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Etude des modes de résonance d’une torche a plasma d’arc associée a une
injection synchrone pour la réalisation de dépdts par voie liquide

Resumé: La projection par plasma d’arc de suspension permet d’obtenir des revétements
finement structurés a gradients de propriétés qui répondent aux besoins, par exemple, des
applications photocatalytiques, les piles & combustible a oxyde solide ou les revétements
de barriére thermique. Cependant, les torches a plasma, méme alimentées par des
sources de courant continu régulé, générent des jets de plasma fortement fluctuants.
Ces instabilités causent des variations importantes dans les transferts thermiques et
dynamiques des particules, ce qui diminue la fiabilité et la reproductibilité de la méthode.
Par conséquent, des efforts particuliers doivent étre faits pour améliorer la projection
par plasma d’arc de suspension et, ainsi, les propriétés des revétements. Depuis de
nombreuses années, la recherche s’est concentrée sur 'amélioration des transferts de
chaleur et de quantité de mouvement entre la matiére et le plasma au moyen de la mise
au point de nouvelles torches et la réduction des instabilités de ’arc. Cette thése présente
une nouvelle approche pour la projection par plasma d’arc de suspension. L’étude
approfondie des instabilités du plasma sont réalisées ce qui conduit a la production du jet
laminaire de plasma pulsé caractérisé par une forte modulation de I’enthalpie spécifique.
Ces oscillations réguliéres de plasma sont associées a l'injection de la suspension
synchronisée, ce qui est réalisé a 'aide de 'impression a jet d’encre déclenchée par le
signal de tension d’arc. Les résultats sont évalués par le systéme d’imagerie résolue en
temps et la spectroscopie d’émission optique résolue en temps. Cette nouvelle méthode
offre la possibilité de controler les transferts de chaleur et de quantité de mouvement
entre les particules et le plasma.

Mots clés : la projection par plasma d’arc de suspension, les instabilités du plasma,
I'impression a jet d’encre, plasma d’arc pulsé, les matériaux nanostructurés.



Table of contents

Study of the plasma torch resonant modes associated with the
synchronous injection for coating elaboration.

Abstract: Suspension plasma spraying permits to elaborate finely structured coatings
with graded properties which address the needs, for example, in the photocatalytic
applications, the solid oxide fuels or the thermal barrier coatings. However, the plasma
torches, even powered by dc regulated sources, generate highly fluctuating plasma jets.
These instabilities result in large variations in dynamic and heat transfers to particles,
what decreases the reproducibility and reliability of the method. Consequently, the
special efforts have to be devoted to ameliorate the suspension plasma spraying method
and, thus, the properties of the coatings. In recent years, the research has been focused
on the improvement of heat and momentum transfers between material and plasma
by means of the development of new non-conventional torches and the reduction of
arc instabilities. The following dissertation presents a new approach to the suspension
plasma spraying. The profound studies of the plasma instabilities are performed,
what leads to the production of the pulsed laminar plasma jet characterized by high
modulation of the specific enthalpy. These regular plasma oscillations are combined with
phased injection of suspension, what is achieved by using the ink-jet printer triggered
by the arc voltage signal. The results are evaluated by time-resolved imaging system
and the time-resolved emission optical spectroscopy. This new method presents the
possibility to control heat and momentum transfers between the particles and the plasma.

Keywords: suspension plasma spraying, plasma instabilities, ink-jet printing, pulsed arc
plasma, nanostructured materials.

SPCTS UMR CNRS n 7315
12, rue Atlantis - 87068 LIMOGES CEDEX
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Introduction

The coating is a covering which is applied to the surface of the object to
improve its functional performance, extend the components life by reducing wear due to
e.g. erosion, and, therefore, decrease the cost of the object. The coatings deposition
methods can be roughly divided into thin- and thick- film technologies. Thin films,
with the thickness of less than 1 pym can be produced by the processes like Chemical
Vapor Deposition (CVD) or Physical Vapor Deposition (PVD). Thick films have a
thickness over 20 pm and can be several millimetres thick. They are obtained by
e.g. chemical/electro-chemical plating, brazing, thermal spraying. The thermal spraying
processes are characterized by a wide variety of materials that can be used to produce
coatings, layers fabrication without significant heat input to the substrate, therefore,
without changing its properties and a relatively low cost. Consequently, the following
dissertation will be focused on one of the thermal spraying methods, the plasma spraying

process.

The plasma spraying method is the technique where the material in the form of
the powder is introduced to the plasma jet produced by the plasma torch. It results in the
coatings presented micrometer-sized features. However, for several years, the researchers
have been more interested in developing and studying the plasma-sprayed coatings with
nano-sized features. As Gell has highlighted changing the structure scale to nanometer
allows to increase e.g. coatings strength, toughness and coefficient of thermal expansion
[1]. Therefore, in the field of plasma sprayed coatings technology, the use of the suspension
of fine particles as material injected, so-called suspension plasma spraying method, is
becoming a well-established process. It allows obtaining the finely structured and dense
coatings with graded properties. The coatings produced by suspension plasma spraying
can be used in wear-resistant applications as well as in more complex integrated devices,

such as solid oxide fuel cells, thermal barrier coatings, photo catalytic coatings.

However, in more complex applications, the researchers face still many problems,
such as obtaining the appropriate crystallographic structure of materials, e.g. perovskite
structure of cathode in SOFC or anatase phase in TiO coatings [2,3|. These difficulties
are mainly caused by the power fluctuations of the plasma torch due to the electric
instabilities, which result in large variations in dynamic and heat transfers to particles.
Consequently, the special efforts have to be made to ameliorate the suspension plasma

spraying method and the properties of the coatings.

In recent years the research has been focused on the improvement of heat and
momentum transfers between material and plasma produced by the plasma torch by means
of the reduction of arc instabilities. One of the found solution is the development of a
new non-conventional plasma torch. The numerous designs have been implemented, e.g.

multi-electrode plasma torches which can be found in Triplex (Sulzer Metco, Switzerland)
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or Axial ITT (Northwest Mettech Corp., Canada).

The following studies propose an improved suspension plasma spraying process.
The principle is to produce a pulsed laminar plasma jet combined with synchronized
injection of liquid droplets, what is expected to control heat and momentum transfers
from plasma to materials and, therefore, increase the reproducibility and reliability of the
process. The pulsed plasma is obtained by the particular design of the plasma torch that
works at moderate power and following a resonant mode obtained by coupling the different
modes of the instabilities which will be studied in this thesis, i.e. so-called Helmholtz and
restrike modes. To accomplish the purpose of this thesis the origin of arc instabilities
must be understood. Therefore, the following studies are divided into two parts. The
first part is focused on the examination of plasma instabilities in dc torch, presenting
a similar configuration as the commonly used Sultzer Metco F4 gun. This torch in the
following thesis will be called the conventional. In the second part, a newly designed dc

plasma torch which allows obtaining the pulsed arc jet is presented.

The studies presented above are described in three chapters. The form of
the following dissertation differs from the traditional thesis. In order to facilitate the
comprehension of the obtained results and due to the use of two various systems, the
description of each experimental setup has been included in the particular chapter

specifying the obtained results.

The first chapter gives the general context of the plasma spraying process.
It explains the principles of this method, e.g. the properties of the plasma forming
gases, the operation of the dc plasma torch. Then, it presents the coatings formation
process from the material feedstock preparation to the different material injection systems,
the suspension droplet-plasma interactions and the coatings build-up process. To better
understand the fundamentals of the suspension plasma spraying process this part of the
chapter has been divided into three phases: "Plasma production", "Suspension injection
and penetration into the plasma jet" and "Material deposition". At the end of this part
of the dissertation the problems encountered in the method have been highlighted. The
description of the present research on the plasma instabilities gives the grounds to the

studies presented in chapter 2.

The second chapter introduces the studies of plasma instabilities in
conventional dc torch, presenting a similar configuration as the commercial Sultzer Metco
F4 gun. The first part gives the detailed description of the time-resolved measurements
and the data processing methods which have been applied to the arc voltage signal.
The obtained results have highlighted the appearance of the resonant mode in the torch,
so-called Helmholtz mode. The chapter shows the profound studies of these Helmholtz
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oscillations. Moreover, the investigation of the restrike mode, following the model found
in the literature and described in chapter 1, has been presented. The studies have leaded
to determine the key parameters influencing these modes and to show the possibility to
couple them together in a newly designed dc plasma torch. It results in a very repeatable
saw-tooth shape arc voltage signal which produces the pulsed plasma jet. The last part
of this chapter describes this original resonant mode, a new design of the torch and the

characteristics of the plasma produced by this system.

The third chapter presents a new, developed in this thesis, system which
may be described as the improvement of suspension plasma spraying method. The
principle is to activate the suspension emission at the chosen moment of the obtained
periodic plasma jet, following the requirements for the thermal treatment of the particular
material. The chapter presents the optimization of the system which plays the key role
of this new method. The experimental setup, together with the results have been divided
into three parts: the time-resolved imaging system, synchronized suspension injection
and time-resolved spectroscopy. The last part, the spectral measurements, has not been
included in the initial objective of this thesis. Therefore, the first experiments of the
plasma temperature measurements and the investigation of the plasma species have been
presented. The results obtained by this new system have highlighted the possibility to
control the heat and momentum transfers between the suspension and plasma. Moreover,
the first attempts of the coatings deposition have been performed and presented in the

end of this chapter.

The following thesis has been realized in the laboratory SPCTS - UMR CNRS
7315 of the University of Limoges. This work has been partly conducted in frame of a

research program entitled PLASMAT sponsored by the French National Research Agency
(ANR).
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1.1 Introduction

Plasma spraying is the part of thermal spraying, which according to the definition given
by American Society of Materials (ASM) is a group of processes in which finely divided
metallic and non-metallic surfacing materials are deposited in a molten or semi-molten
condition on a substrate to form a spray deposit [4]. The thermal spraying techniques
can be classified according to the energy source and the conditions of the process, what

is presented in Figure 1.1.

| Thermal spraying

s

Thermal Thermal spraying by

spraying iri & i schan

by beam b electric gas discharge
Laser : Arc _

spraying ] spraying Plasma spraying

Liquid stabilized DC-Plasma RF-Plasma
plasma spraying spraying spraying

Plasma
spraying spraying
in air in chambers

Figure 1.1: Overview of the different thermal-spray processes. [4]

This work focuses on the plasma spraying process with the material injected into a direct
current (dc) plasma jet at atmospheric pressure (plasma spraying in air in Figure 1.1).
Due to feedstock material injected into the plasma jet the plasma spraying technique
can be categorized into: atmospheric plasma spraying (APS), solution precursor plasma
spraying (SPPS) and suspension plasma spraying (SPS) [5-7|. In the APS process, solid
powder particles are injected into the plasma jet. The minimum thickness of the coatings
is limited to about 10 pm [7]. They are mostly used to provide protection against high
temperatures, corrosion, erosion and wear. The increasing interest in nanomaterials,
which according to the definition given by US National Nanotechnology Initiative are
the material structures with at least one dimension smaller than 100 nm, results in the
development of new plasma spraying processes. The one of this method, described by
Karthikeyan et al. [8], is the solution precursor plasma spraying, in which instead of
the conventional powder feedstock, an aqueous solution precursor is injected into the
plasma jet. This process allows obtaining the nano- and sub-micrometric microstructure
of coatings. An alternative method is a relatively new suspension plasma spraying, which

has been invented by the University of Sherbrooke in the mid-1990s [9]. The suspension
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composed of submicron or nano-sized powder particles suspended in a liquid is used as
the feedstock. The SPS process permits to produce finely structured nano-sized coatings,
what allows expanding the application area of the plasma spraying method. They may

be used as:

- Solid oxide fuel cell (SOFC)

It is an electrochemical conversion device that produces electricity directly from
oxidizing a fuel. It consists of four layers: anode, electrolyte, cathode and interconnect.
The three first coatings are ceramic, not electrically and ionically active below about
600°C. Therefore, many efforts have been devoted to produce the coatings for these
SOFC components by suspension plasma spraying method. The anode consists of the
porous nickel-YSZ (yttria-stabilized zirconia) cermet coating. The electrolyte requires
a dense and thin (< 15 um) YSZ coating. The porous perovskite, e.g. lanthanum ferro-
cobaltite doped with strontium (LSCF) or lanthanum manganite doped with strontium
(LSM) coating should be produced for the cathode.

- Thermal barrier coating (TBC)

Thermal barrier coatings (TBCs) are advanced material systems applied to metallic
surfaces, e.g. gas turbine or aero-engine parts, to help protect these components from
the heat and thermal degradation. The TBC materials should be characterized by: high
melting point, low thermal conductivity, thermal expansion match with the metallic
substrate, good adherence to the metallic substrate and a low sintering rate of the
porous microstructure. Therefore, the number of materials that can be used as TBCs
is very limited. The ceramic coatings such as Al;O3, TiO2, mullite, ZrO2, YSZ, CeOso,
LasZryO7 are applied as TBC materials, among which yttria-stabilized zirconia (YSZ)
is the most widely studied [10-12].

- Photo-catalytic coatings
In recent years the photo-catalysis process has been used in a broad range of
applications, including especially environmental and energy-related fields, illustrated

in the example of TiOy photo-catalysis in Figure 1.2.

Several semiconductors (TiOz, ZnO, Fe;O3, CdS, ZnS) can act as photocatalysts but
TiO2 has been most commonly studied due to its photocatalytic and hydrophilic
properties and moreover, high reactivity, reduced toxicity, chemical stability and lower
cost. The photo-catalytic properties of TiO2 coating depend on its phase composition.
The anatase TiO2 presents a higher photocatalytic activity than its rutile phase. 65

vol.% of anatase is necessary to achieve an acceptable photo-catalytic performance.

However, in more complex applications the researchers face still many problems, such as

obtaining the appropriate crystallographic structure of materials.
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Figure 1.2: Applications of TiOy photo-catalysis [13].

As Henne has presented on the example of solid oxide fuel cells (SOFC), these more

complex devices can be produced by other thermal spray methods, such as vacuum plasma

spraying (VPS) [14]. However, the goal of technological development is the reduction of

costs what can be achieved by suspension plasma spraying using dc torches at atmospheric

pressure. Therefore, the following thesis is focused on the studies and the improvement

of direct current plasma torch associated with the suspension injection.

In suspension plasma spraying method the material in the form of suspension is introduced

into the plasma jet produced by a direct current (dc) plasma torch. This process can be

divided into three important phases, indicated in Figure 1.3:
I Plasma production
IT Suspension injection and penetration into the plasma jet

ITT Material deposition

2
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Figure 1.3: Schematic view of a plasma spraying method [15].

Therefore, the following paragraph has been divided into three parts.
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1.2 Fundamentals of plasma spraying process

The plasma, often referred to a fourth state of matter, is a gas electrically conducting due
to the presence of charged particles [16-18|. Tt can be defined as a collection of species:
electrons, ions and neutral particles moving in random directions, schematically presented

in Figure 1.4. The mass of the ions and neutrals, my, is much higher than the electron

Gas Input
®
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Q& et Q
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Figure 1.4: Schematic view of a) plasma; b) plasma formation by a direct current plasma torch.

mass, me, therefore, these species have been defined as heavy particles. The plasma is
the result of the transformation of gas atoms to charged particles in consequence of the
increasing temperature, what can be achieved by different methods, e.g. microwaves, RF
discharges, laser. The following thesis is focused on the plasma spraying method. In this
technique the plasma is produced by the electric discharge using the direct current (dc)

plasma torch, what is presented in the following section.

1.2.1 Direct current plasma torch

As mentioned above, in the plasma spraying process the plasma jet is formed in the
torch. According to the current terminology, defined by Zukov et al., the term plasma
torch indicates the apparatus designed for the production of low temperature plasma
by heating the gas using the electric arc [19]. The first industrial dc plasma torches
appeared in the 1960s [15]. Since that time, a large number of torch designs has been
developed. The differences between the torches consist in various types of the cathode
tips, the gas injection, the nozzle shapes and diameters. The basic concept of the plasma
torch, shown in Figure 1.5, comprises a cathode, a plasma forming gas injector and an
anode nozzle. The following section focuses on the detailed description of a direct current

non-transferred plasma torch.
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Figure 1.5: Schematic view of a direct current plasma torch.

- Cathode
It emits the electrons for maintaining the arc discharge. The parameters of the cathode
differ according to the electrons emission mechanisms. In the case of the hot cathode

(a, b in Figure 1.6) is the thermionic emission defined by Richardson-Dushman law:

J = AgT?e*r (1.1)
where:
J is the emission current density [A.m™?],
T the temperature of the metal,
%4 the work function of the metal,
k the Boltzmann constant,
Ac the constant defined by: Ag = 4™ = 1.20173 x 10% [A.m~2.K?].

This type of the cathode is commonly made of tungsten doped with 1 —2 wt% of
ThO,; 2 wt% of La,0,, Y,04, CeO, [20,21]. The role of the dopant is to lower the
thermionic work function of tungsten and therefore, the operating temperature, to which
generally the erosion of the cathode is related. Sadek et al. have investigated the erosion
rates of different cathode materials in 150 A. The La,O, doped tungsten electrode is
characterized by the lowest operating temperature (2750 K comparing to 3600 K of
ThO,) and the lowest erosion rate [22].

_  w . S
a b [

Figure 1.6: Schematic view of the cathode: a) stick-type; b) button-type; c¢) cold cathode [23].
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Asg it is presented in Figure 1.6, two configurations of the hot cathode are commonly
used: the stick-type and the button-type cathode. The power levels of torches using
the stick-type cathode range between 10 and 150 kW, with arc currents below 1000 A.
The button-type cathode is cylindrical and characterized by the diameter almost equals
the length. This kind of cathode is inserted partially or completely in a water-cooled
copper holder. It is used mainly in transferred arc configuration with the arc current
until 3-6 kA. The cold cathode is commonly made of the copper, silver or alloy. It has a
very simple cylindrical shape with the cylinder closed at the one side. The cold cathode
torches work with the power levels from about 100 W to 10 MW and the arc current
levels in the range 100-3000 A.

- Anode
The anode is a passive component used to collect the electrons to obtain the current flow
from the electrical circuit to the plasma. The anode-nozzle, at which the localized heat
flux can reach 160 W.mm™2, should be water-cooled and made of high purity oxygen
free copper, characterized by high thermal conductivity: 358 W.m~'.K~! and thermal
diffusivity: 114 x 1075 m2.s7! at 25°C, often with an insert of sintered tungsten. Typical
nozzle diameters are between 6 and 10 mm for arc currents between 300 and 1000 A. The
anode nozzle design can highlight different process parameters, as a high gas velocity,
narrower or wider temperature profiles, different arc length and arc voltages. It has
been shown that a smaller nozzle diameter results in shorter arcs, lower temperatures
at the nozzle exit, but also higher velocities for the same current and mass flow rate
[24]. The anode configuration can be separated into two groups: the anode surface
perpendicular and parallel to the plasma jet axis. The first configuration is used in the
case of transferred arcs. The anode surface parallel to the jet axis is commonly found

in the plasma torches.

- Gas injection
Three types of the gas injection are used in the plasma spraying method: the axial,

radial and swirl injection, presented in Figure 1.7.

[
| I anode

Figure 1.7: Schematic view of the gas injection: a) axial; b) radial; ¢) swirl [25].
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In the axial injection the gas is injected parallel to the anode axis, Figure 1.7, and

has the longitudinal velocity component. This type of the injection is mainly used in
the torches with the stick-type cathode or the button-type for the high levels of the arc
current (I > 1500A). In the case of the radial injection, the gas is injected perpendicular
to the axis of the torch and presents strong radial component which afterwards is being
reduced. In the swirl injection, the swirl low creates the centrifugal forces, what pushes
the cold gas towards the walls of the torch. The selection of the gas injection method
has the influence on the arc current voltage, what was investigated in [26]. The use of
the axial injector results in the longest arcs, the highest arc voltage, while the radial

injection causes the shortest arc.

As has been mentioned, the plasma jet is produced by a torch in which the electrical arc
is struck between a cathode, © in Figure 1.8, and an anode, ®. The arc column (3 in
Figure 1.8) is developed from the cathode tip by pumping the part of the plasma forming

gas (1), injected in the way described above.
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Figure 1.8: Schematic view of a plasma spraying method [15].

The arc column is characterized by a laminar flow which is limited by an isothermal
envelope at T =T, (where T. is the critical temperature, defined in the section of
Stationary behavior of the torch). Outside this area no electrical conduction is possible,
which appears as a boundary between the arc column and the "cold" sheath (2 in Figure
1.8). Therefore, this column is constructed from the tip of the cathode to point on the
anode wall, presented as (4) in 1.8. This arc attachment to the nozzle wall is perpendicular
to the anode surface and is in the form of a high-temperature, low-density gas column
cutting through the cold gas boundary layer. The thickness of this layer depends strongly
on the plasma process parameters: the arc current, nozzle internal diameter, injection of

plasma forming gases. The studies of the arc attachment to the anode wall have shown
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that it continuously fluctuates in length and position [27,28]. This is due to the axial

and rotational movements induced by the drag forces exerted by the cold flow in the
boundary layer and the Lorentz forces. The rotational movement of the arc attachment is
strongly favored by the swirl injection of the plasma forming gas. The axial displacement
of the arc root gives the variation in the length of the arc column and, therefore, in
enthalpy. The rotational displacement results in a nonsymmetry in the gas flow field and,
consequently, inhomogeneity in the plasma jet. While the plasma jet, characterized by
low density (approximately 1/30 of that of the cold gas) and a high speed (between 600
and 2200 m/s), exits the torch nozzle, it meets the surrounding atmosphere, what results
in creating the swirl rings. They coalesce and cause large scale eddies (6 in Figure 1.8)

which introduce cold surrounding gas bubbles (7).

1.2.1.1 Characteristic of the plasma jet

The plasma is a complex mixture of gases, chemically neutral in order to reduce the erosion
of electrodes. Typical plasma forming gases are argon (Ar), hydrogen (H,), helium (He)
and nitrogen (N,). The choice of the injected gas plays a significant role in the plasma
spraying technique. It defines important plasma thermodynamic and transport properties.
The following paragraph is focused on the determination of these characteristics by the
choice of the plasma forming gas. Firstly, the plasma state and laws describing this state

of matter are given.

1.2.1.1.1 Plasma state

The plasma in the plasma spraying method is obtained by the electric discharge produced
by the direct current torch. The energy from the applied discharge is supplied to the
plasma forming gas. If this energy is sufficiently high, it results in: the dissociation
of molecules (Xy — 2X) in case of molecular gases and the ionization of atoms
(X — X* +e), where X symbolizes particular gas. Boulos et al. have summarized

the energies of the main plasma forming gases, presented in Table 1.1.

Table 1.1: Ionization and dissociation energies of the plasma forming gases [17].

Species Ar He H N Ho Ns
Ionization energy(eV) 15.755 24.481 13.659 14.534 15.426 15.58
Dissociation energy(eV) - - - - 4.588  9.756
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To sustain the plasma in thermal spray processes a relatively small degree of ionization

of the gas is required (less than 1-3%). The degree of ionization is defined as follows:

n; T
a=———n — (1.2)
Ny + N; Nn
where:
n; is the number density of ionized atoms,
N the number density of neutral atoms.

In plasma systems, complete thermodynamic equilibrium (CTE) is related to uniform
homogeneous plasma, in which kinetic and chemical equilibra are unambiguous functions
of temperature. This temperature is supposed to be homogeneous and the same for all
degrees of freedom, all the plasma system components, and all their possible reactions.
Therefore, the following conditions should be fulfilled:

- The plasma is isotropic: the particles do not favor any direction of propagation. The
velocity distribution functions for particles of every species must follow a Maxwell

distribution as follows:

2

dn m 3/2 mu
— = — 4rvid 1.
n (27rk:BT> erp [ 2]<:BT] Toav (1.3)

where m is the mass of the particle and n the total number of particles.

- The population density of the excited states of every species follows a Boltzmann

distribution:
nj g [ Lj ]
— = ——erp| — —= 1.4
ant P ]{/’BT ( )
where:
n;, gj, B are respectively the density of population, the statistical weight
and energy associated with the level j,
Qmt the partition function of the particular species, defined as follows:

QM =3, giexp[ — }
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- The ionization equilibrium is described by the Saha equation:

neni  2Q:™ r2rkpTme13/2 E; — AFE
= — [ 5 ] exp(— —> (1.5)
no Qom h k’BT
where:
Ne, Ny, Mo are the densities of electrons, the charged and neutral species,
Qi Qo™ the partition functions of ionized atoms with the factor 2 corresponded
to the statistical weight of the electron,
E; the ionization energy of the gas,
AFE the correction due to the decrease of E; by electric-field effects.

Moreover, the law of mass action of Guldberg-Waage, describing the molecular

dissociation, should be also introduced:

nany  Qa™Qy™ 12mkpT M, M,73/2 Db
- int 2] 6.1’])( - > (16)
Tab Qab (Ma + Mb)h ]{BT
where:
Na, Nby Nab are respectively the densities of the species: a, b and ab,
Dy the dissociation energy of the molecule ab.

- The electromagnetic radiation field is that of blackbody radiation of intensity, what is

given by the Planck function:

10(0) = 2 enp(sre) 1] (1.7)

However, the plasma in CTE conditions cannot be practically produced in the laboratory.
Most plasmas are optically thin over a wide range of wavelengths and, therefore, the
plasma radiation is much less than that of a blackbody. Consequently, the plasma
produced by e.g. dc torch is considered in more realistic approximation, so-called local
thermodynamic equilibrium (LTE).

According to the LTE approach, a thermal plasma is considered as optically thin and
thus does not require a radiation field that corresponds to the blackbody radiation, what
means that the Planck’s law is no longer valid. However, the collisional processes are
required to be locally in equilibrium. Therefore, the populations of all species and their
excited levels are described by the presented above equations of Maxwell, Boltzmann,
Saha and Guldberg-Waage, but with a temperature, which can differ from point to point

in space and time.
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Consequently, the plasma can be considered in the local thermodynamic equilibrium when

the following conditions are fulfilled:
- The different species of the plasma have a Maxwellian distribution

- The plasma is in the kinetic equilibrium. The ratio E/p (where E is the energy
that electron receives, p is the pressure) is sufficiently small that the temperatures of

electrons, T,, and heavy particles, T}, approach each other T, = T}, what is presented

MNONTHERMAL ARC —|—\ THERMAL ARC
Te

ROOM TEMPERATURE

T = mm e S S e e m m——— S

in Figure 1.9.

Temperature (K)

1 10 1 10! 1 1 1 il
Pressure (kPa)

Figure 1.9: Evolution of electron temperature (T,) and heavy particle temperature (Ty,) in a
mercury arc plasma [29].

- The collisions are the dominating mechanism for excitation (Boltzmann distribution)

and ionization (Saha equilibrium).

- The spatial variations of the plasma properties are sufficiently small to give the chemical

equilibrium.

However, it has been highlighted [17,29,30] that the equilibrium can be reached in the
plasma core, not in the plasma boundaries, due to fast diffusion of electrons, and close to

the walls or electrodes, where is a lower amount of the collisions.

1.2.1.1.2 Thermodynamic and transport properties

The choice of the injected gas plays a significant role in the plasma spraying technique. It
defines important plasma thermodynamic and transport properties: the specific enthalpy,
electrical conductivity, viscosity, thermal conductivity, which will be described in the
following paragraph.

The total enthalpy of the gas for high-velocity flows, hg, has two components: kinetic
enthalpy and static enthalpy related to the internal energy. The specific enthalpy is

determined by the following equation:
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ho = hg + Eg (1 8)
where
Vg is the gas velocity,
hg the static enthalpy related to the internal energy, defined as following:
T
hg — hi* = / cp(T)dT (1.9)
Tref
where:
hye! is the total enthalpy at the reference state: T — 0 K, p = 1 atm,
Cp the specific heat.
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Figure 1.10: Specific enthalpy of various gases at atmospheric pressure with indicated region
of interest [17].

Figure 1.10 shows the enthalpy of different plasma gases (N,, H,, Ar, He and O,) as a
function of temperature at atmospheric pressure. The plasma produced by dc plasma
torch is characterized by the temperature up to 14 000 K, what has been indicated on the
diagram. As can be noticed, the molecular gases have higher values of the enthalpy. The
observed steep variations are caused by the heats of reaction (dissociation and ionization

of the gas).
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The use of argon provides high plasma temperature due to comparatively low enthalpy.

The thermal expansion and thus high pressure lead to high plasma velocity. Adding
helium further increases the velocity of the plasma. Therefore, argon/helium plasma is
often referred to as cold and fast-moving whereas nitrogen/hydrogen is referred to as hot
plasma.

In the plasma, the electrons and ions drift under the influence of an applied electric field,
E, what gives rise to the density of the electric current, j, and can be presented by Ohm’s

law:

7 =0.E (1.10)

where:
0o is the electrical conductivity, which can be defined by the following equation after

applying the simplifications for the ions (n; = ne and p; < pe):

Oe = €Ne.le (1.11)
where:
e is the electron charge (1.6 x 10712 C),
TNe the electron density,
e the electron mobility.

As it is presented in Figure 1.11 the values of the electrical conductivity for Ar, Hy and
Ny are close, within the temperature difference of 1000 K, what can be explained by the

similar values of the ionization energies of these gases, noted in Table 1.1.

For helium the difference of the electrical conductivity is more significant. The

temperature values are shifted by around 5000 K due to higher ionization energy.

The viscosity, u, demonstrates the balance between the friction force in the direction of
the plasma flow and the velocity gradient in the orthogonal direction. The dependence of
1 on the temperature for different gases is presented in Figure 1.12. The drop of viscosity
for temperatures above 10 000 K for Ar, Hy, N2 and 17 000 K for He is due to ionization
of the gas. When this process is significant the charged-species densities increase and
their mobility decreases. Therefore, the molecular viscosity of thermal plasmas reaches

its maximum when the volume fraction of the electrons reaches about 3%.
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Figure 1.11: Dependence on the temperature of electrical conductivity of various gases [31].
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Figure 1.12: Temperature dependence of the viscosity of various gases (Hz, No, Ar, He) at
atmospheric pressure [31].

As can be assumed from Figure 1.12 by adding helium to argon (He less than 60 vol.%)
the viscosity keeps increasing up to 15 000 K instead of 10 000 K characteristic for argon.
Then, it starts to decrease due to helium ionization. It permits to run slightly longer
Ar-He jet than this obtained with Ar-Hy mixture. Moreover, while mixing hydrogen with
argon (Hs less than 30 vol.%) the viscosity of argon is only slightly reduced as well as in

case of No-Hs mixture.
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The thermal conductivity, x, is one of the most important parameters of the thermal
plasmas, which controls the energy losses in the arc as well as the heat transfer to
sprayed particles. The thermal conductivity can be presented as the sum of three terms:
K = Kt + KR + Kint, where kg results from the translation of species and is divided into:
kit and k$,. The first element corresponds to the translational thermal conductivity of
heavy species. The second, kg, is the translational thermal conductivity of electrons,
which becomes important above 8,000 K. kg, reactional thermal conductivity, results from
the chemical reactions (dissociations, ionizations) and ki, internal thermal conductivity,
from the internal degrees of freedom.

The temperature dependence of the thermal conductivity of the mixtures of argon with

light gases is illustrated in Figure 1.13.

__ 61 p=100kPa /
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Figure 1.13: Temperature dependence of the thermal conductivity of the mixtures: Ar-H2 (25
vol.%), Ar-He (50 vol.%), and Ar at atmospheric pressure [17].

The mixture Ar-Hy (25 vol.%) is characterized by the highest value of the thermal
conductivity with the strong dissociation peak between about 2 500 and 5 000 K. The
addition of helium to argon (He 50 vol.%) increases the thermal conductivity more
regularly, what results in the values between these ones of argon and the argon-hydrogen
mixture.

As has been presented, the plasma forming gases are characterized by different properties.
Therefore, the mixtures of monatomic and molecular gases are often used in plasma

spraying process [15,23,32].
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1.2.2 Material injection

The plasma spraying is the method in which the molten material, by the plasma jet,
is deposited on the substrate to form the coating. The previous part has presented
the central part of this technique, the dc torch which converts the supplied energy into
the stream of plasma. To obtain the coating the material has to be injected, heated
and accelerated by the plasma jet toward a substrate. Therefore, the following section
is focused on the material injection methods, what represents the second phase of the
plasma spraying, indicated in Figure 1.3. Firstly, the technique used in the conventional
APS method will be described. Than, the injection of the suspension droplets and the

thermo-physical phenomena associated with this process will be presented.

1.2.2.1 Material injection in conventional plasma spraying

In the conventional plasma spraying method (APS) the powders with the diameters
typically between 10 yum and 110 pm are injected to the plasma jet. The material injection
is performed mainly by a straight tube with an internal diameter in the range of 1.5 - 2
mm. Powder particles are carried by the gas, e.g. argon, with the flow rate in the range
of 3 to 10 slm. In the case of conventional dc plasma torches the material is introduced
to the plasma jet radially. The axial injection is performed in new designs of the torch,

e.g. Axial III which will be presented in next sections.

1.2.2.2 Suspension injection

As has been mentioned before, the following thesis is focused on the studies of dc plasma
torch associated with the suspension injection. The suspension is formulated by the
dispersion of fine powder particles within a solvent with the components which are added
in order to improve the rheological properties, decreasing the agglomeration of fine solids
and slowing down their sedimentation. The following section presents the suspension

preparation process and different methods of the suspension injection.

1.2.2.2.1 Suspension preparation

The suspension suitable for SPS process generally consists of the solid submicron or
nanosized powder, the solvent and chemical additives. The first mentioned component
of the suspension is the powder. The chemical components, size of particles, technology

used in production are very important factors in the powder fabrication. The powders are
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mainly produced by the chemical precipitation processes, mechanical crushing, milling,
thermal treatments. The choice of the solvent is very important for the liquid feedstock
properties such as low viscosity and good stability. Table 1.2 presents the parameters of

main liquids used in the suspension: water and ethanol.

Table 1.2: The parameters of the most common solvents for the suspension preparation [33].

Liquid  Surface Viscosity Specific heat Latent heat of Vaporization

tension vaporization temperature
O Lbs Cp Lv Tv
(J.m™2) (Pa.s) (Jkg7t.x™l)  (Jkg™) (K)

Water 72 x 1073 1073 4.18 x 103 2.26 x 10° 373

Ethanol 22 x 1073 1.06 x 107% 2.44 x 10? 0.84 x 10° 351

Comparing the properties of these two liquids it can be stated that water requires
more energy than ethanol to get vaporized. In addition, ethanol is characterized by a
lower surface tension. Nevertheless, it contains carbon which can pollute the coatings.
Therefore, the mixture of the ethanol with water are commonly used.

A typical suspension preparation process is outlined in Figure 1.14.

commercial confected commercial commercial
powder powders solvents additives

raw materials I |
1"

mixing of the mixing
ingredients rocess
) (-
\ 4
deagglomeration £ ; l l
and - attrition mill bead mill 5
homogenization ; G4 | (circular flow)
grinding balls | grinding balls
(ZrO, or WC) (2rO,)

< 7
. 4
v

posttreatment v
(optional) | sieving

suspension
ready to use

Figure 1.14: General preparation route for the suspension [34].

The most common way to produce the suspension is to make a simple slurry with powder
particles and a solvent. To obtain good homogenization and deagglomeration of the
suspension the slurry is treated by the attrition or bead milling. However, this process

can be not sufficient for the nano-sized particles, especially of oxides which have the
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tendency to agglomerate or aggregate. As shown in Figure 1.14 the dispersant is being

added to the liquid feedstock to stabilize the powder within the solvent, e.g. a phosphate
ester mixed with zirconia particles in [35]. It adsorbs on the particle surface and allows
an effective dispersion of particles by electrostatic, steric, or electro-steric repulsions. By
adding some supplements, e.g. ammonium polyacrylic acid (PAA) or polyvinyl alcohol
(PVA), to the liquid feedstock is possible to modify the surface tension or the viscosity
of the suspension. Good adjustment of these properties is important for the material
injection and the treatment of the suspension droplets by the plasma, what is outlined in

the following sections.

1.2.2.2.2 Suspension injection methods

In suspension plasma spraying the liquid material is injected to the plasma jet by an
adequate method. In the conventional systems the injection is carried out mainly by the
atomization and mechanical injection. The following chapter describes these conventional
methods. Moreover, new techniques, which enable to control the injection moment, will

be presented.

1.2.2.2.2.1 Spray atomization

This method uses an external energy, the atomizing gas, to break up the liquid into
droplets. The low velocity liquid is injected inside a nozzle where is fragmented by a gas
(mostly Ar because of a high mass density, presented in e.g. [36]) expanding within the
body of the nozzle. Fauchais et al. have defined the types of break-up mechanisms due
to the liquid viscosity, g [37,38]. The liquids with the viscosity between 0.1 and 50-60
mPa.s break-up into drops according to the Weber number, We, which is the ratio of the

force exerted by the flow on the liquid to the surface tension force, defined as following:

2d
We = Pg-Ur-t1 (1.12)
]
where:
Pq is the gas mass density,
Uy the relative velocity between the gas and the liquid,
d; the diameter of the liquid droplet,
o the surface tension of the liquid.
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For a fluid with higher viscosity the Ohnesorge number, Oh, has to be also considered. Tt
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relates the viscous forces to inertial and surface tension forces, according to the equation:

Oh =t (1.13)

\/Pg-di.0

The typical sizes of atomized material droplets range between 2 and 100 pm, the
corresponding velocities varying from 5 to 60 m/s.

There are many types of atomizers. One of the most widely used, the pneumatic droplets
generator, is presented in Figure 1.15. It consists of a robust steel chamber, a nozzle at

the bottom and a T-junction arrangement at the top.

Vent hole

Valve

T-Junction EI:I Gas supply
N i
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%7 Solenoid valve

-

Q

Mozzle

Figure 1.15: Schematic of a pneumatic droplet generator [39].

The functioning of pneumatic droplet generator based on applying pulses of a pressurized
gas to the liquid contained in the chamber. The gas pulse forces out droplets through the
nozzle in the bottom plate of the generator. A solenoid valve is rapidly opened and closed
to create pressure pulses. In each pulse, one or more droplets emerge from the nozzle
exit. The nozzle is a cylindrical synthetic sapphire nozzle of about 0,1 mm diameter.
Due to this small size, droplets only may be ejected if a gas pressure pulse is applied.
Droplet generation in this technique is controlled by the gas pulse duration (solenoid
valve duration), the vent hole diameter and the gas supply pressure. In rotary atomizers
centrifugal forces are used to further enhance the breakup process [40,41]. In this case the
liquid is supplied to the centre of a spinning disk and liquid sheets or ligaments are thrown
off the edges of the disk. Other types include vibratory and ultrasonic atomizers (or
nebulizers), where the drops are formed by vibrating the injector nozzle at high frequencies

and at large amplitudes to produce short-wave length disturbances to the liquid flow.
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Ultrasonic atomizers are used in the applications where very fine sprays (submicron sizes)
are required. The electrostatic atomizers can be also used for the generation of the
droplets. In this type of atomizer the spray liquid is charged by applying a high-voltage
drop across the nozzle. The dispersion of the spray drops is increased by exploiting

electrical repulsive forces between the droplets.
1.2.2.2.2.2 Mechanical injection

In the mechanical injection, shown in Figure 1.16, the suspension is stored in the
pressurized tank from where it is forced through a nozzle of specified internal diameter,
d, [33,42-44]. Fazilleau et al. have used a calibrated nozzle hole with the diameter of
150 pm fabricated by the electro-erosion [43| and Etchart-Salas et al. have presented the

results obtained by a laser-machined nozzle of diameter varying from 50 to 300 pm [33,44].

LIQUID JET COMPRESSED
INJECTOR M AR

< 1 4 4

PLASMATORCH

SUSPENSIONS SOLVENT

Figure 1.16: Schematic view of a mechanical injection [43].

The size of the droplets depends on the internal nozzle diameter following the relation:
d; ~ 1.9 x d,, |45]. The suspension injection, in the mechanical method, is controlled by
the pressure of the liquid in the reservoir. The mass flow rate, m;, is determined by the

following equation:

ml == pl.Ul.Sn (1.14)
where:
o) represents the liquid specific mass,
v the liquid average velocity at the nozzle exit,
Sh the cross section area of the nozzle hole.

The gas pressure difference, Ap, between the pressure in the container and the surrounding

atmosphere is depicted by the equation:
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2
Ap = Lo (1.15)
2
where:
f is the friction coefficient of the liquid in the injection nozzle which depends on nozzle

Fazilleau et al. have shown that the square of the liquid velocity varies linearly with the
pressure of the reservoir. For example, injection velocities between 25 and 35 m/s were

obtained with a tank pressure between 0.2 and 0.6 MPa.

