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Abstract

Galaxy peculiar velocities provide valuable information about our motion with respect to the
observed large-scale structure and can be used to constrain the underlying dark matter distribu-
tion. Based on this approach, the technique of constrained realisations allows us to run numerical
simulations that resemble the observed Local Universe. This provides a powerful numerical lab-
oratory to study the dynamics, formation and evolution of structure in the Local Universe. The
crucial step is to generate appropriate initial conditions from the observational data.

We present here improvements on the technique of constrained simulations, along with a
newly developed highly optimised numerical code that can handle the upcoming large observa-
tional datasets. Galaxies evolve from the gravitational collapse of primordial overdensities in the
early Universe; their motion leads to a large-scale displacement field. A major source of system-
atic errors in constrained simulations arises by not accounting for this effect. To overcome this
limitation, we develop the Reverse Zeldovich Approximation (RZA) reconstruction method. The
RZA allows to reconstruct displacements and initial positions of observed galaxies and generate
a significantly better estimate of the initial conditions of the Local Universe. This method is
extensively tested on simulation data. We also study the influence of data quality and various
observational and systematic errors. We show that with the RZA technique, the reconstruction
quality of the density and velocity fields improves significantly. The positions of objects in the
evolved constrained simulations are recovered more accurately and over a wider range of masses.
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Résumé

Les vitesses particulières de galaxies fournissent des informations importantes sur notre mouve-
ment par rapport aux grandes structures observées et peuvent être utilisées afin de contraindre
la distribution de matière noire sous-jacente. En se fondant sur cette approche, la technique des
réalisations contraintes permet de calculer des simulations numériques qui ressemblent à l’Uni-
vers Local observé. Ceci fourni un laboratoire numérique puissant pour étudier la dynamique, la
formation et l’évolution des structures bien connues de l’Univers Local. L’ étape cruciale est de
générer, à partir des données observationnelles, des conditions initiales appropriées.

Nous présentons ici des améliorations de la technique des simulations contraintes, accompa-
gnées d’un code numérique nouvellement développé et hautement optimisé, qui peut gérer les
énormes ensemble de données observationnelles. Les galaxies évoluent à partir du effondrement
gravitationnel des surdensités primordiales de l’Univers très jeune ; leurs mouvements créent un
champ de déplacement à grande échelle. Une source majeure d’erreurs systématiques dans les
simulations contraintes est produite si l’on ne tient pas compte de cet effet. Afin de dépasser
cette limitation, nous avons développé la méthode de reconstruction par approximation inverse
de Zeldovich (RZA). La RZA permet de reconstruire les déplacements et les positions initiales
des galaxies observées et de générer une estimation significativement meilleure des conditions ini-
tiales de l’Univers Local. Cette méthode est intensivement testée sur des données de simulations.
Nous étudions aussi l’influence de la qualité des données et de diverses erreurs observationnelles
et/ou systématiques. Nous démontrons qu’avec la technique RZA, la qualité de la reconstruction
des champs de densité et de vitesse est drastiquement améliorée. Les positions des objets dans les
simulations contraintes évoluées sont retrouvées plus précisément et sur un plus grand intervalle
de masses.
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Zusammenfassung

Die Pekuliargeschwindigkeiten von Galaxien liefern wertvolle Informationen über ihre Bewegung
relativ zu den beobachteten großräumigen Strukturen und können verwendet werden, um die
zugrundeliegende Verteilung der dunklen Materie abzuschätzen. Auf dieser Grundlage können
mit der Methode der “Constrained Realisations” numerische Simulationen durchgeführt werden,
die die Materieverteilung im Lokalen Universum widerspiegeln und somit leistungsfähige nume-
rische Experimente ermoeglichen, um die Dynamik, Entstehung und Evolution von Strukturen
im lokalen Universum zu untersuchen. Eine wichtige Voraussetzung für diese Experimente ist es,
korrekte Anfangsbedingungen aus den Beobachtungsdaten abzuleiten.

In dieser Arbeit werden Verbesserungen der “Constrained Simulations”-Technik sowie ein für
diesen Zweck neu entwickelter, hochgradig optimierter numerischer Code vorgestellt, welcher
es ermöglicht, die kommenden, sehr umfangreichen Beobachtungsdaten zu verarbeiten. Galaxien
entwickeln sich aus dem Gravitationskollaps von primordialen Überdichten im frühen Universum.
Deren Bewegung führt zu einer großräumigen Dislokation, deren Vernachlässigung die größte
systematische Fehlerquelle für “Constrained Simulations” darstellt. An dieser Stelle knüpft die
Reverse-Zeldovich-Näherung (RZA) an, die hier vorgestellt wird. Mithilfe der RZA können wir
diese Dislokation abschätzen und somit die ursprünglichen Positionen der beobachteten Galaxien
rekonstruieren. Dadurch erhält man wesentlich genauere Anfangsbedingungen fuer die Entwick-
lung des Lokalen Universums. Diese Methode wird ausführlich an Simulationsdaten getestet.
Der Einfluß der Datenqualität und verschiedener Beobachtungs- und systematischer Fehler wird
eingehend untersucht. Die Rekonstruktionsgenauigkeit der Dichte- und Geschwindigkeitsfelder
kann durch den Einsatz der RZA signifikant erhöht werden. In unseren Tests stimmen die Posi-
tionen von Objekten in den mit RZA erzeugten “Constrained Simulations” wesentlich besser mit
den ursprünglichen überein, als ohne die RZA, und das für einen deutlich größeren Bereich von
Massen.



iv

Contents

1 Motivation 1

2 The Universe 9
2.1 Galaxy peculiar velocities and the Local Flow . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Hubble Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Cosmic flows in the Local Universe . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The ΛCDM cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 The expanding Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Comoving coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Linear theory of density perturbations . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Power spectrum and correlation function . . . . . . . . . . . . . . . . . . . 21
2.2.5 The linear peculiar velocity field . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.6 The Zeldovich approximation . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.7 Hierarchical structure formation . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Cosmological N -body simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 The N -body method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Structure formation in simulations . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 The evolved density and velocity fields . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Halo peculiar velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.5 Peculiar velocity data as a tracer of the underlying field . . . . . . . . . . 42

3 Initial conditions, Wiener filter, and constrained realisations 44
3.1 Random initial conditions for N -body simulations . . . . . . . . . . . . . . . . . . 44

3.1.1 Initial overdensity and velocity fields . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Particle sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.3 Finite-volume effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Estimation and prediction of Gaussian random fields . . . . . . . . . . . . . . . . 50
3.2.1 The Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Reconstruction of the LSS from peculiar velocity data . . . . . . . . . . . 54

3.3 Constrained realisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 The Hoffman-Ribak algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Constrained simulations and the CLUES method . . . . . . . . . . . . . . 59
3.3.3 Drawbacks of the CLUES method . . . . . . . . . . . . . . . . . . . . . . 62

3.4 ICeCoRe implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Analytic correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 Grid correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Matrix inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



CONTENTS v

3.5 High-resolution, multi-scale, and baryonic initial conditions . . . . . . . . . . . . 73

4 Lagrangian reconstruction from peculiar velocity data 77
4.1 Reconstructing initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 The general problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 Density-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.3 Velocity-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 The Reverse Zeldovich Approximation . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Halo displacements and velocities . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 RZA application to velocities at z = 0 . . . . . . . . . . . . . . . . . . . . 83

4.3 Mock catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.1 The BOX160 mock volume . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Generating mock data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 The mock catalogue set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 RZA on Wiener Filter reconstructions . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Reconstruction details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.3 Error sources of RZA reconstruction . . . . . . . . . . . . . . . . . . . . . 95
4.4.4 RZA error distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.5 Radial vs. three-dimensional data . . . . . . . . . . . . . . . . . . . . . . . 100
4.4.6 The reconstructed displacement field . . . . . . . . . . . . . . . . . . . . . 103
4.4.7 Filtering bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Extending RZA to higher order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 The Reverse 2LPT approximation . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Constrained Simulations 110
5.1 Generating initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Placing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1.2 Reconstructed initial conditions . . . . . . . . . . . . . . . . . . . . . . . . 114
5.1.3 Constrained length scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.4 Number density of constraints and constraining power . . . . . . . . . . . 120

5.2 Constrained resimulations of BOX160 . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Resimulated fields at z = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.2 The resimulated BOX160 Universe . . . . . . . . . . . . . . . . . . . . . . 128
5.2.3 Recovered mass scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.4 Filaments and voids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Summary, conclusions and outlook 138
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.1.2 Constrained Local Universe simulations . . . . . . . . . . . . . . . . . . . 139
6.1.3 RZA reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.1.4 RZA on radial peculiar velocity data . . . . . . . . . . . . . . . . . . . . . 140
6.1.5 Constrained simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



vi CONTENTS

A ICeCoRe User’s Guide 147
A.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.2 Install and run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.3 The user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.2 Basic usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2.1 Density and velocity fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2.2 Cosmology and power spectrum . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2.3 Generating initial conditions for cosmological N -body simulations . . . . . 152
A.2.4 Computing correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.2.5 Placing constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.6 Wiener filter and constrained realisations . . . . . . . . . . . . . . . . . . 156

A.3 Advanced usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.3.1 Reverse Zeldovich approximation . . . . . . . . . . . . . . . . . . . . . . . 160
A.3.2 Display and delete objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3.3 Splitting the WF/CR procedure . . . . . . . . . . . . . . . . . . . . . . . 161
A.3.4 Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.4 Editing overdensity and velocity grids . . . . . . . . . . . . . . . . . . . . . . . . 163
A.4.1 Whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.4.2 Smoothing filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
A.4.3 Downsampling and cropping . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.4.4 Snapshot binning with mass assignment schemes . . . . . . . . . . . . . . 166

B ICeCoRe reference 169
B.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
B.3 Tokens for numerical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
B.4 Keyword aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.5 Supported file formats for density and velocity fields . . . . . . . . . . . . . . . . 192

B.5.1 Binary format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.5.2 BOV format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.5.3 Grafic format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.5.4 Grafic white noise format . . . . . . . . . . . . . . . . . . . . . . . . . . 196
B.5.5 ASCII format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.6 List of keywords and command syntax . . . . . . . . . . . . . . . . . . . . . . . . 198

C Abbreviations and acronyms 200

D Constants and units 202

Bibliography 203

Acknowledgements 221



Not only does God play dice with the
world – He does not let us see what He
has rolled.

Stanisław Lem

Chapter 1

Motivation

We live in a time where cosmology, the study of the structure, origin, and evolution of the
Universe on large scales, has finally reached the stage of a precision science. The ΛCDM (Lambda-
Cold-Dark-Matter) model has established itself as the standard model of modern cosmology. In
this generally accepted picture, the Universe evolved from an extremely dense and hot state,
termed the Big Bang, followed by a stage of expansion and cooling that continues to this day.
Contemporary large-scale structure, such as galaxies and clusters, condensed by gravitational
amplification of initial small fluctuations in the cosmic density field that are likely of quantum
origin. The cosmological parameters that describe the matter-energy content of the Universe
and its expansion history are known today to a high precision of a few percent (Komatsu et al.
2011). This consistent image emerged by bringing together theoretical models (Peebles 1980,
1993; Weinberg 2008), observations of the cosmic microwave background radiation (Penzias &
Wilson 1965; Smoot et al. 1991; Spergel et al. 2007), the distribution of galaxies on large
scales (Tegmark et al. 2004; Cole et al. 2005), estimates of the primordial abundances of the
light elements (Alpher et al. 1948), supernovae explosions in distant galaxies (Riess et al.
1998; Perlmutter et al. 1999), and assessments of the total mass of individual galaxies and
galaxy clusters (Oort 1930a,b,c; Zwicky 1933, 1937; Freeman 1970; Clowe et al. 2006). The
surprising finding was that the Universe is dominated by dark matter, believed to be composed
of collisionless particles interacting solely by gravity and thus exremely difficult to observe, and
dark energy, which can be understood as a field of non-zero vacuum energy that permeates
the whole Universe and accelerates the cosmic expansion. Ordinary baryonic matter, despite
being the building blocks of all observable, luminous objects like galaxies, stars, and planets,
comprises only a small fraction of the cosmic matter-energy balance. These luminous objects
form from baryonic gas accreted into the gravitational potential of dark matter haloes assembled
by hierarchical clustering (White & Rees 1978; White & Frenk 1991).

Today, the most successful method of studying the formation and evolution of large-scale
structure (LSS) are numerical N -body simulations. Large-scale structure formation is a highly
non-linear process and the possibility to describe it analytically is limited. The predictive power
of such analytic models was far surpassed by high-resolution cosmological simulations during
the advent of high-performance computing in the 1990s, which allowed to numerically resolve
the evolution of the LSS on mass and length scales spanning many magnitudes. It is a major
achievement of numerical cosmology that these simulations can accurately reproduce the web-like
appearance of the large-scale galaxy distribution observed in deep galaxy redshift surveys such as
2dF and SDSS (Springel et al. 2005). The standard approach is to sample the primordial matter
density fluctuations with an ensemble of collisionless tracer particles that represent the initial
conditions of the dark matter density field. Then, the system can be evolved forward in time by
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2 1 Motivation

a step-wise numerical integration of appropriate equations of motion (Efstathiou et al. 1985).
Since then, powerful numerical simulation codes for massively parallel computing have been
developed (Kravtsov et al. 1997; Teyssier 2002; Springel et al. 2001; Springel 2005, 2010). The
N -body method of using collisionless tracer particles is sufficient to accurately model structure
formation on super-galactic scales, which is dominated by dark matter clustering. Baryonic
physics becomes important at the scale of individual galaxies and below. Modern cosmological
simulation codes include different recipes for treating the dynamics of the baryonic component by
solving the underlying hydrodynamical equations alongside the dark matter. Numerical recipes
have been developed to enhance these methods by adding physics beyond the standard gas
hydrodynamics, such as radiative gas cooling and heating, star formation (Springel & Hernquist
2003a,b; Rasera & Teyssier 2006), supernovae feedback (Scannapieco et al. 2005, 2006; Dubois
& Teyssier 2008), magnetic fields (Fromang et al. 2006; Dolag & Stasyszyn 2009; Doumler
& Knebe 2010), and radiative transfer (Partl et al. 2010; Wise & Abel 2011), which allows
one to simulate processes like the formation of galaxies (Steinmetz 1999; Crain et al. 2009;
Scannapieco et al. 2011), the epoch of reionisation and first stars (Iliev et al. 2011; Wise
et al. 2012), and the intergalactic medium (Cen & Ostriker 1999, 2006; Klar & Mücket 2012).
Cosmological simulations have since yielded many interesting insights that could not have been
achieved by observational or analytic means alone, and greatly helped to refine our understanding
of the formation and evolution of cosmic structure. It must be admitted though that, despite
substantial progress in the respective fields, at scales where baryonic – and therefore observable –
matter becomes dominant the convergence between observational and theoretical studies is still
in its infancy. It is notoriously difficult to reproduce some of the observations in the simulation
world, such as the yet not sufficiently understood formation of disk galaxies (Scannapieco et al.
2011), the observed galaxy luminosity function (Binney & Tremaine 2008), or the properties of
cosmic voids (Tikhonov & Klypin 2009).

As important as it may be to have a theoretical picture of our Universe’s origin and evolution,
the focus naturally lies on the specific area of the Universe that we happen to inhabit. It is of
special interest to understand the structure and dynamics of the Local Universe that surrounds
our own Milky Way galaxy. This encompasses the Local Group (containing the Milky Way, the
Andromeda galaxy, and several smaller objects), the Local Supercluster with the Virgo Cluster
as its dominant object, and several other clusters at larger distances that govern this region
of space (Figure 1.1). The key to an understanding of the dynamics of the Local Universe
lies in the peculiar velocity field, observationally accessible through galaxy distance surveys
that allow one to determine the galaxies’ peculiar velocities (Tully 1988; Willick et al. 1997;
Tonry et al. 2001; Karachentsev et al. 2004). Peculiar velocities enable us directly trace the
underlying gravitational potential of the total (i.e. both dark and baryonic) matter distribution
that determines the evolution of structure in the Local Universe. It is now well established
that the Milky Way galaxy has a high peculiar motion of 630 km/s with respect to the CMB
rest frame (Fixsen et al. 1996). Several components on different scales are believed to shape
this configuration (Tully et al. 2008): the infall towards the nearby Virgo cluster, the push
from the Local Void, the large-scale flow towards the region of the Great Attractor, and the
possible influence of more distant objects like the massive Shapley concentration, interacting
in a complex manner that is still poorly understood. It would be very enlightening to model
this intricate system in the framework of cosmological simulations, where one has access to the
evolution of the underlying total matter distribution.

If one wishes to do so, a fundamental problem arises. Cosmological simulations – no matter
how meticulously they are designed on a technical level – generally are started from initial
conditions that represent a random realisation of the known statistics of the primordial density
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Figure 1.1: The Local Universe: slice of ±1000 km/s through the supergalactic plane from the v8k
galaxy redshift catalogue, corrected for redshift distortions. This catalogue is not a volume limited
sample and therefore galaxy number density degrades with distance. In the Zone of Avoidance, the view
is severely obscured by the galactic disc of the Milky Way and no galaxies are seen. Figure taken from
Courtois, Pomarède & Tully (in prep).
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fluctuations. While the general nature of such a simulated universe will share many similarities
with the particular realisation that is our own, it is not practically possible to find by chance
structures that resemble the Local Universe in enough detail. This in itself is not necessarily
a fundamental problem; a lot can be learned already from random realisations. However, it
is currently unclear whether the Local Universe is actually a typical realisation. The peculiar
alignment of the observed clusters in the Local Universe and the abnormally high amplitude of
the observed peculiar velocity flow suggest that it is not. The Local Universe described by the
known observational data is therefore possibly systematically biased.

A solution is to add constraints to the initial conditions that directly come from the ob-
servations. By narrowing down the natural cosmic variance of possible universe realisations by
imposing a set of constraints, it is possible to obtain simulations that resemble, on large scales,
the LSS distribution of the observed Local Universe. The basic idea is to generate a realisation
of the initial random field which conforms to the imposed constraints in regions dominated by
the available data, while at the same time drawing from a conventional random realisation of the
field in regions where the data is insufficient. Observational errors attached to the constraints
should be compensated in a way that is consistent with the assumed prior model of the random
field. To generate such constrained realisations (CRs), a powerful algorithm was developed by
Hoffman & Ribak (1991), but it is only in the last decade that the application of this method has
matured to a stage where high-resolution constrained simulations with predictive power about
the real Universe can be produced (Klypin et al. 2003). A particularly useful source for con-
straints that can be used with the CR method are catalogues of galaxy peculiar velocities. They
provide a direct and unbiased tracer of the total (i.e. dark matter and baryonic) density field and
retain precious information about the large-scale matter distribution and the cosmological initial
conditions of the Local Universe due to their high linearity and large-scale correlation. This
powerful approach creates a link between the realms of observational and numerical cosmology.
This link provides the basis of the CLUES (Constrained Local UniverseE Simulations) project
(www.clues-project.org), an international collaboration of researchers from both theory and
observations with the goal to provide simulations that model the Local Universe as closely as
possible. The research presented in this thesis is part of this project.

Within the CLUES project, several constrained simulations with varying boxsizes and cosmo-
logical parameters have been performed and investigated, taylored to different scientific applica-
tions. Figure 1.2 shows one of the larger CLUES simulations, the BOX160, reproducing several
main players that shape the Local Universe, namely the Virgo, Coma, and Perseus-Pisces clusters
and the Great Attractor region, and creating in its centre an environment similar to the one of
our Local Group. The CLUES simulations can be used as a numerical laboratory to study many
aspects of structure formation in the context of this specific environment. Recent projects adress
the formation of Milky-Way-like disk galaxies (Scannapieco et al. 2011), the dynamics of satellite
galaxies in the Local Group (Libeskind et al. 2010; Knebe et al. 2011b,c), the coldness of the
local flow (Martínez-Vaquero et al. 2009), and the reionisation history of the Local Group (Iliev
et al. 2011). Of particular interest is the formation history of the Local Group (Forero-Romero
et al. 2011). It seems that the Local Group is not a typical object encountered in the Universe,
but has evolved with an unusually quiet formation history that could be strongly influenced by
the specifics of its large-scale environment.

Despite their success, CLUES simulations have some severe drawbacks which leave much
room for improvement. While the major clusters highlighted in Figure 1.2, with virial masses
around 1015M�, can be reproduced robustly, the structure on smaller mass and length scales is
essentially dominated by the random component. Additionally, the positions of these clusters
are subject to large systematic errors (Gottlöber et al. 2010). In practice, it is still necessary to
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run many constrained realisations to find one that gives a favourable representation. Structure
on much lower mass scales around 1012 – 1013M�, which is the mass range that contains the
Local Group, appears in a completely random fashion as in unconstrained simulations; to find

Figure 1.2: Large scale dark matter density distribution of the BOX160 Local Universe simulation.
The image covers the full box range of 160 Mpc/h. Several objects reproducing their counterparts in
the real Universe are identified, in particular the main galaxy clusters of the Local Universe: Virgo,
Perseus-Pisces, Coma and the Norma-Hydra-Centaurus region known as the Great Attractor. The circle
shows the position of our Local Group; the inserted panel shows the detailed structure of a simulated
Local Group. This small region is 2 Mpc/h wide. This picture was taken from the CLUES website:
www.clues-project.org
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a Local Group-like configuration around the right position, such as the one in the magnified
panel in Figure 1.2, a large amount of different constrained realisations have to be searched,
defeating in part the idea of constraining cosmic variance. It was previously unclear whether
the main reason behind these limitations is the poor quality of the first observational datasets
that were used for constraints, flaws in the method to generate constrained initial conditions,
the general non-linearity of the system, or a combination of all of the above. In fact, the initial
conditions of previous CLUES simulations were constrained using peculiar velocity catalogues
that are outdated from today’s perspective. Current catalogues (Tully et al. 2009; Courtois
et al. 2012), and much more so the peculiar velocity datasets that will become available during
the next few years (Courtois et al. 2011a,b; Courtois & Tully 2012; Tully & Courtois 2012),
are much less sparse, suffer less from observational errors, cover more volume, and are therefore
expected to constrain the simulations much more strongly.

A very important requirement to optimally utilise the available observational data is to refine
the current physical method of generating constrained initial conditions, otherwise too much of
the additional information obtained from modern observations may be lost in the process. One
major problem of the previously used method is that the effects of the cosmic displacement field
were not accounted for. This field occurs because the patches of matter that evolve from the
initial seed perturbations into observable objects may have travelled long distances up to 10 – 20
Mpc from the primordial state until today due to the large-scale gravitational field. To recover
the initial conditions of the Local Universe based on a present-time snapshot of these objects,
one has to follow this movement back in time and reconstruct the positions of their progenitors in
the early Universe. Subsequently, these reconstructed initial positions can be used as constraints
to generate more accurate initial conditions that can then be, as before, run forward in time with
current simulation codes. The lack of such a reconstruction is arguably the main cause of the
large systematic errors seen in the CLUES simulations. Simultaneously, a technical challenge has
to be surmounted: to our knowledge there is currently no publicly available numerical code for
the task of generating constrained initial conditions that could handle with reasonable efficiency
the great number of constraints expected to come from upcoming surveys, or would be flexible
enough to adapt to changes and refinements to the technique of generating constrained initial
conditions from peculiar velocities.

This work picks up at these critical strands. We propose a new reconstruction scheme for
the initial positions and displacements of the haloes hosting the observed galaxies, the Reverse
Zel’dovich Approximation (RZA), which is conceptually simple and significantly improves the
quality of initial conditions constrained with peculiar velocity data. As a prerequisite, the nu-
merical code ICeCoRe (Initial Conditions and COnstrained REalisations) was developed for
this work. It is a command-line program that implements a combination of very efficient algo-
rithms to create constrained (as well as conventional, i.e. unconstrained) initial conditions for
cosmological simulations. These algorithms are also useful for the related technique of Wiener
filter reconstruction from observational data. The ICeCoRe code was designed to be flexible
with regards to the type of constraints that one wishes to use, and therefore has applications
beyond the procedure of constraints from radial peculiar velocities that is the main topic of this
work. Equipped with these newly developed tools, we address several important questions in the
context of generating constrained simulations: How accurate is the CLUES technique in produc-
ing a simulated recreation of the observed Local Universe? How much do we improve in accuracy
by adding the RZA technique of initial conditions reconstruction? What is, in this context, the
best way to place constraints to generate constrained initial conditions? What is the effect of
observational errors coming from the data, and systematic errors of the method itself? Can we
give some hints on optimising the observational data that is used for constraints? What role does
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the random component play and how great is the variance across constrained realisations from
different random seeds? And based on these results, is it possible to give a precise lower limit
on the mass and length scales that can be robustly reproduced with the constrained simulations
technique?

To cover all these questions, a systematic study is presented in this work based on mock
peculiar velocity catalogues drawn from the BOX160 simulation that serves as the “model Uni-
verse”. These mock catalogues serve as the input to reconstruct its initial conditions and run
constrained re-simulations of it. We decided to work with mock catalogues as opposed to obser-
vational data, because in the underlying BOX160 simulation the complete history of the density
and velocity fields and the dark matter haloes is accessible, and the generated initial condition
reconstructions and constrained simulations can be immediately checked against the “true” re-
sult. This is required to draw quantitative statements on the accuracy of the procedure. In
principle, it would be possible to carry out such a study using a conventional random simula-
tion as the test universe, such as the state-of-the-art simulations publicly available through the
MultiDark database (Riebe et al. 2011). We chose the BOX160 instead, because it is already a
constrained simulation, albeit generated with the previous CLUES method, which means that it
has some similarity with the observed Local Universe. In this way, quantitative estimates on the
reconstruction quality can be easier applied to observational data, since the large-scale velocity
field and cluster distribution that we wish to reconstruct here are not too different. In this work,
we are interested in the large-scale distribution of matter, i.e. scales above those where baryonic
physics are important. We therefore decided to completely neglect baryonic physics for this study
and perform the analysis in a dark-matter-only framework. We take the peculiar velocities of
dark matter haloes in the simulation as a proxy for the observable peculiar velocities of galaxies
that would form inside them and by this remove a lot of complexity.

Figure 1.3 summarises the general idea behind this study. Starting from the BOX160 simula-
tion as our “model universe”, we extract a catalogue of the dark matter haloes from the evolved
present-time simulation snapshot, and construct different mock catalogues of galaxy peculiar
velocities in such a way that they reproduce different properties of the observational data, such
as the limited data volume, incompleteness and the observational errors. This mock data is then
used as input for the ICeCoRe code to reconstruct the cosmological initial conditions and create
a constrained realisation that can be itself simulated forward until present time and compared
to the original configuration. We do this with the “classical” CLUES method as well as with
adding our newly developed RZA reconstruction. We also test and compare different methods to
place these constraints onto the random field. The comparison with the “true field” of BOX160
provides feedback information that can be used to refine the method, thus closing the devel-
opment cycle (black arrows in Figure 1.3). The outcome is an optimised method of generating
constrained intial conditions from peculiar velocity data together with quantitative estimates of
its validity and precision. With this, the natural next step for future work is to directly apply
the method to observational data (red arrows in Figure 1.3) and yield constrained simulations of
the actual Local Universe that should be significantly more accurate than earlier attempts. This
will be the subject of future studies.

This thesis is organised as follows. In Chapter 2, we summarise the tools, assumptions
and models that are used: the currently available peculiar velocity data, the standard ΛCDM
model of structure formation, numerical cosmological simulations, and how they are interrelated.
Chapter 3 presents the employed numerical methods: the generation of cosmological initial con-
ditions, Wiener filtering, the constrained realisations algorithm, and their implementation in the
ICeCoRe code that was developed for this work. Chapter 4 presents the Reverse Zeldovich Ap-
proximation (RZA) reconstruction, a novel method for the reconstruction of cosmological initial
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conditions from peculiar velocity catalogues, specifically the initial positions of their underlying
dark matter haloes. Chapter 5 applies this method to our simulated test universe, the BOX160
simulation. We construct constrained realisations of cosmological initial conditions with the RZA
reconstruction using mock catalogues extracted from BOX160. Then, we perform and analyse a
set of constrained simulations. Finally, in Chapter 6, the obtained results are summarised and
discussed, and an outlook is given for further development and scientific applications of the work
presented here. In the Appendix, we provide a full documentation of the ICeCoRe code, with
the hope that it will be a useful tool for the scientific community.

Figure 1.3: Schematic view of the approach underlying this study. Mock galaxy distance catalogues
from a previously performed cosmological simulation of structure formation are used to reconstruct its
initial conditions and to create constrained realisations. Those are then run forward until present time
and compared with the original simulation. This way, an optimal reconstruction method can be found,
and the impact of different error sources in the reconstruction process can be studied. In particular,
the effects of observational errors introduced in the mocks, mimicking actual observational data, can
be quantified. This development cycle is shown with black arrows. After a stable procedure has been
developed by iterations over this cycle, it can eventually be directly applied to the observational data to
produce constrained simulations of the actual Local Universe that can be used as numerical laboratory
for scientific studies (red arrows).
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Chapter 2

The Universe

In this chapter, we review the currently available observational peculiar velocity
data and the insight they give into the dynamics of our Local Universe. We then
summarise the theoretical framework of cosmic structure formation in the standard
ΛCDM model that the subsequent chapters rely on. We introduce a mathematical
description of the cosmic expansion and the theory of density perturbations. Struc-
ture formation is, except at very early times, a highly non-linear process that cannot
be described analytically. The tool of choice to model this process are N -body sim-
ulations. The non-linear density and velocity fields produced by such simulations
have several properties that have to be taken into account if one wishes to construct
constrained initial conditions based on present-day data. Different arguments are
given why galaxy peculiar velocity catalogues are a good candidate for such input
data.

2.1 Galaxy peculiar velocities and the Local Flow

2.1.1 The Hubble Law

The discovery of the cosmic expansion was eventually made possible by the development of
a method to measure extragalactic distances. It dates back to Hubble (1929), who used for
this purpose observations of Cepheid variable stars as standard candles. He discovered that
on sufficiently large scales all galaxies are moving away from us, and that the observed radial
velocity vobs

r increases with distance from the observer r proportionally to a constant H0. This
Hubble constant is interpreted as the current value of the expansion rate of the Universe. It can
be estimated from the relation of observed radial velocities vobs

r with the measured distances r
out to sufficiently large scales, which will be a linear relation with the slope

H0 =

〈
vobs
r

r

〉
. (2.1)

The scatter around this relation is due to the peculiar motions vpec
r of galaxies. The observed

total radial velocity vobs
r of a galaxy is therefore the sum of its peculiar motion and the “Hubble

drag” due to the expansion,

vobs
r = vpec

r +H0 r . (2.2)

The total radial velocity itself is directly observed via the redshift z of the electromagnetic
spectrum of a receding object from wavelengths Λ to observed wavelengths Λobs, which can be
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interpreted as a Doppler shift,

vobs
r = c z ; 1 + z =

Λobs

Λ
, (2.3)

where c is the vacuum speed of light.
Since it is very difficult to obtain a high precision on extragalactic distance measurements, the

Hubble constant H0 is not known with as much accucacy as the other cosmological parameters.
Current observations constrain it to lie within about 70 < H0 < 75 km s−1 Mpc−1. The
Hubble Space Telescope Key Project gives a generally accepted estimate of 72±8 km s−1 Mpc−1

(Freedman et al. 2001). Recently, the value of 70.2 ± 1.4 km s−1 Mpc−1 was derived from the
WMAP7 data (Komatsu et al. 2011). In theoretical cosmology, a unit system is often used that
parametrises away this uncertainty by defining the Hubble constant as

H0 = 100h km s−1 Mpc−1 , (2.4)

and to express distances in Mpc/h and masses in M�/h, respectively. We adopt this convention
here, although we reverse to the units of the observed scale (Mpc and M�, respectively) for
observational data (see Appendix D for the numerical values of these units).

2.1.2 Observational data

Peculiar velocities of galaxies are computed from the observation of their redshift and an inde-
pendent estimate of their distance. The redshift allows one to determine the radial component
of their total velocity vobs

r via equations 2.2 and 2.3. If one can measure the luminosity L and
therefore the absolute magnitude M of a galaxy, one obtains the distance modulus μ = m−M ,
where m is the apparent magnitude and M is defined as the apparent magnitude that would be
observed at a distance of 10 parsec from Earth. The distance r in units of parsec can then be
computed as

r = 101+μ/5 . (2.5)

The uncertainty in distance Δr follows from the uncertainty in the distance modulus Δμ by
standard error analysis,

Δr =
1

5
ln(10)× 101+μ/5Δμ ≈ 0.461 rΔμ . (2.6)

The radial peculiar velocity vpec
r can then be directly obtained through equation 2.2 based on

a generally accepted zero-point scale (Freedman et al. 2001). However, the obtained values for
vpec
r are relatively insensitive to a zero-point error in the distance scale, as long as the chosen

value of H0 used in equation 2.2 is consistent with the distance measurements (Tully et al. 2008).
The observational error on the radial peculiar velocity, Δvpec

r , is determined by the observational
error on the distance Δr,

Δvpec
r = −H0Δr . (2.7)

Several methods exist to measure the absolute magnitude and luminosity of galaxies. The Tully-
Fisher relation (Tully & Fisher 1977) is an empirical relationship between the luminosity of a
spiral galaxy and the amplitude of its gas rotation speed. This well-established method can
provide distances with decent accuracy and a high data density over an appropriately large
volume and is appropriate to obtain data that would be suitable for a reconstruction of the
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underlying field and eventually the cosmological initial conditions. The relation does not apply
to elliptical galaxies, since they are in general not rotationally supported and contain few gas.
However, a comparable method can be used with elliptical galaxies: fundamental plane (Faber
& Jackson 1976; Djorgovski & Davis 1987; Colless et al. 2001), which establishes a relationship
between the luminosity, the central stellar velocity, and the effective radius of the galaxy. An
alternative is the surface brightness fluctuation (SBF) method (Tonry et al. 2001). However, he
disadvantage of elliptical galaxies is that they are preferentially located in high-density regions
(morphology-density relation, e.g. van der Wel et al. 2010) which do not sample the large-scale
galaxy flows. Other galaxy distance measurement methods include the Cepheid period-luminosity
relation (Freedman & Madore 1990; Freedman et al. 2001), which was already known to Hubble,
and the tip of the red giant branch (TRGB) method (Karachentsev et al. 2004; Rizzi et al. 2007),
although these methods suffer from limited reaches out to about only 10 – 15 Mpc. Data out to
very far distances and independent from the galaxy types can be obtained from observations of
type Ia supernovae serving as standard candles (Jha et al. 2007). While this method is quite
accurate, it rests on serendipity and thus can provide only very sparse data samples. The Tully-
Fisher method of measuring distances to spiral galaxies is the only one that currently combines
all necessary assets: probing the space regions where coherent cosmic flows prevail and obtaining
an adequate sampling of the Local Universe volume.

Methods for measuring galaxy distances have typical observational errors of Δr ≈ 10 – 20%.
It follows then from equation 2.7 that peculiar velocity values with acceptable accuracy can be
obtained only within a relatively limited volume: at a distance of 30 Mpc/h and with a relatively
low distance error of Δr = 10%, the uncertainty in the peculiar velocity will be 300 km/s, and
at 60 Mpc/h the error is already at 600 km/s, so that at such a distance the peculiar velocity
datapoints will be extremely noisy with relative errors of 100% and more. However, the error
can be reduced if one can obtain independent distance measurements for several galaxies that
are known to belong to one galaxy cluster or group.

The current dataset of peculiar velocities used by the CLUES project is the Cosmicflows-1
catalogue. This data was assembled by Tully et al. (2008), extending the data of the Nearby
Galaxies Catalog (Tully 1988), and currently contains distances to 1797 galaxies in 742 groups,
providing a fairly complete sampling of the sky within 3000 km/s (corresponding to a distance of
30 Mpc/h). This data is publicly available through the Extragalactic Distance Database (EDD,
Tully et al. 2009). It is a combination of distances obtained with the Tully-Fisher relation,
the Cepheid period-luminosity relation, the TRGB method, and the SBF method. Figure 2.1
illustrates the distribution of the datapoints with distance and the associated errors: the median
distance error is at 13% and the maximum error at 20%. Figure 2.2 shows an all-sky projection
of the radial peculiar velocities computed from the 742 group distances. The dark grey shading
is the Zone of Avoidance (ZoA), a narrow strip devoid of datapoints where the view is severely
obscured by the galactic disc of the Milky Way.

The ongoing observational work in the Cosmicflows program is currently directed towards
preparing a much deeper and larger sample of peculiar velocities (Courtois et al. 2011a,b; Cour-
tois & Tully 2012; Tully & Courtois 2012). The upcoming data will contain distance measure-
ments out to 6000 km/s, and eventually reach out to 15 000 km/s in the near future, exceeding
all presently available data in both data volume and precision.

2.1.3 Cosmic flows in the Local Universe

It is now well established that our Galaxy has a peculiar motion of about 630 km/s relative to the
rest frame of the observable Universe (Fixsen et al. 1996), which manifests itself as an observed
dipole anisotropy in the cosmic microwave background. To explain the observed amplitude and
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direction of this peculiar motion is the subject of a lively debate. The total peculiar motion
can be decomposed into components on successively larger scales. Obviously, one has first to
correct for the orbit of the Earth-bound observer and the motion of the Sun in the Milky Way
disk, which is quite substantial, in order to define a Galactic standard of rest. Then, the most
local component of the Milky Way (MW) peculiar velocity is the collision course towards our
neighbouring Andromeda (M31) Galaxy (Hoffman et al. 2007) at a distance of approximately
0.75 Mpc (Ribas et al. 2005). On a larger scale, the Local Group, i.e. MW, M31, and the
surrounding smaller galaxies, are embedded in a coherently moving Local Sheet with a radius
of about 7 Mpc (Tully et al. 2008). In this local region, the variance of peculiar velocities is
remarkably low; this property is known as the coldness of the local Hubble flow (Karachentsev
et al. 2003; Macciò et al. 2005). The bulk peculiar motion of the Local Sheet is believed to be
dominated by two components. The first is the infall towards the nearest massive galaxy cluster
and its surrounding structure, i.e. the Virgo cluster about 16 Mpc away and with a mass around
1015M� (Fouqué et al. 2001). Almost orthogonal to the direction of the Virgocentric infall the
Local Sheet experiences a peculiar motion away from the Local Void, which may be perceived as
an outwards “push” due to the Void’s expansion. This Local Void may be in its entirety as large
as 70 Mpc across (Tully et al. 2008), although this is difficult to determine from the current
observations.
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Figure 2.1: Observational data in the Cosmicflows-1 catalogue. Top left: distance distribution of the
1797 individual measurements within 742 groups with accurate distance measurements. Top right: the
distribution of percent errors in distances and peculiar velocities in the observed catalogue. Bottom
left: percent error in distance as a function of distance. Bottom right: the absolute errors on peculiar
velocities over the observed total velocity. Note that here, distances are on the observed scale (Mpc
instead of Mpc/h). Figure taken from Courtois et al. (2012).
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On a larger scale, it is well known since the 1980s that the whole volume encompassing
the Local Group and the Virgo Cluster experiences a strong pull towards a massive overdense
region (“Great Attractor”) at distances of 30 – 50 Mpc, centered near the giant Norma, Hydra
and Centaurus clusters (Lilje et al. 1986; Lynden-Bell et al. 1988). At the position of the
Local Group, this pull is balanced by the Perseus-Pisces cluster, which is located at a similar
distance of ≈ 50 Mpc/h in opposite direction. The resulting large-scale tidal field is believed to
have a significant influence on the evolution of the region containing the Local Group (van de
Weygaert & Hoffman 1999). However, at the 50 Mpc/h scale the flow does not yet converge to
the amplitude and direction of the CMB dipole. The current debate concentrates mainly around
the question whether this can be explained with peculiar motions on even larger scales. There
seems to be a flow towards the massive Shapley concentration about 150 Mpc away (Kocevski
& Ebeling 2006; Kocevski et al. 2007), which is currently believed to be the most massive
overdensity in the Local Universe. It has been also theorised that the large-scale flow could
continue even further (Feldman et al. 2010; Kashlinsky et al. 2010). Currently, there is still no
consensus on the depth of the convergence of these large-scale flows with the CMB dipole. As an
alternative to theories based on the peculiar velocity field, a primordial “tilt” of the Universe has
been proposed to explain it (Ma et al. 2011; Fixsen & Kashlinsky 2011). To shed more light on
the issue, in the last few years significant progress has been made in obtaining reconstructions
of the large-scale density and peculiar velocity fields from different observational data. Lavaux
et al. (2010) used the 2MASS redshift survey to obtain a reconstruction of the velocity field out
to 120 Mpc/h, which reaches out to the periphery of the Shapley concentration. Figure 2.3 shows
a map of this reconstruction highlighting the most prominent structures. They found that less
than half of the amplitude of the CMB dipole is generated within a 40 Mpc/h radius enclosing the
Hydra-Norma-Centaurus region, and they do not observe a convergence to the actual direction
of the CMB dipole even out to 120 Mpc/h. There are claims that this may pose a challenge to
the standard ΛCDM model (Lavaux et al. 2010). However, others argue in favour of a quicker

Figure 2.2: An Aitoff sky projection of the 742 grouped peculiar velocities in Cosmicflows-1 with galactic
extinction (Zone of Avoidance) overplotted in grey shading. The directions towards Virgo and the CMB
dipole and the Local Void are marked in blue. Figure taken from Courtois et al. (2012).
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conversion of the flow, such as Erdoğdu et al. (2006) using a Wiener Filter reconstruction of
the 2MASS catalogue. More recently, Courtois et al. (2012) used the Cosmicflows-1 catalogue
of peculiar velocities for a Wiener Filter reconstruction of the large-scale field (see Chapter 3).
This allows one to decompose the reconstructed velocity field into local and tidal components.
They found that, at a distance of 80 Mpc/h, the velocity field seems to be dominated by the
tidal component, i.e. induced by overdensities outside of that radius. They also confirm that
the expansion of the Local Void significantly contributes to the peculiar velocity of the Local
Group, and that the dynamical role of the Virgo cluster is much less dominant than believed
earlier. This is mostly consistent with the study of Nusser & Davis (2011), who used the SFI++
Tully-Fisher catalogue (Springob et al. 2007) and a different method of bulk flow estimation.

The large-scale flows that shape the configuration of the Local Universe have important
implications on the Local Group itself. Using constrained simulations of the Local Universe,
Forero-Romero et al. (2011) found that the formation of a Local-Group like object seems to
require a specific formation history. An early formation time and a quiescent mass accretion
history without major merger events provides a favourable environment for the formation of disc
galaxies like MW and M31. Their results support the view that the specific large-scale config-
uration around the Local Group plays a critical role in providing this particular environment.
Thus, the formation and evolution of the Local Group is deeply connected to the surrounding
large-scale structure that is shaped by cosmic flows.

A crucial step towards the understanding of these complicated dynamics lies in the much more
accurate observational data which is expected to become available in the next few years. In order

Figure 2.3: Reconstructed density and peculiar velocity field in the Local Universe (SGZ=0 plane)
out to a distance of 120 Mpc/h using MAK reconstruction applied to the 2MASS Redshift Survey and
constrained with observed distances. Figure taken from Lavaux et al. (2010).
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to optimally exploit the information provided from this data, a good algorithm to reconstruct
the underlying density and velocity fields is required. Furthermore, we need a way to produce
precise initial conditions for constrained simulations which then allow us to model the evolution
of this system. The focus of this thesis is aimed towards developing these necessary tools.

2.2 The ΛCDM cosmology

In the standard cosmological model, the Big Bang was followed by a phase of inflation, an ex-
tremely rapid exponential expansion that amplified primordial quantum fluctuations to macro-
scopic density fluctuations. In the following era, the contemporary elementary particles and even-
tually nuclei of the light chemical elements successively condensed from the matter-radiation field
as the Universe continued to expand and cool. Eventually, in the transition from this radiation-
dominated to the matter-dominated epoch, baryonic matter decoupled from the radiation field.
We can observe the photons originating from this surface of last scattering in the CMB. In the
following “dark ages”, structure began to condense from the relatively homogeneous matter distri-
bution by the gravitational collapse of overdense regions. Eventually, the densest regions became
dense enough for the first stars to form, and their radiation ionised the Universe (reionisation).
For the subsequent evolution, the ΛCDM model favours a scenario of hierarchical structure for-
mation, where larger structure formed by merging and accretion of smaller structure, leading
from the first stars to galaxies and eventually galaxy clusters.

This work considers the matter-dominated epoch where the formation of large-scale structure
takes place, i.e. starting from some time after the CMB decoupling and until today. This is also
the epoch which is modelled by numerical cosmological simulations. In the remainder of this
section, the corresponding theoretical framework is presented. This material is covered in many
cosmology textbooks, therefore only a brief summary is given here, limited to the equations and
assumptions that will be explicitly used or referenced in this work. For a complete description we
refer the reader to the wealth of available literature, e.g. Peebles (1980, 1993); Schneider (2006);
Peacock (2007); Weinberg (2008).

