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Design and Management of Networks with
Low Power Consumption

Abstract: In this thesis, we study several models of energy-aware routing. For
each model, we present a linear programming formulation to �nd the exact solution.
Moreover, since energy-aware routing is NP-hard problem, we also propose e�cient
heuristic algorithms for large scale networks.

In the �rst part of this thesis, we deal with GreenRE - a new energy-aware routing
model with the support of redundancy elimination. We �rst present a deterministic
model in which we show how to combine energy-aware routing and redundancy
elimination to improve energy e�ciency for backbone networks. Then, we extend the
model in order to take into account uncertainties in tra�c volumes and redundancy
rates.

The second part of this thesis is devoted to the deployment issues of energy-
aware routing in practice. In detail, to avoid service deterioration for end-users,
we limit changes of network con�gurations in multi-period tra�c matrices in Open
Shortest Path First (OSPF) protocol. Next, we address the problem of limited rule
space in OpenFlow switches when installing energy-aware routing con�gurations.

Finally, we present in the appendix other works developed during this thesis:
multicast network protocol and TCP congestion control algorithm.

Keywords: Energy-aware Routing, Redundancy Elimination, Open Shortest
Path First, Software De�ned Networks.



Conception et Gestion de Réseaux E�caces en Énergie

Résumé :
Dans cette thèse, nous étudions plusieurs modèles de routage e�caces en énergie.

Pour chaque modèle, nous présentons une formulation en programmation linéaire
mixte permettant de trouver une solution exacte. En outre, comme il s'agit de
problèmes NP-di�ciles, nous proposons des heuristiques e�caces pour des réseaux
de grande taille.

Dans la première partie de cette thèse, nous étudions une solution de routage
e�cace en énergie dans laquelle nous ajoutons la possibilité d'éliminer des redon-
dances dans les paquets transmis sur le réseau. Nous montrons premièrement que
l'ajout de l'élimination des redondances permet d'améliorer l'e�cacité énergétique
des réseaux en éteignant plus de liens. Ensuite, nous étendons le modèle a�n qu'il
prenne en compte un certain niveau d'incertitudes dans le volume de tra�c et le
taux de redondances.

La deuxième partie de cette thèse est consacrée aux problèmes qui se posent
lors du déploiement de tels protocoles dans les réseaux. Plus particulièrement, nous
proposons de minimiser les changements entre deux con�gurations réseaux consécu-
tives lorsque plusieurs matrices de tra�c sont considérées. Le routage des demandes
étant alors assuré avec le protocole de routage OSPF (Open Shortest Path First).
Ensuite, nous abordons le problème de la limitation du nombre de règles de routage
dans les routeurs en utilisant une technologie de type SDN (Software De�ned Net-
works). En�n, nous présentons en annexe des travaux complémentaires réalisés au
cours de cette thèse concernant le routage multicast et le contrôle de congestion
TCP.

Mots clés : Energy-aware Routing, Redundancy Elimination, Open Shortest
Path First, Software De�ned Networks.
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The concept of energy-e�cient networking has gained increasing popularity in
the past few years. Because of economical and environmental reasons, green net-
working has become a key issue for the industry as well as the research community.
Recent studies have shown a continuously growing trend of the energy costs and
electrical requirements for telecoms [BBDC11, BCRR12]. Since networks are of-
ten designed to endure peak load, they are normally under-utilized, leaving a large
room for energy saving. For instance, data centers and Internet Service Provider
(ISP) involve high-performance and high-availability computing. They therefore
rely on powerful devices which are organized in a redundant architecture. While
these redundancies greatly increase the network reliability, they also reduce the en-
ergy e�ciency as all network devices are powered on at full capacity but highly
under-utilized most of the time. For this reason, a potential energy saving approach
is to put unused devices into sleep mode in o�-peak hours without a�ecting network
performance and reliability.



2 Chapter 1. Introduction

In the main part of this thesis, we study multiple approaches to optimize the
power consumption for Internet Service Provider (ISP). Beside green networking,
this thesis also presents additional work on multicast network and TCP congestion
control. In this introduction, we motivate these approaches, mention the techniques
used, and �nally enumerate our main contributions.

1.1 Motivation

The impact of the Internet on our lives has become more and more important in
recent years. According to a report by Cisco [Cisco13], the peak global throughput
has increased by 41% through the year 2012 alone. The recent smart-phone, tablet
and laptop revolutions have been contributing to this phenomena. As estimation
by [GreenTouch13], over the decade 2010-2020, the global wire-line Internet tra�c
will increase by a factor of16, to approach 250 exabytes per month. Moreover, the
global mobile Internet tra�c will grow even faster, approximately 150times to reach
40 exabytes per month. Fig.1.1 shows in details tra�c projections of di�erent kinds
of networks in the Mature Market (consists of Japan, Northern America and Western
Europe). As prediction, the tra�c in the Mature Market is growing more slowly
than the global tra�c: for the period 2010-2020, tra�c in mobile access network will
increase by 89 times while it will be 9.6 times for the wire-line access and the core
network. It is also noted that the tra�c contribution to the core network coming
from the mobile wireless back haul is small in comparison to the tra�c from the
wire-line network.

Figure 1.1: Tra�c projections and corresponding multiplicative growth fac-
tors [GreenTouch13]

To keep pace, Internet Service Providers (ISP) have to rely on similar growth in
bandwidth and capacities of routers and switches. This causes a signi�cant rise in
energy consumption andCO2 emission. According to several studies, the emission
of CO2 produced by the Information and Communication Technology (ICT) could
range from 2% up to 10% of the total man-made emissions by 2020 [Global07, Sma10,
LHV + 12]. In this context, data centers and backbone networks will experience the
highest energy consumption growth rates in the forthcoming years [LKWG11]. The
studies also show that switches, hubs and routers account for 6 TWh (� 0:5 - 2:4
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billion dollars) per year in United States. In [Sma10], it is estimated that by 2020
the telecoms infrastructure and devices alone would account for about the 25% of
the ICT sector's CO2 emissions. Therefore, the European Commission (EC) has set
three key objectives for 2020 (which are known the �20-20-20� targets):

� A 20% reduction in EU greenhouse gas emissions from 1990 levels.

� Raising the share of EU energy consumption produced from renewable re-
sources to 20%.

� A 20% improvement in the EU's energy e�ciency.

Energy reduction techniques in the data center, backbone network or access net-
work bear the promise of major cost reductions. In order to achieve these targets,
the EC has �nanced more than 30 research projects working on energy e�ciency in
ICT [ EUF14]. The reduction of energy is becoming an important �eld of research,
not only on hardware but also on networking technology and protocol. Moreover,
governments of many countries are starting to recognize the impact of telecommuni-
cation on the global energy consumption. This could bring future situations, where
new regulations, e.g. increasing the cost of electricity, would be applied. As a result,
it is necessary for ISPs to improve their network energy e�ciency since it is a part
of their operating expenses (OPEX).

Figure 1.2: Maximum and average link utilization in Abilene network [ZYLZ10]

The work on Internet's energy consumption has been �rst evoked as a hypo-
thetical working direction by Gupta et al. in 2003 [GS03]. As today's networks are
designed and operated to carry tra�c in the most reliable way, energy e�ciency
issue is not taken into account. As a result, a network is usually built with several
redundant links and aggressive over-provision in bandwidth. While these redundan-
cies greatly increase the network reliability, they also greatly reduce the network's
energy e�ciency as all network devices are powered on but highly under-utilized
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most of the time. Figure 1.2 shows the maximum and average link utilization in
Abilene network, a large US education backbone, during a typical week [ZYLZ10].
The average link utilization is only about 2% while only one rare event pushes the
maximum over 50%. Therefore, people proposed putting unused network elements
into sleep mode to save energy. This research idea is usually calledenergy-aware
routing (EAR) [BBDC11, BCRR12, GMMO10, ZYLZ10, CMN09, CSB+ 08]. How-
ever, from a practical point of view, there are a number of issues for EAR. First, the
time required for sleeping/activating a link on router is substantial. However, there
is work on Energy E�cient Ethernet (EEE) which is the standardization framework
of the IEEE 802.3az [CRN+ 10, BBC+ 14]. The authors have shown that it is pos-
sible to put a link into sleep mode and wake it up in short time (e.g. less than
5�s for 10GBASE-T links). Thus, we believe that these advances will come in the
future, especially if they o�er big energy saving. Second, as tra�c varies over time,
EAR assumes to compute and apply a new routing con�guration for each tra�c
matrix, making in a large number of applied con�gurations per day. Indeed, fre-
quent changes in network con�guration cause network oscillation, e.g. packets may
arrive out of order, degrading the perceived QoS for end-users. One possible way
to overcome this issue is to limit network recon�gurations. As shown in [CCRP13],
with only few con�gurations, the energy saving can be close to the maximum one,
in which a new con�guration is applied for each tra�c matrix.

Another research topic that has also been active recently is tra�c redundancy
elimination (RE) [ ZA13, AGA + 08, AMAR09, SGG10, ZC11]. Observing that tra�c
on the Internet contains a large fraction of redundancy (e.g. popular contents such
as new movies are often downloaded several times subsequently), people propose to
use RE techniques to reduce link load in backbone networks. It consists in splitting
packets into small chunks, each is indexed with a small key, which are cached along
tra�c �ows as long as they are popular. Then, keys are substituted to chunks in
tra�c �ows to avoid sending multiple times the same content, and the original data
are recovered on downstream routers based on the cache synchronization between
the sending and the receiving routers. Therefore, tra�c redundancy is removed and
the capacities of network links are virtually increased. As a result, RE provides more
room for aggregating tra�c, which is useful for the energy-aware routing approach.

In this thesis, we study GreenRE - a new energy saving model which combines
EAR and RE techniques (Chapter 3 and 4). Besides the GreenRE, we have also
worked on the perspective of network management for energy-aware routing. That
is we consider energy-aware tra�c engineering applied in Open Shortest Path First
(OSPF) protocol (Chapter 5) and Software-De�ned Networking (SDN) (Chapter 6).
Beyond the scope of green networking, this thesis also presents some additional works
on multicast and TCP congestion control. We introduce in next Section state of the
art of the research topics that we have used in this thesis.
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1.2 Power Awareness in Network Design and Routing

In this thesis, we examine the problem of power-awareness of routers in backbone
networks. Especially, there are three promising approaches, namely power-aware
system design, power-aware network design and energy-aware routing. Note that
the �rst two approaches, which are typically used by router manufacturers and
network designers, are not the focus of this work. However, understanding these
methods is necessary to have a completed picture on energy-e�cient network. In
this section, we �rst provide an overview of power-aware systemand power-aware
network design. Then, our main work on energy-aware routingis presented in detail.

1.2.1 Power-aware System Design

Depending on the area of application, power-aware system design can be classi�ed
in two di�erent levels: circuit and equipment levels.

Circuit Level is based on new developments in CMOS technology. Decreasing
feature sizes in semiconductor technology has contributed to performance gains as
well as reducing the power per transmitted byte. In addition, standard techniques
for power e�cient design in router including clock gating, dynamic voltage scaling
(DVS) and dynamic frequency scaling (DFS) have been used also. With DVS, the
supply voltage is reduced when not needed, which results in lower power consump-
tion (but also slower operation of the circuitry). Similarly, DFS reduces the number
of processor instructions in a given amount of time (in low operation mode) to save
energy.

Equipment Level In this level, there are a number of methods that can be applied
to reduce energy. For example, electrical components can be replaced with their
counterparts in the optical domain which are more energy e�cient. In addition,
optical technology innovation continues to evolve and should have an important
impact on reducing power consumption in the future. Another approach can be
used in the equipment level is multi-chassis router. This new architecture allows to
physically separate components and to cluster them to form a single logical router.
In particular, several line card chassis can be connected in a multi-chassis router.
This architecture can solve the bandwidth scaling problem due to parallel processing
of line cards. Although the aggregate power consumption increases on a single
router, the heat load is easily spread over larger physical area. It therefore reduces
the total cost of the required cooling system.

1.2.2 Power-aware Network Design

This approach is based on an e�cient deployment of routers over a set of point of
presences (PoPs) such that the total power demand is minimized while QoS require-
ments are satis�ed. The authors in [CSB+ 08] have demonstrated that being aware
of power consumption when designing network topologies can result in signi�cant
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power reduction. For instance, with a given set of demands and link capacities, there
are likely to have many router-level network topologies to satisfy a certain level of
QoS. To this extend, the core is normally designed with dense connections using
high bandwidth routers, while lower bandwidth routers (but also high connection
density) are placed around the core. With power-aware network design, di�erent
chassis/line card con�gurations might be deployed in a network such that provi-
sioning requirements are satis�ed. Furthermore, power-hungry packet processing
operations are limited to a subset of the routers. As an example, by minimizing
energy-hungry components such as large IP routers, and transporting tra�c at the
lowest layer (more energy e�cient) if possible can greatly reduce energy consump-
tion. In addition, the long term objective is to replace power-hungry systems in the
core with lower power systems. With such additional re�nements in topology de-
sign, ISPs have opportunities to save energy costs and potentially reduce equipment
footprints in PoPs.

1.2.3 Energy-aware Routing (EAR)

This approach aims at using network protocols to control the whole network, so as
to minimize energy consumption while preserving QoS requirements. Before going
into detail of EAR, we �rst present energy pro�le of router from a tra�c load point
of view. An energy pro�le is de�ned as the dependence of the energy consumption
of router on its tra�c load. There are two main energy pro�les as shown in Fig. 1.3:
�idleEnergy� and �fully proportional� models.
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Figure 1.3: Energy pro�les

Fully Proportional Model This model represents an ideal case where energy
consumption varies linearly with the device utilization, between0 and Emax . As
stated in [BCL+ 10], network devices could present such a behavior if techniques like
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Dynamic Voltage Scaling (DVS), modular switching fabrics, etc. are applied to the
devices' components. In fact, this model is desired in green networking, however,
today network devices are not power-proportional, and it is considered as a futuristic
scenario.

idleEnergy Model This model is also named �on/o�� energy pro�le. The in�u-
ential paper of Chabarek et al. [CSB+ 08] has shown that the energy consumption
of today network equipments is not proportional to the quantity of the transported
tra�c. In realistic, network device's energy consumption grows linearly between a
minimum value E0 and a maximum valueEmax which correspond to the idle state
and the maximum utilization state, respectively (Fig. 1.3). For more details, the
website [Powerlib] lists a database of power consumption values for ICT network
equipments.

In this thesis, we focus on the �idleEnergy model� to design and evaluate ef-
�cient energy-aware routing (EAR) protocol. We refer the readers to the refer-
ences [GGS13, GNTS13] for more general work on energy-aware problem (with
di�erent energy pro�les). In our work, the most basic notion of EAR includes
mechanisms for turning o� or putting components into sleep mode. In fact, numer-
ous measurement campaigns have been set up to obtain accurate energy models for
network equipments. For example, the authors in [CSB+ 08] have shown that power
consumption of a router at a load of 75% is only 2% more than at an idle state
(770W vs. 755W). Instead, the dominating factor is the number of active network
elements on the network devices such as interfaces (or ports), line cards, base chassis,
etc. [MSB09]. Therefore, in order to minimize energy consumption, as few network
elements as possible should be used while preserving connectivity and Quality of
Service (QoS). In general, networks are designed with redundant links and over-
provisioning bandwidth to accommodate tra�c bursts as well as to allow rerouting
when links fail. As a result, the networks are under-utilized most of the time, leaving
a large room for energy saving (Fig.1.2). Intuitively, it is possible to have multiple
paths between a pair of source-destination in a network. When tra�c load is low,
we can aggregate the tra�c into a few links so that other links do not carry any
tra�c. Then, idle links of routers can be put into sleep mode for energy reduction.
In fact, turning o� entire routers can earn signi�cant energy saving. However, it is
di�cult from a practical point of view as it takes time for turning on/o� and also
reduces life cycle of devices. Therefore, like existing works [CCRP13, GMPR12], we
assume to turn o� (or put into sleep mode) only links to save energy.

As an example of EAR, we consider a network topology as a grid3� 4 (Fig. 1.4).
Each link of the network has capacity 4 Gbps. There are three tra�c demands:
(0; 3), (4; 7) and (8; 11), each has a volume of 1 Gbps. For speci�c requirements,
network operators can choose a routing protocol or apply di�erent tra�c engineering
policies for their networks. Commonly, to guarantee QoS, a feasible routing solution
should not cause any overloaded links. Therefore, all the four solutions in Fig.1.4
are feasible. As shown in Fig.1.4d, the shortest path routing uses9 active links,
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Figure 1.4: Example of energy-aware routing solutions.

then 8 idle links can be put into sleep mode to save energy. However, since there is
enough capacity to aggregate the three tra�c demands as in Fig.1.4a, Fig. 1.4b and
Fig. 1.4c, energy consumption can be further decreased. Indeed, the routing solution
in Fig. 1.4a is the optimal energy-e�cient one since it requires a minimum number
of active links. The problem of minimizing the number of active links under capacity
constraints can be precisely formulated using Mixed Integer Linear Programming
(MILP). The authors in [ GMMO10] proved that EAR is not in APX, that is there
is no polynomial-time constant-factor approximation algorithm.

In this thesis, we propose a new energy-aware routing model call GreenRE. As
the key point of EAR is that the network links must have enough capacity to aggre-
gate tra�c demands. We leverage a technique call tra�c redundancy elimination
(RE) to virtually increase capacity on links. From the view point of energy saving,
RE allows to aggregate more tra�c �ows, increasing the energy e�ciency of net-
works. We present in next section background on RE and we show how to use this
technique to reduce tra�c load as well as to improve energy e�ciency for networks.

1.3 Reducing Tra�c Load in Network

A signi�cant amount of redundant tra�c has been observed over the communi-
cation networks. As stated in many studies [AGA + 08, AMAR09, SW00], redun-
dancy in Internet tra�c is in a range of 15-60%. Typically, some contents on
the Internet are highly popular objects, e.g. new movies, songs, etc. Due to
many requests, these contents are transferred repeatedly across the network for
a large number of users. Moreover, as common activities, a single user can re-
peatedly access or retrieve the same or similar contents over the Internet several
times. It is clear that redundant tra�c wastes network resources and even worsens
the communication performance by saturating the network bandwidth. Further-
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more, with the rapid growth of the Internet tra�c, redundancy elimination has
been arising as an urgent need. In recent years, there are several works from the
academia [ZA13, AMAR09, SGG10, ASA09, AGA + 08, SW00, WVS+ 99] and in-
dustries, such as Cisco [LRCBS05], Juniper [Juniper], BlueCoat [BlueCoat], and
Riverbed [Riverbed]. These works are ranging from object-level to packet-level re-
dundancy elimination.

� Object-level approach: the classical Web cache is an example of object level
redundancy elimination [WVS+ 99]. In more detail, popular HTTP objects are
stored in local caches (clients' computers or proxies of the network). Then,
the cached contents are used to serve subsequent requests locally, without con-
tacting remote severs. However, the object-level caching cannot eliminate all
the redundant contents, especially for the contents that have been changed in
only minor ways. Therefore, a better approach called packet-level redundancy
elimination has recently been explored and investigated.

� Packet-level approach:Spring et al. [SW00] developed the �rst system which
can remove redundant bytes from any tra�c �ow on the network. They
call this approach as protocol independent techniqueas it operates below
the application layer and attempts to remove any redundant bytes that
appear on the network. Following this approach, several commercial ven-
dors have introduced Wide area Network (WAN) Optimization Controller
(WOC) - a device that can remove duplicate content from network transfer
[BlueCoat, Riverbed, LRCBS05, Juniper]. WOCs are installed at individual
sites of small ISPs and enterprises to o�er end-to-end redundancy elimination
between pairs of sites.

1.3.1 WAN Optimization Controller (WOC)

From the network perspective, a large enterprise usually has three di�erent kinds
of o�ces inside its network: branch o�ces, regional o�ces and data centers. The
branch o�ces often connect to the regional o�ces and the data centers by WAN links
with low bandwidth, high latency. Therefore branch o�ces are the ones su�ering the
most from a poor network performance. One solution to improve the performance
over WAN connections is to pay more money to buy higher bandwidth for the
WAN links. To this extent, WOC is another approach to overcome the transport
and link capacity limitations. It includes many techniques working together such
as application acceleration, TCP acceleration, data compression, data suppression,
etc. [GC07]. In our work, focusing on tra�c redundancy elimination, we present
the two main techniques used in WOC to reduce tra�c load: data compression and
data suppression.

1.3.1.1 Data Compression

Traditional data compression is a technique used to encode data so that it consists
of fewer bits than the original data representation. Each packet can be compressed
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by a compression algorithm such as Lempel-Ziv or DEFLATE [GC07]. For instance,
the DEFLATE algorithm replaces repeated strings with pointers and further uses
Hu�man coding to e�ciently encode symbols that frequently occur. This relies on
the assumption that both the senders and the receivers use the same compression
algorithm. However, it is well-known that DEFLATE does not compress small
packets well [AMAR09], therefore it can not signi�cantly reduce tra�c load on the
network. In this report, we focus on data suppression - an e�cient technique used
in WOC to eliminate redundant data tra�c.

1.3.1.2 Data Suppression

Data suppression is also commonly called packet-level redundancy elimination. The
main idea is to detect patterns of data that have been sent over the network. As
shown in Fig. 1.5, the patterns of previously sent data are stored in the database of
the accelerators (or WOC) at both the sending and the receiving side. Whenever
the accelerator on the sending side notices the same kind of data pattern coming
from the sending host, it sends a small signature instead of the original data. The
receiving accelerator then recovers the original data by looking up the signature in
its database. Because signatures are only a few bytes in size, sending signatures
instead of actual data gives signi�cant bandwidth saving.
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Figure 1.5: Reduction of end-to-end link load using WOC
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Figure 1.6: Encoded message with suppression technique [GC07]

When peering accelerators perform data suppression, only the signatures of the
data segments which were stored in database are sent. Otherwise, the accelerators
generate signatures for new data segments. As shown in Fig.1.6, an encoded message
consists of many small signatures. Besides, we can see some bigger pieces (with gray
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color) along with a small signature in the head. They are the new data segments
and the new generated signatures which have not been stored yet in the database.

