles in the graph, which are in good agreement with observed abundances. Image

Credit: NASA/WMAP101087.

From there, nuclear fusion begins at t ⇠ 0.01 s and big bang nucleosynthesis proceeds at t ⇠ 3
min. This phase is when light elements (mostly H, D, He, Li and Be) are formed [64, 65, 66, 67].
Reproducing the observed abundances of elements from nuclear physics calculations places tight
constraints on the environment it took place in [68, 69, 70, 71, 72, 73, 74, 75]. For example,
in Fig. 1.8 are displayed the abundances of early produced light elements as a function of
the density of ordinary matter relative to photons, Ωb/Ωrad. One can see that measures of
elements abundances allow to set tight constraints on this ratio, and conversely. Nucleosynthesis
begins at temperatures of around 10 MeV (which is the order of magnitude of nuclear binding
energies) and ends at temperatures below 100 keV. The corresponding time interval is from a
few tenths of a second to up to 103 seconds. Heavier elements are only formed later through
stellar nucleosynthesis in evolving and exploding stars.

The Universe keeps on cooling down, until it reaches the point where charged electrons and
protons become bound to form electrically neutral hydrogen atoms. This phase is often called
“recombination” (although nuclei and electrons have never combined before). Since the photon-
atom cross section (the Rayleigh cross-section) is much smaller than the photon-electron cross-
section (Thomson cross-section), the Universe becomes transparent shortly after when photons
decouple from matter (photon decoupling) and travel freely in the Universe. The associated
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Figure 1.9.: Cosmic Microwave Background temperature fluctuations, as seen by the Planck
satellite [76]. Colours encode temperature deviations from the mean temperature
(blue points are colder whereas red points are hotter). Image Credit: Planck Collaboration.

relic radiation is called cosmic microwave background (CMB) and is the oldest photograph of
the Universe one can get [77]. Its emission occurs at energies around 1 eV, at t ⇠500,000 y.
It reaches us today with the same shape of temperature distribution, i.e. a perfect black-body
spectrum, with its central temperature redshifted by the amount of expansion O

(

103
)

that has
occurred since then, to reach the average value TCMB = 2.725 K. This temperature is the same
for all direction in the sky, up to tiny fluctuations of the order 10−5. This tells us that at
recombination time, the Universe is homogeneous and isotropic on all scales up to the present
horizon (see section 1.4.1) to at least one part in 100,000. The statistics of the deviations
from homogeneity of this radiation is a key prediction of the theory of inflation that we discuss
in chapter 2. For illustrative purpose, the spatial map of the CMB temperature fluctuations
measured by the Planck satellite is displayed in Fig. 1.9.

Galaxies then start to form, and inside them objects energetic enough to ionize neutral hydrogen.
This is the so-called reionization epoch [78, 79, 80, 81]. As these objects form and radiate energy,
the Universe indeed goes from being neutral back to being an ionized plasma, between 150 million
and one billion years after the Big Bang. Compared with before recombination however, matter
is much more diluted because of the expansion of the Universe, and scattering interactions are
much less frequent than at this time. This is why the subsequent Universe, full of low density
ionized hydrogen, remains transparent, as is the case today.

At t ⇠ 9 billion years, dark energy starts to dominate and the expansion accelerates [84, 85].
First stellar systems form, and large scale structures continue to develop until today. Large
scale structures constitute another observational pillar of modern cosmology, since the way they
develop is related to the content of the Universe, the physical nature of its dark sector, the
underlying theory of gravitation, and the initial cosmological perturbations they start from. For
example, in Fig. 1.10 is displayed the result of simulated dark matter distributions for different
cosmological models. The left panel is when structures develop in the standard cosmology
described so far, the middle panel is when no dark energy is introduced in the model (Ωde = 0),
and the right panel is when warm dark matter (i.e. such that wde > 0) is used instead of cold
dark matter. One can see that the features of the structures are different. For example, when
no dark energy is present, the Universe expansion does not accelerate at late times, which allows
faster structure formation. In this manner, measuring the distribution of matter around us
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Figure 1.10.: Simulated dark matter distributions for different cosmological models. The colours
encode velocities. Left panel: standard cosmological model. Middle panel: without
dark energy (Ωm = 1, ΩΛ = 0, h = 0.7). Right panel: with warm (instead of cold)
dark matter in form of a sterile neutrino. Produced with the MC2 code [82] run
over a small simulation [containing 323 particles, with a box size of (32Mpc/h)3].
Image Credit: Ref. [83].

and understanding, notably by the means of numerical simulations and statistical tools, how it
depends on the physical properties of our Universe, is a way to test these properties in the large
scales regime.

1.4. The Big Bang Model Problems and Inflation

Now that we have introduced the main aspects of the standard cosmological model, it is worth
mentionning that it raises unanswered questions, known as the hot big bang model problems.
The horizon problem and the flatness problem deal with the fact that, interpreted within the
standard model, observations lead to the conclusion that the Universe must have been extremely
flat at early times, and homogeneous even over causally disconnected physical scales. They are
not definite impossibility problems, but still serious fine-tuning issues. The monopole problem
deals with the density of topological defects arising from symmetry breaking in the early Uni-
verse. Described in the standard model, these defects should be well visible at present time,
which is in contradiction with experimental investigation for them. In this section, we describe
in details these three problems, and we show that even if very different in nature, they can all
be solved by the introduction of a phase of accelerated expansion in the early Universe.

1.4.1. The Horizon Problem

One of the properties of the above described cosmology is that it is endowed with a causal horizon,
i.e. a frontier that separates observable events from non observable ones. Said differently, the set
of events causally connected to a reference point in space-time only form a bounded set. Since
no physical process can act on scales larger than the horizon, we typically expect the Universe
to be strongly inhomogeneous on those scales.

However, as we shall now see, within the cosmological scenario of the standard hot big bang
model, the last scattering surface (with respect to us) spans over several causally disconnected
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pieces of space-time, that is, the size of the cosmological horizon at time of recombination is
smaller than the diameter of the last scattering surface. The last scattering surface should
therefore exhibit strong deviations from homogeneity, which is not the case. In this section, we
thus calculate the size of the cosmological horizon [86, 87] in a FLRW space-time, and express
the angular distance of the horizon at time of recombination, as seen by a current observer on
Earth. For the reasons mentioned at the end of section 1.3.1, namely the fact that curvature can
never have dominated the Universe content, we consider the case of a flat universe (K = 0). We
take the origin of the r coordinate to be the location of Earth, i.e. “our” comoving coordinate
is r = 0.

1.4.1.1. Cosmological Horizon

Let us consider a photon emitted at tem and rem and traveling towards us (d✓ = dφ = 0). Its
trajectory is given by Eq. (1.5), that is

r (t) = rem −
Z t

tem

dt̃

a
(

t̃
) . (1.45)

At time t, the physical distance (or “proper” distance) between the photon and the origin is
then given by dP(t) = a(t)r(t). The horizon is defined in the following way. If the photon is
received at (or before) time trec, the horizon at time trec is the proper distance to the furthest
point the photon can have been sent from. Clearly, this distance is maximized if the photon was
emitted at the earliest possible time, that is tem = tBB, and if it is received at the latest allowed
time trec, that is r (trec) = 0. When plugging these two relations in Eq. (1.45), one obtains
rem =

R trec
tBB

dt̃/a(t̃). By definition, the size of the horizon dH at time trec is then given by

dH (trec) = a (trec) rem = a (trec)

Z trec

tBB

dt

a (t)
. (1.46)

If one replaces trec by the time of recombination tlss, one obtains the horizon size at the last
scattering surface emission time, dH (tlss).

1.4.1.2. Angular Distance to dH (tlss)

We now move on to compute the angular distance of the horizon at time of recombination, as
seen by a current observer on Earth. This quantity ∆ΩdH (t0) can be expressed as follows. The
last scattering surface is an instantaneous sphere of constant radius and therefore, within the last
scattering surface, dr = dt = 0. The FLRW metric then takes the form dP = a(tlss)rlssdΩ, where
dΩ2 = d✓2+sin2 ✓dφ2. Therefore, the angular extension of the horizon at time of recombination
reads

∆ΩdH (t0) =
dH (tlss)

a (tlss) rlss
. (1.47)

It only remains to compute rlss, which can be done using the same procedure as before. Indeed,
applying Eq. (1.45) between tem = tlss and t0, r(t0) = 0 leads to rlss =

R t0
tlss

dt/a(t). Together
with Eq. (1.46) for trec = tlss, one obtains

∆ΩdH (t0) =

Z tlss

tBB

dt

a(t)
Z t0

tlss

dt

a(t)

. (1.48)
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1.4.1.3. Formulation of the Problem

Let us now evaluate this quantity with the cosmological model of section 1.3, made of a radiation
era, a matter era and a dark energy era. Recombination occurs during the matter era (zlss '
1090, see Ref. [15]), so that tBB < teq < tlss < tacc. Therefore, thanks to Eq. (1.38), tlss can be
expressed in terms of the recombination redshift zlss through H0(t0− tlss) ' 2/3+ ln (1 + zacc)−
2/3 [(1 + zacc)/(1 + zlss)]

3/2. Another consequence of this series of events is that the integrals
appearing in Eq. (1.48) can be split according to

R tlss
tBB

=
R teq
tBB

+
R tlss
teq

and
R t0
tlss

=
R tacc
tlss

+
R t0
tacc

.

Using the piecewise approximation (1.38) for the a(t) profile, each of these integrals can be
computed. One obtains

a0H0

Z teq

tBB

dt

a
' (1 + zacc)

3/2

p

1 + zeq
, a0H0

Z tlss

teq

dt

a
' 2 (1 + zacc)

3/2

 

1p
1 + zlss

− 1
p

1 + zeq

!

,

(1.49)

a0H0

Z t0

tacc

dt

a
' zacc , a0H0

Z tacc

tlss

dt

a
' 2 (1 + zacc)

3/2

✓

1p
1 + zacc

− 1p
1 + zlss

◆

.

These expressions allow to express ∆ΩdH (t0) in terms of zeq, zlss and zacc according to

∆ΩdH (t0) =

2p
1 + zlss

− 1
p

1 + zeq
2 + 3zacc

(1 + zacc)
3/2

− 2p
1 + zlss

. (1.50)

With the parameter values recalled in table 1.2, one obtains ∆ΩdH (t0) ' 0.023 rad ' 1.31◦. For
comparison purpose, let us remind that the angular diameter of the moon seen from the Earth
is ' 0.5◦.

Beyond the piecewise approximated form of a(t), like for the age of the Universe in section 1.3.2,
an exact calculation can also be carried out using the relation

Z t2

t1

dt

a(t)
=

1

H0a0

Z z1

z2

dz
q

P

iΩ
(0)
i (1 + z)3(1+wi)

. (1.51)

Such an integral can be computed numerically, and one obtains

∆ΩdH (t0) =

R1
zlss

dz/

q

P

iΩ
(0)
i (1 + z)3(1+wi)

R zlss
0 dz/

q

P

iΩ
(0)
i (1 + z)3(1+wi)

' 0.0054 rad ' 0.3◦ (1.52)

which is of the same order of magnitude as (but even smaller than) the above approximated
result, and which represents ⇠ 1/450,000 of the full sky coverage.

As a consequence, one expects the last scattering surface to be made of 450,000 patches whose
typical physical properties are a priori completely different. This is in contradiction with obser-
vations which establish that up to tiny fluctuations of the order δT/T ' 10−5, the CMB radiation
is extremely homogeneous and isotropic across the last scattering surface. This paradox is called
the horizon problem [88, 89].

A solution to this problem is of course to assume that the initial conditions were identical in all
the causally disconnected patches, but it seems very difficult to justify. Another solution is to
add a new phase to the standard scenario.
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1.4.1.4. Inflation as a Solution to the Horizon Problem

Let us assume that the epoch dominated by radiation can be interrupted during the period
tin < t < tend, or equivalently zend < z < zin. During this interval, we assume that the Universe
is dominated by an unknown ideal fluid X with an equation of state parameter wX . We now
wonder whether there are values of zin, zend and wX such that the horizon problem can be
solved in this new scenario. Let us thus redo the horizon diameter distance calculation in this
new setup.

The piecewise function a(t) now has a new piece, and is given by

a(t)

a0
'

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

exp [H0 (t− t0)] if t > tacc

1
1+zacc

⇥

1 + 3
2H0 (t− tacc)
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(1.53)
where the expressions given for tacc and teq in Eqs. (1.39) and (1.40) are still valid, and where
tend, tin and t0BB are such that
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In this new scenario, the integral decomposition of the numerator in Eq. (1.48) now reads
R tlss
t0BB

=
R tin
t0BB

+
R tend
tin

+
R teq
tend

+
R tlss
teq

, while the integral decomposition of the denominator
R t0
tlss

=
R tacc
tlss

+
R t0
tacc

is unchanged. The integrals
R tlss
teq

,
R tacc
tlss

and
R t0
tacc

have already been calculated in

Eq. (1.49) and their expression remains valid. On the other hand, the three new integrals
R tin
t0BB

,
R tend
tin

and
R teq
tend

, need to be computed. Using the piecewise approximation (1.53), they are given
by
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a
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p
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.
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We can now express the angular extension of the horizon at time of recombination, which reads

∆Ω0
dH

(t0) =

2p
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− 1
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1 + zeq
+

p
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(1.58)

= ∆ΩdH (t0) +
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(1 + zacc)
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2
(1+3wX)N

i

, (1.59)

where we have defined the number of e-folds of the new phase N ⌘ ln(aend/ain) = ln 1+zin
1+zend

and
where in the second line, the standard result (1.52) has been singled out. A first remark is that
when wX = 1/3 (i.e. the new phase cannot be distinguished from the radiation era in which
it intervenes) or when N = 0 (i.e. the new phase does not exist), one re-obtains Eq. (1.50) as
expected. However, when this new phase is switched on, an extra term appears in the angular
size of the horizon that can make it much larger, provided

wX < −1/3 . (1.60)

Indeed, if 1 + 3wX > 0, then the argument of the exponential term in Eq. (1.59) is negative
and the correction coming from the phase driven by the unknown fluid becomes negligible. If
1 + 3wX < 0 on the other hand, then the correction may be important enough to reach the full
sky coverage ∆ΩdH (t0) > 4⇡, depending of course on the number of e-folds N .

Let us give some numbers, for the values recalled in table 1.2. If zend = zGUT ' 1028 (where
“GUT” stands for the Grand Unification Theory breaking scale, see section 1.4.3), ∆ΩdH (t0) >
4⇡ when N > 125 for w = −2/3 and when N > 63 for w = −1. If zend = 1010, i.e. two orders of
magnitude above nucleosynthesis, ∆ΩdH (t0) > 4⇡ when N > 42 for w = −2/3 and when N > 21
for w = −1. Values of the minimum number of e-folds Nmin required to have ∆ΩdH > 4⇡ are
displayed in Fig. 1.11 as a function of wX and for a few values of zend.

To sum up this discussion and in order to get a clear formula that is easy to handle, one can
simplify Eq. (1.59) in the limit where zlss , 1 and zacc ⌧ 1. One obtains that the horizon
problem is solved provided wX < −1/3 and

N & − 2

1 + 3wX
ln

✓

4⇡zendp
zeq

◆

. (1.61)

One can check in Fig. 1.11 that this indeed provides a good approximation for the minimum
numbers of e-folds .

Finally, from Eq. (1.30), a / t
2

3(1+w) , one can see that the condition wX < −1/3 is equivalent to
requiring that the expansion of the Universe is accelerating, that is ä > 0. This is why the new
phase we have introduced in the cosmological standard history is called “inflation” [90, 91].

1.4.1.5. Heuristic Understanding: Conformal Diagrams

Let us try to understand more intuitively what happened. A heuristic way of understanding
why a phase of inflation can solve the horizon problem is by means of conformal diagrams. The
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Figure 1.11.: Minimum number of e-folds in order to obtain ∆ΩdH (t0) > 4⇡ from Eq. (1.59), as a
function of wX and for a few values of zend, with parameter values given in table 1.2
(coloured lines). The black dotted lines correspond to the approximation (1.61).

conformal time ⌘ is defined as

dt = ad⌘ , (1.62)

so that the flat FLRW metric is given by ds2 = a2(d⌘2 − dr2) (where angular coordinates are
omitted). In this time parameterization, null geodesics for the propagation of photons follow the
very simple trajectory d⌘ = dr. Therefore, the size of the horizon at time ⌘ is straightforwardly
given by

dH (⌘) = a(⌘) (⌘ − ⌘BB) . (1.63)

When the Universe is dominated by a single ideal fluid with equation of state parameter w, the
a(t) profile is given by Eq. (1.30), which, if one sets the origins of time tBB = 0, reads

a (t) = a0

✓

t

t0

◆
2

3(1+w)

. (1.64)

From here, integrating Eq. (1.62), one obtains

⌘ =
3

a0t0

1 + w

3w + 1

✓

t

t0

◆
3w+1
3(w+1)

, (1.65)

where we have set the origins of conformal times such that its current value is given by ⌘0 =
−3(a0t0)

−1(1 + w)/(3w + 1). The calculation of Eq. (1.63) now proceeds along two different
cases:

If w > −1/3, when t! 0, ⌘ ! 0 in Eq. (1.65), hence ⌘BB = 0 and the size of the horizon given
by Eq. (1.63) is finite, equal to dH = a⌘. This is why in this case, a horizon problem can occur.
This corresponds the left panel of Fig. 1.12.
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Figure 1.12.: Conformal diagrams. In the (⌘, r) plane, light propagates along straight lines. The
left panel corresponds to the standard Big Bang cosmology. The CMB at last
scattering consists of ⇠ 105 causally disconnected regions, that is regions the past
light cones of which do not intersect because at ⌘ = 0 lies an initial singularity. The
right panel corresponds to the inflationary cosmology. Inflation extends conformal
time to negative values, so that past light cones of any two points on the CMB
surface intersect (grey shaded area).

If w < −1/3, when t! 0, ⌘ ! −1 in Eq. (1.65), hence ⌘BB = −1 and the size of the horizon
given by Eq. (1.63) is infinite. This is the case displayed in the right panel of Fig. 1.12. The
singularity a = 0 is pushed to the infinite past ⌘ ! −1, because w < −1/3 allows ⌘ to reach
negative values. This is why in this case, there is no horizon problem. Actually when w < −1/3,
the scale factor blows up in the infinite future t ! 1 at ⌘ = 0. This is because in this case,
we assume a phase of inflation (w < −1/3) which lasts for ever. In practice, inflation ends at
some finite time −1 ⌧ ⌘end < 0 and the surface ⌘ = 0− corresponds to the end of inflation, as
displayed in Fig. 1.12.

This is why inflation succeeds in making the size of the horizon expand so much that it is suffi-
ciently large at time of recombination to explain the current homogeneity of the Universe [90].

1.4.2. The Flatness Problem

The flatness problem is also a fine-tuning problem that arises from the observational constraint
on 1 − Ωtot = ΩK. When Ωtot = 1 (or K = 0), the Universe is globally flat, at the border line
between a closed finite universe (Ωtot > 1, or K = 1) and an open, infinite universe (Ωtot < 1 or
K = −1). Since K is a constant, the sign of 1−Ωtot cannot change during the cosmic evolution.

Observational constraints put Ω
(0)
tot well close to 1, 100Ω

(0)
K = −0.10+0.62

−0.65 at 95% [15]. However,
Ωtot = 1 is an unstable equilibrium point. In order for Ωtot to fall within the given constraints
today, it had to be equal to 1 within an extremely high level of fine-tuning in the early Universe.
The flatness problem [92, 93] is the puzzle of explaining why the early Universe exhibits such
fine-tuning in the value of this parameter.
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1.4.2.1. Formulation of the Problem

From the definition (1.33) of ⇢cri and of the rescaled variables Ωi, the deviation from unity of
the total rescaled energy density is given by

1− Ωtot = ΩK =
1

1 +

P

Ωi

ΩK

. (1.66)

From table 1.1, let us remember that Ωrad / a−4 and ΩK / a−2. This is why, when evaluating
this quantity in the early Universe where radiation is the dominant constituent (

P

Ωi ' Ωrad),
one obtains

1− Ωtot '
1

1 +
Ω
(0)
rad

1− Ω
(0)
tot

(

a0
a

)2

' 1− Ω
(0)
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Ω
(0)
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✓

1

1 + z
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. (1.67)

If one takes
∣

∣

∣
Ω
(0)
K

∣

∣

∣
' 10−3 and Ω

(0)
rad ' 10−4 (according to the values given in section 1.2), one

obtains |1− Ωtot| ' 10−15 for z ' 1010 and |1− Ωtot| ' 10−55 for z = zGUT ' 1028. As a
consequence, one can see that the deviation from a flat universe |1− Ωtot| has to be fine-tuned
to a tiny value at early time in order to explain the current flatness of the Universe. This is the
so-called flatness problem [92, 93].

1.4.2.2. Inflation as a Solution to the Flatness Problem

As for the horizon problem, a possible explanation consists in adding a new phase which inter-
rupts the radiation epoch between two times tin and tend, and where the Universe content is
dominated by an ideal fluid X with equation of state wX . Let us calculate the initial devia-
tion from flatness |1− Ωtot| required in this new scenario, sketched by Eq. (1.53). Similarly to
Eq. (1.67), during this phase, one has

1− Ωend
tot =

1

1 +
Ωin
X

1− Ωin
tot

✓

aend
ain

◆−1−3wX
. (1.68)

The purpose of this new phase is that starting from a sizable value of 1−Ωin
tot, it should drive this

quantity to a tiny value, 1−Ωend
tot . Since aend/ain , 1, this is achieved provided −1− 3wX > 0,

that is wX < −1/3, exactly the same condition (1.60) as the one coming from the horizon
problem and characterizing an inflationary phase where the expansion is accelerating.

More precisely, let us calculate the minimum number of e-folds N = ln(aend/ain) required to

solve the flatness problem. Relating 1−Ωend
tot to 1−Ω

(0)
tot thanks to Eq. (1.67), it is straightforward

to write
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. (1.69)

To avoid initial fine-tuning of the Universe flatness, one takes Ωin
X / 1−Ωin

tot, so that the flatness
problem is solved provided
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Note that the similarity with Eq. (1.61) is striking. More precisely, from the values for Ω
(0)
i

given in table 1.2, the pre-factors in front of zend in the logarithms of Eqs. (1.61) and (1.70) are

such that 4⇡/
p
zeq ⇠

q

Ω
(0)
rad/(1− Ω

(0)
tot). Therefore, the values of Nmin displayed in Fig. 1.11 are

such that the flatness problem is also solved.

Let us try to understand more intuitively why it is so. The flatness problem arises because
curvature energy density decays slower than the one of matter or radiation. Therefore, if it is
small today, it must have been even smaller before. The only way to escape from this fine-
tuning issue is to have some phase during which the energy density decays even smaller than
curvature. Since wK = −1/3 (see table 1.1), this implies that this phase is driven by a new fluid
the equation of state parameter of which is such that wX < −1/3. When this new component
dominates the Universe content, curvature decays faster than this new fluid, and is therefore
dynamically driven to very small values. If the energy content of this new component X is then
transferred to radiation, curvature is automatically subdominant with respect to radiation at
the end of this new phase, in a sufficiently large extent provided the duration of inflation N is
large enough.

1.4.3. The Monopole Problem

In Grand Unified Theories [94, 95, 96] (GUT), local symmetry under some simple symmetry
group is spontaneously broken at an energy MGUT ' 1016 GeV to the gauge symmetry of the
Standard Model under the group SU(3)⇥SU(2)⇥U(1). In all such cases, the field that breaks
the symmetry can be left in twisted configurations that carry non-zero magnetic charge. These
topological glitches in the vacuum configuration of gauge fields are magnetic monopoles [97, 98].
Such monopoles are expected to be copiously produced in Grand Unified Theories at high
temperature [99, 100], and they should have persisted to the present day, to such an extent that
they would become the primary constituent of the Universe [101, 102]. Not only is that not the
case, but all searches for them have so far turned out fruitless, placing stringent limits on the
density of relic magnetic monopoles in the Universe [103, 104, 105, 106, 107, 108]. These searches
show that at present time, monopoles must be typically fewer than ⇠ 10−30 per nucleon.

1.4.3.1. Formulation of the Problem

Let us estimate the current monopole density, in the standard cosmological model sketched
in Eq. (1.38). At time tGUT of GUT phase transition, the field that dynamically realizes the
symmetry breaking cannot be correlated at length larger than the causal horizon. Therefore,
when created, the mean distance Dmon between two neighbor monopoles must be smaller than
dH(tGUT). If monopoles do not find each other to annihilate, this distance is stretched to the

currentD
(0)
mon = a0/aGUT dH(tGUT). Using Eq. (1.46) to express the horizon distance, one obtains

D(0)
mon =

Z tGUT

tBB

dt

a/a0
. (1.71)

Making use of Eq. (1.38), this integral can easily be calculated (since the GUT phase transition
occurs at energies larger than the one at equivalence, one has tBB < tGUT < teq), and one obtains

D(0)
mon =

p

1 + zeq (1 + zacc)
3/2

1 + zGUT
H−1

0 . (1.72)
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In passing, the value zGUT ⇠ 1028 that has been used so far and that we need here one more
time can now be better justified. Indeed, GUT phase transition occurs when ⇢ ⇠M4

GUT, hence
HGUT ⇠ M2

GUT/MPl ⇠ 1013 GeV. During the radiation phase, the time behaviour of H = ȧ/a
can be calculated from Eq. (1.38), hence tGUT can be expressed in terms of HGUT. Using again
Eq. (1.38), one then has aGUT in terms of HGUT and in the limit where zGUT > zeq , 1, this
gives rise to

zGUT ⇠ z1/4eq

r

HGUT

H0
⇠ 1028 . (1.73)

This indeed corresponds to the value mentioned before.

Back to the current monopole density calculation, together with the values of zeq and zacc recalled

in table 1.2, this allows us to evaluate Eq. (1.72) and one obtains D
(0)
mon ' 1 m. Therefore, there

should be abount one magnetic monopole per cube meter in our vicinity neighborhood.

In order to better understand this order of magnitude, let us calculate the corresponding rescaled

monopole density Ω
(0)
mon. If the mass of each monopole is of the order MGUT, and remembering

that the critical energy density is given by Eq. (1.33), this rescaled quantity is given by

Ω(0)
mon =

M

3H2
0M

2
Pl

h

D
(0)
mon

i3 ' 1015 . (1.74)

Magnetic monopoles should therefore be the dominant constituent of our current Universe,
which is in obvious contradiction with observations. To estimate how far we are from the
observational constraints mentioned above (namely less than a monopole per 1030 nucleon), one
can also calculate the ratio of monopole and nucleon number densities ⌘,

⌘
(0)
mon

⌘
(0)
nucl

=
Ω
(0)
mon

Ω
(0)
m

mnucl

MGUT
' 5 , (1.75)

where we have assumed that visible cold matter is essentially made of nucleons, and where we
have taken the mass of nucleons to be of the order of mnucl ' 938 MeV. As a consequence, there
should be O(1) magnetic monopole per nucleon, while observations establish that there is less
than a monopole per 1030 nucleon. This is the so-called monopole problem. Obviously, since
magnetic monopoles are supposed to be produced at very high energy where particle physics
remains elusive, one can always imagine that the associated symmetry breakings do not occur.
However, another elegant solution is again to add a phase of inflation.

1.4.3.2. Inflation as a Solution to the Monopole Problem

If a phase of inflation is added after the GUT phase transition, one may hope to dilute monopoles
to such an extent that they would not be visible today. In this case, Eq. (1.71) still applies, but
the integral now has to be calculated with Eq. (1.53). Since the GUT phase transition occurs
before inflation, one has tBB < tGUT < tin and one obtains

D(0)
mon

0
=

p

1 + zeq (1 + zacc)
3/2

1 + zGUT
H−1

0 e(1−3wX)N
2 , (1.76)

where again, N is the amount of e-folds during inflation. Several comments are in order. First,
one notices that at first sight, the standard result (1.72) is only modified by the exponential
term. When wX = 1/3 or N = 0, as before, the standard result (1.72) is recovered. However, the
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value of zGUT is actually also modified since the derivation of Eq. (1.73) relies on the standard
scenario (1.38). Using this time the modified scheme (1.53) in the calculation of zGUT, one
obtains

zGUT ⇠ z1/4eq

r

HGUT

H0
e(1−3wX)N

4 . (1.77)

Here also, the standard result is modified by an exponential term, and zGUT actually also depends
on the number of e-folds realized during inflation. Plugging back this expression into Eq. (1.76),
one finally obtains

D(0)
mon ' z1/4eq

r

H0

HGUT
H−1

0 e(1−3wX)N
4 . (1.78)

From here, one can see that the condition on wX for the new phase to provide a possible solution
to the monopole problem is wX < 1/3. This condition is less stringent than the one arisen from
the horizon and flatness problems, wX < −1/3. Here, a phase of more rapid expansion than
the one driven by radiation is sufficient, and acceleration in itself is a priori not a necessary
condition. Obviously, this also depends on the number of inflationary e-folds N .

Let us see which typical numbers of e-folds are required. A first strong requirement would be
that there is no magnetic monopole in our entire observable Universe. Since we cannot see
beyond the last scattering surface, its size is given by dobs = a0rlss = a0

R t0
tlss

dt/a. This integral
can be computed making use of Eq. (1.53), and one obtains dobs ' 2/H0. This confirms that
as mentioned in section 1.1.1 the size of the observable Universe is of the order of the Hubble
length. Therefore, requiring that D

(0)
mon > dobs leads to

N >
2
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ln
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!

. (1.79)

With the values recalled in table 1.2 for zeq, HGUT and H0, one typically obtains N > 61 for
wX = −1 or N > 246 for wX = 0. A less strict requirement is just to meet the observational

constraint on ⌘
(0)
mon/⌘

(0)
nucl. This ratio can be calculated as in Eq. (1.75), and one obtains
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Using the same values as before together with ⌘
(0)
nucl/⌘

(0)
mon > 1030, this gives N > 24.5 for

wX = −1 or N > 98 for wX = 0.

A last consistency check remains to be done. Indeed, in order for a phase with w < 1/3 to solve
the monopole problem, its e-folds must be realized after the GUT scale transition and before,
say, the equivalence time. One should make sure that there is enough time between these two
times for this new phase to proceed, that is

1 + zin
1 + zend

<
1 + zGUT

1 + zeq
. (1.81)

The left hand side of the previous relation is simply given by eN , while zGUT appearing in the
right hand side depends on N through Eq. (1.77). This is why the previous relation translates
into a constraint on N itself, which reads

N <
2

3 (1 + wX)
ln

✓

HGUT

H0
z−3/4
eq

◆

. (1.82)
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Figure 1.13.: Number of inflationary e-folds required to solve the monopole problem, as a func-
tion of wX . The blue line stands for the minimum number of e-folds in order
to dilute the monopoles further than our observable Universe and corresponds to
Eq. (1.79). The green line stands for the minimum number of e-folds in order to
dilute the monopoles so that the experimental constraint on ⌘nucl/⌘mon is satisfied
and corresponds to Eq. (1.80). Finally, the red line stands for the maximum num-
ber of e-folds between the GUT phase transition and equivalence and corresponds
to Eq. (1.82). The shaded areas correspond to when both constraints N > Nmin

and N < Nmax are satisfied, the darker area being when the stricter constraint
on the presence of monopoles in our observable Universe is used. The parameter
values used here are the ones of table 1.2.

Obviously, a viable scenario is when Eqs. (1.79) and (1.82) [or Eqs. (1.80) and (1.82)] are satisfied
at the same time. Such bounding values of N are displayed in Fig. 1.13. The shaded area stands
for values of wX and N such that both constraints are simultaneously satisfied. Since the
maximal value for N given by Eq. (1.82) blows up when wX ! −1, it is always possible to solve
the monopole problem, provided wX is close enough to −1. More precisely, if the criterion (1.80)
is adopted, one obtains wX < −0.052, whereas if the criterion (1.79) is adopted, one obtains
wX < −0.34. It is remarkable that this last condition is very similar to the one wX < −1/3
that comes from the horizon and flatness problems. Therefore, even for the monopole problem,
an accelerating phase seems to be required.

32



1.A. FLRW Christoffel symbols, Einstein tensor and Geodesics

1.A. FLRW Christoffel symbols, Einstein tensor and Geodesics

In this appendix, we give the Christoffel symbols and the Ricci and Einstein tensors of the
FLRW metric, and comment on the geodesic equations in comoving coordinate. Starting from
the FLRW metric (1.1),

ds2 = gµ⌫dx
µdx⌫ = −dt2 + a2(t)



dr2

1−Kr2 + r2
(

d✓2 + sin2 ✓dφ2
)

]

, (1.83)

the Christoffel symbols are formally given by

Γ⇢
µ⌫ =

1

2
g⇢λ (@⌫gλµ + @µgλ⌫ − @λgµ⌫) . (1.84)

One can check that they are symmetrical in their lower indices, that is Γ⇢
µ⌫ = Γ⇢

⌫µ. After a
straightforward calculation, up to this symmetry, the only non vanishing Christoffel symbols of
the FLRW metric are given by

Γ0
11 =

aȧ

1−Kr2 , Γ0
22 = aȧr2 ,

Γ0
33 = aȧr2 sin2 ✓ , Γ1

11 =
Kr

1−Kr2 ,

Γ1
22 = −r

(

1−Kr2
)

, Γ1
33 = −r

(

1−Kr2
)

sin2 ✓ , (1.85)

Γ2
33 = − sin ✓ cos ✓ , Γ1

01 = Γ2
02 = Γ3

03 =
ȧ

a
,

Γ2
12 = Γ3

13 =
1

r
, Γ3

23 = cot ✓ ,

where index 0 is for time t, 1 is for r, 2 is for ✓ and 3 is for φ. The Ricci tensor is formally
expressed as

Rµ⌫ = 2Γ⇢
µ[⌫,⇢] + 2Γ⇢

λ[⇢Γ
λ
⌫]µ , (1.86)

where the brackets mean anti-symmetrization under the indices. From the Christoffel sym-
bols (1.85), one can check that its non-zero components are the diagonal ones, given by

R00 = −3
ä

a
, R11 =

aä+ 2ȧ2 + 2K
1−Kr2 ,

R22 = r2
(

aä+ 2ȧ2 + 2K
)

, R33 = r2
(

aä+ 2ȧ2 + 2K
)

sin2 ✓ . (1.87)

The Ricci curvature scalar is just the contraction of the Ricci tensor with the metric, R = gµ⌫Rµ⌫ ,
and is given by

R = 6

"

✓

ȧ

a

◆2

+
ä

a
+

K
a2

#

. (1.88)

Finally, the Einstein tensor Gµ⌫ = Rµ⌫ −R/2gµ⌫ has non vanishing components

G00 = 3

"
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ȧ

a

◆2

+
K
a2

#

, G11 = −
"

✓

ȧ

a

◆2

+ 2
ä

a
+

K
a2

#

a2

1−Kr2 ,

G22 = −
"

✓

ȧ

a

◆2

+ 2
ä

a
+

K
a2

#

a2r2 , G33 = −
"

✓

ȧ

a

◆2

+ 2
ä

a
+

K
a2

#

a2r2 sin2 ✓ . (1.89)

One can check that this matches the formula (1.14) given in section 1.1.1.3.
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Finally, it is interesting to say a few words about the geodesic equation

d2xµ

ds2
+ Γµ

⌫⇢

dx⌫

ds

dx⇢

ds
= 0 . (1.90)

Because the FLRW geometry is isotropic with respect to every point, it is always possible to
chose a local coordinate system such that a given geodesic initially has a purely radial part,
that is d✓/ds = dφ/ds = 0 at initial time. Then it is straightforward to see that the geodesic
equations for ✓ and φ [µ = 2 or 3 in Eq. (1.90)] imply that it remains so at any later time. In
this case, the geodesic equations for t and r are

d2t

ds2
+

aȧ

1−Kr2
✓

dr

ds

◆2

= 0 , (1.91)

d2r

ds2
+

Kr
1−Kr2

✓

dr

ds

◆2

+ 2
ȧ

a

dt

ds

dr

ds
= 0 . (1.92)

One can check that a static particle such that dt/ds = 1 and dr/dt = 0 is a solution of the above
system, which means that still particles in the comoving coordinate system are indeed solutions
of the geodesic equations. If one is interested in the more general trajectory r(t) associated with
this system, one can work out its solution as

dt

ds
=

"

1 +

✓

b0
a

◆2
#1/2

, (1.93)

dr

ds
=

p

1−Kr2 b0
a2
, (1.94)

where b0 is an integration constant that depends on initial conditions (for example, b0 = 0 for
still particles and b0 = 1 for photons). From here, the physical impulsion p can be obtained,

p

m
=

r

gij
dxi

ds

dxj

ds
=

ap
1−Kr2

dr

ds
=
b0
a
, (1.95)

which confirms the rule p / 1/a otherwise derived in section 1.1.1.2. More precisely, the solution
for dr/dt is given by

dr

dt
=
p

1−Kr2 b0
a2

"

1 +

✓

b0
a

◆2
#−1/2

, (1.96)

which means that as time proceeds and a increases (in an expanding universe), dr/dt / 1/a2 ! 0
for massive particles. Therefore, massive particles asymptotically come to rest relative to the
comoving coordinate system, as mentioned in section 1.1.1.2. More precisely, dr/dt / 1/a2

means that r reaches a finite value in the asymptotic future if a grows strictly faster than
a /

p
t. This is the case in a matter era, an inflationary era or a dark energy era, but not during

a radiation era where dr/dt! 0 but r ! 1 if K = 0 or −1 and r ! 1 if K = 1.

To be explicit, once the a(t) profile known [see for example Eq. (1.30)], one can calculate

r (t) = rin +

8

>

>

>

<

>

>

>

:

sin (I) if K = 1

I if K = 0

sinh (I) if K = −1

, (1.97)
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where I is given by

I = b0

Z t

tin

dt̃

a2

r

1 +
⇣

b0
a

⌘2
. (1.98)

Finally, let us mention that for massless particles (b0 = 1), Eq. (1.98) gives I =
R

dt/a, which
is in agreement with Eq. (1.5).

35



Chapter 1. The Cosmological Standard Model

1.B. Numerical Values of Cosmological Parameters

Physical Quantity Numerical Value

MPl 2.435⇥ 1018 GeV

H0 67.3 km/sec/Mpc

H−1
0 4.55⇥ 1017 sec

H−1
0 1.36⇥ 1026 m

wdm 0

wmat 0

wrad 1/3

wK −1/3

wΛ −1

Ω
(0)
rad 9.3⇥ 10−5

Ω
(0)
b 0.049

Ω
(0)
dm 0.268

Ω
(0)
de 0.683

|ΩK| . 10−3

zacc 0.29

zlss 1090

zeq 3402

zGUT (without inflation) 1028

MGUT 1016 GeV

HGUT 1013 GeV

Table 1.2.: Numerical values of cosmological parameters used in section 1.
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2. Cosmological Inflation

In this chapter, we review some aspects of cosmological inflation, the physical se-
tups it relies on, the predictions it makes and the fundamental issues it raises. Our
purpose is mainly to provide the reader with an understanding of the theoretical and
technical tools used in part II where the results obtained during this thesis are pre-
sented. This is why in this section, only a brief overview of the physics of inflation
is given, the various aspects of which are further detailed in a broad range of text-
books [109, 110, 111, 4, 112, 113, 7, 8].

In chapter 1, we reviewed the cornerstones of the cosmological hot big bang model and the
problems it raises. In particular, in section 1.4, we saw that a phase of inflation during which
the scale factor accelerates ä > 0 can solve the hot big bang problems if it occurs prior to
(or during) the radiation era [91, 114, 115, 116, 117, 118, 119]. However, we have not discussed
which kind of matter component can drive such a phase of inflation. From the the Raychaudhuri
equation (1.18), ä > 0 implies that ⇢+ 3p < 0, hence the pressure must necessarily be negative.
One therefore needs to find a physical system able to produce such a negative pressure.

The inflationary phase takes place at very high energy, typically between 103 and 1015 GeV [120].
At such high energies, field theory is the relevant framework to describe matter, and a natural
way to try and realize inflation is therefore to consider that a real scalar field φ (dubbed the
“inflaton” field) dominates the energy density budget of matter in the early Universe. More-
over, this assumption is compatible with the observed homogeneity, isotropy and flatness of the
early Universe. Quite remarkably, it turns out that if the potential V (φ) of this scalar field is
sufficiently flat dV/dφ⌧ V/MPl so that the field moves slowly, then the corresponding pressure
is negative. This is why it is believed that inflation is driven by one (or several) scalar field(s).
However, the physical nature of the inflaton and its relation with the standard model of particle
physics and its extensions is still unclear. This is not surprising since the inflationary mechanism
takes place at energy scales where particle physics remains elusive and has not been tested in
accelerators. This is why the shape of its potential is a priori not known except that is must be
sufficiently flat to support a phase of inflation.

Nonetheless, one of the great achievements of inflation is that, combined with quantum me-
chanics, it provides a convincing mechanism for the origin of the cosmological fluctuations, the
seeds of the CMB anisotropies and of the galaxies. Inflation predicts that their spectrum should
be almost scale invariant (i.e. equal power on all spatial scales) [121, 122, 123, 124, 125, 126,
127, 128, 129, 130], which is fully consistent with the observations. In passing, this part of
the scenario is particularly remarkable since it makes us of General Relativity and Quantum
Mechanics [131, 132, 133, 134, 135, 136, 137, 138, 139, 138], two theories that are notoriously
difficult to combine. In fact, inflation is probably the only case in physics where an effect based
on General Relativity and Quantum Mechanics leads to predictions that, given our present day
technological capabilities, can be tested experimentally. Given the confirmation of these pre-
dictions by observations and given the fact that, despite many efforts, inflation has not been
superseded by its various challengers [140, 29, 141, 27, 142, 143, 144, 145, 146, 147, 148, 149,
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150, 31, 34, 151, 152, 153, 154, 32, 155, 156, 157, 158, 159, 160, 161, 162], this scenario has
gradually become a crucial part of modern cosmology.

What strongly motivates the investigation of the inflationary period is that there is now a flow
of increasingly accurate astrophysical data which gives us a unique opportunity to learn more
about inflation. In particular, the recently released Planck satellite data [76, 163, 15], and if
confirmed to be of primordial origin, the B-mode detection by the BICEP2 experiment [164],
play a crucial role in this process. These missions complement and improve upon observations
made by the NASA WMAP satellite [165, 166] and are a major source of information relevant
to several cosmological issues including inflation [167, 168]. The CMB small angular scales of
Planck are already complemented by ground-based microwave telescopes such as the Atacama
Cosmology Telescope [169, 170] or the South Pole Telescope [171, 172] while ultra-sensitive
polarization dedicated experiments are on their way [173, 174, 175, 176, 177, 178].

Let us also mention that even if this is what we focus on in this thesis, the flow of new data does
not only concern the CMB. The supernovae projects [179, 180, 181, 182] continue to measure
the distances to the nearby exploding SN1A stars while the large scale galaxy surveys such as
the Sloan Digital Sky Survey (SDSS) [183, 184] are providing an unprecedented picture of the
structure of the universe. The “lever arm” in length scales between CMB and galaxy power
spectra increases the sensitivity to the small deviations from scale invariance, and thus should
be extremely powerful to constrain inflationary models. For this reason, the future Euclid
satellite will be another step forward in our understanding of inflation [185]. The possibility
of direct detection of the primordial gravitational waves is also currently discussed for high
energy inflationary models on large scales [186, 187, 188, 189, 190, 191, 192, 193, 194, 195]
and also on small scales [196, 197]. Finally, in a foreseeable future, the yet unexplored length
scales are expected to be unveiled by the 21 cm cosmological telescopes. These ones will be
sensitive to the redshifted 21 cm line absorbed by hydrogen clouds before the formation of
galaxies [198, 199, 200, 201, 202, 203, 204]. With such data, we will have a complete tomography
of the universe history from the time of CMB emission at the surface of last scattering to the
distribution of galaxies today.

Our ability to see through the inflationary window is crucial since it turns the early universe
into a laboratory for ultra-high energy physics, at scales entirely inaccessible to conventional
experimentation. In other words, this window offers a unique opportunity to learn about the
very early universe and about physics in a regime that cannot be tested otherwise, even in
accelerators such as the Large Hadron Collider. In this chapter, we discuss a few aspects that
play a key role in this enterprise, and we introduce some of the theoretical and technical tools
that are widely used in part II where the results of this thesis are presented. It is organized
as follows. In section 2.1, we explain why and under which conditions a single scalar field can
support a phase of inflation. In section 2.2, we present a frame of approximation, the “slow-roll
approximation”, which enables to solve its dynamics perturbatively. It also provides us with a
convenient scheme of calculation to compare inflationary predictions with observational data,
which we make widely use of in Ref. [205], section 3.2, in Ref. [206], section 3.3 and in Ref. [207],
section 3.4. The slow-roll inflationary trajectories are also the subject of Ref. [208], section 3.1,
and for this reason it seems important to review the main aspects of this formalism in the present
chapter. Then, in section 2.3, we turn to the description of inflationary perturbations. We show
how cosmological perturbations need to be quantized, and for illustrative purpose, we provide a
detailed calculation of the power spectrum of scalar perturbations. Since such a calculation is
modified when extensions to standard quantum mechanics are included in Ref. [138], section 4.3,
it is important to first understand how it proceeds in the standard approach. We then specify the
obtained result at leading order in the slow-roll approximation. Indeed, in Ref. [209], section 3.5,
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this calculation is extended to next-to-leading order in slow roll, and it is generalized in the case
where not only the potential but also the kinetic term is a free function. This is why details of
the calculation for the leading order in slow roll with canonical kinetic term for the inflaton field
may be useful to get acquainted with the employed technique. Finally, in section 2.4, we devote
a large part of this introductory chapter to the presentation of the stochastic inflation formalism
which is used in Ref. [210], section 4.1 and in Ref. [211], section 4.2. We first present a detailed
heuristic derivation of the Langevin equation which is at the heart of this formalism. This
allows us to discuss its nature and the assumptions it rests on. Then, we turn to the question
of the time variable that should be used when solving such equations, in order to reproduce
results from Quantum Field Theories (QFT). Lastly, we address the issue of the calculation of
physical observable quantities in stochastic inflation, such as the power spectrum of adiabatic
perturbations. We show that the stochastic setup allows us to reproduce the standard result of
section 2.3, before providing complete solutions which do not rely on an expansion in the noise
term. To our knowledge, this is the first time such a non perturbative calculation of the power
spectrum in stochastic inflation is presented, and we plan to further discuss it in a forthcoming
article.

2.1. Single-Field Inflation

What makes the inflationary idea quite natural is that the negative pressure condition can simply
be met with a single scalar field φ, the inflaton field, minimally coupled to gravity. The action
of such a system is given by

Sφ = −
Z

d4x
p−g



1

2
gµ⌫@µφ@⌫φ+ V (φ)

]

. (2.1)

The function V (φ) is a potential term for the scalar field, that is left unspecified for the moment.
Indeed, the physical nature of the inflaton field is still unknown (there are many candidates)
and, as a consequence, V (φ) can have different shapes. From Eq. (1.12), the energy-momentum
tensor associated with this action can be derived, and one obtains

T (φ)
µ⌫ = @µφ@⌫φ+ gµ⌫



−1

2
g⇢σ@⇢φ@σφ+ V (φ)

]

. (2.2)

At the background level, since FRLW space-times are homogeneous and isotropic, φ must be
homogeneous as well and can only depend on time. Interestingly enough, in such a case, the
energy-momentum tensor can be expressed in the form of Eq. (1.15) if one lets

⇢ =
φ̇2

2
+ V , (2.3)

p =
φ̇2

2
− V . (2.4)

As a consequence, for an homogeneous scalar field, the condition for the acceleration of the scale
factor is fulfilled, ⇢+ 3p < 0, as soon as

V > φ̇2 . (2.5)

This is the condition for inflation to take place. This means that inflation can be obtained
provided the inflaton slowly rolls down its potential, so that its potential energy dominates
over its kinetic energy. This also shows that the inflaton potential must be sufficiently flat,
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a requirement which is not always easy to obtain in realistic situations and which makes the
inflationary model building problem a difficult issue [212].

The dynamics of φ can be obtained if one plugs the expressions (2.3) and (2.4) into the conser-
vation equation (1.16). Doing so, one gets the Klein-Gordon equation

φ̈+ 3Hφ̇+ V 0 = 0 , (2.6)

where a prime denotes a derivative with respect to φ. On the other hand, the Friedmann
equation (1.17) gives rise to

3M2
PlH

2 = V +
φ̇2

2
. (2.7)

This last quantity is important since it sets the energy scale at which inflation takes place.
In section 2.3, we will see that its measurement requires to detect primordial gravity waves.
Without such a detection, one can only constrain ⇢1/4 / p

MPlH to be between the Grand
Unified Theory (GUT) scale, that is to say ⇠ 1015GeV, and ⇠ 103GeV [120]. However, if the
measurement of the B mode polarization of the CMB by the BICEP2 experiment [164] is of
primordial origin, the inflationary energy scale should lie close the GUT scale, see the discussion
at the end of section 2.3.

The Klein-Gordon equation (2.6) and the Friedmann equation (2.7) form a closed system that
can be integrated for any potential V (φ) and given initial conditions φin and φ̇in. A few numerical
solutions of this set of equations when V (φ) = m2φ2/2 are displayed in Fig. 2.1 for illustrative
purpose. In this figure, the light blue area stands for the region where the condition (2.5) is
fulfilled and where inflation takes place. One can see that even if the initial velocity of the
inflaton field is too large, it is quickly damped to sufficiently small values so that inflation starts
and proceeds. Then, at some point, the system exits the light blue area and inflation naturally
stops. Subsequently, the field quickly oscillates at the bottom of the potential, the amplitude
of these oscillations being damped due to the expansion, through the term / Hφ̇ in Eq. (2.6).
During this phase, possible coupling between φ and other fields can efficiently make the inflaton
field parametrically decay into radiation, hence smoothly connecting inflation to the radiation-
dominated epoch [213, 214, 215, 216, 217, 218, 219, 196, 220]. This is the so-called reheating
period [221, 222, 223, 224, 225].

2.2. The Slow-Roll Approximation

Beyond the numerical solutions of Fig. 2.1, analytical solutions can also be obtained, in the limit
where the condition (2.5) is saturated, that is when V , φ̇2. In this limit, one has p ' −⇢,
so that the conservation equation ⇢̇ = −3H(⇢ + p) implies that ⇢ is almost constant in time.
Thanks to the Friedmann equation (1.17), this means that H = ȧ/a is almost constant in time
too, which implies that space-time is close to the de Sitter universe for which

a (t) = ain exp [H (t− tin)] . (2.8)

This is why it is interesting to derive solutions to Eqs. (2.6) and (2.7) in the limit1 where the
Universe is perturbatively close to the one of Eq. (2.8). The “slow-roll approximation” refers to
this limit, in which the velocity of the inflaton is small φ̇⌧

p
V and the field “slowly rolls” down

its potential. At the technical level, the strategy is to define a set of parameters that quantify
the deviation from de Sitter space-times, and to perform an expansion in these parameters.

1As will be shown in section 2.3.4, such an assumption can be justified a posteriori, e.g. by the fact that only
small deviations from scale invariance are measured, with tight constraints on the level of gravity waves.
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Figure 2.1.: Phase space diagram of the inflaton trajectory for V = m2φ2/2, with m ' 7 ⇥
10−6MPl. The black lines correspond to numerical solutions of Eqs. (2.6) and (2.7)
with different initial conditions. The arrows indicate in which direction the system
evolves. The light blue area stands for the region in phase space where inflation
proceeds, that is where the condition (2.5), V > φ̇2, is fulfilled. Finally, the blue
solid line displays the slow-roll trajectory at leading order φ̇ ' −V 0/(3H), with
H2 ' V/(3M2

Pl). One can see that as long as the slow-roll condition V , φ̇2 is
met (i.e. when one is well inside the light blue area), this trajectory represents an
attractor solution.

2.2.1. The Slow-Roll Parameters

Although there are several possible sets of slow-roll parameters, here we choose to introduce the
Hubble-flow parameters {✏n} defined by the flow equations [226, 227]. If one lets ✏0 ⌘ Hin/H,
this parameter ✏0 is constant for a de Sitter space (and equal to 1), so that its time derivatives
should be small in the limit we are interested in. This is why, labelling time with the number
of e-folds N ⌘ ln a, starting from ✏0, one iteratively defines

✏n+1 =
d ln |✏n|
dN

. (2.9)

In this hierarchy, all the ✏n are typically of the same order of magnitude. By definition, one has
slow-roll inflation as long as |✏n| ⌧ 1, for all n > 0. For example, the first slow-roll parameter is
given by ✏1 = −Ḣ/H2 = 1− ä/(aH2), which implies that inflation (ä > 0) takes place provided
✏1 < 1.
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2.2.2. The Slow-Roll Trajectory

Now, let us see how the system formed by Eqs. (2.6) and (2.7) can be solved perturbatively in
the slow-roll limit. Inserting the Klein-Gordon equation in the time derivative of the Friedmann
equation, one obtains Ḣ = −φ̇2/(2M2

Pl), hence
2

✏1 = − Ḣ

H2
= 3

φ̇2/2

V (φ) + φ̇2/2
. (2.10)

The condition ✏1 ⌧ 1 thus implies that the kinetic energy of the inflaton is much smaller than
its potential energy, which is clearly the limit under study. Under this condition, the Friedmann
equation simplifies and gives, at leading order in slow roll, H2 ' V/(3M2

Pl).

One can keep on and play the same game with ✏2. Inserting the Klein-Gordon equation (2.6)
in the time derivative of the relation Ḣ = −φ̇2/(2M2

Pl) previously obtained, one gets Ḧ =
3Hφ̇2/M2

Pl + φ̇V 0/M2
Pl, and

✏2 =
Ḧ

HḢ
− 2

Ḣ

H2
= 6

✓

✏1

3
− V 0

3Hφ̇
− 1

◆

. (2.11)

The condition ✏2 ⌧ 1 thus implies that, at leading order in slow roll, φ̇ ' −V 0/(3H), which
means that the acceleration term can be neglected in the Klein-Gordon equation (2.6) (such
a limit solution is displayed by the solid blue line in Fig. 2.1). This is particularly interesting
since it lowers by one the order of the differential equation satisfied by φ. As a consequence, it
removes the dependency on the initial conditions by singling out a specific trajectory in phase
space, and it allows to derive analytical solutions in most cases.

More explicitly, since dN = Hdt, at leading order in slow roll, the Klein-Gordon equation
reads dN = −3H2dφ/V 0. Plugging in the slow-roll leading order of the Friedmann equation
H2

SR,LO = V/(3M2
Pl), one obtains

∆NSR,LO = − 1

M2
Pl

Z φend

φin

V

V 0
dφ , (2.12)

where ∆N ⌘ Nend−Nin, φin is the value of φ at some initial time Nin, and φend is the value of φ
at some final time Nend. This represents the leading order (LO) of the slow-roll (SR) trajectory.
Inverting this relation yields the value of φ as a function of time N .

If one worked at next-to-leading order in slow roll, see section 2.2.3, one would obtain a slightly
modified trajectory, so on and so forth, and the slow-roll trajectory is by definition the limit
towards which this perturbative process converges. It singles out a specific solution to Eqs. (2.6)
and (2.7). It is worth mentioning that as can be seen in Fig. 2.1, this slow-roll trajectory is
actually a powerful attractor [228] of the inflationary dynamics, that is to say, starting from a
large basin of possible initial conditions φin and φ̇in, the system quickly converges towards the
slow-roll trajectory. This property makes the slow-roll scheme of approximation both convenient
and physically well-motivated.

It is also interesting to remark that under the slow-roll approximation, the slow-roll hierarchy
can easily be expressed in terms of V and its derivatives. Indeed, making use of Eq. (2.12), one

2Notice that with Eq. (2.10), Eqs. (2.3) and (2.4) give rise to ! = p/⇢ = −1 + 2✏1/3, which is consistent with
what we displayed in table 1.1.
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has

d

dN

∣

∣
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∣

SR,LO

= −M2
Pl

V 0

V

d

dφ
. (2.13)

Repeatedly applying this identity starting from ✏0 = Hin/H ' Hin

p

3M2
Pl/V , one obtains, at

leading order in slow roll,

✏LO
0 = Hin

r

3M2
Pl

V
, (2.14)

✏LO
1 =

M2
Pl
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, (2.15)
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Pl
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, (2.16)

✏LO
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2M4
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✏LO
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"

V 000V 0
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V 3
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✓

V 0

V

◆4
#

, (2.17)

and the following slow-roll parameters can be computed in the same manner. One can see that
as mentioned above, in order for the first slow-roll parameter to be small and for inflation to take
place, the potential needs to be sufficiently flat, and more precisely its logarithm, (d/dφ) lnV ⌧
1/MPl.

2.2.3. Next-to-Leading Orders in Slow Roll

Most of the time, the leading order of the slow-roll trajectory is sufficiently accurate, but given
the precision of observations, it can be useful (and sometimes necessary) to work at higher order
in slow roll. Here we explain how the higher contributions can be derived, and as an example,
we establish the next-to-leading order (NLO) and the next-to-next-to-leading order (NNLO)
versions of the previous expressions. The starting point is to combine equations (2.7) and (2.10)
into

H2 =
V

3M2
Pl

⇣

1− ✏1

3

⌘−1
, (2.18)

which is exact. Together with the Friedmann equation (2.7), this gives rise to φ̇2 = 2V ✏1/(3−✏1).
These two formulas allow us to recast dN = Hdφ/φ̇ as

dN = ± 1

MPl

dφp
2✏1

, (2.19)

which is again an exact relation. From here the slow-roll parameters at next-to-leading order
can be obtained as follows. Rewriting Eq. (2.18) as ✏0 = ✏LO

0

p

1− ✏1/3, and iteratively applying

d
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Figure 2.2.: Leading order, next-to-leading order and next-to-next-to leading order of the slow-
roll trajectory for V = m2φ2/2, with m ' 7⇥ 10−6MPl. All the trajectories start at
φin = 15MPl. In the left panel, the black solid line stands for the numerical solution
of Eq. (2.6) where dφ/dN |in is set according to Eq. (2.12). The blue dashed line
stand for the leading order slow-roll solution (2.12), the green dashed line stand for
the next-to-leading order slow-roll solution (2.30), and the red dashed line stand for
the next-to-next-to-leading order slow-roll solution (2.31). One can check that the
slow-roll solutions are good approximations to the exact solution. More precisely, in
the right panel, the distances from the slow-roll approximations to the exact solution
is displayed at each order. Since φ decreases during inflation, this plot should be
read from the right to the left. Each slow-roll solution is compared with the exact
solution of Eq. (2.6) that shares the same initial condition dφ/dN |in at N = 0 and
φin = 15MPl (so that the distance to the exact solution exactly vanishes at φ = φin
in all three cases). One can check that at each order, the distance to the exact
solution is smaller.

which comes from Eq. (2.19), one obtains an expression for the slow-roll parameters at next-to-
leading order in terms of the slow-roll parameters at leading order, which reads
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where the following slow-roll parameters can be computed in the same manner, and where
the slow-roll parameters at leading order in the right hand sides are given by Eqs. (2.14)-
(2.17). In the same manner, to go to next-to-next-to-leading order, one starts again from
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which is again a direct consequence of Eq. (2.19). Doing so, one obtains
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so on and so forth.

Let us move on to the slow-roll trajectory. At next-to-leading order, it proceeds from combining
Eq. (2.19) and Eq. (2.22), which gives rise to
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In the same manner, the next-to-next-to-leading order of the slow-roll trajectory can be obtained
from combining Eq. (2.19) and Eq. (2.27), and one gets
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The slow-roll solutions at leading order (2.12), next-to-leading order (2.30), and next-to-next-to-
leading order (2.31) are displayed in Fig. 2.2 for the potential V (φ) = m2φ2/2. In the left panel,
they are superimposed to a numerical solution of Eq. (2.6). As already seen in Fig. 2.1, the
inflaton rolls down the potential and eventually rapidly oscillates around its minimum, and the
slow-roll solutions provide good approximations to the exact trajectory as long as the slow-roll
condition is fulfilled. However, it is difficult to distinguish by eye between the different slow-
roll orders in this figure. This is why in the right panel, this difference between the slow-roll
approximations and the actual trajectory is displayed, in terms of the number of e-folds realized
at φ, as a function of φ (since φ decreases during inflation in this model, this plot should be read
from the right to the left). Each slow-roll solution is actually compared with the numerical exact
solution of Eq. (2.6) that shares the same initial condition dφ/dN |in, so that the difference with
the exact solution exactly vanishes at φ = φin in all three cases. One can check that at each
order, the distance to the exact solution is smaller. Therefore, the slow-roll strategy does provide
a perturbative procedure that converges towards a solution (in fact, the attractor solution) of
the dynamical system formed by Eqs. (2.6) and (2.7).
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2.3. Inflationary Perturbations

What makes inflation appealing is that on top of solving the hot big bang problems, this new
phase in the cosmological scenario, combined with quantum mechanics, naturally explains the
origin of the CMB anisotropies and of the large-scale structures. In the inflationary paradigm
indeed, these deviations from homogeneity and isotropy originate from the unavoidable zero-
point quantum fluctuations of the coupled inflaton and gravitational fields. Statistically, the
fluctuations are characterized by their two-point correlation function or power spectrum. The
observations [229, 230, 120, 231, 232, 15, 163, 164] indicate that it is close to the Harrison-
Zel’dovich, scale invariant, power spectrum with equal power on all scales. That this power
spectrum represents a good fit to the astrophysical data was in fact realized before the advent
of inflation, but no convincing fundamental theory was known to explain this result.

One of the main successes of inflation is that it precisely predicts an almost scale invariant power
spectrum, the small deviations from scale invariance being connected to the micro-physics of
inflation [122, 123, 124, 125, 126, 127]. The fact that different types of inflationary scenarios lead
to a power spectrum which is, at leading order, always close to scale invariance is connected with
the fact that the inflationary background is always close to the de Sitter solution (see above)
or, equivalently, with the fact that the inflaton potential is always almost flat. The deviations
from scale invariance are related to the deviations from a flat potential and, therefore, depend
on the detailed shape of the potential. As a consequence, measuring the statistical moments of
the cosmological perturbations with accuracy allows us to say something about V (φ) and there
is currently an important effort in this direction, using the high accuracy CMB data that have
been released in the past years [233, 234, 235, 236, 237, 205, 206].

Thus in this section, we turn to the description of inflationary perturbations and we see how the
results reviewed above can be derived. We show how and why cosmological perturbations need
to be quantized, we derive their power spectrum and we verify that it is indeed almost scale
invariant. This allows us to highlight some fundamental aspects about the nature of cosmological
perturbations and the way they must be dealt with.

2.3.1. Basic Formalism

Clearly, in order to model the cosmological fluctuations, one needs to go beyond homogeneity
and isotropy. The most general metric describing small fluctuations on top of a FLRW universe
can be written as [129, 8]

ds2 = a2 (⌘)
⇥

− (1 + 2↵) d⌘2 + 2Bidx
id⌘ + (γij + hij) dx

idxj
⇤

. (2.32)

Notice that here, the metric is written in terms of conformal time ⌘ introduced in Eq. (1.62),
and that γij stands for the spatial part of the unperturbed FLRW metric that can be directly
read off from Eq. (1.1). In Eq. (2.32), the three functions ↵, Bi and hij are functions of time
and space since we consider an inhomogeneous and anisotropic situation.

2.3.1.1. SVT Decomposition

In order to track the dynamics of these cosmological perturbations, it can be useful to decompose
them into scalar, vector and tensor components [238] (thereof realizing a “SVT decomposition”).
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Indeed, any vector field can be decomposed into the divergence of a scalar and a vector with
vanishing divergence, that is3

Bi = @iB + B̄i , with @iB̄i = 0 . (2.33)

In the same manner, any tensor field can be decomposed into

hij = −2 γij + 2@i@jE + 2@(iĒj) + 2Ēij , with @iĒ
ij = 0 and Ēi

i = 0 . (2.34)

It can be shown that vector modes are rapidly suppressed during inflation [129, 8]. This is why
they are often disregarded. Tensor perturbations (i.e. gravity waves) and scalar perturbations
are instead usually focused on. If one first studies scalar perturbations at linear order, one then
has to consider

ds2
∣

∣

scal
= a2 (⌘)

n

− (1 + 2↵) d⌘2 + 2 (@iB) dxid⌘ + [(1− 2 ) δij + 2@i@jE] dxidxj
o

, (2.35)

where we take the case of a flat FLRW background for which γij = δij , for the reasons mentioned
at the end of section 1.3.1 (namely the fact that the observed spatial curvature is negligible).

2.3.1.2. Gauge Invariant Variables

As is well known, the above approach is redundant because of gauge freedom [129, 239, 240]
under space-time diffeomorphisms. A careful study of this question shows that, in the absence of
anisotropic stress, the gravitational sector can in fact be described by a single, gauge-invariant,
quantity, the Bardeen potential ΦB defined by [239]

ΦB (⌘,x) = −↵+
1

a

⇥

a
(

B − E0
)⇤0
, (2.36)

where a prime denotes a derivative with respect to the conformal time ⌘. In the same manner,
the matter sector can be modelled by the gauge-invariant fluctuation of the scalar field

δφ(gi) (⌘,x) = δφ+ φ0
(

B − E0
)

. (2.37)

The two quantities ΦB and δφ(gi) are related by a perturbed Einstein constraint. This implies
that the scalar sector can in fact be described by a single quantity. For this reason, it is useful
to introduce the so-called Mukhanov-Sasaki variable [122, 241, 242] which is a combination of
the Bardeen potential and of the gauge-invariant field,

v (⌘,x) = a



δφ(gi) + φ0
ΦB

H

]

, (2.38)

where H ⌘ a0/a. All the other physical scalar quantities can be expressed in terms of v(⌘,x)
which, therefore, fully characterizes the scalar sector.

2.3.1.3. Equation of Motion for the Perturbations

The next step consists in deriving an equation of motion for v(⌘,x). Let us first establish
the action for the quantity v(⌘,x). Expanding the action of the system [i.e. Einstein-Hilbert

3For the quantities introduced here, the indexes must be lowered or raised with the unperturbed metric γij . For
example, B̄i = γijB̄j .
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Figure 2.3.: Length scales evolution in the cosmological standard model including a phase of
inflation. The blue curve stands for the Hubble radius normalized to its current
value, H0/H. The inflationary phase is implemented with a large field potential
V (φ) = m2φ2/2, where m is normalized to the amplitude of the CMB power spec-
trum m ' 7 ⇥ 10−6MPl (see below), while radiation, cold matter and dark energy
components follow the values of table 1.2. As expected, the Hubble radius is roughly
constant during inflation and increases afterwards. The green lines stand for the
physical length scales probed in the CMB, normalized to the current Hubble radius.
They get stretched according to λ = a/k, as the expansion of the Universe proceeds.
The pivot scale λ⇤ corresponds to k⇤ = 0.05 Mpc−1, and [λ−, λ+] defines the scales
directly observed in the CMB, with k+ ' 0.0002 Mpc−1 and k− ' 0.2 Mpc−1. These
scales frame the observational window displayed in orange. They cross the Hubble
radius during inflation, and at more recent time.

action (1.10) plus the action of the inflaton scalar field (2.1)] up to second order in the pertur-
bations, one obtains [129]

(2)δS =
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"

(
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(
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p
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)00

a
p
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v2

#

, (2.39)

where ✏1 is defined in Eq. (2.10). The next move consists in Fourier transforming the quantity
v(⌘,x). We follow such a strategy because we work with a linear theory and, as a consequence,
all the modes evolve independently. We have

v (⌘,x) =
1

(2⇡)3/2

Z

R3

d3k vk (⌘)e
ik·x , (2.40)

with v−k = v⇤k because v(⌘,x) is real. Then, inserting this expansion into Eq. (2.39), one arrives
at [129]
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, (2.41)

50



2.3. Inflationary Perturbations

where one can see that the integral over k is taken over R+⇥R
2, i.e. half the Fourier space only,

precisely because of the redundancy v−k = v⇤k. For the same reason, the overall factor 1/2 has
been cancelled. This allows us to define pk, the variable canonically conjugate to vk,

pk =
δL
δv⇤k

0 = v0k , (2.42)

where L is the Lagrangian density in Fourier space that can be read off from Eq. (2.41), (2)δS =
R

d⌘L. This gives rise to the Hamiltonian density H (not to be confused with the Hubble
parameter), defined by the Legendre transform H =

R

d3kv0kpk − L, which reads
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This Hamiltonian density represents a collection of parametric oscillators, with one oscillator
per mode k, the time-dependent frequency of which can be expressed as

!2 (⌘,k) = k2 −
(

a
p
✏1
)00

a
p
✏1

. (2.44)

We see that the frequency depends on the scale factor and its derivatives (up to the fourth). This
means that different inflationary backgrounds (i.e. different inflaton potentials) lead to different
!(⌘,k) and, therefore, to different behaviours for vk(⌘). Since Eq. (2.41) gives rise to L =
R

d3k
(

pkp
⇤
k − w2vkv

⇤
k

)

, the equation of motion for the Mukhanov-Sasaki variable can be derived
from the variational relation @L/@v⇤k = @⌘(@L/@p⇤k). The same result can be obtained making
use of Eq. (2.43), H =

R

d3k
(

pkp
⇤
k + w2vkv

⇤
k

)

, and of Hamilton’s relation p0k = −@H/@v⇤k. In
either case, one obtains

v00k + !2 (⌘,k) vk = 0, (2.45)

which confirms that each mode behaves as a parametric oscillator.

Let us comment on the structure of this equation. In the case where ✏1 is constant, !2 =
k2 − a00/a, and since a ⇠ eHt / −1/(⌘H), one roughly obtains !2 ' k2 − 2/⌘2. Remember
that during inflation, ⌘ increases in the range [−1, 0−], see Fig. 1.12. As a consequence, the
system undergoes two different regimes. At early time, when ⌘ ⌧ −1/k, one has !2 ' k2 which
corresponds to an harmonic oscillator. In this case the Mukhanov-Sasaki variable oscillates with
constant amplitude, vk / cos(k⌘), like in Minkowski space-time. On the contrary, at late time
when ⌘ , −1/k, one has !2 ' −2/⌘2 which corresponds to a forced harmonic oscillator, or
parametric oscillator. The Mukhanov-Sasaki variable grows as vk / −1/⌘ + ⌘2 ' −1/⌘, where
the growing mode dominates over the decaying mode in the limit ⌘ ! 0−. In this regime,
curvature of space-time sources the parametric amplification of the cosmological perturbations.

The situation can be better understood looking at Fig. 2.3. In this figure, we have plotted the
Hubble radius of a universe made of radiation, cold matter and a cosmological constant according
to the values of table 1.2, and which also contains an inflaton field with potential V (φ) = m2φ2/2
(in this discussion, the precise shape of V has no importance). One can check that the Hubble
radius is roughly constant during inflation, and increases afterwards during the radiation era
and the matter era. On the other hand, the physical length scales λ associated with cosmological
perturbations get stretched according to λ = a/k (where k is the comoving wavenumber), and
always increase as the expansion of the Universe proceeds. As a consequence, at the beginning
of inflation, scales of astrophysical interest today are “sub-Hubble”, which means that they are
smaller than the Hubble radius. Since space-time is locally flat, of the Minkowski type, length
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scales far inside the Hubble scale follow harmonic oscillator equations. At some point during
inflation, they cross the Hubble radius and become “super-Hubble”. From this point on they
are impacted by the curvature of space-time, and they undergo parametric amplification. Note
that they cross the Hubble radius a second time, at some point between the CMB emission and
now, so that they are currently sub-Hubble again.

To go beyond this schematic description, one has of course to work within a specified inflationary
model. Once a potential V (φ) is chosen, the background equations (2.6) and (2.7) can be
solved and the corresponding scale factor a(⌘) is inferred. This, in turn, allows us to determine
!2(⌘,k) and, then, one can solve the equation of motion (2.45) for the Fourier component of the
Mukhanov-Sasaki variable vk. However, in order to fully specify the solution for vk, one also
needs to set initial conditions. Classically, there does not seem to exist a natural criterion to
choose them. However, as we shall now see, when quantization is performed, if one assumes that
the perturbations are sourced by the zero-point fluctuations of the theory, it leads to well-defined
initial conditions. We now turn to these questions.

2.3.2. Quantization in the Schrödinger Picture

In this section, we review how the cosmological perturbations must be quantized. Very often
in the literature, the quantization is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [135, 138] to show that one obtains the same results
doing so. In order to properly quantize the system, it is more convenient to work with real
variables. Therefore, we introduce the following decompositions

vk ⌘ 1p
2

(

vRk + ivIk
)

, pk ⌘ 1p
2

(

pRk + ipIk
)

, (2.46)

where vRk , v
I
k, p

R
k and pIk are real quantities. In the Schrödinger approach, the quantum state

of the system is described by a wavefunctional, Ψ [v(⌘,x)]. Since we work in Fourier space, and
since the theory is free (i.e. without mode mixing terms) in the sense that it does not contain
terms with power higher than two in the Lagrangian, the wavefunctional can also be factorized
into mode components as

Ψ [v(⌘,x)] =
Y

k2R+⇥R2

Ψk

(

vRk , v
I
k

)

=
Y

k2R+⇥R2

ΨR
k

(

vRk
)

ΨI
k

(

vIk
)

. (2.47)

Quantization is achieved by promoting vk and pk to quantum operators, v̂k and p̂k, and by
requiring the canonical commutation relations

⇥

v̂Rk , p̂
R
q

⇤

= iδ (k − q) ,
⇥

v̂Ik, p̂
I
q

⇤

= iδ (k − q) , (2.48)

with
⇥

v̂Rk , p̂
I
q

⇤

=
⇥

v̂Ik, p̂
R
q

⇤

= 0. These relations admit the following representation

v̂R,I
k Ψ = vR,I

k Ψ , (2.49)

p̂R,I
k Ψ = −i @Ψ

@vR,I
k

. (2.50)

The wavefunctional Ψ [v(⌘,x)] obeys the Schrödinger equation which, in this context, is a func-
tional differential equation. However, since each mode evolves independently, this functional
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differential equation can be reduced to an infinite number of differential equations for each ΨR,I
k .

Concretely, we have

i
ΨR,I

k

@⌘
= ĤR,I

k ΨR,I
k , (2.51)

where the Hamiltonian densities ĤR,I
k are related to the direct space Hamiltonian density Ĥ by

the Fourier expansion Ĥ =
R

R3 d
3k
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ĤR
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. Looking at Eq. (2.43), they can be expressed
as
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v̂R,I
k

⌘2
, (2.52)

where we have made use of the representations (2.49) and (2.50), and where the factor 1/2 ac-
counts for the fact that the Ĥk densities are defined through an integral over R3 while Eq. (2.43)
makes use of an integral over R+ ⇥ R

2.

We are now in a position where we can solve the Schrödinger equation. Let us consider the
following Gaussian state

ΨR,I
k

⇣

⌘, vR,I
k

⌘

= Nk(⌘)e
−Ωk(⌘)(vR,I

k )
2

. (2.53)

The functions Nk(⌘) and Ωk(⌘) are time dependent and do not carry the superscripts “R” or
“I” because as shown below, they are the same for the wavefunctions of the real and imaginary
parts. Inserting the state Ψk given by Eq. (2.53) into the Schrödinger equation (2.51), one can
see that such a Gaussian state is a solution of the Schrödinger equation. This is why at linear
order in perturbation theory, if the initial state is Gaussian, perturbations remain Gaussian.
More precisely, this is the case provided Nk and Ωk obey the following differential equations

i
N 0

k

Nk

= Ωk and Ω0
k = −2iΩ2

k +
i

2
!2(⌘,k). (2.54)

The solutions can be easily found and read

|Nk| =
✓

2<eΩk

⇡

◆1/4

and Ωk = − i

2

f 0k
fk
, (2.55)

where fk is a function obeying the equation f 00k + !2fk = 0, that is to say exactly Eq. (2.45).
The first equation (2.55) guarantees that the wavefunction is properly normalized, i.e. that we
have

Z 1

−1
ΨR,I

k ΨR,I
k

⇤dvR,I
k = 1. (2.56)

Let us now discuss the initial conditions. A rather natural assumption to make is that the
perturbations are initially in their ground state, so that they are only sourced by the zero-
point quantum fluctuations. According to the discussion following Fig. 2.3, at the beginning
of inflation, all the modes of astrophysical interest today have a physical wavelength which is
smaller than the Hubble radius, i.e. k/(aH) ! 1. In this regime, one has !2(⌘,k) ! k2 and
each mode behaves as an harmonic oscillator (as opposed to a parametric oscillator in the generic
case) with frequency ! = k. As a consequence, the differential equation for fk(⌘) can easily be
solved and the solution reads fk = Ake

ik⌘ + Bke
−ik⌘, Ak and Bk being integration constants.

Upon using the second equation (2.55), one then has

Ωk ! k

2

Ake
ik⌘ −Bke

−ik⌘

Akeik⌘ +Bke−ik⌘
(2.57)
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in this limit. On the other hand, let us calculate the ground state wavefunction of the harmonic
oscillator under consideration. The number of particle operator n̂k = â†kâk for the harmonic

oscillator with ! ⇠ k can be expressed in terms of the creation and annihilation operators a†k
and ak, defined by [243]

âk =

r

k

2

✓

v̂k +
i

k
p̂k

◆

, (2.58)

â†k =

r

k

2
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v̂k − i

k
p̂k

◆

, (2.59)

so that one has n̂k = k/2(v̂2k+ p̂
2
k/k

2+ i/k[vk, pk]) = k/2(v̂2k+ p̂
2
k/k

2−1/k), where one has made
use of the canonical commutation relations (2.48). Here the superscripts “R” and “I” have been
removed for simplicity. Making use of the representations (2.49) and (2.50), this allows us to
calculate the mean number of particles present in the state (2.53), and one obtains

hΨk|n̂k|Ψki =
k

2



⌦

Ψk|v̂2k|Ψk

↵

✓

1− 4
Ω2
k

k2

◆

+ 2
Ωk

k2
− 1

k

]

, (2.60)

where the quantum mean value of v2k is just given by the Gaussian integral

⌦

Ψk|v̂2k|Ψk

↵

=

Z 1

−1
dvkΨk (⌘, vk)Ψ

⇤
k (⌘, vk) v

2
k

=

r

2<e (Ωk)

⇡

Z 1

−1
dvke

−2<e (Ωk)v
2
kv2k

=
1

4<e (Ωk)
. (2.61)

Combining the two previous equations together yields an expression for the mean number of
particles in the Gaussian state Ψk, only in terms of Ωk. Requiring that this number vanishes,
so that Ψk coincides with the ground state of the Minkowski harmonic oscillator at early time,
gives rise to =mΩk = 0 and <eΩk = k/2. Looking back at Eq. (2.57), this means that one
must set the initial conditions such that Bk = 0.

Moreover, it is easy to check that the Wronskian W ⌘ f 0kf
⇤
k − f 0⇤k fk is a conserved quantity,

dW/d⌘ = 0, thanks to the equation of motion (2.45) of fk. At early time, since fk = Ake
ik⌘ +

Bke
−ik⌘, one hasW = 2ik(|Ak|2−|Bk|2). In the Heisenberg picture, the canonical commutation

relations require that W = i. Even if in the Schrödinger picture presently used, the specific
value of W is irrelevant since it cancels out in all calculable physical quantities, this value is
conventionally adopted, which amounts to setting Ak = 1/

p
2k on top of Bk = 0. However, we

insist that a different value of Ak can be worked with without modifying the results obtained
below, as long as Bk = 0. The equation for fk (2.45) will thus be solved with the initial condition

lim
k/(aH)!+1

fk =
1p
2k

eik⌘. (2.62)

Such an initial state is often referred to as the Bunch-Davies vacuum [244, 245]. Obviously,
if excited states of the harmonic oscillator are chosen as initial conditions instead, one obtains
different results [246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,
262, 263, 264, 265, 266] and the inflationary predictions are dependent on what one assumes for
the initial state of the perturbations.

Once an initial value for fk is chosen, the quantum state for the perturbations is completely
specified. Indeed, the wavefunction Ψ is given by Eq. (2.53) and depends on a single parameter
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Ωk, for which we know what is the initial state and the equation of motion. We therefore
completely know the wavefunction, from which we can further study the quantum state of the
perturbations. For example, in section 4.3, we show that on super-Hubble scales, the quantum
state is a squeezed one, and we discuss how this squeezing can account for a quantum-to-classical
transition of the perturbations. Another relevant quantity to compute is of course the two-point
correlation function in the quantum state Ψ, i.e. the power spectrum.

2.3.3. The Power Spectrum

Let us now turn to the calculation of the power spectrum. We first introduce the two-point
correlation function, defined by hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi. Making use of the Fourier transform
of the Mukhanov-Sasaki variable, Eq. (2.40), and of the mode decomposition of the wavefunction,
Eq. (2.47), one has

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi =
1

(2⇡)3

Z

R3

dp eip·x
Z

R3

dq eiq·(x+r) hΨ |v̂pv̂q|Ψi (2.63)

=
1

(2⇡)3

Z

R3

dp eip·x
Z

R3

dq eiq·(x+r)
Y

k2R+⇥R2

Y

k02R+⇥R2

hΨk |v̂pv̂q|Ψk0i .

(2.64)

In the above expression, one can see that k and k0 take value in R
+ ⇥ R

2 while p and q take
value in R

3. In order to have the same integration domain for all variables, it is useful to notice
that the p-integration (or, in the same manner, the q-integration) can be expressed as

Z

R3

dp eip·xv̂p =

Z

R+⇥R2

dp eip·xv̂p +

Z

R−⇥R2

dp eip·xv̂p (2.65)

=

Z

R+⇥R2

dp eip·xv̂p +

Z

R+⇥R2

dp e−ip·xv̂−p (2.66)

=

Z

R+⇥R2

dp eip·xv̂p +

Z

R+⇥R2

dp e−ip·xv̂⇤p (2.67)

=

Z

R+⇥R2

dp
(

eip·xv̂p + e−ip·xv̂⇤p
)

, (2.68)

where between the second and the third line we have used the relation v̂−p = v̂⇤p mentioned above
which comes from the fact that v̂ is a real operator in physical space. Plugging the obtained
expression in Eq. (2.64), one obtains

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi = 1

(2⇡)3

Z

R+⇥R2

dp

Z

R+⇥R2

dq
Y

k2R+⇥R2

Y

k02R+⇥R2

D

Ψk

∣

∣

∣

⇥

eip·xv̂p + e−ip·xv̂⇤p
⇤

h

eiq·(x+r)v̂q + e−iq·(x+r)v̂⇤q

i∣

∣

∣
Ψk0

E

.

(2.69)

Since the Hilbert spaces associated with each mode are independent at linear order in pertur-
bation theory, and since the |Ψki wavefunctions are normalized, hΨk|Ψ0

ki = δ(k − k0), in the
above expression the product terms can be written as

D

Ψk

∣

∣

∣
v̂
(⇤)
p v̂

(⇤)
q

∣

∣

∣
Ψk0

E

= δ (p− q) δ (p− k) δ
(

q − k0
)

D

Ψk

∣

∣

∣
v̂
(⇤)
p v̂

(⇤)
q

∣

∣

∣
Ψk0

E

, (2.70)
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where the superscripts “(⇤)” mean that stars may or may not be present. The delta functions
allow to calculate all integrals and products (since they are performed on the same domains)
but one, and one obtains

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi = 1

(2⇡)3

Z

R+⇥R2

dp

D

Ψp

∣

∣

∣

⇥

eip·xv̂p + e−ip·xv̂⇤p
⇤

h

eip·(x+r)v̂p + e−ip·(x+r)v̂⇤p

i
∣

∣

∣
Ψp

E

.

(2.71)

Let us now decompose the product terms into real parts and imaginary parts. Making use of
Eq. (2.46), and since v̂Rp and v̂Ip act on independent Hilbert spaces again, |Ψki = |ΨR

k i|ΨI
ki, one

has for example

⌦

Ψp

∣

∣v̂2p
∣

∣Ψp

↵

=
1

2

D

Ψp

∣

∣

∣

(

v̂Rp + iv̂Ip
)2
∣

∣

∣
Ψp

E

(2.72)

=
1

2

D

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

E

− 1

2

D

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

E

, (2.73)

and in the same manner
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Ψp
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∣v̂pv̂
⇤
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∣Ψp

↵
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∣Ψp
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2
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ΨR
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∣

∣

(

v̂Rp
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∣

∣

∣
ΨR
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1
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ΨI
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∣

∣

∣

(

v̂Ip
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∣
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, (2.74)
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E
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∣

∣

(

v̂Rp
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D

ΨI
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(
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)2
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∣
ΨI

p

E

. (2.75)

Plugging these relations into Eq. (2.71), one obtains

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi = 1

(2⇡)3

Z

R+⇥R2

dp
n

[cos (p·r) + cos (2p·x+ p·r)]
D

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

E

+ [cos (p·r)− cos (2p·x+ p·r)]
D

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

Eo

. (2.76)

The mean values of
(

v̂Rp
)2

and
(

v̂Ip
)2

are the same, and given by Eq. (2.61). This is why the
previous expression reduces to

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi = 1

2(2⇡)3

Z

R+⇥R2

dp
cos (p·r)
<e (Ωp)

. (2.77)

Now, let us see how the angular part of the p-integral can be performed. When p denotes
the module of p and r denotes the module of r, let ✓ be the angle between r and p. With
these notations, one has p·r = pr cos ✓, and from what precedes,4 Ωp only depends on p and
we use the notation Ωp. The p-integral can be decomposed into radial and angular parts,
dp = p2 sin ✓ dp d✓ d'. Because p takes its values in R

+ ⇥ R
2, ' only varies in [0, ⇡], and one

has

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi =
1

2(2⇡)3

Z ⇡

0
d'

Z ⇡

0
d✓ sin ✓

Z 1

0
dp p2

cos (pr cos ✓)

<e (Ωp)
(2.78)

=
1

16⇡2

Z ⇡

0
d✓ sin ✓

Z 1

0
dp p2

cos (pr cos ✓)

<e (Ωp)
(2.79)

=
1

16⇡2

Z 1

0
dp p2

1

<e (Ωp)



sin (pr cos ✓)

−pr

]✓=⇡

✓=0

(2.80)

=
1

8⇡2

Z 1

0

dp

p

sin (pr)

pr

p3

<e (Ωp)
. (2.81)

4Indeed, fp is initiated in the state (2.62) which only depends on the radial part p of p, and follows an equation
of motion (2.45) that only depends on p as well. Hence fp = fp, and Ωp = Ωp.
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We are now in a position where an expression for the power spectrum can be given. The power
spectrum Pv(k) is defined as the square of the Fourier amplitude per logarithmic interval at a
given scale k, i.e. it is such that

hΨ |v̂(⌘,x)v̂(⌘,x+ r)|Ψi ⌘
Z 1

0

dk

k

sin (kr)

kr
Pv (k) . (2.82)

By identifying Eqs. (2.81) and (2.82), it is straightforward to obtain

Pv (k) =
k3

8⇡2
1

<e (Ωk)
. (2.83)

Finally, let us express <e (Ωk) in terms of the function fk. From the second Eq. (2.55), one
easily shows that

<e (Ωk) = − i

4

W

|fk|2
. (2.84)

One can check that only the ratio W/|fk|2 is involved, so that as announced above, the ab-
solute normalization of fk does not play any role in the Schrödinger picture. Since the initial
condition (2.62) is associated with the choice W = i, one eventually obtains

Pv (k) =
k3

2⇡2
|fk|2. (2.85)

A last remark is in order. Instead of calculating the power spectrum of the Mukhanov variable
Pv, it often proves more convenient to discuss the power spectrum of curvature perturbations P⇣ .
The quantity ⇣ is related to the Bardeen potential defined in Eq. (2.36) through the following
expression [129, 267, 240]

⇣ =
2

3

H−1Φ0
B
+ ΦB

1 + w
+ ΦB , (2.86)

where w ⌘ p/⇢ is the equation of state parameter. The importance of ⇣ lies in the fact that
it is a conserved quantity on large scales [267, 240]. Therefore, its spectrum, calculated at the
end of inflation, can directly be propagated to the recombination time as it is not sensitive to
the details of the cosmological evolution, in particular to those of the complicated reheating
era [268, 223, 214, 225, 219]. The curvature perturbation can also be expressed in terms of the
Mukhanov-Sasaki variable as [267]

⇣ =
1

a
p
2✏1

v

MPl

. (2.87)

Making use of Eq. (2.85), one then has

P⇣(k) =
1

2a2M2
Pl✏1

Pv(k) =
k3

4⇡2a2✏1M2
Pl

|fk|2 , (2.88)

and it only remains to calculate |fk|2.

2.3.4. Power Spectrum at Leading Order in Slow Roll

In the last section, we saw that the calculation of the scalar power spectrum P⇣(k) boils down
to solving the differential equation (2.45) for fk, with initial condition given by Eq. (2.62). In
Eq. (2.45), !2(⌘,k) = (a

p
✏1)

00/(a
p
✏1) depends on the background function a(⌘), hence on V (φ)

and on the solution of the Klein-Gordon equation (2.6). In practice, it must be solved numerically
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once these quantities are specified. However, in the slow-roll approximation, as explained in
section 2.2, a(⌘) is close to the de Sitter profile a(⌘) / −1/(H⌘), and at the technical level,
the slow-roll parameters quantify the deviation of a(⌘) from this de Sitter solution. A priori,
!2(⌘,k) can therefore be expressed in terms of the slow-roll parameters and Eq. (2.45) can be
solved accordingly. This is why in this section, in order to gain some insight on the shape of
the power spectrum, we solve Eq. (2.45) at first order in slow roll and we calculate the power
spectrum P⇣(k) around some pivot scale k⇤ at this same order in slow roll.

The first step consists in working out an expression for a(⌘) at first order in slow roll. One can
start from the definition of ⌘, given by Eq. (1.62), and write

⌘ =

Z

dt

a
=

Z

da

aH , (2.89)

where we denote H ⌘ a0/a = aH. Writing the last integrand as 1/(aH) = (d/da)a ⇥ 1/(aH),
the last integral can be integrated by parts and one obtains

Z

da

aH =
1

H +

Z

da

aH (2− ✏1) , (2.90)

where ✏1 = 1 − Ḣ/H2 = −H0/H2 has been defined in Eq. (2.10). The above expression gives
rise to

Z

da

aH = − 1

H +

Z

da

aH✏1 . (2.91)

Again, the integral in the right hand side can be integrated by parts. Indeed, its integrand can
be written as ✏1/(aH) = 1/(aH)⇥ ✏1 = (d/da)[−1/H+

R

da✏1/(aH)]⇥ ✏1, where we have made
use of Eq. (2.91) itself to integrate 1/(aH). Therefore, one obtains

Z

da

aH✏1 = −✏1H + ✏1

Z

✏1da

aH +

Z

✏1✏2da

aH −
Z


d

da
(✏1)

Z

✏1dā

āH

]

da (2.92)

= −✏1H + ✏1

Z

✏1da

aH +

Z

✏1✏2da

aH − ✏1

Z

✏1da

aH +

Z

✏21da

aH (2.93)

= −✏1H +

Z

h ✏1

aH (✏1 + ✏2)
i

da , (2.94)

where between the first and the second line the last term has been integrated by parts. Plugging
Eq. (2.94) into Eq. (2.91) yields an expression for ⌘, namely

⌘ = −1 + ✏1

H +

Z

da

aH
(

✏21 + ✏1✏2
)

. (2.95)

Since we want to work at first order in slow roll, the last integral can be dropped and one simply
has ⌘ ' −(1+✏1)/H. However, let us notice that if one wanted to derive higher order in slow-roll
terms, the same strategy could be used. The integral in the right hand side of Eq. (2.95) could
be integrated by parts making use of Eq. (2.94), noticing that its integrand can be written as
✏1/(aH)⇥ (✏1 + ✏2) and that Eq. (2.94) precisely provides us with a formal integral of the first
term ✏1/(aH), so on and so forth. At second order in slow roll for example, one would obtain
Eq. (2.5) of Ref. [209], see section 3.5. Here however, we work at first order in slow roll and we
have

H ' −1 + ✏1⇤

⌘
. (2.96)

In the above expression, the first slow-roll parameter has been evaluated at the time ⌘⇤ where
the pivot scale k⇤ crosses the Hubble radius since as will be shown in Eq. (2.99), deviations of ✏1
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from this value are slow-roll suppressed quantities. If one integrates the above expression along
d⌘, one obtains

ln

✓

a

a⇤

◆

' (1 + ✏1⇤) ln

✓

⌘⇤

⌘

◆

(2.97)

from which one has after exponentiation, and at first order in slow roll, a/a⇤ = ⌘⇤/⌘[1 −
✏1⇤ ln(⌘/⌘⇤)]. Looking at Eq. (2.96), the time ⌘⇤ can be expressed as ⌘⇤ = −(1 + ✏1⇤)/H⇤,
so that one eventually has

a ' − 1

H⇤⌘



1 + ✏1⇤ − ✏1⇤ ln

✓

⌘

⌘⇤

◆]

. (2.98)

We have therefore reached our first goal, namely to find an expression for a(⌘) at first order in
slow roll. Notice that when ✏1⇤ = 0, one recovers the de Sitter profile a(⌘) = −1/(H⌘). Now we
need to calculate the corresponding behaviour of !2(⌘,k) = (a

p
✏1)

00/(a
p
✏1) at leading order in

slow roll. The first slow-roll parameter ✏1 can be expanded at first order in slow roll around the
time ⌘⇤, and one has

✏1 ' ✏1⇤ +
d✏1
dN

∣
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∣

∣

⌘⇤
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◆
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1− ✏2⇤ ln

✓

⌘

⌘⇤

◆]

, (2.99)

where in the second line we have used Eq. (2.97) to express ln(a) in terms of ⌘. At this point,
with Eqs. (2.98) and (2.99), we are in a position where we can calculate !2 at first order in slow
roll. After a straightforward calculation, one obtains

(

a
p
✏1
)00

a
p
✏1

' 2

⌘2

✓

1 +
3

2
✏1⇤ +

3

4
✏2⇤

◆

. (2.100)

In particular, one notices that the logarithmic terms in ⌘ cancel out at first order in slow roll,
which makes the previous expression quite simple and easy to handle. Indeed, at this order,
Eq. (2.45) reads

f 00k +



k2 − 2

⌘2

✓

1 +
3

2
✏1⇤ +

3

4
✏2⇤

◆]

fk = 0 . (2.101)

Conveniently enough, such a differential equation can be solved in terms of Hankel functions,
and one obtains

fk = Ck

p

−k⌘H(1)
⌫ (−k⌘) +Dk

p

−k⌘H(2)
⌫ (−k⌘) , (2.102)

with

⌫ =
3

2

r

1 +
4

3
✏1⇤ +

2

3
✏2⇤ (2.103)

' 3

2
+ ✏1⇤ +

✏2⇤

2
. (2.104)

In Eq. (2.102), H
(1)
⌫ and H

(2)
⌫ are Hankel functions [269] (also called Bessel functions of the third

kind), and Ck and Dk are integration constants.

These constants can be set so that the Bunch-Davies vacuum (2.62) is recovered at early time.
In Eq. (2.62) the limit k/(aH) ! +1 actually corresponds to k⌘ ! −1 since from Eq. (2.96)
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one has k/(aH) = k/H ' −k⌘/(1 + ✏1⇤). Since one has [269] H
(1)
⌫ (z) '

p

2/(⇡z) exp[i(z −
⌫⇡/2− ⇡/4)] and H

(2)
⌫ (z) '

p

2/(⇡z) exp[−i(z − ⌫⇡/2− ⇡/4)] when z , 1, one obtains
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4

⌘i

. (2.105)

This is why in order to match Eq. (2.62), one must set Ck = 0 and Dk =
p

⇡/k exp[−i⇡/2(⌫ +
1/2)]/2. One eventually has

fk =
1

2

r

⇡

k

p

−k⌘e−iπ
2 (⌫+

1
2)H(2)

⌫ (−k⌘) . (2.106)

At the end of inflation, the pivot scale k⇤ around which we are expanding the power spec-
trum and which is of astrophysical interest today, is much larger than the Hubble radius, i.e.
k⇤/(aendHend) ⌧ 1. In Fig. 2.3, this corresponds to the observational window located at the end
of inflation where P(k) is calculated. Since we have shown that k/(aH) ' −k⌘, this means that
the power spectrum (2.88), which scales as |fk|2, can be approximated at the end of inflation in

the limit k⌘ ! 0−. Since one has [269] H
(2)
⌫ (z) ' −i(2/z)⌫Γ(⌫)/⇡ when z ! 0, one obtains

|fk|2 −!
k⌘!0−

−k⌘
4k

✓

2

−k⌘

◆2⌫ Γ2 (⌫)

⇡
. (2.107)

In order to be consistent with our first order in slow roll expansion, the slow-roll parameters
appearing in ⌫, see Eq. (2.104), should now be expanded too. One has Γ(⌫) = Γ(3/2) +
Γ0(3/2)(✏1⇤+ ✏2⇤/2), where [269] Γ

0(3/2) = Γ(3/2)(2− 2 ln 2− γE) and Γ(3/2) =
p
⇡/2, γE being

the Euler-Mascheroni constant. On the other hand, one can write [−2/(k⌘)]2⌫ = e2⌫ ln[−2/(k⌘)] '
[−2/(k⌘)]3{1+ (2✏1⇤ + ✏2⇤) ln[−2/(k⌘)]}. Plugging these expressions in Eq. (2.107), one obtains

|fk|2 −!
k⌘!0−

1

2k

1

(k⌘)2
{1 + (2✏1⇤ + ✏2⇤) [2− ln 2− γE − ln (−k⌘)]} . (2.108)

We now have everything one needs to calculate the power spectrum P⇣ at first order in slow
roll. In Eq. (2.88), let us replace a by Eq. (2.98), ✏1 by Eq. (2.99), and |fk|2 by Eq. (2.108). One
obtains, at first order in slow roll,

P⇣(k) =
H2

⇤

8⇡2✏1⇤M2
Pl

[2 (1− ln 2− γE) ✏1⇤ + (2− ln 2− γE) ✏2⇤ − (2✏1⇤ + ✏2⇤) ln (−k⌘⇤)] . (2.109)

One can see that quite remarkably, the dependence in ⌘ has cancelled out since, as announced,
the curvature perturbations are constant on large scales. The time ⌘⇤ can be expressed in terms
of k⇤ since by definition, it is such that k⇤/(a⇤H⇤) = 1. Since Eq. (2.96) gives k/(aH) = k/H =
−k⌘(1 + ✏1⇤), one simply has −k⌘⇤ = (k/k⇤)(1 + ✏1⇤)

−1. Denoting C ⌘ ln 2 + γE − 2 ' −0.7296
for simplicity, the power spectrum of curvature perturbations calculated at the end of inflation,
at first order in slow roll, is finally given by

P⇣(k) =
H2

⇤

8⇡2✏1⇤M2
Pl



1− 2 (C + 1) ✏1⇤ − C✏2⇤ − (2✏1⇤ + ✏2⇤) ln

✓

k

k⇤

◆]

. (2.110)

This result was derived for the first time in Ref. [128], where the corresponding formula for
gravity waves was obtained too. Indeed, the same procedure as the one presented here can be
employed to calculate the power spectrum of tensor perturbations Ph. Instead of Eq. (2.45),
one has to solve an equation of the form h00 + (k2 − a00/a)h = 0, and one obtains

Ph(k) =
2H2

⇤

⇡2M2
Pl



1− 2 (C + 1) ✏1⇤ − 2✏1⇤ ln

✓

k

k⇤

◆]

. (2.111)

60



2.3. Inflationary Perturbations

Before that, scalar perturbations during inflation were first integrated in Refs. [270, 242] and
tensor perturbations in Ref. [121].5 The same result (2.110) was later re-derived using the Green
function method in Ref. [272], using the Wentzel-Kramers-Brillouin (WKB) method in Ref. [273]
and using the uniform approximation in Refs. [274, 275]. In fact, the Green function method of
Ref. [272] made possible the first determination of the scalar power spectrum at second order
in slow roll, since at second order, the mode equation (2.45) describing the evolution of the
cosmological perturbations can no longer be solved exactly, hence the need for a new method
of approximation.6 Finally, the first derivation of the tensor power spectrum at second order in
slow roll using the Green function method was presented in Ref. [278].

A few comments are in order regarding Eqs. (2.110) and (2.111). First of all, as announced,
at leading order in slow roll, these two spectra are scale invariant, that is the power on each
scale k does not depend on k. For scalar perturbations, the overall amplitude is measured to
be [163, 167] P⇣(k⇤) ' 2.203⇥ 10−9. More precisely, the small deviations from scale invariance
appear through the logarithm of k, and are controlled by the slow-roll parameters, which quantify
the deviation of space-time from de Sitter, see Eq. (2.9), or equivalently the non flatness of the
potential, see Eqs. (2.14)-(2.17). As a consequence, measuring the scale dependence of the power
spectrum is a way of constraining the inflationary potential V (φ). For scalar perturbations, the
deviation from scale invariance of the power spectrum is often described in terms of the scalar
spectral index n

S
, defined as

n
S
⌘ 1 +

d lnP⇣

d ln k
, (2.112)

where n
S
= 1 for exact scale invariance. At first order in slow roll, from Eq. (2.110), it is

given by n
S
= 1− 2✏1⇤ − ✏2⇤. By definition, the first slow-roll parameter ✏1 = −Ḣ/H2 is always

positive. The second slow-roll parameter is proportional to its time derivative, ✏2 = (d✏1/dN)/✏1.
Inflation takes place as long as ✏1 < 1, and if it ends with a “graceful exit” when ✏1 = 1, it is
natural to assume that ✏1 increases during inflation, and therefore that ✏2 is positive too. As a
consequence, a rather natural prediction [122, 279] of slow-roll inflation is that the scalar power
spectrum should be almost scale invariant but slightly red, i.e. “n

S
< 1” (as opposed to “blue”,

for which n
S
> 1). This is why it is quite remarkable that the most recent observations [163, 167]

strongly favour a red scalar spectrum, n
S
= 0.9619±0.0073, which excludes exact scale invariance

n
S
= 1 at more than the 5σ confidence level. As for tensors, the deviation from scale invariance

is usually described in terms of the tensor spectral index

n
T
⌘ d lnPh

d ln k
, (2.113)

where n
T

= 0 for exact scale invariance. At first order in slow roll, from Eq. (2.111), it is
given by n

T
= −2✏1⇤. Since ✏1 is always positive, this means that the tensor spectral index is

generically red (n
T
< 0) in slow-roll inflation. The sign of n

T
has not been measured so far, but

one can see that it would be an additional test for slow-roll inflation. If one ever finds that a blue
spectrum n

T
> 0 is favoured, this would be difficult to explain in the framework presented here,

and alternatives such as, for instance, string gas cosmology which predicts a blue spectrum [280],
would be a possible solution. Another useful quantity to calculate is the ratio r between the
amplitude of both power spectra,

r ⌘ Ph(k⇤)

P⇣(k⇤)
' 16✏1⇤ , (2.114)

5In Ref. [271], it was also realized that the power spectrum can be evaluated exactly in the case of power-law
inflation, for which a(⌘) / |⌘|β .

6In Refs. [276, 277], it was also shown how to improve the WKB method by adding more adiabatic terms. This
improved WKB method has allowed a re-derivation of the scalar and tensor power spectra at second order
and confirmed the results of the Green function approach.
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Chapter 2. Cosmological Inflation

where its first order expression in slow roll has been derived thanks to Eqs. (2.110) and (2.111).
Since ✏1 is a small parameter in slow-roll inflation, this means that tensor perturbations are
generically suppressed with respect to scalar perturbations. This is why in practice, it seems
difficult to directly measure the gravitational primordial power spectrum. However, tensor
perturbations leave an indirect imprint in the polarization pattern of the CMB through its
rotational component (dubbed “B mode”) that scalar cannot, by definition, produce. Recently
the BICEP2 experiment [164] has reported the detection of this B mode signal. If it is of
primordial origin, the associated value for r is found to be r = 0.16+0.06

−0.05. This value carries
important physical consequences, notably, it allows to constrain the energy scale ⇢⇤ = 3M2

PlH
2
⇤

of inflation. Indeed, combining Eqs. (2.110), (2.111) and (2.114), one obtains

⇢
1/4
⇤ = 2.0⇥ 1016

⇣ r

0.16

⌘1/4
✓ P
2.2⇥ 10−9

◆1/4

GeV , (2.115)

which corresponds to GUT energy scales. If such a detection is confirmed, therefore, inflation
is a high energy phenomenon by Particle Physics standard. Such a value of r also implies a
large field excursion. Indeed, because of the relation (2.19), one has ∆φ/MPl ⇠

p
2✏1MPl∆N =

O(1) (r/0.16)1/2 [281, 282], which indicates that the excursion of the field during inflation is
necessarily super-Planckian. This raises model building issues since most inflationary theoretical
setups arise as effective field theories relying on sub-Planckian expansions [283].

Finally, a last comment is in order concerning the value of P⇣ ⇠ 10−9. Indeed, during the
typical inflationary time scale of one e-fold , as just mentioned, the field excursion ∆φcl under
the “classical” Klein-Gordon equation (2.6) is given by ∆φcl ⇠

p
2✏1MPl. On the other hand,

as we will see in the next section, quantum fluctuations in the scalar sector modify the inflaton
dynamics, which translates into a quantum excursion ∆φqu = H/(2⇡). As a consequence,
the ratio between these two field excursions, which roughly quantifies how much the quantum
effects modify the inflationary dynamics, is given by ∆φqu/∆φcl = H/

p

8⇡2M2
Pl✏1 =

p

P⇣ . As a
consequence, the small measured value of P⇣ indicates that the quantum effects on the inflaton
dynamics are small, at least at Hubble exit time of the modes of astrophysical interest today.
Hence the classical trajectory (2.6) can safely be used as a first approximation. In the next
section, we discuss in more details the implementation of quantum effects on the inflationary
dynamics, notably by means of the “stochastic inflation” formalism.

2.4. Stochastic Inflation

As explained in section 2.3, in the standard description of inflation, the homogeneous parts of the
fields are usually assumed to behave classically, while the small deviations from homogeneity and
isotropy over this classical background are treated quantum mechanically. However, one expects
quantum corrections to the classical trajectory to modify the way the background evolves [284,
285, 286, 287, 288, 289]. The stochastic inflation formalism [290, 291, 292, 293, 294, 295, 296,
297, 289, 298] aims at modeling this physics. The idea is to treat the dynamics of the inflaton
field coarse-grained over length scales larger than the Hubble radius, by integrating out the sub-
Hubble degrees of freedom. It amounts to working out the effective theory for an open quantum
system made of the large scale modes of the field operators. When such a theory is derived, it
can be shown that the dynamics of the coarse-grained field ' is modified by the presence of a
stochastic term, so that its slow-roll equation of motion d'/dN = −V 0/(3H2) is modified and
becomes a Langevin equation of the form [290]

d'

dN
= − V 0

3H2
+
H

2⇡
⇠ (N) , (2.116)
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where ⇠ is a normalized white Gaussian noise, such that h⇠(N)i = 0 and h⇠(N1)⇠(N2)i =
δ(N1 − N2). What makes this formalism very appealing is that it reproduces results from
quantum field theory in curved space-times, even beyond the perturbative level [298, 299, 300,
301]. For example, in Ref. [302], it is shown that stochastic inflation reproduces perturbative
calculations of quantum field theories with non-conformal fields, in particular its secular effects
which take the form of “infrared logarithms”. Not only stochastic inflation accounts for the
leading infrared logarithms at each order in perturbation theory, but it can even describe the
regimes where inflation proceeds so long that the large logarithms overwhelm small coupling
constants. In Refs. [303, 304], this technique was extended to scalar quantum electrodynamics
on a de Sitter background. As one can see, stochastic inflation is therefore more than just a
qualitative description of some backreaction effects, but it provides us with a very powerful and
straightforward frame of calculation for quantum field theoretic effects on inflationary space-
times.

This section is organized as follows. First, in section 2.4.1, we detail an heuristic derivation of the
Langevin equations of stochastic inflation. This allows us to emphasize a few important aspects
of the nature of the formalism and of the assumptions it rests on. Then, in section 2.4.2, we
elaborate on the reasons why this equation needs to be written and solved with the number of e-
folds as the time variable. Since it happens quite often that a different time variable is used in the
literature, it seems important to stress why it is a priori wrong to do so. Finally, in section 2.4.3
we address the issue of the calculation of physical observable quantities in stochastic inflation
such as the power spectrum of adiabatic perturbations. Making use of the δN formalism, we
show that the stochastic setup enables to reproduce the standard result (derived in section 2.3)
of linear perturbation theory, in a “classical” limit that we carefully define. Then, we provide
complete solutions which do not rely on an expansion in the noise terms and which are therefore
valid even when the stochastic effects are large. Generic formulas are provided that can be
straightforwardly applied to any single field potential, and as an example, the case of a large
field potential V / φp is completely worked out. To our knowledge, it is the first time such a
non perturbative calculation of the power spectrum in stochastic inflation is presented.

2.4.1. Heuristic Derivation of the Langevin Equations

The basic strategy of stochastic inflation is to introduce a cutoff in Fourier space through a
suitable time-dependent window function that filters out the modes whose frequency is higher
than the comoving horizon size. The inflaton field is thus split in two differently behaving
parts: the short-wavelength part which is treated as a fully quantum operator, and the coarse-
grained one which collects the remaining super-horizon modes and which is treated as classical.
A Langevin equation of motion for the long-wavelength part can be obtained, where the sub-
horizon modes enter as a classical stochastic noise term that perturbs the dynamics of the
coarse-grained field. In this section, we give a detailed derivation of such a stochastic equation
of motion for the coarse-grained field, based on a heuristic argument dealing with the equation
of motion only.

However, it is worth mentioning that a more general approach can be followed that exploits the
influence functional method [305, 306] and operates the frequency splitting at the action level,
getting rid of the high frequencies via a path-integral over the sub-horizon part of the field. The
effective action obtained by this process contains some extra terms that can be interpreted as
the coupling of the super-horizon field with a classical random noise source, whose configurations
are statistically weighted by an appropriate functional probability distribution, becoming the
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Chapter 2. Cosmological Inflation

origin of the stochastic character of the Langevin equation of motion. In some sense, stochastic
inflation is therefore nothing more that a direct application of the well-known non equilibrium
quantum field theories for open quantum systems, to inflationary cosmologies.

2.4.1.1. Coarse-Grained Field

The starting point of the stochastic formalism is to divide the inflaton field φ into two pieces,
φ = ' + φ>. The coarse-grained field ' contains all wavelengths much larger than the Hubble
radius, i.e. such that k < σaH, where σ ⌧ 1 is a fixed parameter that sets the coarse-graining
scale. On the other hand, φ> collects the small wavelength modes, and can be written as

φ> (x, N) =

Z

dk

(2⇡)
3
2

W

✓

k

σaH

◆

h

e−ik·xφk (N) ak + eik·xφ⇤k (N) a†k

i

, (2.117)

where W is a filter function so that W ' 0 when its argument is small, k/(σaH) ⌧ 1, and
W ' 1 when its argument is large, k/(σaH) , 1. The idea is to derive an effective equation of
motion for ', integrating out the degrees of freedom contained in φ>.

The time dependence in the argument of the window function translates the fact that modes are
continuously leaving the small wavelength part of the field φ> to source the coarse-grained part
'. Therefore, one expects the dynamics of the coarse-grained field to be kicked by the inflow of
modes which cross the Hubble radius during inflation. It is important to stress that the effect
one shall obtain is only due to this continuous Hubble crossing of modes, rather than to some
fundamental coupling between super-Hubble and sub-Hubble modes.7

2.4.1.2. Split Klein-Gordon Equation

We start from the Klein-Gordon equation of the field φ (x, t) given by Eq. (2.6), but we rewrite
it in terms of the number of e-folds N ⌘ ln a, that is

@2φ (x, N)

@N2
+ (3− ✏1)

@φ (x, N)

@N
− r2

a2H2
φ (x, N) +

V 0 [φ (x, N)]

H2
= 0 . (2.118)

The reasons why it is crucial to work with N as the time variable are explained in section 2.4.2.
It is important to stress that in the stochastic inflationary setup, the short wavelength pertur-
bations are taken to be test perturbations, in the sense that the background functions H, aH
and ✏1 appearing in Eq. (2.118) are to be evaluated at the coarse-grained field ' only, through
the Friedmann equation (2.7). Written in terms of ' and @'/@N only, the latter is given by

H2 =
V (')

3M2
Pl − 1

2

⇣

d'
dN

⌘2 . (2.119)

Here we have not displayed any gradient term since it is σ-suppressed for '. In the same manner,
the first slow-roll parameter ✏1 = −(dH/dN)/H can simply be expressed in terms of dφ/dN as
✏1 = (dφ/dN)2/(2M2

Pl), see Eq. (2.15).

Let us now plug the decomposition φ = ' + φ> into the Klein-Gordon equation (2.118), and
expand the obtained result at first order in φ>. One obtains

@2'

@N2
+ (3− ✏1)

@'

@N
+
V 0 (')

H2
= −@

2φ>

@N2
− (3− ✏1)

@φ>

@N
+

r2φ>

(aH)2
− V 00 (')

H2
φ> , (2.120)

7Such couplings would need to be taken into account e.g. beyond linear order in perturbation theory.
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where the gradient term for ' has been dropped for the same reason as above. Again, H and ✏1
have to be understood as functions of ' and @'/@N . The right hand side of this equation can
be written with the Fourier expansion (2.117). Before doing so, to simplify notations, we first
introduce the hermitian operators Ak, defined as

Ak (x, N) = e−ik·xφk (N) ak + eik·xφ⇤k (N) a†k , (2.121)

so that for example, the Fourier expansion of φ is simply given by (2⇡)−3/2φ =
R

dkAk. One
obtains
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k
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+

✓

V 00

H2
+

k2

a2H2

◆

Ak

]}

.(2.122)

In this equation, it is clear that the last bracketed term vanishes since from the definition (2.121)
of the Ak operators, it involves the equation of motion for φk and for φ⇤k that one obtains by
Fourier expanding Eq. (2.118). This is why, if one lets

⇠1 = −
Z

dk

(2⇡)3/2
@

@N
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✓

k

σaH

◆]

Ak (2.123)

and

⇠2 = −
Z

dk

(2⇡)3/2
@
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✓

k

σaH

◆]

@Ak

@N
, (2.124)

the split Klein-Gordon equation can be written as

@2'

@N2
+ (3− ✏1)

@'

@N
+
V 0 (')

H2
= (3− ✏1) ⇠1 +

@⇠1

@N
− ⇠2 . (2.125)

2.4.1.3. Stochastic Processes

A crucial ingredient of the stochastic inflationary setup is the statement that the coarse-grained
field can be described in terms of a classical stochastic quantity. Indeed, it can be shown
that as the cosmological perturbations cross the Hubble radius, they evolve from a coherent
vacuum state to a strongly squeezed state [131], the corresponding squeezing being much more
important than whatever can be realized in the laboratory [307]. In this limit, the predictions
of the quantum formalism are indistinguishable from that of a theory where the fluctuations
are just assumed to be realizations of a classical stochastic process [308, 132, 309, 310]. The
classical limit is a subtle concept in quantum mechanics but, in this sense, such a system can be
characterized as being classical [136]. Moreover, the large-scale cosmological perturbations are
not isolated and, as a consequence, the phenomenon of decoherence [311, 312, 313] is relevant
for them, which is also considered as playing a role in their quantum-to-classical transition [132,
314, 309, 315, 133, 316, 317, 318, 319].

This is why in the σ ⌧ 1 limit where ' contains only super-Hubble, largely squeezed modes, the
terms ⇠1 and ⇠2 can be treated8 as classical noise sources acting on a stochastic coarse-grained
field ', through a split Klein-Gordon equation which becomes a Langevin equation for '. This

8This is rigorously showed within the Keldysh formalism, see Refs. [305, 306]
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is the stochastic inflationary setup. The mapping between ⇠1 and ⇠2 (which are, strictly speak-
ing, quantum operators) and their classical noise counterparts is made by identifying quantum
expectation values with stochastic moments, i.e. by requiring that

D

⇠pi (x1, N1) ⇠
q
j (x2, N2)

E

=
D

0
∣

∣

∣
T
h

⇠pi (x1, N1) ⇠
q
j (x2, N2)

i∣

∣

∣
0
E

, (2.126)

where i and j stand for 1 or 2, p and q are natural integers, and where the T -product is the
time ordering product. Note that in the left hand side of the above, the angle brackets stand for
stochastic average while in the right hand side, they denote the bra and the ket of the vacuum
state |0i.

2.4.1.4. Noise Moments

Since the field fluctuations φk are Gaussian to a good level of approximation, and since ⇠1 and
⇠2 are linearly constructed out of them, they also follow Gaussian statistics and it is enough to
calculate their second moments to fully characterize them. First of all, T -products of Ak’s and
@Ak/@N ’s need to be worked out. Making use of the canonical relations h0|T [ak1a

†
k2
]|0i = δ(k1−

k2) and h0|T [ak1ak2 ]|0i = h0|T [a†k1
a†k2

]|0i = h0|T [a†k1
ak2 ]|0i = 0, from the definition (2.121) one

obtains

hAk1 (x1, N1)Ak2 (x2, N2)i = φk1 (N1)φ
⇤
k2

(N2) e
ik1·(x2−x1)δ (k1 − k2) , (2.127)
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〉
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Let us proceed with the details of the calculation for h⇠1⇠1i, since the expressions for h⇠1⇠2i and
h⇠2⇠2i will follow accordingly. Making use of Eq. (2.127), one obtains

h⇠1 (x1, N1) ⇠1 (x2, N2)i =
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dk1dk2
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φk (N1)φ
⇤
k (N2) e

ik·(x2−x1).(2.131)

Let ✓ be the angle between k and x2−x1, so that k · (x2−x1) = kr cos(✓), where r ⌘ |x2−x1|
and k = |k|. Decomposing dk = k2dk sin(✓)d✓dφ, the φ integration can be factorized out and
just gives a 2⇡ factor. The ✓ integral can also be performed, since one has

Z ⇡

0
d✓ sin (✓) eikr cos(✓) =

"

−eikr cos(✓)

ikr

#⇡

0

= 2
sin (kr)
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. (2.132)

It only remains the k-integral, and one has

h⇠1 (x1, N1) ⇠1 (x2, N2)i = (2.133)
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Another quantity we need to compute is @W/@N . One has
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. (2.134)

This is why to proceed, one needs to specify the window function.
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2.4.1.5. Window Function and Coloured Noises

A very simple choice for the window function consists in taking a Heaviside step functionW (s) =
✓(s− 1), so that W ⌘ 1 when k ≥ σaH and W ⌘ 0 when k < σaH. In this case, one has

W 0

✓

k

σaH

◆

= ✓0
✓

k

σaH
− 1

◆

= δ

✓

k

σaH
− 1

◆

= σaHδ (k − σaH) . (2.135)

Combining this relation with Eq. (2.134), one obtains

@

@N
W



k

σa (N1)H (N1)

]

@

@N
W



k

σa (N2)H (N2)

]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)] δ [k − σa (N2)H (N2)]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)] δ [σa (N1)H (N1)− σa (N2)H (N2)]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)]
δ (N1 −N2)

(1− ✏1)σa (N1)H (N1)

=
σa (N1)H (N1)

1− ✏1
δ [k − σa (N1)H (N1)] δ (N1 −N2) . (2.136)

One can see that due to the presence of the δ(N1 −N2) term, ⇠1 and ⇠2 are white noises, which
means that the value they take at time N1 is uncorrelated with any of their previous (or future)
realizations at times N2, or said differently, that the noises have no memory of their previous
history. Thanks to this property, ' describes a Markovian process.

However, one should note that this is directly due to our choice of a step function as the window
function. If smooth window functions were considered instead, one would obtain coloured noises,
and consequently non-Markovian processes [320, 321, 322]. This have important physical impli-
cations, since coloured noises directly affect the shape of the power spectrum [322] and provide
an extra source to the production of non Gaussianities [323]. Even though their treatment is
more challenging, coloured noises can be argued to be better motivated, since a sharp cutoff in
momentum space gives rise to a rather unnatural window function in position space, and since a
wide class of smooth window functions give rise to the same asymptotic coloured noise, so that
physical quantities remain independent of the exact shape of the window function.

More precisely, it was shown in Ref. [324] that the final correlations of the coarse-grained field
are independent of the window function if it satisfies two properties. First, when written in
position space, it must be chosen to be spherically symmetric and x-dependent only through
the combination |x|/R, where R = 1/(σaH) is the length scale over which coarse graining
is performed. In this way, W is constrained to have the form W (x,N) / R−3w(|x|/R), when
represented in position space. Second, the function w(s) must decrease at least as s−6 for s, 1.
This is not the case for the Heaviside step window function which gives, after Fourier transform,

wHeav (s) =
sin (s)− s cos (s)

2⇡2s3
. (2.137)

Such a window function is not everywhere positive and decays too slowly at large distances to
satisfy the criterion mentioned above. For simplicity in the following, we will still work with
the Heaviside step window function, but one may keep in mind that this choice is not without
consequences.

Working with a Heaviside window function, one then obtains

h⇠1 (x1, N1) ⇠1 (x2, N2)i =
(σaH)3

2⇡2
(1− ✏1) |φk|2k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) . (2.138)
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Similarly, one gets for h⇠2⇠2i and h⇠1⇠2i the following expressions,

h⇠2 (x1, N1) ⇠2 (x2, N2)i =
(σaH)3

2⇡2
(1− ✏1)

∣

∣

∣

∣

@φk

@N

∣

∣

∣

∣

2

k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) , (2.139)

h⇠1 (x1, N1) ⇠2 (x2, N2)i =
(σaH)3

2⇡2
(1− ✏1)

✓

φk
@φ⇤k
@N

◆

k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) , (2.140)

and h⇠2⇠1i is simply given by h⇠1⇠2i⇤.

2.4.1.6. Case of a de Sitter Background

In practice, from here, one needs to calculate the amplitude of the Fourier modes φk over the
background under consideration to work out the correlations of the noises ⇠1 and ⇠2. This must
be done by solving the equation of motion for the modes φk, which is given by the last bracketed
term of Eq. (2.122). Here we give the solution in the specific case of a de Sitter background.
When writing the equation for the modes in term of the time variable z ⌘ k/(aH), one obtains

d2φk
dz2

− 2

z

dφk
dz

+

✓

1 +
V 00

H2z2

◆

φk . (2.141)

If V 00 is taken to be constant, then the solutions of this equation are given by

φk = Akz
3/2H(1)

⌫ (z) +Bkz
3/2H(2)

⌫ (z) , (2.142)

where H
(1)
⌫ and H

(2)
⌫ are the Hankel functions [269] of the first and second class respectively, Ak

and Bk are integration constants, and

⌫ =
3

2

r

1− 4

9

V 00

H2
. (2.143)

As explained in section 2.3.2, the integration constants can be set by requiring that the per-
turbations are initiated in their Bunch-Davies vacuum state aφk = e−ik⌘/

p
2k, see Eq. (2.62),

when they are well inside the Hubble radius. Remember that ⌘ is the conformal time defined in
Eq. (1.62). This amounts to choosing

φk !
z*1

zHp
2kk

e−iz . (2.144)

Since one has [269]H
(1)
⌫ (z) '

p

2/(⇡z) exp[i(z−⌫⇡/2−⇡/4)] andH(2)
⌫ (z) '

p

2/(⇡z) exp[−i(z−
⌫⇡/2 − ⇡/4)] when z , 1, this sets the integration constants to be Ak = 0 and Bk =p
⇡/2H/k3/2 exp[−i⇡/2(⌫ + 1/2)], so that one has

φk =

p
⇡

2
H
⇣z

k

⌘3/2
exp



−i⇡
2

✓

⌫ +
1

2

◆]

H(2)
⌫ (z) . (2.145)

This allows to evaluate φk when k = σaH, that is when z = σ. Since one has [269] H
(2)
⌫ (σ) '

i/⇡Γ(⌫)(σ/2)−⌫ when σ ⌧ 1, where Γ is the Euler Gamma function, one can write

(σaH)3 |φk|2k=σaH ' H2

4⇡
Γ2 (⌫) 22⌫σ3−2⌫ . (2.146)
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In the same manner, making use of the relation [269] dH
(2)
⌫ (z)/dz = H

(2)
⌫−1(z) − ⌫/zH

(2)
⌫ (z) '

−⌫/zH(2)
⌫ (z) when z ⌧ 1, and since d/dN = −zd/dz, one has dφk/dN ' (⌫ − 3/2)φk in this

same limit, so that one obtains
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∣

dφk
dN

∣
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∣
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' H2
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Γ2 (⌫)

✓
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◆2

22⌫σ3−2⌫ , (2.147)
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' H2
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✓

⌫ − 3

2

◆

22⌫σ3−2⌫ . (2.148)

From here, when evaluated at the same point x in space, the cross correlations (2.138)-(2.140)
of the noises simply read

h⇠1 (N1) ⇠1 (N2)i =

✓

H

2⇡

◆2
⇣σ

2

⌘3−2⌫ 4Γ2 (⌫)

⇡
δ (N1 −N2) , (2.149)

h⇠2 (N1) ⇠2 (N2)i =

✓

H
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◆2✓

⌫ − 3
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◆2
⇣σ

2

⌘3−2⌫ 4Γ2 (⌫)

⇡
δ (N1 −N2) , (2.150)

h⇠1 (N1) ⇠2 (N2)i =
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◆2✓

⌫ − 3

2

◆

⇣σ

2

⌘3−2⌫ 4Γ2 (⌫)

⇡
δ (N1 −N2) . (2.151)

2.4.1.7. Case of a Light Field

We now specify the noises amplitudes when the field is assumed to be light compared to the
Hubble factor, that is when V 00 ⌧ H. In this case, from Eq. (2.143), one has ⌫ ' 3/2. Looking
back at Eqs. (2.149)-(2.151), this means that one simply has ⇠2 = 0, and that

h⇠1 (N1) ⇠1 (N2)i =
✓

H

2⇡

◆2

δ (N1 −N2) . (2.152)

This is why it is convenient to express ⇠1 in terms of a normalized white Gaussian noise ⇠ through
⇠1 = H/(2⇡)⇠, so that the Langevin equation for the coarse-grained field is simply given by

@2'

@N2
+ 3

@'

@N
+
V 0 (')

H2
= 3

H

2⇡
⇠ . (2.153)

2.4.1.8. Case of a Slow-Rolling Field

Finally, if the field is experiencing slow roll, then as usual the second time derivative can be
neglected in the equation of motion and one finally obtains

@'

@N
+
V 0 (')

3H2
=
H

2⇡
⇠ , (2.154)

which corresponds to the announced equation (2.116) and which was first derived in Ref. [290].

2.4.2. Why should we use the Number of e-folds as the Time Variable in the
Langevin equations?

In section 2.4.1, the Langevin equation has been worked out in terms of the number of e-folds
N . A priori, another time variable could have been used, such as cosmic time t for example.
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Indeed, in a number of papers (see e.g. Refs. [325, 326, 289, 327, 324, 328, 329, 330, 331]), the
Langevin equation is written and solved in terms of t instead of N . However, this choice is not
without consequences since the transformation from t to N makes use of the stochastic function
H [' (t)] and as a consequence, leads to a physically different stochastic process with different
probability distributions.

2.4.2.1. Steady-State Distributions

The claim we just made can be easily established [289, 332, 333] when deriving e.g. the steady-
state distribution associated with the stochastic process under study, for different time variables.
This distribution can be obtained writing the Fokker-Planck equation for P (φ,N), which is the
probability density for the coarse-grained field to take the value φ at time N . If one starts from
the Langevin equation (2.116) written in terms of N , in the Itô interpretation [334], one obtains

@

@N
P (φ,N) =

@

@φ



V 0

3H2
P (φ,N)

]

+
@2

@φ2



H2

8⇡2
P (φ,N)

]

. (2.155)

If we denote the steady-state probability distribution by Pstat(φ), the equation for Pstat(φ) is
simply given by @Pstat(φ)/@N = 0, that is

@
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⇢

V 0

3H2
Pstat (φ) +

@
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H2

8⇡2
Pstat (φ)

]}

⌘ @J

@φ
= 0 , (2.156)

where J denotes the probability current. This current thus needs to be independent of φ in
the steady-state case. In most interesting cases, it is actually 0. For example, if φ can take
unbounded values, since

R

Pstat(φ)dφ = 1, Pstat(φ) needs to decrease at infinity strictly faster
than |φ|−1. In this case, Pstat(φ) and @Pstat(φ)/@φ vanish at infinity and J is 0 at infinity, hence
everywhere. This yields quite a simple equation to solve for Pstat(φ), and one obtains

Pstat (φ) /
24⇡2M4

Pl

V (φ)
exp



24⇡2M4
Pl

V (φ)

]

, (2.157)

where there is an overall integration constant chosen so that the distribution is normalized,
R

Pstat(φ)dφ = 1, and that for simplicity we do not display here. Now, let us redo the same
calculation, but starting this time from the Langevin equation written in terms of cosmic time
t. Performing a simple change of time variable in Eq. (2.116), the later is given by

dφ̃

dt
= − V 0

3H
+
H3/2

2⇡
⇠ (t) , (2.158)

where we use the notation φ̃ to stress the fact that a priori, φ̃ is not the same stochastic process
as φ. The Fokker-Planck equation corresponding to the above equation reads
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. (2.159)

In the same manner as before, this equation can be written as @P̃ /@t = @J̃/@φ̃, and requiring
that the current J̃ vanishes gives rise to a differential equation for the steady-state distribution
P̃stat(φ̃) that can easily be solved, and one obtains

P̃stat

⇣

φ̃
⌘

/

2
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5 . (2.160)
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This is, as announced, explicitly different from Eq. (2.157). In this calculation, it can also
be made explicit that this difference is intimately related with the fact that the amplitude of
the noise depends on the coarse grained field through the function H(φ). Indeed, if one does
the same calculation but assume that H is a constant, then one obtains the same stationary
distribution for the two time variables, Pstat = P̃stat / exp(24⇡2M4

Pl/V ).

In any case, with the example of the steady-state distribution, we have shown that different
time variables for the Langevin equation correspond to different stochastic processes. This is
why, in the following, we identify the correct time variable one must work with when dealing
with stochastic inflation.

2.4.2.2. Perturbations Equation derived from the Background Equation

As suggested in Ref. [335], since the Langevin equation was obtained in section 2.4.1 by perform-
ing an expansion in φ> in the equation of motion directly, the correct time variable should be
the one such that the equations for the perturbations, which must be established at the action
level, can correctly be obtained from varying the equation of motion for the background itself,
when written in terms of this time variable. In this section, we establish that this condition
selects out N as the time variable. This is of course an heuristic argument only, and a more
rigorous derivation of this result will be presented in section 2.4.2.3 where it will be shown that
N only allows to reproduce results from Quantum Field Theories.

In the case where inflation is driven by a single scalar field φ, the action we start from, S =
Sgrav + Sφ where Sgrav is given by Eq. (1.10) and Sφ is given by Eq. (2.1), reads

S =

Z

d4x
p−g



M2
Pl

2
R− 1

2
gµ⌫@µφ@⌫φ− V (φ)

]

. (2.161)

From this action (and this action only), we first want to derive equations of motion for the
scalar perturbations, that can be compared with what will be obtained below from varying the
equation of motion itself. To make our point even more convincing, we go up to second order
in the perturbations. This is why we expand the background fields {φ, gµ⌫} at second order in
the non-homogeneous scalar perturbations, without fixing any gauge for the moment. With the
same notations as in section 2.3.1, when the time variable in the metric is the conformal time
⌘, one has

φ (⌘, ~x) = φ(0) (⌘) + φ(1) (⌘, ~x) +
1

2
φ(2) (⌘, ~x) ,

g00 = a2
h

−1− 2↵(1) − ↵(2)
i

, gi0 = −a2


@iB
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1

2
@iB

(2)

]

, (2.162)

gij = a2
⇢

δij

h

1− 2 (1) −  (2)
i

+ 2@i@j



E(1) +
1

2
E(2)

]}

.

Here we have not displayed vector and tensor perturbations, as in Eq. (2.35). As explained in
section 2.3.1, the degrees of freedom introduced above are partially redundant and in absence of
anisotropic stress, the scalar sector can be described in terms of a single gauge invariant variable.
One possible choice is the Mukhanov-Sasaki variable [122, 241, 242] v, which can be defined,
order by order, as the scalar field fluctuation φ(n) on uniform curvature hypersurfaces [336]. To
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first and second orders, after a lengthy but straightforward calculation, one obtains [337]

v(1) = φ(1) +

(

φ(0)
)0

H  (1) , (2.163)
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⇣
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+2

(
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 0
1 1 + 2

 1

H
⇣

φ(1)
⌘0
. (2.164)

From varying the expanded action, one can derive an equation of motion for the scalar pertur-
bations, and in particular for a gauge invariant combination of them, say the Mukhanov-Sasaki
variable. In this section, we want to compare this action-based equation of motion for the scalar
perturbations with an equation of motion for the perturbation in φ coming from varying the
background Klein-Gordon equation. It is therefore important to work in a gauge where these two
quantities, v and the perturbation in φ, can be identified. By definition of the Mukhanov-Sasaki
variable, this is the case in the Uniform Curvature Gauge, for which one has

v(n) = φ(n) (2.165)

to all orders. In this gauge, one notably has  = 0 to all orders, which indeed gives Eq. (2.165)
at first and second order starting from Eqs. (2.163) and (2.164).

The equation of motion for the scalar perturbations φ(1) and φ(2) is therefore given by the one
for v(1) and v(2) in this gauge. At leading order in the slow-roll approximation, and in the long
wavelength limit, they read9

3Hφ̇(1) +

 

V 00 − V 02

3H2M2
Pl

!

φ(1) = 0 , (2.166)

3Hφ̇(2) +
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3H2M2
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!

φ(2) = −1

2

 

V 000 − V 0V 00

H2M2
Pl

+
2V 03

9H4M4
Pl

!

φ(1)
2
. (2.167)

We now need to compare these equations with the ones that arise when varying the equation of
motion for the background, and find out for which time variable they match.

If t is used
When cosmic time t is used, the leading order of the slow-roll approximation for the Klein-
Gordon equation for the background is given by Eq. (2.12),

dφ

dt
= − V 0

3H (φ)
, (2.168)

9In spite of the complexity of the field equations at second order, see e.g. Ref. [338], in the long wavelength limit,
it is sufficient [339] to use the local conservation of energy-momentum to establish Eqs. (2.166) and (2.167).
Because this is not the main subject of this section, the corresponding calculations are not reproduced here
but they can be found in Refs. [339, 336].
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where we take H2 ' V/(3M2
Pl) at leading order in slow roll. When plugging φ = φ(0)+φ(1)+φ(2)

in this equation, one obtains at first and second order in the perturbations
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φ̃(1) = 0 , (2.169)
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. (2.170)

One should stress that these equations do not apply to φ(1) and φ(2) since they are different
from Eqs. (2.166) and (2.167), which is why we use the notation φ̃(1,2) instead of φ(1,2). The
differences with Eqs. (2.166) and (2.167) are displayed in red. One can see that several factors
do not match. This is because in general, the equations for the perturbations must be derived
from the action itself and cannot be obtained by simply varying the equation of motion for the
background.

If ds = Hpaqdt is used
For this reason, let us look for a time variable s which is such that the equations for the
perturbations arise from varying the equation of motion for the background when written in
terms of s. Let us assume that s is related to t thanks to a relation of the form

ds = Hp (φ) aq (φ) dt , (2.171)

where p and q are power indexes that we try to determine. For example, when p = 0 and q = 0,
s is the cosmic time t, when p = 1 and q = 0, s is the number of e-folds N , while when p = 0
and q = −1, s is the conformal time ⌘. In terms of s, the equation of motion for the background
is given by

dφ

ds
= − V 0

3Hp+1 (φ)
, (2.172)

where again we take H2 ' V/(3M2
Pl) at leading order in slow roll. When plugging φ = φ(0) +

φ(1) + φ(2), one obtains at first and second order in the perturbations
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(2.174)

Again, these equations do not apply to φ(1) and φ(2) in general since the correct ones are given
by Eqs. (2.166) and (2.167) which is why we use the notation φ̃(1,2). The differences between
these two sets of equations are displayed in red. In order for the above to match Eqs. (2.166)
and (2.167), one must have q = 0 and (p + 1)/6 = 1/3 which gives p = 1, (p + 1)/2 = 1 which
also gives p = 1, and (p + 1)(p + 3)/36 = 2/9 which gives p = 1 or p = −5. As a conclusion,
with p = 1 and q = 0 only, the equations for the perturbations (from what is shown here, up
to second order in perturbation theory) can be seen as if they were derived from varying the
equation of motion for the background. This choice corresponds to the number of e-folds N .
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2.4.2.3. Stochastic Inflation and QFT on Curved Space-Times

To go beyond this heuristic argument, one can explicitly show [299, 300] that N is the time
variable which allows to consistently connect stochastic inflation with results of QFT on curved
space-times. For example, let us consider the leading order of the fluctuations δφ = ' − φcl
in the coarse-grained inflaton field about its classical background value φcl. By “classical”, we
mean that φcl is the solution of the equation of motion without the noise term. We want to
compute the mean square value of δφ and compare what we obtain to results coming from
QFT calculations. For example, in Ref. [340], with renormalization obtained by employing the
adiabatic subtraction prescription on inflationary backgrounds, it was shown that in quadratic
inflation where V = m2φ2/2, if δφ = 0 at time t0, one has at leading order see Eq. (48) of
Ref. [340]

D

(φ− φcl)
2
E

=
H6

0 −H6

8⇡2m2H2
, (2.175)

where H means H (φcl) and H0 means H evaluated at time t0. In the same manner, in Ref. [341],
it was shown that in power-law inflation where a(t) / tp with p, 1, the same quantity is given
by see Eq. (29) of Ref. [341]
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)

. (2.176)

Let us see how these results can be derived in the stochastic inflationary framework. We start
from the Langevin equation (2.116) that we write
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H
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where we have used H2 ' V/(3M2
Pl) and where a prime denotes a derivative with respect to the

inflaton field. Since φcl is the solution of the above equation without the noise term, the noise
term can be considered as a perturbation captured in δφ. After expanding Eq. (2.177) in powers
of δφ, one gets for the leading order δφ(1)

dδφ(1)

dN
+ 2M2

Pl

✓

H 0

H

◆0

δφ(1) =
H

2⇡
⇠ . (2.178)

Multiplying this equation by δφ(1) and taking the stochastic average leads to

d
D

δφ(1)
2
E

dN
+ 4M2

Pl

✓

H 0

H

◆0
D

δφ(1)
2
E

=
H

⇡

D

⇠δφ(1)
E

. (2.179)

In order to obtain a differential equation for hδφ(1)2i only, one needs to evaluate the right hand
side of the previous equation. This can be done as follows. Letting δφ(1) = 0 at time N0, a
formal solution of Eq. (2.178) is given by

δφ(1) = exp



−2M2
Pl

Z N

N0

✓

H 0

H

◆0

dn

]
Z N

N0

⇢

H

2⇡
⇠ (n) exp



2M2
Pl

Z n

N0

✓

H 0

H

◆0

dn̄

]}

dn . (2.180)

From this expression, since h⇠ (N) ⇠ (N 0)i = δ (N −N 0), it is straightforward to see that10

D

⇠δφ(1)
E

=
H

4⇡
. (2.181)

10The 1/2 factor comes from the rule
R x2

x1
f(x)δ(x − x2)dx = f(x2)/2 when the Dirac function is centred at a

boundary of the integral.
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This is why one obtains

d
D

δφ(1)
2
E

dN
+ 4M2

Pl

✓

H 0

H

◆0
D

δφ(1)
2
E

=
H2

4⇡2
. (2.182)

Since the equation of motion for φcl is simply given by dN = −H/(2H 0M2
Pl)dφcl, one can change

the time variable from N to φcl and the formal solution of the above equation can be written as

D

δφ(1)
2
E

= − 1

8⇡2M2
Pl

H 02

H2

Z

H5

H 03
dφcl . (2.183)

For quadratic inflation where H = mφ/(
p
6MPl), this exactly gives rise to Eq. (2.175) while for

power-law inflation where11 H = H0 exp
⇥

−1/
p
2p(φ− φ0)/MPl

⇤

, one exactly obtains Eq. (2.176).
Therefore, stochastic and standard field-theoretical approaches to inflation produce the same
results for the amount of field fluctuations. Here we have established this property at leading
order in perturbation theory. However, as shown in Refs. [290, 298], the stochastic approach
can reproduce QFT results for any finite number of scalar loops and even beyond.

To emphasize the specificity of N as a preferred time variable choice, let us repeat the same
procedure using the Langevin equation written in terms of t,

dφ̃

dt
= −2M2

PlH
0 +

H3/2

2⇡
⇠ (t) . (2.184)

Since this corresponds to a different stochastic process as the one written in terms of N , we use
again the notation φ̃ instead of φ. At leading order in the noise, one obtains for δφ̃(1)

dδφ̃(1)

dt
+ 2M2

PlH
00δφ̃(1) =

H3/2

2⇡
⇠ (t) . (2.185)

Again, multiplying this equation by δφ̃(1) and taking the stochastic average leads to

d
D

δφ̃(1)
2
E

dt
+ 4M2

PlH
00
D

δφ̃(1)
2
E

=
H3/2

⇡

D

⇠ (t) δφ̃(1)
E

. (2.186)

In the same manner as before, making use of the formal solution to Eq. (2.185),

δφ̃(1) = exp



−2M2
Pl

Z t

t0

H 00du

]
Z t

t0

(

H3/2

2⇡
⇠ (u) exp



2M2
Pl

Z u

t0

H 00dv

]

)

du , (2.187)

one can show that
D

⇠ (t) δφ̃(1)
E

= H3/2/(4⇡), so that one needs to solve

d
D

δφ̃(1)
2
E

dt
+ 4M2

PlH
00
D

δφ̃(1)
2
E

=
H3

4⇡2
. (2.188)

Making use of the classical trajectory dt = −dφcl/(2M
2
PlH

0), one obtains12

D

δφ̃(1)
2
E

= − H 02

8⇡2M2
Pl

Z

H3

H 03
dφcl (2.189)

11In section 3.2, it is shown that the potential associated with power-law inflation, for which a(t) / tp, is given

by V (φ) / e−
p

2/pφ/MPl . Since H2 = V (φ)/(3M2
Pl) at leading order in slow roll, one obtains the given H(φ)

profile.
12This equation (2.189) also matches Eq. (13) of Ref. [328] where perturbative solutions of stochastic inflation

are derived when formulated in terms of the cosmic time.
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which is clearly different from Eq. (2.183).13 For example, for quadratic inflation, it reduces to

hδφ̃(1)2i = 3(H4
0 − H4)/(16⇡2m2) which does not coincide with Eq. (2.175) and for power-law

inflation, it reduces to hδφ̃(1)2i = pH2/(4⇡2) ln(H0/H) which does not coincide with Eq. (2.176).

Finally and in passing, let us derive the corresponding results for the leading order of the mean
fluctuation hδφi. Since from Eq. (2.178) it is clear that hδφ(1)i = 0, one has to work out hδφ(2)i.
Expanding ' = φcl + δφ(1) + δφ(2) in Eq. (2.177), one obtains

dδφ(2)

dN
+ 2M2

Pl

✓

H 0

H

◆0

δφ(2) +M2
Pl

✓

H 0

H

◆00

δφ(1)
2
=
H 0

2⇡
δφ(1)⇠ (N) . (2.190)

When taking the stochastic average of the above equation, hδφ(1)2i is given by Eq. (2.183) and
hδφ(1)⇠i is given by Eq. (2.181), so that one obtains
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⌦

δφ(2)
↵
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H 03
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8⇡2
. (2.191)

Using the classical trajectory dφcl = −2M2
PlH

0/HdN , this equation can be written in terms of
φcl, and after integration by parts, this gives rise to

D
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E
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(H 0/H)0

H 0/H

D

δφ(1)
2
E

+
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2 − H4

H 02

!

, (2.192)

where hδφ(1)2i is given by Eq. (2.181). For example, when applied to quadratic inflation where
V = m2φ2/2, one obtains

D

δφ(2)
E

=

p
6

96⇡2mMPlH



H6 −H6
0

H2
− 3

(

H4 −H4
0

)

]

, (2.193)

which corresponds to Eq. (49) of Ref. [299]. However, it is again worth noting that one would
have obtained a completely different result starting from the Langevin equation written in terms
of cosmic time t, namely14

D

δφ̃(2)
E

=
1

2

H 00

H 0

D

δφ̃(1)
2
E

+
H 0

32⇡2M2
Pl

✓

H3
0

H002
− H3

H02
◆

. (2.194)

This obviously differs from Eq. (2.192).

To summarize the discussion, different time variables in the Langevin equation lead to different
stochastic processes, and the only time variable which allows the stochastic inflation formalism
to reproduce QFT calculations is the number of e-folds N . One should therefore always work
with N when dealing with stochastic inflation.

2.4.3. Stochastic Inflation and the Scalar Power Spectrum

In the previous section, we saw that stochastic inflation is able to reproduce QFT results,
and we mentioned that this is even true beyond the linear order [298, 302, 299, 300, 301] in

13As shown below in section 2.4.3.1, this difference is crucial since it leads e.g. to an incorrect result for the power
spectrum of scalar perturbations.

14This equation (2.194) matches Eq. (15) of Ref. [328] where perturbative solutions of the Langevin equation are
derived when formulated in terms of the cosmic time.
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perturbations theory. Let us see how this interesting property shall be used. The calculation of
the corrections to the power spectrum that arise when perturbations are worked out beyond the
linear order [342, 343, 344] is a difficult task, see for example Refs. [345, 346]. Indeed, already at
second order, the perturbed Einstein equations δGµ⌫ = δTµ⌫ are cumbersome. However, as we
saw explicitly in sections 2.4.2.2 and 2.4.2.3, stochastic inflation can lead to the same results as
the ones coming from a δGµ⌫ = δTµ⌫ calculation, by means of a Langevin Klein-Gordon equation.
This is why in this section, we calculate the power spectrum of scalar adiabatic perturbations,
starting from the Langevin equation, and at any order in the noise term.

At linear order, this problem has been treated in Refs. [327, 322, 331] by expanding the coarse-
grained field about its classical counterpart at first order, ' = φcl+δφ

(1), where φcl is the solution
of the Langevin equation (2.116) without the noise term, and by calculating the statistical
moments of δφ(1) making use of the same techniques as in section 2.4.2.3. The correlation
functions of δφ(1) are related to the power spectrum P⇣ of curvature perturbations thanks to
the relation [331]

P⇣ '
1

H (φcl)

d

dt

(



H (φcl)

φ̇cl

]2⌧
h

δφ(1)
i2
〉

)

. (2.195)

In this expression, the right hand side needs to be evaluated when the scale associated with
the wavenumber k (for which the power spectrum is calculated) exits the Hubble radius. In
the references mentioned above, it is important to stress that the Langevin equations are solved
in terms of t as the time variable, whereas we have shown in section 2.4.2 that the number of
e-folds N must be used instead. This has important consequences. Indeed, if one plugs the

expression (2.183) obtained for hδφ(1)2i using the number of e-folds as the time variable into
Eq. (2.195), one obtains for the power spectrum P⇣ evaluated at the wavenumber k

P⇣ '


H(φcl)

2⇡

]2 1

2M2
Pl✏1 (φcl)

, (2.196)

where as above, φcl needs to be evaluated when the scale associated with the wavenumber k
(for which the power spectrum is calculated) exits the Hubble radius. This expression exactly
matches the standard result (2.110) recovered below, see Eq. (2.205). However, if one makes
use of the cosmic time t as the time variable and plugs Eq. (2.189) into Eq. (2.195), one obtains
instead

P⇣̃ '


H(φcl)
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]2 1

2M2
Pl✏1 (φcl)

(

1 + 2
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H (φcl)
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= P⇣

(

1 + 2



H 0 (φcl)

H (φcl)

]2 Z φcl


H (φcl)

H 0 (φcl)

]3

dφ

)

. (2.198)

Here we have adopted the same notation as in section 2.4.2 where a tilde stresses that not the
same quantity is actually worked out and ⇣ is not ⇣̃. This result exactly matches Eq (2.11) of
Ref. [331]. However, when in this work it is concluded that, because of the second term in the
braces of Eq. (2.198) which is always negative, “the amplitude of the spectrum in the stochastic
approach is in general reduced with respect to the amplitude in the standard approach”, one
can see that such a statement is incorrect since the extra term in Eq. (2.198) is entirely due to a
bad choice of time variable. This is why, if such an approach were to be followed and generalized
to higher orders, it would again be crucial to work with N as the time variable contrary to what
is done in the references mentioned above.

Another strategy is followed in Refs. [347, 348, 349], where methods of statistical physics, such
as replica field theory, are employed in a stochastic inflationary context in the case of a free test
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field evolving in a de Sitter or power-law background. In particular, dependence on the window
function W is studied and it is shown that the effects associated with the choice of the window
function vanish at late time so that the power spectrum calculated at the end of inflation is
rather independent on W .

Finally, in Refs. [350, 351], the δN formalism is used to relate the curvature perturbations to
the number of e-folds perturbations. The Langevin equation is solved numerically over a large
number of realizations, and the power spectrum is computed in this manner, numerically, for
quadratic potentials and hybrid potentials.

This is this last route that we chose to follow here, since it does not rely on a pertubative
expansion in the noise terms and it therefore allows us to describe regimes where the stochastic
effects are large. The δN formalism proves very helpful since it relates the scalar power spectrum
to stochastic properties of a family of background trajectories, and it is thus well suited to address
the issue of stochastic effects on the scalar power spectrum. For the first time, we derive fully
analytical and non perturbative results that apply to any single-field potential, and which do
not require a numerical solution of the Langevin equation. These results allow us to prove that
the usual power spectrum is recovered in the classical limit, for any potential, and to discuss
qualitatively and quantitatively the modifications to the standard result that arise due to the
stochastic effects. The work presented here has not been pre-printed or published yet since it
has been derived in the course of drafting this manuscript.

In this section, we first briefly describe how the δN formalism proceeds. We then turn to the
stochastic inflation equations for which we provide generic formal results about ending points
probabilities, mean number of e-folds and dispersion in the number of e-folds. For each quantity,
we derive analytical non perturbative results that we compute explicitly for the “large field” po-
tential (V / φp) as an illustrative example. We then derive the generic curvature perturbations
power spectrum computed in stochastic inflation, again without using any expansion in the noise
term. We make sure that in the classical limit (that we pay attention to carefully define), the
standard result (2.110) is recovered. Finally, we completely work out the large field example for
which we precisely calculate and discuss the stochastic effects on the scalar power spectrum and
its tilt.

2.4.3.1. The δN Formalism

Based on generic considerations, the δN formalism [125, 352, 353, 354, 355, 356] enables to
relate statistical properties of cosmological perturbations to the distributions of number of e-
folds in some family of homogeneous universes. This leads the way to a very powerful frame
of calculation that we now briefly describe. As explained in section 2.3.1, starting from the
Friedmann-Lemâıtre-Robertson-Walker line element ds2 = −dt2 + a2(t)δijdx

idxj , deviations
from homogeneity and isotropy can be included in a more general metric, which contains some
gauge redundancy. A specific gauge choice consists in setting the fixed t-slices of space-time to
have uniform energy density, and the fixed x-worldlines to be comoving. When doing so, the
perturbed metric becomes [357, 288]

ds2 = −dt2 + a2(t)e2⇣(t,x)γij(t,x) , (2.199)

where ⇣ is the curvature perturbation. This allows to define a local scale factor ã(t,x) =
a(t)e⇣(t,x). Starting from an initial flat slice of space-time at time tin, the amount of expansion
N(t,x) ⌘ ln [ã(t,x)/a(tin)] to a final slice of uniform energy density is straightforwardly related
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to the curvature perturbation

⇣(t,x) = N (t,x)−N0(t) ⌘ δN , (2.200)

where N0(t) ⌘ ln [a(t)/a(tin)] is the unperturbed amount of expansion. This result leads to the
δN formalism if one further assumes that on super-Hubble scales, the evolution of the Universe
at each position is independent and well-approximated by the evolution of an unperturbed
universe. This is the so-called “separate universe” assumption [355, 339, 358]. It implies that
N(t,x) is the amount of expansion in unperturbed universes, so that ⇣ can be calculated from
the knowledge of the evolution of a family of such universes. Written in terms of the inflaton
field φ(x) = φ + δφ(x), made of an unperturbed homogeneous piece φ and a perturbation δφ
originating from vacuum quantum dispersion, Eq. (2.200) gives rise to

⇣ (t,x) = N [⇢ (t) , φ (x)]−N [⇢ (t) , φ] , (2.201)

where N is evaluated in unperturbed universes from an initial epoch when the inflaton field has
an assigned value φ to a final epoch when the energy density has an assigned value ⇢. Since the
observed curvature perturbations are almost Gaussian, at leading order in perturbation theory,
one has

⇣ (t,x) = δN ' @N

@φ
δφ , (2.202)

where N (φ) is evaluated with the classical formula

N (φ) =
1

MPl

Z

dφp
2✏1

. (2.203)

Once ⇣ is decomposed into Fourier components, ⇣k = (2⇡)−3/2
R

d3k⇣(t,k) exp(ik · x), the
power spectrum P⇣ , defined with the quantum expected value h⇣k⇣k0i ⌘ (2⇡)3P⇣(k)δ(k + k0)

and P⇣(k) ⌘ k3

2⇡2P⇣(k), can be expressed in terms of the power-spectrum of δφ (defined by similar
relations) thanks to Eq. (2.202). For quasi de Sitter inflation, and when the curvature of the
inflaton potential is much smaller than H, on super-Hubble scales, the later is given by15 [244]

Pδφ(k) '


H(k)

2⇡

]2

, (2.204)

where H(k) means H evaluated at the time when the k mode crosses the Hubble radius, i.e.
when aH = k. Together with Eq. (2.203), one therefore obtains

P⇣ =



H(k)

2⇡

]2 1

2M2
Pl✏1 (k)

, (2.205)

where again, functions must be evaluated at the time when the corresponding mode k crosses
the Hubble radius. This result matches the one coming from the usual calculation [128] pre-
sented in section 2.3. Indeed, in the slow-roll approximation, around some pivot scale k⇤ well
chosen in the range of scales probed by the CMB, one has H ' H⇤ [1− "1⇤ ln (k/k⇤)] and
✏1 ' ✏1⇤ [1 + "2⇤ ln (k/k⇤)], where we use the second slow-roll parameter ✏2 ⌘ (d✏1/dN)/"1. This
gives rise to

P⇣ =
H2

⇤

8⇡2M2
Pl✏1⇤



1− (2✏1⇤ + ✏2⇤) ln

✓

k

k⇤

◆

+ · · ·
]

. (2.206)

The standard result (2.110) is retrieved, except that the slow-roll correction to the overall am-
plitude 1− 2(C + 1)✏1⇤ − C✏2⇤ obtained in Eq. (2.110) is not present here. This is because the

15The de Sitter spectrum for δφ (2.204) can be obtained e.g. letting ⌫ = 3/2 in Eq. (2.146), since with the above
definitions Pδφ(k) = k3/2⇡2|φk|2.
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de Sitter spectrum (2.204) has been used for Pδφ while the slow-roll corrected spectrum should
have16. However, one can see that this approximation only affects the overall amplitude by a
subleading correction, and that the shape of the power spectrum is correctly described. For
example, the spectral index, defined in Eq. (2.112), is correctly given by n

S
= 1− 2✏1⇤ − ✏2⇤ at

first order in slow roll.

A fundamental remark is that in the above calculation, the separate universe approximation
is assorted with the assumption that once k⇤ crosses the Hubble radius, the evolution of the
inflaton field is governed by its classical equation of motion (2.203). The stochastic dispersion
in the number of e-folds thus only comes from the field dispersion at Hubble crossing δφ⇤. In
most cases, this is a good approximation for the following reason. Looking at the Langevin
equation (2.116), one can see that during the typical time scale of one e-fold , the classical
drift of the inflaton field is of the order ∆φcl = V 0/(3H2) =

p
2✏1MPl, while the quantum

noise is of the order ∆φqu = H/(2⇡). As in the end of section 2.3.4, this allows us to define
a criterion ⌘ ⌘ ∆φqu/∆φcl that measures the amplitude of the stochastic corrections to the
classical trajectory. Looking back at Eqs. (2.205), one can see that this stochastic criterion ⌘

can be expressed as

⌘ =
∆φqu
∆φcl

=
p

P⇣ . (2.207)

Since P⇣(k⇤) ⇠ 2 ⇥ 10−9, in single field inflation with canonical kinetic term, ⌘ is already
small when k⇤ crosses the Hubble radius. If one further assumes that inflation ends “naturally”
(i.e. by slow-roll violation when ✏1 reaches 1) so that ✏1 grows during the last stages of inflation,
P⇣ / H2/✏1 decreases (sinceH can only decrease) and one is therefore ensured that the stochastic
correction to the inflaton trajectory is small after k⇤ crosses the Hubble radius.

However, it can happen that ✏1 decreases after the Hubble crossing time of modes of astrophysical
interest today. For example, when the potential has an inflection point [359, 360, 361, 362, 363,
364, 365, 366, 367, 368, 369, 370], see also Refs. [371, 372, 373], ✏1 decreases before crossing
the inflection point and increases afterwards, so that a transient phase where the stochastic
effects can play a non negligible role may happen at some point during the last 60 e-folds . In
some other cases, inflation does not end naturally but is triggered e.g. by tachyonic instability
involving another field, like in hybrid inflation [374, 212, 375, 376, 377, 378]. In such models ✏1
monotonously decreases during inflation and the last e-folds may be stochastic dominated. It can
also happen, for instance in string theoretical contexts where the inflaton stands for the distance
between two branes and evolves in a throat [379, 380, 381, 382], that the inflaton field is allowed
to vary only in a bounded interval of values, and that inflation ends by brane annihilation when
φ reaches a bound of this interval. In these cases again, ✏1 may decrease as inflation proceeds,
and even if ⌘ is small when k⇤ crosses the Hubble radius, it does not necessarily remain so since
it keeps increasing afterwards.17

In these cases, it is crucial to study the dispersion δN that arises not only from δφ⇤ but from
the complete stochastic history of the coarse-grained field. In the next sections, we therefore
calculate the first statistical moments of the number of e-folds realized between fixed points.

16The calculation of Pδφ relies on the de Sitter spectrum (2.204), because the amplitude of the noise term in
Eq. (2.116) also relies on it, see sections 2.4.1.6 and 2.4.1.7. This is why in the following, only the leading
contributions in slow roll will be derived, and the obtained results should be compared with the reference
classical spectrum (2.206). If one wants to go beyond, one needs to add slow-roll corrections to the noise
amplitudes.

17Another situation of interest is k-inflation for which ⌘ /
p

Pζγ where γ > 1 is the Lorentz factor. It can easily
happen that γ ' 1 in which case Pζ(k⇤) ⇠ 10−9 does not necessarily mean that ⌘ ⌧ 1.
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Figure 2.4.: Sketch of the dynamics solved in section 2.4.3. If the inflaton is initially located
at φin, it evolves along some potential V (φ) thanks to the stochastic Langevin
equation (2.208), until it reaches one of the two values φ1 or φ2 where it stops.

2.4.3.2. Stochastic Inflation and Number of e-folds

Let us start from the slow-roll Langevin equation (2.116),

dφ

dN
= − V 0

3H2
+
H

2⇡
⇠ (N) , (2.208)

and work at leading order in slow roll so that H2 ' V/(3M2
Pl). In what follows, we make use of

stochastic analysis common tools, introduced e.g. in Ref. [383] (see notably p.108 and below). In
any case, all the quantities introduced below are self consistently defined. We calculate the mean
number of e-folds realized between two points, the dispersion in the number of e-folds realized
between two points, and the ending point probability which allows to quantify how much the
inflaton can climb up its potential under stochastic effects.

More precisely, let us consider the situation described in Fig. 2.4, where the inflaton is initially
located at φin and evolves in some potential V (φ) under Eq. (2.208). Usually, the inflationary
dynamics is stopped when the inflaton reaches some ending value. In the stochastic setup
however, since the inflaton can a priori explore any part of the potential thanks to stochastic
effects, it makes sense to introduce two possible ending points, located at φ1 and φ2 on each
side of φin. We assume that inflation stops when φ reaches φ1 or φ2. Let N be the number of
e-folds realized when this happens. Obviously, N is a stochastic quantity, which means that it
is different from one realization to another. In what follows, we compute its first and second
moments, as well as the probability that inflation ends at φ1 (or φ2).

A first useful result to establish is the Itô lemma, which is a relation verified by any smooth
function f of φ. The Taylor expansion of such a function at second order gives f (φ+ dφ) =
f (φ) + f 0 (φ) dφ + f 00 (φ) /2 dφ2 + O

(

dφ3
)

. Now, if φ is a realization of the stochastic process
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under study, dφ is given by Eq. (2.208) and at first order in dN , one obtains

df [φ (N)] = f 0 [φ (N)]

p
V [φ (N)]

2⇡
p
3MPl

⇠ (N) dN

−f 0 [φ (N)]
V 0 [φ (N)]

V [φ (N)]
M2

PldN +
1

24⇡2M2
Pl

f 00 [φ (N)]V [φ (N)] dN . (2.209)

Integrating this relation between N = 0 where φ = φin and N = N where φ = φ1 or φ2, one
gets the Itô lemma [384]

f (φ1 or φ2)− f (φin) =

Z N

0
f 0 [φ (N)]

p
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3MPl
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Pl

f 00 [φ (N)]V [φ (N)]− f 0 [φ (N)]
V 0 [φ (N)]

V [φ (N)]
M2

Pl

}

dN .

(2.210)

2.4.3.3. Ending Point Probability

In this section we calculate the probability p1 that the inflaton field first reaches the ending point
located at φ1 [i.e. φ (N ) = φ1], or equivalently the probability p2 = 1− p1 that the inflaton field
first reaches the ending point located at φ2 [i.e. φ (N ) = φ2]. First of all, let  (φ) be a function
that can be expressed as

 (φ) =
h (φ)− h (φ2)

h (φ1)− h (φ2)
, (2.211)

where h (φ) will be specified later. By construction, one has  (φ1) = 1 and  (φ2) = 0. This
implies that the mean value of  evaluated at φ (N ) is given by

h [φ (N )]i = p1 (φ1) + p2 (φ2) = p1. (2.212)

The idea is then to find an appropriate h (φ) function which makes easy the evaluation of the
left hand side of the previous relation, to deduce p1. In order to do so, let us apply the Itô
lemma (2.210) to h (φ). If one requires that the integral of the second line of Eq. (2.210)
vanishes, that is

h00 (φ)
V (φ)

24⇡2M4
Pl

= h0 (φ)
V 0 (φ)

V (φ)
, (2.213)

one obtains

h [φ (N )]− h (φin) =

Z N

0
h0 [φ (N)]

p
V [φ (N)]

2⇡
p
3MPl

⇠ (N) dN . (2.214)

Using the linear relation (2.211) between h and  , this gives rise to the same equation for  .
Finally, taking the stochastic average of this equation over all the realizations cancels out18 its
right hand side, so that one obtains

h [φ (N )]i =  (φin) , (2.215)

which is the probability p1 one is seeking for. Therefore all one needs to do is to solve Eq. (2.213)
to obtain h (φ), then to plug the obtained expression in Eq. (2.211) to derive  (φ), and finally

18The fact that the integral in the right hand side of Eq. (2.214) vanishes when averaged is actually non trivial
since both the integrand and the upper bound are stochastic quantities, but it can be shown in a rigorous way
(see page 12 of Ref. [383]).
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to evaluate this function at φin to calculate p1. A formal solution to Eq. (2.213) can straight-
forwardly be calculated and one obtains

h (φ) = A

Z φ

B
exp



−24⇡2M4
Pl

V (u)

]

du , (2.216)

where A and B are two integration constants that play no role since they cancel out when
calculating  thanks to Eq. (2.211). Indeed, this gives rise to

p1 =

Z φin

φ2

exp



−24⇡2M4
Pl

V (u)

]

du

Z φ1

φ2

exp



−24⇡2M4
Pl

V (u)

]

du

. (2.217)

A few remarks are in order about this equation. Firstly, one can check that since φin lies between
φ1 and φ2, this probability is ensured to be comprised between 0 and 1. Secondly, the function
appearing in the integral, exp(−24⇡2M4

Pl/V ), is rather natural for the problem under study,
since it has already been encountered (actually, its inverse) when calculating the steady-state
distribution in section 2.4.2.1, see Eq. (2.157). Thirdly, a special case that will prove useful in
the following (in particular in sections 2.4.3.4 and 2.4.3.5) is when the potential is maximal at
φ1 = ±1, and when, say, φ1 = φ1. In this case one is sure to first reach the ending point
located at φ2, that is p1 = 0. Indeed, assuming that the potential is bounded from below, the
numerator of Eq. (2.217) must be finite, since a bounded function is integrated over a bounded
interval. If the potential is maximal at φ1, and if it is monotonous over an interval of the type
[φ0, φ1[, the denominator of Eq. (2.217) is on the contrary larger than the integral of a function
bounded from below by a strictly positive number, over an unbounded interval [φ0, φ1]. This
is why it diverges, and p1 vanishes.

Example: V / φp

For illustrative purpose, let us now see what Eq. (2.217) gives in the case where the potential
V is monomial in the inflaton field φ and is given by

V (φ) =M4

✓

φ

MPl

◆p

, (2.218)

where p is a positive parameter that sets the shape of the potential (here we take p > 1)
and M is an overall mass scale normalization. Such models are often referred to as “large
field inflation” (LFI), or “chaotic inflation” (for further details about this model, including
theoretical justifications, see e.g. section 4.2 of Ref. [205], section 3.2). In such cases, if one
defines x ⌘ V/(24⇡2M4

Pl), one obtains

p1 =

Γ

✓

−1

p
,
1

x2

◆

− Γ

✓

−1

p
,
1

xin

◆

Γ

✓

−1

p
,
1

x2

◆

− Γ

✓

−1

p
,
1

x1

◆ , (2.219)

where Γ (s, y) ⌘
R1
y ts−1e−tdt is the upper incomplete gamma function [269]. It is displayed in

Fig. 2.5 for a few values of p. One can check that p1 decreases monotonously between p1 = 1
when xin = x1 and p1 = 0 when xin = x2. Since φin is labelled by xin = V (φin)/(24⇡

2M4
Pl)

in Fig. 2.5, inflation classically proceeds from the right to the left. Therefore, p1 < 1 implies
that some realizations of the stochastic process (2.208) climb up the potential and end up at φ2.
When x1 < xin ⌧ 1 however, one has p1 =' 1 [as can be seen in Fig. 2.5, or directly checked
in Eq. (2.217)] which means that in this case the inflaton very seldom climbs up the potential.
This actually corresponds to the classical limit, on which we elaborate below.
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Figure 2.5.: Probability of reaching the ending point located at φ1 first, as a function of φin
labelled by xin = V (φin)/(24⇡

2M4
Pl) (so that inflation classically proceeds from the

right to the left), in the large field potentials (LFI). The displayed result corresponds
to p = 1 (brown), p = 2 (blue), p = 3 (magenta), p = 4 (green) and p = 6 (red). It
is given by Eq. (2.219). The two ending points are located at x1 = 0.1 and x2 = 10,
and are denoted by the dashed grey vertical lines.

2.4.3.4. Mean Number of e-folds

Let us now turn to the calculation of the mean number of e-folds hNi. As above, we want to
make use of the Itô lemma (2.210). In order to do so, let us choose f(φ) to be defined as the
solution of the differential equation

f 00 (φ)

24⇡2M2
Pl

V (φ)− f 0 (φ)
V 0 (φ)

V (φ)
M2

Pl = −1 , (2.220)

with boundary conditions f (φ1) = f (φ2) = 0. Such a solution will be explicitly calculated in
due time. For now it is interesting to notice that thanks to this definition, the first term of the
left hand side of the Itô equation (2.210), f (φ1 or φ2), vanishes, and that the second integrand
of its right hand side is −1. Thus, the Itô equation can be rewritten as

N = f (φin) +

Z N

0
f 0 [φ (N)]

p
V [φ (N)]

2⇡
p
3MPl

⇠ (N) dN . (2.221)

By averaging over all the realizations, one obtains19

hNi = f (φin) . (2.222)

Therefore it is enough to solve the deterministic differential equation (2.220) for f with the
associated boundary conditions, and to evaluate the obtained solution at φin, in order to derive

19Here also, since both the integrand and the upper bound are stochastic quantities, it is a non trivial fact that
the integral in the right hand side of Eq. (2.221) vanishes when averaged. However it can be shown in a
rigorous way, see page 12 of Ref. [383].
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Figure 2.6.: Integration domain of Eq. (2.223) when evaluated at φ = φ2, in the case φ1 < φ2
(the opposite case proceeds exactly the same way). The discrete parameter u is
integrated between φ1 and φ2, while v varies between φ̄ and u. The resulting
integration domain is displayed in green. When u < φ̄, one has dudv < 0 and one
integrates a positive contribution [remember that a minus sign is stands in front of
Eq. (2.223)], and conversely when u > φ̄, one has dudv > 0 and one integrates a
negative contribution. This is a necessary condition in order for the overall integral
to vanish. This is why φ̄ must lie between φ1 and φ2.

the mean value of the realized number of e-folds. Solving Eq. (2.220) gives rise to

f (φ) = −24⇡2M2
Pl

Z φ

φ1

du

Z u

φ̄(φ1,φ2)

dv

V (v)
exp

⇢

24⇡2M4
Pl



1

V (v)
− 1

V (u)

]}

, (2.223)

where φ̄ is an integration constant that must be chosen in order to have f(φ2) = 0. More
precisely, as can be seen in Fig. 2.6, φ̄ must be such that, when f is evaluated at φ2, the
integration domain of Eq. (2.223) possesses a positive part and a negative part, that are able
to compensate for each other. This implies that φ̄ lies between φ1 and φ2. Another generic
condition comes from splitting the u-integral in Eq. (2.223) into

R φ
φ1

du =
R φ2

φ1
du+

R φ
φ2

du. The

first integral vanishes because f(φ2) = 0, which means that in order for f to be symmetrical in
φ1 $ φ2, φ̄(φ1, φ2) must abide by this symmetry too, that is

φ̄ (φ1, φ2) = φ̄ (φ2, φ1) . (2.224)

Beyond these simple conditions, the actual location of φ̄ needs to be calculated for each potential
V explicitly and there is no explicit generic expression for it.

However, in the special case where the potential is maximal at φ1 = ±1 (which is the case
notably for large field or plateau models), and if one wants to calculate the mean number of
e-folds between φin and φ1, things can be made clearer regarding the location of φ̄. Indeed,
one can set φ2 = φ1, since in the case described here the probability to reach φ1 vanishes,
as shown in section 2.4.3.3. Therefore, the quantity we really compute is the mean number of
e-folds between φin and φ1. In order to make things explicit, let us assume that V 0 > 0 (the
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same line of arguments can be followed in the case V 0 < 0). Inflation proceeds at φ < φ1. In
this case, the (absolute value of the) integrand of Eq. (2.226) increases with u and reaches a
constant when u ! φ1, while strongly decreasing with v. Looking back at Fig. 2.6, one can
convince oneself that, in order for the negative integration domain to cancel out the positive
one, φ̄ has therefore to be moved to φ1,

φ̄ = φ1 . (2.225)

Once the location of φ̄ is determined, from Eqs. (2.222) and (2.223), one obtains

hNi = −24⇡2M2
Pl

Z φin

φ1

du

Z u

φ̄(φ1,φ2)

dv

V (v)
exp

⇢

24⇡2M4
Pl



1

V (v)
− 1

V (u)

]}

. (2.226)

Here also, one recognizes the same kind of functions as the ones appearing in the steady-state
distribution (2.157).

Classical Limit
As a consistency check, let us derive the asymptotic limit of Eq. (2.226) in the classical approx-
imation, and see whether the classical trajectory (2.12) is properly recovered. For simplicity, we
consider the situation described above where the potential is maximal at φ1 = ±1 and where
we thus need to evaluate Eq. (2.226) between φin and φ1 = φend, with φ̄ = φ1.

Let us first work out the v-integral, that is to say
R u
φ̄ dv/V (v) exp[24⇡2M4

Pl/V (v)]. Since the
integrand varies exponentially with the potential, the strategy is to evaluate it close to its
maximum, that is where the potential V is minimum. The potential being maximal at φ1 = φ̄,
the integrand is clearly maximal20 at u. In order for the dominant contributions to the v-
integral to come from the close neighbourhood of its ending point u, one needs the argument of
the exponential to be large, that is

V (φend) ⌧ 24⇡2M4
Pl . (2.227)

This assumption is quite natural in the classical limit since V/M4
Pl controls the amplitude of the

noise term in Eq. (2.208), but we come back to what it really means below. Taylor expanding
1/V at first order around u, 1/V (v) ' 1/V (u)−V 0(u)/V 2(u)(v−u), one obtains, after integrating
by parts21

Z u

φ̄

dv

V (v)
exp



24⇡2M4
Pl

V (v)

]

' − 1

24⇡2M4
Pl

V (u)

V 0(u)



1− V (u)

24⇡2M4
Pl

]

exp



24⇡2M4
Pl

V (u)

]

. (2.228)

This is similar to a saddle-point approximation [385] (also called Laplace’s method). Because
of assumption (2.227), the term 1− V (u)/(24⇡2M4

Pl) can be approximated to 1. Plugging back
this expression in Eq. (2.226), one finally obtains

hNi|cl =
Z φin

φend

du

M2
Pl

V (u)

V 0(u)
, (2.229)

which exactly matches the classical trajectory (2.12). The classical limit is then properly recov-
ered.

20More generally, the calculation presented here only relies on the assumption V
(

φ̄
)

> V (φin) and on Eq. (2.227).
21Since V (φ̄) > V (u) and since V is monotonous, one can also show that exp

⇥

−24⇡2M4
PlV

0(u)/V 2(u)(φ̄− u)
⇤

is
exponentially vanishing.
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A few remarks are in order. First, the classical trajectory appears as a saddle-point limit of
the mean stochastic trajectory, analogously to what happens e.g. in the context of path integral
calculations. The fact that the classical limit corresponds to Eq. (2.227) is also interesting, since
it can be shown [386, 387] that V/M4

Pl measures the amplitude of the quantum gravity corrections.
Therefore, the “classical” limit needs here to be understood as the limit where corrections from
quantum gravity are negligible, and the condition (2.227) is in fact very generic. For this reason,
in the following and as we did in section 2.4.3.3, it is convenient to define the ratio

x ⌘ V

24⇡2M4
Pl

. (2.230)

Generic expressions in x will be derived, but the validity range of the present calculation is of
course x < 1 since we do not incorporate quantum gravity. In the following also, the “classical”
limit shall always refer to the x ⌧ 1 limit. Finally and in passing, the fact that x encodes the
amplitude of quantum gravity possible effects can be illustrated in the calculation of the steady-
state distribution, see section 2.4.2.1. In this section, we made clear that different time variables
in the Langevin equation lead to different stochastic processes (and as a consequence, different
steady-state distributions) because of the H(φ) dependence, through which the amplitude of the
noise depends on the coarse-grained field. In some sense, because the coarse-grained field is a
stochastic quantity, so is H, i.e. the metric, and we understand why it has to do with “quantum
gravity”. In any case, this H(φ) dependence translates into different steady-state distributions
P and P̃ when computed in terms of N or in terms of t respectively. Making use of Eqs. (2.157)
and (2.160), the difference between these two distributions can be studied through the ratio

lnP

ln P̃
=

1− x lnx

1− 3
2x lnx

, (2.231)

from which it is clear that the two distributions are identical [and the effects coming from the
H(φ) dependence vanish] in the limit where x! 0.

Example: V / φp

As an illustrative example, let us now see what Eq. (2.226) gives in the case of the large
field potential (2.218). In these models, remember that the classical trajectory proceeds at
decreasing values of φ. One is interested in the mean number of e-folds realized between φin
and φend. Since the large field potential belongs to the category mentioned above where V is
maximal at φ1 = 1, one takes φ1 = φend and φ̄ = φ1 = 1 in Eq. (2.226). One obtains, for
p > 1,

hNi = 1

p (p− 1)

✓

24⇡2M4
Pl

M4

◆2/p Z xin

xend

e−
1
xx

2
p
−2
M

✓

1− 1

p
, 2− 1

p
,
1

x

◆

dx , (2.232)

where M is the Kummer’s confluent hypergeometric function [269] and where we have used the
variable x = V/(24⇡2M4

Pl), so that the classical limit corresponds to x ⌧ 1. In this limit, one
can make use of the asymptotic expansion [269] M(a, a+ 1, z) ' a exp(z)/z when z ! 1, and
one exactly obtains the classical trajectory (2.12) as expected.

An explicit comparison between both trajectories is displayed in Fig. 2.7 for a few values of p.
The quantity which is displayed is the derivative of the mean number of e-folds with respect to
φin, to remove the dependence on φend. It is plotted as a function of φin, which is labelled by xin to
make interpretation easier. Since the energy density must remain sub-Planckian, only the region
x < 1 makes really sense but we display a larger range of values for x to see how the functions
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Figure 2.7.: Mean number of e-folds for the models V / φp with p = 2 (blue), p = 3 (magenta),
p = 4 (green) and p = 6 (red). The displayed quantity is the derivative of the mean
number of e-folds with respect to the starting point φin, as a function of φin labeled
by xin = V (φin)/(24⇡

2M4
Pl). The solid lines correspond to Eq. (2.232) while the

dashed lines stand for the classical trajectory / V/V 0 given by Eq. (2.12). The later
provides a good approximation to the former in the regime x ⌧ 1, as expected.
Obviously, the calculation makes sense only when x < 1, i.e. outside the yellow
shaded area, which is displayed for information only.

involved behave in general. On can first check that when xin ⌧ 1, the classical trajectory (2.12)
provides a good approximation to the mean number of e-folds given by Eq. (2.232). On the
other hand, when xin is large, the deviation between these two quantities starts to be important
and the mean stochastic number of e-folds is smaller than the classical one. This is due to the
effect of the quantum kicks, which tend to shift the inflaton field faster than what the classical
drift does at large field values. More precisely, since the confluent hypergeometric function tends

to 1 when its last argument goes to 0, one has d hNi /dφin / x
1/p−1
in when xin , 1, whereas

classically dN/dφ / x
1/p
in . Finally, there exists an intermediate range of values when xin ⇠ 1 for

which the mean number of e-folds is slightly larger than the classical one.

2.4.3.5. Number of e-folds Dispersion

Let us now move on with the calculation of the dispersion in the number of e-folds, that we
denote

δN 2 =
⌦

N 2
↵

− hNi2 . (2.233)

This quantity first requires to compute the mean squared number of e-folds
⌦

N 2
↵

. In order to
do so, let us square Eq. (2.221), and take the stochastic average of it. One obtains22

⌦

N 2
↵

= f2 (φin) +

⌧
Z N

0
f 0

2
[φ (N)]

V [φ (N)]

12⇡2M2
Pl

dN

〉

. (2.234)

22This is again a non trivial result since both the integrand and the upper bound of the integral appearing in
Eq. (2.221) are stochastic quantities, but it can be shown in a rigorous way (see page 12 of Ref. [383]).
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In order to make use of the Itô lemma, let g(φ) be the function defined by

g00 (φ)V (φ)

24⇡2M2
Pl

− g0 (φ)
V 0 (φ)

V (φ)
M2

Pl = −f 02 (φ) V (φ)

12⇡2M2
Pl

, (2.235)

where f is the function introduced in Eq. (2.223). When applied to g (φ), if one further sets
g (φ1) = g (φ2) = 0, the stochastic average of the Itô lemma (2.210) gives rise to

g (φin) =

⌧
Z N

0
f 0

2
[φ (N)]

V [φ (N)]

12⇡2M2
Pl

dN

〉

=
⌦

N 2
↵

− f2 (φin)

=
⌦

N 2
↵

− hNi2 , (2.236)

where the second line is just a consequence of Eq. (2.234) and where the third line is just
a consequence of Eq. (2.222). Therefore, what one needs to do is to solve Eq. (2.235) with
boundary conditions g (φ1) = g (φ2) = 0, and to evaluate the resulting function at φin in order
to obtain

δN 2 = g (φin) . (2.237)

The differential equation (2.235) can formally be integrated, and one obtains

g (φin) = 2

Z φ1

φin

dφ

Z φ

φ̂(φ1,φ2)
d f 0

2
( ) exp



24⇡2M4
Pl

V ( )
− 24⇡2M4

Pl

V (φ)

]

, (2.238)

where φ̂ (φ1, φ2) is an integration constant that must be chosen in order to have g (φ2) = 0.
As for φ̄, it is straightforward to show that φ̂ must lie between φ1 and φ2 and that it must be
symmetric in (φ1, φ2), that is

φ̂ (φ1, φ2) = φ̂ (φ2, φ1) . (2.239)

In the same manner as for φ̄, when the potential is maximal at φ1 = ±1 and if φ2 = φ1, one
has φ̂ = φ1.

Classical Limit
As was done for the mean number of e-folds in section 2.4.3.4, let us derive the classical limit
x ⌧ 1 of Eq. (2.238). Obviously, in the classical setup the trajectories are not stochastic
and δN 2 = 0, and what we mean by “classical limit” here is the non vanishing leading order
contribution to δN 2 in the limit x ⌧ 1. As in section 2.4.3.4, we consider the situation where
the potential is maximal at φ1 = ±1 and where we thus need to evaluate Eq. (2.238) between
φin and φ1 = φend, with φ̂ = φ1 and φ̄ = φ1 in the f 02 term.

Let us first work out the  -integral, that is to say
R φ

φ̂
d f 02 exp[24⇡2M4

Pl/V ( )], with a saddle-

point approximation as before. Since the integrand varies exponentially with the potential, the
strategy is again to evaluate it close to its maximum, that is where the potential V is minimum.
The potential is maximal at φ1 = φ̂, so the integrand is clearly maximal at φ. Taylor expanding
1/V at first order around φ, 1/V ( ) ' 1/V (φ)− V 0(φ)/V 2(φ)( − φ), one obtains23

Z φ

φ̂
d f 0

2
( ) exp



24⇡2M4
Pl

V ( )

]

' − 1

24⇡2M8
Pl

V 4 (φ)

V 03 (φ)
exp



24⇡2M4
Pl

V (φ)

]

. (2.240)

23In the limit where V (φ) ⌧ 24⇡2M4
Pl, f is close to the classical trajectory (2.229) as shown in section 2.4.3.4,

and one can take f 0 ( ) ' V ( ) /V 0 ( )M−2
Pl

.
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Plugging back this expression in Eq. (2.238), one obtains

δN 2
∣

∣

cl
=

1

12⇡2M8
Pl

Z φin

φend

dφ
V 4 (φ)

V 03 (φ)
(2.241)

which we shall refer to as the classical approximation to δN 2.

2.4.3.6. Scalar Power Spectrum

We are now in a position where we can calculate the power spectrum for scalar adiabatic per-
turbations P⇣ . The power spectrum of δN is defined by the two-point correlator of N ,

PδN (k) =
k3

2⇡2

Z

d3x hδN (0) δN (x)i eik·x . (2.242)

Since the quantity δN 2 computed between two points φin and φend is due to an integrated effects
of all the modes crossing the Hubble radius between these two points, one has

δN 2 =

Z kend

kin

PδN (k)
dk

k
=

Z ln kend

ln kend−hNi(1−✏1+··· )
PδNdN , (2.243)

where hNi = ln(aend/ain) = ln(kend/kin)(1 + ✏1 + · · · ). Here, “· · · ” refer to higher order in slow
roll terms, but it is enough to keep the zeroth order only since we are just interested in the
leading order contributions in slow roll. This is why the above relation leads to

P⇣ (k) = PδN (k) =
dδN 2

d hNi

∣

∣

∣

∣

hNi=ln(kend/k)

. (2.244)

Since δN 2 is given by g (φ), see Eq. (2.237), and hNi is given by f (φ), see Eq. (2.222), noting
that d/dhNi = (dφ/dhNi)d/dφ = (1/f 0)d/dφ, this gives rise to

P⇣ (φ) =
g0 (φ)

f 0 (φ)
= 2

Z φ̂

φ
d 

f 02 ( )

f (φ)
exp



24⇡2M4
Pl

V ( )
− 24⇡2M4

Pl

V (φ)

]

, (2.245)

where f is given by Eq. (2.223). Here, by P⇣(φ), we mean the power spectrum calculated at a
scale k such that when it crosses the Hubble radius, the inflaton field value is φ. This is the main
result of this section since it provides, for the first time, a complete expression of the curvature
perturbations power spectrum in stochastic inflation, computed in a non perturbative manner
and, therefore, including the full stochastic effects.

Classical Limit
As a consistency check, it is important to make sure that the standard result for the power
spectrum (2.205) is properly recovered in the classical limit x ⌧ 1. Since we already derived
the classical limit for δN 2, given by Eq. (2.241), and the classical limit for hNi, given by the
classical trajectory (2.229), one can plug these two expressions in Eq. (2.244). Noting again that
d/dhNi = (dφ/dhNi)d/dφ = (1/f 0)d/dφ, one obtains

P⇣ |cl =
1

12⇡2M6
Pl

V 3 (φ)

V 02 (φ)
, (2.246)

which exactly matches the usual result (2.205), since at leading order in slow roll one has
H2 ' V/(3M2

Pl) and ✏1 = M2
Pl/2(V

0/V )2. This generalizes the result of Ref. [350], where this
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correspondence is shown but only for inflationary models where the Hubble parameter varies
linearly with φ, that is for inflationary potentials of the specific form given by Eq. (50) in
Ref. [208], section 3.1. Here we have extended this result to any potential is single-field slow-roll
inflation.

2.4.3.7. Scalar Spectral Index

Finally, it can be interesting to calculate the scalar spectral index, defined in Eq. (2.112) and
which characterizes the way P⇣ varies with k. Since we established in the last section how P⇣

varies with φ, see Eq. (2.245), we first need to determine how φ varies with k. At leading order
in slow roll, one has

@

@ ln (k)
' (1 + ✏1)

@

@N
(2.247)

' − 1

@ hNi /@φ
@

@φ
(2.248)

' − 1

f 0 (φ)

@

@φ
. (2.249)

When going from Eq. (2.247) to Eq. (2.248), the 1 + ✏1 term has been dropped since it only
gives rise to subdominant corrections in slow roll. Making use of Eq. (2.244) for P⇣ , one obtains

n
S
= 1− g00 (φ)

f 0 (φ) g0 (φ)
+
f 00 (φ)

f 02 (φ)
, (2.250)

where f (φ) is given by Eq. (2.223) and g (φ) is given by Eq. (2.238).

Classical Limit
The regular classical result can also be recovered as in section 2.4.3.6. When f(φ) is given by
its classical limit (2.229) and g(φ) is given by its classical limit (2.241), the above result (2.250)
gives rise to

n
S

∣

∣

cl
= 1−M2

Pl

"

3

✓

V 0

V

◆2

− 2
V 00

V

#

= 1− 2✏1 − ✏2 , (2.251)

which matches the formula given below Eq. (2.206) since in the slow-roll approximation, the
slow-roll parameters ✏1 and ✏2 can be expressed as

✏1 =
M2

Pl

2

✓

V 0

V

◆2

, (2.252)

✏2 = 2M2
Pl

"

✓

V 0

V

◆2

− V 00

V

#

, (2.253)

see Eqs. (2.15) and (2.16).

2.4.3.8. A Complete Example: Large Field Inflation

In sections 2.4.3.3 and 2.4.3.4, we have exemplified the above results in the case of a large field
potential. This is why, to gain some intuition on how the stochastic effects modify the power
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spectrum, and in order to make clear how the calculation presented here works in practice, we
now turn to the complete treatment of large field inflation. We recall that the potential of these
models is given by

V (φ) =M4

✓

φ

MPl

◆p

. (2.254)

In the figures displayed below, we set the mass scale M4 to the value that fits the amplitude of
the power spectrum P⇣ , when the power spectrum is calculated with the classical formula. The

classical trajectory (2.229) can be integrated as φ/MPl =
q

φ2end/M
2
Pl − 2p (N −Nend), where

φend/MPl = p/
p
2 is the location where ✏1 ' p2M2

Pl/(2φ
2) = 1. Then, Eq. (2.205) gives rise to

M4

M4
Pl

= 12⇡2p2
✓

p2

2
+ 2p∆N⇤

◆−1−p/2

P⇣⇤ , (2.255)

where we take the measured value [163] P⇣⇤ ' 2.203 ⇥ 10−9 and we let ∆N⇤ ' 50. Obviously,
when the power spectrum does not match the one given by the classical calculation, this mass
normalization needs to be changed accordingly (see section 2.4.3.9) but here we use this value
for illustrative purpose.

The aim of this section is to see which corrections to the power spectrum arise due to stochastic
effects, and also to check the validity of the formulas derived above with a numerical code
that integrates a large number of realizations of the Langevin equation. In passing, it is worth
noting that in order to avoid large numerical errors when doing so (due e.g. to the small value
of M4/M4

Pl ' 10−11), the Langevin equation (2.208) can be written in terms of the rescaled
variables

y =

✓

M2

2⇡
p
3pM2

Pl

◆2/p
φ

MPl

and s = p

✓

M2

2⇡
p
3pM2

Pl

◆4/p

N , (2.256)

so that it is given by the simple form

dy

ds
= −1

y
+ yp/2⇠ (s) . (2.257)

This equation is solved a large number of times (typically 106 − 107 realizations are produced)
and the mean values of N and N 2 are computed over the realizations.

Mean number of e-folds
The mean number of e-folds has already been computed and is given by Eq. (2.232). In order
to test both the validity of our analytical approach and the reliability of our numerical code,
we compare in Fig. 2.8 the integral (2.232) with the ensemble average over a large number of
numerical realizations of the Langevin equation (2.257). Since the energy density must remain
sub-Planckian, values of x larger than 1 do not really make sense but here, we display them to
check the agreement between our code and our calculation in a broader range. Obviously, this
agreement is excellent. When the value of φin is such that xin ⌧ 1, the classical trajectory (2.229)
provides a very good approximation to the mean stochastic trajectory. To go beyond, it proves
useful at this point to derive the next-to-leading orders expressions for hNi in the x ⌧ 1 limit,
to characterize the deviations from the classical trajectory in this regime. Making use of the
expansion [269] M(1 − 1/p, 2 − 1/p, 1/x) ' (1 − 1/p)e1/x[x + x2/p + (1 + p)/p2x3 + · · · ] when
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Figure 2.8.: Mean number of e-folds hNi realized in the large field potential (2.254) for p =
2 (left panel) and p = 4 (right panel), between xin and xend, as a function of
xin, where x = V/(24⇡2M4

Pl). The mass scale M4 is normalized to Eq. (2.255).
The location x⇤ refers to the value of x for which the classical number of e-folds
Ncl = 50 and xend is where ✏1 = 1. The green line corresponds to the analytical
exact result (2.232), and the red circles are provided by a numerical integration of
the Langevin equation (2.257) where a large number of realizations are produced
over which the mean value of N is computed. Obviously, the agreement with the
analytical formula is excellent and confirms both approaches. The orange dashed line
corresponds to the classical trajectory (2.229), which provides a good approximation
to the exact result when xin ⌧ 1. Finally, the black dashed line corresponds to
Eq. (2.259) which is the expansion of Eq. (2.232) in the opposite limit x , 1.
Obviously, the calculation makes sense only when x < 1, i.e. outside the yellow
shaded area, which is displayed for information only.

x⌧ 1, one obtains

hNi|xend<xin⌧1 '
✓

24⇡2M4
Pl
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◆2/p
1

p2
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2

⇣

x
2/p
in − x

2/p
end

⌘

+
1

p+ 2

⇣

x
2/p+1
in − x

2/p+1
end

⌘

+
1

2p

⇣

x
2/p+2
in − x

2/p+2
end

⌘

+ · · ·
]

. (2.258)

The term on the first line corresponds to the classical trajectory (2.229), and the following
ones are corrections in the regime xin ⌧ 1. Again, the opposite limit x , 1 corresponds to
super-Planckian energy densities where our calculation should not apply. However, it can be
interesting to see how Eq. (2.258) breaks when x & 1. If one expands Eq. (2.232) in the limit
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where xin , 1, one obtains

hNi|xend⌧1,xin*1 '
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, (2.259)

where C(p) is a constant depending on p but which is always of order one. These expressions
are also displayed in Fig. 2.8 where one can check that they provide reliable approximations to
the exact result when xin , 1. Interestingly enough, when p > 2, the mean number of e-folds
that one can realize in the large field potential is always finite even if one starts from φin = 1,
and is of the order O(1)(M/MPl)

8/p. This is not the case when p  2 for which the potential is
flatter and the mean number of e-folds blows up with φin.

Number of e-folds dispersion
The calculation of the power spectrum also requires to obtain the dispersion in the number of
e-folds . Applying Eq. (2.238) to the potential (2.254), one gets

δN 2 =
2

p2 (p− 1)2
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,
1

t

◆

.

(2.260)
This expression is displayed in Fig. 2.9 together with the result of a numerical integration of
the Langevin equation for a large number of realizations over which the mean values of N and
N 2 are computed, and δN 2 is obtained. Obviously, the agreement is excellent. At this point,
it again proves useful to derive the asymptotic limits of Eq. (2.260) in the regimes xin ⌧ 1 and
xin , 1, even if we recall that the later is non-physical. When xend < xin ⌧ 1, if p > 3/2, one
has
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(2.261)

The first line of this expression exactly matches the classical approximation (2.241) to δN 2, as
expected, while the following terms are corrections in the regime x ⌧ 1. On the other hand,
when xend ⌧ 1 but xin , 1, one has
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Figure 2.9.: Dispersion of the number of e-folds δN 2 = hN 2i − hNi2 realized in the large field
potential (2.254) for p = 2 (left panel) and p = 4 (right panel), between xin and xend,
as a function of xin, where x ⌘ V/(24⇡2M4

Pl). The mass scale M4 is normalized to
Eq. (2.255). The location x⇤ refers to the value of x for which the classical number
of e-folds Ncl = 50 and xend is where ✏1 = 1. The green line corresponds to the
analytical exact result (2.260), and the red circles are provided by a numerical
integration of the Langevin equation (2.257) where a large number of realizations
are produced over which the mean values ofN andN 2 are computed. Obviously, the
agreement with the analytical formula is excellent and confirms both approaches.
The black dotted line corresponds to the classical limit (2.241), which provides a
good approximation to the exact result when xin ⌧ 1. Finally, the black dashed
line corresponds to Eq. (2.262) which is the expansion of Eq. (2.260) in the opposite
limit x , 1. Again, this limit is non-physical since one must have x < 1 in order
to keep the energy densities from being super-Planckian, and the yellow shaded
area is displayed only to check the agreement between the numerical code and the
analytical calculation in a broader range.

where C̄(p) is a constant depending on p but which is always of order one. These expressions
are also displayed in Fig. 2.9 where one can check that they provide reliable approximations to
the exact result. As for the mean number of e-folds , it is worth noticing that when p > 2,
δN 2 is bounded by O(1)(MPl/M)16/p, while when p  2 it can reach arbitrarily large values in
principle.

Power Spectrum
Following section 2.4.3.6, the power spectrum can now be properly computed. Making use of
Eq. (2.245), one obtains for the large field potential (2.254)
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2
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(2.263)
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Figure 2.10.: Power Spectrum of curvature perturbations P⇣ realized in the large field poten-
tial (2.254) for p = 2 (left panel) and p = 4 (right panel), computed at a scale
whose Hubble exit time is labelled by x, where x = V/(24⇡2M4

Pl), as a function
of x, and where inflation terminates at xend. The mass scale M4 is normalized
to Eq. (2.255), so that at x⇤, one can check that P ' 2 ⇥ 10−9. The location
x⇤ refers to the value of x for which the classical number of e-folds Ncl = 50 and
xend is where ✏1 = 1. The green line stands for the analytical exact result (2.263).
The black dotted line corresponds to the classical limit (2.246), which provides a
good approximation to the exact result when x⌧ 1. Finally, the black dashed line
corresponds to Eq. (2.266) which is the expansion of Eq. (2.263) in the opposite
limit x , 1. As before, the yellow shaded area x > 1 may not be physical and it
is displayed for illustrative purpose only.

Here, x means the actual value of x at the Hubble exit time of the scale where the power
spectrum is calculated. The classical limit of this expression can be obtained either expanding
the above formula in x⌧ 1, or combining Eqs. (2.258) and (2.261). In either case, one obtains
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where P⇣ |cl is given by Eq. (2.246) and exactly corresponds to the regular “classical” contribution
to the power spectrum. To see how this result breaks when x & 1, it can be interesting to write
the opposite limit x , 1, where the power spectrum can be obtained combining Eqs. (2.259)
and (2.262). Interestingly enough, for hNi and δN 2, three different cases were to be distinguished
according to the value of p. As far as the power spectrum is concerned, they all give rise to the
same expression, namely

P⇣ |xend⌧1,x*1 '
2

(p− 1) (2p− 3)

✓

24⇡2M4
Pl

M4

◆2/p

x2/p−1 . (2.266)

In particular, when p = 2, the power spectrum tend to be constant (i.e. scale invariant) in the
limit x , 1. This is the limiting case between p < 2 where the power spectrum amplitude
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increases with φ in the x , 1 limit, and the case p > 2 where the power spectrum amplitude
decreases with φ.

The three formulas (2.263), (2.246) and (2.266) are displayed together in Fig. 2.10 for p = 2 and
p = 4. The mass scaleM4 is normalized to Eq. (2.255), i.e. the amplitude of the power spectrum
is calibrated to P⇣ ' 2⇥ 10−9 when it is computed ⇠ 50 e-folds before the location defined by
✏1 = 1. Of course, if one is interested in a situation where the scales of astrophysical interest
today crossed the Hubble radius at a different value of φ⇤ or equivalently x⇤ (for example, if
inflation proceeds at larger fields and ends by tachyonic instability), then the mass scale M4

needs to be calibrated differently (and the value of xend has to be changed as well). In any case,
Fig. 2.10 shows how the amplitude of the power spectrum varies with φ for fixed M4.