1.2.2.2.2.3 Alternative suspension injection methods

New methods have been developed to control the properties of the liquid injection.
Blazdell et al. have highlighted the possibility of continuous suspension injection by
superimposing a modulation signal to piezoceramic material of dc jet printer head
(Domino Inkjet, Japan), presented in Figure 1.17 [46]. The liquid was forced through
a 50 pm diameter nozzle under pressure (up to 0.5 MPa), superimposed by a piezoelectric

drive rod modulated with frequency of 64 kHz. Using this operating frequency permits

‘UQU&

Modulation Voltage

to produce 64000 drops per second.

Piezo Crystal

] Drive Rod
«—— Gun Body

Bleed

50um Nozzle

foe— Ink Stream

[ X L ]

Figure 1.17: Schematic view of a jet printer head [46].
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The drop diameter, d;, depends on the factors, presented by the following equation:

Sdz.vl 1/3
d = |—F/— 1.16
=[] (119
where:
dy, is the nozzle orifice diameter,
vy the stream velocity,
f the frequency of piezoelectric modulation.

The equation above shows that the drop diameter is a function of the liquid flow
velocity and therefore these two important parameters can not be controlled separately.
Oberste Berghaus et al. have described the similar method using a magnetostrictive
drive rod (Etrema AU-010, Ames, lowa) [47]. The suspension was injected from the
pressurized reservoir through the nozzle with diameters varied between 100 and 255 pm. A
magnetostrictive drive rod, mounted at the nozzle, applied the pressure pulses at different
frequencies up to 30 kHz. This new injection method allowed producing 400 pum drops
with 10 ps delay between each and with a velocity of 20 m/s.

Both methods permit to control the droplet diameter, flow rate and velocity. By
superimposing signal to the injection head the uniformly spaced, suspension droplets

can be generated.

1.2.2.2.3 Thermo-physical phenomena of the droplets

The coatings obtained by the suspension plasma spraying method depend on the
interaction between the plasma jet and the injected feedstock material. Therefore,
understanding the movement and heating of the suspension droplets inside the plasma is
the important part in the process. The study of the interactions between the liquid and
the plasma jet should take into account the heat and momentum transfer to the particles,

particle fragmentation and evaporation processes.

1.2.2.2.3.1 Suspension penetration into the plasma jet

While the suspension jet or drops are injected to the plasma jet they are progressively or
rapidly fragmented into droplets. It results in the decrease of their volume, what causes
that the injection force of the droplets and force imparted to them by the gas jet are

being decreased. Therefore, the droplets do not penetrate any more into the plasma jet.
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Fazilleau has presented the condition for good suspension penetration into the plasma
jet [35]:

proi® > ppuy” (1.17)
where:
ol is the liquid density,
Pp the plasma mass density,
v the liquid velocity,
Up the plasma velocity.

Once the suspension droplets are entrained into plasma jet, they undergo the
fragmentation process due to a strong shear stress (generated by the plasma flow) and
the liquid vaporization caused by high plasma heat flux. The fragmentation depends on

the dimensionless Weber number defined as follows:

We = Ui (1.18)
]
where:
Uy is the relative velocity between the gas and the liquid,
d; the diameter of the droplet,
oy the surface tension of the liquid.

Pilch and Erdman have determined the mechanisms of drop break-up according to We

number, presented in Figure 1.18 [48].

Bag break-up: 12<We<50
f |

Bag and jet break-up: 50<We<100

Sheet stripping: 100<We<350

—
| |
/ S

Wave crest stripping and catastrophic break-up: 350<We

—a

v

Figure 1.18: Droplet break-up mechanisms [48].
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For 12 < We < 50 and 50 < We < 100 the fragmentation is called "bag break-up" and

"bag and jet break-up" because it corresponds to the deformation of the drop as a bag-

like structure. The droplet is stretched and swept off in the flow direction.

For 100 < We < 350 the process is named "sheet stripping" fragmentation. Thin pieces
of liquid are drawn from the periphery of the deforming droplets.

For We > 350 the fragmentation is called "wave crest stripping and catastrophic break-
up" what corresponds to a multistage breaking process.

Moreover, the studies of the fragmentation process have shown that a Weber number of
about 14 has been the critical value over which the droplet undergoes breakup. It has
been highlighted by Basu et al. who have studied the phenomena associated with solution
precursor plasma spray (SPPS) process [49, 50].

Once the suspension droplet is injected into the plasma it is exposed to the aerodynamic,
F., and the surface tension, Fy, forces. The aerodynamic force of the plasma jet results
in the break-up of the drop and the surface tension of the liquid opposes this force. To
determine the minimum droplet diameter (d¢), when the fragmentation is completed, both

forces are considered as following:

g.CD.de.p.U2 = 7T.df.(7 (1.19)
where:
Ch is the flow drag coefficient,
P the plasma specific mass ,
the relative velocity between flow and drop,
o the droplet surface tension.

The minimum droplet diameter is then given by:

8.0

dey = ——
! Cp.p.v?

(1.20)
The droplet diameter (df), when the fragmentation is completed, depends strongly on the
liquid and the plasma flow velocity, what is shown in Table 1.3. The calculations of d¢

are presented for Ar-Hy plasma jet.
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Table 1.3: Calculation of fragmentation times for ethanol and water droplets for different
plasma jet velocities [51].

v (m/s)
Calculation of d¢ (us) 500 1000 2000

Water 0.52 0.29 0.15
Ethanol 0.57 0.3 0.14

The important parameter of the fragmentation is the time duration of this process.

Fazilleau et al. have shown that the fragmentation time, t, is given by [43]:

¢ i i) 1.21
F= Cp.p.v? (1.21)

The model presented by Fazilleau considers that the radius of the initial droplet (1) is
fragmented into n droplets of radius (rq): 1s* = n.rg®.
All the droplets introduced into the plasma jet undergo heating resulting in solvent

vaporization which is obtained by the energy balance equation:

dV.
4. he(T —Ts) = Lv.ps.d—; (1.22)

where:
he is the heat transfer coefficient, defined as follows: h. = E;,Y v
T the plasma temperature,
T the temperature at the surface of the liquid,
L, the latent heat of the liquid vaporization,
d;f the volume variation of the droplet, determined as: d;f = 47> ddrs.

Assuming that during the vaporization time, t,, the drop radius varies from rg to 0, t, is

defined by the equation:

Lv.ps.rs2
(T —Ts)k.Nu

Figure 1.19 presents the comparison between the fragmentation and the vaporization times

ty = (1.23)

of ethanol droplet in the plasma jet (Ar-Hy, 45-15 slm, 500 A, anode nozzle diameter 7

mm).

It highlights that the fragmentation time is at least two orders of magnitude lower than
the vaporization time. This difference is increased when the buffer effect of the vapour

cloud around droplets is taken into account.
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Figure 1.19: Variation of fragmentation and vaporization time of ethanol droplets inside Ar-Hs
plasma jet [43].

1.2.2.2.3.2 Behaviour of the particle in plasma jet

The mechanism of the heat transfer from the plasma to the particle and the particle to

the surroundings is presented in Figure 1.20.

Qs
Qv

Qy

Figure 1.20: Schematic view of the heat transfer between the particle and the plasma [51].

The balance between conduction and convection heat (Qcv) transfers from the hot gas
to the particle and particle cooling due to radiative heat losses from the surface (Qgr) and
losses from radiating vapour (Qv) determines the net heat transfer to a particle (Quet) by

the following equation:

Qnet = Qcv — Qr — Qv (1.24)

The convection process has a major contribution to the heat transfer at the moment of
the droplet injection to the plasma jet and at the end of particle flight if the gas become
cooler and slower than the particle. The conduction is important when the relative velocity
decreases, what corresponds to the middle of the particle flight. The radiative losses are

significant when the temperature and size of the particles are relatively high.
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Boulos et al. have shown that they affect the heat transfer in the case of pure argon

plasmas when the heat transfer coefficient, h., is low [17].

The conduction and convection mechanisms are usually described by the Nusselt number:

he.d
Nu =~ =240.6x R’ x Pro3 (1.25)
where:
K is the thermal conductivity of the fluid,
d; the liquid particle diameter,
Re Reynolds number,
Pr Prandtl number.

The first term of the right-hand side of Equation (1.25) determines the conduction

mechanism. It is dominant in the case of small values of Reynolds number, Re, defined

as follows:

Up.dj.

Re = %Pa (1.26)
m

where:
Uy is the relative velocity between the gas and the liquid,
Pq the gas mass density,
m the liquid particle viscosity.

The conduction mechanism is principal when i.e. the particle has a velocity nearly equal
to the velocity of the gas. Such a case occurs when a particle is in the middle of its flight.

Otherwise, the second term, the Prandtl number, must be considered, defined as:

pr = (1.27)
K

In the case of nanometer and sub-micrometer sized particles of the suspension the Knudsen
effect, which reduces the heat transfer, should be also considered. It depends on the

Knudsen number defined as follows:
Kn = \/d, (1.28)

where \ defines the mean free path of the plasma molecules. It has been demonstrated that
the Knudsen effect should be taken into account when the ratio of the plasma molecules
mean free path, \, to the particle diameter, d,, is smaller than one (0.1 < Kn < 1.0) [17].

While the particle is moving in the plasma jet is exposed to a number of forces, which act
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simultaneously on the particle and have varying influence on its trajectory and residence

time in the plasma. The most important impact have inertia forces, F;, and the viscous

drag forces, Fp, defined as follows:

pp—2 (1.29)

FD == .CD.—.,Og.UT (130)

As Pawlowski has presented, in most practical cases met in thermal spraying, only the
drag force is taken into account and the force balance around a single particle in motion
in a plasma flow can be written as: F; = Fp [42]. The drag coefficient, Cp, depends on
the particle velocity relative to the flame velocity, what is determined by the Re number

and presented in Table 1.4.

Table 1.4: Equations for Cp of a single sphere according to the Re number [42,51].

Cp=2 Re < 0.2
Cp = 21[1 + 0.187 x Re] 02 <Re<?2
Cp=21[1+0.11xRe”] 2<Re<20

Cp = 22[1 4 0.189 x Re™%?] 20 < Re < 200

In the case of the particles below 0.1 um the thermophoresis force should be taken into
account in the areas characterized by the steep temperature gradients. The small particles
change their trajectories from the plasma core to the jet fringes characterized by lower gas
temperature and velocity. Moreover, because of their low inertia, the particles can follow
the hot gas trajectory which flows parallel to the substrate surface and never impact
on it. It occurs when the particles velocity is below: St < 1. St, the Stokes number,

characterizes the behaviour of particles suspended in a fluid flow, as follows:

d 2
St = Prlp U (1.31)
HgtBL
where:
Pp is the particle specific mass,
Ig the gas viscosity,
LBL the thickness of the flow boundary layer, BL, in front of the substrate.

When St > 1, that is when particles velocity is high enough, particles can cross the

boundary layer that develops at the substrate surface and impact on it.
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1.2.3 Coatings formation

The following section presents the last phase of the plasma spraying process- the material
deposition.

Particles with given temperatures (above or close to their melting temperature) and
velocities impact and flatten on the substrate, or previously deposited material, forming
lamellae (splat). At impact with the substrate the particle flattens and the high pressure
inside it forces melted material to flow laterally and ductile material to deform. The
particle kinetic energy is transformed into work of viscous deformation and surface energy.
The structure of the splat results from the spreading and solidification of the particles

onto the substrate, what depends on the following parameters:

the velocity and size of particle

properties of the particle material in the liquid state, e.g. viscosity, surface tension

ability of the wetting the substrate by liquid particles

impact angle relative to the substrate

surface roughness of substrate

The splat adhesion to the substrate depends strongly on the surface morphology of the
base material. Therefore, the substrate has to be adequately prepared. The standard
process is roughening of the surface by abrasive grit blasting. The substrate surface
is blasted with compressed air jets carrying the abrasive grits, the angular particles of
chilled cast iron or ceramic. In the plasma spraying process the stainless steel, aluminium
or titanium substrates are commonly used. Therefore, the grits of 16-60 um are generally
applied. The preparation of the surface by abrasive grit blasting should answer the
following purposes. Firstly, it should clean and activate the surface in order to avoid
bonding defects in the interface between coating and base materials. The surface before
this process can be treated by solvents, e.g. trichloroethylene, in order to remove the
oil, grease or dirt. Secondly, grit blasting has to provide the right surface roughness to
increase the effective surface area and to improve adhesive bonding of the sprayed deposit.
The splat formation is presented in Figure 1.21. The flattening time is in the range of a
few us. The solidification process is longer though solidification starts before flattening is

completed.

The time between two successive impacts is in the range of ten to a few tens of us.

Therefore, the next particle impacts on an already solidified splat.
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before impact <5 ps 0,8-10 us 10 - 100 ps

Figure 1.21: Characteristic time of lamallea formation in the conventional plasma spraying
method [45].

The microstructure of the AloO3 coating examined by a scanning electron microscopy
(SEM) is presented in Figure 1.22. The suspension has been mechanically injected to
the plasma jet produced by a stick-cathode dc plasma torch developed by Tingaud et
al. [52,53]. The torch has been operated with Ar-H, (45-15 slpm) plasma forming gas

mixture and the arc current of 500 A.

Figure 1.22: Aly,03 SPS coating architecture. Process parameters: Ar-Hg 45-15 slpm, I = 500
A, h = 14 MJkg~!, mechanical suspension injection, feedstock dso = 500 nm [53].

The examination of the coating has highlighted that it contains layered splats, unmolten
particles (angular particles) and molten particles resoldified before their impact on the
substrate (small spherical grains), what is highlighted in Figure 1.22.

To compare the results obtained by a stick-cathode dc plasma torch, the microstructure of
the coating obtained by Triplex I plasma gun, described in the next section, is presented

in Figure 1.23.

The coating microstructure consists of thin lamellas formed by single splats, which
contain fine-grained, overspray particles (E) and re-solidified particles (C). The coating
shows areas of good (A) and poor (B) inter-splat bonding. The splats have a columnar
grain growth (D) with a grain thickness up to 0.1 um. Moreover, the microstructure is

characterized by inter-lamellar cracks (G), microcracks (H) and intrasplat cracks (F).
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Figure 1.23: Main fracture features of 5YSZ SPS coating produced by Triplex I plasma gun [54].

Comparing both coatings microstructures, obtained by SPS method using the
conventional torch and Triplex I plasma gun, it can be noticed that Triplex allows
obtaining more and thinner lamellas formed by single splats. However, the similar features
between two microstructures can be also found, e.g. the re-solidified or overspray particles.
It can be assumed to the poorly controlled heat and momentum transfers between plasma
and suspension, what is emphasized by the plasma fluctuations, presented in the following

section.

1.3 Plasma instabilities

In the plasma spraying method most of the torches are supplied by a direct current (dc)
power source. However, in spite of this fact, the plasma jet produced by a torch presents

unsteady characteristics.

Etchart et al. has studied the suspension fragmentation process according to the arc
voltage fluctuations, what is presented in Figure 1.24. The commercial dc plasma torch
(PTF4 from Sultzer Metco) has been operated with Ar-H, (45-15 slpm) plasma forming
gas mixture and the arc current of 503 A. The time-resolved imaging system permitted to
observe the suspension penetration within chosen moments of the fluctuating plasma jet.
Figure 1.24 shows the pictures taken for an instantaneous arc voltage of (a) 65 V and (b)
40 V. The differences in the droplets fragmentation and trajectory highlight the strong
influence of the plasma jet fluctuations on the SPS method.

This time-fluctuating momentum of the plasma results in a poor reproducibility and
reliability of the method, what causes the limited applications of suspension plasma

spraying in advanced processing.
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Figure 1.24: Plasma-suspension interaction at the triggering level of (a) 65 V and (b) 40 V [44].

Therefore, for many years, the special efforts have been devoted to understand the arc

behavior in dc plasma torch, what is described in the following paragraphs.

1.3.1 Stationary behavior of the torch

To estimate the characteristics of the plasma jet and highlight the influence of
experimental parameters on plasma jet velocity and pressure contributions, the simplified
analytic model has been presented in [55]. The electrical conductivity and the heat
potential have been presented in function of the specific enthalpy, what is highlighted in
Figure 1.25.

10000 16
] I b
9000 - 1a ] )
=~ B000 -
E. 9 - 121
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z : o]
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3 i =
3 5000 - g 3
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b ® Ar-He-H2(40-10-50%wvol)
0 4 ; - r v - v - ; . o ——— ———
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Specific enthalpy CMJ<kg'1} Specific enthalpy (MJ.kg™)

Figure 1.25: Dependence on specific enthalpy of: a) the electrical conductivity, b) the heat
potential of various gases [55].
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The representation of the electrical conductivity, given in Figure 1.25 a), allows defining
the critical specific enthalpy, h. given in Table 1.5, which represents the electrical
conduction threshold, the enthalpy value above which the electrical conduction begins.
To define the threshold of electrical conduction in nitrogen, the electrical conductivity has

been fitted by a basic square root function:
o(h) = 0,(h — h)*® (1.32)

for h > he = h(T,)

Figure 1.25 b) highlights the linear dependence on the specific enthalpy of the heat
potential, in the range of interest of spraying application, defined by the Kirchoft’s

equation as follows:

K(T) = j—; (1.33)

where: x and T are, respectively, the thermal conductivity and the temperature. If ? is
the heat flux, the heat potential can be written as: 7 = —?(p.

Table 1.5: Critical enthalpy, hc, at the electrical conduction threshold, linear coefficient between
heat potential and specific enthalpy, a,, and coefficient used for electrical conduction as a function
of specific enthalpy, J,, for different plasma forming gases [55].

Plasma gas Ar  Ar-Ho Ns Ar-He Ar-Hy-He
(75-25 vol%) (25-75 vol%)  (40-10-50 vol%)

h. (MJ.kgfl) 3.70 10.40 41.10 13.20 12.14

a, (107*kgm~'.s71) 3.06 7.06 2.82 4.33 4.31

8y (C.V-1.m2) 1.89 1.42 0.95 1.03 1.56

The representation of the electrical conduction as the function of the specific enthalpy
has leaded to estimate the plasma produced by a torch in the frame of a two-layer model,

presented in Figure 1.26, if h > h. takes place.

MNozzle co{our arc terminusl
e:LI \-..‘ R= 2
ir N
Arc i
0 z

cathode

Figure 1.26: Schematic view of the two-layer model.

ecr, represents the thickness of the cold layer where the electrical conductivity is neglected,

outside h, surface. A mean radius, re, of the plasma is defined as follows: h(re) = he.
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The main purpose of this model is to determine the enthalpy radius profiles to deduce
the stationary characteristics of the plasma jet at the nozzle exit as function of easily
measured experimental parameters (arc current, mean voltage, electrode thermal losses)
and thermophysical properties of the plasma.

The specific enthalpy of the plasma results from the energy balance measurement of the
electric power input, dissipated by Joule heating, and thermal losses due to radiation.

The kinetic energy is negligible, therefore the energy equation is presented as follows:

oh
pu— = oE*+V?p—q, (1.34)
0z
where z, p, 0, E, q, are, respectively, the axial coordinate, the plasma density, the electrical
conductivity, the electric field and the radiative losses. By assuming that the density of
mass flux is constant, introducing the term s, as the group of the convective specific
enthalpy term, the Joule heating term and the radiative losses term, and by expressing
the linearity between heat potential and specific enthalpy, the radial profile, h(r), at the
nozzle exit can be deduced in the plasma (0 <1 <r.) and in ecy, (re <1 < R):
10, oh s
)= (1.35)
ror: or ay
what allows determining the simple parabolic profile of the specific enthalpy within the
plasma and a logarithmic one within ecr,, as follows:
For the arc column (0 < (R/r.)? < 1):

h=he + Ah[l - (?)2] (1.36)
For the cold sheath ((R/re)? > 1):
h = he — he [1 . (?)2] — (Ah+ he)zn<(£)2) (1.37)

where: Ah = |sy|.r?/4a,. Ah and 1. have been determined from two conditions: one
concerning the overall thermal balance and the other one, the gas enthalpy at the anode
wall whose temperature is sufficiently low so that: h(R) = 0. The integration of equation
(1.35) by using (1.36) and (1.37), and reduced variables: x = h/h,, y = (r./R)? gives:

zln(y) = %y -1 (1.38)

what defines the overall thermal balance as non-dimensional variables and is solved by

using a Newton-Raphson method.
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The derivation of the boundary condition, h(R) = 0, in terms of x and y variables, allows

C
—— and ro. = R/y.
ln(y € \/y
The presented model permits, by introducing a mean isentropic coefficient, to calculate

determining: Ah = —

the axial velocity of the plasma jet at the nozzle exit. The plasma flow at the nozzle exit
is assumed to be equivalent to an isentropic fictitious plasma flow presenting the same
stagnation properties. Following basic consideration of compressible fluid mechanics, the
energy conservation is applied along a streamline crossing the nozzle exit section at a
distance r from the nozzle axis. Using the Barré de Saint-Venant relationship for an
isentropic and compressible flow, it can be written as follows:

v F

O+ T om

5 = h(r) (1.39)

By using h = puS, where S is the area of the nozzle cross section, equation (1.39) becomes:

2vP,S

u(r) + (=1

u(r) —2h(r) =0 (1.40)

what leads to simple formula for the plasma velocity:

o 2h(r)
u(r) =wv ( 1+ o 1> (1.41)
where: P g
=L e (1.42)
y—1 m

In general v** >> 2h(r), therefore, the above equation is written as u(r) ~ h(r)/v* within
10% of accuracy. This relationship can be used to define an averaged velocity, ug, by

using the measured specific enthalpy hg as follows:

n(y —1)

m
— 1.4
ug = ho PS5~ (1.43)

where 7 is the averaged isentropic exponent, directly linked to the plasma enthalpy or
the ionization degree, what has been defined from an analysis of pressure contributions
in the plasma flow, presented below. This obtained equation has been highlighted to be
qualitatively in agreement with the relationship giving the maximum axial velocity of a
nitrogen and an argon-hydrogen plasma jet deduced from measurements by Planche et

al. as follows [24]:
1021 J0.44

Umar = KW (144)

where K depends on the plasma gas chemical composition.
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To find the pressure variations between the nozzle exit and a point located on the gas

feeding line of the plasma torch, the total pressure has been measured as follows:

P, =P, + APy + AP;s + AP, + AP, (1.45)

where:
P, is the atmospheric pressure,
APy the overpressure due to the cold gas flow between the measurement point

in the gas feeding line and the arc region,
AP, the magnetic overpressure at the cathode tip due to the Maecker effect
AP; the isentropic overpressure which is the driving pressure, defined as follows:

hom?(y — 1
AP, — ori” (7 ),
2vS?P,

AP, the overpressure due to the plasma viscosity within the nozzle, admitted to

be proportional to the nozzle length ¢, defined in two different ways:

ol
1) as a linear loss pressure proportional to the nozzle length: AP, = — pu?,
128um/t
2) assuming a Poiseuille flow at the nozzle exit: AP, = —
T

The sum (P, + AP ) has been obtained as the results of the pressure measurements for
the different mass flow rates and internal nozzle diameter without generating the plasma.
If AP, =P¢ — (Pa + AP¢), AP, is defined as follows:

T 1) o 1 4 ) (1.46)

APy = APy + (1—
p m 27 SQPQ
The equation leads to the linear relationship between the measured overpressure, APy,
and the term m?hy which is known from the experimental parameters, what is presented

in Figure 1.27.

Figure 1.27 represents the dependence of the measured mean pressure on the term
consisting of the mass flow rate of gases and the specific enthalpy, which is defined

Ul —
ﬂ, where U, T, and Qoss are the measured mean

experimentally as follows: hy =
m

values, respectively, of the arc voltage, of the arc current and of the torch thermal losses.

Therefore, it can be assumed that these parameters influence AP, what has leaded to

the studies presented in chapter 2.

To define the averaged isentropic exponent, ~v, the Poiseuille flow is considered, and written

as:

128677’16) _ (7 — 1> 16homn?

AP, = (AP, — AP,, — —
(AF, T d 2v /) Pym2d*

(1.47)
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1.2

Pressure variation AP, (10°Pa)

Driving term h,m?

Figure 1.27: Pressure variation AP}, as function of m?hy where  and hg are, respectively, the
mass flow rates of gases and the specific enthalpy measured for the different anodes A1, A2, A3
and A4, the arc current from 350 to 600 A and plasma gas (Ar-H,) mixtures: 30/10 45/15 60/30
(slm) [55].

Therefore, the isentropic component, 7, has been determined from the ratio (y — 1)/2y
defined as the slope of the evolution of APj as a function of 16hgm?/P,n%d* for the
different experimental conditions, presented in Figure 1.28. As can be noticed the linear

variation of the ratio (7 — 1)/2v has been obtained.

The presented results have been focused on the stationary behavior of the dc plasma
torch. The plasma produced by a torch has been estimated in the frame of a two-
layer model. It has permitted to determine the enthalpy radius profile to deduce the
stationary characteristics of the plasma jet (at the torch exit) as a function of the measured
parameters, e.g. arc current, mean voltage. It has leaded to calculate the axial velocity of
the plasma jet at the nozzle exit and to evaluate the different pressure contributions. The
determination of pressure as a function of the term 1m?hg has shown the linear relationship
between the mean pressure in the rear part of the plasma torch and the mean arc voltage,
what has leaded to the studies of the pressure and the arc voltage presented later in this
dissertation. The following paragraph will be focused on the studies of the arc instabilities

and determination of different modes of these fluctuations.
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Figure 1.28: Dependence of isentropic pressure APjs on experimental operating conditions [55].

1.3.2 Dynamic behavior of the torch: arc instabilities

The first experimental studies of the instabilities of electric arc with a superimposed flow
of argon have been presented by Wutzke et al. [28]. The experiments have been performed
in the arc tunnel by using a plane anode and the cathode positioned upstream, a double-
anode configuration and a cylindrical anode. The results have identified three different
modes of the arc instabilities: steady, takeover and restrike mode, presented in Figure
1.29. The numerical simulations, given by [27,28, 56-58|, have showed that the plasma
instabilities have been mainly related to the elongation of electrical current paths due
to the plasma flow and Lorentz forces. Duan and Heberlein have determined the mixed
modes related to the combinations of the restrike and takeover modes or the takeover
and steady modes [27]. The steady mode has been achieved with a high level of the
arc current, 900 A, and a pure argon flow [27|. This mode corresponds to very small arc
voltage fluctuations: AU,.. = +0.5V due to the balance between the drag force of the
plasma gas and the electromagnetic forces. The steady mode is characterized by a nearly
fixed position of the anode attachment, what causes the rapid erosion of the anode.

The takeover mode appears mostly by using the monatomic plasma gases [25,59|. It has
been called takeover because a new attachment gradually "takes over" the role of the old
attachment, instead of being created by the breakdown mechanism. The takeover mode

is characterized by a periodic or quasi-periodic voltage fluctuations, shown in Figure 1.29.
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Figure 1.29: Arc voltage traces corresponding to different anode attachment modes in a dc
torch [57].

The restrike mode is characterized by the highest voltage fluctuations and a sawtooth
shape profile of the voltage trace. An arc operating in this mode is very unstable. Tt
results in the increase of the arc voltage and sudden drop when a new current path is
created by an electric breakdown (re-strike). This mode will be described in details in the
following section.

Duan and Heberlein have determined the method to characterize the arc instabilities

modes presented above [27]. It is based on the analysis of the voltage waveform, shown

in Figure 1.30.

Voltage (V)

Up rising slope Down slope

Time (ms)

Figure 1.30: Arc voltage waveform used to distinguish the torch operation modes.

To separate the restrike mode from takeover mode, the shape of the voltage waveform,
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characterized by a shape factor S, is determined by the following equation:

129
S =7 (1.48)
tdown
where:
Lup is the duration time of the waveform up-rising slope,
tdown the duration time of the down slope, highlighted in Figure 1.30.

The fluctuation amplitude is used to distinguish the takeover mode from the steady mode.

The amplitude factor, A, is calculated as follows:

AV
A=""x100% (1.49)
V
where:
AV is the amplitude of the arc voltage fluctuation,
V the mean arc voltage.

The arc mode is defined as running in restrike mode when A > 10% and S > 5. If A > 10%
and S < 1.1, the arc is determined as running in takeover mode and for A < 2% the arc
is in a steady mode [27].

The origins of the arc instabilities should be divided into two sections according to the
time scale. The presented modes of the fluctuations are associated with the short time
scale evolution of the voltage.

Moreover, the drifting of the arc voltage can be explained by the erosion and wear of
electrodes, what is shown in Figure 1.31 and belongs to the group of the long time evolution
of voltage. Figure 1.31 presents the time dependence and corresponding power spectra of

voltage fluctuations. The use of worn electrodes results in the increase of arc fluctuations.

The cathode erosion is due to the diffusion and evaporation of thoria. It results in a lower
flow velocity of the plasma by the decrease of the current density of arc attachment at the
cathode. The erosion of the anode is caused by the strong heat fluxes of arc attachment
between the arc column and the anode surface. It is observed as a voltage drop which
increases drastically after a few tens of hours working time and results in the ejection of

tungsten or copper particles to the plasma jet, what is damaging the coating.
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Figure 1.31: Time dependence (a) and corresponding power spectra (b) of the voltage
fluctuations for new and used electrodes. Plasma parameters: 50 slpm Ar and 4/50 slpm Ha/Ar,
500A [60].

1.3.2.1 Restrike mode

As has been mentioned above, the arc column expands itself from the cathode tip and
is surrounded by a cold gas boundary layer. Through this layer the electrical connection
with the anode wall is carried out by an arc loop which is exposed to the drag and
electromagnetic forces. The imbalance between these forces causes that the drag force,
which is the result of the interaction of the incoming gas flow over the arc, induces the

stretching and lengthening of the arc column, presented in Figure 1.32 a).
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Figure 1.32: Schematic view of Restrike model: a) the arc column at the end of a lengthening
process, b) after an upstream restrike, c) after a downstream restrike [61].
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This process is accompanied by the rise of the arc voltage which corresponds to an increase
of the electrical current path in the direction of the superimposed flow during 7, = ti11 — t;

in Figure 1.33.
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ti ti+1 t

Figure 1.33: Temporal evolution of the arc voltage corresponding to restrike mode.

The lengthening process is followed by an electrical breakdown at t;4; in Figure 1.33.
It leads to the creation of new arc root, what corresponds to a minimum arc voltage
Ugmin and is identified with a voltage jump dy;. Coudert et al. have highlighted
that the voltage breakdown, defined as Vy,(Z), is related to the thickness of the cold
gas boundary layer, e(Z), as follows: Vy(Z) =e(Z).Ey, where Ey is the breakdown
field [61], which has been determined up to now by Paschen’s law. However, the
results presented in Chapter 2 have highlighted that due to the magnitude of this field,
it can not be attributed to Paschen’s law but is divergently referred to the thermal
instabilities [V. Nemchinsky private communication]. The restrike arc voltage is depicted
as: Vi(t) = Uy + Ue + Ve(Zio1) + Vi(t), for t;-1 < t < t;, where U, and U, are respectively
the anode and cathode falls, presented in Figure 1.34, V.(Zi_1) is the voltage drop along
the arc column which depends on the arc root location, Z;_1, Vi(t) the voltage drop along
the arc loop connecting the column to the anode wall. Assuming that just after the spot

creation, at time t;_; + €, the arc voltage is defined by:
V(tica+e) = Vi(tion) = Ve + Vo + Ve(Zia) (1.50)

and the voltage just before the further breakdown giving rise to a new arc root location,

Z;, at time t; — ¢, is determined by the equation:
V(ti—e)=Ve+Va+Ve(Zia) + Vi(t; — e) (1.51)
the voltage jump, dv;, occurring at t;, is given by:

5\/,- = V(tl — 6) — V(tz + 8) = ‘/l(tz — 6) + VC(Zi,ﬁ — VYC(ZJ (1.52)
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Figure 1.34: The arc voltage evolution [61].

1.3.2.2 Improvement of plasma spray process

For many years, the special efforts have been made to understand and improve the control
of suspension plasma spray processes. In particular, the plasma unsteady characteristics
which result in a poor reproducibility and reliability of the method. The following section
focuses on the improvement methods of the plasma spray process concerning the plasma

instabilities.

1.3.2.2.1 New designs of dc plasma torch

Development of new plasma torches is driven by the need to improve stability and to
increase the range of powders to be used. A large number of the thermal plasma torches
have been designed [19,62]|. The following section describes the recently developed torches:
Triplex and Axial ITI.

- Triplex (Sulzer Metco, Switzerland)
In the mid-1990s Sulzer Metco developed a new plasma gun concept in the co-operation
with the Universitat der Bundeswehr, Munich (University of the Federal Armed Forces).
The result is the Triplex gun, a three-cathode plasma spray torch with cascading nozzle

and anode end ring, presenting in Figure 1.35 [63,64].
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Figure 1.35: The schematic view of the Triplex torch [64].

It consists of three water cooled parallel cathodes insulated against each other and
supplied by independent power sources. The electrical energy is distributed through
three parallel arcs striking at a single anode with three separate anode attachments,
what has solved the problem of increased anode erosion (the voltage loss equals to 1-5%
over 90h working time). To prevent the instability of the anode attachments the nozzle
is consisted of several rings electrically insulated, except of the last one which operates
as an anode. Schein et al. have shown that the conventional dc torch, F4, produces a
very unstable plasma jet with large variations in the jet length, presented in Figure 1.36
a). This characteristic Triplex construction results in the elongation of the arcs and a

much more stable plasma jet, what is shown in Figure 1.36 b).

Figure 1.36: Pictures of the plasma jets obtained by: a) F4 (exposure time 5 ns, 6 mm nozzle,
current: 540 A plasma gas: 45 slpm Ar and 12 slpm Nj), b) Triplex (exposure time 3 ns, 9 mm
nozzle, current: 350 A, plasma gas: 45 slpm Ar) [63].

Triplex torch allows obtaining higher arc voltage and enthalpy of the plasma jet. It
is able to achieve the voltages of 80-120 V (with arc currents limited to 300 A and

Ar-He plasma forming gases) compared to 40 V obtained by the conventional dc torch.

Page 67



Chapter 1 : Literature review

Another advantage of Triplex torch is the temperature distribution produced at the
nozzle exit. As it can be observed in Figure 1.37 the plasma jets are constituted of

three lobes, the zones with higher and lower gas viscosity.

Plasma jet

Powder injection {increased viscosity)

Figure 1.37: Schematic view of the powder injection into Triplex torch [51].

Thus the powder injection into the central region of the plasma jet (the zone with high
viscosity) is more easily achieved along one of the canals where the gas viscosity is
reduced (Figure 1.37). It allows obtaining a better interaction of the particles with the

plasma flow what leads to improved coatings.

- Axial ITIT (Northwest Mettech Corp., Canada)
Axial TIT consists of three cathodes and three anodes, arranged such that their axes are
parallel, presented in Figure 1.38. They are operated by three power supplies (total
power ranging from 50 to 150 kW) and generally they work with Ar-No-Hs or Ar-No-He
gas mixtures.

Cathode Anode
(3 Cathodes)

PO\"(lﬁ‘] R R N R

Figure 1.38: Schematic view of Axial III [65].

The Axiallll configuration allows producing three plasma jets which converge together
in a common nozzle. The feedstock material is injected axially between these three
plasma jets, what permits to obtain the particle trajectories more homogeneous and a
longer residence time of the feedstock material in the plasma zone. Moreover, as these
three plasma jets fluctuate independently, voltage fluctuations have lower effects on the

axially injected feedstock material.
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1.3.2.2.2 Reduction of plasma instabilities

The studies of the instabilities of the plasma jet have resulted in the methods to reduce

these fluctuations.
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Figure 1.39: Schematic view of the plasma jet stabilized by magnetic field [66].

Nishiyama et al. have highlighted the possibility of the stabilization of unstable plasma jet
behaviour by applying magnetic field [66,67]. Figure 1.39 shows the schematic model of
this method. The plasma jet has been issued into a quartz tube. Two solenoidal coils have
been placed at the nozzle exit to produce a mirror type magnetic field. The maximum

magnetic flux density, B was equal to 0.44 T. The pure argon (20 slpm) plasma was

Zmax )

tested supplied by the power of 8 kW. The temperature and velocity for each plasma
species with and without magnetic field were measured, what is presented in Figure 1.40.

By applying the magnetic field it is possible to increase the temperatures of all plasma
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Figure 1.40: Isocontours of temperature and velocity of the heavy species (T, T; and Uy, U;)
and of the electrons (7. and U,) with and without applied magnetic field [66].

species outer from the jet fringe. In addition the electron velocity is changed considerably
in the central region by Lorentz force in the magnetic field. The results have shown that
the application of magnetic field can control the electron velocity and the temperature in

the plasma jet.
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1.4 Conclusions

The relatively new method, suspension plasma spraying, allows producing finely
structured nano-sized coatings, what expands its application area to e.g. thermal barrier
coatings (TBCs), solid oxide fuel cell (SOFC), photo-catalytic coatings. However, the
results of the examination of coatings microstructures by SEM or the studies of the
suspension fragmentation according to the arc voltage fluctuations have highlighted the
difficulties encountered in this method. The large discrepancies in the particles trajectories
and the heat transfers, the plasma instabilities result in the insufficient reproducibility and
reliability of the SPS method. Therefore, for many years the special efforts have been made
to improve this process. One of the solutions is to develop new non-conventional plasma
torch. However, as the coating microstructure has highlighted, the plasma produced
by these torches still remain non-uniform resulting in non-homogeneous microstructure
of the coatings. Consequently, the following dissertation will present a new approach
to arc fluctuations by the increase of the instabilities in a controlled way to obtain a
pulsed arc plasma jet with a synchronous injection of materials. This process requires an
understanding of the origin of arc instabilities. Therefore, the next chapter will present

the studies of the plasma fluctuations in the conventional dc¢ torch.
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Cette thése présente le procédé de projection par plasma d’arc produit par une torche
plasma & courant continu (dc en anglais) & la pression atmosphérique. Selon la matiére
injectée dans le jet de plasma, la technique de projection par plasma peut étre classée dans
plusieurs catégories: la projection dans I’air & pression atmosphérique (APS, Atmospheric
Plasma Spraying en anglais) en utilisant la poudre comme la matiére injectée, la projection
de solution (SPPS) et de suspension (SPS). Dans le procédé APS, les particules de
poudresont injectées dans le jet de plasma. L’épaisseur minimale des revétements est
limitée & environ 10 um [7]|. Tls sont principalement utilisés pour fournir une protection
contre les températures élevées, la corrosion, ’érosion et 'usure. Le procédé SPPS, décrit
par Karthikeyan et al. [8], est la méthode de projection de solution, dans lequel au lieu
d’utiliser une poudre, un précurseur en solution aqueuse est injecté dans le jet de plasma.
Ce procédé permet d’obtenir une microstructure des revétements nano et micrométrique.
Une méthode relativement nouvelle est la projection par plasma de suspension, qui a été
inventée par I’Université de Sherbrooke au milieu des années 1990 [9]. La suspension est
composée de particules de poudre micro- et nano-métriques dispersées dans un liquide.
Le procédé SPS permet produire les revétements finement structurées, voire de taille
nanométrique, ce qui donne la possibilité d’étendre le domaine d’application des couches.

[ls peuvent étre utilisés en tant que:

- Pile a combustible a oxyde solide (SOFC en anglais)
- Barriéres thermiques

- Dépots catalytiques

Le plasma, appelé aussi le quatrieme état de la matiére, est un gaz électriquement
conducteur en raison de la présence de particules chargées: les ions et les électrons. La
thése suivante décrit le plasma thermique produit par une décharge électrique a fort
courant continu. Une torche a plasma transforme I'énergie électrique fournie par un
générateur de courant en énergie thermique par effet Joule au sein d’un gaz plasmagéne
en contact avec un arc électrique. Cet arc électrique est créé entre une cathode, pole
négatif, et une anode, pole positif, et soufflé par les gaz plasmagénes qui sont injectés en
amont de la torche entre les deux électrodes.

La torche a plasma d’arc a courant continu comporte trois éléments essentiels: la cathode,

I’anode et I'injecteur de gaz.

- Cathode
Elle permet de fournir les électrons a l'arc électrique. Les paramétres de la cathode
sont différents en fonction des mécanismes d’émission d’électrons. Dans le cas de la
cathode chaude, les électrons sont fournis par I’émission thermoionique, suivant la loi

de Richardson-Dushman, Equation 1.1. 1 —2 % en masse de ThO,; 2 % en masse de
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La,05, Y,04, CeO,. Lerdle de dopant est d’abaisser la fonction de travail thermoionique
de tungsténe. Deux types de cathodes chaudes sont généralement utilisés: les électrodes

tiges et les électrodes boutons.

