
HAL Id: tel-01127246
https://theses.hal.science/tel-01127246v1

Submitted on 7 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing concurrent systems through event structures
Hernan Ponce de León

To cite this version:
Hernan Ponce de León. Testing concurrent systems through event structures. Performance [cs.PF].
École normale supérieure de Cachan - ENS Cachan, 2014. English. �NNT : 2014DENS0035�. �tel-
01127246�

https://theses.hal.science/tel-01127246v1
https://hal.archives-ouvertes.fr


Testing Concurrent Systems
Through Event Structures

Thèse de doctorat
présentée par

Hernán Ponce de León

À

l’École Normale Supérieure de Cachan

en vue de l’obtention du grade de

Docteur en Informatique

et soutenue à Cachan le 7 Novembre 2014 devant le jury composé de :

Thierry Jéron

Rob Hierons Rémi Morin Stefan Haar

Alex Yakovlev Pascal Poizat Delphine Longuet

Rapporteurs Examinateurs Directeurs de thèse

Laboratoire Spécification et Vérification (LSV) ; École Normale Supérieure de Cachan, CNRS & INRIA
61, avenue du Président Wilson ; 94235 CACHAN Cedex, France





Abstract

Complex systems are everywhere and are part of our daily life. As a conse-
quence, their failures can range from being inconvenient to being life-threatening.
Testing is one of the most widely accepted techniques (especially in industry) to
detect errors in a system. When the requirements of the system are described
by a formal specification, conformance testing is used to guarantee a certain
degree of confidence in the correctness of an implementation; in this setting a
conformance relation formalizes the notion of correctness. This thesis focuses
on conformance testing for concurrent systems.

Conformance testing for concurrent system has mainly focused on models
that interpret concurrency by interleavings. This approach does not only suf-
fer from the state space explosion problem, but also lacks the ability to test
properties of the specification such as independence between actions. For such
reasons, we focus not only on partial order semantics for concurrency, but also
propose a new semantics that allows to interleave some actions while forcing
others to be implemented as independent.

We propose a generalization of the ioco conformance relation, based on Petri
nets specifications and their partial order semantics given by their unfoldings,
preserving thus independence of actions from the specification. A complete
testing framework for this conformance relation is presented. We introduce the
notion of global test cases which handle concurrency, reducing not only the
size of the test case, but also the number of tests in the test suite. We show
how global test cases can be constructed from the unfolding of the specification
based on a SAT encoding and we reduce the test selection problem to select a
finite prefix of such unfolding: different testing criteria are defined based on the
notion of cut-off events.

Finally, we show that assuming each process of a distributed system has a
local clock, global conformance can be tested in a distributed testing architecture
using only local testers without any communication.



Résumé

Les systèmes logiciels complexes sont omniprésents dans notre vie quotidi-
enne. De ce fait, un dysfonctionnement peut occasionner aussi bien une simple
gêne qu’un danger mettant en péril des vies humaines. Le test est l’une des
techniques les plus répandues (en particulier dans l’industrie) pour détecter les
erreurs d’un système. Lorsque le cahier des charges d’un système est décrit par
une spécification formelle, le test de conformité est utilisé pour garantir un cer-
tain niveau de confiance dans la correction d’une implémentation de ce système ;
dans ce cadre, la relation de conformité formalise la notion de correction. Cette
thèse se focalise sur le test de conformité pour les systèmes concurrents.

Le test de conformité pour les systèmes concurrents utilise principalement
des modèles qui interprètent la concurrence par des entrelacements. Néanmoins,
cette approche souffre du problème de l’explosion de l’espace d’états et elle
n’offre pas la possibilité de tester certaines propriétés de la spécification telle que
l’indépendance entre actions. Pour ces raisons, nous utilisons une sémantique
d’ordres partiels pour la concurrence. De plus, nous proposons une nouvelle
sémantique qui permet à certaines actions concurrentes d’être entrelacées et en
force d’autres à être implémentées indépendamment.

Nous proposons une généralisation de la relation de conformité ioco où les
spécifications sont des réseaux de Petri et leur sémantique d’ordres partiels est
donnée par leur dépliage. Cette relation de conformité permet de préserver
l’indépendance, dans l’implémentation, des actions spécifiées comme concur-
rentes. Nous présentons un cadre de test complet pour cette relation. Nous
définissons la notion de cas de test globaux gérant la concurrence, réduisant
ainsi non seulement la taille des cas de test mais aussi celle de la suite de tests.
Nous montrons comment les cas de test globaux peuvent être construits à partir
du dépliage de la spécification en s’appuyant sur une traduction SAT, et nous
réduisons le problème de la sélection de tests à la sélection d’un préfixe fini de
ce dépliage : nous définissons différents critères de sélection à partir de la notion



d’événement limite (cut-off event).
Enfin, en supposant que chaque processus d’un système distribué possède une

horloge locale, nous montrons que la conformité globale peut être testée dans
une architecture de test distribuée en utilisant seulement des testeurs locaux ne
communiquant pas entre eux.



Acknowledgments

Stefan Haar introduced me to the research world when I first visited LSV for an
internship. His dedication, suggestions and guidance converted the lost student
that arrived in 2010 into someone able of having his own ideas, express them
and convert them into a PhD thesis. During this three years he provided me
with the nicest research environment allowing me to participate on conferences,
summer schools and pointing me always in the right direction. I extend my
gratitude to Delphine Longuet, my co-advisor, for her patience, for teaching me
how an article should be writing and presented, for double-checking every proof,
for spending hours with a submission, for understanding me. This thesis is the
result of all you had taught me. It has not only be an honor to work with you
both, it was really a pleasure.

I sincerely thank the reviewers and the jury: Rob Hierons and Alex Yakovlev
for accepting reviewing this thesis and all the comments they gave me; Rémi
Morin and Pascal Poizat for the time they have kindly employed on me; and
Thierry Jéron not only for all his comments and suggestions for this manuscript,
but also for his predisposition for all my questions during this three years.

During my PhD studies I had the chance to work with very nice people:
Laura Brandán-Briones and Agnes Madalinski introduce me to interesting and
new research topics; I had very nice discussions with Pedro D’Argenio; I want
to thank Andrey Mokhov for his time to answer all my questions during the
last year; I am also thankful to Stefan Scwhoon for accepting supervising an
internship with me and for all the nice ideas during those four months; to
Konstantinos Athanasiou, thanks for your enthusiasm during the internship, I
hope you enjoyed your time at LSV as much as I enjoyed working with you.

I thank DIGITEO for funding my PhD studies through its project TEC-
STES, and the MEALS project for supporting many research visits to Argentina.

At LSV I met many people: “merci” Thomas Chatain and Lôıg Jezequel for
every coffee break and for having the greatest patience with my french; Thida



Iem how was always friendly and efficient; Normann Decker my very first friend
in Paris; my friends Mahsa Shirmohammadi, Vincent Cheval, Christoph Haase
and Simon Theissing, thank you for every meal (double thanks to Mahsa for
this) and all the nice moments we had together; to “The” Cesar, because every
discussion about unfoldings seems easy compared to the meaning of life.

To my friends of ENS: Martin, Aleksandra and Simon, Nicola and Sandra,
Esti, Lara, Matias, Claudia and Miquel, thank you for every lunch, every coffee,
every dinner, every poker and every trip.

Para cada argentino que me hizo sentir como en casa: Alito, Flowers, Rusi,
Chueka, Ceci, Peti, Cordero (si, vos tambien ya sos argentino), Ana, Anahi,
Presi y a todos los que pasaron. Porque ni la lluvia nos pudo quitar nuestros
asados. Gracias Timpa y Papelito por los mejores recuerdos sobre la Bestia.

My deepest appreciation to my parents, Ricardo and Corina, for encouraging
me to follow my dreams, to my sister, my grandmother, my uncle, aunts and
cousins for all their love.

Finally, all my love goes to Aina, because the last two years would have not
be the same without you. Te quiero Bonita.

Hernán Ponce de León
Helsinki, Finland

October 2014





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Expected Behavior . . . . . . . . . . . . . . . . . . . 3
1.2.2 The Testing Hypotheses . . . . . . . . . . . . . . . . . . . 4
1.2.3 The Experiments . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Models for Concurrency . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Model-based Testing of Concurrent Systems . . . . . . . . . . . . 6
1.5 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Conformance Testing for Sequential Models 13
2.1 Labeled Transition Systems . . . . . . . . . . . . . . . . . . . . . 13
2.2 Branching Semantics for LTSs . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Reachability Trees . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Sequential Executions . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Modeling Concurrency with LTSs . . . . . . . . . . . . . . 16

2.3 Observing LTSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Quiescence and Produced Outputs . . . . . . . . . . . . . 20
2.3.3 Possible Inputs . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The ioco Conformance Relation . . . . . . . . . . . . . . . . . . 22
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Conformance Testing for Non-Sequential Models 27
3.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Partial Order Semantics for PNs . . . . . . . . . . . . . . . . . . 29

3.2.1 Occurrence Nets and Unfoldings . . . . . . . . . . . . . . 29



3.2.2 Event Structures . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Partial Order Executions . . . . . . . . . . . . . . . . . . 33

3.3 Observing PNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Quiescence and Produced Outputs . . . . . . . . . . . . . 37
3.3.3 Possible Inputs . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The co-ioco Conformance Relation . . . . . . . . . . . . . . . . . 39
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conformance Testing with Refined Concurrency 45
4.1 Conditional Partial Order Graphs . . . . . . . . . . . . . . . . . . 47
4.2 Semantics for Weak and Strong Concurrency . . . . . . . . . . . 49

4.2.1 Unfolding of a CPOG . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Relaxed Executions . . . . . . . . . . . . . . . . . . . . . 51

4.3 Observing CPOGs . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Quiescence and Produced Outputs . . . . . . . . . . . . . 55
4.3.3 Possible Inputs . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 The wsc-ioco Conformance Relation . . . . . . . . . . . . . . . . 59
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 A Centralized Testing Framework 61
5.1 Global Test Cases, Execution and Verdicts . . . . . . . . . . . . . 62

5.1.1 Global Test Cases . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.3 Completeness of the Test Suite . . . . . . . . . . . . . . . 70

5.2 Constructing Test Cases . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.1 Test Derivation for LTSs . . . . . . . . . . . . . . . . . . . 74
5.2.2 Test Derivation for ESs . . . . . . . . . . . . . . . . . . . 75
5.2.3 IICS Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Upper Bound for the Complexity of the Method . . . . . 78
5.2.5 SAT Encoding of Test Cases . . . . . . . . . . . . . . . . 80

5.3 Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Coverage Criteria Based on Cut-off Events . . . . . . . . 83
5.3.2 Soundness of the Test Suite . . . . . . . . . . . . . . . . . 88
5.3.3 Comparing Different Criteria . . . . . . . . . . . . . . . . 89

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 A Distributed Testing Framework 93
6.1 Conformance in Distributed Architectures . . . . . . . . . . . . . 93
6.2 Modeling a Distributed System . . . . . . . . . . . . . . . . . . . 94
6.3 Distributing Global Conformance . . . . . . . . . . . . . . . . . . 99

6.3.1 Detecting Non Conformance Locally . . . . . . . . . . . . 100
6.3.2 Adding Time Stamps . . . . . . . . . . . . . . . . . . . . 103

6.4 From Global Test Cases to Distributed Ones . . . . . . . . . . . 108
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



7 Conclusions and Perspectives 111
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A Other Conformance Relations 115
A.1 Sequential Executions . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Trace Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 Testing Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.4 Relaxing Testing Preorder . . . . . . . . . . . . . . . . . . . . . . 118
A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B Tool and Experiments 121
B.1 The TOURS Prototype . . . . . . . . . . . . . . . . . . . . . . . 121
B.2 The Elevator Example . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3.1 Adding Floors and Elevators . . . . . . . . . . . . . . . . 125
B.3.2 Setting Up the Experiments . . . . . . . . . . . . . . . . . 125
B.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 129





1
Introduction

1.1 Motivation

During the last decades, the complexity of software devices has grown very fast.
As systems grow in complexity, so does the difficulty to construct them, and con-
sequently, the likelihood of introducing faults in their design or implementation.
Failures in safety-critical systems have shown to have dramatic consequences.
The following list shows some of the history’s worst software bugs [Gar05].

1962 - Mariner I space probe: a $80 million rocket launched by NASA, de-
viated from its intended path and was destroyed by the mission control
over the Atlantic Ocean. NASA attributed the error to an improper trans-
lation of a formula into computer code.

1982 - Soviet gas pipeline: a trans-Siberian gas pipeline exploded due to a
bug introduced by operatives working for the CIA into a Canadian com-
puter system purchased to control the pipeline.

1985/1987 - Therac-25 medical accelerator: several medical facilities de-
livered lethal radiation doses, producing the death of at least five patients
due to an error generated by a race condition.

1988 - Buffer overflow in Berkeley Unix finger daemon: the first inter-
net worm which infected between 2,000 and 6,000 computers in less than
a day by taking advantage of a buffer overflow.

1988/1996 - Kerberos Random Number Generator: systems that relied
on Kerberos protocol for authentication were trivially hacked by the lack
of a proper random seed.

1990 - AT&T Network Outage: a bug in the software that controlled the
long distance switches left around 60 thousands people without long dis-
tance service for nine hours.

1



2 CHAPTER 1. INTRODUCTION

1993 - Intel Pentium floating point divide: a bug in the Pentium chip that
generates erroneous float-point divisions cost Intel $475 million.

1995/1996 - The Ping of Death: a lack of sanity checks and error handling
in the IP fragmentation reassembly code made it possible to crash a wide
variety of operating systems by sending malformed “ping” packets.

1996 - Ariane 5 Flight 501: 40 seconds after launched, the rocket was de-
stroyed due to an overflow produced by an incorrect conversion from a
64-bit number to a 16-bit number.

2000 - National Cancer Institute, Panama City: a miscalculation of the
proper dosage of radiation killed at least eight patients.

2003 - North American Blackout: caused by a software bug in the alarm
system which left operators unaware of the need to re-distribute power
after overloaded transmission lines hit unpruned foliage, which triggered
a race condition in the control software.

In order to prevent, as much as possible, the faulty behavior of the system
and the damage those faults could cause, it is necessary to check that the system
behaves as expected; this process is called validation. To validate a system, the
intended behavior of the system needs to be described by a specification which
explains what the system must do, but not how this is done. An implementation
of such a system is a real and executable piece of software.

There are two complementary techniques that can be used to increase the
level of confidence in the correct functioning of systems: verification and testing.
While verification aims at proving properties about the system by an abstract
mathematical model, testing is performed by executing the real implementa-
tion. Verification can give certainty about satisfaction of a certain property,
but this only applies on the abstract model: “verification is only as good as
its underlying model” [Kat99]. On the other hand, testing is applied directly
on the implementation, and therefore it is a useful validation technique when a
reliable abstract model is not present. However, as Dijkstra already said, since
testing is based on observing only a subset of all possible instances of the system
behavior, it is usually incomplete: “testing can show the presence of errors, not
their absence” [BR70]. This thesis focuses in testing as a validation technique.

The main problem with testing is that it is both expensive and difficult; it
is estimated that, on average, it takes 50% of a project budget [Alb76, Mye04].
Manual testing methods lack solid foundations as their strategies are based on
heuristics that may not be always successful. Testing is the most applied vali-
dation technique in industry and it has been formalized [Tre92, Gau95, CFP96]
to bring more confidence in the testing activity.

A system can be tested at different levels of development process and ab-
straction. One can differentiate between black-box testing and white-box testing
based on the degree of visibility assumed in the implementation [Mye04]. Black-
box testing assumes only access to the interface of the implementation and not



1.2. MODEL-BASED TESTING 3

to its source-code. In contrast to this, white-box tests are derived based on the
internal details of the system. Naturally, the degree of visibility between these
two can vary, leading to grey-box testing. Other classifications are proposed in
the literature [UL07, AO08] based on levels of abstraction: system testing con-
siders the system as a whole; integration testing checks if several components of
the system work together properly; component testing aims to check each com-
ponent individually; unit testing tests the system at its most fine-grained level.
Yet another testing distinction lies on the aspects of the system that need to be
tested [UL07]: robustness testing explores how the system reacts to underspec-
ified environments or invalid inputs; performance testing focuses on the timing
requirements of the system, i.e. how fast the implementation can perform a
task; functional testing is used to detect incorrect behaviors of the system with
respect to its functional requirements. In this thesis we focus on functional
testing at a system level abstraction with a black-box implementation.

1.2 Model-based Testing

When we are dealing with black-box testing, we only have the specification of the
system from which all the expected behaviors can be derived and that provides
the information to build the test cases. When the specification is described by
a formal model, we are in the domain of model-based testing. Figure 1.1 shows
a typical model-based testing process which comprises four steps:

• Modeling of the expected behavior of the system

• Generation of a set of test cases

• Execution of the test cases on the implementation

• Analysis of the test results to detect differences between the implementa-
tion and its expected behavior in order to decide conformance

We consider the implementation under test as black-box system which can
only be stimulated via its interface in order to observe how it responses. We
differentiate between the inputs or stimulus proposed by the environment and
the outputs or reactions produced by the system.

1.2.1 The Expected Behavior

The first step in the model-based testing process is the formalization of the
expected behavior of the system and the notion of conformance: “what kind
of implementations are considered correct?”. We assume that there exists a
formal specification of the required behavior that can be expressed using a
particular specification language, i.e. S ∈ SPECS, where SPECS is the set of
all possible specifications. Our aim is to formally reason about the correctness
of a concrete implementation I w.r.t its specification S. Thus, as a common
testing hypothesis [Ber91, Tre92], it is assumed that every implementation can



4 CHAPTER 1. INTRODUCTION

model
test case
generator

test cases

test case
executorIUTconforms?

Figure 1.1: Model-based Testing.

be modeled by a formal object I ∈ IMPS, where IMPS denotes the set of
all implementation models. Notice that it is not assumed that the model is
known, only existence is required. This hypothesis allows us to reason about
the (real) implementation as if it was a formal object; conformance can now
be expressed as a relation between models and specifications, i.e. conforms ⊆
IMPS × SPECS.

There are several models and conformance relations that can be seen as
instantiations of SPECS and conforms. [LY96] and [Hie97] use finite state
machines as the model of the system and conformance relations relate states
of the implementation and specification. When labeled transition systems are
used as model of the system, several conformance relation have been proposed,
e.g. bisimulation equivalence [Mil90], failure equivalence and preorder [Hoa85],
refusals testing [Phi87], observation equivalence [Abr87]. When a distinction is
made between input and outputs, the ioco conformance relation [Tre92] has be-
come a standard and it is used as a basis in several testing theories for extended
state-based models such as restrictive transition systems [HT97, LG05], sym-
bolic transition systems [FGGT08, Jér09], timed transition systems [HLM+08,
KT09], multi-port transition systels [HMN08].

1.2.2 The Testing Hypotheses

Developing a testing framework without any testing hypothesis is impossible
since there always exists an incorrect implementation which is not detected by
any test case. As explained in the previous section, every model-based testing
framework assumes that the behavior of the implementation can be modeled by
some formal object. However there exist several other hypotheses based on the
properties one intends to test or the formal object used for modeling the system.
When the systems are modeled by finite states machines, [LY96] assumes that
the specification does not contain equivalent states, it accepts every input, it is
strongly connected and it does not change during the testing procedure; the ioco



1.3. MODELS FOR CONCURRENCY 5

theory [Tre92] assumes that the system does not contain cycle of unobservable
actions, that it is possible to observe when the system blocks (outputs are
produced in bounded time) and that the implementation cannot refuse any
input proposed by the environment; when the system is distributed [HMN08]
assumes that the specification and implementation have the same number of
components or interfaces and that not only the implementation, but also the
specification is input-enabled.

Some hypothesis like “the implementation can be modeled by some formal
object” are necessary: without them conformance is not possible to test; while
other hypotheses are practical, but not essential. The latest include the absence
of equivalent states or input-enabledness of the implementation.

1.2.3 The Experiments

By running experiments where the tester stimulates the system and observes its
reactions, one intends to find discrepancies between the implementation and
its expected behavior. The behavior of a tester is modeled by a test case
T ∈ T EST S, where T EST S denotes the universe of all possible test cases.
When the system is modeled by finite state machines [LY96] tests are either
sequences of inputs or decision trees (called adaptive sequences) where the in-
put to propose depends on the outputs that the system produced; if systems
are modeled by labeled transition systems, test cases are usually represented
by labeled transition systems having the form of trees where leaves are special
states representing the verdicts of the experiment [Tre08]. The second step of
the model-based testing process is the automatic generation of such test cases.

Test cases are executed on the implementation, leading to a verdict that
allows to decide non conformance. Formally, a test execution can be modeled
by a function exec : T EST S × IMPS → {pass, fail}. An implementation
I ∈ IMPS passes a test suite T S ⊆ T EST S if the test execution of all its
test cases leads to a pass verdict. If the implementation does not pass the
test suite, it fails it. When systems and test cases are modeled by labeled
transition systems, test case execution is modeled by synchronous [Tre08] or
asynchronous [JJKV98] parallel composition.

1.3 Models for Concurrency

This thesis proposes a model-based testing framework for concurrent systems.
Various formalisms have been studied for describing the behavior of concurrent
and distributed systems and to formally understand their semantics. In addi-
tion to traditional models such as languages, automata and labeled transition
systems [Plo04], models like Petri nets [Pet62], process algebra [Hoa85, Mil89],
Mazurkiewicz traces [Maz88] and event structures [NPW81] have been intro-
duced.

The basic idea behind these formalisms is that they are based on atomic
or indivisible units of change (transitions, actions, events or symbols over an



6 CHAPTER 1. INTRODUCTION

alphabet) which are the basic notions on which computations are built.
One can differentiate between models that allow to explicitly represent the

(possibly repeating) states in a system from those which focus instead on the
behaviors based on occurrence of actions over time. Examples of the first type
are labeled transition systems or Petri nets, while the second type includes
reachability trees and event structures. Further distinctions allow to differen-
tiate models that distinguish concurrency seen as independence (for example
unfoldings) from nondeterminism and interleavings (for example the reacha-
bility graph of a Petri net). Finally, some models represent explicitly all the
behaviors of the system while other allow to highlight their branching struc-
ture over time. A more detailed classification can be found in [SNW96], where
models for concurrency are classified into:

• system or behavior models,

• interleaving or non-interleaving models, and

• linear-time or branching-time models.

Behavior models focus on describing the behavior in terms of the order of
atomic actions, abstracting away from states. In contrast, the so-called system
models describe explicitly states, which possibly repeat. Interleaving models are
those that hide the difference between concurrency between several state ma-
chines and nondeterminism inside individual state machines. Non-interleaving
models take this difference into account and interpret concurrency as indepen-
dence. Branching-time models represent the branching structure of the behav-
ior, i.e. the points in which choices are taken, while linear-time models do not.

In this thesis we assume the specification of the system is given by a system
model which can be unfolded into a behavior model describing its semantics. We
show that independence between actions of the specification cannot be tested
when concurrency is interpreted as interleavings and we propose a testing frame-
work based on non-interleaving models.

1.4 Model-based Testing of Concurrent Systems

Model-based testing of concurrent systems has been studied for a long time (see
for example [Hen88, PS96, Sch99]), however it is most of the time studied in the
context of interleaving semantics which is known to suffer from the state space
explosion problem. To avoid this problem, Ulrich and König [UK97] propose a
framework for testing concurrent systems specified by communicating labeled
transition systems. They define a concurrency model called behavior machines
that is an interleaving-free and finite description of concurrent and recursive
behavior, which is a sound model of the original specification. Their testing
framework relies on a conformance relation defined by labeled partial order
equivalence, and allows to design tests from a labeled partial order representing
an execution of the behavior machine. Non-interleaving models are also used
for generation of test cases in [Hen97, Jar03].



1.4. MODEL-BASED TESTING OF CONCURRENT SYSTEMS 7

In another direction, Haar et al [HJJ07, vHJJ08] generalized the basic no-
tions and techniques of I/O- sequence based conformance testing on a gener-
alized I/O-automaton model where partially ordered patterns of input/output
events were admitted as transition labels. An important practical benefit here
is an overall complexity reduction, despite the fact that checking partial or-
ders requires in general multiple passes through the same labeled transition to
check for presence/absence of specified order relations between input and out-
put events. At the same time, the overall size of the automaton model (in terms
of the number of its states and transitions) shrinks exponentially if the concur-
rency between the processes is explicitly modeled. This feature indicates that
with increasing size and distribution of the system, it is computationally wise
to seek alternatives for the direct sequential modeling approach. However, this
model still forces to maintain a sequential automaton as the system’s skeleton,
and to include synchronization constraints (all events specified in the pattern
of a transition must be completed before any other transition can start), which
limit both the application domain and the benefits from concurrency modeling.

The approaches presented above avoid the state space problem arising from
the implicit representation of all possible interleavings. However, they do not
consider that some properties of the specification (for instance independence
between actions) may be lost if concurrency is implemented by interleavings.

Example 1.1 (Concurrency as Independence and Interleavings). Figure 1.2 shows
a schematic travel agency that sells services to customers on behalf of different
suppliers, some selling tickets (either plane or train ones) and another one sell-
ing insurances. In this system, the user can select a ticket and an insurance and
the system responses by concurrently producing their corresponding prices. This
concurrency (or independence), comes from the fact that each request is served
by a different provider.

Figure 1.2: A travel agency example.

Consider the classes (in the object-oriented programming sense) of Figure 1.3
representing the ticket and insurance providers. The interfaces (or specifica-
tions) of both providers show a price method that outputs the price of the ticket



8 CHAPTER 1. INTRODUCTION

and insurance based on an initial price (represented by variable bp). As it is
shown in the bottom left of the figure, the price of the ticket should be indepen-
dent to the price of the insurance. The implementation of the insurance class is
such that every time the user selects an insurance, its price is increased by 10%;
this is captured by the local variable f. The implementation of the ticket provider
class has access to the selling policy of the insurance and decides to increase its
price based on this information, generating the dependence shown in the bottom
right of the figure which was not specified. Besides this extra dependence, if
the implementation of the insurance is replaced by another implementation that
satisfies the interface, but does not contain variable f, the behavior of the system
fails as the ticket provider uses this variable, i.e. Ticket.price: {return bp *
Insurance.f}.

Figure 1.3: Lost of independence in the travel agency.

We want to avoid this kind of extra dependencies. However, if concurrency
in the specification is implemented by interleaving, this implementation would
be considered correct by most of the conformance relations proposed in the
literature and the extra dependence will not be detected. The conformance re-
lation we propose in this thesis allows to distinguish between concurrency seen
as independence and interleavings.

Other problems arise when we are dealing with a distributed testing ar-
chitecture [HU08], i.e. there is one tester placed at each point of control and
observation (PCO) and these testers do not communicate. Controllability prob-
lems imply that the testers may not know when to apply an input. Figure 1.4
shows a message sequence chart with the interaction of the testers at each PCO
with the system under test (SUT). In situation (a) the tester at PCO1 starts
with input ?i1, observes output !o1 and only after the tester at PCO2 proposes
input ?i2. Since the tester at PCO2 cannot observe actions at PCO1, it does not
know when to propose the input. Another problem that arises in distributed
architectures is observability. Consider situation (b) where the tester at PCO1

proposes ?i1, observes !o1 before proposing ?i2 followed by !o2 and the tester



1.5. CONTRIBUTIONS AND OUTLINE 9

time

PCO1 SUT PCO2

?i1

?o1

?i2

PCO1 SUT PCO2

?i1

?o1

?i2

?o2

?o3

?o3

(a) (b)

Figure 1.4: Controllability and observability problems in distributed architec-
tures.

at PCO2 observes !o3 (blue arrow) after the four actions in PCO1. From the
point of view of the tester at PCO2, only !o3 is observed which is also the case
if the system produces !o1 and !o3 (red arrow) at their corresponding PCOs
in response to ?i1. In this case, two faults have masked one another. Chap-
ter 6 deals with distributed testing architectures and solves controllability and
observability problems.

1.5 Contributions and Outline

In this thesis, we propose three different formalisms to model the expected be-
havior of a concurrent system. Labeled transition systems interpret concurrency
as interleavings, Petri net as true independence between actions and conditional
partial order graphs allow both interpretations based on extra information of the
specification. Based on the different semantics, we propose a complete testing
framework that includes the definition of conformance relations and algorithms
for the generation of test cases. Finally, when the testing architecture is dis-
tributed, we show how global conformance can be achieved by local testers.

More specifically, the outline and contributions of the manuscript are:

• Chapter 2. Labeled transition systems and reachability trees are used to
model the specification of the system interpreting concurrency as inter-
leaving. Different notions of observations such as traces, outputs, quies-
cence and refusals are introduced and the ioco theory is presented. This
is usually done directly on labeled transition systems while we do it on
their reachability trees in order to compare ioco with the other confor-
mance relations of this thesis. In addition we show how to relax the
input-enabledness assumption on the implementation.

• Chapter 3. Petri nets and event structures are used as the specification
model which allow to model concurrency explicitly. We extend the stan-



10 CHAPTER 1. INTRODUCTION

dard notions of traces, produced outputs, quiescence and refusals for par-
tial order semantics and propose the co-ioco conformance relation that
allows to distinguish concurrency as independence between actions from
interleavings.

• Chapter 4. We introduce a new semantics for concurrent systems where
some actions specified as concurrent can be implemented in some order (if
any) while others need to preserve their concurrency. This new semantics
allows to model possible refinements of the system and its distribution.
We present partial order graphs which allow to model both types of con-
currency, an algorithm to unfold such graphs into event structures and
the wsc-ioco conformance relation that is based on this semantics. This
chapter is based on [PHL14c] and [PM14].

• Chapter 5. We introduce the notion of global test cases (allowing con-
currency) and discuss the test execution in the presence of concurrency.
We propose an algorithm to derive global test cases from a given speci-
fication using a SAT encoding. Finally, we discuss how to select a finite
number of test cases, based on finite prefixes of the unfolding, covering
as much as possible the behavior of the system. This chapter is based
on [PHL13], [PHL14b] and [PHL14c].

• Chapter 6. We describe a distributed testing architecture where the envi-
ronment cannot globally control and observe the system, but it interacts
with it at different points of control and observation. This partial obser-
vation of the system usually reduces the testing power, but we show that
with extra assumptions on the implementation (using vector clocks), we
can reconstruct global traces from partially observed ones allowing to test
global conformance locally. This chapter is based on [PHL14a]

• Appendix A. Three other conformance relations are introduced where the
interaction between the system and its environment is symmetric (there
is no distinction between inputs and outputs). The conformance relations
(trace preorder, testing preorder and conf) are extensions of the relations
with the same names for labeled transition system, but we use event struc-
tures as the model of the system with both interleaving and partial order
semantics. This chapter is based on [PHL12].

• Appendix B. We present the TOURS prototype that implements the
algorithms present in the previous chapters together with a parametric
example that is used as a benchmark to our experiments.

1.6 Publications

Most of the contributions in this manuscript have already been published in or
submitted to international conferences or journals. The following publications
partially contain the results of this dissertation:



1.6. PUBLICATIONS 11

[PHL12] Hernán Ponce de León, Stefan Haar, and Delphine Longuet.
Conformance relations for labeled event structures. In Inter-
national Conference on Tests and Proofs, volume 7305 of Lec-
ture Notes in Computer Science, pages 83-98. Springer, 2012.

[PHL13] Hernán Ponce de León, Stefan Haar and Delphine Longuet.
Unfolding-based test selection for concurrent conformance. In
International Conference on Testing Software and Systems,
volume 8254 of Lecture Notes in Computer Science, pages 98-
113. Springer, 2013.

[PHL14a] Hernán Ponce de León, Stefan Haar and Delphine Longuet.
Distributed testing of concurrent systems: vector clocks to the
rescue. In International Colloquium on Theoretical Aspects
of Computing, volume 8687 of Lecture Notes in Computer
Science, pages 369-387. Springer, 2014.

[PHL14b] Hernán Ponce de León, Stefan Haar and Delphine Longuet.
Model-based testing for concurrent systems: Unfolding-based
test selection. Software Tools for Technology Transfer, 2014.
To appear.

[PHL14c] Hernán Ponce de León, Stefan Haar and Delphine Longuet.
Model-based testing for concurrent systems with labeled event
structures. Software Testing, Verification and Reliability, vol-
ume 24(7), pages 558-590, 2014.

During the last three years, the author has also collaborated in the devel-
opment of two other publications, which have not been integrated into this
manuscript to keep the presentation coherent. These are the following:

[PBB13] Hernán Ponce de León, Gonzalo Bonigo and Laura Brandán
Briones. Distributed Analysis of Diagnosability in Concurrent
Systems. In International Workshop on Principles of Diagno-
sis. 2013.

[BMP14] Laura Brandán Briones, Agnes Madalinski and Hernán Ponce
de León. Distributed Diagnosability Analysis with Petri Nets.
In International Workshop on Principles of Diagnosis. 2014.





2
Conformance Testing for Sequential Models

Languages such as CCS [Mil89], CSP [Hoa85], ACP [BK85] and LOTOS [ISO89],
are some of the specification languages that allow to model concurrency between
actions. These languages interpret concurrency as a non deterministic choice in
the order that actions can occur, known as interleaving semantics for concur-
rency. This chapter presents a process language that allows to model concur-
rency together with its operational semantics expressed by labeled transition
systems and their reachability trees. Since the conformance relations presented
in the following two chapters are defined in terms of behavioral models, we
modified the usual presentation of the ioco theory by unfolding the labeled
transition system into its reachability tree and defining the notions of execu-
tion, observation and conformance relation on the reachability tree. Finally we
discuss how the usual input-enabledness assumption of the implementation can
be dropped.

2.1 Labeled Transition Systems

A Labeled Transition System (LTS) is a structure that consists of states and
transitions between them which are labeled by actions from an alphabet L.
States represent the states of the system and the labeled transitions model the
actions that the system can perform in those states. Labels in L represent the
observable actions of a system; they model the interaction of the system with its
environment. As usual with reactive systems, we differentiate actions proposed
by the environment (inputs) from those produced by the system (outputs), thus
we split the alphabet as L = In⊎Out (as usual, input actions are denoted by ?
and output actions by !). Internal actions are denoted by the special label τ 6∈ L,
which is assumed to be unobservable from the point of view of the environment.

Definition 2.1 (Labeled Transition System). An LTS is a tuple (Q,L,∆, q0)
where

13



14 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

p0

p1

p2

p3

?log

τ

!datas

Lser

q0

q1

q2

q3

τ

?seli

!prii

!datai

Lins

r0

r1r2 r3

τ

?selt ?selp

!pri1t

!pri2t !prip

Ltick

Figure 2.1: Labeled Transition Systems.