A few other comments are in order. First, as expected, when x⌧ 1, the classical limit provides
a good approximation to the exact result. Actually, from Eq. (2.265), the relative difference
between the two is given by δP⇣/ P⇣ |cl ' (1 + 4/p)x > 0, which means that the stochastic
effects account for a slightly larger amplitude of the power spectrum in this limit.24 Second, in
the regular case where inflation terminates when ✏1 = 1 and the power spectrum is computed
50 e-folds before this point, Eq. (2.255) gives rise to x⇤ ' 10−11 and the actual stochastic
modification to the power spectrum is accordingly small. Therefore, in the large field model,
only tiny corrections appear, and we will come back to this point in section 2.4.3.9.

Scalar Spectral Index
Finally, let us calculate the spectral index n

S
at a given scale whose Hubble exit time is labelled

by x. It is given by Eq. (2.250) and can be computed straightforwardly. Its asymptotic limits
can also be worked out making use of the previous formulas. In the limit where x ⌧ 1, one
obtains
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where one has used Eq. (2.251) to single out the classical result n
S

∣

∣

cl
. Therefore, one can check

that in the classical limit, the regular result is recovered. The scalar index is red (n
S
< 1),

and stochastic effects tend to make it even redder by slightly decreasing the actual value of n
S
.

Again, even if it corresponds to super-Planckian energy densities, it can be interesting to see
how the above result breaks in the regime x & 1, and one obtains
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If p < 2, the spectral index remains red and keeps increasing with x towards 1 (even if slower
than in the classical regime), whereas if p > 2, the spectral index becomes blue and starts
increasing with x away from 1, i.e. away from scale invariance. The case p = 2 is singular
since, at leading order, the previous expression gives n

S
= 1. This is why one needs to work out

24Contrary to what is incorrectly concluded in Ref. [331], as explained in the introductory part of section 2.4.3.
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Figure 2.11.: Spectral index n
S
of the power spectrum of curvature perturbations realized in the

large field potential (2.254) for p = 2 (left panel) and p = 4 (right panel), computed
at a scale whose Hubble exit time is labelled by x, where x = V/(24⇡2M4

Pl), as
a function of x, and where inflation terminates at xend. The mass scale M4 is
normalized to Eq. (2.255), the location x⇤ corresponds to the value of x for which
the classical number of e-folds Ncl = 50 and xend is where ✏1 = 1. The coloured
lines stand for the analytical exact result (2.250), it is blue when the spectral index
is “blue” (n

S
> 1), and it is red when the spectral index is “red” (n

S
< 1). The

black dotted line corresponds to the classical limit (2.251), which provides a good
approximation to the exact result when x ⌧ 1. Finally, the black dashed line
corresponds to Eqs. (2.269) and (2.270) which is the expansion of Eq. (2.250) in
the opposite limit x , 1. As before, the yellow shaded area x > 1 may not be
physical and it is displayed for illustrative purpose only.

Eqs. (2.259) and (2.266) at next-to-leading order in 1/x. After a straightforward calculation,
one obtains

n
S

∣
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xend⌧1,x*1
(p = 2) ' 1− M4

24⇡2M4
Pl

8

9x
. (2.270)

Therefore, in this case, the spectral index also remains red, and increases towards 1 at the same
rate than in the classical regime. The exact result (2.250) is compared with these approximations
in Fig. 2.11 for p = 2 (left panel) and p = 4 (right panel). If p = 2, one can see that the stochastic
effects do not modify much the behaviour of n

S
even when x & 1 and only add some feature

around x ' 1. However, this case is singular and in general, the result radically changes when
x approaches 1. When p > 2, the spectral index can even turn from red to blue.

2.4.3.9. Discussion

At the beginning of section 2.4.3, we explained that, because of the relation P⇣ / ⌘2 ⇠ 2⇥10−9,
the stochastic effects play a negligible role at the time where the scales of astrophysical today
cross the Hubble radius. However, we pointed out that it does not mean that ⌘ remains small

98



2.4. Stochastic Inflation

during all the last ⇠ 50 e-folds of inflation, and that some substantial effects on the power
spectrum may appear in models where it is not the case. The calculation we carried out in
this section shows that it is not the case. Indeed, the amplitude of the corrections to the
power spectrum is not controlled by ⌘, but by x, which is generically small in order to keep
energy densities sub-Planckian. Furthermore, contrary to ⌘, x can only decrease during inflation.
For example, in the large field model we studied, one typically has x⇤ ⇠ 10−11. In general,
since at leading order in slow roll, the amplitude of the power spectrum is given by P⇣ ⇠
H2/(8⇡2M2

Pl✏1) = x/✏1, one has

x⇤ ' ✏1⇤P⇣⇤ '
r

16
P⇣⇤ . (2.271)

With P⇣⇤ ⇠ 2⇥ 10−9 and since r < 1 with certainty, one has x⇤ < 10−10 and the corrections to
the power spectrum we have computed are at most tiny ⇠ 10−10 corrections, at least under the
assumptions me made (single field and slow roll). However, we have built a scheme in which it
is straightforward to calculate these corrections, at any order. Besides, our calculation is well
under control even when the stochastic effects dominate the inflationary dynamics (in the sense
⌘ , 1), as long as x < 1.

Let us mention a few prospects. In order to test the ability of stochastic inflation to reproduce
results beyond the linear level, it would first be interesting to compare what we obtained with
a computation of the power spectrum at second order in the perturbations, using the standard
approach. Another interesting idea would be to generalize our scheme to multiple-field scenarios,
since it has been shown [388] that the δN formalism performs very well in these situations too.
Finally, a straightforward prospect would be to enlarge our procedure to the calculation of non-
Gaussianities. Indeed, in the δN formalism and in the large scale limit, the fNL parameters
quantifying non-Gaussianities can be related [356, 389, 388] to the third moments of the number
of e-folds N thanks to

f loc
NL

=
δN 3

(δN 2)2
=

D

(N − hNi)3
E

D

(N − hNi)2
E2 . (2.272)

In this expression, δN 2 has already be calculated and δN 3 can be obtained just the same way
we calculated hNi and hN 2i. In this manner, we could also study non-Gaussianities in the
context of stochastic inflation. For single-field models with canonical kinetic terms, the fNL

parameters are already known to be small (of the order of the slow-roll parameters), but the
same formalism as the one we presented here can be derived e.g. for DBI inflation [379, 390,
391, 392, 393, 394, 395, 396, 397, 398, 399] (or general k-inflation). In these models, the kinetic
term is not canonical and a larger amount of non-Gaussianities can be produced. The stochastic
inflation formalism has been generalized to these models [400, 401, 402, 403] where a modified
Langevin equation has been obtained, and the same techniques as the one we developed here
can in principle be applied.
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3. Inflationary Predictions and Comparison
with “Big Data” Observations

Inflation has entered a “big data” era driven by the current flow of high accu-
racy astrophysical observations, among which are the Cosmic Microwave Background
(CMB) measurements. During the time of this thesis notably, the Planck (and if con-
firmed BICEP2) experiments published unequalled measurements of the CMB maps.
It offers an unprecedented opportunity to constrain the inflationary theory. This is
however a challenging project given the size of the inflationary landscape which con-
tains hundreds of different scenarios. The objective of this first chapter is to take
full advantage of the unprecedented accuracy of the data to determine which models
appear to be favoured.

Publications

3.1. “Horizon-Flow off-track for Inflation” (article) . . . . . . . . . 107

3.2. “Encyclopædia Inflationaris” (article) . . . . . . . . . . . . . . 133

3.3. “The Best Inflationary Models After Planck” (article) . . . . 503

3.4. “Compatibility of Planck and BICEP2 in the Light of Infla-
tion” (article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

3.5. “K-inflationry Power Spectra at Second Order” (article) . . 595

The inflationary theory contains hundreds of different scenarios. As a consequence, it is a difficult
task to single out the ones that are favoured by the observations. In order to take full advantage
of the unprecedented accuracy of astrophysical data, which is needed to address this problem,
it is necessary to develop new tools and techniques in order to perform a change of scales in the
analysis and to adopt a systematic approach.

A first attempt to carry out this programme is to make use of model independent parametriza-
tions of inflation, such as the one of “horizon-flow”. In this approach, the analysis is run over
quantities describing the way the Hubble parameter H varies with the inflaton field φ in single-
field inflation. In particular, potential reconstruction and the search for “generic” inflationary
predictions have been addressed with this technique. In section 3.1, Ref. [208], we show that in
fact, the horizon-flow framework implicitly samples a subclass of phenomenological inflationary
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potentials, which strongly bias the analysis. Furthermore, it relies on trajectories in phase space
that differ from the slow-roll, that are sometimes even unstable, and that make the horizon-flow
setup blind to entire inflationary regimes. Such an approach should therefore be avoided.

On the contrary, slow roll does not suffer from these flaws and this is why in collaboration with
Jérôme Martin and Christophe Ringeval, we have used this framework to systematically analyse
the inflationary models one by one. For each of them, we derived the corresponding predictions
and compared them to the Planck data. The results of this somewhat “industrial” project are
presented in section 3.2, Ref. [205]. We focused on the simplest models, the single-field slow-
roll models with minimal kinetic term, since there is currently no observational evidence for
non-minimal extensions of the inflationary paradigm.

Together with this paper, we developed the publicly available library1 ASPIC, which provides all
fortran routines needed to quickly derive reheating consistent observable predictions for all those
scenarios. From a systematic scan of the literature, we found that this amounts to including
⇠ 75 potentials. This number should be compared with three or four representing the previous
state of the art. The ASPIC library is an evolutive project and is intended to be completed as
new models appear.

We then used Bayesian inference and model comparison techniques to rank the ASPIC models
and find the best ones. Interfacing the ASPIC codes with a machine-learned effective likelihood
and a nested sampling algorithm, we designed a numerical pipeline that provides the Bayesian
evidences and complexities of ⇠ 200 models of inflation using the Planck 2013 CMB data, from
non-committal and well-studied priors. The results of this analysis are presented in section 3.3,
Ref. [206]. We showed that one third of the models can now be considered as strongly disfavoured,
and that the preferred potentials are of the plateau type, i.e. they are such that both the kinetic
energy and the kinetic-to-total energy ratio increase during inflation.

When the BICEP2 experiment released its measurements of the CMB polarization, we updated
our results including these data in the analysis. This can be found in section 3.4, Ref. [207]. In
particular, we investigated the implications for inflation of the detection of B-modes polarization
if it is of primordial origin. We showed that the sets of inflationary models preferred by Planck
alone and BICEP2 alone are almost disjoint, indicating a clear tension between these two data
sets. More precisely, we addressed this tension with a Bayesian measure of compatibility between
the two data sets, showing that for the Planck-preferred as for the BICEP2-preferred models,
they tend to be incompatible. This is why at this point, it seems premature to draw definitive
conclusions, and one should better wait for the release of the polarization data from Planck,
scheduled by the end of the year, and for a clarification of the dust contribution to the BICEP2
measured signal.

Finally, there are various possible extensions and prospects for this project. One of them is to
generalize our analysis and numerical pipeline to models where the speed of sound is varying,
but the action for the curvature perturbations remains quadratic. This class of models is called
k-inflation. This is why in Ref. [209], presented in section 3.5, we have paved the way for
including such models in the analysis, by calculating for the first time the next-to-next-to-
leading order scalar and tensor primordial power spectra in k-inflation. We made use of the
uniform approximation together with a second order expansion in the Hubble and sound-flow
functions.

1http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html

104

http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html






Horizon-flow off-track for inflation

Vincent Vennin
*

Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie,

98bis boulevard Arago, 75014 Paris, France
(Received 20 January 2014; published 10 April 2014)

Inflation can be parametrized by means of truncated flow equations. In this “horizon-flow” setup,

generic results have been obtained, such as typical values for r=ð1 − nSÞ. They are sometimes referred to as

intrinsic features of inflation itself. In this paper we first show that the phenomenological class of

inflationary potentials sampled by horizon flow is directly responsible for such predictions. They are

therefore anything but generic. Furthermore, the horizon-flow setup is shown to rely on trajectories in phase

space that differ from the slow roll. For a given potential, we demonstrate that this renders horizon flow

blind to entire relevant inflationary regimes, for which the horizon-flow trajectory is shown to be unstable.

This makes horizon flow a biased parametrization of inflation.
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I. INTRODUCTION

Inflation is currently the leading paradigm for explaining

the physical conditions that prevailed in the very early

Universe [1–5]. It describes a phase of accelerated expan-

sion that solves the puzzles of the standard hot big bang

model, and it provides a causal mechanism for generating

inhomogeneities on cosmological scales [6–11]. These

inhomogeneities result from the amplification of the

unavoidable vacuum quantum fluctuations of the gravita-

tional and matter fields during the accelerated expansion. In

particular, inflation predicts that their spectrum should be

almost scale invariant, with small deviations from scale

invariance being related to the precise microphysics of

inflation. This prediction is consistent with the current high

precision astrophysical observations [12–15]. In particular,

the recent Planck measurement [15] of the cosmic micro-

wave background temperature map gives together with

WMAP polarization data a slightly red tilted scalar spectral

index nS ≃ 0.96, ruling out exact scale invariance nS ¼ 1 at

over 5σ and enabling us to constrain the inflationary

models still allowed by the observations [16,17].

Together with the absence of primordial non-Gaussianities

and of isocurvature modes [15], these results indicate that, at

thisstage, thefullsetofobservationscanbeaccountedfor inthe

minimal setup, where inflation is driven by a single scalar

field ϕ, the inflaton field, minimally coupled to gravity, and

evolving in somepotentialVðϕÞ. The action for such a system
is given by (hereafterMPl denotes the reduced Planck mass)

S ¼

Z
!

M2
Pl

2
R −

1

2
∂μϕ∂

μϕ − VðϕÞ

"

ffiffiffiffiffiffi

−g
p

d4x; (1)

where the background metric is chosen to be of the flat

Friedmann-Lemaître-Robertson-Walker type, i.e. the one of

a homogeneous and isotropic expanding universe (about

which fluctuations are evolved), given by ds2 ¼ −dt2þ
a2ðtÞdx2, where the scale factor aðtÞ is a free function of

time. However, the physical nature of the inflaton and its

relation with the standard model of particle physics and its

extensions remainelusive, since the inflationarymechanism is

supposed to take place at very high energies in a regimewhere

particle physics is not known and has not been tested in

accelerators. Therefore the only requirement on V is that it

shouldbesufficientlyflat tosupportinflation,butotherwisethe

multitude of inflaton candidates (with associated potentials)

makes the theory as a whole hardly tractable, unless one

restricts to a specific model.

If one does so, within a given inflationary model VðϕÞ,
there exists a frame of approximation, the slow-roll

approximation, which provides a set of manageable equa-

tions to calculate an attractor solution for the dynamics

arising from the action (1), and to consistently derive the

statistical properties of cosmological perturbations pro-

duced during inflation. This is why, in order to constrain

the inflationary scenario at a level matching the accuracy of

the current data, a first approach is to scan the full set of

models that have been proposed so far, and to test them one

by one [16,17] making use of the slow-roll setup.

Another strategy consists in developing model indepen-

dent approaches and in studying generic parametrizations

of inflation. Among these parametrizations is the “horizon-

flow” setup [18–22] which relies on truncated flow

equations describing the inflationary dynamics. The start-

ing point is to define a set of flow parameters, based on time

derivatives of the Hubble scale H ≡ _a=a during inflation

(a dot denoting a derivation with respect to cosmic time t),
and to derive a set of equations for their variation in time. A

finite subset of these equations is then solved numerically.

Since all the observable quantities related to inflation

directly depend on H and the way it (slowly) varies with

time, this is indeed a generic way to describe a full set of*
vennin@iap.fr
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possible inflationary predictions. The goal of this paper is

to investigate whether this horizon-flow approach can be

used to robustly parametrize inflation.

Both approaches thus use a different function as an input:

VðϕÞ for the slow-roll setup and HðϕÞ for the horizon-flow
one. In Sec. II we review how these two strategies address

the calculation of inflationary predictions. In particular,

we point out that HðϕÞ and VðϕÞ are explicitly related, and
that the horizon-flow parametrization therefore only sam-

ples a particular set of inflationary potentials. In Sec. III, we

discuss the impact of restraining to such a class of

phenomenological potentials, and we show that the typical

values for r=ð1 − nSÞ that have been noticed in the literature
are in fact in direct correspondence with the inflationary

regimes supported by such potentials. However, examples

are worked out where those relations break, showing that

they are not generic. In Sec. IV, we emphasize that the slow-

roll and horizon-flow computational strategies differ by the

phase space trajectory they respectively rest on, i.e. the path

the system follows in the ðϕ; _ϕÞ plane as inflation proceeds

in both setups. We carry out the slow-roll analysis of the

potentials associated to the horizon-flow parametrization,

computing the inflationary predictions for both trajectories

and characterizing the discrepancies. We show that for a

given potential, horizon-flow does not sample all possible

inflationary regimes, which introduces a bias in the way it

parametrizes inflation. In some cases, its trajectory is even

shown to be unstable. Finally in Sec. V, we summarize our

main results and conclude the discussion.

II. COMPUTING INFLATIONARY PREDICTIONS

In this section we first recall how statistical properties of

primordial cosmological fluctuations can be worked out in

the framework of canonical single-field cosmological infla-

tion (1). We then review how the slow-roll and horizon-flow

setups address the associated calculations.

A. The single-field setup

In order to model the cosmological fluctuations, one

needs to go beyond homogeneity and isotropy. When small

fluctuations are added [23,24] on top of the Friedman-

Lemaître-Robertson-Walker metric introduced above and

of the inflaton field, the scalar sector can be fully para-

metrized in terms of the Mukhanov-Sasaki variable v
[6,25]. Expanding and varying the action (1) at leading

order in the perturbations, one can show that this gauge

invariant quantity follows an equation of motion [26] of

the form

v00k þ

!

k2 −
ða

ffiffiffiffiffi

ϵ1
p

Þ00

a
ffiffiffiffiffi

ϵ1
p

"

vk ¼ 0; (2)

where vk is the Fourier mode of v, and where ϵ1 ≡

1 − ða0=aÞ0=ða0=aÞ2. Here, a prime denotes a derivative

with respect to conformal time η, defined by adη ¼ dt.
A similar equation can be obtained for tensor perturbations

so that primordial gravity waves can be studied in the same

way. Once Eq. (2) is solved, one can evaluate vk at the end of
inflation and calculate the power spectrum of curvature

perturbations ζ ¼ v=ða
ffiffiffiffiffiffiffi

2ϵ1
p

MPlÞ at that time, namely

PζðkÞ≡
k3

2π2
jζkj2 ¼

k3

4π2a2ϵ1
jvkj2: (3)

To carry out such a program, two pieces of information are

still missing. Firstly, one needs to set initial conditions

for v and v0 at some reference time. A sensible choice of

initial conditions is the Bunch-Davies vacuum where vk →

eikη=
ffiffiffiffiffi

2k
p

when k=aH → ∞, which corresponds to setting

each mode of the scalar perturbations in its Minkowski

quantum ground state in the far sub-Hubble past.

Secondly, one needs to specify the background function

a
ffiffiffiffiffi

ϵ1
p

. This is why as mentioned in the introduction, at this

point everything depends only on a (or equivalently H)

and the way it varies with time. This can be obtained

as follows. From varying the action (1) two dynamical

equations arise for the background, namely the Friedmann

equation, which equals the squared Hubble parameter to

the energy density of the inflaton field, and the Klein-

Gordon equation, which is the equation of motion of the

field ϕ. They are given by

H2 ¼
V þ _ϕ2=2

3M2
Pl

; (4)

ϕ̈þ 3H _ϕþ
dV

dϕ
¼ 0: (5)

Provided some initial conditions ϕin and _ϕin, and assum-

ing that the potential VðϕÞ is known, this system can be

solved and the corresponding time evolution of H (hence

of a) can be inferred. Then, Eq. (2) can be solved, and the

statistical moments of v can be calculated.

However, such a program is difficult to carry out in

practice mainly because of three reasons. First, the system

(4–5) and Eq. (2) can generally not be solved analytically.

Second, a potential V must be specified even if at these

energies there is no unique candidate. Third, in general

there is no obvious choice of initial conditions ϕin and _ϕin.

Both the slow-roll and horizon-flow approaches may

simplify some of these issues. We now describe the

strategies they rely on.

B. The slow-roll approach

The slow-roll strategy relies on the assumption that the

Hubble parameter and its time derivatives slowly vary with

time during inflation, i.e. that the deviation from de Sitter
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space-time is small.
1
This can be characterized in terms of a

hierarchy of “slow-roll parameters.”

Although there are several possible sets of slow-roll

parameters, in this paper, we choose to work with the

Hubble-flow parameters fϵng defined by the flow equa-

tions [27,28]

ϵnþ1 ¼
d ln jϵnj
dN

; (6)

where the hierarchy is started at ϵ0 ≡Hin=H, and where

N ≡ ln a is the number of e-folds. With this definition, all

the ϵn are typically of the same order of magnitude. One has

slow-roll inflation as long as jϵnj ≪ 1, for all n > 0, while

since ϵ1 ¼ − _H=H2 ¼ 1 − ä=ðaH2Þ, inflation (ä > 0) takes

place provided ϵ1 < 1. Note that the definition of ϵ1 is of

course consistent with the one introduced below Eq. (2).

Now, when inflation is driven by a single scalar field,

let us see how the system (4–5) gets simplified. Inserting

the Klein-Gordon equation in the time derivative of the

Friedman equation, one obtains _H ¼ − _ϕ2=ð2M2
PlÞ, and

hence

ϵ1 ¼ −
_H

H2
¼ 3

_ϕ2=2

VðϕÞ þ _ϕ2=2
: (7)

The condition ϵ1 ≪ 1 thus implies that the kinetic energy of

the inflaton is much smaller than its potential energy,

namely _ϕ2=2 ≪ VðϕÞ. Under this condition, the Friedmann

equation simplifies and gives, at leading order in slow

roll, H2 ≃ V=ð3M2
PlÞ.

One can keep on and play the same game with ϵ2.

Inserting the Klein-Gordon equation (5) in the time deriva-

tive of the relation _H ¼ − _ϕ2=ð2M2
PlÞ previously obtained,

one gets Ḧ ¼ 3H _ϕ2=M2
Pl þ

_ϕV 0=M2
Pl, and

ϵ2 ¼
Ḧ

H _H
− 2

_H

H2
¼ 6

$

ϵ1

3
−

V 0

3H _ϕ
− 1

%

: (8)

Hereafter and unlike before, a prime denotes a derivative

with respect to the field ϕ. The condition ϵ2 ≪ 1 thus

implies that, at leading order in slow roll, _ϕ≃ −V 0=ð3HÞ,
which means that the acceleration term can be neglected in

the Klein-Gordon equation. This is particularly interesting

since it lowers by 1 the order of the differential equation

satisfied by ϕ. As a consequence, it removes dependence on

the initial conditions by singling out a specific trajectory, and

analytical solutions are available in most cases. In this

manner it solves the first and the third difficulties mentioned

at the end of Sec. II A.

More explicitly, since dN ¼ Hdt, at leading order in slow
roll the Klein-Gordon equation reads dN ¼ −3H2dϕ=V 0.
Plugging in the slow-roll leading order of the Friedman

equation H2
SR;LO ¼ V=ð3M2

PlÞ, one obtains

ΔNSR;LO ¼ −
1

M2
Pl

Z

ϕend

ϕin

V

V 0 dϕ; (9)

whereΔN ≡ Nend − Nin, ϕin is the value of ϕ at some initial

time Nin, and ϕend is the value of ϕ at some final time Nend.

This represents the leading order (LO) of the slow-roll (SR)

trajectory. Inverting this relation yields the value of ϕ at

any time N.

Furthermore, it turns out that the slow-roll trajectory is a

powerful attractor [29] of the inflationary dynamics, that is to

say, starting from a large basin of possible initial conditions

ϕin and _ϕin, the system quickly converges towards the slow-

roll trajectory. We will come back to this point in Sec. IV, but

we can already notice that it is a strong physical motivation

to work within the slow-roll framework.

It is also interesting to remark that under the slow-roll

approximation, the slow-roll hierarchy can be easily

expressed in terms of V and its derivatives. Indeed, starting

from H2 ≃ V=ð3M2
PlÞ the derivative relation d=dt ¼

_ϕd=dϕ≃ −V0=ð3HÞd=dϕ gives rise to

d

dN

&

&

&

&

SR;LO

¼ −M2
Pl

V 0

V

d

dϕ
: (10)

Repeatedly applying this identity, one obtains, at leading

order in slow roll,

ϵLO0 ¼ Hin

ffiffiffiffiffiffiffiffiffiffi

3M2
Pl

V

r

; (11)

ϵLO1 ¼
M2

Pl

2

$

V 0

V

%

2

; (12)

ϵLO2 ¼ 2M2
Pl

!$

V 0

V

%

2

−
V 00

V

"

; (13)

ϵLO3 ¼
2M4

Pl

ϵLO2

!

V 000V 0

V2
− 3

V 00V 02

V3
þ 2

$

V 0

V

%

4
"

; (14)

and the following slow-roll parameters can be computed in

the same way.

Since the slow-roll parameters entirely characterize the

time evolution of H (and of a), it is now obvious that the

solutions to Eq. (2) can be expressed in terms of them,

hence the statistical moments of cosmological fluctuations

at the end of inflation too. For example, at leading order in

slow roll, the scalar power spectrum is given by

1
Such an assumption is justified a posteriori e.g. by the fact

that only small deviations from scale invariance are measured,
with tight constraints on the level of gravity waves.
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k3Pζ ¼
H2

%

8π2M2
Plϵ1%

!

1 − ð2ϵ1% þ ϵ2%Þ ln
k

kP
þ & & &

"

; (15)

where a star means that quantities must be evaluated at the

Hubble exit time of some pivot scale kP of astrophysical

interest today. One can see that the scalar power spectrum is

scale invariant, with logarithmic corrections whose ampli-

tude is slow-roll suppressed. They can be described in

terms of the spectral index

nS ≡ 1þ
d lnPζ

d ln k
≃ 1 − 2ϵ1% − ϵ2%; (16)

the last expression being given at leading order in slow roll.

As already mentioned, the same program can be carried

out for tensor modes and the power spectrum of gravity

waves Ph can be obtained in the same manner. The ratio r
of its amplitude to the scalar power spectrum amplitude is

often used to characterize the primordial level of gravity

waves. At leading order in slow roll, one has

r≡
Ph

Pζ

≃ 16ϵ1%. (17)

The slow-roll program is therefore straightforward. The

Hubble crossing time of the pivot scale depends on the

subsequent thermal history of the Universe, and is typically

locatedΔN% ≃ 50 e-folds before the end of inflation. Given
a potential VðϕÞ, one thus integrates the slow-roll trajectory
(9) ΔN% e-folds prior to the end of inflation (defined as

ϵ1 ¼ 1) and evaluates the potential and its derivatives there.

Making use of Eqs. (11)–(14), the slow-roll parameters ϵn%
are obtained, and physical quantities such as nS and r can
be computed by means of the formulas (16) and (17).

In the following it will turn useful to make use of next-to-

leading order (NLO) expressions in slow roll, i.e. one order

further than above. This is why we end this section by

deriving such formulas. The starting point is to combine

Eqs. (4) and (7) into

H2 ¼
V

3M2
Pl

$

1 −
ϵ1

3

%

−1

: (18)

Together with the Friedman equation (4), this gives rise to
_ϕ2 ¼ 2Vϵ1=ð3 − ϵ1Þ. These two formulas enable us to

recast dN ¼ Hdϕ= _ϕ as

dN ¼ '
1

MPl

dϕ
ffiffiffiffiffiffiffi

2ϵ1
p : (19)

From here the slow-roll parameters at next-to-leading

order can be obtained as follows. Rewriting Eq. (18) as

ϵ0 ¼ ϵLO0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ1=3
p

, and iteratively applying

d

dN

&

&

&

&

SR;NLO

¼

ffiffiffiffiffiffiffiffiffiffi

ϵNLO1

ϵLO1

s

d

dN

&

&

&

&

SR;LO

(20)

which comes from Eq. (19), one obtains an expression for

the slow-roll parameters at next-to-leading order in terms of

the slow-roll parameters at leading order, which read

ϵNLO0 ¼ ϵLO0

$

1 −
ϵLO1
6

%

; (21)

ϵNLO1 ¼ ϵLO1

$

1 −
ϵLO2
3

%

; (22)

ϵNLO2 ¼ ϵLO2

$

1 −
ϵLO2
6

−
ϵLO3
3

%

; (23)

ϵNLO3 ¼ ϵLO3

$

1 −
ϵLO2
3

−
ϵLO4
3

%

; (24)

where the following slow-roll parameters can be computed

in the same manner, and where the slow-roll parameters

at leading order in the right-hand sides are given by

Eqs. (11)–(14). If one wanted to keep on and go up to

next-to-next-to-leading order, one would proceed in exactly

the same way, but here it is enough to stop at next-to-

leading order.

Let us move on to the slow-roll trajectory. At next-to-

leading order, it proceeds from combining Eqs. (19) and

(22), which gives rise to

ΔNSR;NLO ¼ −
1

M2
Pl

Z

ϕend

ϕin

V

V 0 dϕþ
1

3
ln

$

V 0
end=Vend

V 0
in=V in

%

:

(25)

At last, at next-to-leading order in slow roll, the spectral

index and the tensor to scalar ratio are given by [30,31]

nS ¼ 1 − 2ϵ1% − ϵ2% − 2ϵ21%

− ð2Cþ 3Þϵ1%ϵ2% − Cϵ2%ϵ3%; (26)

r ¼ 16ϵ1%ð1þ Cϵ2%Þ; (27)

where C≡ γE þ ln 2 − 2≃ −0.7296, γE being the Euler

constant.

C. The horizon-flow approach

Contrary to the slow-roll approach which consists in

solving the system (4–5) with some approximation, the

horizon-flow strategy [18–22] uses flow equations of the

kind (6) as the fundamental input to derive physical

observables such as nS or r. In this section we review

how this can be achieved.
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A first remark is that for single-field inflation, the

flow parameters can be cast as functions of ϕ instead

of t in full generality. Indeed, since the inflaton field

ϕ varies during inflation under the effect of its potential

and initial speed, ϕ can be used as a time label itself,

which is unambiguous provided ϕ is monotonic in time.

Concretely, identifying the expression _H ¼ − _ϕ2=ð2M2
PlÞ

found above Eq. (7) with the simple relation _H ¼ H0 _ϕ,
one obtains

_ϕ ¼ −2M2
PlH

0: (28)

This enables us to relate the derivative with respect to the

number of e-folds to the derivative with respect to the

inflaton field, d=dN ¼ _ϕH−1d=dϕ, by

d

dN
¼ −2M2

Pl

H0

H

d

dϕ
: (29)

The slow-roll hierarchy fϵng can thus be expressed only

in terms of HðϕÞ and its derivatives. Starting from

ϵ0 ¼ Hin=H and repeatedly applying Eq. (29), the flow

equation (6) give rise to

ϵ0 ≡
Hin

H
; (30)

ϵ1 ≡
d ln jϵ0j
dN

¼ 2M2
Pl

$

H0

H

%

2

; (31)

ϵ2 ≡
d ln jϵ1j
dN

¼ 4M2
Pl

!$

H0

H

%

2

−
H00

H

"

; (32)

ϵ3 ≡
d ln jϵ2j
dN

¼ 2M2
Pl

!

2

$

H0

H

%

2

þ
H000

H0 − 3
H00

H

"

×

$

1 −
HH00

H02

%

−1

; (33)

and the following parameters can be iteratively com-

puted in the same manner. Note that contrary to

Eqs. (11)–(14), all the above expressions are exact

and do not rely on any kind of approximation. It is also

clear that the slow-roll parameters depend only on HðϕÞ
and its derivatives, and that this function therefore

contains all the relevant information to derive the

physical predictions of inflation.

In the horizon-flow literature [18–22] a different set of

flow parameters is often used, which leads the way to a

computational program that we now explain. In this set of

parameters, ϵ1 and ϵ2 are supplemented with [19]

lλH ¼ ð2M2
PlÞ

l
ðH0Þl−1

Hl

dlþ1H

dϕlþ1
; for l > 1: (34)

From here
2
a set of flow equations similar to Eq. (6) can be

derived: dϵ1=dN ¼ ϵ1ϵ2, dϵ2=dN ¼ 2ð2λHÞ − 2ϵ21 − 3ϵ1ϵ2,

and

dlλH

dN
¼

$

l − 1

2
ϵ2 − ϵ1

%

lλH þ lþ1λH. (35)

One should note that contrary to the hierarchy fϵng, these
flow parameters are of increasing order in slow roll.

Obviously both hierarchies are explicitly related.

One way to solve the infinite system (35) is to truncate it

at some level, by setting all flow parameters beyond a

sufficiently high order in the hierarchy to zero, i.e. lλH ¼ 0

for l > M, where M is a suitably large integer (in the

literature [19–22], M ¼ 5 has essentially been investi-

gated). The flow equations then comprise a closed finite

set. Once initial conditions on the flow parameters

ϵ1; ϵ2;
2λH;…;MλH are chosen, the horizon-flow computa-

tional program consists in integrating the flow equation (35)

forward in time until one of the three following scenarios

occurs:

(i) The parameter ϵ1 reaches 1 and inflation naturally

ends. From here the flow equations are integrated

ΔN% e-folds backward in time and the observables

are calculated there.

(ii) The system reaches a late-time fixed point, where

observables are calculated.

(iii) None of this happens: inflation never ends (after a

“long” integration time, typically 1000 e-folds) and
no fixed point is reached. In this case the model is

just thrown away.

Note that the predictions are computed thanks to the

slow-roll approximated formulas (16) and (17) or (26)

and (27), expressed in terms of the chosen set of flow

parameters.

Then one proceeds with running the same algorithm

again, with different values of initial flow parameters and

ΔN%, so on and so forth, until a huge number of predictions

are computed among which “typical” features are searched

for. The parameters (ΔN% and initial flow parameters) are

usually drawn in predefined ranges of values, the priors.

The width of the prior intervals for the initial flow

parameters is usually reduced by some factor (typically

5 [22] or 10 [19,21]) for each higher order in the hierarchy.

A crucial remark, made in Ref. [20], is that truncating the

hierarchy flλHg at some order M is actually equivalent to

requiring that dMþ2H=dϕMþ2 vanishes, which means that

HðϕÞ must be a polynomial function of order M þ 1

HðϕÞ ¼ H0

!

1þ
X

Mþ1

i¼1

ai

$

ϕ

MPl

%

i
"

; (36)

2
These parameters lλH are related to the parameters lβH

defined in Ref. [32] by lλH ¼ ðlβHÞ
l.
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the ai coefficients being directly related to the initial flow

parameters of the computational algorithm detailed above.

Inflation is thus described in terms of a model depending on

M þ 1 free parameters (the ai, or equivalently, initial values
for ϵ1; ϵ2;

2λH;…;MλH), on which a prior range of variation
is set. The dependence on the choice of such priors, and on

the parameter set one uses (initial flow parameters lλH, ai
parameters, or other possible choices), is investigated in

Ref. [21]. It is shown that while there remains some

concentration of points around the above mentioned fixed

points under the different parameter sets, there is significant

variation in the predictions among them.

Let us insist that in this setup, inflation is parametrized

by a free generic function HðϕÞ, and that it is also the case

in the more common approach where one solves Eqs. (4)

and (5) with some function VðϕÞ. Interestingly enough, it

turns out [20] that the two functions are straightforwardly

related. Indeed, plugging the relation (28) in the Friedman

equation (4), one obtains

V ¼ 3M2
PlH

2 − 2M4
PlH

02. (37)

Therefore, horizon flow does not really solve the second

difficulty mentioned at the end of Sec. II A (i.e. the

necessity to specify a potential) since it implicitly assumes

a specific potential, through the choice of H, and a specific

initial value ϕin through the choice of the initial flow

parameters.

Moreover, the potential VðϕÞ derives in principal from

the physical origin of the inflaton field, and the free

parameters it contains are usually related to physical

quantities such as charges, coupling constants, masses,

etc. Therefore it may seem more sensible and physically

appealing to parametrize inflation in terms of these quan-

tities (and to choose corresponding simple priors on them),

instead of using the integration constants of the flow

equations, which a priori do not carry any particular

physical meaning.

In passing, let us note that the horizon-flow computa-

tional program has also been used as a potential

reconstruction technique [33–39].
3
A selection rule is

added to the algorithm detailed previously that specifies

an admitted region in observable parameter space (usually

defining central values for nS and r with associated error

bars). When a trajectory is integrated, its predictions are

computed and the trajectory is kept only if these predictions

lie in the admitted region. For all the remaining trajectories

at the end of the program, the potential is computed using

Eq. (37) and all the potentials are superimposed on a single

plot to see which typical shape comes out. Obviously, such

an approach to potential reconstruction suffers from the

same shortcomings discussed in this paper as horizon

flow itself.

In the two next sections, we briefly review the two main

results of this paper: the origin of the so-called “typical”

predictions of horizon-flow inflation, and the bias intro-

duced by horizon-flow trajectories in the parametrization of

single-field inflation.

D. “Typical” predictions

In the references mentioned above two typical denser

regions turn out to be sampled: either r16=ð1 − nSÞ ¼ 1=2 or
r16 ¼ 0 (where r16 ¼ r=16 corresponds to the “r” parameter

defined in Refs. [19,21]). Actually, this can be understood

with the following heuristic argument. The first order slow-

roll relations r ¼ 16ϵ1 and nS − 1 ¼ −2ϵ1 − ϵ2, combined

with the flow equation (6), allow one to express the number

of e-fold derivatives of nS and r in terms of nS, r and ϵ3.

Working with the two variables s≡ −r=8þ ð1 − nSÞ and

r instead of nS and r, one obtains

ds

dN
¼ ϵ3s; (38)

dr

dN
¼ rs: (39)

If the fϵng hierarchy is truncated at n ¼ 4 (i.e. ϵ3 is constant

and ϵn>3 vanish), this system contains two fixed points:

either ϵ3 ¼ 0 and r ¼ 0, which leads to r16=ð1 − nSÞ ¼ 0,

or s ¼ 0, which by definition leads to r16=ð1 − nSÞ ¼ 1=2.
This exactly corresponds to the denser regions mentioned

above and matches the early results of Refs. [18] (be careful

that another normalization is again used in this paper,

where T=S ¼ 10r16 ¼ 5r=8). If this were concluded to be

generic predictions of inflation, this would have impor-

tant consequences for inflation itself, since e.g. the region

r16=ð1 − nSÞ ¼ 1=2 is now strongly disfavored by the

most recent observations [15].

In Ref. [19] these fixed points are shown to be generic

fixed points of the hierarchy (34) at any order (i.e. for any

M) and their stability is studied in Ref. [22]. However in

Refs. [19,21] it is also noticed that even if the numerical

models generated by the above algorithm cluster not far

from the region r16=ð1 − nSÞ ¼ 1=2, a better fit is given by

r16

1 − nS
≃

1

3
: (40)

In this paper we puzzle out this discrepancy for the first

time, analytically showing where this number 1=3 comes

from. Indeed, Eq. (37) shows that when using a para-

metrization of the form (36), only a particular set of

inflationary potentials is actually investigated, namely

polynomial potentials with some relations among the

coefficients. In Sec. III we discuss the impact of restraining

3
In Ref. [38], note that the horizon-flow setup is extended to

noncanonical single-field models with varying speed of sound cs,
the inverse of which is parametrized by a truncated Taylor
expansion of the type (36), with associated cs-flow equations
of the type (35).
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to such a class of phenomenological models, and we show

that the relations r16=ð1 − nSÞ ∼ 1=3 and r16 ∼ 0 actually

correspond to the different inflationary regimes of such

potentials.

E. Inflationary trajectories

Even if Eq. (37) explicitly relates H and V, the

corresponding horizon-flow and slow-roll analyses are

different because they rely on different inflationary trajec-

tories. In this section we first explain why it is so, before we

investigate the consequences of this difference.

1. Why horizon-flow and slow-roll trajectories differ

Since the system (4–5) is second order in time derivative,

its solutions form a one-dimensional set of inflationary

trajectories, i.e. an infinite bundle of paths in phase space

ðϕ; _ϕÞ (examples are displayed and commented on in

Sec. IV A). As we shall now see, both the slow-roll and

horizon-flow setups rely on a single trajectory each, and do

not scan this whole set of possible dynamics.

The trajectory on which the slow-roll approach rests has

already been explicated in Sec. II B; see Eq. (9) for its

leading order expression and Eq. (25) for its next-to-leading

order expression. Even if a complete form can only be

attained asymptotically by a perturbative calculation, it is

nonetheless a well-defined and unique object. One should

therefore be aware of the subtlety that “slow roll” both

refers to a perturbative computational framework and to a

specific inflationary trajectory. The latter is calculable by

the former, and is known to be a powerful attractor [29] of

the inflationary dynamics. This is why it makes sense to

study inflation along its line.

On the other hand, the horizon-flow formalism also

implies a particular inflationary trajectory. It does not

explicitly make use of it, which is why it has not really

been noticed in the literature so far, but such a trajectory is

implicitly contained in the computational approach of

horizon flow. Indeed, since the H function is defined

through Eq. (4) on the full phase space ðϕ; _ϕÞ, reducing
it to an HðϕÞ function only

Hðϕ; _ϕÞ → HðϕÞ (41)

necessarily implies some relation _ϕðϕÞ, that is, by defi-

nition, a trajectory. It is actually given by Eq. (28). More

precisely, the trajectory associated to some HHFðϕÞ func-
tion is basically given by Eq. (29), i.e.

ΔNHF ¼ −
1

2M2
Pl

Z

ϕend

ϕin

HHF

ðHHFÞ0
dϕ; (42)

which is exact and does not rely on any approximation, and

where “HF” stresses that we are working within the

horizon-flow setup.

The problem can therefore be formulated as follows.

Starting from an HHFðϕÞ function [typically Eq. (36)],

horizon flow consists of studying inflation along the

trajectory (42). Now, thanks to Eq. (37), a potential V
can be associated to HHF, so that the slow-roll analysis can

be worked out in this potential, and inflation can be studied

along the slow-roll trajectory. The question is whether

these two trajectories match or not.

In general they do not for the following reason. Thanks

to the Friedman equation (4), let us recall that the Hubble

parameter H is a function defined along any trajectory

supported by a given potential V. All these H functions

are different, technically because they correspond to

solutions of Eq. (37) (viewed as a differential equation

giving H once V is fixed) with different initial conditions

HðϕinÞ. Among these functions is the one corresponding

toHHF if one choosesHHFðϕinÞ as an initial condition, but
one can also find HSR which corresponds to the slow-roll

trajectory if one chooses HSRðϕinÞ as an initial condition,

or any other ~H function corresponding to any other

trajectory and associated initial condition. The sketch

displayed in Fig. 1 summarizes the situation. Since there

is no reason why HHFðϕinÞ ¼ HSRðϕinÞ a priori, the two

functions HHF and HSR are different; hence the slow-roll

trajectory

ΔNSR ¼ −
1

2M2
Pl

Z

ϕend

ϕin

HSR

ðHSRÞ0
dϕ (43)

differs from the horizon-flow one (42) in general.

This being said, since the horizon-flow algorithm

imposes that we start from small values of the flow

parameters ϵHF, and since the slow-roll trajectory is in

any case an attractor, the departure from slow roll is initially

small and should remain so. This is why at first sight, one

may claim that predictions should not be too affected since

when the slow-roll conditions (ϵ ≪ 1) are verified for HSR

and HHF, the differentials in the predictions of both frames

are slow-roll suppressed quantities (and one needs to use

next-to-leading order expressions in slow roll to consis-

tently compare them,
4
as in Sec. IV B).

For example, from deriving Eq. (37) with respect to ϕ,

one can rewrite Eq. (42) as

4
A physical quantity P computed in the horizon-flow para-

metrization PHF only differs from the slow-roll one PSR by slow-
roll suppressed quantities; that is, PHF ¼ PSR½1þOðϵÞ þ & & &),
where ε stands for first order terms in slow roll. If PSR is
computed in the slow-roll frame of approximation, PSR ¼

PLO
SR ½1þ

~OðϵÞ þ & & &), one has at leading order PHF ¼ PLO
SR ½1þ

~OðϵÞ þOðϵÞ þ & & &). To consistently derive the leading order

differential PHF − PSR ¼ PLO
SROðϵÞ þ & & &, the term ∝ ~OðϵÞ must

therefore be computed; i.e. the slow-roll quantities must be
worked out at next-to-leading order.
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ΔNHF ¼ −
1

M2
Pl

Z

V

V0
1 − ϵHF1 =3þ ϵHF2 =6

1 − ϵHF1 =3
dϕ; (44)

where one has used Eqs. (31) and (32) to introduce ϵHF1 and

ϵHF2 . One should notice that the first term of the integrand

V=V 0 actually corresponds to the leading order of the slow-
roll trajectory (9). This confirms that when the slow-roll is

well verified in the horizon-flow parametrization ϵHF ≪ 1,

the two trajectories are similar.

However, beyond this simple argument, the trajectories’

difference is the origin of two subtleties which we now

describe, and which biases the horizon-flow analysis.

2. H-multivaluated trajectories

Along horizon-flow trajectories, let us first recall that the

inflaton field can only vary monotonously. As a conse-

quence, if the complete trajectory is made of several pieces

with different signs of _ϕ, only one of them can be described

by the horizon-flow parametrization, which therefore may

be unable to describe the actual outcome of the process.

Let us illustrate our point on the example of Fig. 2. For

the potential displayed in the left panel, the Klein-Gordon

equation (5) is integrated from some initial conditions

(specified in the caption), and gives the trajectory displayed

in the middle panel (colored lines) in the phase plane

ðϕ; _ϕÞ. It is made of several pieces: first the inflaton field

climbs up the potential (green); then its velocity vanishes

FIG. 1. RelationsbetweenH andV functions.Startingfromagiven

HHF function, the associated potential V can be obtained using

Eq. (37) from the right-hand side to the left-hand side [hence the

directionof the arrowabove (37)]. Startingnowfromthis potentialV,
severalH functions canbeobtained usingEq. (37) from the left-hand

side to the right-hand side (i.e. solving a first order differential

equation, that involves one integration constant), depending on the

initial conditionHðϕinÞ one chooses. The one corresponding to slow
roll,obtainedbysettingHðϕinÞ ¼ HSRðϕinÞ,hasapriorinoreasonto
mach the initialHHF function corresponding toHðϕinÞ ¼ HHFðϕinÞ.

FIG. 2 (color online). Left panel: Potential V=M4 ¼ 1þ ðϕ=MPlÞ
2 as a function of ϕ. The green disk and arrow stand for the initial

value and sign of velocity of the inflaton field for the trajectory displayed in the middle and right panels. Middle panel: Numerical

integration of equation (5) from ϕin=MPl ¼ 0.8 and _ϕin=M
2
Pl ¼ 2 (colored line), displayed in the phase plane ðϕ; _ϕÞ. Each color

corresponds to a different piece of it, with alternate signs of _ϕ. The black dashed line stands for the slow-roll leading order trajectory
_ϕ ¼ −V 0=ð3HSR;LOÞ. Right panel: Hubble parameter Hðϕ; _ϕÞ evaluated along this trajectory (same color code) with Eq. (4). Note that

the logarithmic scale is used for H for display convenience. Again, the black dashed line stands for the slow-roll leading order solution

HSR;LOðϕÞ ¼ VðϕÞ=ð3M2
PlÞ. In the middle and right panels, the arrows indicate in which direction inflation proceeds.
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and it goes down the potential, it crosses the minimum and

it climbs up on the other side (blue); and then its velocity

vanishes again and the same thing happens the other way

down (red), so on and so forth. In the right panel, the

Hubble parameterHðϕ; _ϕÞ is evaluated along this trajectory
with Eq. (4), and the same color code is adopted. In the

middle and right panels, the black dashed line stand for

the slow-roll leading order solution, and the arrows indicate

in which direction inflation proceeds. One can verify that

H always decreases as inflation proceeds.

In this example it is straightforward to understand why

the horizon-flow parametrization cannot describe the entire

trajectory: in the right panel, one can check that for a single

value of ϕ, there are several possible values ofH. The Hubble

parameter is therefore multivaluated along the full trajectory,

and a single HðϕÞ function cannot fully stand for it.

Since any physical trajectory within the potential even-

tually approaches the minimum of the potential ϕ ¼ 0, in

the spirit of the horizon-flow algorithm [especially case (ii);

see Sec. II C], this is where the late-time fixed point lies.

However, even if the H functions displayed in the right

panel of Fig. 2 were completed to be defined for all values

of the inflaton field, ϕ ¼ 0 would be a late-time fixed point

for none of them since it is a minimum of H for none of

them.
5
Therefore, this kind of situation may not be properly

described by the horizon-flow parametrization. These

aspects are further developed in Sec. IV A.

3. Inflationary regime bias

In general, a given potential can support inflation in

different regimes, but the horizon-flow trajectory is close to

the slow-roll one for some of them only. More precisely,

letting all the flow parameters vanish beyond some order M
sets the functional form of H (hence of V), and drawing the

initial values ϵin of the remaining flow parameters sets the

coefficients of these functions as well as the starting point of

the numerical integration. Therefore, each time one draws

some ϵin coefficients, one draws a specific potential V and

an initial value ϕin on it. A few examples are displayed

in Fig. 3.

On each panel, the functional form ofH from which V is

obtained through Eq. (37) is the same but its coefficients are

different (blue and red curves). The horizon-flow trajectory

is displayed with the arrows and starts from the location ϕin

displayed by the disk. On each potential, the green zone

denotes where a slow-roll regime of inflation can be

supported. One can see that when several slow-roll regimes

are possible, ϕin selects out only one of them, such that the

other ones are not described. Of course, one can draw other

values of ϵin so that a similar regime is tracked down (from

red to blue case in each panel), but since ϕin and the

coefficients of V are entangled by the choice of ϵin, this will

be done on a different potential. In this sense horizon flow

is a biased parametrization of inflation, since once the

potential is fixed, only a specific regime out of (possibly)

many is worked out. This effect is explicitly exemplified

and computed in Sec. IV B.

Finally, it is worth mentioning that when the slow-roll

conditions are well verified for HSR but not for HHF, the

horizon-flow and slow-roll trajectories are very different; see

Eq. (44). For example, when the second term of Eq. (44) is

negative, the horizon-flow dynamics describes a situation

where the inflaton field climbs up its potential. In this case

the horizon-flow trajectories have nontrivial instability

properties that are further investigated in Sec. IV C.

FIG. 3 (color online). Inflationary regimes for a few potential examples (sketch). On each panel, the functional form of V is the same

but its coefficients differ (blue and red curves). Regions supporting slow-roll inflation are thickened in green. The horizon-flow

trajectory is displayed with the arrows and starts from the location of the disk.

5
Recall that, since H always decreases during inflation, a late-

time fixed point is necessarily a minimum of HðϕÞ.
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F. A warm-up example: H ¼ 1þ aϕ

To briefly summarize the computational program of the

following sections, and as an illustrative warm-up, let us

consider the simple case where the expansion (36) is

truncated at first order; that is, H=H0 ¼ 1þ ax, where
x≡ ϕ=MPl. The Hubble parameter is positive provided

x > −1=a if a > 0 and x < −1=a if a < 0. For simplicity,

we only detail the case a > 0 since a < 0 is completely

symmetrical and can be worked out in exactly the same

way. In this section we calculate the ratio r16=ð1 − nSÞ
predicted by this model, successively making use of the

horizon-flow and of the slow-roll setups.

1. Horizon-flow predictions

When a > 0, H increases with x; hence from Eq. (28) x

decreases as inflation proceeds. It stops when ϵ1 ¼
2M2

PlH
02=H2 ¼ 2a2=ð1þ axÞ2 ¼ 1 [see Eq. (31)], i.e. at

the location xHFend given by

xHFend ¼
ffiffiffi

2
p

−
1

a
; (45)

where as before the superscript HF stresses that for now, the

calculation is carried out in the horizon-flow framework.

The inflationary trajectory is given by Eq. (42) and the

number of e-folds between the Hubble crossing time of the

pivot scale and the end of inflation reads

ΔNHF
% ¼

xHF%

2a
þ
ðxHF% Þ2

4
−
xHFend
2a

−
ðxHFendÞ

2

4
: (46)

This trajectory can be inverted, and making use of Eq. (45),

one obtains

xHF% ¼ −
1

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 4ΔNHF
%

q

: (47)

Then one needs to plug this expression in the slow-roll

parameters’ ϵ1 and ϵ2 expressions, respectively given by

Eqs. (31) and (32). Here, since H00 ¼ 0, one has ϵ2 ¼ 2ϵ1.

Finally, r and nS are evaluated. At leading order in slow

roll, they are given by Eqs. (16) and (17), and one obtains

r16

1 − nS

&

&

&

&

LO

HF

¼
1

4
; (48)

which neither depends on a nor on ΔN%. If one goes up to

next-to-leading order in slow roll, nS and r are respectively
given by Eqs. (26) and (27). Since H00 ¼ 0 implies that

ϵ3 ¼ 2ϵ1 in Eq. (33), this means that at next-to-leading

order in slow roll, one has r16=ð1 − nSÞ ¼ ð1 − 2ϵ1%Þ=4,
which yields

r16

1 − nS

&

&

&

&

NLO

HF

¼
1

4
−

1

2þ 4ΔN%

; (49)

which now mildly depends on ΔN% but still not on a.
For ΔN% ≃ 50, one obtains r16=ð1 − nSÞ≃ 0.245.

2. Slow-roll predictions

Let us now see what the slow-roll setup predicts for this

model. Thanks to Eq. (37), the problem consists in studying

slow-roll inflation in the potential

V ¼ 3M2
PlH

2
0

$

a2x2 þ 2axþ 1 −
2

3
a2
%

: (50)

As before, we restrict ourselves to the case a > 0. One

can see that the potential is definite positive only if

x > −1=aþ
ffiffiffiffiffiffiffiffi

2=3
p

. Therefore there exists a domain,

namely −1=a < x < −1=aþ
ffiffiffiffiffiffiffiffi

2=3
p

, for which H is well

defined but not V. Fortunately VðxHFendÞ > 0 so that this

region is never probed, but as explained in Secs. III and IV

this is not the case in general. In the same manner, one can

check that V and H both increase with x, which means that

along the horizon-flow trajectory the inflaton rolls down its

potential. However, as mentioned in Sec. II E and further

developed in the following, this is also not always neces-

sarily true.

For what matters now, if one uses Eq. (12) to compute

ϵLO1 , the end of inflation is determined to happen at

xSR;LOend ¼

ffiffiffi

7

6

r

þ
1
ffiffiffi

2
p −

1

a
; (51)

where again the superscript SR recalls that we are working

in the slow-roll framework. The difference with Eq. (45) is

not surprising since, here, Eq. (12) is used in a regime

where, by definition, the slow-roll approximation is not

valid anymore.

At leading order in slow-roll, the slow-roll trajectory (9)

gives rise to

ΔNSR;LO
% ¼

xSR;LO%

2a
þ
ðxSR;LO% Þ2

4
−
xSR;LOend

2a
−
ðxSR;LOend Þ2

4

þ
1

3
ln

$

1þ axSR;LOend

1þ axSR;LO%

%

; (52)

which resembles the horizon-flow trajectory, but with

logarithmic corrections. In practice, Eq. (52) needs to be

inverted numerically to get xSR% . However, to allow com-

parison with the horizon-flow predictions which do not

depend on a, let us derive the corresponding slow-roll

results in the limit a ≪ 1. In this case, an approximated

formula for the inverted trajectory can be obtained, namely

xSR;LO% ≃
a≪1

−
1

a
þ
2

ffiffiffi

2
p

3

3þ
ffiffiffiffiffi

21
p

7þ
ffiffiffiffiffi

21
p þ

2

7þ
ffiffiffiffiffi

21
p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

23þ 5
ffiffiffiffiffi

21
p

þ 4ð14þ 3
ffiffiffiffiffi

21
p

ÞΔN%

q

: (53)
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The slow-roll parameters at the time of Hubble scale

crossing are then obtained by plugging the previous in

Eqs. (12) and (13), and nS and r are computed using

Eqs. (16) and (17). One obtains a long but explicit

expression. For display convenience and again, to allow

an easy comparison with the horizon-flow predictions, it

can be simplified in the limit ΔN% ≫ 1, and one gets

r16

1 − nS

&

&

&

&

LO

SR

≃
a≪1
ΔN%≫1

1

4
−
7 −

ffiffiffiffiffi

21
p

96ΔN%

: (54)

Taking ΔN% ≃ 50, one obtains r16=ð1 − nSÞ≃ 0.2496.

Finally, let us see how these expressions are modified when

computing them at next-to-leading order in slow roll. First, if

one uses ϵNLO1 rather than ϵLO1 to determine xend, then one

faces a problem since ϵNLO1 reaches a maximumwhich is less

than 1 and then becomes negative as inflation approaches its

end. This is because the expansion (22) does not make sense

close to the end of inflation where slow roll is violated. In

any case the precise value of xend does not play a crucial role.
Therefore one can safely continue to work with Eq. (51) as

far as the location of the end of inflation is concerned. Then,

the slow-roll trajectory (25) gives

ΔNSR;NLO
% ¼

xSR;NLO%

2a
þ
ðxSR;NLO% Þ2

4
−
xSR;NLOend

2a

−
ðxSR;NLOend Þ2

4
þ
2

3
ln

$

1þ axSR;NLOend

1þ axSR;NLO%

%

þ
1

3
ln

!

a2ðxSR;NLO% Þ2 þ 2axSR;NLO% þ 1 − 2a2=3

a2ðxSR;NLOend Þ2 þ 2axSR;NLOend þ 1 − 2a2=3

"

:

(55)

Again, although this cannot be inverted but numerically, an

analytical formula can however be obtained in the limit

where a → 0, which reads

xSR;NLO% ≃
a≪1

−
1

a
−
4

ffiffiffi

2
p

3

9þ
ffiffiffiffiffi

21
p

13þ
ffiffiffiffiffi

21
p þ

2
ffiffiffi

2
p

3ð13þ
ffiffiffiffiffi

21
p

Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

205þ 44
ffiffiffiffiffi

21
p

þ 3ð43þ 9
ffiffiffiffiffi

21
p

ÞΔN%

q

:

(56)

The slow-roll parameters at time of pivot scale crossing are

then evaluated at this point but this time using the next-to-

leading order expressions (21)–(24). Doing so, and again

working out the ΔN% ≫ 1 limit for a more convenient

comparison of the different results, Eqs. (26) and (27) give

rise to
6

r16

1 − nS

&

&

&

&

NLO

SR

≃
a≪1
ΔN%≫1

1

4
−

7

888

13 −
ffiffiffiffiffi

21
p

ΔN%

: (57)

Taking ΔN% ≃ 50, one obtains r16=ð1 − nSÞ≃ 0.2487.

On can see that the difference between both frames’

predictions at next-to-leading order, Eqs. (49) and (57)

(∼0.004), is of the same order as the leading order differ-

ence Eqs. (48) and (54) (∼0.0037) but does not have the

same sign. This confirms that both frames’ predictions

differ by quantities that need to be consistently computed at

next-to-leading order in slow roll.

In this simple toy example, both frames predict similar

results and disagree only by subdominant quantities of the

order of the percent. However, as will be exemplified in

Sec. IV, this is not always the case.

III. WHY HORIZON FLOW PREDICTS

r16=ð1 − nSÞ ¼ 1=3 OR 0 AND WHY IT

SHOULD NOT

The computational program of horizon flow sketched

in Sec. II C oversamples two denser regions in the ðr16; nSÞ
plane, namely r16=ð1 − nSÞ ¼ 1=3 and r16 ¼ 0. As

explained before, this can be accounted for by a fixed

point analysis, which however singles out slightly different

predictions, namely r16=ð1 − nSÞ ¼ 1=2 and r16 ¼ 0. In

this section we puzzle out this mismatch, going beyond a

fixed point analysis and explicitly solving the horizon-flow

dynamics when the expansion (36) is truncated at second

order (which we argue is sufficient). We then exhibit simple

horizon-flow models which completely break these rela-

tions. This illustrates how the above mentioned denser

regions are intimately related to the specific choice of the

parametrization (36), and show that they do not hint at

intrinsic properties of single-field inflation itself.

A. Elucidating horizon-flow “predictions”

The inflationary predictions associated with the models

(36) cannot be derived analytically in general for an arbi-

trarily largevalue ofM. However, aswe nowexplain,M ¼ 1

already allows us to capture most of the physical effects

contained in these models. Indeed, at leading order in slow

roll, one has r16 ¼ ϵ1 and nS ¼ 1 − 2ϵ1 − ϵ2. Looking back

at Eqs. (31)–(32), these observables involve up to the second

derivative inHðϕÞ only. SinceH is assumed not to vary too

much during inflation, it seems reasonable to first neglect

higher derivatives, and thus to study the models defined by

HðϕÞ ¼ H0

!

1þ a
ϕ

MPl

þ b

$

ϕ

MPl

%

2
"

: (58)

1. Inflationary regimes

As before, one denotes x≡ ϕ=MPl. The H function (58)

is symmetrical with respect to x0 ¼ a=ð2bÞ, and it is

6
Since expressions are consistently worked out at next-to-

leading order in slow roll, the ∝ ϵ2 terms in the right-hand side of
Eqs. (26) and (27) are evaluated with the leading order formulas
for the slow-roll parameters (11)–(14), while the ∝ ϵ terms are
evaluated with the next-to-leading order formulas (21)–(24).
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therefore enough to study the inflationary dynamics in

the range x > x0 only. If b > 0, H increases with x, and
if 0 < b < a2=4, the Hubble parameter is positive only if

x > xH¼0, where

xH¼0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − 4b
p

− a

2b
: (59)

On the other hand if b < 0, H decreases with x, and is

positive only if x < xH¼0.

The phase space relation (28) implies that H must

decrease during inflation. Therefore when b > 0, the

inflaton ϕ decreases as inflation proceeds, whereas it

increases when b < 0. Eventually inflation stops when

ϵ1 ¼ 1. In order to determine when this happens, let us

calculate the first slow-roll parameters with Eqs. (30)–(33).

They are given by

ϵ1 ¼ 2

$

aþ 2bx

1þ axþ bx2

%

2

; (60)

ϵ2 ¼ 4
a2 − 2bþ 2abxþ 2b2x2

ð1þ axþ bx2Þ2
; (61)

ϵ3 ¼ 4

$

aþ 2bx

1þ axþ bx2

%

2 a2 − 3bþ abxþ b2x2

a2 − 2bþ 2abxþ 2b2x2
; (62)

and the following slow-roll parameters can be derived in the

same manner. The first slow-roll parameter ϵ1 equals 1 at

x'ϵ1¼1 ¼ −
a

2b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4b2
þ 2 −

1

b

s

'
ffiffiffi

2
p

; (63)

which is defined only when a2=4 ≥ b − 2b2. This leads to
five possible regimes that we now describe one by one.

(i) b < 0, Fig. 4

In this case inflation proceeds at x < xH¼0 for increasing

values of x (as denoted by the right arrow in Fig. 4),

and naturally ends by slow-roll violation since ϵ1 diverges

when x goes to xH¼0. More precisely, the location at which

inflation ends is given by xend ¼ x−ϵ1¼1. Note that even if the

present analysis is detailed for x > x0 only, symmetrical

ranges are displayed in the figures, for illustrative purposes.

(ii) b ≥ 0 and a2 > 4b, Fig. 5

Since b ≥ 0, inflation proceeds for decreasing values of x,
at x > xH¼0. Again, ϵ1 diverges when x goes to xH¼0 and

inflation naturally ends by slow-roll violation, but this time

at the location xend ¼ xþϵ1¼1. The dashed lines attached to

the arrows mean that inflation actually proceeds at larger

values of the field (where ϵ1 < 1) than what the position of

the arrows indicates.

(iii) b > 0 and a2=4 ¼ b, Fig. 6

This case is singular since H vanishes only once at x0,
where the first slow-roll parameter blows up. Inflation

naturally ends at xend ¼ xþϵ1¼1, which simplifies and reads

xend ¼ −
2

a
þ 2

ffiffiffi

2
p

: (64)

(iv) b > 0 and b − 2b2 ≤ a2=4 < b, Fig. 7

FIG. 4 (color online). Hubble function HðϕÞ and first slow-roll

parameter ϵ1 in the case b < 0 (a ¼ 1 and b ¼ −1).

FIG. 5 (color online). Hubble function HðϕÞ and first slow-roll

parameter ϵ1 in the case b ≥ 0 and a2 > 4b (a ¼ 2.5 and b ¼ 1).

FIG. 6 (color online). Hubble function HðϕÞ and first slow-roll

parameter ϵ1 in the case a2=4 ¼ b (a ¼ 2 and b ¼ 1).
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In this case H is always positive, and ϵ1 does not blow up

but possesses a maximum that is larger than 1. This leads to

two possible regimes: either inflation starts from xin <
x−ϵ1¼1 and never ends [we call this regime (iv-α)], or it starts

from xin > xþϵ1¼1 and ends at xend ¼ xþϵ1¼1 [we call this

regime (iv-β)]. In the (iv-α) case, x asymptotically

approaches the central value x0 and stays there forever.

(v) b > 0 and a2=4 < b − 2b2, Fig. 8

This last case occurs only if 0 < b < 1=2, and is similar

to the previous one except that now the maximum value of

ϵ1 is smaller than 1. Therefore in this situation inflation

never ends and x asymptotically approaches the central

value x0 where it stays forever.

2. Inflationary trajectory

We can now move on and compute the inflationary

trajectory. Integrating the relation (29) dN ¼ −H=H0dϕ=
ð2M2

PlÞ between the time N% when the modes of astro-

physical interest today cross out the Hubble radius and the

time N% þ ΔN% ¼ Nend when inflation stops, one obtains

ΔNHF
% ¼

x2% − x2end
8

þ
a

8b
ðx% − xendÞ

þ

$

1 −
a2

4b

%

1

4b
ln

$

aþ 2bx%

aþ 2bxend

%

: (65)

This trajectory can be inverted to express x% in terms of a, b
and ΔN% only. The way it proceeds depends on the case

under consideration among the five mentioned above.

When b < 0, case (i), a first remark is that the number of

e-folds diverges when x → x0 and therefore, one is sure to

be able to realize a sufficient number of e-folds. Denoting

X ≡ ðaþ 2bxÞ2=ð4b − a2Þ, one obtains x% ¼ −a=ð2bÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4b − a2ÞX%

p

=ð2bÞ, where

X% ¼ W0

!

Xend exp

$

Xend þ
32b2

4b − a2
ΔN%

%"

(66)

and where W0 is the 0 branch of the Lambert function.

When b > 0 and a2=4 > b, case (ii), one is also sure to

be able to realize a sufficient number of e-folds since ΔN
diverges when x goes to infinity. In this case one obtains

x% ¼ −a=ð2bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4b − a2ÞX%

p

=ð2bÞ (notice that the sign
of the second term in the right-hand side is different from

the case b < 0), with

X% ¼ W−1

!

Xend exp

$

Xend þ
32b2

4b − a2
ΔN%

%"

; (67)

where W−1 is the −1 branch of the Lambert function [40].

When a2 ¼ 4b, case (iii), the logarithm term in Eq. (65)

vanishes and the trajectory is simply given by

x% ¼ −
2

a
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

a2
þ x2end þ

4

a
xend þ 8ΔN%

r

: (68)

Replacing xend by Eq. (64), this leads to

x% ¼ −
2

a
þ 2

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ΔN%

p

: (69)

Finally when b > 0 and a2=4 < b, cases (iv) and (v), one

obtains x% ¼ −a=ð2bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4b − a2ÞX%

p

=ð2bÞ [i.e. with

the same sign as for case (ii)], but with

X% ¼ W0

!

Xend exp

$

Xend þ
32b2

4b − a2
ΔN%

%"

: (70)

One can check that, as mentioned above, sinceΔN diverges

when x → x0, an infinite number of e-folds is realized as x
approaches x0 and inflation never ends in the cases (iii-β)

and (iv).

FIG. 8 (color online). Hubble function HðϕÞ and first slow-roll

parameter ϵ1 in the case b>0 and a2=4<b−2b2 (a ¼ 0.3 and

b ¼ 0.4).

FIG. 7 (color online). Hubble function HðϕÞ and first slow-roll

parameter ϵ1 in the case b > 0 and b − 2b2 < a2=4 < b (a ¼ 1

and b ¼ 1).

HORIZON-FLOW OFF-TRACK FOR INFLATION PHYSICAL REVIEW D 89, 083526 (2014)

083526-13



3. Inflationary predictions

The physical predictions can now be derived explicitly in

terms of a, b andΔN%, especially the ratio r16=ð1 − nSÞ one
is interested in. Making use of Eqs. (16) and (17), at first

order in slow roll, it is given by

r16

1 − nS
¼

ϵ1ðx%; a; bÞ

1 − 2ϵ1ðx%; a; bÞ − ϵ2ðx%; a; bÞ
; (71)

where the slow-roll parameters ϵðx; a; bÞ are given by

Eqs. (60)–(62), and the Hubble crossing point x%ða; b;
ΔN%Þ is given by the formulas detailed above in Sec. III A

2. Obviously it would be straightforward to expand Eq. (71)

in a (rather long) analytical formula, but one would not

learn much doing so. It is instead more instructive to plot

the result as a function of a and b, which is what is done in
Fig. 9, taking ΔN% ¼ 50 (where we have made sure that

different values of ΔN% do not modify the result much).

Let us stress that in the case of never-ending inflation, i.e.

cases (iv-β) and (v), following the lines of the horizon-flow

computational algorithm detailed in Sec. II C, the obser-

vational predictions are computed at the late-time attractor

x0, where ϵ1 ¼ 0 and ϵ2 ≠ 0; hence r16=ð1 − nSÞ ¼ 0. This

corresponds to the dark blue (iv-β) and black (v) surfaces in

Fig. 9, with the “hole” in the blue surface associated with

the case (v) where there is no other regime.

It is also worth mentioning that if a2 ¼ 4b, i.e. in case

(iii), things are particularly simple since Eqs. (60) and (61)

combined with Eq. (69) exactly give ϵ1% ¼ ϵ2% ¼
1=ð1þ ΔN%Þ; hence r16=ð1 − nSÞ ¼ 1=3. It is displayed

as the blue curved line in Fig. 9, where one can note the

FIG. 9 (color online). Ratio r16=ð1 − nSÞ for the model H=H0 ¼ 1þ axþ bx2 as a function of a and b, with ΔN% ¼ 50. The light

blue surface stands for the regimes of inflation where it ends naturally, i.e. by slow-roll violation. The “hole” in this surface corresponds

to case (v) where there is not such a regime. In this case the predictions are calculated at the late-time attractor x0 that yields r16 ¼ 0,

which is displayed by the black ellipse behind the light blue surface (and which is the projection of the hole onto the plane r16 ¼ 0). In

the same manner, the dark blue surface corresponds to the case (iv-β) where r16 ¼ 0 for the same reason. The blue straight line

corresponds to b ¼ 0 and r16=ð1 − nSÞ ¼ 1=4, which matches the calculation of Sec. II F, and the blue curved line corresponds to

a2 ¼ 4b, i.e. case (iii), for which r16=ð1 − nSÞ ¼ 1=3 exactly.
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discontinuity in the predictions when b → 0, this case (iii)

being singular. Finally, the blue straight line stands for

b ¼ 0 and r16=ð1 − nSÞ ¼ 1=4, which corresponds indeed

to the calculation of Sec. II F.

One can see that when b ≠ 0, two asymptotic plateaus

are quickly reached. When b < 0, inflation proceeds close

to the maximum ofH and in practice, x% is very close to the
local maximum of the potential x% ≃ x0 where ϵ1 ¼ 0 and

ϵ2 ≠ 0. One then typically has r16 ¼ 0, as in the cases (iv-β)

and (v). When b > 0 on the other hand, the asymptotic

value of the plateau can be obtained by expanding

Eqs. (63), (70), (60) and (61) in the limit b ≫ 1 and

ΔN% ≫ 1, and one obtains r16=ð1 − nSÞ ¼ 1=3, as in the

case (iii). These results can be schematically summarized as

follows:

r16

1 − nS
≃

'

0 in the cases ðiÞ; ðiv-βÞ; ðvÞ
1
3

in the cases ðiiÞ; ðiiiÞ; ðiv-αÞ
: (72)

It is therefore particularly interesting to notice that the

typical results found in the literature can simply be

interpreted in this framework: r16 ¼ 0 corresponds either

to inflation proceeding close to a maximum of H or to a

never-ending regime of inflation, while r16=ð1 − nSÞ ¼
1=3 is to be associated with a naturally ending inflationary

regime where H is not bounded in the far past. This

calculation also explains why, as noticed in Refs. [19,21],

the denser regions in the observable plane do not lie exactly

at the fixed point r16=ð1 − nSÞ ¼ 1=2 mentioned in

Sec. II C but are better described by r16=ð1 − nSÞ ¼ 1=3.
The mismatch between the numerical results of the

horizon-flow computational program and the fixed point

analysis is therefore elucidated in this example, and a

detailed analysis of the inflationary regimes accounts for

the two different typical predictions.

B. Breaking horizon-flow “predictions”

However, as we shall now see, these “typical” predic-

tions are a direct consequence of the parametrization (36),

and can easily be broken by other choices of the HðϕÞ
function.

1. H ¼ 1þ αϕp

Let us first wonder what would happen if, for some

reason, the first terms in the expansion (36) vanish.

If a1 ¼ 0 and a2 ≠ 0 in Eq. (36), the calculation has

already been carried out in Sec. III A. Then if

a1 ¼ a2 ¼ 0, the first nonvanishing term of the expansion

provides the leading order for r16 and nS, for the same

reason as that mentioned at the beginning of Sec. III A.

Let us thus investigate a horizon-flow model of the

form H=H0 ¼ 1þ αxp.
The same detailed analysis as before can be carried out,

but here we only summarize the results. Again, when

inflation proceeds close to a maximum of H, or when

inflation never stops and asymptotically reaches a mini-

mum of H, one has r16 ≃ 0. When α > 0, a regime of

naturally ending inflation with unbounded values of H
in the far past exists for any α if p is odd, but only if α is

larger than some value αc when p is even, given by

αc ¼ 2−
p
2ðp − 1Þ1−p: (73)

Indeed, one can check that if p is even and if α < αc, the

first slow-roll parameter ϵ1 is always smaller than 1. If not,

the corresponding location of the end of inflation xend must

be determined numerically in general. One can also check

that if p ¼ 2, the condition b > 1=2 of case (v) for the

model (58) matches the value of αc given by Eq. (73). The

trajectory can be integrated, and one obtains

ΔN% ¼
1

2αp

$

x
2−p
% − x

2−p
end

2 − p
þ α

x2% − x2end
2

%

: (74)

It is singular when p ¼ 2, for which the trajectory can

directly be read off from Eq. (65) (taking a ¼ 0), and it

needs to be inverted numerically in general. Doing so, one

obtains the value of the field x% when the modes of

astrophysical interest today cross out the Hubble radius.

Then, the slow-roll parameters can be evaluated at this

point and the corresponding ratio r16=ð1 − nSÞ can be

computed. It is displayed in Fig. 10 as a function of α, for

integer values of p up to p ¼ 10, and taking ΔN% ¼ 50

(where we have again made sure that different values of

ΔN% do not modify the results much). One can see that

when α grows, the ratio r16=ð1 − nSÞ reaches a stationary

plateau very quickly, the value of which can be obtained by

expanding in α ≫ αc the previous equations. One then

finds xend ≃ p
ffiffiffi

2
p

and x% ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2 þ 4pΔN%

p

. From this it

follows that ϵ%1 ≃ p=ð2ΔN% þ pÞ and ϵ%2 ≃ 1=ðΔN%þ
p=2Þ, and hence

r16

1 − nS

&

&

&

&

α≫αc

≃
1

2ð1þ 1
p
Þ
: (75)

The values corresponding to Eqs. (73) and (75) are

displayed in Fig. 10 (black dotted line), where one can

check that the matching with the numerical results is very

good. On the other hand, if p is odd, the same plateau exists

when α > αc, where inflation proceeds and stops at x > 0,

but when α < αc, inflation can still end naturally when

ϵ1 ¼ 1 for x < 0, and a different behavior arises. In this

case the ratio r16=ð1 − nSÞ is negative, and it is displayed

by the dashed curves in Fig. 10.

A continuous set of values for the ratio r16=ð1 − nSÞ,
including negative ones, is therefore described. One sees

that it is enough to allow the cancellation of one or several

first terms in the expansion (36) to yield different pre-

dictions from r16 ¼ 0 and r16=ð1 − nSÞ ¼ 1=3. As a
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consequence, these specific values should not be viewed

as generic.

2. r16=ð1 − nSÞ ¼ f

One can go even further, adopting a “reverse engineer-

ing” approach to design a model that gives r16=ð1 − nSÞ ¼
f for any value of f. Since r16=ð1 − nSÞ≃ 1=ð2þ ϵ2=ϵ1Þ at
first order in slow roll, any value of f can be reached

provided ϵ2 ¼ ð1=f − 2Þϵ1. Plugging Eqs. (31) and (32) in

this relation yields a differential equation for H, namely

ðH0=HÞ2 ¼ 2fH00=H, which can be solved explicitly:

HðxÞ ¼

'

H0ð1þ axÞ
2f

2f−1 if f ≠ 1
2
;

H0e
ax if f ¼ 1

2
;

(76)

where a is some integration constant. Such HðϕÞ functions
therefore provide any value r16=ð1 − nSÞ and do not single

out any typical inflationary prediction.

IV. HORIZON-FLOW VERSUS SLOW-ROLL

TRAJECTORIES

As explained in Sec. II E, the horizon-flow parametriza-

tion selects a specific trajectory in phase space among all

the solutions of the Klein-Gordon equation (5) associated

with the potential (37) derived from H. In this section we

first explicitly characterize such trajectories for a few

representative examples of inflationary potentials, and

compare them with the slow-roll solution which is known

as an efficient attractor [29] of the inflationary dynamics.

This allows us to classify horizon-flow trajectories into

three categories, and to highlight that in some cases,

horizon flow parametrizes inflation along unstable trajec-

tories where the inflaton climbs up its potential. We then go

back to the model (58) for which we carry out a complete

slow-roll analysis and show that, for a fixed potential, the

horizon-flow method is in fact blind to entire inflationary

regimes. This introduces a bias in the way it parametrizes

inflation. Finally, we numerically investigate, in a reheating

consistent manner, the discrepancies in the inflationary

predictions obtained from the horizon-flow and the slow-

roll trajectories in this model.

A. Horizon-flow trajectories in typical examples

Let us start again from Eq. (37), V ¼ 3M2
PlH

2−

2M4
PlH

02, but let us use it in the opposite way as before:

instead of deducing the potential VðϕÞ that is associated with
a horizon-flow parametrization HðϕÞ, we now see Eq. (37)

as a differential equation giving the HðϕÞ functions asso-

ciated with some potential VðϕÞ. We shall illustrate our point

on several prototypical potential examples.

In the Schwarz- Terrero-Escalante classification [28] of

inflationary potentials, three categories arise depending on

the time evolution of the kinetic energy density and its ratio

with the total energy density during inflation. The first class

is constituted by inflationary models where the kinetic

energy and its ratio with the total energy density both

increase. It is made of concave potentials. Models belonging

to the second class are such that the kinetic energy decreases

during inflation, but not its ratio with the total energy density.

These models have convex potentials, and a vanishing

vacuum constant (Vmin ¼ 0). Finally, the third class of

inflationary models has a decreasing kinetic energy and a

decreasing ratio of the kinetic energy to the total energy

density. Its potentials are convex but vacuum dominated

(Vmin ≠ 0), so that there is no graceful exit to inflation. The

third class has been shown [16] to be now ruled out by the

most recent observations and we are left with the two first

ones. The first class can actually be divided into two

subclasses: “hilltop inflation” for which inflation proceeds

close to a local maximum of its potential, and “plateau

inflation”where it proceeds along an extended flat portion of

it, and where the issue of initial conditions is less acute [41].

A prototypical example of hilltop inflation is given by

the quadratic “small field” potential

VðϕÞ ¼ M4

!

1 −

$

ϕ

μ

%

2
"

; (77)

where μ is some mass scale and M4 is an overall energy

scale constant, while a common plateau potential is the

one of the fðRÞ ∝ Rþ R2 Starobinsky model [1],

FIG. 10 (color online). Ratio r16=j1 − nSj corresponding to the

model H=H0 ¼ 1þ αxp in the regime of ending inflation, as a

function of α, for different values of p and with ΔN% ¼ 50. Note

that the absolute value of the ratio is displayed (continuous lines

when it is positive, and dashed lines when it is negative). When p
is even, such a regime exists only when α is larger than αc.

The black dotted line stands for the p-parametrized points

ðαc; r16=ð1 − nSÞjα≫αc
Þ, where αc is given by Eq. (73) and

r16=ð1 − nSÞjα≫αc
is given by Eq. (75).
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VðϕÞ ¼ M4ð1 − e−
ffiffiffiffiffiffi

2=3
p

ϕ=MPlÞ
2
: (78)

This potential also appears when inflation is driven by

the Higgs field nonminimally coupled to gravity [42,43],

which is naturally the case in curved space-time as

produced by quantum fluctuations [44]. This is why in

the following we refer to it as the “Higgs inflation” model.

As a representative of the second class, which is now under

observational pressure [16], we take the quadratic potential

of “large field” inflation

VðϕÞ ¼ M4

$

ϕ

MPl

%

2

: (79)

The shape of these three potentials is displayed below:

For each of these potentials, we solve Eq. (37) numeri-

cally and display a few solutions HðϕÞ for different initial
conditions (left panels of Figs. 11, 12 and 13). The slow-

roll leading order solution H2
SR;LO ≃ V=ð3M2

PlÞ is also

shown, and the surface where inflation proceeds [defined

by ϵ1 < 1, or equivalently in the ðϕ; HÞ plane, H2 < V=
ð2M2

PlÞ] is also displayed. Let us notice that in general, the

solutions HðϕÞ can be very different from the slow-roll

expected behavior. More precisely, three kinds of solutions

HðϕÞ are actually obtained.

1. Hubble functions of the first kind

The first kind is made of Hubble functions which vary

with ϕ in the same direction as V (i.e. H0V 0 > 0),

and approach the slow-roll solution at late time, i.e.

when ϕ decreases for the large field model, and when

ϕ increases for the small field and Higgs models. (At very

late time, slow roll is violated since inflation ends, and a

difference with the slow-roll lowest order solution appears).

Such solutions blow up H2 ≫ H2
SR;LO in the opposite

direction, where inflation cannot proceed. Examples of

this kind are the magenta, green and brown lines in

Figs. 11, 12 and 13.

2. Hubble functions of the second kind

Solutions belonging to the second kind share the same

properties, except that at early time they are such that

H2
SR;LO < H2 < ðV þ _ϕ2

SR;LO=2Þ=3M
2
Pl (where _ϕSR;LO ¼

−V 0=3HSR;LO is the slow-roll leading order trajectory),

and are therefore inflating. However they are not defined in

the whole range of possible values for ϕ but only in a

subinterval. The blue and red lines in Figs. 11, 12 and 13

are examples of this type.

FIG. 11 (color online). Large field inflation [see Eq. (79)]. The colored lines stand for solutions of Eq. (37) for a few different initial

conditions, while the black dashed line represents the slow-roll leading order solution H2
SR;LO ≃ V=3M2

Pl (left panel) and
_ϕSR;LO ≃

−V 0=ð3HSR;LOÞ (right panel). In the left panel are displayed theHðϕÞ functions, and the corresponding trajectories in phase space ðϕ; _ϕÞ
are shown in the right panel. There, grey lines represent numerical solutions of the Klein-Gordon equation (5) for a few different initial

conditions. In both panels, inflation proceeds in the blue surface, defined by ϵ1 < 1.
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3. Hubble functions of the third kind

Finally, a third kind is made of solutions which vary with

ϕ in the opposite direction from V (i.e. H0V 0 < 0). At late

time they approach the lower boundary limit H2
SR;LO where

they stop being defined, and they blow up at early time

where inflation cannot proceed. Examples of this kind are

the yellow and cyan lines in Figs. 11, 12 and 13. It is

important to stress that the condition H2 > H2
SR;LO [so that

H0 is defined in Eq. (37)] implies that the functions of the

second and third kind are not defined in the full

range ϕ > 0.

Let us see how this translates in terms of phase space

trajectories. Once the HðϕÞ function is numerically inte-

grated, the phase space trajectory is directly given by the

relation (28), _ϕ ¼ −2M2
PlH

0ðϕÞ. The trajectories in phase

space ðϕ; _ϕÞ corresponding to the HðϕÞ functions previ-

ously computed are displayed in the right panels of

Figs. 11, 12 and 13 for the three models under study,

where the same color code is adopted. The slow-roll

leading order trajectory _ϕSR;LO is displayed too, and the

inflationary surface defined by ϵ1 < 1 [or equivalently
_ϕ2 < VðϕÞ in the ðϕ; _ϕÞ plane] is also shown. As before,

the obtained trajectories can be very different from the

slow-roll one. For illustrative purposes, the Klein-Gordon

equation (5) has also been numerically integrated for a few

different initial conditions ðϕin; _ϕinÞ, and the obtained

solutions are also displayed. (For the large field model

and the Higgs model, the inflaton field oscillates at the

bottom of its potential once inflation ends, potentially giving

rise to an era of parametric preheating. The oscillations can

be noticed in the right panels of Figs. 11 and 13).

The three kinds of Hubble functions listed above can

now be easily interpreted. The first kind actually corre-

sponds to an initial overspeed ( _ϕ2 > _ϕ2
SR) that quickly

gets damped to the slow-roll attractor solution (brown,

green and magenta lines). On the contrary, functions of the

second kind correspond to an initial underspeed ( _ϕ2 < _ϕ2
SR)

that also quickly reaches the slow-roll attractor solution

(blue and red lines). Finally, functions of the third kind are

such that the initial velocity of the inflaton is of the opposite

sign as the slow-roll one ( _ϕ _ϕSR < 0). In these cases the

inflaton initially climbs up its potential (yellow and cyan

lines). It is worth stressing that what actually happens in

such situations (and as confirmed by the Klein-Gordon

numerical solutions) is that the speed of the inflaton

decreases and vanishes at some point. Then, the inflaton

rolls down its potential and joins the slow-roll attractor.

However, the horizon-flow solutions are not able to

reproduce these two-step behaviors. Indeed, this means

that a single field value ϕ is attained several times, with

different values of _ϕ (of different signs) each time, and

hence different values of H. The full inflationary dynamics

cannot therefore be described in terms of a single HðϕÞ
function, and the complete behavior can only be obtained

by connecting together a function of the third kind and a

function of the second one. This is one of the reasons why

some relevant inflationary regimes can be missed by the

horizon-flow parametrization.

FIG. 12 (color online). Small field inflation [see Eq. (77)] for μ ¼ MPl. The colored lines stand for solutions of Eq. (37) for a few

different initial conditions, while the black dashed line represents the slow-roll leading order solutionH2
SR;LO ≃ V=3M2

Pl (left panel) and
_ϕSR;LO ≃ −V 0=ð3HSR;LOÞ (right panel). In the left panel are displayed the HðϕÞ functions, and the corresponding trajectories in phase

space ðϕ; _ϕÞ are shown in the right panel. There, grey lines represent numerical solutions of the Klein-Gordon equation (5) for a few

different initial conditions. In both panels, inflation proceeds in the blue surface, defined by ϵ1 < 1.

VINCENT VENNIN PHYSICAL REVIEW D 89, 083526 (2014)

083526-18



B. Inflationary regimes missed by horizon flow

In order to see how these three kinds of Hubble functions

are present in the model (58) of Sec. III A, H=H0 ¼ 1þ
axþ bx2, in this section we turn to the complete slow-roll

analysis of this model. In particular, this reveals that,

in some cases, the horizon-flow parametrization misses

entire inflationary regimes. For an explicit comparison, the

predictions provided by both approaches are then also

computed in a reheating consistent manner.

The potential associated with the model (58) is given by

Eq. (37) and reads

V ¼ 3M2
PlH

2
0

!

ð1þ axþ bx2Þ2 −
2

3
ðaþ 2bxÞ2

"

; (80)

where we define the overall normalization scale M4 ¼
3M2

PlH
2
0. The slow-roll parameters directly follow from

Eqs. (11)–(14) at leading order in slow roll, but here we do

not write them down since the expressions are complicated

and not very instructive.

1. Inflationary regimes

As for H, the potential is symmetrical about

x0 ¼ −a=ð2bÞ, and therefore it is only necessary to

describe it in the x > x0 region. Following the same logics

and notations as in Sec. III A 1, let us detail the different

inflationary regimes that can be supported by the potential.

(i) b < 0, Fig. 14

In this case the potential has a double-well shape.

It vanishes at

x'V¼0 ¼ −
a

2b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4b2
þ
2

3
−
1

b

s

'

ffiffiffi

2

3

r

; (81)

so that inflation takes place either for x0 < x < x−V¼0 (where

it proceeds from the left to the right) or for x > xþV¼0 (where

it proceeds from the right to the left). We call these two

regimes ðiÞ-a and ðiÞ-b. The potential is minimal at

xVmin
¼ −

a

2b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4b2
þ
4

3
−
1

b

s

; (82)

FIG. 14 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b < 0 (a ¼ 1 and b ¼ −1).

FIG. 13 (color online). Higgs inflation [see Eq. (78)]. The colored lines stand for solutions of Eq. (37) for a few different initial

conditions, while the black dashed line represents the slow-roll leading order solution H2
SR;LO ≃ V=3M2

Pl (left panel) and
_ϕSR;LO ≃

−V 0=ð3HSR;LOÞ (right panel). In the left panel are displayed theHðϕÞ functions, and the corresponding trajectories in phase space ðϕ; _ϕÞ
are shown in the right panel. There, grey lines represent numerical solutions of the Klein-Gordon equation (5) for a few different initial

conditions. In both panels, inflation proceeds in the blue surface, defined by ϵ1 < 1.
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so that looking back at Eq. (59), one has x0 < x−V¼0 <
xH¼0 < xVmin

< xþV¼0. Hence there are some values of x
(namely x−V¼0 < x < xH¼0) where H > 0 whereas V < 0.

However, one can check that Vðx−ϵ1¼1Þ > 0 [where x−ϵ1¼1 is

given by Eq. (63) and is the location where inflation ends in

the horizon-flow setup] so that this problematic region is

never probed by the horizon-flow trajectory. The equation

ϵLO1 ¼ 1 can be solved analytically, but the solutions are

rather long expressions in a and b that we do not display

because they do not add much to this discussion. What is

important is that one of these solutions lies in the range x0 <
x < x−V¼0 and another lies in the range x > xþV¼0, so that both

regimes ðiÞ-a and ðiÞ-b end naturally by slow-roll violation.

Finally, it is worth stressing that compared to the

horizon-flow (i) case, which only accounts for the “hilltop”

ðiÞ-a regime of inflation (i.e. inflation occurs close to the

maximum of its locally concave potential), the slow-roll

analysis reveals the presence of another “chaotic” regime

(i.e. inflation occurs at large field where the potential is

convex, and has a graceful exit), case ðiÞ-b, where the H
function (58) is actually negative and therefore helpless to

describe such a regime.

(ii) b ≥ 0 and a2 > 4b, Fig. 15

As far as the potential is concerned, this case is identical to

the previous one (i), and two regimes of inflation are

supported: a hilltop one, ðiiÞ-a, and a chaotic one, ðiiÞ-b.
However, this time the horizon-flow case (ii) only accounts

for ðiiÞ-b, since the H function (58) is negative in the ðiiÞ-a
regime.

(iii) b > 0 and a2 ¼ 4b

As far as the potential is concerned, this case is not singular

and can be described as part of case (iv). However the latter

gets divided into several subcases for which the potential

behaves differently.

(iv.1) b > 0 and b − 2b2=3 ≤ a2=4 < b, Fig. 16

In this case the potential still has the same behavior

and supports two regimes of inflation as before, ðiv.1Þ-a

(hilltop) and ðiv.1Þ-b (chaotic), but now HðϕÞ is always

positive. This means that contrary to case (ii), the hilltop

regime ðiv.1Þ-a can now be described in the horizon-flow

setup. However, one should remember that in the

corresponding horizon-flow (iv-α) regime, x decreases

as inflation proceeds and approaches x0 where an infinite

number of e-folds is realized. Therefore in this case, the

inflaton climbs up its potential and settles over its

maximum. In this sense case (iv-α) is somewhat patho-

logical, and actually corresponds to a Hubble function of

the third kind.

(iv.2) b > 0 and b − 10b2=9 < a2=4 < b − 2b2=3, Fig. 17

In this case the potential still has a double well shape but it

is positive everywhere. As a consequence there are now

four regimes of inflation: a hilltop regime ðiv.2Þ-a where

inflation proceeds from the left to the right close to the

maximum of the potential at x0, a vacuum dominated

regime ðiv.2Þ-b where inflation proceeds from the left to

the right close the minimum of the potential at x < xVmin

and does not end by slow-roll violation, another vacuum

dominated regime ðiv.2Þ-c where inflation proceeds from

the right to the left close to the minimum of the potential at

FIG. 15 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b ≥ 0 and a2 > 4b (a ¼ 2.5

and b ¼ 1).

FIG. 16 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b > 0 and b − 2b2=3 ≤

a2=4 < b (a ¼ 1.5 and b ¼ 1).

FIG. 17 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b > 0 and b − 10b2=9 <
a2=4 < b − 2b2=3 (a ¼ 1.12 and b ¼ 0.5).
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x > xVmin
, and a chaotic regime ðiv.2Þ-d where inflation

proceeds from the right to the left at large fields. One

should note that depending on the values of a and b, it can
happen that the local maximum of ϵLO1 is smaller than 1, in

which case ðiv.2Þ-a and ðiv.2Þ-b merge to form a single

regime that does not end by slow-roll violation.

Let us compare these regimes to the horizon-flow ones.

The regime ðiv.2Þ-a is described by (iv-α) during which the

inflaton field value decreases, and therefore climbs up its

potential and settles over its maximum. The regimes

ðiv.2Þ-b and ðiv.2Þ-c are not described at all, and

ðiv.2Þ-d corresponds to (iv-β).

(iv.3) b > 0 and b − 4b2=3 < a2=4 < b − 10b2=9, Fig. 18

In this case only three regimes exist, namely ðiv.3Þ-a
(hilltop, vacuum dominated), ðiv.Þ3-b (vacuum dominated)

and ðiv:3Þ-c (chaotic). The first slow-roll parameter ϵ1 (the

one derived from H) happens to be greater than 1 only in

the increasing branch of the potential. This means that

ðiv.3Þ-a is described by (iv-α) during which the inflaton

field value decreases (and again climbs up its potential and

settles over its maximum), ðiv.3Þ-b is not described by any

horizon-flow regime, and ðiv.3Þ-c is described by (iv-β).

(iv.4) b > 0 and b − 2b2 < a2=4 < b − 4b2=3, Fig. 19

In this case the potential is convex everywhere. Two

regimes of inflation exist, a vacuum dominated regime

ðiv.4Þ-a where inflation does not end by slow-roll violation

and a chaotic regime ðiv.4Þ-b at large fields. They respec-

tively correspond to (iv-α) and (iv-β).

(v) b > 0 and a2=4 < b − 2b2, Fig. 20

In this case the potential has the same behavior as in

the previous case (iv.4). The only difference is that the

horizon-flow dynamics only contains a single inflationary

regime [remember that in case (v) the first slow-roll

parameter ϵ1, the one derived from H, is always smaller

than 1] in which inflation never ends. This corresponds to

the regime ðvÞ-a, and regime ðvÞ-b is not described in the

horizon-flow setup. However, note that for some values of a
and b, the local maximum of ϵLO1 is smaller than 1 and the

two regimes ðvÞ-a and ðvÞ-b merge in a single regime

where inflation does not end by slow-roll violation.

To sum up the discussion, we saw that there are some

regimes which are supported by the inflationary potential

but which are not described by the horizon-flow setup,

namely ðiÞ-b, ðiiÞ-a, ðiv.2Þ-b, ðiv.2Þ-c, ðiv.3Þ-b and ðvÞ-a;
and that some hilltop regimes supported by the potential are

described by unnatural trajectories in horizon flow where

the inflaton climbs up the potential and settles over its

maximum, namely (iv-α) for ðiv.1Þ-a, (iv-α) for ðiv.2Þ-a,
and (iv-α) for ðiv.3Þ-a. Such trajectories correspond to

Hubble functions of the third kind and are somewhat

pathological. They are further studied in Sec. IV C.

2. Inflationary trajectory

For now let us move on to the slow-roll trajectory. As

explained in Sec. II E, when slow roll is valid in both the

slow-roll and horizon-flow setups, one needs to go up to

next-to-leading order in slow roll to consistently com-

pare both frames’ predictions. The next-to-leading order

slow-roll trajectory (25) can be integrated in our case, and

gives rise to

FIG. 18 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case 4ðb − 4b2=3Þ < a2 < 4ðb −

10b2=9Þ (a ¼ 0.9 and b ¼ 0.4).

FIG. 19 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b > 0 and b − 2b2 < a2=4 <
b − 4b2=3 (a ¼ 0.7 and b ¼ 0.4).

FIG. 20 (color online). Potential VðϕÞ, first slow-roll parameter

ϵLO1 and HðϕÞ function in the case b > 0 and a2 < 4ðb − 2b2Þ
(a ¼ 0.55 and b ¼ 0.4).
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ΔNSR;NLO
% ¼

3ða2 − 4bÞ2

16b2ð3a2 − 12bþ 16b2Þ
ln

$

aþ 2bxend

aþ 2bx%

%

−
a

8b
ðxend − x%Þ −

1

8
ðx2end − x2%Þ

þ
1

3

3a2 − 12bþ 8b2

3a2 − 12bþ 16b2
ln

$

3 − 4bþ 3axend þ 3bx2end
3 − 4bþ 3ax% þ 3bx2%

%

þ
1

3
ln

!

2að3 − 4bÞ þ 2ð3a2 þ 6b − 8b2Þxend þ 18abx2end þ 12b2x3end
2að3 − 4bÞ þ 2ð3a2 þ 6b − 8b2Þx% þ 18abx2% þ 12b2x3%

"

−
1

3
ln

!

3 − 2a2 þ 2að3 − 4bÞxend þ ð3a2 þ 6b − 8b2Þx2end þ 6abx3end þ 3b2x4end
3 − 2a2 þ 2að3 − 4bÞx% þ ð3a2 þ 6b − 8b2Þx2% þ 6abx3% þ 3b2x4%

"

: (83)

Obviously, this trajectory cannot be inverted analytically

and numerical methods must be used in that case.

3. Inflationary predictions

As before, the slow-roll parameters at next-to-leading

order, i.e. Eqs. (21)–(24), are evaluated at the location x%
determined by numerically inverting the trajectory (83).

The spectral index and tensor to scalar ratio are then given

by Eqs. (26) and (27). When inflation does not end by

slow-roll violation, like in Sec. III A 3 we calculate the pre-

dictions at the location of the late-time attractor which is the

minimum of the potential where ϵNLO1 ¼ 0 and ϵNLO2 ≠ 0

hence r16=ð1 − nSÞ ¼ 0.

However, before proceeding with evaluating the slow-

roll parameters at the Hubble exit, one must say something

about the number of e-folds ΔN%. In Sec. III the rough

estimate ΔN% ≃ 50 was enough since up to the required

precision, the results were not sensitive to ΔN%. Here

however, accurate predictions are needed since we want to

compare slow-roll and horizon-flow predictions in the

regime where slow roll is valid in both frames. The

parameter ΔN% must be set consistently with the thermal

subsequent history, in particular the reheating stage.

Requiring that the mean energy density during reheating

ρ̄reh be lower than the energy density at the end of inflation,

ρ̄reh < ρend, and larger than the energy density at, say, the

epoch of nucleosynthesis ρ̄reh > ρnucl (≃ a few MeV) leads

[45] to a range of admitted values for ΔN%. This range

depends on the model under consideration and on its

parameters,
7

and needs to be computed numerically.

Recently the numerical library ASPIC
8
has been made

public [16] and implements such a calculation. Making use

of this code, the reheating consistent predictions for the

model (58) can be worked out, using the horizon-flow

formulas of Sec. III A on one hand and the slow-roll ones of

this section on the other.

Results are displayed in Fig. 21, in the ðnS; rÞ plane,

where the Planck mission observational constraints [15] are

superimposed. The cases b > 0 and b < 0 are treated

separately since in the horizon-flow parametrization, they

correspond respectively to a chaotic regime (b > 0) where

H is not bounded in the far past, and to a hilltop regime

where inflation proceeds close to a maximum ofH (b < 0).

However, in the slow-roll setup, both regimes can be

described in the two cases, and are displayed with different

colors to emphasize this crucial point which has important

consequences.

For example, one can see that observational constraints

favor to a large extent the hilltop regimes with respect to the

chaotic ones. Therefore, if, for some reason, one imposes

b > 0, just looking at the horizon-flow parametrization

would lead to the biased conclusion that the model is under

pressure, whereas a hilltop slow-roll regime actually exists

and solves this tension. In this sense, horizon flow may

behave as a biased parametrization of inflation.

In passing, one notices that the limit b ≫ 1 does not give

exactly r16=ð1 − nSÞ ¼ 1=3, mainly because of second

order terms that here are taken into account. Finally, as

expected, the difference between horizon-flow and slow-

roll predictions is rather small inside a given regime.

C. Horizon-flow pathological trajectories

In Sec. IV B 1 we made clear that, in the regime (iv-α),

where 4ðb − 4b2=3Þ < a2 < 4b, horizon flow describes

inflation along trajectories where the inflaton climbs up

its hilltop potential, realizing an infinite number of e-folds
as it approaches the top of the hill.

9
In this case the Hubble

function is of the third kind, according to the typology of

Sec. IV A. We end this paper by investigating more these

somewhat “pathological” trajectories.

A first interesting remark is that they generalize the

ultraslow-roll (USR) scenario [46]. This model is obtained

when requiring that the potential is exactly flat V 0 ¼ 0 in

the Klein-Gordon equation (5), ϕ̈=ðH _ϕÞ ¼ −3, which

7
The range of admitted values for ΔN% also depends on the

mean equation of state during reheating w̄reh, which in Fig. 21 we
have set to w̄reh ¼ 0. Changing its value would not modify the
discussion.

8
http://cp3.irmp.ucl.ac.be/ringeval/aspic.html.

9
In practice, this does not happen since quantum fluctuations

start to dominate the inflationary dynamics, which enters a
stochastic regime that pushes it away from the potential maxi-
mum and connects it with a regular slow-roll phase.
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together with Eq. (28) gives a differential equation for

HðϕÞ, namely M2
PlH

00 ¼ 3H=2. One of its solutions is the

ultraslow-roll function

HUSR ¼ H0 cosh

$

ffiffiffi

3

2

r

ϕ

MPl

%

: (84)

One can check that Eq. (37) leads to a constant potential

V ¼ 3M2
PlH

2
0. In this model the inflaton field value

approaches 0 and freezes out there, even if its potential

is exactly flat and regardless of its initial value. The slow-

roll approximation is never valid since ϵ2;USR ¼ 6, but the

model still produces an exactly scale invariant power

spectrum, while it produces sizable non-Gaussianities.

However, in Ref. [47], it was shown that such a system

is unstable and suffers from many physical problems

among which is the difficulty to correctly normalize the

amplitude of the scalar perturbations to the observed power

spectrum.

The regime (iv-α) provides a generalized version of

ultraslow-roll inflation in the following sense. First, in this

case, slow roll is also strongly violated, since ϵ2 approaches

the nonvanishing value

ϵ2 ⟶

x→−a=ð2bÞ

8b

1 − a2=ð4bÞ
> ϵ2;USR ¼ 6 (85)

as the inflaton reaches the top of the hill, where the last

condition comes from the fact that, as recalled above,

one is working in the case where 4ðb − 4b2=3Þ < a2 < 4b.
Therefore, in some sense, the situation is even worse than

in the ultraslow-roll scenario. At the top of the hill

x ¼ −a=ð2bÞ, inflation still proceeds since ϵ1 vanishes,

but ϵ2 can be arbitrarily large when a2 → 4b.
The stability of the inflationary trajectory can also be

studied. To do this, let us describe possible deviations from

Eq. (28) in terms of the modified trajectory

_ϕ ¼ −2ð1 − δÞM2
PlH

0: (86)

When δ ¼ 0, one recovers the horizon-flow trajectory (28),

but if a small deviation δ ≠ 0 is introduced, one is interested

in tracking the evolution of its amplitude. First, deriving

Eq. (86) with respect to time and introducing the Klein-

Gordon equation (5) leads to _δ ¼ ½2M2
PlH

00ð2þ δÞ − 3H)δ.
Now, plugging _δ ¼ δ0 _ϕ, one obtains, at first order in δ,

δ0 ¼ ð3=2H=H0 − 2M2
PlH

00=H0Þδ, which has the generic

solution

δ ¼ δ0
H0ðϕ0Þ

H0ðϕÞ
exp

!

3

2

Z

ϕ

ϕ0

HðφÞ

H0ðφÞ
dφ

"

; (87)

where δ0 ¼ δðϕ0Þ is some integration constant. Now, in the

model (58), as x approaches the top of the potential (and the
minimum of H) x0 ¼ −a=ð2bÞ, this gives rise to

FIG. 21 (color online). Reheating consistent predictions for the model (58) in the case b > 0 (left panel), and b < 0 (right panel),

making use of the horizon-flow setup (yellow area) and the slow-roll one (blue area in the hilltop regime, green area in the chaotic one),

and computed at second order in slow roll. The parameters a and b are continuously varied in the ranges jaj; jbj ∈ ½10−3; 103), and ΔN%

samples values such that ρnuc < ρ̄reh < ρend and w̄reh ¼ 0. The two red solid contours are the one- and two-sigma Planck confidence

intervals (marginalized over second order in slow roll). The black dashed line stands for r16=ð1 − nSÞ ¼ 1=3 (b ≫ 1 limit at first order in

slow roll), while the dash-dotted one is for r16=ð1 − nSÞ ¼ 1=4 (b → 0 limit at first order in slow roll). One can check that in agreement

with Fig. 9, this ratio r16=ð1 − nSÞ continuously varies in the range ½0; 1=3).
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δ ∝ δ0

$

xþ
a

2b

%3
4ð1b− a2

4b2
Þ−1

: (88)

The crucial point is that the exponent appearing in Eq. (88)

is negative as soon as a2 > 4ðb − 4b2=3Þ, i.e. exactly for

the case (iv-α) under study, and δ blows up at the top of the

potential. The horizon-flow trajectory is therefore highly

unstable. As a matter of fact, if δ0 ≠ 0, either ϕ crosses the

maximum of its potential and a slow-roll regime possibly

occurs on the other half of it (δ > 0), or _ϕ vanishes before

reaching the top of the potential and a slow-roll regime of

inflation then occurs the other way down (δ < 0). In any

case, the instability of the horizon-flow trajectory (28)

makes it very unlikely (because the initial condition δ0 must

be fine-tuned to 0 exactly).

On the contrary, one can check on the right panels of

Figs. 11, 12 and 13 that the slow-roll solution is a well-

behaved attractor, quickly attained from an extended basin

of possible initial conditions. More precisely, if initial

conditions are such that the kinetic term initially dominates

the energy budget of the inflaton field, and that _ϕ2
≫ _ϕ2

SR,

the Klein-Gordon equation (5) in this “fast-roll” limit

implies that _ϕ ∝ e−3N . Remembering that inflation starts

when _ϕ2 < V, this means that the speed of the inflaton is

damped to the slow-roll one within a few e-folds at most, of

the order of ln jMPlV
0=Vj=3. This is another reason why the

slow-roll setup should be preferred.

V. CONCLUSION

The wide variety of inflationary models makes it

tempting to look for model independent approaches for

constraining inflationary physics. The horizon-flow strat-

egy has been proposed with exactly this purpose. In this

framework generic predictions for the theory of inflation

driven by a canonical scalar field have been searched for,

and potential reconstruction issues have been investigated.

The present work showed that the horizon-flow method

suffers from a number of flaws, rendering it a somewhat

misleading parametrization of inflation.

First, it implicitly relies on phenomenological potentials

with no physical justification. Furthermore, instead of

choosing priors on potential parameters (which usually

stand for physical quantities such as charges, masses,

coupling constants, etc.), it samples models from priors

defined on unphysical quantities corresponding to initial

values of flow parameters.

Second, we have shown that the “typical” predictions

stemming from this parametrization that have been noticed

in the literature are actually originating from this choice of

specific potentials. They can be accounted for analytically

going beyond the common fixed point analysis of the

problem, and we elucidated the mismatch between the

results of this fixed point approach and what was actually

numerically obtained by the horizon-flow algorithm.

Actually, these predictions turn out to be in direct corre-

spondence with the different regimes of inflation supported

by the model. This is why they are not generic features of

inflation itself, and explicit examples where they are

violated have been provided.

Third, horizon flow implicitly relies on a specific

trajectory in phase space among all the solutions of the

Klein-Gordon equation associated with the potential it

selects. This trajectory is different from the slow-roll

one, the later yet being known as a well-behaved attractor

of inflationary dynamics. At first sight, this only leads

to slow-roll suppressed discrepancies in the predictions

between both frames, which we have computed. More

importantly however, we have found that for a given

potential, entire regimes of inflation are missed by the

horizon-flow approach, which therefore introduces a bias in

the analysis. Interestingly enough, in these missed regimes,

the horizon-flow trajectory can be highly unstable (corre-

sponding to an inflaton climbing up its potential and

asymptotically approaching its local maximum), and pro-

vides a generalized and worsened version of ultraslow-roll

inflation.

For these reasons, we conclude that even if convenient,

studying inflation along the lines of the horizon-flow

program can lead to biased or even inexact results.
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Abstract. The current flow of high accuracy astrophysical data, among which are the Cosmic
Microwave Background (CMB) measurements by the Planck satellite, offers an unprecedented
opportunity to constrain the inflationary theory. This is however a challenging project given
the size of the inflationary landscape which contains hundreds of different scenarios. Given
that there is currently no observational evidence for primordial non-Gaussianities, isocur-
vature perturbations or any other non-minimal extension of the inflationary paradigm, a
reasonable approach is to consider the simplest models first, namely the slow-roll single field
models with minimal kinetic terms. This still leaves us with a very populated landscape, the
exploration of which requires new and efficient strategies. It has been customary to tackle
this problem by means of approximate model independent methods while a more ambitious
alternative is to study the inflationary scenarios one by one. We have developed the new
publicly available runtime library ASPIC1 to implement this last approach. The ASPIC code
provides all routines needed to quickly derive reheating consistent observable predictions
within this class of scenarios. ASPIC has been designed as an evolutive code which presently
supports 74 different models, a number that may be compared with three or four represent-
ing the present state of the art. In this paper, for each of the ASPIC models, we present
and collect new results in a systematic manner, thereby constituting the first Encyclopædia
Inflationaris. Finally, we discuss how this procedure and ASPIC could be used to determine
the best model of inflation by means of Bayesian inference.
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1 Introduction

The theory of inflation [1–4] represents a cornerstone of the standard model of modern
cosmology (the “hot Big-Bang model” of Lemâıtre and Friedmann ) [5–8]. By definition,
it is a phase of accelerated expansion which is supposed to take place in the very early
universe, at very high energy (between 200 and 1015 GeV). Inflation allows us to understand
several puzzles that plagued the pre-inflationary standard model (before 1981) and that
could not be understood otherwise. Without inflation, the standard model of cosmology
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Figure 1. Number of articles containing the word “inflation” and its variations (i.e. “inflating”,
“inflationary”, etc . . . ) in its title published each year since the advent of inflation. The total number
is estimated to be 4077 papers.

would remain incomplete and highly unsatisfactory. The most spectacular achievement of
inflation is that, combined with quantum mechanics, it provides a convincing mechanism
for the origin of the cosmological fluctuations (the seeds of the galaxies and of the Cosmic
Microwave Background - CMB - anisotropies) and predicts that their spectrum should be
almost scale invariant (i.e. equal power on all spatial scales) [9–17] which is fully consistent
with the observations. Let us notice in passing that this part of the scenario is particularly
remarkable since it combines General Relativity and Quantum Mechanics [7, 8, 18–24]. Given
all these spectacular successes and given the fact that, despite many efforts, inflation has not
been superseded by its various challengers [25–53], this scenario has gradually become a
crucial part of modern cosmology. As can be seen in Fig. 1, the number of papers devoted
to this topic and published each year is inflating since the advent of inflation.

In order to produce a phase of inflation within General Relativity, the matter content of
the universe has to be dominated by a fluid with negative pressure. At very high energy, the
correct description of matter is field theory, the prototypical example being a scalar field since
it is compatible with the symmetries implied by the cosmological principle. Quite remarkably,
if the potential of this scalar field is sufficiently flat (in fact, more precisely, its logarithm)
so that the field moves slowly, then the corresponding pressure is negative. This is why it is
believed that inflation is driven by one (or several) scalar field(s). For obvious reasons, this
scalar field was given the name “inflaton”. However, the physical nature of the inflaton and
its relation with the standard model of particle physics and its extensions remain elusive.
Moreover the shape of its potential is not known except that it must be sufficiently flat. This
is not so surprising since, as mentioned above, the inflationary mechanism is supposed to
take place at very high energies in a regime where particle physics is not known and has not
been tested in accelerators.
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Another crucial aspect of the inflationary scenario is how it ends and how it is connected
to the subsequent hot Big-Bang phase. It is believed that, after the slow-roll period, the field
oscillates at the bottom of its potential, or undergoes tachyonic preheating, but finally de-
cays into radiation. In this way, inflation is smoothly connected to the radiation-dominated
epoch [54–63]. Unfortunately, very little is observationally known on this so-called reheating
period. Let us stress that adiabatic initial conditions, as favored from the current CMB
measurements, naturally stem from such a setup within single field models. Another con-
straint is that the reheating temperature, Treh, must be higher than the nucleosynthesis scale
(i.e. a few MeV). If, however, one restricts oneself to specific models, then one can obtain
better bounds on Treh, as was recently shown for the first time in Ref. [64]. But, so far, these
constraints concern a few models only.

We see that, despite the fact that it has become a cornerstone, the inflationary era is not
as observationally known as the other parts of the standard model of Cosmology. However,
there is now a flow of increasingly accurate astrophysical data which gives us a unique op-
portunity to learn more about inflation. In particular, the recently released Planck satellite
data [65, 66] play a crucial role in this process. The mission complements and improves upon
observations made by the NASA WMAP satellite [67, 68] and is a major source of informa-
tion relevant to several cosmological issues including inflation [69, 70]. But the flow of new
data does not only concern the CMB. The Supernovae projects [71–74] continue to measure
the distances to the nearby exploding SN1A stars while the large scale galaxy surveys such
as the Sloan Digital Sky Survey (SDSS) [75, 76] are providing an unprecedented picture of
the structure of the universe. SDSS is planned till 2014 and has recently provided the mea-
sure of the so-called Baryonic Acoustic Oscillations (BAO). They are the red-shifted version
of the acoustic oscillations observed in the CMB anisotropies which have been transferred
to the galaxy power spectrum. The “level arm” in length scales between CMB and galaxy
power spectra increases the sensitivity to the small deviations from scale invariance, and thus
should be extremely powerful to constrain inflationary models. For this reason, the future
Euclide satellite will be another step forward in our understanding of inflation [77]. Let us
also mention the possibility of direct detection of the primordial gravitational waves for high
energy inflationary models [78–84]. The CMB small angular scales of Planck are already com-
plemented by ground-based microwave telescopes such as the Atacama Cosmology Telescope
(ACT) [85, 86] or the South Pole Telescope (SPT) [87, 88] while ultra-sensitive polarization
dedicated experiments are on their way [89, 90]. In a foreseeable future, the last bit of yet
unexplored length scales are expected to be unveiled by the 21cm cosmological telescopes.
These ones will be sensitive to the red-shifted 21cm line absorbed by hydrogen clouds before
the formation of galaxies [91–97]. With such data, we will have a complete tomography of
the universe history from the time of CMB emission at the surface of last scattering to the
distribution of galaxies today.

The main goal of this article is to develop methods that will allow us to constrain the
inflationary scenario at a level matching the accuracy of these new data. Since we have
now entered the era of massive multi-data analysis, the project aims at a change of scale
compared to previous approaches. In particular, one way to deal with this question is to
perform systematic and “industrial” studies of this issue. Our ability to see through the
inflationary window turns the early universe into a laboratory for ultra-high energy physics,
at scales entirely inaccessible to conventional experimentation. In other words, this window
offers a unique opportunity to learn about the very early universe and about physics in
a regime that cannot be tested otherwise, even in accelerators such as the Large Hadron
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Collider (LHC).

1.1 Methodology

Let us now discuss how, in practice, the above described goals can be reached. One issue
often raised is that, since there are (literally) a few hundreds different scenarios, it is difficult
to falsify inflation. This is, however, not a very convincing argument since different models
belong to different classes and usually do differ in their observable predictions. They can thus
be observationally distinguished. A natural way to proceed is therefore to test inflationary
models step by step, starting with the simplest scenarios. This is consistent with the Occam’s
razor point of view and the way inference is achieved within Bayesian statistics (see below).
With this in mind, we can classify models in three different broad categories: single-field
inflation (category I), multiple-field inflation (category II) and models where matter is not
described by a scalar field as, for instance, vector inflation [98], chromo-natural inflation [99]
and/or gauge-flation [100–102] (category III). Within each category, one could further identify
various sub-categories. For example, within category I, the scalar field can possess a minimal
kinetic term and a smooth potential (category IA), a minimal kinetic term and a potential
with features (category IB), a non-minimal kinetic term with a smooth potential (category
IC) or a non-minimal kinetic term and a potential with features (category ID, see for instance
Ref. [103]) (a fifth category could be models of warm inflation [104–107]). The same four
sub-categories can also be defined within category II [for instance, multiple Dirac Born Infeld
(DBI) field inflation [108–110] belongs to category IIC] and so on. As already mentioned,
each category leads to different predictions. For instance, all models of category IA predict
a negligible level of non-Gaussianities [111–115] while, on the contrary, models of categories
IB-ID yield non-negligible non-Gaussianities [116–130]; models belonging to IB and to IC,
or II, may not predict exactly the same type of non-Gaussianities [131, 132], etc . . . In this
context, as already mentioned, a crucial step was the recent release of the Planck data
[66, 70, 133, 134]. Together with the polarization data from WMAP, they are compatible
with a negligible running dnS/d ln k = −0.0134±0.009 and a negligible running of the running
d2nS/d ln

2 k = 0.02±0.016, with a pivot scale chosen at k⇤ = 0.05Mpc−1. These data are also
compatible with adiabaticity at 95% CL such that there is no evidence for isocurvature modes,
although the analysis is done with one isocurvature mode at a time only. The Planck data do
not find evidence for primordial non-Gaussianity, namely Ref. [70] reports f locNL = 2.7 ± 5.8,
f eqNL = −42 ± 75 and forthoNL = −25 ± 39. Therefore, at this stage, everything seems to be
well described by simplest scenarios of inflation and, as consequence, a reasonable method
is to start with the IA-models. Following category IA, if the present observational situation
evolves in the future, one should then treat categories IB-ID, then category II and so on. In
this way, one can falsify inflation step by step, in a Bayesian motivated fashion.

Bayesian inference for inflation requires some cosmological data that are sensitive to it,
such as the ones enumerated above. For the purpose of illustration, let us consider the CMB
angular power spectrum. Cosmological measurements give us a set of numbers, Cmeas

` , that
we are able to calculate theoretically within an inflationary model. This means that we know
the functions Cth

` ⌘ Cth
` (✓stand, ✓inf), where ✓stand represents a set of parameters describing

post-inflationary physics, i.e. ✓stand = (h,ΩΛ,Ωdm, · · · ) and ✓inf a set of parameters describ-
ing inflationary physics. We are interested in constraining the values of those parameters,
especially the ✓inf ’s. Within a given experiment, one is given a likelihood, or an effective chi-
squared χ2 (✓stand, ✓inf), encoding all the underlying uncertainties. In a frequentist approach,
the searched values of ✓stand and ✓inf would be chosen at the best fit, i.e. those verifying
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@χ2/@✓ = 0. In a Bayesian approach [135], we are interested in determining the posterior
distributions of the parameters, using Bayes’s theorem

P (✓stand, ✓inf |Cmeas
` ) =

1

N L (Cmeas
` |✓stand, ✓inf)⇡ (✓stand, ✓inf) , (1.1)

where L (Cmeas
` |✓stand, ✓inf) = e−χ

2(✓stand,✓inf)/2 is the likelihood function, ⇡ (✓stand, ✓inf) the
prior distribution, describing our prejudices about the values of the parameters before our
information is updated, and N a normalization factor, also called Bayesian evidence. Because
we are interested in the inflationary parameters, one has to integrate over the post-inflationary
parameters in order to obtain the marginalized probability distribution P (✓inf |Cmeas

` ) =
R

P (✓stand, ✓inf |Cmeas
` ) d✓stand. CMB physics also tells us that the multipole moment Cth

` can
be written as

Cth
` (✓stand, ✓inf) =

Z +1

0

dk

k
j`(kr`ss)T (k; ✓stand)P⇣(k; ✓inf), (1.2)

where j` is a spherical Bessel function, T (k; ✓stand) is the transfer function which describes the
evolution of cosmological perturbations during the standard Friedmann-Lemâıtre eras and P⇣
is the inflationary power spectrum. As a result, the process of constraining inflation from the
Cmeas
` reduces to the calculation of P⇣ . The same lines of reasoning could be generalized to

any other cosmological observables sourced during inflation, such as higher order correlation
functions.

At this stage, there are, a priori, two possibilities (it is also worth noticing that yet
another approach is the reconstruction program [136, 137]). Either one uses a model-
independent, necessarily approximate, shape for P⇣ or, on the contrary, one scans the in-
flationary landscape, model by model, and for each of them, calculates P⇣ exactly.

The advantage of working with a model-independent technique is obvious. However,
it often requires an approximation scheme that may not be available for all models. In
practice, an approximate method, the slow-roll approach, is known for the category IA and
for the category IC, see the recent papers [138–143]. In this case, the set of inflationary
parameters ✓inf becomes the Hubble flow functions: ✓inf = {✏n} where the ✏n are defined in
Eq. (2.3) and the corresponding expression of P⇣(k; ✏n) is provided in Eqs. (2.18), (2.20),
(2.21) and (2.22). Assuming some priors ⇡(✏n) on the Hubble flow functions, this method
yields the posterior distributions P (✏n|Cmeas

` ) for the Hubble flow functions evaluated at the
pivot scale. This approach has already been successfully implemented for the WMAP data
in Refs. [64, 144–147].

The second approach is more ambitious. It consists in treating exactly all the inflation-
ary models that have been proposed so far and in a systematic manner. For each model, the
power spectrum is determined exactly by means of a mode by mode numerical integration,
for instance using the FieldInf code1. Such an approach can also be used with the higher
correlation functions with, for instance, the recent release of the BINGO code calculating the
inflationary bispectrum [148].

In this case, the set of parameters ✓inf differs according to the model considered. For
instance, Large Field Inflation (LFI) for which V (φ) = M4 (φ/MPl)

p, has ✓inf = (M,p)
while Small Field Inflation (SFI) with V (φ) = M4 [1− (φ/µ)p] has ✓inf = (M,p, µ). From
FieldInf one can then compute P⇣(k;M,p) for LFI and P⇣(k;M,p, µ) for SFI without any

1See http://theory.physics.unige.ch/~ringeval/fieldinf.html.
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Figure 2. Observational predictions for the LFI models, V (φ) / φp, in the plane (nS, r) (i.e. scalar
spectral index and gravity wave contribution) compared to the Planck data [66, 69, 70, 133, 134, 153].
Each continuous line and each color represent a different value of p. Along each line, each point
(i.e. each small “cross”) denotes a different reheating temperature compatible with the constraint
⇢end > ⇢reh > ⇢nuc (the annotations give the logarithm of the reheating temperature in GeV). We see
that the details of the reheating stage now matter: along a given line, some reheating temperatures
are compatible with the observational constraints while others are not. This means that the CMB
observations can now put constraints on Treh.

other assumptions than linear perturbation theory and General Relativity. Starting from
some priors on the model parameters, e.g. in the case of LFI, ⇡(M,p), this method allows
us to determine the posterior distributions P (M |Cmeas

` ) and P (p|Cmeas
` ), thereby providing

parameter inference about the corresponding inflationary model. This approach, which was
successfully implemented for the first time in Refs. [145, 149–151], and subsequently used in
Ref. [152], has several advantages that we now discuss.

Firstly, the most obvious advantage is that the result is exact. The slow-roll method is
an approximation and, for this reason, remains somehow limited. As mentioned before, there
are plethora of models, such as single field models with features or multiple field scenarios,
for which a numerical integration is mandatory.

A second reason is that a full numerical approach permits a new treatment of reheating.
In the standard approach, the influence of the reheating is only marginally taken into account.
Any observable predictions depend on the number of e-folds associated with a reheating era.
From the fact that the reheating must proceed after the end of inflation and before the
electroweak scale, one can put an order of magnitude bound on this number of e-folds [154].
This causes small uncertainties in the inflationary predictions that were not crucial in the
past. However, with the accuracy of the present and future data this question now matters.
This is illustrated in Fig. 2 which represents the slow-roll predictions of LFI for which V (φ) /
φp. Each colored segment represents the range of observable predictions for a given value of
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p, each point within a segment corresponding to a given number of e-folds for the reheating
or, equivalently, to a given reheating temperature Treh. We see that, for relatively small
values of p, it is necessary to know the number of e-folds the Universe reheated to decide
whether the model is compatible with the data or not. Conversely, the data are becoming so
accurate that one can start constraining the reheating epoch. Therefore, instead of viewing
the reheating parameters as external source of uncertainties, it is more accurate to include
them in the numerical approach and consider they are part of the inflationary model. In
its simplest description, the reheating epoch can be modeled as a cosmological fluid with a
mean equation of state wreh > −1/3. For a simple quadratic potential, and a parametric
reheating, one would have for instance wreh = 0. In this way, both wreh and Treh are
added to the inflationary parameters, e.g. we now have ✓inf = (M,p, Treh, wreh) for LFI, and
FieldInf computes P⇣(k;M,p, Treh, wreh). Starting from some priors ⇡(Treh, wreh) one can
then obtain the corresponding posterior distributions P (Treh|Cmeas

` ) and P (wreh|Cmeas
` ). The

feasibility of this method has already been demonstrated in Refs. [64, 145] where constraints
on the reheating temperature for LFI and SFI have been derived for the first time (see also
Ref. [155]). In view of the expected accuracy of the future data, the preheating/reheating
era should become a compulsory element of inflationary model testing. This issue plays an
important role in the proposal put forward in this article. In addition, let us also emphasize
that a proper treatment of the reheating and preheating stages is mandatory in multiple
field inflation because they can affect the evolution of P⇣ on large scales. Only a numerical
approach can presently deal with this problem.

A third advantage of the numerical approach is to address the question of the priors
choice in a particularly well-defined way. A crucial aspect of Bayesian statistics is that
the result depends on the choice of the priors. Therefore, these ones must be chosen and
discussed carefully. In the slow-roll (approximated) approach described before, the priors
are chosen on the slow-roll parameters themselves. For instance, a Jeffreys’ prior is typically
chosen on ✏1 (i.e. uniform prior on log ✏1), as appropriate when the order of magnitude of a
parameter is not known. However, from a physical point of view, it is better to choose the
priors directly on the parameters of the model, e.g. the parameters entering the potential.
For instance, several potentials that we will treat are the results of a one-loop calculation,
namely a perturbative calculation with the coupling constant playing the role of the small
parameter. It is clear that the prior must encode the fact that this parameter is small. With
the numerical approach, this is very conveniently done since we directly compute the power
spectrum from the potential itself. As another example, let us consider the case of LFI where
✏1 ' p/ (4∆N⇤ + p/4) (∆N⇤ is the number of e-folds between Hubble exit and the end of
inflation, see below). Owing to the non-trivial relation between the first slow-roll parameter
and p, a Jeffreys’ prior ⇡(✏1) on ✏1 implies a complicated prior ⇡(p) on p while a natural
choice would be a flat prior. Again, implementing the priors directly on the parameters of
the model is a more theoretically justified choice. Conversely, who could dispute that, beside
the posterior P (✏1|Cmeas

` ), it is theoretically interesting to know the posterior distribution of
p, i.e. P (p|Cmeas

` ). The exact numerical integration is a reliable technique to obtain such
distributions.

The numerical approach, however, has also some disadvantages. Firstly, one needs to
specify the inflationary scenarios explicitly and, therefore, the constraints obtained are not
model-independent. Although this shortcoming can in fact never be avoided (we always need
to make some assumptions even in the slow-roll approach) it may be partially overcome
by scanning the complete inflationary landscape. Secondly, and more importantly, it is
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time consuming since the exact integration of the cosmological perturbations and of the
corresponding correlation functions is heavy and can take up to a few minutes for complicated
models. Finally, one should expect multiple degeneracies for models having a high number of
inflationary parameters since the data have a limited sensitivity to the shape of the primordial
observables.

Based on the previous considerations, we conclude that it would be very interesting to
have an intermediate method that would allow us to get most of the results that can be
derived using the exact numerical approach while being less time consuming and immune
to high parameter degeneracies. This is what we suggest in the following. Our strategy is
to use the slow-roll approximation in order to skip the numerical calculation of the power
spectrum, while being combined with a systematic scan of the whole inflationary landscape
and reheating properties. As argued before, the Planck data drive us towards testing inflation
with the simplest models first and such a method would therefore need to be implemented for
the class of scenarios IA only. More precisely, instead of inferring the posterior distributions
of the Hubble flow parameters ✏n only, as one would naturally do in the approximate approach
discussed before, we take advantage of the fact that the ✏n’s can be computed in terms of the
parameters describing the reheating and V (φ). In particular, for each model, this permits a
quick and efficient extraction of the posterior distributions of those parameters.

In our opinion, this third technique should not be viewed as a competitor of the two
others mentioned earlier but rather as complementary and the corresponding results should
be compared. Let us also notice that, if, in order to scan all the inflationary scenarios,
the full exact numerical approach needs to be carried out at some point, this would by no
means render the results derived in the present article useless. Indeed, the slow-roll approach
is often a very useful guide of which kind of physics one should expect for a given model
(initial conditions, range of the parameters, etc . . . ). In particular it allows us to understand
any eventual parameter degeneracies within the primordial observables. In other words, the
slow-roll method is an ideal tool to prepare a full numerical study.

At this point, it is worth making the following remark. The method put forward in this
article uses an approximate shape for the power spectrum, namely (k⇤ is the pivot scale)

P⇣(k) / a0 (✏n) + a1 (✏n) ln

✓

k

k⇤

◆

+
1

2
a2 (✏n) ln

2

✓

k

k⇤

◆

+ . . . , (1.3)

in order to shortcut a numerical integration of P⇣ but is otherwise completely self-consistent.
In other words, once the slow-roll approximation is accepted, no additional approximation
should be made. This may still require some numerical calculations, however, in order to
determine the coefficients ai, or more precisely the explicit expression, at Hubble crossing,
of ai = ai [✏n (✓inf)]. This is an important issue given the accuracy of the current data as
it is illustrated in Fig. 3 (see also Ref. [145]). In this figure, we have represented the slow-
roll predictions of a SFI model, V (φ) / 1 − (φ/µ)4. Each colored segment represents the
exact slow-roll predictions of a model given the parameter µ and for different numbers of
e-folds during the reheating. These predictions have been computed by solving numerically
the slow-roll equations. But, in the same plot, there are also other segments, on the left,
and represented in yellow only. They are predictions for different values of µ but based
on widespread approximate slow-roll formulas used in the literature. We see that, given
the accuracy of the data, the approximated formulas are no longer accurate enough: the
approximate results would predict that models with µ/MPl > 1 are strongly disfavored while
the correct slow-roll results show that they are still compatible with the data. Another

– 8 –



Figure 3. Exact slow-roll predictions for SFI models, V (φ) / 1 − (φ/µ)
4
, compared to the Planck

data [66, 69, 70, 133, 134, 153]. Each colored segment represents a different value of µ, the color
bar giving the corresponding range of variation. Each segment is made of different points associated
with different reheating temperatures. The yellow-only segments on the left represent some extra
approximations usually made in the literature on top of slow-roll. We see that both coincide for
µ/mPl ⌧ 1 but differ in the regime µ/mPl & 1 where the extra approximations become inaccurate.
Moreover, these approximations would indicate that this class of models is disfavored while the correct
slow-roll predictions show that, on the contrary, they remain compatible with the data.

textbook example is provided by Higgs inflation with radiative corrections (RCHI) and is
presented in Fig. 4. This scenario is studied in detail in section 4.1 and depends on one
free parameter, A

I
. The colored segments represent the exact predictions for different values

of A
I
(see the color bar on the side of the plot). The red dashed line indicates predictions

based on a commonly used approximate equation for the coefficients ai = ai (✏n) at Hubble
crossing during inflation. We see that this is no longer sufficient in the range AI & 15. From
these two examples, we conclude that it is safer to use the slow-roll approximation (which
is usually extremely good) and nothing else, in particular no extra approximation on top of
the slow-roll approximation. The fact that we may still need to use numerical calculations
to establish the observational predictions of a model does not make our approach useless.
Indeed, the numerics needed to estimate ai = ai [✏n (✓inf)] are, by far, much easier than those
needed to exactly compute P⇣ . Therefore, the gain in computational time mentioned above
is huge and allows for a fast and reliable method to constrain the inflationary landscape.

1.2 The ASPIC library

The project described before contains many different aspects that we intend to publish in
several companion articles. We now explain the purpose of the present paper and put it
in context with the other works that are in preparation. We have coded a public runtime
library, named ASPIC for “Accurate Slow-roll Predictions for Inflationary Cosmology”, which
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Figure 4. Predictions of the RCHI model in the plane (nS, r) together with Planck data [66, 69, 70,
133, 134, 153]. These predictions depend on one free parameter, A

I
, for details see section 4.1. The

colored segments represent the slow-roll predictions (same conventions as in Fig. 3), obtained when
the coefficients ai = ai [✏n (✓inf)] are numerically evaluated. On the contrary, the thick red dashed line
indicates some approximated predictions. We see that there is a significant difference for A

I
& 15.

is supposed to contain all the inflationary models that can be treated with the method de-
scribed above. ASPIC already has 74 different inflationary scenarios, a number that should
be compared to the three or four models that are usually considered. The ASPIC library
is an open source evolutive project and, although it already contains all the most popular
inflationary scenarios, aims at including more models. In this way, it will converge towards
a situation where all the category IA models published since the advent of inflation are im-
plemented thereby allowing us to exhaustively scan this part of the inflationary landscape.
This article describes the ASPIC project and presents its first release and others will follow.
The list of the 74 ASPIC models, as well as their acronym, is presented in Table 1 at the
end of this introduction. If future cosmological data force us to move to more complicated
scenarios, the ASPIC library will be upgraded accordingly. It can, moreover, already be
interfaced with FieldInf thereby allowing for a full numerical approach, if needed. This
would be especially relevant for all the single field models with modified kinetic terms (cat-
egory IB) such as DBI models, models with features (category IC) such as the Starobinsky
model [156] or multiple field inflationary scenarios (category II) such as double inflation [157–
160], double inflation with an interaction term [161], the different versions of hybrid infla-
tion [57, 162, 163] and more [149], assisted inflation [164] or Matrix inflation [165–167, 167].
However, if the data continue to favor simple models, such as those producing negligible non-
Gaussianities and isocurvature perturbations, the ASPIC library in its present form already
contains the most relevant inflationary scenarios. The ASPIC library is publicly available at
http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html.

The ASPIC library contains the necessary routines to compare the predictions of any of
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the 74 different models to high-accuracy data. The present article presents the general archi-
tecture of the ASPIC project and the calculations needed to understand and write these codes.
In practice, for each model, we give the calculation of the three first slow-roll parameters, a
discussion of how inflation ends, a discussion of the priors, a calculation of the relevant range
of variation of the reheating temperature and an exact integration of the slow-roll trajectory.
Then, we work out the theoretical predictions and compare them to the Planck data in the
planes (✏1, ✏2) and (nS, r). Let us stress again that, beside slow-roll, no other approximation
is used in the numerical codes of ASPIC.

Most of the ASPIC models have already been partially studied in the literature but let
us emphasize that, for each of them, this paper contains new results. In other words, it does
not aim at being a review and, therefore, the presentation of already derived results have
been kept to the minimal. Firstly, for all the models studied, this is the first time that their
observational predictions are worked out when the constraints on the reheating phase are
accurately taken into account. As explained in Ref. [64], and briefly reviewed in section 2, it
has become too inaccurate to derive the predictions of a model by simply assuming a fixed
range for ∆N⇤. For instance, this could lead to a reheating energy density larger than the
energy density at the end of inflation which is physically irrelevant. Therefore, the predictions
have been re-worked in such a consistent fashion (except for the LFI and SFI models which
had been studied before [64]). This already constitutes a significant result which goes beyond
the current state-of-the-art. Secondly, in the appendix, we present a series of plots which
give the predictions of the various ASPIC models in the planes (nS, r) and (✏1, ✏2) for different
values of the free parameters characterizing each potential. Clearly, this is the first time that
the predictions of all these models are compared to the Planck data. The only exception is
Ref. [168] which studies a very small subset of the ASPIC scenarios (but also studies non-
minimal single field models), Ref. [169] which studies the particular case of power law (PLI)
and Ref. [170] which studies the particular case of MSSM inflation (MSSMI). Most often,
this is also the first time that these predictions are worked out for such a wide range of
parameters and, moreover, this is the first time that these predictions are presented in this
fashion. In some sense, our paper can be viewed as the first Encyclopædia Inflationaris.

1.3 New results

In order to be completely clear about the fact that this paper is not a review, we now highlight,
in a non-exhaustive way, some of the new results obtained in this paper. In this way, we hope
it gives a taste of all the new findings described later and the methods advocated earlier.

In the case of Higgs Inflation (HI), for instance, we have found an exact expression
of the slow-roll trajectory and discuss the reheating parameter in the case of scalar-tensor
theories of gravity. The exact trajectory is also found for radiatively corrected inflation
(RCHI) and we show that the exact predictions can differ from the commonly used ones in a
certain regime, see also Fig. 4. In the case of Mixed Large Field Inflation (MLFI), the exact
expressions of the slow-roll parameters ✏2 and ✏3 are new. We also calculate exactly φend,
the vev at which inflation stops, as well as the exact trajectory N(φ) and its inverse, φ(N).
Interestingly, since the potential is the sum of a quadratic and a quartic term, one would
expect the corresponding predictions to be located between the two lines in the plane (nS, r)
representing the quadratic LFI and the quartic LFI models, see for instance Fig. 2. We show
that this is not the case. For Natural Inflation (NI), we provide the exact expression of φend,
of the trajectory and its inverse. In addition, it is often claimed that, in the limit f/MPl & 1,
the model is indistinguishable from a quadratic one (LFI with p = 2). We show that it is true
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for nS and r but is not accurate for ✏3, that is to say for the running ↵S. For the Kähler Moduli
Inflation I (KMII) and Kähler Moduli Inflation II (KMIII) models, all our results are basically
new. We present, for the first time, the exact expressions of the slow-roll parameters, of the
trajectories, their inverses, the possible values of ↵, a free parameter characterizing the shape
of the potentials (not to be confused with the running). We also emphasize the role played by
the running in this model: nS and r are perfectly compatible with the data while ↵S seems to
constrain the model more efficiently. However, contrary to what is commonly claimed in the
literature, we demonstrate that this does not rule out these models. Within the Logamediate
inflation (LMI) scenario, we have derived an analytic expression for the trajectory in terms of
hypergeometric functions and exhibited a new inflationary domain LMI2, which is however
like almost a pure de Sitter era and currently disfavored. We also have new results for the
Coleman Weinberg Inflation (CWI) scenario. We find exact expressions for ✏3 and an exact
determination of the end of inflation. We discuss, for the first time, the predictions of the
model in the full parameter space. In the case of Double Well Inflation (DWI), we present a
clear slow-roll analysis. The expressions of ✏3, φend, the slow-roll trajectory, its inverse are all
new. Moreover, a detailed comparison with SFI is made and we show that the corresponding
predictions actually differ, contrary to what is sometimes written in the literature. In the
case of the Minimal Super-Symmetric Model (MSSMI) scenario, we demonstrate several new
results. We give the exact expression of the slow-roll parameters ✏2 and ✏3, the location
and the value of the maximum of the first slow-roll parameter ✏1, an approximated formula
for φend, the exact slow-roll trajectory and a useful approximated version of it. We also
provide a parameter independent treatment of the quantum diffusion regime: usually this is
always done using specific values of the parameters whereas we show that the corresponding
conclusions are in fact completely general. We also explain why the model is quite strongly
disfavored due to the observational constraints on the spectral index. For the Renormalizable
Inflection Point Inflation (RIPI) scenario, the slow roll parameters ✏2 and ✏3, the location and
the value of the maximum of ✏1, the approximated determination of φend, the exact slow-roll
trajectory and a useful approximated version of it are all new. We also discuss the CMB
normalization and calculate the energy scale of inflation very accurately. Last but not the
least, we show that the model is strongly disfavored by the data. We have also explored the
Generalized MSSM Inflation (GMSSMI) scenario. We provide new formulas for ✏2, ✏3 and
the trajectory. We also give new bounds on the parameters characterizing the potential from
the requirement of having a sufficient number of e-folds during inflation. Finally, we show
that the model is disfavored by the data. Concerning the Brane Susy Breaking Scenario
(BSUSYBI), we have studied the effects coming from the the field value at which inflation
ends, in the slow-roll regime. For the ArcTan Inflation (AI) scenario, we work out the slow-
roll analysis beyond the approximation of vacuum domination and give an exact expression
for ✏3 and the slow-roll trajectory. For the class of models leading to a constant spectral
index, CNAI, CNBI, CNCI and CNDI, we show how to calculate φend and the trajectory
exactly. We also demonstrate that the spectral index is in fact constant only in a limited
region of the parameter space which turns out to be already disfavored by the data. In
the case of Intermediate Inflation (II), we present an analysis which takes into account the
two terms of the potential while it is common to keep only the dominant one. We give
new expressions for ✏3, the slow-roll trajectory and its relation with the exact, non-slow-roll,
one. In the case of Twisted Inflation (TWI), we study this model for the first time in a
regime where it is not equivalent to DSI. We give new expressions for ✏3, the exact trajectory
and the CMB normalization. We also discuss how inflation ends and show, contrary to
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a naive expectation, that it cannot happen by the end of the slow-rolling phase. For the
Pseudo Natural Inflation (PSNI) scenario, we present new formulas for ✏2, ✏3, φend and the
trajectory. This is the first time that a slow-roll analysis of Orientifold Inflation (OI) is made.
As a consequence, all the corresponding results are new. In particular, we demonstrate that
the model is in bad shape because it predicts a too important amount of gravitational waves.
The scenario of Spontaneous Symmetry Breaking Inflation (SSBI) is important because it
can cover many physically different situations. This model actually contains six different
sub-models. The third slow-roll parameter, the trajectory and the CMB normalization are
new results obtained for the first time in this paper. In the case of Dynamical Symmetric
Inflation (DSI), we present new expressions for ✏3, the trajectory and the CMB normalization.
Another important result is also a careful analysis of the prior space and the limits derived
on the parameters of the model which are such that it is disfavored by observations due to its
blue tilt. For the Generalized Mixed Large Field Inflation (GMLFI) model, we present new
equations for ✏2 and ✏3 and the trajectory. Concerning the LPI models, we have exhibited
three domains in which inflation could take place, thereafter denoted by LPI1, LPI2 and
LPI3. For the Non-Canonical Kähler Inflation model (NCKI), we provide new results for
✏2 and ✏3, the trajectory and the CMB normalization. We also analyze the predictions for
different values of β, a parameter characterizing the potential. We show that the case β < 0 is
ruled out while β > 0 is disfavored by the observations. We have also studied Loop Inflation
(LI). For this model, we give new expressions of ✏3, φend, the trajectory and its inverse in
terms of a Lambert function. Also, the slow-roll analysis is carried out in the case where the
correcting term is negative which we could not find elsewhere. In the case of Tip Inflation
(TI), we also give ✏3, φend and the trajectory. We also study which amounts of fine-tuning
is required by the model and finally show that it is ruled out because its spectrum deviates
too strongly from scale invariance. Many other new results are given in this article but, as
mentioned above, we do not summarize all of them here due to space limitation. They can
be found in the sections devoted to the various models listed in Table 1.

Before concluding this introduction, let us remark that this article and the ASPIC library
represent important tools to carry out our final goal which consists in assessing how good is
a model and in comparing the various inflationary models. This problem can be dealt within
Bayesian inference for model comparison. For this purpose, one has to calculate, for each
model, the global likelihood which is obtained by integrating the usual likelihood over all of
the model parameter values, weighted by their respective prior probability distribution. The
resulting quantity is a number associated with each model which gives the “evidence” that
the model explains the data [this is the number N in Eq. (1.1)]. Their respective ratios give
the odds that one model explains all data compared to the others. Bayesian methods have
the advantage to automatically incorporate the “Occam’s razor”: complicated inflationary
models will be assigned large probability only if the complexity is required by the data.
On the practical side, these two steps can be implemented by the use of Markov–Chains–
Monte–Carlo (MCMC) methods, which is especially well suited with the exact numerical
approach advocated before. These techniques have already been successfully implemented
first in Ref. [171], and later on in Ref. [155], and we plan to extent them to all the models of
the ASPIC library. As a matter of fact, this will allow us to scan the inflationary landscape in
a statistically well-defined way and to address the question of “the best model of inflation”.

This article is organized as follows. In the next section, section 2, we briefly summarize
slow-roll inflation and give the equations needed for the rest of this article. We also discuss
the reheating stage and explains how it can be implemented. Then, in section 3, we study

– 13 –



inflationary models which, up to the potential normalization, do not contain any free param-
eter (concretely, at this stage, Higgs inflation). In sections 4, 5 and 6, we analyze scenarios
characterized by one, two and three free parameters, respectively. Finally, in section 7, we
present our conclusions and discuss future works. In the appendix A, we give, in the planes
(nS, r) and (✏1, ✏2), the predictions of all the 74 ASPIC models.

Table 1: Models contained in the first release of the ASPIC

library. For each model, we give the corresponding acronym,
the number of free parameters characterizing the potential,
the number of sub-models and the shape of the potential.
The total number of models is 74.

Name Parameters Sub-models V (φ)

HI 0 1 M4
⇣

1− e−
p

2/3φ/MPl

⌘

RCHI 1 1 M4
⇣

1− 2e−
p

2/3φ/MPl +
A

I
16⇡2

φp
6MPl

⌘

LFI 1 1 M4
⇣

φ
MPl

⌘p

MLFI 1 1 M4 φ2

M2
Pl

h

1 + ↵ φ2

M2
Pl

i

RCMI 1 1 M4
⇣

φ
MPl

⌘2 h

1− 2↵ φ2

M2
Pl
ln
⇣

φ
MPl

⌘i

RCQI 1 1 M4
⇣

φ
MPl

⌘4 h

1− ↵ ln
⇣

φ
MPl

⌘i

NI 1 1 M4
h

1 + cos
⇣

φ
f

⌘i

ESI 1 1 M4
(

1− e−qφ/MPl
)

PLI 1 1 M4e−↵φ/MPl

KMII 1 2 M4
⇣

1− ↵ φ
MPl

e−φ/MPl

⌘

HF1I 1 1 M4

✓

1 +A1
φ

MPl

◆2 

1− 2
3

⇣

A1
1+A1φ/MPl

⌘2
]

CWI 1 1 M4



1 + ↵
⇣

φ
Q

⌘4
ln
⇣

φ
Q

⌘

]

LI 1 2 M4
h

1 + ↵ ln
⇣

φ
MPl

⌘i

RpI 1 3 M4e−2
p

2/3φ/MPl

∣

∣

∣
e
p

2/3φ/MPl − 1
∣

∣

∣

2p/(2p−1)

DWI 1 1 M4



⇣

φ
φ0

⌘2
− 1

]2

MHI 1 1 M4
h

1− sech
⇣

φ
µ

⌘i

RGI 1 1 M4 (φ/MPl)
2

↵+(φ/MPl)
2

MSSMI 1 1 M4



⇣

φ
φ0

⌘2
− 2

3

⇣

φ
φ0

⌘6
+ 1

5

⇣

φ
φ0

⌘10
]

RIPI 1 1 M4



⇣

φ
φ0

⌘2
− 4

3

⇣

φ
φ0

⌘3
+ 1

2

⇣

φ
φ0

⌘4
]
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AI 1 1 M4
h

1− 2
⇡ arctan

⇣

φ
µ

⌘i

CNAI 1 1 M4
h

3−
(

3 + ↵2
)

tanh2
⇣

↵p
2

φ
MPl

⌘i

CNBI 1 1 M4
h

(

3− ↵2
)

tan2
⇣

↵p
2

φ
MPl

⌘

− 3
i

OSTI 1 1 −M4
⇣

φ
φ0

⌘2
ln



⇣

φ
φ0

⌘2
]

WRI 1 1 M4 ln
⇣

φ
φ0

⌘2

SFI 2 1 M4
h

1−
⇣

φ
µ

⌘pi

II 2 1 M4
⇣

φ−φ0
MPl

⌘−β
−M4 β2

6

⇣

φ−φ0
MPl

⌘−β−2

KMIII 2 1 M4
h

1− ↵ φ
MPl

exp
⇣

−β φ
MPl

⌘i

LMI 2 2 M4
⇣

φ
MPl

⌘↵
exp [−β(φ/MPl)

γ ]

TWI 2 1 M4



1−A
⇣

φ
φ0

⌘2
e−φ/φ0

]

GMSSMI 2 2 M4



⇣

φ
φ0

⌘2
− 2

3↵
⇣

φ
φ0

⌘6
+ ↵

5

⇣

φ
φ0

⌘10
]

GRIPI 2 2 M4



⇣

φ
φ0

⌘2
− 4

3↵
⇣

φ
φ0

⌘3
+ ↵

2

⇣

φ
φ0

⌘4
]

BSUSYBI 2 1 M4

✓

e
p
6 φ
MPl + e

p
6γ φ

MPl

◆

TI 2 3 M4
⇣

1 + cos φµ + ↵ sin2 φµ

⌘

BEI 2 1 M4 exp1−β
⇣

−λ φ
MPl

⌘

PSNI 2 1 M4
h

1 + ↵ ln
⇣

cos φf

⌘i

NCKI 2 2 M4



1 + ↵ ln
⇣

φ
MPl

⌘

+ β
⇣

φ
MPl

⌘2
]

CSI 2 1 M4
⇣

1−↵ φ
MPl

⌘2

OI 2 1 M4
⇣

φ
φ0

⌘4


⇣

ln φ
φ0

⌘2
− ↵

]

CNCI 2 1 M4
h

(

3 + ↵2
)

coth2
⇣

↵p
2

φ
MPl

⌘

− 3
i

SBI 2 2 M4

⇢

1 +
h

−↵+ β ln
⇣

φ
MPl

⌘i⇣

φ
MPl

⌘4
}

SSBI 2 6 M4



1 + ↵
⇣

φ
MPl

⌘2
+ β

⇣

φ
MPl

⌘4
]

IMI 2 1 M4
⇣

φ
MPl

⌘−p

BI 2 2 M4



1−
⇣

φ
µ

⌘−p
]
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RMI 3 4 M4
h

1− c
2

⇣

−1
2 + ln φ

φ0

⌘

φ2

M2
Pl

i

VHI 3 1 M4
h

1 +
⇣

φ
µ

⌘pi

DSI 3 1 M4



1 +
⇣

φ
µ

⌘−p
]

GMLFI 3 1 M4
⇣

φ
MPl

⌘p h

1 + ↵
⇣

φ
MPl

⌘qi

LPI 3 3 M4
⇣

φ
φ0

⌘p ⇣

ln φ
φ0

⌘q

CNDI 3 3 M4

(

1+β cos

"

↵

 

φ− φ0

MPl

!#)2

2 Basic Equations

In this section, we very briefly recall the theoretical foundations of inflation and we present
the main tools and equations that will be used in the rest of this paper. We start by reviewing
the slow-roll phase, where the cosmological fluctuations are generated and, then, we describe
how the end of inflation and the transition to the standard hot Big Bang phase can be
modeled.

2.1 The slow-roll phase

Let us consider a single-field inflationary model with a minimal kinetic term and a potential
V (φ). The behavior of the system is controlled by the Friedmann-Lemâıtre and Klein-Gordon
equations, namely

H2 =
1

3M2
Pl

"

φ̇2

2
+ V (φ)

#

, (2.1)

φ̈+ 3Hφ̇+ Vφ = 0, (2.2)

whereH ⌘ ȧ/a denotes the Hubble parameter, a(t) being the Friedmann-Lemâıtre-Robertson
Walker (FLRW) scale factor and ȧ its derivative with respect to cosmic time t. MPl = 8⇡G
denotes the reduced Planck mass. A subscript φ means a derivative with respect to the
inflaton field. In order to describe the evolution of the background, it is convenient to
introduce the Hubble flow functions ✏n defined by [172, 173]

✏n+1 ⌘
d ln |✏n|
dN

, n ≥ 0, (2.3)

where ✏0 ⌘ Hini/H and N ⌘ ln(a/aini) is the number of e-folds. By definition, inflation is a
phase of accelerated expansion, ä/a > 0, or, equivalently, ✏1 < 1. As a consequence, the end
of inflation is defined by the condition ✏1 = 1. On the other hand, the slow-roll conditions
(or slow-roll approximation) refer to a situation where all the ✏n’s satisfy ✏n ⌧ 1. If this is
the case, then the parameters ✏n can also be expressed in terms of the successive derivatives
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of the potential, namely [17]

✏1 '
M2

Pl

2

✓

Vφ
V

◆2

, (2.4)

✏2 ' 2M2
Pl

"

✓

Vφ
V

◆2

− Vφφ
V

#

, (2.5)

✏2✏3 ' 2M4
Pl

"

VφφφVφ
V 2

− 3
Vφφ
V

✓

Vφ
V

◆2

+ 2

✓

Vφ
V

◆4
#

. (2.6)

Therefore, a measurement of the ✏n’s also provides information with regards to the shape of
the inflationary potential.

In terms of the number of e-folds, one can decouple Eqs. (2.1) and (2.2) to get the field
evolution

1

3− ✏1

d2φ

dN2
+

dφ

dN
= −M2

Pl

d lnV

dφ
, (2.7)

showing that the potential driving the field in FLRW spacetime is ln[V (φ)]. This equation
can be further simplified by using the definition of ✏1 and ✏2 to get ride of the second order
derivatives. From

✏1 =
1

2M2
Pl

✓

dφ

dN

◆2

, (2.8)

one gets
✓

1 +
✏2

6− 2✏1

◆

dφ

dN
= −M2

Pl

d lnV

dφ
. (2.9)

As a result, in the slow-roll approximation, one has

dφ

dN
' −M2

Pl

d lnV

dφ
. (2.10)

This equation can be integrated to give an explicit expression of the classical trajectory. One
arrives at

N −Nini = − 1

M2
Pl

Z φ

φini

V (χ)

Vχ(χ)
dχ . (2.11)

In this article, for each model, we provide the expressions of the first three Hubble flow
parameters, a determination of φend, the value of the field at which inflation comes to an
end (and the corresponding discussion) and an explicit expression of the slow-roll trajectory
Eq. (2.11).

Let us now consider the behavior of inflationary cosmological perturbations. The evo-
lution of scalar (density) perturbations can be reduced to the study of a single variable,
the so-called Mukhanov–Sasaki variable vk. In Fourier space, its equation of motion can be
expressed as [6–8, 16]

v00k +

"

k2 −
(

a
p
✏1
)00

a
p
✏1

#

vk = 0. (2.12)

Here, a prime denotes a derivative with respect to conformal time and the quantity k is
the comoving wave number of the Fourier mode under consideration. This equation is the
equation of a parametric oscillator, i.e. an oscillator with a time-dependent frequency. The
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time-dependence of the effective frequency is controlled by the dynamics of the background,
more precisely by the scale factor and its derivatives (up to fourth order). The quantity vk
is related to the curvature perturbation ⇣k through the following expression:

⇣k =
1

MPl

vk
a
p
2✏1

. (2.13)

The importance of ⇣k lies in the fact that it can be viewed as a “tracer” of the fluctuations on
super-Hubble scales, i.e. for all k⌘ ⌧ 1, where ⌘ denotes the conformal time. Indeed, in the
case of single-field inflation, this quantity becomes constant in this limit. Therefore, it can
be used to “propagate” the perturbations from inflation to the subsequent cosmological eras.
The statistical properties of the fluctuations can be characterized by the n-point correlation
functions of ⇣k. In particular, the two-point correlation function can be written as an integral
over wave numbers (in a logarithmic interval) of the power spectrum P⇣(k), which can be
expressed as

P⇣(k) ⌘
k3

2⇡2
|⇣k|2 =

k3

4⇡2M2
Pl

∣

∣

∣

∣

vk
a
p
✏1

∣

∣

∣

∣

2

. (2.14)

In order to calculate P⇣(k), one needs to integrate Eq. (2.12), which requires the knowledge
of the initial conditions for the mode function vk. Since, at the beginning of inflation, all the
modes of cosmological interest today were much smaller than the Hubble radius, the initial
conditions are chosen to be the Bunch-Davis vacuum which amounts to

lim
k⌘!+1

vk =
1p
2k
e−ik⌘ , (2.15)

where H = aH is the conformal Hubble parameter.
The evolution of tensor perturbations (or primordial gravity waves) can also be reduced

to the study of a parametric oscillator. The amplitude of each transverse Fourier mode of
the gravity wave, µk(⌘), obeys the following equation

µ00k +

✓

k2 − a00

a

◆

µk = 0. (2.16)

We notice that the time-dependence of the effective frequency differs from that of the scalar
case and now involves the derivative of the scale factor up to second order only. It is then
straightforward to determine the resulting power spectrum. From a calculation of the two-
point correlation function, one obtains

Ph(k) =
2k3

⇡2

∣

∣

∣

µk
a

∣

∣

∣

2
. (2.17)

In order to calculate this quantity, the equation of motion Eq. (2.16) needs to be solved. As
it is the case for density perturbations, the initial state is chosen to be the Bunch-Davies
vacuum.

The power spectra can be computed exactly by means of a mode by mode integration
of Eqs. (2.12) and (2.16), which also requires an exact integration of the background, i.e.
of Eqs. (2.1) and (2.2). As discussed in the introduction, this can be done with the help of
publicly available codes such as FieldInf. We have seen above that the slow-roll approxi-
mation can be used to calculate the classical background trajectory. Quite remarkably, the
same approximation also permits the derivation of the scalar and tensor power spectra. This
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involves a double expansion. The power spectra are expanded around a chosen pivot scale
k⇤ such that

P(k)

P0

= a0 + a1 ln

✓

k

k⇤

◆

+
a2
2

ln2
✓

k

k⇤

◆

+ . . . , (2.18)

where

P⇣0 =
H2

8⇡2✏1M2
Pl

, Ph0 =
2H2

⇡2M2
Pl

, (2.19)

and, then, the coefficients ai are determined in terms of the Hubble flow functions. For scalar
perturbations, one gets [138, 139, 173–178, 178–180]

a(S)

0 = 1− 2 (C + 1) ✏1 − C✏2 +

✓

2C2 + 2C +
⇡2

2
− f

◆

✏21

+

✓

C2 −C +
7⇡2

12
− g

◆

✏1✏2 +

✓

1

2
C2 +

⇡2

8
− 1

◆

✏22

+

✓

−1

2
C2 +

⇡2

24

◆

✏2✏3 , (2.20)

a(S)

1 = −2✏1 − ✏2 + 2(2C + 1)✏21 + (2C − 1)✏1✏2 + C✏22 − C✏2✏3 , (2.21)

a(S)

2 = 4✏21 + 2✏1✏2 + ✏22 − ✏2✏3 , (2.22)

where C ⌘ γE + ln 2 − 2 ⇡ −0.7296, γE being the Euler constant, f = 5 and g = 7. For the
gravitational waves, the coefficients ai read

a(T)

0 = 1− 2 (C + 1) ✏1 +

✓

2C2 + 2C +
⇡2

2
− f

◆

✏21

+

✓

−C2 − 2C +
⇡2

12
− 2

◆

✏1✏2 , (2.23)

a(T)

1 = −2✏1 + 2(2C + 1)✏21 − 2(C + 1)✏1✏2 , (2.24)

a(T)

2 = 4✏21 − 2✏1✏2 . (2.25)

The Hubble flow functions are time-dependent quantities such that in the above expression,
it is understood that they should be evaluated at the time at which the pivot scale crosses
the Hubble radius during inflation, i.e. at a time ⌘⇤ such that k⇤ = H(⌘⇤). Let us notice
that setting the pivot at another time affects the previous expression. For instance, setting
⌘⇤ such that k⇤⌘⇤ = −1 would set f = 3 and g = 6. We will see below that this introduces a
dependence in the parameters describing the reheating stage.

The properties of the power spectra can also be characterized by the spectral indices
and their “running”. They are defined by the coefficients of the Taylor expansions of the
power spectra logarithm with respect to ln k, evaluated at the pivot scale k⇤. This gives

nS − 1 ⌘ d lnP⇣

d ln k

∣

∣

∣

∣

k⇤

, nT ⌘ d lnPh

d ln k

∣

∣

∣

∣

k⇤

. (2.26)

For the runnings, one similarly has the two following expressions

↵S ⌘
d2 lnP⇣

d(ln k)2

∣

∣

∣

∣

k⇤

, ↵T ⌘ d2 lnPh

d(ln k)2

∣

∣

∣

∣

k⇤

, (2.27)
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and, in principle, we could also define the running of the running and so on. The slow-roll
approximation allows us to calculate the quantities defined above. For instance, we have at
first order in the Hubble flow parameters

nS = 1− 2✏1 − ✏2, nT = −2✏1. (2.28)

Let us also notice that the tensor-to-scalar ratio at leading order can be expressed as

r ⌘ Ph

P⇣
= 16✏1. (2.29)

In the rest of this article, we give the observational predictions of each inflationary model of
the ASPIC library in the planes (✏1, ✏2) but also (nS, r).

Each inflationary model must also be CMB normalized, that is to say the amplitude
of the power spectra, say at k = k⇤, is completely fixed by the amplitude of the CMB
anisotropies measured today. On the largest length scales, this is given to a good approxi-
mation by the CMB quadrupole Qrms−PS/T ⌘

p

5C2/(4⇡) ' 6 ⇥ 10−6, where T ' 2.725K
is the CMB blackbody temperature. This is achieved if P⇣0 ' 60Q2

rms−PS/T
2. Using the

slow-roll approximation of the Friedmann-Lemâıtre equation and writing the potential as
V (φ) =M4v(φ), such that the mass scale M is singled out, one arrives at

✓

M

MPl

◆4

= 1440⇡2
✏1⇤
v(φ⇤)

Q2
rms−PS

T 2
. (2.30)

This is a model-depend expression (it depends on v) in which we have rendered explicit the
dependence in the pivot time. On a more robust basis, CMB data are strongly constraining
the value of P⇤ ⌘ P⇣(k⇤) and supplementing the Planck CMB temperature likelihood by the
WMAP large-scale polarization data, one gets the one-sigma confidence interval

ln
(

1010P⇤
)

= 3.092 ± 0.026 , (2.31)

at k⇤ = 0.05Mpc−1. This constraint and the one- and two-sigma contours in the planes
(✏1, ✏2) and (nS, r) represented in all the figures have been obtained from a slow-roll analysis
of the Planck data. Since the analysis is in all point identical to the one of the WMAP seven
years data performed in Ref. [64], we do not repeat it here. The interested reader can find
all the details in the appendix B of Ref. [64]. Moreover, in order to get a robust inference,
we have used the second order expression for the power spectra. Therefore, all the results
presented below are marginalized over the second order slow-roll parameters.

Since at leading order in the slow-roll expansion we have P⇤ ' H2
⇤/(8⇡

2✏1⇤M2
Pl), the

Friedmann–Lemâıtre equation allows us to derive the relation

✓

M

MPl

◆4

= 24⇡2
✏1⇤
v(φ⇤)

P⇤ , (2.32)

which is, as expected, formally identical to Eq. (2.30) with

Q2
rms−PS

T 2
= 60P⇤. (2.33)

It has however the advantage of using P⇤ which is a well inferred quantity because it is fitted
against all the C`. In the following we will make no-distinction between the so-called COBE
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normalization and the CMB normalization, both being identical provided the above equation
is used. For each inflationary model, these expressions will completely fix the allowed values
for M .

We have shown how to calculate the two point correlation functions in the slow-roll
approximation. The next logical step would be to determine the higher correlation functions.
However, for the type of models considered here (i.e. category IA models), it is well-known
that the corresponding signal is so small that it will stay out of reach for a while [111–115].
Therefore, we now consider the question of how to calculate the values of ✏1 and ✏2 when
the pivot scale exits the Hubble radius and how this result depends on the details of the
reheating period.

2.2 The reheating phase

In the last subsection, we have seen that the power spectrum (2.18) can be calculated with
the help of the slow-roll approximation and expressed in terms of the Hubble flow param-
eters evaluated at Hubble radius crossing. Here, we briefly explain how these Hubble flow
parameters can be determined. It is easy to calculate ✏1, ✏2 and ✏3 as a function of φ from
Eqs. (2.4), (2.5) and (2.6). Then, from the trajectory (2.11), one can calculate Nend, the
total number of e-folds during inflation and N⇤, the number of e-folds at the point when the
pivot scale crosses the Hubble radius. If we denote by I the following primitive

I(φ) =
Z φ V ( )

V ( )
d , (2.34)

which is also the slow-roll trajectory of Eq. (2.11), then we have

Nend = − 1

M2
Pl

[I(φend)− I(φini)] , N⇤ = − 1

M2
Pl

[I(φ⇤)− I(φini)] , (2.35)

where φ⇤ is the vacuum expectation value of the field, again evaluated when the pivot scale
crosses the Hubble radius. From these two expressions, it follows that

φ⇤ = I−1
⇥

I(φend) +M2
Pl∆N⇤

⇤

, (2.36)

where ∆N⇤ ⌘ Nend − N⇤. Inserting this formula into the expressions of the Hubble flow
parameters allows us to find ✏n⇤ and, therefore, r and nS.

However, in order to make the above-described calculation concrete, we need to say
something about the quantity ∆N⇤. As was explained in details in Ref. [64], this requires
to take into account the reheating stage. Let ⇢ and P be the energy density and pressure of
the effective fluid dominating the Universe during reheating. Conservation of energy implies
that

⇢ (N) = ⇢end exp

⇢

−3

Z N

Nend

[1 + wreh (n)] dn

}

, (2.37)

where wreh ⌘ P/⇢ is the “instantaneous” equation of state during reheating. One can also
define the mean equation of state parameter, wreh, by

2

wreh ⌘ 1

∆N

Z Nreh

Nend

wreh(n)dn, (2.38)

2In the figures, wreh has been denoted by w for simplicity.
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where
∆N ⌘ Nreh −Nend, (2.39)

is the total number of e-folds during reheating, Nreh being the number of e-folds at which
reheating is completed and the radiation dominated era begins. Then, one introduces a new
parameter

Rrad ⌘ aend
areh

✓

⇢end

⇢reh

◆4

, (2.40)

where ⇢reh has to be understood as the energy density at the end of the reheating era, i.e.
⇢(Nreh). This definition shows that Rrad encodes any deviations the reheating may have
compared to a pure radiation era. In fact, Rrad completely characterizes the reheating stage
and can be expressed in terms of

lnRrad ⌘ ∆N

4
(−1 + 3wreh) , (2.41)

which renders explicit that if wreh = 1/3, i.e. the effective fluid during reheating is equivalent
to radiation, then reheating cannot be distinguished from the subsequent radiation dominated
era. In this case, one simply has Rrad = 1. Let us notice that it is also possible to express
(or define) lnRrad as

lnRrad =
1− 3wreh

12(1 + wreh)
ln

✓

⇢reh

⇢end

◆

. (2.42)

Using entropy conservation till the beginning of the radiation era, the redshift at which
inflation ended can be expressed in terms of Rrad as

1 + zend =
1

Rrad

✓

⇢end

⇢̃γ

◆1/4

, ⇢̃γ ⌘ Qreh⇢γ . (2.43)

The quantity ⇢γ = 3H2
0M

2
PlΩγ is the total energy density of radiation today (Ωγ ' 2.471 ⇥

10−5h−2) while Qreh ⌘ q
4/3
0 greh/(q

4/3
reh g0) is the measure of the change of relativistic degrees

of freedom between the reheating epoch and today. In this expression q and g respectively
denotes the number of entropy and energetic relativistic degrees of freedom. In view of the
current CMB data, the precise value for Qreh is unimportant as this factor has only a minimal
effect. At most it can shift the values of lnRrad by a O(1) number.

Then, straightforward considerations [64, 181] show that the quantities ∆N⇤ and Rrad

are related by

∆N⇤ = lnRrad −N0 −
1

4
ln



9

✏1⇤(3− ✏1end)

Vend
V⇤

]

+
1

4
ln(8⇡2P⇤), (2.44)

where we have defined3

N0 ⌘ ln

 

k⇤/a0

⇢̃
1/4
γ

!

, (2.46)

3One may also wonder about the influence of the cosmological constant on this result. In fact, one can
show that it leads to a negligible correction. Indeed, it simply amounts to redefining N

0
by

N
0
→ N

0
+

1

3
ln

"

1−
ΩΛΩ

3
γ

Ω4
dm

✓

geq
g0

◆3 ✓
q0
qeq

◆4
#

. (2.45)

which is clearly a very tiny modification (the subscript “eq” denotes quantities at the equivalence time between
radiation and matter).
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which roughly measures the number of e-folds of deceleration of the Friedmann-Lemâıtre
model. From Eq. (2.42), we see that the quantity lnRrad is not arbitrary since −1/3 <
wreh < 1 and ⇢nuc < ⇢reh < ⇢end. As a consequence, the quantity ∆N⇤ is also constrained to
vary in a given range, i.e. ∆N⇤ 2 [∆Nnuc

⇤ ,∆N end
⇤ ]. Moreover, this range is model-dependent

since ⇢end or Vend/V⇤ differ for different inflationary scenarios. In fact, for each allowed value
of lnRrad, Eq. (2.44) must be viewed as an algebraic equation allowing us to determine the
corresponding φ⇤. Explicitly, using Eq. (2.35), this equation reads

− 1

M2
Pl

[I(φ⇤)− I(φend)] = lnRrad−N0 −
1

4
ln

⇢

9

✏1(φ⇤)[3− ✏1(φend)]

V (φend)

V (φ⇤)

}

+
1

4
ln(8⇡2P⇤) .

(2.47)
In general, this equation can not be solved explicitly (except for LFI models, see Ref. [64]) and
we have to rely on numerical calculations. Solving for each allowed value of lnRrad, one can
determine the range of variation of φ⇤ 2 [φnuc⇤ ,φend⇤ ] and, therefore, find the corresponding
dispersion in r and nS. In this paper, this task is carried out for all the models of the
ASPIC library. Let us notice that it is compulsory to do so otherwise, assuming blindly say
∆N⇤ 2 [40, 60], would lead to inconsistent reheating energy densities, either larger than ⇢end
or smaller than ⇢nuc. Clearly, this method also allows us to put model-dependent constraints
on the reheating temperature. Indeed, for some values of ⇢reh, the corresponding ✏n⇤ will turn
out to be outside the 1σ or 2σ contours (depending on the criterion one wishes to adopt)
thus signaling some tension with the data, see the discussion in the Introduction and Fig. 2.

Before closing this section, let us remind that, for each inflationary model, ASPIC gives
the expression of the first three Hubble flow parameters, a discussion of the mechanism that
ends inflation and the value of φend, the classical trajectory I(φ), the CMB normalization
M/MPl and a determination of the exact range [φnuc⇤ ,φend⇤ ]. Then all these information
are compared to CMB data in the planes (✏1, ✏2) and (nS, r). This provides a powerful
tool to systematically derive the predictions for the ASPIC models and, therefore, to scan
the inflationary landscape. In the next section, we start the systematic exploration of the
category IA models that have been studied in the literature since the advent of inflation.

3 Zero Parameter Models

3.1 Higgs Inflation (HI)

3.1.1 Theoretical Justifications

This model postulates that the inflaton field is the Higgs field h (recently discovered at the
Large Hadron Collider, see Refs. [182, 183]) non-minimally coupled to gravity, see Refs. [184–
187]. Indeed, one can argue that, in curved spacetime, the simplest model compatible with
our knowledge of particle physics is described by a Lagrangian which is the standard model
Lagrangian plus an extra term of the form ⇠H†HR. This last term is compulsory since, in
curved spacetime, it will automatically be generated by quantum corrections [188]. In the
Jordan frame, the action of the model can be written as

S =
M̄2

2

Z

d4x
p−ḡ

⇥

F (h) R̄− Z (h) ḡµ⌫@µh@⌫h− 2U (h)
⇤

. (3.1)

The quantity M̄ is a mass scale that, for the moment, is not identified with the Planck
scale and the tensor ḡµ⌫ denotes the metric in the Jordan frame (in what follows, all the
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quantities with a bar denote quantities evaluated in the Jordan frame; quantities without
a bar are quantities evaluated in the Einstein frame). The three functions F (h), Z(h) and
U(h) completely characterize the model and are chosen to be

F (h) = 1 + ⇠h2, Z(h) = 1, U(h) = M̄2λ

4

✓

h2 − v2

M̄2

◆2

, (3.2)

where ⇠ is a new dimensionless parameter and U(h) is the standard Higgs boson potential
with v the Higgs (current) vacuum expectation value and λ the self-interacting coupling
constant. Here, the field h is dimensionless (as the functions F and Z) while the potential
U is of dimension two. The effective gravitational constant (measured in Cavendish-type
experiments) is given by Ref. [189]

1

M2
Pl

=
1

M̄2

2(1 + ⇠h2) + 16⇠2h2

(1 + ⇠h2)[2(1 + ⇠h2) + 12⇠2h2]
. (3.3)

Since, today, one has h ' v/M̄ ⌧ 1, it follows that M̄ ' MPl with very good accuracy and,
from now on, we will always consider that this identification is valid.

The above-described model can also be written in the Einstein frame where the corre-
sponding slow-roll analysis is easier. Denoting the metric tensor in this frame by gµ⌫ , the
action now takes the form

S = 2M2
Pl

Z

d4x
p−g



R

4
− 1

2
gµ⌫@µχ@⌫χ−W (χ)

]

, (3.4)

where the fields h and χ are related by

dχ

dh
=

p

1 + ⇠(1 + 6⇠)h2p
2(1 + ⇠h2)

, (3.5)

and the potential is given V ⌘ 2M2
PlW = M2

PlU/F
2. Notice also that the canonically nor-

malized field in the Einstein frame can be expressed as φ ⌘
p
2MPlχ. It is also important

to recall that, in the Einstein frame, matter is now explicitly coupled to the scalar field φ.
This has of course important consequences for the description of the reheating period, see
Refs. [190–192] and below. The differential equation (3.5) can be integrated exactly and the
result reads

χ =

s

1 + 6⇠

2⇠
arcsinh

h

h
p

⇠(1 + 6⇠)
i

−
p
3 arctanh

"

⇠
p
6h

p

1 + ⇠(1 + 6⇠)h2

#

. (3.6)

The inverse hyperbolic tangent is always well-defined since its argument is always smaller
than one. This exact formula between the Einstein and Jordan frame fields was also derived
in Ref. [190]. In fact, we are interested in the regime ⇠ & 1 and ⇠h& 1. In this case, one can
derive an approximated expression for χ. Notice that this limit must be carefully calculated
because if one just replaces 1+6⇠ with ⇠ in the above expression, one finds that χ = 0! Using

the identity arcsinhx = ln
⇣

x+
p
1 + x2

⌘

, the first term in Eq. (3.6) can be approximated

as
p
3 ln

(

2⇠
p
6h
)

. Then, one can use the identity arctanhx = 1/2 ln [(1 + x)/(1− x)] and
expand the argument of this logarithm in 1/⇠ and 1/(⇠h)2. One finds that the latter reduces
to 24⇠2h2/(1 + ⇠h2). Finally, combining the two terms in Eq. (3.6), one arrives at

χ '
p
3

2
ln
(

1 + ⇠h2
)

. (3.7)
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The same expression can also be directly derived from Eq. (3.5) which, in the regime studied
here, can be approximated as

dχ

dh
'

p
6⇠hp

2(1 + ⇠h2)
. (3.8)

The solution to this equation is exactly Eq. (3.7). The last step consists in inserting the
expression of h in terms of χ (and, therefore, in terms of φ) into the definition of the potential
V in the Einstein frame. This leads to the following expression

V (φ) =
M4

Plλ

4⇠2

⇣

1− e−
p

2/3φ/MPl

⌘2
. (3.9)

Interestingly enough, the parameters ⇠ and λ enter the potential only through its overall
amplitude. In the following, we defineM byM4 ⌘M4

Plλ/(4⇠
2). In this sense, Higgs inflation

is a “zero parameter model” since the scale M is entirely determined by the amplitude of the
CMB anisotropies.

More recently, in Ref. [193], a supergravity realization of this model was presented. We
now briefly review how this can be achieved. The model is based on no-scale supergravity
and has two fields, a modulus T and the inflaton φ. The Kähler and super-potentials are
given by K = −3 ln

(

T + T † − |φ|2/3
)

and W = µ̂φ2 − λφ3/3, respectively. The quantities
µ̂ and λ are constants characterizing the model. It follows that the Kähler matrix and its
inverse can be written as

Kī⌘ =
3

(T + T † − |φ|2/3)2
(

T + T †) /3 −φ†/3
−φ/3 1

]

, (3.10)

Kk⌘̄ =

✓

T + T † − |φ|2
3

◆

1 φ/3
φ†/3 (T + T †)/3

]

. (3.11)

Then, assuming that the modulus is stabilized such hT + T †i = c and hT − T †i = 0, one
obtains the following Lagrangian: −c|@µφ|2/∆2 − |@W/@φ|2/∆2 where ∆ ⌘ c − |φ|2/3. The
next step consists in introducing the fields x and y defined by φ =

p
3c tanh

⇥

(x+ iy) /
p
3
⇤

.
Expressed in terms of these two fields, the previous Lagrangian takes the following form

Le↵ = − 1

2 cos2
⇣

p

2/3y
⌘

h

(@µx)
2 + (@µy)

2
i

−µ
2

2

1

2 cos2
⇣

p

2/3y
⌘e−

p
2/3x

"

cosh

 

r

2

3
x

!

− cos

 

r

2

3
y

!#

, (3.12)

where µ ⌘ µ̂
p

3/c. In order to obtain this formula, we have crucially assumed that

λ =
µ

3
. (3.13)

The form of the effective Lagrangian has also been studied in Ref. [193] in the case where this
relation is no longer valid. The last step consists in remarking that y = 0 during inflation. If
we expand the above Lagrangian about y = 0, then the field x is canonically normalized and
the potential becomes precisely the one of Eq. (3.9). Therefore, it constitutes another scenario
where this potential arises. Let us also notice that other approaches based on superconformal
D-term inflation also lead to the Starobinsky model [194]. Various multifield extensions have
also been studied in which the inflationary phase can still be described by the one-field Higgs
potential [195–197].
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Figure 5. Higgs Inflation (HI). Top left panel: Higgs potential corresponding to Eq. (3.9). Top right
panel: logarithm of the Higgs potential. It is clear from these two plots that inflation proceeds from
the right to the left. Bottom left panel: slow-roll parameter ✏1 as a function of the field φ. The shaded
area indicates the breakdown of the slow-roll inflation (strictly speaking when the acceleration stops)
and we see that, in this model, the end of inflation occurs by violation of the slow-roll conditions.
Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line) for the same potential.

3.1.2 Slow-Roll Analysis

Having established the shape of the potential, namely

V (φ) =M4
⇣

1− e−
p

2/3φ/MPl

⌘2
, (3.14)

we can now proceed to the slow-roll analysis. For convenience, let us define in the following
x ⌘ φ/MPl. Then, the first three slow-roll parameters are given by

✏1 =
4

3

⇣

1− e
p

2/3x
⌘−2

, ✏2 =
2

3



sinh

✓

xp
6

◆]−2

,

✏3 =
2

3



coth

✓

xp
6

◆

− 1

]

coth

✓

xp
6

◆

.

(3.15)

These quantities are represented in Fig. 5 (left and right bottom panels) together with the
potential.
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Figure 6. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Higgs inflation,
inflation proceeds along the “−1” branch in the direction specified by the arrow in the figure.

In this model, as can be noticed on these plots, inflation stops by violation of the slow-
roll conditions. The condition ✏1 = 1 occurs for x = xend where xend can be expressed
as

xend =

r

3

2
ln

✓

1 +
2p
3

◆

' 0.94 . (3.16)

In fact, before the end of inflation, the slow-roll approximation breaks down when ✏2 becomes
greater than 1. This happens for x = x✏2=1 where

x✏2=1 =
p
6 arcsinh

 

r

2

3

!

' 1.83 . (3.17)

The third slow-roll parameter ✏3 also becomes greater than one before the end of inflation
(but after the second slow-roll parameter has become unity). The corresponding vacuum
expectation value can be written as

x✏3=1 =
p
6 arctanh

✓

2

1 +
p
7

◆

' 1.51 . (3.18)

In the case where the inflaton field is interpreted as the Higgs field, these three vacuum
expectation values do not depend on the parameter ⇠ since this parameter is “hidden” in the
mass scale M .

We are now in a position where one can calculate the slow-roll trajectory. Using
Eq. (3.14), it can be integrated exactly and yields to

N −Nini =
1

2

r

3

2
(x− xini)−

3

4

✓

e

q

2
3
x − e

q

2
3
xini

◆

. (3.19)
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In the regime where x& 1, the last term is dominant and this is the one usually considered
in the literature, see Ref. [184]. The trajectory can be inverted and expressed in term of the
“−1-branch” of the Lambert function W−1, leading to

x =

r

3

2

(

4

3
N +

r

2

3
xini − e

q

2
3
xini −W−1

"

− exp

 

4

3
N +

r

2

3
xini − e

q

2
3
xini

!#)

. (3.20)

The fact that inflation proceeds on the −1 branch of the Lambert function W−1, as can be
seen in Fig. 6, can be justified by the following considerations. When N = 0, the value taken
by the Lambert function is − exp(

p

2/3xini), which is smaller than −1. On the other hand,
if x = 0, the value given for N by Eq. (3.19) can be inserted in Eq. (3.20) and one finds
that the argument of the Lambert function is −1, i.e. the connection point between the −1
branch and the 0 branch. Therefore inflation takes place between these two points.

Finally, the value of the inflaton field, x⇤, calculated ∆N⇤ = Nend − N⇤ e-folds before
the end of inflation reads

x⇤ =

r

3

2

✓

−4

3
∆N⇤ + ln

✓

1 +
2p
3

◆

−
✓

1 +
2p
3

◆

−W−1

⇢

− exp



−4

3
∆N⇤ + ln

✓

1 +
2p
3

◆

−
✓

1 +
2p
3

◆]}◆

.

(3.21)

In principle, inserting this formula into the expressions of the slow-roll parameters (3.15)
allows us to determine the observational predictions of the model.

At this stage, however, a comment is in order about reheating in the case where the
inflaton field is the Higgs field (these remarks do not apply to the supergravity realization of
the model). As explained above, all the previous considerations are derived in the Einstein
frame. In this frame, matter is not universally coupled to the metric tensor and, therefore,
it is compulsory to re-consider the parametrization presented in section 2.2. In the Einstein
frame, the matter action is given by Smat[ , A

2(φ)gµ⌫ ], where  denotes some generic matter
field and gµ⌫ ⌘ F (h)ḡµ⌫ with A ⌘ F−1/2, see Ref. [189] (quantities in the Jordan frame
are denoted with a bar). In the Jordan frame, the energy density of a (conserved) fluid
with a constant equation of state w = p̄/⇢̄ scales as ⇢̄ / ā−3(1+w) while, in the Einstein
frame, ⇢ / A4⇢̄ / A1−3wa−3(1+w) since the scale factors in the two frames are related by
ā = Aa. As explained in Ref. [64] and briefly reviewed in section 2.2, the dependence of the
observational predictions on reheating originates from the gradient term k/H present in the
Mukhanov-Sasaki variable equation of motion. In order to evaluate concretely this term, one
must relate the comoving wave-number k during inflation with physical scales measured now.
Clearly, this depends on the whole history of the Universe and, therefore, explains why the
final result depends on the reheating duration. In the Einstein frame, one can show that the
gradient term takes the standard form, namely

k

H =
eNend−N

H

k

a0

✓

⇢end

⇢γ

◆1/4 1

Rrad
, (3.22)

with

lnRrad =
1− 3wreh

12(1 + wreh)
ln

✓

⇢reh

⇢end

◆

− 1− 3wreh

3(1 +wreh)
ln

✓

Areh

Aend

◆

, (3.23)

where wreh is the equation of state of the effective dominant fluid during reheating. In the
above expressions, it is important to emphasize that all the quantities are defined in the
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Einstein frame and that the non-standard scaling of the various energy densities (pressure-
less matter and radiation) has been systematically taken into account. All the extra terms
cancel out except in the definition of the parameter Rrad where there is an additional term
depending on the function A. Remarkably, this additional term is exactly such that the
parameter Rrad in the Einstein frame can be re-expressed in terms of the energy densities in
the Jordan frame only, namely

lnRrad =
1− 3wreh

12(1 + wreh)
ln

✓

⇢̄reh

⇢̄end

◆

. (3.24)

Let us stress again that the above equation has an unusual form: it is a quantity in the
Einstein frame expressed in terms of quantities defined in the Jordan frame.

It is also important to notice an additional limitation compared to the standard case:
in presence of non-minimal coupling to gravity, our parametrization of the reheating stage
works only for a constant equation of state wreh while in Ref. [64] it was valid for any wreh.
We now explain the origin of this limitation. In the Einstein frame, the general expression
of the parameter Rrad is given by

1

Rrad
=

✓

⇢reh

⇢end

◆1/4 areh
aend

. (3.25)

In order to obtain Eq. (3.23) from that formula, one should express the Einstein frame scale
factor in term of the energy density ⇢. If the equation of state wreh is a constant, then
a / A(1−3wreh)/(3+3wreh)a−1/(3+3wreh). This is what has been used above and this led to
Eqs. (3.23) and (3.24). But let us now assume that wreh is not a constant (notice that one
always has w = w̄ since the energy density and the pressure scales with the same power of
the function A in the Einstein frame). Then, ⇢ and a are related by

d⇢

⇢
= (1− 3wreh)

dA

A
− 3 (1 + wreh)

da

a
. (3.26)

If A is a constant, one can always write [64]

areh
aend

=

✓

⇢reh

⇢end

◆−1/(3+3wreh)

, (3.27)

where wreh is the mean equation of state during reheating, namely

wreh ⌘ 1

Nreh −Nend

Z Nreh

Nend

wreh(n)dn. (3.28)

If A and wreh, however, are not constant, it is no longer possible to express the final formula
in terms of wreh. In particular, we do not obtain a term A1−3wreh as desired. Therefore, in
what follows, we restrict our considerations to the case where the effective fluid dominating
the matter content of the Universe has a constant equation of state.

Then, from Eq. (3.22), one can re-express Rrad in terms of quantities defined at Hubble
radius crossing. One obtains

∆N⇤ = lnRrad − ln

 

k/a0

⇢
1/4
γ

!

+
1

4
ln

✓

H2
⇤

M2
Pl✏1⇤

◆

− 1

4
ln

✓

3

✏1⇤

Vend
V⇤

3− ✏1⇤
3− ✏1end

◆

. (3.29)
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Of course, this equation resembles a lot Eq. (2.44) but one has to realize that it involves

quantities defined in the Einstein frame only. The term ln
h

(k/a0) /⇢
1/4
γ

i

= ln
h

(k/ā0) /⇢̄
1/4
γ

i

and, therefore, its numerical value remains unchanged. The other quantities appearing in this
equation are obtained using our standard procedures since they refer to the inflaton sector
only. Then, the range of variation of ∆N⇤ in Eq. (3.29) is determined by putting limits on
lnRrad coming from the fact that reheating must proceed between the end of inflation and
the BBN. This means that the physical value of the energy density, that is to say ⇢̄reh, must
be such that ⇢̄nuc ⌘ (10MeV)4 < ⇢̄reh < ⇢̄end. We emphasize that physical limits must of
course refer to quantities defined in the Jordan frame. But, precisely, we have shown that
lnRrad in the Einstein frame can be expressed according to the standard formula, provided
the energy densities in the argument of the logarithm are Jordan frame energy densities.
Therefore, in practice, we have ∆N⇤ 2

⇥

∆Nnuc
⇤ ,∆N end

⇤
⇤

with

∆N end
⇤ = −N0 + ln

✓

H⇤
MPl

◆

− 1

4
ln

✓

⇢end

M4
Pl

◆

, (3.30)

where all the quantities in the above equation are calculated in the Einstein frame and, hence,
are directly available since they are, by definition, the outcomes of the ASPIC library code.
The other limit can be expressed as

∆Nnuc
⇤ = −N0 + ln

✓

H⇤
MPl

◆

− 1

3(1 + w)
ln

✓

⇢̄end

M4
Pl

◆

− 1− 3w

12(1 + w)
ln

✓

⇢̄nuc

M4
Pl

◆

. (3.31)

The quantity ⇢̄nuc is defined in the Jordan frame but its value is explicitly known, see above.
On the other hand, we need to evaluate ⇢̄end since the code only delivers ⇢end. By definition,
we have

⇢̄end =
⇢end

A4
end

= F 2
end⇢end =

(

1 + ⇠h2end
)2
⇢end. (3.32)

But 1 + ⇠h2end = e2χend/
p
3 and χend = φend/(

p
2MPl) =

p
3/2 ln

(

1 + 2/
p
3
)

. As a conse-
quence, the relation between the two final energy densities in the two frames can be written
as

⇢̄end =

✓

1 +
2p
3

◆2

⇢end ' 2.15 ⇢end. (3.33)

Therefore, the lower bound is only slightly modified (recall that ⇢̄end appears in a logarithmic
term). Anyway, given the uncertainty in the definition of ⇢̄nuc, it is irrelevant to include this
tiny correction in our determination of ∆N⇤. Consequently, we conclude that the range of
variation of ∆N⇤ can be obtained without modifying anything to our usual way to calculate
it and one can use the ASPIC code without introducing these negligible corrections. Of
course, if one considers that the potential studied here comes from supergravity, the above
considerations just not apply and one can work with the standard approach.

The reheating consistent observational predictions of Higgs inflation are represented in
Fig. 81 where we have displayed their dependence in the reheating temperature defined in the

Jordan frame by g
1/4
⇤ T̄reh =

(

30⇢̄reh/⇡
2
)1/4

. Notice that, a priori, the reheating temperature
can be calculated exactly in Higgs inflation since all the couplings between the Higgs and the
other fields in the standard model are known. This gives a spectral index which is in good
agreement with the data and a small contribution of gravity waves. At this stage, in the
Higgs case, we do not have constraints on the parameter ⇠ since it is hidden in the mass scale
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M . Its observational value therefore comes from the amplitude of the CMB anisotropies and
reads

M4

M4
Pl

= 1920⇡2
✓

1− e

q

2
3
x⇤
◆−4

e
2
q

2
3
x⇤Q

2
rms−PS

T 2
. (3.34)

Upon using the trajectory given by Eq. (3.21), the mass scale M can be written as M/MPl '
0.02 (∆N⇤)

−3/2, which for the fiducial value ∆N⇤ = 55, implies that M ' 4⇥ 10−5MPl, i.e.,
roughly speaking, inflation takes place at the GUT scale in this model. Then, using this
expression of M , one obtains the following numerical value for the parameter ⇠,

⇠ ' 49000
p
λ , (3.35)

where we have considered λ = mH/v, with v ' 175GeV and mH ' 125GeV (see Refs. [182,
183]). These considerations are in agreement with the conclusions obtained in Refs. [184–
186]. If we now consider the supergravity realization of the model, one obtains a constraint
on the parameter µ̂, that is to say if one takes c = 1 on µ and λ, see Ref. [193].

4 One Parameter Models

4.1 Radiatively Corrected Higgs Inflation (RCHI)

4.1.1 Theoretical Justifications

Let us consider again the model given by Eq. (3.1). The three functions describing this
action are modified when quantum corrections are taken into account. As a consequence, the
potential which supports inflation is also modified and this leads to a new inflationary scenario
that we call Radiatively Corrected Higgs Inflation (RCHI). This scenario has been studied in
Refs. [198–203]. At first order, the corrections to the function Z(h) can be neglected while
the corrections to F (h) and to U(h) read

F (h) = 1 + ⇠h2 +
C

16⇡2
h2 ln

✓

M2
Plh

2

µ2

◆

, (4.1)

U(h) =M2
Pl

λ

4

✓

h2 − v2

M2
Pl

◆2

+
λA

128⇡2
M2

Plh
4 ln

✓

M2
Plh

2

µ2

◆

, (4.2)

where µ is the renormalization scale and A and C are two new constants given by

A =
3

8λ

⇥

2g4 +
(

g2 + g02
)

− 16y4t
⇤

+ 6λ+O
(

⇠−2
)

, (4.3)

C = 3⇠λ+O
(

⇠0
)

, (4.4)

yt being the Yukawa coupling of the top quark and g and g0 the coupling constants of the
SU(2)L and U(1)Y groups. The presence of quantum corrections modifies the relation between
the Jordan and the Einstein frames and changes the shape of the potential in the Einstein
frame. Assuming the smallness of A/(32⇡2) ⌧ 1 and C/(8⇡2⇠) ⌧ 1, which is necessary
for the consistence of the one-loop calculation (the second condition is in fact equivalent to
Cλ/(8⇡2) ⌧ 1 because C is proportional to ⇠), one obtains the following expression

V ' M4
Plλ

4⇠2
⇠2h4

(1 + ⇠h2)2



1− ⇠h2

1 + ⇠h2
C

8⇡2⇠
ln

✓

M2
Plh

2

µ2

◆

+
A

32⇡2
ln

✓

M2
Plh

2

µ2

◆]

. (4.5)
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Figure 7. Top left panel: the solid blue line represents the radiatively corrected Higgs potential, see
Eq. (4.11), with A

I
= 5. It is compared to the tree level potential given by Eq. (3.9) (dashed green

line) and to Eq. (4.11) with A
I
= 0 (solid red line) which is supposed to be a good approximation of

the tree level potential. It is obvious that this is indeed the case in the regime of interest, where the
vev of the Higgs field is not too small. Top right panel: logarithm of potential, the three lines and the
color code having the same meaning as in the top left panel. Bottom left panel: slow-roll parameter
✏1 as a function of the field φ, still with the same convention. As can be seen in this plot, even in
presence of radiative corrections, the end of inflation occurs by violation of the slow-roll condition.
Bottom right panel: slow-roll parameters ✏2 (solid blue line) and ✏3 (dashed blue line) for A

I
= 5

compared to their tree level counter parts (solid and dashed green lines, respectively).

Of course, if A = C = 0, one checks that this potential reduces to the potential of the
previous section. Notice that, at this stage, we have not assumed that ⇠h2 & 1. If we further
postulate that ⇠h2 & 1 and approximate ⇠2h4/

(

1 + ⇠h2
)2 ' 1 − 2/(⇠h2), then the above

formula reduces to

V ' M4
Plλ

4⇠2



1− 2

⇠h2
+

A
I

16⇡2
ln

✓

MPlh

µ

◆]

, (4.6)

where AI ⌘ A−12λ is the inflationary anomalous scaling. This formula coincides with Eq. (6)
of Ref. [200] and Eq. (9) of Ref. [202]. Although the above formulas give V in the Einstein
frame, it is still expressed in term of h. The expression for the field in the Einstein frame, χ,
remains to be established. Assuming the smallness of the loop corrections (but, here, we do
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not yet assume that ⇠h2 & 1), we obtain

dχ

dh
'

p
3h⇠

(1 + ⇠h2)



1 +
C

16⇡2⇠
+

C

8⇡2⇠

1

1 + ⇠h2
ln

✓

MPlh

µ

◆]

. (4.7)

Notice that, in order to obtain this equation, we have neglected a term proportional to
1/(⇠h)2 ⌧ 1. Contrary to the assumption ⇠h2 & 1, the condition (⇠h)2 & 1 was also used
in section 3.1. Then, the integration of this differential equation leads to

χ '
p
3

2
ln
(

1 + ⇠h2
)

+

p
3C

16⇡2⇠



lnh− 1

1 + ⇠h2
ln

✓

MPlh

µ

◆]

. (4.8)

Using only now the limit ⇠h2 & 1, this expression reduces to

χ '
p
3

2
ln
(

⇠h2
)

+

p
3C

16⇡2⇠
lnh. (4.9)

As expected the relation between the Jordan frame field h and the Einstein frame field χ is
modified by the quantum corrections. Inverting the above formula gives

⇠1/2h ' eχ/
p
3 − C

16⇡2⇠
eχ/

p
3

✓

χp
3
− 1

2
ln ⇠

◆

. (4.10)

This equation allows us to find the expression of the potential in the Einstein frame. Inserting
Eq. (4.10) into Eq. (4.6) and introducing the canonically normalized field φ ⌘

p
2MPlχ, one

obtains

V (φ) ' M4
Plλ

4⇠2



1− 2e−2φ/(
p
6MPl) − C

4⇡2⇠
e−2φ/(

p
6MPl)

✓

φp
6MPl

− 1

2
ln ⇠

◆

+
AI

16⇡2
ln

✓

MPl

µ
p
⇠

◆

+
AI

16⇡2
φp
6MPl

]

' M4
Plλ

4⇠2



1− 2e−2φ/(
p
6MPl) +

AI

16⇡2
φp
6MPl

]

. (4.11)

We see that we now deal with a “one parameter model”, A
I
, since the mass scale M4 ⌘

M4
Plλ/(4⇠

2) is determined by the COBE normalization. In the case A
I
= 0, it is also in-

teresting to compare the above potential with the one given by Eq. (3.9). We see that this

corresponds to assuming that the exponential e−2φ/(
p
6MPl) ⌧ 1 (or, equivalently, φ/MPl & 1)

and to expand the corresponding expression at first order in this small parameter. This leads

to the following formula: V ' M4
h

1− 2e−2φ/(
p
6MPl)

i

, i.e. exactly Eq. (4.11) for AI = 0.