- Anode
L’anode a un role passif qui consiste a collecter les électrons. Elle est soumise &
des flux thermiques trés élevés (jusqu’a 160 W.mm™2) au point d’accrochage de Parc
électrique. Par conséquent, elle doit étre refroidi a ’eau et fabriquée en cuivre ultra-pur
(OFHP Oxygen Free High Purity), caractérisé par une forte conductivité thermique:
358 W.m L. K™! et la diffusivité thermique: 1114 107% m2.s~! & 25°C, avec parfois un

gainage en tungsténe.

- Injecteur de gaz
Il existe trois méthodes principales d’injection: l'injection swirl, I'injection radiale et
I'injection axiale. Dans l'injection axiale le gaz est injecté parallélement a ’axe de
I’anode et posséde une composante de vitesse longitudinale. Dans le cas de I'injection
radiale la bague d’injection est percée de trous perpendiculaires a ’axe de la torche. La
vitesse des gaz présente donc une forte composante radiale qui diminue ensuite. Dans
le cas de l'injection swirl, le gaz posséde une composante de vitesse initiale axiale et
radiale.. Les tourbillons formés créent des forces centrifuges, ce qui pousse le gaz froid

vers les parois de la torche.

Le jet de plasma est produit par une torche dans laquelle 'arc électrique est établi entre
une cathode et une anode. La colonne d’arc est développée a partir de la téte de cathode
est caractérisée par un écoulement laminaire qui est délimité par une enveloppe isotherme
(T > 7500K) a l'intérieur de laquelle la conductivité électrique des gaz est suffisamment
élevée pour permettre le passage du courant. En dehors de cette zone, la conduction
électrique est négligeable, ce qui apparait comme la couche limite froide. L’épaisseur de
cette couche dépend fortement des paramétres du procédé: le courant d’arc, le diamétre
interne de la tuyére, 'injection de gaz formant le plasma. L’accrochage de ’arc a la paroi
de la tuyére est perpendiculaire a la surface de I’anode et il est sous la forme d’une colonne
de gaz a haute température et a basse densité traversant la couche limite de gaz froid. Les
études sur le pied d’arc ont montré que ce point d’accrochage se déplace continuellement.
Ceci est di & des mouvements axiaux et de rotation induits par les forces dynamiques
(force de trainée) liées & I'écoulement du gaz, les forces électromagnétiques de Lorentz
dues a l'interaction entre le courant d’arc et le champ magnétique induit par ce courant,
et les effets thermiques. Quand le jet de plasma, caractérisé par une faible densité et
une vitesse élevée (entre 600 et 2200 m/s), sort de la tuyére de la torche, il se mélange
avec I’atmosphére environnante. Cela entraine donc des forces de cisaillement qui vont se

traduire par la création d’anneaux tourbillonnaires.
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Le plasma produit par la torche & courant continu est supposé a équilibre
thermodynamique local (Local Thermal Equilibrium LTE en anglais). Le plasma
thermique est considéré comme optiquement mince et donc le rayonnement ne correspond
pas au rayonnement du corps noir. Cela signifie que la loi de Planck n’est pas valable dans
LTE. Les processus de collision doivent étre localement en équilibre. Par conséquent, les
populations de toutes les espéces et leurs niveaux excités sont décrits par les équations de
Maxwell, Boltzmann, Saha et Guldberg-Waage, présentés dans le chapitre 1, mais avec la
température qui peut varier dans le temps et I'espace.

Les principaux gaz rencontrés en projection thermique sont 'argon (Ar), I’hydrogéne
(H,), I'hélium (He) et 'azote (N,). Le choix du gaz injecté joue un role important dans
la technique, il définit les propriétés thermodynamiques et de transport importantes des
plasmas: ’enthalpie, la conductivité électrique, la viscosité et la conductivité thermique.
Dans le procédé de projection conventionnelle (APS) les poudres avec des diamétres
généralement entre 10 pum et 110 pum sont injectées au jet de plasma. L’injection de
la matiére est effectuée principalement par un tube de diamétre interne de 1.5 - 2 mm.
Les particules de poudre sont transportées par le gaz, par exemple 'argon, a la vitesse
d’écoulement entre 3 et 10 slm. Dans le cas des torches a plasma a courant continu
classiques, le matériau est introduit dans le jet de plasma radialement. L’injection axiale
est réalisée dans les nouvelles conceptions de la torche, par exemple Axial III. La theése
suivante se concentre sur les études de la torche plasma en courant continu associés a
I’injection de suspension.

La suspension appropriée pour le procédé SPS se compose généralement: de poudres
submicronique ou nanométriques, de solvant et d’additifs chimiques. Les poudres
sont principalement produites par les procédés de précipitation chimique, de broyage
mécanique, des traitements thermiques. Le choix du solvant est trés important pour
les propriétés de la suspension, par exemple pour avoir unefaible viscosité et une bonne
stabilité. Les principaux solvants utilisés dans la production de la suspension sont ’eau
et I’éthanol. En comparant les propriétés de ces deux liquides, on peut dire que 1'eau
nécessite plus d’énergie que I'éthanol pour vaporiser. En plus, I'éthanol est caractérisé
par une tension de surface inférieure. Néanmoins, il contient du carbone qui peut polluer
les revétements. Par conséquent, le mélange de 1’éthanol avec de 1’eau sont couramment
utilisés. Pour obtenir une bonne homogénéisation et désagglomération de la suspension
une agent dispersant est généralement ajouté pour stabiliser la poudre dans le solvant,
par exemple un ester de phosphate. En ajoutant par exemple de I'ammonium d’acide
polyacrylique (PAA) ou de 'alcool polyvinylique (PVA), il est aussi possible de modifier
la tension de surface ou la viscosité de la suspension.

Il existe deux grandes familles d’injection de suspensions: l'atomisation et l'injection

mécanique.
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Le principe de fonctionnement de I'atomiseur est basé sur I'application de pulse de gaz
sous pression, controlée par l'action d’une électrovanne, sur le liquide contenu dans un
réservoir. Le liquide est éjecté par la buse et forme un spray de gouttelettes. Il est a noter
qu'un gaz d’atomisation peut étre utilisé pour atomiser un jet de liquide en gouttelettes.
Il a été montré que les liquides caractérisés par la viscosité comprise entre 0.1 et 50 a 60
mPa.s se fragmentent en gouttelettes en fonction du nombre de Weber, We, qui est le
rapport entre la force exercée par I’écoulement du liquide a la force de tension de surface,
définie par I'équation 1.12. Pour les liquides & viscosité élevée le nombre Ohnesorge, Oh,
doit aussi étre considéré. Il concerne les forces visqueuses et les forces de tension de surface
et d’inertie, selon I’équation 1.13. Les dimensions typiques des gouttelettes atomisées de
la matiére sont comprises entre 2 et 100 pm, les vitesses correspondantes variant de 5 &
60 m/s.

Dans le cas de l'injection mécanique, la suspension est stockée dans un réservoir sous
pression et injectée a travers une buse de diamétre interne spécifiée, d,. Fazilleau et al.
ont utilisé un diaphragme de buse calibrée au diamétre de 150 um fabriqué par 1’électro-
érosion et Etchart-Salas et al. ont présenté des résultats obtenus par la buse d’un diamétre
variant de 300 pm, usiné par laser. Les études ont montré que le carré de la vitesse du
liquide varie de fagon linéaire avec la pression du réservoir. Par exemple, les vitesses
d’injection entre 25 et 35 m/s ont été obtenues avec une pression d’air comprise entre 0,2
et 0,6 MPa.

Lorsque le jet de la suspension ou les gouttes sont injectées dans le jet de plasma, ils sont
progressivement ou rapidement fragmentés en gouttelettes. Ce processus de fragmentation
conduit & la diminution de leur volume, ce qui entraine que la diminution de leur quantité
de mouvement. Fazilleau a présenté les conditions favorables pour une bonne pénétration
de la suspension dans le jet de plasma définie par I'équation 1.17. Quand les gouttelettes
de la suspension sont entrainées en jet de plasma, elles sont soumises a la fragmentation
en raison d’une forte contrainte de cisaillement (générée par 1’écoulement du plasma) et
la vaporisation du liquide due a haut flux thermique du plasma. Il a été démontré que la
fragmentation de la suspension dépend du nombre de Weber, We. Le nombre de Weber
d’environ 14 est la valeur critique pour laquelle la goutte est fragmentée

Une goutte dans un écoulement de plasma est soumise a deux forces principales, la force
aérodynamique et la force de tension de surface. La force aérodynamique du jet de plasma
permet la désintégration de la goutte, et la tension de surface du liquide s’y oppose.
En égalant ces deux forces, le diamétre minimum, df, de ces micro-gouttes, lorsque
la fragmentation est terminée, peut étre déterminé par la formule 1.20. Le paramétre
important de la fragmentation est la durée de ce processus. Fazilleau et al. ont montré
que le temps de fragmentation, t¢, est donnée par I'équation 1.21.

Le flux de chaleur du plasma transmis par convection a la goutte, permet I’évaporation
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compléte de celle-ci aprés un temps, t,, défini par I’équation 1.23. Il est intéressant de
comparer ce temps avec le temps de fragmentation de la goutte. Les résultats présentés
sur la figure 1.19 montrent que le temps de vaporisation est deux ordres de grandeur plus
élevé que celui de la fragmentation. Le phénoméne de fragmentation se produit donc
toujours avant la vaporisation compléte du solvant.

L’équilibre entre la conduction et la convection thermique (Qcv) du gaz chaud vers la
particule et son refroidissement en raison des pertes de chaleur rayonnante de la surface
(Qr) et les pertes de rayonnement vapeur (Qy) détermine le transfert de chaleur net a
une particule (Quet). Les mécanismes de conduction et de convection sont généralement
décrits par le nombre de Nusselt, Nu, défini par 1.255. Dans le cas des particules de la
suspension de dimensions nanométriques ou sub-micrométriques l'effet de Knudsen, qui
réduit les transferts de chaleur, devrait étre également pris en considération. Il dépend
du nombre de Knudsen, Kn, déterminée par I’équation 1.28. Dans le cas des particules
de moins de 0.1 um, la force de thermophorése doit étre prise en compte dans les zones
caractérisées par des gradients de température. Les petites particules changent leurs
trajectoires du coeur du plasma a la périphérie du jet, caractérisée par des températures
et des vitesses de gaz inférieures. En outre, en raison de leur faible inertie, les particules
peuvent suivre la trajectoire de gaz chaud qui s’écoule parallelement & la surface du
substrat et ne jamais avoir un impact sur cette surface, ce qui se produit lorsque le
nombre de Stokes St est inférieur & 1. Le nombre de Stokes caractérise le comportement
des particules en suspension dans un écoulement de fluide et il est déterminé par I’équation
1.311.

Lorsque les particules sont caractérisées par St> 1, elles peuvent traverser la couche limite
qui se développe a la surface du substrat. Ces particules frappent et s’aplatissent sur le
substrat, ou sur un matériau précédemment déposé, en formant des lamelles (splat). La
structure de la lamelle résulte de ’étalement et de la solidification des particules sur le
substrat, ce qui dépend des paramétres suivants: la vitesse et la taille de particule, les
propriétés du matériau de la particule a 1'état liquide, par exemple, la viscosité, la tension
superficielle, 1a mouillabilité du substrat par des particules liquides, I’angle de I'incidence
par rapport au substrat, la rugosité de surface du substrat.

Le temps d’étalement d'une lamelle est de l'ordre de quelques pum. Le procédé de
solidification est plus longue et commence avant ’étalement est terminé. Le temps entre
deux lamelles successives est de 'ordre de dix a quelques dizaines de us. Par conséquent,
la prochaine particule frappe sur une lamelle déja solidifiée.

Comme mentionné ci-dessus, dans le procédé de projection par plasma la plupart des
torches sont alimentées par une source d’alimentation en courant continu. Toutefois,
le jet de plasma produit par une torche présente des caractéristiques instationnaires.

Les études ont permis de vérifier que ces fluctuations du plasma ont une forte influence
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sur les processus de la fragmentation et la vaporisation des gouttelettes, en particulier
dans la technique récemment développée, la projection par plasma d’arc de suspension.
Il en résulte une mauvaise reproductibilité et la fiabilité du procédé, ce qui cause des
applications limitées de la projection par plasma. En analysant les variations de la tension

d’arc modes suivants ont été identifiés:

- Le mode stable ("steady mode")
Ce mode de fonctionnement est observé avec un haut niveau de courant d’arc, 900 A,
et un argon pur (par exemple débit d’argon de 60 L./min). Le mode stable correspond
a de trés faibles variations de tension de I'arc: AU, = £0.5V en raison de ’équilibre
entre la force de trainée du gaz de plasma et les forces de Lorent. Le mode stable
est caractérisé par une position fixe du pied d’arc, ce qui provoque 1’érosion rapide de

lanode.

- Le mode oscillant ("takeover mode")
Ce mode apparait surtout en utilisant les gaz de plasma monoatomiques. Le mode
"takeover" est caractérisé par les fluctuations périodiques ou quasi-périodiques de la
tension. Ce mode a été appelé "takeover", car le nouveau pied d’arc nait pendant que

I’ancien s’éteint progressivement.

- Le mode claquage-réamorgage ("restrike mode")
Le mode claquage-réamorcage correspond aux fluctuations de tension plus élevées.
Le signal de tension présente une forme caractéristique en dents de scie avec de
fortes fluctuations de tension. Le déséquilibre entre la force de trainée et de force
électromagnétique induit 1'étirement et 1’allongement de la colonne d’arc qui est
accompagnée par I'augmentation de la tension d’arc. Le processus d’allongement est
suivi par un claquage électrique au travers de la couche limite entre la colonne d’arc et
la paroi anodique. Un nouveau point d’accrochage est créé en amont dans la tuyére, ce

qui correspond a une tension d’arc minimale et est identifiée par un saut de tension.
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2.1 Introduction

The previous chapter has shown the coatings production by the suspension plasma
spraying method and its advantages, i.e. the simplicity, low cost, wide range of the
materials. However, there are still many difficulties encountered by the researchers
working on this method. The problem with sufficient reproducibility and reliability, due
to e.g. the plasma instabilities, is the reason why for many years the special efforts have
been devoted to improve this method. This development process requires the profound
studies of the plasma instabilities produced by a torch. Therefore, the purpose of the
following chapter is to understand the origins of the arc fluctuations. The measurements
will be performed by using the conventional dc¢ plasma torch, which will be described in the
following paragraph. The time-resolved measurements and the data processing methods
will be presented. This kind of experimental procedure applied to the arc voltage signal
has leaded to determine a mode due to Helmholtz resonance in the torch, what will be
described and investigated in the following chapter. The presented profound studies of
the resonance in the torch and described in the previous chapter restrike fluctuations will

result in a new resonant mode in the dc plasma torch.

2.1.1 Plasma torch

All measurements have been carried out at atmospheric pressure using a home-made
plasma torch, shown schematically in Figure 2.1. Tt presents a similar configuration as
the commercial F4 gun (Sulzer Metco, Switzerland). The torch consists of the nozzle with
the variable diameter, d, which in the performed experiments will be chosen between 6
mm and 8 mm. The swirl gas injection is obtained by the injection ring with 16 holes of
diameter 1 mm. The geometrical parameters of the torch are indicated in Figure 2.1. The
volume of the cathode cavity, V,, corresponds to the space limited by the injection ring
up to the cathode tip. V, and the distance between the end of cathode and the nozzle

exit, Ly, are variable, what is shown in Table 2.1.

It presents the configurations of V, and Ly used in the experiments. It is possible to choose
the cathode cavity volume between: V, = 6 cm?®, which corresponds to the standard
volume, Vy, — 8.7 cm?, obtained by removing the injection ring and V, = 12.5 cm?,

volume of a cavity specially machined in the laboratory.

The torch is power supplied with a current regulated source (SNMI, type P130, open
circuit voltage 180 V), that provides the current up to 1000 A with a maximum voltage
of 100 V. The electrodes cooling system consists of the pump which can be operated at
the pressure 1.6 MPa.
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gas injection ring
N\

anode nozzle

cathode cavity|
Y

g |

Figure 2.1: Schematic view of the torch.

Table 2.1: Configurations of the volume of cathode cavity and of the distance between cathode
tip and the nozzle exit chosen in the experiments.

V, (ecm?) 6 87 125
Ly (mm) 30 29.5

The circulating water is delivered to the anode and cathode with an average flow rate of
17 1/min. The operation of the torch is characterized by mean values of the arc voltage
(V) and the arc current. The following paragraphs define the measurement methods of

the process parameters.

2.1.1.1 Time-resolved measurements and data processing

The time-resolved measurements of the signals have been carried out using a data
acquisition PCI 6132 computer card piloted by Labview software. This National
Instruments card, which has 4 simultaneous recording channels (bandwidth 1.3 MHz,
sampling rate 2.5 MS/s/channel, accuracy 14 bits), allows converting the signal from
an analog to a digital form, by sampling and then digitizing it using an analog-to-
digital converter (ADC). The sampling process is of critical importance in this kind
of measurement. The resulting signal waveform is highly dependent on the sampling
frequency. If this frequency is too low, aliasing occurs and the original analog signal is

incorrectly reconstructed, what is presented in Figure 2.2 b).

To obtain the signal without aliasing, the Nyquist sampling criterion should be met. It
shows that samples taken at a frequency, f;, at least twice the highest frequency content of
a signal, fi.x, are sufficient for a correct reconstruction. In practice, f; should be greater
than f,.x to obtain the original analog signal reconstructed exactly, what is presented as

follows: fy > 2fax.
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Figure 2.2: Results of the sampling frequency choice: a) original signal, b) sampling frequency
below Nyquist frequency (resulting signal with aliasing), ¢) sampling above Nyquist frequency
(no aliasing occurs) [68].

The signals have been recorded by LabView program for further data processing, e.g. the
statistical analysis of the signals. To achieve the reliable values the results are the average

of 10 measured signals.
The statistical analysis of the measured data gives the information about:

- Mean value
Considering the recorded data as X the mean value is denoted by X and defined by the

following formula:

SI'—‘

Z (2.1)

where n = 6500 samples in the measurements performed in this work.
To obtain the reliable values for each operating conditions the data contains 10

measurements. Therefore, the final mean value, Xy, is presented as follows:

10
Xf= i Z X; (2.2)
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- Variance
The variance of the data set X consisting of n samples is defined as (s*?) and given by
the equation:

n

1
n—1

(%) = (2 - X7 (2.3)

i=1

- Standard deviation

The positive square root of the variance, (s?), is denoted by o and presented as follows:

o = /(s2) (2.4)

- RMS (Root Mean Square)
The root mean square of a sequence X is determined as the positive square root of the
mean of the square of the input sequence. The formula used to compute the RMS value

is given by the equation:

(2.5)

However, the analysis of the signal in the time domain is generally not sufficient. To
study all information, which signal contains, it is necessary to transform this signal to
the frequency domain, what can be done by the Fourier Transformation described in the

following section.
2.1.1.1.1 FFT method

The strongly optimized algorithm, Fast Fourier Transformation, has been chosen because
of its shorter time of computation. FFT reduces the number of calculations needed for N
points to N -log, N comparing to N? of the DFT (Discrete Fourier Transform). Therefore,
the following paragraph presents the use of FFT method. According to Fourier theory
any function f(x) with period 27 (f(x) = x + 27) can be described in terms of an infinite

sum of sines and cosines, as follows:

f(z) = % + i(amcosmx + b sinma) (2.6)

m=1
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Where ag, a, and by, are the Fourier coefficients defined by:

U = %/:r f(z)cosmadx (2.7)

by, = %/ﬂ f(z)sinmzdx (2.8)

ag = %/_ﬂ f(z)dz (2.9)

The result of the FFT analysis is an array of complex numbers, amplitudes and
phases, corresponding to elementary harmonic oscillations into which the signal may be
decomposed. The amplitudes correspond to the power spectrum, which shows the amount
of power in a given frequency band or in a given line. The frequency spectrum can be
used as a tool to distinguish different regimes of periodicity, chaos and noise.

In the frame of this thesis, Fast Fourier Transform has been applied under LabView

platform. It provides a complete set of tools to perform Fourier and spectral analysis.

2.1.1.1.2 Application to arc voltage

The measurement of the arc voltage signal has been carried out using a data acquisition
PCI 6132 computer card piloted by Labview software, as has been presented above. This
PCI 6132 card consists of 4 simultaneously sampled analog inputs limited by the level
voltage of 10 V. Therefore, to make the measurements of the arc voltage the bridge
circuit has to be implemented. The resistors R; and Ry are respectively 2.16 k(2 and
48.93 k{2, what gives the value of divider equals 23.65, obtained by using the following
equation: .
1
Uout = mUm (2.10)
The measurement of the circuit has given the value of divider equals 22.86. The difference
between the calculated value of divider and the measured one is caused by the heat
dissipation of the resistors, what results in differential resistances.
As has been presented above, the sampling process is crucial in the time-resolved
measurements. Because of fast variations of re-arcing phenomena in the plasma torch
(up to 50 pm) the sample rate of 320 kS/s during 0.2 s has been chosen. It gives
a sampling frequency of 160 kHz which meets the Nyquist sampling criterion and the

frequency resolution equals to approximately 5 Hz.
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A | B | cn | D(Y) EM | Fn | ) HOY) ) | Jon | kM | L | My |
Long Name Freque"cy
Time V(t) Vh(t) Va(t) Vr(t) Frequency FFT(V) @ FFT(Vh) FFT(Va) FFT(Vr) filter Fh Fa
Units s v Hz
Comments
i I I W AV AV IVAVATAVALN, Zyev e / / —
1 0 -4,52395 -9,08004 2,60496 1,95113 0 8,51898E-32 1,56212E-34 2,68678E-36 7,71369E-32 0 0,04282 0,00562
31ES -9,99507 -8,61457 2,35585 -3,73635 496278 0,00464 2,5493E-6 146703E7 0,0042 4,96278 0,04202 0,00562
6266 -13,92572 811813 2,04925 -7,85691 992556 0,01046 1,93508E-5 3,31279E-7 0,00047 9,92556 0,04201 0,00563
93E6 -15,50809 -7,59213 1,60476 -9,70162 1428834 0,00526 9,7783E-6 167012E7 0,00476 14,88834 0,04211 0,00563
1.24E5 -15,86458 -7,03887 1,30252 -10,12823 1985112 0,01107 2,0662E-5 3,52079E-7 0,01001 19,85112 0,04321 0,00564
1,55E-5 -15,75834 -6,4612 088311 -10,18025 24,8139 0,01036 1,0432E5 3,30345E-7 0,00937 248139 0,0433 0,00565
1,86E-5 -15,43064 -5,86225 0,44738 -10,02477 2077668 0,0042 7.91678E-6 1,3427T1E7 0,0032 2977668 00424 0,00565
8 217ES -14,64287 -5,24528 0,00626 -0,40385 3473045 0,01084 2,05124E-5 347087 0,0002 34,73045 0,04249 0,00566
9 248E5 -13,60702 -4,61377 -0,42954 -8,56376 39,70223 0,00328 6,23241E-6 1,05208E-7 0,00297 39,70223 0,04359 0,00566
27T9ES -12,70402 -3,97127 -0,84974 -7,88308 4466501 0,00354 6,74968E-6 113671E7 000319 44,66501 0,04260 0,00567
31ES -11,66822 -3,32129 -1,24465 -7,10234 4962779 0,01817 3,48358E-5 5,85284E-7 001641 49,62779 0,04379 0,00568
341ES -10,76522 -2,66728 -1,60637 -6,40263 5450057 0,01147 2,20857E-5 3701967 001036 54,50057 0,04289 0,00568
372ES -10,02162 -2,01258 -1,02396 -6,08509 5965335 0,00253 4,0042E-6 8.20074E-8 0,00229 59,65335 0,04209 0,00569
4,03E5 917175 -1,36035 -2,19358 -5,61782 6451612 0,00572 1,11147E-5 185418E7 000516 6451613 0,04408 0,00569
434E5 -9,35766 -0,71359 -2,4086 -6,23547 69,47891 0,01215 2,37T167E-5 3.94707E-7 001097 69,47891 0,04419 0,0057
6 4,65E-5 -10,26066 -0,07483 -2,56458 -7.62125 7444169 0,00372 7.28773E-6 1,20998E-7 0,00335 7444169 0,04428 0,00571
7 4,96E-5 -11,00431 0,55378 -2,65837 -8,89972 7940447 0,02389 4,70579E-5 7.79439E-7 0,02155 7940447 0,04439 0,00571
5,27E-5 -10,89807 1,17016 -2,68839 -9,37985 8436725 0,01938 3,835T1E-5 6,33805E-7 001749 84,36725 0,04448 0,00572
5,58E-5 -10,26066 177211 -2,65475 -9,37803 89,33003 0,00205 4,07648E-8 6,71979E-8 0,00185 89,33003 0,04459 0,00572
5,89E-5 -9,38422 2,35731 -2,55922 -9,1823 94,2928 0,0029 5,79446E-8 9,52886E-8 0,00262 942928 0,04469 0,00573
6.2E-5 -8,32187 2,92344 -2,40513 -8,84018 99,25558 0,02472 4,9584E-5 8,1344E-7 0,02228 99,25558 0,04479 0,00574
6,51E-5 -6,78145 3,46821 -2,19719 -8,05247 104,21836 00171 3,4466E-5 5,64064E-7 0,01542 104,21836 0,04489 0,00574
6,82E-5 -5,00201 3,98928 -1,94145 -7.04984 10918114 0,00328 6,64001E-8 1,08408E-7 0,00296 109,18114 0,04499 0,00575
71365 -2,95698 448434 -1,64504 -5,79628 11414392 0,00773 1,57267E-5 2,5614E-7 0,00697 114,14392 0,0451 0,00575
7.44E-5 -0,83227 4,95109 -1,31596 -4,4674 119,1067 0,02899 5,92148E-5 9,621E-7 0,02611 119,1067 0,0452 0,00576
7,755 1,39867 538738 -0,96287 -3,02585 12406948 0,01558 3,19721E-5 5,18211E-7 0,01403 124,06948 0,0453 0,00577
8,06E-5 365617 579118 -0,59475 -154025 12903226 0,00192 3,95307E-8 6,39169E-8 0,00173 129,03226 0,04541 0,00577
8,37E-5 6,09958 6,16061 -0,22076 0,15973 13399504 0,0254 5,26123E-5 8,48616E-7 0,02287 133,99504 0,04551 0,00578
8,68E-5 8,78203 6,49396 0,1501 2,13796 13895782 0,02483 5,16659E-5 8,31321E-7 0,02235 138,95782 0,04561 0,00579
8,995 1159726 6,78968 0,50914 4,29844 143,9206 0,01589 3,32146E-5 5,3313e7 0,0143 1439206 0,04572 0,00579
9.3E-5 1446562 7,04645 0,84826 6,5709 14888338 0,02811 5,90156-5 9,44938E-7 0,02528 148,88338 0,04582 0,0058
9,61E-5 10,42867 7,26353 1,1604 2,00474 15384615 0,00944 1,99195E-5 3,18166E-7 0,00849 153,84615 0,04593 0,0058
9,92E-5 1,13308 744264 1,44066 -7.75023 15880893 0,00114 2,41367E-8 3,84581E-8 0,00102 158,80893 0,04603 0,00581
1,026-4 -3,22257 7,58722 1,68599 -12,49578 16377171 0,00691 1,47196E-5 2,33958E-7 0,00622 16377171 0,04614 0,00582
1,054 -3,78031 7,69949 1,89332 -13,37311 168,73449 1,154 2,46416E-7 3,90696E-9 1,04E-4 168,73449 0,04625 0,00582

Figure 2.3:

Example of the structure of the recorded data.

The example of the data structure of the arc voltage signal, recorded at 400 A for Ar-H,

(45-10 slm) plasma by the torch with a standard configuration of the cathode cavity:

Vg = 6 cm?, is shown in Figure 2.3. The measured and calculated results have been

processed by the Origin Pro software to present the temporal evolution of the fluctuating

component of the arc voltage signal v(t), what is given in Figure 2.4. These variations

have been obtained from the instantaneous voltage, V(t), which is considered as the sum

of the mean voltage, V, and of the fluctuating component, v(t).

Arc voltage V(1) (V)

40

20 +

-40

0,000

0,

T
001

T
0,002

Time (s)

T
0,003

0,004

T
0,005

0,008

Figure 2.4: Time evolution of the fluctuating component of the arc voltage signal.

The statistical analysis of this signal, performed by Labview program, is indicated in

Table 2.2.

Table 2.2: Statistical analysis of the signal presented in Figure 2.4.

v (V)

a (V)

(v?) (V)

RMS (V)

62

13.1

171.7

62.5

The mean value, standard variation, variance and RMS of the signal have been calculated.
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The obtained temporal evolution of the arc voltage signal shows the characteristic features
related to the restrike mode but they are superimposed on more regular oscillations,
pseudo sine wave with the period of about 200 us. Therefore, to complete the analysis of
the measured arc voltage Fast Fourier Transformation has been performed.

To compare computed power spectra of the signals measured under different experimental
conditions, presented in the further paragraphs, each spectrum has been normalized with
respect to the variance of the voltage. As has been presented above, the instantaneous
voltage, V(t), is the sum of the mean voltage, V, and of the fluctuating component, v(t).

The average squared quantities are obtained as follows:
VH =V + (0?) (2.11)

where (v?) is the variance of the voltage, presented in Table 2.2.
The power spectrum, ¢(f), of the voltage fluctuating component, v(t), which is the squared

amplitude of its Fourier components, is then given by:

Sfmaz
/0 o(f)df = (v?) (2.12)

Figure 2.5 presents the computation of the voltage power spectrum of the signal given in
Figure 2.4.

Voltage power spectrum (V2.Hz ")

0 . . L_I , o L.I TN

T T
0 2000 4000 6000 8000 10000
Frequency (Hz)

Figure 2.5: Voltage power spectrum of the arc voltage signal presented in Figure 2.4.

2.1.1.1.3 Resonance in dc plasma torch

The power spectrum, presented in Figure 2.5, highlights the presence of a sharp peak
at ~4.3 kHz, what cannot correspond to mentioned in chapter 1 restrike fluctuations,
which are characterized by non-reproducible spectral components. This spectral peak
matches, approximately, to the reverse of the period of the above-mentioned sine wave in
Figure 2.4. The obtained results suggest that in dc plasma torch is another phenomenon

superimposed on the restrike mode.
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One of the explanation of this phenomenon could be the existence of the acoustic wave in
the nozzle in which resonance could take place, provided the length of the channel is an
integer multiple of the half wavelength. However, the length of the nozzle torch should
be of about 0.6 m instead of around 30 mm, given in Table 2.1. Therefore, acoustic

longitudinal stationary waves cannot occur at this frequency in this nozzle channel.

In the description of the plasma instabilities presented in chapter 1 the linear dependence
of the mean measured pressure on the specific enthalpy and, therefore, the mean voltage
has been highlighted (see Figure 1.27). It has leaded to the idea to consider the coupling
between the arc and pressure variations in the cathode cavity. These variations of the
pressure can be generated by the oscillation of the plasma into the nozzle channel, what
shows that the cathode cavity together with the nozzle channel can appear to be a
Helmholtz resonator.

Delair et al. has first suggested that Helmholtz oscillations in the arc chamber can be the
reason for high frequency fluctuations of the arc voltage [69]. This hypothesis has been
referred to the field of combustion systems where it has been discovered that the burners
behave like Helmholtz resonators |70, 71].

The Helmholtz oscillation is a very basic phenomenon studied in the framework of
vibration theory. The resonator is a simple acoustic system, presented in Figure 2.21,
which consists of a rigid-walled cavity of volume V, filled with air, with a neck of section
S and the length L.

air in neck ' (
= of bottle : m

inside air
compressed

Figure 2.6: Helmholtz resonator as mass-spring system.

The air filling the system is under the atmospheric pressure. After a proper short exterior
pressure excitation, the air in the neck is starting to move back and forth damping out in
time. The Helmholtz resonator is commonly compared to the mass-spring system. The
air filling the cavity, submitted to condensations and rarefactions, acts like a spring. The
air located in the neck plays the role of an incompressible mass moving back and forth

along the neck.
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The mass of the air in the neck can be presented by the equation:
m = p.S.L (2.13)

where:
P is the density of air.

If this mass descends a small distance x into the neck, it compresses the air in the cavity
so that the air that previously occupied the volume V now has the volume: V — S.x.
Consequently, the pressure of the air rises from atmospheric pressure, Py, to the value:
Po + p.

Assuming the oscillations to be adiabatic, the pressure change p/Py produced by this
small volume change, AV, is equal to:

P AV Sz

— = —y—=

) 2.14
By \% i % ( )

This mass of the air, m, is moved by the difference in pressure between the top and bottom
of the neck, what can be presented by Newton law for the acceleration:

APz

assuming that F is a net force presented by F = pS and introducing m determined by
Equation (2.13), it gives:

a2~ p.SL_ pV.L®

It shows that restoring force is proportional to the displacement. This is the condition

d’r _ pS SR

(2.16)
for simple harmonic motion, which has a frequency 1/27 times the square root of the
constant of proportionality, as follows:

_i 1S Fy
21\l p.V.L

i (2.17)

While determining the speed of sound in air, ¢, by the density, the pressure and ratio of

specific heats, the resonant frequency is given by the equation:

S
f= %‘/ﬁ (2.18)

The cold gas in the cathode cavity, characterized by the volume V,, presented in Figure
2.7, is analogous to the air in the cavity of the Helmholtz resonator, described above, and

to the spring in the mass-spring system.
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Figure 2.7: Schematic view of the plasma Helmholtz oscillations.

This cathode cavity is connected to the nozzle channel which contains the oscillating
plasma (compared to the mass in the mass-spring system). The oscillating plasma
induces the pressure drop due to the friction resistance and turbulence, which added
to the viscous effects in the channel, is a source of non-reversible phenomena. Then, the

pressure perturbation in the cathode cavity is given by the equation:

d2p wr dp )
+——+w w ex 2.19
wtou 1D = Wi Peat (2.19)
where:
Dext is the excitation source of the resonator coupled with the arc voltage,
Q the quality factor due to dissipative effects.

This Q factor is linked to the band pass of the resonator, Af, and to the damping factor,

&, as follows:
fo 1
Af 2

By applying similar assumptions to the plasma mass as has been presented above, for a

Q= (2.20)

Helmholtz resonator, a Helmholtz frequency of plasma mass motion in the torch nozzle
can be defined as:

L [yeFy S
_ = 2.21
I 2m Pp LypVy ( )
where:
Ve is the isentropic coefficient of the cold gas,
P, the mean pressure in the cathode cavity,
Pp the plasma density,
S the cross section area of the torch nozzle, presented in Figure 2.7,
Ly the length of the nozzle channel,
Vg the volume of the cathode cavity.
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The equation (2.21) highlights the dependence of the Helmholtz mode on the
thermophysical properties, v, and pp, related, respectively, to the cold gas and to the
plasma, the torch configuration, \/S/L,.V, and the pressure in the cathode cavity, what

is the function of the working conditions and of the thermodynamic properties of the gas.

Consequently, the investigation of Helmholtz mode of plasma oscillations requires the
simultaneous measurements of the arc voltage and the pressure inside the cathode cavity.
The time-resolved total pressure has been measured using a piezoresistive sensor
ENDEVCO 8510C (Meggitt’s Endevco, Irvine, USA). It is a miniature and high sensitivity
piezoresistive transducer for measuring dynamic pressure (in ranges from 15 to 100 psi).
A small size, 4 mm in diameter, enables to mount this sensor in the cathode cavity of
the torch. The simultaneous measurements of the arc voltage and the pressure signals
have been performed using a data acquisition PCI 6132 computer card piloted by Labview

software, what has been highlighted in the previous paragraphs.

2.2 Investigation of the plasma instabilities

The theoretical model of Helmholtz mode has highlighted the dependencies of Helmholtz
fluctuations on the geometrical parameters of the torch and the thermophysical properties
related to the cold gas and to the plasma. Therefore, the purpose of the presented
studies is to confirm this model by the experimental measurements. The influence of
different operating conditions will be examined by measuring the arc voltage signals and
the pressure inside the cathode cavity.

Moreover, the previous work of the laboratory has highlighted the existence of other
fluctuation modes due to acoustic waves propagation and reflection inside the torch |72,
73]. These modes, so-called acoustic modes, occur at higher frequencies, presented as a
divergent peak at ~8.5 kHz in the voltage power spectrum in Figure 2.5. Therefore, the
following sections will give the investigation results of the Helmholtz and acoustic modes.
Moreover, the arc voltage signal presents more randomly distributed short events which
correspond to the restrike mode, what will be also studied in this work.

To examine the Helmholtz, acoustic and restrike modes of the plasma instabilities, the
signals of these modes have to be isolated from the measured arc voltage and pressure by

applying the filtering methods, what is described in the following section.
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2.2.1 Filtering method

The fluctuating component, v(t), obtained from the measured arc voltage signal, V(t),
where v(t) = V(t) - V, can be presented as the sum of the instability modes of plasma

jet: Helmholtz (H), restrike (R) or acoustics (a), as follows:
v(t) = vu(t) + vr(t) + va(t) (2.22)

The time-resolved measurement of the pressure can be also predicted as the superposition
of the modes of the plasma fluctuations. The signal of the arc voltage or the pressure

which contains several components can be written as:

s(t) = si(t) (2.23)
i
where the subscript, i, is associated with the modes of the instability.
To observe the influence of these modes on the operating conditions they have been
isolated from the signal by using numerical Wiener filter programmed under LabView
platform. The purpose is to separate each component, s;i(t), by using a Wiener filter,
Fi(f), which is obtained by a minimization method (minimization of the Euclidean distance

between the ideal s;(t) function and the one obtained by filtering, Si(f)) as follows:

0 _
o= { [ 150 = FT a0 < S} P de) =0 (2.21)
where:
TF-! is the reciprocal Fourier transform,
S(f) the Fourier transform of the recorded signal, s(t), defined as S(f) = FT{s(t)}

where S(f) = >, Si(f).

By applying the Plancherel-Parseval theorem, the above equation can be written as:

Jmaz
o= IS0 - B xSt} =0 (2.25)

what gives the following formula:

fmax fmax
/ 8?7 | Si— Fi xS ||*df = / {2F; x SS* — (S8 + 5*S;)}df =0 (2.26)
0 i 0

where:

* stands for the complex conjugate.
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The expansion of S gives cross products, such as S;S;". Assuming that the instability
modes are uncorrelated either because the frequency domains of i and j components are
disconnected or by phase mixing if the restrike mode is implied, the optimum Wiener

filter, F, is given by:
Dy

Pup + Prr + Paa

where &gy and @,, are obtained by fitting a Lorentzian function to each peak of the

(2.27)

Fi(f) =

recorded spectrum, as follows:

C1HAQA(f - 1)

Pii(f) (2.28)
Figure 2.8 presents the filters Fy and F, determined from the arc voltage spectrum, from
Figure 2.5, recorded for a plasma torch operated at 400 A and Ar-H, (45-10 slm) gas
mixture, what was indicated in Figure 2.4. Figure 2.8 highlights that the calculated filter

is a real function of frequency and does not produce phase shifts.
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Figure 2.8: Calculated filters Fg and F, applied to the power spectrum, presented in Figure
2.5, of the arc voltage generated for the conditions from Figure 2.4.

The determination of the filters: Fy and F, allows obtaining Helmholtz and acoustic

modes components by the following equation:

si(t) = FT-H{E(f) x S(f)} (2.29)
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Then, the restrike component can be deduced as follows:
srlt) = s(t) — s (t) + sa(t)] (2.30)

Figure 2.9 presents the example of the filtering from a raw arc voltage signal its
components: the restrike, Helmholtz and acoustic modes of instabilities. It shows that the
Helmholtz component has the most important contribution to the arc voltage together
with the restrike mode. A modulation of the signal envelopes in Helmholtz and acoustic

components is observed (beating phenomena).

Restrike mode

—— Arc voltage signal

—— Acoustic mode

Arc voltage (V)

—— Helmholtz mode

Time (s)

Figure 2.9: Raw arc voltage signal, from Figure 2.4, and its filtered components: Helmholtz,
restrike and acoustic.

Similar behavior has been observed for the fluctuating component of pressure.
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2.2.2 Helmholtz and acoustic modes

The following section will highlight experimentally the dependence of the Helmholtz and
acoustic modes on the geometrical parameters of the torch: the volume of the cavity and
the position of the cathode. Moreover, the influence of the composition of plasma forming

gases will be shown.

