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1
Introduction

1.1 Motivation

Computers and software have become essential in the modern society, exert-
ing an enormous impact in the way we produce and consume goods and services.
There are examples everywhere: financial systems are highly computerized, the
majority of money transactions being merely a data exchange among computers;
transportation, from intelligent navigation systems to ships, trains, airplanes or cars
that are fully loaded with electronic equipment; research, where activities like DNA
sequencing or space exploration would not be possible without computers; health-
care, where computers store medical records, or are essential part of complex equip-
ment such as monitoring systems or medical imaging systems; communication, with
computers being an integral part of TV and radio broadcasting systems, electronic
mail systems or video conferencing systems; recreation, where holiday packages or
popular event tickets are mostly sold online; and so, the list goes on and on.

The immediate effect of all this is that, unsurprisingly, software industry has
experimented an exponential growth in the last decades. What is more, far from
slowing down, that tendency is accelerating. With modern societies constantly de-
manding for more and better products and services, which in its turn, requires more
and more complex software systems, today, software industry is growing at an un-
precedented pace. This growth implies that first, more people work in activities
related to the software industry, and second, that new and more powerful tools and
techniques appear every day to develop complex software as easy as possible.

Even though all this describes a bright present and a promising future for the
software industry, truth be told, there are also some concerns, especially when it

15



16 CHAPTER 1. INTRODUCTION

comes to aspects like quality, absence of errors, reliability and the like. Although
ensuring software correctness is not a new challenge [1], but an old one that soft-
ware engineers continue to struggle with, the ever-increasing complexity of soft-
ware projects, along with the enormous pressure to reduce costs and time to market
are making it even more challenging. This is especially worrisome when looking
at the consequences that software failures in critical systems can cause. A simple
look at Wikipedia 1 reveals that, in the best-case scenario, these failures provoke
substantial losses of money (as an example, the investment to solve the Y2K bug
surpassed the amount of 100 billion dollars, in US only), but in the worst one, the
cost is paid in the form of human lives.

Software industry is obviously well aware of these problems and, consequently,
substantial research efforts have been and continue to be made to alleviate them.
To date, the most popular trends to address this challenge are commonly referred
to as software verification and software testing. Software verification comprises
those approaches based on the use of formal analysis techniques to prove software
correctness. Software testing, on the other hand, usually refers to those approaches
that try to find errors in software by systematically running it with a set of inputs
for which the expected output is known, and then comparing the actual outcome
with the expected one. However, and despite the popularity of these approaches,
research efforts have not only focused on the discovery of mechanisms to improve
the reliability of software developed by traditional or conventional means. On the
contrary, there are relatively new software development paradigms and methodolo-
gies that are also gaining traction, such as Software Product Lines (SPL) [2] or
Model-Driven Engineering (MDE) [3], as promising ways of developing more reli-
able software.

In the particular case of MDE, the main idea is the utilization of models as
first-class citizens of the software development process. In an MDE-based software
development process, the software is not coded by hand, but by designing and cre-
ating a number of models to be successively and (semi)automatically transformed
into more refined models, and eventually into the code comprising the new software
system. This way, by increasing the abstraction level and reducing the effort made
in labor-intensive and error-prone manual tasks such as coding, the amount of errors
in the final software system may be reduced.

Although what MDE promotes sounds promising, truth is, an MDE-based soft-
ware development process also requires the presence of additional mechanisms to
try to ensure its reliability. When MDE is applied to the development of complex
software, the complexity of models and model transformation involved in the pro-
cess tends to increase. This turns their creation and edition into error-prone tasks
that endanger the reliability of the whole process, and therefore the soundness of

1. http://en.wikipedia.org/wiki/List_of_software_bugs
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the resulting software. Thus far, the research efforts made to alleviate this have
consisted in trying to adapt software verification and software testing techniques to
the reality of models and model transformations of MDE. Unfortunately, as of this
writing, the tools and techniques resulting from these efforts do not enjoy a great
deal of success. For this reason, in this thesis, we try to find out what are the reasons
that are preventing a wider adoption of these tools, and propose new mechanisms
and techniques to try to change this.

1.2 Objectives and Contributions of this Thesis

The objective of this thesis is to improve the landscape of approaches devoted to
try to ensure quality and absence of errors in models and model transformations. In
particular, the focus is on the analysis of approaches devoted to the verification of
static models, which are arguably the models more commonly adopted at the time
of describing the specification of a software system [4]. The intent is to develop
new mechanisms and to make the existing ones more efficient, thus facilitating their
wider adoption. Additionally, the role that these approaches can have at the time
of testing model transformations is also studied. As a consequence of this, several
techniques where verification approaches are used for the generation of test data are
also proposed.

More specifically, the contributions of this thesis are:

– A mechanism aimed at ensuring static model correctness based on constraint
programming called EMFtoCSP.

– Two mechanisms aimed at improving the efficiency of model verification ap-
proaches.

– A mechanism devoted to the generation of input test data for model transfor-
mation testing, based on the analysis of model transformation internals.

– A mechanism devoted to the generation of input test data for model transfor-
mation testing, based on the analysis of the model transformation specifica-
tion.

1.3 Outline of the Thesis

The rest of this thesis is structured as follows:

– Chapter 2 introduces some basic terminology that will be commonly em-
ployed throughout this thesis. It constitutes, along with this chapter, the in-
troductory part.

– Chapter 3 presents the current landscape in the field of static model verifi-
cation. The existing tools and techniques are analyzed and classified, some
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weaknesses are identified, and several improvement proposals are suggested.
– Chapter 4 presents EMFtoCSP, a tool for the verification of static models

based on Constraint Programming. The tool belongs in a family of model
verification tools that limit the search space where to look for a solution of the
verification problem. This family of tools, commonly referred to as bounded
verification approaches, is gaining popularity, as limiting the search space
has proved itself as an effective method to increase the efficiency of model
verification tools.

– Chapter 5 presents the first technique for improving the efficiency of verifi-
cation tools. Given a correct model and a series of modifications, it consists
in determining which parts of the resulting model may impact model correct-
ness. The intent is to limit the verification analysis to those parts, omitting the
rest of the model in the process. We call it incremental verification of models.

– Chapter 6 presents our second technique for improving the efficiency of ver-
ification tools. In this case, the technique addresses one of the most important
flaws of bounded verification approaches: manually setting the search space
boundaries. The technique presented in this chapter analyzes the model to be
verified to try to automatically determine what are the appropriate boundaries
for the search space. This chapter, along with Chapters 3, 4 and 5 make up
the second part of this thesis, devoted to verification tools, and techniques to
improve their effectiveness.

– Chapter 7 presents the state of the art in the field of model transformation
testing, describing the existing approaches and their weaknesses. Some im-
provement proposals are also suggested.

– Chapter 8 introduces a tool for the generation of input test data for model
transformation testing, based on the analysis of model transformation inter-
nals. This tool is based on the EMFtoCSP tool presented in Chapter 4, and is
the first proposal on how static model verification tools can be of assistance
to test model transformations.

– Chapter 9 introduces a second tool, also for the generation of input test data
for model transformation testing, but in this case, it is based on the analysis
of the model transformation specification. As it was the case for the tool
of Chapter 8, this tool also relies on EMFtoCSP. It is the second proposal
showing how to use static model verification tools to assist in the process of
testing a model transformation. This chapter, along with Chapters 7 and 8
constitute the third part of this thesis, oriented to discuss the role static model
verification tools may play in model transformation testing.

– Chapter 10 draws the conclusions of this thesis and ideas for future research.
It constitutes in itself the last part of this document.
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2
Basic Concepts

This chapter introduces some of the basic terminology used throughout this the-
sis, with the intent of facilitating the contextualization of the work presented in Parts
II and III. In particular, it gives a brief overview of the concepts of Model-Driven
Engineering (MDE), software verification, software validation and constraint pro-
gramming.

2.1 Model-Driven Engineering

One of the most powerful weapons in the arsenal of the software engineer is the
ability to abstract complexity away. Abstraction facilitates reasoning about com-
plex real-world phenomena, while retaining only the information that is relevant
for a particular purpose, and hiding away nonessential details. When these abstrac-
tions are expressed textually, graphically, or as a combination of both, it is typical
to refer to them with the word “model”. Models are important elements of all soft-
ware engineering activities, but in many cases, they play a secondary role, serving
as documentation, or somehow tangentially supporting the software development
process.

Model Driven Engineering (MDE in short) is a methodology that seeks to change
this, by promoting the utilization of models as first-class citizens in all software en-
gineering activities. As stated in [3], the role of MDE consists in defining sound
engineering approaches to the definition of models, to their modification (that in
the MDE terminology is known as “model transformation”), and their integration
within software engineering activities. An immediate consequence of this is that, in
MDE, the creation of models goes beyond the process of informally depicting ideas
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or real-word phenomena. In MDE, models must feature precise and well-defined
syntax and semantics, so that they can be automatically interpreted by a computer.

2.1.1 Modeling and Metamodeling

Models and model transformations must be expressed using some kind of nota-
tion, which in MDE receives the name of “modeling language”. In reality, in MDE,
everything is a model. An immediate implication of this is that these modeling lan-
guages are nothing but models, and therefore as such, they are also expressed using
a graphical representation, text, or both combined, and must feature well-defined
syntax and semantics. The utilization of models to describe models is known as
“metamodeling”. If models are an abstraction of some real-world phenomena,
metamodels are abstractions describing the properties of models themselves. Meta-
models therefore define a modeling language. It is said, that the models described
by a metamodel conform to that metamodel, pretty much the same way that a given
program written in a certain programming language, conforms to the grammar of
that programming language.

Metamodeling is a recursive process. As a metamodel defines the modeling
language that describes the whole class of models represented by that language,
a meta-metamodel defines the modeling language that describes metamodels. A
popular way of depicting this is by using the four-layered architecture diagram (Fig.
2.1), proposed by the Object Management Group 1 (OMG) within the Model-Driven
Architecture (MDA) framework 2. The MDA framework is the particular vision of
the OMG about MDE when applied to the development of software.

The layers in Fig. 2.1 receive the names M0, M1, M2 and M3, respectively. The
layer M0 represents the running system where the real-world objects, or instances
exist. These instances conform to the models in layer M1, which in their turn,
conform to the metamodels in layer M2. That is, models in M1 are described by
the modeling languages in M2. Along with this line of reasoning, metamodels in
M2 conform to the meta-metamodel in M3, which defines the concepts used in M2,
and also the ones used in M3 itself. In this regard, OMG proposes an standard
meta-metamodel for M3 called Meta-Object Facility (MOF) 3.

2.1.2 Model Classification

Models can be classified in multiple ways, but when it comes to MDE, the two
most popular ways of doing this is by considering the part of the system, where the
model puts the focus on, or the scope of the modeling language.

1. http://www.omg.org/
2. http://www.omg.org/mda/
3. http://www.omg.org/mof/
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Figure 2.1: MDA 4-layer architecture

Regarding the first way, when following an MDE approach, it is typical to build
different models to gather different aspects of the system under analysis. In these
cases, it is quite common to distinguish among two types of models: static or struc-
tural models and dynamic or behavioral models.

Static models are those models used to represent, totally or partially, the struc-
ture and architecture of the system. These models show, in general, a time indepen-
dent view of the system. An example of this type of model is the UML 4 (Unified
Modeling Language) class diagram. Dynamic models, on the other hand, describe
the behavior of the system, which may include among other aspects, the description
of control or data flows within the system, how the internal state of the different
components of the system evolves throughout time, or even the way the system
must be used by its users. Some examples of behavioral models are UML sequence
diagrams or UML activity diagrams.

Finally, and regarding the scope of the modeling language, it is possible to dis-
tinguish two types of modeling languages: Domain Specific Modeling Languages
(DSMLs) or General Purpose Modeling Languages (GMLs). DSMLs are designed
with the intent of facilitating the creation of models describing the reality of a
particular domain or context of interest. GMLs, on the other hand, are modeling
languages that can be used to describe models in any domain. The most typical
example of GML is UML.

4. http://www.omg.org/spec/UML/



24 CHAPTER 2. BASIC CONCEPTS

Figure 2.2: Relationship between models and model transformations

2.1.3 Model Transformations

Model transformations are the other key element to MDE. In general terms, they
can be seen as a mechanism to transform a model described in a source language
into a model described in a target language. That is, model transformations define
the rules by which the constructs from the source language are transformed into
constructs from the target language.

Fig. 2.2 shows the relationship between models, metamodels and model trans-
formations. It can be seen that the model transformation conforms to some kind of
model transformation language. This stands to reason, since, as it was mentioned
before, everything in MDE is a model. The model transformation language is noth-
ing but a metamodel, defined in M2 as any other metamodel, that conforms to the
meta-metamodel in M3. It can also be seen in the figure, that model transformations
are applied at the modeling level (M1), which makes sense, since are models and
not model instances what it is transformed.

Model transformations, as it is the case with models, can be classified in mul-
tiple ways. At the top level, it can be distinguished between model-to-model and
model-to-text transformations [5]. In the first ones the target is a model, and in the
second ones, it is just a set of text strings, like source code or documents. Model-
to-model transformations, in their turn, can also be object of multiple classifica-
tions. Attending to the source and target metamodels, for example, transformations
can be endogenous, when both metamodels are the same, or exogenous, otherwise.
If the level of abstraction of the source and target models is considered, it would
be possible to talk about horizontal transformations, when the level of abstraction
is the same, or vertical transformations, when it differs [6]. Finally, when con-
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sidering the way the transformation is specified, it is possible to talk about oper-
ational (imperative), declarative and hybrid approaches. Operational approaches,
like Query/View/Transformation (QVT) Operational mappings 5, focus on how the
transformation itself must be performed, whereas declarative approaches, like QVT
Relations 6, focus on the relation between source and target metamodels. Finally,
hybrid approaches, like the ATL Transformation Language (ATL) [7], combine
both. ATL will be described in more detail in Part III, when talking about testing of
model transformations.

2.1.4 The Object Constraint Language (OCL)

The Object Constraint Language (OCL) 7 was created with the intent to over-
come the limitations shown by UML at the time of precisely specifying detailed
aspects of a system design [8]. With the passing of time, OCL has become a key
player to MDE and, as of now, it is widely used not only to express integrity con-
straints, but also to describe operation contracts or query operations over models;
or even to facilitate the description of model transformations or code generation
templates, among many other uses.

OCL is a textual, typed, and mostly declarative language. This means that any
OCL expression evaluates to a type, and that the presence of imperative statements,
like for example assignments, is scarce. One of the most important characteristics
of OCL is that it is side-effect free, therefore, OCL expressions do not modify the
state of the system.

Due to its extensive use, the analysis of OCL expressions is an integral part of
those mechanisms devoted to increase the reliability of MDE approaches, and the
techniques presented in this document are not an exception. More details about
OCL will be provided in subsequent chapters when needed.

2.2 Software Verification

Software Quality Assurance (SQA) comprises all activities required to make
sure that a software product meets certain quality objectives [9]. It is difficult to
come up with a precise definition of quality, though. After all, quality means differ-
ent things to different people, and factors like the domain or the point of view are of
great influence here [10,11]. To the best of our knowledge, McCall et al. [12] where
the first ones in describing software quality in terms of quality factors and quality
criteria. Even though with the passing of time, a lot of quality factors have been

5. http://www.omg.org/spec/QVT/1.1/
6. http://www.omg.org/spec/QVT/1.1/
7. http://www.omg.org/spec/OCL/2.4/
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identified (efficiency, reusability, maintainability, etc) and different quality models
have been proposed (ISO/IEC 9126 8, ISO/IEC 25010 9, CMMI 10), as of now, it
is generally accepted that the most important quality factors are those impacting
software reliability.

Software verification makes reference to certain procedures and techniques de-
voted to identify and solve software problems, that is, to preserve software reliabil-
ity. The following definition of “software verification” can be found in the IEEE
Standard Glossary of Software Engineering:

“Verification is the process of evaluating a software system or component to

determine whether the products of a given development phase satisfy the

conditions imposed at the start of that phase” [13].

However, it is more typical to describe “software verification” by using the def-
inition proposed by Barry W. Boehm:

“Am I building the product right?” [14].

It is also quite common to narrow down the meaning of the term “verification”,
and use it in the sense of “formal verification”. Formal verification is about the
utilization of formal methods to try to prove software correctness. The term formal
methods, as stated in [15] refers to the use of mathematical modeling, calculation
and prediction in the specification, design, analysis and assurance of computer sys-
tems and software. The reason why it is called formal methods is to highlight the
character of the mathematics involved.

2.2.1 Formal Methods and Software Correctness

The utilization of formal methods to try to ensure software correctness can be
seen, roughly speaking, as a three-step process:

– Building a formal specification of the system under analysis
– Reasoning over the specification to prove properties about it
– Obtain, from the formal specification, an implementation of the system
Checking software correctness by using, either formal methods, or any other

technique, requires the presence of a specification. A specification is, in a broad
sense, a description of what the system does and therefore, serves as the frame of
reference for all the techniques devoted to try to ensure software correctness. In
general, a specification needs to be as precise and unambiguous as possible, but
this is especially important when dealing with formal methods. Normally, this is

8. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
9. http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733

10. http://www.cmmiinstitute.com
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achieved by using a specification formalism featuring a well-defined syntax and
precise semantics. In these cases, it is typical to speak of formal specifications.

Finding the right formalism to fit the specification needs is not an easy task.
Actually, there is no shortage of formalisms available, although some of them might
be more adequate than others, depending on the perspective followed to build the
specification. For example, formalisms like Abstract State Machines (ASM) [16],
the B language [17], the Z notation [18], or even automatas [19, 20] seem to be a
good choice to describe the system as a set of states with system operations being
expressed as transitions from one state to another. Alternatively, logic programming
languages, such as Prolog [21], functional languages based on λ-calculus [22], such
as Haskell [23], or rewriting systems [24], might be adequate to build a specification
focusing on the manipulated data, how they evolve, or the way in which they are
related.

Once the specification has been built, the next logical step is to prove properties
about it. Reasoning about the specification can be done manually, or with the help of
computer-based tools. In this last case, the election of the tools to be used will also
depend on the formalism employed to build the specification. For example, in the
case the specification represents the system as a set of states, model checking [25]
could be the right technique to use. On the other hand, if an algebraic formalism is
employed, and depending on its expressiveness, using tools like SMT solvers [26,
27] or interactive theorem provers [28, 29] could be more adequate.

After proving that a specification features the desired properties, it is the time
of trying to obtain a matching implementation. As in the previous steps, there are
different alternatives that may be followed. In some cases, the specification is a
program that can be executed directly. This is the case of specifications expressed,
for example, with logic-based languages like Prolog or functional languages like
Haskell, that offer scope for both specification and implementation in the same
language. If the specification is not executable, then the implementation must be
derived from the specification, which, in its turn, implies the verification of the
derivation mechanism employed. These approaches are commonly referred to as
“correct-by-construction” software development.

Finally, it is worth mentioning that formal methods can be applied in varying
degrees, and not necessarily over all the components of the system under analy-
sis. Normally, the level of formalization applied is influenced by factors like the
nature of the system or budgetary issues, since the cost of full verification may be
prohibitive. Some authors [30] advocate for a light utilization of formal methods
in order to facilitate their adoption by the industry. This is known as “lightweight
formal methods”.
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2.3 Software Validation

Verification techniques are not the only ones available when it comes to preserve
software reliability. There is another important group of techniques that fall under
the umbrella of what is called “software validation”.

There are multiple definitions of what “software validation” means. For ex-
ample, the following definition can be found in the IEEE Standard Glossary of
Software Engineering:

“Validation is the process of evaluating software during or at the end of the

software development process to ensure compliance with software

requirements” [13].

As it was the case for software verification, Barry W. Boehm also came up with
a definition for “software validation” that has become very popular over time:

“Am I building the right product?” [14].

Software validation therefore, like software verification, also makes reference
to certain procedures and techniques aimed at trying to identify and solve software
problems. When compared to software verification, software validation can be re-
garded as a “cheaper” way of establishing a certain degree of confidence over the
correctness of a piece of software, and therefore it is especially useful in those sce-
narios where software verification techniques cannot be applied, or the cost of their
application is too high. Software validation is typically conducted by means of
testing techniques, which will be the focus of the next subsection.

2.3.1 Software Testing

Software testing, also known as program testing, can be viewed as the destruc-
tive process of trying to find the errors (whose presence is assumed) in a program
or piece of software, of course, with the intent of establishing some degree of con-
fidence that the program does what it is expected to do [31]. Considering testing
a destructive activity has to do with the fact that its goal is not to prove software
correctness, but uncover the presence of errors. As Dijkstra stated in [32], testing
can be used to show the presence of bugs, but never to show their absence. There
are a plethora of testing techniques that can be used at different stages during the
software life cycle, but they all can be classified into two big groups:

– Static analysis techniques.
– Dynamic analysis techniques.
Static analysis techniques [33], that some authors also called “verification test-

ing” [34], are those techniques devoted to the examination of the program code
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with the intent of reasoning about the behavior that the software is going to exhibit
at runtime. This can be complemented with the examination of other documents,
such as design models or requirements documents, if necessary. The main charac-
teristic of this type of activities is that they are conducted manually and therefore,
do not require code execution to uncover errors. Some techniques that fall into this
category are code inspections or walkthroughs [31].

Dynamic analysis techniques [33], on the other hand, do require software execu-
tion to expose the presence of bugs. This typically implies following a methodology
that can be summarized in the following three points, which are repeated a certain
number of times, until a specific stopping condition is met.

– Determine the adequate input data to test the program with.
– Run the program with the input data obtained from the first stage.
– Analyze the outputs yielded by the program with the intent of uncover errors.

The information needed to conduct these three steps is typically bundled into an
item called “test case”. This information includes, at least, the input data values the
program is going to be run with; any other execution condition required by the test
case, like for example a specific hardware configuration or a certain database state;
and the expected outputs to be produced during the program execution. In relation
to this last point, the expected outputs are paramount, since without them, it is
impossible to determine whether the execution of the test case uncovered any errors.
In testing terminology, it is usual to use the word “oracle” [35] to make reference to
that program, process or body of data that specifies the expected outcome for a set
of test cases as applied to a tested object. An oracle can be as simple as a manual
inspection or as complex as a separate piece of software.

It is generally accepted that the more test cases are created and the more time
is spent running the software, the higher is the probability of finding errors and
therefore ending up with a more reliable software. However, since the number of
test cases that can be created to test a piece of software is potentially infinite, it is
necessary to establish some strategy to carry out testing in an effective way.

Two of the most prevalent strategies are black-box testing and white-box test-
ing. The main difference between the two is the kind of information considered to
generate test cases, the rest of the testing process being essentially the same.

When following a black-box approach, the tester does not consider any infor-
mation related to the internal structure of the system under test. She “knows” what
it does, but not how it does it. It is a black-box, hence its name. Because of this, the
creation of test cases by means of black-box approaches is usually based on infor-
mation gathered from the software specification, requirements documents or some
domain knowledge the tester might have. In light of this, black-box approaches are
quite adequate to uncover errors related to software requirements or the software
specification.
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White-box approaches, on the other hand, focus on the internal structure of the
software to be tested, and therefore, the presence of the source code is required.
When the tester applies a white-box strategy, the test case generation process is
driven by information such as the presence of branches or loops in the software
code, or more generally, the control flows and data flows that can be inferred from
the analysis of that code. All this makes white-box approaches especially suitable
for the discovery of logic errors.

In spite of the variations among the different strategies available, it is generally
accepted that generating test cases through a combination of distinct testing strate-
gies, maximizes the probability of uncovering errors and therefore, the success of
the testing experience.

It is also important to mention that testing techniques can be applied in varying
degrees and at different stages during the software life cycle. In this regard, it is
typical to talk about four different “levels of testing” [36], namely unit testing, inte-
gration testing, system testing, and acceptance testing. Unit testing makes reference
to the evaluation of system components in an isolated manner to detect functional
or structural defects. Integration testing focuses on the evaluation of the interac-
tion among different parts of the system, so the focus usually spreads over several
components somehow related to each other. System testing checks the system as a
whole, not only to determine the presence of defects, but also to evaluate quality as-
pects like performance, usability, security or the documentation, among others. The
last testing level, acceptance testing has to do with ensuring that the system satisfies
the initial requirements. and therefore meets the needs of its end users. It is impor-
tant to remark that these “levels of testing”, although popular, are not the only types
of testing available. Actually, they do not even cover all the stages that typically
occur during the software life cycle. For example, another type of testing known as
regression testing, may be especially useful during the software maintenance stage.

Finally, it is worth noting that there is not a preferred or standard way to integrate
testing techniques within the rest of activities that take place during the software
development life cycle. However, a popular software development paradigm like
Test Driven Development (TDD) [37] may facilitate this.

2.4 Constraint Programming

Constraint programming, as stated in [38], is the study of computational systems
based on constraints. The idea behind constraint programming is to solve problems
by stating requirements (constraints) about the problem area, and then finding a
solution satisfying all these constraints. As described in [39], in its most basic
form, constraint programing consists in finding a value for each one of a set of
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problem variables where constraints specify that some subsets of values cannot be
used together. The problems addressed by Constraint Programming are known as
Constraint Satisfaction Problems (CSP).

Informally speaking, a constraint can be viewed as a relation between variables
and the values they can take. The term “constraint” has been typically used by
physicists and mathematicians for a long time, but when it comes to computer sci-
ence, though, it was not until the early sixties that Ivan Edward Sutherland adopted
it for the first time, while working on the Sketchpad project 11, in the area of com-
puter graphics. In particular, he proposed the following definition, that can be found
in his PhD thesis:

A constraint is “a specific storage representation of a relationship between

variables which limits the freedom of the variables, i.e., reduces the number of

degrees of freedom of the system” [40]

After this pioneering work, the earliest ideas leading to the concept of constraint
programming came from the field of Artificial Intelligence (AI) in the sixties and
seventies. One of the major breakthroughs was the formalization of a CSP for the
first time, which was made by David L. Waltz [41]. Formally speaking, a CSP can
be represented as the tuple CSP = 〈V,D,C〉 where V denotes the set of variables,
D the set of domains, one for each variable, and C the set of constraints. It is
typical to describe the constraints in a CSP by means of a combination of arithmetic
expressions, mathematical comparison operators and logical operators.

A solution to a CSP is an assignment of values to the variables such that all
constraints are satisfied. As described in [42], there are different techniques that can
be used for solving a CSP, namely: domain specific methods, general methods or a
combination of both. The expression “domain specific methods” makes reference to
those implementations of special purpose algorithms, typically provided in the form
of libraries, like for example, algorithms for the resolution of systems of equations,
or linear programming algorithms. On the other hand, “general methods” has to
do with those techniques to reduce the search space where to look for a solution
(which are commonly referred to as constraint propagation techniques); and with
specific search methods, such as backtracking or branch and bound search. For
efficiency reasons, whenever possible, domain specific methods should prevail over
general methods. From an architectural standpoint, the tools used to solve CSPs
are typically developed as frameworks, with built-ins supporting different search
methods and constraint propagation techniques, accompanied by domain specific
methods in the form of libraries, often called constraint solvers.

When it comes to the actual resolution of CSPs, these tools attempt to assign
values to variables following a certain order. If the partial solution violates any con-

11. http://en.wikipedia.org/wiki/Sketchpad
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straint, then the last assignment is reconsidered by either trying a new value in the
domain, or backtracking to previous variables, if there are no more values available.
The utilization of constraint propagation techniques to identify unfeasible values in
the domain of unassigned variables, helps to speed up the process by pruning the
search tree. The process continues until a solution is found or all possible assign-
ments are considered. In this second case, the CSP is called unfeasible. What can
be followed from all this, is that in order to ensure termination, the domains of the
variables must be finite.

Finally, it is also important to mention, that in order to solve a CSP with computer-
based tools, the CSP must be expressed using some kind of notation. Popular alter-
natives here are the utilization of object-oriented/procedural languages or declara-
tive notations. In the first case, well known languages like C++, Java or .NET can
be used, as for example, it is the case with the IBM CPLEX CP Optimizer 12. In the
second case, the Constraint Logic Programming (CLP) paradigm proposed by Jaffar
and Lassez [43], which merges constraint solving and logic programming is espe-
cially popular. An example of a tool which allows representing and solving CSPs
using this paradigm is the ECLiPSe Constraint Programming System 13, which is at
the heart of some of the contributions presented in this thesis.

2.5 Summary

With this chapter finishes the introductory part of this thesis. The objectives
have been presented, and some basic terminology has been introduced. In the next
part, the focus will be on the first contributions of this doctorate, the ones devoted
to improving the landscape of static model verification tools.

12. http://www-01.ibm.com/software/commerce/optimization/cplex-cp-optimizer/
13. http://eclipseclp.org
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3
Landscape of Static Model
Verification Approaches

After introducing the basic terminology, in Part II the focus is on the discov-
ery of techniques to increase the efficiency of tools devoted to the verification of
static models. Static models are important because, as it was mentioned in previous
chapters, are possibly the models more commonly used when specifying a software
system [4]. A classical example of static model is the UML class diagram so, from
now on, it will be common to make reference to class diagrams constructs, such as
classes, associations or OCL constraints.

In this first chapter of Part II, the target is to depict what the current landscape
regarding static model verification is. We will start by stating some generalities
about the matter and after that, we will describe what are, as of this writing, the
existing approaches in the field. To finish the chapter, we will discuss certain aspects
that can be improved. How to address some of them will be the objective of the rest
of chapters in this part.

3.1 Generalities About Static Model Verification

Formal verification of static models makes reference to those approaches de-
voted to proving model correctness by means of the utilization of formal methods
and formal analysis techniques. However, and although some may find it surpris-
ing, there is no a universal definition of what “model correctness” means. On the
contrary, there are many ways a given model may be considered “correct”. Because
of this, it is typical to refer to model correctness as the ability of the model under
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analysis to satisfy one or more correctness properties. These properties state certain
characteristics the model must feature in order to be considered correct.