2.2.1 The expanding Universe

A generalisation of the Hubble law for arbitrary times t is that the relative separation r and
total velocity v between two positions increases with time as

v = u+H(t) r , (2.8)

where u is the time-dependent peculiar velocity, such that (2.2) is the special case of t = t0
(present time). Then, H(t) is the time-dependent expansion rate of the universe, with H0 =
H(t0). The relative size of the Universe at any time t can be described by the cosmic scale factor
a(t), normalised such that at present time t0, the scale factor is defined as a(t0) = 1. For an
expanding Universe, a(t) is then a monotonically increasing function of time with a(t) < 1 at all
times t < t0. This scale factor is related to the expansion rate via

H(t) =
ȧ

a
. (2.9)

The fundamental assumption of the cosmological principle states that no point and no direction
in the Universe is privileged. From this follows that, on sufficiently large scales, the Universe is
homogeneous and isotropic. This assumption defines a unique general metric, the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric (Robertson 1933, 1935, 1936a,b; Walker 1937; based
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on earlier work by Friedmann 1922, 1924; Lemaître 1927, 1931). This metric does not explicitly
depend on time except for the scale factor a(t). In order to derive an expression for the time
dependence of a(t), we need an equation of state for each component of the Universe, p =
wρc2, relating the pressure p and density ρ for matter (wm = 0, non-relativistic fluid or gas),
radiation (wr = 1/3, relativistic particles), and vacuum energy (wΛ = −1). With the FLRW
metric and these equations of state, such an expression can be derived directly from Einstein’s
field equations of general relativity (Einstein 1914, 1915a,b, 1916). The derivation yields the
Friedmann equations,

H2 =

(
ȧ

a

)2

=
8πGρ

3
− kc2

a2
+

Λc2

3
, (2.10)

Ḣ +H2 =
ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (2.11)

with the physical constants G (gravitational constant) and c (speed of light), and the vacuum
energy or cosmological constant Λ. The total matter density is made up of the non-relativistic
(ordinary matter) and relativistic (radiation) component, ρ = ρm+ρr. Further, k is the curvature
of space, with the three possible cases of the positively curved hyperspherical space k > 0 (“open”
Universe), negatively curved hyperboloid space k < 0 (“closed” Universe), and the ordinary
Minkowski space (“flat” Universe).

In cosmology, the different terms in (2.10) are usually encoded in the dimensionless cosmo-
logical parameters,

Ωm =
8πGρm,0

3H2
0

matter density parameter, (2.12)

Ωr =
8πGρr,0

3H2
0

radiation density parameter, (2.13)

Ωk = −kc2

H2
0

curvature parameter, (2.14)

ΩΛ =
Λc2

3H2
0

dark energy density parameter. (2.15)

ρm,0 and ρr,0 denote the present matter and radiation density in the Universe at time t0. For
general times the densities are

ρm =
ρm,0

a3
; ρr =

ρr,0

a4
. (2.16)

The matter density evolves with 1/a3, which just describes the geometrical dilution of the
particle number density due to the expanding volume. On the other hand, the radiation density
evolves with 1/a4, because photons and relativistic particles suffer an additional energy loss due
to the expansion of their wavelength, resulting in a redshift z,

1 + z =
1

a
, (2.17)

which allows one to interpret the observed Hubble redshift 2.3 as a direct consequence of cosmic
expansion rather than a Doppler shift. The redshift z can therefore be used in the sense of a
time scale, with z = 0 being the present time t0.

With the cosmological parameters and the relations 2.16, equation 2.10 can be rewritten as(
H

H0

)2

=
Ωr

a4
+

Ωm

a3
+

Ωk

a2
+ΩΛ . (2.18)
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The transition between the early, radiation-dominated era (Ωm < Ωr) and the subsequent matter-
dominated era Ωm > Ωr is marked by the redshift of equality, zeq ≈ 3000 (Weinberg 2008). As
a result of the different evolution of matter and radiation with the cosmic expansion (equation
2.16), the radiation density in the present Universe is very low compared to the matter density.
Here, we are only interested in this matter-dominated epoch, at redshifts sufficiently smaller
than zeq, so for our purposes we can neglect Ωr completely. Then, since H/H0 = 1 at t0, it
follows from equation 2.18 that Ωk = 1 − Ωm − ΩΛ.The time evolution of the scale factor a is
then determined only by the two parameters Ωm and ΩΛ:

ȧ =
da
dt

= H0

√
Ωm

(
1

a
− 1

)
+ΩΛ (a2 − 1) + 1 . (2.19)

We now have the desired expression for the time evolution of the scale factor, which is normalised
with a0 = 1 and ȧ0 = H0. We can now also compute the age of the Universe at a given scale
factor a from the cosmological parameters by integrating over 2.19,

t(a) =

∫ a

0

da
ȧ

. (2.20)

The current estimates of the cosmological parameters from the WMAP7 data (Komatsu et al.
2011) are Ωm = 0.272 and ΩΛ = 0.728, with the age of the Universe being 13.78 × 109 years.
Table 2.1 lists the different sets of parameters that we use at various places in this work. These
values have several important implications. The fact that, within the current observational
estimate, Ωm and ΩΛ exactly add up to 1 implies that we live in a flat Universe without a
relevant curvature of space (Ωk = 0). This also means that the total matter-energy content of
the Universe, Ωm +ΩΛ, is very close to the critical density ρcrit,

ρcrit =
3H2

8πG
, (2.21)

which is the density of a Universe with Ωk = 0 and marks the boundary between a Universe
that would eventually recollapse due to self-gravitation and a Universe that would continue to
expand forever. The mean matter density of the Universe, ρ̄, is then given by

ρ̄ = Ωm ρcrit . (2.22)

This matter density is composed mainly of dark matter and baryonic matter, Ωm = Ωdm + Ωb.
The current estimate of the baryon density is Ωb = 0.0455 (Komatsu et al. 2011), which gives a
baryon fraction of fb = Ωb/Ωm ≈ 0.167. Therefore, there is roughly five times more dark matter
than baryonic matter in the Universe. This predominance of dark matter is well known from
observational evidence (Oort 1930a,b,c; Zwicky 1933, 1937; Freeman 1970; Begeman 1989; Clowe
et al. 2006), and it is one of the main puzzles of modern physics to explain its nature.

The high present value of the dark energy density ΩΛ causes an accelerated expansion of the
Universe: if the total equation of state of the Universe drops below w = 1/3, which it will with
high enough ΩΛ, it can be shown that ä becomes positive, i.e. the expansion of the Universe
starts to accelerate. The discovery of this accelerated expansion was again made possible by
galactic distance measurements: Riess et al. (1998) and Perlmutter et al. (1999) derived it
from observations of distant type Ia supernovae. This decisively proved that we actually live
in a phase transition between the matter-dominated and a dark-energy-dominated epoch, which
started around z ≈ 1.
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WMAP3 WMAP5 WMAP7
Spergel et al. (2007) Komatsu et al. (2009) Komatsu et al. (2011)

Ωm 0.24 0.279 0.272
ΩΛ 0.76 0.721 0.728
ns 0.95 0.960 0.961
σ8 0.75 0.817 0.807
h 0.73 0.70 0.702

Table 2.1: The different sets of cosmological parameters used in this work for the computation of LSS
reconstructions, cosmological initial conditions, and numerical simulations (except for LSS reconstruc-
tions from the Cosmicflows-1 catalogue, where we use h = 0.74). The estimated error intervals of the
cosmological parameters are not considered here; they are listed in the respective papers.

2.2.2 Comoving coordinates

Equipped with a physical description of the cosmic expansion from the beginning of the matter-
dominated epoch until today, we now turn to a description of how the matter in the Universe is
distributed.

We continue to use the ideal fluid approach that was already used earlier in the derivation
of the Friedmann equations. This is a valid model until baryonic effects become important at
high densities. Such a self-gravitating fluid is locally governed by the Euler equations and the
Poisson equation. The set of equations is:

∂ρ

∂t
+∇ · (ρv) = 0 , (2.23)

∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ , (2.24)

∇2φ = 4πGρ . (2.25)

Matter and momentum conservation are expressed by the continuity equation (2.23) and the
equation (2.24), respectively. The gravitational force −∇φ acting on the fluid due to its grav-
itational potential φ is determined by the Poisson equation (2.25). The FLRW metric depends
on the cosmic expansion only through the scale factor a(t). It is therefore possible to choose a
natural system of coordinates that are comoving with the cosmic expansion, such that an ob-
server who perceives the Universe as isotropic will have a constant comoving position x. This is
achieved with the transformation

x =
1

a
r , (2.26)

where r is the ordinary physical, i.e. non-comoving spatial position. Further, the comoving
density is defined by (cf. equation 2.16),

ρx(x) = a3 ρ(r) , (2.27)

so that in the absence of external forces other than the cosmic expansion, comoving distances
and densities stay constant over time. One also defines the comoving or peculiar velocity u,

dx
dt

=
1

a
u , (2.28)
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which is connected to the physical velocity v = dr/dt through

u = v −H(t)r , (2.29)

so that the peculiar velocity is obtained by subtracting the Hubble drag from the total physical
velocity (cf. equation 2.8). If we now replace the partial time derivative ∂/∂t at constant position
r with the one at constant comoving position x, and the spatial derivative ∇ with the comoving
spatial derivative ∇x,

∂

∂t

∣∣∣∣
r

=
∂

∂t

∣∣∣∣
x

− ȧ

a
x ·∇x ; ∇x =

1

a
·∇ , (2.30)

we can recast the set of equations 2.23 – 2.25 into comoving form,

∂ρx
∂t

+
1

a
∇x · (ρxu) + 3ȧ

a
ρx = 0 , (2.31)

∂u

∂t
+

1

a
(u ·∇x)u+

ȧ

a
u = −1

a
∇xφ , (2.32)

∇2
xφ = 4πGa2(ρ− ρ̄) . (2.33)

This is a system of coupled non-linear differential equations. Unfortunately, it is not possible
to analytically solve the system for the general case. However, it is possible to obtain a solution
for the evolution of the density field in the limit of linear perturbation theory.

2.2.3 Linear theory of density perturbations

Today, the matter distribution in the Universe is very inhomogeneous: dense clumps of matter like
galaxies are contrasted by the vast emptiness of space in the large cosmic voids. By contrast, the
observed temperature fluctuations of the CMB are very small (ΔT/T ≈ 10−5). Since the photons
of the CMB originate from the moment of matter-radiation decoupling at z ≈ 1000, we can infer
that the early Universe had an almost homogeneous matter distribution with only very small
density fluctuations, which build the seeds for the gravitational condensation of contemporary
structure. A theory of structure formation has to be able to explain this transition.

It is useful to describe density fluctuations as a density contrast against the mean density ρ̄
of the Universe, given by equations 2.21 – 2.22. The overdensity δ is defined by

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
. (2.34)

The starting point for linear perturbation theory is the basic assumption that these density
fluctuations are small, δ � 1. This is valid either on very large scales, where the Universe
appears almost homogeneous, or at very early redshift z, where the fluctuations are still small.
If we then substitute δ for the density in equations 2.31 – 2.33 and neglect the pressure and all
second-order terms ∝ δ2, δu, and u2, the set of equations becomes:

∂δ

∂t
+

1

a
∇x · u = 0 , (2.35)

∂u

∂t
+

ȧ

a
u = −1

a
∇xφx , (2.36)

∇2φx =
3

2
Ωm

ȧ

a
δ , (2.37)
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where we also used 2.21 – 2.22 to remove the gravitational constant from the Poisson equation. In
this simplified form, the equations can be linearised to obtain an analytical solution for the time
evolution of δ. By combining the equations, u and φ can be eliminated, yielding a second-order
differential equation for the density contrast (Bonnor 1957):

δ̈ +
2ȧ

a
δ̇ =

3

2
Ωm

ȧ

a
δ . (2.38)

This linear second-order equation can be solved by separating the dependences on time and
space,

δ(x, t) = D(t) δ0(x) , (2.39)

meaning that in the linear approximation the initial shape δ0(x) of the overdensity distribution
remains fixed, and its amplitude scales with time proportional to the factor D(t). This factor is
then determined by the equation

D̈ +
2ȧ

a
Ḋ =

3

2
Ωm

ȧ

a
D . (2.40)

This resembles the equation of a damped harmonic oscillator, with the gravity term as an ex-
citational force, and the cosmological expansion factor as the dampening term. The analogy is
somewhat flawed though, since both of these factors are themselves time-dependent in a non-
trivial way. The general solution (Heath 1977) is a linear combination of a growing and a decaying
mode, which are of the form (Peebles 1980):

D+(a) ∝ ȧ

a

∫ a

0

da
ȧ3

; D−(a) ∝ ȧ

a
, (2.41)

Since the very early Universe, D−(a) had sufficient time to decay towards zero, and we can safely
assume that it could not have had a significant impact on structure formation. Therefore we
can completely neglect the decaying mode for the evolution in the matter-dominated epoch that
is studied here. The growth of the linear overdensity field is then given by the simple scaling
relation

δ(x, t) = D+(t) δ0(x) . (2.42)

We use the convention that D+(t0) = 1 at present time t0 (or a = 1), so that δ0 = δ(t0) is
the linear overdensity distribution extrapolated to present time. With this normalisation, one
obtains the following expression for D+, which from here on will be called the (linear) growth
factor:

D+(a) =
1

D0

ȧ

a

∫ a

0

da
ȧ3

; D0 =
1

H0

∫ 1

0

da
ȧ3

. (2.43)

Since for any reasonable set of cosmological parameters D+ is a smooth, monotonically increasing
function of a, the integral can be easily evaluated numerically using equation 2.19.

Here, we considered the equations of linear perturbation theory for the Newtonian case, be-
cause this is the theoretical framework within which numerical simulations of structure formation
are formulated. It is also possible to derive them in the general relativistic case. The full treat-
ment is given in e.g. Weinberg (2008). Intuitively, relativistic effects such as the finite speed of
light are not expected to be negligible on the large length scales that are probed by cosmological
simulations (up to several hundred Mpc/h). One can however show that the linear growth of
density perturbations in the Newtonian approximation is identical to the corresponding fully
relativistic linear perturbation growth equation in the synchronous gauge (Chisari & Zaldarriaga
2011; Gnedin et al. 2011).
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2.2.4 Power spectrum and correlation function

To analyse the statistical properties of the overdensity field δ(x), it is useful to consider its
Fourier transform δ(k). Since δ(x) is a real-valued scalar field, its Fourier transform is Hermitian,
δ(k) = δ∗(−k). For the definition of the Fourier transform, we follow the same convention that
is used in Peacock (2007),

δ(k) =

∫
δ(x)eik·xdx ; δ(x) =

1

(2π)3

∫
δ(k)e−ik·xdk . (2.44)

Inflation theory predicts that the distribution of primordial density fluctuations in the Universe
should be a Gaussian random field (Kolb et al. 1990). Therefore, for any set of positions
x1, . . . ,xN , the corresponding overdensities δ(x1), . . . , δ(xN ) are correlated random variables,
and their joint probability distribution function is a multivariate Gaussian. From the cosmo-
logical principle one concludes that this field must be homogeneous, i.e. its probability distribu-
tion function is translation invariant. For any homogeneous Gaussian random field, it follows
(Bardeen et al. 1986) that the Fourier modes δ(k) are mutually independent, or in other words,
uncorrelated:

〈δ(k)δ∗(k′)〉 = δD(k + k′) 〈|δ(k)|2〉 , (2.45)

where δD is the Dirac delta distribution. Further, all Fourier modes will have random phases,
and the probability distribution function of their amplitudes P(|δ(k)|) is given by the Rayleigh
distribution:

P(|δ(k)|) dk =
|δ(k)|2
P (k)

exp
(−|δ(k)|2

2P (k)

)
dk , (2.46)

where the power spectrum P (k) is defined as the variance of the amplitude for a given Fourier
mode k,

P (k) = 〈δ(k)δ∗(k)〉 = 〈|δ(k)|2〉 . (2.47)

Moreover, a homogeneous Gaussian random field is ergodic, i.e. the average over an ensemble of
different random field realisations is equivalent to the average over a sufficiently large volume of
a single particular realisation (Adler 1981). This is an important property, since it allows us to
make valid statistical statements about the only realisation that we are able to observe: our own
Universe.

By definition (2.34), the overall mean overdensity is zero, i.e. for any position x and wavevec-
tor k the statistical mean field of a random realisation is given by

〈δ(x)〉 = 〈δ(k)〉 = 0 . (2.48)

The properties 2.46 and 2.48 imply that the probability distribution function, and in fact any
statistical property of δ(x), is fully determined by the power spectrum P (k). One can also derive
the two-point correlation function ξ(x) of the overdensity field. The derivation yields that ξ(x)
is the Fourier transform of the power spectrum P (k),

ξ(x) = 〈δ(x′)δ(x′ + x)〉 = 1

(2π)3

∫ ∞

0
P (k)e−ik·xdk . (2.49)

This property of random fields is not restricted to the Gaussian case and also valid for non-
Gaussian random processes. In signal processing, it is also known as the Wiener-Khinchin
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theorem (Wiener 1930; Khinchin 1934). It is however unique to Gaussian random fields that
the knowledge of ξ(x), just as P (k), defines all statistical properties of the field. It then follows
also that all higher moments, both in Fourier space (skewness, kurtosis, . . . ) and in real space
(3-point, 4-point, . . . correlation function) must vanish.

Besides homogeneity, the cosmological principle also requires that the Universe be isotropic.
Therefore, the power spectrum and correlation function cannot depend on the direction, so that
P (k) = P (k) and ξ(x) = ξ(x), with the comoving wavenumber k = |k| and comoving distance
x = |x|, respectively. If we then substitute dk = k2 dk sinϑ dϑ dϕ in equation 2.49, this allows
to perform the integration over the angles, leaving

ξ(x) =
1

2π2

∫ ∞

0
k2 j0(kx)P (k) dk , (2.50)

with the spherical Bessel function j0(kx) = sin(kx)/kx. By setting x = 0 in equation 2.50, we
can obtain the autocorrelation, i.e. the total variance of the overdensity field, from the power
spectrum:

σ2 = 〈|δ|2〉 = ξ(0) =
1

2π2

∫ ∞

0
k2 P (k) dk . (2.51)

In equation 2.51, we are integrating over the power of all wavelengths. Depending on the shape
of the power spectrum P (k), this integral may diverge. However, in cosmological applications
one is most often not interested in the full statistical properties of δ down to arbitrarily small
scales, but only down to some characteristic length scale R that depends on the application. It
is therefore common to convolve, or “smooth” the field with some window function W . Since
convolution in real space is equivalent to multiplication in Fourier space, the smoothed field δW
is related to the original field δ via

δW (x) =
1

(2π)3

∫
δ(k)e−ik·xW (kR) dk . (2.52)

The total variance of such a smoothed overdensity field is then

(σW )2 =
1

2π2

∫ ∞

0
k2P (k)W 2(kR) dk . (2.53)

Popular choices for the smoothing kernel are

WG(kR) = e−(kR)2/2 Gaussian window, (2.54)

Wsth(kR) =
3j1(kR)

kR
spherical top-hat window, (2.55)

with the spherical Bessel function j1(kx) = sin(kx)/(kx)2− cos(kx)/kx. An important property
of zero-mean Gaussian random fields states that any linear function of δ(x), such as the smoothed
field δW (x), will be likewise a zero-mean Gaussian random field (Bardeen et al. 1986).

With this theoretical arnamentarium at hand, we can now consider the primordial density
perturbations of the Universe. In the current standard model, they are believed to originate
from quantum fluctuations around a thermal equilibrium and therefore consist of a Gaussian
random field (Landau et al. 1980). The cosmic inflation then amplified them to macroscopic
size. Inflation theory predicts that the primordial power spectrum produced by inflation should
be scale-invariant, P (k) ∝ kns (Harrison-Zeldovich spectrum), with the primordial scale factor
ns close to 1 (Harrison 1970). The current estimate from WMAP7 data is ns = 0.961 (Komatsu
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et al. 2011). Subsequently, the power spectrum undergoes changes through the various interaction
processes between dark matter, baryons, and radiation during the transition from the radiation-
dominated to the matter-dominated phase. These changes can be encoded in a transfer function
T (k), so that the resulting power spectrum can be described with

P (k) ∝ T 2(k) kns . (2.56)

In the epoch of matter domination, which we consider here, the interacting components have
decoupled; furthermore, the linear approximation implies that the different modes of the Gaussian
field δ(k) evolve independently without interacting, so that the shape 2.56 of the power spectrum
stays fixed in time. Its amplitude increases in time along with the growth factor, and from 2.42
and 2.47 it is obvious that

P (k, t) = D2
+(t)P0(k) , (2.57)

where P0(k) is the linear power spectrum extrapolated to present time z = 0.
To define the normalisation of P0(k), the additional parameter σ8 was introduced. Histori-

cally, this stems from the observation that at present time, the variance (2.53) of the overdensity
δ is approximately equal to 1 when smoothed with a spherical top-hat filter with R = 8 Mpc/h,
so the normalisation parameter will likewise have the convenient property of being approximately
equal to 1. It is defined by

σ8 =

[
1

2π2

∫ ∞

0
k2 P (k)W 2

sth(kR) dk
]1/2

with R = 8 Mpc/h . (2.58)

The current estimate from WMAP7 data is σ8 = 0.807 (Komatsu et al. 2011).
Fitting formulae for T (k) for different cosmological models can be found e.g. in Bardeen

et al. (1986); Eisenstein & Hu (1998). In practice, P0(k) (including the transfer function) can
be computed in tabulated form from cosmological parameters using numerical codes such as
Cmbfast (Seljak & Zaldarriaga 1996), Camb (Lewis et al. 2000), and iCosmo (Refregier et al.
2011). The shape of this theoretical power spectrum is in good agreement with the observed
angular power spectrum of the CMB and other observational probes (Tegmark & Zaldarriaga
2002), proving the validity of the theory in the linear phase of cosmic structure formation.
Figure 2.4 shows P0(k) computed with the Camb code from the current WMAP7 cosmological
parameters. Figure 2.5 shows the associated two-point correlation function, plotted in logarithmic
scale (left) and a magnification in linear scale (right). The prominent peak at 100 Mpc/h
corresponds to the baryon acoustic oscillations (BAO), induced by a clustering of baryonic matter
at this length scale due to acoustic waves which propagated in the early universe. The same
feature can be seen in the form of wiggles at the low-k end of the power spectrum. The BAO
peak can be used as a cosmological standard ruler at these very large scales (Eisenstein & Hu
1998).

2.2.5 The linear peculiar velocity field

Since the focus of this work is the cosmological peculiar velocity field, it is particularly important
to describe it alongside the overdensity in the context of linear perturbation theory. For over-
densities, the linear approximation is valid only for the early structure formation. The condition
of small perturbations will invariably be violated as soon as dense structures emerge. On the
other hand, as we will see later, for velocity fields the linear approximation is much more useful
even up to present time and will be heavily used in the remaining chapters.
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Figure 2.4: Linear matter power spectrum P0(k) at z = 0 for three different sets of ΛCDM parameters,
WMAP3, WMAP5, and WMAP7 (see Table 2.1), normalised to σ8 = 0.75 (WMAP3), 0.817 (WMAP5),
and 0.807 (WMAP7).
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Figure 2.5: Linear two-point matter correlation function for three different sets of ΛCDM parameters.
Shown is a full plot in logarithmic scale (left) and a cutout from the region around the BAO peak in
linear scale (right).

We continue to use the comoving coordinates, so that the comoving velocity is u = dx/dt. At
z = 0 (present time), x is equal to the position r, and u to the peculiar velocity vpec = v−H0r.
Whenever we use r instead of x, and vpec instead of u later, we mean the special case of z = 0
for the following equations.
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To obtain a solution for the comoving peculiar velocity u, the solution for the overdensity
2.42 can be combined with the continuity equation 2.35, resulting in

∇x · u = −aḊδ0 = −aḊDδ = −a
dD
da

ȧδ = −d(lnD)

d(ln a)
ȧδ . (2.59)

The cosmological growth rate f is defined as

f(a) =
d(lnD)

d(ln a)
, (2.60)

which describes the growth of the peculiar velocity field through the growth of the overdensity
growth factor D relative to the scale factor a. Different approximation formulae for f exist,
such as the simple f(t0) ≈ Ω0.6

m (Peebles 1980), or with a slightly different exponent (Lightman
& Schechter 1990), also with carrying higher-order terms involving ΩΛ (Lahav et al. 1991).
These approximations are valid to a varying degree depending on the cosmological parameters
(Hamilton 2001) and formulated mostly for t0 (a = 1). In this work, we use the exact expression
instead, with f as a function of a and hence usable within our comoving description. It can be
derived from the equations above and evaluated by numerical integration:

f(a) =
1

ȧ2

(
ΩΛa

2 − Ωm

2a

)
+ a

(
ȧ3
∫ a

0

da
ȧ3

)−1

− 1 . (2.61)

With this growth rate f , the equation for comoving velocity becomes

∇x · u(x) = −ȧfδ(x) ; u(x) =
ȧf

4π

∫
V
δ(x′)

x− x′

|x− x′|3dx′ . (2.62)

The Fourier-space equivalent of equation 2.62 is

ik · u(k) = −ȧfδ(k) ; u(k) = i
k

k2
ȧfδ(k) . (2.63)

This means that, in the limit of linear perturbation theory, the velocity and density fields are
completely determined by each other at any given moment in time, without the need to explicitly
solve the continuity equation. Because of equation 2.63, if δ is Gaussian distributed, then so
must be each component ux, uy, uz of the velocity field. Due to isotropy and homogeneity, each
component must also have mean zero (the Universe has no net velocity in any preferred direction),
which means that the absolute velocity |u| will be Maxwell-Boltzmann distributed1. Further,
the power spectrum of each component of u receives an additional factor of 1/k2 compared to
P (k) of the overdensity. This means that the velocity field will be influenced much less by small
scales (high k), and instead have a larger correlation length with more structure on large scales
(low k) compared to the overdensity field. In the following, we further investigate this important
fact.

Similar to the two-point correlation function of the overdensity field 2.50, one can construct
the two-point correlation function of two comoving velocity vectors (which will be a 3×3 tensor),
as well as the two-point correlation function between the overdensity and one velocity vector

1Due to the high correlation length of the linear peculiar velocity field, this is in general only true if one
considers a large enough volume with a radius of the order of at least a few hundred Mpc/h, cf. Section 3.1.3.
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(which will be a vector). One can combine equation 2.49 with the additional factors from
equation 2.63 to form expressions for these correlations:

〈δ(x′)uα(x′ + x)〉 = (ȧf)2

(2π)3

∫ ∞

0

ikα
k2

P (k)e−ik·xdk , (2.64)

〈uα(x′)uβ(x′ + x)〉 = ȧf

(2π)3

∫ ∞

0

kαkβ
k4

P (k)e−ik·xdk , (2.65)

where α, β ∈ {x, y, z} index the three cartesian components. Because of isotropy, one can
again reduce these to functions depending on the comoving distance x = |x| only. The calculation
is somewhat more complicated due to the presence of the different cartesian components, and
yields (Monin & Yaglom 1965; Gorski 1988; Zaroubi et al. 1999):

〈δ(x′)u(x′ + x)〉α = −ȧf x̂α ζ(x) (2.66)

for the density-velocity correlation vector and

〈u(x′)u(x′ + x)〉αβ = (ȧf)2Ψαβ (2.67)

for the velocity-velocity correlation tensor, with

Ψαβ =
{
ψT(x)δ

K
αβ + [ψR(x)− ψT(x)] x̂αx̂β

}
. (2.68)
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Figure 2.6: Linear two-point radial and transverse velocity-velocity (top row) and density-velocity
(bottom row) correlation functions for three different sets of ΛCDM parameters, shown in logarithmic
scale (left) and linear scale (right).
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Here, δKαβ is the Kronecker delta and x̂ = x/x is the normalised distance vector. Then, x̂α
is one cartesian component of this normalised vector, with α, β ∈ {x, y, z}. The underlying
one-dimensional functions are of the form:

ψR(x) =
1

2π2

∫ ∞

0

[
j0(kx)− 2j1(kx)

kx

]
P (k)dk , (2.69)

ψT(x) =
1

2π2

∫ ∞

0

j1(kx)

kx
P (k)dk , (2.70)

ζ(x) =
1

2π2

∫ ∞

0
kj1(kx)P (k)dk . (2.71)

In the following we call ψR, ψT, and ζ radial velocity correlation function, transverse velocity
correlation function, and density-velocity correlation function, respectively.

Figure 2.6 shows a plot of the velocity-velocity and density-velocity correlation functions for
ΛCDM parameters. Considering the velocity-velocity correlation functions, it becomes evident
that velocities are correlated to much larger distances than overdensities and feature much less
information on small scales. Velocities are still correlated to 90% at a distance of 6 Mpc/h, to
50% at a distance of 40 Mpc/h, and to 10% at a distance of 200 Mpc/h, with still noticeable
correlations out to even larger distances. This property of the linear peculiar velocity field will
be of great importance in the following chapters.

The variance of the linear velocity field (per cartesian component α) is

σ2(uα) = 〈|uα|2〉 = (ȧf)2ψR,T(0) =
ȧ2f2

2π2

∫ ∞

0
P (k) dk , (2.72)

which corresponds to a peculiar velocity of about 300 km/s at z = 0 for a WMAP7 cosmology.
This is not too different from the observed variance of galaxy peculiar velocities, and a first hint
that the linear approximation may be useful for peculiar velocities at present time.

2.2.6 The Zeldovich approximation

The assumption of a “frozen” density distribution made by linear perturbation theory, where only
the overall amplitude grows in time, is a sufficiently valid description for times and scale lengths
where the perturbations are small, δ � 1. However, when the perturbations grow to a sufficiently
large amplitude, the dynamical motion of matter induced by its gravitational potential causes
a displacement of the density distribution that cannot be neglected anymore. A more accurate
description of the system can be formulated in the framework of Lagrangian perturbation theory.
We can assign a Lagrangian coordinate q to each moving patch of matter, which corresponds to
its unperturbed position. Its Eulerian coordinate x, which corresponds to the physical position
of the patch in configuration space, is then

x(t) = q(x) +ψ(x, t) , (2.73)

where ψ(x, t) is the displacement from the initial state x = q. To describe the time evolution of
this displacement, Zeldovich (1970) proposed the very useful approximation,

x(t) = q(x) +D+(t)ψ0(x) , (2.74)

which is the first-order solution of Lagrangian perturbation theory, neglecting the acceleration
term. Then, the direction of the displacement vector stays constant in time and its amplitude
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evolves with the growth factor D+. The equation for the peculiar velocity u = a dx/dt can be
obtained by taking the time derivative of equation 2.74,

u(x, t) = ȧfψ(x, t) , (2.75)

which means that each patch continues to move with a constant peculiar velocity that is pro-
portional to the displacement field. Using the mass conservation in Lagrangian coordinates,
ρ(x) dx = ρ̄(q) dq, one can now obtain a relation for the overdensity δ, which is the Lagrangian
extension of the simple linear theory equation 2.42,

δ(x) =

∣∣∣∣dqdx

∣∣∣∣− 1 (2.76)

=

∣∣∣∣I − dψ
dx

∣∣∣∣− 1

=

∣∣∣∣I −D(t)
dψ0

dx

∣∣∣∣− 1

(e.g. Nusser et al. 1991), where I is the unit matrix. This connects the overdensity to the
deformation tensor dψ/dx. The overdensity becomes positive, if the medium is contracting
relative to the comoving frame (dψ/dx < 1), and negative if it is expanding (dψ/dx > 1), while
the deformation grows in time with the linear growth factor.

The Zeldovich approximation is a very powerful tool to analytically describe structure for-
mation beyond the linear regime. Let us consider a single Fourier mode δ(k) of the full over-
density field, which corresponds to a one-dimensional sinusoidal primordial density perturbation
δ(z) ∝ cos(k · x) at some early redshift z which is still in the linear regime. With the Zeldovich
approximation, it is possible to obtain an analytical solution2 for the gravitational collapse of
this perturbation (Zeldovich 1970),

x(z) = q +

(
1 + zc

1 + z

)
k

k2
sin(k · q) , (2.77)

v(z) = ȧf

(
1 + zc√
1 + z

)
k

k2
sin(k · q) . (2.78)

The time evolution of this single-mode perturbation is illustrated in Figure 2.7 (numerical
simulation). It can be shown that the Zeldovich solution is exact up to redshift zc (e.g. Shandarin
& Zeldovich 1989), which is the moment of caustic formation. The value of zc depends only on
the amplitude of the initial perturbation. At zc, the deformation tensor becomes infinite, which
results in a singularity of the density distribution. The resulting structure is commonly referred
to as the Zeldovich pancake. At the caustic, the two matter streams from both sides collide and
eventually cross each other. After this shell crossing, the Zeldovich approximation is not valid
any longer, since it predicts that the two streams would just pass through each other and continue
to move with constant velocity. The actual behaviour is that the Zeldovich pancake forms an
equilibrium between its own gravity and its internal velocity dispersion. The resulting structure
is a stable density concentration with the matter oscillating around its peak. This leads to the
formation of additional, secondary density peaks. The time evolution of this non-linear system
cannot be described analytically, and a solution can be obtained only by numerical simulation.

2The amplitude factors in this solution are only analytically correct for an Einstein-de-Sitter Universe, Ωm = 1,
ΩΛ = 0. However, for other cosmologies the results are only slightly different. At high z, the difference for
cosmologies with non-zero Λ is negligible.
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Figure 2.7: Gravitational collapse of a one-dimensional Zeldovich wave with collapse time zc = 1;
numerical simulation performed with the Amiga code (Doumler & Knebe 2010). Overdensity field (left)
and peculiar velocity field (right) in the linear regime (z = 30, top), at the moment of collapse (z = 1,
middle), and in the non-linear phase after shell-crossing (z = 0, bottom). The peculiar velocity field in
the non-linear phase shows multistreaming; the average velocity at any position (dashed red line) does
not coincide with the actual velocities of the different particle streams (solid black line). This setup does
not depend on the wavelength Λ0 of the initial perturbation, so the position x is shown in units of Λ0.

The multistreaming nature of the distribution after shell crossing breaks the mapping between
Lagrangian coordinates q and Eulerian coordinates x. From the position x and velocity u of
a particle in the non-linear state after shell crossing it is not possible anymore to obtain an
estimate of its initial position q. This means that the non-linear evolution of such density peaks
erases information about its initial conditions. This aspect of non-linear structure formation
will become very important when we come to the problem of reconstructing initial conditions in
Chapter 4.

2.2.7 Hierarchical structure formation

In the “quasi-linear regime” where the Zeldovich approximation is valid, the peculiar velocity
field can be reasonably approximated as a curl-free potential flow (in the linear regime, this is
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strictly true: u ∝ −∇φ from equations 2.62 and 2.37). The deformation tensor dψ/dx is then
symmetric and can be diagonalised with eigenvalues μ1(x) ≥ μ2(x) ≥ μ3(x), which all grow
proportional to D+(z). The overdensity is then

δ(x) = {[1− μ1(x)] [(1− μ2(x)] [(1− μ3(x)]} − 1 , (2.79)

which, for a single three-dimensional perturbation, is equivalent to a superposition of three
orthogonal Zeldovich waves with different amplitudes, aligned along its fundamental axes. When
the first eigenvalue μ1 becomes infinite, the three-dimensional perturbation will collapse into a
two-dimensional sheet. The next singularity at μ2 leads to the formation of a one-dimensional
filament; finally, the collapse along the third dimension leads to the formation of a halo. This
model gives an explanation how the web-like appearance of large-scale structure in the Universe,
a network of sheets and filaments with dense haloes at their intersections, could evolve from
initial conditions that lack any geometrical features.

This collapse model of large-scale density perturbations suggests a “top-down” scenario of
structure formation: The largest known objects, on the scales of galaxy clusters, could be formed
first from the gravitational collapse of large-scale Zeldovich waves. Substructure would then
emerge in the non-linear phase from the fragmentation of these objects (Bode et al. 2001). The
assumption that large-scale waves would dominate the primordial power spectrum P (k) is closely
tied to the hot dark matter (HDM) and warm dark matter (WDM) models, which assume that
dark matter particles have large thermal velocities and cool down to the non-relativistic, matter-
dominated phase at relatively late times. This introduces an exponential cutoff at small scales
in the transfer function T (k). The current cold dark matter (CDM) paradigm favours instead a
transfer function without this suppression of small-scale perturbations. The scale of this damping
mostly depends on the assumed properties of the dark matter particles. The CDM model leads to
the “bottom-up” scenario of structure formation: small scales collapse first, forming mini-haloes
that host the first stars. Larger objects on galaxy and eventually cluster scales are subsequently
formed by merging of smaller structure and matter accretion (White & Frenk 1991).

Despite its simplicity, the Zeldovich approximation describes the general large-scale texture of
the density field quite well. One can construct a realisation of the primordial Gaussian random
field, i.e. a set of cosmological initial conditions, sampled by particles at discrete Lagrangian
positions q, and advance these particles forward in time using the Zeldovich approximation.
This will produce a surprisingly good prediction about the position and orientation of haloes,
filaments, and voids in the evolved stage (Pauls & Melott 1995). The density field created by this
particle distribution will be accurate when smoothed on a sufficiently large scale (Bouchet et al.
1995). For a ΛCDM Universe, this scale is about 5 Mpc/h at z = 0, although this varies locally
and one has to go to larger smoothing scales in regions with high overdensity where shell-crossing
occurs earlier. Of course, when going to smaller scales, the approximation fails to describe the
inner structure of haloes, filaments, and sheets where shell-crossing has occured. Due to its
nature of assuming a linear flow with constant velocities, the Zeldovich approximation is not
able to describe any of the processes like merging, accretion, and the inner dynamics of virialised
objects, which are driven by the local gravitational interaction of matter; all these processes
are dominated by non-linear dynamics happening after shell crossing. The impossibility to
follow non-linear gravitational dynamics analytically persists with all extensions of the Zeldovich
approximation, such as second-order and higher-order Lagrangian perturbation theory (Buchert
et al. 1994; Bouchet et al. 1995; Bernardeau et al. 2002), or the exclusion of path crossing by
introducing artificial adhesion or viscosity (Gurbatov & Saichev 1984), which leads to Burgers’
equation (Burgers 1973). In order to study structure formation down to galactic scales, one
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has to resort to solving the time-evolution of the system numerically by means of cosmological
simulations.

2.3 Cosmological N-body simulations

The basic idea of cosmological simulations is to numerically solve for the time evolution of the
dynamical quantities of the Universe’s matter components. Neglecting the baryonic component,
these will be the density and velocity fields of collisionless matter. These fields are considered
inside a finite computational volume that is statistically representative for the whole Universe.
The standard choice for the computational domain is a three-dimensional, cubic box with a
boxsize L that is large enough so that the Universe can be approximated as being homogeneous
on scales larger than this boxsize, typically of the order of 100 Mpc/h or larger. To reflect the
infinite, homogeneous and isotropic geometry of the Universe, the box is taken to have periodic
boundary conditions, so that all positions inside the box are statistically equivalent. This setup
has several advantages that make it ideal for a numerical treatment.

The starting point of a cosmological simulation is to construct the initial conditions, i.e. a
random realisation of the primordial density fluctuations at some intial redshift zinit. Since zinit
must lie in the linear phase of the matter-dominated epoch, this is relatively straightforward,
since the Gaussian probability distribution functions and the primordial power spectrum P (k)
are known for this case. Typical values are 100 ≤ zinit ≤ 30, depending on the chosen boxsize and
resolution. This distribution is then evaluated forward in time until the desired final redshift,
for example z = 0, which corresponds to today’s time t0, in order to follow structure formation
into the current evolutionary epoch. However, simulations are also a very popular tool to study
the Universe at high redshift, in the epoch of reionisation and the formation of first stars (e.g.
Iliev et al. 2011; Romano-Diaz et al. 2011).

Large-scale structure formation is dominated by the dark matter component, which is as-
sumed to be composed of some type of collisionless particles. This means that, on all scales of
interest, they interact only with the gravitational field of the Universe. The mean free path of
dark matter particles is assumed to be many orders of magnitude higher than the boxsizes of
interest (e.g. in Bertone 2010), so that two-particle interactions can be safely neglected. The
standard approach is to sample the distribution of dark matter with an ensemble of discrete
particles that obey the collisionless, gravitational behaviour. Every such simulation particle cor-
responds to a very large number of physical dark matter particles. The numerical treatment of
this particle ensemble is then equivalent to the classical N -body problem, with the added cosmo-
logical expansion which is determined by equation 2.19 and formulated in comoving coordinates.
A large deal of additional complexity arises if one wishes to model the baryonic component as
well, which we neglect here.

2.3.1 The N-body method

For an accurate modelling of the dynamical evolution of collisionless dark matter, the Euler
equations 2.31 – 2.33 do not provide a sufficient description. In Eulerian coordinates, i.e. any
fixed discretisation of the three-dimensional Euclidean space, the multi-streaming behaviour of
collisionless dark matter particles cannot be treated properly, a problem that is already apparent
for the non-linear phase of the Zeldovich pancake (bottom right panel of Figure 2.7). A complete
description can only be obtained by considering the whole phase space. With the phase-space
density f(r,v, t)drdt, the dynamical evolution of a system of gravitationally interacting colli-
sionless matter is defined by the collisionless Boltzmann equation (here in physical coordinates):



32 2 The Universe

∂f

∂t
+ v ·∇f − (∇φ)

∂f

∂v
= 0 , (2.80)

where the gravitational potential φ is determined by Poisson’s equation (2.25). Unfortunately,
the collisionless Boltzmann equation is in practice impossible to solve numerically. However,
the equation can be reformulated with Hamiltonian dynamics using Poisson bracket notation
(Leeuwin et al. 1993),

∂f

∂t
+ {f,H} = 0 ; H =

1

2
v2 + φ(r) . (2.81)

The existence of a Hamiltonian H implies that, according to the Liouville theorem, the phase-
space distribution function f stays constant along any trajectory through phase space. This
means that if one can obtain a discrete, uniform sampling of the distribution function f(r,v, t0)
at some initial time t0 and solve the equations of motion for the trajectory of each sample, the
solution will continue to be a uniform sampling of the phase-space distribution function f at all
times.

The N -body method accomplishes this via a sampling of the density and velocity fields with
a set of discrete particles, each having a definite position xi, velocity vi and mass mi. First
we need to obtain a particle sampling of the initial conditions generated at zinit. The task of
constructing such initial conditions will be discussed in Chapter 3. Solving for the time evolution
of the system then reduces to solving the Newtonian equations of motion for each particle i, in
comoving coordinates

dxi

dt
=

1

a
vi , (2.82)

dvi

dt
= −1

a
∇φ(xi) , (2.83)

forwards in time until z = 0. This is accomplished by integrating them with discrete time steps
using symplectic time integrators (e.g. Zemp et al. 2007). The gravitational force on each particle
is determined by

−∇φ(xi) = G
∑
j �=i

mj
xj − xi

|xj − xi|3 , (2.84)

which would have to be evaluated for every particle and timestep. These sums are very expensive
to compute for a large set of millions or even billions of particles. Several approaches have been
developed as an alternative to direct summation. The tree method (Barnes & Hut 1986) arranges
particles in a hierarchy of groups, and when the force on a particular particle is computed,
the force exerted by distant groups is approximated by their lowest multipole moments (Appel
1985; Springel et al. 2001). Particle-mesh (PM) codes instead solve the Poisson equation on a
discretised mesh, which for a regular cubic grid can be done very fast by using the Fast Fourier
Transform. The required density field can be obtained by a mapping of the particle density to
the grid using mass assignment schemes (Hockney & Eastwood 1992). The force at each particle
location can then be obtained by grid interpolation. The finite resolution of the regular grid can
be refined in regions with high particle density by either carrying out direct summation locally
(P3M codes, Efstathiou et al. 1985), or by adaptive mesh refinement (AMR, Berger & Colella
1989). With all these approaches, many numerical subtleties have to be considered in practice,
which we will not discuss here; see e.g. the review article by Dehnen & Read (2011).
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Popular numerical codes used for cosmological simulations are Art (Kravtsov et al. 1997),
Enzo (Bryan & Norman 1997), and Ramses (Teyssier 2002), who are designed around AMR,
and Gadget (Springel et al. 2001; Springel 2005), which is a tree code. We do not go into
the details of how these codes treat the baryonic component (see e.g. Tasker et al. 2008) and
execute them in dark-matter-only mode. The N -body dark matter particle solvers of all these
codes give essentially the same results down to the resolution limit of the chosen sampling, and
the numerical differences are negligible (see Heitmann et al. 2005, 2008). We verified this by
comparing dark-matter-only runs of the same initial conditions until z = 0 (BOX160, discussed
below) with Ramses, Art, and Gadget, and found no significant differences in the properties of
the resulting structure, such as the statistics of the evolved fields and the positions and peculiar
velocities of the evolved dark matter haloes at z = 0. We then chose Gadget as the code of
choice for all simulations presented in this work because of its fast performance and ease of use.