2.2.2.1 Configuration of the cathode cavity

This paragraph gives the investigation results of the effect of different configurations of
the cathode cavity on the Helmholtz and acoustic modes. By removing the injection ring,
Figure 2.10 (b), and using the specially machined cathode cavity, 2.10 (¢), three different
configurations have been obtained characterized by the volumes: (a) Vg = 12.5 cm?®, (b)
V, = 8.7 cm® and (¢) Vg = 6 cm®.

(a) Ve=12.5 cm® (b) Ve= 8.7cm® (©Ve=6cm’

Figure 2.10: Configurations of the cathode cavity.

Figures 2.11 and 2.12 present the voltage and pressure power spectra of Helmholtz (H)
and acoustic (A) components, filtered and computed from the arc voltage and pressure
signals. They have been recorded for each configuration of the cathode cavity, for the
same operating conditions: Ly = 30 mm, I = 500 A, Ar-H, (45-10 slm).

The results presented in Figures 2.11 and 2.12 show a very good matching between the
Helmholtz and acoustic modes of the voltage and pressure. These results confirm the
coupling between the pressure in the cathode cavity and the arc voltage, what proves that
the main plasma oscillations follow the Helmholtz resonator. To analyze the evaluation
of Helmholtz and acoustic modes their parameters have been established from the power
spectra presented in Figures 2.11 and 2.12 and summarized in Table 2.3.

The standard deviation, defined as follows: o; = 1/ (s;2), where s; are the signals of voltage
or pressure associated with the Helmholtz, acoustic or restrike modes, has been calculated
from the filtered spectra by LabView program. The Q factor has been established from
Equation (2.20), as follows: Q = f;/Af, where Af has been measured as the full-width
at half-maximum of the Helmholtz or acoustic modes line in voltage and pressure power

spectra.

Page 93



Chapter 2 : Study of plasma fluctuations in conventional torch

35 Ty
3) 30 %
— 1 NZ
| 25 ©
- o0 §
20 o
- 2]
15 5
1,0 %
b) 2
| 05 o
S
| 00 ©
¢ >
1 J ) .
<
b) C) Ob
a) R
H &

O

=)

<®

0 2000 4000 6000 8000 10000

Frequency (Hz)

Figure 2.11: Voltage power spectra of filtered voltage fluctuations of H-Helmholtz and A-
acoustic modes for: (a) Vg = 12.5 cm?, (b) Vy = 8.7 em® and (¢) Vg = 6 cm3. Operating
parameters: Ly — 30 mm, I = 500 A, Ar-H, (45-10 slm) [74].

_ 25x10% "N

) I
a — o

| 20x10* 2

g

— Q

| 15x10° &

(7]

— o

| 1,0x10* 2

o

| o

~ []

| 50x10° 5

2]

3

L) 0,0 &

, ) |

e a) o

i
H 0%00’”

e X50 x5

0 2000 4000 6000 8000 10000
Frequency (Hz)

Figure 2.12: Pressure power spectra of filtered arc fluctuations of H-Helmholtz and A-acoustic
modes for: (a) Vg = 12.5 cm3, (b) Vg = 8.7 cm? and (c) Vg = 6 cm?® [74].
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Table 2.3: The frequency, standard deviation (o) and Q factor of voltage and pressure power
spectra presented in Figure 2.11 and 2.12, where: (a) Vy = 12.5 cm?, (b) V; = 8.7 cm? and (c)

Arc voltage Pressure
f o Q f o Q
(Hz) (V) (Hz) (mbar)
Helmholtz mode (a) 3100 3.3 19 |3170 3 14.5
(b) 3600 5.5 30 3550 6 32
(c) 4500 9 30.5 | 4500 53 30.5
Acoustic mode  (a) 5700 13.4 36.5 | 5700 90 35.5
(b) 5950 8 43 | 5950 40 43
(¢c) 7850 5 17 7800 56 17

The values of Helmholtz frequency of the voltage and pressure power spectra, given in
Table 2.3, highlight the shift of fi peaks to lower values due to the increase of the cathode
cavity volume, e.g. from 4500 Hz obtained for the case (c¢) to 3100 Hz for (a). It has to
be mentioned that the frequency peaks in the pressure power spectra have similar values.
By following the theoretical model for Helmholtz mode, given by Equation (2.21), the
modification of fy in the function of the cathode cavity configuration can be presented as

follows:

(%)2 - % (2.31)

where the subscripts 1 and 2 stands for the different cases: (a), (b) and (c) given in Table
2.3.
The calculations presented in Table 2.4 highlight a good agreement between the

experimental results and the model of Helmholtz mode described in the previous section.

Table 2.4: Calculations of the Helmholtz frequency modifications due to different configurations
of cathode cavity.

Ar-H, (45-10 slm) Ar-N, (40-6 slm) | Ar-N, (40-16 slm)
cavities  (a)/(b) (b)/(c) (a)/(c) (2)/(c) (2)/(c)
(f1/f2)? vV 1.35 1.55 2.1 1.7 1.6
P 1.25 1.6 2.02 1.7 1.6
(Vo/Vi) 144 145 2.0 2.05 2.05

The computed standard deviations of Helmholtz and acoustic modes show that with the
increase of the volume of the cathode cavity, not only the Helmholtz frequencies are shifted
to lower values but also a major part of the signal power turns to acoustic modes. This

phenomenon is more obviously presented in Figure 2.13.
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Figure 2.13: Influence of the volume of cathode cavity (cases: (a), (b), (c)) on power ratio for
voltage components: H-Helmholtz, a-acoustic and R-restrike.

The power ratio, R;, for each mode has been calculated as follows: R; = 0;?/0?. Tt
characterizes the power contained in each mode in relation to the raw arc voltage signal.
These dimensionless power ratios have been plotted as a function of the volume of cathode
cavity. For the case (c), where V; = 12.5 cm?, most of fluctuating power is contained in
the acoustic mode oppositely to the case (a).

Moreover, the Q factors of Helmholtz resonance for the arc voltage also decrease from 30.5

3. This indicates that the Helmholtz resonance

to 19 when Vg varies from 6 to 12.5 cm
energy is transferred to acoustic modes.

The presented results lead to the assumption of the model for the acoustic resonances in
the conventional torch. The cathode cavity can be assumed to be of cylindrical geometry
and have an annular tube shape with the length: L. = 38 mm, the inner radius a = 7
mm and the outer diameter b = 10.5 mm. Defining the acoustic pressure, p, as follows:
p(7,t) = p(7 )exp(—jwt), the acoustic modes in the cathode cavity can be determined
from the solution of the homogeneous Helmholtz equation for an ideal gas obtained from
the acoustic propagation equation, i.e. Ap(?,t) + kzp(7,t) =0, where k is the wave
number linked to the speed of sound, a,, as follows: k.a, = 27f. The obtained resonance
modes are due to a combination of the axial modes and those of radial and azimuthal
modes, defined as: k? = k.2 + k,2. The cathode cavity is assumed to be an annular tube

which is closed at the injection ring and supposed to be opened at the cathode tip. It can
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be shown that the acoustic pressure can be written as:

l

p(r,0,z) = (Adn(ker) + BYn(krr))cos(nG)cos(£z) (2.32)
where:
r,0,z are the cylindrical coordinates,
Jn, Yo the Bessel’s functions, respectively, of first and second kind of nth order,
14 the integer number,
A B constant numbers,
L the cathode axial length.

Since the r-component of acoustic velocity is zero at r = a and r = b, what gives dp(r = a
and b,0,z)/0r = 0, the resonance modes are obtained from the solution of the following

relationship:
I (K.Y, (WKL) — T (AK).Y (K (2.33)

where:
K, = ak;,
=b/a,
the symbol 7 stands for the derivation.
The resonance frequencies are: fy;m = a;Kum/2ma, where K; = Ky, are the solutions of
equation (2.33), in which m gives the mth roots of equation. The resulting resonance

modes have frequencies defined by:

fo= (fam® + o)™ (2.34)

where f; corresponds to acoustic longitudinal modes and is defined as follows: f) = fag/4L.
The calculation of modes shows that most of them have frequencies above 10 kHz except
the mode (n, m , ¢) = (1, 1, 1), which defines:

the first longitudinal mode fy = 2368 Hz and f1; = 6589 Hz, what gives the frequency fo =
7000 Hz. This value shows a good agreement of presented model with the acoustic mode
frequency obtained in the power spectra presented in Figures 2.14 and 2.15. Moreover,
when the volume of the cathode cavity, Vg, increases, L presented in the model (2.32)
increases, what gives the decrease of the acoustic frequency. The experimental results,

listed in Table 2.3 and 2.5, show the same dependency.
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Figure 2.14: Voltage power spectra of filtered voltage fluctuations of H-Helmholtz and A-
acoustic modes obtained for two configurations of cathode cavity: (a) Vg = 12.5 cm3, (¢) Vg =
6 cm?® and for the Ar-N, compositions: 40-6 and 40-16 slm.

The influence of the configurations of the cathode cavity on the resonance modes has been
also examined for the Ar-N, plasma forming gases mixtures: 40-6 and 40-16 slm. The
arc voltage and pressure signals have been obtained for two configurations of the cathode
cavity: (a) Vg = 12.5 cm?® and (¢) V; = 6 cm?® at 500 A. Figures 2.14 and 2.15 present the
arc voltage and pressure power spectra computed for the signals recorded for Ar-N,: 40-6
and 40-16 slm. The values of Helmholtz frequency, defined from the power spectra and
given in Table 2.5, highlight the shift of fi peaks to lower values, as has been expected
from the model for Helmholtz mode, (2.21).
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Figure 2.15: Pressure power spectra of filtered arc fluctuations of H-Helmholtz and A-acoustic
modes for: (a) Vg = 12.5 cm? and (c) Vg = 6 cm3.

However, the significant difference between fy obtained for the Ar-N, plasma forming
gases and fy computed for Ar-H, has been observed, e.g. for the same configuration of
cathode cavity: Vy = 6 cm?® and the arc current = 400 A, the Helmholtz frequency, fy,
equals 3450 Hz compared to 4450 Hz of the signal measured for Ar-H,.

Moreover, the calculated standard deviations of Helmholtz and acoustic modes show
notable differences in comparison to the results obtained for the same configurations
of the cathode cavity for Ar-H,. While the volume V, increases, particularly in the case
of Ar-N, (40-16 slm), the Helmholtz mode of the instabilities seems to dominate, what is

more clearly presented in Figure 2.16.

The power ratios for the Helmholtz, Ry, and acoustic modes, R,, have been calculated
from the filtered voltage power spectra and plotted as a function of the volume of cathode
cavity. To compare the results obtained for Ar-N,: 40-6 and 40-16 slm, the power ratios
computed from signal for Ar-H,: 45-10 slm have been indicated. All signals have been
measured at the arc current of 400 A and for the configuration of cathode cavity: (a) Vg
—12.5 em? and (¢) Vy = 6 cm?.
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Table 2.5: The frequency, standard deviation (o) and Q factor of voltage and pressure power
spectra presented in Figure 2.14 and 2.15, for: (a) Vg = 12.5 em?® and (¢) Vg = 6 cm?.
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Arc voltage Pressure
f o Q | f o Q
(Hz) (V) (Hz) (mbar)
Ar-N, (40-6 slm)
Helmholtz mode (a) 2700 7.5 55| 2700 11 25
(c) 3450 9 90 | 3450 50 91
Acoustic mode  (a) 4650 134 9 | 4300 6 7
(¢) 7150 1.5 14 | 7150 19 20
Ar-N, (40-16 slm)
Helmholtz mode (a) 2700 16.5 90 | 2700 15 85
(c) 3400 17 97 | 3400 70 97
Acoustic mode  (a) 4700 0.5 7 |4300 3 5
(c) 6800 2.5 336800 30 41

--m-- RH Ar;’HZ: 45/10 sim
--#--R_Ar/H,: 45/10 sim
—8—R_ Ar/N,: 40/6 sim
—+—R_Ar/N,: 40/6 slm
-0 R, ArN_: 40/16 slm
! RE An’Nz: 40/16 slm

o —

T T T T T
8 10

Volume of cathode cavity (cms)

14

Figure 2.16: Influence of the volume of cathode cavity, for the cases: (a), (c¢), on power ratio
for voltage components: H-Helmholtz and a-acoustic, obtained for Ar-N,: 40-6 and 40-16 slm .
To compare: the results of the power ratio computed from signal for Ar-H,: 45-10 slm.

The obtained results show that in the case of Ar-N, most of fluctuating power is contained

in the Helmholtz mode for both volumes V,, what presents the different behavior than in

the case of the signals obtained for Ar-H,. This phenomenon will be more studied in the

following paragraph.
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2.2.2.2 Composition of plasma forming gases

In the previous studies performed in the laboratory the measurements of the arc voltage
and pressure signals, obtained for argon-hydrogen mixtures as plasma forming gases, have
been highlighted. The experiments have been carried out using the same home-made
plasma torch, presenting a similar configuration as the commercial Sultzer Metco F4 gun.
The arc voltage and pressure in the cathode cavity have been obtained at 600 A, for the
constant argon flow rate at 45 slm and the hydrogen flow rate varying between 2 and 10

slm.
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Figure 2.17: Power spectra of arc voltage calculated from signals generated at 600 A for an
Ar-H, plasma. The mass flow rate of hydrogen varies between 2 and 10 slm [72].

The voltage power spectra, presented in Figure 2.17, show that the chemical composition
of plasma forming gases strongly influences the Helmholtz resonance, especially when
hydrogen content is increased in binary mixture such as Ar-H,. Moreover, the hydrogen
flow rate needs to reach a certain threshold, about 5 slm, to sustain Helmholtz oscillations.
In the following paragraph, the results of the use of Ar-H, and Ar-N, as the plasma forming

gases is highlighted. The results have been obtained for the following gas compositions:

Ar-H, (45-5 slm)

- Ar-H, (45-10 slm)

Ar-N, (40-6 slm)
- Ar-N, (40-16 slm)
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The measurements of the arc voltage and pressure in the cathode cavity have been
obtained at 400 A for a standard configuration of cathode cavity: case (a) Vy = 6 cm?

and for the distance between cathode tip and the nozzle exit: Li = 30 mm.
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Figure 2.18: Temporal evolution of the fluctuating components of the arc voltage for argon-
nitrogen and argon-hydrogen plasma.

Figure 2.18 depicts time-resolved fluctuating components of the arc voltage measured
for argon-nitrogen and argon-hydrogen plasma. The calculations of the mean voltage,
presented in Table 2.6, show the similar values for Ar-H, (45-5 slm) and Ar-N, (40-6
slm)- around 50 V and Ar-H, (45-10 slm), Ar-N, (40-16 slm)- around 60 V. The results
obtained for Ar-H, mixtures have verified the experiments presented at the beginning of
this paragraph, where the increase of the hydrogen content has strongly influenced the
Helmholtz resonance. The voltage and pressure power spectra of the signals, in Figure
2.19 and 2.20, exhibit the same dependence. The computed standard deviations of voltage
and pressure increase from 8.5 to 14.5 V and 47 to 65 mbar, what shows that a major

part of signal turns to Helmholtz mode while the content of H, increases.

Comparing the oscillations patterns of the arc voltage obtained with an Ar-H, (45-10
slm) mixture to the signals measured for argon-nitrogen plasma, a significant beating
component producing successive groups of peaks of high and low amplitudes is exhibited

in the case of Ar-H, mixture.
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Table 2.6: Statistical analysis of the arc voltage signals presented in Figure 2.18.

Ar-H, (45-5 slm) Ar-H, (45-10 slm) Ar-N, (40-6 slm) Ar-N, (40-16 slm)
V (V) 52 62 47 61
o (V) 8 13 7 14
(v?) (V) |63 172 54 186
RMS (V) | 53 63 47 62
—— ArH_: 45/5 sim —— ArfH_- 45/10 slm

An‘NZ. 40/16 sim —— Ar/M_- 40/6 sim

Voltage power spectra (V2 .Hz'1)
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Figure 2.19: Voltage power spectra of Helmholtz and acoustic modes obtained by the filtering
of the arc voltage signals presented in Figure 2.18.

The analysis of the voltage power spectra obtained with Ar-N, mixtures, shown in Figure
2.19, and the data given in Table 2.7 highlight that the arc voltage signals contain

Helmholtz resonance without any acoustic mode influence.

Therefore, the beating phenomenon found in the temporal evolution of the fluctuating
component of the voltage signal measured for Ar-H, (45-10 slm) mixture can be ascribed
to a coupling between Helmholtz and acoustics modes.

The results shown in the previous paragraph and presented in the power spectra calculated
from the arc voltage (Figure 2.19) and the pressure (Figure 2.20) signals highlight the shift
of the Helmholtz frequency peaks towards the lower values for argon-nitrogen plasma. The
frequency equals 3.4 kHz for Ar-N, (40-16 slm) plasma and 4.45 kHz for Ar-H, (45-10
slm). Analysing the model for Helmholtz frequency given in (2.21) this frequency drop
is due to the following parameters of Ar-N, plasma: lower isentropic coefficient, -, and

higher density, p, compared to Ar-H, plasma.
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Table 2.7: The frequency, standard deviation (o) and Q factor of voltage and pressure power
spectra, presented in Figure 2.19 and 2.20, for Ar-H, (45-10 slm) and Ar-N, mixtures.

Arc voltage Pressure
f o Q |f o Q
(z) (V) (Iz) (mbar)
H mode 4450 14 305 | 4300 72 30
Aty (45-10slm) 0 e 7850 3.5 17 | 7500 35 17.5
H mode 3450 9 90 | 3450 49 91
ANy (40-6slm) ' Cde 7150 1.5 14 | 7150 19 20
H mode 3400 17 97 | 3400 68 97
ANy (40-16 slm) - 1o 6800 2.5 33 | 6800 30 41
—Aer:: 45/5sIm h -:_t —Aer:: 4510 slm

—— AN, 40116sim | —— ArN - 40/6 sim

Pressure power spectra (V' Hz")

Frequency (Hz)

Figure 2.20: Pressure power spectra of filtered arc fluctuations of Helmholtz and acoustic
modes for argon-nitrogen and argon-hydrogen plasma.

Moreover, Q) factors calculated from voltage power spectra for Ar-H, (45-10 slm) and Ar-
N, (40-16 slm) plasma are, respectively, 30.5 and 97 which highlights stronger Helmholtz
resonance when using argon-nitrogen as plasma forming gases mixture. It is confirmed by
the results obtained from the pressure power spectra. The standard deviation for Ar-N,
(40-16 slm) is equal to 68 mbar, which is smaller than the value obtained for Ar-H, (45-10
slm), equals 72 mbar. This discrepancy in pressure amplitude can be also explained by a
weaker compressibility of plasma forming gases containing nitrogen. In the frame of the

mass-spring system model for the Helmholtz resonance, during adiabatic oscillations, the
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pressure variation, op, due to the longitudinal displacement, 0%, is given as follows:
dp = —y4SP,0x/V, (2.35)

Therefore for the same, dx, smaller pressure amplitude is given by gases with lower

isentropic exponent, in this case by Ar-N, mixture.

2.2.2.3 Position of the cathode

The model of Helmholtz mode of the instabilities, (2.21), shows that these arc voltage
fluctuations are also responsive for the length of the nozzle channel. Therefore, this
paragraph presents the examination of the influence of distance between the cathode tip
and nozzle exit, Ly, on the resonance of the conventional torch.

The length of the nozzle channel has been varied as presented in Figure 2.21.

Figure 2.21: Configuration of the torch with identified distance between the cathode tip and
nozzle exit, Ly, equals 30 mm and 29.5 mm.

The measurements of the arc voltage and pressure signals have been performed at 400 A
for argon-hydrogen (45-10 slm) plasma forming gases mixture by using the torch with the

3. The signals have been recorded for

configuration of cathode cavity: (b) V, = 8.7 cm
different Ly, equal to 30 mm and 29.5 mm. The arc voltage and pressure power spectra
of the filtered Helmholtz mode computed from the measurements are presented in Figure
2.22 and 2.23.

Table 2.8: The frequency, standard deviation (o) and Q factor of voltage and pressure power
spectra presented in Figure 2.22 and 2.23, for: Ly = 30 mm and 29.5 mm.

Arc voltage Pressure
f o Q f o Q

(Hz) (V) (Hz) (mbar)
Ly =30 mm 3500 10 44 | 3500 13 44
Ly =295 mm 3500 7.5 3453500 9 35
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Figure 2.22: Voltage power spectra of filtered Helmholtz mode for Ly: 30 and 29.5 mm [74].

The power spectra and data computed and mentioned in Table 2.8 show that the
change of the cathode position does not modify the Helmholtz frequency peak which
is approximately 3.5 kHz for both configurations.
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Figure 2.23: Pressure power spectra of filtered Helmholtz mode for Ly: 30 and 29.5 mm [74].

However, a slight decrease of the distance between the cathode tip and nozzle exit, AL, =
0.5 mm, substantially influences the standard deviation calculated from the arc voltage,
10 V and 7.5 V, respectively, for Ly = 30 mm and Lx = 29.5 mm.

Moreover, the Q factor of the Helmholtz resonance is changed from 44 for Ly = 30 mm to
34.5 for Ly = 29.5 mm. Accordingly the cathode position directly affects the Helmholtz

resonance, keeping unchanged the mean plasma properties. The cathode position should
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influence the turbulence pattern at the entrance of the nozzle and so, by changing the

importance of dissipative effects, acts as an adjustable damping parameter.

2.2.2.4 External resonator

To confirm the theory about Helmholtz resonator in the dc plasma torch the external
resonator mounted on the cathode cavity has been used. This type of installation allows
modifying the pressure waves in the plasma torch, what means that the modification of
the pressure inside the cathode cavity leading to the change of arc voltage signal can

demonstrate the resonance phenomenon in the torch.

The resonator, presented in Figure 2.24, is composed of a cylindrical cavity (the
diameter ¢1, in Figure 2.24, equals to 10 + 0.1mm) and a cylindrical neck (the diameter
¢2 = 5 £ 0.1mm and the height h = 6 + 0.5mm) which is connected with the torch cathode

cavity.

!
\ Translation motion

Acoustic resonator

Acoustic cavity

&= Gas injection

e Gas injection

\ Gas injection
Anode Cathode ring
Cathode cavity

Figure 2.24: Scheme of dc plasma torch with the acoustic resonator [73].

The depth of the resonator cavity is modified using the adjustable position of a piston
(referenced with z coordinate). The example of the use of the external resonator is shown
in Figure 2.25. The voltage power spectra have been computed from the arc voltage signal
obtained for 400 A, for a standard configuration of cathode cavity: case (a) Vy = 6 cm?

and for Ar-N, (40-16 slm) plasma forming gases mixture.

The position of a piston z has been changing from 0 mm, which corresponds to closed
resonator, to z; = 6 mm and ze = 8.7 mm. For z equals 0 mm the power spectrum of
the arc voltage signal presents the major peak around 3400 Hz. Comparing the voltage
power spectra obtained for different positions of the piston and the standard deviations

listed in Table 2.9, the decrease of o of Helmholtz mode is observed.
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Figure 2.25: Power spectra of arc voltage for different z values obtained for Ar-N, (40-16 slm)
mixture.

Table 2.9: The frequency, standard deviation (o) and Q factor of voltage power spectra,
presented in Figure 2.25, for z of 0, 6 and 8.7 mm.

f o Q

(Hz) (V)
H mode 3400 17 97
A mode 6800 2.5 33
H mode ~3400 3.8 22
A mode ~6400 14 22
H mode ~3400 11.5 58
A mode ~6300 1.3 32

7z — 0 mm

7 — 6 mm

7 = 8.7 mm

For z = 0 mm the standard deviation and Q factor are, respectively, 17 V and 97, what
means that the Helmholtz resonance imposes to the arc a strong oscillatory motion. While
increasing the z coordinate o of Helmholtz peak is decreasing. As it is presented in Figure
2.25 the most effective results are obtained for z¢ = 6 mm. The Helmholtz peak and Q
factor are significantly reduced what means that the resonance phenomenon is damped.
The influence of the external resonator has been also examined for the arc voltage signal
recorded at 400 A for Ar-H, (45-10 slm) plasma. Figure 2.26 presents the time-resolved
voltage obtained for z; — 5.57 mm. To compare the temporal evolution of the signal,
from Figure 2.9, measured for the same operating conditions but for the closed resonator,

z = 0 mm, is introduced.
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Arc voltage signal, z=0 mm Restrike mode, z=0 mm

T TS T
e

Time (s)
Figure 2.26: Comparison between the arc voltage signal and its filtered components: restrike,

Helmholtz and acoustic, measured for closed resonator, z = 0 mm, from Figure 2.9, and the
signals obtained for z; = 5.57 mm.

The comparison between the results obtained for z = 0 mm and z; = 5.57 mm highlights
that the amplitude of Helmholtz mode is significantly reduced. Moreover, the resonator

has a slight influence on the acoustic and restrike modes.

As the obtained results have shown the use of the external resonator significantly has
reduced the arc voltage variations. It is the evidence of a strong coupling between
the pressure inside the cathode cavity and the voltage signal. It can be confirmed
that the torch nozzle together with the cathode cavity appears to be a Helmholtz
resonator. Moreover, the use of the external resonator can be a good method to reduce the
plasma instabilities. As the power spectra and the temporal evolution of the fluctuating
component of the arc voltage have highlighted typical Helmholtz oscillations can be

significantly damped.

In this part of the plasma instabilities studies the Helmholtz and acoustic modes have
been investigated. The obtained results have highlighted the the dc plasma torch can
behave like the Helmholtz resonator and the frequency of the Helmholtz mode of the

plasma oscillations follows the equation:

1 [P, S
S 9.
=\ VIV, (2.36)

The measurements of the arc voltage signal and the pressure variations in the cathode

cavity have shown the coupling between them what has been confirmed by the use of the
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external resonator. Moreover, the results have highlighted the parameters influencing the
Helmholtz and acoustic modes. The increase of the cathode cavity volume has noticeably
influenced the Helmholtz mode by reducing its frequency. The use of the nitrogen as

plasma forming gas has reinforced the Helmholtz mode and dominated the acoustic modes.

2.2.3 Restrike mode

Analysing the temporal evolution of the arc voltage fluctuating component, in Figure
2.27, the regular oscillations with the period of a few hundred s can be observed, what

has been determined as Helmholtz oscillations and studied in the previous paragraphs.
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Figure 2.27: Time evolution of the fluctuating component of the arc voltage signal.

Figure 2.27 highlights that to Helmholtz oscillations are superimposed more randomly
distributed short events with sharp peaks and sudden falls. The filtering method, Figure
2.9, has underlined that these features, with a mean characteristic time of a few tens of us,
correspond to the restrike mode, i.e. a repetition of the elongation-re-arcing sequences.
The model of restrike mode, given in [61], has been presented in chapter 1. It has been
determined from the arc voltage signal characterized by pure restrike mode (without the
influence of Helmholtz or acoustic modes which depend on the plasma torch geometry).
The following section is focused on the examination of the restrike mode in the signal
superimposed with the Helmholtz oscillations. The analysis of the restrike fluctuating
component, ug(t), is possible due to the use of the filtering method. The purpose of the
following studies is to verify if the restrike component, ug(t), follows the model presented
in chapter 1 [61]. Moreover, the following examinations will be focused on the operating
parameters influencing the restrike mode.

As has been presented in Chapter 1, the restrike fluctuations are caused by the elongation
of electrical current paths of the arc due to the gas flow until re-arcing phenomena occur

through the cold boundary layer, what is presented in Figure 2.28.
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Figure 2.28: Schematic view of restrike model: starting at t =t; the electrical current path
of the arc elongates due to the gas flow, to which corresponds the increase of arc voltage from
V(ti,z) to V(ti + 7 —e,2i) (b) during 73 = tit1 — t;. Then, a sudden re-arcing occurs at tiy1
(c). A new arc is created corresponding to a minimum arc voltage and associated with a voltage
jump, 6 Vi.

The re-arcing occurs from a location of the arc column when the arc voltage, between
the arc periphery and the anode wall, exceeds the breakdown threshold, Vi,(z), what has
been defined in Chapter 1. The voltage drop across the cold layer, ucy(z,t), can also be

assumed from Figure 2.29 as follows:
ucr(z,t) = ur(z,t) —uc(2) (2.37)

where uc(z) = Eoz. Eg is the electric field through the arc column which is assumed to
be constant. The cathode and anode falls are assumed to be also constant during the arc

motion and therefore, do not belong to fluctuating component of the signals.

Un(t) 4
S ¢
% UcL(z,t) U ()
(i)
02(2) -.
0 . z

Axial coordinate (m)

Figure 2.29: Components of restrike arc voltage ug(t): the voltage drop along the arc column
uc(zi) which depends on the arc root location, z;, and the voltage drop along the arc loop, uy(t),
which connects the column to the anode wall. The arc voltage presented just after the creation
of a new arc root at z; and at time t; + ¢, up(t; +¢) = 0.
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When ucy,(z,t) > Vp(z) , a new arc root is created at z = zi11. As has been presented in
Chapter 1 and [61] Vy,(z) is linked to the thickness of the cold layer, ecr,(z). Figure 2.30

shows the evolution of ecy,(z).
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Figure 2.30: Evolution of the voltage drop through the cold layer between the arc column and
the anode wall.

At time t; 4+ € just after the formation of an arc root, the arc spot is located at z = z.
The arc current path is elongated by plasma flow during 73, ucr, increases, and at time
ti + 11 — €, just before re-arcing, ucy, reaches the breakdown voltage at z = z;;. Re-arcing
occurs and a new arc root is created at a new location, at z = z;,1, at time t; + 7 + <.

Therefore, the voltage jump, dV;, can be defined as follows:
SVilti+7) = ucr(zi ti+7i—e) = ug™ (ti+ 7 —&) —ur™" (ti+ Ti+¢) = Vi(zi41) (2.38)

If the breakdown zone would be considered as steady, these voltage jumps, dV;, should be
equal. However the turbulences and the instabilities, to which the arc is submitted, have
to be taken into account. Therefore, the restrike mode will be considered as a probabilistic
process and 0V; will be studied from a statistical point of view, what will be presented
below.

The highest values of voltage jumps are obtained for re-arcing occurring close to the
cathode. Consequently, for each signal, ug(t), obtained by the filtering from the raw arc
voltage signal, the voltage jumps, dVi(t; + 71), and their corresponding voltage minima,
uR™®(t; + 71 + €), have been measured. The statistical analysis, which will be presented
in the following section, has been obtained from the arc voltage signals measured and
shown in the previous paragraphs considering Helmholtz fluctuations but in this section
the fluctuating component of the restrike mode obtained by the filtering method will be

analyzed.
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Figure 2.31 gives the voltage jumps as a function of their corresponding minima for the

arc voltage signal obtained at a) 400 A and b) 600 A, for Ar-H, (45-10 slm) mixture and
the internal nozzle diameter of 6 mm.
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Figure 2.31: Voltage jumps of the fluctuating component as a function of their corresponding
minima for the arc voltage signal obtained at a) 400 A and b) 600 A for an internal nozzle
diameter of 6 mm, Ar-H, (45-10 slm). The mean voltage, @ = 64.4 V, has been added to
UR™ (ti41).

The analysis of these data highlights that with the increase of the arc current, the
amplitudes of the voltage jumps and the dispersion of the voltage minimum decrease,
what is more obviously presented in Figure 2.32. Tt shows the probability density of
voltage jumps calculated for the same measurements as those in Figure 2.31. The number

of low amplitude voltage jumps increases as the arc current increases, what is detrimental

to the highest amplitude voltage jumps.
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Figure 2.32: Probability density of voltage jump for the arc voltage signal obtained at a) 400
A and b) 600 A for an internal nozzle diameter of 6 mm, Ar-H, (45-10 slm).
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Figure 2.33 presents the comparison between the voltage jumps computed for the signal
measured for the a) Ar-H, 45-5 slm mixture and b) 45-10 slm. It can be observed that, for
a lower H, content, the distribution of measurements is shifted to lower values of voltage
minima and the dispersion of them is smaller. Moreover, the number of high-amplitude
voltage jumps increases as the hydrogen content increases.
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Figure 2.33: Voltage jumps as a function of their corresponding minima for the arc voltage
signal obtained at 400 A for Ar-H, a) 45-5 slm and b)45-10 slm . The mean voltage has been
added to ug™" (tiy1).

Figure 2.34 presents the mean values of voltage jumps determined from the probability
densities of 0V; obtained from the signals measured for different experimental parameters:
Ar-H, mixtures: 45-5, 45-10 and 45-15 slm and two anode nozzle diameters, 6 and 8§ mm,

in the function of the arc current.
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Figure 2.34: Mean voltage jump as function of the arc current for different hydrogen contents
in Ar-H, mixture x = 5, 10 and 15 slm, and two anode nozzle diameters, 6 and 8 mm.

Figure 2.34 highlights the decrease of mean voltage jumps while the arc current is
increasing. Considering the assumptions presented above and taking into account a
two-layer model of a stationary axisymmetric arc column in a plasma torch presented

in chapter 1, the dependence of mean voltage jumps on operating parameters can be
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interpreted in terms of mean thickness of the cold layer, €cr(z) and also determine the
mean electrical arc radius T.. Consequently, as Figure 2.34 highlights the increase of
the arc current decreases the mean voltage jumps, what results in the reduction of the
thickness of the cold layer, €cr,(z), and the increase of Te. When the hydrogen content
is increased from 5 slm to 15 slm, the radial thermal conduction losses are increased,
what leads to the decrease of T and consequently the increase of ecr,. Finally, when the
internal nozzle diameter increases, ecr, also increases. In this case higher voltage jumps

are observed, what is due to the decrease of the probability of re-arcing [75].

Figure 2.35 presents the dependence of the mean voltage jumps on the mean cold layer

thicknesses for different operating parameters indicated above.
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Figure 2.35: Mean voltage jump as function of mean cold layer thickness for different operating
parameters: the arc current of 400, 500, 600 A, H, content: 5, 10 and 15 slm, and two anode
nozzle diameters: 6 and 8 mm [75].

The mean cold layer thickness, ecr,, has been evaluated from the two-layer model presented
in chapter 1. The presented quasi-linear dependence allows determining an estimation of
the mean breakdown electric field, Ey, following the restrike model given in chapter 1.

E}, obtained from the presented experiments is around 12 kVm™'.

Up to now, E;, has
been determined by Paschen’s law, which would give the value of E;, about two orders of
magnitude bigger for the same operating parameters. Therefore, Ej, may be attributed to
the thermal instabilities, what requires more profound studies.

The presented results have verified by the statistical studies that the filtered restrike
fluctuating component, ug(t), follows the model for pure restrike instabilities, given in [61].
It highlights that restrike and Helmholtz modes are relatively separated, what is confirmed
by the different times at which they appear: Helmholtz mode at a few hundreds of us
and restrike a few tens of us. However, the following section will present the different

approach to these modes of the instabilities.
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2.3 Coupling Helmholtz and restrike modes-

"Mosquito mode"

The previous paragraphs have been focused on the studies of the plasma instabilities. As
has been presented, the Helmholtz mode appears at the frequency of a few kHz. These
oscillations are mainly driven by a cold gas in the cathode cavity, what has been verified by
the use of the external resonator mounted on the torch. The frequency of the Helmholtz

oscillations, fy, is defined as follows:

1 [P, S
= /L — 2.39
T =am\ o VT, (239)

The presented studies of the arc voltage and the pressure signals have highlighted that
the increase of the cathode cavity volume can influence the Helmholtz mode by reducing
its frequency. Moreover, the use of the nitrogen as plasma forming gas reinforces the
Helmholtz mode and dominates the acoustic modes, which, as has been shown, are due
to the acoustic waves propagation and reflection inside the torch and occur at higher

frequencies (~ 10 kHz).

The experimental results of the restrike mode can provide the assumption for the mean
occurrence frequency of restrike events, fg, which depends on the probability of re-arcing

and on the rate of increase of the arc voltage, as follows:

1 dugp

fR:?V;W

(2.40)

du
where the rate of increase of the arc voltage, —R, presented in Figure 2.28, is proportional
to the electric field in the column, Ey, and to the plasma speed, v,. The plasma speed
has been approximated in the frame of the two-layer model, presented in chapter 1, by

the formula:

—1) nul
5, = (y = 1) nu
Y

(2.41)

U
N

where S is the nozzle cross section, T, I and 7 are respectively measured mean value of the
arc voltage, of the arc current and the thermal torch efficiency computed from the energy
balance measurements. The presented results of the statistical approach to restrike mode
have highlighted the dependence of these fluctuations on the arc current, torch nozzle

diameter and flow rate of the plasma forming gas.
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As the experimental results have highlighted, the difference between the frequencies of
Helmholtz and restrike modes is significant. The Helmholtz mode appears at the time
of a few hundreds of us and the time of the restrike mode equals a few tens of us, what
shows that they are relatively decoupled. However, as the studies of these instabilities
have shown, by adjusting the appropriate operating parameters it is possible to influence

these two modes.

cathode cavity
Vo

. b

di

gas injection
L <

Figure 2.36: Schematic view of a newly designed torch called Mosquitorch.

By increasing the cathode cavity volume, it is possible to noticeably decrease the
Helmholtz frequency. Therefore, the obtained results have leaded to the design of a
new dc torch with a larger cathode cavity (Vg = 17.8 cm?), compared to the commercial

plasma torches, what is presented in Figure 2.36.

The increase of the cathode cavity has permitted to reinforce the Q factor and to decrease
the specific frequency of the Helmholtz mode. Moreover, the longitudinal dimensions of
the torch have been shortened to reject the acoustic modes to a higher frequency region.
The geometric parameters of the torch as the cathode diameter, dk, the channel length,

L, and the diameter of channel, d, are variable, what is presented in Table 2.10.

Table 2.10: Geometric parameters of a new torch.

Parameter Value

Cathode diameter dx (mm) 2.5, 3.5, 4
Channel diameter d (mm) 2.5, 3, 3.5, 4
Channel length L (mm) 10-20

Taking into consideration the parameters influencing and decreasing the frequency of
restrike events, the coupling between Helmholtz and restrike modes have been searched

experimentally, what is presented in the following paragraph.
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2.3.1 Time-resolved measurements of arc voltage

The purpose of these studies is to find the operating parameters which define the most
regular temporal variations of the arc voltage. Figure 2.37 presents the arc voltage signals
obtained for different experimental conditions. The nitrogen has been used as plasma
forming gas due to the possibility to reinforce the Helmholtz mode and dominate the
acoustic modes, what has been experimentally presented in the previous paragraphs. The
experiments performed above have shown that the frequency of the restrike events depends
on the arc current, the diameters of the torch nozzle and the gas flow rate. Therefore, the

following studies are focused on the adjustment of these operating parameters.
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Figure 2.37: Arc voltage signals for different experimental conditions: (1) dpogzle = 3.5 mm, |
— 25 A,27slm N, V = 129 V, f = 970 Hz; (2) dpogste = 3.5 mm, I = 10 A, 2.25 slm Ny, V =

118 V, f = 1540 Hz; (3) Mosquito mode: dpoze = 4 mm, I =15 A, 2 slm No, V=737V, { =
1410 Hz [74].

The different nozzles have been tested with the diameters, d, of 3.5 and 4 mm. The torch
has been power supplied by the source with regulated arc currents between 8 and 35 A.

In Figure 2.37 (1) a typical arc voltage signal, similar to that observed in the conventional
plasma torches, has been obtained choosing the nozzle diameter of 3.5 mm, 2.7 slm pure
nitrogen and the arc current of 25 A. As can be noticed, this signal is dominated by
Helmholtz mode at a frequency close to 1 kHz, shown in Figure 2.38 (1), on which restrike

components are superimposed at higher frequencies.
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Figure 2.38: Power spectra of the arc voltage signals presented in Figure 2.37.
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The decrease of the frequency characteristic for Helmholtz mode is due to the enlargement
of the cathode cavity volume and the use of pure nitrogen as plasma forming gas, as has
been mentioned above.

The idea is to lower the restrike frequency to approximate this one of Helmholtz and
couple these two modes. To define the evolution of the restrike frequency by the operating
parameters used in the experiment, the rate of increase in the arc voltage, (M), has
been established. To determine (dV/dt) the mean slope of the voltage has been measured
by the diagnosis of maxima and minima of signals and the calculation of histograms giving

the density probability, p;, of slopes, as follows:

(dV/dt) = (dV/dt)ip: (2.42)

2

Figure 2.37 (2) has been obtained by the reduction of the arc current to 10 A and the
nitrogen flow rate to 2.25 slm. The nozzle diameter has not been changed and equals 3.5
mm. It is possible to observe a significant decrease of restrike events, which is presented
as two patterns per main period (~ 650 pus).