• Q is a countable, non-empty set of states;

• L is a countable set of observable actions;

• ∆ ⊆ Q× (L ∪ {τ})×Q, is the transition relation;

• q0 ∈ Q is the initial state.

The class of all LTSs with alphabet L is denoted by LT S(L) and, follow-
ing the classification that was presented in Section 1.3, it is categorized as a
system/interleaving/branching-time model.

Example 2.1 (Labeled Transition Systems). Figure 2.1 shows three LTSs mod-
eling respectively the behavior of a server, an insurance provider and a ticket
provider. After the user logs in into the server (?log), the server performs some
internal action (τ), which is not observable from the environment, before pro-
ducing some data of the server (!datas). The behavior of the insurance provider
is the following: the system initializes (τ) and it enters a loop where the user
can select an insurance (?seli) and the system responses producing a price and
some data of the insurance (!prii and !datai). The provider of tickets allows
some choices after initializing (τ): the user can select either a plane or a train
ticket (?selp or ?selt). If a plain ticket is selected, the system produces its price
(!prip), but one out of two possible prices (!pri1t or !pri2t ) is produced if a train
ticket is selected. After prices are produced, the user has the choice between
tickets again.

The dynamic behavior of an LTS can be expressed by its reachability tree,



2.2. BRANCHING SEMANTICS FOR LTSS 15

another LTS with an acyclic (and usually infinite) structure that highlights the
branching produced by choices.

2.2 Branching Semantics for LTSs

The notion of execution can be defined (and it is usually the case) directly
over LTSs. However, as we intend to compare interleaving and non-interleaving
models and we define the notion of partial order executions in terms of a behavior
model, we use reachability trees to capture the branching semantics of a LTS.

2.2.1 Reachability Trees

Reachability Trees (RTs) are special LTSs with a tree structure (i.e. no cycles),
whose states are called nodes. The initial state of the system is the root of
the tree; internal nodes are states of the system reachable from the initial state;
and arcs can be seen as occurrences of events (labeled by actions) which connect
subsequent states. We denote the class of all RTs with alphabet L by RT (L).

An RT represents the dynamic behavior of a system by means of the actions
it performs and therefore we categorize it as a behavior/interleaving/branching-
time models. Even if RTs are a subclass of LTSs, we categorize them as behavior
models rather than system model. The reason for this is that a node in an RT
contains more information than its corresponding state in the LTS: it indicates
not only the current state of the system, but also how that state was reached.
This information is given by the unique path between the root and the current
node, i.e. by the set of events that occurred.

The RT of an LTS can be obtained by the unfolding algorithm presented
below, where the ϕ function relates each node of the tree to its corresponding
state in the LTS.

Algorithm 1 Labeled transition systems unfolding

Require: a labeled transition system L = (Q,L,∆, q0)
Ensure: the reachability tree of L
1: N = {n0} with ϕ(n0) = q0
2: ≤ = ∅
3: while ∃n ∈ N, ∃q, q′ ∈ Q, ∃a ∈ L : ϕ(n) = q ∧ (q, a, q′) ∈ ∆ do
4: add a fresh node n′ to N , add (n, a, n′) to ≤ and set ϕ(n′) = q′

5: return (N,L,≤, n0)

Example 2.2 (Reachability Trees). Figure 2.2 shows the initial part of the RT
of the ticket provider obtained by applying Algorithm 1 to Ltick in Figure 2.1.
Since Ltick contains cycles, Rtick is infinite. It can be seen in yellow that several
nodes represent the same state from the LTS, e.g. ϕ(n1) = ϕ(n′

1) = ϕ(n′′
1) =

ϕ(n′′′
1 ) = r1.



16 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

n0

n1

n2 n3

n′1 n′′
1 n′′′1

n′
3

. . . . . . . . .. . . . . . . . .

τ

?selt ?selp

!pri1t !pri2t !prip

?selt ?selp ?selt ?selp ?selt ?selp

Rtick

Figure 2.2: Initial part of the reachability tree of the tickets provider.

2.2.2 Sequential Executions

The sequential executions of a system are usually described by the sequences
of actions it can perform. The following notations are usually defined directly
over LTSs, however, we choose to define them over RTs to compare sequential
executions and partial order executions defined in the next chapter.

Definition 2.2 (Sequential Executions). Let (N,L,≤, n0) ∈ RT (L) with n, n′ ∈
N and µ, µi ∈ (L ∪ {τ}) for i ∈ [1, k], we define

n
µ

−→ n′ , (n, µ, n′) ∈ ≤

n
µ1...µk−−−−→ n′ , ∃n0, . . . , nk : n = n0

µ1

−→ n1
µ2

−→ . . .
µk−→ nk = n′

n
µ1...µk−−−−→ , ∃n′ : n

µ1...µk−−−−→ n′

We say that µ1 . . . µk is a sequential execution of n if n
µ1...µk−−−−→.

If R = (N,L,≤, n0) ∈ RT (L), we will identify the process R with its initial

state n0, i.e. we equally use R
µ1...µk−−−−→ and n0

µ1...µk−−−−→.

Example 2.3 (Sequential Executions). Consider Figure 2.2 and the sequence of
actions µ = τ ·?selp·!prip·?selp where · denotes concatenation of sequences; we

have n0
µ

−→ n′3. The same sequence of actions can be followed from the initial
state r0 to state r3 in the Ltick. This shows the relation between an LTS and
its RTs.

2.2.3 Modeling Concurrency with LTSs

LTSs are a powerful semantic model to reason about processes and their inter-
actions. However, for concurrent systems, we need to explicitly represent all the



2.2. BRANCHING SEMANTICS FOR LTSS 17

possible interleavings between concurrent actions and explicit representation by
means of a graph or a tree becomes impractical if not infeasible. To overcome
this problem, we define a language with LTSs as its operational semantics. Each
expression in such a language defines (through its semantics) a LTS. Expres-
sions can be combined by operators in a way that complex behaviors can be
composed from simpler ones. We call such a language process language.

The language we use is similar to CCS or CSP. Expressions defining a LTS
are called behavioral expressions. We have the following syntax for behavioral
expressions, where a ∈ L, τ 6∈ L are labels, B is a behavioral expression, B is
a countable set of behavioral expressions, G ⊆ L is a set of labels, and P is a
process name.

B := a;B | τ ;B | ΣB | B ‖G B | hide G in B | P

The sequential expression a;B defines the behavior which can perform a and
then behaves as B, i.e. the transition system which makes a transition labeled
by a to the transition system representing B. Expression τ ;B is similar to a;B,
the difference being that τ represents an internal action.

The choice expression ΣB behaves as exactly one of the processes in the set
B. The choice is determined by the first transition which is made. Whenever
the set B is only composed of two processes B1 and B2, we use the standard
notation B1 +B2.

The parallel expression B1 ‖G B2 represents the concurrent execution of
processes B1 and B2. In this concurrent execution, the processes synchronize
over all actions in G, whereas all actions not in G (including τ) can occur
independently in both processes, i.e. they can interleave.

The hiding expression hide G in B denotes the transition system B where
actions G have been hidden, i.e. replaced by the internal action τ .

The last language constructor is process definition, it links a process name
to a behavioral expression: P := B. The name P can then be used as a process
instantiation in behavioral expressions to stand for the behavior contained in
its corresponding process definition.

As usual, parentheses are used to disambiguate expressions. If no parenthe-
ses are used “; ” binds stronger than “Σ”, which binds stronger than “ ‖G ”,
which in turn binds stronger than hide. The parallel operators are read from
left to right, but they are not associative for different synchronization sets.

The semantics for the process language are formally defined in the form of
structural operational semantics. Such a semantic definition consists of axioms
and inference rules which define, for each behavioral expression, the correspond-
ing labeled transition system (see Table 2.1). Consider as an example the axiom
for a;B. This axiom is to be read as follows: an expression of the form a;B can
always make a transition

a
−→ to a state from where it behaves as B. Consider

as another example the inference rule for ΣB. Suppose that we can satisfy the
premiss, i.e. B can make a transition labeled by µ to B′, B ∈ B, and µ is an ob-
servable or internal action, then we can conclude that ΣB can make a transition
labeled by µ to B′. We give the remaining axioms and rules for our language in
Table 2.1.



18 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

a;B
a

−→ B τ ;B
τ

−→ B

B ∈ B µ ∈ L ∪ {τ} B
µ

−→ B′

ΣB
µ

−→ B′

µ ∈ (L ∪ {τ})\G B1
µ

−→ B′
1

B1 ‖G B2
µ

−→ B′
1 ‖G B2

µ ∈ (L ∪ {τ})\G B2
µ

−→ B′
2

B1 ‖G B2
µ

−→ B1 ‖G B′
2

a ∈ G B1
a

−→ B′
1 B2

a
−→ B′

2

B1 ‖G B2
a

−→ B′
1 ‖G B′

2

P := BP µ ∈ L ∪ {τ} BP
µ

−→ B′

P
µ

−→ B′

a ∈ G B
a

−→ B′

hide G in B
τ

−→ hide G in B′

µ 6∈ G B
µ

−→ B′

hide G in B
µ

−→ hide G in B′

Table 2.1: Operational semantics of the process language.

Example 2.4 (Behavioral Language). Suppose we modify the LTSs from Fig-
ure 2.1 by replacing each τ transition by a synchronization transition c and use
stop as abbreviation for Σ∅. Behavioral expressions representing the parallel
behavior of the server and insurance processes are:

P := p0 ‖{c} q0 q0 := c; q1
p0 := ?log; p1 q1 := ?seli; q2
p1 := c; p2 q2 := !prii; q3
p2 := !datas; stop q3 := !datai; q1

Consider system P which is composed of two parallel processes p0 and q0 and
the inference rules from Table 2.1. Process q0 starts by a synchronization action
that p0 is not ready to perform yet, so system P can only perform action ?log
and behaves as p1 ‖{c} q0. From this point, both processes can synchronize and
behave as p2 ‖{c} q1. This process satisfies the premises of two inference rules
(rules that specify that each process can perform a local action if this action is
not a synchronization) and then we have both

(p2 ‖{c} q1)
!datas−−−−→ (stop ‖{c} q1)

?seli−−−→ (stop ‖{c} q2)

(p2 ‖{c} q1)
?seli−−−→ (p2 ‖{c} q2)

!datas−−−−→ (stop ‖{c} q2)

which highlights the fact that LTSs interprets concurrency by means of inter-
leavings.



2.3. OBSERVING LTSS 19

2.3 Observing LTSs

The notion of conformance in a testing framework is based on the chosen no-
tion of observation of the system behavior. One of the most popular ways of
defining the behavior of a system is in terms of its traces (observable sequences
of actions). Phillips [Phi87], Heerink and Tretmans [HT97] and Lestiennes and
Gaudel [LG05] propose conformance relations that in addition consider the ac-
tions that the system refuses. Finally, when there is a distinction between
inputs and output actions, one can differentiate between situations where the
system is still processing some information from those where the system can-
not evolve without the interaction of the environment. The latter situation is
usually called quiescence following Segala [Seg97]. In this section, we define the
notions of traces, refusals and quiescence in the context of LTS.

2.3.1 Traces

The observable behavior of the system is captured by sequences of observable
actions. Such sequences can be obtained by abstracting internal actions from
the executions of the system. If the system can perform from state n a sequence

of actions a · τ · b · c · τ with a, b, c ∈ L, we have n
a·τ ·b·c·τ
−−−−−→ and we write n

a·b·c
===⇒

for the τ -abstracted sequence of observable actions.

Definition 2.3 (Observations). Let (N,L,≤, n0) ∈ RT (L) with n, n′ ∈ N ,
a, ai ∈ L for i ∈ [1, k] and σ ∈ L∗, we define

n
ǫ

=⇒ n′ , n = n′ or n
τ...τ
−−−→ n′

n
a

=⇒ n′ , ∃n1, n2 : n
ǫ

=⇒ n1
a

−→ n2
ǫ

=⇒ n′

n
a1...ak====⇒ n′ , ∃n0, . . . , nk : n = n0

a1=⇒ n1
a2=⇒ . . .

ak=⇒ nk = n′

n
σ

=⇒ , ∃n′ : n
σ

=⇒ n′

We say that σ is an observation of n if n
σ

=⇒.

Example 2.5 (Observations). It have been shown in Example 2.3 that the se-
quence µ = τ ·?selp·!prip·?selp is a sequential execution from the initial node of

Rtick, i.e. n0
µ

−→ n′
3. We can abstract the internal action from this execution

leading to the following observation: n0
σ

=⇒ n′
3 with σ =?selp·!prip·?selp.

The traces of R ∈ RT (L), denoted by traces(R), are all the sequences of
visible actions that R can perform from its initial state. Traces and reached
states from a given state are captured by the following standard definitions.

Definition 2.4 (Traces and Reached States). Let R = (N,L,≤, n0) ∈ RT (L),
σ ∈ L∗ and n, n′ ∈ N , we define

traces(R) , {σ ∈ L∗ | n0
σ

=⇒}

n after σ , {n′ | n
σ

=⇒ n′}



20 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

It is worth to notice that the presence of internal actions implies non-
determinism, therefore the reachable state after some trace is not necessarily
unique.

Example 2.6 (Traces and Reached States). Example 2.5 shows that n0
σ

=⇒ n′
3

for σ =?selp·!prip·?selp, therefore we can conclude that σ ∈ traces(Rtick) and
(n0 after σ) = {n′3}. However, after the empty observation, the system can be
either in n0 or n1, i.e. (n0 after ǫ) = {n0, n1}.

2.3.2 Quiescence and Produced Outputs

With reactive systems, we need to differentiate states where the system can still
produce some outputs, and those where the system blocks. The system can block
mainly for one of the following reasons [JJ05]: the system is waiting for an input
from the environment (output quiescence); the system cannot evolve (deadlock);
the system diverges by an infinite sequence of silent actions (livelock). Blockings
of the system are captured by the notion of quiescence [Seg97, STS13].

Definition 2.5 (Quiescence). Let (N,L,≤, n0) ∈ RT (L), a node n ∈ N is

quiescent iff ∀µ : n
µ

−→ implies µ 6∈ Out.

Example 2.7 (Quiescence). Consider the ticket provider Rtick from Figure 2.2.
From node n3, it is possible to perform output !prip and therefore n3 is not a
quiescent node. Contrary to this, node n1 only allows inputs actions ?selt and
?selp, thus n1 is quiescent.

In the ioco theory, the specification of the system is determinized before
constructing the test suite. The notion of quiescence is lost after this deter-
minization, therefore the observation of quiescence is usually made explicit by
adding self loops labeled by a δ action in the LTS for every quiescent state
before determinization of the specification. When this LTS is unfolded using
Algorithm 1, every quiescent state generates a quiescent node n in the RT such

that n
δ

=⇒.
If the system is not in a quiescent state, then it can produce some output.

The produced outputs of an RT in a given node n, are the outputs actions that
are enabled in n or δ if n is quiescent. This notion can be generalized for a set
of nodes.

Definition 2.6 (Produced Outputs). Let (N,L,≤, n0) ∈ RT (L), n ∈ N and
S ⊆ N , we define

out(n) , {!o ∈ Out | n
!o
=⇒} ∪ {δ | n

δ
=⇒}

out(S) ,
⋃
n∈S

out(n)

Example 2.8 (Produced Outputs). Consider the ticket provider system Rtick in
Figure 2.2. Node n0 neither is quiescent (a τ action can be performed), nor it



2.3. OBSERVING LTSS 21

allows to produce some outputs, while it is shown in Example 2.7 that n1 is a

quiescent node and then we have n1
δ

=⇒. After observing the empty trace ǫ,
the system can be either in node n0 or node n1 and then out(Rtick after ǫ) =
out({n0, n1}) = {δ}. After selecting a train ticket, the reached node is unique
and the system can produce two outputs, i.e. out(Rtick after ?selt) = out(n2) =
{!pri1t , !pri

2
t}.

2.3.3 Possible Inputs

It is sometimes argued that a reactive system should not be able to block an
input proposed by the environment [Tre08]. A system that cannot reject inputs
is called input-enabled.

Definition 2.7 (Input-enabledness). Let R = (N,L,≤, n0) ∈ RT (L), system

R is called input-enabled iff ∀n ∈ N, ?i ∈ In : n
?i
=⇒.

The ioco theory assumes the input-enabledness of the implementation. This
assumption is made to avoid computation interference [XS09] in the parallel
composition between the implementation and the test cases. However, even
if many realistic systems can be modeled as an input-enabled system, there
remains a significant portion of realistic systems that cannot. An example of
such a system is an automatic cash dispenser where the action of introducing a
card becomes (physically) unavailable after inserting a card, as the automatic
cash dispenser is not able to swallow more than one card at a time. In order to
overcome this problem, we also consider the inputs the system refuses to accept.

Refused inputs can be made explicitly observable by a special action as qui-
escence is observable by a δ action (see for example [HT97]). Lestiennes and
Gaudel [LG05] enrich the system model by refused transitions and a set of pos-
sible actions is defined in each state. Any possible input in a given state of the
specification should be possible in a correct implementation, or equivalently, ev-
ery input refused by the implementation should be refused by the specification.
This implies the assumption that there exists a way to observe the refusal of an
input by the implementation during testing. This assumption is quite natural,
for instance, in the case of the cash dispenser which cannot accept more than
one card. One can consider that the system under test would display an error
message or a warning in case it cannot handle an input the environment pro-
poses. As in the case of outputs, possible inputs can be generalized for a set of
states.

Definition 2.8 (Possible Inputs). Let R ∈ RT (L), n ∈ N and S ⊆ N , we define

poss(n) , {?i ∈ In | n
?i
=⇒}

poss(∅) , In
poss(S) ,

⋃
n∈S

poss(n)



22 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

Remark 1. Since we consider the possible inputs after some trace and the set
of reached states after such a trace can be empty, for technical convenience, we
define poss(∅) as the set of all inputs. For a detailed explanation, see Section 2.4.

Example 2.9 (Possible Inputs). In the tickets provider system Rtick from Fig-
ure 2.2, the system can reach from its initial state (by a τ action) node n1

which enables inputs ?selt and ?selp. As the system can reach both n0 and n1

after an empty observation, we have poss(Rtick after ǫ) = poss({n0, n1}) =
{?selt, ?selp}.

2.4 The ioco Conformance Relation

This section presents the testing hypotheses and conformance relation for con-
formance testing of labeled transition systems.

Testing Hypotheses: We assume that the specification of the system is given
as labeled transition system (Q,L,∆, q0) over alphabet L = In ⊎ Out of input
and output labels. To be able to test an implementation against such a speci-
fication, we make a set of testing assumptions. First of all, we make the usual
testing assumption that the behavior of the SUT itself can be modeled by a
labeled transition system over the same alphabet of labels. We also assume as
usual that the implementation is input-enabled and that the specification does
not contain cycles of silent actions to avoid divergence. The end to this section
discusses how the latter can be relaxed.

We present now a conformance relation based on the notions of observa-
tion presented in this chapter. Informally, the input-output conformance re-
lation [Tre96a] states that an implementation I conforms to a specification S
iff after an arbitrary experiment extracted from S, the outputs produced by I
are also produced by S. We have chosen to define this relation over a behavior
model (RTs) rather than over LTSs, to unify it with the other conformance
relations presented in this thesis, which are defined over behavioral models.

Definition 2.9 (ioco). Let S, I ∈ RT (L) be respectively the specification and
an input-enabled implementation of the system. The ioco relation is defined as

I ioco S ⇔ ∀σ ∈ traces(S) : out(I after σ) ⊆ out(S after σ)

Example 2.10 (Removed Outputs). Consider Figure 2.3 and the ticket provider
specification S1 = Rtick from Figure 2.2. Implementation I1 removes the pos-
sibility to produce a second kind of price after selecting a train ticket, i.e.
out(I1 after ?selt) = {!pri1t}, but since the produced output is specified, i.e.
out(S1 after ?selt) = {!pri1t , !pri

2
t}, and the rest of the tree is isomorphic to

S1, we can conclude that I1 ioco S1.

Even if ioco allows to remove some outputs the system may produce when
the specification allows several ones, at least one of them must be implemented
to avoid extra quiescence. Extra quiescence and extra outputs are not allowed.



2.4. THE IOCO CONFORMANCE RELATION 23

. . . . . .. . . . . .

τ

?selt ?selp

!pri1t !prip

?selt ?selp ?selt ?selp

I1

Figure 2.3: A conformant implementation of the ticket provider w.r.t ioco.

Example 2.11 (Extra Quiescence and Outputs). Figure 2.4 shows two implemen-
tations with non specified outputs: I2 allows the user to select a train ticket,
but no output is produced. The system reaches a quiescent state after select-
ing the ticket, i.e. out(I2 after ?selt) = {δ}, which is not a specified output.
We have then that ¬(I2 ioco S1). Implementation I3 can produce a second
type of price when a plane is selected, out(I3 after ?selp) = {!prip, !pri

2
p}, but

!pri2p 6∈ out(S1 after ?selp) so ¬(I3 ioco S1).

The fact that ioco only requires inclusion of produced outputs, together
with the fact that specifications can be non-input-enabled, makes it possible to
have partial specifications. For experiments which are not in traces(S), there is
no requirement on the implementation, which implies that an implementation
is free to implement anything it likes after such a trace.

Example 2.12 (Extra Behaviors). The implementation presented in Figure 2.5
allows the user to choose a boat ticket rather than a train or plane one. Even
if the output !prib is not specified, this output is only produced after selecting
a boat ticket, and since this input is not specified either, this behavior is never
tested. We have I4 ioco S1.

Avoiding input-enabledness: An LTS can easily be converted into an input-
enabled system by adding loops for any missing input in every state or adding
an error state and transitions to this error state for all unexpected inputs. These
techniques are known as angelic and diabolic completion [Tre08]. In Figures, we
usually avoid drawing unexpected inputs. We propose a conformance relation
that drops the input-enabledness assumption of the implementation and test
refusals, but which remains conservative w.r.t the standard ioco. Consider the



24 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

. . . . . .

τ

?selt ?selp

!prip

?selt ?selp

I2

. . .

. . . . . . . . .. . . . . . . . .

!pri2p

τ

?selt

?selp

!pri1t !pri2t !prip

?selt ?selp ?selt ?selp ?selt ?selp

I3

Figure 2.4: Extra quiescence and outputs in the implementation.



2.4. THE IOCO CONFORMANCE RELATION 25

. . .

. . . . . . . . .. . . . . . . . .

?selb !prib
τ

?selt

?selp

!pri1t !pri2t !prip

?selt ?selp ?selt ?selp ?selt ?selp

I4

Figure 2.5: Extra behavior in the implementation.

conformance relation below

I ioco2 S ⇔ ∀σ ∈ traces(S) : (2.1)

poss(S after σ) ⊆ poss(I after σ) (2.2)

out(I after σ) ⊆ out(S after σ)

It is expected that Equation 2.2 reduces to true whenever the implementation
is input-enabled. This is not always true if poss(∅) 6= In. Suppose we remove
poss(∅) , In from Definition 2.8, and consider σ ∈ L∗ which is not a trace of
the implementation, then poss(I after σ) = poss(∅) = ∅. Consider behavioral
expressions S = ?i1; (!o1 + (!o2; ?i2)) and I = ?i1; o1. After completing with
inputs to make I input-enabled, we have that I ioco S. However, ¬(I ioco2 S)
since {?i2} = poss(S after ?i1·!o2) 6⊆ poss(I after ?i1·!o2) = ∅. If poss(∅) =
In, then Equation 2.2 reduces to true whenever the implementation is input-
enabled and ioco and ioco2 coincide.

Theorem 1. Let S and I be respectively the specification and an input-enabled
implementation of a system, then we have

I ioco S iff I ioco2 S

Proof. Suppose σ ∈ traces(S). If σ ∈ traces(I), then as the implementation is
input-enabled we have poss(I after σ) = In. If σ 6∈ traces(I), by Definition 2.8
we have poss(I after σ) = poss(∅) = In. In both cases Equation 2.2 reduces
to poss(S after σ) ⊆ In which is clearly true and both conformance relations
coincide.

To overcome the same problem, [LG05] considers in the conformance relation
only traces of the specification that can also be executed in the implementation.



26 CHAPTER 2. CONF. TEST. FOR SEQUENTIAL MODELS

Similar to this, [BJSK12] introduces a refinement relation where inclusion of in-
puts is required after traces of the implementation and not of the specification. It
is possible to avoid defining poss(∅) = In by requiring ∀σ ∈ traces(S)∩traces(I)
instead of (2.1), however we have decided to follow the approach proposed in
this thesis to keep our conformance relations as similar as possible to ioco.

2.5 Conclusion

This chapter introduces the ioco theory that allows to test concurrent systems
interpreting concurrency by interleavings. The only contribution of this chapter
is the definition of the ioco2 relation that drops the input-enabledness assump-
tion of the implementation and Theorem 1 which shows that under such an
assumption ioco and ioco2 coincide.

The presentation we have chosen is different from the traditional one: we
show how a labeled transition system can be unfolded into its reachability tree
and the notions of executions, observations and conformance relations are de-
fined on the unfolded system. This presentation is the same that we follow
in Chapter 3 and Chapter 4 and allows to see the similitudes of the testing
framework besides the chosen semantics.



3
Conformance Testing for Non-Sequential Models

This chapter introduces a non-interleaving (also called true concurrency) model
which interprets concurrency as independence between actions rather than as
interleavings. As in the previous chapter, we present the system model (Petri
nets) and its branching semantics by means of behavior models (occurrence
nets and event structures) together with the different notions of observations
for this semantics and the co-ioco conformance relation that allows to test for
independent between actions.

3.1 Petri Nets

A net consists of two disjoint sets P and T representing respectively places and
transitions together with a set F of flow arcs. The notion of “state” of the
system in a net is captured by its markings. A marking is a multiset M of
places, i.e. a map M : P → N. In this thesis, we focus on the so-called safe
nets where markings are sets, i.e. M(p) ∈ {0, 1} for all p ∈ P . A Petri net
(PN) is a net together with an initial marking and a function that labels its
transitions over an alphabet L of observable actions. As in the case of LTS, we
differentiate between inputs proposed by the environment and outputs produced
by the system (L = In ⊎ Out) and internal actions labeled by τ .

Definition 3.1 (Petri Nets). A PN is a tuple N = (P, T, F, λ,M0) where

• P 6= ∅ is a set of places;

• T 6= ∅ is a set of transitions such that P ∩ T = ∅;

• F ⊆ (P × T ) ∪ (T × P ) is a set of flow arcs;

• λ : T → (L ∪ {τ}) is a labeling mapping; and

• M0 ⊆ P is an initial marking.

27



28 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

p1

p2

p3

p4

t1?log

t2
τ

t3 !datas

p5

p6

p7

t4

?seli

t5

!prii

t6

!datai p8

p9

p10

t7

?selp

t8 !prip

t9

?selt

t10 !pri1t

t11 !pri2t

Nag

Figure 3.1: A Petri net representing the behavior of a travel agency.

Denote by T In, TOut and T τ the input, output and internal transition sets,
respectively; that is, T In , λ−1(In), TOut , λ−1(Out) and T τ , λ−1(τ).
Elements of P ∪ T are called the nodes of N . For a transition t ∈ T , we call
•t = {p | (p, t) ∈ F} the preset of t, and t• = {p | (t, p) ∈ F} the postset of t.
These notions can be extended to sets of transitions. In figures, we represent
as usual places by empty circles, transitions by squares, F by arrows, and the
marking of a place p by black tokens in p.

A transition t is enabled in marking M , written M
t

−→, if •t ⊆ M . This
enabled transition can fire, resulting in a new marking M ′ = (M\•t) ∪ t•. This

firing relation is denoted by M
t

−→ M ′. A marking M is reachable from M0 if

there exists a firing sequence, i.e. transitions, t0 . . . tn such thatM0
t0−→M1

t1−→

. . .
tn−→M . The set of reachable markings from M0 is denoted by R(N ).
A Petri net N is called deterministically labeled if and only if no two tran-

sitions with the same label are simultaneously enabled, i.e. for all t1 6= t2 ∈ T

and M ∈ R(N ) we have M
t1−→ and M

t2−→ imply λ(t1) 6= λ(t2). Deterministic
labeling ensures that the system behavior is locally discernible through labels.

Example 3.1 (Petri Nets). Figure 3.1 shows a PN modeling the behavior of a
travel agency. After the user has logged in (t1), the system internally enables
(by firing t2) three concurrent behaviors: (i) some data is produced by the server
(t3); (ii) the user can choose an insurance (t4); (iii) the user can choose some
tickets (t7 or t9). The selection of the insurance is followed by outputs with
its price (t5) and some data (t6). If the user selects a plane ticket, its price is
shown (t8) and if he selects a train ticket, the system displays one out of two



3.2. PARTIAL ORDER SEMANTICS FOR PNS 29

possible prices (t10 or t11).

The firing relation allows to represent the dynamic behavior of a net, relating
states of the system (markings) and the actions the system can perform in
those states (the enabled transitions). However, firing sequences only allow to
represent the sequential behavior of a net. We will use partial orders semantics
given by a net unfolding which highlights the choices of the system and therefore,
we categorize Petri nets as system/non-interleaving/branching-time models.

3.2 Partial Order Semantics for PNs

Partial order semantics of a Petri net is given by its unfolding, an acyclic (and
usually infinite) structure that highlights the branching of the process. Un-
foldings are usually represented by a subclass of Petri nets called occurrence
nets. Occurrence nets are isomorphic to event structures [NPW81] and there-
fore one can easily forget about places of the net by adding information about
the branching. Most of the notions presented in this chapter are explained in
terms of event structures since they facilitate the presentation. However, for
some technical notions in Chapter 5 and Chapter 6, we will use the net repre-
sentation. We present in this section both formalisms.

The execution for this semantics are not sequences but partial orders, in
which concurrency is represented by absence of precedence, i.e. independence.

3.2.1 Occurrence Nets and Unfoldings

Occurrence nets can be seen as infinite Petri nets with a special acyclic structure
that highlights conflict between transitions that compete for resources. Places
and transitions of an occurrence net are usually called conditions and events
and denoted by B and E. Occurrence nets generalize reachability trees allowing
actions to be concurrent. Formally, let N = (P, T, F ) be a net, < the transitive
closure of F , and ≤ the reflexive closure of <. We say that transitions t1
and t2 are in structural conflict, written t1#

ωt2, if and only if t1 6= t2 and
•t1 ∩

•t2 6= ∅. Conflict is inherited along <, that is, the conflict relation # is
given by a#b⇔ ∃ta, tb ∈ T : ta#

ωtb ∧ ta ≤ a ∧ tb ≤ b. Finally, the concurrency
relation co holds between nodes a, b ∈ P ∪ T that are neither ordered nor in
conflict, i.e. a co b⇔ ¬(a ≤ b) ∧ ¬(a#b) ∧ ¬(b ≤ a).

Definition 3.2 (Occurrence Nets). A net ON = (B,E, F ) is an occurrence net
iff

1. ≤ is a partial order;

2. for all b ∈ B, |•b| ∈ {0, 1};

3. for all x ∈ B ∪ E, the set {y ∈ E | y ≤ x} is finite;

4. there is not self-conflict, i.e. there is no x ∈ B ∪ E such that x#x;



30 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

5. ⊥∈ E is the only ≤-minimal node (event ⊥ creates the initial conditions)

Call the elements of E events, those of B conditions. A set of conditions is a
co-set if its elements are pairwise in co relation. A maximal co-set with respect
to set inclusion is called a cut. Occurrence nets are the mathematical form of
the partial order unfolding semantics of a Petri net [ERV02].

Definition 3.3 (Branching Processes). A branching process of a Petri net N =
(P, T, F, λ,M0) is given by a pair β = (ON,ϕ), where ON = (B,E, F ) is an
occurrence net, and ϕ : B ∪ E → P ∪ T is such that:

1. it is a homomorphism from ON to N , i.e.

• ϕ(B) ⊆ P and ϕ(E) ⊆ T ; and

• for every e ∈ E, the restriction of ϕ to •e is a bijection between the
set •e in ON and the set •ϕ(e) in N , and similarly for e• and ϕ(e)

•
;

2. the restriction of ϕ to ⊥• is a bijection from ⊥• to M0; and

3. for every e1, e2 ∈ E, if •e1 = •e2 and ϕ(e1) = ϕ(e2) then e1 = e2.

The unique (up to isomorphism) maximal branching process U = (ON,ϕ)
of N is called the unfolding of N . Every cut C of the unfolding represents a
marking in the original net, i.e. ϕ(C) ∈ R(N ).

We present the algorithm to construct the unfolding of a net [ERV02]. A
branching process of a net N is represented as a set of nodes. A node is either
a condition or an event. A condition is a pair (p, e), where p is a place of N
and e is its preset. An event is a pair (t, C), where t is either a transition in N
or ⊥, and C is its preset. The possible extensions of a branching process β are
the pairs (t, C) where the elements of C form a co-set, t is such that ϕ(C) = •t
and β contains no event e satisfying ϕ(e) = t and •e = C. We denote the set of
possible extensions of β by PE(β).

The algorithm starts with a branching process containing the ⊥ event and
conditions corresponding to the initial marking. New events from PE(β) are
added one at a time with its corresponding postset.

Algorithm 2 Petri nets unfolding

Require: a Petri net N = (P, T, F, λ,M0), where M0 = {p1, . . . , pk}
Ensure: the unfolding of N
1: U := {(⊥, ∅), (p1,⊥), . . . , (pk,⊥)}
2: pe := PE(U)
3: while pe 6= ∅ do
4: add to U an event e = (t, C) of pe and a condition (p, e) for every place
p in t•

5: pe := PE(U)

6: return U



3.2. PARTIAL ORDER SEMANTICS FOR PNS 31

⊥

b1

b2

b3

b4

e1?log

e2
τ

e3!datas

b5b6b7b′5
e4

?seli
e5

!prii
e6

!datai
. . .

b8

b9

b10

b′8

b′′8

b′′′8
e7

?selp

e8

!prip

e9

?selt

e10

!pri1t

e11

!pri2t

. . .

. . .

. . .

Uag

Figure 3.2: Initial part of the unfolding of Nag.

Occurrence nets are a subclass of Petri nets and thus they can be classified
as system models. However, as in the case of RTs, we classify them as behavior
models as events can occur only once and therefore their execution identify the
current state of the system, i.e. the current cut of the unfolding or the marking
of the net.