When an encoded message is received, the receiving accelerator begins to decode
this message. This is done by replacing each signature sent without attached data
with the corresponding data pattern in the local database. Any data pattern that
has an accompanying signature is added to the local compression database and
the signature is stripped from the encoded message. It is noteworthy that data
suppression is commonly implemented in the network or transport layer, thus it
does not di�erentiate among applications. For example, downloading an object
from a website populates the local suppression database. The signatures related
to this object can be used later for e-mail application when sending with the same
(or modi�ed) object. Furthermore, an object that is sent for the �rst time may be
compressible because of some common data patterns from previous objects already
stored in the data suppression database. To better explain, we consider a simple
example as Fig.1.7.

Figure 1.7: Step-by-step of packet suppression process [GC07]

As described in Fig.1.7, the process of packet suppression is divided by 7 steps:

1. A stream of data is sent as a series of packets.

2. The WOC veri�es the existence of each packet in its local database (the com-
pression history).

3. Redundancy is eliminated and redundant segments are replaced by signatures.

4. The encoded packet is sent across the network and intercepted by a remote
WOC.

5. The remote WOC compares the contents of the encoded packet with items in
its local database.
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6. The remote WOC replaces signatures with data patterns from its database.

7. The remote WOC reconstructs the original data and forwards it to the in-
tended destination.

When deploying the accelerators, a best practice is to ensure that enough storage
capacity is allocated for the compression history. We refer the readers to a detail
calculation of the cache size in [GC07].

1.3.2 Packet Caches on Routers

Recently (2008 - present), the success of WOC deployment has motivated researchers
to explore the potential of network-wide redundancy elimination (RE) (see the sur-
vey [ZA13]). For instance, Anand et al. [AGA + 08][AMAR09][ASA09] have consid-
ered the bene�ts of deploying packet-level RE in routers across the entire Internet
and they have shown that packet-level RE is more e�ective than the object-level
one. The basic idea of this proposal is similar to data suppression (Section1.3.1.2).
We show a process of removing redundancy in data packet as Fig.1.8.

Figure 1.8: Packet-level data redundancy [ZA13]

Each router in an ISP network maintains a cache of recently forwarded packets.
For every incoming packet, upstream routers run an algorithm to compute a set
of �ngerprints. Rather than using MD5 hash, the algorithm uses a sliding hash
function which signi�cantly cuts down the hash computation time per packet [ZA13,
HWG12]. We refer the readers to the paper [HWG12] for more details on �ngerprint
algorithms. After computing �ngerprints for an arriving packet, each �ngerprint
is checked against the �ngerprint table. If a match is found, it means that the
incoming packet has bytes in common with an in-cache packet. The algorithm will
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try to expand this packet to �nd a bigger matching region. Each matching region
is then removed from the incoming packet and replaced by a small signature (or
small key). These signatures then are used by downstream routers to reconstruct
the original packet from their local cache. It is important to make sure that the
cache on downstream router is consistent with the upstream one.

Obviously, there are two key challenges that hinder the deployment of RE on
routers. First, a signi�cant number of memory accesses and heavy computation are
required during various stages of RE. Second, a large amount of memory is required
for �ngerprints and packets stored at routers. Anand et al. [ASA09] introduces
SmartRE which considers these challenges in the design. The authors show that on
the desktop equipped with 2.4 GHz CPU and 1 GB RAM used for storing caches,
the prototype can work at 2.2 Gbps for encoding packets (�nding �ngerprints and
replacing matching regions by signatures) and at 10 Gbps for decoding or recon-
structing the original packets. Moreover, they believe that a higher throughput
can be attained if the prototype is implemented in hardware. Therefore, the key
challenges of limitation in memory and CPU can be overcome.

Another interesting fact is how much load on network links can be reduced when
deploying RE on routers? Several real tra�c traces have been collected from many
networks such as at 11 corporate enterprises in US [AMAR09], at a large university in
US [AGA + 08] and at 5 sites of a large corporate network in North America [SGG10].
The authors in [AMAR09][AGA + 08][SGG10] conclude that the bandwidth saving
by using RE can be up to 50%. In addition, a further 10-25% tra�c load can be
reduced when considering redundancy-aware routing - tra�c �ows from the same
source are aggregated on the same links to achieve inter-�ows RE [AGA + 08].

In summary, by using RE technique, the volume of tra�c demand can be sig-
ni�cantly reduced. This is useful for tra�c engineering and EAR as capacity on
network links are virtually increased. However, from energy saving perspective, RE
has a drawback since it increases energy consumption of routers as well [GMPR12].
To �nd a good trade-o�, we have proposed GreenRE - a model that combines EAR
and RE to increase energy e�ciency for backbone network (Chapter3 and 4).

1.4 Deployment of EAR in Real World

Beyond the scope of GreenRE model, in this thesis, we also study the impacts of
energy-aware routing on network protocols. In particular, we consider real problems
when deploying EAR on Open Shortest Path First (OSPF) and Software-de�ned
network (SDN). We introduce in this section some backgrounds on these protocols.

1.4.1 EAR with Open Shortest Path First (OSPF)

OSPF is a link-state routing protocol for Internet Protocol (IP) networks. It is
perhaps the most widely used interior gateway protocol (IGP) in large enterprise
networks. It gathers link state information from available routers and constructs
a topology map of the network. It then computes the shortest path tree for each
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destination based on Dijkstra's algorithm. The weights of the links, and thereby
the shortest path routes, can be changed by network operators. For instance, the
weights could be set proportional to their physical distances, or as suggested by
Cisco [Cisco05], the weights should be set inverse to their links' capacity without
taking any knowledge of the demand into account. It is widely believed that the
OSPF protocol is not �exible enough to do tra�c engineering, for example to give
a good load balancing routing solution. This is one of the reasons for introducing
Multi-protocol Label Switching (MPLS). However, as shown in [FT00], the weights
can be optimized for load balancing problem. The authors showed that the found
OSPF weight setting can perform closely to that of the optimal general routing
(MPLS-TE style) where the routing �ow of each tra�c demand is optimally dis-
tributed over all paths between source and destination.

Recently, we found a number of works that have been devoted to energy-aware
tra�c engineering using OSPF protocol [ACG13, FWMG13, SLX+ 12, CCGS13].
This link state approach performs a local calculation of shortest paths based on a
set of link weights. This avoids optimizing routing on a per-�ow basis (like MPLS-
TE) which can be complex when a large number of tra�c demands are considered.
In summary, these works try to �nd an OSPF weight setting that routes the tra�c
in a shortest path manner while it minimizes the number of active routers/links.
Then, inactive network elements are put into sleep mode to save energy.

From the perspective of tra�c engineering, we argue that stability in routing
con�guration also plays an important role in QoS. In details, frequent changes in
network con�guration (link weights, slept and activated links) to adapt with tra�c
�uctuation in daily time cause network oscillation. We propose a novel optimization
method of link weight so as to limit the changes in network con�gurations in multi-
period tra�c matrices (Chapter 5).

1.4.2 EAR with Software-de�ned Networking (SDN)

SDN in general, and OpenFlow in particular [MAB + 08], has been attracting a grow-
ing attention in the networking research community in recent years. In traditional
networks (Fig. 1.9a), network devices such as routers and switches act as �closed�
systems. They work as �black boxes� with applications implemented on them. Users
can only control them via limited and vendor-speci�c control interfaces. Moreover,
the data plane (forwarding function) and control plane are integrated in each device,
making them quite di�cult to deploy new network protocols. SDN is a new net-
working paradigm that decouples the control plane from the data plane (Fig.1.9b).
It provides a �exibility to develop and test new network protocols and policies in real
networks. OpenFlow has applications in a wide range of networked environments
and over past few years, many applications have been built using the OpenFlow
API [ MAB + 08]. For instance, the work in [JKM + 13] describes B4 - one of the �rst
and largest SDN deployments in Google data center network. B4 has been in de-
ployment for three years and real lessons learned show that B4 can e�ciently meet
application bandwidth demands, supports rapid deployment of new network control
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services and is robust with failure conditions.
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Figure 1.9: Traditional network vs. SDN network

OpenFlow is a promising method to implement EAR in a network. Without
setting entries manually, OpenFlow can collect tra�c matrix, performs routing cal-
culation and then installs new routing rules on routers. For instance, the authors
in [HSM+ 10] have implemented and analyzed ElasticTree on a prototype testbed
built with production OpenFlow switches. The idea is to use OpenFlow to control
tra�c �ows so that it minimizes the number of used network elements to save energy.
Similarly, the authors in [WYW + 12] have set up a small testbed using OpenFlow
switches to evaluate energy saving for their models. OpenFlow switches have also
been mentioned in many existing works as an example of the tra�c engineering
method to implement the EAR idea [CMTY11 , VNS+ 11].

In this thesis, we discover that the rule space at OpenFlow switches is also im-
portant as it can change the routing solution and a�ects QoS. We therefore propose
an optimization method to minimize energy consumption for a backbone network
while respecting capacity constraints on links and rule space constraints on routers
(Chapter 6).

1.5 Research Methodology

1.5.1 Metrics studied

In this thesis, we are interested in optimizing and evaluating di�erent metrics. In this
section we brie�y describe them in a clear and simple way. Throughout this thesis,
we are focusing on the main concern, that is the energy consumption of backbone
networks. Indeed, there are many elements on network that need to apply energy
e�ciency. In this work, we focus on energy consumption of routers, particularly on
the interfaces of routers. The method used here is aggregating the tra�c on few
links, then putting unused links (or precisely, the two network interfaces connecting
the two routers) into sleep mode. From practical point of view, it takes time for
sleeping/waking up and also reduces life cycle of devices. We therefore consider that
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the routers are always on but only links can be put into sleep mode to save energy.
As a result, the metric energy e�ciency is proportional to the number of idle links
on a network.

This sleep mode approach requires network-wide coordination of routers. The
challenges are two-fold, namely how to manipulate the routing paths to make as
many idle links as possible without signi�cantly a�ecting network performance and
reliability. Since power-aware tra�c engineering uses less number of links, it is
important to make sure that links are not overloaded and packets do not experience
extra long delays. Therefore, beside energy saving, we also evaluate other metrics
relating to QoS such as end-to-end delay and link utilization.

� End-to-end delay: as energy-aware routing aims at minimizing the number
of active links, longer paths can be used to route tra�c demands. However,
as EAR should guarantee a certain level of QoS, long end-to-end delay can
be a problem, especially for sensitive delay applications such as audio, video
streaming. Therefore, in this work, we also evaluate the path length metric
when designing our heuristic algorithms.

� Link utilization: since EAR attempts to aggregatetra�c into a subset of
network links, load balancing is sometimes ignored. However, link load is
also an important factor to better QoS as it can e�ciently handle unexpected
surges in tra�c demands. Therefore, link utilization is also a metric that we
consider in this work.

1.5.2 Techniques used

Over the course of this thesis we faced di�erent problems, calling for di�erent so-
lutions. The main techniques used, ordered from the more theoretical to more
empirical, are:

� Mixed Integer Linear Programming (MILP) is the main technique that we use
throughout the thesis (Chapter 3, 4, 5 and 6). Basic idea of linear programing
(LP) and MILP are described in Chapter 2.

� Robust optimization and duality in linear programming, used in Chapter 4
and 5, described in Chapter2.

� Greedy heuristic algorithm, used in Chapter3, 4, 5 and 6, described in Chap-
ter 2.

� Experiments, using commercial software (CPLEX) (Chapter 3, 4, 5 and 6),
network simulator NS-2 (used in Appendix A), and live network emulation
tool Dummynet (used in Appendix B).
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1.6 Contributions

The remainder of this thesis is organized around my contributions. What fol-
lows in this section are their short descriptions. Following the regulation in
our team, the alphabetic order of authors is employed for every paper except
[PMTT12 , PTNT12 , PTM + 10a, LKL + 09].

Chapter 2: Preliminaries
In this chapter, we present some preliminaries that we use throughout the

thesis. They include linear programming, duality, robust optimization and greedy
heuristic strategy.

Chapter 3: Green Networking with Redundancy Elimination
In this chapter, we propose GreenRE - a new EAR model with the support of

data redundancy elimination (RE). This technique, enabled within routers, can vir-
tually increase the capacity of network links. Based on real experiments on Orange
Labs platform, we show that performing RE increases the energy consumption for
routers. Therefore, it is important to determine which routers should enable RE and
which links to put into sleep mode so that the power consumption of the network
is minimized. We model the problem as Mixed Integer Linear Program (MILP),
introduce cutset inequalities to speedup the MILP resolution and propose greedy
heuristic algorithms based on shortest path routing for large networks. Simulations
on several network topologies show that the GreenRE model can gain further 37%
of energy saving compared to theclassical EAR model.

The results of this chapter have been submitted and accepted for publication in
[GMPR14, KPT13, GMPR12].

Chapter 4: Robust Optimization for GreenRE
Motivating from the GreenRE model, we propose a robust model in which �uc-

tuation of tra�c demands and redundancy elimination rates are considered. In
details, we allow any set of a prede�ned size of tra�c �ows to deviate simultane-
ously from their nominal volumes or RE rates. Using this extra knowledge on the
dynamics of the tra�c pattern, we are able to signi�cantly increase energy e�ciency
for backbone networks. We formally de�ne the problem and model it as Mixed Inte-
ger Linear Program (MILP). We then propose an e�cient heuristic algorithm that
is suitable for large networks. Simulation results with real tra�c traces show that
our approach allows for16 � 28% extra energy saving with respect to the classical
EAR model.

The results of this chapter have been submitted and accepted for publication in
[CKP14a, CKPT13, CKP14c, CKP14b].

Chapter 5: Optimizing IGP Link Weights for Energy-e�ciency
In this chapter, we consider to save energy with Open Shortest Path First

(OSPF) protocol. From the perspective of tra�c engineering, we argue that stabil-
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ity in routing con�guration also plays an important role in QoS. In details, frequent
changes in network con�guration (link weights, slept and activated links) to adapt
with tra�c �uctuation in daily time cause network oscillation. We propose a novel
optimization method of link weight so as to limit the changes in network con�gura-
tions in multi-period tra�c matrices. We formally de�ne the problem and model it
as Mixed Integer Linear Program (MILP). We then propose e�cient heuristic algo-
rithm that is suitable for large networks. Simulation results with real tra�c traces
on three di�erent networks show that our approach achieves high energy saving and
less pain for QoS (in term of less changes in network con�guration).

The results of this chapter have been submitted in [MP14a, MP14b].

Chapter 6: Energy-aware Routing with Software-De�ned Net-
works

In this chapter, we focus on using Software-De�ned Network (SDN) for energy-
aware routing (EAR). SDN can collect tra�c matrix and then computes routing
solutions satisfying QoS while being minimal in energy consumption. However,
prior works on EAR have assumed that the table of OpenFlow switch can hold an
in�nite number of rules. In practice, this assumption does not hold since the �ow
table is implemented with Ternary Content Addressable Memory (TCAM) which
is expensive and power-hungry. In this work, we propose an optimization method
to minimize energy consumption for a backbone network while respecting capacity
constraints on links and rule space constraints on routers. In details, we present an
exact formulation using Integer Linear Program (ILP) and introduce e�cient greedy
heuristic algorithm. Based on simulations, we show that using this smart rule space
allocation, it is possible to save almost as much power consumption as the classical
EAR approach.

The results of this chapter have been accepted for publication in
[GMP14a, GMP14b].

Appendix A : Xcast6 Treemap Islands
Due to the complexity and poor scalability, IP Multicast has not been used

on the Internet. Recently, Xcast6 - a complementary protocol of IP Multicast has
been proposed. However, the key limitation of Xcast6 is that it only supports
small multicast sessions. To overcome this, we propose Xcast6 Treemap islands
(X6Ti) - a hybrid model of Overlay Multicast and Xcast6. In summary, X6Ti
has many advantages: support large multicast groups, simple and easy to deploy
on the Internet, no router con�guration, no restriction on the number of groups, no
multicast routing protocol and no group management protocol. Based on simulation,
we compare X6Ti with IP Multicast and NICE protocols to show the bene�ts of our
new model.

The results of this chapter have been accepted for publication in
[PMTT12 , MPTT11 , PTM + 10a, LKL + 09].

Appendix B : MaxNet TCP Congestion Control
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Congestion control is a distributed algorithm to share network bandwidth among
competing users on the Internet. In the common case, quick response time for mice
tra�c (HTTP tra�c) is desired when mixed with elephant tra�c (FTP tra�c). As
the current approach, loss-based with Additive Increase - Multiplicative Decrease
(AIMD), is too greedy and eventually, most of the network bandwidth would be
consumed by elephant tra�c. As a result, it causes longer response time for mice
tra�c because there is no room left at the routers. MaxNet is a new TCP congestion
control architecture using an explicit signal to control transmission rate at the source
node. In this work, we show that MaxNet can control well the queue length at
routers and therefore the response time to HTTP tra�c is several times faster than
with TCP Reno/RED.

The results of this chapter have been accepted for publication in [PTNT12 ]

1.7 Publications

We now list the publications that are included in this thesis.

Journals

1. [GMPR14] F. Giroire, J. Moulierac, T. K. Phan, and F. Roudaut Minimiza-
tion of Network Power Consumption with Redundancy Elimination, Submitted
to Computer Communication, 2014 (in revision).

2. [MP14a] J. Moulierac, and T. K. Phan Optimizing IGP Link Weights for
Energy-e�ciency in Multi-period Tra�c Matrices , Submitted to Computer
Communication, 2014 (in revision).

3. [CKP14a] D. Coudert, A. Kodjo, and T. K. Phan Robust Energy-aware Rout-
ing with Redundancy Elimination, Submitted to Computers and Operations
Research, 2014 (in revision).

Conferences and Workshops

1. [GMP14a] F. Giroire, J. Moulierac, and T. K. Phan Optimizing Rule Place-
ment in Software-De�ned Networks for Energy-aware Routing, in IEEE Global
Communications Conference (GlobeCom), 2014.

2. [CKP14c] D. Coudert, A. Kodjo, and T. K. Phan Robust Optimization for
Energy-aware Routing with Redundancy Elimination, in Algotel, 2014.

3. [CKPT13] D. Coudert, A. Koster, T. K. Phan, and M. Tieves Robust Re-
dundancy Elimination for Energy-aware Routing, in IEEE International Con-
ference on Green Computing and Communications (GreenCom), 2013.

4. [KPT13] A. Koster, T. K. Phan and M. Tieves Extended Cutset Inequalities
for the Network Power Consumption Problem, in International Network Op-
timization Conference (INOC), Electronic Notes in Discrete Mathematics,41
2013, 69 � 76.
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5. [GMPR12] F. Giroire, J. Moulierac, T. K. Phan, and F. Roudaut Minimiza-
tion of Network Power Consumption with Redundancy Elimination, in IFIP
NETWORKING, Lecture Notes in Computer Science, 7289 (2012), 247�258.

6. [PMTT12 ] T. K. Phan, J. Moulierac, N. C. Tran, and N. Thoai Xcast6
Treemap Islands - Revisiting Multicast Model, in ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) (Student Workshop),
2012.

7. [PTNT12 ] T. K. Phan, T. T. Tran, D. D. Nguyen, and N. Thoai MaxNet and
TCP Reno/RED on Mice Tra�c , in Modeling, Simulation and Optimization
of Complex Processes (Springer), 2012.

8. [PTM + 10a] K. T. Phan, N. Thoai, E. Muramoto, K. K. Ettikan, B. P. Lim,
and P. Y. Tan Treemap - the Fast Routing Convergence Method for Appli-
cation Layer Multicast, in IEEE Consumer Communications and Networking
Conference (CCNC), 2010.

9. [LKL + 09] B. P. Lim, E. K. Karrupiah, E. S. Lin, T. K. Phan, N. Thoai,
E. Muramoto, and P. Y. Tan Bandwidth fair application layer multicast for
multi-party video conference application, in IEEE Consumer Communications
and Networking Conference (CCNC), 2009.

Research Reports

1. [MP14b] J. Moulierac and T. K. Phan Optimizing IGP Link Weights for
Energy-e�ciency in a Changing World , INRIA Research Report, 2014.

2. [CKP14b] D. Coudert, A. Kodjo, and T. K. Phan Robust Energy-aware Rout-
ing with Redundancy Elimination, INRIA Research Report, 2014.

3. [GMP14b] F. Giroire, J. Moulierac, and T. K. Phan Optimizing Rule Place-
ment in Software-De�ned Networks for Energy-aware Routing, INRIA Re-
search Report, 2014.
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In this chapter, we present some preliminaries that we use throughout the thesis.
They include linear programming, robust optimization and greedy heuristic strategy.

2.1 Preliminary: Linear Programming

Linear Programming (LP) is a general framework that can be used to model many
combinatorial problems [Sch98, Chv83]. A linear program comprises a linearob-
jective function, a set of linear inequality constraints and a set ofvariables, upon
which the objective and the constraints are de�ned. The objective function can
be either minimized or maximized. If the goal is just to justify whether the set of
constraints is feasible or not, the objective function can be omitted. The constraints
are inequalities comprising a linear combination of variables.

A LP can be written as:

maxf cT x : Ax � b; x � 0g; (2.1)

where A is a matrix and c and b are vectors of known coe�cients and x is the
vector of variables. If all the variables are real numbers, we simply call the linear
program. However, if some variables are integers, we say we face aMixed Integer
Linear Program (MILP) (ILP if all the variables are integral).

An interesting property of linear program is its duality. For any LP of the form
presented in the formulation 2.1, called the primal problem, its dual problem is:

minf bT y : AT y � c; y � 0g (2.2)

Notice that the dual of the dual problem is the original primal problem. The
objective function of the dual problem, at any feasible solution, is always greater
than the value of the objective function of the primal, at any feasible solution.
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Furthermore, if the primal has an optimal solution x?, then its dual has an optimal
solution y? given by:

cT x? = bT y?: (2.3)

These properties are often used to �nd bounds on the objective function value.
This can be useful for solving algorithms, or as a stopping criterion when a solution
that is close enough to optimum is su�cient. In this thesis, we use duality as a basic
for our � � robust network design (Chapter4).

It is well known that MILP is NP-hard in general. Still, due to wide application
over practical problems, there is a big interest in solving these models. Many exact
methods have been proposed: cutting plane, branch and bound, column generation
and row generation to name a few (see [Sch98, Chv83] for further reading). These
methods are usually accessed through solvers � software packages which allow �nding
exact or approximate solutions of speci�ed MILP. A brief overview of currently
available solvers can be found in [LL10].