The excepted coupling between the Helmholtz and restrike modes is obtained in Figure
2.37 (3). A very repeatable saw-tooth shape signal has been achieved by increasing the
nozzle diameter to 4 mm and the arc current to 15 A, while reducing Ny mass flow rate to 2
slm. The arc voltage signal is characterized by large and stable amplitude (67.7V 4+ 2.1V).
The signal regularity is verified by a low standard deviation of (W/dt), presented in Table
2.11, which gives the mean rate of increases of the arc voltage, (dV/dt), and their standard
deviations, o, of all signals: (1), (2) and (3).

Table 2.11: Mean slope of the arc voltage ramps of the signals presented in Figure 2.37.

(dV/dt) o
Figure 2.37 (10°Vs™!) (105Vs™!)
) 28594  1.3644
2) 1.8905  0.3442
(3) 1.0204  0.0411

In case of the arc voltage signal presented in Figure 2.37 (1) the filtering procedure
has been used to obtain the separated modes because Helmholtz and restrike are still
disconnected. The rate of increase in the arc voltage, (dV/dt), what is coupled with
restrike frequency, decreases when the nozzle diameter increases, or with the decrease of

the arc current either the mass flow rate.
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The frequency, 1.4 kHz, of the resonant mode should be the same as that of the Helmholtz
mode, which can be written as: fg = KH.\/M following the model for Helmholtz
oscillations. Ky defines the geometric parameters: /S/L,V, determined in the equation
(2.21). (7¢P/pp) has been calculated as a function of the measured specific enthalpy, ho,
using the database TTWinner [76].
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Figure 2.39: Dependence of Helmholtz frequency fr/Ky on the measured mean specific
enthalpy hy.

Figure 2.39 presents the determination of f /Ky as a function of hy. For a different values
of the torch nozzle diameter, d, the arc current, I, and the gas flow rate, q, the frequency
fg has been measured in the range of 1-1.6 kHz with Ky between 0.97 and 1.29 m~!. As
Figure 2.39 highlights the obtained results are grouped on a single curve, what shows very
good agreement between the experimental and the theoretical values. It confirms that
the Helmholtz oscialltions drive the voltage signal in this new regular mode.

When the torch works in this particular mode it emits a stable, sharp and loud sound
which resembles the sound produced by a mosquito. Therefore, the term "mosquito mode"

has been used to describe the phase locking between Helmholtz and restrike modes.

2.3.2 Enthalpy modulation

To define the stationary characteristics of this periodic plasma jet the energy balance
measurements have been carried out. The following section presents the measuring
procedures of the mean values of the voltage across the torch (Vioen in Figure 2.40),
of the arc current (I,.) and the difference of water temperature (AT). The obtained
results enable to obtain the average specific enthalpy of the plasma jet (hy), the thermal

torch efficiency (1) and the thermal losses at the electrodes in the cooling circuit (Qoss)-
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Figure 2.40: Simplified scheme of the energy balance measurements of the torch.

The temperature difference has been measured by two thermocouples type J mounted
between the input and the output of the cooling circuit of torch, shown in Figure 2.40.
The type J, made by iron-constantan, has been chosen because of its high sensitivity of
about 50 1V /°C. The arc current signal is obtained from the voltage drop across the shunt
resistor, which is equal to 1073 2. The use of shunt resistor allows the measurement of
current values too large to be directly measured by the ammeters. In this case the shunt,
a manganin resistor of accurately known resistance equals 1073 (2, is placed in series with
the load so that all of the current to be measured will flow through it, shown in Figure 2.40.
To make the measurements of the arc voltage the bridge circuit has been implemented,
presented in Figure 2.40, with the divider equal to 38.506. Moreover, a new torch uses
lower flow rates of the plasma forming gases than in the conventional systems. Therefore,
a more accurate measurement of the gas flow has been required. The flow rates have been
monitored by a Brooks Instrument SLA5850 mass flow controller (Hatfield, PA, USA)
which allows measuring the gas in the range from 0.003 to 30 slpm with the accuracy
equals +1.0% of the rate.

The measurement of AT has enabled to determine the thermal losses at the electrodes in

the cooling circuit according to the following equation:

Qioss = V-puater-Cp. AT (2.43)
where:
\Y% is the volume flow rate of water circulate in the torch,
Pwater the density of water,
Cp the specific heat of water,
AT the temperature difference of water, defined as: AT = Toutyo — Tinmyo
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The thermal torch efficiency, 1, has been calculated by using the equation:

Qloss
=1- 2.44
n V7 (2.44)
where:
\Y% is a measured value of the mean voltage,
I a measured value of the mean arc current.

The electrical power supplied to the torch after removing the heat losses in the cooling
circuit is supposed to be converted into enthalpy flux. Neglecting the kinetic energy of
the plasma flow, which represents a few per cent of total energy in these conditions, the

specific enthalpy can be defined as follows:

1%
ho = = (2.45)
My
where:
m, is the total plasma forming gas mass flow rate.

The obtained results of the measurements, performed for the plasma: (1), (2) and (3) in
Figure 2.37, are presented in Table 2.12. First of all, it can be noticed that the obtained
values of the specific enthalpy are similar to these ones in conventional torches. Moreover,
these measurements highlight the use of much lower flow rates of the plasma forming gas
comparing to the conventional systems (e.g. Ar-H, (45-10 slm) used in the experiments

presented in this chapter).

Table 2.12: Energy balance measurements for the case (1), (2) and (3) presented in Figure
2.37.

d T N, m Uwe £ Qos ho
(mm) (A) (shm) (kgs™h) (V) (Hz) (W) (MJkg™)
) 35 25 27 56x10° 129 970 854 42
(2) 35 10 225 47x107° 118 1540 364.5 17.4
)

4 15 2 4.2x107° 73.7 1410 537 13.34

It has been found experimentally that Qloss varies almost linearly with the arc current
and slightly depends on the nozzle diameter and the gas flow [77,78]. Therefore, the
following part presents the estimation of the specific enthalpy modulation assuming that
the thermal losses are constant. This hypothesis permits to determine the equivalent
"thermal" voltage, Vi, given by: Vi, = Qloss/l, where the mean value of the arc current

and the thermal losses have been determined above.
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Figure 2.41: Dependence of mean arc voltage and thermal voltage on (a) arc current and (b)
nitrogen mass flow rate (b) for different anode nozzle diameters d (mm).

Figure 2.41 presents the measurements of the mean arc voltage, Uae, and thermal voltage,
Vi, of the plasma obtained by a new torch. Figure 2.41 a) shows the dependence of U,y
and Vi, on the arc current. The measurements have been carried out for two diameters
of the torch nozzle: 3.5 and 4 mm. The dispersion of the measurements is related to the
fact that for each arc current value different gas flows have been studied. Figure 2.41 b)
presents the dependence of Uare and Vi, on the gas flow rates. The results show that the
thermal voltage is weakly dependent on the nozzle diameter and gas flow rates.

In case of the plasma jet related to "Mosquito" mode, presented in Figure 2.37 (3) and
Table 2.12 (3), the equivalent thermal voltage, Vi, can be considered as constant due to
high thermal inertia of the heat transfer process through the copper nozzle in comparison
with the time variations of arc voltage. Vi, calculated from the data listed in Table 2.12
(3), is equal to ~ 36 V. This assumption permits to determine the efficient voltage, which

is useful for the conversion of electric power into enthalpy, given as follows:
Verr =U(t) = Vin (2.46)

where U(t) is the arc voltage, presented in Figure 2.37 (3), with Uy, equals around 40 V
and Upay around 110 V. Therefore, Vg fluctuates between 4 V and 74 V.

As a consequence, it can be shown that the power supplied to the gas: Pg = Veg x I is
modulated in the range 60-1110 W. The variations of the specific enthalpy associated with
the efficient voltage fluctuations are given by the following equation:

U(t) — Vip).I

h (2.47)

m
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Therefore, the assumed variation of h ranges between 1.4 and 26 MJkg~!, what gives the
proportion of the enthalpy modulation: hyax/hmin =~ 18 with a mean value of around 13.3
MJkg™!, given by the energy balance measurements (Table 2.12) [74]. Consequently, the
temporal variation of temperature, corresponding to given range of enthalpy, should be
between 1500 and 7100 K (according to the thermodynamic data found in [17]).

2.4 Conclusions

As has been presented in Chapter 1, the uncontrolled arc plasma instabilities in suspension
plasma spraying cause non-homogeneous plasma treatments of material during their flight
and also during coatings formation. Therefore, in the framework of this thesis, the modes
of plasma fluctuations have been studied in common mono-cathode dc¢ plasma torch.
Firstly, the parameters influencing the Helmholtz and acoustic modes have been examined.
The presented model of Helmholtz resonance has highlighted that the pressure oscillations
in the cathode cavity govern the arc motion. Therefore, the arc voltage signal have
been measured simultaneously with the cathode cavity pressure. The obtained results
have shown that the Helmholtz resonance strongly depends on the volume of cathode
cavity. Moreover, the use of nitrogen as plasma forming gas reinforces the Helmholtz
oscillations which dominates the acoustic modes. The studies presented in this part
of the chapter have validated experimentally the Helmholtz model and leaded to the
assumption of the acoustic resonances representation. Moreover, the investigation of the
arc voltage fluctuations have highlighted that the arc motion in dc plasma torch originates,
in addition to Helmholtz mode, in the restrike mode. Therefore, the dependence of re-
arcing phenomenon on experimental parameters has been highlighted by the statistical
measurements. These studies have shown that filtered restrike fluctuations measured
from the arc voltage signal coupled with Helmholtz mode follow the model given in [61]
for pure restrike fluctuations, which depends on the properties of the cold boundary layer
around the arc column. It has highlighted that both modes, Helmholtz and restrike are
relatively decoupled. However, the understanding of Helmholtz and restrike phenomena
has leaded to a new mode of the arc instabilities. By changing the parameters influencing
the Helmholtz and restrike fluctuations, it is possible to couple them together in a newly
designed dc plasma torch. Torch working in this new mode emits sharp and stable
sound which resembles the sound of the mosquito. Therefore, this mode has been called
"Mosquito mode". The energy balance measurements have highlighted that the plasma
produced in this new mode is characterized by the enthalpy highly modulated. The
properties of this obtained periodic plasma will be used in the following chapter to achieve

the suspension injection synchronized with this plasma.
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L’objectif de ce travail est de comprendre les origines des fluctuations de ’arc dans une
torche a plasma d’arc conventionnele & courant continu. Les mesures se sont concentrées
sur le mode de réamorcage, décrite dans le chapitre 1, et sur le mode Helmholtz récemment
mis en évidence. Le but est d’examiner les parameétres de fonctionnement qui influencent
ces deux modes. Toutes les mesures ont ét¢ réalisées a la pression atmosphérique en
utilisant une torche & plasma concue au laboratoire qui présente une configuration similaire
a une torche commerciale F'4 (Sulzer Metco, Suisse). La torche est constituée d’une tuyére
de diameétre, d, égale 7 mm et la bague d’injection percée de 16 trous de diamétre 1 mm.
Le volume de la cavité cathodique, Vg, et la distance entre la pointe de cathode et la sortie
de tuyére, Ly, sont variables. Le volume de la cavité cathodique peut étre choisi entre:
V, = 6cm?, ce qui correspond au volume standard, V, = 8.7cm?, obtenue en enlevant la
bague d’injection et Vy = 12.5cm?; le volume d’une cavité usinée spécialement dans le
laboratoire. L’alimentation de la torche est assurée par une source a thyristors régulée
en courant (SNMI, de type P130) qui fournit le courant jusqu’a 1000 A avec une tension
maximale de 100 V.

Les mesures résolues en temps des signaux ont été effectuées en utilisant une carte
d’acquisition de données (PCI 6132), pilotée par logiciel LabView. Cette carte de
National Instruments permet de convertir le signal analogique au format numérique, par
échantillonnage et numérisation a 'aide d’un convertisseur analogique-numérique (ADC
analog-to-digital converter en anglais). Pour obtenir le signal sans aliasing, le critére
d’échantillonnage de Nyquist doit étre respecté. Il montre que les échantillons prélevés
a une fréquence f;, doit étre supérieure a f,.x pour obtenir le signal analogique d’origine
reconstruit exactement, ce qui est présenté comme suit: fg > 2f, ..

Les signaux ont été enregistrés par le programme LabView pour un traitement ultérieur de
données, par exemple I'analyse statistique des signaux. Pour atteindre les valeurs fiables,
les résultats sont des moyennes de 10 signaux mesurés.

Cependant, ’analyse du signal dans le domaine temporel n’est généralement pas suffisante.
Pour étudier toutes les informations que le signal, il est nécessaire de transformer ce signal
pour le domaine des fréquences, ce qui peut étre fait par la transformation de Fourier FFT.
Le résultat de l'analyse FFT est une matrice de nombres complexes, les amplitudes et
les phases, ce qui correspond a des oscillations harmoniques élémentaires dans lesquelles
le signal peut étre décomposé. Les amplitudes correspondent au spectre de puissance,
qui indique la quantité d’énergie dans une bande de fréquence donnée ou dans une ligne
donnée. Le spectre de fréquence peut étre utilisé comme un outil pour distinguer les
différents régimes de périodicité et le bruit. Dans le cadre de cette thése, la transformation
de Fourier rapide a été appliquée sous plate-forme LabView.

Les mesures résolues en temps et le traitement des données ont été appliquées au signal

de tension d’arc. L’estimation du signal de tension d’arc a été réalisée en utilisant une
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carte PCI 6132 d’ordinateur d’acquisition de données, piloté par logiciel Labview, comme
cela a été présenté ci-dessus. Cette carte PCI 6132 se compose de 4 entrées analogiques
échantillonnées simultanément limitées par la tension au niveau de 10 V. Par conséquent,
pour effectuer les mesures de la tension d’arc un pont diviseur (construit a Paide de
résistances) d’un facteur 22.86 a été implémenté. Comme cela a été présenté ci-dessus,
le processus d’échantillonnage est essentiel dans la mesure en temps résolu. En raison
de variations rapides des phénomeénes re-amorgage dans la torche a plasma (jusqu’a 50
us), le taux d’échantillonnage de 320 kS/s en 0.2 s a été choisi. Il donne une fréquence
d’échantillonnage de 160 kHz, qui répond au critére d’échantillonnage de Nyquist et la
résolution de fréquence est égal a environ 5 Hz.

L’évolution temporelle obtenue du signal de tension de d’arc a montré les caractéristiques
liées au mode de réamorgage mais superposées a des oscillations plus réguliéres, pseudo-
sinusoidales avec une période d’environ 200 us. De plus, le spectre de puissance, présenté
dans la figure ref FFT2, a mis en évidence la présence d’un pic a ~4.3 kHz, ce qui ne peut
pas correspondre aux fluctuations de restrike, caractérisés par des composantes spectrales
non-reproductibles. Les résultats obtenus suggérent que, dans la torche & plasma a courant
continu le mode de réamorcage est superposé sur un autre phénomeéne. Delair et al. ont
d’abord suggéré que des oscillations de Helmholtz dans la chambre d’arc pouvaient étre
la cause des fluctuations de la tension d’arc a hautes fréquences [69]. Cette hypothése a
été proposée car certains systémes de combustion se comportent comme des résonateurs
de Helmholtz [70,71].

Les variations de la pression dans la cavité cathodique sont générées par 1’oscillation du
plasma dans le canal de la tuyére, ce qui montre que la cavité de la cathode ainsi que le
canal de la tuyére peuvent apparaitre comme un résonateur de Helmholtz. I’oscillation
de Helmholtz est un phénoméne trés étudié dans la théorie des vibrations est peut étre
décrit par analogie par un systéme masse-ressort.

Le gaz froid dans la cavité cathodique, caractérisée par le volume Vg, est analogue au au
ressort, la cavité cathodique constituant alors la cavité du résonateur de Helmholtz.
Cette cavité est connectée au canal de tuyére qui contient le plasma oscillant, analogue
a la masse du systéme masse-ressort. Le plasma oscillant induit une perte de charge due
aux frottement et & la turbulence, ce qui ajoute des effets visqueux dans le canal, source
de phénoménes non-réversibles. Ensuite, la perturbation de pression dans la cavité de
cathode est donnée par 1'équation (2.19), ou le facteur de qualité, @, est lié a la bande
passante du résonateur, Af, et au facteur d’amortissement. Par conséquent, la fréquence

de Helmholtz liée au mouvement de la masse du plasma dans la tuyére est définie comme:

L [vgPy S
= —| | 2.48
=5\ T 249
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oll: 7, est le coefficient isentropique du gaz froid, P, la pression moyenne dans la cavité
cathodique, p, la densité du plasma, S est 'aire de la section de la tuyére de la torche,
L, la longueur du canal de buse, Vj le volume de la cavité cathodique. L’équation met
en évidence la dépendance du mode de Helmholtz sur les propriétés thermophysiques, 7,
et pp, liées, respectivement, au gaz froid et au plasma, la configuration de la torche,
\/S/TD.Vg, et la pression dans la cavité cathodique, ce qui fonction des conditions
opératoires et des propriétés thermodynamiques du gaz.

Par conséquent, les études du mode de Helmholtz des oscillations de plasma nécessitent
des mesures simultanées de la tension de l'arc et de la pression a l'intérieur de la cavité
cathodique.

La pression totale a été mesurée a l'aide d’un capteur piézo-résistif de petite taille
(diametre 4 mm) ENDEVCO 8510C (Meggitt’s Endevco, Irvine, Etats-Unis). Le capteur
est installé dans la cavité cathodique de la torche. Les mesures simultanées des signaux
de la tension de I'arc et de la pression ont été effectuées a I'aide d’une carte d’acquisition
de données PCI 6132 pilotée par le logiciel Labview.

L’influence de différentes conditions de fonctionnement sur les oscillations de Helmholtz
a été examinée par la mesure des signaux de tension d’arc et la pression a l'intérieur de
la cavité cathodique. En outre, les travaux antérieurs du laboratoire ont mis en évidence
Iexistence d’autres modes de fluctuation due & la propagation des ondes acoustiques
[72,73]. Ces modes, appelés les modes acoustiques, se produisent a des fréquences plus
élevées, ~8.5 kHz. Par conséquent, les expériences présentées ont donné les résultats
du mode Helmholtz et des modes acoustiques et du mode de réamorcage (restrike). Pour
examiner les oscillations de Helmholtz, acoustique et de réamorcage du plasma, les signaux
de ces modes doivent étre isolés a partir de la tension d’arc mesurée et de la pression.
La tension d’arc mesurée et la pression peuvent étre présentées sous la forme de la somme
des modes d’instabilité de jet de plasma: Helmholtz (H), réamorcage (R) ou acoustique
(a). Pour observer l'influence de ces modes sur les conditions de fonctionnement, ils ont
été isolés a partir du signal, en utilisant le filtre de Wiener numérique programmé sous
LabView, définie par la formule 2.27.

Premiérement, les études sur les modes de Helmholtz et acoustique ont été présentées.
L’effet de différentes configurations de la cavité cathodique sur ces modes a été examiné.
En enlevant 'anneau d’injection, la figure 2.10 (b), et en utilisant la cavité de cathode
spécialement usiné, 2.10 (c¢), trois configurations différentes ont été obtenus avec les
volumes : (a)Vy = 12.5 cm?®, (b) V, = 8.7 cm? et (¢)Vy = 6 cm®. Les figures 2.11
et 2.12 présentent les spectres de puissance de la tension et de la pression les composantes
des modes Helmholtz (H) et acoustiques (A), filtrées et calculées a partir de la tension
d’arc et de pression. Ils ont été enregistrés pour chaque configuration de la cavité de la

cathode, pour les mémes conditions de fonctionnement: Ly = 30 mm, I = 500 A, Ar-H,
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(45-10 slm). Les résultats présentés dans les figures 2.11 et 2.12 montrent une bonne
correspondance entre les modes Helmholtz et acoustiques, et, en outre, entre la tension
et la pression. Pour analyser 'évaluation de ces modes les paramétres ont été établis a
partir des spectres de puissance et résumeées dans le tableau 2.3.

Les écart-types, défini par: o; = /(si2), oil s; sont les signaux de tension ou de pression
associés aux modes Helmholtz ou acoustiques, ont été calculés a partir des spectres filtrés
par le programme développé sous LabView. Le facteur Q a été établi par ’équation,
comme suit: Q = f;/Af, ou Af est la largeur a mi-hauteur mesurée sur les raies Helmholtz
ou acoustique dans le spectre de puissance de la tension et de la pression.

Les valeurs de la fréquence de Helmholtz définis & partir des spectres de puissance de
la tension et de pression, donnée dans le tableau 22.3, mettent en évidence le décalage
des pics fg a des valeurs plus faibles en raison de 'augmentation du volume de la cavité
de cathode, par exemple, de 4500 Hz obtenue pour le cas (¢) a 3100 Hz pour (a). Les
calculs présentés dans le tableau 2.4 mettent en évidence une bonne compatibilité entre les
résultats expérimentaux et le modéle du mode de Helmholtz. Les écarts-types calculées de
Helmholtz et modes acoustiques montrent qu’avec I’augmentation du volume de la cavité
de cathode, non seulement les fréquences de Helmholtz sont décalées vers des valeurs plus
faibles, mais aussi une grande partie de la puissance du signal passe en mode acoustique.
Ce phénomeéne est plus évidemment présenté dans la figure 2.13. Le rapport de puissance,
R;, pour chaque mode de fonctionnement est calculé a partir de la puissance des spectres
de tension filtré en programme LabView et tracé en fonction du volume de la cavité de
la cathode. Pour le cas (c), o Vy = 12.5 cm?, plus de puissance fluctuante est contenue
dans le mode acoustique a Popposé du cas (a).

En outre, les facteurs Q de résonance de Helmholtz pour la tension de ’arc diminuent

3. Ceci indique que 'énergie de

également de 30.5 a 19 quand V, varie de 6 a 12.5 cm
résonance de Helmholtz est transférée a des modes acoustiques.

Les résultats présentés conduisent a rechercher analytiquement les modes acoustiques dans
la cavité cathodique en tenant compte des modes radiaux et azimutaux, en plus des modes
longitudinaux. La cavité de la cathode peut étre supposée étre de géométrie cylindrique
avec une forme annulaire de longueur L = 38 mm, le rayon intérieur a = 7 mm et le
diamétre extérieur b = 10.5 mm. Cette approche analytique compte tenu dans la section
"Configuration of the cathode cavity", ont fourni I’équation de modes de résonance des

fréquences défini par:
fO = (fnm2 + fEQ)O'S (2'49)

ou fy correspond a I'acoustique modes longitudinaux. Le calcul montre que la plupart
d’entre eux ont des fréquences supérieures a 10 kHz, sauf le mode (n, m , ¢) = (1, 1, 1),

qui définit:
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fp = 2368 Hz et f;; = 6589 Hz, ce qui donne la fréquence fy = 7000 Hz. Cette valeur
est cohérente avec avec celles mesurées dans les spectres de puissance présentée dans les
figures 2.14 et 2.15. En outre, lorsque le volume de la cavité cathodique, V,, augmente,
L présenté dans le modéle (2.32) augmente, ce qui donne la diminution de la fréquence
acoustique. Les résultats expérimentaux, énumérés dans le tableau 2.3 et 2.5, montrent
la méme dépendance.

Dans les études précédentes, présentées dans [72], les mesures des signaux de la tension
d’arc et de la pression, obtenues pour des mélanges argon-hydrogéne ont été mises en
évidence. Les expériences ont été effectuées en utilisant la méme torche & plasma. La
tension d’arc et la pression dans la cavité cathodique ont été obtenus & 600 A, pour le débit
constant d’argon a 45 slm et le débit d’hydrogéne variant entre 2 et 10 slm. Les spectres
de puissance de tension, présenté sur la figure 2.17 montrent que la composition chimique
des gaz plasmageénes influe fortement sur la résonance de Helmholtz, en particulier lorsque
le contenu de I’hydrogéne est augmentée & mélange binaire comme Ar-H,. De plus, le
débit d’hydrogene doit atteindre un certain seuil, d’environ 5 slm, pour maintenir des
oscillations de Helmholtz. Dans la partie suivante, les résultats de I'utilisation de Ar-H,

et Ar-N, sont mis en évidence. Ils ont été obtenus pour les compositions des gaz suivants:

Ar-H, (45-5 slm)

Ar-N, (40-6 slm)

> (

- Ar-H, (45-10 slm)
> (
> (

- Ar-N, (40-16 slm)

Les mesures de la tension d’arc et de la pression dans la cavité cathodique ont été obtenues
4400 A pour une configuration standard de la cavité: cas (a)Vy = 6 cm® et pour la distance
entre la pointe de cathode et la sortie de la tuyére: Ly = 30 mm. En comparant les motifs
des oscillations de la tension d’arc, présentés sur la figure 2.18, obtenue avec le mélange
Ar-H, (45-10 slm), avec les signaux mesurés pour le plasma argon-azote, un phénoméne
de battement est observé qui produit des groupes successifs de pics d’amplitudes hautes
et basses dans le cas de Ar-H, mixture. L’analyse des spectres de puissance de la tension
obtenue avec Ar-N,, représentés sur la figure 2.19, et les données indiquées dans le tableau
2.7 montre que les signaux de tension d’arc contiennent la résonance de Helmholtz sans
aucune influence du mode acoustique. Par conséquent, ce phénoméne de battement trouvé
dans I’évolution temporelle du signal de tension mesurée pour Ar-H, (45-10 slm) pourrait
étre attribuée a un couplage entre les modes de Helmholtz et acoustique. De plus, le
spectre de puissance calculé a partir de la tension d’arc (figure 2.19) et la pression de
signaux (figure 2.20) mettent en évidence le décalage des pics de fréquence de Helmholtz

vers les valeurs inférieures pour plasma argon-azote. La fréquence est égale a 3.4 kHz
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pour Ar-N, (40-16 slm) plasma et 4.45 kHz pour Ar-H, (45-10 slm). L’analyse du modéle
de la fréquence de Helmholtz donné dans ((2.21)) montre que cette baisse de la fréquence
est di aux parametres suivants du plasma Ar-N,: faible coefficient isentropique, ~, et une
densité plus élevée, p, comparativement au plasma Ar-H,.

Le modéle du mode de Helmholtz des instabilités ((2.21)) montre que ces fluctuations de
la tension d’arc sont aussi sensibles & la longueur du canal de tuyére. Par conséquent,
cette partie présente ’examen de l'influence de la distance entre la pointe de la cathode
et de sortie de la buse, Lg, & la résonance de la torche conventionnelle. La longueur
du canal de tuyére a ét¢ modifice comme indiqué a la figure 2.21. Les mesures des
signaux de tension d’arc et de pression ont été effectuées a 400 A pour le mélange argon-
hydrogéne (45-10 slm) en utilisant la torche de cavité cathodique: (b) Vg = 8.7 cm®. Les
signaux ont été enregistrés pour différentes Ly, égal & 30 mm et 29.5 mm. Les spectres
de puissance de tension d’arc et de pression du mode de Helmholtz filtré et calculé a
partir des mesures sont présentés sur les figures 2.22 et 2.23. Les spectres de puissance
et les données calculées et mentionnées dans le tableau 2.8 montrent que la variation de
la position de la cathode ne modifie pas la fréquence de Helmholtz qui est d’environ 3.5
kHz, pour les deux configurations. Toutefois, une légére diminution de la distance entre
la pointe de la cathode et de sortie de tuyére, AL; = 0.5 mm, influence sensiblement
Iécart-type calculée a partir de la tension d’arc, 10 V et 7.5 V, respectivement, pour L
= 30 mm et Lx = 29.5 mm.

Pour confirmer la théorie de résonateur de Helmholtz dans une torche plasma a courant
continu, un résonateur acoustique externe monté sur la cavité cathodique a été utilisé.
Ce type d’installation permet de modifier les ondes de pression dans la torche a plasma,
ce qui signifie que la modification de la pression a I'intérieur de la cavité cathodique qui
conduit a la modification du signal de tension d’arc peut démontrer le phénoméne de
résonance dans la torche.

Le résonateur externe est composé d’une cavité cylindrique (le diamétre ¢q, illustré sur la
figure 2.24, est égal & 110 £ 0.1mm) et un col cylindrique (le diamétre ¢ = 5 £ 0.1mm et
la hauteur h = 6 £+ 0.5mm) qui est relié a la cavité cathodique de la torche. La profondeur
de la cavité de résonateur est modifié en utilisant la position d’un piston réglable (référencé
avec coordonnée z). I’exemple de l'utilisation du résonateur externe est représenté sur la
Figure 2.25. Les spectres de puissance de tension ont été calculés a partir du signal de
tension de I'arc obtenu pour 400 A, pour une configuration standard de la cavité de la
cathode: cas (a) Vg = 6 cm?® et pour le mélange des gaz Ar-N, (40-16 slm).

La position d’un piston z a changé de 0 mm, ce qui correspond & résonateur fermé, par z;
=6 mm azo = 8.7mm. Pour z égal & 0 mm, le spectre du signal de tension d’arc électrique
présente un pic majeur autour de 3400 Hz. En comparant les spectres de puissance de

tension obtenus pour différentes positions du piston et les écarts-types mentionnés dans
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le tableau 2.9, une diminution de I’écart type de mode de Helmholtz est observée. Pour
z = 0 mm, o est 17 V, ce qui signifie que la résonance de Helmholtz impose & 'arc
une forte oscillation. En augmentant la coordonnée z, o des fluctuations de Helmholtz
diminue. Comme il est présenté sur la figure 2.25, les résultats les plus efficaces sont
obtenus pour z; = 6 mm. Le pic de Helmholtz est considérablement réduit, ce qui signifie
que le phénomeéne de résonance est amorti. Les résultats obtenus ont montré I'utilisation
du résonateur externe a considérablement réduit les variations de tension d’arc. C’est la
preuve d’un couplage fort entre la pression a l'intérieur de la cavité cathodique et le signal
de tension. En outre, I'utilisation du résonateur externe peut étre une bonne méthode au
réduire les instabilités du plasma puisque les fluctuations de tension peuvent étre réduites
de fagon significative.
La section suivante se concentre sur 'examen du mode de réamorcage superposé aux
oscillations de Helmholtz. L’analyse de la composante fluctuante de réamorcage, ug(t),
est possible grace a 'utilisation de la méthode de filtrage. Le but de ces études suivantes
est de vérifier si le composant de réamorgage, ur(t), suit le modeéle présenté dans le chapitre
1 [61]. En outre, les examens suivants seront axés sur les paramétres de fonctionnement
qui influencent le mode de réamorcage.
Comme cela a été présenté dans le chapitre 1, les fluctuations de réamorcage sont causées
par 'augmentation de la tension d’arc en raison de 'écoulement du gaz. Le processus
d’allongement est suivi par un claquage électrique de la couche limite du gaz froid entre la
colonne d’arc et la paroi anodique. Un nouveau point d’accrochage est créé en amont de
la tuyére, qui correspond & une tension d’arc minimale et qui est identifiée par un saut de
tension, ce qui est présenté dans la figure 2.28. La ré-amorcage d’arc se produit a partir
de la colonne d’arc lorsque la tension de 'arc, entre la périphérie de I'arc et la paroi de
'anode, est supérieure au seuil de rupture, Vi, (z), ce qui a été défini dans la Chapitre 1.
La chute de la tension aux bornes de la couche froide, ucy(z,t), peut aussi déduire de la
figure 2.29 comme suit:

ucr(z,t) = ur(z,t) —uc(2) (2.50)

ou uc(z) = Egz. Eg est le champ électrique a travers la colonne d’arc, qui est supposée étre
constante. Lorsque ucy,(z,t) > Vp(z), un nouveau pied d’arc est créé a z = z41. Comme
cela a été présenté dans le chapitre 1, Vi(z) est liée a I'épaisseur de la couche froide,
ecr(z) [61]. Figure 2.30 montre ’évolution de ecr,(z). Au moment de t; + ¢ juste aprés la
formation du pied d’arc, le spot anodique est situé a z = z;. Le chemin du courant d’arc
est allongé par le plasma lors de 73, la tension ucy, augmente, et au temps t; + 73 — €, juste
avant de re-amorcage, ucy, atteint la tension de claquage a z = z;+1. Une nouveau pied
d’arc est créé dans un nouveau lieu, a z = z;y1, au temps t; + 73 + . Par conséquent, le

saut de tension, dV;, peut étre défini par ’'équation (2.38). Cependant, dans ce modéle, les
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turbulences et les instabilités de I’arc, doivent étre prises en compte. Par conséquent, les
arguments ci-dessus doivent étre considérés d’un point de vue statistique. Cette analyse
statistique a été obtenue a partir des signaux de tension d’arc, le méme que dans le cas
de I’étude des variations de Helmholtz mais dans ce cas, les études de la composante
fluctuante de la mode de réamorcgage obtenues par le procédé de filtrage sont présentés.
L’analyse des données a montré que 'augmentation du courant d’arc cause la diminution
de amplitude des sauts de tension et la diminution de la tension minimum. De plus,
pour un plus faible H, contenu, la distribution des mesures est décalée vers des valeurs
de plus faible de tension. Le nombre desauts de tension a haute amplitude augmente
lorsque le contenu de hydrogéne augmente. Les résultats présentés sur la figure 2.34
ont montré des valeurs moyennes de sauts de tension déterminées a partir des densités
de probabilité de dV; obtenues & partir des signaux mesurés pour différents paramétres
expérimentaux: Ar-H, mélanges: 45-5, 45-10 et 45-15 slm et deux diamétres de la tuyeére,
6 et 8 mm, en fonction du courant d’arc. Figure 2.34 a mis en évidence la diminution
des sauts de tension moyenne tandis que le courant d’arc augmente. Compte tenu d’un
modéle & deux couches d'une colonne d’arc stationnaire, axisymétrique dans une torche
a plasma présenté dans le chapitre 1, la dépendance des sauts de tension moyenne des
paramétres de fonctionnement peut étre interprétée en terme d’épaisseur moyenne de la
couche froide, €cr,(z). Le rayon moyen de l'arc électrique T, peut aussi étre déterminé.
Par conséquent, comme Figure 2.34 met en évidence que I'augmentation du courant d’arc
diminue les sauts de tension moyens, ce qui résulte en la réduction de I'épaisseur de la
couche froide,ecy,(z), et 'augmentation de T.. Lorsque le débit d’hydrogéne est augmenté
de 5 slm a 15 slm, les pertes de conduction thermique radiale sont augmentées, ce qui
conduit & la diminution de Te et par conséquent 'augmentation de &cy,(z). Enfin, lorsque
le diamétre de la tuyére augmente, €cr,(z) augmente également. Dans ce cas, les sauts
plus élevés de la tension sont observés, ce qui est dii & la diminution de la probabilité de
reamorcage [75]. Les résultats présentés ont été vérifiés par les études statistiques que la
composante fluctuante filtrée du réamorcage, ug(t), suit le modeéle des instabilités pures
du réamorcage, donnés dans [61]. Tls soulignent que le réamorcage et modes de Helmholtz
sont relativement séparés, ce qui est confirmé par les différents temps caractéristiques: le
mode de Helmholtz a quelques centaines de us et réamorcage quelques dizaines pus.

En augmentant le volume de la cavité cathodique, il est possible de diminuer notablement
la fréquence de Helmholtz. Par conséquent, une nouvelle torche & courant continu a
été congu avec une cavité cathodique plus grande (V, = 17.8 cm?®), par rapport aux
torches a plasma commerciales. L’augmentation de la cavité cathodique a permis de
renforcer le facteur Q et de diminuer la fréquence spécifique du mode de Helmholtz. En
outre, les dimensions longitudinales de la torche ont été raccourcies pour rejeter les modes

acoustiques vers les régions de plus hautes fréquences. En tenant compte des paramétres
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d’influence et en diminuant la fréquence des événements de réamorcage, le couplage entre
mode Helmholtz et de réamorcage a été recherché expérimentalement. L’azote a été utilisé
comme le gaz plasmagéne en raison de la possibilité de renforcer le mode de Helmholtz
et dominer les modes acoustiques. En outre, la fréquence des événements de réamorcage
dépend du courant d’arc, le diamétre de la buse de la torche et de la vitesse d’écoulement
du gaz. Par conséquent, les études ont été concentrées sur le réglage de ces paramétres de
fonctionnement. Différentes tuyeéres ont été testées avec un diamétre, d, variant de 3.5 et
4 mm. Le courant d’arc a été modifié de 25 A & 15 A. Le débit d’azote a été choisi de 2.7
slm & 2 slm. Le couplage entre les modes de Helmholtz et réamorcage a été obtenu pour le
courant d’arc de 15 A, le diamétre diamétre de tuyérede 4 mm et le débit d’azote de 2 slm,
présenté sur la figure 2.37 (3). Le signal de tension d’arc obtenue dans ce nouveau mode
est trés reproductible en forme de dents de scie, caractérisée par une amplitude importante
et stable (67.7V 4+ 2.1V), a la fréquence de 1.4 kHz. Lorsque la torche fonctionne dans ce
mode particulier, il émet un son stable, fort et bruyant qui ressemble au son produit par
un moustique. Par conséquent, le terme "mosquito mode" a été utilisé pour décrire ce
nouveau mode de couplage entre les modes de Helmholtz et réamorcage. Les mesures de
bilans d’énergie ont permis de définir I’enthalpie spécifique, h, du plasma produit dans ce
nouveau mode. Les variations de h ont été obtenues, comprise entre 1.4 et 26 MJkg™! en
considérant constantes les pertes thermiques aux électrodes. Il donne la proportion de la
modulation d’enthalpie: hyax/hmin >~ 18 avec une valeur moyenne d’environ 13.3 MJkg~1.
Par conséquent, la variation temporelle de la température, ce qui correspond a I’enthalpie
modulée, doit étre comprise entre 1500 et 7100 K (d’aprés les données thermodynamiques

trouvés dans [17]).
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Introduction

The following chapter focuses on the improvement of suspension plasma spraying method.
The principle is to inject the suspension droplets at the right moment in the cycle of the
periodic plasma jet oscillations.

The previous chapter has shown the possibility to obtain very regular plasma oscillations.
A new dc torch has been designed with a larger cathode cavity (V, = 17.8 cm?) to reinforce
the Q factor and to decrease the specific frequency of the Helmholtz mode. Moreover,
the use of nitrogen as plasma forming gas has allowed to reinforce the Helmholtz and
dominate the acoustic modes. The presented experiments have highlighted the possibility
of coupling the Helmholtz with restrike oscillations into a new resonant mode, which has
been called "mosquito" mode. The arc voltage signal, produced in this "mosquito" mode,
is a very repeatable saw-tooth shape signal. Moreover, the thermal losses determination
has allowed to define the local specific enthalpy of different moments of this periodic
plasma oscillations. The calculations have highlighted that the obtained plasma is
characterized by the enthalpy modulated with a ratio hyax/hmin ~18.

The following chapter will present the application of these regular plasma oscillations to
the suspension treatment and coatings deposition process. As has been highlighted in
the previous chapters, the conventional SPS method demonstrates the difficulties due to
e.g. the discrepancies in the particles trajectories and the heat transfers, what makes the
control of coatings properties more difficult to achieve. The purpose of this work is to
develop a new system which may allow to increase the reproducibility and reliability of
the process by the use of the regular plasma oscillations synchronized with the suspension
injection. The activation of the suspension droplet emission at the chosen moment of the
periodic plasma, following the requirements for the thermal treatment of the particular
material, may be able to increase the control of the heat and momentum transfers between
plasma and materials, thus, of the coatings properties. Therefore, it is important to
optimize the system which will allow to synchronize the suspension injection with the
arc voltage signal. Moreover, the different kinds of the time-resolved and synchronized
diagnostic methods are required to study the thermal and dynamic treatments of the
material in the periodic plasma. Consequently, the system schematically presented in
Figure 3.1 has been developed in the framework of this thesis to work with this periodic

plasma produced in "Mosquito" mode.
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Figure 3.1: Schematic view of the experimental setup.

It consists of three important parts:

I

II

I1I

Time-resolved imaging system

It consists of the camera and the laser. This part of the system requires the choice of
the devices suitable to observe and register the oscillating plasma with the periods
of around 700 us. Moreover, the experiments have to be performed to obtain the

synchronization of the camera with the laser.

Synchronized suspension injection

The periodic plasma oscillations allow to obtain a new approach to the injection
of reactive material in the arc jet. The suspension droplet can be inserted at the
chosen moment of this regular plasma jet, what may lead to the control of dynamic
and thermal interaction between the plasma and the material. However, it requires
the injection system capable to control the moment of material introduction to the
plasma. This requirement has been found in the piezoelectric-based DOD (Drop-
On-Demand) ink-jet printer provided by Ceradrop Company (Limoges, France). In
the paragraph devoted to this part of the system a new injector will be described.
Moreover, the observation of the suspension droplets without the plasma and inside

the plasma jet will be presented.