Example 3.2 (Unfoldings). Figure 3.2 shows the initial part of the unfolding
Uag of the net Nag in Figure 3.1 obtained by Algorithm 2. Colors show that
conditions represent different instances of the same place in the original net,
for example, ϕ(b8) = ϕ(b′8) = ϕ(b′′8) = ϕ(b′′′8 ) = p8. As can be observed in the
figure, the unfolding of every net containing cycles is infinite.

3.2.2 Event Structures

Occurrence nets give rise to event structures [NPW81] where the information
provided by conditions is replaced by a conflict relation.

Definition 3.4 (Event Structures). An Event Structure (ES) over an alphabet
L = In ⊎ Out is a 4-tuple E = (E,≤,#, λ) where

• E is a set of events;

• ≤ ⊆ E × E is a partial order (called causality) satisfying the property of
finite causes, i.e. ∀e ∈ E : |{e′ ∈ E | e′ ≤ e}| <∞;

• # ⊆ E ×E is an irreflexive symmetric relation (called conflict) satisfying
the property of conflict heredity, i.e. ∀e, e′, e′′ ∈ E : e#e′ ∧ e′ ≤ e′′ ⇒
e#e′′;



32 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e14?seli

. . .

e7

?selp

e8!prip

e9

?selt

e10!pri1t e11 !pri2t

e17?selp e19

?selt

. . . . . . . . .

e27?selp e29

?selt

. . . . . . . . .

e37?selp e39 ?selt

. . . . . . . . .

Eag

Figure 3.3: Initial part of the unfolding of net from Figure 3.1 given as an ES.

• λ : E → L ∪ {τ} is a labeling mapping;

• there exists an unique ≤-minimal event ⊥ labeled by τ .

Conflicts which cannot be derived from the conflict heredity property are
called immediate (or reduced) conflicts and denoted by e #r e′. In figures,
events are represented by squares, causality by arrows and immediate conflict
by dashed lines. The past of an event e is defined as [e] , {e′ ∈ E | e′ ≤ e}.
The sets of inputs, outputs and internal events are denoted respectively by
EIn , {e ∈ E | λ(e) ∈ In}, EOut , {e ∈ E | λ(e) ∈ Out} and Eτ , {e ∈ E |
λ(e) = τ}. Events which are neither related by causality nor by conflict, are
called concurrent, i.e. e co e′ ⇔ ¬(e ≤ e′) ∧ ¬(e#e′) ∧ ¬(e′ ≤ e).

Example 3.3 (Event Structures). Figure 3.3 shows the initial part of the unfold-
ing of Nag given as an ES. This ES can easily be obtained from the occurrence
net Uag replacing conditions by conflicts.

An event structure is a behavior/non-interleaving/branching-time model,
where the ‘state’ of the system is represented by the events that have occurred
in the computation. As causality represents precedence, such computation must
be causally closed. In addition, as conflict represents fight for a resource (this
can be observed explicitly in the occurrence net), the computation must be in
addition conflict-free. The state of a system in an ES is captured by the notion
of configuration.



3.2. PARTIAL ORDER SEMANTICS FOR PNS 33

Definition 3.5 (Configurations). A configuration of an ES is a non-empty set
C ⊆ E such that

• C is causally closed, i.e. e ∈ C implies [e] ⊆ C, and

• C is conflict-free, i.e. e ∈ C and e#e′ imply e′ 6∈ C.

For technical convenience, we define all configurations to be non-empty; the
initial configuration of E, containing only ⊥ and also denoted by ⊥, is contained
in every configuration of E. We denote the set of all the configurations of E by
C(E).

Example 3.4 (Configurations). Consider system Eag from Figure 3.3. The set
{⊥, e2, e4} does not form a configuration as e4 causally depends on e1 which
is not part of the set, i.e. the user cannot select an insurance without logging
in. The set {⊥, e1, e2, e7, e9} is not conflict-free and thus is not a configuration
either, i.e. the user cannot select simultaneously a train and a place ticket.
However, the user can login (after which the server can fire the internal action
represented by e2), select an insurance and obtain a price and some data, i.e.
C = {⊥, e1, e2, e4, e5, e6} ∈ C(Eag). Configurations allow to represent concurrent
behaviors, i.e. together with the selection of the insurance, some data can be
produced concurrently and thus C ∪ {e3} is also a configuration.

We define configurations in terms of the events of an event structure, however
they can be defined directly over occurrence nets. Every configuration C in an
occurrence net generates a cut C• which, as we saw, is related with a reachable
marking of the original net. We relate a configuration C and the reachable
marking it generates by Mark(C) = ϕ(C•).

3.2.3 Partial Order Executions

The definition of the notion of execution for an event structure is not straight-
forward since it relies on the chosen semantics for concurrency [ADF86]. For
partial order semantics, we use labeled partial orders to keep concurrency ex-
plicit in the executions.

Definition 3.6 (Labeled Partial Orders). A Labeled Partial Order (LPO) over
an alphabet L is a tuple lpo = (E,≤, λ), where

• E is a set of events,

• ≤ is a reflexive, antisymmetric, and transitive relation, and

• λ : E → L ∪ {τ} is a labeling mapping.

We denote the class of all labeled partial orders over L by LPO(L).



34 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

?log

τ

!datas?seli

!prii

!datai

?selt

!pri1t

η1

?log

τ

!datas ?selp

!prip

η2

?selp

!prip

?selt

η3

Figure 3.4: Partial order executions.

Example 3.5 (Labeled Partial Orders). Consider the LPOs from Figure 3.4: η1
represents the behavior where after logging in, some internal action is possible,
followed by some data which is produced by the server. Concurrently to this, the
user selects an insurance and a train ticket with the corresponding production
of outputs. In η2, some data is produced after logging in and an internal action
of the server. Concurrently to the production of data, the user selects a train
ticket and its price is produced. In η3, the user selects a plane ticket, obtains its
price and then selects a train ticket.

As we can only observe the ordering between the labels and not between
the events, we should consider different partial orders respecting this order as
equivalent. An isomorphism between partial orders is a bijective function that
preserves ordering and labeling.

Definition 3.7 (Isomorphisms). Let lpo1 = (E1,≤1, λ1), lpo2 = (E2,≤2, λ2) ∈
LPO(L). A bijective function f : E1 → E2 is an isomorphism between lpo1 and
lpo2 iff

• ∀e, e′ ∈ E1 : e ≤1 e
′ ⇔ f(e) ≤2 f(e

′)

• ∀e ∈ E1 : λ1(e) = λ2(f(e))

Two labeled partial orders lpo1 and lpo2 are isomorphic if there exists an iso-
morphism between them.

Definition 3.8 (Pomsets). A partially ordered multiset (pomset) is the isomor-
phic class of some LPO. Any such class is represented by one of its objects. We
denote the class of all pomsets by PS(L).

As explained above, an execution of an event structure can be represented
by a pomset, leading to the following notion of partial order executions.



3.3. OBSERVING PNS 35

Definition 3.9 (Partial Order Executions). Let E = (E,≤,#, λ) ∈ ES(L) with
C,C ′ ∈ C(E) and η ∈ PS(L), we define

C
η

−→ C ′ , ∃lpo = (Eη,≤η, λη) ∈ η : C ′ = C ⊎ Eη,
≤ ∩ (Eη × Eη) =≤η and λ|Eη

= λη
C

η
−→ , ∃C ′ : C

η
−→ C ′

We say that η is a partial order execution of C if C
η

−→.

As in the case of RTs, we will identify an ES with its initial configuration,

e.g. we equally use E
η

−→ and ⊥
η

−→.

Example 3.6 (Partial Order Executions). Consider the LPOs from Figure 3.4
and system Eag in Figure 3.3. The labels from η1 preserve the causality of the

events in Eag with the same labels, thus Eag
η1
−→ {⊥, e1, e2, e3, e4, e5, e6, e9, e10}.

The LPO η2 also respects the causality and then Eag
η2
−→ {⊥, e1, e2, e3, e7, e8}.

The notion of partial order execution is not restricted just to the initial con-
figuration of the system. If the user has logged in and the system performs
an action internally, i.e. it fires e2, the system is currently in configuration
{⊥, e1, e2} from which the behavior η3 is possible. This can be formalized as

{⊥, e1, e2}
η3
−→ {⊥, e1, e2, e7, e8, e

1
9}.

Deterministically labeled nets unfold into ES where executions uniquely de-
fine the reached configuration. Such kind of ES are called deterministic.

Definition 3.10 (Determinism). Let E ∈ ES(L), C, C ′, C ′′ ∈ C(E) and η ∈

PS(L), E is deterministic iff C
η

−→ C ′ and C
η

−→ C ′′ imply C ′ = C ′′.

3.3 Observing PNs

In this section, we define the notions of traces, outputs, quiescence and refusals
in the context of event structures. As these definition depend on configurations,
the same definitions can be used for occurrence nets.

3.3.1 Traces

The observable behavior of a system can be captured by abstracting the internal
actions from its executions (which are pomset in this setting).

Definition 3.11 (τ -abstractions). Let η, ω ∈ PS(L), we say that abs(η) = ω iff
there exist lpoη = (Eη,≤η, λη) ∈ η and lpoω = (Eω,≤ω, λω) ∈ ω such that

• Eω = {e ∈ Eη | λη(e) 6= τ}

• ≤ω = ≤η ∩ (Eω × Eω)

• λω = λη |Eω



36 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

?log

!datas?seli

!prii

!datai

?selt

!pri1t

ω1

?log

!datas ?selp

!prip

ω2

Figure 3.5: τ -abstraction of LPOs.

An observation from a given configuration is the τ -abstraction of one of its
partial order executions.

Definition 3.12 (Observations). Let E = (E,≤,#, λ) ∈ ES(L) with C,C ′ ∈
C(E) and ω ∈ PS(L), we define

C
ω

=⇒ C ′ , ∃η : C
η

−→ C ′ and abs(η) = ω

C
ω

=⇒ , ∃C ′ : C
ω

=⇒ C ′

We say that ω is an observation of C if C
ω

=⇒.

Example 3.7 (Observations). Consider the LPOs from Figure 3.4 and Fig-
ure 3.5. Clearly abs(η1) = ω1 and abs(η2) = ω2 while abs(η3) = η3. It is
shown in Example 3.6 that

Eag
η1
−→ {⊥, e1, e2, e3, e4, e5, e6, e9, e10}

Eag
η2
−→ {⊥, e1, e2, e3, e7, e8}

{⊥, e1, e2}
η3
−→ {⊥, e1, e2, e7, e8, e

1
9}

therefore we can conclude that

Eag
ω1=⇒ {⊥, e1, e2, e3, e4, e5, e6, e9, e10}

Eag
ω2=⇒ {⊥, e1, e2, e3, e7, e8}

{⊥, e1, e2}
η3
=⇒ {⊥, e1, e2, e7, e8, e

1
9}

We can now define the notions of traces and reached configurations from
another given configuration by an observation. Our notion of trace is similar to
the one of Ulrich and König [UK97], where a trace is considered as a sequence of
partial orders. The reached configurations that we consider are those that can
be reached by abstracting the silent actions of an execution and only considering
observable ones; this notion is similar to the one of unobservable reach proposed
by Genc and Lafortune [GL03].



3.3. OBSERVING PNS 37

Definition 3.13 (Traces and Reached Configurations). Let E ∈ ES(L) with
C,C ′ ∈ C(E) and ω ∈ PS(L), we define

traces(E) , {ω ∈ PS(L) |⊥
ω

=⇒}

C after ω , {C ′ | C
ω

=⇒ C ′}

Example 3.8 (Traces and Reached Configurations). It is shown in Example 3.7
that both ω1 and ω2 are possible observations from the initial configuration of
Eag, thus we have ω1, ω2 ∈ traces(Eag). In addition, it is easy to see that ?log

is observable from the initial configuration, i.e. Eag
?log
=⇒. However, as internal

actions are not observable, it is not possible to detect if e2 occurred or not,
this implies that the reached configuration after logging in is not unique, i.e.
(Eag after ?log) = {{e1}, {e1, e2}}.

As it is shown in the example above, our definition of after is general
enough to handle nondeterminism in the computation. However, in our testing
framework, we will only consider deterministic ES where ambiguity between the
reached configuration is only due to internal actions.

3.3.2 Quiescence and Produced Outputs

The notion of quiescence in true concurrency models is similar to the one in
interleaving models, i.e. a quiescent configuration is such that it can not be
extended by output events.

Definition 3.14 (Quiescence). Let E = (E,≤,#, λ) ∈ ES(L), a configuration
C ∈ C(E) is quiescent iff for every e ∈ E such that C ∪ {e} ∈ C(E) we have
e 6∈ EOut.

As explained in the previous chapter, the observation of quiescence is usually
made explicit in LTSs by adding self loops labeled by a δ action on quiescent
states. The same can be done for a Petri net: for every marking M that only
enables input transitions, we add a transition tδ with •tδ = tδ

• = M and
λ(tδ) = δ. In the unfolding of such net, a quiescent marking is represented by a

quiescent configuration C such that C
δ

=⇒. We avoid adding those transitions to
the net and just assume that for every quiescent configuration C of the unfolding

we have C
δ

=⇒.
In the LTS framework, the produced outputs of the systems are single ele-

ments of the alphabet of outputs rather than sequences of them [Tre96a]. Con-
sider a system S that produced !a followed by !b after σ, then out(S after σ) =
{!a} and out(S after (σ·!a)) = {!b} rather than out(S after σ) = {!a·!b}. How-
ever, here we need any set of outputs to be entirely produced by the system under
test before we send a new input; this is necessary to detect outputs depending
on extra inputs. In fact, suppose one has two concurrent outputs !o1 and !o2
and an input ?i depending on both outputs. Clearly, an implementation that
accepts ?i before !o2 should not be considered as correct, but if ?i is sent too



38 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

early to the system, we may not know if the occurrence of !o2 depends or not
on ?i.

In order to compute the set of possible outputs from a given configuration
and detect extra dependancies, from every configuration of the system, a quies-
cent configuration must be reached after some observation. For this reason, we
make the following assumption.

Assumption 1. We consider systems that cannot diverge by infinitely many
occurrences of internal or output actions, i.e. ∀M ∈ R(N ), σ ∈ (Out ∪ {τ})∗ :

M
σ

−→M implies |σ| <∞.

The assumption above implies that for every configuration, there exists a
finite partial order execution leading to a quiescent configuration. We define
the expected outputs from a configuration as the pomset of outputs leading to
a quiescent configuration, or δ if the configuration is already quiescent. This
notion can be extended to a set of configurations.

Definition 3.15 (Produced Outputs). Let E ∈ ES(L), C ∈ C(E) and S ⊆ C(E),
we define

out(C) , {!ω ∈ PS(Out) | C
!ω
=⇒ C ′ ∧ C ′ δ

=⇒} ∪ {δ | C
δ

=⇒}
out(S) ,

⋃
C∈S

out(C)

Example 3.9 (Produced Outputs). Consider the configuration reached by Eag
after the user logged in, selected an insurance and the server produced its data,
i.e. (Eag after ?log · (!datas co ?seli)) = {⊥, e1, e2, e3, e4}. From this configu-
ration, the system produces the price of the insurance followed by its data, i.e.
out(Eag after ?log · (!datas co ?seli)) = {!prii·!datai}. Now consider the con-
figuration just before the server produced the data, i.e. (Eag after ?log·?seli) =
{⊥, e1, e2, e4}. This configuration also enables the outputs corresponding to the
insurance price and data, but the configuration the system reaches after they
are produced, i.e. (Eag after ?log·?seli·!prii·!datai) = {e1, e2, e4, e5, e6}, is not
quiescent as it still enables the production of the server data. We can conclude
!prii·!datai 6∈ out(Eag after ?log·?seli). The output produced from this configu-
ration considers concurrently the outputs of the insurance and the data produced
by the server, i.e. out(Eag after ?log·?seli) = {(!prii·!datai) co !datas}. The
set of produced outputs is not necessarily a singleton. After logging in, produc-
ing some data and selecting a train ticket, the system produces one out of two
possible outputs, i.e. out(Eag after ?log · (!datas co ?selt)) = {!pri1t , !pri

2
t}.

3.3.3 Possible Inputs

Possible inputs from a given configuration are pomsets composed of input ac-
tions that are enabled. Different to what happens with outputs, where we
consider all the outputs leading to a quiescent configuration, for inputs, we con-
sider every possible pomsets, even those representing partial behavior of other
possible inputs.



3.4. THE CO-IOCO CONFORMANCE RELATION 39

Definition 3.16 (Possible Inputs). Let E ∈ ES(L), C ∈ C(E) and S ⊆ C(E), we
define

poss(C) , {?ω ∈ PS(In) | C
?ω
=⇒}

poss(∅) , PS(In)
poss(S) ,

⋃
C∈S

poss(C)

Example 3.10 (Possible Inputs). From the initial configuration of Eag, the user
can just log in, i.e. poss(Eag) = {?log}, however as soon as he logged in,
the insurance selection and the choices between tickets become available ei-
ther as individual actions or concurrent ones, i.e. poss(Eag after ?log) =
{?seli, ?selt, ?selp, ?seli co ?selt, ?seli co ?selp}. This example shows how par-
tial behaviors are also considered: we do not only consider ?seli co ?selt as a
possible input, but also ?seli and ?selt.

3.4 The co-ioco Conformance Relation

This section presents the testing hypotheses and conformance relation for con-
formance testing of Petri nets.

Testing Hypotheses. We assume that the specification of the system under
test is given as a deterministically labeled Petri net N = (P, T, F, λ,M0) over
alphabet L = In⊎Out of input and output labels. To be able to test an imple-
mentation against such a specification, we make the usual testing assumption
that the behavior of the SUT itself can be modeled by a Petri net over the same
alphabet of labels. We also assume as that the specification does not contain
cycles of silent or outputs actions (Assumption 1), so that the number of ex-
pected outputs after a given trace is finite and that we can observe whenever
an input is refused.

The co-ioco conformance relation compares outputs and quiescence of the
implementation w.r.t those of the specification after an experiment extracted
from the specification. However, in this setting, traces and outputs are con-
sidered under partial order semantics, i.e. executions and outputs are pomsets
where actions specified as concurrent need to be implemented as concurrent. In
addition, we drop the input-enabledness assumption on the implementation and
consider refusals.

Definition 3.17 (co-ioco). Let S, I ∈ ES(L) be respectively the specification
and an implementation of the system, then

I co-ioco S ⇔ ∀ω ∈ traces(S) :
poss(S after ω) ⊆ poss(I after ω)
out(I after ω) ⊆ out(S after ω)

Inclusion of possible inputs can be interpreted as “any input refused by the
implementation must be refused by the specification”.



40 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

Example 3.11 (Removed Outputs and Silent Actions). Figure 3.6 shows a pos-
sible implementation of the travel agency specified by S2 = Eag in Figure 3.3.
Event e2 is not implemented, but as this event is not observable from the envi-
ronment and the transitive causalities (such as e1 ≤ e3) are implemented, the
absence of e2 does not lead to non conformance. In addition, the possibility of
producing a second kind of price after the selection of a train is removed, but
this is allowed by co-ioco. The rest of the implementation is isomorphic to S2

and we can conclude I5 co-ioco S2.

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

e9 ?selt

e10 !pri1t

. . . . . .

I5

Figure 3.6: A conformant implementation of the travel agency w.r.t co-ioco.

Example 3.12 (Removed inputs). Figure 3.7 shows an implementation that re-
moves the possibility of selecting a train ticket after logging in, i.e. ?selt 6∈
poss(I6 after ?log). As this input is possible in S3, we have ¬(I6 co-ioco S3).

Example 3.13 (Extra Causalities). Figure 3.8 shows three possible implementa-
tions of the travel agency. Implementation I7 adds causality e3 ≤ e4 and then
?seli 6∈ poss(I7 after ?log). Since the selection of the insurance is possible after
logging in S2, we have ¬(I7 co-ioco S2). Implementation I8 also adds order
between these events, but in the reverse order, i.e. e4 ≤ e3. This extra causal-
ity generates unspecified quiescence in the system, i.e. out(I8 after ?log) =
{δ} while out(S2 after ?log) = {!datas}, thus ¬(I8 co-ioco S2). System I9
produces the same output actions of the insurance, but in a concurrent way
rather than sequentially, i.e. out(I9 after ?log·?seli) = {!prii co !datai} 6=
{!prii·!datai} = out(S2 after ?log·?seli), thus we have ¬(I9 co-ioco S2).

Example 3.14 (Extra Behaviors). Implementations in Figure 3.9 allow extra
behaviors to those specified: I10 gives the user the choice of selecting a boat ticket
rather than a train or plane, while I11 allows the user, concurrently with the



3.4. THE CO-IOCO CONFORMANCE RELATION 41

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

. . .

I6

Figure 3.7: Removed inputs.

other selections, to pick a hotel. Both implementations produced extra outputs
(!prib and !prih respectively), but as these outputs are only produced after under-
specified inputs, both implementations are correct, i.e. I10 co-ioco S2 and
I11 co-ioco S2.

Relating co-ioco and ioco: The following remarks allow to relate the con-
formance relations of Chapter 2 and the co-ioco relation presented in this
chapter.

Remark 2. A labeled transition system can easily be transformed into a Petri
net and thus we can easily relate a reachability tree with its corresponding oc-
currence net or event structure. Given (N,L,≤, n0) ∈ RT (L), its correspond-
ing occurrence net is such that: B = N ; M0 = {n0}; if ∃(n, a, n′) ∈ ≤ then
∃e ∈ E : •e = {n}, e• = {n′} and λ(e) = a. It is easy to see that any

sequential execution n
µ1...µk−−−−→ n′ of the reachability tree leads to a firing se-

quence {n}
t1...tk−−−−→ {n′} with λ(ti) = µi between the markings of the occur-

rence net. Every configuration C generates a marking of the occurrence net

C•; then {n}
t1...tk−−−−→ {n′} generates a partial order execution C

η
−→ C ′ where

C• = {n}, C ′• = {n′} and µ1 . . . µk is a total order of η.

Remark 3. Whenever a reachability tree specification produces an output, any
correct implementation that implements that output, must implement all the
path composed by outputs that follow it to avoid extra quiescence. Imagine a
specification S such that out(S after ?a) = {!b} and out(S after ?a·!b) = {!d}.
If an implementation I produces !b after ?a, but not !d, this implementation is
non conformant as out(I after ?a·!b) = {δ}. If we restrict to systems that do



42 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

⊥

e1?log

e3!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I7

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I8

⊥

e1?log

e3!datase4?seli

e5!prii e6 !datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . . . . . . . .

I9

Figure 3.8: Extra causality and concurrency.



3.4. THE CO-IOCO CONFORMANCE RELATION 43

⊥

e1?log

e3!datase4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

e12

?selb
e13

!prib

. . .

. . .

. . . . . .

I10

⊥

e1?log

e3!datase4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

e12

?selh
e13

!prih

. . .

. . .

. . . . . .

I11

Figure 3.9: Extra conflicting and concurrent inputs.



44 CHAPTER 3. CONF. TEST. FOR NON-SEQUENTIAL MODELS

not allow cycles of outputs or silent actions, Definition 2.6 can be rewritten as

out(n) , {!σ ∈ Out∗ | n
!σ
=⇒ n′ ∧ n′

δ
=⇒} ∪ {δ | n

δ
=⇒}

We can now prove that when there are not cycles of outputs or internal
actions in the system, any correct implementation w.r.t co-ioco is correct w.r.t
ioco2.

Theorem 2. Let S and I be respectively the specification and implementation
of a system, then we have

I co-ioco S implies I ioco2 S

Proof. Immediate using Remark 2 and Remark 3.

In addition, if we assume the input-enabledness of the implementation, any
correct implementation w.r.t co-ioco is correct w.r.t ioco.

Theorem 3. Let S and I be respectively the specification and an input-enabled
implementation of a system, then we have

I co-ioco S implies I ioco S

Proof. By Theorem 1 and Theorem 2.

3.5 Conclusion

Even if the testing problem for concurrent systems have been widely studied
in the past, it was mostly in the context of interleaving semantics. Besides the
state space explosion problem that interleavings can generate, we have shown
in the introduction that independence between actions can not be tested using
this semantics.

This chapter presents the basic notions for the definition of a testing frame-
work where independence between actions plays a central role. The formal
model that we use for describing the behavior of the system is (1-safe) Petri
nets and their unfoldings. The explicit representation of concurrency avoids the
state space problem in the generation of test cases (see Chapter 5) and makes the
independence of action observable: in this setting, executions and observations
are partial orders where lack of dependence is interpreted as independence.

Based on the notions of (partial order) executions and observations, we de-
fined the co-ioco conformance relation where extra or missing causalities can
be detected: any system that implements actions that were specified as concur-
rent or independent by any possible order (interleavings) is considered incorrect.
In addition, the proposed conformance relation drops the input-enabledness as-
sumption on the implementation and allows to test for refusals.

Finally, we showed that co-ioco is a generalization of ioco in the sense
that when the system does not contain concurrency and the implementation is
input-enabled, both relations coincide.



4
Conformance Testing with Refined Concurrency

Chapter 2 and Chapter 3 present the two standard semantics for concurrency,
together with their corresponding notions of executions, observations and con-
formance relations. However, both semantics may be too strict in some situa-
tions where concurrency is implemented either using interleaving or partial order
semantics depending on, for example, the architecture of the system. Figure 4.1
presents a specification Spe with two processes P1 and P2 (represented by boxes)
and three concurrent actions a, b, c. Actions a and c belong to process P1 while
b belongs to process P2. In a distributed architecture, when two actions belong
to different processes, they are specified as concurrent and therefore should be
implemented in different processes. We call this notion strong concurrency and
interpret it as independence between actions, meaning that there should not be
any kind of causality (drawn by arrows) between these actions. In Spe, actions
a and b are strongly concurrent (as they belong to different processes) and are
implemented in different processes in both Impl1 and Impl2. However, in an
early stage of specification, concurrency between events can be used as under-
specification or possible refinement. Actions belonging to the same component
may be implemented in any order in the same process as it is the case of a and c
in Impl1; or the specification may still be refined and this process implemented
as several ones as it is the case of P1 which is implemented as P ′

1 and P ′′
1 in

Impl2. We capture underspecification and refinement with the notion of weak
concurrency. As it is the case of local trace languages [KM02], we allow actions
to be independent in one situation, while in another, they cannot be performed
independently, which means that the same actions can be specified as strongly
concurrent in a part of the specification and weakly concurrent in another part
of the same specification.

We illustrate the need to make these two notions of concurrency live in the
same model by examples coming from the field of micro-controller design and
security protocols.

Example 4.1 (Weak Concurrency). Consider a ParSeq controller [MY10] which

45



46 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

Spe

P1

a

c

P2

b

Impl1

P1

a

c

P2

b

Impl2

P ′′

1

P ′

1

a

c

P2

b

Figure 4.1: A specification of a system and two possible implementations.

manages two handshakes A = (reka, acka) and B = (rekb, ackb), and a set of
Boolean variables x1, x2, x3 provided by the environment as shown in Figure 4.2.
These variables are mutually exclusive (only one of them can be 1) and they
decide how the handshakes are handled. If x1 = 1, the handshakes are initiated
in parallel (concurrent events A co B), while any other possible valuation of the
variables initiates the handshakes in sequence (A < B if x2 = 1 and B < A if
x3 = 1). In this example events A and B are specified as weakly concurrent and
their actual order (if any) depends on the values of the variables.

ParSeq
controller

req
a

acka

req
b

ackb

x1

x2

x3

Figure 4.2: ParSeq controller interface.

Example 4.2 (Strong Concurrency). When designing a security protocol, an
important property, named unlinkability, is to hide the information about the
source of a message. An attacker that can identify messages as coming from
the same source can use this information and so threaten the privacy of the
user. It has been shown that the security protocol of the French RFID e-passport
is linkable, therefore anyone carrying a French e-passport can be physically
traced [ACRR10]. Causality captures linkability as two messages coming from
the same user need to be causally dependent. However, concurrency interpreted
as interleavings cannot be used to model unlinkability because both possible in-
terleavings relate the messages and therefore they reveal the identity of the user.
This property needs to be modeled by strong concurrency.

The notions of weak and strong concurrency were introduced in [PHL14c]
directly over event structures. To follow the presentation of the previous two
chapters, we introduce a system model whose semantics can be described by
event structures with weak and strong concurrency. Conditional partial order
graphs can handle concurrency as independence and interleavings. We show how



4.1. CONDITIONAL PARTIAL ORDER GRAPHS 47

to unfold those graphs into an event structures that express their semantics in
the presence of weak and strong semantics. Different notions of observation and
a new conformance relation are presented under this semantics.

4.1 Conditional Partial Order Graphs

We are interested in a model that allows to interpret both kinds of concurrency
and that represents in an compact way the behavior of a concurrent system. A
Conditional Partial Order Graph (CPOG) [MY10] is an structure that allows
compact representation of a set of partial orders. CPOGs can be used to rep-
resent different behaviors of a concurrent system. This structure consists of a
directed graph whose vertices and edges are labeled by Boolean conditions over
a set of variables X. An opcode is an assignment (x1, x2, . . . , x|X|) ∈ {0, 1}|X|

of these variables; these assignments should satisfy the restriction function ρ of
the graph, i.e. ρ(x1, x2, . . . , x|X|) = 1. Vertices of the graph represent actions
that the system can perform and edges the dependancies between them.

Definition 4.1 (Conditional Partial Order Graphs). A CPOG is a quintuple
H = (V,A,X, φ, ρ), where

• V is a set of vertices,

• A is a set of arcs between them,

• X is a set of Boolean variables,

• function φ assigns a Boolean condition φ(z) to every vertex and arc z ∈
V ⊎A of the graph,

• ρ : 2|X| → {0, 1} is a restriction function.

Example 4.3 (Conditional Partial Order Graphs). Consider a travel agency that
allows the user, after logging in, only to choose between selecting an insurance
or a plane ticket. If a plane ticket is selected, its price is displayed. However,
if an insurance is selected, the agency displays some data and its price, but it
can decide to display these outputs either concurrently or in a specific order.
Figure 4.3 (below) shows the four possible behaviors of the system and a CPOG
(above) representing these behaviors. There are two operational variables x and
y and the restriction function is ρ = 1, hence, the four opcodes x, y ∈ {0, 1} are
allowed. Vertices and arcs labeled by 1 are called unconditional (conditions equal
to 1 are not depicted in the graph). Vertices and arcs are labeled with predicates
Φ = {1, x ∨ y, x ∧ y, x, y} with the following labeling:

φ?log = 1 φ!prip = x ∧ y φ?seli→!prii = y
φ?seli = x ∨ y φ?log→?selp = 1 φ?seli→!datai = x
φ!prii = x ∨ y φ?selp→!prip = 1 φ!prii→!datai = x
φ!datai = x ∨ y φ?log→?seli = 1 φ!datai→!prii = y
φ?selp = x ∧ y



48 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

?log

?seli : x ∨ y?selp : x ∧ y

!prip : x ∧ y !prii : x ∨ y !datai : x ∨ y
x

y

y x

x = 0

y = 0

?log

?seli

!prii !datai

x = 0

y = 1

?log

?seli

!prii !datai

x = 1

y = 0

?log

?seli

!prii !datai

x = 1

y = 1

?log

?selp

!prip

Figure 4.3: Conditional partial order graph and its corresponding set of partial
orders.

The purpose of conditions is to ‘switch off’ some vertices and/or arcs in the
graph according to the given opcode. This makes CPOGs capable of containing
multiple projections as shown in Figure 4.3. The leftmost projection is obtained
by keeping in the graph only those vertices and arcs whose conditions evaluate
to Boolean 1 after substitution of the operational variables x and y with Boolean
0. Hence, vertex ?selp disappears, because its condition evaluates to 0: φ?selp =
x ∧ y = 0. Arcs !prii →!datai and !datai →!prii disappear for the same reason.
Note also that although the condition on arc ?log →?selp evaluates to 1 (in
fact it is constant 1) the arc is still excluded from the projection because one
of the vertices it connects (vertex ?selp) is excluded and an arc cannot appear
in a graph without one of its adjacent vertices. Branching of the system is not
represented explicitly: different scenarios are captured by different projections,
thus CPOGs are categorized as behavior/non-interleaving/linear-time models.

Each projection is treated as a partial order specifying a behavioral scenario
of the modeled system. Potentially, a CPOG H = (V,A,X, φ, ρ) can specify an
exponential number of different partial orders on actions V according to 2|X|

possible opcodes. We will use notation H|ψ to denote a projection of a graph H
under opcode ψ = (x1, x2, . . . x|X|). A projection H|ψ is called valid iff opcode
ψ is allowed by the restriction function, i.e. ρ(x1, x2, . . . x|X|) = 1, and the
resulting graph is acyclic. The latter requirement guarantees that the graph
defines a set of partial orders. A CPOG is well-formed iff every allowed opcode
produces a valid projection. The graph in Figure 4.3 is well-formed, because
the opcodes satisfy the restriction function and its projections are acyclic. The
set of partial order defined by a well-formed graph H is denoted by P (H).



4.2. SEMANTICS FOR WEAK AND STRONG CONCURRENCY 49

4.2 Semantics for Weak and Strong Concurrency

As in the case of LTSs or PNs, CPOGs can be unfolded to express their se-
mantics. We unfold the graph into an event structure that represents its partial
order semantics. However, event structures do not directly allow to represent
weak and strong concurrency. We split the concurrency relation into two rela-
tions (weak and strong concurrency) and define a notion of execution that keeps
strong concurrent actions as independent, but that may order some weakly con-
current actions.

4.2.1 Unfolding of a CPOG

The partial order semantics of a CPOG can be expressed by an event struc-
ture obtained by unfolding the graph (in order to obtain an acyclic structure)
and replacing Boolean conditions by conflicts. We start from an empty event
structure (E,≤,#, λ) where E = ∅ and at each iteration, we compute the set
of possible extensions. Unfolding a CPOG is complex problem since deciding
which are the possible extensions of a prefix of the unfolding is an NP-hard
problem.

Theorem 4. Given a CPOG and a prefix of its unfolding, deciding if an instance
of a vertex is a possible extension is NP-hard.

Proof. Consider a CPOG containing vertices v1, v2 and v1 → v2 with conditions
φv1 and φv2 = φv1→v2 = 1. We need to be able to check that φv1 is not
constantly equal to 0 or 1. If φv1 = 0, then the unfolding should only contain
v2; if φv1 = 1, the unfolding should contain v1 and v2 with v1 ≤ v2; otherwise, it
has three events v1, v2, v

′
2 with v1 ≤ v2 and v1#v

′
2 (that is, v1 either happens or

not). Obviously, checking if φv1 is equal to 0 or 1 is an NP-complete problem.