2.3.2 Structure formation in simulations

As an example for a cosmological simulation, we consider here the BOX160 simulation, a con-
strained simulation of the Local Universe conducted within the CLUES project. This simulation
will be used as a reference simulation in Chapters 4 and 5, but here we will focus on the general
statistics of the evolved non-linear density and velocity fields. The BOX160 simulation was set
up with the WMAP3 cosmological parameters Ωm = 0.24, ΩΛ = 0.76, σ8 = 0.75 (cf. Table 2.1),
and a ΛCDM input power spectrum P0(k) consistent with these parameters. The boxsize used
is L = 160 Mpc/h. The original simulation contains 10243 dark matter particles with particle
masses of m = 2.54× 108M�/h and was performed with the Art code. For the study presented
in Chapters 4 and 5, we re-ran the same initial conditions with the Gadget code and a lower
resolution of 2563 particles, with particle masses of m = 1.63×1010M�/h from a starting redshift
of zinit = 30 until the final redshift z = 0. The two runs show only negligible differences at scales
above the resolution of the 2563 run.

Figure 2.8 shows a map of the density and velocity fields used as initial conditions at zinit = 30
(left) and the final snapshot of the evolved simulation at z = 0 (right). While the initial conditions
are a realisation of the initial Gaussian random field, lacking any distinct geometrical features, the
evolved state shows the characteristic web-like appearance of contemporary large-scale structure.
The density field has evolved into a complicated network of sheets and filaments, with dense dark
matter haloes at their intersections and large cosmic voids in between. The dark matter haloes
are of special interest, since they are the hosts of observable galaxies, which are believed to form
by accretion and subsequent cooling of gas inside the haloes’ gravitational potential wells (White
& Rees 1978; White & Frenk 1991; Binney & Tremaine 2008). The distribution of dark matter
haloes follows a hierarchical pattern. The largest objects lie in the mass range of massive galaxy
clusters (≈ 1015M�/h) and are located in the regions of highest density. These regions are also
the ones that contribute the most to the shape of the peculiar velocity field (bottom panels of
Figure 2.8). Objects of lesser mass are also found along the filaments and, in smaller numbers,
in the underdense regions. Assembled through hierarchical structure formation, merging and
accretion processes, dark matter haloes typically show a rich substructure of smaller orbiting
sub-haloes or satellite haloes which are gravitationally bound to the main object. These have
substructure themselves, and this hierarchy continues down over many orders of magnitude in
mass (limited by the numerical resolution of the simulation). This self-similar appearance can
be also seen in the 2 Mpc/h wide Local Group region in Figure 1.2. There is an ongoing debate
whether this plethora of substructure across many orders of mass scales is compatible with the
relatively small number of observed satellite galaxies in the Local Group (Klypin et al. 1999b;
Moore et al. 1999; Simon & Geha 2007; Wang et al. 2012).
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Figure 2.8: Overdensity field (top) and velocity field (bottom) at the initial redshift z = 30 (left) and
final redshift z = 0 (right) of the BOX160 cosmological simulation with 160 Mpc/h boxsize, obtained with
TSC mass assignment onto a 2563 numerical grid. The contours underlying the velocity field are again the
overdensity field, but smoothed with a Gaussian kernel with radius RG = 2.5 Mpc/h. Note the different
scale for the overdensity maps: the initial distribution consists of relatively small fluctuations and is
shown in linear scale, while the final distribution is shown in log scale due to the very high overdensities
of several hundred inside haloes. This map is a XY -plane projection of a 10 Mpc/h thick slice located
at 87 < Z < 97 Mpc/h.

The formation of individual haloes can be traced back to the gravitational collapse of over-
dense regions in the initial conditions. A first model of this collapse process was developed by
Press & Schechter (1974), who approximated the halo formation process by the collapse of a
spherical overdense region. The model was later generalised to triaxial ellipsoidal collapse by
Sheth et al. (2001). As an overdense region collapses, it will eventually decouple from the overall
cosmic expansion and contract gravitationally, until an equilibrium between gravitational con-
traction and outward pressure from the internal velocity dispersion of the dark matter particles is
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Figure 2.9: Distribution function of overdensities δ in the BOX160 simulation at different redshifts. The
z = 0 histogram (solid black curve) depicts the original initial conditions density field; the histograms at
later z were obtained from simulation snapshots by mapping all dark matter particles to a 2563 grid using
TSC mass assignment. The green curve shows a linear Gaussian distribution with mean 0 and standard
deviation 〈|δ|〉 as defined by the parameters at initial redshift z = 30.

reached and the formed halo keeps an approximately constant size. At this point, the halo is viri-
alised, i.e. the ratio of the mean kinetic and potential energy is determined by the virial theorem,
2〈Ekin〉 = −〈Epot〉. At virialisation, the mean overdensity of the region is around δvir ≈ 200; one
can then define a virial radius Rvir, and compute the mass Mvir inside this radius (virial mass).
The virial radius is often defined such that the enclosing mass has an overdensity of 200 relative
to the cosmic mean density (Binney & Tremaine 2008), although other numbers are used as well
(Knollmann & Knebe 2009), and some authors prefer to use the maximum of the halo’s circular
velocity profile to characterise a halo (Knebe et al. 2011a). One has to keep in mind that in
a cosmological simulation, the virial equilibrium is never exactly reached, because merging and
accretion is an ongoing process. The mass function of dark matter haloes in the simulations, i.e.
the number of haloes per mass interval, is generally in good agreement with theoretical models
(Tinker et al. 2008). It was also found that the spatial mass distribution within virialised dark
matter haloes follows a general mass profile (Navarro et al. 1997). The intricate properties of
dark matter haloes are a major subject of ongoing research.

To identify dark matter haloes in a simulation, a wide selection of codes using different
algorithms is available; a good overview and comparison is given in Knebe et al. (2011a). For
the simulations in this work, we use Amiga’s Halo Finder (AHF; Knollmann & Knebe 2009),
because it offers a fast performance and is able to identify subhaloes down to many hierarchical
levels.

2.3.3 The evolved density and velocity fields

While the density and velocity fields are of linear Gaussian nature in the high-redshift initial
phase, their statistical properties change drastically in the course of the structure formation
process. Figure 2.9 shows the probability distribution function of δ at different redshifts. The
physical restriction that densities cannot become negative, and therefore δ ≥ −1 always, breaks
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the Gaussian symmetry quite early, and a significant skewness develops. The resulting distri-
bution in the quasi-linear regime is reasonably approximated by a lognormal distribution (Coles
& Jones 1991). In the non-linear phase at z = 0, the overdensity distribution has a very sharp
peak just above δ = −1 and a long tail of very high overdensities that are of the order of 103 –
104 in the inner regions of dark matter haloes, depending on the numerical resolution.

A majority of the dark matter haloes found at z = 0 can be associated with peaks in the initial
conditions (Ludlow & Porciani 2011), although this mapping is not unambiguous in general, and
the peaks undergo significant changes in both shape and position during structure formation.
This cosmic displacement, i.e. the distance that a given patch of matter travels from the initial
linear field until it finds oneself in an object at z = 0, is quite substantial, and in the case
of BOX160 it is about 10 Mpc/h on average. One can see this movement more clearly when
comparing the positions of the most prominent density peaks in the smoothed density field in
Figure 2.8; although one also can see a clear similarity of the initial conditions and the evolved
field on scales above that of the displacement. We also find that the size and amplitude of
the initial peaks does not completely determine the properties of the haloes that evolve from
them, which are influenced to a great degree by non-linear processes like merging and accretion.
Conversely, the non-linear evolution of the density field irretrievably erases information about the
initial conditions, as already discussed in Section 2.2.6. Following Crocce & Scoccimarro (2006)
and Wagner (2009), we consider the propagator g(z), which is defined as the Fourier-space cross-
correlation coefficient between the initial field δ0 and the evolved field δ(z) at different redshifts
z as a function of scale,

g(z) =
〈δ(z, k) δ∗0(k)〉

〈|δ(z, k)|〉 〈|δ0(k)|〉 . (2.85)

For BOX160, the propagator is shown in Figure 2.10 for snapshots at different redshifts; the
shape is in very good agreement with the analytical model in Crocce & Scoccimarro (2006), al-
though the finite-volume effect of the 160 Mpc/h introduces some noise because the larger scales
are sampled by relatively few discrete Fourier modes (see Section 3.1.3). The correlation with
the primordial linear field degrades further as the simulation evolves. At z = 0, at wavenumbers
above k = 0.5 h/Mpc, equivalent to length scales below 10 Mpc/h, in the range of the cosmic
displacement field, there is virtually no correlation left. To a limited degree, some of the corre-
lation with the initial field can be improved, for which it is necessary to devise some estimate
of the shape of the displacement field and correct for its effect. This is the main component of
reconstruction schemes discussed in Chapter 4.

It is striking that the evolved peculiar velocity field at z = 0 is affected much less by non-linear
structure formation than the density field and has a very similar appearance to the primordial
peculiar velocity field in the initial conditions. The similarity is even more obvious if one compares
the velocity field at zinit and z = 0 component-wise (Figure 2.11). This is due to several reasons.
First, the values of the velocity vector components are not subject to the positiveness-constraint
that breaks the Gaussian symmetry in the density case; second, the velocity field has a high
large-scale correlation and is therefore much less sensitive to scales below the quasilinear regime
which are most strongly affected by non-linear gravitational dynamics. It is, on the other hand,
affected to a similar degree by the cosmic displacement. There is also some non-linearity bias
that enhances the velocity amplitude in regions of large density. We will analyse this further in
the next section.

In Figure 2.12, we consider the power spectrum P (k) of the evolved field at z = 0, compared
to the linear input power spectrum P0(k). Except some fluctuations on the largest modes (i.e.
small k) due to the discrete Fourier sampling (the excess power there is not typical and will
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be discussed in Section 3.3.3), the initial conditions of BOX160 (black symbols) follow – by
construction – very closely the input WMAP3 power spectrum (solid black line). On the other
hand, gravitational clustering causes a strong enhancement of the density power spectrum at
z = 0 (red symbols). At z = 0, this enhancement (studied e.g. by Peacock & Dodds 1994, 1996;
Smith et al. 2003) starts to become noticeable at scales below ≈ 60 Mpc/h, which is around the
scale where linear theory ceases to be valid. The non-Gaussianity also breaks the independence
of the Fourier modes δ(k): gravitational collapse induces a transport of power from large modes
to smaller modes (Ma 2007).

On the other hand, the power spectrum of fluctuations in the velocity field evolves very
differently, an aspect that to our knowledge has not been analysed in detail before. In the linear
regime of the initial conditions, the divergence of the velocity field ∇·u is equal to the overdensity
δ except for a factor (equation 2.62), so that (neglecting that factor) the power spectrum of ∇·u
is identical to the initial P (k) (black symbols in Figure 2.12). As the field evolves out of the
linear regime by gravitational clustering, this equality breaks, and the two power spectra evolve
differently3. Interestingly, at z = 0 the power spectrum of ∇·u has decreased for scales below the
linear regime, which means that gravitational collapse has smoothed the peculiar velocity field on
scales roughly between the onset of the quasilinear regime at a few tens of Mpc/h and scales of a
few Mpc/h (green symbols in Figure 2.12). This smoothing of medium-scale fluctuations is also
seen in Figure 2.11. Our interpretation is that both the gravitational collapse of haloes and the
expansion of voids “stretch out” the velocity field: both the infall towards haloes and the outflow
from voids are marked by quite smooth, laminar flows. Additionally, initial velocity fluctuations
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Figure 2.10: Fourier-space cross-correlation of the evolved density field δ(z) at different redshifts z with
the initial field at z = 30, computed from different snapshots of the BOX160 simulation. The wavelength
of k = 1 h/Mpc corresponds to a scale length of about 6 Mpc/h.

3It is possible to construct relations between the overdensity δ and the divergence of the peculiar velocity
∇ · u that hold in the quasilinear regime as well; an overview is given in Kitaura et al. (2012).
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Figure 2.11: Same slice as Figure 2.8, at the initial redshift z = 30 (left) and final redshift z = 0
(right), but the peculiar velocity field is shown component-wise. Note that the vz component (bottom)
lies perpendicular to the plane of the figure, while the other two lie on it. The varying type of anisotropy
in the noise patterns of the three components visualises the difference between radial (ψR) and transverse
(ψT) peculiar velocity correlations. The right panels were generated by TSC binning of the particle
velocities to a N = 2563 grid (the same resolution was used in the left panels), without further smoothing.
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Figure 2.12: Periodogram estimate of the power spectrum P (k) of the BOX160 initial conditions at
z = 30 (black), the evolved density field δ at z = 0 (red), and the divergence of the evolved velocity field
∇ · v at z = 0 (green). The theoretical WMAP3 input power spectrum is shown as a solid black line.
The power spectra at z = 0 have been obtained from a TSC mass assignment of the density and velocity
fields to a 2563 grid and corrected for the errors resulting from mass assignment using the scheme of Jing
(2005).

become trapped in the virial motion inside haloes after their collapse, so that power is removed
from the scales above that of individual haloes. At the halo scale (below ≈ 2 Mpc/h, or above
k ≈ 3 h/Mpc), the power spectrum of the velocity divergence is again above the linear theory
prediction because of a non-linear enhancement of velocities, which we will analyse further in
the next section.

2.3.4 Halo peculiar velocities

The peculiar velocity field has statistical properties that are closer to its initial conditions than
it is the case for the density field; this makes the velocity field a potentially good source of infor-
mation about the cosmological initial conditions. We now analyse the evolved peculiar velocity
field at z = 0 in more detail. The present-day peculiar velocity field is accessible observationally
through the peculiar velocities of galaxies (see Section 2.1). In the current theoretical picture
of galaxy formation, all these galaxies reside within the potential wells of dark matter haloes.
It is therefore a reasonable assumption that the observed galaxy peculiar velocities follow, in
fact, the peculiar velocities of their surrounding dark matter haloes, and in this way provide a
direct tracer of the underlying peculiar velocity field at z = 0. This in turn provides a direct and
unbiased tracer of the underlying total gravitational potential (cf. equation 2.32) and therefore
the total matter distribution (i.e. including dark matter).

Hence, we want to study how peculiar velocities of dark matter haloes are distributed; the
results will be, to a reasonable degree, also applicable to galaxy peculiar velocity data. As a
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Figure 2.13: Distribution function of one velocity field component (vx) in BOX160 at the initial con-
ditions z = 30 and from the simulation snapshot at z = 0 (normalised to the same growth rate). The
blue points show the distribution function of dark matter halo velocities at z = 0. The green curve shows
a theoretical Gaussian distribution, with the mean and standard deviation adjusted to 〈vx〉 and 〈|vx|〉,
respectively.

specimen, we use the AHF halo catalogue of the BOX160 simulation at z = 0. One can define
the peculiar velocity of a halo as the bulk motion of all particles that belong to this halo. In
AHF terms, it is computed as the average motion of all dark matter particles within the virial
radius Rvir.

Figure 2.13 shows the distibution function of the initial velocity field at zinit = 30 (solid
black line), the evolved velocity field at z = 0 (dashed black line), and the peculiar velocities of
haloes identified in the BOX160 (blue points). The field distributions have been obtained from
sampling on a 2563 computational grid; the halo velocities come from the AHF halo catalogue.
We consider one component only, here vx, because this should be a Gaussian distributed variable
in linear theory (the total velocity should be Maxwellian, see Section 2.2.5). The green curve in
Figure 2.13 shows the theoretical Gaussian distribution as given by linear theory. There is some
deviation from this distribution in the initial vx. It may seem surprising that the velocity vector
components in the BOX160 initial conditions are not perfectly Gaussian distributed despite the
fact that the initial conditions are the realisation of a Gaussian random field. This is an effect
of the finite box volume which we can ignore for now; it will be discussed again in Section 3.1.3.

We are specifically interested in how far the evolved peculiar velocity field at z = 0 (dashed
curve in Figure 2.13) deviates from the statistics of the linear initial conditions. Similar studies
have been presented in Sheth & Diaferio (2001) and Hamana et al. (2003, 2005), who propose
theoretical models for the non-linear deviations. Comparing the final distribution at z = 0 to
the initial conditions, we see that the outer parts show tails of enhanced velocity. This is in part
due to the effect of non-linear bias: in regimes of higher density, the velocity distribution remains
approximately Gaussian, but the rms variance is higher with increasing density. This dependence
of the velocity field on the local density cannot be predicted from linear theory. The resulting
non-linear distribution is therefore a sum of several Gaussian distributions with different standard
deviations. However, the central part of the distribution, containing the most points, does not
deviate much from the initial conditions. Overall, non-linear gravitational collapse has a much
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smaller effect on the velocity field than for the drastically altered distribution of overdensities,
so we can consider the peculiar velocity field at z = 0 to be closer to the linear theory than
overdensities in this sense. In Chapter 4, we will see that it also conserves more information
about the cosmological initial conditions.

The peculiar velocities of haloes at z = 0 (blue points in Figure 2.13) further deviate from the
distribution of the whole field, with more strongly enhanced wings in the distribution. This is due
to the fact that haloes trace the velocity only at the highest peaks of the density field and thus do
not provide a completely unbiased sample. Even within linear theory, the rms peculiar velocity
distribution at the peaks deviates somewhat from the general distribution (Bardeen et al. 1986),
although this effect is much smaller than the non-linear effect. The latter is due to the fact
that haloes are preferentially located in dense environments, where the rms variance of velocities
is higher, so that the non-linear wings are enhanced. Additionally, a non-negligible fraction of
haloes consists of substructure embedded in larger haloes, so virial motions are contributing as
well; they likewise have a higher rms velocity than the linear field.

Figure 2.14 shows the halo peculiar velocities in BOX160 over the halo mass (left panel) and
the local density (right panel). While the increased peculiar velocities in high-density regions
is obvious, the peculiar velocities are practically independent of the halo mass; both results are
consistent with Sheth & Diaferio (2001); Hamana et al. (2003, 2005). The halo mass dependence
slightly varies with different halo finders and different realisations. We found that in BOX160
there is a slight tendency of higher velocities for more massive clusters above ≈ 1013M�/h,
whereas another simulation, a random realisation of the same cosmology with the same boxsize,
showed a slight tendency of lower velocities at the high-mass end. This will be discussed further
in Chapter 3. We also found that the BDM halo finder (Klypin et al. 1999a) tends to higher
estimates of halo peculiar velocities at the high-mass end, while the friends-of-friends algorithm
(we used the FoF implementation discussed in Knebe et al. 2011a) tends to lower estimates.
This is similar to the findings of Suhhonenko & Gramann (2003). We continue to use AHF,
which gives halo velocities lying in between those of BDM and FoF.
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Overall we can conclude that the peculiar velocity field at z = 0 is remarkably closer to the
Gaussian statistics of the initial conditions than the corresponding non-linear density field. Even
if we restrict ourselves to the velocities of dark matter haloes as tracers of the underlying field,
serving as a simulation analogue of the peculiar velocity distribution of observed galaxies, the
effects of non-linearity on their velocity distribution are relatively mild. The strongest deviations
from linear theory are found in regions of high density, where the halo abundance is higher. We
will minimise these biasing effects later in this study by using mock catalogs that are sampled
randomly in mass and space. This procedure also mimicks the observational data of spiral galaxy
peculiar velocities which are not located at the highest density peaks of the galaxy distribution,
but are selected on the random basis of their inclination on the sky being greater than 45 degrees,
which is an absolute requirement for the Tully-Fisher method.

2.3.5 Peculiar velocity data as a tracer of the underlying field

We can now connect the observed peculiar velocites of galaxies with our study of the peculiar
velocities of haloes. We continue to use the assumption that, since galaxies reside at the bottom
of their host haloes’ potential wells, they should follow the same peculiar motion. Of course, this
motion can also be the virial motion within a bound group or cluster, which is decoupled from the
large-scale velocity field. This should be considered in the data by an adequate galaxy grouping
or a similar procedure. It is also interesting to relate the non-linear effects to different types of
peculiar velocity data. We saw that the non-linear enhancement is stronger in regions with high
local overdensity. We therefore expect that the peculiar velocities of different types of galaxies
would have different statistical properties. Elliptical galaxies are preferentially located in high-
density environments (van der Wel et al. 2010) and should be affected more strongly by the non-
linear enhancements. Also, within a cluster, ellipticals are more strongly concentrated towards
the cluster centre than the spirals (Sheth & Diaferio 2001). In other words, the peculiar velocity
field traced by ellipticals should have a higher variance than that traced by spiral galaxies. On
the other hand, spiral galaxies are more often found in less dense environments and should yield
more linear statistics. We therefore expect that, in order to obtain a good estimate of the linear
peculiar velocity field, data obtained from spiral galaxies (such as with the Tully-Fisher method)
could be more useful than data obtained from early-type galaxies, although to our knowledge this
has not been studied in detail in this context. Related to the morphology-density relation is the
fact that data obtained with the Tully-Fisher method provides a more homogeneous sampling
of the sky, which in turn leads to a better estimate of the linear peculiar velocity field: due
to the high large-scale correlations of the linear velocity field, more homogeneously distributed
data will convey more information about the underlying field than a locally high concentration
of datapoints.

Despite the relative sparseness, noisiness and limited volume of peculiar velocity data, it
offers several important advantages when compared to galaxy redshift surveys, not only because
of the favourable statistical properties of the velocity field itself. Redshift data, while providing
quite complete samples of galaxy positions in redshift space, feature geometrical distortions,
because the physical distance is not known, and the observed redshift distance is a sum of the
actual distance and the peculiar motion (2.2). This leads to the finger-of-god effect (Jackson
1972), elongating the apparent shape of galaxy clusters because of their velocity dispersion, and
the bull’s eye effect (Kaiser 1987; Thomas et al. 2004), leading to a transversal geometrical
distortion due to coherent peculiar motions. Peculiar velocity datasets, on the other hand,
feature three-dimensional positions in physical real space. Further, galaxy positions in redshift
space are not an unbiased tracer of the underlying total matter distribution, because light does
not follow mass. To derive the underlying total matter and velocity field from redshift data is
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extremely difficult: relating galaxy positions and luminosities to the underlying field is subject to
a significant galaxy bias which is not yet fully understood (McBride et al. 2011). For both density
and velocity fields, elaborate reconstruction methods from redshift data have been developed
in the last years, e.g. MAK reconstruction (Lavaux et al. 2010), bayesian methods (Kitaura &
Enßlin 2008; Kitaura et al. 2010), or from models of the underlying halo density profiles (Muñoz-
Cuartas et al. 2011). However, such methods are usually strongly affected by galaxy bias and
redshift distortion (Lavaux et al. 2008) and complicated to handle due to the high non-linearity
of the data. We argue that in order to obtain a reconstruction of the underlying density and
velocity fields that is suitable for a reconstruction of the linear cosmological initial conditions (see
Chapter 4), peculiar velocities are the more convenient and natural choice, especially if the aim
is to model the observed peculiar velocity field of the Local Universe. This is enhanced by the
already discussed property of peculiar velocities being highly correlated on large scales, which
greatly supports both reconstruction from the sparse and noisy data and the extrapolation to
unsampled regions. In Chapter 3 we will discuss the method of Wiener Filter, which is formulated
within the Gaussian linear theory. This is a natural approach because, as we saw, the statistics
of the peculiar velocity field are quite close to Gaussian on supergalactic scales.
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Chapter 3

Initial conditions, Wiener filter, and
constrained realisations

The development of the ICeCoRe software package for generating constrained initial
conditions was a substantial part of the work presented in this thesis. In this chap-
ter, we summarise the numerical algorithms that were implemented in ICeCoRe

and the necessary theoretical background. The functionality of ICeCoRe covers
the generation of random initial conditions for cosmological N -body simulations,
linear reconstruction of density and velocity fields from sparse and noisy data points
with the Wiener filter (WF) technique, and constraining initial conditions with the
constrained realisations (CR) method. The flexible and highly optimised implemen-
tation is able to handle the upcoming large observational datasets containing several
tens of thousands of constraints. Important aspects of the implementation and vari-
ations of the standard WF/CR technique are discussed, with focus on the CLUES
technique of generating CRs from radial peculiar velocity data. We will also point
out inconsistencies of the method that could lead to systematic errors and how they
can be treated.

3.1 Random initial conditions for N-body simulations

For dark-matter-only N -body simulations, which we will discuss here, the initial conditions (ICs)
consist of a set of N particles, each with a position xi, a velocity ui, and a particle mass mi.
They are set up such that the particles sample the underlying density and velocity fields, i.e.
the phase space, of a random realisation of the Universe at some initial redshift zinit in the
linear regime of the matter-dominated epoch. The simulation then performs the task of evolving
them forward in time by numerically solving equations 2.82 and 2.83. To obtain ICs for such a
simulation, we first have to generate a realisation of the initial density and velocity fields. This
is possible, because at zinit the distribution is a Gaussian random field with a given linear power
spectrum P (k), and therefore all statistical properties of the field are known. In the second step,
the initial field can be sampled with particles. Subsequently, this particle data can be fed into
an N -body code to carry out the simulation.

3.1.1 Initial overdensity and velocity fields

The standard technique to generate the initial fields employs as the computational box a regular
cubic grid with N grid cells and periodic boundary conditions. The boxsize L should be chosen
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such that the fundamental mode, with wavenumber kL = 2π/L, stays linear throughout the
simulation. If the simulation will run until z = 0, then it follows from the scale of non-linearity
that L should be at least around 60 Mpc/h for a ΛCDM simulation. Since we always assume a
cubic box shape and a regularly spaced discretisation, the spatial resolution of the grid (i.e. the
distance between the discrete grid cells) is given by Δx = L/N1/3. On such a grid, the Fourier
transform (2.44) reduces to a discrete Fourier transform (DFT) in three dimensions,

δ(k) =
1

N

∑
x

δ(x)eik·x ; δ(x) =
1

(2π)3

∑
k

δ(k)e−ik·x . (3.1)

The DFT is by design consistent with the assumed periodic boundary conditions and can be
computed very efficiently using the well-known Fast Fourier Transfom (FFT) algorithm (Cooley
& Tukey 1965)4. The Fourier-space positions k are then discrete wavevectors.

For the initial overdensity field δ, we now have to construct a realisation of a Gaussian
random field from a known power spectrum P (k). This will be the linear power spectrum
P0(k) of the chosen cosmological model and has to be provided in tabulated form as input (see
Section 2.2.4). It has then to be normalised with the chosen σ8 parameter (equation 2.58) and
the chosen redshift zinit (equation 2.57). The latter requires to numerically evaluate the linear
growth factor D+ (equation 2.43). Then, a simple way to generate a realisation of δ on the grid
is to create random phases and amplitudes with the right variance for each wavevector in Fourier
space, since we know that the phases are uniformly random and the amplitudes are Rayleigh
distributed (equation 2.46). The fastest way to accomplish that is to draw for each k two random
numbers from a zero-mean Gaussian distribution with variance P (k) and assign them to the real
and complex part of δ(k), respectively (Knebe 2007).

However, we choose the slightly different approach of convolution from white noise, following
Bertschinger (2001) and Prunet et al. (2008). This method produces a mathematically equivalent
result but is more flexible in practice. We first create a Gaussian white noise field w(x), such
that

〈w(x)〉 = 0 ; 〈|w(x)|2〉 = 1 , (3.2)

by assigning a zero-mean, unity-variance Gaussian random number to each grid cell x in real
space5. We then perform a forward FFT. In Fourier space, the white noise field will have random
phases and amplitudes, with a flat power spectrum 〈|w(k)|2〉 = 1. Since the Fourier modes are
independent, we can now “imbue” the field with the power spectrum P (k), which produces a
realisation of the overdensity field δ(k), by performing the multiplication

δ(k) =
√

P (k) · w(k) . (3.3)

for each grid cell. This multiplication is equivalent to a convolution of the white noise field
w(x) with the corresponding real-space correlation function. On the discrete periodic grid, this
correlation function will be the DFT of the power spectrum P (k),

ξ(x) = 〈δ(x′) δ(x′ + x)〉 = 1

(2π)3

∑
k

P (k)e−ik·x . (3.4)

4In the ICeCoRe code, this is performed using the FFTW3 library (Frigo & Johnson 2005), available at
www.fftw.org .

5The ICeCoRe code uses the GNU scientific library, available at www.gnu.org/gsl , to compute these Gaus-
sian random numbers with the fast Ziggurat algorithm (Marsaglia & Tsang 2000).



46 3 Initial conditions, Wiener filter, and constrained realisations

It is easy to see that the Gaussian random field produced by 3.3 is a realisation of the condition
〈|δ(k)|2〉 = P (k). The real-space density field δ(x) can be obtained by performing the backwards
FFT.

The advantage of the white noise field is that all necessary information about the phases
and amplitudes of the ICs is encoded in the white noise field w(x), yet it does not depend on
the cosmological parameters or the shape and normalisation of the power spectrum P (k). It
is therefore possible to create, for example, realisations with different parameters, or different
power spectra, from the same white noise field with the same phase structure. The white noise
field allows for many other ways of manipulating the obtained realisation. Most importantly,
the approach greatly aids the interoperability with other codes that generate initial conditions.
This will be important in the context of generating high-resolution initial conditions, which is
discussed in Section 3.5.

We note here that any realisation δ(x) can be easily converted to the corresponding white
noise field w(x), if one has access to the tabulated power spectrum P (k) that was originally used
to generate δ(x). This is performed in Fourier space by inverting equation 3.3. We will refer
to this procedure as “whitening”. Analogously, we will refer to the evaluation of equation 3.3 as
“colouring” (following the terminology in signal processing, where noise with a non-flat power
spectrum is said to have a noise colour).

The initial overdensity field δ(x) completely defines the initial conditions. Since linear theory
is valid at zinit, the velocity field u(x) is defined by δ(x) through equation 2.63. It is also
proportional to the linear displacement field ψ(x) through u(x) = ȧfψ(x), where −∇ ·ψ(x) =
δ(x). The linear displacement field on the discrete grid can therefore be rapidly computed by
performing three FFTs:

ψα(x) =
1

(2π)3

∑
k

ikα
k2

δ(k)e−ik·x ; α ∈ {x, y, z} . (3.5)

3.1.2 Particle sampling

Having the density and displacement fields, it is now possible to construct a particle discretisation.
We will consider the case that this is a uniform discretisation, such that the particles have equal
mass, and therefore the Lagrangian patches that they sample have equal volume. The standard
technique to set up such a discretisation uses the Zeldovich approximation to obtain the positions
xi and ui of each particle i = 1, . . . , N (Efstathiou et al. 1985). If we choose some Lagrangian
positions qi (the “pre-initial conditions”), which homogeneously sample the computational box,
the xi and ui can be obtained by

xi = qi +ψi (3.6)
ui = ȧfψi , (3.7)

This displaces the particles in such a way that their resulting distribution is a good approximation
of the underlying density field δ if zinit is low enough. The mass of each particle follows from
the comoving mean density (2.22) and the volume of the associated Lagrangian patch sampled
by the particle,

mi = ρ̄ (Δx)3 . (3.8)

The natural choice of the particle pre-initial conditions qi is such that they correspond to the
positions of the computational grid, i.e. there is exactly one particle centered on each grid cell.
Then, the values ψi = ψ(qi) are directly given by the displacement field grid (3.5). This way
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of generating particle ICs is directly implemented into ICeCoRe. It can be shown that for this
(and only this) type of particle lattice, one can exactly recover all 3N Fourier amplitudes of the
underlying grid from the coordinates of the N particles (Knebe et al. 2001). If the displacement
field is computed in Fourier-space (3.5), which is exact for the discrete Fourier modes of the grid,
one also completely avoids numerical interpolation errors that would occur with other methods
(e.g. by solving the displacement field in real space). For this reason, the cubic lattice particle
sampling is optimal for ΛCDM initial conditions, where one wants to sample the high-k end of
the power spectrum as accurately as possible. The “artefacts” introduced by the lattice pattern
are seen throughout the simulation in underdense regions that do not undergo gravitational
collapse, but they do not affect the properties of gravitationally collapsed objects in the case
of hierarchical ΛCDM structure formation. Therefore, alternative pre-initial conditions, like the
glass method (White 1994), which replaces the cubic lattice pattern with an amorphous sampling,
or the “quaquaversal” method of Hansen et al. (2007), are only interesting for WDM models
(Wang & White 2007) and not considered here.

The Zeldovich approximation (ZA) is a first-order Lagrangian approximation and therefore
the resulting particle sampling at zinit is not exactly equal to the theoretical density field δ(zinit).
Obviously zinit should be chosen such that the particle displacement is not shell crossed at any
particle position. Further, the ZA slightly underestimates the skewness of δ and excites artificial
transient decaying modes (Crocce et al. 2006). This can be alleviated by displacing the particles
instead with second-order Lagrangian perturbation theory (2LPT), which allows one to start the
simulation at later initial redshifts zinit. However, Knebe et al. (2009) found that these effects
have no influence on the statistics of the evolved simulation at z = 0 and that it is safe to use
the ZA approach with zinit such that the total variance of δ(zinit) is around 〈|δ|〉 ≈ 0.2 or even
slightly larger. With this criterion, the optimal zinit is completely determined by the chosen
boxsize L and resolution N . Initial conditions with 2LPT could be interesting for simulations
designed to probe high redshifts in detail, instead of evolving until z = 0; however, we do not
consider such simulations in this work.

3.1.3 Finite-volume effects

Since in this work we are not interested in small-scale effects, we are not going to further discuss
the numerical errors that occur at high k close to the Nyquist frequency of the grid kNy =
π/Δx due to the finite resolution; see Hockney & Eastwood (1992); Bertschinger (2001); Prunet
et al. (2008); Hahn & Abel (2011). Much more important for the following are the large-scale
effects (i.e. low k) of choosing a finite cubic volume with periodic boundary conditions as the
computational domain. Setting up a Gaussian random field in a finite box truncates the power
spectrum at large scales below a minimum wavenumber kmin. This will be the fundamental
frequency of the box, kL = 2π/L, where L is the boxsize. As a result, large-scale correlations
and the clustering of massive objects are suppressed, and the halo mass function of the resulting
simulation will be affected (Power & Knebe 2006). The effective variance of the created density
field will be lower than the theoretical variance defined by P (k), since all of the power beyond
kmin is missing. For a ΛCDM power spectrum, one finds that the σ8 of the ICs is systematically
too low compared with the input value by as much as 40% for a boxsize of 50 Mpc/h (Pen
1997), but the error quickly becomes smaller with increasing boxsize. In the BOX160 simulation
(L = 160 Mpc/h), the error on the σ8 variance is only 0.8%. It is possible to enforce that the
effective σ8 of the produced grid, i.e. considering only modes between kL and kNy, will be equal
to the input σ8. This is achieved by setting up the ICs using a power spectrum P ∗(k) with the
adjusted normalisation
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P ∗(k) =
(
σ8
σ∗
8

)2

P (k) ; (3.9)

σ∗
8 =

[
1

2π2

∫ kmax

kmin

k2 P (k)W 2
sth(kR) dk

]1/2
; R = 8 Mpc/h ;

where kmin = kL and kmax = kNy. This is the convention used for most CLUES simulations, such
as the BOX160 simulation6. Another convention is used by the initial conditions generator of
Klypin & Holtzman (1997), where kmin = kL/

√
2 and kmax = kNy. Some simulators also prefer

not to use this correction at all, because then, although the σ8 measured on the grid will be
too small, the amplitudes of the modes will match the assumed P (k) in the sampled frequency
range. For compatibility reasons, all three possibilities are available in ICeCoRe.

Although the finite-volume effects on the variance of the density field are well known, usually
there is little attention given to the effect on the peculiar velocity field. Due to the large-scale
correlations of the peculiar velocities, the truncation of P (k) at large scales reduces the total
variance of the peculiar velocity field much more strongly than it is the case for the overdensity
field. Figure 3.1 illustrates how the truncation of P (k) at a frequency kL affects the shape of
the radial velocity-velocity correlation function ψR. While in the unlimited case, the variance
is around 〈|ψα|2〉 ≈ 34 Mpc2/h2, corresponding to 〈|uα|2〉 ≈ (300 km/s)2 per peculiar velocity
component, this is strongly reduced by finite boxsizes. At a boxsize of L = 160 Mpc/h, the
resulting variance of the peculiar velocity field is only 58% of the theoretical value: (230 km/s)2

instead of (300 km/s)2 per component (cf. green curve/line in Figures 2.13 and 2.14, respectively,
which show the standard deviation of the absolute peculiar velocity

√
3· 230 km/s ≈ 400 km/s).

This strong underestimation of the peculiar velocity variance is therefore not negligible even for
relatively large boxsizes and will become relevant for setting up constrained simulations from
peculiar velocity data (see Section 3.3.3). Even for a very large boxsize of L = 1000 Mpc/h,
there is still a slight diminution of the peculiar velocity variance of about 4%. The truncation of
P (k) also significantly alters the shape of the velocity correlation function down to scales of at
least 0.2 L.

Besides the truncation of P (k), the computational box introduces a strong discretisation
effect on the large scales. As already discussed, a Gaussian random field can be regarded as
a superposition of Zeldovich waves. Each wave corresponds to one grid cell in Fourier space,
which has a Rayleigh-distributed random amplitude (2.46). As a result, the large scales are very
sparsely sampled by the discrete grid Fourier modes. There are only three fundamental modes
of wavelength L (or wavenumber kL), one along each cartesian axis. The next largest modes
are those of the face diagonals, with wavelength L/

√
2, of which there are six. Next there are

four modes along the cube diagonals with wavelength L/
√
3, and after that three modes which

correspond to the second harmonics along the three axes, with wavelength L/2. One can see
that the large modes exhibit a very sparse and anisotropic sampling. Since the large scales of
the box are defined only by the phase and amplitude of a few discrete modes, they exhibit a
large cosmic variance, and the effective power spectrum of a realisation will show a large scatter
around the input P (k). This well-known effect is significant down to scales of about 0.1 – 0.2 L
(cf. Figure 2.12). It means also that the effective correlation function on the grid (3.4) will show
significant anisotropies down to these scales, which is not the case for the correlation function in
the non-volume-limited, non-discretised case (2.50).

6This way of computing the variance of the grid is not entirely accurate. The integral in 3.9 should instead
go over the discrete Fourier modes k. However, for the boxsizes and resolutions considered here, the difference is
not very large.
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Pen (1997) suggested an alternative method to set up initial conditions, using the isotropic
one-dimensional correlation function ξ(r) instead of the isotropic one-dimensional power spec-
trum P (k) for the convolution from white noise (see also Bertschinger 2001; Sirko 2005; Hahn &
Abel 2011). This is equivalent to convolving the power spectrum P (k) with the box geometry,
instead of just renormalising it. His method produces a correct variance for the field, a correct
correlation functions up to L/2, and reduces the effect on the halo mass function (Gnedin et al.
2011). It also offers the possibility of a non-zero DC mode to account for power on scales larger
than the boxsize. Since this method started to become popular only quite recently, and its im-
plications are not yet well-tested, we do not follow this approach here, although we want to point
out that it is a very interesting alternative.

We can now also understand why the components of the initial velocity field uα do not appear
to be exactly Gaussian distributed in the initial conditions (Figure 2.13, solid black line). Due
to the strong large-scale correlations, the velocity field is influenced most strongly by large-scale
flows, which are in turn defined by the values of the large-scale modes. Each discrete large-
scale density wave causes a corresponding velocity flow with a variance determined by the wave
amplitude. Thus, the overall distribution is a sum of distributions with different variances, of
which a few discrete ones contribute more strongly to the overall velocity field than the rest.
The total distribution is then not necessarily Gaussian and strongly depends on the random
seed. The total variance of the uα can also fluctuate considerably. According to the central limit
theorem, the overall distribution of the uα will be Gaussian if there are enough of the modes that
most strongly define the shape of the velocity field. Therefore, the distribution will approach an
exact Gaussian with the correct variance 〈|uα|2〉 on a large enough boxsize. Figure 2.13 shows
that for a boxsize of L = 160 Mpc/h, this is not yet the case.
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Figure 3.1: Finite-volume effect on the radial velocity-velocity correlation function ψR (with RG = 0).
Analytic correlator with different kmin cuts: for an infinite Universe (black) and different limited boxsizes
L, where the smallest allowed wavenumber kmin corresponds to the fundamental frequency of that boxsize,
kL = 2π/L.
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3.2 Estimation and prediction of Gaussian random fields

In this section, we turn to the problem of reconstructing cosmological density and velocity fields
from observational data. For this purpose, the ICeCoRe code implements the technique of
Wiener filtering. At first, this seems unrelated to the problem of generating initial conditions.
However, the Wiener Filter is a technique formulated in the framework of linear perturbation
theory and Gaussian random fields, and as such, it is ideally suited to be applied to the re-
construction and generation of cosmological initial conditions. This leads to the constrained
realisations (CR) technique discussed in Section 3.3.

3.2.1 The Wiener Filter

The Wiener Filter was developed by Wiener (1949) in the context of signal processing. It was
designed to reduce the amount of noise present in a signal and to generate an estimation of
the underlying true, i.e. noiseless signal. This is accomplished by assuming statistical prior
information on the true signal. Eventually the Wiener filter found its way into astrophysics
(Rybicki & Press 1992) and is now widely used for linear estimation and prediction in various
astrophysical applications. The application of the Wiener Filter to cosmology was pioneered by
Zaroubi et al. (1995, 1999), who developed a theoretical framework that allows one to reconstruct
the three-dimensional cosmological density and velocity fields from observational data like galaxy
redshift surveys or galaxy peculiar velocity catalogues. The material presented in this section
and its implementation in the ICeCoRe code are heavily based on their work (see also Hoffman
2009).

For the sake of simplicity, we assume here that the underlying field that we want to reconstruct
is the cosmological overdensity field δ, although the formalism can be applied in the same way to
any other random field. Let us assume that we have a set of M datapoints c1, . . . , cM at discrete
positions x1, . . . , xM that sample the true field δ1, . . . , δN defined at positions x1, . . . , xN .
The data are further corrupted by statistical errors εi. This can be expressed as7

ci =
N∑
j=1

Rijδj + εi . (3.10)

The matrix Rij is a response function that encodes the mapping from the true field to the
observed quantity and is assumed to be known. In general, this can include the response of the
measuring device, such as blurring or other distortions. Here, we consider the specific case where
the observed quantity that goes into a datapoint ci is a linear functional Vi(δ) of the overdensity
field δ. Then, we can write

ci = Vi(δ) + εi ; Vi(δ) =
M∑
j=1

Rijδj , (3.11)

where the observed quantity Vi(δ) is statistically related to the full overdensity field δ(x) via

Vi(δ) =
1

(2π)3

∫
δ(k)Yi(k)e

−ik·xi dk , (3.12)

7For clarity, we write all matrix operations component-wise, and for all matrix/vector multiplications, we
write out the sums instead of using the summation convention. This notation differs somewhat from the notation
used in Zaroubi et al. (1995, 1999); Hoffman (2009). The vector notation is reserved here for spatial vectors with
three cartesian components, for which we continue to use symbols in bold italics.
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with a kernel Yi(k) that characterises the type of the functional. If the data are values of the
density field itself, Vi(δ) = δ, then we have simply Yi(k) = 1. Here, it is of special interest to
consider the case that Vi(δ) is the linear peculiar velocity field u with −∇ · u = ȧfδ. In this
case, for any cartesian component uα of u, we know from Section 2.2.5 that

Vi(δ) = uα =⇒ Yi(k) = ȧf

(−ikα
k2

)
; α ∈ {x, y, z} . (3.13)

The task of reconstructing the underlying density field from such a measurement can now be
expressed as an inversion or deconvolution problem. The naive approach would be to try to
directly invert the response matrix Rij and evaluate

δi =
M∑
j=1

R−1
ij cj , (3.14)

but this approach fails for two reasons. First, normally the number M of datapoints is much less
than the number N of locations that define the underlying field, and for M � N the equation
3.14 is underdetermined and the inversion cannot be performed. But even if one has a complete
sampling, M ≈ N , the inversion is not stable if one has observational errors εi. Any attempt
to directly evaluate equation 3.14 would greatly amplify the noise from the errors and render
the obtained solution unusable. In order to stabilise the inversion, one needs a procedure that is
capable of suppressing the noise. We want to find a filtering operator F , which in the simplest
case is a linear filter,

δFi =

M∑
j=1

Fij cj , (3.15)

where F is an N × M matrix. The optimal linear filter is the one that minimises the mean
squared error of the estimated field δF in comparison with the true field δ. In other words, if
one defines the residual field D as the difference between the estimated and the true field,

Di = δi − δFi , (3.16)

then the variance of this residual,

〈DiDj〉 = 〈(δi − δFi )(δj − δFj )〉 , (3.17)

must become minimal. Carrying out the minimisation, one finds the minimal variance estimator
or the Wiener Filter (WF),

WFij =

M∑
k=1

〈δicj〉 〈cjck〉−1 , (3.18)

where 〈cicj〉 is the autocorrelation matrix of the data8 and 〈δicj〉 is the cross-correlation matrix
of the original field with the data. Then, the estimated field, termed the Wiener filter mean field,
is given by

δWF
i =

M∑
j=1

M∑
k=1

〈δicj〉 〈cjck〉−1ck . (3.19)

8The notation 〈cicj〉−1 means that we take the ij component of the inverse autocorrelation matrix (and not
the inverse of the ij component of the matrix).
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The method relies on the prior knowledge of the involved correlations. We can greatly simplify
the problem if we assume that the errors εi consist of purely statistical noise, i.e. they are
not correlated with the data ci and therefore also not correlated with the field δi. Then, the
cross-correlation and autocorrelation matrices become:

〈δicj〉 = 〈δiVj(δ)〉 , (3.20)
〈cicj〉 = 〈Vj(δ)Vk(δ)〉+ 〈εjεk〉 . (3.21)

In order to compute the correlations, we can use the fact that the correlation function is com-
pletely determined by the known power spectrum P (k) (equation 2.49). Then we can directly
compute the autocorrelation function and cross-correlation function for any linear functional Vi

of δ, using the corresponding kernel Yi(k) of the functional,

〈δiVj(δ)〉 =
1

(2π)3

∫
Yj(k)P (k)e−ik·(xj−xi) dk , (3.22)

〈Vi(δ)Vj(δ)〉 = 1

(2π)3

∫
Yi(k)Yj(k)P (k)e−ik·(xj−xi) dk . (3.23)

If we now additionally assume that the observational errors εi are Gaussian distributed, which
works in a lot of cases9, and if we know their variance, we can also evaluate the autocorrelation
matrix of the errors, 〈εiεj〉. This is straightforward if we add yet another assumption, namely
that the errors are not correlated with each other, i.e.