Time-resolved spectroscopy

Chapter 2 has highlighted that the plasma produced in "Mosquito" mode is
characterized by the enthalpy highly modulated. To experimentally determine this
estimation the time-resolved optical emission spectroscopy has been implemented in
the system. This method has been used to make the measurements of the plasma

temperature and to determine the plasma species. However, this technique requires
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careful calibration methods, what will be presented with the first spectroscopic

measurements of the periodic plasma.

The principle of this new system is to inject the suspension droplet at the right moment
of the periodic plasma jet. Therefore, the emission of the feeding material has to be
synchronized with the arc voltage signal. Moreover, to observe the modulated plasma and
the interaction between the plasma and the injected suspension the time-resolved imaging
system and time-resolved optical emission spectroscopy have to be also synchronized with
the plasma.

Consequently, the synchronization system has been implemented in the framework of this
thesis, what will be described in the following paragraphs.

All assumptions and characterization given above have been used to construct a new
system which may be an alternative method to the conventional suspension plasma
spraying method. To determine the possibilities of this new technique the first attempts
of the material deposition have been performed, what will be presented in the final part

of this chapter.

I Time-resolved imaging system

To observe the periodic plasma oscillations obtained in "mosquito" mode the time-resolved
and synchronous imaging system has been implemented. The study of the oscillating
plasma with the periods of around 700 us is possible by the choice of the fast shutter

camera.

Synchrenization box

7_3&}.:'_:-"' i DC plasma torch
?' -

Interferential filter

Pulsed laser diode

Fast shutter camera

Figure 3.2: Schematic view of the experimental setup of time-resolved imaging system.
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The time-resolved imaging system is presented in Figure 3.2. It consists of a fast shutter
camera, high-power laser diode and an interferential filter (801 nm). The laser and the
filter have been combined with the fast shutter camera to permit the observation of the
suspension treatment within the plasma jet. The principle is to observe the suspension
penetration within the plasma jet by illuminating droplets using the laser shots. The
interferential filter (801 nm) centered on the laser wavelength permits to eliminate on the

image the light coming from the pure nitrogen plasma.

I.1 Camera

Fast shutter camera Pixelfly (PCO, Germany) can be applied in many scientific areas, e.g.
luminescence spectroscopy, particle image velocimetry (PIV), high resolution microscopy.
The camera is equipped with the CCD matrix with the high resolution of 1392 x 1040
pixels, what enables to observe the details of the suspension droplet. Pixelfly camera can
work in three operation modes: async (asynchronous) mode, double/shutter mode, video
mode. In order to synchronize the camera with the laser the async mode has been used,
which enables to control the CCD matrix exposure time in the range from 5 ps to 65 ms.
The functioning of CCD can be divided into two phases: exposure and readout. During
the first phase (CCD-Exposure in Figure 3.3) the CCD collects passively incoming photons
and stores electrons in its cells. After the exposure time, the cells are read out one line
at a time (CCD-Readout in Figure 3.3) and are shifted down the entire area of the CCD

matrix.

External Trigger

} e
/BUSY
S| ] -
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I
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~ b T e, 1T g
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ty 0. 5us
f- 300... 700us

Figure 3.3: Timing diagram of the async mode.

Page 139



Chapter 3 : Suspension phased injection in pulsed arc jet

Camera Pixelfly is connected via USB 2.0 connector to computer and controlled by
program Camware. This software allows to trigger the camera by the internal or external
signal. In the case of the time-resolved imaging the second option has been chosen.
Camware enables also to record images, save one image which is displayed in the active
window or save the sequence of 75 images which is useful in the observation of the plasma
jet.

To study the plasma with higher resolution, e.g. to record the treatment of suspension
droplets inside the plasma jet, the Infinimax long-distance microscope system (Infinity,
Boulder, USA) has been used. It consists of the objective and large format amplifier
which can be additionally mounted. The use of the objective results in the increase
of magnification up to 2.9x. The optional amplifier extends the magnification, what is
highlighted in Figure 3.4.

Figure 3.4: Pictures taken by Pixelfly camera at different magnifications with mounted a)
Infinimax and the amplifier, b) Infinimax objective, c) Pixelfly camera synchronized with the
laser sheet.

Figure 3.4 a) has been taken by the camera Pixelfly with the mounted Infinimax and the
amplifier. Tt is possible to observe a magnified object at the distance of 3 mm from the
torch nozzle. In Figure 3.4 b) the result of using the camera with Infinimax objective is
shown where the magnification decreases. The distance from the torch equals 22 mm. The
last figure, 3.4 ¢), presents the picture taken by the camera Pixelfly. The magnification
decreases 2.9 times compared to the figure b). Figure 3.4 c¢) presents also the use of the

laser synchronized with the camera.
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1.2 Laser

High power laser diode (HiWatch, Oseir, Finland) is designed for demanding illumination

applications. The parameters of this laser unit are presented in Table 3.1.

Table 3.1: Parameters of a laser diode.

Parameter Value
Emission wavelength 801 4+ 2 nm
Output geometry 8 x 1 mm
Emission power 50 W

Single pulse length 0.025-1 us
Max. pulse frequency 20 MHz
Time delay 36 ns

The emission wavelength of the laser is in the range of 801 £ 2 nm which corresponds to
the infra-red (IR) spectral region. The response time of the laser diode is negligible and
equals 36 ns. The HiWatch laser is controlled by a driver module, presented in Figure
3.5.

The diode is energized when the MOSFET transistor is turned on by the signal sent to
the gate input. The current flows from the energy storage capacitor, through the laser
diode, current limiting resistor, MOSFET and the current sense resistor, back to the
energy storage capacitor. The output pulse width and frequency follow the signal which
is directed to input gate. The driver provides variable output current from 5A to 50A

with pulse widths up to 1 us and frequencies up to 1MHz.

~A
Laser
Diode
EMERGY =——
STORAGE =1
CURRENT
LIMITING
RESISTOR
GATE
INPUT

Isense

>

Figure 3.5: Diagram of power supply module of the laser diode.

The width of the pulse emitted by the laser depends mainly on the width of signal put to
the input gate. It is possible to obtain 50 ns laser pulse by providing 50 ns input to the

driver module. The width of pulse transmitted to the input gate should be smaller than
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1 ps due to recharging of the energy storage capacitor (Figure 3.5). It is also possible to
input any binary waveform which will be replicated in the emission. In this case, it is

important to take into consideration the dependence presented in Figure 3.6.

Pulse Width vs Pulse Rate

Y
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m 35A —=—d0A = d5A s 50A

Figure 3.6: Dependence of the pulse width, pulse rate and current.

The pulse width, frequency and the driver output current (therefore the power emitted
by the laser diode) are the dependent parameters, related to the available charge of
the drivers energy storage network. This dependence shows that in the time-revolved
imaging method, it is important to choose an appropriate value of the pulse rate for the

synchronization of the camera and the laser.

I.3 Synchronization procedure of time-resolved imaging system

To observe different moments of the periodic plasma oscillations the time-resolved imaging
should be synchronized with the arc voltage signal. Moreover, the suspension droplets
should be illuminated by the laser shot during the registration by the camera. Therefore,

the laser and the camera should be also synchronized.

To make the synchronization of the laser diode with the fast shutter camera the accurate
time delay, tq, of each device has to be determined. tq is defined as the time between
sending the external trigger signal to the instrument and the response of this instrument.
The time delay of the laser has been determined by the producer and equal to 36 ns.
However, the tq of the camera has been given in the range between 10 ps and 20 ps. The
laser pulse duration equals up to 1 us. Therefore, it can be noticed that the precise time

of the camera delay is the important parameter in the synchronization procedure.
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Figure 3.7: Investigation method of the camera delay time: a) the experimental setup, b) the
timing diagram.

Figure 3.7 presents the investigation procedure to determine the delay time of the camera,
ta1. The principle is to synchronize the camera with the laser by using two generators.
Generator f1, Figure 3.7, sends the triggering signal to the camera and the generator f2.
The pulse reaches both devices at the same time, what is measured by the oscilloscope.
The camera is triggered by a rising edge of the signal and the generator 42 by a falling
edge. The generator #2 inputs the pulse to TRIG connector of the laser diode driver
module, what results in the emission of the laser shot. tq, is the laser time delay equals
36 ns. It has to be mentioned that the camera is controlled by Camware software and the

option of the external trigger of the camera has been chosen.

The exposure time of the camera is regulated to minimal value of 5 us. The width of the
trigger pulse sent by the generator 1 simulates the time delay of the camera. The camera
has been recording the image for different widths of the signal in the range of 10 to 20 us.
The width of the trigger pulse for which the image of the laser beam has been obtained

using camera is 14 ps, what is in the range of camera delay time given by the producer.

As has been mentioned, the time-resolved imaging system has to be synchronized with
the arc voltage. To obtain this synchronization the TTL signal has to be formed from
the arc voltage, which is measured by the bridge circuit connected between the cathode

of the torch and the ground.
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Figure 3.8: The principle of the synchronization device: a) the schematic view, b) the
functioning of the system.

To generate the initial TTL signal the synchronization device has been designed, which

is presented in Figure 3.8, and composed of:

- the amplification-filtering unit to isolate the Helmholtz mode component from the raw

signal, V.,

- the threshold adjustment unit which consists of the comparator to set the trigger level,

vthreshold y

- the generation of the pulse at the fundamental frequency, fg, unit which produces a
TTL pulse Vs (5 V, 10 us). Tt permits to generate the signal with an adjustable delay,
7, relative to the threshold

TTL signal, generated by this synchronization box by the adjustment of the threshold
level and the time delay, is then sent to the control panel (Ceradrop, France), Console

Ceradrop presented in Figure 3.9.

The Ceradrop console can generate two trigger signals (Output 1 to activate the camera
and Output 2 connected to the laser in 3.9) with the adjustable pulse width. The console
permits to change the time delay relative to Triggering signal, in Figure 3.9, formed from
the arc voltage by using the synchronization box. Moreover, it is possible to choose the
time delay between two triggering signals from output 1 and output 2 to synchronize the
camera with the laser sheet. The results of the experiments have shown that the delay
between these two devices equals 14 ps. Therefore, the time between the triggering signals
of output 1 and output 2 is regulated to this value. The developed synchronization system
permits to select the moment of the periodic arc voltage signal by changing the threshold

level and the time delay.
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Figure 3.9: Schematic view of the synchronous time-resolved imaging procedure: a) the
experimental setup, b) the timing diagram.

The obtained T'TL signal triggers the Ceradrop console which after 14 us activates the

camera and the laser.

1.4 Pulsed and laminar plasma jet

The time-resolved imaging system synchronized with the arc voltage signal allows to
observe the different moments of the periodic plasma oscillations. As has been presented,
Helmholtz and restrike modes locked together oscillate at the frequency of 1.4 kHz.
Therefore, one period of the plasma oscillation is around 700 us, what can be observed
in Figure 3.10. It presents time-resolved imaging of this periodic plasma obtained in

"mosquito" mode.

As can be noticed this very regular arc voltage signal obtained by coupling Helmholtz and
restrike modes together, presented in Figure 2.37 ¢), results in the pulsed plasma jet. The
different pulses of this periodic plasma are able to be observed by the camera triggered
at a given moment of this periodic arc voltage signal. Figure 3.10 presents the voltage
signal obtained in "mosquito" mode with indicated TTL pulses sent to the camera. The
aperture time of the camera is regulated at 60 us and 75 pictures are recorded in each
situation: from a) to e) in Figure 3.10. The picture a) corresponds to a trigger of 70 s
after a falling front of the voltage. The moments b) to e) have been taken with respective
time delays: 210, 310, 520 and 770 us, which corresponds to 70 us in the next period,
taking into account that one period of the pulsed plasma jet is around 700 us. Figure
3.10 a) presents the moment after re-arcing and shows an extinguishing plasma ball. The

arc is very short and located in the rear part of the nozzle.
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Figure 3.10: Time-resolved imaging (camera exposure time: 60 us) of pulsed arc jets for
different trigger time delays indicated in the temporal evolution of the arc voltage signal: (a) 70
us, (b) 210 ps, (c) 310 ps, (d) 520 us and (e) 70 us in the next period, 700 us after (a) [79].

Pictures b) - d) demonstrate the progressive development of the arc and Figure 3.10 e)
represents a situation similar to a) but for the following cycle. This sequence testifies
the strong modulation of the plasma, which from high luminescence appears to be almost
lighted off. The examination of the series of 75 pictures has shown a very regular evolution
of the plasma in each cycle.

Figure 3.11 is obtained by a standard camera with an exposure time of 1072 s, what
results in the superposition of 13 cycles presented in Figure 3.10. It shows the laminar
feature of the plasma flow, what can be experimentally verified by the Reynolds number,
defined for the plasma torch in [80], as follows:

4

Re = (3.1)

mpd
where 7 is the dynamic viscosity of the plasma equals around 1.7 x 107* kg.m~'.s7!,

what has been defined from the energy balance measurements and data found in [17].
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Figure 3.11: Laminar feature of pulsed arc jet. Operating parameters: dpegme = 4 mm, I =
15 A, No: 0.042 g.s7!, U = 73.7 V, exposure time of camera = 1072 s, the superposition of 13
cycles presented in Figure 3.10 [74].

Reynolds number allows defining different flow regimes, such as laminar or turbulent
flow. The laminar flow occurs at low Reynolds numbers. The transition from laminar
to turbulent flow starts at about Re > 2100 and the flow is considered to become fully
turbulent at Re > 4000.

For plasma parameters, given in Table 2.12, Reynolds number is estimated to

approximately 78, what defines the laminar flow of the plasma.

II Synchronized suspension injection

In the introduction to this chapter has been highlighted that the obtained periodic plasma
oscillations require the appropriate injection method, capable to control the moment of
material introduction to the plasma jet. The analysis of different injection techniques,
presented in the literature review in chapter 1, has resulted in selecting the piezoelectric-
based DOD ink-jet printer, provided by Ceradrop Company (Limoges, France), due to
the possibility of the emission of each droplet triggered at the frequency of the pulsed
plasma, i.e. 1.4 kHz. The following paragraph describes this new injector. Moreover, the
idea of development of the plasma spraying method is to insert the material at the chosen

moment of the pulsed plasma jet, presented above.

Therefore, the synchronization of the suspension injection with the arc voltage signal
has to be implemented in this method. Figure 3.12 shows the schematic view of the
developed system with added suspension injection. This experimental setup allows to
obtain the synchronization of the material insertion to chosen moment of the plasma jet
with the camera and the laser. It results in the possibility of the observation of the

suspension-plasma interaction, what will be presented in the following paragraphs.
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Synchronization box

Piezoelectric
injector

DC plasma torch

Pulsed laser diode

Fast shutter camera

Figure 3.12: Schematic view of the experimental setup with added synchronized suspension
injection.

II.1 Injection system

This ink-jet type technique, commonly applied in the printing devices, is now being used in
a wide variety of industries for micro-droplet generation [81-83|. In the system developed
in this thesis the injector prepared by Ceradrop Company (Limoges, France) has been
used. Figure 3.13 schematically presents the injector based on drop-on-demand technique.
The liquid is ejected out of small orifices (diameter equal to 50um) to form pulsed jets

due to the pressure generated by a voltage pulse driven piezoelectric actuator (voltage

| rifice

excitation equals 120 V).

Piezo

ceramic

Diaphragm

Figure 3.13: Schematic view of piezoelectric DOD printhead [39].
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It has to be mentioned that voltage pulses are carefully shaped to avoid satellite droplets
and to adjust the velocity of single calibrated droplet between 2 and 10 m.s~%. The pulse
shape must also be adapted to the rheological properties of the suspension, what will
be presented in the following paragraphs. The piezoelectric injector can be triggered at
frequencies up to 20 kHz and comprises a ramp of 128 individual micro-nozzles, disposed
perpendicular to the plasma jet axis, with a step of 0.5 mm. The injection system
is protected from heat flux coming from the plasma by a water-cooled copper screen,
presented in Figure 3.14, in which a horizontal slit, 10 mm long and 1 mm wide, is

machined.

injection nozzle holder
-—-‘ N
‘ L

. '!.‘ l*‘
o ! ater-cooled
opper screen

o
3 == slit
= (10 mm long and 1

Figure 3.14: "Mosquitorch", a newly designed dc plasma torch, with a water-cooled copper
screen.

II.2 Synchronization system

The principle of synchronous suspension injection is to inject the droplet of the feeding
material at the right moment of the periodic plasma jet oscillations. This synchronization

process is possible for the following postulate:

fo =i (3.2)
where:
fu is the frequency of Helmholtz resonant mode equals the plasma frequency,
fi the frequency of suspension injection.
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Figure 3.15 presents the schematic view of the synchronous suspension injection system.
The emission of the droplet is triggered by the TTL signal formed from the arc voltage
by using the synchronization box. This triggering pulse is sent to Ceradrop console which

activates the piezoelectric injector.

Torch voltage

el A

2 P
Triggering| {__|
signal
Output #1 Camera
a) b)
[ 1 ]
;Camera:
Torch » Synchronization .| Console |Output#2 P oN
hox Ceradrop
Quiput £1 - Qutpit#2
] Lase
>
acquisition card acquisition card

! Laser ON

Suspension injection

time

Figure 3.15: Schematic view of the synchronous injection procedure: a) the experimental setup,
b) the timing diagram.

The system permits to select the moment at which the suspension droplet is injected to
the pulsed plasma jet by using the function of the time delay in the synchronization box.
It results in the suspension emission after an adjustable delay, Tgropiet, counted after a

falling front of the arc voltage signal, as follows:
Tdroplet = nl’' + Tj (33)

where T is the arc voltage period and 7; is the time at which a droplet penetrates the
plasma.

As presented in Figure 3.15 the triggering signal generated from the arc voltage activates
all outputs of Ceradrop console, what permits to obtain the synchronization of the
suspension injection with the camera and the laser shot. In the Ceradrop console it
is possible to choose the time delay of the outputs 1 and 2 in relation to the triggering
signal and the suspension injection as well. To observe the suspension-plasma interaction

the delay time has been regulated to O s.
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I1.3 Observation of the suspension droplets without the plasma
I1.3.1 Suspension properties and size distribution

The suspension used in the experiments, prepared by Ceradrop Company (Limoges,
France), is composed of titanium dioxide (90% TiO; rutile phase) powder and it consists
of 5 wt% of powder and 95 wt% of water. The properties of the suspension are specified
in Table 3.2.

Table 3.2: Parameters of the suspension.

TiOs concentration Conductivity Viscosity Surface tension Density
vol% pS.cm~! mPa.s mN.m~* g.cm™?

3 480 7.57 34.067 1.204

The particle size distribution of the injected feedstock material has to be adjusted with
the diameter of the printing head nozzle, which equals 50 pym in Ceradrop injector. To

avoid the clogging of the nozzle the particles sizes of the suspension have to be analyzed.

They have been determined by using Mastersizer 2000 (Malvern Instruments Ltd., UK)
which is based on the technique of laser diffraction. The scattering pattern in this method
depends on the ratio of particle diameter, D, and the wavelength of the incident light, \.
According to D/ the scattering of particles is predicted by the Fraunhofer or Mie models.
In Mastersizer 2000 the Mie model (D/X ~ 1) is applied for the particles smaller than 3
pm. Therefore, this model has been used to determine the particle size distribution of

the suspension, presented in Figure 3.16.

The peak of the particle size distribution curve is centered on 66 nm (dsp). The dispersion

size (dgop — dyo) is equal to 48 nm.

I1.3.2 Trajectory of a single droplet

In the ink jet printers, the suspension formulation has to be optimized in order to avoid
the sedimentation, clogging and to be compatible with the printing head. Moreover, the
injection of a single calibrated droplet is the important parameter in this kind of method.

To obtain the emission of a single droplet two conditions have to be fulfilled:

- the rheological properties of the suspension (e.g. viscosity, surface tension) have to be
adjusted to obtain the ratio Re/v/We ranged between 1 and 10

- the voltage driven pulse sent to the piezoelectric injector has to be optimized
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Figure 3.16: The particle size distribution of TiO2 suspension.

The first condition requires the definition of the ratio Re/v/We. It is the dimensionless
number which enables to analyze the fluid flows. It consists of respectively Reynolds and

Weber numbers, defined by the following equations:

v.T.
Re= 2P (3.4)
n
where:
v is the suspension velocity,
r the radius of the nozzle,
P the suspension density,
n the suspension viscosity.
and Weber number, obtained by:
virp
We = (3.5)
o
where:
o is the suspension surface tension.

Noguera et al. have shown the different cases of the suspension injection observed
according to the value of ratio Re/v/We, presented in Figure 3.17.
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Figure 3.17: Effect of the ratio Re/v/We on the suspension injection [81].

When the ratio Re/v/ We is too high, bigger than 10, a continuous column of the suspension
is injected, what is not the purpose of this thesis.
The properties of the suspension used in the experiment, presented in Table 3.2, have

been optimized to obtain the ratio equals:

Re
vVWe

It is one of the condition to obtain the emission of a single droplet. Figure 3.18 presents

= 5.98 (3.6)

the suspension droplets before a) and after b) the optimization of the injection parameters.

To eliminate satellite droplets the voltage driving pulse has been optimized in
collaboration with Ceradrop. A voltage trapezoidal pulse, shown in Figure 3.19, has

been applied.

The magnitude of the voltage (Viax), the pulse times, which include the rise time, duration
time and fall time (respectively 71, 72 and 73 in Figure 3.19) and the frequency have
been defined and sent to the controller. During the rising time (71) the piezoelectric
material (PZT: lead zirconate titanate) moves inward due to shearing stress by applying an
electric field in the direction perpendicular to the polarization direction of the piezoelectric

material. It results in positive pressure for the liquid in the chamber.

The PZT has no deformation during 7o. As the voltage drops from Vy.x to 0 during 73,
the piezoelectric material moves outward, what results in the generation of a negative
pressure in the liquid of the chamber. The appropriate optimization of these parameters
is important in the injection process since the liquid column is ejected by the positive

pressure and then the break-up into droplets by the negative pressure.
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Figure 3.18: Observation of droplets injection by the camera and laser illumination: a) satellite

droplets marked by the circles, b) single drops with no satellites as the result of correctly
optimized parameters.

1 1, 13

Vmax
b3

Q

o
2
)
>

0 i

L Time (ys

Tdelay (Hs)

Figure 3.19: Form of the voltage pulse driven piezoelectric actuator.

To observe the suspension injection without producing the plasma but by the synchronized
camera and laser with the injector the signal similar to the arc voltage has to be generated.

The TTL signal, sent to the Ceradrop console, has been formed by Agilent 33250A
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Waveform Generator (Palo Alto, CA, USA). The ramp signal has been generated with the
frequency regulated to 1.4 kHz, what has been intended to simulate the arc voltage signal.
From produced in this way signal the TTL pulse has been formed by the synchronization

box and sent to Ceradrop platform.

plasma torch

torch axis

nozzle |

Figure 3.20: Measurement of droplet velocity. The brightness at the nozzle exit is due to the
laser reflection. The picture taken by Infinimax objective.

It has allowed to activate the piezoelectric injector, the camera and the laser. The time-
resolved imaging system has been used to observe the suspension injection and to make the
measurements of the droplet velocity. The suspension injection frequency, f;, according to
Equation 3.2, is equal to 1.4 kHz. Figure 3.20 presents two suspension droplets illuminated
by the laser and recorded by the camera. The measured distance, dgq, between them equals

1

2.33 mm, what gives the droplet velocity, vq, of 3.26 m.s™", obtained as follows: vq = dq.f;.
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II.4 Observation of the suspension droplets inside the plasma

The following section presents the suspension injection inside the pulsed plasma jet.
Figure 3.21 demonstrates the use of the suspension injection synchronized with the arc
voltage signal. It shows four successive pictures taken by a standard, not synchronized,
camera (aperture time 1/6000 s, 24 frames per second). The photos present the individual
plasma pulses containing TiO, particles resulting from heat treatment of injected droplets.
In the first picture the moment of the synchronized suspension injection into the plasma
ball is given. Then, in the successive pictures the plasma/droplet interaction is presented,
what is characterized by a strong radiation. As can be observed in each photo, the material

can be transported by the plasma jet over a long distance, i.e. more than 80 mm.

Figure 3.21: Imaging of synchronous suspension injection in the pulsed plasma jet taken by a
standard camera: aperture time 1/6000 s, 24 frames per second.

To better analyze the synchronized injection systems and the time-resolved imaging, the

timing diagram for droplet emission and imaging is presented in Figure 3.22.
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As has been mentioned, the emission of suspension droplet is triggered from sampling of

the torch voltage after an adjustable delay, Tyroplet, counted after a falling front, as follows:

Tdroplet = n1 + T (37)
where:
T is the arc voltage period, presented in Figure 3.22,
Tj the time at which a droplet penetrates the plasma.
Arc voltage
4 T
)
i = ” >
: o me
On 4 P s
. droplet
Off e = :l I N
l Lal
OnT i‘ Tearera . T
aperture
Off ! * ' ,
o i
" T ) Tlaser N Tillurnination
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Figure 3.22: Timing for droplet emission and synchronous imaging [79].

The suspension injected to the plasma jet is observed by time-resolved and synchronous
imaging system. The delay time of the camera, Tcamera in Figure 3.22, and of the laser,
Tlaser, are adjusted with the emission of suspension droplet. As the obtained results have
highlighted, Tcamera and Tiaser are respectively of 14 us and 36 ns. Taperture 1S an adjustable
time in the range of 5 us and 65 ms, at which camera aperture is opened. Tiumination 15
the laser pulse duration, which can be chosen up to 1 us. In the following experiments
Tillumination €quals to exact 1 us.

In Figure 3.23 the time-resolved imaging of the dynamic interactions between the plasma
jet and the droplets is presented. The pictures 3.23 a-d are obtained with a low-
magnification objective (with the resolution presented in Figure 3.4 ¢)) for the different
time delays over one period with 10 ps camera aperture time and 1 us laser pulse duration.
It has to be noted that the camera aperture of 10 us is low enough to ensure that the
plasma is immobile during the observation. To obtain the reliable results hundreds of
pictures related to 3.23 a-d, triggered with the same 7j, have been recorded. The laser
shot has been used to visualize the solid particles left in the jet after solvent vaporization.
However, their individual images are strongly oversized by diffraction, scattering, or

resolution due to pixel size [79].
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Figure 3.23: Time-resolved imaging of synchronized suspension injection with laser illumination
for different injection time delay 7;.

The image analysis has permitted to estimate the velocities of the center of mass of plasma
balls with the vapors coming from the droplet vaporization. The velocities vary between
around 30 m.s™! for the case presented in 3.23 a) and 50 m.s™* for 3.23 ¢). Moreover,
it can be observed that each plasma ball is stretched while moving. Therefore, not only
velocities of the center of mass of plasma balls should be defined. The velocities concerning
the distance between the tails and between the heads of two succeeding balls should be
also determined. This gives for Figure 3.23 c), respectively, 35 m.s~! for the end of the
balls, calculated above 50 m.s~! for the center and 70 m.s~! for the head. This means
also that velocity of this pulsed plasma jet is time- and space-modulated. The obtained
results correspond to the order of magnitude of mean plasma velocity evaluated from the

following formula [55]:
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oy = 1)
UV =hy——F5— 3.8
0 P,.Sy (3:8)
where:
vy is the nitrogen plasma isentropic coefficient,
P, the pressure at the nozzle exit (atmospheric pressure).

Assuming that v ~ 1.3 and hg ~ 13.3MJkg~! the calculated mean plasma velocity is

1

estimated to around 100 m.s™". Moreover, this expression indicates also that velocity

must be modulated because the specific enthalpy changes with time due to the voltage

variations.
Table 3.3: Summary of experimental conditions.
Plasma Time-resolved imaging system Synchronized injection
Na: 2 slm Tillumination — 1 /S 1 — 0 ps
I=15 A Taperture = 10 [18 To = 260 us
dpozz1e = 4 mm  interferential filter = 801 nm 73 = 480 us
Frequency of image T3 — 620 us
f — 1410 Hz acquisition = 75 Hz f; = 1410 Hz

Table 3.3 summarizes the conditions of the experiment shown in Figure 3.23 a-d. It
demonstrates that the trajectories and related thermal history of injected materials
depend on the moment when droplets penetrate into the plasma. In case of 71 = 0
us, the most significant part of materials travels in the plasma fringes giving rise to large
dispersion of trajectories (~ 10 mm) and limited axial distance of material transport
(~ 40-60 mm). In case of 75 = 260 us, the treatment materials in the plasma core is
improved with a lower radial dispersion and a slightly increased transport distance. The
pulsed plasma jet is trapping particles all along its own axis, what can be observed as
alternate and intricate trajectories. This effect seems to be due to the pulsed emission of
the plasma balls that alternate their curvatures by interacting between each others. This
gives a certain spatial coherence for the plasma jet and also recalls some visual effects
such as the Von Karman Street in vortices emission. In Figure 3.23 ¢) (73 = 480 us), a
low material dispersion is observed corresponding to the longest transport distance. At
last, the case of 74 = 620 us, because it is almost the 700 us period, resembles the first
case 71 = 0 us.

Moreover, the influence of the moment at which a droplet penetrates the pulsed arc jet
has been investigated using the camera with mounted Infinimax objective (Figure 3.4 b)).

The results are presented in Figure 3.24.
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Figure 3.24: Influence of the local instantaneous specific enthalpy on droplet thermal treatment:
(a) high level of enthalpy, (b) low level. Camera exposure time: 5 pus, laser illumination: 1
ps [74,79].

The camera and the laser are delayed by the same time after the droplet emission but
the suspension penetrate the plasma earlier in Figure 3.24 a) than in b), what has been
obtained by changing 73. The droplet, which is possible to observe due to the illumination
by the laser, enters the plasma 4 mm downstream of the nozzle exit. The picture a)
and b) are observed through a narrow band-pass filter centered on the laser wavelength.
As has been mentioned in the previous sections, this configuration permits to eliminate
on the image the light coming from the pure nitrogen plasma. Therefore, Figure 3.24
shows merely the seeded plasma balls characterized by a strong increase of the brightness,
which resulted from the interaction of the nitrogen plasma with the material contained
in the suspension droplet. In Figure 3.24 a) the lower droplet penetrates the plasma at a
moment corresponding to a situation presented in Figure 3.10 d). This moment has been
chosen due to high level of local specific enthalpy. Therefore, Figure 3.24 b) corresponds
to the plasma characterized by a low enthalpy level, shown in Figure 3.10 a). In case
presented in Figure 3.24 a) the almost immediate vaporization process of the droplet has
been observed, what differs from the situation shown in b). In this case, the vaporization-
seeding process does not concern the injected droplet but the one introduced one period
earlier, what gives the plasma ball at the right of Figure b).

Figure 3.25 a-d displays four successive pictures taken by the high-speed camera (6000
frame/s) with an exposure time of 100 us. The time between each picture is about 166
us. The observation area is shifted by approximately 1 cm downstream of the torch exit,
compared to results presented in Figure 3.23.  Tqoplet 15 adjusted so that each droplet
reaches the plasma axis 73 = 260 us after a voltage falling front. On the left of Figure
3.25 a), the tip of the arc jet is presented that contains no droplet. The spherical shape,
which follows immediately on the right, is the result of a droplet injected in the preceding
period. The right part of the picture shows the result of the plasma interaction with a

droplet injected two periods before. Figure 3.25 b) follows a) by 166 us.
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Figure 3.25: Fast imaging (6000 frame/s, time aperture: 100 us) of synchronized suspension
injection in nitrogen pulsed arc plasma jet for the injection time delay 73 = 260 us. The white
lines indicate that for each plasma bull the tail and the head of a single plasma ball do not travel
at the same speed, as previously mentioned.

The spherical shape has been strongly expanded and lengthened due to vaporization
process. However, the sharp details at the left of the plasma ball suggest that a certain
amount of liquid still remains non-vaporized. The expansion is continued in Figure 3.25
c) and seems to reach a maximum in Figure 3.25 d). The dotted lines drawn on these
pictures show that the front part of the plasma ball travels at a speed approximately
twice that of the rear part, which is consistent with the expansion process. The rear part
lags behind the plasma ball because it still contains a small amount of suspension under
acceleration. Once the vaporization is complete, the plasma ball travels as a whole as it
can be seen in Figure 3.25 ¢) and d). A picture taken 166 us after the situation of Figure
3.25 d) should be similar to a).

The evolution of successive volumes over a sequence of four pictures is measured by the
image analysis. Assuming that the resulting plasma balls have an ellipsoidal shape, the
volume of the ball is given as follows: V = —wAx.Ay.Az, where z is the axial coordinate
and the radial expansion is established to be isotropic: Ax ~ Ay. Figure 3.26 presents the
measurements of the expansion rates of droplets during plasma treatment for the different

injection time delays, 73, given in Figure 3.25.

The expansion rate is defined as: (Vi — Vi_1)/At, with V; determined as the volume at
the instant t; =i x At, where At = 166 us, i € [0;3]. to corresponds to the moment
presented in Figure 3.25 a). The standard deviation results from the measurements of the
volumes for 10 similar sequences of pictures. The expansion rate, Figure 3.26, significantly

depends on 73, particularly during the first 166 ys.
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Figure 3.26: Dependence of measured expansion rates of plasma balls on the injection time
delay ;.

Later, the expansion rate decreases and becomes negative for 71 = 0 pus and 72 = 260
us, what is related to the recombination process of plasma. As has been presented, the
enthalpy of the plasma is strongly modulated in the proportion: hpyax/hmin >~ 18 with a
mean value of 13.3 MJkg~!. Therefore, the heat transfers to droplets and, consequently,
the expansion rates are affected by this modulation.

Table 3.4 gives the calculated parameters describing the system of the suspension phased

injection in pulsed arc jet.

Table 3.4: Parameters of suspension phased injection system.

Nitrogen mass flow rate (kg.s™!) 4.2 x 107°
Nitrogen/one period (kg) 3 x 1078
Energy/one plasma ball (J) 0.5
Injection velocity (m.s™1) 3.26
Injection frequency (Hz) 1.4 x 10?
Droplet diameter (m) 50 x 107¢
Suspension density (g.cm™3) 1.204
Droplet mass (kg) 8 x 1071
Suspension flow rate (ml.min™') 5.6 x 1073
Powder mass flow rate  (g.min™!) 3.4 x 1074
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The nitrogen mass flow rate, measured by a Brooks Instrument mass flow controller, is
around 4.2 x 1075 kg.s™!. Therefore, the amount of nitrogen which flows during one
period, T = 700 pus, is approximately equal to 3 x 107® kg and the energy content in one
plasma ball is 0.5 J, which is obtained by the division of the power net by the plasma
frequency 1.4 kHz. The mass of a suspension droplet, entering to the plasma jet, is given by
the formula: m = p.gﬂ(%‘)g and equals approximately 8 x 107 kg. The energy needed
for water vaporization is determined as follows: Eyap = Maroplet-Liv, Where the mass of the
droplet, maroplet, has been defined above and the water latent heat, Ly, has been given
in chapter 1 in table 1.2 and is equal to around 2.26 x 10% J . kg=!. Therefore, the energy
needed for water vaporization E,p, ~ 1.8 10~* J, what is much smaller than the energy
content in one plasma ball 0.5 J. Consequently, it can be stated that the available energy
of pulsed plasma jet is high enough to vaporize completely the solvent and liberate solid

particles, what will be presented in the following sections.

II.5 Thermo-physical phenomena of suspension droplets

As has been presented in Chapter 1 the suspension droplets, injected to the plasma jet,
undergo the fragmentation and vaporization processes. The fragmentation depends on

the dimensionless Weber number which is determined by the following equation:

We = Urdiey (3.9)
]
where:
Pp is the plasma density,
Uy the relative velocity between the plasma and the droplet,
d; the diameter of the liquid droplet,
o the surface tension of the liquid.

The determination of the modulation of the plasma enthalpy has presented that hy,;, = 1.4
MJ/kg and hpax = 26 MJ/kg. By using the data found in [17] it is possible to determine

the nitrogen plasma density, related to hyi, and hyay, what is presented in Table 3.5.

Table 3.5: Properties of the nitrogen plasma [17].

Temperature Density Enthalpy

K kg/m? MJ/kg
1500 2271071 1.4
7100 3.241072 26
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Introducing to Equation (3.9) the plasma density presented in Table 3.5 and suspension

properties given in Table 3.2, calculated Weber number ranges between 0.04 and 0.48.

Figure 3.27: Treatment of the suspension droplet in the plasma jet characterized by high local

instantaneous specific enthalpy.

As has been presented in Chapter 1, the critical value of We, over which the droplet
undergoes the breakup process, equals 14. The obtained results have shown that in
the present system the fragmentation process of the suspension droplet does not occur.
Figure 3.27 confirms this postulate, where two suspension droplets, marked by yellow
circles, seems not to undergo the breakup process.

Under these conditions, the process of solvent reduction from the suspension droplet is

governed by the heat transfer and vaporization, which can be represented by the scheme

shown in Figure 3.28.
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Figure 3.28: Schematic of suspension treatment by modulated plasma jet.
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To estimate the vaporization time of the suspension in the plasma jet, certain assumptions

have to be made. The diameter of the solid particle is determined as follows:

do— 14 LEm e 17 (3.10)
Tm  Psolvent
where:
d is the diameter of the suspension droplet,
Xm the mass fraction of the ceramic,
Ps the solid density,
Psolvent the solvent density.

The thermal power transferred to a sphere of radius, r, is evaluated from the heat transfer

coefficient by convection, h., as follows:

@y, = he(T — Tp).4mr? (3.11)
where:
T is the plasma temperature,
T, the temperature at the surface of the liquid,
he the heat transfer coefficient given by : h, = Ngl'”.

Introducing the enthalpy, h, and the heat capacity, c,, to Equation 3.11, the thermal

power is presented as follows:

(Nu.r)(h — hy).47r?

Py, = erdh (3.12)
where:

h is the plasma specific enthalpy, which can be determined by torch energy
balance measurements or more locally from the temperature
measurement by the emission spectroscopy,

hy the plasma enthalpy at the temperature of the droplet, which is much

lower than h.

k/cp 18, in fact, the ratio of the conduction potential, ¢(T) = fTTf K(T)dT (defined
in chapter 1), to specific enthalpy, h = fTTref cp(T)dT. Using the thermodynamic and
transport properties of N,, it can be shown, from a numerical point of view, that it gives:
©(T) ~ a,h(T), where a, is the coefficient determined in the model in chapter 1. For the
nitrogen and the enthalpy range of the plasma produced in "Mosquito" mode, a, = 2.8
107% kg.mts™L.
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Knowing that d; = 2r, the heat flux is given by:
Dy, = (Nu.ag)h.2mr (3.13)

During the vaporization phase of the solvent, the droplet diameter decreases from d; to
ds. Considering the latent heat of vaporization of the solvent, Lv, and the liquid density,

Psolvent, the decrease of the radius, r, due to the vaporization requires the energy as follows:
dE = 47r?dr.psorvent- Ly (3.14)

what is given for the period of time dt by the heat flux @, so that:
4772 dr. psotvent- Ly = —(Nu.ag)h.2mrdt (3.15)

Introducing the vaporization time, for which the solvent has disappeared completely
(r=ds/2) and knowing that this process starts at t=0 with r—=d;/2, it gives the following

formula:
4Nu.a¢.h

vap
Psolvent - Lv

d? —d? = (3.16)

Taking into account the mass fraction of the ceramic, x,, the vaporization time is given

as follows:

t

solven ~Lv 1— m s —2/3 d2
_pl—t[l_(1+ tm P ) !

o 4 3.17
P 4NU.CL¢ Tm  Psolvent hp ( )

The factor [1 —(1+ 1;—?&)_2/3] is in the range between 0.73, for the mass fraction,
Xm, Of 0.4 and ps/psoivent Of 4, and 0.85 for the mass fraction of 0.2.

Moreover, Equation (3.17) highlights that the vaporization time depends on the square
of the diameter of the initial suspension droplet and the plasma specific enthalpy, h. For
the specific enthalpy of 1.4 MJ/kg and the diameter, dg, of 50 pum the vaporization time
equals 1.4 ms (for x,, = 0.4) or 1.65 ms (for x,, = 0.2). For the specific enthalpy of 26
MJ/kg, tvap equals, respectively, 77 us and 90 ps.