In this thesis, we use the multi-commodity �ow model, a classical approach in
routing problem (see [Min06, AMO93] for a survey). We present a network topology
as an undirected graphG = ( V; E). The set of nodesV describe routers and the
edges(u; v) 2 E describe connections between those routers. We noteN (u) the set
of neighbors ofu in the graph G. We denote f st

uv the fraction of the �ow on edge
(u; v) �owing from u to v corresponding to the demandD st . First, there is a set of
constraints called �ow conservation, that basically states that incoming �ows must
be equal to outgoing �ows, unless they are at the endpoints:

X

v2 N (u)

�
f st

vu � f st
uv

�
=

8
>><

>>:

� 1 if u = s;

1 if u = t;

0 else

8u 2 V;(s; t) 2 D (2.4)

Then, for each link, the sum of values of �ows �owing through it cannot exceed
link capacity C:

X

(s;t )2D

D st �
f st

uv + f st
vu

�
� C 8uv 2 E (2.5)

Finally, we set the �ow variable as fractional or binary depending on the routing
model we are considering.

Based on the above multi-commodity �ow model, we can obtain a number of
useful variants. The capacity can be a constant (maybe given for each link), when
doing routing over a given network, or some cost function, when doing network
provisioning. Depending on the objective, there may be various optimization goals
basing on di�erent costs, or even no goal when the only interest is for �nding a
feasible routing. Later in this chapter, we extended this approach by taking into
account compressed �ows. Solving the ILP directly yields an exact solution, albeit
the running time is exponential in the instance size. Limiting the time given to
the solver may yield sub-optimal, but possibly acceptable solutions. We refer the
readers to the book [AMO93] for further applications of network �ows.
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2.2 Preliminary: Robust Optimization

Over the past years, robust optimization has been established as a special branch of
mathematical optimization allowing to handle uncertain data [BTGN09, BTN02]. A
specialization of robust optimization, which is particularly attractive by its compu-
tational tractability, is the so-called � -robustness concept introduced by Bertsimas
and Sim [BS03, BS04]. Instead of deterministic coe�cients, the coe�cients aj of a
constraint

P
j aj x j � b are assumed to be random variables. Bertsimas and Sim

have shown that in case all random variables are independent and have a symmetric
distribution of the form aj 2 [�aj � âj ; �aj + âj ] (with �aj the average andâj the
maximum deviation), it can be guaranteed that the constraint is satis�ed with high
probability by de�ning an appropriate integer � and replacing the constraint by

X

j

�aj x j + max
J :jJ j� �

X

j 2 J

âj x j � b: (2.6)

This constraint models that for each realization of the uncertainties at most� many
(but arbitrary) coe�cients can deviate from their nominal values. Given an arbitrary
realization, it is shown in [BS03, BS04], that the probability that ( 2.6) is violated, is
about 1 � �( � � 1p

n ), where � is the cumulative distribution function of the standard
normal distribution and n equals the number of uncertain coe�cients. This result
is independent of the actual distribution of aj .

Note, that constraint ( 2.6) is deterministic and the complete problem can be re-
formulated as a standard mixed integer problem. So the model including uncertainty
can be solved by the same means as the original problem, again see [BS03, BS04] for
details. From a practical perspective, by varying the parameter� , di�erent solutions
can be obtained with di�erent levels of robustness (the higher� the more robust,
but also more expensive, the solution is). This concept has already been applied to
several network optimization problems [AABP07, KKR11, DKK + 13].

In this thesis, we use� � robustness to deal with the uncertainties of tra�c
demands and redundancy elimination rates. We show that the� � robustness is
well-suited to our problem since in real tra�c traces, only a few of the demands
are simultaneously at their peaks. Then network operators can choose a suitable�
parameter to �t with their networks.

2.3 Preliminary: Greedy Heuristic Algorithm

A greedy algorithm is an algorithm that follows the locally optimal choice at each
stage with the hope of �nding a global optimum. In many problems, greedy strate-
gies fail to �nd the globally optimal solution, because they usually do not operate
exhaustively on all the data. Nevertheless, they are useful because they may yield
solutions that approximate the global optimal solution in a reasonable time.

There are several examples of using heuristic algorithms. For instance, thetrav-
eling salesman problem (TSP)asks the following question: Given a list of cities and
the distances between each pair of cities, what is the shortest possible route that
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visits each city exactly once and returns to the origin city? This problem is known to
be NP-hard, the worst-case running time of �nding optimal solution increases expo-
nentially with the number of cities. From a practical point of view, a greedy strategy
should be used to quickly solve the TSP, that is �At each stage, visit an unvisited
city that is the nearest one to the current city�. Obviously, this heuristic approach
does not guarantee to �nd a globally optimal solution, however it can �nd a feasible
solution in a reasonable time. It is noted that we can �nd a 2-approximation algo-
rithm for metric TSP based on minimum spanning tree. Moreover, an improvement
called Christo�des' algorithm can achieve a 3/2-approximation algorithm for metric
TSP [TSP].

In general, greedy algorithms have the following components:

� A candidate set, from which a solution is created.

� A feasibility function, which is used to determine if a candidate (from the
candidate set) can be used to contribute to a solution.

� An objective function, which is used to assign a value to a solution. Then,
these values are used by a selection function to choose the best candidate to
be added to the solution.

� A stop condition, which indicates when the algorithm should stop.

For further reading on greedy heuristic, we refer the readers to the
book [CLRS09]. Throughout this thesis, we are working on the energy-aware routing
(EAR) problem. The goal of EAR is to �nd a feasible routing solution (without over-
loaded link) that minimizes the number of active links. The authors in [GMMO10]
proved that EAR is not in APX (and so it is an NP-hard problem), that is there
is no polynomial-time constant-factor approximation algorithm. In addition, the
authors also proposed greedy heuristic algorithms to �nd e�cient solutions for large
networks [GMMO10]. In this thesis, we propose a generic heuristic strategy based
on [GMMO10] as follows (Fig. 2.1):
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Figure 2.1: Diagram of heuristic algorithm
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� Step 1: given an input which are a network topologyG and a set of tra�c
demand, �nd a feasible routing solution.

� Step 2: based on the routing in step 1, compute load for each link on the
network. Then, remove the least load link from the network. After that,
check if we still can �nd feasible routing solution. If yes, update new load on
links based on new routing solution and continue the removing link process.
Otherwise, we put back the removed link and choose the next less load one to
remove. The algorithm will terminate when no more links can be removed.

Based on this generic heuristic, we develop in detail the algorithms for speci�c
problems presented in Chapter3, 4, 5 and 6.
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In this chapter, we propose GreenRE - a new energy-aware routing (EAR) model
with the support of data redundancy elimination (RE). This technique, enabled
within routers, can virtually increase the capacity of network links. However, as RE
requires additional energy consumption, the model should determine which routers
should enable RE and which links to put into sleep mode to minimize the total
power consumption.

3.1 Publications

The remainder of this chapter corresponds toMinimization of Network Power Con-
sumption with Redundancy Elimination by F. Giroire, J. Moulierac, T. K. Phan, and
F. Roudaut which has been submitted to the journal of Computer Communications,
2014. This is an extended version of the work with the same title and authors ac-
cepted for publication in the proceedings of IFIP NETWORKING, Lecture Notes in
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Computer Science, 2012. Additionally, an enhance ILP formulation (section3.4.2)
is followed the paperExtended Cutset Inequalities for the Network Power Consump-
tion Problem by A. Koster, T. K. Phan and M. Tieves which is published in the
proceedings of International Network Optimization Conference (INOC), Electronic
Notes in Discrete Mathematics, 2013.

3.2 Introduction

Recent studies exhibit that tra�c load on routers has a small in�uence on their en-
ergy consumption [CSB+ 08, MSB09]. Instead, the dominating factor is the number
of active elements on routers such as ports, line cards, base chassis, etc. The basic
idea of energy-aware routing (EAR) is that, during low tra�c periods (e.g. at night),
tra�c demands can be routed over a subset of the network links while preserving
connectivity and QoS. In this way, the links excluded by the routing paths can be
put into sleep mode (or more precisely, two network interfaces on the two routers
will sleep) to save energy.

In general, link capacity is the main constraint of the EAR problem. In this
work, we use an assumption that routers can eliminate redundant data tra�c and
hence, virtually increase capacity of network links. As a result, more tra�c �ows can
be redirected and more links can be put into sleep mode to save energy. Although
routers nowadays cannot remove repeated content from network transfers, there ex-
ists WAN Optimization Controller (WOC) - a commercial device used in enterprises
or small ISPs to eliminate tra�c redundancy [ BlueCoat, GC07, Riverbed]. In order
to identify the power consumption directly induced by RE, we perform real experi-
ments on the WOC. Because the main idea RE is similar to the WOC functionality
(see Section3.3.2), we believe that when a router eliminates tra�c redundancy, it
also consumes additional energy like the WOC. In summary, the contributions of
this chapter are the following:

� We do real experiments to exhibit the power consumption of a WOC.

� We de�ne and formulate GreenRE - a new EAR model as Mixed Integer Linear
Program (MILP).

� We propose and evaluate a greedy heuristic algorithms that can be used for
large-scale networks.

� We evaluate energy saving of the GreenRE model on real network topologies.

The rest of this chapter is structured as follows. We summarize related works in
Section 3.3. In Section 3.4, we model GreenRE as MILP, then propose a greedy
heuristic algorithm. Evaluation results are presented in Section3.5. Finally, we
conclude the work in Section3.6.
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3.3 Related Works

3.3.1 Classical Energy-aware Routing (EAR)
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Figure 3.1: Example of shortest path routing and EAR.

As an example of EAR, we refer to Fig.3.1. There are two tra�c demands
0 ! 5 and 10 ! 15, both with a volume D = 10 Gbps. As shown in Fig.3.1a, the
shortest path routing is feasible because the links have enough capacity to route all
the demands. In this solution, 8 links can be put into sleep mode to save energy.
However, we can do better with EAR solution in Fig. 3.1b where we allows 10 links
to sleep to further reduce energy consumption. Energy-aware routing is known to
be NP-Hard problem [GMMO10]. There are many work in literature proposing the
exact formulation and also the heuristic algorithms to �nd admissible solutions for
large networks [GMMO10, CMN11].

3.3.2 Tra�c redundancy elimination (RE)

Internet tra�c exhibits a large amount of redundancy when di�erent users access
the same or similar contents. Therefore, several works [AGA + 08, AMAR09, ASA09,
SGG10] have explored how to eliminate tra�c redundancy on the network. Spring
et al. [SW00] developed the �rst system to remove redundant bytes from any tra�c
�ows. Following this approach, several commercial vendors have introduced WAN
Optimization Controller (WOC) - a device that can remove duplicate content from
network transfers [BlueCoat, GC07, Riverbed]. WOCs are installed at individual
sites of small ISPs or enterprises to o�er end-to-end RE between pairs of sites.

Recently, the success of WOC deployment has motivated researchers to explore
the bene�ts of deploying RE in routers across the entire Internet [AMAR09, ASA09,
SGG10]. The core techniques used here are similar to those used by the WOC:
each router on the network has a local cache to store previously sent data used to
encode and decode data packets later on. Obviously, this technique requires heavy
computation and large memory for the local cache. However, Anand et al. have
shown that on a desktop 2.4 GHz CPU with 1 GB RAM, the prototype can work
at 2.2 Gbps for encoding and at 10 Gbps for decoding packets [ASA09]. Moreover,
they believe that higher throughput can be attained if the prototype is implemented
in hardware. Several real tra�c traces have been collected to show that up to 50%
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of the tra�c load can be reduced with RE support [ AMAR09, ASA09, SGG10].

In the next section, we introduce GreenRE - the �rst model ofenergy-aware rout-
ing with RE support. We show that RE, which was initially designed for bandwidth
saving, is also potential to reduce network power consumption.

3.4 Energy-aware Routing with RE

In the GreenRE model, RE is used to virtually increase capacity of the network
links. A drawback is that, as shown in [GMPR12], when a router performs RE, it
consumes more energy than usual. This introduces a trade-o� between enabling RE
on routers and putting links into sleep mode. We show that it is a non-trivial task
to �nd which routers should perform RE and which links should sleep to minimize
energy consumption for a backbone network.
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Figure 3.2: GreenRE with 50% of tra�c redundancy

As an example, we refer to Fig.3.2a with two tra�c demands D 0;5 = 20 Gb
and D 10;15 = 10 Gb. Let a RE-router cost 30 Watts (see Section3.5.1) and a link
consume 200 Watts [CMN11]. Assume that 50% of the tra�c is redundant and RE
service is enabled at the router 6 and router 9. As shown in Fig.3.2a, the tra�c
�ows 0 ! 5 and 10 ! 15 are compressed at router6 (and decompressed later at
router 9) to (10+ ") Gb and (5+ "0) Gb, respectively where"; " 0denotes the total size
of the signatures used for each �ow. In reality, each signature is only a few bytes in
size [GC07], therefore "; " 0 are small and the routing in Fig. 3.2a is feasible without
any congestion. As a result, the routing in Fig.3.2a is feasible and the GreenRE
solution allows 10 links to be in sleep mode while enabling 2 RE-routers. Energy
saving can be computed as(10� 200� 2� 30) = 1940 Watts. It is noted that, in some
extreme cases, GreenRE even helps to �nd feasible routing solution meanwhile it is
impossible for the classical EAR. For example, if we add a third demand from router
0 to 1 with volume 20 Gb, then Fig. 3.2b is a feasible solution. However, without
RE-routers, no feasible solution is found because there is not enough capacity to
route all the three demands.



3.4. Energy-aware Routing with RE 37

3.4.1 Mixed Integer Linear Program (MILP) Formulation

The GreenRE model can be formulated as MILP. We present a network topology
as an undirected graphG = ( V; E). The set of nodesV describe routers and the
edges(u; v) 2 E describe connections between those routers. We noteN (u) as a
set of neighbor nodes ofu in the graph G. For each link (u; v) 2 E , we use a
binary variable xuv to determine if the link is used or not. If link (u; v) is active,
two network interfaces at router u and router v are enabled, this consumesPEuv

Watts. We de�ne 
 st as the percentage of unique (non redundant) tra�c. For
example, with 40% of redundancy (
 st = 0 :6), instead of sending a tra�c demand
10 Gb, we are sending only(6 + ") Gb after removing redundancy. For simplicity,
since " is small, we can ignore it in the formulation and a tra�c �ow from which
redundancy has been removed is called acompressed �ow. It is noted that, the notion

 st only captures the intra-�ow redundancy (and not the inter-�ow redundancy as
presented in [AGA + 08]). We note f st

uv (resp. gst
uv ) be the fraction of normal �ow

(resp. compressed �ow) on edge(u; v) corresponding to the demand(s; t) �owing
from u to v. We de�ne a binary variable wu which is equal to 1 if router u performs
RE (called RE-router and it consumes additionalPNu Watts). For ease of reading,
we recall the meaning of notations in following table:

G = ( V; E) a network with a set of routers V and a set of links E
N (u) a set of neighbor nodes ofu in the network
Cuv capacity of the link (u; v)
� maximum link utilization

P Euv power consumption of the link (u; v)
P Nu power consumption of the RE-router u

D a set of all demands
D st volume of the demand (s; t)

 st percentage of unique tra�c of the demand (s; t)
xuv binary variable indicates if a link (u; v) is used or not
wu binary variable indicates if RE is enable at router u or not
f st

uv fraction of normal �ow from s to t on edge(u; v)
gst

uv fraction of compressed �ow from s to t on edge(u; v)

Table 3.1: Summary of notations

We consider three di�erent scenarios of the problem: (1) all routers on the
network can perform RE, we can enable or disable RE service on routers; (2) only a
prede�ned set of routers on the network have RE capability, other routers are normal
routers and (3) there is a limited number of RE-routers, the network operators
should �nd where to place them to increase energy e�ciency for the network. We
formulate the three scenarios of the GreenRE problem as follows:
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3.4.1.1 Scenario 1: All Routers are RE-capable Routers

min
X

uv2 E

PEuv xuv +
X

u2 V

PNuwu (3.1)

s.t.
X

v2 N (u)

�
f st

vu + gst
vu � f st

uv � gst
uv

�
=

8
>><

>>:

� 1 if u = s;

1 if u = t;

0 else

8u 2 V;(s; t) 2 D (3.2)

X

v2 N (u)

(gst
uv � gst

vu ) � wu 8u 2 V;(s; t) 2 D (3.3)

X

v2 N (u)

(gst
vu � gst

uv ) � wu 8u 2 V;(s; t) 2 D (3.4)

X

(s;t )2D

D st �
f st

uv + f st
vu + 
 st (gst

uv + gst
vu )

�
� �C uv xuv 8uv 2 E (3.5)

f st
uv ; gst

uv 2 [0; 1]; wu ; xuv 2 f 0; 1g (3.6)

The objective function (3.1) is to minimize the power consumption of the net-
work represented by the number of active links and RE-routers. Constraints (3.2)
establish �ow conservation constraints. Constraints (3.3)-(3.4) are used to determine
whether RE service is enabled at routeru or not. If it is not ( wu = 0 ), the router
u only forwards �ows without compression or decompression, then the amount of
compressed �ows incoming and outgoing the routeru is unchanged. It is noted that
if a �ow is compressed, it needs to be decompressed somewhere on the way to its
destination. This requirement is implicitly embedded in the constraints (3.4). For
instance, assume that a destination nodet is not a RE-router (wt = 0 ). When a
compressed �owgst reaches its destination, becauset is the last node on its path,
the �ow can not be decompressed. Consider the constraints (3.4), we have u = t,
then

P
v2 N (u) gst

vt > 0 (the compressed �ow enters nodet) and
P

v2 N (u) gst
tv = 0 (t

is the destination node). Therefore, the constraint (3.4) is violated and the �ow
should be decompressed before or at least at the destination node (wt = 1 ). We
consider an undirected link capacity model [RKOW11] in which the capacity of a
link is shared between the tra�c in both directions. We use constraints (3.5), where
� denotes the link utilization in percentage, to limit the available capacity of a link.

3.4.1.2 Scenario 2: a Prede�ned Set of RE-capable Routers

We de�ne the following constraints:

wu = 0 8u =2 V 0; V 0 � V; (3.7)

where V 0 is a prede�ned subset of routers that have RE-capability, we force all
other routers to be normal routers (wu = 0 ). By adding (3.7) to the �rst scenario
(3.1)�( 3.6), we have the second scenario of the GreenRE problem.
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3.4.1.3 Scenario 3: a Limited Numbers of RE-routers

We add the following constraints to the �rst scenario (3.1)�( 3.6):
X

u2 V

wu � M; (3.8)

whereM is the maximum number of RE-routers that can be placed on the network.
By using constraints (3.8), we allow any router to perform RE. However, the total
number of RE-routers on the network should be less thanM .

3.4.2 Extended Cutset Inequalities for GreenRE problem

The content of this Section is from the paper [KPT13]. We enhance the MILP
formulation of the GreenRE model by deriving cutting planes to speedup the MILP
resolution. This enhancement can be applied for all the three above scenarios.

3.4.2.1 Valid Inequalities

The authors in [RKOW11] have studied valid inequalities for the capacitated net-
work design problem. Following their work, we present inequalities for strengthening
the GreenRE formulation. Given a setS � V , the total demand, which needs to be
routed betweenS and V n S =: S is denoted by

D S :=
X

v2 S

X

w2 S

D vw +
X

v2 S

X

w2 S

D vw :

Further, let � (S;S) be the corresponding cut between both sets. Now, the well
known cutset inequality for network design [Ata02, MMV93] can be adapted.

Theorem 1. Let S;S � V be a partition of V . Then the cutset inequality

X

uv2 � (S;S)

xuv �
�

D S

c�

�
: (3.9)

holds for GreenRE where� = 1=
 (in (3.5)).

This inequality assumes that at least one RE-router is available in each of the
two subsets. Assuming the contrary, we could increase the right-hand side. The
following result takes the actual number of RE-routers into account.

Theorem 2. Let S;S � V be a partition of V . Then the extended cutset inequality

��
D S

c

�
�

�
D S

c�

�� X

u2 S

wu +
X

uv2 � (S;S)

xuv �
�

D S

c

�
(3.10)

holds for GreenRE.
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Proof. Let S be given. Sincewu is binary, we distinguish two cases:
Case 1: Let wu = 0 for all u 2 S. Then (3.10) becomes

X

uv2 � (S;S)

xuv �
�

D S

c

�
;

which is equivalent to the cutset inequality in absence of RE-routers.
Case 2: Let

P
u2 S wu � 1. We obtain

��
D S

c

�
�

�
D S

c�

��
P

u2 S wu +
P

uv2 � (S;S) xuv

�
��

D S

c

�
�

�
D S

c�

��
+

P
uv2 � (S;S) xuv �

�
D S

c

�

which holds, because of the cutset inequality (3.9).

Comparing inequality (3.9) with ( 3.10), we conclude: both inequalities are equal
if exactly one RE-router is deployed (inS). If no RE-router is deployed, the latter
one strictly dominates the �rst and vice versa if more than one RE-router is available.
In fractional solutions, no dominance relation can be given: the latter inequality has
a weaker left-hand side while the �rst inequality has a weaker right-hand side. If
S contains RE-routers but S does not, an exchange ofS and S yields the stronger
inequality.

3.4.2.2 Recognizing violated Inequalities

Employing all inequalities for all possible cuts in the GreenRE formulation is not
a realistic option. In the following, we will present a straightforward approach for
separating these inequalities via an integer linear program generalizing the sepa-
ration of cutset inequalities. While the objective function `rebuilds' the extended
cut inequality ( 3.10) for the current LP solution ( w� ; x � ), we need the following
variables:

For each v 6= w 2 V , let zvw 2 f 0; 1g denote, whetherv and w are in separate
sides of the cut. Further, let d; d� 2 Z � 0, which represent the valuesdD S

c e and

dD S

c� e, respectively. For every nodev 2 V , � v 2 f 0; 1g denotes whetherv is in S

or in S. Finally, given a su�ciently large constant M 2 N, for k = 1 ; : : : ; M , and
v 2 V , let � k

v 2 f 0; 1g denote if k equalsdD S

c e � d D S

c� e and v is in S, i.e., � k
v is an

enumeration of all possible coe�cients of the RE-router variable coe�cients in the
extended cut. Consequentially, we have that

MX

k=1

k� k
vw�

v =
��

D S

c

�
�

�
D S

c�

�� X

v2 V

� vw�
v =

��
D S

c

�
�

�
D S

c�

�� X

v2 S

w�
v :
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Then the problem of �nding a violated extended cut can be written as an ex-
tension of the triangle-formulation of the cut-polytope [BM86] as

min
MX

k=1

kw�
v � k

v +
X

vw2 E

x �
vwzvw � d

s.t. � 1 + " �
1
c

X

v2 V

X

w2 V
w6= v

D vwzvw � d � 0 (3.11)

� 1 + " �
1
c�

X

v2 V

X

w2 V
w6= v

D vwzvw � d� � 0 (3.12)

zvw + zuw + zuv � 2 8 f u; v; wg � V (3.13)

zvw + zuw � zuv 8 f u; v; wg � V (3.14)

� v + � w � 2 � zvw 8 v; w 2 V; v 6= w (3.15)

� v + � w � zvw 8 v; w 2 V; v 6= w (3.16)
MX

k=1

� k
v = � v 8 v 2 V (3.17)

M (1 � � v) +
MX

k=1

k� k
v � d � d� 8 v 2 V (3.18)

zvw ; � v ; � k
v 2 f 0; 1g; d; d� 2 Z � 0

In this model, the inequalities (3.13), (3.14) establish a feasible cut and the inequal-
ities (3.11) and (3.12) recognize the rounded tra�c across this cut. (3.15) and (3.16)
determine which nodes are within the one side (S) of the cut, and the inequalities
(3.17) - (3.18) choose the correct� k

v values for each� v .