〈εiεj〉 = δKij εj , (3.24)

where δK is the Kronecker delta. Then, we have all needed quantities and are able to evaluate
the WF operator and perform the WF reconstruction. Numerically, the method relies on a
(potentially large) matrix inversion and an efficient way to compute the correlation functions for
all necessary variable combinations. In Section 3.4 we will discuss how that can be accomplished
in practice and present the implementation in the ICeCoRe code.

If the locations x1, . . . , xN where the WF is evaluated correspond to the locations x1, . . . , xM
where data is available, then the WF performs an estimation, i.e. it just filters the noise from
the data. However, the formalism also enables us to evaluate the WF at positions with no data.
In this case, it performs a prediction of the field, interpolating or extrapolating the data into
unsampled regions. In the following, we will evaluate the WF on a cubic computational grid
similar to the one used for initial conditions. This way we can obtain an estimate of the full field
δ(x), regularly sampled at all discrete grid cell positions x, by evaluating the WF operator for
all x,

δWF(x) =
M∑
i=1

M∑
j=1

〈δ(x)ci〉 〈cicj〉−1cj . (3.25)

In practice, the WF operator is evaluated in four steps. First, we construct and invert the data
autocorrelation matrix 〈cicj〉. Then, we compute the correlation vector ηi, a vector of rank M ,

ηi =
M∑
j=1

〈cicj〉−1 cj , (3.26)

9 Strictly speaking, it is not entirely accurate to treat the observational errors of observed peculiar velocities
as Gaussian distributed: they are actually expected to be lognormal distributed, because the measured quantities,
the galaxy luminosity and the corresponding distance modulus μ, are logarithmic quantities. Likewise, it is not
expected that the observational errors would be entirely uncorrelated. It was however not investigated yet whether
a more accurate treatment of the errors could improve the reconstruction.
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using the mock and actual constraints and the inverted data autocorrelation matrix. In the last
step, we can evaluate

δWF(x) =
M∑
i=1

〈δ(x)ci〉 ηi (3.27)

for each grid cell x. The values of the correlation vector ηi can provide interesting additional
information about how much each datapoint ci contributes to the full solution.

Analogously we obtain the reconstructed velocity field u. For each cartesian component uα,
the Wiener filter mean field is

uWF
α (x) =

M∑
i=1

M∑
j=1

〈uα(x) ci〉 〈cicj〉−1cj ; α ∈ {x, y, z} . (3.28)

This allows one, for example, to obtain an estimate of the full peculiar velocity field u from dis-
crete measurements of only its radial components, such as in galaxy peculiar velocity catalogues.
This particular technique will be heavily used in Chapters 4 and 5.

So far we have placed no restrictions on the statistics of δ except that its power spectrum or
two-point correlation function is known: by minimising the variance, the WF neglects all higher
statistical moments. In the general case, for instance in signal processing and data analysis,
the WF is considered to be a rather simple and ‘naive’ tool for this reason, and usually much
better filters exist that are adapted to the specific problem. However, this limitation turns into a
virtue for Gaussian random fields, where the two-point correlation function defines all statistical
properties, and all higher statistical moments vanish. In this case, it can be shown that the WF
is the optimal possible estimator. In linear Gaussian random field theory, the WF can also be
regarded as a Bayesian reconstruction method, and derived using Bayesian probability theory
(Zaroubi et al. 1995). If we know the probability distribution function of both the data and
the underlying field (the prior model, which in the linear case is completely determined by the
power spectrum), we can compute the conditional probability of a field given the data. This
leads to two possible estimators: the maximum a posteriori estimator, which gives the most
probable field given the data, and the conditional mean field, which averages over all possibe
fields weighted with their respective probability. For Gaussian random fields, it can be shown
that both estimators coincide and are equal to the WF estimator which minimises the variance
of the residual. The WF is therefore the optimal reconstruction method on data for which
the nature of the underlying field is Gaussian. For this reason, the WF is an established and
widely used method for the reconstruction of the large-scale structure from both galaxy peculiar
velocity catalogues (Zaroubi et al. 1999; Courtois et al. 2012) and galaxy redshift surveys
(Fisher et al. 1995; Erdoğdu et al. 2006; Kitaura et al. 2009)10. Even more important for the
work presented here, the WF is the perfect starting point for a reconstruction of the cosmological
initial conditions, which are Gaussian random fields by nature.

The Wiener filter is a very conservative estimator, in the sense that it always tends to strongly
suppress the present noise and not to create additional noise. One can see from equations 3.18 and
3.20 – 3.21 that the WF operator effectively invokes a weighting of the type signal/(signal+noise).
Therefore, in the presence of strong noise, the estimation will tend to the mean field of a random
realisation, i.e. the null field (equation 2.48). The same will happen for prediction, i.e. the
extrapolation into unsampled regions, if they are not sufficiently correlated with the datapoints.

10In the case of galaxy redshift surveys, the WF is often formulated in spherical harmonic space, instead of
the formulation in cartesian real and Fourier space discussed here; see Fisher et al. (1995).
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For this reason, the Wiener filter cannot be applied iteratively: each reconstruction will by
definition have less power than the used input, and any such iteration will converge towards the
null field.

3.2.2 Reconstruction of the LSS from peculiar velocity data

The application of the WF to peculiar velocity data is a powerful reconstruction method for the
large-scale structure and in particular the peculiar velocity field of the Local Universe. Due to
the long correlation distance of peculiar velocities, the WF reconstruction is able to extrapolate
the field out to distances significantly larger than the data zone. This allows one to study the
cosmography and the large-scale velocity field of the Local Universe in detail and decompose it
into the different contributing flows. A related property of the WF when applied to peculiar
velocities is that it can interpolate into unsampled regions, such as the Zone of Avoidance, in
a physically consistent way. The WF reconstruction from peculiar velocities is not affected by
incompleteness of the data as long as the underlying individual distances are not subject to biases
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Figure 3.2: Wiener Filter reconstruction from radial peculiar velocities computed with ICeCoRe and
WMAP7 cosmological parameters from the 742 galaxy group radial peculiar velocities in the Cosmicflows-
1 catalogue. Shown is a slice of the overdensity field (contour lines) and velocity field (arrows) through
the SGZ = 0 plane. The thick contour line is placed at the cosmic mean density (δ = 0); the solid lines
are isocontour lines in overdense regions; the dashed lines follow underdense regions. Peaks and voids
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= Perseus-Pisces clusters.
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in the distance measurements (Courtois et al. 2012). It can therefore self-consistently operate
on data that are sparse in a non-homogeneous way. This is not possible with galaxy redshift
data.

Figure 3.2 shows the WF reconstruction of the density field (contour lines) and velocity field
(arrows) from the Cosmicflows-1 catalogue discussed in Section 2.1.2. The reconstructed field
recovers the main structures very well, such as the Virgo cluster (at about SGX = −5 ; SGY =
10), the Great Attractor region with the Hydra and Centaurus clusters (towards negative SGX
from Virgo), the Local Void, and the Perseus-Pisces cluster. In the centre of the reconstruction,
an environment similar to the neighbourhood of the Local Group with its cold Hubble flow
is created. We refer the reader to Courtois et al. (2012) for a detailed analysis of the WF
reconstruction from Cosmicflows-1.

A major motivation for the development of ICeCoRe was to provide a numerical package
that is able to perform this kind of analysis for the large upcoming datasets, in particular those
that are expected to come out from the Cosmicflows program in the next few years (Courtois
et al. 2011a,b; Courtois & Tully 2012; Tully & Courtois 2012). These will reach out to 6000
km/s and eventually even 15 000 km/s; the data will comprise of the order of 104 – 105 galaxy
distances and radial peculiar velocities. The performance of ICeCoRe’s WF implementation is
discussed in Section 3.4. Here, we want first to note some details about how to handle this type
of observational data in the chosen numerical framework.

Galaxy peculiar velocities provide only information on the radial component vpec
r of the three-

dimensional velocity vector vpec (which at z = 0 means the same as u) at some position r (which
at z = 0 is equivalent to the comoving position x that we use here). Each datapoint therefore
constrains the value of uμ = u · êμ, the component of u along some arbitrarily directed unit
vector êμ. In an observational dataset, this direction will be always êμ = (r − r0)/|r − r0|,
where r − r0 is the distance vector of a galaxy relative to the position of the observer r0 at the
centre of the data volume. However, here we do not want to restrict the algorithm to this specific
case, so we allow êμ to be any arbitrary direction. This also means that if in the data êμ is, in
fact, restricted to the radial direction with respect to the observer r0, we are still free to place
r0 at any position inside the computational volume. To allow an arbitrary direction of êμ gives
ICeCoRe a greater flexibility. For example, as a recent development it is expected that one can
obtain estimates of the 2D transverse peculiar velocities of distant galaxies (Nusser et al. 2012)
from measurements of proper motions within the Gaia survey (e.g. Robin et al. 2012). In this
case, the data will contain pairs of values uμ, uν , where êμ, êν are both orthogonal to the radial
direction (r − r0). If one then sets the êμ, êν accordingly, ICeCoRe will be able to directly
generate a WF reconstruction from such data without changing anything in the code. The main
reason though for keeping the êμ arbitrary is that this is required for the method of generating
ICs that we will use throughout Chapter 5.

For any constraint on one peculiar velocity component uμ in arbitrary direction êμ, we can
formulate the necessary correlation functions (Zaroubi et al. 1999):

〈δ(x′)uμ(x′ + x)〉 = êμ · 〈δ(x′)u(x′ + x)〉 (3.29)

for the density-velocity correlation and

〈uμ(x′)uν(x′ + x)〉 = êμ · 〈u(x′)u(x′ + x)〉 · êν (3.30)

for the velocity-velocity correlation. We can therefore compute them from the already known
correlations of the type 3.22 and 3.23 with constraint kernels 3.13. Further, the linear theory
assumption means that the correlations are given by the known linear power spectrum P0(k) of
the Universe, serving as the prior model. The WF reconstruction assumes that the data is tracing
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the linear density and velocity fields of the Universe, which is infinite, homogeneous and isotropic.
Therefore, those correlations only depend on the distance x = |x| and we can reduce them to
one-dimensional functions of x. In order to apply the WF operator to the data we thus have
to evaluate the equations 2.66 – 2.71 already discussed in Chapter 2. Further, even though we
evaluate the WF on a finite computational volume, the underlying field – the observed Universe
– is not subject to boundary conditions, therefore the resulting WF reconstructed field will not
have boundary conditions either, in contrast with the properties of cosmological simulations and
their ICs.

We want to mention some additional details that have to be considered in order to practi-
cally handle observational peculiar velocity data within the numerical framework discussed here.
Galaxy distances are given on the observed scale (Mpc, not Mpc/h), and therefore the peculiar
velocity that we can compute from it explicitly depends on the value of the Hubble constant
H0 = 100 h km s−1 Mpc−1. For the conversion to the comoving scale, one has to use a rea-
sonable value for h. For Cosmicflows-1, we followed Tully et al. (2008) and chose a value of
h = 0.74. This value is consistent with the distance measures and calibrated such that there is
no net inflow or outflow within the observational volume, although it does not imply that this is
the case in reality.

In extragalactic surveys, galaxy positions on the sky are usually given in supergalactic coor-
dinates (latitude SGB and longitude SGL). These are defined by the supergalactic plane (see
Lahav et al. 2000 for a precise definition), where SGB = 0, and a zero point SGL = 0 defined
by the intersection of this plane with the galactic plane. Since for a given datapoint in a galaxy
distance survey, we have an estimate of the physical distance r in real space, we can convert the
galaxy positions to cartesian coordinates SGX, SGY , SGZ,

SGX = r cos(SGB) cos(SGL) (3.31)
SGY = r cos(SGB) sin(SGL)

SGZ = r sin(SGB) ,

where SGZ = 0 is the supergalactic plane and the position of the observer r0 is at SGX =
SGY = SGZ = 0. It is important to remember that these positions have error bars in radial
direction due to the observational distance errors. We can then associate the supergalactic
coordinate axes with the axes x, y, z of the computational volume, and move the observer to
some position inside the box, conveniently to the box centre at r0 =

(
L
2 ,

L
2 ,

L
2

)
.

Knowledge of the three-dimensional coordinates also allows for a transformation of the radial
peculiar velocity vpec

r to different rest frames, such as the rest frame of the Galaxy, the Local
Sheet, or the rest frame with respect to the CMB dipole. The conversion formulae are given
in Tully et al. (2008); we will not go into detail here. The chosen rest frame of the vpec

r will
correspond to the rest frame of the computational box. It depends on the application which
rest frame one should use. For example, if the aim is to reconstruct the cosmic flows out to the
largest possible distances, it would be natural to adopt the CMB rest frame, while one could use
the rest frame of the Local Sheet or Local Supercluster for more local reconstructions.

The WF reconstructed density field is not to be directly compared to the true underlying
density field at z = 0, at least not to the extent it is possible with the reconstructed velocity field.
The reason is that the actual density field of the Universe at z = 0 is highly non-linear, and only
adequately described by linear theory at scales of several tens of Mpc/h and above (see Section
2.2.7). So what the WF actually produces is an estimate of the linear component of the density
field, or in other words, an estimate of the density field as it would be if linear theory would be
valid at all scales until z = 0. The fact that the estimated δWF can take values < −1, which
would be equivalent to negative densities, is therefore not an issue if we interpret the WF field
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in this context. The estimated linear field can still provide very valuable information even on
scales where linear theory is, strictly speaking, not a valid assumption. As observed by Courtois
et al. (2012), the WF density field accurately reproduces features like the Local Void and the
density peaks produced by galaxy clusters at their actual positions, and is therefore a powerful
tool for investigating the cosmography of the Local Universe.

3.3 Constrained realisations

We now turn to the main subject of this thesis: the generation of cosmological initial conditions
for constrained simulations of the Local Universe. Essentially we want to obtain an estimate of
the Gaussian random field δ0(x) that describes the matter distribution of the observed Local
Universe at some early redshift zinit in the linear phase of the matter-dominated epoch. Let
us assume now that we have a set of constraints c1. . . . cM that define, at discrete positions
x1. . . . xM , the value of a linear functional of the overdensity field δ0(x) that we seek to
reconstruct. It will be discussed later how such constraints can be obtained. For now, given the
constraints, the problem consists of generating a Gaussian random field subject to the constraints
ci, i.e. it must adhere to the constrained values at the constrained positions xi, while at the same
time being a valid realisation of the linear power spectrum P0(k) as discussed in Section 3.1, so
that this field can be used to set up cosmological initial conditions.

At first sight, the problem seems analogous to WF reconstruction, with the constraints ci
being the same thing as the data points ci discussed before. This is not too far from the truth.
However, the field produced by WF reconstruction is not a typical realisation of a Gaussian
random field with power spectrum P0(k), since it is a non-power-preserving filter and tends
towards the null field in regions not covered by constraints. The same holds in Fourier space:
the WF mean field will have a vanishing power spectrum at small scales that are unconstrained
by the data. In other words, the WF mean field is not statistically homogeneous, because the
variance of the residual (3.33), although minimised by the WF, is definitely not negligible. It
follows from the definition 3.16 that the true field δ(x) is the sum of the WF mean field, δWF(x),
and the residual D(x). Of course, the true actual residual is unknown. But if we can obtain a
realisation of D(x) that has the same statistical distribution as the true residual, it follows that
we can construct a constrained realisation δCR with

δCR(x) = δWF(x) +D(x) , (3.32)

with the desired property of statistical homogeneity. The problem of constructing a constrained
Gaussian random field therefore reduces to the task of generating an adequate residual.

3.3.1 The Hoffman-Ribak algorithm

The properties of constrained Gaussian random fields were first studied by Bardeen et al. (1986).
It was then recognised by Bertschinger (1987) that CRs could be used to set up constrained initial
conditions to produce custom-tailored cosmological simulations. He suggested the first practical
algorithm to generate CRs, an iterative method that relies on path integrals to describe the
statistics of the Gaussian field. However, due to the slow convergence his method could be applied
in practice only with a very limited number of constraints. A more efficient iterative method
was developed later by Hoffman & Ribak (1992). The first exact, non-iterative algorithm to
generate CRs was described by Binney & Quinn (1991), who formulated the problem in spherical
harmonics space, but with the downside that constraints of the form ci = Vi(δ) could be placed
only localised around a single location (the origin of the spherical harmonics expansion).
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The exact optimal algorithm was finally discovered by Hoffman & Ribak (1991). Their key
observation was that the residual field D(x) that one needs to generate is independent of the
values of the constraints ci. Namely, the variance of the residual is (Hoffman & Ribak 1991,
1992):

〈D(x1)D(x2)〉 = 〈δ(x1)δ(x2)〉 −
M∑
i=1

M∑
j=1

〈δ(x1) ci〉 〈cicj〉−1〈δ(x2) cj〉 , (3.33)

where 〈δ(x1)δ(x2)〉 is the variance of the unconstrained density field determined by the prior
model P0(k). The residual D(x) is itself a zero-mean Gaussian random field, so the variance 3.33
fixes all its statistical properties. Note that it is completely determined by the cross-correlation
of the data and the field and their respective autocorrelations. Nowhere in equation 3.33 do
the actual values of the constraints ci enter. We can therefore easily construct a constrained
realisation. First we generate a random realisation (RR) on the full computational grid, δRR(r),
as described in Section 3.1. We then create a set of mock constraints c̃i by “observing” the
random realisation at the constrained positions:

c̃i = Vi(δ
RR) . (3.34)

Then the WF mean field of δRR for this set of mock constraints is

δ̃WF(x) =
M∑
i=1

M∑
j=1

〈δ(x)ci〉 〈cicj〉−1c̃j , (3.35)

where we use the tilde to distinguish it from the WF mean field of the actual constraints. The
associated residual is

D̃(x) = δRR(x)−
M∑
i=1

M∑
j=1

〈δ(x)ci〉 〈cicj〉−1c̃j , (3.36)

which can be easily evaluated because the correlations and c̃i are known. Since D̃(x) does
not depend on the values of the constraints c̃i, it follows that D̃(x) is a valid realisation of
D(x), because ci and c̃i constrain the same quantities Vi(δ) at the same positions and therefore
their autocorrelations and field cross-correlations are identical. Therefore, a valid constrained
realisation can be obtained by

δCR(x) = δWF(x) + D̃(x) , (3.37)

or in full form

δCR(x) = δRR(x) +

M∑
i=1

M∑
j=1

〈δ(x)ci〉 〈cicj〉−1 (cj − c̃j) . (3.38)

Note that in the absence of data, equation 3.38 reduces to δCR = δRR, i.e. the constrained
realisation is dominated by the random modes. Conversely, at the positions xi of the constraints,
δRR(xi) cancels against c̃i, and the CR is completely determined by the constraint (δCR = δWF).
At all other positions, there will be a smooth transition between both regimes, depending on
the data quality. Similar to the WF reconstruction, this equation is in practice decomposed into
computing the correlation vector ηi, which is now of the form

ηi =

M∑
j=1

〈cicj〉−1 (cj − c̃j) , (3.39)
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and then evaluating

δCR(x) = δRR(x) +

M∑
i=1

〈δ(x)ci〉 ηi . (3.40)

In a completely analogous way, we can also generate the velocity field of the CR, given by

uCR
α (x) = uRR

α (x) +
M∑
i=1

M∑
j=1

〈uα(x) ci〉 〈cicj〉−1 (cj − c̃j) ; α ∈ {x, y, z} . (3.41)

Figure 3.3 illustrates the RR, WF, CR, and residual, in this example for the case of constraining
one cartesian component of the peculiar velocity field u, with a very simple setup of only two
constraints at different positions.

The Hoffman-Ribak method can be straightforwardly applied to constraints with statistical
uncertainties, ci = Vi(δ) + εi. Then, 〈cicj〉 is defined by 3.21. In this case, at the constrained
positions xi the CR stays fixed to the value of the WF mean field, but this is not anymore the
exact input value ci, but instead an estimate of the underlying de-noised true field, which is the
desired behaviour.

The imposed constraints can be of any type that is a linear functional of the overdensity.
Besides constraints on the overdensity itself and the peculiar velocity field, this can also include
for example the density gradient, curvature, the flow shear, and the shape of the gravitational
potential at the constrained positions xi. Each such constraint can be described as a convolution
of δ with a function Vi, with a corresponding convolution kernel Yi(k) in Fourier-space. A table
of the kernels for 18 different constraint types can be found in van de Weygaert & Bertschinger
(1996). A particularly interesting possibility is to constrain functionals of the smoothed field
instead of the exact field. As discussed in Section 2.2.4, the density field has a lot of power on
small scales, and most often one is interested in features of the field smoothed on a particular
length scale, which can also be constrained using the Hoffman-Ribak algorithm. A smoothing
filter is likewise a linear functional of the field, which can be combined with the constraint kernel.
Therefore, we can extend the definition of a constraint (3.12) to

Vi(δ) =
1

(2π)3

∫
δ(k)Yi(k)W (k)e−ik·xi dk , (3.42)

where W (k) is a smoothing kernel. Here, we will exclusively use the Gaussian smoothing kernel
(2.54) with smoothing radius RG for this purpose, although in principle any other linear filter
would be possible. It is straightforward to compute the autocorrelation and the cross-correlation
for such smoothed constraints by replacing Yi(k) with Yi(k)W (k).

3.3.2 Constrained simulations and the CLUES method

The Hoffman-Ribak algorithm provides a practical and powerful method to generate custom-
tailored initial conditions. Running such initial conditions forward with N -body simulations
gives rise to constrained simulations. With such constrained simulations it is possible to study
features of the large-scale structure that would be otherwise rare to find in ordinary N -body
simulations due to the high cosmic variance of random realisations.

Applications of this powerful machinery can be generally divided into two categories. One
approach is to set up ICs by introducing particular features like peaks and voids with predefined
properties and at predefined positions and then study their evolution in the context of non-linear
structure formation. This is an interesting approach for the theoretical study of the formation of
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haloes, filaments and other objects and how their formation and evolution is influenced by their
cosmological environment; see e.g. van de Weygaert & Bertschinger (1996); Antonuccio-Delogu
et al. (2002); Romano-Diaz et al. (2006, 2011).

The other direction is to generate constrained simulations that resemble the observed Local
Universe. These can serve as an ideal numerical laboratory to study the formation and evolution
of the observed structure. This approach entails the task to obtain a set of constraints ci from
observational data. This involves several steps: first, one has to cast the data into a form such
that the datapoints are a tracer of the underlying field in the sense of equation 3.10. Then,
this field has to be taken backward in time to the desired initial redshift zinit of the simulation.
Finally, a set of constrained ICs for the simulation can be constructed. They may then be evolved
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Figure 3.3: Constraining a Gaussian random field (here, vx component of a cosmological peculiar
velocity field at two positions). Top panel: two constraints (red points) are placed on top of a random
realisation (RR, green), which results in a constrained realisation (CR, blue). The CR is equal to the
Wiener Filter mean field (WF, black) at the positions of the constraints. At the same time, the CR is
dominated by the RR in unconstrained regions where the WF falls off to zero. Bottom panel: the residual
(grey) equals zero at the positions of the constraints and approaches the RR in unconstrained regions.
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forward until z = 0 using an N -body code. This procedure was first explored by Kolatt et al.
(1996) and Bistolas & Hoffman (1998), who used galaxy redshift data. It was soon discovered
that peculiar velocity data may provide a better candidate for generating constraints, since they
constrain the underlying field more strongly and are closer to the Gaussian statistics assumed
by the WF/CR algorithm. Such constrained simulations using peculiar velocities, namely the
MARK III catalogue (Willick et al. 1997), were first carried out by van de Weygaert & Hoffman
(1999, 2000) and used to study the origin of the cold local Hubble flow. The first high-resolution
simulations that were aimed at reproducing a significant portion of the observed Local Universe
with reasonable accuracy were finally presented by Klypin et al. (2003). This method finally
gave rise to the CLUES project, where constrained simulations from peculiar velocity data are
applied to study various aspects of the Local Universe (see the overview in Gottlöber et al. 2010).
In this work, we are building on the CLUES method in order to add several improvements. First,
we briefly review the current method.

The method rests on the assumption that the peculiar velocity field of the Local Universe,
observed through peculiar velocities of galaxies, does not deviate too much from the linear velocity
field of the ICs at some early redshift zinit, so that we can directly use the values of the radial
peculiar velocities vpec

r as constraints ci. This approach differs from the WF reconstruction from
such data by the requirement that the result must be a linear Gaussian random field suitable
for initial conditions. One obvious source of incompatible non-linearities in the data are the
virial motions of galaxies gravitationally bound to larger objects such as galaxy clusters. This
can be overcome by an appropriate grouping of the data points, which effectively “linearises” the
data. Virial motions are, of course, not the only source of non-linearity. Another example of
non-linearities in the observable peculiar velocity field at z = 0 is the general enhancement of
peculiar motions due to local overdensities that we studied in Section 2.3.4. A useful quantity
to gauge the linearity of the data is

χ2 =

M∑
i=1

M∑
j=1

ci 〈cicj〉−1 cj . (3.43)

Linear theory states that if the data are sampling a typical realisation of the assumed prior model
P (k), then χ2 must be close to the number of degrees of freedom (dof),

χ2/dof ≈ 1 , (3.44)

where dof is equal to the number of datapoints M . This requirement is generally not fulfilled by
peculiar velocity data at z = 0. Although theoretical models for some of the non-linear effects
exist (Sheth et al. 2001; Hamana et al. 2003), unfortunately the task of obtaining an accurate
mapping from the non-linear to the desired linear field seems unfeasible. However, the non-
linearities can be compensated for in a statistical sense. Considering the non-linear effects as a
form of statistical scatter, one can add a new non-linearity term to the autocorrelation matrix of
the data (3.21). In the absense of a better model, this term is considered to be a scalar matrix,
and is defined by introducing the non-linearity parameter σNL (Bistolas & Hoffman 1998):

〈cicj〉 = 〈Vi(δ)Vj(δ)〉+ δKij ε
2
j + δKij σ

2
NL , (3.45)

where δK is the Kronecker delta. The value of σNL is chosen such that the condition 3.44 is
fulfilled. For observational radial peculiar velocity data, we find a typical value of σNL ≈ 200
km/s. The initial conditions are then created as follows. First one constructs and inverts the
autocorrelation matrix of the data (3.45). Then an appropriate boxsize must be chosen such that
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the data zone lies well within the computational volume. Then, the WF/CR operator can be
evaluated on this volume, leading to a linear density field δCR

0 (x). This field can then be scaled
with the growth factor D+ to the desired starting redshift zinit of the simulation (2.39) and used
to set up N -body ICs.

For some CLUES simulations such as the BOX160 simulation, additional constraints were
used to obtain representations of the clusters that lie outside the peculiar velocity data zone,
such as the Coma and Perseus-Pisces clusters. The WF mean field from peculiar velocities does
reproduce the overdense regions associated with clusters even if they lie outside the data zone (see
Figure 3.2). However, their exact positions and masses are not constrained well in this case. To
improve the situation, additional constraints were obtained from the catalogue of nearby X-ray
selected clusters (Reiprich & Böhringer 2002). From this data it is possible to obtain estimates
on the virial masses of the clusters. Then, one can derive the linear overdensities of the respective
clusters assuming the spherical top-hat model. These linear overdensities were then imposed as
constraints of the density type with a Gaussian smoothing radius RG that corresponds to the
mass scale of the cluster (Gottlöber et al. 2010). How the radius RG for a constraint can be
obtained from the mass will be discussed in Section 5.1.1. We will however not consider this type
of constraints in the following chapters and continue to work exclusively with peculiar velocities.

3.3.3 Drawbacks of the CLUES method

With the described method of setting up constrained initial conditions, the constrained simu-
lations robustly reproduce the configuration of observed clusters in the Local Universe, like the
Local Supercluster, Perseus-Pisces and the Great Attractor region, and create a large-scale en-
vironment similiar to that of the Local Group. However, the structure on scales smaller than
those clusters seems to be completely dominated by the random component. Additionally, the
positions of the recovered clusters are subject to systematic errors and do not appear at their
actual positions in the evolved z = 0 simulations. It is the aim of this work to develop methods
to both reduce systematic errors and increase the range of scales where the cosmic structure can
be effectively constrained.

One drawback of the method is the non-linearities in the observed peculiar velocity field are
not handled well. While we can filter out statistical contributions and force the resulting CR
to adhere to the prior model by using the additional σNL parameter, the result will still be
influenced by systematic errors induced by non-linearity, i.e. the differences between the linearly
extrapolated initial field and the full non-linear field. These differences are much smaller for the
peculiar velocity field than for the density field, but still not negligible. As we saw in Section
2.3.3, the most prominent effect is the cosmic displacement ψ on a typical scale of 10 Mpc/h.
We therefore expect that the quality of the constrained ICs and the resulting simulations can
be improved considerably if we replace the simple linear theory scaling of the CR from z = 0 to
zinit (equation 2.42) with a Lagrangian reconstruction scheme that actually follows the cosmic
displacement field back in time. Such a method will be presented in Chapter 4. Here, we will
first focus on other inconsistencies of the method.

The CLUES method of setting up constrained simulations historically developed from the
WF reconstruction of the large-scale structure from peculiar velocities. Just as for the WF
reconstruction, the method uses the one-dimensional correlation functions ψR, ψT and ζ which
describe – in the linear approximation – the homogeneous, isotropic and not volume-limited
observed Universe. This WF mean field is then combined with the residual of a random realisation
on the computational volume, which has periodic boundary conditions, is non-isotropic (because
of the cubic shape) and volume-limited. Therefore, the computed WF mean field δWF(x) and
residual D(x) are not statistically compatible. The non-periodicity of δWF(x) poses no major
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problem if the computational volume is chosen such that the WF mean field falls off to zero
towards the boundaries. Then, δCR is dominated by δRR at the box edges, which has the
required periodic boundary conditions. However, it can become very problematic for smaller
boxsizes, and as we saw the bulk flow of the Local Universe is not expected to fall off to zero
at least within 150 Mpc/h or so of the Local Group. To enforce periodic boundary conditions
on the resulting constrained ICs even for smaller boxes, the following approach was used for
CLUES simulations. First, the constrained overdensity field δCR is evaluated through 3.38 using
the isotropic correlation functions. Then, the initial displacement field ψCR = uCR/ȧf is not
computed using equation 3.41, but instead with the FFT method 3.5. This effectively imposes
periodic boundary conditions on ψCR by subtracting the tidal component, i.e. the contribution
due to overdensities outside of the box, from the displacement field. Since the displacement
field at zinit completely defines the N -body particle distribution, one then obtains valid periodic
ICs. Note that then, the velocity field uCR obtained by FFT does not follow the values of
the constraints ci anymore, because the tidal component was subtracted. The effective density
field is less affected by the tidal component, so the CR can still produce a meaningful density
distribution inside the box. This approach is not self-consistent though, and this way of imposing
periodic boundary conditions is believed to cause further systematic errors.

Besides the periodic boundary conditions, two other effects become important: the finite-
volume effect and the anisotropy of the effective correlation function. This means that the
correlation functions imposed on δWF (given by 2.50) and on δRR (given by 3.4), respectively,
are different. This inconsistency is not expected to be significant if the constraints are well
within the box and fill only a small subvolume. But we saw in Section 3.1.3 that the finite-
volume effect also strongly decreases the total variance of the peculiar velocity field in the box.
We argue that this can explain the fact that constrained realisations from peculiar velocities often
feature an excess of power in the largest modes of the box (see Figure 2.12). The variance of the
observational data is not affected by a finite-volume effect. This discrepancy is only partially
moderated by subtracting the tidal component from the data. When setting up a constrained
realisation, we force all large-scale power still present in the data (and inconsistent with the finite
volume) to be assigned to a few discrete Fourier modes at predefined wavelengths of L, L/

√
2,

L/
√
3, L/2 etc. We therefore fold all power from scales in between and above those wavelengths

into the discrete modes dictated by the finite box, resulting in an excess of power inside these
modes. We believe that the same finite-volume effect and excess of power could also cause the
otherwise untypical slight increase of halo peculiar velocities with mass in BOX160 (Figure 2.14,
left panel). We ran several random realisations with the same parameters, the same simulation
code (Gadget-2), and used the same halo finder (Ahf), but each time saw at z = 0 a slight
decrease of |vpec| with halo mass instead.

The systematic effects due to the boxshape and the periodic boundary conditions can become
severe if the boxsize becomes so small that it is not significantly larger than the data zone, such
as the 64 Mpc/h boxsize CLUES simulations discussed in Gottlöber et al. (2010). For this
reason, we included in ICeCoRe an alternative way to evaluate the WF/CR operator which
is more self-consistent with the box geometry. We discuss the implementation of WF/CR in
ICeCoRe in the following section.

3.4 ICeCoRe implementation

The construction of constrained realisations quickly becomes numerically expensive for large
numbers of constraints. We are currently unaware of any constrained realisation that was con-
structed with more than the 4000 constraints used in the simulations of Lavaux (2010). However,
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the upcoming Cosmicflows catalogues will provide at least an order of magnitude more peculiar
velocity constraints. Computationally, it is not feasible to handle such datasets with either the
method used by Lavaux (2010) or the numerical tools, written in IDL, that were up to now used
for CLUES initial conditions. An efficient implementation of the WF/CR method would be espe-
cially useful if one wants to construct a large ensemble of different constrained realisations. The
ICeCoRe code that was developed for this thesis is designed to overcome the present numerical
limitations. ICeCoRe is written in C++, utilising several high-performance numerical libraries
(details are given in Appendix A). But the task of a new code for WF/CR is not only a question
of numerical optimisation, but also requires a careful design of the underlying algorithms.

The WF/CR method rests on correctly evaluating the different correlation functions and
constructing and inverting the data autocorrelation matrix 〈cicj〉. In this chapter, we saw that
the WF reconstruction of large-scale structure for cosmography studies on the one hand, and
the construction of constrained initial conditions for N -body simulations on the other hand,
may require different methods to compute these correlations due to the specifics of the limited
volume and periodic boundary conditions required for ICs. In ICeCoRe, we use the approach
of pre-computing the correlator, i.e. all necessary correlation functions, from the input power
spectrum. This enables a much faster evaluation of the WF/CR operator than to explicitly
compute each correlation every time it is needed. Then, for WF reconstruction, the whole
process can be decomposed into the following computational steps: computing the correlator,
constructing the data autocorrelation matrix, inverting this matrix, and then evaluating the
WF/CR operator for each grid cell. In order to generate a CR, two other steps have to be
completed beforehand: the construction of a random realisation (section 3.1.1), i.e. the four
grids δRR(x) and uRR

α (x) , α = x, y, z , and evaluating the mock constraints c̃i on these grids.
Most of these steps are straightforward, but computing an appropriate correlator deserves special
attention. We implemented two different methods in the ICeCoRe code, the “analytic” and
“grid” correlators.

3.4.1 Analytic correlator

We consider here constraints, or data points, of the density and peculiar velocity types. The
analytic correlator continues to use the assumption of an infinite, homogeneous and isotropic
Universe and therefore continues to use the 1D correlation functions (equations 2.50 and 2.69
– 2.71). As discussed before, this is consistent with the linear-theory statistics of the observed
Universe, but inconsistent with the geometry of N -body initial conditions. The analytic corre-
lator is therefore the appropriate approach for a WF reconstruction of the large-scale structure
from observational data, such as for the cosmography of the Local Universe. It can also be
used to set up constrained ICs if the subvolume containing constraints (data zone) is well within
the computational box, so that the absence of periodic boundary conditions on the δWF can
be neglected, and one decides to neglect the inconsistencies between the underlying correlation
functions of δWF and δRR. The procedure of evaluating the WF/CR operator differs for these
two applications. For a WF reconstruction without periodic boundary conditions, we evaluate
the WF operator for both the density and the velocity fields to obtain δWF(x) (3.38) and uWF(x)
(3.41), respectively. For constrained ICs, we evaluate the WF/CR operator only for δCR(x), and
then compute the displacement field ψCR(x) with three FFTs (3.5), which removes the tidal
component and enforces periodic boundary conditions.

The analytic correlator of ICeCoRe builds upon the same method for computing correlations
as the previous IDL code used for CLUES initial conditions, but is more efficient and more flexible
with regards to the possible constraints. Currently it supports two types of constraints, density-
type (δ) and displacement-type (ψμ), which can also be mixed. It is possible to constrain a



3.4 ICeCoRe implementation 65

particular component of the displacement along an arbitrary unit vector êμ, which also includes
the possibility to constrain all three components ψα with α = x, y, z. It is also possible to assign
to each constraint an arbitrary Gaussian smoothing radius RG. Peculiar velocity constraints are
expressed with the displacement type11. Therefore, each constraint is defined by ten numbers
(seven for the δ constraint type), which are summarised in Table 3.1. The input set of constraints
for ICeCoRe consists of a table containing these ten quantities, one line per constraint.

The analytic correlator relies on pre-tabulated correlation functions. From the provided
tabulated power spectrum P (k), we prepare four two-dimensional lookup tables over the whole
required range of distances x and smoothing radii RG, evaluating a one-dimensional Fourier
integral for each point in the lookup space:

ξ(x,RG) =
1

2π2

∫ kmax

kmin

k2 j0(kx)WG(kRG)P (k) dk , (3.46)

ψR(x,RG) =
1

2π2

∫ kmax

kmin

[
j0(kx)− 2j1(kx)

kx

]
WG(kRG)P (k)dk , (3.47)

ψT(x,RG) =
1

2π2

∫ kmax

kmin

j1(kx)

kx
WG(kRG)P (k)dk , (3.48)

ζ(x,RG) =
1

2π2

∫ kmax

kmin

kj1(kx)WG(kRG)P (k)dk . (3.49)

where WG(kRG) is the Gaussian smoothing kernel and kmin, kmax go by default over the whole
k range of the tabulated P (k), although it is possible to specify another range, e.g. kmin = kL to
explicitly consider the finite-volume effect. Some codes (e.g. Hahn & Abel 2011) use the FFTlog

algorithm (Talman 1978; Hamilton 2000) to numerically integrate this type of integrals, which
allows one to reduce them to one-dimensional FFTs. However, we instead evaluate the integrals
by exact numerical integration, since this has to be done only once for a given P (k) and therefore
numerical accuracy is more important than speed. We use the adaptive 61-point Gauss-Kronrod
algorithm from the GSL12, which is able to evaluate these integrals with relative numerical errors
less than 10−6.

Figure 3.4 shows plots of the resulting four functions of x and RG that are precomputed
and stored. Then, whenever a particular correlation value is needed, we interpolate on these
precomputed tables using the GSL cubic spline interpolation. For M constraints, we have to
evaluate M(M + 1)/2 such interpolations to compute the symmetric matrix 〈cicj〉. This is
extremely fast, taking only about 4 seconds for M = 4000 and 5 minutes for M = 50 000 in
serial on a laptop with a 2.4 GHz Intel Core 2 Duo CPU. In order to perform the WF/CR
algorithm on a grid with N cells, we then have to evaluate N × M interpolations, which is
similarly fast if the grid size is not too large. This allows to generate a CR on a N = 2563

grid within minutes using an ordinary consumer-grade computer. Additionally, the evaluation
of the WF/CR operator (equation 3.38) is straightforward to parallelise, since the computation
of δWF(x) or δCR(x) in one grid cell is independent from any other grid cells. In ICeCoRe,
we included a parallelisation with OpenMP for shared-memory machines. For larger grid sizes,
the method quickly becomes computationally expensive. But in practice one does not have to

11 The ICeCoRe code consistently uses internal units of Mpc/h. Constraints on the peculiar velocity u are
treated as constraints on the linear displacement field ψ in units of Mpc/h. This system of units keeps the
correlation functions free from cosmology-dependent factors and has numerical advantages if one mixes density
and velocity constraints. Peculiar velocity data in km/s has to be converted to units of Mpc/h by dividing the
values by the factor ȧf (equation 2.75). At z = 0, this equals H0f , with f(z = 0) ≈ 0.48 for WMAP7 parameters.
The unit conversion factor from km/s to Mpc/h is therefore 100f , since H0 = 100 h km s−1 Mpc−1.

12GNU scientific library, available at www.gnu.org/gsl .
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Figure 3.4: Correlation functions ξ(r), ζ(r), ψR(r), ψT(r) for the analytic correlator assuming an
isotropic and infinite Universe, computed with ICeCoRe from the WMAP3 power spectrum for different
smoothing radii RG (in the code, a much finer sampling in RG is used). Note that the density-density
correlation function ξ(r) is plotted in log-log scale, while the other three functions are plotted in log-linear
scale.

evaluate a CR on a high-resolution grid anyway, since the small scales below a few Mpc/h are
not constrained by the usual kind of data and can be added later from a random realisation.
This procedure will be discussed in Section 3.5.

For CRs, we also have to obtain a set of mock constraints c̃i from the pre-generated random
realisation (RR). This is performed by a simple trilinear interpolation on the density and velocity
grids of the RR, respectively. In case the constraints ci feature non-zero smoothing radii RG,
the mock constraint must be the value of the smoothed RR fields, as well. We found that for
common smoothing radii not larger than a few Mpc/h, it can be considerably faster to perform
this smoothing locally by the real-space convolution of a grid patch with the Gaussian window,
than to do the smoothing via FFT on the whole grid. This lookup of the c̃i is always performed
in accordance with the periodic boundary conditions of δRR(x) and uRR(x).
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3.4.2 Grid correlator

The grid correlator provides an alternative implementation, evaluating all correlation functions
for the WF/CR operator such that they are fully consistent with the box geometry, discretisation
and periodic boundary conditions. This should be the preferred method for setting up constrained
initial conditions, if the boxsize is not considerably larger than the box subvolume that contains
constraints, and/or if there are constraints close to the box boundary, in which case the periodic
boundary conditions and the large-scale discretisation effects cannot be neglected anymore for
δWF.

In order to be consistent with the properties of ICs discussed in Section 3.1, the correlation
functions are not evaluated as one-dimensional integrals, such as in the case of WF reconstruction,
but instead with FFTs on a grid that is identical to the grid used for the ICs themselves. This
grid is not isotropic, therefore the correlations will depend not only on the distance, but also on
the spatial direction, i.e. on the full distance vector x between two points. The equations 3.22 –
3.23 defining the correlations then become

〈δiVj(δ)〉 = 1

(2π)3

∑
k

Yj(k)P (k)e−ik·(xj−xi) , (3.50)

〈Vi(δ)Vj(δ)〉 = 1

(2π)3

∑
k

Yi(k)Yj(k)P (k)e−ik·(xj−xi) . (3.51)

Each correlation value for a particular x can then be obtained by an FFT on the whole grid and
a subsequent lookup. The strength of this method is that the constraints can have completely
different and arbitrary constraint kernels Yi and smoothing kernels W , since all correlations are
explicitly computed each time they are needed. This method was first implemented by van
de Weygaert & Bertschinger (1996) as an extension of the original Hoffman-Ribak algorithm.
The approach is mostly used for constrained ICs that do not use observational data, but in-

Column Quantity Meaning

1 Yi Constraint type: δ or ψμ

2 xi
⎫⎬
⎭Constraint position: cartesian components of xi3 yi

4 zi

5 ci constraint value
6 εi estimated constraint error
7 êμ,x

⎫⎬
⎭Direction vector for ψμ: cartesian components of êμ8 êμ,y

9 êμ,z

10 Ri,G Gaussian smoothing radius of constraint

Table 3.1: Ten quantities that define a single constraint ci in the constraints input file for ICeCoRe.
Possible constraint types are the density, the three cartesian components of the linear displacement ψ
(each component is one constraint), or a specific component ψα of the linear displacement ψ defined by
the direction unit vector eα. Linear peculiar velocity constraints follow from the linear theory equation
v = ȧfψ. For density-type constraints, the values inside columns 7 – 9 are ignored.
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stead artificially defined peaks and other features; in this case, it is a completely self-consistent
method. The same method was also used by Lavaux (2010) to set up a constrained simulation
of the Local Universe with ≈ 4000 constraints of the displacement type generated from a MAK
reconstruction of the 2MASS galaxy redshift catalogue. The problem of the method is its very
high computational cost. In order to construct the autocorrelation matrix of the constraints, one
needs M(M +1)/2 FFTs (where M is the number of constraints), and then another M FFTs to
evaluate the WF/CR operator on the grid. This is only practical if one has very few constraints,
for example if one constrains the shape and orientation of just a few peaks in the ICs (van de
Weygaert & Bertschinger 1996). With a large set of non-local constraints, the computational
cost quickly explodes: Lavaux (2010) reports that the computation of the correlation matrix with
M = 3942 took a little less than a week on 128 processors on the Mercury cluster at the National
Center for Supercomputing Applications (NCSA). Since the computational cost for creating a
CR scales as O(M2N logN), it is currently not feasible to apply the method to the upcoming
large peculiar velocity datasets that provide tens of thousands of constraints.