In general terms, it is possible to classify correctness properties into two big
groups: the group of properties about the instantiability of the model and the group
of properties about the relationship among constraints. Regarding the properties
that fall into the first group, the most important one is called “satisfiability”. A
model is consider “satisfiable” when it is possible to create instances out of it. As
we will see in the following section, some of the studies analyzed distinguish among
different “flavors” of satisfiability: for example, strong satisfiability means that the
legal model instance must include instances of all the classes and associations in the
model, and weak satisfiability, being less strict, does not enforce the instantiation
of all classes and associations. Another property belonging to this first group is
“liveliness of a class”, that is to check whether it is possible to create legal instances
of the model including at least one instance of a certain class. This property can be
regarded as a particular case of satisfiability. In general, satisfiability is of special
importance because the rest of correctness properties can be expressed in terms of
this property. When it comes to the second group of correctness properties, some
of the existing verification approaches are able to check the presence of redundant
constraints in the model, some others can check whether two given constraints in
the model contradict to each other, or even if some constraints are subsumed by
others.

When it comes to the way verification tools in this field work, the verification
process is not very different than the general approach described in Chapter 2. Ver-
ification of static models can be divided in two different stages. In the first one, the
formalization takes place, that is, the model along with the correctness properties to
be checked are somehow represented in the formalism of choice. With the formal
representation in place, the second stage takes over. It consists in reasoning over
that formalism, usually with the help of some specialized tool, to see whether the
correctness properties are satisfied or not.

The completeness and degree of automation of this reasoning process is strongly
dependent on the degree of support given to the OCL. This is because supporting
OCL in its full generality leads to undecidability issues, as stated in the work of
Berardi et al. [44]. In this scenario, verification approaches that are complete are
also user-interactive (i.e. they need help from the user to steer the verification pro-
cess). This can be problematic since it usually requires from users a non-negligible
expertise in the formalisms employed. Because of this, the majority of approaches
supporting OCL in its full generality are automatic and ensure termination, but this
is achieved at the expense of its completeness. This is done by following a bounded
verification approach, in which users typically have to configure beforehand certain
parameters to drive the reasoning process, but once it is launched, user intervention
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is not required. In particular, it is typical of these approaches to put in the users’
hands the responsibility of setting the search space boundaries where to look for a
solution of the problem. In this scenario, results are only conclusive if the model
is found to be correct. Nothing can be concluded otherwise. It might be that the
model is incorrect, or that it is correct, but the solution to the problem lies outside
the search space considered. On the other hand, approaches supporting only a sub-
set of OCL are automatic and complete since they are not affected by the undecid-
ability issues stated in [44]. Finally, and before presenting the existing verification
approaches it is worth mentioning that in the majority of cases when a model is
found to be correct, these tools yield a valid instance of that model as a proof of
correctness.

3.2 Static Model Verification Approaches

While trying to fulfill the objectives of this thesis, we came across to an im-
portant number of scientific papers that, one way or another can be directly related
to the formal verification of static models. Some of these works put the focus on
formalization aspects, some others on theoretical aspects regarding the reasoning
stage, and finally some others present verification tools. In all cases, these works
are part of coarse-grained studies where each paper contributes to a specific part of
the verification problem. In particular, we have identified up to 17 different studies
that are summarized in Table 3.1. In what follows, we present these studies and
their main characteristics. To facilitate their contextualization, we also add citations
to other relevant works, whenever necessary. In those studies complemented with
the presence of a verification tool, we expand the description to also provide a brief
description of the tool itself. Finally, Tables 3.2, 3.3 and 3.4 summarize our findings
to facilitate the reader the comparison of these studies attending multiple factors.

The first study (S1) comprises the works directly related to UMLtoCSP. UML-
toCSP, developed by Cabot et al. [45,46], is a Java tool for the formal verification of
UML/OCL models based on constraint programming. The tool works by translating
a class diagram, its OCL constraints and the desired verification properties into a
CSP. The data input interface is a bit limited. The class diagram must be expressed
in an XMI format created with ArgoUML 1, and the OCL constraints must be pro-
vided in a separate text file. In general, the GUI looks outdated. The CSP built
by the tool is expressed as a Constraint Logic Program (CLP), this is because, for
the resolution of the CSP, the tool relies on the ECLiPSe Constraint Programming
System 2, which requires CSPs to be expressed in this notation.

1. http://argouml.tigris.org/
2. http://eclipseclp.org
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Table 3.1: Summary of the 17 studies identified

Study Representative Name References
S1 UMLtoCSP [45–47]
S2 OCL2FOL [48]
S3 FiniteSat [49, 50]
S4 AuRUS [51–55]
S5 DL [44, 56–65]
S6 OCL-Lite [66, 67]
S7 OODB [68, 69]
S8 HOL-OCL [70–72]
S9 UML2Alloy [73, 74]
S10 USE [75–81]
S11 BV-BSAT [82, 83]
S12 PVS [84]
S13 KeY [85]
S14 Object-Z [86]
S15 UML-B [87]
S16 CDOCL-HOL [88]
S17 MathForm [89]

Table 3.2: Formalization techniques used in each study

Study Formalization Technique
S1 (UMLtoCSP) CSP
S2 (OCL2FOL) FOL
S3 (FiniteSat) System of Linear Inequalities
S4 (AuRUS) FOL
S5 (DL) Description Logics, CSP
S6 (OCL-Lite) Description Logics
S7 (OODB) TQL++

S8 (HOL-OCL) HOL
S9 (UML2Alloy) Relational Logic
S10 (USE) Relational Logic
S11 (BV-BSAT) Bit-vector Logic
S12 (PVS) HOL
S13 (KeY) Dynamic Logic
S14 (Object-Z) Object-Z
S15 (UML-B) B
S16 (CDOCL-HOL) HOL
S17 (MathForm) Mathematical Notation

Although UMLtoCSP was designed with the intent of supporting OCL con-
straints in its full generality, as of this writing, not all the OCL constructs are sup-
ported. Even though, the tool features some notable characteristics: user interven-
tion during the reasoning process is not required (i.e. it is automatic) and termi-
nation is ensured. This is possible because the tool follows a bounded verification
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approach, which also means that, as typical of these approaches, the verification
process is not complete. Regarding correctness properties, UMLtoCSP supports
the verification of strong satisfiability, weak satisfiability, liveliness of a class, lack
of constraints subsumption and lack of constraint redundancies. If the verification
process succeeds, the tool presents an image of a valid model instance as a proof.
To do this, it requires the presence of the graph visualization package Graphviz 3.

Unfortunately, the last version available (June 2009) presents several bugs and
64-bit platforms or modern operating systems like Windows 7 or Windows 8 are not
supported. Besides, it is not unlikely for the verification process to take quite some
time in many occasions. The source code is not available on the website.

UMLtoCSP was later on complemented with the work of Shaikh et al. [47]
consisting in the development of a slicing technique for UML/OCL class diagrams.
The presence of this technique turned UMLtoCSP into a more efficient tool when
verifying weak satisfiability or strong satisfiability.

The second study (S2) is about the work of Clavel et al. [48] on formalizing and
reasoning over OCL constraints. In this work, a mapping from a subset of OCL into
FOL is proposed with the intent of supporting verification using automated reason-
ing tools like Prover9 4, an automated theorem solver, and Yices 5, a SMT solver.
In particular, the authors propose reasoning on their own notion of (unbounded)
unsatisfiability of OCL constraints over a class diagram.

The third study (S3) collects the works of Azzam Maraee and Mira Balaban,
who developed a linear programming based method for reasoning about finite sat-
isfiability of UML class diagrams with constrained generalization sets [49]. In the
authors’ words, finite satisfiability is the problem of deciding whether a given class
has a finite, non-empty extension in some model. Their method builds on top of
the work of Lenzerini and Nobili [90], which is based on the transformation of the
cardinality constraints into a set of linear inequalities whose size is polynomial in
the size of the diagram. This way, the finite satisfiability problem is reduced to
the problem of finding a solution to a system of linear inequalities. The algorithm
proposed, called “FiniteSat”, was later on improved [50] to handle all the types
of constraints included in an enhanced version of the Description Logics to class
diagrams translation presented in [44].

The fourth study (S4) congregates the verification works based on the CQC
Method [91], a mechanism to perform query containment tests on deductive database
schemas, that has also been used to determine properties like satisfiability or predi-
cate liveliness over this type of schema. In this regard, Queralt et al. presented Au-
RUS [51], a tool for assessing the semantic quality of a conceptual schema consist-

3. http://www.graphviz.org/
4. http://www.cs.unm.edu/ mccune/mace4/
5. http://yices.csl.sri.com/
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ing in a UML class diagram complemented with OCL arbitrary constraints, which
extends SVTe [92], a relational database schema validation tool. Apart from the
satisfiability of the conceptual schema, AuRUS can verify liveliness of classes or
associations and redundancy of constraints, without requiring user intervention dur-
ing the reasoning process. The tool works [52] by first translating both, the class
diagram and the OCL constraints into a set of first-order formulas that represent the
structural schema, and then verifying, by using the CQC Method, whether the sup-
ported properties hold. In the case that the properties do not hold, the tool is able
to give the user a hint about the changes of the schema that are needed to fix the
problem identified [55]. AuRUS does not guarantee termination when dealing with
general OCL expressions, but it does so [53] when dealing with a specific subset of
constraints.

Finally, in [54] the authors presented several improvements, like an enhanced
version of the conceptual schema to logic translation, or refinements on the mecha-
nism presented in [53] which is used by AuRUS to determine whether the reasoning
process will terminate or not.

The fifth study (S5) compiles the work developed by Calvanese et al. on reason-
ing over entity-relationship models and UML class diagrams since the year 2002.
Related to this, Cadoli et al. [56–58] developed an approach to encode the problem
of finite model reasoning (i.e. checking whether a class is forced to have either
zero or infinitely many objects) in UML class diagrams as a CSP that is solved by
relying on the use of off-the-shelf tools for constraint modeling and programming.
These works exploit the encoding of class diagrams in terms of Description Logics
proposed by Berardi et al. [44, 63, 64] and Cali et al. [65], to take advantage of the
finite model reasoning techniques developed for Description Logics in [93], based
on reducing the problem of reasoning on a Description Logics knowledge base to
the problem of finding a solution for a set of linear inequalities.

Moreover, the work of Berardi et al. [44, 63] has also served as a basis for the
complexity analyses conducted by Artale et al. [59–62] which have established im-
portant results about the problem of verifying full satisfiability over different vari-
ants of UML class diagrams or entity-relationship models.

The sixth study (S6) contains the work related to OCL-Lite [66, 67], a frag-
ment of OCL that ensures termination and completeness when reasoning on UML
conceptual schemas enriched with arbitrary constraints within the bounds of this
fragment. Apart from the identification of such a fragment, the authors propose
an encoding of UML class diagrams enriched with constraints within its bounds in
Description Logics. In this regard, they take advantage of the works developed by
Calvanese et al. that have been described in [S5]. Finally, they show how it is pos-
sible to use existing reasoners to provide reasoning support to check properties like
schema satisfiability or constraint redundancy over these models.
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The seventh study (S7) refers to the work of Anna Formica on checking finite
satisfiability of database constraints. In particular, a decidable graph-theoretic ap-
proach to finite satisfiability checking is proposed in [68]. This approach, which
is limited to integrity constraints involving comparison operators, was later on ex-
panded in [69] to cover cardinality constraints among others. In both cases, the
database schemas are described using fragments of TQL++ [94], an object-oriented
data definition language aimed at modeling the structural aspects and integrity con-
straints of object-oriented database models [95].

The eighth study (S8) is about the formal proof environment HOL-OCL [70],
developed by Brucker and Wolff. HOL-OCL is an interactive proof environment
that can be used to analyze UML/OCL models created with ArgoUML. It has been
integrated into a framework supporting a formal model-driven engineering process,
which is described in [71]. HOL-OCL works by automatically encoding the class
diagram along with the OCL constraints in Higher-Order Logics (HOL). This en-
coding, which is described in detail in [72], can then be used to reason over the
model by means of the interactive theorem prover Isabelle [96]. A drawback of
HOL-OCL is that it is a tool extremely hard to use for the user not familiarized with
formal methods and Isabelle. Not even its installation is trivial, since it presents an
important number of prerequisites. Regarding the verification stage is, in general,
interactive, and requires building Isabelle theories as part of the process. Last ver-
sion is 0.9.0 (the year is not indicated) and the downloadable package includes the
source code.

The ninth study (S9) makes reference to the works about UML2Alloy [73, 74],
which is the name of a Java standalone application developed by Anastakasis et al.,
that can be used to check the satisfiability of a UML class diagram enriched or not
with OCL constraints. UML2Alloy, as it can be inferred from its name, works by
transforming the model to be verified into the relational logic of Alloy 6 [97], which
is then fed into the SAT solvers embedded within the Alloy Analyzer (bundled
with the tool). As UMLtoCSP, the GUI looks outdated. The different steps are
distributed in tabs. Once the model is loaded, it is necessary to set the boundaries of
the search space and determine how OCL statements will be transformed into Alloy.
Regarding the verification process in itself, UML2Alloy, as UMLtoCSP, follows a
bounded verification approach (i.e. it is not complete). If it succeeds, the tool
presents a valid model instance as a proof. This instance can then be exported as a
PNG image or a PDF document. a drawback of this tool is that it is a bit unintuitive,
forcing users to run actions like parsing XMI files or transform the input data to
Alloy, explicitly. Last version is 0.52 Beta, built on May 2009. The source code
was not available on the website.

The tenth study (S10) relates to the work of Gogolla et al. around the USE

6. http://alloy.mit.edu/alloy/
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tool [75, 76]. USE is a Java standalone tool that, although originally conceived
as a validation tool, has evolved significantly throughout the years and now, since
version 3.0.5, can be used to verify class diagrams enriched or not with OCL con-
straints. The tool has a long history behind, since version 0.1 was created in 1999
and, compared to the rest of tools analyzed, it is probably the most polished one.

In one of its initial versions [75], the tool worked by generating instances, or
fragments of instances of a given input model (these instances or fragments are
called snapshots in the USE terminology), to be checked, one by one, against a
series of OCL invariants. This version of the tool was able to support model ver-
ification to a certain extent, like for example, to check constraint independence as
shown in [77, 78]. However, since the original approach presented the problem
of the enumerative nature of the snapshot generator, it was improved later on by
Kuhlmann et al. [79–81] with the development of a mechanism to translate UML
and OCL concepts into relational logic, which uses the SAT-based constraint solver
KodKod [98] for the reasoning stage. This way, the original snapshot generator was
replaced by a more efficient SAT-based bounded search and generation of snapshots
fulfilling the user-specified constraints, thus expanding the capabilities of the tool
to perform model verification tasks.

Talking in more practical terms, USE verification capabilities are provided in
the form of a plug-in called “Model Validator” 7 that, once downloaded and un-
compressed, must be copied into the “lib/plugins” directory of the tool. USE reads
“USE specification files”, that is, text files with “.use” extension where the model
along with the OCL constraints are described using a particular syntax. USE only
verifies satisfiability. Launching the verification process from the GUI requires a
text file with information about the boundaries of the different elements in the spec-
ification, as well as which OCL constraints must be taken into account during the
process. This file is not required, though, if the process is launched from the USE
command-line interface. In this case, the tool will generate one with default val-
ues. One of the USE nicest features is that the “Model Validator” plug-in has been
designed to support a catalog of SAT solvers, not only KodKod. If the verifica-
tion process succeeds, the user must open an “Object diagram” window using the
GUI, to see the valid model instance provided as a proof. As typical of these tools,
USE does not integrate with modeling editing tools. Last version available is 3.0.6
and the downloadable package includes the source code. The source code for the
“Model Validator” plug-in is also available in the website.

The eleventh study (S11) compiles the work of Soeken et al. [82,83] on the ver-
ification of UML/OCL models. In their proposed approach a verification problem
is encoded into a bit-vector formulation and fed into a SMT/SAT solver for its veri-
fication. A verification problem is made up by three different elements: the system

7. http://sourceforge.net/projects/useocl/files/Plugins/ModelValidator/
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state, a series of OCL constraints, and the verification task. The system state is an
encoding of the attribute assignments in every object as well as of the links between
these objects, and the verification task is nothing but the encoding of the property
to be verified. Since general OCL constraints are supported, the method follows a
bounded verification approach to ensure termination, that is, limits in the number of
objects and associations as well as in the domains of the attributes are enforced.

The twelfth study (S12) is limited to the approach proposed by Lukman Ab.
Rahim [84] to transform UML class diagrams and OCL constraints into the specifi-
cation language of the PVS 8 (Prototype Verification System) theorem prover [99].
PVS is based on HOL and comes with a specification language that allows writing
theorems to prove a given specification. The approach focuses on describing how a
set of rules written using the Epsilon Transformation Language 9 [100] maps UML
class diagrams and OCL elements into a proposed PVS metamodel. The idea is to
serialize the model into a PVS specification to be fed into the PVS theorem prover
for its analysis. It is important to remark that although the mapping proposed does
not exclude in advance any type of OCL expression, certain operations in the OCL
standard library cannot be mapped due to PVS limitations.

The thirteenth study (S13) refers to the work of Beckert et al. [85] on the for-
malization of UML class diagrams with OCL constraints into dynamic logic, which
is a multi-modal extension of first-order logic (FOL). The approach, that has been
implemented in Java and focuses only on the formalization stage, is part of the KeY
system [101], a software development tool 10 that seeks the integration of design,
implementation, formal specification and formal verification of object-oriented soft-
ware.

The fourteenth study (S14) relates to the work of Roe et al. [86] on the map-
ping of UML class diagrams and OCL constraints into a formal specification de-
scribed with Object-Z [102, 103]. Object-Z is an extension of the Z specification
language [104] to facilitate the construction of specifications in an object-oriented
style. The mapping, which is described informally, is based on the work of Kim et
al. [105], where a formal semantic mapping between the two languages is provided.

The fifteenth study (S15) is about the work of Marcano and Levy [87] describ-
ing a systematic translation of UML class diagrams and OCL constraints into a B
formal specification. The B specification language [17] provides a means for de-
veloping mathematically proven software and systems, through the use of rigorous
mathematical reasoning. The approach works by first deducing a B abstract specifi-
cation from the UML class diagrams, which is then complemented with the addition
of a number of B formal expressions generated out of the OCL constraints. The ap-

8. http://pvs.csl.sri.com/
9. http://www.eclipse.org/epsilon/

10. http://www.key-project.org/
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proach is supported by the implementation of a prototype tool where the analysis
of the generated B specification relies on the utilization of the Atelier-B 11 tool. Al-
though this approach is primarily intended for consistency checking purposes, it can
also be used to check verification properties like the presence of contradictions in
constraints (incoherent constraints).

The sixteenth study (S16) covers the work of Ali et al. [88] on the formalization
of UML class diagrams and OCL constraints into HOL. The work shares some sim-
ilarities with that of Brucker and Wolff described in [S8], as the intent of reasoning
over the resulting encoding using the theorem prover Isabelle [96]. The main dif-
ference, though, is the utilization of simpler techniques to build the formalization,
so that it can be more accessible to practitioners of the software industry.

The seventeenth study (S17) comprises the work of Marcin Szlenk [89] on the
formalization of UML class diagrams into a mathematical notation based mainly
on the utilization of sets and partial functions. The formalization is used to outline
the subject of reasoning about a class diagram, introducing the formal definition of
consistency of a classifier, which is similar in concept to the verification property
“liveliness of a class” mentioned in [S1].

11. http://www.atelierb.eu/en/
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3.3 Challenges And Areas of Improvement

After having finished the description of the 17 studies, in this section the focus
is on discussing a number of findings that, in our opinion, are worth noting.

The first important issue detected is the absence of a precise and rigorous termi-
nology, shared among all the verification approaches analyzed. One implication of
this is the difficulty for contextualizing the works in this field, especially when com-
pared with works from other fields. In particular, the main challenge is regarding
the works defining themselves as works addressing “model consistency checking”.
In fact, the analysis presented in this chapter has reinforced our initial impression of
the existence of a gray zone when trying to determine what the exact boundaries are
between model verification and model consistency checking. Some works use the
term consistency checking to refer to inter-model relationships that must hold (e.g.
a call to a method of a class in a UML sequence diagram should require that the
same class in the UML class diagram includes the corresponding method defined).
These works addressing behavioral aspects or inter-model relationships, clearly fall
outside of the scope covered here. Nevertheless, other works use the term con-
sistency checking in a broader sense overlapping with what has been defined here
as satisfiability, see for instance the different notions of consistency introduced by
Wahler et al. [106]. From that point of view, all the works covered here could also
be regarded as consistency checking approaches.

Clearly, an unambiguous definition of all the words around the concept of model
verification (including verification itself, validation, consistency, well-formedness
and so forth) is needed.

The lack of a precise and rigorous terminology affects also the way correctness
properties are named and defined. One example of this is the correctness property
commonly referred to as “satisfiability”, the most popular one among static model
verification approaches. After having read the papers collected for this analysis, we
realized that there were at least 6 different ways of referencing satisfiability. In some
cases, this lack of homogeneity might be understandable. After all, “satisfiability”
is a term widely used so it should be normal that different papers used different
notions of the word (e.g. in some satisfiability may be what others call strong satis-
fiability while others may use the notion of weak satisfiability; with both concepts in
its turn lacking also a precise and unambiguous definition). Unfortunately, the dif-
ferences in meaning were not always so slightly different and sometimes different
flavors of satisfiability coexisted even in the same approach. All these situations are
problematic since, when the reader has a preconceived definition for the property in
mind, and this is not the same as the one used in the paper, this will likely induce to
errors in the interpretation of the text. Furthermore, and to make matters worse, cer-
tain correctness properties could be expressed in terms of others more “core” ones
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(e.g. constraint redundancy can be expressed in terms of constraint subsumption
which in turn can be expressed in terms of a satisfiability relationship).

In our opinion, this lack of homogeneity when precisely naming and defining
correctness properties could be clearly improved with the creation of a catalog of
correctness properties, where to find the list of correctness properties that can be
checked when addressing formal verification of static models. In this catalog, pre-
cise and unambiguous names and meanings should be given to the different correct-
ness properties, as well as a clear description of how they are related to each other.
As far as we know, no efforts have been made so far in this direction.

Another finding is the difficulty to evaluate and compare the coverage and per-
formance of existing verification tools. The majority of tools analyzed tend to be
accompanied by a set of samples (a small number of input models where to check
the correctness properties covered by the tool), that are usually simplistic and not
representative of real scenarios. Although the existence of sample input models
is always welcome, and their simplicity can be linked to the space limitations in
research papers, this limits the performance analysis of the tools. And since the
samples obviously vary from one tool to another, running comparisons between
different verification tools is considerably more complex. Interoperability prob-
lems between modeling tools and differences on the modeling constructs each tool
supports (and the terminology they use as discussed before) complicate even more
the situation.

We think a possible way to improve the current situation would be the creation
of a standard set of benchmarks as typically done in other communities (e.g. see
the TPC transaction processing database benchmarks 12). These benchmarks, which
must be based on the catalog of correctness properties proposed before, should be
composed of multiple sets of models of varying sizes and complexity, accompanied
by the list of correctness properties that could be checked on them, as well as the
expected results. The existence of these benchmarks could not only facilitate run-
ning performance analysis among different verification tools, but also enhance their
development, since they could also be used to test the tools. As of now, we are not
aware of the existence of initiatives regarding the creation of benchmarks for model
verification tools.

Finally, the last and most important finding is about the adequacy of existing ver-
ification tools. Although at first sight, by looking at Table 3.4 the situation may not
look so bad, the reality is that the number of verification tools available is certainly
limited. If we consider that some tools were created with the intent of addressing
validation issues, like USE [S10] or UML2Alloy [S9], and that tools like HOL-
OCL [S8] require from the user a non-negligible expertise on formal aspects, we
may conclude that the existing offer of verification tools, apart from being certainly

12. http://www.tpc.org/
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limited in size, is in some cases targeted at a very limited audience.

In our opinion, a verification tool, in order to be effective and widely adopted,
has to present, at least, four important characteristics: first, it should hide all the
complexities derived from the utilization of formal methods, up to the point of mak-
ing their presence transparent to the end user. Second, it should integrate seamlessly
into the model designer tool chain. Third, it should provide a meaningful feedback.
And, more importantly, four, it should be reasonably efficient, not making users to
wait for ages when verifying large, real-world models. We believe these aspects are,
from an end-user point of view, more important than other more formal aspects, like
the completeness of the results.

Unfortunately, none of the verification tools analyzed in this study does a good
job at fulfilling all these requirements. In general, these tools do not integrate well,
and have been designed to conduct the verification separately from the rest of tasks
that characterize the work of a model designer. When it comes to hiding the un-
derlying formal methods employed, the situation is better, especially in the case of
bounded verification approaches, although having to manually set the boundaries
of the search space (as it is the case, for example, in [S1] and [S9]) can be an issue
when verifying large models. The feedback can be considered acceptable when the
model under analysis is found to be correct, but is clearly insufficient in the other
case, with the majority of tools yielding no feedback on where to apply fixes if the
model is found to be not valid (to the best of our knowledge, only [S4] provides
some hints to help users on this). Finally, efficiency is a major issue. In general
these tools behave well when dealing with toy examples or models of reduced size,
but the performance drops dramatically when they are used to verify large models
or real-world examples.

All in all, it comes as no surprise that none of these tools seem to have a strong
user base. At this moment, model verification can be regarded as an unpleasant
experience, that forces users to switch back and forth between model editors and
verification tools to check for errors every time models are refined, usually with
little or no clue on where to apply fixes if the verification fails.

We would not like to finish this section, though, without contributing some
ideas on how these deficiencies could be addressed. Regarding integration with
other tools and hiding complexity, a major effort on development tasks is clearly
needed. Improving efficiency and feedback is clearly related to the underlying
solvers employed during the verification process. These tools have experienced
a dramatic improvement in the last few years, but still, even more improvements
are needed. Meanwhile, doing research on techniques to cleverly define the search
space boundaries of bounded verification approaches, and on incremental verifica-
tion techniques, could alleviate this.
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3.4 Conclusions

In this chapter the current state of the art of static model verification tools has
been presented. The different approaches have been described, some areas of im-
provement have been identified, and some enhancement proposals have been made.
In the rest of chapters of Part II we will delve more into some of these propos-
als. The first one, presented in the following chapter, is a static model verification
tool for class diagrams and Domain Specific Modeling Languages (DSMLs) called
EMFtoCSP.



4
EMFtoCSP: Static Model
Verification in Eclipse

4.1 Motivation

After the analysis of the state of the art on static model verification techniques, it
is clear that, unfortunately, the number of existing verification approaches is rather
small, and some of them are not even supported by the presence of a tool. As an
example of this, not even the Eclipse platform 1, which is perhaps the most popular
software development platform at the time of promoting the utilization of model-
based technologies, features a strong support for model verification activities.

Based on the Eclipse Modeling Framework (EMF) 2, which is probably de facto
standard modeling framework in the industry, Eclipse offers a variety of tools and
standards implementations. Some examples of this are: graphical model editors
like Papyrus 3; model transformation engines such as ATL 4; frameworks for the
development of textual DSLs, such as Xtext 5; integrated support for UML2 and
OCL 6; frameworks for software modernization, such as Modisco 7; tools for facil-
itating model weaving activities, such as the Atlas Model Weaver (AMW) 8; and
many others.

1. http://eclipse.org
2. http://projects.eclipse.org/projects/modeling.emf.emf
3. http://www.eclipse.org/papyrus/
4. http://www.eclipse.org/atl/
5. http://www.eclipse.org/modeling/tmf/?project=xtext
6. http://www.eclipse.org/modeling/mdt/?project=uml2
7. http://www.eclipse.org/MoDisco/
8. http://projects.eclipse.org/projects/modeling.gmt.amw
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Unfortunately, and in spite of the amount of Eclipse projects devoted to model-
ing activities, there is no official Eclipse project devoted to the verification of EMF
models. To the best of our knowledge, only the EMF includes some facilities to
check whether the instances of a given model satisfies the OCL constraints defined
at the model level. In general, this is far from enough when trying to ensure model
correctness.

In order to alleviate this, in this chapter we present EMFtoCSP 9, an Eclipse
integrated tool for the verification of static models.

4.2 EMFtoCSP in a Nutshell

EMFtoCSP is a tool devoted to the verification of EMF models enriched or not
with general OCL constraints. The tool is an evolution of the tool UMLtoCSP [45]
mentioned in Chapter 3. In EMFtoCSP, the initial model along with its constraints
and the correctness properties to be checked, are translated into a CSP. Then, a
constraint solver is used to determine whether a solution for the CSP exists or not.
The CSP is build such that the CSP has a solution if and only if the model plus
the constraints satisfy the correctness property. If a solution is found, EMFtoCSP
provides a valid instance of the input model to certify it.

As of now, EMFtoCSP supports the verification of the following correctness
properties: strong satisfiability, weak satisfiability, lack of constraint subsumptions
and lack of constraint redundancies. It is important to notice that there is a rela-
tionship between some of these properties, for example, strong satisfiability implies
weak satisfiability and the lack of constraint subsumption between two constraints
implies that none of them are redundant.

Compared to UMLtoCSP, EMFtoCSP includes, among other improvements, a
more general scope that can be used to verify a larger variety of models, and a re-
visited version of the CSP generation mechanism. In particular, the tool can also be
used to analyze the quality of Domain Specific Modeling Languages (DSMLs) by
evaluating the correctness of their abstract syntax (e.g. by checking if it is possible
to create models conforming to that metamodel). When it comes to the generation
mechanism, thanks to the work of Büttner et al. [107], EMFtoCSP supports the
analysis of OCL expressions including operation on Strings in general terms.