If the resulting objective value is strictly smaller than zero, the optimal solution
of the corresponding MIP describes a partition ofV , violating an extended cutset
inequality (the zvw correspond to the edge variables and the� v to the RE-router
variables in S). If the contrary holds, none of these extended cuts is violated.

This integer program can be adapted to separate cutset inequalities (3.9) easily
by omitting the unnecessary parts (d, � v , � k

v ) and restricting to the constraints
(3:13), (3:14) and (3:12).

3.4.3 Heuristic Algorithm

Energy-aware routing problem is known to be NP-Hard [GMMO10, KPT13]. Solv-
ing the MILP to �nd optimal solution is time consuming and it only works for small
network. We therefore present in this section two heuristic algorithms to quickly �nd
feasible solutions, calledH-GreenRE (presented in [GMPR12]) and H ILP -GreenRE
(presented in [GMPR14]).
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3.4.3.1 H-GreenRE

In the �rst step of the heuristic algorithm, we assume that all routers on the network
are RE-routers. Therefore volumes of tra�c demands are virtually decreased to
Dr st = 
D st ; 
 2 (0; 1]. Based on this, we try to �nd a feasible routing solution so
that it minimizes the number of active links. Then for the second step, we try to
disable RE on routers to save energy while we guarantee that the routing found in
the previous step is still feasible.

Algorithm 1: Finding a feasible routing
Input: An undirected weighted graph G = ( V; E) where each edgee has a
capacity Ce, a residual capacityRe, an initial metric we and a set of demands
Dr st 2 D.

1 8e 2 E; Re = Ce, we = total number of demands
2 Sort the demands in random order
3 while Dr st has no assigned routedo
4 compute the shortest pathSPst with the metric ( we)
5 assign the routingSPst to the demand Dr st

6 8e 2 SPst ; Re = Re � Dr st ; we = we � 1
7 end
8 return the routing (if it exists) assigned to the demands inD

Starting with the Algorithm 1, we compute a feasible routing for the RE-
demands. Initially, all links on the network are set up with the same metric we

which is equal to the total number of demands. We compute the shortest path for
each demand with the metric we on links. Then, the links that have carried the
shortest path is updated with metric: we = we � 1. Using this metric in the shortest
path, we implicitly set high priority to reuse links that have already been selected.
Then, the Algorithm 2 - Step 1 is used to remove in priority links that are less
loaded. Ce=Re is used as the load on a link whereRe is the residual capacity on
link e when previous demands have been routed.

In Step 2, we use the routing solution found in theStep 1as the input of the
algorithm. Then, we consider all the tra�c demands as normal demands without
RE. Hence, some links can be congested because the total tra�c volume of demands
may exceed the link capacity. The heuristic we use inStep 2is based on following
observations:

(a) Which demand to perform RE �rst? In Fig. 3.3a, we can see
that when performing RE for D0;11 on router 1 and 10, the amount of tra�c
passing all the congested links (links (1, 3), (8, 9) and (9, 10)) is also reduced.
Then, the heuristic in step 2 decides to perform RE for this �ow �rst. Assume that
the redundancy factor 
 = 0 :5, then the links (8, 9) and (9, 10) are still congested.
After removing Dr 0;11, the available capacity of links (8, 9) and (9, 10) are 5 and
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Algorithm 2: Input: An undirected weighted graph G = ( V; E) where each
edgee 2 E has a capacityCe and a residual capacityRe

1 Step 1 -Removing less loaded links:
2 while edges can be removeddo
3 remove the edgee that has not been chosen and has smallest valueCe=Re

4 compute a feasible routing with the Algorithm 1
5 if no feasible routing exists, pute back to G
6 end
7 return the feasible routing if it exists.
8 Step 2 -Enabling set of RE-routers:
9 Consider normal demands (without RE) and routing solution in Step 1

10 while network is congesteddo
11 �nd demands to perform RE �rst (details in part (a))
12 enable set of RE-routers using end points congestion (details in part (b))
13 end
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Figure 3.3: Congested links and RE-routers

10, respectively. Applying the same rule, the next demand to perform RE isD7;11.
Then, there is no congested link on the network since the link (9, 10) is also released
from congestion. Finally, only the routers 1, 8 and 10 are needed to enable RE. In
summary, the algorithm will perform RE for the �ows that pass through most of
the congested links �rst.

(b) End Points Congestion: in Fig. 3.3b and Fig. 3.3c, the demand (0,6) has
tra�c volume of 10 and the number on links indicates link capacity. Therefore, the
two links (0, 1) and (4, 5) are congested. Hence, a naive solution is to enable RE
at the two end-point routers of each congested link as shown in Fig. 3b. However,
a better solution with less RE-routers should be to enable RE only at the starting
(router 0) and ending point (router 5) of all the congested links (Fig. 3c). In
summary, the algorithm will look for the longest congested part of the �ow to enable
RE-routers.
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The main problem of H-GreenRE is that, to �nd a feasible routing, we pick up
demand one by one and try to route it using shortest path routing. Thus, in case
the feasible routing is not a shortest path,H-GreenRE can not �nd it. We therefore
present an improvement version of the heuristic, calledH ILP -GreenRE.

3.4.3.2 H ILP -GreenRE

Using the ILP formulation, H ILP -GreenRE tries all the possibilities to �nd a feasible
routing if any, thus it is more e�cient than the H-GreenRE (see Section3.5.3.1). In
summary, the heuristic algorithm has two steps: the �rst step is to use as few active
links as possible, and then we minimize the number of RE-routers in the second
step.

Algorithm 3: Inputs: A graph G = ( V; E) with link capacity Ce, a set of
tra�c demands and non-redundant rates.
1 Step 1 -Minimize number of active links by removing low loaded links:
2 Find a feasible routing solution using the MILP called P_current ;
3 Let S be an ordered list initialized with the links of G sorted by increasing

tra�c load in P_current ;
4 Let R := ; be the set of links that cannot be removed;
5 repeat
6 e := S:lowest_ loaded_ link () such that e =2 R;
7 S := Snf eg;
8 if a feasible routing P_new on Enf eg is found then
9 if P_new has less active links than P_current then

10 P_current := P_new ;
11 S := list of links sorted by increasing tra�c load in P_new ;
12 E := Enf eg;
13 end
14 else
15 R := R [ f eg;
16 end
17 until (S = ; ) or ( R = S);
18 Return the �nal feasible routing solution (if any);
19 Step 2 -Find feasible solution minimizing the number of RE-routers on the

set of active links E found in Step 1.

Step 1 of Algorithm 3 is a constraint satisfaction problem returning a feasible
routing solution. We use the same framework for the three scenarios of the GreenRE
problem. For details, to �nd feasible solutions (Pcurrent - line 2 andPnew - line 8), we
set the objective function to min 0 and use the constraints (3.2)�( 3.6) for scenario
1. Similarly, scenario 2 (resp. scenario 3) uses the constraints (3.2)�( 3.7) (resp.
constraints (3.2)�( 3.6), (3.8)) and the objective is min 0. In each round of the
algorithm, we try to remove a link with low load (line 6 - 7) and then �nd a new
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feasible routing (Pnew - line 8) using less active links. The idea behind this algorithm
is that we try to put into sleep mode the low loaded links and to accommodate their
tra�c on other links in order to reduce the total number of active links. Observe
that unused links (i.e. links that do not carry tra�c) are not considered in the set S
since the removal of such a link will result in a routingP_new equal to P_current .
To further reduce the computation time, we can consider additional heuristic. For
instance, while removing a low loaded link (line 6 - 7), we can also set the variable
xuv associated to a heavily loaded link to 1 so that it can speed up the resolution for
�nding Pnew (line 8). Indeed, such high loaded link will certainly be part of the �nal
solution. Since we relax the objective function and the goal is just to justify whether
a set of constraints is feasible or not, it is quite fast to �nd Pcurrent and Pnew . In
our evaluations, the execution time of Algorithm 3 (including the two steps) is less
than one hour for the tested network topologies.

After Step 1, if a feasible routing is found, and so a set of active links, we proceed
to Step 2 to minimize the number of enabled RE-routers. More precisely, we use
again the MILP formulation (of the scenario we want to solve) in which the objective
function is set to min

P
u2 V wu . Furthermore, we set all binary variables associated

to active links to 1 and the others to 0 (this speed-up the resolution of the MILP).

3.5 Experiment and Evaluation Results

3.5.1 Energy Consumption with WOC

Several results of bandwidth saving using WOC can be found in [GC07]. We have
also performed experiments on the network platform of the project Network Boost
at Orange Labs (the full �gure of the test-bed can be found in [Report11]). We
installed two WOCs, each at the access link of the two sites (let's call them site A
and site B). These two sites are connected via a backbone composed of 4 routers.
We setup FTP connections for uploading �les from site A to site B. As shown in
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Fig. 3.4a, power consumption of the WOC is increased (from 26 Watts to 34 Watts)
with the number of concurrent FTP sessions. For the next experiment, we keep only
one FTP session and let the WOC perform RE for 10 hours in which the sizes of
uploaded �les are increased. The results show that the WOC consumes around 30
Watts on average (Fig. 3.4b). Therefore, for sake of simplicity, we use an average
value of power consumption (30 Watts) to represent additional cost for the router
to perform RE.

3.5.2 Cutset Inequalities vs. Standard MIP-solution Process

In this section, we want to show bene�ts of incorporating the inequalities (3.9) and
(3.10) within the (standard) MIP-solution process. In this preliminary study, for
every LP solution, the inequalities (3.9) are separated. Only if no violated cut
is found, the inequalities (3.10) are separated. We used modi�ed instances of the
SNDlib [OWPT10]. Taking care of the great variety within that library, all demands
have been scaled such that a routing (without compression) is feasible at a capacity
of 10; 000 per link and infeasible at a capacity of9; 000. In this study, we used the
instancesAbilene (scaling factor: 102), Atlanta (2:6), Dfn-bwin (4:5), France
(1:1) and Polska (0:17).

All computations have been done with CPLEX 12:4, with CPU-/thread-usage
limited to one. For obtaining clear results, CPLEX internal cutting-planes have been
disabled. We report on progress after the root node and compare ourselves to the
usage of plain CPLEX (with the same settings). All scenarios have been tested with
capacities5; 000(halved), 10; 000(normal) and 20; 000(doubled) and a compression
factor of 
 = 0 :5. The price for an edge has been determined as200W [CMN11] and
the price of an RE-router as30W . Success of the separation routine is measured
by the relatively closed gap at the root, i.e. letDB denote the LP relaxation, DB s

the best dual bound obtained by our separation approach andPB the best primal
bound available. Then we de�ne the gap closed asGC := DB s � DB

P B � DB . Clearly, an
improvement is given, as soon as this value is positive and a higher value corresponds
to a bigger improvement.

Figure 3.5: Relative Gap Closing

The results presented in Figure3.5 are throughout positive. The gain from sepa-
rating one or both of the two classes of inequalities is shown. The total improvement
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amounts to an average gap closed of46:1%. This improvement was achieved by an
average amount of45 cuts per instance,33 cutset inequalities (3.9) and 12 extended
cuts (3.10). While the relation between the amounts of both cutting plane families
is clear by the lazy separation approach of the extended cuts, it appears that the
extended cuts (3.10) can still improve on the cutset inequalities (3.9). However, the
success and the relation between both classes is highly dependent on the underlying
network topology (and the edge/RE-router prices). For example thePolska (dou-
bled) instance seems to be very unfortunate for extended cuts, while theDfn-bwin
(normal) seems to favor exactly these. On theAbilene (normal) instance, both
behave equal.

The drawback of this separation approach is that it is time consumption. The
time needed for �nding violated cuts and re-optimizing the linear relaxation is sig-
ni�cant. Depending on the amount of cuts found, this procedure can amount to an
increase of time consumption of more than100%.

3.5.3 Computation Results with GreenRE

We solve the GreenRE model with IBM CPLEX 12.4 solver [IBM ]. All computations
were carried out on a computer equipped with 2.7 Ghz Intel Core i7 and 8 GB RAM.
We studied ten classical real network topologies extracted from SNDLib [OWPT10].
Their sizes span from 15 to 54 nodes and from 22 to 89 edges, as summarized in
Table 3.2. According to the results of the works mentioned in Section3.3.2, we
use redundancy rates equal to50% (high redundancy, 
 = 50%), 25% (medium
redundancy,
 = 75%) and 10%(low redundancy, 
 = 90%). For worst-case scenario
and for comparison with previous work [GMMO10, GMPR12], all links are set up
with the same capacity C and the demands are all-to-all (one router has to send
tra�c to all remaining routers on the network) with the same tra�c volume D for
each demand.

3.5.3.1 Heuristic H-GreenRE vs. H ILP -GreenRE
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Figure 3.7: Comparison of energy saving betweenH ILP -GreenRE and H-GreenRE

To compare betweenH ILP -GreenRE and H-GreenRE heuristic algorithms, two
evaluation scenarios (with
 = 50%) have been done for the ten network topologies
(we sort the networks in increasing order of the number of nodes).

First, we �nd the minimum values of capacity/demand ratio � minRE that allow
for each heuristic algorithm to �nd a feasible routing solution with the support of
RE-routers. Note that, � represents the level of tra�c load on the network. Small
value of � means that the tra�c load on the network is high (e.g. tra�c at peak
hours), thus it is hard to �nd feasible solution because of the lack of capacity (refer
to the example in Fig. 3.2b). Therefore, the heuristic algorithm that can �nd feasible
routing with smaller value of � minRE is the better one. To compute � minRE , we
�rst �x the demand value, e.g. D = 1 . Then, starting with a large capacity value,
e.g. C = 1000, we decrease the value ofC and test the heuristic until we get the
minimum value of C that is still possible to �nd a feasible solution. Let's call this
value isCmin , then we have� minRE = Cmin . Fig. 3.6shows thatH ILP -GreenRE can
�nd feasible solutions with smaller values of� minRE than H -GreenRE. For example,
for the Atlanta network, H ILP -GreenRE �nds a solution with � minRE = 19 while
H -GreenRE is with � minRE = 22: that is, for example, for a link capacity of 10
Gbit/sec, the �rst heuristic succeeds in routing an all-to-all demand of 10=19 =0.53
Gbit/sec for each demand and the second heuristic, a demand of only10=22 = 0:45
Gbit/sec. In summary, H ILP -GreenRE �nds feasible solutions close to the lower
bounds of � min found in [GMMO10]. The best improvement is on Zib54 network:
� minRE = 147 (for H ILP -GreenRE) in comparison with � minRE = 168 (for H-
GreenRE).

We show next the energy saving for the ten networks. We use the value of� minRE

that allows for H-GreenRE to �nd feasible routing solution for each network (the
second column in Fig.3.6). If a network has dense links, there are more chances
to redirect tra�c and put links into sleep mode, thus more energy can be saved.
As shown in Fig. 3.7, H ILP -GreenRE again outperforms H-GreenRE for all the
networks. Energy e�ciency can be increased from2% (Atlanta network) to 19:8%
(Pioro40 network).
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3.5.3.2 Energy Saving for Atlanta Network
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Figure 3.8: Evaluation results for Atlanta network

In this subsection, we present evaluation results for Atlanta network. In Fig.3.8a,
with the same redundancy rate (
 = 50%), we vary capacity/demand ratios and
compare between theILP-EAR without RE-routers (given by [GMMO10]), the ILP
with RE-routers (the formulation ( 3.1)-(3.6): ILP-GreenRE) and the heuristic with
RE-routers (H ILP -GreenRE). Even for small network like Atlanta, CPLEX also
takes some hours to �nd an optimal solution when the capacity/demand ratios are
high (e.g. � � 48). It is noted that when � < 48, it is possible to �nd an optimal
solution within one hour. We limit the solving time to one hour for all instances of
Atlanta network corresponding to di�erent capacity/demand ratios. In average, the
optimality gap is within 10%for all the best solutions. The heuristic is quite fast, it
takes less than 10 seconds to �nd a solution. Thex� axis in Fig. 3.8a represents the
capacity/demand ratio � and the y� axis is energy saving in percentage. As shown
in Fig. 3.8a, without RE-router (ILP-EAR), there is no feasible routing solution and
hence, no energy is saved if� < 38. When � increases, links have more bandwidth
to aggregate tra�c, the solutions with and without RE-router converge to the same
amount of energy saving. In general, the heuristic with RE-routers works well and
approximates to the results of ILP-GreenRE (the max gap is3:8%).

In Fig. 3.8b, we evaluate energy saving for Atlanta network with di�erent level
of redundancy. It is clear that when tra�c redundancy is high, e.g. 
 = 50%,
more tra�c �ows are aggregated and thus, more links can be turned o� to save
energy. Similarly, when 
 = 75% and 
 = 90% (corresponding to 25% and 10%
of tra�c redundancy), less energy can be saved. These remarks can be seen in
Fig. 3.8b where the gaps betweenILP-GreenRE and ILP-EAR are reducing when

is increasing. It is noted that ILP-GreenRE should be at least as good asILP-EAR .
It is because the objective ofILP-GreenRE is to minimize energy consumption for
the network. In case the redundancy elimination does not help to turn o� more
links, ILP-GreenRE does not enable RE service on router (even it helps to reduce
the tra�c load). Therefore, in the worst case scenario (redundancy rate is zero or
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 = 100%), ILP-GreenRE has no RE-enabled router and the routing solution is the
same as inILP-EAR .

3.5.3.3 Energy Saving for the Ten Classical Networks

Tra�c volume (capacity/demand ratio � )
Network j V j j E j � min with RE-router without RE-router

� min 2� min 3� min � min 2� min 3� min

Atlanta 15 22 38 27.7% 34.3% 36.4% 0% 32% 36%
New York 16 49 15 52.2% 62.9% 65.8% 2% 59% 63%
Germany17 17 26 44 30.6% 36.7% 37.3% 0% 35% 39%
France 25 45 67 39.2% 43.4% 46% 0% 42% 44%
Norway 27 51 75 37.7% 45.6% 47.8% 12% 43% 47%
Nobel EU 28 41 131 29.2% 33.1% 34.2% 12% 32% 34%
Cost266 37 57 175 30.6% 35% 36.3% 3.5% 32% 35%
Giul39 39 86 85 42.5% 50.5% 53.3% 0% 45% 50%
Pioro40 40 89 153 50.5% 53.7% 55.2% 0% 53% 54%
Zib54 54 80 294 27.5% 30.8% 32.8% 0% 30% 33%

Table 3.2: Gain of energy consumption (in %)

We present in Table 3.2 energy gain for ten classical network topologies using
H ILP -GreenRE and H-EAR - the heuristicwithout RE-routers found in [GMMO10].
We use� min here which are the smallest value of capacity/demand ratios that allow
to �nd feasible route for all the demands without RE-router (found in [GMMO10]).
In the evaluation, a range of � = f � min ; 2� min ; 3� min g is used to represent high
(e.g. tra�c at peak hours), medium and low tra�c load (e.g. tra�c at night) on
the networks. As shown in Table 3.2, with RE-routers, it starts to save a large
amount of energy (in average 37%) even with� = � min . Recall that routing with
RE-routers is possible even with� < � min while no feasible solution is found without
RE-router. When � is large enough, it is not necessary to have RE-routers on the
network, therefore both the solutions (with and without RE-router) converge to
almost the same value of gains in energy saving.

3.5.3.4 Energy Saving for Scenario 2 and Scenario 3 of the GreenRE
Problem

In this section, we evaluate energy saving of scenario 2 (a prede�ned subset of RE-
capable routers) and scenario 3 (a limited numbers of RE-capable routers). We set
link capacity and demand corresponding to� min in Section 3.5.3.3. The x-axis of
Fig. 3.9 is the percentage of RE-capable routers on the network. For instance, with
scenario 3, we �nd the routing solution that minimizes energy consumption while
there are at most (x � j V j) RE-routers on the network. For scenario 2, we place
(x � j V j) RE-capable routers on (1) highest degree nodes or (2) lowest degree nodes
in graph G. As shown in Fig. 3.9, the scenario 3 always outperforms the scenario 2
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Figure 3.9: Energy saving with limited RE-routers vs. a subset of capable RE-
routers

since it can �nd best positions to place RE-capable routers. For instance, in Atlanta
network with a maximum of 6 RE-routers, the max gap is 4.5% and there are 4 RE-
routers at the highest degree nodes and the two others are at the medium and the
lowest degree nodes. Another important observation we found in the scenario 2 is
that, placing RE-routers on high degree nodes gives better results in energy saving.
It is because placing RE-capable routers on high degree nodes helps to reduce tra�c
load and gives more chances to redirect tra�c on a few links, allowing other links
on these nodes to sleep.

3.6 Conclusion

To the best of our knowledge, GreenRE is the �rst work considering redundancy
elimination as a complementary help for energy-aware routing problem. We for-
mulate the problem as Mixed Integer Linear Program and propose greedy heuristic
algorithms. The evaluations on several network topologies show a signi�cant gain
in energy saving with GreenRE. For future work, we will consider a more realistic
model in which data redundancy rates and tra�c demand volumes �uctuate based
on real life tra�c traces. Moreover, we plan to study the inter-�ow redundancy as
it could further reduce network tra�c.
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The GreenRE model which we have presented in Chapter3 allows us to improve
energy e�ciency of networks. In this chapter, we extend this study to take into
account �uctuations in tra�c demand volumes and redundancy rates. Using this
extra knowledge on the dynamics of the tra�c pattern, we are able to signi�cantly
improve energy e�ciency for the network.