With the grid correlator of ICeCoRe, we here present an alternative implementation of the
method that reduces the required computational cost by a large factor, while yielding mathe-
matically equivalent results. Van de Weygaert & Bertschinger (1996) already noted that the
required computational effort can be greatly reduced if the constraints are all of the same type.
We extend this simple case by allowing the same types of constraints as the analytic correlator,
i.e. density and displacement types (Table 3.1), which can be mixed. We therefore need to eval-
uate density-density, density-displacement and displacement-displacement correlation functions.
Similar to the analytic correlator, the method rests on pre-computed correlation functions, but
because of the added anisotropy and periodic boundary conditions, in this case they consist of
three-dimensional grids instead of simple interpolation tables. These three-dimensional corre-
lation functions will now depend not only on the input power spectrum P (k), but also on the
chosen boxsize L and grid resolution Δx of the constrained ICs. We found that in order to
compute all necessary correlations, it is sufficient to prepare only the four following correlation
grids:

ξ(x) =
1

(2π)3

∑
k

P (k)e−ik·x (3.52)

ζx(x) =
1

(2π)3

∑
k

[−ikx
k2

]
P (k)e−ik·x (3.53)

ψxx(x) =
1

(2π)3

∑
k

[
k2x
k4

]
P (k)e−ik·x (3.54)

ψxy(x) =
1

(2π)3

∑
k

[
kxky
k4

]
P (k)e−ik·x . (3.55)

They are the three-dimensional analogues of the isotropic analytic functions ξ, ζ, ψR and
ψT. A visual representation of these grid functions is shown in Figure 3.5 for a relatively small
boxsize of L = 64 Mpc/h, where the deviation from the analytic functions is quite large. Due to
the underlying symmetries, all correlation values that will be possibly needed for the WF/CR
procedure can be obtained by simple lookups on these four grids, if the lookup indices xα are
permuted accordingly:
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Figure 3.5: Three-dimensional correlation functions ξ(r), ζx(r), ψxx(r), ψxy(r) for the grid correlator
assuming a boxsize of L = 64 Mpc/h and periodic boundary conditions, computed with ICeCoRe
from the WMAP3 power spectrum (no smoothing: RG = 0) on a N = 2563 grid. The plots show
the XY -plane through Z = 0. The solid green contour lines show where the functions have value
zero. Note that the density-density correlation function ξ(r) is shown in logarithmic scale. Here, the
additional dashed green contour lines show the regions where ξ is negative and are positioned at ξ =
−0.005, −0.01, −0.015, −0.02, which reveals the anisotropy of ξ(r) close to the box boundaries.
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〈δ(x′)δ(x′ + x)〉 = ξ(xx, xy, xz) 〈ψx(x
′)ψx(x

′ + x)〉 = ψxx(xx, xy, xz) (3.56)
〈ψx(x

′)ψy(x
′ + x)〉 = ψxy(xx, xy, xz)

〈δ(x′)ψx(x
′ + x)〉 = ζx(xx, xy, xz) 〈ψx(x

′)ψz(x
′ + x)〉 = ψxy(xx, xz, xy)

〈δ(x′)ψy(x
′ + x)〉 = ζx(xy, xz, xx) 〈ψy(x

′)ψx(x
′ + x)〉 = ψxy(xy, xx, xz)

〈δ(x′)ψz(x
′ + x)〉 = ζx(xz, xx, xy) 〈ψy(x

′)ψy(x
′ + x)〉 = ψxx(xy, xz, xx)

〈ψy(x
′)ψz(x

′ + x)〉 = ψxy(xy, xz, xx)

〈ψz(x
′)ψx(x

′ + x)〉 = ψxy(xz, xx, xy)

〈ψz(x
′)ψy(x

′ + x)〉 = ψxy(xz, xy, xx)

〈ψz(x
′)ψz(x

′ + x)〉 = ψxx(xz, xx, xy) ,

where the xα ; α ∈ {x, y, z} are the cartesian components of x. Through equations 3.29 and 3.30
we also cover the case of ψμ constraints in arbitrary direction êμ. Generally, the constraints do
not follow the grid cells, so that the lookup will actually be an interpolation on the grid, which
we implemented as a simple trilinear interpolation. Then, the computation of each correlation
value will involve eight grid cell lookups and seven linear interpolations. This is many orders of
magnitude faster than if each time we would have to perform an FFT on the whole grid, as in
van de Weygaert & Bertschinger (1996); Lavaux (2010). With the current implementation we
find that the grid correlator computes correlations about a factor of 7 slower than the analytic
correlator; constructing a 4000 × 4000 correlation matrix takes 29 seconds on a laptop with a
2.4 GHz Intel Core 2 Duo CPU. This is an impressive speed-up compared to Lavaux (2010).
We want to mention that this current numerical implementation in ICeCoRe leaves room for
further optimisations, which are the subject of ongoing work.

When generating CRs from observational peculiar velocity data, we must keep in mind that
the underlying correlation functions of the grid correlator assume the periodic limited-volume
behaviour on both the random realisation and the provided set of constraints. Therefore, the
results obtained with the analytic and the grid correlator will be different. Figure 3.6 compares
the WF density and velocity fields reconstructed from the Cosmicflows-1 galaxy groups, com-
puted on a finite box with L = 80 Mpc/h with three different methods: the analytic correlator
for both the density and velocity fields (such as for LSS reconstruction), the analytic correlator
for the density field and FFT for the velocity field (such as for generating ICs with a periodic
displacement field), and the grid correlator for both (for generating self-consistent ICs). While
the density and velocity fields are, in the first case, consistent with the observed Local Universe,
in the second case we force periodicity on the velocity/displacement fields in order to be able
to generate ICs. This strongly changes the shape of the velocity field, e.g. the pull from the
GA is now felt from the opposite edge of the box as well. It is obvious that the underlying WF
density field is however not periodic, and if the WF mean field does not vanish at the box size
boundaries, this will introduce systematic errors in the CR that could corrupt the simulation.
The third method uses the grid correlator and one now obtains density and displacement fields
that are fully consistent with the periodic box geometry. This comes at a price, namely that
the WF mean field is not anymore accurate compared to the Local Universe in the outer parts
of the box. The reconstruction is still accurate in the central part of the box, approximately
inside a centered sphere of radius L/4. Unfortunately, there is no optimal method for setting up
constrained ICs in this scenario: squeezing the Local Universe into a periodic box will always
involve systematic inconsistencies with the observed configuration. These can be quantified if
one compares the fields produced by the analytic and grid correlators, respectively.
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Figure 3.6: Same slice and orientation as Figure 3.2: no periodic boundary conditions (top left), periodic
boundary conditions assumed when computing the velocity field from the overdensity (top right), and
with the grid correlator (bottom left) assuming periodic boundary conditions on all quantities. The
bottom right panel shows the input constraints: radial peculiar velocities from the 742 Cosmicflows-1
galaxy groups.



72 3 Initial conditions, Wiener filter, and constrained realisations

We want to point out that the already mentioned method of Pen (1997) could provide an
interesting alternative. This method uses the isotropic real-space correlation functions to set up
ICs and simultaneously reduces the problem of variance underestimation by the finite volume.
A combination of this method with the WF/CR algorithm could lead to constrained simulations
that are closer to the statistics of the observed Universe, while still being self-consistent with the
simulation geometry like the grid correlator presented here.

3.4.3 Matrix inversion

In between the computation of the data autocorrelation matrix 〈cicj〉 and the WF/CR operator,
who both rely on computing correlation functions, the only other computationally expensive step
of the WF/CR method is the inversion of the matrix to yield 〈cicj〉−1. With the upcoming large
peculiar velocity datasets, this M ×M matrix can become very large, so we have to make sure
that the inversion is stable in each case.

The matrix 〈cicj〉 is real-valued, non-sparse, symmetric and positive-definite. It is especially
well-formed because, due to the shape of the correlation functions, the diagonal entries 〈cici〉
(the autocorrelations of the datapoints) will be always the largest-valued entries in each row and
column. Because of these properties, the matrix is always invertible13. The optimal algorithm
to invert a matrix with these properties is the Cholesky decomposition (see e.g. Golub & Loan
1996), which is more efficient than the traditional Gauss-Jordan elimination or LU decomposition
method, because it explicitly uses the symmetry of 〈cicj〉. This is performed in two steps. First,
the matrix is decomposed into an upper triangular matrix U and a lower triangular matrix L,
which is simply L = UT because of the symmetry,

〈cicj〉 = UTU , (3.57)

where the T superscript denotes the matrix transpose. The two triangular matrices can be
inverted very efficiently by forward substitution, and then the inverse autocorrelation matrix is
obtained by factorisation with

〈cicj〉−1 = U−1U−T . (3.58)

Besides the faster execution speed, the most important advantage of the Cholesky decomposi-
tion is its high numerical stability. The ordinary LU decomposition is an unstable algorithm and
requires some sort of pivoting strategy to reduce the growth of numerical roundoff errors and
stabilise the inversion of large matrices (Kreyszig 2006). By contrast, the Cholesky decomposi-
tion requires no pivoting or other regularisation and the numerical errors will always be small.
Thus, the concern raised by Lavaux (2010) that the matrix inversion could become unstable
for ranks larger than a few thousand, is something that we did not observe. For the Cholesky
inversion in ICeCoRe, we utilise the LAPACK14 library. We obtained the best results with the
LAPACK implementation contained in the MKL15, which is also parallelised (multi-threaded).
The computational cost of the inversion scales with O(M3), and the maximum rank M of the
matrix that can be inverted is limited in principle only by the available memory. For M = 4000,
the inversion takes only a couple of seconds in serial. For matrices larger than M ≈ 10 000 –
20 000, it is recommended to switch to parallel machines. For M = 50 000, the inversion takes

13The only exception would occur if there are two constraints at the same position that directly contradict
each other. But even in this case the matrix would be invertible if a constant term is added to the diagonal, i.e.
if the errors εi or the σNL parameter are non-zero (equation 3.45), acting as a stabilising regularisation term.

14Linear Algebra PACKage (Anderson et al. 1999), available at www.netlib.org/lapack
15Intel Math Kernel Library, see www.intel.com.
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around 60 minutes with eight OpenMP threads on two quad-core 2.4 GHz Intel Xeon processors,
with 18 GB of memory required for the inversion. In all cases, we observed that both the matrix
inversion and the solutions subsequently obtained with the WF/CR operator were numerically
stable. We therefore acknowledge that the ICeCoRe code is able to handle significantly larger
sets of constraints than used before for constrained realisations in a very fast and numerically
efficient way and is therefore the ideal tool for WF reconstructions and generation of CRs from
the large upcoming peculiar velocity datasets.

3.5 High-resolution, multi-scale, and baryonic initial conditions

Modern cosmological simulations, running on massively parallel high-performance computing
clusters, follow the simultaneous evolution of billions of particles. This poses high requirements
on IC generation codes to generate initial conditions with matching high resolution. One kind of
simulations starts from a uniform high-resolution mass sampling and aims to obtain a statistically
representative sample of structure formation over a large cosmological volume. Examples are the
Millennium Simulation (Springel et al. 2005), with L = 500 Mpc/h and N = 21603, the Horizon
Simulation (Teyssier et al. 2009), with L = 2000 Mpc/h and N = 40963, and the more recent
Bolshoi simulation (Klypin et al. 2011), with L = 250 Mpc/h and N = 20483. There are also
simulations focusing on the detailed evolution of one particular object (or a few objects), such as
a dark matter halo hosting a galaxy, emdedded in the large-scale environment (Springel et al.
2008; Crain et al. 2009). They use the popular “zoom-in” technique, with an increased mass
resolution to accurately sample the object of interest, and a lower mass resolution for the rest
of the volume. This is sufficient to accurately follow the gravitational interaction of the large-
scale environment with the objects of interest. This efficient technique is particularly interesting
in constrained CLUES simulations, where one can study in high resolution the formation and
evolution of Local-Group-like galaxies, with the large-scale environment defined by a constrained
realisation of the Local Universe (Gottlöber et al. 2010). The usual method for setting up these
zoomed simulations is to first perform the desired simulation with uniform coarse resolution.
Then, from the finished simulation at z = 0 the regions are selected where the resolution should
be increased. The particles corresponding to that region are identified in the initial conditions,
and then the resolution of the initial conditions is increased around the corresponding Lagrangian
patch to yield the multi-scale ICs for the final simulation run. It is also possible to create several
nested shells of decreasing resolution centered on the zoomed region, and several unconnected
zoomed regions within the box.

Different methods and numerical codes exist to generate this kind of high-resolution and
multi-scale initial conditions. The first method, introduced by Katz et al. (1994), consists of
generating a full box with the high resolution and then degrade it everywhere except for the
zoomed region. The advantage of this method is that one has full control over the numerical
errors. The degrading procedure can be performed either exact in real space (by averaging over
high-resolution cells) or exact in Fourier space (by a resampling of the Fourier modes). The
downside of this approach is that the numerical cost of performing FFTs on the full box with the
maximum resolution can be quite demanding. The recently developed code Ginnungagap

16

(Knollmann 2012, private communication) uses especially optimised FFTs to achieve resolutions
of up to N = 163843. The alternative approach is to generate local refinements on the coarse
initial conditions only where needed. This technique was developed by Bertschinger (2001).
His Grafic-2 code, as well as the parallelised version Mpgrafic (Prunet et al. 2008), starts
from the white noise field of the coarse initial conditions and then creates refinements that

16available at code.google.com/p/ginnungagap .
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are consistent with the coarse field, leading to a multi-scale white noise field. To perform the
colouring and thereby obtain the full multi-scale realisation with power spectrum P (k), they
combine local FFTs of different resolution to the multi-scale white noise field. This however adds
aliasing and oscillatory errors at the few percent level. The recently developed code Music by
Hahn & Abel (2011) improves on this method by convolving the white noise field with the real-
space correlation function instead, therefore extending the method of Pen (1997) to multi-scale
initial conditions. Their implementation virtually removes the numerical errors.

To extend these complex methods to constrained realisations by combining them with the
WF/CR algorithm in a self-consistent manner is a daunting task. Even for non-zoomed, uniform
initial conditions, the computational cost of carrying out the WF/CR operator on the whole grid
quickly explodes for large N . The ICeCoRe code is comparatively limited in this respect, since
we did not yet implement a distributed-memory parallelisation of the WF/CR operator; with the
currently present shared-memory parallelisation (OpenMP) it is not practical to generate initial
conditions with N > 10243. However we argue that one would not need to generate a CR with
higher resolution anyway. In all current applications of the CR method, the constraints are placed
either on the peculiar velocity/displacement field or on functionals of the smoothed density field,
and constrain the realisation only on scales above a few Mpc/h. Smaller scales are completely
dominated by the random component. The most efficient approach is therefore to create a CR
on a coarse grid, where the grid spacing does not have to be finer than 1 – 2 Mpc/h. Even for a
very large boxsize of L = 1000 Mpc/h, a CR with N > 10243 or even N = 5123 resolution would
be sufficient. The smaller scales (and additional local refinements) can then be added from a
random realisation by processing with another IC generating code. This technique is used for
CLUES simulations: for example, the initial conditions of BOX160 with L = 160 Mpc/h and
N = 10243 were generated by adding random small scales to a coarse CR with N = 2563.
This was done by first generating the coarse CR and a high-resolution RR, and then directly
replacing the numerical values of the large-scale Fourier modes of the RR with those of the CR.
However, their implementation of this procedure is comparatively limited in maximum resolution
(Gottlöber et al. 2010). Additionally, in practice it is very difficult to ensure that the coarse
CR and high-resolution RR are statistically fully consistent with each other and the procedure
does not introduce, for example, artefacts or discontinuities on the resuting combined grid in
either Fourier or real space. The ICeCoRe code presented in this work provides a more flexible
and powerful strategy. We use the fact that ICeCoRe generates ICs using the white noise field
w(x), which for any constrained realisation handled within ICeCoRe can be easily computed
by whitening (see Section 3.1.1). The white noise field wCR(x) of a CR completely defines the
full fields δCR and uCR for a given prior model P (k). Therefore, we can directly feed wCR(x) to
another code that can then generate high-resolution small scale modes and/or refinements on top
of the wCR(x) and from there create the full realisation of the initial conditions. This approach is
very natural, since several high-resolution IC generators, specifically the Grafic-2, Mpgrafic,

Music and Ginnungagap codes, start off from a coarse-grid white noise field anyway. By
limiting the communication between ICeCoRe and the follow-up code to the initial white noise
field, we also avoid any inconsistencies in the P (k), normalisation, or any other parameters
between the CR and the RR: the whole colouring procedure is performed self-consistently inside
the follow-up code. Of course, to be completely consistent with the original constraints ci, this
code should use the same P (k) and cosmological parameters as ICeCoRe.

The whole recipe then consists of creating δCR(x) on a uniform grid with ICeCoRe, whiten-
ing it to obtain wCR(x), passing this on to another code, and perform all subsequent steps like
up-sampling, placing refinements, and colouring there. We thoroughly and successfully tested
this procedure with the Music and Ginnungagap codes. Figure 3.7 shows the generation of



3.5 High-resolution, multi-scale, and baryonic initial conditions 75

incremental refinements with Ginnungagap starting from a very coarse N = 643 constrained
realisation produced with ICeCoRe. With the power and accuracy of these codes, we acknowl-
edge that this strategy is ideal to provide accurate initial conditions for the next generation of
high-resolution constrained simulations.

We close this chapter with a remark on other types of initial conditions. It is of special
interest to obtain ICs for the baryonic component of the universe as well. These are required for
hydrodynamic cosmological simulations modelling the formation of stars and galaxies. Depending
on the type of the simulation code, they consist of either SPH particles (Hernquist & Katz 1989)
or a grid sampling of the baryonic density, velocity and pressure distributions (Toro 1999). The
common approach is to assume that at the initial redshift zinit the baryon distribution is following
the dark matter distribution17, except that now the mean density is Ωb ρ̄ for baryons and Ωdm ρ̄
for the dark matter. Since Ωm = Ωdm + Ωb, the total matter distribution will be equal to δ(x).
ICeCoRe does not contain routines for directly generating such multi-phase ICs. To obtain them
from a constrained realisation generated with ICeCoRe, the same procedure based on the white
noise field can be used. We first generate wCR(x) with ICeCoRe which completely defines both
the dark matter and baryon ICs for a given power spectrum, Ωdm and Ωb. We then feed this into
an IC generator that is capable of producing the desired hydrodynamic ICs, such as Mpgrafic

and Music. An exception is the Ramses simulation code, which can initialise and start a
hydrodynamic simulation directly from the overdensity field δCR(x) generated by ICeCoRe if
no zoom-in regions are desired (we successfully tested this procedure as well). We also want to
point out that the white noise field wCR(x) completely defines the initial conditions if one wishes
to use different pre-initial conditions for the particle sampling, such as a glass distribution, or a
different method for the initial particle displacement, such as 2LPT (see Section 3.1.2).

17We note that this approach is not entirely accurate. Baryons decouple from the radiation field at z ≈ 1000,
i.e. the redshift of the CMB. As a result, for typical initial redshifts zinit, for which initial conditions are produced,
baryon density fluctuations do not yet exactly trace the dark matter distribution. The transfer function T (k) of
the baryonic component, and therefore also its initial power spectrum P (k), will in general be different from the
T (k) and P (k) of the dark matter due to the different underlying physics. See Yamamoto et al. (1998); Yoshida
et al. (2003); Hahn & Abel (2011).
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Figure 3.7: Refinements generated incrementally with the Ginnungagap code from a low-resolution
(643) constrained realisation of initial conditions at z = 30 created with ICeCoRe (top left). The full
box (left) has a boxsize of L = 64 Mpc/h. The zoom-in region (right) is 16 Mpc/h across.
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Chapter 4

Lagrangian reconstruction from
peculiar velocity data

In this chapter, we develop a method to reconstruct the cosmological displacement
field using the peculiar velocity of dark matter haloes at z = 0 as a proxy. We apply
a reverse Zeldovich approximation (RZA) to link the velocity and displacement fields
and to trace the haloes back to their initial position. We quantify the error of this
procedure depending on different properties of the haloes and their environment. We
then investigate how this method can be applied to realistic radial peculiar velocity
data. For this, we build a set of mock catalogues from the BOX160 simulation,
varying different observational limits like the distance error and the data volume
to quantify their impact. We reconstruct the three-dimensional velocity field using
the Wiener Filter and then apply the RZA. The results suggest that, compared
to the previous method used for CLUES simulations, the RZA leads to a much
better estimate of the initial positions of the haloes. The method performs very well
throughout most of the data volume and is especially efficient on isolated objects
found in less dense environments. However, the approximation fails in high-density
regions that are dominated by virial motions and accretion onto massive clusters.
This can be alleviated by an adequate grouping or selection of data points. The
displacements reconstructed by the RZA can be subsequently used for constraining
cosmological initial conditions. We also extend the RZA to second-order Lagrangian
perturbation theory (2LPT) and compare the results.

4.1 Reconstructing initial conditions

4.1.1 The general problem

As we saw in Chapter 2, according to the ΛCDM model the observable structure in the Universe
evolved from initial conditions in the form of a linear Gaussian random field through gravitational
collapse, which in general is a highly non-linear process. If we wish to perform a simulation that
resembles the Local Universe as much as possible, it is first necessary to obtain the underlying
initial conditions from the present-day state of the Local Universe. But even if we know this
state, i.e. the overdensity and velocity fields δ(r) and v(r) at present-day redshift z = 0, to very
high precision, we cannot just integrate the equations of motion back in time, such as by running
a cosmological N -body simulation backwards, to recover the initial conditions. Although gravity
is in principle invariant under time reversal, any such approach will fail even in the linear regime
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of structure formation. The linear theory of density perturbations has a growing mode D+(t)
and a decaying mode D−(t) (2.41). If we now reverse the time direction, the decaying mode
will instead rapidly increase and amplify any uncertainties in the data or even slight numerical
errors until they eventually dominate the solution. With such a procedure, the probability of
recovering the highly ordered state of homogeneous and almost uniform initial conditions will be
infinitely small.

In the non-linear regime of structure formation, i.e. on the scales of gravitationally collapsed
and virialised objects such as galaxy clusters, it is even more apparent that the memory of its
linear initial conditions will be irretrievably erased. If an object is accreted into such a cluster
at some earlier time and enters an orbit, from observing the present-day motion there is in
general no way to tell from which direction it came and how many orbits it has completed;
there are many different initial configurations possible that would evolve into an almost identical
result. We saw already in the simple single-wave case of the Zeldovich pancake collapse that
from a non-linearly evolved state it is not possible anymore to reconstruct the mapping between
Eulerian coordinates x at present time and the Lagrangian coordinates q that define the initial
conditions. This loss of information about the ordered initial state is essentially a manifestation
of the second law of thermodynamics. If one wishes to employ a scheme to reconstruct the linear
initial conditions, it should therefore be restricted to the growing mode D+ and to length scales
above the scale of shell-crossing, i.e. to the so-called quasi-linear regime. A very useful tool in this
context, exploited by many reconstruction methods in some way or the other, is the Zeldovich
approximation, which was already introduced in 2.2.6. For a particle sampling of δ it connects
the Lagrangian coordinates q of those particles (corresponding to the comoving positions in the
homogeneous initial state at z → ∞) to their comoving positions x(z) at a later redshift z via
the displacement field ψ,

x(z) = q +D+(z)ψ0(q) , (4.1)

naturally restricting itself to the growing mode D+ and implementing the simplification that
all tracers of the field move on straight paths with constant velocities. As we already saw, this
seemingly oversimplifying method works surprisingly well for scales above shell crossing.

4.1.2 Density-based methods

In the last two decades, different schemes have been designed to perform a reconstruction of
cosmological initial conditions from data at z = 0. Many rely on galaxy positions in redshift
space as an estimate of the underlying density field δ(r), while others use peculiar velocity data.
Not all of the schemes actually construct run-capable initial conditions that could be directly
fed into an N -body code; some recover just the initial power spectrum P (k) to some degree, for
example in order to reconstruct the BAO peak, while others generate an estimate of the initial
field smoothed on some scale. Many require input data that can not be realistically obtained
from observations, such as a complete samling of δ(r) inside some computational box. One of
the first such methods is the Gaussianisation procedure of Weinberg (1992), which assumes that
individual grid cells that sample δ(r) preserve their rank order during structure formation, and
then assigns to them density values consistent with a linear Gaussian random field while keeping
that order. While this procedure produces run-capable ICs by design, it does not attempt to
perform a Lagrangian reconstruction and could therefore only be useful on scales above that of
the cosmological displacement. A simple Lagrangian reconstruction scheme has been proposed
by Eisenstein et al. (2007), which computes the displacement field ψ from the density field
using the linear-theory equation δ = −∇ · ψ and then essentially to move a particle sampling
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of δ backwards using ψ. Because δ is highly non-linear, it has to be smoothed with a Gaussian
kernel of at least 10 Mpc/h, which still significantly overestimates ψ in regions with high δ due
to the large skewness of the non-linear density field even at that smoothing scale. This scheme
is useful to reconstruct the BAOs (Noh et al. 2009) but too crude for usable initial conditions.
Improvements on this method replace the linear theory equation with higher-order formulae
connecting δ and ∇ ·ψ (e.g. Falck et al. 2012).

Another method, the MAK reconstruction (Frisch et al. 2002; Brenier et al. 2003; Mo-
hayaee et al. 2003), exploits the Zeldovich approximation more directly. Assuming that all qi
and xi(z = 0) of a particle sampling are connected by straight lines ψi, and that the displacement
field is irrotational, it can be shown that there is a unique solution minimising the total action∑

i |ψ|2. This solution, given by the Monge-Ampère equation (Monge 1781; Ampère 1820), is a
good estimate of the actual displacement field on scales above orbit crossing. Mathematically
this is equivalent to solving the Monge-Kantorovich problem of optimal transport (Kantorovich
1942). Using methods like the auction algorithm of Bertsekas (1991), this unique solution can be
numerically computed. An alternative is the PIZA method (Croft & Gaztañaga 1997), giving a
good approximate solution to the same numerical problem by iteratively minimising the action
without the assumption of uniqueness. Wagner (2009) has shown that this approach yields better
results than the simpler linear theory method of Eisenstein et al. (2007). Lavaux et al. (2010)
have applied the MAK reconstruction to the 2MASS redshift survey, and in a second step, these
reconstructed displacements have been used by Lavaux (2010) to generate constrained cosmo-
logical initial conditions and run a constrained simulation. Their simulation recovers the main
features of the large-scale structure of the utilised observational data, such as the Virgo, Fornax,
Perseus-Pisces, Norma and Centaurus clusters and the Local Void, although the correlation of
the simulated velocity field with the observed radial peculiar velocity data is relatively poor.

Also building upon the least action principle are numerical action methods (NAM). Here,
the Zeldovich approximation is replaced by a more general description of gravity, and the orbits
are allowed to be curved. Then, for a set of galaxies, such orbits are computed iteratively, again
minimising the total action. This approach was pioneered by Peebles (1989), at first restricted
to the objects in the Local Group. Later, NAM was expanded to the Local Supercluster (Shaya
et al. 1995) and more recently to all-sky galaxy redshift surveys (Branchini et al. 2002; Phelps
et al. 2006). However, like many other methods not mentioned here, NAM is geared more towards
reconstructing the objects’ present-day velocities rather than their initial conditions, and to our
knowledge the full orbit reconstruction of a cosmological volume all the way into the linear regime
is not feasible with this method.

A very recent development is the method of Kitaura (2012), who first employ a Gaussiani-
sation step of the density field at z = 0, as traced by galaxy positions, by Hamitonian sampling
with a Gaussian-Poisson model. In the second step, they then use an iterative approach based
on a 2LPT structure formation model in order to recover an estimate of the initial density field
in the linear regime.

Several of these density-based methods can provide useful reconstructions of the initial con-
ditions down to scales of a few Mpc/h, if the input data consists of a complete sampling of the
density field δ(x) at z = 0, typically from a test N -body simulation. However, the situation
drastically worsens if one is presented realistic observational data. A fundamental problem of all
these methods is that they are strongly affected by observational biases (Lavaux et al. 2008),
such as redshift distortions, the poorly determined relation between mass and luminosity, edge
and finite-volume effects, and especially data incompleteness. Indeed, contributions to the dis-
placement field that come from outside of the data zone or from gaps in the data like the Zone of
Avoidance (ZoA), cannot be recovered by any of those methods. This is particularly unfortunate
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if one is interested in precisely those contributions, such as the large-scale flows of the Local
Universe and the yet unsolved problem of the peculiar velocity field convergence towards the
CMB dipole.

4.1.3 Velocity-based methods

The first method to reconstruct cosmological initial conditions using peculiar velocity data is the
time machine of Nusser & Dekel (1992). They first reconstruct the full three-dimensional velocity
field v(r) from the radial velocity data using the POTENT method (Bertschinger et al. 1990),
although other reconstruction procedures can be used as well, and derive from it the gravitational
potential using the linear theory equation. Assuming the Zeldovich approximation with no
orbit crossing, and an irrotational velocity field, they cast the Zeldovich equation into Eulerian
coordinates, yielding the Zeldovich-Bernoulli equation, and then integrate this back in time. This
gives a result that resembles the original initial conditions when smoothed on a scale of ∼ 10
Mpc/h. However, the method suffers from the non-linearity bias and systematically overestimates
overdensities and underestimates underdensities, so that no run-capable initial conditions can be
produced. Also, being an Eulerian method, it does not attempt a full Lagrangian reconstruction.

The method currently used in the CLUES project was already described in Chapter 3. Un-
der the assumption that the peculiar velocity field traced by the data is sufficiently close to the
linear velocity field at the initial conditions, the data is directly used as constraints to gener-
ate constrained initial conditions with the WF/CR algorithm. By using velocity data instead
of the density field, the non-linearity bias is significantly reduced, and the WF/CR algorithm
by design generates run-capable ICs that are a valid statistical realisation of the linear power
spectrum P (k). On the other hand, the result is only valid for scales larger than that of the
displacement field (∼ 10 Mpc/h), because no Lagrangian reconstruction is performed and the
velocity constraints for the ICs are placed at their observed z = 0 position.

It is clear that to fully exploit the possibilities of peculiar velocity data for constrained sim-
ulations, one should use them together with a Lagrangian reconstruction method. It is however
surprising that all methods of Lagrangian reconstruction, or actually any Gaussianisation pro-
cedure that goes beyond simple linear theory, have so far concentrated exclusively on density
fields (traced by galaxy redshift data or given by a simulation) as the input. In this chapter, we
present a novel self-consistent method for Lagrangian reconstruction from radial peculiar velocity
data, based on the Zeldovich approximation, that can be used to generate run-capable initial
conditions. The remainder of this chapter is organised as follows: in Section 4.2 we summarise
the method and test how well it can be applied to peculiar velocities at z = 0; in Section 4.3 we
then construct a set of mock radial velocity catalogues from a cosmological simulation, and use
them in Section 4.4 to extensively test the method and quantify the impact of different observa-
tional errors and limits. Finally, in Section 4.5 we extend the method to second-order Lagrangian
perturbation theory (2LPT) to see if further improvements on the reconstruction quality can be
obtained.

4.2 The Reverse Zeldovich Approximation

In order to incorporate a Lagrangian reconstruction scheme into the CLUES method, the proce-
dure can be divided in two parts. First, we reconstruct the displacement field at discrete positions
using the data, which is described here. Then, in an approach similar to Lavaux (2010), we use
these values of the displacement fields to generate run-capable constrained initial conditions and
produce constrained simulations, which will be discussed in the next chapter.
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4.2.1 Halo displacements and velocities

Let us assume again that we have a particle discretisation of the overdensity field δ(r, z) at some
redshift z, with particles at comoving positions x(z), which evolved from the homogeneous initial
conditions q by

x(z) = q +ψ(z) , (4.2)

where ψ(z) is the displacement field. The velocity of each particle can be described as u = dx/dt.
The remainder of this chapter is formulated in comoving coordinates, so that by “velocity”
we always mean the comoving peculiar velocity. Then, the Zeldovich approximation gives an
equation connecting the displacement field and the velocity field based on the assumption of
straight paths,

u(z) = ȧfψ(z) , (4.3)

where ψ(z) = D+(z)ψ0. At redshift z = 0, comoving and real-space coordinates coincide, and
further a = D+ = 1, so that ȧ = H0. The equations then reduce to

r = q +ψ , (4.4)
v(r) = H0fψ . (4.5)

Whenever we use r instead of x, and v instead of u (we drop the subscript “pec” for the
following), we mean the same quantities but in the special case of z = 0, where comoving
and proper coordinates coincide. By z = 0 the approximation will, in general, break down in
overdense regions, but we can assume it for now. Thinking in the other direction, this enables us
to obtain an estimate of the displacement field ψ and the Lagrangian position q, if the velocity
v is known. For the following, the main idea is that we are not interested in recovering the full
displacement field ψ(r) everywhere in the computational box; rather, it is enough to recover
it at the positions of discrete data points. We can then use these discrete displacement field
values and their reconstructed Lagrangian positions to constrain initial conditions, utilising the
WF/CR algorithm. This approach works well with the first-order Zeldovich approximation, since
it is completely local and can be performed at discrete locations, whereas higher-order extensions
depend on integrals over the computational volume.

The data points where velocity data is available observationally correspond to galaxies, each
of which is embedded in a dark matter halo. In order to test the validity of the Zeldovich
approximation for such a sampling of the velocity field at z = 0, we can thus apply it to
dark matter haloes in a cosmological simulation. For the remainder of this chapter we use
the BOX160 simulation already discussed before. Dark matter halo positions and velocities
have been identified from the z = 0 snapshot using the Ahf halo finder. Only haloes of mass
log(M/M�) ≥ 11.5 from the simulation are considered; we want to discard haloes that are either
too poorly resolved to obtain reasonable estimates on their peculiar velocity, or too small to host
galaxies that would be observable in a galaxy distance survey.

Figure 4.1 illustrates a typical medium-size halo from the simulation. The positions of par-
ticles within the virial radius Rvir that have been identified by Ahf are shown with black dots.
The halo has a position r, which is defined by Ahf as the position of the most bound particle,
and a velocity v, which is the mean velocity of all of the halo’s particles. In the initial conditions
at zinit = 30, the same particles, identified by their IDs, occupy the positions marked with the
blue dots. Most of them form a coherent patch in space, the protohalo18. This patch covers an

18Note that a small fraction of the particles at zinit is not connected to the protohalo patch, i.e. the Lagrangian
volume is disjoint. Those particles mostly ended up in the virialised halo after accretion or merging processes and
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Figure 4.1: RZA on a simulated dark matter halo identified at z = 0 with virial mass M = 7.9 ×
1012M�, virial radius Rvir = 410 kpc/h. Black dots: positions of all particles inside Rvir at z = 0, with
mean velocity v and the halo centre at position r. Blue dots: positions of the same particles in the
initial conditions at zinit = 30, with centre-of-mass at xinit (“initial position”). ψ (blue arrow): actual
displacement, with |ψ| = 8.36 Mpc/h. ψRZA (red arrow): RZA reconstructed displacement. xRZA

init : RZA
reconstructed initial position. dRZA (purple): the RZA error.

overdense region in the initial conditions that will later collapse to form the halo. If we neglect
the tiny initial displacements of the particles ψinit at the initial conditions by approximating
xinit ≈ q for each particle, then the volume Vinit occupied by the protohalo corresponds to the
Langrangian volume of the halo. This volume can be quite big, measuring about 10 Mpc/h
in diameter in this case or even more than 20 Mpc/h for a massive cluster. Since the initial
density distribution is almost uniform, this volume depends directly on the mass via Vinit ∝ M3.
We then define the “initial position” of the halo to be xinit, averaged over all particles, and the
displacement of the halo as ψ = r−xinit. It is important that those are now quantities averaged
over the whole halo, rather than taken for individual particles.

Let us assume now that this halo hosts a galaxy with an observable velocity v. We continue
to use the assumption introduced in Section 2.3 that the peculiar velocity of any observed galaxy
follows the mean peculiar velocity of its surrounding dark matter halo host. Then we can directly
use the velocities v(r) of the haloes in a simulation as a simple model for the observational
data. In what we call the Reverse Zeldovich Approximation (RZA), we can now simply reverse

subsequent relaxation that happened much later than zinit during the non-linear structure formation process. We
will not attempt to track this process for each individual halo and choose to not treat those particles separately,
although they may affect the estimation of xinit and ψ. We also add that while the halo in Figure 4.1 is the
most common case, there are some more extreme cases with more disjoint Lagrangian regions; the corresponding
haloes at z = 0 are mostly the result of violent major merger events. For a thorough study of protohaloes, see
Ludlow & Porciani (2011).
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equations 4.4 and 4.5 and estimate the displacement of a halo by

ψRZA =
v

H0f
, (4.6)

and the initial position of the halo by

xRZA
init = r − v

H0f
. (4.7)

Both xRZA
init and ψRZA could then be used to place a constraint for generating initial conditions.

(This procedure constitutes the second step of our algorithm and will be described in Chapter
5.) This reconstructed initial position will be, in general, at some distance dRZA from the actual
initial position, which we define to be the “RZA error” for this object,

dRZA = |xinit − xRZA
init | = |xinit − r +

v

H0f
| . (4.8)

The RZA error dRZA provides an easy way to quantify the scale length down to which the RZA
is valid for different kinds of haloes and environments. Such a study will be presented in the
next section.

4.2.2 RZA application to velocities at z = 0

The Zeldovich approximation breaks down when shell crossing occurs on the scales that we
consider, marking the transition to the non-linear phase of structure formation. We expect that
the RZA is not valid at all for haloes gravitationally bound to more massive haloes, i.e. orbiting,
infalling, and merging substructure, since the magnitude and direction of their velocities at z = 0
have been significantly altered by those processes. So in order to obtain a good estimate of the
displacement field, those objects should be discarded. Physically, this would mean to detect and
remove haloes that are gravitationally bound to more massive host objects, as well as ongoing
major mergers and possibly other scenarios. This is quite a complicated task in itself, so we use
a simplified scheme instead, which does not consider the underlying physics but works well for
our purpose. Rather than properly finding actual subhaloes (such as in e.g. Knollmann & Knebe
2009), we simply detect haloes that share at least one dark matter particle with another halo
and therefore presumably interact in some way or another, without investigating the nature of
this interaction. We then call a halo a “subhalo”, if it shares at least one dark matter particle
with another halo more massive than itself. Conversely, we call a halo a “main halo” if it shares
only particles with less massive haloes or with no other haloes at all. In this way, we divide
all the identified haloes in the simulation into two groups, subhaloes and main haloes, and keep
only main haloes for the RZA analysis. This simple and rather conservative scheme is very
effective in filtering out virial motions from the peculiar velocity data, since from clusters or
other gravitationally bound systems only the main object will be retained.

In observational data, it is likewise not always possible to determine whether some galaxies are
gravitationally bound to each other or otherwise involved in non-linear interactions. However, in
the case of observational data we need another scheme, since the surrounding dark matter haloes
are not directly observable. We hence introduce an alternative selection method that should also
work with galaxies: we determine the isolation radius Riso of a halo to be the distance to the
next more massive halo, or in other words, the radius within which a halo is the most massive;
then we discard all “non-isolated haloes” with Riso less than some critical value, and keep the
rest as “isolated haloes”. We choose Riso = 2.5 Mpc/h, which ensures that all isolated haloes



84 4 Lagrangian reconstruction from peculiar velocity data

will be well outside of each other’s virial radii. Thus, by construction, all isolated haloes are also
main haloes, and we will likewise filter out all virial motions from the data.

Figure 4.2 shows the absolute halo displacement |ψ| over the halo velocity |v| and the angle
between those vectors at z = 0 for different sets of haloes. As expected, subhaloes (green) contain
little to no information about their cosmological displacement from their momentary velocities at
z = 0. On the other hand, for the main haloes (red) and even more so the isolated haloes (blue)
the approximation holds reasonably well. In the low-velocity regime, which mostly corresponds
to the low-overdensity regime, the relation is satisfied nearly perfectly; further up the plots
reproduce the well-known tendency of the Zeldovich approximation to underestimate the total
velocities (e.g. Bouchet et al. 1995), since it neglects the additional gravitational acceleration and
deflection created by the dynamically changing density distribution. Nevertheless, the direction
of displacement is in general conserved very well in the velocity vector: for the majority of
identified haloes the angle between the two, α = acos( v·ψ

|v|·|ψ|), lies below 10◦.
After conducting this study, we learned that a similar investigation was already carried out

by Sheth & Diaferio (2001), who compared the peculiar velocities of haloes at z = 0 with their
initial velocities in the linear regime, instead of their displacement as we did here. They likewise
found that halo peculiar velocities at z = 0 retain the information from the initial conditions
relatively well, with deviations in the angle of motion of typically only 10◦, if one thoroughly
filters out virial motions. Our results are in very well agreement with theirs.

The remainder of this analysis concentrates on the main haloes, since we now established
that subhaloes should not be considered for RZA. This leaves us with a total of 29122 objects
with log(M/M�) ≥ 11.5 within the BOX160. We focus on the error dRZA of the RZA on the
initial halo position guess (equation 4.8), a practical quantity to estimate the validity of the
approximation. Figure 4.3 shows dRZA (blue) depending on several properties of the haloes,
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massive ones within a radius of Riso = 2.5 Mpc/h. Subhaloes (green): haloes that have been classified as
substructure of a more massive halo. Note the different scale for the subhaloes’ angles.



4.2 The Reverse Zeldovich Approximation 85

compared to the error we would make without any Lagrangian reconstruction (red), in which
case the error is simply the displacement |ψ| itself.

The analysis reveals that a majority of the main haloes have a surprisingly low dRZA: the
median is at 1.36 Mpc/h, the mean at 2.3 Mpc/h. This is well below the scale on which a quasi-
linear approximation is normally considered to be valid. Above all, it is a significant improvement
over the “0th order” approximation that the overdensity peaks traced by the haloes do not move
at all, leading to a mean error of 〈|ψ|〉 = 8.7 Mpc/h. The distribution of dRZA is highly skewed:
for most of the haloes, dRZA is within a few Mpc/h, but at the same time a small fraction of
objects has a very high dRZA. Because of this skewness, the median and the upper and lower
quartiles are shown, being more meaningful than the mean and the 1σ interval.

The top row of Figure 4.3 demonstrates the expected behaviour: the success of RZA depends
highly on the underlying overdensity. In higher-density regions, the non-linear enhancement of
peculiar velocities is stronger, and the regions are certainly shell-crossed, so that the Zeldovich
approximation is not an optimal description of the dynamics. Although we discarded the sub-
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Figure 4.3: Displacement error with RZA reconstruction (dRZA, blue) and without RZA reconstruction
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massive halo). For each bin, the point is placed at the median, and the bar shows the interval between
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haloes, still some shell crossing will occur for the main haloes in the overdense regions. The
dependence of dRZA on the total velocity is also strong because high velocities are associated
with dense environments. A couple hundred objects even have dRZA > |ψ|, meaning that RZA
completely fails there. They stick out in the top left panel of Figure 4.3 as the three last bins
with the highest density. All of those outliers are relatively low-mass objects travelling at high
velocities in the immediate vicinity of one of the most massive clusters in the box and thus expe-
riencing significant non-linear contributions to their peculiar velocities. They can be removed by
a scheme that is more rigorous than our shared-particles approach, such as the isolation criterion
with a high enough Riso. In order to catch those extreme outliers, it is thus sufficient to apply
this more rigorous scheme to the most dense environments only. In observational data, this
effectively means reducing rich galaxy clusters to a single data point, while keeping field galaxies
ungrouped. From the lower right panel it can be seen what happens if an additional cut in Riso
is applied instead to the whole set of main haloes: the retained objects (on the right side) will
have a significantly lower dRZA in average, but at the same time we would remove a substantial
fraction of data points.