It is worth remarking that this approximation is not very good towards the end of infla-
tion. Indeed, it is easy to show that (see below), for the potential (4.11) with A

I
= 0,

φend/MPl =
p

3/2 ln
(

2 + 2/
p
3
)

' 1.4 which should be compared with Eq. (3.16) for the
potential (3.9) according to which φend/MPl ' 0.94.

4.1.2 Slow-Roll Analysis

Given the potential (4.11), namely

V (φ) =M4



1− 2e−2φ/(
p
6MPl) +

A
I

16⇡2
φp
6MPl

]

, (4.12)
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we can now proceed to the slow-roll analysis. The potential (4.12) is represented and com-
pared with its tree level counterpart in Fig. 7. Defining x ⌘ φ/MPl, the three first slow-roll
parameters can be written as

✏1 =
1

12

"

4e−
p

2/3x +A
I
/(16⇡2)

1− 2e−
p

2/3x +A
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/(32⇡2)

p

2/3x

#2

, (4.13)
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(4.15)

These three slow-roll parameters are represented in Fig. 7 (bottom panels). It is interesting
to compare these formulas with the expressions derived in Ref. [198] [see Eqs. (22) and (23)
of that paper]. An approximate equation for the first slow-roll parameter is obtained by
neglecting the second and third terms in the denominator of Eq. (4.13), which, as a matter
of fact, consists in writing V (φ) 'M4. Then, it follows that

✏1 '
4

3
e−2

p
2/3x

✓

1 +
A

I

64⇡2
e
p

2/3x

◆2

' 4

3
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1 +
h2

h2
I
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, (4.16)

where we have defined h2
I

⌘ 64⇡2/(⇠A
I
) in agreement with Ref. [198]. The same ap-

proximation is made for the second slow-roll parameter (except that Ref. [198] calculates
⌘̂ ⌘ M2

PlVφφ/V rather than ✏2). The second field derivative of the potential can be writ-

ten as Vφφ = −4M4e−
p

2/3x/(3M2
Pl) and, therefore, if one considers that V (φ) ' M4, then

⌘̂ ' −4/(3⇠h2). We conclude that our expressions of ✏1 and ✏2 reproduce Eqs. (22) and (23)
of Ref. [198] in the limit where V (φ) 'M4.

Let us now study how inflation ends in this model. From Fig. 7, it is clear that this
occurs by violation of the slow-roll conditions. Working out the condition ✏1 = 1, it follows
that

xend =
1p
2
−
r
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2

32⇡2

A
I

+
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2
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]

, (4.17)

where, if AI > 0, W 0
−1

= W0 while, if AI < 0, W 0
−1

= W−1.
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We now turn to the slow-roll trajectory. It can be integrated exactly and straightforward
manipulations lead to the following expression

N −Nini =

r
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, (4.18)

where Li2 denotes the dilogarithm function [204, 205]. Let us also notice that if we use the
approximation V (φ) ' M4 already discussed before, then one can obtain a much simpler
formula, namely

N −Nini = −48⇡2
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. (4.19)

This expression is in agreement with Eq. (24) of Ref. [198]. In this case, the trajectory can
even be inverted and the corresponding expression for the field φ reads
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We are now in a position where the predictions of the models can be calculated. They
are presented in Fig. 81. We see that very negative values of AI are incompatible with the
CMB while large values of A

I
remain close to the allowed contours. Of course |A

I
| cannot be

too large since we have required A
I
/(64⇡2) ⌧ 1. We have chosen the upper bound in Fig. 81

to be A
I
= 100 for which A

I
/(64⇡2) ' 0.16, i.e. still a reasonable number. It is interesting to

compare these findings with the existing literature. Using the approximate trajectory (4.19)
and neglecting the contribution originating from the end of inflation, one obtains

x⇤ =

r

3

2
ln



64⇡2

AI

(exBKS − 1)

]

, (4.21)

where xBKS ⌘ AI∆N⇤/(48⇡2) (xBKS is denoted x in Ref. [198]). Then, from Eq. (4.16) and
the fact that ✏2 = 4✏1 − 2⌘̂, it follows that
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From these two expressions, one deduces that

nS = 1− 2

∆N⇤

xBKS

exBKS − 1
, r =

12

∆N2⇤

✓

xBKSe
x
BKS

exBKS − 1

◆2

. (4.24)

Notice that, in the formula giving the spectral index, the contribution originating from ✏1
has been neglected since it scales / 1/∆N2

⇤ . These approximate expressions match Eqs. (32)
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Figure 8. Predictions of the RCHI model in the plane (nS, r). The exact slow-roll predictions (colored
segments starting in black/green at the bottom/left part of the plot and ending in red right slightly on
the right of the allowed contours) are compared to various approximations represented by the second
collection of colored segments, by the red thick dashed line and by the yellow dotted-dashed line, see
the text for a detailed explanation. In the regime 10 < A

I
< 100, the exact predictions significantly

differ from the approximate ones.

and (34) of Ref. [198]. For ∆N⇤ = 60, they can be represented as a line r = r(nS) in the
plane (nS, r), the parameter along the curve being A

I
. This line has been plotted in Fig. 8

for −30 < AI < 100 (red dashed line). Requiring 0.9457 < nS < 0.9749 which is the 2σ
Planck range [153] (or 0.934 < nS < 0.988, which is the 2σ range coming from combining the
WMAP 9th year data, the Baryon Acoustic Oscillations (BAO) data and the Supernovae
measurements), one obtains the solid thick red segment. It follows that −8 . A

I
. 4 (or

−12 . A
I
. 14 with WMAP, again in agreement with Ref. [198]). These predictions are

compared to the exact slow-roll predictions of Fig. 81. As before, the slow-roll predictions
are represented by a collection of segments, each segment corresponding to different values
of A

I
and each point of a given segment being in one-to-one correspondence with a given

reheating temperature. The exact slow-roll predictions are such that, for A
I
< 0, the green

segments go to the bottom left side of the figure while for A
I
! 100, the pink/red segments

remain close to the allowed contours (see also Fig. 81). In the limit of “large” positive values
of AI , the exact slow-roll predictions and the predictions based on Eqs. (4.24) significantly
differ. While, in order to remain close to the allowed contours, Eqs. (4.24) tell us that AI . 4,
the exact slow-roll predictions show that the model is still viable for any positive values of
A

I
. 100. We conclude that the upper bound A

I
. 4 (with the WMAP data, A

I
. 14) is

inaccurate and is just an artifact due to the inaccurate nature of the “approximation to the
slow-roll approximation”.

Let us try to identify the origin of this discrepancy more precisely. In order to investigate
this issue, we have also represented in Fig. 8, the predictions obtained when the approximate
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trajectory (4.19), the approximate expression of the first slow-roll parameter (4.16) and the
relation ✏2 = 4✏1 − 2⌘̂ but, now, without neglecting ✏1, are used together with an exact
expression for φend. They are represented by the second collections of segments in Fig. 8.
We see that for A

I
& 0, they differ from the red thick solid line and bend toward the upper

left part of the plot which is also the direction taken by the exact predictions. This suggests
that neglecting the term 4✏1 in the expression of ✏2 causes a non-negligible error. This is
confirmed if, instead of using Eq. (4.24) for nS, we now take

nS = 1− 3

2∆N2⇤

✓

x
BKS

exBKS

exBKS − 1

◆2

− 2

∆N⇤

x
BKS

exBKS − 1
, (4.25)

and plot again the line r = r(nS). This gives the yellow dotted-dashed curve which follows
the second collection of segments. If, however, we compare the red segments, namely those
with A

I
“large”, corresponding the exact predictions to the approximate red ones, we see

that including the term 4✏1 is not sufficient. For A
I
' 60, the exact predictions are roughly

compatible with the data while the segments corresponding to the approximate formulas
are not. We conclude that RCHI represents a textbook case for ASPIC. It illustrates that,
sometimes, “approximating the slow-roll approximation” can lead to too drastic conclusions,
especially given the current accuracy of the data. It is an additional motivation to use the
slow-roll method without any other scheme of approximations and this is the essence of the
ASPIC project presented in this article.

A last word is in order concerning the constraints on the parameter AI . Particle physics
implies that −48 . AI . −20 and the previously discussed inaccuracies were concerning only
a weaker upper limit on A

I
. On the contrary, we see in Fig. 8 that the bound A

I
& −8 is

accurate whatever the approximation scheme chosen. Therefore, when particle physics and
cosmological data are simultaneously taken into account, the conclusions of Ref. [198] are
unchanged and RCHI remains disfavored.

Finally, the scale M can be determined from the CMB normalization and this leads to
the following expression

M4

M4
Pl

= 120⇡2
Q2

rms−PS

T 2

h

4 e−
p

2/3x⇤ +A
I
/(16⇡2)

i2

h

1− 2 e−
p

2/3x⇤ +A
I
/(32⇡2)

p

2/3x⇤
i3 . (4.26)

The knowledge of φ⇤ allows us to find the posterior distribution of M , that is to say of λ/⇠2

or ⇠, since the Higgs self coupling, λ = mH/v, is now known.

4.2 Large Field Inflation (LFI)

4.2.1 Theoretical Justifications

Large fields models, also referred to as chaotic inflation [206], are characterized by the mono-
mial potential [207–211] V (φ) / M4φp. The number p is the only model parameter, in
addition to the normalization M of the potential. The index p is usually a positive integer
(and it was recently realized in Ref. [212] that this type of scenario can emerge in the context
of supergravity) but various models have been proposed in which it can also be a rational
number [213–218]. It is interesting to briefly discuss concrete models where this is actually
the case. Here, we follow Refs. [217, 218]. These models are supergravity models where one
assumes that the Kähler potential is invariant under a generalization of the shift symmetry
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Figure 9. Large Field Inflation (LFI). Top left panel: large field potential for p = 2. Top right panel:
logarithm of the potential for the same value of p. The required flatness of the potential becomes
obvious on this plot. Bottom left panel: slow-roll parameter ✏1 for a large field potential with p = 2.
The shaded area indicates where acceleration stops. Bottom right panel: slow-roll parameters ✏2 and
✏3 for a large field potential with p = 2. Only one curve appears because ✏2 = ✏3. On this plot, the
shaded region signals the breakdown of the slow-roll approximation, which is not necessarily the end
of the accelerated phase.

(usually needed in order to avoid the so called ⌘-problem). In the present case, the trans-
formation is taken to be χn ! χn + ↵ where ↵ is a real number and χ a chiral superfield.
This means that the Kähler potential should be a function of χn − χ†n only. In addition,
we allow the presence of a small breaking term in the Kähler potential of the form bχχ†

where b⌧ 1. We also assume that the superpotential breaks the generalized shift symmetry.
Summarizing, we assume that

K = bχχ† + c1
(n−1)/2

⇣

χn − χ†n
⌘

− n−1

2

⇣

χn − χ†n
⌘2

+XX†, (4.27)

W = λXχm, (4.28)

where X is another superfield and λ and c1 (notice that it is pure imaginary) are constant.
The model is parametrized by the quantities n and m and  ⌘ 1/M2

Pl. If, during inflation,
X acquires a large mass compared to the Hubble parameter and is stabilized at the origin,
hXi = 0, then it is not difficult to show that this supergravity model can be described by the
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following effective Lagrangian

L = −


b+ n2n−1
⇣

χχ†
⌘n−1

]

@µχ@
µχ†

− exp



b|χ|2 + c1
n/2

⇣

χn − χ†n
⌘

− n

2

⇣

χn − χ†n
⌘2
]

λ2
⇣

χχ†
⌘m

. (4.29)

Then, one can write the field χ in polar form, χ ⌘ ↵eiβ (↵ is of dimension one and β

dimensionless) and the above potential takes the form

V = λ2↵2m exp
h

b↵2 + 2ic1
n/2↵n sin (nβ) + 2n↵2n sin2 (nβ)

i

. (4.30)

Writing @V/@β = 0, one obtains the condition 2in/2↵n sin(nβ) = −ic1 or n/2
(

χn − χ†n) =
c1. It is thus natural to assume that the inflaton field rolls along that direction. As a
consequence, the effective Lagrangian takes the form

L = −


b+ n2n−1
⇣

χχ†
⌘n−1

]

@µχ@
µχ† − eb|χ|

2+c21/2λ2
⇣

χχ†
⌘m

. (4.31)

Now, in the regime b|χ|2 ⌧ 1, the exponential becomes essentially independent of the field
χ and the coefficient b in the kinetic term becomes negligible. It is therefore natural to
define a new quantity ✓ ⌘ (n−1)/2χn for which one obtains the Lagrangian of a canonically
normalized field, namely

L = −@µ✓@µ✓† − ec
2
1/2λ2

⇣

✓✓†
⌘m/n

. (4.32)

Finally, we take the imaginary part of ✓ to be stabilized to c1 in order to satisfy the condition
discussed above and we define the real field φ by ✓ = φ/

p
2 + c1/2. As a consequence, it

follows

L ' −1

2
@µφ@

µφ† − ec
2
1/2λ2φ2m/n. (4.33)

Therefore, we have obtained a LFI model with p = 2m/n (neglecting a term |c1|2 in V ). In
Ref. [217], the case n = 2 and m = 1 was considered and we see that this leads to a linear
potential. In Ref. [218], the generalized case considered before was introduced and studied.
It is worth mentioning that, when the condition b|χ|2 ⌧ 1 is not satisfied, the potential
remains of the LFI form but with a different p, see Ref. [218]. For instance, as shown in
Ref. [217], if n = 2 and m = 1, the potential is in fact quadratic at the origin. This means
that the standard relation between p (in the inflationary regime) and the mean equation of
state during reheating namely, wreh = (p − 2)/(p + 2) [54], is no longer valid in that case.

4.2.2 Slow-Roll Analysis

Having studied how the LFI model can be implemented in high energy physics, we now turn
to the inflationary analysis. In the following, we write V (φ) as

V (φ) =M4

✓

φ

MPl

◆p

. (4.34)
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This potential is represented in Fig. 9 for p = 2. The three Hubble flow functions are
straightforwardly obtained from Eqs. (2.4), (2.5) and (2.6). Defining x ⌘ φ/MPl, one gets

✏1 =
p2

2x2
, ✏2 =

2p

x2
, ✏3 = ✏2 . (4.35)

These functions are represented in the two bottom panels of Fig. 9. They are monotonic
decreasing functions of φ. One can immediately deduce that, for a given p, the model in the
plane (✏1, ✏2) is contained in the line ✏1 = (p/4)✏2.

The slow-roll trajectory is completely explicit and obtained by quadrature from Eq. (2.11)

N −Nend = − 1

M2
Pl

Z φ

φend

V (χ)

V 0(χ)
dχ = −1

p

Z φ/MPl

φend/MPl

xdx =
1

2p

(

x2end − x2
)

. (4.36)

This expression can be inverted and reads

x =
q

x2end − 2p (N −Nend) . (4.37)

For the large field models, inflation ends naturally when ✏1 = 1 (see section 1). Along
the φ > 0 branch of the potential, this leads to

xend =
pp
2
. (4.38)

This expression also allows us to obtain the total number of e-folds. Plugging Eq. (4.38) into
Eq. (4.36), one arrives at

Nend −Nini =
1

2p
x2ini −

p

4
, (4.39)

which can be very large if the initial field value is super-Planckian. Notice that this does not
imply that the energy density is close to the Planck scale as this one is typically given by
the potential and proportional to M4. In fact, the model remains under control only if the
initial energy density is smaller than M4

Pl and this imposes a constraint on both φini and M
which reads

xini =
φini

MPl

.

✓

MPl

M

◆4/p

. (4.40)

Let us notice that, when the inflaton energy density approaches the Planck energy density,
quantum effects become important. In this case, the stochastic inflation formalism must be
used [219–225].

We now turn to the explicit determination of the slow-roll parameters. We have seen
that the model is represented by the trajectory ✏1 = (p/4)✏2 but observable models only
lie in a limited portion of this straight line. Indeed, the Hubble flow parameters should
be evaluated when the scales of astrophysical interest today left the Hubble radius during
inflation. Following the discussion of section 2.2, we assume the pivot mode crossed the
Hubble radius for φ = φ⇤ at the e-fold number N⇤. From the trajectory, we have

x2⇤ = 2p
⇣

∆N⇤ +
p

4

⌘

, (4.41)

and the slow-roll parameters read

✏1⇤ =
p

4 (∆N⇤ + p/4)
, ✏2⇤ =

1

∆N⇤ + p/4
, ✏3⇤ = ✏2⇤ . (4.42)

– 40 –



Solving Eq. (2.47) for φ⇤ yields the slow-roll predictions represented in Fig. 83. As expected,
the whole family lies in the region ✏2 > 0 and verifies ✏1 = p/4✏2. From Fig. 83, we see that
all the models with p & 3 lie outside the 2σ contour. The quadratic (or massive) model is
under great pressure since it predicts quite a high contribution of gravitational waves, up to
r ' 15% level.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

Q2
rms−PS

T 2
=

1

480⇡2✏1⇤

H2
⇤

M2
Pl

=
1

1440⇡2✏1⇤

V⇤
M4

Pl

. (4.43)

In the case of large fields model, this implies

✓

M

MPl

◆4

=
720⇡2p2

(x2⇤)
p/2+1

Q2
rms−PS

T 2
, (4.44)

and given the constraints on p and ∆N⇤, this leads to M/MPl ' 3 ⇥ 10−3. We recover the
conclusion that, for large field models, inflation takes place close to the Grand Unified Theory
(GUT) scale.

4.3 Mixed Large Field Inflation (MLFI)

This model is a generalization of the LFI model V (φ) / φp, see section 4.2, where two
monomials / φ2 and / φ4 are added. The MLFI potential reads

V (φ) =M4 φ
2

M2
Pl

✓

1 + ↵
φ2

M2
Pl

◆

, (4.45)

where ↵ is a positive dimensionless parameter. If φ/MPl ⌧ 1/
p
↵, then the potential is of

the LFI type with p = 2, i.e. V (φ) ' M4φ2/M2
Pl, whereas if φ/MPl & 1/

p
↵, the potential

is of the LFI type with p = 4, i.e. V (φ) ' M4↵φ4/M4
Pl. Clearly, the interesting regime is

when φ/MPl ' 1/
p
↵, where the two terms are of equal importance. The potential and its

logarithm are displayed in Fig. 10. We notice that V (φ) is an increasing function of the field
vev and, as a consequence, that inflation proceeds from the right to the left.

This model has been investigated in different contexts. Of course, the shape of the
potential appears to be natural and well-motivated since it just represents a free theory (with
particles of mass 2M4/M2

Pl) corrected by the usual self-interacting quartic term. Therefore,
it does not come as a surprise that this potential has been used in many different works.
In Ref. [226], this model is studied in the case where a bulk scalar field is driving inflation
in large extra dimensions. In Ref. [227], it is considered in a situation where inflation is
driven by highly excited quantum states. In Refs. [228, 229], the MLFI potential is utilized
in the context of “fresh inflation”. The same potential was again considered in Ref. [230]
where the role of inflaton is played by the Higgs triplet in a model where the type II seesaw
mechanism is used to generate the small masses of left-handed neutrinos. Finally, it is also
studied in Ref. [231] where supersymmetric hybrid inflation (in the framework of the Randall-
Sundrum type II Braneworld model) is considered. The only constraint on the parameters
of the model that is (sometimes) required is that the self-interacting term should be sub-
dominant. This leads to the condition ↵M4/M4

Pl ⌧ 1. Given the typical values imposed by
CMB normalization, i.e. M/MPl ' 10−3 [see Eq. (4.44)], this is not very stringent and ↵ can
in fact vary in a quite large range of values.

– 41 –



Figure 10. Top left panel: mixed large field (MLFI) potential, see Eq. (4.45), for ↵ = 0.05. Top
right panel: logarithm of the potential for the same value of ↵. The dotted line indicates the potential
V (φ) 'M4φ2/M2

Pl
which is the limit of the MLFI potential in the regime φ/MPl ⌧ 1/

p
↵ while the

dashed line represents the expression V (φ) ' M4↵φ4/M4
Pl
, the limit of V (φ) when φ/MPl & 1/

p
↵.

For ↵ = 0.05 the two lines meet at the following value, 1/
p
↵ ' 4.5, as can be directly checked in

the figure. The arrow in the top left and right panels indicate in which direction inflation proceeds.
Bottom left panel: slow-roll parameter ✏1 for a mixed large field potential with ↵ = 0.05. Bottom
right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line) still for ↵ = 0.05.

Defining x ⌘ φ/MPl, the three first slow-roll parameters can be expressed as

✏1 =
2

x2

✓

1 + 2↵x2

1 + ↵x2

◆2

, ✏2 =
4

x2
1 + ↵x2 + 2↵2x4

(1 + ↵x2)2
, (4.46)

and

✏3 =
M2

Pl

x2
1 + 2↵x2

(1 + ↵x2)2
4 + 12↵x2 + 8↵3x6

1 + ↵x2 + 2↵2x4
. (4.47)

They are displayed in Fig. 10. We see that the three slow-roll parameters are decreasing
functions of the field vev , which means that they are all increasing functions during inflation.
As a consequence, inflation can stop by violation of the slow-roll conditions at xend given by
✏1 = 1 (see below). We also notice that ✏2 and ✏3 are larger than one at xend. This means
that the slow-roll approximation breaks down slightly before the end of inflation and that the
last few e-folds of inflation may be not properly described by the slow-roll approximation.
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Figure 11. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Mixed Large
Field inflation, inflation proceeds along the “0” branch above the lineW = 1 in the direction specified
by the arrow.

Let us now study the slow-roll trajectory. It is given by

Nend −N = −1

8



x2end +
1

2↵
ln
(

1 + 2↵x2end
)

− x2 − 1

2↵
ln
(

1 + 2↵x2
)

]

, (4.48)

whereNend is the number of e-folds at the end of inflation. One can check that this expression
is asymptotically correct. Indeed, when ↵⌧ 1, the slow-roll trajectory reduces to

x2end = x2 − 4 (Nend −N) , (4.49)

which is the trajectory in the massive case, i.e. LFI with p = 2, see Eq. (4.36). On the other
hand, in the limit ↵! 1, one obtains

x2end = x2 − 8 (Nend −N) , (4.50)

which is, as expected, the slow-roll trajectory in the quartic case, i.e. LFI with p = 4.
In general, the trajectory can be inverted and expressed in terms of the Lambert function.
Straightforward manipulations lead to

x =
1p
2↵

r

−1 +W0

h

e1+2↵x2
end

(

1 + 2↵x2end
)

e−16↵(N−Nend)
i

. (4.51)

The corresponding Lambert function is displayed in Fig. 11, together with the region where
inflation proceeds.

We have seen that, in MLFI, inflation stops by violation of the slow-roll condition. Let
us therefore determine the corresponding vev of the field. The condition ✏1 = 1 leads to

↵x3end − 2
p
2↵x2end + xend −

p
2 = 0. (4.52)
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This is a cubic algebraic equation that can be solved exactly. In the limit ↵& 1, the solution
reads xend ' 2

p
2 which is indeed the solution for the quartic case, see Eq. (4.38). On the

other hand, if ↵⌧ 1, then xend '
p
2 which is also the correct result for the quadratic case.

The general solution is

xend =
2
p
2

3
+

1

3↵

(

1

4
p
2

"

4↵2 (32↵ + 9) + 2↵

q

4↵2 (32↵ + 9)2 − 8↵ (8↵ − 3)3

#)1/3

+
1

3
(8↵ − 3)

(

1

4
p
2

"

4↵2 (32↵ + 9) + 2↵

q

4↵2 (32↵ + 9)2 − 8↵ (8↵− 3)3
#)−1/3

,

(4.53)
which is the one used in the ASPIC library.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

✓

M

MPl

◆4

=
2880⇡2

x4

(

1 + 2↵x2⇤
)2

(1 + ↵x2⇤)
3

Q2
rms−PS

T 2
. (4.54)

Similarly to LFI (see section 4.2), this gives rise to M/MPl ' 10−3. The reheating consistent
slow-roll predictions for the MLFI models are displayed in Fig. 84. The reheating equation of
state parameter wreh has been taken to 0 which is consistent with the fact that the potential
is quadratic close to its minimum. As expected, when ↵ ⌧ 1 the predictions of the model
match those of LFI with p = 2 and are aligned along the ✏1 = ✏2/2 line. On the other
hand, if ↵ & 1, then the predictions are consistent with those of LFI with p = 4 and are
aligned along the ✏1 = ✏2 line. In the intermediate regime, it is interesting to notice that
the MLFI predictions continuously interpolate between these two asymptotic solutions but
do not remain inside the domain delimited by those two lines. Indeed, when ↵ is larger than
some value, one has ✏1 > ✏2. This means that, if one starts from a pure quartic potential (LFI
with p = 4) and adds a small quadratic term, this extra term has the effect of increasing the
“effective value” of p, which is quite counter intuitive. On the other hand, since the quadratic
model fits better the data than the quartic one, small values for the parameter ↵ are favored
(all the models with ↵ > 10−3 lie outside the 2σ contour of the Planck data). High reheating
temperatures are also preferred.

4.4 Radiatively Corrected Massive Inflation (RCMI)

This model is based on Ref. [232] and implements radiative corrections due to fermion cou-
plings over the massive (p = 2) large field model (see section 4.2). With an appropriate
choice of the renormalization scale µ = gMPl, g denoting the Yukawa coupling, the potential
is given by

V (φ) =
1

2
m2φ2 − g4

16⇡2
φ4 ln

✓

φ

MPl

◆

=M4

✓

φ

MPl

◆2 

1− 2↵
φ2

M2
Pl

ln

✓

φ

MPl

◆]

, (4.55)

where

M4 ⌘ 1

2
m2M2

Pl, ↵ ⌘ g4M2
Pl

16⇡2m2
. (4.56)

This expression is obtained in the large field regime φ & m/g (this condition coming from
the requirement that the fermion loop contribution dominates over the self-interaction loop
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Figure 12. Radiatively Corrected Massive Inflation (RCMI) for ↵ = 0.01. Top panels: potential (left)
and logarithm of the potential (right). Bottom left panel: slow-roll parameter ✏1 with respect to field
values. The shaded area indicates where inflation stops. Bottom right panel: slow-roll parameters ✏2
(solid line) and ✏3 (dotted line).

contribution), i.e. assuming that the inflationary regime takes place under the condition

φ4

M4
Pl

& 1

8⇡2↵

M4

M4
Pl

. (4.57)

Defining x ⌘ φ/MPl, the Hubble flow functions are given by

✏1 =
2

x2

✓

1− ↵x2 − 4↵x2 lnx

1− 2↵x2 lnx

◆2

, (4.58)

✏2 =
4

x2

(

1 + ↵x2
) (

1 + 2↵x2
)

− 2↵x2 lnx
(

1− ↵x2 − 4↵x2 lnx
)

(1− 2↵x2 lnx)2
, (4.59)

and

✏3 =
4

x2
1− ↵x2 − 4↵x2 lnx

(1− 2↵x2 lnx)2

⇥ 1− ↵x2
⇥

↵x2
(

4↵x2 + 9
)

+ 1
⇤

− ↵x2 lnx
⇥

4↵2x4 lnx(4 ln x+ 1) +
(

↵x2 + 3
) (

6↵x2 + 2
)⇤

(1 + ↵x2) (1 + 2↵x2)− 2↵x2 lnx (1− ↵x2 − 4↵x2 lnx)
.

(4.60)
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If ↵ = 0, one recovers the slow-roll parameters of the massive case (namely LFI with p = 2,
see section 4.2) as expected.

Let us now discuss the field domains in which inflation can take place. It is clear that
the above potential is not positive definite for all field values. It becomes negative at the
point

xV=0 =
φV=0

MPl

=

s

1

↵W0 (1/↵)
, (4.61)

where W0 is the 0-branch of the Lambert function. The model is defined only in the regime
φ < φV=0. On the other hand, the top of the potential, where V 0 = 0 (or equivalently ✏1 = 0),
is given by

xtop =
φtop

MPl

=

v

u

u

u

t

1

2↵W0

✓p
e

2↵

◆ . (4.62)

As the model makes sense only if the logarithmic terms do not dominate the potential, the
acceptable regime is φ < φtop < φV=0, and a large field region only exists for φtop/MPl & 1.
From the above expression, this means that we must be in the regime ↵ ⌧ 1. For φ < φtop
one can check from Eqs. (4.55) and (4.62) that the loop corrections never exceed ↵/e.

Let us now turn to the slow-roll trajectory. It is given by

N −Nend = −1

2

Z φ/MPl

φend/MPl

x− 2↵x3 lnx

1− ↵x2 − 4↵x2 lnx
dx, (4.63)

an integral that cannot be performed analytically and which is numerically evaluated in
ASPIC. For the purpose of this section, we can nevertheless make an expansion in ↵ to obtain
an approximate expression

N −Nend = −x
2

4



1 + ↵
x2

4
(1 + 4 lnx)

]

+
x2end
4



1 + ↵
x2end
4

(1 + 4 lnxend)

]

+O
(

↵2
)

.

(4.64)
Inflation stops close to the minimum of the potential when ✏1 = 1. This last equation cannot
be solved analytically but we can also perform an expansion at first order in ↵ and one gets

xend =
φend

MPl

' 1
v

u

u

t2↵W0

"

e1+1/(4↵)

2↵

#

'
p
2− 2

p
2↵ . (4.65)

In the limit ↵! 0, we recover the large field result for p = 2, i.e. xend !
p
2. The maximum

total number of e-folds one can realize between φ = φtop and φ = φend can be calculated
from the previous expressions. It reads

∆Nmax = Nend −Ntop =
5

32↵W0

✓p
e

2↵

◆ +

1 + 2↵− 20↵W0

"

e1+1/(4↵)

2↵

#

128↵2W2
0

"

e1+1/(4↵)

2↵

#

' − 5

32↵ ln (↵)
.

(4.66)
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This is a decreasing function of ↵, so that ↵ has to be small enough if one wants a sufficiently
high number of e-folds to take place. Indeed, if one wants at least ∆Nmin e-folds to occur,
one needs to work with

↵ <
5

32∆Nmin

1

ln
⇣

32∆Nmin
10

⌘ . (4.67)

For example, ∆Nmin = 50 imposes ↵ < 6 ⇥ 10−4. The fact that ↵ is bounded from above
can be directly checked in Fig. 85. The field φ⇤ value at which the pivot mode crossed the
Hubble radius during inflation is obtained from Eq. (2.47) whereas the corresponding e-fold
number can be obtained from the trajectory.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

✓

M

MPl

◆4

=
2880⇡2

x4⇤

(

1− 2↵x2⇤ lnx⇤
)3

(1− ↵x2⇤ − 4↵x2⇤ lnx⇤)
2

Q2
rms−PS

T 2
. (4.68)

The reheating consistent slow-roll predictions for the RCMI models are represented in Fig. 85.
As expected, the LFI quadratic model case is properly recovered for ↵! 0. From this figure,
we see that all models having ↵ & 10−3.7 lie outside the 2σ contour. Let us emphasize
that the value of ↵ cannot be infinitely small due to Eq. (4.57). At zero order, one has
φ > φend '

p
2MPl such that Eq. (4.57) can be recast into

↵ >
M4

8⇡2M4
Pl

=
m2

16⇡2M2
Pl

. (4.69)

From the COBE normalization, and in the limit of small ↵, one gets M/MPl & 10−3 and the
lower bound reads ↵ > 10−15.

4.5 Radiatively Corrected Quartic Inflation (RCQI)

This model is similar to RCMI discussed in section 6.1 but implements radiative corrections
due to fermion couplings over a quartic (p = 4) large field model [232] (see section 4.2). The
potential is given by

V = λφ4 − g4

16⇡2
φ4 ln

✓

φ

MPl

◆

=M4

✓

φ

MPl

◆4 

1− ↵ ln

✓

φ

MPl

◆]

, (4.70)

where

M4 = λM4
Pl, ↵ ⌘ g4

16⇡2λ
. (4.71)

Defining x = φ/MPl, the Hubble flow functions in the slow-roll approximation read

✏1 =
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x2
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(4.72)
and

✏3 =
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4
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4
− ↵ lnx
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lnx
i . (4.73)
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Figure 13. Radiatively Corrected Quartic Inflation (RCQI) for ↵ = 0.8. Top panels: the potential
and its logarithm as a function of the field values. Bottom left panel: slow-roll parameter ✏1. The
shaded area indicates where inflation stops. Bottom right panel: slow-roll parameters ✏2 (solid line)
and ✏3 (dotted line). The shaded region for ✏2 and ✏3 shows where the slow-roll approximation is
violated for that value of ↵.

The shape of the potential and the Hubble flow functions are very similar to the ones of the
RCMI model and have been represented in Fig. 13. In particular, the potential is vanishing
and maximal at the field values

xV=0 =
φV=0

MPl

= e1/↵, xtop =
φtop

MPl

= e1/↵−1/4, (4.74)

respectively. As the model makes sense only if the corrections are small compared to the
quartic term, one should consider ↵⌧ 1 and not too large super-Planckian field values.

The slow-roll trajectory can integrated analytically from Eqs. (2.11) and (4.70) and one
gets

N −Nend = − 1

16

"

2x2 − e−1/2+2/↵ Ei

✓

1

2
− 2

↵
+ 2 ln x

◆

− 2x2end + e−1/2+2/↵ Ei

✓

1

2
− 2

↵
+ 2 ln xend

◆

#

,

(4.75)
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where the exponential integral function is defined by

Ei(x) ⌘ −
Z +1

−x

e−t

t
dt. (4.76)

The quartic limit ↵! 0 is recovered by noticing that

Ei(−2/↵) ⇠
↵!0

−↵
2
e−2/↵. (4.77)

Contrary to the RCMI model, the top of the potential is flat enough to support inflation.
Indeed, one sees from Eq. (4.74) that the argument of the exponential integral function
vanishes at x = xtop. Since for y ! 0, one has Ei(y) ⇠ γ + ln y, whatever the value of
xend the total number of e-folds is divergent. This means that it is always possible to realize
the required ∆N⇤ number of e-folds provided inflation starts close enough to the top of the
potential.

As for RCMI, inflation stops at ✏1 = 1 but this equation can only be solved numerically.
For illustrative purpose, one can nevertheless solve it at first order in ↵ to get

xend =
φend

MPl

' 2
p
2−

p
2

2
↵. (4.78)

The link between φ⇤ and ∆N⇤ is given by the slow-roll trajectory with φ⇤ given by Eq. (2.47).
Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,

and one gets

λ =
M4

M4
Pl

=
11520⇡2

x6⇤

(

1− ↵
4 − ↵ lnx⇤

)2

(1− ↵ lnx⇤)
3

Q2
rms−PS

T 2
. (4.79)

The slow-roll predictions for RCQI are represented in Fig. 86 and 87. As expected, the
quartic model case is properly recovered in the limit ↵ ! 0. From Fig. 86, we see that all
the models seem to lie outside the 2σ contour for wreh = 0. As the reheating phase takes
place at the bottom of a quartic-like potential, we have also represented the prediction for
wreh = 1/3 in Fig. 87. For a radiation-dominated reheating, ∆N⇤ is fixed and for each value
of ↵ one has only a single point. In that situation, all these models are still disfavored at the
two-sigma level.

4.6 Natural Inflation (NI)

4.6.1 Theoretical Justifications

Natural inflation was first proposed as an attempt to solve the so-called “fine-tuning” problem
of inflation. In particular, in order to obtain sufficient inflation and the correct normalization
for the microwave background anisotropies, the potential V (φ) of the inflaton must be suffi-
ciently flat. It is usually argued that, on general grounds, such a flatness is not robust under
radiative corrections, unless it is protected by some symmetry. This is the reason that has
motivated Refs. [233, 234] to put forward Natural Inflation, in which the inflaton potential
is flat due to shift symmetries. The model makes use of Nambu-Goldstone bosons [235, 236]
which arise whenever a global symmetry is spontaneously broken. The main idea can be very
simply illustrated with the following action

S = −
Z

dx
p−g



gµ⌫@µΦ
†@⌫Φ+ iΨ̄γµ@µΨ+ λ

✓

Φ†Φ− f2

2

◆2

+gfΨ̄LΦΨR + gfΨ̄RΦ
†ΨL

]

, (4.80)
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where Φ is a complex scalar field, Ψ a Dirac spinor and ΨLR = (1± γ5) /2Ψ. The quantity
f is the energy scale at which the symmetry is spontaneously broken, λ is a dimensionless
coupling constant and gf a dimensionless Yukawa coupling. This action is invariant under
the U(1) transformation: Φ ! ei↵Φ, ΨL ! ei↵/2ΨL and ΨR ! e−i↵/2ΨR, where ↵ is an
arbitrary constant. Due to the “Mexican hat” potential for the scalar field, this symmetry is
spontaneously broken below the scale f and the scalar field acquires the vev hΦi = f/

p
2eiφ/f .

The field φ corresponds to an “angular variable” and is a Goldstone boson. Below the scale
of broken symmetry, the effective Lagrangian can be expressed as

L =
1

2
@µφ@

µφ+ iΨ̄γµ@µΨ+ gf
fp
2

⇣

Ψ̄LΨRe
iφ/f + Ψ̄RΨLe

−iφ/f
⌘

. (4.81)

It is now invariant under φ ! φ + 2⇡f , ΨL ! ei↵/2ΨL and ΨR ! e−i↵/2ΨR. Then, we
assume that an explicit symmetry breaking takes place, for instance through the appearance
of a fermion condensate for which hΨ̄Ψi ' M3

s where Ms < f is the scale at which this
symmetry breaking occurs. As a consequence, the effective Lagrangian takes the form

L =
1

2
@µφ@

µφ+ 2gfM
3
s

fp
2
cos

✓

φ

f

◆

. (4.82)

We see that the Nambu-Goldstone boson has acquired a cosine potential and the overall scale
of the potential is given by M4 ' gfM

3
s f . Therefore, if one takes f 'MPl, Ms slightly below

the GUT scale and a Yukawa coupling of order one, one can “naturally” generate a small
ratio M/f . A last remark is in order on this model. Suppose that quantum gravity effects
generate non-renormalizable higher order terms in the action (4.80) like

∆V = amn
|Φ|2m

M2m+n−4
Pl

⇣

Φn + Φ†n
⌘

, (4.83)

where amn are a priori unknown coefficients. After symmetry breaking, one would therefore
obtain a correction of the form

∆V = amnM
4
Pl

✓

f

MPl

◆2m+n

cos

✓

n
φ

f

◆

. (4.84)

If f &MPl, as favored by current cosmological data (see below) these terms should dominate
unless the coefficients amn are fine-tuned to very small values. Notice that the overall scale of
the potential is now given by amnM

4
Pl, which also demands that amn . 10−15 in order to have

the correct CMB normalization. These terms are therefore dangerous for the consistency and
the natural character of the model. This model has been studied in more details in Refs. [237–
251].

Many other types of candidates have subsequently been explored in order to produce
scenarios similar to that of Natural Inflation. For example, in Ref. [252], it was suggested
to use a pseudo-Nambu Goldstone boson as the rolling field in double field inflation. Then,
NI potentials generated by radiative corrections in models with explicitly broken Abelian
[253] and non-Abelian [254, 255] symmetries were considered, showing that NI models with
f ' MPl and f ⌧ MPl can both be generated. In Refs. [256], the field φ is considered to be
a Polonyi field [257] and the model predicts that f = MPl. Refs. [258, 259] have examined
natural inflation in the context of extra dimensions and Ref. [260] has used pseudo-Nambu
Goldstone bosons from little Higgs models to drive hybrid inflation. Also, Refs. [261, 262]
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have used the natural inflation idea of pseudo-Nambu Goldstone bosons in the context of
braneworld scenarios to drive inflation, Ref. [263] has studied the model in 5-D warped
backgrounds. The same potential has also been obtained and studied in Ref. [264] when
studying instantons in non-linear sigma models, and in Ref. [265] as providing quintessential
inflation. In some of these references the potential is sometimes found with the minus sign
in front of the cosine term, which is, up to a shift in the field vev φ/f ! φ/f + ⇡, the same
potential as already studied before. This last model has also been derived and studied in
Refs. [258, 259, 266] in the context of orbifold GUT inflation, where the potential is given by

V (φ) =M4



F

✓

φ

φ0

◆

+ F

✓

2
φ

φ0

◆

+
F (0)

2

]

, (4.85)

with

F (x) = −
1
X

n=1

cos (n⇡x)

n5
. (4.86)

This potential must be studied in its increasing branch, and in the small field limit. At
leading order, one recovers the cosine potential.

Finally, an important question is whether a situation where f > MPl makes sense
from the high energy physics and effective field theory point of view. In fact, it was shown in
Refs. [267–269] that f / 1012GeV in order for the corresponding energy density not to exceed
the critical energy density. But this constraint applies to the post inflationary Universe and,
during inflation, Ref. [270] has argued that it is not relevant. However, it remains the question
of whether f > MPl makes sense or not. To address this issue, an interesting mechanism
has been proposed in Ref. [271] (see also Ref. [272]) which shows that two axion fields at
sub-Planckian scales can have an effective dynamics similar to the one field Natural Inflation
model with f > MPl.

Let us consider a model with two axions, ✓ and ⇢ the effective Lagrangian of which is
given by

L =
1

2
@µ✓@

µ✓ +
1

2
@µ⇢@

µ⇢+M4
1



1− cos

✓

✓

f
+

⇢

g1

◆]

+M4
2



1− cos

✓

✓

f
+

⇢

g2

◆]

, (4.87)

where M1 and M2, f , g1 and g2 are constant, a priori, arbitrary scales. The same model can
be re-written in terms of the fields  and ⇠ defined by

 =
fg1

p

f2 + g21

✓

✓

f
+

⇢

g1

◆

, ⇠ =
fg1

p

f2 + g21

✓

− ✓

g1
+
⇢

f

◆

. (4.88)

It is easy to show that this leads to

L =
1

2
@µ @

µ +
1

2
@µ⇠@

µ⇠ +M4
1

"

1− cos

 

p

f2 + g21
fg1

 

!#

+M4
2

"

1− cos

 

f2 + g1g2

fg2
p

f2 + g21
 +

g1 − g2

g2
p

f2 + g21
⇠

!#

. (4.89)

Moreover, the mass of the two fields  and ⇠ can be expressed as

m2
 =

✓

1

f2
+

1

g21

◆

M4
1 , m2

⇠ =
(g1 − g2)

2

g22
(

f2 + g21
)M4

2 . (4.90)
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Figure 14. Natural Inflation (NI). Top left panel: potential for f/MPl = 1.5. Top right panel:
logarithm of the potential for the same value of f . Bottom left panel: slow-roll parameter ✏1 for
a potential with f/MPl = 1.5. The shaded area indicates the breakdown of the slow-roll inflation
(strictly speaking when the acceleration stops). Bottom right panel: slow-roll parameters ✏2 (solid
line) and ✏3 (dotted line) for a potential with f/MPl = 1.5.

If g1 is very close to g2, then the field ⇠ will be light and, therefore, will have a non-trivial
dynamics. In addition, if the field  is sufficiently heavy (compared to the Hubble parameter),
then its vev will be frozen at  = 0. In this case, we see that the original two fields model
effectively reduces to a one field NI model with a scale f⇠ given by

f⇠ =
g2
p

f2 + g21
g1 − g2

. (4.91)

But, since, g1 is close to g2, the scale f⇠ will be large even if the fundamental scales f , g1
and/or g2 are sub-Planckian. In this way, one can generate super-Planckian values for the
scale f and, at the same time, have a theory which can be consistent from the effective field
theory point of view.

4.6.2 Slow-Roll Analysis

Summarizing the above discussion, the model that we consider in this section makes use of
a potential that can be written as

V (φ) =M4



1 + cos

✓

φ

f

◆]

. (4.92)
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The scale M is determined by the CMB normalization and the potential depends on one
parameter: the a priori unknown scale f . The potential of Eq. (4.92) is displayed with its
logarithm in Fig. 14. Since it is a periodic and even function of the field vev φ, it is enough
to study it in the range φ 2 [0,⇡f ] where inflation proceeds from the left to the right. If one
lets x ⌘ φ/f , the slow-roll parameters can be expressed as

✏1 =
M2

Pl

2f2
sin2 x

(1 + cos x)2
, ✏2 =

2M2
Pl

f2
1

1 + cos x
, ✏3 = 2✏1 . (4.93)

They are displayed in Fig. 14, where one can see that they are all increasing functions of the
field vev , which means that they all increase during inflation. Inflation stops at the position
xend given by ✏1 = 1 (see below), and one can see that ✏2 and ✏3 are already greater than one
at this point. This means that the slow-roll approximation stops being valid slightly before
the end of inflation, and the few last e-folds may not be properly described in this frame of
approximations. Another remark to be made is the fact that one generically has

✏2 >
M2

Pl

f2
. (4.94)

This means that in order for the slow-roll approximation to be valid, one must require
f/MPl & 1 which is not necessarily problematic from a high energy physics point of view
(see the above discussion).

The end of inflation occurs when ✏1 = 1, i.e. at a position given by

xend = arccos

✓

1− 2f2/M2
Pl

1 + 2f2/M2
Pl

◆

. (4.95)

From this expression, one can calculate the value of the other slow roll parameters at the
end of inflation, namely ✏end2 = 2+M2

Pl/f
2 and ✏end3 = 2✏end2 , which confirms that the last few

e-folds may not be described properly in the slow-roll approximation.
Let us now calculate the slow-roll trajectory. It is given by

Nend −N =
f2

M2
Pl

ln

✓

1− cosxend
1− cosx

◆

, (4.96)

where Nend is the number of e-folds at the end of inflation, and N is the number of e-folds at
some point when the scaled field vev is x. This trajectory can be inverted and one obtains

x = arccos

⇢

1− (1− cos xend) exp



−M
2
Pl

f2
(Nend −N)

]}

. (4.97)

Replacing xend by its value [see Eq. (4.95)] gives

x = arccos

⇢

1− 4f2

M2
Pl + 2f2

exp



−M
2
Pl

f2
(Nend −N)

]}

. (4.98)

Finally, the amplitude of the CMB anisotropies fixes the parameter M to

✓

M

MPl

◆4

= 720⇡2
Q2

rms−PS

T 2

M2
Pl

f2
sin2 x⇤

(1 + cosx⇤)
3 . (4.99)
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If f/MPl = O(1), this expression simplifies to

✓

M

MPl

◆4

' 720⇡2
Q2

rms−PS

T 2

e−2M2
Pl/f

2∆N⇤

1 + 2f2/M2
Pl

, (4.100)

which gives rise to M/MPl ' 10−13. On the contrary, if f/MPl & 1 one has

✓

M

MPl

◆4

' 360⇡2
Q2

rms−PS

T 2

✓

f

MPl

◆2 1

∆N2⇤
, (4.101)

and the potential energy scale goes up. For instance, if f/MPl = 102 one has M/MPl ' 10−2.
The reheating consistent slow-roll predictions for the natural inflation models are dis-

played in Fig. 88. The reheating equation of state parameter wreh has been taken to 0 since
the potential is quadratic close to its minimum. In the limit f/MPl ! 1, the quadratic
model predictions (LFI with p = 2, see section 4.2) seem to be recovered. Indeed, from the
above formula, one can check that in this limit both xend and x⇤ approach ⇡ and the potential
is, at leading order, a parabola. More precisely, one can check from Eq. (4.98) that in the
limit f/MPl ! 1, one has cos x⇤ ' −1 + (1 + 2∆N⇤)M2

Pl/f
2, from which one deduces that

✏1⇤ ' 1/ (1 + 2∆N⇤) and ✏2⇤ ' 2/ (1 + 2∆N⇤) ' 2✏1⇤. These relations are characteristic of
the LFI quadratic models, see Eq. (4.42). However, one has ✏3⇤ = 2✏2⇤ which differs from
the LFI quadratic relationship ✏3⇤ = ✏2⇤, and therefore quantities sensitive to ✏3, such as
the running ↵S, would break the degeneracy between NI and the LFI quadratic model. As
expected, large values of f/MPl seem to be favored by the data (as well as high reheating
temperatures), and in practice, f/MPl < 4 appears to be disfavored at the 2σ level by the
Planck data.

4.7 Exponential SUSY Inflation (ESI)

4.7.1 Theoretical Justifications

This model has been discussed in Ref. [273] in the context of spin-driven inflation and derived
in Ref. [274] in the context of supergravity and superstrings. The potential is given by
V (φ) /

(

1− e−qφ/MPl
)

. The same potential also appears in Ref. [275] in the context of brane
inflation, in Ref. [276] in the context of type IIB string compactification as fiber inflation and
more recently in Ref. [277] as unitarized Higgs inflation models. This type of models can be
obtained under very general considerations. Suppose that one has a supergravity model with
a Kähler potential depending on one field  given by K = −β/ ln

(

1− ↵  †), where ↵
and β are two free parameters. This model leads to a scalar potential but for a field which
is not canonically normalized. The canonically normalized field ✓ is given by

1/2✓ ' 1p
↵

⇣

1− 2e−
p

2/β1/2 
⌘

, (4.102)

where we have assumed that inflation takes place at relatively large  vev ’s. Then, suppose
that the superpotential leads to a given function V = f(✓). One can always expand f such
that

V (φ) ' V0

⇣

1− e−
p

2/β1/2φ
⌘

+ · · · , (4.103)

where 1/2φ ⌘ 1/2✓+
p

β/2 ln ([2f✓/(
p
↵f)] and V0 is just the function f evaluated at 1/

p
↵.

We see that one obtains exactly the ESI potential with q =
p

2/β. Preferred choices for β
are β = 1 or β = 3 leading to q =

p
2 or q =

p

2/3. In absence of any more further guidance,
it seems reasonable to assume that β, and hence q, is just a number of order one.
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Figure 15. Exponential SUSY Inflation (ESI) for q =
p
2. Top panels: the potential and its

logarithm. Bottom left panel: slow-roll parameter ✏1. The shaded area indicates where acceleration
stops. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line). For those, the
shaded region signals the breakdown of the slow-roll approximation but not necessarily the end of the
accelerated expansion.

4.7.2 Slow-roll Analysis

Based on the previous considerations, we now study the following potential

V (φ) =M4
⇣

1− e−qφ/MPl

⌘

, (4.104)

where q is a positive dimensionless parameter and inflation proceeds at decreasing field values
in the region where φ/MPl > 0. Defining x ⌘ φ/MPl, the Hubble flow functions in the slow-roll
approximation read

✏1 =
q2

2

e−2qx

(1− e−qx)2
, ✏2 = 2q2

e−qx

(1− e−qx)2
, ✏3 = q2

e−qx (1 + e−qx)

(1− e−qx)2
. (4.105)

The potential and the Hubble flow functions with respect to the field values are represented
in Fig. 15.

The slow-roll trajectory can be integrated analytically from Eq. (2.11) and one finds

N −Nend = −e
qx − qx

q2
+
eqxend − qxend

q2
. (4.106)
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Figure 16. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Exponential
SUSY inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow on
the figure.

This equation can also be inverted in terms of the Lambert function to get the field value in
terms of the number of e-folds:

x = q(N −Nend)−
eqxend − qxend

q
− 1

q
W−1

{

− exp
⇥

q2(N −Nend)− (eqxend − qxend)
⇤ 

.

(4.107)
The fact that one should choose the branch W−1 is justified below. The argument of the
Lambert function is always negative as the exponential is always positive. Moreover, since
xend > 0 andN < Nend, the maximal value of exponential argument is saturated for xend ! 0,
i.e. for a Lambert function argument equals to −1/e. As the result the Lambert function
argument varies, at most, in [−1/e, 0]. Finally, since x > 0, we see directly from Eq. (4.107)
that the Lambert function values have to be negative thereby ensuring that inflation proceeds
only along the “−1”-branch (see Fig. 16).

With such a potential, inflation ends naturally at ✏1 = 1, i.e. at the field value

xend =
1

q
ln

✓

1 +
qp
2

◆

. (4.108)

From this equation and the trajectory, we have an explicit relation between the field value φ⇤
at which the pivot mode crossed the Hubble radius during inflation and the corresponding
e-fold number ∆N⇤.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,
and one gets

✓

M

MPl

◆4

= 720q2⇡2
e−2qx⇤

(1− e−qx⇤)3
Q2

rms−PS

T 2
, (4.109)
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Figure 17. Power Law Inflation (PLI) for ↵ = 0.3. Top panels: power law potential (left) and its
logarithm (right). Bottom left panel: slow-roll parameter ✏1. Bottom right panel: slow-roll parameters
✏2 = ✏3 = 0. On these plots, the shaded area indicates the region where slow-roll is violated.

where the value of φ⇤ (or ∆N⇤) is obtained from Eq. (2.47). The reheating consistent slow-roll
prediction for the exponential Susy models are represented in Figs. 89 and 90. In the limit
q ! 0, we recover the same prediction as a linear large field model. From Fig. 89, we see
that all the models remains compatible with the current data. These figures correspond to
wreh = 0, but one could argue that wreh & −1/3 make more sense if a parametric reheating
would feel the linear shape of the potential. This quite extreme situation is represented in
Fig. 90. In that case, the low reheating temperatures are clearly disfavored.

4.8 Power Law Inflation (PLI)

These models refer to inflationary potentials of the form

V (φ) =M4e−↵φ/MPl , (4.110)

where ↵ is a dimensionless parameter. They have been intensively studied since they lead
to an exact inflationary dynamics, of the power law form, hence their name. Moreover, the
power spectrum can also be determined exactly in this case. The background solution reads
a / (t/t0)

2/↵2
and φ = φ0 +2MPl/↵ ln (t/t0) with t

2
0 = 2M2

Pl/(↵
2M4)(6/↵2 − 1)e↵φ0/MPl . We

see that we have inflation provided ↵ 2
⇥

0,
p
2
⇤

.
This scenario was introduced in Ref. [278] where the two point correlation function of

the cosmological fluctuations was calculated for the first time (see also Refs. [279, 280]). The
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predictions of this model were recently compared to the Planck data in Ref. [169]. Soon after
Ref. [278], it was also considered in Refs. [281, 282] but in the context of quintessence, i.e. for
models of dark energy in which the energy density of the scalar field redshifts as a power law
of the scale factor ⇢ / a−q. In that case, one has ↵ =

p

q/2. The same potential also arises
in the case where large field inflation is considered (LFI, see section 4.2) but with a non-
minimal coupling of the inflaton to the gravity sector, see Refs. [283, 284] (the exponential
potential appears after the transformation to the Einstein frame). In Ref. [285], a cosmic
no-hair theorem for Bianchi models was proven assuming that the potential of the inflaton is
of type (4.110). It was shown that one must have 0 < ↵ <

p

2/3 so that the isotropic power
law solution is the unique attractor for any initially expanding Bianchi type model (except
type IX). In Ref. [286], the potential (4.110) has been studied in the Kantowski-Sachs metric,
and it was found that the production of particles by the scalar field acts as viscous forces
which enlarges the range of initial conditions leading to successful inflation. In Ref. [287], the
nature of the potential V (φ) relevant to having inflation in presence of a minimally coupled
scalar field together with a causal viscous fluid was investigated. It was shown that this
leads to an exponential potential. In Refs. [288–290], the exponential potential was used to
describe the dynamics of a tachyonic matter field (i.e. with a non-minimal kinetic term). In
Ref. [291], the general transformations that leave unchanged the form of the field equations
for Bianchi V cosmologies were investigated, and it was found that they admit asymptotic
stable points that lead to power law solutions of the type (4.110). In Ref. [292], inflation
was studied in the context of M-theory on S1/Z2 via the non-perturbative dynamics of M5-
branes. The open membrane instanton interactions between the branes give rise to potentials
of the type (4.110). Ref. [293] has used the exponential potential (4.110) in the context of
Randall-Sandrum type II Braneworld model. Finally, the general dynamics of power law
inflation was studied in detail in Refs. [294–303], where various aspects of its phenomenology
were highlighted.

The potential and its logarithm are displayed in Fig. 17. They are decreasing functions
of the field, hence inflation proceeds from the left to the right. The slow-roll parameters take
a simple form given by

✏1 =
↵2

2
, ✏i>1 = 0. (4.111)

Since the first slow-roll parameter is constant, inflation cannot stop by slow-roll violation
and one has to assume that, at some vev φend, a tachyonic instability is triggered. A priori,
this means that the model has in fact an additional new free parameter. However, because
the slow-roll parameters do not depend on φ, as well as all the other properties of the
inflationary dynamics (even when the slow-roll approximation is not satisfied, see below),
the observational predictions of the model cannot depend on φend and this parameter turns
out to be irrelevant.

The Hubble flow hierarchy being almost trivial, the exact dynamics of the model can
be worked out even if the slow-roll approximation is violated. Indeed, let us first notice that
the slow-roll trajectory can be explicitly integrated, and gives

φ

MPl

=
φend

MPl

+ ↵ (Nend −N) . (4.112)

Then, one can remark that this trajectory is also a solution of the exact Klein-Gordon
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equation of motion, which reads in terms of the number of e-folds N ,

H2 @
2φ

@N2
+

✓

3H2 +H@
@H

@N

◆

@φ

@N
+

dV

dφ
= 0. (4.113)

Indeed, the first term vanishes, and the second term requires

H2 =
V + φ̇2/2
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=
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3M2
Pl

, (4.114)

from which one gets

H2 =
V

3M2
Pl

1

1− ↵2/6
. (4.115)

From there, one can evaluate all terms in the Klein-Gordon equation, and verify that Eq. (4.112)
is indeed a solution of Eq. (4.113). Since it is a second order differential equation, other so-
lutions exist, but it can be shown [281, 282] that the exact solution is an attractor. Let us
also notice that combining Eq. (4.115) with Eq. (4.112) gives rise to

H = Hend

⇣aend
a

⌘↵2/2
, (4.116)

which can be integrated and gives

a(t) = aend

✓

t

tend

◆2/↵2

. (4.117)

One recovers the solution mentioned at the beginning of this section. Finally, the equation
of state w = P/⇢ can also be worked out exactly and one gets

w = −1 +
↵2

3
. (4.118)

Again, all the previous expressions are valid even if the slow-roll approximation is not sat-
isfied. One can see that pure de Sitter corresponds to ↵ = 0. In this case the potential is
constant, the equation of state is −1 and the scale factor expands exponentially.

Another nice feature of power-law inflation is that the spectrum of the perturbations
can be computed exactly without relying on any approximation. Defining the parameter
β  −2 from ↵2/2 = (β + 2)/(β + 1), the primordial scalar power spectrum is given by

P⇣ =
H2

⇤
⇡✏1(8⇡M

2
Pl)
f(β)
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where

f(β) ⌘ 1

⇡



(1 + β)1+β

21+β
Γ

✓

1

2
+ β

◆]2
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In particular, f(β = −2) = 1. The power spectrum of gravitational waves can also be
obtained remarking that we have µS = µT for power law inflation. From
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one gets

r ⌘ Ph

P⇣
= 16✏1 =

16nT

nT − 2
, (4.122)

since nT = nS − 1 = 2β + 4.
Finally, the overall amplitude of the CMB anisotropies leads to a determination of the

scale M , namely
✓

M

MPl

◆4

= 720⇡2↵2e↵φ⇤/MPl
Q2

rms−PS

T 2
. (4.123)

Obviously, this normalization depends on the value of φend, and it is more relevant to express
it in terms of the potential energy, say, at the end of inflation:

Vend
M4

Pl

= 720⇡2↵2e−↵
2∆N⇤

Q2
rms−PS

T 2
, (4.124)

from which one typically gets V
1/4
end /MPl ' 10−4.

The reheating consistent slow-roll predictions for the power law inflation models are
displayed in Fig. 91. Because the slow-roll parameters are constant during inflation, one
can check that the predictions of the models do not depend on the energy scale at which
the power law reheating ends. One has nS = 1 − ↵2 and r = 8↵2, and from the Planck
constraints, all the models are disfavored at more than two-sigma confidence level.

4.9 Kähler Moduli Inflation I (KMII)

These models are stringy models and arise when type IIB string theories via Calabi-Yau flux
compactification are used. KMII scenarios have been derived and studied in Refs. [304–310].
More specifically, when internal spaces are weighted projective spaces, one of the Kähler
moduli can play the role of an inflaton field and its potential, in the large field limit, reads

V (φ) =M4

✓

1− ↵
φ

MPl

e−φ/MPl

◆

, (4.125)

↵ being a positive dimensionless parameter. Actually, since we deal with a modulus, φ usually
possesses a non-minimal kinetic term. Then, once the inflaton field has been canonically
normalized, φ has to be replaced with / φ4/3. The corresponding corrected potential is
studied as “Kähler Moduli Inflation II” (KMIII) in section 5.3. However, sometimes, the
potential (4.125) (with φ already canonically normalized) is also studied as a toy model
(notably in Ref. [310]), the hope being that it can give a simpler description of the physics
that naturally appears in the context of moduli inflation. Therefore, in this section, we also
consider this scenario.

The potential in Eq. (4.125) depends on one free parameter, ↵. A priori, there does not
exist any bound on its value. However, as explained below, in order for slow-roll inflation
to occur, one must restrict the range of possible values for ↵. Within this range, we will
show that the predictions of the model turn out to be almost independent of ↵ (in fact,
they logarithmically depend on ↵). The potential (4.125) and its logarithm are displayed in
Fig. 18. It decreases from φ = 0 (where it blows up), reaches a minimum at φ = MPl, and
then increases to the asymptotic value V = M4 when φ ! +1. Therefore, two regimes of
inflation may a priori exist: either inflation proceeds from the left to the right in the decreasing
φ < MPl branch of the potential (in this branch the vev φ increases during inflation) or it
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Figure 18. Top left panel: Kähler moduli inflation (KMII) potential for ↵ = 1.5. The two arrows
indicate the two regions of the potential where inflation can take place. Top right panel: logarithm
of the potential for the same value of ↵. Bottom left panel: slow-roll parameter ✏1 for ↵ = 0.5 (solid
green line), ↵ = 1.5 (solid blue line) and ↵ = 2.5 (solid pink line). Obviously, the number of solutions
of the equation ✏1 = 1 depends on the value of ↵. Bottom right panel: slow-roll parameters ✏2 (solid
line) and ✏3 (dotted line) for ↵ = 1.5.

proceeds from the right to the left in the increasing φ > MPl branch of the potential (and
the vev decreases during inflation). However, one should keep in mind that the potential is
derived under the large field assumption and, consequently, only the second regime is in fact
meaningful. As a toy model, one might nevertheless want to study both regimes but it turns
out that, in the first one, inflation could not stop by violation of the slow-roll conditions. This
is why we will mainly focus on the second regime in the rest of this section. Let us also notice
that the minimum value of the potential is located at φ = MPl and is Vmin = M4 (1− ↵/e).
Therefore, if one requires the potential to be positive definite everywhere, then one must
have 0 < ↵ < e ' 2.72. However, this condition may also be ignored if one considers that
the potential (4.125) is in any case not valid at φ/MPl . 1.

Defining x ⌘ φ/MPl, the three first slow-roll parameters can be expressed as

✏1 =
↵2

2
e−2x (1− x)2

(1− ↵e−xx)2
, ✏2 =

2↵e−x

(1− ↵e−xx)2
(

↵e−x + x− 2
)

, (4.126)
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and

✏3 =
↵e−x (x− 1)

(1− ↵e−xx)2 (↵e−x + x− 2)

"
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− 2↵2e−2x

#

. (4.127)

Let us now study in more detail how inflation stops in this model. As can be seen in
Fig. 18, the number of solutions of ✏1 = 1 depends on the value of ↵. We now define the
numbers ↵1 and ↵2 by

↵1 ⌘
p
2p

2− 1
e

2−
p

2
1−

p
2 ' 0.83, ↵2 ⌘

p
2p

2 + 1
e

2+
p

2
1+

p
2 ' 2.41. (4.128)

If 0 < ↵ < ↵1, then there is no solution (this corresponds to the green line in the bottom
left panel in Fig. 18). The inflaton field eventually oscillates around the minimum of its
potential but remains in a region where inflation continues forever. In this case, in order to
stop inflation, one must add an auxiliary field to the model such that a tachyonic instability
is triggered at some value xend. This of course increases the number of parameters of this
model. If ↵1 < ↵ < ↵2 (which corresponds to the blue line in Fig. 18), then two solutions
appear:
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, (4.129)
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where W0 and W−1 denotes the “0-branch” and the “−1-branch” of the Lambert function
respectively. These two solutions are both smaller than one so that they both lie in the
decreasing branch of the potential. Correspondingly, two regimes of inflation exist. The first
one proceeds from the left to the right and stops at xend|x<1. However, using the expression
for the slow-roll parameters (4.126), it is easy to see that ✏1 is always larger than 1/2 in this
domain. Therefore, the slow-roll approximation breaks down in this case. The second regime
takes place in the φ/MPl > 1 branch of the potential but inflation cannot stop by slow-roll
violation. Finally, if ↵2 < ↵ (this situation corresponds to the pink line in the bottom left
panel in Fig. 18), then four solutions exist: two were already given in Eqs. (4.129), (4.130)
and the two new ones read
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x+✏1=1|x>1 = xend|x>1 =
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The two new solutions are greater than one and therefore lie in the increasing branch of
the potential. Thus two regimes exist in this situation. The first one is the same as before,
proceeds again from the left to right, stops at xend|x<1 and suffers from the fact that ✏1 is
always larger than 1/2. The second one proceeds from the right to the left and ends at
xend|x>1. We conclude that this regime is the regime of interest for the KMII model and that
we must therefore require ↵ > ↵2.
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Let us now study the slow-roll trajectory. It can be integrated exactly and its expression
can be written as

Nend −N = xend −
e

↵
Ei (xend − 1) + ln (xend − 1)

− x+
e

↵
Ei (x− 1)− ln (x− 1) ,

(4.133)

where Ei is the exponential integral function [204, 205]. At this point, a few remarks are
in order. Firstly, let us notice that N goes to 1 when x tends to 1. This means that,
in the slow-roll approximation, the field can never cross the minimum of its potential. In
particular, if ↵ < ↵2, that is to say if one starts from the φ/MPl < 1 branch and rolls down
from the left to the right, then one can never reach the physical φ/MPl > 1 branch of the
potential and inflation can never come to an end. Secondly, when x& 1, the trajectory can
be approximated by

Nend −N ' e

↵

✓

ex

x
− exend

xend

◆

. (4.134)

Moreover, in this approximation, it can be inverted exactly and one obtains

x ' −W−1



− 1

↵ (Nend −N) /e+ exend/xend

]

, (4.135)

in agreement with what was obtained in Ref. [310]. In the above expression, W−1 is the
−1 branch of the Lambert function. Let us also notice that, in Ref. [310], the branch of the
Lambert function was in fact incorrectly chosen. The fact that the −1 branch of the Lambert
function has to be considered comes from the following argument. When Nend−N ! 1, the
argument of the Lambert function goes to 0− and, therefore, since x must tend towards +1
in this limit, the −1 branch must be chosen. In addition, if Nend − N ! 0, then one must
have x! xend > 1 which is also the case if the −1 branch is retained. This is represented in
Fig. 19 where the arrow indicates the direction along which inflation proceeds. In the third
place, since, when x! 1, one has Nend −N ! 1, a sufficient number of e-folds can always
be realized in this model. Finally, it is inaccurate to assume that xend & 1 and, therefore,
the above approximated trajectory is not so useful. However, if one only assumes that x& 1
(which can be checked to be a good approximation, especially at x = x⇤) but not xend & 1,
then one can write

Nend −N ' e

↵

ex

x
+ xend −

e

↵
Ei (xend − 1) , (4.136)

which, moreover, can be inverted into

x ' −W−1



− 1

↵ (Nend −N) e+ Ei (xend − 1)− ↵xend/e

]

, (4.137)

and which is valid whenever x & 1. However, one should keep in mind that, now, and
contrary to the former approximated trajectory, taking the limit N ! Nend in the above
expression is meaningless.

The energy scale M is, as before, given by the CMB normalization and one obtains the
following expression
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Figure 19. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Kähler moduli
inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow.

If one uses the x⇤ & 1 approximation, then Eq. (4.137) tells us that x⇤ ' ln (↵∆N⇤) and
Eq. (4.138) can be re-written as

✓
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MPl

◆4

= O(1) 720
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Q2
rms−PS

T 2
. (4.139)

It is remarkable that this equation does not depend on ↵. Using a fiducial value for ∆N⇤,
one typically gets M/MPl ⇠ 10−3.

The predictions of KMII models are displayed in Fig. 92, for ↵ > ↵2. The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to
its minimum [but, it should be reminded that, in principle, the potential Eq. (4.125) cannot
be trusted close to its minimum]. One can see that, as announced at the beginning of this
section, the predictions depend on ↵ in a very mild way, a conclusion which is in agreement
with Refs. [304, 310]. This can be understood as follows. If one assumes that x⇤ & 1, then
we have already noticed that Eq. (4.137) implies that x⇤ ' ln (↵∆N⇤). From this result, one
obtains that

✏1⇤ '
1

2∆N2⇤
ln2 (↵∆N⇤) , ✏2⇤ '

2

∆N⇤
ln (↵∆N⇤) , ✏3⇤ '

1

∆N⇤
ln (↵∆N⇤) . (4.140)

In these expressions, we notice that the slow-roll parameters (at Hubble crossing) logarith-
mically depend on ↵. This explains the weak ↵ dependence observed in Fig. 92. Of course,
one can also calculate the corresponding expressions of the spectral index, tensor to scalar
ratio and running. One arrives at

nS ' 1− 2
ln (↵∆N⇤)

∆N⇤
, r ' 8

ln2 (↵∆N⇤)
∆N2⇤

, ↵S ' −2
ln2 (↵∆N⇤)

∆N2⇤
. (4.141)
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These expressions are in accordance with the estimates derived in Refs. [304, 310]. However,
contrary to what is claimed in Refs. [310], the predicted value of the running is not excluded
by the CMB observations since, according to the Planck results [153], one has ↵S = −0.013±
0.009.

4.10 Horizon Flow Inflation at first order (HF1I)

The horizon flow models have been introduced in Ref. [311] and consist into designing field
potentials to exactly produce a truncated Taylor expansion of the Hubble parameter with
respect to the field. As such they constitute a whole class of phenomenological inflationary
models. Here, we are considering a potential designed such that H(φ) = H0(1 + A1φ/MPl),
where A1 is a free dimensionless parameter. The shape of the potential reads [311]
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Denoting x ⌘ φ/MPl, the potential admits a global minimum at xV min = −1/A1, which is
negative

Vmin = V (φV min) = −2

3
M4A2

1 < 0. (4.143)

As a result, there are two disconnected field domains in which the potential remains definite
positive, either x > x+V=0 or x < x−V=0 where x±V=0 are the two roots of V (x±V =0) = 0, i.e.

x+V=0 =

r

2

3
− 1

A1
, x−V=0 = −

r

2

3
− 1

A1
. (4.144)

An interesting consequence of the horizon flow approach is that the Hubble flow func-
tions can be calculated exactly, i.e. without the slow-roll approximation because H(φ) is
exactly known. As discussed in Refs. [17, 312], one could compare them with the other
hierarchy of parameters, ✏Vi , that are defined by the successive logarithmic derivatives of
the potential. In the slow-roll approximation, one precisely uses the potential derivatives to
approximate the Hubble flow functions. From H / 1 +A1x, one gets the exact Hubble flow
functions

✏1 = 2

✓
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◆2

, ✏2 = ✏3 = 2✏1, (4.145)

whereas the slow-roll functions associated with the potential are
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and
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As shown in Ref. [17], the link between the two hierarchies can be made explicit and one has

✏V1 = ✏1
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Figure 20. Top left panel: Horizon Flow Inflation at first order potential for A1 = 0.1. Top panels:
the potential and its logarithm with respect to the field values. Bottom left panel: the first Hubble
flow function ✏1 (exact) and the corresponding shaded area where inflation stops. Bottom right panel:
Hubble flow functions ✏2 (solid line) and ✏3 (dotted line) for the same potential. These two functions
are equal to 2✏1.

The ⌘ parameter is defined as

⌘ ⌘ 2

H

d2H

dx2
, (4.149)

and vanishes in our case. As a result, provided ✏1 ⌧ 1, i.e. we are in the slow-roll approxima-
tion, both hierarchies give the same results at first order. In order to establish Eq. (4.148),
one has to show first that

⌘ = ✏1 +
1p
2✏1

d✏1
dx

, (4.150)

and then that4
d✏1
dx

= (✏1 − 3)
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◆

. (4.151)

The potential and the exact Hubble flow functions have been represented in Fig. 20.
Inflation can take place inside the two positive definite domains of the potential, i.e. at

negative or positive field values. However, the Hubble parameter has to be positive such that
H0 has to be chosen negative if 1 + A1x < 0 along the field trajectory. Since the potential

4A sign in these two equations differs from the ones typeset in Ref. [17], most probably due to a misprint.
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is completely symmetric with respect to its minimum xV min, we can study in full generality
only the x > x+V=0 branch. In particular, as the Hubble flow functions are exact, we can also
derive the exact field trajectory

N −Nend = − 1

2A1
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x+
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2
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2 − xend −
1

2
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2
end

◆

. (4.152)

Let us notice that, in the slow-roll approximation, one would have derived the trajectory
from ✏V1 . Doing so, one would have obtained
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It is amusing to remark that here, the simplest formula is not given by the slow-roll derived
one, but rather by the exact one. From this remark one should keep in mind that, in order
to simplify trajectories integration, one can always add factors of order O(✏1). The exact
trajectory (4.152) can be inverted and one finds

x = − 1

A1
+

1

A1

q

1 + 2A1xend +A2
1

⇥

x2end − 4(N −Nend)
⇤

. (4.154)

Along both the positive and negative branch of the potential, inflation ends naturally
at ✏1 = 1, that is at

x±✏1=1 =
−1±

p
2A1

A1
. (4.155)

Along the positive branch we are interested in, we therefore have

xend = x+✏1=1 =
−1 +

p
2A1

A1
. (4.156)

Plugging this expression into Eq. (4.154) gives the field value x⇤ at which the pivot mode
crossed the Hubble radius during inflation in terms of the e-fold number ∆N⇤ = Nend −N⇤.
Let us remember that solving for x⇤ (or ∆N⇤) is made through Eq. (2.47). From Eq. (4.145),
one gets

✏1⇤ =
1

1 + 2∆N⇤
(4.157)

which, together with ✏2 = 2✏1, yields

nS − 1 = 2nT, r = 4(1− nS). (4.158)

Notice that this relation is different from the power law case and consistent with Ref. [313].
In that reference, the authors mention that the horizon flow models predicts r ' 4.8(1− nS)
as a result of Monte-Carlo simulations.

Finally, the potential parameter M can be determined from the CMB normalization
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It is interesting to notice that the typical energy scale of inflation in these models does
not depend on A1. The previous equation indeed leads to
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The reheating consistent (exact) predictions for the horizon flow inflation I models are
represented in Fig. 93. As expected, the relation ✏2 = 2✏1, which is the same as for the LFI
quadratic case, is properly recovered. The predictions do not depend much on the potential
parameter A1.

4.11 Colemann-Weinberg Inflation (CWI)

4.11.1 Theoretical Justifications

The potential of this model was first introduced by Coleman and Weinberg in Ref. [314],
in the context of spontaneous symmetry breaking generated by radiative corrections. The
starting point of this work is to calculate the effective potential for a massless charged meson
minimally coupled to the electrodynamic field.

In that reference, the effective action is explicitly constructed from a Legendre transform
of the partition function, and expanded into one-particle-irreducible Feynman diagrams with
n external lines (and summing up over n). The exact knowledge of the effective potential
requires an infinite summation of all these Feynman diagrams, which is in practice intractable.
It is thus made use of the one loop expansion method where all diagrams with no closed
loops are first summed, then all diagrams with one closed loop are added, and all higher
loops diagrams neglected. Starting with a quartic interacting scalar field, and requiring that
the renormalized mass vanishes, one obtains a potential of the form

V (φ) / 1 + ↵
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. (4.161)

Let us emphasize that another useful frame of approximation is the Gaussian effective po-
tential method. The Gaussian effective potential is a non-perturbative approach to quantum
field theory [315–323], originally developed in the context of quantum mechanics, and gen-
eralized to field theory afterwards. In quantum mechanics, when studying systems governed
by Hamiltonians of the form H = p2/2 + V (φ), the idea is to calculate en effective potential
VGEP defined as

VGEP (φ0) = min
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h |H | i ,  (φ) =
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i.e. the minimum possible quantum mean energy of a Gaussian wavefunction centered over
φ0 . Such an object turns out to be a powerful tool to addressing the effects of quantum
fluctuations on the physical behavior of a system in a non-perturbative way. It can be easily
generalized to quantum field theories, expanding the field operator Φ only over Ω-massive
excitations around the classical value φ0 in d dimensions,

Φ (t,x) = φ0 + (2⇡)(1−d)/2
Z

dd−1k
p

2
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⇣

ake
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p
k2+⌦2t−ik·x

⌘

,

(4.163)

where a†
k

and ak are the usual creation and annihilation operators, and minimizing the
quantum mean value of the Hamiltonian density over Ω. In Ref. [316], the quartic interacting
scalar field has been worked out with this method, i.e. starting from V (φ) = m2φ2/2 + λφ4.
The Gaussian effective potential VGEP obtained in this way can expanded in power of ~ to
show that the first order terms match with the potential of Coleman and Weinberg. This
is not surprising as this is equivalent of performing a one loop expansion over the effective
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action. However, it should be stressed that the Gaussian effective potential method provides
a much more general expression for the potential, that is valid beyond this perturbative limit
and that can address regimes where quantum diffusion dominates the dynamics of the scalar
field.

The model is defined such that inflation ends by violation of the slow-roll conditions,
and is followed by a preheating stage in which the inflaton field oscillates at the bottom of
its potential. Therefore this potential minimum must be set to zero, which implies

↵ = 4e . (4.164)

One is thus left with one mass parameter, Q, which sets the typical vev at which inflation
takes place. On the other hand, the value taken for Q also depends on the underlying high
energy model from which the CW potential emerges.

The CWI potential appears in various other contexts and, in fact, historically, it was the
first model of inflation ever proposed [1] (also known as “old inflation”). The idea was that
inflation occurs while the field is trapped in a false vacuum state hφi = 0. Then, inflation
comes to an end when the field tunnels from this state to the symmetry breaking true
minimum. Unfortunately, this models was quickly realized to be ruled out since the above
mentioned process is accompanied by bubble formation and these bubbles, while colliding,
produce too large inhomogeneities. Then, this problem was solved by a modification of the
old inflation scenario called “new inflation” [2, 3]. The main idea is that inflation does not
occur while the field is trapped but when the field is rolling down from the origin to its true
minimum. Bubbles are also formed but there are so big that our entire universe is contained
in one of them. As a consequence, we do not observe bubble collisions and our universe is
extremely homogeneous as indicated by the observations. This new inflationary scenario was
explicitly implemented in Ref. [2] where the SU(5) ! SU(3)⇥ SU(2)⇥U(1) phase transition
in GUTs is investigated. The model makes use of a CWI potential that can be described by

V (φ) =
5625

512⇡2
g4


φ4 ln

✓

φ

φ0

◆

− φ4

4
+
φ4

0

4

]

, (4.165)

where φ0 ' 1014 − 1015 GeV, representing the GUT symmetry breaking scale, and g2 ' 1/3
is the SU(5) gauge coupling constant. However, as noticed afterwards in Refs. [324–328], this
model has also a fatal flaw. Indeed, one sees in Eq. (4.165) that the overall normalization
of the potential reads M4 = 5625g4φ4

0
/(2048⇡2) and that, therefore, the amplitude of the

fluctuations is in fact already fixed. Using the value of the SU(5) coupling constant and
Q/MPl = e1/4φ0/MPl ' 5⇥ 10−5 − 5⇥ 10−4, one arrives at M4 '

(

10−13 − 10−17
)

M4
Pl. This

turns out to be incompatible with the CMB normalization [see Eq. (4.173) below]. However,
the same model was re-considered in Refs. [327, 329] (see also Ref. [330]), but with additional
fields and couplings. It was then shown that the scale M acquires a different form and can
scale as the inverse of the coupling constants. Since these ones are small, it becomes possible
to obtain a higher value for M and to correctly CMB normalize the model. In what follows,
we will therefore consider the scale M as a free parameter fixed by the overall amplitude of
the cosmological fluctuations.

We also notice that, in Ref. [331], the CWI potential is obtained in the context of Kaluza-
Klein inflation, i.e. in higher dimensions and with higher derivative terms and logarithmic
dependence on the curvature scalar. Again, the typical value for Q ' 1015 GeV. The CWI
potential appears also in Ref. [332], but the value used for Q is rather different, Q = 0.223MPl,
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and is fine-tuned in order to have two phases of inflation, a “chaotic inflationary” phase fol-
lowed by a “new inflationary” phase. Finally, in Ref. [333], the Coleman-Weinberg potential
is studied in the framework of Einstein-Brans-Dicke gravity, with the same typical value for
Q ' 1015 GeV and the same typical value for M4/M4

Pl ' 10−15 as in the original paper.

4.11.2 Slow-Roll Analysis

Considering the previous considerations, we take the potential to be

V (φ) =M4

"

1 + ↵

✓

φ

Q

◆4

ln

✓

φ

Q

◆

#

, (4.166)

with a parameter Q/MPl in the range
⇥

10−5, 10−3
⇤

and ↵ = 4e. As already mentioned, the
mass parameter M will be viewed as free and fixed by the normalization to the amplitude
of the CMB anisotropies. The potential is displayed Fig. 21. It starts decreasing with the
inflaton vev at φ = 0, reaches a minimum at φ/Q = e−1/4 where it vanishes, and then
increases and diverges as φ goes to 1. As mentioned above, inflation proceeds along the
decreasing branch of the potential, in the direction specified by the arrow in the figure.

Let us now derive the first slow-roll parameters. Defining x ⌘ φ/Q, they are given by

✏1 =
M2

Pl

Q2

↵2

2
x6

✓

1 + 4 ln x

1 + ↵x4 lnx

◆2

, (4.167)

while

✏2 = 2
M2

Pl

Q2
↵x2

−7− 12 ln x+ ↵x4 + ↵x4 lnx+ 4↵x4 ln2 x

(1 + ↵x4 lnx)2
, (4.168)

and finally

✏3 =
M2

Pl

Q2

(

−26↵x2 + 21↵2x6 − 2↵3x10 − 128↵x2 lnx

+152↵2x6 lnx− 11↵3x10 lnx− 96↵x2 ln2 x

+368↵2x6 ln2 x− 14↵3x10 ln2 x+ 384↵2x6 ln3 x

−16↵3x10 ln3 x− 32↵3x10 ln4 x
) (

1 + ↵x4 lnx
)−2

⇥
(

7− ↵x4 + 12 lnx− ↵x4 lnx− 4↵x4 ln2 x
)−1

.

(4.169)

The three of them have the same general behavior. They vanish at x = 0, increase with x in
the decreasing branch of the potential and diverge at the minimum of the potential. Then
they decrease from infinity in the increasing branch of the potential, and reach asymptotically
vanishing values when the field vev goes to infinity. Inflation stops by slow-roll violation when
✏1 = 1. The value of x at which this happens needs to be determined numerically, but in
the limit Q/MPl ⌧ 1 (remember that Q/MPl ' 10−4) where one expects xend ⌧ 1, one can
derive an analytic approximated formula, namely

xend ' e−1/4 exp

"

W−1

 

−3
p
2

4↵

Q

MPl

e3/4

!#

, (4.170)

where W−1 is the −1 branch of the Lambert function. A comparison between this approxi-
mated formula and the numerical solution for xend is displayed in Fig. 22. The agreement is
excellent.
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Figure 21. Colemann-Weinberg Inflation (CWI) for ↵ = 4e. Top left panel: Colemann-Weinberg
Inflation potential as a function of φ/Q. Top right panel: logarithm of the potential for the same value
of ↵. Bottom left panel: normalized first slow-roll parameter Q2/M2

Pl
✏1. The shaded area indicates

the where inflation stops if Q = MPl. Bottom right panel: normalized second and third slow-roll
parameters Q2/M2

Pl
✏2 (solid line) and Q2/M2

Pl
✏3 (dotted line) for the same potential.

Let us now calculate the slow-roll trajectory from Eq. (2.11). It is given by

Nend −N =
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M2
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p
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✓
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✓
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)

,

(4.171)

where Ei is the exponential integral function, Nend is the number of e-folds at the end of
inflation and N is the number of e-folds corresponding to the scaled field vev x. In the
Q/MPl ⌧ 1 limit where x⌧ 1, the first term of this expression dominates. Since ↵ = 4e, the
previous expression can be slightly simplified:

Nend −N =
Q2

M2
Pl

1

16
p
e
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(4.172)
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Figure 22. End of inflation in Coleman-Weinberg inflation. The approximated formula of Eq. (4.170)
for xend (red dashed line) is compared with the exact numerical solution of ✏1 = 1 (blue solid line), for
↵ = 4e, in the physically relevant range of values for Q/MPl. The agreement is obviously excellent.

After having solved the above equation for x⇤, the field value at which the pivot
scale crossed the Hubble radius during inflation, M is fixed by the amplitude of the CMB
anisotropies to

✓

M

MPl

◆4

= 720⇡2↵2M
2
Pl

Q2
x6⇤ (1 + 4 ln x⇤)

2 (1 + ↵x4⇤ lnx⇤
)−3 Q

2
rms−PS

T 2
. (4.173)

The reheating consistent slow-roll predictions of the Coleman-Weinberg models are dis-
played Fig. 94 in the physical range Q/MPl 2

⇥

10−5, 10−3
⇤

. The reheating equation of state
parameter wreh has been taken to 0 since the potential is quadratic close to its minimum

V (x) ' 2↵M4e−1/2
(

x− e−1/4
)2
. The typical predicted amount of gravitational waves is ex-

tremely small, and a non-negligible deviation from nS = 1 is noticed. Also, one could choose
to relax the constraint on the parameter Q and study the Coleman-Weinberg potential in
general. This was done for instance in Ref. [329] where the Coleman-Weinberg potential pre-
dictions are compared with the WMAP observations on general grounds. It is found that the
potential normalization should be of the order M ' 1016 GeV, and that Q ' 10MPl in order
to match nS ' 0.96. For this reason the reheating consistent slow-roll predictions are dis-
played in Fig. 95 in the extended range Q/MPl 2 [1, 100]. In the limit Q/MPl & 1, the model
is well approximated by a quadratic potential around its minimum, and one asymptotically
approaches the LFI predictions with p = 2 (see section 4.2).

4.12 Loop Inflation (LI)

4.12.1 Theoretical Justifications

The flatness of an inflationary potential is in general altered by radiative corrections. One
loop order corrections generically take the form of a logarithmic function, ln(φ/µ), where µ
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Figure 23. Loop Inflation (LI). Top left panel: Loop Inflation potential for ↵ = ±0.5, the case
↵ = 0.5 being displayed in blue and the case ↵ = −0.5 being displayed in pink. Top right panel:
logarithm of the potential for the same values of ↵. Bottom left panel: slow-roll parameter ✏1 with
the same values of ↵. The shaded area indicates where inflation stops. Bottom right panel: slow-roll
parameters ✏2 (solid line) and ✏3 (dotted line) for the same values of ↵.

is a renormalization scale. Starting from a perfectly flat potential, one obtains a potential
of the form V (φ) = M4 [1 + ↵ ln (φ/MPl)] where ↵ is a dimensionless parameter that tunes
the strength of the radiative effects. Studying such potentials is therefore a simple way to
discuss in which cases the quantum correction “spoil” the flatness of a potential, and how
this happens.

In fact, this type of scenarios were invented in the context of F and D-term inflation in
Refs. [334–337]. The original motivation was to build an inflationary model in supersymmetry
but without the ⌘-problem that appears in the F -term approach. Indeed, if one considers
a simple superpotential W = f/2Xφ2 − µ2X where φ and X are two superfields, then
it is easy to obtain the supersymmetric potential assuming a minimal Kähler potential:
V = |fφ2/2 − µ2|2 + f2|X|2|φ|2. There is a flat direction for φ = 0 along the X direction
with V = µ4. Lifting this direction with a one loop correction leads to the LI potential which
is suitable for inflation. However, considering non-minimal term in the Kähler potential
destroys the flatness of V . The D-term approach was shown to be a viable alternative. The
idea is to consider a theory with a U(1) symmetry and three chiral superfields, X, φ+ and
φ− with charges 0, +1 and −1 respectively. It then follows that the superpotential has the
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form W = λXφ+φ−. If we compute the corresponding potential in global supersymmetry,
one arrives at

V = λ2|X|2
(

|φ−|2 + |φ+|2
)

+ λ2|φ+φ−|2 +
g2

2

(

|φ+|2 − |φ−|2 + ⇠
)2
, (4.174)

where the part proportional to g (g being the gauge coupling) represents the D-part of V .
In this expression ⇠ is a Fayet-Iliopoulos term. There is a unique supersymmetric vacuum at
X = φ+ = 0 and |φ−| =

p
⇠ and a flat direction along the X direction with φ+ = φ− = 0

where the potential V = g2⇠2/2 can drive inflation. Since supersymmetry is broken along
the flat direction, this produces one loop corrections and we obtain

V =
g2

2
⇠2


1 +
g2

16⇡2
ln

✓

λ2|X|2
µ2

◆]

, (4.175)

where µ is a renormalization scale. We see that this potential has exactly the form of an LI
potential where the scale M is related to the Fayet-Iliopoulos term ⇠ and where ↵ is in fact
the square of the gauge coupling. In particular, this implies that ↵ > 0 in this context. One
can also reproduce the above calculation in supergravity (with minimal Kähler potentials)
and show that the D-part of the theory leads to the same potential which is free of the ⌘
problem.

After these initial works on D-term inflation, many other papers addressing different
issues were published. Observational constraints on this type of scenarios were discussed in
Refs. [338, 339]. Ref. [340] has discussed how to produce D-term inflation and to stabilize
the moduli at the same time. Then, in Refs. [341–343], it was shown that the stringy imple-
mentation of D-term inflation is problematic. We have seen that the scale M is essentially
controlled by the value of the Fayet-Iliopoulos term ⇠. Therefore, the CMB normalization
allows us to calculate the value of ⇠. Anticipating the calculation at the end of this sec-
tion, if one uses the equation after Eq. (4.187) with M4 = g2⇠2/2 and ↵ = g2/(8⇡2) [from
Eq. (4.175)], then one arrives at

⇠ '
"

✓

90

∆N⇤

◆1/4✓Qrms−PS

T

◆1/2

MPl

#2

'
(

6.9⇥ 1015GeV
)2
, (4.176)

where we have taken the fiducial value ∆N⇤ ' 50. As noticed in Refs. [341–343], in string
theory, one typically obtains ⇠ = (TrQ)M2

s /(192⇡
2) where Ms is the string scale and TrQ '

100 sums the U(1) charges of all massless states. This leads to ⇠ ' (few ⇥ 1017GeV)2 and,
therefore, does not match the CMB normalization (4.176). Then, Refs. [344, 345] studied
more complicated models in the supersymmetric context in order to fix the problem we have
just discussed. Other scenarios were also investigated in Refs. [346–349]. D-term inflation
in the context of string theory and brane inflation was also discussed in Ref. [231, 350–355].
The same topic was also addressed in Refs. [356, 357] but in the context where the Friedmann
equations receives quadratic corrections. Finally, Ref. [358] studied LI potentials in the case
of Wess–Zumino models. Let us emphasize again that, in all these models, the constant ↵ is
positive and given in terms of the square of a gauge coupling.

The LI potential was also derived in a different framework in Ref. [359]. This article
uses the O’Raifeartaigh-Witten model that will be studied in more detail in section 4.23.
Therefore, we do not give the details here and only quote results that will be reviewed in
that section. In particular, we will see in Eq. (4.338) that the only difference is that the
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parameter ↵ is now given in terms of three coupling constants and has a rather involved
form which allows for negative ↵ values. For this reason we will not fix the sign of ↵ in the
following.

4.12.2 Slow-Roll Analysis

Let us now turn to the slow-roll study of loop inflation. We recall that the potential takes
the following form

V (φ) =M4



1 + ↵ ln

✓

φ

MPl

◆]

, (4.177)

where ↵ is a dimensionless parameter, that can a priori be either positive or negative (see
the above discussion). Let us define the quantity x ⌘ φ/MPl. The potential Eq. (4.177), as
well as its logarithm, is displayed in Fig. 23. If ↵ > 0, it is an increasing function of the field
vev , and vanishes at

xV=0 = e−1/↵ . (4.178)

Hence inflation proceeds from the right to the left at x > xV=0 in that case. If ↵ < 0
however, the potential is a decreasing function of the field, which vanishes at xV=0, still
given by Eq. (4.178), hence inflation proceeds from the left to the right at x < xV=0.

The three first Hubble flow functions in the slow-roll approximation are given by

✏1 =
↵2

2

1

x2
(1 + ↵ lnx)−2 , ✏2 = 2↵

1

x2
1 + ↵+ ↵ lnx
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, (4.179)

and
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(4.180)

If ↵ > 0, the first slow-roll parameter is a decreasing function of the field vev , which diverges
at xV=0 and vanishes when x ! 1. Therefore inflation stops by slow-roll violation, at the
point xend satisfying ✏1 = 1 and given by

xend =
1p
2

"

W0

 

e1/↵p
2

!#−1

, (4.181)

where W0 is the 0-branch of the Lambert function. One can check that since W0(y) < y for
any y, one always has xend > xV=0, as required. When ↵ ⌧ 1, one has xend ' ↵/

p
2. If

↵ < 0 on the other hand, the first slow-roll parameter diverges at x = 0, decreases with x,
reaches a minimum at x✏2=0 = exp (−1− 1/↵), then increases with x and diverges at xV=0.
The minimum value of ✏1 equals ✏1 (x✏2=0) = exp(2+2/↵)/2 which is smaller than unity only
if ↵ > 2/(ln 2 − 2) ' −1.53. Otherwise ✏1(x) > 1 all over the domain and inflation cannot
take place. If ↵ > 2/(ln 2− 2), the inflationary domain lies between x−✏1=1 and xend = x+✏1=1,
with

x−✏1=1 = − 1p
2

"

W−1

 

−e1/↵p
2

!#−1

, xend = x+✏1=1 = − 1p
2

"
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−e1/↵p
2

!#−1

, (4.182)

and where W−1 is the −1-branch of the Lambert function. When |↵| ⌧ 1, one has xend '
e−1/↵−1/

p
2 & 1. Let us notice that the end of inflation occurs in the region φ&MPl, where
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Figure 24. Left panel: Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During loop
inflation, inflation proceeds along the “0” branch in the direction specified by the green arrow on the
figure if ↵ > 0, and along the “−1” branch in the direction specified by the pink arrow on the figure
if ↵ < 0. Right panel: Maximal number of e-folds ∆Nmax one can realize when ↵ < 0, between x−✏1=1

and x+✏1=1, as a function of ↵.

Eq. (4.177) may not be well defined. Therefore, depending on the underlying theoretical
setting, the end of inflation by slow-roll violation may not be meaningful.

Let us now turn to the slow-roll trajectory. It can be integrated, giving rise to

Nend −N =
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− 1
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− x2end
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2
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. (4.183)

When |↵| ⌧ 1, it approximately takes the form 2↵ (Nend −N) = x2 − x2end. The trajectory
Eq. (4.183) can be inverted making use of the Lambert function, and one obtains

x2 =

4 (Nend −N)− x2end
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(
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]
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(
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x2end
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]

) ,

(4.184)
where the 0 branch of the Lambert function must be chosen if ↵ > 0, while the −1 branch
must be chosen if ↵ < 0. The Lambert function is displayed in the left panel of Fig. 24,
together with the regions in which inflation proceeds. Let us now comment and check
that this expression is valid. Firstly, if N = Nend, the Lambert function is of the form
W(−zende−zend) = −zend, where z ⌘ (1 − 2/↵) − ln(x2), and this automatically cancels the
numerator such that one has indeed x = xend. Secondly, if ↵ > 0, the condition xend > xV=0

implies that zend < 1, and the Lambert function at Nend is equal to −zend > −1. Therefore,
at the end of inflation, one should use the zero branch of the Lambert function. Finally, as
inflation is under way, the argument of the Lambert function is decreasing which implies that
the whole inflationary stage takes place on the zero branch. On the other hand, if ↵ < 0
using similar arguments, the whole inflationary stage can be shown to take place on the −1
branch.

In this later case (↵ < 0), it is also interesting to notice that the total number of e-folds
is bounded, since inflation can only proceed between x−✏1=1 and x+✏1=1. The corresponding
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maximal number of e-folds ∆Nmax is displayed, as a function of ↵, in the right panel of
Fig. 24. One can see that when ↵ . −0.35, not a sufficient number of e-folds can be realized.
For such values of ↵, one already has xend > 10. Since inflation is supposed to take place at
sub-Planckian vevs, it means that this regime of inflation is a priori forbidden. If one allows
slightly super-Planckian field vevs, up to x ' 100 or x ' 1000, this implies that ↵ < −0.1.
Therefore even in this case, ↵ must lie in the rather narrow range −0.3 < ↵ < −0.1.

Making use of the approximated trajectories and expressions for xend, some analytic
predictions can be derived in the case ↵ > 0. The observable field value x⇤, and its associated
number of e-folds ∆N⇤ = Nend−N⇤ at which the pivot mode crossed the Hubble radius during
inflation are obtained from the above equations together with Eq. (2.47). In the limit ↵⌧ 1,
one obtains the approximate expressions

✏1⇤ '
↵

4∆N⇤
, ✏2⇤ ' ✏3⇤ '

1

∆N⇤
, (4.185)

hence

r ' ↵

64∆N⇤
, nS − 1 ' − 1
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, ↵S ' 1

∆N2⇤
. (4.186)

Finally, the parameter M can be determined from the amplitude of the CMB anisotropies,
and one gets
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↵2

x2⇤

Q2
rms−PS

T 2
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In the small |↵| limit, one obtains M4/M4
Pl ' 360⇡2↵/∆N⇤Q2

rms−PS/T
2 for ↵ > 0, and

M4/M4
Pl ' 720⇡2↵2e2/↵Q2

rms−PS/T
2 for negative values of ↵.

The reheating consistent slow-roll predictions of the loop inflation models are displayed
in Fig. 96 for ↵ > 0, and in Fig. 97 for ↵ < 0. For ↵ > 0 and ↵ ⌧ 1, the approximations in
Eqs. (4.185) give a good description of what is numerically obtained, namely a deviation from
scale invariance which almost does not depend on ↵, and an amount of gravitational waves
which grows linearly with ↵. For ↵ < 0, the predictions blow out of the observational one-
and two-sigma contours when ↵ approaches the upper bound derived above, as expected.
Correspondingly, the parameter ↵ does not seem to be much constrained when it is positive,
whereas close-to-zero values are favored when it is negative.

4.13 (R +R2p) Inflation (RpI)

This model is the Einstein frame description of a scalar-tensor theory equivalent to f(R) =
R + ✏R2p/µ4p−2, where µ is a mass scale, ✏ = ±1, and p > 1/2 (otherwise the expansion
is meaningless). It generalizes the original Starobinsky model [360] obtained for p = 1.
Such theories are quite generic and appear as limiting cases of more general modified gravity
theories [361–365] (see Ref. [366] for a review).

Following Refs. [363, 366], one can introduce the scalar degree of freedom φ defined by

φ

MPl

=

r

3

2
ln (|F (R)|) , (4.188)

where F (R) ⌘ @f/@R. The quantity F ⌘ Ω2 is also the square of the conformal factor
inducing the transformation from the Jordan frame to the Einstein frame. In the Einstein
frame, the field φ evolves in a potential given by

V (φ) =
M2

Pl

2

|F |
F

RF − f

F 2
. (4.189)
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In the present case, one has

F (R) = 1 + 2✏p

✓

R

µ2

◆2p−1

, (4.190)

which, for small departures with respect to the Einstein-Hilbert action R ⌧ µ2, implies
that F (R) > 0 as needed. Let us notice that in the opposite situation, accelerated (and
super-accelerated) solutions have been shown to exist [366]. Defining the quantity y by

y ⌘
r

2

3

φ

MPl

, (4.191)

and inserting Eq. (4.190) into Eq. (4.189) one obtains the Einstein frame potential

V =M4e−2y |ey − 1|2p/(2p−1) . (4.192)

The normalization constant M4 is related to the modified gravity scale µ through the follow-
ing expression

M4 =
2p− 1

4p

M2
Plµ

2

(2p)1/(2p−1)
. (4.193)

For F (R) > 0, Eq. (4.188) implies that for ✏ = 1, the model is defined in the domain y > 0,
whereas for ✏ = −1 one should consider the domain y < 0 only. Such a potential has also
been studied in Ref. [367] for p = 1, in Refs. [363, 368] for p = 4 and in Ref. [369] for p = 2.
Let us notice that the case p = 1 corresponds to the Higgs inflation potential studied in
section 3.1. The case p = 1/2 is singular since one recovers f(R) / R. Taking the limit
p ! 1, the potential asymptotes V ! M4e−2y |ey − 1| and varying p allows us to explore
different potential shapes.

Let us first consider the case y > 0 (✏ = 1). If p > 1, the potential admits a maximum
at

ymax = ln

✓

2p − 1

p− 1

◆

, (4.194)

such that inflation can proceed either for 0 < y < ymax or y > ymax. We respectively call
these regimes RpI1 and RpI2. If p < 1, the potential is an increasing function of y, hence
inflation proceeds from the right to the left. We call this regime RpI3. The case p = 1 is
singular and again, it corresponds to the Higgs inflation potential studied in section 3.1.

The Hubble flow functions in the slow-roll approximation read

✏1 =
4

3

[1 + (p− 1) ey − 2p]2

(2p − 1)2 (ey − 1)2
, ✏2 =

8

3

p ey

(2p − 1) (ey − 1)2
, (4.195)

and

✏3 = −4

3

(ey + 1) [1 + (p− 1) ey − 2p]

(2p − 1) (ey − 1)2
. (4.196)

The potential and the Hubble flow functions for y > 0 have been represented in Fig. 25.
As one can check on these figures, inflation never stops in the RpI2 regime and one needs to
complement the model with a mechanism that can end inflation, as for instance with an extra-
field and a tachyonic instability. This adds one additional parameter yend to the model. When

– 78 –



Figure 25. (R +R2p) Inflation (RpI) in the Einstein frame for p = 2 (RpI1 and RpI2), and p = 0.9
(RpI3). Top panels: the potential and its logarithm. Bottom left panel: slow-roll parameter ✏1 with
the region in which inflation stops (shaded area). In the RpI2 regime, inflation never stops and one
has to consider an extra-mechanism to end inflation. Bottom right panel: slow-roll parameters ✏2
(solid line) and ✏3 (dotted line).

this parameter is large, all the three Hubble flow functions admit asymptotically constant
values:

lim
y!1

✏1 =
4

3

✓

p− 1

2p − 1

◆2

, lim
y!1

✏2 = 0, lim
y!1

✏3 = −4

3

p− 1

2p− 1
. (4.197)

If p is an integer, except for the special case p = 1 (see section 3.1), these values are al-
ways smaller that unity, but not particularly small. As such, all these models predict large
deviation from scale invariance. Indeed, the spectral index at first order is given by

nS − 1 ' −8

3

✓

p− 1

2p − 1

◆2

, (4.198)

which, for p ≥ 2, remains always smaller than −8/27 ' −0.3. This is strongly disfavored by
current CMB measurements. Therefore, only the models such that p is close enough to 1 are
to be considered (i.e. non integer values of p.)
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If inflation proceeds in the RpI1 regime, then inflation stops naturally when ✏1 = 1, i.e.
at the field value

yend = ln

"

(2p − 1)
1 + 2p(

p
3 + 1)

8p2 − 4p− 1

#

. (4.199)

However, the second Hubble flow function can only take relatively large value. From Eq. (4.195),
since y < ymax, one gets

✏2 > ✏2(ymax) =
8

3

p− 1

p
. (4.200)

For p ≥ 2, we are in a situation where ✏2 > 4/3 and again, the models are ruled out by a
simple slow roll analysis. Therefore, as already noticed before, p must take (non integer)
close enough to 1 values for the models to be viable.

Finally, in the RpI3 regime, inflation stops naturally when ✏1 = 1, with yend still given
by Eq. (4.199). This expression is defined only if p > (1 +

p
3)/2 ' 0.68 but the first slow

roll parameter continuously decreases with y, and its asymptotic value is again given by
Eq. (4.197). Therefore, this regime is viable only when p is close enough to unity.

Let us now turn to the slow-roll trajectory. It is given by

N −Nend =
3

4

⇢

p

p− 1
ln



(p− 1)ey + 1− 2p

(p − 1)eyend + 1− 2p

]

+ y − yend

}

. (4.201)

This expression is not properly defined for p = 1 but this case has already been considered
in the section on the Higgs inflation model. When p > 1, if y = ymax, the argument of the
logarithm vanishes and the total number of e-folds diverges. As a result, provided inflation
starts close enough to the top of the potential, it is always possible to find a long enough
inflationary period. For p < 1, the number of e-folds diverges when y ! 1. The slow-
roll trajectory cannot be analytically inverted, but using the same reheating model as in
section 3.1, one can solve for the field value y⇤ at which the pivot mode crossed out the
Hubble radius. The corresponding number of e-fold ∆N⇤ = Nend − N⇤ being given by
Eq. (4.201).

Concerning the case ✏ = −1, i.e. the domain y < 0, all of the previous formula still
apply but the potential is now a monotonic decreasing function of the field vev which is too
steep to support inflation. In particular, over the whole negative domain, Eq. (4.195) implies
that ✏1(y < 0) > ✏1(y ! −1) = 4/3, independently on whether p > 1 or p < 1.

Finally, the constantM can be determined from the amplitude of the CMB anisotropies.
It follows that

M4

M4
Pl

= 1920⇡2
[1 + (p− 1) ey⇤ − 2p]2 e2y⇤

(2p − 1)2 (ey⇤ − 1)
6p−2
2p−1

Q2
rms−PS

T 2
. (4.202)

The reheating consistent slow-roll predictions of the RpI models are displayed in Fig. 98
for the RpI1 regime, in Fig. 99 for the RpI2 regime, and in Fig. 100 for the RpI3 regime.
In the RpI1 regime, the Higgs inflation model predictions (see Fig. 81) are recovered when
p ! 1, and one can see that p < 1.02 is a necessary condition for the spectral index not to
be too red. For RpI2 the limit p! 1 is such that one does not reproduce the Higgs inflation
results and for yend ! 1 the predictions lie on the line ✏2⇤ = 0. Moreover, one can see
that when p > 1.1, the models predict too much gravity waves to be compatible with the
CMB data. Finally for the RpI3 regimes, the Higgs inflation model predictions (see Fig. 81)
are recovered when p ! 1, and they remain compatible with the data within the two-sigma
contours provided p > 0.99.
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Figure 26. Top left panel: Double Well Inflation (DWI) potential as a function of φ/φ
0
. Only

the φ > 0 region is displayed since the potential is symmetric under φ ! −φ. Top right panel:
logarithm of the potential. The arrow indicates in which direction inflation can proceed. Bottom left
panel: slow-roll parameter ✏1, rescaled by the quantityM2

Pl
/φ2

0
, such that the corresponding expression

becomes universal, i.e. independent of φ
0
. Bottom right panel: slow-roll parameters ✏2 (solid line)

and ✏3 (dotted line), rescaled by M2
Pl
/φ2

0
for the same reason as mentioned before.

4.14 Double-Well Inflation (DWI)

In this section, we study the famous “Mexican hat” potential given by

V (φ) =M4

"

✓

φ

φ0

◆2

− 1

#2

. (4.203)

Except for the mass M determined by the CMB normalization, it depends on one parameter,
the vev φ0 . Historically, this potential was first introduced by Goldstone in Ref. [370] as a toy
model for dynamical symmetry breaking. In cosmology, it is of course utilized to investigate
the formation and the microscopic structure of topological defects [371–377]. In the context
of inflation, it was first used to construct scenarios of topological inflation [378, 379]. In this
case, it is made use of the fact that the discrete Z2 symmetry, φ ! −φ, makes the state
φ = 0 unstable. Therefore, the Universe will split into two different regions separated by
a domain wall. One can then show that inflation takes place within this topological defect.
More precisely, the potential is usually written as V = λ/4

(

φ2 − ⌘2
)2

where ⌘ represents the
position of the minima of the potential. Then, Refs. [378, 379] show that topological inflation
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occurs if ⌘ > MPl. On the other hand, if one writes Eq. (4.203) as V = M4/φ4
0

(

φ2 − φ2
0

)2
,

one sees that one can identify ⌘ with φ0 . And we will precisely show that agreement with the
CMB observations requires φ0 > MPl. The potential (4.203) was also used in Refs. [380, 381]
in the context of open inflation. In a rather different theoretical framework, Eq. (4.203) was
studied in Refs. [382, 383] where it was derived in N = 1 supergravity coupled to matter. It
is also interesting to notice that it was obtained using various stringy constructions as early
as the 80’s, see Refs. [384, 385]. More recently, this potential was found to be relevant in a
large number of different physical situations [329, 386–396]. Let us also mention that this
model is sometimes viewed as a realistic version of Small Field Inflation (SFI) with p = 2
(see section 5.1), the extra quartic term preventing the potential from becoming negative.
However, as will be shown in the following, these two classes of models should actually be
described separately since their predictions differ in the relevant range of parameters.

The parameter φ0 sets the typical vev at which inflation proceeds and depends on the
symmetry breaking scale one considers. In principle, it could vary over a wide range of
values, from φ0 ⇠ 1015 GeV for GUT symmetry breaking schemes to super-Planckian vev in
a stringy or supergravity context. As will be shown in the following, it is in fact constrained
to be large (super-Planckian) in order for the predictions of the model to be compatible with
the CMB data. The DWI potential is displayed in Fig. 26 together with its logarithm. One
has represented the region φ > 0 only because the potential is symmetric under φ ! −φ.
We see that it decreases for φ < φ0 , vanishes at φ0 and then increases for φ > φ0 . As was
already mentioned before, this potential is used to describe dynamical symmetry breaking
and, as a consequence, inflation should proceed from the left to the right at φ < φ0 , in the
direction specified by the arrow in Fig. 26.

Let us now calculate the slow-roll parameters. If one defines x ⌘ φ/φ0 they are given
by

✏1 =

✓

MPl

φ0

◆2 8x2

(x2 − 1)2
, ✏2 =

✓

MPl

φ0

◆2 8(1 + x2)

(x2 − 1)2
, ✏3 =

✓

MPl

φ0

◆2 8(x4 + 3x2)

(x2 − 1)2 (x2 + 1)
.

(4.204)
The behavior of these parameters is represented in Fig. 26. The first slow-roll parameter ✏1
is an increasing function of φ in the range x 2 [0, 1]. It vanishes at x = 0 and blows up
at x = 1. Then, for x > 1, it becomes a decreasing function going to zero when x goes to
infinity. We see in Fig. 26 that inflation stops by violation of the slow-roll conditions. The
slow roll parameters ✏2 and ✏3 have similar behaviors, except that ✏2 does not vanish when
x = 0 but is equal to ✏2(x = 0) = 8 (MPl/φ0)

2. Therefore, in order for slow-roll to be valid,
this last value should be less than one, which amounts to

φ0

MPl

> 2
p
2 . (4.205)

This constraint on the parameter φ0 shows that the symmetry breaking scale needs to be
super-Planckian. If this last condition is verified, then ✏2 becomes greater than one during
inflation at φ✏2=1 defined by

x✏2=1 =

v

u

u

u

t1 + 4

✓

MPl

φ0

◆2
2

41−

s

1 +

✓

φ0

MPl

◆2
3

5 . (4.206)
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Figure 27. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). In DWI, inflation
proceeds along the negative part of the “0” branch in the direction specified by the arrow.

This happens before the end of inflation (✏1 = 1) which occurs at the following value of the
field

xend =

s

2 +

✓

φ0

MPl

◆2

−
p
2 . (4.207)

Let us now turn to the slow-roll trajectory. It can be integrated exactly and yields the
following formula

Nend −N =
1

4

✓

φ0

MPl

◆2 

ln
⇣xend

x

⌘

− 1

2

(

x2end − x2
)

]

, (4.208)

whereNend is the number of e-folds at the end of inflation. Using the 0-branch of the Lambert
function W0, this trajectory can be inverted. One obtains

x =

v

u

u

t−W0

"

−x2ende−x2
ende

8
⇣

MPl
φ0

⌘2
(N−Nend)

#

. (4.209)

The fact that the 0-branch of the Lambert function should be chosen comes from the re-
quirement that x < 1. The corresponding “trajectory” along the Lambert curve is displayed
in Fig. 27, the arrow indicating in which direction inflation proceeds. This trajectory is
remarkably similar to the one of SFI with p = 2, see section 5.1 and Eq. (5.6), the only
difference being that the factor 8 in front of N −Nend is just 4 in the case of SFI. Therefore
not only these two potentials coincide at small fields, but they also give rise to the same kind
of slow-roll trajectory. This is why these two models are sometimes identified, DWI being
considered as a realistic realization of SFI. However, as shown below, the observations favors
super-Planckian values of φ0 and, in this limit, the two models are not equivalent (of course,

– 83 –



this also has something to do with the debate about whether having super-Planckian vev is
meaningful or not). In fact, in the regime φ0/MPl & 1, one can write

x⇤ ' 1−
p
2
MPl

φ0

p

1 + 2∆N⇤ +
1

3

✓

MPl

φ0

◆2✓

1 + 2∆N⇤ +
2p

1 + 2∆N⇤

◆

+ . . . . (4.210)

From this expression it is clear that, for super-Planckian values of φ0 , φ⇤ is close to the
minimum of the potential where the quartic term plays an important role and, consequently,
where the SFI potential is not a good approximation. A calculation of the Hubble flow
parameters at Hubble crossing confirms this conclusion. They are given by

✏1⇤ '
1

1 + 2∆N⇤
, ✏2⇤ '

2

1 + 2∆N⇤
, ✏3⇤ '

2

1 + 2∆N⇤
. (4.211)

This allows us to establish the corresponding expressions of the tensor to scalar ratio, spectral
index and running. One obtains

r ' 16

1 + 2∆N⇤
, nS − 1 ' − 4

1 + 2∆N⇤
, ↵S ' − 8

1 + 2∆N⇤
. (4.212)

These expressions should be compared with Eqs. (5.17). We see that the first Hubble flow
parameter for SFI and DWI differ by a factor close to 4 and that the ✏2 roughly differ by a
factor of 2. As a consequence, as can be checked in Fig. 101, the DWI predictions are such
that ✏2⇤ = 2✏1⇤ [or equivalently, r = 4(1 − nS)], whereas, as can be checked in Fig. 112, we
have ✏2⇤ = 4✏1⇤ for SFI [or equivalently, r = 8/3(1− nS)]. This explains why the two models
can in fact lead to quite different predictions and why DWI cannot be simply viewed as a
mere realistic continuation of SFI.

Finally, it is also interesting to constrain the energy scale M . For this purpose, we use
the CMB normalization which gives

M4

M4
Pl

= 11520⇡2
✓

MPl

φ0

◆2 x2⇤
(x2⇤ − 1)4

Q2
rms−PS

T 2
. (4.213)

Then, using the approximated trajectory x⇤ ' 1−
p
2 + 4∆N⇤MPl/φ0 in the above formula,

one obtains the following expression

M4

M4
Pl

' 1440⇡2
✓

φ0

MPl

◆2 1

(1 + 2∆N⇤)
2

Q2
rms−PS

T 2
. (4.214)

Then, requiring that M < MPl leads to the following upper bound on the value of φ0 ,
φ0/MPl . 1.5 ⇥ 105. Combined with the lower limit (4.205), we see that the possible range
of variation of φ0 is quite large.

The reheating consistent slow-roll predictions for the DWI models are displayed in
Fig. 101. The reheating equation of state parameter wreh has been chosen to be 0 since
the potential is quadratic close to its minimum V (φ) ' 4M4/φ2

0
(φ− φ0)

2. As claimed
before, one can check that only super-Planckian values of the symmetry breaking scale φ0

are compatible with the data. Actually, this is also true for the SFI models, see section 5.1
and Fig. 112. As already mentioned before, in this regime, the two models differ while, as
expected, they are very similar for sub-Planckian values of the field vev .
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4.15 Mutated Hilltop Inflation (MHI)

This model belongs to the class of hilltop models [397, 398]. In this type of scenarios, inflation
is supposed to occur at the top of the potential. In particular, it was shown in Refs. [397, 398]
that, by adding the contributions coming from higher order operators, F or D term inflation
can be turned into hilltop models. Here, we consider mutated hilltop inflation which was
first introduced and discussed in Refs. [399, 400]. The potential is phenomenological only
and given by

V =M4



1− sech

✓

φ

µ

◆]

, (4.215)

with sech x = 1/ cosh x. As argued in Refs. [399, 400], it can be viewed as small field inflation
(hilltop inflation) completed by an infinite number of higher order operators, these operators
giving rise to a power series responsible for the appearance of the sech function. From an
effective field theory point of view, reasonable values of the parameter µ seem to be such
that µ < MPl but in other contexts such a restriction may not be necessary. This is why
although the model is studied for any value of µ, approximated formula will also be derived
in the µ⌧MPl approximation.

Defining x ⌘ φ/µ, the three first Hubble flow functions in the slow-roll approximation
are given by

✏1 =
M2

Pl

2µ2
coth2

⇣x

2

⌘

sech2 x, ✏2 =
M2

Pl

µ2

h

csch2
⇣x

2

⌘

+ 2 sech2 x
i

, (4.216)

✏3 =
M2

Pl

µ2

coshx coth2
⇣x

2

⌘

+ 2 tanh2 x

coshx+ sinh2 x
. (4.217)

where csch x = 1/ sinhx. These three quantities are monotonically decreasing functions of the
field values and inflation proceeds from large field values towards small field values. Together
with the potential, they are represented as a function of x in Fig. 28.

The slow-roll trajectory can be integrated exactly from Eq. (2.11) and reads

N −Nend =
µ2

M2
Pl

⇢

2 ln



cosh (x/2)

cosh (xend/2)

]

− coshx+ cosh xend

}

. (4.218)

It can also be inverted analytically to give the field values in terms of the number of e-folds
using the Lambert function W−1. One obtains

x = arccosh

✓

−1−W−1

⇢

− (1 + coshxend) exp



M2
Pl

µ2
(N −Nend)− 1− coshxend

]}◆

.

(4.219)
Since N − Nend < 0 and the function ye−y has a global maximum equals to 1/e, inflation
proceeds along the −1 branch of the Lambert function as represented in Fig. 29. Note that
in the µ⌧MPl limit, this trajectory simply becomes N −Nend ' µ2/(2M2

Pl) (e
xend − ex).

For MHI, inflation naturally stops when ✏1 = 1, which has an unique solution given by

xend = arcsech
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(4.220)
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Figure 28. Mutated Hilltop Inflation (MHI). The top panels show the potential and its logarithm
as a function of x = φ/µ. Bottom left panel: Rescaled slow-roll parameter ✏1 (divided by M2

Pl
/µ2).

The shaded area represents the region in which inflation stops if µ = MPl. It should be accordingly
rescaled for other values of µ. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted
line), again rescaled by M2

Pl
/µ2 together with the region of slow-roll violation for µ =MPl.

and with arcsech x = arccosh(1/x). One should note that the previous equation is always
well defined, regardless of the sign of the square root argument by analytic continuation. Let
us notice that from Eq. (4.216) one has

✏2 − ✏1 =
1

2
csch2

⇣x

2

⌘

+ sech x+
5

2
sech2 x > 0. (4.221)

Consequently, the slow-roll approximation may become inaccurate before the end of inflation
because ✏2 > 1 occurs just before ✏1 = 1. However, one can check that this happens during a
negligible number of e-folds and the observable predictions for MHI remain mostly unaffected.
Also, in the limit µ⌧MPl, Eq. (4.220) gives xend ' ln

(p
2MPl/µ

)

.
The value x⇤ = φ⇤/µ at which the pivot mode crossed the Hubble radius during inflation

is obtained by solving Eq. (2.47) for a given reheating energy. In terms of ∆N⇤, and in the
limit µ ⌧ MPl, one has x⇤ ' ln

(

2∆N⇤M2
Pl/µ

2
)

. This enables to give estimates for the
slow-roll parameters at Hubble crossing, namely
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, ✏2⇤ '
2

∆N⇤
, ✏3⇤ '

1

∆N⇤
, (4.222)
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Figure 29. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Mutated Hilltop
inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow on the
figure.

hence, at first order in slow-roll

r ' 8

∆N2⇤

✓

µ

MPl

◆2

, nS − 1 ' − 6

∆N⇤
, ↵S ' − 2

∆N2⇤
. (4.223)

One can see that for µ/MPl ⌧ 1, the typical predicted amount of gravitational waves is very
small, and the deviation from scale invariance almost does not depend on µ.

Finally, the constantM can be determined from the amplitude of the CMB anisotropies

M4

M4
Pl

= 90⇡2
M2

Pl

µ2
csch6

⇣x⇤
2

⌘

sinhx⇤ tanhx⇤
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T 2
. (4.224)

In the µ/MPl ⌧ 1 limit, one obtains

M4

M4
Pl

' 720⇡2

∆N2⇤

µ2

M2
Pl

Q2
rms−PS

T 2
. (4.225)

Typically, for µ/MPl ' 10−2, one has M/MPl ' 10−4.
The reheating consistent slow-roll predictions for MHI have been represented in Fig. 102.

As expected, for small values of µ/MPl, the predicted amount of gravitational waves is ex-
tremely small and the deviation from scale invariance almost does not depend on µ.

4.16 Radion Gauge Inflation (RGI)

This model was studied in Ref. [401]. It is an extension of the gauge inflation scenario in
which the radius modulus field around which the Wilson loop is wrapped assists inflation as
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Figure 30. Radion Inflation (RGI) for ↵ = 10−4. Top frames: the potential and its logarithm.
Bottom left panel: slow-roll parameter ✏1 and the shaded area in which inflation stops (✏1 > 1).
Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line).

it shrinks [233]. Assuming that the radion field value is such that the potential energy is
minimal, for each value of the inflaton field φ, one can derive an effective potential

V (φ) =M4 (φ/MPl)
2

↵+ (φ/MPl)
2 , (4.226)

where ↵ is a dimensionless positive parameter. In the context of Ref. [401], the model is
natural for ↵ < 1 but larger than unity values are not forbidden. The same potential has
been obtained in Ref. [402] in the context of S-dual superstring models. In that case, ↵
represents a typical vev for the inflaton, in Planck units. Defining x = φ/MPl, the first three
slow-roll parameters read

✏1 =
2↵2

x2 (↵+ x2)2
, ✏2 = 4↵

↵+ 3x2

x2 (↵+ x2)2
, ✏3 = 4↵

↵2 + 3↵x2 + 6x4

x2 (↵+ x2)2 (↵+ 3x2)
. (4.227)

The potential, its logarithm, and the Hubble flow functions are represented in Fig. 30.
The slow-roll trajectory can be integrated analytically from Eq. (2.11) to obtain

N −Nend =
x2end
4

+
x4end
8↵

− x2

4
− x4

8↵
. (4.228)
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Moreover, it can be inverted explicitly to give the field values in terms of the number of
e-folds as

x =

r

−↵+
q

−8↵(N −Nend) + (↵+ x2end)
2 . (4.229)

The end of inflation naturally occurs for ✏1 = 1, i.e., from Eq. (4.227), at the field value
xend given by

xend =
− 3
p
6↵+

h

9↵+
p

3↵2(2↵ + 27)
i2/3

1621/6
h

9↵+
p

3↵2(2↵+ 27)
i1/3

. (4.230)

As for the MHI models, one should pay attention that

✏2 − ✏1 = 2↵
↵+ 6x2

x2(↵+ x2)2
> 0, (4.231)

for any positive values of ↵. As a result, slow-roll violation, i.e. ✏2 > 1, occurs in RGI before
inflation ends. However, since the first Hubble flow function is monotonic, this is not very
problematic as it happens only during a negligible number of e-folds and only around Nend.
The slow-roll observable predictions therefore remain accurate.

As before, the observable field value x⇤ is obtained by solving Eq. (2.47) for a given
reheating model and allows the determination of the parameter M from the amplitude of the
CMB anisotropies. One gets

M4

M4
Pl

=
2880⇡2↵2

x4⇤ (↵+ x2⇤)

Q2
rms−PS

T 2
. (4.232)

The reheating consistent slow-roll predictions for these models are displayed in Fig. 103.
Large values of ↵ give back the same predictions as the large field models with p = 2 (see
section 4.2) having ✏2⇤ = 2✏1⇤.

4.17 MSSM Inflation (MSSMI)

4.17.1 Theoretical Justifications

The Minimal Supersymmetric Standard Model (MSSM) is an extension of the Standard
Model of particle physics. Its Lagrangian is characterized by the following super potential

W
MSSM

= λijuQi ·HuU
c
j + λ

ij
d Qi ·HdD

c
j + λije Li ·HdE

c
j + µHu ·Hd. (4.233)

The quantity Qi denotes a doublet of left handed quarks super fields where i is a family
index. In practice this means that

Q1 =

✓

U
D

◆

, Q2 =

✓

C
S

◆

, Q3 =

✓

T
B

◆

, (4.234)

where the components of the doublets are super fields. For instance, the scalar part of U is
the ũ squark and its fermionic part is the ordinary u quark. Of course, there is also a color
index a = 1, 2, 3 and, in fact, one should write the corresponding doublet as Qia. Moreover,
one can also introduce a third SU(2)L index ↵ = 1, 2 and write Qia↵ with, for instance,
Q1a1 = U and Q1a2 = D. On the other hand, the quantities U c

j and Dc
j denotes the right

handed super fields where j is the family index (and the color index has been ignored in
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order to simplify the notation): for instance, U c
2 means the right handed charm quark super

field which is a singlet under SU(2)L.
In the same fashion, Li denotes a doublet of left handed lepton superfields

L1 =

✓

Ne

Ee

◆

, Q2 =

✓

Nµ

Eµ

◆

, Q3 =

✓

N⌧

E⌧

◆

, (4.235)

where, for instance, Ne denotes the electronic neutrino superfield (the scalar part being the
neutralino and the fermionic part the electronic neutrino itself) while Ee denotes the electron
superfield. On the other hand, the quantities Ec

j denote the right handed superfields that
are singlet under SU(2)L (for instance, Ec

2 is the right handed muonic superfield). In the
superpotential (4.233), there are two terms involving the quarks and only one involving the
leptons because, as well-known, there is no right handed neutrinos in the standard model.

The last term in Eq. (4.233) describes the Higgs sector with two Higgs doublet Hu and
Hd. The quantity µ is a new dimensionful (of dimension one) parameter of the model. The
dot indicates an SU(2) invariant product. Finally, λu, λd, λe are the 3⇥ 3 Yukawa matrices.

From the superpotential (4.233), one can determine the scalar potential of the theory
by means of the usual supersymmetric machinery. As is well-known, the scalar potential
is made of two pieces, the F -term part and the D-term part. Clearly, given the number
of fields in the theory, the scalar potential is a complicated object. For inflation, we are
especially interested in the flat directions of this potential. A flat direction is a direction
such that the F and D-terms vanish, that is to say such that VF = 0, VD = 0 and, therefore,
V ⌘ VF + VD = 0. It was shown that the MSSM scalar potential contains nearly 300 gauge
invariant flat directions [57, 403, 404]. Finding these directions is a non-trivial task and we
now very briefly explain how this can be done. Usually, it consists in putting all the fields to
zero except a few ones, these few ones being carefully chosen such that cancellations occur in
such a way that the potential exactly vanishes. We now illustrate this method on a particular
case. Let us first recall that the general formula giving the D-term potential is

VD =
1

2

X

a

g2aD
aDa, (4.236)

where Da = φ†T aφ, T a being the generator of the group and φ denoting a generic field (of
course, the index a should not be confused with the color index discussed above). For the
standard model, we have the group SU(2)L ⇥U(1)Y and, therefore, the explicit expression of
the D-term reads

VD =
g2

2

(

D2
1 +D2

2 +D2
3

)

+
g
Y

2
D2

Y , (4.237)

g and gY being the coupling constants of the two groups. For the SU(2) group, the generators
T a are nothing but the Pauli matrices and, therefore, T a = σa/2. Following Refs. [403, 405],
let us consider a situation where all the fields in the MSSM are assumed to have a vanishing
vev except Li and E

c
j where we remind that i and j are family indices. If we write L"

i and

L#
i as respectively the upper and lower component of the doublet Li, then one has (i.e. we

put φ = Li in the general formula expressing Da)

D1 =
1

2

3
X

i=1

⇣

L"
i
⇤L#

i + L#
i
⇤L"

i

⌘

, D2 =
i

2

3
X

i=1

⇣

L"
i
⇤L#

i − L#
i
⇤L"

i

⌘

, (4.238)

D3 =
1

2

3
X

i=1

✓

∣

∣

∣
L"
i

∣

∣

∣

2
−
∣

∣

∣
L#
i

∣

∣

∣

2
◆

. (4.239)
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The quantity Ec being a SU(2) singlet does not participate to the above expression. On the
other hand, the contribution from the U(1) group reads

DY =
1

2

3
X

i=1

✓

2|ei|2 −
∣

∣

∣
L"
i

∣

∣

∣

2
−
∣

∣

∣
L#
i

∣

∣

∣

2
◆

, (4.240)

where ei denotes the scalar field of the Ec
i supersymmetric multiplet. We see that, if we take

Li =

✓

φ

0

◆

, Lj =

✓

0
φ

◆

, ek = φ, (4.241)

then we have VD = 0.
The next step consists in calculating the F -term for the choice (4.241). It is easy to check

that VF = 0. Therefore, we have identified a flat direction. It is denoted LiLjek or LLe to
recall that all family combination are possible. This direction is represented by a “composite
operator Xm” formed by the product of the superfields making up the flat direction. In
our case X3 = LiLjek = φ3 and m = 3 since we have three operators participating to the
definition of X3. This direction has been proposed in Ref. [406] as a possible candidate for
the inflaton field. Let us also remark that another choice put forward in that reference was
udd.

We have just seen how to identify flat directions in the MSSM potential. However,
this flatness is usually spoiled by the presence of higher order non-renormalizable operators
appearing in the MSSM (viewed here as a low energy effective field) and by supersymmetry
breaking [57, 403, 404]. Higher order operators are described by the following superpotential

W =
λn

n

Xk
m

Mmk−3
Pl

, (4.242)

where λn is a coupling constant, n ⌘ mk and k = 1 or k = 2 depending on whether the
flat direction is even or odd under R-parity. Recall that Q, L, U c, Dc and Ec have R-parity
−1 and Hu, Hd have R-parity +1. It follows that LLe (for instance) has odd R-parity and,
therefore, that k = 2. For the directions LLe (this is also true for uud), this means that

n ⌘ mk = 6. (4.243)

The above superpotential (4.242) will produce a term |@W/@φ|2 / φ2(km−1) in the scalar
potential. Then, we have the contributions originating from supersymmetry breaking. They
can be easily calculated if, for instance, we assume that we have an independent hidden sector
where supersymmetry is broken and that this breaking is mediated by gravity only. This
gives two types of soft terms, one proportional to φ2 and another, the so-called “A-term”,
proportional to (φ@W/@φ+ cc) that is to say, given Eq. (4.242), proportional to φmk.

More generally, if one starts from a flat direction with a given n, then the superpotential
has the form W = λn/nΦ

nM3−n
Pl , where Φ = φei✓ is the superfield which contains the flat

direction. Then, the scalar potential takes the form

V (φ) =
1

2
m2
φφ

2 +A cos(n✓ + ✓0)
λn

n

φn

Mn−3
Pl

+ λ2n
φ2(n−1)

M
2(n−3)
Pl

, (4.244)

where the the second term involves the angular part of the superfield via a term cos(n✓+✓0),
which in practice is fixed at −1 to maximize its contribution. As explained below, the fact
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that the second term appears with a negative coefficient plays a crucial role in making this
scenario a credible inflationary one.

Together with the global minimum at φ = 0, under the condition A2 ≥ 8(n − 1)m2
φ,

the potential has a secondary minimum at φ0 '
(

mφM
n−3
Pl

)1/(n−2)
. If A2 & 8(n − 1)m2

φ,
this secondary minimum becomes the deepest one and thus the true one. The curvature
of the potential at this minimum is of the order m2

φ. If inflation occurs there, one gets

H ' mφ(mφ/MPl)
1/(n−2), which is much smaller than the potential curvature for mφ ⌧MPl.

This implies that the potential is too steep for quantum effects during inflaton to kick φ out
of the false minimum. Such a situation is similar to the old inflationary scenario. However,
this barrier disappears if one saturates the previous inequality and takes

A2 = 8(n− 1)m2
φ. (4.245)

In that case, the potential has a flat inflection point at φ0 and inflation can proceed between
this plateau and φ = 0. This is the case we study in this section. This model (and its
generalizations) has also been studied in Refs. [407–417]. Its generalizations will be inves-
tigated in more details in section 5.6 and section 5.7. Let also us notice that when n = 3,
the same potential appears in Refs. [418, 419] as “Generalized Chaotic Inflation”, and later
in Refs. [420–422] as “Punctuated Inflation”. In these references, it is shown that slow-roll
inflation is briefly interrupted when the inflaton crosses the flat inflection point and this can
produce step-like features in the primordial power spectra. These effects are outside the scope
of the following slow-roll analysis as we will be dealing with the last slow-roll inflationary
stage within this scenario.

4.17.2 Slow-Roll Analysis

We now turn to the slow-roll analysis of MSSM inflation. As discussed before, we assume
that the inflaton is the flat direction LLe or uud. This implies that n = 6 in Eq. (4.244).
Then, rewriting the potential (4.244) in a more convenient fashion, one arrives at

V (φ) =M4

"

✓

φ

φ0

◆2

− 2

3

✓

φ

φ0

◆6

+
1

5

✓

φ

φ0

◆10
#

, (4.246)

where we have defined new parameters according to

M8 =
M3

Plm
5
φ

4
p
10λ6

, φ8
0
=
M6

Plm
2
φ

10λ26
. (4.247)

These definitions ensure that φ0 is the inflection point. Since m2
φφ

2 is a soft SUSY breaking
term, we typically expect that mφ ' 1TeV and this is the reason why, in what follows,
typical values of the field are taken to be

φ0 ' 1014 GeV, (4.248)

in agreement with the second of Eqs. (4.247) (the coupling constant λ6 is taken to be of
order one). An interesting feature of this model is that it provides inflation at sub-Planckian
vev and at low scale V ' (109 GeV)4. As noticed in Ref. [406], higher values than n = 6
would produce too small amplitude for the scalar perturbations. This is why the model is
commonly studied with n = 6 (with n = 3, this is RIPI, see section 4.18).
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Figure 31. MSSM Inflation (MSSMI). Top left panel: MSSM Inflation potential Eq. (4.246) as a
function of φ/φ

0
. Top right panel: logarithm of the potential. Bottom left panel: slow-roll parameter

✏1 scaled by φ2
0
/M2

Pl
. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line)

scaled by φ2
0
/M2

Pl
.

The potential in Eq. (4.246) is displayed in Fig. 31, together with its logarithm. It
is an increasing function of the field, the derivative of which vanishes at φ = 0 and at
its second inflection point φ = φ0 , the position of the first inflection point being given by
φ−V 00=0 = φ0/

p
3. Inflation proceeds in the region φ 2 [0,φ0 ], in the direction specified by the

arrow in Fig. 31.
Defining the dimensionless quantity x by

x ⌘ φ

φ0

, (4.249)

the first three Hubble flow functions in the slow-roll approximation are given by

✏1 = 450
M2

Pl

φ2
0

(

x4 − 1
)4

x2 (3x8 − 10x4 + 15)2
, ✏2 = 60

M2
Pl

φ2
0

3x16 − 58x8 + 40x4 + 15

x2 (3x8 − 10x4 + 15)2
, (4.250)
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and

✏3 =
M2

Pl

φ2
0

60

x2
(

−225 + 1575x4 − 3165x8 + 395x12 + 2605x16 − 1275x20 + 81x24 + 9x28
)

⇥
(

3x8 − 10x4 + 15
)−2 ⇥

(

−15− 55x4 + 3x8 + 3x12
)−1

.
(4.251)

These two slow-roll parameters diverge when the field vev goes to 0, and vanish when the
field vev goes to infinity. The first slow roll parameter ✏1 first decreases, vanishes at the flat
inflection point where ✏2 vanishes too, then increases to reach a local maximum where ✏2
vanishes again, and eventually decreases again, to vanish at infinity where ✏2 also goes to
zero. Denoting by x+✏2=0 the position of the second extremum, one has

x+✏2=0 =

✓

1

3

◆1/4 

24/3
⇣

i
p
685 − 1

⌘1/3
+ 14⇥ 22/3

⇣

i
p
685− 1

⌘−1/3
− 1

]1/4

' 1.41022.

(4.252)
In between the two local extrema of ✏1, the second slow-roll parameter ✏2 is negative whereas
it is positive elsewhere. The value of ✏1 at its local maximum is given by

✏max
1 = ✏1

(

x+✏2=0

)

' 34.459
M2

Pl

φ2
0

. (4.253)

With the typical above-mentioned value for φ0 ' 1014GeV, one has M2
Pl/φ

2
0
' 108 and

✏max
1 > 1. This means that if inflation proceeds for vev ’s larger than that of the flat inflection
point, it can naturally stop by slow-roll violation. However, if this happens, inflation proceeds
at x & 1 and the potential is effectively very close to a large field model one (LFI, see
section 4.2) with p = 10.

For this reason, we will be focused to the case in which inflation occurs for vev ’s smaller
than that of the flat inflection point. In this case, the value of xend at which inflation stops
by slow-roll violation must be determined numerically. In the limit φ0/MPl ⌧ 1 however, one
has xend ' 1 and an approximate analytic formula can be derived

xend ' 1− 1

23/4
p
15

r

φ0

MPl

. (4.254)

A comparison between this expression and the numerical solution of ✏1 = 1 is displayed in
Fig. 32. For physical values φ0 ' 10−4MPl, the agreement is excellent.

Let us now turn to the slow-roll trajectory. It can be integrated from Eq. (2.11) and
leads to

Nend −N =

✓

φ0

MPl

◆2⇢x2 − x2end
20

+
1

15

✓

x2end
x4end − 1

− x2

x4 − 1

◆

− 2

15

⇥

arctanh
(

x2end
)

− arctanh
(

x2
)⇤

}

,

where Nend is the number of e-folds at the end of inflation and N is the number of e-folds
at some point when the scaled field vev is x. A few remarks are in order. Firstly, when
x ' 1, the second term of the previous expression dominates, and one has Nend − N '
1/15 (φ0/MPl)

2[1/(x4end − 1)− 1/(x4 − 1)], which can be inverted and gives

x ' 1− 1

4

"

2−5/4
p
15

s

MPl

φ0

+ 15
M2

Pl

φ2
0

(Nend −N)

#−1

. (4.255)
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Figure 32. Location of the slow-roll violation induced end of inflation xend = φend/φ for the MSSM
inflation models, as a function of φ

0
/MPl. The blue solid curve represents a numerical solution of

✏1 = 1, while the red dotted curve corresponds to the approximated analytic solution Eq. (4.254). For
physical values φ

0
' 10−4MPl, the agreement is obviously excellent.

Secondly, one could wonder if a sufficient number of e-folds can be realized in the regime
studied here. When x! 1, the corresponding number of e-folds diverges, but in practice, the
inflationary dynamics close to the flat inflection point is governed by the quantum diffusion
and the classical equation of motion can not be trusted in this domain.

If one introduces the ratio ⌘ between the quantum kicks amplitude H/(2⇡) and the
classical drift M2

PlVφ/V , when x ' 1, one has

⌘ ' 1

90
p
30⇡

M2φ0M
−3
Pl (x− 1)−2 ' 4

p
10

⇡
p
3
M2MPlφ

−3
0

(Nend −N)2 , (4.256)

where the last equality comes from the approximate trajectory. In order to estimate the value
of ⌘, one needs the value of M which is fixed by the amplitude of the CMB anisotropies.
With x⇤ the observable field value associated with ∆N⇤ = Nend −N⇤, one gets

✓

M

MPl

◆4

= 2880⇡2
M2

Pl

φ2
0

(

1− x4⇤
)4

x4⇤

✓

1− 2

3
x4⇤ +

1

5
x8⇤

◆3

Q2
rms−PS

T 2
. (4.257)

In the x⇤ ' 1 approximation, this gives

M4

M4
Pl

' 3

8
⇡2
Q2

rms−PS

T 2

φ6
0

M6
Pl (Nend −N⇤)

4 , (4.258)

and thus

⌘ '

s

20
Q2

rms−PS

T 2

✓

Nend −N

∆N⇤

◆2

. (4.259)
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It is quite remarkable that this formula does not depend on φ0 anymore but only on the ratio
(Nend −N)/∆N⇤. From Qrms−PS/T ' 6⇥ 10−6, one has Nend −Nmin ' 104 in the classical
regime [406]. For φ0 ' 1014 GeV, one obtains M ' 108GeV, in agreement with what was
announced earlier.

Finally, it can be interesting to write down the approximated slow-roll parameters at
Hubble crossing and in the limit φ0/MPl ⌧ 1. One obtains

✏1⇤ '
✓

φ0

MPl

◆6 1

7200∆N4⇤
, ✏2⇤ '

4

∆N⇤
, ✏3⇤ '

1

∆N⇤
, (4.260)

hence

r '
✓

φ0

MPl

◆6 1

450∆N4⇤
, nS ' 1− 4

∆N⇤
, ↵S ' − 4

∆N2⇤
. (4.261)

They are similar with the typical predictions of the RIPI models [see Eq. (4.277)].
The reheating consistent slow-roll predictions of the MSSMI models are displayed in

Fig. 104. The reheating equation of state parameter wreh has been taken to 0 since the
potential is quadratic in the vicinity of its minimum. One can check that, in the limit
φ0/MPl ⌧ 1, the first slow-roll parameter is indeed extremely small, while the second slow-
roll parameter does not depend much on φ0 . Remembering that φ0/MPl ' 10−4, one can see
that these models seem to be disfavored by the data since they predict a too large deviation
from scale invariance. In order to better reproduce the constraints on the spectral index, these
models should be such that φ0/MPl & 1, for which they become similar to large field models
(LFI, see section 4.2). This can be seen from the previous formulas in the limit x & 1.
Unfortunately, such values for φ0 are not compatible with the MSSM. Finally, comparing
Fig. 104 with Fig. 105, one can see that the general features of MSSMI are very similar to
the RIPI ones, and that the conclusions drawn here are rather robust against a change in n
appearing in Eq. (4.244).

4.18 Renormalizable Inflection Point Inflation (RIPI)

4.18.1 Theoretical Justifications

In section 4.17 inflation is implemented within the Minimal Supersymmetric Standard Model
(MSSM) around a flat inflection point. Here, we consider a similar model but with n = 3
instead of n = 6. Such a scenario can emerge in the following situation, see Refs. [423, 424].
Let us consider the MSSM with three additional superfields Ni representing three right-
handed neutrinos. These fields are singlet under the standard model gauge group but this
one can be extended to SU(3)c ⇥ SU(2)

L
⇥ U(1)

Y
⇥ U(1)

B−L
and the Ni are assumed to be

charged under the extra U(1)B−L . Then, we postulate the following superpotential

W =WMSSM + hNHuL, (4.262)

where h . 10−12 in order to explain the neutrino mass, m⌫ ' O(0.1) eV. It follows that
NHuL is a D-flat direction of the potential and we parametrize this direction by φ. As a
consequence, if one now calculates the corresponding potential, one finds that

V =
1

2
m2
φφ

2 − Ah

6
p
3
φ3 +

h2

12
φ4, (4.263)

where, as usual, we have included the soft supersymmetry breaking terms (since W / φ3,
the A-term, proportional to φ@W/@φ is, this time, cubic) and have minimized V along the
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angular direction. If A is chosen such that A = 4mφ, then we have a flat inflection point at
φ0 =

p
3mφ/h. A discussion on the fine-tuning required to get a flat inflection point can be

found in section 5.7,

4.18.2 Slow-Roll Analysis

We now turn to the slow-roll analysis of the potential given in Eq. (4.263). For this purpose,
it is more convenient to re-write it as

V (φ) =M4

"

✓

φ

φ0

◆2

− 4

3

✓

φ

φ0

◆3

+
1

2

✓

φ

φ0

◆4
#

, (4.264)

where we have defined the quantities M and φ0 by

M4 =
1

2
m2
φφ

2
0
, φ0 =

p
3
mφ

h
. (4.265)

Relevant values of mφ range from 100GeV to 10TeV and h ' 10−12. This means that [423,
424]

φ0 ' 1014 GeV, (4.266)

a value that turns out to be similar to the one considered in the MSSMI case (see section 4.17).
Let us now define the quantity x by the following expression

x ⌘ φ

φ0

. (4.267)

The potential is an increasing function of the field vev , hence inflation proceeds from the
right to the left. It has two inflection points x±V 00=0, given by

x−V 00=0 =
1

3
and x+V 00=0 = 1, (4.268)

the second one being a flat inflection point [i.e. V 0 (x+V 00=0

)

= 0], close to which inflation
takes place. This potential is displayed in Fig. 33, together with its logarithm.

Let us now turn to the slow-roll parameters. The first three Hubble flow functions in
the slow-roll approximation are given by

✏1 = 72
M2

Pl

φ2
0

(x− 1)4

(3x3 − 8x2 + 6x)2
, ✏2 = 24

M2
Pl

φ2
0

(x− 1)
3x3 − 9x2 + 10x− 6

(3x3 − 8x2 + 6x)2
, (4.269)

and

✏3 =24
M2

Pl

φ2
0

(x− 1)
(

36 − 144x+ 246x2 − 236x3 + 144x4 − 54x5 + 9x6
)

⇥
(

6x− 8x2 + 3x3
)−2 (

10x− 9x2 + 3x3 − 6
)−1

.

Both ✏1(x) and ✏2(x) diverge when the field vev goes to 0, and vanish when the field vev
goes to infinity. The first slow-roll parameter ✏1 first decreases, vanishes at x+V 00=0 where ✏2
vanishes too, x−✏2=0 = x+V 00=0, then increases to reach a local maximum at x+✏2=0 where ✏2
vanishes again, and eventually decreases again. The value of x+✏2=0 is given by

x+✏2=0 = 1− 1

3
(

9 +
p
82
)1/3

+
1

3

⇣

9 +
p
82
⌘1/3

' 1.75 . (4.270)
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Figure 33. Renormalizable Inflection Point Inflation (RIPI). Top left panel: renormalizable inflection
point inflation potential as a function of φ/φ

0
. Top right panel: logarithm of the potential, the required

flatness of the potential close to its inflection point becomes obvious on this plot. Bottom left panel:
slow-roll parameter ✏1 normalized by M2

Pl
/φ2

0
. The shaded area indicates the region in which ✏1 > 1

and thus where inflation stops (this has to be rescaled for φ
0
6= MPl). Bottom right panel: slow-roll

parameters ✏2 (solid line) and ✏3 (dotted line), normalized by M2
Pl
/φ2

0
.

In between these two local extrema of ✏1, the second slow roll parameter ✏2 is negative, and
it is positive elsewhere. The value of ✏1 at its local maximum, ✏max

1 , is given by

✏max
1 ' 5.2753

M2
Pl

φ2
0

. (4.271)

Therefore, if φ0/MPl . 2.3, inflation can stop by slow-roll violation in the region correspond-
ing to vev ’s larger than that of the second inflection point x+✏2=0. Remembering that typically
φ0 ' 1014 GeV ' 4 ⇥ 10−5MPl, this condition is easily satisfied. In that case, an expression
for the vev at which inflation ends, x+✏1=1, can be obtained but is does not add much to the
discussion since for reasonable values of φ0 , it is extremely far from the flat inflection point
(e.g. for φ0/MPl = 10−4, one has x+✏1=1 ' 28285). Since the potential is introduced in order
to study inflation in the vicinity of the flat inflection point, it should be studied in the other
regime, as it is the case for MSSM inflation (see section 4.17), i.e. when inflation takes place
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between x = 0 and the second inflection point x−✏2=0. In that situation, it ends at

xend = x−✏1=1 =
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For φ0/MPl ⌧ 1, one can numerically check that this expression is very close to the flat
inflection point location x−✏2=0, namely

xend ' 1−
r

6
p
2
φ0

MPl

. (4.273)

The whole inflationary stage therefore proceeds in the vicinity of this point.
The slow-roll trajectory is obtained from Eq. (2.11) and reads

Nend −N =
φ2

0

M2
Pl



−x
6
+
x2

8
+

1

12 (1− x)
− ln (1− x)

12

+
xend
6

− x2end
8

− 1

12 (1− xend)
+

ln (1− xend)

12

]

.

(4.274)

Several remarks are in order. Firstly, from this expression, one can see that the number of
e-folds diverges when the field approaches the inflection point of the potential. This means
that this point is never crossed and that, if inflation proceeds for vev ’s larger than that of
this inflection point, then the field approaches it asymptotically but never actually reaches it.
However, an exact numerical integration of the equations of motion reveals that, if the field
approaches the inflection point in such a way that the slow-roll conditions are not satisfied,
then it can cross it. This is typically the case if its speed is large enough. On the other hand,
the field dynamics at the exact location of the inflection point is dominated by quantum
diffusion, and a more careful study must be carried out to describe what exactly happens
there. Following the considerations of section 4.17, we focus on the inflationary regime only
in the region where the vev of φ is smaller than that of the flat inflection and where deviations
from slow-roll and quantum diffusion plays a negligible role. Since for φ0/MPl ⌧ 1 inflation
takes place relatively close to the inflection point, the two last terms of Eq. (4.274) dominate
over the two first ones. In this limit, the trajectory can be inverted to get

x⇤ ' 1−W−1
0

(

exp

"

12

✓

MPl

φ0

◆2

∆N⇤ +
1

1− xend
− ln (1− xend)

#)

. (4.275)
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Making use of Eq. (4.273), and keeping only the dominant terms in φ0/MPl, one obtains

x⇤ ' 1− 1

12

✓

φ0

MPl

◆2 1

∆N⇤
. (4.276)

This expression can be useful to determine typical values for the slow-roll parameters evalu-
ated at Hubble crossing. One obtains

✏1⇤ '
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288
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φ6
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M6
Pl

, ✏2⇤ '
4
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1
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, (4.277)

hence

r ' 1

18

1

∆N4⇤

φ6
0

M6
Pl

, nS − 1 ' − 4

∆N⇤
, ↵S ' − 4

∆N2⇤
. (4.278)

One can see that these models typically predict a tiny amount of gravitational waves, but
a substantial deviation from scale invariance nS − 1 ' −4/∆N⇤ ' 0.1. The similarity with
Eqs. (4.260) is obvious.

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies
and the observable field value x⇤ = x(N⇤) by
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= 622080
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⇡2
(x⇤ − 1)4
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T 2
. (4.279)

For φ0/MPl ⌧ 1, one can make use of Eq. (4.276) to get the approximate expression
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◆4

' 30
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◆6 Q2
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T 2
. (4.280)

Using the typical value φ0 ' 1014 GeV, one gets M/MPl ' 5⇥ 10−11.
The reheating consistent slow-roll predictions of the renormalizable inflection point mod-

els are displayed in Fig. 105. The reheating equation of state parameter wreh has been taken
to 0 since the potential is quadratic close to its minimum. One can check that in the limit
φ0/MPl ⌧ 1, the first slow-roll parameter is indeed extremely small, while the second slow-
roll parameter does not depend much on φ0 . Remembering that φ0/MPl ' 10−4, one can see
that these models are disfavored by the CMB data since they predict a too large deviation
from scale invariance. In order to remain inside the two-sigma confidence intervals, these
models should be such that φ0/MPl & 1, for which they are close to the large field models
(LFI, see section 4.2). However, such values for φ0 are, a priori, outside the range of validity
of the RIPI scenario. Finally, comparing Fig. 104 with Fig. 105, one can see that the general
features of RIPI are very close to the MSSMI ones, and that the conclusions drawn before
are therefore robust against the precise value of the power index n in Eq. (4.244).

4.19 Arctan Inflation (AI)

This scenario was originally introduced in Ref. [425] as a toy model where the equation of
state changes rapidly around φ = 0. The potential reads

V (φ) =M4



1− 2

⇡
arctan

✓

φ

µ

◆]

, (4.281)
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Figure 34. Top left panel: Arctan Inflation (AI) potential as a function of φ/µ. Top right panel:
logarithm of the potential. Bottom left panel: slow-roll parameter ✏1 rescaled by M2

Pl
/µ2 which

renders the corresponding expression “universal”, i.e. independent of the free parameter µ. Bottom
right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line) rescaled by M2

Pl
/µ2 (for the same

reason as mentioned before).

and depends on one free parameter, µ. This model was considered in order to test the
reliability of different computational methods and schemes of approximation used in the
calculations of the inflationary cosmological perturbations power spectrum, see Ref. [425].
More precisely, in Ref. [180], it was also used to study with which accuracy the first and second
slow-roll order power spectra can approximate the actual power spectrum of the fluctuations
in the case where the underlying model has both quite large tilt and running. This potential
was considered again in Refs. [426, 427] in order to study whether it can lead to the formation
of long-lived primordial black holes. In the following slow-roll analysis, µ will be viewed as
a free parameter with no restricted range of variation. Let us notice, however, that since it
characterizes the typical vev at which inflation takes place, it could also be limited to the
sub-Planckian regime if one wants inflaton to proceed in a small field regime. As a matter
of fact, it will be shown below that this needs to be the case if one wants inflation to end by
slow-roll violation.

The potential (4.281), as well as its logarithm, are displayed in Fig. 34. They are
decreasing functions of the field and, hence, inflation proceed from the left to the right, in
the direction specified by the arrow in Fig. 34.
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Let us now compute the three first slow-roll parameters. If one defines x ⌘ φ/µ, their
expressions are given by

✏1 =
M2

Pl

µ2
2

(1 + x2)2 (⇡ − 2 arctan x)2
, ✏2 = 8

M2
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µ2
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, (4.282)

and
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(4.283)
They are displayed in Fig. 34. The first slow-roll parameter ✏1 increases during inflation,
reaches a maximum at x✏max

1
and then decreases. Whether inflation can stop by violation of

slow-roll or not depends on the value of ✏1 at its maximum: ✏max
1 . This value is a solution of

the following equation
2x✏max

1
arctan

(

x✏max
1

)

+ 1 = ⇡x✏max
1

, (4.284)

which can only be solved numerically. One gets x✏max
1

' 0.428978, from which one deduces
that

✏max
1 ' 0.262531

M2
Pl

µ2
. (4.285)

Therefore, in order for inflation to end by slow-roll violation, one needs to work under the
assumption that µ/MPl < 0.512378. In that case, inflation proceeds along the plateau located
at values of x such that x < x✏max

1
, in the direction specified by the arrow in Fig. 34 (i.e. from

the left to the right). Otherwise, if one wants inflation to occur in other parts of the potential
and/or for values of µ such that µ/MPl > 0.512378, another mechanism needs to be consider
in order to stop it (typically, we imagine a tachyonic instability in another direction in field
space). This means that we also need to introduce an extra parameter xend which gives the
location of the vev at which the tachyonic instability is triggered. Let us remark that we
could also consider a model where the inflaton starts at x < x✏max

1
, then crosses the region

where ✏1 has its maximum and then causes the end of inflation by tachyonic instability. This
case would give a bump in the power spectrum and, clearly, cannot be properly described
in the slow-roll framework. In this article, we restrict ourselves to the first version of the
scenario mentioned above. In this situation xend is given by the smallest solution of the
equation ✏1 = 1 and needs to be computed numerically. Before inflation stops, one can
see in Fig. 34 that the second slow-roll parameter ✏2 reaches a maximum, the location of
which can be numerically computed to be x✏max

2
' −0.28539 < x✏max

1
. At this point, one has

✏max
2 ' 1.02827M2

Pl/µ
2 > ✏max

1 . As a consequence, the slow-roll approximation breaks down
before the end of inflation. This conclusion is reinforced by the fact that ✏3 diverges at x✏max

1
.

This means that the last e-folds of inflation cannot be properly described in the slow-roll
framework.

Let us now turn to the slow-roll trajectory. It can be integrated exactly and yields the
following expression
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(4.286)
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where Nend is the number of e-folds at the end of inflation. In the vacuum dominated
approximation where the potential is just given by V (φ) ' M4, this trajectory can be
approximated by Nend −N = µ2/M2

Pl(⇡xend + x2end/6 + ⇡x3/3− ⇡x− x2/6 − ⇡x3/3), which
can be inverted exactly if needed. This formula is valid if µ/MPl ⌧ 1, since in that case,

xend ' −
q

MPl/
(

µ⇡
p
2
)

⌧ −1. Under this assumption, one has x3⇤ ' −3M2
Pl/

(

⇡µ2
)

∆N⇤,
from which one can approximate the values of the three first Hubble flow parameters at
Hubble radius crossing

✏1⇤ =
(µ/MPl)

2/3

2 (⇡∆N2⇤ )
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1

∆N⇤
, (4.287)

Then, one can calculate the tensor-to-scalar ratio, the spectral index and the running. One
obtains the following expressions

r =
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2/3

(⇡∆N2⇤ )
2/3

, nS − 1 = − 4

3∆N⇤
' −0.03 , ↵S = − 4

3∆N2⇤
' −5⇥ 10−4 .

(4.288)
These formulas are in agreement with the consistency relation ↵S = −3/4 (nS − 1)2 obtained
in Ref. [426].

Finally, it is interesting to estimate the energy scale M from the CMB normalization.
This leads to
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Under the vacuum dominated approximation (µ/MPl ⌧ 1), the above equation can be re-
expressed as
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◆2/3 Q2
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. (4.290)

The requirement M < MPl is always satisfied form sub-Planckian values of µ. The typical
value M/MPl ' 10−3 corresponds to µ/MPl ' 10−2.

The slow-roll predictions of the AI models are displayed in Fig. 106, in the range µ/MPl <
0.512378 (so that inflation can end by slow-roll violation). The reheating equation of state
parameter wreh has been taken to be 0 but since there is no potential minimum around which
the inflaton field can oscillate at the end of inflation, this parameter is a priori unspecified.
One can see that this model typically predicts a small amount of gravitational waves, and a
deviation from scale invariance which is in accordance with the observations. The predictions
in the planes (nS, r) are qualitatively well described by the vacuum dominated analysis (4.288)
presented before.

4.20 Constant nS A Inflation (CNAI)

This class of models is designed in order to produce power spectra with constant spectral
index. It was studied for the first time in Ref. [428]. The rational behind this approach is
that, so far, no evidence for a significant running has been found in the cosmological data.
Since, from a Bayesian point of view, one should avoid introducing parameters that are
unnecessary in order to reproduce the observations, it makes sense to consider models which
lead to exact power-law power spectra. This is of course the case for power-law inflation as
discussed in section 4.8 and we will see other examples in sections 4.21, 5.15 and 6.6. In
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Figure 35. Constant nS A Inflation (CNAI) potential and slow-roll parameters versus the vacuum
expectation value of the inflaton field. Top left panel: Constant nS A Inflation potential for ↵ = 1.
Top right panel: logarithm of the potential for the same value of ↵. Bottom left panel: slow-roll
parameter ✏1 (same value of ↵): inflation stops when ✏1 = 1 in this model. Bottom right panel:
slow-roll parameters ✏2 and ✏3 (↵ = 1).

fact, in Ref. [428], a systematic analysis of potentials that yield constant spectral index was
carried out. It was found that the following potential belongs to this category of models

V (φ) =M4
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, (4.291)

where ↵ is a positive massless parameter (denoted n20 in Ref. [428]) and, in this section, we
study this case. This potential is represented in Fig. 35 and, since it is symmetrical under
the transformation φ ! −φ, only the φ > 0 part is displayed. The potential is a decreasing
function of the field vev and, therefore, inflation proceeds from the left to the right. It is
positive provided φ < φ0 , where

φ0
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There is no value of ↵ for which the potential is always positive. Defining x = φ/MPl, the
slow-roll parameters are given by
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(4.295)
These slow-roll parameters are displayed in Fig. 35. They all increase as inflation proceeds
and diverge when the field approaches φ0 . Hence inflation ends by slow-roll violation. Notice
that the equation ✏1 = 1 can be solved analytically. If we define y ⌘ sinh2(↵x/

p
2), then one

has to solve the following cubic equation ↵4y3+(↵4−6↵2)y2+[9−6↵2−↵2(3+↵2)]y+9 = 0.
The relevant solution reads
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where we have defined P by
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The slow-roll parameters ✏1 and ✏3 both vanish when the field vev goes to 0, whereas ✏2 has
a non-vanishing minimum value, given by ✏2 ! 2↵2

(

3 + ↵2
)

/3 when x = 0. Therefore, if ↵
is larger than some maximum value

↵max =

r
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15− 3

⌘

' 0.66, (4.298)

then ✏2 is larger than 1 in the whole inflationary regime and the slow-roll approximation does
not hold. It is therefore necessary to work under the assumption ↵ < ↵max which we assume
in the following.

Let now us check that the spectral index nS − 1 = −2✏1− ✏2 (at first order in slow-roll),
can be made constant, as announced previously. Expanding the slow-roll parameters ✏1 and ✏2
in small values of ↵, and crucially assuming that ↵x⇤ remains small, one obtains ✏1 = O

(

↵4
)

and ✏2 = 2↵2 + O
(

↵4
)

, so that nS − 1 = −2↵2 + O
(

↵4
)

. Therefore, the corresponding
expression is indeed a constant (i.e. does no depend on φ⇤). Since we have |nS − 1| ⌧ 1,
this implies that ↵ should be small which is consistent with the condition ↵ < ↵max derived
above.
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Figure 36. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During CNAI inflation,
inflation proceeds along the “0” branch in the direction specified by the arrow on the figure.

Let us now study the slow-roll trajectory of the system. This one can be integrated
exactly leading to the following formula
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Moreover, this trajectory can be inverted which allows us to explicitly express the vev of the
inflaton field in terms of the e-folds number. One obtains
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(4.300)

where W0 is the 0 branch of the Lambert function as required since x (N) is an increasing
function of N . It is displayed in Fig. 36 where the CNAI trajectory takes place between
φ/MPl = 0 at the origin of the plot, and x = φ0/MPl at the junction between the −1 branch
and the 0 branch.

The slow-roll predictions of the CNAI models are displayed in Fig. 107. When ↵ is small
(but not too small), the value of nS is indeed constant (and compatible with the considerations
presented above) but, unfortunately, too far from scale invariance to be compatible with CMB
data. When ↵⌧ 10−1, the predictions become roughly compatible with the data but, clearly,
nS is no longer constant and no longer given by −2↵2. At first sight, this is surprising since
we expect the spectral index to tend towards −2↵2 when ↵ goes to zero (see above). In
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order to understand this point, let us remark that, in the limit where ↵ vanishes, one can
expand Eq. (4.296) to find yend ' 3/↵2−3/↵+O (↵) (the term at order ↵0 is absent and this
plays an important role in what follows). This leads to xend ' (

p
2/↵) ln

(

2
p
3/↵

)

− 1/
p
2 +

O (↵). Notice that this last equation is compatible with the behavior of the first Hubble-flow
parameter (4.293) in the vicinity of φ0 : ✏1 ' M2

Pl/[2(φ − φ0)
2]. Therefore, the expression of

xend found before corresponds in fact to writing ✏1 = 1 with this approximated ✏1. Then,
using the slow-roll trajectory (4.300), one gets
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where A is given by the following expression
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This quantity can be expanded in ↵ using the equation for yend derived above and, at leading
order, one obtains
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For simplicity, the last term in the previous expression can be ignored since 2∆N⇤ & 1/2. It
follows that, introducing the formula for −2A/3 into Eq. (4.301), one arrives at
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If we ignore the exponential in the argument of the Lambert function (since ↵⌧ 1) and use
the identity arcsinh(x) = ln(x+

p
x2 + 1), one finally arrives at

↵x⇤ ⇠
↵!0

p
2 ln

 

2
p
3

↵

!

. (4.305)

We now understand why, in the limit ↵ ! 0, the spectral index is no longer constant. The
naive expression nS ' −2↵2 is obtained by expanding the expressions of ✏1 and ✏2 in ↵,
including the hyperbolic function of argument ↵x⇤. But we have just shown that, when
↵ ⌧ 1, ↵x⇤ is not small and, therefore, the Taylor expansion of those terms is no longer
justified. This is why, in Fig. 107, we see a deviation from nS constant at very small values
of ↵. In fact, this questions the interest of this model since the condition of constant spectral
index is obtained only for values of nS that are already ruled out by the CMB data. On
the other hand, when ↵ ⌧ 1, the model seems compatible with the data and, therefore,
represents a legitimate inflationary scenario even if the spectral index is not constant in this
case.

Finally, it is also interesting to study the energy scale at which inflation takes place in
this model. The CMB normalization gives
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M
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=
11520⇡2↵2
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↵2 + 3
)2
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↵p
2
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(p
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)⇤3

Q2
rms−PS

T 2
. (4.306)

Since we have established the expression of x⇤ above, it is sufficient to use it in the above
formula. We have, however, to be careful about the calculation of the denominator. Indeed,
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if we neglect again the exponential in the argument of the Lambert function, Eq. (4.301),
then sinh2(↵x⇤/

p
2) ' 3/↵2 and the denominator in Eq. (4.306) vanishes. Therefore, one

needs to evaluate the Lambert function more precisely and to keep the corrections propor-
tional to ∆N⇤. This can be done with the help of Eq. (33) of Ref. [429] which implies that
sinh2(↵x⇤/

p
2) ' 3/↵2 − 6

p
∆N⇤/↵. Using this expression, one arrives at

M

MPl

' 0.016↵−3/4 (∆N⇤)
−3/8 . (4.307)

For an order of magnitude estimate, one can use the fiducial value ∆N⇤ ' 55. This leads to
M/MPl ' 0.0035↵−3/4 . RequiringM < MPl puts a lower bound on the parameter ↵, namely
↵ & 5⇥ 10−4. This roughly corresponds to the range studied in Fig. 107.

4.21 Constant nS B Inflation (CNBI)

This model is another representative of the class of scenarios studied in Ref. [428]. As was
already discussed in section 4.20, it is designed such that the corresponding power spectrum
has a constant spectral index. The potential is given by

V (φ) =M4



(

3− ↵2
)

tan2
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↵p
2

φ

MPl

◆

− 3

]

, (4.308)

where ↵ is a positive dimensionless parameter [428]. Since the potential is periodic with
period ⇡

p
2/↵ and, moreover, invariant under φ ! −φ, one can restrict ourselves to the

range 0 < φ/MPl < ⇡/
(p

2↵
)

without loss of generality. The potential is an increasing
function of the field and, as a consequence, inflation proceeds from the right to the left.
Finally, V (φ) is positive provided φ > φ0 , where

φ0

MPl

=

p
2

↵
arctan

 

r

3

3− ↵2

!

. (4.309)

Obviously, in order for the potential not to be negative everywhere, one needs to impose
that ↵ <

p
3 and, as a result, the previous expression is well defined. The potential (and its

logarithm) is displayed in Fig. 37, in the relevant range φ0/MPl < φ/MPl < ⇡/
(p

2↵
)

.
Then, defining x = φ/MPl, the slow-roll parameters are given by
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and
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Figure 37. Top left panel: constant nS B Inflation (CNBI) potential for ↵ = 0.1, see Eq. (4.308).
Top right panel: logarithm of this potential (for the same value of ↵). Bottom left panel: slow-roll
parameter ✏1 still for ↵ = 0.1. Bottom right panel: slow-roll parameters ✏2 and ✏3 again for ↵ = 0.1.

These slow-roll parameters are displayed in Fig. 37 (bottom panels). The first slow-roll
parameter ✏1 first decreases as the field vev increases and reaches a minimum value at x✏2=0

where ✏2 vanishes and then increases. The value of x✏2=0 is given by

x✏2=0 =
1

↵
p
2
arccos

"

↵2 − 6 +
p
↵4 − 36↵2 + 180

2 (↵2 − 6)

#

. (4.313)

The second slow-roll parameter, ✏2, always decreases as inflation proceeds, crossing ✏2 = 0
at x✏2=0. The third slow-roll parameter, ✏3, is positive for x < x✏2=0. In this domain, it
decreases to reach a minimum and then increases and diverges when x approaches x✏2=0.
On the contrary, for x > x✏2=0, ✏3 becomes negative. It first increases and reaches a local
maximum, then decreases and goes to −1 at x = ⇡/

(p
2↵
)

. The three slow roll parameters

diverge when φ goes to φ0 and to MPl⇡/
(p

2↵
)

.
The minimum value of ✏1 at x✏2=0 turns out to be smaller than 1 only if ↵ < ↵max '

0.2975. A (rather long) analytic expression for ↵max can be derived, but it does not provide
much information to the present discussion. Therefore, one must require ↵ < 0.2975 in order
to realize slow-roll inflation in this model. Then, assuming this is the case, it is clear from
Fig. 37 and from the previous considerations that inflation ends by slow-roll violation. If we
define y ⌘ sin2(↵x/

p
2), then the condition ✏1 = 1 is equivalent to 4(6 − ↵2)2y3 − 4(12 −
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Figure 38. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Constant nS B
Inflation, inflation proceeds along the “−1” branch in the direction specified by the arrow.

↵2)(6− ↵2)y2 + 4(45 + 3↵2 − 6↵4 + ↵6)y − 36 = 0. The relevant solution is given by
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where we have defined the quantity P by
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If ↵⌧ 1, then yend ' 1/2 and xend '
p
2/↵ arcsin(1/

p
2) = ⇡/(2

p
2↵).

As for the CNAI model, the spectral index nS − 1 = −2✏1 − ✏2, at first order in slow-
roll, can be made constant in some limit. Expanding the slow-roll parameters in ↵, while
assuming ↵x to be small, gives ✏1 = x2↵4/2+O

(

↵6
)

and ✏2 = 2↵2+O
(

↵4
)

, so that nS− 1 =
−2↵2 +O

(

↵4
)

. Therefore, approximate scale-invariance, |nS − 1| ⌧ 1, implies ↵ small.
Let us now turn to the slow-roll trajectory. This one can be integrated exactly, leading

to the following formula
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. (4.316)
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This formula can be inverted and x can be expressed explicitly in terms of the e-folds number.
One obtains

x =

p
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arcsin
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, (4.317)

where W−1 is the −1 branch of the Lambert function. It is displayed in Fig. 38. When
x = ⇡/

(p
2↵
)

, the argument of the Lambert function is
(

↵2 − 6
)

exp
(

↵2/3− 2
)

/3 which is

always larger than −1/e for any value of ↵ (this expression decreases with ↵ when ↵ <
p
3),

whereas when x = φ0/MPl, the argument of the Lambert function is just given by −1/e. For
x > φ0/MPl, the value taken by the Lambert function must be less than −1 which indicates
that the −1 branch is the relevant one. Therefore, inflation proceeds in the domain displayed
in Fig. 38 in which one easily checks that the above trajectory is always well defined.

The slow-roll predictions of the CNBI models are displayed in Fig. 108 for the range
10−5 . ↵ . 10−1.3. For very small values of ↵, the predictions are in agreement with the
data with a value of nS centered around the constant value nS ' 0.97 and an amount of
gravitational waves such that r & 0.07. But one also notices that the spectral index is not
really constant. In fact, it does not come as a surprise that the same phenomenon highlighted
in section 4.20 is at work here. Indeed, using the slow-roll trajectory (4.316), one has
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where A is given by the following expression
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Using the formula for xend derived above, one obtains, in the limit ↵⌧ 1 and at this order of
approximation that x⇤ ' xend. Therefore, as in section 4.20, ↵x⇤ is not a small quantity and
one cannot always Taylor expand the trigonometric functions that appear in the expressions
of the slow-roll parameters. This explains why, in the limit ↵ ⌧ 1, the spectral index is in
fact not constant (see section 4.20).

Finally, the CMB normalization gives
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In the limit ↵ ⌧ 1 we are interested in (since we have seen that, if ↵ is not small, then the

model is ruled out), the above expression takes the formM/MPl ' 0.02↵−1/4 (∆N⇤)
−3/8. We

obtain almost exactly the same result as for CNAI, see Eq. (4.306), except that the power
of ↵ is different. Taking the value ∆N⇤ = 55, it follows that M/MPl ' 0.0044↵−1/4 and
requiring M < MPl, one obtains the following lower bound, ↵ & 3.8⇥ 10−10.

4.22 Open String Tachyonic Inflation (OSTI)

4.22.1 Theoretical Justifications

In this section, we consider tachyon inflation. It was shown in Refs. [430–433] that, in
bosonic string theory, the four-dimensional action for a tachyon field T on a D3-brane can
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be approximated as [432, 433]

ST = T3
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, (4.321)

where higher derivative terms have been ignored. In this stringy setting, T0 is of the order
of the string scale T0 ' Ms = `−1

s = 1/
p
↵0, where `s is the string length. The constant T3

is the brane tension which can be expressed as T3 / M4
s /gs, gs being the string coupling.

The tachyon is assumed to be minimally coupled to Einstein gravity and the Planck mass
in four dimensions can be written as M2

Pl = M2
s v/g

2
s , where v = (Msr)

d/⇡, r being a radius
of compactification and d the number of compactified dimensions. This four dimensional
approximation is valid provided r & `s or v & 1. The action (4.321) can be viewed as a
truncated version of the action

ST̄ =
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p−g V (T̄ )

s
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◆
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Indeed, following Refs. [288, 434, 435], redefining the field T̄ by T̄ /T0 ⌘
p

8(1 + T/T0) with
V
⇥

T̄ (T )
⇤

⌘ T3(1 + T/T0) exp (−T/T0), it is straightforward to show that the leading terms
of Eq. (4.322) give back Eq. (4.321). Conversely, the full action of tachyonic inflation, under
the assumptions discussed previously, can thus be described in terms of T̄ by Eq. (4.322)
with [434]

V (T̄ ) =
T3e

8

T̄ 2

T 2
0

e−T̄ 2/(8T 2
0
). (4.323)

Because the action (4.322) is a particular case of k-inflation for which S =
R

d4x
p−gP (T,X)

with X ⌘ −gµ⌫@µT@⌫T/2 and, here, P (T,X) =
p
1− 2X , tachyonic inflation could produce

observable non-Gaussianities. Therefore, one may wonder how accurate is the truncated
action to describe the observable features of the model. On the theoretical point of view,
knowing whether the truncated action is a faithful representation of the actual action is a
complicated question since even an exact derivation of the complete action is still an open
problem. On a more phenomenological point of view, non-Gaussianities are not observed by
Planck [70]. More precisely, the parameter f

NL
(equilateral configuration) characterizing the

amplitude of the bispectrum in Fourier space can be written as [118, 436]

f
NL

=
35

108

✓

1
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− 1

◆

− 5

81
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1
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S

− 1− 2Λ

◆

, (4.324)

where, in our case, c2
S
= 1−2X and 1/c2

S
−1 = 2Λ so that the last term in the above equation

cancels out [436]. This leads to fNL = 35X/[54(1−2X)]. In the range of interest X 2 [0, 1/2],
the Planck constraint [70], fNL = −42 ± 75, yields X . 0.495. As a result, departures from
the leading order (4.321) are, a priori, still allowed by the CMB data. We will see at the
end of this section that tachyonic inflation has however other problems. For the moment,
given that Eq. (4.321) can always be seen as a phenomenological model, we can continue to
work with this action in order to see if, at least, this can lead to an inflationary scenario
compatible with the CMB data.

4.22.2 Slow-Roll Analysis

The inflationary dynamics can be studied directly from Eq. (4.321) but since it is linear in
X, the field can be canonically normalized. Performing the change of variable e−T/T0 ⌘
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Figure 39. Top left panel: Open String Tachyonic Inflation (OSTI) potential as a function of
φ/φ

0
. Top right panel: logarithm of the potential. The arrow indicates in which direction inflation

proceeds. Bottom left panel: slow-roll parameter ✏1, rescaled by the quantity M2
Pl
/φ2

0
, such that the

corresponding expression becomes universal, i.e. independent of φ
0
. Bottom right panel: slow-roll

parameters ✏2 (solid line) and ✏3 (dotted line), rescaled by M2
Pl
/φ2

0
for the same reason as mentioned

before.

(φ/T0)
2 /8, the Lagrangian can be re-written with an ordinary kinetic term, as a function of

the field φ and with a potential given by

V (φ) = −M4

✓

φ

φ0

◆2

ln

"

✓

φ
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◆2
#

, (4.325)

where M4 ⌘ eT3 and φ2
0
⌘ 8eT 2

0
. We notice that it corresponds to a particular case of

LPI discussed in section 6.5, with q = 1 and p = 2. Such a potential was also introduced in
Ref. [437] as a toy model of tachyon condensation. Let us also comment on the parameter φ0 .
In the original model φ0 'Ms and, as such, it is a zero-parameter scenario. Here, given the
issues discussed before (see also the end of this section) we consider φ0 as a free parameter.
If necessary, one can always recover the situation where φ0 is fixed to the string scale by
assuming the corresponding prior φ0 =Ms.

The potential (4.325) in represented in Fig. 39, together with its logarithm (top panels),
as a function of x ⌘ φ/φ0 . Since it is invariant under x! −x, and since it is positive definite
only if x2 < 1, it is only displayed in the range 0 < x < 1. The potential vanishes at x = 0,
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increases with x, reaches a maximum at xV 0=0 = e−1/2, then decreases with x and vanishes
at xV=0 = 1. Inflation is supposed to take place between xV 0=0, where the effective mass
of the inflaton is negative m2

φ = −4φ2
0
, and x = 0, where the effective mass is positive and

infinite m2
φ ! +1. Hence it proceeds from the right to the left, at decreasing field values

(see Fig. 39).
Let us now calculate the three first slow-roll parameters. They are given by
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, (4.326)
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and
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They are displayed in the bottom panels of Fig. 39. The first slow-roll parameter ✏1 diverges
when x! 0, decreases with x, vanishes at xV 0=0 and then increases with x and diverges when
x ! xV=0. As a consequence, inflation stops by slow-roll violation at a point xend where
✏1 = 1 that needs to be determined numerically. The second slow-roll parameter ✏2 has the
same kind of behavior, except that it has a non-vanishing minimum located at a point x✏min

2
,

which is such that 0 < x✏min
2

< xV=0. An analytic expression for x✏min
2

can be derived but it

does not add much to the discussion. It yields ✏min
2 ' 20.65M2

Pl/φ
2
0
. This means that in order

for a slow-roll inflationary regime to take place, ✏min
2 ⌧ 1 requires that the parameter φ0 be

sufficiently super-Planckian. Finally, the third slow-roll parameter has the same behavior
as the two previous ones, except that it has a negative minimum ✏min

3 ' −0.2733M2
Pl/φ

2
0
,

located between x✏min
2

and xV 0=0 where it vanishes.
Let us now turn to the slow-roll trajectory. It can be integrated, and gives rise to

Nend −N =
1

4

✓

φ0

MPl

◆2 

x2 − 1

e
Ei
(

1 + lnx2
)

− x2end +
1

e
Ei
(

1 + lnx2end
)

]

, (4.329)

where Ei is the exponential integral function [204, 205] and Nend is the number of e-folds at
the end of inflation. This trajectory can only be inverted numerically to obtain φ(N).

Finally, it is interesting to constrain the value of the scale M with the CMB normaliza-
tion. It follows that
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The reheating consistent slow-roll predictions of the open string tachyonic inflation models
are displayed in Fig. 109. It is interesting to notice that, as expected, these models are
compatible with the CMB data only for super-Planckian values of φ0 , φ0/MPl & 1. In this
limit, one has xend '

p
2MPl/φ0 , the quadratic terms in the slow roll trajectory Eq. (4.329)

dominate over the exponential integral ones, such that one has x⇤ ' 2MPl/φ0

q

∆N⇤ +
1
2 . It

follows that

✏1⇤ '
1

2∆N⇤ + 1
, ✏2⇤ ' ✏3⇤ ' 2✏1⇤ , (4.331)
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hence

r ' 16

2∆N⇤ + 1
, 1− nS '

4

2∆N⇤ + 1
, and ↵S ' − 8

(2∆N⇤ + 1)2
. (4.332)

One can check that indeed, in the φ0/MPl & 1 limit, the prediction points lie in the line
✏2 = 2✏1, or equivalently, 1− nS = r/4.

Finally, let us close this section by some additional considerations on the difficulties
that tachyonic inflation faces [434]. Using the above equations, it is easy to show that
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Given that T3 ' M4, this implies that g3s ⌧ v2. On the other hand, we have seen that the
model is compatible with the CMB data only if φ0/MPl = (g/v)1/2 & 1. This last inequality
is consistent with g3s ⌧ v2 only if v ⌧ 1. But v ⌧ 1 is in contradiction with the assumption
that r & `s, which implies that v & 1. Therefore, it seems that the constraints obtained
from the CMB data invalidates the use of an effective four-dimensional approach to describe
tachyonic inflation [434]. On the other hand, this can also justify our approach which just
considers this scenario as a phenomenological model.

4.23 Witten-O’Raifeartaigh Inflation (WRI)

4.23.1 Theoretical Justifications

This model arises in different contexts and we now briefly review one of its theoretical moti-
vation. The first situation originates from supersymmetric theories aimed at explaining the
gauge hierarchy problem (that is to say why the GUT scale differs so much from the weak
scale). In the supersymmetric scenario of Ref. [438], three chiral superfields A, X and Y are
considered in a superpotential of the O’Raifeartaigh type [439],

W = λX(A2 −m2) + gY A, (4.334)

where m and g are constant of mass dimension. The corresponding (global) supersymmetric
potential can be expressed as

V = λ2|A2 −m2|2 + g2|A|2 + |2λXA+ gY |2. (4.335)

The minimum of this potential is given by hY i = −2λhXihAi/g and hAi = 0 [there is also
another minimum at hAi =

p

m2 − g2/(2λ2)]. Clearly, the potential is minimized regardless
of hXi, that is to say we have a flat direction along X. Along that direction, V = λ2m4

and supersymmetry is broken since FX ⌘ @W/@X 6= 0. As a consequence, the mass of the
real part and imaginary parts of A are split and are given by 4λ2|X|2 + g2 ± 2m2λ2. The
mass of the fermion field  A is 4λ2|X|2 + g2. The fact that supersymmetry is broken implies
that the potential will receive corrections: as is well-known, if supersymmetry is preserved,
the corrections originating from bosons and fermions exactly cancel out. Here, this is not
the case and the amplitude of the corrections will be determined by the split between the
bosonic and fermionic masses that we have just evaluated before. A simple calculation leads
to

V = λ2m4



1 +
λ2

8⇡2
ln

✓ |X|2
µ2

◆]

, (4.336)
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where µ is the renormalization scale. Therefore, one obtains an increasing function of the
field vev and this implies that X cannot become large because it cannot climb its poten-
tial. As a consequence, one cannot generate a large hierarchy in this scenario. In fact, as
explained in Ref. [438], this is due to the fact that the one loop correction is positive, as
appropriate in a theory with scalars and fermions. This can also be understood from the
renormalization group perspective where the appearance of the logarithm in the above ex-
pression of V (X) can be viewed as the renormalization of the coupling constant such that
λ2 ! λ2

⇥

1 + λ2/(8⇡2) ln
(

|X|2/µ2
)⇤

. The conclusion of Ref. [438] is that if m is the small
scale (the weak scale) and hXi the large one (the GUT scale), a large hierarchy cannot be
achieved in this approach.

However, it is well-known that asymptotic freedom is possible in non-Abelian gauge
theories. This means that the renormalization group equations have to produce negative one
loop corrections. In such a situation, the field could run to infinity, in the non-perturbative
regime. For this reason, it is interesting to re-consider the previous model in the framework
of a non-Abelian gauge group such as in Grand Unified SU(5) theories. Refs. [440, 441]
consider two matter fields Ab

a and Zb
a in the adjoint representation of SU(5) and one singlet

X in a superpotential given by

W = λ1Tr(ZA
2) + λ2X

⇥

Tr
(

A2
)

−m2
⇤

, (4.337)

which is the non-Abelian generalization of Eq. (4.334). One can show that supersymmetry
is again necessarily broken5 and that the potential exhibits a flat direction with the value
V = λ21λ

2
2m

4/(30λ22 + λ21). As it was the case in the first simple example presented above,
and since supersymmetry is broken, quantum corrections modify the potential. At the one
loop order, one obtains the following expression [440]

V (X) =
λ21λ

2
2m

4

30λ22 + λ21

✓

1 +
λ22

λ22 + λ21/30

29λ21 − 50g2

80⇡2
ln |X|2

◆

, (4.338)

where g is the SU(5) gauge coupling constant. If 29λ21 < 50g2, the correction is negative con-
trary to the case studied before. Again, this is precisely because we deal with non-Abelian
gauge interaction. The field X will grow and can reach a point where the perturbative ap-
proach is no longer valid. However, asymptotic freedom tells us that the potential could
develop a minimum in this regime in which X could be stabilized, hence the original moti-
vation for this scenario: the scale m can be taken to be relatively small while hXi can now
be very large thereby addressing the gauge hierarchy problem.

This class of model was considered in Ref. [442] in order to build a new inflationary
scenario. The idea is to start from a potential of the form derived above, namely V (φ) =

M4
⇣

1 + b̃ lnφ
⌘

with a negative coefficient b̃. Therefore, the field is driven towards a regime

where higher corrections must become important. Typically, one expects b̃ to acquire a

5For this purpose, it is convenient to write that Ac
d = (φA)

b
a (T

a
b )

c
d and Zc

d = (φZ)
b
a (T

a
b )

c
d, where T b

a ,
a, b = 1, · · · , 5 is a basis of SU(5) generators. Concretely, one has (T a

b )
c
d = δcbδ

a
d − δab δ

c
d/5. As a consequence,

the three F-term can be expressed as FX = λ2

⇥

Tr
(

φ2
A

)

−m2
⇤

, FZ = λ1

⇥

φ2
A −Tr

(

φ2
A

)

1/5
⇤

and FA =
λ1 [φZφA + φAφZ − 2Tr (φZφA)1/5] + 2λ2φXφA. These expressions are obtained by explicitly writing the
superpotential in terms of the components (φA)

a
b and (φZ)

a
b and differentiating W with respect to them.

From FX = 0 it follows that Tr
(

φ2
A

)

= m2 and, therefore, FZ = 0 implies that φ2
A = m2

1/5. This last
relation is compatible with Tr

(

φ2
A

)

= m2 but not with Tr (φA) = 0 in five dimensions. The conditions FX = 0
and FZ = 0 are thus incompatible and supersymmetry is spontaneously broken in this model.
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logarithmic dependence in φ and the potential to develop a minimum at, say φ = mGUM.
Therefore, this leads to V (φ) = M4

⇥

1 + b ln2(φ/mGUM)
⇤

where b is a constant. Moreover, if
one requires the potential to vanish at the minimum, we are led to V (φ) / ln2(φ/mGUM) and
this is the potential studied in this section. In Ref. [442], it is argued that mGUM 'MPl and

that, initially, φ ' µ ' (mweakmGUM)
1/2 ' 1012GeV. We will come back to these conditions

in what follows.
Another way to obtain the same potential is based on Ref. [443, 444] in which one

consider the following action

S = −
Z

d4x
p−g

h

ĝAB̄

⇣

zC , z̄C̄
⌘

gµ⌫@µz
A@⌫ z̄

B̄ − V
⇣

zC , z̄C̄
⌘i

. (4.339)

The zA’s are complex scalar fields and ĝAB̄ is the Kähler metric. The corresponding equations
of motion can be expressed as

gµ⌫rµr⌫ z̄
D̄ + ΓD̄

ĀB̄g
µ⌫@µz̄

Ā@⌫ z̄
B̄ − ĝCD̄ @V

@zC
= 0, (4.340)

where ΓD̄
ĀB̄

⌘ ĝCD̄@ĀĝCB̄ . If we restrict ourselves to cosmological spacetimes, the above equa-

tion becomes ¨̄zD̄ +3HżD̄ +ΓD̄
ĀB̄

˙̄zĀ ˙̄zB̄ + ĝCD̄@V/@zC = 0, where H is the Hubble parameter.
Then, for simplicity, we assume that there is only one field Z and we denote its real part as
u and its imaginary part as v. We also assume that the potential is flat in the v-direction
and take V = V (z + z̄), ĝZZ̄ ⌘ ĝ(Z + Z̄). It follows that

ü+ 3Hu̇+ Γ(u)
(

u̇2 − v̇2
)

+ @uV/(2ĝ) = 0, (4.341)

v̈ + 3Hv̇ + 2Γ(u)u̇v̇ = 0, (4.342)

with Γ = @uĝ/(2ĝ). The second differential equation can be integrated and one obtains
v̇ = Qa−3/ĝ, where Q is a constant. The next step consists in defining the field φ by
φ̇ ⌘

p
ĝu̇. As a consequence, the first differential equation can be re-written as φ̈ + 3Hφ̇ +

@φ
⇥

V +Q2/(ĝa6)
⇤

= 0, that is to say φ is now canonically normalized and its evolution is
controlled by the effective potential V (φ)+Q2/(ĝa6). One can show that the presence of the
additional term proportional to Q2 is not crucial [443, 444]. Initially, it dominates because a
is small but, quickly, since it is proportional to a−6, it goes to zero as the universe expands.
As a consequence, one is left with V (φ) only. A specific version of this scenario has been
studied in details in Ref. [443]. In that article, it is assumed that ĝ = e−2u/2 and V = 0.
This corresponds to the bosonic action of a model which is superconformal invariant [445].
Then, this invariance is softly broken by adding a term m2u2/2 and, through the redefinition
of the field, one can check that this leads to a potential proportional to m2 (lnφ)2, that
is to say of the type studied in this section. Moreover, one can also verifies that, in the
regime discussed above where the term Q2/(ĝa6) dominates, an exact solution can be found
and reads: a = a0t

1/3 and φ2(t) = E2 (ln t+ C)2 + 4Q2/(a60E
2), where E and C are two

integration constants. As a consequence, when the universe expands, Q2/(ĝa6) goes to zero
and one is left with the logarithmic potential only.

4.23.2 Slow-Roll Analysis

Based on the previous considerations, we study the WRI potential

V (φ) =M4 ln2
✓

φ

φ0

◆

, (4.343)
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Figure 40. Witten-O’Raifeartaigh Inflation (WRI) potential as a function of φ/φ
0
. Top right panel:

logarithm of the potential. The arrow indicates in which direction inflation proceeds. Bottom left
panel: slow-roll parameter ✏1, rescaled by the quantityM2

Pl
/φ2

0
, such that the corresponding expression

becomes universal, i.e. independent of φ
0
. Bottom right panel: slow-roll parameters ✏2 (solid line)

and ✏3 (dotted line), rescaled by M2
Pl
/φ2

0
for the same reason as mentioned before.

where φ0 is viewed as a free parameter but we also keep in mind that a natural prior is
φ0 =MPl. The potential Eq. (4.343) is displayed in Fig. 40, together with its logarithm (top
panels). The arrow indicates that inflation proceeds from the right to the left. Let us now
calculate the Hubble flow parameters. If one defines x ⌘ φ/φ0 , they are given by

✏1 = 2
M2

Pl

φ2
0

1

x2 ln2 x
, (4.344)

✏2 = 4
M2

Pl

φ2
0

1 + lnx

x2 ln2 x
, (4.345)

and

✏3 = 2
M2

Pl

φ2
0

2 + 3 lnx+ 2 ln2 x

x2 ln2 x (1 + lnx)
. (4.346)

They are displayed in the bottom panels of Fig. 40. One can see that they all vanish when
x! 1, that they increase as inflation proceed, diverging when x! 1. At this stage, a remark
is in order about Ref. [442]. As already mentioned above, a natural prior is φ0 = MPl. This
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Figure 41. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Witten-
O’Raifeartaigh inflation, inflation proceeds along the “0” branch in the direction specified by the
arrow.

means that if, initially, one has φ ' µ, one is in fact in the decreasing branch of the potential
and, as a matter of fact, one cannot have inflation since ✏1 > 1 always. Clearly, the only
way to have inflation in this branch is to assume that φ0 & MPl, a case which appears to
be difficult to justify in this context. Here, we do not consider this case. In the increasing
branch of the potential, inflation stops by slow-roll violation when ✏1 = 1, at a vev xend given
by

xend = exp



W0

✓p
2
MPl

φ0

◆]

, (4.347)

where W0 is the 0-branch of the Lambert function, which must be chosen in order to have
x > 1.

Let us now turn to the slow-roll trajectory. It can be integrated exactly and this leads
to the following expression

Nend −N =
1

4

φ2
0

M2
Pl

✓

x2 lnx− x2

2
− x2end lnxend +

x2end
2

◆

, (4.348)

where Nend is the number of e-folds at the end of inflation. Interestingly enough, this trajec-
tory can be inverted, and one obtains

x = exp

⇢

1

2
W0



8

e

M2
Pl

φ2
0

(Nend −N) +
2

e
x2end lnxend −

x2end
e

]

+
1

2

}

, (4.349)

where W0 is still the 0-branch of the Lambert function. It is displayed in Fig. 41, together
with the region where inflation proceeds.
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Finally, it is interesting to constrain the value of the scale M with the CMB normaliza-
tion. It follows that

✓

M

MPl

◆4

= 2880⇡2
✓

MPl

φ0

◆2 1

x2⇤ ln
4 x⇤

Q2
rms−PS

T 2
. (4.350)

The reheating consistent slow-roll predictions of the Witten- O’Raifeartaigh inflation
models are displayed in Fig. 110. One should remember that in principle, φ0 ' MPl, even
if a wider range of values for φ0 is displayed in order to understand how the predictions
depend on this parameter. In particular, when φ0 & MPl, the predictions lie along the line
✏2 = 2✏1. Indeed, in this limit, Eq. (4.347) shows that xend ! 1 while Eq. (4.349) indicates
that x⇤ ! 1. As a consequence, one obtains ✏2⇤ ' ✏1⇤ from Eqs. (4.344) and (4.345).

5 Two Parameters Models

5.1 Small Field Inflation (SFI)

This model is proto-typical of inflation occurring at the top of a flat-enough potential. As
such it appears in very different contexts. It has been introduced in Ref. [2, 383] and de-
rived in Ref. [3] in the context of radiatively induced symmetry breaking. It appears within
superstring models [446], low scale symmetry breaking [254, 447], supersymmetry [338, 448]
and supergravity [233, 234, 238, 253, 449–453]. It is also obtained in non-linear sigma mod-
els [264] or using moduli as inflatons [454]. It has been discussed in braneworld cosmology
in Refs. [455–457] and is more recently referred to as “hilltop inflation” from Ref. [397, 398].
The potential is given by

V (φ) =M4



1−
✓

φ

µ

◆p]

, (5.1)

and has two parameters in addition to the overall normalization M : a typical vev µ and the
power index p. As this potential can be associated with very different physical frameworks,
µ can take any values while p > 0 for being at the top of a potential (in the small field limit,
namely φ ⌧ µ). In particular, we will allow super-Planckian values for µ even though, in
the supergravity context, one would require µ < MPl. Let us stress that Eq. (5.1) is defined
only in the domain φ < µ as one assumes that the small field potential describes only the
field dynamics during inflation. The equation of state during reheating is thus not specified
by Eq. (5.1). Defining

x ⌘ φ

µ
, (5.2)

the first three Hubble flow functions read

✏1 =
p2

2

✓

MPl

µ

◆2 x2p−2

(1− xp)2
, ✏2 = 2p

✓

MPl

µ

◆2

xp−2 p− 1 + xp

(1− xp)2
, (5.3)

and

✏3 = p

✓

MPl

µ

◆2 xp−2
⇥

2x2p + (p− 1)(p + 4)xp + (p− 1)(p − 2)
⇤

(1− xp)2 (p− 1 + xp)
. (5.4)

They are monotonic functions of the field value but also decreasing functions of the vev µ.
The potential, its logarithm and the Hubble flow functions are represented in Fig. 42.
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Figure 42. Small Field Inflation (SFI) for p = 4 and µ = MPl. Upper panels: the potential and its
logarithm as a function of φ/µ. Bottom left panel: slow-roll parameter ✏1, the shaded area indicates
where inflation stops. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line).

The slow-roll trajectory is obtained by integrating Eq. (2.11) to get

N −Nend =
1

2p

µ2

M2
Pl



−x2 + x2end +
2

2− p

⇣

x2−p − x2−p
end

⌘

]

. (5.5)

This equation seems to be well-defined only for p 6= 2. However, the particular case p = 2
can be directly obtained from Eqs. (2.11) and (5.1) to get

N −Nend =
1

4

µ2

M2
Pl



−x2 + x2end + 2 ln

✓

x

xend

◆]

. (5.6)

This expression can also be viewed as the limit of Eq. (5.5) for p ! 2. In general, the
trajectory cannot be analytically inverted to give the field value x(N) but one can find some
analytic form for almost all integer values of p (e.g. for p = 1, p = 2, p = 3, p = 4, p = 6)
that we do not write down for the sake of clarity.