The calculation of tyap highlights that the choice of the injection time delay can have
an effect on solvent vaporization, what is verified by Figure 3.24. The obtained results
by pulsed laminar plasma jet show the possibility of control of material injection into
different zones of modulated plasma. This can allow controlling some of the thermo-

physical processes occurring at the droplet scale, such as the evaporation.
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IIT Time-resolved spectroscopy

The following section presents the last part of the experimental setup given in Figure
3.1, described in the introduction to this chapter. The measurements performed by the

time-resolved optical emission spectroscopy, presented in Figure 3.29, will be highlighted.

Synchronization box

i
@ CO
A = " — ]
J Piezoelectric
injector
g

E?ﬂ DC plasma torch
“—

Fast shutter camera Time-reselved optical emission spectroscopy

Pulsed laser diode

Figure 3.29: Schematic view of the experimental setup with added time-resolved optical
emission spectroscopy.

The previous paragraphs have shown that the pulsed plasma jet is characterized by the
specific enthalpy strongly modulated, what has been demonstrated by the results obtained
from the energy balance measurements. To determine in more precise and local way this
modulation the plasma temperature measurements have to be performed. However, in
the case of plasma, the direct diagnosis of the temperature, e.g. by the thermometer, are
often impossible. Among all available techniques the optical emission spectroscopy has
been chosen, what will be presented in the following sections.

Moreover, the diagnosis of modulated plasma, produced by a "Mosquitorch", requires
the method which allows to study the plasma in synchronized dynamic way. Therefore,
the plasma temperature measurements have been carried out by time-resolved optical
emission spectroscopy (TROES).

The following section will give the approach to the optical emission spectroscopy as the
measurement technique of the gas temperature. Therefore, firstly, the preparation of the
experimental setup to the measurements will be presented. The calibration of the system
of the wavelength and intensity axis will be highlighted. Then, to determine the gas
temperature the N,(C?II, — B®Il,) system (the second positive system of nitrogen) or
Ny " (B2Y 0 —X2 Y. ) system (the first negative system of nitrogen) have to be defined.
Consequently, the investigation of the species in the pulsed plasma produced by the
"Mosquitorch" have been performed. All given above procedures have leaded to the
gas temperature measurements. The use of the spectrograph working at medium spatial

resolution permits to obtain reliable measurements of the rotational temperatures because
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they are performed with a wide spatial range of the excited states, what will be presented

in the following paragraphs.

I11.1 Fundamentals of TROES

The following section will be focused on a merely part of the broad subject of the
optical emission spectroscopy. The essential information about the fundamentals of
the spectroscopic measurements, which has been studied for the gas temperature
measurements, will be highlighted.

In the emission spectroscopy the light emitted from the plasma is recorded and analyzed.
The total energy emitted through the surface of the plasma as the electromagnetic

radiation is defined as a radiant flux, @ (W), presented in Figure 3.30.

le dQ

Plasma

_________________________

Figure 3.30: Definition of the radiance [84].

The radiant intensity, I (W.sr™!), is the flux per solid angle emitted from the plasma:

49(0, 6,d12)
10,9) = ———= 3.18
(6,6)= =22 (3.1
where:
{2 is the solid angle, defined in Figure 3.30.

The radiance, L, at the position 7, is the intensity radiated per unit area dA
(W.m™2.sr7!). Therefore, it is the energy flow radiated by an unit area per unit solid

angle determined as follows:

1(0,¢) _ d*®(6, ¢, di2,)

LG = =
(0, ¢) dA.cosfs  d24 dA cosf,

(3.19)

where:

dA is the surface element.
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In the spectral measurements the radiance is defined as emitted at the wavelength, dA,

therefore the spectral radiance is determined as follows:

_ dL(6,9)

L)\(07 ¢) d)\

(3.20)

Moreover, the local emission, (6, ¢), has to be defined. It is the intensity emitted by the

plasma in a given direction and unit volume (W.m™3.sr7!), determined as follows:

C1(0,6) AP0, 6,d0)
€0:9) =~ = anav

In the spectral measurements the emission coefficient, €, of the line should be defined.

(3.21)

The spectral line is emitted when a bound electron undergoes a transition from an upper
level (p) of energy E(p) to a lower level (q). With each transition a photon is emitted,

and ¢ of the line thus is given by:

he
Ep—q = FESW n(p) Ap-q (3.22)
where:

Ap g is the characteristic atomic constant for that specific transition and known as
as atomic transition probability (unit s~') or Einstein coefficient of
spontaneous emission,

n (p) the population density of the excited level p.

The quantity that is recorded by the spectrometer is the result of the light emitted all
along the line of sight (assuming that the absorption is neglected). The absolute line

intensity (unit (m3s)~!) is defined as follows:

IV = / Epg (T, Y) d (3.23)
line of sight

where y is the height of the line of sight above the plasma axis. I, is the intensity of
the spectral line, which has the same unit that L. If the dependence of the intensity with
the wavelength is needed, it is possible to introduce the spectral profile, I(\), so that:

Lpsq( A y) = Tpg(y)-B(N) (3.24)

where: [, @(A) dA =1
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The molecular spectra are characterized by the complex structure: the states due to

electronic excitation as well as the ground state, conventionally known as the X state, are

split into vibrational levels, and these again into rotational ones. Figure 3.31 highlights

the partial energy level diagram for N,, No™ and Ny~ states versus their internuclear

distance (R).

U [eV]
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Figure 3.31: Diagram of potential energy curves of N, molecular state [85].

As can be seen in Figure 3.31 the electronic energy levels are defined by e.g. X2

+
g 7

B?1I,, B2 7. The electronic energy levels of atoms, 3.25, and diatomic molecules, 3.26,

have their spectroscopic notation, as follows:
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nt Liys (3.25)
W2S+1
l AAJFZ;,J (3.26)
where:
n is the main quantum number,
l the angular momentum,
w the number of electrons in the shell,
S the spin,
25+1 the multiplicity,
L+S=1J the total angular momentum,

+,-and g, u  the symmetry of the electronic wave function.

The optically allowed transitions follow the selection rules for dipole transitions which
can be summarized as: AL = 0, 1, AJ = 0, £1, AS = 0 for atoms and AL = 0, u +

g for molecules.

As has been mentioned above, the molecular electronic levels are divided into vibrational
and rotational ones, with the transitions occurring between pairs of these levels. Each level
is specified by its electronic state (e), vibrational (v) and rotational quantum number (J).

The internal energy of a molecule in this so-called rovibronic level (e,v,J) is given by [86]:
Tewy =T1c + Gv + Fy (327)

Therefore, considering the transition from upper rovibronic level (e/, v, J') to lower level
(e",V”,JH) the spectral emission coefficient can be determined, following the equation

(3.22), by:
A / /,]/76//1)“J//

5(y) =N v I (Te'v'J' - Te"v"]") @(l/ - 1/0) (328)
where:
N\ g is the population of the upper level,
At gt g the Einstein coefficient for spontaneous emission, defined above,

T, —Tmmm  the energies of the upper and lower levels respectively,
defined as follows: T/, — T n nw = hvy >~ hv |

D(v — ) the lineshape function.

The population n /s of the upper state in the further experiments will be assumed as
Boltzmann distributed. Therefore, the following relation presents the calculation of n

described by a Boltzmann distribution, as follows:
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ga@f+1wm{_zi_gﬁL_ﬂﬂ}

., G(v F(J
o Ze,v,J ge (2J +1) exp[ - % - Iﬂgv)b - kT(m)t]

L(J P, Pa)  (3.29)

Ny = MNtotal

It assumes that the internal levels follow Boltzmann distribution at Te, Ty, and Thio.
niotar defines the total population of the molecule, L(J/, Plef,P,gu> the line alternation
factor due to nuclear spin defined in e.g. [87]. o is a factor equals 2 for homonuclear

molecules and 1 for heteronuclear molecules, g is the degeneracy of the electronic level
defined as follows: g, = (2 — 0, ) (25 +1).

I111.2 Experimental setup

The spectroscopic measurements have been carried out by the IsoPlane spectrograph

(Princeton Instruments, Trenton, New Jersey), presented in Figure 3.32.

Source Objective  Spectrometer Detector

L 4

4

Figure 3.32: Schematic view of the emission spectroscopy system.

The objective consists of the quartz lens, characterized by the transmission > 80% from
200 to 1100 nm. The detector, Figure 3.32, is PI-MAX4 ICCD camera (Princeton
Instruments) mounted directly at the image plane of the spectrograph exit. The pixel
size influences the spectral resolution of the system. Therefore, the camera characterized
by the imaging array of 1024 x 1024 and the pixel size of 13 x 13 um has been
chosen. Moreover, the connection to the computer allows controlling the measurements
by LigthField software and recording the spectra. LightField permits to regulate the
following acquisition settings which define the response of the ICCD detector:

- Exposure time, Texp
The length of time between the beginning and the end of the acquisition sent by

LightField to the camera, defining the exposure time of the sensor.
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- Number of accumulations, Nacc
The number of times on which the photocathode is gated during the exposure. The
charge is accumulated on CCD array when these gates occur during the exposure and

then is readout at the end of it.

- Gate Width, Twidth
The time during which light is detected by an intensifier, strengthened, and applied to

the sensor.

- Gain, G
The determination of the amount of electron multiplication that is applied to improve

the signal.

IsoPlane spectrograph (SCT 320, 320 mm focal length) consists of: the entrance and
exit slit, the grating as the dispersive element, the imaging mirrors. The choice of the
spectrometer grating, which is determined by the grooves per millimeter (lines/mm) is
of importance for the spectral resolution and to determine the wavelength range of the

spectral measurement. The fundamental grating equation is defined as follows:

mA = d(sina + sinf3) (3.30)
where:
m is the diffraction order,
d the groove spacing,
Q@ the angle at which the beam of parallel radiation incident on the grating,
B the angle of the spectral line.

The IsoPlane spectrograph is equipped with 300, 1200 and 2400 g/mm gratings. Figure
3.33 presents the principle of the spectroscopic measurement by the system used in this
work.  The image of the plasma is formed with a negative magnification (the result
of image inversion) on the spectrometer entrance slit, characterized by the width, we,
which can be changed from 10 pus up to 12 mm to give the possibility to perform imaging
with PIMAX camera. Then, the spectrometer forms the monochromatic image, centered
around A; with the magnification of 1, in the detector plane. As has been mentioned
above, the detector is composed of the imaging array of 1024 x 1024 with the pixel size
of 13 x 13 pum, what can be grouped into lines of height, Ay, by the Lightfield function
called binning. The "enlightened" area on the detector, in Figure 3.33, presents the

plasma surface of w'e. Ay .
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Figure 3.33: Schematic view of the image formation by the spectroscopy system.

I11.2.1 Calibration

The important issue of the spectroscopic measurement is the calibration of the system.
To obtain precise information about plasma parameters the calibration of the wavelength
and intensity axis have been performed. In the case of wavelength axis the calibration
has been done by recording spectra of a source with known wavelengths. The USB Light
Source (Princeton Instruments, Trenton, New Jersey) has been used which consists of Hg

and Ne-Ar lamps with well-defined atomic emission lines presented in Figure 3.34.

The mercury and neon-argon lamps have been used because of their wide wavelength
range which covers the lines of nitrogen plasma and the plasma-suspension interaction.

In case of the calibration of the intensity axis, a standard radiator of known radiance, Ly,
is placed close to the spectrometer entrance slit to fill the solid angle, (2. Then, the flux,
DA(N) AN = Loy (N) AXNAL L, over a spectral interval, A), produces a signal Sy at the exit of
a detector. Keeping all settings constant, the respective flux in the same spectral interval

from the plasma gives the signal, Splasma- Therefore, the radiance of plasma is given by:

Lytasmay(X) = MLm (3.31)

So
In the calibration process the tungsten strip lamp has been applied. It is the most
commonly used secondary standard source, in which a strip of tungsten is mounted
in a glass envelope with a window of fused silica, characterized by the transmission
coefficient, ar, around 0.9. The parameters of the tungsten lamp are commonly given
by the constructor. However, these standard radiators age, therefore, to obtain precise

spectrometer calibration it has been calibrated in the laboratory by the pyrometer.
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Figure 3.34:
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The lamp has been power supplied by a stabilized source.

Figure 3.35, has been measured using a precision shunt.
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Figure 3.35: Calibration curve of tungsten strip lamp.
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Afterwards, the spectral radiance of the tungsten strip lamp, Lo(A, T), has been obtained
by multiplying the Planck function with the spectral emissivity of tungsten, go(A, T), as

follows:
2hc? 1

e ( he
T
“PNET

£0(A, T) has been determined from the data given by De Vos [88]. The calibration

procedure have been carried out for the parameters of the spectrometer and detector

Lo()\,T) = 80()\,T> (332)

)1

given in Table 3.6.

Table 3.6: Parameters of the spectroscopy system.

Slit width We 10 pm- 12 mm
Grating g/mm 300 1200 2400
Reciprocal dispersion Dy(nm/mm) 9.854 2.334 1.017
Central wavelengthl Acentral (nm) 378 378 378
Gain G 1-100
Effective gain Geft f(G) measured experimentally
Gate width time Twidth 1 ps- a few ms
Number of accumulations Naec 1 - hundreds
Exposure time Texp Texp = Twidth-Nace
Line height (in pixels) Ay,

Readout rate 2 or 8 MHz

The above listed parameters have allowed to determine the coefficient a(A, T) given by

the following equation:

So(A, T')

ANT) =
a(\.T) We.Geff Tewp- AYy-cr.Lo(N, T)

(3.33)

It highlights that the sensitivity calibration of a spectrographic system has been done
for the complete system, not separately for the individual components. a(\, T) has been
obtained by the averaging of 21 spectra in case of the measurements for readout rate of
2 MHz and 15 spectra for 8 MHz. Then, a(A, T) has been estimated by the regression

analysis, as follows:

Lo“r! (M) \?
E= (LG)\i—b—> —0 3.34
> () 02 (3.34)
where:
Lo%(\) is the spectral radiance of the tungsten strip lamp for given gain, G,
and wavelength, A |
Gref the referential gain,
b the estimated constant.
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The presented Equation 3.34 is determined for the measurements obtained for variable
gain, G. The same procedure has been applied to the results obtained for the following
parameters: Texp, We. Figure 3.36 presents the measured exposure time, 7oy, in a function
of the theoretical 7exp. It highlights the linear response of the ICCD detector.
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Figure 3.36: Calibration curve measured for variable exposure time Texp.

The same characteristics have been obtained for the slit width, w., and the gain. The
calculation of the coefficient a(A, T) has allowed to define the calibrated radiance of plasma

given by:

Splasma(>\7 T) 1
a(\,T) we'.Geff/.Texp'.Aypl

Lplasma(/\a T) = (335)

where we/,Geg/,Texp/,Ayp/ are parameters of the system for the plasma spectroscopic

measurement.

II1.3 Investigation of the plasma species

To determine the plasma temperature, the optical emission spectroscopy has to be applied
to examine the species of the pulsed plasma jet produced by the "Mosquitorch". The pure
nitrogen (N, 2 slm) has been used as plasma forming gas, therefore, the spectroscopic
studies have been focused on the identification of N, molecular emissions. In the previous
paragraphs the partial energy level diagram based on the data of Gilmore et al. for
N,, No™ and Ny~ states versus their internuclear distance (R) in Figure 3.31 has been

presented.
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The use of this diagram allows to determine the following transitions in the nitrogen

plasma:

- No(C — B)
The N,(C3II, — B3Il,) system (the second positive system of nitrogen) with the
vibrational branches ranged between 280 and 500 nm, where the head of the (0,0)
vibrational transition is at 337 nm. The second positive system is often responsible for

the dominant emission in air or Ny-containing plasmas.

- No ¥ (B - X)
The N,"(B2> 7 —-X2 Z;) system (the first negative system of nitrogen) is often
observed in air and nitrogen-containing ionizing plasma. The (0,0) vibrational transition
is usually the strongest band, observed at 391.4 nm. The rotational lines of this system
are often used to determine the rotational and vibrational temperatures of the plasma,
as presented in [89,90|. Therefore, initially, this system will be chosen to define the

plasma temperature in the following experiments.

Figure 3.37 highlights the identification of the emission features in the plasma produced
by the "Mosquitorch".

The spectra have been obtained by non-time-resolved acquisition, choosing the gate width
time, Twiatn, of 7 ms which is equal to 10 periods, T, of the pulsed plasma jet (T of 700
us), what results in the average spectra of the modulated plasma. To determine a broad
wavelength range of the spectra 300 g/mm gratings and the slit width of 75 pum have
been chosen. Moreover, the function "step and glue" provided by LightField software
has been used, what allows to measure large wavelength ranges. By this function the
broad measurement range is divided to the series. After the acquisition of the particular
spectral sequence, the grating moves to measure the other series and, then, the spectral
measurements are glued together to create a single spectrum. It has to be mentioned that

the intensity of the spectra has been normalized in order to compare the measurements.

The spectra have been obtained for different distances from the nozzle exit, where 0 mm
corresponds to the exit of the torch. The analysis of the species performed by Speciar
software and presented in Figure 3.37 highlights that the plasma jet from 0 to 10 mm
contains mainly the transitions: Ny(C — B) and Ny™(B — X). It has to be mentioned
that the second positive system of Ny and the first negative system of N, are frequently
observed simultaneously. Moreover, at the nozzle exit the spectrum contains the atomic
lines of nitrogen, what can be explained by the flow of N, plasma forming gas. In the
spectrum measured in 10 mm CN violet system (B2 7 —X23"7) at 388 nm has been
observed, what demonstrates the mixing of the plasma jet with the surrounding air that

contains the trace of CO,.
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Figure 3.37: Identification of the plasma emission spectra in the range of 300 to 900 nm
measured in different distances from the nozzle exit, where 0 mm corresponds to the exit of the
torch.

Moreover, at the distance of 10 mm the spectrum range has been reduced due to significant
atomic line of Cu at 324 nm.
The obtained results have confirmed the choice of using the nitrogen first negative system

to measure temperature of the plasma up to the distance of 6 mm.
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II1.4 Temperature measurements

As has been highlighted in the previous paragraphs the time-resolved optical emission
spectroscopy has been applied in a newly developed system of the suspension phased
injection in pulsed arc jet to determine the temperature of the modulated plasma. The
gas temperature measurements are mainly obtained by emission spectroscopy from the
population distribution in rotational levels, what is generally close to the kinetic gas
temperature as presented in [89-92|. The previously highlighted investigation of the
plasma species has shown the possibility of the use of the first negative B? Zj —X2 Z;

system of No™.

Therefore, the spectral measurements have been focused on Ny (B2 Zj —X?2 Zg) system,
which is a blue-degraded system with a head band at 391.4 nm. The 1200 g/mm grating
has been used with the slit width of 300 um corresponding to around 0.7 nm spatial
resolution. The gate width, Twigth, has been regulated to 60 us. Considering the plasma
velocity of ~ 50m.s™!, the plasma moves only by 3 mm during the time of 60 us. Smaller
values of Tyiqtn have resulted in the increase of On-CCD accumulation number, N,e., and
also on the increase of the signal /noise ratio. Therefore, the compromise has to be found
between the exposure time, i.e. the signal/noise ratio and the temporal window during

which the plasma is observed for measurement with frozen properties.

IT1.4.1 Spectral simulations

In the frame of this thesis, the measured spectra have been analysed by Specair. It is a
commercial software developed to simulate the radiative, molecular and atomic transitions
in air plasma, including Ny (second positive system), No* (first negative system), CN
(violet system). Specair assumes that the rotational states are Boltzmann distributed
at Tyot , defined by the equation (3.29). According to Bruggeman et al., this condition
is fulfilled if N, effective lifetime of the excited state, 7.s, is longer than N, time of
thermalization, Tinerm [91]. The latter can be evaluated by calculating the elastic collision
frequency of Nyt and assuming about 10 collisions to reach the thermalization. In the

range of expected temperature, Tiherm =~ 10 ns. The time 7o¢ is defined as follows:

1
K W

v X'

(3.36)

where AP, is the transition probability between B2 7 and X2 Z; states of Ny© for
the Av = 0 vibrational bands, which can be found in [93]. It has been found that

Tef =~ 80 ns.
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Consequently, in the following measurements the Boltzmann distribution will be assumed

and also Tgas = Thot.

To define the rotational temperature, T,., the theoretical spectrum has to be simulated
by Specair and compared to the measured one. This procedure consists of several stages.
Firstly, the background subtraction has to be implemented. It is the method which
minimizes the noise in the spectral measurements and thus makes small peaks more
visible. The noise can be caused by the plasma continuum radiation or the dark current
(background current that flows in a CCD camera system). Figure 3.38 presents two
spectra of (No*) first negative system: spectrum before the background subtraction (in
red) and after that.
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Figure 3.38: Effect of the background subtraction.

It can be noticed that the noise of the background is determined on the level of around
0.1. The background subtraction plays an important role in the intensity calibration
procedure, where this noise signal can be magnified and deform spectral measurement,
because the calibration function a(\, T) depends on A. Therefore, during calibration
procedure the background has been subtracted from the measurements. Moreover, it can
be noticed that the obtained spectra have been normalized to a maximum value of 1 by
Specair software due to different intensity levels. This procedure permits to compare the
spectra.

The spectra presented in Figure 3.38 have been obtained before the calibration of the
system of the wavelength axis. Therefore, they had to be also corrected in x (wavelength)
scale. This procedure permits to recalculate the measured data in order to compare with

other spectra or to define the unknown transitions in a spectrum by the Specair database.
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Moreover, wavelength corrections are necessary to optimize the fitting of experimental
spectra.
As has been presented above to obtain precise information about the plasma parameters

as the gas temperature the calibration of the wavelength and intensity axis have to be

performed.
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Figure 3.39: Effect of the calibration.

Figure 3.39 presents two measured spectra of (No*) first negative system: spectrum
before implying the calibration procedure (in red) and after that. As can be noticed the
intensity levels of the rotational lines are lower in the case of non-calibrated spectrum. It
has resulted in the difference of the temperature measurements: 7500 K defined for the
spectrum obtained by the calibrated system and 6800 K measured in the case of the second
spectrum. Therefore, it highlights that the calibration procedure has the importance in
the spectral measurements.

The important parameter in the spectral simulation by Specair software is the
determination of the instrumental function which defines the resolution of the collected
data. The slit function represents the broadening caused by the spectrometer (slit width,
pixel width, grating dispersion). The measured spectrum, Imeasure, 1S the result of the
convolution of the real emitted radiance, Ijjasma, and the slit function SL as presented
by the relation: Ineasure(A) = fooo Iplasma(§) SL (A — &) d€. To ameliorate the accuracy of
the spectral measurements, two different slit functions have been chosen: the trapezoidal
function, proposed in the literature |84,94] and presented in Figure 3.40, and the function
determined by measuring Hg lamp at 404.7 nm.
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Figure 3.40: Slit function of the spectroscopy system.

Figure 3.40 illustrates the procedure of the determination of the trapezoidal slit function.
The spectral width of the exit slit is presented as A\ and the width of the image of
entrance slit in exit plane as dA. It should be assumed that the width of the exit slit
should be larger than 0\ in order to not lose any flux. While scanning the exit slit across
the spectral image a trapezoidal shape of the recorded line is obtained, what represents
the slit function for given settings of entrance and exit slits.

To compare the accuracy of spectrum fitting by Specair software, the alternative slit
function has been determined by recording the line profile of the emission from a low-
pressure Hg lamp at the wavelength of 404.7 nm, presented in Figure 3.41. It allows
to obtain the slit function in good approximation due to a small line width of the lamp
(~1pm FWHM).
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Figure 3.41: Slit function determined by measuring Hg lamp: a) measured spectrum, b)
normalized spectrum to avoid the artifacts (we = 300 um ).
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The measured spectrum, 3.41 a), has been normalized to the format given by Specair
software, 3.41 b), to avoid the artifacts of the spectrum fitting. To ameliorate the accuracy,
recorded line profile has been fitted to the rotational spectrum of the measured (No*) first
negative spectrum, presented in Figure 3.42.

Bruggeman et al. have shown that for a broad slit opening the trapezoidal instrumental
function should be considered and for a small entrance slit the recorded line shape can be
approximated by a measured function [91].

As has been mentioned the presented above spectra have been measured with a spectral
slit width, we, of 300. Therefore, the trapezoidal instrumental function has been applied
in the Specair simulations.

The apply of all procedure mentioned above permits to determine the rotational
temperature of the plasma by numerical optimization routines provided by Specair
software which lead to the adjustment of measured spectrum to that simulated by Specair.
Figure 3.42 presents the comparison between the measured and simulated (Ny™) first

negative spectra.
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Figure 3.42: Comparison of the measured and simulated by Specair software (No™) first
negative spectra.
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As can be observed, a good agreement between these two spectra has been obtained.
This best correspondence of the simulated spectrum to that experimental provides the
rotational temperature. All presented experimental procedures and simulations allow to
precisely determine the temperature of the pulsed plasma jet, what will be highlighted in

the following section.
II1.4.1.1 Determination of the temperature of pulsed plasma jet

As has been shown in the previous paragraphs the time-resolved optical emission
spectroscopy is used to determine the temperature of the pulsed plasma jet, characterized
by high modulation of the specific enthalpy. To verify the temperatures of different
stages of this modulated plasma, the time-resolved spectroscopy measurements have to

be synchronized with the arc voltage signal, what is presented in Figure 3.43.
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Figure 3.43: Schematic view of the synchronous time-resolved spectroscopy procedure: a) the
experimental setup, b) the timing diagram.

The spectrograph has been connected to the output 1 of Ceradrop platform. The
synchronization procedure is similar to this one of time-resolved imaging and suspension
injection. The TTL signal formed from the arc voltage is sent to Ceradrop console which
activates the spectroscopic measurements. The spectrograph is synchronized with the

camera by adjusting the delay time, Tgate, to 14 pus.
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To verify the temperatures of different stages of the modulated plasma, four moments
presented in Figure 3.44 have been chosen. The triggering signals have been formed from
the arc voltage and sent to camera and TROES, as presented above, in order to obtain

the synchronized measurements.

Figure 3.44: Time-resolved imaging of the spectral measured moments of the pulsed plasma
jet: 71 to 74. The spectra obtained 1 mm from the nozzle exit, marked on the photos.

The trigger time delays in one plasma period, 7 to 74, have been adjusted by the
synchronization box. The generated TTL signals have been sent to the camera and the
spectrograph. Moreover, they have been recorded by LabView software, what is given in
Figure 3.45. These measurements highlight that the moment of the pulsed plasma, 7y,
corresponds to the maximum voltage signal, Upax(t) = 100 V. In the comparison, 7y is
obtained at U(t) ~ 60 V.

The measured spectra, presented in Figure 3.46, have been processed by Specair software,
by applying the procedures mentioned above, to obtain the plasma temperatures,

indicated in Figure 3.46.
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Figure 3.45: The trigger signals, 71 to 74, of the pulsed plasma moments presented in Figure
3.44, sent to the Time-Resolved Optical Emission Spectroscopy.
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Figure 3.46: (No™) first negative spectra for four different moments, 71 to 74 of the periodic
arc voltage.

Analyzing the No* first negative system, it can be observed that the spectrum measured
in the moment 74 is characterized by the highest value of the intensity comparing to the
spectra obtained at 7 to 3.

The spectroscopic estimation of the rotational temperature highlights that the gas
temperature increases from 6400 K £ 150 K to 7500 K £ 150 K by changing the moment of

a periodic arc voltage, as is presented in Figure 3.46. The obtained results can be compare
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with the data of the specific enthalpy of the nitrogen plasma given in [17] and gathered
in Figure 3.47. The region distinguished in the figure corresponds to the dissociation of

Ny molecule resulting in a steep change of the enthalpy in a small range of temperature.
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Figure 3.47: The nitrogen specific enthalpy based from the data given in [17].

The comparison of the obtained results with the nitrogen enthalpy data, shown in Figure
3.47, highlights that the plasma jet analyzed at the moment 74 is characterized by the
enthalpy value of 35 £ 3 MJ/kg. To compare, at the moment 71 the enthalpy is of
15 + 2 MJ/kg. It proves experimentally that the pulsed plasma jet is characterized
by the enthalpy and the temperature modulated. However, the ratio of the enthalpy
modulation h;, /h; ~ 2.3 obtained in this experiment is much lower than that presented
in the previous section, hyax/hmin =~ 18, determined by the energy balance measurements
and the hypothesis about constant thermal voltage (36 V). This significant difference has
led to the conclusion that the enthalpy modulation ratio of around 18 is overestimated
because the thermal losses are not constant. The assumption of the fluctuating thermal

losses has given the estimated ratio hyax/hmin of around 2.

Moreover, the presented method to determine the plasma temperature has encountered
the difficulties in the spectroscopic measurements of the moment of the pulsed plasma jet,
which corresponds to Upn(t) ~ 40 V. This instant of the jet is characterized by a weak
plasma radiation, therefore the precise determination of the rotational temperature, in

this case, following No™ negative system is not relevant.

Furthermore, it has to be mentioned that despite the setup calibration and the
determination of the instrumental function procedures, the errors in the temperature
measurements have occurred, what is indicated in Figure 3.46. To improve the
measurements, the researchers apply the Abel inversion technique to obtain radially
resolved emission profile, from which the temperature profile can be deduced. However,

this method requires the assumptions that the plasma jet is optically thin and it is

Page 188



Chapter 3 : Suspension phased injection in pulsed arc jet

characterized by the axial symmetry. The results obtained by the pulsed plasma jet
have highlighted that this kind of plasma does not meet these assumptions. As Tanaka
and et al. have shown in this case the Abel inversion is not useful because can engender
the higher error [95]. Moreover, the errors in the temperature measurements, highlighted

above, do not influence significantly on the determination of the specific enthalpy.

As has been already mentioned, the purpose of plasma spraying is the production of the
coatings. Therefore, the material injected to the plasma torch has to be melted, what
requires the heat transfer. The following measurements have been performed to define the
level of the enthalpy and the temperature of the plasma at the moment of the suspension
injection to the plasma jet. Figure 3.48 indicates the location at which the suspension
droplet is inserted, 5 mm. To compare the results the plasma has been also measured in

the distance of 1 mm from the nozzle exit.

Figure 3.48: Time-resolved imaging of the spectral measured moment of the pulsed plasma jet,
74 in Figure 3.45. Two distances, 1 and 5 mm, from the torch exit indicated.

The same synchronization procedure, as mentioned above, has been applied. The moment
of the pulsed plasma, which corresponds to the maximum voltage signal, Upax(t) = 100

V, has been chosen.

Analyzing the obtained N,™ spectra, it can be observed that the spectrum measured in 1
mm is characterized by the higher value of the intensity than the spectrum detected in 5

mii.

It can be explained by analyzing the cross-section of the plasma jet in Figure 3.48. In
the distance of 1 mm the radiance of the plasma is higher than in 5 mm. Moreover, the
measured temperature decreases from 7500 K + 150 K to 6900 K + 150 K , when the
distance from the torch nozzle exit increases. It results in the decrease of the enthalpy
from 35 + 3 MJ/kg to 23 + 2 MJ/kg. However, the obtained enthalpy level is sufficient
to obtain the material melted in this region of the plasma jet and to form the coatings,

what will be presented in the next paragraph.

The presented sections have highlighted the possibility to use the time-resolved optical

emission spectroscopy to measure the temperature of the pulsed plasma jet produced
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Figure 3.49: (No™) first negative spectra measured at the distance of 1 mm and 5 mm from
the nozzle exit.

by the "Mosquitorch". The results have highlighted that the careful choices of the
experimental procedure and the spectral simulation process are the important parameters
in the spectroscopic measurements. The selection of the system plays also the significant
role in this type of the diagnosis. The use of the time-resolved optical emission
spectroscopy has allowed synchronizing the system with the pulsed plasma jet what has
resulted in the temperature measurements of different moments of this periodic plasma.
Moreover, by analyzing the experimental results with the data of the nitrogen plasma
it has been possible to obtain the local specific enthalpy of different moments of the
plasma jet. The presented measurements have verified the high modulation of the specific
enthalpy in the pulsed plasma. The following section will present the use of this periodic
plasma to obtain the first coatings by a new system, the suspension phased injection in

pulsed arc jet.

IV  Material deposition

The following paragraph describes the first attempts to deposit the material by a new
system, the suspension phased injection in pulsed arc jet.

In the conventional SPS method the spray parameters, as the plasma and suspension
characteristics but also the spray distance, the substrate preparation and the substrate
cooling, determine the properties of the obtained coatings. For several years, the

researchers have been developing these parameters, what can be found in the large
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number of works [3,13,14,54,96-98]. To obtain the first coatings by a new method it has
been decided to follow the experimental conditions for the suspension plasma spraying.
However, it can be noticed that the synchronized SPS with pulsed arc jet method differs

from the conventional SPS process, what is presented in Table 3.7.

Table 3.7: Comparison of injection features for conventional SPS with the mechanical injection
and the high power plasma torch (~ 35 kW) and for suspension phased injection with mosquitorch
(~ 1 kW).

Droplets Injection Suspension Powder mass

diameter velocity  flow rate flow rate

(pm) (m.s™')  mlmin™) (g.min™!)
Conventional SPS  ~ 300 ~ 25 ~ 20 ~ 3
Synchronized SPS 50 3.26 5.6 x 1073 3.4 x 1074

The suspension is injected with lower velocity. Moreover, the suspension and powder
mass flow rates are much smaller than in the conventional system using the mechanical
injection. On the other hand, the Mosquitorch is supplied by much lower power than the
conventional torch. It has to be mentioned that this low power plasma torch, combined
with the pure nitrogen characterized by good properties in thermal transfers, is sufficient
to treat the materials, as the previous results have highlighted. Therefore, the following

spray parameters have been chosen:

- the spray distance of 32 mm from the torch exit
The spray distance in the conventional plasma spraying using the powder is of around
100 mm. However, as Darut et al. have highlighted in the SPS method this parameter
has to be drastically lowered to about 30 mm due to the significantly lower momentum

and thermal inertia of the material particles [99).

- the substrate cooling
The rotating sample holder has been chosen, what allows to avoid the overheating of the
substrate. The linear speed of the holder has been regulated to 1 ms™!, by analyzing
the studies presented in [100,101].

- the substrate preparation
To collect the splats produced by SPS method the mirror-polished substrate is commonly
used due to its low roughness. Therefore, the stainless steel substrates have been
polished using water-cooled silicon carbide (SiC) papers with the grit sizes of 600, 1200,
2400 and 4000 pm. Than, the final mirror-like surface has been obtained by using the
velvet polishing pad and colloidal silica. The substrates before the spraying process

have been cleaned in the ethanol and dried with the argon stream.

To obtain the deposition of the material the aqueous suspension of TiO,, described in
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Table 3.2, has been used. In the experiments presented in the previous paragraphs the
exact moment of the suspension emission synchronized with the periodic arc voltage signal
has been studied. However, to obtain the coatings using the suspension phased injection

in pulsed arc jet the moment of the suspension-plasma interaction has to be determined.

To protect the injector from the plasma heat flux it has been supported by a water-cooled
screen and mounted in the distance of 5 mm from the plasma jet axis. Therefore, the
time of the flight of suspension droplet from the injector to the plasma has to be defined.
Knowing that the distance is 5 mm and taking into consideration the experimental result
of the suspension droplet velocity equal to 3.26 m.s™!, the material flight time, tgigns, is
around 2 T, where T is the arc voltage period. The obtained results highlight that the
suspension is treated by the plasma two periods after the suspension droplet emission.

The characterization of the deposited material is an important step in plasma spraying
method to e.g. select the parameters of the process, improve the method. Therefore, to
study these first obtained coatings the basic measurements of the structural characteristics
have been performed. To observe the structure of the coating and the particles of the
diameters d > 1 pum the optical microscopy has been used. To obtain the microctructure
of the coating with better precision the Scanning Electron Microscopy (SEM) has been
applied combined with Energy Dispersive Spectroscopy (EDS) which gives a spatially
resolved compositional analysis of the coating. The following sections give the description

of these methods and highlight the microstructure of the obtained splats.

IV.1 Optical microscopy

The optical microscopy examination allows for basic observations of the coatings
structures. It should be a first instrument to be used for metallographic observations
since it is faster and much less expensive than e.g. Scanning Electron Microscopy (SEM).
Moreover, the optical microscopy compared to other techniques allows to observe large
area of the sample. It is a type of microscope which uses visible light and a system of lenses
to magnify images of small samples. In the frame of the thesis the coatings have been
observed by polarizing microscope Eclipse LV 100 POL (Nikon, Japan) which permits
to observe the samples with objective magnifications: 5x, 10x, 20x, 50x and 100x. One
of the key parameters of the optical microscopy measurement is image contrast, which
depends on the quality of the optics, coatings on lenses and reduction of flare and glare.
The microscope Eclipse is equipped with a high intensity 50W halogen light source and
a fly-eye lens design what gives brighter, clearer and higher contrast images.

The important parameter of optical microscopy is the image resolution which corresponds

to the ability to see fine details, presented in Figure 3.50.
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a) b) c)

Figure 3.50: Resolving two adjacent points: a) o = 7°, NA = 0.12, b) o = 20°, NA = 0.34, ¢)
a = 60°, NA — 0.87.

It is defined by the smallest distance, r, between two points which can be resolved, as

follows:

where:

NAgb;

where:

«

n

A
=1.22 3.37
' ON Ay, (3:37)
is the wavelength of the light,
the objective numerical aperture defined by equation:
NAgp; = n.sina (3.38)

is a half-cone angle of light half captured by the objective lens,

the lens refractive index.

The other important characteristic of optical microscopy is the depth of field, D, area in

front of and behind the specimen that will be in acceptable focus. The depth of field is

related to the wavelength of the light and to the numerical aperture (NA), as follows:
D = \/NAZ
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IV.2 Scanning electron microscope (SEM)

The Scanning Electron Microscopy is a method which uses electrons instead of light
to form an image. The electron beam with an energy ranging from 0.5 to 40 keV is
thermionically emitted from an electron gun, what is schematically presented in Figure
3.51. Then, the electron beam is focused by condenser lenses. In the final lens, the beam
passes through pairs of scanning coils or deflector plates which deflect the beam in the x

and y axes, what results in scanning over a rectangular area of the sample surface.

Maonitoer Computer

Figure 3.51: Schematic view of a Scanning Electron Microscope.

This electron beam carries significant amount of kinetic energy, what is dissipated as
a variety of signals produced by electron-sample interactions. These signals include
secondary electrons (which give SEM images), backscattered electrons (BSE), photons
(X-rays which are used for elemental analysis, can be detected in SEM equipped with
energy-dispersive X-ray spectroscopy), visible light (cathodoluminescence-CL)and heat.
Secondary and backscattered electrons are commonly used for imaging the sample.
Secondary electrons are most valuable for showing morphology and topography of the
sample. Backscattered electrons are used for illustrating contrasts in composition in
multiphase sample.

To characterize coatings produced in the frame of this thesis JEOL 7400F microscope
has been used (JEOL, Tokyo, Japan). It is a scanning electron microscope equipped
with a Cold Field Emission Gun (FEG). It is designed for the analysis of the physical and
chemical microstructure of solid state materials at nanometer resolution (max. resolution:

1 nm). Tt additionally allows for spatially resolved compositional analysis by using the
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PGT Energy Dispersive Spectroscopy (EDS).

As a consequence of the use of the vacuum conditions and electrons to form an image in
SEM method, the samples have to be specially prepared. The metals as the conductive
materials require no preparation before the measurement. All non-metal samples have to
been covered by a thin layer of conductive material. The automatic sputter coater (Agar
Scientific, Stansted, UK) has been used in the experiments to cover TiOy coatings with

platinum.

IV.3 Microstructure of deposited material

The following section presents the first basic characterizations of the obtained coatings
microstructures. The purpose of these studies is to verify the spraying parameters and

develop the coatings deposition process.

The spray distance of 32 mm has been chosen by analyzing the results obtained by SPS
method. Therefore, to verify this choice for synchronized SPS process this parameter has
been increased to 42 mm.

Figure 3.52 shows the examination of the influence of the spray distance on the coatings
microstructure. It has to be highlighted that it presents the basic study by the optical

microscope.

Figure 3.52: Microstructure of the coating obtained at the distance: a)32 mm, b)42 mm. The
measurements performed by the optical microscope, using the objective magnification 20x.

The first photo, 3.52 a), gives the microstructure of the coating obtained at the distance
of 32 mm. Figure 3.52 b) shows the results of increasing this spraying parameter to 42
mm. It has to be mentioned that both coatings have been produced by the injection of
the suspension droplets at the moment of the pulsed plasma corresponding to maximum
voltage signal. Figure 3.52 a) highlights that the coating is composed of two different

zones: uniform light area which gives the impression of being fine and nanometric, the
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dark elements of large sizes up to around 50 um. The increase of the spraying distance to
42 mm, presented in Figure 3.52 b), mainly results in dark elements which have different
structures than these ones presented in Figure 3.52 a). Moreover, the characteristic feature
of the substrate surface can be observed, what means that the distance between the torch
and the substrate is too long and the resolidified particles can be mainly observed. The
obtained results highlight the importance of the choice of the spraying distance, which

will be regulated to 32 mm in the following experiment.