The lower left panel reveals that there is only a very weak dependence of dRZA on the actual
mass of haloes. Furthermore, the displacement |ψ| shows no significant correlation with the mass
either. This echoes the weak dependence of halo peculiar velocities on their mass (cf. Section
2.3.4). A simulation with larger boxsize would provide better statistics on the most massive
objects, where a slight effect can be seen, but they are not a focus of this work.

From this theoretical study on identified haloes in a cosmological simulation it is clear that the
RZA can provide a reasonable estimate of the cosmological displacement and the initial position
for most of the objects. The primary interest is now how well this scheme can be applied to more
realistic observational data. This is discussed in the following section.

4.3 Mock catalogues

So far the study on RZA was a purely theoretical one, using a complete dark matter halo cat-
alogue extracted from a simulation at z = 0. The goal however is to eventually apply RZA to
observational peculiar velocities. We completely neglected so far that for any galaxy’s peculiar
velocity vpec, only the radial component vpec

r is observable, that there might be a significant
error on such measurements, and that they can be obtained only in a limited volume and with
a significant incompleteness. A powerful tool to reconstruct the full three-dimensional velocity
field from such data, the Wiener Filter, has been introduced in Chapter 3, along with its imple-
mentation in the ICeCoRe code. The idea presented here is to combine Wiener filtering on the
data, reconstructing the velocity field, with the RZA reconstruction.

First we generate realistic radial velocity mock catalogues, with different properties, from
simulation data. We can then feed this data into the ICeCoRe code as constraints and compute
for each mock the three-dimensional Wiener filter mean field vWF. We then use the vWF vector
at the position of each object as an estimate of its three-dimensional velocity, and via the RZA,
its displacement field ψRZA and initial position xRZA

init . We can then compare it to the original
ψ and xinit, which is known from the underlying simulation, to quantify how well the RZA
reconstruction from each mock performs, and compute the RZA error dRZA. The impact of
different observational errors implemented in the mocks and the overall performance of the
procedure can then be quantified.
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4.3.1 The BOX160 mock volume

As the “test universe” and the source for mock catalogues we choose again the BOX160 simulation.
It contains reproductions of the main structures of the Local Universe: The Virgo cluster within
the Local Supercluster, the Coma and Perseus-Pisces superclusters, the Hydra and Centaurus
superclusters, and a Great Attractor. The reproduction is reasonably well but not quite exact;
notably, the “Virgo” cluster of BOX160 with virial mass Mvir = 3.25 × 1014M�/h is somewhat
less massive than its observed counterpart (Mvir ≈ 7× 1014M�, Fouqué et al. 2001).

We choose a galaxy group identified in BOX160, which consists of three main haloes with
virial masses of 4.9, 6.0 and 6.7× 1011M�/h; we choose the middle one, calling it the simulated
“Milky Way”. The position of this halo, rMW, marks the fixed position of the mock observer. The
halo is at a distance of 17 Mpc/h to the simulated BOX160 “Virgo”, the next massive cluster.
This distance is somewhat larger than the actually observed distance from the Milky Way to the
centre of the Virgo Cluster (≈ 16 Mpc or 11 Mpc/h, Fouqué et al. 2001). However, this is not
important here, because we want to test the RZA reconstruction method itself, without explicitly
comparing the specific cosmography of the chosen mock volume to the observed Universe. In fact,
one could carry out this study on a completely random realisation; by choosing the BOX160, we
just make sure that the large-scale configuration of our chosen proving ground is not too different
from the observed Local Universe, so that we can later apply the method to observational data
without expecting completely different results. For now, we treat the BOX160 just as a realisation
of some “test universe”, without explicitly considering its specific cosmography.

To construct a mock catalogue, we cast a sphere with a fixed radius Rmax around rMW,
and consider only haloes within this sphere – the “observational volume”. The default value
is Rmax = 30 Mpc/h, which mimics a redshift cut at 3000 km/s, similar to the Cosmicflows-1
catalogue (Tully et al. 2009; Courtois et al. 2012). The largest mock volume used in this study
has Rmax = 60 Mpc/h, concurring with upcoming Cosmicflows data that will extend to 6000
km/s. Since rMW is located near the centre of the 160 Mpc/h simulation box, even at Rmax = 60
Mpc/h we are sufficiently far away from the box edge, so we will not suffer from the effects of
the periodic boundary conditions discussed in Section 3.3.3.

The standard choice of the sphere within 30 Mpc/h of the chosen MW candidate places the
BOX160 Virgo cluster and the thick, overdense filament surrounding it well inside this volume.
There, Virgo is the third object by mass after the Hydra and Centaurus clusters. The other
massive clusters are all outside of this sphere, which is only 2.8% of the total box volume. The
larger Rmax = 60 Mpc/h sphere, which encompasses to 22% of the total box, completely contains
the BOX160 Great Attractor, and touches the BOX160 Coma and Perseus-Pisces clusters at its
edge.

Figure 4.4 shows the distribution functions of the displacement field components ψx,y,z for
all main haloes in the whole box (left) and only inside the chosen Rmax = 30 Mpc/h subvolume
(right). In the whole simulation, each of the components is very close to a Gaussian distribution
with zero mean, i.e. there is no net bulk flow when averaging over the whole simulation volume.
The fact that the ψx, ψy, and ψz components have slightly different standard deviations is a
finite-volume effect typical for such a boxsize (cf. Section 3.1.3). It is interesting to note that
this sampling of ψ with main haloes is so close to Gaussian statistics, although technically it
introduces a sampling bias by tracing only the peaks of the overdensity field. This means that
data from such a main halo sampling provides an adequate input for Wiener Filter reconstruction.

On the other hand, the right side of Figure 4.4 in the relatively small mock volume reveals
that there is a significant net displacement of about 4 Mpc/h. Also, the mock volume as a whole



88 4 Lagrangian reconstruction from peculiar velocity data

is overdense compared to the box average, which is a well established fact by observations and
means that it is further non-linearily evolved than the average field. While the main haloes in
the box have a median displacement |ψ| of 8.7 Mpc/h and a median RZA error dRZA of 1.36
Mpc/h, for the 1243 main haloes inside the mock volume the median |ψ| is at 11.7 Mpc/h
and the median dRZA at 2.8 Mpc/h. The net overdensity also means that there is a net inflow
into the observational volume. It is interesting to see how the Wiener Filter reconstruction will
handle such a difficult case. In the Cosmicflows-1 data, H0 is chosen such that there is no net
inflow/outflow with respect to the data zone (Tully et al. 2008; Courtois et al. 2012; see also
section 3.2.2). This restriction may not be required in general. For the mock data, we keep the
value of h = 0.73 as given by the simulation parameters.

4.3.2 Generating mock data

The Ahf catalogue gives the positions r, velocities v, and virial masses M for all identified haloes
in the BOX160 simulation. Since the Ahf velocities are in comoving coordinates, the Hubble
flow is not present; comoving velocities at z = 0 correspond to the observed peculiar velocity
and comoving positions at z = 0 correspond to physical positions in real space. To generate a
mock radial velocity catalogue, we first shift these halo positions so that they are centered on
the mock observer, r− rMW → r. Recall that we consider only main haloes and only those with
mass log(M/M�) > 11.5. We then have for all haloes their distance r = |r| and their radial
velocity vr = v · r/r relative to rMW. For the mock datapoints, we consider only haloes within
r ≤ Rmax.

Observationally, radial peculiar velocities vpec
r and their errors are obtained from the measured

galaxy distance r, some estimate of the absolute distance error Δr, and the observed redshift
vobs
r via

vpec
r = vobs

r − r ·H0 , (4.9)
Δvpec

r = −Δr ·H0 . (4.10)
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To mimic these errors, we first take the known radial velocity of a halo from the Ahf catalogue,
vAHF
r , and the known distance rAHF to the mock observer. In the Cosmicflows-1 catalogue,

the different points come from different types of measurements with differently distributed errors
between 7 and 20 % (cf. Figure 2.1); here, we simplify the situation by assuming relative distance
errors δr that are Gaussian distributed with a constant rms, (δr)rms. If we choose a fixed value
for this rms accuracy of the distance, then the absolute mock distance error is generated via

Δrmock = G(0, 1) · (δr)rms · rAHF , (4.11)

where G(0,1) is a random number drawn from a Gaussian distribution with mean 0 and variance
1. Then, the radial velocity with the added error for the mock catalogue is computed as follows:

vmock
r = vAHF

r +Δvmock
r , (4.12)

Δvmock
r = −Δrmock ·H0 . (4.13)

These datapoints then enter the mock catalogue and form the set of input constraints ci for the
WF/CR algorithm. The data are of the radial velocity type with the direction vector êμ = r/r,
i.e. the radial component with respect to the mock observer is constrained.

In observational data, vobs
r is observed in the rest frame of the observer; for a reconstruction

of the cosmic displacement field, it is more sensible to transform these velocities to a larger rest
frame such as the rest frame with respect to the CMB dipole. For the mocks, we achieve a similar
setup by not considering the peculiar motion of the simulated MW halo where we placed the
mock observer. We rather take directly the velocities in the fixed rest frame of the simulation
box as computed by Ahf.

4.3.3 The mock catalogue set

From the BOX160 Ahf halo catalogue, we created a total of 20 different mock peculiar velocity
catalogues in order to test how the observational distance error, the amount and distribution of
data points, and the size of the observational volume are going to affect RZA reconstruction.
Table 4.1 summarises the basic parameters of all mocks. Each of the mocks is referred to by a
name encoding its properties. The first letter characterises the method of halo selection (A – E:
by mass cut; L,I,R by other criteria); the next two digits show the radius of the observational
volume Rmax in Mpc/h; and the last two digits are the rms distance error (δr)rms in percent.
The last two mock catalogues do not feature distance errors but instead contain 3D peculiar
velocity data, which will be discussed below. In this case the last two digits are 3D.

The “standard” catalogue is the C30_10, which we consider a “typical” sparse peculiar velocity
dataset. We take the procedure of considering only main haloes as a proxy for the “grouping”
performed on observational data. The C30_10 contains all main haloes above a mass cut Mmin =
1011.9M�/h within Rmax = 30 Mpc/h, yielding 588 radial velocity datapoints. This choice gives
the C30_10 similar properties to the grouped Cosmicflows-1 catalogue, but somewhat more
sparse19. The standard choice of 10% rms distance error is also similar to the observational
data: while the median rms distance error is somewhat higher at 13% on the individual galaxies
in Cosmicflows-1, this error reduces when the galaxies are arranged in groups. The C30_10 is
interesting because even if the data are improving in terms of the number of individual galaxy
distances, the number of galaxy groups in a radius of 30 Mpc/h is probably not going to vary
by much, nor is the accuracy on the most nearby distances.

19Choosing this sample was motivated by the fact that at the time we commenced this study, we had a
preliminary version of the Cosmicflows-1 available that contained exactly the same number of 588 galaxy groups
within 30 Mpc/h. The current catalogue is less sparse with 742 galaxy groups within the same volume.
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mock constraint Rmax (δr)rms mass cut halo se- M σNL
name type [Mpc/h] [logM/M�] lection [km/s]

C30_00 vr 30 0 % > 11.9 by mass 588 221
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

I
C30_05 vr 30 5 % > 11.9 by mass 588 228
C30_10 vr 30 10 % > 11.9 by mass 588 235
C30_15 vr 30 15 % > 11.9 by mass 588 242
C30_20 vr 30 20 % > 11.9 by mass 588 246

A30_10 vr 30 10 % > 12.3 by mass 282 242
⎫⎪⎪⎬
⎪⎪⎭ IIB30_10 vr 30 10 % > 12.1 by mass 413 235

D30_10 vr 30 10 % > 11.7 by mass 898 216
E30_10 vr 30 10 % > 11.5 by mass 1243 198

C40_10 vr 40 10 % > 11.9 by mass 1256 179
⎫⎬
⎭ IIIC50_10 vr 50 10 % > 11.9 by mass 2184 176

C60_10 vr 60 10 % > 11.9 by mass 3518 190

E40_10 vr 40 10 % > 11.5 by mass 2614 156
⎫⎬
⎭ IVE50_10 vr 50 10 % > 11.5 by mass 4701 154

E60_10 vr 60 10 % > 11.5 by mass 7637 165

L30_10 vr 30 10 % < 11.9 by mass 588 208
⎫⎬
⎭ VI30_10 vr 30 10 % — by isolation 588 180

R30_10 vr 30 10 % — random 588 219

C30_3D vx, vy, vz 30 0 % > 11.9 by mass 1764 183 – VI

E60_3D vx, vy, vz 60 0 % > 11.5 by mass 22911 158

Table 4.1: Overview over the performed Wiener Filter reconstructions of the z = 0 peculiar velocity
field on mock catalogues extracted from the BOX160 simulation. The data describes the mock catalogue
that was used as a set of constraints ci for the reconstruction. From left to right: an abbreviation used in
this chapter to refer to each mock and the reconstruction computed from it; whether only radial or full
3D velocity information was used for the constraints; the radius of the spherical data zone in Mpc/h; the
mock rms distance error that was added; the mass limit above which haloes are selected; the selection
method; the total number M of constraints (for vr this is equal to the number of data points); and the
σNL parameter that was used for each reconstruction to enforce χ2/dof = 1.
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With the C30_10 mock as the starting point, we vary the rms distance error in five steps
between none and 20%, yielding the mocks C30_00 through C30_20. We also vary the mass
cut from Mmin = 1012.3M�/h to the minimum of 1011.5M�/h in five steps, yielding the mocks
A30_10 through E30_10. A30_10, the sparsest sample, has the fewest data points of all mocks
with only 282 radial velocities. We also construct mocks with larger observational volumes
around rMW, varying Rmax from 30 to 60 Mpc/h in four steps, for two different mass cuts,
yielding the mocks C30_10 through C60_10 and E30_10 through E60_10. Although the RZA
method itself places no restrictions on the allowed size of the data volume, we do not consider
Rmax > 60 Mpc/h here in order to avoid problems with the periodic boundary conditions of the
box. The E60_10 mock has the most data points with 7637 radial velocities. We estimate that
this mock is comparable to the upcoming Cosmicflows-2 catalogue in terms of data quality.

Next, we want to explore how other halo selection criteria rather than a mass cut will affect
the reconstruction. Regarding again the C30_10 mock as a “standard” one, we fix the amount
of data points constant at 588, as well as the distance error and the data volume. Then, for
the L30_10 mock, we take the 588 next most massive points after the ones in C30_10, so that
they all have a mass below 1011.9M�/h, to check the reconstruction quality if only less massive
objects are considered. For the I30_10 mock, we consider the 588 most isolated objects (those
with Riso > 2.1 Mpc/h) leading to a yet different sampling of the same volume. In the last
variation of data selection, we randomly pick 588 points from all main haloes in the data volume,
regardless of their mass or other properties, yielding the R30_10 mock. Randomly picking haloes
mimicks the observational data of spiral galaxy peculiar velocities obtained with the Tully-Fisher
method, which are not located at the highest density peaks of the galaxy distribution (as the
haloes selected by mass), but are selected on the random basis of their inclination on the sky
being greater than 45 degrees.

Finally, we want to quantify by how much the reconstruction quality is degraded by the fact
that only the radial component vr is observable, rather than the full three-dimensional velocity
vector v. This is interesting, since as we mentioned in Chapter 3, the transverse peculiar velocities
of galaxies may become accessible to observations in the future (Nusser et al. 2012). We construct
the mock C30_3D, which has its data points at the same positions as the C30_00 mock, but for
each object it lists all three components vx, vy, vz of the velocity instead of vr. The last mock,
E60_3D, is the most extreme case, containing three-dimensional velocities in the largest volume
with the lowest mass cut, which makes 3 · 7637 = 22911 data points in total. Although such
a mock has little meaning when compared to current observational data, we use it to test the
capability of the ICeCoRe code to yield a significantly better reconstruction in the case of a
very large number of high-quality constraints.

Figure 4.5 shows the peculiar velocity datapoints contained in the mocks within Rmax = 30
Mpc/h as an Aitoff projection centred on the mock observer (without the mock errors). In the
dense regions around the massive clusters, there is a lot of variance in the velocities due to the
non-linear multistreaming from orbit crossing. Outside of those regions, the flow is quite smooth,
making the large coherence length of peculiar velocities apparent. Near the centre of the Aitoff
map, there is a patch of galaxies coherently moving away from the observer towards the negative
x direction at significant velocities. This is the large-scale flow towards the Great Attractor (GA)
of BOX160, which extends into the data zone, although the GA itself is more than 20 Mpc/h
outwards from the data zone boundary. Above that region, there is a Local Void (although not
as pronounced as in the observed Local Universe) that is devoid of objects. There are several
other underdense regions that are only mapped by relatively low-mass objects below the C mass
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Figure 4.5: Aitoff projection map of the BOX160 mock catalogue radial velocities vr relative to the
mock observer inside a sphere of radius 30 Mpc/h. The labels indicate the three most prominent objects
in the data zone (simulated Hydra, Centaurus, Virgo clusters) and the directions of the x, y, z axes.
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cut (11.9). Therefore, in the C mocks, there will be huge gaps in the mock volume not mapped
by any objects. This means that the mocks based on mass cuts will show a galaxy distribution
strongly clustered around the denser regions, while mocks with mass-independent halo selection
(L, I, R) will have a more homogeneous distribution, providing a more complete sampling of the
mock sky while not actually containing a larger number of data points.

Of course, there are more observational features that could be incorporated in the mocks.
For example, one could add a Zone of Avoidance. However, it has been already established that
the Wiener Filter mean field successfully extrapolates into such unsampled regions and handles
datasets well that are sparse in an inhomogeneous and/or anisotropic way (Courtois et al.
2012). We already exploit this behaviour by using sparse mock catalogues with a very limited
observational volume and huge gaps in the data in underdense regions; adding an additional gap
will not fundamentally change the situation. One could also think of mimicking the increase of
incompleteness with distance, or modelling the different galaxy types and measurement methods
in more detail. For this, it would be necessary to populate the haloes with galaxies of different
morphologies and luminosities by setting up a full semianalytic model on top of the N -body
simulation. This would make the situation unnecessary complex without additional insight into
the validity of the RZA and our method of generating constrained initial conditions.

4.4 RZA on Wiener Filter reconstructions

Having generated the different mock catalogues, it is now possible to reconstruct the three-
dimensional velocity field with the Wiener Filter and use it as a proxy for the displacement field
to perform the RZA reconstruction.

4.4.1 Reconstruction details

Since for RZA we are interested in vWF only at the discrete positions of the data, we can either
compute the full Wiener mean field first and then interpolate the result on the desired positions,
or solve for the Wiener filter solely on those discrete positions. The second version is computa-
tionally faster and avoids interpolation errors; on the other hand, it does not provide the fully
sampled mean field if one chooses to analyse it as well. We found that if we keep the resolution
of the simulation box (L = 160 Mpc/h; N = 2563) for the full-box WF reconstruction, interpo-
lation errors on the peculiar velocity field are negligible, so we reconstruct the full field first. To
filter out non-linear contributions, we choose σNL for each reconstruction such that χ2/dof = 1.
For the power spectrum, we use the original WMAP3 P (k) of the BOX160 simulation.

For the ICeCoRe runs, we choose the analytic correlator, but cut the Fourier integrals for
the correlations function at the fundamental frequency of the box, kmin = kL = 2π/L, since we
know that larger modes are not present within BOX160. The grid correlator would be strictly
consistent with the linear correlation function of the periodic cubic grid; on the other hand,
this way we are using the same correlator for the mock data as later for the observational data,
except the kmin cut. Test reconstructions with the grid correlator on the same mocks revealed no
significant differences for this choice of the observational volume. This is expected as long as the
volume is chosen such that periodic boundary conditions are not important and the constraints
probe only scales larger than the box resolution, so that the Nyquist frequency kNy is not relevant.

4.4.2 Comparison

Figure 4.6 shows the reconstructed velocity field vWF(r) compared to the original field v(r) for
all three components vx, vy, vz for the C30_10 reconstruction inside the Rmax = 30 Mpc/h mock
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of the observer, using the C30_10 mock for the reconstruction. Top row: Without smoothing. Bottom
row: with 5 Mpc/h Gaussian smoothing on both fields. The solid line shows a linear regression fit
vWF
i = β · vorig

i + ε; the dashed line would be the ideal result vWF
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i .

volume. The upper half of Figure 4.6 is a scatter plot of all the grid cells inside this sphere,
together with a linear regression fit showing the resulting slope (solid) versus the ideal slope
of 1 (dashed). Averaged over all three components i = x, y, z, the rms error per component is√

〈(vWF
i (r)− vi(r)

)2〉 = 172 km/s, the slope is β = 0.67, and the Pearson correlation coefficient
is 0.91. The y offset ε of the linear fit is negligibly small. The slope flattening is due to the
typical filtering bias of the WF: where the field is underdetermined by the data, the result will
tend towards zero. The filtering bias is discussed in more detail in Section 4.4.7.

The lower half shows a scatter plot of the same grids after both have been smoothed with a 5
Mpc/h Gaussian filter. On this smoothing scale, the reconstruction is very accurate, despite that
only 588 data points with significant errors have been used for the reconstruction input: the rms
error is just 63 km/s, the slope is 0.92, and the correlation factor is 0.977. This reproduces the
known result that on scales above ∼ 5 Mpc/h the Wiener Filter yields an excellent reconstruction
of the three-dimensional velocity field from sparse and noisy radial velocity data. The protruding
or arc-shaped artefacts in the scatter plots are caused by specific local features of the flow
structure that the WF failed to reproduce.

However, more interesting for the RZA is a comparison of the Wiener Filter results with the
halo displacements. Following the RZA approach, we assume that the WF velocity field is an
estimate of the displacement field, ψWF = vWF/H0f . We compare the displacements ψ of all
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main haloes within the Rmax = 30 Mpc/h mock volume with the values of the reconstructed
displacement field ψWF at the positions of those haloes. Such a scatter plot is given in Figure
4.7 for the C30_10 reconstruction. Here, the average rms error per component is 4.17 Mpc/h,
the slope is 0.64, and the correlation factor is 0.82. The correlation is poorer because now, the
RZA error (the intrinsic scatter between ψ and v due to non-linearity) is added on top of the
error from the imperfect WF reconstruction. Still, we obtain a reasonable correlation.

We now perform the same procedure with all 20 mocks. The data points are fed to ICeCoRe

as input, the appropriate σNL is determined (cf. Table 4.1), and the Wiener Filter mean field
for velocity/displacement is computed. Considering only the result inside the 30 Mpc/h sphere,
the WF velocity field and halo displacements are then compared with the original simulation.
This is fitted with a linear regression line. However it would be tedious to handle such a huge
amount of scatter plots. To present the results in a more compact way, we concatenate all three
cartesian components for the linear regression and consider the resulting slope and rms error
per component. Figure 4.8 shows the slope (black) and rms error (blue) for the velocity field,
vWF(r) vs. v(r) (dashed lines, open symbols), and the halo displacements ψWF vs. ψ (solid
lines, filled symbols). The velocity rms has been converted to Mpc/h for comparison through
division by the factor H0f .

The different panels in Figure 4.8 divide the mock reconstructions into groups by the different
mock observational parameters that are varied. The roman numerals correspond to the mock
groups in Table 4.1. Panel I shows the dependance of the reconstruction quality on the rms
distance error; panel II varies the mass cut (and therefore the amount of data points) for the
halo mass-selected mocks; panel III shows the effect of increasing the data volume beyond the
default Rmax = 30 Mpc/h for the default mass cut at 11.9; panel IV repeats the same for lower
mass cut mocks at 11.5; panel V shows mocks with different selection methods while keeping the
number of datapoints constant; finally, panel VI compares radial with three-dimensional data.

4.4.3 Error sources of RZA reconstruction

In general, the slope β is a measure for how well the underlying field is constrained by the data.
Ideally it should be 1; the WF filtering bias reduces it to a lower value. The rms error is a
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measure for how well the WF result reproduces the “true” solution for the velocity field and the
halo displacements, respectively.

Generally, for the velocity, the reconstruction can become almost arbitrarily accurate if we
sufficiently increase the data quality. On the other hand, the halo displacements (and therefore
the RZA reconstruction) are dominated by the RZA error rather than by the WF reconstruction
quality; varying the mock properties has a lesser effect. There is a “wall” at around 3.5 Mpc/h
rms error per component that cannot be penetrated even with the best-quality mocks. This
is the scale at which, averaged over the mock volume, the ψ and v fields themselves disagree,
because the quasi-linear assumption is not valid on these scales. Of course, this disagreement
varies from region to region, as shown in the analysis in Chapter 4.2.2.

As expected, the distance errors and the mass cut both have a significant influence on the
quality of the reconstruction (groups I and II). The latter seems to be more important: starting
from the C30_10 mock, a higher improvement is obtained when the number of data points is
increased than if the distance errors are decreased. This is interesting when considering the
upcoming observational data, where the sparseness of the data will be reduced more effectively
than the observational distance errors compared to present observations. The next lower mass
cut mock D30_10 with 10% distance errors but 898 radial velocities instead of 588 gives a better
reconstruction than the mock that keeps the 588 points but has no distance errors at all. This
is remarkable because an rms error of 10% in distance at a distance of 30 Mpc/h leads to a rms
error of 300 km/s on the radial velocities, and because of the Gaussian distance error distribution,
some velocities in the mocks have error bars up to 100% and higher. It demonstrates that due
to their coherence on large scales, peculiar velocities are an excellent input data source for the
WF despite the large errors: even a few coherent data points with 100% errors and separated by
a few Mpc/h represent a strong measurement of the local velocity field.

Increasing the data volume (groups III and IV) has a much lesser effect. This is expected
for peculiar velocity data as opposed to redshift data, where a larger data volume would lead
to a significantly better overall result. If we increase the total volume of the mock catalogue
out to a distance of 60 Mpc/h, the improvement on the reconstruction inside the 30 Mpc/h is
minimal. There is some effect for the high 11.9 mass cut mocks, since the additional information
partly compensates for the sparse samling. But for the low mass cut mocks at 11.5 there is
no significant improvement, although the E60_10 mock contains already 7637 data points in
total. This reflects a known favourable property of the WF: it successfully reconstructs the tidal
component of the velocity and displacement fields, i.e. the part that is induced by the mass
distribution outside the data zone (e.g. Courtois et al. 2012). This also includes the dipole term,
i.e. the bulk motion of the data volume due to the external field, which in our case is significant.
Adding more detail on this outside field does not significantly change the tidal component on the
inner volume. The RZA reconstruction with WF can therefore work with small data volumes
compared to density-based methods. Any such method is by design not able to reconstruct the
tidal component: information outside of the data zone cannot be inferred from galaxy positions
alone. A density-based Lagrangian reconstruction from a catalogue volume of only 30 Mpc/h
would therefore be of little use. On the other hand, Lagrangian reconstruction from peculiar
velocities are an ideal tool to study the tidal flows on large scales.

Panel V in Figure 4.8 compares mocks created from different data selection criteria while
keeping the number of data points constant at 588 inside 30 Mpc/h. The mass cut C, which
picks the 588 most massive objects, is compared against selecting lower-mass objects (L), the most
isolated (I) and randomly picked (R) objects. Any of the alternative selection methods works
better than selecting by mass. Mass selection is biased towards a higher sampling the overdense
regions and a poorer sampling of the less dense regions. Any other selection will sample the
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less dense regions more completely and therefore conserve more information about the large-
scale modes of the cosmic matter distribution. Additionally, a more homogeneous sampling not
biased towards the denser regions will be less affected by the non-linear enhancement bias of
the peculiar velocity field. Therefore, as expected, such a sampling creates a WF solution that
is better constrained and has a lower rms error. This detail is interesting in the context of
observational data. It confirms the prediction we made in Section 2.3.5, that a galaxy sample
more evenly distributed around the sky and sufficiently probing less dense regions would lead to
better reconstrutions than a galaxy sample preferentially located in dense regions. It suggests
that galaxy distance samples of spiral galaxies (such as those derived from the Tully-Fisher
relation) may be more ideal for RZA reconstruction than those primarily containing early types,
which are biased towards massive surrounding haloes and dense environments.

Finally, Group VI addresses the question how much of the information is missed due to the
fact that only radial components of the velocity are observable. For this sake, we constructed
the C30_3D mock, pretending that the full 3D velocity vector would be accessible in some way.
It has three-dimensional velocity data on the usual 588 haloes inside 30 Mpc/h. In C30_3D,
there are no added errors because it has little meaning to try to derive mock 3D velocity errors
from some distance error. We therefore compare it to C30_00, which has no errors either. As
expected, the increase in reconstruction quality for the v field is dramatic if the full 3D data
is used as input. For the WF solution of the velocity field, the contribution to the total rms
scatter due to the limitation to radial components is over 100 km/s and thus larger than any
other individual error source. On the other hand, for the displacement reconstruction, removing
this additional scatter has less effect, because the total scatter is dominated by the RZA error.
The filtering bias is almost completely removed by adding three-dimensional information to the
data, but the rms error on the displacement components is reduced only from 4.0 to 3.7 Mpc/h.
This means that even for very high-quality data, the RZA estimate of the displacement ψ is still
significantly limited in precision by the disagreement between the large-scale velocity field and
ψ due to non-linear motions that do not follow the Zeldovich approximation.

4.4.4 RZA error distribution

To obtain a more detailed view at the reconstruction quality, we consider the displacement error
dRZA for the haloes inside the mock volume. Figure 4.9 shows the distribution of dRZA for
different mocks. Recall that dRZA is computed for all haloes inside the mock volume, regardless
of whether they were part of the particular mock from which a reconstruction was computed, so
that we can directly compare the overall reconstruction quality from all mocks.

Compared to the distribution of halo position error without RZA reconstruction (black dashed
line), the RZA gives a significant improvement. While half of the haloes have an xinit position
error above 11 Mpc/h without RZA, this is the case for only around 10% of the haloes with
RZA reconstruction. Used as constraints for initial conditions, this leads to much more exact
constrained simulations, as we will see in Chapter 5. The distribution of course depends on the
quality of the mocks. Typically, the reconstructions from radial velocities have median dRZA

values around 5 Mpc/h and a skewed dRZA distribution. For comparison we plot also the “ideal”
RZA (solid black), directly using all 3D halo velocities with equations (4.6) and (4.7). As already
mentioned, this gives a median dRZA of 2.8 Mpc/h inside the mock volume and a similarly skewed
dRZA distribution. The mock groups I and II are represented in red lines in the left and right
panels of Figure 4.9, respectively.

The trend of degrading quality with increasing distance errors and decreasing number of
datapoints is repeated here. However, the differences between the different dRZA distributions
do not seem very huge considering that the respective quality of the mocks differ from each
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other considerably: the distance errors are varied between none and 20%, and the amount of
datapoints inside the same volume between 282 and 1243. Comparing the mass cuts in the right
panel, there is a hint that the reconstruction quality starts to saturate: the difference between
the D30_10 and E30_10 catalogues is relatively small. Indeed, if the data quality increases,
the overall reconstruction error is more dominated by the RZA error. The RZA reconstruction
quality would thus not significantly increase if we add data mapping scales below the dRZA scale.
This scale changes locally but it is 3.5 Mpc/h per cartesian component on average. Therefore,
about one constraint per (3.5 Mpc/h)3 on average would provide a sufficient data density.

The blue line in the right panel uses the I30_10 mock, with 588 points like the C30_10 mock
(red long dashed) but more evenly distributed, which shows a noticeable improvement in the
dRZA distribution. The green line in the left panel uses the three-dimensional data of C30_3D.
The distribution is much closer to the “ideal RZA” than all the radial velocity mocks. We can
derive from this that for RZA reconstruction, actually more accuracy is lost by having only the
radial component than suggested by the rms errors.

Figure 4.10 is conceptually similar to Figure 4.3, but comparing different reconstructions.
The dRZA error is binned against the underlying density and the absolute velocity. The standard
C30_10 mock (red) is contrasted with the I30_00 mock having a more uniform data distribution
(green), the E30_10 mock having about twice the amount of data points (blue), and the C30_00
mock having no data errors (purple). “Ideal” RZA (black) and no RZA (dashed black) is included
for comparison. One can again see the main result: no matter how the data quality is in detail,
the RZA reconstruction greatly reduces the distance errors for most of the objects in the data
compared with no Lagrangian reconstruction of their initial positions (dashed black). The left
panel of Figure 4.10 highlights again the strong dependance of dRZA on the underlying density.
For the displacement field in underdense regions, it seems particularly important to have a more
homogeneous sampling of the data, mapping this region well and with a distance error as low
as possible: the C30_10 mock performs noticeably worse here than both the more homogeneous
isolated halo mock I30_10 and the mock C30_00 with no errors. Conversely, in high-density
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regions, dRZA is high and errors on the individual velocities have little influence, since those
velocities do not track the displacement field well due to the high non-linearity. In this case,
it seems better to have more data points in general: the E30_10 mock performs somewhat
better than the others. Fed with more data, the WF algorithm has more chance to filter out
the noise. It is interesing that in the densest bin (around 1.5 smoothed density), the WF result
from E30_10 performs even better than the theroretical “ideal” RZA. This can be understood
from the properties of WF as a linear filter. The true halo velocities, even when perfectly known,
are a bad tracer of the displacement field in the densest regions. But if the surrounding field is
mapped sufficiently well, the WF can create a solution for the displacement field that is closer to
the more linear actual displacements. The difference is quite small though. We can argue that
when there is a subsequent step of Wiener filtering on the velocity data, rigorously identifying
and removing substructure is less critical than it appeared in Section 4.2. More important is the
insight that, since reconstruction quality from the different mocks does not differ as much as one
could expect, the procedure of Wiener filtering and subsequent RZA reconstruction is restricted
more by the limitation of the scheme itself because of the underlying non-linearity of the system,
and to a lesser degree by the actual data quality.

4.4.5 Radial vs. three-dimensional data

It is worth to analyse in more detail the impact of having only constraints on the radial velocity
component. The dRZA distribution function revealed that this fundamental limitation for RZA
may be more significant than suggested by just the overall reconstruction rms error. Let us
consider the “viewing angle” γ of a single peculiar velocity observation,

γ = acos
( |v · r|
|v| · |r|

)
, (4.14)

which is the angle between the full three-dimensional velocity vector of an object and its observed
radial component. At γ = 0◦, vr will have the complete information on an object’s peculiar
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velocity, while at γ = 90◦, the object’s motion will be completely obscured. The majority
of objects in the 30 Mpc/h mock volumes have, in this sense, “unfavourable” viewing angles:
γ > 45◦ for 67% of the haloes. We can individually compare the reconstruction quality for ψWF

for objects depending on their viewing angle to quantify its impact.
Figure 4.11 shows a binning of dRZA over γ. Along with the models in Figure 4.10, it also

includes the C30_3D mock reconstruction, which has the same datapoints as C30_00, but with
all three components, and is therefore unbiased with respect to γ. In comparison with this,
for the radial velocity reconstructions (coloured bars) there is a tendency of higher dRZA with
increasing γ. This is expected: it is more difficult for the WF to reconstruct the displacement
field at a position where the data has a high γ. It is particularly instructive to compare the 30◦

– 45◦ bin with the 75◦ – 90◦ bin. In both, the unbiased ideal RZA and C30_3D have similar
values, but the radial velocity reconstructions (coloured) show a higher dRZA scatter in the 75◦

– 90◦ bin. This additional scatter is however only at the order of 1 – 2 Mpc/h. This means that
the WF yields a reasonable reconstruction for ψWF even for datapoints at unfavourable viewing
angles.

We can see the net effect of radial vs. 3D data by directly comparing C30_3D to C30_00
(purple). Then, the effect of having only radial data can be decomposed into an additional local
error at the most affected positions (high γ), causing some of the dRZA values to be significantly
higher (more skewed dRZA distribution), and an error affecting the reconstruction as a whole by
increasing dRZA by 1 – 1.5 Mpc/h on average. These errors are remarkably small compared to how
much information on the full velocity vector is obscured by the radial limitation. Therefore we
can state that the WF + RZA procedure performs well on radial velocity data. Most importantly,
from Figure 4.11 it is clear that the radial limitation is not the dominating error source of RZA
reconstruction.

Finally, we want to discuss the supplementary E60_3D mock. This mock was constructed to
contain the maximum amount of input data that can be retrieved from the AHF catalogue. It
contains the full three-dimensional velocity vectors of all haloes with log(M/M�) ≥ 11.5 within
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60 Mpc/h of rMW, which amounts to 22911 constraints in total. While such a mock has little
physical meaning compared to realistic data, it is useful to test the performance of the WF when
presented with a very high-quality sampling of the peculiar velocity field at z = 0.

The E60_3D yields a reconstruction that is, as expected, by far the most accurate of all
mocks. The velocity field reconstruction vWF has a slope of 1.001, an rms error of only 66 km/s
and a correlation factor of 0.984 when comparing it to the original v without smoothing. Because
of the very high data quality, the filtering bias is completely removed: the slope is almost exactly
1 (using σNL = 158 km/s). For the displacement field, it yields a slope of 0.998, an rms error
of 3.67 Mpc/h and a correlation factor of 0.890. This error is produced exclusively by the RZA
errors of the sample and the WF filtering of the velocities, since no other error sources are present,
and again with no filtering bias. The computation is also exceptionally fast: the procedure of
computing and inverting the 22911×22911 matrix 〈cicj〉 and computing the ηi correlation vector
took just 13 minutes on a consumer-grade laptop (2.4 GHz Intel Core 2 Duo) to complete. For
comparison, the same procedure for 588 constraints (like in the standard C30_10 mock) takes
just a few seconds. We acknowledge that the ICeCoRe code is not only fast in computing the
correlation matrix (as we already saw in Section 3.4), but we can also observe a steady increase
in reconstruction quality if the amount of data is increased. This proves that the procedure is
numerically stable. During numerical tests, we successfully tested datasets with up to 50 000
constraints, and it is possible to handle more if one has enough memory to store the correlation
matrix for the inversion.
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4.4.6 The reconstructed displacement field

This section analyses in more detail the quality of the halo displacement reconstruction and
how its error dRZA varies locally. Figure 4.12 shows the original halo displacements ψ of a
representative slice of the E30_10 mock (left side) alongside with the reconstructed displacements
ψWF. The prominent feature is the “Local Supercluster” of BOX160, a very thick filament with
the Virgo Cluster at its centre. The displacement field is governed by infall on this region only
in its immediate vicinity, on a scale of 10 Mpc/h or so, while the flow at larger distances from it
shows a more complicated pattern. This is remarkably similar to the situation in the observed
Local Universe, as pointed out by Courtois et al. (2012). On the left side, the field is dominated
by a large-scale flow towards the Hydra/Norma/Centaurus region, which itself lies outside of the
data zone.

The reconstruction map (right side) reveals a good agreement with the actual displacement
field. The large-scale features of the displacement field are successfully recovered by the WF
+ RZA procedure. The reconstruction also gives a reasonable estimate for the initial positions
xinit of most haloes (the non-dotted ends of the displacement lines). The RZA error dRZA is
highlighted by colour for each halo. The map illustrates not only the generally good agreement
of ψWF with ψ, but also some typical situations where the reconstruction fails, resulting in
a high dRZA. Most striking is the already established connection of higher dRZA with higher
underlying density. Whereas most of the objects outside of the Local Supercluster have dRZA

below 3 Mpc/h (blue points), most of the objects inside have very high dRZA – their assembly
history can not be recovered from their observed orbits at z = 0.

As already established, in high-density regions the motion of objects does no longer follow the
Zeldovich approximation; the actual travelled paths are curved. Even outside virialised clusters
the simulation at z = 0 can have paths strongly deviating from the quasilinear assumption, for
example haloes coming from very different directions but being very close together and with a
similar v vector at z = 0. In all those cases, information about the initial positions xinit where
the haloes originated are erased. The initial velocity vector, an imprint of the initial conditions, is
“overwritten” with the mean flow by advection and merging processes, or with virial motion when
accreted into clusters. Instead of the correct displacement the WF result will then recover the
mean large-scale flow which has a smoother appearance. For this reason, smoothing of the result
to remove the errors from small scales, in the way it is done for other reconstruction problems,
cannot be applied here. The situation can not be resolved by the simple statement that the
WF would yield a wrong result on scales below some critical scale of a few Mpc/h. If one first
constructs the full ψWF(r) field and then smooths it on a scale of a few Mpc/h before extracting
individual reconstructed halo displacements, the result will be even more over-smoothed and the
errors dRZA will be even higher than before: it would be a waste of reconstructed details without
adding information. It is thus best to use the ψWF without any additional smoothing/filtering
procedures, despite the sometimes high errors.

An interesting special case of the general curved-path problem is the situation for filaments.
A good specimen is the filament in vertical (Y) direction above the Virgo Cluster in Figure 4.12.
The analysis of Sousbie et al. (2008) draws a picture of the general pattern of filament evolution
that consists, from the viewpoint of an individual halo, of two distinct stages. The accretion of
haloes onto a filament generally happens orthogonally to the filament; once inside, the haloes
change direction and move along the filament, following the ‘highway’ corresponding to the mean
flow. This change in direction represents an example of non-linear structure formation (i.e. it
deviates significantly from the straight path predicted by the Zeldovich approximation). The
total displacement of these haloes from the initial conditions, displayed by the lines in Figure
4.12 (left side), is the net result of both stages, the accretion and the subsequent laminar flow.
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The peculiar velocity at z = 0 however reflects only the latter, and the memory of the original
initial position xinit outside of the filament has been erased. The WF therefore has no chance of
recovering it; the resulting reconstructed ψWF reflects only the laminar flow along the filament.

This analysis demonstrates that the RZA errors introduced by the WF + RZA reconstruction
procedure are not some type of statistical noise, but rather systematic errors that directly depend
on the haloes’ environment and its assembly history. These errors can even result in “unphysical”
reconstructed displacement paths, such as objects moving across voids, which does not happen
in reality. How these effects may affect the construction of constrained initial conditions and the
properties of constrained simulations will be analysed in more detail in Chapter 5.

4.4.7 Filtering bias

Another systematic error source, the filtering bias, is a fundamental property of the Wiener Filter
and a result of its “conservative” nature. In the case of poor data sampling, the WF tends to
zero (i.e. the unconstrained mean field), always favouring the “dampening” of the field over the
introduction of additional noise. This tendency can be seen in the slope β when comparing the
WF mean field to the “true” underlying field (Figure 4.8). This β will always be ≤ 1 because of
the signal/(signal+noise) weighting that the WF invokes. This weighting is essentially controlled
by the σNL term and the errors εi of the constraints that are both added to the correlation matrix
〈cicj〉 prior to inversion, playing the role of the “noise”. The previous sections viewed the filtering
bias, quantified by β, as a means to estimate the constraining power of the data. Since the
RZA reconstruction of the halo displacements with WF is an intermediate step in the process of
constructing constrained initial conditions, this filtering bias is an error source in itself, so one
can think of compensating for this effect.

The simplest approach would be the multiplication of ψWF with a fudge factor 1/β to force
the slope to be 1. Visually this corresponds to tilting the distribution in Figure 4.7 until the solid
line lies on the dashed line. This removes the filtering bias while keeping the scatter constant,
but dramatically increases the rms error of the reconstruction (by a factor 1/β). We found that
in all such cases, while formally removing the bias, the increased overall error leads to a worse
result for the displacement field ψ. We also tried different fudge factors in the range between
1 and 1/β, and different factors for the three components, leading to the same conclusion. In
terms of the rms error of ψWF and the distribution of dRZA, the obtained WF result is optimal
without an additional fudge factor despite the filtering bias.

A less trivial optimisation can be thought of when considering the influence of the additional
parameter σNL on β. Although a nonzero σNL does not necessarily lead to a filtering bias if
the data quality is high enough (cf. the E60_3D mock), there is an obvious trend of increasing
filtering bias, or smaller β, with higher σNL (compare Table 4.1 and Figure 4.8). This follows
directly from the definition of the Wiener Filter mean field. Previously, we chose σNL for each
case such that χ2/dof = 1. This gives the maximum likelihood solution given the assumption
of Gaussianity and the linear overdensity power spectrum P (k). While we saw that generally
Gaussianity is a reasonable assumption in case of halo displacements, it is not necessarily the
case for smaller mock volumes. Further, it is by no means certain that the optimal solution for ψ
is the one where δWF is the most probable realisation of the given P (k). We can therefore allow
for χ2/dof > 1 and in this way induce a less conservative behaviour in the WF by decreasing or
even omitting σNL. This would not be advisable when creating Gaussian initial conditions, but
perfectly acceptable if one seeks the optimal solution for ψ.