To decide if an instance of vertex x ∈ V is a possible extension, we need to
find a set of predecessors events in the ES such that (i) the Boolean condition of
the vertex is true; (ii) the Boolean conditions of the instances of its predecessors
and their corresponding arcs are true; (iii) if an event is not a predecessor, then
either its Boolean condition is false, or a Boolean condition of its corresponding
arcs is false; (iv) the instance of the vertex is different from any other in the
prefix. This is captured by the following formula for each vertex x ∈ V :

φx ∧ (
∧

ey∈P
y→x∈A

φey ∧ φy→x)(
∧

ey∈E\P
y→x∈A

¬φey ∨ ¬φy→x)(
∧

ex∈E

¬φex) (4.1)

Whenever such a combination exists, we add the event to the unfolding, ap-
propriately connecting it to its predecessors and with its corresponding Boolean
condition. The unfolding procedure is finished when Equation 4.1 is no longer
satisfiable: the method always finishes as the CPOG represents finite scenar-
ios. When there does not exist any possible extension, Boolean conditions are
replaced by conflicts in the following way: for every pair of events ex, ey with



50 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

mutually exclusive conditions, i.e. ¬ϕex ∨ ¬ϕey , conflict ex#ey is added and
their Boolean conditions are removed.

The unfolding method is deterministic: the resulting event structure does
not depend on the order in which events are added into the unfolding.

Proposition 1. Let E be the current set of events of the unfolding and ea 6= eb
two possible extensions, then eb is a possible extension of E ∪ {ea}.

Proof. We need to prove that Equation 4.1 is still satisfiable for vertex b when
ea is added to the unfolding: i) as eb is a possible extension from E, φb = 1 and
this is also true from E ∪ {ea}; ii-iii) since P ⊆ E ⊆ E ∪ {e} the second and
third conjunction of Equation 4.1 are still satisfied; iv) since ea 6= eb and there
was not an instance of b in E, there is neither in E ∪ {ea}.

e1?log : 1

e2 ?seli : x ∨ ye7?selp : x ∧ y

e8!prip : x ∧ y

e3!prii : y e4 !datai : x

e6 !prii : x ∧ ye5!datai : x ∧ y

Figure 4.4: Transformation of a CPOG into an ELES.

The unfolding method for CPOG is different from the unfoldings algorithms
for PNs. The obtained event structure is conflict-free: possible extensions cap-
tured by Equation 4.1 are concurrent and stamped in conflict later on, depending
on the boolean variables.

Example 4.4 (CPOG Unfolding). Consider the CPOG shown in Figure 4.3. The
unfolding procedure starts with E = ∅ and keeps checking vertices of the CPOG
for possible extensions (see Figure 4.4). At start, only vertex ?log is a possible
extension and event e1 can be added to the unfolding. For other vertices, for
example ?seli, the constraint imposed by non-predecessors in Equation 4.1 will
include ¬φ?log→?seli = ¬1 = 0, hence it is not a possible extension at start.
For the same reason vertices !prii, !datai, ?selp, !prip are not possible extensions
when E = ∅. We proceed by adding event e1 to the unfolding with φ(e1) = 1.
When we recompute the possible extensions, formula Equation 4.1 reduces to
x∨ y and x∧ y for vertices ?seli and ?selp, respectively, therefore events e2 and
e7 are added with φ(e2) = x ∨ y, φ(e7) = x ∧ y and e1 as their predecessor. At
this point E = {e1, e2, e7} and we find that !prii, !datai and !prip are possible
extensions with events e2 (for !prii and !datai) and e7 (for !prip) as predeces-
sors and conditions y, x and x ∧ y respectively. Events e3, e4 and e8 are added



4.2. SEMANTICS FOR WEAK AND STRONG CONCURRENCY 51

and from E = {e1, e2, e3, e4, e7, e8} we find that !prii and !datai are possible
extensions again. Two new events e5 and e6 are added with e3 and e4 as their
respective predecessors and x ∧ y and x ∧ y as Boolean conditions. Finally, as
E grows to {e1, e2, e3, e4, e5, e6, e7, e8}, Equation 4.1 becomes unsatisfiable and
the unfolding procedure is finished. Boolean conditions of events e2 and e7 are
mutually exclusive: (x ∧ y) ∧ (x ∨ y) = 0, therefore we add immediate conflict
e2 #r e7. Due to the same reasoning, immediate conflicts e3 #r e6 and e4 #r e5
are added. Finally, when all Boolean conditions are removed, we obtain an event
structure.

Even if the semantics of a CPOG can be expressed in terms of an event
structure using the unfolding algorithm presented above, similarities between
different scenarios are not considered. In Figure 4.4, after the system performed
actions ?log, ?seli and !prii, action !datai is possible either concurrently with
!prii or causality depending on it. These two possible continuations are repre-
sented by two different events e4 and e5. In order to remove this redundancy
and reduce the size of the event structure, we propose to split the co relation
into two relations: sco representing strong concurrency, and wco representing
weak concurrency, i.e. co = sco ⊎ wco. This allows to remove events e5 and e6
by setting e3 wco e4. The statement e3 wco e4 implies that from configuration
{e1, e2}, actions !prii and !datai are possible either concurrently or in any order.

4.2.2 Relaxed Executions

The notions of weak and strong concurrency are defined over the concurrency
relation of the event structure, but the same distinction can be made in any con-
currency relation, for example the concurrency relation of a partial order. Weak
concurrency allows, but does not impose, independence between actions, thus,
an execution of the system has to preserve the partial order semantics, up to
adding order between weakly concurrent events. On the contrary, strongly con-
current events must remain independent. We capture these notions by pomset
refinement.

Definition 4.2 (Pomset Refinement). Let η1, η2 ∈ PS(L), we say that η2 re-
fines η1, denoted by η1 ⊑ η2, iff there exist lpo1 = (E,≤η1 , λ) ∈ η1 and
lpo2 = (E,≤η2 , λ) ∈ η2 such that

• ≤η1 ⊆ ≤η2

• sco1 = sco2

In other words, η1 ⊑ η2 if strong concurrency is preserved, while weakly concur-
rent events from η1 may be ordered by ≤η2 .

Example 4.5 (Pomset Refinement). Consider S3 in Figure 4.5 as the travel
agency specification, where strong concurrency is only between the actions of
different suppliers: sco = {?seli, !prii, !datai}×{?selt, !pri

1
t , !pri

2
t , ?selp, !prip}.

Weak concurrency is between actions that belong either to the ticket or insurance



52 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

⊥

e1?log

e3!datase4?seli

e5!prii e6 !datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . . . . . . . .

S3

Figure 4.5: A specification with weak concurrency.

supplier and the data of the server together with the price and data of the insur-
ance, i.e. wco = {!datas} × {?seli, !prii, !datai, ?selt, !pri

1
t , !pri

2
t , ?selp, !prip} ∪

{(!prii, !datai)}. Some of the pomsets from Figure 4.6 add some order between
weakly concurrent actions: η1 adds causality between weakly concurrent out-
puts !prii and !datai from η6; η4 also adds direct causalities !datas ≤?selt and
!datas ≤?seli; η5 adds causalities !datas ≤?selp and !datas ≤!prip from η2. As
strongly concurrent actions remain independent in every case, we can conclude
that η6 ⊑ η1 ⊑ η4 and η2 ⊑ η5.

Remark 4. When there is no weak concurrency, a pomset is only refined by itself,
i.e. wco = ∅ implies η1 ⊑ η2 iff η1 = η2.

Relaxed executions of a system are all the possible refinements of a partial
order execution of the system.

Definition 4.3 (Relaxed Executions). Let E = (E,≤,#, λ) ∈ ES(L) with
C,C ′ ∈ C(E) and η ∈ PS(L), we define

C
η

−→r C
′ , ∃η′ ⊑ η : C

η′

−→ C ′

C
η

−→r , ∃C ′ : C
η

−→r C
′

We say that η is a relaxed execution of C if C
η

−→r.

Example 4.6 (Relaxed Executions). Behavior η6 respects the structure of S3 and

then we have S3
η6
−→. As the structure of η2 also respects the structure of S3,

we also have S3
η2
−→. Example 4.5 shows that η6 ⊑ η1, η6 ⊑ η4 and η2 ⊑ η5,

thus we can conclude that

S3
η1
−→r {⊥, e1, e2, e3, e4, e5, e6, e9, e10}

S3
η4
−→r {⊥, e1, e2, e3, e4, e5, e6, e9, e10}

S3
η5
−→r {⊥, e1, e2, e3, e7, e8}



4.2. SEMANTICS FOR WEAK AND STRONG CONCURRENCY 53

?log

τ

!datas?seli

!prii !datai

?selt

!pri1t

η6

?log

τ

!datas?seli

!prii

!datai

?selt

!pri1t

η1

?log

τ

!datas

?seli

!prii

!datai

?selt

!pri1t

η4

?log

τ

!datas ?selp

!prip

η2

?log

τ

!datas

?selp

!prip

η5

Figure 4.6: Pomset refinement.



54 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

Partial order executions η1 and η4 show that even if we can interpret the behavior
of the system in different ways (due to ordering of weakly concurrent events),
the resulting configuration is always the same. As ⊑ is reflexive, we also have

S3
η6
−→r and S3

η2
−→r.

Whenever there is no weak concurrency, partial order executions and relaxed
executions coincide.

Proposition 2. Let E = (E,≤,#, λ) ∈ ES(L) with C ∈ C(E) and η ∈ PS(L)

with wco = ∅, we have C
η

−→ iff C
η

−→r.

Proof. Immediate using Remark 4.

4.3 Observing CPOGs

We present in this section, the notions of observations for the weak and strong
concurrency semantics.

4.3.1 Traces

As in the case of interleaving and partial order semantics, an observation of the
system is the τ -abstraction of one of its relaxed executions.

Definition 4.4 (Observations). Let E = (E,≤,#, λ) ∈ ES(L) with C,C ′ ∈ C(E)
and ω ∈ PS(L), we define

C
ω

=⇒r C
′ , ∃η : C

η
−→r C

′ and abs(η) = ω

C
ω

=⇒r , ∃C ′ : C
ω

=⇒r C
′

We say that ω is a observation of C if C
ω

=⇒r.

The definition of traces and reached configurations in this semantics can be
easily obtained by replacing =⇒ by =⇒r in Definition 3.13.

Definition 4.5 (Traces and Reached Configurations). Let E ∈ ES(L), ω ∈
PS(L) and C,C ′ ∈ C(E), we define

tracesr(E) , {ω ∈ PS(L) |⊥E
ω

=⇒r}

C afterr ω , {C ′ | C
ω

=⇒r C
′}

Example 4.7 (Traces and Reached Configurations). Even if the structure of the
system is unique, different observations lead to the same configuration. This is
the case for the τ -abstractions of pomsets η6, η1 and η4 which all lead to the same
configuration, i.e. S3 after abs(η6) = S3 after abs(η1) = S3 after abs(η4) =
{⊥, e1, e2, e3, e4, e5, e6, e9, e10}.



4.3. OBSERVING CPOGS 55

4.3.2 Quiescence and Produced Outputs

The conformance relations presented in Chapter 2 and Chapter 3 compare the
produced outputs of the implementation with those of the specification. Con-
formance of output pomsets is captured by isomorphism under partial order
semantics. However, this is not the case in the presence of weak and strong
concurrency as we allow the implementation to order some outputs. Produced
outputs cannot be directly compared by set inclusion as they are in the case of
the ioco and co-ioco relations. Suppose one has two weakly concurrent outputs
!o1 and !o2 depending on input ?i. After ?i, the system produces outputs !o1
and !o2 which can be observed concurrently or in any order (due to the relaxed
executions). Any produced output in the implementation should refine some
produced output in the specification. As both !o1·!o2 and !o2·!o1 can be inferred
from !o1 wco !o2 by means of pomset refinement (which is sufficient to compare
outputs), we only consider !o1 wco !o2 as a produced output, i.e. it is only
necessary to consider produced outputs under Definition 3.15.

Definition 4.6 (Produced Outputs). Let E ∈ ES(L), C ∈ C(E) and S ⊆ C(E),
we define

outr(C) , out(C)

outr(S) ,
⋃
C∈S

outr(C)

Outputs cannot be compared directly by set inclusion. It is expected that
every output produced by the implementation refines some output of the spec-
ification. This is captured by the notion of output refinement.

Definition 4.7 (Output Refinement). Let E ∈ ES(L) and C,C ′ ∈ C(E) we
define

outr(C) ≫
− outr(C

′) ⇔ ∀x ∈ outr(C) : ∃x
′ ∈ outr(C

′) : x′ ⊑ x

Since ⊑ is reflexive, an output can be implemented as it is specified. Notice
also that the pomset δ is only refined by itself, therefore if δ ∈ outr(C) and
outr(C) ≫

− outr(C
′) then δ ∈ outr(C

′).

Example 4.8 (Output Refinement). Consider specification S3 of Figure 4.5 with
configuration C = {⊥, e1, e3, e4} and the implementation I7 of Figure 4.7 with
configuration C ′ = {⊥, e1, e3, e4}. Both configurations enable the output ac-
tions !prii and !datai, however we have outr(C) = {!prii wco !datai} and
outr(C

′) = {!prii·!datai}. Every output of C is refined by an output of C ′

and thus outr(C) ≫− outr(C
′). If we consider now S3 with C = {⊥, e1} and

I8 of Figure 4.7 with C ′ = {⊥, e1} we have that out(C) = {!datas}, while
out(C ′) = {δ}. The δ output produced by C ′ does not refine any output of C
and then outr(C) 6≫

− outr(C
′).

Weak concurrency may introduce extra quiescence in the system. Consider
an input ?i and an output !o which are specified as weakly concurrent from the



56 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

⊥

e1?log

e3!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I7

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I8

Figure 4.7: Output refinement.

initial configuration. An implementation which orders them as ?i ≤ !o is quies-
cent in its initial configuration as only ?i is possible. Even if ?i·!o is a possible
relaxed execution in the specification, so is !o·?i and therefore some output can
be produced from the initial configuration preventing it from being quiescent.
We will see that our conformance relation forces any correct implementation
that order such kind of actions to produce the output before accepting the
input.

When there is no weak concurrency, output refinement boils down to set
inclusion.

Proposition 3. Let E = (E,≤,#, λ) ∈ ES(L) with wco = ∅ and C,C ′ ∈ C(E),
we have outr(C) ≫

− outr(C
′) ⇔ out(C) ⊆ out(C ′).

Proof. Immediate using Remark 4.

4.3.3 Possible Inputs

As explained above, some order can be added in an implementation between an
input and an output if they are specified as weakly concurrent.

Example 4.9 (Possible Inputs). Consider the travel agency specification S3 of
Figure 4.5 and pomsets η6 and η4 in Figure 4.6. In η6, the selection of insurance
is possible after logging in. However, we have seen that η4 is also a relaxed
execution of S3 and in here it is not possible for the user, after just logging in,
to select the insurance since the server has not produce the data.

Consider a pair of weakly concurrent input and output in the specification. If
the output precedes the input in the implementation, as this input is considered



4.3. OBSERVING CPOGS 57

as possible in the specification, it needs to be consider also as possible in the
implementation even if the output has not been produced yet. This is similar to
what happens in remote testing [JJTV99] where communication between test
cases and the implementation is asynchronous and a new input can be sent even
if an output that precedes it has not been produced yet.

The possible inputs of a configuration are those that are enabled or will be
enabled after producing some outputs. As in the case of produced outputs, it is
enough to restrict to possible inputs under partial order semantics as any other
possible input can be obtained by pomset refinement.

Definition 4.8 (Possible Inputs with Weak Concurrency). Let E ∈ ES(L), C ∈
C(E) and S ⊆ C(E), we define

possr(C) , poss(C) ∪ poss(C after !ω) with !ω ∈ PS(Out) and C
!ω
=⇒

possr(∅) , PS(In)
possr(S) ,

⋃
C∈S

possr(C)

Example 4.10 (Possible Inputs with Weak Concurrency). Since some order can
be added between weakly concurrent actions, some inputs are consider as possible
even before being actually enabled (it can be seen as if there is some delay before
the sending of the input and the actual time the system receives it). Consider
Definition 4.8 for possible inputs. After the user logs in and selects an insurance
once, it is always possible to select it again even before the outputs are produced,
i.e. if C = (S3 after ?log·?seli), then we have ?seli ∈ possr(C) since ?seli ∈
poss(C after (!prii wco !datai)).

We expect any possible input in the specification to be implemented either
as specified or as one of its refinements. However, this is not enough. Suppose
there exist two inputs ?i1 wco ?i2 such that poss(S) = {?i1, ?i2, ?i1 wco ?i2}
and an implementation that orders them, e.g. poss(I) = {?i1, ?i1·?i2}. There
is not a possible input of the implementation that refines ?i2, for this reason,
we restrict to concurrent complete sets of inputs.

Definition 4.9 (Concurrent Complete Sets). Let ω ∈ PS(L) and C ∈ C(E),
we say that ω is a concurrent complete set in C iff any other execution from C
(without causality) does not contain events that are concurrent to those of ω

cc(ω,C) ⇔ ω = max
⊆

{ω | C
ω

=⇒ ∧ ≤ω= ∅}

Example 4.11 (Concurrent Complete Sets). Consider the travel agency S3 of
Figure 4.5 and C = (S3 after ?log·!datas). The ?seli input is possible after

logging in and sending the data, i.e. C
?seli===⇒. However this input is not a

concurrent complete set as it can be extended by a concurrent event, i.e. C
ω

=⇒
with ω =?seli co ?selt.

As explained above, the possible inputs of the specification cannot directly be
compared with those of the implementation. We want any concurrent complete



58 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

input of the specification to be implemented by one of its refinements. This is
captured by the notion of input refinement.

Definition 4.10 (Input Refinement with Weak Concurrency). Let E ∈ ES(L)
with wco 6= ∅ and C,C ′ ∈ C(E), we define

possr(C) ≫
+ possr(C

′) ⇔ ∀?ω ∈ possr(C) : cc(?ω,C) implies
∃?ω′ ∈ possr(C

′) :?ω ⊑ ?ω′

⊥

e1?log

e3!datase4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

e12

?selh
e13

!prih

. . .

. . .

. . . . . .

I11

Figure 4.8: Input refinement

Example 4.12 (Input Refinement). Consider S3 from Figure 4.5 with configu-
ration C = {⊥, e1} and implementation I11 from Figure 4.8 with C ′ = {⊥, e1}.
The concurrent complete inputs of S3 in C are ?seli co ?selp and ?seli co
?selt. As both inputs are implemented, respecting concurrency, in I11, we have
possr(C) ≫+ possr(C

′). Notice that those inputs are not concurrent complete
in C ′ (?selh is still enabled), however, Definition 4.10 forces the completeness
of the inputs only in the first configuration.

We have seen that output refinement boils down to set inclusion where there
is no weak concurrency. However this is not true in the case of possible inputs
as we consider not only inputs that are enabled in the current configuration, but
also those that become enabled after producing some outputs. Those inputs are
not supposed to be considered as possible in the case where there is no weak
concurrency. For this reason, we propose another definition for input refinement
in the case of absence of weak concurrency.

Definition 4.11 (Input Refinement without Weak Concurrency). Let E ∈ ES(L)
with wco = ∅ and C,C ′ ∈ C(E), we define

possr(C) ≫
+ possr(C

′) ⇔ ∀?ω ∈ poss(C) : cc(?ω,C) implies ?ω ∈ poss(C ′)



4.4. THE WSC-IOCO CONFORMANCE RELATION 59

4.4 The wsc-ioco Conformance Relation

This section presents the testing hypotheses and conformance relation for con-
formance testing of conditional partial order graphs.

Testing Hypotheses: We assume that the specification of the system is given
as conditional partial order graph H = (V,A,X, φ, ρ) over alphabet L = In ⊎
Out of input and output labels. To be able to test an implementation against
such a specification, we make the usual testing assumption that the behavior
of the SUT itself can be modeled by a conditional partial order graph over the
same alphabet of labels. Since projections of a well-formed CPOG are acyclic,
it is not necessary to assume the absence of silent or output cycles.

We present now the wsc-ioco (weak and strong concurrency) conformance
relation that compares produced outputs and possible inputs based on output
and input refinements. Refusals and outputs of the implementation must be
specified up to refinement. In the case where some order is added by a correct
implementation between weakly concurrent input and output, the output must
precede the input; this is what we expected as we do not want outputs to depend
on extra inputs. Since some inputs are considered as possible even before the
system is actually enabled to accept them (see Definition 4.8), inputs do not
have extra dependencies either.

This conformance relation is more permissive than co-ioco in the sense that
some concurrent actions are allowed to be implemented by interleavings. How-
ever this is what we expect of actions that were specified as weakly concurrent.
This allows the implementation process to be more flexible: if the order between
some actions is not decided during the specification of the system, but some or-
der is added during its implementation, this implementation is still conformant
w.r.t the requirements.

Definition 4.12 (wsc-ioco). Let S, I ∈ ES(L) be respectively the specification
and an implementation of the system, then

I wsc-ioco S ⇔ ∀ω ∈ tracesr(S) :
possr(S afterr ω) ≫+ possr(I afterr ω)
outr(I afterr ω) ≫− outr(S afterr ω)

Example 4.13 (Conformance with Weak Concurrency). Consider the specifica-
tion S3 and implementations I7, I8 from Figure 4.7. Implementation I7 or-
ders some weakly concurrent events: outputs !prii and !datai are implemented
sequentially instead of concurrently, but the output produced (!prii·!datai) re-
fines an output produced by the specification (!prii wco !datai). Some order
is also added between output !datas and input ?seli, however, there is not ex-
tra causality for the output and the produced outputs in the implementation
are those specified. Even if some dependence is added for ?seli, Definition 4.8
considers as possible, inputs that will be enabled after the production of some
outputs. We can conclude that I7 wsc-ioco S3. Actions !datas and ?seli



60 CHAPTER 4. CONF. TEST. WITH REFINED CONCURRENCY

are ordered in the opposite way in I8. We have seen in Example 4.8 that
outr(I8 afterr ?log) 6≫− outr(S3 afterr ?log) and then ¬(I8 wsc-ioco S3).

Relating wsc-ioco and co-ioco: Strong concurrency is forced to be imple-
mented as independence between actions as it is the case for the whole concur-
rency relation in partial order semantics, therefore, whenever there is no weak
concurrency, wsc-ioco and co-ioco coincide.

Theorem 5. Let S and I be respectively the specification and implementation
of a system with wco = ∅ in the specification, then we have

I wsc-ioco S iff I co-ioco S

Proof. Using Definition 4.11 and Proposition 2 and Proposition 3.

4.5 Conclusion

We have developed a new semantics for concurrent systems that allows to rep-
resent both independence between actions and underspecification or refinement;
these situations are captured by the notions of strong and weak concurrency.
The new semantics generalized both interleaving and partial order semantics:
when there is only weak concurrency, the semantics is equivalent to interleav-
ings; while if there is only strong concurrency they are equivalent to partial
order semantics.

We propose to use conditional partial order graphs to model the system
since they allow to model different scenarios representing both strong and weak
concurrency. We gave an unfolding algorithm to convert any conditional partial
order graph into an event structure that captures its semantics. This algorithm
is based on a SAT encoding of the possible extensions of the system and we
showed it is deterministic: the resulting object does not depend on the order in
which events are added into the unfolding.

Based on the new semantics, we define new notions of executions and ob-
servations and a new conformance relation which boils down to co-ioco when
there is no weak concurrency (see Theorem 5), but it is more permissive in gen-
eral: actions specified as (weakly) concurrent can be implemented in a particular
order in a correct implementation.



5
A Centralized Testing Framework

Ulrich and König [UK99] suggest two test architectures for testing distributed,
concurrent systems: a global tester that has total control over the distributed
system under test (see Figure 5.1.a) and, more interestingly, a distributed tester
comprising several concurrent testers that stimulate the implementation by
sending messages on points of control and observation (PCOs) and partially
observe the reactions of the implementation on these same PCOs as shown in
Figure 5.1.b.

SUT

SUTTester 1 Tester 2

Tester 3

PCO1 PCO2

PCO3

Global
Tester

(a) (b)

Figure 5.1: The global and distributed testing architectures.

This chapter assumes that global observation and control of the system is
possible and proposes a method to generate global test cases. Next chapter
deals with a distributed testing architecture.

Testing Hypotheses: The previous chapters present three specification lan-
guages (LTSs, PNs and CPOGs) together with their corresponding notions of
executions, observations and conformance relations. Each of the conformance
relations assumes some restrictions on the kind of models that can be used either
for the specification or the implementation. The ioco relation assumes that the
implementation is input-enabled which is not the case for co-ioco, however the

61



62 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

later does not accept cycles of outputs in the specification. In order to unify all
the frameworks and propose a test generation algorithm that works for all the
models, we make the same assumptions over all the models.

We do not restrict to input-enabled implementations (we will use ioco2 as
the conformance relation for LTSs), but we do not accept cycles of outputs
and internal actions in the specification. Under these assumptions, we have
proved (see Theorem 3 on page 44) that any co-ioco conformant implementation
passes the ioco tests. In addition, wsc-ioco and co-ioco coincide when weak
concurrency is forbidden (see Theorem 5 on page 60). For these reasons, it is
sufficient to test the implementations w.r.t the wsc-ioco conformance relation
and construct test cases for it. The methods we propose to generate test cases do
not depend on the different notions of concurrency (concurrency is interpreted
under partial order semantics), the difference lies in how those test cases interact
with the implementation.

Strongly concurrent actions in a test case should be run concurrently in the
implementation, however, if actions were specified as weakly concurrent, the
test run is allowed to order them. These differences are captured by the notion
of verdicts.

In addition to the notions of global test cases and their interaction with the
implementations, this chapter gives sufficient conditions for detecting all and
only incorrect implementations and proposes a method to generate test cases.

5.1 Global Test Cases, Execution and Verdicts

We define global test cases which can contain concurrency. In practice, such
global test cases are not meant to be actually executed globally. They would
rather be projected onto the different processes of the distributed system to
be executed locally in order to make the observation of concurrency possible
(see Chapter 6). Our approach here is to study the testing problem from a
centralized point of view, as a basis to the distributed testing problem: the
global conformance relations we defined are the relations we want to be able to
test in a distributed way (with local control and observation), and the global
test cases are the basis for the construction of distributed tests.

5.1.1 Global Test Cases

A global test case is a specification of the tester’s behavior during an experiment
carried out on the system under test. In such an experiment, the tester serves
as a kind of artificial environment of the implementation. The output actions
are observed, but not controlled by the tester; however, the tester does control
the input ones. It follows that there should be no choices between them, i.e. the
next (set of concurrent) input(s) to be proposed should be unique, therefore no
immediate conflict between inputs should exist in a test case. Similar to this,
test cases do not have immediate conflict between outputs and inputs, if not,
the implementation may produce the output without allowing the test case to



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 63

propose the input. This property is called controllability [JM99]. However, as
conflict is inherited w.r.t causality and we accept immediate conflict between
outputs, non immediate conflict between inputs or input/output is accepted.
Avoiding those immediate conflicts is not enough to avoid all choices in a test
case. If we allow the tester to reach more than one configuration after some
observation and each of them enables different inputs for example, there is still
some (nondeterministic) choice for the tester about the next input to propose
even if those inputs are not in immediate conflict. We thus require determinism
as defined in Definition 3.10 on page 35. Finally, we require the experiment to
finish, therefore the test case should be finite. We model the behavior of the
tester by a deterministic event structure with a finite set of events and where
inputs cannot be in immediate conflict.

Definition 5.1 (Global Test Cases). A global test case is an event structure
T = (E,≤,#, λ) such that

1. T is deterministic,

2. (EIn × E) ∩ #r= ∅,

3. E is finite.

A test suite is a set of test cases.

Example 5.1 (Global Test Cases). Figure 5.2 presents four event structures. T1
is nondeterministic, i.e. from {⊥, e1, e7} it is possible to perform !prip and reach
both {⊥, e1, e7, e8} or {⊥, e1, e7, e

1
8}; T2 has immediate conflict between actions

?selt and ?selp; T3 is infinite. Thus none of T1, T2, T3 is a test case. However
T4 is finite, deterministic and without inputs in immediate conflict, i.e. it is a
test case.

Allowing to have explicit concurrency in the test cases not only reduces
their size by avoiding the state space problem, but it also reduces the number
of test cases needed to cover the specification. As concurrency between inputs
is interpreted as a nondeterministic choice between the possible interleavings,
this choice need to be solved in the test case to avoid uncontrollability.

Example 5.2 (Concurrency in Test Cases). Consider (i1; o1 ‖ i2; o2) as the spec-
ification of the system. Figure 5.3 presents its corresponding global test case
(the specification and the test case coincide) and the test cases generated using
standard interleaving semantics, i.e. the test suite obtained using the ioco al-
gorithms (see Section 5.2.1). Not only the size of the global test case is smaller
than the size of the ones using interleaving semantics (due to the concurrency
between outputs) as it is the case of TES and T 2

LT S
, T 3

LT S
where we have four transi-

tions instead of six; but also the size of the test suite generated, i.e. we only have
a global test case TES against four test cases in {T 1

LT S
, T 2

LT S
, T 3

LT S
, T 4

LT S
}. The latter

is due to the fact that concurrency between inputs is interpreted as a choice in
interleaving semantics and this choice need to be solved to overcome controlla-
bility problems. Both the size and the number of test cases can be exponentially
smaller when concurrency is represented explicitly.



64 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

⊥

e1?log

e7?selp

e8 !pripe18!prip

e17 ?selpe9?selt

T1

⊥

e1?log

e3

!datas

e7?selp

e8!prip

e9 ?selt

e10 !pri1t

T2

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7 ?selp

e8 !prip

. . .

T3

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

e7 ?selp

e8 !prip

T4

Figure 5.2: Event structures as global test cases.



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 65

i1 i2

o1 o2

TES

i1

o1

i2

o2

T 1
LT S

i1

i2

o1

o2

o2

o1

T 2
LT S

i2

i1

o1

o2

o2

o1

T 3
LT S

i2

o2

i1

o1

T 4
LT S

Figure 5.3: Concurrency in test cases.

5.1.2 Test Execution

The success of a test is determined by the verdict associated to the result of
its execution on the system. This result can be pass or fail, the pass verdict
meaning that the result of the test is consistent with the specification according
to the conformance relation.

In the ioco framework, verdicts are modeled by special states of the test
case labeled by pass and fail. A pass verdict can only be reached after ob-
serving some output of the implementation (in this framework, δ is considered
an output). When dealing with concurrent systems, one possibility would be to
represent verdicts by configurations (via a labeling function for example), but as
there is no event labeled by δ, observing δ does not lead to a new configuration.
We model verdicts differently.

Communication between the tester and the implementation can be either
synchronous [JJ05, Tre08] or asynchronous [JJKV98]. Parallel composition of
labeled transition systems is issued to model test execution when the commu-
nication is synchronous and deadlocks of such composition are used to give
verdicts about the test run. Such deadlocks are produced in the following sit-
uations: (i) the implementation proposes an output or δ action that the test
case cannot accept; (ii) the test case proposes an input that the implementation
cannot accept; or (iii) the test case has nothing else to propose (it deadlocks).
The first two situations lead to a fail verdict and the latter to a pass one as the
experiment is finished.

Test execution assumes that both systems are always prepared to accept an
action that the other may produce. In the sequential setting, it is assumed that
the implementation accepts any input the tester can propose (input-enabledness
of the implementation). Analogously, the tester should be able to synchronize
with any output the implementation may produce. Constructing an event struc-
ture having such a property is almost impossible due to the fact that it should



66 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

not only accept any output, but also all the possible ways such an output could
happen (concurrently or sequentially with other outputs). In addition, the prod-
uct of Petri nets [Win85] does not preserve concurrency and therefore it cannot
be used to model test execution. Instead of defining any notion of composi-
tion, we propose another approach based on the notion of blocking in the test
execution: both systems are executed until their traces differ from each other
either by a different input, a different output or the same set of labels forming
a different partial order.

After a trace, the test execution can block because of an output or δ action
the implementation produces. This happens if after such an observation the test
case cannot accept that action or if the reached configuration is not quiescent
respectively, i.e. the implementation produces an output that the test case is not
prepared to accept. As we allow weak concurrency, outputs cannot be compared
by set inclusion, we need to compare them by output refinement.

Definition 5.2 (Output Blocking). Let I, T ∈ ES(L) be an implementation and
a test case respectively and ω ∈ PS(L), we have

blocksOut(I, T , ω) ⇔ outr(I afterr ω) 6≫
− outr(T afterr ω)

Example 5.3 (Output Blocking with no Concurrency). Consider implementa-
tions I ′

2, I
′
3 and test cases T5, T6 of Figure 5.4. These implementations have

the same behavior as I2 and I3 of Figure 2.4 on page 24, but they are event
structures without concurrency rather than reachability trees. As there is no con-
currency, i.e. wco = ∅, by Proposition 3, output refinement reduces to inclusion
of outputs. The trace ?selt is performed in systems I ′

2 and T5, after it, the exe-
cution blocks as the implementation reaches a quiescent configuration, producing
a δ action that is not an output of the test case, i.e. outr(I

′
2 afterr ?selt) 6⊆

outr(T5 afterr ?selt). We have then blocksOut(I
′
2, T5, ?selt). The execution

between I ′
3 and T6 blocks after ?selp as the implementation produces action

!pri2p as an output, but this action is not an output of the test case, thus
outr(I

′
3 afterr ?selp) 6⊆ outr(T6 afterr ?selp) and blocksOut(I

′
3, T6, ?selp).

Example 5.4 (Output Blocking with Strong Concurrency Only). Consider im-
plementations I8, I9 and the test case T7 from Figure 5.5 where concurrency in
the test case is interpreted as strong concurrency, i.e. wco = ∅. By Proposi-
tion 3, output refinement boils down to set inclusion. Test execution between I8
and T7 blocks after ?log as the implementation reaches a quiescent configuration
and produces a δ action that the test case does not, i.e. δ ∈ outr(I8 afterr ?log)
while δ 6∈ outr(T7 afterr ?log) and blocksOut(I8, T7, ?log). After logging in and
selecting an insurance, the execution between I9 and T7 also blocks as the output
produced by the implementation (!prii co !datai) is not an output produced by
the test case, i.e. !prii co !datai 6∈ outr(T7 afterr ?log·?seli) = {!prii·!datai}
and therefore blocksOut(I9, T7, ?log·?seli).