4.3 CSP Generation

As mentioned before, the CSP generation process is essentially the same em-
ployed in UMLtoCSP [45], mostly because both tools rely on the same CSP solver,

9. http://code.google.com/a/eclipselabs.org/p/emftocsp/
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the ECLiPSe Constraint Programming System 10. In any case, in this section, this
generation process is briefly described. A more comprehensive description can be
found in the work of Cabot et al. [108].

For the sake of efficiency, the verification problem can be split into two different
subproblems:

– Subproblem 1: choose a valid population size for the model, i.e. decide the
number of instances of each class (objects) and association (links) that may

provide a valid solution.
– Subproblem 2: given a specific population size, assign legal values to all

attributes of objects and association ends of links and check if the assignment
constitutes indeed a valid solution.

Both subproblems can be defined as CSPs and solved sequentially, using solu-
tions to subproblem 1 as an input to subproblem 2. In the following, we characterize
the contribution of each EMFtoCSP input element (models, constraints and prop-
erties) to each subproblem. Our running example will be the EMF model in Fig.
4.1 [109], which describes a simple metamodel for Entity-Relationship diagrams
annotated with several OCL invariants.

4.3.1 Model Translation

The model is the core of the CSPs for both subproblems, as it defines the relevant
variables and domains:

– In subproblem 1, there is one integer variable for each class (e.g. “SizeSchema”,
“SizeRelship”) and another for each association (e.g. “SizeAttributeEntity”.
The domain of these variables goes from 0 to the maximum number of ob-
jects/links to be considered in the (bounded) search, a value which can be
configured by the user of EMFtoCSP, beforehand.

– In subproblem 2, the number of objects and links is fixed by the previous
subproblem. For each object, there is one integer variable (“oid”) and one
variable per attribute (e.g. “name” and “isKey”). For each link, there is one
variable per association end (e.g. “schema”, “entities”, . . . ). The domain of
attributes is user supplied in the configuration of EMFtoCSP, while the do-
main of “oid” is set by the tool and directly related to the number of instances
of each class. Finally, the domain of association ends is precisely the domain
for “oid” in the class adjacent to the association end.

However, this is not enough, the graphical constraints in the model must be also
captured in the CSPs:

– In subproblem 1, the multiplicity of association ends defines constraints over
the population of the classes participating in the association. Also, inheri-

10. http://eclipseclp.org
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(a)

context Schema inv ERN:
entities−>forAll(e: Entity | relships−>forAll(r: Relship | e.name <> r.name))

context Schema inv RN:
relships−>forAll(r1, r2: Relship | r1.name = r2.name implies r1 = r2)

context Schema inv EN:
entities−>forAll(e1, e2: Entity | e1.name = e2.name implies e1 = e2)

context Entity inv EAN:
attrs−>forAll(a1, a2: Attribute | a1.name = a2.name implies a1 = a2)

context Entity inv KEY:
attrs−>exists(a: Attribute | a.isKey = true)

context Relship inv REN:
ends−>forAll(e1, e2: RelshipEnd | e1.name = e2.name implies e1 = e2)

(b)

Figure 4.1: Running example: (a) Metamodel for ER diagrams, (b) OCL invariants
constraining the choice of identifier names.
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tance hierarchies define constraints over the population of subclasses and su-
perclasses, e.g. each instance of a class is also an instance of its superclasses.

– In subproblem 2, the multiplicity of association ends constrains the choice
of values for the association end variables: there is a lower and upper bound
to the number of times that an object may participate in an association. In-
heritance hierarchies constrain the assignment of “oids”: an object should be
given the same “oid” in a subclass as in the superclass, taking into account
restrictions such as disjointness or completeness of the inheritance relation-
ship. Finally, there are some additional well-formedness constraints that must
be captured in the CSP, such as the uniqueness of “oids” within a class or the
uniqueness of links in an association.

4.3.2 Constraints Translation

OCL invariants establish properties that must be satisfied by all objects of the
context class. These properties are translated into constraints of subproblem 2 that
refer to the variables of the CSP.

First, the OCL invariant is parsed as an Abstract Syntax Tree (AST) where each
node represents an expression: intermediate nodes are the operators and method
calls and leaves are constants, attribute names, . . . Each expression is translated into
an ECLiPSe predicate “eval(Instances, Result)” that receives all variables of the CSP
as a parameter and characterizes its result:

– Leaf nodes either set a constant value for the result or relate it to the value of
a variable of the CSP. For example, the boolean constant false is translated
into the predicate:

evalConstantFalse( _, Result ) :- Result = 0.

where “_” states that the result of this predicate does not depend on the rest
of the variables of the CSP.

– Intermediate nodes describe the result as a combination of the result of its
subexpressions. For instance, a node with a boolean implication operator
would be translated into the following predicate:

evalImplies( Instances, Result ) :-

eval1stChild( Instances, Result1 ),

eval2ndChild( Instances, Result2 ),

=>(Result1, Result2, Result).

This predicate does not compute the implication, as the variables of the CSP
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(“Instances”) do not have a value until a solution to the CSP is found. In-
stead, it states the relationship between the result of the implication and its
subexpressions. This relationship will be used to guide the search process for
a feasible solution, e.g. if “Result1” is false, then we know that “Result” is
true without having to evaluate “Result2”.

Finally, the ECLiPSe predicate for the root node of the AST is evaluated on all
objects of the context class, forcing its result to be true, that is:

evalRoot(Instances, 1).

4.3.3 Properties Translation

As mentioned in the previous chapter, correctness properties state desirable con-
ditions about models in order to be considered correct. Given a model M and a
correctness property P , the goal is to compute a legal instantiation of M (one that
satisfies all graphical and textual constraints of M ) that is a “witness” of P , i.e. it
proves that M satisfies P .

It was also mentioned before that these properties could be classified in two dif-
ferent families: conditions about the “population” of the model, e.g. that it is not
empty, or about the “relationship among constraints”, e.g. that no pair of invariants
is equivalent. These conditions are encoded in the CSP as additional constraints in
subproblem 1 (for conditions on the population size) or subproblem 2 (for condi-
tions about the relationship among invariants).

As of now, EMFtoCSP is capable of verifying the following correctness proper-
ties:

– Strong Satisfiability: It is possible to find a legal instance of the model with
a non-empty population for all classes and associations.

– Weak Satisfiability: It is possible to find a legal instance of the model with a
non-empty population for some class.

– Lack of Constraint Subsumptions: Given a model with two OCL con-
straints C1 and C2, it is possible to find a finite instantiation where C1 is
satisfied and C2 is not.

– Lack of Constraint Redundancies: Given a model with two OCL con-
straints C1 and C2, it is possible to find a finite instantiation where only one
constraint is satisfied. Constraints C1 and C2 are called redundant otherwise
(both have always the same truth value).

The translation of these properties into ECLiPSe constraints is straightforward.
For example, weak satisfiability requires that the sum of all size variables in sub-
problem 1 is greater than zero:

weakSatisfiability( SizeVars ) :- sum(SizeVars) #> 0.
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Figure 4.2: EMFtoCSP architecture

As another example, to check if constraints RN and EN from Fig. 4.1(b) are
non-redundant, a constraint is added to subproblem 2 stating that the root predicates
of RN and EN evaluate to a different result:

nonRedundant_RN_EN( Instances ) :-

evalRootRN( Instances, Result1 ),

evalRootEN( Instances, Result2 ),

Result1 #\= Result2.

4.4 The Tool

Once the generation of the CSP has been introduced, we now describe the
EMFtoCSP tool itself.

4.4.1 Architecture

The tool architecture can be seen in Fig. 4.2. User inputs are managed by
the subsystem called “ECL Generator”, which is in charge of generating the code
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to feed the CSP solver with. In this subsystem, three different components are
clearly distinguished each one coping with the different input elements that need
to be translated, namely, the model, the set of constraints over the model and the
properties to be checked. The EMF and Eclipse OCL 11 parsers are used in the
process.

Once the translation process has been performed, the generated CSP (depicted
as “ECL code” in the figure) is sent to ECLiPSe to check whether the input model
holds the properties selected. Once ECLiPSe finishes the search of a solution for the
CSP, its feedback is interpreted and a message informing whether the input model
holds the selected properties or not is displayed to the user. If the result is positive,
the tool GraphViz is used to graphically display the valid instance of the model
identified as a solution by the solver.

It is worth noting that EMFtoCSP has been designed keeping in mind several
possible extensions in the future. For instance, it is possible to plug modules trans-
lating models into other formalisms than the one used by ECLiPSe, as well as other
solvers, provided that these modules respect the defined interfaces.

4.4.2 Usage

EMFtoCSP is, in essence, a collection of Eclipse plug-ins, so, in order to use
the tool, these plug-ins must be loaded into the Eclipse platform. After doing
this, and having the Eclipse platform up and running, the tool can be launched by
right-clicking on a model on the “Package Explorer” view and choosing “Validate
model...” from the context menu 12. This will display the EMFtoCSP GUI.

As can be seen in Fig. 4.3, EMFtoCSP provides a GUI in the form of an easy-
to-use wizard that guides the user through a sequence of predefined steps to collect
the user input for the verification process. The first step, shown in Fig. 4.3(a) is op-
tional and consists in selecting the file with the OCL constraints of the model. This
step is optional because of two reasons: first, not every model has to be enriched
with OCL constraints, and second, EMFtoCSP also supports EMF models with em-
bedded OCL constraints. In this last case, a separate text file with OCL constraints
is not usually needed.

The second step is setting the search space boundaries. These boundaries, as
it can be seen in Fig. 4.3(b), have to do with the specification of maximum and
minimum limits for the number of class and association instances that valid model
instances can have, and with setting the domain values for the different class at-
tributes in the model.

11. http://www.eclipse.org/modeling/mdt/?project=ocl
12. The launcher of EMFtoCSP can only be accessed from the “Package Explorer” view, so it is

important to choose a perspective in which this view remains visible
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(a) (b)

(c) (d)

Figure 4.3: EMFtoCSP Graphical User Interface.

In the third step, the election of the correctness properties to be checked is made.
Fig. 4.3(c) shows the list of correctness properties available. Check boxes are used
to adjust the selection.

Finally, the last step (Fig. 4.3(d)) implies establishing a location where to store
the outputs of the verification process. This is important because, no matter whether
the model is found to be correct or not, EMFtoCSP always provides the source code
of the CSP generated as input for the CSP solver.

Once EMFtoCSP has been configured, the verification process can be executed
by clicking “Finish” on the wizard. As a result, EMFtoCSP will display a message
informing the user whether the input model satisfies the selected properties or not.
If it does, EMFtoCSP will additionally output a valid instance of the input model
that proves the property. In order to do this, EMFtoCSP, as it was the case of
UMLtoCSP, requires the presence of the graph visualization package Graphviz 13.

13. http://www.graphviz.org/
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Figure 4.4: Valid instance of the running example model

An example of this can be seen in Fig. 4.4, where a valid instance of the metamodel
of Fig. 4.1 is displayed as a solution for the inputs provided in Figs. 4.3(a), 4.3(b)
and 4.3(c).

4.5 Performance

A tool like EMFtoCSP is only useful as long as it can scale when applied beyond
toy examples. Regarding this, we have performed some experiments that show the
applicability of the tool. The fact that the designer can decide herself the limits
of the search space also facilitates using the tool with large models, where she can
start by verifying the model using a small search space and expanding it later on if
necessary.

In general, the scalability of the tool depends on the constraints of the model
and the generated CSP. Two main factors are: (1) how much of the CSP can be
solved using constraint propagation (and therefore avoiding backtracking), and (2)
whether the CSP is non-trivially unsatisfiable (for the reason of symmetries).

This can be illustrated using the ER example from Fig. 4.1. Table 4.1 shows the
runtimes of EMFtoCSP for several satisfiable ranges. All tests were conducted on
a standard 2.2Ghz office laptop running Windows 7 and ECLiPSe 6.0 with default
settings. The ranges for “RelshipEnd”, the name attributes, and all link set sizes
were set to 0..1000. We can see the tool finds ER instances of up to several hundred
objects (in total) in reasonable time. For these cases, EMFtoCSP efficiently finds
a valid link set (using linear constraint propagation to determine a valid link set
size in the first step and using a global cardinality constraint as described in [110]
in the second step). For this link set, a valid assignment of all attributes is then
determined using linear constraint propagation, because at this time, the universal
quantifiers have been completely unrolled, leaving a purely linear problem. To
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Table 4.1: Runtimes for SAT cases of ER
Entities Relships Attributes Runtime

1 1 1 ≤ 0.1s
10 10 50 0.76s
10 20 50 1.45s
20 20 50 1.99s
50 10 50 2.13s
50 20 50 3.30s
20 20 100 5.52s
50 20 100 9.71s
20 50 100 17.89s
50 50 100 24.91s

make sure solutions found are non-trivial (e.g., all attributes connected to the first
entity), we verified that the resulting runtimes are similar when changing the upper
multiplicity bounds of the roles “entities”, “relships”, and “attributes” from “*” to
0..10.

Table 4.2 shows the runtimes for several “hard” unsatisfiable cases. In this set-
ting, we restricted the range of the name attributes (i.e., the number of different
names per type), so that there are not enough names to fulfill the corresponding
constraints of the model. The table shows that EMFtoCSP scales much worse for
these cases. The reason is that the (failing) attribute assignment is tried for all sym-
metrical link sets before reporting UNSAT. We hope to partly address this issue
using a symmetry breaking during search approach such as described in [111].

While the employed example is very small in terms of the number of classes, we
want to stress that our tool can also solve larger class diagrams, as the complexity
of the search problem is not directly related to the number of classes in the model.
On the contrary, given a number of objects (such as the 200 objects in the last
line in Table 4.1), the search space is typically even smaller when these objects are
distributed on more classes, because there are less possible combinations.

Table 4.2: Runtimes for UNSAT cases of ER
Entities Relships Attributes Names Runtime

2 2 2 1 ≤ 0.1s
3 3 3 2 ≤ 0.1s
4 4 4 3 ≤ 0.1s
5 5 5 4 ≤ 0.1s
6 6 6 5 0.43s
7 7 7 6 5.77s
8 8 8 7 93.08s
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4.6 Conclusions

In this chapter we have presented EMFtoCSP, a tool for the fully automatic, de-
cidable and expressive verification of EMF models extended with OCL constraints,
based on their translation into a CSP such that the CSP has a solution if and only if
the model satisfies the chosen correctness property.

EMFtoCSP, like its predecessor UMLtoCSP, follows a bounded verification
strategy that ensures termination by limiting the search space when looking for a
solution for the CSP. Limits are created by restricting the number of instances per
class and association and the domains of each attribute in the model. The trade-off
is that the verification process is not complete (i.e. the CSP may have a solution
beyond the considered search space).

EMFtoCSP is, to the best of our knowledge, the first tool for the verification of
static models in the Eclipse platform.



5
Improving Static Model Verification
Performance (I). Incremental
Verification of Models

5.1 Motivation

After having analyzed the current landscape of approaches devoted to the ver-
ification of static models, it is clear that, the most common way of addressing this
problem is by translating the model, along with the correctness properties to be
checked, into some kind of formalism, which is then exploited during the reason-
ing process, to determine whether the model satisfies the properties under scrutiny.
This reasoning process is conducted with the help of tools like SAT or CSP solvers,
specialized in reasoning over the chosen formalism. However, due to the nature of
the problem, these tools tend to experience performance issues that thwart their uti-
lization, specially when dealing with large, real-life models. If we add to this, that
models are not immutable (i.e. they are subjected to modifications to better reflect
the reality of the systems under analysis, thus making advisable to verify them over
and over again), it stands to reason the low rate of adoption of this kind of tools.

A necessary first step to increase the rate of adoption of these tools is therefore to
enhance the performance of the verification process itself. In this regard, a possible
alternative to achieve this could be conducting the verification in an incremental
fashion where every time the model is modified, only the relevant parts are verified
again. This way, the size of the model that really needs to be verified could be
reduced, which might help to improve the performance of the verification process.
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Figure 5.1: Traditional Verification vs Incremental Verification

In this chapter we present an incremental verification approach for checking cor-
rectness in UML/OCL class diagrams 1. This approach automatically calculates the
submodel that needs to be verified, every time the model is modified (a prerequisite
of our method is that it is assumed that the model was correct before modifica-
tions were made). This way, there is no need to verify the whole model every time.
Besides, the mechanism proposed here can be easily integrated with model edi-
tors, thus facilitating its utilization by model designers. Finally, and because of the
submodel calculation, this method provides a more meaningful feedback when the
model under analysis is found to be not correct.

5.2 The Method in a Nutshell

Fig. 5.1 illustrates the differences between traditional verification approaches
and our proposal for incremental verification. Traditional approaches verify the
whole model every time, regardless of the nature of the modifications performed.
The incremental approach also relies on the verification tools used by traditional
approaches, but instead of verifying the whole model, it analyzes the modifications
made on the model, discards those ones that have no impact on its correctness, and
uses the rest to calculate the part of the model that really needs to be verified again.

It is important to state though, that an incremental verification approach is highly-
dependent on the correctness property that is to be checked. Our approach focuses
on satisfiability; first, because it is the most fundamental correctness property to
date, and second, because other correctness properties can also be expressed in
terms of this fundamental property.

Once the approach has been outlined, the following sections enter into detail
on its different stages, namely, checking which modifications may impact model

1. due to the existing similarities between UML/OCL class diagrams and EMF models, this
approach can also be applied to the latter without loss of generality.
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correctness (thus requiring the model to be verified) and if so, what parts of the
model need to be rechecked.

5.3 Modifications That May Impact Model Correct-
ness

Given an UML/OCL class diagram, any modification over it can be analyzed
from the point of view of how it affects the constraints defined in the model (by
means of graphical elements or OCL constraints). If a certain modification clearly
weakens those constraints, or add new constraints that clearly do not contradict
any of the existing ones, then it can be assumed that there is no impact on model
correctness and therefore, the modified model does not have to be verified. If, on
the contrary, modifications on the model add new constraints that may contradict
any of the existing ones, or produce a completely different set of constraints that is
not clearly equivalent to the original one, then it is assumed that model satisfiability
might have been compromised and therefore, the modified model has to be verified.

Regarding this last case, it is important to follow a conservative approach. If
after one modification is made, it is complex or very time-consuming to determine
how restrictive the new set of constraints is compared to the old one, then it is
better to proceed with the verification. After all, existing verification tools rely on
tools like SAT or CSP solvers, that can handle these scenarios more efficiently, than
manually trying to find out how an intricate set of constraints relate to each other.

In the following subsections, we analyze which of the modifications most typ-
ically made over UML/OCL class diagrams may impact their satisfiability. In par-
ticular, the modifications analyzed are: adding or removing a class, modifying a
class (changes on the class name, list of attributes or list of operations), setting a
class as abstract or non-abstract, adding or removing a binary association, adding
or removing a generalization, and adding or removing an OCL invariant. We con-
sider the modification of binary associations, generalizations or OCL invariants as
a combination of the operations “remove” and “add” over these elements.

At this point is important to make two important remarks, though. The first one
is that some of these modifications when conducted in isolation can lead to consis-
tency issues (e.g. deleting a class which is constrained by an OCL invariant). In
some cases, modeling tools do a good job to avoid these inconsistencies (e.g. when
a class linked to another class by means of a binary association is removed, the
tool normally deletes the association too), but this is not always the case. For this
reason, our analysis was conducted regardless of what the behavior of a particular
modeling tool might be. An immediate consequence of this is that, as it was also
the case for traditional verification approaches, incremental verification approaches
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should be complemented by the presence of mechanisms to ensure model consis-
tency. The second remark is that modifications covered by our analysis are treated
as if they were atomic operations (again, without regard to what the behavior of
modeling tools might be). An example of this, is the addition of a binary associa-
tion; we assume that setting the cardinalities of the association ends is part of the
“add” operation, and not a separated one.

5.3.1 Modification Over Classes

We start our analysis by studying the modifications on classes. Regarding this,
adding classes to a model or deleting classes from a model does not impact its
satisfiability. Neither adding classes nor deleting them strengthens the original set of
constraints over the model. Regarding class modification, the same goes for changes
on the class name or on the list of attributes or methods. However, changes on the
“isAbstract” modifier may impact the satisfiability of the model, specially when the
class is part of associations or generalizations. In this last case, our method does
not calculate the submodel affected and the model in its entirety must be verified.

5.3.2 Modification Over Binary Associations

The second group of modifications studied are the ones that involve binary as-
sociations. In this analysis, binary associations are of special importance because
the cardinalities at their ends may restrict the population of the linked classes. Our
analysis focuses on creating and deleting associations, since modifying associations
can be seen as a combination of these two operations. Here, the easiest scenario is
deleting an association. This modification either weakens or does not affect the set
of constraints over the two linked classes, therefore it does not impact the satisfia-
bility of the model. Adding associations leads to more complex scenarios, although
it is possible to identify certain cases when this operation has no effect on the sat-
isfiability of the model. Fig. 5.2 shows an association with generic cardinalities M
and N, and below two specific examples of valid instances when cardinalities are
restricted to a certain group of values. The figure seeks to illustrate that instantiating
an association with cardinalities like the ones in the two examples does not impose
any stricter restriction on the minimum number of instances of the linked classes
that can be created. This is because the minimum cardinality for the classes in the
examples are 0 or 1, and instantiating at least one instance of every class in the
model is already enforced by checking strong satisfiability. Therefore, associations
with cardinalities that are combinations of the ones shown in the two examples does
not impact the satisfiability of the model. For the rest of scenarios related to the
creation of associations, we assume the opposite.
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Figure 5.2: Association Cardinalities and Strong Satisfiability

5.3.3 Modification Over Generalizations

The third group of modifications studied affect to generalizations. In this case,
two types of modifications are considered in our approach: creating and deleting
generalizations (modifying a generalization, as it was the case for associations, can
be seen as a combination of deletion and creation). Analyzing the restrictions de-
rived from these two operations can be tricky, because of the number of complex
scenarios that can appear depending on the degree of interconnections between the
classes affected by the generalization and the rest of elements of the model. For
this reason, we assume that creating and deleting generalizations may impact the
satisfiability of the model.

5.3.4 Modification Over OCL Constraints

Finally, the modifications that can alter the set of OCL invariants of the model.
The easiest scenario here is the deletion of OCL invariants. This modification weak-
ens the set of constraints over the model and therefore, does not impact its satisfia-
bility. However, when it comes to the addition of new invariants or the modification
of existing ones, the situation differs. Due to the flexibility of the OCL, these types
of modifications can lead to a plethora of complex scenarios, thus making hard and
time-consuming trying to determine in a systematic way in which cases the satisfia-
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bility of the model may be compromised. Because of this, we assume that creating
or modifying OCL invariants may impact the satisfiability of the model.

5.3.5 Ignoring Modifications Impacting Model Correctness

Once it has been analyzed how model modifications can impact model correct-
ness, it is necessary to consider that, in certain scenarios, not all of the modifications
impacting model satisfiability, need to be taken into account at the time of identify-
ing the part of the model that has to be reverified.

There are at least two reasons that can justify this. The first one is that some
groups of modifications are of opposite nature and when applied on the same model
element their effects are thwarted (for example, adding an OCL constraint and delet-
ing it right afterward). The second one is that the same type of modification can be
successively repeated on the same model element (for example, a succession of
modifications on the multiplicities of a given association end). For these reasons,
the last step when analyzing the list of modifications is to calculate the “net modifi-
cation” on each model element. This can be done by traversing the list of relevant
modifications grouped by model element, looking for these patterns and simplifying
them accordingly when found.

5.4 Submodel Construction

After the analysis of model modifications that may impact model correctness
(strong satisfiability, in our case), it is the time of calculating the part of the modified
model that needs to be reverified.

Table 5.1 shows the pseudocode of the algorithm that calculates this. The algo-
rithm requires two inputs: the UML/OCL class diagram resulting of the modifica-
tions (CD : ClassDiagram), where ClassDiagram = 〈C,A,G, I〉 is a collec-
tion of Classes (C), Associations (A), Generalizations (G) and OCL invariants (I),
and the list of modifications (ML : Modifications). The output is the submodel
(SM : ClassDiagram) of the input class diagram CD that must be fed to the
verification tool.

Listing 5.1: Algorithm to Calculate the Submodel

INPUT :
CD: ClassDiagram
MODLST: M o d i f i c a t i o n L i s t

OUTPUT:
SM: ClassDiagram
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ForEach ( M o d i f i c a t i o n M i n MODLST)
AMELST = AMELST + M. Ge tAf fec t edMode lE l emen t s ( )

SM = CreateEmptyModel ( )
w h i l e (AMELST i s NOT EMPTY)

ME = E x t r a c t F i r s t M o d e l E l e m e n t (AMELST)
SM = SM + ME
i f (ME i n CD. G e t A s s o c i a t i o n s ( ) )

AMELST = AMELST + G e t A s s o c i a t i o n L i n k e d C l a s s e s (ME)
e n d i f
i f (ME i n CD. G e t C l a s s e s ( ) )

AMELST = AMELST + GetL inkedNonZeroOneAssoc i a t i ons (ME)
AMELST = AMELST + G e t L i n k e d G e n e r a l i z a t i o n s (ME)
AMELST = AMELST + G e t O C L I n v a r i a n t s (ME)

e n d i f
i f (ME i n CD. G e t G e n e r a l i z a t i o n s ( ) )

AMELST = AMELST + G e t G e n e r a l i z a t i o n L i n k e d C l a s s e s (ME)
e n d i f
i f (ME i n CD. G e t O C L I n v a r i a n t s ( ) )

AMELST = AMELST + GetOCLLinkedClasses (ME)
AMELST = AMELST + G e t O C L N a v i g a t e d A s s o c i a t i o n s (ME)

e n d i f
e n d w h i l e

The algorithm starts by extracting the list of model elements affected by the
modifications. Then, these elements are traversed. With each iteration, the current
element is incorporated to the submodel and the model elements “connected” to it
are added to the list of affected elements. These model elements are considered as
transitively affected by a modification and therefore must be processed. The algo-
rithm stops when there are no more elements to visit in the list of affected model
elements. We assume here that the introduction of new elements in the list of af-
fected elements is done in such a way that model elements are not visited more
than once. Finally is worth noting the difference between the methods “GetLinked-
NonZeroOneAssociations()” and “GetOCLNavigatedAssociations()”. The first one
collects, among the associations the class is linked to, those with other cardinalities
than the ones in the associations of Fig. 5.2. The same reason given in the discus-
sion about cardinalities in the previous section applies here. The second method,
“GetOCLNavigatedAssociations()”, collects all the associations navigated by an
OCL invariant regardless of their cardinalities. This is because when an association
is navigated by an OCL invariant that is part of the submodel, then the association
must be part of the submodel too, regardless of what its cardinalities are.
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5.5 Experimental Results

In this section, we try to find out whether the utilization of an incremental ver-
ification approach can speed up the verification of class diagrams. To this end, we
implemented a prototype of the approach described here, with the intent of running
an experiment.

The experiment consists in verifying three class diagrams using EMFtoCSP and
then, making three series of modifications over each one, repeating the verification
after each round of changes. Every time one of the class diagrams is verified, we
measure its size and how long the verification takes. Once the process is completed
and each class diagram has been verified four times, we start over but this time,
following an incremental verification approach with the help of the prototype tool.
In order to reduce bias when doing the measurements, this tool will also rely on
EMFtoCSP as the underlying verification tool.

The first step is creating the models for the test. In relation to this, we auto-
matically generated three class diagrams of different size: 15, 45 and 90 model
elements. In the rest of this section, we refer to them as small model, medium size
model and large model, respectively.

The second step is to determine what modifications are made on the models.
Regarding this, we designed three groups of modifications for each class diagram:
M1, M2 and M3. M1 groups the modifications that strengthen the original set of
constraints over the model. M2 groups the modifications that do the opposite, that
is, they weaken those constraints. Finally, M3 combines modifications of the two
types.

Tables 5.1, 5.2 and 5.3 show the results obtained after running this experiment
on a computer equipped with a Intel Core i7 M 640 2.8 Ghz processor and 4Gb
of RAM. Time was measured in milliseconds. The numbers between parenthesis
in the column headers indicate the number of modifications made on each case.
In the rows corresponding to the traditional verification approach, the size of the
verified model is also shown between parenthesis. Same convention is followed
in the rows corresponding to the incremental approach, to show the size of the
calculated submodel and the time needed to calculate it. It is important to mention
that there are some cases in which it was not possible to take measurements. This
is because we set a time-out limit of 15 minutes for the verification process.

According to the information in the tables, the incremental approach performs
slightly better in every case. However, it seems that there is no direct relation be-
tween the size of the model and the time needed to verify it. In some cases, verifying
a submodel that is roughly half the size of the whole model, takes almost the same
time than verifying the whole model. However, since the time needed to calcu-
late the submodel is negligible compared to the time spent during the verification,
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Table 5.1: Comparison of approaches when verifying a small model

Verification Original Model Model Model
Approach Model After M1 After M2 After M3

(4) (5) (2)
Traditional 1665 ms 11226 ms 1685 ms 1765 ms

(size: 12) (size: 15) (size: 12) (size: 11)
Incremental 0 ms 1830 ms 1570 ms 1656 ms

(size: 0) (size: 12) (size: 5) (size: 6)
(0 ms) (10 ms) (5 ms) (26 ms)

Table 5.2: Comparison of approaches when verifying a medium size model

Verification Original Model Model Model
Approach Model After M1 After M2 After M3

(12) (15) (4)
Traditional 1896 ms - 3386 ms 4103 ms

(size: 36) (size: 45) (size: 36) (size: 33)
Incremental 0 ms - 3057 ms 3229 ms

(size: 0) (size: 36) (size: 15) (size: 18)
(0 ms) (110 ms) (63 ms) (86 ms)

Table 5.3: Comparison of approaches when verifying a large model

Verification Original Model Model Model
Approach Model After M1 After M2 After M3

(24) (30) (8)
Traditional 6896 ms - 6817 ms 6318 ms

(size: 72) (size: 90) (size: 72) (size: 66)
Incremental 0 ms - 3923 ms 4231 ms

(size: 0) (size: 72) (size: 30) (size: 37)
(0 ms) (66 ms) (74 ms) (64 ms)

calculating this submodel seems to be a good decision.