From the potential Eq. (5.1), inflation can stop naturally at ✏1(xend) = 1 with xend < 1.
This condition gives the algebraic equation

xpend +
pp
2

MPl

µ
xp−1
end = 1, (5.7)
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which cannot be solved analytically in full generality. As for the trajectory, there are however
explicit solutions for almost all integer values of p, the first two being

x
(p=1)
end = 1− MPlp

2µ
, x

(p=2)
end =

MPlp
2µ

0

@−1 +

s

1 + 2
µ2

M2
Pl

1

A . (5.8)

Together with Eq. (2.47), these equations are enough to allow the determination of the
field value x⇤ at which the observable modes crossed the Hubble radius during inflation. This
fixes the value of the parameterM to match the observed amplitude of the CMB anisotropies
at

M4

M4
Pl

= 720⇡2p2
M2

Pl

µ2
x2p−2
⇤

(1− xp⇤)
3

Q2
rms−PS

T 2
. (5.9)

The reheating consistent slow-roll predictions for the small field models are represented in
Figs. 111 to 113 for p = 1, p = 2 and p = 4. The p = 1 case is trivial since one then has
✏2⇤ = 4✏1⇤. For p = 2 or p = 4, one sees that the reheating temperature is limited from below
to fit in the observable range. For instance, with p = 2, values of µ such that µ/MPl < 10
are clearly disfavored. Let us notice that the relation ✏2⇤ = 4✏1⇤ is recovered in the limit
µ/MPl & 1 whereas one clearly observes a systematic shift in nS (or ✏2) when µ ⌧ MPl.
These behaviors can in fact be understood analytically.

Small field models in the supergravity context are commonly studied in the limit µ ⌧
MPl. In this situation it is possible to find some approximate solution to both the trajectory
and xend. Keeping only the dominant term in Eq. (5.7), one gets

x
(p 6=1)
end '

 p
2

p

µ

MPl

!1/(p−1)

, (5.10)

the case p  1 being incompatible with the limit µ ⌧ MPl and the consistency requirement
that xend < 1. The small vev limit can also be used to invert Eq. (5.5). Assuming µ ⌧MPl

and xend ⌧ 1, neglecting the quadratic terms for p > 1, the approximate trajectory reads

N −Nend ' µ2

M2
Pl

x2−p − x2−p
end

p(2− p)
, (5.11)

which can be inverted to

x '


x2−p
end − M2

Pl

µ2
p(2− p) (Nend −N)

]1/(2−p)

. (5.12)

Notice that far from the end of inflation, i.e. N ⌧ Nend, the first term can be neglected (for
p > 2) since xend < 1 and MPl/µ & 1. Defining ∆N⇤ = Nend − N⇤, one can now plug this
expression for x⇤ into the Hubble flow functions of Eqs. (5.3) and (5.4) to get their observable
values:

✏1⇤ '
p2

2

✓

MPl

µ

◆2
"

∆N⇤p(p− 2)

✓

MPl

µ

◆2
#− 2(p−1)

p−2

, ✏2⇤ '
2

∆N⇤

p− 1

p− 2
, ✏3⇤ '

1

∆N⇤
.

(5.13)
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It is crucial to keep in mind that the above formulas are valid only in the limit µ ⌧ MPl

and p > 2. As before, the limiting case p ! 2 has to be taken with care and, starting with
Eq. (5.6), one obtains

✏
(p=2)
1⇤ = exp

✓

−4
M2

Pl

µ2
∆N⇤

◆

, ✏
(p=2)
2⇤ = 4

M2
Pl

µ2
, ✏

(p=2)
3⇤ = 6✏

(p=2)
1⇤ . (5.14)

Both Eqs. (5.13) and (5.14) describes the observed behavior in Figs. 111 to 113 when µ/MPl !
0 but they do fail in the intermediate region as we have discussed in the introduction (see
Fig. 3).

If the theoretical motivations underlying the potential 5.1 do not require the vev to
be small, one can similarly derive approximate expressions for the observables in the limit
µ/MPl & 1 (but still with x < 1). Defining " ⌘ MPl/µ, one has xend(") and we can search
for a Taylor expanded solution of Eq. (5.7) to get

xend = 1− "p
2
+
p− 1

4
"2 +O

(

"3
)

. (5.15)

Similarly one can search for a Taylor expanded solution for the trajectory Eq. (5.5), plugging
in the previous expression for xend. Doing so yields

x⇤ = 1− "

r

1

2
+ 2∆N⇤ +O

(

"2
)

. (5.16)

From this, one gets the corresponding Hubble flow functions

✏1⇤ '
1

4∆N⇤ + 1
✏2⇤ ' 4✏1⇤, ✏3⇤ ' ✏1 . (5.17)

This result is quite remarkable since the observable slow-roll parameters become µ and p
independent. Performing the same calculation in the singular case p ! 2 yields exactly the
same result. The spectral index, tensor-to-scalar ratio and running are immediately obtained
from Eq. (5.17) with r = 16✏1⇤, nS−1 ' −3r/8 and ↵ ' −r. Again, these expressions match
with Figs. 111 to 113 when µ/MPl ! 1.

5.2 Intermediate Inflation (II)

This model was introduced in Refs. [458–461] as an implementation of an equation of state
of the form

⇢+ p = γ⇢λ , (5.18)

where ⇢ stands for the energy density and p the pressure. Both γ > 0 and λ > 1 are
dimensionless constants. As will be made explicit, this equation of state leads to a scale
factor which is given by a(t) / exp

(

Atf
)

where 0 < f < 1. In some sense the expansion is
thus faster than power law but slower than de Sitter, hence the name of the model. The pure
de Sitter case corresponds to f = 1. Inserting the Friedmann-Lemâıtre equation, 3M2

PlH
2 = ⇢

as well as the equation of state Eq. (5.18) into the equation of conservation ⇢̇+3H (⇢+ p) = 0,
one obtains a closed equation for ⇢ which is solved by

⇢ = ⇢0



3γ (λ− 1) ln

✓

a

a0

◆]1/(1−λ)

, (5.19)
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where ⇢0 and a0 are positive constants. Making use of the Friedmann-Lemâıtre equation
again, one deduces the behavior for a,

ln

✓

a

a0

◆

= 3λ/(1−2λ)γ1/(1−2λ)

(

λ− 1
2

)(1−λ)/(1−2λ)

λ− 1

✓

t

t0

◆(1−λ)/(1−2λ)

, (5.20)

i.e. the announced form a(t) / exp
(

Atf
)

, with f = 2(1 − λ)/(1 − 2λ). Since λ > 1, this
means that 0 < f < 1. Then, one can notice that it is possible to reinterpret the matter
source as that of a scalar field with the potential V (φ) given by

V (φ) = 3A2f2M4
Pl

"

φ− φ0

MPl

p

8A (f−1 − 1)

#4(1−1/f)

−M4
PlAf (1− f)

"

φ− φ0

MPl

p

8A (f−1 − 1)

#2−4/f

.

(5.21)

Indeed, starting from this potential, the Klein-Gordon equation with H = Aftf−1, has an
exact non-trivial solution given by

φ = φ0 +MPl

p

8A (f−1 − 1)

✓

t

t0

◆f/2

. (5.22)

It is then straightforward to calculate ⇢ = φ̇2/2 + V and p = φ̇2/2 − V , and to show that
they satisfy the equation of state Eq. (5.18). The potential can be recast in the form

V (φ) =M4

✓

φ− φ0

MPl

◆−β
−M4β

2

6

✓

φ− φ0

MPl

◆−β−2

, (5.23)

with β = 4(1/f − 1). The constraint 0 < f < 1 means that β > 0. Defining

x ⌘ φ− φ0

MPl

, (5.24)

it is shown below that the model predictions do not depend on φ0 . Therefore Intermediate
Inflation is a priori a one parameter family of models, but as explained below, one needs an
extra parameter xend specifying the field value at which an unspecified mechanism is triggered
to end of inflation. It is thus a two parameters model.

This potential appears in the earlier work of Ref. [462] as a solution for a cosmological
model containing a string creation term. It is also discussed in the context of tachyon
fields in Refs. [463, 464]. Warm intermediate inflation was considered in Refs. [465, 466],
intermediate inflation within a Gauss-Bonnet braneworld was studied in Ref. [467], and with
Jordan-Brans-Dicke theory in Refs. [468, 469].

The potential (5.23), as well as its logarithm, are displayed in Fig. 43. It is positive
definite for x > xV=0 ⌘ β/

p
6. Therefore, one must restrict the inflaton vev to lie beyond

this value. The potential increases with x, reaches a maximum at xV 0=0 ⌘
p

β(β + 2)/6,
then decreases with x to asymptotically vanish when x goes to infinity. Therefore, a priori,
two regimes of inflation exist. Either inflation proceeds at x < xV 0=0 from the right to the
left, either it proceeds at x > xV 0=0 from the left to the right. However, in Eq. (5.22), one
can see that the inflaton vev has to increase with time. Therefore only the branch x > xV 0=0
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Figure 43. Intermediate Inflation (II). Upper panels: the potential and its logarithm for β = 2.5.
Bottom left panel: slow-roll parameter ✏1 for a potential with β = 2.5 and β = 12. The position
of the maximum of ✏1 with respect to one depends on β. The shaded area indicates where inflation
stops.. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line) for a potential
with β = 2.5.

can produce an equation of state of the form of Eq. (5.18), which is where the model will be
studied in the following.

Let us now turn to the slow-roll parameters. The first three Hubble flow functions in
the slow-roll approximation are given by

✏1 =
1

2



β2(β + 2)− 6βx2

−β2x+ 6x3

]2

, ✏2 =
−2βx4 +

β2

3
(2β + 6) x2 − β4

18
(β + 2)

✓

x3 − β2x

6

◆2 , (5.25)

and

✏3 =

β
⇥

6x2 − β (2 + β)
⇤



β5

18
(2 + β)− β3 (2 + β)x2 + 6β (4 + β)x4 − 12x6

]

✓

x3 − β2

6
x

◆2

[β3 (β + 2)− 12β (β + 3) x2 + 36x4]

. (5.26)

They are displayed in Fig. 43. The first slow-roll parameter diverges where the potential
vanishes at xV=0, decreases from here and vanishes at the maximum of the potential xV 0=0.
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Then it increases again, reaches a local maximum at x✏max
1

, and decreases to asymptotically
vanish when x goes to infinity. The location x✏max

1
is given by

x✏max
1

=

v

u

u

t

β

2

 

1 +
β

3
+

r

1 +
4β

9

!

. (5.27)

At this point, the maximum value of ✏1 is

✏max
1 =

β

9

⇣

1 + 3
p

1 + 4β/9
⌘2

⇣

1 +
p

1 + 4β/9
⌘2 ⇣

1 + β/3 +
p

1 + 4β/9
⌘
. (5.28)

If β < 9/2
(

1 +
p
2
)

' 10.86, this maximum value is smaller than one. In this case inflation
cannot stop by slow-roll violation in the decreasing branch of the potential and an extra
parameter xend must be added to the model to specify the location where another mechanism
such as e.g. tachyonic instability could trigger the end of inflation. If β > 9/2

(

1 +
p
2
)

'
10.86, the local maximum value of ✏1 is higher than one and in the decreasing branch of the
potential, either inflation takes place between xV 0=0 and the first solution of ✏1 = 1, either it
takes place between the second solution of ✏1 = 1 and x = 1. As will be shown below, only
the latter case is consistent with the exact trajectory Eq. (5.22) which allows for an equation
of state of the form of Eq. (5.18).

The slow-roll trajectory of the model can be obtained from Eq. (2.11). However, as
already mentioned, a non-trivial and exact field evolution is given by Eq. (5.22). Written in
terms of the number of e-folds N −N0 = ln(a/a0) = A(tf − tf

0
), one obtains

x =
q

x2end + 2β (N −Nend) . (5.29)

This expression is exact and does not involve any approximations. It can be compared to
slow-roll trajectory which reads

Nend −N =
1

2β

(

x2end − x2
)

+
1

6
ln



x2end −
β (β + 2)

6

]

− ln



x2 − β (β + 2)

6

]

, (5.30)

where Nend is the number of e-folds at the end of inflation and N is the number of e-folds at
some point when the scaled field vev is x. As mentioned above, the slow-roll trajectory should
match the exact one in the decreasing branch of the potential. For x ! 1, one can neglect
the logarithmic terms in Eq. (5.30) and one indeed recovers Eq. (5.29). This is expected since
in this limit, the slow-roll parameters all go to zero and the slow-roll approximation becomes
increasingly accurate. As a result, the domain of validity lies at x & xV 0=0, i.e. between
the second solution of ✏1 = 1 and x = 1 and inflation cannot stop by slow-roll violation.
This justifies the need of the extra-parameter xend. This parameter is thus constrained to
xend > xV 0=0 and should be large enough to allow for a sufficient number of e-folding. In
order to get Nend −Nini e-folds, making use of Eq. (5.29), one gets

xend =
q

x2ini + 2β(Nend −Nini) . (5.31)

If β > 9/2
(

1 +
p
2
)

' 10.86, xini is bounded from below by the highest solution of the
equation ✏1 = 1. This equation admits three solutions which, from the smallest to the
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biggest, are given by

x0
✏1=1 = − β

3
p
2
+

p
2

3

β4/3

3

q

9 + 2β + i
p

−81− 36β + 4β2

+
β2/3

3
p
2

3

q

9 + 2β + i
p

−81− 36β + 4β2 , (5.32)

x⌥✏1=1 =
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3
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2
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1⌥ i
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3

3
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β4/3

3

q

9 + 2β + i
p

−81− 36β + 4β2

+
⇣

1± i
p
3
⌘ β2/3

6
p
2

3

q

9 + 2β + i
p

−81− 36β + 4β2 . (5.33)

The first solution is located below the maximum of the potential x0
✏1=1 < xV 0=0, while the

two others are located beyond it x⌥✏1=1 > xV 0=0. Using the larger solution as a lower bound
for xini, one gets

xend >

q

(

x+✏1=1

)2
+ 2β(Nend −Nini) . (5.34)

If β < 9/2
(

1 +
p
2
)

, only one solution to ✏1 = 1 exists,

x✏1=1 = − β

3
p
2
+

p
2

3

β4/3

3

q

9 + 2β +
p

81 + 36β − 4β2
+
β2/3

3
p
2

3

q

9 + 2β +
p

81 + 36β − 4β2 ,

(5.35)
which is located below the maximum of the potential x0

✏1=1 < xV 0=0. In principle xini is now
only bounded from below by xV 0=0 and one can check from Eq. (5.30) that the total number
of e-folds diverges close to xV 0=0. As a result, provided xini is fine-tuned to the top of the
potential, there is no bound on xend. The prior space described by these relations is displayed
in Fig. 44.

According to the previous discussion, the observable field value, at which the pivot mode
crossed the Hubble radius during inflation, is such that x⇤ & 1. In this limit, it is possible
to approximate the slow-roll parameters at Hubble crossing with

✏⇤1 '
β2

2x2⇤
, ✏⇤2 ' ✏⇤3 ' − 2β

2x2⇤
, (5.36)

hence

r ' 8β2

x2⇤
, nS − 1 ' β (2− β)

x2⇤
, ↵S =

2β2 (β − 2)

x4⇤
. (5.37)

These estimates match with those of Ref. [461]. Finally, the parameter M is obtained from
the amplitude of the CMB anisotropies

✓

M

MPl

◆4

= 720⇡2


β2 (β + 2)

6
− βx2⇤

]2✓

x3⇤ −
β2x⇤
6

◆−2✓

x−β⇤ − β2

6
x−β−2
⇤

◆

Q2
rms−PS

T 2
.

(5.38)
In the x⇤ & 1 limit, this gives

M4

M4
Pl

' 720⇡2β2x−2−β
⇤

Q2
rms−PS

T 2
, (5.39)
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Figure 44. Prior space on xend derived from Eq. (5.34) with Nend −Nini = 60, as a function of β >
9/2

(

1 +
p
2
)

(black solid line). The black dotted line corresponds to xV 0=0. For β < 9/2
(

1 +
p
2
)

,
provided some fine-tuning on the initial conditions, xend can take any values. The dashed area
corresponds to parameters for the model which produce at least the required number of e-folds.

which yields M/MPl . 10−2.
The reheating consistent slow-roll predictions for the intermediate inflation models are

displayed in Fig. 114, for different values of β > 0, and for xend describing the prior space
displayed in Fig. 44. The reheating equation of state parameter wreh has been taken to 0
but since there is no potential minimum around which the inflaton field can oscillate at the
end of inflation, this parameter is a priori unspecified and can take different values. In any
case the reheating temperature is fully degenerate with the parameter xend, and therefore
these two parameters cannot be constrained independently. However one can see that xend is
clearly limited from below as expected. The black solid lines represent the locus of the points
such that ✏⇤1 = −β/4✏⇤2, or equivalently, nS − 1 = (1/β − 1/2) r/4, these consistency relations
arising from Eqs. (5.36). One can check that they provide a good qualitative description of
the model predictions. In particular, they explain why, for β < 2, one has a blue tilt nS > 1.

5.3 Kähler Moduli Inflation II (KMIII)

5.3.1 Theoretical Justifications

These models are string motivated scenarios. They arise in the context of type IIB string the-
ory via Calabi-Yau flux compactification. They have been derived and studied in Refs. [304–
310], and a two-field generalization of this model has been investigated in Refs. [305–309].
They can be understood in the context of supergravity, viewed as an effective theory. In this
framework, one starts with the following superpotential for the moduli Ti

W =W0 +
n
X

i=2

Aie
−aiTi , (5.40)
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where ai = 2⇡/(gsN), N being a positive integer (not to be confused with the e-fold number),
gs the string coupling, and W0 and Ai are model dependent constants. The Kähler potential
can be written as

K = −2M2
Pl ln

✓ V
2`6s

+
⇠

2

◆

, (5.41)

where the constant ⇠ is given by ⇠ = −⇣(3)χ(M)/[2(2⇡)2 ], χ(M) being the Euler character-
istic of the compactification manifold. The quantity V represents the overall volume of the
Calabi-Yau manifold and can be taken to be

V =
γ`6s

2
p
2

"

⇣

T1 + T †
1

⌘3/2
−

n
X

i=2

λi

⇣

Ti + T †
i

⌘3/2
#

, (5.42)

where γ and λi are positive constants and depend on the details of the model. From the
expression of the Kähler and superpotentials, it is then straightforward to calculate the
corresponding F-term potential which is a relatively complex expression that can be found
in Ref. [308]. If, however, one consider the limit V & 1 (and T1 & Ti), then the F-term
simplifies a lot and gives rise to the following equation

V (⌧i) '
3⇠W 2

0

4M2
PlV3

s

+

n
X

i=2

"

4W0aiAi

M2
PlV2

s

⌧ie
−ai⌧i cos (ai✓i) +

8 (aiAi)
2

3M2
PlγλiVs

p
⌧ie

−2ai⌧i

#

, (5.43)

where we have written Ti = ⌧i + i✓i and Vs ⌘ V/`6s . We see that all the constants introduced
before, namely ai, Ai, W0, ⇠, γ and λi participate to the expression of the potential. From
Eq. (5.43), solving @V/@⌧i = 0, one can estimate the value of each ⌧i at the global minimum
of the potential. In the following, we denote this quantity by ⌧min

i . Then, one can also
calculate the value of the potential at this minimum. One finds [where, as usual, we have
taken cos (ai✓i) = −1]

Vmin ' 3⇠W 2
0

4M2
PlV3

s

− 3W 2
0 γ

2M2
PlV3

s

n
X

i=2

λi

a
3/2
i

(ai⌧min
i )3/2 . (5.44)

As a consequence, if for one of the fields, say ⌧n, one has
⇣

λn/a
3/2
n

⌘

/
h

Pn−1
i=2 (λi/a

3/2
i )

i

⌧ 1,

then the value of Vmin is not modified even if one displaces ⌧n from ⌧min
n . In other words, we

have an inflationary valley along the ⌧n direction and one can use it to produce inflation. In
that case, the potential can be re-written as

V (⌧n) '
BW 2

0

M2
PlV3

s

− 4W0anAn

M2
PlV2

s

⌧ne
−an⌧n , (5.45)

where the second exponential in Eq. (5.43) has been neglected, thanks to the condition
an⌧n & 1 and B is a constant that includes the constant term in Eq. (5.43) as well as the
contributions of the other fields at their minimum, i.e. B = 3⇠/4 + · · · . It is important to
notice that the assumption of large volume translates into a condition on the vev of ⌧n. The
above potential is of the form of the toy model studied as “Kähler Moduli Inflation I (KMII)”
in section 4.9. The field is however not canonically normalized since it is a modulus. It is
therefore necessary to first canonically normalize it and, then, re-derive the corresponding
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potential. Using the form of the Kähler potential given above, denoting by φ the canonical
field, one arrives at

⌧n =

✓

3Vs

4γλn

◆2/3✓
φ

MPl

◆4/3

. (5.46)

As a consequence, the final form of the inflaton’s potential is given by

V (φ) =
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(5.47)
Let us now see what are the typical values that the parameters appearing in the above
potential can take. As already mentioned, the quantity Vs represents the Calabi-Yau volume
and is supposed to be such that Vs & 1 or V & `6s . In Ref. [310] the typical value Vs ' 3⇥106

was chosen. The parameter An depends on the complex structure moduli and is typically
of order O

(

`3s
)

. This is also the case for W0. One has an = 2⇡/N , where N is a positive
integer (for D3-brane instantons, one has N = 1). The dimensionless parameter λn is model
dependent but is considered to be of order O(1). The quantity ⇠ = ⇣(3)χ/

⇥

2(2⇡)3
⇤

, where
χ is the Euler number of the internal Calabi-Yau space, is also of order O(1) as well as the
coefficient γ. This means that B is of order O(1).

5.3.2 Slow-Roll Analysis

We now study the inflationary scenario based on the potential derived above. Re-writing
V (φ) in a more convenient way, we have

V (φ) =M4

"

1− ↵

✓

φ

MPl

◆4/3

e−β(φ/MPl)
4/3

#

. (5.48)

where we have defined the parameters M , ↵ and β by
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. (5.49)

Making use of the typical orders of magnitude for the various quantities entering these ex-
pression, one sees that

↵ = O
⇣

V5/3
s

⌘

, β = O
⇣

V2/3
s

⌘

, (5.50)

with Vs & 1.
The potential (5.48) and its logarithm are displayed in Fig. 45. V (φ) decreases from

V/M4 = 1 at φ = 0, reaches a minimum at φ/MPl = β−3/4, and then increases to the
asymptotic value V/M4 = 1 when φ/MPl ! +1. However, since the potential is derived
under the large field assumption, only the increasing branch of the potential is relevant.
Inflation proceeds from the right to the left along this branch. The minimum value of the
potential at φ = MPlβ

−3/4 is given by Vmin = M4 [1− ↵/ (βe)]. Therefore, if one wants
the potential to be definite positive everywhere, one must have ↵/β < e. However, from
Eq. (5.50), we see that this condition cannot be satisfied since ↵/β = O(Vs) & 1. This
means that the potential necessarily vanishes at some point. In the increasing branch of the
potential, this occurs for a vev given by

xV=0 ⌘
φV=0

MPl

=



− 1

β
W−1

✓

−β
↵

◆]3/4

. (5.51)
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Figure 45. Top left panel: Kähler moduli inflation II (KMIII) potential for ↵ = 4 and β = 1. These
parameters are not physical but they are used for display convenience. Top right panel: logarithm of
the potential for the same value of ↵ and β. Bottom left panel: slow-roll parameter ✏1 for a potential
with ↵ = 4 and β = 1. The shaded area indicates the breakdown of the slow-roll inflation (strictly
speaking when the acceleration stops). Bottom right panel: slow-roll parameters ✏2 (solid line) and
✏3 (dotted line) for ↵ = 4 and β = 1.

Anyway, since the potential (5.48) is only valid in the large field region, this criterion does
not play an important role in what follows.

Let us now calculate the three first Hubble flow parameters. Defining x ⌘ φ/MPl, they
are given by

✏1 =
8↵2

9
x2/3e−2βx4/3

 

1− βx4/3

1− ↵x4/3e−βx4/3

!2

, (5.52)
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8↵

9
x−2/3e−2βx4/3 3↵x4/3 + ↵βx8/3 + eβx

4/3 (

1− 9βx4/3 + 4β2x8/3
)

(

1− ↵x4/3e−βx4/3
)2 , (5.53)
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Figure 46. Comparison between the exact numerical value of xend(↵,β) (blue solid line), and the
approximated formula given by Eq. (5.55) (red dotted line) for ↵ = V5/3 and β = V2/3. The agreement
is excellent but a numerical calculation is used in ASPIC anyway.
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(5.54)
Inflation stops when ✏1(xend) = 1. As can be seen in Fig. 45, for ↵/β & 1, the first

slow-roll parameter ✏1 starts increasing from ✏1 = 0 at x = 0, diverges at a vev that we do
not need to compute here, and then decreases to vanish at x = β−3/4. Then, it increases
again, blows up at xV=0 and, finally, asymptotically vanishes when x ! 1. Since inflation
proceeds at x > xV=0 it always stops by violation of the slow-roll conditions. Unfortunately
is not possible to find an analytic expression for xend but one can provide the following
approximated formula,

xend '
"

− 5

4β
W−1

 

−4⇥ 92/5

5⇥ 82/5
↵−4/5β1/5

!#3/4

, (5.55)

where W−1 is the Lambert function. It is compared to the numerical solution for xend
implemented in the ASPIC code in Fig. 46. The agreement is excellent.
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Figure 47. Lambert functions W0(x) (dashed line) and W−1(x) (solid line). During Kähler moduli
inflation II, inflation proceeds along the “−1” branch in the direction specified by the arrow.

Let us now turn to the slow-roll trajectory. Unfortunately, KMIII is one of the rare
cases for which it cannot be integrated by quadrature. As such, in the ASPIC library, the
slow-roll trajectory is numerically integrated. However, in the large field limit x & β−3/4,
one can obtain an approximate analytic formula given by

Nend −N ' 9
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4/3
end

x2end
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, (5.56)

from which one deduces that
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. (5.57)

This approximation is in agreement with what was obtained in Ref. [310], up to an incorrect
choice of the Lambert function branch. The Lambert function is displayed in Fig. 47 and the
part of the curve where inflation proceeds is indicated by the arrow. The fact that the −1
branch of the Lambert function has to be chosen comes from the fact that, when Nend−N !
1, one must have x ! 1. On the other hand, when Nend −N ! 0, x! xend > β−3/4 and
this is again consistent with the choice of the −1 branch.

Finally, one can use the CMB normalization to calculate the mass scale M . Without
any approximation on top of slow-roll, this leads to the following expression
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Making use of the approximated trajectory and of the expression for the scaleM , one roughly
obtains
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∆N⇤
⇡
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. (5.59)

Given that an, B, γ, λn, W0`
3
s are a priori coefficients of order one, we see that the above

expression roughly implies that V is of the order 106`s.
The reheating consistent slow-roll predictions for the Kähler moduli inflation II models

are displayed in Fig. 115, for V 2 [105, 107], and taking ↵ = V5/3 and β = V2/3. One can
check that even if one adds O(1) factors in these relations, the slow-roll predictions do not
depend significantly on them. Also, we notice that ✏1 is typically extremely small and that
✏2 is almost independent of V. These effects can be analytically understood. Working out
Eq. (5.55) and Eqs. (5.52), (5.53), and (5.54) in the large field limit, one obtains
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from which one deduces that
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(5.61)
Firstly, we see that the slow-roll parameters at Hubble crossing depend on ↵ logarithmically
only. This explains the weak dependence in the O(1) factors mentioned above. Secondly, we
also notice that ✏2⇤ and ✏3⇤ do not depend on β. In a third place, ✏1 is a very small number
since it is proportional to the inverse of β3/2. This also means that, when V increases, ✏1
decreases. All these considerations can be checked in Fig. 115 and the amount of gravitational
waves predicted by this model is very small. This is in agreement with the rough estimates
given in Refs. [304, 307, 308, 310]. However, contrary to what is claimed in Ref. [310],
the predicted value for the running of the spectral index is not excluded by observations
since, according to the Planck results [153], ↵S = −0.013± 0.009 while, for the fiducial value
∆N⇤ ' 55, one obtains ↵S ' −0.0006.

5.4 Logamediate Inflation (LMI)

Logamediate inflation has been discussed in Refs. [470, 471] and refers to inflationary sce-
narios in which the scale factor evolves according to

a (t) = a0 exp

"

A

✓

ln
t

t0

◆λ
#

, (5.62)

where A and λ are two dimensionless parameters and where t0 has the dimension of a cosmic
time. This evolution form for the scale factor is required to occur “at late times”, i.e. when
t& t0. If λ = 1, one recovers the power law model (see section 4.8), and in that case, t0 can
be absorbed in a rescaling of the scale factor. Otherwise, these three parameters are relevant
and one therefore expects LMI to be a two parameters models according to our classification.
Following Ref. [470], from Eq. (5.62), one has

H ⌘ ȧ

a
=
Aλ

t

✓

ln
t

t0

◆λ−1

, (5.63)
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from which one deduces that Aλ > 0 in order to have expansion (H > 0). From Eq. (5.62),
one can also establish that

ä

a
=
Aλ

t2

✓

ln
t

t0

◆λ−1
"

(λ− 1)

✓

ln
t

t0

◆−1

− 1 +Aλ

✓

ln
t

t0

◆λ−1
#

, (5.64)

from which one deduces that in order to have inflation at late times (when t & t0), one
must have λ > 1, or if λ = 1, A > 1. If this inflationary scenario is implemented within a
single minimally coupled scalar field φ, one can derive the corresponding potential. From the
Friedmann-Lemâıtre and Klein-Gordon equations one can show that [470]

φ̇ (t)

MPl

=

p
2Aλ

t

✓

ln
t

t0

◆
λ−1
2

. (5.65)

This equation can easily be integrated into

φ (t)

MPl

=
φ0

MPl

+ 2

p
2Aλ

λ+ 1

✓

ln
t

t0

◆
λ+1
2

. (5.66)

Combining the Friedmann-Lemâıtre equation 3M2
PlH

2 = V (φ) + φ̇2/2 and the relation
2M2

PlḢ = −φ̇2, one obtains V (φ) = 3M2
PlH

2 +M2
PlḢ, namely

V (φ) =
3M2

PlA
2λ2

t2

✓

ln
t

t0

◆2(λ−1)

+
M2

PlAλ

t2
(λ− 1)
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ln
t

t0

◆λ−2

−M2
PlAλ

t2

✓

ln
t

t0

◆λ−1

. (5.67)

Together with Eq. (5.66), this gives a parametric representation of the field potential in
terms of t. It can be further simplified since the Logamediate regime occurs in the limit
t & t0. If λ > 1, the first term of this expression dominates at late times and one has
V (φ) = 3M2

PlA
2λ2 (ln t/t0)

2(λ−1) /t2. Defining x ⌘ (φ− φ0) /MPl, one makes use of Eq. (5.66)
to obtain

V (φ) =M4x↵ exp (−βxγ) , (5.68)

where the new parameters are defined by

↵ = 4
λ− 1

λ+ 1
, β = 2

✓

λ+ 1

2
p
2Aλ

◆2/(λ+1)

, γ =
2

λ+ 1
, (5.69)

and

M4

M4
Pl

=
3A2λ2

M2
Plt

2
0

✓

λ+ 1

2
p
2Aλ

◆4λ−1
λ+1

. (5.70)

The same potential has been studied for ↵ = 2, β = 1/8 and γ = 2 within tachyon inflation
models in Ref. [434]. The case λ = 1 is particular. At late times, the first term and the last
term must be kept in Eq. (5.67), such that V (φ) = (3A− 1)AM2

Pl/t
2. In that situation, one

has x =
p
2A ln t/t0, and the derived potential shares the same expressions for ↵, β and γ as

in Eq. (5.69) but evaluated at λ = 1. There is a difference however because M4 now reads
M4 = (3A− 1)AM2

Pl/t
2
0. We recover explicitly that λ = 1 corresponds to power law inflation

and has already been treated in section 4.8.
In the following, we will work only with the derived parameters β, γ and M4, noticing

that
↵ = 4 (1− γ) . (5.71)
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Figure 48. Logamediate Inflation (LMI). Upper panels: the potential and its logarithm for β =
2, γ = 0.95. Bottom left panel: Hubble flow function ✏1 for a potential with β = 2, γ = 0.95 (blue
curve) and β = 2, γ = 0.8 (green curve). The position of the maximum of ✏1 with respect to one
depends on γ. The shaded region indicates where inflation stops. Bottom right panel: slow-roll
parameters ✏2 (solid line) and ✏3 (dotted line) for a potential with β = 2, γ = 0.7.

The restrictions Aλ > 0 and λ ≥ 1 translates into the conditions 0 < γ  1 and β > 0.
Following Ref. [471], since there is no fundamental reasons preventing it, we will generalize
this model to any possible values of these parameters supporting inflation.

The three first Hubble flow functions in the slow-roll approximation read

✏1 =
(↵− βγxγ)2

2x2
, ✏2 =

2

x2
[↵+ β (γ − 1) γxγ ] , (5.72)

✏3 =
↵− βγxγ

x2
2↵− β (γ − 2) (γ − 1) γxγ

↵+ β (γ − 1) γxγ
. (5.73)

The potential and the Hubble flow functions in the slow-roll approximation have been rep-
resented in Fig. 48.

Inflation can proceed in two regimes: either at decreasing field values, left to the top of
the potential (LMI1), or at increasing field values, right to the top of the potential (LMI2).
Notice that from Eq. (5.66), φ has to increase with time to reproduce the scale factor expan-
sion Eq. (5.62) and this happens only in the regime LMI2 for large values of x. As can be
seen in Fig. 48, the slow-roll parameter ✏1 diverges when x approaches zero, it vanishes at
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the top of the potential for x = xV max and it is maximal at x = x✏max
1

with

xV max ⌘
✓

↵

βγ

◆1/γ

, x✏max
1

=



↵

βγ (1− γ)

]1/γ

. (5.74)

Finally it asymptotes to zero for large values of the field. The value of the local maximum
of ✏1 reads

✏max
1 =

↵2

2



βγ (1− γ)

↵

]
2
γ
✓

γ

1− γ

◆2

. (5.75)

Thus in the regime LMI1, inflation always stops naturally as ✏1 becomes larger than unity
whereas in the regime LMI2, this may occur only if ✏max

1 > 1 and if inflation has started
from xini < x✏max

1
. Otherwise, if inflation starts with xini > x✏max

1
, or if ✏max

1 < 1, one needs
to add an extra-parameter xend encoding an unspecified mechanism to end inflation. In that
situation, the model becomes a three parameters one. If one makes use of ↵ = 4 (1− γ), one

obtains ✏max
1 = 8γ2 (βγ/4)2/γ . Solving ✏max

1 ≥ 1 for β gives

β ≥ 4

γ (8γ2)γ/2
. (5.76)

This condition is therefore required for the model LMI2, if one wants inflation to end nat-
urally. As we will see below, LMI2 inflating in the domain xV max < x < x✏max

1
is a very

fine-tuned situation which is strongly disfavored by the observations. Notice that if one
assumes 0 < γ  1, this conditions translates into β >

p
2.

Finally, let us notice that for the value of ✏2 at the top of the potential to be smaller
than some maximal value ✏max

2,top, one needs to impose the condition

β < βmax
(

γ, ✏max
2,top

)

= 22−3γ/2
(

✏max
2,top

)γ/2 (1− γ)1−γ/2

γ1+γ/2
. (5.77)

In the LMI1 model, a slow roll regime of inflation can proceed only if such a condition is
verified (with typically ✏max

2,top ' 10−1).
The slow-roll trajectory can be integrated thanks to the hypergeometric function [204,

205] 2F1, leading to

N −Nend =
x2end
2↵

2F1



1,
2

γ
,
2

γ
+ 1,

✓

xend
xV max

◆γ]

− x2

2↵
2F1



1,
2

γ
,
2

γ
+ 1,

✓

x

xV max

◆γ]

. (5.78)

One can notice that inserting ↵ = 4(1 − γ), as a function of x/xV max , this trajectory only
involves γ. Plugging x = xV max into Eq. (5.78) one gets an infinite number of e-folds.
This means that the required number of e-folds to solve the problems of the standard Big-
Bang scenario can always be realized, both in the decreasing branch of the potential and
the increasing one, provided that inflation starts close enough to xV max . However, it can
numerically be checked that in the case of LMI2 with ✏max

1 > 1 and inside the xV max < x <
x✏max

1
region, one has to fine-tune xini and x⇤ extremely close to xV max . In that situation

nS = 1, with vanishing r and vanishing running of the spectral index, can be considered as
generic predictions of the model. For this reason, it is more natural to consider LMI2 in the
large field regime, namely x > max(xV max , x✏max

1
), together with the extra-parameter xend.
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The trajectory in Eq. (5.78) cannot be inverted analytically. However, one can perform
some consistency checks in the limit x/xV max & 1 in which

N −Nend ' 1

βγ (2− γ)

⇣

x2−γ − x2−γend

⌘

, (5.79)

and

x '
h

x2−γend + βγ (2− γ) (N −Nend)
i 1

2−γ
. (5.80)

These expressions can be compared to Eq. (5.66)

x = 2

p
2Aλ

λ+ 1

✓

ln
t

t0

◆
λ+1
2

, (5.81)

where t in terms of the number of e-folds N can be obtained from Eq. (5.62). With N−N0 =
A (ln t/t0)

λ, one gets

x = 2

p
2Aλ

λ+ 1

✓

N −N0

A

◆
λ+1
2λ

. (5.82)

The previous calculations are consistent since, making use of Eq. (5.69), Eq. (5.80) and
Eq. (5.82) are the same when setting the constants N0 = Nini and x0 = xini = 0. This means
that in the late times limit x/xV max & 1, the slow-roll trajectory coincides with the exact
one, as expected.

The amplitude of the CMB anisotropies fixes the value of the parameter M according
to

M4

M4
Pl

= 720⇡2 (↵− βγxγ⇤)
2 eβx

γ
⇤x−↵−2

⇤
Q2

rms−PS

T 2
, (5.83)

where x⇤ is the observable field value obtained by solving Eq. (2.47) given some assumptions
on the reheating. The reheating consistent slow-roll predictions for the models LMI1 and
LMI2 (at x > x✏max

1
) are displayed in Figs. 116, 117, and 118 for LMI1, and in Figs. 119, 120,

and 121 for LMI2. In the case of LMI2, the turning points in the plots precisely correspond
to the case where inflation occurs in the fine-tuned domain xV max < x⇤ < x✏max

1
and in which

the model behaves like a pure de Sitter era.

5.5 Twisted Inflation (TWI)

5.5.1 Theoretical Justifications

This model was introduced in Ref. [472] and is based on higher dimensional supersymmetric
gauge theories. The idea is to assume that, in higher dimensions, we have a flat direction
φ in the potential. Since the theory is supersymmetric, this flat direction will not receive
corrections because the bosonic and fermionic contributions exactly cancel out. Then, we
compactify the theory down to 3 + 1 dimensions but with boundary conditions that break
supersymmetry. The typical example given in Ref. [472] is “twisted” circle compactification,
hence the name of the model. Since supersymmetry is broken, the “Kaluza-Klein” masses of
bosons and fermions will differ. Typically, they can be written as

mb =

r

φ2 +
n2

R2
, mf =

r

φ2 +
(n+ 1/2)2

R2
, (5.84)
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Figure 49. Top left panel: Twisted Potential Inflation (TWI) for φ
0
= 0.02MPl. Top right panel:

logarithm of the potential for the same value of φ
0
. Bottom left panel: slow-roll parameter ✏1 with

φ
0
= 0.02MPl (solid blue line) and φ

0
= 0.05MPl (solid green line). The shaded area indicates the

non-inflationary region. Bottom right panel: slow-roll parameters ✏2 (solid line) and ✏3 (dotted line)
with φ

0
= 0.02MPl.

where R is the radius of compactification and n an integer. Since mb 6= mf , this time, the
potential will receive one loop corrections which lift the potential. However, it is clear that,
when φR & n, one has approximately mb ' mf . Therefore, in this regime, we expect the
corrections to vanish and the flat direction to remain flat. This is thus particularly well-
suited for inflation. In practice, the higher dimensional model considered to implement the
above discussed mechanism is a maximally supersymmetric 4 + 1 U(N ) Yang-Mills theory
compactified on a circle of radius R. A priori, we have therefore two parameters: N and the
compactification scale R.

5.5.2 Slow-Roll Analysis

As shown in Ref. [472], the above considerations leads to the following expression for the
inflaton potential

V (φ) =M4

"

1−A

✓

φ

φ0

◆2

e−φ/φ0

#

, (5.85)
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where A is a constant parameter given by

A ⌘ 32

93⇣ (5)
' 0.33 , (5.86)

and where φ0 is related to the compactification scale R through the following equation

φ0

MPl

=
1

2⇡RMPl

. (5.87)

Since the radius R must be larger than the Planck length, i.e. RMPl & 1, this implies that
φ0/MPl ⌧ 1. On the other hand, the overall normalization can be expressed as

M4 =
8N

A⇡2(2⇡R)4
. (5.88)

We see that the scale M depends on the compactification radius R but also on the number
N . In addition, one must have φ <

p

3/NMPl or φ⌧MPl which guarantees that the higher
order Planck suppressed operators do not alter the potential. The potential (5.85) is the
small coupling limit of the model, while the strong coupling limit corresponds to a BI model
with p = 3, see section 5.19.

The potential Eq. (5.85), as well as its logarithm, is displayed in Fig. 49. Inflation is
supposed to take place for vev ’s larger than the scale φ0 , i.e. for φ > φ0 , in the increasing
branch of the potential. This means that it proceeds from the right to the left in the direction
indicated by the arrow. The minimum of the potential is located at φ/φ0 = 2.

Let us now turn to the calculation of the Hubble flow parameters. If one defines x by
x ⌘ φ/φ0 , then they are given by
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and
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−Axex
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.

(5.90)
They are displayed in Fig. 49. The first slow-roll parameter ✏1 vanishes at the minimum of
the potential when x = 2, then increases with x and reaches a maximum at x✏max

1
, and finally

decreases to zero when x goes to infinity. The value of ✏1 at this local maximum is larger
than one if φ0 is smaller than some value that can only be determined numerically. We find

φ0 < 0.04228MPl . (5.91)

Therefore, a priori, inflation could stop by slow-roll violation. However, by numerically
integrating the exact trajectory (i.e. if one does not make use of the slow-roll approximation),
one realizes that, in fact, the first Hubble flow function, which is defined by ✏H1 = −Ḣ/H2,
remains smaller than one for all field values, see Fig. 50. This is due to the fact that while
the inflaton rolls down its potential and approaches its minimum, the slow-roll parameters
continuously increase and the slow-roll approximation is broken before ✏1 becomes O(1).
Usually, this leads only to small corrections at the end of inflation. However, in the case
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Figure 50. Left panel: slow-roll parameter ✏1 as a function of the field vev φ/φ
0
, for φ

0
/MPl = 0.02 <

0.04228, see Eq. (5.91). The solid black line corresponds to the approximated slow-roll formula (5.89),
i.e. ✏V1 = M2

Pl
/2V 2

φ /V
2, while the solid blue line represents the exact ✏H1 = −Ḣ/H2 obtained from a

numerical integration starting at φini/MPl = 0.33 and vanishing initial velocity. We see that the exact
✏H1 remains in fact always smaller than one and that inflation never stops. The inflaton eventually
oscillates around the minimum of its potential located at φ = 2φ

0
(the arrows indicate the direction

of the first oscillations). Right panel: Maximum value taken by ✏V1 (solid black line) and ✏H1 (solid
blue line) for different values of φ

0
. One can see that ✏H1 remains smaller than one for any value of

φ
0
. When φ

0
increases, the slow-roll parameters, which scale proportional to M2

Pl
/φ2

0
, decrease so

that the slow-roll approximation becomes more and more efficient and eventually starts matching the
numerical exact predictions.

of twisted inflation, this leads to a radically different picture because the potential does
not vanish at its minimum and, therefore, acts as a cosmological constant. In practice, the
numerical calculations indicate that the field oscillates around its minimum but always such
that ✏H1 < 1 and independently on the value of φ0 , see Fig. 50. In principle, inflation can never
stops in this model since the final stage of the evolution corresponds to an inflaton field sitting
for ever at the bottom of the potential and, as already mentioned, it acts as a cosmological
constant. However, as explained in Ref. [472], the interactions of the inflaton field with the
other degrees of freedom of the standard model starts to play a role in this regime. As a
consequence, the energy contained in the inflaton field should quickly be transferred to other
fields and a phase of reheating starts. The details of this process are complicated and are
discussed in Ref. [472]. In order to model the end of inflation, we therefore introduce the
extra parameter xend giving the vev at which inflation stops. As a consequence, TWI is in
fact a two parameter model, φ0 and φend.

Let us now turn to the slow-roll trajectory. It can be integrated exactly and leads to
the following expression

Nend −N =

✓

φ0

MPl

◆2⇢ 1

2A
[Ei (xend)− Ei (x)]− e2

2A
[Ei (xend − 2)− Ei (x− 2)]

+ xend − x+ 2 ln

✓

xend − 2

x− 2

◆}

,

(5.92)

where Nend is the number of e-folds at the end of inflation and Ei is the exponential integral
function [204, 205]. This expression is the one used in the ASPIC library. However, if one
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makes the vacuum dominated approximation, x& 1, then a simpler formula can be derived
for the trajectory, namely

Nend −N ' 1

A

✓

φ0

MPl

◆2✓ ex

x2
− exend
x2end

◆

. (5.93)

This allows us to obtain an approximated expression for the vev of the field at Hubble radius
crossing which reads

x⇤ ' ln
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. (5.94)

It is valid provided φ0/MPl ⌧ 1, i.e. precisely in the regime for which the TWI potential
was derived. Using this formula, one can estimate the value of the three first Hubble flow
parameters at Hubble crossing. One arrives at
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(5.95)

Finally, we can derive an expression for the tensor-to-scalar ratio, the spectral index
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(5.96)
and the running
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These estimates are in agreement with the ones of Ref. [472], up to a missing factor 4 in
Eq. (5.94). However, we have checked that this does not affect the predictions in a significant
way.

It is also interesting to discuss the value of the scale M since this is important from the
model building point of view. The CMB normalization gives

M4
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Pl

= 720⇡2A2
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MPl
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In the vacuum dominated approximation, the above expression simplifies and givesM4/M4
Pl '

45⇡2/∆N2
⇤φ

2
0
/M2

PlQ
2
rms−PS/T

2. This leads to
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45A

∆N⇤
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' 1.2⇥ 105

p
N , (5.99)

where we have taken ∆N⇤ ' 60. This also implies that

φ0

MPl

' 1.35p
N

⇥ 10−5. (5.100)

Therefore, we have a rough determination of the compactification radius. The model seems
consistent since we obtain that MPlR & 1, in agreement with the assumptions made at the
beginning of this section.
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The predictions for TWI are presented in Fig. 122. The reheating equation of state
parameter wreh has been taken to be 0 since the potential is quadratic close to its minimum.
However, since the details of reheating depend on the details of the interactions between
the inflaton field and the others degrees of freedom in the theory, this parameter is a priori
unspecified and could very well take different values. In the ASPIC code, wreh can be freely
chosen. Anyway, since the reheating temperature is in fact fully degenerate with the param-
eter xend, these two parameters can not be constrained independently. One can check that
the rough description provided by Eqs. (5.96) is correct: the model typically predicts a small
amount of gravitational waves which increases with φ0 , and a deviation from scale invariance
which does not significantly depends on φ0 . When φ0/MPl = O(1), however, one notices
a turning point (at fixed values of φ0). This corresponds to the separation between two
regimes, one where x⇤ < x✏max

1
and ✏1 is an increasing function of x (hence ✏1⇤ increases with

xend) and another where x⇤ > x✏max
1

and ✏1 is a decreasing function of x (hence ✏1⇤ decreases
with xend). If a sufficient number of e-folds can be realized in the 2 < x < x✏max

1
part of the

potential, then ✏2⇤ can become negative. However, this mostly happens for fine-tuned values
of xend ' 2.

5.6 Generalized MSSM Inflation (GMSSMI)

As for the MSSMI models, see section 4.17, GMSSMI scenarios are based on the Minimal
Supersymmetric Model (MSSM) in which a flat direction direction is lifted by soft supersym-
metry breaking terms and by superpotential corrections. The potential is of the form

V (φ) =
1

2
m2
φφ

2 −A
λn

n

φn

Mn−3
Pl

+ λ2n
φ2(n−1)

M
2(n−3)
Pl

. (5.101)

The MSSMI model corresponds to n = 6 and A2 = 8(n−1)m2
φ. This last relation is of crucial

importance since it implies an exact flat inflection point. Following Refs. [409, 410, 413, 473–
476], one may wonder whether the model is robust when this relation is not exactly satisfied.
In order to investigate this question, we therefore relax the condition A2 = 8(n − 1)m2

φ. In
this more general case, the potential can be reparametrized in the form

V (φ) =M4
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, (5.102)

where φ0 ' 1014 GeV, this value being the same as the one found in section 4.17. The positive
dimensionless parameter ↵ encodes any deviations from the MSSM case for which it equals
unity, ↵MSSM = 1.

The potential is displayed in Fig. 51, where four cases can be distinguished. In the
following, we define the quantity x by the expression

x ⌘ φ

φ0

. (5.103)

If ↵ < 9/25, the second derivative of the potential does not vanish and the potential is convex
everywhere. This corresponds to the case ↵ = 0.1 case in Fig. 51. If 9/25 < ↵ < 1, the
potential has two inflection points x±V 00=0 and is concave in between. It remains an increasing
function of the field since its first derivative never vanishes. This is illustrated with the case
↵ = 0.7 in Fig. 51. If ↵ = 1, this is the MSSM inflation models (see section 4.17) where
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Figure 51. GMSSM Inflation (GMSSMI). Top left panel: GMSSM Inflation potential Eq. (5.102)
for ↵ = 0.1, 0.7, 1.5, 2.5, as a function of φ/φ

0
. Top right panel: logarithm of the potentials for the

same value of ↵. Bottom left panel: slow-roll parameter ✏1 for a potential with the same values of ↵.
Bottom right panel: slow-roll parameter ✏2 for a potential with the same values of ↵. See discussion
in the text body.

the potential has a flat inflection point. If 1 < ↵ < 9/5, the potential decreases in between
x±V 0=0 but remains positive everywhere. This is exemplified by the case ↵ = 1.5 in Fig. 51.
Finally, if ↵ > 9/5, the potential becomes negative (hence is not properly defined) between
the two points x±V=0 (see ↵ = 2.5 in Fig. 51). The values of the field vev ’s appearing in this
discussion are given by the following formulas:

x±V 00=0 =

"

5

9

 

1±
r

1− 9

25↵

!#1/4

, x±V 0=0 =

 

1±
r

1− 1

↵

!1/4

, (5.104)

and

x±V=0 =

"

5

3

 

1±
r

1− 9

5↵

!#1/4

. (5.105)

Let us now calculate the first three Hubble flow functions in the slow-roll approximation.
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They are given by

✏1 = 450
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φ0
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)2

x2 (15− 10↵x4 + 3↵x8)2
,
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φ0

◆2 15 + 40↵x4 + ↵ (20↵ − 78) x8 + 3↵2x16

x2 (15− 10↵x4 + 3↵x8)2
,

(5.106)

and

✏3 = 60

✓

MPl
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+100↵2 (261 − 20↵) x14 + 10↵2
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+48↵3 (10↵− 9) x26 − 180↵4x30 + 27↵4x34
⇤−1

.

(5.107)

The first two slow-roll parameters diverge when x! 0 and vanish asymptotically. In between,
their shape depends on ↵ as it is represented in Fig. 51. If ↵ < 1, ✏1 first decreases, reaches a
local non-zero minimum where ✏2 vanishes, then increases to reach a local maximum where
✏2 vanishes again, and eventually decreases again. Let x±✏2=0 be the position of these two
local extrema. From Ferrari’s solutions for depressed quartic equations one gets

x±✏2=0 =

"

1

2↵

r

5

3

 

p
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s

39

5
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, (5.108)

where

δ =
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25
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∆ = −430336↵4
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δ
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+ σ1/3,

(5.109)

are intermediate quantities introduced solely to reduce the size of Eq. (5.108). If ↵ > 1, ✏1
has two local minimums located at x±V 0=0 where it vanishes. In between it reaches a local
maximum or may even diverges for ↵ > 9/5 (see Fig. 51). The slow-roll parameter ✏2 vanishes
when ✏1 reaches these local maxima, or diverge when ✏1 does (for ↵ > 9/5). As explained in
section 4.17, inflation is meant to proceed at φ . φ0 . Let us assume that inflation can end
for ✏1 > 1 between x = 0 and the position of the first minimum x✏min

1
. Following the previous

considerations, this latter location is defined as

x✏min
1

=

(

x−✏2=0 if ↵ < 1

x−V 0=0 if ↵ > 1
, (5.110)

and provides an upper bound to xend the solution of ✏1(xend) = 1. This one can only be
determined numerically. The values of x±✏2=0 and x±V 0=0 in terms of ↵ are displayed in the
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Figure 52. GMSSM Inflation (GMSSMI). Left panel: x±✏2=0 defined in Eq. (5.108) and x±V 0=0 defined
in Eq. (5.104) together with x✏min

1
[see Eq. (5.110)] as a function of ↵. Right panel: minimal value

of the slow-roll parameter ✏1 (rescaled by φ2
0
/M2

Pl
) as a function of ↵. When it is greater than unity,

inflation cannot occur.

left panel in Fig. 52 together with x✏min
1

. The right panel of Fig. 52 represents the value of

the first slow-roll parameter at this minimum, ✏min
1 = ✏1(x✏min

1
). For ↵ < 1, one can see that

✏min
1 < 1 only if the parameter ↵ . 1. This defines a minimum value for ↵, which depends
on φ0 , such that inflation can take place within this domain. When ↵ ' 1, one can derive an
approximated version of Eq. (5.108), namely, x−✏2=0 ' 1 − (1 − ↵)/32. Plugging it into the
expression for ✏1 one obtains

✏min
1 ' 225

32
(↵− 1)2

M2
Pl

φ2
0

, (5.111)

from which one gets

↵ > 1− 4
p
2

15

φ0

MPl

. (5.112)

For the value suggested in Ref. [406], φ0/MPl ' 10−4, one obtains ↵ > 1− 10−5, which is in
agreement with Ref. [473], and shows that the model needs to be sufficiently fine-tuned (i.e.
sufficiently close to regular MSSM inflation) in order to be a viable inflationary model.

On top of that, as shall be seen now, the constraints on ↵ are even tighter if one wants
a sufficient number of e-folds to be produced. Let us thus turn to the slow-roll trajectory. It
can be integrated, and leads to
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Pl
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2
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end

)
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}

,

(5.113)

where

a± = −↵±
p

↵2 − ↵ , b± = 2
a± + ↵/3

a± − a⌥
, (5.114)

A few remarks are in order. Firstly, even if the terms appearing in the previous expression
are complex, their imaginary contributions cancel out and the resulting expression is truly
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a real quantity. Then, one can check that formally, when ↵ ! 0, one has a± ! 0 and
b± ! 1, hence N ' −

(

x2 − x2ini
)

/4, which is precisely the LFI slow-roll trajectory for p = 2,
see section 4.2. This is just a formal check since ↵ is meant to be tuned close to 1 in the
GMSSMI scenario. Finally, let us notice that, in the case ↵ < 1, and contrary to the MSSM
models (↵ = 1), the number of e-folds never diverges at a given point x. Therefore, the total
number of e-folds is bounded from above for the field vev ’s considered here. Working out the
limit of Eq. (5.113) when ↵! 1, one has

Nend −Nini 
✓

φ0

MPl

◆2
⇡

30

1p
1− ↵

. (5.115)

If one require at least ∆N = Nend −Nini e-folds during inflation, then ↵ has to be fine-tuned
to

↵ > 1−
✓

φ0

MPl

◆4
⇡2

900∆N2
. (5.116)

Remembering that the small parameter here is φ0/MPl, one can see that it is a much tighter
constraint than the one of Eq. (5.112). Taking φ0/MPl ' 10−4 and ∆N ' 50, one obtains
↵ > 1 − 10−22. This is clearly an extreme fine-tuning which can even make the numerical
investigation of the model challenging6. As explained below, the same condition |↵− 1| <
φ4

0
/M4

Pl/∆N
2 also applies to the case ↵ > 1 in order to maintain an acceptable deviation

from scale invariance. This makes GMSSM inflation a severely fine-tuned scenario. Let us
also notice that our parameter ↵ is related to the parameter δ of Ref. [474] by δ =

p
↵−2 − 1.

Ref. [474] finds that, in order for the model to be compatible with the data, δ ' 10−20.
Therefore, although our method slightly differs from that of Ref. [474], our results are in
broad agreement.

Finally, the amplitude of the CMB anisotropies fixes the parameter M to
✓

M

MPl

◆4

= 2880⇡2
M2

Pl

φ2
0

(

1− 2↵x4⇤ + ↵x8⇤
)2

x4⇤
(

1− 2
3↵x

4⇤ +
↵
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8⇤
)3

Q2
rms−PS

T 2
. (5.117)

As explained in section 4.17, this leads to M/MPl ' 108 GeV for φ0/MPl ' 10−4.
The reheating consistent slow-roll predictions of the GMSSMI models are displayed in

Figs. 123, 124, for ↵ > 1 and ↵ < 1, respectively. The reheating equation of state parameter
wreh has been taken to 0 since the potential is quadratic close to its minimum. In both
cases, one can see that in the limit ↵ ! 1, the standard MSSM predictions are recovered,
see Fig. 104. The amount of gravitational waves r seems to be quite independent on ↵ and,
therefore, is similar to its regular MSSM counterpart. On the other hand, the spectral index
nS strongly depends on ↵. In the case ↵ > 1, larger values of ↵−1 worsens the spectral index
problem, already present in standard MSSMI. These models are therefore strongly disfavored
by the data. In the case ↵ < 1 however, there is a very narrow range of acceptable values for
↵. They are well inside the |↵− 1| < φ4

0
/M4

Pl/∆N
2 condition and the spectral index is inside

the two-sigma confidence intervals. But, as can be seen in Fig. 124, the spectral index varies
so quickly with ↵ that one has to fine-tune the power of the fine-tuning to remain inside
the two-sigma contours. In Refs. [410, 473–476], it is argued that, since the flat saddle point
condition is robust against radiative corrections, such a fine-tuning may not be a problem.
However, as explained here and in section 4.17, if the flat saddle point condition is exactly
satisfied, the model is disfavored by the observations because the spectral index is too red.
The only way out is therefore to detune the condition ↵ = 1 at an extremely fine-tuned level.

6This exceeds the usual 64 bits precision on floating point numbers (FP64).
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5.7 Generalized Renormalizable Point Inflation (GRIPI)

As for the MSSMI models (see section 4.17) and for the RIPI models (see section 4.18), the
GRIPI models have a potential of the form

V (φ) =
1

2
m2
φφ

2 −A
λn

n

φn

Mn−3
Pl

+ λ2n
φ2(n−1)

M
2(n−3)
Pl

. (5.118)

In section 4.18, the particular example n = 3 is discussed in the case where the potential has
a flat inflection point, i.e. when A2 = 16m2

φ. Then, as studied in section 5.6 for MSSMI,
comes the question of what happens when we relax this condition. To address this issue, it
is convenient to reparametrize the potential as

V (φ) =M4

"

✓

φ

φ0

◆2

− 4

3
↵
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φ0

◆3

+
↵

2
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φ

φ0

◆4
#

, (5.119)

where the positive dimensionless parameter ↵ encodes the deviation from the RIPI case (that
is to say ↵RIPI = 1). This model was studied in Ref. [477] and in Refs. [478, 479]. In the first
reference, the massmφ is fixed by the soft supersymmetry breaking terms and, in section 4.18,
it was shown that this leads to φ0 ' 1014 GeV. However, in Refs. [478, 479], the scale mφ

is no longer controlled by the soft supersymmetry breaking terms but by the right-handed
neutrino mass in Type I supersymmetric seesaw and this leads to a different value for φ0 ,
namely φ0 ' 1017 GeV. Therefore, in what follows, we will use both values.

The potential is displayed in Fig. 53, where four cases can be distinguished. In the
following, for convenience, we use the quantity x defined by

x ⌘ φ

φ0

. (5.120)

If ↵ < 3/4, the second derivative of the potential does not vanish and the potential is convex
everywhere. This corresponds to the case ↵ = 0.7 case in Fig. 53. If 3/4 < ↵ < 1, the
potential has two inflection points x±V 00=0 and is concave in between. It remains an increasing
function of the field since its first derivative never vanishes. This is illustrated by the case
↵ = 0.85 in Fig. 53. If ↵ = 1, then this is the RIPI model (see section 4.18) where the
potential has a flat inflection point. If 1 < ↵ < 9/8, then the potential decreases between
the two values of x, x±V 0=0, for which the derivative is zero, but remains positive everywhere.
Typically, this corresponds to the case ↵ = 1.094 in Fig. 53. Finally, if ↵ > 9/8, then the
potential becomes negative (hence is not properly defined everywhere) between x±V=0 (see
the case ↵ = 1.188 in Fig. 53). The values of the field vev in this discussion are given by the
following formulas:

x±V 00=0 =
2

3

 

1±
r

1− 3

4↵

!

, x±V 0=0 = 1±
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↵− 1

↵
, (5.121)

and
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. (5.122)
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Figure 53. Top left panel: Generalized Renormalizable Point Inflation (GRIPI) potential given by
Eq. (5.119) for ↵ = 0.7, 0.85, 1, 1.094, 1.188, as a function of φ/φ

0
. Top right panel: logarithm of the

potentials for the same values of ↵. Bottom left panel: slow-roll parameter ✏1 rescaled by M2
Pl
/φ2

0
,

for GRIPI models with the same values of ↵. Bottom right panel: slow-roll parameter ✏2, rescaled by
M2

Pl
/φ2

0
. A description of these various quantities can be found in the text.

Let us now calculate the first Hubble flow functions in the slow-roll approximation.
They are given by
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and
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Figure 54. Left panel: x±✏2=0 and x±V 0=0 [defined in Eq. (5.121)] together with x✏min
1

[see Eq. (5.126)]

as a function of ↵. Right panel: minimal value of the slow-roll parameter ✏1, i.e. ✏1(x✏min
1

), rescaled

by φ2
0
/M2

Pl
, as a function of ↵. When it is greater than unity, inflation cannot occur.

The first two slow-roll parameters diverge when x! 0 and asymptotically goes to zero when
x! 1. In between, their behavior depends on ↵ as can be seen in Fig. 53. If ↵ < ↵0, where

↵0 =
3

16



5− 32/3
⇣

6− 2
p
3
⌘−1/3

− 2−2/3
⇣

9− 3
p
3
⌘1/3

]

' 0.4671, (5.125)

✏1 monotonously decreases with x. If ↵0 < ↵ < 1, ✏1 first decreases, reaches a local non-
vanishing minimum at a value of x for which ✏2 vanishes, then increases to reach a local
maximum where ✏2 vanishes again, and eventually decreases for x ! 1, as already men-
tioned. Let x±✏2=0 be the position of these two local extrema. Similarly to Eq. (5.108) for
the generalized MSSM inflation models, analytic expressions can be obtained for these two
quantities using Ferrari’s solutions for depressed quartic equations. They are implemented
in ASPIC but are not displayed here since this does not add much to the discussion. If ↵ > 1,
✏1 has two local minima located at x±V 0=0 where it vanishes. In between it reaches a local
maximum or may even diverge for ↵ > 9/8 (see Fig. 53). The slow-roll parameter ✏2 vanishes
when ✏1 reaches these local maxima, or diverge when ✏1 itself diverges (for ↵ > 9/8).

As explained in section 4.18, inflation is supposed to proceed at φ . φ0 . Let us assume
that inflation ends by violation of slow-roll between x = 0 and the position of the first
minimum x✏min

1
. Following the previous considerations, this latter value of x is defined by

x✏min
1

=

(

x−✏2=0 if ↵0 < ↵ < 1

x−V 0=0 if ↵ > 1
, (5.126)

and, moreover, provides an upper bound to determine xend [i.e. the solution of the equation
✏1(xend) = 1]. Let us emphasize that this one can only be determined numerically. The
values of x±✏2=0 and x±V 0=0 in terms of ↵ are displayed in the left panel of Fig. 54 together
with x✏min

1
. The right panel of Fig. 54 represents the value of the first slow-roll parameter at

this minimum, ✏min
1 = ✏1(x✏min

1
). For ↵ < ↵0, one has ✏1(x = 1) > 1.5M2

Pl/φ
2
0
and, recalling

that typically φ0 ' 1014 GeV or φ0 ' 1017 GeV, one sees that inflation cannot proceed in this
case. For ↵0 < ↵ < 1, one has ✏min

1 < 1 only if the parameter ↵ . 1. This defines a minimum

– 150 –



value for ↵, which depends on φ0 , allowing for inflation to take place. When ↵ ' 1, one can
derive an approximated formula for x−✏2=0, namely, x−✏2=0 ' 1 − (1 − ↵)/2. Plugging it into
the expression for ✏1 one obtains

✏min
1 ' 72(↵ − 1)2

M2
Pl

φ2
0

, (5.127)

from which it follows that

↵ > 1−
p
2

12

φ0

MPl

. (5.128)

With φ0/MPl ' 10−1, one obtains ↵ > 0.99, which shows that the model needs to be suffi-
ciently fine-tuned such that it becomes very similar to the regular RIPI scenario. If, on the
other hand, φ0/MPl ' 10−4, the constraint is much tighter. As discussed in Refs. [478, 479],
one of the main advantage of the model studied in those references is that a value φ0 '
1017GeV leads to a less severe fine tuning problem than φ0 ' 1014GeV.

However, the constraints on ↵ are tighter to get a sufficient number of e-folds. Let
us therefore now turn to the determination of the slow-roll trajectory. It can be integrated
exactly to give
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(5.129)

Exactly the same remarks we have made for the GMSSMI model also applies here (see
section 5.6). In particular, for ↵ < 1, and contrary to the RIPI models (↵ = 1), the number
of e-folds never diverges at a given point x. Therefore, the total number of e-folds is bounded
by some maximal finite value. From Eq. (5.129) when ↵! 1, one has

Nend −Nini 
✓

φ0

MPl

◆2
⇡

24

1p
1− ↵
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Therefore, if one require at least ∆N = Nend −Nini e-folds, one has to fine-tune ↵ to

↵ > 1−
✓
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⇡2

576∆N2
. (5.131)

Remembering that the small parameter here is φ0/MPl, one can see that it is a much tighter
constraint than the one of Eq. (5.128). Taking φ0/MPl ' 10−1 and ∆N ' 50, one obtains
↵ > 1−10−10. This makes the fine-tuning quite important and, as explained below, the same
condition |↵− 1| < φ4

0
/M4

Pl/∆N
2 also applies to the case ↵ > 1 to maintain an acceptable

deviation from scale invariance, making the whole class of models fine-tuned. However, as
already mentioned above, the value φ0 ' 1017GeV makes the fine-tuning issue easier to
accept than the value φ0 ' 1014GeV.

Finally, the amplitude of the CMB anisotropies fixes the parameter M to
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As explained in section 4.17, this leads to M/MPl ' 1013 GeV for φ0/MPl ' 10−4.
The reheating consistent slow-roll predictions of the GRIPI models are displayed in

Figs. 125, 126, for ↵ > 1 and ↵ < 1 respectively, and for values of φ0 such that φ0 ' 1017 GeV:
φ0/MPl = 10−2, 10−1.5, 10−1, 10−0.5, 1. The reheating equation of state parameter wreh has
been taken to 0 since the potential is quadratic close to its minimum. In both cases, one
can see that in the limit ↵ ! 1, the standard RIPI predictions are recovered, see Fig. 105.
The amount of gravitational waves r seems to be quite independent on ↵ while the spectral
index nS strongly depends on it. In the case ↵ > 1, the fine-tuning is as important as in
the case ↵ < 1 as mentioned above. Considering values of ↵ very different from 1 worsens
the spectral index problem, already present in standard RIPI. These models are therefore
strongly disfavored by the data. In the case ↵ < 1 however, there is a very narrow range of
acceptable values for ↵. They are well inside the |↵− 1| < φ4

0
/M4

Pl/∆N
2 condition and the

spectral index is inside the two-sigma confidence intervals. But as can be seen in Fig. 126,
the spectral index varies so quickly with ↵ that, even if the fine-tuning is less problematic
than in the GMSSMI case (due to the different value of φ0), it is still very important.

5.8 Brane SUSY breaking Inflation (BSUSYBI)

This model has been studied in Ref. [480] in the context of superstrings models7. The
potential is a sum of two exponential terms

V (φ) =M4

✓
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MPl + e

p
6γ φ
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◆

, (5.133)

one is a “hard” exponential brought about by a SUSY breaking mechanism and the other
is a “slow-roll term” having 0 < γ < 1/

p
3 and that dominates the eventual inflationary

dynamics. It was shown in Ref. [480] that the inflationary dynamics can also generate
superimposed oscillations in the primordial power spectrum but we will not focus on this
case since, obviously, slow-roll is not satisfied in this situation [481–483]. Let us also notice
that if the term in

p
6 in the first exponential function is relaxed to be a free parameter, the

potential becomes as in Ref. [484], i.e. a general exponential brane potential. Defining

x ⌘ φ

MPl

, (5.134)

the first three Hubble flow functions in the slow-roll approximation read
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and
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These functions together with the potential are displayed in Fig. 55. The two exponential
components are clearly visible on the plot of the logarithm of the potential. The required
flatness of the potential is realized only along the γ branch and for negative values of x.

7see Eq. (1.1) and Eq. (2.9) in that reference.
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Figure 55. Brane SUSY breaking Inflation (BSUSYBI) for γ = 0.1. Upper panels: the potential and
its logarithm. Bottom left panel: the first slow-roll parameter ✏1 as a function of the field value, the
shaded area indicates where inflation stops. Bottom right panel: slow-roll parameter ✏2 and ✏3.

The first Hubble flow function ✏1 is an increasing function of x which varies between its
asymptotic values:

lim
x!−1

✏1 = 3γ2, lim
x!+1

= 3. (5.137)

For γ small enough (γ < 1/
p
3), there is a regime where it is less than unity. This regime is

given by the condition x < x✏1=1 with
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3− 1

1− γ
p
3

!

. (5.138)

As a result, inflation can only proceed in the domain x < x✏1=1 and it never stops. Hence
the need for an extra-parameter xend encoding the field value at which some unspecified
mechanism (such as a tachyonic instability) is triggered and stops inflation. Let us notice
that the slow-roll parameter ✏2 is always negative and goes to zero at large |x| with a local
minimum in x = 0 equals to ✏min

2 = −3 (γ − 1)2. Finally, the slow-roll parameter ✏3 vanishes
when x = 0 and shares the same sign as x. Its asymptotic values are

lim
x!−1

✏3 = 6γ (γ − 1) , lim
x!+1

✏3 = 6 (1− γ) . (5.139)
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Figure 56. Maximum value of xend in order to realize N e-folds of inflation between x✏1=1 and xend
as a function of 0 < γ < 1/

p
3. This condition defines a prior for the model parameter xend, which is

the region lying under the curves on the figure.

The slow-roll trajectory can be integrated and gives

N −Nend = − 1p
6
(x− xend) +

1

6γ
ln

"

1 + γe
p
6(γ−1)x

1 + γe
p
6(γ−1)xend

#

. (5.140)

This equation cannot be analytically inverted but since inflation requires x < x✏1=1, it shows
that xend should not be too close to x✏1=1 in order to realize enough e-folds of inflation. This
puts some upper bound on xend, that can be computed numerically and that is displayed in
Fig. 56. This value xmax

end defines a prior for the model parameter xend, which is the region
lying under the curves on the figure.

Integrating Eq. (2.47) finally gives the field value x⇤ at which the pivot mode crossed
the Hubble radius during inflation. The parameter M being fixed by the amplitude of the
CMB anisotropies

✓

M

MPl

◆4

= 4320⇡2

⇣

e
p
6x⇤ + γe

p
6γx⇤

⌘2

⇣

e
p
6x⇤ + e

p
6γx⇤

⌘3

Q2
rms−PS

T 2
. (5.141)

The reheating consistent slow-roll predictions of the BSUSYBI models have been plotted in
Fig. 127. The parameter xend varies between 2xmax

end < xend < xmax
end with xmax

end < 0, under
which the predictions of the model coincide with those of PLI (see section 4.8). Large values
for the parameter γ are disfavored and it has to be smaller than . 5 ⇥ 10−2 to generate a
reasonable amount of gravitational waves.
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5.9 Tip Inflation (TI)

5.9.1 Theoretical Justifications

This model is a scenario based on string theory in which the motion of branes in extra-
dimensions causes the four-dimensional spacetime to inflate, see for instance Refs. [151, 213,
485–490]. Let us assume string theory with flux compactification. In this situation, the
six-dimensional Calabi-Yau space has generically the shape of a bulk with warped throat(s)
attached to it. The metric in the bulk is usually not known but, along the throat, explicit
examples are available. A representative case is the Klebanov-Strassler throat [491] for which
one can write the metric as

ds2 = h−1/2(r)⌘µ⌫dx
µdx⌫ + h1/2(r)

(

dr2 + r2ds25
)

. (5.142)

The function h(r) describes the warping along the radial coordinate r of the throat. We see
that the throat is in fact a cone with five-dimensional sections given by the metric ds25. For a
conifold, these sections are two spheres S2⇥S3 which shrink to zero at the tip of the cone [492].
Let us recall that a conifold can also be defined by the equation

P4
A=1 (ZA)

2 = 0, i.e. a six-
dimensional (or three complex dimension) surface in C

4. However, if one has a deformed
conifold, then, at the tip the S2 sphere shrinks to zero but the S3 remains finite [492]. A
deformed conifold can similarly be defined by the equation

P4
A=1 (ZA)

2 = "2 and, at the tip,
one has

P4
A=1 |ZA|2 = "2. Usually brane inflation takes place when a brane is moving along

the radial direction of the throat, see section 5.19. Here, following Ref. [489], we will consider
a different situation, namely the case of a brane moving at the tip of the deformed conifold.
In addition, we will not only consider radial motion only but also angular motion.

Technically, the above model can be described in the framework of supergravity (viewed,
in this context, as a low energy effective field theory). Let us assume that there is a D3-brane
moving at the tip and that complex structure moduli and the dilaton are stabilized, thanks
to the presence of fluxes. Furthermore, following Ref. [489], we suppose that there is only
one volume modulus, ⇢, plus three fields zi, i = 1, · · · , 3 describing the D3-brane position.
It follows that the corresponding Kähler potential is given by

K
⇣

⇢, zi, z
†
i

⌘

= −3M2
Pl ln

h

⇢+ ⇢† − γk
⇣

zi, z
†
i

⌘i

, (5.143)

where k is a function of the brane coordinates and γ is a constant (of mass dimension −2)
related to the brane tension T3, an approximate expression of which will be given below. In
the vicinity of the deformed conifold tip, the function k takes the form

k
⇣

zi, z
†
i

⌘

= k0 + c"−2/3

 

4
X

A=1

|ZA|2 − "2

!

. (5.144)

Here c is a numerical constant c = 21/6/31/3 ' 0.77 and k0 stands for the value of the function
k at the tip. The quantity "2/3 = rtip can be viewed as the radius of the tip as illustrated in
Figs. 1 and 2 of Ref. [489].

The last ingredient of the model is a stack of n D7-branes placed far from the tip. Then,
the superpotential (Kuperstein embedding [493]) can be written as

W =W0 +A(z1)e
−a⇢ =W0 +A0

✓

1− z1
µ

◆1/n

e−a⇢. (5.145)
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In this expression, µ2/3 represents the distance between the stack of D7-branes and the tip
(see Fig. 2 of Ref. [489] for an illustration). We always assume that this distance is much
larger than the size of the tip, i.e. ✏/µ⌧ 1. The quantities W0, A0 and a are constants. It is
interesting to remark that the above superpotential only depends on z1 and therefore breaks
the symmetry of the tip.

We are now in a position where the potential and the kinetic term can be calculated for
the fields zi and ⇢. The F -term potential reads

V (σ, x1) =
2ae−aσ

M2
PlU2

✓

aU

6
|A|2e−aσ + |A|2e−aσ − |W0A|

◆

+
e−2aσ

3M2
PlγU2

|A|2
n2µ2

"2/3

c

✓

1− x21
"2

◆✓

1− x1
µ

◆−2

+
D

U b
, (5.146)

where we have taken, from the definition zi = xi + iyi, z1 = x1 at the tip. Because of our
choice of the superpotential, V no longer depends on x2, x3. In the above expression, we
have defined ⇢ = σ + i⌧ and ⌧ is chosen such that V is minimal. The quantity U is defined
by U = ⇢+ ⇢† − k = 2σ− k0 at the tip. Finally, the last term D/U b, with D and b constant,
is an uplifting term which is added in order to avoid having an anti-de Sitter minimum. In
practice, uplifting potentials generically have b = 3 [494].

The calculation of the kinetic term is difficult since the Kähler matrix mixes all the
fields zi. For this reason, it is easier to use another parametrization such where z1 = " cos',
z2 = " sin' cos ✓, z3 = " sin' sin ✓ cos and z4 = " sin' sin ✓ sin , as appropriate since the
tip of the deformed conifold is S3. In this case, the Kähler matrix becomes diagonal and
expanding everything in the small parameter ✏/µ ⌧ 1, one obtains

V (σ,') = Λ(σ) +B(σ) cos'+ C(σ) sin2 '+ · · · , (5.147)

where

Λ(σ) =
2a|A0|e−aσ

M2
PlU2

✓

aU

6
|A0|e−aσ + |A0|e−aσ − |W0|

◆

+
D

U b
, (5.148)

B(σ) =
2a|A0|e−aσ

M2
PlU2n

"

µ

✓

−aU |A0|
3

e−aσ − 2|A0|e−aσ + |W0|
◆

, (5.149)

C(σ) =
|A0|2e−2aσ

3M2
PlU2γµ2n2

"2/3

c
. (5.150)

Let us now discuss this result. If one ignores, for the moment, all terms depending on
the brane position, it remains only the term Λ(σ) which is nothing but the Kachru-Kallosh-
Linde-Trivedi (KKLT) potential for the volume modulus [494]. We see that in absence of the
uplifting term D/U b, its minimum given by @Λ/@σ = 0 would be located at σ = σ0, solution
of the implicit equation

W0 = −A0

h

1 +
a

3
(2σ0 − k0)

i

e−aσ0 . (5.151)

The corresponding value of the potential would actually be negative (anti-de Sitter) and
given by

Λ(σ0) = −a
2|A0|2
3M2

PlU
e−2aσ0 < 0. (5.152)
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Hence the required uplifting term from which one can find a new minimum at which V is
positive. This is precisely how KKLT managed to find a de Sitter minimum instead of an
anti de Sitter one for the first time in string theory [494].

If the position of the minimum were not changed by adding the uplifting term, one
would obtain a vanishing value of V for

D0 =
a2|A0|2U b−1(σ0)

3M2
Pl

e−2aσ0 . (5.153)

This suggests to introduce a new parameter β, defined by

β ⌘ D
3M2

Pl

a2|A0|2U b−1(σ0)
e2aσ0 , (5.154)

such that one can trade D for β in all the uplifting terms. Therefore, β = 1 represents a
situation in which the potential is uplifted while the position of its minimum is unchanged.
In general, as expected in presence of the brane, the KKLT minimum σ0 of Λ(σ) will be
shifted. The correction due to the uplifting terms can be evaluated perturbatively and one
obtains the following expression

σmin = σ0 +
bβ

2a2σ0
+ · · · , (5.155)

valid provided bβ/(2a2σ0) ⌧ 1. For β = 0, one recovers that σmin = σ0 as expected without
uplifting terms (and with a negative minimum for V ). There are other corrections to the
position of the minimum due to the presence of the brane but one can show that they do
not play an important role (they are calculated in Ref. [489]). The final argument consists
in considering that the modulus is stabilized at this minimum. Then, one obtains a single
field model V (') = V (σmin,') where the coefficients in Eq. (5.147) are now given by

Λ (σmin) ⌘ Λ ' a2|A0|2e−2aσ0

6M2
Plσ0

[(β − 1) + · · · ] , (5.156)

B (σmin) ⌘ B ' a|A0|2"e−2aσ0

6M2
Plnµσ

2
0



(bβ − 3) +
bβ

4aσ0
(14 − 3bβ) + · · ·

]

, (5.157)

C (σmin) ⌘ C ' |A0|2"2/3e−2aσ0

12M2
Pln2µ2σ

2
0γc

+ · · · . (5.158)

The above relations express the parameters of the potential in terms of the stringy parameters.
We see that, if β > 1, we have that the KKLT potential is positive at the minimum that
could account for a cosmological constant today for β − 1 = O

(

σ−2
0

)

[489].
Finally, the kinetic term for ' remains to be calculated. Using the explicit form of the

Kähler metric, one obtains

KIJ̄@µz
I@µzJ̄ ' 3M2

Pl

U
γc"4/3@µ'@

µ'+ · · · , (5.159)

where, at the minimum, one has

γ ' σ0T3
3M2

Pl

, (5.160)
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T3 being the brane tension. Therefore, in the large volume limit, the canonical field φ is
φ =

p
T3c"

2/3'. As a consequence, the final form of the potential reads

V (φ) = Λ+B cos

✓

φp
T3c"2/3

◆

+ C sin2
✓

φp
T3c"2/3

◆

. (5.161)

To end this section, it is interesting to discuss the orders of magnitude of the parameters
appearing in the above potential. For this purpose, it is useful to recall that σ0, being a

volume modulus, is related to the size (or volume) of the extra-dimensions, V6 ' σ
3/2
0 ↵03.

The brane tension can be written as T3 = (2⇡)−3g−1
s ↵0−2 while the Planck mass takes the

formM2
Pl = 2(2⇡)−7V6g

−2
s ↵0−4 (gs is the string coupling). As already mentioned, the distance

µ2/3 can be viewed as the distance between the stack of D7-branes and the tip. It is therefore
of the order of the size of the throat which allows us to write that µ ' (27⇡gsN↵02/4)3/8

where the positive integer N is the total background Ramond-Ramond charge.
In order to have a successful slow-roll scenario, we must assume that the potential

vanishes at its minimum. This amounts to take Λ = B which can always be achieved by
choosing β = βsr such that (with b = 3, see before)

βsr = 1 +
45"

4nµa2σ20
+ · · · , (5.162)

where we have performed a large volume expansion. Then, at the top of the potential, one
has @2V/@φ2 ' 2C − Λ and if one wants a flat potential 2C − Λ = 2C − B must be a very
small quantity, i.e. C/B ' 1/2. Using the equations established above, one can write

C

B
= Υ

σ
3/2
0

gs(gs⇡N )3/8

✓

rtip
`s

◆−1/2

, (5.163)

where the numerical factor Υ = (12/15) ⇥ (4/27)3/8/[(2⇡)4nc] ' 5 ⇥ 10−5 and rtip ⌘ "2/3.
The string length is given by `s =

p
↵0. Let us also recall that we have taken b = 3. We

see in the above expressions, especially Eq. (5.157), that this case is special because βsr ' 1
and we have an additional suppression. It is also interesting to discuss the mass scale which
appears in the arguments of the trigonometric functions. Straightforward calculations lead
to p

T3c"
2/3

MPl

= (2⇡)2
r

c

2
g1/2s σ

−3/4
0

✓

rtip
`s

◆

. (5.164)

For fixed gs and N , the two inflationary parameters C/B and
p
T3c"

2/3/MPl are in fact
controlled by the radius of the tip and the volume of the extra-dimensions.

Finally, if one requires C/B = 1/2, as appropriate in a slow-roll analysis, then the above
equations imply that p

T3c"
2/3

MPl

' 2⇥ 108σ
9/4
0 . (5.165)

This equation is relevant for the question of the priors that should be put on the model
parameters.

5.9.2 Slow-roll Analysis

We now turn to the slow-roll analysis of the model. For the canonically normalized inflaton
field, we have just seen that the potential is given by

V =M4

✓

1 + cos
φ

µ
+ ↵ sin2

φ

µ

◆

, (5.166)
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Figure 57. Tip Inflation (TI). Upper panels: Tip Inflation potential and its logarithm for ↵ = 0.1
(blue line) and ↵ = 1 (pink line), as a function of φ/µ. Bottom left panel: slow-roll parameter ✏1
normalized by M2

Pl
/µ2. The shaded area indicates the breakdown of the slow-roll inflation if µ =MPl

(strictly speaking when the acceleration stops). Bottom right panel: slow-roll parameter ✏2 (solid
line) and ✏3 (dotted line), again rescaled by M2

Pl
/µ2.

where inflation proceeds in the region 0 < φ/µ < ⇡. Here, we have written Λ =M4, C/B = ↵

and µ =
p
T3c"

2/3 (not to be confused with the scale µ introduced above and related to the
distance between the stack of branes and the tip). When ↵ ⌧ 1, the potential reduces to
the natural inflation (NI) one. Yet, it was shown in section 4.6 that only super-Planckian
decay constants µ/MPl > O(1) could make the natural inflation models compatible with
observations (see e.g. Fig. 88). As noticed in Ref. [489], this means that tip inflation models
with ↵ ⌧ 1 are not viable. On the other hand, as was discussed in detail in the previous
sub-section, if ↵ is fine-tuned to ↵ ' 1/2, then the potential of Eq. (5.166) becomes very flat
at the top and a phenomenologically successful slow-roll inflationary stage could occur. This
is why, in the following, these models are studied with ↵ ' 1/2.

Defining

x ⌘ φ

µ
, (5.167)

the potential of Eq. (5.166) and its logarithm with respect to x are displayed in Fig. 57. Its
general shape depends on the value of ↵. If ↵ < 1/2, it is a decreasing function of the field
vev , hence inflation proceeds from the left to the right, and it has a vanishing minimum at
x = ⇡. Its first derivative vanishes at the top of the potential for x = 0 while its second
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derivative V 00(x = 0) / 2↵ − 1. It vanishes there when ↵ = 1/2 and the potential becomes
flat enough to support inflation. If ↵ > 1/2, the potential maximum is not located at x = 0
anymore but at x = arccos [1/(2↵)]. Let us thus define

xV 0=0 =

8

>

<

>

:

0 if ↵ < 1/2,

arccos

✓

1

2↵

◆

if ↵ > 1/2.
(5.168)

If ↵ > 1/2, the potential decreases with the field vev in the range xV 0=0 < x < ⇡, where
inflation proceeds from the left to the right. Again, the first derivative of the potential
vanishes at the top of the potential while its second derivative V 00(x = xV 0=0) / 1/(2↵)− 2↵
again vanishes when ↵ = 1/2. This is why ↵ must be close enough to 1/2 in order for a
viable slow-roll inflationary regime to take place.

Let us calculate the Hubble flow functions within the slow-roll approximation. They
read

✏1 =
M2

Pl

µ2
(1− 2↵ cos x)2 sin2 x

2
(

1 + cos x+ ↵ sin2 x
)2 , (5.169)

✏2 =
M2

Pl

µ2
2 cos2 x

2
(

1 + cos x+ ↵ sin2 x
)2 [2 + ↵ (3 + 4↵) − 2↵ (3 + 2↵) cos x− ↵ cos (2x)] , (5.170)

and

✏3 =
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µ2

(

−2− 2 + 4↵

(1 + ↵− ↵ cos x)2
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5 + 3↵

1 + ↵− ↵ cos x
+

1
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(

x
2

)

+
4
(

1 + ↵+ 3↵2
)

− 2↵ (7 + 4↵) cos x

↵ [cos (2x) + (6 + 4↵) cos x− 3− 4↵] − 2

)

.

(5.171)

They are displayed in Fig. 57 and are increasing functions of the field vev in the inflationary
domain xV 0=0 < x < ⇡. Notice that they diverge when x ! ⇡. The first and third slow-
roll parameters ✏1 and ✏3 vanish at the potential maximum. However, the second slow-roll
parameter ✏2 takes a non-vanishing positive value given by

✏2 (x = xV 0=0) =

8

>

>

<

>

>

:

M2
Pl

µ2
(1− 2↵) if ↵ < 1/2,

4
M2

Pl

µ2
2↵− 1

2↵+ 1
if ↵ > 1/2.

(5.172)

Requiring |✏2| < 1 implies again to adjust ↵ close to 1/2 such that |↵− 1/2| ⌧ µ2/M2
Pl ⌧ 1.

Inflation stops when ✏1 = 1 at the position xend given by

xend = arccos

2
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p
3
)
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⌘1/3

3

7

5
. (5.173)

In this formula, we have defined

∆ = −864↵6 (2↵ + 1)3
µ2

M2
Pl

✓
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+ 2

◆2
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(5.174)
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and

δ = 8↵3



2 (2↵ − 1)3 − 3 (1 + 2↵) (5 + 2↵) (1 + 4↵)
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− 2 (1 + 2↵)3
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(5.175)

together with

σ = 3 + 4↵ (1− ↵)− 2
µ2

M2
Pl

(1 + 2↵)2 − 8

2 +
µ2
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Pl

, σ0 =
1

2↵2

✓
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Pl

◆ . (5.176)

Let us now turn to the slow-roll trajectory. It can be integrated explicitly, leading to

Nend −N =
µ2
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Pl

1

2↵− 1
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1− cos x

1− cos xend

◆
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2M2
Pl
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1− 2↵ cos xend

◆

. (5.177)

For ↵ = 1/2, this expression is singular, and one has

Nend −N =
µ2

M2
Pl



1

1− cos x
− 1

1− cosxend
− 1

2
ln

✓

1− cos x

1− cos xend

◆]

. (5.178)

Finally, the parameterM can be determined from the amplitude of the CMB anisotropies
and the observable field value x⇤ [see Eq. (2.47)], and one gets

✓
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MPl

◆4

= 720⇡2
M2

Pl

µ2
(1− 2↵ cosx⇤)

2 sin2 x⇤
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1 + cos x⇤ + ↵ sin2 x⇤
)3

Q2
rms−PS

T 2
. (5.179)

The reheating consistent slow-roll predictions of the TI models are displayed in Fig. 128
for ↵ < 1/2 and in Fig. 129 for ↵ > 1/2, with µ/MPl = 10−6, 10−4 and 10−2. In both
cases, one can see that ↵ needs to be sufficiently adjusted to 1/2, namely |2↵− 1| ⌧ µ2/M2

Pl,
otherwise the deviation from scale invariance is too important. The typical amount of grav-
itational waves is very small. To see how µ/MPl is constrained, the slow-roll predictions are
displayed for ↵ = 1/2 in Fig. 130, and with µ varying. One can see that even if one allows
values of µ larger than the typical ones (µ/MPl ' 10−4) these models are disfavored by the
observations since they deviate too much from scale invariance.

5.10 β exponential inflation (BEI)

This model was introduced and studied in Ref. [495] as a phenomenological generalization of
the PLI exponential potential (see section 4.8). The potential is given by

V (φ) =M4 exp1−β

✓

−λ φ

MPl

◆

, (5.180)

where the generalized exponential function exp1−β is defined by

exp1−β (f) =

⇢

(1 + βf)1/β for 1 + βf > 0 ,
0 otherwise .

(5.181)

As discussed in Ref. [495], for f > 0 and g > 0, this function satisfies the following identities:

exp1−β [ln1−β (f)] = f, ln1−β (f) + ln1−β (g) = ln1−β (fg)− β [ln1−β (f) ln1−β (g)] ,
(5.182)
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Figure 58. β exponential inflation (BEI) for β = 0.1. Upper panels: the potential and its logarithm.
Bottom left panel: slow-roll parameter ✏1 with respect to the field values. The shaded area indicates
where inflation stops if λ = 1. Bottom right panel: slow-roll parameters ✏2 = ✏3.

where ln1−β (f) =
(

fβ − 1
)

/β is the generalized logarithmic function. In the limit β ! 0, all
the above expressions reproduce the usual exponential and logarithm properties. Therefore,
the limit β ! 0 reproduces the PLI potential (see section 4.8). However, as discussed
below, this is not the case for the observable predictions which remain different. Defining
the quantity x by

x ⌘ φ

MPl

, (5.183)

the range of field vev for which inflation occurs depends on the sign of β. For β > 0, the field
values are such that x < 1/(βλ), whereas if β < 0, the potential is defined for x > 1/(βλ). In
both cases, inflation proceeds from the left to the right. The first three Hubble flow functions
in the slow-roll approximation are given by

✏1 =
λ2

2 (1− βλx)2
, ✏2 =

2βλ2

(1− βλx)2
= 4β✏1, ✏3 = ✏2. (5.184)

Together with the potential, they are represented in Fig. 58.
One immediately sees that ✏1 is an increasing function of x only for the case where

β > 0. Therefore inflation can naturally stop at xend such that ✏1(xend) = 1. In the opposite
situation, namely β < 0, inflation has to be ended by some additional mechanism and xend
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would become an extra-parameter. Since this model is purely phenomenological, in the
following, we restrict ourselves to the case β > 0 for which

xend =
1

β

✓

1

λ
− 1p

2

◆

. (5.185)

The next step consists in determining the slow-roll trajectory. It can be integrated
explicitly and the result reads

N −Nend =
1

λ
(x− xend)−

β

2

(

x2 − x2end
)

. (5.186)

It can also be inverted and one obtains the following expression for x as a function of the
e-folds number

x =
1

λβ
−

s

✓

xend −
1

λβ

◆2

− 2

β
(N −Nend) . (5.187)

Using these expressions, the observable field value x⇤ can be related to the number of e-folds
∆N⇤ = Nend − N⇤ at which the pivot scale crossed out the Hubble radius during inflation.
Making use of Eq. (5.185), one gets

x⇤ =
1

λβ
−
r

1

2β2
+

2

β
∆N⇤ . (5.188)

Inserting this expression into the slow-roll parameters formulas yields

✏1⇤ =
1

1 + 4β∆N⇤
, ✏2⇤ = ✏3⇤ = 4β✏1⇤ . (5.189)

Therefore, the slow-roll predictions of these models do not depend on the parameter λ.
Moreover, the limit β ! 0 does not give the same observable predictions as for the PLI
models due to the singular behavior of xend. These models can therefore be viewed as a
completely different class.

Finally, the amplitude of the CMB anisotropies fixes the parameter M with

✓

M

MPl

◆4

= 720⇡2λ2 (1− βλx⇤)
−2− 1

β
Q2

rms−PS

T 2
. (5.190)

Notice that, from Eq. (5.188), the above expression can be written in terms of ∆N⇤ and that
it does not depend on λ anymore. The reheating consistent slow-roll predictions for the BEI
models are displayed in Fig. 131. The parameter β must be such that β & 0.6 in order for
the predictions of the model to remain inside the two-sigma confidence intervals, while the
parameter λ remains totally unconstrained.

5.11 Pseudo Natural Inflation (PSNI)

5.11.1 Theoretical Justifications

Pseudo Natural Inflation (PSNI) was introduced and studied in Ref. [259]. This model
has common points with NI, see section 4.6. Indeed, in PSNI, the inflaton field is also a
pseudo-Nambu Goldstone boson which appears after symmetry breaking. The correspond-
ing potential is nearly flat which is well-suited for inflation. The main ideas behind this
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construction are reviewed in section 4.6. The main difference with respect to natural infla-
tion, for which the broken symmetry is a shift symmetry, is that in pseudo natural inflation
the broken symmetry is now a U(1) one. A concrete implementation of this idea has been
proposed in Ref. [259] and starts with the following supersymmetric hybrid superpotential

W (S,X,', 1, 2) = λ0S
(

 2
1 +  2

2 − f2
)

+
λ1

2
 1'

2 + λ2X
(

'2 − v2
)

, (5.191)

with λ21f
2 > 2λ22v

2, where S, X,  1,  2 and ' are scalar fields and λ0, λ1 and λ2 are coupling
constants. We see that the U(1) symmetry is explicitly broken by the term proportional to
λ1. The corresponding potential can be written as

V = λ20
∣

∣ 2
1 +  2

2 − f2
∣

∣

2
+

∣

∣

∣

∣

2λ0S 1 +
λ1

2
'2

∣

∣

∣

∣

2

+4λ20 |S 2|2+|'|2 |λ1 1 + 2λ2X|2+λ22
∣

∣'2 − v2
∣

∣

2
.

(5.192)
The flat directions of this superpotential can be reparametrized as

 1 + i 2 ⌘ (f + σ) eiφ/f ,  1 − i 2 ⌘ (f − σ) e−iφ/f , (5.193)

where φ is the Nambu-Goldstone boson associated to the broken U(1) symmetry and σ is a
modulus. One can assume that σ is stabilized and sits at σ = 0, the minimum of a potential
originating from supersymmetry breaking. The field φ plays the role of the inflaton. Using
the above expressions and the condition σ = 0, one obtains that  1 = f cos (φ/f) and
 2 = f sin (φ/f). In that case, a flat direction for φ is obtained for ' = 0 and S = 0 since
then we have

V = λ22v
4. (5.194)

Notice that SUSY is broken because FX ⌘ h@W/@Xi = λ2v
2 6= 0. As a consequence, the

corresponding vacuum energy density is indeed given by V0 ' |FX |2 = λ22v
4.

This tree level potential is corrected by two kind of contributions. First, supergravity
induces a soft SUSY breaking mass of orderH for every scalar, but since φ is a pseudo Nambu-
Goldstone boson, it only receives a potential due to the explicit breaking term proportional
to λ1. The corresponding contribution is loop suppressed, m2

φ ' 3λ21H
2/(16⇡2), as soon as

λ1 . 1 which will be assumed. Second, the potential receives a direct Yukawa mediated
contribution through a ' loop and Ref. [259] has shown that it takes the form

V (φ) ' V0

✓

1 +
λ22
4⇡2

ln
λ1 1

µ

◆

= V0



1 +
λ22
4⇡2

ln
cos (φ/f)

µ/f

]

. (5.195)

where µ is some renormalization scale. The above formula gives rise to a new type of potential
that we study in the next sub-section.

5.11.2 Slow-Roll Analysis

We now turn to the slow-roll analysis of the PSNI model. Using more friendly notations, the
potential (5.195) can be re-expressed as

V =M4



1 + ↵ ln

✓

cos
φ

f

◆]

, (5.196)

with the following definitions

M4 = λ22v
4



1 +
λ22
4⇡2

ln

✓

λ1f

µ

◆]

, ↵ =
λ22/

(

4⇡2
)

1 + λ22/ (4⇡
2) ln

⇣

λ1f
µ

⌘ . (5.197)
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Figure 59. Top left panel: Pseudo Natural Inflation (PSNI) potential, for ↵ = 0.1, as a function of
φ/f . Top right panel: logarithm of the potential for the same value of ↵. Bottom left panel: slow-roll
parameter ✏1, rescaled by the quantity M2

Pl
/f2 such that it acquires a universal form, for the same

value of ↵. Bottom right panel: slow-roll parameter ✏2 (solid line) and ✏3 (dotted line), rescaled by
the quantity M2

Pl
/f2, still for the same value of ↵.

Therefore, one typically has ↵⌧ 1, and the scale f should a priori be such that f . MPl in
order to avoid the usual problems of natural inflation.

The potential (5.196) as well as its logarithm are displayed in Fig. 59. Since φ is assumed
to be such that φ ' 0 initially, the potential must be studied in the range φ/f 2 [0,⇡/2].
It is positive definite in the range φ/f 2

⇥

0, arccos
(

e−1/↵
)⇤

. We see that it is a decreasing
function of the inflaton vev , which means that inflation proceeds from the left to the right
in the direction specified by the arrow in Fig. 59.

Let us now turn to the slow-roll parameters. If one defines x ⌘ φ/f , then the three first
Hubble flow parameters are given by

✏1 =
M2

Pl

2f2
↵2 tan2 x

(1 + ↵ ln cos x)2
, ✏2 = 2↵

M2
Pl

f2
1 + ↵+ ↵ ln cos x− ↵ cos2 x

cos2 x (1 + ↵ ln cos x)2
, (5.198)

✏3 = ↵
M2

Pl

f2
(tan x)2

2 + 3↵+ ↵2 − ↵2 cos (2x) + (4 + 3↵)↵ ln cos x+ 2↵2 ln2 cos x

(1 + ↵ ln cosx)2
(

1 + ↵ ln cos x+ ↵ sin2 x
) .

(5.199)
They are displayed in Fig. 59. We see on this plot that the slow-roll parameters ✏1 and ✏3
vanish when x goes to 0 and diverge when x goes to ⇡/2. On the other hand, the slow-roll
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parameter ✏2 has a non-zero limit when x goes to 0, namely

lim
x!0

✏2 = 2
M2

Pl

f2
↵. (5.200)

This quantity should be small in order for slow-roll to be valid. This means that, at a fixed
scale f , the parameter ↵ needs to be smaller than f2/M2

Pl. From the monotonous behavior
of ✏1, one also notices that inflation naturally stops at ✏1 = 1. Unfortunately, this equation
cannot be solved exactly and the solution needs to be determined numerically. However,
since we are in a regime where f/MPl ⌧ 1 and ↵M2

Pl/f
2 ⌧ 1, xend must be close to ⇡/2.

One can derive a better approximation by solving the equation ✏1 = 1 using an expansion in
the small quantities of the problem. One arrives at

xend ' ⇡

2
− ↵p

2

MPl

f
, (5.201)

that is to say the first correction to ⇡/2 is linear in ↵MPl/f and, as expected, negative. As
usual, the ASPIC code makes use of the complete slow-roll solution.

Let us now turn to the slow-roll trajectory. It can be integrated exactly in terms of the
dilogarithm function Li2 (also referred to as Spence’s function, or Joncquière function). This
function was already used in this paper, for instance in section 4.1. The explicit expression
of the trajectory reads

Nend −N =
f2

↵M2
Pl

h

(1 + ↵ ln cos xend) ln sinxend +
↵

4
Li2

(

cos2 xend
)

i

− f2

↵M2
Pl

h

(1 + ↵ ln cos x) ln sinx+
↵

4
Li2

(

cos2 x
)

i

, (5.202)

where Nend is the number of e-folds at the end of inflation. Unfortunately, this trajectory
cannot be inverted analytically. However, if one uses the two conditions f/MPl ⌧ 1 and
↵M2

Pl/f
2 ⌧ 1, one can simplify a lot its expression. In particular, at Hubble crossing, one

can write

∆N⇤ '
f2

2↵M2
Pl



⇣

x⇤ −
⇡

2

⌘2
−
⇣

xend −
⇡

2

⌘2
]

, (5.203)

from which one can obtain an explicit formula for x⇤

x⇤ '
⇡

2
−
p

2↵∆N⇤
MPl

f
. (5.204)

Then, this also allows us to derive useful approximated equations for the first three Hubble
flow parameters, namely

✏1⇤ '
↵

4∆N⇤
, ✏2⇤ ' ✏3⇤ '

1

∆N⇤
. (5.205)

The expressions of the tensor-to-scalar ratio, spectral index and running are

r ' 4↵

∆N⇤
, nS − 1 ' ↵S ' − 1

∆N⇤
, (5.206)

These formulas are in agreement with the estimates given in Ref. [259]. Interestingly enough,
we see that these predictions are independent of the scale f and that the spectral index (and
the running) is even independent of ↵.
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The last step consists in using the CMB normalization in order to extract the mass scale
M . Straightforward manipulations lead to

✓

M

MPl

◆4

= 720⇡2↵2M
2
Pl

f2
tan2 x⇤

(1 + ↵ ln cosx⇤)
3

Q2
rms−PS

T 2
. (5.207)

Under the two conditions f/MPl ⌧ 1 and ↵M2
Pl/f

2 ⌧ 1 and using the same method as
before, this leads to

✓

M

MPl

◆4

' 360⇡2↵

∆N⇤

Q2
rms−PS

T 2
. (5.208)

RequiringM < MPl is easily achieved since, for the fiducial value ∆N⇤ ' 55, this is equivalent
to ↵ . 2580 whereas we have ↵⌧ 1. Taking the more realistic value ↵ ' 10−6 and ∆N⇤ ' 55,
one typically obtains that M/MPl ' 10−3.

The predictions of the PSNI models are displayed in Fig. 132 for f/MPl = 10−3, 10−1, 10
respectively (although this last value is considered just for the purpose of illustration since
super-Planckian values of f are not very physical). The reheating equation of state parameter
wreh has been taken to 0 but since there is no potential minimum around which the inflaton
field can oscillate at the end of inflation, this parameter is a priori unspecified and can
take different values (in the ASPIC code, this parameter can be freely chosen). One can see
that the rough description provided by Eqs. (5.205) is correct: when ↵M2

Pl/f
2 ⌧ 1, the

deviation from scale invariance does not depend on the model parameters and is of the order
of nS ' 1− 1/∆N⇤ ' 0.975, while r ' 4↵/∆N⇤ is typically very small.

5.12 Non Canonical Kähler Inflation (NCKI)

5.12.1 Theoretical Justifications

This model was introduced and studied in Ref. [397] as a way to model hilltop inflation. The
idea is to consider F or D term inflation in which we have a flat direction lifted by one loop
corrections. This gives rise to loop inflation as discussed in section 4.12. The LI potential
has been obtained, however, under the assumption of a minimal Kähler potential. Now,
corrections originating from higher order operators, always present in the Kähler potential,
should typically produce a mass term and, therefore, the scalar potential gets modified and
takes the form

V (φ) ' V0 + ↵ ln

✓

φ

Q

◆

+ bφ2, (5.209)

where Q is a renormalization scale. This is the model we study in this section. Let us notice
that the coefficient b can be positive or negative. The case b > 0 has been investigated in
Refs. [496, 497] as “hybrid inflation with quasi-canonical supergravity” and the case b <
0 was studied in Ref. [397]. For b > 0, the potential (5.209) can be viewed as a valley
hybrid potential [VHI, see section 6.2 and Eq. (6.29)] plus logarithmic radiative corrections.
Therefore, a consistency check of our calculations will be that, when ↵! 0, all the formulas
derived below must reproduce those derived in section 6.2. Finally, let us mention that the
potential (5.209) has also been studied in Ref. [498] for b < 0 under the name “SUSY breaking
potential” and in Ref. [499] in the context of supersymmetric hybrid inflation.
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Figure 60. Top left panel: Non Canonical Kähler Inflation (NCKI) potential for ↵ = 0.1 and β = ±1.
The solid blue line represents the case β = −1 while the solid pink line represents the case β = 1. Top
right panel: logarithm of the potential for the same values of ↵ and β. Bottom left panel: slow-roll
parameter ✏1, for a potential with the same values of ↵ and β and the same color code. The shaded
area indicates the region where inflation is not possible. Bottom right panel: slow-roll parameters ✏2
(solid blue and pink lines) and ✏3 (dotted blue and pink lines), for a potential with the values of ↵
and β already considered in the other panels.

5.12.2 Slow-Roll Analysis

In this sub-section, we now turn to the slow-roll analysis of the NCKI scenario. For this
purpose, it is convenient to re-write the potential (5.209) under the following form

V =M4

"

1 + ↵ ln

✓

φ

MPl

◆

+ β

✓

φ

MPl

◆2
#

, (5.210)

where ↵ is a small positive dimensionless parameter and β a dimensionless parameter of order
O(1) which can be either positive or negative. Notice that the coefficient ↵ has be redefined
and that β is directly related to b.

The potential (5.210), as well as its logarithm, are displayed in Fig. 60. We now describe
its shape. For this purpose, let us first define the quantity x ⌘ φ/MPl. If β > 0, the potential
is definite positive provided x > x−V=0, where

x−V=0 =



↵

2β
W0

✓

2β

↵
e−2/↵

◆]1/2

, (5.211)
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and where W0 is the “0”-branch of the Lambert function. In this case, the potential is
an increasing function of the field vev and, therefore, inflation proceeds from the right to
the left in the direction indicated by the arrow in Fig. 60. Let us also notice that, in this
case, the potential has an inflection point located at xV 00=0 =

p

↵/ (2β). If β < 0, we
must have 2β/↵ exp (1− 2/↵) > −1 in order to avoid the situation where the potential is
everywhere negative. This implies that either β > −1 or β < −1 and, in this last case,
↵ < −2/W−1 [1/ (eβ)] or ↵ > −2/W0 [1/ (eβ)]. If one of these conditions is satisfied (which
is generically the case when ↵ ⌧ 1), the potential is positive provided x−V=0 < x < x+V=0,
where x−V=0 is defined in Eq. (5.211) and where

x+V=0 =



↵

2β
W−1

✓

2β

↵
e−2/↵

◆]1/2

, (5.212)

W−1 being the −1 branch of the Lambert function. In this case, the potential is a concave
function of the field vev , with a maximum located at xV 0=0 =

p

−↵/ (2β). Typically, inflation
proceeds from the right to the left at small values of the field vev compared to the Planck
mass.

The Hubble flow functions in the slow-roll approximation are given by

✏1 =

(

↵+ 2βx2
)2

2x2 (1 + ↵ lnx+ βx2)2
, (5.213)

✏2 = 2
↵ (↵+ 1) + (5↵− 2) βx2 + 2β2x4 + ↵

(

↵− 2βx2
)

lnx

x2 (1 + ↵ lnx+ βx2)2
, (5.214)

and

✏3 =
1

x2

"

2
(

↵+ 2βx2
)2

(1 + ↵ lnx+ βx2)2
+

↵− 2βx2

1 + ↵ lnx+ βx2

+
↵2 + 8↵βx2 − 4β2x4

↵ (↵+ 1) + (5↵− 2) βx2 + 2β2x4 + ↵ (↵− 2βx2) lnx

]

.

(5.215)

The are displayed in the bottom panels in Fig. 60. If β > 0, the first slow-roll parameter ✏1
diverges when x ! x−V=0. For x > x−V=0, it first decreases, then reaches a minimum, then
increases and reaches a local maximum. Finally, from this maximum, it decreases again and
vanishes at infinity. Therefore, inflation stops at a vev xend solution of ✏1(xend) = 1, which
cannot be solved analytically. It can be noticed that the value of ✏1 as its local maximum
increases when ↵ decreases. In the limit ↵⌧ 1, one has

✏max
1 ' β

2
, (5.216)

which is reached at x✏max
1

' 1/
p
β (still in the limit of very small β). This sets an upper

bound on β in order for this local maximum to satisfy ✏1 ⌧ 1. If not, inflation would proceed
in the part of the potential beyond its inflection point, corresponding to “large values” of
the field vev and the model would formally be equivalent to a quadratic model (LFI2, see
section 4.2).

If β < 0, the first slow-roll parameter diverges when x ! x−V=0. For x > x−V=0, ✏1
decreases, vanishes at the potential local maximum xV 0=0, and then increases to blow up when
x! x+V=0. At the same time, the second slow-roll parameter ✏2 decreases in the inflationary
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range x−V=0 < x < xV 0=0. Let us also notice that, since ✏2(xV 0=0) / 2↵−↵2+↵2 ln [−↵/(2β)],
one has ✏2 > 0, thanks to the condition 2β/↵ exp (1− 2/↵) > −1. Therefore the minimum
value of ✏2 in the increasing branch of the potential is reached at the potential maximum and
is given by

✏min
2 =

−16β

2− ↵
h

1 + ln
⇣

−2β
↵

⌘i . (5.217)

For ↵ < −2β/e (which is generically the case since ↵ ⌧ 1), this number is such that
✏min
2 > −8β, which puts a lower bound on β in order for ✏2 to remain small and slow-roll to
be satisfied. As it was the case for β > 0, inflation also ends when ✏1 = 1. Notice that the
exact calculations are implemented in the ASPIC routines.

Let us now turn to the slow-roll trajectory. It can be analytically integrated using the
dilogarithm function Li2 and the corresponding expression reads

Nend −N =
⇣

1− ↵

2
+ ↵ lnx

⌘ ln
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↵+ 2βx2
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4β
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x2
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↵
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✓
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2
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⌘ ln
(
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− x2end

4
+

↵

4β
ln↵ lnxend −

↵

8β
Li2

✓

−2
β

↵
x2end

◆

,

(5.218)
where Nend is the number of e-folds at the end of inflation. An approximate and simpler
expression can be derived in the limit ↵ ⌧ 1. In that limit, one obtains Nend − N =
x2/4+ ln(x)/(2β)−x2end/4− ln(xend)/(2β), which is precisely the slow-roll trajectory for the
VHI models with µ = MPl/

p
β and p = 2, see Eq. (6.35). For ↵ 6= 0, the exact trajectory

cannot be inverted analytically.
Finally, the parameterM can be determined from the CMB normalization. One obtains

the following expression

✓

M

MPl

◆4

= 720⇡2
(

↵+ 2βx2⇤
)2

x2⇤ (1 + ↵ lnx⇤ + βx2⇤)
3

Q2
rms−PS

T 2
. (5.219)

The slow-roll predictions of the NCKI models are displayed in Fig. 133 and Fig. 134
for β > 0 and β < 0, respectively. The reheating equation of state parameter wreh has been
taken to be 0 but, since there is no potential minimum around which the inflaton field can
oscillate at the end of inflation, this parameter is in fact unspecified. Some remarks are in
order at this point. Firstly, when β > 0, we notice that ✏2 at Hubble crossing is either positive
or negative while, when β < 0, it is always positive. This is in agreement with what we have
discussed before. Secondly, when β > 0 and ↵ ⌧ 1, one can check that the predictions of
the models are similar to the VHI ones with p = 2 (compare with Fig. 174). Again, this
is consistent with the previous considerations. Thirdly, when |β| & O(1), the predictions of
the models do not depend much on β . Finally, as expected, when β ! 0, one recovers the
predictions of the LI models, see section 4.12 and Fig. 96. Now, in the regime |β| = O(1) and
↵⌧ 1, Fig. 133 and Fig. 134 indicate that the case β > 0 is disfavored by the observations.
The situation is even worst for β < 0, the deviation from scale invariance being clearly too
important to satisfy the observational constraints.

5.13 Constant Spectrum Inflation (CSI)

This potential belongs to the class of models discussed in Ref. [500] and is constructed in
order to produce a power spectrum P (k) / k0 for the primordial density fluctuations, i.e. a
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power spectrum with constant spectral index such that nS = 1 (exact scale invariance). It
reads

V (φ) =
M4

✓

1− ↵
φ

MPl

◆2 . (5.220)

There is a symmetry for φ/MPl ! 2/↵−φ/MPl and inflation can proceed indifferently in the
branch φ/MPl < 1/↵ or in the branch φ/MPl > 1/↵, leading to the same physical predictions.
For this reason, in the following, we will be interested in the branch φ/MPl < 1/↵. Defining
the quantity x by

x ⌘ φ

MPl

, (5.221)

the first three Hubble flow functions in the slow-roll approximation are given by

✏1 =
2↵2

(↵x− 1)2
, ✏2 = ✏3 = −2✏1. (5.222)

The previous relation ✏2 = −2✏1 means that, at first order in slow-roll, the spectral index
is indeed equals to unity, nS − 1 = 0. Recall that the potential of this model is precisely
constructed in order for this relation to be true. Let us notice, however, that, at second order
in slow-roll, ✏2 = ✏3 = −2✏1 yields nS − 1 = 4✏21 > 0. One should note that another way to
realize nS−1 = 0 at first order in slow-roll is to take the large field inflation potential LFI (see
section 4.2) with a negative power index p = −2. In that case one also has ✏2 = ✏3 = −2✏1
and, at second order, nS − 1 = 4✏21 is also verified. However, since the explicit expressions of
✏1 for CSI and LFI (p = −2) are different, the actual value of the spectral index at second
order is also different. The potential and the Hubble flow functions have been represented in
Fig. 61.

As can be checked in this figure, ✏1 is a monotonous function of x in both branches of
the potential. It diverges at x = 1/↵ and vanishes for x! ±1. Inflation can therefore take
place in the region x < x−✏1=1 for the branch x < 1/↵ (or x > x+✏1=1 for the branch x > 1/↵),

where x±✏1=1 are the field values at which ✏1 = 1:

x±✏1=1 =
1±

p
2↵

↵
. (5.223)

Since the field evolution proceeds from the right to the left from x±✏1=1, inflation does not stop
by slow-roll violation and an extra mechanism parametrized by xend should be considered in
order to end it. For this reason, CSI is in fact a two parameters model. Let us also notice that
the slow-roll parameters ✏2 = ✏3 are negative monotonous functions of x in both branches of
the potential and cross the line ✏2 = ✏3 = −1 at

x±✏2=−1 = x±✏3=−1 =
1± 2↵

↵
. (5.224)

As a result, there is a small domain x−✏2=−1 < x < x−✏1=1 where we have inflation but where
the slow-roll approximation is violated (this is also true for the other branch). This is not
problematic since the system is driven away from this regime towards a situation in which
all the Hubble flow functions become small (see Fig. 61).

The slow-roll trajectory can be integrated explicitly and reads

N −Nend =
x2

4
− x

2↵
+
x2end
4

− xend
2↵

. (5.225)
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Figure 61. Constant Spectrum Inflation (CSI) for ↵ = 0.1. Upper panels: the potential and its
logarithm along the branch x < 1/↵. Bottom left panel: slow-roll parameter ✏1 together with the
region in which it is larger than unity and in which inflation cannot occur (shaded). Bottom right
panel: slow-roll parameter ✏2 = ✏3 along the same branch x < 1/↵.

It can also be inverted analytically and it follows that

x =
1±

q

1− 2↵xend + ↵2x2end + 4↵2 (N −Nend)

↵
. (5.226)

The sign ⌥ depends on whether one works in the x < 1/↵ branch or in the x > 1/↵ branch,
respectively. A consequence of this formula is the fact that, if one requires Nend−Nini e-folds
during inflation, then xend should be smaller than some value xmax

end given by

xmax
end =

1

↵
−
p

2 + 4 (Nend −Nini) , (5.227)

in the x < 1/↵ branch. Equivalently, taking the minus sign in this expression would lead to
xmin
end for the branch x > 1/↵.

Finally, the observable field value x⇤ is obtained by solving Eq. (2.47) while the ampli-
tude of the CMB anisotropies fixes the parameter M to

✓

M

MPl

◆4

= 2880⇡2↵2Q
2
rms−PS

T 2
. (5.228)
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Interestingly enough, it only depends on ↵, and not on x⇤ (i.e. it has no explicit dependence
on the reheating). The reheating consistent slow-roll predictions for the CSI models are
represented in Figs. 135 and 136 for ↵ = 10−3 and ↵ = 1, respectively.

5.14 Orientifold Inflation (OI)

5.14.1 Theoretical Justifications

The model is based on the following considerations. Let us start with aN = 1 supersymmetric
Yang-Mills gauge theory the Lagrangian of which can be written as

L = −1

4
F a
µ⌫F

aµ⌫ +
i

2
λ̄a /Dabλ

b, (5.229)

with a = 1, · · · , N2
c , Nc being the number characterizing the group SU(Nc). F

a
µ⌫ is the field

strength, λa a spinor field and /D a covariant derivative. A is a composite scalar field, i.e. a
bound state denoted by ' ' λλ̄, can actually appear in the theory if a strongly interacting
regime takes place. The effective Lagrangian aimed at describing its dynamics has been
derived in Ref. [501] and reads

LYV = −N
2
c

↵OI

⇣

''†
⌘−2/3

@µ'@
µ'† − 4↵OIN

2
c

9

⇣

''†
⌘2/3

ln
⇣ '

Λ3

⌘

ln

✓

'†

Λ3

◆

, (5.230)

where ↵OI is a constant and Λ a mass scale. This class of theories are discussed in more detail
in section 6.5. However, in Ref. [502], it was argued that in “orientifold theories”, the above
Lagrangian can be slightly deformed and now takes the form

LOI = −N
2
c

↵OI

⇣

''†
⌘−2/3

@µ'@
µ'† − 4↵OIN

2
c

9

⇣

''†
⌘2/3



ln
⇣ '

Λ3

⌘

ln

✓

'†

Λ3

◆

− β

]

, (5.231)

where β = O(1/Nc). Ref. [502] raised the possibility that ' (or, rather, its canonically
conjugated version) could be the inflaton. In fact, in order to study this question, one must
also specify the gravitational coupling. In Ref. [502], the scalar field ' is non-minimally
coupled to gravity such that, in the Jordan frame,

S =

Z

d4x
p−g

"

−M
2 +N2

c ⇠
(

''†)1/3

2
R+ LOI

#

, (5.232)

where M is a mass scale. There is a new parameter in the problem, ⇠, which describes the
strength of the non-minimal coupling to gravity (as it was the case for Higgs inflation, see
section 3.1). Then, in the Einstein frame, one can write the above model as Ref. [502]

S =

Z

d4x
p−g

⇢

−1

2
M2

PlR− N2
c

↵OI

Ω
−2



1 +
↵OIN

2
c ⇠

2

3M2
Pl

Ω
−2

⇣

''†
⌘1/3

]

⇣

''†
⌘−2/3

@µ'@
µ'†

−Ω
−4VOI

}

. (5.233)

In this expression, VOI refers to the second term in Eq. (5.231) and

Ω
2 ⌘ M2 +N2

c ⇠
(

''†)1/3

M2
Pl

. (5.234)
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In the following, we consider two situations: the case where ⇠ 6= 0 such that Ω2 ' N2
c ⇠'

2/3/M2
Pl,

i.e. the second term in the definition of Ω2 dominates (the large field limit) and the case
⇠ = 0. In the first case, taking ' = '† and canonically normalizing the field one finds

V (') =
4↵OIM

4
Pl

9N2
c ⇠

2



⇣

ln
'

Λ3

⌘2
− β

]

. (5.235)

The canonically normalized field is φ/MPl / ln'. Since β is a small number, it can be
neglected and this model is in fact a LFI model with V (φ) / φ2 which was already studied
in section 4.2. For the second case, it is sufficient to restart from Eq. (5.231). Then, the
canonically normalized field reads

'

Λ3
=

✓

φ

φ0

◆3

, (5.236)

with

φ0 = 3Nc

✓

2

↵OI

◆1/3

Λ. (5.237)

It follows that the potential can be written as

V = ↵OIN
2
cΛ

4

✓

φ

φ0

◆4 

ln2
✓

φ

φ0

◆

− β

9

]

. (5.238)

This model is studied in detail in the next subsection. The case β = 0 will also be investigated
in section 6.5.

5.14.2 Slow-Roll Analysis

We now turn to the slow-roll study of the potential derived previously in Eq. (5.238). This
one can be re-written as

V (φ) =M4

✓

φ

φ0

◆4
"

✓

ln
φ

φ0

◆2

− ↵

#

, (5.239)

where we have defined

M4 = ↵OIN
2
cΛ

4, ↵ ⌘ β

9
. (5.240)

One should be careful that ↵OI appearing in the first of the two above equations stems from
the Lagrangian used in the previous subsection while the observable constant ↵ only refers to
the quantity β/9 = O(1/Nc) ⌧ 1. The scale φ0 is defined in Eq. (5.237) and will be chosen
such that φ0 ' 1016 GeV. The potential as well as its logarithm are displayed in Fig. 62.

Defining the quantity x by the following expression

x ⌘ φ

φ0

, (5.241)

the potential remains positive provided x < x−V=0 or x > x+V=0, where

x±V=0 = e±
p
↵. (5.242)
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Figure 62. Orientifold Inflation (OI) for ↵ = 0.1. Upper panels: the potential and its logarithm.
Bottom left panel: slow-roll parameter ✏1, rescaled by the factor φ2

0
/M2

Pl
. The shaded area indicates

where inflation cannot occur (for φ
0
=MPl). Bottom right panel: rescaled slow-roll parameter ✏2.

It vanishes at x = 0, then increases to reach a local maximum at x−V 0=0, decreases again to
become negative at x−V=0, reaches a local minimum at x+V 0=0, then increases again to become
positive at x+V=0 and diverges asymptotically. The values of x−V 0=0 and x+V 0=0 are given by

x±V 0=0 = e
− 1

4
±
q

1
16

+↵
. (5.243)

A priori three regimes of inflation may exist: x < x−V 0=0 and inflation proceeds from the right
to the left, x−V 0=0 < x < x−V=0 and inflation proceeds from the left to the right, x+V=0 < x and
inflation proceeds from the right to the left in the direction specified by the arrow in Fig. 62.
As explained below, only the third possibility allows us to have a slow-roll inflationary regime.

Let us now calculate the quantities ✏n. The first three Hubble flow functions in the
slow-roll approximation are given by

✏1 = 2
M2

Pl

φ2
0

✓

2 ln2 x+ lnx− 2↵

x ln2 x− ↵x

◆2

, (5.244)

✏2 = 4
M2

Pl

φ2
0

2 ln4 x+ ln3 x+ (1− 4↵) ln2 x− ↵ lnx+ ↵+ 2↵2

(

x ln2 x− ↵x
)2 , (5.245)
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and

✏3 = 2
M2

Pl

φ2
0
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8↵4 + 6↵3 − ↵2 (8↵+ 15) lnx+ 2↵
(

3− 16↵2 − 2↵
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ln2 x

+ 8↵ (3↵+ 1) ln3 x+ 2
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2↵2 + ↵− ↵ lnx+ (1− 4↵) ln2 x+ ln3 x+ 2 ln4 x
⇤−1

.

(5.246)

They have been represented in Fig. 62. One can see that the slow-roll regime can only take
place in the x > x+V=0 region, where ✏1 continuously increase as inflation proceeds from
the right to the left, and diverges at x+V=0. In the other domains, ✏2 remains too large to
support slow-roll inflation. Within the x > x+V=0 domain, inflation naturally ends by slow-
roll violation, but the field value xend at which this occurs has to be determined numerically.
However, since φ0 ' 1016 GeV, one can derive an approximated formula for xend in the
φ0 ⌧MPl limit, namely

xend ' 2
p
2
MPl

φ0

. (5.247)

The next step is to derive the slow-roll trajectory. It can be obtained from Eq. (2.11)
and reads

Nend −N = − φ2
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Pl

(

x2end − x2

8
+

ln2
(

x+V 0=0

)

− ↵

2
p
1 + 16↵

(

x+V 0=0

)2


Ei

✓

2 ln
xend

x+V 0=0

◆

− Ei

✓

2 ln
x

x+V 0=0

◆]

− ln2
(

x−V 0=0

)

− ↵

2
p
1 + 16↵

(

x−V 0=0

)2


Ei

✓

2 ln
xend

x−V 0=0

◆

− Ei

✓

2 ln
x

x−V 0=0

◆]

)

,

(5.248)
where Ei is the exponential integral function, and where x±V 0=0 have been defined in Eq. (5.243).
In the φ0 ⌧ MPl limit, this trajectory reduces to ∆N⇤ ' φ2

0
/(8M2

Pl)(x
2
⇤ − x2end), where we

have introduced the observable field value x⇤ at which the pivot scale crossed the Hubble
radius during inflation. It can be inverted to give x⇤ in terms of ∆N⇤ = Nend −N⇤ and one
gets

x⇤ ' 2
p
2
MPl

φ0

p

∆N⇤ + 1 . (5.249)

Plugging this into Eqs. (5.244), (5.245) and (5.246) gives the approximated expressions

✏1⇤ ' ✏2⇤ ' ✏3⇤ '
1

∆N⇤ + 1
, (5.250)

hence

r ' 16

∆N⇤ + 1
, nS − 1 ' − 3

∆N⇤ + 1
, ↵S ' − 3

(∆N⇤ + 1)2
. (5.251)

From x⇤, the parameter M is fixed by the amplitude of the CMB anisotropies and one
obtains
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In the φ0 ⌧MPl limit, the previous expression reduces to the following formula

✓
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T 2
. (5.253)

With φ0 ' 1016 GeV, this typically gives M/MPl ' 5⇥ 10−4.
The reheating consistent slow-roll predictions for the orientifold inflation models are

displayed in Fig. 137, for φ0/MPl = 10−4,10−2, and 1. Let us recall that natural values
are around φ0 ' 1016 GeV and ↵ 2

⇥

10−3, 1
⇤

. The reheating equation of state parameter
has been fixed to wreh = 0 since the potential is quadratic in the vicinity of its minimum.
According to the rough picture provided by Eq. (5.250), the predictions of these models
almost do not depend on its parameters φ0 and ↵, which is why all the points in Fig. 137 are
superimposed. In particular, one can see that these models generically predict an important
amount of gravitational waves which is disfavored by the observations.

5.15 Constant nS C Inflation (CNCI)

This model has been obtained in Ref. [428] and is the third example of a class of scenarios
already studied in sections 4.20 and 4.21. As explained in those sections, the corresponding
potential is designed in order to produce a power spectrum with constant spectral index.
The potential studied in this section reads

V (φ) =M4



(

3 + ↵2
)

coth2
✓

↵p
2
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◆

− 3

]

, (5.254)

where ↵ is a positive dimensionless parameter (denoted n0 in Ref. [428]). The potential
being symmetrical in φ! −φ, only the φ > 0 part is displayed in Fig. 63. It is a decreasing
function of the field vev , and its asymptotic value when φ/MPl goes to infinity is given by
↵2M4, hence the potential is always positive.

Defining x = φ/MPl, the three first slow-roll parameters are given by
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and
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(5.257)
These slow-roll parameters are displayed in Fig. 63 (bottom panels). We see that the first
slow-roll parameters monotonously decreases during inflation. It blows up as the field vev
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Figure 63. Top left panel: Constant nS C inflaton potential for ↵ = 0.1. Inflation proceeds from
the left to the right as indicated by the arrow. Top right panel: logarithm of the potential for the
same value of ↵. Bottom left panel: the first slow-roll parameter ✏1 for ↵ = 0.1. Bottom right panel:
slow-roll parameters ✏2 and ✏3, still for ↵ = 0.1.

approaches zero and tends to zero when the field vev goes to infinity. On the contrary, the
second and third slow-roll parameters monotonously increase from −1 to zero as inflation
proceeds.

Given the above described behavior of ✏1, it is clear that inflation cannot stop by slow-
roll violation. Therefore, it should be stopped by instability which means that an extra
parameter xend should be added to the model.

As for CNAI and CNBI, the spectral index nS − 1 = −2✏1 − ✏2 at first order in slow-
roll, can be made constant in some limit. Expanding the slow-roll parameters ✏1 and ✏2
in ↵, assuming that x↵ remains small, one obtains ✏1 = 2/x2 + 2↵2/3 + O

(

↵4
)

and ✏2 =
−4/x2 + 2↵2/3 + O

(

↵4
)

, so that nS − 1 = −2↵2 + O
(

↵4
)

. As for the similar calculations
performed in sections 4.20 and 4.21, one should remark that, if xend is such that ↵x⇤ & 1,
the previous expansion can be inaccurate and some deviations from constant nS may appear.

Let us now consider the slow-roll trajectory. It can be integrated analytically and is
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given by the following formula

N −Nend =
1

↵2 (3 + ↵2)

⇢

3 ln



cosh

✓

↵p
2
x

◆]

+
↵2

2
cosh2

✓

↵p
2
x

◆

− 3 ln



cosh

✓

↵p
2
xend

◆]

− ↵2

2
cosh2

✓

↵p
2
xend

◆}

.

(5.258)

Moreover, this expression can be explicitly inverted. As a consequence, the function x(N)
can be written as
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(5.259)

where W0 is the Lambert function. The fact that we deal with the 0-branch is obvious since
the argument of this function is positive definite.

The predictions of the CNCI models are displayed in Fig. 138, for ↵ = 10−3, 0.1 and 0.2.
The thin black solid lines are the lines such that nS − 1 = −2↵2. We see that, for very small
values of ↵, the predictions are indeed such that the spectral index is constant. For ↵ not too
small, however, we also notice deviations from this law and the larger ↵ the stronger these
deviations. This is reminiscent with the phenomenon observed in sections 4.20 and 4.21 but
now xend is a free parameter and, for a given value of ↵, the deviations from nS − 1 = −2↵2

become larger when xend increase (i.e. when the line becomes redder in Fig. 138). In this
case, the Taylor expansion of the trigonometric functions which appear in the expressions of
the slow-roll parameters is no longer valid because a larger xend implies a larger x⇤. This has
for consequence that CNCI inflation is only marginally consistent with the data. Indeed, it
is precisely in the region where nS − 1 = −2↵2 would be compatible with the observations
that the deviations play an important role and push the predictions away from the allowed
contours. In fact, these properties can be better illustrated by deriving explicitly x⇤. Using
Eq. (5.258), one gets
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◆
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where we have defined the quantity A by
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In the regime where both ↵ ⌧ 1 and ↵xend ⌧ 1, the previous expression reduces to x2⇤ '
x2end − 4∆N⇤. This last formula is identical to the slow-roll trajectory for LFI provided
p = −2, see Eq. (4.36). At the beginning of this section, we have show that, at leading order
✏1 ' 2/x2 and ✏2 ' −4/x2 and, comparing with Eqs. (4.35), we notice that these are also
the slow-roll parameters for LFI with p = −2. In fact, expanding Eq. (5.254), one sees that
V (φ) / φ−2 which confirms the previous considerations. In the regime where ↵ ⌧ 1 and
↵xend ⌧ 1, the model is very close to LFI with p = −2. On the contrary, if ↵xend is not
small, then the above relation does not hold anymore and one does not recover a constant
spectral index.
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Finally, we conclude this section by discussing how the mass scale M can be chosen.
The CMB normalization gives
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From Eq. (5.260), one deduces that cosh2(↵x⇤/
p
2) ' 1− 2↵2∆N⇤+↵2x2end/2 ' 1. Inserting

this formula into Eq. (5.262), and taking the leading order in ↵, one obtains M/MPl '
0.02

p
↵. This implies that M < MPl if ↵ . 2420, which is largely the case for the predictions

displayed in Fig. 138.

5.16 Supergravity Brane Inflation (SBI)

5.16.1 Theoretical Justifications

This model can emerge in different contexts. Following Ref. [232], let us consider a model
with a scalar field and a massive fermion interacting through a Yukawa type term (with a
coupling constant g). The corresponding Lagrangian can be written as
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where we have assumed the most general renormalizable scalar potential. At one loop level,
the potential takes the form

V (φ) = V0 +
1

2
m2φ2 +

λ

4!
φ4 +

1

64⇡2

✓

m2 +
λ

2
φ2
◆2

ln

✓

m2 + λφ2/2

µ2

◆

− 2

64⇡2
(gφ+mf)

4 ln

"

(gφ+mf)
2

µ2

#

,

(5.264)

where µ is a renormalization scale. Then, assuming that, for some reason, the bosonic and
fermionic massive terms are negligible, the potential can be expressed as

V (φ) ' V0 +
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This is the type of potential that we study in this section. Notice that a change in the
renormalization scale µ is in fact equivalent to a change in the coefficient of the terms / φ4

and / φ ln(φ/µ). This potential was also studied in Ref. [503] but the coefficient of the φ4

term was chosen such that, at its minimum, the potential exactly vanishes. This particular
case will also be treated in what follows. Finally, it is interesting to remark that this model
was also proposed in Refs. [504, 505] in the context of brane cosmology within a supergravity
bulk spacetime.

5.16.2 Slow-Roll Analysis

Let us now turn to the slow-roll analysis of the potential given by Eq. (5.265). It is more
convenient to write it under the following form

V (φ) =M4

(

1 +
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✓
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, (5.266)
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where ↵ and β are dimensionless quantities that must be considered as small quantities since
they are typically proportional to coupling constants, see Eq. (5.265). It is worth noticing
that setting ↵ = 0 in the above expression allows us to recover the Coleman-Weinberg CWI
models already studied in section 4.11. Defining the quantity x by the following expression

x ⌘ φ

MPl

, (5.267)

one sees that the potential decreases from x = 0 to reach a minimum located at x = xV 0=0,
then increases and diverges when x goes to infinity. The value of xV 0=0 is given by

xV 0=0 = exp

✓

↵

β
− 1

4

◆

. (5.268)

Since the logarithm terms in Eq. (5.266) are one loop corrections, they should not dominate
the leading order terms. As a result, inflation can take place only in the domain x < xV 0=0 if
one wants the model to be such that additional corrections to V (φ) are negligible. The value
of the potential at the minimum reads

Vmin = V (xV 0=0) =M4

✓

1− β

4
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◆

, (5.269)

which is negative or vanishing if the following condition is satisfied

↵ ≥ ↵min (β) =
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. (5.270)

Inflation proceeds from the left to the right in the range 0 < x < xV=0 < xV 0=0 where xV=0

is the value at which the potential vanishes. It is given by

xV=0 =
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−4/β

W−1

(

−4/βe−4↵/β
)

#1/4

, (5.271)

where W−1 is the −1 branch of the Lambert function. In this situation, inflation stops by
slow-roll violation at x = xV=0. As noticed above, the case ↵ = ↵min(β) is also interesting.
It corresponds to tuning the parameters ↵ and β such that the minimum of the potential
exactly vanishes. When this condition is satisfied the previous formula reduces to xV=0 =
xV 0=0 = (β/4)−1/4. Then, the first slow roll parameter ✏1 diverges at this point (see below)
and, as a consequence, inflation also ends by slow roll violation.

The first three Hubble flow functions in the slow-roll approximation are given by

✏1 =
x6 (−4↵+ β + 4β lnx)2

2 (1− ↵x4 + βx4 lnx)2
, (5.272)

✏2 = 2
(12↵− 7β − 12β lnx) x2 +

(

4↵2 − ↵β + β2 + β2 lnx− 8↵β lnx+ 4β2 ln2 x
)

x6

[1 + x4 (−↵+ β lnx)]2
,

(5.273)

✏3 =
8

x2
+ 2

(

−4 + βx4
)2

x2 (1− ↵x4 + βx4 lnx)2
+

1

x2
−52 + 9βx4

1− ↵x4 + βx4 lnx

+
144↵ − 84β + (28↵ − 11β) βx4 − 4β

(

36 + 7βx4
)

lnx

(12↵− 7β − 12β lnx) x2 +
(

4↵2 − ↵β + β2 − 8↵β lnx+ β2 lnx+ 4β2 ln2 x
)

x6
.

(5.274)
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Figure 64. Supergravity Brane Inflation (SBI) for β = 0.7 and ↵ = 0.13 > ↵min(β), ↵ = ↵min(β),
and ↵ = 0.09 < ↵min(β) (where ↵min is defined in Eq. (5.270)). Upper panels: the potential and
its logarithm. Inflation proceeds in the place and direction labeled by the arrow. Bottom left panel:
slow-roll parameter ✏1. The shaded area indicates where inflation stops. Bottom right panel: slow-roll
parameters ✏2 (solid line) and ✏3 (dotted line), only displayed in the branch of the potential where
inflation proceeds.

Together with the potential, they are represented in Fig. 64 for the physical branch 0 < x <
xV=0.

As already mentioned, inflation stops by violation of the slow-roll conditions. This
happens when x = xend where xend is the solution of ✏1(xend) = 1. We see in Eq. (5.272)
that there is no simple analytic solution for xend and this equation must in fact be solved
numerically. We have, however, already stressed that, when ↵  ↵min(β), ✏1 diverges for
x! xV=0, and therefore one already knows that xend < xV=0.

Let us now consider the slow-roll trajectory. It can be integrated analytically and one
obtains the following expression

N −Nend =
e
2↵
β
− 1

2

16



Ei

✓

1

2
− 2

↵

β
+ 2 lnx

◆

− Ei

✓

1

2
− 2

↵

β
+ 2 lnxend

◆]

− e
1
2
−2↵

β

4β



Ei

✓

−1

2
+ 2

↵

β
− 2 ln x

◆

− Ei

✓

−1

2
+ 2

↵

β
− 2 ln xend

◆]

− x2 − x2end
8

.

(5.275)
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The field value x⇤ at which the pivot scale crossed the Hubble radius during inflation is
obtained by solving Eq. (2.47). Clearly, it must also been done numerically and those calcu-
lations are implemented in the corresponding ASPIC routines.

Finally, the parameter M is fixed by the amplitude of the CMB anisotropies and one
obtains

✓

M

MPl

◆4

=
720⇡2 (4↵− β − 4β lnx⇤)

2

(−1 + ↵x4⇤ − βx4⇤ lnx⇤)
3

Q2
rms−PS

T 2
. (5.276)

The reheating consistent slow-roll predictions for the SBI models are displayed in Figs. 139
and 140, for β = 5 ⇥ 10−5 and β = 10−3, respectively, and with ↵  ↵min(β). These plots
show that the larger values of β, the more negligible the amount of gravitational waves. The
predictions for the special case ↵ = ↵min(β) are also displayed in Fig. 141, where it is clear
that smaller values of β are preferred.

5.17 Spontaneous Symmetry Breaking Inflation (SSBI)

5.17.1 Theoretical Justifications

The potential that we study in this section is given by the following expression

V (φ) = V0 + aφ2 + bφ4, (5.277)

where a and b are constant coefficients the sign of which is not a priori determined. Before
turning to the slow-roll analysis, it is interesting to study in which context such a potential
can arise.

First of all, it is clear that this potential is very general since it is just made of the
three first terms of a general Taylor expansion. Therefore, it can just be considered as a
phenomenological description of a generic inflaton potential. This view was for instance
adopted in Ref. [328], where this potential was used as a toy model to implement “new
inflation”. In the same fashion, it was also considered in Ref. [506] (with the assumptions
a < 0 and b > 0) in the framework of models with spontaneous symmetry breaking where φ
represents one of the components of a Higgs field. In Ref. [507], it was also studied in the
context of “mixmaster inflation”.

However, there are also models where this specific shape explicitly arises and, here,
when necessary, we also briefly review them.

The first example is given by Refs. [508, 509]. In these articles, inflation was investigated
in the context of gauge mediated SUSY breaking scenarios. One of the basic idea of this
approach is that the inflaton field should not be an extra field added to the theory on
purpose but rather a field which is already present in known high energy theories. In the
MSSM, see also section 4.17, we know that the Higgs sector superpotential contains the term
µHu ·Hd where µ should be of the order of the electroweak scale, that is to say far from the
Planck scale. This is the so-called µ-problem. One possible solution is to consider that this
term dynamically arises due to the presence of another superfield (usually a singlet), S, in
the theory. Refs. [508, 509] take advantage of this fact and build a model where S can also
play the role of the inflaton. Since the model is also formulated in the framework of gauge-
mediated supersymmetry breaking scenarios, there is an additional superfield X such that
its scalar component (also denoted X) and auxiliary component FX acquire non-vanishing
vev . Let us now consider the following super-potential

W = −βXS
4

M2
Pl

+
S5

M2
Pl

+ λ
S2

MPl

Hu ·Hd + W̄ , (5.278)
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where the function W̄ describes all the other extra terms in W and, crucially, is assumed
to be independent of S. The quantities λ and β are constant coefficients. As argued in
Refs. [508, 509], this form of W can be enforced by discrete symmetries. In particular, we
notice the absence of a term SHu · Hd. Another important ingredient of the model is the
assumption that the vev FX comes from the extra-terms in the above superpotential, i.e.
FX ' @W̄/@X. Then, the scalar potential reads

V =

✓

FX − β
S4

M2
Pl

◆2

+

✓

5
S4

M2
Pl

− 4β
X

M2
Pl

S3

◆2

. (5.279)

Taking into account supergravity corrections, which are typically of the form (@W/@X)/M2
Pl,

i.e. m2 = aF 2
X/M

2
Pl, where a is a coefficient of order one we are led to

V ' F 2
X − a

F 2
X

M2
Pl

S2 − 2βFX
S4

M2
Pl

+ 16β2
X2

M4
Pl

S6 − 40β
X

M4
Pl

S7 + (25 + β2)
S8

M4
Pl

. (5.280)

In addition, making the reasonable assumption that the field X is stabilized at a vev such
that X/MPl ⌧ 1, one can neglect higher order terms in this expression. Then, we see that S
can play the role of the inflaton with a potential of the form given by Eq. (5.277), namely

V ' F 2
X

✓

1− a
S2

M2
Pl

− 2βM2
Pl

FX

S4

M4
Pl

◆

. (5.281)

At the minimum of the potential, S4 ' M2
PlFX and this implies a µ term for the MSSM of

the form µ ' λ
p
FX . As explained before, this model dynamically produces the µ term while

obtaining a candidate for the inflaton field. Finally, let us remark that the CMB normalization
will determine the scale FX and that the spectrum of the superparticles depends on the ratio
FX/X. Therefore, given a value of FX , one can always choose X in order to obtain reasonable
values for the superparticle masses.

The SSBI potential was also used, as a toy model, in Refs. [510, 511] to study a model of
“Spinodal Inflation”. After the 90’s, it was considered again several times: in the context of
the Randall-Sundrummodel in Ref. [512] (but within the framework of Brans-Dicke theories),
in the context of the little Higgs model in Ref. [259] and in the context of induced gravity
inflation in Ref. [513]. In this last reference, a potential of the form (5.277) was considered
but in the Jordan frame. Since the potential is different in the Einstein frame, in fact, this
model does not belong to the class of scenarios studied here. Finally, it was also considered
in the context of electroweak inflation in Ref. [514].

In Ref. [515], an inflationary scenario was studied in which the superpartner of the
right-handed neutrino plays the role of the inflaton field. Let us denote by N the singlet
neutrino superfield, φ the super waterfall field (that can be put to zero during inflation) and
S another singlet superfield (which can also be put to zero during inflation). Then, on very
general grounds, the Kähler potential can be written as

K = |S|2 + |φ|2 + |N |2 + S
|S|4
4M2

Pl

+ N
|N |4
4M2

Pl

+ φ
|φ|4
4M2

Pl

+ Sφ
|S|2|φ|2
M2

Pl

+ SN
|S|2|N |2
M2

Pl

+Nφ
|N |2|φ|2
M2

Pl

+ · · · , (5.282)

where the dimensionless coefficients  are a priori of order one. The superpotential can be
expressed as

W = S

✓

φ4

M 02 −M2

◆

+
λ

M⇤
N2φ2 + · · · , (5.283)
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where M , M 0 and M⇤ are three mass scales and  and λ are coupling constants. Since the
three fields introduced before are singlets the potential does not containD-term contributions.
As a consequence, for S ' 0 and φ ' 0, we are left with the F -term potential only and this
one can be written as

V (N) ' 2M4



1 + (1− SN )
N2

M2
Pl

+

✓

1

2
+
N

4
− SN + 2SN

◆

N4

M4
Pl

+ · · ·
]

. (5.284)

We see that it has the form of Eq. (5.277). Ref. [515] also discusses how to stop inflation by
tachyonic instability. Since the field φ is viewed as the waterfall field, one has to calculate his
mass to see when the instability is triggered. This can be done by evaluating the quadratic
correction in φ to the potential calculated before. This leads to

m2
φ =

✓

1 + Nφ
N2

M2
Pl

− Sφ

◆

2M4

M2
Pl

+ 4
λ2

M2⇤
N4. (5.285)

Neglecting the term N2/M2
Pl ⌧ 1 in this expression, the effective mass vanishes for

Ncri '
M2M⇤
2λMPl

q

−(1− Sφ) . (5.286)

We see that this requires 1 − Sφ < 0. On the other hand, this model also provides an
expression for the coefficients a and b in terms of the fundamental coefficients of the Kähler
potential. Except from the above mentioned condition, there is no other constraint on the
coefficients  and, as a consequence, the sign of a and b is, a priori, not fixed in this scenario.

Another context in which Eq. (5.277) arises is “racetrack inflation” [516, 517]. Racetrack
inflation is a string inspired inflationary scenario where the inflaton is a volume modulus.
Therefore, this model belongs to the same class as KMIII, see section 5.3. The Kähler and
super potentials are given by standard formulas, namely

K = −3


ln
⇣

T + T †
⌘

, W =W0 +Ae−aT +Be−bT . (5.287)

Writing T = X + iY , it follows that the scalar F -term potential reduces to

V (X,Y ) =


6X2

⇢

aA2 (3 + aX) e−2aX + bB2 (3 + bX) e−2bX + 3aAW0e
−aX cos (aY )

+ 3bBW0e
−bX cos (bY ) +AB [2abX + 3 (a+ b)] e−(a+b)X cos [(a− b)Y ]

}

+
E

X↵
,

(5.288)
where an uplifting term / X−↵ has been added. Let us mention that X and Y are not
canonically normalized and their kinetic term reads 3[(@µX)2 + (@µY )2]/(4X2). The above
potential has a very rich structure and for W0 = 0 and a = b, we have a flat direction in Y .
Moreover, for Y = 0, one can find a minimum in the X direction. If we then combine the two
above remarks, then it is clear that there exists a choice of parameters such that one has a
saddle point around Y = 0 (a specific example was exhibited in Ref. [516]). This point seems
suitable for inflation. Around such a point, it is argued in Ref. [517] that one can write

V (Y ) = V0

✓

1 +
⌘0

2
y2 +

C

4
y4 + · · ·

◆

, (5.289)
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where y is now the canonically normalized field whenX is stabilized. This is again a potential
of the type given by Eq. (5.277). In order to phenomenologically reproduce racetrack inflation,
one should have ⌘0 small and negative and C large and positive.

The potential of Eq. (5.277) was also used, as a toy model, in the context of minimal
left-right symmetric models with spontaneous D-parity breaking in Ref. [518] and in the
context of hilltop supernatural inflation in Refs. [519–521]. A justification based on high
energy physics was offered and the idea is to assume that the full potential has a SUSY flat
direction. The approach is therefore similar to what was already investigated in section 4.17.
In that situation, one can write V (φ) as

V = V0 +
1

2
m2φ2 −A

λpφ
p

pMp−3
Pl

+ λ2p
φ2p−2

M2p−6
Pl

, (5.290)

where the term V0 is added by hand. If one chooses p = 4 and neglects the last term (for
instance if φ⌧MPl), then one arrives at

V (φ) ' V0 +
1

2
m2φ2 − λ4A

4MPl

φ4, (5.291)

which is of the form of Eq. (5.277). In this framework, m and A are SUSY soft terms and,
therefore, should be taken of O(TeV). The term V0 = M4

s where Ms is the SUSY breaking
scale, Ms ' 1011GeV.

Finally, let us mention that SSBI was also considered in the context of a supersymmetric
B-L extension of the standard model in Refs. [522, 523] and in the context of Kähler-driven
“tribrid inflation” in Ref. [524]. In this last case, one obtains a situation very similar to the
one discussed above for sneutrino inflation. In particular, the coefficients a and b can be
expressed in terms of the coefficients appearing in the Kähler potential. To end this part, let
us notice that the potential (5.277) also arises in the context of Higgs inflation, as shown in
Refs. [525–527].

As already mentioned above, these works differ on the signs of ↵ and β. Summarizing,
Refs. [507, 515] require ↵ > 0, β > 0 while Refs. [259, 328, 506, 510, 511, 513, 514, 517, 518]
assume ↵ < 0, β > 0. On the other hand, Refs. [519–521] consider that ↵ > 0 and β < 0
and Refs. [508, 509, 525–527] have ↵ < 0, β < 0. We see that the four possible combinations
have all been studied. Also, in Refs. [522, 523], one has ↵,β . O(1) and inflation only takes
place in the increasing branches of the potential (see below). Finally, in Refs. [512, 524], β
is taken to be positive and the sign of ↵ is left unspecified.

5.17.2 Slow-Roll Analysis

Let us now turn to the slow-roll analysis of SSBI. For this purpose, it is more convenient to
rewrite the potential (5.277) as

V (φ) =M4

"

1 + ↵

✓

φ

MPl

◆2

+ β

✓

φ

MPl

◆4
#

, (5.292)

where ↵ and β are two dimensionless parameters. Based on the previous brief review of the
literature, we conclude that it is necessary to study the model in full generality and, therefore,
in what follows, we investigate all possible situations. As mentioned above, four cases should
be distinguished: ↵ > 0, β > 0; ↵ < 0, β < 0; ↵ > 0, β < 0 and ↵ < 0, β > 0, with two
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Figure 65. Spontaneous Symmetry Breaking Inflation (SSBI) potential and the corresponding Hub-
ble flow parameter ✏1 for the two cases ↵ > 0, β > 0 (SSBI1), and ↵ < 0, β < 0 (SSBI2). The values
of the parameters are chosen to be ↵,β = ±1. The four other possibilities, namely SSBI3, SSBI4,
SSBI5, SSBI6 are displayed in Fig. 66.

possible domains of inflation in the two latter cases. Therefore we have six regimes of inflation
that we label SSBI1, SSBI2, SSBI3, SSBI4, SSBI5 and SSBI6. The different potentials and
inflationary regimes are displayed and defined in Fig. 65 and Fig. 66. Since the potential is
symmetric under φ/MPl ! −φ/MPl, it is only displayed and studied for φ > 0.

Let us now calculate the slow-roll parameters. If one defines x by x ⌘ φ/MPl, then the
three first Hubble parameters are given by the following expressions

✏1 =
2
(

↵x+ 2βx3
)2

(1 + ↵x2 + βx4)2
, ✏2 =

4
⇥

−↵+
(

↵2 − 6β
)

x2 + ↵βx4 + 2β2x6
⇤

(1 + ↵x2 + βx4)2
, (5.293)

and

✏3 =
4x2

(

↵+ 2βx2
) ⇥

−3↵2 + 6β + ↵
(

↵2 − 12β
)

x2 + 3
(

↵2 − 8β
)

βx4 + 2β3x8
⇤

(1 + ↵x2 + βx4)2 [−↵+ (↵2 − 6β) x2 + ↵βx4 + 2β2x6]
. (5.294)

The first slow-roll parameter ✏1 is displayed in the right panels of Figs. 65 and 66 while the
second and third slow-roll parameters ✏2 and ✏3 are displayed in Fig. 67. Let us describe the
behavior of these slow-roll parameters, for the six models under consideration. For SSBI1,
✏1 vanishes at x = 0, reaches a maximum at xSSBI1

✏2=0 (where ✏2 vanishes and ✏3 diverges) and
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Figure 66. Spontaneous Symmetry Breaking Inflation (SSBI) potential and the corresponding Hub-
ble flow parameter ✏1 for the two cases ↵ > 0, β < 0 (corresponding to SSBI3 to SSBI4) and ↵ < 0,
β > 0 (corresponding to SSBI5 and to SSBI6). In each of these cases, the direction in which inflation
proceeds is indicated by the arrow.

then decreases to asymptotically vanish when x goes to infinity. The value of xSSBI1
✏2=0 is given

by

xSSBI1&3&6
✏2=0 =

(

− ↵

6β
+

1

6β



8↵3 +

q

64↵6 + (5↵2 − 36β)3
]1/3

+
36β − 5↵2

6β



8↵3 +

q

64↵6 + (5↵2 − 36β)3
]−1/3

)1/2

.

(5.295)

Whether the maximum of ✏1 at this point is larger or smaller than 1 depends on ↵ and β.
In the following, we restrict ourselves to the physical regime where ↵,β . O(1). For each
value of β, there is a minimum value of ↵, denoted ↵min, above which the maximum is larger
than 1. The line ↵min(β) is displayed in Fig. 68 and the shaded area in this plot represents
the region in the parameter space where inflation stops by slow-roll violation. When β ⌧ 1,
↵min(β) approaches 2 as can be noticed in the figure. In addition, for β & 0.25, the maximum
value for ✏1 becomes larger than 1 for any value of ↵.

For SSBI2, the three first slow-roll parameters are monotonic increasing functions of
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Figure 67. Second slow-roll parameter ✏2 (solid line) and third slow-roll parameter ✏3 (dotted line),
for the six SSBI models studied in this section. The free parameters of the models are chosen to be
↵,β = ±1.

the field vev and diverge when the potential vanishes at

xSSBI2&4&5
V=0 =

s

−↵+
p

↵2 − 4β

2β
. (5.296)

Hence inflation ends by slow-roll violation at xend. Unfortunately, the corresponding vev
cannot be found exactly and one has to rely on numerical calculations. Let us also notice
that, while the first and third slow-roll parameters ✏1 and ✏3 vanish at x = 0, ✏2 is equal to
✏min
2 = −4↵ at this point. Therefore, in order for the slow-roll approximation to be valid,
one needs to work with |↵| ⌧ 1.

For SSBI3, the first slow-roll parameter ✏1 vanishes at x = 0 and at x =
p

−↵/ (2β).
In between, it reaches a maximum located at

xSSBI3
✏2=0 = xSSBI1

✏2=0 , (5.297)

a point where ✏2 vanishes and ✏3 diverges. Whether the maximum of ✏1 at this point is
larger or smaller than 1 depends again on ↵ and β. For each value of β, there is a minimum
value for ↵ above which inflation stops by slow-roll violation, similarly to the SSBI1 case.
This corresponds to the green dotted line in Fig. 68 (top right panel). One way to estimate
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Figure 68. The black solid line gives the minimum value of |↵|, denoted here by ↵min, as a function
of β in order for inflation to stop by slow-roll violation for SSBI1 (top left panel), SSBI5 (bottom left
panel) and SSBI6 (bottom right panel). For SSBI3 (top right panel), the green dotted line denotes
the minimum value of ↵ for inflation to stop by slow-roll violation, and the cyan and red dotted line
restrict the values of ↵ for which ✏top2 > 1 (defined only for β < −1/64). In the bottom panels, the
dotted lines correspond to ↵2 = 4β, see the discussion in the text. In all the panels, the region above
the black solid curve (shaded region) represents the allowed region (i.e. the one where a slow roll
regime of inflation stops because ✏1 reaches one). For SSBI1, when β ' 0.25, this is always the case.
For SSBI1 and SSBI3, ↵min approaches the asymptotic value ↵min = 2 when |β| ⌧ 1. For SSBI5 and
SSBI6, inflation stops by slow-roll violation when ↵ < −|↵min|.

whether a slow roll regime of inflation can occur in the decreasing branch of ✏1 is to look at
the value of ✏2 at the top of the potential. It is given by

✏
top
2 =

−32↵β

↵2 − 4β
. (5.298)

This number is smaller than one when β < −1/64, or when ↵ lies outside the range with
limits given by −16β±

p

β(1 + 64β), displayed in Fig. 68 with the red and cyan dotted lines.
Therefore, requiring that ✏top2 < 1 and that inflation stops by slow roll violation leads to the
allowed space ↵ > ↵min, represented by the shaded region in Fig. 68.

For SSBI4, the three first slow-roll parameters are monotonic increasing functions of the
field vev and diverge when the potential vanishes at xSSBI2&4

V=0 . The first and third slow-roll
parameters ✏1 and ✏3 vanish when x =

p

−↵/ (2β) while ✏2 has a non-zero value ✏min
2 =
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8↵β/(β2 − ↵2/4) at this point. From the above discussion, it is clear that, in this version
of the scenario, inflation also stops by violation of the slow-roll condition. As for SSBI2,
however, the corresponding vev can not be determined exactly and a numerical calculation
is needed.

For SSBI5, the behavior of the slow-roll parameters depend on ↵2/β. If ↵2/β ≥ 4,
the minimum of the potential at x =

p

−↵/ (2β) is negative. The potential vanishes at
xSSBI2&4&5
V=0 and the three first slow-roll parameters continuously increase between x = 0 where

they vanish (except ✏2 for which ✏min
2 = −4↵) and xSSBI2&4&5

V=0 where they diverge. Inflation
ends by slow-roll violation at some point xend that needs to be determined numerically. On
the other hand, if ↵2/β  4, ✏1 vanishes at x = 0, reaches a maximum at xSSBI5

✏2=0 (where ✏2
vanishes and ✏3 diverges), then decreases and finally vanishes at x =

p

−↵/ (2β). The value
of xSSBI5

✏2=0 is given by

xSSBI5
✏2=0 =
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6β
− 1 + i

p
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12β
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]−1/3

)1/2
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(5.299)

Whether the maximum of ✏1 at this point is larger or smaller than 1 depends on ↵ and β

and is again similar to what has already been discussed before. The region in the parameter
space where inflation ends by slow-roll violation is displayed in Fig. 68 and corresponds to
the points such that ↵ < −|↵min|. In this plot, the dotted line represents the curve ↵2 = 4β,
above which one is sure that inflation ends by slow-roll violation since the minimum of the
potential is negative in this case. For values of β ⌧ 1, one can see that |↵min| ' 2

p
β and

the allowed region becomes negligible.
Finally the case SSBI6 remains to be treated. The behavior of the slow roll parameters

depend on ↵2/β in the same way as before. If ↵2/β ≥ 4, the minimum of the potential at
x =

p

−↵/ (2β) is negative. The potential vanishes at xSSBI6
V=0 and the slow-roll parameters

continuously decrease from this value (where they blow up) and go to zero at infinity. The
value of xSSBI6

V=0 can be expressed as

xSSBI6
V=0 =

s

−↵+
p

↵2 − 4β

2β
. (5.300)

On the other hand, if ↵2/β  4, ✏1 vanishes at x =
p

−↵/ (2β), reaches a maximum at xSSBI6
✏2=0

and then decreases. At infinity, it goes to zero. The value of xSSBI6
✏2=0 is given by

xSSBI6
✏2=0 = xSSBI3

✏2=0 = xSSBI1
✏2=0 . (5.301)

Whether the maximum of ✏1 at this point is larger or smaller than 1 depends on ↵ and β.
The corresponding region in the parameter space is displayed in Fig. 68 and corresponds to
the inequality ↵ < −|↵min|. The dotted line represents the law ↵2 = 4β. Above this line, one
is sure that inflation can stop by slow-roll violation since, in this case, the potential becomes
negative at some point. It is also interesting to notice that, when β & 1.48, the maximum
value of ✏1 is larger than 1 for any value of ↵. On the other hand, if β ⌧ 1, the allowed
region shrinks to zero.
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Let us now turn to the slow-roll trajectory. This one can be integrated analytically to
get

Nend −N = − 1

2↵
ln
⇣xend

x

⌘

− x2end − x2

8
− ↵2 − 4β

16↵β
ln

0

B

@

1 +
2β

↵
x2end

1 +
2β

↵
x2

1

C

A
, (5.302)

where Nend is the number of e-folds at the end of inflation. It is important to notice that the
argument of the logarithm is always positive. This trajectory cannot be inverted analytically.
But, numerically, it is easy to use this expression in order to determine x⇤, the value of x at
Hubble radius crossing.

Finally, it is interesting to constrain the value of the scale M with the CMB normaliza-
tion. It follows that

✓

M

MPl

◆4

=
2880

(

↵x⇤ + 2βx3⇤
)2
⇡2

(1 + ↵x2⇤ + βx4⇤)
3

Q2
rms−PS

T 2
. (5.303)

We are now in a position where we can discuss the predictions of the six versions of this
model. The reheating consistent slow-roll predictions for the SSBI1 models are displayed in
Figs. 142, 143 and 144 for β = 10−3, β = 10−1 and β = 10, respectively. SSBI1 seems to be
disfavored by the observations. The predictions of SSBI2 models are displayed in Fig. 145 for
different values of β and ↵. We notice that they depend on the parameter ↵ quite strongly.
The spectral index is clearly red and, for values of β of order one, the contribution of gravity
waves becomes very small. For SSBI3, the predictions are presented in Figs. 146, 147 and
148 for β = −10−3, β = −5⇥10−3 and β = −10−2, respectively. As we increase β, the points
start spreading in the plane (nS, r). For this class of models, the spectrum is red and the
level of gravity waves quite important. The predictions for the SSBI4 models are displayed in
Figs. 149, 150, and 151 for β = −10−5, β = −10−4, β = −10−3, respectively. One can notice
that the typical predicted values for ✏1 decrease with the absolute value of β. As before the
spread of the points increases with β. The tilt is still red and the contribution of gravity
waves is small for small values of ↵. The predictions for the SSBI5 models are displayed in
Figs. 152, 153 and 154 for β = 10−6, β = 10−5 and β = 10−4, respectively. Once again, for
O(1) values of β, one can see that the model predict a small amount of gravitational waves
but has a deviation from scale invariance strongly disfavored by the observational constraints.
Finally, the reheating consistent slow-roll predictions for the SSBI6 models are displayed in
Figs. 155, 156 and 157 for β = 10−6, β = 10−1 and β = 1, respectively. When β ⌧ 1 the
predictions of the model do not depend on β. Moreover, for values of β of order one, the
predictions become almost independent of the two parameters of the model.

5.18 Inverse Monomial Inflation (IMI)

These models are characterized by the inverse monomial potential given by

V (φ) =M4

✓

φ

MPl

◆−p

, (5.304)

where p is a positive number. This scenario has been studied in many different situations: in
Refs. [281, 528, 529] it was considered in the context of quintessential inflation, in Refs. [530–
533] in the context of tachyon inflation, in Refs. [459, 461] in the context of intermediate
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Figure 69. Top left panel: Inverse Monomial Inflation (IMI) potential for p = 2. Top right panel:
logarithm of the potential for the same value of p. Bottom left panel: slow-roll parameter ✏1 for
p = 2. Bottom right panel: slow-roll parameters ✏2 and ✏3 for p = 2. Only one line appears because
✏2 = ✏3. On these plots, the shaded region represents the region where the slow-roll approximation
breaks down.

inflation and in Ref. [293] in the context of Randall-Sundrum braneworld models. In all
these articles, the potential was just postulated. An attempt to derive this potential from
high energy considerations was made in Refs. [534, 535] in the context of supersymmetric
QCD. Let us, however, notice that this was done in order to build a model of quintessence
and not of inflation. The model uses the group SU(Nc) and has Nf flavors. The quarks Qi,
i = 1, · · · , Nf are placed in the fundamental representation of SU(Nc) and the anti-quarks

Q†
i in the conjugate representation [534]. At scales below the gauge breaking scale Λ, the

relevant degrees of freedom are the pions ⇡ij = QiQ†
j and one can show that the corresponding

superpotential is given by [536, 537]

W = (Nc −Nf)
Λ
3(Nc−Nf)/(Nc−Nf )

(det⇡)1/(Nc−Nf)
. (5.305)

The potential (5.304) then follows from the F-term associated to the above superpotential.
The potential is represented in Fig. 69 for p = 2. It is a decreasing function of the field

vev and, hence, inflation proceeds from the left to the right, in the direction specified by the
arrow in the figure.
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The three Hubble flow functions are straightforwardly obtained from Eqs. (2.4), (2.5)
and (2.6). Defining x ⌘ φ/MPl, one gets

✏1 =
p2

2x2
, ✏2 = −2p

x2
, ✏3 = ✏2. (5.306)

These functions are represented in the two bottom panels in Fig. 69. The first slow-roll
parameter is a monotonic decreasing function of φ while ✏2 and ✏3 are negative increasing
functions. From these expressions, one can also immediately deduce that, for a given p, the
model in the plane (✏1, ✏2) is represented by the line ✏1 = −(p/4)✏2. Since inflation proceeds
from the left to the right, it cannot stop by slow-roll violation. As a consequence, an extra-
mechanism, such as e.g. tachyonic instability, must be implemented to end inflation. Let us
denote xend the position at which such a process occurs. The model has therefore two free
parameters: p and xend.

The slow-roll trajectory can be obtained by quadrature from Eq. (2.11), and one obtains

N −Nend =
1

2p

(

x2 − x2end
)

. (5.307)

This expression can be inverted and reads

x =
q

x2end + 2p (N −Nend) . (5.308)

Let us now derive some prior condition on xend. One can notice that when x < x✏1=1 =
p/

p
2, one has ✏1 > 1 and inflation cannot take place. This means that inflation can only

proceed between x✏1=1 and xend, where the maximum number of e-folds is, using Eq. (5.307),
∆Nmax (xend) =

(

x2end − x2✏1=1

)

/(2p). Put it differently, if one wants to realize at least ∆N
e-folds, then one has to work with xend > xmin

end where

xmin
end (∆N) =

p

p2/2 + 2p∆N . (5.309)

This defines a prior condition on xend.
Finally, the parameterM can be determined from the amplitude of the CMB anisotropies,

and it follows that
✓

M

MPl

◆4

= 720⇡2p2xp−2
⇤

Q2
rms−PS

T 2
. (5.310)

The reheating consistent slow-roll predictions for the IMI models are displayed in Fig. 158.
For a given value of p, they lie along the line (1− 2/p) r = 8 (1− nS), i.e. ✏1 = −(p/4)✏2.
As expected, large values of xend, or small values of the reheating temperature (these two
parameters being degenerate), are preferred.

5.19 Brane Inflation (BI)

5.19.1 Theoretical Justifications

This section is devoted to brane inflation, a class of models widely discussed in the litera-
ture [151, 337, 353, 387, 538–541, 541–551]. The idea is that inflation is caused by branes
moving in the extra dimensions as it was already the case in TI, see section 5.9. For this
reason, the setup is very similar to the one considered in that section. One starts from type
IIB superstring theory where six dimensions are compactified. The effective, low energy,
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description of the model contains various fields among which are the dilaton, the axion and
the (tensorial) gravitational field. One also has anti-symmetric fields with their correspond-
ing field strength. The compact dimensions form a Calabi-Yau space and, generically, this
Calabi-Yau space is made of a bulk plus throats attached to it. Along a given throat, a
solution for the ten-dimensional metric is given by the conifold already discussed in sec-
tion 5.9 whose metric is given in Eq. (5.142). In this equation, the metric ds25 lives on the
five-dimensional section Σ5 and r is the “radial” coordinate. In the following, we will denote
by rUV the radial coordinate at which the cone is glued to the bulk and r0 the coordinate
at the tip of the cone. The volume of the cone section is denoted by Vol(Σ5) and will be
measured in terms of the volume of the five-dimensional sphere, namely

v ⌘ Vol(Σ5)

Vol(S5)
. (5.311)

The geometry of the section Σ5 depends on the background fluxes, denoted by M and K,
that are quantities related to the values of the anti-symmetric fields. If these fluxes vanish
then the five-dimensional sections are simply given by S2 ⇥ S3. In that case, the conifold
can be written as

P4
i=1w

2
i = 0 where wi are four complex coordinates, see also section 5.9.

Moreover, an exact expression for the warp function h(r) can be found and reads

h(r) = C2 +
C1

r4
, (5.312)

C1 and C2 being constants. On the other hand, if the fluxes are turned on, then the back-
ground geometry responses accordingly and, as a consequence, the geometry of the cone is
modified. It is now given by a “deformed conifold”,

P4
i=1w

2
i = z, where z is a number which

depends on M and K. The warp function acquires a more complicated form and, obviously,
becomes z-dependent, i.e. h(r, z). The explicit form of this warp function is not needed here
but it is interesting to notice that, far from the tip, one has h(r, z) ' h(r). In other words,
the modification of the extra-dimensional geometry due to the fluxes is significant only in
the vicinity of the tip. Notice that, provided the depth of the throat is comparable to its
width, the radial coordinate rUV can be expressed in terms of the quantity N ⌘ MK. One
obtains [552]

r4UV = 4⇡gs↵
02N
v
, (5.313)

where gs is the string coupling and ↵0 ⌘ `2s , `s being the string length.
Finally, an anti-D3 brane is placed at the tip of the conifold, i.e. at the bottom of the

throat. This brane is heavy and is supposed to slightly disturb the geometry of the throat in
a way that has been calculated for instance in Refs. [151, 550, 553]. Then, in this geometry,
one studies the motion of a light D3 brane with tension

T3 =
1

(2⇡)3gs↵02 . (5.314)

This brane is attracted by the anti-D3 brane and as a consequence moves radially along the
throat. In principle it possesses a DBI kinetic term but one can show that, in the regime
considered here, it always reduces to an ordinary, minimal, kinetic term, see Ref. [151]. If r
represents the distance between the two branes, then the effective Lagrangian of the system
can be expressed as

L = −1

2

✓

@φ

@t

◆2

− 2T3r
4
0

r4UV

✓

1− r4
0
T 2
3

N
1

φ4

◆

, (5.315)
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where φ ⌘
p
T3r. The shape of the potential is now completely fixed and the behavior / φ−4

is of course due to the particular scaling / r−4 of the warp function given by Eq. (5.312).
In order to be valid, the effective model described above must satisfy some conditions

that we now discuss in more detail. Defining φ0 ⌘
p
T3r0 and φUV ⌘

p
T3rUV, it is clear

that the presence of the brane in the throat implies that φ0 < φ < φUV. In addition, as
discussed for instance in Ref. [151], from the trivial fact that the volume of the throat,
V throat
6 = 2⇡4gsN↵02r2UV, cannot be bigger than the volume of the total Calabi-Yau manifold
V tot
6 , one can derive the bound

φUV <
mPlp
2⇡N

, (5.316)

where the Planck mass can be expressed as m2
Pl = 8⇡V tot

6 /10 and 10 = (2⇡)7g2s↵
04/2. An-

other constraint comes from the fact that the effective model is valid only if the proper dis-
tance between the two branes is larger than the Planck length. One can show, see Ref. [151],
that this means r > rstg where

rstg ⌘ r0e
p
↵0/rUV . (5.317)

In particular, as will be seen in the following, the value of rstg plays an important role
regarding the mechanism ending inflation. In the next section, we carry out the slow-roll
analysis of this model.

Let us also mention that the same potential arises in the context of tachyon inflation [554,
555], in the context of SQCD inflation [556] and in the context of the strong coupling limit
of twisted models of SQCD inflation, (see TWI, section 5.5 and Ref. [472]). It is also worth
noticing that the same kind of inverse power law potential is sometimes used in quintessence
models [281, 528, 529].

5.19.2 Slow-Roll Analysis

We now turn to the slow-roll analysis of BI. For this purpose, it is more convenient to re-write
the potential appearing in Eq. (5.315) in the following way

V (φ) =M4

"

1−
✓

φ

µ

◆−p
#

, (5.318)

where µ and p are free parameters. Compared to Eq. (5.315), we have generalized by hand
the expression of V (φ) by considering an arbitrary p. In such a way, this potential can be
viewed as a generalization of the small field models to negative values of p (see section 5.1).
In the following, we will also consider the non-approximated KKLT potential

V (φ) =
M4

1 +

✓

φ

µ

◆−p , (5.319)

from which (5.318) is the µ⌧MPl limit.
In the context of the brane inflationary scenario, the value p = 4 is special in the sense

that, as explained above, it corresponds to the motion of a test D3 brane in a warped throat
and is, therefore, a case of physical interest. Let us notice that the parameters of the potential
are related to their stringy counterparts by

M4 =
2T3r

4
0

r4UV

=
4⇡2v

N φ4
0
, µ4 =

T 2
3 r

4
0

N =
M4

4⇡2v
. (5.320)
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Figure 70. Brane Inflation (BI) for p = 2. Upper panels: the potential and its logarithm as a function
of φ/µ. Bottom left panel: slow-roll parameter ✏1 rescaled by M2

Pl
/µ2. The shaded area indicates the

region in which inflation cannot occur for µ =MPl. Bottom right panel: slow-roll parameters ✏2 (solid
line) and ✏3 (dotted line), rescaled by M2

Pl
/µ2.

Moreover, brane inflation proceeds under the condition µ/MPl ⌧ 1. Indeed, using the for-
mulas established in the previous subsection, it is easy to show that

µ4

M4
Pl

=
1

N

✓

φ0

MPl

◆4

<
1

N

✓

φUV

MPl

◆4

<
16

N 3
⌧ 1, (5.321)

where we have used the condition φ0 < φUV and Eq. (5.316). Finally, let us stress that the
brane motion in the throat ends by a tachyonic instabilities at φ = φstg. As we discuss
below, the observable predictions of the model crucially depends on whether the universe is
still inflating at φ & φstg, or not. Therefore, in the context of string theory, we necessarily
have µ/MPl ⌧ 1, p = 4 and an additional model parameter φstg.

In the following, we will first consider arbitrary values for µ and p viewing Eq. (5.318)
as a phenomenological potential in which φstg has no meaning, and then, the discussion will
be focused on the stringy scenario. BI is another proto-typical case exemplifying how two
models having exactly the same potential can lead to different observable predictions. Here
this will be due to the mechanism ending inflation.

The potential (5.318), as well as its logarithm, are displayed in Fig. 70. It is an increasing
function of the field, hence inflation proceeds from the right to the left. It vanishes for φ/µ = 1
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and, hence, it should be studied in the φ/µ > 1 region only. Let us calculate the slow-roll
parameters. Defining the quantity x by the following expression

x ⌘ φ

µ
, (5.322)

one can express the first three Hubble flow functions in the slow-roll approximation as

✏1 =

✓

MPl

µ

◆2 p2

2x2 (1− xp)2
, ✏2 = 2p

✓

MPl

µ

◆2 (1 + p)xp − 1

x2 (1− xp)2
, (5.323)

and

✏3 = p

✓

MPl

µ

◆2 2 + (p− 4) (p+ 1) xp + (1 + p) (2 + p)x2p

x2 (1− xp)2 [(1 + p)xp − 1]
. (5.324)

These functions are displayed in Fig. 70. They become very small at large fields x& 1, and
diverge when the potential vanishes at x ! 1. Therefore inflation can naturally end with
slow-roll violation at a field value xend, solution of ✏1(xend) = 1, i.e., verifying

xp+1
end − xend =

pp
2

MPl

µ
. (5.325)

Unless p takes integer values, this equation has to be solved numerically (see also section 5.1).
However, in the limits µ/MPl ⌧ 1 and µ/MPl & 1 we can find an approximate expression

for xend. Solving perturbatively the equation ✏1 = 1, one obtains

xend '
µ⌧MPl

✓

pMPlp
2µ

◆
1

p+1

+
1

p+ 1
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µ
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4

M2
Pl

µ2
.

(5.326)
It is also interesting to find the solution of ✏2 = 1. As before, this cannot be done exactly
but, perturbatively, one obtains

x✏2=1 '
µ⌧MPl

"

2p(1 + p)

✓

MPl

µ

◆2
# 1

p+2

, x✏2=1 '
µ,MPl

1 +
p
2
MPl

µ
. (5.327)

From the above expressions, we deduce that slow-roll violation always occurs before the end
of inflation, that is to say ✏2 becomes unity before ✏1. This has not effect on the observable
predictions since only a few e-folds of inflation are spent in this regime (see Fig. 70).

The slow-roll trajectory can be integrated explicitly from Eq. (2.11) and one obtains

Nend −N =
µ2

2pM2
Pl

✓

x2end −
2

p+ 2
xp+2
end − x2 +

2

p+ 2
xp+2

◆

, (5.328)

an expression which cannot be inverted in general. However, in the µ ⌧ MPl and µ & MPl

limits, one has x& 1 and x ' 1 respectively and the previous equation can be approximately
inverted leading to the following expressions

x⇤ '
µ⌧MPl



p(p+ 2)
M2

Pl

µ2
∆N⇤ + xp+2

end

]
1

p+2

, x⇤ '
µ,MPl

1 +
MPl

µ

r

1

2
+ 2∆N⇤ , (5.329)
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where use has been made of Eq. (5.326). Also, making use of the full KKLT potential (5.319),
the slow roll trajectory reads

Nend −N =
µ2

2pM2
Pl

✓

−x2end −
2

p+ 2
xp+2
end + x2 +

2

p+ 2
xp+2

◆

, (5.330)

which coincides with (5.328) in the limit µ⌧MPl.
The mass scale M is given by the CMB normalization and verifies

✓
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(xp⇤ − 1)
3

Q2
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T 2
. (5.331)

which can be further simplified in the appropriate limits using Eqs. (5.326) and (5.329).
The reheating consistent slow-roll predictions for the phenomenological models are

displayed in Figs. 159, 160, 161 for p = 2, p = 3 and p = 4, respectively, and with
µ/MPl 2

⇥

10−3, 103
⇤

. The reheating equation of state parameter wreh = 0 but since the
shape of the potential is unknown at x < 1, this parameter is a priori unspecified and could
take different values. For small values of µ, we see that nS ' 0.96 and r ⌧ 1. In the opposite
case, µ&MPl, the model predictions lie around ✏2 ' 4✏1 with nS ' 0.97 and r ' 0.08. These
behaviors can be recovered by plugging the approximated expressions given in Eqs. (5.326)
and (5.329) into the Hubble flow functions. For µ⌧MPl, one obtains

✏1⇤ '
p2

2
[p (p+ 2)∆N⇤]

− 2p+2
p+2

✓
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◆
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, ✏2⇤ '
2

∆N⇤

p+ 1

p+ 2
, ✏3⇤ '

1

∆N⇤
, (5.332)

and the spectral index is of the order nS ' 1 − 2/∆N⇤(p + 1)/(p + 2) ⇠ 0.96 with r ⌧ 1.
Similarly, for µ&MPl limit, the Hubble flow parameters at Hubble crossing behave as

✏1⇤ '
1

4∆N⇤
, ✏2⇤ '

1

∆N⇤
, ✏3⇤ '

1

∆N⇤
. (5.333)

Therefore, the predicted level of gravity waves is now of the order r ' 4/∆N⇤ ' 0.08 and the
spectral index is nS ' 1− 3/(2∆N⇤) ' 0.97, which is again in agreement with the numerical
results.

Finally, the predictions for the KKLTI models, i.e. using the full potential (5.319), are
displayed in Figs. 163, 164, 165 for the same parameters. One can see that they deviate from
the ones of brane inflation only when µ&MPl.

5.19.3 Slow-Roll Analysis of the Stringy Scenario

In the case where the model is interpreted as a stringy scenario, with p = 4, we have seen
before that the low energy description is valid provided r > rstg, or x > xstg with

xstg ⌘
p
T3 rstg
µ

= N 1/4 exp

"

✓

4⇡gs
N
v

◆−1/4
#

. (5.334)

If slow-roll violation occurs before the system reaches xstg, then the effective string description
is always valid and the observable predictions will be exactly the same as those derived in
the previous paragraph (for p = 4 and µ ⌧ MPl). However, if, on the contrary, slow-roll
violation occurs after the field crosses the value xstg, then inflation stops by instability at
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xstg instead of the naively expected xend. Indeed, in this case, a tachyon appears and triggers
the process of branes annihilation. Therefore, the mechanism ending inflation in this model
depends on whether slow-roll violation occurs in a regime where the distance between the
branes is larger or smaller than the string length. And this question depends on the value
of the parameters characterizing BI. One can determine the two regimes by evaluating the
ratio

x✏2=1

xstg
= 401/6

✓

M

MPl

◆−1/3

N−1/4(4⇡2v)1/12 exp

"

−
✓

4⇡gs
N
v

◆−1/4
#

, (5.335)

in which we have used Eqs. (5.320), (5.327) and (5.334) (with p = 4 and µ ⌧ MPl). If this
ratio is larger than one, inflation stops by slow-roll violation and if it is smaller than one
by instability. The complicated part of the analysis lies in the fact that the above equation
depends on the mass scale M . In order to have an explicit expression of M in terms of the
parameters of the model, one must first CMB normalize the model which, in turn, requires
the knowledge of the mechanism ending inflation. However, we are interested in calculating
the frontier where x✏2=1 = xstg and, therefore, the two possible mechanisms for stopping
inflation coincide in that case. Replacing xend by xstg = x✏2=1 in Eq. (5.329) yields

xf⇤ '
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✓
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5

3

◆]1/6

, (5.336)

from which one can obtain an explicit formula for the first slow-roll coefficient (5.323) at
Hubble radius crossing

✏f1⇤ ' 8
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✓

∆N⇤ +
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◆]−5/3✓ µ

MPl

◆4/3

. (5.337)

Comparing this expression to Eq. (5.332), we see that there is a very small shift by 5/3 in
∆N⇤. It accounts for the difference of e-folds between the time at which slow-roll violations
occur, i.e. for x = x✏2=1, and the end of inflation at xend. As argued before, we see that these
effects are too small to be observable and completely degenerated with the reheating duration.
Plugging this expression into the CMB normalization, and using the relation M4 = 4⇡2vµ4,
one arrives at the following expression for M

M

MPl

= C(4⇡2v)−1/8

✓

∆N⇤ +
5

3

◆−5/8

, (5.338)

where we have defined

C ⌘ 3−5/8(8⇡2Q⇤)
3/8, Q⇤ ⌘ 45

Q2
rms−PS

T 2
= 2700P⇤. (5.339)

We can now insert this expression ofM in Eq. (5.335) to get the equation defining the frontier
in the string parameter space, namely
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. (5.340)

– 200 –



Following Ref. [151], if one defines the two following rescaled stringy parameters

y ⌘ 4⇡gs
N
v
, v̄ ⌘ v

(4⇡gs)2
, (5.341)

then the frontier (5.340) is defined by the following “universal” form

y1/4ey
−1/4

v̄1/8 −
✓

40

C2

◆1/6 ✓

∆N⇤ +
5

3

◆5/24
(

4⇡2
)1/8

= 0, (5.342)

which is independent of the string coupling gs. As represented in Fig. 71, in the plane (y, v̄),
this relation is a curve that separates the region where inflation stops by slow-roll violation
(below the curve) and the region where inflation stops by instability due to brane annihilation
(above the curve).

The requirement of having the throat contained within the Calabi-Yau manifold can
equally be written in terms of the universal variables. From Eqs. (5.316) and (5.341), one
gets

y3/2v̄ < 8⇡2M2
Pl`

2
s , (5.343)

which therefore depends on the string length `s =
p
↵0 but not on the string coupling gs.

Finally, the last theoretical prior comes from requiring that the brane motion remains
located inside the throat, i.e. x < xUV with

xUV ⌘
p
T3rUV

µ
=
MPl

M

✓ N
4⇡3↵02gs

◆1/4

. (5.344)

Since during inflation x decreases, this condition gives an upper limit on the admissible
initial field values. However, the initial field values depends on the total number of e-folds of
inflation, say ∆Ntot, and on the field value at which inflation ends, i.e. either xstg or x✏2=1

depending on if brane annihilation occurs before slow-roll violations.
Let us first assume that brane annihilation occurs well after the end of inflation, i.e.

we are in lower part of the string parameter space (y, v̄) separated by Eq. (5.342). For the
relevant limit, µ⌧MPl, the initial field value is given by

x✏2ini '


24
M2

Pl

µ2

✓

∆Ntot +
5

3

◆]1/6

. (5.345)

This expression involves µ and thereforeM through Eq. (5.320). Again, one has to determine
M using the CMB normalization and we are assuming that inflation ends at x✏2=1, i.e. exactly
Eq. (5.338). Plugging everything together and making use of the universal variables, one gets

yv̄ >
xstg<x✏2=1

C8/3⇡2M2
Pl`

4
s



24

✓

∆Ntot +
5

3

◆]2/3✓

∆N⇤ +
5

3

◆−5/3

. (5.346)

If inflation ends by brane annihilation at x = xstg, i.e. the string parameters (y, v̄)
lie above the curve given by Eq. (5.338), then xini and x⇤ are accordingly modified. For
µ⌧MPl, their new expressions are however still given by Eq. (5.329), up to the replacement
xend ! xstg, i.e.

xstgini '
✓

24
M2

Pl

µ2
∆Ntot + x6stg

◆1/6

, xstg⇤ '
✓

24
M2

Pl

µ2
∆N⇤ + x6stg

◆1/6

. (5.347)
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Figure 71. Theoretical prior space for the stringy scenario of brane inflation [151] in the plane of
the “universal” coordinates (y, v̄). The solid blue line is the frontier above which inflation ends by
tachyonic pre-heating triggered by brane annihilation (light green region). Only in the region enclosed
by this curve (light blue region), inflation ends by slow-roll violation. The upper thick red line is the
volume bound of Eq. (5.343). The lower black straight line is the “UV” limit given by (5.346) and
is relevant only if inflation stops by slow-roll violation. The solid green curve is given by (5.350) and
also represents the “UV” limit but, this time, in the regime where inflation stops when the two branes
collide. As a consequence, the admissible region is the one shaded in light black. We see that, even in
this allowed region, inflation can either end by tachyonic instability or slow-roll violation depending
on the string parameter values. In principle, the blue, black and green lines should cross at a single
point. Due to the approximations used here, we see that this is true only approximately. In order to
give a more faithful description of the allowed region, the light black area has been slightly deformed
around the crossing point (see Ref. [151] for an exact determination of these frontiers).

As before, xstgini and xstg⇤ depend on µ and therefore on M , which is determined by the CMB
normalization. However, since inflation now ends by tachyonic instability this one has to be
re-determined by plugging xstg⇤ into Eq. (5.331). Doing so gives an implicit expression for M

M

MPl

' C(4⇡2v)−1/8

 

∆N⇤ +
µ2

M2
Pl

x6stg
24

!−5/8
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"

∆N⇤ +
5

3

✓

xstg
x✏2=1

◆6
#−5/8

,

(5.348)
where use has been made of Eq. (5.327), for µ⌧MPl. This equation cannot be analytically
solved forM because µ, and x✏2=1, depends onM . However, if brane annihilation occurs well
before slow-roll violation, one has xstg & x✏2=1 such that the term in ∆N⇤ can be neglected.
In that situation, from µ4 =M4/(4⇡2v), one gets the approximate expression

M

MPl

'
xstg,x✏2=1

245/18C4/9(4⇡2v)1/12x
−5/3
stg . (5.349)
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Requiring xstgini < xUV finally yields

y19/6v̄7/3 exp

✓

20

3
y−1/4

◆

>
xstg,x✏2=1
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8⇡2`2s
)3
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✓

8

3
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◆

+
6∆Ntot

Q
1/3
⇤

#

,

(5.350)
which completes the bounds coming from xUV.

Brane inflation within the string scenario has therefore a rather involved set of priors.
In addition to have p = 4 and µ ⌧MPl, the model parameters should simultaneously verify
Eq. (5.343) and either Eq. (5.346), or Eq. (5.350), according to the sign of the left hand side
of Eq. (5.342). All these equations involve the amplitude of the CMB anisotropies, which is
well measured, the total number of e-folds ∆Ntot, which is an unknown quantity, and the
number of e-folds ∆N⇤ before the end of inflation at which the pivot mode crossed the Hubble
radius. As discussed in section 2.2, ∆N⇤ can only be obtained by solving Eq. (2.44), i.e. after
having specified the reheating parameter. As the result, the reheating slow-roll predictions
for the string scenario can only be sorted out numerically, paying attention that for a given
reheating history, all of the previous theoretical constraints are satisfied. As an illustration,
we have plotted in Fig. 71 the bounds for the typical values ∆N⇤ = 50 and ∆Ntot = 60 with
↵0M2

Pl ' 1/4 [151, 557].
The reheating consistent slow-roll predictions for the string models are displayed in

Figs. 162 for a set of realistic fundamental parameters. Also, making use of the full poten-
tial (5.319), the predictions of the corresponding KKLT inflation models are displayed in
Figs. 166. One can check that they match perfectly.

6 Three parameters Models

6.1 Running-mass Inflation (RMI)

6.1.1 Theoretical Justifications

This model has been derived and studied in Refs. [338, 558–566]. Following Ref. [561], let
us briefly discuss its physical origin. At tree level, a potential can always be expanded as
V (φ) ' M4 +m2φ2/2 + λφ4/4 + · · · . Since the potential must be flat to support inflation,
quantum corrections may play an important role. Typically, they modify the potential with a
term of the form

(

c1 + c2φ
2 + c4φ

4
)

ln (φ/µ), where µ is the renormalization scale. In a non-
supersymmetric framework, the quartic term dominates and one is led to models similar to
RCMI, RCQI or CWI, see section 4.4, 4.5 and 4.11. On the other hand, in a supersymmetric
context, at least if supersymmetry is spontaneously broken, the quadratic and the quartic
terms cancel and one is left with a model similar to LI, see sections 4.12. If, however,
supersymmetry is explicitly broken by the presence of soft terms, then the most important
term will be the quadratic one.

Concretely, the above reasoning leads to a specific shape for the inflaton potential.
We start from a flat direction in supersymmetry. Then, we assume that supersymmetry
is explicitly broken and, as a consequence, that the potential receives corrections / m2φ2,
where m is a soft mass. Higher order terms are supposed to be negligible since we assume
φ/MPl ⌧ 1. We thus have

V = V0 +
1

2
m2φ2 + · · · , (6.1)
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The one loop corrections to this tree potential will typically induces a logarithmic dependence
of the soft mass through the renormalization group equation

dm2

d lnφ
= βmat, (6.2)

where βmat is proportional to the inflaton couplings with the other fields present in the theory.
Therefore, by Taylor expanding the solution of the previous equation aroused φ = φ̄, we can
write

m2 = m2(φ̄) + βmat ln

✓

φ

φ̄

◆

+ · · · . (6.3)

As a consequence, the potential (6.1) can be re-expressed as

V (φ) = V0 +
1

2
m2(φ̄)φ2 +

1

2
βmatφ

2 ln

✓

φ

φ̄

◆

. (6.4)

As noticed in Refs. [561, 564, 566], the beta function can typically be expressed as

βmat =
−2C

⇡
↵m̃2 +

D

16⇡2
|λ|2m2

loop, (6.5)

if we assume that the inflaton interacts with gauge bosons and fermions. The quantity ↵ is
the coupling constant between φ and the gauge boson, λ is a Yukawa coefficient, m̃ is the
gaugino mass, m the fermionic mass and C and D are dimensionless numbers of order one.

In the next section, we explore the cosmological consequences of this type of potential.
In particular, we will see that it can lead to four different kind of inflationary scenarios.

6.1.2 Slow-Roll Analysis

We now perform the slow-roll analysis of the potential previously derived. In order to carry
out this task, it is more convenient to re-write the potential as follows

V (φ) =M4



1− c

2

✓

−1

2
+ ln

φ

φ0

◆

φ2

M2
Pl

]

, (6.6)

where we have defined the two parameters c and φ0 by

c = −M
2
Plβmat

2V0
, m2(φ̄) = −βmat



1

2
+ ln

✓

φ0

φ̄

◆]

. (6.7)

In this expression, M , c and φ0 are free parameters. The dimensionless parameter c can be
positive or negative. With the form of the beta function given in Eq. (6.5), the coefficient c is

given by ↵m2M2
Pl/V0. If one assumes that the soft masses are of order m ' H ' V

1/2
0 /M2

Pl,
then c ' ↵ ' 10−2 to 10−1 or may be smaller depending on the assumption on the couplings.
This also mean that, in order for the expansion (6.3) to be valid, one has |ln (φ/φ0)| ⌧ 1.
Also, the model is commonly worked out in the vacuum dominated regime (otherwise it is
equivalent to a large field model, LFI, see section 4.2), which means that cφ2

0
/M2

Pl ⌧ 1. The
location φ = φ0 is an extremum of V (φ), a maximum if c > 0 and a minimum if c < 0. The
potential and its logarithm are represented in Fig. 72.

Running mass inflation can be realized in four different ways [561], denoted as RMI1,
RMI2, RMI3 and RMI4 in what follows. RMI1 corresponds to the case where c > 0 and

– 204 –



Figure 72. Top left panel: running mass potential for c = 0.8 (blue line) or c = −0.8 (green line) and
φ

0
= 0.5MPl. Top right panel: logarithm of the potentials for the same values of c and φ

0
. Bottom

left panel: slow-roll parameter ✏1 for a potential with c = ±0.8 and φ
0
= 0.5MPl. Bottom right panel:

slow-roll parameters ✏2 (solid line) and ✏3 (dotted line) for c = ±0.8 and φ
0
= 0.5MPl. The value

c = ±0.8 may not be physical and was chosen only in order to produce a clear plot.

φ < φ0 , see Fig. 72 (top panels). In this case, φ decreases during inflation which proceeds
from the right to the left. RMI2 also corresponds to c > 0 but with φ > φ0 and φ increases
during inflation which now proceeds from the left to the right. RMI3 refers to the situation
where c < 0 and φ < φ0 all the time. In this case, φ increases during inflation which proceeds
from the left to the right. Finally, RMI4 has c < 0 and φ > φ0 decreases as inflation proceeds
from the right to the left.

Using the potential (6.6), one can calculate the three slow-roll parameters ✏1, ✏2 and ✏3.
Defining x ⌘ φ/φ0 , one obtains the following expressions
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, (6.8)
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and
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(6.10)
The slow-roll parameters are represented in the bottom panels in Fig. 72.

Let us now examine how inflation ends in this model. The slow-roll parameter ✏1 has
a maximum in the x < 1 region and a maximum in the x > 1 region, see Fig. 72. If
these maxima were larger than one, inflation could in principle stop by violation of the slow-
roll conditions. In the vacuum dominated approximation, however, we see from Eq. (6.8),
that ✏1 ' (c2/2)(φ2

0
/M2

Pl)x
2 ln2 x. This means that the vev xend satisfies xend lnxend =

±(
p
2/c)(MPl/φ0). But we have established previously that the vacuum dominated condition

precisely implies that cMPl/φ0 & 1 and one would have lnxend & 1. But for the model
to be valid, we have already mentioned that the condition |lnx| ⌧ 1 should be enforced.
We conclude that the value of xend obtained above lies outside the regime of validity of
the potential. The end of inflation either occurs by violation of slow-roll but in a regime
where additional unknown corrections arise and modify the shape of V (φ), or by tachyonic
instability. In this last case, inflation stops in a regime where our calculations are valid. This
also means that we must consider an additional parameter in the model, namely xend. In this
article, this is the assumption made which implies that RMI is indeed a three parameters
model.

We now turn to the calculation of the observable predictions. The first step is to obtain
the slow-roll trajectory. One obtains

N −Nend =
1

c
(ln |lnx|− ln |lnxend|)−

1

4

φ2
0

M2
Pl

(x2 − x2end)

+
1

4

✓

φ0

M2
Pl

◆2

[Ei (2 lnx)− Ei (2 ln xend)] ,

(6.11)

where the exponential integral function Ei is defined by Ei(x) ⌘ −
R +1
−x dte−t/t [204, 205].

This expression cannot be inverted analytically. However, in the limit (cφ0/MPl)x ⌧ 1 (the
vacuum dominated regime), the above expression can be approximated by

N −Nend ' 1

c
(ln |lnx|− ln |lnxend|) , (6.12)

from which it follows that

x(N) = exp
h

ec(N−Nend) lnxend

i

. (6.13)
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The slow-roll predictions of the four models, RMI1, RMI2, RMI3 and RMI4 are pre-
sented in Figs. 167, 168, 169 and 170 for |c| = 10−2, φ0/MPl < 1/

p

|c|, and 1/e < xend < e,
respectively. In order to interpret them, it is interesting to use some approximations. From
the trajectory (6.13), it is straightforward to calculate x⇤. Recalling that inflation is sup-
posed to stop at xend, one obtains x⇤ = exp

(

e−c∆N⇤ lnxend
)

. Then, using Eqs. (6.8), (6.9)
and (6.10) in the vacuum dominated limit, we find that

✏1⇤ ' c2

2

✓

φ0

MPl

◆2

exp
(

2e−c∆N⇤ lnxend
)

e−2c∆N⇤ ln2 xend, (6.14)

✏2⇤ ' 2c
(

1 + e−c∆N⇤ lnxend
)

. (6.15)

In fact, in order to compare with the existing literature, it turns out to be convenient to
define the following quantity

s ⌘ c lnx⇤ = −c e−c∆N⇤ lnxend. (6.16)

For RMI1 and RMI4, s > 0 while for RMI2 and RMI3 one has s < 0. In terms of s Eqs. (6.14)
and (6.15) can be re-written as

✏1⇤ '
s2

2

✓
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MPl

◆2

e−2s/c, ✏2⇤ ' 2c
⇣

1− s

c

⌘

. (6.17)

These equations imply that the locus of the model predictions in the plane (✏1, ✏2) are given
by ✏2 ' 2(c− s)+4✏1M

2
Pl/φ

2
0
. If we neglect ✏1⇤ (with respect to ✏2⇤) one recovers the formula

derived in Refs. [561, 564, 566], namely nS − 1 ' 2(s− c). The same route for the third slow-
roll parameter gives ✏2✏3 ' −2cs and neglecting again ✏1 gives the scalar running ↵S ' 2sc.
The above analytic estimates agree well with the complete slow-roll predictions represented
in Figs. 167, 168, 169 and 170.