4.1 Publications

The �rst part of this chapter (Section 4.2) corresponds toRobust Redundancy Elim-
ination for Energy-aware Routing by D. Coudert, A. Koster, T. K. Phan, and
M. Tieves which has been accepted for publication in the proceedings of IEEE Inter-
national Conference on Green Computing and Communications (GreenCom), 2013.
In this �rst part, only uncertainty on redundancy elimination rates is considered. We
then present an extended version to deal with the �uctuation of both tra�c demand
volumes and RE rates in the second part of this chapter (Section4.3). This exten-
sion corresponds toRobust Optimization for Energy-aware Routing with Redundancy
Elimination (in the proceedings of Algotel, 2014) andRobust Energy-aware Routing
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with Redundancy Elimination (submitted to Computers and Operations Research,
2014.) by D. Coudert, A. Kodjo, and T. K. Phan.

4.2 Redundancy Elimination Fluctuation

4.2.1 Introduction

In modern communication infrastructures, energy-consumption is one of the most
critical aspects for designing network topologies. Routing has not only to be feasible
with respect to congestion, but as energy e�cient as possible. Therefore, the clas-
sical energy-aware routing (EAR) problem aims at minimizing the active elements
of routers (the most in�uencing factor of energy consumption), while all tra�c de-
mands are routed without any overloaded links [CSB+ 08, CMN11, GS03, ZYLZ10].
In chapter 3, we have introduced GreenRE, a combining model of EAR and Redun-
dancy Elimination (RE) that increases energy e�ciency of a backbone network.

Although solving the GreenRE model is already a complex task [KPT13], it
does not take tra�c redundancy �uctuations into account. Instead, each of the
demands contains a constant factor of redundant tra�c. This assumption may lead
to infeasible or ine�cient network designs, i.e., a high value of estimated tra�c re-
dundancy causes overloading, whereas using an underestimated value wastes energy
saving.

The contribution of this section is an extension of the GreenRE model as state-
of-the-art technique to include uncertainty of tra�c redundancy as well. Therefore,
a mean of dealing with uncertainties has to be chosen carefully. While a general
worst-case analysis is ine�cient in applications, the � -robustness concept [BS03]
models uncertainties in a more realistic way. This technology-independent concept
has already been successfully applied to, for example the network design problem
under demand uncertainty [AABP07, KKR11]. Given a parameter � � 0, the
problem considers any simultaneous deviation of at most� tra�c pairs from their
nominal tra�c volumes.

In this section, we extend the GreenRE model by applying the idea of� -
robustness to uncertain data redundancy. We propose GreenRobustRE - a model
that includes uncertainty of redundancy elimination rates. Accordingly, contribu-
tions are structured as:

� In Section 4.2.3, we de�ne and formulate the GreenRobustRE problem as
mixed integer linear program. To the best of our knowledge, this is the �rst
work considering robustness on redundancy elimination for tra�c �ows.

� In Section 4.2.4, we exemplarily evaluate energy saving for two networks based
on real-life tra�c traces and estimated redundancy �uctuation. The results
show a signi�cant increase of energy saving by the GreenRobustRE model,
compared to previous models.

As central point of this chapter, we show the superiority of the GreenRobustRE
model in both, being closer to reality (model wise - Section4.2.3) and yielding
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Figure 4.1: GreenRE routing with 50% of tra�c redundancy: turn o� 10 links,
enable 2 RE-routers.

better solutions (Section 4.2.4). A representation as mixed integer linear program
o�ers an accurate description of the potential of the proposed concept. For large
networks, a more re�ned solution approach is necessary.

We start with a review of already known, related work (especially the GreenRE
model). We repeat the complementary concepts of energy aware routing before pre-
senting the GreenRE as a combination of both ideas. Furthermore, we introduce the
� -robust optimization approach as the background of the Green-RobustRE prob-
lem. In following, we will explain the GreenRobustRE problem, concluding with
exemplary computations and a conclusion/evaluation.

4.2.2 Background: An evolution of models

4.2.2.1 GreenRE Model

The GreenRE model is an extension of EAR, i.e., a combination of RE and EAR. In
this model, the redundancy elimination technique virtually increases the capacity
of the network. A drawback is that the caching process increases the energy con-
sumption on routers. We have shown in [GMPR12], that a router performing RE
consumes more energy than usual. This introduces a trade-o� between enabling RE
on routers (increasing their power consumption) and turning o� links (saving their
expenses), such that designing an optimal network topology is not trivial.

As proof of concept, we refer to Fig. 4.1. Let a RE-router cost 30
Watts [GMPR12] and a link consume 200 Watts [CMN11]. Assume that 50%
of the tra�c is redundant and RE-service is enabled at router 6 and router 9.
Hence, all tra�c �ows passing between the routers 6, 7, 8, 9 can be compressed
to 5 Gbps at router 6 and are decompressed to full size at router9. So, the rout-
ing as shown in Fig. 4.1 is feasible (without any congestion). As a result, the
GreenRE solution allows to turn o� 10 links and enables2 RE-routers which saves
(10 � 200� 2 � 30) = 1940 Watts.

More precisely, the GreenRE problem is de�ned on an undirected graphG =
(V; E), whereCe denotes the capacity of linke 2 E. The set of demands is given by
D = f (s; t) 2 V � V : s 6= tg and D st � 0 denotes the amount of tra�c requested
from target t of sources. Let PEe; PNu � 0 be the power consumption of an
active link / RE-router. The constant � st 2 [0; 1) denotes the percentage of tra�c
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redundancy of a demand (s; t). Corresponding to � st , we de�ne 
 st := (1 � � st ),
which represents the percentage of unique (non redundant) tra�c. For instance, for
a 10 Gbps tra�c demand with � st = 40% of redundancy, its volume can be reduced
by GreenRE to 10
 st = 6 Gbps of non-redundant tra�c. For simplicity, a tra�c
�ow, from which redundancy has been removed, is called acompressed �ow.

Binary variables xuv and wu denote the activated links / RE-routers. We use
variables f st

uv , gst
uv � 0 8(s; t) 2 D ; uv 2 E describing the fraction of normal and

compressed �ows of demand(s; t), routed directly from u to v. For ease of reading,
we recall the meaning of notations in following table:

G = ( V; E) a network with a set of routers V and a set of links E
N (u) a set of neighbor nodes ofu in the network

Ce capacity of the link e
� maximum link utilization

P Ee power consumption of the link e
P Nu power consumption of the RE-router u

D a set of all demands
D st volume of the demand (s; t)

 st percentage of unique tra�c of the demand (s; t)
xe binary variable indicates if a link e is used or not
wu binary variable indicates if RE is enable at router u or not
f st

uv fraction of normal �ow from s to t on edge(u; v)
gst

uv fraction of compressed �ow from s to t on edge(u; v)

Table 4.1: Summary of notations

We formulate the GreenRE model as follows:

min
X

e2 E

PEexe +
X

u2 V

PNuwu (4.1)

s.t.
X

v2 N (u)

�
f st

vu + gst
vu � f st

uv � gst
uv

�
=

8
>><

>>:

� 1 if u = s;

1 if u = t;

0 else

8u 2 V;(s; t) 2 D (4.2)

X

(s;t )2D

D st �
f st

e + 
 stgst
e

�
� �C exe 8e 2 E (4.3)

X

v2 N (u)

�
gst

uv � gst
vu

�
� wu 8u 2 V;(s; t) 2 D (4.4)

X

v2 N (u)

�
gst

vu � gst
uv

�
� wu 8u 2 V;(s; t) 2 D (4.5)
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xe 2 f 0; 1g; wu 2 f 0; 1g; f st
uv 2 [0; 1]; gst

uv 2 [0; 1] (4.6)

where f st
e = f st

uv + f st
vu and gst

e = gst
uv + gst

vu . The objective function (4.1) minimizes
the power consumption of the network represented by the number of active links and
RE-routers. The equations (4.2) establish �ow conservation, whereas the constraints
(4.3) limit the available capacity (where � denotes the maximum link utilization).
The constraints (4.4) and (4.5) determine, whether decoding/encoding is necessary
at a node u, such that RE-service is activated (wu = 1 ) or not. Compression is
necessary/takes place when the sum of incoming compressed �ow is bigger than the
sum of outgoing compressed �ow (4.4) or vise versa (4.5). So, if u is a normal router,
it only forwards �ows without compression or decompression and if the percentage
of compressed �ow changes in a node, a RE-router is required. For the sake of
notation, we assume that, all routers have the capability to perform RE-service, so
we can enable it when needed.

It is also noted, in a feasible solution of GreenRE, a compressed �ow is decom-
pressed somewhere on the way to its destination. Otherwise, one node (latest at the
target) would receive more incoming compressed tra�c as outgoing (without being
a RE-router), violating constraints ( 4.5). Consequently, in every optimal solution,
there will be at least two active RE-routers or none at all. Clearly, employing more
RE-routers (or links) than absolutely needed is feasible but not optimal.

In an aggregated perspective, the above described models are a range of more
and more �ne-tuned concepts to model energy e�cient networks. Automatically,
this leads to questions related to quality measures of these models, which again is
dependent on precise data. Since in most cases, data is uncertain by nature, we be-
lieve that this uncertainty has to be included within these models. Our contribution
is a proposal of including uncertainties within the GreenRE model as state-of-the
art concept.

4.2.3 GreenRobustRE Model

As state-of-the-art model for energy-aware routing, the deterministic GreenRE
model assumes that each tra�c demand has a constant non-redundant value
 st .
This assumption leads to an inaccurate evaluation of energy saving, since the actual
tra�c redundancy rate �uctuates and is not known in advance. In practice, avoid-
ing congestion is the most pressing matter, such that modeling has to be very close
to worst-case analysis. By the above mentioned� -robustness and its probability
bound, the conservatism of modeling can be alleviated by employing this concept.
If the � is chosen appropriate, the probability of feasibility is high enough and as
we show in Section4.2.4, a signi�cant improvement over the worst-case solution is
still possible.

In the following, we propose the GreenRobustRE model, which addresses �uctu-
ations by optimizing against a certain amount of uncertainties. As a consequence,
the link capacity constraint ( 4.3) is deterministically satis�ed, if this amount of
uncertainty is realized (and satis�ed by a very high probability for any other real-
ization). Therefore, we adapt the approach of Bertsimas and Sim[BS03, BS04] as
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follows: For each demand pair, two values describe the potential (or �realized� in
the sense of random variables) redundancy elimination: a (nominal) default value

 st 2 (0; 1] and a maximal deviation b
 st � 0, (
 st + b
 st � 1), such that the actual
redundancy value 
 st is known to be within [
 st ; 
 st + b
 st ]. So, whereas
 st is a
deterministic value in the GreenRE, it is now a random variable, symmetric dis-
tributed on an interval and de�ned by the two values 
 st and b
 st . Potentially, each
demand can be compressed by its default ratio to
 stD st . Applying � -robustness,
we consider that at most� redundancy ratios �uctuate simultaneously. This means,
the a�ected demand volumes have a lower compression potential, i.e., a higher value
of 
 st . Consequentially, in � many cases the compressed �ow can amount to a value
as high as(
 st + b
 st )D st .

For instance, based on historical traces, a demand(s; t) seems to contain60%
of non-redundant (unique) tra�c on average. Hence, we assume a nominal non-
redundant ratio of 
 st = 0 :6. Assuming at most90%of the tra�c at any time is non-
redundant as an upper bound, we can protect ourselves against wrong assumptions
by adding b
 st = 0 :3. Depending on the desired level of protection of our solution, we
choose a� -value, such that our solution is still feasible (and optimal) if at most �
many redundancy ratios deviate their assumptions, without specifying which ones.

Given a parameter0 � � � jDj , the GreenRobustRE problem is to �nd a feasible
routing at minimal energy costs, while the link capacity constraints are satis�ed if at
most � tra�c pairs deviate from their 
 st values simultaneously. Note that� = jDj
amounts to worst-case optimization, whereas� = 0 models the opportunistic case
without uncertainty. The straightforward (but nonlinear) robust capacity constraint
for a given � and an edgee 2 E is:

X

(s;t )2D

D st �
f st

e + 
 stgst
e

�
+ max

Q�D
jQj� �

n X

(s;t )2 Q

b
 stD stgst
e

o
� �C exe 8e 2 E (4.7)

Given gst
e , the maximum part of (4.7) can be computed by:

� (g;�) := max
X

(s;t )2D

b
 stD stgst
e zst

e

s.t.
X

(s;t )2D

zst
e � � [ � e]

zst
e 2 f 0; 1g [� st

e ]

Based on [BS03], a compact reformulation can be obtained by employing total-
unimodularity and LP duality of � (g;�) :

� (g;�) = min � � e +
X

(s;t )2D

� st
e

s.t. � e + � st
e � b
 stD stgst

e 8(s; t) 2 D

� st
e ; � e � 0 8(s; t) 2 D

where the primal binary variableszst
e denote whether or notgst

e is part of the subset
Q � D . The dual variables� e and � st

e corresponds to the constraint
P

(s;t )2D zst
e � �
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and zst
e � 1 (in the linear relaxation), respectively. Embedding this into (4.1)�( 4.6),

the GreenRobustRE can be compactly formulated by replacing the constraint (4.7)
by:

X

(s;t )2D

�
D st (f st

e + 
 stgst
e ) + � st

e

�
+ � � e � �x eCe 8e 2 E

� e + � st
e � b
 stD stgst

e 8(s; t) 2 D ; 8e 2 E

� st
e ; � e � 0 8(s; t) 2 D ; 8e 2 E

Compared to the deterministic model GreenRE which hasjE j + jV j + 4 jE jjDj vari-
ables andjE j + 3 jV jjDj constraints, this GreenRobustRE model hasjE j + jE jjDj
additional variables and jE jjDj additional constraints.

Note, that by the above reformulation, we can obtain a new (deterministic)
mixed integer problem (called GreenRobustRE), protecting against uncertainties
with high probability. While we believe that the theoretical improvement of this
model is apparent by the above explanations, we will give a computational/practical
evaluation in the next section.

4.2.4 Computational Evaluation

4.2.4.1 Test instances and Experimental settings

We solve the GreenRobustRE model with IBM ILOG CPLEX 12.4 solver [IBM ].
All computations were carried out on a computer equipped with 2.7 Ghz Intel
Core i7 and 8 GB RAM. We consider real-life tra�c traces collected from the
SNDlib [OWPT10]: the U.S. Internet2 Network (Abilene) ( jV j = 12, jE j = 15,
jDj = 130) and the national research backbone network Germany17 (jV j = 17,
jE j = 26, jDj = 251). Capacity is set to C = 10 Gbps and � = 0 :5 [CMN11] for
each link.

In our computations, we use a single tra�c matrix consisting of the mean volume
for each tra�c demand during a one day period. To achieve a network with high link
utilization, all tra�c was scaled with a factor four, while to avoid individual bot-
tlenecks, we use four parallel links for (Köln, Frankfurt) in the Germany17 network
and use double links for four links in the Abilene network: (ATLAng, HSTNng),
(ATLAng, WASHng), (CHINng, IPLSng) and (HSTNng, LOSAng). For each net-
work, 9 scenarios are generated by combining three nominal values
 and three
deviation valuesb
 . In our tests, we assume that in every scenario the ranges of the
compression values are independent of the node-pair, i.e.,
 st = 
 and b
 st = b
 for
all s; t 2 D . According to [AGA + 08, AMAR09] an upper bound on tra�c redun-
dancy of 50% can be assumed. Therefore, we assume that
 � 0:5. In fact, we use
three scenarios (
 = 0 :5; b
 = 0 :1), ( 
 = 0 :5; b
 = 0 :25) and (
 = 0 :5; b
 = 0 :5) to
represent tra�c demands with high redundant ratio ( 
 = 0 :5) and low (b
 = 0 :1),
medium (b
 = 0 :25) or high (b
 = 0 :5) deviation. Similarly, the other scenarios are
(
 = 0 :7; b
 = 0 :1), ( 
 = 0 :7; b
 = 0 :2), ( 
 = 0 :7; b
 = 0 :3) and (
 = 0 :8; b
 = 0 :05),
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Figure 4.2: Routing Solutions on Germany17,
 = 0 :7; b
 = 0 :2

(
 = 0 :8; b
 = 0 :1), ( 
 = 0 :8; b
 = 0 :2). For each scenario, we vary the robustness
parameter � between0 and jDj .

4.2.4.2 Results & Discussion

Before discussing particular trends or characteristics of solutions, we want to give
a visualization of a typical solution of GreenRobustRE. In Fig. 4.2, we present
solutions (within 10%optimality gap) for the Germany17 instance with 
 = 0 :7 and
b
 = 0 :2 (� 2 f 0; 10; 15; 251g). The �gure indicates by line thickness, that the edge
Koeln-Frankfurt is always employed multiple times (3; 4; 4; 4). It is noted, that
the � = 0 case mirrors the GreenRE model (
 = 0 :7) and the � = 251 case equals to
the GreenRE model with 
 = 0 :9. As above,
 st = 
 for all demandss; t 2 D . The
subset of chosen edges is printed black and the activated RE-routers are displayed
as red squares. For comparisons sake, Fig.4.3 presents the corresponding EAR
solution, i.e., routing without any compression/decompression (note that the edge
between Frankfurt and Koeln has to be used4 times).

Energy saving vs. robustness In this section, we investigate the relation be-
tween energy saving and the level of robustness regarding the parameter� . All
instances of the Abilene network can be solved to optimality in less than10 min-
utes. For the Germany17 network, we limit the solving time to one hour and all
best solutions are within 10% of optimality.

In a typical solution between three and seven RE-routers are activated. We
observed that this number can changed independently of the� value. A progno-
sis is di�cult to give, since the number of RE-routers is highly dependent on the
tra�c volumes, the capacity, and the network topology. Clearly, the same holds for
the employed edges and depending on the demands and the employed RE-routers.
However, at least a spanning tree has to be contained in any solution (since every
node requests tra�c from any other nodes).

Fig. 4.4a� Fig. 4.5c show the trade-o� between energy saving vs. the value of
� for each pair of (
 , b
 ). The percentage of energy saving of the GreenRobustRE
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Figure 4.3: EAR Solution Germany17
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Figure 4.4: Energy saving vs.� -robustness for Abilene network

is computed in comparison with the case, that all links on the network are active
(non-EAR solution). In both the Abilene and the Germany17 network, the solutions
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Figure 4.5: Energy saving vs.� -robustness for Germany17 network

do not change when� � jDj
2 , and thus the x-axis is cut at � = jDj

2 . Clearly, a high
value of � reduces the amount of energy saving for the network. From a technical
point of view, increasing � leads to higher compression multipliers in (4.3) which
are directly linked to bigger coe�cients in the same constraint. Thus, more capacity
is needed and energy consumption increases (potential energy saving decrease).

However, we observe that the energy saving are only reduced at low values of� .
The energy level becomes constant after a certain level of robustness is requested.
For example in Fig. 4.4athe amount of energy saving does not change when� � 10,
� � 30 and � � 40, respectively. Similar observations can be drawn from Fig.4.4b
� Fig. 4.5c. An explanation of this phenomenon can be found in the distribution of
the demand volumes. A fraction of the demands is dominating the others in volume.
Hence, when the value of� covers all of these dominating demands, increasing�
does not a�ect the routing solution and the percentage of energy saving remains
stable. Fig. 4.4c (
 = 0 :8, b
 = 0 :05) shows the extreme case, where the solution is
already fully robust for � = 0 , i. e., it is identical to the solution of � = jDj . This
means the routing for a certain� has enough (spare) capacities to cover additional
�uctuations without employing more links / RE routers.
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Figure 4.6: Abilene network - GreenRobustRE vs. GreenRE vs. Classical EAR.
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Figure 4.7: Germany17 - GreenRobustRE vs. GreenRE vs. Classical EAR.

GreenRobustRE vs. GreenRE vs. Classical EAR In this section, we exem-
plarily show that GreenRobustRE outperforms GreenRE and the classical EAR in
case only a few tra�c pairs deviate their redundancy elimination values simultane-
ously. Bertsimas and Sim [BS03] proved that already for small values of� , the capac-
ity constraints are not violated with high probability. Experiments in [ KKR11] for
uncertain demands con�rm and even strengthen this result (but� = 0 yields infea-
sible solutions over almost realizations). Therefore, we compare EAR and GreenRE
with � as low as2% and 5% of the tra�c pairs. Since we do not know the �uctu-
ation of redundancy elimination in the (deterministic) GreenRE model, 
 st needs
to be underestimated by the worst case realization, i. e.,
 st = 
 st + b
 st . Note that
by this choice of 
 st , the GreenRE is equivalent to the GreenRobustRE model with
� = jDj .

The estimated values of unique tra�c and its deviation used in this section are
(
 = 0 :5; b
 = 0 :25), ( 
 = 0 :7; b
 = 0 :2) and (
 = 0 :8; b
 = 0 :1). On the x-axis of
Fig. 4.6 and Fig. 4.7, four columns for each value of
 represent the GreenRobustRE
(with � = 2% and 5%of the total tra�c pairs), the GreenRE, and the classical EAR.

We observe that the lowest energy saving are achieved by EAR. The energy
e�ciency for the network is improved when combining redundancy elimination and
EAR (GreenRE). More importantly, the GreenRobustRE always outperforms the
GreenRE, in many cases even by a considerable amount. Referring to Section4.2.4.2,



66 Chapter 4. Robust Optimization for GreenRE

the GreenRobustRE model converges to the GreenRE model if the robustness level
is increased (e.g. more than50% of the tra�c pairs).

Altogether, we observe that in cases where a worst-case analysis is not necessary,
but rather the congestion should be avoided with high probability, the� robustness
approach yields a signi�cant improvement over previously proposed models. By
the GreenRobustRE model, network operators can draw more accurate estimations
(both in quality and feasibility) of energy saving for their network depending on the
level of desired robustness. In this context, solutions for di�erent� can support a
well-reasoned decision making.

In this section, we have proposed a concept for embedding data uncertainty into
state-of-the-art models for minimizing energy consumption of backbone networks.
Taking tra�c redundancy uncertainties into account, the GreenRobustRE model
provides an accurate model for potential energy saving in backbone networks. Based
on a case study with real-life tra�c demands, we show the relation between energy
saving and the desired robustness for the network. Further, we give insights in the
relation between this and earlier proposed models, showing that the GreenRobustRE
model is clearly superior in our test-cases. In next section, our model is expanded
to include more general data uncertainties, i.e., both RE rate and demand volume
�uctuations are considered as well.