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 67

⊥

e1τ

e2?selt

e4!pri1t e5 !pri2t

T5

⊥

e1τ

e3 ?selp

e6 !prip

T6

⊥

e1 τ

e2?selt e3 ?selp

e6!prip

. . . . . .

I ′
2

⊥

e1τ

e2?selt e3 ?selp

e4!pri1t e5 !pri2t e6!prip e7 !pri2p

. . .. . . . . .. . . . . .. . . . . .. . .

I ′
3

Figure 5.4: Output blocking with no concurrency.

Example 5.5 (Test Execution with Weak Concurrency). Consider implemen-
tation I7 and the test case T8 from Figure 5.6 where concurrency between ac-
tions ?seli, !prii, !datai and !datas is considered as weak, i.e. {(!prii, !datai),
(!datas, ?seli), (!datas, !prii), (!datas, !datai)} ⊆ wco. The produced outputs af-
ter logging in coincide in both event structures, i.e. outr(I7 afterr ?log) =
{!datas} = outr(T8 afterr ?log), and therefore the test execution does not block.
Even if the outputs produced by the implementation and the test case after logging
in and selecting an insurance do not coincide, i.e. outr(I7 afterr ?log·?seli) =
{!prii·!datai} 6= {!prii wco !datai} = outr(T8 afterr ?log·?seli), the output of
the implementation refines the output of the test case and therefore the execution
does not block either.

The other blocking situation occurs when the test case can propose a concur-
rent complete set of inputs that the implementation is not prepared to accept.



68 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7 ?selp

e8 !prip

T7

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I8

⊥

e1?log

e3!datase4?seli

e5!prii e6 !datai

. . .

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . . . . . . . .

I9

Figure 5.5: Output blocking with strong concurrency only.



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 69

⊥

e1?log

e2τ

e3!datase4?seli

e5!prii e6 !datai

e7 ?selp

e8 !prip

T8

⊥

e1?log

e3!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp e9 ?selt

. . . . . .

I7

Figure 5.6: Test execution with weak concurrency.

Definition 5.3 (Input Blocking). Let I, T ∈ ES(L) and ω ∈ PS(L), we have

blocksIn(I, T , ω) ⇔ possr(T afterr ω) 6≫
+ possr(I afterr ω)

Example 5.6 (Input Blocking by Missing Input). Consider the test case T9 and
implementation I6 from Figure 5.7. After logging in, the test case proposes a
concurrent complete input that is not possible in the implementation (neither
one of its refinement), i.e. ?seli co ?selt ∈ possr(T9 afterr ?log). The possi-
ble inputs of I6 are possr(I6 afterr ?log) = {?seli, ?selp, ?seli co ?selp} and
none of those inputs refines ?seli co ?selt. This leads to an input blocking, i.e.
blocksIn(I6, T9, ?log).

Example 5.7 (Input Blocking with Strong Concurrency Only). Consider the test
case T8 and implementation I7 from Figure 5.6 where concurrency of the test
case is interpreted as strong concurrency, i.e. wco = ∅. Using Definition 4.11,
input refinement reduces to set inclusion of concurrent complete inputs that
are enabled in the current configuration. After logging in, the test case pro-
poses a concurrent complete input that is not possible in the implementation
I7, i.e. ?seli co ?selp ∈ poss(T8 afterr ?log), while poss(I7 afterr ?log) =
{?selt, ?selp}, therefore blocksIn(I7, T8, ?log).

We can now define the verdict of the interaction of a set of test cases with a
given implementation.

Definition 5.4 (Verdicts). Let I be an implementation, and T a test suite, we
have:

I fail T ⇔ ∃T ∈ T, ω ∈ tracesr(T ) : blocksOut(I, T , ω) ∨ blocksIn(I, T , ω)



70 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

⊥

e1?log

e3!datase4?seli

e5!prii e6 !datai

e9 ?selt

e10!pri1t e11 !pri2t

T9

⊥

e1?log

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7 ?selp

e8 !prip

. . .

I6

Figure 5.7: Input Blocking by removing inputs.

If the implementation does not fail the test suite, then it passes it, denoted by
I pass T .

Example 5.8 (Verdicts). Consider the test suite T = {T5, T6, T7, T8, T9}. In the
examples above we saw that the executions of implementations I ′

2, I
′
3, I6, I8, I9

and some of the test cases in T block. We can conclude that those implemen-
tations fail the test suite T . The verdict of the interaction between I7 and
T8 depends on the presence or not of weak concurrency as in one case the
execution blocks (see Example 5.7) while in the other not (see Example 5.5).
If {(!prii, !datai), (!datas, ?seli), (!datas, !prii), (!datas, !datai)} ⊆ wco, then we
have I7 pass T , but whenever wco = ∅, we have I7 fail T .

5.1.3 Completeness of the Test Suite

When testing implementations, we intend to reject all and nothing but, non
conformant implementations. A test suite which rejects only non conformant
implementations is called sound, while a test suite that accepts only conformant
implementations is called exhaustive. A test suite may not be sound if it contains
a test case which is too strict: for instance, a test case which accepts only imple-
mentations where two events are concurrent and rejects those implementations
ordering the events, even if those events were specified as weakly concurrent
and those implementations are correct w.r.t wsc-ioco. In other words, a sound
test suite does not produce false negatives. Conversely, a test suite will not be
exhaustive if it is too loose and accepts incorrect implementations. A sound and
exhaustive test suite is called complete.

Definition 5.5 (Properties of Test Suites). Let S be a specification and T a test



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 71

suite, then

T is sound , ∀I : I fail T implies ¬(I wsc-ioco S)
T is exhaustive , ∀I : I fail T if ¬(I wsc-ioco S)
T is complete , ∀I : I fail T iff ¬(I wsc-ioco S)

The following theorem gives sufficient conditions for a test suite to be sound.

Theorem 6. Let S ∈ ES(L) be a specification and T a test suite such that

a) ∀T ∈ T : tracesr(T ) ⊆ tracesr(S)

b) ∀T ∈ T, ω ∈ tracesr(T ) : outr(S afterr ω) ⊆ outr(T afterr ω)

c) ∀T ∈ T, ω ∈ tracesr(T ) : cc(?ω, T afterr ω) ⇒ cc(?ω,S afterr ω)

then T is sound for S w.r.t wsc-ioco.

Notice that the trace inclusion required in a) ensures that any possible input
in the test case is also possible in the specification (either considering poss or
possr).

Proof. T is sound for S w.r.t. wsc-ioco iff for every implementation I that
fails the test suite, we have that it does not conform to the specification. We
assume I fail T and by Definition 5.4 we have:

∃T ∈ T, ω ∈ tracesr(T ) : blocksOut(I, T , ω) ∨ blocksIn(I, T , ω)

and at least one of the following cases holds:
(i) The test execution blocks after ω because of an output produced by the

implementation,

∃ω ∈ tracesr(T ) : blocksOut(I, T , ω)
⇒{∗ Definition 5.2 ∗}

∃ω ∈ tracesr(T ) : outr(I afterr ω) 6≫
− outr(T afterr ω)

⇒{∗ Definition 4.7 ∗}
∃ω ∈ tracesr(T ) : ∃x ∈ outr(I afterr ω) : ∀x

′ ∈ outr(T afterr ω) : x
′ 6⊑ x

⇒{∗ Assumptions a) and b) ∗}
∃ω ∈ tracesr(S) : ∃x ∈ outr(I afterr ω) : ∀x

′ ∈ outr(S afterr ω) : x
′ 6⊑ x

⇒{∗ Definition 4.7 ∗}
∃ω ∈ tracesr(S) : outr(I afterr ω) 6≫

− outr(S afterr ω)
⇒{∗ Definition 4.12 ∗}

¬(I wsc-ioco S)

(ii) The test execution blocks after ω because of an input proposed by the
test case,

∃ω ∈ tracesr(T ) : blocksIn(I, T , ω)
⇒ {∗ Definition 5.3 ∗}

∃ω ∈ tracesr(T ) : possr(T afterr ω) 6≫
+ possr(I afterr ω)



72 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

As the definition of input refinement depends on the presence or not of weak
concurrency, we split the proof by cases.

if wco 6= ∅

⇒ {∗ Definition 4.10 ∗}
∃ω ∈ tracesr(T ) : ∃?ω ∈ possr(T afterr ω) : cc(?ω, T afterr ω)
∧∀?ω′ ∈ possr(I afterr ω) : !ω 6⊑ !ω′

⇒ {∗ Assumptions a) and c) ∗}
∃ω ∈ tracesr(S) : ∃?ω ∈ possr(S afterr ω) : cc(?ω,S afterr ω)
∧∀?ω′ ∈ possr(I afterr ω) : !ω 6⊑ !ω′

⇒ {∗ Definition 4.10 ∗}
∃ω ∈ tracesr(S) : possr(S afterr ω) 6≫

+ possr(I afterr ω)
⇒ {∗ Definition 4.12 ∗}

¬(I wsc-ioco S)

if wco = ∅

⇒ {∗ Definition 4.11 ∗}
∃ω ∈ tracesr(T ) : ∃?ω ∈ poss(T afterr ω) : cc(?ω, T afterr ω)
∧?ω 6∈ poss(I afterr ω)

⇒ {∗ Assumptions a) and c) ∗}
∃ω ∈ tracesr(S) : ∃?ω ∈ poss(S afterr ω) : cc(?ω,S afterr ω)
∧?ω 6∈ poss(I afterr ω) :

⇒ {∗ Definition 4.11 ∗}
∃ω ∈ tracesr(S) : possr(S afterr ω) 6≫

+ possr(I afterr ω)
⇒ {∗ Definition 4.12 ∗}

¬(I wsc-ioco S)

Example 5.9 (Soundness of the Test Suite). Consider the specification of the
ticket provider S1 = Rtick from Figure 2.1 and test cases T5, T6 from Figure 5.4.
It is easy to see that both test cases fulfill the assumptions of Theorem 6 and
we can conclude that they form a sound test suite. The execution of both test
cases with implementations I ′

2, I
′
3 in Figure 5.4 blocks and both implementations

fail the test suite {T5, T6}. Therefore they do not conform to the specification,
which is consistent with the result of Example 2.11. If we consider S2 = Eag
from Figure 3.3 as the specification of the system, by Theorem 6, the test case
T7 from Figure 5.5 forms a sound test suite. As the execution of this test case
with both I8 and I9 from Figure 5.5 blocks, both implementations are non con-
formant (as shown in Example 3.13). Consider Figure 5.7, the test case T9 also
fulfills the assumptions of the theorem when one considers S3 as the specifica-
tion of the system, thus {T9} is a sound test suite. It is shown in Example 5.6
that the execution of this test and implementation I6 blocks and therefore the
implementation does not conform to the specification as in Example 3.12.

The following theorem gives sufficient conditions for the test suite to be
exhaustive.



5.1. GLOBAL TEST CASES, EXECUTION AND VERDICTS 73

Theorem 7. Let S ∈ ES(L) be a specification and T a test suite such that

a) ∀ω ∈ tracesr(S) : ∃T ∈ T : ω ∈ tracesr(T )

b) ∀T ∈ T, ω ∈ tracesr(T ) : outr(T afterr ω) ⊆ outr(S afterr ω)

c) ∀T ∈ T, ω ∈ tracesr(T ) : cc(?ω,S afterr ω) ⇒ cc(?ω, T afterr ω)

then T is exhaustive for S w.r.t wsc-ioco.

Proof. We need to prove that if I does not conform to S then I fail T . We
assume ¬(I wsc-ioco S), and then at least one of the following two cases holds:

(i) The implementation does not conform to the specification because an
output produced by the implementation does not refine any specified output:

∃ω ∈ tracesr(S) : outr(I afterr ω) 6≫
− outr(S afterr ω)

⇒ {∗ Definition 4.7 ∗}
∃ω ∈ tracesr(S) : ∃x ∈ outr(I afterr ω) : ∀x

′ ∈ outr(S afterr ω) : x
′ 6⊑ x

⇒ {∗ Assumptions a) and b) ∗}
∃T ∈ T, ω ∈ tracesr(T ) : ∃x ∈ outr(I afterr ω) : ∀x

′ ∈ outr(T afterr ω) :
x′ 6⊑ x

⇒ {∗ Definition 4.7 ∗}
∃T ∈ T, ω ∈ tracesr(T ) : outr(I afterr ω) 6≫

− outr(T afterr ω)
⇒ {∗ Definition 5.2 ∗}

∃T ∈ T, ω ∈ tracesr(T ) : blocksOut(I, T , ω)
⇒ {∗ Definition 5.4 ∗}

I fail T

(ii) The implementation does not conform to the specification because an
input from the specification is not possible in the implementation:

∃ω ∈ tracesr(S) : possr(S afterr ω) 6≫
+ possr(I afterr ω)

We split the proof depending on the presence or not of weak concurrency.

if wco 6= ∅

⇒ {∗ Definition 4.10 ∗}
∃ω ∈ tracesr(S) : ∃?ω ∈ possr(S afterr ω) : cc(?ω,S afterr ω)
∧∀?ω′ ∈ possr(I afterr ω) : !ω 6⊑ !ω′

⇒ {∗ Assumptions a) and c) ∗}
∃T ∈ T, ω ∈ tracesr(T ) : ∃?ω ∈ possr(T afterr ω) : cc(?ω, T afterr ω)
∧∀?ω′ ∈ possr(I afterr ω) : !ω 6⊑ !ω′

⇒ {∗ Definition 4.10 ∗}
∃T ∈ T, ω ∈ tracesr(T ) : poss(T afterr ω) 6≫

+ possr(I afterr ω)
⇒ {∗ Definition 5.3 ∗}

∃T ∈ T, ω ∈ tracesr(T ) : blocksIn(I, T , ω)
⇒ {∗ Definition 5.4 ∗}

I fail T



74 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

if wco = ∅

⇒ {∗ Definition 4.11 ∗}
∃ω ∈ tracesr(S) : ∃?ω ∈ poss(S afterr ω) : cc(?ω,S afterr ω)
∧?ω ∈ poss(I afterr ω)

⇒ {∗ Assumptions a) and c) }∗
∃T ∈ T, ω ∈ tracesr(T ) : ∃?ω ∈ poss(T afterr ω) : cc(?ω, T afterr ω)
∧?ω ∈ poss(I afterr ω)

⇒ {∗ Definition 4.11 ∗}
∃T ∈ T, ω ∈ tracesr(T ) : possr(T afterr ω) 6≫

+ possr(I afterr ω)
⇒ {∗ Definition 5.3 ∗}

∃T ∈ T, ω ∈ tracesr(T ) : blocksIn(I, T , ω)
⇒ {∗ Definition 5.4 ∗}

I fail T

5.2 Constructing Test Cases

We have seen sufficient conditions to ensure the completeness of a test suite.
In this section we will explain how to construct a test suite that fulfills such
conditions. We recall the algorithms to build a test suite in the ioco setting to
explain the main differences with our test derivation method. In addition we
prove that the test suite obtained is complete w.r.t wsc-ioco and analyze the
complexity of our approach.

5.2.1 Test Derivation for LTSs

In the ioco theory, the behavior of a test case is described by a finite tree with
verdicts in the leaves. In the test suite generated by the algorithm proposed by
Tretmans [Tre08], in each internal node of a test case, either one specific input
action and all possible outputs can occur, or every outputs and the special action
θ can occur. The special label θ 6∈ L ∪ {δ} is used to detect quiescent states of
an implementation, so it can be thought of as the communicating counterpart
of a δ action.

If the test case is in a state where an input and all the outputs are possible
and the implementation produces some output, the execution synchronizes, for-
bidding the tester to propose the input. The authors of [JM99] argue that a test
case should not allow this kind of choices; they call this property controllability.
The test case generation algorithm they propose takes as an input the specifica-
tion of the system and a finite automata (called test purpose) representing the
behaviors to be tested. The product of those systems is computed, extended by
δ actions and determinized, producing the complete test graph (CTG): a graph
which contains all the test cases corresponding to the given test purpose and
where some of its states are labeled by verdicts. The complete test graph is still
uncontrollable, but it can be pruned by a backtrack strategy from a pass state
(chosen nondeterministically) to the initial state, producing a test case.



5.2. CONSTRUCTING TEST CASES 75

5.2.2 Test Derivation for ESs

As a Petri net cannot be determinized [GG99], we assume that the specification
of the system is given as a deterministically labeled Petri net which unfolds into a
deterministic event structure. In order to obtain a test case, we need to truncate
the unfolding into a finite prefix (we explain how to do this in Section 5.3) and
deal with uncontrollability.

The authors of [JM99] allow immediate conflict between inputs and outputs
and deals with them by a backtrack strategy. If we follow the same strategy,
when an input is selected, outputs are discarded. This implies that some test
cases do not preserve outputs of the specification and therefore Theorem 6
cannot be applied to prove soundness of the test suite. For this reason, we
avoid immediate conflict between inputs and outputs in the specification.

Assumption 2. We will only consider specifications where there is no imme-
diate conflict between input and output events, i.e. ∀M ∈ R(N ), t1 ∈ T In, t2 ∈

TOut, M
t1−→ ∧ M

t2−→ implies •t1 ∩
•t2 = ∅. This implies that the unfolding of

the net is such that ∀e1 ∈ EIn, e2 ∈ EOut : ¬(e1 #r e2).

Immediate conflict between inputs still need to be solved. One possible way
of obtaining a test case is to traverse the prefix and add events to the test case
as far as they do not introduce immediate conflict with an input that is already
part of the test case. Algorithm 3 builds a global test case from a finite event
structure by resolving immediate conflicts between inputs, while accepting sev-
eral branches in case of conflict between outputs (note that “mixed” immediate
conflicts between inputs and outputs have been ruled out by Assumption 2). At
the end of the algorithm, all such conflicts have been resolved in one way, follow-
ing one fixed strategy of resolution of immediate input conflicts. Each strategy
can be represented as a linearization of the causality relation that specifies in
which order the events are selected by the algorithm. However, as it can be
seen in Section 5.2.4, the number of linearizations needed to cover the prefix is
bounded by the number of direct conflicts between inputs.

Analogously to the nondeterministic choice of the next input in the algo-
rithm by Tretmans or the nondeterministic choice in the pass state to start the
backtrack strategy, we assume a linearization is selected non deterministically.
The algorithms for LTSs build a test case that accepts any output the imple-
mentation may produce returning a pass verdict if the output was specified and
a fail one if not. Contrary to this, we neither complete the specification nor
label it with verdicts; we build a test case that only accepts those outputs that
were specified. Finally, the algorithm by Tretmans allows to chose for termi-
nation while finiteness of the test case using a backtrack strategy is given by
the finiteness of the path between the chosen pass state and the initial state.
Termination of our algorithm is given by the finiteness of the event structure
that is given as an input to the algorithm.

Example 5.10 (Test Derivation for ESs). Consider the event structure Fin of
Figure 5.8 and linearization R1 =⊥ · e1 · e2 · e3 · e4 · e5 · e6 · e7 · e8 · e9 · e10 · e11 are



76 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

Algorithm 3 Immediate input conflict solver

Require: A finite and deterministic E = (E,≤,#, λ) ∈ ES(L) such that ∀e ∈
EIn, e′ ∈ EOut : ¬(e #r e′) and a linearization R of ≤

Ensure: A test case T such that ∀ω ∈ tracesr(T ) : outr(T afterr ω) =
outr(E afterr ω)

1: ET := ∅
2: Etemp := E
3: while Etemp 6= ∅ do
4: em := min

R
(Etemp) /* the minimum always exists as R is total and finite */

5: Etemp := Etemp \ {em}
6: if ({em} × EIn

T ) ∩ #r= ∅ ∧ 〈em〉 ⊆ ET then
7: /* the current event em is not in conflict with any event of the prefix and its past

8: is already in the prefix */

9: ET := ET ∪ {em}

10: ≤T := ≤ ∩ (ET × ET )
11: #T := # ∩ (ET × ET )
12: λT := λ|ET

13: return T = (ET ,≤T ,#T , λT )

given as the inputs of Algorithm 3, the obtained test case is T8 from Figure 5.6.
Event e9 is not added since it would add immediate conflict to the test case,
while events e10, e11 are not part of the test case since an event in their past
(e9) was removed.

5.2.3 IICS Set

In order to cover all the branches of the event structure, the algorithm must be
run several times with different conflict resolution schemes, to obtain a test suite
that represents every possible event in at least one test case. Instead of running
the algorithm with all possible interleavings, the collection of linearizations that
are used needs only to consider all resolutions of immediate input conflict, i.e.
there must be a pair of linearizations that reverses the order in a given immediate
input conflict.

Definition 5.6 (IICS Set). Fix E = (E,≤,#, λ) ∈ ES(L), and let L be a set
of linearizations of ≤. Then L is an immediate input conflict saturated set, or
iics set, for E iff for all e1, e2 ∈ EIn such that e1 #r e2, there exist R1,R2 ∈ L
such that e1R1e2 and e2R2e1.

An iics set allows to cover all the branches of an event structure using Algo-
rithm 3.

Proposition 4. Let L be an iics set for E = (E,≤,#, λ), and T the test suite
obtained using Algorithm 3 with L. Then every event e ∈ E is represented by
at least one test case T ∈ T .



5.2. CONSTRUCTING TEST CASES 77

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5

!prii

e6

!datai

e7?selp

e8

!prip

e9 ?selt

e10

!pri1t

e11

!pri2t

Fin

Figure 5.8: A finite prefix of the unfolding Eag.

Proof. Let T be the test suite obtained by the algorithm and L, and suppose e is
not represented by any test case in T . We have then that for every T ∈ T either
(i) e ∈ EIn and ({e} × EIn

T ) ∩ #r 6= ∅ or (ii) 〈e〉 6⊆ ET . If (i), we have that
there exists e′ ∈ EIn

T such that e #r e′ and e′R1e (where R1 is the linearization
used to build T ). By Definition 5.6, we know there exist R2 ∈ L such that
eR2e

′ and then we can use R2 to construct T ′ ∈ T such that e is represented
by T ′, which leads to a contradiction. If (ii), then there exists e′ ∈ 〈e〉 such
that ({e′} × EIn

T ) ∩ #r 6= ∅ and the analysis is analogous to the one in (i).

Example 5.11 (IICS Set). Consider the event structure Fin of Figure 5.8 and
linearizations R1 =⊥ · e1 · e2 · e3 · e4 · e5 · e6 · e7 · e8 · e9 · e10 · e11 and R2 =⊥
· e1 · e2 · e3 · e4 · e5 · e6 · e9 · e10 · e11 · e7 · e8. The only immediate conflict between
inputs in Fin is between e7 and e9. The two linearizations reverse the order
between these events and therefore they form an iics set. Algorithm 3 constructs
T9 from Figure 5.7 when R2 is used; the events from Fin that were missing in
T8, i.e. e9, e10, e11, are part of T9 and therefore the whole prefix is covered.

Consider the unfolding S of the specification of the system and the set of
all its possible prefixes which is denoted by PREF(S). Algorithm 3 is general
enough to produce a complete test suite.

Theorem 8. Let S be the unfolding of the specification. From PREF(S) and
a given iics set L for S, Algorithm 3 yields a complete test suite T .

Proof. Soundness: By Theorem 6 we need to prove that: (i) the traces of
every test case are traces of the specification; (ii) the outputs following a trace
of the test are at least those specified; (iii) any concurrent complete set of
possible input in the test case is concurrent complete in the specification. (i)
Trace inclusion is immediate since the algorithm only removes events generating
immediate conflict. (ii) For a test T and a trace ω ∈ tracesr(T ), if an output in



78 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

outr(S afterr ω) is not in outr(T afterr ω), it means either that it is in conflict
with an input in T , which is impossible by Assumption 2, or that its past is not
already in T , which is impossible since ω is a trace of T . (iii) As inputs are
considered as concurrent complete, if the test case has a concurrent complete
possible input that is not concurrent complete in the specification, then either
a new input event was introduced, which is not possible as the obtained event
structure is a prefix of the specification, or because some concurrency had been
removed; but this is not possible as only conflicting inputs are removed.

Exhaustiveness: By Theorem 7 we need to prove: (i) every trace is rep-
resented in at least one test case; (ii) the test case does not produce outputs
that are not specified; (iii) concurrent complete set of inputs of the specifi-
cation remain as concurrent complete sets in the test case. (i) Clearly, for
all ω ∈ tracesr(S) there exists at least one prefix P ∈ PREF(S) such that
ω ∈ tracesr(P). By Proposition 4 we can find R ∈ L such that this trace
remains in the test case obtained by the algorithm. (ii)-(iii) The inclusion of
outputs and preservation of concurrent complete sets is immediate since the
algorithm does not add events.

5.2.4 Upper Bound for the Complexity of the Method

The complexity of constructing a complete test suite depends on the size of the
iics set L used: for a finite prefix of the unfolding, we construct one test case
for each linearization in L. We present an upper bound for the size of L and
discuss how to improve on it.

Example 5.12 (Size of a IICS Set). Consider the event structure Fin of Fig-
ure 5.8 and linearizations

R1 = ⊥ · e1 · e2 · e3 · e4 · e5 · e6 · e7 · e8 · e9 · e10 · e11
R2 = ⊥ · e1 · e2 · e3 · e4 · e5 · e6 · e9 · e10 · e11 · e7 · e8
R3 = ⊥ · e1 · e2 · e3 · e4 · e5 · e6 · e9 · e7 · e8 · e10 · e11

Algorithm 3 produces test cases T8, T9 using linearizations R1 and R2 respec-
tively. We can easily see that some events commute between R2 and R3, how-
ever, the algorithm constructs T9 whichever of them we use.

The example above shows that some commutations of events in the lineariza-
tion produce different test cases, while others do not. The concept of partial
commutation was introduced by Mazurkiewicz [DR95] where he defines a trace
as a congruence of a word (or sequence) modulo identities of the form ab = ba
for some pairs of letters.

Let Σ be a finite alphabet and I ⊆ Σ×Σ a symmetric and irreflexive relation
called independence or commutation. The relation I induces an equivalence
relation ≡I over Σ∗. Two words x and y are equivalent, denoted by x ≡I y, if
there exists a sequence z1, . . . , zk of words such that x = z1, y = zk and for all
1 ≤ i ≤ k there exists words z′i, z

′′
i and pair of letters (ai, bi) ∈ I satisfying

zi = z′iaibiz
′′
i and zi+1 = z′ibiaiz

′′
i



5.2. CONSTRUCTING TEST CASES 79

Thus, two words are equivalent by ≡I if one can be obtained from the other by
successive commutation of neighboring independent letters. For a word x ∈ Σ∗

the equivalence class of x under ≡I is defined as [x]I , {y ∈ Σ∗ | x ≡I y}.

Example 5.13 (Mazurkiewicz Traces). Consider Σ = {a, b, c, d} and the inde-
pendence relation I = {(a, d)(d, a)(b, c)(c, d)}, we have:

[baadcb]I = {baadcb, baadbc, badacb, badabc, bdaacb, bdaabc}

As explained above, several linearizations of the causality relation build the
same test case, therefore they can be seen as equivalent under some relation and
we only need one representative for each class. It is shown by Rozenberg and
Salomaa [RS97] that every (Mazurkiewicz’s) trace has a unique normal form
(every trace in the equivalence class has the same one). Different linearizations
having the same normal form, construct the same test case.

We have seen that the order between concurrent events or output events in
immediate conflict does not change the test cases constructed by Algorithm 3,
but immediate conflict between inputs and causality does. We propose the
following independence relation:

IS , (E × E)\(≤ ∪ ((EIn × EIn) ∩ #r))

For constructing a test case, we need to consider only the normal form of all
the possible linearizations (one representative per equivalence class) and there-
fore the cardinality of the test suite is bounded by the number of equivalence
classes under ≡Is .

Theorem 9. Let E = (E,≤,#, λ) ∈ ES(L) and R2 ∈ [R1]IS for some lin-
earization R1 of ≤. Algorithm 3 generates the same test cases with both R1 and
R2.

Proof. Let T1 = (E1,≤1,#1, λ1) and T2 = (E2,≤2,#2, λ2) the test cases ob-
tained by linearizationsR1,R2 respectively and suppose ∃e ∈ E1 : e 6∈ E2. Since
e was removed from T2, then either: (i) ∃e′ ∈ EIn

2 : e′R2e ∧ e #r e′; or (ii)
∃e′ ∈ 〈e〉 : e′ 6∈ E2. If (i), Assumption 2 implies e ∈ EIn

1 , thus (e, e′) 6∈ I. Since
R1 ≡IS R2, R1 cannot reverse the order between e and e′ and e′R1e. e

′ ∈ EIn
2

implies that there is not a smaller event (w.r.t R2) that prevents it to be part
of the test case, and this is also the case in R1 because they are equivalent. We
can conclude that e′ ∈ EIn

1 and since e #r e′ and e′R1e, it follows that e 6∈ E1,
which contradicts the hypothesis. If (ii), then ∃e′′ ∈ EIn

2 : e′′R2e
′ ∧ e′′ #r e′

and the analysis is similar to (i).

Corollary 1. Let K = |(EIn × EIn) ∩ #r|, then Algorithm 3 needs to be run
only 2K times to obtain a test suite that covers the prefix.

Proof. Since K is the number of equivalence classes for all the possible lineariza-
tions of ≤, the result is immediate using Theorem 9.

The corollary above gives an upper bound in the number of test cases needed,
however there may still be some redundancy in the test suite.



80 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

i1

⊥

i3
i2 i4

o5
o6

o7

o8

Figure 5.9: An event structure with three inputs in immediate conflict

Example 5.14 (Redundant Test Cases in a Test Suite). Consider the event struc-
ture from Figure 5.9 with i2, i3, i4 ∈ EIn and linearizations of the causality re-
lation R =⊥ · i1 · i2 · o8 · i3 · o6 · i4 · o5 · o7 and R′ =⊥ · i1 · o8 · i2 · o5 · i3 · o6 · i4 · o7.
The normal form of both R and R′ is (⊥)(i1)(i2)(i3)(i4)(o5o6o7o8), meaning
that the order of o5, o6, o7, o8 is not really important for constructing the test
case. For any linearization of the causality relation, its normal form is one of
the followings:

R1 = (⊥)(i1)(i2)(i3)(i4)(o5o6o7o8) R2 = (⊥)(i1)(i2)(i4)(i3)(o5o6o7o8)

R3 = (⊥)(i1)(i3)(i2)(i4)(o5o6o7o8) R4 = (⊥)(i1)(i3)(i4)(i2)(o5o6o7o8)

R5 = (⊥)(i1)(i4)(i2)(i3)(o5o6o7o8) R6 = (⊥)(i1)(i4)(i3)(i2)(o5o6o7o8)

However, linearizations R1 and R2 lead to the same test case (the same happens
for R3,R4 and R5,R6). This is due to the fact that once we add an input event
to the test case, all the other inputs that are in immediate conflict with it will
not be added, and their order is irrelevant. Linearizations R1,R3 and R5 are
sufficient to cover the specification.

Next section proposes a SAT encoding of test cases that not only removes this
redundancy in the test suite construction, but it also takes care of uncontrollably
problems.

5.2.5 SAT Encoding of Test Cases

Test cases cannot be constructed directly during unfolding time as some needed
information may not be available in the current unfolding prefix.

Example 5.15 (Test Case Generation During the Unfolding Procedure). Suppose
one wants to unfold a system which complete unfolding is given by Figure 5.10
and suppose the current prefix only contains events i1 and o1. When we compute
the possible extensions, we obtain i2, i3 and we already know they are in imme-
diate conflict and only one of them can be part of the test case. If we only have
i1 in the prefix, the possible extensions are i2, o1. If we select i2, this prohibits



5.2. CONSTRUCTING TEST CASES 81

adding i3 in the future as it adds immediate conflict between inputs, however,
this information is not available at the moment of selecting between i2 or o1.

i1

i2 o1

i3

Figure 5.10: Test case generation during the unfolding procedure.

In order to avoid this problem and the redundancy mentioned in Exam-
ple 5.14, we propose to use a SAT encoding which also solves controllability
problems. We use a SAT variable ϕe for each event e, thus we need an event
structure with a finite number of events (see Section 5.3 for information about
how to obtain a finite prefix of the unfolding). We construct a SAT formula
where each solution represents a test case, i.e. a solution assigning 1 to variable
ϕe means that event e belongs to the test case, while assignment 0 means that
it does not.

As test cases preserve causality, whenever the condition of an event is true,
the condition of every event in its past should also be true. In addition, for each
pair of immediate conflict between inputs, exactly one of them can belong to the
test case. We intend the test suite to cover the whole prefix, therefore the test
cases should be maximal in the sense that adding any event should violate the
causal precedence or non immediate conflict between inputs properties. Since
immediate conflicts between inputs and outputs are not accepted in the speci-
fication, an output of the specification does not belong to the test case only if
one of the events in its past does not belong either. The same is also true for
internal events. In the case of an input event, if it does not belong to the test
case, it should either violate the causal precedence property, or introduce im-
mediate conflicts between inputs forbidden by Definition 5.1. These restrictions
are captured by the conjunction of the following SAT formulas for each event.

∀e ∈ E :
∧

f≤e

ϕe ⇒ ϕf (5.1)

∀e ∈ EIn :
∧

f#re

¬ϕe ∨ ¬ϕf (5.2)

∀e ∈ (EOut ∪ Eτ ) : ¬ϕe ⇒
∧

f≤e

¬ϕf (5.3)

∀e ∈ EIn : ¬ϕe ⇒ (
∨

f≤e

¬ϕf ∨
∨

f#re

ϕf ) (5.4)

Example 5.16 (SAT Encoding of the Travel Agency). Consider the event struc-
ture of Figure 5.11. The SAT formula contains the following constrains for



82 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

events e9 and e10

(ϕe9 ⇒ (ϕe2 ∧ϕe1 ∧ϕ⊥))∧ (¬ϕe7 ∨¬ϕe9)∧ (¬ϕe9 ⇒ (¬ϕe2 ∨¬ϕe1 ∨¬ϕ⊥∨ϕe7))

(ϕe10 ⇒ (ϕe9 ∧ ϕe2 ∧ ϕe1 ∧ ϕ⊥)) ∧ (¬ϕe10 ⇒ (¬ϕe9 ∨ ¬ϕe2 ∨ ¬ϕe1 ∨ ¬ϕ⊥))

The complete SAT formula reduces to

ϕ⊥ ∧ ϕe1 ∧ ϕe2 ∧ ϕe3 ∧ ϕe4 ∧ ϕe5 ∧ ϕe6 ∧ ((ϕe7 ∧ ϕe8 ∧ ¬ϕe9 ∧ ¬ϕe10 ∧ ¬ϕe11) ∨
(¬ϕe7 ∧ ¬ϕe8 ∧ ϕe9 ∧ ϕe10 ∧ ϕe11))

which is satisfiable by the two assignments

ϕ⊥ = ϕe1 = ϕe2 = ϕe3 = ϕe4 = ϕe5 = ϕe6 = ϕe9 = ϕe10 = ϕe11 = 1,
ϕe7 = ϕe8 = 0

ϕ⊥ = ϕe1 = ϕe2 = ϕe3 = ϕe4 = ϕe5 = ϕe6 = ϕe7 = ϕe8 = 1,
ϕe9 = ϕe10 = ϕe11 = 0

which represent the test cases T8 and T9 respectively.