From the CMB normalization, we obtain the following expression for the mass scale
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In the vacuum dominated regime, this expression can be approximated by

M4
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Pl

' 720⇡2s2
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φ2
0

M2
Pl

es/c. (6.19)

One can then easily deduce the mass scale M for a given value of c, φ0 and xend, the three
parameters of the model.

6.2 Valley Hybrid Inflation (VHI)

6.2.1 Theoretical Justifications

Hybrid inflation is a two-fields model with the potential given by the following expression [162,
240, 338, 567–570]

V (φ, ) =
1

2
m2φ2 +

λ0

4

(

 2 −∆2
)2

+
λ

2
φ2 2, (6.20)
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where φ is the inflaton,  the waterfall field, λ and λ0 are two coupling constants and ∆ a
constant of dimension one. A priori, given the above potential, inflation can occur in different
regimes. However, the standard lore is that inflation can proceed along the valley given by
 = 0 and, in this case, the potential reduces to an effective single field potential that can
be written as

V (φ) =M4



1 +

✓

φ

µ

◆p]

, (6.21)

with p = 2 and where one has used the following parameter redefinition

M =
λ01/4∆p

2
, µ =

r

λ0

2

∆2

m
. (6.22)

Inflation along the valley has been shown to be a dynamical attractor of the two-field dy-
namics in Refs. [571, 572]. However, as recently shown in Ref. [573], the hybrid potential can
also support an inflationary phase along a mixed valley-waterfall trajectory, which is gen-
uinely a two-fields dynamics. As we use a single field description here, those effects cannot
be described by the potential of Eq. (6.21). For this reason, we will refer to the single field
approximation as the “valley hybrid regime”. Let us stress that, if the waterfall inflationary
regime occurs, then it will erase any observable effects coming the valley hybrid regime. As
a result, Eq. (6.21) is a good description of hybrid inflation only if the model parameters are
such that the waterfall regime remains sub-dominant. According to Ref. [573, 574], this is
the case provided

p
λ0
∆3

m
⌧M2

Pl, (6.23)

a condition that will be assumed in the following. The effective potential (6.21) was also
obtained in Ref. [575] in the context of supergravity brane inflation, and in Ref. [521] in the
context of hilltop supernatural inflation. It depends on three parameters, namely M , µ and
p. In fact, as mentioned before, p = 2 for the two-field model given in Eq. (6.20) but we
will consider the most general situation with p > 0 unspecified. Let us stress again that all
multifield effects such as the generation of isocurvature modes or cosmic strings cannot be
accounted within the single field dynamics [149, 576–578].

It is also worth mentioning that the potential (6.21) with p = 2 can also be obtained in
the supergravity context [579–582]. The main idea is to consider a supergravity model which
is not R-symmetry invariant and described by the following Kähler and super-potentials:

K = XX† +
b

6M2

⇣

XX†
⌘2

− c

9M2
XX†



X2 +
⇣

X†
⌘2
]

, (6.24)

W = fX, (6.25)

Here X is a superfield, M < MPl a mass scale and b, c two dimensionless constants, a priori
of order one. The quantity f is a constant of dimension two that can be viewed as the
supersymmetry breaking scale. From these expressions, the scalar potential reads

V = f2


1− 2b

3M2
XX† +
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3M2
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X2 +X†2
⌘

+O
✓
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◆]

, (6.26)

or, re-writing X = ↵+ iβ, it reads

V ' f2


1 +
2

3M2
(b− c)↵2 − 2

3M2
(b+ c)β2

]

. (6.27)
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For a field evolution along the ↵ direction, we recover a potential of the VHI type with
p = 2 (b − c must be positive). In this setup, ↵/M ⌧ 1 is required in order for the field ↵
to be approximately canonically normalized, the Kähler potential being not minimal. It is
also interesting to comment on the ⌘-problem in this model since this is a generic issue in
supergravity. If one calculates the slow-roll parameter ⌘ ⌘M2

PlV↵↵/V , one finds that

⌘ =
4M2

Pl

3M2
(b− c). (6.28)

Therefore, one must take M .MPl and fine-tune the difference b− c to a small number.

6.2.2 Slow-Roll analysis

We now turn to the slow-roll analysis of the VHI scenario. Recall that we consider the
following potential

V (φ) =M4



1 +

✓

φ

µ

◆p]

, (6.29)

where the parameterM and µ have been expressed in terms of the parameters of the two-field
model in Eq. (6.22). The first three Hubble flow functions in the slow-roll approximation
can be derived from Eq. (6.29) in a straightforward fashion. Defining the quantity x by the
following expression

x ⌘ φ

µ
, (6.30)

they read
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and
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✓
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◆2

xp−2 2x
2p − (p− 1)(p + 4)xp + (p− 1)(p − 2)

(1 + xp)2 (xp − p+ 1)
. (6.32)

A specific feature of hybrid inflation in comparison to large and small field models is that ✏2
and ✏3 can be negative (see Fig. 73). In particular

✏2 '
x!0

−2p(p− 1)

✓

MPl

µ

◆2

xp−2, (6.33)

and ✏3 blows up in the limit xp ! p− 1. Together with the potential, the three Hubble flow
functions have been represented in Fig. 73.

The slow-roll trajectory is obtained by integrating Eq. (2.11) with the valley hybrid
potential and reads

N −Nend =
1

2p

µ2

M2
Pl



−x2 + x2end +
2

2− p
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x2−p
end − x2−p

⌘

]

, (6.34)

which is, up to a sign, the same as for the SFI models [see Eq. (5.5)]. The case p = 2 requires
special attention, but as for SFI, is recovered as the limit p ! 2 in the previous equation.
One obtains

N −Nend =
1

4

µ2

M2
Pl



−x2 + x2end − 2 ln

✓

x

xend

◆]

, (6.35)
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Figure 73. Valley Hybrid inflation (VHI) for p = 1/2 (red line) and p = 2 (blue line). Upper panels:
the potential and its logarithm for µ = 0.6MPl. Bottom left panel: slow-roll parameter ✏1 for p = 1/2,
µ = 0.6MPl (red line), p = 2, µ = 0.6MPl (blue line) and p = 2, µ = 0.9MPl (green line). For small
values of µ and p > 1, the inflationary regions are separated into a large field one and the vacuum
dominated one. The latter may not exist due to slow-roll violations if the field first rolls down the
potential in the large field domain (see the text for a detailed discussion). The shaded area indicates
the regions in which acceleration cannot occur. Bottom right panel: slow-roll parameters ✏2 (solid
line) and ✏3 (dotted line) for µ = 0.6MPl.

which is again very similar to SFI, up to a sign. The trajectory (6.34) cannot be inverted
analytically in the general case. It is however possible to perform this inversion for many
integer values of p, but those expressions will be omitted for the sake of clarity. We simply
give an approximate solution valid only in the limit x⌧ 1 and p > 2

x '


x2−p
end + p(p− 2)

M2
Pl

µ2
(N −Nend)

]1/(2−p)

. (6.36)

If the waterfall inflation does not take place, i.e. under the condition (6.23), valley
hybrid inflation ends by a tachyonic instability in the small field regime x < 1, also referred
to as “the vacuum dominated regime”. From the two-fields potential (6.20), one sees that
the transverse direction becomes tachyonic at the inflaton value

φend =

r

λ0

λ
∆. (6.37)
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In the single field approach, xend is therefore an extra-parameter and VHI is a three param-
eters model according to our classification. However, as can be seen in Fig. 73, one should
pay attention to the various domains in which inflation can take place. They are given by
the behavior of ✏1(x).

If p > 1, the slow-roll parameter ✏1 vanishes when the field goes to zero and at infinity
while it reaches a maximum for

x✏max
1

= (p− 1)1/p , (6.38)

equals to

✏max
1 =

1

2

✓

MPl

µ

◆2

(p− 1)
2p−2

p . (6.39)

Defining

µ✏ ⌘
MPlp
2
(p− 1)1−1/p , (6.40)

for all µ > µ✏, one has ✏1(x) < 1 and inflation can proceed all over the domain x > 0. On the
contrary, if µ < µ✏, then inflation can, a priori, proceed in two disconnected domains. Either
0 < x < x−✏1=1 or x > x+✏1=1 where x±✏1=1 are the two roots of ✏1 = 1, i.e. the solutions of

x2p + 2xp − p2

2

✓

MPl

µ

◆2

x2p−2 + 1 = 0. (6.41)

This equation cannot be solved explicitly in the general case but, as for the trajectory, there
are explicit analytic expressions for many integer values of p. For instance, for p = 2, one
gets

x
±(p=2)
✏1=1 =

1p
2

MPl

µ

 

1±
s

1− 2
µ2

M2
Pl

!

. (6.42)

The positive sign corresponds to the largest root while the minus one to the smallest (see
Fig. 73). In the limit µ ⌧ MPl, one has x+✏1=1 ' pMPl/(

p
2µ) which is also the expression

of xend for the large field model LFI (see section 4.2). This does not come as a surprise
since in that situation Eq. (6.29) is indeed dominated by the monomial term. In fact, the
two above-mentioned domains precisely corresponds to a large field one for x > x+✏1=1 and

a vacuum dominated one for x < x−✏1=1. It is a common mistake to assume that the large
field domain remains unobservable due to the existence of the vacuum dominated one. In
fact, as shown in Ref. [571], the large field regime becomes observable provided µ ⌧ µ✏. In
that situation, after having crossed x+✏1=1, the field fast-rolls in the region ✏1(x) > 1. Then, it

enters the domain x < x−✏1=1 with a strong initial velocity and, as a consequence, crosses the
whole vacuum dominated region, still in fast-roll, to reach xend. All observable predictions in
such a situation are therefore similar to that obtained in the LFI models. Let us notice that,
if there exists a mechanism that can gently put the field without a strong initial velocity
inside the x < x−✏1=1 domain, then inflation can still occur in the vacuum dominated region,

even though µ < µ✏. But if the field is coming from the region x > x+✏1=1, then this regime
does not exist anymore.

For p = 1, ✏1(x) is a decreasing function of the field and takes a finite value M2
Pl/(2µ

2)
for x ! 0. The behavior is similar to the case p > 1 and if µ > MPl/

p
2 inflation can take

place all over x > xend. However, if µ < MPl/
p
2 then the vacuum dominated region does

not exist anymore and x✏1=1 = x+✏1=1 = MPl/(
p
2µ)− 1 One should also notice that if p = 1

the relation ✏2 = 4✏1 applies.
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Finally, for p < 1, ✏1(x) is a decreasing function of the field but it blows up when x! 0.
In that situation, inflation stops at x = max(x−✏1=1, xend) but the field will still fast-roll till

the tachyonic instability develops at xend. As a result, even if for some cases x−✏1=1 > xend,
the observable predictions remain mostly the same.

According to the previous discussion, for p > 1, the VHI effective potential is therefore
adequate to describe the vacuum dominated regime only, i.e. for xend < x < x−✏1=1 where
xend is the instability point given by Eq. (6.37). In that situation, solving Eq. (2.47) together
with the trajectory (6.34) gives the observable field value x⇤ at which the pivot mode crossed
the Hubble radius during inflation. The potential parameter M is fixed from the amplitude
of the CMB anisotropies

M4

M4
Pl

= 720⇡2p2
M2

Pl

µ2
x2p−2
⇤

(1 + xp⇤)
3

Q2
rms−PS

T 2
. (6.43)

The reheating consistent slow-roll predictions are displayed in Figs. 171, 172, 173, 174 and
175 for p = 0.5, p = 1, p = 1.5, p = 2 and p = 3, respectively. For p > 1 and x✏max

1
> 1,

xend is varied between 0 and an upper bound such that xin < x−✏1=1. One the other hand,
if x✏max

1
< 1, then one simply takes xend < 10. For p  1, xend is varied on a wider range,

with no particular constraints. For p = 1, the predictions lie on the line ✏2 = 4✏1 as expected
whereas for p > 1 one recovers a blue spectral index when x✏max

1
> 1, while a red spectral

index can be obtained when x✏max
1

< 1 and x⇤ > x✏max
1

, with x⇤ < 1 (that is to say, the large
field regime).

6.3 Dynamical Supersymmetric Inflation (DSI)

6.3.1 Theoretical Justifications

This model has been studied in Refs. [583, 584]. As for the IMI scenario, see section 5.18,
the model is based on Ref. [537] which has shown that inverse power law potentials naturally
arise in supersymmetric theories. The fact that we have an inverse power law behavior,
rather than the usual positive power law behavior, can be traced back to the presence of
non-perturbative effects, such as for instance gaugino condensation, see section 5.18. Based
on the previous considerations, one can write that

V = V0 +
Λ
p+4
3

φp
+
φq+4

M q
Pl

, (6.44)

where the last term encodes a correction to V (φ) due to a non-renormalizable operator. It
is Planck suppressed since MPl is the only explicit scale present in the theory. This term
implies that there is a minimum located at

φV min =

✓

p

q + 4
Λ
p+4
3 M q

Pl

◆ 1
p+q+4

. (6.45)

This means that the extra term can be neglected in the region φ⌧ φV min and, in the following,
we assume that this is the case. The difference with the IMI scenario is the presence of the
constant term V0 which will be assumed to be dominant.
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Figure 74. Dynamical Supersymmetric Inflation (DSI) for p = 2. Upper panels: the potential and
its logarithm as a function of φ/µ. Bottom left panel: slow-roll parameter ✏1 rescaled byM2

Pl
/µ2. The

shaded area indicates the region in which inflation cannot occur for µ = MPl. Bottom right panel:
slow-roll parameters ✏2 (solid line) and ✏3 (dotted line), rescaled by M2

Pl
/µ2.

6.3.2 Slow-Roll Analysis

In this sub-section, we now turn to the slow-roll analysis of the DSI scenario. For this purpose,
we rewrite the potential as

V (φ) =M4

"

1 +

✓

φ

µ

◆−p
#

, (6.46)

where p is a free index parameter and where we defined

V0 =M4, µp =
Λ
p+4
3

M4
. (6.47)

As already mentioned, in order for inflation to take place in the vacuum dominated regime,
we must assume that φ& µ. In Refs. [583, 584], it was argued that natural values for Λ3 and
M are 106GeV and 1010GeV, respectively. This means that a scale of order µ ' 106+14/p GeV
is a reasonable prior for µ.

The potential (6.46), as well as its logarithm, is displayed in Fig. 74. It is a decreasing
function of the field, hence inflation proceeds from the left to the right. Defining the quantity

x ⌘ φ

µ
, (6.48)
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the first three Hubble flow functions in the slow-roll approximation read

✏1 =
p2

2

✓

MPl

µ

◆2 x−2p−2

(1 + x−p)2
, ✏2 = −2p

✓

MPl

µ

◆2

x−p−2x
−p + p+ 1

(1 + x−p)2
, (6.49)

and

✏3 = −p
✓

MPl

µ

◆2

x−p−2

⇥

2x−2p + (p+ 1) (p− 4) x−p + (p+ 1) (p+ 2)
⇤

(1 + x−p)2 (x−p + p+ 1)
. (6.50)

Let us already notice that, from these expressions, one has

− 2✏1 − ✏2 =

✓

MPl

µ

◆2 px−p−2

(1 + x−p)2
⇥

px−p + 2p (p+ 1)x−p−2
⇤

> 0, (6.51)

which implies a blue spectral index for the scalar power spectrum since, at first order, nS−1 =
−2✏1⇤ − ✏2⇤. The three slow-roll parameters become very small at large fields x & 1. There
is a value x✏1=1 such that ✏1 = 1. For x such that x < x✏1=1, ✏1 > 1 and inflation cannot
take place. This value has to be determined numerically, but since the natural values for µ
are such that µ/MPl ⌧ 1, an approximate expression can be derived

x✏1=1 '
✓

pp
2

MPl

µ

◆1/(p+1)

. (6.52)

Because the potential is decreasing with x, inflation can only take place in the domain
x > x✏1=1 & 1 if µ⌧MPl. It cannot stop by slow-roll violation and another mechanism such
as, e.g. a tachyonic instability, has to be introduced. We will denote by xend the field value
at which this occurs. It represents an extra parameter of the model. Obviously, it must be
such that x✏1=1 < xend ⌧ xV min.

Let us now turn to the slow-roll trajectory. It can be integrated explicitly from Eq. (2.11)
and one obtains

Nend −N =
µ2

2pM2
Pl

✓

x2end +
2

p+ 2
xp+2
end − x2 − 2

p+ 2
xp+2

◆

. (6.53)

In the µ/MPl ⌧ 1 limit, one has x > x✏1=1 & 1, and the previous trajectory can be approxi-
mated by

Nend −N ' µ2

p(p+ 2)M2
Pl

⇣

xp+2
end − xp+2

⌘

. (6.54)

This expression can be analytically inverted to get the observable field value x⇤ in terms of
∆N⇤ = Nend −N⇤ as

x⇤ '


xp+2
end − M2

Pl

µ2
p (p+ 2)∆N⇤

]
1

p+2

. (6.55)

One can notice that the total amount of e-folds is bounded because xend ⌧ xV min and cannot
take infinitely large values. In order to get a number of e-folds, ∆N > ∆Nmin, xend should
be sufficiently large with xend > xmin

end . More precisely, setting xini = x✏1=1, one has

xmin
end '

"

p (p+ 2)
M2

Pl

µ2
∆Nmin +

✓

pp
2

MPl

µ

◆
p+2
p+1

#

1
p+2

'


p (p+ 2)
M2

Pl

µ2
∆Nmin

]
1

p+2

. (6.56)
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In practice one wants ∆Nmin > 50 to solve the problems of the standard Big-Bang scenario.
Whether this value is compatible, or not, with the condition xend ⌧ xV min depends on the
value of M4 appearing in Eq. (6.45), which is itself determined by the amplitude of the CMB
anisotropies. This one reads

✓

M

MPl

◆4

= 720⇡2p2
✓

MPl

µ

◆2

x−2p−2
⇤

(

1 + x−p
⇤
)−3 Q

2
rms−PS

T 2
. (6.57)

In the limit µ/MPl ⌧ 1, one has x⇤ & 1 and this expression can be approximated by

M4

M4
Pl

' 720⇡2p2
M2

Pl

µ2
x−2p−2
⇤

Q2
rms−PS

T 2
. (6.58)

Therefore, from Eq. (6.45), one has

xV min '
"

720⇡2
p3

q + 4

✓

MPl

µ

◆6+q

x−2p−2
⇤

Q2
rms−PS

T 2

# 1
p+q+4

, (6.59)

with x⇤ depending on xend through Eq. (6.55). One can see that the previous expression
decreases with x⇤ and the condition xend ⌧ xV min imposes an upper bound on xend < xmax

end

with

xmax
end '

"

720⇡2
p3

q + 4

Q2
rms−PS

T 2

✓

MPl

µ

◆q+6
#1/(3p+q+6)

. (6.60)

The prior condition on xend is therefore of the type xmin
end < xend ⌧ xmax

end , with x
min
end defined

by Eq. (6.56) and xmax
end defined by Eq. (6.60). For any q > 0, these two equations show that

there exists an upper bound µ < µmax under which the condition xmin
end ⌧ xmax

end is satisfied.
It reads

µmax

MPl

'

⇣

720⇡2 p3

q+4

Q2
rms−PS

T 2

⌘(p+2)/(pq)

[p(p+ 2)∆Nmin]
(3p+q+6)/(pq)

, (6.61)

and has been represented in Fig. 75. One can see that a typical value µ/MPl ' 1010 GeV (see
Ref. [583]) is not allowed for realistic values of p and q. As such, the prior space for p, µ, and
xend is constrained and should be handled carefully.

The reheating consistent slow-roll predictions of the dynamical supersymmetric models
are displayed in Figs. 176, 177 and 178 for p = 2, p = 3 and p = 4, respectively, and with
10−10MPl < µ < µmax (where µmax has been calculated taking q = 8 and ∆Nmin = 60
to cover a large prior space). The reheating equation of state parameter wreh has been
taken to 0 but since there is no potential minimum around which the inflaton field can
oscillate at the end of inflation, this parameter is a priori unspecified and can take different
values. In any case the reheating temperature is strongly degenerated with the parameter
xmin
end < xend < xmax

end preventing their inference. One can check that the spectral index is
blue, as announced earlier, making these models disfavored by the observations. The typical
amount of gravitational waves is very small, in agreement with the results of Ref. [583].

6.4 Generalized Mixed Inflation (GMLFI)

This model is a generalization of MLFI (see section 4.3) and is, by definition, the sum of
two monomial functions with arbitrary power indices. The corresponding potential can be
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Figure 75. Dynamical Supersymmetric Inflation. Maximal value of µ/MPl with respect to p, and
for different values of q, such that the condition xmin

end < xmax
end is satisfied. We have fixed ∆Nmax = 50.

The black dotted line show a typical value for µ/MPl ' 1010GeV [583].

written as

V =M4

✓

φ

MPl

◆p 

1 + ↵

✓

φ

MPl

◆q]

, (6.62)

where ↵, p and q are three dimensionless positive parameters. It can be seen as a general-
ization of the large field inflation potential (LFI, see section 4.2), which is recovered when
↵ ! 0 or ↵ ! 1. The parameter ↵ therefore controls the relative weight of the two terms.
Since the potential is an increasing function of the inflaton vev , inflation proceeds from the
right to the left and occurs in the large field regime φ/MPl & 1. Defining the quantity x by

x ⌘ φ

MPl

, (6.63)

the first three Hubble flow functions in the slow-roll approximation can be expressed as

✏1 =
1

2x2



p+ ↵ (p+ q)xq

1 + ↵xq

]2

, (6.64)

✏2 =
2

x2
p+ ↵2 (p+ q)x2q + ↵

(

2p+ q − q2
)

xq

(1 + ↵xq)2
, (6.65)
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Figure 76. Generalized Mixed Inflation (GMLFI) for p = 3, q = 2 and ↵ = 0.1. Upper panels: the
potential and its logarithm with respect the field value. Bottom left panel: slow-roll parameter ✏1,
the shaded region is where inflation stops. Bottom right panel: slow-roll parameters ✏2 (solid line)
and ✏3 (dotted line).
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✏3 =
1

x2 (1 + ↵xq)2
⇥
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x3q + ↵pq2
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4 + q2 − 3q
)⇤

xq

)

.

(6.66)

They are decreasing functions of the field, vanishing when x! 1 and diverging when x! 0.
Together with the potential and its logarithm, the Hubble flow functions are represented in
Fig. 76.

In Fig. 76, one sees that inflation ends by slow-roll violation at x = xend, the solution
of the equation ✏1(xend) = 1. From Eq. (6.64), one obtains

p
2↵xq+1

end +
p
2xend = ±

⇥

p+ ↵ (p+ q)xqend
⇤

. (6.67)

One can check that, for ↵ = 0, one recovers the LFI-p result xend = p/
p
2 (see section 4.2)

and that, for ↵! 1, one gets xend = (p+ q) /
p
2, which correspond again to the LFI-p+ q
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solution. The above equation cannot be solved analytically for arbitrary values of p, q. This
is possible only in some particular cases, namely q = 0, q = 1 or q = 2. For q = 0, this
is LFI whereas q = 2 corresponds to MLFI, both solutions being given in section 4.2 and
section 4.3, respectively. For q = 1, one obtains

xend =

p
2

4
(p+ 1)− 1

2↵
+

q

4 + 4
p
2↵ (p− 1) + 2↵2 (p+ 1)2

4↵
, (6.68)

but, in general, xend has to be determined numerically.
The slow-roll trajectory can be integrated explicitly using Eq. (2.11) and this leads to
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]}
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(6.69)

Here, 2F1 stands for the Gauss hypergeometric function [204, 205]. Since it is equal to unity
when its last argument vanishes, one can check that, in the limit ↵ ! 0, one recovers the
slow-roll trajectory for the LFI-p models while the limit ↵ ! 1 leads to the trajectory of
the LFI-(p + q) models. Finally, since 2F1 (1, 1, 2, x) = − ln (1− x) /x, one can also check
that the MLFI case corresponds to p = q = 2. The previous expression can only be inverted
for q = 0 (LFI) and q = 2 (MLFI), and they have been already discussed in section 4.2
and section 4.3, respectively. The case q = 1 can also be simplified using 2F1 (1, 2, 3, x) =
−2/x− 2 ln(1− x)/x2. In general, one has to inverse this slow-roll trajectory numerically.

The parameter M can be determined from the amplitude of the CMB anisotropies and
the Hubble crossing vev x⇤. One obtains

M4

M4
Pl

= 720⇡2
[p+ ↵ (p+ q) xq⇤]

2

xp+2
⇤ (1 + ↵xq⇤)

3

Q2
rms−PS

T 2
. (6.70)

The reheating consistent slow-roll predictions for the generalized mixed large field mod-
els are displayed in Figs 179, 180, and 181 for (p = 2 and q = 1), (p = 2 and q = 3) and (p = 3
and q = 2), respectively. As for MLFI, the predictions lie between the LFI-p and LFI-(p+ q)
models, but can actually exit this region for large enough values of ↵. This means that, if one
starts from a pure V / φp+q potential and adds a small / φp term, then this extra term has
the effect of increasing the “effective value” of the power index of the potential. Moreover,
since for large field inflation models, the p-model fits the data better than the (p + q)-one,
it follows that small values for the parameter ↵ are favored, together with high reheating
temperatures.

6.5 Logarithmic Potential Inflation (LPI)

6.5.1 Theoretical Justifications

This class of model assumes that inflation is driven by a composite state in a strongly inter-
acting theory, see Refs. [502, 585, 586]. Let us consider the following model, see section 5.14
for more details

LGI = −'−3/2@µ'@
µ'− '

2
ln
⇣ '

Λ4

⌘

, (6.71)
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where Λ is a mass scale. Moreover, let us consider the situation where the model has a
general non-minimal coupling to gravity of the form

S =

Z

d4x
p
−g



−1

2

⇣

M2 + ⇠'1/2
⌘

R+ LGI

]

. (6.72)

The coupling to gravity is characterized by the parameter ⇠. Then, the action in the Einstein
frame reads [502, 585, 586]
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]

, (6.73)

where VGI refers to the potential in Eq. (6.71) and Ω
2 =

(

M2 + ⇠'1/2
)

/M2
Pl. If ⇠ 6= 0 and if

we are in the large field limit, then Ω
2 ' ⇠'1/2/M2

Pl and the canonically normalized field φ is
such that φ / ln'. In that case the potential reduces to Ω

−4VGI / ln' / φ. Therefore, we
have obtained a LFI model with p = 1, see section 4.2. On the other hand, if one assumes
that ⇠ = 0, then ' = φ4/(4

p
2)4 and

V = 2Λ4

✓

φ
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◆4

ln

✓

φ
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◆

, (6.74)

with φ0 ⌘ 4
p
2Λ. This resembles the potential found in section 5.14 which, for β = 0 (see

the precise definition in that section), was such that V / φ4 ln2 (φ/φ0). These considerations
motivate the next section devoted to the slow-roll analysis of this class of scenarios.

6.5.2 Slow-Roll Analysis

Based on the previous discussion, we now turn to the slow-roll analysis of the models described
by the following potential

V (φ) =M4

✓

φ

φ0

◆p✓

ln
φ

φ0

◆q

. (6.75)

We have just seen that, for p = 4 and q = 2, the model discussed in Ref. [502] is recovered,
see section 5.14, while for p = 4 and q = 1, this model matches with the so-called Glueball
Inflation of Ref. [585]. This class of models has also been studied on general grounds in
Ref. [587]. In the following, we keep p and q unspecified. Defining the quantity x by the
following relation

x ⌘ φ

φ0

, (6.76)

the potential has a local maximum at x = xV max and a local minimum (at which the potential
vanishes) at x = xV=0 with

xV max = e−q/p, xV=0 = 1. (6.77)

For x > xV=0, V (x) increases and finally diverge when x goes to infinity. The potential
is always definite positive in the x > 1 branch, whereas it is definite positive in the x < 1
branch only if q is an even integer. The first three Hubble flow functions in the slow-roll
approximation are given by

✏1 =
M2

Pl

φ2
0

(q + p lnx)2

2x2 ln2 x
, ✏2 = 2

M2
Pl

φ2
0

q + q lnx+ p ln2 x

x2 ln2 x
, (6.78)

– 219 –



Figure 77. Logarithmic Potential Inflation (LPI) for p = 4, q = 2. Upper panels: the potential and
its logarithm. Bottom left panel: slow-roll parameter ✏1. Bottom right panel: slow-roll parameters ✏2
(solid line) and ✏3 (dotted line).

and

✏3 =
M2

Pl

φ2
0

(q + p lnx)
2q + 3q lnx+ 2q ln2 x+ 2p ln3 x

x2 ln2 x
(

q + q lnx+ p ln2 x
) . (6.79)

Together with the potential, they are displayed in Fig. 77.
As can be checked on this figure, and assuming q is even, the behavior of ✏1(x) exhibits

three domains in which inflation can occur and can naturally end. Either x > 1 and inflation
proceeds from the right to the left (LPI1), or xV max < x < 1 and inflation proceeds from the
left to the right (LPI2), or 0 < x < xV max and inflation proceeds from the right to the left
(LPI3), see the three arrows in Fig. 77. For these three cases, the slow-roll trajectory can be
integrated analytically and one has

N −Nend =

✓

φ0

MPl

◆2⇢

−x
2 − x2end
2p

+
q

p2
e−2q/p



Ei

✓

2q

p
+ 2 ln x

◆

− Ei

✓

2q

p
+ 2 ln xend

◆]}

.

(6.80)
Let us remark that for x! +1 (LPI1), one recovers the large field inflation (LFI) trajectory
of section 4.2 with p becoming the same parameter of LFI.

In the three above described regimes, inflation ends at the field value xend solution of
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✏1(xend) = 1, i.e. verifying

p ln(xend) + q ⌥
p
2
φ0

MPl

xend lnxend = 0. (6.81)

This is a transcendental equation that cannot be solved analytically for any values of p and
q. It can nevertheless be solved numerically in each of the three above-mentioned situations.
Together with Eq. (2.47), Eq. (6.80) uniquely determines the observable field value x⇤ at
which the pivot scale crossed out the Hubble radius during inflation. Therefore, according
to our classification, LPI is a three parameters model with p, q and φ0 .

Finally, the parameter M is fixed by the amplitude of the CMB anisotropies to

M4

M4
Pl

= 720⇡2
✓

MPl

φ0

◆2 (q + p lnx⇤)
2

x2+p
⇤ ln2+q x⇤

Q2
rms−PS

T 2
. (6.82)

The reheating consistent slow-roll predictions for the LPI1 models with p = 4 are represented
in Figs 182, 183, and 184 for q = 2, q = 1 and q = 3, respectively. The predictions for LPI2
are displayed in Figs 185, 186, and 187 for (p = 1, q = 2), (p = 2, q = 2) and (p = 3, q = 4),
respectively. For the LPI3 scenario, the predictions have been plotted in Figs 188, 189, and
190 for (p = 1, q = 2), (p = 2, q = 2) and (p = 3, q = 4), respectively. One can see that the
current CMB data generically require LPI inflation to take place with super-Planckian values
for φ0 while some combinations of p and q are already disfavored at more than two-sigma.

6.6 Constant nS D Inflation (CNDI)

This model has been studied in Ref. [500]. Its potential is designed to produce a power law
power spectrum / kn (where n is a constant). In this sense, the approach followed here is
similar to the one investigated in sections 4.20, 4.21 and 5.15. The potential studied in this
section is given by

V (φ) =
M4

⇢

1 + β cos



↵

✓

φ− φ0

MPl

◆]}2 , (6.83)

where ↵ and β are two dimensionless parameters. Since the potential is an even function
of x ⌘ (φ− φ0) /MPl and is 2⇡-periodic, it can be studied without loss of generality in the
range x 2 [0,⇡/↵] only (with ↵ > 0, β > 0). The potential and its logarithm are displayed
in Fig. 78 (top panels) for two different representative values of β. If β < 1 (blue curve),
it is an increasing function of the field, hence inflation proceeds from the right to the left.
On the contrary, if β ≥ 1 (pink curve), it diverges at xV!1 = arccos (−1/β) /↵. Then, for
x < xV!1 it is an increasing function of x and inflation proceeds from the right to the left,
whereas for x > xV!1 it is an decreasing function of x and inflation proceeds from the left
to the right.

The three first slow-roll parameters are given by the following expressions

✏1 =
2↵2β2 sin2 (↵x)

[1 + β cos (↵x)]2
, ✏2 =

−4↵2β [β + cos (↵x)]

[1 + β cos (↵x)]2
, (6.84)

and

✏3 =
−2↵2β

⇥

2β2 − 1 + β cos (↵x)
⇤

sin2 (↵x)

[β + cos (↵x)] [1 + β cos (↵x)]2
. (6.85)
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Figure 78. Top left panel: constant nS D inflaton potential for ↵ = 1 and two values of β, namely
β = 0.7 (solid blue line) and β = 1.3 (solid pink line). Top right panel: logarithm of the potential for
the same values of ↵ and β and with the same color code. Bottom left panel: first slow-roll parameter
✏1 for a potential with ↵ = 1 and β = 0.7 (solid blue line), β = 1.8 (solid pink line). The shaded
area indicates the breakdown of slow-roll inflation (strictly speaking where acceleration cannot occur).
Bottom right panel: second and third slow-roll parameters ✏2 and ✏3 for ↵ = 0.25 and the same values
of β as in the other plots.

They are displayed in Fig. 78 (bottom panels). Let us now study in more detail the behavior
of ✏1 and ✏2. It depends on whether β is larger or smaller than 1. If β < 1, the first slow-roll
parameter ✏1 vanishes at x = 0 and x = ⇡/↵, and reaches a maximum in between at x✏2=0.
This maximum is larger than one provided ↵ > ↵min (β), where

↵min (β) =

s

1− β2

2β2
. (6.86)

In that case, inflation can stop by slow-roll violation, at the position xend given by

xend = x+✏1=1 =
1

↵
arccos

"

↵
p

2β2 (1 + 2↵2)− 2− 1

β + 2↵2β

#

, (6.87)

and proceeds in the range [xend,⇡/↵] (from the right to the left). On the other hand, the
second slow-roll parameter ✏2 is a monotonous increasing function of x, which vanishes at
x✏2=0 = arccos (−β) /↵. If β ≥ 1, as can be seen in Fig. 78, the first slow-roll parameter ✏1
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diverges at xV!1 = arccos(−1/β)/↵, so that inflation cannot stop by slow-roll violation in
that case. This means that inflation must end by another mechanism and, therefore, that
the model depends on an additional parameter. The second slow-roll parameter ✏2 is always
negative and also diverges at xV!1. Let us notice that, for β < 1 and ↵ > ↵min (β), and for
β > 1 (for any ↵), we will need below the other solution of ✏1 = 1, namely

x−✏1=1 =
1

↵
arccos

"

−↵
p

2β2 (1 + 2↵2)− 2 + 1

β + 2↵2β

#

. (6.88)

We are now in a position where the slow-roll trajectory can be determined. It turns out
that this one can be integrated analytically and reads

N−Nend =
1

2↵2

⇢

− ln [sin (↵x)]− 1

β
ln
h

tan
⇣

↵
x

2

⌘i

+ ln [sin (↵xend)] +
1

β
ln
h

tan
⇣

↵
xend
2

⌘i

}

.

(6.89)
Because of the logarithmic functions, a sufficient number of e-folds can be realized only if
the initial conditions are fine-tuned and xini is chosen to be extremely close to ⇡/↵.

Indeed, inserting Eq. (6.87) into Eq. (6.89), the total number of e-folds during inflation
becomes a function of xini and of the two parameters ↵ and β. For given values of those
parameters, one can check that (Nend −Nini)(xini) remains always small compared to unity,
unless xini ! ⇡/↵ where it blows up. Let us write xini as ⇡/↵ + δxini with δxini ⌧ 1 and
defining A ⌘ ln [sin (↵xend)] + ln [tan (↵xend/2)] /β, one arrives at

δxini '


↵
⇣↵

2

⌘−1/β
e−A

]β/(1−β)
e−2↵2β(Nend−Nini)/(1−β). (6.90)

The coefficient between the squared brackets only depends on ↵ and β which are, a priori,
coefficients of order one. On the other hand, the argument of the exponential is 2(Nend −
Nini) > 120, times a negative term of order one. This means that δxini must be exponentially
small to obtain a significant number of e-folds and one can question the physical relevance
of such a fine-tuning. The typical predictions of the model (taking x⇤ ' ⇡/↵) actually are
✏1 ' 0, ✏2 ' 4↵2β/ (1− β), and ✏3 ' 0. It follows that the condition ↵ > ↵min (β) implies
✏2 > 2 (1 + β) /β > 4, which is is completely ruled out by the observations. Therefore, we
conclude that the case β < 1 is not of cosmological interest.

The only remaining possibility is β > 1. Inflation cannot end by slow-roll violation and
xend is an additional parameter, making the model a three parameters one. In the range
↵xend ⌧ 1, one has ✏1 ⌧ 1 and ✏2 ' −4↵2β/(1 + β) such that the spectral index is given by
nS ' 1 + 4↵2β/ (β + 1). Therefore, it is indeed a constant.

The CMB normalization gives the mass scale M as
✓

M

MPl

◆4

= 2880↵2β2⇡2 sin2 (↵x⇤)
Q2

rms−PS

T 2
, (6.91)

which has to be numerically evaluated when if ↵x⇤ is not small. The predictions of CNDI
inflation are displayed in Figs. 191 and 192. We see that, in the regime ↵xend ⌧ 1, the spectral
index is constant, as expected. However, this occurs in a regime where the predictions are
not consistent with the observations (the spectrum is too blue). On the other hand, when
↵xend is no longer small, we observe strong deviations from nS ' 1 + 4↵2β/ (β + 1) but,
for intermediate values of ↵ ' 0.3, this renders the predictions compatible with the data.
Obviously, these considerations bear some resemblance with the findings of sections 4.20,
4.21 and 5.15.
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7 Conclusions

Let us very briefly recap our main findings and present some directions for future works.
In this article, we have discussed the question of how the inflationary theory can be

constrained given that we now have at our disposal high accuracy cosmological data. We
have argued that this can be done by means of the slow-roll approximation which has the
advantage of being relatively model independent. Although this approximation cannot be
used if one has to deal with more complicated models, it produces interesting but limited
information on inflation. Concretely, it leads to the Hubble flow posterior distributions
P (✏n|Cmeas

` ). This is interesting since it gives a general constraint on the derivatives of the
inflaton potential. But, at the same time, this does not answer some legitimate fundamental
questions one might have about the plethora of inflationary scenarios studied so far. For
instance, it does not tell us rigorously which constraints exist on the parameters of a given
model. Indeed, suppose that we are interested in LFI, V (φ) / φp. It is obvious that we
would like to know for which values of p this class of models is compatible with the data and
for which values it is not.

In order to complement the slow-roll approximation and to address the above mentioned
issues, we have argued that it is interesting to scan the inflationary landscape model by model
and have provided the public code ASPIC to do so. Such a strategy has to be done for all
the inflationary scenarios since it would be arbitrary to consider only a restricted class while
ignoring the others. In fact, this question deserves to be discussed in more detail. One
could indeed imagine that it is not necessary to consider all the models one by one and that
considering a representative for each class is sufficient. Indeed, to simplify the discussion, it
is common to distinguish three broad types of scenarios: large field models (LFI), small field
models (SFI) and Hybrid models (VHI). Such a classification is not very precise and biased
because it pushes to the front line these three models. It could be reasonably argued that
a better classification is the one of Schwarz and Terrero-Escalante introduced in Ref. [588].
For a scalar field, the ratio of the kinetic energy to the total energy density is given by
✏1/3 = φ̇2/(2⇢). Because ✏2 is, by definition, the logarithmic derivative of ✏1 with respect to
the e-fold number, the kinetic contribution to the total energy density increases if ✏2 > 0 and
decreases if ✏2 < 0. On the other hand, we also have

d(φ̇2/2)

dt
= H

φ̇2

2
(✏2 − 2✏1) , (7.1)

and, therefore, the absolute value of the kinetic energy increases if ✏2 > 2✏1 whereas it
decreases if ✏2 < 2✏1. This allows us to identify three different regions: ✏2 > 0 and 2✏1 < ✏2
(region 1), ✏2 < 2✏1 (region 2), ✏2 < 0 < 2✏1 (region 3).

These three regions are identified in Fig. 79 together with Planck and WMAP9 bounds8.
If we use the first order slow-roll expressions, the condition ✏2 > 0 is equivalent to r < 8(1−nS)
while ✏2 > 2✏1 amounts to r < 4(1 − nS). These two lines are also represented in Fig. 79
(solid black lines). We have also superimposed the predictions of LFI, SFI and VHI (upper
panel). We see that the three regions defined above roughly correspond to the cases large
field, small field and hybrid. However, the correspondence is not perfect and we notice, for
instance, that the predictions of VHI can penetrate region 2.

8The slight shift visible on the one- and two-sigma contours between the two plots come from the different
priors used, either flat on ✏1 or flat on log ✏1 (Jeffreys’ prior).
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Figure 79. Upper panel: various ASPIC scenarios in the (nS, r) plane using the Schwarz-Terrero-
Escalante classification [588] and compared to the Planck data [66, 69, 70, 133, 134, 153] (blue con-
tours) and the WMAP9 data [67, 68] (light gray shading). Bottom panel: same plot in logarithmic
scale for another sample of models.
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Figure 80. Observable predictions in the (nS, r) plane for various models belonging to region 1 of
the Schwarz-Terrero-Escalante classification (see Fig. 79). Despite the fact that they are in the same
broad class, the accuracy of the CMB data allows us to discriminate among them thereby justifying
a detailed navigation within the inflationary landscape.

Having identified three broad classes of scenarios, the question is whether testing only
a representative model for each class could be sufficient. In Fig. 80, we have considered
the predictions of six different models that all belong to region 1. This plot clearly shows
that inside this region, these six models span different domains that are separated enough
to be distinguishable within current and future data. Given the quality of the current data,
working only with broad classes of models seems to be no longer justified. Therefore, if
one really wants to scan the inflationary landscape, the approach advocated in this paper is
well-suited.

With ASPIC, we have provided a new tool to treat any model of inflation and this
has led us to derive observational predictions for 74 models. ASPIC is an evolutive project
and therefore the next steps will be to complete and upgrade it with new models. Finally,
the ultimate goal is to identify which ASPIC model is performing the best for explaining
cosmological data. In order to carry out this task, an appropriate method is to use Bayesian
evidence and model comparison. Then, we should be able to identify, in a statistically well-
defined manner, what might be called “the best model of inflation”.
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A Reheating consistent slow-roll predictions

A.1 Higgs Inflation (HI)

Figure 81. Reheating consistent slow-roll predictions for the Higgs model in the plane (nS, r) (top
panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma
Planck confidence intervals (marginalized over second order slow-roll). The annotations trace the

energy scale at which the large field reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.2 Radiatively Corrected Higgs Inflation (RCHI)

Figure 82. Reheating consistent slow-roll predictions for the radiatively corrected Higgs model in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours
are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll).
The annotations trace the energy scale at which the large field reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.3 Large Field Inflation (LFI)

Figure 83. Reheating consistent slow-roll predictions for the large field models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The black solid lines
represent the locus of different LFI-p models [for which (1 + 2/p) r = 8 (1− nS), i.e. ✏1 = (p/4)✏2].
The annotations trace the energy scale at which the large field reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). Large reheating temperatures are preferred and models with p > 2 are disfavored

at two sigma confidence level.
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A.4 Mixed Large Field Inflation (MLFI)

Figure 84. Reheating consistent slow-roll predictions for the mixed large field models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one
and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to its
minimum. The black solid lines represent the locus of the quadratic model (namely LFI with p = 2)
and of the quartic model (namely LFI with p = 4) [for which (1 + 2/p) r = 8 (1− nS), i.e. ✏1 =
(p/4)✏2]. The annotations trace the energy scale at which the mixed large field reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly, these values are limited from below to stay inside the

two-sigma contours and models with ↵ > 10−3 are excluded at two-sigma confidence level.
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A.5 Radiatively Corrected Massive Inflation (RCMI)

Figure 85. Reheating consistent slow-roll predictions for the radiatively corrected massive models in
the plane (nS, r). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The black solid line represent the locus of the quadratic
model [i.e. LFI with p = 2, for which r = 4 (1− nS), i.e. ✏1 = ✏2/2]. The annotations trace the energy

scale at which the radiatively corrected massive reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, these values are limited from below to stay inside the two-sigma contours and models with
↵ > 10−3.5 are disfavored at two sigma confidence level.
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A.6 Radiatively Corrected Quartic Inflation (RCQI)

Figure 86. Reheating consistent slow-roll predictions for the radiatively corrected quartic models
in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), with wreh = 0. The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The black solid line represent the locus of the quartic model [i.e. LFI with p = 4,
for which r = (16/3) (1− nS), i.e. ✏1 = ✏2]. The annotations trace the energy scale at which the

radiatively corrected quartic reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, these

values are limited from below, and regardless of them, these models seem to be disfavored at two
sigma confidence level.
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Figure 87. Reheating consistent slow-roll predictions for the radiatively corrected quartic models in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), with wreh = 1

3 . This value of wreh

may be more physically justified if the reheating phase takes place at the bottom of the potential,
which is quartic in a good approximation, and for which one has wreh = 1/3. The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The black solid line represent the locus of the quartic model [i.e. LFI with p = 4, for which
r = (16/3) (1− nS), i.e. ✏1 = ✏2]. Clearly, these models are disfavored at two sigma confidence level.
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A.7 Natural Inflation (NI)

Figure 88. Reheating consistent slow-roll predictions for the natural inflation models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one
and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh has been taken to 0 since the potential is quadratic close to its
minimum. The black solid line represent the locus of the quadratic model points [i.e. LFI with p = 2,
for which r = 4 (1− nS), i.e. ✏1 = ✏2/2]. The annotations trace the energy scale at which the natural

reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, high values of f/MPl seem to be favored

by the data, as well as high reheating temperatures.
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A.8 Exponential SUSY Inflation (ESI)

Figure 89. Reheating consistent slow-roll predictions for the exponential Susy models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), with wreh = 0. The two pink solid contours
are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The
black solid line represent the locus obtained from the linear large field model [with p = 1, for which
r = (8/3) (1− nS), i.e. ✏1 = ✏2/4]. The annotations trace the energy scale at which the exponential

Susy reheating ends and correspond to log(g
1/4
∗ Treh/GeV). Clearly, all these models seem to be

consistent with observations.
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Figure 90. Reheating consistent slow-roll predictions for the exponential Susy models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), with wreh = −1/3. This value of wreh may
be more physically justified (although rather extreme) if a parametric reheating feels the bottom of
the potential, which is linear in a good approximation. The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The black solid
line represent the locus of the linear large field model [with p = 1, for which r = (8/3) (1− nS), i.e.
✏1 = ✏2/4]. The annotations trace the energy scale at which the exponential Susy reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly in that case, these values are limited from below.
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A.9 Power Law Inflation (PLI)

Figure 91. Reheating consistent slow-roll predictions for the power law models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The black solid line
represents the locus of the points such that r = −8 (nS − 1), i.e. ✏2 = 0. The annotations of the
energy scale at which reheating ends are not displayed since the predictions of these models do not
depend on this parameter. Clearly, these models are excluded at more than two sigma confidence
level.
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A.10 Kähler Moduli Inflation I (KMII)

Figure 92. Reheating consistent slow-roll predictions for the Kähler Moduli I models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one
and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The reheating
equation of state parameter wreh = 0 since the potential is quadratic close to its minimum. The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.11 Horizon Flow Inflation at first order (HF1I)

Figure 93. Reheating consistent (exact) predictions for the horizon flow inflation at first order
models in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours trace the two-sigma Planck confidence intervals (marginalized over second order slow-roll).
The black solid line represent the locus of the quadratic large field model [with p = 2, for which
r = 4 (1− nS), i.e. ✏1 = ✏2/2]. The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). Clearly, a high energy scale reheating is preferred for these models

to remain inside the two-sigma contours. Notice that, up to the amplitude of the CMB anisotropies,
the predictions do not depend much on A1 as they are all superimposed.
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A.12 Colemann-Weinberg Inflation (CWI)

Figure 94. Reheating consistent slow-roll predictions for the Colemann-Weinberg models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), in the physical domain Q/MPl 2 [10−5, 10−3].
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over
second order slow-roll). The annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). The typical amount of gravitational waves is extremely small.
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Figure 95. Reheating consistent slow-roll predictions for the Colemann-Weinberg models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), in the domain Q/MPl 2 [1, 100] . The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). When Q/MPl & 1, the model is similar to a quadratic potential close to its

minimum, and the predictions match the LFI ✏1 = ✏2/2 relation (see section 4.2) represented by the
black lines.
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A.13 Loop Inflation (LI)

Figure 96. Reheating consistent slow-roll predictions for the loop inflation models for ↵ > 0, in
the plane (nS, r) (top panel), and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 97. Reheating consistent slow-roll predictions for the loop inflation models for ↵ < 0, in
the plane (nS, r) (top panel), and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.14 R+R2p Inflation (RpI)

Figure 98. Reheating consistent slow-roll predictions for the R + R2p inflation models in the RpI1
regime, in the plane (nS, r) (top panel), and the plane (✏1, ✏2) (bottom panel). The two pink solid con-
tours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll).

The annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 99. Reheating consistent slow-roll predictions for the R + R2p inflation models in the RpI2
regime, in the plane (nS, r) (top panel), and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of p, while different data blocks correspond to
different values of yend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). When yend >> 1, one has ✏2 ! 0 which is denoted by

the black line.
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Figure 100. Reheating consistent slow-roll predictions for the R+R2p inflation models in the RpI3
regime, in the plane (nS, r) (top panel), and the plane (✏1, ✏2) (bottom panel). The two pink solid con-
tours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll).

The annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.15 Double Well Inflation (DWI)

Figure 101. Reheating consistent slow-roll predictions for the double well models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The shape of the zone

covered by the models predictions is similar to the one for Small Field Inflation (SFI, see Fig. 112),
except in the domain φ

0
& MPl, which is the one favored by the observations. The black solid line

represents the locus of the points such that r = 4 (1− nS), i.e. ✏2 = 2✏1, on which this model lies for
φ

0
/MPl & 1.
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A.16 Mutated Hilltop Inflation (MHI)

Figure 102. Reheating consistent slow-roll predictions for the mutated hilltop models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). For small values

of µ/MPl, this model predicts a very small amount of gravitational waves
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A.17 Radion Gauge Inflation (RGI)

Figure 103. Reheating consistent slow-roll predictions for the radion gauge models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). At large values

of ↵, the predictions are the same as the large field model with p = 2 (see Fig. 83) for which ✏2 = 2✏1
(black solid line).
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A.18 MSSM Inflation (MSSMI)

Figure 104. Reheating consistent slow-roll predictions for the MSSMI models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations trace

the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The black solid line

represent the locus of the points such that r = 4 (1− nS), i.e. ✏2 = 2✏1, on which this model lies for
for φ

0
/MPl & 1. However, the physical relevant value is closer to φ

0
/MPl ' 10−4.
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A.19 Renormalizable Inflection Point Inflation (RIPI)

Figure 105. Reheating consistent slow-roll predictions for the renormalizable inflection point models
in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.20 Arctan Inflation (AI)

Figure 106. Reheating consistent slow-roll predictions for the ArcTan models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel), when the reheating equation of state is wreh = 0.
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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A.21 Constant nS A Inflation (CNAI)

Figure 107. Reheating consistent slow-roll predictions for the constant nS A models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

– 253 –



A.22 Constant nS B Inflation (CNBI)

Figure 108. Reheating consistent slow-roll predictions for the constant nS B models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.23 Open String Tachyonic Inflation (OSTI)

Figure 109. Reheating consistent slow-roll predictions for the open string tachyonic models in the
plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represents the locus of the points such that r = 4 (1− nS), i.e. ✏2 = 2✏1, on which this
model lies for φ

0
/MPl & 1.
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A.24 Witten-O’Raifeartaigh Inflation (WRI)

Figure 110. Reheating consistent slow-roll predictions for the Witten-O’Raifeartaigh models in the
plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represents the locus of the points such that r = 4 (1− nS), i.e. ✏2 = 2✏1, on which this
model lies for φ

0
/MPl & 1.
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A.25 Small Field Inflation (SFI)

Figure 111. Reheating consistent slow-roll predictions for the small field models with p = 1 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
this model must lie.
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Figure 112. Reheating consistent slow-roll predictions for the small field models with p = 2 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, if µ/MPl is not too high these values are limited from below to stay inside the two-sigma
contours, and µ/MPl < 10 seems to be disfavored by the data. The black solid line represent the locus
of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which this model lies for µ/MPl & 1.
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Figure 113. Reheating consistent slow-roll predictions for the small field models with p = 4 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).

Clearly, if µ/MPl is not too high these values are limited from below to stay inside the two-sigma
contours. The black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e.
✏2 = 4✏1, on which this model lies for µ/MPl & 1.
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A.26 Intermediate Inflation (II)

Figure 114. Reheating consistent slow-roll predictions for the intermediate inflation models in the
plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). Four
different values of β are displayed (namely β = 1, 4.1, 17, 70), and for each of them the black solid lines
correspond to the points such that ✏1 = −(β/4)✏2, on which the predictions should lie for xend & 1,
which is very well verified. The annotations of the energy scale at which reheating ends are not
displayed since this parameter is degenerated with xend.
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A.27 Kähler Moduli Inflation II (KMIII)

Figure 115. Reheating consistent slow-roll predictions for the Kähler moduli III models in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), for 105 < V < 107, ↵ = V5/3 and β = V2/3.
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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A.28 Logamediate Inflation (LMI)

Figure 116. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models with
β = 10−3, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). Inflation proceeds
at decreasing field values x < xV

max . The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). For β ⌧ 1, the exponential term in

the potential Eq. (5.68) is almost constant so that the model is close to large field inflation (LFI, see
section 4.2). In that limit, one has ✏1 = ↵✏2/4 = (1− γ) ✏2, which corresponds to the black solid lines.
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Figure 117. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models with
β = 1 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). Inflation proceeds as in
Fig. 116, at decreasing field values and with x < xV

max . The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 118. Reheating consistent slow-roll predictions for the Logamediate Inflation 1 models (x <
xV

max) with β = 50, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV). For such high values of β, only small values of γ are in agreement with

observations.
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Figure 119. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models with
β = 0.1, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). Inflation proceeds
at increasing field values and with x > xV

max . The color of the data points encodes the value of γ,
while different data blocks correspond to different values of xend. Inside a given bock, the annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The two pink

solid contours are the one and two-sigma Planck confidence intervals (marginalized over second order
slow-roll).
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Figure 120. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models (x >
xV

max) with β = 1, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The color
of the data points encodes the value of γ, while different data blocks correspond to different values
of xend. Inside a given bock, the annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). The two pink solid contours are the one and two-sigma Planck

confidence intervals (marginalized over second order slow-roll). For fixed γ, the turning point in the
predictions line occurs when xend lies in the fine-tuned region of LMI2, i.e. xV

max < x < x✏max
1

. One
sees that the predictions become infinitely close to pure de-Sitter.
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Figure 121. Reheating consistent slow-roll predictions for the Logamediate Inflation 2 models (x >
xV

max) with β = 10, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The color
of the data points encodes the value of γ, while different data blocks correspond to different values
of xend. Inside a given bock, the annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). The two pink solid contours are the one and two-sigma Planck

confidence intervals (marginalized over second order slow-roll). For fixed γ, the turning point in the
predictions line occurs when xV

max < x < x✏max
1

.
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A.29 Twisted Inflation (TWI)

Figure 122. Reheating consistent slow-roll predictions for the twisted models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The color of the
data points encodes the value of φ

0
, while different data blocks correspond to different values of xend.

Inside a given bock, the annotations trace the energy scale at which reheating ends and correspond

to log(g
1/4
∗ Treh/GeV).
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A.30 GMSSM Inflation (GMSSMI)

Figure 123. Reheating consistent slow-roll predictions for the GMSSMI models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel), for 1 < ↵ < 1 + φ4

0
/M4

Pl
⇡2/900/(Nend − Nini)

2.
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV). When ↵ ! 1, one recovers the standard MSSM predictions, see

Fig. 104.
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Figure 124. Reheating consistent slow-roll predictions for the GMSSMI models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel), for 1 − φ4

0
/M4

Pl
⇡2/900/(Nend − Nini)

2 < ↵ < 1.
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to ln(g
1/4
∗ Treh/GeV). When ↵ ! 1, one recovers the standard MSSM predictions, see

Fig. 104.
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A.31 Generalized Renormalizable Inflection Point Inflation (GRIPI)

Figure 125. Reheating consistent slow-roll predictions for the generalized renormalizable inflection
point models in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), for 1 < ↵ <
1 + φ4

0
/M4

Pl
⇡2/576/(Nend − Nini = 60)2. The two pink solid contours are the one and two-sigma

Planck confidence intervals (marginalized over second order slow-roll). The annotations trace the

energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). When ↵ ! 1, one

recovers the standard RIPI predictions, see Fig. 105.
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Figure 126. Reheating consistent slow-roll predictions for the generalized renormalizable in-
flection point models in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), for
1 − φ4

0
/M4

Pl
⇡2/576/(Nend − Nini = 60)2 < ↵ < 1. The two pink solid contours are the one and

two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to ln(g
1/4
∗ Treh/GeV). When ↵ ! 1,

one recovers the standard RIPI predictions, see Fig. 105.
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A.32 Brane SUSY breaking Inflation (BSUSYBI)

Figure 127. Reheating consistent slow-roll predictions for the BSUSYBI models in the plane (nS, r)
(top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The parameter xend
varies between 2xmax

end < xend < xmax
end (xmax

end < 0), under which the predictions of the model coincide
with the line ✏2 = 0 (black solid), i.e. PLI (see section 4.8). The annotations trace the energy scale at

which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter γ should be . 5 ⇥ 10−2

to predict a reasonable amount of gravitational waves.
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A.33 Tip Inflation (TI)

Figure 128. Reheating consistent slow-roll predictions for the tip inflation models with ↵ < 1/2, and
for µ/MPl = 10−6, 10−4, 10−2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel).
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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Figure 129. Reheating consistent slow-roll predictions for the tip inflation models with ↵ > 1/2, and
for µ/MPl = 10−6, 10−4, 10−2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel).
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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Figure 130. Reheating consistent slow-roll predictions for the tip inflation models with ↵ = 1/2 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.34 β Exponential Inflation (BEI)

Figure 131. Reheating consistent slow-roll predictions for the β exponential inflation models in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The parameter λ varies in the
range 10−6 < λ < 103 but the predictions almost do not depend on it (and cannot be distinguished
in the figure). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The black solid lines represent the locus of the points such
that ✏2 = 4β✏1. The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.35 Pseudo Natural Inflation (PSNI)

Figure 132. Reheating consistent slow-roll predictions for the pseudo natural inflation models with
µ/MPl = 10, 10−1, 10−3, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.36 Non Canonical Kähler Inflation (NCKI)

Figure 133. Reheating consistent slow-roll predictions for the non canonical Kähler inflation models
with β > 0 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink
solid contours are the one and two-sigma Planck confidence intervals (marginalized over second or-
der slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). When β & 1, the predictions are almost identical to those displayed here.
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Figure 134. Reheating consistent slow-roll predictions for the non canonical Kähler inflation models
with β < 0, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink
solid contours are the one and two-sigma Planck confidence intervals (marginalized over second or-
der slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). When β . −1, the predictions remain almost unchanged.
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A.37 Constant Spectrum Inflation (CSI)

Figure 135. Reheating consistent slow-roll predictions for the Constant Spectrum models in the
plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), for ↵ = 10−3. The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The black solid lines correspond to nS = 1, and the annotations trace the energy scale at which

reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 136. Reheating consistent slow-roll predictions for the Constant Spectrum models in the
plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel), for ↵ = 1. The two pink solid contours
are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The
black solid lines correspond to nS = 1, and the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.38 Orientifold Inflation (OI)

Figure 137. Reheating consistent slow-roll predictions for the orientifold inflation models for
φ

0
/MPl = 10−4, 10−2, 1 and ↵ 2

⇥

10−3, 10−1
⇤

, in the plane (nS, r) (top panel) and the plane (✏1, ✏2)
(bottom panel). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheat-

ing ends and correspond to log(g
1/4
∗ Treh/GeV). Since the predictions of these models almost do not

depend on its parameters, they are all superimposed and one cannot distinguish the different values
of φ

0
are ↵.
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A.39 Constant nS C Inflation (CNCI)

Figure 138. Reheating consistent slow-roll predictions for the constant nS C inflation models for
↵ = 10−3, 0.1, 0.2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The black
solid lines are the nS − 1 = −2↵2 contours, for the displayed values of ↵. The two pink solid contours
are the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The
energy scale at which reheating ends is degenerated with the parameter xend, which is why it is not
labeled.
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A.40 Supergravity Brane Inflation (SBI)

Figure 139. Reheating consistent slow-roll predictions for the supergravity brane inflation models
for β = 5 ⇥ 10−5 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 140. Reheating consistent slow-roll predictions for the supergravity brane inflation models
for β = 10−3 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink
solid contours are the one and two-sigma Planck confidence intervals (marginalized over second or-
der slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 141. Reheating consistent slow-roll predictions for the supergravity brane inflation models
for ↵ = ↵min(β) in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.41 Spontaneous Symmetry Breaking Inflation 1 (SSBII)

Figure 142. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (↵ > 0,β > 0) models with β = 10−3, in the plane (nS, r) (top panel) and the plane (✏1, ✏2)
(bottom panel). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between ↵min (β) < ↵ <

106↵min (β).
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Figure 143. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (↵ > 0,β > 0) models with β = 10−1, in the plane (nS, r) (top panel) and the plane (✏1, ✏2)
(bottom panel). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between ↵min (β) < ↵ <

106↵min (β).
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Figure 144. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 1
inflation (↵ > 0,β > 0) models with β = 10, in the plane (nS, r) (top panel) and the plane (✏1, ✏2)
(bottom panel). The two pink solid contours are the one and two-sigma Planck confidence intervals
(marginalized over second order slow-roll). The annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between ↵min (β) < ↵ <

106↵min (β).
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A.42 Spontaneous Symmetry Breaking Inflation 2 (SSBI2)

Figure 145. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 2
inflation (↵ < 0,β < 0) models, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel).
The two pink solid contours are the one and two-sigma Planck confidence intervals (marginalized
over second order slow-roll). The annotations trace the energy scale at which reheating ends and

correspond to log(g
1/4
∗ Treh/GeV).
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A.43 Spontaneous Symmetry Breaking Inflation 3 (SSBI3)

Figure 146. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [↵ > 0,β < 0, x2 < −↵/ (2β)] models for β = −10−3, in the plane (nS, r) (top panel)
and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between

↵min (β) ' 2 < ↵ < 103↵min (β).
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Figure 147. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [↵ > 0,β < 0, x2 < −↵/ (2β)] models for β = −5 ⇥ 10−3, in the plane (nS, r) (top panel)
and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between

↵min (β) ' 2 < ↵ < 103↵min (β).
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Figure 148. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 3
inflation [↵ > 0,β < 0, x2 < −↵/ (2β)] models for β = −10−2, in the plane (nS, r) (top panel)
and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy scale

at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied between

↵min (β) ' 2 < ↵ < 103↵min (β).
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A.44 Spontaneous Symmetry Breaking Inflation 4 (SSBI4)

Figure 149. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [↵ > 0,β < 0, x2 > −↵/ (2β)] models for β = −10−5, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 150. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [↵ > 0,β < 0, x2 > −↵/ (2β)] models for β = −10−4, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 151. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 4
inflation [↵ > 0,β < 0, x2 > −↵/ (2β)] models for β = −10−3, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.45 Spontaneous Symmetry Breaking Inflation 5 (SSBI5)

Figure 152. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [↵ < 0,β > 0, x2 < −↵/ (2β)] models for β = 10−6, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied

between |↵min(β)| < |↵| < 10|↵min (β) |.
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Figure 153. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [↵ < 0,β > 0, x2 < −↵/ (2β)] models for β = 10−5, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).The parameter ↵ is varied between

|↵min(β)| < |↵| < 10|↵min (β) |.
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Figure 154. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 5
inflation [↵ < 0,β > 0, x2 < −↵/ (2β)] models for β = 10−4, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV).The parameter ↵ is varied between

|↵min(β)| < |↵| < 10|↵min (β) |.
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A.46 Spontaneous Symmetry Breaking Inflation 6 (SSBI6)

Figure 155. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [↵ < 0,β > 0, x2 > −↵/ (2β)] models for β = 10−5, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied

between |↵min(β)| < |↵| < 104|↵min (β) |.
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Figure 156. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [↵ < 0,β > 0, x2 > −↵/ (2β)] models for β = 10−1, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied

between |↵min(β)| < |↵| < 104|↵min (β) |.
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Figure 157. Reheating consistent slow-roll predictions for the spontaneous symmetry breaking 6
inflation [↵ < 0,β > 0, x2 > −↵/ (2β)] models for β = 1, in the plane (nS, r) (top panel) and
the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The annotations trace the energy

scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The parameter ↵ is varied

between |↵min(β)| < |↵| < 104|↵min (β) |.
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A.47 Inverse Monomial Inflation (IMI)

Figure 158. Reheating consistent slow-roll predictions for the IMI models in the plane (nS, r) (top
panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-
sigma Planck confidence intervals (marginalized over second order slow-roll). The parameter xend
varies above xmin

end (∆N = 65 e−folds). It is not labeled since it is fully degenerate with the reheating
temperature. The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of different IMI-p models [for which

(1− 2/p) r = 8 (1− nS), i.e. ✏1 = −(p/4)✏2].
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A.48 Brane Inflation (BI)

Figure 159. Reheating consistent slow-roll predictions for the brane inflation models with p = 2 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
this model must lie for µ&MPl.
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Figure 160. Reheating consistent slow-roll predictions for the brane inflation models with p = 3 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
this model must lie for µ&MPl.
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Figure 161. Reheating consistent slow-roll predictions for the brane inflation models with p = 4 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
this model must lie for µ&MPl.
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Figure 162. Reheating consistent slow-roll predictions for the brane inflation models in the string
framework (p = 4, µ ⌧ MPl, for the fundamental parameters displayed in the figures), in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The green points

delimitate the prediction points such that inflation end by slow roll violation (for µ/MPl > 0.02, above
the green points) from the ones where inflation end by tachyonic instability (below the green points).
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A.49 KKLT Inflation (KKLTI)

Figure 163. Reheating consistent slow-roll predictions for the KKLT inflation models with p = 2 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
BI lies for µ&MPl and deviates from KKLTI.
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Figure 164. Reheating consistent slow-roll predictions for the KKLT inflation models with p = 3 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
BI lies for µ&MPl and deviates from KKLTI.
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Figure 165. Reheating consistent slow-roll predictions for the KKLT inflation models with p = 4 in
the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are
the one and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The

annotations trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The

black solid line represent the locus of the points such that r = (8/3) (1− nS), i.e. ✏2 = 4✏1, on which
BI lies for µ&MPl and deviates from KKLTI.
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Figure 166. Reheating consistent slow-roll predictions for the KKLT inflation models in the string
framework (p = 4, µ ⌧ MPl, for the fundamental parameters displayed in the figures), in the plane
(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and
two-sigma Planck confidence intervals (marginalized over second order slow-roll). The annotations

trace the energy scale at which reheating ends and correspond to log(g
1/4
∗ Treh/GeV). The green points

delimit the prediction points such that inflation end by slow roll violation (for µ/MPl > 0.02, above
the green points) from the ones where inflation end by tachyonic instability (below the green points).
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A.50 Running Mass Inflation 1 (RMI1)

Figure 167. Reheating consistent slow-roll predictions for the running mass inflation 1 models (c > 0,
x < 1) with c = 0.01, φ

0
/MPl < 1/

p
c, 1/e < xend < 1, in the plane (nS, r) (top panel) and the plane

(✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck confidence
intervals (marginalized over second order slow-roll). The energy scale at which reheating ends and
the field vev when inflation stops xend = φend/φ0

are degenerated, which is the reason why they are
not displayed.
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A.51 Running Mass Inflation 2 (RMI2)

Figure 168. Reheating consistent slow-roll predictions for the running mass inflation 2 models (c > 0,
x > 1) with c = 0.01, φ

0
/MPl < 1/

p
c, 1 < xend < e, in the plane (nS, r) (top panel) and the plane

(✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck confidence
intervals (marginalized over second order slow-roll). The energy scale at which reheating ends and
the field vev when inflation stops xend are degenerated and not represented.
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A.52 Running Mass Inflation 3 (RMI3)

Figure 169. Reheating consistent slow-roll predictions for the running mass inflation 3 models
(c < 0, x < 1) with c = −0.01, φ

0
/MPl < 1/

p−c, 1/e < xend < 1, in the plane (nS, r) (top panel)
and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck
confidence intervals (marginalized over second order slow-roll). The energy scale at which reheating
ends and the field vev when inflation stops xend are degenerated and have not been represented.
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A.53 Running Mass Inflation 4 (RMI4)

Figure 170. Reheating consistent slow-roll predictions for the running mass inflation 4 models (c < 0,
x > 1) with c = −0.01, φ

0
/MPl < 1/

p−c, 1 < xend < e, in the plane (nS, r) (top panel) and the plane
(✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma Planck confidence
intervals (marginalized over second order slow-roll). The energy scale at which reheating ends and
the field vev xend are degenerated and not displayed.
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A.54 Valley Hybrid Inflation (VHI)

Figure 171. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 0.5, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 172. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 1, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV). The black solid line represent the locus of the points such

that ✏2 = 4✏1.
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Figure 173. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 1.5, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 174. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 2, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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Figure 175. Reheating consistent slow-roll predictions for the valley hybrid inflation models with
p = 3, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The color of the data points encodes the value of µ, while different data blocks correspond to
different values of xend. Inside a given bock, the annotations trace the energy scale at which reheating

ends and correspond to log(g
1/4
∗ Treh/GeV).
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A.55 Dynamical Supersymmetric Inflation (DSI)

Figure 176. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 2, 10−10 < µ/MPl < µmax/MPl, and x

min
end < xend < xmax

end in the plane (nS, r) (top
panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma
Planck confidence intervals (marginalized over second order slow-roll). The parameter xend increases
along the direction specified by the arrows, and is degenerate with the energy scale at which reheating
ends.
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Figure 177. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 3, 10−10 < µ/MPl < µmax/MPl, and x

min
end < xend < xmax

end , in the plane (nS, r) (top
panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one and two-sigma
Planck confidence intervals (marginalized over second order slow-roll). The parameter xend increases
along the direction specified by the arrows, and is degenerated with the energy scale at which reheating
ends.
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Figure 178. Reheating consistent slow-roll predictions for the dynamical supersymmetric inflation
models with p = 4, 10−10 < µ/MPl < µmax/MPl, and the prior xmin

end < xend < xmax
end in the plane

(nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid contours are the one
and two-sigma Planck confidence intervals (marginalized over second order slow-roll). The parameter
xend increases along the direction specified by the arrows and is degenerated with the energy scale at
which reheating ends.
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A.56 Generalized Mixed Inflation (GMLFI)

Figure 179. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 2 and q = 1, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-(p+ q) models (for

which ✏2 = (4/p)✏1 and ✏2 = 4✏1/(p+ q) respectively).
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Figure 180. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 2 and q = 3, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-(p+ q) models (for

which ✏2 = (4/p)✏1 and ✏2 = 4✏1/(p+ q) respectively).
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Figure 181. Reheating consistent slow-roll predictions for the generalized mixed inflation models
with p = 3 and q = 2, in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV). The black solid lines represent the locus of the LFI-p and LFI-(p+ q) models (for

which ✏2 = (4/p)✏1 and ✏2 = 4✏1/(p+ q) respectively).
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A.57 Logarithmic Potential Inflation 1 (LPI1)

Figure 182. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 183. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 184. Reheating consistent slow-roll predictions for the logarithmic potential inflation 1 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.58 Logarithmic Potential Inflation 2 (LPI2)

Figure 185. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 186. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 187. Reheating consistent slow-roll predictions for the logarithmic potential inflation 2 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.59 Logarithmic Potential Inflation 3 (LPI3)

Figure 188. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 2 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 189. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 1 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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Figure 190. Reheating consistent slow-roll predictions for the logarithmic potential inflation 3 models
for p = 4 and q = 3 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two
pink solid contours are the one and two-sigma Planck confidence intervals (marginalized over second
order slow-roll). The annotations trace the energy scale at which reheating ends and correspond to

log(g
1/4
∗ Treh/GeV).
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A.60 Constant nS D Inflation (CNDI)

Figure 191. Reheating consistent slow-roll predictions for the constant nS D inflation models for
β = 0.1 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The energy scale at which reheating ends is not annotated since it is degenerated with the
parameter xend. The black solid lines stand for the points such that nS = 1 + 4↵2β/ (β + 1).
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Figure 192. Reheating consistent slow-roll predictions for the constant nS D inflation models for
β = 5 in the plane (nS, r) (top panel) and the plane (✏1, ✏2) (bottom panel). The two pink solid
contours are the one and two-sigma Planck confidence intervals (marginalized over second order slow-
roll). The energy scale at which reheating ends is not annotated since it is degenerated with the
parameter xend. The black solid lines stand for the points such that nS = 1 + 4↵2β/ (β + 1).
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1 Introduction

The recent release of the Planck satellite data has had important and profound consequences
for our understanding of primordial cosmology. These data clearly support the idea that
inflation is the correct description of the physical conditions that prevailed in the early uni-
verse since they are in agreement with several important and generic predictions made by the
inflationary theory. For instance, a basic property of inflation is that spatial curvature should
vanish. And one indeed finds that 100ΩK = −0.05+0.65

−0.66 by combining Planck with Wilkinson
Microwave Anisotropy Probe (WMAP) large-scale polarisation (denoted WP in ref. [1]) and
Baryon Acoustic Oscillations (BAO) measurements. Another important consequence of the
Planck data is the detection of a spectral tilt, nS = 0.9603±0.0073 thus ruling out scale invari-
ance at more than 5σ, a level of significance predicted in ref. [2], and convincingly confirming
a crucial inflationary prediction. Moreover, the Planck data seem to point to the simplest
(but non-trivial) version of inflation. Indeed, neither a significant running nor a significant
running of the running have been detected since it is found that dnS/d ln k = −0.0134±0.009
(Planck+WP) and d2nS/d ln

2 k = 0.02 ± 0.016 (Planck+WP), with a pivot scale chosen at
k⇤ = 0.05Mpc−1. The data are also compatible with adiabaticity at 95% CL. If one de-

fines ↵
(`min,`max)
ab ⌘ (∆T )2ab (`min, `max)/ (∆T )

2
tot (`min, `max), with a, b = R, I, where I stands

for Cold Dark Isocurvature (CDI), Neutrino Density Isocurvature (NDI) or Neutrino Ve-
locity Isocurvature (NVI) and (∆T )2X (`min, `max) =

P`=`max
`=`min

(2`+ 1)CTT`,X , then one obtains

↵
(2,2500)
RR 2 [0, 98, 1.07] and ↵

(2,2500)
RI 2 [−0.093, 0.014] for I = CDI, ↵

(2,2500)
RR 2 [0, 99, 1.09]

and ↵
(2,2500)
RI 2 [−0.18, 0.0] for I = NDI, ↵

(2,2500)
RR 2 [0, 96, 1.05] and ↵

(2,2500)
RI 2 [−0.09, 0.026]
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for I = NVI. This implies that isocurvature modes are compatible with zero although the
analysis is done with one isocurvature mode at a time only. A quite large non-adiabatic
contribution remains possible but, as discussed in ref. [3], this is in fact driven by the data in
the range `  40. The Planck data also imply that primordial non-Gaussianity is compatible
with zero, namely f loc

NL = 2.7±5.8, f eq
NL = −42±75 and fortho

NL = −25±39 [4]. Some anomalies
or “glitches” have also been reported but the corresponding statistical significance is unclear
and, in any case, not yet sufficient to claim a detection.

Therefore, the overall picture that emerges is that the inflationary mechanism is non-
trivial but, at the same time, “non-exotic”. In particular, the complicated scenarios that
were considered, at some point, as attractive are now disfavoured (but not necessarily ruled
out). Therefore, in accordance with an Occam’s razor principle, that the simplest viable
explanation for the observations at hand ought to be preferred, it is appropriate to consider
— at least for the moment — the simplest scenarios, namely single field slow-roll inflation
with a standard kinetic term. This type of scenarios is characterised by one free function, the
potential V (φ). Therefore, identifying the “best model of inflation” boils down to determining
the potential V (φ) which fits the data the best with the smallest number of free parameters
and the least fine-tuning.

In order to achieve this task, it is first necessary to identify all the scenarios belonging
to the above-mentioned class. This is not so easy since, even if restricted to a small part
of the inflationary landscape, the “single-field region” remains densely populated. This was
accomplished recently in the “Encyclopædia Inflationaris” of ref. [5]. Once all the single-
field models have been identified, one needs to quantify statistically whether a model is
“better” than another. This question can be addressed in the framework of Bayesian model
comparison, which requires the computation of the Bayesian evidence, or global likelihood,
i.e. the integral of the likelihood over the prior space for each model. The ratio of such
evidences then gives the Bayes factor, representing the degree by which the Planck data have
modified our a priori relative belief in each pair of models. From the Bayes factors, one can
then evaluate the posterior probability for each model, and thus identify the “best” (in a
Bayesian sense) model of inflation. The calculation of the Bayesian evidence of each of the
Encyclopædia Inflationaris scenarios constitutes the main subject of the present paper.

This article is organised as follows. In the next section, section 2, we briefly present
the theory of Bayesian inference and how it can be used to perform model comparison. In
sub-section 2.1, we recall the definition of the Bayesian evidence and, in sub-section 2.2, we
discuss how this quantity depends on the prior choices. In sub-section 2.3, we also introduce
the Bayesian complexity and explains its meaning. In section 3, we discuss how the Bayesian
evidences and complexities can be calculated efficiently and rapidly from the ASPIC1 library.
In sub-section 3.1, we present the idea behind the method introduced in ref. [6] (and used in
the present article) and, in sub-section 3.2, we detail how the effective likelihood, which is the
crucial tool of the method of ref. [6], can be determined from the Planck 2013 data. In sub-
section 3.3, we describe the numerical methods used in order to calculate the evidences from
the effective likelihood. We also specify the priors chosen on the non-primordial parameters.
In sub-section 3.4, we briefly discuss the accuracy of our calculations and its limitations.
Then, in section 4, we present our results, namely the numerical values of the evidence and
complexity for all the models considered and we discuss the physical implications of our
calculations. In section 5, we summarise our findings and present our conclusions. Finally,

1http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html.
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in appendix A, we review in detail how the priors, for each model, have been chosen. Special
attention has been paid to their physical origin and we discuss how the Bayesian evidence
would be modified if the priors were changed.

2 Bayesian inference and model comparison

In this section, we briefly review Bayesian inference theory and Bayesian model comparison,
which we adopt to compare the performance of the Encyclopædia Inflationaris scenarios.

2.1 Bayes factor and posterior model probability

LetMi be a collection of Nmod models (i = 1, · · · , Nmod) describing a given physical situation.
In this paper, we will denote by “model” a choice of inflationary potential, together with
the specification of a prior distribution for its parameters. A given shape of the potential
can support different prior choices, and we call the selection of a potential shape (without
specification of a prior for its parameters) a “scenario”. Thus within a given inflationary
scenario there can be multiple models. The following considerations are however fully general.
A model Mi is specified by a set of Ni parameters ✓ij (with j = 1, · · · , Ni) and by the
prior probability distribution of each of its parameters, namely ⇡(✓ij |Mi). In the context of
inference on the model’s parameter (where the model is assumed to be correct), the prior can
be set from the posterior of a previous observation. However, if one is interested in assessing
a model’s performance via Bayesian model comparison, it is preferable to understand the
priors in terms of the a priori available parameter space under the theory represented by
model Mi (see e.g. refs. [7–15] for further details).

Bayesian inference uses Bayes’ theorem to update our degree of belief in hypotheses
when some new data D becomes available (here, we think of D as the Cosmic Microwave
Background - CMB - Planck data but the formalism is generic). Assuming that model Mi is
true, from Bayes’ theorem, the posterior probability of its parameters ✓ij ’s can be expressed as

p (✓ij |D,Mi) =
1

E(D|Mi)
L (✓ij)⇡ (✓ij |Mi) , (2.1)

where L(✓ij) = p (D|✓ij ,Mi) is the likelihood function for the parameters of model Mi.
The quantity E(D|Mi) is just a normalisation factor, called the Bayesian evidence or model
likelihood, and it is given by

E (D|Mi) =

Z

d✓ijL(✓ij)⇡ (✓ij |Mi) . (2.2)

If we are only interested in constraining the parameters ✓ij of the model, then the Bayesian
evidence can be neglected. However, in the following we shall focus on the question of assess-
ing the posterior model’s probability, for which the Bayesian evidence plays a central role.

Using again Bayes’ theorem, one obtains the posterior probability of the model Mi,
which is given by

p(Mi|D) =
E(D|Mi)⇡(Mi)

p(D)
, (2.3)

where ⇡(Mi) is the prior belief in model Mi. The quantity p(D) is a normalisation factor
(which only depends on the data but not on the model under consideration), given by

p(D) =
X

i

E(D|Mi)⇡(Mi). (2.4)
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| lnBi
REF| Odds Strength of evidence

< 1.0 . 3 : 1 Inconclusive
1.0 ⇠ 3 : 1 Weak evidence
2.5 ⇠ 12 : 1 Moderate evidence
5.0 ⇠ 150 : 1 Strong evidence

Table 1. Jeffreys’ scale for evaluating the strength of evidence when comparing two models,Mi versus
a reference model MREF, here slightly modified following the prescriptions given in refs. [15, 16].

When comparing two models against each other, this factor cancels. If one defines a “reference
model”, MREF, against which all other models are compared, the posterior odds between a
model Mi and the reference model are given by

p(Mi|D)

p(MREF|D)
= Bi

REF

⇡(Mi)

⇡(MREF)
. (2.5)

Here, we have introduced the Bayes factor Bi
REF which can be expressed as the ratio of the

evidences, namely

Bi
REF ⌘ E(D|Mi)

E(D|MREF)
. (2.6)

Under the principle of indifference, we can assume non-committal model priors, i.e. we give
all models the same a priori probability, ⇡(Mi) = 1/Nmod, in which case the Bayes factor
becomes identical with the posterior odds. With this assumption, a Bayes factor larger
(smaller) than one means a preference for the modelMi over the reference model (a preference
for the reference model over Mi). The “Jeffreys’ scale”, see table 1, gives an empirical
prescription for translating the values of Bi

REF into strengths of belief.
With non-committal model priors, the posterior probability for model Mi is then

given by

p(Mi|D) =
Bi

REF
P

j B
j
REF

. (2.7)

This implicitly further assumes that the list of Nmod is reasonably complete — i.e. that there
isn’t a yet undiscovered better models that have not been considered a priori (see ref. [17]
for a Bayesian method leading to the discovery of such unknown models).

The fundamental idea underpinning Bayesian model comparison is that “economic”
models that fit well the data while exhibiting strong predictivity are rewarded, while mod-
els with a large number of free parameters that turn out not to be required by the data
are penalised for the wasted parameter space. Therefore, in a Bayesian sense, the “best”
model is the one that achieves the best compromise between quality of fit and simplicity
(see ref. [15, 18] for further details and ref. [19, 20] for a discussion of issues in Bayesian-
frequentist calibrations). One of the attractive features of Bayesian model comparison is
that it automatically embodies a quantitative version of Occam’s razor, that is to say, the
principle of simplicity (see ref. [21] for a critical discussion and comparison with frequentist
methods). The price to pay is that the Occam’s razor effect depends in an irreducible way
on the choice of prior (and particularly on its range) hence the latter must be set according
to physical considerations stemming from the model. We now turn to the crucial question of
prior sensitivity.

– 4 –
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2.2 Prior sensitivity considerations

As mentioned above, since the priors ⇡(✓ij |Mi) play a crucial role, a detailed description on
how they have been chosen is provided for each model in appendix A. We also discuss how
the evidence is affected by alternative prior choices within various theoretical scenarios. For
this reason, the number of evidences presented in this paper is much larger than the number
Encyclopædia Inflationaris scenarios. Indeed, a given field potential can support several
prior choices motivated by different theories, each of them leading to different evidences. We
thus consider them as different models.

For each field potential, physical considerations have been used to determine the shape
of the prior. If a parameter is small but its order of magnitude is unknown, as it is typically
the case for a coupling constant used in a perturbative expansion, then a Jeffreys’ prior
(uniform in the logarithm of the parameter) is the most uninformative. If, on the contrary,
we deal with a parameter whose order of magnitude is known, then this is a scale parameter
and a uniform prior on the parameter itself is appropriate. As priors must be proper (i.e.,
normalised), the support of the prior [✓min, ✓max] must also be chosen according to the natural
values allowed by the underlying physical scenario. Indeed, the strength of the Occam’s razor
effect depends on this range, as generically the Bayesian evidence scales as (for uniform priors)

E(D|Mi) /
1

✓max − ✓min
, (2.8)

for cases where the support of the likelihood is much smaller than the support of the prior.
However, since the Jeffreys’ scale is logarithmic in the Bayes factor, the dependence on the
prior range is relatively mild. Still, there are many cases in which ✓min and ✓max remain
unspecified by the model. When this happens, attention has been paid on how the evidence
is affected when this range is modified.

From the above argument it follows that one can estimate the variation in the evidence
that one would get from a change of the range of the prior simply by rescaling it proportionally
to the ratio of the prior volumes in the parameter space. This holds approximately true as
long as the support of the likelihood is well within that of the prior. This is more detailed in
appendix A where, if necessary, we discuss for each model how this calculation can be done
in practice.

Another often-encountered situation is when the likelihood is flat along the ✓ik direction,
i.e. the data are insensitive to one of the parameters of the model under consideration. In
this case, the posterior for that parameter is identical to the prior and the Bayes factor
reduces to unity — the Bayesian evidence is insensitive to the number of unconstrained
parameters in a model. For such flat directions in parameter space, the prior boundary does
not matter (as long as the likelihood stays flat), and the evidence is unchanged by a rescaling
of the boundaries of the prior. A second quantity is thus required to measure the number of
effective parameters that the data can constrain in a given model. This can be implemented
in various way, as for instance by using Kullback-Leiber divergence between the prior and
the posterior, leading to the notion of model complexity that we now discuss [15, 22, 23].

2.3 Bayesian complexity

The number of parameters in a model is a poor description of its “complexity”, as parameters
that are not constrained by the data should not be counted. A better evaluation of complexity
(in a Bayesian sense) has been introduced by [24], who advocates using the relative entropy
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between the prior and the posterior distribution (i.e. , the Kullback-Leibler divergence) as a
better suited measure of the number of free parameters in a model that the data can actually
constrain.

As shown in ref. [23], such an effective number of parameters, or Bayesian complexity,
C, can be written as

Ci = h−2 logL (✓ij)i+ 2 logL
(

✓ML
ij

)

, (2.9)

where h·i denotes averaging over the posterior p(✓ij |D,Mi) and ✓ML
ij is the maximum-

likelihood estimate of the model’s parameters which can be approximately obtained from
the posterior samples used to map out the posterior distribution2. The Bayesian complexity
is thus not an absolute measure of the number of constrained parameters — rather it assesses
the constraining power of the data with respect to the measure provided by the prior.

The use of model complexity together with the Bayesian evidence allows us to distinguish
between cases where E(D|Mi) ' E(D|Mj) (i.e. , two models exhibiting approximately the
same Bayesian evidence) but Ci ' Cj , in which case the data is insufficient to distinguish
between the two models (as their effective complexities are the same); or the case where
Ci > Cj , which means that the data are sufficient to measure extra parameters of model i
but that those parameters are not required by the evidence, in which case we ought to prefer
model j, as the one with the smallest (measured) complexity.

3 Fast Bayesian evidence calculation

The computation of the Bayesian evidence can be a numerically demanding task, as it requires
the evaluation of the multi-dimensional integral of eq. (2.2). This is particularly computa-
tionally intensive for Markov Chains Monte-Carlo (MCMC)-based methods. In recent years,
a powerful tool has emerged in the shape of nested sampling, and its implementation in the
MultiNest code [26, 27]. Even with such a highly efficient algorithm, the Bayesian evidence
requires hundreds of thousands of likelihood evaluations for each model. A typical analysis
based on the Planck likelihood coupled with an exact inflationary code to integrate the per-
turbations requires roughly 3 ⇥ 105 CPU hours (or 3.4 CPU years) of computing time on
modern x86 64 processors. Performing this for each model considered here would become
prohibitively time consuming, even with high-performance computing.

In this section, we briefly describe the method introduced in ref. [6] which allows us
to calculate the Bayesian evidences in a fraction of the time that would be required using
conventional tools. We also mention the limitation of the method, especially the fact that
the very low evidences may be poorly approximated.

3.1 Effective likelihood via slow-roll reparameterisation

Let us denote by aobs`m the CMB temperature map recently observed by the Planck satellite.
From this map, one can estimate the measured multipole moments Cobs

` = haobs`m aobs`m
?i. From

the ΛCDM model (or any other post-inflationary history) and the scenario of inflation, one
can compute the theoretical prediction for those multipole moments, Cth

` (✓s, ✓reh, ✓inf) as a
function of the parameters in the model. Here, ✓s represents a set of parameters describing
post-inflationary physics, see eq. (3.12) for a precise definition, ✓reh are the parameters of
reheating and ✓inf describe the shape of the potential V (φ). The reheating epoch can be

2See however ref. [25] for the caveats that apply when one wants to derive maximum likelihood estimates
from Bayesian posterior maps.
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described either with ✓reh = (⇢reh, wreh), namely the energy density of the universe at the
end of reheating and the mean equation of state parameter during reheating; or with the
completely generic rescaled reheating parameter ✓reh = ln(R), defined by

R ⌘ Rrad
⇢
1/4
end

MPl

, Rrad ⌘ aend
areh

✓

⇢end
⇢reh

◆1/4

. (3.1)

Here the indices “end” and “reh” denote the end of inflation and end of the reheating era
(i.e. the beginning of the radiation dominated era, see ref. [5] for further details), ⇢ and a
being the energy density of the universe and the FLRW scale factor, respectively. Here,
we have chosen to sample over the same optimised set discussed in refs. [6, 28–30], see
also refs. [31, 32]. All possible reheating histories are sampled using the rescaled reheating
parameter and with a prior uniform in its logarithm,

⇡(✓reh) = ⇡[ln(R)] = U(−46, 15). (3.2)

The boundaries of the prior support encompass all reheating histories satisfying the con-
straints that the mean equation of state during reheating verifies −1/3 < wreh < 1, and
⇢nuc < ⇢reh < ⇢end. The last inequality enforces that reheating takes place after inflation and

before Big-Bang Nucleosynthesis (BBN). Practically, we have chosen ⇢
1/4
nuc ⌘ 10MeV. More

details can be found in refs. [28–30, 33–37].

The expression for Cth
` can be written as

Cth
` (✓s, ✓reh, ✓inf) =

Z +1

0

dk

k
j`(kr`ss)T (k; ✓s)P⇣(k; ✓reh, ✓inf), (3.3)

j` being a spherical Bessel function, r`ss the comoving radial distance to the last scattering
surface, T (k; ✓s) the transfer function which describes the evolution of cosmological perturba-
tions during the standard Friedmann-Lemâıtre eras and P⇣ the inflationary power spectrum.

The posterior distribution for the parameters of interest is given by

p
⇣

✓s, ✓reh, ✓inf |aobs`m

⌘

=
1

E L (✓s, ✓reh, ✓inf)⇡ (✓s, ✓reh, ✓inf) , (3.4)

where L (✓s, ✓reh, ✓inf) = p
(

aobs`m |✓s, ✓reh, ✓inf
)

/ e−χ2(✓s,✓reh,✓inf)/2 is the likelihood function
(and the normalisation constant in front is irrelevant), χ2 being the effective chi-squared.
The prior distribution ⇡ (✓s, ✓reh, ✓inf) describes our a priori state of knowledge about the
values of the parameters before our information is updated. Notice that, for clarity, we have
dropped the dependence on the model M under scrutiny. In eq. (3.4), E is the Bayesian
evidence discussed in the previous section and reads

E =

Z

d✓sd✓rehd✓infL (✓s, ✓reh, ✓inf)⇡ (✓s, ✓reh, ✓inf) . (3.5)

It is the quantity we need to calculate for the 193 models considered here.

The effective chi-squared, and, therefore, the likelihood function, is a function of Cth
`

and of the data, namely

χ2 (✓s, ✓reh, ✓inf) = χ2
h

Cth
` (✓s, ✓reh, ✓inf) , a

obs
`m ,Σ

i

, (3.6)
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where Σ is the noise covariance matrix of the measurement. The above expression is only
illustrative — in practice one has to deal with more complex issues, including foregrounds, in-
strumental systematics and the measurements of polarisation in addition to temperature [38].
Assuming that the post-inflationary physics is the same for all inflationary scenarios, different
models have different evidences because they have a different power spectrum P⇣(k; ✓reh, ✓inf).
In order to calculate the evidence of a given inflationary model, one must therefore evalu-
ate P⇣(k; ✓reh, ✓inf) for the sampled values of ✓reh and ✓inf , then perform the integral (3.5).
In general, P⇣(k; ✓reh, ✓inf) is only known numerically and this procedure is computationally
intensive.

It is, however, possible to speed up dramatically this calculation if one uses the fact
that the inflationary models under consideration here are all slow-roll models. In that case,
there exists a general parametrisation of the power spectrum which is given by (k⇤ is the
pivot scale)

P⇣(k) = P0



a0 (✏n) + a1 (✏n) ln

✓

k

k⇤

◆

+
1

2
a2 (✏n) ln

2

✓

k

k⇤

◆

+ . . .

]

= P⇤



1 +
a1(✏n)

a0(✏n)
ln

✓

k

k⇤

◆

+
a2(✏n)

a0(✏n)
ln2
✓

k

k⇤

◆

+ . . .

]

,

(3.7)

where ✏n are the Hubble-flow parameters evaluated at Hubble exit and P0 represents the
overall normalisation [39, 40]. We have rendered explicit the well-measured quantity P⇤ =
a0(✏n)P0 = P⇣(k⇤) which fixes the amplitude of the CMB anisotropies. The explicit form of
the ai’s as functions of ✏n is known [41].

Furthermore, one can express the Hubble flow parameters as a function of the more
fundamental inflationary parameters for every scenario. The explicit functionals ✏n(✓reh, ✓inf)
are all provided in the ASPIC library and in the Encyclopædia Inflationaris.

The central idea, introduced in [6], is that the likelihood function entering the evidence
is invariant under a reparameterisation of the primordial power spectrum parameters. We
can thus rewrite the multipole moments (and hence the likelihood function which depends
on them) as Cth

` (✓s, ✓reh, ✓inf) = Cth
` [✓s, P⇤(✓reh, ✓inf), ✏n(✓reh, ✓inf)]. The evidence of eq. (3.5)

becomes

E =

Z

d✓sd✓rehd✓infL [✓s, P⇤(✓reh, ✓inf), ✏n(✓reh, ✓inf)]⇡(✓s)⇡(✓reh, ✓inf) (3.8)

=

Z

d✓rehd✓infLe↵ [P⇤(✓reh, ✓inf), ✏n(✓reh, ✓inf)]⇡(✓reh)⇡(✓inf), (3.9)

where we have defined the effective likelihood, marginalised over the post-inflationary pa-
rameters, ✓s, as

Le↵ [P⇤(✓reh, ✓inf), ✏n(✓reh, ✓inf)] ⌘
Z

d✓se
− 1

2
χ2[Cth

!
(✓s,P⇤,✏n),aobs!m ,Σ]⇡ (✓s) . (3.10)

In eq. (3.9) we have made the reasonable assumption that the prior on the post-inflationary,
reheating and primordial parameters are separable,3 i.e.

⇡(✓s, ✓reh, ✓inf) = ⇡(✓s)⇡(✓reh)⇡(✓inf). (3.11)

3More precisely, it is sufficient to require that ⇡(θs, θreh, θinf) = π(θs)π(θreh, θinf). However, it is sensible
to assume that the reheating and inflationary parameters are separable, too, thus leading to eq. (3.11).
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The effective likelihood, eq. (3.10), can be computed as a function of the slow-roll parameters,
P⇤, ✏n, using machine-learning algorithms to interpolate the functional form of Leff(P⇤, ✏n).
Seen as a function of the slow-roll parameters, Leff needs only to be computed once for
all inflationary models considered here. To then use it for a specific inflationary model,
it is sufficient to map its potential parameters ✓inf and reheating parameters ✓reh onto the
corresponding functionals, P⇤(✓inf , ✓reh), ✏n(✓inf , ✓reh).

The computational advantages of our method are twofold. First, the evaluation of
the effective likelihood is very fast, since it is obtained as the output of a neural network
interpolator (typically, one evaluation requires less than a µs of CPU-time on standard x86 64

processor). Second, by integrating out once and for all the post-inflationary parameters from
the likelihood, we are left with a much reduced parameter space over which the Bayesian
evidence integral has to be computed. The dimensionality of ✓inf is at most three, while the
reheating is described by just one parameter, so that the Bayesian evidence integral is at
most four-dimensional. Thanks to this vastly increased efficiency, we were able to compute
a large number of Bayesian evidences with a much reduced numerical effort. More details
about the method can be found in ref. [6].

3.2 Effective likelihood from Planck 2013

In order to determine Leff, we have used the Planck 2013 data [42] together with the sec-
ond order slow-roll expansion of the primordial power spectra for both the scalar and tensor
perturbations. The full Planck likelihood is provided by the Planck collaboration [38]. Con-
cerning the post-inflationary universe, it is assumed to be a flat ΛCDM model such that the
parameters ✓s are:

✓s =
(

Ωbh
2,Ωdmh

2, ⌧, 100✓MC, A
PS
100, A

PS
143, A

PS
217, r

PS
143⇥217, A

CIB
143, A

CIB
217, r

CIB
143⇥217, γ

CIB,

AtSZ, AkSZ, ⇠
tSZ⇥CIB, c100, c217,β

1
1

)

.
(3.12)

The usual ΛCDM parameters are the density of baryons Ωb, of cold dark matter Ωdm, the
reduced Hubble parameter today h, the Thompson optical depth ⌧ to last scattering and an
angle, ✓MC, related to the angular size of the sound horizon on the last scattering surface [43].
The remaining parameters describe astrophysical signals on top of the CMB and any relevant
instrumental distortions, as they have been modelled by the Planck collaboration [1]. They
are the power contribution at ` = 3000 of unresolved point sources at 100GHz, at 143GHz, at
217GHz and their cross correlation (APS

100, A
PS
143, A

PS
217, r

PS
143⇥217). The next are their equivalent

for the Cosmic Infrared Background (CIB), namely ACIB
143, A

CIB
217, r

CIB
143⇥217, and γCIB stands for

the spectral index of the CIB angular power spectrum. The Sunyaev-Zel’dovich (SZ) signals,
either thermal or kinetic, and their correlations with the CIB are encoded in the parameters
AtSZ, AkSZ, ⇠

tSZ⇥CIB. Finally, calibration and beam uncertainties are taken into account in
the last three parameters. More details on how these signals are accounted for can be found
in ref. [38].

Using the Planck likelihood and its associated public code CLIK, we have performed
a MCMC exploration of the parameter space (✓s, P⇤, ✏1, ✏2, ✏3). In order to do so, we have
used the public code COSMOMC [43] complemented by a modified version of the CAMB code [44]
in order to implement as initial conditions the slow-roll primordial power spectra discussed
above. All ✏n in these equations are evaluated at the conformal time ⌘⇤ defined by k⇤⌘⇤ = −1,
k⇤ = 0.05Mpc−1 being the pivot scale.

The prior choices for the parameters ✓s have been chosen as in ref. [1]. For the primordial
parameter space, we have chosen a Jeffreys’ prior for P⇤ such that ln(1010P⇤) 2 [2.7, 4.2],
i.e. centred around its well-measured value. The order of magnitude of the tensor-to-scalar
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Figure 1. Two-dimensional marginalised posterior distributions of the slow-roll parameters (P⇤, ✏1,
✏2, ✏3) using the Planck 2013 data.

ratio being unknown, we have chosen a wide Jeffreys’ prior on ✏1 as log(✏1) 2 [−5,−0.7], the
upper bound being such that ✏1 < 0.2 to be within the slow-roll approximation. Finally, for
✏2 and ✏3 we have chosen uniform priors in [−0.2, 0.2]. The MCMC exploration has been
stopped once the total number of samples reached two millions, which corresponds to the
R-statistics convergence of COSMOMC (the Gelman-Rubin criterion) to be less than 10−3 (see
ref. [43]). The thus obtained two-dimensional marginalised posterior probability distributions
for the slow-roll parameters are shown in figure 1. More details on the analysis can be found
in ref. [6]. In particular, all the posteriors are compatible with those obtained by the Planck
Collaboration in refs. [1, 3].

These MCMC samples have then be used to determine the effective likelihood for infla-
tion Leff according to eq. (3.10), i.e. by marginalisation over all the ✓s. However, as shown
in figure 1, ✏3 is not well constrained. Therefore, following ref. [6], it is more convenient to
fit a three-dimensional likelihood Leff(P⇤, ✏1, ✏2) by additionally marginalising over ✏3. Notice
that doing so renders our analysis robust with respect to any uncertainties that are associ-
ated with the unconstrained second order terms. The fit itself have been implemented by
a multivariate interpolation using a modified quadratic Shepard’s method [45, 46]. Discus-
sions on the method’s accuracy can be found in ref. [6] and we emphasise that the effective
likelihood is only well approximated within the bounds ln(Lmin

eff /Lmax
eff ) = −10. Lower values
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of the likelihood have been extrapolated by assuming Gaussian tails. As a result, for a given
model, the contribution to the Bayesian evidence from regions in parameter space where
the likelihood is smaller than this value are not reliable. In practice, this is unlikely to be
problematic because the contribution of regions with exceedingly small likelihood values to
the evidence integral is minimal. Furthermore, models that never achieve a large value of the
likelihood are in any case clearly ruled out, even though the value for their Bayesian evidence
is only approximate.

Let us also stress that, for our purpose, Leff(P⇤, ✏1, ✏2) is now numerically known for any
input values of P⇤, ✏1 and ✏2 within the prior bounds mentioned earlier. As can be seen in
the posterior of ✏1 (see figure 1), Leff has a flat direction for very small values of ✏1. As a
result, and only for ✏1, Leff has been extrapolated by a constant along its flat direction for
log(✏1) < −5, without loss of accuracy.

3.3 Computing the evidences

From the effective likelihood, and within a given model of inflation, we have used the nested
sampling algorithm MultiNest [26, 27] to perform the multidimensional integral of eq. (3.9).
For each slow-roll scenario of the Encyclopædia Inflationaris , the analytic form of the func-
tionals ✏n(✓reh, ✓inf) have been derived in ref. [5] and they have been numerically evaluated
using the public code ASPIC. The evidences reported below have been obtained by requiring
a MultiNest target accuracy of 10−4 on the evidence and a number of live points equals
to 30000. Typically, this amounts to a few hundred thousand samples for each model and
around one hour of CPU time. We have not reported any numerical error on the evidences
because, with such a target accuracy, they remain completely negligible with respect to the
prior sensitivity effects.

Moreover, for all of the models, we have traded the parameter M , namely the mass scale
giving the normalisation of the potential V (φ), by the amplitude P⇤ of the scalar primordial
power spectrum at the pivot wavenumber. Both of these parameters are indeed in one-to-one
correspondence once the functionals ✏n(✓reh, ✓inf) are given, but using P⇤ instead of M has the
advantage of minimising superfluous degeneracies in the parameter space, as does the choice
of using the rescaled parameter R instead of Rrad. From the Friedmann-Lemâıtre equation,
one indeed has [6]

M4 = 24⇡2 ✏1
v⇤

P⇤, (3.13)

at first order in slow-roll. Here v⇤ ⌘ V (φ⇤)/M4, and φ⇤ = φ(⌘⇤).
These prior choices have important consequences for the evidence calculation. They

imply that, for all models tested, the prior space on both the reheating, and the potential
normalisation are the same. As a result, the Occam’s razor factors for those parameters
cancel out when computing the Bayes’ factor between two models (this can be seen at once
by employing the Savage-Dickey density ratio, see [14, 15]). In other words, we assume that
all models have the same ability to reheat the universe after inflation and to produce the
observed amplitude of the CMB anisotropies. As definite reheating predictions are almost
absent in all the models we have explored, and those same models do not predict definite
values of M , this is a fair assumption.

However, if one imagines a situation in which M is an actual output of the model under
scrutiny, its evidence should be reviewed. One may envisage two cases. Either the predicted
values for M (and ✏1) yield a prior on P⇤ whose support is outside the range we have used,
i.e. ln(1010P⇤) 2 [2.7, 4.2] (see figure. 1), which is compatible with the data — in which
case such a model would be ruled out; or it overlaps with it and the evidence should be
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recomputed by sampling the parameter space directly over M . In the situation for which
the model’s predictions for M would actually match very well the observed amplitude of
the CMB anisotropies, one should expect the Bayesian evidence of that precise model to be
boosted in accordance with the Occam’s razor principle. The same remarks hold concerning
the reheating parameter [47]. Let us stress, however, that we have not encountered such a
situation in all the models tested here.

3.4 Fine-tuning issues

For some of the models presented here, the slow-roll regime of inflation takes place only for a
very limited range of values for some of their parameters. Such “fine-tuning” of parameters
which have, a priori, no reason to take exactly such specific values, is disfavoured by the
Occam’s razor penalty in-built into the Bayesian evidence. From a technical point of view, the
likelihood can reliably be worked out only in regimes where the slow-roll is (at least roughly)
valid. Otherwise, the inflationary dynamics is very difficult to track and not described by
our modelisation. On the other hand, when the slow-roll is completely violated, one knows
that the associated predictions are ruled out by observations, and that the likelihood in this
region of parameter space, being essentially 0, does not contribute to the the total evidence.
Therefore such situations result into an Occam’s razor effect which suppresses the evidence
computed over “compatible” parameters (the ones for which slow-roll inflation exist) by a
factor equal to the ratio of the volume of compatible parameters over the whole prior volume.
For the models in which this occurs, we have added some discussions in the appendix.

4 Results and discussion

For all the models listed in the appendix A, i.e.Nmod = 193, we have computed the Bayes
factors Bi

HI with respect to the Starobinsky model [48–50] or Higgs Inflation (HI), which is
our reference model. We have also evaluated each model’s Bayesian complexity Ci.

Our main results are displayed in figure 2, which represents all the Bayes factors. Each
model is represented by a horizontal bar indicating the value of lnBi

HI. A bar extending to
the left corresponds to lnBi

HI < 0 and the model under consideration is disfavoured with
respect to the the reference model. If, on the contrary, the bar extends to the right, then
lnBi

HI > 0 and the model is preferred to Higgs inflation. Obviously, the Bayes factor of the
reference model is one and, therefore, its logarithm vanishes: this is why there is no bar for
HI. In front of (or inside) each bar, we have reported the exact numerical value of lnBi

HI.
We have also included the Jeffreys’ scale of table 1, as dashed vertical lines, as an indication
of the viability of a given model compared to HI.

Bars are colour-coded according to the Schwarz-Terrero-Escalante (STE) classification
associated with the slow-roll parameters of the model under consideration [40]. Following the
notation used in ref. [5], region 1 are models predicting ✏2 > 2✏1 > 0, i.e. the kinetic energy
increases during inflation as well as the ratio of the kinetic energy to the total energy. Region
2 stands for potentials associated with 0 < ✏2 < 2✏1 for which the kinetic energy decreases
while the ratio of the kinetic energy to the total energy still increases. Finally, region 3 is
such that both quantities decrease during inflation. As shown in ref. [5], the Planck 2013
results disfavour models living in regions 2 and 3 and the Bayes factors also reflect this. Let
us stress that the parameter space of some models may span more than one region, i.e. for
some values of its parameters the predictions of a model can fall in region 1 (say) while, for
some other regime, they can be in region 2. It is referenced in the captions of figure 2 where
the colour code takes this fact into account.
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Finally, for each model, we have also calculated the maximum value of the evidence, that
is to say the value that is obtained when all the prior mass for the model under consideration
is concentrated in a delta-function centred at the maximum likelihood location. Clearly, in
that case, one has Emax = Lmax. It represents an absolute upper bound on the evidence: any
choice of priors necessarily leads to a value of the evidence smaller than Emax. This upper
bound is represented by black left-pointing arrows in figure 2. Let us also remark that this
quantity would be relevant in a frequentist analysis where the p-value obtained from the
maximum likelihood ratio would be used to compare the performances of different models.

Let us now analyse our results in more detail. Firstly, the answer to the central question
of this paper, namely “what is the best model of inflation given the Planck 2013 data?” is
KMIII inflation [51–53], whose Bayes factor with respect to Higgs inflation is lnBKMIII

HI =
0.07 > 0. However, the preference is extremely mild, so much so that it is within the margin of
uncertainty of our analysis, and for all practical purposes KMIII inflation has to be regarded
as being on the same footing with Higgs inflation, from the point of view of the Planck data.

We can use the Jeffreys’ scale as an indication for which of the models remain viable,
and which are disfavoured at various levels of evidence with respect to the best models.
We find 52 models in the “inconclusive” region (with respect to the best model), 41 in
the “weakly disfavoured” region, 34 in the “moderately disfavoured” region and 66 in the
“strongly disfavoured”. Therefore, our analysis concludes that surviving models (i.e. those in
the “inconclusive” region) represent 26% of the total. On the contrary, the number of models
that are conclusively ruled out (i.e. those in the “strong” region) represent 34% of the total
numbers of models. The models in the “inconclusive region”, which are to be considered the
best models of inflation after the Plank data, are (in alphabetical order):4 AI, BIph, BIs, BI1s,
BI2s, BI3s, BI4s, BI5s, BI6s, BIstg, ESI, ESIl, ESIp2/3

, ESIp2, ESIo, HI, KKLTI, KKLTIs,

KKLTIstg, KMIII, KMII, KMIIV >0, LI, LI↵>0, MHI, MHIl, MHIs, PSNIft1, PSNIft2, PSNIft3,
PSNIoA, PSNIoB, PSNIoC, PSNIepA, PSNIepB, RGI, RGIs, RGIl, RGI1/16, SBI, SBI↵min , SFI,
SFI3l, SFI4, SFI4l, SFI4s, SFIl, SFIs, SSBI2, SSBI4, TWIφ0 and TWIrφ0

. As explained above,
there are more models than potential shapes because a given potential can support different
priors, which are considered as separate model choices. As a consequence, the above 52
models in the “inconclusive region” encompass only 15 different potentials or scenarios.

Further insight can be garnered by considering the Bayesian complexity for each En-
cyclopædia Inflationaris model. We are particularly interested in evaluating the number of
unconstrained parameters for the best models identified via the Bayesian evidence, i.e. the
ones that are in the “inconclusive region”. Since the Bayesian complexity measures the num-
ber of effective parameters supported by the data, one can define a measure of the number
of unconstrained parameters by

Nuc
i ⌘ Ni − Ci, (4.1)

where Ni is the total number of free parameters of the model under consideration, i.e. the
inflationary potential parameters, plus the reheating parameter. For models providing a
reasonable good fit to the Planck data, one expects Nuc

i ≥ 0. However, if the best-fit log-
likelihood of a given model is very poor, then the Bayesian complexity can be arbitrary large,
as the second term in eq. (2.9) is large. This means that for such models Nuc

i < 0. So we
expect a negative measure of the number of unconstrained parameters to be correlated with
a small value of the Bayes factor.

4The meaning of the different acronyms and the precise definition of the corresponding models can be
found in appendix A.
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Figure 3. Logarithm of the Bayes factor versus the number of unconstrained parameters Nuc for
all the inflationary models investigated. The Nuc dimension allows us to disambiguate models with
the same evidence, by preferring those with the smallest number of unconstrained (i.e. , unnecessary)
parameters. Optimal models are clustered around Higgs Inflation and have Nuc ' 0 together with
BHI & 0. The four plots (from upper left to bottom right) increasingly zoom into the “best region”.
Each model is represented by a filled circle for illustration purposes only, and the radius of a circle
has no meaning.

In figure 3, we have plotted the location of all models in the two-dimensional plane
(Nuc, lnBHI). Models appearing along the same horizontal lines have thus the same Bayes
factor but different number of unconstrained parameters Nuc. Models with the smallest,
non-negative number of unconstrained parameters are to be preferred in that they can be
deemed to be simpler, even if they have the same evidence as other models with a larger
value of Nuc.

We can observe in figure 3 that models with Nuc < 0 do have poor values of the
evidence as well (lnBi

HI ⌧ 0), as expected from the above argument. Focusing on the models
having the best evidences together with a minimal number of unconstrained parameters,
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Figure 4. Histogram of the Encyclopædia Inflationaris models within the four Jeffreys’ categories
(inconclusive: blue, weakly disfavoured: red, moderately disfavoured: green and strongly disfavoured:
yellow) and for different number of unconstrained parameters. The number of preferred models is 17,
corresponding to 9 different types of potential.

i.e. 0 < Nuc
i < 1 narrows down the slow-roll landscape to a few preferred models: AI, BI1s,

BI2s, ESIl, ESIp2/3
, ESIp2, HI, LI↵>0, MHI, MHIl, RGI, RGIs, RGIl, SBI↵min , SFI3l, SFI4

and SFI4l. We have now 17 preferred models, that is to say roughly 9% of the initial numbers
of models. They correspond to only 9 types of potential or scenarios. It is also interesting
to notice that KMIII is not in this set of preferred models since it has Nuc

KMIII ' 2.3. While
it cannot be concluded that the models with the best Bayes factors and 0 < Nuc

i < 1 are
the “true” models, they are the simplest and most effective inflationary hypotheses that are
compatible with the Planck 2013 CMB data. Obviously, allowing for more unconstrained
parameters increases this list as displayed in figure 3.

Another interesting remark is that the 9 potentials mentioned above all belong to re-
gion 1 in the Schwarz-Terrero-Escalante classification (i.e. there are all “green”). This is of
course consistent with the findings of ref. [5] which has shown that this region is the re-
gion favoured by the Planck data. This means that the corresponding models all belong to
“plateau inflation” for which the potential does not necessarily grows to infinity when the
vev of the field increases [54]. This type of potentials clearly appears to be the winners given
the Planck data.

5 Conclusions

Let us now recap our main findings. Although this paper deals with slow-roll single-field
inflation only, we do not expect multifield inflationary models to perform better than the
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optimal subset of single-field models that have been delineated in this work. This is because
adding a field necessarily introduces extra-parameters encoding the shape of the potential
in this new direction. Therefore, even if a multifield scenario would fit as well the Planck
2013 data as the best slow-roll single-field models, such a model would be penalised by its
larger number of unconstrained parameters (in terms of complexity). This conclusion could
be modified if a multifields model was able to fit the large scales glitches in the Planck data,
thus achieving a better evidence. However, those glitches are of relatively weak statistical
significance and cannot, currently, greatly improve the overall fit. Furthermore, the fit im-
provement would have to be sufficient to offset the extra Occam’s factor penalty implied by
additional free parameters. Such a situation may however change by considering additional
and independent data sets which could not be fitted by the class of slow-roll models discussed
in this paper such as, for instance, a small, but non-vanishing, level of non-Gaussianities. The
same remarks also apply for single-field scenarios with non-minimal kinetic terms (or with
features in the potential). These models are not necessarily ruled out. However, either they
predict observable non-Gaussianities and the fact that Planck sees a Gaussian sky implies
that those models will be penalised for this wasted parameter space. Or, they genuinely do
not predict non-Gaussianities but introduce additional parameters that increase the model
complexity (see for instance ref. [55–57]). Let us stress that, if we are not considering the
small gain that might be associated with fitting Planck’s glitches, the favoured models we
have singled out in this paper already saturate the maximal possible value for the likelihood.
As a result, even in the situation in which we would have missed an extremely good fitting
and simple model, its Bayesian evidence would still be in the “inconclusive region”.

Therefore, from a Bayesian point of view, it appears perfectly legitimate to focus on
single-field slow-roll inflation (with a minimal kinetic term). These models have been studied
and compared to the recent Planck data in ref. [5] which, therefore, represents a complete
cartography of the inflationary landscape compatible with the most recent data. In the
present article, we have computed the Bayes factors and the Bayesian complexity for all
these Encyclopædia Inflationaris models. Our results are summarised in an histogram in
figure figure 4, which gives the number of models in each Jeffreys’ category (defined with
respect to the best model) and for each number of unconstrained parameters with n <
Nuc < n + 1, where n is an integer. This plot illustrates the power of the Planck data and
allows us to summarise our main results: from a large number of models, one is able to
single out a relatively small subset corresponding to the “best models”. We rule out ' 34%
of the models at a strong level of evidence and ' 26% of the models (9% if one includes
the complexity) are preferred. All the favoured scenarios belong to the category 1 of the the
Schwarz-Terrero-Escalante classification and have a shape consistent with “plateau inflation”.

It is also worth pointing out that a few Bayesian evidences have been calculated in ref. [3].
The comparison is, however, difficult to carry out since the priors on reheating assumed in
that paper greatly differ from those considered here.5 Indeed, in ref. [3], a prior on ∆N⇤ is
chosen while the reheating energy density is arbitrarily fixed. There is no physical motiva-
tions for picking up particular values of the reheating energy density. Moreover, choosing a
prior on ∆N⇤ is surprising since this does not guarantee the validity of the physical prior,

5Let us also stress that the description made by refs. [3] of the work of ref. [29] on reheating is incorrect.
It is claimed that the study of ref. [29] is restricted to equations of state of the form wreh = (p − 2)/(p + 2),
which emerges in the case of a potential with the shape ∝ φp. This situation was indeed considered in ref. [29]
but only as a particular example. The completely generic case −1/3 < wreh < 1 was in fact the main concern
of ref. [29].
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namely ⇢nuc < ⇢reh < ⇢end. Another side effect is that this obviously modifies the calculation
of the Bayesian evidences and, for this reason, comparing the two approaches does not lead
to interesting insights.

To conclude this paper, let us present some speculations regarding what we have learnt
about the physics of inflation. Firstly, let us stress that we have finally carried out one of
the long standing task of primordial cosmology, namely put constraints on the shape of the
inflationary potential. In some sense, this represents quite an impressive achievement since we
are able to say something about physics at energy scales unreachable in accelerators. Indeed,
with the Large Hardron Collider (LHC), it would obviously be impossible to establish the
existence, at the Grand Unified Scale (GUT) scale, of a scalar field with a potential having a
plateau shape. This perfectly illustrates the fact that cosmology can teach us something about
high energy physics. On the other hand, this conclusion should be toned down: certainly, we
have learnt a lot about the early Universe but, clearly, this does not give us the Lagrangian
of particle physics at the GUT scales (i.e. the field content, their interactions etc . . . ). As
a consequence, our knowledge of physics at such a high energy scale remains very limited.
Hopefully, future analysis will help us to learn more about these questions. In this respect,
constraining the reheating temperature of all the Encyclopædia Inflationaris models seems
promising since this can tell us something about the interaction of the inflaton field with the
rest of the world.

Finally, one cannot help making the connection between the results obtained here and
the recent works about “conformal inflation” [49, 50, 58–66]. It is well-known that it is
difficult to control the flatness of the inflaton potential that can easily be destroyed by
quantum corrections. However, if one starts with any shape of V (φ), not necessarily very
flat, and assumes a non-minimal coupling (for instance, of the form ⇠φ2R), then, in the
Einstein frame, the potential automatically flattens out and, precisely takes the form of
plateau inflation for some range of the field. A striking example is provided in figure 4
of ref. [61]: far from the origin, the potential automatically acquires the typical shape found
in the present article to be favoured by the Planck data (see in particular right bottom of
figure 4). Let us stress at this point that, although non-minimally coupled to gravity, this
class of models belong to the ASPIC category since, after a conformal transformation to the
Einstein frame, these models are in fact equivalent to single-field slow-roll inflation. In this
representation, the non-triviality of the non-minimal coupling has been “transferred” to the
complicated, non-minimal, interaction of φ with the other degrees of freedom present in the
early Universe. In fact, Higgs inflation is the prototypical example of this class of scenarios
and the ingredients necessary to describe the reheating phase in this case have been described
in ref. [5]. Therefore, we are in a situation where two strong theoretical arguments (the
flatness of the potential and the presence of a non-minimal coupling to gravity — recalling
that, according to the standard lore, a term that is not forbidden by a symmetry must be
present in the theory) point precisely to the models that appear favoured by recent data.
Whether this is just a coincidence or whether we are starting to understand something deeper
about Nature will hopefully be answered in the near future when even more accurate data
become available.
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A Choice of priors for inflationary models

In this appendix we detail the priors used in this article, and report the corresponding
Bayesian evidences, complexities, number of parameters and likelihoods at the best fit point
of all Encyclopædia Inflationaris scenarios. The priors are directly transcribed from consid-
erations presented in ref. [5], which is assumed to be known to the reader.

As discussed in section 2.2, there are cases where it is difficult to numerically estimate
the evidences. In particular, this happens when one tries to extend the prior ranges in order
to study the impact of the prior choices on our physical conclusions. However, most of
the time, this prior sensitivity can be trivially accounted for by means of simple analytical
calculations that we now briefly review. There are few instances in the following where they
are concretely used.

A common situation is when the support of the likelihood is included in the prior range
[✓min, ✓max], i.e.L(D|✓,M) ' 0 for ✓ /2 [✓min, ✓max]. The evidence of a model M is given by

E(D|M) =

Z ✓max

✓min

d✓L(D|✓,M)⇡(✓|M), (A.1)

where, for simplicity, we have assumed that there is only one parameter, ✓ (the argument
can be generalised to any dimensions). For any proper (i.e. , normalised) prior distribution
⇡(✓|M), one has

⇡(✓|M) =
Π(✓)

Z ✓max

✓min

d✓Π(✓)

, with

Z ✓max

✓min

d✓ ⇡(✓|M) = 1. (A.2)

Let us assume that we change the prior range for the parameter ✓ and consider a new upper
bound ✓̄max. The new prior is now given by

⇡(✓|M) =
Π(✓)

Z ✓̄max

✓min

d✓Π(✓)

, (A.3)

where, in accordance with the above discussion, the likelihood is vanishing in [✓max, ✓̄max].
As a consequence, the value of the evidence for the larger prior range is given by

Ē(D|M) =

Z ✓̄max

✓min

d✓L(D|✓,M)⇡(✓|M) = E(D|M)

Z ✓max

✓min

d✓Π(✓)

Z ✓̄max

✓min

d✓Π(✓)

, (A.4)

and is obtained from the previous evidence value by simply rescaling it by the ratio of the
prior volumes.

If instead the likelihood is flat along the ✓ direction, i.e. the data do not constrain
the parameter under consideration, L(D|✓,M) = L0, then the evidence is unchanged by
modifying the prior bounds

Ē(D|M) =

Z ✓̄max

✓min

d✓L(D|✓,M)⇡(✓|M) = L0

Z ✓̄max

✓min

d✓ ⇡(✓|M) = L0 = E(D|M), (A.5)

and one should evaluate the Bayesian complexity to distinguish between the models.
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Let us notice that the complexity may also be modified when the prior range is extended
to regions where the likelihood is known to be negligible. However, contrary to the evidence,
there is no simple analytical treatment of how the complexity should be extrapolated in this
case. One can nevertheless make further simplifying assumptions to roughly estimate how
the complexity is sensitive to the choice of priors.

Assuming that the prior and likelihood distributions are Gaussian, the complexity is
given by [23]

C =
N
X

i=1

1

1 +

✓

σi
L

σi
Π

◆2 ' N

1 +

✓

σL
σΠ

◆2 , (A.6)

where N is the number of parameters, σi
Π and σi

L are the prior width and the standard
deviations of the likelihood covariance matrix along its eigendirections i, respectively. The
last approximation in the above equation assumes that one can define the averaged values
σΠ and σL over all the eigendirections. If the prior is widened along n directions (chosen
among the N parameters), its averaged volume σn

Π gets multiplied by the same ratio Ē/E as
computed above, i.e.

σΠ̄ = σΠ

✓E
Ē

◆
1
n

. (A.7)

Plugging back this relation in eq. (A.6), one gets

C̄ =
N

1 +

✓ Ē
E

◆2/n✓
N

C − 1

◆

, (A.8)

where Ē/E is given by a volume ratio of the type eq. (A.4).

In the next subsections, we discuss, for each Encyclopædia Inflationaris scenarios, our
choice of priors. We also give the definition of all the acronyms used in the paper, in particular
in figure 2.

A.1 Higgs inflation (HI)

The Higgs inflation model the potential of which is given by [5]

V (φ) = M4
⇣

1− e−
p

2/3φ/MPl

⌘2
, (A.9)

which contains only one parameter: the mass scale M . However, as discussed in section 3.3,
this one has been traded for P⇤ in our analysis and there are no other free parameter in this
potential. In total, including the reheating parameter, one ends up with a two-parameters
model. For this reason, and besides the fact that it was actually the first model of inflation
ever proposed, we have chosen to take HI as the “reference model”.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

HI − 0.00 1.73 2 2.22
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A.2 Radiatively corrected Higgs inflation (RCHI)

This model is a one-parameter model. The shape of the potential reads [5]

V (φ) = M4

✓

1− 2e−2/
p
6φ/MPl +

AI

16⇡2

φp
6MPl

◆

. (A.10)

The parameter AI controls the amplitude of the radiative corrections to the, tree level, HI
potential. The one-loop expansion is valid under the condition AI ⌧ 64⇡2, hence the physical
prior AI 2 [−100, 100]. However, numerically, when AI < −65, the likelihood is so small that
it cannot be calculated in a reliable way. As a consequence, we choose the numerical prior
to be AI 2 [−65, 100]. Anyhow, as already mentioned, the range AI 2 [−100,−65] does not
contribute to the likelihood. On the other hand, as discussed in ref. [5], particle physics
implies −48 < AI < −20 and this defines a new model, the “original” one, that we denote
RCHIo in the following. We thus have two possible priors for this scenario as indicated by
the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCHI AI 2 [−65, 100] −1.50 3.07 3 2.26
RCHIo AI 2 [−48,−20] −36.16 4.29 3 −28.87

A.3 Large field inflation (LFI)

Large field inflation is characterised by the following potential [5]

V (φ) = M4

✓

φ

MPl

◆p

. (A.11)

This potential depends on a mass scale M fixed by the CMB normalisation and a free index
p of O(1) that can also take specific integer or rational values. Hence, one may assume a
general prior on p such that one can calculate the evidence of this class of model. Here
one takes p 2 [0.2, 5] because, for p > 5, one already knows that the models are ruled out
and p > 0.2 instead of p = 0 for numerical reasons (in addition, the potential cannot be
completely flat since one needs to stop inflation). Another possibility is simply to fix p to
some interesting values: p = 2/3 corresponds to monodromy inflation [67] while p = 1, · · · , 4
represents interesting phenomenological scenarios.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LFI p 2 [0.2, 5] −2.36 4.06 3 1.93
LFI2/3 p = 2/3 −1.19 2.16 2 1.24

LFI1 p = 1 −1.53 1.94 2 0.79
LFI2 p = 2 −2.62 1.66 2 −0.08
LFI3 p = 3 −4.31 2.59 2 −1.02
LFI4 p = 4 −6.20 3.38 2 −2.91

A.4 Mixed large field inflation (MLFI)

This model possesses the following potential [5]

V (φ) = M4

✓

φ

MPl

◆2✓

1 + ↵
φ2

M2
Pl

◆

. (A.12)
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Beside the usual mass scale M fixed by the CMB normalisation, MLFI contains only one
parameter, ↵. Since the order of magnitude of this parameter is a priori unknown, a Jeffreys
prior on ↵ is assumed. In practice, when ↵ < 10−5, the likelihood is numerically very close
to that of LFI2 and when ↵ > 10, the likelihood is numerically very close to that of LFI4.
As a consequence, we take the prior given in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MLFI log (↵) 2 [−5, 1] −3.77 2.39 3 −0.09

A.5 Radiatively corrected massive inflation (RCMI)

The potential of this model is given by [5]

V (φ) = M4

✓

φ

MPl

◆2 

1− 2↵
φ2

M2
Pl

ln

✓

φ

MPl

◆]

. (A.13)

It depends on one parameter, ↵, which represents the amplitude of the radiative corrections
to the potential of the LFI2 scenario. Since the one-loop correction can vary over many orders
of magnitude, it is meaningful to choose a Jeffreys prior on ↵. Then, clearly one must require
↵ ⌧ 1 in order for the perturbative expansion to be under control. On the other hand, the
shape of the potential has been derived under the assumption that fermion loops dominate
over self-interaction loops. This implies a lower bound on ↵, namely ↵ > 10−15 [5]. However,
when ↵ < 10−7, the likelihood is numerically very close to that of LFI2 and, therefore, it is
not necessary to consider smaller values of ↵. There also exists an upper bound on ↵ coming
from the requirement of having a sufficient number of e-folds during inflation, ↵ < 6⇥ 10−4.
Moreover, when ↵ > 10−3, the likelihood is so small that the evidence cannot be properly
computed. As a consequence, an upper bound on ↵ of ' 10−3 seems to be an appropriate
choice. Our choice is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCMI log (↵) 2 [−7,−3] −2.32 4.19 3 1.77

A.6 Radiatively corrected quartic inflation (RCQI)

This model is a quartic large field model LFI4 plus radiative corrections [5]. The potential
reads

V (φ) = M4

✓

φ

MPl

◆4 

1− ↵ ln

✓

φ

MPl

◆]

. (A.14)

The amplitude of these corrections is controlled by the parameter ↵. As discussed in the
previous subsection, the order of magnitude of ↵ is not known and, therefore, a Jeffreys prior
must be chosen. Moreover, the perturbative expansion making sense only if the radiative
correction is small, one must have ↵ ⌧ 1. The physical prior is therefore log(↵) 2 [−1, 0].
However, in practice, when ↵ < 10−3, the likelihood is numerically very close to that of LFI4
and when ↵ > 10−0.1, the likelihood is so small that it cannot be computed in a reliable way.
Hence, the prior that we choose is the one indicated in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RCQI log (↵) 2 [−3,−0.1] −5.36 6.62 3 1.27
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A.7 Natural inflation (NI)

This is a one parameter model and the potential is given by [5]

V (φ) = M4



1 + cos

✓

φ

f

◆]

. (A.15)

The order of magnitude of the free parameter f is not known and, therefore, a Jeffreys prior
is chosen. Moreover, the model is compatible with the CMB only if the mass scale f is
super-Planckian. It is not clear whether this condition makes sense at the fundamental level
but, from the effective field point of view, several mechanisms have been invented such that
this condition can be realised. In this situation f can scale from a few MPl to ⇠ 100MPl,
hence the prior log(f/MPl) 2 [0, 2.5], see the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

NI log (f/MPl) 2 [0, 2.5] −2.30 4.16 3 2.05

A.8 Exponential SUSY inflation (ESI)

The potential of this model can be written as [5]

V (φ) = M4
⇣

1− e−qφ/MPl

⌘

, (A.16)

where q is a free parameter. A priori, different priors on q are possible and this gives rise
to different versions of this scenario. If we view ESI as a phenomenological model, then one
can assume that the parameter q is a free O(1) quantity. In that case, a natural prior is
q 2 [0.1, 6]. But one can also assume that the order of magnitude of q is not known (in the
following, we denote the corresponding version of the scenario by ESIl). In this situation, we
must choose a Jeffreys prior, typically log(q) 2 [−3, 3]. However, when q > 1, the model is
numerically difficult to track since it produces a too weak level of gravity waves. Moreover,
in this regime, the likelihood reaches a stationary value. Therefore, as explained before, one
can restrict ourselves to the numerical prior log(q) 2 [−3, 1].

Another possible prior is based on the original derivation of the ESI scenario (we denote
this version by ESIo in what follows). Indeed, in that case, the model is based on supergravity
and one has q =

p

2/β, where β is the coefficient which appears in front of the Kähler
potential of the model. Hence, it seems reasonable to assume that this quantity is a coefficient
of order one. This justifies our choice for the “original” prior, namely β 2 [1, 4]. Of course,
specific values of β are also very relevant. In particular, β = 1 or β = 3 represents the
cases where the inflaton field is either a dilaton or a moduli (β = 3 corresponds to the “no
scale” structure). In the following, we denote these versions of the ESI scenario by ESIp2

and ESIp
2/3

, respectively.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

ESI q 2 [0.1, 6] 0.03 1.77 3 2.29
ESIl log (q) 2 [−3, 1] −0.54 2.58 3 2.29
ESIo β = 2/q2 2 [1, 4] 0.01 1.81 3 2.25

ESIp2 q =
p
2 0.05 1.70 2 2.25

ESIp
2/3

q =
p

2/3 0.00 1.77 2 2.22
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A.9 Power law inflation (PLI)

The potential of this class of models can be expressed as [5]

V (φ) = M4e−↵φ/MPl , (A.17)

where ↵ is a positive coefficient. A priori, it is a small quantity the order of magnitude of
which is not known. As a consequence, a Jeffreys prior seems to be the most natural choice
and we take log(↵) 2 [−4, 0]. On a more phenomenological viewpoint, inflation occurs when
↵ <

p
2 only and, therefore, it makes also sense to choose a flat prior on ↵, namely ↵ 2 [0,

p
2]

(in the following, we denote this version of power law inflation by PLIp). However, when
↵ > 1.1, the likelihood is so small that it cannot be properly calculated. Hence, we will
restrict ourselves to the prior ↵ 2 [0, 1.1].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PLI log (↵) 2 [−4, 0] −7.04 5.56 3 −2.54
PLIp ↵ 2 [0, 1.1] −7.23 3.25 3 −2.54

A.10 Kähler moduli inflation (KMII)

The potential of KMII inflation is given by [5]

V (φ) = M4

✓

1− ↵
φ

MPl

e−φ/MPl

◆

, (A.18)

where ↵ is a free positive coefficient. As discussed in detail in ref. [5], in order for inflation
to end by slow-roll violation, one must have ↵ & 2.4095. On the other hand, the order of
magnitude of this parameter is unspecified and this suggests a Jeffreys prior on ↵. Combining
these two pieces of information, we are led to the prior log(↵) 2 [log(2.4095) ' 0.382, 4].

On the other hand, one can also choose ↵ such that the potential is positive everywhere,
as opposed to the previous situation where, for some values of the field, the potential can be
negative and where one makes use of a finite portion of it only (the corresponding version
of the scenario is denoted by KMIIV >0 in the following). In that case, one has the extra
condition ↵ < e ' 2.7183. Since e is close to 2.4095, a Jeffreys prior no longer makes sense and
a linear prior now seems a sensible choice. Hence our second choice ↵ 2 [2.4095, e ' 2.7183].
Everything is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KMII log (↵) 2 [0.382, 4] 0.00 1.75 3 2.22
KMIIV >0 ↵ 2 [2.4095, 2.7183] 0.01 1.69 3 2.22

A.11 Horizon flow inflation at first order (HF1I)

The potential of HF1I inflation reads [5]

V (φ) = M4

✓

1 +A1
φ

MPl

◆2
"

1− 2

3

✓

A1

1 +A1φ/MPl

◆2
#

. (A.19)

This model is obtained by an integration of the horizon flow equations truncated at a given
order (here at second order). As such, this scenario is in fact purely phenomenological.
Moreover, it turns out that the observational predictions are not very sensitive to the value
of the free parameter A1. Therefore, since its order of magnitude is not fixed, it makes sense
to choose a Jeffrey prior on A1 and we take log(A1) 2 [−3, 3] as indicated below:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

HF1I log (A1) 2 [−3, 3] −2.60 1.65 3 −0.08

A.12 Coleman Weinberg inflation (CWI)

Coleman Weinberg inflation is based on the following potential [5]

V (φ) = M4

"

1 + ↵

✓

φ

Q

◆4

ln

✓

φ

Q

◆

#

, (A.20)

with ↵ = 4e in order to have a vanishing minimum. The shape of V (φ) is therefore char-
acterised by only one parameter, Q. In the original version of the scenario, Q is fixed by
the GUT scale, Q ⇠ 1014 − 1015GeV. Therefore, in this case, it is natural to choose a flat
prior on Q (we denote this version of the scenario by CWIf). On the other hand, if one
considers a more general situation, then there is a priori no criterion to fix the value (or the
order of magnitude) of Q and, therefore, this justifies the choice of a Jeffreys prior, namely
log(Q/MPl) 2 [−5,−3] (we denote this version of the scenario by CWIl).

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CWIf Q/MPl 2 [5⇥ 10−5, 5⇥ 10−4] −2.35 2.62 3 1.49
CWIl log (Q/MPl) 2 [−5,−3] −2.51 3.02 3 1.60

A.13 Loop inflation (LI)

The potential of LI inflation can be written as [5]

V (φ) = M4



1 + ↵ ln

✓

φ

MPl

◆]

, (A.21)

where the parameter ↵ controls the strength of the one loop correction to the tree level V (φ)
(here the constant term) and must therefore be such that ↵ ⌧ 1. When ↵ < 0, in order
to have a sufficient number of e-folds, one must require ↵ > ↵min ' −0.3 [5]. In principle,
the model makes sense only if inflation proceeds at sub-Planckian vev ’s which is, strictly
speaking, not possible in this regime. If we allow vev ’s larger than the Planck mass, typically
up to φ/MPl ' 1000, then this sets an additional condition, namely ↵ < −0.1. When ↵ > 0,
there is no extra condition on ↵ except, as already signaled, that ↵ must be small in order
for the perturbative expansion to make sense.

From the previous considerations, we assume a flat prior ↵ 2 [−0.3,−0.1] in the case
where ↵ < 0 (we denote this version of the scenario by LI↵<0). We have seen that, when
↵ > 0, there exists no restrictions on this parameter. In particular, its order of magnitude
is not specified and, therefore, it makes sense to choose a Jeffreys prior, namely log (↵) 2
[log(0.003), log(0.3)] (in the following, this version of the scenario is denoted by LI↵>0).
Finally, when the sign is left unspecified, we simply consider a flat prior ↵ 2 [↵min,−0.1] ∪
[0, 0.3]. These priors are summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LI ↵ 2 [↵min,−0.1] ∪ [0, 0.3] −0.87 3.03 3 2.27
LI↵>0 log (↵) 2 [log(0.003), log(0.3)] −0.51 2.38 3 2.27
LI↵<0 ↵ 2 [↵min,−0.1] −1.74 2.29 3 0.79
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A.14 R+R2p inflation (RpI)

The potential of R+R2p inflation can be expressed as

V (φ) = M4e−2
p

2/3φ/MPl

∣

∣

∣
e
p

2/3φ/MPl − 1
∣

∣

∣

2p/(2p−1)
, (A.22)

which depends on the parameter p. The case p = 1 is peculiar and corresponds to Higgs
Inflation (HI). It has been shown in ref. [5] that, if p takes integer values different from p = 1,
then the model is ruled out since it leads to values of r and nS that are not compatible with
the Planck data. As a consequence, p must be sufficiently close to 1, and therefore must be
a real number. When p > 1, the potential possesses a maximum located at

φmax

MPl

=

r

3

2
ln

✓

2p− 1

p− 1

◆

. (A.23)

and two regimes of inflation exist (denoted by RPI1 and RPI2 in what follows) depending on
whether inflation takes place in φ 2 [0, φmax] or in φ 2 [φmax,1]. In the first case, inflation
stops by slow-roll violation and the model is therefore a one parameter model. In the second
case, however, inflation must stop by instability at φend and, hence, the corresponding model
is in fact a two parameters model, p and φend. Since p must be close to one, we choose the
flat prior p 2 [1, 1.5]. In the case of RPI2, the order of magnitude of φend being unspecified,
we take the following Jeffreys prior on φend: log(φend/φmax) 2 [0.5, 2].

If p < 1, then there is a single regime where inflation can proceed. It is denoted by
RPI3 in what follows. In that case, inflation stops by violation of the slow-roll conditions
and, therefore, the model is a one parameter model. As a consequence, we choose to consider
the following flat prior on p: p 2 [0.8, 1].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RPI1 p 2 [1, 1.5] −3.69 1.86 3 2.26

RPI2
p 2 [1, 1.5] −6.08 8.82 4 1.80

log(φend/φmax) 2 [0.8, 1]

RPI3 p 2 [0.8, 1] −2.28 2.84 3 2.22

A.15 Double well inflation (DWI)

Double Well inflation is a one parameter model characterised by the following potential

V (φ) = M4

"

✓

φ

φ0

◆2

− 1

#2

. (A.24)

As shown in ref. [5], slow-roll inflation takes place only if φ0/MPl > 2
p
2. On the other hand,

COBE normalising the model allows us to express the mass scale M in terms of the free
parameter φ0 . Then, the requirementM/MPl < 1 leads to to the constraint φ0/MPl . 105. As
a consequence, a Jeffreys logarithmic prior on φ0 is chosen, namely log(φ0/MPl) 2 [log(2

p
2) '

0.45, 5].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

DWI log (φ0/MPl) 2 [log(2
p
2), 5] −2.09 4.56 3 2.14
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A.16 Mutated hilltop inflation (MHI)

The potential of Mutated Hilltop inflation is given by

V (φ) = M4



1− sech

✓

φ

µ

◆]

, (A.25)

and depends on one free parameter, µ. This model is phenomenological although it is sup-
posed to emerge from supergravity considerations. In this last case, only sub-Planckian values
for µ probably make sense. This is the reason why it seems interesting to consider different
priors. Given that the order of magnitude of µ/MPl is not specified, we take three Jeffreys pri-
ors corresponding to situations where µ is sub-Planckian (denoted by MHIl), super-Planckian
(denoted by MHIs) or not specified. Those choices are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MHI log (µ/MPl) 2 [−2, 2] −0.30 2.01 3 2.29
MHIl log (µ/MPl) 2 [−2, 0] −0.82 2.64 3 2.23
MHIs log (µ/MPl) 2 [0, 2] 0.04 1.70 3 2.29

A.17 Radion gauge inflation (RGI)

The potential of Radion Gauge inflation can be expressed as

V (φ) = M4 (φ/MPl)
2

↵+ (φ/MPl)
2 , (A.26)

where ↵ is a dimensionless positive parameter. A priori, smaller than unity values are pre-
ferred but, at the same time, ↵ > 1 is not forbidden. This is why it is interesting to study
how the Bayesian evidence of the model depends on the range of variation of ↵. Let us also
notice that the order of magnitude of this parameter is not specified. As a consequence, we
choose three Jeffreys priors, one such that log(↵) 2 [−4, 4], one corresponding to a situation
where ↵ < 1, namely log(↵) 2 [−4, 0] (and we denote this version of the model by RGIs) and
one corresponding to ↵ > 1, namely log(↵) 2 [0, 4] (this version being referred to as RGIl).
Finally, in ref. [68], the potential of Radion Gauge inflation was also obtained in the context
of S-dual superstring models. In that case, the value of ↵ is fixed and given by ↵ = 1/16
which leads to a fourth choice of prior. Everything is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RGI log (↵) 2 [−4, 4] −0.39 2.36 3 2.29
RGIs log (↵) 2 [−4, 0] −0.11 2.09 3 2.29
RGIl log (↵) 2 [0, 4] −0.77 2.70 3 2.20
RGI1/16 ↵ = 1/16 −0.16 2.02 2 2.20

A.18 MSSM inflation (MSSMI)

In this scenario, inflation occurs along a flat direction of the MSSM potential. This flat
direction is usually lifted by higher order non-renormalisable operators and SUSY soft terms.
As a consequence, one can show that the potential takes the form [5]

V (φ) = M4

"

✓

φ

φ0

◆2

− 2

3

✓

φ

φ0

◆6

+
1

5

✓

φ

φ0

◆10
#

, (A.27)
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where φ0 is a free parameter which can be expressed as

φ8
0 =

M6
Plm

2
φ

10λ2
6

. (A.28)

The quantity λ6 is a coupling constant that is taken to be of order one while mφ is a
soft breaking mass and, thus, is chosen to be around ' 1TeV. As a consequence, one has
φ0 ' 1014GeV. In this original form of the scenario (denoted in what follows by MSSMIo),
it is therefore natural to take a flat prior on φ0 such that φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4].

This model can also be viewed as a phenomenological inflection point potential (denoted
by MSSMIp) where the value of φ0 is not fixed by high energy physics considerations. In
that case, a Jeffreys prior on φ0 is appropriate and, here, we take log(φ0/MPl) 2 [−3, 3].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

MSSMIo φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4] −10.27 0.76 3 −7.40
MSSMIp log (φ0/MPl) 2 [−3, 3] −3.28 4.61 3 1.72

A.19 Renormalisable inflection point inflation (RIPI)

This model is derived in the same context as MSSM inflation except that an additional term
in the superpotential involving right handed neutrinos is considered. The amplitude of this
new term is controlled by the dimensionless coupling constant h ' 10−12. This gives rise
to a new flat direction parametrised by the inflaton field φ. This flat direction is lifted by
the same mechanism discussed previously in the context of MSSM inflation and leads to the
following potential [5]

V (φ) = M4

"

✓

φ

φ0

◆2

− 4

3

✓

φ

φ0

◆3

+
1

2

✓

φ

φ0

◆4
#

, (A.29)

where

φ0 =
p
3
mφ

h
, (A.30)

mφ, as a soft breaking mass, being between 100GeV and 10TeV. As a consequence, one has
φ0 ⇠ 1014GeV. For this version of the model (denoted as the “original version”, RIPIo), a
flat prior on φ0 represents the preferred choice, φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]. As for MSSM
inflation, however, one can also see this scenario as a phenomenological scenario where φ0

is not specified (denoted by RIPIp in what follows). In this case, a Jeffreys prior on φ0 is
natural and we take log(φ0/MPl) 2 [−3,−3]. Finally, the above potential can also arise in a
supergravity framework with shift symmetry in the Kähler potential (denoted by RIPIsugra)
which allows for super-Planckian vev of the inflaton field φ. For this reason, we also consider
the prior φ0/MPl 2 [10, 50].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

RIPIo φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4] −9.94 2.01 3 −6.76
RIPIp log (φ0/MPl) 2 [−3, 3] −2.31 3.60 3 2.19
RIPIsugra φ0/MPl ⇠ [10, 50] −0.96 2.87 3 2.19
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A.20 Arctan inflation (AI)

The potential of AI can be expressed as

V (φ) = M4



1− 2

⇡
arctan

✓

φ

µ

◆]

, (A.31)

where µ is a free parameter. As shown in ref. [5], inflation stops by slow-roll violation only
if µ/MPl < 0.512378. This model is purely phenomenological and, as a consequence, the
scale µ is not fixed by any high energy physics considerations. As a consequence, its order
of magnitude is a priori unspecified. Therefore, we choose a Jeffreys logarithmic prior on µ,
namely log(µ/MPl) 2 [−3, log(0.51 · · · ) ' −0.29].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

AI log (µ/MPl) 2 [−3,−0.29] −0.20 2.18 3 2.29

A.21 Constant ns A inflation (CNAI)

The potential of CNAI is given by the following expression

V (φ) = M4



3−
(

3 + ↵2
)

tanh2
✓

↵p
2

φ

MPl

◆]

, (A.32)

where ↵ is a dimensionless free parameter. It was demonstrated in ref. [5] that slow-roll
inflation takes place provided ↵ < ↵max ' 0.66. This model is phenomenological and is not
based on high energy physics. It is in fact designed to produce an exact power law spectrum
of density perturbations. As a consequence, the order of magnitude of ↵ is not specified and
one chooses to work with a Jeffreys prior log(↵) 2 [−4, log(↵max) ' −0.18].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNAI log (↵) 2 [−4,−0.18] −1.96 2.22 3 0.79

A.22 Constant ns B inflation (CNBI)

This model is very similar to CNAI inflation. It is also a phenomenological scenario designed
to produce a constant spectral index and also depends on one dimensionless parameter ↵.
The corresponding potential can be expressed as

V (φ) = M4



(

3− ↵2
)

tan2
✓

↵p
2

φ

MPl

◆

− 3

]

. (A.33)

It was shown in ref. [5] that slow-roll inflation takes place if ↵ < ↵max ' 0.2975. If one
CMB normalises the model, then one can express the mass scale M in terms of ↵. It follows
that the requirement M/MPl < 1 implies ↵ . 10−9. As a consequence, we should take a
Jeffreys prior on ↵, namely log(↵) 2 [−9, log(↵max) ' −0.527]. In practice, however, when
↵ > 10−1.4, the likelihood is so small that it cannot be properly calculated. Moreover, when
↵ < 10−5, the value of the likelihood reaches a numerical stationary value and, therefore, it
is not necessary to numerically calculate it beyond that point. As a consequence, we consider
the following prior: log(↵) 2 [−5,−1.4].

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNBI log (↵) 2 [−5,−1.4] −1.68 2.13 3 0.79
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A.23 Open string Tachyonic inflation (OSTI)

In this model, the inflaton field is a tachyon field on a D3-brane. In principle, its kinetic term
is non-minimal but when higher order terms are neglected, it becomes a standard slow-roll
model with a potential given by the following expression

V (φ) = −M4

✓

φ

φ0

◆2

ln

"

✓

φ

φ0

◆2
#

. (A.34)

In the original version of the model, φ0 is set to the string scale φ0 ⇠ Ms. However, φ0 can
also be viewed as a free sub-Planckian scale. In that case, a Jeffreys prior is appropriate, for
instance log(φ0/MPl) 2 [0, 4]. However, when φ0/MPl < 10, the likelihood is so small that it
cannot be numerically calculated in a reliable way. As a consequence, in what follows, we
consider the prior log(φ0/MPl) 2 [1, 4] only.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

OSTI log (φ0/MPl) 2 [1, 4] −1.87 4.27 3 2.14

A.24 Witten-O’Raifeartaigh inflation (WRI)

The potential of WRI inflation can be expressed as

V (φ) = M4 ln

✓

φ

φ0

◆2

. (A.35)

When the high energy justifications of the scenario are considered, the condition φ0 = MPl

holds. In what follows, we call this version of the model the “original WRI” and we denote it
as WRIo. If this condition is relaxed (the corresponding version of the model is then denoted
by WRIg) and if the model is now viewed as a more phenomenological one, then the order
of magnitude and value of φ0 are unspecified and a Jeffreys prior is appropriate. We choose
log(φ0/MPl) 2 [−3, 3]. These considerations are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

WRIo φ0 = MPl −1.09 2.05 2 1.29
WRIg log (φ0/MPl) 2 [−3, 3] −1.20 2.97 3 1.89

A.25 Small field inflation (SFI)

Small field inflation is characterised by the following potential

V (φ) = M4



1−
✓

φ

µ

◆p]

, (A.36)

which depends on two parameters, the dimensionless index p and the mass scale µ. In most
of high energy physics implementations, only the case µ < MPl is sensible. It is, however,
always possible to take a more phenomenological point of view and also consider the case
µ > MPl. In what follows, for this reason, we will discuss a “small” version of the scenario
for which log(µ/MPl) 2 [−1, 0] and a “large” version for which log(µ/MPl) 2 [0, 2]. Two
remarks are in order at this point. Firstly, a Jeffreys prior is chosen on µ because, a priori,
its order of magnitude is unspecified. Secondly, in the small version of the model, we only
consider log(µ/MPl) 2 [−1, 0] (and not, for instance, log(µ/MPl) 2 [−2, 0]) because, when
µ/MPl < 0.1, the likelihood is so small that it cannot be properly numerically calculated.
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The index p is an O(1) parameter that can also take specific integer values. We will
treat the case where there is a flat prior on p, namely p 2 [2, 10], but also the case where p
has specific values, p = 1, p = 2, p = 3 and p = 4. Let us also notice that for p = 1 and
p = 2, the small version of the SFI inflation does not exist because slow-roll is violated in
that case (for instance, for p = 2, one has ✏2 > 4).

Our priors are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SFI
p 2 [2, 10] −0.31 1.88 4 2.29

log (µ/MPl) 2 [−1, 2]

SFIs
p 2 [2, 10] −0.40 1.54 4 2.27

log (µ/MPl) 2 [−1, 0]

SFIl
p 2 [2, 10] −0.30 2.01 4 2.29

log (µ/MPl) 2 [0, 2]

SFI1
p = 1 −1.53 1.94 3 0.79

log (µ/MPl) 2 [−1, 2]

SFI2
p = 2 −1.90 3.07 3 2.19

log (µ/MPl) 2 [−1, 2]

SFI2l
p = 2 −1.47 3.07 3 2.19

log (µ/MPl) 2 [0, 2]

SFI3
p = 3 −1.23 2.74 3 2.26

log (µ/MPl) 2 [−1, 2]

SFI3s
p = 3 −3.88 3.13 3 0.67

log (µ/MPl) 2 [−1, 0]

SFI3l
p = 3 −0.87 2.65 3 2.26

log (µ/MPl) 2 [0, 2]

SFI4
p = 4 −0.53 2.12 3 2.29

log (µ/MPl) 2 [−1, 2]

SFI4s
p = 4 −0.79 1.95 3 2.26

log (µ/MPl) 2 [−1, 0]

SFI4l
p = 4 −0.41 2.14 3 2.29

log (µ/MPl) 2 [0, 2]

A.26 Intermediate inflation (II)

Intermediate Inflation is a phenomenological model that can be defined by demanding an
equation of state during inflation of the form

⇢+ p = γ⇢λ, (A.37)

where γ > 0 and λ > 1 are dimensionless parameters, ⇢ and p being the energy density and
pressure stored in the inflaton field, respectively. This assumption is in fact equivalent to
having a scale factor given by a(t) / exp

(

Atf
)

where

f =
2(1− λ)

1− 2λ
. (A.38)

Given that λ > 1, it follows that 0 < f < 1. Finally, it is also equivalent to postulate the
following potential

V (φ) = M4

"

✓

φ

MPl

◆−β

− β2

6

✓

φ

MPl

◆−β−2
#

, (A.39)
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with

β = 4

✓

1

f
− 1

◆

. (A.40)

In this scenario, inflation cannot stop by violation of the slow-roll conditions and, hence, one
needs to postulate an extra mechanism such as tachyonic instability. This implies that the
scenario depends on another parameter, φend, the vev at which inflation ends. Intermediate
inflation is therefore a two parameters models, φend and λ (or f or β).

Given the above considerations, one can choose to take a flat prior on β 2 [0, 10] (in the
following, we denote the corresponding version of the scenario by IIβ). It makes also sense to
work with a flat prior on f 2 [0, 1] (this version of the model is denoted IIf ). In fact, in order
to avoid an infinite value of β, we will consider the following prior f 2 [0.1, 1]. Finally, we
also investigate a Jeffreys prior on λ (this version is denoted by IIλ), namely log(λ) 2 [0.1, 4],
the lower bound log(λ) > 0.1 being chosen to have finite values of β.

The prior on φend also needs to be discussed. It was shown in ref. [5] that the parameter
xend = φend/MPl must be larger than some value xmin

end in order to have a sufficient number
of e-folds during inflation. The parameter xend is only known numerically and has been
calculated in ref. [5]. Moreover, the order of magnitude of xend is not known and, therefore,
this suggests a Jeffreys prior. As a consequence, we take log(xend) 2 [log(xmin

end ), 4]. Everything
is summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

IIβ
β 2 [0, 10] −7.61 7.39 4 −3.66

log (xend) 2 [log
(

xmin
end

)

, 4]

IIf
f = 1/ (1 + β/4) 2 [0.1, 1] −7.56 8.22 4 −3.02
log (xend) 2 [log

(

xmin
end

)

, 4]

IIλ
log(λ) = log (1 + 2/β) 2 [0.1, 4] −7.79 7.79 4 −3.89

log (xend) 2 [log
(

xmin
end

)

, 4]

A.27 Kähler moduli inflation II (KMIII)

Kähler Moduli Inflation III is a stringy inspired scenario the potential of which can be
written as

V (φ) = M4

"

1− ↵

✓

φ

MPl

◆4/3

e−β(φ/MPl)
4/3

#

. (A.41)

In this model, the inflaton field is a modulus field. The potential depends on two parameters,
↵ and β. As reviewed in ref. [5], the order of magnitude of the parameter β is in fact controlled

by the compactification volume V. More precisely, one can show that ↵ = O
⇣

V5/3
s

⌘

and

β = O
⇣

V2/3
s

⌘

where Vs is a dimensionless volume defined by Vs = V/`6s , `s being the string

length. Since typical values are usually chosen such that Vs ⇠ 106 and since the order
of magnitude of Vs is not precisely specified, we take a logarithmic prior on Vs, namely
log(V) 2 [5, 7].

On the other hand, the ratio ↵/(βV) is a O(1) quantity, thanks to the scaling mentioned
above. As a consequence, we choose a flat prior ↵/(βV) 2 [0.2, 5]. In practice, once the

number Vs is fixed, one calculate β by means of β = V2/3
s . Then, the ratio ↵/(βV) is chosen

and one deduces the value of ↵.
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KMIII
log(V) 2 [5, 7]

0.07 1.66 3 2.22
↵/(βV) 2 [0.2, 5]

A.28 Logamediate inflation (LMI)

This model is a phenomenological model designed such that the scale factor during inflation
behaves as

a(t) = a0 exp

"

A

✓

ln
t

t0

◆λ
#

, (A.42)

where A > 0 and λ > 1 are two dimensionless parameters and t0 is a third parameter the
dimension of which is time. From this expression of the scale factor, one can infer the shape
of the potential. Straightforward calculations [5] lead to

V (φ) = M4

✓

φ

MPl

◆4(1−γ)

exp



−β

✓

φ

MPl

◆γ]

(A.43)

where the parameters γ and β can be expressed as

γ =
2

λ+ 1
, β = 2

✓

λ+ 1

2
p
2Aλ

◆2/(λ+1)

. (A.44)

These relations, together with the conditions on A and λ, imply 0 < γ  1 and β > 0. The
potential (A.43) has a maximum located at

xmax ⌘ φmax

MPl

=



4(1− γ)

βγ

]1/γ

. (A.45)

This gives rise to two different versions of the model [5]: either inflation proceeds on the
left side of its maximum and the field vev decreases during inflation (we call this version
LMI1 in the following) or it proceeds on the right side of its maximum and the field vev
increases during inflation (this version is denoted LMI2). In the case of LMI1, inflation stops
by slow-roll violation. The case of LMI2 is more complicated but, in brief, one needs an
extra mechanism to end inflation and this introduces a new parameter in the model, xend,
see ref. [5] for more details. LMI2 is therefore a three parameter model.

Regarding the priors, we essentially have two choices: either we specify them on the
parameters characterising the potential or we specify them on the parameters controlling the
behaviour of the scale factor. In the following, we consider both cases.

Let us start with the case where we choose priors on the parameters of the potential.
In the following, we denote the two corresponding versions of the scenario by LMI1p and
LMI2p. For LMI1p, it is natural to take a flat prior on γ, namely γ 2 [0, 1]. In fact, γ = 0
is numerically pathological and, therefore, in practice, we consider γ 2 [0.1, 1]. For the
parameter β, one takes a flat prior β 2 [0.01,βmax(γ)], where

βmax(γ) = 22−3γ/2 (0.1)γ/2
(1− γ)1−γ/2

γ1+γ/2
. (A.46)

As discussed in ref. [5], the condition β < βmax(γ) is mandatory in order for the slow-roll
conditions to be valid.
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Let us now turn to LMI2p. For this case, we also consider a flat prior on γ, γ 2 [0.1, 0.99].
For this model, there is no condition on β in order to satisfy the slow-roll and, therefore, one
takes a flat prior on this parameter, namely β 2 [0.01, 10]. Finally, the order of magnitude
of xend is not specified and this suggests a Jeffreys prior. Notice also that one must have
xend > xmin

end (γ, β,∆Nmin) in order to have at least ∆Nmin e-folds during inflation (typically
∆Nmin ' 50). Combining these two pieces of information leads us to the following prior
log (xend) 2 [log

(

xmin
end

)

, log
(

100xmin
end

)

].

Let us now treat the case where the priors are chosen from considerations based on the
form of the scale factor (A.42). We denote these versions LMI1o and LMI2o. This means
that we first choose A and λ and then infer γ and β from eqs. (A.44). For the LMI1o model,
since λ is a O(1) parameter, one takes a flat prior on this parameter, namely λ 2 [1, 6]. For
the parameter A, one needs to take into account the fact that there is a maximum value of
β, see the above discussion. In fact, it is possible to invert eqs. (A.44) and to express A in
terms of β and γ. One finds

A =

✓

2

β

◆2/γ ✓2

γ

◆2 1

8(2/γ − 1)
. (A.47)

Given that 2/γ > 1, the presence of a βmax implies a Amin which can be expressed as

Amin =

✓

2

βmax

◆2/γ ✓2

γ

◆2 1

8(2/γ − 1)
. (A.48)

In addition, since the order of magnitude of A is a priori not fixed, one chooses to work with
a Jeffreys prior. We therefore take log(A) 2 [Amin(λ), 2].

Let us finally examine the LMI2o version. We take the same prior on λ and xend as
before. Since there is no maximum value of β anymore, there is no minimal value of A. As
a consequence, we work with the following prior on A: log(A) 2 [−2, 2].

All the above considerations are summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

LMI1p
γ 2 [0.1, 1] −1.36 3.06 4 2.29

β 2 [0.01,βmax(γ)]

LMI1o
λ 2 [1, 6] −0.99 2.83 4 2.24

log (A) 2 [Amin(λ), 2]

γ 2 [0.1, 0.99]
LMI2p β 2 [0.01, 10] −4.35 3.74 5 2.29

log (xend) 2 [log
(

xmin
end

)

, log
(

100xmin
end

)

]

λ 2 [1.1, 6]
LMI2o log (A) 2 [−2, 2] −3.93 3.24 5 2.29

log (xend) 2 [log
(

xmin
end

)

, log
(

100xmin
end

)

]

A.29 Twisted inflation (TWI)

The potential of Twisted Inflation (TWI) is given by the following expression

V (φ) = M4

"

1−A

✓

φ

φ0

◆2

e−φ/φ0

#

, (A.49)
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where the two parameters M and φ0 can be expressed as

M4 =
8N

A⇡2(2⇡R)4
,

φ0

MPl

=
1

2⇡RMPl

, (A.50)

the constant A being defined by A = 32/[93⇣(5)] ' 0.33. This model is based on higher
dimensional supersymmetric gauge theories, more precisely U(N ) Yang-Mills theory, and R
represents the radius of compactification. The above potential is valid provided RMPl 0 1,
that is to say φ0/MPl ⌧ 1. In fact, the model makes sense if φ ⌧ MPl for any vev and not only
φ0 , see ref. [5] for more detail. Inflation cannot stop by violation of the slow-roll conditions
and, as a consequence, one needs to introduce another mechanism which is characterised by
a new parameter, φend. TWI inflation is therefore a two parameter model.

Let us now discuss the priors. We have just seen that φ0 must be sub-Planckian.
Since its order of magnitude is a priori unknown, it seems natural to take a Jeffreys prior,
namely log(φ0/MPl) 2 [−4,−1]. Concerning the vev at which inflation ends, we know that
φend/φ0 > 2 because the minimum of the potential is located at φ/φ0 = 2. Otherwise, as
already discussed, the only other constraint is φend ⌧ MPl. However, in practice, for values
of φend approaching the Planck mass, the potential is so flat that this regime is already
strongly disfavoured (because nS ' 1). Therefore, it is better to choose an upper bound
for log(φend/φ0) supplemented with the hard prior φend < MPl. Then, one can study if the
evidence is changed if we modify the upper bound. Since the order of magnitude of this
parameter is a priori not specified, we must also take a Jeffreys prior on φ0 . To summarise,
we consider the two following priors log(φend/φ0) 2 [log(2), log(20)] and log(φend/φ0) 2
[log(2), log(40)] and check that, indeed, the final result is not sensitive to the upper bound.
In the following, we denote these priors by TWIφ0 and TWIrφ0

.

At the fundamental level, Twisted Inflation is in fact characterised by N and not by
φ0 . If we CMB normalise the model, one can express the latter in terms of the former,
namely φ0/MPl ' 10−5/

p
N . In this version of the model, denoted by TWI and TWIr in

what follows, the prior choices are now fixed on N (and the value of φ0 is calculated using
the above equation). Since N is a priori a number of order one, it makes sense to take a flat
prior and we choose N 2 [1, 100]. Concerning φend, we just take the same priors as before.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

log (φ0/MPl) 2 [−4,−1]
TWIφ0 log (φend/φ0) 2 [log(2), log(20)] −0.73 1.64 4 2.27

φend < MPl

log (φ0/MPl) 2 [−4,−1]
TWIrφ0

log (φend/φ0) 2 [log(2), log(40)] −0.83 1.66 4 2.27

φend < MPl

N = 10−10(φ0/MPl)
−2 2 [1, 100]

TWI log (φend/φ0) 2 [log(2), log(20)] −2.74 1.50 4 2.27
φend < MPl

N = 10−10(φ0/MPl)
−2 2 [1, 100]

TWI log (φend/φ0) 2 [log(2), log(40)] −1.55 1.55 4 2.27
φend < MPl
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A.30 Generalised MSSM inflation (GMSSMI)

This model is a generalisation of MSSMI studied in section A.18. The potential can be
expressed as [5]

V (φ) = M4

"

✓

φ

φ0

◆2

− 2

3
↵

✓

φ

φ0

◆6

+
↵

5

✓

φ

φ0

◆10
#

. (A.51)

This is a two-parameters model, φ0 and ↵, and the potential of MSSMI is recovered for
↵ = 1. As already discussed in section A.18 and in ref. [5], the typical value for the vev φ0 is
φ0 ' 1014GeV. The model can also be viewed as a phenomenological one, that is to say as
a representative of the class of the so-called inflection point inflationary scenario.

Let us now discuss the priors. Viewed as a phenomenological model (denoted by
GMSSMIp in what follows), the model is such that the scale of φ0 is unspecified and, there-
fore, a Jeffreys prior is appropriate. We choose to work with log(φ0/MPl) 2 [−5, 5]. On the
other hand, the parameter ↵ is of order one and, as a consequence, we take a flat prior:
↵ 2 [0.9, 1.1]. Finally, a hard prior has been implemented to reject all non slow-roll cases
(defined to have |✏2| > 0.2).

If we now want to calculate the evidence of the model motivated by particle physics,
we must include in the analysis the fact that the vev φ0 is around 1014GeV. For this reason,
we choose a flat prior such that φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]. One also knows that, if ↵ is
not precisely tuned around ↵ = 1, then the model can not support slow-roll inflation and is,
therefore, ruled out. Moreover, requiring at least ∆N ' 60 e-fold during inflation leads to
the constraint

|↵− 1| < φ4
0

M4
Pl

⇡2

900∆N2
, (A.52)

see ref. [5]. This formula tells us that, if |↵ − 1| & 10−20, then the model is ruled out. This
illustrates the extreme fine-tuning needed for this model to be compatible with the Planck
data. When ↵ > 1, we implement this fine-tuning through two different choices of priors
satisfying the above condition, namely log(1− ↵) 2 [−28,−23] and log(1− ↵) 2 [−28,−20],
corresponding to the GMSSMIomA and GMSSMIomB versions of the model, GMSSMIomB

being on the validity threshold. If ↵ > 1, we define two other models denoted GMSSMIopA
and GMSSMIopB such that log(↵ − 1) 2 [−28,−23] and log(↵ − 1) 2 [−28,−21.75]. Our
choices for the priors are summarised in the following table:

– 36 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GMSSMIp
log (φ0/MPl) 2 [−5, 5] −2.54 4.96 4 1.77

↵ 2 [0.9, 1.1]

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIopA log (↵− 1) 2 [−28,−23] −10.30 0.76 4 −7.40

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIopB log (↵− 1) 2 [−28,−21.75] −10.41 0.76 4 −7.40

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIomA log (1− ↵) 2 [−28,−23] −7.85 5.39 4 2.23

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIomB log (1− ↵) 2 [−28,−20] −5.25 2.87 4 2.27

lnR 2 [−46, 0], ∆N > 60

One may also wonder how the evidence would be changed if one penetrates the regime
where eq. (A.52) is not satisfied (and where the slow-roll approximation is not satisfied). In
that case, since all non slow-roll models are incompatible with the Planck data, the evidence
should only be rescaled by the ratio of the prior volumes. Therefore, in the following, we
study the more general situation where log |↵ − 1| 2 [−28,−`], where ` is the variable with
respect to which we want to study the behaviour of the Bayesian evidence. In the prior plane
[φ0/MPl, log |1 − ↵|], eq. (A.52) defines a line above which the likelihood vanishes (since,
in that case and as already mentioned, the model becomes incompatible with the data).
This curve approximately goes from (2 ⇥ 10−5,−24 ⌘ `min

c ) to (2 ⇥ 10−4,−20 ⌘ `max
c ) and,

therefore, defines three different regions according to whether −` < `min
c , −` 2 [`min

c , `max
c ] or

−` > `max
c .

Let us first assume that ↵ > 1 and log(↵− 1) 2 [−28,−`]. If −` . −24, then ↵− 1 is so
small that one expects the model to be equivalent to MSSMI. If ` 2 [`min

c , `max
c ] (denoted the

“transition region” in what follows), then only numerical calculations can track the behaviour
of the evidence. Notice that GMSSMIopA and GMSSMIopB belongs to this region. Finally,
for −` > `max

c , one expects the evidence to scale with the ratio of the prior volumes. These
expectations are confirmed in figure 5 (solid green line). However, for numerical reasons, we
are in fact unable to follow the evidence beyond the point −` ' −21.75 (GMSSMIopB model)
which is still in the transition region. One can nevertheless assume that the evidence does
not change much between that point and the edge of the transition region (hence the small
horizontal dashed red segment inside the transition region in figure 5). In that case, in the
regime −` > `max

c , one can write

ln

Elog(↵−1)2[−28,−`]

EHI

]

' ln

✓EGMSSMIopB

EHI

◆

+ ln (28− `max
c )− ln (28− `) . (A.53)

This rough approximation can be considered as reasonable because it gives an upper bound
on the value of the evidence (since the evidence can only decrease in the transition region)
which is, anyhow, in a regime where the model is strongly disfavoured. Moreover, one should
also keep in mind that we are close to a regime where the numerical calculations cannot
really be trusted (light red shaded region).

The case ↵ < 1 is very similar and in figure 5, we have represented different numerical
values of the Bayes factor versus −` (blue solid line). The interpretation is very similar and
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Figure 5. Evolution of the GMSSMI Bayes factor versus the upper bound −` of the prior range on
↵ for ↵ > 1 and ↵ < 1. The green squares and blue circles represent numerical values of the evidence.
The dotted red curves represent the analytical laws giving the behaviour of the Bayes factor versus
−` for −` & `max

c according to eqs. (A.53) and (A.54). These equations predict how the Bayes factor
behaves with −` and, therefore, can be used to extrapolate in regimes where ↵ becomes of order one.

one notices that, this time, one can track the evidence until the end of the transition regime,
i.e. until the GMSSMIomB model. Then, one can extrapolate it using again the ratio of the
prior volumes and this leads to the following expression

ln

✓Elog(1−↵)2[−28,−`]

EHI

◆

= ln

✓EGMSSMIomB

EHI

◆

+ ln (28− `max
c )− ln (28− `) . (A.54)

This expression is plotted as the (upper) dotted red line in figure 5 and allows us to extrap-
olate, in a reliable way, the Bayes factor for values −` & −20. Let us also notice that, in this
case, the calculation is performed in a regime where numerical calculations are trustful.

In figure 5, one also notices that, for ↵ > 1, the evidence decreases in the transition
region while, for ↵ < 1, it grows. This is because the spectral index of GMSSMI decreases
with the value of ↵ starting from the MSSMI value nS ' 0.9 when |↵ − 1| ' 0. As a
consequence, when ↵ < 1, if −` is increased then nS grows and, therefore, crosses the Planck
best fit region. For this reason, the blue curve in figure 5 increases in the transition region.
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In the case ↵ > 1, one observes the opposite behaviour since, in that situation, the model
moves away from the Planck best fit region.

The previous considerations allow us to extrapolate the evidence analytically to the
theoretical prior in which ↵ varies up to unity. Those two extrapolated models have been
named GMSSMIep and GMSSMIem in the next table and their evidence have been estimated
using the two equations derived above, namely eqs. (A.53) and (A.54).

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIep log (↵− 1) 2 [−28,−0] −11.69 3.00 4 −7.40

lnR 2 [−46, 0]

φ0/MPl 2 [2⇥ 10−5, 2⇥ 10−4]
GMSSMIem log (1− ↵) 2 [−28,−0] −6.53 3.88 4 2.27

lnR 2 [−46, 0]

In the above table, the complexities have been rescaled following the rough estimate given
by eq. (A.8).

A.31 Generalised renormalisable point inflation (GRIPI)

In the very same way as GMSSMI is a generalisation of MSSMI, see section A.30, the GRIPI
potential is a generalisation of the RIPI one, see section A.19. This potential can be written as

V (φ) = M4

"

✓

φ

φ0

◆2

− 4↵

3

✓

φ

φ0

◆3

+
↵

2

✓

φ

φ0

◆4
#

, (A.55)

and depends on two parameters, φ0 and ↵. The case ↵ = 1 corresponds to the RIPI potential.
As discussed in ref. [5], the typical value of the vev φ0 is given by φ0 ' 1014GeV and/or
φ0 ' 1017GeV. In fact, in the case φ0 ' 1014GeV, the amount of fine-tuning is similar to
the GMSSMI case. For this reason, it is not so interesting to replicate the discussion of the
previous section and, here, one focuses on the case φ0 ' 1017GeV where one can expect the
fine tuning problem to be sligthly less severe.

Let us now discuss the priors. The GRIPI potential can always be viewed as a phe-
nomenological model (simply denoted GRIPIp in what follows). In that case, the order of
magnitude of the parameter φ0 is not specified and, therefore, one chooses a Jeffreys prior,
namely log(φ0/MPl) 2 [−5, 5]. Regarding the parameter ↵, since it is of order one, we simply
take ↵ 2 [0.9, 1.1]. As for GMSSMI, we have also added a hard prior boundary, enforcing
|✏2| < 0.2, as otherwise some regions of the parameter space would predict non-slow-roll
inflation.

Returning to the original version of the model and considering the fact that, in this case,
the vev φ0 is specified, we choose the prior φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1]. As for GMSSMI, if
↵ is not tuned around ↵ = 1, the model becomes inconsistent. Requiring at least ∆N ' 60
e-fold during inflation leads to the condition

|↵− 1| < φ4
0

M4
Pl

⇡2

576∆N2
, (A.56)

see ref. [5] and, therefore, if |↵ − 1| & 10−8, then the model is a priori ruled out. As
a consequence, when ↵ > 1, we consider two cases satisfying the above constraint namely
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log(1−↵) 2 [−15,−10] and log(1−↵) 2 [−28,−8], thus defining the GRIPIomA and GRIPIomB

models. If ↵ > 1, we define two other models denoted GRIPIopA and GRIPIopB such that
log(↵− 1) 2 [−28,−10] and log(↵− 1) 2 [−28,−8].

Finally, the GRIPI potential can also arise in a supergravity framework (we denote this
version of the scenario GRIPIsugra). In that case, there is usually a shift symmetry which
allows us to consider super-Planckian vev of the field. For this reason, we also investigate the
prior φ0/MPl 2 [10, 50]. The prior on ↵ is still taken to be with ↵ 2 [0.9, 1.1] in agreement
with the previous discussion. All the considerations presented in this section are summarised
in the table below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GRIPIp
log (φ0/MPl) 2 [−5, 5] −2.77 4.00 4 2.29

↵ 2 [0.9, 1.1]

φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1]
GRIPIopA log (↵− 1) 2 [−15,−10] −5.10 3.14 4 −0.31

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1]
GRIPIopB log (↵− 1) 2 [−15,−8] −5.39 3.21 4 −0.31

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1]
GRIPIomA log (1− ↵) 2 [−15,−10] −4.60 6.42 4 1.87

lnR 2 [−46, 0], ∆N > 60

φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1]
GRIPIomB log (1− ↵) 2 [−15,−8] −4.30 5.72 4 1.99

lnR 2 [−46, 0], ∆N > 60

GRIPIsugra
φ0/MPl 2 [10, 50] −0.96 2.96 4 2.23
↵ 2 [0.9, 1.1]

As was done in the case of GMSSM inflation in the previous section, one can also
study how the choice of the prior on ↵ affects the determination of the Bayesian evidence.
For this reason, we consider the following priors: log(↵ − 1) 2 [−15,−`] for ↵ > 1 and
log(1 − ↵) 2 [−15,−`] for ↵ < 1. The dependence of the evidence with respect to ` can
be derived as in the previous section. In the prior plane [φ0/MPl, log |1 − ↵|], eq. (A.56)
defines a line above which the likelihood is tiny and can be considered to be vanishing.
This line divides the prior space into two parts and goes from (2 ⇥ 10−2,−12 ⌘ `min

c ) to
(2 ⇥ 10−1,−8 ⌘ `max

c ) and, therefore, defines three different regions according to whether
−` < `min

c , −` 2 [`min
c , `max

c ] or −` > `max
c .

Let us first assume that ↵ > 1. If −` . −15, then ↵− 1 is tiny and one expects GRIPI
to be equivalent to RIPI (with the same value of φ0). If ` 2 [`min

c , `max
c ], then only numerical

calculations can track the behaviour of the evidence. Notice that GRIPIopA and GRIPIopB
belongs to this region. Finally, for −` > `max

c , one expects the evidence to scale with the
ratio of the prior volumes. In that case, one can write

ln

✓Elog(↵−1)2[−15,−`]

EHI

◆

= ln

✓EGRIPIopB

EHI

◆

+ ln(15− `max
c )− ln(15− `). (A.57)

Here, we have taken GRIPIopB as the calibration model, a natural choice considering that this
model lies at the frontier of the transition region. The corresponding results are represented
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Figure 6. Evolution of the GRIPI Bayes factor versus the upper bound −` of the prior range on ↵
for ↵ > 1 and ↵ < 1. The green squares and blue circles represent numerical values of the evidence.
The dotted red curves represent the analytical laws giving the behaviour of the Bayes factor versus
−` for −` & `max

c according to eqs. (A.57) and (A.58). These equations predict how the Bayes factor
behaves with −` and, therefore, can be used to extrapolate in regimes where ↵ becomes of order one.
The behaviour of the evidences is very similar to what was found in the GMSSMI case, see figure 5.
However, a difference with GMSSMI is that, in the case ↵ > 1, one is now able to track the Bayes
factors through the entire transition region.

in figure 6 (solid green line for the numerical results and dashed red line for the extrapolated
evidences).

For ↵ < 1, taking GRIPIomB as a calibration model, exactly the same discussion applies
and one is led to (again, see figure 6)

ln

✓Elog(1−↵)2[−15,−`]

EHI

◆

= ln

✓EGRIPIomB

EHI

◆

+ ln(15− `max
c )− ln(15− `). (A.58)

We can now use these formulae to rescale the evidence if ↵ varies up to unity. Naming the
two corresponding models GRIPIep and GRIPIem, their evidences have been reported below.
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

GRIPIep
φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1] −6.15 3.79 4 −0.31

log (↵− 1) 2 [−15, 0]

GRIPIem
φ0/MPl 2 [2⇥ 10−2, 2⇥ 10−1] −5.06 4.28 4 1.99

log (1− ↵) 2 [−15, 0]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8).

A.32 Brane SUSY breaking inflation (BSUSYBI)

The potential is a sum of two exponential and reads

V (φ) = M4

✓

e
p
6 φ

MPl + e
p
6γ φ

MPl

◆

. (A.59)

In addition to the parameter γ, the field value xend = φend/MPl at which inflation ends
has to be specified. Within the superstring scenario from which this model is inspired,
0 < γ < 1/

p
3 [69]. However, the upper limit would already implies to ✏1(x) > 3γ2 ' 1

and slow-roll is violated everywhere. We have therefore limited the prior on γ to slightly
lower values γ < 0.3 considering either a flat prior or a Jeffreys prior. Concerning, xend, one
notices that inflation proceeds at decreasing field values and is confined in a region x < x✏1=1,
x✏1=1 being the solution of ✏1(x) = 1. As a result, there is a maximal bound xmax

end which
has been defined such that inflation last more than 120 e-folds. The quantity is only known
numerically and is obtained by integrating the field trajectory from xini = x✏1=1 during 120
e-folds. On the contrary, there is no lower limit on the allowed values of xend and the limit
xend ! −1, would correspond to nS = 1 and r = 0. Therefore, for xend negative enough,
the likelihood, and therefore the evidence, becomes independent on the lower bound on xend.
We have therefore considered the following priors:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BSUSYBIf
γ 2 [0, 0.3]

3.26 3.26 4 −2.54
xend 2 [−200, xmax

end ]

BSUSYBIl
log(γ) 2 [−3,−1]

4.52 3.26 4 −2.54
xend 2 [−200, xmax

end ]

A.33 Tip inflation (TI)

This string inspired potential has two parameters, a dimensionless coupling ↵ and a typical
vev µ:

V (φ) = M4



1 + cos

✓

φ

µ

◆

+ ↵ sin2
✓

φ

µ

◆]

. (A.60)

As made explicit in ref. [5], these parameters encode combinations of geometrical quantities
related to the relative position of branes within a conifold geometry. This potential supports
inflation at its top provided ↵ ' 1/2, which amounts to some level of fine-tuning. When this
condition is satisfied, µ actually gives the volume of the extra-dimensions

µ

MPl

' 2⇥ 108σ
9/4
0 , (A.61)

where σ0 is the stabilised value of the volume modulus in the absence of uplifting terms [70].
A typical value for σ0 is σ0 ' 102 which translates into µ/MPl ' 10−4, up to a few orders
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of magnitude. Following these considerations, we have examined various priors designed
to measure how important is the fine-tuning over ↵. In particular, the three sub-classes
↵ & 1/2, ↵ = 1/2 and ↵ . 1/2 yield different observable predictions and have been treated
as separated models. They are summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIft+↵>1/2

↵ 2]0.5, 0.5 + 10−7] −4.37 3.51 4 1.95
log(µ/MPl) 2 [−5,−3]

TIft↵>1/2
↵ 2]0.5, 0.5 + 2⇥ 10−7] −5.19 3.53 4 1.95
log(µ/MPl) 2 [−5,−3]

TIft−↵>1/2

↵ 2]0.5, 0.5 + 10−6] −6.99 3.51 4 1.95
log(µ/MPl) 2 [−5,−3]

TI1/2
↵ = 1/2 −1.90 2.82 3 1.95

log(µ/MPl) 2 [−5,−3]

TIft+↵<1/2

↵ 2 [0.5− 10−7, 0.5[ −1.92 2.59 4 2.21
log(µ/MPl) 2 [−5,−3]

TIft↵<1/2
↵ 2 [0.5− 10−6, 0.5[ −4.64 2.60 4 2.21
log(µ/MPl) 2 [−5,−3]

TIft−↵<1/2

↵ 2 [0.5− 10−5, 0.5[ −7.12 2.59 4 2.21
log(µ/MPl) 2 [−5,−3]

For completeness, we have also considered models in which ↵ ' 1/2 without any prior
prejudice on the sign of ↵− 1/2. One gets the following evidences:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIft+
↵ 2 [0.5− 10−7, 0.5 + 10−7] −2.65 2.74 4 2.21

log(µ/MPl) 2 [−5,−3]

TIft
↵ 2 [0.5− 10−6, 0.5 + 10−6] −5.26 2.74 4 2.21

log(µ/MPl) 2 [−5,−3]

TIft−
↵ 2 [0.5− 10−5, 0.5 + 10−5] −7.78 2.75 4 2.21

log(µ/MPl) 2 [−5,−3]

One can also wonder what happens if one detunes the prior on ↵ since, after all, this fine-
tuning is not theoretically motivated. Let us first consider the case where ↵ > 1/2. We want
to calculate the evidence if the prior on ↵ is chosen such that ↵ 2]0.5, 0.5 + a]. We assume
that, for a > 10−6, the likelihood vanishes (which is, according to the results presented in the
tables, a realistic hypothesis). Applying the considerations presented earlier [see eq. (A.4)]
and taking as a calibration model TIft−↵>1/2, one obtains that for a > 10−6

E↵2]0.5,0.5+a] = E↵2]0.5,0.5+10−6]
10−6

a
, (A.62)

or

ln

✓E↵2]0.5,0.5+a]

EHI

◆

= ln

 ETIft−
↵>1/2

EHI

!

− 6 ln(10)− ln(a) ' −6.99− 6 ln(10)− ln(a). (A.63)

If we now assume ↵ < 1/2, the same considerations lead to a similar formula, namely

ln

✓E↵2]0.5−a,0.5]

EHI

◆

= ln

 ETIft−
↵<1/2

EHI

!

− 5 ln(10)− ln(a) ' −7.12− 5 ln(10)− ln(a), (A.64)
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for a > 10−5. Finally, the case where the sign of ↵− 1/2 is not specified yields

ln

✓E↵2]0.5−a,0.5+a]

EHI

◆

= ln

✓ETIft−

EHI

◆

− 5 ln(10)− ln(a) ' −7.78− 5 ln(10)− ln(a), (A.65)

for a > 10−5. As expected, we see on these last three formulae that, if one increases the
range of the prior in a region where the likelihood vanishes, then the corresponding models
get penalised for the wasted parameter space. Therefore, the above calculations concretely
illustrate the Occam’s razor effect.

Applying these formulae allows us to extrapolate the evidence for a natural prior choice
having a = 10−1, i.e. assuming only |↵− 0.5| < 0.1.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

TIe↵<1/2
↵ 2 [0.4, 0.5] −16.33 4.00 4 2.21

log(µ/MPl) 2 [−5,−3]

TIe↵>1/2
↵ 2 [0.5, 0.6] −18.50 4.00 4 1.95

log(µ/MPl) 2 [−5,−3]

TIe
↵ 2 [0.4, 0.6] −16.99 4.00 4 2.21

log(µ/MPl) 2 [−5,−3]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8). Here the volume ratio is so big that the rescaled complexities end up being
very close to the number of parameters, which is certainly overestimated due to our crude
assumptions in deriving eq. (A.8).

A.34 Beta exponential inflation (BEI)

This model is an extension of PLI to the generalised exponential function exp1-β defined by

exp1-β(x) = (1+ βx)1/β for 1 + βx > 0 and exp1-β(x) = 0 otherwise. The potential therefore
reads

V (φ) = M4 exp1-β

✓

λ
φ

MPl

◆

, (A.66)

where λ > 0 is a dimensionless parameter. As detailed in ref. [5], inflation ends naturally
only for β > 0, which will be our prior. The model being phenomenological, there is no
natural value for λ and we have chosen a Jeffreys prior. Moreover, one can show that the
slow-roll observable predictions does not depend on λ, and thus the prior boundaries do not
affect the evidence. In the limit β ! 0, the model becomes strongly disfavoured such that,
changing the lower limit of the β-prior accordingly decreases the evidence of the model. This
is summarised in the following table:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BEI
log(λ) 2 [−3, 3] −0.99 2.65 4 2.29
log(β) 2 [−1.5, 3]

A.35 Pseudo natural inflation (PSNI)

The potential of PSNI reads

V (φ) = M4



1 + ↵ ln

✓

cos
φ

f

◆]

, (A.67)
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Figure 7. Priors for PSNI inflation in the plane [log↵, log(f/MPl)]. The red rectangle represents
the theoretical motivated prior. The blue line represents the condition of validity of the slow-roll
approximation, namely ↵f2/M2

Pl
< 0.1. Above this line (green region), slow-roll is satisfied and below

(blue region) slow-roll is strongly violated. As a consequence, the likelihood vanishes in the blue region
and is different from zero in the green one. Numerically, one can only determine the Bayesian evidence
with a prior corresponding to the green region. The evidence corresponding to the red rectangle can
be derived from analytical considerations (see text). The left panel corresponds to the situation where
y > (x− 1)/2 while the right panel is for y < (x− 1)/2.

where ↵ is a dimensionless coupling and f is an energy scale. In order for the model to be
consistent, one should have f < mPl =

p
8⇡MPl and ↵ ⌧ 1 [71]. As discussed in ref. [5], the

above potential has ✏2 > ✏min
2 = 2↵M2

Pl/f
2 and slow-roll inflation can occur only if ↵M2

Pl/f
2

is constrained to be small.
A first phenomenological choice of priors therefore consists in adopting prior bound-

aries for uniform priors in the quantities log(↵M2
Pl/f

2) and log(f/MPl). Taking log(f/MPl) 2
[−2, 1] and log(↵M2

Pl/f
2) < −1, different lower bounds on ↵M2

Pl/f
2 have been studied, cor-

responding to different levels of fine-tuning of this parameter.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PSNIft1
log(↵M2

Pl/f
2) 2 [−5,−1] −0.42 2.13 4 2.29

log(f/MPl) 2 [−2, 1]

PSNIft2
log(↵M2

Pl/f
2) 2 [−3,−1] −0.41 2.04 4 2.29

log(f/MPl) 2 [−2, 1]

PSNIft3
log(↵M2

Pl/f
2) 2 [−2,−1] −0.64 1.74 4 2.29

log(f/MPl) 2 [−2, 1]

PSNIft4
log(↵M2

Pl/f
2) 2 [−1.5,−1] −5.62 3.68 4 0.02

log(f/MPl) 2 [−2, 1]

One can see that the evidence increases as the lower bound on log(↵M2
Pl/f

2) decreases because
the likelihood is better in the region where log(↵M2

Pl/f
2) is small.

Another sensible choice of priors, based on the previous considerations, is to take uni-
form priors on the theoretical motivated parameter log(↵) 2 [−x,−1] and log(f/MPl) 2
[−y, 1], where x and y are positive numbers left unspecified for the moment. In the plane
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[log(f/MPl), log↵] the two-dimensional prior range is represented in figure 7 by the red rect-
angle. As discussed previously, ↵M2

Pl/f
2 must be a small quantity for slow-roll to be satisfied.

In the numerical calculations, we have assumed that it is smaller than 0.1, i.e. , we use the
same hard prior boundary as before, ✏2 < 0.2. Such a hard prior cuts the theoretical prior
domain of figure 7 along the curve

log

✓

f

MPl

◆

>
1

2
log↵+

1

2
, (A.68)

which is represented by a blue line in figure 7. As for GMSSMI and GRIPI, we can estimate
analytically how the evidence would be rescaled by removing this hard prior, but first we
need to estimate how much prior volume is affected.

When y ≥ (x − 1)/2 (left panel of figure 7), the hard prior boundary line intersects
the right vertical edge of the red rectangle at the point (−1, 0) and the left vertical edge at
(−x, 1/2 − x/2). In the case where y  (x − 1)/2 (right panel of figure 7), this line still
intersects the right vertical edge of the red rectangle at the point (−1, 0) but now meets the
bottom horizontal edge at (−1−2y,−y). The condition (A.68) corresponds to the green region
in figure 7, where slow-roll is valid and the likelihood non-vanishing. The complementary
domain has been represented in blue on the same figure. In this domain, slow-roll is violated
and the predictions cannot be in agreement with the observations. As a consequence, the
likelihood function L is very small and for the purpose of our analytical extrapolation it will
be assumed to vanish. In the following table, we have numerically computed the evidences
in the green domain, i.e. in the region where our computations can be trusted, for various
prior choices.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

log(↵) 2 [−7,−1]
PSNIoA log(f/MPl) 2 [−2, 1] −0.40 2.15 4 2.29

↵M2
Pl/f

2 < 10−1

log(↵) 2 [−5,−1]
PSNIoB log(f/MPl) 2 [−2, 1] −0.42 2.12 4 2.29

↵M2
Pl/f

2 < 10−1

log(↵) 2 [−3,−1]
PSNIoC log(f/MPl) 2 [−2, 1] −0.43 2.12 4 2.29

↵M2
Pl/f

2 < 10−1

We can now use these evidences calculated with the green domain prior and rescale them
appropriately to obtain the evidences over the full domain, including the slow-roll violating
regions, that is to say in the red rectangle. From eq. (A.4), generalised to a two-dimensional
prior, one gets

Ered =

R

green d log(↵) d log(f/MPl)
R

red d log(↵) d log(f/MPl)
Egreen, (A.69)

i.e. the evidence is rescaled according to the ratio of the prior volumes between the green and
red domains. Explicitly, one gets

Z

red
d log(↵) d log(f/MPl) = (x− 1)(y + 1), (A.70)

– 46 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

and
Z

green
d log(↵) d log(f/MPl) =

8

>

<

>

:

(x− 1)(x+ 3)

4
if y ≥ x− 1

2
,

(y + 1)(x− 1)− y2 if y  x− 1

2
,

(A.71)

such that

ln

✓Ered
EHI

◆

= ln

✓Egreen
EHI

◆

+

8

>

>

<

>

>

:

ln



x+ 3

4(y + 1)

]

if y ≥ x− 1

2
,

ln



1− y2

(y + 1)(x− 1)

]

if y  x− 1

2
.

(A.72)

Therefore, the rescaled evidence (for the red domain) can be obtained from the one in the
green region by using the correction factor given by the above formula. The results are
summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

PSNIepA
log(↵) 2 [−7,−1] −0.65 2.39 4 2.29

log(f/MPl) 2 [−2, 1]

PSNIepB
log(↵) 2 [−5,−1] −0.83 2.51 4 2.29

log(f/MPl) 2 [−2, 1]

PSNIepC
log(↵) 2 [−3,−1] −1.13 2.77 4 2.29

log(f/MPl) 2 [−2, 1]

In this table, complexities have also been rescaled following the rough estimate given by
eq. (A.8).

A.36 Non canonical Kähker inflation (NCKI)

The model has two dimensionless parameters ↵ and β and its potential reads

V (φ) = M4

"

1 + ↵ ln

✓

φ

MPl

◆

+ β

✓

φ

MPl

◆2
#

. (A.73)

The logarithmic term encodes loop corrections to the monomial part of the potential [72]
and, therefore, natural values of ↵ are such 0 < ↵ ⌧ 1 whereas β = O(1). As discussed in
ref. [5], for β > 0, the first Hubble flow function has a maximum ✏max

1 ' β/2 (↵ ⌧ 1) at
x✏max

1
' 1/

p
β, with x ⌘ φ/MPl. Therefore, we require β to small enough to have ✏max

1 ⌧ 1 to
ensure slow-roll inflation. If this condition is not satisfied, inflation could still process in the
large field limit, but would be equivalent to the LFI models. A similar requirement exists for
β < 0 by noticing that the second Hubble flow function verifies ✏min

2 > −8β (↵ ⌧ 1), which
should be less than unity. The lower limit of |β| is arbitrary but cannot not be too small in
order to maintain the hierarchy between the loop corrections and the monomial term. On
purely phenomenological grounds, taking the limit β ! 0 gives back the LI potential. We
have accordingly chosen the following priors:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

NCKIβ>0
log(↵) 2 [−4,−1] −3.91 2.57 4 −0.11
β 2 [0.02, 0.2]

NCKIβ<0
log(↵) 2 [−4,−1] −65.07 4.50 4 −56.01
β 2 [−0.1,−0.02]
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A.37 Constant spectrum inflation (CSI)

This potential is designed to produce a scale invariant power spectrum nS ' 1 and reads

V (φ) =
M4

✓

1− ↵
φ

MPl

◆ , (A.74)

where ↵ is supposed to be small. This potential requires the field value xend = φend/MPl at
which inflation stops to be specified. In the branch x = φ/MPl < 1/↵, inflation proceeds at
decreasing field value while it cannot start at too large initial field value xini. Indeed, one
has ✏1(x) < 1 only for x < x✏1=1 such that xini is bounded from above xini < x✏1=1. This
implies that there is a maximal bound for xend, that is numerically determined by requesting
inflation to last, at least, 120 e-folds from xini = x✏1=1 to xend = xmax

end . A priori, there is no
lower limit for xend. However, for xmin

end ! −1, all the slow-roll functions vanish, nS ! 1,
r ! 0. Therefore, the likelihood values become independent on xmin

end , as is the evidence. For
convenience, we have chosen xmin

end (↵) such that ✏1(x
min
end ) > 10−16, the machine precision limit.