5.6 Conclusions

This chapter presents an approach for the automatic incremental verification of
class diagrams. Given a class diagram and a series of modifications made on it, the
approach works by analyzing these modifications to identify a subset of the mod-
ified class diagram such, that the verification of this subset yields the same results
than verifying the whole class diagram. A benefit of this approach is that is inde-
pendent of the underlying formalism employed to verify the model, and therefore
can be combined with any of the existing verification tools.

A prototype of the approach has been implemented on top of the EMFtoCSP
tool. Experimental results seem to indicate that compared to traditional verification
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tools, incremental verification speeds up the verification process. However, and in
relation to this, further experimentation is required, especially in real world scenar-
ios, since the size of the calculated submodel does not seem to be indicative of the
speedup obtained.



6
Improving Static Model Verification
Performance (II). Tightening Search
Space Boundaries

6.1 Motivation

One of the most popular strategies when verifying static models is to follow
a bounded verification approach consisting in limiting the search space where to
look for a solution of the problem. Although the main drawback of this strategy is
well known (conclusions about model correctness cannot be drawn if no solution
is found within the considered search space), in the last few years, more and more
approaches are adopting this strategy [45, 73, 81, 82]. The reason for this is that
a bounded verification approach allows the verification process to be automatic,
without restricting the expressiveness of the modeling language, or requiring users
to be aware of the mathematical formalism employed in the process.

Unfortunately, setting the search space boundaries has proven itself to be a ma-
jor limiting factor, since existing tools provide little support on this, either by setting
inadequate default values; or by forcing users to manually define these boundaries.
Manual setting of these boundaries is a big issue since it requires the specification
of upper and lower bounds for the population of each class and association in the
model, as well as, finite domains for each attribute. When facing big models, this
translates into setting boundary values for a set of modeling elements ranging in
the hundreds, or even more. On top of that, there is no guarantee that this process
does not have to be repeated several times, in order to fine-tune the resulting search

73
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space. And, of course, there is always the risk the designer makes a mistake when
defining the domains, for example missing an implicit constraint or interaction be-
tween constraints, leading her to believe the model is unsatisfiable when it is just a
mistake in the selection of bounds.

The reason why existing approaches do not offer better support on this task is
because choosing optimal bounds automatically is as complex as the verification
problem itself, so the use of heuristics or approximate methods is required. For
example, the “small scope hypothesis” [97] claims that a large amount of faults can
be detected by inspecting a small domain. Hence, many tools advocate for an “in-
cremental scoping” strategy: start with small domains to get feedback quickly and
progressively increase the domain size in later executions until a fault is detected
or a sufficient level of confidence in the result is achieved. However, beyond that,
users must select domains on their own.

In addition to increasing the usability of bounded verification approaches, bound
reduction techniques can also be useful at the time of increasing their performance,
since reducing the size of the search space to be explored accelerates the verification
process. In this regard, and as it is shown later, tightening bounds does not add a
lot of overhead to the whole verification process, and preserves any of the valid
instances serving as a solution for the problem that would exist within the original
bounds.

In this chapter, we present a technique developed in collaboration with Robert
Clarisó 1that can assist users of bounded verification tools to effectively set the
boundaries of the search space. This approach starts from a set of initial bounds
(which may be infinite) and takes advantage of all implicit and explicit constraints
in the model to tighten those bounds as much as possible. To this end, an efficient
technique called interval constraint propagation, which does not require solving the
verification problem, is used to discard unproductive values from domain bounds.

6.2 Background on Bound Reduction Techniques

Bound reduction is a well-studied problem in the field of static program anal-
ysis. Techniques such as “interval analysis” or “shape analysis” can infer bound
information about the program variables and data from the program dataflow and
call graphs. This information can later be used in the bounded verification of the
dynamic behavior of programs. In relation to this, different tools have been pro-
posed for the static analysis of code written in popular programming languages like
C [112–114], Java [115–117] or even Ruby [118]. Among them, we highlight the
most related tool in terms of bound reduction, TACO [117], a tool for the verifi-

1. Robert Clarisó is a member of the IT, Multimedia and Telecommunication Department at
Universitat Oberta de Catalunya (UOC) in Spain
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cation of JML-annotated Java programs. TACO attempts to eliminate individual
values from domains by calling the solver with a specially tailored formula for each
value before analyzing the entire program. This allows a more fine-grained bound
refinement than using intervals but, on the other hand, a time threshold must be set
to avoid wasting too much time on each call.

To the best of our knowledge, only the work of Yu et al. [119] has addressed
bound reduction techniques on the field of model verification, although it includes
dynamic behavior. The approach considers the analysis of the size of collections
in OCL invariants, pre- and post-conditions. However, the constraints generated
by their analysis are only used to check size-specific properties of collections (for
example retrieving an element from an empty collection).

6.3 Tightening Search Space Boundaries in a Nut-
shell

As shown in Fig. 6.1(b), we propose an alternative approach that optimizes the
set of bounds (either from scratch or by refining an initial set of bounds proposed
by the designer). These bounds can then be passed to a bounded verification tool
together with the translation of the initial model (Fig. 6.1(a)). The computation of
the bounds works by collecting all implicit and explicit constraints from the UM-
L/OCL model, and expressing them as a CSP on a set of variables representing the
bounds we should use when verifying the model. These bounds are then calculated
by the solver relying on interval constraint propagation techniques. This process is
not optimal but it is safe, that is, it may fail to compute the tightest bounds, but, as
mentioned earlier, it will preserve any of the valid instances serving as a solution
for the problem that would exist within the original bounds.

Fig. 6.2 shows an UML/OCL model describing the relationship between ma-
chines and their parts. This model will be used as an example throughout the chap-
ter. By analyzing association end multiplicities, inheritance hierarchies and OCL
invariants, it is possible to find constraints that limit the number of classes and as-
sociations that any valid instance must have, as well as the size of the domain of
the class attributes. For example, association end multiplicities indicate that there
are four parts for each machine; the OCL invariant “MachineAvailability” states
that there must be at least two machines available at all times, one “cutter” and
one “grinder”; and the OCL invariant “UniqueSerial” implicitly establishes that the
population of class “Part” cannot be larger than the number of values in the domain
of its attribute “serial”.

All these constraints can be used to automatically infer bounds without any input
from the user. For example, it is possible to infer a lower bound of 1 for classes
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Figure 6.1: Comparison of verification approaches: (a) Typical flow with a bounded
verification tool, (b) Approach proposed.

“Cutter” and “Grinder”, a lower bound of 8 for class “Part”, and a lower bound of
8 for association “Uses”. However, these constraints are most effective when used
to refine partial bound information provided by a designer. For instance, just by
assuming a limit of 10 serial numbers, it is possible to infer that there is exactly
one “Cutter” and one “Grinder”, between 8 and 10 parts and at most 8 links among
machines and parts.

Even if the constraints in the example seem trivial, a UML/OCL model may
have many constraints like these and they can interact among them, making it im-
possible for users to consider all of them when choosing verification bounds. Hence,
providing tool support to aid in the bound selection process can be helpful.
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(a)

context Part inv UniqueSerials:
Part::AllInstances()−> isUnique(serial)

context AbstractMachine inv MachineAvailability:
Cutter::AllInstances()−> exists(c | c.ready) and
Grinder::AllInstances()−> exists(g | g.ready)

(b)

Figure 6.2: UML/OCL class diagram used as example. (a) diagram (b) OCL con-
straints

6.4 Constraint Propagation

As it was mentioned in Chapter 2, a solution to a CSP is an assignment of values
to the variables such, that all constraints are satisfied. A typical approach for com-
puting this assignment consists in searching it by assigning values to variables one
at a time in a certain order and backtracking when a partial assignment cannot be
extended any further. This search process is aided by “early evaluation” (detecting
when a partial assignment is unfeasible and can be discarded) and “propagation”
(removing values from the domain of unassigned variables using information about
the constraints and the values of previously assigned variables). While solving a
CSP is computationally expensive, propagation is much faster: practical imple-
mentations attempt to tighten domains in a pragmatic cost-effective way, instead
of computing the optimal bounds with potentially slow computations.

As the goal of the technique presented in this chapter is tightening domain
bounds rather than finding a specific instance within those bounds, propagation
suits our needs better than CSP-solving. Thus, the CSP we define from the UM-
L/OCL model under analysis will only be used to apply propagation. To this end,
we will use the same CSP solver employed by EMFtoCSP, the ECLiPSe Constraint
Programming System 2 [120]. ECLiPSe comes with a library called “IC” (hybrid
integer/real Interval arithmetic Constraint solver) which provides powerful interval

2. http://eclipseclp.org

http://eclipseclp.org
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constraint propagation capabilities.

For example, when given a CSP with three variables X , Y and Z, each tak-
ing values in the integer interval [−2, 10], and the constraints: X = Y + Z,
Y = max(X,Z) and X + 2Z ≤ 2, and applying constraint propagation tech-
niques implemented by the IC solver, the original bounds are tightened as follows:
X ∈ [−2, 6], Y ∈ [−2, 6], Z ∈ [−2, 2]. Two potential solutions for this CSP are
X = 0, Y = 0, Z = 0 and X = −2, Y = −1, Z = −1, so it is clear that apply-
ing constraint propagation techniques may reduce search space boundaries while
keeping the solutions of the CSP within.

Finally, it is important to remark that constraint propagation reduces the search
space but in general it is unable to discard all unfeasible value assignments. For
instance, in this example it cannot detect that there is no solution with Z = 2.

6.5 CSP Construction

6.5.1 Structure of the CSP

Table 6.1: Definition of the CSP used to tighten verification bounds

Variables (V ) Domains (D) Constraints (C)
A variable cl
for each class

Potential number of objects
in class cl, either [0,∞) or a
user-provided domain

– UML: generalizations, as-
sociation end multiplicities,
class multiplicities
– OCL: all invariants
– Correctness property under
analysis, e.g. each class has at
least one object

A variable as
for each associ-
ation

Potential number of links in
association as [0,∞) or a
user-provided domain)

– UML: association end mul-
tiplicities
– OCL: invariants containing
navigations through associa-
tion as

A variable
at for each
attribute

Potential values of attribute
at, depending on its data
type, e.g. [0, 1] for boolean,
(−∞,∞) for integers or a
user-provided interval

– OCL: invariants accessing
the value of attribute at

An auxiliary
variable auxe
for each subex-
pression e in
each OCL
constraint

Potential values of the expres-
sion e depending on its data
type. Non-basic types are ab-
stracted, e.g. collections are
abstracted as positive integers
encoding their size.

– A constraint establishing
the value of e in terms of the
values of its subexpressions.
– Correctness property under
analysis, e.g. the root expres-
sion of each invariant must
evaluate to 1 (all invariants
must be true)
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Considering the problem of establishing bounds for the verification of UM-
L/OCL models, Table 6.1 defines the structure of a suitable CSP:

– The variables of this CSP will not characterize a complete instance, but rather
the parameters that define the size of the verification space: how many objects
and links and which attribute values should be considered when instantiating
the model. Additional auxiliary variables are used for convenience to encode
complex constraints associated with rich OCL expressions.

– The domains of this CSP will be the output of our approach, as we are ad-
dressing a bound tightening problem. The analysis may start without impos-
ing any constraint at all on the domains, e.g. from 0 to∞ objects in classes.
In this way, this approach can attempt to automatically infer finite bounds for
each of the variables in our problem. As this is usually not possible, the user
may also define the set of bounds that he intended to use and let the constraint
solver propagate the restrictions in order to tighten these bounds.

– The constraints of the CSP include graphical restrictions from the UML class
diagram and the textual OCL invariants. In the case of OCL, the constraints
are not a direct translation of the invariant (e.g., as done in [108]), but rather
an abstraction of the invariant that only considers size information. The cor-
rectness property under analysis may also change the type of target instance
that is being searched and therefore should also be included as a constraint.

6.5.2 Constraints for the UML Class Diagram

A UML model includes several implicit constraints that are depicted graphi-
cally, such as the multiplicity of associations. These constraints need to be in-
cluded explicitly in the CSP. Our method follows the same approach employed in
UMLtoCSP [45] and shared by EMFtoCSP, which is described in detail here [108].
Therefore, rather than repeating here the constraints for each class diagram element,
we describe the resulting constraints for the example of Fig. 6.2:

AbstractMachine = Cutter+ Grinder Inheritance

Uses ≤ Part ∗ AbstractMachine Association

Uses = 4 ∗ AbstractMachine Association end

Uses ≤ Part Association end

6.5.3 Constraints for OCL Invariants

For the case of analyzing OCL expressions, we take advantage of the work of
Yu et al. [119] on the verification of size properties of collection types, based on
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abstracting away their contents but preserving the constraints on their sizes. This
abstraction process transforms collection types into integer values representing the
sizes of collections being replaced, and it is formally expressed in the form of an ab-
straction function αT . In our case, we expand this abstraction process to cover, not
only more operations involving collections, but also operations involving other data
types, thus supporting the majority of operations described in the OCL specifica-
tion 3. Our abstraction function αT is therefore slightly different to the one in [119],
where t indicates the data type being abstracted: t ∈ {boolean} ⇒ αT = t

t ∈ {integer, unlimited natural, real} ⇒ αT = t

t ∈ {set, ordered set, bag, sequence} ⇒ αT = integer

t ∈ {string} ⇒ αT = integer From this definition it can be seen, for example,

that strings, as it is the case for collections, are also transformed into integer values,
that in this case represent their length.

Tables 6.2, 6.3, 6.4 and 6.5 summarize how an OCL invariant can be abstracted
into a size constraint. Each table entry describes the translation of a specific type of
OCL expression. The construction of the size constraint proceeds inductively over
the structure of the OCL invariant: each subexpression of the invariant is matched
with the appropriate table entry and produces a size constraint, whose value may
depend on the size constraints of its subexpressions. The size constraint for the
entire invariant is the one that corresponds to the root expression, which will be an
expression of the form “Type::AllInstances()−>forAll(condition)”.

In the following, we present the notation used to describe this process of abstrac-
tion, which is borrowed from [119]. Given an OCL expression e, we use t(e) to de-
note the type of the value resulting from the evaluation of e. When abstracting such
OCL expression, the size constraint is denoted as e.c, with t(e.c) = boolean, and it
is expressed with the help of an auxiliary variable e.v such that t(e.v) = αT (t(e)).
That is, the auxiliary variable is of integer type when dealing with operations over
collections or strings, and shares the expression data type otherwise. When e.c

holds, e.v represents the size of the collection or the length of the string, for the
case of operations on these data types; for the rest of data types, e.v represents the
result of evaluating e.

All the tables share the same structure: the second column represents the OCL
expression being abstracted, the third column identifies the different combinations
of data types that can occur in the context of that expression, and finally, the fourth
column shows the size constraints derived for each particular case. The shorthand
notation for data types in the second column denotes the real type as r, the integer
type as i, the unlimited natural type as n, the boolean type as b, the string type as

3. http://www.omg.org/spec/OCL/2.3.1/

http://www.omg.org/spec/OCL/2.3.1/
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s, the set type as st, the ordered set type as os, the bag type as bg and the sequence
type as sq. An asterisk (∗) denotes the case when any data type can be used.

In the table entries, a special notation is used to refer to concepts in the CSP:
domain(v) is the set of potential values of variable v, domain_size(v) is the num-
ber of values in a domain, num_obj(T ) is the CSP variable storing the number of
objects of type T and num_links(A) is the CSP variable storing the number of
links in association A.

Finally, when the information on the tables is applied to the analysis of the OCL
constraints on the example of Fig. 6.2, the following constraints (simplified for
readability) are obtained:

Part ≤ domain_size(Serial) UniqueSerials

Cutter ≥ 1 MachineAvailability

Grinder ≥ 1 MachineAvailability

Table 6.2: OCL Operations on Numeric and Boolean Types

− OCL Expression Type Size Constraint
e t(e) : [t(e1)][t(e2)] e.c

1 constant {r,i,n,b}: {r,i,n,b} e.v = constant

2 e1 = e2 b: {r,i,n,b},{r,i,n,b} (e.v = (e1.v = e2.v)) ∧
e1.c ∧ e2.c

3 e1 <> e2 b: {r,i,n},{r,i,n} (e.v = (e1.v 6= e2.v)) ∧
e1.c ∧ e2.c

4 e1 < e2 b: {r,i,n},{r,i,n} (e.v = (e1.v < e2.v)) ∧
e1.c ∧ e2.c

5 e1 ≤ e2 b: {r,i,n},{r,i,n} (e.v = (e1.v ≤ e2.v)) ∧
e1.c ∧ e2.c

6 e1 > e2 b: {r,i,n},{r,i,n} (e.v = (e1.v > e2.v)) ∧
e1.c ∧ e2.c

7 e1 ≥ e2 b: {r,i,n},{r,i,n} (e.v = (e1.v ≥ e2.v)) ∧
e1.c ∧ e2.c

8 e1 + e2 {r,i,n}: {r,i,n},{r,i,n} (e.v = e1.v + e2.v) ∧
e1.c ∧ e2.c

9 e1 − e2 {r,i,n}: {r,i,n},{r,i,n} (e.v = e1.v − e2.v) ∧
e1.c ∧ e2.c

10 e1 ∗ e2 {r,i,n}: {r,i,n},{r,i,n} (e.v = e1.v ∗ e2.v) ∧
e1.c ∧ e2.c

11 e1 / e2 r: {r,i},{r,i} (e.v = e1.v/e2.v) ∧ e2.v 6= 0 ∧
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e1.c ∧ e2.c
12 e1 div e2 i: {i,n},{i,n} (e.v = e1.v div e2.v) ∧

e2.v 6= 0 ∧ e1.c ∧ e2.c
13 e1 mod e2 i: {i,n},{i,n} (e.v = e1.v mod e2.v) ∧

e2.v 6= 0 ∧ e1.c ∧ e2.c
14 −e1 r: r (e.v = −e1.v) ∧ e1.c

i: {i,n}

15 e1.abs() r: r (e.v = |e1.v|) ∧ e1.c
i: i

16 e1.f loor() i: r (e.v = be1.vc) ∧ e1.c
17 e1.round() i: r (e.v = round(e1.v)) ∧ e1.c
18 e1.max(e2) {r,i,n}: {r,i,n},{r,i,n} (e.v = max(e1.v, e2.v)) ∧

e1.c ∧ e2.c
19 e1.min(e2) {r,i,n}: {r,i,n},{r,i,n} (e.v = min(e1.v, e2.v)) ∧

e1.c ∧ e2.c
20 not e1 b: b (e.v = 1− e1.v) ∧ e1.c
21 e1 or e2 b: b,b (e.v = max(e1.v, e2.v)) ∧

e1.c ∧ e2.c
22 e1 and e2 b: b,b (e.v = min(e1.v, e2.v)) ∧

e1.c ∧ e2.c
23 e1 xor e2 b: b,b (e.v = (e1.v 6= e2.v)) ∧

e1.c ∧ e2.c
24 e1 implies e2 b: b,b (e.v = max(1− e1.v, e2.v)) ∧

e1.c ∧ e2.c
25 e1.attr {r,i,n,b,s}: {r,i,n,b,s} domain(e.v) ⊆ domain(attr)

26 e1.toString() s: i ((e1.v = 0)→ (e.v = 1)) ∧
((e1.v > 0)→
(e.v = dlog10 e1.ve+ 1)) ∧

((e1.v < 0)→
(e.v = dlog10 |e1.v|e+ 2)) ∧

e1.c

s: n ((e1.v = 0)→ (e.v = 1)) ∧
((e1.v > 0)→
(e.v = dlog10 e1.ve+ 1)) ∧

e1.c

s: r (e.v ≥ 1)

s: b (e.v = 5− e1.v) ∧ e1.c
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Table 6.3: Boolean Operations Over Collections

− OCL Expression Type Size Constraint
e t(e) : t(c1)[t(c2)|t(e1)] e.c

1 c1 = c2 b: {st,sq,bg},{st,sq,bg} (0 ≤ e.v ≤ 1) ∧
((c1.v 6= c2.v)→
(e.v = 0)) ∧

(((c1.v = 0) ∧
(c2.v = 0))→

(e.v = 1)) ∧
c1.c ∧ c2.c

2 c1 <> c2 b: {st,sq,bg},{st,sq,bg} (0 ≤ e.v ≤ 1) ∧
((c1.v 6= c2.v)→
(e.v = 1)) ∧

(((c1.v = 0) ∧
(c2.v = 0))→

(e.v = 0)) ∧
c1.c ∧ c2.c

3 c1 → includes(o) b: {st,sq,bg} (0 ≤ e.v ≤ 1) ∧
((c1.v = 0)→
(e.v = 0)) ∧

c1.c ∧ c2.c
4 c1 → excludes(o) b: {st,sq,bg} (0 ≤ e.v ≤ 1) ∧

((c1.v = 0)→
(e.v = 1)) ∧

c1.c ∧ c2.c
5 c1 → b: {st,sq,bg},{st,sq,bg} (0 ≤ e.v ≤ 1) ∧

includesAll(c2) ((c2.v > c1.v)→
(e.v = 0)) ∧

((c2.v = 0)→
(e.v = 1)) ∧

c1.c ∧ c2.c
6 c1 → b: {st,sq,bg},{st,sq,bg} (0 ≤ e.v ≤ 1) ∧

excludesAll(c2) ((c1.v = 0 ∧ c2.v ≥ 1)

→ (e.v = 1)) ∧
((c2.v = 0)→
(e.v = 0)) ∧

c1.c ∧ c2.c
7 c1 → isEmpty() b: {st,sq,bg} (e.v = (c1.v = 0)) ∧

c1.c
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8 c1 → notEmpty() b: {st,sq,bg} (e.v = (c1.v 6= 0)) ∧
c1.c

9 c1 → exists(e1) b: {st,sq,bg},b (0 ≤ e.v ≤ 1) ∧
((c1.v = 0 ∨ e1.v = 0)

→ (e.v = 0)) ∧
((e1.v = 1)→
(e.v = (c1.v ≥ 1))) ∧

c1.c ∧ e1.c
10 c1 → forAll(e1) b: {st,sq,bg},b (0 ≤ e.v ≤ 1) ∧

((c1.v = 0)→
(e.v = 1)) ∧

c1.c

11 Type :: b: st,b (0 ≤ e.v ≤ 1) ∧
allInstances() ((num_obj(Type) = 0)→
→ forAll(e1) (e.v = 1)) ∧

((num_obj(Type) > 0) ∧
(e.v = 1)→

(e1.v = 1)) ∧ e1.c
12 c1 → one(e1) b: {st,sq,bg},b (0 ≤ e.v ≤ 1) ∧

((c1.v = 0 ∨ e1.v = 0)

→ (e.v = 0)) ∧
((e1.v = 1)→
(e.v = (c1.v ≥ 1))) ∧

c1.c ∧ e1.c
13 c1 → isUnique(e1) b: {st,sq,bg}, {r,i,n} (0 ≤ e.v ≤ 1) ∧

((e.v = 0)→
(c1.v ≥ 2)) ∧

(domain_size(e1.v)
≥ c1.v) ∧

c1.c ∧ e1.c
b: {st,sq,bg}, b (0 ≤ e.v ≤ 1) ∧

((e.v = 1)→
(c1.v ≤ 2)) ∧

((e.v = 0)→
(c1.v ≥ 2)) ∧

(domain_size(e1.v)
( ≥ c1.v) ∧
c1.c ∧ e1.c

b: {st,sq,bg}, s (0 ≤ e.v ≤ 1) ∧
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((e.v = 0)→
(c1.v ≥ 2)) ∧

c1.c

Table 6.4: Other Operations Over Collections

− OCL Expression Type Size Constraint
e t(e) : t(c1) e.c

[t(c2)|t(e1)]
1 c1 → size() i: {st,sq,bg} (e.v = c1.v) ∧ c1.c

2 c1 → count(o)
i: st (0 ≤ e.v ≤ 1) ∧ c1.c
i: {sq,bg} (0 ≤ e.v ≤ c1.v) ∧ c1.c

3 c1 → max() {r,i}: {st,sq,bg} true

4 c1 → min() {r,i}: {st,sq,bg} true

5 c1 → product(c2) i: {st,sq,bg}, (e.v = c1.v ∗ c2.v) ∧
{st,sq,bg} c1.c ∧ c2.c

6 c1 → flatten() i: {st,sq,bg} (e.v ≥ c1.v) ∧ c1.c
7 c1 → sum() {r,i}: {st,sq,bg} ((c1.v = 0)→

(e.v = 0)) ∧ c1.c

8

c1 → asSet()
st: st (e.v = c1.v) ∧ c1.c
st: {sq,bg} ((c1.v > 0)→

(e.v > 0)) ∧
(0 ≤ e.v ≤ c1.v) ∧
c1.c

9

c1 →
os: st (e.v = c1.v) ∧ c1.c

asOrderedSet()
os: {sq,bg} ((c1.v > 0)→

(e.v > 0)) ∧
(0 ≤ e.v ≤ c1.v) ∧
c1.c

10 c1 → asBag() bg: {st,sq,bg} (e.v = c1.v) ∧ c1.c
11 c1 → asSequence() sq: {st,sq,bg} (e.v = c1.v) ∧ c1.c
12 {constant} {st,bg,sq}: (e.v = 1)

{b,r,i,s}

13 c1.navigation {st,bg,sq}: (e.v ≥ min_mult(nav)) ∧
{st,bg,sq} (e.v ≤

max_mult(nav) ∗ c1.v) ∧
(e.v ≤
num_links(Assoc(nav))) ∧
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(e.v ≤
num_obj(Type(nav))) ∧

c1.c

14 c1 → including(o)
st: st (c1.v ≤ e.v ≤ c1.v + 1) ∧

((c1.v = 0)→ (e.v = 1)) ∧
c1.c

{sq,bg}: {sq,bg} (e.v = c1.v + 1) ∧ c1.c
15 c1 → excluding(o) {st,os,sq,bg}: (max(0, c1.v − 1) ≤

{st,os,sq,bg} e.v ≤ c1.v) ∧ c1.c

16

c1 → union(c2)
st: st,st (max(c1.v, c2.v) ≤ e.v ≤

c1.v + c2.v) ∧
c1.c ∧ c2.c

bg: {st,sq,bg},bg (e.v = c1.v + c2.v) ∧
bg: bg,{st,sq,bg} c1.c ∧ c2.c
sq: {sq,st},sq
sq: sq,{sq,st}

17 c1 → st: {st,bg},st (0 ≤ e.v ≤ min(c1.v, c2.v)) ∧
intersection(c2) st: st,{st,bg} c1.c ∧ c2.c

bg: bg,bg

18 c1 − c2 st: st,st (max(0, c1.v − c2.v) ≤
e.v ≤ c1.v) ∧ c1.c ∧ c2.c

19 c1 → st: st,st (0 ≤ e.v ≤ c1.v + c2.v) ∧
symmetricDiff(c2) ((c1.v = 0)→ (e.v > c2.v)) ∧

((c2.v = 0)→ (e.v > c1.v)) ∧
c1.c ∧ c2.c

20
c1 → append(o)

os: os (c1.v ≤ e.v ≤ c1.v + 1) ∧
((c1.v = 0)→ (e.v = 1))

∧ c1.c
sq: sq (e.v = c1.v + 1) ∧ c1.c

21
c1 → prepend(o)

os: os (c1.v ≤ e.v ≤ c1.v + 1) ∧
((c1.v = 0)→ (e.v = 1))

∧ c1.c
sq: sq (e.v = c1.v + 1) ∧ c1.c

22 c1 → insertAt(i, o)
os: os (c1.v ≤ e.v ≤ c1.v + 1) ∧

((c1.v = 0)→ (e.v = 1))

∧ c1.c
sq: sq (e.v = c1.v + 1) ∧ c1.c

23
c1 → at(i)

{b}: {st,sq,bg} (0 ≤ e.v ≤ 1)

{r,i}: {st,sq,bg} true
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{st,sq,bg}: (e.v ≥ 0)

{st,sq,bg}

24
c1 → first(i)

{b}: {st,sq,bg} (0 ≤ e.v ≤ 1)

{r,i}: {st,sq,bg} true
{st,sq,bg}: (e.v ≥ 0)

{st,sq,bg}

25
c1 → last(i)

{b}: {st,sq,bg} (0 ≤ e.v ≤ 1)

{r,i}: {st,sq,bg} true
{st,sq,bg}: (e.v ≥ 0)

{st,sq,bg}

26 c1 → indexOf(o) i: {os,sq} (1 ≤ e.v ≤ c1.v) ∧ c1.c
27 c1 → reverse() os: os (e.v = c1.v) ∧ c1.c

sq: sq

28 c1 → os: os (e.v = u.v − l.v + 1) ∧
subOrderedSet(l, u) c1.c ∧ u.c ∧ l.c

29 c1 → sq: sq (e.v = u.v − l.v + 1) ∧
subSequence(l, u) c1.c ∧ u.c ∧ l.c

30 c1 → select(e1) st: st,b (0 ≤ e.v ≤ c1.v) ∧ c1.c
sq: sq,b
bg: bg,b

31 c1 → reject(e1) st: st,b (0 ≤ e.v ≤ c1.v) ∧ c1.c
sq: sq,b
bg: bg,b

32 c1 → collect(e1) st: st,* (e.v = c1.v) ∧ c1.c
sq: sq,*
bg: bg,*

33 c1 → closure(e1) os: {os,sq},* (e.v ≥ c1.v) ∧ (c1.c)

st: {st,bg},*

34 c1 → any(e1) *: {st,sq,bg},* true
b: {st,sq,bg},* 0 ≤ e.v ≤ 1

35 c1 → sortedBy(e1) os: {st,os},* (e.v = c1.v) ∧ c1.c ∧ e1.c
sq: {bg,sq},*

36 c1 → iterate(...) *:* true

37 Type :: e.v = num_obj(Type)
allInstances()
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Table 6.5: OCL Operations on Strings

− OCL Expression Type Size Constraint
e t(e) : [t(s1)][t(s2)] e.c

1 constant i: s e.v = strlen(′constant′)
2 s1 = s2 b: s,s ((e.v = 1)→

(s1.v = s2.v)) ∧
s1.c ∧ s2.c

3 s1 <> s2 b: s,s ((e.v = 0)→
(s1.v = s2.v)) ∧

s1.c ∧ s2.c
4 s1 < s2 b: s,s 0 ≤ e.v ≤ 1
5 s1 > s2 b: s,s 0 ≤ e.v ≤ 1
6 s1 ≤ s2 b: s,s 0 ≤ e.v ≤ 1
7 s1 ≥ s2 b: s,s 0 ≤ e.v ≤ 1
8 s1 + s2 s: s,s e.v = s1.v + s2.v ∧

s1.c ∧ s2.c
9 s1.concat(s2) s: s,s e.v = s1.v + s2.v ∧

s1.c ∧ s2.c
10 s1.substring(l, u) s: s e.v = u.v − l.v + 1 ∧

s1.c ∧ u.c ∧ l.c
11 s1.indexOf(s2) i: s,s 0 ≤ e.v ≤ s1.v ∧ s1.c
12 s1.equalsIgnoreCase(s2) b: s,s ((e.v = 1)→

(s1.v = s2.v)) ∧
s1.c ∧ s2.c

13 s1.at(i) s: s e.v = 1
14 s1.size() i: s e.v = s1.v ∧ s1.c
15 s1.characters() sq: s e.v = s1.v ∧ s1.c
16 s1.toUpperCase() s: s e.v = s1.v ∧ s1.c
17 s1.toLowerCase() s: s e.v = s1.v ∧ s1.c
18 s1.toBoolean() b: s 0 ≤ e.v ≤ 1
19 s1.toInteger() i: s −10s1.v ≤ e.v ≤ 10s1.v ∧

s1.c
20 s1.toReal() r: s −10s1.v ≤ e.v ≤ 10s1.v ∧

s1.c

6.6 Experimental Results

In this section, we aim to evaluate the proposed method in order to answer the
following questions:

– Q1: Is the execution time of the bound tightening procedure negligible with
respect to the execution time of UML/OCL bounded verification?