Example 5.17 (Avoiding Redundancy by SAT Encoding). Consider the event
structure of Figure 5.9. The constraints generated by Equation 5.2 imposes that
exactly one between ϕe2 , ϕe3 , ϕe4 is equal to 1. The SAT formula has three
solutions representing the only necessary test cases, avoiding the redundancy
seen in Example 5.14.

We will use this SAT encoding in Appendix B for the generation of test
cases for several examples and show its efficiency when partial order semantics
are used.

5.3 Test Selection

While sufficient conditions for soundness and exhaustiveness of test suites have
been given, exhaustive test suites are usually infinite or contain infinite test
cases, while in practice, only a finite number of test cases can be executed.
Hence we need a method to select a finite set of relevant test cases covering as
many behaviors as possible (thus finding as many anomalies as possible), while
preserving soundness.

In the ioco framework and its extensions, the selection of test cases is
achieved by different methods. Tests can be built in a randomized way from a
canonical tester, which is a completion of the specification representing all the
authorized and forbidden behaviors [Tre96b]. Closer to practice is the selection
of tests according to test purposes, which represent a set of behaviors one wants
to test [JJ05]. Another method, used for symbolic transition systems for in-
stance, is to unfold the specification until a certain testing criterion is fulfilled,
and then to build a test suite covering this unfolding. Criteria for stopping the
unfolding can be a given depth or state inclusion for instance [GGRT06].



5.3. TEST SELECTION 83

5.3.1 Coverage Criteria Based on Cut-off Events

We propose testing criteria based on the structure of the specification. This cri-
teria includes all-transitions and all-states criteria [GS04] where each transition
or state of the specification must be covered by at least one test case. Other
criteria include covering every loop or cycle a fixed number of times or every
possible path, however the latter is usually impossible to achieve in practice.

The entire behavior of a Petri net is captured by its unfolding, but this
unfolding is usually infinite both in depth and breadth. Infinite depth needs
infinite test cases to cover every path while infinite breadth needs an infinite set
of (possible finite) test cases. There are several different methods of truncating
an unfolding and then avoiding both infinite test cases and test suites. The
differences are related to the kind of information about the original unfolding
one wants to preserve in the prefix. The algorithm for constructing a finite
prefix [McM95] depends on the notion of cut-off event: how long the net is
unfolded. Our aim is to use such a prefix to build test cases, therefore obtaining
a finite prefix can be seen as defining a testing criterion.

Theorem 6 shows that if the information about the produced outputs (and
quiescence) is preserved in the test cases, we can prove the soundness of the
test suite. Hence we aim at truncating the unfolding following a specific cri-
terion, while preserving information about outputs and quiescence. In order
to preserve this information, we follow [GGRT06] and modify the finite prefix
algorithm [McM95] adding all the outputs from the unfolding that the prefix
enables. As there exists no cycles of outputs in the original net, this procedure
terminates, yielding a finite prefix. The procedure to compute the quiescent
closure of a finite prefix (denoted by FinΘ) is described by Algorithm 4.

The algorithm takes as an input a net and a notion of cut-off or termination
(when to cut a branch). It starts from an empty prefix (as in the case of the
unfolding algorithm) and at each iteration computes the possible extensions of
the current prefix. If a possible extension is such that it is not in the future
of a cut-off or terminal event, the event is added to the prefix, if not, it is
removed from the possible extensions, i.e. events in the future of a cut-off event
are not added in the first unfolding loop. Once the net is unfolded into a finite
prefix, for every maximal (w.r.t set inclusion) configuration of the prefix enabling
outputs events, those events are added to the prefix. The latter assures that
the produced outputs of the prefix and the unfolding coincide and it is used to
show that the test suite obtained from such prefix is sound.

Algorithm 4 is parametric on the cutting criterion: if we change the notion
of cutting event, the finite prefix obtained is different. As in [JM99] where the
complete test graph contains all test cases corresponding to the test purpose,
each of these prefixes contain all the test cases corresponding to its correspond-
ing testing criterion. We propose three cut-off notions corresponding to different
testing criteria.

All Paths of Length n Criterion. The first cut-off notion we present de-
pends on the height of an event, defined as the length of the longest causality



84 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

Algorithm 4 Quiescent closure of a finite prefix

Require: A Petri net N = (P, T, F, λ,M0) where M0 = {p1, . . . , pn}, and a
cut-off predicate on events

Ensure: A finite prefix FinΘ of the unfolding U of net N such that ∀ω ∈
traces(FinΘ) : outr(Fin

Θ afterr ω) = outr(U afterr ω)
1: FinΘ := {(⊥, ∅), (p0,⊥), . . . , (pn,⊥)}
2: pe := PE(FinΘ)
3: cut-off := ∅
4: while pe 6= ∅ do
5: choose an event e = (t, C) in pe
6: if [e] ∩ cut-off = ∅ then
7: append to FinΘ event e and a condition (p, e) for every place p in t•

8: pe := PE(FinΘ);
9: if e is a cut-off event of FinΘ then

10: cut-off := cut-off ∪ {e}

11: else
12: pe := pe\{e}

13: pe := PE(FinΘ)
14: while ∃(t, C) ∈ pe : t ∈ TOut do
15: choose an event e = (t, C) in pe such that t ∈ TOut

16: append to FinΘ the event e and a condition (p, e) for every place p in t•

17: pe := PE(FinΘ);
return FinΘ

chain containing this event. It defines a selection criterion similar to the criterion
“all paths of length n” defined in [GGRT06].

Definition 5.7 (Height of an Event). For a branching process Fin, define the
height of an event e in Fin recursively by

H(⊥) , 0

H(e) , 1 + max
e′<e

(H(e′))

The following criterion generates a prefix where the height of any event is
at most n.

Definition 5.8 (n-Cut-off Events). Let Fin be a branching process. An event e
is an n-cut-off event iff H(e) = n.

Example 5.18 (All Paths of Length n Criterion). Figure 5.11 shows a finite prefix
of the travel agency unfolding Eag using an “all path of length 3” criterion. The
events in S1 are those marked as cut-off (their height is 3). During the first
while condition of Algorithm 4 (lines 4-12), only events ⊥, e1, e2, e3, e4, e7, e9
are added. In this prefix, the maximal configuration {⊥, e1, e2, e3, e4, e7} enables
outputs !prii, !datai and !prip. The second while condition (lines 13-17) builds
the quiescent closure by adding output events in S2.



5.3. TEST SELECTION 85

S1

S2

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7

?selp

e8

!prip

e9

?selt

e10

!pri1t

e11

!pri2t

Finn

Figure 5.11: All paths of length n criterion.

This criterion allows us to build test cases that cover all paths of height
n, however, the pertinent n to be chosen is up to the tester. Notice that the
behavior of the system consists usually of infinite traces, however, in practice,
these long traces can be considered as a sequence of (finite) “basic” behaviors.
For example, the travel agency offers few basic behaviors: (i) logging in; (ii)
selection of insurance; and (iii) selection of tickets. Any “complex” behavior of
the agency is built from such basic behaviors. The longest length of these basic
behaviors can be chosen as a pertinent length to unfold.

Inclusion Criterion. From the observation that a specification generally de-
scribes a set of basic behaviors that eventually repeat themselves, another nat-
ural criterion consists in covering the cycles of the specification. We define a
criterion allowing to cover each basic behavior at least once, using a proper
notion of complete prefix [McM95].

Definition 5.9 (Complete Prefixes). A branching process β of an Petri net N
is complete if for every reachable marking M there exists a configuration C in
β such that:

1. Mark(C) =M (i.e. M is represented in β), and

2. for every transition t enabled by M there exists C ∪ {e} ∈ C(β) such that
e is labeled by t.

The first condition in Definition 5.9 implies that every complete prefix covers
every state of the system, i.e. it assures a all-states coverage; while the second
condition assures all-transitions coverage.

Note that the completeness of a prefix does not imply that the information
about outputs and quiescence is preserved, so Algorithm 4 still needs to add
outputs to build its quiescent closure.



86 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

i1 i2 i3 i4

o1

N1

⊥

i1 i3 i2 i4

o1

Fin1

⊥

i1 i3 i2 i4

o1 o1

FinΘ1

Figure 5.12: A Petri netN , a complete finite prefix Fin and its quiescent closure
FinΘ.

Example 5.19 (Complete Prefixes and Produced Outputs). The prefix Fin1 of
the unfolding of net N1 from Figure 5.12 is complete, however the expected
outputs are not part of the prefix. Output o1 is produced by N1 after i2 and i4,
but this is not the case in Fin1, i.e. o1 6∈ outr(Fin1 afterr (i2 co i4)) = {δ}.
The quiescent closure FinΘ1 adds all the necessary outputs.

The following cut-off notion corresponds to the inclusion criterion presented
in [GGRT06]; the unfolding can be truncated when the current event being
unfolded generates a marking that was already seen in the current branch.

Definition 5.10 (Inclusion Cut-off Events). Let Fin be a branching process. An
event e is an inclusion cut-off event iff Fin contains an event e′ ≤ e such that
Mark([e′]) =Mark([e]).

S1

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e14?seli

e15!prii

e16!datai

e7

?selp

e8!prip

e17?selp

e18!prip

e19 ?selt

e110
!pri1t

e111
!pri2t

e9

?selt

e10!pri1t e11 !pri2t

e27?selp

e28!prip

e29 ?selt

e210
!pri1t

e211
!pri2t

e37?selp

e38!prip

e39 ?selt

e310
!pri1t

e311
!pri2t

Figure 5.13: Inclusion criterion.



5.3. TEST SELECTION 87

Example 5.20 (Inclusion Criterion). Figure 5.13 shows the output closure of the
finite prefix obtained using the inclusion criterion for the net Nag. The colored
events in S1, i.e. e14, e

1
7, e

1
10, e

1
11, e

2
8, e

2
9, e

3
8, e

3
9, are marked as cut-off. Colors

relate cut-off events with the corresponding smaller event generating the same
marking, for example e4 ≤ e14 and Mark([e4]) = Mark([e14]). As in the case of
all path n criterion, some outputs need to be added to the prefix: e17 is marked
as a cut-off, but the output event e18 is also part of the prefix.

The finite prefix obtained using the inclusion cut-off notion is complete and
therefore includes all-transitions and all-states coverage. However as it is shown
in [ERV02], it is not necessarily the minimal complete prefix.

Example 5.21 (Minimal Complete Prefixes and Testing). Figure 5.14 presents
a Petri net N2 together with the finite prefix Fin2 obtained using the inclusion
criterion. Esparza et al. [ERV02] proposed an improvement to the finite com-
plete prefix algorithm, to obtain a (potentially) smaller prefix, as it is the case of
Fin′2. Smaller complete prefixes can lead to exponential reductions in verifica-
tion techniques, however, in testing, smaller prefixes reduce the testing power of
the test suite. Consider N2 as the specification of the system and an implemen-
tation which accepts ?i2, but after, it refuses ?i3. Clearly this implementation
is non conformant w.r.t any of our conformance relations (where we do not as-
sume input-enabledness). The test suite obtained from prefix Fin′2 after solving
immediate conflict between inputs is {?i1·?i3, ?i1·?i4, ?i2}. The implementation
does not fail the test suite as the trace ?i2·?i3 is never tested and non confor-
mance is not detected. The test suite obtained from Fin2 contains ?i2·?i3 and
therefore it detects the refused input.

i1 i2

i3 i4

N2

⊥

i1 i2

i4 i3i3 i4

Fin2

⊥

i1 i2

i4i3

Fin′2

Figure 5.14: Minimal complete prefixes and testing.

k-inclusion Criterion. A natural extension of the previous criterion consists
in traversing each basic behavior a fixed number of times. We present below the
k-inclusion criterion which together with Algorithm 4 leads to a complete prefix
representing each basic behavior at least k times in each branch and preserving
outputs and quiescence.



88 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

Definition 5.11 (k-Inclusion Cut-off Events). Let Fin be a branching process.
An event e is a k-inclusion cut-off event iff Fin contains a family of k events
{ei}i≤k such that ei ≤ ei+1 ≤ e and Mark([ei]) =Mark([e]) for 0 ≤ i < k.

Obviously a 1-inclusion cut-off event is an inclusion cut-off event in the sense
of Definition 5.10. As the k-inclusion criterion extends the prefix obtained by
the inclusion criterion, clearly this prefix is also complete and therefore assures
all-transitions and all-states coverage.

5.3.2 Soundness of the Test Suite

We have shown how to obtain a finite prefix of the unfolding that not only
reduces the size of both test cases (avoiding infinite paths) and the test suite
(avoiding infinite branchings), but it also covers a significant part of the specifi-
cation behavior. The following result is central and will help proving soundness
of the test suite constructed from the prefix.

Theorem 10. Let N be a net, U its unfolding and FinΘ the quiescent closure
of one of its prefixes obtained either by the k-inclusion1 or the all paths of length
n criterion and Algorithm 4, then

1. tracesr(Fin
Θ) ⊆ tracesr(U)

2. ∀ω ∈ tracesr(Fin
Θ) : outr(Fin

Θ afterr ω) = outr(U afterr ω)

Proof. 1) is immediate since FinΘ is a prefix of U . 2) The second loop of
Algorithm 4 adds every output which is enabled by the current prefix, therefore
it only removes outputs if an input in their past was also removed. As only
the outputs produced after the traces of FinΘ are considered, the result is
immediate.

We can now prove the main result of this section: the test suites constructed
based on the k-inclusion or the all paths of length n criterion are sound.

Theorem 11. Let U be the unfolding of the specification of a system and FinΘ

the quiescent closure of one of its prefixes obtained by Algorithm 4. Any test
suite constructed by Algorithm 3 or the SAT encoding and FinΘ is sound w.r.t
wsc-ioco.

Proof. By Theorem 6, we need to prove that any trace of a test case T is a
trace of the unfolding (which is trivial as T is a prefix of FinΘ and therefore
of U) and that outputs and quiescence produced after any trace of such a test
are preserved. The events of FinΘ that are added to T by Algorithm 3 or
the SAT encoding are those whose past is already in T and which are not in
immediate conflict with its inputs. An output cannot be in immediate conflict
with an input by Assumption 2, so all the outputs from FinΘ whose past is
already in T are added. This implies that all the outputs of FinΘ after a trace
of the test case are preserved and by Theorem 10 we have ∀ω ∈ tracesr(T ) :
outr(T afterr ω) = outr(Fin

Θ afterr ω) = outr(U afterr ω).

1This criterion includes the inclusion criterion.



5.3. TEST SELECTION 89

5.3.3 Comparing Different Criteria

Example 5.21 shows that different prefixes may lead to smaller test suites, but
which have less testing power. We need therefore a way to compare the testing
power between prefixes. We can follow the k-inclusion criterion and consider
the number of times a marking is covered as a measure for the quality of the
test suite, however this does not consider the “cost” of executing such test suite.
To measure the quality of a prefix, we propose to balance between the testing
power and the size of the prefix.

We define the coverage of a configuration as the number of times its corre-
sponding marking is represented in any proper subset:

Cov(C) , |{C ′ ⊂ C |Mark(C) =Mark(C ′)}|

In order to take into account the “cost” of executing a larger prefix to increase
the coverage of its configuration, we also consider in the quality of a configura-
tion the number of events of the prefix:

Q(C) ,
Cov(C)2

|Fin|

Let Ω(E) denote the set of maximal (w.r.t set inclusion) configurations of E . The
quality of a prefix is defined as the smallest quality of its maximal configurations.

Definition 5.12 (Quality of a Prefix). Let Fin be a finite prefix of the unfolding,
we define the quality of Fin as

Q(Fin) , min
C∈Ω(Fin)

Q(C)

Example 5.22 (Testing Quality of a Prefix). Consider the net N3 from Fig-
ure 5.15 and the two finite prefixes of its unfolding Cov1 and Cov2 obtained
by the 1-inclusion and 2-inclusion criteria respectively. The coverage of each
maximal configuration in Cov1 is equal to 1 and then Q(Cov1) is 1/5 = 0.2. In
order to obtain a coverage equal to 2, we need to add four events to Cov2, thus
Q(Cov2) = 22/13 ≈ 0.3. The number of events that need to be added to obtain
a coverage of 3 in maximal configurations is too big (48 new events) and reduces
the quality of the prefix, i.e. Q(Cov3) = 32/61 ≈ 0.14, where Cov3 is the prefix
obtained by a 3-inclusion criterion.

The fact that a large number of events needs to be added in the unfolding to
increase the coverability of maximal configurations is one of the disadvantages
of unfoldings. There exist other ways to unfold the net to avoid such kind of
explosion (for example merged processes [KKKV06]). However, this condensed
way of representing the unfolding of the system comes at a price, for example,
identifying its configuration its not straightforward as merged processes usually
contain cycles.



90 CHAPTER 5. A CENTRALIZED TESTING FRAMEWORK

t1 t2

t3

N3

⊥

e1 e2

e3 e13

Cov1

⊥

e1 e2

e3 e13

e11 e12

e23 e33

e21 e22

e43 e43

Cov2

Figure 5.15: Testing quality of a prefix.

5.4 Conclusion

This chapter introduced a complete testing framework for concurrent systems
based on a centralized testing architecture, i.e. global control and observation
of the system is assumed.

We introduced the notion of global test cases which allow concurrency in the
tests. However, in practice, such global test cases are not meant to be actually
executed globally, they would rather be projected onto the different processes
to be executed locally, in order to make the observation of concurrency possible.
Our approach here is to study the testing problem from a centralized point of
view, as a basis to the distributed testing problem: the global conformance rela-
tion (co-ioco) is the relation we want to test with local control and observation
(see Chapter 6), and the global test cases are the basis for the construction of
local tests. We showed that in general, global test cases are not only smaller
that local test cases, but also than the number of global test cases in a test suite
is usually smaller than the number of local test cases. This is due to the fact
that interpreting concurrency by interleavings introduces controllability prob-
lems that need to be solved by the test case generation algorithm.

Since global test cases are not meant to be executed globally, we did not
define a notion of test execution, but we rather consider the situations where the
interaction between the tester and the implementation is not possible in order
to define verdicts that allow to decide conformance. Based on this interaction,
we gave sufficient conditions for a test suite to be sound and exhaustive.

We gave two algorithms to construct global test cases: the fist one iteratively
adds events to the test case while they do not introduce immediate conflict be-
tween inputs in the test case. Even if this algorithm takes as an input a lin-
earization of the causality relation, we showed that the number of linearizations
needed to cover the specification is exponential only in the number of direct
conflicts between inputs which is usually considerably smaller than the number
of all possible interleavings. However, this algorithm still generates redundant
test cases: several linearizations can produce the same test case. In order to
solve this, we proposed a second algorithm based on a SAT encoding of the test



5.4. CONCLUSION 91

cases.
The termination of both algorithms depends on the finiteness of the event

structure that is used as an input (which is a prefix of the unfolding of the
specification). We defined different criteria to construct finite prefixes of the
unfolding and which can be seen as testing criteria. Defining testing criteria is
necessary for covering certain behaviors of the system during the testing process
since covering all is not usually possible (executing exhaustive test suites is not
usually possible in practice since exhaustive test suites are usually infinite).
Finally we showed that the test suite constructed by any of the defined criteria
is sound and we proposed a definition of coverage to compare them.





6
A Distributed Testing Framework

Chapter 5 explains how to construct a global tester which controls and observes
the whole system, however, global observation of the system cannot always be
achieved and the testing process needs to be distributed. It is known that,
in general, global traces cannot be reconstructed from local observations (see
for example [BGMK07]), reducing the ability to distinguish different systems.
There are three mainly investigated solutions to overcome this problem: (i)
the conformance relation needs to be weakened considering partial observation;
(ii) testers are allowed to communicate to coordinate the testing activity; (iii)
stronger assumptions about the implementations are needed.

6.1 Conformance in Distributed Architectures

According to the three directions mentioned above, the following solutions have
been proposed for testing global conformance in distributed testing architec-
tures.

(i) Hierons et al. [HMN08] argue that when the implementation is to be used
in a context where the separate testers at the PCOs do not directly communi-
cate with one another, the requirements placed on the implementation do not
correspond to traditional conformance relations. In fact, testing the implemen-
tation using a method based on standard relations, such as ioco, may return
an incorrect verdict. The authors of [HMN08] consider different scenarios, and
a dedicated conformance relation for each of them. In the first scenario, there
is a tester at each PCO which is independent from every other tester. In this
scenario, it is sufficient that the local behavior observed at a PCO is consistent
with some global behavior in the specification: this is captured by the p-dioco
conformance relation. In the second scenario, a tester may receive information
from other testers, and the local behaviors observed at different PCOs could
be combined. Consequently, a stronger implementation relation called dioco,

93



94 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

is proposed. They show that ioco and dioco coincide when the system is
composed of a single component, but that dioco is weaker than ioco when
there are several components. Similar to this, Longuet [Lon12] studies different
ways of globally and locally testing a distributed system specified with Message
Sequence Charts [HT03], by defining global and local conformance relations.
Moreover, conditions under which local testing is equivalent to global testing
are established under trace semantics.

(ii) Ulrich and König [UK99] propose a testing architecture where different
testers are placed at each PCO. Those testers communicate via synchroniza-
tion events and they assume that internal communication between processes is
observable (grey-box testing). They also discuss several examples where these
assumptions can be relaxed. Jard et al. [JJKV98] and Kang and [KK97] propose
a method for constructing, given a global tester, a set of testers (one for each
PCO) such that global conformance can be achieved by these testers. However,
they also assume that testers can communicate with each other in order to co-
ordinate the testing activity. In addition, Jard et al. consider the interaction
between testers and the implementation as asynchronous.

(iii) Bhateja and Mukund [BM08] propose an approach where they assume
each component has a local clock and they append tags to the messages gen-
erated by the implementation. These enriched behaviors are then compared
against a tagged version of the specification. Hierons et al. [HMN12] make the
same assumption about the existence of local clocks. If the clocks agree exactly
then the sequence of observations can be reconstructed. In practice the local
clocks will not agree exactly, but some assumptions regarding how they can differ
can be made. They explore several such assumptions and derive corresponding
implementation relations.

This chapter proposes a formal framework for distributed testing of concur-
rent systems specified as network of automata, without relying on communica-
tions between testers. As networks of automata cannot model weak concurrency,
we consider co-ioco as the global conformance relation to be tested. We show
that some, but not all, situations leading to non global conformance can be
detected by local testers without any further information about the other pro-
cesses. Moreover we prove that when vector clocks [Fid88, Mat89] are used,
the information held by each process suffices to reconstruct the global traces of
an execution from the partial observations of it at each PCO, and that global
conformance can thus be decided by distributed testers.

6.2 Modeling a Distributed System

A sound software engineering rule for building complex systems is to divide
the whole system in smaller and simpler processes, each solving a specific task.
This means that, in general, complex systems are actually collections of simpler



6.2. MODELING A DISTRIBUTED SYSTEM 95

p0

p1

p2

p3

?log

sync

!datas

Lser

q0

q1

q2

q3

sync

?seli

!prii

!datai

Lins

r0

r1r2 r3

sync

?selt ?selp

!pri1t

!pri2t !prip

Ltick

Figure 6.1: Network of automata of a travel agency.

processes running in parallel. We use automata (labeled transition systems
with a finite set of states) to model local behaviors, while global behaviors are
modeled by a collection or network of automata. We show that networks of
automata are captured equivalently by Petri nets where explicit representation
of concurrency avoids the state space explosion produced by interleavings.

We consider a distributed system composed of n processes that communicate
with each other over synchronization or communication actions and where the
local model of a process is defined as a deterministic finite automaton. Several
processes can communicate over the same communication action, but observable
actions from different processes are disjoint1, i.e. processes only share commu-
nication actions.

Example 6.1 (Network of Automata). Figure 6.1 shows a network of automata
with three processes that jointly represent the behavior of a travel agency and
which synchronize over the action sync.

From Automata to Nets: Given an automaton L = (Q,L,∆, q0), its trans-
lation to a Petri net NL = (P, T, F, λ,M0) is immediate: (i) places are the states
of the automaton, i.e. P = Q; (ii) for every transition (si, a, s

′
i) ∈ ∆ we add

t to T and set •t = {si}, t
• = {s′i} and λ(t) = a; (iii) the initial state is the

only place marked initially, i.e. M0 = {q0}. By abuse of notation, we make no
distinction between L and NL.

The joint behavior of processes L1, . . . ,Ln is modeled by NL1
× · · · × NLn

where × represents the product of labeled nets [Fab06] and we only synchronize

1Action a from process Li is labeled by ai if necessary.



96 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

on communication transitions (which are invisible for the environment and thus
labeled by τ).

Definition 6.1 (Product of Nets). Consider two nets N1 = (P, T, F, λ,M0) and
N2 = (P ′, T ′, F ′, λ′,M ′

0) and S the set of synchronization actions. The product
N1 ×N2 and associated projections πi : N1 ×N2 → Ni are defined as follows

• P = {(p1, ⋆) | p1 ∈ P} ∪ {(⋆, p2) | p2 ∈ P ′}: disjoint union of places,
πi(p1, p2) = pi if pi 6= ⋆ and it is undefined otherwise,

• the transition set T is given by

T = {(t1, ⋆) | t1 ∈ T, λ(t1) 6∈ S}
∪ {(⋆, t2) | t2 ∈ T ′, λ′(t2) 6∈ S}
∪ {(t1, t2) ∈ T × T ′ | λ(t1) = λ′(t2) ∈ S}

πi(t1, t2) = ti if ti 6= ⋆ and it is undefined otherwise,

• the flow F is defined by •t = π−1
1 (•π1(t)) ∪ π

−1
2 (•π2(t)) and analogously

for t•, assuming •πi(t) = πi(t)
•
= ∅ if πi is undefined at t,

• λ is the unique labeling preserved by πi,

• M0 = π−1
1 (M0) ∪ π

−1
2 (M ′

0).

Product of nets prevents the state space explosion problem, as the number
of places in the final net is linear w.r.t the number of components while product
of automata produces an exponential number of states. This product allows to
distinguish processes by means of its projections and when there are n processes,
it generates a distribution function D : P ∪T → P({1, . . . , n}) that relates each
place and transition with its corresponding automata [vGGSU12]. In the case of
communication actions, the distribution relates the synchronization transition
with the automata that communicate over it. A net together with a distribution
is called a distributed net. The unfolding of a distributed net is also distributed
and it inherits its distribution, i.e. ∀x ∈ B ∪ E we have D(x) = D(ϕ(x)). By
abuse of notation we make no distinction between the distribution in the original
net and its unfolding.

Remark 5. As different processes are deterministic and they only share commu-
nication actions, the net obtained by this product is deterministically labeled.

Example 6.2 (Distributed Net). Figure 6.2 shows the net obtained from the
network of automata in Figure 6.1 and its distribution D represented by colors.
The transition corresponding to action ?log corresponds to the server process,
i.e. D(t1) = {ser}, while communication between the processes is converted into
a single transition t2 with D(t2) = {ser, ins, tick}. This net adds places r0, q0
to the travel agency net Nag of Figure 3.1 on page 28, however the behaviors of
both nets are equivalent, i.e. they unfold into the same event structure Eag of
Figure 3.3 on page 32.



6.2. MODELING A DISTRIBUTED SYSTEM 97

Distribution

Color System
Server

Insurance Provider
Ticker Provider
Synchronization

s0

s1

s2

s3

t1?log

t2
τ

t3 !datas

r0

r1

r2

r3

t4

?seli

t5

!prii

t6

!datai

q0

q1 q2

q3

t7

?selp

t8 !prip

t9

?selt

t10 !pri1t

t11 !pri2t

N ′
ag = Nser ×Nins ×Ntick

Figure 6.2: A distributed Petri net.

In a distributed net obtained from a network of automata, accepting an input
or producing an output is decided locally, i.e. the structure of the net obtained
by this product is such that inputs and outputs are controlled (enabled) by a
single process.

Proposition 5. For every process NL obtained from an automaton we have
∀t ∈ T : |•t| = 1. In the net obtained by the product between processes, this
property is only violated by communication transitions. Therefore, any input or
output event is enabled by exactly one place.

Proof. Immediate from construction of NL and Definition 6.1.

Remark 6. The result of Proposition 5 is inherited by the unfolding of the net,
i.e. every input or output event e is such that |•e| = 1.

The unfolding U of a distributed net together with its distribution D allow
to project the system over a single process by just considering the conditions
and events in that process, i.e. conditions and events of projection Ud are
{b ∈ B | d ∈ D(b)} and {e ∈ E | d ∈ D(e)} respectively. Similar to this, given
an execution η and an observation ω of the unfolding, we can project them over
a given process d, the resulting projections are denoted by ηd and ωd.



98 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

The notion of configuration represents the current global state of the system;
in the case of a distributed system, the global state (configuration) is represented
by the local state of each process.

Remark 7. In a distributed system, every configuration C of the unfolding gen-
erates a cut C• = {q1, . . . qn} where each qd represents the current state of the
dth process.

Consider a given cut C• = {q1, . . . , qn} and the configuration Cd of process
d such that C•

d = {qd}. An event which is not enabled in Cd cannot be enabled
in C, i.e. an event which is not locally possible is neither globally possible. The
following result is central and will help proving that global conformance can be
achieved by local testers.

Proposition 6. Let C (respectively Cd) be a configuration of a distributed sys-
tem (respectively of the process d) with the corresponding cut C• = {q1, . . . , qn}
(respectively C•

d = {qd}). Then:

1. if ?id 6∈ poss(Cd), then ?id 6∈ poss(C),

2. if !od 6∈ out(Cd), then for all !ω ∈ out(C) we have !ωd 6= !od.

Proof. If an input or output event is not enabled in configuration Cd, then there
is no token in condition qd (see Remark 6). This absence prohibits such an event
not only to be enabled in Cd, but also in C.

Notice the distinction between possible inputs and produced outputs. When-
ever the system reaches a configuration C that enables input actions in every
component, i.e. ?id ∈ poss(Cd) for all d ∈ {1, . . . , n}, from the global point of
view, not only ?i1 co . . . co ?in is possible for the system, but also every single
input, i.e. ?id ∈ poss(C). The same is not true for produced outputs. Consider
a system that enables output !od in process d, leading to a quiescent configura-
tion in that process, i.e. !od ∈ out(Cd). If other components also enable outputs
actions, !od 6∈ out(C) as the global configuration after !od is not quiescent.

Example 6.3 (Global System and its Projections). Figure 6.3 shows the unfolding
of net N ′

ag and its projection Utick over the ticket provider process. In the
global system, each input and output is enabled by one condition, for example
•e9 = {q1}, while communication events can have more than one condition in
their preset as it is the case of e2, i.e.

•e2 = {s1, r0, q0}. Consider the reached
configuration after logging in, synchronizing the processes and selecting a train,
i.e. C = {⊥, e1, e2, e9}, which generates the cut C• = {s2, r1, q3}, i.e. after this
trace, the ticket provider process is in state q3. After this trace, it is not possible
to select a plane in the ticket provider process, i.e. ?selp 6∈ poss({q3}), and thus
it is neither possible in the whole unfolding, i.e. ?selp 6∈ poss(C). The output
!prip is not produced in {q3} and thus it cannot be a projection of any output
produced by the whole unfolding, i.e. out(C) = {!pri1t co !datas, !pri

2
t co !datas}

and !prip 6= (!pri1t co !datas)tick, !prip 6= (!pri2t co !datas)tick.



6.3. DISTRIBUTING GLOBAL CONFORMANCE 99

⊥

s0

s1

s2

s3

r0 q0

e1?log

e2
τ

e3!datas

r1r2r3r′1

e4

?seli
e5

!prii
e6

!datai
. . .

q1

q2

q3

q′1

q′′1

q′′′1

e7

?selp

e8

!prip

e9

?selt

e10

!pri1t

e11

!pri2t

. . .

. . .

. . .

U ′
ag

q0 q1

q2

q3

q′1

q′′1

q′′′1

e2
τ

e7

?selp

e8

!prip

e9

?selt

e10

!pri1t

e11

!pri2t

. . .

. . .

. . .

Utick

Figure 6.3: The unfolding of a distributed net and one of its projections.

6.3 Distributing Global Conformance

In this section we show how global conformance can be tested by placing a local
tester at each PCO. We have seen that non conformance of the implementation
is given by the absence of a given input or an unspecified output or quiescence
in a configuration of the implementation. In a distributed system, a configu-
ration defines the local state of each process as shown in Remark 7, thus, non
conformance of a distributed system is due to one of the following reasons:

(NC1) An input which is possible in a state of a process in the specification is
not possible in its corresponding state in the implementation,

(NC2) A state of a process in the implementation produces an output or a δ
action while the corresponding state of the specification does not,

(NC3) The input (respectively output) actions that the configuration is ready



100 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

to accept (respectively produce) are the same in both implementation and
specification, but they do not form the same partial order, i.e. concurrency
is added or removed.

6.3.1 Detecting Non Conformance Locally

The observations collected at each PCO are rich enough to detect non confor-
mance resulting from (NC1) and (NC2), i.e. those situations can be locally
tested under co-ioco by transforming each component into a net as it is shown
by the following result.

Theorem 12. Let S, I ∈ ES(L) be respectively the specification and implemen-
tation of a distributed system, then I co-ioco S implies that for every process
d ∈ {1, . . . , n}, Id co-ioco Sd.

Proof. Assume there exists d ∈ {1, . . . , n} for which ¬(Id co-ioco Sd), then
there exists σ ∈ traces(Sd) such that one of the following holds:

(i) There exists ?i ∈ poss(Sd after σ), but ?i 6∈ poss(Id after σ). Consider
the global trace of the specification ω = 〈?i〉S which enables input ?i in S, i.e.
?i ∈ poss(S after ω). As ?i is not possible in Id, by Proposition 6 we have
?i 6∈ poss(I after ω), and therefore ¬(I co-ioco S).