Everything is summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CSI
log(↵) 2 [−5,−1] −7.80 0.16 4 −7.72
xend 2 [xmin

end , x
max
end ]

A.38 Orientifold inflation (OI)

The potential of these models has two parameters, a coupling ↵ and a vev φ0 , and reads

V (φ) = M4

✓

φ

φ0

◆4 

ln2
✓

φ

φ0

◆

− ↵

]

. (A.75)

As the model is motivated by super Yang-Mills orientifold theories, the vev φ0 should be
related to the Grand Unified energy scale and the coupling ↵ should be small since ↵ =
O(1/Nc), Nc 0 1 being the number of colours [73]. Therefore, we have chosen the following
priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

OI
log(↵) 2 [−3,−1] −6.52 3.62 4 −3.21

log(φ0/MPl) 2 [−3,−1]

A.39 Constant nS C inflation (CNCI)

This is the class “C” of potentials, according to the classification of ref. [5], which produces
a constant spectral index. The potential is parametrised by one parameter ↵ and reads

V (φ) = M4



(

3 + ↵2
)

coth2
✓

↵p
2

φ

MPl

◆

− 3

]

. (A.76)

In addition to ↵, the model requires the field value xend ⌘ φend/MPl at which inflation ends
to be specified. These scenarios are phenomenological and motivated for ↵ small. Moreover,
inflation proceeds at increasing field values and there is a region at small x = φ/MPl in
which ✏1(x) > 1. As the result, xini > x✏1=1, with x✏1=1 the solution of ✏1 = 1. Requesting
inflation to support at least 120 e-folds from x✏1=1 implies the existence of minimal value for
xend > xmin

end (↵). These considerations lead us to the following priors:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

CNCI
log(↵) 2 [−5,−1] −7.72 8.25 4 −3.53
xend/x

min
end 2 [1, 10]

A.40 Supergravity brane inflation (SBI)

The potential depends on two dimensionless parameters ↵ and β and reads

V (φ) = M4

(

1 +



−↵+ β ln

✓

φ

MPl

◆]✓

φ

MPl

◆4
)

. (A.77)

As discussed in ref. [5], the logarithmic term comes from loop corrections that should not
dominate the field dynamics. As such, the potential supports inflation in the small field
region in which it is convex. For inflation to end, one requires ↵ ≥ ↵min(β) where ↵min =
(β/4)[1− ln(β/4)], and β should be a small parameter. For ↵ > ↵min, inflation is well defined
but, at larger field values, the potential exhibits a negative minimum showing that it cannot
be extended to those regions. On the other hand, for ↵ = ↵min, the potential has a vanishing
minimum and is well defined everywhere. We have therefore considered these two cases.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SBI
log(↵) 2 [−5,−2] −0.37 1.67 4 2.29
log(β) 2 [−4,−1]

SBI↵min

↵ = ↵min −0.85 2.04 3 2.23
log(β) 2 [−4,−1]

A.41 Spontaneous symmetry breaking inflation (SSBI)

The SSBI models are described by potentials of the form

V (φ) = M4

"

1 + ↵

✓

φ

MPl

◆2

+ β

✓

φ

MPl

◆4
#

, (A.78)

where ↵ and β are the two dimensionless parameters. As discussed in ref. [5], this potential
supports six different inflationary regimes according the relative signs of ↵ and β. They are
SSBI1 for ↵ > 0, β > 0; SSBI2 for ↵ < 0, β < 0; SSBI3 and SSBI4 for ↵ > 0, β < 0;
SSBI5 and SSBI6 for ↵ < 0, β > 0. A priori the parameters ↵ and β may take very
small values, or not, depending on the underlying theoretical motivations (see ref. [5]). As
a result, we have both considered a Jeffreys and flat prior for those two parameters. There
are however some additional restrictions. For SSBI1, inflation ends only for ↵ > ↵min(β)
which fixes an absolute lower limit for the ↵-prior. Moreover, even when this condition is
satisfied, SSBI1 is strongly disfavoured when ↵ becomes small and we have only considered
↵ > max(10−3, ↵min). For SSBI3 and SSBI4, inflation proceeds from the top of the potential,
either at increasing field values or at decreasing field values. The shape of the SSBI potential
is such that this may occur in a non slow-rolling way with ✏2 large. These situations violates
the slow-roll approximation, and are strongly disfavoured. Therefore, we have added a hard
prior rejecting all model parameter values yielding ✏2(xtop) > 0.2, xtop being the field value
at the top of the potential. Finally, for SSBI5 and SSBI6, there is another value ↵max(β)
above which inflation never ends. As a result, for those scenarios, the prior on ↵ verifies
↵ < ↵max(β). The following table summarises all the SSBI models considered with the
Jeffreys prior choices:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SSBI1
max[−3, log(↵min)] < log(↵) < 1 −4.27 2.73 4 −0.08

log(β) 2 [−5, 1]

SSBI2
log(−↵) 2 [−5, 1] −0.54 1.74 4 2.29
log(−β) 2 [−5, 1]

log(↵) 2 [log(↵min), 1]
SSBI3 log(−β) 2 [−5, 1] −2.28 4.13 4 1.83

✏2(xtop) < 0.2

log(↵) 2 [log(↵min), 1]
SSBI4 log(−β) 2 [−5, 1] −0.70 2.02 4 2.29

✏2(xtop) < 0.2

SSBI5
log(−↵) 2 [log(−↵max), 1] −3.02 2.40 4 2.19

log(β) 2 [−5, 1]

SSBI6
log(−↵) 2 [log(−↵max), 1] −3.30 3.19 4 0.72

log(β) 2 [−5, 1]

We have also considered the same models but when the natural values of ↵ and β are
considered as being O(1), i.e. with flat priors rather than Jeffreys priors. They are listed in
the table below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

SSBI1f
↵ 2 [max(10−3, ↵min), 10] −6.24 9.08 4 −0.08

β 2 [10−5, 10]

SSBI2f
↵ 2 [−10,−10−5] −2.65 1.99 4 2.29
log(−β) 2 [−5, 1]

↵ 2 [↵min, 10]
SSBI3f β 2 [−10,−10−5] −2.52 2.93 4 1.83

✏2(xtop) < 0.2

↵ 2 [↵min, 10]
SSBI4f β 2 [−10,−10−5] −2.09 2.40 4 2.29

✏2(xtop) < 0.2

SSBI5f
↵ 2 [−10, ↵max] −7.11 2.93 4 2.19
β 2 [10−5, 10]

SSBI6f
↵ 2 [−10, ↵max] −6.08 10.15 4 0.71
β 2 [10−5, 10]

A.42 Inverse monomial inflation (IMI)

The potential is a extension of the large field inflation potential to negative power indices
and read

V (φ) = M4

✓

φ

MPl

◆−p

, (A.79)

with p > 0. Inflation proceeds at increasing field values and ends at the field value xend =
φend/MPl, which is an additional model parameter. There is however a region, at small field
values, which does not support inflation as ✏1(x) > 1. Denoting x✏1=1 the solution of ✏1 = 1,
this implies that xini > x✏1=1 and there is a minimal acceptable value for xend such that
inflation lasts more than 120 e-folds. As for the other models, this value xmin

end is numerically
determined by solving the field trajectory starting at xini = x✏1=1 for the specified amount
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of e-folds. In the absence of definite constraints on xend, we have chosen a flat prior for
xend/x

min
end 2 [1, 100] as well as various fixed values of p = O(1). They are summarised below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

IMI
p 2 [1, 6] −7.79 6.69 4 −4.44

xend/x
min
end 2 [1, 100]

IMI1
p = 1 −7.80 0.85 3 −7.37

xend/x
min
end 2 [1, 100]

IMI2
p = 2 −7.80 1.41 3 −7.09

xend/x
min
end 2 [1, 100]

IMI3
p = 3 −7.80 5.88 3 −4.85

xend/x
min
end 2 [1, 100]

IMI4
p = 4 −7.79 6.28 3 −4.65

xend/x
min
end 2 [1, 100]

IMI5
p = 5 −7.79 5.68 3 −4.93

xend/x
min
end 2 [1, 100]

IMI6
p = 6 −7.78 6.63 3 −4.44

xend/x
min
end 2 [1, 100]

A.43 Brane inflation (BI)

The potential of brane inflation reads

VBIph
(φ) = M4

"

1−
✓

φ

µ

◆−p
#

, (A.80)

and depends explicitly on two parameters µ and p. This is an approximated expression
derived from KKLMMT-like inflationary scenarios, in which p = 4 and µ ⌧ MPl [74, 75]. In
the following, we define x ⌘ φ/µ and inflation proceeds at decreasing x. It is induced by the
motion of a brane inside the throat of some compactified extra-dimensions, φ referring to the
position of this brane. Brane inflation can either ends naturally, i.e. when the acceleration
of the universe stops, or before if a tachyonic preheating is triggered by brane annihilation.
The model has therefore an additional parameter, xstg, which is the field value at which
brane annihilation occurs. Denoting by x✏1=1 the solution of ✏1(x) = 1, inflation actually
ends at the field value xend = max(xstg, x✏1=1). The parameter xstg is related to various
hidden string parameters such as the flux conserved quantum numbers and the volume of the
throat. As shown in ref. [76], the internal consistency of the model implies that xstg > 1, its
order of magnitude remaining unknown. Moreover, there is a maximal field value, φUV, which
corresponds to the brane position at the edge of the throat. As the model only describes
brane interactions within the throat, one should impose φ < φUV. As discussed in ref. [76],
the internal consistency of the model imposes that φUV < 2MPl.

Following these considerations, we have first considered strict priors associated with
the string scenario (BIstg), namely p = 4, log(µ/MPl) 2 [−6, log(2)], log(xstg) 2 [0, 3] and
log(φUV/MPl) 2 [−2, log(2)]. For the sake of generality, we have also considered the non-
approximated potential associated with the KKLMMT model, namely

VKKLTI(φ) =
M4

1 +

✓

φ

µ

◆−p , (A.81)
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under the label KKLTIstg, and with the same priors as BIstg. As one can check in the
following table, there is no difference between the two models under those priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

BIstg

p = 4

−0.33 1.91 5 2.29
log(µ/MPl) 2 [−6, log(2)]

log(xstg) 2 [0, 3]
log(φUV/MPl) 2 [−2, log(2)]

KKLTIstg

p = 4

−0.32 1.92 5 2.29
log(µ/MPl) 2 [−6, log(2)]

log(xstg) 2 [0, 3]
log(φUV/MPl) 2 [−2, log(2)]

Then, we have allowed for other phenomenological scenarios that would be based on the
same potentials by relaxing p and allowing µ to become super-Planckian. Out of the string
framework, there is no motivation to keep xstg and φUV as extra model parameters and we
have instead assumed that inflation ends at xend = x✏1=1. However, for µ > MPl, inflation
within the potential (A.80) or (A.81) may yield different observable predictions. As a result,
we have separated the models in which µ < MPl from those in which µ can take any values.
The phenomenological models considered, and their priors, are enumerated in the following
table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

KKLTI
p 2 [2, 10] −0.34 1.90 4 2.29

log(µ/MPl) 2 [−3, 3]

KKLTIs
p 2 [2, 10]

0.02 1.85 4 2.29
log(µ/MPl) 2 [−3, 0]

BIph
p 2 [2, 10] −0.19 2.14 4 2.29

log(µ/MPl) 2 [−3, 3]

BIs
p 2 [2, 10]

0.03 1.84 4 2.29
log(µ/MPl) 2 [−3, 0]

BI1s
p = 1 −0.21 2.19 3 2.29

log(µ/MPl) 2 [−3, 0]

BI2s
p = 2 −0.08 2.05 3 2.29

log(µ/MPl) 2 [−3, 0]

BI3s
p = 3 −0.02 1.96 3 2.29

log(µ/MPl) 2 [−3, 0]

BI4s
p = 4

0.01 1.91 3 2.29
log(µ/MPl) 2 [−3, 0]

BI5s
p = 5

0.02 1.87 3 2.29
log(µ/MPl) 2 [−3, 0]

BI6s
p = 6

0.04 1.82 3 2.29
log(µ/MPl) 2 [−3, 0]

A.44 Running-mass inflation (RMI)

The running-mass inflationary models, denoted RMI, have a potential of the form

V (φ) = M4



1− c

2

✓

−1

2
+ ln

φ

φ0

◆

φ2

M2
Pl

]

, (A.82)
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which supports four different inflationary regimes, namely RMI1 (φ < φ0 , c > 0), RMI2
(φ > φ0 , c > 0), RMI3 (φ < φ0 , c < 0) and RMI4 (φ > φ0 , c < 0), see ref. [5]. In
addition to the constant c and the vev φ0 , the field value φend at which inflation ends has to
be specified making RMI a three-parameters model. The model describing loop corrections
over a polynomial expansion, the constant c cannot be too small and the vev φ0 must be
sub-Planckian. The order of magnitude of φ0 being unspecified, we have chosen a Jeffreys
prior in log(φ0/MPl) 2 [−2, 0]. For RMI1, RMI2 and RMI3, the likelihood has a flat direction
along the parameter φ0 such that the evidence is independent of the lower bound on φ0 . For
RMI4, the likelihood is vanishing when φ0 becomes small, and the evidence is accordingly
decreased if the prior lower bound on log(φ0/MPl) is pushed to smaller values.

As discussed in ref. [5], within supersymmetry, natural values of c ' 10−2 to 10−1 for
soft masses values matching the energy scale of inflation. This suggest to take a flat prior for
c encompassing those values. For other type of couplings, c may take smaller values and we
therefore consider another motivated prior in which the order of magnitude of c is unknown,
e.g. log(c) 2 [−3,−1].

Finally, the field value φend is constrained to be in the inflationary region of interest.
The shape of the potential therefore gives the natural prior bounds for xend ⌘ φend/φ0 , i.e.
xend 2 [1/e, 1] for RMI1 and RMI3, xend 2 [1, e] for RMI2. For RMI4, one still has xend > 1
but choosing the prior upper limit requires some precaution. Indeed, the potential is an
increasing function of φ, which approaches large field inflation asymptotically, and inflation
proceeds at decreasing field values, bounded from below by xend. Since the large field regime
is not acceptable for RMI4, one has to require the initial field value xini < x✏max

1
. Here x✏max

1

is the field value at which the first Hubble flow function is maximal, which is the frontier
between the vacuum dominated regime and the large field one. As for the other models,
adding the “hard prior” that inflation lasts longer than 120 e-folds ensures the existence of a
maximal value xmax

end , which is obtained by integrating the field trajectory from xini = x✏max
1

.
This is a complicated functions of the other parameters which is only known numerically.
The parameter space of RMI4 is therefore sampled with a flat prior for xend 2 [1, xmax

end ].

Finally, for RMI1 and RMI2, we have added another “hard prior” to avoid an infinite
number of e-folds to occur at the top of the potential by requiring ✏1(xini) to be larger than
the numerical machine precision. This has no observable consequences as the parameter
space volume cut remains extremely small and those cases would correspond otherwise to
nS = 1 and are disfavoured. All these considerations are summarised in the following table.

– 53 –



J
C
A
P
0
3
(
2
0
1
4
)
0
3
9

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

c 2 [0.01, 0.2]
RMI1 log(φ0/MPl) 2 [−2, 0] −2.03 1.94 5 2.29

xend 2 [1/e, 1]

log(c) 2 [−3,−1]
RMI1l log(φ0/MPl) 2 [−2, 0] −1.41 2.04 5 2.29

xend 2 [1/e, 1]

c 2 [0.01, 0.2]
RMI2 log(φ0/MPl) 2 [−2, 0] −2.18 1.80 5 2.29

xend 2 [1, e]

log(c) 2 [−3,−1]
RMI2l log(φ0/MPl) 2 [−2, 0] −1.14 2.04 5 2.29

xend 2 [1, e]

c 2 [−0.2,−0.01]
RMI3 log(φ0/MPl) 2 [−2, 0] −1.96 2.05 5 2.29

xend 2 [1/e, 1]

log(−c) 2 [−3,−1]
RMI3l log(φ0/MPl) 2 [−2, 0] −2.84 2.16 5 2.29

xend 2 [1/e, 1]

c 2 [−0.2,−0.01]
RMI4 log(φ0/MPl) 2 [−2, 0] −25.90 9.54 5 −13.85

xend 2 [1, xmax
end ]

log(−c) 2 [−3,−1]
RMI4l log(φ0/MPl) 2 [−2, 0] −9.26 1.28 5 −7.13

xend 2 [1, xmax
end ]

A.45 Valley hybrid inflation (VHI)

The potential is parametrised by two parameters p and µ and reads

V (φ) = M4



1 +

✓

φ

µ

◆p]

, (A.83)

p > 0 being the power index and µ is a typical vev . Because this expression only describes
inflation along the valley of the genuine two-field hybrid inflationary scenario, the vev µ is
forced to be super-Planckian. As discussed in refs. [77–81], this condition is required to get
enough e-folds of inflation occurring in the valley. Another implicit prior is to assume that
the parameters associated with the other field are such that the regime of waterfall inflation
does not take place. As discussed in ref. [5], the dynamics of VHI is significantly different if
p > 1 or p < 1 and the two classes are considered. In addition to µ and p, hybrid inflation
ends by tachyonic instability and the field value xend ⌘ φend/µ at which this occurs is an extra
model parameter. As for RMI, our prior is to restrain VHI to the vacuum dominated regime
only, i.e. xini < x✏max

1
where x✏max

1
is the frontier between the vacuum dominated regime and

the large field one. From this limit, requiring inflation to support at least 120 e-folds gives
a numerical upper bound xend < xmax

end . The quantity xmax
end is determined numerically using

the ASPIC code by integrating the field trajectory starting at x✏max
1

. For the cases p  1, the
VHI potential does not support inflation around x = 0 as ✏1 diverges in this limit. For those,
we therefore consider a prior xend > xmin

end where xmin
end = x−✏1=1 is the solution of ✏1 = 1 in the

vacuum dominated region. For p > 1, the tachyonic instability can take place at arbitrarily
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small field values and xmin
end = 0 (up to machine precision limitations). Notice that the upper

bounds of the p and µ priors have been fixed to arbitrary values. All the models considered
for the VHI scenarios are listed below and are all ruled out, independently of their priors.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p 2]1, 6]
VHI log(µ/MPl) 2 [0, 3] −7.81 16.46 5 0.43

xend 2 [xmin
end , x

max
end ]

p 2 [0, 0.9]
VHIp<1 log(µ/MPl) 2 [0, 3] −7.80 20.09 5 2.27

xend 2 [xmin
end , x

max
end ]

p = 1/2
VHI1/2 log(µ/MPl) 2 [0, 3] −7.80 19.57 4 1.99

xend 2 [xmin
end , x

max
end ]

p = 1
VHI1 log(µ/MPl) 2 [0, 3] −7.80 17.14 4 0.79

xend 2 [xmin
end , x

max
end ]

p = 2
VHI2 log(µ/MPl) 2 [0, 3] −7.80 15.42 4 −0.09

xend 2 [xmin
end , x

max
end ]

p = 3
VHI3 log(µ/MPl) 2 [0, 3] −7.81 14.66 4 −0.47

xend 2 [xmin
end , x

max
end ]

p = 4
VHI4 log(µ/MPl) 2 [0, 3] −7.82 14.15 4 −0.72

xend 2 [xmin
end , x

max
end ]

A.46 Dynamical supersymmetric inflation (DSI)

The potential is an extension of the VHI one to negative power index and reads

V (φ) = M4

"

1 +

✓

φ

µ

◆−p
#

, (A.84)

while this class of model naturally appears in supersymmetric theories (see ref. [5]). As such,
the vev µ should be always sub-Planckian. For the priors, we have either considered the
typical values of refs. [82, 83], i.e. a flat prior for µ around 10−7 (model DSIo), which is also
relaxed to allow for any other phenomenological models of the same kind (DSI). Inflation
takes place at increasing field value and the end of inflation xend = φend/µ is an additional
parameter. Moreover, as discussed in ref. [5], inflation can only take place in the region
x > x✏1=1, where x✏1=1 is the solution of ✏1 = 1. This provides a lower bound for xini,
and therefore, complemented with our hard prior that inflation lasts more than 120 e-folds,
this gives xend > xmin

end . As for VHI, the quantity xmin
end has to be numerically evaluated by

integrating the field trajectory over 120 e-folds starting at xini = x✏1=1. Moreover, within
the supersymmetric framework in which this potential is derived, there are additional terms
lifting V (φ) at large field values which can be ignored provided φ is not too large. This gives
a natural upper bound for the prior on xend. More specifically, these terms are of the form
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∆V = φq+4/M q
Pl such that the corrected potential exhibits a global minimum at a field value

xV min . Requiring xend ⌧ xV min gives the absolute upper bound

xend ⌧ xmax
end ⌘

"

43200⇡2 p3

q + 4
P⇤

✓

MPl

µ

◆q+6
#1/(3p+q+6)

. (A.85)

As a motivated case, we have chosen q = 8 and a Jeffreys’ prior on xend in [xmin
end , x

max
end ].

The case p = 2 has been considered as an independent model as it corresponds to the so-
called inverse mutated scenarios. In summary, the following models and priors have been
considered:

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p 2]1, 6]
DSI log(µ/MPl) 2 [−5, 0] −8.51 0.07 5 −7.71

log

✓

xend − xmin
end

xmax
end − xmin

end

◆

2 [−5,−0.7]

p 2]1, 6]
DSIo µ/MPl 2

⇥

10−9, 10−6
⇤

−8.47 0.07 5 −7.71

log

✓

xend − xmin
end

xmax
end − xmin

end

◆

2 [−5,−0.7]

p = 2
DSI2 µ/MPl 2

⇥

10−9, 10−6
⇤

−8.40 0.07 4 −7.71

log

✓

xend − xmin
end

xmax
end − xmin

end

◆

2 [−5,−0.7]

A.47 Generalised mixed large field inflation (GMLFI)

The potential mixes two large field monomials and reads

V (φ) = M4

✓

φ

MPl

◆p 

1 + ↵

✓

φ

MPl

◆q]

, (A.86)

where p and q are power indices and ↵ a constant. The model has three parameters and their
priors have been chosen on phenomenological grounds. In particular, because GMLFI allows
to discuss the effects stemming from combining together two LFI models, it motivates to fix
p and q to all the possible theoretically motivated combination of pure LFI models. One can
also view GMLFI as a new class of models and let p, q and ↵ freely varying. A priori, the
parameter ↵ can be very small such that it should be sampled along a Jeffreys prior. We
have considered the following cases:
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Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p 2 [1, 6]
GMLFI log(↵) 2 [−5, 1] −5.15 3.90 5 0.79

q 2 [1, 6]

p = 2/3
GMLFI2/3,1/3 log(↵) 2 [−5, 1] −1.27 2.31 3 1.24

q = 1/3

p = 2/3
GMLFI2/3,4/3 log(↵) 2 [−5, 1] −1.69 2.74 3 1.24

q = 4/3

p = 1
GMLFI1,1 log(↵) 2 [−5, 1] −1.86 2.35 3 0.79

q = 1

p = 1
GMLFI1,2 log(↵) 2 [−5, 1] −2.52 2.69 3 0.79

q = 2

p = 1
GMLFI1,3 log(↵) 2 [−5, 1] −3.64 3.13 3 0.63

q = 3

p = 2
GMLFI2,1 log(↵) 2 [−5, 1] −3.05 2.08 3 −0.08

q = 1

p = 2
MLFI log(↵) 2 [−5, 1] −3.77 2.39 3 −0.09

q = 2

p = 2
GMLFI2,3 log(↵) 2 [−5, 1] −5.23 3.47 3 −0.39

q = 3

p = 3
GMLFI3,1 log(↵) 2 [−5, 1] −4.83 3.29 3 −1.02

q = 1

p = 3
GMLFI3,2 log(↵) 2 [−5, 1] −5.60 4.06 3 −1.04

q = 2

p = 3
GMLFI3,3 log(↵) 2 [−5, 1] −7.43 6.87 3 −1.90

q = 3

Notice that the case p = 2, q = 2 is also referred to as MLFI in ref. [5].

A.48 Logarithmic potential inflation (LPI)

These scenarios are parametrised by a potential of the form

V (φ) = M4

✓

φ

φ0

◆p✓

ln
φ

φ0

◆q

. (A.87)

Some specific combinations of p and q match various Yang-Mills composite models LPI14,1
(p = 4, q = 1), LPI14,2 (p = 1, q = 2) and LPI14,3 (p = 4, q = 3) [73, 84]. Others
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combinations are phenomenological [85]. Because the potential admits a local maximum at
x = xV max , with x = φ/φ0 , inflation can take place in three domains: LPI1 for x > 1, LPI2
for xV max < x < 1 and LPI3 for x < xV max . Let us notice that for both LPI2 and LPI3,
the potential is well-defined only if q is an even integer. For LPI1, both p and q can take
arbitrary real values. The vev φ0 is not constrained for LPI1, and we have chosen a Jeffreys
prior encompassing both sub-Planckian and super-Planckian values. On the contrary, in
the LPI1 and LPI2 domains, φ0 must be deeply super-Planckian to allow for slow-rolling
inflation. The models and priors considered are listed below.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

p 2 [1, 6]
LPI1 log(φ0/MPl) 2 [−3, 3] −3.95 3.84 5 0.77

q 2 [1, 6]

p = 4
LPI14,1 log(φ0/MPl) 2 [−3, 3] −3.27 2.79 3 0.69

q = 1

p = 4
LPI14,2 log(φ0/MPl) 2 [−3, 3] −4.42 2.90 3 −0.14

q = 2

p = 4
LPI14,3 log(φ0/MPl) 2 [−3, 3] −5.99 5.28 3 −1.14

q = 3

p 2 [1, 6]
LPI22 log(φ0/MPl) 2 [2, 5] −2.47 3.82 4 1.14

q = 2

p 2 [1, 6]
LPI24 log(φ0/MPl) 2 [2, 5] −5.97 7.85 4 −0.18

q = 4

p 2 [1, 6]
LPI26 log(φ0/MPl) 2 [2, 5] −8.15 7.64 4 −3.24

q = 6

p 2 [1, 6]
LPI32 log(φ0/MPl) 2 [2, 5] −2.67 4.58 4 1.98

q = 2

p 2 [1, 6]
LPI34 log(φ0/MPl) 2 [2, 5] −2.04 4.03 4 2.26

q = 4

p 2 [1, 6]
LPI36 log(φ0/MPl) 2 [2, 5] −1.71 3.56 4 2.28

q = 6

A.49 Constant nS D inflation (CNDI)

The potential has two parameters ↵, β and reads

V (φ) =
M4



1 + β cos

✓

↵
φ

MPl

◆]2 . (A.88)
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As discussed in ref. [5], the only regime of cosmological interest has x = φ/MPl small and
β > 1. In that situation, the field value at which inflation ends should be specified, namely
xend = φend/MPl. Moreover, if x becomes too large, inflation cannot even start because
there exists a “forbidden” range of field values in which ✏1(x) > 1. As a result, there is a
maximal value for xini = x−✏1=1, x

−
✏1=1 being the smallest root of the equation ✏1 = 1. As

for the other models, by imposing to get at least 120 e-folds of inflation, the maximal values
of xini translates into a maximal value xmax

end thereby constituting the upper bound of the
xend’s prior. Concerning the parameter ↵, the genuine CNDI model is designed to produce
a constant spectral index and, as discussed in ref. [5], this occurs for not too small, neither
not too large values of ↵. The priors chosen are summarised in the following table.

Name Priors ln (E/EHI) C N ln (Lmax/EHI)

β 2 [1.1, 6]
CNDI log(↵) 2 [−2,−1] −7.91 6.41 5 −4.55

xend 2 [0, xmax
end ]
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We investigate the implications for inflation of the detection of B-modes polarization in the
Cosmic Microwave Background (CMB) by BICEP2. We show that the hypothesis of primordial
origin of the measurement is only favored by the first four bandpowers, while the others would
prefer unreasonably large values of the tensor-to-scalar ratio. Using only those four bandpowers, we
carry out a complete analysis in the cosmological and inflationary slow-roll parameter space using
the BICEP2 polarization measurements alone and extract the Bayesian evidences and complexities
for all the Encyclopædia Inflationaris models. This allows us to determine the most probable
and simplest BICEP2 inflationary scenarios. Although this list contains the simplest monomial
potentials, it also includes many other scenarios, suggesting that focusing model building efforts on
large field models only is unjustified at this stage. We demonstrate that the sets of inflationary
models preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension
between the two data sets. We address this tension with a Bayesian measure of compatibility
between BICEP2 and Planck. We find that for models favored by Planck the two data sets tend to
be incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred
models. As a result, it would be premature to draw any conclusion on the best Planck models, such
as Starobinsky and/or Kähler moduli inflation. For the subset of scenarios not exhibiting data sets
incompatibility, we update the evidences and complexities using both data sets together.

PACS numbers: 98.80.Cq

I. INTRODUCTION

The recent discovery of B-mode polarization in the
Cosmic Microwave Background (CMB) by BICEP2 [1], if
confirmed to be of primordial origin [2], would constitute
a breakthrough for our understanding of early universe
cosmology. In addition to lensing, B-mode can be gen-
erated by either vector perturbations or tensor pertur-
bations [3]. Vectors do not propagate in a Friedmann-
Lemâıtre universe (see however Ref. [4]) and can be a
potential explanation of the BICEP2 data only if they
are incessantly generated by active sources such as cos-
mic strings [5] or magnetic fields [6]. These, however, are
severely constrained by other measurements [7, 8].

Tensor modes are a natural and expected outcome of
cosmic inflation although the uncertainty on their am-
plitude is huge (several orders of magnitude). In this
context, the BICEP2 result might represent the first de-
tection of primordial gravity waves produced in the early
Universe [9, 10] and, therefore, could give us precious in-
formation about the physical conditions that prevailed

⇤Electronic address: jmartin@iap.fr
†Electronic address: christophe.ringeval@uclouvain.be
‡Electronic address: r.trotta@imperial.ac.uk
§Electronic address: vennin@iap.fr

at that time. Of course, the BICEP2 result needs to be
confirmed by other measurements before one can be sure
that primordial B-mode have really been detected. In
this paper, our working hypothesis will be that this is
indeed the case. On general grounds, it is anyway always
interesting to explore the implications for inflation of a
non negligible level of primordial gravity waves.
The claimed amplitude of the signal corresponds to a

tensor to scalar ratio of r = 0.2+0.07
−0.05 or r = 0.16+0.06

−0.05

depending on how polarized dust foregrounds are mod-
eled and/or subtracted. Recent works [11] have how-
ever cast doubts on the modeling of the foreground dust,
which could potentially lead to the amplitude of the ten-
sor modes signal to be much lower, to the point of be-
coming undetectable. In the following, we shall take the
BICEP2 result at face value, pending further investiga-
tion, most notably thanks to the recently released Planck
dust maps [12]. The BICEP2 measurement, if, as already
mentioned, interpreted as of primordial origin, has sev-
eral important physical consequences that we now dis-
cuss.
Firstly, the energy scale of inflation [13–21] is fixed and

roughly given by

⇢1/4 ' 2.2
⇣ r

0.2

⌘1/4

1016GeV, (1)

i.e. around the Grand Unified Theory (GUT) energy
scale. A more accurate determination of this energy
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FIG. 1: B-mode angular power spectrum in the nine band-
powers measured by the BICEP2 experiment. Figure ex-
tracted from Ref. [1].

scale and the Hubble rate during inflation are given
in Sec. III D. Inflation is therefore a high energy phe-
nomenon by Particle Physics standard.

Secondly, this result would favor that single field slow-
roll scenarios achieve the best compromise between qual-
ity of the fit and theoretical simplicity [22]. Indeed, in
more complicated models, the tensor to scalar ratio is
generically (but not necessarily) smaller than in the stan-
dard case1. For instance, for K-inflation [25], one has
r = −8nTcS where c

S
< 1 is the sound speed of the fluc-

tuations [26]. For two-field inflation, one can write r =
−8nT sin

2
Θ  −8nT , where sinΘ is a term taking into

account the possible evolution of scalar modes on super
Hubble scales [27]. For multiple field inflation, the above
equality becomes an inequality, namely r  −8nT sin

2
Θ,

thus strengthening the argument presented before (up to
the special case of massive Nflation which inherits some
of the properties of a single m2φ2 model [28–31]). Of
course, this certainly does not mean that these more com-
plicated models are ruled out by BICEP2 (as a matter
of fact, they are not!), but together with the absence
of detection of isocurvature modes and primordial non-
Gaussianities, this reinforces the fact that there are not
needed in order to give a satisfactory description of the
data. Clearly, this argument should be toned down given
that multiple field models are often well motivated from

1 With the notable exception of G-inflation [23, 24] where r =
16c

S
σ, with σ a complicated function of the inflaton field and its

derivative, possibly larger than one even in the slow-roll limit.

a high energy point of view and, moreover, can predict a
non negligible r even if the field excursion is smaller than
the Planck mass [32] (see below). Also notice that, for the
simplest and preferred class of inflationary models men-
tioned above, the non-Gaussianities are characterized by
f loc
NL

= 5(1−nS)/12 ' 1.6⇥10−2 [33] since Planck [34, 35]
has measured nS = 0.9603 ± 0.0073. Therefore, unless
one is able to reach the 10−2 level, it seems impossible
to measure V (φ) using the precise shape of the three-
point correlation function. The 10−2 level appears to be
extremely challenging given our present day capabilities
and, as a consequence, this reinforces the importance of a
measurement of r since this opens a realistic opportunity
to identify the correct inflationary scenario.

Thirdly, in the framework of single field slow-roll sce-
narios, BICEP2 result implies a lower bound on the
first Hubble flow function, which is also given by ✏1 '
M2

Pl
(Vφ/V )2/2. Therefore, the first derivative of the in-

flaton potential can be constrained. Furthermore, since
the deviation from scale invariance nS − 1 depends on
a combination of the first and second derivatives of the
potential (at leading order in slow roll), this automati-
cally also provides a measurement of the second deriva-
tive of the potential. It is also interesting to notice that
a constraint on ✏1 does not modify our estimate of the
importance of the stochastic effects for CMB scales [36–
38]. Indeed, if ∆q is the typical quantum excursion of
the inflaton field during one e-fold and ∆cl its classical
excursion, then ∆q/∆cl ' H/(MPl

p
✏1) '

p

P⇣ ' 10−5.
The point is that ∆q/∆cl does not depend on ✏1 alone
but on the combination H/

p
✏1 which was already mea-

sured before BICEP2 since it turns out to be exactly the
amplitude of the scalar modes. However, a measurement
of r also gives indications about the shape of the po-
tential (see below) and, then, ∆q/∆cl > 1 may become
possible but necessarily outside the observable window.
If r ' 0.2 favors potentials for which this systematically
happens, one should still pay attention to how measure-
ments made on the CMB scales should be extrapolated to
the part of the inflaton’s potential supporting a stochas-
tic regime [39]. Therefore, observationally speaking, the
question of knowing if non-perturbative quantum effects
can play an important role in the early Universe is still
open [40–42].

Fourthly, the model building problem is also im-
pacted by the BICEP2 result. Indeed, by definition
of the first Hubble flow function, one has ∆φ/MPl =
O(1) (r/0.2)1/2 [43, 44] which indicates that the excur-
sion of the field during inflation is necessarily super-
Planckian. The single field models discussed before are
usually viewed as effective models only, valid up to a cut-
off Λ [45]. This scale should be less than MPl since MPl is
the cut-off of General Relativity and larger than H since
the model should be able to describe what happens dur-
ing inflation. In the framework of effective field theories,
when physical effects beyond the cut-off are taken into ac-
count, the total Lagrangian of a given inflationary model
can be expressed as L = φ̇2/2 + V (φ) +

P

i ciOi/Λ
ni−4,



3

where V (φ) contains renormalizable terms only and Oi

represents a higher order operator of dimension ni > 4
(possibly a non minimal kinetic term) the amplitude of
which is controlled by the coefficient ci. When an in-
flationary model is designed, it usually makes use of
L = φ̇2/2 + V (φ) only and the higher order operators
are neglected. The validity of this approximation is ques-
tionable because of the following two problems. Firstly,
as mentioned above, a large value of r implies a large
value of ∆φ compared to the Planck mass and the oper-
ators Oi may no longer be negligible. Solutions to these
issues are either to fine-tune the couplings between the
light and heavy fields or to assume the existence of a
symmetry (typically the shift symmetry) to forbid the
dangerous higher order operators. But, then, this raises
the question of the origin of this symmetry in the full
theory, that is to say the question of the UV completion
of the model. For a nice and more complete discussion
on all these issues, see for instance Ref. [45]. Secondly,
the parameters of V (φ) usually get corrected by heavy
field loops. For instance, a mass term typically acquires
the following form: m2 ! m2 + gM2 ln(Λ/µ), where µ is
a renormalizable scale, M > Λ the mass of a heavy field
and g the coupling between φ and the heavy field2. This
means that the mass of the inflaton becomes larger than
the Hubble rate and that the potential is no longer flat
enough to support inflation. Notice however that this is-
sue is, a priori, always present even in a model where r
is small.

Fifthly, the BICEP2 result exacerbates the problems
of inflationary magnetogenesis [47–49]. Recent observa-
tions indicate the presence of magnetic fields of strength
ranging from 10−17 to 10−15 Gauss on megaparsec scales
and such a large coherence length suggests a cosmologi-
cal origin [50–53]. In order to produce a magnetic field
during inflation, one needs to break conformal invariance.
For instance, this can be achieved by considering a term
f2(φ)Fµ⌫F

µ⌫ . A simple parametrization for the function
f(⌘) is given by f / a↵ [49] since the choices ↵ ' 2
or ↵ ' −3 both lead to a flat spectrum. For ↵ = 2 f
is a growing function of time, and since the gauge field
Aµ is also coupled to charged fermions with a coupling
constant geff(⌘) / g/f(⌘), this implies that the system is
in a non perturbative regime during inflation [54] (for a

2 Notice that regularizing the loop integral with a cut-off would
have produced a correction proportional to Λ2, namely m2 !

m2 + gΛ2. However, this approach is not consistent as can be
nicely illustrated on the example of the regularization of the cos-
mological constant. Indeed, if one regularizes ρvac with a cut-off,
one obtains that ρvac ! ρvac+Λ

4. However, this method breaks
Lorentz invariance and, as a consequence, one obtains the wrong
equation of state, w = pvac/ρvac = 1/3 instead of w = −1. If, on
the contrary, the loop integral is regularized with a method that
respects Lorentz invariance (for instance dimensional regulariza-
tion), then one obtains ρvac ! ρvac +M4 ln(Λ/µ) and w = −1,
see Ref. [46]. In other words, if there is no new physics beyond
the standard model, there is no hierarchy problem.

possible solution, see Ref. [55]). On the other hand, the
solution ↵ = −3 suffers from a backreaction problem. In
order to avoid a too important production of the electric
field, the only way out is then to lower the energy scale of
inflation, i.e. H/MPl

<⇠ 10−20 [49, 56, 57]. The BICEP2
result would invalidate this solution and, therefore, one
is left in a situation where inflationary magnetogenesis
appears to be more problematic than before.

Sixthly, the detection of a quite large value of r raises
the question of whether one can directly see the pri-
mordial gravitational waves. With r ' 0.2 and nT '
−r/8 ' −0.025, see Eq. (28), one expects to have today
Ωgw ' 10−15 and experiments such as VIRGO [58] and
eLISA [59] cannot detect such a tiny signal. However,
Japan’s DECIGO [60, 61], Ultimate-DECIGO or NASA’s
Big Bang Observer (BBO) [62] have a priori the sensitiv-
ity required to directly probe the inflationary primordial
gravity waves. Notice that these experiments operate in
the frequency range f 2 [10−2Hz, 10Hz] and this could
render the measurements of the reheating parameters,
such as the reheating temperature and/or the equation
of state parameter, feasible [63, 64].

Seventhly, it has been claimed [65, 66] that the BI-
CEP2 results would represent the first experimental ev-
idence for quantum gravity since, in the framework of
inflation, the transverse and traceless component of the
perturbed metric is a quantum operator. This has in-
deed been known for forty years [9, 10] and more than
twenty years in the context of inflation [67–69]. However,
this was already the case for scalar modes [21, 67–69].
Indeed, their equation of motion derives from the per-
turbed quantum Einstein equations, δĜµ⌫ = 8⇡GδT̂µ⌫ .
To put it differently, the Mukhanov-Sasaki quantum
operator v̂, that characterizes the amplitude of scalar
modes, is expressed in terms of the perturbed infla-

ton field δφ̂ and the Bardeen potential Φ̂, concretely

v̂ ⌘ δφ̂ + (φ0/H) ̂ = δφ̂(gi) + (φ0/H)Φ̂ (where δφ̂(gi) is

the gauge invariant perturbed field and  ̂ is the scalar
component of the perturbed metric proportional to δij).
We see that the perturbed metric is also a quantum op-
erator in the scalar sector and is directly related to the
CMB anisotropies. Notice that a semi-classical formu-
lation of the problem, namely δGµ⌫ = 8⇡GhδT̂µ⌫i, does
not help since δT̂µ⌫ , being by definition linear in δφ̂, sat-

isfies hδT̂µ⌫i = 0. One might argue that the scalar sector
suffers from a gauge problem but this question has been
discussed and solved with the help of the gauge-invariant
formalism [70]. There exists a gauge (the spatially flat
or uniform curvature gauge [71]) for which  = 0 and,
therefore, v = δφ. However, this cannot be used as
an argument that only field fluctuations must be quan-
tized. Indeed, there is another gauge (comoving orthog-
onal gauge [71]) where δφ = 0 and, hence, v = (φ0/H) .
As a consequence, the same logic leading to the above
argument could also be used to reach an opposite con-
clusion, namely that only metric fluctuations (and not
field perturbations) must be quantized. In fact, as it is
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clear from the definition of the Mukhanov-Sasaki vari-
able, field and metric perturbations cannot be disentan-
gled [72] and the scalar modes are therefore already a
genuine signature of the quantum-mechanical nature of
the gravitational field. On the other hand, it is true that
there still exist open issues related to the quantum to
classical transition of these quantum fluctuations [73–81].

Eighthly, it is worth recalling that BICEP2 data do
not only concern the B-mode polarization but also the

E-modes (CTT,obs
` and CTE,obs

` are not yet publicly avail-

able). The fact that the polarization spectrum CEE,obs
`

has been also measured is fortunate since it allows us
to constrain scalar perturbations, and cosmology, with
the BICEP2 data alone [82]. This is discussed further in
the following. Although not public, the BICEP2 team

reports a CTB,obs
` consistent with zero and this is rele-

vant for models containing a gravitational Chern-Simons
term [83–85]. This term is necessarily present since it is
generated by quantum corrections and is generic in string
theory. This implies that the two polarization states of a
gravitational wave behave differently. As a consequence,
the tensor-to-scalar ratio is modified and can even be en-
hanced [84] (to be fair, a calculation of r in a regime
where the enhancement is large remains very challeng-
ing).

Another question which arises after BICEP2 is the im-
plications of these new data with regards to the shape of
the inflaton potential V (φ) and whether these implica-
tions are compatible with the conclusions reached previ-
ously, and notably from Planck data [22, 86–88]. Let us
recall that, given Planck data, the best models in terms
of evidences and complexities are such that their poten-
tial is of the plateau type, the prototypical example being
the Starobinsky model [13]. In more quantitative terms,
if one uses the Jeffreys’ scale [89, 90] and count the num-
ber of models in the “inconclusive”, “weak evidence”,
“moderate evidence” and “strong evidence” zones with
respect to the best, one finds 26% in the first category
(corresponding to 17 different shapes of the potential),
21% in the second, 17% in the third and, finally, 34% in
the fourth and last one. These numbers can be further
improved by another statistical indicator. If we restrict
ourselves to models having a number of unconstrained
parameters between zero and one, then only 9% of the
scenarios are preferred, corresponding this time to 9 dif-
ferent potentials. And these 9 potentials are all of the
plateau type. On the other hand, the Jeffreys scale has
to be taken as indicative, and it is usually considered
that only the models belonging to the strong evidence
category (here, 34%) can really be considered as robustly
“ruled out”. Therefore, we see that the Planck data have
been able to narrow down our theoretical uncertainties
efficiently and to point to a particular type of potentials.
As a consequence, an important question is whether the
BICEP2 measurements are in agreement with these con-
clusions and, more generally, whether BICEP2 is compat-
ible with Planck in the framework of single field slow-roll
inflation.

The present article aims at discussing the issues pre-
sented above. As many inflationary models genuinely
produce a small amount of tensor modes, one would ex-
pect the BICEP2 data to severely cut a large volume of
the model space, thereby improving our knowledge of in-
flation compared to what has already been established
with Planck data. However, one has first to address and
quantify the compatibility between BICEP2 and Planck
data. For this, it is required to first investigate both data
sets independently. This may seem problematic for BI-
CEP2 as B-modes alone do not give constraints on the
scalar perturbations. But, as we show below, using both
the E- and B modes polarization measurements in only
four bandpowers already gives non-trivial constraints on
both the standard cosmological parameters and the pri-
mordial ones (see also Ref. [82]). This allows us to de-
rive the evidences and complexities of all the Encyclopæ-
dia Inflationaris models using BICEP2 data alone and
thoroughly discuss the compatibility of Planck and BI-
CEP2 using the so-called R-factors [91–97]. These are
the Bayes factors giving the ratio between the probabil-
ity of compatibility to the probability of incompatibility
assuming a given model. By evaluating R for slow-roll
inflation and for each Encyclopædia Inflationaris scenar-
ios, one can determine the subset of models for which
Planck and BICEP2 data can be meaningfully combined
to obtain evidences and complexities from the joint data
sets.
This article is organized as follows. In the next sec-

tion, we briefly describe the method used to compute the
Bayesian evidence of any slow-roll inflationary model. In
particular, our method is based on the determination of
an effective likelihood for inflation which requires a slow-
roll analysis of the Planck and BICEP2 data. The results
of the analysis for Planck can be found in Ref. [22] and
we present in Sec. III new results for BICEP2 alone, and
BICEP2 combined with Planck. In particular, we discuss
the compatibility of the data sets under the hypothesis
of slow-roll. In Sec. IV, we present the evidences and
complexities for all the Encyclopædia Inflationaris mod-
els stemming from the BICEP2 data alone and discuss
what are the inflaton potential shapes favored and how
they differ from the Planck results. We then move on to
the compatibility of Planck and BICEP2 model by model
and present joint evidences and complexities for the sce-
narios under which both data sets are not incompatible.
Finally, in Sec. V, we summarize our findings and present
our conclusions.

II. METHODOLOGY

A. Bayesian Evidence and Complexity

In this section, we briefly present the statistical
methodology adopted here to compute the Bayesian ev-
idence and complexity for each of the Encyclopædia In-
flationaris models that, in the following, we denote by
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Mi.
The Bayesian evidence, given dataD, is defined by [90]

P (D|Mi) ⌘ E (D|Mi) =

Z

d✓ijL (✓ij)⇡ (✓ij |Mi) , (2)

where ✓ij represents the parameters characterizing the
model Mi, L is the likelihood function (to be discussed
below) and ⇡ (✓ij |Mi) is the prior distribution for the
parameter ✓ij . As usual in Bayesian analysis, the choice
of the priors plays a crucial role and a complete study
of the ⇡ (✓ij |Mi) for all the Encyclopædia Inflationaris
models can be found in Ref. [22]. Here, we adopt the
same choices. The Bayesian complexity can be expressed
as [98]

Ci = h−2 logL (✓ij)i+ 2 logL
(

✓ML
ij

)

, (3)

where h·i means averaging over the posteriors and
✓ML
ij represents the maximum likelihood estimate of the
model’s parameters.
The Bayesian evidences are often normalized to

a reference model MREF and one defines Bi
REF

⌘
E(D|Mi)/E(D|MREF). They give us information about
the posterior probability of the model Mi (for non-
committal model priors),

P (Mi|D) =
Bi

REF

P

j B
j
REF

. (4)

On the other hand, the Bayesian complexities tell us
something about the number of unconstrained param-
eters

Nuc
i ⌘ Ni − Ci, (5)

where Ni is the total number of parameters of the model
under scrutiny. The above considerations show that,
given a data set D, the performance of a model can be
described by the numbers (Nuc, B

REF
).

B. Compatibility of data sets

Although the previous discussion is readily applicable
for either the Planck (Dp) or BICEP2 data (Db) sep-
arately, computing a joint evidence from BICEP2 and
Planck, namely using D = {Dp, Db}, requires some pre-
caution. Indeed, it is crucial to determine whether a
small value of P (D|Mi) is the consequence of Mi being
a poor explanation of the data, or whether this results
from the tension between Planck and BICEP2.
As detailed below, there is a some tension between the

two data sets, when interpreted in terms of tensor modes
amplitude. Combining the two data sets blindly could
potentially lead to a joint likelihood function that peaks
in a region of parameter space that is not favored by
either experiment–an obviously undesirable situation.
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FIG. 2: BICEP2 likelihood function over the tensor-to-scalar
ratio r, assuming power law primordial spectra and with the
ΛCDM parameters fixed to their mean value obtained from
the Planck data alone. B-modes from lensing are included
and we have presented the contribution of each of the nine
BICEP2 bandpowers. Only the first four bandpowers favor
the hypothesis of primordial tensor modes of inflationary ori-
gin whereas the others exhibit a likelihood maximal at prob-
lematic large values of r.

In order to study the compatibility of BICEP2 and
Planck, we resort to a Bayesian measure defined as fol-
lows [91–97, 99]:

Ri ⌘
P (Dp, Db|Mi,Hc)

P (Dp|Mi,Hic)P (Db|Mi,Hic)
. (6)

This quantity represents the posterior between the hy-
pothesis that the two data sets are compatible, (Hc,
when Ri > 1) versus the hypothesis that they are not
(Hic and thus described by different sets of parameters,
when Ri < 1), assuming the inflationary model Mi

and noncommittal priors between the two hypotheses,
P (Hc) = P (Hic) = 1/2. Various proto-typical situations
illustrating the behavior or R are presented in the ap-
pendix (see Sec. A 1), where one can gain some insight
on why R measures compatibility. The R factor can
also be re-expressed in terms of the conditional predic-
tive probability for BICEP2 data, by noting that

P (Dp, Db|Mi) = P (Db|Dp,Mi)P (Dp|Mi). (7)

Using Eq. (7), we obtain the simpler expression

Ri =
P (Db|Dp,Mi)

P (Db|Mi)
, (8)

which shows that Ri is large if the probability of obtain-
ing data Db, given the Planck data Dp, is large.

C. Likelihood Functions

The likelihoods considered in the following have been
provided by the Planck collaboration [100] and the BI-
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CEP2 team [1, 101, 102]. Concerning the Planck like-
lihood, we have used the “CamSpec” likelihood for the
temperature power spectrum in the multipole range 50 <
` < 2500 complemented with the “Commander” like-
lihood for 2 < ` < 49. Moreover, following the data
analysis method of Refs. [34, 103], we have also used the
WMAP polarization data for `  32 [104–106]. These
data sets are the same as the ones used in Ref. [22].
Concerning the BICEP2 likelihood, we have written a
FORTRAN code from scratch based on the approxima-
tion of Ref. [101] and as implemented by the BICEP2
team (see Ref. [107]). Our results are identical to the
ones obtained with the latest version of COSMOMC [108] in
which the BICEP2 likelihood has also been implemented.
The BICEP2 measurements are publicly available3.
As discussed in Ref. [1], when assuming primordial

power law power spectra, the BICEP2 likelihood for the
tensor to scalar ratio r peaks at a value around 0.2, which
is significantly larger than those favored by the Planck
data. In Fig. 2, we have represented the BICEP2 likeli-
hood profile along r, in each bandpower, when the ΛCDM
cosmological parameters are fixed to their mean values
obtained from the Planck data alone [34]. Let us notice
that the likelihood has been estimated using CAMB [109]

to provide the expected CBB,th
` for each value of r while

including the lensing effects which convert E-modes into
B-modes. This figure shows that over the nine bandpow-
ers provided by the BICEP2 team, the second bin carries
most of the statistical weight and, moreover, only four
bins are reasonable with the hypothesis that the mea-

sured CBB,obs
` are sourced by tensor modes of inflation-

ary origin. Indeed, already for the bandpower five, the
likelihood peaks at a value r > 0.5. The bandpowers six
to nine would even favor a tensor-to-scalar ratio larger
than one. Those bandpowers do not significantly weigh
in the total likelihood as their associated errors are rela-
tively large (see Fig. 1). However, as they seem to suffer
from a systematic excess, the origin of which not being
inflation neither lensing, we have decided to perform our
data analysis using only the first four bandpowers of the
BICEP2 data hoping that they are not too much affected
by such systematics. In fact, we have also checked that
including all the bins in the analysis does not modify in
a substantial way our conclusions.

D. Fast Evidence Computation

Given our likelihood function, we briefly summarize in
this section how the Bayesian evidence of a given Ency-
clopædia Inflationaris model can be fast computed.
Any inflationary model is characterized by the pa-

rameters ✓inf describing the shape of the potential
[for instance, for large field inflation where V (φ) =

3 See http://bicepkeck.org.

M4(φ/MPl)
p, one has ✓inf = (M,p)] and by the priors

choice on those parameters [22]. We also need param-
eters describing the reheating phase, ✓reh, such as the
reheating temperature and the equation of state. In fact,
one can show that only one parameter is sufficient, the
so-called rescaled reheating parameter R [110–114]. In
the present paper, following Ref. [22], a Jeffreys’ prior
is assumed such that ✓reh = lnR 2 [−46, 15]. Finally,
the parameters describing the post-inflationary phase are
the standard cosmological parameters associated with a
ΛCDM model, plus the astrophysical parameters enter-
ing the likelihood function. Those are referred to as ✓s in
the following. As a consequence, the evidence in Eq. (2),
for a model Mi, becomes

E (D|Mi) =

Z

d✓sd✓rehd✓infL (✓s, ✓reh, ✓inf)

⇥ ⇡(✓s)⇡(✓reh)⇡(✓inf),

(9)

where ⇡ represent the priors. The key remark here is
to notice that, as opposed to the cosmological and as-
trophysics parameters, ✓reh and ✓inf affect the likelihood
by modifying only the scalar P⇣(k) and tensor Ph(k) pri-
mordial power spectra. As a consequence, one possibility
would be to numerically evaluate, for each inflationary
model, P⇣ and Ph [35, 114, 115]. This is, however, very
time consuming.

Here, we rather choose to use the method developed in
Ref. [116]. The main idea of this article is to bypass any
mode integration by modeling through a small number
of parameters the shape of the primordial spectra. Since
we are only focused on slow-roll inflation, we consider
the second order slow-roll expansion of the scalar and
tensor primordial spectra around a pivot scale k⇤ [117–
128], namely

P⇣ =
H2

8⇡2M2
Pl
✏1

⇢

1− 2(1 + C)✏1 − C✏2

+

✓

⇡2

2
− 3 + 2C + 2C2

◆

✏21 +

✓

⇡2

24
− C2

2

◆

✏2✏3

+

✓

7⇡2

12
− 6− C + C2

◆

✏1✏2 +

✓

⇡2

8
− 1 +

C2

2

◆

✏22

+



− 2✏1 − ✏2 + (2 + 4C)✏21 + (−1 + 2C)✏1✏2

+ C✏22 − C✏2✏3

]

ln

✓

k

k⇤

◆

+

✓

2✏21 + ✏1✏2 +
1

2
✏22

− 1

2
✏2✏3

◆

ln2
✓

k

k⇤

◆}

(10)
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and

Ph =
2H2

⇡2M2
Pl

⇥
⇢

1− 2(1 + C)✏1 +

✓

⇡2

2
− 3 + 2C + 2C2

◆

✏21

+

✓

⇡2

12
− 2− 2C − C2

◆

✏1✏2 +
⇥

−2✏1 + (2 + 4C)✏21

− 2(1 + C)✏1✏2] ln

✓

k

k⇤

◆

+
(

2✏21 − ✏1✏2
)

ln2
✓

k

k⇤

◆}

,

(11)
where C = γ + ln 2 − 2 ' −0.72, γ being the Euler con-
stant. The quantities ✏n are the Hubble-flow parameters
evaluated at pivot Hubble exit, i.e. at the conformal
time ⌘⇤ solution of k⇤⌘⇤ = −1. The Hubble param-
eter H entering the normalization is also evaluated at
⌘⇤. Let us notice that, by definition, P⇤ ⌘ P⇣(k⇤) is a
well-measured quantity which fixes the amplitude of the
CMB anisotropies. Let us also remark that, a priori, P⇤

is not directly proportional to CTT,obs
` since, when the

tensor-to-scalar ratio does not vanish, part of the signal
also comes from Ph(k⇤). However, for our choice of pivot
scale, k⇤ = 0.05Mpc−1, the gravity waves contribution is
already very small.
The inflationary model dependence now only appears

through the explicit functionals ✏n(✓reh, ✓inf). These are
explicitly derived for all models of the Encyclopædia In-
flationaris in Ref. [86] and can be computed using the
public library ASPIC4. In other words, the power spectra
obtained in this way differ for different models because
the functionals ✏n(✓reh, ✓inf) depend on the inflationary
model considered. Then, the Bayesian evidence can be
obtained from Eq. (9) by marginalizing over all parame-
ters, i.e.

E (D|Mi) =

Z

Leff [P⇤(✓reh, ✓inf), ✏n(✓reh, ✓inf)]

⇥ ⇡(✓reh)⇡(✓inf) d✓rehd✓inf ,

(12)

where we have defined the effective likelihood by

Leff (P⇤, ✏n) ⌘
Z

L (✓s, P⇤, ✏n)⇡(✓s) d✓s. (13)

The effective likelihood for inflation Leff is the full likeli-
hood L marginalized over all the cosmological and astro-
physics parameters. Its estimation therefore requires a
complete data analysis that we present in the following.
However, this has to be done once and for all as the evi-
dences of all the inflationary models can be computed af-
terwards from Eq. (12). In practice, the functional shape
of Leff(P⇤, ✏n) is fitted using a neural network interpola-
tor allowing its very fast evaluation.

4 http://theory.physics.unige.ch/~ringeval/aspic.html

FIG. 3: One-dimensional marginalized posterior probability
distributions for the cosmological and primordial slow-roll pa-
rameters obtained with BICEP2 data alone (solid black lines)
compared to the corresponding Planck’s posteriors (dashed
red lines).

III. DATA ANALYSIS

In order to determine Leff, we have performed a
Markov-Chain-Monte-Carlo (MCMC) exploration of the
slow-roll parameter space using the BICEP2 and Planck
likelihood described above.
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FIG. 4: Two-dimensional marginalized posterior probability
distributions for the primordial slow-roll parameters obtained
from BICEP2 data alone (solid black lines) compared to the
corresponding Planck’s posteriors (dashed red lines). The
blue shading density traces the mean likelihood values for
BICEP2 (Jeffreys’ prior on ✏1).

A. Constraints from BICEP2

In this first section, we derive constraints on the cos-
mological parameters using the BICEP2 data alone. The
post-inflationary universe, assumed to be a flat ΛCDM
model, is described by the parameters ✓s:

✓s =
(

Ωbh
2,Ωch

2, ⌧, 100✓MC

)

. (14)

The cosmological parameters are the baryons energy den-
sity (normalized to the critical energy density) Ωb, the
cold dark matter energy density Ωc, the reduced Hub-
ble parameter today h, the optical depth ⌧ to last scat-
tering and an angle, ✓MC, related to the angular size of
the sound horizon on the last scattering surface [108].
The MCMC analysis was done by means of the public
code COSMOMC [108] and a modified version of the CAMB

code [109] taking into account that the initial power spec-
tra are not simple power laws but are given by the ex-
pressions (10) and (11). The priors on the standard pa-
rameters are chosen in accordance with Ref. [100]. For
the primordial parameters, we take a Jeffreys’ prior for
ln
(

1010P⇤

)

2 [2.7, 4.0] and for ✏1, namely log(✏1) 2
[−5,−0.7]. For the other slow-roll parameters, we choose
flat priors on ✏2 and ✏3 in [−0.2, 0.2]. As already men-
tioned, the pivot scale is chosen at k⇤ = 0.05Mpc−1.
These priors are the most uninformative within slow-roll
inflation. Indeed, the order of magnitude of ✏1 (which
is always positive) is a priori unknown as many models

produce a level of tensor modes that can be extremely
small. This prior was the one assumed in Ref. [22]
In Fig. 3, we have represented the one-dimensional

marginalized posterior probability distributions for the
standard and slow-roll parameters obtained with BI-
CEP2 data alone (solid black lines) compared with the
distributions inferred from Planck (dashed red lines). It
does not come as a surprise to see that, as long as the ✓s’s
are concerned, BICEP2 is much less constraining than
Planck. Concerning the primordial parameters, we see
that BICEP2 measures ✏1 (or r) since it is sensitive to
both the amplitude of the tensor power spectrum through

CBB,obs
` and the amplitude of the scalar power spectrum

through CEE,obs
` . The quantity P⇤, that is to say P(k⇤),

is indeed constrained as can be seen on the figure. On the
other hand, the second and third slow-roll parameters ✏2
and ✏3 are not constrained at all.
Fig. 4 shows the two-dimensional posterior probabil-

ity distributions in the primordial parameter space from
BICEP2 alone (solid black contours) and from Planck
alone (red dashed contours). The upper and lower left
panels are especially interesting since they illustrates the
existing tension between the BICEP2 and Planck data
in the sense that the one-sigma contours do not overlap
(while the two-sigma contours do). Unsurprisingly, the
first slow-roll parameter is well determined by BICEP2
while the second is well constrained by Planck.

B. Constraints from BICEP2 and Planck

We now turn to the joint analysis where the BICEP2
and Planck data are simultaneously considered. The
post-inflationary universe is, as before, a flat ΛCDM
model, and is now described by a larger set of param-
eters ✓s:

✓s =
(

Ωbh
2,Ωch

2, ⌧, 100✓MC, A
PS

100, A
PS

143, A
PS

217, r
PS

143⇥217,

ACIB

143, A
CIB

217, r
CIB

143⇥217, γ
CIB, AtSZ, AkSZ, ⇠

tSZ⇥CIB, c100,

c217,β
1
1

)

.
(15)

The cosmological parameters are the ones already consid-
ered in the previous section, Ωb, Ωc, h, ⌧ and ✓MC, and
their priors are the same. The remaining parameters are
related to astrophysics, foregrounds and the instrumen-
tal systematics associated with the Planck satellite. A
complete description of their meaning, and priors, can
be found in Ref. [100].
In order to test the robustness against prior choices,

we have also performed the same slow-roll analysis but
starting from a flat prior on ✏1 2 [0.00001, 0.2]. Such a
prior implicitly favors models producing a larger tensor
to scalar ratio.
In Fig. 5, we have represented the marginalized poste-

riors for all the cosmological, astrophysics and nuisance
parameters obtained from either the Planck likelihood
alone, or the Planck and BICEP2 likelihood combined.
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FIG. 5: One-dimensional marginalized posterior probability distributions on cosmological and astrophysics parameters associ-
ated with primordial power spectra having a second order slow-roll functional shape. These posteriors are robust against the
four cases represented: Planck data alone, Planck and BICEP2 data combined, Jeffreys’ prior on ✏1 or flat prior on ✏1.

This figure also shows these posteriors in the case of our
two prior choices on ✏1. All of the ✓s posteriors are robust
with respect to the prior choices and the combination of
data used.

In Figs. 6 and 7, the one- and two-dimensional pos-
teriors in the slow-roll parameter space have been repre-
sented for the same four combination of prior choices and
data sets. The tension between Planck and BICEP2 is
particularly visible on the posterior for log(✏1) (Jeffreys’
prior on ✏1). As visible on the lower panels of Fig. 6,
choosing a flat prior for ✏1 slightly reduces the tension
but, as explained above, would implicitly favor models

having a large tensor to scalar ratio. As expected, Planck
and BICEP2 data together completely determine the first
two Hubble flow functions and one obtains the two-sigma
confidence intervals

0.0054 < ✏1 < 0.013, 0.00013 < ✏2 < 0.041, (16)

for a Jeffreys’ prior on ✏1 and

0.0056 < ✏1 < 0.014, −0.0011 < ✏2 < 0.039, (17)

for a flat prior on ✏1. Because the spectral index is
well constrained by Planck alone (see the discussion in
Sec. III E), Figs. 6 and 7 show that combining Planck and
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FIG. 6: One-dimensional marginalized posterior probability
distributions for the primordial slow-roll parameters obtained
with Planck and Planck plus BICEP2 data; with a Jeffreys’
prior on ✏1 or a flat prior on ✏1. Notice the one-sigma shift
of the ✏2 posterior towards smaller values when the BICEP2
data are included.

BICEP2 also induces a one-sigma shift of the posterior
for the second Hubble flow function towards vanishing
values. On the contrary, the third Hubble flow function
✏3 remains unconstrained and unaffected by the inclusion
of BICEP2.
In order to assess how much of these results come from

the tension between the Planck and BICEP2 data sets,
we now estimate the Bayes factor RSR defined as the
ratio between the probability of compatibility and the
probability of incompatibility.

C. Compatibility for the Slow-Roll Model

As discussed in Sec. II B, the compatibility between
BICEP2 and Planck can be evaluated from the Bayesian
measure

RSR =
E(Dp, Db|SR)

E(Dp|SR)E(Db|SR)
, (18)

where SR refers to the model under scrutiny, namely
slow-roll. Here, we have not focused yet on a particu-
lar inflationary potential as we have sampled the whole
slow-roll parameter space (in addition to the cosmological
parameters). Nonetheless, this can still be interpreted as
having chosen phenomenological inflationary priors, that
we refer to as the slow-roll model, SR. These priors have
been mentioned earlier and are ln(1010P⇤) 2 [2.4, 4.0],
log(✏1) 2 [−5,−0.7], ✏2 2 [−0.2, 0.2] and ✏3 2 [−0.2, 0.2],

FIG. 7: One and two-sigma contour of the marginalized poste-
rior probability distributions for the primordial slow-roll pa-
rameters obtained with Planck and Planck+BICEP2 data.
The blue shading density traces the mean likelihood values
for Planck+BICEP2 (Jeffreys’ prior on ✏1). The tension be-
tween Planck and Planck+BICEP2 data induces a 1.5-sigma
shift of the log(✏1) posterior towards higher values while shift-
ing by one sigma the posterior of ✏2 towards zero.

plus the standard priors for the cosmological and astro-
physical parameters (see Sec. III A). Evaluating Eq. (18)
requires the computation of the three integrals given by
Eq. (2) for Dp (Planck), Db (BICEP2) and {Dp, Db}
(combined) which are eight-dimensional for BICEP2 and
twenty two-dimensional for the others. This is technically
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non-trivial as evaluating the likelihood at each point of
the parameter space requires a complete integration of
the cosmological perturbations with CAMB. In order to
minimize the number of likelihood evaluations and max-
imize convergence speed, we have used the nested sam-
pling algorithm as implemented in MultiNest to estimate
each evidence [95, 129, 130]. A target accuracy of 1% has
been used together with a number of live points ranging
from 1000 to 20000, depending on the dimensionality of
space. Moreover, for each evidence, we have performed
a few runs having half the number of live points in order
to estimate any systematic uncertainties. The resulting
numerical estimate is

ln(RSR) = −0.01± 0.4, (19)

where the quoted error is a systematic evaluated over the
various runs. In appendix A2, we discuss a semi-analytic
method to calculate RSR that requires only one integra-
tion over the BICEP2 likelihood. The result quoted in
Eq. (A11) matches the above numerical value.
Such a value for RSR is very close to unity and sig-

nals equal probability of Planck and BICEP2 data to be
compatible or incompatible. Let us emphasize that, on
the Jeffreys’ scale, strong compatibility would have re-
quired ln(RSR) > 5 while strong incompatibility would
have been ln(RSR) < −5. With values of | ln(RSR)| < 1,
we are in the inconclusive region, namely no conclusion
can be drawn on the compatibility of the two data sets.
As we illustrate in appendix A1, the fact that we find
| ln(RSR)| < 1 is a non-trivial result. The tension between
the Planck and BICEP2 posteriors on ✏1 (or r) visible
in Fig. 3 ends up being compensated by the agreement
between the informative posteriors for P⇤ and ✓MC (see
Fig. 3). Let us stress that discussing the compatibility
of two data sets by estimating how much the likelihoods
overlap in one direction only, without specifying any prior
and without marginalizing over the other parameters, is
misleading [131]. As can be seen in Fig. 6, even after
marginalization, the amount of overlapping between the
r-posteriors is by nature prior-dependent. For this rea-
son, in the following, we will discuss the compatibility
between Planck and BICEP2 by using the well defined
Bayesian measure R. In particular, even though all the
Encyclopædia Inflationaris models belong to the slow-
roll class, their prior space are completely different and
their respective R value will accordingly be modified (see
Fig. 15).
Since there is no evidence for incompatibility for the

slow-roll model, we now derive various results applicable
to the slow-roll class in general and obtained by combin-
ing Planck and BICEP2.

D. Energy Scale of Inflation

The correct Bayesian way to determine the energy scale
of inflation is to compute the posterior distribution of the
Hubble scale at the pivot crossing time, namely for the

FIG. 8: Marginalized posterior distribution for the inflation-
ary Hubble parameter at the time of pivot crossing. BICEP2
measures the energy scale of inflation.

quantity H appearing in Eqs. (10) and (11). This can be
done by importance sampling from the posteriors already
obtained on P⇤, ✏1, ✏2 and ✏3 [108]. From Eq. (10), one
has at second order in slow roll

H2

M2
Pl

= 8⇡2✏1P⇤ [1 + 2(1 + C)✏1 + C✏2] , (20)

and we have plotted its posterior in Fig. 8. Assuming a
Jeffreys’ prior on ✏1, Planck and BICEP2 data combined
give the two-sigma confidence interval

1.1 < ln

✓

105
H

MPl

◆

< 1.6, (21)

with a mean value at ln(105H/MPl) = 1.36, namely H '
9.5 ⇥ 1013GeV. Starting from a flat prior on ✏1, one
obtains instead

3.1 < 105
H

MPl

< 4.9, (22)

and a mean value at 105H/MPl = 4.02, giving H ' 9.8⇥
1013GeV. Those values can be converted into gravitating
energy scales through the Friedmann-Lemâıtre equation,
i.e.

⇢
1/4
⇤ = 31/4

p

HMPl. (23)

One finds the corresponding values ⇢
1/4
⇤ ' 2.00 ⇥

1016GeV (Jeffreys’ prior on ✏1) and ⇢
1/4
⇤ ' 2.03 ⇥

1016GeV (flat prior on ✏1).

E. Power Law Derived Parameters

Similarly, as it is explicit from Eqs. (10) and (11), the
spectral indices nS and nT, the tensor to scalar ratio r and
the runnings ↵S and ↵T are completely given in terms of
the Hubble flow functions. At second order in slow roll,
the spectral indices read [127, 128]

nS = 1− (2✏1 + ✏2)− 2✏21 − (3 + 2C)✏1✏2 − C✏2✏3,

nT = −2✏1 − 2✏21 − 2(1 + C)✏1✏2,
(24)
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FIG. 9: Marginalized posterior distribution for the derived
power law parameters nS, r, nT, ↵S, ↵T and βT obtained by
importance sampling from the second order slow-roll parame-
ters. Within slow-roll inflation, the running ↵S is more tightly
constrained when the BICEP2 data are included.

while the tensor to scalar ratio can be expressed as

r = 16✏1(1 + C✏2). (25)

The scalar and tensor running are given by

↵S = −2✏1✏2 − ✏2✏3, ↵T = −2✏1✏2, (26)

respectively. Finally, let us mention that the running
of the running for the tensor mode is also completely
specified by the first three Hubble flow functions and read

βT = −2✏1✏2 (✏2 + ✏3) . (27)

At leading order in slow roll, those equations can be re-
cast into the so-called consistency relations

r ' −8nT,

↵T ' r

8

hr

8
+ (nS − 1)

i

,

βT ' ↵T(1− nS) +
r

8
(↵S − 2↵T).

(28)

FIG. 10: Two-dimensional posterior distribution for some of
the derived power law parameters. The blue shading density
traces the mean likelihood values for Planck+BICEP2 (Jef-
freys’ prior on ✏1).

Using again importance sampling, the posterior distri-
bution for nS, nT, r, ↵S, ↵T and βT have been repre-
sented in Figs. 9 and 10. In particular, let us stress that,
within slow roll inflation, a running spectral index for the
scalar modes cannot help to alleviate the tension between
Planck and BICEP2 data. On the contrary, we see that
the posterior of ↵S is more restricted around vanishing
values by adding the BICEP2 data. As it is explicit in
Eq. (26), ↵S is a small quantity which is proportional to
✏2, the posterior of which is being shifted towards zero
when the BICEP2 data are considered (see Sec. III B).
From this equation one has

|↵S|max ' |✏2|max (2|✏1|max + |✏3|max) ' |✏2|max|✏3|max,
(29)

the third Hubble flow function ✏3 being the largest term
since it is unconstrained [max (|✏3|) = 0.2]. Therefore,
shifting ✏2 towards small values implies the same for ↵S.
This effect could have been expected as Planck alone
strongly constrains the spectral index, which is given by
Eq. (24). Increasing ✏1 at fixed nS imposes to decrease
✏2 by twice the amount. Therefore, Eq. (29) implies that
the maximal values of |↵S| will be accordingly reduced.

From the posteriors represented in Fig. 9, Planck and
BICEP2 data combined yield the following 95% confi-
dence intervals

0.947 < nS < 0.978, − 0.0074 < ↵S < 0.0025,

−1.07 < log(r) < −0.67, − 0.027 < nT < −0.011,
(30)
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and

−7.1⇥ 10−4 < ↵T < −3.1⇥ 10−6,

−1.3⇥ 10−4 < βT < 5.0⇥ 10−5,
(31)

when a Jeffreys’ prior is assumed on ✏1. These bounds
are relatively robust against the prior choices. Indeed,
assuming instead a flat prior on ✏1 gives

0.947 < nS < 0.978, − 0.0071 < ↵S < 0.0027,

0.088 < r < 0.22, − 0.028 < nT < −0.011,
(32)

and

−7.1⇥ 10−4 < ↵T < 2.7⇥ 10−5,

−1.3⇥ 10−4 < βT < 5.0⇥ 10−5.
(33)

To conclude this section, let us stress that although
there is a tension between the Planck and BICEP2 data
on the tensor-to-scalar ratio, it does not affect the poste-
rior values of the cosmological and astrophysics param-
eters, those being already strongly constrained by the
Planck data alone. Concerning the shape of the primor-
dial power spectra, nS remains also unaffected while the
tensor-to-scalar ratio tension induces a drastic modifica-
tion of the ✏1 posterior distribution and a one- to two-
sigma shift of the ✏2 distribution compared to the Planck
data alone. Moreover, as we have just discussed, the run-
ning of the scalar power spectrum cannot be used within
slow-roll inflation to alleviate the above-mentioned ten-
sion, precisely because it cannot take large enough values.
Solely in slow-roll violating models of inflation, such an
explanation may be relevant [132–136].
Concerning the implications for inflation, BICEP2 re-

sults provide, for the first time, a measure of the energy
scale of inflation which ends up being at GUT scale, see
Eqs. (22) and (23), a major result indeed if confirmed.
The mean value of r = 0.15 is slightly lower than what
was inferred by the BICEP2 team but this is expected as
we are here considering slow-roll inflation and have added
the Planck data which disfavor larger tensor to scalar ra-
tio values. As for the evidences, one should therefore
expect all models predicting a very small tensor to scalar
ratio to be now strongly penalized evidence-wise. That
is why, if the BICEP2 measurements stands the test of
time, this situation would be a pivotal moment for Cos-
mic Inflation models.
In the following, we use the multi-dimensional poste-

rior on P⇤ and ✏i, derived under the Jeffreys’ prior on ✏1,
coming from the BICEP2 data as our effective likelihood
Leff.

IV. RESULTS AND DISCUSSION

In this section, we apply the method described pre-
viously in order to derive the Bayesian evidences and
complexities for the Nmod = 193 models of the Ency-
clopædia Inflationaris . The complete list of models as

well as a careful discussion and justification of the priors
on the free parameters ✓inf can be found in Ref. [22]. In
the present article, we use the same terminology and the
same choices for the priors.

A. BICEP2 Evidences

In Fig. 11, we show the (logarithm) of the Bayes fac-
tors, Bi

SR
, normalized to the slow-roll model, and com-

puted with the BICEP2 data only. The value of lnBi
SR

is
represented by an horizontal bar on the left if lnBi

SR
< 0

(the model Mi is disfavored with respect to the slow-roll
model) and by an horizontal bar on the right if lnBi

SR
> 0

(the model Mi is favored with respect to the slow-roll
model), the length of the bar being directly proportional
to lnBi

SR
. There is also a color code which indicates

the Schwarz Terrero-Escalante classification [137]. Let
us briefly recall that, according to this classification, cat-
egory one (“green” models) corresponds to models for
which the kinetic energy and the kinetic to potential en-
ergy ratio increases during inflation. Typically, this re-
gion contains models having a plateau shape potential.
As shown in Ref. [22], this class of models is favored
by the Planck data (see below). Category two (“red”
models) contains models for which the kinetic energy de-
creases but the kinetic to potential energy ratio increases
during inflation. Large field models belongs to this re-
gion. Finally, category three (“purple” models) refers to
models having a decreasing kinetic and kinetic to poten-
tial energy ratio. Valley hybrid inflation is an example
of a model belonging to this category; for a more de-
tailed explanation of this classification and its meaning,
see Ref. [22]. We have also computed the maximum value
of the evidences obtained when all the parameters have a
Dirac function prior peaked at the best fit. This is indi-
cated by the small black arrows. They can be interpreted
as upper bounds on the evidences regardless of the pri-
ors. Finally the vertical dotted black lines refer to the
Jeffreys’ scale with respect to the best model and repre-
sent the four different categories, “inconclusive” (models
between the first and the second vertical line, starting
from the right), “weakly disfavored” (between the second
and the third vertical line), “moderately disfavored” (be-
tween the third and the fourth vertical line) and “strongly
disfavored” (left to the fourth vertical line), see Table 1
in Ref. [22].
As can be seen in Fig. 11, the best model according to

BICEP2 is LFI3, for which V (φ) / φ3. We see that there
are in fact 52 models in the inconclusive zone (this one
being defined with respect to the best model), namely
LFI3, GMLFI2,1, HF1I, GMLFI3,1, LFI2, LPI22, MLFI,
GMSSMIp, SSBI1, LPI24, SSBI6f , DWI, LFI4, SSBI6,
LPI14,2, SSBI1f , GMLFI1,2, RCMI, LPI14,1, SSBI3, OI,
NCKIβ>0, LPI14,3, LPI32, GMLFI1,3, LPI1, GMLFI3,2,
LFI, LPI34, OSTI, RCQI, GMLFI2,3, GMLFI1,1, LPI36,
NI, LI↵<0, CNAI, CNBI, GMLFI2/3,4/3, GRIPIsugra,
RIPIsugra, GMLFI3,3, LMI1p, LFI1, SFI1, LPI26, MHIl,
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FIG. 11: Bayes factors and absolute upper bounds to the Bayes factors obtained from the BICEP2 data alone. The reference
model is the slow-roll model (SR), here viewed as a scenario in itself having three parameters ln(1010P⇤), log(✏1) and ✏2 and
whose priors are reported in the text. The vertical dotted lines refer to the Jeffreys’ scale with respect to the best model, here
LFI3.

GMLFI, WRIg, RGIl, SSBI3f and LMI1o, where we have
ordered the list in decreasing values of the evidences.

Let us now discuss these potentials and the physi-
cal context in which they arise. CNAI, CNBI, HF1I,
LMI1o and MHIl are phenomenological and, therefore,
difficult to embed in high energy physics. LFI is just
the general family of monomial potentials V (φ) / φp

and, in the inconclusive zone, one finds LFI3, LFI2,
LFI4 and LFI1. The GMLFIp,q potentials (this in-
cludes MLFI for which p = q = 2) are of the form
V (φ) / (φ/MPl)

p [1 + ↵(φ/MPl)
q], where ↵ is a pa-

rameter controlling the amplitude of the second term.
Physically, they could represent LFI modified by some
quantum corrections [138, 139]. The following poten-
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FIG. 12: Model performance assessed with both Bayesian evidence and number of unconstrained parameters for the BICEP2
data. The four panels represent different zooms in the models’ space. They are to be read from the left to the right and from
the top to the bottom—in this order, the black dashed rectangles frame the region comprised in the next panel.

tials can also be viewed as large field corrected models:
RCMI, V (φ) / (φ/MPl)

2
⇥

1− 2↵(φ/MPl)
2 ln(φ/MPl)

⇤

and RCQI, V (φ) / (φ/MPl)
4[1 − ↵ ln(φ/MPl)]. DWI

has a V (φ) / [(φ/φ
0
)− 1]

2
which is the sum of three

monomials but was mainly used in the context of topo-
logical inflation. In the inconclusive zone, one also
finds the SSBI potentials which are given by V (φ) /
1+↵(φ/MPl)

2+β(φ/MPl)
4 and can be viewed as models

where the vacuum energy part of the potential is cor-
rected by higher order monomial terms. This is also the
case for NCKIβ>0, V (φ) / 1 + ↵ ln(φ/MPl) + β(φ/MPl)

2

where the corrections are also of radiative origin and loop
inflation LI↵<0, V (φ) =/ [1 + ↵ ln(φ/MPl)] with ↵ < 0.
Another class of models that are among the BICEP2 win-
ners is LPI’s, V (φ) / (φ/φ

0
)p[ln(φ/φ

0
)]q. These scenar-

ios are based on super Yang-Mills theories and are also
known as glue ball inflation. Notice, however, that the
value of φ

0
must be super-Planckian. The model OI,

V (φ) / (φ/φ
0
)4[ln2(φ/φ

0
)−↵], possesses a similar poten-

tial as well as OSTI, V (φ) / (φ/φ
0
)2 ln

⇥

(φ/φ
0
)2
⇤

. This
last scenario is physically well motivated in the context
of string theory. Unfortunately, it is used outside its nat-
ural domain of validity since Ref. [140] showed that it has
severe problems in matching the amplitude of the CMB
anisotropies. In the inconclusive zone, one also finds in-
flection point models such as GMSSMIp, RIPIsugra and
GRIPIsugra. Some of them are also used in a non phys-
ical region. For instance, this is the case for GMSSMIp,
V (φ) / (φ/φ

0
)2−2↵/3(φ/φ

0
)6+↵/5(φ/φ

0
)5. The model

is based on the MSSM (Minimal Supersymmetric Stan-
dard Model) where the inflaton field evolves along a flat
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FIG. 13: Bayes factors and absolute upper bounds to the Bayes factors obtained from the Planck data as in Ref. [22]. The
reference model is the same slow-roll model as in Fig. 11, and the vertical dotted lines refer to the Jeffreys’ scale with respect
to the best model, here KMIII.

direction and is, therefore, well justified from a high en-
ergy point of view. However, in order to be a satis-
factory inflationary model, φ

0
must have a vev that is

outside the natural MSSM values. RGIl refers to ra-
dion gauge inflation and has a potential given by V (φ) /
(φ/MPl)

2/[↵+(φ/MPl)
2]. SFI1 is nothing but small field

inflation, V (φ) / 1 − (φ/µ)p, with p = 1. Finally, natu-
ral inflation (NI), for which V (φ) / 1 + cos(φ/f) is also

a good model but must be used in a domain where the
scale f is super-Planckian.

We have also computed the Bayesian complexities, see
Eq. (3), for all the Encyclopædia Inflationaris models,
so that the performance of a model can be described by
two numbers, its evidence and its complexity or, equiv-
alently see Eq. (5), its evidence and its number of un-
constrained parameters. We have represented the corre-
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sponding result in the space [Nuc, ln (E/Ebest)] in Fig. 12.
If one restricts oneself to models in the “inconclusive
zone” with a minimal number of unconstrained param-
eters, i.e. 0 < Nuc

i < 1, then one finds only 17 models,
namely: LFI3, LFI2, DWI, LFI4, RCMI, OSTI, RCQI,
GMLFI1,1, NI, LI↵<0, CNBI, GMLFI2/3,4/3, RIPIsugra,
SFI1, MHIl, WRIg and RGIl. It is interesting to notice
that the V (φ) = m2φ2/2 model (i.e. LFI2) is among
the models favored by BICEP2 but is not the only one.
At this stage, it would therefore be unjustified to focus
model building efforts on this scenario only.

In order to compare the above results with what has
been obtained by Planck, we have reproduced in Fig. 13
the values of the evidences, normalized to the slow-roll
model, obtained with the Planck data in Ref. [22]. This
figure is identical to Fig. 2 of Ref. [22] except that the
reference model is now different (being HI in [22]). The
best Planck model is KMIII and the 52 models that
end up being in the inconclusive zone (with respect to
the best) are: KMIII, ESI√2, BI6s, MHIs, BIs, ESI,
BI5s, KKLTIs, KMIIV >0, BI4s, ESIo, ESIp

2/3
, KMII,

HI, BI3s, BI2s, RGIs, RGI1/16, BIph, AI, BI1s, MHI, SFIl,
SFI, KKLTIstg, BIstg, KKLTI, SBI, RGI, SFIs, PSNIoA,
SFI4l, PSNIft2, PSNIoB, PSNIft1, PSNIoC, LI↵>0, SFI4,
ESIl, SSBI2, PSNIft3, PSNIepA, SSBI4, TWIφ0

, RGIl,
SFI4s, MHIl, PSNIepB, TWIrφ0

, SBI↵min
, LI, SFI3l.

Two remarks are in order here. Firstly, the number
of models favored is exactly the same for BICEP2 and
Planck, namely 52. This probably illustrates the fact
that r is an observable which is able to discriminate
among the inflationary models much more efficiently that
nS. Indeed, as above-mentioned, we have used only 4
bandpowers for the BICEP2 data, and this already sin-
gles out the same number of scenarios in the inconclusive
zone. Secondly, there are only two models belonging to
the two lists: MHIl and RGIl. In particular, the fact
that the Starobinsky (or Higgs) inflationary model was
among the winners according to Planck is not recovered
by BICEP2. On the contrary, this one becomes (almost)
strongly disfavored compared to LFI3.

In Ref. [22], the complexity was also calculated, see
Fig. 3 of that article. We found that, among the models
in the Planck inconclusive zone, those with a minimal
number of unconstrained parameters, i.e. 0 < Nuc

i < 1,
are: ESI√2, ESIp

2/3
, HI, BI2s, RGIs, AI, BI1s, MHI,

RGI, SFI4l, LI↵>0, SFI4, ESIl, RGIl, MHIl, SBI↵min
and

SFI3l. Again, two models remain in the two lists, the
same as above, namely MHIl and RGIl.

Finally, we can summarize the data constraining power
in an histogram for the four Jeffreys’ categories as rep-
resented in Fig. 14. We have also represented the same
histogram obtained from the Planck data. Noticing again
that the BICEP2 data used here consist only of four
bandpowers for E and B-modes, this plot illustrates the
power of measuring r for inflationary physics. How-
ever, as discussed earlier, the models lying into these
four categories weakly overlap between Planck and BI-

FIG. 14: Number of models within each Jeffreys’ category
(with respect to the best model) for Planck data alone and
BICEP2 data alone.

CEP2 thereby showing some tension between the data
sets. Since compatibility between data sets is a model
dependent statement, we now move on to the determina-
tion of the R factors for all the Encyclopædia Inflation-
aris models.

B. Compatibility of Planck and BICEP2

In Fig. 15 we have represented the values of ln(R) for
all the Encyclopædia Inflationaris models. These have
been obtained using the fast likelihood method described
in Sec. II. In this plot, one notices that the data sets
are compatible with certainty [i.e. at the “strong” level,
ln(R) > 5] for 36 models only. They are: GMSSMIopA,
GMSSMIopB, GMSSMIep, TIe, TIe↵<1/2, TIe↵>1/2, IIβ ,
IIf , IIλ, PLI, PLIp, BSUSYBIf , BSUSYBIl, CSI, DSI,
DSI2, DSIo, IMI, IMI1, IMI2, IMI3, IMI4, IMI5, IMI6,
RMI4, RMI4l, VHI, VHI1, VHI1/2, VHI2, VHI3, VHI4,
VHIp<1, GMSSMIem, GMSSMIomA, and GMSSMIomB.
As one can check in Figs. 11 and 13, these models are dis-
favored by both PLANCK and BICEP2 separately; the
ones exhibiting maximum compatibility are even ruled
out. This is not surprising as R is a combined measure
of both the reduction of prior volume brought about by
the likelihood as well as their overlap (see appendix A1).
The statistical interpretation of these results is that both
data sets agree in disfavoring those models.
On the other hand, one may be more interested in an-

swering the question whether the data sets are compati-
ble assuming the best Planck’s scenarios. In Fig. 16, we
have represented the same R-factors of Fig. 15 plotted
against the Bayes factor derived from the Planck data
alone (the ones of Fig. 13). The shaded rectangles (yel-
low) trace the overlapping regions of maximal evidence
and maximal compatibility over two units in the Jeffreys’
scale: inconclusive plus weak zones along the evidence
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FIG. 15: Compatibility between the Planck and BICEP2 data for each model as measured by the R-factors. Positive values
correspond to compatibility, negative values to incompatibility.

direction and strong plus moderate zones along the com-
patibility direction. There is no model in these regions
showing that, insofar the best inflationary models from
Planck data alone are concerned, the two data sets are
in tension. In fact, only a weak compatibility is reached
for models which are already weakly disfavored by the
Planck data alone. Many of these models belong to the
ones listed earlier that were favored by BICEP2 alone (as
NI, SSBI3, RIPIp . . . ).

For Planck best models, the BICEP2 data cannot be
brought into compatibility with Planck, and hence the
two data sets cannot be combined to obtain meaning-
ful updated inferences on these scenarios. In particu-
lar, this is the conclusion for Starobinsky inflation (HI)
and, therefore, it is premature to conclude about its vi-
ability before compatibility is addressed. As we have
just showed, both data sets can only be meaningfully
combined if one focuses on scenarios which are, at least,
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FIG. 16: Planck+BICEP2 compatibility measure, R, versus
Planck’s evidences normalized to slow roll. The yellow rect-
angle in the top right encompasses the “strongly compatible”
models that lie in the Planck-alone “inconclusive” zone (with
respect to Planck’s best model); the light yellow rectangles
encompass the “strongly compatible” models that lie in the
“weakly disfavored” zone (top left) and the “moderately com-
patible” models that lie in the “inconclusive” zone (bottom
right). One can see that these rectangles are empty. The bot-
tom panel is a zoom into the neighborhood of these regions.
Among the models favored by Planck data alone, there are
only a few for which Planck and BICEP2 data are, at most,
weakly compatible [1 < ln(R) < 2.5].

weakly disfavored by Planck.

It is also informative to assess the compatibility of
the two data sets from the perspective of the BICEP2
best models. In Fig. 17 we have plotted the analogous
of Fig. 16 for BICEP2, namely the R-factors against
the Bayes factors obtained from BICEP2 data alone (see

FIG. 17: Planck+BICEP2 compatibility measure, R, versus
BICEP2 evidences normalized to slow roll. The yellow rect-
angle in the top right encompasses the “strongly compati-
ble” models that lie in the BICEP2-alone “inconclusive” zone
(with respect to BICEP2’s best model); the light yellow rect-
angles encompass the “strongly compatible” models that lie
in the “weakly disfavored” zone (top left) and the “moder-
ately compatible” models that lie in the “inconclusive” zone
(bottom right). The bottom panel is a zoom into the neigh-
borhood of these regions. The models favored by BICEP2
data alone are found in the region where Planck and BICEP2
are moderately compatible.

Fig. 11). The BICEP2 best scenarios now spread into the
region of moderate compatibility although there is again
no model in the strong compatibility region. Nonethe-
less, for the BICEP2 best scenarios, Planck and BICEP2
data can be combined to get more information for these
scenarios.

In the light of the above considerations, in Fig. 18 we
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FIG. 18: Evidences (Bayes factor) and absolute upper bounds to the Bayes factors, from Planck and BICEP2 data combined,
for the models such that R > 1 only. The reference model is the same slow-roll model as in Figs. 11 and 13, and the vertical
dotted lines refer to the Jeffreys’ scale with respect to the best model, here HF1I.

have represented the Bayes factors obtained by combin-
ing Planck and BICEP2 together, but only for models
having R > 1 since combining models with R < 1 is
meaningless. Our chosen threshold of R is conservative
(i.e., we are not requiring R - 1), and it includes sce-
narios under which, in the present situation, one cannot
conclude about compatibility according to the Jeffreys’
scale (i.e. models having 0 < lnR ⌧ 5). The two best

models are now HF1I and LFI2. Then, in the incon-
clusive zone (with respect to the new best model) one
has LPI22, GMSSMIp, DWI, GMLFI2,1, RCMI, SSBI3,
OSTI, GMLFI1,1, NI, GMLFI2/3,4/3, LI↵<0, NCKIβ>0,
GMLFI1,2, LFI3, CNBI, LPI34, MLFI, CNAI, LFI,
MHIl, LPI32, LPI36, LMI1p, LFI1 and SFI1. It is inter-
esting to notice that, among the previous models, none
of them is in the strongly compatible zone. This is yet
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another consequence of the tension between Planck and
BICEP2 under an inflationary prior assumption. We also
notice that all the models in the Planck+BICEP2 incon-
clusive zone are in the BICEP2 inconclusive zone while
only one (i.e. MHIl) is in the Planck inconclusive zone.
On the other hand, the LFI4 scenario which was in the
list of inconclusive models for BICEP2 becomes moder-
ately disfavored when adding Planck.

V. CONCLUSIONS

Let us now summarize our main conclusions. If the BI-
CEP2 data stand the test of time and are confirmed as a
signature of tensor modes of inflationary origin, they do
represent a major advance in our understanding of infla-
tion and primordial cosmology. Indeed, for the first time,
we would now have a measurement of the energy scale of
inflation: the GUT scale. Other important consequences
were also discussed in the introduction.
The main issue addressed in the present article was

the compatibility of the Planck data with the BICEP2
data assuming an inflationary prior. Several indicators
have been used to quantify the tension between these
two measurements. Firstly, assuming slow-roll, we have
shown that our posterior odds measure of compatibility
gives RSR ' 1. This means that we are not in a position
to establish that Planck and BICEP2 are compatible at a
statistically significant level assuming a slow-roll model.
But, clearly, we cannot either prove that the two data
sets are incompatible (again, assuming slow-roll): we are
precisely in a regime where one cannot conclude. Sec-
ondly, we have also computed the R factor for all the
Encyclopædia Inflationaris scenarios and shown that the
undecided situation just described is changed. We have
found that the zone of strongly compatible models con-
tain no “good” Planck or BICEP2 models (i.e. “good”
models are defined to be models in the inconclusive zone
with respect to the best models of each data set alone).
Moreover, all the models for which we can be sure that
Planck and BICEP2 are compatible (lnR > 5) are ei-
ther strongly or moderately disfavored by Planck (ex-
cept three models that are only weakly disfavored, i.e.
BSUSYBIl, GMSSMIomB and GMSSMIem). Thirdly, for
models such that R > 1, we have derived the updated
value of the Bayesian evidence. We have found that,
for all the best Planck+BICEP2 models (those which
are in the inconclusive zone with respect to the best
Planck+BICEP2 model LFI3), we have 1 < lnR < 5, i.e.
for none of them Planck and BICEP2 appear compatible
at a strong evidence level. Fourthly, as was established
in Ref. [22], the Planck data favor category 1 models,
namely models with a potential having a plateau shape
(the best model was KMIII but the inconclusive zone
contained other scenarios, for instance the Starobinsky
model). However, these models are disfavored by the BI-
CEP2 data for which the best model is LFI3 (a category
2 model) and have R-factors less than unity. Therefore,

we face a situation where Planck and BICEP2 are not
strongly compatible. Moreover, as discussed above, sev-
eral hints all indicate that the two measurements could in
fact be incompatible although, in the present situation,
it is too early to make a final judgment.
Another important message of this work is that, as-

suming BICEP2 alone or Planck+BICEP2 when possi-
ble (i.e. for lnR > 1) does not single out a particular
model, for instance m2φ2. From a theoretical point of
view, m2φ2 may seem a priori quite attractive. However,
given either BICEP2 or Planck+BICEP2, it is not the
only winner and other types of models are still perform-
ing as well as this simple potential. As a consequence, in
the present situation, it seems meaningless to focus the
model building efforts only on large field models.
In view of our result, the most important next step

is to confirm that the B-mode polarization detection by
BICEP2 is truly of primordial origin. Hopefully, this will
help to resolve the tension between the two data sets and
thus their incompatibility for the Planck best scenarios.
Once done, if a the detection of a non-vanishing r is

confirmed, one will have to measure the tensor spectral
index nT. The sign of nT already carries very impor-
tant information and has the potential to confirm or ex-
clude different challengers to inflation. Indeed, inflation
generically predicts a red spectrum, namely nT < 0, see
Eq. (24). If one finds a blue spectrum nT > 0, this
would certainly be difficult (and/or contrived) to explain
in this framework and alternatives such as, for instance,
string gas cosmology [141], which predicts a blue spec-
trum, would be a natural solution.
For a red spectrum, the next-to-next pressing ques-

tion will be to verify the simplest consistency relation of
Eq. (28), namely [142, 143]

r

nT

' −8, (34)

which is independent of the shape of the potential (but
not of the inflationary classes of models).
Only after these three steps have been completed, one

would be in a position to claim that inflation has been
really seen in the sky. It should be clear from the above
considerations that this is not yet the case.
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Appendix A: Bayesian compatibility Between Data

Sets

In this section we illustrate how the R factor measures
the degree of compatibility/incompatibility between two
data sets given a model M.
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FIG. 19: Four proto-typical situations when combining two data sets DA and DB. Their respective likelihoods may overlap,
or not, within the prior volume, or not. As seen in Fig. 3, Planck and BICEP2 under the slow-roll model prior (SR) could be
idealized as “case 2” for the cosmological parameters which ends up being constrained by BICEP2 alone (R > 1), as “case 4”
for those not constrained at all (R = 1) and as “case 1” over the ✏1 direction (R < 1).

1. Toy example

We consider a toy model M described by single pa-
rameter ✓, the prior of which is uniform in the interval
[↵,β] and has a density V −1

⇡ ⌘ (β−↵)−1. Let us evaluate
R associated with two data sets DA and DB in various
idealized cases as sketched in Fig. 19. Their respective
likelihoods are assumed to be Heaviside functions having
a maximum value Lmax

i over a support δ✓i (i = A,B).
For “case 1” represented in Fig. 19, one gets

R =

Z

LA(✓)LB(✓)⇡(✓)d✓
Z

LA(✓)⇡(✓)d✓

Z

LB(✓)⇡(✓)d✓

=
V⇡δ✓AB

δ✓Aδ✓B

=
δ✓AB

min(δ✓A, δ✓B)
⇥ 1

max(δ✓A, δ✓B)/V⇡
.

(A1)

The quantity δ✓AB stands for the overlapping range of ✓
values between the two likelihoods. We point out that the
maximum likelihood values cancel out and have no influ-
ence on R. In the second line of Eq. (A1), we have high-
lighted a first factor which is always less than unity since
δ✓AB  min(δ✓A, δ✓B). The second term is the inverse of
factor by which the prior volume has been reduce by the
less constraining data set. Provided the less constraining
data set (i.e., the one with the largest support of the like-

lihood) remains informative, namely max(δ✓A, δ✓B) < V⇡,
this second term in Eq. (A1) is always greater than unity.
As expected for a Bayesian quantity, R measures how
much the likelihoods of the two data sets overlap bal-
anced by how much information has been with respect to
the initial prior volume. For instance, “case 2” in Fig. 19
yields δ✓AB = min(δ✓A, δ✓B) = δ✓B and R = V⇡/δ✓A > 1,
so long as DA is informative (δ✓A < V⇡). Notice that one
would get exactly the same result for δ✓AB = δ✓A = δ✓B.
“Case 4” represents a situation in which the worse data
set, here DA, becomes uninformative as the likelihood
support encompasses the whole prior volume (δ✓A = V⇡)
and R = 1. In other words, even though the likelihoods
perfectly overlap, R = 1 indicates that one cannot con-
clude on the compatibility of the two data sets precisely
because one of them is uninformative. Finally, “case 3”
is the worse case scenario δ✓AB = 0 and R = 0 signaling a
complete incompatibility between DA and DB under the
model M.
In view of the marginalized distributions represented

in Fig. 3, the posterior of ✏1 exhibits a situation typical
of “case 1”. For all the other parameters, the BICEP2
posteriors are always encompassing those associated with
Planck, some being informative and others uninforma-
tive. Therefore, some directions in the parameter space
are typical of “case 4” (as for instance ✏2 and ✏3) while
others are typical of “case 2” (as for instance ✓MC and
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P⇤). As a result, one may expect the RSR factor be-
tween Planck and BICEP2 for the model M = SR to be
pushed towards unity by all the uninformative posteriors
from BICEP2, less than unity by the ✏1-posterior and
more than unity by the compatible posteriors; a situa-
tion more complex than what is advocated in Ref. [131].
In the following, we provide a semi-analytic calculation
confirming the numerical calculation of Sec. III C and
showing that those effects roughly compensate to give
RSR close to unity.

2. Semi-analytic approach

In the following, we split the cosmological, astrophys-
ical and instrumental parameters associated with the
Planck likelihood into two sets ✓s = (✓lcdm, ✓n) with

✓lcdm ⌘
(

Ωbh
2,Ωch

2, ⌧, 100✓MC

)

,

✓n ⌘
(

APS

100, A
PS

143, A
PS

217, r
PS

143⇥217, A
CIB

143, A
CIB

217, r
CIB

143⇥217,

γCIB, AtSZ, AkSZ, ⇠
tSZ⇥CIB, c100, c217,β

1
1

)

,
(A2)

noticing that the BICEP2 likelihood only involves the
✓lcdm set. In order to simplify notation we denote by "
the set of primordial parameters ln(1010P⇤), log(✏1), ✏2
and ✏3 and by Dp and Db the Planck and BICEP2 data
sets. From the definition of RSR one has

RSR =
E(Dp, Db|SR)

E(Dp|SR)E(Db|SR)

= RREF

E(Dp, Db|SR)
E(Dp, Db|MREF)

E(Dp|SR)
E(Dp|MREF)

E(Db|SR)
E(Db|MREF)

.

(A3)

Here we have introduced a reference model MREF such
that the last term in the above equation is a ratio of Bayes
factors that can be computed quickly from the effective
likelihood method discussed in Sec. II. The difficulty has
been moved into estimating RREF, i.e. the compatibility
factor between Planck and BICEP2 under some reference
model. However, the arbitrariness in choosing MREF al-
lows us to define it with a very convenient prior, namely

⇡(") = δ("− "f), (A4)

where "f are some fixed values of the primordial param-
eters. The evidence of MREF using Planck data alone is
given by

E(Dp|MREF) =

Z

L̄p("f , ✓lcdm)⇡(✓lcdm) d✓lcdm, (A5)

where we have defined

L̄p("f , ✓lcdm) ⌘
Z

Lp("f , ✓lcdm, ✓n)⇡(✓n) d✓n. (A6)

Similarly, for Planck and BICEP2 data combined, one
has

E(Dp, Db|MREF) =

Z

L̄p("f , ✓lcdm)Lb("f , ✓lcdm)

⇥ ⇡(✓lcdm) d✓lcdm ,

(A7)

and for the BICEP2 data alone the evidence reads

E(Db|MREF) =

Z

Lb("f , ✓lcdm)⇡(✓lcdm) d✓lcdm. (A8)

These expressions are exact and we now make some ap-
proximations. From the posteriors of Fig. 3, one sees
that, over all the cosmological parameters ✓lcdm, the
marginalized Planck likelihood L̄p("f , ✓lcdm) is strongly
peaked inside the support of Lb("f , ✓lcdm). Therefore,
Eq. (A7) can be approximated by

E(Dp, Db|MREF) ' Lb("f , ✓
max
lcdm)

⇥
Z

L̄p("f , ✓lcdm)⇡(✓lcdm) d✓lcdm,

(A9)
where ✓max

lcdm are the cosmological parameters at which L̄p

is maximal given "f . From this expression, together with
Eqs. (A5) and (A8), one gets

RREF ' Lb("f , ✓
max
lcdm)

Z

Lb("f , ✓lcdm)⇡(✓lcdm) d✓lcdm

, (A10)

which, apart from the location ✓max
lcdm, depends on the BI-

CEP2 likelihood only. The evidence appearing in the
denominator is a four-dimensional integral over ✓lcdm (or
five-dimensional if one marginalizes over ✏3), as opposed
to a nineteen-dimensional integral for the bare Planck
likelihood. In practice, we have chosen "f as the pri-
mordial parameters associated with the best fit model
of Planck and BICEP2 combined and have evaluated
Eq. (A10) using the MultiNest algorithm [129, 130].
This method yields

ln(RSR) ' −0.01± 0.3, (A11)

where the quoted error is a systematic estimated by per-
forming various nested integrations having a number of
live points between 500 to 1000. This value is compatible
with the full numerical integration presented in Sec. III C.

[1] P. Ade et al. (BICEP2 Collaboration) (2014),
1403.3985.

[2] H. Liu, P. Mertsch, and S. Sarkar (2014), 1404.1899.
[3] S. Saga, M. Shiraishi, and K. Ichiki (2014), 1405.4810.



24

[4] C. Ringeval, T. Boehm, and R. Durrer, Phys.Rev.D
(2003), hep-th/0307100.

[5] J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh,
M. Kunz, et al. (2014), 1403.4924.

[6] C. Bonvin, R. Durrer, and R. Maartens (2014),
1403.6768.

[7] C. Ringeval, Adv.Astron. 2010, 380507 (2010),
1005.4842.

[8] P. Ade et al. (Planck Collaboration) (2013), 1303.5085.
[9] L. P. Grishchuk, Sov. Phys. JETP 40, 409 (1975).

[10] L. P. Grishchuk, Nuovo Cim. Lett. 12, 60 (1975).
[11] M. J. Mortonson and U. Seljak (2014), 1405.5857.
[12] P. Ade et al. (Planck Collaboration) (2014), 1405.0871.
[13] A. A. Starobinsky, Phys.Lett. B91, 99 (1980).
[14] A. H. Guth, Phys. Rev. D23, 347 (1981).
[15] A. D. Linde, Phys. Lett. B108, 389 (1982).
[16] A. A. Starobinsky, Phys. Lett. B117, 175 (1982).
[17] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49, 1110

(1982).
[18] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48,

1220 (1982).
[19] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Phys.

Rev. D28, 679 (1983).
[20] A. D. Linde, JETP Lett. 38, 176 (1983).
[21] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33,

532 (1981).
[22] J. Martin, C. Ringeval, R. Trotta, and V. Vennin, JCAP

1403, 039 (2014), 1312.3529.
[23] T. Kobayashi, M. Yamaguchi, and J. Yokoyama,

Phys.Rev.Lett. 105, 231302 (2010), 1008.0603.
[24] T. Kobayashi, M. Yamaguchi, and J. Yokoyama,

Phys.Rev. D83, 103524 (2011), 1103.1740.
[25] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov,

Phys.Lett. B458, 209 (1999), hep-th/9904075.
[26] J. Garriga and V. F. Mukhanov, Phys.Lett. B458, 219

(1999), hep-th/9904176.
[27] D. Wands, Lect.Notes Phys. 738, 275 (2008), astro-

ph/0702187.
[28] A. R. Liddle, A. Mazumdar, and F. E. Schunck,

Phys.Rev. D58, 061301 (1998), astro-ph/9804177.
[29] S. A. Kim and A. R. Liddle, Phys.Rev. D74, 023513

(2006), astro-ph/0605604.
[30] Y.-S. Piao, Phys.Rev. D74, 047302 (2006), gr-

qc/0606034.
[31] R. Easther, J. Frazer, H. V. Peiris, and L. C. Price,

Phys.Rev.Lett. 112, 161302 (2014), 1312.4035.
[32] S. Dimopoulos, S. Kachru, J. McGreevy, and J. G.

Wacker, JCAP 0808, 003 (2008), hep-th/0507205.
[33] J. M. Maldacena, JHEP 0305, 013 (2003), astro-

ph/0210603.
[34] P. Ade et al. (Planck Collaboration) (2013), 1303.5076.
[35] P. Ade et al. (Planck Collaboration) (2013), 1303.5082.
[36] A. A. Starobinsky, Lect.Notes Phys. 246, 107 (1986).
[37] A. A. Starobinsky and J. Yokoyama, Phys.Rev. D50,

6357 (1994), astro-ph/9407016.
[38] J. Martin and M. Musso, Phys.Rev. D73, 043516

(2006), hep-th/0511214.
[39] W. H. Kinney and K. Freese (2014), 1404.4614.
[40] A. D. Linde, Mod.Phys.Lett. A1, 81 (1986).
[41] A. D. Linde, Phys.Lett. B175, 395 (1986).
[42] A. Goncharov, A. D. Linde, and V. F. Mukhanov,

Int.J.Mod.Phys. A2, 561 (1987).
[43] D. H. Lyth, Phys.Rev.Lett. 78, 1861 (1997), hep-

ph/9606387.

[44] S. Antusch and D. Nolde (2014), 1404.1821.
[45] D. Baumann and L. McAllister (2014), 1404.2601.
[46] J. Martin, Comptes Rendus Physique 13, 566 (2012),

1205.3365.
[47] M. S. Turner and L. M. Widrow, Phys.Rev. D37, 2743

(1988).
[48] B. Ratra, Astrophys.J. 391, L1 (1992).
[49] J. Martin and J. Yokoyama, JCAP 0801, 025 (2008),

0711.4307.
[50] W. Essey, S. Ando, and A. Kusenko, Astropart.Phys.

35, 135 (2011), 1012.5313.
[51] K. Dolag, M. Kachelriess, S. Ostapchenko, and

R. Tomas, Astrophys.J. 727, L4 (2011), 1009.1782.
[52] A. Neronov and I. Vovk, Science 328, 73 (2010),

1006.3504.
[53] F. Tavecchio, G. Ghisellini, L. Foschini, G. Bonnoli,

G. Ghirlanda, et al., Mon.Not.Roy.Astron.Soc. 406, L70
(2010), 1004.1329.

[54] V. Demozzi, V. Mukhanov, and H. Rubinstein, JCAP
0908, 025 (2009), 0907.1030.

[55] R. J. Ferreira, R. K. Jain, and M. S. Sloth, JCAP 1310,
004 (2013), 1305.7151.

[56] V. Demozzi and C. Ringeval, JCAP 1205, 009 (2012),
1202.3022.

[57] C. Ringeval, T. Suyama, and J. Yokoyama, JCAP 1309,
020 (2013), 1302.6013.

[58] T. Accadia, F. Acernese, P. Astone, G. Ballardin,
F. Barone, et al., Nuovo Cim. C034N06, 189 (2011).

[59] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy,
E. Berti, et al., GW Notes 6, 4 (2013), 1201.3621.

[60] S. Kawamura, M. Ando, N. Seto, S. Sato, T. Nakamura,
et al., Class.Quant.Grav. 28, 094011 (2011).

[61] M. Ando, S. Kawamura, N. Seto, S. Sato, T. Nakamura,
et al., Class.Quant.Grav. 27, 084010 (2010).

[62] J. Crowder and N. J. Cornish, Phys.Rev. D72, 083005
(2005), gr-qc/0506015.

[63] K. Nakayama, S. Saito, Y. Suwa, and J. Yokoyama,
JCAP 0806, 020 (2008), 0804.1827.

[64] S. Kuroyanagi, C. Ringeval, and T. Takahashi,
Phys.Rev. D87, 083502 (2013), 1301.1778.

[65] L. M. Krauss and F. Wilczek, Phys.Rev. D89, 047501
(2014), 1309.5343.

[66] A. Ashoorioon, P. B. Dev, and A. Mazumdar (2012),
1211.4678.

[67] V. F. Mukhanov, H. Feldman, and R. H. Brandenberger,
Phys.Rept. 215, 203 (1992).

[68] J. Martin, Lect.Notes Phys. 669, 199 (2005), hep-
th/0406011.

[69] J. Martin, Lect.Notes Phys. 738, 193 (2008), 0704.3540.
[70] J. M. Bardeen, Phys. Rev. D22, 1882 (1980).
[71] K. A. Malik and D. Wands, Phys.Rept. 475, 1 (2009),

0809.4944.
[72] A. Riotto, pp. 317–413 (2002), hep-ph/0210162.
[73] L. P. Grishchuk and Y. V. Sidorov, Phys. Rev. D42,

3413 (1990).
[74] J. Lesgourgues, D. Polarski, and A. A. Starobinsky,

Nucl. Phys. B497, 479 (1997), gr-qc/9611019.
[75] C. P. Burgess, R. Holman, and D. Hoover, Phys.Rev.

D77, 063534 (2008), astro-ph/0601646.
[76] C. Kiefer and D. Polarski, Adv.Sci.Lett. 2, 164 (2009),

0810.0087.
[77] D. Sudarsky, Int.J.Mod.Phys. D20, 509 (2011),

0906.0315.
[78] N. Pinto-Neto, G. Santos, and W. Struyve, Phys.Rev.



25

D85, 083506 (2012), 1110.1339.
[79] J. Martin, V. Vennin, and P. Peter, Phys.Rev. D86,

103524 (2012), 1207.2086.
[80] S. Das, K. Lochan, S. Sahu, and T. Singh, Phys.Rev.

D88, 085020 (2013), 1304.5094.
[81] S. Das, S. Sahu, S. Banerjee, and T. Singh (2014),

1404.5740.
[82] S. Galli, K. Benabed, F. Bouchet, J.-F. Cardoso, F. El-

sner, et al. (2014), 1403.5271.
[83] A. Lue, L.-M. Wang, and M. Kamionkowski,

Phys.Rev.Lett. 83, 1506 (1999), astro-ph/9812088.
[84] S. Alexander and J. Martin, Phys.Rev. D71, 063526

(2005), hep-th/0410230.
[85] C. R. Contaldi, J. Magueijo, and L. Smolin,

Phys.Rev.Lett. 101, 141101 (2008), 0806.3082.
[86] J. Martin, C. Ringeval, and V. Vennin (2013),

1303.3787.
[87] J. Martin (2013), 1312.3720.
[88] S. Dorn, E. Ramirez, K. E. Kunze, S. Hofmann, and

T. A. Enlin (2014), 1403.5067.
[89] R. Trotta, Mon.Not.Roy.Astron.Soc. 378, 72 (2007),

astro-ph/0504022.
[90] R. Trotta, Contemp.Phys. 49, 71 (2008), 0803.4089.
[91] M. Hobson, S. Bridle, and O. Lahav,

Mon.Not.Roy.Astron.Soc. 335, 377 (2002), astro-
ph/0203259.

[92] P. Marshall, N. Rajguru, and A. Slosar, Phys.Rev.D73,
067302 (2006), astro-ph/0412535.

[93] F. Feroz, B. C. Allanach, M. Hobson, S. S. AbdusSalam,
R. Trotta, et al., JHEP 0810, 064 (2008), 0807.4512.

[94] M. E. Cabrera, J. A. Casas, R. Ruiz de Austri, and
R. Trotta, Phys.Rev. D84, 015006 (2011), 1011.5935.

[95] F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri,
and R. Trotta, JHEP 1106, 042 (2011), 1101.3296.

[96] C. Arina, Phys.Rev. D86, 123527 (2012), 1210.4011.
[97] C. Arina (2013), 1310.5718.
[98] M. Kunz, R. Trotta, and D. Parkinson, Phys.Rev. D74,

023503 (2006), astro-ph/0602378.
[99] C. Arina, G. Bertone, and H. Silverwood, Phys.Rev.

D88, 013002 (2013), 1304.5119.
[100] P. Ade et al. (Planck Collaboration) (2013), 1303.5075.
[101] S. Hamimeche and A. Lewis, Phys.Rev. D77, 103013

(2008), 0801.0554.
[102] H. Chiang, P. Ade, D. Barkats, J. Battle, E. Bierman,

et al., Astrophys.J. 711, 1123 (2010), 0906.1181.
[103] P. Ade et al. (Planck Collaboration) (2013), 1303.5062.
[104] J. Dunkley et al. (WMAP), Astrophys. J. Suppl. 180,

306 (2009), 0803.0586.
[105] G. Hinshaw et al. (WMAP), Astrophys.J.Suppl. 208,

19 (2013), 1212.5226.
[106] C. Bennett et al. (WMAP), Astrophys.J.Suppl. 208, 20

(2013), 1212.5225.
[107] D. Barkats et al. (BICEP1 Collaboration) (2013),

1310.1422.
[108] A. Lewis and S. Bridle, Phys.Rev. D66, 103511 (2002),

astro-ph/0205436.
[109] A. Lewis, A. Challinor, and A. Lasenby, Astrophys.J.

538, 473 (2000), astro-ph/9911177.
[110] M. S. Turner, Phys. Rev. D28, 1243 (1983).
[111] J. Martin and C. Ringeval, JCAP 0608, 009 (2006),

astro-ph/0605367.
[112] C. Ringeval, Lect. Notes Phys. 738, 243 (2008), astro-

ph/0703486.

[113] J. Martin and C. Ringeval, Phys.Rev. D82, 023511
(2010), 1004.5525.

[114] R. Easther and H. V. Peiris, Phys.Rev. D85, 103533
(2012), 1112.0326.

[115] J. Martin, C. Ringeval, and R. Trotta, Phys.Rev. D83,
063524 (2011), 1009.4157.

[116] C. Ringeval, Mon. Not. Roy. Astron. Soc. 439, 3253
(2014), 1312.2347.

[117] E. D. Stewart and D. H. Lyth, Phys.Lett. B302, 171
(1993), gr-qc/9302019.

[118] J.-O. Gong and E. D. Stewart, Phys.Lett. B510, 1
(2001), astro-ph/0101225.

[119] J. Martin and D. J. Schwarz, Phys.Rev. D67, 083512
(2003), astro-ph/0210090.

[120] S. Habib, K. Heitmann, G. Jungman, and C. Molina-
Paris, Phys.Rev.Lett. 89, 281301 (2002), astro-
ph/0208443.

[121] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Gar-
cia, Phys.Lett. B517, 243 (2001), astro-ph/0106020.

[122] S. M. Leach, A. R. Liddle, J. Martin, and D. J. Schwarz,
Phys.Rev. D66, 023515 (2002), astro-ph/0202094.

[123] R. Casadio, F. Finelli, M. Luzzi, and G. Venturi, Phys.
Rev. D71, 043517 (2005), gr-qc/0410092.

[124] R. Casadio, F. Finelli, M. Luzzi, and G. Venturi, Phys.
Lett. B625, 1 (2005), gr-qc/0506043.

[125] R. Casadio, F. Finelli, M. Luzzi, and G. Venturi, Phys.
Rev. D72, 103516 (2005), gr-qc/0510103.

[126] L. Lorenz, J. Martin, and C. Ringeval, Phys.Rev. D78,
083513 (2008), 0807.3037.

[127] J. Martin, C. Ringeval, and V. Vennin, JCAP 1306,
021 (2013), 1303.2120.

[128] J. Beltran Jimenez, M. Musso, and C. Ringeval,
Phys.Rev. D88, 043524 (2013), 1303.2788.

[129] F. Feroz and M. Hobson, Mon.Not.Roy.Astron.Soc.
384, 449 (2008), 0704.3704.

[130] F. Feroz, M. Hobson, and M. Bridges,
Mon.Not.Roy.Astron.Soc. 398, 1601 (2009), 0809.3437.

[131] B. Audren, D. G. Figueroa, and T. Tram (2014),
1405.1390.

[132] R. K. Jain, P. Chingangbam, L. Sriramkumar,
and T. Souradeep, Phys.Rev. D82, 023509 (2010),
0904.2518.

[133] C. R. Contaldi, M. Peloso, and L. Sorbo (2014),
1403.4596.

[134] D. K. Hazra, A. Shafieloo, G. F. Smoot, and A. A.
Starobinsky (2014), 1404.0360.

[135] D. K. Hazra, A. Shafieloo, G. F. Smoot, and A. A.
Starobinsky (2014), 1403.7786.

[136] K. N. Abazajian, G. Aslanyan, R. Easther, and L. C.
Price (2014), 1403.5922.

[137] D. J. Schwarz and C. A. Terrero-Escalante, JCAP 0408,
003 (2004), hep-ph/0403129.

[138] X. Calmet and V. Sanz (2014), 1403.5100.
[139] J. Ellis, M. A. G. Garcia, D. V. Nanopoulos, and K. A.

Olive (2014), 1403.7518.
[140] L. Kofman and A. D. Linde, JHEP 0207, 004 (2002),

hep-th/0205121.
[141] R. H. Brandenberger, A. Nayeri, and S. P. Patil (2014),

1403.4927.
[142] J. Caligiuri and A. Kosowsky (2014), 1403.5324.
[143] S. Dodelson (2014), 1403.6310.





J
C
A
P
0
6
(
2
0
1
3
)
0
2
1

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

K-inflationary power spectra at second
order
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1 Introduction

Inflation [1, 2] (for reviews, see refs. [3–7]), which is currently the leading paradigm to describe
the physical conditions that prevailed in the very early Universe, is now entering a new phase.
With the advent of new high-accuracy cosmological data [8–21], among which are the Planck
data [22], one can hope to obtain very tight constraints on the inflationary theory and even to
pin-point the correct model of inflation. In order to achieve this ambitious goal, one must be
able to compare the inflationary predictions to the data. The problem is that the inflationary
landscape is very large [23] and that there is a whole zoo of different models making different
predictions. Moreover, for many of these models, predictions can only be worked out by
numerical methods. It is therefore not obvious how to extract model-independent constraints
on the inflationary scenario.

How then should we proceed? Clearly, one can approach the problem step by step
and start with the simplest models. In other words, it seems reasonable to consider more
complicated models only if the data force us to do so and tell us that the simplest models are
not enough. Then comes the question of identifying these models. One can convincingly argue
that slow-roll Single Field with a Minimal Kinetic term (SFMK) scenarios are the simplest
inflationary models since they are just characterized by one function, the potential V (φ). In
order to establish their observational consequences, a possible approach is to scan models one
by one and calculate the predictions exactly [24–29], most of the time numerically [30, 31].1

This leads to an exact mapping of the inflationary landscape within this class of scenarios
but, given that the number of SFMK models remains large, it would represent a huge effort.
Another approach consists in developing a scheme of approximation allowing us to derive
analytical, or semi-analytical, predictions. Although this is not always possible, such a
method is available for the SFMK models and one can explicitly write a functional form
for the primordial power spectrum of the cosmological perturbations [32], and even their
higher order correlation functions [33–38].

In fact, one can enlarge the class of what we consider as the simplest models of inflation
and assume that these ones are k-inflationary scenarios. K-inflation [39, 40] encompasses
standard inflation and is more general since not only the potential but also the kinetic term

1See for instance http://theory.physics.unige.ch/~ringeval/fieldinf.html.

– 1 –



J
C
A
P
0
6
(
2
0
1
3
)
0
2
1

is now a free function. At the perturbation level, the action for the comoving curvature
perturbation has a varying speed of sound and this describes all possible quadratic terms
within the effective field theory formalism [41, 42]. But, more interestingly, and despite
the fact that this class of scenarios is more complicated to analyze, a properly generalized
slow-roll approximation can still be used.

1.1 State-of-the-art

At this stage, it is interesting to recall the present status of the techniques that enable us to
calculate the two-point correlation function for the primordial cosmological perturbations.

The spectrum of density perturbations during inflation was computed for the first time
in refs. [43, 44] and for the gravity waves in ref. [45]. Then, in ref. [46], it was realized
that it can be evaluated exactly in the case of power-law inflation. The first calculation at
first order in the so-called “horizon flow parameters” and using the slow-roll approximation
was performed in ref. [32]. This calculation was done for the SFMK models. This is a
fundamental result since it allows to connect the deviations from scale invariance to the
microphysics of inflation. This result was re-derived using the Green function methods in
ref. [47], using the Wentzel-Kramers-Brillouin (WKB) method in ref. [48] and using the
uniform approximation in refs. [49, 50]. In fact, the Green function method of ref. [47] made
possible the first determination of the scalar power spectrum at second order in the “horizon
flow parameters”. Indeed, at second order, the mode equation describing the evolution of
the cosmological perturbations can no longer be solved exactly, hence the need for a new
method of approximation. Higher order corrections were also obtained in ref. [51]. The first
derivation of the tensor power spectrum at second order using the Green function method was
presented in ref. [52]. In refs. [53, 54], it was also shown how to improve the WKB method
by adding more adiabatic terms. This improved WKB method has allowed a re-derivation of
the scalar and tensor power spectra at second order and confirmed the results of the Green
function approach.

After the advent of k-inflation, various attempts have been made to derive the corre-
sponding power spectra. The problem is complicated due to the fact that density pertur-
bations now propagate with a time-dependent speed (the speed of sound). In ref. [55], the
Green function method has been used but with some extra-assumptions on the behavior of
the sound speed. The question was also considered in refs. [56, 57] but the results obtained
in those articles were not totally correct since the sound speed was (implicitly) assumed to
be constant which is not the case in most of the k-inflationary scenarios (this result was also
used afterward in ref. [58]). These works also missed the influence of the sound speed in the
tensor power spectrum due to the shift between the scalar and tensor pivot scales [59, 60].
The first fully consistent result for the k-inflationary scalar power spectrum was presented in
ref. [61]. The latter has been re-derived using the uniform approximation in ref. [59] together
with the first fully consistent calculation of the tensor power spectrum at the same pivot
scale. These spectra were compared to Cosmic Microwave Background Anisotropy (CMB)
data first in ref. [62]. However, all of these calculations have been derived at first order only
and no complete result at second order exists in the literature.

The main purpose of this article is to close this gap and to derive the slow-roll power
spectra for the density and tensor perturbations in k-inflation, at second order in the Hubble
and sound flow functions.2 This calculation is interesting for two reasons. Firstly, the second
order result is available for SFMK models and, for completeness, it should also be done for the

2Conforming to the modern usage, we will prefer the denomination of “Hubble flow functions” and “sound
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k-inflationary models. Secondly, according to the ”blue book” [63], Planck will measure the
spectral index with accuracy ∆nS ' 0.005. Even if one expects the Hubble flow parameters
to be less than 10−2, second order corrections will be of order 10−4, that is to say relevant
for high-accuracy measurements of nS and/or estimation of the corresponding error bars.
Moreover, having at hand the second order terms allows to marginalize over, a procedure
that should always be carried on to get robust Bayesian constraints on the first order terms.

Before moving to the calculation, let us briefly recall some well-known results about
k-inflation at the background and perturbation levels.

1.2 K-inflation in brief

K-inflation corresponds to a class of models where gravity is described by General Relativity
and where the action for the inflaton field is an arbitrary function, P (φ, X), the quantity X
being defined by X ⌘ −(1/2)gµ⌫@µφ@⌫φ. This action can be written as

S =
M2

Pl

2

Z

d4x
p
−g



R+
2

M2
Pl

P (X,φ)

]

, (1.1)

where MPl is the reduced Planck mass. In fact, in order to satisfy the requirements that the
Hamiltonian is bounded from below and that the equations of motion remain hyperbolic, the
function P (X,φ) must satisfy the following two conditions [64]

@P

@X
> 0, 2X

@2P

@X2
+
@P

@X
> 0. (1.2)

The general action (1.1) includes standard inflation for which P = X − V (φ), where V (φ) is
the inflaton potential. This class of model is in fact characterized by an arbitrary function of
φ only. K-inflation also includes the Dirac-Born-Infeld (DBI) class of inflationary models [65].
For those, one has P = −T (φ)

p

1− 2X/T (φ) + T (φ) − V (φ). This kind of action typically
appears in brane inflation and T (φ) is interpreted as a warping function representing the
bulk geometry in which various branes can move. It is of course possible to find even more
complicated examples but, in the following, we will not need to specify explicitly the function
P (X,φ).

As in standard inflation, the dynamics of the background space-time can be described
by the Hubble flow functions ✏n defined by

✏n+1 =
d ln ✏n
dN

, ✏0 ⌘
Hini

H
, (1.3)

where N ⌘ ln(a/aini) is the number of e-folds. Inflation occurs if ✏1 < 1 and the slow-roll
approximation assumes that all these parameters are small during inflation ✏n ⌧ 1. Let
us notice that it is difficult to have an inflationary model without such a condition because
otherwise one would obtain a deviation from scale invariance which would be too strong to
be compatible with the cosmological data (see however ref. [42]).

At the perturbed level, we have density perturbations and gravity waves. As usual, rota-
tional perturbations are unimportant since they quickly decay. Obviously, the tensorial sector
of the theory is standard since the gravitational part of (1.1) is the ordinary Einstein-Hilbert

flow functions” to refer to the original, but confusing, appellation “horizon flow parameters”. See section 1.2
for the definition of the Hubble and sound flow functions.
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action. As a consequence, the equation of motion for the amplitude µk of gravity waves (re-
scaled by a factor 1/a for convenience, where a is the Friedman-Lemaitre-Robertson-Walker
scale factor) takes the usual form, namely

µ00
k +

⇥

k2 − UT(⌘)
⇤

µk = 0, (1.4)

where ⌘ is the conformal time and a prime denotes a derivative with respect to ⌘. The
effective potential for the tensorial modes can be written as UT = a2H2 (2− ✏1), i.e. only
depends on the first Hubble flow function (H = a0/a2 is the Hubble parameter).

For the density perturbations, the situation is slightly more complicated. One can
show that the comoving curvature perturbation in Fourier space, ⇣k, can be written in terms
of a modified Mukhanov-Sasaki variable vk by means of the following expression, vk =
(a
p
✏1)⇣k/cs (in Planck units) where the quantity cs is defined by the following equation

c2s ⌘
P,X

P,X + 2XP,XX
, (1.5)

a subscript “, X” denoting differentiation with respect to X. This quantity can be interpreted
as the “sound speed” of density fluctuations. Notice that, because of the two consistency
relations (1.2), we have c2s > 0. The fact that cs is the sound speed can be most easily seen
if one writes down the equation of motion of the Mukhanov-Sasaki variable. It reads

v00k +
⇥

c2s (⌘)k
2 − US(⌘)

⇤

vk = 0. (1.6)

This is similar to the equation of motion of a parametric oscillator. The quantity US is the
effective potential for the density perturbations and is a function of time only. As expected,
c2s appears in front of the k2 term, which is nothing but a gradient term in Fourier space
and this confirms its interpretation as a time dependent sound speed. Since cs(⌘) is not
known a priori, one can introduce a second hierarchy of flow functions in order to describe
its behavior. Therefore, we define the sound flow functions δn’s by

δn+1 ⌘
d ln δn
dN

, δ0 ⌘
csini
cs

. (1.7)

Consistent models of inflation are obtained if δn ⌧ 1, that is to say if the sound speed does not
change too abruptly [59, 61]. A remark about terminology is in order at this point. In terms
of the Hubble and sound flow functions, the effective potential for the density perturbations
can be expressed as

US = a2H2



2− ✏1 +
3

2
✏2 +

1

4
✏22 −

1

2
✏1✏2 +

1

2
✏2✏3 + (3− ✏1 + ✏2) δ1 + δ21 + δ1δ2

]

. (1.8)

The quantity US depends on the ✏n’s up to ✏3 only and on the δn’s up to δ2 only. Despite
this last property, it is important to remember that the above expression of US is exact and
that no approximation has been made at this stage.

The cosmological observables we are interested in are the two point correlation functions
of the fluctuations, i.e. in Fourier space, the power spectra of both gravity waves and density
perturbations:

Ph =
2k3

⇡2

∣

∣

∣

µk

a

∣

∣

∣

2
, P⇣ =

k3

2⇡2
|⇣k|2 =

k3

4⇡2
c2s |vk|2
M2

Pla2✏1
. (1.9)
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They have to be evaluated at the end of inflation and on large scales. After the inflationary
era, and for single field models, these power spectra remain constant and can be directly
used to compute various observable quantities such as the CMB anisotropies or the matter
power spectrum. Our goal is now to integrate the equations of motion of µk and vk in order
to explicitly evaluate the above power spectra.

This article is organized as follows. In the next section, after having very quickly
reviewed how the uniform approximation can be used in the cosmological context, we apply
it to the calculation of the scalar and tensor primordial power spectra. Our results are
discussed section 3, in which we compare them, in the appropriate limits, with the existing
literature and we present our conclusions.

2 K-inflationary power spectra

2.1 The uniform approximation

In this section, we use the uniform approximation to calculate the power spectrum of the
density fluctuations in k-inflation, at second order in the Hubble and sound flow functions. We
have seen in the previous section that the density perturbations in k-inflation propagate with a
time-dependent velocity cs(⌘). As the mode equation can no longer be solved exactly in terms
of Bessel functions (even at first order for the sound flow functions), this prompts for the use
of new techniques. Here, we choose to work with the well-suited uniform approximation [50].
The idea is to rewrite the effective potential according to US = (⌫2 − 1/4)/⌘2, an equation
which has to be understood as the definition of the function ⌫(⌘). Then, we introduce two
new functions

g(⌘) ⌘
⌫2

⌘2
− c2sk

2, f(⌘) ⌘
|⌘ − ⌘⇤|
⌘ − ⌘⇤

∣

∣

∣

∣

3

2

Z ⌘

⌘⇤

d⌧
p

g(⌧)

∣

∣

∣

∣

2/3

, (2.1)

where the turning point time ⌘⇤(k) is defined by the condition g(⌘⇤) = 0, that is to say ⌘⇤ ⌘
−⌫(⌘⇤)/[kcs(⌘⇤)]. According to the uniform approximation, the Mukhanov-Sasaki variable
can then be expressed as

vk(⌘) = Ak

✓

f

g

◆1/4

Ai (f) +Bk

✓

f

g

◆1/4

Bi (f) , (2.2)

where the two constants Ak and Bk are fixed by the choice of the initial conditions and where
Ai and Bi denotes the Airy function of the first and second kind respectively. Since one needs
to compute vk on large scales, only the asymptotic behavior of the Airy functions is needed
and one arrives at a simpler formula, namely

lim
csk⌘!0

vk(⌘) =
Bk

g1/4⇡1/2
exp

✓

2

3
f3/2

◆

. (2.3)

Here, the function g(⌘) should be taken in its asymptotic limit, i.e. g1/2 ' −⌫(⌘)/⌘. Inserting
the last equation for vk(⌘) into the formula (1.9), one obtains the following expression for P⇣

P⇣ = −
k3 |Bk|2
4⇡3M2

Pl

⌘c2s
a2⌫✏1

e2Ψ, (2.4)

where we have defined Ψ ⌘ 2f3/2/3. One verifies that P⇣ is positive definite since the
conformal time is negative during inflation. Therefore, the only thing which remains to be
done is to express the combination c2s/(a

2⌫✏1) and the quantity Ψ at second order in the
Hubble and sound flow functions.
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2.2 Hubble and sound flow expansion

The first step of the calculation consists in determining the functions a(⌘), cs(⌘), ⌫(⌘) and
✏1(⌘) at second order in the Hubble and sound flow functions. Here, we first briefly explain
the method in the case of the scale factor. By definition, the conformal time is given by
⌘ = −

R

dt/a(t), where t is the cosmic time. By successive integrations by parts, one can
re-write ⌘ as

⌘ =
1

H

⇢

1 + ✏1 + ✏21 + ✏1✏2 − aH

Z

1

a

d

da



1

H

(

✏21 + ✏1✏2
)

]

da

}

, (2.5)

where H ⌘ a0/a is the conformal Hubble parameter. It is important to stress that this equa-
tion is exact. In the last term, the integrand is third order in the ✏i. Indeed, differentiating
the term 1/H produces a ✏1 which, multiplied with (✏21+✏1✏2), is third order. We also have to
differentiate expressions quadratic in the Hubble flow functions but, since d✏n/dN = ✏n✏n+1,
this also gives third order quantities. Therefore, the last term is O

(

✏3
)

and can be dropped
for a second order calculation. In other words

H = −
1

⌘

(

1 + ✏1 + ✏21 + ✏1✏2
)

+O
(

✏3
)

. (2.6)

In fact, this equation is not exactly what we want yet because, although the second order
terms ✏21 and ✏1✏2 can be considered as constant in time,3 this is not the case for the term
✏1 which is first order. In order to render explicit the time-dependence, let us notice that
the equations defining the Hubble-flow functions can also be written as d✏n/d⌘ = H✏n✏n+1.
Given that ✏n✏n+1 is already a second-order term, we can just replace H with −1/⌘ in this
expression and one gets ✏n = ✏n⇤ − ✏n⇤✏n+1⇤ ln (⌘/⌘⇤) + O

(

✏3
)

, where we have chosen the
integration constant such that this approximation is accurate around the time ⌘⇤ of the
turning point. Inserting this expression into eq. (2.6) gives

H = −
1

⌘

(

1 + ✏1⇤ + ✏21⇤ + ✏1⇤✏2⇤
)

+ ✏1⇤✏2⇤
1

⌘
ln

✓

⌘

⌘⇤

◆

+O
(

✏3
)

, (2.7)

and, this time, the ⌘-dependence of H is explicit. This equation can be further integrated
leading to an expression for the e-folds number N , namely

N −N⇤ = ln

✓

a

a⇤

◆

' −
(

1 + ✏1⇤ + ✏21⇤ + ✏1⇤✏2⇤
)

ln

✓

⌘

⌘⇤

◆

+
1

2
✏1⇤✏2⇤ ln

2

✓

⌘

⌘⇤

◆

. (2.8)

Finally, by exponentiation the above formula and by expressing the constant a⇤⌘⇤ in terms
of 1/H⇤, one obtains the following equation for the scale factor itself

a(⌘) ' −
1

H⇤⌘



1 + ✏1⇤ + ✏21⇤ + ✏1⇤✏2⇤ −
(

✏1⇤ + 2✏21⇤ + ✏1⇤✏2⇤
)

ln

✓

⌘

⌘⇤

◆

+
1

2

(

✏21⇤ + ✏1⇤✏2⇤
)

ln2
✓

⌘

⌘⇤

◆]

. (2.9)

We have reached our first goal, namely find an expression of a(⌘) at second order in the
Hubble flow parameters.

3Their derivative is indeed third order, i.e. zero at the order at which we work.
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Let us now discuss how the expression of ✏1(⌘) can be obtained. Let us notice that since
✏1 is appearing in eq. (2.4), we need to go to third order since a term 1/✏1⇤ will remain in
front of the final expression of P⇣ . This can however be obtained using the above formulas.
Taylor expanding ✏1 around N⇤ one has

✏1 = ✏1⇤ +
d✏1
dN

∣

∣

∣

∣

⇤

(N −N⇤) +
1

2

d2✏1
dN2

∣

∣

∣

∣

⇤

(N −N⇤)
2 + · · · (2.10)

Using the fact that d✏1/dN = ✏1✏2, d2✏1/dN
2 = ✏1✏

2
2 + ✏1✏2✏3 and the expression of the

number of e-folds at first order [see eq. (2.8) above], one arrives at

✏1 = ✏1⇤



1− ✏2⇤ (1 + ✏1⇤) ln

✓

⌘

⌘⇤

◆

+
1

2

(

✏22⇤ + ✏2⇤✏3⇤
)

ln2
✓

⌘

⌘⇤

◆]

+O
(

✏4
)

. (2.11)

The very same method can be used to determine the second order expression of the sound
speed. Taylor expanding cs in e-fold gives

c2s = c2s⇤ +
dc2s
dN

∣

∣

∣

∣

⇤

(N −N⇤) +
1

2

d2c2s
dN2

∣

∣

∣

∣

⇤

(N −N⇤)
2 + · · · , (2.12)

and from the sound flow hierarchy one has dc2s/dN = −2c2sδ1, d
2c2s/dN

2 = −2c2sδ1δ2+4c2sδ
2
1 .

Together with the expression of N −N⇤, it follows that

c2s (⌘) = c2s⇤ + 2c2s⇤(δ1⇤ + δ1⇤✏1⇤) ln

✓

⌘

⌘⇤

◆

− c2s⇤
(

δ1⇤δ2⇤ − 2δ21⇤
)

ln2
✓

⌘

⌘⇤

◆

+O
(

✏3, δ3
)

. (2.13)

As expected the coefficients of the logarithms are expressed in terms of the parameters δ1
and δ2.

Finally, only the expression for ⌫(⌘) remains to be found. By definition, one has ⌫2 =
1/4 + ⌘2US(⌘), i.e. Taylor expanding everything from the previous formulas, one gets

⌫(⌘) = ⌫⇤ −
✓

✏1⇤✏2⇤ +
1

2
✏2⇤✏3⇤ + δ1⇤δ2⇤

◆

ln

✓

⌘

⌘⇤

◆

+O
(

✏3, δ3
)

, (2.14)

with

⌫⇤ ⌘
3

2
+ ✏1⇤ +

1

2
✏2⇤ + δ1⇤ + ✏21⇤ +

11

6
✏1⇤✏2⇤ +

1

6
✏2⇤✏3⇤ + ✏1⇤δ1⇤ +

1

3
δ1⇤δ2⇤. (2.15)

2.3 Comoving curvature power spectrum

We have now determined explicitly the four functions appearing in the expression of the
power spectrum P⇣ , see eq. (2.4). It is straightforward, although lengthy, to calculate, at
second order, the relevant combination c2s/(a

2⌫✏1) appearing in that expression. Moreover,
we must also find Ψ. Upon using the expression of the function g(⌘), one gets

Ψ =

Z ⌘

⌘⇤

d⌧

r

⌫2(⌧)

⌧2
− c2s (⌧)k

2 . (2.16)
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Inserting eqs. (2.13) and (2.14) into the previous formula and expanding everything to second
order, the integrand in eq. (2.16) reads
r

⌫2(⌧)

⌧2
− c2s (⌧)k

2 = −
⌫⇤

⌧

✓

1−
c2s⇤k

2⌧2

⌫2⇤

◆1/2

+
3

2⌫⇤

✓

✏1⇤✏2⇤ +
1

2
✏2⇤✏3⇤ + δ1⇤δ2⇤

◆

1

⌧

✓

1−
c2s⇤k

2⌧2

⌫2⇤

◆−1/2

ln

✓

⌧

⌘⇤

◆

+
c2s⇤
⌫⇤

(δ1⇤ + ✏1⇤δ1⇤)
1

⌧

✓

1−
c2s⇤k

2⌧2

⌫2⇤

◆−1/2

k2⌧2 ln

✓

⌧

⌘⇤

◆

−
c2s⇤
2⌫⇤

(

δ1⇤δ2⇤ − 2δ21⇤
) 1

⌧

✓

1−
c2s⇤k

2⌧2

⌫2⇤

◆−1/2

k2⌧2 ln2
✓

⌧

⌘⇤

◆

+
c4s⇤
2⌫3⇤

(δ1⇤ + ✏1⇤δ1⇤)
2 1

⌧

✓

1−
c2s⇤k

2⌧2

⌫2⇤

◆−3/2

k4⌧4 ln2
✓

⌧

⌘⇤

◆

. (2.17)

Therefore, we have five different integrals to calculate in order to evaluate the term Ψ. In
the following, we write

Ψ =
i=5
X

i=1

Ii, (2.18)

and calculate each of the Ii separately. Let us also notice that the way eq. (2.17) has been
written is not yet fully consistent since all the terms have to be expanded to second-order.
For instance, terms like (δ1⇤ + ✏1⇤δ1⇤)/⌫⇤ (in front of the second integral I2) should clearly
be expanded further on in order to keep only second order expressions. For the moment,
however, we will be keeping them this way in order to maintain clarity. Only at the end of
the calculation these terms will be expanded.

Let us now calculate the five integrals. Defining w ⌘ cs⇤k⌘/⌫⇤, which implies that
w⇤ ⌘ cs⇤k⌘⇤/⌫⇤ = −1, the first integral, I1, can be calculated exactly and reads

I1 = −⌫⇤
h

(

1− u2
)1/2

+ ln |u|− ln
∣

∣

∣
1 +

(

1− u2
)1/2

∣

∣

∣

i

∣

∣

∣

∣

u=w

u=w⇤

. (2.19)

On large scales, w approaches zero and one obtains

lim
w!0

I1 = −⌫⇤ (1 + ln |w|− ln 2) . (2.20)

The second integral is slightly more complicated but can also be carried out exactly. The
result can be expressed as

I2 =
3

16⌫⇤

✓

✏1⇤✏2⇤ +
1

2
✏2⇤✏3⇤ + δ1⇤δ2⇤

◆

"

4 ln2 |u|− 8 ln |u| ln
∣

∣

∣

∣

1

2

⇣

1 +
p

1− u2
⌘

∣

∣

∣

∣

+2 ln2
∣

∣

∣

∣

1

2

⇣

1 +
p

1− u2
⌘

∣

∣

∣

∣

− 4Li2

 

1

2
−

p
1− u2

2

!#∣

∣

∣

∣

∣

u=w

u=w⇤

, (2.21)

where Li2 denotes the Polygamma function of order two, or dilogarithm function [66]. On
large scales the previous expression takes the form

lim
w!0

I2 =
3

16⌫⇤

✓

✏1⇤✏2⇤ +
1

2
✏2⇤✏3⇤ + δ1⇤δ2⇤

◆✓

4 ln2 |w|− 4 ln2 2 +
⇡2

3

◆

, (2.22)
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where we have used Li2(0) = 0 and Li2(1/2) = ⇡2/12 − (ln2 2)/2. We notice that I1 and I2
are logarithmically divergent in the limit w ! 0. We will see that this is not a problem and
that those terms cancel out in the final expression of P⇣ . This is expected since we know
that the power spectrum remains constant on larges scales, and as such an exact cancellation
of those terms constitutes a consistency check of the method. On the contrary, the integrals
I3, I4 and I5 are convergent and can be directly computed. They read

I3 = ⌫⇤ (δ1⇤ + ✏1⇤δ1⇤) (1− ln 2) , I4 = −
⌫⇤

2

(

δ1⇤δ2⇤ − 2δ21⇤
)

✓

⇡2

12
− 2 + 2 ln 2− ln2 2

◆

,

I5 =
⌫⇤

2
(δ1⇤ + ✏1⇤δ1⇤)

2

✓

2−
⇡2

6
− 2 ln 2 + 2 ln2 2

◆

. (2.23)

This completes our calculation of the quantity Ψ and we can now evaluate the expres-
sion (2.4). Collecting the expressions of a, ✏1, cs and ⌫ established previously, one gets
c2s/(a

2⌫✏1) that has to be combined with e2Ψ using the above integrals. After some lengthy
but straightforward manipulations, one obtains

P⇣ =
H2

⇤

(

18e−3
)

8⇡2M2
Pl✏1⇤cs⇤

"

1 +

✓

−
8

3
+ 2 ln 2

◆

✏1⇤ +

✓

−
1

3
+ ln 2

◆

✏2⇤ +

✓

7

3
− ln 2

◆

δ1⇤

+

✓

23

18
−

4

3
ln 2 +

1

2
ln2 2

◆

δ21⇤ +

✓

25

9
−
⇡2

24
−

7

3
ln 2 +

1

2
ln2 2

◆

δ1⇤δ2⇤

+

✓

−
25

9
+

13

3
ln 2− 2 ln2 2

◆

✏1⇤δ1⇤ +

✓

13

9
−

10

3
ln 2 + 2 ln2 2

◆

✏21⇤

+

✓

−
2

9
+

5

3
ln 2− ln2 2

◆

✏2⇤δ1⇤ +

✓

−
25

9
+
⇡2

12
+

1

3
ln 2 + ln2 2

◆

✏1⇤✏2⇤

+

✓

−
1

18
−

1

3
ln 2 +

1

2
ln2 2

◆

✏22⇤ +

✓

−
1

9
+
⇡2

24
+

1

3
ln 2−

1

2
ln2 2

◆

✏2⇤✏3⇤

#

.

(2.24)

Several remarks are in order at this stage. Firstly, in the above calculation, we have
assumed that the initial state of the perturbations is the Bunch-Davies vacuum. This implies
that |Bk|2 = ⇡/2. Notice that, in the context of k-inflation, this is a non-trivial choice
since, as discussed in ref. [59], the time dependence of the sound speed could be such that
the adiabatic regime is not available anymore.4 In this paper, we assume that this does
not occur and that the function cs(⌘) is initially smooth enough. Secondly, as announced
above, all the time-dependent terms ln |w| have canceled out and the expression of P⇣ is
time-independent. Thirdly, eq. (2.24) should be compared with eq. (51) of ref. [59]. These
two expressions coincide at first order, which is another indication that the above formula for
P⇣ is correct. Fourthly, in the overall amplitude, we notice the presence of the factor 18 e−3.
As explained in refs. [48] and [59], this is typical in a approximation scheme based on the
WKB method or its extension (such as the uniform approximation). This leads to a ' 10%
error in the estimation of the amplitude. In refs. [53, 54], it was shown that, by taking into
account higher order terms in the adiabatic expansion, this shortcomings can easily be fixed.
In that case, one obtains a new overall coefficient which dramatically reduces the error in the

4Let us notice however that one can still re-define a new time variable to absorb the cs-dependence in the
mode equation [42]. In terms of that new time variable, one could always set Bunch-Davies initial conditions
for the scalar, but this would not be compatible with those of the tensor modes.
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amplitude. As a consequence, we do not really need to worry about the term 18 e−3 and, for
practical applications, one can simply renormalize it to one.

Finally, the above expression of P⇣ depends on ⌘⇤ which depends on k. Our goal is now
to make this hidden scale dependence explicit and to re-express the power spectrum at a
unique pivot scale defined by

k⇧⌘⇧ ⌘ −
1

cs⇧
. (2.25)

This is achieved by re-writing all the quantities appearing in the power spectrum at a
single time, ⌘ = ⌘⇧. Technically, this means that, say, ✏1⇤ should be written as ✏1⇤ =
✏1⇧ − ✏1⇧✏2⇧ ln (⌘⇧/⌘⇤) + O

(

✏3
)

and that the dependence in ⌘⇧/⌘⇤ should be replaced with a
dependence in k⇧/k. This is performed by making use of the relation between the time ⌘⇧
and ⌘⇤:

⌘⇤

⌘⇧
=

k⇧

k
⌫⇤

cs⇧
cs⇤

. (2.26)

Working out the previous equation at second order, one obtains that

ln

✓

⌘⇤

⌘⇧

◆

=

✓

ln
3

2
+ ln

k⇧

k

◆✓

1− δ1⇧ − ✏1⇧δ1⇧ −
2

3
✏1⇧✏2⇧ −

1

3
✏2⇧✏3⇧ −

2

3
δ1⇧δ2⇧ + δ21⇧

◆

+
2

3
✏1⇧ +

1

3
✏2⇧ +

2

3
δ1⇧ + ✏1⇧✏2⇧ −

4

9
✏1⇧δ1⇧ +

1

9
✏2⇧✏3⇧ +

2

9
δ1⇧δ2⇧ +

4

9
✏21⇧ −

1

18
✏22⇧

−
8

9
δ21⇧ −

5

9
✏2⇧δ1⇧ +

1

2
δ1⇧δ2⇧ ln

2 3

2
+ δ1⇧δ2⇧ ln

3

2
ln

k⇧

k
+

1

2
δ1⇧δ2⇧ ln

2 k⇧

k
. (2.27)

This finally leads to one of the two main new results of this paper, namely the expression
of the scalar power spectrum in k-inflation at second order in the Hubble and sound flow
functions

P⇣ =
H2

⇧

(

18 e−3
)

8⇡2M2
Pl✏1⇧cs⇧

(

1− 2(1 +D)✏1⇧ −D✏2⇧ + (2 +D)δ1⇧ +

✓

2

9
+D +

D2

2

◆

δ21⇧

+

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ2⇧ +

✓

−
8

9
− 3D − 2D2

◆

✏1⇧δ1⇧ +

✓

17

9
+ 2D + 2D2

◆

✏21⇧

+

✓

5

9
−D −D2

◆

✏2⇧δ1⇧ +

✓

−
11

9
−D +D2 +

⇡2

12

◆

✏1⇧✏2⇧ +

✓

2

9
+

D2

2

◆

✏22⇧

+

✓

⇡2

24
−

1

18
−

D2

2

◆

✏2⇧✏3⇧ +
⇥

−2✏1⇧ − ✏2⇧ + δ1⇧ + (1 +D)δ21⇧

+ (2 +D)δ1⇧δ2⇧ − (3 + 4D)✏1⇧δ1⇧ + 2(1 + 2D)✏21⇧ − (1 + 2D)✏2⇧δ1⇧ − (1− 2D)✏1⇧✏2⇧

+D✏22⇧ −D✏2⇧✏3⇧
⇤

ln
k

k⇧

+

✓

2✏21⇧ + ✏1⇧✏2⇧ +
1

2
✏22⇧ −

1

2
✏2⇧✏3⇧ +

1

2
δ21⇧ +

1

2
δ1⇧δ2⇧

− 2✏1⇧δ1⇧ − ✏2⇧δ1⇧

◆

ln2
k

k⇧

)

, (2.28)

where we have introduced the quantity D defined by D ⌘ 1/3− ln 3. One easily checks that,
at first order, this expression exactly coincides with eq. (53) of ref. [59]. More details in the
comparison of the above formula with the existing literature can be found in section 3.
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Using the method of ref. [68], one can also deduce the expression of the scalar spectral
index which reads

nS − 1 = −2✏1⇧ − ✏2⇧ + δ1⇧ − 2✏21⇧ − (2D + 3) ✏1⇧✏2⇧ + 3✏1⇧δ1⇧ + ✏2⇧δ1⇧ −D✏2⇧✏3⇧

− δ21⇧ + (D + 2) δ1⇧δ2⇧ − 2✏31⇧ −
✓

47

9
+ 6D

◆

✏21⇧✏2⇧ + 5✏21⇧δ1⇧

+

✓

−
20

9
− 3D −D2 +

⇡2

12

◆

✏1⇧✏
2
2⇧ +

✓

−
11

9
− 4D −D2 +

⇡2

12

◆

✏1⇧✏2⇧✏3⇧

+

✓

73

9
+ 5D

◆

δ1⇧✏1⇧✏2⇧ − 4✏1⇧δ
2
1⇧ +

✓

46

9
+ 4D

◆

✏1⇧δ1⇧δ2⇧ +
4

9
✏22⇧✏3⇧

+

✓

−
1

18
−

D2

2
+
⇡2

24

◆

✏2⇧✏
2
3⇧ +

✓

5

9
+ 2D

◆

δ1⇧✏2⇧✏3⇧

+

✓

−
1

18
−

D2

2
+
⇡2

24

◆

✏2⇧✏3⇧✏4⇧ − δ21⇧✏2⇧ +

✓

5

9
+D

◆

δ1⇧δ2⇧✏2⇧ + δ31⇧

−
✓

50

9
+ 3D

◆

δ21⇧δ2⇧ +

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ
2
2⇧

+

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ2⇧δ3⇧ (2.29)

At first order in the flow parameters, one recovers the standard expression, i.e. nS − 1 =
−2✏1⇧ − ✏2⇧ + δ1⇧. One can also check that the second order corrections are similar to those
found in ref. [59]. Here, for the first time, we have given the formula of the spectral index at
third order. This is of course possible only because we have determined the overall amplitude
at second order. This also allows us to determine the higher order corrections to the running
and to the running of the running. For instance, one can calculate ↵S at the fourth order
and the running of the running at the fifth order. Here, in order to illustrate the efficiency
of the method, we just present the expression of ↵S. It reads

↵S = −2✏1⇧✏2⇧ − ✏2⇧✏3⇧ + δ1⇧δ2⇧ − 6✏21⇧✏2⇧ − (3 + 2D) ✏1⇧✏
2
2⇧ − (4 + 2D) ✏1⇧✏2⇧✏3⇧ + 5✏1⇧✏2⇧δ1⇧

+ 4✏1⇧δ1⇧δ2⇧ −D✏2⇧✏
2
3⇧ −D✏2⇧✏3⇧✏4⇧ + 2δ1⇧✏2⇧✏3⇧ + δ1⇧δ2⇧✏2⇧ − 3δ21⇧δ2⇧ + (2 +D) δ1⇧δ

2
2⇧

+ (2 +D) δ1⇧δ2⇧δ3⇧ − 12✏31⇧✏2⇧ −
✓

139

9
+ 14D

◆

✏21⇧✏
2
2⇧ −

✓

83

9
+ 8D

◆

✏21⇧✏2⇧✏3⇧

+ 21δ1⇧✏
2
1⇧✏2⇧ + 9δ1⇧δ2⇧✏

2
1⇧ +

✓

−
20

9
− 3D −D2 +

⇡2

12

◆

✏1⇧✏
3
2⇧

+

✓

−
20

3
− 10D − 3D2 +

⇡2

4

◆

✏1⇧✏
2
2⇧✏2⇧ +

✓

100

9
+ 7D

◆

δ1⇧✏1⇧✏
2
2⇧

+

✓

−
11

9
− 5D −D2 +

⇡2

12

◆

✏1⇧✏2⇧✏
2
3⇧ +

✓

−
11

9
− 5D −D2 +

⇡2

12

◆

✏1⇧✏2⇧✏3⇧✏4⇧

+

✓

127

9
+ 7D

◆

δ1⇧✏1⇧✏2⇧✏3⇧ − 9δ21⇧✏1⇧✏2⇧ +

✓

137

9
+ 9D

◆

δ1⇧δ2⇧✏1⇧✏2⇧ − 15δ21⇧δ2⇧✏1⇧

+

✓

64

9
+ 5D

◆

✏1⇧δ1⇧δ
2
2⇧ +

✓

64

9
+ 5D

◆

✏1⇧δ1⇧δ2⇧δ3⇧ +
8

9
✏22⇧✏

2
3⇧ +

4

9
✏22⇧✏3⇧✏4⇧

+

✓

−
1

18
−

D2

2
+
⇡2

24

◆

✏2⇧✏
3
3⇧ +

✓

−
1

6
−

3D2

2
+
⇡2

8

◆

✏2⇧✏
2
3⇧✏4⇧ +

✓

5

9
+ 3D

◆

δ1⇧✏2⇧✏
2
3⇧
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+

✓

−
1

18
−

D2

2
+
⇡2

24

◆

✏2⇧✏3⇧✏
2
4⇧ +

✓

−
1

18
−

D2

2
+
⇡2

24

◆

✏2⇧✏3⇧✏4⇧✏5⇧

+

✓

5

9
+ 3D

◆

δ1⇧✏2⇧✏3⇧✏4⇧ − 3δ21⇧✏2⇧✏3⇧ +

✓

10

9
+ 3D

◆

δ1⇧δ2⇧✏2⇧✏3⇧ − 3δ21⇧δ2⇧✏2⇧

+

✓

5

9
+D

◆

δ1⇧δ
2
2⇧✏2⇧ +

✓

5

9
+D

◆

δ1⇧δ2⇧δ3⇧✏2⇧ + 6δ31⇧δ2⇧ −
✓

118

9
+ 7D

◆

δ21⇧δ
2
2⇧

−
✓

68

9
+ 4D

◆

δ21⇧δ2⇧δ3⇧ +

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ
3
2⇧

+

✓

37

6
+ 6D +

3D2

2
−
⇡2

8

◆

δ1⇧δ
2
2⇧δ3⇧ +

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ2⇧δ
2
3⇧

+

✓

37

18
+ 2D +

D2

2
−
⇡2

24

◆

δ1⇧δ2⇧δ3⇧δ4⇧ (2.30)

One can check that the second and third order corrections match the expression already
found in ref. [59]. The fourth order corrections represent a new result.

2.4 Tensor power spectrum

In this section, we repeat the previous analysis but for tensor perturbations. Since the
method is the same and, fortunately, the calculations are easier, the details will be skipped.
The main difference between gravity waves and density perturbations is that their effective
potential is not the same, see eqs. (1.4) and (1.6). This implies that the function ⌫(⌘) for
tensors is different from the one of the scalars. One gets for the tensor

⌫2(⌘) =
9

4
+ 3✏1⇤ + 4✏21⇤ + 4✏1⇤✏2⇤ − 3✏1⇤✏2⇤ ln

✓

⌘

⌘⇤

◆

+O
(

✏3
)

. (2.31)

As a consequence, the functions g(⌘), f(⌘), and hence Ψ, are also different. Using the uniform
approximation to evaluate µk and inserting the corresponding formula into the expression of
Ph given by eq. (1.9), one obtains

Ph =
2
(

18 e−3
)

H2
⇤

⇡2M2
Pl



1 +

✓

−
8

3
+ 2 ln 2

◆

✏1⇤ +

✓

⇡2

12
−

26

9
+

8

3
ln 2− ln2 2

◆

✏1⇤✏2⇤

+

✓

13

9
−

10

3
ln 2 + 2 ln2 2

◆

✏21⇤

]

. (2.32)

This equation is for the tensors what eq. (2.24) is for the scalars. As explained before, one
has still to make explicit the scale dependence hidden in ⌘⇤. In the case of tensors, the pivot
point is usually defined by k?⌘? = −1 since gravity waves propagate at the speed of light.
This leads to the following expression for the power spectrum

Ph =
2
(

18 e−3
)

H2
?

⇡2M2
Pl

⇢

1− 2(1 +D)✏1? +

✓

17

9
+ 2D + 2D2

◆

✏21? +

✓

−
19

9
+
⇡2

12

− 2D −D2

◆

✏1?✏2? +
⇥

−2✏1? + 2(1 + 2D)✏21? − 2(1 +D)✏1?✏2?
⇤

ln
k?
k

+
(

2✏21? − ✏1?✏2?
)

ln2
k?
k

}

. (2.33)
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Let us notice that, in order to obtain this relationship, we have used the initial conditions for
gravity waves |Bk| = 1/M2

Pl. Otherwise, one notices the presence of the WKB factor 18 e3

and one can check that, at first order, it coincides with the known expression for the tensor
power spectrum. The above formula, being expressed at the time ⌘?, is convenient for SFMK
models only, but not for k-inflation. Indeed, all parameters here are functions evaluated at
the time ⌘? which is different that the one at which the scalar power spectrum is calculated,
namely ⌘⇧. It has become a common mistake to try fitting data with both eq. (2.28) and
eq. (2.33) while implicitly assuming that all Hubble and sound flow “parameters” are the
same. As we have explicitly shown before, they do differ and such a fit would absolutely
make no sense.

However, within slow-roll, one can re-express the tensor power spectrum at the same
pivot point as for the scalar power spectrum. As before, each quantity in the tensor power
spectrum should be re-expressed at the scalar pivot point, as for instance ✏1? = ✏1⇧ −
✏1⇧✏2⇧ ln cs⇧ + O

(

✏3, δ3
)

. The quantity cs⇧ appears because it is present in the ratio of the
tensor to scalar pivot points. It follows that the final expression for the tensor power spec-
trum for k-inflation is

Ph =
2
(

18e−3
)

H2
⇧

⇡2M2
Pl

⇢

1− 2(1 +D − ln cs⇧)✏1⇧ +



17

9
+ 2D + 2D2 + 2 ln2 cs⇧

− 2(1 + 2D) ln cs⇧

]

✏21⇧ +



−
19

9
+
⇡2

12
− 2D −D2 + 2(1 +D) ln cs⇧ − ln2 cs⇧

]

✏1⇧✏2⇧

+



−2✏1⇧ + (2 + 4D − 4 ln cs⇧)✏
2
1⇧ + (−2− 2D + 2 ln cs⇧)✏1⇧✏2⇧

]

ln
k⇧

k

+
(

2✏21⇧ − ✏1⇧✏2⇧
)

ln2
k⇧

k

}

, (2.34)

where now “diamonded” terms are evaluated at the scalar pivot point. This new formula is
the second main result of the present paper. It extends to second order the results of ref. [59].
As for the scalar modes, this expression also allows us to calculate the tensor spectral index
at third order. One obtains

nT = −2✏1⇧ − 2✏21⇧ + (−2− 2D + 2 ln cs⇧) ✏1⇧✏2⇧ − 2✏31⇧ +

✓

−
38

9
− 6D + 6 ln cs⇧

◆

✏21⇧✏2⇧

+

✓

−
19

9
− 2D −D2 +

⇡2

12
+ 2 ln cs⇧ + 2D ln cs⇧ − ln2 cs⇧

◆

✏1⇧✏
2
2⇧

+

✓

−
19

9
− 2D −D2 +

⇡2

12
+ 2 ln cs⇧ + 2D ln cs⇧ − ln2 cs⇧

◆

✏1⇧✏2⇧✏3⇧ (2.35)

Of course, at first order, one recovers the standard formula, nT = −2✏1⇧. We have already
discussed before the relevance of higher order corrections for Bayesian parameter estimation.
Notice that, in the case of primordial gravitational waves and as discussed in ref. [67], another
motivation is the possibility of detecting them directly. Indeed, in that case, one needs to
estimate their power spectrum today and, due to the very large lever arm between the
cosmological scales and the smaller scales where a direct detection can be performed, it
is necessay to calculate the power spectrum at the end of inflation very precisely. In this
context, higher order corrections become mandatory. Similarly, the running of the tensors is
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obtained at fourth order and reads

↵T = −2✏1⇧✏2⇧ − 6✏21⇧✏2⇧ + (−2− 2D + 2 ln cs⇧)✏1⇧✏
2
2⇧ + (−2− 2D + 2 ln cs⇧)✏1⇧✏2⇧✏3⇧

− 12✏31⇧✏2⇧ +

✓

−
112

9
− 14D + 14 ln cs⇧

◆

✏21⇧✏
2
2⇧ +

✓

−
56

9
− 8D + 8 ln cs⇧

◆

✏21⇧✏2⇧✏3⇧

+



−
19

9
− 2D −D2 +

⇡2

12
+ 2(1 +D) ln cs⇧ − ln2 cs⇧

]

(

✏1⇧✏
3
2⇧ + 3✏1⇧✏

2
2⇧✏3⇧

+✏1⇧✏2⇧✏
2
3⇧ + ✏1⇧✏2⇧✏3⇧✏4⇧

)

. (2.36)

Finally, one can also deduce the tensor to scalar ratio at the third order. It reads

r = 16✏1⇧cs⇧

"

1 + 2✏1⇧ ln cs⇧ +D✏2⇧ − (2 +D) δ1⇧ +

✓

34

9
+ 3D +

D2

2

◆

δ21⇧

+

✓

−
37

18
− 2D −

D2

2
+
⇡2

24

◆

δ1⇧δ2⇧ −
✓

5

9
+ 3D +D2

◆

δ1⇧✏2⇧ +

✓

−
2

9
+

D2

2

◆

✏22⇧

+
1

72

(

4 + 36D2 − 3⇡2
)

✏2⇧✏3⇧ + 2✏21⇧ (1 + ln cs⇧) ln cs⇧

+

✓

−
28

9
− 3D − 4 ln cs⇧ − 2D ln cs⇧

◆

δ1⇧✏1⇧

+

✓

−
8

9
+D + 2 ln cs⇧ + 4D ln cs⇧ − ln2 cs⇧

◆

✏1⇧✏2⇧

#

. (2.37)

As usual the leading term is proportional to ✏1⇧cs⇧ and the above formula shows that the
corresponding corrections depend on the flow parameters but also on the sound speed.

3 Discussion and conclusions

The power spectra of eqs. (2.28) and (2.34) represent the main result of this article. There
are the first calculation, at second order in the Hubble and sound flow functions, of the scalar
and tensor power spectra in k-inflation within the uniform approximation. In this section, we
discuss our results and check their consistency. In particular, in some limits, our calculation
should reproduce known results already derived in the literature. As we show below, this is
indeed the case.

We have seen before that the power spectrum is obtained as an expansion around the
pivot scale and that the most general expression of P⇣ can be written as

P⇣(k) = P̃⇣(k⇧)
X

n≥0

an
n!

lnn
k

k⇧

, (3.1)

where P̃⇣ is the overall amplitude and the coefficients an are functions of the horizon flow
parameters. The expression of an always starts at order n, i.e. a0 starts with one, a1 starts
with a term of order O(✏, δ), a2 with a term of order O

(

✏2, δ2, ✏δ
)

and so on. As already
mentioned before, k-inflationary power spectra were determined at first order in ref. [59]. This
means that the expression found in that paper included only the first two terms, proportional
to a0 and a1. There is however a trick derived in ref. [68] which allows us to determine some
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higher order terms. Indeed, the power spectrum should not depend on the choice of the pivot
scale, which is arbitrary. As a consequence, one can establish the following recursion relation

an+1 =
d ln P̃⇣

d ln k⇧

an +
dan

d ln k⇧

. (3.2)

Given that a0 was given at first order in ref. [59], it was then possible to calculate a1 up to
second order and a2 to third order [see eqs. (64) and (65) in that reference]. Therefore, one
can compare those formulas to the expression obtained in this article. One finds that they
are the same, indicating the consistency of our results.

Another way to verify the validity of our expressions is to take the limit cs = 1 and to
compare the resulting formulas to the results already obtained in the literature for SFMK
models. As mentioned in the introduction, second order results were first obtained using
the Green function method in ref. [47]. The corresponding expression for the scalar power
spectrum reads

P⇣ =
H2

8⇡2M2
Pl✏1

(

1− 2(C + 1)✏1 − C✏2 +

✓

2C2 + 2C +
⇡2

2
− 5

◆

✏21

+

✓

C2 − C +
7⇡2

12
− 7

◆

✏1✏2 +

✓

C2

2
+
⇡2

8
− 1

◆

✏22 +

✓

−
C2

2
+
⇡2

24

◆

✏2✏3

+
⇥

−2✏1 − ✏2 + 2(2C + 1)✏21 + (2C − 1)✏1✏2 + C✏22 − C✏2✏3
⇤

ln
k

k~

+

✓

2✏21 + ✏2✏2 +
1

2
✏22 −

1

2
✏2✏3

◆

ln2
k

k~

)

, (3.3)

where the constant C is defined by C ⌘ γ + ln 2− 2 ' −0.7296, γ being the Euler constant,
while the expression of the gravity wave power spectrum can be written as

Ph =
2H2

⇡2M2
Pl

(

1− 2(C + 1)✏1 +

✓

2C2 + 2C +
⇡2

2
− 5

◆

✏21 +

✓

−C2 − 2C +
⇡2

12
− 2

◆

✏1✏2

+
⇥

−2✏1 + 2(2C + 1)✏21 − 2(C + 1)✏1✏2
⇤

ln
k

k~

+

✓

2✏21 − ✏1✏2

◆

ln2
k

k~

)

. (3.4)

In the two previous formulas (3.3) and (3.4), the Hubble flow functions are evaluated at
time ⌘~ such that a(⌘~)H(⌘~) = k~ which slightly differs from the time k⇧⌘⇧ = −1 (for
cs⇧ = 1) used in the present paper. Therefore, if we want to compare eqs. (2.28) and (2.34)
with cs⇧ = 1 to eqs. (3.3) and (3.4), one should first re-express the latter in terms of the
Hubble flow parameters evaluated at time k⇧⌘⇧ = −1. In the following, in order to simplify
the discussion, we focus only on the scalar case but the tensor case could be treated in the
same manner. From the definition of ⌘~ one has ⌘~/⌘⇧ = 1 + ✏1⇧ + ✏21⇧ + ✏1⇧✏2⇧ +O

(

✏3
)

. As
consequence, in eqs. (3.3) and (3.4), one should just replace ✏1, ✏2 with ✏1⇧, ✏2⇧ and H2/✏1
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with H2
⇧
/✏1⇧(1 + 2✏21⇧ + ✏1⇧✏2⇧). This yields the following expression

P⇣ =
H2

⇧

8⇡2M2
Pl✏1⇧

(

1− 2(C + 1)✏1⇧ − C✏2⇧ +

✓

2C2 + 2C +
⇡2

2
− 3

◆

✏21⇧

+

✓

C2 − C +
7⇡2

12
− 6

◆

✏1⇧✏2⇧ +

✓

C2

2
+
⇡2

8
− 1

◆

✏22⇧ +

✓

−
C2

2
+
⇡2

24

◆

✏2⇧✏3⇧

+
⇥

−2✏1⇧ − ✏2⇧ + 2(2C + 1)✏21⇧ + (2C − 1)✏1⇧✏2⇧ + C✏22⇧ − C✏2⇧✏3⇧
⇤

ln
k

k⇧

+

✓

2✏21⇧ + ✏1⇧✏2⇧ +
1

2
✏22⇧ −

1

2
✏2⇧✏3⇧

◆

ln2
k

k⇧

)

, (3.5)

that can be now compared to eq. (2.28). As already discussed, the overall amplitude differs by
the WKB factor 18 e−3. We also notice that the terms in D in eq. (2.28) exactly corresponds
to the term in C in eq. (3.5). For instance, the coefficient of ✏21⇧ in eq. (2.28) contains a term
2D2+2D while the coefficient of ✏21⇧ in eq. (3.5) contains a 2C2+2C. One easily checks that
this is the rule for all first and second order terms. Provided one substitutes D with C, the
first order term in the amplitude, the coefficient of ln k/k⇧ and the coefficient of ln2(k/k⇧)
are identical. The only difference appears in the second order terms in the amplitude. For
instance, the coefficients of ✏21⇧ in eq. (2.28) is 2D2+2D+17/9 while it is 2C2+2C+⇡2/2−3
in eq. (3.5). But 17/9 ' 1.88 and ⇡2/2 − 3 ' 1.93 and, therefore, the two terms are in fact
numerically very close. The same is true for all the other terms in the amplitude. Therefore,
we conclude that our result (2.28), specialized to SFMK models, is fully consistent with
eq. (3.5) that comes from another approximation scheme. This confirms its validity.

Let us now compare our result to the one of refs. [53, 54] calculated with the help of
the WKB approximation. The scalar power spectrum obtained in those articles reads

P⇣ =
H2

8⇡2M2
Pl✏1

AWKB

(

1− 2(DWKB + 1)✏1 −DWKB✏2 +

✓

2D2
WKB

+ 2DWKB −
1

9

◆

✏21

+

✓

D2
WKB

−DWKB +
⇡2

12
−

20

9

◆

✏1✏2 +

 

D2
WKB

2
+

2

9

!

✏22 +

 

−
D2

WKB

2
+
⇡2

24
−

1

18

!

✏2✏3

+
⇥

−2✏1 − ✏2 + 2(2DWKB + 1)✏21 + (2DWKB − 1)✏1✏2 +DWKB✏
2
2 −DWKB✏2✏3

⇤

ln
k

k~

+

✓

2✏21 + ✏1✏2 +
1

2
✏22 −

1

2
✏2✏3

◆

ln2
k

k~

)

, (3.6)

while the tensor power spectrum is given by the following formula

Ph =
2H2

⇡2M2
Pl

AWKB

(

1− 2(DWKB + 1)✏1 +

✓

2D2
WKB

+ 2DWKB −
1

9

◆

✏21 +

✓

−D2
WKB

− 2DWKB

+
⇡2

12
−

19

9

◆

✏1✏2 +
⇥

−2✏1 + 2(2DWKB + 1)✏21 − 2(DWKB + 1)✏1✏2
⇤

ln
k

k~

+
(

2✏21 − ✏1✏2
)

ln2
k

k~

)

. (3.7)
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In these equations, AWKB = 18 e−3 and DWKB = 1/3 − ln 3, that is to say exactly what
was found by means of the uniform approximation as DWKB = D. As already mentioned,
refs. [53, 54] have shown that, by taking the next order in the adiabatic approximation
into account, one obtains a new value for these two constants (in some sense, they are
renormalized), namely AWKB becomes 361/(18 e3) ' 0.99 and DWKB = 7/19−ln 3 ' −0.7302.
In particular, the new value of DWKB is closer to the constant C than the non-renormalized
one. Both eqs. (3.6) and (3.7) are evaluated at the pivot time ⌘~ and have to be time-shifted
to ⌘⇧ to be compared with our results. Proceeding as previously, it is easy to show that this
modifies the coefficients of ✏21 which now becomes 2D2

WKB
+2DWKB +17/9, and the coefficient

of ✏1✏2 which becomes 2D2
WKB

−DWKB+⇡
2/12−11/9. In other words eqs. (2.28) and eq. (3.6)

expressed at ⌘⇧ are exactly the same for cs⇧ = 1. This is maybe not so surprising considering
the fact that the WKB and uniform approximations are closely related methods.

A few words are in order about ref. [55]. Historically, this is probably the first paper that
attempted to evaluate the k-inflationary power spectrum at second order in some equivalent
of the Hubble and sound flow functions used here. The method chosen is the Green function
expansion discussed before. However, a specific form for the sound speed, which in the
language of the present paper would be a first order approximation of c2s , was also postulated.
Together with a k−dependence kept implicit, this makes the comparison with the present
work difficult. For this reason, we do not investigate further this issue.

To conclude, let us briefly recap our main result and discuss directions for future works.
In this paper, using the uniform approximation, we have calculated the scalar and tensor
power spectra in k-inflation, at second order in the Hubble and sound flow parameters, see
eqs. (2.28) and (2.34). We have carefully checked that, in the various limits where our
calculation reduces to known cases, consistent results are obtained. The next step is clearly
to use these power spectra in order to constrain the values of the Hubble and sound flow
parameters using CMB observations. This was done in ref. [62] but only for the first order
power spectra (since only this result was available at that time). Given the on-going flux
of high precision data, such as those from the Planck satellite, the results obtained in this
article should be important to keep theoretical uncertainties at a minimal level. In this way,
as discussed in the introduction, one may hope to obtain unprecedented information on the
inflationary scenario.
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4. Quantum Aspects of Inflation and the
Stochastic Formalism

One of the great achievements of inflation is that, combined with quantum mechan-
ics, it provides a convincing mechanism for the origin of the cosmological fluctua-
tions. Such a mechanism rests on General Relativity and Quantum Mechanics, two
theories that are notoriously difficult to combine, and leads to predictions that can
be tested experimentally. This is why inflation is an ideal playground to discuss deep
questions at the fundamental level. This second chapter aims at studying issues re-
lated to the quantum nature of the theory, and in particular the stochastic formalism
which enables to address some of them.

Publications

4.1. “Stochastic Effects in Hybrid Inflation” (article) . . . . . . . 621

4.2. “Recursive Stochastic Effects in Valley Hybrid Inflation”
(article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

4.3. “Cosmological Inflation and the Quantum Measurement Prob-
lem” (article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

In the standard description of inflation, the homogeneous parts of the fields are usually assumed
to behave classically while the small deviations from homogeneity and isotropy are treated quan-
tum mechanically over this classical background. To go beyond this “semi-classical” approach, it
seems interesting to incorporate quantum corrections to the inflationary dynamics. The stochas-
tic inflation formalism aims at describing such an effect, by deriving the effective action for the
fields coarse-grained over length scales larger than the Hubble radius, and integrating out the
sub-Hubble degrees of freedom. At the technical level, such an approach boils down to solv-
ing Langevin equations for the coarse-grained fields, in which an additional, stochastic term, is
added.

These stochastic equations give rise to non trivial inflationary dynamics, especially in the case
where multiple fields are present. In order to understand how the quantum diffusion can affect
the observable predictions in such models, in section 4.1, Ref. [210], we study the stochastic
effects in hybrid inflation, a two-field model where inflation ends due to an instability triggered
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by an auxiliary “waterfall” field. In the neighbourhood of the critical point, the potential is very
flat and the quantum fluctuations dominate over the classical drifts of the fields. In practice,
one has to deal with two coupled Langevin equations, and solving the corresponding system,
even at the perturbative level, is a difficult task. This is why we numerically addressed this
problem by simulating a large number of realizations of the stochastic processes, and studied
the associated probability distributions in the hybrid potential, discussing in particular the
impact of the stochastic effects on the realized number of e-folds.

We then studied how these results get modified when further backreaction effects are imple-
mented. In the original version of stochastic inflation indeed, the correlations of the noise in the
Langevin equations are controlled by the amplitude of the perturbations, calculated over the
classical, i.e. without the stochastic corrections, background. At next-to-leading order however,
these stochastic corrections modify the amplification of the perturbations, hence the properties
of the stochastic corrections, so on and so forth. In section 4.2, Ref. [211], we designed a re-
cursive formalism that addresses this issue and applied it to the case of hybrid inflation. We
showed that the method converges in the valley (before the critical point) but points towards
an expected instability in the waterfall (after the critical point). Notably, we found that the
typical dispersion of the waterfall field at the critical point is diminished, thus jeopardizing the
possibility of a short transition, and we showed that the blue-tilt problem present in the hybrid
model is even worsened by recursive stochastic effects.

Finally, as an illustration of how inflationary physics enables to discuss deep questions related
to the nature of the quantum theory itself, in section 4.3, Ref. [138], we addressed the issue of
the quantum-to-classical transition and the quantum measurement problem in a cosmological
context. We first reviewed how the quantum-to-classical transition of the cosmological pertur-
bations is usually accounted for by the large squeezing of the quantum state of the perturbations
and the phenomenon of decoherence. However, this does not explain how a specific outcome can
be produced in the early Universe in the absence of any observer (referring to the Copenhagen
interpretation of Quantum Mechanics). We then studied the continuous spontaneous localiza-
tion (CLS) approach to quantum mechanics which attempts to solve the quantum measurement
question by causing the wavefunction collapse by means of additional non-linear and stochastic
terms to the Schrödinger equation. CSL is the only falsifiable solution to the quantum mea-
surement problem proposed so far, since it makes predictions that, in some regimes, differ from
standard quantum mechanics. We applied this theory to inflation, and we showed that reach-
ing a satisfactory degree of collapse at the end of inflation requires to strongly break the almost
scale invariance of the power spectrum of the scalar perturbations, at a level which is completely
excluded by observations. These results illustrate the remarkable power of inflation in particular
and cosmology in general to constrain new physics, in regimes complementary to what can be
achieved in lab experiments. Let us mention that following our work, other authors [404] gener-
alized our calculation to the case where the CSL strength parameter depends on physical scales
through a phenomenological power law, so as to capture the CSL amplification mechanism. In
particular, they showed that there exists a power index for which the problem we pointed out
can be evaded.
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Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of

the instability point, the potential is very flat and the quantum fluctuations dominate over the classical

motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of

stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution

of the fields and compute the probability distributions of the total number of e-folds and of the inflation

exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the

quantum diffusion can affect the observable predictions of hybrid inflation.
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I. INTRODUCTION

Inflation is the leading scenario among the models at-

tempting to describe the physical conditions that prevailed

in the very early Universe. It consists in a phase of accel-

erated expansion which naturally solves the problems of

the hot big bang theory [1–5] (for reviews, see Refs. [6–8]).

In addition, it predicts an almost scale invariant power

spectrum for the primordial cosmological fluctuations,

the tiny deviations from scale invariance being related to

the microphysics of inflation [9–14]. As is well known, this

prediction turns out to be fully consistent with different

types of astrophysical observations, among which is the

measurement of the cosmic microwave background radia-

tion (CMBR) anisotropies [15–19].

Inflation is usually driven by one or many scalar fields.

In the context of general relativity, this represents the

simplest mechanism to obtain the negative pressure neces-

sary to produce an accelerated expansion. However, the

physical nature of those scalar fields is presently unknown,

and many different inflationary models have been sug-

gested. The reason for such a situation originates from

the fact that inflation is a high energy phenomenon.

Indeed, the energy scale of inflation is somewhere between

the TeV scale and the grand unified theory scale [15]. At

those scales, particle physics remains elusive, and as a

consequence there is presently a large variety of different

inflationary scenarios.

However, given the extensions of the standard model of

particle physics, notably those based on supersymmetry

and supergravity, it is clear that some models appear to be

more motivated and more generic than others. In particular,

this is the case of hybrid inflation [20,21], which can be

realized in various ways in the context of supersymmetry;

see, for instance, the scenarios named F-term inflation and

D-term inflation (among others) [22–25]. Hybrid inflation

is a two-field model such that inflation occurs along a

valley in the field space and ends by tachyonic instability

along the so-called waterfall field direction. Hybrid infla-

tion is known to lead to a blue spectrum for the fluctua-

tions, a prediction which appears to be disfavored by the

most recent observations [15]. However, it was shown

recently [26–28] that, in some regions of the parameter

space, a significant number of e-folds can occur in the

waterfall regime. In this case, it was also demonstrated

that the spectral index becomes red, which therefore im-

plies that the model is in fact totally compatible with the

data [26,27].

In the context of inflation, another interesting question is

the role played by the quantum corrections [29–39].

Various works have shown that they can have a crucial

impact on the inflationary dynamics. This is, for instance,

the case for large field inflation if one starts inflation high

enough in the potential. In this case, the quantum

kicks undergone by the field can be so important that the

field climbs its potential instead of rolling down it as

should be the case according to the classical equations of

motion. In such a situation, it is likely that one enters into a

regime of eternal inflation [31,40,41].

Hybrid inflation is also a model where one expects the

quantum corrections to be very important. It should be

the case high in the inflationary valley but also around

the critical point where the tachyonic instability is trig-

gered [26,27,42]. The goal of this article is to investigate

this last question in detail. In particular, we are interested

in whether the quantum effects can significantly modify the

classical dynamics and affect the observational predictions

of the model.

In order to carry out our study, we use the stochastic

inflation formalism [30,32–39,43,44]. It consists in model-

ing the quantum effects by a stochastic white noise. As a

consequence, the equation describing the motion of the

fields becomes a Langevin equation. As mentioned previ-

ously, hybrid inflation is a genuine two-field model, which

implies that one has to deal with two coupled Langevin
*jmartin@iap.fr
†vennin@iap.fr
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equations. Solving this system is a very complicated task,

even if a perturbative expansion is used, as usually done in

the context of single field inflation. This is the reason why,

in this article, we use a numerical approach. This allows us

to compute various interesting quantities such as the proba-

bility density function for the number of e-folds or for the

location in field space of the end of inflation.

This article is organized as follows. In the next section,

Sec. II, we review in some detail the classical behavior of

the inflaton and waterfall fields. This allows us to clearly

identify the region in the parameter space where a signifi-

cant number of e-folds can occur during the waterfall

regime. This also permits a comparison between the clas-

sical and stochastic dynamics. In Sec. III we numerically

solve the two coupled Langevin equations that control the

behavior of the two fields. We then use this result to

compute various probability density functions, in particu-

lar, that of the number of e-folds and of the inflation exit

point. Finally, in Sec. IV we summarize our main results

and present our conclusions.

II. CLASSICAL REGIMES

There exist many ways to realize hybrid inflation. In this

article, for simplicity, we focus on the first version studied

in Ref. [20]; see also Ref. [45]. In this case, the potential in

the field space ð!; c Þ, where ! is the inflaton and c the

waterfall field, is given by the following expression:

Vð!; c Þ ¼ !4

!"

1$
c 2

M2

#

2

þ
!2

"2
þ 2

!2c 2

!2
cM

2

$

: (1)

It contains four parameters (of dimension one), !, M, ",

and !c. The scale ! is fixed by the Cosmic Background

Explorer normalization (the other parameters being fixed).

The true minimums of the potential are located at ! ¼ 0

and c ¼ &M, while the instability point is given by ! ¼
!c, c ¼ 0. Along the inflationary valley, c ¼ 0, the

potential reduces to !4½1þ ð!="Þ2( which shows that,

in this regime, inflation cannot end by violation of the

slow-roll conditions. The full hybrid inflation potential is

shown in Fig. 1, where the inflationary valley is clearly

visible.

In this section we study the classical behaviors of the

inflaton and waterfall fields. The slow-roll equations con-

trolling the evolution of the fields can be expressed as

3H2
d!

dN
¼ $

2!4!

"2

"

1þ
2c 2"2

!2
cM

2

#

; (2)

3H2
dc

dN
¼ $

4!4

M2
c

"

!2 $!2
c

!2
c

þ
c 2

M2

#

; (3)

where H ¼ _a=a is the Hubble parameter, aðtÞ being the

Friedman-Lemaitre-Robertson-Walker scale factor and a

dot denoting a derivative with respect to cosmic time. The

quantity N is the number of e-folds, N ) lnða=aiÞ, where
ai is the scale factor at the beginning of inflation.

In order to study the classical dynamics, it is interesting

to calculate the slow-roll parameters. The hierarchy de-

fined from the potential [46–49] is given by the following

expressions:

#! ¼
2!2M2

Pl

"4

"

1þ
2c 2"2

!2
cM

2

#

; (4)

#c ¼
8M2

Plc
2

M4

"

!2 $!2
c

!2
c

þ
c 2

M2

#

; (5)

$!! ¼
2M2

Pl

"2

"

1þ
2"2c 2

!2
cM

2

#

; (6)

$!c ¼
8M2

Pl!c

!2
cM

2
; (7)

$c c ¼
4M2

Pl

M2

"

!2 $!2
c

!2
c

þ 3
c 2

M2

#

: (8)

On the other hand, the hierarchy defined from the Hubble

parameter, the so-called Hubble flow parameters [50,51],

can be expressed as

#nþ1 )
d lnj#nj
dN

; (9)

where #0 ¼ Hi=HðNÞ. The above expression implies that

having inflation is strictly equivalent to #1 < 1, where #1 ¼
$ _H=H2. Obviously, the two hierarchies are related by

simple expressions. In particular, the first horizon flow

parameter is

FIG. 1 (color online). Potential of hybrid inflation in the

ð!; c Þ plane. The values of the parameters are " ¼
3190:4MPl, M ¼ !c ¼ 0:1503MPl, with MPl being the reduced

Planck mass.
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#1 ’ #! þ #c ; (10)

where #! and #c have been defined before.

Having specified the notation, we now turn to the choice

of the free parameters controlling the shape of the infla-

tionary potential.

A. Physical priors

It is usually assumed that hybrid inflation occurs in the

vacuum dominated regime, for which ! * " and c *
M. In this paper we also assume that this is the case. In any

case, otherwise, hybrid inflation in the valley would be

equivalent to a large field model, which is not the regime of

interest here. For simplicity, in order to reduce the number

of free parameters, and as also motivated by the super-

symmetric version of the model, we take !c ’ M. Notice

that this assumption does not imply a loss of generality, as

we could easily relax it without drastically modifying the

results obtained in this paper. Finally, in order for inflation

to proceed for small values of the fields (compared to the

Planck mass), one can consider that !c, M * MPl, MPl

being the reduced Planck mass.

In the valley and in the !=" * 1 limit, the slow-roll

parameters #1 and #2 read

#1ð!; c ¼ 0Þ ’ 2
M2

Pl

"2

!2

"2
; (11)

#2ð!; c ¼ 0Þ ’ 4
M2

Pl

"2
: (12)

Therefore, for the slow-roll approximation to be satisfied,

these two parameters have to be much smaller than 1,

which implies that " + MPl.

In the next subsection we study the behavior of the two

fields during the first phase of evolution, namely, when the

inflaton field is moving along the valley.

B. The inflationary valley

The question of the initial conditions in hybrid inflation

is a very interesting and nontrivial question. It has been

studied in detail in Refs. [26,52–54]. Here, we simply

argue that starting in the valley can be reasonably justified

even if more complicated regimes can be found; see

Ref. [53]. Indeed, if inflation starts beyond the critical

line ! ¼ !c, the system very quickly reaches the region

where c =M * 1. In this regime, where the inflaton field is

driving inflation, the slow-roll equation of motion for !

can be integrated, leading to

N ¼
1

4

"2

M2
Pl

!

!2
in

"2
$

!2

"2
$ 2 ln

"

!

!in

#$

; (13)

where !in denotes the initial value of the inflaton field.

This relation can be inverted, and one obtains [15]

!

"
¼

!

W0

"

!2
in

"2
e!

2
in
="2$4M2

Pl
N="2

#$

1=2
; (14)

whereW0 denotes the 0-branch of the Lambert function. In

the !=" * 1 limit, this formula simply reads

! ¼ !in exp

"

$2
M2

Pl

"2
N

#

: (15)

This last expression is compared with an exact numerical

integration of the full equations of motion in Fig. 2 (left

panel), where it is shown that this is indeed an excellent

approximation. Moreover, this allows us to calculate the

number of e-folds ‘‘generated’’ in the valley, which reads

FIG. 2 (color online). Exact numerical solution for the inflaton (left panel, solid blue line) and waterfall (right panel, solid blue line)

fields in the inflationary valley. The red dotted lines represent the analytical solution, and it is obvious that the approximation is very

good. The damped oscillations of the waterfall field along the inflationary valley are clearly visible. The WKB analytical formula given

by Eq. (17) is a very good approximation to the exact numerical solution.
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Nc ¼
"2

2M2
Pl

ln

"

!in

!c

#

: (16)

Clearly, this number is large because " + MPl.

Let us now study the behavior of the waterfall field in the

vicinity of the valley, when c =M * 1. Since c undergoes

damped oscillations in this regime, it is clear that the slow-

roll approximation cannot be used. On the other hand,

since c oscillates much faster than ! moves, the WKB

approximation can be used to describe this regime. The

solution can be expressed as

c ¼ c in

e$3N=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!ðNÞ
p ½C1e

IðNÞ þ C2e
$IðNÞ( ; (17)

where c in is the initial value of the waterfall field, and

where IðNÞ is defined by the following expression (an

unimportant sign has been ignored):

IðNÞ ) i
Z

!ðnÞdn; (18)

¼
3

2

Z N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1$
16

3

M2
Pl

M2

!2=!2
c $ 1

1þ!2="2

s

dn; (19)

and whereC1 andC2 are integration constants. The validity

of the WKB approximation can be checked by estimating

the following quantity, ðd!=dNÞ=! ’ Oð1ÞM2
Pl="

2 * 1.

From the above expression one notices that oscillations in

the c direction occur in the regime

16

3

M2
Pl

M2

!2=!2
c $ 1

1þ!2="2
> 1; (20)

that is to say, in the region

!

!c

> 1þ
3

32

M2

M2
Pl

: (21)

Since M * MPl, we see that the field oscillates almost all

the time before the critical point is met. In fact, it turns out

that the integral IðNÞ can be performed. One finds

IðNÞ ’ $
ffiffiffi

3
p MPl

M

"2

M2
Pl

2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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$ 1

s

$ arctan
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@
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$ 1

s 1

A

3

5: (22)

This solution is compared with the exact numerical solu-

tion in Fig. 2 (right panel). Clearly, the approximation is

excellent.

When the condition (21) is not satisfied, IðNÞ ’
&3N=2þ , , , and the oscillations stop. Since the gradients
become small, this time, one can use the slow-roll approxi-

mation in order to describe the motion of c . Notice that,

since M is small (in Planck units), the above-mentioned

regime occurs for a very small range of values for !.

However, a large number of e-folds / "2M2=M4
Pl can be

produced during this phase. The slow-roll equation of

motion for c can be straightforwardly integrated and gives

c ¼ c in exp

!

4
M2

Pl

M2

Z N

0

1$!2ðnÞ=!2
c

1þ!2ðnÞ="2
dn

$

; (23)

where !ðnÞ is given by Eq. (14). Since !>!c in the

valley, c decreases with N and obviously remains in

the c * M region. If one uses the fact that ! * ",

then the integral in the above formula can be performed

exactly. Upon using Eq. (15), one obtains

c ¼ c in exp

!

4
M2

Pl

M2
N $

!2
in

!2
c

"2

M2
þ

!2
in
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c

"2
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- exp

"
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N
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’ c in exp

!

$4
M2

Pl

M2

"

!in

!c

$ 1

#

N

$

; (24)

where, in the last equation, we have used the fact that" +
MPl. In that case, one concludes that c is exponentially

damped after the oscillations have stopped and before the

critical point is reached. To our knowledge, this regimewas

not considered before. The above expression is compared

with an exact numerical integration of the full equations of

motion in Fig. 3. As one can notice, the agreement between

the exact numerical solution and the analytical approxi-

mated expression is excellent. The previous formula also

allows us to calculate the classical value of c when the

system reaches the critical point. It is given by

c c ¼ c in exp

!

$2
"2

M2

"

!in

!c

$ 1

#

ln

"

!in

!c

#$

: (25)

FIG. 3 (color online). Exact numerical solution for the water-

fall field (solid blue line) in the inflationary valley after the

oscillatory regime. The red dotted line represents the analytical

solution, and it is obvious that the approximation is very good.
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In practice, this value is always extremely small, thanks to

the fact that" + M2
Pl and, as was noticed in Refs. [27,42],

the quantum fluctuations of c can be much larger than its

classical value. We come back to this point in detail in the

next section. However, before addressing this issue, in

the next subsection, we describe the classical motion of

the two fields during the waterfall stage.

C. The waterfall regime

The waterfall regime has recently been studied by vari-

ous authors; see e.g. Refs. [27,55–58]. Here, we mainly

follow the terminology used in Ref. [58]. We assume that

slow roll is valid initially, at the critical point. We first

study the so-called ‘‘phase 0’’ [58]. It consists in neglecting

the last term in the inflaton slow-roll equation (2) and the

first one in the right-hand side of the waterfall equation (3)

(on the grounds that, initially, ! ¼ !c). Notice that, in this

case, one could also solve the full inflaton equation, keep-

ing the second time derivative, since in this approximation

it becomes linear. On the other hand, the waterfall equation

is nonlinear. In this sense, we do not start from a linear

situation. It is easy to find the (slow-roll) solutions, and

they read

!ðNÞ ¼ !c exp

!

$2
M2

Pl

"2
ðN $ NcÞ

$

; (26)

c ðNÞ ¼ c c

!

1þ
8M2

Plc
2
c

M4
ðN $ NcÞ

$

$1=2
; (27)

where Nc denotes the number of e-folds at the critical

point, i.e. at the onset of the waterfall phase. In field space

the trajectory reads

! ¼ !c exp

!

$
M4

4"2c 2
c

"

c 2
c

c 2
$ 1

#$

: (28)

Of course, instead of expressing ! in terms of c , one can

also express c in terms of the inflaton field. In this case one

obtains

c ¼ c c

!

1$
4"2c 2

c

M4
ln

"

!

!c

#$

$1=2
: (29)

These expressions are fully consistent with Ref. [58].

The next question is when phase 0 stops. By definition,

upon using Eqs. (2) and (3), it occurs when ! ¼ !1 and

c ¼ c 1 such that

$
!2

1

!2
c

þ 1 ¼
c 2

1

M2
: (30)

Indeed, among the two conditions that we have required in

order to derive the solutions (26) and (27), this one is the

first to be violated since c ðNÞ decreases during phase 0.

This condition can also be written as

2 ln
!1

!c

¼ ln

"

1$
c 2

1

M2

#

’ $
c 2

1

M2
: (31)

Then, using the slow-roll trajectory one easily finds that

ln
!1

!c

’ M4

8"2c 2
c

0

@1$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
8"2c 4

c

M6

s 1

A (32)

and

c 1 ’ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

$2 ln
!1

!c

s

: (33)

If we are in the regime where 8"2c 4
c=M

6 * 1, then one

has

ln
!1

!c

’ $
c 2

c

2M2
þ

"2c 6
c

M8
þ , , , ; (34)

c 1 ’ c c

"

1$
"2c 4

c

M6
þ , , ,

#

: (35)

From these expressions one can easily estimate the number

of e-folds in phase 0. One obtains

N1 $ Nc ’
"2c 2

c

4M2
PlM

2
þ , , , * 1; (36)

where N1 denotes the number of e-folds at the end of

phase 0. We see that the above quantity [as well as the

parameter used in the expansion that leads to Eqs. (34) and

(35)] is controlled by"=MPl, which is large, and by c c=M,

which is small. Therefore, the smallness of this parameter

is a priori not obvious. The two situations, where it is small

or large, have been studied in Ref. [58]. However, in

practice, c c=M is so small that the parameter mentioned

previously is always small. In this case we conclude that

phase 0 is unimportant since it lasts a negligible number of

e-folds. As a consequence, the values of ! and c remain

almost unchanged during that phase.