4.3 Redundancy Elimination and Demand Volume Fluc-
tuation

4.3.1 Robust-GreenRE Model

As shown in the previous Section, solving the GreenRobustRE model is already a
complex task, however, it does not take tra�c volumes �uctuations into account.
Instead, each of the demands contains a constant factor of volume. This assumption
leads to ine�cient network designs and wastes energy saving. In this section, we
present an extended model to deal with the �uctuation of both tra�c demand
volumes and RE rates, namely the Robust-GreenRE model.

In the Robust-GreenRE model, two values determining percentage of non-
redundant tra�c are given for each tra�c demand: a nominal (default) value

 st 2 (0; 1] and a deviation b
 st such that 0 � b
 st ; 
 st + b
 st � 1 and the actual
non-redundant rate 
 st 2 [
 st ; 
 st + b
 st ]. Similarly, each tra�c demand is given by
a nominal valueD

st
� 0 and a deviation bD st � 0 so that the actual demand volume

D st 2 [D
st

; D
st

+ bD st ].
Potentially, each demand is expressed with its default value:D st = D

st
and

D st
comp = 
 st � D

st
. In the worst case realization, the peak values should be used

and each tra�c pair is expressed by D st = ( D
st

+ bD st ) and D st
comp = ( 
 st + b
 st ) �

(D
st

+ bD st ). Given two integral parameters 0 � � d; � 
 � jDj (jDj is the total
number of demands), we denoteQ � D , jQj � � d, a set of tra�c pairs allowed
to deviate simultaneously from their nominal tra�c volumes. Similarly, Q0 � D ,
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jQ0j � � 
 , is a set of demands in which all RE rates can deviate simultaneously.
Observe that demands inQ \ Q0 are simultaneously at their peak tra�c and lowest
RE rates. Given (� d; � 
 ) as the desired robustness of the network, the Robust-
GreenRE problem is to minimize the energy consumption of the network while
satisfying the link capacity constraints whenever at most� d demand volumes and
� 
 RE rates deviate simultaneously from their nominal values.

Table 4.2: Demands and redundancy rates variation

Demand (s, t) D
st bD st 
 st b
 st

(0, 3) 3 1 0.5 0.3
(4, 7) 2 1 0.6 0.3
(8, 11) 1 2 0.7 0.3

Let us analyze the example of Fig.4.8 to see that it is non-trivial to solve the
Robust-GreenRE problem. We consider a(3 � 4) grid with a capacity of 4 Mbps
per direction of each links. There are three tra�c demands to be routed: (0; 3),
(4; 7) and (8; 11), each with respective nominal tra�c volumes D

st
and deviation

bD st (resp. nominal RE rates 
 st and deviation b
 st ) as shown in Table 4.2. As
shown in Fig. 4.8a, this is the optimal solution for the case in which no uncertainty
is de�ned (� d = � 
 = 0 ). In this solution, we activate two RE-routers at nodes
4 and 7 and the total tra�c passing through links (4 � 5 � 6 � 7) is equal to
D

0;3
� 
 0;3 + D

4;7
� 
 4;7 + D

8;11
� 
 8;11 = 3 � 0:5 + 2 � 0:6 + 1 � 0:7 = 3:4 < 4.
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Figure 4.8: Example of robustness

Consider now the robust case in which� d = � 
 = 1 . There are 9 possible
cases for the combinations of deviation in tra�c volumes and RE rate as reported
in Table 4.3. In Case 1, demand(0; 3) deviates both on its tra�c volume and RE
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Table 4.3: 9 cases of the robustness

Case Q Q' Best solution Link load luv (Mbps)

1 (0,3) (0,3)
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 3 ,

(1600 Watts) l8;4 = l7;11 = 1

2 (0,3) (4,7)
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 3 ,

(1600 Watts) l8;4 = l7;11 = 1

3 (0,3) (8,11)
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 3 ,

(1600 Watts) l8;4 = l7;11 = 1

4 (4,7) (0,3)
Fig. 1b l0;1;2;3 = 3 , l4;5;6;7 = 4 ,

(1600 Watts) l8;4 = l7;11 = 1

5 (4,7) (4,7)
Fig. 1b l0;1;2;3 = 3 , l4;5;6;7 = 4 ,

(1600 Watts) l8;4 = l7;11 = 1

6 (4,7) (8,11)
Fig. 1b l0;1;2;3 = 3 , l4;5;6;7 = 4 ,

(1600 Watts) l8;4 = l7;11 = 1

7 (8,11) (0,3)
Fig. 1c l0;1;2;3 = 3 :6, l4;0 = 2 ,

(1660 Watts) l8;9;10;11 = 3 , l3;7 = 2

8 (8,11) (4,7)
Fig. 1c l0;1;2;3 = 3 :3, l4;0 = 2 ,

(1660 Watts) l8;9;10;11 = 3 , l3;7 = 2

9 (8,11) (8,11)
Fig. 1c l0;1;2;3 = 2 :7, l4;0 = 2 ,

(1660 Watts) l8;9;10;11 = 3 , l3;7 = 2

rate. Thus the solution of Fig. 4.8a is infeasible because the tra�c volume passing
through links (4� 5� 6� 7) is (D

0;3
+ bD 0;3) � (
 0;3+ b
 0;3)+ D

4;7
� 
 4;7+ D

8;11
� 
 8;11 =

(3 + 1) � (0:5 + 0:3) + 2 � 0:6 + 1 � 0:7 = 5:1 > 4. The optimal solution in this case
is presented in Fig.4.8b in which 8 links are activated and no RE-router is used.
The power consumption is8 � 200 = 1600Watts.

In Case 9, both the tra�c volume and the RE rate of demand (8; 11) deviate
simultaneously. The solution in Fig. 4.8b is infeasible in this case even if we enable
RE-routers at node4 and 7 since the total tra�c passing through links (4� 5� 6� 7)
will be D

4;7
� 
 4;7 +( D

8;11
+ bD 8;11) � (
 8;11 + b
 8;11) = 2 � 0:6+(1+2) � (0:7+0:3) =

4:2 > 4. In Case 9, the optimal solution is the one of Fig.4.8c with 8 active links
and 2 RE-routers. However, in the Robust-GreenRE model with� d = � 
 = 1 , any
demand can deviate from its nominal volume or RE rate, as long as at most one
demand and one RE rate deviate their volumes at the same time. Consequently, a
solution is feasible if and only if it satis�es all of the 9 cases. Hence, Fig.4.8d is the
only feasible solution since Fig.4.8c is infeasible for Case 1 of Table4.3.

The idea of robustness is that we should reserve some space in the link capacity
to accommodate the �uctuation in the tra�c volumes and RE rates. To do so, we



4.3. Redundancy Elimination and Demand Volume Fluctuation 69

de�ne a function � (f; g; � d; � 
 ) such that the capacity constraints satisfy:

X

(s;t )2D

D
st �

f st
uv + 
 stgst

uv

�
+ � (f; g; � d; � 
 ) � �C uv xuv (4.3')

The problem now is how to �nd the value of the function � (f; g; � d; � 
 ). To
answer this question, we use the notationsQd = QnQ0, Q
 = Q0nQ and Qd
 = Q\ Q0

as independent sets such that:Qd
 contains demands in which both tra�c volumes
and RE rates can deviate,Qd (resp. Q
 ) contains demands in which only tra�c
volumes (resp. RE rates) can deviate from their nominal values. Indeed, we can
formulate the problem using the two setsQ (demands variation) and Q0 (RE rates
variation). However, the �nal formulation will be non-linear. Therefore the three
setsQd, Q
 and Qd
 have to be used to overcome this problem. For simplicity, we
use the notation e instead of uv, 8 f uvg 2 E. Then the worst case scenario when
considering �uctuation on an arc e is given by:

X

(s;t )2D

D
st

f st
e + max

Q�D

n X

(s;t )2 Q

bD st f st
e

o
+

X

(s;t )2D

D
st


 stgst
e

+ max
Q 
 = Q0nQ

n X

(s;t )2 Q 


D
st

b
 stgst
e

o
+ max

Qd
 = Q\ Q0

n X

(s;t )2 Qd


( bD st b
 st

+ bD st 
 st + D
st

b
 st )gst
e

o
+ max

Qd = QnQ0

n X

(s;t )2 Qd

bD st 
 stgst
e

o
� �C exe (4.3�)

Obviously, Constraints (4.3') and (4.3�) are equivalent if � (f; g; � d; � 
 ) is the
maximum part of Constraint ( 4.3�). Constraint ( 4.3�) can be rewritten as a set
of many constraints corresponding to all possible setsQd, Q
 and Qd
 , but the
resulting model has an exponential number of constraints. We thus propose three
methods to overcome this di�culty.

4.3.2 Compact formulation

Given f st
e , gst

e , � d, and � 
 , the function � (f; g; � d; � 
 ) can be computed by:

(primal) � (f; g; � d; � 
 ) = max
X

(s;t )2D

�
bD st f st

e (zst
e;Qd

+ zst
e;Qd


)

+ D
st

b
 stgst
e zst

e;Q

+ ( bD st b
 st + bD st 
 st + D

st
b
 st )gst

e zst
e;Qd


+ bD st 
 stgst
e zst

e;Qd

�
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s.t.
X

(s;t )2D

�
zst

e;Qd
+ zst

e;Qd


�
� � d 8e 2 E [� e;d] (4.3a)

X

(s;t )2D

(zst
e;Q


+ zst
e;Qd


) � � 
 8e 2 E [� e;
 ] (4.3b)

zst
e;Qd

+ zst
e;Qd


+ zst
e;Q


� 1 8e 2 E; (s; t) 2 D [� st
e ] (4.3c)

zst
e;Qd

2 f 0; 1g 8e 2 E [� st
e;d] (4.3d)

zst
e;Q


2 f 0; 1g 8e 2 E [� st
e;
 ] (4.3e)

zst
e;Qd


2 f 0; 1g 8e 2 E [� st
e;d
 ] (4.3f)

where binary variables zst
e;Qd

, zst
e;Q


and zst
e;Qd


denote whether a tra�c pair (s; t)
belongs respectively to the setsQd, Q
 , Qd
 or not. Note that, a tra�c demand
(s; t) can belong exactly to one and only one of the three setsQd, Q
 and Qd
 .
Constraints (4.3a) and (4.3b) are used to limit size of the setjQj = jQd [ Qd
 j � � d

and jQ0j = jQ
 [ Qd
 j � � 
 . Constraint ( 4.3c) indicates that no tra�c pair (s; t)
can belong to more than one of the three setsQd, Q
 and Qd
 .

We now need to �nd LP duality of the above primal problem using dual vari-
ables � e;d, � e;
 , � st

e , � st
e;d, � st

e;d
 and � st
e;
 . To do so, we �rst relax the last three

constraints (4.3d), (4.3e) and (4.3f) to real variables: 0 � zst
e;Qd

; zst
e;Qd


; zst
e;Q


� 1.
By employing LP duality for the relaxation of the primal, we obtain:

(dual) � relax (f; g; � d; � 
 ) = min � d� e;d + � 
 � e;
 +
X

(s;t )2D

(� st
e + � st

e;d + � st
e;
 + � st

e;d
 )

s.t. � e;d + � st
e + � st

e;d � bD st (f st
e + 
 stgst

e ) 8(s; t) 2 D (4.3a')

� e;d + � e;
 + � st
e + � st

e;d
 � bD st f st
e +

�
bD st b
 st + bD st 
 st + D

st
b
 st

�
gst

e 8(s; t) 2 D

(4.3b')

� e;
 + � st
e + � st

e;
 � D
st

b
 stgst
e 8(s; t) 2 D (4.3c')

� e;d; � e;
 ; � st
e ; � st

e;d; � st
e;
 ; � st

e;d
 � 0 8(s; t) 2 D (4.3d')

Since the primal problem is amax problem, the optimal value of the relaxation of
the primal � relax (f; g; � d; � 
 ) is greater or equal to the original one� (f; g; � d; � 
 ).
As a result, the objective of the duality of the relaxation is also greater or equal to
� (f; g; � d; � 
 ) and it makes the capacity constraint strongly robust. By embedding
this duality of the relaxation into ( 4.1)�( 4.6), the (strong) Robust-GreenRE problem
can be compactly formulated by replacing Constraint (4.3) with:

X

(s;t )2D

(� st
e + � st

e;d + � st
e;
 + � st

e;d
 ) +
X

(s;t )2D

D
st

(f st
e + 
 stgst

e ) + � d� e;d

+� 
 � e;
 � �C exe 8e 2 E

and adding constraints (4.3a'), (4.3b'), (4.3c') and (4.3d') to the deterministic
model (4.1)�( 4.6).
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4.3.2.1 Constraint generation (Exact Algorithm)

The compact formulation in some cases gives a stronger robustness than what we
need. Therefore, we pay more and the result obtained is a lower bound on energy
saving. In this section, we present an algorithm that aims at �nding the exact
solution of the Robust-GreenRE model. We refer the reader to the explanation
in [KKR13] for a similar method applied for the case in which only demand variation
is considered. The main idea is to generate iteratively subsets of tra�c demands
representing demands which tra�c volumes and/or RE rates may deviate from their
nominal values. Let us call:

� Master Problem (MP): deterministic ILP formulated with Constraints ( 4.1)�
(4.6);

� Secondary Problem (SP): primal model of the compact formulation, so Con-
straints (4.3a)�( 4.3f) with the primal objective function.

We de�ne for each link e of the network a set Si
e = f Qi

d, Qi
d
 , Qi


 g of demands
which does not satisfy the constraints (4.3�) (or ( 4.3')) where Se = f Si

eg, for all
e 2 E at each iteration i of the algorithm (Fig. 4.9).
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Figure 4.9: Diagram of constraint generation method

Initially, we set Se = ; for all e 2 E . We start the algorithm by solving the
MP to �nd a feasible routing. Then, we use the values off st

e and gst
e given by the

routing solution as inputs for determining � (f; g; � d; � 
 ) using the SP. Based on the
objective value of the SP, we check if constraints (4.3�) are satis�ed or not for each
link. As soon as we �nd a capacity violation on a link, we use the values ofzst

e;Qd
,

zst
e;Qd


and zst
e;Q


to determine Qi
d, Qi

d
 , Qi

 . We de�ne Si

e and update Se = Se [ Si
e.

Finally, we add a new constraint corresponding to the violated contraint (4.3�)
and Si

e to the Master Problem. This process is repeated until there is no more
violation. If at one step, the Master Problem is infeasible, we conclude that there
is no solution satisfying the robustness. Otherwise, the �nal solution is optimal for
Robust-GreenRE.
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4.3.2.2 Heuristic Algorithm

Energy-aware routing problem is known to be NP-Hard [GMMO10]. Also we
now present a heuristic algorithm based on the compact ILP formulation to
quickly �nd e�cient solutions for large networks. Since the power consump-
tion of a link (200 Watts [ CMN11]) is much more than an enabled RE-router
(30 Watts [GMPR12]), the heuristic gives priority to the minimization of the num-
ber of active links. In summary, the heuristic algorithm has two steps: the �rst
step is to use as few active links as possible, and then we minimize the number of
RE-routers in the second step.

Algorithm 4: Inputs: A graph G = ( V; E) modeling the network with link
capacity Cuv ; the robust parameters (� d, � 
 ); a set of demandsD.

1 Step 1 -Minimize the number of active links by removing low loaded links:
2 Find a feasible routing solution calledP_current ;
3 Let S be an ordered list initialized with the links of G sorted by increasing

tra�c load in P_current ;
4 Let R := ; be the set of links that cannot be removed;
5 repeat
6 e := S:lowest_ loaded_ link () such that e =2 R;
7 S := Snf eg;
8 if a feasible robust routingP_new on Enf eg is found then
9 S_ new := list of links sorted by increasing tra�c load in P_new ;

10 if P_new has less active links than P_current then
11 P_current := P_new ;
12 S := S_ new; E := Enf eg;
13 end
14 else
15 R := R [ f eg;
16 end
17 until (S = ; ) or ( R = S);
18 Return the �nal feasible routing solution (if any);
19 Step 2 -Find feasible solution minimizing the number of RE-routers on the

set of active links E found in Step 1.

Step 1 of Algorithm 4 is a constraints satisfaction problem returning a feasible
routing. Hence, we use the MILP of the compact formulation without objective
function. Our simulations show that it is quite fast to �nd such a feasible routing
solution even for large networks. In each round of the algorithm, we try to remove
a link with low load and then to �nd and evaluate a new feasible routing using less
active links. The idea behind this algorithm is that we try to turn o� low loaded
links and to accommodate their tra�c on other links in order to reduce the total
number of active links. Observe that unused links (i.e. links that are not carrying
tra�c) are not considered in the set S since the removal of such a link will result in
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a routing P_new equal to the routing P_current .
If a feasible routing is found inStep 1, and so a set of active links, we proceed in

Step 2 to minimize the number of enabled RE-routers. More precisely, we use the
compact MILP formulation in which the objective function is set to min

P
u2 V wu .

Furthermore, we set all binary variables associated to active links to 1 and the others
to 0 (this speed-up the resolution of the MILP).

To further reduce the computation time of Algorithm 4, we can consider ad-
ditional heuristic. For instance, in Step 1, while removing a low loaded link (and
so setting a binary variable to 0) we can also set the variablex f uvg associated to a
heavily loaded link to 1. Indeed, such link will certainly be part of the �nal solution.

4.3.3 Computational Evaluation

4.3.4 Test instances and Experimental settings

We solved the Robust-GreenRE model with IBM ILOG Cplex 12.4 solver [IBM ]. All
computations were carried out on a computer equipped with a 2.7 Ghz CPU and 8
GB RAM. We consider real-life tra�c traces collected from the SNDlib [ OWPT10]:
the U.S. Internet2 Network (Abilene) ( jV j = 12, jE j = 15, jDj = 130), the Geant
network (jV j = 22, jE j = 36, jDj = 387) and the Germany50 (jV j = 50, jE j = 88,
jDj = 1595). Note that, in section 4.3.5.1, we use a simpli�ed Abilene network in
which only a half of demands are used (65 demands, randomly chosen). It is because
an exponential number of constraints can be added to the constraint generation
model and so the overall computation time is more than 10 hours. Capacity is set
to Cuv = 5=10=20 Gbps for each arc of the Abilene/ Germany50/ Geant network,
respectively.

In our test instances, each tra�c demand has two values: the nominal and
the peak volumes during one day period. These values can be collected using the
dynamic tra�c from the SNDlib. To achieve a network with high link utilization,
all tra�c was scaled with a factor of three. To avoid individual bottlenecks, we add
parallel links to increase capacity on some speci�c links. To �nd parallel links, we
�rst relax the variables x f uvg to integer variables in the Master Problem. Then,
we �nd the routing solution for the worst case scenario (� d = � 
 = 100%) using
the relaxed Master Problem. The links (u; v) in which x f uvg > 1 would be the
congested links, so we add more capacity on these links and call them as parallel
links. According to [AGA + 08, AMAR09], based on real tra�c traces, an upper
bound on tra�c redundancy is assumed to 50%. In the simulations, we use
 = 0 :5
and b
 = 0 :3 and for each scenario, we vary the robust parameters (� d, � 
 ) in between
0 and the total demands (jDj ).

4.3.5 Results and Discussion

Before discussing particular trends or characteristics of solutions, we want to give
a visualization of a typical solution of Robust-GreenRE. In Fig. 4.10, we present
solutions for the Abilene network. The �gure indicates by line thickness, that the
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Figure 4.10: Routing and RE-router placement on Abilene network

edge is employed with parallel links. It is noted, that the � 
 = � d = 0 case mirrors
the GreenRE model with nominal demands and RE rates while the� 
 = � d = 130
case equals to the GreenRE model with all peak values of tra�c demands and RE
rates. The subset of chosen edges is printed black and the activated RE-routers
are displayed as circles. In a typical solution, between two and six RE-routers are
activated. We observed that this number can change independently of the� value.
For instance, 2 RE-routers are needed when� 
 = � d = 0 . This number increases to
6 when � 
 = � d = 3 or 13. However, the number of RE-routers reduces to3 when
� 
 = � d = 130. A prognosis is di�cult to give, since the number of RE-routers
is highly dependent on the tra�c volumes, the capacity, and the network topology.
Clearly, the same holds for the employed edges and depending on the demands and
the employed RE-routers. However, in general, an increase in� leads to higher
capacity requirement and more links and/or RE-routers need to be used.

4.3.5.1 Gap between di�erent methods

Table 4.4: Constraint Generation (CG) vs. Compact Formulation (CF) vs. Heuristic

� 
 , � d(%)
CG method CF method Heuristic

# violations gap opt (%) time (s) gap opt (%) time (s) gap opt (%) time (s)
2 5870 0 1800 0 1240 4 � 50
5 12981 0 23000 0 9000 5 � 50
10 64841 18.9 36:103 2.5 36:103 24 � 50
20 64433 20.6 36:103 0 22:103 27 � 50
100 65576 0 36:103 0 1400 7 � 50

In this section, we compare the energy saving o�ered by the three proposed
methods: Constraints Generation (CG), Compact Formulation (CF) and Heuristic.
We present in detail the comparison between the three methods in Table4.4 for
the simpli�ed Abilene network. For CG method, an increase in level of robustness
(representing by � 
 ; � d) leads to higher number of violations. CG can �nd optimal
solution in less than 10 hours in case of small� 
 ; � d. However, for large values
of � 
 ; � d, the computation time is increasing and the solution is still far from the
optimality estimated by CPLEX. For instance, after 10 hours of computation, the
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Figure 4.11: Upper bound and lower bound:Compact Formulation (CF) vs. Con-
straint Generation (CG)
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Figure 4.12: Optimality gaps: Compact Formulation (CF) vs. Constraint Genera-
tion (CG)
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optimality gap is 18:9% in case� 
 = � d = 10% of total demands. The CF method
is quite fast except in case� 
 = � d = 10% of total demands, the optimality gap
is 2:5% after 10 hours of computation. As expected, the heuristic algorithm is the
fastest method. All feasible solutions can be found in less than 50 seconds.