– Q2: Does the bound tightening procedure reduce the execution time of UM-
L/OCL bounded verification significantly?
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Table 6.6: Input UML/OCL models.

Name Classes Assocs Attrs Inv
Teams [121] 5 3 6(0) 6

Company [122] 6 8 19(2) 16

6.6.1 Designing Experiments

To answer questions Q1 and Q2, we have considered two UML/OCL models
where we attempt to validate whether the model is strongly satisfiable, i.e. it is
possible to create an instance of each non-abstract class in the model. Table 6.6
summarizes some features of the models under analysis: the number of classes, as-
sociations, attributes (in parenthesis, boolean attributes) and invariants. Both mod-
els have been taken from lecture notes for software development courses (see ref-
erences) as they tend to include a wide variety of UML/OCL features. Also, the
models illustrate two levels of constraint density: “Teams” with few constraints and
“Company” with many constraints, so a priori the second one should be harder to
verify. Minor changes (e.g. rewriting association classes) were required to adapt
the models to the particular syntax requirements of the verification tools.

For the sake of representativity, we are interested in measuring the performance
of verification for both satisfiable and unsatisfiable models. As both examples are
satisfiable, we have devised an unsatisfiable version of each one by adding one
invariant that cannot be satisfied due to the rest of constraints.

We have measured the performance of the USE tool, in particular, the USE
model validator plug-in [81]. This tool transforms the original UML/OCL model
into relational logic formula to be checked using the KodKod relational solver [98],
which relies on SAT-solvers like Sat4j 4. The choice of this particular toolkit has
been motivated by its popularity and its competitive execution time results.

The translation of the UML/OCL model into a CSP for propagation has been
developed as an extension of the EMFtoCSP tool. Our proposed bound tightening
procedure has been implemented using the interval solver IC from the ECLiPSe

Constraint Programming System [120]. We have used this tool to compute the
tightened bounds for our UML/OCL models, measuring the computation time and
measuring the verification time in USE with the tightened bounds.

For each UML/OCL, different sets of input bounds have been considered in
order to illustrate the performance of our approach in different scenarios. Three
types of bounds are defined: the number of objects in each class, the number of links
in each association and the potential values for integer attributes ([0,1] is trivially
used for boolean attributes). For the sake of simplicity, we assume they are global
for the entire model rather than having distinct bounds for each model element.

4. http://www.sat4j.org/

http://www.sat4j.org/
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Table 6.7: Experimental results (I)

Verification Bounds USE-orig
Name Class Assoc Attrib Trans Solv

Teams (s)
[1, 5] [1, 10] [0, 300] 0,5s 1,3s
[1, 10] [1, 20] [0, 300] 0,8s 2,9s
[1, 15] [1, 30] [0, 300] 1,3s 4,5s

Teams (u)
[1, 5] [1, 10] [0, 300] 0,6s 0,2s
[1, 10] [1, 20] [0, 300] 0,8s 1,2s
[1, 15] [1, 30] [0, 300] 3,6s 4,0s

Company (s)
[1, 5] [1, 10] [0, 300] 2,5s 233,4s
[1, 10] [1, 20] [0, 300] 5,1s 95,3s
[1, 15] [1, 30] [0, 300] 14,7s 1.464,8s

Company (u)
[1, 5] [1, 10] [0, 300] 1,3s 903,4s
[1, 10] [1, 20] [0, 300] 3,4s 4.449,1s
[1, 15] [1, 30] [0, 300] timeout (>10.000s)

Settings Computer: HP EliteBook 8470p, Intel Core i7 3GHz 8Gb RAM
OS: Windows 7 Enterprise SP1 64 bits
Java: Java SE Runtime Environment 1.7
USE v3.06 , Solver Sat4j with bitwidth=32
ECLiPSe v6.1 64 bits

6.6.2 Results

Tables 6.7 and 6.8 summarize the results obtained in our experiments. Each
entry in these tables contains the model being analyzed (s = satisfiable version, u
= unsatisfiable version), and the initial verification bounds. Then, Table 6.7 shows
the execution time (in seconds) for USE with the original bounds (USE-orig), and
Table 6.8 shows the time spent by the bound tightening procedure (Tight) and the
execution time for USE with the tightened bounds (USE-tight). Regarding the ex-
ecution times for USE, we further identify the time required by the tool to translate
the UML/OCL model into a formula (Trans) and the time needed by the solver to
check the formula (Solv). Finally, we measure the ratio of improvement in the ex-
ecution time (Speedup) in Table 6.8 as USE-orig divided by Tight+USE-tight (1 if
there is no change, higher is better).

6.6.3 Discussion

As expected, the verification of the “Teams” model is faster than the verification
of “Company”. Model size (less associations and attributes) and the number of
invariants (6 vs 16) are the reasons for this difference.

Regarding question Q1 (is the time spent tightening bounds negligible?), Table
6.8 shows that bound tightening requires less than one second in every example.
Thus, the overhead generated by bound tightening will only be noticed in those
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Table 6.8: Experimental results (and II)

Verification Bounds USE-tight
Name Class Assoc Attrib Tight Trans Solv Speedup

Teams (s)
[1, 5] [1, 10] [0, 300] 0,8s 0,4s 1,3s x0,76
[1, 10] [1, 20] [0, 300] 0,8s 0,8s 5,7s x0,50
[1, 15] [1, 30] [0, 300] 0,8s 1,2s 5,3s x0,79

Teams (u)
[1, 5] [1, 10] [0, 300] 0,8s 0,3s 0,3s x0,50
[1, 10] [1, 20] [0, 300] 0,8s 0,8s 1,3s x0,69
[1, 15] [1, 30] [0, 300] 0,8s 1,3s 2,9s x1,53

Company (s)
[1, 5] [1, 10] [0, 300] 0,8s 0,9s 18,8s x11,54
[1, 10] [1, 20] [0, 300] 0,8s 3,6s 56,9s x1,64
[1, 15] [1, 30] [0, 300] 0,8s 8,6s 249,1s x5,94

Company (u)
[1, 5] [1, 10] [0, 300] 0,8s 0,9s 16,2s x50,42
[1, 10] [1, 20] [0, 300] 1,0s 4,9s 2.081,3s x2,13
[1, 15] [1, 30] [0, 300] 1,0s 10,5s 4.414,6s –

Settings Computer: HP EliteBook 8470p, Intel Core i7 3GHz 8Gb RAM
OS: Windows 7 Enterprise SP1 64 bits
Java: Java SE Runtime Environment 1.7
USE v3.06 , Solver Sat4j with bitwidth=32
ECLiPSe v6.1 64 bits

examples where the solver verifies the model in a couple of seconds.

With respect to Q2 (does bound tightening reduce verification time?), the an-
swer is similar to the previous one: the effect of bound tightening is most notice-
able in models where verification is most complex. For those examples, significant
reductions can be achieved with some examples running 50 times faster or using 40
minutes less CPU time.

In one specific unsatisfiable example, tightening allows the verification to com-
plete without a timeout. This is a very positive result, as being able to check the
model with larger bounds allows designers to gain more confidence in the answer
from the bounded verification tool.

Again, for “easy” models that can be verified quickly, bound tightening may fail
to cause any reduction at all or it may be insufficient to compensate the bound tight-
ening overhead. In any case, the performance gains in “hard” instances compensate
this small penalty in “easy” instances.

To sum up, the performance gains offered by the bound tightening procedure on
UML/OCL model verification will depend on a variety of factors:

– The original domain bounds: If the initial domains are very small, the ver-
ification is typically fast and the speedup provided by this technique might
not be noticeable. For larger domains, the reduction in execution can become
significant.

– The existence of a witness: If the correctness property has a witness (an ex-
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ample or counterexample) within the bounded domain, verification can stop
as soon as it is found, without having to explore the entire domain. In this
scenario, reducing the size of the bounded domain may have little impact
in the verification time. In contrast, bound tightening will be most effective
when there are no witnesses or the verification space contains a low rate of
witnesses.

– The number (and strictness) of constraints in the model: If the model has
few or weak constraints (e.g. multiplicities “0..*”), this approach may fail
to reduce bounds in a noticeable way. Conversely, tightening will be most
effective for highly constrained models.

That is, the benefits of our approach are most noticeable in the models that
take longer to verify, which are the ones where the user can benefit most from a
speedup. Furthermore, in models where bound tightening does not produce any
speedup, the overhead it incurs is negligible. For these reasons, bound tightening
can be a valuable addition to any bounded verification framework for UML/OCL.

6.7 Conclusions

In this chapter, we have introduced a novel technique to improve the bounded
verification of UML/OCL models. This approach aims to assist users in the selec-
tion of verification bounds, a task which currently lacks adequate tool support.

The proposed method operates by translating the UML/OCL model into a CSP
that captures the graphical UML restrictions and the textual OCL invariants. The
translation abstracts all information which cannot be used to infer domain bounds.
Then, interval constraint propagation techniques are used to tighten the domain
bounds. Applying constraint propagation is much faster than verifying the model
and the smaller bounds can reduce the verification time significantly. This speedup
has been shown experimentally in several models verified using the SAT-based USE
tool.

This approach can be used in two different ways: as a preprocessing stage before
verification, or as part of an interactive process to guide the choice of bounds.
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7
Landscape of Model Transformation
Testing Approaches

After discussing several mechanisms to improve static model verification tools,
in Part III the focus is on how these tools, and in particular EMFtoCSP, can be used
at the time of testing model transformations, one of the key elements of MDE-based
software development approaches.

As it was the case in Part II, the first chapter of Part III is devoted to present
the state of the art on the matter. To begin with, some generalities about model
transformation testing are exposed, and right after that, existing approaches, as of
this writing, are analyzed. Finally, some areas of improvement are identified and
discussed. How to address some of them will be the objective of the rest of chapters
in this part.

7.1 Generalities About Model Transformation Test-
ing

Writing model transformations is a delicate, cumbersome and error-prone task.
In general, MDE-based processes are very sensitive to the introduction of defects.
A defect in a model or a model transformation can be easily propagated to the
subsequent stages, thus causing the production of faulty software. This is especially
true when developing systems of great size and complexity, which usually requires
writing large chains of complex model transformations.

In order to alleviate the impact defects can cause, a great deal of effort has been

95
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made to find mechanisms and techniques to increase the robustness of MDE-based
processes. Thus far, these efforts have been centered on trying to somewhat adapt
well-known approaches, such as testing or verification, to the reality of models and
model transformations of MDE (see [123], [124] or [125] for recent surveys). This
has resulted in the appearance of a series of testing and verification techniques,
specifically designed to target model transformations.

The techniques available to test a model transformation can be classified in the
same way that those employed in, let’s say, more traditional testing approaches.
That is, static analysis techniques like code inspections or walkthroughs can be
used to review the model transformation source code without having to executed it,
but dynamic analysis techniques requiring model transformation execution can be
employed as well.

In the rest of the chapter, when talking about test model generation, we will
focus on this second group. When dynamic analysis techniques are applied, the
methodology is essentially the same followed in traditional testing approaches. That
is:

– Determine the adequate input test data to test the model transformation with.
– Run the model transformation with the input data obtained from the first

stage.
– Analyze the outputs yielded by the model transformation execution to detect

the presence of errors.

Again, different strategies can be followed at the time of conducting the testing
process, being black-box and white-box approaches the most popular ones. Black-
box approaches generate input test data (henceforth test models) out of the analysis
of the model transformation specification, and white-box approaches do the same
out of the analysis of the model transformation internals. As it is the case when
testing software developed using “more traditional” means, mixed strategies like
the one sketched in Fig. 7.1, are encouraged. However, and independently of the
strategy followed, testers need a mechanism to decide which elements (either from
the specification in the case of black-box approaches, or from the model transfor-
mation internals in the case of white-box approaches) will be the focus of testing.
This mechanism, which is typically known as “test adequacy criteria” or “cover-
age criteria”, serves two purposes. It steers the test model generation process, and
determines the desired intensity of the testing efforts. The expression “coverage
criteria” comes from the fact that steering the test model generation process implies
determining which parts of the specification (in the case of black-box approaches),
or which parts of the model transformation internals (in the case of white-box ap-
proaches), will be “covered” by the generated test models. Obviously, the desired
scenario here is to achieve a 100% degree of coverage, but normally this is not pos-
sible because of practical reasons. A test adequacy criterion can also be seen as a
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Figure 7.1: Mixed approach to model transformation testing

stopping rule for the testing process [126].

When it comes to the third step, the analysis of the output to uncover errors, it is
typical the utilization of oracles. As stated in Chapter 2, an oracle is any program,
process or body of data that specifies the expected outcome for a set of test cases as
applied to a tested object [35]. In the case of model transformation testing, oracles
are usually implemented in the form of model comparison approaches, in those
cases where the expected output model is available, or, if that is not the case, by
means of some kind of “contract” that validates the output with respect to an existing
specification, or a set of post-conditions the output model must fulfill.

In the following section, the focus is on the description of existing approaches
addressing the problem of test model generation. The same is done immediately
afterward, with those approaches focusing on the construction of oracles.

7.2 Generation of Test Models

7.2.1 Black-box Approaches

The majority of existing test model generation approaches follow a black-box
strategy where the model transformation specification is somehow analyzed to steer
the generation process. In particular, in these cases is typical to analyze the model
transformation’s input metamodel, with the intent of generating a set of test models
representative of its instance space, something known as metamodel coverage. The
problem though, is that a metamodel’s instance space is usually infinite, so what
the majority of these methods really do is to use partition analysis [127] to identify
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non-empty and disjoint regions of the instance space where models share the same
features, and then, create one test model out of each region identified.

Although not related to model transformation testing, to the best of our knowl-
edge, the first attempt of using partition analysis to derive test models out of UML
class diagrams was made by Andrews et al. [128]. In this work, partition analysis is
employed to identify representative values of attributes and association ends multi-
plicities to steer the generation of test models. The work of Andrews et al. served as
inspiration for the black-box test model generation approach proposed by Fleurey
et al. [129] where the partition analysis of [128] is used to identify representative
values of the model transformation’s input metamodel. Once these representative
values are found, they are used during the test model generation stage. Test models
are generated by means of an adaptation of a genetic algorithm called “bacterio-
logic algorithm” [130, 131]. The authors also propose an enhancement of the pro-
cess based on the concept of “effective metamodel”. They coined this expression
to make reference to those sections of the model transformation’s source and target
metamodels that are really relevant for the transformation. The idea is that, if the
effective metamodel is provided as an input for the test model generation process,
then non-relevant sections of the model transformation’s input metamodel will not
be considered during the process.

The work of Fleurey et al. influenced a number of proposals in this field.
In [132], Brottier et al. proposed a variation of the approach described in [129]
based on the utilization of “model fragments”. Model fragments are, in the authors’
words, “interesting object structures” from the model transformation’s input meta-
model, that are worth being covered by the generated test models. The proposed
approach assumes that these model fragments are provided by the tester. Later
on, Fleurey et al. [133] combined the concepts in [129] and [132] to develop a
framework called Metamodel Coverage Checker (MMCC) 1 aimed at assessing the
quality of the generated test models, based on the analysis of different coverage
criteria.

Also influenced by [129] and [128] is the work of Maher Lamari [134] which
proposes a formal language called MTSpecL for the specification of model trans-
formations. This language is accompanied by a tool that allows computing effective
metamodels for the model transformation’s source and target metamodels, as well
as representative values. This information is used during the test model generation
stage, which is also supported.

Another black-box mechanism was proposed by Sen et al. [135]. An interest-
ing feature of this approach is that the generation of test models is based on the
resolution of a SAT problem by means of Alloy [97] 2. In this approach, different

1. http://www.irisa.fr/triskell/Software/protos/MMCC
2. http://alloy.mit.edu/alloy/
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types of constraints expressed in first-order relational logic are derived out of the
analysis of model transformation specifications. These constraints are then used to
build a boolean satisfiability problem, which is solved by means of a SAT solver
at the time of generating the test models. More particularly, these constraints are
derived from the model transformation’s input metamodel, a set of model transfor-
mation pre-conditions written in OCL, and model fragments obtained by using the
tool MMCC mentioned before. It is also possible to define additional constraints
expressed directly as first-order relational logic predicates, to better adjust the test
model generation process. The approach is supported by the presence of a tool
called “Cartier”. This work was complemented with an approach [136], based on
mutation analysis [137], where generated test models are evaluated in terms of their
efficiency at the time of uncovering bugs.

Also based on the utilization of a logic encoding is the approach proposed
in [138]. In this work, the authors focus on the presentation of a constructive logic
encoding of metamodels described in the MOF 3 language. At the time of gen-
erating test models, the encoded metamodel, along with a model transformation
pre-condition expressed in the same constructive logic, are fed into a solver. Some
experiments using Prolog are shown as a proof of the feasibility of the approach.

Continuing with black-box test model generation approaches based on the uti-
lization of some kind of solver, [139, 140] propose a mechanism based on the uti-
lization of UMLtoCSP [45] for the generation of test models. In this approach,
a visual language called PAMOMO (Pattern-based Model-to-Model Specification
Language) [141], member of a family of modeling languages presented in [142],
is employed to write the specification of a model transformation. That specifica-
tion may contain pre-conditions that the model transformation’s input model must
hold, post-conditions that the model transformation’s output model must hold, and
invariants, establishing some kind of relationship between model transformation’s
input and output models. Once the specification has been written, the next step is
to generate a number of OCL assertions out of it. These OCL assertions along with
the model transformation’s input metamodel constitute the constraints that every
generated test model must fulfill. These constraints are then complemented with
an additional OCL expression built according to a specific coverage criteria to be
chosen among the seven proposed. This OCL expression, along with the ones de-
rived from the specification, and the input metamodel, are then fed to UMLtoCSP
for the generation of one test model. UMLtoCSP will check if it is possible to build
a model conforming the model transformation’s input metamodel and holding at
the same time the additional OCL constraints. If so, the result will be a test model
fulfilling all these constraints. More test models can be obtained if the process is
repeated a number of times, each time making some variation during the application

3. http://www.omg.org/spec/MOF/
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of the coverage criteria of choice, so that the resulting OCL expression differs from
the ones obtained in previous executions of the method.

To finish with black-box approaches, Vallecillo et al. [143,144] presented a pro-
posal based on the concept of “Tract” (a generalization of the concept of model
transformation contract [145, 146]), where test models are generated by means of a
language called ASSL, part of the USE tool 4, taking advantage of the constraints
defined in these tracts. This proposal has been expanded by Wimmer and Bur-
gueño [147,148], to also cover the testing of model-to-text and text-to-model trans-
formations.

7.2.2 White-box Approaches

Compared to the number of black-box test model generation proposals, the num-
ber of existing white-box approaches is rather small.

Fleurey et al. [129] propose a white-box enhancement of the black-box approach
presented at the beginning of the previous subsection. Essentially, the only varia-
tion is that the method now performs a static analysis of the model transformation
to compute its effective metamodel and representative values. This information is
then used to generate the test models. The method is described at a high-level of
abstraction, without focusing on any model transformation language.

Küster et al. [149] also propose three different white-box based testing tech-
niques. However, these techniques rely on the analysis of model transformations
expressed as a high level and non executable semi-formal description built using
the IBM WebSphere Business Modeler 5. In the first technique, model transfor-
mations rules are analyzed to create metamodel templates, that are automatically
instantiated to generate suitable test models. The second technique generates test
models with the intent of exercising well-formedness constraints, defined in the
model transformation’s input metamodel, that can be violated by the interplay of
several transformation rules. More specifically, the process consists in finding those
model elements from the model transformation’s input metamodel that are sensitive
to the model transformation rules, and then identifying the well-formedness con-
straints that apply on these model elements. For each of these constraints, a new
test model is built. Finally, the third approach proposed consists in the analysis of
pairs of rules to construct test models that lead to the detection of confluence errors.

Wang et al. [150] also propose a tool for the automatic generation of test mod-
els following a white-box approach. The work builds on the concepts introduced
by [129] (effective metamodel and representative values) and presents a tool which
is capable of identifying effective metamodels and representative values out of the

4. http://sourceforge.net/projects/useocl/
5. http://www.ibm.com/developerworks/downloads/ws/wbimod/
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analysis of model transformation rules expressed in the Tefkat transformation lan-
guage 6. This information is used during the test model generation stage, which is
also supported.

White-box techniques can also be used in coverage analysis, to measure the
quality of the generated test models. Regarding this, [151] proposes a number of
white-box coverage measures for ATL transformations, namely rule coverage, in-
struction coverage and decision coverage, that are used to check how a number of
test models cover ATL transformations. Although no generation of test model is
proposed, the approach could be useful to check the quality of the tests generated
with any other approach, especially for model transformations where the designer
may want to limit the number of test models generated.

7.3 Oracle Construction

After the description of approaches devoted to the generation of test models, in
this section the focus is on those ones devoted to the construction of oracles.

The importance of an oracle lies on the fact that it is the element that allow
testers to find out whether the testing experience uncovered any errors or not. As
it was mentioned before, oracles usually take the form of model comparison ap-
proaches, or mechanisms to check whether the output model satisfies a series of
desired constraints. In this second case, these constraints are normally derived from
some kind of model transformation “contract” where pre- and post-conditions about
the models involved in the model transformation are stated. These oracles are typi-
cally referred to as “partial oracles”.

Some of the approaches devoted to the generation of test models, described in
the previous section, also propose mechanisms for the construction of oracles. In
the majority of cases, they build model transformation contracts that are then ex-
ploited to derive constraints that model transformation’s output models must fulfill.
For example, Maher Lamari [134] claims that the formal language MTSpecL for
the specification of model transformations, is also useful for the generation of in-
variants relevant for target models, or for both, source and target models combined.
Unfortunately, how these invariants would be generated is not described in detail.
Similarly, the work of Fiorentini et al. [138] also covers succinctly how their ap-
proach can be expanded to check whether output models satisfy model transforma-
tion post-conditions. Analogously the proposal of Vallecillo et al. [143, 144] based
on the concept of “Tract”, can be used to check the presence of errors in model
transformations. Tracts define, among others, constraints on output models, and
on the relationship among input and output models. These constraints, along with

6. http://tefkat.sourceforge.net/
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the ones in the model transformation’s output metamodel, can be used to check the
correctness of output models by means of the USE tool. Finally, the approach of
Guerra et al. [139, 140] also supports the construction of oracles. In this case, the
constraints that model transformations must fulfill are expressed using the visual
language PAMOMO, which can be compiled into OCL [141].

Among the few specific approaches devoted to the construction of oracles, Car-
iou et al. [152] propose a mechanism to check the correctness of a model transfor-
mation with respect to model transformation contracts expressed in OCL. However,
the authors put the focus on detailing how these contracts are built [153], rather than
on explaining how to build the oracle itself, out of the constraints in the contract. In
their words, once the contract is built, it suffices to use a standard OCL evaluator
on the model transformation’s output model to check whether the constraints in the
contract are fulfilled or not.

Mottu et al. have also explored the oracle construction issue. In [154] they
briefly describe at a high level of abstraction up to 6 different techniques to build
an oracle. The same authors have also presented a proposal for the enhancement
of model transformation contracts expressed in OCL, by means of mutation analy-
sis. [155].

As it was mentioned before, oracles relying on the notion of model transforma-
tion contract are usually known as partial oracles, since they are only valid to check
whether the output model fulfill a certain number of properties, normally expressed
in the form of constraints. However, this is not the only strategy available to build
oracles. For example, model comparison techniques has been identified as a major
task in model transformation testing by [156].

Lin et al. [157] propose a testing framework integrated with the C-SAW model
transformation engine, equipped with model comparison capabilities. In this frame-
work, the transformation language is an extension of OCL called Embedded Con-
straint Language (ECL). When an ECL model transformation is tested, and given
that the expected output model must be provided, the tool is capable of highlighting
the differences between the actual and expected output models.

Finot et al [158] also propose using model comparison techniques when only a
part of the expected model is available. In this approach, when a model transforma-
tion is tested, the actual output model is compared to a partial representation of the
expected output model. In order to make it work, the tester must provide, apart from
the partial representation of the expected output model, a set of patterns indicating
which parts of the output model must be ignored during the comparison. The ratio-
nale behind this is simple. The partial representation of the expected output model
is considered the part of the model that the tester is capable to predict. The patterns
represent the rest of the model, that is, the unpredictable part that should not be
considered when running the oracle. The authors also provide an implementation
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of the approach, where EMFCompare 7 is used to carry out the model comparison.

EMFCompare is also used in the EUnit testing framework [159] for model trans-
formations written in the Epsilon Transformation Language (ETL) 8. In this frame-
work, the philosophy to test a model transformation is similar to that of the JU-
nit testing framework 9. A similar approach is proposed in [160], although in this
case, the expected output model is transformed into assertions and the actual one is
checked against them.

Finally, in [161], instead of implementing a JUnit-like framework, the proposal
is to extend and adapt JUnit itself to support the testing of model transformations
serialized in XML according to the XMI specification 10.

7.4 Challenges and Areas of Improvement

After having introduced the state of the art, in this section we will enumerate
some of the challenges identified.

The first challenge has to do with the nature of the data involved in the testing
process. Models tend to be complex and large structures conforming to metamodels
that, in their turn, are also large and complex, and are possibly enriched with well-
formedness rules expressed in some kind of constraint language, like OCL. This
complexity affects test data generation and oracle construction mechanisms.

In the particular case of test model generation, model complexity turns it into
a constraint solving problem, because it normally implies searching for a graph-
like structure satisfying a, probably large, number of constraints in a, also proba-
bly large, search space. Admittedly, the number of existing approaches devoted to
tackle this problem is not precisely large.

Additionally, an important number of test model generation approaches based
on the utilization of black-box strategies, are also based on the utilization of the
partition analysis technique proposed by Andrews et al. [128]. The problem with
this is that this technique only considers OCL constraints superficially at the time
of building partitions. This means that, approaches influenced by this work do not
typically exploit properly the presence of OCL constraints in the model transforma-
tion’s input metamodel, thus ignoring a valuable source of information that could
help to achieve a better coverage. Unfortunately, the utilization of constraint or SAT
solvers during test model generation is not free of inconveniences, either. Actually,
this turns the test model generation problem into the same kind of problem studied
in Part II, devoted to static model verification approaches, so challenges discussed

7. http://www.eclipse.org/emf/compare
8. http://www.eclipse.org/epsilon/
9. http://junit.org/

10. http://www.omg.org/spec/XMI/



104 CHAPTER 7. LANDSCAPE OF MODEL TRANSFORMATION TESTING

there apply here as well.

There is also room for improvement when it comes to test model generation ap-
proaches based on the utilization of white-box strategies. The first obvious problem
is that the number of existing approaches is really small. Moreover, the coverage
criteria employed in these approaches is the same that is typically used in black-box
approaches, that is, the coverage of the model transformation’s input metamodel.
There is nothing wrong with this, but since these kind of approaches are based on
the analysis of model transformation internals, they should take advantage of this
to try to cover the model transformation itself. After all, since there are already
black-box approaches for covering the model transformation’s input metamodel, it
is always possible to combine different testing strategies to maximize the degree of
coverage of the different artifacts involved in a model transformation. Finally, it
is also important to mention that the existing approaches do not focus on popular
model transformation languages like ATL or QVT.