We now proceed with phase 1. By definition, the second

term on the right-hand side of the waterfall equation (3)

can be neglected. This means that this equation, as was

already the case for the inflaton equation of motion (which

remains unaffected during phase 1), becomes linear. For

this reason, sometimes, this phase is also called the ‘‘linear

phase.’’ During this phase, the solution for the inflaton field

is unchanged but, of course, one now has to solve the new

approximated equation for the waterfall field. The solution

can be easily calculated and reads

ln
c

c 1

¼
"2

M2
½e$4M2

Pl
ðN$NcÞ="

2

$ e$4M2
Pl
ðN1$NcÞ="

2

(

þ
4M2

Pl

M2
ðN $ N1Þ : (37)

Then, one can Taylor expand the exponential functions

since we are in the regime where "=MPl + 1. This gives
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c ¼ c 1 exp

&

8M4
Pl

"2M2
½ðN $ NcÞ

2 $ ðN1 $ NcÞ
2(

'

: (38)

This solution together with the solution for the inflaton is

represented in Fig. 4. This plot confirms that the previous

approximated solutions match the exact ones with a very

good precision. Finally, in field space, the trajectory now

reads

c ¼ c 1 exp

!

2"2

M2

"

ln2
!

!c

$ ln2
!1

!c

#$

; (39)

or, equivalently,

ln 2
!

!c

¼ ln2
!1

!c

þ
M2

2"2
ln

c

c 1

: (40)

Phase 1 stops when, on the right-hand side of the slow-

roll inflaton equation of motion (2) for !, the last term

becomes 1. This occurs for c ) c 2, where

c 2
2 ¼

!2
cM

2

2"2
; (41)

and ! ¼ !2 with

ln 2
!2

!c

’ ln2
!1

!c

þ
M2

2"2
ln

"

!cM
ffiffiffi

2
p

"c 1

#

(42)

’ M2

2"2
ln

"

!cM
ffiffiffi

2
p

"c c

#

; (43)

the last approximated relation being obtained under the

assumption that phase 0 can be neglected and, as a con-

sequence, that !1 ’ !c and c 1 ’ c c. It is also important

to realize that the terms 1$!2=!2
c and c 2=M2 are equal

at the onset of phase 1 and then both increase. It is therefore

necessary to check that, at the end of phase 1, the term 1$
!2=!2

c still dominates over c 2=M2. In other words, one

has to verify that c 2=M2 has increased less rapidly than

1$!2=!2
c . Using the solution for the waterfall, one has

N2 $ Nc ’
"M

2
ffiffiffi

2
p

M2
Pl

ln1=2
"

c 2

c c

#

; (44)

where N2 denotes the number of e-folds at the end of

phase 1 or, equivalently, at the onset of phase 2. Upon

using this formula, this leads to

!2
2

!2
c

$ 1 ¼ $
ffiffiffi

2
p M

"
ln1=2

"

!cM
ffiffiffi

2
p

"c c

#

; (45)

an expression that should be compared with

c 2
2

M2
¼

!2
c

2"2
: (46)

We see that the condition !2
2=!

2
c $ 1 + c 2

2=M
2 is

a priori not obvious. However, in the case under scrutiny

in this article, one chooses !c and M to be roughly of the

same order of magnitude and" + MPl. As a consequence,

the condition is satisfied since !2
2=!

2
c $ 1 scales as the

inverse of " (neglecting the influence of the logarithm)

while c 2
2=M

2 scales as the inverse of "2. However, it is

also clear that one could easily design a situation where

this is not true. Here, we restrict ourselves to situations

where this does not happen.

Finally, let us express the number of e-folds produced

during phase 1. It is given by

N2 $ Nc ’
"M

2
ffiffiffi

2
p

M2
Pl

ln1=2
"

!cM
ffiffiffi

2
p

"c c

#

: (47)

Upon using Eq. (25), one could also replace c c by its

expression in the above equation to obtain a formula

depending on the initial conditions. We see that the number

of e-folds during phase 1 is essentially controlled by the

ratio "M=M2
Pl. This conclusion is in agreement with the

results of Ref. [58]. As a consequence, for "M=M2
Pl > 1,

FIG. 4 (color online). Exact numerical solution for the inflaton (left panel, solid blue line) and waterfall (right panel, solid blue line)

fields. The red dotted lines represents the slow-roll analytical solution during phase 1.
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N2 $ Nc can be large. Hence, we conclude that the number

of e-folds during the waterfall phase can indeed be much

greater than the 60 required for inflation to be successful,

as was noticed in Ref. [27]. The previous considerations

allow us to identify where, in the parameter space, this

regime occurs. We have studied this classical phase of

evolution in some detail because this regime is of particular

interest for the present article. Indeed, in the next section,

we show that in this case the quantum effects play an

important role.

Let us now briefly mention phase 2 (it was studied in

more detail in Ref. [58]). This time one needs to keep the

last term in the inflaton equation of motion (2). This means

that the evolution for ! is modified and, as a consequence,

the formula giving c ðNÞ is no longer valid since it made

use of the evolution for! established before. In this regime

Eqs. (2) and (3) become fully coupled. However, it is still

possible to find the slow-roll trajectory in the field space.

One obtains [58]

d!

dc
¼

!c

!2 $!2
c

(48)

which can be easily integrated, and the solution reads

c 2 ¼ c 2
2 þ!2 $!2

2 $ 2!2
c ln

!

!2

: (49)

This expression (green dotted line) is compared to the

exact numerical solution (blue solid line) in Fig. 5.

Clearly, the agreement is excellent. During phase 2, infla-

tion stops and the system starts oscillating around one of

the two true minimums of the potential. This is the onset of

the reheating phase.

The above considerations complete this section. Having

mastered the classical dynamics of the fields in the valley

and during the waterfall regime, we are now in a position

where we can turn to the main topic of this article, namely,

studying the role played by the quantum effects. This is the

goal of the next section.

III. STOCHASTIC EFFECTS

In this article, we use the stochastic inflation formalism

to study the quantum effects. In this formalism, an effective

Langevin equation can be derived for the ‘‘coarse-grained’’

field, i.e. the original field averaged over a physical vol-

ume, the size of which is typically larger than the Hubble

radius H$1. Applied to the case of hybrid inflation, one

obtains two coupled Langevin equations for the inflaton

and the waterfall fields, respectively. They read

3H2
d!

dN
¼ $

2!4!

"2

"

1þ
2c 2"2

!2
cM

2

#

þ
3H3

2%
&!ðNÞ ; (50)

3H2
dc

dN
¼ $

4!4

M2
c

"

!2 $!2
c

!2
c

þ
c 2

M2

#

þ
3H3

2%
&c ðNÞ ;

(51)

where &! and &c are two uncorrelated white Gaussian

noises with 0-mean and 1-variance. Notice that the time

variable used is the number of e-folds. It was argued in

Refs. [59–61] that this choice is preferred.

A. Can the quantum effects be important?

Having at our disposal the two Langevin equations

presented above, the first question is whether the stochastic

noises can really play an important role and, if so, where in

the field plane. This issue can be addressed in the following

manner. During a typical time interval "t ¼ H$1, both

stochastic and classical evolutions of the fields ! and c

can be read off directly from Eqs. (50) and (51). Roughly

speaking, the typical classical change in the inflaton value

is ’ M2
Plð@V=@!Þ=V, while the magnitude of the quantum

kick is H=ð2%Þ. Therefore, in order to assess the relative

contribution of the stochastic effects over the classical

ones, one can study the ratios "! and "c of these two

quantities for each field (in the context of a quartic large

field model, this is how one can deduce that the quantum

corrections dominate if the value of the field is larger than

'$1=6MPl, where ' is the self-coupling constant that ap-

pears in the potential). This amounts to taking "! )

V3=2=½2%
ffiffiffi

3
p

M3
Plð@V=@!Þ( and a similar definition for

"c . In the vacuum dominated regime, the two quantities

"! and "c read

FIG. 5 (color online). Classical background evolution of the

inflaton and waterfall fields starting from the critical point, ! ¼
!c and c ¼ 10$12MPl. The solid blue curve represents the exact

(i.e. numerical) trajectory, while the dotted red curve is the slow-

roll approximation during phase 1 and the dotted green curve is

the slow-roll approximation during phase 2. The inset shows the

overall evolution of the two fields with, in particular, the oscil-

lations around the true minimum of the potential at the end of

inflation.
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"! ¼
1

4%
ffiffiffi

3
p !2!c

M3
Pl

!c

!

"

!2
c

"2
þ 2

c 2

M2

#

$1

; (52)

"c ¼
1

8%
ffiffiffi

3
p !2M

M3
Pl

M

c

"

c 2

M2
$ 1þ

!2

!2
c

#

$1

: (53)

These quantities are plotted in Fig. 6 in the ð!; c Þ plane.
Values such that "> 1 indicate that the quantum effects

dominate. Let us now discuss how "! and "c behave in

the field plane. Clearly, "! is infinite when ! ¼ 0 for any

values of c . Therefore, the quantum effects are dominant

along that direction. In the inflationary valley c ¼ 0,

which is perpendicular to the previously mentioned direc-

tion, one has

"
valley
! ¼

1

4%
ffiffiffi

3
p !2"2

M3
Pl!

: (54)

This means that "! > 1 as long as

!

MPl

<
!valley

MPl

)
1

4%
ffiffiffi

3
p !2"2

M4
Pl

: (55)

For the parameters used in Fig. 6, one has !valley=MPl ’
94, i.e. a value much larger than the upper limit of this plot.

This means that the quantum effects dominate ‘‘very high’’

in the valley and, in particular, around the critical point.

The previous considerations explain the cross-shaped

white region centered at the origin observed in Fig. 6. In

this regime, one expects a faithful description of the system

to be obtained only if the stochastic noises for the two

coupled fields are taken into account. In the following, we

study this case, where treating one field (for instance, the

inflaton) classically and the other (the waterfall field)

stochastically is a priori not a good approximation.

Of course, these results also depend on the parameters,

in particular, on !. It is interesting to determine the value

of! ) !! such that!valley ¼ !c. This value indicates the

limit between the regime where it is mandatory to take into

account the noise both in the inflaton and waterfall field

directions and the regime where the waterfall field is still

stochastic but where it is sufficient to treat the inflaton

classically. It is given by

!2
! ¼ 4%

ffiffiffi

3
p !cM

3
Pl

"2
: (56)

For our fiducial parameters, this leads to !! ’
5:7- 10$4MPl. Obviously, for larger values of ", !! is

even smaller. In Fig. 7, we have represented "! for the

FIG. 6 (color online). "! and "c plotted in the ð!; c Þ plane for the parameters " ¼ 3190:4MPl, M ¼ !c ¼ 0:1503MPl, ! ¼
0:014 18MPl. "! and/or "c greater than 1 (. in white on the plot) signal that the quantum effects are dominant. The stochastic effects

in the c direction obviously dominate over the classical contributions in the valley and around the critical point, while the stochastic

effects in the ! direction dominate in the valley and around the origin.

FIG. 7 (color online). "! plotted in the ð!; c Þ plane for the

parameters " ¼ 3190:4MPl, M ¼ !c ¼ 0:1503MPl, ! ¼

0:0005MPl & !!. For this value of !, "! remains small along

the valley and does not encompass the critical point. It becomes

larger than 1 only in the vicinity of the origin.

JÉRÔME MARTIN AND VINCENT VENNIN PHYSICAL REVIEW D 85, 043525 (2012)

043525-8



same parameters, except that ! ¼ 5- 10$4MPl & !!.

This plot confirms that the region "! > 1 covers a much

smaller area which does not encompass the critical point.

In that case ! should behave almost classically in the

valley, and we will also investigate this regime in

Sec. III D.

Let us now describe "c . It is infinite for c ¼ 0, that is

to say, in the valley. When c ! 0, the quantum effects are

dominant when !2=!2
c ’ 1$ c 2=M2, i.e. in the direction

! ’ !c perpendicular to the valley (in the regime where

c =M * 1). This explains the cross-shaped white region,

this time centered at the critical point; see Fig. 6. This time,

the previous considerations do not depend on !, which

means that the noise in the waterfall field should always be

taken into account in the valley and around the critical

point. Since this corresponds to a very flat region of the

potential where most of the e-folds are realized, one can

already expect the inflationary dynamics to be significantly

affected by the quantum effects.

B. Obstacles to a perturbative approach

Having justified that the quantum corrections play a

crucial role, the next question is how to compute them,

i.e. how to solve the two Langevin equations. It is clear that

an exact analytical solution is not available. However, as

proposed in Refs. [43,44], the Langevin equation can be

solved perturbatively by considering the coarse-grained

field as a perturbation on top of the classical solution.

The corresponding formalism in the case of single field

inflation was presented in Ref. [43]. However, in the

present case, we are in a two-field situation, which means

that both the inflaton and the waterfall fields must be

expanded according to

!ðNÞ ¼ !clðNÞ þ (!1ðNÞ þ (!2ðNÞ þ . . . ; (57)

c ðNÞ ¼ c clðNÞ þ (c 1ðNÞ þ (c 2ðNÞ þ . . . ; (58)

where !cl and c cl are the classical values. We see that the

corrections to the classical solutions are obtained by add-

ing successive terms of higher and higher powers in the

noise. In Ref. [43], general formulas valid at second order

are provided, leading to a Gaussian probability density

function for the field. The validity of this approach relies

on the smallness of the stochastic effects compared to the

classical ones and, obviously, the expansion is valid only in

a limited regime; see Ref. [44]. Here, we have just seen that

the quantum effects are dominant around the critical point

and, therefore, there are already reasons to guess that a

perturbative approach is not very appropriate.

Moreover, one can see that the perturbative approach is

technically impossible to carry out in a multiple field

situation since even the linearized coupled stochastic dif-

ferential equations cannot be analytically solved. Indeed,

in the hybrid inflation case, at first order in the noise, they

can be written as

d(!1

dN
þ 2(c 1

"

H!c

H
$

HcH!

H2

#

þ 2(!1

"

H!!

H
$

H2
!

H2

#

¼
H

2%
&!ðNÞ ; (59)

d(c 1

dN
þ 2(!1

"

H!c

H
$

HcH!

H2

#

þ 2(c 1

"

Hc c

H
$

H2
c

H2

#

¼
H

2%
&c ðNÞ ; (60)

where H! is the derivative of H ¼
ffiffiffiffi

V
p

=ðMPl

ffiffiffi

3
p

Þ with

respect to ! and the other notations used in this equation

straightforwardly follow. The matrix of this differential

system does not commute with itself at different times N
and, as a consequence, one cannot solve the coupled per-

turbative problem in a simple way.

C. Testing the numerical approach

For all these reasons, the only method left seems to be a

full numerical integration of the stochastic inflationary

equations. This is the method used in the present article.

Since the differential equations to be solved turn out to be

stiff most of the time, we use a fourth order Rosenbrock

method, monitoring a local truncation error to adjust step

sizes, that we have adapted to take into account the pres-

ence of an extra random stochastic term. When possible,

we have also used the Euler-Muruyama method in another

independent code in order to check our numerical results.

In this section, we describe the tests that we have per-

formed in order to check that our numerical codes work

properly. A first verification of the consistency of our

numerical treatment can be obtained in the following man-

ner. If one considers that the dynamics of ! remains

classical in the valley, then following Refs. [27,42] one

can perturbatively estimate the typical dispersion of

the waterfall field distribution (i.e. in the c direction) at

the critical point. One obtains

hc 2
cipert ’

H2"M

32%3=2M2
Pl

: (61)

Therefore, numerically, in the regime !<!! (to ensure

that the inflaton field behaves classically), one should

recover the same result. As a consequence, it is interesting

to plot the quantity ðhc 2
cinum=hc 2

cipertÞ1=2, where hc 2
cinum is

the dispersion in the waterfall direction (at ! ¼ !c) ob-

tained numerically. This quantity as a function of !=!! is

represented in Fig. 8. As it is clear from this plot, when

!<!!, the ratio ðhc 2
cinum=hc 2

cipertÞ1=2 is precisely 1, thus
showing that our code correctly reproduces the known

analytical result. We also see that when !>!!, the

perturbative regime breaks down. From what we have

just discussed, the interpretation of this result is clearly

that the stochastic effects in the ! direction play a role and
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kick the system below the critical point more rapidly. As a

consequence, the distribution in c has much less e-folds to

broaden than classically predicted, and hence hc 2
cinum <

hc 2
cipert. This behavior is similar to what has been found in

Ref. [62], where it has been shown that, in case of a

multiple field inflationary dynamics with one flat direction

and several nonflat directions, the fluctuations of the non-

flat directions can be sufficient to block the growth of the

root-mean-square amplitude along the flat direction.

The fact that hc 2
cinum deviates from hc 2

cipert precisely at

! ¼ !! is another indication of the consistency of our

numerical results.

Another type of consistency check can also be per-

formed by investigating how given realizations behave

for different values of the parameters. We present in

Fig. 9 four different examples, for four different values

of!, where four stochastic realizations (blue, cyan, purple,

and pink lines) are compared with the classical trajectory

(solid black line). The top left panel corresponds to

FIG. 8 (color online). Numerical predictions for hc 2
cinum nor-

malized to hc 2
cipert given by Eq. (61) for different values of !

normalized to !! defined in Eq. (56).

FIG. 9 (color online). Stochastic trajectories in field space for different values of !: ! ¼ !!=20 (top left panel), ! ¼ !!=10 (top

right panel), ! ¼ !! (bottom left panel), and ! ¼ 10!! (bottom right panel). The solid black line represents the classical trajectory

starting from the point !in ¼ 1:0001!c and c in ¼ 6:6- 10$5M. The blue, cyan, pink, and purple lines represent four different

stochastic trajectories. The parameters chosen are "=MPl ¼ 3190:4 andM=MPl ¼ !c=MPl ’ 0:1503. The contours "! ¼ 1 (solid red

line) and "c ¼ 1 (solid green line) are also represented.
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! ¼ !!=20. In this case, the noise is so small that the four

stochastic realizations almost follow the classical trajec-

tory. The top right panel corresponds to ! ¼ !!=10, and

the noise in the inflaton direction still plays no role in this

case (i.e. the contour "! ¼ 1 does not encompass the

critical point). One sees that, when the trajectories enter

the "c > 1 region, they start feeling the noise and that one

of them (the pink realization) is even expelled towards the

other global minimum. The bottom left panel corresponds

to ! ¼ !!, and the noise is stronger as revealed by the

‘‘shaky’’ behavior of the realizations. The contour "! ¼ 1

appears but, clearly, the noise in the waterfall direction

remains the main source of stochasticity. Finally, the bot-

tom right panel corresponds to ! ¼ 10!! and, this time,

we are in a regime where the noise in the two directions is a

priori important as indicated by the contours "! ¼ 1 and

"c ¼ 1. This is especially clear for the cyan realization

which climbs the inflationary valley. Therefore, it seems

fair to say that our numerical code gives results that are

completely compatible with elementary expectations,

which is an indication that it correctly calculates the be-

havior of the system.

Finally, by simulating a high number of realizations, we

have been able to calculate the correlation functions of

various quantities of interest as well as their probability

distributions. As an example, Fig. 10 shows the probability

density function in the ð!; c Þ plane, at different times N,

starting from a peaked distribution in the valley. One can

see that the distribution is first roughly Gaussian and goes

down the valley before setting over the critical point with

‘‘excrescences’’ growing towards the two minimums of the

potential, rendering the distribution highly non-Gaussian.

Again, this plot confirms the previous discussion and

shows that the numerical codes used in this article are

able to reproduce expected results in regimes where it is

possible to guess (or to approximately calculate) the be-

havior of the system.

In the following subsections, we present in more detail

our numerical results.

D. Number of e-folds

A first relevant well-defined physical quantity to study is

the total number of e-folds realized during inflation since it

provides a straightforward way to investigate the

deviations from the classical picture. Of course, in order

to calculate this quantity, one has to choose some

initial conditions. Here, we take !in=!c ¼ 1:0001 and

c in=M ¼ 10$9. The parameters describing the shape of

the potential are "=MPl ¼ 3190:4,M ¼ !c ¼ 0:1503MPl,

and !=MPl ¼ 0:014 18. We see that this implies

"M=M2
Pl > 1 and, therefore, we already know from the

previous section that the number of e-folds during the

waterfall phase will be large. As a matter of fact, it can

be easily estimated upon using Eq. (47). The above de-

scribed choice is made in order to illustrate our point in the

clearest way. It is important to stress that choosing other

initial conditions would not drastically modify our conclu-

sions. The classical prediction can be calculated in the

slow-roll approximation using the formulas derived above,

or using a numerical integration of the exact equations. It

leads to a trajectory such that .505 e-folds are realized in

the valley and.747 during the waterfall regime. The total

number of e-folds is therefore .1252.

Then, we have computed the same quantity (for the same

values of the initial conditions and of the parameters) in the

stochastic case. Obviously, for each realization one gets a

different number, and the corresponding distribution is dis-

played in Fig. 11. Let us now discuss this figure. Probably,

themost striking property of Fig. 11 is that the distribution is

peaked at a value which is completely different from the

classical prediction. This clearly means that strong non-

perturbative effects are at play. This also emphasizes the

necessity of using a full numerical approach.Moreover, one

sees that the stochastic contribution tends to diminish the

total number of e-folds. This fact can be intuitively under-

stood by noticing that most e-folds are realized in the region

where the potential is very flat, around the critical point.

Since this is precisely where the stochastic terms are domi-

nant, the quantum kicks remove the system away from this

region much faster than the classical roll; hence a lower

number of e-folds is realized in this region.

The tendency to escape faster from a region where the

potential is very flat can be understood analytically on the

example of small field inflation. In this single field model,

the potential is given by

Vðc Þ ¼ M4

!

1$

"

c

"

#

p
$

; (62)

where " is a mass scale. Inflation proceeds from small to

large values of the field. At the beginning of inflation, the

potential is very flat and a large number of e-folds can be

realized. For p ¼ 2, the slow-roll and the perturbative

Langevin equations can be integrated and solved exactly;

see Ref. [43]. Following Ref. [63], one can then calculate

the mean value of the total number of e-folds,

hNi ¼ $
1

2M2
Pl

Z c

c in

dc
hHi
H0

cl

: (63)

In the present case and since ! * ", one obtains

hNi ’ Nclass $
1

192%2

"

M

MPl

#

4
"

"

MPl

#

2
!

ln

"

c in

c

#

þ
1

2

"

c 2

c 2
in

$ 1

#$

; (64)

where Nclass is the number of e-folds classically realized.

From the above expression, it is clear that hNi is smaller

than Nclass since c in < c end in this model. This result

confirms the previous considerations: when the potential
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is very flat, the quantum kicks undergone by the inflaton

field push it out of the flat region and, as a consequence, the

total number of e-folds becomes smaller.

Finally, it is also interesting to study how our results

depend on the parameters of the model, especially on "

and !. As an example, Fig. 12 shows the normalized

distribution of the total number of e-folds for different

values of the parameter ". From Eqs. (16) and (17), one

can see that the classical number of e-folds realized during

both the inflationary valley and the waterfall regime in-

creases with ", which is consistent with the behavior of

the mean values of the stochastic distributions observed in

Fig. 12. Moreover, the longer the field system stays in

the flat region close to the critical point, the more its

distribution gets stochastically broadened. This means

that the dispersion of the distribution should evolve in a

similar manner, which is exactly what is seen in Fig. 12.

Moreover, if one keeps increasing ", one observes that the

mean value of the distribution saturates at a value of ’ 60

e-folds.

FIG. 10 (color online). Probability density functions in the ð!; c Þ plane, at different times N, starting from a Dirac distribution in the

valley. The parameters chosen are ! ¼ 1:063 47MPl, !c ¼ M ¼ 1:503 98MPl, and " ¼ 7:745 97MPl.
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As mentioned above, we have also studied how our

results depend on !. In the vacuum dominated regime, !

is directly related to the energy scale of inflation. This

quantity is constrained by the big bang nucleosynthesis

and by the observations of the CMBR, namely,

10$17MPl & ! & 5- 10$2MPl : (65)

The previous figures correspond to a regime where !>

!! (recall that, for the values of the parameters chosen

here, we have !! ’ 5:7- 10$4MPl) since we wanted to

study a regimewhere the noise in the two-field directions is

important. However, one can also wonder if the previous

conclusions, especially the fact that hNi<Nclass, still hold

in the regime !<!!. In Fig. 13, we have computed the

total number of e-folds as a function of !. The first thing

we notice in this plot is that, for ! * !! (indicated by the

vertical black line), the total number of e-folds and the

number of e-folds in the valley are smaller than their

classical counterparts. This is of course compatible with

the previous considerations. In the regime 10$6MPl &

! & !!, the number of e-folds in the valley is equal to

its classical counterpart as expected, since the inflaton

behaves classically but the total number of e-folds, hence

the number of e-folds in the waterfall regime, is still

smaller than Nclass. So even in the absence of noise along

the inflaton direction, the conclusion obtained before re-

mains valid. Finally, for ! & 10$6MPl, the noise is so

small that the stochastic and classical number of e-folds

are equal.

In Fig. 11, we have seen that, for ! ¼ 0:014 18MPl, one

has hNi ’ 50. Since the scales of astrophysical interest

today left the Hubble radius during inflation about 50–60

e-folds before the end of inflation, this would mean that we

could have a direct observational window on the stochastic

regime. In fact, this is not so because " ¼ 1 means that

H2=#1 ’ 1. But H2=#1 is precisely the overall normaliza-

tion of the density perturbations power spectrum which is

observed to be ’ 10$5. So, in fact, this shows that the value

! ¼ 0:014 18MPl is simply excluded by the CMBR mea-

surements. For this reason, it is interesting to plot the

FIG. 11 (color online). Distribution of the total number of

e-folds realized during inflation. Classically, 505 e-folds are

realized in the valley and 747 e-folds are realized during the

waterfall stage, accounting for a total of 1252 e-folds. Clearly

the mean value hNi. 50 is very different from the classical

value which illustrates well how important the stochastic effects

in the vicinity of the critical point are. Despite this fact, it is also

interesting to notice that, in the tail of the distribution, one can

find realizations with a total number of e-folds larger than the

classical value.

FIG. 12 (color online). Distribution of the total number of

e-folds realized during inflation, normalized by its maximum

value, for different values of ". The dependence on " of hNi is
consistent with the qualitative predictions of Sec. II. One also

notices that the dispersion of the distribution increases with the

number of e-folds realized in the flat region. This is due to the

fact that the quantum effects broaden the distribution.

FIG. 13 (color online). Total number of e-folds (blue) and

number of e-folds realized in the valley (green) as a function

of !=MPl for the parameters indicated on the plot. The two

numbers of e-folds are normalized to their classical counterparts.

The solid lines represent the mean values of the distributions,

while the colored surfaces represent the plus or minus 1 standard

deviation areas. The vertical solid black line indicates the value

of !!.
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number of e-folds performed between the moment the

system becomes classical (i.e. when "! and "c are both

smaller than 1) and the end of inflation. If this number is

smaller than .50–60, this means that the corresponding

value of! is excluded due to the above argument. The plot

is represented in Fig. 14. We see that for! * 10$2MPl, the

number mentioned above is indeed smaller than 60. All

these values are therefore excluded. This means that for

values of ! such that !! & ! & 10$2MPl, we are in a

regime where the perturbations are not too large to be

directly in contradiction with the CMBR (of course this

does not guarantee that the correct normalization can be

obtained) and where it is mandatory to take into account

the stochastic effects in the two-field directions. If

10$6MPl & ! & !!, the stochastic effects dominate

only in the c direction, both in the valley and the waterfall

phase. For 10$8MPl & ! & 10$6MPl, the waterfall regime

becomes completely classical and, finally, for ! &

10$8MPl, the noise becomes so small that the full evolution

in the valley and in the waterfall region can be described

classically.

Let us end this subsection with some remarks. We have

seen that the stochastic number of e-folds is smaller than its

classical counterpart as soon as ! * 10$6MPl. If ! *

!! ’ 5:7- 10$4MPl, we are in a two-field regime.

Moreover, if ! * 10$2MPl, the stochastic effects are so

strong that the model is in contradiction with the amplitude

of the CMBR fluctuations. We expect these conclusions to

be very roughly independent of the choice of the other

parameters, provided, of course, that one remains in the

regime described in Sec. II A. In fact, to go further,

one should explore the full parameter space, and one

should carefully apply Cosmic Background Explorer nor-

malization to the model. When the waterfall regime plays

an important role, this is not a trivial task.

E. Inflation exit point

Another relevant physical quantity is the inflation exit

point, i.e. the location in the field space where inflation

stops. The details of the subsequent (p)reheating phase

strongly depend on these initial conditions, which are

therefore important physical quantities [64,65]. Inflation

stops when the system crosses the #1 ¼ 1 level line in the

field space. As a consequence, the exit point is necessarily

located on this level line. It can be characterized by the

angle ) between the line joining the closest minimum to

the origin and the line joining this same minimum to the

exit point. This parametrization and the #1 ¼ 1 contours

are represented in Fig. 15. Since the stochastic effects

taking place in the valley quickly render the distribution

symmetrical in c , the two minima are in fact put on an

equal footing. Using the same method as before, one can

calculate the classical prediction for this angle ) and

compare it with the corresponding stochastic distribution.

The result is shown in Fig. 16.

Here again, several comments are in order. First, unlike

the distribution of the number of e-folds, the classical

prediction lies within the stochastic distribution. It is

even more remarkable that the distribution is very narrow.

A priori, this is a surprising fact since the stochastic

realizations in the vicinity of the critical point are

extremely noisy, as can be seen in Fig. 9. Even if the

FIG. 14 (color online). Number of e-folds realized between the

exit of the stochastic regime (i.e. the moment where "! and "c

are both smaller than 1) and the end of inflation. The cruxes

stand for the mean values of the distributions, and the colored

surfaces stand for the plus or minus 1 standard deviation areas.

The horizontal dotted red line represents the total number of

e-folds calculated in the absence of noise. The horizontal dotted

orange line is the number of e-folds realized in the waterfall

region in the absence of noise. Finally, the horizontal green

dotted line represents the minimal number of e-folds required for

inflation to be successful, i.e. 60.

FIG. 15 (color online). Level lines #1 ¼ 1 in the ð!; c Þ plane.
The parameters chosen are the same as in the other plots. The red

rhombus sits at the critical point, while the two green ones are

located at the two minima. The definition of the angle ) is shown

for a trajectory leaving the inflationary region (i.e. crossing the

#1 ¼ 1 line) at the black square.
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stochastic trajectories are very different from one realiza-

tion to another and spread over a large area in the field

space, they eventually gather at the end of the waterfall

phase to exit inflation at nearly the same point. We interpret

this property in the following manner. Around the critical

point, as was already mentioned before, the noise is quite

strong and it quickly kicks the fields out of this region. As a

consequence, the fields eventually land in a region where

the noise is subdominant. Therefore, from that point, the

fields will follow a classical trajectory. If there is a classical

attractor, all the trajectories will converge towards this

particular path, and inflation will always stop at the same

point. This analysis is confirmed by Fig. 17, where we have

plotted in the field plane the flow lines of the classical

equations of motion, Eqs. (2) and (3). As can be seen in the

figure, after crossing the "c ¼ 1 and "! ¼ 1 level lines,

which implies that the fields enter a region where the

stochastic terms are subdominant, all the classical trajec-

tories merge into a single one before crossing the #1 ¼ 1

level line and thus exiting the inflationary region. Then,

one can check that this point corresponds to the angle )

singled out in Fig. 16. This classical attractiveness can also

be formally established by studying the Lyapounov expo-

nent, in the direction orthogonal to the flow tangents. We

conclude that, despite the strong quantum effects under-

gone by the fields during the inflationary phase, the exit

point is always the same (approximately, of course) in

hybrid inflation. Moreover, this point turns out to be the

classical one which provides a straightforward way to

calculate its location.

IV. CONCLUSION

Let us now summarize our main findings.We have found

that the quantum effects play an important role in hybrid

inflation, especially in the vicinity of the critical point (this

seems to be a general feature of multiple field models of

inflation, as soon as flat directions are present in the

potential). As a consequence, the classical picture pre-

sented in Sec. II has to be substantially modified. This

can be done in the framework of stochastic inflation, where

the inflationary dynamics is driven by two coupled

Langevin equations. Given that the stochastic effects can

be strong in the two directions in field space, we have used

a numerical approach to solve these equations. Then, we

have derived the distributions of two relevant quantities,

namely, the total number of e-folds realized during infla-

tion and the exit point. We have shown that, when the

stochastic noise plays a role, the distribution of the number

of e-folds is peaked at a value which is different from the

classical prediction. This is due to the fact that, in the

neighborhood of the critical point, the potential is very

flat and the quantum kicks quickly move the system away

from this region. On the other hand, the distribution of the

exit point of inflation leads to conclusions which are ap-

parently at odds with this picture since it is extremely

peaked over the classical prediction. But, in fact, this

property is due to the attractiveness of the classical flow

and is not at all in contradiction with the previous

considerations.

An important question that remains to be addressed in

more detail is the impact of our results on the observable

predictions of hybrid inflation. For instance, it would be of

utmost importance to study how the quantum effects can

modify the power spectra of cosmological fluctuations. It

was recently emphasized in Ref. [26] that hybrid inflation

can lead to a red spectrum, and it would be interesting to

investigate the influence of the quantum effects on this

prediction, both for the adiabatic and entropy modes

[66]. Also, the explicit computation of the probability

density functions in the field space provides us with a

FIG. 17 (color online). Flow map of the classical slow-roll

dynamics equations. Regardless of their initial conditions, all the

trajectories end up at the same exit point.

FIG. 16 (color online). Numerical distribution of the exit angle

). The parameters are the same as in the other figures. The red

line corresponds to the classical prediction. We notice that the

distribution is extremely peaked, ")=). 10$3.
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means to calculate the non-Gaussianities of this model. We

intend to come back to those issues in the future. Maybe

the most important conclusion of our work is that the

richness of multiple inflation—namely, the presence of

entropy modes a priori produced during the waterfall

regime, the highly nontrivial phase of preheating, and the

strong quantum effects—implies that it is not simple to

derive the corresponding observable predictions and that,

most of the time, these ones cannot be obtained in a simple

single field effective model. This is an important conclu-

sion that one should keep in mind when analyzing the

future high accuracy CMB data and their implications for

inflation.
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Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the

duration of which is determined by stochastic effects and has important observational implications.

Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding

article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of

backreaction, this method is shown to converge in the valley but points toward an (expected) instability in

the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in

the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical

point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the

possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature

perturbations by an Oð1Þ factor when compared with the usual slow-roll contribution.
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I. INTRODUCTION

Inflation is currently the leading paradigm attempting to

shed light on the physics of the very early Universe. It

describes a phase of accelerated expansion, which solves

many problems of the hot big bang scenario [1–8]. Inflation

further provides a causal mechanism for generating fluctu-

ations on cosmological scales, and it predicts that their

spectrum should be almost scale invariant, with small de-

viations from scale invariance which can be traced back to

the precisemicrophysics of inflation [9–14]. This prediction

is consistent with the current astrophysical observation,

such as the CMB, including the measurement of the cosmic

microwave background anisotropies. For this specific ob-

servable, the latest results [15–17] give a slightly red-tilted

spectral index nS ’ 0:96, ruling out exact scale invariance

nS ¼ 1 at over 5! and allowing us to constrain the infla-

tionary models still allowed by the data [18].

With the ever-increasing precision of the experiments

probing this window into the early Universe, it is now very

important to develop robust and self-consistent methods

for calculating inflationary predictions. For example, in

the context of multifield inflation, it is complicated to

disentangle the gravitational and matter degrees of free-

dom when describing fluctuations produced in the scalar

fields using traditional methods. Typically, approximations

are used to make the problem tractable, but these

approximations ignore backreaction, that is, the effects of

these fluctuations on the background spacetime and field

trajectory. Restoring or even assessing the importance of

these neglected effects then becomes extremely nontrivial,

and it has been shown that such effects can have a crucial

impact on the inflationary dynamics [19–22] (see also

Ref. [23] for a review of early work).

Oneway to resum these effects, at least partially, is tomake

use of the stochastic inflation formalism [24–34]. The basic

strategy is to derive an effective theory for the long-

wavelength part of the fields, which are ‘‘coarse grained’’ at

a scale larger than the Hubble radius. In this framework, the

small-scale quantum fluctuations play the role of a ‘‘bath’’

and are collected in classical noise terms which affect the

dynamics of the coarse-grained fields. The super-Hubble

physics can thus be described by a stochastic classical theory.

The corresponding equations can be derived by making

use of the Schwinger-Keldysh closed time path formalism

[35–38], where the strategy is to split the degrees of free-

dom of the full quantum fields in momentum space through

a window function, and perform the path integral over

the small-scale fluctuations. In Ref. [39], this Lagrangian

formulation of the theory is used to develop a recursive

method for solving the stochastic equations when the

background spacetime is taken to be dynamic. It is this

recursive method which we now apply to models of multi-

field inflation, and specifically to hybrid inflation.

At the energy scale of inflation (typically around

1015–1016 GeV), particle physics remains elusive, leaving

room for a large variety of different inflationary scenarios.
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However, the supersymmetry- and supergravity-based ex-

tensions of the standard model of particle physics yield a

well-motivated model, hybrid inflation [40,41], which can

be realized in various ways in the context of F-term or

D-term inflation [42–45]. Hybrid Inflation is a two-field

model in which inflation is driven by a light inflaton field in

a valley, where the potential is dominated by a vacuum

constant, and where the inflaton vacuum expectation value

(vev) tunes the mass of an auxiliary field that becomes

imaginary at some critical point, triggering the end of

inflation by a ‘‘waterfall’’ phase. This auxiliary field is

thus called the ‘‘waterfall field.’’ This model is known to

lead, in the valley, to a blue spectrum nS > 1 for the

cosmological fluctuations, a prediction which is strongly

disfavored by current observations.

However, it was shown [46,47] that, in some regions of

parameter space, a significant number of e-folds can occur
in the waterfall regime. In this case, it was also demon-

strated that the spectral index becomes red, eliminating this

tension. Since the duration of the waterfall phase is deter-

mined by the stochastic dispersion of the waterfall field at

the critical point, it is therefore crucial to compute this

quantity accurately, and to properly include the stochastic

effects in the description of the model.

Moreover, in Ref. [48], it was shown that stochastic

effects can significantly alter the inflationary background

dynamics in the context of hybrid inflation, especially

close to the critical point where the two-field potential is

very flat and where one enters a regime of stochastically

driven saddle-point inflation. Backreaction is therefore

expected to be important in this case. The associated

mode coupling effects were investigated in Ref. [49].

In the current paper, these issues are addressed by ap-

plying the new recursive method developed in Ref. [39] to

the specific example of two-field hybrid inflation poten-

tials, to illustrate how this formalism can be implemented

and how it yields new results when compared with standard

techniques for computing observables of inflation beyond

the leading order. The outline of the strategy is to first

calculate the background evolution in the presence of a free

noise, then calculate the corrected quantum noise on this

shifted background, to finally come back to the back-

ground, coarse-grained dynamics shifted in light of the

fluctuations, and so on until the process converges. We

demonstrate the convergence of this method in the valley

region, where the usual QFT methods of perturbation

theory are known to be under control. In doing so, we

calculate modified predictions emerging from a consis-

tently implemented nonperturbative method for cosmo-

logical observables such as the tilt of the CMB power

spectrum. Most interestingly, we identify regimes of hy-

brid inflation where stochastic effects dominate over regu-

lar perturbative corrections.

One of the main interests of this program of research is,

however, the waterfall phase, where backreaction and

mode coupling effects are expected to be important. We

discuss important implications of the findings of the

current work for this phase, but plan to pursue a more

thorough study of the waterfall phase in the future.

The paper is organized as follows. In Sec. II, the back-

ground classical dynamics of valley hybrid inflation is

computed, and the recursive approach to stochastic infla-

tion of Ref. [39] is presented. A first-step massless de Sitter

solution, valid up to leading order in ℏ and to zeroth order

in slow roll, is presented.

In Sec. III, we calculate the value of the noises up to

next-to-leading order in ℏ and to leading order in slow roll.

To do so, we make use of the fact that solving for the

propagators of the bath fields at this order is equivalent to

solving the linearized quantum mode functions in a shifted

background. We compute the amplitude of these linear

perturbations in both fields, and identify different regimes

for the waterfall field fluctuation evolution.

In Sec. IV, the corresponding modified amplitudes of the

noise terms are implemented in the stochastic equations.

Their effect on the mean deviation in the waterfall direc-

tion is carefully computed. Short-lived waterfalls are

shown to be unlikely, since the quasistationary time be-

havior of the auxiliary field distribution breaks down in this

regime, reducing its quantum dispersion at the critical

point, hence lengthening this stage. Furthermore, an analy-

sis of backreaction shows that the recursive process

converges in the valley but blows up in the waterfall,

suggesting perturbative instability there.

In Sec. V, we study how the classical inflation perturba-

tions beyond zeroth order in the slow-roll expansion

are influenced by stochastic effects, in particular, when it

comes to the curvature perturbations’ spectral tilt. We

obtain that the stochastic effects worsen the blue-tilt prob-

lem, by a factor Oð1Þ compared to the usual slow-roll

contribution. Finally in Sec. VI, we summarize our main

findings and suggest possible further investigations.

II. VALLEY HYBRID INFLATION

The potential of hybrid inflation in the field space

ð!;"Þ, where ! is the inflaton and " the waterfall field,

is given by

Vð!;"Þ ¼
1

2
m2!2 þ

"

4
ð"2 % v2Þ2 þ

g2

2
!2"2: (1)

The true minima of the potential are located at ! ¼ 0 and

" ¼ &v, while the instability point is given by

!2
c ¼

v2"

g2
; "c ¼ 0: (2)

It is usually assumed that hybrid inflation occurs in the

vacuum-dominated regime, for which !c<!'"1=2v2=m
and" ' v. In this approximation, the first slow-roll parame-

ter in the valley (!>!c, " ¼ 0) is given by "1 ’
8m4#2M2

Pl=ð"
2v8Þ; hence for the slow-roll approximation
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to be satisfied in the valley, one must assume that "v4 (
m2!cMPl, whereMPl is the reduced Planckmass. In the same

manner, the smallness of the second slow-roll parameter

"2 ’ %8M2
Plm

2=ð"v4Þ ' 1 implies the more stringent con-

dition "v4 ( m2M2
Pl (one then has "1 ' "2). In this case,

the total energy density is dominated by the constant term of

the potential $ ’ V ’ "v4=4. Motivated by the supersym-

metric version of the model, we also take !c ’ v or, using

the definition of !c in terms of the potential parameters,

"1=2 ’ g. Finally, in order for the model to be consistently

derived, inflation must proceed at small values of the fields

(compared to the Planckmass), and one can consider that!c,

v ' MPl. The constraints on thepotential parameters coming

from these considerations and the ones below are collected in

Appendix A, together with a summary of the notations used

throughout the paper.

Taken literally, this model produces a blue tilt for the

spectrum of cosmological perturbations [50] when infla-

tion is realized in the valley,

ns ’ 1% "2 ’ 1þ 8
M2

Plm
2

"v4
: (3)

Recently, to alleviate this problem, it has been suggested to

realize the last 60 e-folds of inflation in the waterfall phase
[51]. In order to do so, one must choose the parameters of

the potential in order for a sufficiently large number of

e-folds to be realized in the waterfall phase, making the

model behave in a fashion effectively similar to a (multi-

field) hilltop model. The duration of this stage being de-

termined by the mean stochastic shift of the waterfall field

at the critical point, an accurate calculation of the preced-

ing stochastic effects in the valley is crucial to determine

whether such a scenario is viable or not.

Note that one could also choose to glue a different

potential for the inflaton in the valley phase, chosen spe-

cifically in order to produce the desired tilt, and then use

the symmetry breaking shape of the hybrid potential for the

sole purpose of ending inflation (see, e.g., Refs. [52–54]).

However, as we will see, when choosing the potential, one

has to be careful that stochastic effects do not reintroduce

the blue tilt. In any case, m2#2 is the simplest choice for

the inflaton potential, and in the absence of special sym-

metries (e.g., conformal symmetry), such a term will be

present and will dominate at small field values. Thus, as a

toy model for multifield inflation, the terms included in

our potential are the lowest-order terms one would expect

to find.

A. Classical dynamics

In this subsection, we study the classical behavior of

the inflaton and waterfall fields at the background level,

which represents the first step of the recursive method

presented below. The slow-roll equations controlling the

evolution of the classical background fields ’ð0Þ and %ð0Þ

can be expressed as

3H2
d’ð0Þ

dN
’ %m2’ð0Þ

!

1þ
g2%ð0Þ2

m2

"

; (4)

3H2
d%ð0Þ

dN
’ %"v2%ð0Þ

!

’ð0Þ2 %!2
c

!2
c

þ
%ð0Þ2

v2

"

; (5)

with

H2 ¼
1

3M2
Pl

$ ’ "v4

12M2
Pl

: (6)

The superscript ð0Þ denotes a background, homogeneous

quantity, and H ¼ _a=a is the Hubble parameter with the

dot standing for a derivative with respect to cosmic time t.
The quantity N is the number of e-folds, N ) ln ða=aiÞ,
where1 ai is the scale factor at an initial reference point.

If inflation starts beyond the critical line ! ¼ !c, the

system very quickly reaches the region where %ð0Þ ' v

and inflation is driven by the inflaton ’ð0Þ which slowly

rolls down towards the critical point, while the waterfall

field %ð0Þ first undergoes damped oscillations at the bottom

of the valley, before experiencing a short, simple damping

regime. Defining

!ðNÞ ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
16

3

M2
Pl

v2

’ð0Þ2ðNÞ

!2
c

% 1

1þ 2m2

"v4 ’
ð0Þ2ðNÞ

s

; (7)

the homogeneous time evolution of these two fields is

given by

’ð0Þ¼’inexp

!

%4
M2

Plm
2

"v4
N

"

;

%ð0Þ¼

8
><

>:

%in
e%3N=2
ffiffiffiffiffiffiffiffiffiffi

2!ðNÞ
p ½C1e

IðNÞþC2e
%IðNÞ+ if ’ð0Þ

!c
>1þ 3

32
v2

M2
Pl

;

%inexp
h

%4
M2

Pl

M2

$

’in

!c
%1

%

N
i

if ’ð0Þ

!c
<1þ 3

32
v2

M2
Pl

;

(8)

where ’in and %in are the initial inflaton and waterfall

values, C1 and C2 are integration constants, and where

IðNÞ is given by

IðNÞ ’ %

ffiffiffi

3
p

MPl

"v3

2m2

2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’ð0Þ2

!2
c

% 1

s

% arctan

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’ð0Þ

!2
c

% 1

s 1

A

%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’2
in

!2
c

% 1

s

þ arctan

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

’2
in

!2
c

% 1

s 1

A

3

5: (9)

From the previous equations, the total number of e-folds
spent in the valley is

Nc ¼
"v4

4m2M2
Pl

ln

!

’in

!c

"

: (10)

1The cosmological scale factor is denoted by aðtÞ.
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It is typically a large number because of our assumption

"v4=ð2m2Þ ( M2
Pl. Finally, the value of % at the end of this

stage reads

%
ð0Þ
c ¼ %in exp

&

%2
"v2

m2

!

’in

!c

% 1

"

ln

!

’in

!c

"'

: (11)

With the assumptions made above on the potential parame-

ters, this value is typically so small that it is completely

washed out by the quantum noise that we calculate in the

rest of the paper. The number of e-folds spent during the

waterfall phase is given by [48,55]

Nend % Nc ’
"1=2v3

4mM2
Pl

ln 1=2

!

m

g%c

"

: (12)

From this, if one is interested in the regime where the

required ,60 e-folds of inflation take place during the

waterfall phase, one needs to work with "1=2v3 ( mM2
Pl.

Note that a more detailed description of the waterfall phase

is reviewed in Appendix B.

Finally, inflation stops when "1 ¼ 1, and the system

starts oscillating around one of the two true minima of

the potential, triggering a phase of (p)reheating [56–59].

B. Stochastic formalism and recursive strategy

The previous subsection details the dynamics of two

classical fields ’ð0Þ and %ð0Þ, each obeying a homogeneous

Klein-Gordon equation. The system we are interested in

studying, however, is a system consisting of two inhomo-

geneous four-dimensional quantum fields, ! and ".

Solving the full Heisenberg field equations that they obey

in curved spacetime is, in general, impossible with current

techniques, and so different approximation schemes are

typically applied to make the calculations tractable.

One such strategy is to derive an effective theory for the

classicalized, long-wavelength part of the fields, which can

be shown [60,61] to behave as a classical stochastic sys-

tem. The super-Hubble Fourier modes of the full quantum

fields, corresponding to scales with k < &aH (&< 1 being

a small dimensionless parameter setting the averaging

scale and collecting only the super-Hubble sufficiently

squeezed and decohered modes), are collected into

coarse-grained fields ’ and %. These coarse-grained fields

evolve in the presence of a quantum bath made of the

remaining, sub-Hubble modes with k > &aH, which are

collected using a window function WHðk; tÞ in the Fourier

expansion of the corresponding full quantum fields. The

fields of the quantum bath and the coarse-grained fields

are thus given by

#> ¼
Z d3k

ð2'Þ3
WHðk; tÞ½#kâke

%ix-k þ#.
k
ây
k
eix-k+; (13)

’ ) !%#>;

c> ¼
Z d3k

ð2'Þ3
WHðk; tÞ½c kb̂ke

%ix-k þ c .
k
b̂y
k
eix-k+;

% ) "% c>; (14)

where the quantum bath fields have been written in terms

of their linearized mode functions #k and c k, and the

creation and annihilation operators ây
k
, âk, b̂

y
k
, b̂k.

Because Fourier modes constantly cross the Hubble

radius during inflation, leaving the quantum bath to join

the coarse-grained fields, the quantum bath sources the

coarse-grained part of the fields. This effect adds to the

equations of motion a stochastic noise term, yielding, to

leading order2 in ℏ,

3H2
d’

dN
¼ %m2’

!

1þ
g2%2

m2

"

þ 3H(#ðNÞ; (15)

3H2
d%

dN
¼ %"v2%

!

’2 %!2
c

!2
c

þ
%2

v2

"

þ 3H(c ðNÞ; (16)

where (# and (c are two uncorrelated white Gaussian

noises with zero mean and variance given by

h(#ðNÞ(#ðN
0Þi ¼ &3H5

2'2
a3j#kj2k¼&aHð1% 2"1Þ)ðN % N0Þ;

(17)

h(c ðNÞ(c ðN
0Þi ¼ &3H5

2'2
a3jc kj2k¼&aHð1% 2"1Þ)ðN % N0Þ:

(18)

Here, c k and #k are evaluated at the time when they join

the coarse-grained scales.

In principle, other noise terms arise in Eqs. (15) and (16),

which are either suppressed by factors of "1 ' 1, or come

fromhigher-order contributions of the loop expansion in the

quantum piece of the fields, and are therefore suppressed by

higher powers of ℏ. The latter contribution mainly imple-

ments mode coupling effects, which are not taken into

account in the current paper.

Notice that the time variable used in these equations

is the number of e-folds N, since it was shown in

Refs. [62,63] that this time gauge must be used to describe

the stochastic dynamics of the gauge-invariant Mukhanov

variables for the fields. Other choices of the time variable

would, in principle, correspond to different stochastic pro-

cesses. However, note that, under the vacuum-domination

approximation (which we are assuming here), the mapping

between number of e-folds, cosmic time and conformal

2We work in units where ℏ ¼ 1 throughout the paper, and we
will not write explicitly the factors of ℏ, to avoid making the
notation heavier. However, the power counting from the expan-
sion in ℏ should be straightforward to restore from the text.
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time is nonstochastic, and one can equivalently work in

different time gauges.

Equations (15) and (16) are Langevin equations that

describe Markovian processes, which means that instead

of having to solve a single equation of motion (single

‘‘realization’’), one now has to calculate a whole probabil-

ity distribution $ð’;%; NÞ over many realizations, through

a Fokker-Planck equation. Expectation values of function-

als of the stochastic fields, in particular, their correlation

functions, can be calculated by averaging over realizations

using $ as an integral kernel [34].

One can see that the noise amplitudes appearing in

Eqs. (17) and (18) at a given time N are computed from

the amplitudes of the linearized Fourier modes of the bath

fields crossing the &-scaled Hubble radius at time N. This

simple form holds only if one chooses the window function

entering the definition of the quantum fields to be a

Heaviside step function, with a transition at k ¼ &aH
(for a discussion of the influence of the choice of the

window function, see e.g., Refs. [64,65]). Regardless of

the choice of window function, one needs to solve the

linearized Fourier mode function equations for each field

and evaluate the solutions#k and c k at Hubble crossing in

order to obtain the noise amplitudes.

We therefore obtain a system of two coupled sets of

equations: on one hand, the set of Langevin equations for

the two stochastic processes ’ and %, and, on the other, the

set of linearized mode function equations for #k and c k.

This is where the recursive strategy of Ref. [39] comes into

play. Let us see how it proceeds. One should keep in mind

that the Langevin equations (15) and (16) arise from a

Lagrangian theory, in which the small-wavelength fluctua-

tions are integrated out to yield an effective theory for

the coarse-grained field. Such fluctuations are evolved

by equations of motion that involve coarse-grained—or

‘‘background’’—quantities, the dynamics of which is itself

shifted by these small-wavelength fluctuations. This forms

a closed system of equations that is, in general, very

difficult to solve. Indeed, at each time N, one needs to

compute the amplitude of the modes that are crossing

the Hubble radius, which depends on the previous history

of the background, which is itself determined by the am-

plitude of all the modes that previously crossed the Hubble

radius.

Considered as a whole in this manner, the process stops

being Markovian since the amplitudes of the noise at a

given time N depend on all the realizations of the noises at

previous times N0 <N, and one needs to assign a so-called

‘‘prescription’’ * 2 ½0; 1+ to the Langevin equations

(which determines at which point N þ *dN the noises

must be calculated when the fields are incremented

between N and N þ dN, when defining the Langevin

dynamics as a limit of a discrete stochastic process). The

resulting integro-differential equation becomes, in prac-

tice, impossible to solve.

However, as argued in Ref. [39], a perturbative solution

can be obtained by recursively solving a sequence of

Markovian processes. To this end, one first evolves the

linearized Fourier mode functions for each field to zeroth

order in the slow-roll parameters and to leading order in ℏ.

This means evolving the mode equations truncated as if

they were massless equations over exact de Sitter space.

This enables one to calculate the (zeroth-order) noise

amplitudes at each time N, and to obtain the corresponding

driving term at each time in Eqs. (15) and (16), giving

us the leading ℏ quantum effects to the coarse-grained

equations. Solving the latter, now keeping only terms to

zeroth order in slow roll and leading order in ℏ, then

provides one with the shifted (or renormalized) associated

background fields.

One can then solve again the equations of motion for the

linearized mode functions of the quantum fields, this time

in the presence of a ‘‘mean’’ background calculated from

averaging over many realizations of the coarse-grained

system described by the Langevin equations at this order

(or using the probability density function obtained by

solving the Fokker-Planck equation). This enables one to

calculate new noise amplitudes which include corrections

of leading order in slow roll and next-to-leading order in ℏ

(note, however, that at this point one cannot yet make

predictions about the classical spectrum of perturbations).

From these noise amplitudes valid to higher order, one

can go back to the Langevin system for the coarse-grained

fields, Eqs. (15) and (16), and find new, corrected solutions.

These will now be valid up to next-to-leading order in ℏ

and to leading order in slow-roll parameters. From these

corrected solutions to the classical system, one can study

classical perturbations of the coarse-grained fields and

make predictions beyond zeroth order in slow roll, for

example, for the spectral index.

One can keep solving recursively the linearized mode

functions (describing the quantum bath and required to

calculate the noise amplitudes) and the Langevin equations

(describing the coarse-grained classical fields) until one

reaches the required level of accuracy. If such a process

converges towards a limit point, it should be close to the

actual solution of the implicit closed equations. If, on the

contrary, it does not possess any fixed point, this should

be interpreted as a sign that the backreaction effects may

be out of control and that the whole model is under

pressure. In any case, performing such a program is of

interest, and we now carry it out for the model being

considered in this paper.

C. Coarse-grained system up to zeroth order:

Massless de Sitter solution

As a first step, let us assume that the linearized mode

functions for the bath fields, #k and c k with k > &aH, are

free and massless and evolving in a de Sitter background.

Since the potential is vacuum dominated in the valley
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phase, the de Sitter approximation seems to be well justi-

fied. The inflaton perturbations #k also need to be very

light with m ' H in order for slow-roll inflation to pro-

ceed, as already mentioned. However, the waterfall pertur-

bations c k can a priori be very massive (it is precisely the

mass of the waterfall field that quickly brings the system to

the bottom of the valley), and thus the approximation of

masslessness may be totally unjustified for this field. This

is the object of the calculation and discussion of Sec. IV.

For now, we will assume that since inflation proceeds as!

approaches the critical point, and " becomes lighter and

lighter, the approximation correspondingly becomes better

and better, so that close enough to the critical point, the

following calculation is a reliable first step.

The standard massless de Sitter solution gives

j#kj2k¼&aH ¼ jc kj2k¼&aH ¼
H2

2ð&aHÞ3
; (19)

so that, to leading order, we obtain the correlators

h(#ðNÞ(#ðN
0Þi ¼ H4

4'2
)ðN % N0Þ; (20)

h(c ðNÞ(c ðN
0Þi ¼ H4

4'2
)ðN % N0Þ; (21)

and hence the well-known H=2' noise amplitude com-

monly used in stochastic inflation. Let us now try to assess

the typical dispersion acquired by the field distributions

when subjected to the influence of these stochastic effects.

The importance of the stochastic effects in the ! direc-

tion can be estimated through the ratio, which we call #!,

of the mean magnitude of the quantum kickH=ð2'Þ during
a typical time interval of one e-fold, to the typical classical
change in the inflaton value ’ M2ð@V=@’Þ=V during the

same time interval. In the valley close to the critical point,

one obtains

#! ¼
1

16
ffiffiffi

3
p

'
"g

v5

m2M3
Pl

: (22)

If #! ' 1, the inflaton dynamics in the valley phase is

dominated by its classical drift so that the classical solu-

tion (8) can be used in Eq. (16). We will restrict our

attention to this case. In particular, we will not consider

the eternal version of hybrid inflation which is obtained if

the mass is chosen to be so small that ## ( 1. Letting

x ) e
%8

M2
Pl
m2

"v4
ðN%NcÞ; (23)

the % equation of motion (16) can be rewritten as

d%

dx
¼

"v2

2m2

x% 1

x
%%

ffiffiffiffiffi

3

2x

s

(c ðxÞ

m
; (24)

where (c ðxÞ shares the same statistical properties (18) as

(c ðNÞ, replacing N by x in the delta function argument.

The solution to this equation is given by

%ðxÞ ¼ C exp

&

"v2

2m2
ðx% ln xÞ

'

%

ffiffiffi

3

2

s

exp

&

"v2

2m2
ðx% ln xÞ

'

/
Z x

1
exp

&

%
"v2

2m2
ðx0 % ln x0Þ

'

(c ðx
0Þ

m

dx0
ffiffiffiffi

x0
p ; (25)

where C is a constant of integration. It is set to C ¼ 0,

provided one assumes an initial delta distribution for % at

’ ( !c (i.e., x ! 1). In this case, using Eq. (21), the

two-point correlation function can be calculated as

h%2i ¼ 1

384'2

"2v8

m2M4
Pl

!

m2ex

"v2x

""v2

m2

$

!

"v2

m2
;
"v2

m2
x

"

; (26)

where $ is the upper incomplete gamma function.

Therefore, the dispersion of the distribution for % is found

to be

!% )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h%2i% h%i2
q

¼
"v4

8
ffiffiffi

6
p

'mM2
Pl

!

m2ex

"v2x

""v2

2m2

$
1
2

!

"v2

m2
;
"v2

m2
x

"

: (27)

This analytical formula is compared with a numerical

integration of the Langevin equations in Fig. 1, where

the matching appears to be very good in the valley (i.e.,

for N <Nc). At the critical point where x ¼ 1, in the

limit "v2=m2 ( 1, one can make use of the asymptotic

behavior ðe=yÞy$ðy; yÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

'=ð2yÞ
p

when y ! 1, and the

previous expression reduces to

!%c
’
!

"

2'

"

3=4
!

v

3m

"

1=2 v3

8M2
Pl

: (28)

In the supersymmetric version of the model, where

!c ¼ v, one then has !%c
=v /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=MPl#!

p

, where /
signals the presence of a numerical Oð1Þ factor. Since

we are working under the #! ' 1 assumption, for light

inflaton fields compared to the Planck mass, this means

that !%c
' v. Therefore, one can safely use the approxi-

mation % ' v in Eq. (15), even when the stochastic

diffusion in the % direction is taken into account. So

one can now integrate Eq. (15). If the initial condition

for ’ is chosen to be a delta distribution, this leads to

’ ¼ exp

&

%4
m2M2

Pl

"v4
ðN % NinÞ

'

2

4’in þ 2

ffiffiffiffi

3

"

s

MPl

v2

/
Z N

Nin

exp

!

4
m2M2

Pl

"v4
n

"

(#ðnÞdn

3

5; (29)

from which one gets a distribution for ’ centered around

its classical counterpart h’i ¼ ’ð0Þ, with a constant dis-

persion given by
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!’ ¼
"v4

8
ffiffiffi

6
p

'mM2
Pl

; (30)

where Eq. (21) has been used to obtain the above. In

Fig. 1, the dispersion given by this formula is compared

with the dispersion obtained numerically, from solving

,107 realizations of the Langevin equations. The figure

confirms that !’ is indeed constant during the valley

phase (i.e., for N <Nc) and shows good agreement be-

tween numerical and analytical methods.

Let us now say a few words about the waterfall phase.

The classical dynamics of this phase is reviewed in

Appendix B, where the notations of Ref. [55] are adopted,

dividing this stage into three subphases, labeled 0, 1, and 2.

At the classical level, subphase 2 ends up with the values of

the fields given by Eqs. (B6) and (B7), which implies that

%2=v ' 1 and that’2 ’ !c. Therefore, the approximation

scheme used for the calculation of the diffusion in the %

direction in the valley is still roughly valid, as can be

confirmed by comparing with the numerical results dis-

played in Fig. 1.

On the other hand, a straightforward way to estimate the

dispersion of the distribution for % at the end of subphase 2

is to use the following qualitative argument. The stochastic

diffusion in the valley phase randomizes which minimum

of the potential is eventually taken on by the coarse-

grained field, in such a way that half of the Langevin

realizations end up in each minimum. If the classical

estimation of %2 given by Eq. (B6) is roughly correct, the

typical dispersion should be twice this value, namely,

!%2
’ 2m

g
: (31)

This expression, obtained from a heuristic argument, is

shown to agree with the numerical calculation in Fig. 1.

Equation (B7) and the fact that %c is a stochastic quan-

tity both lead to the conclusion that the value ’2 of the

inflaton at the end of phase 1 of the waterfall is also a

stochastic quantity. Going back to Eq. (B7), we see that

!%c
and !’2

can be related to each other. Using the

Gaussianity of the distribution for %c, one obtains

!’2
¼ !c

(

exp

&

%
2m

"1=4v

)

)

)

)

)

)

)

)

ln

!

m

g!c c

"
)

)

)

)

)

)

)

)

1
2

'

% exp

&

%
2m

"1=4v

)

)

)

)

)

)

)

)

ln

!

m
ffiffiffiffiffiffiffi

2'
p

g!c c

"
)

)

)

)

)

)

)

)

1
2

'*1
2

: (32)

Again, this value is compared with a numerical calculation

in Fig. 1 which confirms the validity of this approach.

This calculation provides a leading-order result for the

field dispersions !’ and !%. To go beyond this approxi-

mation, we now proceed to step 3 of our recursive method.

III. LINEARIZED MODE FUNCTION

CALCULATION

We now go back to the mode function equations for the

bath fields and solve them again, this time in the presence

of the ‘‘shifted’’ background calculated in the previous

subsection (this now represents keeping corrections up to

next-to-leading order in ℏ) and keeping corrections up to

leading order in slow roll.

As shown in Ref. [39], at this order in ℏ, the mode

functions we need to solve for correspond to the linear

perturbation equations for the scalar fields in a shifted

background. We can therefore apply here the usual meth-

ods from the theory of linearized cosmological perturba-

tions. This also means that one need not worry about mode

FIG. 1 (color online). Dispersion of the inflaton field (left panel) and of the waterfall field (right panel) during inflation. The values of

Nc and N2 are given by Eqs. (10) and (B8), respectively. The constant dispersion in the valley !’valley
(blue dotted line) and the time-

dependent dispersion !%valley
(blue solid line) correspond to the values given by Eqs. (30) and (27), respectively, while the dispersions in

the ’ direction !’2
and in the % direction !%2

(blue dotted lines) at the end of subphase 2 of the waterfall phase correspond to the value

given by Eqs. (32) and (31), respectively. The black lines correspond to numerical results coming from solving,107 realizations of the

Langevin equations.
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coupling effects at this order, at least for what concerns the

calculation of the bath propagators and noise amplitudes.3

From the split of the full fields into the bath and system

in (14) and (15), one can think about this as performing the

following expansion in the bath fields:

#>ðx; NÞ ¼ )#
ð1Þ
> ðx; NÞ þ )#

ð2Þ
> ðx; NÞ þ - - - ;

c>ðx; NÞ ¼ )c
ð1Þ
> ðx; NÞ þ )c

ð2Þ
> ðx; NÞ þ - - - ;

(33)

where the zero mode of the bath fields is zero, by defini-

tion. The background quantities are given by the homoge-

neous coarse-grained fields ’ð0Þ and %ð0Þ, and we aim at

solving for the first-order fluctuations, )#
ð1Þ
> and )c

ð1Þ
> .

The different notations referring to the different quantities

derived from the quantum fields ! and " are summed up

in Appendix A. Following the recursive scheme presented

above, in the equations of motion driving these quantities,

all the occurrences of the coarse-grained quantities ’ð0Þ

and %ð0Þ, which are stochastic quantities, shall be replaced

by their stochastic means, namely,

F½’ð0Þ;%ð0Þ+ ! hF½’ð0Þ;%ð0Þ+i; (34)

where F is any functional of the two fields. Moreover, in

order for this expansion to be consistent, we also need to

include metric perturbations. In the following, we will only

be interested in the scalar mode and will therefore neglect

the tensor modes. We choose to work in the uniform

curvature gauge at linear order in metric perturbations.

A. First-order metric perturbations

For the Friedmann-Lemaı̂tre-Robertson-Walker

(FLRW) metric at linear order, scalar, vector and tensor

metric perturbations decouple (see Refs. [66–69] and refer-

ences therein for a review of the theory of cosmological

perturbations). We therefore only need to consider scalar

perturbations at this order. For a flat FLRW spacetime, they

are parametrized by

ds2 ¼ %ð1þ 2*Þdt2 % aB;idtdx
i

þ a2½)ijð1% 2+Þ þ E;ij+dx
idxj: (35)

Using the conventions of Ref. [70], in the following we

work in the spatially flat, or uniform curvature, gauge,

which is defined by making the scale factor of the metric

homogeneous, choosing + ¼ E ¼ 0:

ds2 ¼ %ð1þ 2*Þdt2 % aB;idtdx
i þ a2dx2: (36)

This choice uniquely fixes the gauge. The Einstein

equations then reduce to

3H2*þ
k2

2a2
ðaHBÞ ¼ %

)$

2M2
Pl

; (37)

H* ¼ %4'G)q; (38)

H _*þ ð3H2 þ 2 _HÞ* ¼
1

2M2
Pl

!

)p%
2

3
k2)%

"

; (39)

ð@t þ 3HÞ
B

2a
%

*

a2
¼

)%

2M2
Pl

; (40)

where % stands for the anisotropic stress, which we set to

zero from now on since it cannot be seeded by scalar field

matter to linear order in perturbation theory. The total

density and momentum perturbations are given by

)$ ¼ _’ð0Þð) _#
ð1Þ
> % _’ð0Þ*Þ þ _%ð0Þð) _c

ð1Þ
> % _%ð0Þ*Þ

þ V;!ð’;%Þ)#
ð1Þ
> þ V;"ð’;%Þ)c

ð1Þ
> ; (41)

)q ¼ _’ð0Þ)#
ð1Þ
> þ _%ð0Þ)c

ð1Þ
> ; (42)

where V;! and V;" stand for the derivatives of the potential

with respect to the fields ! and ", evaluated at their

coarse-grained values. In order to obtain equations for

#> and c> only, one just needs to consider the first two

Einstein equations in Eqs. (37)–(40), that is, the G0
0 and G

0
i

equations, which can be expressed as

%
H

a
k2B¼ 8'G½ _’ð0Þ) _#

ð1Þ
> þV;!)#

ð1Þ
> þ _%ð0Þ) _c

ð1Þ
>

þV;!)c
ð1Þ
> þ 2V*+

¼
8'G

H

(

_’ð0Þ2
d

dt

&

H)#
ð1Þ
>

_’ð0Þ

'

þ _%ð0Þ2
d

dt

&

H)c
ð1Þ
>

_%ð0Þ

'*

;

(43)

*;i ¼
4'G

H
½ _’ð0Þ)#

ð1Þ
>;i

þ _%ð0Þ)c
ð1Þ
>;i
+; (44)

where G ¼ 1=ð8'M2
PlÞ is the gravitational constant. Also,

since we are assuming the absence of anisotropic stress, we

have the extra constraint _Bþ 2HB ¼ 2*=a (which is

3However, technically, at this order in ℏ, we should include the
loop corrections to the Langevin equations calculated in
Ref. [39], which would appear in the fourth and last stages of
the recursive method applied in the present paper. Despite this,
since these effects represent mode coupling between bath and
system fields, we expect them to be negligible in the valley phase
of inflation because they are both loop and slow-roll parameters
suppressed. We therefore neglect them at this order and plan on
coming back to this calculation in a future work focused on the
waterfall phase of inflation, where those effects are known to be
important (see e.g., Ref. [49]).

LEVASSEUR, VENNIN, AND BRANDENBERGER PHYSICAL REVIEW D 88, 083538 (2013)

083538-8



equivalent to the usual ! ¼ " equality in the longitudinal

gauge).

B. Inflaton fluctuations !"ð1Þ

Following the recursive strategy presented above, let us

now write down [71] the equation of motion for the first-

order inflaton fluctuations )#
ð1Þ
> , replacing the functions of

the background fields ’ð0Þ and %ð0Þ by the stochastic mean

values of the same functions of the coarse-grained quanti-

ties ’ and %:

) €#
ð1Þ
k

þ 3H) _#
ð1Þ
k

þ

!

k2

a2
þm2 þ g2h%2i

"

)#
ð1Þ
k

þ 2g2h’%i)c ð1Þ
k

¼ 2*h €’iþ h _’i
!

_*þ 6H*þ
k2

2a
B

"

:

(45)

The notation ‘‘>’’ has been dropped for simplicity. As

derived above, the distribution for ’ is centered around

its classical counterpart h’i ¼ ’ð0Þ, and therefore, one can

replace h _’i ¼ _’0 and h €’i ¼ €’0. Then, for#! ' 1, which

is an assumption we are currently working under,

the noise effects in the’ direction do not affect the inflaton

dynamics much, i.e., !’=’ ' 1. Assuming independence

of the two coarse-grained field probability density

functions, one can then approximate h’%i ’
h’ih%i ¼ ’ð0Þh%i ¼ 0, with the last approximation justi-

fied by the fact that the % distribution is quickly centered

around 0 in the valley phase.4 Finally replacing h%2i by!2
%,

one obtains

) €#
ð1Þ
k

þ 3H) _#
ð1Þ
k

þ

!

k2

a2
þm2 þ g2!2

%

"

)#
ð1Þ
k

¼ 2* €’ð0Þ þ _’ð0Þ

!

_*þ 6H*þ
k2

2a
B

"

: (46)

One can see that, in general, the inflaton and the water-

fall fields also couple through the metric perturbations on

the right-hand side. Indeed, since there really are only 2

degrees of freedom in the problem, it is possible to replace

the metric fluctuations in favor of the fields using the

constraint equations (43) and (44). In this process, we set

terms with odd powers of %ð0Þ to zero, while terms with a

quadratic power of %ð0Þ we set to h%2i ¼ !2
%. We obtain

) €#
ð1Þ
k

þ 3H) _#
ð1Þ
k

þ

&

k2

a2
þm2 þ g2!2

%

%
8'G

a3
d

dt

!

a3 _’ð0Þ2

H

"'

)#
ð1Þ
k

¼ 0: (47)

Here, the last term is clearly identifiable as coming from

gravitational interactions since it is proportional to the

gravitational constant. One also sees that, written in this

way, the waterfall field seems to decouple from the inflaton

field. Indeed, this same equation would have been obtained

for a single scalar field (with a stochastically shifted mass)

coupled to the metric perturbations.

This equation can also be rewritten in a way that makes

explicit what order in slow roll the gravitational corrections

are, and in a way that makes the corrections coming from

!% appear clearly:

) €#
ð1Þ
k

þ 3H) _#
ð1Þ
k

þ

&

k2

a2
þm2 þ g2!2

% þ 2
_H

H

/

!

€’ð0Þ

_’ð0Þ
%

_H

H
þ 3H

"!

1þ
1

_’ð0Þ2= _!2
% þ 1

"'

)#
ð1Þ
k

¼ 0:

(48)

From Eq. (27), one can calculate the time variation of!% at

the critical point

d!%=dNjc ¼ ð2'Þ5=4"1=4
ffiffiffiffiffiffiffiffiffiffiffiffi

mv=3
p

: (49)

From this one obtains a value

_’ð0Þ2= _!2
% ’ 192

ffiffiffi

2
p

'5=2m3M4
Pl=ðg

2"3=2v7Þ (50)

which is typically very big (e.g., for the parameter values

used in Fig. 1, one obtains ’ 0:5/ 106). One can therefore

approximate the second term in parentheses of Eq. (48) to

be ’ 1.

In Eq. (48) also, the H factors should be understood as

hHð’;%Þi(’;(% and similarly for any function of H ( _H=H,

etc.) and, more generally, any function of coarse-grained

quantities. However, in the valley H is assumed to be

vacuum dominated, and its time dependence mostly comes

from ’ ’ ’ð0Þ. The Hubble parameter can therefore be

treated in the standard way without impacting the result

much. This is why a lighter notation is adopted for this

parameter.

Since ð _’ð0ÞÞ2 dominates the contribution to _H, one finds

that the corrections due to % are negligible and recovers

that the metric perturbations cause a shift in the mass of a

single field coupled to the metric. The effective mass for

the inflaton can therefore be rewritten in terms of the first

slow-roll parameter:

m2 þ g2!2
% þ 2

_H

H

!

€’ð0Þ

_’ð0Þ
%

_H

H
þ 3H

"

0 m2 þ g2!2
% % 6H2

!

"1 %
1

3
"21 þ

_"1
3H

"

: (51)

Upon the standard field redefinition to obtain the canoni-

cally normalized field,

)#
ð1Þ
k

¼ a%1vk; (52)

and the change of the time coordinate to conformal time

d, ¼ a%1dt, one obtains an equation analogous to the4This approximation is no longer valid in the waterfall phase.
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usual mode function for a single scalar field in de Sitter

space:

v00
k
þ

(

k2 %
a00

a
þ a2

&

m2 þ g2!2
%

% 6H2

!

"1 %
1

3
"21 þ

_"1
3H

"'*

vk ¼ 0; (53)

where the prime denotes a derivative with respect to the

conformal time ,. Or, to first order in slow roll (which we

assume is sufficient in the valley), aH ¼ %,%1ð1% "1Þ,
and

v00
k
þ

&

k2 %
2%m2=H2 % g2!2

%=H
2 þ 9"1

,2

'

vk ¼ 0: (54)

We can then quantize the modes by promoting vk to an

operator

v̂ kð,Þ ¼ vkð,Þâk þ v?
k
ð,Þây%k

(55)

and imposing the usual commutation relations

½ak; a
y
%k0+ ¼ ð2'Þ3)ð3Þðkþ k0Þ: (56)

Noticing that, from Eq. (27), one has

d =dNð!2
%=H

2Þjc ¼ 1=ð4'2Þ (57)

at the critical point, the time variation of !2
% in the above

equation is suppressed by a g2 factor and can be neglected

in the adiabatic limit, allowing us to express the solution to

the mode function in terms of Hankel functions:

vk ¼ %ieið-þ
1
2
Þ'
2

ffiffiffiffi

'
p

2
ð%,Þ1=2Hð1Þ

- ð%k,Þ; (58)

where

-2 ¼ 9=4% ðm2 þ g2!2
%Þ=H

2 þ 9"1

0
9

4
þ

3

2
"2 þ

g2!2
%

H2
þ 9"1: (59)

In the second line, we have reintroduced the second slow-

roll parameter to make explicit which corrections in slow

roll we are keeping. This term is the term which propagates

to yield the well-known classical blue tilt for the canonical

hybrid inflation model. The last term is the correction from

metric fluctuations which induces a red tilt. The second-to-

last term, however, is a new term which is induced by

stochastic effects and which tends to increase the blue tilt.

The mode functions have been normalized so that deep

inside the Hubble radius, when the k2 term dominates the

mass in Eq. (54), one recovers the Bunch-Davies vacuum:

vk !
e%ik,

ffiffiffiffiffi

2k
p ; , ! %1: (60)

Here, a few comments are in order. First, note that what

we have calculated so far are only the linearized mode

functions of the bath quantum fields, not the perturbations

that will arise in the coarse-grained system once we perturb

the Langevin equations; these are the ones giving rise to the

classical curvature perturbations. As such, to be technically

correct we are not yet allowed to predict the modified

spectral index (even though we can suspect that the result

we obtain here should propagate to the final answer). We

first have to use this corrected amplitude of linearized

mode functions to calculate a shifted noise through

Eq. (17), and then we use the latter to source a new solution

to the Langevin equation (15). Linear perturbations around

this classical system will allow us to predict ns to leading

order in slow roll.

Second, note that the effect of !2
% on )#

ð1Þ
k

is to make

each mode more massive. Therefore, having the sub-

Hubble modes evolve in a background that has been shifted

by the integration to first order of all modes that have

already frozen out has the effect of making the tilt of the

inflaton modes bluer when they freeze out. It should be

highlighted that this conclusion does not depend on the

specific value of !%, and it will remain true when its

calculation is refined in Sec. IV. Moreover, for typical

values of the potential (and, in particular, in the super-

symmetric version of the model !c , v), one has

g2!2
%=H

2 , "%1=4
1

"v3

!
3=2
c M3=2

Pl

( 9"1: (61)

Therefore, the blue tilt induced by the stochastic back-

ground will always overcome the tendency of metric

perturbations to make the spectrum of quantum fluctua-

tions red.

This result is not a priori obvious since the two effects

are antagonistic (the coupling to metric perturbations ren-

dering the spectral tilt redder and the stochastic shift of the

background rendering it bluer). It is necessary to rigorously

work out the two contributions in order to conclude that

the latter wins over the former, yielding a shifted and a

blue-tilted spectrum of the quantum noise sourcing the

Langevin equations once the mode functions are plugged

back into Eqs. (17) and (18).

We once again insist that whether the blue shift and time

dependence in the noise amplitude also yield a worsened

blue-tilt problem, by translating into a bluer spectrum of

classical curvature perturbations of the coarse-grained field

’ (which are the observable ones), is a different question

which requires further calculation. To provide a satisfac-

tory answer, we shall wait until we feed this new quantum

noise amplitude back into the Langevin equations (15) and

(16) and calculate the spectrum.

As a second remark, note that if the collective effect of

the inflaton mass and !% is a small enough correction,

i.e., if ðm2 þ g!2
%Þ=H

2 % 9"1 1 9=4, then as the modes vk
cross their Hubble radius, their oscillations stop and

freeze out as one would expect. However, the modes of

the original field )#
ð1Þ
k

also contain a decay factor
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a%1ð%k,Þ%-þ1=2 , ,ð%k,Þ%-þ1=2 as %k, ! 0, which

indicates that they eventually roll back down to zero.

(Recall that the observable quantity here is the curvature

perturbation, R ¼ H
_#
)#). This means that the modes be-

come overdamped after horizon exit. The full solution in

this limit is given by

vk !
8
<

:

%eið-þ
1
2
Þ'
2
2-%1
ffiffiffi

'
p $ð-Þ ð%,Þ%-þ1=2

k-
0< - 1 3=2

ei
'
2 ð%,Þ1=2 ln ð%k,Þ - ¼ 0:

(62)

The k- factor shows the deviation from scale invariance,

and we therefore recover that the mass of the inflaton

causes the spectrum to be blue tilted in the valley (scale

invariance has k3=2, which is the massless case). The power

of , shows the time dependence, and in the massless case

one recovers ,%1, which is canceled by multiplying by a%1

to recover )#
ð1Þ
k
.

C. Waterfall fluctuations !c ð1Þ

1. Mode function evolution equation

Let us now proceed with )c ð1Þ, similarly expanding

the equations of motion to first order, once again in the

flat-slicing gauge. One obtains

) €c
ð1Þ
k

þ 3H) _c
ð1Þ
k

þ

!

k2

a2
þ 3"%2 % "v2 þ g2’2

"

)c
ð1Þ
k

þ 2g2’%)#ð1Þ
k

¼ _* _%%2*V;"ð’;%Þ % _’
k2

2a
B: (63)

As in the previous subsection, on the left-hand side,

one replaces %2 by !2
%, ’

2 by h’2i ’ ’ð0Þ2, and ’% by

h’%i ¼ 0. On the right-hand side, using the linearized

Einstein equations to replace the metric fluctuations by

field perturbations, and setting to zero all terms with sto-

chastic mean values with odd powers of % (remembering

that the distribution of % is even), one obtains

) €c
ð1Þ
k

þ 3H) _c
ð1Þ
k

þ

&

k2

a2
þ 3"!2

% % "v2 þ g2’ð0Þ2

%
8'G

a3
d

dt

!

a3h _%2i
H

"'

)c
ð1Þ
k

¼ 0; (64)

where, again, H is approximated by its classical value

Hð’ð0Þ;% ¼ 0Þ. Note that, as opposed to what would

have been obtained using perturbation theory around a

classical background for", the stochastically shifted back-

ground causes the )c
ð1Þ
k

perturbations not to decouple

completely. Indeed, in the case of a classical background,

unless the trajectory is turning in field space, the perturba-

tions reduce to those of a scalar field in an unperturbed

FLRW spacetime [71]. This is not the case here: The field

space trajectory is straight, but the stochastic dispersion of

the waterfall allows for nonvanishing corrections due to

gravity.

We again rewrite the term coming from gravitational

interactions in terms of the slow-roll parameters:

2
_H

H

!

€%

_%
%

_H

H
þ 3H

"!

1þ
1

_!2
%= _’ð0Þ2 þ 1

"

’ 4
_H

H

!

%
_H

H
þ 3H

"

¼ 12H2

!

"1 %
1

3
"21

"

: (65)

As above, one proceeds to the field redefinition

)c
ð1Þ
k

¼ a%1uk (66)

and changes coordinates to conformal time, dt ¼ ad,, to
find the mode function expressed in terms of the canonical

variable uk:

u00
k
þ

(

k2 %
a00

a
þ a2

&

3"!2
% % "v2 þ g2’ð0Þ2

þ 12H2

!

"%
1

3
"2
"'*

uk ¼ 0: (67)

Using the explicit expression for a during inflation to first

order in slow roll, aH ¼ %,%1ð1% "1Þ, and under the

assumption of vacuum domination, this gives rise to

u00
k
þ

&

k2 %
1

,2
/

!

2% 3
"!2

%

H2
þ

12M2
Pl

v2

%
g2’ð0Þ2

H2
þ 15"1

"'

uk ¼ 0: (68)

In contrast to what happens for the fluctuations of the

rescaled inflaton field, the correction terms in the mode

equation for the fluctuations of the waterfall field are large.

This is a reflection of the tachyonic instability in the

direction of the waterfall field. More specifically, the

mass term of this equation contains terms of different

orders of magnitude. Indeed, in the vacuum-dominated

regime, under the slow-roll approximation, and since

!2
% < !2

%c
in the valley, one has

15"1; 3
"!2

%

H2
' 2 '

12M2
Pl

v2
;

g2#ð0Þ2

H2
: (69)

Moreover, for typical parameter values, one also has

15"1 ' 3
"!2

%

H2
; (70)

although it would, in principle, be possible to find a range

of fine-tuned parameters for which this inequality does

not hold.
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Finally, one can use Eq. (10) to rewrite’ð0Þ
in in terms of!c

and the total number of e-folds of inflation Nc produced in

the valley when ’ crosses the critical point, and one obtains

g2’ð0Þ2

H2
¼

12M2
Pl

v2

’ð0Þ2

!2
c

(71)

’ 12M2
Pl

v2
½eNc%Nð,Þ+8M

2
Pl
m2=ðv4"Þ; (72)

where at first order in "1 one has

Nð,Þ ¼ ln ½%ð1þ "1Þ=ðH,Þ+ 0 % ln ð%H,Þ þ "1; (73)

if one initializes N to 0 when , ¼ %ð1þ "1Þ=H.

2. Qualitative mode evolution analysis

Let us now try to gain some qualitative insight about the

time evolution of the kmodes. First of all, one can see that

there is some explicit , dependence in the time-dependent

mass of the uk’s (through the #
ð0Þ2) in addition to the usual

1=,2 dependence. One needs to make sure that this term

goes to zero at early times, i.e., when the limit k, ! %1 is

formally taken, so that the Bunch-Davies vacuum initial

condition can be recovered in that limit. That is, one needs

to make sure that at arbitrary early times (as k, ! %1),

any given mode is at small enough scales so that it feels a

Minkowski flat spacetime and lies in the Bunch-Davies

state.

Bearing this in mind, since 8M2
Plm

2=ðv4"Þ ' 1, from

our assumption of vacuum domination of the Hubble con-

stant in the valley, one is safe since

ð%H,Þ
8M2

Pl
m2

v4"

,2
! 0 as ð%k,Þ ! 1: (74)

One can therefore quantize the mode functions as usual

using the Bunch-Davies vacuum solution as a limiting

initial condition at early times.

Also, the ’ð0Þ dependence of the mass was written in the

form (71) in order to get a better insight on the qualitative

behavior of the modes after they exit the Hubble radius.

Inserting this expression into the mode function equations

of motion, one obtains

u00
k
þ ½k2 %m2

uð,Þ+uk ¼ 0; (75)

where the effective mass mu is defined as

m2
uð,Þ )

2%m2
c =H

2

,2
(76)

¼
1

,2

&

2þ 15"1 % 3
"!2

%

H2
%

12M2
Pl

v2

!

’ð0Þ2

’2
c

% 1

"'

:

(77)

The time evolution of the squared mass m2
u is sketched

in Fig. 2. Very small scales for which k2 ( m2
uð,Þ are still

oscillating in their Bunch-Davies state. However, when

a mode crosses the value k2Heff
¼ m2

uð,Þ, its qualitative

behavior changes. We call this point the crossing of the

‘‘effective’’ Hubble radius (since in standard massless-

single-field inflation this corresponds to the point where

every mode crosses the Hubble radius and then freezes

out). The evolution of modes with wavelength larger than

this effective Hubble crossing scale, i.e., satisfying

k2 < k2Heff
¼ m2

uð,Þ, will be driven according to the behavior

of m2
uð,Þ.

Let us see in more detail how the evolution proceeds.

The time of the ‘‘effective’’ Hubble radius crossing

NHeff
ðkÞ is defined by k2 ¼ m2

u½NHeff
ðkÞ+. This happens

during the valley phase if NHeff
<Nc, i.e., for modes such

that k < kc, where

k2c ¼ m2
uð,cÞ ’ 2H2e2Nc : (78)

The comoving wave number kc thus corresponds to the

wavelength that freezes out when ’ ¼ !c. Now, for

k < kc, two different behaviors for m2
u right after the

effective Hubble radius crossing can occur, which we

now investigate. Recall that typically one has
12M2

Pl

v2 ( 2 (

3
"!2

%

H2 . Therefore, the modes with m2
u < 0, when they cross

their effective Hubble radius, are such that

Nc%NHeff
ðkÞ>

v4"

8M2
Plm

2
ln

!

1þ
v2

6M2
Pl

"

¼
v2H2

4M2
Plm

2
þO

!

v4

M4
Pl

"

:

This means that it happens at long wavelengths, for k < kv,
where

FIG. 2 (color online). Sketch of the time evolution of the

squared mass m2
u appearing in Eq. (75), as a function of the

number of e-folds. As a comparison, the dashed line represents

the massless situation where mc ¼ 0 and m2
u ¼ 2=,2. For

N < Nv (respectively, N >Nv), one has m2
u < 0 (respectively,

m2
u > 0). The first time a mode k crosses the squared mass scale

is given by NHeff
ðkÞ. Its behavior then depends on whether

NHeff
ðkÞ<Nv or NHeff

ðkÞ>Nv (see discussion in the text). The

separation between these two regimes is given by kv.
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k2v ¼ m2
uð,vÞ ’

H2v2

6M2
Pl

e
2Nc%

v2H2

2M2
Pl
m2

: (79)

From this formula it is very easy to check that kv < kc,
since v=MPl ' 1 for this model to proceed at small fields.

If k < kv, the modes do not freeze out as they escape

their effective Hubble radius, but rather continue their

oscillations until the time Nv given by

Nc % Nv ¼
v2H2

4M2
Plm

2
(80)

when the distance between ’2 and its critical value be-

comes such that ’2 %!2
c & ðv2=6M2

PlÞ!
2
c , at which point

they freeze out. Mapping back to )c
ð1Þ
k

¼ a%1uk, this

oscillation period for the uk modes corresponds to a fast

underdamping of the perturbations )c
ð1Þ
k
. This means that

those modes do not undergo squeezing and therefore do not

experience classicalization.

From Fig. 2, one can see that between NHeff
and Nv,

these modes actually experience a very brief stage during

which k2 dominates over m2
u again. Since this period is

very short in time, we will neglect its effect for now (and

this approximation will be shown to be consistent a

posteriori). Finally, in the N ' Nv limit, one has m2
u ’

%12=,2M2
Pl=v

2’ð0Þ2=!2
c , which leads to

NHeff
’

log ð v
2

M2
Pl

k2

12H2Þ

2ð1% 4
m2M2

Pl

"v4 Þ
%

4

"v4

2m2M2
Pl

% 2
Nc

’ 1

2
log

!

v2

M2
Pl

k2

12H2

"

% 8
m2M2

Pl

"v4
Nc; (81)

the second expression being simplified using the slow-roll

condition "1ð!c;" ¼ 0Þ ' 1.

On the other hand, if kv < k< kc, the modes freeze out

and cease to oscillate right after effective Hubble crossing.

They consequently undergo squeezing, which allows for

classicalization. This phase typically extends over much

more than 60 e-folds before the inflaton reaches its critical
value, which makes it the most important one to study.

Close to the inflaton critical value, m2
uð,Þ is dominated by

the 2=,2 term, and therefore modes freezing out and grow-

ing in this range of conformal time behave very similarly to

the perturbations of a light scalar field in de Sitter space,

with a slight positive mass given by 3"!2
%=H

2 % 15"þ

12M2
Pl=v

2ð’ð0Þ2=!2
c % 1Þ, which gives the spectrum a blue

tilt. In this limit where Nv ' N <Nc, one has

NHeff
ðkÞ’

&

log

!

k
ffiffiffi

2
p

H

"

þ2
m2

v2

k2M2
Pl

H4
Nc

'+!

1%2
m2

v2

k2M2
Pl

H4

"

:

(82)

3. Quantitative mode evolution analysis

Now that we have qualitatively analyzed the behavior of

the mode functions as they cross their ‘‘effective’’ Hubble

radius, let us now manipulate the equation for the mode

function into a more practical form for calculations.

Considering the form (72) of writing the last term appear-

ing in m2
uð,Þ, one has

m2
uð,Þ ¼

2þ 15"% 3
"!2

%

H2 %
12M2

Pl

v2 fe½Nc%Nð,Þ+2m
2

3H2 % 1g
,2

: (83)

Now, since we are interested in the late-time behavior of

the mode functions, that is, after they exit their effective

Hubble radius, we use an asymptotic approximate solution

for the scaling of their amplitude. To do this, let us define a

differential equation for an ‘‘effective’’ scale factor a:

a
00

a

¼ m2
uð,Þ: (84)

We call this quantity the effective scale factor because it

allows us to rewrite the equation for the mode functions in

the standard form for a massless field in de Sitter space:

u00
k
þ

!

k2 %
a
00

a

"

uk ¼ 0: (85)

Moreover, for a single massless scalar field in de Sitter

space, on super-Hubble scales, the mode functions (which

we call zk) scale as the scale factor a if one waits long

enough for the decaying mode to become negligible.

This means that for small k2 <min ð2=,21; 2=,
2
2Þ, one has

að,1Þ=að,2Þ 0 zkð,1Þ=zkð,2Þ (neglecting an overall irrele-

vant constant phase), provided that ,1 and ,2 are chosen to

be long enough after the Hubble crossing of the k mode

(which usually means only a few e-folds).
Here, we are facing a similar situation. Qualitatively,

once the modes uk cross their effective Hubble radius

(technically, a few e-folds after the crossing), they scale

as the effective scale factor að,Þ (if the modes are under-

damped after their effective Hubble crossing, i.e., for the

modes such that k < kc, one simply needs to somehow be

more careful about the matching of the sub- and super-Heff

scalings, but the same argument essentially still holds).

Since a is basically given by the background equation of

motion with a nonvanishing !%, one finds that the uk’s

evolve asymptotically as the linearized background after

Heff crossing.

This argument provides one with the asymptotic

behavior for the evolution of the norm of the super-Heff

)c
ð1Þ
k

modes:

)c
ð1Þ
k
ð,Þ ¼ a%1ð,Þjukð,Þj

’ a%1ð,Þ
að,Þ

að,Heff
Þ
jukð,Heff

Þj

’ a%1ð,Þ
að,Þ

að,Heff
Þ
jukð,iÞj: (86)
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Here, ,Heff
is defined as the conformal time at which the k

mode crosses its effective Hubble radius. As before, an

overall irrelevant phase factor is neglected. Also, in the last

step we use the fact that, before effective Hubble crossing,

one hasmu ' k2 and the modes just oscillate with constant

amplitude. Then, jukð,iÞj can be evaluated in the Bunch-

Davies initial vacuum. A more precise calculation would

consist in finding the exact sub-Hubble solution, given in

terms of Hankel functions of the first kind (once the Bunch-

Davies initial conditions are imposed), and evaluating it at

the effective Hubble crossing. However, not much accu-

racy would be gained by doing so.

That being said, one is only left with the problem of

solving the differential equation for the effective scale

factor a and inverting the relation k2 ¼ m2
u½,Heff

ðkÞ+ to

obtain ,Heff
ðkÞ.

The first problem is an easy one since it just corresponds

to solving the linearized background equation of motion.

Expressed in terms of the number of e-folds, it is given by

d2a

dN2
þ

da

dN
% a

!

2þ 15"1 % 3
"!2

%

H2

%
12M2

Pl

v2
fe½Nc%Nð,Þ+2m

2

3H2 % 1g
"

¼ 0: (87)

As before, d=dNð!2
%=H

2Þ ¼ 1=ð4'2Þ and the time varia-

tion of the !% term in the above equation is suppressed by

a " factor. It can therefore be neglected, allowing the

solution to be approximated in terms of Bessel functions

of the first and second kinds:

a ¼ e%
Nð,Þ
2 ½C1J-ðxÞ þ C2Y-ðxÞ+;

where - ¼
3H2

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9

4
þ 15"1 % 3

"!2
%

H2
þ

12M2
Pl

v2

s

and x ¼
3H2

m2

2
ffiffiffi

3
p

MPl

v
e
ðNc%NÞ m

2

3H2 ; (88)

whereC1 andC2 are integrating constants. To fix them, one

first notices that an overall constant in a bears no physical

meaning, since only the ratio að,Þ=að,iÞ enters in the

quantities to be computed. Therefore, one only needs to

fix the ratio in which the two independent solutions enter in

the mode function. To do so, one notes that in the formal

limit k, ! %1, the positive mode function starts out in

the Bunch-Davies vacuum, and its evolution deep inside

its effective Hubble radius is given by a Hankel function of

the first kind. It is therefore natural that its approximate

behavior after the crossing of its effective Hubble radius

also be mapped to another Hankel function of the first kind.

One can therefore choose the constants C1 and C2 so that

the solution is written in the form of an H-ðxÞ function.
To give another, maybe more convincing, argument to

fix C1 and C2, we note that if k < kv, that is, if the mode is

still underdamped and continues its oscillations outside

its Hubble radius for a (more or less long) time before

freezing out at N ¼ Nv, the requirement of having oscil-

lations damped by a factor of e%N=2 in Eq. (88) basically

fixes the constants to C1 ¼ 1 and C2 ¼ i, up to an overall

irrelevant constant phase. This is precisely the choice that

allows us to recover the Hankel function of the first kind

discussed above.

If, on the contrary, kv < k < kc, i.e., if the k mode of

interest crosses its effective Hubble radius late enough so

that it is overdamped and freezes out immediately after the

crossing, then, provided the mapping is done a few e-folds
after the crossing, the decaying mode J- of the fundamen-

tal solution (88) completely decays and the positive

mode function is exclusively mapped to the growing

mode Y- to great accuracy. This corresponds to only using

the Bessel function of the second kind Y- as a solution,

which is also approximately what using a Hankel function

of the first kind would mean in the relevant range of values

for - and x.
However it might be cumbersome to work in terms of

Bessel or Hankel functions, mainly because for the regime

of parameters - and x one is interested in, none of the

asymptotic forms of these functions is a good approxima-

tion when the mode function freezes out and is mapped to

the growing mode. Indeed, the small-argument form holds

if x '
ffiffiffi

-
p

, which is not the case here since one works

under vacuum domination, and the large-argument expan-

sion is valid provided that x ( -2, which is not the case

either, again because of vacuum domination.

It is therefore useful to note that, since 2m2

3H2 ' 1, one can

Taylor expand to first order the exponential in Eq. (87), in

order to obtain a simpler differential equation which can be

solved in terms of Airy functions:

d2a

dN2
þ

da

dN
% a

(

2þ 15"% 3
"!2

%

H2

%
8M2

Plm
2

v2H2
½Nc % Nð,Þ+

*

¼ 0; (89)

which is solved by

a ¼ e%
N
2 ½AiðxÞC1 þ BiðxÞC2+; (90)

with

x¼

!

v6"

96m2M4
Pl

"2
3

&

96m2M4
Pl

v6"
ðN%NcÞ%3

"!2
%

H2
þ15"1þ

9

4

'

;

(91)

where C1 and C2 are integration constants which are not

necessarily the same as before. For the k modes such that

k < kv, which are underdamped when they cross their

effective Hubble radius, one has x ' 0, and the asymptotic

forms of the Airy functions for large and negative

arguments in terms of sine and cosine can be used.

Since oscillations are expected, one can choose C1 ¼ i
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and C2 ¼ 1. Then, deep inside the valley when these

modes cross their effective Hubble radius, one obtains

a ¼
x!%1

e%N=2

ffiffiffiffi

'
p jxj%1=4ei

2
3
jxj3=2þi

4
': (92)

The modes that freeze out in that limit evolve according to

)c
ð1Þ
k

0 e
1
2
ðNHeff

%3NÞ

)

)

)

)

)

)

)

)

xðNÞ

xðNHeff
Þ

)

)

)

)

)

)

)

)

%1
4 ei

2
3
jxðNÞj32

ei
2
3
jxðNHeff

Þj32
jukðNHeff

Þj

(93)

0 e
1
2
½NHeff

%3N+%i2
3
½jxðNHeff

Þj32%jxðNÞj32+
)

)

)

)

)

)

)

)

xðNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4 1

ffiffiffiffiffi

2k
p

for xðNÞ; xðNHeff
Þ ' 0 ðand k2 <m2

uÞ: (94)

In the first line of this equation one can see the previously

mentioned oscillations, which were expected to be found

since in that limit one has m2
uðNÞ< 0. One also finds

the decay factor e%3N=2. Recall that in order to express

NHeff
in terms of k in that regime, one needs to solve

jk2Heff
j ¼ jm2

uðNHeff
Þj.

If k > kv, m
2
uðNHeff

Þ becomes positive, the oscillations

cease and the modes freeze out. To see this, one can

equivalently examine x, which becomes positive as

x ! constant/ ½9=4þ 15"% 3"!2
%=ðH

2Þ+%, and the

above approximation for the Airy functions breaks down.

However, to find how the behavior of the modes k < kv
changes when N >Nv, and to derive the behavior of the

modes with kv < k < kc which cross their effective Hubble
radius in that limit, one can assume a long waterfall takes

place (which we recall is necessary in order to evade the

blue-tilt problem) and suppose v6" ( m2M4
Pl [see Eq. (12)],

to use the large-argument expansion of theAiry functions and

proceed as above. In this limit, one obtains a growing mode

and a decaying mode, and keeping only the former in the

asymptotic solution, one gets

a ¼
x!þ1

e%
N
2

ffiffiffiffi

'
p jxj%1=4e

2
3
x3=2 : (95)

Using this asymptotic expression, one obtains, for the under-

damped modes k < kv, once frozen out (for N >Nv),

)c
ð1Þ
k

’ e
1
2
ðNHeff

%3NÞ

)

)

)

)

)

)

)

)

xðNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4 e

2
3
xðNÞ

3
2

e
2
3
xðNvÞ

3
2

1
ffiffiffiffiffi

2k
p

for xðNÞ ( 0; xðNHeff
Þ ' 0 ðand k2 <m2

uÞ; (96)

and where a constant irrelevant phase factor is neglected.

For modes k > kv freezing out in that regime [for which

xðNHeff
Þ> 0], one has

)c
ð1Þ
k

’ e
1
2
ðNHeff

%3NÞ

)

)

)

)

)

)

)

)

xðNÞ

xðNNHeff
Þ

)

)

)

)

)

)

)

)

%1
4 e

2
3
xðNÞ

3
2

e
2
3
xðNHeff

Þ
3
2

jukðNHeff
Þj

(97)

’ e
1
2
½NHeff

%3N+þ2
3
½xðNÞ

3
2%xðNHeff

Þ
2
3+

)

)

)

)

)

)

)

)

xðNNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4 1

ffiffiffiffiffi

2k
p

for xðNÞ; xðNHeff
Þ ( 0 ðand k2 <m2

uÞ: (98)

The formulas derived above for the amplitude of the

first-order perturbations in the c direction are collected

in Appendix C [see Eqs. (C2)–(C6)], for practical

convenience.

Before proceeding, since several approximations have

been performed, it seems useful to first check their validity

by comparing them with the full numerical integrations of

Eq. (68). We also check the validity of the commonly used

so-called adiabatic approximation. This scheme is defined

as follows: Since the inflaton field is slowly rolling down

the bottom of the valley, the effective mass for the waterfall

field mc , defined as m2
u ) ð2%m2

c =H
2Þ=,2 in Eq. (76)

(mu is sketched in Fig. 2), is varying slowly, and therefore

its time dependence can be neglected. Hence, when solving

Eq. (68), the usual constant-mass mode function solution

uk ’ %ieið-þ
1
2
Þ'
2

ffiffiffiffi

'
p

2
ð%,Þ1=2Hð1Þ

- ð%k,Þ (99)

can be used, with - now given by the time varying quantity

- )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9=4%m2
c =H

2
q

, which is complex when N <Nv.

This approximate solution is referred to as the adiabatic

one since it is derived under the approximation of a slowly

varying mass. We check its validity in Fig. 3, where results

from an exact integration of Eq. (68) are compared to the

analytical approximations (C2)–(C6) and to the adiabatic

solution Eq. (99).

Let us comment on what has been obtained. The case

k > kv is similar to the standard well-known massless case,

where jukj is constant on sub-Hubble scales and j)c ð1Þ
k
j is

constant on super-Hubble scales. The matching between

the analytical expressions (C2)–(C6) and the numerical

solution is excellent. The adiabatic approximation also

holds during the whole evolution of such modes.

If k < kv, there is an intermediate regime when

NHeff
ðkÞ<N <Nv where the field fluctuations are over-

damped and oscillations continue to take place. As noticed

in Fig. 2, during that phase, at some point, such modes

experience a short period during which k2 dominates over

m2
u again. Since this period is very short in time, it was not

taken into account when deriving the analytical expres-

sions Eqs. (C2)–(C6), and checking this assumption was

postponed until later. One can now check that it indeed

leads to rather reliable expressions. However, this short

phase of rapid evolution of m2
u obviously breaks the adia-

batic approximation, and one can indeed see that the
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adiabatic formula stops being valid at this point. The

subsequent evolution is therefore also different from the

one we expect under the adiabatic approximation. When

N >Nv, the field fluctuations continue to experience

overdamping.

The validity of the analytical expressions derived above

is thus confirmed, as is the schematic description previ-

ously sketched, and the adiabatic method is shown not

to be valid for the modes such that k < kv, when N ap-

proaches Nv and afterward.

IV. CALCULATION OF #$ AND THE

BACKREACTION PROBLEM

So far, we have calculated to leading order in the slow-roll

parameters the amplitude of the linearized quantum fluctua-

tions in both fields in the presence of a shifted background.

These are the mode functions valid up to next-to-leading

order in ℏ and up to leading order in slow roll as defined in

Eqs. (13) and (14), which enter in the bath field propagators

evaluated at the time when a given mode of the quantum

fields joins the coarse-grained fields. We can therefore use

these results to directly calculate a shifted classical noise for

Eqs. (15) and (16), which will now be valid to next-to-

leading order in ℏ and to leading order in slow roll.

This higher accuracy calculation does bear some impor-

tance. Indeed, the typical deviation in the waterfall direction

acquired during the valley phase sets typical initial condi-

tions for the subsequent waterfall phase, hence determining

how many e-folds this tachyonic period should last. One

should therefore calculate !%c as accurately as possible.

A first estimate was given in Sec. II C using the standard

massless de Sitter solutions for the modes )#ð1Þ and )%ð1Þ

to calculate the amplitude of the noises; see Eq. (27). This

was a first step towards a more accurate calculation, carried

out mainly to obtain qualitative results. We now wish to

include the higher-accuracy noises derived from the mode

amplitude results of the previous subsection, and study

FIG. 3 (color online). Time evolution of the first-order perturbation amplitudes of the waterfall field j)c ð1Þ
k
j (left panels) and its

scaled counterpart uk (right panels) in the cases k > kv (top panels) and k < kv (bottom panels). The black solid lines are numerical

results from an exact integration of Eq. (68). The red solid lines represent the analytical approximated results Eqs. (C2)–(C6). The blue

dotted lines represent the adiabatic solution Eq. (99). When k > kv the modes evolve in the standard well-known way, jukj being
constant on sub-Hubble scales and j)c ð1Þ

k
j being constant on super-Hubble scales. When k < kv, however, there is an intermediate

phase NHeff
ðkÞ<N <Nv during which the adiabatic evolution of the effective mass of the waterfall breaks down and the fluctuations

are overdamped.
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how this impacts on the stochastic dispersions of the

coarse-grained fields, which we discuss here, and on the

statistics of the inflaton perturbations, which we discuss in

the next section.

For the coarse-grained inflaton field ’, we expect the

solution of Eq. (15), including higher noise accuracy, to

closely follow the noiseless, classical solution. This is

because we already assumed the values of the potential

parameters to be such that the dynamics of the inflaton in

the valley phase is dominated by its classical drift at

leading order in ℏ. We can convince ourselves that this

assumption is preserved up to next-to-leading order in ℏ

and to leading order in the first two slow-roll parameters by

looking at the corrected inflaton noise autocorrelation,

which shows a suppressed correction compared to its lead-

ing ℏ and Oð&01; "
0
2Þ value:

h(#ðNÞ(#ðN
0Þi

¼
H4

4'2
)ðN % N0Þ /

&

1þ
2

3

!

m2 þ g!2
%

H2
% 9"1

"

/ ðln 2&þ .% 2Þ

'

: (100)

Here, . ’ 0:577 is the Euler-Mascheroni constant, and

recall that "2 0 % 2
3
m2

H2 . The correction to the de Sitter

massless formula (20) is indeed small for a light inflaton

field, and one does not expect important effects on the

background trajectory coming from a better calculation

of !#. Important effects concerning the inflaton, however,

are to be expected when it comes to the statistics of the

fluctuations of the coarse-grained field, and they will be

calculated in the next section.

As a final remark concerning the background inflaton

coarse-grained field, it is interesting to remember that in

spite of the fact that the condition & ' 1 was required in

order to only collect the squeezed super-Hubble modes

in the coarse-grained part of the field, the splitting parame-

ter & cannot be arbitrarily small if one wants the deviations

from the free massless case to remain small. More pre-

cisely, from the previous equation, one can see that the

condition exp ð%H2=m2Þ ' & ' 1 should be imposed.

This is exactly the condition that was obtained by

Starobinsky and Yokoyama in their first paper [34] on the

subject [see Eq. (80) there], requiring &-independent re-

sults for the two-point equilibrium correlation function of

test scalar fields in de Sitter space. Here, we make the

origins of such a condition rather clear.

On the other hand, the waterfall field is significantly

massive far enough in the valley. Therefore, important

effects on its dispersion coming from a higher-order cal-

culation of the noise sourcing its coarse-grained evolution

are expected to arise in this region. We shall investigate this

question in detail in what follows. Whether these effects

can lie in the observational window or not is also a question

which shall be answered.

Concretely, the higher-order white Gaussian noise

(c ðNÞ sourcing the Langevin equation (16) for the

coarse-grained waterfall field is given by

h(c ðNÞ(c ðN
0Þi / j)c ð1Þ

k
j2k¼&aH)ðN % N0Þ; (101)

with j)c ð1Þ
k
j now evaluated using Eqs. (C2)–(C6).

Before proceeding to this evaluation, a verification is

in order. In the computational program described above,

one should remember that j)c ð1Þ
k
j takes different forms

depending on whether N + Nv, NHeff
and one needs to

know which piece of the function should be used.

Furthermore, & is usually taken to be such that & ' 1 in

order to keep only the super-Hubble highly squeezed

modes in the coarse-grained field (squeezing being the

condition for classical behavior; see Refs. [60,61,72]).

However, here, the effective Hubble radius H%1
eff inter-

venes rather than the Hubble radius itself, and therefore one

first needs to be sure that no modification to the standard

picture arises from this fact. In Ref. [73], the original

analysis of Guth and Pi [72] is generalized to heavy fields,

and it is found that there is no emergence of classical

correlations for -2 < 0 (recall that -2
c ¼ 9=4%m2

c =H
2).

Such classical correlations, usually obtained through turn-

ing quantum oscillators upside-down or by rapid squeezing

of upside-right oscillators, are a key point of the stochastic

inflation formalism, as they enable us to model the dynam-

ics of the large-wavelength fluctuations as the evolution of a

stochastic classical distribution.

For our purpose, this means that when N <Nv, the

stochastic equations driving the evolution of the coarse-

grained field are questionable, and that a full field theoretic

approach should be used instead. Therefore, in the follow-

ing, one should be careful when interpreting the results

derived for N <Nv.

Recalling that

Nc % Nv ¼ "v6=ð48m2M4
PlÞ / ðNend % NcÞ

2 (102)

[see Eq. (12)], this means that such a ‘‘problematic’’ period

happens long before the critical point is reached if the

waterfall lasts for a long number of e-folds. In this case,

this possible issue does not affect the fluctuations in the

observational window. However, in the case of a short-lived

waterfall, the potentially problematic phase lasts almost

until the inflaton crosses the critical point, just before the

end of inflation. Note, however, that in this case the noise

amplitude would be accordingly suppressed by the heavy

mass of the waterfall field, rendering this problem mostly

academic for all practical and observational purposes. This

suggests that, in accordance with the intuition that heavy

fields should be irrelevant to the dynamics of the light fields,

rather than using the stochastic formalism, one should inte-

grate out the waterfall entirely for the whole problematic

period. Here, our study focuses mainly on long-lived water-

fall scenarios, and hence we avoid these issues.
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A. Quasistationary approximation

Let us now turn to the concrete calculation of !%. One

first notices that Eq. (25) is completely general and is

correct no matter what the amplitude of the (c noise is.

However, Eq. (26) makes use of the specific de Sitter

massless statistics (21), and the lower incomplete gamma

function solution arises when the amplitude of the noise

h(2
c i is time independent. This is not true in general.

However, the relaxation time of the statistical distribution

(25) is extremely small since "v4=ðmM2
PlÞ ( 1, which

means, in practical terms, that the mass of " decreases

so slowly that at each given time, the % distribution swiftly

acquires its ‘‘stationary’’ local dispersion. This kind of

adiabatic scheme should not be confused with the adiabatic

approximation mentioned in Sec. III C in the calculation of

)c ð1Þ. The former describes quasistationary stochastic dis-

tributions,while the latter relies onfluctuationmodes crossing

the relevant scales faster than their typical mass variation

times. This is why, to avoid confusion, we may refer to the

former as the ‘‘quasistationary’’ frame inwhat follows.Under

this quasistationary approximation, one has !2
%=!

2
%jmassless’

h(2
c i=h(2

c imassless¼ j)c ð1Þj2=j)c ð1Þj2massless, so that

!2
% ’ j)c ð1Þj2

H4=ð4'2Þ
!2

%jmassless; (103)

where !2
%jmassless is given by Eq. (27).

It is of particular interest to notice that Eq. (103) is

actually an implicit relation involving !%, since j)c ð1Þj
involves !% itself [see Eqs. (C2)–(C6)]. In some sense, the

whole recursive strategy presented in Sec. II B is now

summarized in a single implicit equation for !%. The

situation is summarized in Fig. 4, where the left-hand

side and the right-hand side of Eq. (103) are displayed,

as a function of !2
%. The solution of Eq. (103) lies at the

intersection of these two curves, the location of which can

be calculated using a recursive scheme which exactly

translates the one presented in Sec. II B. The red circle

labeled ‘‘1’’ in Fig. 4 represents the solution of Eq. (103)

when setting !% ¼ 0 in the right-hand side. This is the

solution calculated in Sec. II C (where one has also ne-

glected the mass of "). This corresponds to evolving

the perturbations )c ð1Þ on a ‘‘classical’’ unshifted back-

ground. Then, one can source the equation of motion for

these perturbations with a background shifted by the value

of !% just calculated. This new solution is represented by

the red point labeled ‘‘2’’ in Fig. 4. This iterative procedure

can be continued until obtaining the exact solution labeled

by the red circle ‘‘3.’’

One can remark that the ‘‘classical’’ guess (labeled ‘‘1’’)

lies in the attraction basin of the exact solution (labeled

‘‘3’’). This is an indication that the perturbative expansion

is under control, since at each step, one gets closer to the

exact solution and decreases the absolute value of its

displacement. This is a direct consequence of the fact

that the right-hand side of Eq. (103) is a decreasing func-

tion of !%, which is always true since as !% increases, the

mass ‘‘seen’’ by the perturbations )c ð1Þ increases; hence,

the amplitude of the noise decreases, and so does the

resulting !c . However, this may not be the case during

the waterfall, where this mass becomes more negative as

!% increases, rendering the amplitude of the noise more

important. This signals a tachyonic breakdown of the

perturbative expansion which indicates that the model

may face serious issues when carefully studied in the

waterfall (especially if this phase is long). We will come

back to this point later, explaining how the start of the

waterfall can be delayed.

Let us now see how these different estimations of !%

evolve in time. In Fig. 5, we display the free massless result

(27), the result of a calculation taking into account the

mass of" but no backreaction (corresponding to the point

labeled ‘‘1’’ in Fig. 4), and the exact solution of Eq. (103)

(corresponding to the point labeled ‘‘3’’ in Fig. 4), as a

function of time. WhenN ' Nc (remember thatN <Nv is

not obvious to interpret), the inclusion of the mass of "

significantly decreases the value obtained for !%, since a

positive mass better confines the distribution for %. In this

regime !% remains small and the inclusion of backreaction

does not alter the result much. As the system gets closer to

the critical point, !c increases and a discrepancy due to

FIG. 4 (color online). Right hand side of Eq. (103), namely

4'2j)c ð1Þj2!2
%massless=H

4 (blue solid line), normalized to M2
Pl,

as a function of !2
%, for v ¼ 0:1503MPl, m ¼ 7/ 10%5MPl,

g ¼
ffiffiffiffi

"
p

¼ 0:885, computed one e-fold before crossing the criti-

cal point. These values may not be physical (especially for g and

") but they have been chosen for display convenience. The black

solid line is the left hand side of Eq. (103), namely !2
%,

normalized to M2
Pl, so that the solution of Eq. (103) lies at the

intersection of these two lines. The green dotted lines and the

arrows indicate how an iterative (perturbative) process leads to

this solution, hence showing that the ‘‘classical’’ guess lies in the

attraction basin of the solution. The meaning of the red circles

and the associated labels 1, 2 and 3 is detailed in the text body.
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backreaction starts to become visible, which decreases the

actual value of !% (in agreement with what is noticed in

Fig. 4 where the point labeled ‘‘3’’ lies below the point

labeled ‘‘1’’). At the critical point itself, one can see that

there is no difference due to taking the mass of " into

account, since in the quasistationary approximation, the

result only depends on the instantaneous value of the mass,

which vanishes precisely at the critical point. Wewill come

back to this point in the next subsection.

After the critical point, the calculations performed in the

present work may be extrapolated for a few e-folds, and
one can see that the inclusion of the mass effects increases

the value of !%, which makes sense since the fluctuation

modes become tachyonic during the waterfall; hence, the

amplitude of the noise increases. However, when looking

at the exact solution of Eq. (103), one can see that the

actual value of!c remains smaller. This can be understood

as a time delay in the waterfall start. Indeed, when the field

system crosses the critical point, two minima in the "

direction appear at

"2
& ¼ v2

!

1%
!2

!2
c

"

: (104)

In between these two minima, the curvature of the potential

in the " direction is negative, whereas it is positive

elsewhere. This is why when no backreaction is taken

into account, the fluctuations )c ð1Þ become tachyonic as

soon as the critical point is crossed. On the other hand, if

backreaction is ‘‘switched on’’ and if the fluctuations

evolve about a !%-shifted background, the fluctuations

keep on ‘‘seeing’’ a potential with positive curvature in

the" direction as long as !c > j"&j. This means that the

waterfall begins at a delayed time N?
c instead of Nc, where

N?
c is defined by

!%ðN
?
c Þ ¼ j"&ðN

?
c Þj ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
!2ðN?

c Þ

!2
c

s

: (105)

This ‘‘effective’’ critical time is displayed as the grey

dotted line in Fig. 5. One can check that it coincides with

the moment when the exact solution of Eq. (103) starts to

strongly increase, i.e., with the beginning of the ‘‘effec-

tive’’ waterfall phase. One could ask whether such an effect

could save the model from the tachyonic breakdown of the

perturbative expansion mentioned above. Indeed, if the

waterfall start is sufficiently delayed so that it somehow

‘‘never’’ occurs, the effective potential curvature felt by the

field system is always positive and no pathological growth

of the fluctuations occurs.

This can be rephrased as follows. Once the critical point

is crossed, the % distribution splits into two pieces, each

moving towards each minimum of the potential at ! ¼ 0,

" ¼ &v. This is confirmed e.g., by the numerical simu-

lations of Ref. [48] (see Fig. 10 there). Now, if one extends

the quasistationary treatment presented above in the valley

and assumes that the inflationary trajectory constantly

tracks the local minimum in the % direction, this implies

that each piece of the distribution is centered over one of

the two instantaneous minimums "&ð!Þ, so that most of

the distribution settles over a positive potential curvature

region. Obviously, this can occur only if the waterfall is

sufficiently slowly driven by ’ so that a quasistationary

distribution settles in the % direction. This means that

stochastic effects, combined with a long waterfall, may

protect the hybrid model from the tachyonic issues men-

tioned above.

B. Beyond the quasistationary approximation

As already mentioned and as can be seen e.g., in

Eq. (12), the number of e-folds realized in the waterfall

phase depends on the typical dispersion in the % direction

at the critical point, !%c
. In the previous subsection, we

made use of a quasistationary approximation where !%

only depends on the instantaneous value of the" mass. At

the critical point itself, this mass vanishes; hence, no

correction coming from the mass and its dynamical varia-

tion can be accounted for in this framework, and the

obtained result coincides with the massless one (28). To

check that this approximation scheme is reliable, and to

identify the typical corrections appearing when it is not, the

FIG. 5 (color online). Stochastic dispersion in the % direction

!2
%, rescaled by its value (28) at the critical point in the free

massless case, as a function of time labeled by ðN % NvÞ=
ðNc % NcÞ (which is 1 at the critical point and 0 at the point N ¼
Nv). The black solid line represents the free massless result (27).

The blue dashed line takes the mass of " into account but does

not include backreaction. Technically, it corresponds to the right-

hand side of Eq. (103), setting !% ¼ 0, i.e., the value at the point

labeled ‘‘1’’ in Fig. 4. The red solid line represents the exact

solution of Eq. (103), i.e., the value at the point labeled ‘‘3’’ in

Fig. 4. The parameter values used are v ¼ 0:1503MPl, m ¼
2:24/ 10%4MPl, g ¼

ffiffiffiffi

"
p

¼ 4:2. These values may not be physi-

cal (especially for g and ") but they have been chosen for

convenience of display. The grey dotted line represents the value

of N?
c defined in Eq. (105) (see text).
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value of !%c
is calculated in this section beyond the quasi-

stationary approximation. Combining Eqs. (18) and (25),

one obtains the general formula

!2
%c
¼

9

8'2

H4

m2
e

"v2

2m2/
Z 1

1

e
%"v2

2m2ðx%lnxÞ
ð&aHÞ3

j)c ð1Þ
k
j2k¼&aH

H2

dx

x
;

(106)

where one recalls that the argument of the integral is to be

evaluated at x ) exp ½%8M2
Plm

2ðN % NcÞ=ð"v
4Þ+. Making

use of Eqs. (C2)–(C6), this integral can be computed

numerically. The result is displayed in Fig. 6, as a function

of the number of e-folds spent between Nv and the critical

point. It is compared with the quasistationary formula,

which coincides with the massless equation (28). The

parameters are chosen according to what is explained in

the caption of the figure. Three regimes of interest appear,

which can easily be understood and described, keeping in

mind the evolution of the effective massmu of the waterfall

perturbations displayed in Fig. 2.

WhenNc % Nv ( 1, a large number of e-folds are spent
between Nv and the critical point, which means that the

effective mass of the waterfall perturbations varies slowly.

In this case the quasistationary approximation is valid;

the modes contributing the most to !2
%c

are the ones that

crossed their effective Hubble radius right before the

critical point, which is far after Nv. In Fig. 2, one can

correspondingly check that the effective mass mu is well

approximated by that of a massless field in this regime, and

accordingly in Fig. 6, the quasistationary formula and the

exact integral match perfectly. One concludes that the

quasistationary approximation holds for parameters such

that Nc % Nv ( 1, which is equivalent to requiring a long-

lasting waterfall.

When Nc % Nv ' 1, a very small number of e-folds are
spent between Nv and the critical point. Remembering that

mu vanishes at Nv, this means that the effective mass of the

waterfall perturbations varies very quickly, and one ex-

pects the quasistationary approximation to break. More

precisely, in this case !2
%c

is still dominated by the modes

that crossed their effective Hubble radius during, say, the

last e-fold before crossing the critical point, but because

Nv , Nc, they did this long before Nv. In this regime the

potential curvature in the " direction is not negligible

anymore, and one can indeed check in Fig. 2 that the

effective mass of the waterfall perturbations becomes

much larger than the one for a massless field. The larger

the potential curvature, the stronger it ‘‘holds’’ the field at

its bottom; hence, we have a decreased dispersion !%. This

is exactly what is noticed in Fig. 6, where for Nc%Nv'1,

the dispersion is much smaller than what is predicted by

the quasistationary formula.

Finally, these two cases are connected by the regime

Nc % Nv , 1, where a more singular behavior occurs. In

this case, !2
%c
is again dominated by the modes that crossed

their effective Hubble radius during the last few e-folds
before crossing the critical point, that is, exactly around Nv

since Nc % Nv , 1. Remembering that the effective mass

of the waterfall perturbations vanishes atNv, one can check

in Fig. 2 that there is a small time interval aroundNv during

which mu is suppressed, and it is much smaller than its

massless counterpart. During this short period, % diffuses

almost freely, hence the peak noted in Fig. 6. This regime

is, however, rather fine-tuned, since there is a priori no

reason why Nc % Nv , 1.

In conclusion, the quasistationary approximation which

enables us to develop the calculations and the results of the

previous subsection holds in the regime of parameters for

which a long waterfall occurs (or equivalently Nc%Nv(
1), and when this is not the case, the actual dispersion in the

% direction is decreased. However, since the number of

e-folds spent in the waterfall precisely depends on this

typical dispersion at the critical point, one can see that

even in this regime, this number of e-folds may not be

that small.

FIG. 6 (color online). Stochastic dispersion in the % direction

!2
% at the critical point when ’ ¼ !c, normalized by the Hubble

scale H2, as a function of the number of e-folds spent between
Nv and the critical point. The black dotted line corresponds to

the massless formula (28), which is the expected result in the

quasistationary approximation, where the dispersion in the %

direction only depends on the instantaneous mass of %, which

vanishes at the critical point. The blue solid line corresponds to

the exact integral (106). The parameters are chosen as follows. If

one defines * ¼ "v2=ð2m2Þ, the calculation can be shown to

depend only on the two parameters * and v=MPl. More pre-

cisely, the quantities appearing in Eqs. (28) and (106) are *,

*v2=M2
Pl [which roughly corresponds to the typical number of

e-folds one can spend in the valley; see Eq. (10)] and *v4=M4
Pl

[which corresponds to both the squared number of e-folds spent
in the waterfall phase—see Eq. (12)—and to the number of

e-folds spent between Nv and the critical point—see Eq. (80)]. In

the figure, * is fixed to * ¼ 106 and v is varied below the Planck

mass and labeled by Nc % Nv. One can check that the qualitative

behavior is independent of the chosen value for *.
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V. INFLATON PERTURBATIONS BEYOND

ZEROTH ORDER IN SLOW ROLL

Let us now recapitulate our progress so far. The formal-

ism of stochastic inflation has allowed us to split the full

quantum system formed by the two scalar fields in quasi-de

Sitter space into a quantum bath and a coarse-grained,

classical system, and to integrate out the bath to obtain

an effective theory for the coarse-grained system. In this

effective theory formalism, the quantum effects are mod-

eled through a classical stochastic noise term in the

equation of motion for each field, which can be calculated

from the propagator of the quantum fields.

Assuming propagators valid up to zeroth order in slow roll,

we have obtained a first approximation for the coarse-grained

field dynamics, valid to leading order in ℏ and zeroth order in

slow roll, in Sec. II. However, many cosmological observ-

ables are known to depend primarily on higher-order

quantities, for example, the spectral index of curvature per-

turbations, ns. To increase the order of precision of our

answer, we had to calculate the noise sourcing the Langevin

equations to higher order. This is what we did in Sec. III,

where we calculated the linearized mode functions for the

quantum fields in the presence of a stochastically shifted

background, which allowed us to obtain shifted noise ampli-

tudes valid to leading order in slow roll and up to next-to-

leading order in ℏ. Note that this did not allow us, however, to

calculate the corrected classical observables, such as the

spectral index, because in the stochastic formalism these are

quantities whichmust be calculated from perturbations of the

classical stochastic system, rather than the quantum bath.

We then calculated the classical effects of a shifted noise

on the one-point statistics of the coarse-grained waterfall

field in Sec. IV, insisting, in particular, on its dispersion as

the critical point is approached. Now that we have devel-

oped a good understanding of the coarse-grained waterfall

field behavior beyondOð"01; "
0
2Þ and leading order in ℏ, we

can turn to the question of how stochastic effects will affect

the details of the statistics of the coarse-grained inflaton

field to leading order in slow roll (and to next-to-leading

order in ℏ). In particular, we are interested in calculating

how stochastic effects modify the tilt of the curvature

perturbation power spectrum.

First, we need to incorporate the shifted noise from

Sec. III in the Langevin equation. This is the noise ampli-

tude we already wrote in Eq. (100) and which we rewrite

here for clarity:

h(#ðNÞ(#ðN
0Þi ¼ H4

4'2
)ðN % N0Þ /

&

1þ
2

3

!

m2 þ g!2
%

H2

"

/ ðln 2&þ .% 2Þ

'

: (107)

Note that, in the following, we will only keep the leading

contribution from the second slow-roll parameter "2, since
we want to capture the leading effect in magnitude and

"22 ( "1 for the values of the parameters we are consider-

ing. Since we are neglecting all powers of "2 higher than 1,
we have neglected the factor of "1 in the derivation pre-

sented below.

Next, to address the question of the classical coarse-

grained inflaton spectrum, one would technically need

to solve the Fokker-Planck equations corresponding to

Eqs. (15) and (16) with the noises calculated from the results

of Sec. III through Eqs. (17) and (18). However, this turns out

to be a rather difficult task analytically, and the result is not

readily usable to get concrete observable predictions.

Fortunately, we can perform a simpler calculation which

circumvents the difficulties of solving the Fokker-Planck

equations. In the previous section, we obtained a solution

of Eq. (16) to derive the mean and dispersion of %, which

holds provided that h’i remains close to the classical,

noiseless solution (we have verified this is indeed the

case for the regime of parameters we are considering in

the current work, i.e., ## ' 1). We could perform a

similar analysis for ’, but this would not be of much

help since we are really interested in separating the power

in ’ coming from the ‘‘mean’’ uniform background clas-

sical evolution, and the one coming from the fluctuations in

’ which give rise to the power spectrum in the CMB.

The strategy we adopt is therefore to expand Eq. (15) as

follows5:

’ ¼ ’0 þ )’ð1Þ þ - - - : (108)

Our goal here is to find the average power in the linear

inflaton classical fluctuations squared hð)’ð1ÞÞ2i, analo-

gously to what is done in Ref. [62], and then take its

time derivative to recover the k dependence of its power

spectrum. Assuming that the noises should be treated

perturbatively, we obtain the usual
d’0

N
¼ %

%V#

3H2 for the

equation of motion of the classical mean ’0 field, while

for the linear perturbations )’ð1Þ we obtain

d)’ð1Þ

dN
þ 2M2

Pl

!

H;!

H

"

;!
)’ð1Þ ¼

(#

H
; (109)

where, as before, (# is the contribution of the stochastic

noise in ’. Here, the occurrences of % in H are the full

coarse-grained fields since we are not performing an ex-

pansion in the coarse-grained waterfall field, only in the

coarse-grained inflaton field. Multiplying this equation by

)’ð1Þ and taking the average, we obtain

dhð)’ð1ÞÞ2i
dN

þ4M2
Pl

!

H;!

H

"

;!
hð)’ð1ÞÞ2i¼ H2

4'2

!

1þ
2

3

A

H2

"

;

(110)

5Note, however, that even though we are splitting the classical
fields into mean classical field and classical perturbations, the
mean background felt by the quantum fields is still h’ ¼ ’0 þ
)’ð1Þ þ - - -i, and similarly for higher powers.
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where we have defined A ¼ ~m2ðln 2&þ .% 2Þ, with ~m2 ¼

ðm2 þ g2!2
%Þ, and where we assumed that )’ð1Þ and %

are mutually independent and used h%i ¼ 0, as well as

h%2i ¼ !2
%, which have already been calculated at the

required order. We have also used the relation6

h(#)’
ð1Þi ¼ H3ð1þ 2

3
A
H2Þ=ð8'

2Þ.

Integrating and using the zeroth-order equation to re-

write the solution in terms of an integral over ’, we get the
solution

hð)’ð1ÞÞ2i ¼
!

H;!

H

"

2 1

8M2
Pl

Z ’0;in

’0

!

H5

H3
;!

"!

1þ
2

3

A

H2

"

d’:

(111)

Using the solutions for ’0 and H0, this integral can easily

be performed, keeping expressions for H to leading order

in m2. We obtain (by analogy to e.g., Ref. [63])

hð)’ð1ÞÞ2i 0 3H4’2
0

8'2 ~m2

&

1%
’2

0

ð’0Þ
2
in

'!

1þ
2

3

A

H2

"

: (112)

This result is sensible since at the beginning of inflation,

when ’2
0 ¼ ð’0Þ

2
in, there is no power in the inflaton fluc-

tuations. As inflation proceeds and the classical back-

ground inflaton rolls downs its potential, there is more

and more power (qualitatively because modes are joining

the coarse-grained field and, in doing so, adding power to

the classical fluctuations), and at sufficiently late times, the

system approaches a ‘‘quasi-equilibrium’’ average power

in the fluctuations.7 If we were to carry through and cal-

culate the tilt induced by this piece of the time dependence

of hð)’ð1ÞÞ2i, we would obtain a contribution to the final

tilt which is subdominant.8 We therefore neglect the time

dependence coming from ’2
0=ð’0Þ

2
in in the rest of this

calculation.

Comparing with the usual QFT methods, we know that

the general formula for massive modes far outside the

Hubble radius is given by [70]

#k ¼
1

a3=2

!

'"

4H

"

1=2
&

HðtkÞ

HðtÞ

'

2

Hð1Þ
3=2

&

kð1þ "Þ

&aH

'

; (113)

with HðtkÞ ¼ Hin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
_Hin

H2
in

ln

&

ð1þ "inÞk

Hin-in

'

v
u
u
t : (114)

Therefore, when one is interested in the average power

in the fluctuations, one needs to calculate the following

integral:

h#2
kiIR ¼

1

4'2

!

Hin

H

"

2 H2
in

ð1þ "Þ2

Z &aH

l
D2ðkÞ; (115)

where we have defined the function DðkÞ to have only

k=aH and - dependence and no other time dependence

(all the modes’ time dependence has been brought to the

front of the integral).

Therefore, we find that

Z &aH

l

dk

k
k3j)’ð1Þ

k j2 (116)

, 4'2ð1þ &Þ2
H6

H4
in

’2
0

~m2

3

8'2

&

1%
’2

0

ð’0Þ
2
in

'!

1þ
2

3

A

H2

"

0
3H4

2 ~m2

!

1þ
2

3

A

H2

"&

1%
’2

0

ð’0Þ
2
in

'

(117)

where in the last line we have used the fact that at this order

in m, H is a constant. From the leading coefficient, we

recognize the standard result for the blue-tilted spectrum of

a massive field. We therefore obtain

dk

k
k3j)’ð1Þ

k j2 / dk

k

!

k

aH

"2 ~m2

3H2
1

ð1þ2
3
A

H2
Þ

(118)

) k3j)’ð1Þ
k j2 0

!

k

aH

"2 ~m2

3H2%
4
9
~m2

H2ð
~m2

H2Þðln 2&þ.%2Þ

: (119)

Here, the second term in the exponent is the one coming

from the modified amplitude of the noise sourcing the

)’ð1Þ equation of motion, while the fact that we took the

full % field to source the mass of ’0 is the reason why ~m2

appears instead of the usual m2. Even though, at this order,

the conceptually different methods of, on one side, perturb-

ing the classical coarse-grained inflaton to obtain its clas-

sical spectrum and, on the other side, reading it off from

the spectrum of quantum mode functions directly give the

same result, there is no guarantee that this will indeed be

the case when one computes higher-order corrections in

slow roll. One should therefore be careful when it comes

to taking short cuts to obtain observables in stochastic

inflation, as this expansion strategy separates the bath

and the coarse-grained system into distinct theories sourc-

ing each other.

Note that the shifted noise has a contribution which is

higher order in ~m2=H2, in such a way that it actually gives

rise to a correction which is higher order in ℏ. Thus, we

cannot retain it while neglecting contributions of similar

order coming from different sources. Hence, we find as our

final result that the spectral index to leading order in slow

roll is

6This relation can be obtained by plugging a formal solution of

Eq. (110), )’ð1Þ ¼
R
dN½f=H % 2M2

PlðH;!=HÞ;!)’
ð1Þ+, into

h(#)’
ð1Þi, and using Eq. (107) as well as the identity

R
x0
a )ðx%

x0ÞfðxÞdx ¼ fðx0Þ=2.
7This picture holds given our assumption that H is truly

constant. In a more realistic scenario, this is only approximately
true but can still provide intuition on what is actually happening.

8More specifically, its contribution to the tilt is blue, but
initially less by half than the contribution to the tilt we calculate
in what follows, and it has a decaying prefactor which becomes
negligible as this quasi-equilibrium is approached.

LEVASSEUR, VENNIN, AND BRANDENBERGER PHYSICAL REVIEW D 88, 083538 (2013)

083538-22



nS ¼ 1þ
2ðm2 þ g2!2

%Þ

3H2
¼ 1þ

2g2!2
%

3H2
% "2: (120)

This result (which is the main result of this section) can be

understood as being the standard one, provided that we

perform the replacement m2 ! ~m2 for the mass of the

inflaton, which comes from using the shifted % rather

than the zeroth-order background value %ð0Þ ¼ 0. The in-

teresting point here is that this modification of the standard

spectral index formula shows an example of resummed

quantum corrections competing with the usual slow-roll

corrections. Indeed, since g2!2
% can be comparable to m2,

mainly close to the critical point, there is a region of

parameter space where stochastic corrections can dominate

over slow-roll effects.

Finally, and more importantly, since ~m2 >m2, the sto-

chastic dispersion of % makes the inflaton more massive.

Therefore, as suspected by looking at the spectrum of the

quantum fluctuations causing the noise, the spectrum be-

comes bluer due to stochastic effects. Moreover, we obtain

that the tilt is modified by an Oð1Þ factor compared to an

estimate based solely on slow-roll parameters. This is one

of the main results of the paper.

Note that this effect is, however, not expected to occur in

all models of inflation, since it is due to the particular way

various mass scales are set in hybrid inflation. In particular,

the reason why metric perturbations cannot overcome the

tendency of the mass of the inflaton m to make the tilt blue

is because the first slow-roll parameter is set by the vacuum

energy dominating H, which is independent of the adia-

batic direction in the potential. In other words, the ratio

m2=H2 is proportional to the second slow-roll parameter,

rather than the first, as is the case in single-field inflation.

As the system approaches the critical point, the waterfall

field becomes lighter, and its dispersion approaches that

of a light field, i.e., becomes comparable to that of the

inflaton, allowing the two corrections to the tilt to be

comparable in size if the transition is sufficiently slow.

VI. CONCLUSION

In this paper we have investigated the effects of a

recursive stochastic approach to the valley phase of hybrid

inflation, making use of the method presented in Ref. [39],

where the noise amplitude is calculated from the scalar

perturbations evolving about a background continuously

shifted by the modes sourcing the coarse-grained fields.

This paper therefore presented an illustration of how to

consistently implement this recursive method of stochastic

inflation in multifield cases, and applied it to derive inter-

esting novel results. In particular, we provided a concrete

example where leading corrections to observables can be

dominated by stochastic effects rather than slow-roll pa-

rameters. In the valley of the hybrid potential, it was found

that this consistent calculation yields a blue-tilt problem

which is worse by an Oð1Þ factor compared with the usual

slow-roll contribution. This indicates that if one wishes to

modify the valley potential to generate a red tilt, it is

crucial to take into account the stochastic contribution to

the spectral index.

We also demonstrated how to obtain the correct disper-

sions at a given order for both the inflaton and the waterfall

fields. The latter sets the length of the waterfall, which in

turn can potentially determine the viability of the model,

and must therefore be computed accurately. Short-lived

waterfalls were shown to be unlikely, since the quasista-

tionary time behavior of the auxiliary field distribution

breaks down in this regime, reducing its quantum disper-

sion at the critical point, hence lengthening this final stage.

In addition, short-lived waterfalls imply that the long

wavelengths of the auxiliary field do not experience

quantum squeezing, in which case the usual interpretation

of the stochastic formalism is problematic. Furthermore,

an analysis of backreaction showed that the recursive

process converges in the valley but fails during the water-

fall, suggesting the presence of an expected perturbative

instability.

Even though, to find a regime where the spectral tilt nS is
compatible with current constraints, a long waterfall phase

containing the observational window may seem like an

attractive solution, the tachyonic growth of the waterfall

field and the exponential growth of entropy scalar pertur-

bations make a traditional perturbative approach unstable

and out of control in this final stage. If at all, a solution may

be found if the stochastic effects combined with a long and

a slow waterfall phase allow for the fields’ distribution to

continuously settle over the two local " minimums in a

quasistationary way. This is why it becomes crucial to be

able to consistently compute the physical predictions of

such a genuine two-field phase, properly including the

stochastic contribution on the background. This shall be

the purpose of future work.
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APPENDIX A: NOTATIONS AND ASSUMPTIONS

ON THE PARAMETERS

In this appendix we summarize the notations used in this

paper, as well as the assumptions made on the potential

parameters. The potential of hybrid inflation is given by

Vð!;"Þ ¼
1

2
m2!2 þ

"

4
ð"2 % v2Þ2 þ

g2

2
!2"2;

where ! and " are the inflaton and waterfall fields, g and

" are supposedly small coupling constants, m is the mass
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of the inflaton, and v is the vev of the waterfall at the global

minima of the potential ! ¼ 0, " ¼ &v. The critical

point is located at ! ¼ !c ) v
ffiffiffiffi

"
p

=g, " ¼ 0, and the

‘‘valley’’ corresponds to !>!c, " ’ 0. If the model is

derived in the framework of supersymmetry, one has

!c ¼ v ) " ¼ g2: (A1)

For inflation to proceed at ‘‘small field’’ values, the parame-

ters !c and v must be small compared to the Planck mass,

!c; v ' MPl: (A2)

The vacuum-dominated regime corresponds to vevs of the

fields for which the potential is dominated by its constant

term V ’ "v4=4, that is, " ' v, and !c <! ' "v2=m.

The former is well verified in the valley, even if one starts

from sizable values of "in=v (in which case the bottom of

the valley is reached very quickly), and even in the presence

of stochastic effects, as shown e.g., after Eq. (28), while the

latter implies that

gv ( m: (A3)

It is also assumed that a slow-roll regime of inflation takes

place in the valley. The smallness of the first slow-roll

parameter "1 ' 1 implies that

"v4 ( m2!cMPl; (A4)

while the smallness of the second slow-roll parameter

"2 ' 1 implies the more stringent condition

"v4 ( m2M2
Pl: (A5)

Finally, to avoid the blue-tilt problem one may wish to

realize the last ,60 e-folds of inflation in the waterfall

stage. From Eq. (12) this is the case only if

ffiffiffiffi

"
p

v3 ( mM2
Pl: (A6)

We now explain the notation employed to refer to differ-

ent quantities associated with each quantum field. In

Eq. (1), the potential was written in terms of the full

quantum operator fields! and". Their classical homoge-

neous background counterparts are denoted by ’ð0Þ and

%ð0Þ. ! and " are Fourier expanded in terms of the

classical mode functions #k and c k (and the creation

and annihilation operators ây
k
, âk, b̂

y
k
, b̂k).

One collects the small-wavelength modes of the full

quantum fields to define the quantum bath #> and c>,

with their linearized counterparts denoted by )#
ð1Þ
> and

)c
ð1Þ
> . The large-wavelength modes collectively form the

classical stochastic coarse-grained system fields ’ and %,

formally defined by ’ ¼ !%#> and % ¼ "% c>.

Classical linearized fluctuations around the coarse-grained

fields are denoted )’ð1Þ and )%ð1Þ.

APPENDIX B: CLASSICAL DYNAMICS

OF THE WATERFALL PHASE

Following the terminology used in Ref. [55], this phase

can be divided into three consecutive subphases.

‘‘Phase 0’’ consists in neglecting the last term in the

inflaton slow-roll equation (4) and the first one on the right-

hand side of the waterfall equation (5) (on the grounds that

initially ’ ¼ !c). The slow-roll solutions read

’ð0ÞðNÞ ¼ !c exp

&

%4
M2

Plm
2

"v4
ðN % NcÞ

'

; (B1)

%ð0ÞðNÞ ¼ %c

&

1þ
8M2

Pl%
2
c

v4
ðN % NcÞ

'

%1=2
; (B2)

where Nc denotes the number of e-folds at the critical

point, i.e., at the onset of the waterfall phase. This phase

ends when ’ ¼ ’1 and % ¼ %1, with

ln
’1

!c

’ m2

4"%2
c

0

@1%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4"%4

c

m2v2

s 1

A; %1 ’ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

%2 ln
’1

!c

s

:

(B3)

If we are in the regime where 4"%4
c=ðm

2v2Þ ' 1, then the

number of e-folds realized in this phase is given by

N1 % Nc ’
"v2%2

c

8M2
Plm

2
' 1; (B4)

where N1 denotes the number of e-folds at the end of

phase 0. In practice, %c=v is so small that N1 % Nc is

always very small. In this case, we conclude that the

phase 0 is unimportant since it lasts a negligible number

of e-folds and since the values of ’ and % remain almost

unchanged during that phase.

We now proceed with phase 1, where the second term on

the right-hand side of the waterfall equation (5) can be

neglected. During this phase, the solution for the inflaton

field is unchanged, but the waterfall field evolution now

reads

%ð0Þ¼%1exp

(

16m2M4
Pl

"v6
½ðN%NcÞ

2%ðN1%NcÞ
2+

*

: (B5)

Phase 1 stops when the first term on the right-hand side of

the waterfall field equation becomes important, i.e., when

% ) %2 and ’ ) ’2, where

%2
2 ¼

!2
cm

2

"v2
¼

m2

g2
; (B6)

ln 2
’2

!c

’ m2

"v2
ln

!

m

g%c

"

: (B7)

Finally, the number of e-folds produced during phase 1 is

given by
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N2 % Nc ’
"1=2v3

4mM2
Pl

ln 1=2

!

m

g%c

"

: (B8)

Therefore, if one were interested in the regime where the

required 60 e-folds of inflation take place during the water-

fall phase, one needs to work in the "v6

m2M4
Pl

( 1 regime.

Finally, let us now briefly mention phase 2, where one

needs to keep the last term in the inflaton equation of

motion (4); hence, Eqs. (4) and (5) become fully coupled.

The slow-roll trajectory in field space obeys

%2 ¼ %2
2 þ ’2 % ’2

2 % 2!2
c ln

’

’2

: (B9)

During phase 2, inflation quickly stops and the system

starts oscillating around one of the two true minimums of

the potential.

APPENDIX C: FORMULAS FOR !c
ð1Þ
k

In this appendix we summarize, for practical conve-

nience, the derived formula for the amplitude of the first-

order perturbations in the " direction )c
ð1Þ
k
. Defining

xðNÞ¼

&

v2H2

8m2M2
Pl

'2
3

&

8m2M2
Pl

v2H2
ðN%NcÞ%3

"!2
%

H2
þ15"1þ

9

4

'

;

(C1)

one has

If k < kv ¼
Hv
ffiffiffi

6
p

MPl

e
Nc%

v2H2

4M2
Pl
m2

;

if N <NHeff
’ 1

2
log

!

v2

M2
Pl

k2

12H2

"

% 8
M2

Plm
2

"v4
Nc;

j)c ð1Þ
k
j 0 e%N

ffiffiffiffiffi

2k
p ;

(C2)

if NHeff
<N <Nv ¼ Nc %

v2H2

4M2
Plm

2
;

j)c ð1Þ
k
j 0 e

1
2
½NHeff

%3N+

)

)

)

)

)

)

)

)

xðNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4 1

ffiffiffiffiffi

2k
p ;

(C3)

if Nv <N <Nc;

j)c ð1Þ
k
j 0 e

1
2
ðNHeff

%3NÞ

)

)

)

)

)

)

)

)

xðNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4e

2
3
xðNÞ

3
2%2

3
xðNvÞ

3
2

ffiffiffiffiffi

2k
p ;

(C4)

If kv < k< kc ¼
ffiffiffi

2
p

HeNc ;

if N <NHeff
’
&

log

!

k
ffiffiffi

2
p

H

"

þ
24m2M4

Pl

"v6

k2

H2
Nc

'+

!

1%
24m2M4

Pl

"v6

k2

H2

"

;

j)c ð1Þ
k
j 0 e%N

ffiffiffiffiffi

2k
p ; (C5)

if NHeff
<N <Nc;

j)c ð1Þ
k
j 0 e

1
2
½NHeff

%3N+

)

)

)

)

)

)

)

)

xðNHeff
Þ

xðNÞ

)

)

)

)

)

)

)

)

1
4

e
2
3
½xðNÞ

3
2%xðNHeff

Þ
3
2+ 1

ffiffiffiffiffi

2k
p :

(C6)
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According to cosmological inflation, the inhomogeneities in our Universe are of quantum-mechanical

origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big

bang model and naturally explains why the spectrum of cosmological perturbations is almost scale

invariant. It is also an ideal playground to discuss deep questions among which is the quantum

measurement problem in a cosmological context. Although the large squeezing of the quantum state of

the perturbations and the phenomenon of decoherence explain many aspects of the quantum-to-classical

transition, it remains to understand how a specific outcome can be produced in the early Universe, in the

absence of any observer. The continuous spontaneous localization (CSL) approach to quantum mechanics

attempts to solve the quantum measurement question in a general context. In this framework, the wave

function collapse is caused by adding new nonlinear and stochastic terms to the Schrödinger equation. In

this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case.

We choose the wave function collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and

discuss the corresponding modified Schrödinger equation. Then, we compute the power spectrum of the

perturbations and show that it acquires a universal shape with two branches, one which remains scale

invariant and one with nS ¼ 4, a spectral index in obvious contradiction with the cosmic microwave

background anisotropy observations. The requirement that the non-scale-invariant part be outside the

observational window puts stringent constraints on the parameter controlling the deviations from ordinary

quantum mechanics. Due to the absence of a CSL amplification mechanism in field theory, this also has

the consequence that the collapse mechanism of the inflationary fluctuations is not efficient. Then, we

determine the collapse time. On small scales the collapse is almost instantaneous, and we recover exactly

the behavior of the CSL harmonic oscillator (a case for which we present new results), whereas, on large

scales, we find that the collapse is delayed and can take several e-folds to happen. We conclude that

recovering the observational successes of inflation and, at the same time, reaching a satisfactory resolution

of the inflationary ‘‘macro-objectification’’ issue seems problematic in the framework considered here.

This work also provides a complete solution to the CSL parametric oscillator system, a topic we suggest

could play a very important role to further constrain the CSL parameters. Our results illustrate the

remarkable power of inflation and cosmology to constrain new physics.

DOI: 10.1103/PhysRevD.86.103524 PACS numbers: 98.80.Cq, 98.80.Qc, 03.65.Ta, 03.65.Yz

I. INTRODUCTION

Inflation is currently the leading paradigm for explaining

the physical conditions that prevailed in the very early

Universe [1–5]. It solves the puzzles of the standard hot

big bang phase and it explains the origin of the inhomo-

geneities in our Universe [6–11] (for reviews, see

Refs. [12–18]). According to the inflationary scenario,

these inhomogeneities result from the amplification of

the unavoidable vacuum quantum fluctuations of the gravi-

tational and inflaton fields during a phase of accelerated

expansion. In particular, inflation predicts an almost scale

invariant power spectrum for the cosmological fluctuations

[19], a prediction which fits very well the high accuracy

astrophysical data now at our disposal [20–26].

Often less emphasized is the fact that inflation is also

particularly remarkable from the theoretical point of view.

Indeed, the inflationary mechanism for the production of

cosmological perturbations makes use of general relativity

and quantum mechanics, two theories that are notoriously

difficult to combine. Moreover, this mechanism leads to

theoretical predictions that are possible to study observa-

tionally with great accuracy. In fact, inflation is probably

the only case in physics where an effect based on general

relativity and quantum mechanics leads to predictions that,

given our present day technological capabilities, can be

tested experimentally.

The situation described above can be used to investigate

deep questions. Among these deep questions is how the

quantum measurement problem looks in a cosmological

context. According to inflation, the cosmic microwave

background (CMB) radiation anisotropy [27] is an observ-

able and is therefore described by a quantum operator. As a

consequence, when one looks at a CMBmap, one observes
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the result of a measurement of that observable. According

to the postulates of quantum mechanics in the Copenhagen

interpretation, this means that the wave function of the

inflationary perturbations has collapsed to an eigenvector

of this operator and that the CMB map corresponds to one

of its eigenvalues. The problem with this approach is that

the collapse is supposed to occur only when an observer

performs a measurement on the system. Clearly, there was

no observer before or when the CMB was emitted. This

seems to contradict the phenomenological fact that large-

scale structure formation started early in the history of the

Universe since these structures are seeded by the same

early physics which led to CMB fluctuations. As a matter

of fact, CMB fluctuations can also be understood as the

earliest hint that primordial inhomogeneities had already

started to grow at that time. Furthermore, in some sense,

the observers are actually the end product of the structure

formation process. Of course, this measurement problem is

already present in conventional laboratory situations but it

seems to be exacerbated (to use the words of Ref. [28]) in a

cosmological context.

Important steps towards a better understanding of these

issues have already been accomplished. In particular, it was

shown that the inflationary accelerated expansion trans-

forms a coherent vacuum state into a strongly squeezed

state [29], the corresponding squeezing being much more

important than whatever can be realized in the laboratory

[30]. In this limit, the predictions of the quantum formalism

are indistinguishable from that of a theory where the fluc-

tuations are just assumed to be realizations of a classical

stochastic process [31–33]. The classical limit is a subtle

concept in quantummechanics but, in this sense (and in this

sense only), the system can be characterized as being clas-

sical [34]. Moreover, the large-scale cosmological pertur-

bations are not isolated and, as a consequence, the

phenomenon of decoherence [35–37] is relevant for them.

This has the consequence that their density matrix becomes

diagonal before recombination, a criterion which is also

considered as necessary in order to understand the

quantum-to-classical transition [31,32,38–43]. However,

it is known that decoherence per se does not solve the

measurement problem [44,45]. Indeed, it remains to under-

stand how a single outcome can be produced. This point is

particularly important given that we only have one CMB

map, that is to say only onemeasurement of the correspond-

ing observable. In other words, even if the cosmological

fluctuations can be viewed as a classical stochastic problem,

this does not explain how a given realization of this process

becomes an actual perception. This ‘‘macro-objectivation’’

problem is already present in a conventional situation but, as

already mentioned before, it becomes particularly embar-

rassing in the context of inflation where the collapse of the

wave function cannot be due to the presence of a conscious

observer. Facing this situation, the common attitude is to

postulate that decoherence should be combined with a new

interpretational scheme, different from the Copenhagen

interpretation [46,47]. Typically, in cosmology, the many

world approach is often implicitly assumed [34,46–50].

Another frequently mentioned possibility, which seems to

be particularly well suited to the cosmological context, is to

consider that the wave function only represents the infor-

mation that we have on the system [51]. In this case, the

issue of thewave function collapse becomes irrelevant since

it just corresponds to a situation where the observer updates

their knowledge (in the Bayesian sense) about the physical

properties of the system. Other attempts, such as the non-

local hidden variable theories, have also been tried [52–57].

In all of these cases, the cosmological situation does not

differ much from a conventional laboratory situation and,

moreover, does not lead to new, falsifiable, predictions.1

Then, it becomes a question of tastewhich approach best fits

one’s own prejudices.

However, there exists an exception to the conclusion of

the previous discussion, namely the case of the collapse

models [61–66] (for reviews, see Refs. [67,68]). In this

approach, the Schrödinger equation is modified by adding

nonlinear and stochastic terms which render dynamical the

collapse of the wave function. The model has nice features:

first, the approach seems to follow a conservative strategy

since, in physics, it is standard to first consider a linear

theory and then, in order to have a more accurate descrip-

tion, to consider nonlinear corrections; in some sense, the

collapse theories follow this line of argument. Second,

there is now a single law of evolution for the state vector

and, third, the Born laws can be derived instead of postu-

lated. There are also disadvantages such as the property

that energy is not conserved or the fact that the relativistic

formulation of the theory appears to be technically and

conceptually difficult to develop (however, see Ref. [69]).

But, clearly, the main advantage in comparison to the

possibilities discussed above is that this approach is falsifi-

able since it leads to predictions different from that of

conventional quantum mechanics. This fact has been

widely used in order to constrain collapse theories in the

laboratory [68,70–73] but, clearly, it is also important to

see whether this could be done in a cosmological context

[74–76]. It is therefore interesting to investigate what the

collapse theories have to say about the inflationary mecha-

nism. Notice that, regardless of one’s opinion about col-

lapse theories, the subject is worth studying: a supporter

would argue that the cosmological measurement problem

can possibly find a natural solution within this theory and

an opponent would hope that the constraints obtained in a

cosmological context can rule out the theory. In fact, this

last question turns out to be very important. Indeed, as

1In the case of the Bohm-de Broglie approach, there could be a
transitory regime, before ‘‘quantum equilibrium’’ is reached,
where the predictions differ from conventional quantum me-
chanics [58]. Cosmology is also precisely considered as a
situation where this regime could be relevant [59,60].
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already mentioned, the constraints that exist on collapse

theories are usually obtained from physical phenomena

that can be observed in the laboratory. Therefore, by study-

ing collapse theories in the context of cosmology and

inflation, one can hope to derive very relevant new con-

straints since one now deals with characteristic scales

(energy, length, etc.) which typically differ by many orders

of magnitude from those used in a down-to-earth context.

This illustrates again the conceptual relevance of inflation

when it comes to very fundamental questions and its power

to constrain alternatives to gravity but also to quantum

mechanics. In some sense, inflation represents an ideal

playground to test new theories. Notice in passing that

the very same strategy was used in the case of the so-called

trans-Planckian problem of inflation [77–79] where it

was shown that the inflationary observables could pos-

sibly contain an imprint (although probably small) of

string theory.

We are using a (modified) Schrödinger-type of equation

to describe the behavior of cosmological perturbations.

This is justified because each Fourier mode of those effec-

tively evolves in an independent way and cosmological

expansion permits one to define a privileged time. This

allows for a sensible treatment of cosmological perturba-

tions even though a fully relativistic continuous spontane-

ous localization (CSL) model, which could be naively

expected to be required, is still lacking. At this moment,

surprisingly, it is easier to treat inflationary perturbations

than ordinary particle physics.

It should also be emphasized that the idea of applying

collapse theories to inflationary perturbations of quantum-

mechanical origin was first considered in Refs. [80–82]. In

these articles, a phenomenological model for the collapse

process was assumed and the corresponding physical prop-

erties were derived. In particular, the power spectrum of

the perturbations was calculated and was shown to deviate

from the standard predictions. Therefore, Refs. [80–82]

have demonstrated that, in principle, it is possible to ob-

servationally test collapse theories in a cosmological con-

text. Our approach differs from that of Refs. [80–82] in the

fact that we use the CSL model to implement the collapse

dynamics. This has the advantage that our calculations can

be directly confronted and compared to other results ob-

tained in other branches of physics.

This paper is organized as follows. In the next section,

Sec. II, we present a brief review of the theory of infla-

tionary cosmological perturbations of quantum-

mechanical origin. We especially focus on the calculation

of the power spectrum since this quantity is the tool that

allows us to relate the inflationary theory with the CMB

observations. Then, in Sec. III, we discuss the cosmologi-

cal measurement problem and we explain how high accu-

racy CMB measurements can constrain inflation. In

Sec. IV, we consider collapse theories, in particular, its

CSL version, which is, as already mentioned, the case we

use in this article. These sections aim at rendering the

present work self-contained for readers with different ex-

pertise. Then, we show how the harmonic oscillator can be

treated in this context. This case is particularly relevant for

cosmological fluctuations since it corresponds to the small-

scale limit (in comparison to the Hubble radius) of the

theory of cosmological perturbations. In Sec. V, we apply

the CSL theory to inflation and to the calculation of the

power spectrum. We use this result to constrain the pa-

rameter that controls the deviations from ordinary quantum

mechanics. In Sec. VI, we study in more details the col-

lapse phenomenon and explicitly compute the collapse

time on small and large scales. In Sec. VII, we summarize

our results and present our conclusions. We end the paper

with an Appendix where it is shown that changing the

‘‘temporal gauge’’ in which the modified Schrödinger

equation is written does not affect the shape of the power

spectrum. This calculation reinforces the generic character

of the results obtained in this work.

II. INFLATIONARY COSMOLOGICAL

PERTURBATIONS

A. Basic formalism

By definition, inflation is a phase of accelerated expan-

sion that took place in the very early Universe, prior to the

standard hot big bang phase [1–5] (for reviews, see

Refs. [13–15]). As is well known, postulating such a phase

of evolution allows us to solve the standard problems of the

hot big bang model. Given that at very high energies, field

theory is the relevant framework to describe matter, a

natural way to realize inflation is to consider that a real

scalar field (the ‘‘inflaton’’ field) dominated the energy

density budget of matter in the early Universe. Moreover,

this assumption is compatible with the observed homoge-

neity, isotropy and flatness of the early Universe.

Technically, the above-mentioned situation can be de-

scribed by the metric tensor ds2¼"dt2þa2ðtÞ!ijdx
idxj,

where aðtÞ is the Friedman-Lemaı̂tre-Robertson-Walker

(FLRW) scale factor and t the cosmic time.2 The

Einstein equations imply that €a=a ¼ "ð"þ 3pÞ=ð6M2
PlÞ,

" and p being the energy density and pressure of the matter

sourcing the gravitational field and MPl the Planck mass

(a dot denotes a derivative with respect to the cosmic

time t). For a scalar field, this reduces to €a=a ¼ Vð’Þ&
ð1" _’2=VÞ=ð3M2

PlÞ, where Vð’Þ is the scalar field poten-

tial. This means that inflation (i.e., €a > 0) can be obtained

provided the inflaton slowly rolls down its potential so that

its potential energy dominates over its kinetic energy. This

also shows that the inflaton potential must be sufficiently

flat, a requirement which is not always easy to obtain in

2Unless explicit mention of the contrary, we shall in what
follows assume natural units in which ℏ ¼ c ¼ 1 so that the
Newton constant GN is related with the Planck massMPl through
8#GN ¼ M"2

Pl .
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realistic situations and makes the inflationary model build-

ing problem a difficult issue [83]. The physical nature of

the inflaton field has not been identified (there are many

candidates) and, as a consequence, the shape of Vð’Þ is not
known. Of course, different Vð’Þ lead to different infla-

tionary expansions but, since these different potentials

must all be sufficiently flat, the corresponding scale factors

are all approximately given by the de Sitter solution. This

solution is described by the scale factor aðtÞ ’ eHt, where

H ' _a=a is the Hubble parameter, a slowly-varying quan-

tity directly related to the energy scale of inflation.

Observationally, this last quantity is not known but is con-

strained [22] to be between the grand unified theory (GUT)

scale, that is to say (1015 GeV, and (1 TeV. The pre-

vious considerations show that inflation can also be viewed

as a phase of quasiexponential expansion.

A concrete illustration of the above discussion consists

in considering power-law inflation [84]. Although it is

based on a specific model with potential Vð’Þ ¼

M4e"$’=MPl (with $ constant), it captures, in a simple

way, all the essential properties of inflation and, moreover,

is the only scenario which permits an exact integration of

the equations of motion (at the background level but also at

the perturbative level, see below). The corresponding scale

factor is given by

að%Þ ¼ ‘0ð"%Þ1þ&; (1)

where ‘0 is a length the value of which is fixed once the

energy scale of inflation is known and % in the conformal

time defined by dt ¼ ad%, see Eq. (2). The quantity & is a

free parameter such that & ) "2 and is related to $

through $2=2 ¼ ð&þ 2Þ=ð&þ 1Þ. The case & ¼ "2 rep-

resents the de Sitter solution since it implies $ ¼ 0, i.e., a

flat potential (and, of course, in cosmic time, the solution

a / 1=% is given by an exponential). Therefore, different&

represents different inflationary solutions and & must

always be close to "2 in order for the potential to be

sufficiently flat. As announced, power-law inflation illus-

trates well the discussion of the previous paragraph.

The above arguments can be considered as strong hints

in favor of inflation. However, soon after its advent, it was

realized that inflation, combined with quantum mechanics,

leads to an even more impressive result, namely it naturally

explains the origin of the CMB anisotropies and of the

large-scale structures. According to the inflationary para-

digm, these deviations from homogeneity and isotropy

originate from the unavoidable zero-point quantum fluctu-

ations of the coupled inflaton and gravitational fields.

Statistically, the fluctuations are characterized by their

two-point correlation function or power spectrum. The

observations [20–26] indicate that the corresponding

power spectrum is close to the Harrison-Zel’dovich, scale

invariant, power spectrum with equal power on all scales.

That this power spectrum represents a good fit to the

astrophysical data was in fact realized before the advent

of inflation but no convincing fundamental theory was

known to explain this result.

The main success of inflation is that it precisely predicts

an almost scale invariant power spectrum, the small devia-

tions from scale invariance being connected with the mi-

crophysics of inflation [6–11]. The fact that different types

of inflationary scenarios lead to a power spectrum which is,

at leading order, always close to scale invariance is con-

nected with the fact that the inflationary scale factor is

always close to the de Sitter solution (see above) or,

equivalently, with the fact that the inflaton potential is

always almost flat. The deviations from scale invariance

are related to the deviations from a flat potential and,

therefore, depend on the detailed shape of the potential.

As a consequence, measuring them allows us to say some-

thing about Vð’Þ and there is currently an important effort

in this direction using the high accuracy CMB data that

have been released in the past years.

Let us now see how the results reviewed before can be

derived. Clearly, in order to model the cosmological fluc-

tuations, one needs to go beyond homogeneity and iso-

tropy. The most general metric describing small

fluctuations of the scalar type on top of a FLRW

Universe can be written as [12]

ds2¼a2ð%Þf"ð1"2'Þd%2þ2ð@iBÞdx
id%

þ½ð1"2c Þ!ijþ2@i@jE+dx
idxjg: (2)

A similar approach could be used to take into account

tensor perturbations (i.e., gravity waves). Here, we do not

include them since they are subdominant in the CMB,

representing less than (20% at 2( confidence level [22]

and, in addition, doing it would not bring any new aspects

to the question we want to investigate in this article. In

Eq. (2), the four functions ', B, c and E are of course

functions of time and space since we consider an inhomo-

geneous and anisotropic situation. As is well known, the

above approach is redundant because of gauge freedom

[12,85,86]. A careful study of this question shows that the

gravitational sector can in fact be described by a single,

gauge-invariant, quantity, the Bardeen potential "B de-

fined by [85]

"Bð%; xÞ ¼ 'þ
1

a
½aðB" E0Þ+0; (3)

where a prime denotes a derivative with respect to the

conformal time %. In the same manner, the matter sector

can be modeled by the gauge invariant fluctuation of the

scalar field

!’ðgiÞð%; xÞ ¼ !’þ ’0ðB" E0Þ: (4)

The two quantities"B and !’ðgiÞ are related by a perturbed

Einstein constraint. This implies that the scalar sector can

in fact be described by a single quantity. For this reason, we

now introduce the so-called Mukhanov-Sasaki variable

[6,87] which is a combination of the Bardeen potential

and of the gauge invariant field
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vð%; xÞ ¼ a

!

!’ðgiÞ þ ’0 "B

H

"

; (5)

where H ' a0=a. All the other relevant quantities can be

expressed in terms of vð%; xÞ which, therefore, fully char-

acterizes the scalar sector.

The next step consists in deriving an equation of motion

for vð%; xÞ. This can be done directly from the perturbed

Einstein equations but, here, we first establish the action for

the quantity vð%; xÞ. Expanding the action of the system

(i.e., Einstein-Hilbert action plus the action of a scalar field)

up to second order in the perturbations, one obtains [12]

ð2Þ!S ¼
1

2

Z

d4x

!

ðv0Þ2 " !ij@iv@jvþ
ða

ffiffiffiffiffi

)1
p

Þ00

a
ffiffiffiffiffi

)1
p v2

"

; (6)

where )1 ¼ 1"H 0=H 2 is the first slow-roll parameter

[88,89]. As the formula €a=a ¼ H2ð1" )1Þ shows, the con-
dition )1<1 is in fact sufficient to have inflation.Moreover,

we have slow-roll inflation [19,88–91] if )1,1. In this

case, it is easy to show that )1 ’ ðM2
Pl=2V

2ÞðdV=d’Þ2,
i.e., )1 is in fact a measure of how much the inflaton

potential deviates from a flat potential. Equivalently, ac-

cording to the previous considerations, this is also a mea-

sure of howmuch the inflationary expansion deviates from a

pure de Sitter solution. In the case of power-law inflation,

one has )1 ¼ ð2þ &Þ=ð1þ &Þ and, of course, )1 ¼ 0when

& ¼ "2 (de Sitter solution). The scale factor can also be

rewritten as að%Þ ’ ‘0ð"%Þ"1")1 and this formula is in fact

valid for any slow-roll model of inflation, i.e., for arbitrary

shaped potentials, not necessarily of the exponential type.

In this sense, power-law inflation with & & "2 is a simple

representative of all the slow-roll scenarios. Therefore, the

fact that, in this paper, we focus on this particular model for

technical reasons (again, because this model allows an easy

integration of the equations of motion at the background

and perturbative level) does not restrict in any way the

generality of our considerations.

Our next move consists in Fourier transforming the

quantity vð%; xÞ. This is of course justified by the fact

that we work with a linear theory and, hence, all the modes

evolve independently. We have

vð%; xÞ ¼
1

ð2#Þ3=2

Z

R3
d3kvkð%Þe

ik-x; (7)

with v"k ¼ v.
k because vð%; xÞ is real. Then inserting this

expansion into Eq. (6), one arrives at [12]

ð2Þ!S ¼
Z

d%
Z

d3k

$

v0
kv

.0
k þ vkv

.
k

!

ða
ffiffiffiffiffi

)1
p

Þ00

a
ffiffiffiffiffi

)1
p " k2

"%

; (8)

where the integral over k is taken over half the Fourier

space only. Next, we define pk, the variable canonically

conjugate to vk

pk ¼
!L

!v.0
k

¼ v0
k; (9)

whereL is the Lagrangian density in Fourier space that can

be derived from Eq. (8). This allows us to calculate the

Hamiltonian which reads

H ¼
Z

d3k

$

pkp
.
k þ vkv

.
k

!

k2 "
ða

ffiffiffiffiffi

)1
p

Þ00

a
ffiffiffiffiffi

)1
p

"%

: (10)

This Hamiltonian represents a collection of parametric

oscillators (i.e., one oscillator per mode), the time-

dependent frequency of which can be expressed as

!2ð%; kÞ ¼ k2 "
ða

ffiffiffiffiffi

)1
p

Þ00

a
ffiffiffiffiffi

)1
p : (11)

We see that the frequency depends on the scale factors and

its derivatives (up to the fourth). This means that different

inflationary backgrounds (i.e., different inflaton potentials)

lead to different !ð%;kÞ and, therefore, to different behav-
iors for vkð%Þ. From Eq. (10) or Eq. (8), it is easy to derive

the equation of motion for the Mukhanov-Sasaki variable.

One obtains

v00
k þ!2ð%; kÞvk ¼ 0; (12)

which confirms that each mode behaves as a parametric

oscillator. Once a model of inflation has been chosen, the

potential Vð’Þ is known and, hence, the corresponding

scale factor can be calculated. This, in turn, allows us to

determine!2ð%; kÞ and, then, one can solve the equation of
motion (12). However, in order to find the solution for the

Fourier component of the Mukhanov-Sasaki variable, one

also needs to specify the initial conditions. Classically,

there does not seem to exist a natural criterion to choose

them. However, when quantization has been performed,

the requirement that it be initially in the vacuum state of the

theory leads to well-defined initial conditions. We now turn

to these questions.

B. Quantization in the Schrödinger picture

In this section, we review how the cosmological pertur-

bations are quantized. Very often in the literature, this is

done in the Heisenberg picture. Here, we carry out the

quantization in the Schrödinger picture [15] because this is

more convenient for the problem we want to investigate in

this article. In order to quantize the system, it is also more

convenient to work with real variables. Therefore, we

introduce the following definitions:

vk '
1
ffiffiffi

2
p ðvR

k þ ivI
kÞ; pk '

1
ffiffiffi

2
p ðpR

k þ ipI
kÞ: (13)

In the Schrödinger approach, the quantum state of the

system is described by a wave functional, #½vð%; xÞ+.
Since we work in Fourier space (and since the theory is

still free in the sense that it does not contain terms with

power higher than 2 in the Lagrangian), the wave func-

tional can also be factorized into mode components as
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#½vð%; xÞ+ ¼
Y

k

#kðv
R
k ; v

I
kÞ ¼

Y

k

#R
k ðv

R
k Þ#

I
kðv

I
kÞ: (14)

Quantization is achieved by promoting vk and pk to quan-

tum operators, v̂k and p̂k, and by requiring the canonical

commutation relations

½v̂R
k ; p̂

R
q + ¼ i!ðk" qÞ; ½v̂I

k; p̂
I
q+ ¼ i!ðk" qÞ: (15)

These relations admit the following representation:

v̂ R;I
k # ¼ vR;I

k #; p̂R;I
k # ¼ "i

@#

@vR;I
k

: (16)

The wave functional #½vð%; xÞ+ obeys the Schrödinger

equation which, in this context, is a functional differential

equation. However, since each mode evolves indepen-

dently, this functional differential equation can be reduced

to an infinite number of differential equations for each#k.

Concretely, we have

i
#

R;I
k

@%
¼ Ĥ

R;I
k #

R;I
k ; (17)

where the Hamiltonian densities Ĥ
R;I
k are related to the

Hamiltonian by Ĥ ¼
R
d3kðĤ

R
k þ Ĥ

I
kÞ. They can be ex-

pressed as

Ĥ
R;I
k ¼ "

1

2

@2

@ðvR;I
k Þ2

þ
1

2
!2ð%;kÞðv̂R;I

k Þ2; (18)

where we have made use of the representations (16).

We are now in a position where we can solve the

Schrödinger equation. Let us consider the following

Gaussian state

#
R;I
k ð%; vR;I

k Þ ¼ Nkð%Þe
"$kð%Þðv

R;I
k
Þ2 : (19)

The functions Nkð%Þ and$kð%Þ are time dependent and do

not carry the subscripts ‘‘R’’ and/or ‘‘I’’ because they are the

same for the wave functions of the real and imaginary parts

of the Mukhanov-Sasaki variable (see below). Then, insert-

ing#k given by Eq. (19) into the Schrödinger equation (17)

implies that Nk and$k obey the differential equations

i
N0

k

Nk

¼ $k; $0
k ¼ "2i$2

k þ
i

2
!2ð%; kÞ: (20)

The solutions can be easily found and read

jNkj ¼
&

2<e$k

#

'

1=4
; $k ¼ "

i

2

f0k
fk

; (21)

where fk is a function obeying the equation f00kþ!2fk¼0,

that is to say exactly Eq. (12). The first equation (21) guar-

antees that the wave function is properly normalized, i.e.,

Z

#
R;I
k #

R;I.
k dvR;I

k ¼ 1: (22)

Let us now discuss the initial conditions. The fundamen-

tal assumption of inflation is that the perturbations are

initially in their ground state. At the beginning of inflation,

all the modes of astrophysical interest today have a physi-

cal wavelength smaller than the Hubble radius, i.e.,

k=ðaHÞ ! 1. In this regime, one has !2ð%; kÞ ! k2 and

each mode now behaves as an harmonic oscillator (as

opposed to a parametric oscillator in the generic case)

with frequency ! ¼ k. As a consequence, the differential

equation for fkð%Þ can easily be solved and the solution

reads fk ¼ Ake
ik% þ Bke

"ik%, Ak and Bk being integration

constants. Upon using the second equation (21), one has

$k !
k

2

Ake
ik% " Bke

"ik%

Ake
ik% þ Bke

"ik%
: (23)

The wave function (19) represents the ground state wave

function of an harmonic oscillator if$k ¼ k=2. Therefore,
one must choose the initial conditions such that Bk ¼ 0.

Moreover, it is easy to check that the Wronskian W '

f0kf
.
k " f0.k fk is a conserved quantity, dW=d% ¼ 0, thanks

to the equation of motion of fk. Straightforward calcula-

tion leads to W ¼ 2ikjAkj2. In the Heisenberg picture the

canonical commutation relations require that W ¼ i. Even
if in the Schrödinger picture presently used, the specific

value of W is irrelevant since it cancels out on all calcu-

lable physical quantities, this value is conventionally

adopted, which amounts to setting Ak ¼ 1=
ffiffiffiffiffi

2k
p

. As an-

nounced, requiring the initial state to be the ground state

has completely fixed the initial conditions. We see that

Eq. (12) (or, equivalently, the equation for fk) should thus

be solved with the boundary condition

lim
k=ðaHÞ!þ1

fk ¼
1
ffiffiffiffiffi

2k
p eik%: (24)

This choice of initial conditions is referred to as the Bunch-

Davies vacuum.

C. The power spectrum

Let us now turn to the calculation of the power spectrum

and first introduce the two-point correlation function, de-

fined by

h#jv̂ð%;xÞv̂ð%;xþrÞj#i

¼
Z Y

k

dvR
kdv

I
k#

.
kðv

R
k ;v

I
kÞvð%;xÞvð%;xþrÞ#kðv

R
k ;v

I
kÞ:

(25)

The next step consists in using the Fourier transform of the

Mukhanov-Sasaki variable, see Eq. (7) and the explicit

form of the wave function of Eq. (19). One arrives at
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h#jv̂ð%; xÞv̂ð%; xþ rÞj#i

¼
1

ð2#Þ3

Z

dpdq eip-x eiq-ðxþrÞ
Y

k

&

2<e$k

#

'

&
Z Y

k

dvR
kdv

I
k e

"2
P

k

<e$k½ðv
R
k
Þ2þðvI

k
Þ2+

vpvq: (26)

If p ! /q, the result of the integration is zero since the

integrand (up to the Gaussian weight) becomes linear in

vR;I
p or vR;I

q . If p ¼ q, then the only nonlinear term in the

integrand is given by ½ðvR
pÞ

2 " ðvI
pÞ

2+=2. Each term con-

tributes the same amount, so the difference vanishes. The

only possibility left is therefore p ¼ "q, such that vpvq ¼

½ðvR
pÞ

2 þ ðvI
pÞ

2+=2, the factor 1=2 coming from the defini-

tion of vR;I
k , see Eqs. (13). This leads to

h#jv̂ð%; xÞv̂ð%; xþ rÞj#i

¼
2

ð2#Þ3
1

2

Z

dp e"ip-r
YN

k

&

2<e$k

#

'

&
Z YN

k

dvR
kdv

I
k e

"2
P

k

<e$k½ðv
R
k
Þ2þðvI

k
Þ2+

ðvR
pÞ

2; (27)

the factor of 2 originating from the fact that we have two

contributions, one given by the term ðvR
pÞ

2 and the other by

ðvI
pÞ

2. The Gaussian integrals can easily be carried out.

They are all of the form ‘‘
R
dxe"$x2 ,’’ except of course the

one over vR
p which is of the form ‘‘

R
dxx2e"$x2 .’’ As a

consequence, one obtains

h#jv̂ð%; xÞv̂ð%; xþ rÞj#i

¼
1

ð2#Þ3

Z

dp e"ip-r
YN

k

&

2<e$k

#

'

1

2

2

6
4

ffiffiffiffi

#
p

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2<e$p

q )

3

3

7
5

&
YN

k

0

@

ffiffiffiffi

#
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2<e$k

p

1

A
YN"1

k

0

@

ffiffiffiffi

#
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2<e$k

p

1

A: (28)

The infinite product ‘‘
Q

N"1
k ’’ means a product over all the

wave vectors but p. One can always write this product as

‘‘
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2<e$p=#
q Q

N
k ,’’ then the two last infinite products in

the above expression exactly cancel the first one.

Therefore, we are left with

h#jv̂ð%; xÞv̂ð%; xþ rÞj#i ¼ 1

ð2#Þ3

Z

dp e"ip-r 1

4<e$p

:

(29)

We now need to express<e$p in terms of the function fp.

From the second Eq. (21), one easily shows that

<e$p ¼ "
i

4

W

jfpj2
; (30)

and we obtain our final expression for the two-point corre-

lation function

h#jv̂ð%; xÞv̂ð%; xþ rÞj#i ¼ 1

ð2#Þ3

Z

dp e"ip-r i

W
jfpj2

¼
1

2#2

Z þ1

0

dp

p

sinpr

pr
p3jfpj2;

(31)

where, in the last expression, we have used our choice

W ¼ i. The power spectrum is just defined as the square

of the Fourier amplitude per logarithmic interval at a given

scale, i.e.,

P vðkÞ ¼
k3

2#2
jfkj2: (32)

The same manipulations allow us to express the two-

point correlation of two Fourier amplitudes. It can be

written as

h#jv̂kv̂
.
pj#i ¼

Z Y

q

dvR
q dv

I
q#

.
qv̂kv̂

.
p#q: (33)

This integral is nonvanishing only if k ¼ p (otherwise one

has to integrate an odd function) and receives two contri-

butions, one from ðvR
k Þ

2 and the other from ðvI
kÞ

2. Repeating

calculations already performed before, one finally arrives at

h#jv̂kv̂
.
pj#i ¼ 2#2

k3
P vðkÞ!ðk" pÞ: (34)

We now need to explain how the cosmological pertur-

bations of quantum-mechanical origin studied above are

related to observables in cosmology. This is the goal of the

next section.

D. From quantum fluctuations to CMB anisotropies

The presence of quantum fluctuations in the inflaton and

gravitational fields has many observational implications.

Here, we focus on one of them, namely the existence of

CMB temperature anisotropies. The importance of this

observable is that we now have at our disposal very high

accuracy measurements of those anisotropies [20,21].

Moreover, even more accurate data will be released soon

[92]. The relation between the temperature fluctuations

along a given direction e and the cosmological perturba-

tions is expressed by the so-called Sachs-Wolfe effect

[93,94]. A simplified version of this result, valid on large

angular scales only, can be written as [94]

!T

T
ðeÞ ¼

1

5
*½%‘ss;"eð%‘ss " %0Þ þ x0+; (35)

where T represents the averaged background temperature,

i.e., T ’ 2:7 K, %‘ss is the conformal time at emission (that

is to say at the surface of last scattering) and %0 is the

present conformal time. The vector x0 landmarks the place

of reception, in the present case Earth (or a satellite orbit-

ing the Earth). The quantity * denotes the curvature per-

turbation. It is related to the Bardeen potential defined in

Eq. (3) through the following expression [12,86,95]:
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* ¼
2

3

H"1"0
B þ"B

1þ w
þ"B; (36)

wherew ' p=" is the equation of state parameter, that is to

say the energy density to pressure ratio of the dominant

fluid. For instance, for the matter dominated era (w ¼ 0),

during which recombination takes place (at a redshift of

z‘ss ’ 1100), on large scales, one simply has * ’ 5"B=3
since the Bardeen potential is constant. The importance of *

lies in the fact that it is a conserved quantity on large scales

[86,95]. Therefore, its spectrum, calculated at the end of

inflation, can directly be propagated to the recombination

time as it is not sensitive to the details of the cosmological

evolution, in particular to those of the complicated reheat-

ing era [96–100]. The curvature perturbation can also be

expressed in terms of the Mukhanov-Sasaki variable as

* ¼
1

a
ffiffiffiffiffiffiffiffi

2)1
p v

MPl

: (37)

Finally, in the framework of the theory of inflationary

cosmological perturbations of quantum-mechanical origin,

we have seen that v is in fact an operator. This implies that

* and !T=T are also quantum operators and, for this reason,

from now on, we will denote them with a hat.

Since the operator c!T=T lives on the celestial sphere, it

can be expanded over the spherical harmonic basis accord-

ing to

c!T

T
ðeÞ ¼

X1

‘¼2

Xm¼‘

m¼"‘

â‘mY‘mð+;'Þ; (38)

where + and ' are the angles defining the direction along

which the vector e is pointing. Then, the angular two-point

correlation function can be expressed in terms of the multi-

pole moments C‘ as

h#jâ‘mâ.‘0m0 j#i ¼ C‘!‘‘0!mm0 ; (39)

and, as a consequence, the two-point correlation function

of the temperature fluctuations operator can be written as

*

#

+

+

+

+

+

+

+

+

c!T

T
ðe1Þ

c!T

T
ðe2Þ

+

+

+

+

+

+

+

+

#

,

¼
1

4#

X1

‘¼2

ð2‘þ 1ÞC‘P‘ðe1 - e2Þ;

(40)

the quantity P‘ denoting Legendre polynomials.

In order to pursue our demonstration that the CMB

anisotropies are entirely determined by the quantum fluc-

tuations, let us now express the multipole moments in

terms of the cosmological perturbation power spectrum.

Upon using Eqs. (35) and (38), one obtains

â ‘m¼
1

ð2#Þ3=2

Z

d$edk
*̂kð%‘ssÞ

5
e"ik-½eð%‘ss"%0Þ"x0+Y.

‘mðeÞ

(41)

and, from this expression, it is easy to show that

C‘ ¼
1

2a2M2
Pl)1

4#

25

Z dk

k
j2‘½kð%0 " %‘ssÞ+P vðkÞ; (42)

where j‘ is a spherical Bessel function and where we used

Eq. (34) to show that

h#j*̂k*̂.pj#i ¼ 1

2a2M2
Pl)1

2#2

k3
P vðkÞ!ðk" pÞ: (43)

We see that C‘ is given by an integral over wave numbers

of the Mukhanov-Sasaki power spectrum times a quantity

that can be viewed as a ‘‘transfer matrix jlk'
j2‘½kð%0"%‘ssÞ+’’ which allows us to ‘‘translate’’ a three

dimensional spatial frequency k into a two-dimensional

spatial frequency ‘ on the celestial sphere. We emphasize

again that the above result is valid on large scales only;

otherwise the integral in Eq. (42) contains another transfer

function T* ðkÞ which takes into account the subsequent

evolution of the modes when they reenter the Hubble

radius after inflation. Since * is a conserved quantity, we

have T* ðk ! 0Þ ¼ 1.

Finally, let us also notice that Eq. (41) implies that

h#jâ‘mj#i ¼ 0 since h#j*̂kj#i ¼ 0. Of course, this also

means that h#jc!T=Tj#i ¼ 0.

E. Inflationary predictions

We have just seen that, in order to calculate the CMB

multipole moments, we need to evaluate the curvature

perturbation power spectrum. In this section, we calculate

this quantity for power-law inflation.

The first step consists in solving the equation of motion

(12). Upon using Eq. (11), one obtains the time dependence

of the frequency of the parametric oscillator, which reads

!2ð%;kÞ ¼ k2 "
&ð&þ 1Þ

%2
: (44)

From this expression, one sees that there are two regimes

depending on whether the first term is dominant or sub-

dominant. The Hubble radius is given by ‘H ' 1=H ¼
a%=ð1þ &Þ and the Fourier mode wavelength can be ex-

pressed in terms of the comoving wave number as , ¼
2#a=k. The first term dominates if jk%j 0 1 or, equiva-

lently, , , ‘H. In this case! ’ k and we expect the mode

function to oscillate as it would in Minkowski spacetime

since, at those scales, spacetime curvature is negligible for

the mode evolution. On the contrary, if jk%j , 1, or , 0
‘H, one has !( 1=%, so curvature dominates and one

obtains one growing mode and one decaying mode.

These arguments are confirmed when one studies the exact

solution for the mode function fk. It can be expressed in

terms of Bessel functions J-ðzÞ as [101,102]

fk¼ð"k%Þ1=2½CkJ&þ1=2ð"k%ÞþDkJ"ð&þ1=2Þð"k%Þ+;

(45)

where Ck and Dk are two integration constants. In order to

match the initial vacuum behavior (24), one must choose
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Ck ¼ "Dke
i#ð&þ1=2Þ; Dk ¼

i

2

ffiffiffiffi

#

k

r
e"i#=4"i#ð&þ1=2Þ=2

sin½#ð&þ 1=2Þ+
:

(46)

In particular, one notices that both coefficients Ck and Dk

scale as 1=
ffiffiffi

k
p

.

Since we want to evaluate the power spectrum on large

scales, it is sufficient to take the limit k% ! 0 in Eq. (45).

Then, one is led to

P * jstand¼
1

2a2M2
Pl)1

P vðkÞ

¼
1

#)1m
2
Pl‘

2
0

fð&Þk2&þ4'ASk
nS"1; (47)

whereMPl ¼ mPl=
ffiffiffiffiffiffiffi

8#
p

and the function fð&Þ is defined by
[90]

fð&Þ '
1

#

!

%ð"&" 1=2Þ

21þ&

"

2

; (48)

where %ðzÞ is the Euler integral of the first kind [101,102].

This function is such that, for the de Sitter case & ¼ "2,

one has fð& ¼ "2Þ ¼ 1. The scalar spectral index nS ¼
2&þ 5 and, for solutions close to the de Sitter solutions,

one has nS ’ 1, i.e., we have an almost scale invariant

power spectrum. As discussed before, the deviations

from scale invariance are related to the deviation from

the de Sitter case & ¼ "2. This conclusion is in fact valid

for any slow-roll models. The amplitude AS determines the

level of the temperature fluctuations observed in the sky,

namely !T=T ( 10"5.

Finally, let us evaluate the multipole moments explicitly.

Upon using Eq. (42) and the expression of the power

spectrum established above, one arrives at

C‘ ¼
#3=2%½ð3" nSÞ=2+%½‘þ ðnS " 1Þ=2+

%½ð4" nSÞ=2+%½‘þ 2" ðnS " 1Þ=2+
ðr‘ssÞ

1"nS
AS

25
;

(49)

where we have defined r‘ss ' %0 " %‘ss. Since this equa-

tion has been derived for large scales, roughly speaking one

can estimate it to be valid in the regime ‘ , 20. For nS ’ 1,

the above expression implies that C‘/1=½‘ð‘þ1Þ+.
Of course, in the real world, the argument goes the other

way around. From measurements of the CMB anisotropies,

we observe that, on large scales, C‘ / 1=½‘ð‘þ 1Þ+ and,
therefore, we deduce that the corresponding power spec-

trum is close to scale invariance, i.e., nS ’ 1. Obviously,

this also means that a spectrum that is not very close to scale

invariance is now ruled out (more precisely, the WMAP

data indicate that 1" nS ¼ 0:018þ0:019
"0:02 [20–22]). As al-

ready emphasized, the great success of inflation is that it

precisely leads to such a power spectrum.

It should also be clear that the above discussion, although

perfectly correct at the level of principles, is oversimplified

at the technical level. The multipole moments are in fact

computed at any scale (i.e., for any value of ‘) by means of

numerical calculations (since, in the most general case, they

are solutions of more involved differential equations) [103].

Moreover, their shape is not only determined by the spectral

index but is also affected by the other cosmological pa-

rameters. The constraints on the different inflationary mod-

els are then obtained by a Markov chain exploration of the

parameter space [104]. But these technical considerations

do not affect the considerations presented in this paper.

Once again, as far as physical principles are concerned,

the discussion presented in this section is accurate.

III. THE COSMOLOGICAL

MEASUREMENT PROBLEM

A. Squeezed state

In this section, we study in more detail the properties of

the quantum state in which the cosmological perturbations

are placed [29,31,34,105]. As already mentioned around

Eq. (19), it is described by the wave function

#kð%; v
R
k ; v

I
kÞ ¼

&

2<e$k

#

'

1=2
e"$k½ðv

R
k
Þ2þðvI

k
Þ2+ (50)

¼

&

2<e$k

#

'

1=2
e"2$kð%Þvkv

.
k : (51)

We see that this quantum state is completely known once the

time dependence of $kð%Þ has been determined. The dif-

ferential equation controlling the evolution of $kð%Þ is

given by the second part of Eq. (20). This equation is a

Ricatti equation (i.e., a first order, nonlinear, differential

equation). As is well known, it can always be reduced to a

second order but linear differential equation. As already

mentioned, this is achieved through the change of variable

$k¼"if0k=ð2fkÞ. The function fkð%Þ obeys f
00
kþ!2fk¼0

and has been solved in Eq. (45). In the small-scale limit, one

has$k ! k=2 and thewave function (50) is the ground state
of an harmonic oscillator. In the large-scale limit, a lengthy

but straightforward calculation leads to

$kð%Þ

k
¼ "

i

2k%
ð1þ &Þ "

i

4ð&þ 3=2Þ
ð"k%Þ

"
i

#
22& sinð2#&Þ%2

&

&þ
3

2

'

ð"k%Þ"2&"2

þ
#22&þ1

%2ð"&" 1=2Þ
ð"k%Þ"2&"2 þ - - - : (52)

From this expression, one deduces that

<e$kð%Þ¼
k#22&þ1

%2ð"&"1=2Þ
ð"k%Þ"2&"2þ---!0; (53)

and

=m$kð%Þ ¼ "
1

2%
ð1þ &Þ þ - - - ¼ "

a0

2a
! 1; (54)

where the limits are taken in the super-Hubble regime in

which k% ! 0.
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We have mentioned above that the Ricatti equation (20)

can always be reduced to a linear second order differential

equation. Of course, it can also be expressed as two linear,

first order, differential equations. Therefore, one can in-

troduce the functions ukð%Þ and vkð%Þ such that fk '

ðuk þ v.
kÞ=

ffiffiffiffiffi

2k
p

, the normalization 1=
ffiffiffiffiffi

2k
p

being introduced

for convenience. Then it is easy to show that these two

functions obey

u0k ¼ ikuk þ
ða

ffiffiffiffiffi

)1
p

Þ0

a
ffiffiffiffiffi

)1
p v.

k; (55)

v0
k ¼ ikvk þ

ða
ffiffiffiffiffi

)1
p

Þ0

a
ffiffiffiffiffi

)1
p u.k: (56)

The Wronskian W ¼ f0kf
.
k " f0.k fk can be straightfor-

wardly evaluated as W ¼ iðjukj2 " jvkj2Þ. This means

that, if we want to work with the choice W ¼ i, one must

have jukj2 " jvkj2 ¼ 1. This suggests to introduce the

following parametrization:

ukð%Þ ¼ ei+k coshrk; (57)

vkð%Þ ¼ e"i+kþ2i'k sinhrk: (58)

The three functions rkð%Þ, +kð%Þ and 'kð%Þ are called the

squeezing parameter, rotation angle and squeezing angle,

respectively. It is clear that the knowledge of these three

functions is equivalent to that of the function $kð%Þ and,
therefore, of the wave function. Upon using Eqs. (57) and

(58), it is easy to show that

r0k ¼
ða

ffiffiffiffiffi

)1
p

Þ0

a
ffiffiffiffiffi

)1
p cosð2'kÞ; (59)

'0
k ¼ k"

ða
ffiffiffiffiffi

)1
p

Þ0

a
ffiffiffiffiffi

)1
p cothð2rkÞ sinð2'kÞ; (60)

+0k ¼ k"
ða

ffiffiffiffiffi

)1
p

Þ0

a
ffiffiffiffiffi

)1
p tanhrk sinð2'kÞ: (61)

The explicit relation between $k and the three squeezing

parameters is given by

$k ¼
k

2

coshrk " e"2i'k sinhrk
coshrk þ e"2i'k sinhrk

" i
a0

2a
; (62)

from which one deduces that

<e$k ¼
k

2

1

coshð2rkÞ þ cosð2'kÞ sinhð2rkÞ
; (63)

=m$k ¼
k

2

sinð2'kÞ sinhð2rkÞ

coshð2rkÞ þ cosð2'kÞ sinhð2rkÞ
"

a0

2a
: (64)

Equations (59)–(61), are highly nonlinear differential

equations and cannot be solved in general. We notice that

Eqs. (59) and (60) are in fact decoupled from Eq. (61).

Therefore, they can be solved in a first step and then the

solutions can be inserted in Eq. (61) to find the behavior of

+k. In the case of power-law inflation, one can find explicit

solutions for the de Sitter case, & ¼ "2. Although this is

not a solution for an arbitrary value of &, it is sufficient to

understand the main features of the phenomenon of

squeezing. One obtains

rkð%Þ ¼ "argsinh

&

1

2k%

'

; (65)

'kð%Þ ¼
#

4
þ

1

2
arctan

&

1

2k%

'

: (66)

Therefore, we see that, initially in the sub-Hubble limit,

rk ¼ 0 (and 'k ¼ #=4) while the super-Hubble limit

corresponds to the limit of strong squeezing rk ! þ1
(and 'k ! 0).

Based on the previous considerations, it is clear that the

super-Hubble limit is always associatedwith strong squeez-

ing, even if we do not deal with the exact de Sitter solution.

Indeed, now for an arbitrary &, Eq. (60) can be written as

'0
k ’ "ð&þ 1Þ sinð2'kÞ=% which can be integrated and

leads to 'k ’ arctan½Cj%j"2ð&þ1Þ+. For & & "2, this con-

firms the fact that 'k ! 0. In the same limit, one has r0k ’
1=% from which one obtains rk / ð1þ &Þ lna. This con-
firms that the super-Hubble limit is the strong squeezing

limit and, given the fact that modes of astrophysical interest

today leave theHubble scale 50–60 e-folds before the end of

inflation, one can deduce that rk ’ 120 for those modes

[29,30]. Compared to what can be achieved in the labora-

tory in quantum optics, this is a very large value [106].

In order to understand better the features of the quan-

tum state (50), it is also interesting to calculate the mean

values and dispersion of various quantities. First of all, it

is clear that

h#jv̂R;I
k j#i ¼ h#jp̂R;I

k j#i ¼ 0: (67)

Second, we also have

h#jðv̂R;I
k Þ2j#i ¼ 1

4<e$k

; (68)

h#jðp̂R;I
k Þ2j#i ¼ <e$k þ

ð=m$kÞ
2

<e$k

: (69)

Finally, the cross products can be expressed as

h#jv̂R
k p̂

R
k j#i ¼ i$k

2<e$k

; (70)

h#jp̂R
k v̂

R
k j#i ¼ "iþ

i$k

2<e$k

; (71)

and, of course, similar expressions for the operators v̂I
k

and p̂I
k. It is also interesting to notice that h#jv̂R

k p̂
I
kj#i ¼

h#jv̂I
kp̂

R
k j#i ¼ 0.
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At this point, it is worth digressing about the definition

of the conjugate momentum. The action (6) is of course

definedup to a total derivative. InRef. [15], itwas shown that

adding the term d½ða0=aÞðvR
k Þ

2 þ ða0=aÞðvI
kÞ

2+=ð2d%Þ can

also be viewed as a canonical transformation. This generates

an additional term ða0=aÞðpR;I
k vR;I.

k þpR;I.
k vR;I

k Þ in the

Hamiltonian. A complete study was presented in Ref. [15]

and, here, we only quote the main results. It was shown that,

at the quantum level, this canonical transformation leaves

the amplitude v̂R;I
k invariant but induces the following trans-

formations for the momentum: p̂R;I
k ! #̂R;I

k with

#̂ R;I
k ¼ p̂R;I

k "
a0

a
v̂R;I
k : (72)

On the other hand, the wave function is also modified,

#k ! &#k, and the function $k changes according to

$k ! &$k, where

&$ k ¼ $k þ i
a0

2a
: (73)

In particular, we see that the canonical transformation is

such that the term ia0=ð2aÞ in the expression (62) of the

function $kð%Þ is exactly canceled. The factor Nk of the

wave function is not modified and is still given by the first of

Eq. (21) (but of course should be used either with$k or
&$k

according towhich set of variables is used). This also means

that when the averages (67)–(71) are computed in the state

j &#i, one obtains exactly the same expression,$k being just

replacedwith &$k (of course, j#i and j &#i, being related by a
canonical transformation, represent the same physical state).