We therefore re-computed the reconstruction for some of the mocks with varying σNL values.
We found that the effects on the reconstructed halo displacements ψWF are small and σNL has
to be decreased all the way to zero for them to become noticeable. The sparse C30_10 mock,
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reconstructed using σNL = 0, yields a slope of 0.73, an rms error per component of 4.11 Mpc/h,
and a median dRZA of 5.11 Mpch, whereas the original reconstruction using σNL = 235 km/s
had a slope of 0.64, rms error per component of 4.17 Mpc/h, and a median dRZA of 5.29 Mpc/h.
With σNL = 0, the filtering bias is noticeably decreased, but the average improvement of dRZA is
only minor at about 0.2 Mpc/h. For more accurate mocks like the E60_10, having had a lower
σNL initially, this effect is smaller or even insignificant; but for none of the mocks σNL = 0 would
lead to a worse result than σNL > 0 (as in the standard procedure) for RZA reconstruction of
ψ, so σNL = 0 seems to be the optimal strategy.

Yet another approach on the filtering bias of the WF was suggested by Zaroubi (2002). This
focuses on the aspect that the bias results not only from the regularisation parameter σNL,
but more prominently from the errors εi attached to each constraint ci. These are added as
a diagonal term to the correlation matrix 〈cicj〉 in the same fashion (cf. equation 3.45), the
difference being that εi varies for each constraint and thus the filtering bias of the WF will also
vary locally. To overcome this feature of the WF, Zaroubi (2002) replaces it with an unbiased
minimal variance (UMV) estimator. Upon closer examination, his UMV estimator is equivalent
to a WF that is applied after all εi are set to zero and the regularisation is done by σNL alone. It
can be thus directly computed with ICeCoRe by modifying the input constraints file accordingly.
Our experiments with this approach, on all the mocks that have observational errors attached,
revealed that in all cases the UMV estimator significantly increases the rms error and dRZA

distribution and leads to a significantly less accurate reconstruction of ψ than the corresponding
WF reconstruction.

To summarise, the best results on RZA reconstruction are obtained with the standard Wiener
Filter, no additional manipulation of ψWF by means of a fudge factor, and σNL = 0. Attempts
to squeeze out more information from this procedure invariably enhance the scatter and degrade
reconstruction quality. Since, given the mock data, there seems to be no way of further improve-
ment at this point, one can attempt to make up for it by refining the subsequent RZA equations
that determine the initial position guess xRZA

init . In the next section such an attempt will be
presented by expanding the RZA method to second-order Lagrangian perturbation theory.

4.5 Extending RZA to higher order

4.5.1 The Reverse 2LPT approximation

In the RZA reconstruction, we compute the Wiener filter mean displacement field ψWF from
radial peculiar velocity data and then directly use it as an estimate for the actual displacement
field ψ, which provides the mapping from the data positions at z = 0 to the initial conditions.
This is done by first computing the Wiener filter mean field for the overdensity, δWF, as given by
equation 3.27, and then to compute ψWF in Fourier space by solving −∇·ψWF = δWF. Although
we perform just these two steps, by first evaluating the WF operator and then performing three
FFTs, this is mathematically equivalent to solving the Poisson equation for a potential φ,

ψWF = −∇φWF ; δWF = ∇2φWF . (4.15)

Here, we extend this computation of the displacement field to second-order Lagrangian per-
turbation theory (2LPT). It is known that 2LPT performs better than first-order Lagrangian
perturbation theory (= the Zeldovich approximation), if one wants to analytically estimate the
evolution of the initial linear density field into the non-linear regime (Bouchet et al. 1995). This
is accomplished by adding a second-order term that encodes the dynamical change of the gravi-
tational potential. It is interesting to learn if 2LPT can, in a similar way, improve the estimation
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of the initial conditions from the evolved non-linear field. As before, we are not interested to
directly reconstruct the initial linear field δ0 (as opposed to e.g. Kitaura 2012), but instead we
want to reconstruct the displacement field ψ at discrete positions, which can be used to constrain
the initial conditions (Chapter 5). For this, we combine the WF reconstruction from peculiar
velocities with the 2LPT technique presented in Kitaura & Angulo (2012); Kitaura et al. (2012).

In 2LPT, the displacement field ψ can be approximated as (Buchert et al. 1994; Bouchet
et al. 1995):

ψ = −D1∇φ(1) +D2∇φ(2) , (4.16)

where D1 ≡ D+ and D2 ≈ −3
7Ω

−1/143
m D2

+ (Buchert & Ehlers 1993; Bouchet et al. 1995). The
potentials φ(1) and φ(2) are obtained by solving a pair of Poisson equations,

δ(1) = ∇2φ(1) ; δ(2) = ∇2φ(2) . (4.17)

Here, δ(1) represents the linear component of the overdensity field20, and δ(2) is the second-order
non-linear term. We are not concerned here about how to compute the total non-linear density
field δ from these components. It is however important that if we have δ(1), then this fully
determines δ(2) through the following quadratic expression (Kitaura & Angulo 2012; Kitaura
et al. 2012):

δ(2) =
∑
α

∑
β<α

⎛
⎝∂2φ(1)

∂q2α

∂2φ(1)

∂q2β
−
[
∂2φ(1)

∂qα∂qβ

]2⎞⎠ ; α, β ∈ {x, y, z} , (4.18)

which can be solved numerically at z = 0 if δ(1) and therefore φ(1) are known. With equation
4.17, we can then directly obtain an estimate of the displacement field ψ (4.16).

At this point we have to make an assumption that would allow us to evaluate the 2LPT
equations. We saw that the Wiener filter mean field δWF, that we computed from the data (i.e.
the mock catalogues of halo radial peculiar velocities), is not a very good estimate of the initial
linear density field δ0 at zinit (this is the reason why we introduced Lagrangian reconstruction
in the first place). However, we can assume that δWF is actually a good estimate of the linear
component of the density field at z = 0, i.e. of δ(1). This makes sense, since the WF is an
estimator based on linear theory, and designed to produce a linear Gaussian random field from
the data by filtering out both the noise and the non-linear term present in the field at z = 0. We
therefore plug in the Wiener filter mean field obtained from the data into the 2LPT scheme by
assuming δ(1) ≡ δWF and compute the 2LPT estimate of the displacement field ψ.

One problem remains: as we saw in Chapter 3, δWF is not a statistically homogeneous field
and will decay in regions not sampled by the data. On the other hand, 2LPT is a non-local
scheme and assumes that we have an estimate of the whole field. We solve the problem by
instead computing a large number of constrained realisations δCR from the data on the whole
computational volume, which yields a statistically homogeneous field. For each constrained
realisation, we then set δ(1) ≡ δCR and compute the 2LPT estimate of ψ (equation 4.16) for the
whole computational box. We then average over all displacement fields obtained in this manner,
to yield the estimate of the underlying displacement field of the input data. In the following, we
will call this field ψR2LPT. We now construct the “reverse 2LPT approximation", or R2LPT, by

20The linear component δ(1) of the overdensity field δ is the Gaussian component of δ and therefore a field that
evolves with time alongside δ. It should not be confused with the linear overdensity field δ0, which describes the
full overdensity field in the linear regime x → q.
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assuming that the displacement field and initial position of each dark matter halo is given by
the value of ψR2LPT at the position of the halo (i.e. datapoint),

xR2LPT
init = r −ψR2LPT . (4.19)

4.5.2 Results and discussion

We ran the R2LPT reconstruction for two mocks, the sparse C30_10 and the less sparse E60_10,
which also covers a larger data volume, and computed the displacement fields ψR2LPT for both.
This was performed with the numerical code by Kitaura & Angulo (2012); Kitaura et al. (2012).
Figure 4.13 shows the comparison between the original and the reconstructed displacement fields
for the 1243 halo positions within 30 Mpc/h for both mocks, computed with the methods RZA
with a non-zero σNL, RZA with σNL = 0 to reduce the filtering bias, and R2LPT. The R2LPT
creates a less biased estimate of the actual ψ. While for the C30_10, there is still some bias
comparable to the filtering bias of the WF, the R2LPT estimation from the E60_10 mock is
unbiased with a slope very close to 1. We can explain the bias in R2LPT for the C30_10 mock
with the random modes: in each 2LPT run, we used δCR as input, which combines the WF mean
field with a random residual. Since the mock is rather sparse, even inside the 30 Mpc/h the field
has a significant contribution to ψ from the random modes which will be averaged away when
we compute ψR2LPT. This effect is slightly smaller than the WF filtering bias. For the denser
and larger E60_10 mock, within the inner 30 Mpc/h region the random modes do not contribute
much to the displacement field, and since R2LPT does not suffer from a filtering bias, we obtain
an unbiased estimate of the actual displacement field.

On the other hand, the R2LPT estimate of the displacement field shows a somewhat larger
scatter around the correct displacement field, resulting in a larger rms error compared to the RZA
method. As a result, the average error on the reconstructed initial positions dR2LPT (defined in
the same way as dRZA) is larger as well. Figure 4.14 shows dRZA and dR2LPT for the different
reconstruction methods. The effect of the larger scatter is especially severe for the R2LPT
reconstruction from the better E60_10 mock. However, in our interpretation of this result, this
is not a failure of the 2LPT theory, but lies in the fact that we computed δCR using the Wiener
Filter on peculiar velocities. Surprisingly, we found that the mean overdensity field produced by
the WF from radial peculiar velocity data is not strictly Gaussian distributed. Despite the fact
that the WF employs a Gaussian prior model, and the presence of the additional regularisation
parameter σNL which enforces χ2/dof = 1, the systematic non-linearities of the vpec

r at z = 0
corrupt the Gaussianity of the result. If the input data is very sparse, such as for the C30_10
mock, the WF can compensate, but if the data density is higher, as for the E60_10 mock,
the intrinsic non-linearities of the data become imprinted on the resulting WF, even though it
explicitly uses a Gaussian prior model. We can see this effect in Figure 4.15, which shows the
probability distribution function of δCR realisations from both mocks (using the same random
seed), compared to that of the BOX160 initial conditions. The CR from the C30_10 mock is
fairly Gaussian, as are the BOX160 initial conditions, because the original δCR of BOX160 was
likewise computed from very sparse data (Gottlöber et al. 2010). In contrast, the distribution
function of δCR from the E60_10 mock shows a significant skewness and therefore a deviation
from the assumed Gaussianity. In the 2LPT formalism, the non-linear term scales with the
square of the growth factor D+ (equation 4.16). If we now use such a skewed δCR for R2LPT
reconstruction, the non-linear term will be significantly amplified, resulting in a larger amount
of noise.

Because of the larger rms errors and the noise enhancement, we do not use the R2LPT
reconstruction in the remainder of this work. However, it may be a very promising path. We
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Figure 4.13: Scatter plots of WF reconstructed vs. actual displacement ψ for all haloes within 30 Mpc/h
of the observer, using the C30_10 (top) and E60_10 (bottom) mocks. Left panels: RZA reconstruction
with σNL such that χ2/dof = 1. Middle panels: RZA reconstruction with σNL = 0. Right panels: R2LPT
reconstruction. Compared to Figure 4.7, all three cartesian components of ψ have been merged into one
plot, with ψx in red, ψy in black, and ψz in blue.
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RZA reconstruction (red lines), R2LPT reconstruction (blue line) and no reconstruction (black dashed
line). The dot marks the median of each distribution.
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expect that 2LPT could lead to better results than RZA, if we would manage to obtain a
better estimate of the Gaussian component δ(1) from the peculiar velocity data, i.e. if we could
reconstruct an overdensity field from the data that would be more strictly Gaussian distributed
than the standard WF. This could be done either by a better linearisation of the input data,
such as compensating for the non-linear enhancement of the peculiar velocity amplitudes in
overdense regions, or by a reconstruction of the underlying field that would be self-consistent
with 2LPT and thus replace the first-order approximation WF. A better Gaussianisation of
the field reconstructed from the peculiar velocity data could significantly improve the results
presented here. Unfortunately, Gaussianisation methods so far have concentrated on the non-
linear density field at z = 0 as an input (Weinberg 1992; Neyrinck et al. 2009, 2011; Joachimi
et al. 2011; Yu et al. 2011, 2012; Zhang et al. 2011; Kitaura & Angulo 2012; Kitaura et al. 2012;
Kitaura 2012) and not the non-linear peculiar velocity field at z = 0. This will be the subject
of future work. For now, the RZA reconstruction does a fairly good job at recovering ψ from
the data. While the direct application of the WF/CR algorithm to the data, δWF, is not a very
good way to recover the initial density field δ0, the corresponding ψWF seems to be a good way
to recover the displacement field ψ. From this displacement field we obtain a fair mapping from
Eulerian coordinates x at z = 0 to the Lagrangian coordinates q, or the initial positions xinit
which we consider equivalent. This is the reason why the RZA reconstruction works reasonably
well. We will use this method in the next chapter to generate cosmological initial conditions
from the data that can be used for cosmological simulations.
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Figure 4.15: Distribution of the overdensity field δ within 30 Mpc/h of the mock observer for the Wiener
Filter mean field δWF from the C30_10 mock (solid red) and E60_10 mock (dashed red), compared to
the distribution of the original BOX160 initial conditions (black).
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Chapter 5

Constrained Simulations

In this chapter, we test the constrained simulations technique by applying it to the
BOX160 simulation, which serves as the reference Universe that shall be re-created
based on the mock catalogues discussed in Chapter 4. We first reconstruct the ini-
tial conditions of BOX160 with the constrained realisations technique from this mock
data. We modify the method of placing constraints on the initial conditions by in-
corporating the previously developed RZA reconstruction of the initial displacement
field, and discuss different variations of this method. We then run several realisa-
tions of the reconstructed initial conditions forward until z = 0 and compare the
evolved constrained resimulations with the original evolved BOX160. The addition
of RZA significantly improves both the reconstruction of the initial conditions and
the accuracy of the obtained constrained resimulations and removes the systematic
shift of resimulated structures from their actual positions due to the displacement.
With a mock catalogue of sufficient data volume, the RZA method gives a reason-
able reconstruction of the initial conditions down to length scales of ≈ 4 Mpc/h, and
is able to reproduce the distribution of dark matter haloes in the original BOX160
simulation with an accuracy of a few Mpc/h on their position and a factor of 2 in
mass. Individual haloes are robustly recovered at z = 0 down to a mass scale of
at least ≈ 1014M�/h. This is a significant improvement over the previously used
method. The results suggest that by applying RZA reconstruction to observational
data of galaxy peculiar velocities, it is possible to obtain more precise constrained
simulations of the observed Local Universe.

5.1 Generating initial conditions

In this chapter, we test the technique of generating constrained initial conditions and running
constrained simulations with a reconstruction from peculiar velocity catalogues. For the input
data, we use the mock catalogues of BOX160 that have been described in the previous chapter.
The aim of this test is to understand to what extent the “test Universe” provided by the BOX160
simulation can be reproduced in a constrained resimulation. The obvious advantage of working
with a test simulation is that we can immediately check the results, both the reconstructed
initial conditions and the finished resimulations at z = 0, against the “true” result. This is
not possible with observational data, since the complete total matter density and velocity fields
are not accessible observationally. With this test, we can quantify to what extent constrained
realisations are able to reproduce the distribution, formation and evolution of the large-scale
structure underlying the input data. This in turn allows us to make predictions about the
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Figure 5.1: Three different methods of placing a peculiar velocity constraint (green arrow) generated
from a radial peculiar velocity datapoint (solid black arrow). Method I: The constraint is made equal to
the datapoint itself at its z = 0 position (black dot). Method II: The datapoint is shifted back to its RZA
reconstructed initial position, xRZA

init = r − ψRZA (green dot); the direction and value of the constrained
velocity component is not changed. Method III: The reconstructed three-dimensional displacement ψRZA

at the reconstructed initial position xRZA
init is used as a constraint with a smoothing radius corresponding

to the object’s Lagrangian volume (light green sphere).

accuracy of constrained simulations of the Local Universe based on observed peculiar velocity
data.

The main focus is to incorporate the RZA reconstruction technique that was described in
the previous chapter in order to increase the quality of reconstructed initial conditions and the
resulting constrained simulations. In this context, we want to give a quantitative estimate about
how well constrained realisations resemble the actual solution, i.e. how well the peculiar velocity
field is recovered and whether we can find objects in the resimulations at z = 0 that resemble
their original counterparts in the BOX160, and down to what distance and mass scales this is
reliable. This will depend on the method one chooses to construct the initial conditions and
the quality of the input data. We test the latter by using different mock catalogues for the
reconstruction.

In the first part of this chapter, we concentrate on generating run-capable initial conditions
from a reconstruction on the input data that can be used for running constrained simulations.
An analysis of the evolved resimulations follows in Section 5.2.

5.1.1 Placing constraints

The preferred method to place constraints on the initial conditions is to constrain the initial
displacement field ψ (or equivalently the initial velocity field u, which at redshift zinit equals
ȧfψ). From this field, both initial positions and initial velocities of the N -body particles for a
cosmological simulation are determined (see Section 3.1.2). The displacement field shows much
more correlation on the large-scale modes of the computational box, and thus will provide much
more effective constraints than constraining other linear functionals of the overdensity. If one has
a catalogue of galaxy peculiar velocities and their positions in real-space, possibly also grouped
to reduce the non-linearity of the data, the basic idea is to place one constraint on the initial
displacement field for each data point in the (mock) galaxy catalogue. With these constraints, a
constrained realisation of a linear Gaussian random field, i.e. the cosmological initial conditions,
is obtained by applying the WF/CR operator (3.25).
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Figure 5.1 visualises the three different methods of placing such constraints that will be used
in the remainder of this chapter. “Method I” refers to the “classical” CLUES method described
in Klypin et al. (2003) and was used for all constrained simulations in the CLUES project up to
now (an overview is given in Gottlöber et al. 2010). Here, the observed velocity field at z = 0 is
assumed to be approximately equal to the initial velocity fiel. The radial velocity datapoints are
directly taken as constraints for the initial conditions, which encompasses their positions, velocity
amplitudes, and errors. The regularisation parameter σNL (3.45) is then used to compensate for
the non-linearities of this data and create a result with the desired linear Gaussian statistics.
The most apparent flaw of this method is that it does not take the cosmic displacement into
account. Therefore, the results can be trusted only on scales above that of the displacement from
the initial conditions at z = 0, which varies locally and is of the order of 10 Mpc/h; we already
discussed the implications of this method in Section 3.3.3.

To improve on that method, we want to make use of the RZA reconstruction discussed in
the previous chapter, since it allows for an estimate of the initial position and displacement of
the Lagrangian regions corresponding to the dark matter haloes hosting observed galaxies. The
(reverse) Zeldovich approximation assumes that at both initial time zinit and final time z = 0,
the velocity and displacement fields are equal to each other (except for the appropriate scaling
and unit conversion factor, which is known) and that their direction stays constant in time.
Therefore, in principle we are free to choose either the present-day peculiar velocity vpec

r or the
reconstructed displacement ψRZA of a halo as an estimate of its initial displacement.

Our first approach for such a scheme (called “Method II” here) was developed simultaneously
with the RZA reconstruction and continues to make use of the present-day peculiar velocity as
an estimate of the initial displacement. This approach consists of displacing each constraint in
Method I from the observed position r at z = 0 to its estimated initial position xRZA

init = r−ψRZA.
This “back in time” displacement is depicted in the centre panel Figure 5.1 by the red arrow. The
constraint (green arrow) is then placed at xRZA

init instead of r. All other properties that define the
constraint are left unchanged: we still constrain the velocity component along the same direction
êμ, and with the same error εi attached to its value ci. Note in Figure 5.1 that the direction
of this constrained component is not anymore the radial direction with respect to the observer,
because the position has changed. Like in Method I, we use the σNL parameter to compensate
for the non-linearity of this data to create a constrained Gaussian random field. In doing so,
we observed that the value of σNL that is needed to achieve χ2/dof = 1 (3.43) is always lower
for Method II than for Method I, which means that the observed radial velocities are in better
agreement with a linear Gaussian random field when they are displaced back in time to their
reconstructed initial positions.

As an alternative approach we implement also the method described in Lavaux (2010), which
we here refer to as “Method III”. This method uses the reconstructed initial displacement vector
(i.e. all three components), which in our case is ψRZA at the reconstructed initial position xRZA

init
as constraints. Additionally, following Lavaux (2010), the method also takes into account that
the Lagrangian region around xinit that corresponds to the protohalo of an observed object has
a non-negligible volume (cf. Figure 4.1). So, instead of constraining the displacement at the
point xinit, the method constraints the mean displacement in some volume around it, which is
assumed to be spherical because we do not have any information about the possible protohalo
shape. This is achieved by attaching a Gaussian smoothing radius RG to each constraint,

RG =
1√
5
RL , (5.1)



5.1 Generating initial conditions 113

Method constraint position x value ci error εi direction smoothing
type vector êμ radius RG

Method I ψμ r vpec
r /ȧf Δvpec

r /ȧf
r − r0
|r − r0| 0

Method II ψμ xRZA
init vpec

r /ȧf Δvpec
r /ȧf

r − r0
|r − r0| 0

Method III ψx, ψy, ψz xRZA
init ψRZA 0 êx, êy, êz

1√
5
RL

Table 5.1: Constraint types, positions, values, errors, directions, and smoothing radii that define each
constraint for the three constraint placement methods. For methods I and II, we constrain only one
component ψα of the initial displacement (the one known from the radial peculiar velocity data), while
in Method III we constrain all three components of it (known from the RZA reconstructed displacement
vector), i.e. we have three constraints per datapoint. The given quantities correspond to the quantities
listed in 3.1 that completely define each constraint.

where RL is the Lagrangian radius of the mass M of the constraint’s underlying dark matter
halo, i.e. the radius of a sphere containing the mass M at mean cosmic density ρ̄:

4

3
πρ̄ (RL)

3 = M . (5.2)

In other words, in the linear regime of the initial conditions, when density is nearly uniform,
a protohalo with mass M will enclose the volume of a sphere with radius RL. This volume
will have an average initial displacement that is now constrained. The reason for the 1/

√
5

factor in equation 5.1 is that a Gaussian kernel with radius RG contains the same volume as
a spherical top-hat kernel with radius RL. The only difference between the constraint-placing
technique of Lavaux (2010) and Method III is now that we use initial positions and displacements
that were reconstructed using RZA from peculiar velocities, while Lavaux (2010) uses initial
positions and displacements that were reconstructed from a galaxy redshift survey using the
MAK reconstruction (as discussed in Section 4.1.2). For the masses M that are needed to
determine RG for each constraint from the mock catalogue, we use the known virial halo masses
of BOX160 at z = 0 computed by the AHF halo finder. In the case of observational data,
workable estimations of the objects’ total masses could be obtained as well, for example from
the maximum circular velocities of galaxies (Binney & Tremaine 2008) and X-ray observations of
clusters (Reiprich & Böhringer 2002). However, as we will see later in this study, such constraints
on the objects’ masses are not necessary to obtain an accurate reconstruction of the ICs.

Table 5.1 summarises the quantities that define each constraint for the three methods. A
detail of Method III is that, since each constrained position has a nonzero smoothing radius
RG, we have to take care that there is enough space between the constrained positions, so that
their constrained volumes do not overlap. This case does not occur in Lavaux (2010) because
of the way how MAK reconstruction is designed, but can occur here if we use the xRZA

init for the
constrained positions. This can be achieved by performing a pair-wise check of the constrained
positions, and if two are found closer than fG ·(RG,1+RG,2) to each other (with a free parameter
fG) the one with the smaller RG is removed.
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5.1.2 Reconstructed initial conditions

For the following study, we selected two of the mock catalogues discussed in the previous chapter,
C30_10 and E60_10. The C30_10 has 588 radial peculiar velocities inside a sphere of radius
30 Mpc/h around the mock observer; the E60_10 has 7637 radial peculiar velocities inside a
bigger sphere with radius 60 Mpc/h; both use rms distance errors of 10%, which is comparable
to observational distance catalogues. The data quality of C30_10 resembles the grouped galaxy
distance catalogue of Tully et al. (2008) but is more sparse. The E60_10 is closer in its properties
to the upcoming Cosmicflows-2 catalogue, covering a significantly larger observational volume
and being complete down to smaller dark matter halo masses (in this case, 1011.5 M�/h). This
way we can test how the improved data will influence the reconstruction quality.

We generated constrained initial conditions from these mock catalogues with the three meth-
ods I, II, and III with the ICeCoRe code. For the methods II and III we used the values of the
reconstructed displacements ψRZA and initial positions xRZA

init that were obtained for the mock
catalogues in the previous chapter by RZA reconstruction. For each mock-method combination,
we created six different realisations with different seeds for the random component, abbreviated
here as A through F. We construct these initial conditions on a grid of 2563 cells with boxsize
L = 160 Mpc/h, just like the “source simulation” BOX160 (as discussed in the previous chapter,
we resimulated BOX160 with 2563 resolution for this study). In the end, we have 36 sets of
constrained initial conditions. The naming convention followed here is to add the method and
seed numbers to the end of the mock name, so that for example C30_10_II_A refers to the
first out of six realisations that were constructed with constraints from the C30_10 mock using
Method II. We continue to use the analytic correlator with a kmin cut at the fundamental fre-
quency of BOX160 at kL = 2π/L with L = 160 Mpc/h, like for the RZA reconstruction in the
previous chapter, so that the total variance and correlation functions reflect the finite-volume
effect. Since the constraints are confined to a relatively small spherical volume well within the
box, the influence of periodic boundary conditions and the anisotropic geometry is small. We
tested also the grid correlator and found no significant differences in the reconstruction quality
for this specific setup.

Figure 5.2 shows a cell-to-cell comparison between the reconstructed and the original initial
conditions for the C30_10 realisations with seed A for the different methods. We found that
this overall error does not change much across the differently seeded realisations. All velocity
and density fields were smoothed with a Gaussian kernel of 5 Mpc/h radius.

All methods lead to reconstructed initial conditions that show a clear correlation with the
original initial conditions. At the 5 Mpc/h smoothing scale, the reconstruction quality of Method
I with the C30_10 mock is relatively poor, and the rms error on the velocity components of 166
km/s is about 2/3 of the total standard deviation of the actual initial velocity field (about
250 km/s per component). The RZA reconstruction used for Method II clearly improves the
reconstruction quality, lowering the rms error to about 1/2 of the standard deviation. For
C30_10, the best reconstruction is obtained with Method III, which has an rms error of only
88 km/s on the velocity field. If we consider the density field, there is a similar increase in
reconstruction quality by adding RZA. In the lower right panel of Figure 5.2 we see that Method
III seems to introduce a systematic error on the density field. It has less variance than the original
field, which flattens the shape of the distribution. This will be discussed further in Section 5.1.4.

If we increase the number and extension of constraints by using the E60_10 mock, the results
change (Figure 5.3). For Method I without RZA, the increased number of constraints leads only
to a very small decrease in the velocity field error from 166 km/s to 154 km/s. The rms error of the
density field even increases slightly. On the other hand, Methods II and III that use RZA benefit
a lot from the increased number of constraints, and the errors on the velocity field are lowered
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Figure 5.2: Cell-to-cell comparison between the reconstructed and original initial conditions for con-
strained realisations from the C30_10 mock using different constraint placement methods. Top row:
velocity field (all three components were concatenated); Bottom row: density field. All fields were
smoothed with a 5 Mpc/h Gaussian. Only the cells within the inner spherical region of 30 Mpc/h radius
around the observer were considered; for the C30_10 mock, this is equivalent to the volume containing
constraints.



116 5 Constrained Simulations
co

ns
tr

ai
ne

d 
re

al
iz

at
io

n 
in

iti
al

 v
x,

y,
z 

[k
m

/s
]

BOX160 original initial vx,y,z [km/s]

50%
68%
95%
99.7%

-1000

-500

 0

 500

 1000

-1000 -500  0  500  1000

no RZA

E60_10_I_A
rms error = 154 km/s

BOX160 original initial vx,y,z [km/s]
-500  0  500  1000

RZA (Method II)

E60_10_II_A
rms error = 73 km/s

BOX160 original initial vx,y,z [km/s]
-500  0  500  1000

RZA (Method III)

E60_10_III_A
rms error = 83 km/s

co
ns

tr
ai

ne
d 

re
al

iz
at

io
n 

in
iti

al
 o

ve
rd

en
si

ty
 δ

BOX160 original initial overdensity δ

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2

E60_10_I_A
rms error = 0.863

BOX160 original initial overdensity δ

-3 -2 -1 0 1 2

E60_10_II_A
rms error = 0.441

BOX160 original initial overdensity δ

-3 -2 -1 0 1 2 3

E60_10_III_A
rms error = 0.451

Figure 5.3: As Figure 5.2, but for constrained realisations of the initial conditions from the higher-
quality E60_10 mock.
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to 73 km/s and 83 km/s, respectively, which is only 1/3 of the total variance. It seems that the
systematic errors introduced in Method I by neglecting the cosmic displacement are limiting the
reconstruction quality, which is not the case if we include the Lagrangian reconstruction of the
RZA. It is interesting that now, Method II gives a slightly better result than Method III. This
is a hint that in Method III there are also systematic errors that limit the reconstruction quality
(see Section 5.1.4). From this analysis of the overall error of the reconstruction we can conclude
that, in the case of sufficiently good constraints, Method II seems to give the optimal result. In
the following sections, this will be investigated further.

5.1.3 Constrained length scales

A crucial question in the context of reconstructing cosmological initial conditions is: down to
what scales does the WF/CR reconstruction give reasonable results? In the literature describing
the CLUES technique (that is, Method I), different numbers are given that usually lie between 5
and 10 Mpc/h, in the sense of a Gaussian smoothing scale (Klypin et al. 2003; Gottlöber et al.
2010). However, what was analysed there was the scatter of the obtained constrained realisations
against the mean field of the same constraints. This essentially probes down to what scales the
field is constrained by the data, but not down to what scales this result also matches the original
initial conditions that we aim to reconstruct. The latter is precisely what we are interested
in here, since the accuracy of the initial conditions determines how well the Universe can be
reproduced in the constrained simulation. In our case, we know the original solution for the
initial conditions that we want to reconstruct: these are the initial density and velocity fields of
the BOX160 simulation. We can therefore directly compare the different constrained realisations
of initial conditions to these “true” initial conditions. In terms of the general reconstruction
error, this was already done in the previous section; now we want to obtain an estimate of the
reconstruction quality on the initial density field as a function of length scale.

One could do this comparison in Fourier space by computing the Fourier-space cross-corre-
lation coefficient of the original linear overdensity field δBOX160

0 and the reconstructed linear
overdensity field δCR

0 (analogous to equation 2.85), or to compare the power spectra of the original
field, reconstructed field, and the difference between the two, which we here call the “residual field”
δCR
0 −δBOX160

0 . All this can be easily computed with FFTs over the computational box. However,
since we place the constraints only into a relatively small spherical subvolume of the whole box,
it is better to analyse this specific subvolume in real space. Inside this volume, the residual
field of any given realisation should have the most variance on scales that are unconstrained and
therefore random, and less variance on scales where the realisation is close to the original initial
conditions.

Figure 5.4 shows the relative standard deviation of the residual field, δCR
0 − δBOX160

0 , which is
the same as the rms error of the reconstructed field, normalised to the standard deviation of the
density field itself, for reconstructed initial conditions from both mock catalogues and with all
three methods, as a function of Gaussian smoothing scale RG. This is computed by smoothing
both the reconstructed and the original initial conditions with a Gaussian filter of radius RG,
then determining the spherical subvolume we are interested in, and compute the mean rms error
(i.e. the standard deviation of the residual) relative to the standard deviation of the field in this
volume. With this definition, a relative rms error of 0.5 in Figure 5.4 corresponds to a “signal-to-
noise ratio” of 1:1 in the reconstructed field (where the “noise” originates from the added random
modes), and a relative rms error of 0.25 to a ratio of 2:1. The analysis is done both for the smaller
30 Mpc/h spherical subvolume (left panels in Figure 5.4) and the larger 60 Mpc/h subvolume
that corresponds to the data volume of the E60_10 mock (right panels).
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Figure 5.4: Standard deviation of the residual field (i.e. the rms error of the reconstructed initial
density field) relative to the standard deviation of the original initial density field, as a function of
Gaussian smoothing radius RG for different constrained realisations with and without RZA. Top row:
initial conditions from the C30_10 mock, with Methods I (dashed red, without RZA), II (solid blue,
with RZA) and III (dotted green, with RZA). Bottom row: E60_10 mock. Spherical volumes within
30 Mpc/h (left panels) and 60 Mpc/h (right panels) of the mock observer were considered. The arrows
mark the Gaussian smoothing scales corresponding to a mass scale of 1014, 1014.5, and 1015 M�/h.
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The general trend is that on the smallest scales around 1 – 2 Mpc/h, the variance of the
residual approaches the total variance of the field (i.e. the ratio approaches 1), which means that
the field is completely dominated by the random component. This is the expected behaviour for
all reconstructions – information on the small scales of the initial conditions is erased by z = 0
due to non-linear structure formation and there is no way to recover it from the data at z = 0,
even if one applies RZA reconstruction. Interestingly, the ratio becomes even larger than 1 for
the smallest scales. The reason for this is that the subvolume considered here is an overdense
region in BOX160, and its variance is larger than the overdensity variance of the cosmic mean
(i.e. the mean of the whole 160 Mpc/h box). Therefore, if the CR is dominated by random
modes, the residual will have likewise a larger variance than the cosmic mean.

If one considers larger smoothing scales RG, the quality improves considerably. For the
reconstructions from the C30_10 mock, a ratio of 0.5 (signal-to-noise 1:1) is achieved at a
smoothing scale of around 6 Mpc/h for Method I without RZA (dashed red line in Figure
5.4), and at a scale around 4.5 Mpc/h for the methods using RZA (blue and green). This is
an important result: it means that the RZA allows us to recover smaller scales in the initial
conditions than Method I which does not use any Lagrangian reconstruction. The largest scales
with RG > 8 Mpc/h are recovered very robustly with RZA. On the other hand, for Method I the
error increases again with larger RG. The reason is that the largest-scale modes are not recovered
well. In fact, the Method I reconstruction fails to reproduce the correct total overdensity inside
the constrained volume, instead resulting in a field that has less overdensity and is closer to
the cosmic mean. This is even more so if distances out to 60 Mpc/h from the mock observer
are considered (upper right panel in Figure 5.4), which are outside of the constrained region for
C30_10. There, even the largest modes of the overdensity field are not recovered very well by any
of the reconstructions. This is expected behaviour. In terms of the velocity field, the WF/CR can
generate an accurate estimate about the total bulk flow of the constrained volume and the tidal
component of the velocity field that comes from outside of the data zone (Courtois et al. 2012).
For example, the WF on the Cosmicflows-1 catalogue successfully recovers such features as the
flows towards the Great Attractor or the Perseus-Pisces cluster, which are structures outside
of the data zone of Cosmicflows-1. However, the obtained estimate of the density distribution
outside of the data zone is not reliable: both the GA region and the Perseus-Pisces cluster cannot
be recovered as clearly localised structures of the density field, but only as general large-scale
overdensities towards their respective directions (Figure 3.2).

What influence on the reconstruction does the quality of the input data have? The bottom
row of Figure 5.4 shows the reconstruction quality of the initial overdensity field for the CRs
from the E60_10 mock, which has a larger data volume out to 60 Mpc/h and a higher density of
datapoints, similar to the upcoming Cosmicflows-2 data. If we use this mock, the reconstruction
quality improves. In the inner region, a ratio of 0.5 (signal-to-noise 1:1) is now reached at a
Gaussian smoothing scale of about 5 Mpc/h for Method I without RZA and at about 3.5 Mpc/h
for the methods using RZA reconstruction. The outer 60 Mpc/h region is also recovered much
better, because now it is also covered by the input data, although the reconstruction quality is
still worse because the mock observational errors on the peculiar velocities become very high in
the mock catalogue (rms error of 600 km/s at a distance of 60 Mpc/h).

From the analysis of the reconstruction error as a function of Lagrangian scale we can make
some predictions about the quality of the resulting CRs that will be obtained by running these
reconstructed initial conditions forward. We are interested in an estimate of what kinds of
features of the large-scale matter distribution can be reproduced in the simulation if the initial
conditions have a sufficient accuracy down to some Lagrangian scale. Specifically, down to what
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mass scale can we expect objects like dark matter haloes hosting clusters and galaxies to emerge
at their original positions in the constrained resimulations?

From equations 5.1 and 5.2 we can assign a mass scale to each Gaussian smoothing scale RG.
For example, an object with virial mass 3 × 1014 M�/h corresponds to a Lagrangian volume
in the initial conditions that is equivalent to a spherical top-hat with radius RL ≈ 10 Mpc/h
(cf. Figure 4.1). This in turn corresponds to a Gaussian smoothing scale of RG ≈ 4.5 Mpc/h.
Therefore, there must be an overdensity at this Gaussian smoothing scale at the right position in
the initial conditions for this object to form. For it to be at the right position at z = 0, the large-
scale displacement field has also to be recovered with sufficient accuracy. We can now make a
rough estimate about whether there is enough information in the reconstructed initial conditions
to recover such an object. Let us assume that we need at least a signal-to-noise ratio of 1:1 to
robustly recover a given structural feature on some Gaussian scale RG, or mass scale M , in each
CR. The three arrows in Figure 5.4 mark this point for three different mass scales M = 1014,
1014.5(≈ 3 × 1014), and 1015 M�/h. We can then see that, for the sparse and limited C30_10
mock, the classical CLUES Method I shows a sufficient correlation with the original simulation
for a mass scale of not much lower than 1015 M�/h. So we expect these resimulations to recover
only the most massive clusters of the data zone, while all smaller structures will be generated
from the random modes. This behaviour is consistent with the constrained simulations discussed
in Klypin et al. (2003) and Gottlöber et al. (2010)21. On the other hand, the RZA method
lowers this critical scale to just below 3× 1014 M�/h for the C30_10 mock, and even to 1× 1014

M�/h for the E60_10 mock. We therefore expect that with the help of RZA reconstruction,
we can obtain constrained simulations that recreate more details of the matter distribution in
the Local Universe and produce more objects that correspond to observed clusters, rather than
being a product of the random modes. This prediction will be tested in practice on the BOX160
universe in Section 5.2.

5.1.4 Number density of constraints and constraining power

Having an estimate of the reconstruction quality of the WF/CR method for constrained initial
conditions, another important question is: how many constraints are needed to obtain the optimal
reconstruction? Velocities (or displacements) have a high correlation length and do not contain
much information on smaller scales. Additionally, information on smaller scales of the linear field
is lost at z = 0 due to non-linear structure formation. We therefore expect that at some point,
adding constraints that probe these smaller scales in the non-linear regime does not significantly
improve the reconstruction quality of the linear field, resulting in a saturation at some constraint
density. It is important to understand this if one wants to estimate the constraining power of
observational data.

This aspect was investigated in Lavaux (2010), where constraints from MAK-reconstructed
displacements and initial positions were placed in a spherical data zone of radius 60 Mpc/h using
Method III. Initially they placed constraints on ψx, ψy, and ψz at 1314 positions inside this data
zone, resulting in 3942 constraints. One result was that if the number of constraints is reduced by
a factor of four, keeping only ≈ 1000 constraints, the error on the velocity field does not change,
and the error on the density field changes only slightly. This would mean that the solution is
saturated already at 1000 constraints distributed on a few hundred positions inside a sphere with
radius 60 Mpc/h. This is a quite low density of constraints compared to what length scales we
want to constrain with them.

21In their simulations, essentially only the Local Supercluster could be recovered directly from the radial
peculiar velocity data. The more distant clusters were recovered with the help of additional smoothed density
constraints that we do not use here.
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Figure 5.5: rms error on the velocity field of the reconstructed initial conditions from the E60_10 mock,
as a function of the number of constraints used. The rightmost point of each curve denotes the full set of
constraints for Method II (solid blue) and Method III (dotted green) RZA reconstruction; in each step
to the left, the number of constraints was then reduced by a factor of two. The left panel shows the rms
error within 30 Mpc/h of the mock observer; the right panel corresponds to the larger volume with 60
Mpc/h radius.

In order to repeat a similar analysis with constraints obtained from RZA reconstruction, we
took the constraints obtained with Methods II and III from the E60_10 mock, which likewise
covers a spherical volume with 60 Mpc/h radius. The E60_10_II set contains 7637 radial
displacement constraints at 7637 positions, while the E60_10_III set contains 17181 constraints
(for each displacement component) at 5727 positions (1910 positions were discarded due to
overlapping, using fG = 1). We then successively reduced the number of constraints by factors
of 2, 4, 8, . . . , and in each step we created a realisation of reconstructed initial conditions and
determined its rms error on the reconstructed initial velocity field. The result is shown in Figure
5.5. The blue curve corresponds to Method II constraints, and the green curve stands for Method
III. The rightmost point always corresponds to the full set of constraints.

The plot reveals that, if one uses Method III, the reconstruction quality is indeed saturated
at about 1000 constraints inside a 60 Mpc/h radius, confirming the result of Lavaux (2010). For
Method II, one needs many more constraints to achieve the same reconstruction quality; if the
number density of constraints is reduced, the error quickly increases. This is similar to the RZA
reconstruction of the displacement field in Chapter 4, where the number of datapoints used had a
significant impact on the reconstruction quality. On the other hand, with the full E60_10_II set
of constraints, the error is eventually even lower than for Method III. Moreover, it does not seem
to saturate at this level, and if one would use even more constraints, probably the error could
be reduced further. This means that, using Method II to generate constrained initial conditions
from peculiar velocity data, it is beneficial to have as many datapoints as possible.

We want to investigate in some more detail why varying the number of constraints has so
different effects on the two different constraint placing methods. A useful quantity in this context
is the correlation vector ηi (see equation 3.26). For each constraint ci, the value of ηi determines
its statistical weight for the WF/CR solution. The higher the absolute value of ηi, the more will
the constraint ci contribute to the complete solution (3.27) for the mean field and its constrained
realisations. This kind of analysis could also be useful in other contexts, such as finding an
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reconstructed initial conditions with Method II (solid blue) and Method III (dotted green). The higher
the absolute value of ηi, the more the corresponding constraint ci will contribute to the solution for the
constrained field. For the green histogram, eleven values are outside of the histogram range, the lowest
being at -30 and the highest at 55.

optimal grouping or other post-processing procedure to linearise the observational data before
applying WF/CR.

Figure 5.6 shows the distribution of the ηi values (normalised to their variance) for the 7637
and 17181 constraints in the E60_10_II and E60_10_III set of constraints, respectively. For
Method II, the distribution is relatively close to Gaussian (blue histogram), while for Method
III it has a very high kurtosis (green histogram). Thus, in Method III, a few constraints (at the
outer ends of the histogram) contribute most to the solution, while the majority of constraints
have ηi values close to zero and do not significantly influence the result. On the other hand, for
Method II the information determining the WF/CR solution is spread out much more equally
across all constraints. This is not unexpected: if we use radial peculiar velocities as constraints,
each constraint determines only one component of the displacement field, with a significant
observational error attached, and therefore carries less information than if all three components
of the RZA reconstructed displacement field are fixed, which strongly constraints the large-scale
modes of the field. On the other hand, the radial velocity approach seems to give a more precise
result if the full set of constraints is used. This suggests that by combining Method III with the
RZA reconstruction, we introduce some kind of systematic error.

Another peculiarity of Method III can be seen from the obtained values of χ2 computed from
the autocorrelation matrix of the constraints (equation 3.43). If the constraints are statistically
compatible with a Gaussian random field that has the assumed linear power spectrum P (k), the
value of χ2 should be equal to the degrees of freedom (χ2/dof = 1). For valid cosmological initial
conditions, the requirement of a Gaussian random field that follows P (k) is absolutely necessary.
Since constraints from data taken at z = 0 usually have more power due to the observational
errors and the non-linearity of the data, we used the regularisation parameter σNL to enforce
χ2/dof = 1 (see equation 3.45). In the case of Method III, we actually find that even with
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six realisations (A – F) for each method. The lower panel shows the difference between the P (k) of the
realisations and the WMAP3 power spectrum used for the prior model (black).

σNL = 0, we have χ2/dof < 1, meaning that the constraints impose a solution that has not
enough power compared to P (k). This is observed in the initial conditions created with Method
III. In order to make the effect more apparent, we cropped the box to a sub-cube of half the
boxlength (80 Mpc/h) centred on the mock observer. Figure 5.7 shows the power spectrum P (k)
of reconstructed initial conditions with all three methods I, II and III in this sub-box, averaged
over all six realisations A-F for each method that uses the C30_10 mock (the results are similar
for the E60_10 realisations). While the power spectrum for Methods I and II is compatible
with the input power spectrum from WMAP3 (solid black line), the average power spectrum
of Method III realisations shows a significant lack of power for wavenumbers between 0.2 and 1
h/Mpc (corresponding to length scales between 6 and 30 Mpc/h), rendering them unusable for
the task of performing constrained simulations.

To analyse this further, we can determine the Gaussianity of the recovered initial conditions.
Figure 5.8 shows the distribution function of the overdensity field within the Rmax = 30 Mpc/h
sphere of the reconstructed initial conditions for both the C30_10 and the E60_10 mock with all
three reconstruction methods for one particular seed. As we already have seen before, Method I
initial conditions show a significant skewness for the E60_10 mock (this is equivalent to Figure
4.15), over-emphasising overdensities. Conversely, the reconstructions with Method III are clearly
skewed towards the low-density end. Only Method II recovers initial conditions for both mock
catalogues that are very closely Gaussian and therefore show the statistics required for valid
initial conditions.