To better see the evolution of the Constraints Generation (CG) and Compact
Formulation (CF) methods, we show in Fig. 4.11 - 4.12, respectively the upper
bound, the lower bound and the optimality gap obtained by CPLEX. The evolution
of the CF method is much better than the CG method. As shown in Fig.4.11a
- 4.11d, in CF method, both the upper and lower bounds are improving meanwhile
it seems only the lower bound in CG method is improving. As shown in Fig.4.11c,
both methods do not reach the optimality after 10 hours of computation, however,
the gap of CF method is quite small (2:5%) with respect to the CG method (18:9%).
Fig. 4.12shows another view of the evolution: the gap between current feasible solu-
tion and optimal solution. This gap equals to zero mean the solution is the optimal
one. Again, the CF method outperforms the CG method in term of improving opti-
mality gap. However, it is noted that we can only �nd the exact solution using the
CG method. The optimal point obtained by the CF method is only a lower bound
of energy saving (see section4.3.2.1).
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Figure 4.13: Comparison of the proposed methods on Abilene.

We show in Fig. 4.13 a comparison of performance between the three methods.
The y-axis is the percentage of energy saving and the x-axis is the percentage of
robustness over the total demand (� =jDj ). Both � d and � 
 vary with the same
value, e.g. robustness = 10% means� d = � 
 = 0 :1 � jDj . We observe that the
maximum gap reported in Fig. 4.13 between the heuristic and the CG (and CF)
method is 7.63%, and this gap decreases for small values of� d and � 
 . Recall that
measurements performed on real networks have shown that only a small fraction
of the tra�c demands deviate simultaneously from their nominal values [KKR13].
Furthermore, the aim of robust optimization is precisely to take bene�t of that fact
in order to improve the design of the network, and in our case to save more energy.
We have seen that our heuristic algorithm o�ers good performances both in terms
of running time and quality of the solution in this setting. Thus in the sequel, we
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will use our heuristic to evaluate the Robust-GreenRE model on larger instances.

4.3.5.2 Energy saving vs. robustness
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Figure 4.14: Energy saving vs. robustness for Abilene, Geant and Germany network

Fig. 4.14 shows the trade-o� between energy saving and the level of robustness
regarding the parameters (� d; � 
 ). We consider three test cases (1) both� d and
� 
 , (2) only � 
 and (3) only � d vary their values. In the Case 1, both � d and
� 
 vary with the same value of robustness. Note that, when� 
 = � d = 100%,
all demands and compression rates are at the worst case, therefore the Robust-
GreenRE is equivalent to the deterministic GreenRE. In Case 2 (resp. Case 3),
while � 
 (resp. � d) varies, � d (resp. � 
 ) is set to 2% of the total demands. In
all the three networks, the solutions do not change when� d; � 
 � jDj

2 , thus the x-
axis is cut at 50%. We observe that energy saving are proportional to1=� . Indeed,
large values of� reduces the interest for robust optimization. More precisely, when
� d; � 
 � 30%, energy saving o�ered by the Robust-GreenRE model are almost the
same as the GreenRE model, while when� d; � 
 � 20%the Robust-GreenRE model
allows for signi�cant energy saving. An explanation of this phenomenon can be
found in the distribution of the demand volumes. A small fraction of the demands
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dominates the others in volume. Hence, when the values of� d; � 
 covers all of these
dominating demands, increasing� d; � 
 does not a�ect the routing solution and the
percentage of energy saving remains stable. In Case 2 and Case 3, when only� d

or � 
 varies its value, the same phenomenon is observed. It means� d and � 
 have
almost the same role in contributing to the robustness of the network.

4.3.5.3 Link load
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Figure 4.15: CDF load on Abilene, Geant and Germany networks.

Intuitively, Robust-GreenRE would a�ect the utilization of links as fewer links
are used to carry tra�c. In this subsection, we evaluate the impact of Robust-
GreenRE on link utilization. Speci�cally, we vary the level of robustness and see
how the link utilization of the network is a�ected. We draw cumulative distribution
function (CDF) of link load of Abilene, Geant and Germany networks in Fig. 4.15.
For ease of observation, we only show three cases of robustness for each network,
the other cases follow similar curve patterns. As shown in Fig.4.15, Geant and
Germany networks have light tra�c load. For instance, 80% of links of Geant and
Germany networks are under 40% and 20% of link utilization, respectively. Tra�c
on Abilene network is heavier, however there is no overloaded link and 80% of links
are less than 70% of utilization. It is noted that when we consider a certain value of
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� d and � 
 , the tra�c load is computed as the case where� d demand volumes and
� 
 RE rates are at their peak values. In fact, this is the worst case scenario in the
range of the allowing �uctuation de�ned by � d and � 
 . In this case, the total tra�c
on a link is computed as the value of the left hand side of the constraint (4.3'). For
this reason, the computed tra�c load is low when the level of robustness is low. For
example, in Abilene network, for the case of 5% robustness, 85% of links are under
40% utilization meanwhile for the case 20% (resp. 100%) robustness, it is only 60%
(resp. 40%) of links are under 40% utilization.

4.3.5.4 Robust-GreenRE vs. GreenRE vs. Classical EAR
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Figure 4.16: Robust-GreenRE vs. GreenRE vs. EAR.

In Fig. 4.16, we compare the Robust-GreenRE model with the GreenRE and
the classical EAR (no compression) models for small values of� d and � 
 . Since
the GreenRE model does not take into account RE rate deviation, we set
 st = 0 :8
(20% of tra�c is redundant) and for EAR model , 
 st is set to 1:0 (no compres-
sion). Furthermore, since tra�c volume variations are not handled by GreenRE and
EAR models, all demands are at peak. When� d = � 
 = 0%, all tra�c demands
are at their nominal values, the Robust-GreenRE model becomes the GreenRE
model with nominal tra�c demands, namely the GreenREnominal . Therefore, en-
ergy saving of the Robust-GreenRE model is in between that of the GreenRE and
the GreenREnominal models. We observe that, in Germany50 network, the EAR
and the GreenRE models o�er a small amount of energy saving. A prognosis is
di�cult to give, since energy saving is depended on both the network topology and
the tra�c matrix. One point can be used to explain the phenomenon is that the
volume of peak tra�c in Germany50 network is much bigger than the nominal one
(the average ratio of the peak over the nominal tra�c is around 6). That is why the
Robust-GreenRE model can save much higher energy consumption than the EAR
and the GreenRE model. It is noted that the Robust-GreenRE is more e�cient
than the GreenRE when only few tra�c demands �uctuate their volumes and RE
rates (� is relatively small). When � is quite big, e.g. � > = 20%, the Robust-
GreenRE and the GreenRE models yield almost the same amount of energy saving



80 Chapter 4. Robust Optimization for GreenRE

(as shown in Fig. 4.14). However, this result does not invalidate the bene�t of
� -robustness because in real-life tra�c, only a few demands can vary their tra�c si-
multaneously [KKR13]. In summary, when� = 2 � 5%, the Robust-GreenRE model
outperforms the other models and allows for16 � 28% additional energy saving in
all the considered networks.

4.4 Conclusion

In this chapter, we formally de�ne and model the Robust-GreenRE problem. Taking
into account the uncertainties of tra�c volumes and redundancy elimination rates,
the Robust-GreenRE model provides a more accurate evaluation of energy saving
for backbone networks. Based on real-life tra�c traces, we have shown a signi�cant
improvement of energy saving compared with other models. As future work, we
shall investigate implementation issues and impacts of Robust-GreenRE model on
QoS and fault tolerance.
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In this chapter, we consider to save energy with Open Shortest Path First
(OSPF) protocol. From the perspective of tra�c engineering, we argue that stabil-
ity in routing con�guration also plays an important role in QoS. In details, frequent
changes in network con�guration (link weights, slept and activated links) to adapt
with tra�c �uctuation in daily time cause network oscillation. We propose a novel
optimization method of link weight so as to limit the changes in network con�gura-
tions in multi-period tra�c matrices. We formally de�ne the problem and model it
as Mixed Integer Linear Program (MILP). We then propose e�cient heuristic algo-
rithm that is suitable for large networks. Simulation results with real tra�c traces
on three di�erent networks show that our approach achieves high energy saving and
less pain for QoS (in term of less changes in network con�guration).
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5.1 Publications

This chapter corresponds toOptimizing IGP Link Weights for Energy-e�ciency in
a Changing World by J. Moulierac, and T. K. Phan which has been submitted to
Computer Communication, 2014.

5.2 Introduction

Although green networking has been attracting a growing attention during the last
years (see the surveys [BBDC11, BCRR12]), we found a limited number of recent
works that have been devoted to both energy-aware routing (EAR) and shortest
path routing [ACG13, FWMG13, SLX+ 12, CCGS13, LTC12, CEL+ 12, CEL+ 10,
CELP11, ACGM11]. These works consider the most widely used Internal Gate-
way Protocol (IGP) in IP networks, namely the Open Shortest Path First (OSPF)
protocol. For energy e�ciency, a set of link weights should be found so that its in-
duced shortest paths use a minimal number of active links. Then, inactive network
elements are put into sleep mode to save energy.

To deal with tra�c variation, daily time periods are characterized by di�erent
tra�c levels (e.g. morning, afternoon and night) and in each period, a single tra�c
matrix is assumed to be accurately collected. Then, each tra�c matrix is asso-
ciated with a corresponding weight setting con�guration. As assumed in existing
works [ACG13, FWMG13, SLX+ 12, ACC+ 14], as long as the network capacity is
su�cient to handle all tra�c demands, energy can be saved without causing service
deteriorations to end users. Recall that [CCGS13] proposes to integrate [ACG13] in
an o�-line/on-line framework to guarantee both network responsiveness and prevent
frequent oscillations. However, as explained in [CCRP13, FT02], frequent changes
to link weights are highly undesirable and should be avoided as much as possible.
First, applying a large number of con�gurations may result in frequent transitions
between active and sleep modes of network links. This reduces the life cycle of
network devices, since they are designed to be always powered on. Second, routing
protocol convergence at the IP layer is a�ected. The weight changes have to be
�ooded in the network via control messages. The routers then recompute the short-
est paths and update their routing tables. This may take seconds before all routers
agree on the new shortest paths. Meanwhile, in this transient time, packets may
arrive out of order, degrading the perceived QoS for end-users. We refer the reader
to [BR01] for a detailed analysis of the stability issues in OSPF. In general, the more
weight changes we try to �ood simultaneously, the more chaos we introduce in the
network [FT02].

In this chapter, we propose some methods to reduce the number of changes in
weight setting for the multi-period energy-aware tra�c engineering problem. In
summary, we make the following contributions:

� We formally de�ne and formulate the stable weight setting for multi-period
tra�c matrices using Mixed Integer Linear Program (MILP). The objective is
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to limit the changes in weight setting in the transition between tra�c matrices.

� We also present a MILP robust formulation so that even a single weight setting
can be feasible for a set of tra�c matrices. Di�erent from the stable weight
setting, the robust one avoids any weight changes for the multi-period tra�c
matrices with the assumption that only a limited number of tra�c demands
are at their peaks simultaneously.

� We propose heuristic algorithms that are e�ective for large networks for both
the stable weight setting and the robust methods.

� Using real-life data tra�c traces, we show that our methods achieve high
energy saving while reducing a large number of network recon�gurations in
daily tra�c variation.

The rest of this chapter is structured as follows. We summarize related works in
Section 5.3. Then, our approaches to deal with tra�c variation are introduced in
Section 5.4. Evaluation results are presented in Section5.5. Finally, we conclude
the work in Section 5.6.

5.3 Related Work

5.3.1 Optimizing Weight Setting for EAR

The problem of optimizing the OSPF weight setting is known to be NP-hard, exact
formulation and heuristic algorithm have been proposed in literature [FT02, FT00].
EAR routing can be applied to a network by setting an appropriate link weight
setting. By assigning high weights to a set of links, no tra�c passes through them
and these links can be put into sleep mode to save energy.

Table 5.1: Tra�c matrices for OSPF/ECMP

Tra�c matrix
Tra�c demand

(0; 6) (0; 7) (0; 8)
M 1 30 30 10
M 2 20 20 10
M 3 20 10 10

To better explain, we consider an example of a network topology with capacity
on links as shown in Fig.5.1a. There are 3 tra�c demands and we collect their values
at 3 di�erent periods, leading to 3 tra�c matrices M 1, M 2 and M 3 (Table 5.1). The
routing solutions in Fig. 5.1 follow OSPF/ECMP (Equal-cost multi-path) policy:
a tra�c demand �owing through a node i is equally split among all the interfaces
connected to i which belong to at least one shortest path toward the considered
destination. As shown in Fig.5.1b, the three tra�c demands are split into 3 di�erent
paths from 0 to 5, each path carries(30 + 30 + 10) =3 = 70=3 < 24. So, this routing
is feasible but zero link can sleep. When tra�c decreases, we can have better
solutions. For example, 2 and 3 links are put in sleep mode forM 2 (Fig. 5.1c) and
M 3 (Fig. 5.1d), respectively.
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Figure 5.1: Example of OSPF/ECMP for EAR

5.3.1.1 Mixed Integer Linear Program (MILP)

The MILP of optimizing the OSPF weight setting problem was proposed in [ACG13].
In this section, we reformulate the MILP to �t with our robust model. The MILP
uses the notations detailed on Table5.2.

Table 5.2: Notations

wmax the maximum value of a link weight.
M a large enough constant. It can be setM = 2wmax .
D a set of all tra�c demands to be routed.

D t a set containing all destination nodes.
Dst 2 D demand of the tra�c �ow from s to t.

Cuv capacity of a link (u; v).
� 2 (0; 1] maximum link utilization that can be tolerated. It is nor-

mally set to a small value, e.g.� = 0 :5.
N (u) the set of neighbors ofu in the network graph G.

kt
uv binary variable to determine if the link (u; v) belongs to

one of the shortest paths from nodeu to node t.
zst

u variable to represent fraction of the �ow (s; t) to be routed
on outgoing nodeu using ECMP.

r t
u cost of the shortest path fromu to t.

xuv binary variable to indicate if the link (u; v) is active or
not.

f st
uv a �ow (s; t) that is routed on the link (u; v).

min
X

(u;v )2 E

xuv (5.1)
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s.t.
X

v2 N (u)

�
f st

vu � f st
uv

�
=

8
>><

>>:

� 1 if u = s;

1 if u = t;

0 else

8u 2 V;(s; t) 2 D (5.2)

X

(s;t )2D

D st (f st
uv + f st

vu ) � �C uv xuv 8(u; v) 2 E (5.3)

0 � zst
u � f st

uv � 1 � kt
uv 8(s; t) 2 D ; (u; v) 2 E (5.4)

f st
uv � kt

uv � 0 8(s; t) 2 D ; (u; v) 2 E (5.5)

1 � kt
uv � r t

v + wuv � r t
u � (1 � kt

uv )M 8t 2 D t ; (u; v) 2 E (5.6)

kt
uv � xuv � 0 8t 2 D t ; (u; v) 2 E (5.7)

wuv � (1 � xuv )wmax 8(u; v) 2 E (5.8)

xuv + wuv � wmax 8(u; v) 2 E (5.9)

1 � wuv � wmax 8(u; v) 2 E (5.10)

xuv ; kt
uv 2 f 0; 1g; f st

uv ; zst
u 2 [0; 1]; r t

u � 0 (5.11)

wherewmax is the maximum value of a link weight. M is a large enough constant,
it can be setM = 2wmax . D t is a set containing all destination nodes. The objective
function (5.1) minimizes the power consumption of the network represented by the
number of active links. Constraints (5.2) establish the classical �ow conservation
constraints. We consider an undirected link capacity model [RKOW11] in which the
capacity of a link is shared between the tra�c in both directions. Constraints (5.3)
limit the available capacity of a link (where � denotes the maximum link utilization).
The binary variable kt

uv = 1 if and only if the link (u; v) belongs to one of the shortest
paths from node u to node t. Constraints (5.4) are for ECMP routing. It makes
sure that if kt

uv = 1 then the �ow f st
vu destined to node t is equal tozst

u , which is
the common value of the �ow assigned to all links outgoing from u and belonging
to one of the shortest paths fromu to t. Constraints (5.5) force f st

uv = 0 for all links
(u; v) that do not belong to a shortest path to nodet. The variable r t

u represents
the cost of the shortest path fromu to t. Constraints (5.6) compute weight of the
link (u; v) if it belongs to the shortest path from u to t. Constraints (5.7) force link
(u; v) to be on if it belongs to the shortest path from u to t. Note that, we do not
force xuv = 0 when kt

uv = 0 because if(u; v) belongs another shortest path tot1 (in
this casekt1

uv = 1 and xuv should be equal to 1). Constraints (5.8)-(5.10) guarantee
that if a link weight is equal to wmax , then this link should be put into sleep mode.

5.3.1.2 Heuristic Algorithm

Finding optimal OSPF weight setting that deals with energy saving and/or tra�c
engineering issues is very challenging. We found in literature many works try-
ing to solve this problem using heuristic approaches. For example, the authors in
[FT00, ACG13] have proposed to use local search by iteratively modifying the OSPF
weights so as to achieve the objective. The authors in [FWMG13] have used genetic
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algorithms to �nd the link weights for the joint-optimization of load-balancing and
energy e�ciency. As the tra�c matrices are considered independently, these algo-
rithms can �nd di�erent sets of link weights in the optimization process for each
tra�c matrix. We call these methods as freely changed weight setting.

5.3.2 � -Robust Network Design

Over the past years, robust optimization has been established as a special branch
of mathematical optimization allowing to handle uncertain data [BTGN09]. A spe-
cialization of robust optimization, which is particularly attractive by its computa-
tional tractability, is the so-called � -robustness concept introduced by Bertsimas
and Sim [BS04]. Based on an observation that in real tra�c traces, at a given time,
only few of the demands are simultaneously at their peaks [KKR13, ZWLW14,
WYW + 12]. For instance, Fig. 5.2 shows real tra�c traces of the three source-
destination pairs: (a) Washington D.C. - Los Angeles, (b) Seattle - Indianapolis,
and (c) Seattle - Chicago in the US Abilene Internet2 network in intervals of 5 mins
during the �rst 10 days of July 2004 [KKR13]. We observe that there is no point
that all the three demands are at the peak values at the same time. Thus, it con-
�rms the assumption: it is unlikely that all the tra�c demands assume their peak
values simultaneously.

����������	


����������	


����������	


���

���

���

Figure 5.2: Tra�c demands in Abilene network [ KKR13]

� -robust network design allows to choose an integer parameter� � 0 so that at
most � tra�c demands can be at their peak values simultaneously. Note that, the
model only limits a number of tra�c demands (but not exactly which ones) that
can be at their peaks at the same time. Therefore, from a practical perspective, by
varying the parameter � , di�erent solutions can be obtained with di�erent levels of
robustness. This concept has already been applied to several network optimization
problems [KKR11, ACC+ 13, CKPT13].

To better explain, we consider an example in Fig.5.3. We use a grid3 � 4, each
link has a capacity 4 Gbps. There are 3 tra�c demands, each has a nominal and
peak values (in Gbps) as shown in Table5.3.

As an example, assume that� = 2 , meaning that zero, one or two tra�c demands
can be at their peak values simultaneously. This leads to a combination of seven
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Figure 5.3: Example of EAR and� -Robust network

Table 5.3: Tra�c demand variation

Demand (s, t) Nominal value Peak value

(0, 3) 1 4
(4, 7) 1 3
(8, 11) 1 2

Table 5.4: Example of robustness:� = 2

Case Q Best solution Link load luv (Gbps)

1 {}
Fig. 1a l0;4 = l7;3 = 1 , l4;5;6;7 = 3 ,
(7 links) l8;4 = l7;11 = 1

2 {(0, 3)}
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 2 ,
(8 links) l8;4 = l7;11 = 1

3 {(4, 7)}
Fig. 1b or 1c l0;1;2;3 = 1 , l4;5;6;7 = 4 ,

(8 links) l8;4 = l7;11 = 1 (Fig. 1b)

4 {(8, 11)}
Fig. 1a l0;4 = l7;3 = 1 , l4;5;6;7 = 4 ,
(7 links) l8;4 = l7;11 = 2

5 {(0, 3), (4, 7)}
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 4 ,
(8 links) l8;4 = l7;11 = 1

6 {(0, 3), (8, 11)}
Fig. 1b l0;1;2;3 = 4 , l4;5;6;7 = 3 ,
(8 links) l8;4 = l7;11 = 2

7 {(4, 7), (8, 11)}
Fig. 1c l0;1;2;3 = 4 , l4;0 = l3;7 = 3 ,
(8 links) l8;9;10;11 = 2
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possibilities that are shown in Table5.4. The set Q includes these seven cases.
It is easy to see that in Case 1, all tra�c demands are at nominal values, hence

as EAR, Fig. 5.3a is the best solution with only 7 active links. In Case 2, when
(0; 3) is at peak (4 Gbps), solutions in Fig.5.3b and Fig. 5.3d are feasible. However,
Fig. 5.3b is the best solution since only 8 active links are used. Similarly, in Case
7, solutions in Fig. 5.3c and Fig. 5.3d are feasible and Fig.5.3c is the best one.
In summary, Table 5.4 shows the complete possibilities of tra�c variation and the
corresponding best solution when� = 2 . However, since we just limit the number
demands (but not any speci�c demands) to be deviated, a feasible solution should
be the one that satis�es all the seven cases. Therefore, Fig.5.3d is the only feasible
solution for � = 2 . It is also easy to check that, if we limit � = 1 (less robust),
Fig. 5.3b is the best solution. From these examples, we can see that, depending
on the desired robustness of a network, a single routing solution can be feasible for
many tra�c matrices.

In this work, our goal is to avoid weight changes as much as possible between
multi-period tra�c matrices while minimizing energy consumption for the networks.
The main contributions are presented in Section5.4 where we proposed some meth-
ods to stabilize the OSPF weight setting (calledstable weight settingand � -Robust
approach). To give an idea of energy saving, we have implemented a simplefreely
changed weight settingalgorithm (in Section 5.4.1.3) to compare with the stable
weight settingand the � -Robust approach.

5.4 Optimizing OSPF Weight in Multi-period Tra�c
Matrices

5.4.1 Stable Weight Setting

In this approach, multi-period tra�c matrices are used to capture the daily tra�c
pattern. However, these tra�c matrices are not considered independently. The
idea is that, when changing from a high to a lower tra�c matrix (tra�c load is
reducing), we only consider to sleep unused links. In other words, any set of active
links for low tra�c is included in that of higher tra�c. In addition, the weight
setting of remaining links are unchanged. The reason is to limit changes in routing
con�guration and reduce network oscillations that a�ect QoS. As we add restrictions,
stable weight settinghas less potential in saving energy than thefreely changed weight
setting approach. For instance, as the example in Fig.5.1, when tra�c changes from
M 2 to M 3, the stable weight settingcan not have solution like Fig. 5.1d as both
turning on and o� links are necessary.