We now come back to our calculation of the dispersion

of amplitude operator and its conjugate momentum. Upon

using Eqs. (68) and (63), one obtains

h &#jðv̂R;I
k Þ2j &#i¼ 1

2k
½coshð2rkÞþcosð2'kÞsinhð2rkÞ+: (74)

In the same manner, the dispersion of the operator #̂R;I
k is

given by

h &#jð#̂R;I
k Þ2j &#i¼k

2

1þsin2ð2'kÞsinh
2ð2rkÞ

coshð2rkÞþcosð2'kÞsinhð2rkÞ
: (75)

Let us now consider two new operators Â
R;I
k and B̂

R;I
k ,

defined from #̂R;I
k =

ffiffiffi

k
p

and
ffiffiffi

k
p

v̂R;I
k through a rotation by the

squeezing angle 'k,

Â
R;I
k ¼

#̂R;I
k
ffiffiffi

k
p cos'k þ

ffiffiffi

k
p

v̂R;I
k sin'k; (76)

B̂
R;I
k ¼

#̂R;I
k
ffiffiffi

k
p sin'k "

ffiffiffi

k
p

v̂R;I
k cos'k: (77)

It is easy to check that ½Âk; B̂k+ ¼ i. Then, a lengthy but

straightforward calculation leads to

h &#jÂR;I
k j &#i ¼ e"2rk

2
; (78)

h &#jB̂R;I
k j &#i ¼ e2rk

2
: (79)

Therefore, we see that there exists a direction in the plane

ð#k; vkÞ where the dispersion is extremely small. This is

why the corresponding state is called a squeezed state. In

order to satisfy the Heisenberg inequality, the dispersion

along the direction perpendicular to the previous one be-

comes very large. As already mentioned, the phenomenon

of squeezing is widely studied in many different branches

of physics, in particular in quantum optics. Squeezing

occurs each time the quantization of a parametric oscillator

is carried out. It is remarkable that the quantization of

small fluctuations on top of an expanding universe also

leads to that concept (squeezing here, i.e., rk ! 0, does not

require an accelerated expansion, only a dynamical back-

ground is necessary).

B. The classical limit

We have seen in the last section that the super-Hubble

limit corresponds to a limit where the squeezing parameter

rk is large. In the literature, this regime is very often

described as a regime where the cosmological perturba-

tions have classicalized [31,32,39,39,107]. Since this con-

cept is subtle in quantummechanics (and particularly when

quantum mechanics is applied to cosmology), we need to

come back to this issue and to describe accurately what is

meant by a ‘‘classical limit’’ in this context. In particular, it

may seem strange at first sight that a quantum system

placed in a strongly squeezed state can be described as a

classical state since, in the context of, say, quantum optics,

a similar situation would precisely be described as a non-

classical situation [108,109].

A convenient tool to study this question is the Wigner

function, defined by

WðvR
k ;v

I
k;p

R
k ;p

I
kÞ¼

1

ð2#Þ2

Z

dxdy#.

&

vR
k "

x

2
;vI

k"
y

2

'

&e"ipR
k
x"ipI

k
y
#

&

vR
k þ

x

2
;vI

kþ
y

2

'

: (80)

Indeed, it is well known that the Wigner function can be

understood as a classical probability distribution function

whenever it is positive definite. Then, upon using the

quantum state (50), the following explicit form is obtained

WðvR
k ; v

I
k; p

R
k ; p

I
kÞ

¼ ##.
1

2#<e$k

exp

!

"
1

2<e$k

ðpR
k þ 2=m$kv

R
k Þ

2

"

& exp

!

"
1

2<e$k

ðpI
k þ 2=m$kv

I
kÞ

2

"

: (81)

The following remark is in order at this stage. One could

have calculated the Wigner function with the state &#k.

COSMOLOGICAL INFLATION AND THE QUANTUM . . . PHYSICAL REVIEW D 86, 103524 (2012)

103524-11



Obviously, one would have obtained exactly the same ex-

pression except that all the $k terms would have been

replacedwith &$k andp
R;I
k with#R;I

k . In particular, thismeans

that the term in parenthesis in the argument of the exponen-

tials would have read #R;I
k þ 2=m &$kv

R;I
k . But, thanks to

Eqs. (72) and (73), this is preciselypR;I
k þ 2=m$kv

R;I
k since

the two terms proportional toa0=a exactly cancel out. This is
of course related to the fact that the Wigner function is

invariant under a canonical transformation.

The Wigner function (81) is represented in Fig. 1 at

different times or, equivalently, at different values of rk
(rk ¼ 0:0005, 0.48, 0.88 and 2.31). The effect of the strong
squeezing is clearly visible. Initially, in the sub-Hubble

regime, rk is small and the Wigner function is peaked

over a small region in phase space. As inflation proceeds,

the modes become super Hubble and rk increases. As a

consequence, the Wigner function spreads and acquires a

cigar shape typical of squeezed states. In fact, in the strong

squeezing limit, one has<e &$k!0 and=m &$k ! k sin'k=
ð2 cos'kÞ ! 0, see Eqs. (63) and (64). Let us notice in

passing that this last equation is consistent with Eq. (54).

On the other hand, if one considers=m &$k, then the leading

term a0=ð2aÞ is absent and one has to go to the next order in
Eq. (64). This one is given by k=½4ð&þ3=2Þ+ð"k%Þ and

represents the leading term of =m &$k. It goes to zero in

agreementwith the fact that'k ! 0 in the strong squeezing

limit. In this regime, the Wigner function can be written as

WðvR
k ; v

I
k; p

R
k ; p

I
kÞ ! ##.!

&

pR
k þ k

sin'k

cos'k

vR
k

'

& !

&

pI
k þ k

sin'k

cos'k

vI
k

'

: (82)

This last equation represents the mathematical formulation

of the cigar shape mentioned above.

It is important to notice that the behavior described

above is very different from the behavior of the Wigner

function of a coherent state. The coherent states are usually

considered as the ‘‘most classical’’ states and their Wigner

function is given by

WðvR
k ; p

R
k Þ ¼

1

#
e"k½vR

k
"vR;cl

k
ð%Þ+2 e"½pR

k
"pR;cl

k
ð%Þ+2=k; (83)

where vR;cl
k and pR;cl

k represent the classical solutions. The

typical shape is plotted in Fig. 2. One sees that the Wigner

functions remain peaked over a small region in phase space

and that this packet follows the classical trajectory (an

ellipse in this context). Comparing Figs. 1 and 2, we

understand why a coherent state is usually considered as

classical while a squeezed state is considered as highly

nonclassical. In the case of the coherent state, if one is given,

say, the value of vR
k , then one obtains a value for the

FIG. 1 (color online). Wigner function of a squeezed quantum state at different times during inflation. Only the two-dimensional

function corresponding to the set of variables ðvR
k ; p

R
k Þ has been represented, see Eq. (81). The time evolution of<e$k and =m$k has

been expressed in terms of the two squeezing parameters rk and'k. These ones are given by the solutions (65) and (66). The left upper

panel corresponds to rk ¼ 0:0005 and the corresponding state is almost a coherent one. The right upper panel corresponds to rk ¼
0:48, the left bottom one to rk ¼ 0:88 and, finally, the right bottom one to rk ¼ 2:31. The effect of the squeezing and the cigar shape of
Eq. (82) are clearly visible.
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momentum, pR
k , which is very close to the one we would

have inferred in the classical case. This is of course due to

the fact that the Wigner function follows the classical

trajectory and has minimal spread around it in all phase

space directions.On the contrary, in the case of the squeezed

state, if one is givenpR
k then thevalue ofv

R
k is very uncertain

since the Wigner function is spread over a large region in

phase space. Therefore, we conclude that the cosmological

perturbations do not behave classically in the usual sense.

Given the previous discussion, it may seem relatively

easy to observe genuine quantum effects in the CMB.

Unfortunately this is not so, essentially because, in the

strong squeezed limit, all quantum predictions can be in

fact obtained from averages performed by mean of a

classical stochastic process.

Let us first study how this question is usually treated. For

this purpose, let us consider again the expectation of the

operator ð#̂R
k Þ

2 [of course, one could also treat the case of

ð#̂R
k Þ

n]. The quantum average is given by Eq. (69), namely

h &#jð#̂R
k Þ

2j &#i ¼ <e &$k þ
ð=m &$kÞ

2

<e &$k

: (84)

On the other hand, if one computes the quantity

Z

dvR
kd#

R
kWrk!1ðv

R
k ;#

R
k Þð#

R
k Þ

2; (85)

where Wrk!1ðv
R
k ;#

R
k Þ refers to the Wigner function in

the strong squeezing limit (82), then one obtains

ð=m &$kÞ
2=<e &$k, which coincides with Eq. (84) in the

limit rk ! 1. This result is often taken as a proof that a

strongly squeezed state can be described as a classical

stochastic process. However, this argument is not very

convincing since it is a theorem [31] that the exact

Wigner function [we stress again that, in Eq. (85), we

have not used the general Wigner function but its limit

when rk is large] satisfies the following property:

hÂðv̂R
k ; #̂

R
k Þi ¼

Z

dvR
kd#

R
kWðvR

k ;#
R
k ÞAðv

R
k ;#

R
k Þ; (86)

where Â is an arbitrary operator. Therefore, it does not come

as a surprise that an expression like Eq. (85) reproduces the

corresponding quantum average in the limit rk ! 1.

In fact, as was discussed in Refs. [34,39,110], what

makes the situation so peculiar is something different.

The point is that, in the limit rk ! 1, all the quantum

predictions can be reproduced if one assumes that the

system always followed classical laws but had random

initial conditions with a given probably density function.

This can be easily understood on the example of a free

particle [34,39,110]. Let us assume that, initially (at t ¼ 0),

the probability to find the particle at x is given by

j#ðx; 0Þj2 ¼
ffiffiffiffiffiffiffiffiffi

2

#b2

s

e"2x2=b2 ; (87)

where b is a parameter that characterizes the width of the

distribution. At time t, this probability is given by

FIG. 2 (color online). Wigner function of a coherent state (83), represented at different times during inflation. Contrary to the Wigner

function of a squeezed state of Fig. 1, the shape remains unchanged during the cosmological evolution. The Wigner function just

follows the classical trajectory, an ellipse here since we deal with an harmonic oscillator. This justifies the fact that a coherent state can

be viewed as the ‘‘most classical quantum state.’’
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j#ðx; tÞj2 ¼
ffiffiffiffiffiffiffiffiffi

2

#b2

s

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4t2=ðm2b4Þ
p

& exp

!

"
2b2ðx" k0t=mÞ2

b4 þ 4t2=m2

"

; (88)

where m is the mass of the particle and k0 the center of the
Gaussian wave packet in Fourier space.

Now let us consider a situation where we repeat many

times an experiment consisting in sending a classical par-

ticle from the origin with a velocity v (equivalently, instead

of repeating the experiments many times, one could also

consider an ensemble of classical particles) and detecting it

at a position x ! 0. By definition, the particle follows the

laws of classical physics which means that its motion can

be described by the equation: x ¼ vt (they all start from

x ¼ 0 at t ¼ 0). Then, let us assume that the velocities are

classical random variables with a probability distribution

function given by

PðvÞ ¼
1
ffiffiffiffi

#
p

'v
e"v2=ð'vÞ2 : (89)

This means that according to the particle considered, the

velocity is in fact not always the same. But because differ-

ent particles have different velocities, they will not reach

the position x at the same time. It is important to stress that,

here, only the initial conditions are random and that the

trajectory is purely classical. From the above distribution,

we can easily infer that the probability of finding a particle

at x, at time t, is

Pðx; tÞ ¼
1

ffiffiffiffi

#
p

t'v
e"ðx"vtÞ2=ðt'vÞ2 : (90)

This distribution is in fact exactly j#ðx; tÞj2 in the limit

t!1 provided we identify v¼k0=m and 'v ¼
ffiffiffi

2
p

=ðmbÞ.
Let us notice that this last relation is exactly what is

obtained at the quantum level since x and v are conjugate

variables. As a matter of fact, Eqs. (87) and (89) are Fourier

transforms of each other. We conclude that, provided we

detect the particles far from the origin, the quantum pre-

dictions for the particles can be completely mimicked by

means of a classical stochastic process.

As discussed in Ref. [110], the situation is exactly similar

for the inflationary perturbations. The limit rk ! 1 is in

fact equivalent to the limit of large times in the example

above. One can even calculate the Wigner function of the

free particle described by the wave function (88) and show

that it takes the same form as the one of Eq. (81). Therefore,

the inflationary perturbations are said to be classical in the

sense explained before: they can be described by a classical

stochastic process. In practice, for instance, one can con-

sider the â‘m in Eqs. (38) and (39) as classical random

variables with probability density functions given by

PðaR‘0Þ ¼
1

ffiffiffiffiffiffiffi

2#
p

C‘

e"ðaR
‘0
Þ2=ð2C‘Þ; (91)

PðaR‘mÞ ¼
1
ffiffiffiffi

#
p

C‘

e"ðaR
‘m
Þ2=C‘ ; m ! 0; (92)

PðaI‘mÞ ¼
1
ffiffiffiffi

#
p

C‘

e"ðaI
‘m
Þ2=C‘ ; m ! 0: (93)

Of course one can check that haR;I‘ma
R;I
‘0m0i ¼ C‘!‘‘0!mm0

where, now, the bracket means a classical average calcu-

lated by means of the above distributions.

Finally, we conclude this section by a few words on the

density matrix "̂R
k . In fact, the density matrix is nothing but

the Fourier transform of theWigner function. Let us denote

by jvR
k i the eigenstates of the operator v̂R

k . Then, we have

hvR0
k j"̂R

k jvR
k i¼

Z 1

"1
dyeiyðv

R0
k
"vR

k
ÞW

&

vR0
k þvR

k

2
;y

'

: (94)

Upon using Eq. (81) in the above equation, one arrives at

hvR0
k j"̂R

k jvR
k i ¼

&

2<e$k

#

'

1=2
e"<e$k½ðv

R0
k
Þ2þðvR

k
Þ2+

& e"i=m$k½ðv
R0
k
Þ2"ðvR

k
Þ2+: (95)

We notice that the off-diagonal terms, vR0
k ! vR

k , oscillate

very rapidly in the strong squeezing limit. This means

that decoherence (defined as the disappearance of those

off-diagonal terms) does not occur without taking into

account an environment for the perturbations. Various dis-

cussions on what this environment may be can be found in

Refs. [41–43].

C. Ergodicity

Let us now discuss how, in practice, we can check

the predictions of the theory previously reviewed.

Initially, the system is placed in an eigenstate of the

Hamiltonian (the vacuum state) of Eq. (19), which can

also be expressed as a superposition in the basis of the

states jvR
k i, namely

j#i ¼
Z

dvR
kNkð%Þ e

"$kð%Þðv
R
k
Þ2 jvR

k i: (96)

The corresponding mean value of the Hamiltonian operator

can be expressed as

h#jH R
k j#i¼1

2
<e$kþ

1

2

ð=m$kÞ
2

2<e$k

þ
!2

2

1

4<e$k

: (97)

Of course, initially$k ¼ k=2 and the energy is nothing but
!=2 as expected for the vacuum state.

In the real world, we measure the temperature anisotro-

pies. As we have seen (and as is appropriate for an observ-

able in the quantum-mechanical framework), this quantity

is represented by an operator. According to Eq. (38), mea-

suring the temperature anisotropies is equivalent to mea-

suring the observables â‘m which, in turn, according to
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Eq. (41), is equivalent tomeasuring the observables *̂k or v̂k

(that is to say v̂R
k and v̂I

k).

According to the postulates of quantummechanics, mea-

suring the observable v̂R
k gives an eigenvaluev

R
k (no hat, it is

a number) with probability jhvR
k j#ij2 and, immediately

after this measurement, the system is placed in the eigen-

state jvR
k i. More concretely, after the measurement, we

‘‘see’’ a specific CMB map and we say that the measure-

ment has produced a specific ‘‘realization.’’ The result is

given in terms of coefficients a‘m (again, no hat) expressed

in terms of the numbers vR
k through Eq. (41) (except, of

course, that this equation should now be used with no hat on

both sides). Equivalently, we see a specific temperature

pattern !TðeÞ=T (no hat) corresponding to the set of num-

bers a‘m, see also Eq. (38). In conclusion, the CMB map

observed, say, by the WMAP satellite corresponds to one

measurement (or one realization) of the operator c!TðeÞ=T.
Then comes the question of how one can operationally

verify these theoretical predictions. In quantummechanics,

in an ordinary laboratory situation, one would check that

the theory is correct by repeating the experiment many

times. In this way, one would generate many realizations of

v̂R
k (or, equivalently, of â‘m or c!T=T) i.e., one would obtain

Nreal numbers vRi
k ; i ¼ 1; - - - ; Nreal [or ai‘m or ð!T=TÞi]

where Nreal is the number of realizations (that is to say

the number of times the experiments have been per-

formed). With theseNreal CMBmaps, one could then check

that the vRi
k are indeed distributed with a Gaussian proba-

bility density function in agreement with Eq. (50) or, with

the Nreal sets of numbers ai‘m, one could infer whether they
follow Eqs. (91)–(93), determine the corresponding vari-

ance and check that it is given by the C‘ predicted by the

theory. Let us notice that the above discussion is indepen-

dent from the fact that the perturbations can be described

classically or not. If we are in the classical limit (in the

restricted sense defined in the previous section), then we

showed that measuring the observable â‘m can be viewed

as measuring a classical system with random initial con-

ditions but this does not change the fact that we need many

realizations to check that the probability density function

predicted by the theory is the correct one.

Clearly, in cosmology, the program described above

cannot be carried out because one cannot repeat the ex-

periment many times since we are given only one CMB

map [33]. How, then, can we check the predictions of the

theory of cosmological perturbations? To discuss this ques-

tion, let us be more accurate about the operator c!T=TðeÞ. In
the large-squeezing limit, we have seen that it can be

viewed as a classical stochastic process and, therefore, it

is convenient to write it as

!T

T
ð.; eÞ; (98)

where the symbol . labels the realizations. A given realiza-

tion of a stochastic process is a function of e. By contrast, a

given realization of a random variable is not a function but a

number. This is for instance the case of a‘mð.Þ. The idea is
then to replace ensemble averages by spatial averages (i.e.,

averages over different directions e) [33]. If the process is

ergodic, these two types of averages are equal [33]. In that

case, one can check the predictions of the theory even if one

has only one realization at our disposal. Unfortunately, one

can also show that a stochastic process living on a sphere

(here, of course, the celestial sphere) cannot be ergodic [33].

Therefore, we are left with the task of constructing unbiased

estimators with minimal variances. For instance, let us

assume that we have calculated the number C‘ in some

inflationary scenario and that we would like to compare its

value to an actual measurement. How would we proceed?

We would consider the random variable C‘ð.Þ defined by

the following expression [33]:

C ‘ð.Þ ¼
1

4#

Z

S2
d$1d$2P‘ðcos!12Þ

!T

T
ð.; e1Þ

!T

T
ð.; e2Þ;

(99)

where !12 is the angle between the direction e1 and e2. As

announced, the estimator C‘ð.Þ is expressed as a spatial

average of the stochastic process !T=T. It is easy to show

that it is unbiased, hhC‘ii ¼ C‘ and has the minimum

variance [33] (called the ‘‘cosmic variance’’) given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2‘þ 1Þ
p

C‘. The double brackets hhiimean an ensemble

average, which amounts to a quantum average in the high

squeezing limit as mentioned before. One should be careful

that this ensemble average has nothing to do with the one

introduced below (denoted E) for the CSL modifications of

the Schrödinger equation, since these two stochasticities

have completely different natures, the former being effec-

tive and the later intrinsic.

In practice, wewould proceed as follows. From our CMB

map !Tð.; eÞ=T, we compute the integral in Eq. (99) and

this gives a number representing one realization of the

estimator C‘, the only one we can have access to. It is

unlikely that this number will be C‘ because it is unlikely

that one realization of a random variable will be exactly

equal to the mean value of that variable. However, if the

variance is small (i.e., if the estimator is good), the corre-

sponding probability density functionwill be sharply peaked

around the mean value and any realization will therefore be

close to the mean (and, in our case, it is not possible to

decrease the value of the variance since we work with the

best estimator). Therefore, we can study where the number

we have obtained by following the above described proce-

dure falls, compared to the interval C‘ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð2‘þ 1Þ
p

C‘,

where C‘ is the theoretically predicted multipole moment.

Then, for instance, one can start a calculation of the /2 to

assess to which confidence we have verified the theory. In

fact, the cosmic variance can simply be seen as another

source of error, besides those coming from the instruments.

Given the previous discussion, there is one issue that one

can raise and which is the subject of the present paper. The
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question is howa specificoutcome (a realization) is produced.

Above, we have just assumed that this happens without

discussing this point. According to the postulates of quantum

mechanics in the Copenhagen interpretation, this macro-

objectification takes placewhenameasurement is performed.

Since the CMB anisotropies were produced at a redshift of

z‘ss ’ 1100, this means that it should have happened prior to

that epoch (possibly during inflation itself). But, clearly, there

was no observer at those early times. We face here the

conventional measurement problem of quantum mechanics

which is, in the context of cosmology, exacerbated.

IV. THE PEARLE-GHIRARDI-RIMINI-WEBER

THEORY

A. A dynamical collapse model

Although one can manage to obtain, based on primordial

vacuum quantum fluctuations, a set of correlation functions

that are formally indistinguishable from a classical sto-

chastic distribution, one still has to face the problem of

reaching a specific realization before cosmological pertur-

bations can start to grow in a classical way. This amounts to

the question of the measurement problem in quantum

mechanics, namely that there are two distinct evolution

processes: the unitary and linear Schrödinger time evolu-

tion on the one hand, and the stochastic and nonlinear wave

packet reduction on the other.

In what follows, we briefly present the collapse theories

and explain how the Schrödinger equation can be modified

in order to allow a dynamical description of the wave

packet reduction. In fact, to be more precise, we shall

restrict attention to the case of CSL [62,63,65,67].

The CSLmodel relies on the idea that an extra stochastic

behavior should be added to the Schrödinger linear evolu-

tion, encoded through a Wiener process Wt, whose differ-

ential acts as a random square root of that of time, namely

EðdWtÞ ¼ 0; and EðdWtdWt0Þ ¼ !ðt" t0Þdt2; (100)

where E stands for an ensemble average. One then expands

the statevector variation dj/i up to first order in time through

d j/i ¼ ðÂdtþ B̂dWtÞj/i; (101)

where Â and B̂ are operators acting on the Hilbert space of

available states. One then demands that, on average, thewave

function will be normalized, i.e.,

E ðh/j/iÞ ¼ 1 ) E½dðh/j/iÞ+ ¼ 0; (102)

which, upon using Itô calculus3 for the differentials and

Eq. (100), yields

Â y þ Â ¼ "B̂yB̂; (103)

since the state j/i is arbitrary. The general solution of

Eq. (103) is Â ¼ "iĤ " 1
2
B̂yB̂, where Ĥ is Hermitian and

to be identified with the Hamiltonian leading to the usual

Schrödinger dynamics.

In order to assign a probabilistic meaning to the norm of

the wave function, it should be normalized. However,

according to Eq. (101), although this is true on average,

it varies stochastically according to

dk/k2 ¼ h/jðB̂þ B̂yÞj/idWt ¼ 2h/jB̂j/idWt; (104)

where from now on we assume that B̂ is Hermitian.

Equation (104) implies that the state j/i is not normal-

ized, and one can define a normalized one whose proba-

bility distribution will thus be interpretable in terms of

measurements. We then set

jc i ' j/i
k/k ; (105)

whose dynamics can be computed using the previously

derived rules. One finds

djc i ¼
$!

"iĤ "
1

2
ðB̂" hB̂iÞ2

"

dtþ ðB̂" hB̂iÞdWt

%

jc i;

(106)

where the quantum expectation value is taken on the

normalized state vector and thus defined as

hB̂i ' hc jB̂jc i: (107)

The operator B̂ can be decomposed as B̂ ¼
ffiffiffiffi

0
p

Q̂. The

coupling constant 0 is the product of the localization rate

with the width of the Gaussian wave function inducing the

localizations [62], and sets the strength of the nonlinear

effects and therefore the characteristic time scale over

which these are measurable. The observable Q̂, for in-

stance the position operator, is the basis on which the states

are to spontaneously collapse to (in the following, we also

call the operator Q̂, the ‘‘collapse operator’’).

As it turns out, and this is exemplified later in the case

where the operator Q̂ is identified with a cosmological

perturbation Fourier mode (see Sec. VA), the natural evo-

lution of Eq. (106) is to project an initial state jc 0i on an

eigenstate j$i of the operator Q̂ setting

Q̂ ¼
X

$

q$j$ih$j; (108)

(the sum being replaced by an integral in the case of a

continuous spectrum for Q̂) such that Q̂j$i ¼ q$j$i, one
finds that limt!1j#ðtÞi ¼ j$i for a given value of $, and

this with a probability Pð$Þ ¼ jh#j$ij2. In other words,

the Born rule is naturally implemented as a dynamical

consequence instead of being imposed as an extra

hypothesis.

3This means that for two functions f and g of the stochastic
variable W, one has dðfgÞ ¼ fdgþ ðdfÞgþ E½ðdfÞðdgÞ+ and
dfðWÞ ¼ f0ðWÞdW þ 1

2
f00ðWÞE½ðdWÞ2+, where a prime stands

for ordinary derivative with respect to the argument W. It is
necessary to expand up to second order in the noise because
Eq. (100) means EðdW2

t Þ ¼ dt.
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Finally, defining the density operator as

"̂ ' Eðj#ih#jÞ; (109)

one obtains, using Eq. (106) the so-called Lindblad equa-

tion, namely

d"̂

dt
¼ "i½Ĥ; "̂+ "

0

2
½Q̂; ½Q̂; "̂++; (110)

providing its time development.

Let us now come to another very important aspect of the

CSL theory and describe the so-called ‘‘amplification

mechanism’’ which enables one to understand why the

dynamics of microscopic systems is not much altered by

the extra stochastic and nonlinear terms in Eq. (106). This

is phenomenologically very important since this means

that the laboratory experiments performed on ‘‘small’’

quantum systems are still accurately predicted by the stan-

dard Schrödinger equation while the macroscopic objects

are quickly and efficiently localized. Let us consider an

ensemble of N identical particles, assuming that, for each

of them, the collapse operator is the physical position in

space. Therefore, we can identify the operator and Wiener

processes according to

B̂ ! ffiffiffiffi

0
p XN

i¼1

x̂i and dWt ! dWðiÞ
t (111)

in Eq. (106), with x̂i the position operator for the ith
particle. Note that in this case, one has as many indepen-

dent Wiener processes as there are particles; they satisfy

E ½dWðiÞ
t dWðjÞ

t0 + ¼ !ij!ðt" t0Þdt2: (112)

This naturally generalizes Eq. (106) to a set of operators

and particles on which to project the relevant states.

We now assume that one can decompose the total wave

vector j#i in the form

j#ðfxigÞi ¼ j#CMðRÞi 1 j#relðfrigÞi; (113)

where the total wave function depends on the set of all of

the position operators fxig, while the ‘‘macroscopic’’ part

of it, j#CMi, depends only on the position R ' N"1
P

ixi of
the center of mass, and the rest is a function only of the

relative coordinates ri defined through xi ¼ Rþ ri.
Using Itô calculus to evaluate the differential of the

tensor product in Eq. (113), it is easily checked that

j#ðfxigÞi satisfies Eq. (106) with B̂ and dWt given by

Eq. (111) if the components of the product respectively

satisfy

d j#CMðRÞi ¼
$!

"iĤCM "
0CM

2
ðR̂" hR̂iÞ2

"

dt

þ
ffiffiffiffiffiffiffiffiffi

0CM

p
ðR̂" hR̂iÞdWt

%

j#CMðRÞi; (114)

and

d j#relðfrigÞi ¼
$!

"iĤrel "
0

2

XN"1

i¼1

ðr̂i " hr̂iiÞ2
"

dt

þ
ffiffiffiffi

0
p XN"1

i¼1

ðr̂i " hr̂iiÞdWðiÞ
t

%

j#relðfrigÞi;

(115)

where we have assumed the total Hamiltonian could be

split into Ĥ ¼ ĤCMðR̂Þ þ Ĥrelðfr̂igÞ and the new constant

0CM appearing in Eq. (114) is given by 0CM ¼ N0. This

illustrates the mechanism thanks to which localization is

amplified for a macroscopic object containing a large

number (in practice N ( 1023 0 1 for usual classical sys-

tems) of particles, while the usual quantum spread is

mostly conserved for the internal degrees of freedom. A

recent inventory of all the constraints derived so far in

various physical situations on the CSL parameter 0 can

be found in Ref. [111].

B. An illustrative example: The harmonic oscillator

In this section, we illustrate how the CSL theory works

on the example of the harmonic oscillator, resetting the

Planck constant ℏ for easier comparison with previous

works. This is an interesting case because it represents

the prototypical example of a quantum system and, to

our knowledge, this case has not been solved explicitly in

the case of the CSL theory. Moreover, in cosmology, as

explained before, we deal with a parametric oscillator, a

case which shares some similarities with an harmonic

oscillator, at least in some regimes. It is therefore important

to understand first this simplest case in the CSL frame-

work. In the following, we assume that the operator B̂
introduced in the previous section is the position operator

x̂. As a consequence, the modified Schrödinger equation

can be written as

d# ¼

!

"
i

ℏ
Ĥdtþ

ffiffiffiffi

0
p

ðx̂" hx̂iÞdWt "
0

2
ðx̂" hx̂iÞ2dt

"

#;

(116)

where Ĥ ¼ p̂2=ð2mÞ þm!2x̂2=2 is the Hamiltonian. The

parameter 0 sets the strength of the collapse mechanism

and, since we have chosen the position as the preferred

basis, it has dimension L"2 & T"1. Following Ref. [73],

the wave function can be taken as a Gaussian state and the

most general form can be expressed as

#ðt; xÞ ¼ jNðtÞj expf"<e$ðtÞ½x" &xðtÞ+2 þ i(ðtÞ

þ i/ðtÞx" i=m$ðtÞx2g; (117)

where, a priori, jNj, <e$, &x, (, / and =m$ are real

stochastic variables. Introducing this wave function in

Eq. (118), one obtains the following set of equations:

jNj0
jNj ¼

1

4

ð<e$Þ0

<e$
¼

ℏ

m
=m$þ

0

4<e$
; (118)
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ð<e$Þ0 ¼ 0þ 4
ℏ

m
ð<e$Þð=m$Þ; (119)

ð=m$Þ0 ¼ "
ℏ

m
½2ð<e$Þ2 " 2ð=m$Þ2+ þ

m

ℏ

!2

2
; (120)

&x0 ¼
ℏ

m
½/" 2ð=m$Þ &x+ þ

ffiffiffiffi

0
p

2<e$

dWt

dt
; (121)

(0 ¼
ℏ

m

!

"<e$þ 2ð<e$Þ2 &x2 "
1

2
/2

"

; (122)

/0 ¼ "
ℏ

m
½4ð<e$Þ2 &x" 2/=m$+; (123)

where a prime means a derivative with respect to time. We

see that the first equation can be integrated to give jNj ¼
ð2<e$=#Þ1=4, which ensures that the wave function is

properly normalized. Then, the two following equations,

Eqs. (119) and (120) ‘‘decouple’’ from the other equations

and can be integrated separately. In particular, if we add

them up, we arrive at

$0 ¼ "2i
ℏ

m
$2 þ 0þ

im

2ℏ
!2: (124)

This equation should be compared to Eq. (21). As ex-

pected, they are identical provided we take ℏ ¼ m ¼ 1

and 0 ¼ 0. Of course, in the present case, the frequency

! is constant since we deal with a harmonic oscillator

rather than a parametric oscillator as is the case for cos-

mological perturbations. Equation (124) is a Ricatti equa-

tion and we have already seen that the appropriate change

of variable to transform it into a linear second order

differential equation is $ ¼ "imf0=ð2ℏfÞ, where the

function fðtÞ obeys the equation

f00 þ
&

!2 " 2i
ℏ

m
0

'

f ¼ 0: (125)

This equation admits simple solutions that can be ex-

pressed in terms of exponentials, namely fðtÞ /
expð/$tÞ where $ is defined by

$ '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2i0ℏ

m
"!2

s

: (126)

As a consequence, the solution for $ðtÞ can be written as

$ðtÞ ¼ "
im

2ℏ
$ tanhð$tþ'Þ; (127)

where ' is an integration constant that can be expressed in

terms of the initial value of the function $ðtÞ

' ¼ argtanh

!

"
2ℏ

im

$ðt ¼ 0Þ

$

"

: (128)

This solution resembles the formula obtained in the case of

the free particle, see Ref. [73].

At this stage, we need to discuss the initial conditions.

Our assumption is that, at t ¼ 0, the quantum state is

simply given by the ground state of the harmonic oscillator

in conventional quantum mechanics. Technically, this

means that we require the wave function to be

#ðt ¼ 0; xÞ ¼

&

m!

#ℏ

'

1=4
e"m!x2=ð2ℏÞ; (129)

which implies that <e$ ¼ m!=ð2ℏÞ and =m$ ¼ 0 or,

equivalently, ' ¼ argtanhði!=$Þ. Notice that this choice

is fully compatible with the normalization established

above, jNj ¼ ð2<e$=#Þ1=4. Of course, our choice also

amounts to imposing &xðt¼0Þ¼(ðt¼0Þ¼/ðt¼0Þ¼0.

Since the evolution of the stochastic wave function is

controlled by the function $ðtÞ, it is interesting to study

how it evolves with time. Writing the number $ as $ '
$R þ i$I, where it is easy to show that

$R ¼
!
ffiffiffi

2
p

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
ℏ
202

m2!4

s

" 1

1

A

1=2

; (130)

$I ¼

ffiffiffi

2
p

!

ℏ0

m

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
ℏ
202

m2!4

s

" 1

1

A

"1=2

; (131)

and ' ' 'R þ i'I, straightforward algebraic manipula-

tions lead to the following expressions for<e$ and=m$:

<e$ðtÞ¼
m

2ℏ

$I sinh½2ð$Rtþ'RÞ+þ$R sin½2ð$Itþ'IÞ+

cos½2ð$Itþ'IÞ+þcosh½2ð$Rtþ'RÞ+
;

(132)

=m$ðtÞ¼
m

2ℏ

$I sin½2ð$Itþ'IÞ+"$R sinh½2ð$Rtþ'RÞ+

cos½2ð$Itþ'IÞ+þcosh½2ð$Rtþ'RÞ+
:

(133)

In particular, the function <e$ðtÞ, with the initial condi-

tion specified above, is always positive. Notice also that

there is a sign ambiguity in the definitions of the quantities

$R and $I in Eqs. (130) and (131), but one can show that

this does not affect the physical predictions of the model. It

is also interesting to calculate the limit for large times of

the two functions in Eqs. (132) and (133). One obtains

lim
t!1

<e$ ¼
m$I

2ℏ
’ m!

2ℏ

&

1þ
1

2

ℏ
202

m2!4
þ - - -

'

; (134)

lim
t!þ1

=m$ ¼ "
m$R

2ℏ
’ "

0

2!

&

1"
1

2

ℏ
202

m2!4
þ - - -

'

;

(135)

where the dots indicate an expansion in the small dimen-

sionless parameter ℏ0=ðm!2Þ. We see that, if 0 ¼ 0, we

obtain the ground state given by Eq. (129). Deviations from

that solution are controlled by the parameter ℏ0=ðm!2Þ.
We are now in a position where one can investigate the

physical properties of the quantum state (117). In particu-

lar, it is easy to show that hx̂i ¼ &x and hp̂i ¼ /"
2ð=m$Þ &x. Initially, &x ¼ 0 and the position operator has a
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vanishing mean value as expected for the ground state of

the harmonic oscillator but, at later times, due to the

stochastic evolution of the wave function, it acquires a

nonzero value. It is also possible to calculate the spread

in position and momentum. One obtains

(x '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx̂2i" hx̂i2
q

¼
1

2

1
ffiffiffiffiffiffiffiffiffiffiffi

<e$
p ; (136)

(p '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hp̂2i" hp̂i2
q

¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð<e$Þ2 þ ð=m$Þ2

<e$

s

: (137)

We see that these quantities only depend on <e$ and

=m$. As a consequence, inserting Eqs. (132) and (133)

in the above expressions of (x and (p, one arrives at

(x ¼

ffiffiffiffiffiffiffi

ℏ

2m

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos½2ð$Itþ'IÞ+ þ cosh½2ð$Rtþ'RÞ+

$I sinh½2ð$Rtþ'RÞ+ þ $R sin½2ð$Itþ'IÞ+

s

;

(p ¼

ffiffiffiffiffiffiffi

mℏ

2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð$RÞ2 þ ð$IÞ2
q

&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh½2ð$Rtþ'RÞ+ " cos½2ð$Itþ'IÞ+

$I sinh½2ð$Rtþ'RÞ+ þ $R sin½2ð$Itþ'IÞ+

s

:

(138)

The time evolution of these quantities is displayed in

Fig. 3. The black curves correspond to the conventional

Schrödinger evolution, i.e., the case 0 ¼ 0. They show the

usual oscillatory behavior. On the contrary, when0 ! 0, we

see that the oscillations are damped (see the smaller ampli-

tude decaying red and blue curves). Then, the spreads con-

verge towards a constant value, which only depends on0,!
and m. This value is easy to evaluate and one finds

lim
t!1

(x ¼
1

23=4

ffiffiffiffi

!

0

s 0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
ℏ
202

m2!4

s

" 1

1

A

1=4

; (139)

lim
t!1

(p ¼ m!

&

1þ 4
ℏ
202

m2!4

'

1=4
& lim

t!1
(x: (140)

From these formulas one can see that the spread in position

at infinity decreases with 0, from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2m!Þ
p

for 0 ¼ 0 to 0

for 0 ! 1. We see that the modified Schrödinger equation,

as expected, implies a localization in position. We also

notice that the microscopic behavior of the system is altered

by the nonlinear and stochastic terms added to the theory. By

contrast, in order to satisfy the Heisenberg uncertainty rela-

tion, the spread in momentum increases with 0, from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!ℏ=2
p

for 0 ¼ 0 to infinity for 0 ! 1. For 0 ¼ 0 and

at large times, one finds that the Heisenberg relation is

saturated, (x(p ¼ ℏ=2, as appropriate for a coherent state.

In the limit 0 ! 1, one finds a larger value(x(p ¼ ℏ=
ffiffiffi

2
p

.

Let us also remark that an exact eigenstate of the operator x̂ is
given by aDirac function!ðx" &xÞ centered at somevalue &x.
On the other hand, we see that adding nonlinear and sto-

chastic terms results in a spreading of theDirac function into

a Gaussian wave function with a finite width decreasing for

increasing 0. Therefore, the modified Schrödinger equation

does not exactly lead to an eigenstate of the position opera-

tor. In fact, the asymptotic value of (x obtained above

defines the ‘‘precision’’ of the collapse and characterizes

how close to an eigenstate of the collapse operator the final

state is. In that sense, since (x decreases with 0, the bigger

0, the more ‘‘precise’’ the collapse.

To conclude this section, it is also interesting to calculate

the time derivative of the quantum mean value of the

Hamiltonian operator. One obtains

dhĤi
dt

¼
ℏ
2

2m
0"

ℏ

m

ffiffiffiffi

0
p =m$

<e$
hp̂i dWt

dt

þ
1

2
m!2hx̂i

ffiffiffiffi

0
p

<e$

dWt

dt
: (141)

This equation implies that

FIG. 3 (color online). Spread in position and momentum for different values of 0 in the case of the harmonic oscillator; see Eq. (138).

The conventional Schrödinger evolution corresponds to 0 ¼ 0 and is represented by the black curve which oscillates with constant

amplitude. On the contrary, when the collapsemechanism is turned on, the oscillations are damped (blue and red curves), the spreads tend

toward a constant value and localization occurs.
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dE½hĤi+
dt

¼
ℏ
2

2m
0: (142)

As is well know, this formula expresses the nonconserva-

tion of energy in the CSL theory. From a phenomenologi-

cal point of view, this increase of energy is usually so small

(given the values of 0 usually considered) that it cannot be

detected. Put differently, the nonconservation of energy in

the CSL theory cannot be used to rule out this theory [68].

V. THE INFLATIONARY CSL THEORY

The dynamical collapse model of the previous sections

should apply to any quantum system, and hence in particu-

lar to cosmological perturbations as they arise from vac-

uum fluctuations. Spontaneously collapsing these happens

to be a tremendously complicated task for many reasons

discussed below, so in what follows, we suggest a much

simplified modeling method which we then apply to the

inflationary situation.

A. The modified Schrödinger equation for the

Mukhanov-Sasaki variable

The first obvious problem one encounters when dealing

with quantum cosmological perturbations is that the under-

lying theory ought to be relativistic. The straightforward

relativistic generalization of the CSL model for quantum

field theory, starting with the action (6) in the Tomonaga

picture for instance, leads to unremovable divergences [65]

(see however Ref. [69]), even more so when nonlinearities

inherent to general relativity are taken into account.

The second option which happens to lead to a model in

which calculations are actually possible consists in noting,

as mentioned earlier in Sec. II D, that the spectrum of

primordial perturbations depends on the wave number k.

In other words, once the Fourier spectrum is known, all of

the observable quantities related with the CMB can be

computed and compared with actual data. This means

that mere knowledge of the modes v̂k ought to be enough

in order for a complete description of the possible obser-

vations to be realized.

We shall therefore accordingly assume in what follows

that the modified Schrödinger equation of motion for the

wave function will be done at the level of the Fourier mode

#k, with spontaneous localization on the v̂k eigenmani-

folds. This is consistent with previous approaches aimed at

studying decoherence of cosmological perturbations where

the pointer basis is often assumed to be precisely the

Mukhanov-Sasaki operators, see Ref. [38]. Separating as

before into real and imaginary parts, we shall thus assume

the following basic equation:

d#R
k ¼

!

"iĤ
R
kd%þ

ffiffiffiffi

0
p

ðv̂R
k " hv̂R

k iÞdW%

"
0

2
ðv̂R

k " hv̂R
k iÞ2d%

"

#R
k ; (143)

and a similar equation for #I
k. Here, the quantity 0 is a

positive constant with mass dimension 2 if the scale factor

is chosen to be dimensionless but is dimensionless if the

scale factor is chosen to have mass dimension"1, which is

the convention adopted here. As in Sec. IV, the parameter 0

sets the strength of the collapse mechanism.

Let us now review all the limitations of postulating an

ansatz equation such as Eq. (143). First, one should note

that the constant 0 in Eq. (143) cannot be the same as the

one associated with the choice of the position operator as

the collapse operator appearing in Eq. (116), despite our

choice of the same notation. It is clear that each time one

considers different collapse operators, this leads to differ-

ent CSL parameters with different mass dimension. The

same phenomenon is observed in Ref. [70] where the

collapse operator is chosen to be a spin operator. In this

case, it is clear that the corresponding CSL parameter

cannot be the same as the one corresponding to the case

where the collapse operator is the position (as it is for the

case of the free particle [73]). This is unfortunate when it

comes to a comparison of the constraints obtained in the

laboratory with the constraints obtained in cosmology. In

fact, what could be done is to consider the strict CSL

theory where the collapse operator is usually taken to be

the averaged density operator. In the language of cosmo-

logical perturbations, this amounts to assuming that there is

spontaneous localization on the c!"ð%; xÞ eigenmanifold,

where !"ð%; xÞ is the perturbed energy density. This would
have the advantage to introduce a universal 0 with always

the same dimension. Unfortunately, !"ð%; xÞ is a compli-

cated functional of vk and this would probably render the

whole approach untractable. Let us also notice that 0 could

be taken as a function of the wave number k, i.e., different

CSL parameters for different modes. In this article, for

simplicity, we do not follow this route.

Another issue is that we moved from real to reciprocal

space while keeping the structure of the equation un-

changed. In doing so, we also avoid from the outset any

mode mixing that would be naturally arising from a real

space modified Schrödinger equation: its stochastic version

being nonlinear, onewould expect a coupling of the Fourier

modes, which is here automatically set to zero. Note this

approximation is justified by data observations of the CMB.

Another important limitation of our treatment is the

fact that the collapse concerns the modes independently.

As a result, the amplification mechanism, so crucial to

explain why the quantum behavior becomes increasingly

less important for increasingly large systems (the effec-

tive collapse time being inversely proportional to the

number of particles involved and, hence, to the size of

the system), is simply not operating here. Therefore, even

though one might consider cosmological size effects, the

collapse will occur just as it would for an independent

quantum particle. As we will see, that implies a severe

constraint on the constant 0 when comparison of the
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modified spectrum is made to actual observations on

Hubble-size scales.

Finally, Eq. (143) is written in terms of the conformal

Fourier mode of the original action. Because its normaliza-

tion implies the equation be nonlinear, this means the con-

stant 0 can be translated, as we will show later, into a

privileged conformal scale, and hence a time-dependent

privileged length ‘0, as shown in Fig. 4 and the discussion

above Eq. (157). This is somehow similar to the fact, except

at the perturbative and conformal levels, that considering

nonflat spatial sections permits to define a curvature length

and thus forbids to renormalize the scale factor arbitrarily.

However, as shown in theAppendix, this last limitation does

not affect the general conclusions drawn here.

B. Gaussian state

Our goal is now to solve Eq. (143). As was done for the

standard case (50), one considers that the wave function

assumes a Gaussian shape. Concretely, we take the most

general form, namely

#
R;I
k ð%;vR;I

k Þ¼ jNkð%Þjexpf"<e$kð%Þ½v
R;I
k " &vR;I

k ð%Þ+2

þ i(R;I
k ð%Þþ i/R;I

k ð%ÞvR;I
k

" i=m$kð%Þðv
R;I
k Þ2g; (144)

where &vR;I
k ,(R;I

k and/R;I
k are real numbers. The fact that one

can assume jNkj and $k to be independent of ‘‘R’’ or ‘‘I’’

will be justified in the following. Compared to Eq. (50), we

see that Eq. (144) is more general and, therefore, contains

more parameters. The case of Eq. (50) corresponds to

&vR;I
k ¼ 0, /R;I

k ¼ 0 and argNk ¼ (k. Of course, the above

Gaussian is similar to the wave function considered in the

case of the harmonic oscillator of Eq. (117). The only

difference is that the stochastic functions characterizing

the wave function now depend on the wave number k and

the role of the position is played by the Fourier amplitude of

the Mukhanov-Sasaki variable.

The next step is to insert Eq. (144) into Eq. (143) in order

to derive the differential equations obeyed by the functions

parametrizing the Gaussian state. Straightforward manipu-

lations making use of the Itô calculus lead to the following

expressions:

jNkj0
jNkj

¼
1

4

ð<e$kÞ
0

<e$k

¼ =m$k þ
0

4<e$k

; (145)

ð<e$kÞ
0 ¼ 0þ 4ð<e$kÞð=m$kÞ; (146)

ð=m$kÞ
0¼"2ð<e$kÞ

2þ2ð=m$kÞ
2þ

1

2
!2ð%;kÞ; (147)

ð &vR;I
k Þ0 ¼ /R;I

k þ

ffiffiffiffi

0
p

2<e$k

dW%

d%
" 2ð=m$kÞ &v

R;I
k ; (148)

ð(R;I
k Þ0¼"<e$kþ2ð<e$kÞ

2ð &vR;I
k Þ2"

1

2
ð/R;I

k Þ2; (149)

ð/R;I
k Þ0 ¼ "4ð<e$kÞ

2 &vR;I
k þ 2/R;I

k ð=m$kÞ: (150)

Several remarks are in order at this point. First, we see that

the evolution equations for jNkj, <e$k and =m$k are

deterministic and independent of that of &vR;I
k , (R;I

k or /R;I
k .

This justifies the fact that one can assume these quantities

to be independent on R, I provided similar initial condi-

tions are chosen for R, I. This also means that these three

quantities are not random (but their evolution is still ex-

plicitly modified by the stochastic dynamics when 0 ! 0).

Second, Eq. (145) explicitly implies the conservation of the

wave function norm: if one initially has a normalized

state, i.e.,

jNkj ¼
&

2<e$k

#

'

1=4
; (151)

it will remain so at any time. In fact, this equation is similar

to Eq. (21) which is therefore not modified by the intro-

duction of the nonlinear stochastic terms. Moreover, in the

present case where the wave function is given by a single

Gaussian, (R;I
k is just an irrelevant global phase and can be

ignored (this will no longer be the case when the quantum

state is the sum of two Gaussians, see below). Third, it is

easy to check that Eqs. (145)–(150), are the exact counter

parts of Eqs. (118)–(123). The only difference is that ! is

FIG. 4 (color online). Evolution of various physical length

scales with time during the cosmic history in the CSL model

described byEq. (143)with a zoomon the transition from inflation

to reheating inserted (see the concluding section). The solid line

represents the Hubble radius ‘H and the dashed-dotted green and

red lines, the physical wavelengths of two Fourier modes of

cosmological relevance today. The solid blue line represents the

built-in CSL scale ‘0, see the discussion above Eq. (157). It is a

preferred comoving scale and can also be viewed as a time-

dependent preferred physical scale. Therefore, when a mode is

below (above) ‘0 it remains so during the whole history of the

Universe as is clear from the plot. This means that, contrary to the

Hubble scale, there is no ‘‘‘0 crossing’’ during the cosmic evolu-

tion.As a consequence, one expects the power spectrum to acquire

a broken power-law shape, with two different branches, an ex-

pectation confirmed by the calculations in Sec. VD.
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now a time-dependent quantity as expected since we deal

with a parametric oscillator. We conclude that, instead of

six coupled stochastic differential equations, we have in

fact to solve two sets of two coupled differential equations,

the first one being deterministic and the second one being

stochastic. In particular Eqs. (146) and (147) can be com-

bined and lead to the following Ricatti equation for the

quantity <e$k þ i=m$k ¼ $k:

$0
k ¼ "2i$2

k þ 0þ
i

2
!2ð%; kÞ: (152)

This equation is similar to Eq. (124) obtained for the

harmonic oscillator. Of course, if 0 ¼ 0, then one exactly

recovers the Ricatti equation (20). As discussed before, a

Ricatti equation can always be reduced to a linear but

second order differential equation: this is achieved through

the transformation $k ¼ "if0k=ð2fkÞ, where fk is a solu-

tion of the following linear differential equation:

f00k þ ½!2ð%;kÞ " 2i0+fk ¼ 0: (153)

This equation is very similar to the equation for the mode

function considered before. The only difference is the

appearance of the term "2i0 in the effective frequency.

Obviously, if 0 ¼ 0, then one recovers the conventional

case. Moreover, the fact that this is the counterpart of

Eq. (125) is obvious.

C. Evolution of the stochastic wave

function during inflation

We now study the time evolution of the quantum state

(144) in more detail. We start with the evolution of <e$k

and =m$k since we have shown in the last section that it

decouples from the other equations of motion. To derive

the corresponding solutions, it is sufficient to solve

Eq. (153). If the background is driven by a phase of

power-law inflation, !ð%; kÞ is given by !ð%; kÞ ¼ k2 "
&ð&þ 1Þ=%2 and the differential equation (153) reads

f00k þ
!

k2 "
&ð&þ 1Þ

%2
" 2i0

"

fk ¼ 0: (154)

We see that the only effect of the CSL term "2i0 is to

modify the comoving wave number k2 ! k2 " 2i0. The
solution of Eq. (154) can be written in terms of Bessel

functions

fkð%Þ ¼ ð"zkk%Þ
1=2½CkJ&þ1

2
ð"zkk%Þ

þDkJ"ð&þ1=2Þð"zkk%Þ+; (155)

where Ck and Dk are integration constants and where the

complex number zk is defined by

zk '

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" i
20

k2

s

¼

&

1þ 4
02

k4

'

1=4
e"

i
2
arctanð20=k2Þ: (156)

Equation (155) should be compared to its non-CSL coun-

terpart, Eq. (45). The only difference is the appearance of

the zk factor. This is consistent with the remark made

above since this factor always multiplies the expression

k% and can, therefore, be viewed as a ‘‘renormalization’’ of

the wave number k. In the non-CSL case where 0 ¼ 0, one

obviously has zk ¼ 1 and Eq. (155) reduces to Eq. (45). It

is interesting to remark that zk for the parametric oscillator

plays a role similar to that of $ for the harmonic oscillator,

see the definition (126). In fact, strictly following this last

definition, one can introduce a mode-dependent $k pa-

rameter, namely $k '
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2i0" k2
p

(using ! ¼ k for mass-

less perturbations) and, then, zk appears to be just a

rescaled $k parameter: $k ¼ ikzk. Finally, notice also

that the sign ambiguity in the definition of zk due to the

presence of a square root has absolutely no impact on the

results presented below.

Let us now discuss the solution fkð%Þ and what this

implies for the behavior of the wave function. In the

presence of the CSL term, the problem is characterized

by three scales: the wavelength of the Fourier mode given

by ,kð%Þ ¼ að%Þ=k, the Hubble radius ‘Hð%Þ ¼ a2=a0 and
a new scale associated with the parameter 0 defined by

‘0 ' að%Þ=
ffiffiffiffi

0
p

or, in terms of mass scale,M0 '
ffiffiffiffi

0
p

=að%Þ.

Notice that ‘0 is a new, time-dependent, physical scale that

is built in the inflationary CSL theory, see Fig. 4. In terms

of these three physical scales, the quantity zkk% which

appears in Eq. (155) can be written as

zkk% ¼ ð1þ &Þ
‘H
,k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1" 2i
M2

0

k2phys

v
u
u
t ; (157)

where kphys ¼ k=a is the physical wave number. At

the beginning of inflation, the modes of cosmological

interest today laid far inside the Hubble radius, which

means ,k , ‘H, i.e., k% ! "1. Notice that these consid-

erations are independent of the value of M0. Indeed, if

kphys 0 M0, then zk ’ 1 and the previous limit is not

changed. On the contrary, if kphys , M0, then the condi-

tion jzkj 0 1 is even better satisfied. It is also interesting to

remark that, in this last case, zkk% does not go to"1 along

the real axis but along a direction that is inclined in the

complex plane. However, this does not change the asymp-

totic behavior of the Bessel functions in this regime. Upon

using Eq. (155), one obtains

lim
,k=‘H!0

fkð%Þ ¼

ffiffiffiffi

2

#

s
!

Ck sin

&

"zkk%"
#

2
&

'

þDk cos

&

"zkk%þ
#

2
&

'"

: (158)

This expression can also be re-expressed in term of ‘‘plane

wave’’ functions (writing $k ' $R
k þ i$I

k)

lim
,k=‘H!0

fkð%Þ ¼
Ak
ffiffiffiffiffiffiffi

2#
p e$

R
k
j%j"i$I

k
%"i#=4

þ
Bk
ffiffiffiffiffiffiffi

2#
p e"$R

k
j%jþi$I

k
%þi#=4; (159)
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where the coefficients Ak and Bk can be expressed as linear

combinations of Ck and Dk, namely

Ak ¼ Ck e
"i#ð&þ1=2Þ=2 þDk e

i#ð&þ1=2Þ=2 (160)

Bk ¼ Ck e
i#ð&þ1=2Þ=2 þDk e

"i#ð&þ1=2Þ=2: (161)

The solution (159) is nothing but the Wentzel-Kramers-

Brillouin (WKB) mode function expð/i
R
!d1Þ=

ffiffiffiffiffiffiffi

2!
p

.

The reason for this result is that, in the sub-Hubble regime,

theWKBapproximation is still valid even in presence of the

CSL term. As is well known, this approximation is satisfied

when the quantity jQ=!2j , 1, where Q is given by

Q '
3

4

1

!2

&

d!

d%

'

2

"
1

2!

d2!

d%2
: (162)

Since, in the limit under consideration, !2 tends toward a

constant, namely !2 ¼ k2 " 2i0, and since Q is given in

terms of derivatives of !, it is obvious that the criterion is

satisfied. As already mentioned, the only effect of the CSL

theory is to add the constant term"2i0 to!2. Although this

modifies the solution for the mode function, clearly, this

cannot change the fact thatWKB is valid at the beginning of

inflation.

Let us now comment on Eq. (159). When j%j goes to

infinity, the second branch of the above solution is going to

die away since $R
k > 0. As a consequence, only the first

branch remains and, since $k is given in terms of a ratio,

i.e., "if0k=ð2fkÞ, the remaining constant Ak disappears

from the final expression. Therefore, $k becomes inde-

pendent of the initial conditions and is given by $k ’
i$k=2, which implies that <e$k ’ "$I

k=2 ’ "k=2.
Returning to Eq. (144), this means that the wave function

is not bounded at infinity and is not normalizable. The deep

reason is that, in the CSL context, zk (or $k) is complex

and this implies that the WKB solution acquires either a

growing or a decaying exponential component which au-

tomatically kills one of the two branches. And, of course,

zk (or $k) is complex because of the CSL term "2i0.
Based on the previous discussion, it is clear that the only

meaningful choice of initial conditions is to require that

Ak ¼ 0. From Eqs. (160) and (161), we see that this

implies

Ck ¼ "Dk e
i#ð&þ1=2Þ: (163)

This choice exactly coincides with the Bunch-Davies initial

conditions (46). From now on, we assume Eq. (163) but we

will come back soon to this discussion. Then, one can

rederive the behavior of $k in the sub-Hubble regime.

One obtains

lim
,k=‘H!0

$kð%Þ ¼ "
i

2
$k; (164)

which is fully consistent with Eqs. (134) and (135). In

particular, one can check that, now, <e$k ! k=2 and the

wave function becomes normalizable (of course, it tends to

the ground state wave function). Therefore, we have proven

that, as expected, the cosmological perturbations behave, in

the sub-Hubble regime, exactly as the CSL harmonic

oscillator.

Having studied the behavior of the stochastic wave

function in the sub-Hubble regime, we now turn to the

super-Hubble case. In the framework of CSL, and contrary

to the sub-Hubble regime studied before, it is clear that this

regime has no counter part in the case of the harmonic

oscillator. It corresponds to the limit ‘H , ,k and, from

Eq. (157), we see that this means jzkk%j ! 0. Let us notice

that one could also consider the case where kphys , M0

such that M0=kphys 0 1 compensates the ratio ‘H=,k in

Eq. (157) resulting in a large jzkk%j, even in the super-

Hubble regime. Below, we briefly comment on this case.

Here, we assume thatM0 is such that this does not happen.

Then, upon using the asymptotic behavior of the Bessel

functions for small values of their argument, one arrives at

$k

k
¼ "

ið1þ &Þ

2k%
"

ið"k%Þ

4ð&þ 3=2Þ
"

ð"k%Þ

2ð&þ 3=2Þ

0

k2

þ i
Dk

Ck

&

1" 2i
0

k2

'

"&"1=2
22&þ1

&

&þ
1

2

'

&
%ð&þ 1=2Þ

%ð"&" 1=2Þ
ð"k%Þ"2&"2 þ - - - : (165)

This equation should be compared to the corresponding

non-CSL formula (52). If 0 ¼ 0 and if one takes the

Bunch-Davies initial conditions, Dk ¼ "Cke
"i#ð&þ1=2Þ,

then the above equation exactly reduces to Eq. (52).

Here, although we argued before that one should use the

Bunch-Davies initial conditions (163), we temporarily

keep the coefficients Ck and Dk arbitrary because, later

on, we shall want to comment on their influence on the

shape of the CSL power spectrum. Let us also notice that

the last term of the above expression is in fact proportional

to z"ð2&þ1Þ
k . If we write zk in polar form, zk ' jzkjei+k (of

course, +k should not be confused with the squeezing

angle) where the modulus and the phase can be read off

directly from Eq. (156), and parametrize the initial con-

ditions as Ck ¼ jCkjei+c and Dk ¼ jDkjei+d"i#&þi#=2 (so

that the Bunch-Davies limit is simply +d " +c ¼ 0), then it

is easy to determine the real and imaginary parts of the

function $k. One finds

<e$kð%Þ ¼ "
k

2ð&þ 3=2Þ

0

k2
ð"k%Þ þ

jDkj
jCkj

jzkj"ð2&þ1Þ

& cos½#&þ ð2&þ 1Þ+k " +d þ +c+

&
k#22&þ1

%2ð"&" 1=2Þ cosð#&Þ

& ð"k%Þ"2&"2 þ - - - ; (166)
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=m$kð%Þ¼"
k

2k%
ð1þ&Þ"

k

4ð&þ3=2Þ
ð"k%Þ

"
k

#

jDkj
jCkj

jzkj"ð2&þ1Þ

&22&
1

2
sin½#&þð2&þ1Þ+k"+dþ+c+

&cosð#&Þ%2

&

&þ
3

2

'

ð"k%Þ"2&"2þ--- :

(167)

These equations are the CSL counterparts of Eqs. (53) and

(54). Of course, for 0 ¼ 0 and the Bunch-Davies initial

conditions, they exactly reduce to those equations. We see

that the main effect of the CSL theory is to strongly modify

<e$k since its leading term in the above expansion is a

term which cancels if 0 ¼ 0. We also see that we still have

<e$k ! 0 in the super-Hubble limit. In the absence of the

CSL term, we would obtain the same limit but not with

the same power. Compared to <e$k, =m$k is much less

modified since the first correction show up only in the third

term of the expansion. As a consequence, we still have

=m$k ! 1 in the super-Hubble regime.

We now use the above results to discuss the collapse of

the wave function in more detail. Since we have assumed in

Eq. (143) that the ‘‘collapse operator’’ is v̂k, we expect the

nonlinear and stochastic terms in the modified Schrödinger

equation to drive the initial Gaussian state to an eigenvec-

tor of v̂k, that is to say to the Dirac function !ðvk " &vkÞ.
However, in practice, as we learned from the harmonic

oscillator example in Sec. IVB, this is not what happens. In

practice, we find that the wave function tends towards a

Gaussian state with a constant spread in position and that

the larger the value of 0, the smaller the amplitude of this

spread, i.e., limt!1(x ! ½ℏ=ð4m0Þ+1=4 when 0 ! 1.

Therefore, strictly speaking, the exact localization is ob-

tained only in the 0 ! 1 limit. Of course, if the spread is

very small, then for all practical purposes, the collapse has

been achieved. In fact, this is the essence of the amplifica-

tion mechanism discussed in Sec. IVA. The effective value

0CM of 0 for a macroscopic object (or for its center of

mass) is the fundamental 0 times the number of particles in

that object which results in a huge effective 0 and, there-

fore, a very efficient localization. As a consequence, a

collapse can occur for macroscopic objects while it does

not happen for microscopic particles even if their behavior

is slightly disturbed.

Let us now see how the previous discussion applies to

inflation. The first difference is that the standard deviation,

1=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

<e$k

p

Þ, does not go to a constant as for the harmonic

oscillator but to infinity since Eq. (166) implies that $k /
% ! 0. We remark that the divergence is less violent than

when 0 ! 0 since, in that case,$k / %2 ! 0, according to

Eq. (53). This is of course due to the influence of the

nonlinear and stochastic terms. However, this influence is

not sufficient to prevent the divergence of the variance and,

therefore, to ensure an efficient localization. As a matter of

fact, we see that, in the limit% ! 0, the main divergence in

the Hamiltonian comes from the term / !2v2
k while the

CSL term goes like 0v2
k. Hence, it is because the term

!2 / %"2 diverges at the end of inflation that the

Hamiltonian strongly dominates the dynamics of the sys-

tem, preventing the CSL terms / 0v2
k to carry out its job

and to localize vk (however, see the Appendix). This is

certainly a problem for the inflationary CSL theory. This

issue can also be related to the fact that it is unclear how an

amplification mechanism could be implemented in quan-

tum field theory. As a consequence, the collapse mecha-

nism is controlled by the parameter 0 and no effective 0

can be derived which would ensure a better localization.

Finally, let us mention that one could wonder whether

the localization can be achieved during the radiation domi-

nated era that takes place after inflation. In this case, the

scale factor behaves as að%Þ / % and, therefore, )1 ¼ 2

and ða
ffiffiffiffiffi

)1
p

Þ00=ða
ffiffiffiffiffi

)1
p

Þ ¼ 0. As consequence, the mode

equation for fk is exactly that of a harmonic oscillator.

This means that the variance now goes to a constant, see

Sec. IVB, which seems to cure the problem discussed

above. However, one can show that the corresponding

value remains large for modes of astrophysical interest

today. Therefore, this remains an unsatisfactory solution.

D. The CSL power spectrum

We now turn to one of the main goal of the present paper,

namely the determination of the power spectrum predicted

by theCSL theory. Itwas shown inEqs. (29) and (37) that the

power spectrum of the conserved quantity *k can be ex-

pressed as

P * ðkÞ ¼
k3

16#2M2
Pl

1

a2)1<e$k

: (168)

Since we have determined the quantity<e$k in Eq. (166),

the calculation ofP * becomes straightforward. One obtains

P * ðkÞ ¼ g0ðk;&Þ

!

1"
0

k2
g0ðk;&Þfð&Þ

&
ð"k%Þ2&þ3

&þ 3=2

"

"1

P * ðkÞjstand; (169)

where P * jstand is the standard power spectrum given by

Eq. (47) and the function fð&Þ has been defined in Eq. (48).
The function g0ðk;&Þ

g0ðk;&Þ'
jCkj
jDkj

jzkj2&þ1
cosð#&Þ

cos½#&þð2&þ1Þ+k"+dþ+c+

(170)

is seen to depend on the choice of the initial conditions. It has

the property that, for 0 ¼ 0 and the Bunch-Davies initial

conditions,g0¼0ðk;&Þ ¼ 1. In this case, and as expected, one
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can check that the modified power spectrum (169) reduces to

the standard inflationary power spectrum.We also notice that

the power spectrum (169) is still a time-dependent quantity,

contrary to the conventional case where the time dependence

cancels out. For this reason, it is convenient to evaluate it at

the end of inflation. In that case, the quantity "k% can be

rewritten as

" k% ¼ "
k

k0
ð1þ &Þ e'N.=ð1þ&Þ; (171)

where k0 is the comoving wave number of the Fourier mode,

the wavelength of which equals the Hubble radius today, i.e.,

k0 ¼ a0H0. The quantity'N. denotes the number of e-folds

spent by a mode of cosmological relevance today outside the

Hubble radius during inflation; typically, one has 'N. ’
50–60. As a consequence, the power spectrum (169) can be

reexpressed as

P * ðkÞ¼g0ðk;&Þ

!

1"
0

k20
g0ðk;&Þfð&Þ

j1þ&j2&þ3

ð&þ3=2Þ

& eð2&þ3Þ'N.=ð1þ&Þ

&

k

k0

'

2&þ1
"

"1

P * ðkÞjstand: (172)

Let us notice that, inEq. (170), the quantities jzkj of Eq. (156)
and +k must now be written as

jzkj ¼
!

1þ 4
02

k40

&

k0
k

'

4
"

1=4
; (173)

+k ¼ "
1

2
arctan

!

2
0

k20

&

k0
k

'

2
"

; (174)

such that the amplitude of the CSL correction is controlled by

the dimensionless ratio0=k20. The formula (172) is one of the

main results of this article and the corresponding power

spectra for different values of the ratio 0=k20 are represented
in Fig. 5.

Let us now discuss in more detail the CSL power spec-

trum (172). First, we notice that, in the short-wavelength

regime k=k0 ! 1, the power spectrum reduces to P * ðkÞ ’
g0ðk;&ÞP * jstand. Moreover, in this limit, we see that

jzkj!1 and +k ! 0. As a consequence, an almost scale

invariant (namely, nS ¼ 2&þ 4 with & & "2) power

spectrum is recovered if one assumes the Bunch-Davies

initial conditions, jCkj ¼ jDkj and +d " +c ¼ 0 since, in

that case, g0ðk;&Þ ¼ 1. This almost scale invariant branch

of the power spectrum is clearly seen in Fig. 5. Second,

there is clearly another regime which corresponds to the

case where the second term in the square brackets in

Eq. (172) starts playing a role. If we neglect factors of

order one, this happens at k ¼ k0, where k0 solves

0

k20
g0ðk0;&Þ e

ð2&þ3Þ'N.=ð1þ&Þ

&

k0

k0

'

2&þ1

’ 1: (175)

The value of g0 is mainly controlled by the value of jzkj
which is always close to unity provided that k , kz with

kz
k0

'
ffiffiffi

2
p &

0

k20

'

1=2
: (176)

Then, let us assume that g0 ’ 1when the condition (175) is

met. In this case, the scale k0 can be expressed as

k0

k0
(

&

0

k20

'

"1=ð1þ2&Þ

exp

!

"
2&þ 3

ð&þ 1Þð2&þ 1Þ
'N.

"

: (177)

Choosing the fiducial value & ’ "2 leads to k0=k0 (

ð0=k20Þ
1=3 expð'N.=3Þ. One can check that, indeed,

k0 0 kz and, therefore, assuming g0 ’ 1 was, in retro-

spect, valid. As a consequence, in the range k , k0, the

spectrum approximately behaves as / k2&þ4=k2&þ1 ¼ k3,
that is to say with a spectral index of nS ’ 4. This second

branch is also clearly visible in Fig. 5. In addition, the

dependence in g0 is canceled out which means that this

prediction is actually independent of the choice of the

initial conditions, a remarkable property indeed (this also

means that, even if k , kz, the spectral index remains the

same). Moreover, we see that this spectral index is also

independent of & which is also remarkable. In this sense,

the CSL branch of the power spectrum can be said to be

‘‘universal’’ (unfortunately not scale invariant).

We are now in a position where we can discuss the

cosmological constraints on the parameter 0. From the

high accuracy measurements of the CMB anisotropies

[20–22], we know that the power spectrum is almost scale

invariant, nS ’ 1, and that a spectral index nS ¼ 4 is com-

pletely excluded. This means that the CSL branch must

correspond to scales much larger than the present Hubble

radius, in other words k0=k0 , 1. This condition means

that, for & ’ "2, one has

FIG. 5 (color online). Ratio of the power spectrum given by

Eq. (172) to the standard power spectrum given by Eq. (47) for

different values of the parameter 0=k20 (and for & ¼ "2:01, a
value leading to a standard power spectrum close to scale

invariance). The number of e-folds between Hubble radius

crossing and the end of inflation (for the modes of cosmological

interest today) has been taken to 'N. ¼ 60 and the initial

conditions have been chosen to be the adiabatic vacuum.
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0

k20
, e"'N. ’ 10"28: (178)

To our knowledge, this is the first time that a constraint on

the parameter 0 is obtained from cosmological consider-

ations (see, however, Ref. [76]). We see that the constraint

is expressed as a limit not on 0 itself but on the combina-

tion 0=k20 where we remind the reader that k0 is the

comoving wave number of the Hubble radius today.

Looking at Eqs. (143) and (153), this was expected since

the CSL modification amounts to a redefinition of the

comoving wave number k2 ! k2 " 2i0. This means that,

in order to characterize the amplitude of the modification,

one has to compare the comoving wave number to 0, hence

the ratio 0=k20. The appearance of the comoving wave

number in the observational constraint reflects the fact

that the theory contains a built-in ‘‘time-dependent physi-

cal preferred scale’’ ‘0ð%Þ. In terms of physical scales, the

constraint (178) can be rewritten as

‘H
‘0

+

+

+

+

+

+

+

+today

, 10"13: (179)

Clearly, the constraint is very strong and means that the

scale ‘0 is very large in comparison to the Hubble radius

today. This is another illustration of the fact that squeezed

states are fragile and easily perturbed. For the CSL theory

itself, this probably means that, in order to be compatible

with cosmological inflation, an important fine-tuning is

required. Of course, this conclusion should be toned

down given the uncertainty that exists on a CSL formula-

tion of quantum field theory as discussed in Sec. VA. One

might argue for instance that the above result could be due

to the fact that our modified Schrödinger equation is not

necessarily the appropriate one in the context of quantum

field theory. It would also be interesting to compare the

cosmological constraint with the other constraints on 0

derived in the literature. But, as explained before, because

we assumed v̂k to be the preferred basis for the collapse,

our parameter 0 is actually different from the parameter 0

considered elsewhere, in particular it has a different di-

mension. This complicates tremendously any comparison

with other systems.

Finally, before closing this section, let us discuss the

following question. In this article, we have defined the

power spectrum in the CSL theory by means of the formula

Eðhv̂2
kiÞ " Eðhv̂ki2Þ. However, there is an issue regarding

this definition. Indeed, it is clear that it does not go to zero

when the parameter 0 vanishes. Actually, it tends towards

the standard result when the Schrödinger equation is re-

covered. However, it was argued in Ref. [112] that the

power spectrum should go to zero in the limit where

0 ! 0 and, therefore, cannot be given by the definition

used above. The reason advocated by Ref. [112] is that,

without a collapse, the theory remains homogeneous

and isotropic and, as a consequence, there is simply no

perturbations at all. This has led Ref. [112] to define the

CSL power spectrum by Eðhv̂ki2Þ " E2ðhv̂kiÞ, a quantity

which indeed vanishes when 0 ! 0 and differs from the

previous one. In this last paragraph, we explore the differ-

ence between these two alternative definitions. At any

time, the wave function can always be expanded as

#ð%; vkÞ ¼
Z

#ð%; &vkÞ!ðvk " &vkÞd &vk; (180)

where the superscripts ‘‘R, I’’ have been ignored for con-

venience. If a dynamical collapse of the wave function

takes place then# is projected (collapsed) on an eigenstate

of the operator v̂k, namely

# ! #col ' !ðvk " &vkÞ; (181)

where &vk depends on the specific realization under consid-

eration, then one obviously has

h#coljv̂2
kj#coli ¼ h#coljv̂kjc coli2;

¼ &v2
k: (182)

Therefore, for each realization, one has hv̂2
ki ¼ hv̂ki2, once

the wave function has collapsed. Since this is true for all

realizations, it remains the case after taking the stochastic

average. Therefore, after the collapse, one can write

E ðhv̂2
kiÞ ¼ Eðhv̂ki2Þ; (183)

and this remains true for any Hermitian operator. Note that

this argument strongly depends on the fact that the wave

function has actually collapsed to an eigenstate of the

operator v̂k. For instance, in the case of a harmonic oscil-

lator studied in Sec. IVB, it was shown that the asymptotic

state is not exactly a Dirac wave function, but a Gaussian

state the spread of which does not vanish for finite values

of 0. In that situation, the two above expressions are not

identical.

On the other hand, the second terms in both definitions

of the power spectrum differ

E ðhv̂ki2Þ ! E2ðhv̂kiÞ; (184)

so the two spectra do not coincide even after the collapse.

The difference ultimately boils down to the fact that it is

built out of a standard deviation which is not a Hermitian

operator. This is a generic question for the predictions of

any theory mixing different kinds of averages (in the case

at hand, quantum and stochastic) whenever nonlinear com-

binations of Hermitian operators are involved.

VI. THE COLLAPSE OF COSMOLOGICAL

PERTURBATIONS

In this section, we investigate the collapse mechanism

and its dynamics in more detail. In particular, we calculate

the collapse time and compare it with the cosmological

characteristic times. For this purpose, we now consider the

following double Gaussian quantum state [73]:
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#kð%;vkÞ¼ jNð1Þ
k ð%Þjexpf"<e$

ð1Þ
k ð%Þ½vk" &vð1Þ

k ð%Þ+2

þ i(ð1Þ
k ð%Þþ i/ð1Þ

k ð%Þvk" i=m$
ð1Þ
k ð%ÞðvkÞ

2g
þ jNð2Þ

k ð%Þjexpf"<e$
ð2Þ
k ð%Þ½vk" &vð2Þ

k ð%Þ+2

þ i(ð2Þ
k ð%Þþ i/ð2Þ

k ð%Þvk" i=m$
ð2Þ
k ð%ÞðvkÞ

2g;
(185)

where, as before, jNð1;2Þ
k j, <e$

ð1;2Þ
k , &vð1;2Þ

k , (
ð1;2Þ
k , /

ð1;2Þ
k and

=m$
ð1;2Þ
k are real, possibly stochastic, numbers. The super-

scripts ‘‘R, I’’ have not been written for convenience but it

should be remembered that they are of course present.

Inserting the above state into the modified Schrödinger

equation leads to the following set of formulas:

jNð1;2Þ
k j0

jNð1;2Þ
k j

¼ =m$
ð1;2Þ
k þ

0

4<e$
ð1;2Þ
k

"
ffiffiffiffi

0
p

½hv̂ki" &vð1;2Þ
k +

&
dW%

d%
"

0

2
½hv̂ki" &vð1;2Þ

k +2; (186)

½<e$
ð1;2Þ
k +0 ¼ 0þ 4½<e$

ð1;2Þ
k +½=m$

ð1;2Þ
k +; (187)

½=m$
ð1;2Þ
k +0 ¼"2½<e$

ð1;2Þ
k +2þ2½=m$

ð1;2Þ
k +2þ

1

2
!2ð%;kÞ;

(188)

½ &vð1;2Þ
k +0 ¼ /

ð1;2Þ
k þ

ffiffiffiffi

0
p

2<e$
ð1;2Þ
k

dW%

d%
" 2½=m$

ð1;2Þ
k + &vð1;2Þ

k

þ
0

<e$
ð1;2Þ
k

½hv̂ki" &vð1;2Þ
k +; (189)

½(
ð1;2Þ
k +0 ¼ "<e$

ð1;2Þ
k þ 2½<e$

ð1;2Þ
k +2½ &vð1;2Þ

k +2

"
1

2
½/ð1;2Þ

k +2; (190)

½/ð1;2Þ
k +0 ¼ "4½<e$

ð1;2Þ
k +2 &vð1;2Þ

k þ 2/
ð1;2Þ
k ½=m$

ð1;2Þ
k +:

(191)

These equations should be compared to Eqs. (145)–(150).

They are obviously very similar except the two last terms

of Eq. (186) and the last term of Eq. (189) which are new.

In the case of a single Gaussian, one has hv̂ki ¼ &vk and

these terms disappear. In the present case, the expression of

hv̂ki is a very complicated function of all the parameters

describing the wave function. Let us also notice that, since

the evolution of (
ð1;2Þ
k and /

ð1;2Þ
k depends on &vð1;2Þ

k , these

quantities also feel the coupling between the two Gaussian

components. However, one can see that the equations of

motion for<e$
ð1;2Þ
k and =m$

ð1;2Þ
k decouple from the other

equations of motion and form an independent and closed

subsystem. This means that the evolution of these two

functions is identical to that of their counterpart in the

simple Gaussian case and, moreover, that, if the initial

conditions are chosen to be the same, $
ð1Þ
k ¼ $

ð2Þ
k at any

subsequent time. From now on, for this reason, the super-

scripts ‘‘(1)’’ and/or ‘‘(2)’’ on these quantities will be

dropped.

It should be clear that the above system of differential

equations is rather complicated to study. However, as we

shall see, the most relevant properties of the evolution of

the double Gaussian quantum state can be analyzed in a

rigorous way. In particular, it is interesting to introduce the

function %kð%Þ ' ln½jNð2Þ
k j=jNð1Þ

k j+, see Ref. [73]. This

quantity characterizes the relative importance of one

Gaussian component to the other and, therefore, provides

a criterion to decide whether the collapse has taken place.

The superposition of the two Gaussian quantum states

reduces to one of them when j %k j goes to infinity. In

practice, the collapse will be said to have occurred when

j %k j >b with, say, b( 10 [73]. Then, by subtracting the

two equations (186), one arrives at the following evolution

equation for %k

d%k

d%
¼

ffiffiffiffi

0
p

½ &vð2Þ
k " &vð1Þ

k +
dW

d%

" 0½ &vð2Þ
k " &vð1Þ

k +½ &vð1Þ
k þ &vð2Þ

k " 2hv̂ki+: (192)

This equation remains complicated because of the presence

of the term hv̂ki. However, the calculation can be simplified

if one assumes that the two Gaussian components of the

wave function do not overlap, i.e., have separate supports.

Technically, this means that <e$k½ &v
ð2Þ
k " &vð1Þ

k +2 0 1,

leading to the following simple formula:

hv̂ki ’
jNð1Þ

k j2 &vð1Þ
k þ jNð2Þ

k j2 &vð2Þ
k

jNð1Þ
k j2 þ jNð2Þ

k j2
: (193)

Inserting this formula into Eq. (192) and defining Xk by

Xk ' &vð2Þ
k " &vð1Þ

k , one obtains the following expression:

d%k

d%
¼

ffiffiffiffi

0
p

Xk

dW%

d%
þ 0X2

k tanhð%kÞ: (194)

This stochastic differential equation can be further simpli-

fied. Indeed, using the new timelike variable [73]

sk ' 0
Z %

%ini

X2
kðuÞdu; (195)

Eq. (194) can be rewritten as

d%k

dsk
¼

dWs

dsk
þ tanhð%kÞ; (196)

where

Ws ¼
ffiffiffiffi

0
p Z sk

0

XkdW% (197)

is another Wiener process with respect to the time

variable sk.
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A. Collapse time: Definition

Let us now study the stochastic differential equation

driving the evolution of %k in more detail. In particular,

we would like to know howmuch time it takes for the wave

function to collapse or, in technical terms, we would like to

determine the value of sk such that j%kj> b. The quantity
%k being stochastic, two complications arise. First, once it

has reached a value larger than b, there is no guarantee that
it will stay in this region. The random behavior of %k could

temporally bring it back to the region j%kj ) b. However,
since the average trend is clearly to have a collapse, this

would happen for a limited amount of time only before %k

returns in the regime where j%kj 2 b. For this reason, we
will consider that the wave function has collapsed when %k

has crossed the value/b for the first time. Technically, this

means that we are led to define the ‘‘collapse time,’’ Sk, as
Sk ' infðskÞ such that j%kðskÞj> b, see also Ref. [73]. A

second issue is that, clearly, the value of Sk will differ from
one realization to the other or, in other words, that Sk is still
a random variable. Therefore, we will rather define the

collapse time as the ensemble average value of Sk but we

will also be interested in calculating its higher order

momenta.

We now seek an explicit expression for the quantity Sk.
It can be obtained in the following manner. Let us consider

a function cð%kÞ that we do not characterize in more detail

for the moment (but see below). It can always be Taylor

expanded in d%k. At second order, the result reads

cð%kþd%kÞ¼ cð%kÞþc0ð%kÞd%kþ
1

2
c00ð%kÞd%

2
kþOðd%3

kÞ;

(198)

where d%k is given by Eq. (196). At first order in dsk, this
leads to

dc½%kðskÞ+ ¼ c0½%kðskÞ+dWs þ c0½%kðskÞ+ tanh½%kðskÞ+dsk

þ
1

2
c00½%kðskÞ+dsk: (199)

Then, integrating the above expression between sk ¼ 0

where %kðsk ¼ 0Þ ¼ b0 and sk ¼ Sk where %kðsk¼SkÞ¼
/b, one gets the following (Itô) formula:

cð/bÞ " cðb0Þ ¼
Z Sk

0

c0½%kðskÞ+dWs þ
Z Sk

0

$

c0½%kðskÞ+

& tanh½%kðskÞ+ þ
1

2
c00½%kðskÞ+

%

dsk:

(200)

At this stage, we now specify the function c. We require it

to be the solution of the differential ordinary equation

1

2
c00ðxÞ þ tanhðxÞc0ðxÞ ¼ "1; (201)

with boundary conditions cð"bÞ ¼ cðþbÞ ¼ 0. It is easy

to show that cðxÞ ¼ b tanhðbÞ " x tanhðxÞ. This means that

the first term on the left-hand side of Eq. (200) vanishes

and that the integrand of the second term on the right-hand

side is just "1. Therefore, Eq. (200) can be rewritten as

Sk ¼ cðb0Þ þ
Z Sk

0

c0½%kðskÞ+dWs; (202)

and this gives an (implicit) expression for the quantity Sk.
Finally, by averaging over all realizations, one obtains [73]

E ðSkÞ ¼ cðb0Þ ¼ b tanhðbÞ " b0 tanhðb0Þ: (203)

The fact that the stochastic average of the integral in

Eq. (202) vanishes comes from the fact that c0½%kðskÞ+
depends only on stochastic events occurring at s0k < sk.
As a consequence, it can be expressed as an integration

over ds0k and dWs0 where s0k < sk. Since EðdWs0dWsÞ ¼

!ðs0k " skÞds
2
k, at first order in dsk, the stochastic average

of the integral term in Eq. (202) vanishes. Actually, things

are slightly more complicated since the upper bound of this

integral, Sk, is a stochastic quantity itself. Therefore, the

averaging process should also be carried out on this upper

bound, and a generalized demonstration which includes

this case can be found in Ref. [113] (theorem 1 on p. 28).

In order to characterize better the properties of this

collapse time, it is also important to determine its variance.

Interestingly enough, the same technique described above

can be used in order to calculate iteratively higher orders of

Sk. Upon using Eq. (202) one has

E ðS2kÞ ¼ c2ðb0Þ þ
Z Sk

0

c02½%kðskÞ+dsk: (204)

We see that we now need to evaluate the integral in the

above expression. For this purpose, we consider a new

function eð%kÞ. As was done before, it can be Taylor

expanded and this leads exactly to Eq. (200) (with, of

course, c replaced by e). Compared with the proof that

allowed us to obtain EðSkÞ, at this point, the strategy

changes. We now require the function eðxÞ to be the

solution of the following ordinary differential equation

[compare with Eq. (201)]:

1

2
e00ðxÞ þ tanhðxÞe0ðxÞ ¼ "e02ðxÞ; (205)

with boundary conditions eð"bÞ ¼ eðbÞ ¼ 0. As before,

one can use this differential equation into the Itô formula to

simplify the second integral in Eq. (204) [more precisely,

the integrand is replaced by"e02ðxÞ]. Taking the stochastic
average of the resulting equation, one gets

eðb0Þ ¼
Z Sk

0

e02½%kðskÞ+dsk: (206)

As a consequence, we deduce that

E ðS2kÞ ¼ c2ðb0Þ þ eðb0Þ: (207)

The only thing which remains to be done is to solve

Eq. (205). In fact, it turns out to be more convenient to
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solve the slightly simpler differential equation satisfied by

e1ðxÞ ' c2ðxÞ þ eðxÞ, namely e001 ðxÞ=2þ tanhðxÞe01ðxÞ ¼
"2cðxÞ, with boundary conditions e1ð"bÞ ¼ e1ðbÞ ¼ 0.

It is straightforward to show that e1ðxÞ ¼ x2 " b2þ
½1þ 2b tanhðbÞ+½b tanhðbÞ " x tanhðxÞ+. Then, the second

moment of S can be simply expressed as EðS2kÞ ¼ e1ðb0Þ
which, therefore, gives an explicit expression for the vari-

ance of the collapse time. Since b is supposed to be a large

number b 0 1 and if we assume that the two Gaussians

have comparable initial weights which implies that b0 ( 0,

then one obtains, at leading order in b,

EðSkÞ ’ b; (208)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðS2kÞ " E2ðSkÞ
q

’
ffiffiffi

b
p

: (209)

These two equations tell us that the relative standard

deviation scales as 1=
ffiffiffi

b
p

and, therefore, that the distribu-

tion of Sk becomes more peaked as b increases. For this

reason, in the following, we will simply estimate the

collapse time by means of the sloppy requirement that

sk ¼ b. Finally, let us mention that one could also apply

the technique used in this section in order to determine the

higher order correlation functions of the process Sk.

B. Collapse time in the sub-Hubble regime

In the last section, we have explained how to determine

the collapse time in terms of the variable sk. In order to

translate this result in terms of a more physical time

(conformal time or, better, number of e-folds), we need

to use Eq. (195) which, in turn, requires the knowledge of

the function Xk. This one cannot be determined in full

generality but it is easy to characterize it in the sub- and

super-Hubble regimes. In this section, we investigate the

sub-Hubble regime.

Let us define Kk ' /
ð2Þ
k " /

ð1Þ
k . This quantity measures

the shift in momentum between the two Gaussian compo-

nents of the wave function (185) (we recall that Xk mea-

sures the shift in position). Then, taking the difference

between the versions ‘‘(1)’’ and ‘‘(2)’’ of Eq. (189) on

the one hand, and versions ‘‘(1)’’ and ‘‘(2)’’ of Eq. (191)

on the other hand, we arrive at a closed system which can

be written in a matrix form, namely

d

d%

Xk

Kk

 !

¼
"2=m$k "

0
<e$k

1

"4ð<e$kÞ
2 2=m$k

 !
Xk

Kk

 !

:

(210)

At this stage, there is no approximation and the above

equation is general. In the sub-Hubble regime, one can

use Eq. (164) to simplify the expressions of <e$k and

=m$k. Moreover, we are mainly interested in computing

the collapse time for the modes that correspond to the

(almost) scale invariant part of the power spectrum since

it is clearly less interesting to compute this quantity in a

regime that is already excluded by the data. As was dis-

cussed before, this amounts to considering that 0=k2,1.

Under those conditions, one has <e$k ! k=2 and

=m$k ! "0=ð2kÞ and Eq. (210) can be reexpressed as

d

d%

Xk

Kk

 !

¼
"0=k 1

"k2 "0=k

 !
Xk

Kk

 !

: (211)

This system of differential equations can be integrated and

the solution reads

Kkð%Þ ¼ e"0ð%"%iniÞ=kfKk;ini cos½kð%" %iniÞ+

" kXk;ini sin½kð%" %iniÞ+g; (212)

Xkð%Þ ¼ e"0ð%"%iniÞ=k

$

Xk;ini cos½kð%" %iniÞ+

þ
Kk;ini

k
sin½kð%" %iniÞ+

%

; (213)

where Kk;ini and Xk;ini are two integration constants con-

veniently chosen to be the values of Kk and Xk at initial

time % ¼ %ini. For simplicity, we now consider a situation

such that Kk;ini ¼ 0. Upon using Eq. (195), one finds that

sk¼"
k

4
X2
k;ini½e

"20ð%"%iniÞ=k"1+

"
02

k3
X2
k;ini

1

1þ402=k4
e"20ð%"%iniÞ=kfcos½2kð%"%iniÞ+

"sin½2kð%"%iniÞ+"1g: (214)

If we expand the above result in 0=k2 for the reason

discussed before then, at leading order, one obtains an

approximated expression for the mapping between the

variables % and sk

sk ’
kX2

k;ini

4
½1" e"20ð%"%iniÞ=k+: (215)

This expression means that sk runs from 0 to kX2
k;ini=4when

% runs from %ini to infinity. Therefore, the time sk evolves

in a finite range. However, in order to be consistent, one

must have %< %. ¼ "1=k since the equations that have

been used in order to derive sk are valid only in the sub-

Hubble regime. As a consequence, we have in fact sk 2
½0; s.+ where s. ' kX2

k;ini=4f1" exp½ð20=k2Þð1þ k%iniÞ+g.
Since we have jk%inij 0 1, one can thus write s. ’
kX2

k;ini=4½1" expð20%ini=kÞ+. If s < s., then Eq. (215)

can be inverted in order to evaluate the (total) number of

e-folds in terms of the time variable sk. One finds

Nk ¼ ð1þ &Þ ln

!

1"
k2

20

1

k%ini

ln

&

1"
4sk

kX2
k;ini

'"

; (216)

and one checks that if sk ¼ 0 then Nk ¼ 0, if sk ¼ s. then
N ! 1, and that the condition s < s. is sufficient to guar-

antee that the above expression is well defined.

Let us now discuss the above results in more detail. First,

we notice in Eqs. (212) and (213) that the functions Kkð%Þ
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and Xkð%Þ tend to zero when %" %ini 0 1. When this

happens, the two Gaussians have the same mean in position

and momentum; in other words the two Gaussians have

merged. This ‘‘merging phenomenon’’ seems to be a ge-

neric feature and can also be observed for the free particle

[73] and/or the harmonic oscillator in Minkowski space-

time. Therefore, it does not come as a surprise that it also

shows up in the sub-Hubble regime where the Fourier

mode under consideration does not feel spacetime curva-

ture. This also means that it is not a peculiar property of

inflation.

The free particle situation can be studied [73] by return-

ing to Eqs. (118)–(123). It is sufficient to consider that

! ¼ 0 in those equations to obtain this case. This means

that the mode equation (125) now reads f00k " $2fk ¼ 0,

where the quantity$, defined in Eq. (126) for the harmonic

oscillator, now reads $ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2i0ℏ=m
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0ℏ=m
p

ð1þ iÞ and
is obtained from Eq. (126) by taking ! ¼ 0. As a conse-

quence, the solution for $ðtÞ has exactly the same form as

in Eq. (127) but now with the new $ given above. This

implies that <e$ !
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0m=ℏ
p

=2 and =m$ !
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0m=ℏ
p

=2
when t ! 1. These formulas should be compared to

Eqs. (134) and (135). Then, considering the equations

of motion for a double Gaussian state, and defining X '
&x2 " &x1 and K ' /2 " /1, upon using Eq. (210), one

obtains the following set of equations:

d

dt

X
K

& '

¼
"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

0ℏ=m
p

ℏ=m

"0 "
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0ℏ=m
p

 !

X
K

& '

: (217)

This equation should be compared to Eq. (211). In particu-

lar, one notices that, here, the free particle case is not

simply obtained from this equation by considering k ¼
! ¼ 0. If we assume that Kð0Þ ¼ 0, then the solution for

XðtÞ is given by XðtÞ¼Xð0Þexpð"t
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ0=m
p

Þcosðt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ0=m
p

Þ.
We see that this solution resembles solutions (213) and

(212) obtained before. Therefore, the merging is indeed

already present for a free particle in flat spacetime and is

not a specific feature of inflation. The exponential factor is

mainly responsible for the merging and this means that the

‘‘merging time’’ of the free particle is given by

T
fp
merge ¼

ffiffiffiffiffiffiffi

m

ℏ0

s

: (218)

This expression is consistent with the merging time derived

in Ref. [73].

In order to discuss our inflationary result, one should

consider the merging time of the harmonic oscillator in-

stead of that of the free particle since this is the appropriate

limit in the sub-Hubble regime. Following the same logic

as before, it is easy to show that, for the harmonic oscil-

lator, Eq. (217) is replaced by

d

dt

X
K

& '

¼
"0ℏ=ðm!Þ ℏ=m
"m!2=ℏ "0ℏ=ðm!Þ

& '

X
K

& '

: (219)

We see that it is indeed similar to Eq. (211) if we take

! ¼ k (and m ¼ ℏ ¼ 1). The solution for XðtÞ can be

expressed as XðtÞ ¼ Xð0Þ exp½"ℏ0=ðm!Þt+ cosð!tÞ, as-

suming as before Kð0Þ ¼ 0. This solution is perfectly

consistent with (212) and (213). Compared to the free

particle case, one notices that the coefficient in the expo-

nential is now different from the frequency of the trigono-

metric function. But the most important result that one can

deduce from the above considerations is that the merging

phenomenon is also present for the harmonic oscillator and

that the corresponding merging time is given by

Tho
merge ¼

m!

ℏ0
¼ !ðT

fp
mergeÞ

2: (220)

Let us remark that the last expression could have been

guessed on dimensional grounds.

In the case of inflation, the conformal merging time is

given by [see Eqs. (212) and (213)]

kð%merge " %iniÞ ¼
k2

0
: (221)

However, there is a new twist in the discussion. It is not

obvious that the above equation admits a solution because,

in some sense, we have a limited amount of time from %ini

to %., the time of Hubble horizon crossing (defined by

jk%.j ¼ 1). For times such that jk%j< 1, we are no longer

in the sub-Hubble regime and the above equation can no

longer be used. But, given a value of k2=0, and an initial

time %ini, it is not obvious that there exists a time %merge

such that Eq. (221) is satisfied. In fact, there exists a

solution only if jk%inij> 1þ k2=0. This condition means

that, for a given k2=0, one can always give more time to the

system to satisfy Eq. (221) by starting its evolution earlier

(which is equivalent to increasing j%inij). It is easy to show
that the previous inequality is in fact a condition on the

total number of e-folds during inflation (& & "2), namely

NT * 'N. þ ln

&

1þ
k2

0

'

; (222)

where 'N. ’ 50 for the modes of cosmological interest

today. If this condition is met, then the merging occurs

after N
merge

k with

N
merge

k ¼ " ln

&

1þ
k2

0k%ini

'

: (223)

Moreover, the term k2=ð0k%iniÞ is of the order

(k2e"NTþ50=0 and it seems reasonable to assume that it

is small. Indeed, typically, the total number of e-folds

during inflation is very large and, even if k2=0 0 1, the

factor e"NT will entirely compensate its influence (to be

more concrete, we know that k2=0 * 1028 but NT can

easily be larger than, say, 1000 and can even be as large

as 108). Then, the merging time during inflation can be

approximated by
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N
merge

k ’ "
k2

0k%ini

, 1: (224)

We see that this expression scales as / k=0, in full agree-

ment with the previous considerations on the harmonic

oscillator, see Eq. (220).

Let us now study the collapse time. First of all, the

collapse can occur in the sub-Hubble regime only if

b < s.. If we use the expression of s. and assume, as

before, that k2=ð0k%iniÞ , 1, then s. ’ kX2
k;ini=4 and the

condition for having the collapse in the sub-Hubble regime

can be simply rewritten as

b ,
kX2

k;ini

4
: (225)

If this condition is satisfied, then the ‘‘e-fold collapse

number’’ of the mode under consideration is obtained by

putting sk ¼ b in the above expression (216). Upon using

the same assumptions as before, we obtain that

Ncol
k ’ "

2b

0X2
k;ini%ini

, 1: (226)

At this point, several remarks are in order. First, we notice

that Ncol
k =N

merge
k ¼ 4b=ðkX2

k;iniÞ , 1. This means that the

collapse occurs on a much smaller time scale than the

merging. This property was also noticed in the case of a

free particle inRef. [73]. Thismeans that themerging cannot

be viewed as a substitute for the collapse. Second, we notice

that Ncol
k is actually independent of k. We interpret this fact

as meaning that, on sub-Hubble scales, the mode under

consideration must behave as in flat spacetime. Indeed, for

a free particle or the harmonic oscillator in Minkowski

spacetime, the condition for the collapse to occur can be

written as s¼0
R
X2ð1Þd1’0Xð0Þ2Tfp;ho

col ¼b, where we

have usedXðtÞ ’ Xð0Þ sincewe have shown that themerging

takes place on a much longer time scale. This implies that

T
fp;ho
col ’ b

0Xð0Þ2
; (227)

and one verifies that it is similar to Eq. (226). Therefore, if

the collapse occurs on sub-Hubble scales, its properties are,

as expected, similar to what happens in flat spacetime.

Finally, if one starts from an initial state made of several

well-separated Gaussian wave functions, the previous cal-

culation suggests that it will almost instantaneously turn into

a single Gaussian state. As a matter of fact, it is a general

property [64,114] of the CSL dynamics that it asymptoti-

cally leads to Gaussian states. A posteriori, this remark

reinforces the assumption of using a Gaussian state for the

calculation of the spectrum in Sec. VD.

When condition (225) is not satisfied, there will be no

collapse on sub-Hubble scales. However, we can still hope

it will happen on super-Hubble scales. In fact, the claim

that the collapse has occurred depends on the value chosen

for b. Before, we used b ’ 10 and for this value, given that

our working assumption is kX2
k;ini 0 1, condition (225) is

probably always satisfied. Therefore, it is only if we are

more demanding about the criterion that defines the col-

lapse that this condition can be violated. It is clear that a

more stringent criterion takes more time to be satisfied and,

in this case, the time ‘‘at our disposal’’ in the sub-Hubble

regime may not be sufficient. In this situation, we have to

consider the super-Hubble regime. In the next section, we

turn to this case and show that the collapse is less efficient

on large scales than it is on small scales.

C. Collapse time in the super-Hubble regime

In this section, we repeat the previous discussion but

now in the super-Hubble regime. Therefore, we restart

from equations (210) but now use the super-Hubble limit

(166) and (167) for <e$k and =m$k. For the modes of

cosmological interest today in the (almost) scale invariant

branch of the CSL power spectrum, one has 0=k2 001 and
the solution for Xkð%Þ can be simply written as

Xkð%Þ ’ Xk.ð"k%Þ&þ1; (228)

where Xk. is the value of Xkð%Þ when the mode under

consideration k crosses the Hubble radius. One can see that

Xkð%Þ increases with time contrary to what happens in the

sub-Hubble regime. From this expression, it is easy to

derive the relation between sk and the conformal time.

One obtains

sk ¼ "
0

k2
kX2

k.

2&þ 3
½ð"k%Þ2&þ3 " 1+: (229)

The last formula is valid only on super-Hubble time, that

is to say for %> %. ¼ "1=k. At % ¼ %., sk ¼ 0 and then

sk ! 1 as % ! 0. From this expression, it is also possible

to relate the time variable sk and the number of e-folds.

One arrives at

Nk ¼ N. þ
1þ &

2&þ 3
ln

&

1"
k2

0

2&þ 3

kX2
k.

sk

'

: (230)

This expression is always well defined because 2&þ3<0.

One verifies that sk ¼ 0 corresponds to Nk ¼ N..

Let us now derive the time of collapse. As usual, it is

obtained by sk ¼ b. As a consequence, it is simply given by

Ncol
k ¼ N. þ

1þ &

2&þ 3
ln

&

1"
k2

0

2&þ 3

kX2
k.

b

'

: (231)

As a first check of this equation, we notice that, when

0 ! 1, Ncol
k ’ N.. Of course, this result is expected since

a large value of0means that the collapsemechanism is very

efficient and, therefore, that the wave function almost in-

stantaneously collapses. On the other hand, formula (231)

can be further simplified. Indeed, if the collapse has not

taken place on sub-Hubble scales, it is also the case for the

merging since Ncol
k =N

merge

k , 1. As a consequence, Xkð%Þ

has not evolved much and one can replace Xk. by Xk;ini.

Moreover, for the same reason, one must have b *

kX2
k;ini=4, see also Eq. (225). In addition, we know that
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k2=0 0 1. Therefore, the first term in the argument of the

logarithm in Eq. (231) can be neglected. For & ’ "2, this

equation can be rewritten as

Ncol
k " N. ’ ln

&

k2

0

'

þ ln

&

b

kX2
k;ini

'

: (232)

Of course the result will depend on what we require for b
and what we assume for Xk;ini. However, it seems reason-

able to assume that the second logarithm will not lead to a

dominant contribution. If this is the case, then our result

simply says that the wave function collapses just

lnðk2=0Þ e-folds after the Hubble radius crossing. Given

the constraint obtained from the measurement of the power

spectrum in Eq. (178), one already knows thatNcol
k " N. *

28. Smaller values of 0=k2 would of course lead to a larger
number of e-folds.We conclude this section by noticing that

the constraint (178) is compatible with a collapse occurring

during inflation. Only for values of 0 such that 0=k2 ,
10"50 (and b * kX2

k;ini=4) would the collapse happen after

inflation.

D. The Born rule derived

Finally, we conclude with a section where we calculate

the probabilities of collapsing to each of the two branches

of the wave function. We show that these probabilities are

given by the Born rule, which is of course expected since

the CSL theory is precisely designed to reproduce this

result, as already discussed in Sec. IV (see also Ref. [73]).

Let us denote by p1 the probability that the system

collapses on the first Gaussian branch of the wave function.

This is also the probability that, from given initial con-

ditions, the stochastic quantity %k reaches first the region

%k <"b (i.e., before the region %k > b) and that, there-

fore, one has %kðSkÞ ¼ "b. Clearly, the probability p2 that

the wave function collapses on the second branch is the

probability that %kðSkÞ ¼ b. Now, let us introduce a func-
tion c ðxÞ which is defined by

c ðxÞ '
gðxÞ " gðbÞ

gð"bÞ " gðbÞ
; (233)

where gðxÞwill be specified soon. By construction, one has
c ð"bÞ ¼ 1 and c ðbÞ ¼ 0. Since, by definition, %kðSkÞ can
only take two values (namely /b), one has

E fc ½%kðSkÞ+g ¼ p1c ð"bÞ þ p2c ðbÞ ¼ p1; (234)

and this gives us a method to calculate p1. To do so, we

follow what was explained in Sec. VIA, see in particular

Eq. (200), and we write the corresponding Itô formula

c ½%kðSkÞ+ " c ðb0Þ

¼
Z Sk

0

c 0½%kðskÞ+dWs þ
Z Sk

0

$

c 0½%kðskÞ+ tanh½%kðskÞ+

þ
1

2
c 00½%kðskÞ+

%

dsk: (235)

Then, let us choose the function gðxÞ such that it obeys the
equation

1

2
g00ðxÞ þ tanhðxÞg0ðxÞ ¼ 0; (236)

or, equivalently, gðxÞ ¼ tanhðxÞ. Since Eq. (233) implies

that c ðxÞ and gðxÞ are linearly related, c ðxÞ also obeys the
above differential equation. As a consequence, the second

integral in Eq. (235) vanishes. Taking the stochastic aver-

age, one obtains

E fc ½%kðSkÞ+g ¼ p1 ¼ c ðb0Þ; (237)

which is explicitly known since gðxÞ has been determined.

The probability p2 can be deduced along the same lines,

by introducing a new function c such that, this time,

c ð"bÞ ¼ 0 and c ðbÞ ¼ 1. Another method, much sim-

pler, is just to use the condition p1 þ p2 ¼ 1. The final

result reads

p1 ¼
tanhðb0Þ " tanhðbÞ

tanhð"bÞ " tanhðbÞ
; (238)

p2 ¼
tanhðb0Þ " tanhð"bÞ

tanhðbÞ " tanhð"bÞ
: (239)

From the definition of %k, these two formula can be re-

written as [73]

p1 ¼
jN1ð%iniÞj2

jN1ð%iniÞj2 þ jN2ð%iniÞj2
; (240)

p2 ¼
jN2ð%iniÞj2

jN1ð%iniÞj2 þ jN2ð%iniÞj2
; (241)

which are exactly the Born rules of conventional quantum

mechanics.

VII. CONCLUSION

Let us now summarize our main findings. In this paper,

we have applied the CSL theory to inflation. Since the CSL

scenario addresses the measurement problem in quantum

mechanics, it is a priori relevant to explain how the wave

packet reduction took place in the early Universe, in the

absence of any observer. Assuming that the wave function

has to collapse on an eigenstate of the Mukhanov-Sasaki

operator, we have computed the scalar power spectrum of

cosmological perturbations and studied the dynamics of

the wave function collapse. We have found that, in order to

preserve the scale invariance of the power spectrum, it is

necessary to fine-tune the parameter 0 which controls the

amplitude of the CSL corrections. Typically, depending

on which temporal gauge is chosen (see the Appendix),

we have found that the dimensionless parameter that

can be constructed out of 0 must be smaller than

expð"a few'N.Þ, where 'N. ’ 50–60 is the number of

e-folds spent by the relevant modes outside the Hubble

radius during inflation. We have also found that the time
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available during the inflationary phase is sufficient in order

for the perturbations’ wave function to collapse. However,

due to the smallness of 0, the spread of the final wave

function is too important, rendering the collapse process

not sufficiently efficient. Therefore, under the assumptions

made in this paper, it seems fair to claim that the collapse

theories cannot solve the inflationary macro-objectification

question.

The conclusions drawn above may not be as drastic as

they appear at first sight, because they are subject to some

assumptions, and in particular the choice of the collapse

operator as the Fourier space Mukhanov-Sasaki vk vari-

able: all cosmological predictions made to date are based

on this variable, rendering this choice very sensible, but it

is by no means unique (see, e.g., the discussion in

Sec. VA). Moreover, vk can be understood as a quantum

field living in a curved spacetime, so it should be treated by

a quantum field theory version of the CSL mechanism. The

present state of the art of this subject technically forbids

such a direct treatment, hence our simplifying hypothesis.

Could it be that a full relativistic version of CSL, reproduc-

ing the many successes of quantum field theory and of the

ensuing particle physics, is needed before we can even

embark in examining cosmological perturbations? We

doubt so, because cosmology, contrary to ordinary quan-

tum field theory, is endowed with a preferred timelike

direction that renders the ‘‘time-dependent Minkowski

approximation’’ accurate enough for all practical purposes.

It is left for future investigations to verify that the potential

problems raised and stringent constraints obtained in this

work could be naturally solved in a more general, yet

unknown, framework.

There are other questions that could be the subject of

further works. In particular, there is the issue that energy is

not conserved in the CSL theory. In the case of the har-

monic oscillator, this is expressed through Eq. (142). In the

case of cosmological perturbations, it is easy to show that

this leads to

d

d%
hĤ ki ¼

0

2
þ!!0hv2

ki: (242)

The CSL contribution can easily be integrated and gives

hĤ kijCSL ’ 0%ini=2 at the end of inflation. Expressed in

terms of the Hamiltonian rather than the Hamiltonian

density, one arrives at

hĤijCSL ’ "4#2
0

2
%ini

Z

k2dk; (243)

which is infinite. It does not come as a surprise as it is

known that the CSL Tomanaga-Schwinger equation pre-

cisely leads to this type of divergence [67,68]. It could be

regularized by introducing an ultraviolet cutoff although

we notice on the above equation the weird property that the

infinite integral is over comoving wave numbers rather

than over physical ones. This energy nonconservation

should cause a continuous increase of energy density

during inflation. It is interesting to notice that it cannot

occur at first order in the perturbations since Eðhc!"kiÞ ¼ 0.

This means that it will be important at second order only.

Then, it would be important to quantify this effect and, in

particular, to compare it to the background energy density

’ H2M2
Pl in order to check whether this leads to a back-

reaction problem.

Another point is that we have shown that the power

spectrum, contrary to what happens in the standard case,

remains a time-dependent quantity, i.e., still evolves with

time on large scales during inflation. It is therefore not

obvious that P * evaluated at the end of inflation is exactly

the power spectrum that should be used at recombination.

In fact, what happens just after the end of inflation is of

great interest for the cosmological consequences of CSL.

Indeed, just after inflation, the stages of preheating and

reheating begin [96–98]; this is also shown in Fig. 4.

During this phase of evolution, the inflaton field oscillates

at the bottom of its potential, ’ðtÞ / sinðmtþ 'Þ=ðmtÞ
where ' is a phase and m the mass of the inflaton (in the

case of power-law inflation, the potential has no minimum

and, therefore, can only be used to describe the slow-roll

regime; here, we assume that the potential can be approxi-

mated by m2’2 in the vicinity of the minimum). In this

case, the equation of motion (12) for the Mukhanov-Sasaki

variable takes the form of a Mathieu equation [99]. As is

well known, this equation possesses unstable solutions

when the parameters falls in the resonant bands. In the

case of inflation, one can show that the large-scale pertur-

bations are in the first instability band which makes vk

growing and *k staying constant [99,100]. In the CSL case,

the corresponding Mathieu equation would read

d2vk

dz2
þ ½Ak " 2q cosð2zþ 2'Þ+vk ¼ 0; (244)

where z ' mtþ #=4, ae, te denoting the scale factor and

the cosmic time at the end of inflation and with

Ak ¼ 1þ
k2 " 2i0

m2a2
; (245)

q ¼
2

mte

&

ae
a

'

3=2
: (246)

Since q , 1, in the regular case when 0 ¼ 0, the condition

to be in the first resonant bands, 1" q <Ak < 1þ q, is

equivalent to 0< k=a <
ffiffiffiffiffiffiffiffiffiffiffi

3Hm
p

. In the CSL case, the

coefficient Ak becomes complex. Therefore, in order to

determine the corresponding Floquet index, it now be-

comes necessary to study the instability chart of the

Mathieu equation in the complex domain. Although this

is beyond the scope of this paper, this is certainly a subject

worth investigating. In particular, it would be interesting to

see whether the instability is enhanced in this case as one

can, maybe naively, suspect. If so, maybe the preheating
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stage can put even more stringent constraints on the pa-

rameter 0.

We have seen that the study of the CSL cosmological

perturbations is in fact equivalent to the study of the CSL

parametric oscillator (i.e., a harmonic oscillator with a

time-dependent frequency). The previous discussion sug-

gests that it would be interesting to investigate the case of a

parametric oscillator in the presence of a resonance in

the CSL framework. In quantum field theory, this is a

common situation and typical examples are the dynamical

Schwinger effect [115] (the analogy between cosmological

perturbations and the Schwinger effect was discussed in

Ref. [15]) or the dynamical Casimir effect [116] which was

recently observed for the first time [117] in the laboratory.

In fact, if we want to avoid the objection that the quantum

field CSL theory is not yet ready, it would be even more

interesting to find a nonrelativistic system governed by a

Mathieu equation and to investigate its behavior within the

CSL theory. We believe that all of the equations presented

in the present article can be straightforwardly applied to

this case. Here, we suggest that a Paul trap [118] could be

such an example. As for the inflationary preheating, we

expect the coefficients of the Mathieu equation to become

complex because of the "2i0 term. This will probably

make the system extremely unstable and, as a conse-

quence, it will probably be possible to put very tight

constraints on the value of 0. We hope that this case will

be treated in details soon.
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APPENDIX: ‘‘GAUGE INVARIANCE’’ OF

THE CSL POWER SPECTRUM

In section VA, we discussed the choice of the collapse

operator, i.e., the operator that appears in the nonlinear and

stochastic part of the modified Schrödinger equation. In

principle, this operator should be determined by a more

fundamental theory. However, the CSL model is just a

phenomenological approach and the collapse operator is

just put by hand in order to match what we observe when

an experiment or an observation is performed (the position

of a spot in a detector, the energy density of a field, etc.). In

the case of the cosmological primordial perturbations, we

have argued that the Mukhanov-Sasaki variable v̂k is the

most sensible choice. But this variable often appears fac-

torized by a background quantity, typically a power of the

scale factor að%Þ. Therefore, instead of v̂k, one could very

well choose the collapse operator to be hðaÞv̂k, where h is

a priori an arbitrary function of the scale factor a. After all,
v̂k and hðaÞv̂k share the same eigenspectrum and drive the

system towards the same target states with the same prob-

abilities. But the point is that, a priori and as is discussed in

detail below, this does not lead to the same solution for the

mode function fkð%Þ and, therefore, a priori, for the power
spectrum.

In fact, this issue is related to an even more fundamental

problem. Indeed, one could claim that the conformal time

% used in this paper to write the modified Schrödinger

equation is not the physical one and that one should use

instead, say, the cosmic time t (of course, the discussion

also applies to any other time variables related to% through

a transformation that depends only on the background). In

fact, a choice of time is equivalent to a choice of h since it

has the same effect on the modified Schrödinger equation.

And, of course, as already mentioned, one could worry that

different choices lead to different predictions. Therefore,

the phenomenological approach used in this article suffers

from what can be called a temporal gauge problem. This

problem probably originates from the fact that the CSL

equation is not covariant under diffeomorphisms (contrary

to the standard theory of cosmological perturbations).

In this appendix, we investigate this question, showing

the remarkable property that the conclusions obtained in

this paper for hðaÞ ¼ 1 are in fact valid for any other

functions h. It is true that the detailed shape of the power

spectrum depends on the gauge but its global properties are

independent of the choice of h. This means that, a priori

for any h allowing meaningful initial conditions, the power

spectrum of cosmological perturbations has a broken

power-law shape, with nS ¼ 1 at small wavelengths and

nS ¼ 4 at large wavelengths. As a consequence, the re-

quirement of moving the non-scale-invariant part of the

spectrum beyond the Hubble radius today always leads to

extreme constraints on the parameter 0.

Let us now consider the modified Schrödinger equation

of motion for #k in the CSL picture, with spontaneous

localization on the hðaÞv̂k eigenmanifolds. It reads

d#R
k ¼

!

"iĤ
R
kd%þ

ffiffiffiffi

0
p

hðaÞðv̂R
k " hv̂R

k iÞdW%

"
0

2
h2ðaÞðv̂R

k " hv̂R
k iÞ2d%

"

#R
k ; (A1)

and a similar equation for #I
k. This equation should be

compared with Eq. (143), the only difference being that the

operator v̂k is nowmultiplied by hðaÞ. Parametrizing#k as

in Eq. (144) using again $k ¼ "if0k=ð2fkÞ, one is led to

the following equation for the mode function

f00k þ ½!2ð%; kÞ " 2i0h2ðaÞ+fk ¼ 0: (A2)

This expression should be compared with Eq. (153): as

expected, the only difference is that an extra h2ðaÞ appears
in front of the 0 term. For simplicity, let us choose h to be a

simple power law and let us assume the inflationary dy-

namics to be close to a de Sitter universe að%Þ ’ "‘0=%.
Then, the mode function can be reexpressed as

f00k þ
&

k2 "
2

%2
" 2i0ap

'

fk ¼ 0: (A3)

MARTIN, VENNIN, AND PETER PHYSICAL REVIEW D 86, 103524 (2012)

103524-34



If p < 0, the Bunch-Davies vacuum state cannot be chosen

at the onset of inflation since the k2 term does not dominate

in the parenthesis. This means that one must work with

p 2 0. In this paper the case p ¼ 0 [i.e., hðaÞ ¼ 1] has

been studied, hence one only needs to study the p > 0

cases. It is interesting first to notice that the cases p > 0

provide a natural amplification phenomenon depending on

the physical length of the mode since the amplitude of the

term proportional to 0 now increases as the mode is

stretched by the growth of the scale factor. This is consis-

tent with the physical intuition which tells us that the

collapse should occur for macro extended objects only. If

p > 2, the term proportional to 0 dominates the dynamics

at the end of inflation, when k% goes to 0, and one can

expect the power spectrum scale invariance to be de-

stroyed. Therefore, if p is an integer, we are left with the

cases p ¼ 1 and p ¼ 2 that we now study.

If p ¼ 1, the general solutions of Eq. (A3) can be ex-

pressed in terms of Whittaker functions W2;3ðzÞ [101,102]

as

fkð%Þ ¼ CkW0‘0=k;3=2ð2ik%Þ þDkW"0‘0=k;3=2ð"2ik%Þ;

(A4)

where Ck and Dk are integration constants that can be

determined by choosing the Bunch-Davies vacuum state

for the initial conditions. This leads to Ck ¼ 0. Then, in

the limit where k% goes to 0, <e$kð%Þ can be Taylor

expanded, and this provides a simple expression for this

quantity. In particular, we find that<e$k=k ¼ 0‘0=ð2kÞ þ
Oðk%Þ, showing that, in this case, the spread does not

diverge in the large-scale limit and that, as a consequence,

the localization of the wave function becomes much more

accurate. Moreover, since the inverse of <e$k is basically

P * , this allows us to calculate the power spectrum, provided

we push the expansion to higher orders. One obtains

P * ðkÞ ¼ g

&

‘00

k

'!

1þ
‘00

k0
g

&

‘00

k

'

e2'N.

&

k0
k

'

3

" 2
‘00

k
g

&

‘00

k

'&

1"
‘200

2

k2

'

ln

&

2
k

k0
e"'N.

'"

"1

& P * ðkÞjstand; (A5)

where P * jstand is the standard power spectrum (47), and

where gðxÞ is defined by

1

gðxÞ
'1þ3x"3x2"x3"2xð1"x2Þ½c ð2þxÞ"2c ð1Þ+;

(A6)

c ðxÞ being the digamma Euler function [101,102]. Let us

notice that, in Eq. (A5), we have sometimes introduced the

quantity ‘00=k. Of course, the most convenient way of

dealing with this quantity is to express it as ð‘00=k0Þk0=k
such that the dimensionless small parameter ‘00=k0 explic-
itly appears. The spectrum given by Eq. (A5) should be

comparedwith the one obtained in Eq. (172) with the choice

h ¼ 1. They share the same broken power-law structure,

with a scale-invariant part nS ’ 1 at small scales and a

branch with nS ¼ 4 on large scales. This spectrum is dis-

played in Fig. 6 for different values of the parameter ‘00=k0.
The break in the power spectrum appears at k3=k30 ’

‘00=k0e
2'N. . Therefore, in order for the non-scale-

invariant part of the power spectrum to be outside the

Hubble radius, one must have

0‘0
k0

, e"2'N. ’ 10"53: (A7)

This equation should be compared to Eq. (178). We see

that, in the present case, we also obtain a constraint that can

be considered as ‘‘extreme’’. In other words, it seems that a

very important fine-tuning is necessary to maintain the

consistency of the CSL predictions with the CMB obser-

vations. We also notice that, instead of 0=k20, it is now the

combination 0‘0=k0 that is constrained. Of course, this is
just the consequence of the fact that, as already discussed,

changing the collapse operator can change the dimension

of the parameter 0. In some sense, we face again the

discussion of the temporal gauge issue.

Let us now turn to the case p ¼ 2 in Eq. (A3). The

general solutions of this equation can be expressed in terms

of Bessel functions with a complex order [101,102],

namely

fkð%Þ ¼ Ck

ffiffiffiffiffiffiffiffiffiffiffi

"k%
p

J3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8
9
i0‘2

0

p ð"k%Þ

þDk

ffiffiffiffiffiffiffiffiffiffiffi

"k%
p

J
"3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8
9
i0‘2

0

p ð"k%Þ; (A8)

where Ck and Dk are integration constants that can

be determined by requiring, as usual, the initial state to

be the Bunch-Davies vacuum. This leads to Ck ¼

"Dke
3i#=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8=9i0‘2
0

p
. In the limit where k% goes to 0,

FIG. 6 (color online). Ratio of the power spectrum given by

Eq. (A5) (p ¼ 1) to the standard power spectrum given by

Eq. (47) for different values of the parameter 0‘0=k0.
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<e$k can be Taylor expanded and, at first order in the

parameter 0‘20, the power spectrum reads

P * ðkÞ ’
&

1þ
2#

3
0‘20

'!

1þ
20‘20
3

e3'N.

&

k0
k

'

3

þ
4

3
0‘20

k0
k

e'N.

"

"1

P * ðkÞjstand: (A9)

The formula (A9) should be compared with Eqs. (172) and

(A5). Again, the power spectrum has the same shape, with a

scale invariant part on small scales and a noninvariant branch

with nS ¼ 4 on large scales. This is clearly seen in Fig. 7,

where the spectrum (A9) is represented for different values

of the parameter 0‘20. The break in the power spectrum

appears at k3=k30 ’ 0‘20=3e
3'N. . Therefore, in order for

the non-scale-invariant part of the power spectrum to be

outside the observational window, one must require that

0‘20 , e"3'N. ’ 10"79: (A10)

Again, we can consider the above constraint as a fine-tuning.

It is also interesting to notice that, contrary to Eqs. (178)

or (A7) and (A10) involves physical quantities only.

This is because, when p ¼ 2, the CSL correction that

should be compared to the comoving wave number squared

is / 0a2, see Eq. (A3). In other words, 0 should now be

compared to the physical wave number. If we take ‘0’
105‘Pl, which comes from the CMB normalization, then

one arrives at 0,10"89.

Let us conclude this appendix by noticing that the above

results are in fact generic and do not depend on the value of

p. Technically, the power spectrum is obtained by taking the

super-Hubble limit of themode function fkð%Þ, by inserting
it in the expression of <e$k ¼ <e½"if0k=ð2fkÞ+ and by

retaining only the leading order in k%. In the standard case,
the leading terms of themode function expansion turn out to

cancel out in<e$k, leaving an expression which precisely

gives a scale-invariant power spectrum. This cancellation

originates from the fact that the Wronskian is conserved. In

the CSL case, the fact that0 ! 0 implies that this symmetry

no longer exists, and, as a consequence, the nice cancella-

tions mentioned above no longer show up and scale invari-

ance is immediately broken. In some sense, the fact that the

0 term destroys the scale invariance of the power spectrum

does not come from the fact that its presence modifies the

time dependence of the effective frequency (the value of p
or the choice of h), but is rather due to the fact that it makes

the effective frequency a complex quantity. We conclude

that modifying the definition of the collapse operator by

multiplying it with a background function, despite changing

the dimension of 0, always constrains this parameter to be

extremely fine-tuned.
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Conclusion

The goal of this thesis was to derive observational constraints on cosmological
inflation models, and to investigate some fundamental aspects related to the quantum
nature of the inflationary setup. In this last section we summarize the main results
we obtained, drawing a few concluding remarks and suggesting possible prospects.

The phenomenological successes of inflation have provided the motivation for numerous efforts
to establish its connection with the standard model of particle physics. Our ability to see
through the inflationary window turns the early Universe into a laboratory for ultra-high energy
physics, at scales entirely inaccessible to conventional experimentation. A crowd of inflationary
candidates have thus been proposed, among which it is a priori difficult to discriminate the most
promising ones since inflation takes place at energy scales where particle physics remain elusive.
As a consequence, despite the fact that it has become a cornerstone, the inflationary era is not
as well constrained as the other parts of the standard model of Cosmology. However, there is
now a flow of increasingly accurate astrophysical data which gives us a unique opportunity to
learn more about inflation. We have now entered the era of massive multi-data analysis, and a
change of scale is clearly required compared to previous analyses.

The first goal of this thesis was to develop methods that allow us to constrain the inflationary
scenario at a level matching the accuracy of the data. We chose to adopt a systematic and
somewhat “industrial” approach of this issue. We first focused on the single-field models of
inflation, with canonical kinetic terms, and studied them in the slow-roll approximation. Indeed,
these are the simplest inflationary models, and there is currently no observational evidence
(as would be for example the detection of substantial primordial non-Gaussianities or entropic
perturbations) that forces us to consider more complicated models. Obviously, this does not
mean that more complicated models are ruled out, but simply that single-field slow-roll scenarios
achieve the best compromise between quality of the fit and theoretical simplicity. This still left
us with a very populated landscape.

Going through the literature, we identified ⇠ 75 different inflationary potentials that we studied
one by one. Without any other approximation than slow roll, we calculated the predictions of
these models. For many of them, we thus derived new results since in most cases, they were
studied under additional approximations. The errors associated with these approximations
cannot be ignored given the current accuracy of the data, and it is therefore necessary to
do without them. We also developed a publicly available runtime library that computes the
reheating consistent predictions for these models. This project is an evolutive one and it is
intended to be completed as new models appear.

Then, the Planck 2013 Cosmic Microwave Background (CMB) data were released and we com-
puted the Bayesian evidences and complexities of the ⇠ 200 inflationary scenarios that arise
from the previously studied potentials. At the technical level, we actually interfaced the slow-
roll library mentioned above with a machine-learning effective likelihood and a nested sampling
algorithm. Doing so, we identified the most probable models that are compatible with the Planck
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data, while ruling out with very strong evidence one third of the models considered. Among the
preferred models, we identified that most potentials are of the plateau type, i.e. they are such
that the kinetic energy and the kinetic-to-total energy density ratio increase during inflation.
Prototypical examples of such models are the Starobinsky model or the Kähler moduli model.

Later on in the course of this thesis, the BICEP2 experiment reported the detection of B-mode
signal in the polarization of the CMB, at the level of r ⇠ 0.16. Beyond the strong implications
that such a detection would have for inflation in general if confirmed, it was clear that it could
drastically refine our analysis arising from the Planck data only. In particular, the Planck
likelihood is consistent with r = 0 (so far), and indicates that r < 0.1 at the two-sigma confidence
level. A measurement of r obviously puts further constrains on the inflationary models. This
is why we re-processed the same computational pipeline, but including the BICEP2 data in
the analysis. The results we obtained showed that the sets of inflationary models preferred by
Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension between the two
data sets.

We then decided to quantify this tension with a Bayesian measure of compatibility between
BICEP2 and Planck. The compatibility of these two experiments is widely discussed in the
literature, but the improvement of our approach is that we quantify compatibility under the
assumption of inflation or under the assumption of a specific inflationary model. In this manner,
we could draw stronger and more reliable conclusions. Under the generic assumption of slow-roll
inflation, we established that the Bayesian test is inconclusive, i.e. there is neither indication
towards compatibility nor incompatibility. However, when computing the compatibility level
model by model, we found that for models favoured by Planck the two data sets tend to be
incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred
models. As a result, it is premature to draw any conclusion on the best Planck models at this
point, such as Starobinsky inflation or Kähler moduli inflation. Furthermore, we established
that the data are strongly compatible only for models that are disfavoured by both Planck
and BICEP2 separately. Indeed, both data sets agree in disfavouring those models and in this
sense only, they can be said to be “compatible”. This is why one still needs to wait for some
clarification about the data before being able to properly combine them and draw definitive
conclusions as for the Planck best models. In particular, the polarization measurements by
Planck that should be released by the end of the year, and a possible reconsideration of the dust
contribution in the B-mode signal measured by BICEP2, may help to unveil the tension.

As a possible prospect of this work, the inclusion of k-inflation models in the analysis needs to
be considered. Indeed, in this class of models, the action for the scalar perturbations at linear
order is still quadratic, but the speed of sound c

S
is now a function of time. As a consequence,

there exists a frame of approximation similar to slow roll that applies to the time variation of
c
S
, and the same machinery can be extended to these cases without implying an unreasonable

increase in its complexity level. Since the accuracy of the data requires to work at next-to-next-
to leading order at least, we have calculated, for the first time, the power spectra of scalar and
tensor perturbations at this order in k-inflation to pave the way for such an extension. However,
such models can produce a large amount of primordial non-Gaussianities, and this observable
needs also be included in the analysis to properly constrain k-inflation.

Obviously, on could go beyond and include multi-field models, non scalar-field models, etc.
However, this represents much more complicated situations with strong dependence on the
initial conditions, and where there is no such thing as a frame of approximation in which the
background trajectory and the amplitude of the perturbations can be calculated perturbatively.
As a consequence, one needs to numerically integrate all equations, and it seems difficult to
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process our complete Bayesian pipeline in a realistic amount of time for such models, at least in
the generic situation.

Another relevant study to carry out is the one about reheating. From the beginning, we have
taken care of consistently describing reheating in the analysis, which boils down to including a
single parameter combining the mean energy density and the average equation of state during
reheating. From the results we obtained, it is clear that we are in a position where we can put
explicit constraints on the reheating parameters, either model by model, or in a model averaged
way. We are currently working on such a follow-up.

There is also an ongoing debate about what the next instrumental move should be. If the urge
for a clear detection of r is obvious, the sensitivity of future experiments must be such that,
in case of a non detection, the improvement in the constraint on the gravity wave level would
still significantly improve our knowledge about the early Universe. This is why we are also
currently examinating future experiments specifications in the light of this issue. For the few
ones that have been planned, we are deriving the likelihood it would provide given a fiducial
model, and we are processing our Bayesian pipeline for the ⇠ 200 inflationary models we have
at hand, to determine how much the constraints on these models would improve. Repeating
the analysis for a few different fiducial models, this allows us to derive clear forecasts about the
actual performance of these experiments.

It is also worth mentioning that the reliability of our approach, compared with model inde-
pendent parametrizations of inflation, was strengthened by our analysis of the horizon-flow
framework. In this setup, inflation is parametrized by means of truncated flow equations. Typ-
ically, potential reconstruction has been investigated with the help of this technique, as well
as the search for “generic” inflationary predictions. We showed that horizon flow only samples
a phenomenological class of inflationary potentials, which are at the origins of such wrongly
concluded generic predictions. Furthermore, we established that the horizon-flow setup rests on
trajectories in phase space that differ from the slow roll one. Such trajectories are sometimes
unstable, and given a potential, they render horizon flow blind to entire inflationary regimes,
hence making this parametrization a biased one.

Together with this data-oriented approach of inflationary models, we also studied more funda-
mental aspects related to the quantum nature of the inflationary setup. In particular, we got
interested in the stochastic inflation formalism which incorporates quantum corrections to the
classical background by means of stochastic Langevin equations. Such a formalism is theoret-
ically well founded and technically appealing since it is notably able to reproduce a number
of results from Quantum Field Theories, even beyond the perturbative level. It gives rise to
non trivial dynamics, in particular when multiple fields are present, since in these cases, due to
quantum diffusion, the system can explore parts of the inflationary potential to which the clas-
sical trajectory is insensitive. This is why we studied the stochastic effects in hybrid inflation,
a two-field model where inflation ends by tachyonic instability, triggered by an auxiliary “wa-
terfall” field, close to a critical saddle point. There, the potential is very flat and the quantum
fluctuations dominate over the classical drifts of the fields. The two Langevin equations become
highly coupled, and their solving requires a numerical approach. It is however important to well
understand what happens in this regime, since it determines the amount of e-folds that can be
realized in the waterfall phase. If the scales of astrophysical interest today cross the Hubble
radius before the critical point, that is if the number of e-folds realized in the waterfall is smaller
than ⇠ 50, then the power spectrum of scalar perturbations was shown to be blue and the model
is therefore ruled out. Only if the last 50 e-folds are realized in the waterfall phase can this
problem be evaded, and it is then crucial to properly determine the amount of e-folds realized in
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the waterfall. This is why we mainly focused on this quantity, and we computed its distribution
for different sets of parameters.

To go beyond, one needs to investigate more the regime of parameters for which ⇠ 50 e-folds are
realized during the waterfall, and scales of astrophysical interest today cross the Hubble radius
in the neighbourhood of the critical point, that is where the stochastic effects do not represent a
tiny correction to the classical trajectory anymore. In such a case, the calculation of the power
spectrum is more involved. In the introductory part of this manuscript, we have derived an
entirely analytical method for calculating the power spectrum in stochastic inflation in a non
perturbative manner, that is without relying on an expansion in the noise term, for single-field
models. If such an approach should be employed to calculate the power spectrum and the non
Gaussianity levels in some single-field models where important stochastic effects are expected
to play a role, it still remains to be generalized to multiple-fields setups in order to address the
case of models such as hybrid inflation.

Another issue we studied is the fact that in standard stochastic inflation, the correlations of noise
terms in the Langevin equations depend on the amplitude of perturbations that are calculated
over a classical background. Now, if the background is stochastically shifted, the perturbations
should be affected, hence the noise correlations, hence the way the background is shifted, so
on and so forth. In order to try and take into account such an effect, we designed a recursive
approach to stochastic inflation that we applied to the hybrid models. As expected, such a
formalism converges in the valley but blows up in the waterfall. Interestingly enough, the
corresponding effects tend to increase the duration of the waterfall phase by decreasing the
waterfall field dispersion at the critical point, and worsen the blue tilt problem in the valley,
hence reinforcing the plausibility of long lasting waterfall scenarios.

Finally, we addressed the issue of the quantum measurement problem in a cosmological context,
so as to illustrate how inflationary physics can help to discuss deep questions related to the nature
of the quantum theory itself. The quantum-to-classical transition of cosmological perturbations
is a subject of great interest at the fundamental level, since perturbations originate from zero
point quantum fluctuation but are usually treated as purely classical quantities after inflation
ends. This transition is often accounted for by the large squeezing of the quantum state of the
perturbations, for which one can show that it is phenomenologically equivalent to a stochastic
set of classical processes. The phenomenon of quantum decoherence is also usually mentioned
as being part of the explanation. However, at the fundamental level, this does not explain how a
specific outcome can be produced in the early Universe, in the absence of any observer. A possible
way out is the continuous spontaneous localization (CSL) approach to quantum mechanics in
which the wavefunction collapse is caused by adding non linear and stochastic terms to the
Schrödinger equation. We applied this theory to inflation, and calculated both the collapse
level of the wavefunction at the end of inflation and the power spectrum of perturbations. We
found that reaching a satisfactory level of collapse for the scales of astrophysical interest today
implies to strongly break the scale invariance of the power spectrum, hence rendering the direct
application of the theory in the early Universe problematic. In a later work, other authors have
extended our calculation in the case where the CSL strength parameter depends on physical
scales through a phenomenological power law, and they showed that there exists a power index
for which the problem we point out is evaded. In any case, this illustrates the remarkable power
of inflation in particular, and Cosmology in general, to constrain new physics.

In this thesis, we have thus shown that theoretical developments and observational achievements
of the past years make possible to constrain the inflationary physics and to learn more about
the physical conditions that prevailed in the early Universe. However, one might fear that the
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built-in phenomenological robustness of inflation may keep us from learning too much about its
microphysical origin since inflationary predictions depend on a few generic observables and the
window of scales through which we may grasp a look at early Universe physics is restricted to a
few e-folds.

Actually, we may indeed be at a turning point with the possible detection of primordial gravity
waves. Indeed, if the detection of r is confirmed, it is clear that we should undertake all possible
and reasonable efforts to provide an accurate measurement of its value. If it is of the same order
of magnitude as the one announced by BICEP2, r ⇠ 0.1 − 0.2, it also means that the spectral
index of gravity waves, n

T
, may also be measured [405] in the medium term. This would double

the number of inflationary parameters for which we have a measurement, going from {P⇣,⇤, nS
}

to {P⇣,⇤, nS
, r, n

T
}. If this is the case, considering also the EE and TE signals measured by

Planck and that will be released soon, it seems realistic to try and really constrain the shape of
the inflationary potential and its energy scale. This is a very exciting perspective.

However, if a more accurate determination of the foregrounds contribution to the BICEP2 signal
makes its detection disappear, measurement of new inflationary parameters in the short run seem
quite unlikely. Indeed, some plateau models, such as Khäler moduli inflation or brane inflation,
can predict tiny values of r, typically r < 10−6. At the present day, it seems technologically
unrealistic to try and detect such small amount of primordial gravity waves. Moreover, for single-
field slow-roll models of inflation with canonical kinetic terms, the level of non-Gaussianities is
very small, fNL ⇠ ✏, and still beyond what we can reach observationally [406]. The same applies
for entropic perturbations which may well be far beyond what we will be able to detect in the
years to come if the other fields contributing to ⇢ during inflation are very massive. The running
of the scalar power spectrum is also very small in the slow-roll regime, ↵

S
⇠ ✏2, and if no deviation

from slow roll occurred in the observational window (as it seems to be the case so far), it is also
quite unlikely to be detected in the years to come. Of course, there is still the possibility that
slow roll be mildly violated at some point, or that a “massive but not so massive” auxiliary field
contributes to the energy density during inflation, or that a “small but not so small” deviation
from minimal coupling to gravity appear, so that the quantities mentioned above may still be
measured soon, but this would represent a rather fine-tuned situation, considering what we
already know. This is why in that second case, it is possible that the observational constraints
on inflationary models stagnate for a decade or even more.

To continue to improve our knowledge of early universe physics, two routes may then be followed.
One is to try and discriminate among models on a theoretical basis, dedicating more efforts in
the model building programme, better understanding how inflationary models are sensitive to
radiative corrections, how they can be connected to the standard model of particle physics and its
extensions, etc. Another is to investigate more the connections between inflationary predictions
and other astrophysical probes such as supernovae, galaxy surveys, 21 cm astrophysics, the
reconstruction of the initial conditions large scale structures simulations, etc. For example, the
“lever arm” in length scales between CMB and galaxy power spectra is huge and it increases
the sensitivity to the small deviations from scale invariance.

Cosmology has now entered a “big data” era where measurements very different in nature
have to be cleverly combined to derive constraints on physical processes equally different. In
this manner, advances in the different fields of Cosmology and even Astrophysics are highly
entangled, and the decryption of the early Universe physics is an ongoing adventure.
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Compte Rendu Français

Ce court compte rendu contient une description en langue française des résultats
importants obtenus lors de la thèse et présentés dans ce document.

5.1. L’inflation et le Modèle Standard de la Cosmologie

Nous commençons par rappeler les aspects essentiels du modèle standard de la cosmologie. Le
modèle du Big Bang chaud décrit avec succès une série d’événements se déroulant dans un
univers en expansion, dont la densité d’énergie et la température décroissent au cours du temps
depuis une singularité initiale il y a 13.7 milliards d’année. Un certain nombre de questions sont
néanmoins laissées en suspens, et nous expliquons comment une phase d’inflation, c’est à dire
d’expansion accélérée, permet d’y répondre.

5.1.1. L’Univers Homogène

Les observations faites à grandes échelles de la distribution de matière dans l’Univers lais-
sent apparâıtre que notre Univers est isotrope sur des distances supérieures à ⇠ 100 Mpc.
Ce constat, combiné au principe Copernicien qui suppose que nous n’occupons pas une place
spécifique ou “centrale” dans l’Univers, nous amène à considérer un Univers homogène aux
grandes échelles. Sous l’hypothèse de cette symétrie, la métrique de l’espace-temps ds2 =
gµ⌫dx

µdx⌫ est entièrement déterminée par une fonction du temps a(t) appelée facteur d’échelle,
et un paramètre discret K = −1, 0, 1 qui caractérise la courbure spatiale de l’Univers (ouvert,
plat ou fermé). Cette métrique est celle des espaces-temps de Friedmann-Lemâıtre-Robertson-
Walker (FLRW), et elle peut s’écrire [9, 10, 11, 12]

ds2 = −dt2 + a2(t)



dr2

1−Kr2
+ r2

(

d✓2 + sin2 ✓dφ2
)

]

. (5.1)

Dans cette paramétrisation, t est le temps cosmique, r est la coordonnée radiale comobile,
et ✓ et φ sont des coordonnées angulaires comobiles. A l’intérieur de ces espaces-temps, la
distance physique Lphys séparant deux points, mesurée sur une hypersurface à t constant, est
proportionnelle au facteur d’échelle a. En pratique, nous avons donc Lphys = a(t)Lcom, où Lcom

est la distance comobile, constante pour deux objets au repos dans les coordonnées FLRW. Ainsi,
le facteur d’échelle a définit le niveau global d’expansion (ou de contraction) des hypersurfaces
de type espace. Une autre conséquence de la forme de la métrique (5.1) est l’existence d’une
relation linéaire entre vitesse et distance, appelée loi de Hubble [13]. En effet, lorsque l’on dérive
la relation Lphys = a(t)Lcom par rapport au temps, on obtient

v =
dLphys

dt
=

ȧ

a
Lphys = HLphys , (5.2)
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où nous avons défini le paramètre de Hubble H = ȧ/a. La valeur actuelle de H, souvent dénotée
H0, a été mesurée [15] autour de 67 km/sec/Mpc.

Dans le cadre de la relativité générale, la dynamique des espaces-temps est décrite par l’action
de Einstein-Hilbert [22, 23, 24],

S = Sgrav + Smat =
1

2

Z

d4x
p−g (R− 2Λ) + Smat . (5.3)

Dans cette expression,  ⌘ 8⇡G = 1/M2
Pl où G est la constante de Newton et MPl est la masse de

Planck réduite MPl ' 2.4⇥ 1018 GeV. La partie gravitationnelle de l’action Sgrav fait intervenir
une constante cosmologique éventuelle Λ, le déterminant g de la métrique gµ⌫ et la courbure de
Ricci R associée à la métrique. La partie de matière Smat contient tous les champs du modèle
standard de la physique des particules et de ses extensions éventuelles. Sa forme exacte est donc
en général relativement complexe. Néanmoins, dans la limite où le constituant dominant (en
terme de densité d’énergie) est un fluide parfait homogène, son expression peut être largement
simplifiée et la variation de l’action (5.3) par rapport aux composantes de la métrique gµ⌫ donne
lieu à deux équations dynamiques,

H2 =


3
⇢− K

a2
+

Λ

3
, (5.4)

ä

a
= −

6
(⇢+ 3p) +

Λ

3
, (5.5)

où ⇢ et p sont respectivement la densité d’énergie et la pression du fluide parfait. La première de
ces équations s’appelle équation de Friedmann [25] et relie le taux d’expansion de l’Univers à sa
densité d’énergie, sa courbure spatiale et la valeur de la constante cosmologique. La deuxième
équation s’appelle équation de Raychaudhuri [26] et relie son accélération à une combinaison de
la densité d’énergie et de la pression, ainsi qu’à la valeur de la constante cosmologique. Lorsque
l’on combine ces deux relations, on obtient l’équation de continuité1

⇢̇+ 3H (⇢+ p) = 0 . (5.6)

De façon heuristique, cette équation peut être comprise comme étant une traduction de la
première loi de la thermodynamique, dU = −pdV , avec U = ⇢V and V = a3.

5.1.2. Le Modèle du Big Bang Chaud et ses Problèmes

Nous venons d’établir que pour un Univers homogène et isotrope, la Relativité Générale décrit
un espace-temps en expansion, le taux d’expansion et son accélération étant reliés au contenu en
matière de l’Univers, à sa courbure et à une éventuelle constante cosmologique. Cela implique
qu’en remontant le temps et en regardant dans le passé, l’Univers est de plus en plus contracté,
les densités d’énergie sont de plus en plus importantes, jusqu’à une singularité initiale où a = 0.
Pour un univers principalement constitué de matière froide et de rayonnement, ces considérations
donnent lieu au modèle dit du Big Bang chaud, dans lequel les éléments constitutifs de la matière
baryonique aujourd’hui s’assemblent peu à peu, au fur et à mesure que les énergies en jeux
diminuent et permettent leur existence stable, et les grandes structures de l’Univers (galaxies,
amas, filaments, ...) se forment et croissent par instabilité gravitationnelle.

1L’équation de continuité s’obtient également à partir de la relation de conservation rµT
µν = 0, ce qui une

conséquence des identités de Bianchi.
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Néanmoins, ce scénario pose un certain nombre de questions appelés “problèmes” du modèle
du Big Bang chaud. Ce ne sont pas des problèmes d’impossibilité pure à proprement parler,
mais ils montrent que le modèle du Big Bang chaud repose en fait sur des hypothèses très fortes
concernant ses conditions initiales, qui doivent être finement réglées autour de configurations
peu “naturelles” pour pouvoir expliquer les propriétés de l’Univers telles que nous les observons
aujourd’hui.

Le premier de ces problèmes est celui dit de l’horizon [88, 89]. Une des propriétés fondamentales
des espaces-temps décrits plus haut est le fait qu’ils sont dotés d’horizon causaux, c’est à dire de
frontières séparant les événements observables des événements non observables, définis relative-
ment à un observateur. Par causalité, aucun processus physique ne peut agir sur des distances
plus grandes que l’horizon, et l’on s’attend donc à ce que l’Univers soit relativement inhomogène
sur ces échelles. Cette hypothèse naturelle est en contradiction avec les observations, qui met-
tent en évidence un Univers redoutablement homogène sur des échelles qui, sous l’hypothèse
du modèle standard du Big Bang chaud, devraient être bien plus étendues que l’horizon. Le
modèle du Big Bang chaud suppose donc pour commencer que l’Univers ait été initialement
parfaitement homogène, y compris au delà de son horizon causal.

Le deuxième problème est celui de la platitude [92, 93], qui se pose à partir des mesures actuelles
de la courbure spatiale de l’Univers. Ces observations sont compatibles avec l’hypothèse d’un
univers parfaitement plat, et contraignent en tout état de cause la courbure spatiale à des niveaux
extrêmement faibles. Or, dans un Univers dominé par de la matière froide ou du rayonnement,
la déviation à un Univers plat ne peut qu’augmenter avec le temps. Par conséquent, si l’Univers
actuel est redoutablement plat, cela implique qu’il l’était encore bien davantage dans le passé.
Malheureusement, il n’y a aucune raison qui explique a priori que la courbure ait été initialement
si faible. Là aussi, le modèle du Big Bang chaud suppose le réglage ultra-fin d’un paramètre (la
courbure) à une valeur initiale minuscule.

Finalement, le troisième problème, plus spéculatif, est celui des monopôles [101, 102, 99, 100], qui
sont des défauts topologiques pouvant apparâıtre notamment lors de la transition de phase entre
une théorie de grande unification et la symétrie de jauge du modèle standard SU(3)⇥ SU(2)⇥
U(1). Ces transitions se produisent à une échelle d’énergie de l’ordre de MGUT ' 1016 GeV, et
donnent lieu à la production de monopôles magnétiques qui devraient perdurer jusqu’à l’heure
actuelle. Lorsqu’on la calcule dans le cadre du modèle standard du Big Bang chaud, la densité
de ces monopôles aujourd’hui devrait être colossale, en fait, ils devraient même dominer le
contenu énergétique de l’Univers actuel. Ce n’est clairement pas le cas. Des recherches pour leur
détection ont même été menées et des contraintes très importantes [103, 104, 105, 106, 107, 108]
sur leur densité ont pu être dérivées (typiquement, moins de 1 monopôle par ⇠ 1030 nucléon).
Ce troisième problème est bien entendu plus délicat à cerner, car il met en jeu de la physique
au delà du modèle standard.

5.1.3. L’Inflation Cosmologique

Dans la section précédente, nous avons vu que le modèle standard du Big Bang chaud, dans lequel
l’Univers est principalement constitué de matière froide et de rayonnement, souffre d’hypothèses
très fortes et peu naturelles concernant ses conditions initiales et sur lesquelles il repose. Un
remède possible est de supposer qu’une phase initiale d’accélération de l’expansion (c’est à dire
lors de laquelle ä > 0), a eu lieu dans l’Univers primordial [90, 91]. C’est ce que l’on appelle
l’inflation cosmologique [114, 116, 118, 119].
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L’équation de Raychaudhuri (5.5) nous indique que pour avoir ä > 0, en l’absence de constante
cosmologique, la quantité ⇢+ 3p doit être négative. Puisque la densité d’énergie ⇢ est toujours
positive, la pression doit donc être, a fortiori, négative. Bien entendu, la question est de savoir
quel système physique est susceptible de générer une telle pression négative. Ce qui rend l’idée
inflationnaire relativement attractive est le fait que le système physique le plus simple compatible
avec les symétries du problème, à savoir un champ scalaire homogène φ minimalement couplé à
la gravité, permet de réaliser cette condition. La partie de matière Smat de l’action pour un tel
champ est donnée par

Sφ = −
Z

d4x
p−g



1

2
gµ⌫@µφ@⌫φ+ V (φ)

]

, (5.7)

où V (φ) est un terme potentiel que nous ne spécifions pas pour le moment. En effet, la nature
physique du champ φ, dénommé inflaton, et ses relations avec les autres champs du modèle
standard de la physique des particules n’a toujours pas été établi et bon nombre de candidats
ont été proposés et sont étudiés à l’heure actuelle. Il est intéressant de noter que l’action écrite
plus haut peut être vue comme celle d’un fluide parfait, dont la densité d’énergie et la pression
sont respectivement données par

⇢ =
φ̇2

2
+ V , (5.8)

p =
φ̇2

2
− V . (5.9)

Une conséquence directe de ce résultat est le fait que la condition d’accélération de l’expansion,
⇢ + 3p < 0, est remplie dès lors que V > φ̇2. Cela implique qu’une phase d’inflation peut être
obtenue lorsque l’inflaton descend lentement le long de son potentiel, suffisamment lentement
pour que son énergie potentielle dépasse le double de son énergie cinétique. Son potentiel doit
donc être suffisamment plat, ce qui n’est pas toujours facile à réaliser en pratique.

5.2. Prédictions Inflationnaires et Observations en Données Massives

Nous entrons à présent dans la description résumée des principaux résultats obtenus lors de cette
thèse. La cosmologie moderne est entrée dans une “ère de précision” avec l’arrivée de données
astrophysiques massives, en particulier celles concernant le fonds diffus cosmologique (FDC).
Notamment, au cours de cette thèse, le satellite Planck a publié des mesures sans précédent
des fluctuations primordiales de température du FDC. D’un autre côté, comme nous venons de
le mentionner, de nombreux candidats à l’inflation ont été proposés jusqu’à aujourd’hui et il
reste a priori difficile de déterminer lesquels sont favorisés par les observations. Un des objectifs
de cette thèse a donc été de développer les méthodes et les outils permettant une approche
systématique de ce problème, et menant à un changement d’échelle à la fois dans la prise en
compte des données et dans le nombre de modèles traités.

5.2.1. Roulement Lent et Flot de Hubble

Une des manières d’aborder la question est d’utiliser des approches indépendantes du modèle
inflationnaire. Dans la Ref. [208] (section 3.1), nous nous sommes intéressés à l’une d’entre elles,
le “flot de Hubble”. Dans cette paramétrisation, la hiérarchie des paramètres de roulement lent
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est tronquée à un certain ordre M , c’est à dire que l’ensemble des paramètres d’ordre supérieur
à M sont pris comme identiquement nuls. L’évolution des paramètres restants est intégrée
numériquement à partir de conditions initiales tirées au hasard dans des intervalles prédéfinis,
et en utilisant l’inflaton φ lui-même comme variable temporelle. Le même processus est réitéré
pour différentes conditions initiales, et ce un grand nombre de fois. De cette manière, on cherche
à dériver des prédictions typiques pour l’inflation, ne reposant pas sur une forme explicite du
potentiel mais ayant une portée “générique”.

Nous avons montré qu’une telle approche comporte en réalité un certain nombre de biais.
Premièrement, puisque les paramètres de roulement lent sont reliés à une fonction de Hub-
ble H(φ) et à ses dérivées successives, tronquer leur hiérarchie à un ordre M revient à imposer
une forme polynomiale pour H(φ), d’ordre M+1. Dans la mesure où V et H sont explicitement
reliés via la relation V = 3M2

PlH
2 − 2M4

PlH
02 (où un prime signifie une dérivation par rapport à

l’inflaton φ), une famille spécifique de potentiels est en fait implicitement étudiée par l’approche
du flot de Hubble. Ces potentiels sont des polynômes d’ordre 2M + 2 dans le champ scalaire
φ, avec certaines relations imposées entre les coefficients. Nous avons étudié cette famille de
potentiels et nous avons montré qu’elle est directement responsable des prédictions soit-disant
“génériques” qui semblaient avoir été dérivées dans la littérature. Cette méthode n’est donc
pas indépendante du modèle dans la mesure où elle ne permet d’étudier qu’une famille re-
streinte de potentiels, qui n’ont par ailleurs pas de justification physique et sont purement
phénoménologiques.

Ensuite, nous avons établi qu’une fois le potentiel fixé, le flot de Hubble résout la dynamique
inflationnaire le long d’une seule trajectoire dans l’espace des phases uniquement. En effet,
puisqu’en toute généralité, φ̇ = −2M2

PlH
0, partir d’une fonction H(φ) revient à fixer à l’avance

la trajectoire inflationnaire. Ceci pose deux types de problèmes. Tout d’abord, cette trajectoire
est en général différente de la trajectoire de roulement lent, qui est pourtant un attracteur du
système dynamique. Par conséquent, autant cela fait du sens d’étudier l’inflation le long de
la trajectoire de roulement lent puisqu’elle est asymptotiquement approchée depuis un large
bassin de conditions initiales, autant la trajectoire reliée au flot de Hubble ne jouit pas d’une
telle justification physique.2 Ensuite, à l’intérieur d’un potentiel, il arrive souvent que l’inflation
puisse se produire le long de différentes branches, notamment lorsque le potentiel n’est pas une
fonction monotone du champ scalaire φ (ce qui est courant pour les potentiels décrits par le flot
de Hubble et mentionnés plus haut). La trajectoire “imposée” par la fonction H(φ) ne permet
d’étudier l’inflation que sur l’une de ces branches, ce qui représente un biais supplémentaire dans
l’étude de ces potentiels.

Pour l’ensemble de ces raisons, nous avons conclu que le flot de Hubble conduit à une analyse
biaisée des dynamiques inflationnaires et de leurs prédictions physiques, et avons donc opté pour
une étude systématique de l’ensemble des potentiels inflationnaires proposés dans la littérature,
le long des trajectoires de roulement lent.

5.2.2. Modèles à un Champ et Encyclopædia Inflationaris

Dans la mesure où plusieurs centaines de scénarios inflationnaires ont été proposés dans la
littérature, il semble naturel de commencer par étudier les plus simples, à savoir les modèles à un
champ scalaire, avec terme cinétique standard, et dont la dynamique satisfait à l’approximation

2Dans certains cas, nous avons même montré que les trajectoire reliées au flot de Hubble sont instables dans
l’espace des phases.
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Figure 5.1.: Prédictions de quelques modèles implémentés dans la bibliothèque ASPIC, calculées
dans l’approximation du roulement lent et en intégrant de façon cohérente la phase
de réchauffement. Ces prédictions sont tracées dans le plan (n

S
, r), et sont super-

posées aux contours à un et deux sigma de WMAP9 (en gris), PLANCK (en bleu) et
PLANCK+BICEP2 (en jaune). Une loi a priori de Jeffreys a été utilisée pour le pre-
mier paramètre de roulement lent dans la figure de gauche, tandis qu’une loi a priori
plate a été utilisée dans la figure de droite. Les valeurs annotées représentent le log-
arithme de l’échelle d’énergie, log(Treh/GeV), à laquelle une phase de réchauffement
dominée par de la matière se termine. La zone rose délimite les modèles pour
lesquels l’énergie cinétique et son rapport avec l’énergie totale augmentent, la zone
jaune indique les modèles pour lesquels l’énergie cinétique diminue mais son rapport
avec l’énergie totale augmente, et la zone violette recouvre les modèles pour lesquels
l’énergie cinétique et son rapport avec l’énergie totale diminuent, au moment où les
prédictions sont calculées.

du roulement lent. En effet, les extensions à ce cadre minimal (terme cinétique non-standard,
présence de champs multiples, sortie transitoire du régime de roulement lent, etc.) prédisent
souvent la présence de signaux (non-Gaussianités, perturbations entropiques, running, etc.) qui
n’ont pour l’instant jamais été détectés. C’est pourquoi à ce stade, et tant que les données ne les
excluent pas, il semble raisonnable de commencer en abordant les scénarios les moins complexes.

Nous avons recensé environ 75 potentiels appartenant à cette catégorie, pour lesquelles nous
avons dérivé les prédictions dans l’approximation du roulement lent, que nous avons présentées
dans la Ref. [205], Encyclopædia Inflationaris (section 3.2). Nous avons également conçu une
bibliothèque numérique publique dénommée ASPIC3 (pour “Accurate Slow-roll Predictions for In-
flationary Cosmology”) qui contient l’ensemble des programmes permettant le calcul numérique
des prédictions inflationnaires de ces modèles et leur comparaison aux observations. Ce code
libre d’accès est un projet évolutif, et est amené à être complété au fur et à mesure que de
nouveaux modèles sont considérés.

Il est important de noter qu’aucune autre approximation que celle du roulement n’a été effectuée
dans cette analyse, là où des approximations supplémentaires ont souvent été utilisées dans la
littérature. En effet, nous avons montré que la précision actuelle des données est telle que le calcul

3http://theory.physics.unige.ch/~ringeval/aspic.html
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des prédictions se doit d’être le plus précis possible, et que ces approximations supplémentaires
conduisent souvent à des résultats erronés. La phase de réchauffement a également été prise en
compte de façon cohérente, là où la plupart des travaux se contentent de tirer le paramètre ∆N⇤

(représentant le nombre d’e-folds entre le croisement de l’échelle de pivot des spectres de puis-
sance avec le rayon de Hubble et la fin de l’inflation) dans un intervalle prédéfini. Cette procédure
peut conduire à des situations non-physiques où l’énergie à la fin de l’ère de réchauffement est
plus élevée que l’énergie à la fin de l’inflation, ou plus faible que l’énergie au moment de la
nucléation.

Le détail des prédictions dérivées potentiel par potentiel est présenté dans la section 3.2 et
nous ne donnons ici que quelques éléments conclusifs. Une manière de résumer les résultats
obtenus est d’utiliser une classification des modèles d’inflation basée sur la variation temporelle
des énergies qui leur sont associées et permettant de découper le plan (n

S
, r) (où n

S
est l’indice

spectral des perturbations scalaires et r est l’amplitude du spectre des ondes gravitationnelles
normalisé au spectre des perturbations scalaires) en trois zones, représentées sur la figure 5.1.
La première zone, en rose, contient les modèles pour lesquels l’énergie cinétique φ̇2/2 et le
rapport de l’énergie cinétique avec l’énergie totale φ̇2/2/(V + φ̇2/2) augmentent au moment où
les prédictions sont calculées, c’est à dire lorsque l’échelle pivot des spectres de puissance croise le
rayon de Hubble. La deuxième zone, en jaune pâle, recouvre les modèles pour lesquels l’énergie
cinétique diminue mais son rapport avec l’énergie totale augmente, tandis que la troisième zone,
en bleu, indique les modèles pour lesquels l’énergie cinétique et son rapport avec l’énergie totale
diminuent. S’il est clair que les données du satellite WMAP ne sont pas discriminantes vis à
vis de cette classification, dans la mesure où des modèles compatibles avec ses mesures existent
dans chacune des trois zones, l’apport du satellite PLANCK apparâıt clairement dans le fait
que ses observations indiquent une nette préférence pour les modèles de la première catégorie.
Ces modèles ont des potentiels concaves, soit en forme de “sommet de colline”, soit en forme de
“plateau”. Parmi les 75 familles de potentiels que nous avons étudiées, ce sont donc ces potentiels
qui semblent être “préférés” par les données (le fait que BICEP2 nous amène à reconsidérer ou
non cette affirmation sera discutée plus bas).

Pour aller plus loin que ce simple constat “à l’œil”, pour quantifier précisément cette préférence et
pour dégager les tout meilleurs modèles, nous avons ensuite appliqué les méthodes de l’inférence
Bayésienne au problème étudié.

5.2.3. Inférence Bayésienne et Meilleurs Modèles Inflationnaires selon Planck

Étant donné le nombre important de modèles à traiter (75 familles de potentiels, et près de
200 modèles), il nous faut disposer d’un moyen de quantifier rigoureusement une affirmation du
type “le modèle A est meilleur que le modèle B”. Le programme Bayésien de comparaison de
modèles répond à ce besoin, et nécessite de calculer l’évidence Bayésienne, c’est à dire l’intégrale
de la fonction de vraisemblance sur l’espace des lois a priori, pour chaque modèle. Le rapport
entre ces évidences donne le facteur de Bayes, qui représente le degré avec lequel les données ont
modifié notre niveau de confiance relative entre les différents modèles. De cette manière, nous
pouvons identifier les “meilleurs” (au sens Bayésien du terme) modèles d’inflation.

Dans la Ref. [206] (section 3.3), nous avons donc calculé l’évidence Bayésienne de l’ensemble
des modèles implémentés dans la bibliothèque ASPIC. Pour ce faire, nous avons mis au point
un bloc de traitement numérique qui réalise l’interface entre une fonction de vraisemblance
inflationnaire effective, la bibliothèque ASPIC, et un algorithme d’échantillonnage adaptatif. De
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Figure 5.2.: Nombre de modèles inflationnaires dans chaque catégorie de Jeffreys (définies par
rapport au meilleur modèle pour chaque expérience) pour les jeux de données
PLANCK, BICEP2 et PLANCK+BICEP2. Pour les données de PLANCK et
BICEP2 combinées, seuls les modèles n’indiquant pas d’incompatibilité entre
PLANCK et BICEP2 sont comptabilisés.

cette manière, nous avons identifié les 26% des modèles qui sont favorisés4 par les données de
PLANCK, ce qui correspond à 15 familles de potentiels. Le détail des effectifs au sein de chaque
catégorie de Jeffreys est présenté dans la figure 5.2. En incluant la complexité Bayésienne dans
l’analyse, qui permet d’identifier le nombre de paramètres non contraints par les observations et
d’estimer ainsi le niveaux de complexité superflue, seulement 9% des modèles arrivent en tête,
qui correspondent tous à des potentiels ayant une forme de “plateau”. Le détail des résultats
est donné dans la section 3.3.

5.2.4. Inflation et Tension entre Planck et BICEP2

Si l’on regarde attentivement la figure 5.1, l’on est en droit de se demander si les mesures de
l’expérience BICEP2 ne remettent pas en cause ces conclusions, dans la mesure où la zone

4Le terme “favorisé” doit être entendu ici comme appartenant à la zone inconclusive de la classification de
Jeffreys, définie relativement au meilleur modèle. L’échelle de Jeffreys permet de qualifier conventionnellement
le rapport entre les évidences EA et EB de deux modèles A et B selon quatre catégories. Lorsque ln(EA/EB) < 1,
la situation est dite “inconclusive”, lorsque 1 < ln(EA/EB) < 2.5, la conclusion que le modèle A est meilleur que
le modèle B est dite “faible”, lorsque 2.5 < ln(EA/EB) < 5 elle est dite “modérée”, et lorsque ln(EA/EB) > 5
elle est dite “forte”.
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préférée par la combinaison PLANCK+BICEP2 recouvre à présent certains modèles de la
deuxième zone, celle en jaune pâle. Ces modèles correspondent typiquement à des potentiels
convexes, s’annulant à leur minimum. D’un autre côté, l’existence d’une possible tension entre
PLANCK et BICEP2 a été discutée dans la littérature, ainsi que la question de la correcte prise
en compte des avant plans de poussière par BICEP2. En attendant une clarification de cette
situation, il s’agit donc d’être prudent lorsque l’on combine ces deux jeux de données.

Dans la Ref. [207] (section 3.4), nous avons donc discuté les conséquences de la détection du
mode B de polarisation dans le FDC par l’expérience BICEP2, si cette détection est confirmée.
En particulier, nous avons mené une étude complète dans l’espace des paramètres cosmologiques
et des paramètres inflationnaires de roulement lent, en utilisant les données de polarisation de
BICEP2 seules. Nous avons ensuite extrait les évidences Bayésiennes et les complexités des
⇠ 200 modèles que nous avions traités avec PLANCK. De cette manière, nous avons là aussi
identifié les meilleurs modèles d’après BICEP2. Cela nous a permis de constater que la liste
des modèles préférés par PLANCK et la liste des modèles préférés par BICEP2 sont presque
disjointes, ce qui confirme l’existence d’une possible tension entre les deux jeux de données.

Pour aller plus loin, nous avons donc cherché à quantifier cette tension à l’aide d’une mesure
Bayésienne de la compatibilité entre PLANCK et BICEP2, définie relativement à chaque modèle.
Nous avons ainsi établi que pour les modèles préférés par PLANCK, les deux jeux de données
montrent une tendance à l’incompatibilité, alors qu’il y a une indication modérée de compatibilité
pour certains des modèles préférés par BICEP2. C’est pourquoi il est en particulier prématuré de
tirer des conclusions trop hâtives et définitives concernant les modèles favorisés par PLANCK
tels que le modèle de Starobinsky. Pour le sous-ensemble constitué des modèles n’indiquant
pas d’incompatibilité, nous avons finalement mis à jour nos calculs d’évidence et de complexité
en utilisant la combinaison des deux jeux de données PLANCK+BICEP2. La distribution
des modèles au sein des différentes catégories de Jeffreys est présentée dans la figure 5.2 pour
BICEP2 seul, et pour la combinaison des données de PLANCK et de BICEP2 où seuls les
modèles n’indiquant pas d’incompatibilité entre les deux jeux de données sont dénombrés.

Ce travail ouvre de nombreuses perspectives. Tout d’abord, le projet ASPIC est évolutif, dans le
sens qu’il a vocation a être complété par de nouveaux modèles au gré de leur apparition, qu’il
peut être étendu à d’autres classes de modèles que celle considérée ici (modèles à un champ
scalaire avec terme cinétique standard et dans l’approximation du roulement lent), et qu’il se
doit enfin d’intégrer de nouveaux jeux de données au fur et à mesure que ceux-ci sont publiés.
Ainsi, dès l’automne 2014, les mesures de polarisation réalisées par le satellite Planck devraient
être disponibles, et d’autres expériences viendront bientôt les compléter [174, 407, 178, 177].

L’exploitation des résultats de notre analyse Bayésienne peut également se poursuivre con-
cernant la phase de réchauffement. En effet, comme nous l’avons mentionné, les prédictions
inflationnaires sont sensibles à la phase de réchauffement à travers deux quantités, le paramètre
d’équation d’état moyen (c’est à dire moyenné sur le nombre d’e-folds) w̄reh pendant la phase
de réchauffement, et la densité d’énergie ⇢reh au moment où w = 1/3 et où la phase de radia-
tion commence. Ces deux paramètres décrivent l’expansion réalisée entre la fin de l’inflation et
le début de la phase de radiation, et sont contraints par l’analyse Bayésienne que nous avons
menée. Nous travaillons actuellement à caractériser précisément ces contraintes pour l’ensemble
des modèles implémentés.

Enfin, un problème largement discuté par la communauté à l’heure actuelle est celle des car-
actéristiques techniques requises pour les prochaines expériences. La question générale est de
savoir quel niveau de précision doit être atteint dans les mesures pour permettre une progres-
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sion notable de notre niveau de connaissance de l’Univers primordial. En particulier, le niveau
de sensibilité en r, l’amplitude du spectre de puissance des ondes gravitationnelles normalisé
au spectre des perturbations scalaires, semble crucial. Notre approche permet de répondre très
explicitement à cette question. En effet, en dérivant la vraisemblance effective que nous observe-
rions pour un niveau de bruit fixé dans les détecteurs et pour un modèle fiduciel donné, nous
pouvons calculer les évidences de chaque modèle de la bibliothèque ASPIC sous ces hypothèses et
caractériser ainsi le gain d’information associé sur les modèles d’inflation. Nous menons actuelle-
ment cette étude prospective, qui va permettre de quantifier exactement l’apport des futures
expériences.

Finalement, on est en droit de se demander si le niveau de précision théorique des approches
calculatoires utilisées sera suffisant. En particulier, les résultats présentés ici sont dérivés à
partir d’un calcul au premier ou au deuxième ordre dans l’approximation du roulement lent, et
il faut établir à quel ordre il sera nécessaire de travailler avec les données des futures expériences.
L’étude prospective que nous venons d’évoquer permettra aussi d’étudier cette question en détail.

5.2.5. Spectres de Puissance au Deuxième Ordre en Inflation-k

Comme nous venons de l’expliquer, un prolongement possible à ce travail est l’intégration de
nouveaux modèles d’inflation, et de nouvelles catégories de modèles. Par exemple, l’inflation-k
représente le cadre le plus général décrivant les modèles avec une action effective quadratique
pour les perturbations de courbure et une vitesse du son c

S
variable. Si ces modèles prédisent sou-

vent la production de non-Gaussianités à un niveau exclu par les observations, il reste intéressant
de pouvoir les contraindre précisément. C’est pourquoi dans la Ref. [209] (section 3.5), nous
avons calculé pour la première fois les spectres de puissance scalaire et tensorielle au deuxième or-
dre pour l’inflation-k. Techniquement, nous avons utilisé l’approximation uniforme assortie d’un
développement au deuxième ordre dans les paramètres de roulement lent et dans les paramètres
de flot de la vitesse du son. A titre illustratif, le résultat obtenu pour le spectre de puissance
des perturbations de courbure s’écrit
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, (5.10)

où nous avons introduit la quantité D définie par D ⌘ 1/3 − ln 3. Les paramètres ✏i sont les
paramètres de roulement lent et les paramètres δi sont les paramètres de flot de la vitesse du
son. La présence du ⇧ en indice indique que les quantités sont calculées au moment où l’échelle
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de pivot k⇧ croise le rayon de Hubble. Avec les mêmes notations, le spectre de puissance des
ondes gravitationnelles est donné par
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Ces deux résultats mettent en évidence qu’à l’ordre dominant dans l’approximation du roulement
lent et lorsque c

S
= 1, les spectres de puissances sont invariants d’échelle, c’est à dire qu’ils ne

dépendent pas de k. La dépendance en k apparâıt de façon logarithmique uniquement, et son
amplitude dépend des paramètres de roulement lent et des paramètres de flot de la vitesse du
son. Les termes correspondants sont en rouge dans les équations (5.10) et (5.11). Dans ce
contexte, une expression au “deuxième” ordre en {✏i, δi} des spectres implique que l’on étende
le résultat jusqu’à l’ordre ln2(k/k⇧).

5.3. Aspects Quantiques de l’Inflation et Formalisme Stochastique

Sur le plan théorique, un des aspects intéressants de l’inflation est qu’elle permet d’expliquer
l’existence de fluctuations cosmologiques et de caractériser leurs propriétés statistiques à partir
de considérations quantiques. D’une certaine manière, un tel mécanisme repose à la fois sur
la Relativité Générale et sur la Mécanique Quantique, deux théories que l’on sait difficile à
combiner, et conduit à des prédictions que l’on peut tester expérimentalement. C’est pourquoi
la physique inflationnaire représente un objet d’étude intéressant pour aborder un certain nombre
de questions fondamentales.

Dans la description standard des champs en inflation, on considère la plupart du temps que la
partie homogène des champs se comporte de façon classique, tandis que les petites déviations à
l’homogénéité sont traitées comme des fluctuations quantiques, évoluant sur ce fonds classique.
Dans le sens où seule une partie du système est ainsi quantifiée, l’approche standard peut donc
être qualifiée de semi-classique.

Le formalisme de l’inflation stochastique [290, 291, 292, 293, 294, 295, 296, 297, 289, 298] permet
d’aller au delà et d’incorporer les corrections quantiques à la trajectoire classique. L’idée est de
dériver une théorie effective pour les modes scalaires de grandes longueurs d’onde uniquement,
en intégrant les modes de petites longueurs d’onde dans l’action du champ scalaire. Les modes
de grandes longueurs d’onde sont rassemblés dans un champ filtré ', que l’on peut définir à
partir du champ total φ de la manière suivante:

' (x, N) =

Z

d3k

(2⇡)3/2
W

✓

k

σaH

◆

h

φk (N) âke
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−ik·x
i

. (5.12)

Dans cette expression, W est une fonction de filtrage qui sélectionne les modes de grandes
longueurs d’onde, c’est à dire que W ' 0 lorsque k , σaH et W ' 1 lorsque k ⌧ σaH. Le
paramètre σ ⌧ 1 est une constante fixant l’échelle à laquelle le lissage a lieu. En écrivant le
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champ total comme φ = '+δφ, l’idée est donc de dériver une théorie effective pour ' uniquement
en intégrant δφ. On peut alors montrer que les fluctuations quantiques présentes dans le secteur
δφ affectent la dynamique de ' par l’introduction d’un terme de bruit stochastique dans son
équation du mouvement. A l’ordre dominant dans l’approximation du roulement lent, celle-ci
s’écrit

d'

dN
= − V 0

3H2
+

H

2⇡
⇠ (N) . (5.13)

Dans cette équation, le premier terme −V 0/(3H2) est le terme classique standard de l’équation
de Klein-Gordon et ⇠ est un bruit blanc Gaussien (pour une fonction filtre de Heaviside), telle que
h⇠ (N)i = 0 et h⇠ (N1) ⇠ (N2)i = δ (N1 −N2). L’équation du mouvement pour le champ scalaire
devient donc une équation stochastique appelée équation de Langevin. Sa résolution permet de
calculer efficacement des effets de pure théorie quantique des champs, comme cela est montré
pour différents systèmes dans les Refs. [298, 302, 303, 304, 299, 300, 301]. Dans la section 2.4.3,
nous avons notamment montré que l’équation de Langevin permet de calculer la statistique des
fluctuations du champ, c’est à dire le spectre de puissance des perturbations scalaires. Plus
précisément, nous avons établi que l’intégration exacte de l’équation (5.13) conduit au spectre
de puissance des perturbations de courbure
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où P⇣ (φ) représente le spectre de puissance calculé au mode k pour lequel la valeur du champ
scalaire lorsque k croise le rayon de Hubble vaut φ, et où la fonction f(φ) est définie par
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Dans ces deux expressions, φ̂ et φ̄ sont des constantes d’intégration qui valent dans la plupart
des cas φ̂ = φ̄ = ±1. A l’ordre dominant dans l’approximation classique, c’est à dire lorsque
V ⌧ M4

Pl et que les corrections attendues en gravité quantiques sont faibles, l’expression standard
du spectre de puissance est retrouvée comme cas limite de l’équation (5.14).

5.3.1. Effets Stochastiques en Inflation Hybride

Une situation d’intérêt pour l’inflation stochastique est celle des modèles à champs multiples,
pour lesquels plusieurs équations de Langevin couplées régissent les trajectoires inflationnaires
et donnent lieu à une dynamique non triviale. Dans la Ref. [210] (section 4.1) nous nous sommes
intéressés à l’un d’entre eux, le modèle d’inflation hybride.

Ce modèle est celui d’un potentiel à deux champs, un inflaton ' et un champ auxiliaire  dont
la masse est proportionnelle à '2 − φ2c , où φc est une constante fixant la valeur de l’inflaton
à partir de laquelle le champ auxiliaire devient tachyonique. L’inflation a d’abord lieu dans
la “vallée” ' > φc où elle est conduite par l’inflaton et où le champ auxiliaire, lourd, est tel
que  ' 0. Puis, lorsque ' passe la valeur critique φc, la masse du champ auxiliaire devient
négative ce qui déclenche son instabilité tachyonique et termine l’inflation. Au voisinage de ce
point critique, les corrections stochastiques sont importantes et donnent lieu à des effets que
nous avons étudiés numériquement. A titre illustratif, nous avons représenté dans la Fig. 5.3 la
densité de probabilité de présence du système dans le plan (', ), en partant d’une distribution
de Dirac initialisée suffisamment haut dans la vallée. Dans un premier temps, le système descend
le long de la vallée et la distribution reste relativement piquée. Puis, arrivée au point critique,
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Figure 5.3.: Densité de probabilité de présence calculée à différents temps N pour le modèle
d’inflation hybride, et représentée dans le plan (', ). La distribution initiale est
celle d’une fonction de Dirac prise suffisamment haute dans la vallée. Le potentiel

hybride est donné par V = Λ4
h

(

1−  2/M2
)2

+ '2/µ2 + 2'2 2/(φ2cM
2)
i

, et les

paramètres utilisés sont Λ = 1.06347MPl, φc = M = 1.50398MPl et µ = 7.74597MPl.

elle s’étend rapidement, notamment dans la direction des deux vallées secondaires menant le
système aux minimas (' = 0, = ±M).

Une question importante relative à ce modèle est la durée de la période d’instabilité tachyonique
lors de laquelle ' < φc. En effet, si la fenêtre observationnelle du FDC se trouve à l’extérieur de
cette phase, l’indice spectral des perturbations scalaires est bleu, ce qui est en désaccord avec
les observations. Typiquement, le modèle est donc viable uniquement si la période d’instabilité
tachyonique s’étend sur plus de 40 ou 50 e-folds. Cette durée étant essentiellement dépendante
des effets stochastiques et de la dispersion moyenne des champs au point critique qui en découle,
nous avons étudié cette quantité avec attention. En particulier, nous avons caractérisé, en
fonction des paramètres du potentiel, la dispersion stochastique dans le champ  au point
critique et la distribution du nombre d’e-folds réalisé dans la période d’instabilité tachyonique.

Une autre quantité à laquelle nous nous sommes intéressés est le point de sortie de l’inflation.
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Lorsque l’inflation est réalisée par un seul champ ', le point de sortie de l’inflation 'end est
unique (du moins dans l’approximation du roulement lent) et ne dépend pas des conditions
initiales ou de la réalisation stochastique. Dans le modèle d’inflation hybride en revanche, la
ligne de niveau ✏1 = 1 définit une infinité de points de sortie possibles ('end, end), qui dépendent
a priori de la réalisation stochastique. Or, nous avons montré qu’en pratique, les trajectoires
stochastiques terminent toutes l’inflation très près du point de sortie classique (c’est à dire là
où sort la solution des équations du mouvement sans le terme stochastique). En effet, lors des
derniers e-folds avant la fin de l’inflation, les termes de bruit dans les équations de Langevin sont
fortement sous-dominants. Puisque la trajectoire de roulement lent est un attracteur dynamique,
le système se rapproche alors rapidement de cette trajectoire classique, peu importe l’endroit
par lequel les effets stochastiques lui ont fait quitter la zone du potentiel dominée par le bruit.
Cela explique que la distribution finale soit très piquée autour de la valeur classique.

5.3.2. Formalisme Stochastique Récursif

Dans l’approche standard de l’inflation stochastique, les corrélations des termes de bruit dans
l’équation de Langevin sont calculées à partir de l’amplitude des perturbations en champs
scalaires, lorsqu’elles croisent l’échelle de lissage σaH. Ces perturbations sont elles-mêmes
obtenues à partir de leur équation d’évolution sur un fonds classique. Ce schéma est valable dans
la limite où les effets stochastiques ne représentent qu’une petite perturbation à la trajectoire
classique, mais en principe, si l’on évolue les perturbations sur un fonds corrigé par les effets
stochastiques, leur amplitude devrait en être légèrement affectée. Ainsi, les corrélations du bruit
devraient être corrigées par cet effet, et donc la dynamique du fonds, et donc l’amplitude du
bruit, et ainsi de suite.

Pour étudier plus en détails cet effet, dans la Ref. [211] (section 4.2), nous avons mis au point un
formalisme récursif intégrant la correction des corrélations du bruit par les effets stochastiques
eux-mêmes. Nous avons ensuite appliqué ce formalisme au modèle d’inflation hybride, pour
l’illustrer concrètement. Nous avons également pris soin d’incorporer les effets de la masse du
champs auxiliaire  dans le calcul des corrélations du bruit agissant sur  , puisque dans la
vallée cette masse n’est plus négligeable devant le paramètre de Hubble H et a tendance à
diminuer l’amplitude des perturbations. De cette manière, la dispersion stochastique dans le
champs auxiliaire est réduite au point critique, ce qui augmente la durée de la phase d’instabilité
tachyonique.

Une bonne prise en compte des effets stochastiques dans la vallée montre également que le
problème de l’indice spectral bleu est plus grave encore lorsque les corrections quantiques à la
trajectoire sont implémentées. Cela renforce l’hypothèse d’une instabilité tachyonique longue.
D’un autre côté, nous avons établi que le formalisme récursif présente de bonnes propriétés de
convergence dans la vallée mais diverge dans la phase d’instabilité tachyonique. Cette période
peut donc difficilement être décrite par une approche perturbative, ce qui rend son traitement
délicat en général. Pourtant, outre le problème de l’indice spectral, le scénario d’une instabilité
courte pose le problème de l’évolution de la distribution du champ auxiliaire qui n’est plus
quasi-statique dans la vallée. Cela induit des valeurs de sa dispersion encore plus faibles au
point critique que ce que le calcul usuel suggère, et qui sont incompatibles avec l’hypothèse
d’une instabilité courte. Enfin, dans le cas d’une instabilité courte, les grandes longueurs d’onde
du champs auxiliaire ne sont plus dans un état quantique comprimé. Cette caractéristique
de la fonction d’onde des perturbations est pourtant un ingrédient important de la transition
quantique-classique que nous décrivons dans la section suivante.
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Figure 5.4.: Fonction de Wigner de l’état quantique comprimé d’un mode k de perturbation
scalaire à différents instants durant l’inflation, correspondants successivement à rk =
0.0005, rk = 0.48, rk = 0.88 et rk = 2.31.

5.3.3. Le Problème de la Mesure Quantique en Cosmologie

Une des questions largement discutées dans le contexte de l’inflation est la transition quantique-
classique des perturbations cosmologiques. En effet, si les fluctuations des champs inflationnaires
sont traitées quantiquement, il est d’usage de considérer que les coefficients alm mesurés sur le
FDC par exemple se comportent comme des réalisations stochastiques de ces variables quan-
tiques. Ils sont alors interprétés comme des graines de perturbations classiques donnant lieu à la
croissance de structures cosmologiques par instabilité gravitationnelle telles que les galaxies, les
amas de galaxies, etc. Il s’agit donc de savoir comment cette projection sur des états classiques
s’effectue en pratique.

Une première réponse souvent avancée est la compression des états quantiques [131, 307, 132,
309, 133, 408]. En effet, lorsqu’elles évoluent sur des échelles plus grandes que le rayon de
Hubble durant l’inflation, les perturbations cosmologiques subissent une compression de leur
état quantique. Cette compression peut être décrite via la fonction de Wigner W , qui est une
distribution de quasi-probabilité définie dans l’espace des phases (vk, pk) pour chaque mode k,
où v est la variable de Mukhanov et p est son moment canoniquement conjugué. Pour un état
quantique |Ψk(vk)i Gaussien, cette fonction est de la forme

W (vk, pk) / exp
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(5.16)

Dans cette expression, rk et φk sont deux fonctions du temps appelées respectivement paramètre
de compression et angle de compression. Dans un espace-temps de de Sitter (c’est à dire dans
lequel le paramètre de Hubble H est constant), elles sont données par

rk = argsinh

✓
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2k

◆

, (5.17)
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◆

. (5.18)

La fonction de Wigner décrite par ces relations est représentée sur la figure 5.4 à différents
temps, ou de façon équivalente, à différentes valeurs de rk (rk = 0.0005, rk = 0.48, rk = 0.88
et rk = 2.31). Initialement, dans le régime où le mode considéré correspond à une échelle de
longueur plus petite que le rayon de Hubble, k , aH, on a rk ' 0 et φk ' ⇡/4. Dans cette
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limite, la fonction de Wigner (5.16) est de la forme W / exp
(

−kv2k − p2k/k
)

, ce qui correspond
à un état cohérent pour lequel l’extension de la fonction de Wigner est la même dans toutes les
directions et sature l’inégalité de Heisenberg. En revanche, à la fin de l’inflation lorsque le mode
considéré est largement au delà du rayon de Hubble, k ⌧ aH, on a5 rk , 1 et φk ' 0. La
fonction de Wigner est alors de la forme W / δ[pk + k tan(φk)vk], ce qui correspond à un état
comprimé dans la direction donnée par l’angle φk.

Les états comprimés sont bien connus en mécanique quantique (en particulier dans le domaine
de l’optique quantique) car ils présentent des propriétés statistiques intéressantes. Notamment,
leur évolution temporelle peut être décrite en terme d’une collection stochastique de processus
classiques [136, 133, 409]. En d’autres termes, la fonction de Wigner peut être vue dans cette
limite comme une véritable distribution de probabilité, répartissant un ensemble de processus
dans l’espace des phases qui suivent tous les équations classiques du mouvement. La valeur
moyenne de n’importe quelle observable définie dans l’espace des phases et calculée à l’aide de
cette distribution cöıncide alors avec les moyennes d’opérateurs quantiques. C’est pour cette
raison qu’à partir de la fin de l’inflation, les perturbations cosmologiques aux grandes longueurs
d’onde peuvent être traitées comme étant des fluctuations classiques, suivant une distribution
initiale dont les propriétés statistiques cöıncident avec les prédictions quantiques calculées pen-
dant la phase inflationnaire. Dans ce sens, la compression des états quantiques joue un rôle clé
pour l’ensemble du scénario cosmologique.

Un autre phénomène associé à la transition quantique-classique est celui de la décohérence. Les
perturbations cosmologiques ne sont pas totalement isolées d’un environnement extérieur auquel
elles sont nécessairement couplées [317, 318, 319]. Ce couplage a pour conséquence que leur ma-
trice densité est dynamiquement diagonalisée avant la recombinaison [132, 309, 315, 133, 316],
et le système peut alors être vu comme un mélange statistique d’état purs. Néanmoins, la
décohérence des perturbations ne résout pas le problème de la mesure en mécanique quan-
tique [410, 411], c’est à dire la production d’une réalisation unique. Ce problème apparâıt de
manière encore plus nette en cosmologie puisque nous disposons alors, par définition, d’une seule
carte du FDC. L’interprétation standard de Copenhague de la mécanique quantique, qui stip-
ule qu’une réalisation unique d’un processus quantique est produite par le biais d’une mesure
réalisée par un expérimentateur extérieur qui projette la fonction d’onde du système sur un état
propre de l’observable en question, pose problème dans le cas présent vue la difficulté à définir
un observateur extérieur à l’Univers lui même. C’est pourquoi il est courant de postuler que
le phénomène de décohérence est combiné avec une autre interprétation que celle de Copen-
hague, comme par exemple celle des mondes multiples [136, 412, 413, 414], de l’information
quantique [415], ou en invoquant des variables cachées non locales [416, 417, 418, 153, 33, 419].
En fait, la seule alternative à la formulation standard de Copenhague qui propose une solution
au problème de la mesure tout en étant falsifiable, est un modèle de réduction dynamique de la
fonction d’onde [420, 421, 422, 423, 424, 425, 426, 427]. En effet, le problème de la mesure réside
dans le fait que deux processus très différents par nature prennent place: l’évolution linéaire et
unitaire de Schrödinger d’un côté et la réduction non linéaire et stochastique du paquet d’onde
de l’autre.

Dans la Ref. [138] (section 4.3), nous nous sommes ainsi intéressés au modèle de CSL (pour
“continuous spontaneous localization”) de Pearle, Ghirardi, Rimini et Weber [421, 422, 424,

5Plus précisément, on a aendH/k = e∆N∗ , où ∆N⇤ est le nombre d’e-folds réalisés entre le moment où le mode
k croise le rayon de Hubble et la fin de l’inflation. Si k est à l’intérieur de la fenêtre observationnelle, on a
typiquement ∆N⇤ ' 50, et d’après l’équation (5.17), rk à la fin de l’inflation est de l’ordre de rk ' ∆N⇤ ' 50.
Il est intéressant de noter que le niveau de compression associé à de tels paramètres est colossal, et typiquement
bien plus grand que ce qui peut être réalisé en laboratoire [307].
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Figure 5.5.: Spectre de puissance des perturbations scalaires obtenu avec l’équation de
Schrödinger modifiée (5.19), en prenant Ĉ = v̂k pour chaque mode k, et pour
différentes valeurs de γ. La quantité représentée est le spectre normalisé à sa valeur
standard (c’est à dire lorsque γ = 0). Le mode k0 correspond à une échelle pivot
autour de laquelle le spectre est calculé.

425], dans lequel l’équation de Schrödinger est modifiée par l’ajout de termes non linéaires et
stochastiques:

d | i = −iĤdt | i+p
γ
⇣

Ĉ −
D

Ĉ
E⌘

dWt | i −
γ

2

⇣

Ĉ −
D

Ĉ
E⌘2

dt | i . (5.19)

L’opérateur Ĥ est le hamiltonien du système et le premier terme correspond donc à l’équation
de Schrödinger standard. L’opérateur Ĉ est l’opérateur de projection dont les états propres sont
les directions le long desquelles on souhaite réaliser la réduction de la fonction d’onde. La non
linéarité apparâıt dans les termes hĈi = h |Ĉ| i. La nature stochastique de cette équation de
Schrödinger modifiée se traduit quant à elle par la présence d’un processus de Wiener Wt, et
l’amplitude des termes non standards est définie par une constante de couplage γ. Cette théorie
permet de projeter la fonction d’onde | i sur un des états propres de Ĉ de façon dynamique, avec
un temps caractéristique et à une précision près qui dépendent de γ, et selon des probabilités
qui suivent la règle de Born.6 De plus, ce modèle est doté d’un mécanisme d’amplification
grâce auquel la constante de couplage γ effective d’un système constitué de N particules crôıt
proportionnellement avec N . Cela permet d’expliquer que les objets macroscopiques soient bien

6De cette manière, les règles de Born n’ont pas besoin d’être postulées dans cette théorie, contrairement à
ce qui est fait en mécanique quantique standard. Ici elles peuvent être démontrées à partir de l’équation
d’évolution (5.19).
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localisés, tout en laissant la dynamique des systèmes microscopiques, dont on sait qu’ils sont
parfaitement décrits par la mécanique quantique standard, essentiellement inchangée.

Nous avons donc utilisé ce modèle pour décrire l’évolution des perturbations scalaires pendant
l’inflation, afin d’établir quelles contraintes sur la théorie (c’est à dire principalement sur le
paramètre γ) la nécessité de réduire la fonction d’onde pendant l’inflation pouvait imposer.
Nous avons choisi comme opérateur de projection la variable de Mukhanov-Sasaki v puisqu’elle
est invariante de jauge. Un premier résultat a été obtenu en calculant le spectre de puissance
produit par cette théorie, et représenté sur la figure 5.5 pour différentes valeurs de γ. Deux
branches apparaissent nettement: une branche qui reste quasi invariante d’échelle et où les
termes non standards jouent un rôle négligeable, et une branche très fortement dépendante de
l’échelle où n

S
= 4 et où les termes non standards dominent. Afin que cette branche se situe au

delà des échelles observables et pour préserver l’invariance d’échelle observée, la constante de
couplage γ doit être suffisamment petite,

γ

k20
⌧ e−∆N⇤ ' 10−28 . (5.20)

Dans cette expression, k0 est l’échelle pivot autour de laquelle le spectre de puissance est calculé.
Néanmoins, γ ne peut pas être arbitrairement petit si l’on souhaite que la réduction du paquet
d’onde se produise avant la fin de l’inflation. Pour des échelles situées à l’extérieur du rayon de
Hubble, le nombre d’e-folds requis pour que la réduction ait lieu est de l’ordre de log(k2/γ), qui
d’après la contrainte précédente doit être plus grand que ⇠ 28. Les ∆N⇤ ⇠ 60 e-folds dont nous
disposons sont donc suffisants. En revanche, dans la branche invariante d’échelle, l’efficacité de
la réduction du paquet d’onde, mesurée par sa dispersion σvk dans son état final, est donnée par

kσvk ' exp (2∆N⇤) , 1 . (5.21)

En conclusion, l’invariance d’échelle contraint γ à prendre des valeurs si petites que la fonction
d’onde est très mal localisée à la fin de l’inflation et que le modèle discuté ici ne peut pas
expliquer correctement la production d’une réalisation bien définie au cours de l’inflation.

Notons néanmoins que les auteurs de la Ref. [404] ont généralisé notre calcul au cas où γ dépend
de k par le biais d’une loi de puissance. Ils ont établi pour quel exposant dans cette loi l’indice
spectral de la branche du spectre dominée par les termes non standards est invariante d’échelle.
Dans ce cas, il n’y a plus de borne supérieure sur γ et quitte à prendre des grandes valeurs de
γ, il est toujours possible de réaliser efficacement la réduction du paquet d’onde sans altérer
l’invariance d’échelle du spectre.

5.4. Conclusion

Dans cette thèse, nous avons illustré la manière dont le paradigme inflationnaire permet de
mieux cerner un certain nombre de questions fondamentales en physique, et d’appréhender leurs
implications concrètes dans un cadre théorique pertinent. D’un autre côté, nous avons vu que de
nombreuses mesures cosmologiques et astrophysiques permettent de contraindre explicitement
les paramètres microphysiques décrivant cette phase d’expansion accélérée et de cette manière,
d’en apprendre d’avantage sur les caractéristiques physiques de l’Univers primordial.

Pour conclure, il convient de discuter à présent les perspectives offertes par une telle démarche
à moyen et long terme. Le paradigme inflationnaire est doté d’une solidité phénoménologique
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qui peut rendre difficile l’identification de son origine microphysique, puisque ses prédictions
dépendent d’un petit nombre d’observables génériques et que les échelles nous permettant de
les sonder sont restreintes à quelques e-folds. Par conséquent, si la détection de r revendiquée
par l’expérience BICEP2 se confirme, il est clair que tout doit être entrepris pour en mesurer
précisément la valeur. Si l’ordre de grandeur annoncé r ⇠ 0.1 est correct, cela signifie également
que l’indice spectral des ondes gravitationnelles, n

T
, peut aussi être mesuré [405] à moyen terme.

De cette manière, le nombre de paramètres inflationnaires dont on aurait une mesure doublerait,
passant de {P⇣,⇤, nS

} à {P⇣,⇤, nS
, r, n

T
}. Si l’on ajoute à cela les corrélations EE et TE mesurées

par Planck et qui devraient être publiées sous peu, il semble réaliste de vouloir réellement
contraindre la forme du potentiel et son échelle d’énergie.

En revanche, si une détermination plus précise de la contribution des avant plans de poussière
dans l’expérience BICEP2 fait disparâıtre le signal sur r, ce projet risque d’être fortement
ralenti. En effet, pour bon nombre de modèles dont le potentiel a une forme de “plateau” (les
modèles favorisés par Planck), tels que les modèles d’inflation branaire ou les modèles d’inflation
avec module de Khähler, la valeur prédite pour r est minuscule, typiquement r < 10−6. Pour
l’instant, il semble totalement impossible d’atteindre de tels seuils de détection. De la même
manière, pour les modèles d’inflation à un champ scalaire et avec terme cinétique standard (qui
semblent pour le moment favorisés par les données), le niveau de non Gaussianités primordiales
est très faible, fNL ⇠ ✏, et ne semble pas être détectable pour le moment [406]. Le même constat
s’applique pour les perturbations entropiques qui pourraient provenir de la présence d’autres
champs massifs, ou pour le running du spectre de puissance ↵

S
⇠ ✏2. C’est pourquoi dans

ce cas, il est fort possible que l’on assiste à un certain ralentissement de l’entreprise visant à
contraindre l’inflation par les mesures du FDC.

Pour continuer à progresser dans notre compréhension de l’Univers primordial, deux chemins
peuvent alors être empruntés. Le premier consiste à discriminer les modèles par des arguments
théoriques, en continuant à examiner les possibilités offertes par les extensions du modèle stan-
dard de la physique des particules, en comprenant mieux le rôle des corrections radiatives, des
couplages aux autres champs, des propriétés physiques de la phase de réchauffement qui en
découlent, etc. Car indépendamment des observations, l’inflation soulève un certain nombre de
problème fondamentaux qu’il reste à résoudre. Une autre possibilité est d’étudier plus en détails
les connections existant entre les prédictions inflationnaires et d’autres sondes astrophysiques
telles que les supernovae, la répartition des galaxies et des amas de galaxies, l’astrophysique à
21 cm, la reconstruction des conditions initiales par les simulations de grandes structures, etc.
Le bras de levier entre les différentes échelles associées à ces objets est énorme et devrait nous
permettre de mieux cerner l’Univers dans lequel ils évoluent.

La cosmologie est entrée dans une ère de données massives où des mesures d’observables fon-
damentalement différentes par nature doivent être intelligemment combinées dans le but de
contraindre des processus physiques tout aussi différents. De cette manière, les avancées dans
l’ensemble des champs de la cosmologie et même de l’astrophysique sont étroitement liées et
dépendantes les unes des autres. Le décryptage de l’Univers primordial repose donc sur une
compréhension de phénomènes physiques très variés, et sur la réalisation de mesures qui met-
tent au défi la technologie moderne. Seulement à ce prix pourrons nous avancer dans cette quête
universelle qu’est la compréhension du monde dans lequel nous vivons.
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