(ii) There exists !o ∈ out(Id after σ) such that !o 6∈ out(Sd after σ). Con-
sider the global trace of the implementation ω = 〈!o〉I which enables !o in I, i.e.
there exists !ω ∈ out(I after ω) such that !ωd = !o. As !o is not enabled in Sd,
by Proposition 6 we know that !o cannot be enabled after ω in S. Therefore,
!ω 6∈ out(S after ω) and ¬(I co-ioco S).

(iii) δ ∈ out(Id after σ), while δ 6∈ out(Sd after σ). Consider a trace
ω which performs exactly the actions of σ in process d and takes every other
process to a quiescent configuration (such trace always exists by Assumption 1);
we have δ ∈ out(I after ω). As the reached configuration in Sd after σ is
not quiescent and ω performs exactly the actions of σ in that process, the
specification enables some output in process d which is also enabled at the
global level and δ 6∈ out(S after ω), therefore ¬(I co-ioco S).

Example 6.4 (Detecting Non Conformance Locally). Figure 6.4 shows possible
implementations of the ticket provider process given as automata and their cor-
responding unfoldings as event structures while the specifications of the ticket
provider Utick and whole system U ′

ag are displayed in Figure 6.3. Implemen-
tation Itick removes the possibility of selecting a train ticket, i.e. ?selt 6∈
poss(Itick after ǫ). The behavior of this ticket provider interacting with (cor-
rect) implementations of the other processes is shown by I ′

6. As selecting a
train is a possible input in the specification of the ticket provider, we have that
¬(Itick co-ioco Utick) and by Theorem 12, we can conclude ¬(I ′

6 co-ioco U ′
ag).

Since the behavior of U ′
ag is isomorphic to the event structure I3 = Eag of Fig-

ure 3.3 and the observable behavior of I6 and I ′
6 coincide, we obtain the same

result as in Example 3.12. The implementation of the ticket provider I ′
tick pro-

duces an extra output after selecting a plane, i.e. !pri2p ∈ out(I ′
tick after ?selp),



6.3. DISTRIBUTING GLOBAL CONFORMANCE 101

r0

r1 r3

sync

?selp

!prip

⊥ e2
τ

e7

?selp

e8

!prip

. . .

Itick

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

. . .

e7?selp

e8!prip

. . .

I ′
6

r0

r1r2 r3

sync

?selt ?selp

!pri1t

!pri2t !prip

!pri2p

⊥

e2τ

e7?selp e9 ?selt

e18!pri2p e8 !prip e10!pri1t e11 !pri2t

. . .. . . . . .. . . . . .. . . . . .. . .

I ′
tick

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7?selp

e8

!prip

e18
!pri2p

e9 ?selt

e10

!pri1t

e11

!pri2t

. . .

. . . . . . . . . . . .

I12

Figure 6.4: Detecting non conformance locally.



102 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

while !pri2p 6∈ out(Utick after ?selp) and thus ¬(I ′
tick co-ioco Utick). The joint

behavior of this implementation with the rest of the processes is modeled by I12
and by Theorem 12 we have ¬(I12 co-ioco U ′

ag). It is easy to see that this
result is correct as one of the outputs produced by I12 after logging in and se-
lecting a plane ticket is not specified, i.e. out(I12 after ?log·?selp) = {!datas co
!prip, !datas co !pri2p} while !datas co !pri2p 6∈ out(U ′

ag after ?log·?selp).

q0 q1 q2 q3 q4

?seli sync !prii !datai

?seli

⊥ e4

?seli

e2
τ

e5

!prii

e6

!datai

e15
?seli

. . .

Iins

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . . . . . . . . . . .

I13

Figure 6.5: Extra causalities between processes

Example 6.5 (Extra Causalities Between Processes). Theorem 12 gives neces-
sary conditions for testing conformance locally, however even if every process
is locally conformant, there can be extra dependencies between them that cannot
be detected. Consider the implementation of the insurance provider process Iins
in Figure 6.5 which allows to select the insurance before synchronizing with the



6.3. DISTRIBUTING GLOBAL CONFORMANCE 103

rest of the processes. This implementation is correct w.r.t the specification Lins
of Figure 6.1 as the observable behaviors of both systems are equivalent (it is
possible to select the insurance and after it, both outputs are produced). Imple-
mentation I13 shows the joint behavior of Iins with the rest of the processes.
This implementation is not conformant w.r.t the specification U ′

ag as the input
?selt is not possible after just logging in, i.e. ?selt ∈ poss(U ′

ag after ?log), but
?selt 6∈ poss(I13 after ?log) and thus ¬(I13 co-ioco U ′

ag).

6.3.2 Adding Time Stamps

The example above shows that global conformance cannot always be achieved
by testing each process locally. This is exactly what happens in situation (NC3).
However, as processes of the implementation need to synchronize during com-
munication, we propose to use such synchronization to interchange some infor-
mation that allows the testers to recompute the partial order between actions
in different processes using vector clocks [Fid88, Mat89].

We assume each process counts the number of interactions between itself
and the environment, and it stores it in a local table with information about
every process where information about other processes may not be updated.
Each process has a table of the form [ts1, . . . , tsn] and whenever two processes
communicate via synchronization, their local tables are updated. In addition,
we assume that the information of the table of each process is observable at each
PCO by the tester which can also observe the time information of the actions.
This assumptions imply that the tester knows exactly the values of the tables
before proposing an input and the local time in which an output was produced
together with the dependences coming from other processes.

We add the information about the tables to the model, i.e. events of the
unfolding are tuples representing both the actions and the current value of the
table. The unfolding algorithm allows to compute such tables easily: when
event e occurs, the dth entry in its table is equal to the number of input and
outputs events from process d in the past of e, i.e. tsd(e) =| [e]∩(EIn

d ⊎EOut
d ) |.

The unfolding method (Algorithm 2) can be modified to consider time stamps
resulting in Algorithm 5. The behavior of system E where time stamps are
considered is denoted by Ets.

Example 6.6 (Time Stamped Unfoldings). Consider the time stamped unfold-
ing Etsag of Figure 6.6 where the tables of the form [ins, ser, tick] represent re-
spectively the interactions with the environments of the insurance provider, the
server and the ticket provider. The ?log action (event e1) is the first interaction
of the server with the environment and this can be seen in the second component
of its table. As there is no synchronization before this action, the table does not
contain any information about the other processes, i.e. their values are 0. The
values of the table of e4 contain the following information: ?seli is the first
interaction between the insurance provider and the environment and when it oc-
curs, we are sure that ?log already occurred as one action from the server should
precede it. However, as !datas is the second interaction of the server with the



104 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

E [ , , ]
e1 [0, 1, 0]
e2 [0, 1, 0]
e3 [0, 2, 0]
e4 [1, 1, 0]
e5 [2, 1, 0]
e6 [3, 1, 0]
e7 [0, 1, 1]
e8 [0, 1, 2]
e9 [0, 1, 1]
e10 [0, 1, 2]
e11 [0, 1, 2]

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . .

. . . . . . . . .

Etsag

E [ , , ]
e1 [0, 1, 0]
e2 [1, 1, 0]
e3 [1, 2, 0]
e4 [1, 0, 0]
e5 [2, 1, 0]
e6 [3, 1, 0]
e7 [1, 1, 1]
e8 [1, 1, 2]
e9 [1, 1, 1]
e10 [1, 1, 2]
e11 [1, 1, 2]

⊥

e1?log

e2τ

e3

!datas

e4?seli

e5!prii

e6!datai

e7?selp

e8!prip

e9 ?selt

e10!pri1t e11 !pri2t

. . . . . . . . . . . .

Its13

Figure 6.6: Time stamped unfoldings.



6.3. DISTRIBUTING GLOBAL CONFORMANCE 105

Algorithm 5 Time stamped unfolding algorithm

Require: a Petri net N = (P, T, F, λ,M0), where M0 = {p1, . . . , pk} and a
distribution D : T ∪ P → {1, . . . , n}

Ensure: the time stamped unfolding of N
1: U := {(⊥, ∅), (p1,⊥), . . . , (pk,⊥)}
2: pe := PE(U)
3: while pe 6= ∅ do
4: chose an event e = (t, C) in pe
5: for d ∈ {1, . . . , n} do
6: tsd(e) := |{(t′, C ′) ∈ U | D(t′) = d ∧ λ(t′) 6= τ}|+ 1

7: add to U the event e × ts1(e) × · · · × tsn(e) and a condition (p, e) for
every place p in t•

8: pe := PE(U)

9: return U

environment and we only know that one interaction precedes ?seli, we cannot
get any information about the relation between these actions which is consistent
with their independence (concurrency). Synchronization events do not increase
by their own the values in the tables, but they update the values. Consider event
e2 in Its13 and its table [1, 1, 0]. The information that one action occurred in the
insurance provider and another in the server is propagated to the tables of every
event that causality depends on e2, for example e3, e5, e7, e9.

Time stamps allow to reconstruct the global trace of an execution of the
system from the local traces of this execution observed at PCOs. Causalities
coming from the same process are observed locally, while causalities between
actions at different processes are recomputed using the time stamped informa-
tion.

Example 6.7 (From Sequences to Partial Orders Using Time Stamps). Consider
the time stamped local traces of implementation Its13 on Figure 6.7 (above). From
the event (!datas, 1, 2, 0), we know that at least one event from the insurance
provider process precedes !datas and as ?seli is the first action on this process,
we can add the causality (?seli, 1, 0, 0) ≤ (!datas, 1, 2, 0) as it is shown in the
partial order ω. The other three causalities between actions belonging to different
processes can be added following the same reasoning. It can be observed that the
resulting partial order ω is a partial order observation of the global system, i.e.
ω ∈ traces(Its13).

Given two time stamped LPOs ωi = (Ei,≤i, λ1) and ωj = (Ej ,≤j , λ2), their
joint causality is given by the LPO ωi + ωj = (Ei ⊎ Ej ,≤ij , λ1 ⊎ λ2) where for
each pair of events e1 = (a, t1, . . . , tn) ∈ Ei and e2 ∈ Ei ⊎ Ej , we have

e2 ≤ij e1 ⇔ e2 ≤i e1 ∨ |[e2]j | ≤ tj

In other words, e2 globally precedes e1 either if they belong to the same process
and e2 locally precedes e1 or if e2 is the tthj event in process j and e1 is preceded
by at least tj events in component j according to time stamps.



106 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

(?seli, 1, 0, 0)

(!prii, 2, 1, 0)

(!datas, 3, 1, 0)

σins

(?log, 0, 1, 0)

(!datas, 1, 2, 0)

σser

(?selp, 1, 1, 1)

(!prip, 1, 1, 2)

σtick

(?seli, 1, 0, 0)

(!prii, 2, 1, 0)

(!datas, 3, 1, 0)

(?log, 0, 1, 0)

(!datas, 1, 2, 0)

(?selp, 1, 1, 1)

(!prip, 1, 1, 2)

ω

Figure 6.7: From sequences to partial orders using time stamps.

When communication between processes is asynchronous, a configuration C
is called consistent if for every sending message in C, its corresponding receive
message is also in C. Mattern [Mat89] shows that consistent configurations
have unambiguous time stamps; hence global causality can be reconstructed
from local observations in a unique way. Under synchronous communication,
the send and receive actions are represented by the same event, and therefore
every configuration is consistent. This allows to prove the following results.

Proposition 7. When the communication between processes is synchronous,
the partial order obtained by + is unique.

Proof. Since every configuration is consistent, the result is immediate following
the result of [Mat89].

Non conformance coming from (NC3) can be detected by testing the time
stamped system in a distributed way.

Theorem 13. Let S, I ∈ ES(L) be respectively the specification and implemen-
tation of a distributed system, then ∀d ∈ {1, . . . , n} : Itsd co-ioco Stsd implies
I co-ioco S.

Proof. Assume Itsd co-ioco Stsd for every d ∈ {1, . . . n}. Let ω ∈ traces(S) and
consider the following situations:

(i) If ?ω ∈ poss(S after ω), then for every d there exists a time stamped
input (?id, t1, . . . , tn) ∈ poss(Stsd after ωd) such that ?ωd = ?id and ?ω =



6.3. DISTRIBUTING GLOBAL CONFORMANCE 107

?i1 + · · ·+ ?in. As for all d, we have Itsd co-ioco Stsd , then (?id, t1, . . . , tn) ∈
poss(Itsd after ωd). By Proposition 7, ?ω ∈ poss(I after ω).

(ii) If !ω ∈ out(I after ω), then for every d there exists a time stamped
output (!od, t1, . . . , tn) ∈ out(Itsd after ωd) such that !ωd = !od and !ω =!o1 +
· · ·+ !on. As every process of the implementation conforms to its specification,
we have (!od, t1, . . . , tn) ∈ out(Stsd after ωd). By Proposition 7, we have !ω ∈
out(S after ω).

(iii) If δ ∈ out(I after ω), as the reached configuration by the global im-
plementation after ω is quiescent, so there are the reached configurations of
every local processes, i.e. δ ∈ out(Itsd after ωd). Since Itsd ioco Stsd for each
d, we have δ ∈ out(Stsd after ωd). This implies that the local configurations of
the specification do not enable any output; by Remark 6, outputs can only be
enabled locally, thus there is no output enabled in the global configuration and
δ ∈ out(S after ω).

These three cases allow us to conclude that I ioco S.

⊥ e2
τ

e4

?seli

e5

!prii

e6

!datai

. . .

E [ , , ]
e2 [0, 1, 0]
e4 [1, 1, 0]
e5 [2, 1, 0]
e6 [3, 1, 0]

Its13ins

⊥ e4

?seli

e2
τ

e5

!prii

e6

!datai

. . .

E [ , , ]
e2 [1, 1, 0]
e4 [1, 0, 0]
e5 [2, 1, 0]
e6 [3, 1, 0]

Etsagins

Figure 6.8: Detecting extra causality locally with time stamps.

Example 6.8 (Detecting Non Conformance Locally with Time Stamps). Con-
sider the time stamped unfoldings of Iins and the specification of the insurance
process of Figure 6.8. Both systems are the projections of Its13 and Etsag over
the insurance process. We can see that even if selecting an insurance is pos-
sible in both the implementation and the specification, their time stamps do
not coincide, i.e. (?seli, 1, 0, 0) ∈ poss(Etsagins after ǫ), but (?seli, 1, 0, 0) 6∈

poss(Its13ins after ǫ) = {(?seli, 1, 1, 0)}, and then we have ¬(Its13ins co-ioco
Etsagins). By Theorem 13, we can conclude ¬(I13 co-ioco Eag) which is con-
sistent with the result of Example 6.5 as Eag is isomorphic to U ′

ag.



108 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

⊥

e1(?log, 0, 1, 0)

e2(τ, 0, 1, 0)

e3

(!datas, 0, 2, 0)

e4(?seli, 1, 1, 0)

e5(!prii, 2, 1, 0)

e6(!datai, 3, 1, 0)

e7 (?selp, 0, 1, 1)

e8 (!prip, 0, 1, 2)

T ts
7

e4(?seli, 1, 1, 0)

e5(!prii, 2, 1, 0)

e6(!datas, 3, 1, 0)

T7
ts
ins

e1(?log, 0, 1, 0)

e3(!datas, 0, 2, 0)

T7
ts
ser

e7(?selp, 0, 1, 1)

e8(!prip, 0, 1, 2)

T7
ts
tick

Figure 6.9: From global test cases to distributed ones.

6.4 From Global Test Cases to Distributed Ones

We have shown in the last section that global conformance can be tested in a
distributed way, i.e. by testers located at each PCO. However testers need to
consider time stamp information which cannot be computed locally. The test
case generation method that we proposed in Chapter 5 can easily be adapted
to add time stamps and the global test case obtained can be projected to each
process to obtain a set of distributed test cases.

Example 6.9 (From Global Test Cases to Distributed Ones). Consider the test
case T ts

7 of Figure 6.9 obtained by considering, for example, a “all path of
length 3” criterion, the time stamped unfolding and the SAT encoding method
to the specification N ′

ag. This global test case can be projected2 into the local

test cases T7
ts
ins, T7

ts
ser and T7

ts
tick which are executed in parallel at each PCO of

Its13. Consider the test case T7
ts
ser placed at the PCO of the server. As testers

2Internal actions can be abstracted since they are unobservable for the tester.



6.5. CONCLUSION 109

do not communicate, it can be the case that when ?log is sent in this PCO,
?seli was already sent by the other tester and therefore the output !datas is
produced. However the time stamp of this output does not coincide with the
time stamp expected by the tester, i.e. (!datas, 1, 2, 0) ∈ out(Its13ser after ?log),
but (!datas, 1, 2, 0) 6∈ out(T7

ts
ser after ?log) = {(!datas, 0, 2, 0)}, therefore the

test execution blocks and the execution fails, detecting the non conformance of
implementation I13.

Controllability and observability problems: We already explained in the
introduction that distribution of the testing architecture can lead to situations
where the tester does not know when to apply an input or if a produced output
has extra or missing dependencies from other processes. Clearly, these problems
do not exists in a global test case as a global control is assumed. The problem
is also solved when we use vector clocks in the construction of test cases.

time

PCO1 SUT PCO2

(?i
1 , 1, 0)

(?o1
, 2, 0

)

(?i2
, 2, 1

)

PCO1 SUT PCO2

(?i
1 , 1, 0)

(?o1
, 2, 0

)

(?i
2 , 3, )

(?o2
, 4,

)

(?o
3 , 2, 1)

(?o
3 , 4, 1)

(a) (b)

Figure 6.10: Controllability and observability problems in distributed architec-
tures.

Example 6.10 (Controllability and Observability Problems). Consider the sit-
uation (a) in Figure 6.10. When time stamps are added, the global test case
has an unique trace (?i1, 1, 0) · (!o1, 2, 0) · (?i2, 2, 1) which can be projected into
the local test case (?i2, 2, 1) for the second PCO. As we assume that the imple-
mentation has clocks and information about the clock of each process is updated
during syntonization, the tester at PCO2 needs to wait until its information is
updated to have the certainty that two observable actions have already occurred
at PCO1. The situation of (b) can also be detected since the outputs (!o3, 2, 1)
and (!o3, 4, 1) can easily be differentiated.

6.5 Conclusion

Distributed systems can naturally be modeled by networks of automata where
each automaton represents the behavior of a single process. We showed how to



110 CHAPTER 6. A DISTRIBUTED TESTING FRAMEWORK

obtain a Petri net from such network when communication between processes
is synchronous. This net represents the global behavior of the system and can
be tested using the theory presented in the previous chapters of this thesis.

We showed that some of the reasons that lead to non conformance can be
tested locally by transforming each process into a concurrency-free net and test-
ing it w.r.t co-ioco. However, certain situations that lead to non conformance
remain undetected, this happens when the error comes from some extra or miss-
ing dependence between processes. Since these dependences are not observable
from the environment, we need extra machinery to detect them. We showed
that under the assumption that each process of the implementation has a local
clock that counts the number of interactions between itself and the environment,
vector clocks can be used to reconstruct global traces from local ones and thus
global conformance can be achieved by local testers.

Local testers enriched with information about time stamps do not only allow
to detect all the causes of non conformance, but they also solve the controlla-
bility and observability problems generated by the distribution of the testing
architecture. However, in order to compute the time stamp information, global
test cases need to be constructed before projecting them onto the local test cases
that are actually executed in the implementation.



7
Conclusions and Perspectives

7.1 Summary

Even if models that handle true concurrency have been used in the past for test
case generation to avoid the state space explosion problem, the independence
of actions never played a central role in testing concurrent systems. This thesis
introduces two conformance relations (co-ioco and wsc-ioco) where indepen-
dence of actions is preserved in any correct implementation. We present the
well-known ioco relation based on a behavior model and extend it with the test
of refusals (input-enabledness of the implementation is not assumed) to compare
it with the other relations presented in this thesis.

In Chapter 3 we extended the observation notions used by the ioco confor-
mance relation to true concurrency models like Petri nets and their unfoldings.
These notions include traces, refusals, produced outputs and quiescence allow-
ing us to present the co-ioco conformance relation that preserves independence
between actions. We showed that co-ioco is a generalization of ioco in the sense
that when there is no concurrency and the implementation is input-enabled both
relations coincide.

Chapter 4 presents a new semantics for concurrent systems that can be seen
as an intermediate point between interleaving and partial order semantics. This
semantics generalized the other two: whenever there is no weak concurrency,
they boil down to partial order semantics, but if there is no strong concurrency,
the new semantics is equivalent to interleaving semantics. The last remarks
allow to relate the three conformance relations presented in this thesis.

We developed in Chapter 5 a complete testing framework for these confor-
mance relations, this includes the definition of global test cases (which reduces
both the size and the number of test cases needed to test the implementation)
and their execution on the system. We present a first algorithm that constructs
test cases by iteratively adding events. Even if this method requires to use
linearizations of the causality relation, which would reduce the gain of using

111



112 CHAPTER 7. CONCLUSIONS AND PERSPECTIVES

partial order semantics, we show that the complexity of the method is bounded
by a factor that is exponential only in the immediate conflicts between inputs of
the system. However, this approach still generates some redundant test cases;
to overcome this, we propose a SAT encoding for the generation of test cases.
Both test generation algorithms are based on the unfolding of the system; as
such unfolding is usually infinite, this generates an infinite test suite. We pro-
pose to select a finite and sound set of test cases based on different testing
criteria. These criteria are based on the structure of the specification, i.e. path
of certain length and cycles. We show that each testing criterion corresponds to
a different cut-off method and we give a parametric unfolding algorithm based
on such criteria.

Chapter 6 deals with distributed testing architectures and shows that some
situations leading to non conformance can be detected locally (this is the case
when the error belongs locally to a process), however errors coming from the
interaction of the processes cannot be detected locally. We show that under the
assumption that each process has a local clock, we can reconstruct global traces
from local ones, using vector clocks, and therefore global conformance can be
achieved locally.

7.2 Future Research

Although this thesis tackles several issues of model-based conformance testing
for concurrent system, there are plenty of challenges that need further investi-
gation.

Section 5.1.2 formalizes the cases where the interaction between the imple-
mentation and a global test case blocks, however it is defined in terms of possible
inputs and produced outputs while when systems are modeled by LTS, test ex-
ecution is formalized by the product of LTSs. Since product of nets does not
preserve concurrency, such product cannot be used for modeling the interaction
of a test cases with the implementation. Suppose two actions are concurrent in
the test case and ordered in the implementation, the product allows to execute
them, but ordered instead of concurrently as was expected by the test case. If
a process has information about when actions in another process are ready to
fire, it knows which actions are concurrent to its own actions. Adding read arcs
to the product of nets and using step semantics allow to model test execution
while preserving concurrency.

As it is mentioned in the introduction, some of the testing assumptions are
essential: conformance is not possible without them, while others are just prac-
tical. The latter is the case of the assumption about conflict between input
and outputs we made in Section 5.2.2. We make such an assumption since it
allows us to use Theorem 6 and then prove soundness of the test suite. How-
ever the theorem gives sufficient (but not necessary) conditions for a test suite
to be sound. Relaxing such technical assumption is part of our future work.
Another testing assumption made in this thesis is that the implementation is
a black box. It has been shown [UK99] that when the communication between



7.2. FUTURE RESEARCH 113

processes is observable in the implementation, distributed testers at each PCO
work correctly and bring up the expected result. Considering observable com-
munication can help us to solve the testing problem in distributed architectures
without using vector clocks.

The test selection problem was solved in this thesis following different cri-
teria that allow a finite representation of the state space of the specification.
Other approaches (like [JJ05]) use test purposes for solving such a problem.
Event structures seem as a promising formalism to define test purposes in the
concurrent setting. This thesis also solves the distribution of the testing ar-
chitecture by making stronger assumptions on the implementation in order to
reconstruct global traces from local ones. Another possible solution is to define
new notions of conformance for systems specified with Petri nets or network of
automata and that take distribution into account; this new relations need to be
compared with the relations presented in this thesis. The coordination of the
testing activity can also solve the distribution problem: a set of local testers
can be seen as a global tester where actions between testers are concurrent.
However, further information need to be added to this global test in order to
coordinate the testing activity by imposing the preservation of independence
between some actions. Petri nets with read arcs [Vog02] seem to be an interest-
ing model for modeling such coordination since their step semantics allows to
force concurrency.

As it was the case with ioco, we hope that the theory of this thesis opens the
door to new research in testing enriched concurrent systems using time [PZ13],
probability [BK96] or read arcs [Vog02, Rod13].

From the practical point of view, even if the algorithms presented in this
thesis have been implemented and the prototype allows us to do some experi-
ments (see Appendix B), it does still not consider the results of Chapter 6, i.e.
the distribution of the architecture and projection of global test cases into local
test cases. Also, the test cases generated by the tool are abstract (they are ex-
pressed by event structures), while other tools such as JTorX [Bel10] implement
the ioco theory and are capable to transform abstract test cases in inputs to
a real implementation and automatically execute them. The concretization of
test cases and automatic execution in real software implementations is the next
step of our tool.





A
Other Conformance Relations

This thesis presented extensions of the ioco conformance relation for reactive
systems, where a distinction is made between actions proposed by the environ-
ment and the responses produced by the system. However, the implementation
relations that were first presented in the literature did not consider such distinc-
tion; communication between the system and its environment was modeled by
parallel composition where the interaction was symmetric. Whenever a system
wished to interact with its environment, it proposed some actions on which it
was prepared to interact. The environment also proposed some actions, and
then they interacted on one of those actions that both proposed. The role of
both communication processes is the same and symmetric, and all observable
actions were treated in the same way.

Implementation relations for LTS based on symmetric interactions include
among others observation equivalence [Mil80], strong bisimulation and weak
bisimulation equivalence [Par81, Mil89, Abr87], failure equivalence and pre-
order [Hoa85], testing equivalence and preorder [DH84], failure trace equivalence
and preorder [BW90]. Depending on the chosen semantics for concurrency, test-
ing equivalences [ADF86], and both trace and bisimulation equivalences [vG89]
have been proposed for ES.

One of the easiest way to reason about the behavior of a system is in terms
of its traces. The definition of traces does not depend on the way the system
and its environment communicate (symmetrically or anti-symmetrically) and it
can be used for systems where there is no distinction between input and output
actions. However, the notion of trace still depends on the chosen semantics for
concurrency.

A.1 Sequential Executions

Chapter 3 defines partial order traces for an event structure. However, event
structures also admit interleaving semantics where one goes from one configu-

115



116 APPENDIX A. OTHER CONFORMANCE RELATIONS

ration to another by performing just an action at a time. Sequential executions
are captured by the following definition.

Definition A.1 (Sequential Execution of an ES). Let E = (E,≤,#, λ) ∈ ES(L)
with C,C ′ ∈ C(E) and µ, µi ∈ (L ∪ {τ}), we define

C
µ

−→s C
′ , ∃e ∈ E : C ′ = C ⊎ {e}and λ(e) = µ

C
µ1...µk−−−−→s C

′ , ∃C0, . . . , Ck : C = C0
µ1

−→s C1
µ2

−→s . . .
µk−→s Ck = C ′

C
µ1...µk−−−−→s , ∃C ′ : C

µ1...µk−−−−→s C
′

We say that µ1 . . . µk is a sequential execution of C if C
µ1...µk−−−−→.

The notion of sequential observation, traces and reached configurations are
straightforward.

Definition A.2 (Observations, Traces and Reached Configurations). Let E =
(E,≤,#, λ) ∈ ES(L) with C,C ′ ∈ C(E), a, ai ∈ L and σ ∈ L∗, we define

C
ǫ

=⇒s C
′ , C = C ′ or C

τ...τ
−−−→s C

′

C
a

=⇒s C
′ , ∃C1, C2 : C

ǫ
=⇒s C1

a
−→s C2

ǫ
=⇒s C

′

C
a1...ak====⇒s C

′ , ∃C0, . . . , Ck : C = C0
a1=⇒s C1

a2=⇒s . . .
ak=⇒s Ck = C ′

C
σ

=⇒s , ∃C ′ : C
σ

=⇒s C
′

tracess(E) , {σ ∈ L∗ |⊥
σ

=⇒s}

C afters σ , {C ′ | C
σ

=⇒s C
′}

We now define conformance relations for both sequential and partial order
semantics of event structures when interaction is symmetric. For the complete
definitions of sequences, traces and reached configurations, see Section 3.2.3 and
Section 3.3.1.

A.2 Trace Preorder

The first relation we present, called trace preorder, is based on the inclusion
of the observable executions of the system under test in those allowed by the
specification. The intuition is that an implementation I should not exhibit an
unspecified behavior, i.e. not present in S.

Definition A.3 (Trace Preorder). Let S, I ∈ ES(L) be respectively the specifi-
cation and implementation of the system, then

I ≤str S ⇔ tracess(I) ⊆ tracess(S)
I ≤tr S ⇔ traces(I) ⊆ traces(S)

Example A.1 (Trace Preorder). Consider Figure A.1. Under partial order se-
mantics, the traces of E1 and E2 coincide, then E1 ≤tr E2 and E2 ≤tr E1. The
traces of E2 are observable in E5, but E5 accepts more behaviors since the action



A.3. TESTING PREORDER 117

e1a :

e2b :

e3c : e4 : d

E1

e1a :

e2b :

e3c :

e4 : a

e5 : b

e6 : d

E2

e1a :

e2b :

e3c :

E3

e1a :

e2b : e3 : c

e4c : e5 : b

E4

e1a :

e2b :

e3c :

e4 : a

e5 : b

e6 : d

E5

Figure A.1: Conformance Relations with Symmetric Interaction.

a is possible twice concurrently, so E2 ≤tr E5, but ¬(E5 ≤tr E2). Both E3, E4
allow the same actions, but one of them in a sequential way while the other does
it concurrently, we have then ¬(E3 ≤tr E4) and ¬(E4 ≤tr E3). When interleav-
ing semantics are considered, sequential traces of both E3 and E4 coincide, thus
E3 ≤str E4 and E4 ≤str E3. The same is also true for E1 and E2 as their traces
coincide.

With both semantics, E2 correctly implements E1 w.r.t trace preorder, but
E1 specifies that after a there is a choice between b and c, while E2 may refuse
one of these. The reason of this is that both relations only consider sequences
(respectively partial order) of actions as observations, and not whether conflicts
are resolved internally by the system, or externally by the environment.

A.3 Testing Preorder

In order to have a stronger relation that refines trace preorder, we define the set
of actions that a system may refuse following [ADF86, De 87]. Under partial
order semantics, we are interested not in single actions the system can refuse,
but in sets of concurrent actions (where all possible concurrent sets of actions
are denoted by CO(L)). Since we will use refuses with after and we allow
nondeterminism in the system (the reached configuration may not be unique),
we extend the definition of refusals to sets of configurations.

Definition A.4 (Refusals). Let E ∈ ES(L) with C ∈ C(E), S ⊆ C(E) and A1 ⊆



118 APPENDIX A. OTHER CONFORMANCE RELATIONS

L,A2 ⊆ CO(L), we define

C refusess A1 , ∀a ∈ A1 : C 6
a

=⇒s

S refusess A1 , ∃C ∈ S : C refusess A1

C refuses A2 , ∀ω ∈ A2 : C 6
ω

=⇒
S refuses A2 , ∃C ∈ S : C refuses A2

In addition to requiring that any trace of the implementation is allowed
in the specification, we require that any time the implementation refuses to
perform a new action (respectively a set of concurrent actions), this is also the
case in the specification.

Definition A.5 (Testing Preorder). Let S, I ∈ ES(L) be respectively the speci-
fication and implementation of the system, then

I ≤ste S ⇔ ∀σ ∈ L∗, A1 ⊆ L :
(I afters σ) refusess A1 ⇒ (S afters σ) refusess A1

I ≤te S ⇔ ∀ω ∈ PS(L), A2 ⊆ CO(L) :
(I after ω) refuses A2 ⇒ (S after ω) refuses A2

Example A.2 (Testing Preorder). Consider again Figure A.1. Under interleav-
ing semantics, traces and refusals of E3 and E4 coincide, therefore E3 ≤te E4
and E4 ≤te E3. From the initial configuration, E1 refuses {b, c, d} and this
is also the case in E2. As after a, E1 only refuses {a} and this is also the
case in E2, we have E1 ≤te E2. The converse is not true; after a, system E2
can refuse d if, for example, it follows the left branch. This action is not re-
fused by E1 and therefore ¬(E2 ≤te E1). System E3 also refuses d after a and
¬(E3 ≤te E1). Note that ≤te does not allow extra traces in the implementation.
In fact ¬(E1 ≤te E3) since (E1 after a · d) refuses ∅, yet (E3 after a · d) = ∅,
hence ¬((E3 after a · d) refuses ∅).

A.4 Relaxing Testing Preorder

A practical modification to testing preorder is to restrict all the traces to only
the ones contained in the specification [Bri88]. This relation requires that the
implementation does what it has to do, not that it does not what it is not allowed
to do. It allows underspecification, i.e. only a subset of the functionalities of
the actual system are specified and implementations with extra behaviors are
considered correct.

Definition A.6 (The conf relation). Let S, I ∈ ES(L) be respectively the spec-
ification and implementation of the system, then

I confs S ⇔ ∀σ ∈ tracess(S), A1 ⊆ L :
(I afters σ) refusess A1 ⇒ (S afters σ) refusess A1

I conf S ⇔ ∀ω ∈ traces(S), A2 ⊆ CO(L) :
(I after ω) refuses A2 ⇒ (S after ω) refuses A2



A.5. CONCLUSION 119

e1a : e2 : a

e3c : e4b : e5 : c

E6

e1a :

e2c :

E7

e1a :

e2b : e3 : c

E8

Figure A.2: The conf relation is not transitive.

Example A.3 (The conf relation). We saw in Example A.2 that E1 ≤te E2,
and since conf considers the traces of E2 only, we have E1 conf E2. Since the
relation conf is based on the traces of the specification only, it allows extra
behaviors in the implementation. So even if ¬(E3 ≤te E1), we have E3 conf E1.

The following result relates the different implementation relations under par-
tial order semantics.

Proposition 8. The conformance relations based on symmetric interaction have
the following properties

1. ≤tr and ≤te are preorders; conf is reflexive.