When it comes to oracle construction, apart from the challenges derived from
the complex nature of models, there are some others that are worth mentioning.
Starting with approaches based on model comparison, it is obvious that is not always
possible to have the expected output model available. And, even though if that
model is available, model comparison is a complex problem in itself, equivalent to
computing the graph isomorphism problem, which is a well-known NP-Complete
problem [162]. This makes difficult to conduct model comparison in an efficient
manner.

Oracle construction approaches based on the utilization of some kind of contract
also present some inconveniences. The first one has to do with the construction of
the contracts themselves, since stating the relationship between input and output
models can be as complex and error-prone as writing the model transformation
itself. Another problem is that these approaches do not normally check the out-
put model exhaustively, but just the compliance to a number of desired properties.
Moreover, and despite the number of properties checked, the problem in this case
is, again, similar to the one discussed in Part II.

To finish, the last challenge we would like to mention has nothing to do with the
approaches mentioned here, but with the current level of maturity of MDE tools.
Compared to state-of-the-art tools employed in traditional software development,
MDE tools do not show the same level of sophistication. Moreover, the integration
of the available tools can be difficult or directly impossible to achieve. In general,
MDE tools improve slowly, but still, more and better tools are needed. The presence
of better tools may also facilitate the appearance of new and more effective testing
approaches.

Our enhancement proposals are based on the test model generation stage. In
particular, we propose two test model generation approaches, one following a black-
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box strategy, and the other following a white-box one. Our black-box approach is
based on conducting a partition analysis out of the analysis of the OCL constraints in
the model transformation’s input metamodel. As it was mentioned before, existing
approaches based on partition analysis only exploit OCL constraints superficially.
The white-box proposal tries to maximize the coverage of ATL model transfor-
mation internals. Existing white-box approaches neither focus on maximizing the
coverage of model transformation internals nor cover popular model transformation
languages like ATL. In both cases, the EMFtoCSP tool presented in Chapter 4 is
used for the actual generation of test models.

7.5 Conclusions

In this chapter the current state of the art on model transformation testing has
been presented. The different approaches have been described, some areas of im-
provement have been identified, and some enhancement proposals have been made.
In the rest of chapters of Part III we will delve more into these proposals, starting
with our black-box approach for the generation of test models.





8
A Black-box Test Model Generation
Approach Based on Constraint and
Partition Analysis

8.1 Motivation

Category-partition testing [127] consists in partitioning the input domain of the
element under test, and then selecting test data from each class in the partition. This
is a technique that an important number of the existing black-box test model gen-
eration approaches apply over the model transformation’s input metamodel. The
challenge when using partition analysis, though, is building the best partition possi-
ble. Since one test model is usually created out of each region identified, partitions
should be small enough, so that all the models from the same region are as homoge-
neous as possible (meaning that, the sample model from that region can be used to
represent all models from that same region, thus reducing the number of test models
needed to get a sufficient confidence level on the quality of the transformation). Ex-
isting approaches address this by taking advantage of the fact that input metamodels
usually come in the form of UML class diagrams complemented with constraints
expressed in OCL. Therefore, partition analysis focuses on elements like association
multiplicities, attributes values or OCL constraints to partition the model. However,
in this last case, current approaches tend to be very superficial, either focusing only
on simple OCL constraints, or deriving just obvious regions that do not require a
deep analysis. This limits the representativeness of the generated test models and
also the degree of coverage achieved when dealing with non-trivial metamodels.
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As an example of this, Fig. 8.1(a) shows a metamodel describing the relation-
ship between research teams and the papers they submit for publication. A simple
partition analysis would try to exploit the presence of a numerical value in the OCL
invariant stating that every team must have more than 10 submissions accepted.
However, that alone is not enough to generate an interesting partitioning. A more
fine-grained analysis of the constraint would reveal that beyond testing the trans-
formation with teams with more than 10 accepted submissions, the transformation
should also be tested using an input model with teams with more than 10 accepted
submissions, and at least one rejected one. This conclusion is reached by analyzing
the “select” condition in the OCL expression (more details on this later on). Fig.
8.2 shows the difference in the output produced by both analyses. Obviously, the
second one exercises more the transformation and therefore may uncover errors not
detected when using only the first one.

(a)

(b)

Figure 8.1: Two versions of the metamodel for the examples used throughout the
paper.

In this chapter, we present a mechanism for the generation of input test models
based on a combination of constraint and partition analysis over the OCL invariants
of the model transformation’s input metamodel. The method covers a substantial
amount of OCL constructs and offers up to three different test model generation
modes. Besides, it can be used in isolation, or combined with other black-box or
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(a)

(b)

Figure 8.2: Results of two different partition analyses over the metamodel example.

white-box approaches to enhance the testing experience.

8.2 The Method in a Nutshell

Fig. 8.3 depicts how our method works. The model transformation’s input
metamodel characterizes a certain domain, and its instance space, possible inputs
for the transformation. In the figure, dashed arrows indicate what characterizes cer-
tain elements, whereas solid arrows are data flows. When generating test models,
the component called “OCL Analyzer” partitions the metamodel’s instance space
by analyzing its OCL invariants. As a result, a series of new OCL invariants char-
acterizing the regions of the partition are obtained. This information, along with the
input metamodel is then given to the “Test Model Generator” component, based on
the EMFtoCSP tool, for the actual creation of the test models.
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Figure 8.3: Overall picture

8.3 OCL Analysis

In this section, we begin the description of how to identify partitions in the
input metamodel’s instance space, focusing on the first step: analyzing the OCL
invariants in the input metamodel to generate new OCL invariants characterizing
suitable regions of the instance space. Next section uses these constraints to create
the actual partitions.

Firstly, we talk about the OCL constructs supported by the method. After that,
we describe how to systematically analyze complex OCL invariants made up by
arbitrary combinations of the supported constructs.

8.3.1 OCL Constructs Supported

The supported OCL constructs have been classified in five groups and presented
here in tabular form. The first group corresponds to expressions involving the pres-
ence of boolean operators (Table 8.1). The second group is about expressions
formed by a boolean function operating over the elements of a collection (Table
8.2). The third group includes those boolean expressions involving the presence
of arithmetic operators (Table 8.3). The fourth group contains other non-boolean
expressions, that can be part of more complex boolean expressions (Table 8.4).
Finally, the last group (Table 8.5) shows equivalent expressions for boolean expres-
sions from Tables 8.1, 8.2 and 8.3 when they are negated.

Tables 8.1, 8.2, 8.3 and 8.4 share the same structure. For any given row, the
second column contains a pattern. Analyzing an OCL invariant implies looking for
these patterns, and every time one of them matches, the information in the third col-
umn indicates how to derive new OCL expressions characterizing suitable regions
in the instance space. A dash (-) indicates that no new OCL expressions are derived.
The rationale behind a given pattern and the expressions in the “Regions” column
is simple: the pattern represents the invariant that the model must hold, and the
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information in the “Regions” column are more refined expressions that must also
hold when the pattern holds. For example, the entry 1 in Table 8.1 indicates that the
pattern expression holds if the two subexpressions evaluate to the same value. The
subexpressions in the “Regions” column indicate that there are two possibilities for
this: either both are true, or both are false.

Table 8.5 is slightly different, though, and that has to do with how the method
deals with negated expressions. Each time a negated expression is found, it must
be substituted by an equivalent non-negated expression before any new regions can
be identified. Second column in the table shows boolean expressions from Tables
8.1, 8.2 and 8.3. The third column contains the equivalents to these expressions
when they are negated. In some cases, the substitution process must be applied
recursively since, for some expressions, the negated equivalent can also contain
negated subexpressions.

Table 8.1: Expressions Involving Boolean Operators

Pattern Regions
1 BExp1 = BExp2 BExp1 = FALSE AND BExp2 = FALSE

BExp1 = TRUE AND BExp2 = TRUE
2 BExp1 AND BExp2 BExp1 = TRUE AND BExp2 = TRUE
3 BExp1 OR BExp2 BExp1 = FALSE AND BExp2 = TRUE

BExp1 = TRUE AND BExp2 = FALSE
BExp1 = TRUE AND BExp2 = TRUE

4 BExp1 XOR BExp2 BExp1 = FALSE AND BExp2 = TRUE
BExp1 = TRUE AND BExp2 = FALSE

5 BExp1 <> BExp2 BExp1 = TRUE AND BExp2 = FALSE
BExp1 = FALSE AND BExp2 = TRUE

6 Class.BAttr = TRUE Class :: AllInstances()→ forAll(c| c.BAttr = TRUE)
7 Class.BAttr = FALSE Class :: AllInstances()→ forAll(c| c.BAttr = FALSE)

8.3.2 Analyzing OCL Expressions

Typically, real-life OCL invariants will be composed by combinations of some
of the patterns described above. In the following we describe how to process some
of these combined expressions, in particular, the focus is on the OCL expressions
that can be characterized as source→ operation(argument). For the case of more
complex expressions, involving boolean (AND, OR, ...) or logical operators (≤, >,
...), the process is essentially the same.

1. Find a pattern matching the whole invariant. If not found, end here.

2. Generate the new OCL expressions corresponding to the pattern matched.

3. Find a pattern matching the “source” expression.

4. If found, generate the OCL expressions corresponding to the pattern matched.

5. Repeat the process recursively over the subexpressions in the “source” ex-
pression, until no more matchings are found.
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Table 8.2: Expressions Featuring Boolean Functions in the Context of a Collection

Pattern Regions
1 col→ exists(body) col→ forAll(body)

col→ exists(NOT body)
2 col→ one(body) col→ size() = 1

col→ size() > 1
3 col→ forAll(body) col→ isEmpty()

col→ notEmpty()
4 col→ includes(o) col→ count(o) = 1

col→ count(o) > 1
5 col→ excludes(o) col→ isEmpty()

col→ notEmpty()
6 col1 → includesAll(col2) col1 → size() = col2 → size()

col1 → size() > col2 → size()
7 col1 → excludesAll(col2) col1 → isEmpty() AND col2 → notEmpty()

col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

8 col→ isEmpty() −
9 col→ notEmpty() −

6. Find a pattern matching the “argument” expression.

7. If found, generate the OCL expressions corresponding to the pattern matched.

8. Repeat the process recursively over the subexpressions in the “argument” ex-
pression, until no more matchings are found.

9. Once the matching phase finishes, every constraint from each matching group
is AND-combined with each one in the rest of the groups. This way, the
final list of OCL expressions is obtained. Each of these OCL expressions
characterizes a region of the input metamodel’s instance space.

As an example, Fig. 8.1(b) shows another version of the metamodel describing the
relationship between research teams and the papers they submit. It includes two
OCL invariants. The first one states that the members of a team do not review their
own papers, and the second one says that at least one of the teams must have at least
one submission.

The analysis starts with the first invariant. It features a “forAll” operation match-
ing entry 3 in Table 8.2. That entry says that the instance space can be divided in
two regions. The region of models with no teams, and the one of models with any
number of teams except zero. They can be characterized as:

context Team inv inv1: Team::AllInstances()−>isEmpty() (A1.1)
context Team inv inv2: Team::AllInstances()−>notEmpty() (A1.2)

Now, a pattern matching the “argument” of the “forAll” operation is searched.
Entry 7 in Table 8.2 matches. Since the expression is embedded as the argument of
a higher level operator, its context must be identified to build the new OCL expres-
sions properly. By doing this, the following OCL constraints are obtained:
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Table 8.3: Boolean Expressions Involving Arithmetic Operators

Pattern Regions
1 col1 → size() = col2 → size() col1 → isEmpty() AND col2 → isEmpty()

col1 → notEmpty() AND col2 → notEmpty()
2 col1 → size() = NUM −
3 col1 → size() <> col2 → size() col1 → size() > col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → size() < col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

4 col→ size() <> NUM AND col→ size() > NUM
NUM <> 0 col→ notEmpty() AND col→ size() < NUM

col→ isEmpty()
5 col1 → size() >= col2 → size() col1 → isEmpty() AND col2 → isEmpty()

col1 → notEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()

6 col→ size() >= NUM col→ size() > NUM
col→ size() = NUM

7 col1 → size() > col2 → size() col2 → isEmpty()
col2 → notEmpty()

8 col→ size() > NUM −
9 col1 → size() <= col2 → size() col1 → isEmpty() AND col2 → isEmpty()

col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()

10 col→ size() <= NUM AND col→ size() < NUM
NUM <> 0 col→ size() = NUM

col→ isEmpty()
11 col1 → size() < col2 → size() col1 → isEmpty()

col1 → notEmpty()
12 col→ size() < NUM col→ isEmpty()

col→ notEmpty()
13 col→ count(o) > NUM col→ excluding(o)→ isEmpty()

col→ excluding(o)→ notEmpty()
14 col→ count(o) = NUM col→ excluding(o)→ isEmpty()

col→ excluding(o)→ notEmpty()
15 col→ count(o) < NUM col→ isEmpty()

col→ notEmpty() AND
col→ excluding(o)→ notEmpty()

col→ notEmpty() AND
col→ excluding(o)→ isEmpty()

16 Class.NumAttr > NUM Class :: AllInstances()→
forAll(c| c.NumAttr > NUM)

17 Class.NumAttr < NUM Class :: AllInstances()→
forAll(c| c.NumAttr < NUM)

18 Class.NumAttr = NUM Class :: AllInstances()→
forAll(c| c.NumAttr = NUM)

context Team inv inv3: Team::AllInstances()−>forAll(t |
t.papersReviewed−>isEmpty() and t.papersSubmitted−>NotEmpty()) (A2.1)

context Team inv inv4: Team::AllInstances()−>forAll(t |
t.papersReviewed−>isEmpty() and t.papersSubmitted−>isEmpty()) (A2.2)

context Team inv inv5: Team::AllInstances()−>forAll(t |
t.papersReviewed−>NotEmpty() and t.papersSubmitted−>NotEmpty()) (A2.3)
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Table 8.4: Other OCL Functions

Pattern Regions
1 col→ select(body) col→ forAll(body)

col→ exists(NOT body)
2 col→ reject(body) col→ forAll(NOT body)

col→ exists(body)
3 col→ collect(body) AND col→ forAll(body)

body.oclIsTypeOf(boolean) col→ exists(NOT body)
4 col1 → union(col2) col1 → isEmpty() AND col2 → isEmpty()

col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

5 col1 → intersection(col2) col1 = col2
col1 → includesAll(col2) AND

col1 → size() > col2 → size()
col2 → includesAll(col1) AND

col2 → size() > col1 → size()
col1 <> col2

6 col→ excluding(o) col→ isEmpty()
col→ notEmpty()

7 col→ subsequence(l, u) col→ size() = u − l
col→ size() > u − l

8 col→ at(n) col→ size() = n
col→ size() > n

9 col→ any(body) col→ forAll(body)
col→ exists(NOT body)

context Team inv inv6: Team::AllInstances()−>forAll(t |
t.papersReviewed−>NotEmpty() and t.papersSubmitted−>isEmpty()) (A2.4)

With this, the matching phase over the first invariant is over. The rest of elements
in the invariant do not match any pattern. Now, the resulting two groups (A1.X and
A2.X) must be combined. This produces the following list of expressions:

context Team inv inv7: Team::AllInstances()−>isEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>isEmpty()
and t.papersSubmitted−>NotEmpty()) (A3.1)

context Team inv inv8: Team::AllInstances()−>isEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>isEmpty()
and t.papersSubmitted−>isEmpty()) (A3.2)

context Team inv inv9: Team::AllInstances()−>isEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>NotEmpty()
and t.papersSubmitted−>NotEmpty()) (A3.3)

context Team inv inv10: Team::AllInstances()−>isEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>NotEmpty()
and t.papersSubmitted−>isEmpty()) (A3.4)

context Team inv inv11: Team::AllInstances()−>NotEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>isEmpty()
and t.papersSubmitted−>NotEmpty()) (A3.5)
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Table 8.5: Boolean Expressions And Their Negated Equivalents

Pattern Negated Equivalent
1 BExp1 = BExp2 BExp1 <> BExp2
2 BExp1 AND BExp2 NOT BExp1 OR NOT BExp2
3 BExp1 OR BExp2 NOT BExp1 AND NOT BExp2
4 BExp1 XOR BExp2 BExp1 = BExp2
5 col1 → exists(body) col1 → forAll(NOT body)
6 col1 → one(body) col1 → select(body)→ size() <> 1
7 col1 → forAll(body) col1 → exists(NOT body)
8 col1 → includes(o) col1 → excludes(o)
9 col1 → isEmpty() col1 → notEmpty()
10 col1 → size() = col2 → size() col1 → size() <> col2 → size()
11 col1 → size() > col2 → size() col1 → size() ≤ col2 → size()
12 col1 → size() < col2 → size() col1 → size() ≥ col2 → size()
13 col→ size() ≤ NUM AND NUM <> 0 col→ size() > NUM
14 col→ size() <> NUM AND NUM <> 0 col→ size() = NUM
15 col→ size() = NUM (col→ size() > NUM) OR

(col→ size() < NUM)
16 col→ size() > NUM (col→ size() = NUM) OR

(col→ size() < NUM)
17 col→ count(o) > NUM (col→ count(o) < NUM) OR

(col→ count(o) = NUM)
18 col→ count(o) = NUM (col→ count(o) < NUM) OR

(col→ count(o) > NUM)
19 col→ count(o) < NUM (col→ count(o) = NUM) OR

(col→ count(o) > NUM)
20 Class.NumAttr > NUM (Class.NumAttr < NUM) OR

(Class.NumAttr = NUM)
21 Class.NumAttr < NUM (Class.NumAttr > NUM) OR

(Class.NumAttr = NUM)
22 Class.NumAttr = NUM (Class.NumAttr < NUM) OR

(Class.NumAttr > NUM)

context Team inv inv12: Team::AllInstances()−>NotEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>isEmpty()
and t.papersSubmitted−>isEmpty()) (A3.6)

context Team inv inv13: Team::AllInstances()−>NotEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>NotEmpty()
and t.papersSubmitted−>NotEmpty()) (A3.7)

context Team inv inv14: Team::AllInstances()−>NotEmpty() and
Team::AllInstances()−>forAll(t | t.papersReviewed−>NotEmpty()
and t.papersSubmitted−>isEmpty()) (A3.8)

With this, the analysis of the first invariant is finished. The analysis of the second
invariant is analogous and yields the constraints in the group B1.X.

context Team inv inv15: Team::AllInstances()−>forAll(t |
t.papersSubmitted−>NotEmpty()) (B1.1)

context Team inv inv16: Team::AllInstances()−>exists(t |
not t.papersSubmitted−>NotEmpty()) (B1.2)
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Putting all together, the analysis of the two invariants in the model of Fig. 8.1(b)
yielded the groups of constraints A3.X and B1.X, respectively. Each constraint in
these groups characterizes a region of the instance space. They will be the input for
the test model generation phase, described in the next section.

Finally, it is important to mention that the analysis of OCL invariants is not free
from inconveniences. From the example, it can be easily seen that some of the gen-
erated constraints could be simplified (for example in A3.1, if there are no “Team”
instances, then there is no need to check the subexpression at the right of “and”).
More importantly, some of the constraints produced in the combination stage could
be inconsistent. These problems can be addressed in two different ways: adding a
post-processing stage at this point to “clean” the constraints obtained, or addressing
them directly during the test model creation stage (our preferred alternative, as we
explain in the next section).

8.4 Partition Identification and Test Models Genera-
tion

This section details the identification of partitions and the generation of test
models from the sets of constraints obtained in the previous step. Our approach
provides three different alternatives depending on the effort the tester wants to invest
to ensure the absence of overlapping test models.

8.4.1 Single Mode

As shown before, the analysis of one OCL invariant yields a list of new OCL
expressions, each one characterizing a region of the instance space. It cannot be
guaranteed though, that these regions do not overlap (that is, that they constitute
a partition). Looking back at the example, this means that the regions in A3.X
might overlap, and the same goes for the regions in B1.X (we have two groups here
because we had analyzed two invariants). Fig. 8.4(a) and 8.4(b) illustrate the best-
and worst-case scenarios when three regions are identified from the analysis of a
given invariant. In the worst case, a generated test model to cover, for example,
region 4, could indeed “fall into” this area, or in any of the adjacent overlapping
areas labeled with a question mark (?). In this situation, when regions overlap, it is
likely that generated test models do it as well.

Ensuring that a number of regions do not overlap requires additional effort, but
in “Single Mode”, no further effort to identify partitions is made. It simply runs the
test model generator over the regions that were identified in the OCL analysis, each
time passing the input metamodel (and its OCL invariants), and one of the OCL
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expressions characterizing these regions. It represents a cheaper way (compared
to the other alternatives) of creating test models without ensuring that they will
not overlap. Running “Single Mode” over the example of Fig. 8.1(b) consists in
invoking the model generator for each of the OCL expressions in A3.X and B1.X.

(a) (b) (c)

(d) (e) (f)

Figure 8.4: Overlapping and partitions when generating test models.

8.4.2 Multiple-Partition Mode

Given the set of OCL expressions obtained from the analysis of one OCL in-
variant, “Multiple-Partition Mode” produces a new set of OCL expressions that
constitute a partition (i.e. do not overlap each other) of the instance space.

In general, if the analysis of one OCL invariant yields “n” regions, a partition
can be derived, with a number of regions somewhere in the interval [n, 2n - 1].
Although the exact number depends on how the original “n” regions overlap each
other, justifying the lower and upper bounds is rather simple. To show this, we will
focus on the particular case of n = 3 and refer to the OCL expressions characteriz-
ing these regions as Bi, i = 1..3.

The lower bound corresponds to the best-case scenario (Fig. 8.4(a)) where the
original “n” regions do already constitute a partition. The upper bound corresponds
to the worst-case scenario (Fig. 8.4(b)) where the “n” regions overlap each other.
In this case, it is possible to derive a partition (Fig. 8.4(d)) with 7 regions, charac-
terized by the following combinations of OCL expressions:

D4 = B4 AND NOT B5 AND NOT B6

D5 = B5 AND NOT B4 AND NOT B6

D6 = B6 AND NOT B4 AND NOT B5

D7 = B4 AND B5 AND NOT B6

D8 = B4 AND B5 AND B6
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D9 = NOT B4 AND B5 AND B6

D10 = B4 AND NOT B5 AND B6

That is, all the combinations of three elements (the initial number of regions) that
can take two different states (to overlap, not to overlap), excepting:

NOT B5 AND NOT B4 AND NOT B6

which is not representative of any region, since it falls out of the instance space.
Generalizing for the case of “n” regions, the upper limit of 2n - 1 is obtained.

Running “Multiple-Partition Mode” over the example of Fig. 8.1(b) consists
in first, creating all the combinations of the OCL expressions in the groups A3.X
and B1.X, and then invoking the model generator to process each of them. The
combination of the expressions in A3.X yields a list of 255 new expressions, so
only the results of combining the OCL expressions in B1.X are shown.

context Team inv inv272: Team::AllInstances()−>forAll(t |
t.papersSubmitted−>NotEmpty()) and Team::AllInstances()−>exists(t |
not t.papersSubmitted−>NotEmpty()) (B2.1)

context Team inv inv273: not Team::AllInstances()−>forAll(t |
t.papersSubmitted−>NotEmpty()) and Team::AllInstances()−>exists(t |
not t.papersSubmitted−>NotEmpty()) (B2.1)

context Team inv inv274: Team::AllInstances()−>forAll(t |
t.papersSubmitted−>NotEmpty()) and not Team::AllInstances()−>exists(t |
not t.papersSubmitted−>NotEmpty()) (B2.3)

8.4.3 Unique-Partition Mode

Applying “Multiple-Partition Mode” guarantees that the regions obtained for
each OCL invariant do not overlap each other. However, if the input metamodel has
more than one invariant, regions in the partition for one invariant might overlap re-
gions in the partitions of the rest of invariants. “Unique-Partition Mode” guarantees
that regions do not overlap each other, no matter where they come from. Therefore,
in “Unique-Partition Mode” only one partition is characterized, regardless of the
number of OCL invariants of the input metamodel. This can be easily seen with an
example. If Fig. 8.4(c) and Fig. 8.4(d) were the partitions produced by “Multiple-
Partition Mode” for two invariants, when putting together, they would overlap as
shown in Fig. 8.4(e). In this scenario “Unique-Partition Mode” would yield the
partition of Fig. 8.4(f).

Applying “Unique-Partition Mode” is a simple three-step process: First, “Multiple-
Partition Mode” is applied over each invariant. After that, the lists of OCL expres-
sions characterizing the regions in each partition are merged together to form one
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big list. Finally “Multiple-Partition Mode” is applied over that list, to generate the
final partition. Applying this mode over the example of Fig. 8.1(b) consists in
merging the results of “Multiple-Partition Mode” shown before (255 + 3 = 258

OCL expressions) into one big list and run another iteration of “Multiple-Partition
Mode” over that list. Clearly, the main problem for the practical utilization of this
approach could be the combinatorial explosion in the number of regions conforming
the final partition.

8.5 Creating Test Models

After having described how partitions are generated, the last step is the creation
of the actual test models. Without regard of the generation mode selected, this is a
pretty straightforward process. When fed with the input metamodel (and its OCL
invariants) and an OCL invariant characterizing one region of the input space, the
“Test Model Generator” component (Fig. 8.3) tries to build a valid instance of the
input metamodel, that also satisfies this additional OCL constraint. The whole set
of test models is obtained by repeating this process as many times as regions were
found.

In practical terms, we use EMFtoCSP for that. At is was described in Chapter
4, this tool is capable of looking for valid instances of a given metamodel enriched
or not with OCL constraints. This is especially convenient to address the issues
mentioned at the end of Section 8.3. For example, when presented with an infeasible
combination of constraints, EMFtoCSP can dismiss it, yielding no test model.

8.6 Implementation and Usage Scenarios

We have implemented an Eclipse-based tool that can generate test models fol-
lowing any of the three generation modes exposed before. It can be downloaded
from http://code.google.com/a/eclipselabs.org/p/oclbbtesting/ where the user will
find all the necessary information for its installation and usage.

When used in isolation, the tool produces models to cover the instance space of
the transformation’s input metamodel, out of the OCL invariants of that metamodel.
Since graphical constraints in a model, like associations, multiplicities, etc can also
be expressed in the form of OCL invariants, as detailed in [163], the tool could also
be used to derive test models out of these graphical constraints.

There may be occasions though, in which it is convenient to focus only on spe-
cific sections of the input metamodel: the model transformation could only “ex-
ercise” a part of the input metamodel, or the tester could only be interested on a
specific part of the transformation. In the first case, the tool could be combined
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with approaches capable of identifying what the relevant sections of the input meta-
model are, like for example [129]. In the second case, if the pre-conditions that
trigger specific parts of the model transformation are expressed in such a way, that
new OCL invariants in the context of the input metamodel can be derived, then these
new invariants could be used to limit the generation of test models to those regions
of the instance space triggering the sections of the model transformation that are of
interest. This could be exploited even further, to allow the generation of test models
aimed at satisfying different coverage criteria over the transformation [139].

Finally, the tool could also be useful to complement others that lack the ability
to generate test models out of OCL invariants, or do it in a limited way.

8.7 Conclusions

The generation of test models by means of black-box approaches based on par-
tition analysis has largely ignored the valuable information in the OCL constraints.
This limits the test generation process and consequently, the degree of coverage
achieved over the model transformation’s input metamodel. In this chapter, we
have presented a black-box test model generation approach for model transforma-
tion testing, based on a deep analysis of the OCL invariants in that input metamodel.
Our method can be configured to be used at three different levels of exhaustiveness,
depending on the user’s needs. A tool supporting the process has been implemented,
and it can be used in isolation or combined with other test model generation ap-
proaches. It can also be useful to generate test models at different degrees of cover-
age.



9
ATLTest: White-box Test Model
Generation for ATL Model
Transformations

9.1 Motivation

As it was mentioned in Chapter 7, the most popular strategy at the time of gen-
erating test models is to follow a black-box approach based on the analysis of the
model transformation specification. The number of white-box approaches available
is certainly limited, and even more so in the particular case of the ATL Transfor-
mation Language (ATL) [7] 1. ATL is a popular transformation language, which
means that the number of model transformations available is relatively high, espe-
cially when compared to other model transformation approaches. Therefore, the
lack of specific white-box approaches to test model transformations written in this
language is especially unfortunate. After all, the existence of approaches based on
different strategies is encouraged to maximize the chances of uncovering errors and
therefore, the effectiveness of the testing experience. Moreover, existing white-box
approaches steer the generation of test models towards covering the model transfor-
mation’s input metamodel instead of the model transformation internals.

In this chapter, we present a new white-box testing approach called “ATLTest”,
for the generation of test input models out of ATL model transformations. We have
chosen ATL [7] as target transformation language due to its popularity (both in

1. http://www.eclipse.org/atl/
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academia and industry). The goal is to optimize the generation of test models by
maximizing the coverage of the internal structure of an ATL model transformation.
However, many of the ideas presented herein could be applied to other transforma-
tion languages like QVT. The approach can be used in isolation or could be inte-
grated with black-box testing techniques to provide a hybrid test model generation
framework.

9.2 Generalities About ATL

Before getting into detail on the particularities of ATLTest, it is important to
introduce a series of concepts, starting with a brief description of the ATL language.

ATL is a hybrid model transformation language, which means that combines
declarative and imperative constructs. Although ATL creators encourage the uti-
lization of a declarative style for the implementation of model transformations, im-
perative constructs are also provided, because in certain scenarios, implementing a
model transformation only by means of declarative constructs can be cumbersome.