In the previous experiment the suspension droplet has been emitted at the maximum
level of the arc voltage signal. To determine the influence on the coatings formation of
the different moments of the pulsed plasma jet, two cases have been chosen related to the
spectroscopic measurements of the plasma: the suspension emission at the maximum level
of the arc voltage signal, presented in Figure 3.44 as 74 and the medium level, indicated
in Figure 3.44 as ;. Figure 3.53 presents the coatings characterizations performed by the

optical microscope.

Length = 24,13 pm

Figure 3.53: Microstructure of the coating obtained at the moment corresponding to: a)
maximum voltage signal, b) medium level of arc voltage. The measurements performed by the
optical microscope, using the objective magnification 20x.

It has to be mentioned that the injected suspension droplet at e.g. maximum voltage
enters the plasma jet at maximum level of the signal as well but two periods later. Figure
3.53 a) presents the microstructure of the coating obtained at the maximum level of arc
voltage and b) at the medium level. In the picture 3.53 a) and in smaller amount in
b) it is possible to observe the dark structures with the diameters up to around 50 pm,
what corresponds to the diameter of the injected droplet. Moreover, as the analysis of
the particle size distribution has highlighted, the suspension used in the experiments has
the peak of the particle size distribution curve centered on 66 nm (dso) and the dispersion
size (dgo — d10) equal to 48 nm. Therefore, the obtained large micro-metric structures
can be the result of the agglomeration of the particles and they have been examined by

SEM microscopy. In both coatings microstructures the uniform light area which seems
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to be nanometric can be found. Therefore, it has been measured by SEM microscopy as

indicated in Figure 3.54.

40 pm

Figure 3.54: Coating obtained at the moment of maximum arc voltage, shown in Figure 3.53,
measured by the optical microscope, using the objective magnification 100x, with the marked
region measured by SEM and presented on the right.

The result obtained by the scanning electron microscopy measurement highlights that by
using the suspension formulated of nano-sized powder particles it is possible to obtain
the nano-sized layers of the coatings. However, the diameter of the particles composing
this layer is much smaller than the size of TiO, powder in the suspension, what might be
the result of the material vaporization. Moreover, the obtained layer is very thin. The
energy dispersive spectroscopy (EDS) analysis presented the dominant quantity of nickel
and chromium from the substrate than titanium from the coating.

In addition to this light zone in the coatings microstructures the dark elements have been
found, what is indicated in Figure 3.55. Figure 3.55 presents the distinction of different

features appeared in the coating produced at the maximum level of the arc voltage signal.

Figure 3.55: Coating obtained at the moment of maximal voltage signal, shown in Figure 3.53,
measured by the optical microscope, using the objective magnification 100x, with the indicated
features 1), 2), 3) and 4) measured by SEM.
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Figure 3.56 shows the main structure appearing in the microstructure given in Figure
3.55. It has been highlighted in Figure 3.53 a) and b) that the diameters of these features

are up to around 50 pm.

|

Figure 3.56: Feature 1) from Figure 3.55 measured by the scanning electron microscope and
analyzed by EDS.

The measurement by SEM highlights that this structure contains the resoldified and
agglomerated particles. The energy dispersive spectroscopy (EDS) analysis shows the
interesting characteristic of this splat. The proportion of Ti and O detected in the external
part corresponds to stoichiometric TiO,, what has been used as the powder to formulate
the suspension. However, the measurement of the region inside this structure shows the

dominant quantity of Ti.

Figure 3.57 highlights the structure occurring only in the case of the coating obtained at

the moment of the maximal level of the arc voltage signal.

Figure 3.57: Feature 2) from Figure 3.55 measured by the scanning electron microscope.

Under high magnification (right sight of Figure 3.57), nanosized particles, incorporated
into this structure, are revealed. The morphology of this feature is non-homogeneous

compared to the result shown in Figure 3.58. The shape and the morphology of this
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feature resembles the strongly melted or vaporized structure. It may be produced also by
the impact of the molten particle on the substrate but the adhesion forces could be too

weak to produce the bonding between this particle and the substrate.

Figure 3.58: Feature 3) from Figure 3.55 measured by the scanning electron microscope.

Figure 3.58 presents the structure of molten particles, what has been found in all obtained
coatings, in lower quantities in the case of 3.52 b). The high magnification of this structure

has highlighted that it is characterized by homogeneous nano-sized particles.

In the case of the coating produced at the moment of the pulsed plasma corresponding to
medium level of the voltage signal, Figure 3.53 b), the features indicated in Figure 3.59,
in addition to the structures described above, have been found. They have been analyzed

by the scanning electron microscope, what is presented in Figure 3.60.

Figure 3.59: Coating obtained at the moment of the medium level of the arc voltage signal,
shown in Figure 3.53, measured by the optical microscope, using the objective magnification
100x, with the indicated features 1) and 2) measured by SEM presented in Figure 3.60.

Figure 3.60 1) presents a ring structure with a distinct rim at the periphery. This increase

of the material thickness in the external part of this structure may result from recoiling
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process of the spread and flattened droplet, what is related to the wetting properties and

surface tension of the liquid ceramics.

3000 1am WD 3.0mm

Figure 3.60: Features 1) and 2) from Figure 3.59 measured by the scanning electron microscope.

Figure 3.60 2) exhibits the structure characterized by the finger-like perturbations. The
same feature has been observed in all obtained coatings. The studies presented in [102,103|
have highlighted the dependence of the splats on the substrate temperature. The splats
collected on the low temperature sample are distorted with the shape of the splashed
fingers, what exhibits the splashing during droplet impact and spreading. Blazdell et al.
have shown that preheating the substrate results in much more regular splats, what is
presented in Figure 3.61 [46].

a) b)

Figure 3.61: Zirconium suspension plasma spraying on a) cold substrate, b) hot substrate [46].

A more regular splat due to the preheating of the substrate might be obtained due to the

increase of the solidification rate of the particle.

Moreover, in Figure 3.60 1) and 2) the spherical agglomerated structures with the diameter
of around 3 pum can be observed. They highlight that in the case of using the plasma
with low level of the enthalpy the thermal energy is sufficient to remove the solvent from

the suspension droplets but is too low to ensure that they are still molten when they hit
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the substrate. Consequently, the drops solidify and agglomerate in flight and land as the

balls on the substrate.

The first attempts to produce the coatings by a new system have been highlighted. The
results have shown that the choice of the spraying parameters plays the important role in
the coatings formation. The spray distance influences on the microstructure of the coating,
what has been presented in Figure 3.52. Too long distance has resulted in the observation
of the resolidified particles collected on the substrate surface. Moreover, the coatings at
the different levels of the pulsed plasma jet have been obtained. The measurements by
the optical and scanning electron microscopes have highlighted the occurrence of different
features depending on the level of this periodic plasma, thus, the specific enthalpy and
temperature levels. The coating obtained at the medium level of the voltage signal has
presented the necessity of the preheating of the substrate before the splats collection.
However, the microstructure of the coating obtained at the maximal voltage level has
not exhibited the structures characterized by the finger-like perturbations, what has to
be studied in the future work. In addition, the synchronized suspension with the pulsed
plasma has jet has allowed obtaining the coatings features which have not been observed
in the conventional suspension plasma spraying. Therefore, the coatings production by a

new method requires further investigation.

V Conclusions

The studies of the instabilities of the plasma produced by the conventional dc torch,
presented in Chapter 2, have determined the parameters influencing the fluctuations
modes, Helmholtz and restrike. It has leaded to a new approach to plasma fluctuations,
the possibility of coupling these two modes together. This is achieved e.g. by the
particular design of the plasma torch characterized by large cathode cavity and by using
the nitrogen as plasma forming gas. This new resonant mode has been called "mosquito"
mode, due to the sharp monotonic sound emitted by the torch, what resembles the
noise produced by the mosquito. Therefore, the term "Mosquitorch" has been used to
describe a newly designed torch. The plasma, produced in this "mosquito" mode, is a
pulsed laminar plasma jet, characterized by the local specific enthalpy modulated with
a ratio hyax/hmin ~18, what has been presented by the obtained results. Moreover, this
pulsed plasma has the modulated velocity and the local temperature, which has been
measured by the time-resolved optical emission spectroscopy. This periodic structure of
the plasma jet has been used to synchronize the plasma with the suspension injection.

The droplets have been ejected using a piezoelectric device, ink-jet printer, triggered by
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the voltage signal sampled at the torch connections. To synchronize the plasma jet with
the suspension a new synchronization system has been developed. The time-resolved
imaging system and time-resolved optical emission spectroscopy have been implemented
to observe the moments of this modulated plasma and the interaction between the plasma
and the suspension. The results have shown that the trajectories and thermal treatment
of the material depend on the moment at which the droplets penetrate the plasma jet.
Therefore, the method shows a great possibility of the control of dynamic and thermal
interaction between the plasma pulses and the injected material. Moreover, the analysis
of thermo-physical phenomena of the inserted material has shown that thermal treatment
of the suspension in the plasma jet is governed by the heat transfer and vaporization. The
fragmentation process does not occur compared to the conventional methods. Moreover,
the first attempts of the coatings production have highlighted the interesting features
which have not been observed in the microstructure of the conventional SPS coatings.
However, it requires further investigation. First of all, instead of rotating sample holder,
the water-cooled support has to be used. Furthermore, the measurement method of the
substrate temperature should be applied, e.g. by using the pyrometer. In addition,
the obtained coatings presented in this dissertation have highlighted the necessity of the

preheating the substrates to obtain regular splats.
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Ce chapitre présente 'application d’oscillations réguliéres de plasma produites en mode
"mosquito" pour le traitement de la suspension et la synthése de dépots. Comme cela a été
mis en évidence dans les chapitres précédents, la méthode conventionnelle SPS démontre
des difficultés dues a ’absence de controle des trajectoires des particules et des transferts
de chaleur, ce qui rend la maitrise des propriétés des revétements. Le but de ce travail est
de développer un nouveau systéme qui peut permettre d’augmenter la reproductibilité et
la fiabilité du procédé par 'utilisation des oscillations réguliéres de plasma synchronisées
avec I'injection de la suspension. L’activation de I’émission de la gouttelette de suspension
au moment choisi dans le cylcle périodique d’oscillation du plasma, suivant les conditions
pour le traitement thermique du matériau particulier, peut étre capable d’améliorer le
controle des transferts de chaleur et de quantité de mouvement entre le plasma et les
matériaux. Par conséquent, il est important d’optimiser le systéme qui va permettre
de synchroniser I'injection de la suspension avec le signal de tension d’arc. En outre,
les différents types de méthodes de diagnostic, résolues en temps et synchronisées, sont
nécessaires pour étudier les traitements thermiques et dynamiques de la matiére dans le
plasma oscillant. Par conséquent, un nouveau systéme a été développé dans le cadre de

cette thése. Il se compose de trois parties importantes:

I Le systéme d’imagerie résolue en temps
Il se compose d’une caméra et d’une diode laser pulsée. Cette partie du systéme
nécessite de définir le choix des dispositifs appropriés pour observer et enregistrer le
plasma oscillant de période de l'ordre de 700 ps. En outre, des expériences doivent

étre réalisées pour obtenir la synchronisation de la caméra avec le laser.

IT L’injection de suspension synchronisée
Les oscillations périodiques du plasma permettent d’obtenir une nouvelle approche
de I'injection d’un matériau dans le jet de plasma d’arc. La goutte de suspension peut
étre injectée au moment choisi, ce qui peut conduire a la régulation de l'interaction
dynamique et thermique entre le plasma et le matériau. Cependant, il nécessite un
systéme d’injection capable de controler le moment de I'introduction de la matiére
dans le plasma. Cette condition a été trouvée dans une imprimante & jet d’encre

piézoélectrique fournies par la Société Ceradrop (Limoges, France).

III La spectroscopie résolue en temps
Le chapitre 2 a mis en évidence que le plasma produit dans le mode "Mosquito"
est caractérisé par une enthalpie modulée. Pour déterminer expérimentalement cette
estimation la spectroscopie d’émission optique résolue en temps a été mise en ceuvre.
Cette méthode a été utilisée pour prendre les mesures de la température de rotation
du plasma et de déterminer les espéces de plasma. Cependant, cette technique

nécessite des méthodes d’étalonnage minutieuses, qui sont présentés avec les premiéres
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mesures spectroscopiques du plasma périodique.

Pour observer les oscillations périodiques de plasma obtenues en mode "mosqutio", le
systéme d’imagerie résolue en temps et synchrone a été mis en ceuvre. Il se compose
d’une cameéra rapide, une diode laser de forte puissance et un filtre interférentiel (801 nm).
Le laser et le filtre ont été combinés avec la caméra afin de permettre ’observation du
traitement de la suspension dans le jet de plasma. Le principe est d’observer la pénétration
de la suspension dans le jet de plasma par I'illumination des gouttelettes a ’aide du laser.
Le filtre interférentiel (801 nm) centré sur la longueur d’onde de laser permet d’éliminer
la lumiére du plasma d’azote pur sur 'image. Pour observer les différents moments des
oscillations de plasma, I'imagerie résolue en temps doit étre synchronisée avec le signal de
tension d’arc. De plus, les gouttelettes de suspension doivent étre illuminées par le tir du
laser lors de l'enregistrement par la caméra. Par conséquent, le laser et la caméra doivent
étre également synchronisés, ce qui signifie que le temps de réponse, tq, de chaque dispositif
doit étre déterminé. Le temps de retard du laser a été déterminé par le fournisseur et
égal & 36 ns. Le délai de réponse tq de la caméra a été défini par 'expérience en utilisant
deux générateurs, et est égal a 14 us.

Le systéme d’imagerie résolue en temps doit étre synchronisé avec la tension d’arc. Pour
obtenir cette synchronisation, le signal TTL est formé a partir de la tension d’arc, qui
est mesurée par le pont diviseur connecté entre la cathode de la torche et la masse. Pour

générer le signal T'TL initial le dispositif de synchronisation est conc¢u et composé de:

- I'unité d’amplification-filtrage pour isoler la composante de mode de Helmholtz a partir

du signal brut, Vg,

- l'unité de réglage de seuil qui se compose du comparateur pour régler le niveau de

déclenchement, Vinreshold,

- la génération de I'impulsion & la fréquence fondamentale, fy, unité qui produit une
impulsion TTL Vg (5 V, 10 us). Il permet de générer le signal avec un retard réglable,

T, par rapport au seuil.

Le signal TTL, généré par ce boitier de synchronisation, par 'ajustement du niveau de
seuil et le temps de retard, est ensuite envoyé au panneau de commande Ceradrop. Il
géneére deux signaux de déclenchement pour activer la caméra et le laser.

Le plasma pulsé a été observé par la caméra déclenché & un moment donné de ce jet
périodique. Une période de cycle de tension est d’environ 700 us. Le temps d’ouverture
de la caméra est réglé a 60 us et 75 images sont enregistrées dans chaque situation: a
partir de a) a e) de la figure 3.10. L’image a) correspond a un déclencheur de 70 us
aprés un front descendant de la tension. Les moments de b) a e) ont été prises avec des

retards respectifs: 210, 310, 520 et 770 us, ce qui correspond a 70 us dans la prochaine
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période. La Figure 3.10 a) présente le moment aprés le réamorgage. L’arc est trés court
et situé dans la partie arriére de la tuyére. Les photos b) - d) montrent le développement
progressif de larc et la figure 3.10 e) représente une situation similaire & a), mais pour le
cycle suivant. Cette séquence témoigne de la forte modulation du plasma. L’examen de
la série des 75 images a montré une évolution trés reproductible du plasma dans chaque
cycle.

La Figure 3.11 est obtenue avec une caméra standard pour un temps d’exposition de
1072 s, ce qui se traduit par la superposition de 13 cycles présentés dans la figure 3.10.
Elle montre la caractéristique laminaire de I’écoulement plasma, ce qui peut étre vérifié
expérimentalement par le nombre de Reynolds, défini par 'equation (3.4). Le nombre
de Reynolds permet de définir différents régimes d’écoulement, tels que 'écoulement
laminaire ou turbulent. L’écoulement laminaire se produit a faibles nombres de Reynolds.
La transition de ’écoulement laminaire & turbulent commence a propos de Re > 2100 et
I’écoulement est considéré comme pleinement turbulent & Re > 4000. Pour les paramétres
du plasma, donnés dans le tableau 2.12, le nombre de Reynolds est estimé & environ 70,
ce qui définit ’écoulement laminaire du plasma.

Les oscillations périodiques de plasma nécessitent une méthode d’injection appropriée,
capable de controler le moment de l'introduction de la matiére dans le jet de plasma.
L’analyse des différentes techniques d’injection, présentée dans la revue de la littérature
dans le chapitre 1, a abouti a la sélection de I'imprimante a jet d’encre piézo-électrique,
fourni par Ceradrop (Limoges, France), en raison de la possibilité de ’émission de chaque
gouttelette déclenchée a la fréquence du plasma pulsé, c’est a dire 1.4 kHz. L’injecteur
de type piézo-électrique avec une éjection de gouttes a la demande (Drop On Demand)
a été utilisée. Le liquide est éjecté par de petits orifices (buses de 50 um de diamétre)
grace a des impulsions de pression appliquées sur le liquide et générées par un matériau
piézo-électrique. La déformation de celui-ci est controlée par I’application d’une impulsion
de tension de l'ordre de 120 volts. La téte d’impression contient 128 buses indépendantes
espacés de 0.5 mm et sont commandées par Labview. Les gouttes ont une vitesse variant
de 2 410 m.s7!. La fréquence d’éjection peut étre ajustée jusqu’a 20 kHz. La formulation
de la suspension doit étre optimisée en fonction de la nature et la quantité des différent
composants (par exemple solvant, dispersant, liant, surfactant) et de la charge massique
de matériau céramique afin d’éviter d’une part la sédimentation et le colmatage des buses,
et d’autre part d’ajuster les propriétés rhéologiques de la suspension (viscosité, tension
de surface).

Le principe de l'injection synchrone de la suspension consiste a injecter des gouttelettes
de la matiére au bon moment des oscillations périodiques de jet de plasma. Ce processus
de synchronisation est possible lorsque la fréquence du mode de résonance de Helmholtz

(égale a la fréquence de plasma) est égal & la fréquence de l'injection de la suspension:
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fu = fi. L’émission de la gouttelette est déclenchée par le signal TTL formé a partir de la
tension d’arc, en utilisant la boite de synchronisation.

La suspension utilisée dans les expériences, préparée par Ceradrop (Limoges, France), est
composée d’une poudrede dioxyde de titane (90% TiO2 phases de rutile) et est constituée
de 5 wt% de poudre et 95 wt% d’eau. La distribution de taille de particules a été
déterminée en utilisant le Mastersizer 2000 (Malvern Instruments Ltd, Royaume-Uni),
qui est basé sur la technique de diffraction laser. Le pic de la courbe de distribution de
taille de particules de la suspension utilisée dans 'expérience est centré sur 66 nm (dsp).
La taille de dispersion (dgo — dio) est égale & 48 nm.

Dans les imprimantes a jet d’encre, la formulation de la suspension doit étre optimisée
afin d’éviter la sédimentation le bouchage des buses et étre compatible avec la téte
d’impression. De plus, I'injection d’une seule goutte calibrée est le paramétre important
dans ce genre de procédé.

Pour obtenir ’émission d’une seule goutte deux conditions doivent étre remplies:

- les propriétés rhéologiques de la suspension (par exemple, la viscosité, la tension de

surface) doivent étre ajustés pour obtenir le rapport Re/v/ We variait entre 1 et 10
- le signal de tension envoyé a l'injecteur piézo-électrique doit étre optimisé

La premiére condition nécessite la définition du rapport Re/ VWe. Clest le coefficient
adimensionnel qui permet d’analyser le fluide. Il se compose de respectivement un nombre
de Reynolds et Weber, définies par les équations (3.4) et (3.5). Ce rapport calculé pour la
suspension utilisés dans les expériences est égale a Re/ vWe = 5.98. De plus, pour éliminer
les gouttelettes satellites 'impulsion de tension envoyée & l'injecteur a été optimisée en
collaboration avec Ceradrop. Une impulsion de tension de forme trapézoidale, représentée
sur la Figure 3.19, a été appliquée.

Ce systéme, présenté ci-dessus, contenant de I'injecteur, la caméra et le laser synchronisés
avec le signal de la tension d’arc a permis d’observer l'injection de la suspension dans les
différents moments du jet de plasma pulsé.

Sur la figure 3.23, I'imagerie résolue en temps des interactions dynamiques entre le jet
de plasma et les gouttelettes est présentée. Les photos 3.23 a-d sont obtenues avec un
objectif a faible grossissement (avec la résolution présentée dans la figure 3.4 ¢)) pour
les différents retards sur une période. Pour obtenir les résultats fiables des centaines de
photos liées a 3.23 a-d, déclenchées avec le méme temps 75, ont été enregistrées. Le laser
a été utilisé pour visualiser les particules solides restantes dans le jet aprés évaporation
du solvant. L’analyse d’image a permis d’estimer les vitesses du centre de masse des
"boules" de plasma, qui varient entre environ 30 m/s pour le cas présenté dans 3.23 a) et
50 m/s pour 3.23 ¢). L’expérience a montré sur les figures 3.23 a-d que les trajectoires et

I’histoire thermique associée aux matériaux injectés dépend du moment ot les gouttelettes
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pénétrent dans le plasma. Dans le cas 71 = 0 us, la partie la plus importante de matériau
voyagent en périphérie de plasma donnant lieu & grande dispersion des trajectoires (~10
mm) et la distance axiale de transport des matériaux est limitée (~40-60 mm). Dans le
cas 7o = 260 us, le traitement des matériaux dans le cceur du plasma est amélioré avec une
dispersion radiale inférieure et une distance de transport légérement augmentée. Sur la
figure 3.23 ¢) (73 = 480 us), une faible dispersion de la matiére est observée correspondant
a la distance de transport plus longue. Enfin, le cas de 74 = 620 us ressemble le premier
cas 11 = 0 us, car il est presque 700 us de période.

Par ailleurs, I'influence du moment ol une gouttelette pénétre le jet d’arc pulsé a été
étudiée en utilisant la caméra avec 'objectif Infinimax (Figure 3.4 b). Les résultats sont
présentés sur la figure 3.24. La caméra et le laser sont retardés par le méme temps, aprés
I’émission de gouttelettes mais la suspension pénétrent dans le plasma précédemment sur
la figure 3.24 a) que sur b), ce qui a été obtenu en changeant 73. La goutte, observée
par l'illumination du laser, pénétre dans le plasma 4 mm en aval de la sortie de tuyeére.
Les images a) et b) sont observées a travers le filtre interférentiel passe-bande centré sur
la longueur d’onde du laser. Cette configuration permet d’éliminer la lumiére provenant
du plasma d’azote pur sur l'image. Par conséquent, la figure 3.24 montre simplement
les boules de plasma, caractérisées par une forte augmentation de luminosité résultant de
Iinteraction du plasma avec le matériau contenu dans la goutte de suspension. Sur la
figure 3.24 a) la gouttelette inférieure pénétre dans le plasma a un moment correspondant
a une situation présentée sur la figure 3.10 d). Ce moment a été choisi en raison du
niveau élevé de I'enthalpie spécifique locale. Par conséquent, la figure 3.24 b) correspond
au plasma caractérisé par un faible niveau d’enthalpie, représentée sur la figure 3.10 a).
Dans le cas présenté sur la figure 3.24 a), le processus de vaporisation instantanée de
la goutte a été observé, ce qui différe de la situation illustrée en b). Dans ce cas, le
processus de vaporisation ne concerne pas la goutte injectée mais celle introduite une
période antérieure générant la boule de plasma a droite dans la figure b).

L’effet de modulation de l'enthalpie sur les phénoménes de thermo-physiques des
gouttelettes de suspension a été étudié. Le nombre de Weber calculé, dont le processus
de fragmentation dépend, est compris entre 0.04 et 0.48. Il s’avére que le procédé de
fragmentation n’apparait pas dans le cas de 'injection de la suspension dans le jet de
plasma pulsé. Le calcul du temps de vaporisation a mis en évidence que le choix de
la temporisation d’injection peut avoir un effet sur la vaporisation du solvant, ce qui est
vérifié par la figure 3.24. Les résultats obtenus par jet de plasma laminaire pulsé montrent
la possibilité du controle du matériau injecté dans les différentes zones du plasma modulé.
Ceci peut permettre de controler certains des procédés thermo-physiques se produisant a
I’échelle de gouttelette, telles que 1’évaporation.

Les paragraphes précédents ont montré que le jet de plasma pulsé est caractérisé par
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Ienthalpie spécifique fortement modulée. Pour déterminer cette modulation de facon
plus précise et locale, les mesures de température de plasma doivent étre effectuées.
Parmi toutes les techniques disponibles, la spectroscopie d’émission optique a été
choisie.  Le spectrographe Isoplane (Princeton Instruments, Trenton, New Jersey)
équipé d’une tourelle de 3 réseaux de diffraction (300, 1200 et 2400 tr/mm) a été
utilisé. L’acquisition des spectres a été réalisée en utilisant une caméra PI-MAX4 ICCD
(Princeton Instruments) connectée a 'ordinateur et commandée par un logiciel LigthField.
Pour obtenir des informations précises sur les paramétres du plasma, I'étalonnage du
spectrométre a été effectué en longueur d’onde et en intensité.

Pour déterminer la température du plasma, la spectroscopie d’émission optique doit étre
appliquée pour examiner les espéces du plasma pulsé produit par la "Mosquitorch".
L’azote pur (N, 2 slm) a été utilisé comme le gaz plasmagéne, par conséquent, les études
spectroscopiques ont mis ’accent sur I'identification des émissions moléculaires de ’azote.
L’analyse des espéces, montré sur la figure 3.37, présente que le jet de plasma de 0 & 10
mm contient principalement les transitions du second systéme positif de No(C — B) et
du premier systéme négatif de No* (B — X). Le premier systéme négatif B2 Y " —X* Y "
de I'ion moléculaire azote Ny a été choisi pour mesurer la température de rotation du
plasma jusqu’a une distance de 6 mm. Dans le cadre de cette thése, les spectres mesurés
ont été analysés par Specair. Il s’agit d’un logiciel commercial développé pour simuler le
rayonnement, les transitions moléculaires et atomiques d’un plasma d’air, y compris les
transitions Ny (C-B) (second systéme positif), No™ (B-X) (premier systéme négatif), et le
systéme violet CN. Specair suppose que les états de rotation sont Boltzmann distribués
a Trot, définie par 'équation (3.29). Selon Bruggeman et al., cette condition est remplie
si la durée de vie effective de 1'état excité de N,, 7es, est plus long que le temps de
thermalisation de Ny, Tinerm [91], ce qui a été confirmé dans le jet de plasma pulsé par les
calculs lorsque les mécanismes de quenching ne sont pas pris en compte. Les résultats ont
donné que : Tiherm =~ 10 nset 7eg ~ 80 ns. Pour définir la température de rotation, T\,
le spectre théorique doit étre simulée par Specair et comparé a celui mesuré. Ce procédé
comporte plusieurs étapes. Tout d’abord, la soustraction du bruit de fond continu doit
étre mise en ceuvre. En outre, pour obtenir des informations précises sur la température
du plasma, I’étalonnage en longueur d’onde et en intensité doivent étre effectuées.

Le paramétre important dans la simulation spectrale par le logiciel Specair est la
détermination de la fonction d’appareil qui définit la résolution des données obtenues. La
fonction de fente d’entrée représente I’élargissement causé par le spectrométre (largeur de
la fente, la largeur en pixels, la dispersion réseau). Pour améliorer la précision des mesures
spectrales, deux fonctions de fente différentes ont été choisies: la fonction trapézoidale,
proposée dans la [84,94| et présenté dans la figure 3.40, et la fonction déterminée par la

mesure d’une lampe au mercure a 404.7 nm.
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Pour vérifier les températures des différents pulses de ce plasma modulé, les mesures de
spectroscopie résolue en temps doivent étre synchronisées avec le signal de tension d’arc.
Les délais de déclenchement dans une période de plasma, 71 & 74, ont été ajustés par la
boite de synchronisation, comme 74 correspond au signal de tension maximale, Upax(t)
= 100 V, 71 a été obtenu a U(t) ~ 60 V. Les signaux TTL générés ont été envoyés a la
caméra et au spectrographe. En analysant le premier systéme négatif de No™, on peut
observer que le spectre mesuré dans l'instant 7, est caractérisé par la plus haute valeur
de l'intensité en comparant les spectres obtenus a 71 de 73. L’estimation spectroscopique
de la température de rotation met en évidence que la température du gaz augmente de
6400 K £ 150 K a 7500 K £ 150 K en changeant le moment de déclenchement dans
la tension d’arc périodique, comme cela est présenté sur la figure 3.46. Les résultats
obtenus ont été comparés avec les données de l'enthalpie spécifique du plasma d’azote
donné dans [17], ce qui montre que le jet de plasma analysés a I'instant 74 est caractérisé
par la valeur enthalpie de 35 + 3 MJ/kg. Pour comparer, au moment 7 'enthalpie est
de 15 + 2 MJ /kg. 1l s’avére expérimentalement que le jet de plasma pulsé est caractérisé
par 'enthalpie et la température modulée. Cependant, le rapport de la modulation de
I'enthalpie, h;,/h; ~ 2.3, obtenue dans cette expérience est beaucoup plus faible que
celle présentée dans la section précédente, hmax/hmin >~ 18, déterminée par les mesures du
bilan d’énergie et ’hypothése sur la tension thermique (36 V) constante. Cette différence
significative a conduit a la conclusion que le rapport de la modulation de 'enthalpie de
18 est surestimé parce que les pertes thermiques ne sont pas constantes. L’hypothése sur

les pertes thermiques fluctuantes a donné le ratio hyax/hmin estimé d’environ 2.

Les premiers essais pour produire des revétements par un nouveau systéme ont été
présentés. Les paramétres de projection ont été choisis comme les paramétres de la

méthode SPS conventionnelle:

- La distance de projection de 32 mm de la sortie de la torche
La distance de projection dans APS est de 'ordre de 100 mm. Cependant, Darut et al.
ont mis en évidence dans la méthode SPS que ce paramétre doit étre considérablement
réduit a environ 30 mm en raison de l'inertie dynamique et thermique significativement

plus faible des particules matérielles [99].

- Le refroidissement du substrat
Un porte-échantillon rotatif a été choisi, ce qui permet d’éviter la surchauffe du substrat.

1

La vitesse linéaire de la porte a été régulée a 1 ms™, en analysant les études présentées

dans [100,101].

- La préparation du substrat

Pour recueillir les lamelles produites par la méthode SPS, le substrat poli-miroir est
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couramment utilisé en raison de sa faible rugosité. Par conséquent, les substrats d’acier
inoxydable ont été polis a I'aide du carbure de silicium (SiC) papiers avec les tailles
de grain de 600, 1200, 2400 et 4000 pum refroidis a 'eau. Ensuite, la surface du miroir
en forme finale a été obtenue en utilisant le pad de polissage en velours et la silice
colloidale. Les substrats avant projection ont été nettoyés a I’éthanol et séché avec le

courant d’argon.

Pour produire les revétements, la suspension aqueuse de TiO,, décrit dans le tableau 3.2,
a été utilisée. Les caractérisations des revétements ont été effectuées par la microscopie
optique et la microscopie électronique & balayage (SEM en anglais) en combinaison avec
la spectroscopie a dispersion d’énergie (EDS), qui donne une analyse de la composition
résolue spatialement du revétement.

La distance de projection de 32 mm a été choisie par I'analyse des résultats obtenus par
la méthode SPS. Par conséquent, pour vérifier ce choix, ce paramétre a été augmenté a
42 mm. Les résultats ont montré que la distance de projection influence la microstructure
du revétement, ce qui a été présenté sur la figure 3.52. La distance trop longue a
conduit & 'observation des particules resolidifié recueillies sur la surface du substrat. Pour
déterminer I'influence des différents moments du jet de plasma pulsé sur la formation des
revétements, deux cas ont été choisis liés a des mesures spectroscopiques du plasma:
I’émission de la suspension au niveau maximum du signal de tension d’arc, présenté sur
la figure 3.44 comme 74 et le niveau moyen, indiqué sur la figure 3.44 comme 7;. Les
mesures effectuées par les microscopes optique et électronique & balayage ont mis en
évidence la présence des caractéristiques différentes en fonction du niveau de ce plasma
périodique, donc, les niveaux d’enthalpie et de température spécifiques. Le revétement
obtenu au niveau moyen du signal de tension a présenté la nécessité du préchauffage
du substrat avant la collection des splats. Cependant, la microstructure du revétement
obtenu au niveau de tension maximal n’a pas présenté les structures caractérisées par des
perturbations en forme de doigts, qui se trouvent dans le revétement produit au niveau
moyen. En outre, la suspension synchronisée avec le plasma pulsé a permis d’obtenir les
caractéristiques des couches qui n’ont pas été observés dans la méthode SPS classique. Par
conséquent, la production de revétements par une nouvelle méthode nécessite 'examen

plus approfondi.

Page 211



General conclusions

(zeneral conclusions

Page 212



General conclusions

This thesis presented the studies of the plasma spraying method with the

emphasis on the use of the suspension as the feedstock material.

The literature review has highlighted the advantages of the plasma spraying
technique deposition, i.e. a wide range of the materials which can be used to produce
coatings, a relatively low cost, that is commonly the goal of technological development.
Moreover, the development of this method, i.e. the use of the suspension of fine particles
as material injected has allowed obtaining the finely structured nano-sized coatings. This
amelioration has resulted in the extension of the coatings application area to more complex
integrated devices, such as solid oxide fuel cells, photocatalytic coatings. However, as has
been highlighted by the examples of the coatings microstructures or the studies of the
suspension fragmentation according to the arc voltage fluctuations, the researchers face
still many problems in this method. The large discrepancies in the particles trajectories
and the heat transfers, the plasma instabilities result in the insufficient reproducibility
and reliability of the suspension plasma spraying process. By analyzing the current results
obtained in the field of SPS, e.g. the techniques leading to the reduction of the plasma
fluctuations, the developments of the dc plasma torches, the following thesis has presented
the alternative method resulting in a new approach to the arc instabilities and to the

injection of reactive material in an arc jet.

Firstly, a new approach to the plasma fluctuations has been highlighted. In
the literature the processes to reduce the plasma oscillations can be found. This thesis
shows the method to increase the arc instabilities in a controlled way to obtain a new
resonant mode characterized by very periodic arc voltage signal. This process has required
the understanding of the origins of the arc instabilities. Initially, the time-resolved
measurements and data processing methods applied to the arc voltage signal have leaded
to determine a mode due to Helmholtz resonance in the torch. The arc voltage power
spectrum has highlighted the presence of a sharp peak at ~4.3 kHz, which could not
been attributed the acoustic longitudinal stationary waves in the nozzle channel or the
restrike fluctuations, the repetition of the elongation-re-arcing sequences characterized
by non-reproducible spectral components. Therefore, following the works in the field of
combustion systems where it has been discovered that the burners behave like Helmholtz
resonators, these periodic oscillations in the plasma produced by dc plasma torch have
been considered as the coupling between the arc and pressure variations in the cathode
cavity. The presented results obtained by the time-resolved measurements of the arc
voltage signal and the pressure in the torch have confirmed this assumption. The use of
the external resonator mounted on the torch has shown the significant reduction of the arc
voltage due to the modification of the pressure inside the cathode cavity. Moreover, the

model of the frequency of Helmholtz oscillations, defined in the framework of vibration
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theory, given by the equation: fy = 1/271/7, Pg/pp\/S/Lp Vg, has been confirmed by the
obtained results. The increase of the cathode cavity volume has noticeably influenced the
Helmholtz mode by reducing its frequency. The use of the nitrogen as plasma forming
gas has reinforced the Helmholtz mode and dominated the acoustic modes. Moreover, the
obtained have shown a good matching between the arc voltage and pressure variations.
In addition, the presented results have allowed to assume the model for the acoustic
resonances by combination of the axial modes and those of radial and azimuthal modes
in the cathode cavity, presumed to be an annular tube closed at the injection ring and
opened at the cathode tip. The model has shown a good agreement with the experiments.
However, to define the changes of the acoustic oscillations with the increase of the cathode
cavity more advanced modelling has to be implemented. Moreover, the arc voltage
signal has highlighted that to Helmholtz oscillations are superimposed more randomly
distributed short events with sharp peaks and sudden falls. The filtering method has
underlined that these features, with a mean characteristic time of a few tens of us,
correspond to the restrike mode. The studies of this mode of the instabilities have
been found in the literature. However, the model for restrike fluctuations has been
evaluated for pure restrike mode (without the influence of Helmholtz or acoustic modes).
Therefore, the necessity to verify this model for the restrike fluctuations superimposed
to Helmholtz mode has leaded to the statistical studies of the filtered restrike from the
arc voltage fluctuating component signal. The presented results have verified that the
restrike fluctuations follow the model given in the literature, what highlights that restrike
and Helmholtz modes are relatively separated. It can be confirmed by the calculation of
the times at which these modes appear: a few hundreds of us of Helmholtz mode and a
few tens of us of restrike. Moreover, Helmholtz oscillations strongly depend on the volume
of cathode cavity, the restrike fluctuations depend on the properties of the cold boundary
layer around the arc column. Therefore, it highlights that both modes, Helmholtz and
restrike, are relatively decoupled. However, the understanding of Helmholtz and restrike
phenomena has leaded to a new mode of the arc instabilities. By changing the parameters
influencing the Helmholtz and restrike fluctuations, the possibility to couple them together
has been presented. To obtain this coupling a new dc plasma torch has been designed.
The arc voltage signal obtained in this new mode is very repeatable saw-tooth shaped.
Moreover, the energy balance measurements have highlighted that the plasma produced
in this new mode is characterized by the enthalpy highly modulated. This new approach
to the plasma fluctuations by increasing the arc instabilities in a controlled way to obtain
very periodic plasma has leaded to the second part of this thesis, to the injection of

reactive material synchronized with the regular oscillations of the plasma jet.
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The principle of a new system is to inject the suspension droplet at the right
moment of the periodic plasma jet. The obtained regular plasma oscillations have been
applied to the suspension treatment and coatings deposition process. First of all, the
further examination of the periodic plasma jet has highlighted that this newly obtained
resonant mode results in a pulsed and laminar plasma jet. The observation of this periodic
plasma jet with the frequency of 1.4 kHz was possible by the design of time-resolved
imaging system which contains of the fast shutter camera with the laser, both synchronized
with the arc voltage signal. This pulsed plasma jet allows obtaining a new approach to
the injection of reactive material. First of all, the system capable to control the moment
of material introduction to the plasma has been chosen. The use of the piezoelectric
ink-jet printer has provided the possibility to insert the suspension droplet at the selected
moment of the regular plasma oscillations. The obtained results have highlighted that
this periodic plasma is not only characterized by the high modulation of the enthalpy
but also of the velocity. Moreover, the suspension droplet injection synchronized with the
pulses of the plasma jet has highlighted the choice of the injection moment has an effect
on the thermo-physical processes occurring at the droplet scale. Therefore, a new system
may provide the control of dynamic and thermal interaction between the plasma and the
material. Moreover, this new method is based on the synchronization of all devices with
the arc voltage signal. Therefore, the synchronization system has been implemented in the
framework of this thesis. To verify the modulation of the enthalpy the plasma temperature
measurements have been performed by time-resolved optical emission spectroscopy. The
obtained results have shown the species in the nitrogen modulated plasma in the function
of the distance. Moreover, the synchronization of the spectrograph with the arc voltage
signal has allowed to perform the temperature measurements of different moments of
the pulsed plasma jet. The have verified the high modulation of the temperature and,
thus, of the specific enthalpy in the pulsed plasma. In the future work, the use of this
spectroscopic system to define the suspension-plasma interaction should be studied. It
could verify the process of the thermal treatment of the material in the plasma jet by
the measurement of the temperature and investigation of the species. This thesis has
presented also first attempts to produce the coatings by a new system. The examination
of the coatings microstructures have highlighted that they seem to be dependent on the
enthalpy modulation. Moreover, the obtained results have shown the necessity to develop
the system of the splat collection and apply the water-cooled support. The spraying
parameters should be changed, e.g. the preheating of the substrates. In addition, the
increase of the coatings thickness by for example the use of more than one injector nozzles,
should be verified.
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