2. ≤te = ≤tr ∩ conf

Proof. Point 1 being obvious, we only show point 2, by proving that the inclusion
holds in both directions. Suppose I 6≤tr S, then there exists ω ∈ LPO(L) such

that I
ω

=⇒, but S 6
ω

=⇒, thus (S after ω) = ∅ and ¬((S after ω) refuses ∅)
while (I after ω) refuses ∅, I 6≤te S and finally ≤te ⊆ ≤tr. As conf is a
restriction of≤te to the traces of S, it follows that≤te ⊆ conf . Suppose I 6≤te S,
then there exist ω ∈ LPO(L), A ⊆ CO(L) such that (I after ω) refuses A
and ¬((S after ω) refuses A). If ω ∈ traces(S) we have that ¬(I conf S).
If ω 6∈ traces(S), we know by (I after ω) refuses A that ω ∈ traces(I) and
therefore I 6≤tr S.

Example A.4 (The conf relation is not transitive). Consider Figure A.2, we have
E7 conf E6: if we denote {a, b, c} by L, we have (E7 after a) refuses {a, b}
and (E6 after a) refuses {a, b}; we also have (E7 after a · c) refuses L and
(E6 after a·c) refuses L; finally (E7 after a·b) refuses S is false for any set
S. We also have E8 conf E7 since E8 has the same behavior that E7 with an ad-
ditional branch. Nevertheless ¬(E8 conf E6) since (E8 after a · b) refuses {c},
but ¬((E6 after a · b) refuses {c}). This shows that conf is not transitive.

A.5 Conclusion

Three conformance relations over labeled transition systems (trace preorder,
testing preorder and conf) have been extended in this chapter to concurrency-
enabled relations over labeled event structures. With the interleaving semantics,



120 APPENDIX A. OTHER CONFORMANCE RELATIONS

the relations we obtain boil down to the same relations defined for LTS, since
they focus on sequences of actions. The only advantage of using labeled event
structures as a specification formalism for testing remains in the conciseness of
the concurrent model with respect to a sequential one. As far as testing is con-
cerned, the benefit is low since every interleaving has to be tested. By contrast,
under the partial order semantics, the relations we obtain allow to distinguish
explicitly implementations where concurrent actions are implemented as inde-
pendent, from those where they are interleaved, i.e. implemented sequentially.
Therefore, these relations are of interest when designing distributed systems,
since the natural concurrency between actions that are performed in parallel by
different processes can be taken into account. In particular, the fact of being
unable to control or observe the order between actions taking place on different
processes is not considered as an impediment anymore.



B
Tool and Experiments

In Chapter 5 we described how to obtain prefixes of the unfolding of the specifi-
cation based on different testing criteria and how to construct a test suite from
those prefixes using a SAT encoding. Additionally, Chapter 6 explains how
to obtain a Petri net from a network of automata. Implementations of these
methods have been made and are publicly available under

http://www.lsv.ens-cachan.fr/~ponce/tours

In this chapter we report on these implementations and compare the ob-
tained test suites with the test suites generated by ioco; for this we use bench-
marks coming from a parametric elevator example. The content of this chap-
ter have been made during the summer internship of Konstantinos Athanasiou
which I co-supervised with Stefan Scwhoon.

B.1 The TOURS Prototype

The TOURS (Testing On Unfolded Reactive Systems) prototype contains the
following implementations that are used to run our examples:

• cfa2pep

• mole

• enum

The cfa2pep script takes as an input a network of automata in the fca for-
mat [SSE03, GMAP95] and it constructs a ll net file (equivalent to the PEP
format [Gra95]) which is given as an input to the unfolding algorithm. Our test
case generation method is based on the MOLE unfolding tool [Sch] which con-
structs a complete prefix of the unfolding based on the cut-off criterion presented
in [ERV02] where an event is marked as a cut-off if the marking it generates

121

http://www.lsv.ens-cachan.fr/~ponce/tours


122 APPENDIX B. TOOL AND EXPERIMENTS

is already in the prefix, but not necessarily on the same branch. This cut-off
criterion generates a test suite covering all-states and all-transitions, however,
as explained in Example 5.21, the test suite obtained from this prefix usually
detects less incorrect implementations. We add the inclusion criterion to the
MOLE tool which can be called running the command

$ mole [− i n c ] [−e ] f i l e . l l n e t

The tool uses by default the cut-off notion of [ERV02] and produces as
an output the unfolding prefix as a Petri net (file.mci) and the SAT formula of
Section 5.2.5 (file.cl). The ”-inc” flag forces the tool to use the inclusion criterion
and the ”-e” flag produces in addition of the Petri net prefix, its equivalent event
structure (file es.dot). The SAT formula and the event structure are given as
input to the enum script which calls the Z3 solver [MB08] to find all the solutions
of the formula: each solution corresponds to a global test case (labels of the
events in the file es.dot file display the test cases to which the event belongs).

To run an example, execute

$ p e r l c fa2pep . p l f i l e . f s a > f i l e . l l n e t
$ mole −i n c −e f i l e . l l n e t
$ python enum . py f i l e . c l f i l e e s . dot

We have run our prototype for the agency example using the [ERV02] cri-
terion. When using partial order semantics, the obtained prefix has 12 events
and generates 2 global test cases, while using interleaving semantics we obtain a
complete test graph with 330 transitions that generates 36 different test cases.
In Section B.3 we run experiments on a parametric example that allows to ex-
ploit the exponential reduction in computational time when partial orders are
used.

B.2 The Elevator Example

Next section presents experiment’s results based on a parametric elevator ex-
ample which serves calls at n different floors with m elevators. This section
illustrates the example for two floors and one elevator. We present the example
as a network of automata (which is equivalently captured by a Petri net as it
is shown in Section 6.2), unfold it with the inclusion criterion and use the SAT
encoding to construct the test suite; this is done by the TOURS prototype.

The behavior of the system is distributed in the following components or
processes which are represented by the automata of Figure B.1:

Floors: each floor consists on a button that can be pressed to call an elevator.
The floor is in an idle state where the elevator can be called (?calli), after
this, it sends the call to the controllers of every elevator ej (ej-takes-calli)
followed by a synchronization action that the door of elevator ej has been
opened at that floor (ej-opened-at-fi), returning to the idle state.



B.2. THE ELEVATOR EXAMPLE 123

idle1

called1

waiting1

?call1

e1-takes-call1

e1-opened-at-f1

floor1

idle2

called2

waiting2

?call2

e1-takes-call2

e1-opened-at-f2

floor2

idle

e1tc1 e1tc2

e1-takes-call1 e1-takes-call2

e1-go-to-f1 e1-go-to-f2

e1-at-f1 e1-at-f2

controller-elevator1

at1 at2

wait1 wait2

opened1 opened2

e1-go-to-f2

e1-go-to-f1

e1-at-f1 e1-at-f2

!open1-1 !open1-2

e1-opened-at-f1 e1-opened-at-f2

elevator1

Figure B.1: Network of automata of the elevator example with one elevator and
two floors.

Controllers of elevators: the controller of each elevator ej starts at an idle
state and it can take the call from any floor fi. From here, the controller
can either move the elevator to the corresponding floor (ej-go-to-fi) or
acknowledge that the elevator is already at that floor (ej-at-fi).

Elevators: each elevator starts at some floor, i.e. state ati. From this state
it can tell its controller that it is already on the floor or it can move to
another floor. When the elevator is in floor fi, it opens the door (!openj-i)
and acknowledge this action to the corresponding floor.



124 APPENDIX B. TOOL AND EXPERIMENTS

⊥

?call2 ?call1

!open1-1 !open1-2

?call1 ?call2

!open1-2 !open1-1 !open1-1 !open1-2

?call2 !open1-2 ?call1 !open1-1

!open1-2 !open1-1 !open1-1 !open1-2

!open1-1 !open1-2 !open1-2 !open1-1

Figure B.2: Global test case of the elevator example obtained by TOURS and
the inclusion criterion.

This system is given as an input to the unfolding algorithm (using the inclu-
sion criterion) and returns a prefix which observable behavior is captured by the
event structure of Figure B.2 (τ actions were removed for the presentation of
the example). This prefix has not immediate conflict between inputs, therefore
the SAT encoding has a unique solution representing the same prefix which is
the only global test case generated by our method.

We expect that every call at any floor is eventually served (the door eventu-
ally opens at that floor) in any correct implementation. Consider the test case
of Figure B.2 and the ?call2 action displayed in green, this call is followed by an
!open1-2 action in any maximal configuration. The yellow !open1-2 corresponds
to the scenario where the call is immediately served; the blue !open1-2 reflects
the fact that the elevator can be called concurrently at other floor (?call1) and
this call can be served before (!open1-1 ≤!open1-2); the red !open1-2 shows that
two calls from the first floor can be served before serving the call at the second
one. The latter shows that there are not priorities between serving at different
floors, however all the calls are eventually served. A similar analysis can be
made for the other call actions.

B.3 Experiments

In this section we run experiments for different numbers of floors and elevators
to compare our results with the test suites obtained by the ioco theory. We
compare not only the size of the test cases but also the size of the test suite.



B.3. EXPERIMENTS 125

B.3.1 Adding Floors and Elevators

The example presented in Section B.2 can easily be parametrized to add floors
and elevators. If a new floor fi is added, in addition of adding a new automaton
for the floor with transitions ej-takes-calli for each elevator ej , the existing
automata representing elevators and controllers need to be extended: a new
state ejtci is added to the controller of every elevator ej with transitions

idle
ej-takes-calli
−−−−−−−−−→ ejtci

ejtci
ej-go-to-fi
−−−−−−−→ ejtci

ejtci
ej-at-fi
−−−−−→ idle

In addition, the states ati, waiti and openedi are added to the elevator ej
with transitions

ati
ej-at-fi
−−−−−→ waiti

waiti
!openj-i
−−−−−→ openedi

openedi
ej-opened-at-fi
−−−−−−−−−−→ ati

and for each exiting floor k < i all the possible movements between them and
the new floor are added, i.e.

atk
ej-go-to-fi
−−−−−−−→ ati

ati
ej-go-to-fk
−−−−−−−→ atk

If a new elevator is added, two automata (representing the elevator itself
and its controller) are added and for every floor fi we add the possibility that
the new elevator ej serves its call, i.e. we add transitions

calledi
ej-takes-calli
−−−−−−−−−→ waitingi

B.3.2 Setting Up the Experiments

In order to make a fair comparison of the algorithms presented in this thesis and
the algorithms of the ioco theory, we need to use the same test selection method.
Since available tool such as TGV [JJ05] or JtorX [Bel10] use test purposes rather
than a testing criterion, we propose to obtain the complete test graph (CTG)
by our method converting the LTS into a PN without concurrency. Since we
do not complete the specification with underspecified outputs, we only obtain
an approximation of the CTG which gives us a lower bound on its number
of events. Once we obtain our CTG and since concurrency between inputs
and outputs is converted into conflict between all the possible interleavings,
we solve controllability problems by an extended version of the SAT encoding
in Section 5.2.5 where we allow conflicts between inputs and outputs. Since



126 APPENDIX B. TOOL AND EXPERIMENTS

Floors Elevators Prefix GT Time CTG LT Time

2 1 11 1 1 95 14 7
2 2 29 1 1 3929 ✗ > 86400
3 1 43 1 1 2299 ✗ > 86400
3 2 220 1 6 3911179 ✗ > 86400
3 3 1231 1 144 ✘ ✗ > 86400
4 1 219 1 14 ✘ ✗ > 86400
4 2 1853 1 291 ✘ ✗ > 86400
4 3 17033 1 12800 ✘ ✗ > 86400
4 4 140873 ✗ > 86400 ✘ ✗ > 86400

Table B.1: Experiments.

the latter only solves controllability problem, it is equivalent to the backtrack
strategy used by TGV.

When using the inclusion criterion, the number of events in the complete
test graph becomes too big for very simple examples and the SAT solver takes
too much computational time to compute all the test cases. For this reason,
we decided to run the experiments using the original cut-off criteria of MOLE
which assures transition and state coverage.

B.3.3 Results

Table B.1 reports the number of events in the unfolding’s prefix obtained by
our method, the number of global test cases seen as event structures (GT), the
number of transitions in the approximation of the complete test graph, the num-
ber of test cases seen as labeled transition systems (LT) and the corresponding
computational times in seconds. The unfolding tool and the SAT encoding con-
sider internal events, while the sizes displayed on the prefix and CTG column
only consider observable events.

We can easily observe in the table the exponential explosion in the number of
events when interleavings are used. In addition we see that it does not matter
how many floors or elevators we add, since the example does not introduce
conflict between inputs, the obtained global test case is always unique. In
contrast to this, the number of local test cases increases in the interleaving
setting since concurrency is transformed into conflict that needs to be solved to
avoid controllability problems.

The blue ✘ symbol indicates that the unfolding tool was not able to obtain
a finite prefix (complete test graph) after more than twenty-four hours, while
the red ✗ symbol indicates that the SAT solver was not able to find solutions
after more than twenty-four hours (for more than 3 floors and 2 elevator, we
were not able to run the SAT solver since the unfolding was not finished).

The unfolding of the net for 3 floors - 2 elevators example using interleav-
ing semantics (when internal actions are considered) contains 15353982 events,
showing that the unfolding tool can handle very big examples. However, the
SAT solver was not able to handle encodings with more than 84820 variables
(net for the 4 floors - 3 elevators example). Since causality is transitive and con-



B.3. EXPERIMENTS 127

flict is inherited w.r.t causal dependence, the SAT encoding can be improved
by just considering observable events, however immediate causality and imme-
diate conflict between only observable events need to be computed increasing
again the computational time of the method. We are currently working on the
implementation to achieve a better performance by just considering observable
events.





Bibliography

[Abr87] Samson Abramsky. Observation equivalence as a testing equiva-
lence. Theoretical Computer Science, 53:225–241, 1987.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan.
Analysing unlinkability and anonymity using the applied pi calcu-
lus. In Computer Security Foundations Symposium, pages 107–121.
IEEE Computer Society, 2010.

[ADF86] Luca Aceto, Rocco De Nicola, and Alessandro Fantechi. Testing
equivalences for event structures. In Mathematical Models for the
Semantics of Parallelism, volume 280 of Lecture Notes in Computer
Science, pages 1–20. Springer, 1986.

[Alb76] David S. Alberts. The economics of software quality assurance.
In National Computer Conference and Exposition, volume 45 of
AFIPS Conference Proceedings, pages 433–442. AFIPS Press, 1976.

[AO08] Paul Ammann and Jeff Offutt. Introduction to software testing.
Cambridge University Press, 2008.

[Bel10] Axel Belinfante. JTorX: A tool for on-line model-driven test deriva-
tion and execution. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 6015
of Lecture Notes in Computer Science, pages 266–270, 2010.

[Ber91] Gilles Bernot. Testing against formal specifications: A theoreti-
cal view. In International Conference on Theory and Practice of
Software Development, volume 494 of Lecture Notes in Computer
Science, pages 99–119. Springer, 1991.

129



130 BIBLIOGRAPHY

[BGMK07] Puneet Bhateja, Paul Gastin, Madhavan Mukund, and K. Narayan
Kumar. Local testing of message sequence charts is difficult. In In-
ternational Symposium on Fundamentals of Computation Theory,
volume 4639 of Lecture Notes in Computer Science, pages 76–87.
Springer, 2007.

[BJSK12] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez
Krichen. Off-line test selection with test purposes for non-
deterministic timed automata. Logical Methods in Computer Sci-
ence, 8(4), 2012.

[BK85] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating
processes with abstraction. Theoretical Computer Science, 37:77–
121, 1985.

[BK96] Falko Bause and Pieter S. Kritzinger. Stochastic Petri nets - an
introduction to the theory. Advanced studies of computer science.
Vieweg, 1996.

[BM08] Puneet Bhateja and Madhavan Mukund. Tagging make local test-
ing of message-passing systems feasible. In International Confer-
ence on Software Engineering and Formal Methods, pages 171–180.
IEEE Computer Society, 2008.

[BR70] John N. Buxton and Brian Randell, editors. Software Engineering
Techniques: Report of a conference sponsored by the NATO Sci-
ence Committee, Rome, Italy, 27-31 Oct. 1969, Brussels, Scientific
Affairs Division. NATO Science Committee, 1970.

[Bri88] Ed Brinksma. A theory for the derivation of tests. In Protocol
Specification, Testing and Verification, pages 63–74. North-Holland,
1988.

[BW90] Jos C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge
University Press, 1990.

[CFP96] Ana R. Cavalli, Jean Philippe Favreau, and Marc Phalippou. Stan-
dardization of formal methods in conformance testing of communi-
cation protocols. Computer Networks and ISDN Systems, 29(1):3–
14, 1996.

[De 87] Rocco De Nicola. Extensional equivalences for transition systems.
Acta Informatica, 24(2):211–237, 1987.

[DH84] Rocco De Nicola and Matthew Hennessy. Testing equivalences for
processes. Theoretical Computer Science, 34:83–133, 1984.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. The Book of
Traces. World Scientific Publishing Co., Inc., 1995.



BIBLIOGRAPHY 131

[ERV02] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement
of McMillan’s unfolding algorithm. Formal Methods in System De-
sign, 20(3):285–310, 2002.

[Fab06] Éric Fabre. On the construction of pullbacks for safe Petri nets. In
International Conference on Applications and Theory of Petri Nets
and Other Models of Concurrency, volume 4024 of Lecture Notes
in Computer Science, pages 166–180. Springer, 2006.

[FGGT08] Alain Faivre, Christophe Gaston, Pascale Le Gall, and Assia Touil.
Test purpose concretization through symbolic action refinement.
In International Conference on Testing Communicating Systems
/ Workshop on Formal Approaches to Testing of Software, vol-
ume 5047 of Lecture Notes in Computer Science, pages 184–199.
Springer, 2008.

[Fid88] Colin J. Fidge. Timestamps in message-passing systems that pre-
serve the partial ordering. In Australian Computer Science Con-
ference, pages 56–66, 1988.

[Gar05] Simson Garfinkel. History’s worst software bugs. http://archive.
wired.com/software/coolapps/news/2005/11/69355, 2005. Vis-
ited on 31-8-2014.

[Gau95] Marie-Claude Gaudel. Testing can be formal, too. In Theory and
Practice of Software Development, volume 915 of Lecture Notes in
Computer Science, pages 82–96. Springer, 1995.

[GG99] Stephane Gaubert and Alessandro Giua. Petri net languages and
infinite subsets of Nm. Journal of Computer and System Sciences,
59(3):373–391, 1999.

[GGRT06] Christophe Gaston, Pascale Le Gall, Nicolas Rapin, and Assia
Touil. Symbolic execution techniques for test purpose definition.
In International Conference on Testing Communicating Systems,
volume 3964 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2006.

[GL03] Sahika Genc and Stéphane Lafortune. Distributed diagnosis of
discrete-event systems using Petri nets. In International Confer-
ence on Applications and Theory of Petri Nets, volume 2679 of
Lecture Notes in Computer Science, pages 316–336. Springer, 2003.

[GMAP95] Bernd Grahlmann, Matthias Moeller, Ulrich Anhalt, and Marien-
burger Platz. A new interface for the PEP tool - parallel finite au-
tomata. In Workshop Algorithmen und Werkzeuge fur Petrinetze,
pages 21–26, 1995.

http://archive.wired.com/software/coolapps/news/2005/11/69355
http://archive.wired.com/software/coolapps/news/2005/11/69355


132 BIBLIOGRAPHY

[Gra95] Bernd Grahlmann. PEP: A programming environment based on
Petri nets. Application and Theory of Petri Nets, Tool Presentation,
pages 1–6, 1995.

[GS04] Christophe Gaston and Dirk Seifert. Evaluating coverage based
testing. In Model-Based Testing of Reactive Systems, volume 3472
of Lecture Notes in Computer Science, pages 293–322. Springer,
2004.

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT Press series
in the foundations of computing. MIT Press, 1988.

[Hen97] Olaf Henniger. On test case generation from asynchronously com-
municating state machines. In International Workshop on Testing
Communicating Systems, IFIP Conference Proceedings, pages 255–
271. Springer, 1997.

[Hie97] Robert M. Hierons. Testing from a finite-state machine: Extending
invertibility to sequences. The Computer Journal, 40(4):220–230,
1997.

[HJJ07] Stefan Haar, Claude Jard, and Guy-Vincent Jourdan. Testing in-
put/output partial order automata. In International Conference
on Testing Communicating Systems / Workshop on Formal Ap-
proaches to Testing of Software, volume 4581 of Lecture Notes in
Computer Science, pages 171–185. Springer, 2007.

[HLM+08] Anders Hessel, Kim Guldstrand Larsen, Marius Mikucionis, Brian
Nielsen, Paul Pettersson, and Arne Skou. Testing real-time systems
using UPPAAL. In Formal Methods and Testing, volume 4949 of
Lecture Notes in Computer Science, pages 77–117. Springer, 2008.

[HMN08] Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez. Im-
plementation relations for the distributed test architecture. In
International Conference on Testing Communicating Systems /
Workshop on Formal Approaches to Testing of Software, vol-
ume 5047 of Lecture Notes in Computer Science, pages 200–215.
Springer, 2008.

[HMN12] Robert M. Hierons, Mercedes G. Merayo, and Manuel Núñez. Using
time to add order to distributed testing. In International Sympo-
sium on Formal Methods, volume 7436 of Lecture Notes in Com-
puter Science, pages 232–246. Springer, 2012.

[Hoa85] Charles A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[HT97] Lex Heerink and Jan Tretmans. Refusal testing for classes of tran-
sition systems with inputs and outputs. In Formal Techniques for



BIBLIOGRAPHY 133

Networked and Distributed Systems, volume 107 of IFIP Conference
Proceedings, pages 23–38. Chapman & Hall, 1997.

[HT03] David Harel and P.S Thiagarajan. Message Sequence Charts. In
UML for Real: Design of Embedded Real-Time Systems, pages 75–
105. Kluwer Academic Publishers, 2003.

[HU08] Robert M. Hierons and Hasan Ural. The effect of the distributed
test architecture on the power of testing. The Computer Journal,
51(4):497–510, 2008.

[ISO89] ISO 8807. Information Processing Systems – Open Systems Inter-
connection: LOTOS, A Formal Description Technique Based on
the Temporal Ordering of Observational Behavior, 1989.

[Jar03] Claude Jard. Synthesis of distributed testers from true-concurrency
models of reactive systems. Information & Software Technology,
45(12):805–814, 2003.

[Jér09] Thierry Jéron. Symbolic model-based test selection. Electronic
Notes in Theoretical Computer Science, 240:167–184, 2009.

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and al-
gorithms. International Journal on Software Tools for Technology
Transfer, 7(4):297–315, 2005.

[JJKV98] Claude Jard, Thierry Jéron, Hakim Kahlouche, and César Viho.
Towards automatic distribution of testers for distributed confor-
mance testing. In Formal Techniques for Networked and Distributed
Systems, volume 135 of IFIP Conference Proceedings, pages 353–
368. Kluwer, 1998.

[JJTV99] Claude Jard, Thierry Jéron, Lénaick Tanguy, and César Viho. Re-
mote testing can be as powerful as local testing. In Formal Tech-
niques for Networked and Distributed Systems, volume 156 of IFIP
Conference Proceedings, pages 25–40. Kluwer, 1999.

[JM99] Thierry Jéron and Pierre Morel. Test generation derived from
model-checking. In International Conference on Computer Aided
Verification, volume 1633 of Lecture Notes in Computer Science,
pages 108–121. Springer, 1999.

[Kat99] Joost-Pieter Katoen. Concepts, algorithms, and tools for model
checking, 1999. Lecture notes. Universität Erlangen-Nürnberg.

[KK97] Sungwon Kang and Myungchul Kim. Interoperability test suite
derivation for symmetric communication protocols. In Formal Tech-
niques for Networked and Distributed Systems, volume 107 of IFIP
Conference Proceedings, pages 57–72. Chapman & Hall, 1997.



134 BIBLIOGRAPHY

[KKKV06] Victor Khomenko, Alex Kondratyev, Maciej Koutny, and Walter
Vogler. Merged processes: a new condensed representation of Petri
net behaviour. Acta Informatica, 43(5):307–330, 2006.

[KM02] Dietrich Kuske and Rémi Morin. Pomsets for local trace languages.
Journal of Automata, Languages and Combinatorics, 7(2):187–224,
2002.

[KT09] Moez Krichen and Stavros Tripakis. Conformance testing for real-
time systems. Formal Methods in System Design, 34(3):238–304,
2009.

[LG05] Grégory Lestiennes and Marie-Claude Gaudel. Test de systèmes
réactifs non réceptifs. Journal Europén des Systèmes automatisés,
39(1-3):255–270, 2005.

[Lon12] Delphine Longuet. Global and local testing from message sequence
charts. In Symposium on Applied Computing, pages 1332–1338.
ACM, 2012.

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of test-
ing finite state machines - A survey. In Proceedings of the IEEE,
volume 84, pages 1090–1123, 1996.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed
systems. In International Workshop on Parallel and Distributed
Algorithms, pages 215–226. North-Holland / Elsevier, 1989.

[Maz88] Antoni W. Mazurkiewicz. Basic notions of trace theory. In Work-
shop on Research and Education in Concurrent Systems, volume
354 of Lecture Notes in Computer Science, pages 285–363. Springer,
1988.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In International Conference on Tools and Algorithms
for Construction and Analysis of Systems, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[McM95] Kenneth L. McMillan. A technique of state space search based on
unfolding. Formal Methods in System Design, 6(1):45–65, 1995.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer, 1980.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in
computer science. Prentice Hall, 1989.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent
processes. In Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics (B), pages 1201–1242. MIT Press,
1990.



BIBLIOGRAPHY 135

[MY10] Andrey Mokhov and Alexandre Yakovlev. Conditional partial order
graphs: Model, synthesis, and application. IEEE Transactions on
Computers, 59(11):1480–1493, 2010.

[Mye04] Glenford J. Myers. The art of software testing (2nd. ed.). Wiley,
2004.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri
nets, event structures and domains, part I. Theoretical Computer
Science, 13:85–108, 1981.

[Par81] David Michael Ritchie Park. Concurrency and automata on infinite
sequences. In Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167–183. Springer, 1981.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis,
Universitt Hamburg, 1962.

[Phi87] Iain Phillips. Refusal testing. Theoretical Computer Science,
50:241–284, 1987.

[PHL12] Hernán Ponce de León, Stefan Haar, and Delphine Longuet. Con-
formance relations for labeled event structures. In International
Conference on Tests and Proofs, volume 7305 of Lecture Notes in
Computer Science, pages 83–98. Springer, 2012.

[PHL13] Hernán Ponce de León, Stefan Haar, and Delphine Longuet.
Unfolding-based test selection for concurrent conformance. In In-
ternational Conference on Testing Software and Systems, volume
8254 of Lecture Notes in Computer Science, pages 98–113. Springer,
2013.

[PHL14a] Hernán Ponce de León, Stefan Haar, and Delphine Longuet. Dis-
tributed testing of concurrent systems: vector clocks to the rescue.
In International Colloquium on Theoretical Aspects of Computing,
volume 8687 of Lecture Notes in Computer Science, pages 369–387.
Springer, 2014.

[PHL14b] Hernán Ponce de León, Stefan Haar, and Delphine Longuet. Model-
based testing for concurrent systems: Unfolding-based test selec-
tion. International Journal on Software Tools for Technology Trans-
fer, 2014. To appear.

[PHL14c] Hernán Ponce de León, Stefan Haar, and Delphine Longuet. Model-
based testing for concurrent systems with labeled event structures.
Software Testing, Verification and Reliability, 24(7):558–590, 2014.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics.
The Journal of Logic and Algebraic Programming, 60-61:17–139,
2004.



136 BIBLIOGRAPHY

[PM14] Hernán Ponce de León and Andrey Mokhov. Building
bridges between sets of partial orders. http://hal.inria.fr/

hal-01060449, 2014. Technical report. Visited on 4/9/2014.

[PS96] Jan Peleska and Michael Siegel. From testing theory to test driver
implementation. In International Symposium of Formal Methods
Europe, volume 1051 of Lecture Notes in Computer Science, pages
538–556. Springer, 1996.

[PZ13] Louchka Popova-Zeugmann. Time and Petri Nets. Springer, 2013.

[Rod13] César Rodŕıguez. Verification Based on Unfoldings of Petri Nets
with Read Arcs. Thèse de doctorat, Laboratoire Spécification et
Vérification, ENS Cachan, France, December 2013.

[RS97] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal
languages, vol. 3: beyond words. Springer-Verlag New York, Inc.,
1997.

[Sch] Stefan Schwoon. The MOLE unfolding tool. http://www.lsv.

ens-cachan.fr/~schwoon/tools/mole/. Visited on 31/8/2014.

[Sch99] Steve Schneider. Concurrent and Real Time Systems: The CSP
Approach. John Wiley & Sons, Inc., 1st edition, 1999.

[Seg97] Roberto Segala. Quiescence, fairness, testing, and the notion of
implementation. Information and Computation, 138(2):194–210,
1997.

[SNW96] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models
for concurrency: Towards a classification. Theoretical Computer
Science, 170(1-2):297–348, 1996.

[SSE03] Claus Schröter, Stefan Schwoon, and Javier Esparza. The model-
checking kit. In International Conference on Applications and The-
ory of Petri Nets, volume 2679 of Lecture Notes in Computer Sci-
ence, pages 463–472. Springer, 2003.

[STS13] Willem Gerrit Johan Stokkink, Mark Timmer, and Mariëlle
Stoelinga. Divergent quiescent transition systems. In Tests and
Proofs - 7th International Conference, TAP 2013, Budapest, Hun-
gary, June 16-20, 2013. Proceedings, volume 7942 of Lecture Notes
in Computer Science, pages 214–231. Springer, 2013.

[Tre92] Jan Tretmans. A Formal Approach to Conformance Testing. PhD
thesis, University of Twente, 1992.

[Tre96a] Jan Tretmans. Conformance testing with labelled transition sys-
tems: Implementation relations and test generation. Computer
Networks and ISDN Systems, 29(1):49–79, 1996.

http://hal.inria.fr/hal-01060449
http://hal.inria.fr/hal-01060449
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/


BIBLIOGRAPHY 137

[Tre96b] Jan Tretmans. Test generation with inputs, outputs and repetitive
quiescence. Software - Concepts and Tools, 17(3):103–120, 1996.

[Tre08] Jan Tretmans. Model based testing with labelled transition sys-
tems. In Formal Methods and Testing, volume 4949 of Lecture Notes
in Computer Science, pages 1–38. Springer, 2008.

[UK97] Andreas Ulrich and Hartmut König. Specification-based testing
of concurrent systems. In Formal Techniques for Networked and
Distributed Systems, volume 107 of IFIP Conference Proceedings,
pages 7–22. Chapman & Hall, 1997.

[UK99] Andreas Ulrich and Hartmut König. Architectures for testing dis-
tributed systems. In International Workshop on Testing Communi-
cating Systems, volume 147 of IFIP Conference Proceedings, pages
93–108. Kluwer, 1999.

[UL07] Mark Utting and Bruno Legeard. Practical Model-Based Testing -
A Tools Approach. Morgan Kaufmann, 2007.

[vG89] Rob J. van Glabbeek and Ursula Goltz. Equivalence notions for
concurrent systems and refinement of actions (extended abstract).
In Mathematical Foundations of Computer Science, volume 379 of
Lecture Notes in Computer Science, pages 237–248. Springer, 1989.

[vGGSU12] Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke-
Uffmann. On distributability of Petri nets - (extended abstract). In
International Conference on Foundations of Software Science and
Computation Structures, volume 7213 of Lecture Notes in Computer
Science, pages 331–345. Springer, 2012.

[vHJJ08] Gregor von Bochmann, Stefan Haar, Claude Jard, and Guy-Vincent
Jourdan. Testing systems specified as partial order input/output
automata. In International Conference on Testing Communicating
Systems / Workshop on Formal Approaches to Testing of Software,
volume 5047 of Lecture Notes in Computer Science, pages 169–183.
Springer, 2008.

[Vog02] Walter Vogler. Partial order semantics and read arcs. Theoretical
Computer Science, 286(1):33–63, 2002.

[Win85] Glynn Winskel. Petri nets, morphisms and compositionality. In
Applications and Theory in Petri Nets, volume 222 of Lecture Notes
in Computer Science, pages 453–477. Springer, 1985.

[XS09] Yang Xu and Ken S. Stevens. Automatic synthesis of computation
interference constraints for relative timing verification. In Interna-
tional Conference on Computer Design, pages 16–22. IEEE, 2009.


	Introduction
	Motivation
	Model-based Testing
	The Expected Behavior
	The Testing Hypotheses
	The Experiments

	Models for Concurrency
	Model-based Testing of Concurrent Systems
	Contributions and Outline
	Publications

	Conformance Testing for Sequential Models
	Labeled Transition Systems
	Branching Semantics for LTSs
	Reachability Trees
	Sequential Executions
	Modeling Concurrency with LTSs

	Observing LTSs
	Traces
	Quiescence and Produced Outputs
	Possible Inputs

	The ioco Conformance Relation
	Conclusion

	Conformance Testing for Non-Sequential Models
	Petri Nets
	Partial Order Semantics for PNs
	Occurrence Nets and Unfoldings
	Event Structures
	Partial Order Executions

	Observing PNs
	Traces
	Quiescence and Produced Outputs
	Possible Inputs

	The co-ioco Conformance Relation
	Conclusion

	Conformance Testing with Refined Concurrency
	Conditional Partial Order Graphs
	Semantics for Weak and Strong Concurrency
	Unfolding of a CPOG
	Relaxed Executions

	Observing CPOGs
	Traces
	Quiescence and Produced Outputs
	Possible Inputs

	The wsc-ioco Conformance Relation
	Conclusion

	A Centralized Testing Framework
	Global Test Cases, Execution and Verdicts
	Global Test Cases
	Test Execution
	Completeness of the Test Suite

	Constructing Test Cases
	Test Derivation for LTSs
	Test Derivation for ESs
	IICS Set
	Upper Bound for the Complexity of the Method
	SAT Encoding of Test Cases

	Test Selection
	Coverage Criteria Based on Cut-off Events
	Soundness of the Test Suite
	Comparing Different Criteria

	Conclusion

	A Distributed Testing Framework
	Conformance in Distributed Architectures
	Modeling a Distributed System
	Distributing Global Conformance
	Detecting Non Conformance Locally
	Adding Time Stamps

	From Global Test Cases to Distributed Ones
	Conclusion

	Conclusions and Perspectives
	Summary
	Future Research

	Other Conformance Relations
	Sequential Executions
	Trace Preorder
	Testing Preorder
	Relaxing Testing Preorder
	Conclusion

	Tool and Experiments
	The TOURS Prototype
	The Elevator Example
	Experiments
	Adding Floors and Elevators
	Setting Up the Experiments
	Results


	Bibliography