For the description of the different ATL constructs, we will take advantage
of the sample model transformation definition in Fig. 9.1(c), that converts mod-
els conforming the metamodel in Fig. 9.1(a), into models conforming the meta-
model in Fig. 9.1(b). In a nutshell, the model transformation contains two rules
(“Publication2Book” and “PubSection2Chapter”) to respectively transform “Pub-
lication” and “PubSection” input elements into “Book” and “Chapter” output ele-
ments. Those elements are only transformed if the respective flags “isBook” and
“isChapter” are activated.

Model transformations in ATL are described in the context of something called
“module”. A module is nothing more than a collection of ATL constructs, organized
in a certain way. In particular, a module contains a mandatory header section, an
optional import section and a number of helpers and transformation rules.

The header section gives the name of the module and declares the source and
target metamodels. This is typically done in the first two lines of code. In the model
transformation definition of the example can be seen that the module is named “Pub-
lication2Book”, and that the source and target metamodels are called “Publication”
and “Book”, respectively.

Right after the header section comes an optional import section. This section
is used to import existing ATL libraries. An ATL library is a set of ATL helpers
grouped in a separate file. The model transformation definition of the example does
not contain an import section, but if we were interested in loading an ATL library
called “strings”, the import section would look like:

uses strings;
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(a) (b)

module Publication2Book;
create OUT : Book from IN : Publication;

rule Publication2Book {
from p: Publication!Publication (p.isBook)
to b: Book!Book (

title<− p.title,
isMultiVolume<− p.sections−> select(s|

s.isChapter)−> size() > 25 and
p.sections−> select(s| s.isTOC)−> size() > 2,

chapters<− p.sections−> select(s | s.isChapter),
nPages<− p.sections−> collect(s | s.nPages)−> sum()

)
}

rule PubSection2Chapter {
from ps: Publication!PubSection (ps.isChapter)
to c: Book!Chapter (

title<−ps.title
)

}
(c)

Figure 9.1: Example: (a) Source Metamodel, (b) Target Metamodel (c) Model
Transformation Definition.
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After the import section, it is typical to find a number of helper definitions. A helper
can be seen as the ATL equivalent to a Java method. They facilitate writing ATL
code that can be called from different points of an ATL transformation. ATL helpers
are characterized by a name, a context, a set of parameters and a return type. The
model transformation definition of the example does not contain any helpers, but if
we needed a piece of code returning the publication sections larger than a specific
number of pages, to be called from different points in the transformation, then we
would write a helper like:

helper context Publication!Publication
def : getPubSectionsLargerThan(nPages : Integer) :
Sequence(Publication!PubSection) = self.sections−>select(s | s.nPages > nPages);

As it can be seen in the example, the helper’s name is “getPubSectionsLarg-
erThan”, the context is the class “Publication” in the metamodel “Publication” (in
this case both share the same name), there is only one parameter called “nPages”,
and the return type is an OCL sequence of “PubSection” objects. The body of the
helper is an OCL query returning the list of publication sections with more pages
than the minimum number requested.

Finally, after the helper definitions, it is the time of describing the most impor-
tant element in an ATL model transformation definition: the transformation rules.
In ATL there are three different types of rules: “matched rules”, “lazy rules” and
“called rules”.

Matched rules are the rules most typically used in ATL, and constitute the core
of the declarative nature of the language. In essence, matched rules describe for
which source model elements target elements must be generated, and the way they
must be initialized. The model transformation definition of the example contains
two matched rules called “Publication2Book” and “PubSection2Chapter” to respec-
tively transform “Publication” and “PubSection” input elements into “Book” and
“Chapter” output elements. The “from” section in every matched rule indicates
which source model element triggers the rule. Basically, every time the ATL engine
finds a model element matching what it is stated in this section, the rule is triggered.
It is possible to refine the triggering mechanism by adding a boolean expression be-
tween parenthesis. By doing so, only the model elements that satisfy the expression
will be processed. The “to” section of the rule indicates the target model elements
that will be generated. Between parenthesis is the description of how these model
elements must be initialized. This description is called “bindings” in the ATL ter-
minology. Bindings are typically expressed by a combination of OCL expressions
and helper calls. To finish with the description of matched rules, it is important
to mention that they may include an optional “do” section for the specification of
imperative statements. It is typically used to initialize some model element features
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that have not been initialized using the declarative bindings, or to modify some
already initialized features.

Lazy rules are like matched rules, so the previous description applies here as
well. The only difference is that, in order to execute a lazy rule, it must be explicitly
called from another rule.

Finally, called rules enable the possibility of generating target model elements
from imperative code. A called rule has three sections and can accept parameters.
The first section is employed for the initialization of local variables, the second
section (called the “to” section as in the other types of rules) indicates the target
model elements that will be generated, although in this case, there is no source
matched model element whose features may be used in order to initialize them.
Finally, the “do” section allows for the inclusion of an imperative instruction block.

This has been a very briefly description of the ATL language to facilitate the
contextualization of ATLText. A more comprehensive description of the language
can be found in [7].

9.3 Coverage Criteria in Traditional White-box Test-
ing

In Chapter 7 we mentioned that “coverage criteria” help testers to determine
what elements are going to be the focus of testing, and the desired intensity of the
testing efforts. Coverage criteria are not exclusive of model transformation testing,
though. On the contrary, it is an expression fairly used in approaches devoted to
testing software developed using more traditional means, and that, as others, has
also been adopted and used when talking about model transformation testing. In
what follows, we introduce very briefly, some basic concepts about some coverage
criteria typically used when testing software by means of white-box techniques.

The generation of test data by means of traditional white-box testing techniques
can be regarded as a 2-step process in which, typically, a control flow graph or a
data flow graph is generated in the first place, out of the static analysis of the source
code, and then, test data is obtained from traversing the graph a specific number of
times, usually determined by some coverage criteria.

In the particular case of control flow graphs, branches in the program logic are
elements typically selected as object of coverage analysis. There are a number of
classical white-box coverage criteria that follow this approach, like for example,
“condition coverage” (also known as “decision coverage”) or “multiple-condition
coverage” (also known as “multiple-decision coverage”) [31]. Both focus on mak-
ing sure that all branches in the program are covered, but they differ on how they
exercise conditional branches where the condition is not atomic. In the case of
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Figure 9.2: ATLTest: Overall picture

“condition coverage”, complete coverage is achieved by simply ensuring that the
test cases exercise each branch with all possible outcomes at least once (i.e. for a
boolean branch, the test suite must include a test case where the branch evaluates
to “False” and one where it evaluates to “True”). However, “multi-condition cover-
age” requires the test suite to include a test case for each individual combination of
truth values of the different sub-expressions conforming the branch condition.

9.4 ATLTest in a Nutshell

ATLTest is a white-box test model generation approach for ATL transforma-
tions. The test model generation process in ATLTest, depicted in Fig. 9.2, consists
of three separate steps. In the first one, the ATL transformation is analyzed and a
graph abstracting the relevant information for the test generation phase is produced.
This graph, called “dependency graph”, plays the same role in ATLTest than con-
trol flow graphs or data flow graphs play in other traditional approaches, although
it is substantially different in nature. For now, it suffices to say that the dependency
graph represents groups of interrelated conditions expressed in the OCL. These con-
ditions must be hold (totally or partially) by the test input models.

Once the analysis of the ATL transformation is done, the second step is to tra-
verse the dependency graph a number of times which, as for traditional approaches,
is determined by some coverage criteria. Traversing the dependency graph implies
setting truth values for the different conditions in the graph and, therefore, each
traversal will yield a set of constraints that symbolizes a family of relevant test
models for the transformation (i.e. the constraints characterize the structure/values
of possible input test models).

In the last step, the actual test models are created by computing models conform-
ing to the source metamodel and satisfying the constraints obtained in the previous
step. This computation can be performed using any of the SAT-based or CSP-based
solvers available. In particular, we use EMFtoCSP to generate the input test mod-
els. In the context of model transformation testing, and given the OCL expressions
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resulting from one graph traversal, EMFtoCSP will generate a solution (i.e. a test
model) that satisfies both the source metamodel and these additional constraints. A
single sample model suffices to characterize the family of models satisfying that
particular group of constraints. Invoking EMFtoCSP after each graph traversal will
result in a new test model.

In the following sections we will describe in more detail the foundations and
rationale behind ATLTest.

9.5 Dependency Graph Generation

As it was mentioned before, the ATL language includes a variety of constructs
(matched rules, lazy rules, helpers, etc). In most of them, OCL plays a key role.
Therefore, any white-box testing approach for ATL must devote a special attention
to the OCL expressions appearing in the model transformation.

In fact, OCL expressions are at the heart of the mechanism to create the depen-
dency graph. In a nutshell, the majority of nodes and arcs are generated out of the
analysis of certain OCL expressions found in the rules and helpers making up the
model transformation. These nodes and arcs conform the building blocks of the
dependency graph. The analysis of the rules and helpers containing those OCL ex-
pressions extends and interconnects those building blocks. The process is described
in more detail in the following subsections.

9.5.1 Analysis of OCL Expressions

OCL expressions have a clear impact on the number and structure of interesting
input models to use as tests for the model transformation. To ensure the coverage
of the model transformation we should make sure the test models evaluate to a
different result the several OCL expressions in the transformation.

As an example, consider the following expression extracted from the model
transformation in Fig. 9.1(c):

p.sections−>select(s| s.isChapter)

The expression is part of a binding in the first rule, aimed at generating as many
“Chapter” elements in the output model as “PubSection” elements with the flag “is-
Chapter” set to “True” are present in the input model. Clearly, when looking at
this expression we immediately think of different situations that should be tested,
e.g. “What happens if there are no “PubSection” elements in the input model?”
or “What happens if none of the “PubSection” elements are flagged as chapters?”.
Therefore, input models that test each situation (that is, an input model with no
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“PubSection” elements, a model with “PubSection” elements, a model with “Pub-
Section” elements where no one has the flag “isChapter” activated,...) should be
generated by our method.

Each question above can be characterized by means of a boolean OCL expres-
sion. For the previous example, this expression could be:

context PubSection inv inv1: PubSection::AllInstances()−>notEmpty()

or

context PubSection inv inv1:
PubSection::AllInstances()−>select(s| s.ischapter)−>notEmpty()

Each expression would constitute a node in the dependency graph (meaning that
generated test models should hold the condition in the node, depending on how the
graph is traversed, as explained in the next section). It is also worth noting that it
does not make much sense to check the second condition if the first one does not
hold (we cannot create at the same time a model with no “PubSection” elements
and a non-empty list of “PubSection” elements, some of them flagged as chapters),
which means that the two conditions are somehow interrelated. This interrelation
is the reason why we call the graph, a dependency graph. There is a dependency
between the two conditions, expressed as an arc between the two nodes. Obviously,
these arcs play a key role in the traversal of the graph during the test generation
phase.

In the rest of this subsection we generalize this discussion to general OCL ex-
pressions. We have identified three different big groups of OCL expressions relevant
to the process sketched above, namely, expressions in the context of collections (Ta-
ble 9.1), iterative operations (Table 9.2) and boolean expressions (Table 9.3). Each
row in the tables shows how the dependency graph is extended when finding an
expression of that type in an ATL construct. The dependency graph is expressed as
two ordered sets that contain the nodes (V) and the arcs (E) in the order they are
created, where nodes are described with an OCL expression, and arcs are expressed
as “(x,y)”, “x” and “y” being the positions of the source and target nodes in the cor-
responding set. In this regard, “last” is used to make reference to the last position
in a set, and in the case of complex OCL expressions, “Gx(V )” and “Gx(E)” make
reference to the respective sets of nodes and arcs obtained from the analysis of the
source expression “x”. Similar for “Gbody(V )” and “Gbody(E)” in Table 9.2.

One important remark is that, in order to be considered for the analysis, all these
OCL expressions must reference at least one element of the input metamodel, since
these are the most relevant for test model generation. The identification of the OCL
expressions suitable for analysis can be done by traversing the abstract syntax tree
of the OCL expressions in the model transformation.
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Table 9.1: Nodes and arcs generated out of OCL operations in the context of a
collection

OCL Expression G=(V,E)
1 Objc.[nav| V = {C :: allInstances()→

nav → notEmpty()] select(c|c.nav → notEmpty())→
notEmpty()}

2 C :: allInstances() V = {C :: allInstances()→
[→ notEmpty()] notEmpty()}

3 Objc.nav → isEmpty() V = {C :: allInstances()→
select(c|c.nav → isEmpty())→
notEmpty()}

4 C :: allInstances()→ V = {C :: allInstances()→ isEmpty()}
isEmpty()

5 c→ isEmpty() V = {c→ isEmpty()} ∪Gc(V ),
E = {(Gc(V )[last], 1)} ∪Gc(E)

6 c→ notEmpty() V = {c→ notEmpty()} ∪Gc(V ),
E = {(Gc(V )[last], 1)} ∪Gc(E)

7 c→ [size()|last()|sum()| V = Gc(V ),
append(o)|flatten()|first()| E = Gc(E)
including(o)|prepend(o)]

8 c→ [includes(o)|count(o)| V = {c→ includes(o)} ∪Gc(V ),
indexOf(o)|excluding(o)] E = {(Gc(V )[last], 1)} ∪Gc(E)

9 c→ excludes(o) V = {c→ excludes(o)} ∪Gc(V ),
E = {(Gc(V )[last], 1)} ∪Gc(E)

10 c→ includesAll(cl) V = {c→ includesAll(cl)} ∪Gc(V )
∪ Gcl(V ),
E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

11 c→ excludesAll(cl) V = {c→ excludesAll(cl)} ∪Gc(V )
∪ Gcl(V ),
E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

12 c→ union(cl) V = Gc(V ) ∪Gcl(V ),
E = {(Gc(V )[last], Gcl(V )[1])}∪
Gc(E) ∪Gcl(E)

13 c→ [insertAt(n, o)|at(n)] V = {c→ size() ≥ n} ∪Gc(V )
E = {(Gc(V )[last], 1)} ∪Gc(E)

14 c→ subSequence(l, u) V = {c→ size() ≥ u} ∪Gc(V )
E = {(Gc(V )[last], 1)} ∪Gc(E)

15 c→ [intersection(cl)| V = {c→ includesAll(cl) or
symetricDifference(cl)] cl→ includesAll(c)} ∪Gc(V ) ∪Gcl(V ),

E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

To finish this subsection, we show how to create nodes 3, 4, 5, 6 and 7 of the
dependency graph in Fig. 9.5 by applying the information in the tables to the fol-
lowing expression from the example:
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Table 9.2: Generation of nodes and arcs out of OCL iterative operations

OCL Expression G=(V,E)
1 c→ exists(body) V = {c→ exists(body)} ∪Gc(V ) ∪Gbody(V ),

E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

2 c→ forAll(body) V = {c→ forAll(body)} ∪Gc(V ) ∪Gbody(V ),
E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

3 c→ V = {c→ isUnique(body)} ∪Gc(V ) ∪Gbody(V ),
isUnique(body) E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}

∪ Gc(E) ∪Gbody(E)
4 c→ one(body) V = {c→ one(body)} ∪Gc(V ) ∪Gbody(V ),

E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

5 c→ [collect(body)| V = Gc(V ),
sortedBy(body)] E = Gc(E)

6 c→ [reject(body)| V = Gc(V ) ∪Gbody(V ),
any(body)| E = {(Gc(V )[last], Gbody(V )[1])} ∪Gc(E)
select(body)] ∪ Gbody(E)

Figure 9.3: Actions to carry out when applying entry 10 in Table 9.3 to the example

isMultiVolume<−p.sections−>select(s| s.isChapter)−>size() > 25
and p.sections−>select(s| s.isTOC)−>size() > 2 (exp1)

To begin with, the OCL expression at the right of “<-”, matches entry 10 in Table
9.3 using “and” as “Op”. According to this entry, the 2-step process depicted in Fig.
9.3 must be carried out. That is, subexpressions at the left and right of “and” must
be analyzed, thus yielding several nodes and arcs, and then some of those nodes
must be merged. Finally all the nodes are interconnected.

The expression on the left side of (exp 1) is

p.sections−>select(s| s.isChapter)−>size() > 25 (exp2)

that matches entry 11 in Table 9.3 where “CompOp” is “>” and ‘LitValue” is “25”.
Fig. 9.4 illustrates the process to be carried out when instructions in this entry are
followed. The subexpression on the left side is analyzed in the first place, this way
yielding nodes 3 and 4, and then, the node “t1’ is created.
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Table 9.3: Generation of nodes and arcs out of boolean OCL operations

Boolean OCL Expression G=(V,E)
1 [True|False] V = ∅, E = ∅
2 [not]ObjA.boolAttr V = {A :: allInstances()→

select(a|[not]a.boolAttr)→ notEmpty()}
3 ObjA.[attr|nav]. V = {A :: allInstances()→

oclIsUndefined() select(a|a.[attr|nav].oclIsUndefined())→
notEmpty()}

4 expr.oclIsUndefined() V = {expr → oclIsUndefined()}
∪ Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

5 expr.oclIsKindOf(t) V = {expr → oclIsKindOf(t)}
∪ Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

6 expr.oclIsTypeOf(t) V = {expr → oclIsTypeOf(t)} ∪Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

7 ObjA.attr CompOp V = {A :: allInstances()→ select(a|
LitV alue a.attr CompOp LitV alue)→ notEmpty()}

8 ObjA.attr Op ObjB.attr V = {A :: allInstances()→ select(a|
B :: allInstances()→ exists(b|
a.attr CompOp b.attr))→ notEmpty()}

9 ObjA.attr Op ObjB.attr V = {A :: allInstances()→
Op ... Op ObjN .attr select(a|B :: allInstances()→

exists(b|...→ exists(n|a.attr Op b.attr
Op ... Op n.attr)...))→ notEmpty()}

10 expr1 Op expr2 V = {Gexpr1(V )[last] Op Gexpr2(V )[last]}∪
{Gexpr1(V )[1], ... , Gexpr1(V )[last− 1]}∪
{Gexpr2(V )[1], ... , Gexpr2(V )[last− 1]},
E = {(Gexpr1(V )[last− 1], Gexpr2(V )[1]),
(Gexpr2(V )[last], 1)}∪
{Gexpr1(E)[1], ... , Gexpr1(E)[last− 1]}∪
{Gexpr2(E)[1], ... , Gexpr2(E)[last− 1]}

11 expr CompOp V = {expr CompOp LitV alue} ∪Gexpr(V ),
LitV alue E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

Now let’s see in detail how nodes 3 and 4 are generated. The expression on the
left of (exp 2) is

p.sections−>select(s| s.isChapter)−>size() (exp3)

that matches entry 7 in Table 9.1. According to this entry, it is necessary to analyze
the source collection of (exp3), that is:

p.sections−>select(s| s.isChapter) (exp4)

It matches entry 6 in Table 9.2. This entry indicates that (exp4) has the form c →
select(body) and therefore “c” and “body” expressions must be analyzed. In (exp4),
“c” is p.sections and “body” is s.isChapter. They match respectively entry 1 in
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Figure 9.4: Actions to carry out when applying entry 11 in Table 9.3 to the example

Table 9.1 and entry 2 in Table 9.3. This way, we finally obtain nodes 3 and 4 that
can be seen in Fig. 9.5. It is important to remember that the creation of nodes 3 and
4 is just the first step in the analysis of (exp2), as exposed in Fig. 9.4. Now it is time
to complete the analysis of this expression by creating the node “t1”. This node is
made up by the following OCL expression:

p.sections−>select(s| s.isChapter)−>size() > 25 (t1)

It is the time to remember that the analysis of (exp2) is just the analysis of the left
subexpression of (exp1). As can be seen in Fig. 9.3 the analysis of (exp1) continues
with the analysis of its right subexpression. We omit a detailed description of this
analysis, though, since it is very similar to the one just described. It suffices to say
that the analysis of the right subexpression of (exp1) yields nodes 5 and 6 that can
be seen in Fig. 9.5, as well as node “t2”, made up by the following OCL expression:

p.sections−>select(s| s.isTOC)−>size() > 2 (t2)

Finally, applying last step shown in Fig. 9.3, node 7 is created out of the union
of nodes “t1” and “t2”, expressed in terms of the “allInstances()” operator, and the
different nodes created during the process are interconnected. The final result can
be seen in Fig. 9.5.

The analysis of the rest of OCL expressions in the sample model transformation
can be carried out in the same way.

9.5.2 Analysis of Rules and Helpers

As we have seen, the analysis of OCL expressions yields the building blocks of
the dependency graph. In this subsection we cover the analysis of rules and helpers,
coarse-grained elements of ATL transformations.

The analysis of a declarative rule focuses on the “from” section of the rule, that
indicates the conditions that trigger the rule, the “to” section of the rule, that de-
scribes how elements of the target model are created, and the optional “do” section
of the rule, used to enable the specification of imperative statements.

The analysis of the “from” section produces a node with the expression in_type ::
allInstances() → notEmpty(), where “in_type” refers to the model element that
will be matched by the rule. Optionally, this section can include a boolean OCL
expression, as a filter to limit the “in_type” elements that can trigger the rule. When
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Figure 9.5: Dependency graph of the example, made up by two connected compo-
nents

present, this filter is analyzed according to the instructions of Subsection 9.5.1 and,
in this case, the node created in the first place is connected to the first node rendered
by the filter analysis.

Returning to the running example, the analysis of the “from” section of the rule
“Publication2Book”, that includes the condition p.isBook, produces nodes 1 and
2 in Fig. 9.5. Analogously, the “from” section of the rule “PubSection2Chapter”
generates nodes 11 and 12 that made up the second connected component of the
dependency graph.

As it was mentioned before, the “to” section of a declarative rule is, essentially, a
collection of bindings describing how elements of the target metamodel are created.
Each binding has the form feature-name← exp, being “exp” an OCL expression.
The result of analyzing this section is a number of interconnected nodes, obtained
from the analysis of each “exp” element as explained in Subsection 9.5.1. Finally,
the first node in each of the groups of nodes rendered is connected to the last node
in the group of nodes obtained from the analysis of the “from” section of the rule.

The “do” section of a declarative rule is analyzed by looking for OCL expres-
sions suitable for analysis. When found, those expressions are analyzed according
to the directions of Subsection 9.5.1. This approach is also applied at the time of
analyzing called rules.

To finish the description of the dependency graph generation process, one word
about ATL helpers. As it was mentioned before, helpers can be viewed as the ATL
equivalent to methods and can be called from different points in an ATL transforma-
tion. Each helper has a body, specified as an OCL expression. If during the analysis
of the elements described above and in Subsection 9.5.1, a call to a helper is found,
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then its body is analyzed like any other OCL expression and the rendered nodes are
included as resulting from the analysis of the element where the call was found.

One last remark that is worth mentioning is that depending on the complexity
of the ATL transformation under analysis (number of rules, presence of imperative
sections, etc.), the resulting dependency graph can be made up by more than one
connected component.

9.6 Test Input Models Generation

Once the dependency graph is created, the next step consists in traversing it
a number of times, each time determining the set of constraints a new test model
must fulfill. The process is directed by a coverage criterion, which eventually de-
termines the number of traversals, and consequently, the number of test models to
be generated.

Coverage criteria mentioned before such as “condition coverage” or “multiple-
condition coverage” can be easily adapted to our approach. Since in the dependency
graph each node contains a boolean expression, condition coverage and multi-
condition coverage can be applied by considering each node as a branch, with the
particularity that every time the condition in the node evaluates to “False” the traver-
sal of the actual connected component ends and goes on with the next one. In other
case, a neighbor node is visited and the traversal continues.

This way, the application of the two coverage criteria consists in traversing the
dependency graph a number of times, each time assigning either different output
values to each OCL expression (condition coverage), or different combinations of
truth values to each component of a complex OCL expression (multi-condition cov-
erage). After “n” traversals, “n” sets of constraints to characterize “n” test cases
will have been obtained.

Eventually, once the sets of constraints have been obtained, the execution of
EMFtoCSP over each set will yield the set of input models to test the model trans-
formation 2.

Retaking our example, we are going to show what the results of one traversal of
the graph shown in Fig. 9.5 would be when applying each coverage criterion. Let’s
suppose that the sequence of truth values assigned to the nodes of the first connected
component is <1,True>, <2,True>, <3,True>, <4,True>, <5,True>, <6,True>, and
then, in the case of “condition coverage” node 7 is set to <7,True>, and in the case
of “multi-condition coverage” is set to <7,(False,True)>. In the second connected
component, the expressions will be set as <11,True>, <12,True>, for both criteria.

2. Some assignments can cause contradictory sets of OCL expressions (e.g. if the same subex-
pressions are used in two connected components and they are assigned different truth values in the
same iteration). In those situations, EMFtoCSP will yield no test model.
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Applying “condition coverage”, the constraints obtained are:

context Publication inv inv1:
Publication::AllInstances()−>notEmpty() = true

context Publication inv inv2:
Publication::AllInstances()−>select(p| p.isBook)−>notEmpty() = true

context Publication inv inv3:
Publication::AllInstances()−>select(p|

p.sections−>notEmpty())−>notEmpty() = true

context PubSection inv inv4:
PubSection::AllInstances()−>select(s|s.isChapter)−>notEmpty() = true

context Publication inv inv5:
Publication::AllInstances()−>select(p|

p.sections−>notEmpty())−>notEmpty() = true

context PubSection inv inv6:
PubSection::AllInstances()−>select(s| s.isTOC)−>notEmpty() = true

context PubSection inv inv7:
Publication::AllInstances()−>select(p| p.sections−>select(s|

s.isChapter)−>size() > 25)−>notEmpty() and
Publication::AllInstances()−>select(p| p.sections−>select(s|
s.isTOC)−>size() > 2)−>notEmpty() = true

context PubSection inv inv8:
PubSection::AllInstances()−>notEmpty() = true

context PubSection inv inv9:
PubSection::AllInstances()−>select(s|s.isChapter)−>notEmpty() = true

Running EMFtoCSP over the input metamodel constrained with the expressions
above yields the model that can be seen in Fig. 9.6(a).

For “multi-condition coverage”, only the expression of node 7 changes:

context PubSection inv inv7:
Publication::AllInstances()−>select(p| p.sections−>select(s|

s.isChapter)−>size() > 25)−>notEmpty() = false and
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Publication::allInstances()−>select(p| p.sections−>select(s|
s.isTOC)−>size() > 2)−>notEmpty() = true

Running again EMFtoCSP, we obtain the model of Fig. 9.6(b).

(a)

(b)

Figure 9.6: Results of the example

9.7 Conclusions

We have presented ATLTest, a white-box testing approach for the generation of
test input models for ATL transformations. Our approach tries to optimize the effec-
tiveness of the generated tests by maximizing the coverage of the internal structure
of the model transformation under analysis. ATLTest could be either combined with
black-box testing techniques to create mixed test generation approaches or used in
isolation, specially in those scenarios that are not suitable for the application of
black-box testing techniques. In ATLTest, each test model is characterized by a set
of OCL expressions. Sample test models satisfying the OCL constraints are created
automatically using the EMFtoCSP tool.
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10
Conclusions and Future Research

10.1 Conclusions

This thesis analyzes the landscape of approaches devoted to the verification of
static models with the twofold objective of presenting contributions to improve their
efficiency, and discovering new mechanisms that take advantage of verification ap-
proaches at the time of testing model transformations.

The analysis of the state of the art (Chapter 3) has revealed that there is no a
universal definition of what “model correctness” means and therefore, it is typical
to use this expression to make reference to the ability of the model under analysis
to satisfy one or more correctness properties. Regarding the verification process, it
is common to represent the problem using some kind of formalism, which is then
exploited with the help of a specialized tool. In spite of that, existing approaches
follow different strategies depending on the degree of support given to OCL con-
straints. Regarding this, bounded verification approaches consisting in limiting the
search space where to look for a solution of the problem are becoming more and
more popular.

Unfortunately, the number of existing verification approaches is rather small,
and some of them are not even supported by the presence of a tool. An example
of this is that the Eclipse platform, which is probably the most popular software
development platform at the time of promoting the utilization of model-based tech-
nologies, does not contain an official project devoted to the verification of mod-
els. In order to alleviate this, we propose a bounded verification approach called
EMFtoCSP (Chapter 4), capable of verifying EMF models enriched with OCL con-
straints, by means of constraint programming.
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The major inconvenience of existing verification tools is probably their effi-
ciency. These tools tend to behave badly when they are used to verify large models
or real-world examples. A possible way of improving this is by verifying models in
an incremental fashion (Chapter 5). If every time a model is modified, only certain
parts of the model need to be verified again, then the size of the models to be an-
alyzed by verification tools could be reduced, which might improve performance.
Additionally, if the verification tool employed follows a bounded verification ap-
proach, search space boundaries could also be tightened (Chapter 6) to reduce the
area where to look for a solution.

Before analyzing how to take advantage of verification approaches to conduct
model transformation testing, it is necessary to identify what are the major chal-
lenges. The analysis of the state of the art (Chapter 7) has shown that model
transformation testing is, in essence, similar to testing traditional software. When
dynamic techniques are used, the challenges are the generation of input test data
(known as test models) and the construction of oracles. In the particular case of test
model generation, two strategies prevail: the black-box strategy based on the anal-
ysis of the model transformation specification, and the white-box strategy, based on
the analysis of model transformation internals. Unfortunately, the number of ex-
isting approaches is really small, especially in the case of approaches following a
white-box strategy.

In order to alleviate this, two test model generation techniques has been pro-
posed. The first one, following a black-box approach (Chapter 8), exploits the
presence of OCL constraints on static models to build partitions of the model trans-
formation’s input metamodel instance space, which are then exploited by means
of EMFtoCSP to generate test models. In the second approach (Chapter 9), OCL
expressions present in ATL model transformations are analyzed to, again with the
help of EMFtoCSP, generate test models.