Since we try to stabilize the weight setting based on the previously used one,
a question is how to �nd an initial weight setting that will be used for all the
matrices of the multi-period tra�c matrices. In fact, there are many ways to set link
weights in practice. For instance, Cisco uses the inverse of link capacity [Cisco05]; or
more complicated load-balancing tra�c engineering methods can be found in [FT02,
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ACG13, FWMG13]. Actually, the initial set of weight has an impact on the energy
saving in daily time. We can use the freely changed weight method to �nd a good
con�guration for a tra�c matrix. However, this con�guration may not be good for
subsequent tra�c matrices and how to �nd a good starter for the whole day tra�c
variation is beyond the scope of this chapter. In this work, the network operators
are free to choose their own weight setting. Anytime they would like to start energy
saving mode, the stable algorithm can be applied directly using the current weight
setting con�guration as the initial one. We propose an optimization formulation
and heuristic algorithms for the stable weight settingmethod as follows:

5.4.1.1 Stable Weight MILP

The inputs are network topology G = ( V; E), tra�c matrix D and a set of current
link weights W . The output is a routing solution that minimizes the number of
active links so that it satis�es constraints (5.2) - (5.11). Meanwhile, as the weight
setting W should not be modi�ed, following constraints should be added to the
model (5.1) - (5.11):

wuv � w�
uv � (1 � xuv )(wmax � w�

uv ) 8(u; v) 2 E (5.12)

w�
uv � wuv � (xuv � 1)wmax 8(u; v) 2 E (5.13)

We note w�
uv as the current weight of the link (u; v). Constraints (5.12) - (5.13)

are used to force the new link weightwuv to be equal tow�
uv if the link (u; v) is still

used in the new routing solution. That is, if xuv = 1 , then wuv = w�
uv . Otherwise,

when xuv = 0 , wuv is set to wmax . This means that the link (u; v) does not belong
to a shortest path routing. Thus, there is no tra�c on the link (u; v) and it can be
put into sleep mode.

5.4.1.2 Stable Weight Heuristic

The stable weight setting problem is also very challenging for large networks. We
propose in this section heuristic algorithms that can �nd feasible solution in an
acceptable time. In brief, the heuristic algorithm includessleeping stepand feasible
routing check step(Fig. 5.4).

There are many criteria to choose a link(u; v) to sleep (see in [ACG13, CMN11]).
In this chapter, we propose to choose themin load link to sleep since this approach
has been successfully applied in literature [ACG13, GMMO10, GMPR12, CMN11].
After the sleeping step, the feasible routing checkstep has inputs which are a sub-
graph G0, a subset of link weightsW 0 and the same tra�c matrix D . We perform
OSPF/ECMP routing for D on G0and check if some links are overloaded. If yes, the
routing is not feasible, we mark the slept link as checked and go back to thesleeping
step to �nd another link to make sleeping (the checked links will not be chosen).
If the routing is feasible, we update the inputs and go back to thesleeping stepto
continue. This procedure is repeated until all links on the network are checked.
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Figure 5.4: Heuristic diagram

To deal with multi-period tra�c matrices, we �rst sort the tra�c matrices in non-
increasing order of tra�c load, that is from Dn to D1. The tra�c load is computed
as the sum of the volumes of all tra�c demands in a tra�c matrix. Then, we run
the MILP or heuristic algorithm for Dn to �nd a feasible network con�guration (link
weight setting, set of links to sleep). Given this con�guration as the inputs, we �nd
new feasible con�guration for Dn� 1 in which we consider only to sleep links and
the remaining links keep the same weight setting. This process is repeated until we
reach D1. Following the tra�c variation of daily time, from a low to higher tra�c
matrices (e.g. D i to D i +1 ), we simply apply the con�guration that has been found
(from D i +1 to D i ). In this scenario, only slept links are woken up and the remaining
links keep the same weight setting.

5.4.1.3 Freely Changed Weight Heuristic

In order to compare the energy saving of thestable weight heuristic, we implemented
a simple freely changed weight heuristicalgorithm. Using the same diagram as in
Fig. 5.4, at the feasible routing checkstep, we follow the idea of local search used
in [FT00]. If the routing is infeasible, instead of marking the link as �checked�
(impossible to sleep), we repeat the local search step, trying to �nd another feasible
weight setting. The main idea in each iteration is that we increase the weights of the
overloaded links to redirect tra�c to other links with the hope that a new feasible
routing solution can be found. Depending on the execution time of the algorithm,
we can de�ne a maximum number of loops for the local search. If there is still no
feasible solution at the end of the iteration, we mark that link as �checked�, then the
algorithm repeats the sleeping step described in Fig.5.4 with another chosen link.

5.4.2 � -Robust Approach: One Network Con�guration for All

We propose in this sub-section a method to �nd a single network con�guration with
a set of active links and weight setting that is feasible for all the considered tra�c
matrices.
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5.4.2.1 Robust MILP

Assume that each tra�c demand has a nominal D
st

and a deviated value bD st so as
the peak value is(D

st
+ bD st ). Given a parameter 0 � � � j D j, the robust model

tries to �nd a feasible routing at minimal energy costs, while the link capacity
constraints are satis�ed if at most � tra�c pairs simultaneously deviate from their
nominal valuesD

st
. Note that � = jD j amounts to worst-case optimization where

all demands are at peak values. The straightforward robust capacity constraint for
a given � and an edgee 2 E is:

X

(s;t )2 D

D
st

f st
e + max

Q� D
jQj� �

n X

(s;t )2 Q

bD st f st
e

o
� �C exe 8e 2 E (5.14)

wheref st
e = f st

uv + f st
vu ; Q is a subset containing demands that can be at peaks at the

same time. The constraints (5.14) is non-linear since it contains themax notation.
A trivial way to make it linear is to explicitly write down all the possibilities of the
constraints, that is:

X

(s;t )2 D

D
st

f st
e +

X

(s;t )2 Q i

bD st f st
e � �C exe 8Qi � D ; jQi j � �; e 2 E (5:140)

Obviously, the constraints (5:140) is a combination of all possibilities of a subset
Qi which has the sizejQi j � � . Therefore, it is impossible to put all the constraints
into the MILP model at one time when the set of demandD is large. To overcome
this problem, we apply the method� -robustness (introduced by Bertsimas and Sim
[BS04]). The main idea of this method is to use LP duality to make a compact
formulation, so that it is possible to solve the MILP. We present step-by-step the
procedure to form the compact formulation as follows.

Assume that we know the value off st
e (then they are constants), the maximum

part of (5.14) can be computed by the following ILP:

� (f; �) := max
X

(s;t )2 D

bD st f st
e zst

e (5.15)

s.t.
X

(s;t )2 D

zst
e � � [ � e] (5.16)

zst
e 2 f 0; 1g [� st

e ] (5.17)

where the primal binary variables zst
e denote whether or not f st

e is part of the
subsetQ � D . As proposed by Bertsimas and Sim, we employ LP duality with the
dual variables� e and � st

e corresponds to the constraint
P

(s;t )2 D zst
e � � and zst

e � 1,
respectively. The LP duality for � (g;�) is as follows:

� (g;�) := min
�

� � e +
X

(s;t )2 D

� st
e

�
(5.18)

s.t. � e + � st
e � bD st f st

e 8(s; t) 2 D (5.19)

� st
e ; � e � 0 8(s; t) 2 D (5.20)
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Since the constraints (5.18)�( 5.20) are linear. A compact reformulation can be
obtained by embedding them into (5.1)�( 5.13). As a result, the robust stable weight
setting can be compactly formulated as (5.1)�( 5.2), (5.4)�( 5.13) and replace (5.3)
by:

X

(s;t )2 D

(D
st

f st
e + � st

e ) + � � e � �x eCe 8e 2 E (5.21)

� e + � st
e � bD st f st

e 8(s; t) 2 D ; 8e 2 E (5.22)

� st
e ; � e � 0 8(s; t) 2 D ; 8e 2 E (5.23)

5.4.2.2 Robust Heuristic Algorithm

The main idea of the heuristic algorithm is similar to the diagram in Fig. 5.4.
However, it is di�cult to check routing feasibility since we do not know explicitly
which tra�c demands are at peak values. To deal with this problem, we use the
ILP constraints (5.21)�( 5.23) for the feasible routing check stepas they represent
the robust capacity constraints. In details, consider a simpli�ed MILP of the robust
weight setting in which we only keep constraints (5.11) (remove variableskt

uv , zst
u ,

r t
u), and (5.21)�( 5.23) with xe 2 f 0; 1g and f st

e 2 [0; 1] 8(s; t) 2 D ; 8e 2 E. The
OSPF/ECMP routing on G0 with a set of link weight W 0 implicitly satis�es the
�ow conservation constraint. In addition, we have in hand a set of link weight W 0,
therefore all the constraints (5.2) � ( 5.10) are not needed in the simpli�ed ILP. When
performing OSPF/ECMP routing for the subgraph G0 (after the sleeping step), we
can get all the values off st

e and xe (xe = 0 if f st
e = 0 8(s; t) 2 D , otherwisexe = 1 ).

Given them as the inputs, the variablesxe and f st
e in the simpli�ed MILP are now

�xed, only � st
e and � e remain variables. Since the simpli�ed MILP is used only to

verify routing solution, we ignore the objective function and simply set it to min 0.
To check routing feasibility, we run the simpli�ed MILP with inputs: G0; D; � ; f st

e

and xe, if a feasible solution is returned, it means that the routing solution satis�es
the robust capacity constraints. Then, we go back to thesleeping stepand continue
the algorithm as in Fig. 5.4.

5.5 Computational Evaluation

We solved the MILP models with IBM CPLEX 12.4 solver [IBM ]. All computations
were carried out on a computer equipped with 2.7 Ghz Intel Core i7 and 8 GB RAM.
We consider real-life tra�c traces collected from the SNDlib [OWPT10]: the U.S.
Internet2 Network (Abilene) ( jV j = 12; jE j = 15; jD j = 130), the Geant network
(jV j = 22; jE j = 36; jD j = 387) and the Germany50 (jV j = 50; jE j = 88; jD j =
1595).

In our test instances, �ve tra�c matrices ( D1 � D5) are used to represent daily
tra�c pattern (Fig. 5.5). From the SNDlib, we collect the mean and max tra�c
matrices (all tra�c demands are at their mean and maximum values). Since tra�c
load is low, we use the mean tra�c matrix as D1. To achieve a network with high
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Figure 5.5: Daily tra�c

link utilization, we scale the max tra�c matrix with a factor of 1:3, 1:5, 1:8 and 2:0,
and they form D2� D5, respectively. As a result, we representD5 as the worst case
scenario of highest tra�c load. It is noted that, in realistic, even at peak hour, not
all the tra�c demands are at their maximum values as the caseD5. In all test cases,
as an approach of tra�c engineering, we use a local search heuristic to �nd a set of
link weights that minimize the maximum link load [ FT00] for the tra�c matrix D5.
This weight setting is used as the initial one in thestable weightapproaches.

5.5.1 Computation time

Table 5.5: Abilene network - optimal solutions

Execution time (s)
D1 D2 D3 D4 D5

Stable weight MILP � 5 � 5 � 5 � 5 � 5
Robust MILP 90

Freely changed weight MILP 95 874 100 12900 20700

Table 5.6: Geant network - heuristic solutions

Execution time (s)
D1 D2 D3 D4 D5

Stable weight 139 140 160 182 256
Robust stable weight 283
Freely changed weight 62 157 1596 2115 3600
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Table 5.7: Germany network - heuristic solutions

Execution time (s)
D1 D2 D3 D4 D5

Stable weight 468 1586 1787 2108 3108
Robust stable weight 3090
Freely changed weight 1739 3600 3600 3600 3600

For Abilene network, we can �nd optimal solution using the MILP for the three
methods (stable, robust and freely changed weight). For larger networks (e.g. Geant,
Germany50), only the heuristic algorithms are used to �nd solutions. The execution
time of the freely changed weightheuristic is limited to one hour by varying the
number of loops in the local search. For therobust stable weight, we run with
di�erent values of � and get an average running time.

It is clear that the stable weightand robust methods win a lot in running time.
This is because these methods are based on an initial weight setting and we limit
the change. Note that, we also use an initial weight setting for therobust case
to limit network recon�guration when changing from the normal (currently used)
mode to the energy-aware mode. Thus, solution search space is small and optimal
solutions can be found quite fast. Similar observation can be found for the heuristic
approaches (Tables5.6 and 5.7): the stable weightand robust methods take less
than 1 hour for all test cases, meanwhile the execution time of thefreely changed
weight reaches the time limit set to 1 hour.

5.5.2 Stability of routing solutions

Fig. 5.6 shows changes in routing when shifting between periods of tra�c during
daily time. For the three tested networks, the stable weightapproach always out-
performs the freely changed weight. The former approach only allows to sleep links
(resp. only wake up links) when changing from a high tra�c matrix to a lower one
(resp. from a low to a higher tra�c matrix). However, for freely changed weight,
there is no restriction, link can be turned on and o� and also the weight setting
of remaining links can be changed. For instance, in Abilene network, fromD3 to
D2, even the energy saving (and the number of active links) is unchanged, the so-
lution allows one link to turn o�, one link to turn on and two active links change
their weights. Similar observation can be found for Geant and Germany networks
(Fig. 5.6c - Fig. 5.6f). The larger the network we consider, the more chaos we
introduce as more changes happen between multi-period tra�c matrices.
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Figure 5.6: Changes in freely changed weight vs. stable weight methods

5.5.3 Energy saving in daily time

5.5.3.1 Stable weight vs. freely changed weight

Follow the curve of daily tra�c, we show energy saving of the three networks in
Fig. 5.7. It is clear that energy saving is high when tra�c load is low since more
links can be put into sleep mode to save energy. To compare betweenstable weight
and freely changed weightapproaches, the latter one can save more energy because
it is �exible to change the weight setting. This can be observed inD3; D4; D5 in
Fig. 5.7b and D3; D5 in Fig. 5.7c. Abilene network is small and only a few links
(from 1 to 4 links) can sleep, thus the solutions between the two methods are similar.
It is noted that, in D4 (Fig. 5.7c), stable weightmethod even has better result. It is
because we limit the number of loops so that the heuristic algorithm is �nished after
one hour. Thus, it is possible for thefreely changed weightheuristic to stop before
�nding a better solution than the stable weightapproach. It can happen when the
network is large, the algorithm needs to do several loops to �nd a good solution.

5.5.3.2 Robust vs. stable weight approaches

Fig. 5.8 shows energy saving of thestable weight settingvs. the � � robustness(with
di�erent value of � ) in daily time tra�c variation. Following the pattern of daily
tra�c, the stable weight can turns o� many links and save much energy when tra�c
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(b) Geant network: heuristic solutions
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(c) Germany network: heuristic solutions

Figure 5.7: Energy saving in multi-period tra�c matrices

load is low and vice versa. For the robust solution, defending on the
 -value, we
assume only one con�guration for all the tra�c matrices. That is why the robust
solution keeps the same amount of energy saving for the whole day. Simulation
results con�rm that the higher � is, the more robust, but the less power saving
the solution is. Note that, when � = 100% , the robust model becomes the worst
case of the deterministic - the case withD5 (all tra�c demands are at their peak
values). In all the three networks, the solutions do not change when� is large
enough (e.g. � = 14% for Abilene network). It is because in real tra�c, only a
small fraction of the demands dominates the others in volume. Hence, when the
values of� covers all of these dominating demands, increasing� does not a�ect the
routing solution and the percentage of energy saving remains the same. To give
a visualized comparison, we also draw energy saving of thestable weightmethod
in daily time. For instance, from Fig. 5.8a, if � = 9% , it is possible to have only
one weight setting that gives feasible routing if at most9% of tra�c demands are
at their peaks simultaneously. Moreover, this single weight setting allows to save
the same amount of energy as when we apply thestable weightmethod for D2 or
D3 matrices. Similar observations can be found for Geant (Fig.5.8b) and Germany
network (Fig. 5.8c). However, Geant and Germany networks are more sensitive with
tra�c variation, signi�cant energy saving is found only with small � .
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(c) Germany network

Figure 5.8: Robust weight vs. stable weight

5.5.4 Tra�c load

5.5.4.1 Stable weight vs. freely changed weight

In the simulation, we set the maximum link utilization � = 100%. Intuitively,
EAR would a�ect the utilization of links as fewer links are used to carry tra�c. In
this subsection, we evaluate the impact of EAR on link utilization. We draw the
cumulative distribution function (CDF) of link load of Abilene, Geant and Germany
networks in Fig. 5.9. To test the worst case scenario, we use the highest tra�c matrix
(D5). Since we guarantee capacity constraints, no link is overloaded. Our goal is
not load balancing, thus it is not easy to validate the freely changed weightand
the stable weightmethods, which one is better. However, from Fig.5.9a, the stable
weight method is slightly better, e.g. 60% of links have link utilization less than
80%, meanwhile it is only 40% of links for the freely changed weightmethod. This
can be explained as thestable weightmethod uses an initial load-balancing link
weight which is the one that minimizes the maximum link load.
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Figure 5.9: Link load of robust weight vs. stable weight

5.5.4.2 Robust approach

For each value of� , we �nd a link weight setting that satis�es the capacity constraint
if at most � demands are at peaks at the same time. However, we would like to
test what will happen if we use a single robust network con�guration while tra�c
is varied in daily time. Fig. 5.10shows the maximum link utilization over all active
links in the network for di�erent values of � . Obviously, if we use� = 100% , we can
�nd a single network con�guration that is feasible (no overloaded link) for all-day
tra�c variation. However, the price of this solution is too expensive: e.g. only 6%
of energy can be saved for the Abilene network (like the caseD5). However we
observe that, even with� = 1% , the maximum link utilization of the three networks
is less than200%. It means that if we carefully set the value of � in the capacity
constraints (e.g. � = 50%), then the robust solution with � = 1% can be feasible for
all-day tra�c variation. Moreover, if one network con�guration for the whole day is
too conservative, a daily tra�c can be divided into few periods. Then, each period
is applied with a single robust con�guration. For instance, in Abilene network, we
can use4 periods: 2h � 9h (� = 7% ); 9h � 11h (� = 13% ); 11h � 19h (� = 100% -
D5 tra�c matrix) and 19h � 2h (� = 13% ). However, it may save less energy with
respect to thestable weightapproach as daily tra�c is divided into 9 periods which
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Figure 5.10: Maximum link utilization (MLU) of robust solution in daily tra�c

allows to �nd more �exible routing solutions.

5.6 Conclusion

To the best of our knowledge, this is the �rst study considering the stability of
routing solution in energy-aware tra�c engineering using OSPF protocol. We argue
that, in addition to capacity constraints, the requirements on routing stability also
play an important role in QoS. Moreover, using real tra�c traces in the simulations,
we show that our stable weightand robust methods are able to save a signi�cant
amount of energy. For future work, we will focus on how to �nd a good initial weight
setting. Moreover, e�cient heuristic algorithms with di�erent policies for putting
links into sleep mode should be considered.
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In this chapter, we focus on using Software-De�ned Network (SDN) for energy-
aware routing (EAR). Since tra�c load has a small in�uence on power consumption
of routers, EAR allows to put unused links into sleep mode to save energy. SDN
can collect tra�c matrix and then computes routing solutions satisfying QoS while
being minimal in energy consumption. However, prior works on EAR have assumed
that the table of OpenFlow switch can hold an in�nite number of rules. In practice,
this assumption does not hold since the �ow table is implemented with Ternary
Content Addressable Memory (TCAM) which is expensive and power-hungry. In
this work, we propose an optimization method to minimize energy consumption for
a backbone network while respecting capacity constraints on links and rule space
constraints on routers. In details, we present an exact formulation using Integer
Linear Program (ILP) and introduce e�cient greedy heuristic algorithm. Based on
computations, we show that using this smart rule space allocation, it is possible to
save almost as much power consumption as the classical EAR approach.
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6.1 Publications

This chapter corresponds toOptimizing Rule Placement in Software-De�ned Net-
works for Energy-aware Routingby F. Giroire, J. Moulierac, and T. K. Phan which
has been accepted for publication in the proceeding of IEEE Global Communications
Conference (GlobeCom), 2014.

6.2 Introduction

Software-de�ned networking (SDN) in general, and OpenFlow in particu-
lar [MAB + 08], has been attracting a growing attention in the networking research
community in recent years. In traditional networks, network devices such as routers
and switches act as �closed� systems. They work as �black boxes� with applications
implemented on them. Users can only control them via limited and vendor-speci�c
control interfaces. Moreover, since the data plane (forwarding function) and con-
trol plane are integrated, it is di�cult for current network infrastructure to evolve
(e.g. to deploy new network protocols). SDN is a new networking paradigm that
decouples the control plane from the data plane. It provides a �exibility to develop
and test new network protocols and policies in real networks. Over past few years,
many applications have been built using the OpenFlow API [MAB + 08].

In this chapter, we focus on one application of the OpenFlow, that is to use
OpenFlow to minimize power consumption for an Internet service provider (ISP).
As shown in literature, many existing works have used OpenFlow as a tra�c en-
gineering approach to deploy EAR in a network [HSM+ 10][WYW + 12]. In these
works, the �ow table of each switch is assumed to hold an in�nite number of rules.
In practice, however, this assumption does not hold, and rule space becomes a sig-
ni�cant bottleneck for large-scale SDN networks. It is because the �ow table is
implemented using Ternary Content Addressable Memory (TCAM) which is expen-
sive and power hungry. Therefore, commodity switches typically support just from
few hundreds to few thousands of entries [KLRW13 ][KHK13][SCF+ 12]. Taking this
limitation into account, we show that the rule space constraints are very important
in EAR. An ine�cient rule allocation can lead to an unexpected routing solution,
causing network congestion and a�ecting QoS. In summary, we make the following
contributions:

� To our best knowledge, this is the �rst work that de�nes and formulates the
optimizing rule space problem in OpenFlow for EAR using ILP.

� As EAR is known to be NP-hard [GMMO10], we propose heuristic algorithm
that is e�ective for large network topologies. By evaluation, we show that the
heuristic algorithm achieves close-to-optimal solutions obtained by the ILP.

� Using real-life data tra�c traces from SNDlib [ OWPT10], we quantify energy
savings achieved by our approaches. Moreover, we also present other QoS
aspects such as routing length of EAR solutions.
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