10.2 Future Work

We would not like to finish this thesis without briefly describing some ideas to
expand the work presented here. In particular, the following subsection presents
some general ideas that could be worth being explored to try to improve existing
verification tools. After that, the focus is on ideas specifically devoted to try to
expand the methods and techniques presented here.

10.2.1 General Ideas for the Improvement of Verification Tools

Existing verification tools work by translating the verification problem into some
kind of formalism that is then exploited with the help of a specialized tool. When
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the verification problem is found to be not satisfiable, some of these tools (SAT
solvers, SMT solvers, CSP solvers) are capable of yielding additional information
in the form of unsatisfiable cores identifying contradictory constraints that can be
analyzed to debug the problem. We think that the analysis of this information could
also be helpful to provide users with a more meaningful feedback on which are the
conflicting regions of the model under analysis.

Another drawback of this kind of tools is that the reasoning process can take a
huge amount of time, which is especially true when they have to face the exploration
of large search spaces. In these cases, it would be interesting to analyze whether it
is possible to extract useful information for the user when the verification process
is executed only for a limited period of time. Information like for example, the
probability for a given model to be valid or not valid, depending on the size of
the search space explored could be valuable for certain users. This could also be
an improvement when compared to the current situation, where if the verification
process is stopped after being running for some time, the only information the user
can infer is that no valid instance was found.

10.2.2 EMFtoCSP

Apart from being our tool of choice to try to develop the ideas exposed in the
previous subsection, we have some other ideas involving EMFtoCSP. In particu-
lar, we are interested in exploring the translation of models into CSPs on infinite
domains. In these cases, constraint solvers allow incomplete search [120] where
termination is not guaranteed and heuristics are needed to guide the search process.
Additionally, we would also like to explore how to improve the efficiency of the
generated CSP by refining our translation process. Finally, although not exactly
related to EMFtoCSP, we are also interested in investigating the utilization of SMT
solvers for static model verification.

10.2.3 Incremental Verification of Models

Admittedly, our approach for the incremental verification of models is rather
conservative. However, experimental results have also shown that the time needed
to calculate the submodel that must be re-verified is negligible, compared to the time
spent during the verification process. As future work, we plan to further analyze
some scenarios to reduce even more the size of this submodel. In particular, we
know that in certain cases, modifying OCL invariants and generalizations do not
impact the satisfiability of the model. It is also our intention to study the integration
of this approach with model editing tools. At this moment, the success of model
verification tools is far from being great. We think this could change if we provide
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model designers with more comfortable ways of using verification tools. In this
regard, we think that incremental verification approaches can be of great help.

10.2.4 Adjusting Search Space Boundaries

Regarding the calculation of boundaries for bounded verification tools, we plan
to investigate heuristics regarding the best order for selecting bounds, that is, one
that reduces the number of choices and maximizes the amount of information that
can be inferred automatically by the proposed method. We also intend to investigate
how to reverse this approach, for example, by broadening (instead of tightening)
user provided bounds which are too strict to find a counterexample. Finally, we
will consider the utilization of heuristics to suggest promising values for bounded
domains based on the constraints of the model.

10.2.5 Model Transformation Testing: Black-box Approaches

In relation to the utilization of black-box test generation approaches for model
transformation testing, we would like to improve the way OCL expressions char-
acterizing regions of the instance space are combined. The objective here is to
reduce the number of spurious or infeasible combinations produced. Additionally,
and regarding the OCL expressions characterizing regions of the instance space
themselves, in the majority of cases, they are generated exploiting the presence of
collections of elements in the original invariant, by deriving new expressions where
these collections are forced to be either empty or not empty. In the future, we would
like to use more complex criteria to try to identify other groups of expressions also
characterizing regions of the instance space.

10.2.6 Model Transformation Testing: White-box Approaches

Finally, when it comes to white-box test model generation, we plan to extend
our to approach to cover other transformation languages like QVT. We would also
like to study complexity metrics like cyclomatic complexity [164] to establish a
limit on the number of test models that need to be generated, something that can be
specially useful when testing large transformations.
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Résumé en Françaís

A.1 Introduction et Objectifs

L’Ingénierie Dirigée par les Modèles (IDM) est une approche populaire pour le
développement logiciel qui favorise l’utilisation de modèles au sein des processus
de développement. Dans un processus de développement logiciel base sur l’IDM, le
logiciel est développé en créant des modèles qui sont transformés successivement
en d’autres modèles et éventuellement en code source. Quand l’IDM est utilisée
pour le développement de logiciels complexes, la complexité des modèles et des
transformations de modèles augmente, risquant d’affecter la fiabilité du processus
de développement logiciel ainsi que le logiciel en résultant. Traditionnellement,
la fiabilité des logiciels est assurée au moyen d’approches pour la vérification de
logiciels, basées sur l’utilisation de techniques pour l’analyse formelle de systèmes
et d’approches pour le test de logiciels. Pour assurer la fiabilité du processus IDM
de développement logiciel, ces techniques ont en quelque sorte été adaptées pour
essayer de s’assurer la correction des modèles et des transformations de modèles
associées. L’objectif de cette thèse est de fournir de nouveaux mécanismes amélio-
rant les approches existantes pour la vérification de modèles statiques, et d’analyser
comment ces approches peuvent s’avérer utiles lors du test des transformations de
modèles.

A.2 Contributions de cette Thèse

Les contributions de cette thèse sont les suivantes:
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– Un mécanisme basé sur la programmation par contraintes appelé EMFtoCSP,
assurant la validité des modèles statiques.

– Deux mécanismes améliorant la performance des méthodes de vérification de
modèles.

– Un premier mécanisme de génération de modèles de test pour transformations
de modèles, basé sur l’analyse de la structure interne des transformations.

– Un second mécanisme de génération de modèles de test pour transformations
de modèles, basé sur l’analyse de la spécification des transformations.

A.3 Vérification de Modèles Statiques

A.3.1 Etat de L’Art

La vérification formelle de modèles statiques fait référence aux méthodes util-
isées pour prouver la validité des modèles statiques au moyen de l’utilisation des
méthodes formelles et des techniques pour l’analyse formelle de systèmes. Cepen-
dant, il n’y pas de définition universelle de la “validité des modèles”. Au contraire,
il y a plusieurs façons pour un modèle d’être considéré comme correct. Pour cette
raison, il est courant de se référer à la “validité des modèles” comme la capacité du
modèle analysé à satisfaire une ou plusieurs propriétés de validité. Ces propriétés
indiquent certaines caractéristiques que le modèle doit satisfaire pour être consid-
éré comme correct. La propriété la plus importante est appelé “satisfiabilité”. Un
modèle est considéré satisfiable quand il est possible de l’instancier.

La vérification de modèles statiques peut être divisée en deux étapes différentes.
Dans la première se déroule la formalisation, c’est-à-dire que le modèle avec les
propriétés à vérifier sont représentés dans le formalisme choisi. A partir de cette
représentation formelle, la deuxième étape peut commencer. Elle consiste à raison-
ner sur cette représentation, habituellement avec l’aide de certains outils spécial-
isés, pour voir si les propriétés sont satisfaites ou non. L’exhaustivité et le de-
gré d’automatisation de ce raisonnement dépendent fortement du degré de support
fourni avec le langage de contraintes OCL. La raison à cela est que le soutien com-
plet à OCL conduit à des problèmes d’indécidabilité, comme indiqué dans [44].
Dans ce scénario, les approches de vérification qui sont complètes sont aussi celles
qui sont interactives [70, 87] (elles ont besoin de l’aide de l’utilisateur pour orien-
ter le processus de vérification). Cela peut être problématique car cela requiert des
utilisateurs experts dans les formalismes utilisés. Pour cette raison, la majorité des
approches qui soutiennent complètement OCL [45, 73, 75] sont automatisées et as-
surent la terminaison, mais ceci au détriment de leur exhaustivité. Cela se fait en
suivant une approche de vérification bornée dans laquelle les utilisateurs doivent
typiquement configurer d’avance certains paramètres pour conduire le processus de
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raisonnement. Mais une fois qu’il est lancé, l’intervention de l’utilisateur n’est plus
nécessaire. En particulier, il est habituel que ces approches donnent aux utilisateurs
la responsabilité de fixer les limites de l’espace de recherche où trouver une solu-
tion du problème. Dans ce scénario, les résultats sont concluants seulement si le
modèle s’avère correct. D’autre part, les approches qui soutiennent seulement une
partie d’OCL sont automatisées et exhaustives [49, 66] parce qu’elles ne sont pas
affectées par les problèmes d’indécidabilité indiqués dans [44]. Finalement il est
important de noter que, dans la majorité des cas où le modèle s’avère correct, ces
outils donnent une instance valide de ce modèle comme preuve de validité.

A.3.2 Défis et Domaines D’Amélioration

Le premier problème important détecté est l’absence d’une terminologie pré-
cise et rigoureuse partagée entre toutes les approches de vérification étudiées. Une
des conséquences de cela est la difficulté de contextualiser les approches dans ce
domaine, surtout en comparaison avec les approches dans d’autres domaines sim-
ilaires. Clairement, une définition non-ambigüe de tous les termes liés au con-
cept de la vérification de modèles (comme validation, consistance, etc.) est néces-
saire. L’absence d’une terminologie précise et rigoureuse affecte aussi la manière
dont les propriétés de validité sont appelées et définies. à notre avis, cette absence
d’homogénéité pour appeler et définir avec précision les propriétés de validité pour-
rait être améliorée par la création d’un catalogue de propriétés dans lequel on peut
trouver la liste des propriétés qui peuvent être analysées lors de la vérification de
modèles statiques. à notre connaissance, aucun travail n’a été réalisé jusqu’à présent
dans ce sens.

Une autre constatation est la difficulté d’évaluer et de comparer la couverture et
la performance des outils de vérification existants. Nous pensons qu’une voie pos-
sible pour améliorer la situation actuelle serait la création de benchmarks, comme
cela est généralement fait dans d’autres communautés.

Une autre constatation importante concerne l’adéquation des outils de vérifi-
cation existants. À notre avis, un outil de vérification, pour être efficace et large-
ment adopté, doit présenter au moins quatre caractéristiques importantes. Première-
ment, il doit cacher toutes les complexités découlant de l’utilisation des méthodes
formelles, au point de rendre leur présence transparente pour l’utilisateur final.
Deuxièmement, il doit s’intégrer parfaitement avec le reste des outils utilisés par
l’utilisateur. Troisièmement, il doit fournir à l’utilisateur des retours significatifs.
Et, plus important encore, quatrièmement il devrait être raisonnablement efficace,
i.e. ne pas faire attendre les utilisateurs trop longtemps lors de la vérification de
grands modèles ou de modèles du monde réel. Nous pensons que ces aspects sont,
du point de vue de l’utilisateur, plus important que d’autres aspects plus formels tels
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que l’exhaustivité des résultats. Malheureusement, aucun des outils de vérification
analysés dans cette étude ne remplit suffisamment toutes ces exigences. En général
ces outils ne s’intègrent pas bien, et ont été conçus pour effectuer le processus de
vérification séparément du reste des tâches caractérisant le travail d’un créateur de
modèles. Lorsqu’il s’agit de masquer les méthodes formelles employées, la situa-
tion est meilleure. C’est surtout le cas des approches de vérification bornées, mais le
fait d’avoir à régler manuellement les limites de l’espace de recherche peut être un
problème lors de la vérification de grands modèles. Les retours fournis peuvent être
considéré comme acceptable lorsque le modèle en cours d’analyse s’avère valide
mais sont insuffisants dans l’autre cas, la majorité des outils ne produisant aucun re-
tour détaillé si le modèle ne s’avère pas valide (à notre connaissance, seul [51] four-
nit quelques conseils pour aider les utilisateurs dans ce cas). Finalement, l’efficacité
est un problème sérieux. En général, les outils se comportent bien lorsqu’ils trait-
ent des exemples simples ou des modèles de taille réduite. Mais la performance
diminue considérablement quand ils sont utilisés pour vérifier de grands modèles
ou des exemples du monde réel.

A.3.3 EMFtoCSP: Vérification des Modèles Statiques dans Eclipse

EMFtoCSP est un outil pour la vérification de modèles statiques qui peuvent
inclure ou non des contraintes OCL diverses et variées. L’outil est une évolution
de l’outil UMLtoCSP [45], et a pour but de couvrir l’espace laissé par l’absence de
projets voués à la vérification de modèles statiques dans la plateforme Eclipse. Dans
EMFtoCSP, le modèle d’entrée avec ses contraintes ainsi que les propriétés à vérifier
sont convertis en un problème de satisfaction de contraintes ou CSP. Ensuite, un
solveur de contraintes aussi appelé Eclipse est utilisé pour déterminer si une solution
pour le CSP existe ou non. Le CSP est construit d’une manière telle qu’il a une
solution si et seulement si le modèle ainsi que les contraintes satisfont les propriétés
de validité choisies. Si une solution est trouvée, l’outil fournit une instance valide du
modèle d’entrée comme preuve. Dans sa version actuelle, EMFtoCSP peut vérifier
les propriétés de validité suivantes:

– Satisfiabilité forte: il est possible de trouver une instance valide du modèle
avec une population non-vide pour toutes ses classes et associations.

– Satisfiabilité faible: il est possible de trouver une instance valide du modèle
avec une population non-vide pour une de ses classes.

– Absence de contraintes englobées: étant donné un modèle avec deux con-
traintes OCL C1 et C2, il est possible de trouver une instanciation finie où C1
est satisfaite et pas C2.

– Absence de contraintes redondantes: étant donné un modèle avec deux con-
traintes OCL C1 et C2, il est possible de trouver une instanciation finie où
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seule une contrainte est satisfaite.

Comparé à UMLtoCSP, EMFtoCSP comprend (entre autres améliorations) la
capacité de vérifier une plus grande variété de modèles ainsi qu’une version revisité
du mécanisme de génération de CSP. En particulier, l’outil peut également être util-
isé pour vérifier des langages de modélisation spécifiques à des domaines donnés
(DSMLs). En ce qui concerne le mécanisme de génération de CSP, grâce au travail
de Büttner et al. [107], EMFtoCSP peut également analyser les expressions OCL
incluant des opérations générales sur chaînes de caractères.

A.3.4 Vérification Incrémentale de Modèles

Une première étape nécessaire pour augmenter le taux d’adoption des outils de
vérification est d’améliorer la performance du processus de vérification. La pre-
mière variante que nous proposons pour réaliser cet objectif consiste à vérifier le
modèle de façon progressive. Ainsi, chaque fois que le modèle est modifié, seules
les parties pertinentes sont vérifiées à nouveau. Les approches traditionnelles véri-
fient le modèle complet, sans tenir compte de la nature des modifications effectuées.
L’approche incrémentale proposée est également basée sur l’utilisation des outils de
vérification utilisés par les approches traditionnelles (comme EMFtoCSP). Mais, au
lieu de vérifier le modèle complet, il analyse d’abord les modifications faites sur le
modèle, supprime celles qui n’ont pas d’impact sur sa validité et utilise le reste pour
calculer la partie du modèle qui a vraiment besoin d’être vérifiée à nouveau. De
cette façon, la taille du modèle qui doit réellement être vérifié à nouveau peut être
réduite, contribuant ainsi à améliorer la performance du processus de vérification.

Cependant, il est important de préciser qu’une approche de vérification incré-
mentale est très dépendante de la propriété de validité qui est à vérifier. En fonction
de la propriété de validité à analyser, quelques modifications de modèle peuvent ou
non avoir un impact sur la validité du modèle. Notre approche se concentre sur la
propriété appelée “satisfiabilité” et suit une stratégie assez conservatrice au moment
de l’analyse des modifications sur le modèle. Diverses modifications ont été identi-
fiées comme non-problématiques pour la validité du modèle et, par conséquent, ne
sont pas à vérifier de nouveau (c’est le cas de l’ajout d’une classe, de la suppres-
sion d’une classe, d’associations binaires, et de l’ajout d’une association binaire
avec des cardinalités 0 ou 1). Le reste des modifications sont considérées comme
des scénarios complexes, où l’impact sur la validité du modèle n’est pas clair. Par
conséquent, dans ces cas, les parties du modèle affecté par les modifications sont
vérifiées à nouveau au moyen d’EMFtoCSP.
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A.3.5 Limiter L’Espace de Recherche des Méthodes de Vérifica-
tion Bornées

Une des stratégies les plus populaires de la vérification de modèles statiques
est de suivre une approche de vérification bornée consistant à limiter l’espace de
recherche où trouver une solution du problème de vérification. Malheureusement,
la définition des limites de l’espace de recherche s’est avérée être un facteur limitant
parce que les outils existants définissent des valeurs inadéquates par défaut, ou for-
cent les utilisateurs à définir ces valeurs manuellement. La définition manuelle de
ces limites est un gros problème parce que cela nécessite la spécification de limites
supérieures et inférieures pour la population de chaque classe et association dans
le modèle, ainsi que les domaines pour chaque attribut. Lorsqu’il s’agit de grands
modèles, cela se traduit par la définition des valeurs limites pour un ensemble de
centaines d’éléments de modèle ou même plus. En outre, il n’y a pas de garantie
que ce processus ne doive pas être répété plusieurs fois afin d’affiner l’espace de
recherche résultant. Bien sûr, il y a toujours le risque que l’utilisateur fasse une
erreur quand elle/il définit les domaines, lui laissant penser que le modèle n’est pas
valide alors qu’il s’agit juste d’une erreur dans la sélection des limites.

Notre seconde approche pour améliorer la performance des outils de vérifica-
tion consiste à optimiser ces limites, à partir de zéro ou en affinant une première
série de limites proposées par l’utilisateur. La méthode fonctionne en récupérant
toutes les contraintes implicites et explicites du modèle à vérifier, et en les expri-
mant comme un CSP sur un ensemble de variables représentant les limites à utiliser
au moment de la vérification du modèle. Avec le CSP en place, ces limites sont
alors calculées par un solveur en utilisant des techniques de propagation de con-
traintes d’intervalles. Cette méthode n’est pas optimale mais elle est sûre. Elle peut
ne pas calculer les meilleures limites mais elle va conserver toutes les instances de
modèle qui existent dans les limites d’origine, et qui sont donc une solution pour le
problème. Finalement, ces nouvelles limites avec le modèle initial sont transmises
à un outil de vérification borné pour effectuer la vérification.

A.4 Test de Transformations de Modèles

Après avoir décrit l’état de l’art sur la vérification des modèles statiques, et
présenté diverses contributions pour son amélioration, dans cette section nous met-
tons l’accent sur le domaine du test de transformations de modèles.
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A.4.1 Etat de L’Art

Essentiellement, la méthodologie pour tester une transformation de modèles est
la même que celle suivie par les méthodes traditionnelles de test de programmes,
c’est-à-dire:

– Déterminer les données d’entrée appropriées pour tester la transformation de
modèles.

– Exécuter la transformation de modèles avec les données d’entrée obtenues à
partir de la première étape.

– Analyser les sorties produites par l’exécution de la transformation de modèles
pour détecter la présence éventuelle d’erreurs.

Dans cette thèse, l’attention est portée sur la première étape.

Au moment de générer des données d’entrée pour tester une transformation de
modèles, et comme c’est le cas pour les méthodes traditionnelles de test de pro-
grammes, les approches les plus populaires peuvent être regroupées en deux grandes
familles: approches de types “boîte noire” et “boîte blanche”. Dans le cas du test
“boîte noire” les données d’entrée sont générées au moyen de l’analyse de la spé-
cification de la transformation de modèles, tandis que dans le cas du test “boîte
blanche” elles sont générées au moyen de l’analyse de la structure interne de la
transformation de modèles. En général les données d’entrée seront des modèles et,
par conséquent, nous les appellerons “modèles de test” à partir de maintenant.

Le nombre d’approches de test boîte noire existantes est plutôt limité. Elles peu-
vent être divisées en deux sous-groupes en fonction de la stratégie suivie: utilisant
une analyse de partition ou une sorte de langage logique.

L’analyse de partition [127] est utile pour identifier les régions non vides et
disjointes de l’espace d’instance du métamodèle d’entrée de la transformation de
modèles, lorsque les modèles partagent les mêmes caractéristiques. Avec cette in-
formation, il est alors possible de créer un modèle de test à partir de chaque région
identifiée. La première tentative d’utilisation de l’analyse de partition pour obtenir
des modèles de test sur les diagrammes de classes UML a été réalisée par Andrews
et al. [128]. Cette approche a ensuite été utilisée par Fleurey et al. [129] pour pro-
poser une approche de test boîte noire pour des transformations de modèles. Après
cela, d’autres approches basées sur [129] ont été proposées [132–134]. D’autre
part, les approches de test boîte noire qui représentent le problème de génération
des modèles de test au moyen d’un langage logique [135, 138, 139] profitent de la
présence d’un solveur pour obtenir des modèles de test.

Par rapport au nombre d’approches de test boîte noire, le nombre d’approches
de test boîte blanche est encore plus réduit. Fleurey et al. proposent aussi dans [129]
une approche boîte blanche pour améliorer l’approche boîte noire présentée dans le
même travail. Egalement basé sur les concepts décrits dans [129], Wang et al. [150]
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proposent un outil pour la génération automatique de modèles de test suivant une
approche boîte blanche sur les règles de transformations de modèles écrites dans la
langue de transformation Tefkat (http://tefkat.sourceforge.net/). Finalement, Küster
et al. [149] proposent également trois différentes techniques de test boîte blanche
pour l’analyse des transformations de modèles décrites au moyen de l’outil IBM
WebSphere Business Modeler.

A.4.2 Défis et Domaines D’Amélioration

Au moment de tester une transformation de modèles, le défi le plus important est
lié à la nature des données impliquées dans le processus. Les modèles ont tendance
à être des structures grandes et complexes qui sont conformes à des métamodèles
étant aussi grands et complexes, éventuellement complétés par des règles de validité
écrites dans un langage de contraintes comme OCL. Cette complexité affecte les
mécanismes de génération de modèles de test et de construction d’oracle. Dans le
cas particulier de la génération de modèles de test, cette complexité est transformée
en un problème de satisfaction de contraintes. En effet, cela implique normalement
la recherche d’une structure de graphe qui satisfait un possiblement grand nombre
de contraintes dans un, possiblement aussi grand, espace de recherche. En outre,
les approches boîte noire basées sur la technique d’analyse de partition proposée
par Andrews et al. [128] ne considèrent les contraintes OCL que superficiellement
au moment de la construction des partitions. L’utilisation d’un langage logique a
aussi des inconvénients, parce qu’il transforme la génération de modèles de test en
un problème du même genre que celui étudié dans la Section A.3. Par conséquent,
les défis discutés à ce moment là sont appliquées ici également. Finalement, le
principal défi sur les approches boîte blanche est lié à l’absence d’homogénéité
entre les langages de transformation de modèles existants.

A.4.3 Une Approche de Test Boîte Noire Basée sur L’Analyse de
Partition et des Contraintes

Comme il a été mentionné précédemment, une des faiblesses des approches de
test boîte noire basées sur la technique d’analyse de partition proposé par Andrews
et al. [128] est qu’elles ne considèrent les contraintes OCL que superficiellement au
moment de la construction des partitions. Cela limite la représentativité des mod-
èles de test et le degré de couverture obtenu. Pour essayer d’améliorer cela, nous
présentons une approche de test boîte noire dans laquelle la génération des modèles
de test est gérée par l’analyse de chaque contrainte OCL du métamodèle d’entrée
de la transformation de modèles. En particulier, la méthode prend ces contraintes
OCL et, pour chacune d’elles, produit une nouvelle série d’expressions OCL car-
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actérisant chacune une région de l’espace d’instance du métamodèle d’entrée de la
transformation de modèles. En d’autres termes, toutes les instances de modèle dans
une certaine région satisfont l’expression OCL générée qui caractérise cette région.
Une fois les nouvelles expressions OCL générées, la méthode offre aux utilisa-
teurs trois techniques de génération des modèles de test ayant différents niveaux
d’exhaustivité. Avec le premier mode, appelé “mode simple”, chacune de ces ex-
pressions OCL est passée séparément à EMFtoCSP avec le métamodèle d’entrée
de la transformation pour générer un modèle de test qui caractérise chacune des
régions. Avec la seconde approche, appelée “mode de partitions multiples”, toutes
les expressions OCL obtenues à partir de l’analyse d’une contrainte OCL dans le
métamodèle d’entrée de la transformation sont combinées pour générer un nouvel
ensemble d’expressions OCL représentant un ensemble de régions disjointes. A
ce moment là, EMFtoCSP est utilisé de nouveau pour générer les modèles de test
correspondants. Finalement, avec la méthode appelée “mode de partition unique”,
le même processus se répète. Mais, au lieu de combiner les expressions OCL ré-
sultant de l’analyse d’un contrainte OCL, il combine toutes les expressions OCL
résultant de l’analyse de toutes les contraintes OCL dans le métamodèle d’entrée de
la transformation de modèles.

A.4.4 ATLTest: Une Approche du Test Boîte Blanche pour Trans-
formations de Modèles ATL

Également mentionné lors de l’exposition de l’état de l’art, le nombre d’approches
du test boîte blanche est plutôt petit. Pour augmenter le nombre de méthodes
disponibles, nous proposons une approche boîte blanche pour le test de transfor-
mations de modèles écrites en ATL. ATL est un langage de transformation de mod-
èles populaire qui utilise OCL abondamment pour décrire comment les éléments du
modèle sont transformés.

Notre proposition consiste à analyser les expressions OCL présentes dans le
code source de la transformation de modèles pour construire un graphe orienté. Ce
graphe contiendra toutes les informations nécessaires pour procéder à une deuxième
étape dans laquelle les modèles de test sont générées. La méthode tente de repro-
duire la procédure suivie par les approches traditionnelles de test boîte blanche de
programmes, basées sur le parcours d’un graphe de flot de contrôle pour générer des
données d’entrée de tests. Cependant, comme ATL est principalement un langage
déclaratif, les nœuds du graphe seront caractérisés par une expression OCL. De
plus, les arcs indiqueront une dépendance de telle sorte que le nœud de destination
ne peut être visité si l’expression OCL dans le nœud source n’est pas satisfaite.

Une fois le graphe généré, le parcours consiste à assigner des vraies valeurs aux
expressions OCL dans les nœuds. Comme les arcs représentent une dépendance en-
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tre les expressions OCL dans les nœuds connectés, l’attribution d’une valeur “faux”
à une expression OCL représente une condition potentielle pour arrêter le proces-
sus. L’idée est que, chaque fois que le graphe est parcouru, un certain nombre
d’expressions OCL mises à “vrai” ou “faux” seront produites. Ces expressions
OCL, avec le métamodèle d’entrée de la transformation ATL, peuvent ensuite être
passées à EMFtoCSP pour générer un modèle de test qui caractérise le chemin par-
couru. Le processus peut être répété un nombre fixe de fois, ou bien jusqu’à ce que
tous les parcours dans le graphe soient épuisés.

A.5 Conclusions

Cette thèse analyse le domaine des approches pour la vérification de modèles
statiques avec le double objectif de 1) présenter des contributions pour améliorer
leur efficacité et 2) de découvrir des nouveaux mécanismes qui utilisent ces ap-
proches pour tester des transformations de modèles.

Pour réaliser le premier objectif, un outil pour la vérification de modèles sta-
tiques dans la plateforme Eclipse, ainsi que deux approches pour améliorer la per-
formance des techniques de vérification, ont été introduits. Finalement, pour réaliser
le deuxième objectif, deux techniques de génération de modèles pour tester des
transformations de modèles ont été proposées.
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Vérification Pragmatique de Modèles

Pragmatic Model Verification

Résumé
L’Ingénierie Dirigée par les Modèles (IDM) est
une approche populaire pour le développement
logiciel qui favorise l’utilisation de modèles au
sein des processus de développement. Dans un
processus de développement logiciel base sur
l’IDM, le logiciel est développé en créant des
modèles qui sont transformés successivement en
d’autres modèles et éventuellement en code
source. Quand l’IDM est utilisée pour le
développement de logiciels complexes, la
complexité des modèles et des transformations
de modèles augmente, risquant d’affecter la
fiabilité du processus de développement logiciel
ainsi que le logiciel en résultant.
Traditionnellement, la fiabilité des logiciels est
assurée au moyen d’approches pour la
vérification de logiciels, basées sur l’utilisation de
techniques pour l’analyse formelle de systèmes
et d’approches pour le test de logiciels. Pour
assurer la fiabilité du processus IDM de
développement logiciel, ces techniques ont en
quelque sorte été adaptées pour essayer de
s’assurer la correction des modèles et des
transformations de modèles associées. L’objectif
de cette thèse est de fournir de nouveaux
mécanismes améliorant les approches existantes
pour la vérification de modèles statiques, et
d’analyser comment ces approches peuvent
s’avérer utiles lors du test des transformations de
modèles.

Abstract
Model-driven Engineering (MDE) is a popular
approach to the development of software which
promotes the use of models as first-class citizens
in the software development process. In a
MDE-based software development process,
software is developed by creating models to be
successively transformed into another models
and eventually into the software source code.
When MDE is applied to the development of
complex software systems, the complexity of
models and model transformations increase, thus
risking both, the reliability of the software
development process and the soundness of the
resulting software. Traditionally, ensuring
software correctness and absence of errors has
been addressed by means of software verification
approaches, based on the utilization of formal
analysis techniques, and software testing
approaches. In order to ensure the reliability of
MDE-based software development processes,
these techniques have somehow been adapted to
try to ensure correctness of models and model
transformations. The objective of this thesis is to
provide new mechanisms to improve the
landscape of approaches devoted to the
verification of static models, and analyze how
these static model verification approaches can be
of assistance at the time of testing model
transformations.

Mots clés
Ingénierie Dirigée par les Modèles, Vérification
de Modèles, Test de Transformations de Modèles.

Key Words
Model Driven Engineering, Static Model
Verification, Model Transformation Testing.
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