124 5 Constrained Simulations

 10

 100

 1000

 10000

-10 -8 -6 -4 -2  0  2  4  6  8  10

N
 (

δ)

overdensity δ (normalized to z=0)

BOX160 ICs
C30_10_I

C30_10_II
C30_10_III

-10 -8 -6 -4 -2  0  2  4  6  8  10

overdensity δ (normalized to z=0)

BOX160 ICs
E60_10_I

E60_10_II
E60_10_III
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How can we explain that Method III works so well with displacements coming from MAK
reconstruction (Lavaux 2010), but fails on displacements coming from RZA reconstruction? A
possible explanation is the fact that the power spectrum of the non-linear velocity field at z = 0
actually has less power on these scales compared to the linear power spectrum, as was shown in
Section 2.3 (see Figure 2.12 and the visual appearance of the velocity field at z = 0 in Figure
2.11). The collapse of overdense regions into haloes, the infall of surrounding matter onto these
haloes, and the expansion of underdense regions leading to large voids makes the velocity flow
more smooth and laminar on scales larger than those where virialised objects are formed (a few
Mpc/h). The RZA reconstruction additionally smooths this field by applying a Wiener filter to
the velocity data, so that the resulting RZA-reconstructed displacement field ψRZA suffers from
a lack of power that is incompatible with the assumed linear P (k). If we now directly take the
values of ψRZA as constraints for the initial conditions, we transfer this lack of power to the
resulting constrained realisation, which will have an incorrect power spectrum. Of course, the
changed power spectrum of the non-linear field should also affect z = 0 radial velocity data itself
which we use as constraints in methods I and II. However, by constraining only one component
of the velocity vector per point, and due to the significant observational and non-linearity errors
that add a lot of noise, the constraining power of each individual point is reduced. The WF/CR
operator has then more maneuvering room to find a solution that is the best compromise between
the imposed constraints and the correct linear power spectrum P (k).

The lack of power in Method III initial conditions can also be explained completely inde-
pendent from the effect of the deviation in the actual P (k) of the velocity data at z = 0. By
combining RZA with Method III, we construct in the end a CR by using as constraints the result
of a previous Wiener filtering. We are therefore actually applying the Wiener filter iteratively.
This is known to fail (see Section 3.2.1). Conversely, with Method II we are also applying the
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WF/CR twice, but each time on the same unfiltered data that is just displaced between the first
step and the second. In this way, we do not introduce additional unnecessary filtering and do
not remove power from the final solution.

Apart from the constraint-placement methods I, II, and III discussed here, we tried a number
of different configurations. Among them was omitting the Lagrangian smoothing radius from
Method III, adding this smoothing radius to Method II, and changing the direction êα in Method
II so that it was again the radial component with respect to the mock observer at the position
xRZA

init of the constraint. All of these setups lead to reconstructions of lesser quality than those
obtained with Method II. Therefore, we use Method II as the tool of choice in the remainder of
this chapter. We will also continue to use Method I for comparison.

To summarise it can be said that, if one wishes to create initial conditions for constrained
simulations based on peculiar velocity data, the optimal method at this point is the procedure of
combining these datapoints with the RZA reconstruction by shifting them to their reconstructed
initial positions and subsequently using them as constraints for the initial displacement field.
The method of Lavaux (2010), which instead uses the reconstructed three-dimensional displace-
ment field itself as constraints, does not work in this case because of the systematic errors that
are introduced by the RZA reconstruction. It is however, by itself, a very efficient method of
constraining the initial field to a high degree with relatively few data points. It may therefore
be the method of choice if the reconstructed displacement field originates from galaxy redshift
surveys, such as in the case of MAK reconstruction. Other advanced methods for reconstructing
the initial displacement field from galaxy redshift surveys are being developed, such as the work
of Kitaura & Angulo (2012); Kitaura et al. (2012); Kitaura (2012), who utilise higher-order
Lagrangian perturbation theory. These results could be used as well to constrain initial condi-
tions, and in this case the approach of Method III to use three-dimensional constraints on the
displacement field may be the optimal choice.

5.2 Constrained resimulations of BOX160

Having obtained several realisations of reconstructed initial conditions of our test universe, the
BOX160 simulation, we continue the study of the constrained realisation method by running
these initial conditions forward. We omit the realisations obtained with Method III for reasons
discussed in Section 5.1.4, and are left with 24 sets of initial conditions: C30_10_I_A – F,
without RZA; C30_10_II_A – F, with RZA; E60_10_I_A – F, without RZA but using the
larger-volume E60_10 mock catalogue as the data source, and E60_10_II_A – F, with RZA
using that mock. All these initial conditions were normalised to a starting redshift of z = 30
and then run forward until z = 0 using the cosmological code Gadget with a resolution of 2563

dark matter particles. In the following, we analyse these simulations and compare them to the
original BOX160 simulation at z = 0. The goal of this study is to investigate to what degree the
observed large-scale structure of the BOX160 universe at z = 0 are recreated in the constrained
resimulations. We can then estimate from this test how accurately constrained realisations
generated from observed peculiar velocity catalogues, such as the Cosmicflows-1 catalogue and
the upcoming Cosmicflows-2 catalogue, can recreate the observed Local Universe.

5.2.1 Resimulated fields at z = 0

Figure 5.9 shows a cell-to-cell comparison between the evolved constrained resimulations obtained
from the C30_10 mock and the original field of BOX160 in the constrained volume (out to 30
Mpc/h distance from the mock observer), both for Method I (without RZA) and Method II (with
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Figure 5.9: Cell-to-cell comparison between the evolved constrained resimulations at z = 0 for and the
original BOX160 simulations. Top row: velocity field inside the mock volume (all three components were
concatenated); Bottom row: density field. All fields were smoothed with a 5 Mpc/h Gaussian.
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Figure 5.10: As Figure 5.9, but for constrained realisations from the E60_10 mock with twice the data
zone radius.
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RZA). Figure 5.10 displays the same for the resimulations from the E60_10 mock. Especially
for the more accurate E60_10 mock, the added RZA reconstruction that was used to obtain the
initial conditions in Method II significantly improves the correlation of the obtained non-linearly
evolved simulation with the actual field of BOX160 at z = 0. In the latter case, the peculiar
velocity field is reproduced accurately down to an accuracy of about 1/4 of its total standard
deviation, as it was already the case for the linear field of the reconstructed initial conditions.
This is an impressive improvement of the reconstruction quality. From the correlation of the
density fields, it can be seen that Method I, which does not use RZA, significantly underestimates
the total density of the constrained region, which is overdense compared to the cosmic mean.
The RZA method, on the other hand, accurately reproduces this total overdensity, for both the
C30_10 and E60_10 resimulations. The total overdensity as well affects the abundance of dark
matter haloes. Figure 5.11 shows the binned dark matter halo mass functions of all realisations
obtained from the C30_10 mock catalogue, both with and without RZA. The mass functions of
the individual realisations are shown with coloured lines and points, their average is represented
by the thick dashed black line, and the actual mass function of the BOX160 inside the 30 Mpc/h
region is shown with the solid dashed black line. The mass function of this region lies significantly
above the cosmic mean (grey lines); the volume contains about 2.5 times more haloes with masses
> 1013M�/h than a region of mean cosmic density would. The constrained resimulations without
RZA only partially follow that behaviour. Their average mass function is also above the cosmic
mean, but still systematically underestimates the actual halo abundance in the corresponding
region of the original BOX160 simulation. On the other hand, the resimulations where RZA
was used for constructing the initial conditions follow the mass function of BOX160 much more
closely.

5.2.2 The resimulated BOX160 Universe

The large-scale structure of the “local universe” for our test case, i.e. the region around the
mock observer in the BOX160 simulation, is shaped by several dominant structures that to
some degree resemble the observed Local Universe. The “Milky Way” analogue halo that was
chosen as the position of the mock observer (X = 75; Y = 64; Z = 80) lies in the vicinity of
a “Virgo” cluster with a virial mass of 3.25 × 1014M�, which is embedded in a thick filament
parallel to the X-axis. The local flow of the mock observer is directed towards this structure,
resembling the observed Virgocentric infall (Tully et al. 2008). On a larger scale, the whole
region is dominated by a flow towards the “Great attractor” (GA), a massive structure at about
X = 30, Y = 60 that lies outside of the 30 Mpc/h data zone. This configuration can be seen
in the top left map of Figure 5.12. The BOX160 Virgo cluster is however not the most massive
structure within 30 Mpc/h, as there is an even more massive region at a distance of slightly less
than 30 Mpc/h, lying in a direction in between Virgo and the GA, that contains two clusters
with masses of 6.06 × 1014M�/h and 5.20 × 1014M�/h, respectively. We associate them with
the Centaurus and Hydra clusters. They in turn cause a significant infall flow towards them
on the surrounding structure. In the other direction (towards negative Y ), there is also a large
void that contributes to the shape of the large-scale velocity field by creating a push outwards
of it, although this particular feature in the BOX160 may not be as dominant as the observed
Local Void (Tully et al. 2008). Constrained resimulations of this test universe should be able to
recover all these characteristic structures. BOX160 contains this specific configuration because it
is itself a constrained simulation of the Local Universe, created with what we call here Method I
from peculiar velocity data drawn from the MARK III (Willick et al. 1997), SBF (Tonry et al.
2001) and Karachentsev et al. (2004) catalogues. It is not entirely accurate, for example the
virial mass of the BOX160 Virgo cluster is 2 – 3 times less than the estimated virial mass of its



5.2 Constrained resimulations of BOX160 129

 1

 10

 13  13.5  14  14.5  15

bi
nn

ed
 h

al
o 

m
as

s 
fu

nc
tio

n 
N

(Δ
M

) 
in

si
de

 R
m

oc
k 

at
 z

=
0

log (M/Msun)

RZA resimulations (Method II)
BOX160 (original simulation)

C30_10_II_A
C30_10_II_B
C30_10_II_C
C30_10_II_D
C30_10_II_E
C30_10_II_F

C30_10_II mean
BOX160 cosmic mean

Tinker et al. (2008) cosmic mean

 1

 10

bi
nn

ed
 h

al
o 

m
as

s 
fu

nc
tio

n 
N

(Δ
M

) 
in

si
de

 R
m

oc
k 

at
 z

=
0

non-RZA resimulations (Method I)
BOX160 (original simulation)

C30_10_I_A
C30_10_I_B
C30_10_I_C
C30_10_I_D
C30_10_I_E
C30_10_I_F

C30_10_I mean
BOX160 cosmic mean

Tinker et al. (2008) cosmic mean

Figure 5.11: Dark matter halo mass function inside the 30 Mpc/h mock volume for the six different
realisations from C30_10 without RZA (top) and with RZA (bottom). The individual realisations are
shown with coloured lines/points; their average mass function is the thick black dashed line. The original
mass function of the BOX160 in this volume is the thick solid black line. The mass function for an average
subvolume of radius 30 Mpc/h is shown in thick grey (by averaging over the full L = 160 Mpc/h volume
of BOX160) and thin grey (theoretical model of Tinker et al. 2008).
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Figure 5.12: Density and velocity fields in a 10 Mpc/h thick slice at 87 < Z < 97 Mpc/h for the original
BOX160 simulation (top left) and three constrained resimulations without RZA (top right), with RZA
(bottom left), and with RZA from the E60_10 mock using a larger data volume (bottom right). The
white circle marks the constrained region for the C30_10 mock. The density is shown in logarithmic scale.
The arrows are proportional to the amplitude of the peculiar velocity at each position. The prominent
object inside the BOX160 data zone is the simulated Virgo cluster with a virial mass of 3.25×1014M�/h.
In all three constrained resimulations the same random seed was used.
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observed counterpart (Fouqué et al. 2001), but the described main characteristics of the large-
scale structure are present. Ignoring the origin of BOX160 for this test and taking its large-scale
matter distribution as “given”, we try to reproduce it in the constrained resimulations, which
should retain the main characteristics that BOX160 shares with the observed Local Universe in
this “second pass” of the reconstruction-resimulation cycle.

The other panels of Figure 5.12 show three constrained realisations obtained from the C30_10
mock catalogue without RZA (top right), with RZA (bottom left), and from the larger-volume
E60_10 mock catalogue with RZA, in the 10 Mpc/h thick slice that should contain the BOX160
Virgo cluster. One can immediately notice that, while all three simulations faithfully reproduce
the large-scale flow towards the GA, the resimulation that was constructed without RZA fails to
create a Virgo cluster. Apparently, the mass of the BOX160 Virgo cluster of 3.25×1014M�/h lies
below the scale that could be reproduced with the non-RZA Method I of generating constrained
initial conditions, which is consistent with the estimate of the constrained mass scales from
Section 5.1.3. Why then does the BOX160, which was created with the same method, have a
Virgo cluster in the first place? The reason is that the observed Virgo cluster has a mass that
is 2 – 3 times higher, which places it in the recoverable mass range. It was however reproduced
with a too low mass in BOX160 and thus disappears on the second pass of the reconstruction-
resimulation cycle. The non-RZA resimulations show some overdensity in that region, and there
is also the tendency of a flow in that direction, but there is not enough overdensity to form a
cluster of comparable mass. On the other hand, both resimulations in Figure 5.12 that include
RZA reconstruction have a cluster at that position, which is similarly embedded in a thick
filament, with a strong flow towards it from the position of the mock observer.

In order to understand more clearly how robustly the Virgo cluster is recovered in the con-
strained resimulations we searched for it in all resimulations by searching for haloes that would
be within 10 Mpc/h of the original BOX160 Virgo’s position and would have a mass of at least a
1014M�/h. The result was that in all realisations using RZA, both from the C30_10 mock and
the E60_10 mock, we could find a cluster corresponding to Virgo. These objects are listed in
Table 5.2. On the other hand, we could not find such an object in any of the realisations created
without RZA, which clearly displays that the RZA improves recovering the original structures
in constrained simulations. The resimulated Virgo is not exactly at its BOX160 position in the
resimulations; the error lies between 1.7 and 6.3 Mpc/h and varies with the random seed. The
average position of all resimulated Virgos is only about 2 Mpc/h away from its original position
in BOX160, so this fluctuation is probably due to the influence of the random modes rather
than a systematic shift. It is interesting to note that in the RZA resimulations, all the Virgo
reproductions have a lower mass than the original BOX160 Virgo, just as the latter has a lower
mass than the observed Virgo cluster. This may be connected to the findings of Courtois et al.
(2012), who analysed the Cosmicflows-1 distance catalogue with the Wiener filter and found
that the Virgo cluster is not dominating the peculiar velocity field as much as expected. It may
therefore be harder to recover accurately in a constrained simulation.

Another possibility to estimate the robustness of the reconstruction is to compute an average
of the density and velocity fields over the different evolved realisations. This way, structures
coming from the random component will tend to average out and be suppressed, while structures
appearing consistently in every realisation will be enhanced. Figure 5.13 shows the same slice
as in Figure 5.12, but averaged over all six realisations A – F for the C30_10_I (without
RZA), C30_10_II (with RZA), and E60_10_II (with RZA, larger mock). The position of the
original BOX160 Virgo cluster is marked with a blue cross. The resimulations done without
RZA (top right) show some overdensity in this region, and a tendency of a flow towards it, but
the overdensity is not high enough to create a cluster of mass comparable to Virgo in any of the
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non-RZA realisations. The density peak is much more pronounced in the simulations with RZA
(bottom panels), which all have a massive object near to that location. We also see that other
structures with less mass, such as the overdense region below Virgo around X = 90 Y = 40, are
not present in the averaged fields, which means that they lie in a mass range that is too low to
be recovered by the reconstruction of initial conditions for any of the methods/mock catalogues.

5.2.3 Recovered mass scales

To obtain a more precise estimate about the mass scale on which objects can be consistently
recovered in the constrained resimulations, we search for other massive clusters in the data zone.
Table 5.3 shows the seven most massive haloes within the 30 Mpc/h data zone in BOX160.
The largest overdense region within the data zone is dominated by the Hydra and Centaurus
clusters, both with masses above 5 × 1014M�/h, separated by a distance of 10 Mpc/h. This
overdense region is robustly recovered in all simulations including the ones from Method I not
using RZA. It therefore lies above the minimum mass scale that can be recovered without RZA.
Figure 5.14 shows the corresponding slice of the density and velocity fields that contains the
Hydra and Centaurus clusters, averaged over the different realisations22. All resimulations show

Simulation Position X,Y, Z pec. vel. vx, vy, vz Mass Pos. error Mass rel. to
[Mpc/h] [km/s] [1014M�/h] [Mpc/h] BOX160 Vir

BOX160 Vir 82.0, 74.4, 91.8 +22,+142,−473 3.25 – –

C30_10_II_A 84.8, 78.5, 92.6 −23,−61,−391 1.66 5.0 51 %
C30_10_II_B 80.5, 76.8, 96.7 −22,+6,−912 1.98 5.7 61 %
C30_10_II_C 80.3, 72.6, 94.4 +26,+135,−403 3.24 3.6 100 %
C30_10_II_D 83.6, 73.8, 92.1 +101,+231,−326 1.21 1.7 37 %
C30_10_II_E 80.2, 76.5, 94.3 +72,+247,−755 2.33 3.7 71 %
C30_10_II_F 87.1, 78.0, 92.1 −273,+75,−527 2.83 6.3 87 %

C30_10_II mean 82.8, 76.0, 93.7 −19,+106,−552 2.21 2.6 68 %

E60_10_II_A 82.8, 78.5, 90.5 −113,−64,−507 1.87 4.4 58 %
E60_10_II_B 78.6, 74.7, 93.9 −200,+149,−682 2.73 4.1 84 %
E60_10_II_C 77.1, 72.8, 91.8 +29,+135,−374 1.21 5.2 37 %
E60_10_II_D 82.0, 76.0, 89.5 −142,+201,−576 3.03 2.8 93 %
E60_10_II_E 78.5, 75.3, 92.2 +85,+289,−706 1.31 3.7 40 %
E60_10_II_F 84.0, 76.3, 88.8 +21,+259,−486 2.80 4.1 86 %

E60_10_II mean 80.5, 75.6, 91.1 −53,+161,−555 2.16 2.1 66 %

Table 5.2: Virgo candidates found in the RZA resimulations of BOX160 at z = 0. The first line
corresponds to the original “Virgo” object in the BOX160. The following lines list the haloes found in the
AHF catalogues of the respective resmulations that are within 10 Mpc/h of the BOX160 Virgo position
and have a virial mass of at least 1014M�/h.

22 Note that in the observational data the Hydra/Centaurus clusters and the Virgo cluster lie within the
supergalactic plane around SGZ = 0 (Figure 3.2). On the other hand, while BOX160 uses the same coordinate
system, there the Hydra/Centaurus clusters and the Virgo cluster are not located at the same Z (=in the same
X/Y plane), but actually in planes about 10 – 15 Mpc/h apart from each other in the Z dimension. This is
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Figure 5.13: Density and velocity fields in a 10 Mpc/h thick slice at 87 < Z < 97 Mpc/h for the
original BOX160 simulation (top left) and the average of all six constrained realisations without RZA
(top right), with RZA (bottom left), and with RZA from the E60_10 mock using a larger data volume
(bottom right). The density fields were smoothed with a Gaussian of radius 2.5 Mpc/h. The original
centre of the BOX160’s Virgo cluster is marked with a blue cross in each map. The thick contour line
marks the cosmic mean density; solid contour lines are drawn for overdensities and dotted contour lines
for underdensities.
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Figure 5.14: Same as Figure 5.13, but for a different slice at 69 < Z < 79 Mpc/h. In this slice, the
BOX160 contains three massive clusters: Centaurus (Cen) with virial mass 6.06 × 1014M�/h, Hydra
(Hya) with 5.20× 1014M�/h, and “Cluster Z” (cZ) with 0.96× 1014M�/h. The original centres of these
three objects in BOX160 are marked with blue crosses in each map.
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Designation Position X,Y, Z pec. vel. vx, vy, vz Mass
[Mpc/h] [km/s] [1014M�]

Centaurus (Cen) 61.0, 78.8, 71.5 −1,−136,+187 6.06
Hydra (Hya) 52.9, 75.5, 77.0 +335,+4,−88 5.20
Virgo (Vir) 82.0, 74.4, 91.8 +22,+142,−473 3.25

Fornax (For) 97.8, 58.3, 62.6 +377,+215,+140 2.41
Cluster X (cX) 70.7, 73.7, 64.0 −169,+290,+353 1.55
Cluster Y (cY) 69.1, 68.0, 58.6 +225,+417,+470 1.25
Cluster Z (cZ) 62.2, 66.4, 74.0 −198,+676,−74 0.96

Table 5.3: Seven most massive clusters in the BOX160 simulation inside the volume within 30 Mpc/h
of the mock observer.

a massive overdensity in this region. However in the Method I resimulations there is a clear
systematic shift in position. Further, in the averaged map one can see only one smeared out
peak instead of two, which is additionally shifted towards positive X and negative Y . In two
of the six C30_10_I realisations (B and E), we can find only one massive cluster around the
region where the Hydra-Centaurus pair should be. In these realisations, either the two overdense
regions merged during their evolution due to shifts in their position and/or displacement, or
already in the reconstructed initial conditions the accuracy was not sufficient to robustly resolve
them into two separate peaks. On the other hand, in the RZA resimulations, both clusters are
resolved robustly and show up as separate peaks that are very close to their intended position;
in every realisation using Method II, we can find appropriate objects for Hydra and Centaurus
at z = 0 within a few Mpc/h of their original positions, just like for the Virgo cluster. Like in
the case of Virgo, the masses of the resimulated Hydra/Centaurus clusters at z = 0 show both
a scatter and a systematic deviation from the original masses of the original BOX160 clusters
of 6.06 × 1014M�/h and 5.20 × 1014M�/h, respectively. The average mass of the resimulated
Centaurus is at 90% of the original mass in BOX160, with a scatter within a factor of two.
Interestingly, the resimulated Hydra cluster is more massive than it should be, at 173% of the
original mass on average. In three out of the six C30_10_II realisations it is the more massive
of the pair, although it should be the less massive, and in four out of six it even has a mass
slightly above 1015M�/h. As it is in the case of the Virgo cluster, this systematic error in the
cluster masses does not improve if one goes from the C30_10_II realisations to the E60_10_II
realisations.

If we add more constraints and increase the data volume, the mass scale that can be re-
produced with the RZA method increases noticeably. For the C30_10_II simulations, we can
always find a Virgo cluster, but already the next massive cluster (which we call Fornax here,
although we do not imply any connection to the actually observed object) with 2.41×1014M�/h
cannot be unambiguously identified in one of the six realisations, the C30_10_II_E. Namely,
within a distance of 10 Mpc/h and a mass within a factor of 3 there is no matching object in
this realisation. The next-massive clusters cX, cY, and cZ cannot be reliably found anymore.
On the other hand, if we go to the E60_10_II simulations, we find resimulated counterparts for
all seven clusters in Table 5.3 in all six realisations, all within a factor of 3 in mass and within 7

another example of the systematic shifts that occur in constrained simulations from peculiar velocity data if one
does not use Lagrangian reconstruction.
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Mpc/h in distance. The lightest of these, cluster cZ at 0.96×1014M�/h, appears as a clear peak
in the averaged map of E60_10_II realisations (Figure 5.14, bottom right) close to its original
position. For even lighter objects, it is not possible anymore to find unambiguous counterparts
in the E60_10_II realisations. This is aggravated by the fact that below a certain mass the
probability of a seemingly matching, but in fact randomly created object to appear around the
right position increases.

Generally speaking, the predictions of the analysis in Section 5.1.3 can be confirmed in
the evolved resimulations at z = 0. We find that with the previous method of generating
constrained initial conditions, if we use a sparse mock limited to 30 Mpc/h and do not employ
a Lagrangian reconstruction scheme, the threshold for robustly recovering structures is around
roughly 5×1014M�/h, and the accuracy on their positions is typically at the scale of 10 Mpc/h.
Adding the RZA reconstruction, we can lower this threshold to under 3× 1014M�/h, enough to
robustly recover the BOX160 Virgo cluster. If we use the more complete E60_10 dataset, which
covers a larger volume, the quality of reconstruction without using RZA does not increase much;
but if we use RZA, we achieve a significantly better resolution that allows us to robustly recover
structure down to mass scales of about 1 × 1014M�/h. Additionally, the RZA method reduces
the errors on the positions where the resimulated structures appear to a scatter within about
5 Mpc/h around the intended position, which is also the order of the RZA displacement error
dRZA.

The origin of the systematic errors on the reproduced objects’ masses can be understood from
the non-linearity of the structure formation process. The typical mass scatter within a factor
of two that we observe here is consistent with the findings of Ludlow & Porciani (2011), who
studied the relation between virialised haloes and their protohalo peaks in the initial conditions.
They found that a protohalo peak on some fixed scale determines the mass of the resulting halo
only within a factor of two. This explains the cluster mass discrepancies in our constrained
resimulations. The exact virial mass of an object at redshift z = 0 is a product of various
non-linear structure formation processes, such as at what rate it can accrete mass from the
surrounding structure and how efficiently it is fed from outside by connected filaments. Such
details of the structure around clusters cannot be recovered from reconstructed linear initial
conditions. In the mass function of the 30 Mpc/h data zone (Figure 5.11) we see that BOX160
has a very specific distribution: two objects (Hydra and Centaurus) in the highest-mass bin, one
object (Virgo) in the next bin, and no objects in the bin after that. The average mass function
of the constrained realisations does not follow this peculiar shape, but instead tends towards a
distribution that is statistically more likely to occur. But we can argue here that if the large-scale
velocity field is recovered accurately by the constrained resimulations, the exact virial mass of a
particular cluster plays a lesser role and does not substantially limit the overall meaningfulness of
the constrained simulation. Indeed, the peculiar velocity field is recovered exceptionally well in
the RZA resimulations, especially for the better E60_10 mock. We already saw that in this case
the deviation of the resimulations from the original BOX160 peculiar velocity field is only on the
level of 1/4 of the total standard deviation of the field. Comparing in Figure 5.12 the peculiar
velocity field of the original BOX160 (upper left) and the E60_10_II resimulation (bottom right),
the structure of these two velocity fields is practically identical. If we imagine that a Local Group-
like object would be placed at the centre of the E60_10_II resimulation in Figure 5.12, then it
would experience practically the same large-scale flow and would be embedded in a very similar
environment compared to the original BOX160. This is precisely the main motivation of running
constrained simulations, where of course the reference universe is the actually observed Local
Universe. We expect that the same degree of accuracy seen here can be obtained by applying the
same technique of RZA reconstruction and subsequent CR resimulation to observational data.
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To obtain simulations with this degree of accuracy from current observational data is the main
focus for future work on the method. These simulations will present a significant methodical
improvement over the currently available CLUES simulations and will provide an ideal numerical
laboratory for studying the dynamics of the Local Universe.

5.2.4 Filaments and voids

Apart from massive dark matter haloes, another characteristic of the large-scale distribution of
matter is the presence of filaments and voids. An example in the selected BOX160 data zone is
the filament parallel to the Y -axis, which goes upward from Virgo towards the BOX160’s Coma
cluster (outside of the map); it is not recovered consistently in the RZA resimulations. We saw
already in the RZA reconstruction of the displacement field (cf. Figure 4.12, which contains the
same slice shown in Figures 4.12 and 5.13), that the RZA reconstruction struggles to recover
such filamentary features accurately. This could be due to the non-linear structure formation in
such regions: as we saw in Section 2.2.7, structure formation first proceeds along one dimension,
forming sheets, followed by a collapse in the next dimension, forming filaments, and finally the
material in these filaments falls into haloes. The peculiar velocity field at z = 0 only retains
information about this last stage. In the particular case of the filament that connects the Virgo
cluster to the Coma cluster in BOX160, the input data contains only the infall of objects along
the filament toward Virgo, but not the initial velocity distribution that led to the formation of
that filament, and therefore the WF/CR cannot recover it. In the case of the C30_10_II_A
resimulation, this filament is instead replaced by another filament that is imposed by the random
modes and aligned differently. This behaviour is repeatedly seen in the resimulations at other
locations as well. At the other end of the filament there is a flow towards the Coma cluster seen
at the upper edge of the slice in Figure 5.12 (around X = 80; Y > 100). This flow is missed by all
resimulations that use the C30_10 mock, since the BOX160 Coma cluster is too far away from the
data zone. On the other hand, in the E60_10_II resimulations, this flow is recovered accurately
because of the enlarged data zone, but this is not sufficient to also faithfully reproduce the
alignment of the filament. We therefore cannot generally trust that the alignment of filamentary
structure in the Local Universe can be sufficently reproduced in constrained simulations, except
if their formation is strongly constrained by massive objects inside the data zone, as is the case
for the thick filament hosting the Virgo cluster. The presence of the latter is generally reproduced
in all resimulations with RZA, although again its exact alignment is unconstrained.

We did not compare the alignment of voids in the resimulations in detail, but we see that the
presence and alignment of the most prominent voids in the data zone is generally recovered well.
The largest voids develop by expansion of underdensities in the initial conditions that are above
the minimum scale of initial conditions reconstruction and are therefore sufficiently constrained.
The reconstruction of the displacement field using RZA helps track the expansion of voids back
in time and generate appropriate initial conditions for them. Since it is believed that in the Local
Universe, the outward push caused by the Local Void has an important influence on shaping the
Local Flow (Tully et al. 2008), it would be interesting to study in detail to what extent this
behaviour can be seen in the constrained simulations. This will be the subject of future work.
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Chapter 6

Summary, conclusions and outlook

In this concluding chapter, we summarise the methodology of reconstructing initial
conditions and performing constrained simulations from radial peculiar velocity data
with the RZA technique that was developed in this thesis and the test study that was
carried out based on mock peculiar velocity catalogues drawn from a test simulation.
We present a final discussion and interpretation of the obtained results. We also
give an outlook on the planned follow-up studies and possible further developments.
In this context, we propose a new idea how to reproduce Local Group-like objects
in constrained simulations of the Local Universe, as an attempt to overcome the
limitation that the corresponding mass scales are unconstrained by the data and not
recoverable by a reconstruction of the initial conditions.

6.1 Summary

6.1.1 Motivation

The observed peculiar velocity field of galaxies in the Local Universe and the peculiar velocity of
our own Milky Way galaxy hold fascinating puzzles about the large-scale structure and dynamics
of the Local Universe. These peculiar velocities can be derived from combining the observed
galaxy redshifts with galaxy distance measurements such as the Tully-Fisher method. They
provide a direct and unbiased tracer of the underlying total (i.e. dark and baryonic) matter
density and the resulting large-scale gravitational potential. From observations of the cosmic
microwave background dipole it is now well established that our Local Group has a large peculiar
motion of 630 km/s with respect to the rest frame of the large-scale structure (Fixsen et al.
1996). The origin of this motion is however the subject of a lively debate. Several components
on different scales are believed to shape this configuration (Tully et al. 2008): the interaction
of the Milky Way with the Andromeda galaxy, the infall towards the nearby Virgo cluster, the
push from the Local Void, the flows toward the Great Attractor and the Perseus-Pisces clusters,
and the possible influence of more distant objects like the massive Shapley concentration. The
discrepancy between these large-scale flows and the observed CMB dipole may pose a challenge
to the widely accepted ΛCDM model (Lavaux et al. 2010). The formation and evolution of our
own Galaxy seems to be influenced to a high degree by this specific configuration of its large-
scale environment. It is now more enlightening than ever to study these mysteries, since both
the available observations and numerical modelling such as the powerful technique of N -body
simulations have tremendously increased in accuracy over the last years.
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6.1.2 Constrained Local Universe simulations

In this thesis, we focussed on constrained simulations of the Local Universe in the framework
of the concordance ΛCDM model of cosmic structure formation. The constrained simulations
technique enables to run numerical N -body simulations of large-scale structure formation that
are distinguished from the usual random-realisation cosmological simulations by reproducing the
observed large-scale structure of our Local Universe. This is accomplished via the constrained
realisations (CR) technique based on the algorithm of Hoffman & Ribak (1991). This method
allows us to create Gaussian random fields that are subject to a cosmological prior model given by
the standard ΛCDM cosmology, and at the same time adhere to a set of predefined constraints.
Such random fields describe the primordial density fluctuations of the early Universe and can be
used for simulation initial conditions. In order to reconstruct the initial Gaussian random field
underlying our own Local Universe, the constraints have to be derived from observational data.
Due to their much higher linearity and large-scale correlation compared to tracers of the density
field (such as galaxy redshift surveys), peculiar velocities of galaxies provide a very powerful
source of such constraints, linking together the observations and the numerical modelling.

Zaroubi et al. (1995, 1999) have extended the formalism of the CR method to incorporate
such constraints on the peculiar velocity field. For the study presented in this thesis, we devel-
oped the numerical software package ICeCoRe. This code is designed around a highly optimised
implementation of their algorithms and is able to handle the upcoming large observational pe-
culiar velocity datasets from the Cosmicflows program, which will provide tens of thousands of
constraints (Courtois et al. 2011a,b; Courtois & Tully 2012; Tully & Courtois 2012). To our
knowledge, so far no constrained simulations have been conducted with such a high number of
constraints. The ICeCoRe code can also be used for the related Wiener filter reconstruction
from peculiar velocity data, which is a useful cosmographical tool to reconstruct the underly-
ing three-dimensional density and peculiar velocity fields of the data, filtering out noise and
extrapolating the data into unsampled regions.

The current technique of generating constrained initial conditions from peculiar velocities
with the Hoffman-Ribak algorithm is formulated in the linear theory of Gaussian random fields.
We found that the peculiar velocity field at z = 0 resembles much more closely the primordial
velocity field of the initial conditions, both statistically and topographically, than the density
field at z = 0 would resemble the primordial overdensity fluctuations. Even if traced only with
dark matter haloes (or galaxies that inhabit them), that follow only the high-density peaks of
the matter distribution, the peculiar velocity field at z = 0 is remarkably closer to the primordial
linear Gaussian statistics than the density field. The velocity field at z = 0 is however not
strictly Gaussian. Effects like the cosmic displacement field, which shifted the field on scales
of ≈ 10 Mpc/h from the initial conditions, the non-linear enhancement of velocities in high-
density regions, and non-linear virial motions introduce significant systematic errors if treated
with the simple linear theory model. As a result, previous constrained simulations could robustly
reproduce only structure on the largest scales, such as clusters with masses not much smaller
than 1015M�/h, and they appear shifted compared to the original configuration. The simulations
fail to recover structure on smaller scales, which is completely dominated by random modes. In
this thesis, we investigated in what ways this approach can be improved to yield more accurate
constrained simulations. This led to the development of the Reverse Zeldovich Approximation
(RZA) reconstruction method.
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6.1.3 RZA reconstruction

We studied the peculiar velocities of dark matter haloes in a cosmological simulation under the
assumption that the observable peculiar motions of galaxies follow the velocities of the dark
matter haloes in which they reside. We found that present-day (z = 0) peculiar velocities
of galaxies are a surprisingly accurate tracer of the cosmological displacement field ψ, which
connects present-day positions x of observable objects to their Lagrangian coordinates q in the
primordial state via x = q+ψ and therefore allows for a reconstruction of the cosmological initial
conditions. A simple yet powerful approximation in this context is the Zeldovich approximation
(Zeldovich 1970), which assumes that all tracers of the cosmic density field move on straight paths
and therefore their peculiar velocity u is at all times directly proportional to the displacement
field via u = ȧfψ. It is surprising how well this relatively simple approximation holds even
at z = 0, if the Zeldovich model is directly applied to peculiar velocities rather than to the
density field, as previous studies did. We find that for the majority of haloes that are not
gravitationally bound to larger objects, u and ψ at z = 0 are almost perfectly aligned with
an angular deviation of less than 10◦. The approximation holds quite well throughout most
of the volume and is especially accurate for isolated objects found in less dense environments.
However, the approximation fails in high-density regions that are dominated by virial motions
and accretion onto massive clusters. This can be alleviated by an adequate grouping or selection
of data points. The most effective way of doing so for massive clusters is not to consider their
internal structure at all, but reduce them to a single peculiar velocity data point. In order to
reconstruct the initial conditions at some early redshift zinit in the linear regime, we then reverse
the Zeldovich equation and estimate the Lagrangian positions q ≈ xinit via

xRZA
init = r − v

H0f
, (6.1)

where r and v are the position and peculiar velocity of an object observed at z = 0, respectively.
We quantify the error on this guess via the RZA error dRZA, which is the distance between the
estimated initial position xRZA

init and the original initial position xinit of an object’s centre-of-mass
in the initial conditions of the simulation at z = 30,

dRZA = |xinit − xRZA
init | . (6.2)

We find that if we straightforwardly apply the approximation to the peculiar velocities of haloes
identified in the simulation at z = 0, the median dRZA is at only 1.36 Mpc/h and the mean dRZA

at 2.3 Mpc/h. We therefore obtain a highly accurate estimate of the initial conditions, especially
when compared to the linear-theory approach of neglecting ψ, in which case the typical error on
the initial position is ≈ 10 Mpc/h. A great advantage of the RZA is that it is a completely local
approximation that can be carried out on any sparse and inhomogeneous sampling of the peculiar
velocities. No information about the complete underlying field or its statistical properties is
needed. In contrast, Lagrangian reconstruction schemes based on information about the density
field instead of the velocity field, such as galaxy redshift surveys, do not work well with sparse
and inhomogeneous samplings. They always need an estimate of the complete field, together
with some way to compensate for redshift distortions, galaxy bias and the strong non-linearities
of the density field at z = 0.

6.1.4 RZA on radial peculiar velocity data

In order to apply the RZA to observational data, we need to take into account that it traces only
the radial component of the galaxy peculiar velocities and is corrupted by significant observational
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errors. In this case, the full three-dimensional peculiar velocity vectors can be reconstructed with
the Wiener filter method. We test this procedure on mock catalogues based on the dark matter
halo catalogue extracted at z = 0 from a test simulation. We construct an ensemble of such
mock catalogues, varying the observational errors, data volume, and degree of incompleteness.
We then obtain an estimate of their three-dimensional peculiar velocity v with the Wiener Filter
and apply the RZA reconstruction to this data to recover the initial positions xinit of the haloes.
We find that for a typical sparse peculiar velocity catalogue, with statistical distance errors of 10%
and a data volume limited to a distance of Rmax = 30 Mpc/h within the observer, the median
dRZA is around 4 – 5 Mpc/h, which is still a factor of 2 – 3 better than with no Lagrangian
reconstruction. The situation is much better in less dense regions where the reconstruction
works exceptionally well even with the realistic mock data. The quality of the reconstruction
can be increased if we reduce the observational errors, and even more if we instead increase the
amount of datapoints. This is interesting in the context of the upcoming observational data in the
Cosmicflows-2 catalogue, which will significantly increase the amount of data points, but only to a
lesser degree decrease the observational distance errors. We also find that a better reconstruction
is obtained with a more homogeneous sample of data points, providing a more complete mapping
of the volume, and the reconstruction quality worsens if the data points are biased towards the
most massive objects and therefore preferentially located in high-density regions. This translates
to the statement that observational distance measurement methods selecting galaxies in a more
random fashion and not biased towards high-density environments provide ideal input data for
RZA. This is the case for peculiar velocities obtained with the Tully-Fisher method, which selects
spiral galaxies on the random basis of their inclination on the sky being greater than 45 degrees,
and ignores elliptical galaxies that are strongly biased towards high-density regions. While future
observational data will surely allow for a significant improvement, we also acknowledge that even
with very sparse and noisy data (a few hundred datapoints within 30 Mpc/h) it is possible to
obtain a reasonable reconstruction quality.

6.1.5 Constrained simulations

We now go on and use the RZA reconstructed displacements and initial positions to construct
constrained initial conditions. We use for this test two of the mock catalogues generated for
the RZA reconstruction study. One mock is very sparse and limited to Rmax = 30 Mpc/h,
containing only 588 radial peculiar velocity datapoints, while the second is more complete and
reaches out to Rmax = 60 Mpc/h with 7637 datapoints, similar in quality to the upcoming new
observational data from the Cosmicflows program. The underlying simulation is the BOX160
simulation, which is itself a constrained realisation of the Local Universe and therefore features a
large-scale cosmography that is similar to the observed one. The aim of this test is to reconstruct
the initial conditions of BOX160, to integrate them forward until z = 0 using an N -body code,
and then to compare the evolved re-simulation with the original BOX160 simulation at z = 0.
The advantage of such a test is that the obtained results can be directly compared with the
“true” solution, allowing to quantify the precision of the reconstruction and the obtained re-
simulations. On the other hand, testing with observational data would make this impossible,
because the actual underlying density and velocity fields are not known. For each mock and each
reconstruction method that we tried, we ran six such re-simulations of BOX160 with different
seeds for the random components.

We find that the optimal method to place constraints on the initial conditions is to take the
radial velocity datapoints directly from the catalogue at z = 0 and to displace them “backwards
in time” to their RZA-reconstructed initial position xinit at initial redshift zinit. This is compared
against the previous method discussed in Klypin et al. (2003); Gottlöber et al. (2010), which
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uses no such displacement of the data, but is identical otherwise. We find that the non-RZA
method is able to generate initial conditions that are clearly correlated with the original ones,
with a scatter in the initial velocity field of about 2/3 of its total σ (standard deviation) at
initial redshift zinit = 30. Interestingly, the non-RZA reconstructed initial conditions do not
improve significantly if we use the better mock instead, because the reconstruction quality is
limited by the large systematic errors of the method. By contrast, using our new method, the
RZA-reconstructed initial velocity field has a scatter of about 1/2 σ with the poor mock and
improves considerably to a scatter of only 1/4 σ with the better mock. The scatter is similar if
we instead compare the evolved fields at z = 0 of the re-simulations with the original simulation.

We analysed the evolved re-simulations at z = 0 and compared them to the cosmography
of the original BOX160 simulation at z = 0 inside the “Local Universe” subvolume that was
constrained. We find that, regardless of the used mock, the non-RZA method is able to robustly
recover only objects on mass scales above ≈ 5 × 1014M�, while most structure below that
threshold is dominated by the random component. This scale corresponds to the couple of
most massive clusters in the local subvolume. Additionally, the positions of these clusters are
subject to large systematic shifts of ≈ 10 Mpc/h and more compared to their original locations
in BOX160. This is about the same accuracy that is known from previous attempts of running
constrained simulations of the Local Universe, such as the BOX160 itself. By contrast, the
RZA re-simulations perform significantly better, robustly recovering all objects above masses
of 3 × 1014M� (for the poor mock) and 1 × 1014M� (for the better mock) in each realisation.
The original cluster positions are recovered within ≈ 5 Mpc/h, however when averaged over the
different realisations this error reduces to only ≈ 2 Mpc/h, indicating that the position errors
are due to the random component and not due to a systematic shift. We therefore acknowledge
that setting up constrained initial conditions with the RZA reconstruction method significantly
improves the accuracy of constrained simulations.

In all re-simulations, the virial masses of the clusters are recovered only within a factor of
2. This is the accuracy expected from peak-patch theory: the properties of the progenitor peak
seem to determine the mass of a cluster at z = 0 only within this range (Ludlow & Porciani
2011), with the rest being mostly determined by non-linear processes. Therefore, we do not
expect that this mass accuracy could be significantly improved by any reconstruction method of
initial conditions from data at z = 0.

6.1.6 Conclusions

As the main finding of this work we conclude that, for the task of generating constrained real-
isations of the Local Universe from peculiar velocity data, a Lagrangian reconstruction scheme
such as the RZA reconstruction presented here provides a significant improvement over treating
the peculiar velocities with linear theory, which was the previous approach. We found that di-
rectly applying the WF/CR operator to peculiar velocity data at z = 0 is actually not a very
good estimate of the initial conditions due to the displacements, the non-linearities of the data,
and the relatively large systematic errors. However, the WF reconstructed 3D peculiar velocity
field seems to be an accurate estimate of the displacement field ψ. This in turn allows us to
generate a better estimate of the initial conditions, which can be set up in a second WF/CR
operator step by using the RZA reconstructed displacements at the discrete data positions for
constraints. With this setup, we have to take care not to actually apply the WF iteratively and
thus filter away the information contained in the data. We found a way to place constraints on
the initial conditions that avoids this problem. A very powerful strategy is to displace all input
radial peculiar velocity datapoints to their estimated initial positions xRZA

init in the linear phase,
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while leaving their observational errors and the spatial component of the velocity vector that
they trace unchanged.

It was surprising to find how well the relatively simple Zeldovich approximation performs
when applied directly to peculiar velocities, instead of the density field as it is commonly done
in various other contexts. Because the Zeldovich approximation performs so well, we did not
see a significant overall improvement by employing higher order Lagrangian perturbation theory
(2LPT) for the reconstruction. Interestingly, we noticed that 2LPT does not suffer from the
filtering bias of the linear theory approach, which is a desirable property; on the other hand,
2LPT introduces higher overall errors to the reconstruction. We can explain this with the fact
that any method of higher order than the Zeldovich approximation will break the locality of the
approximation, and the whole field has to be considered instead of the given discrete data points.
This will invariably introduce additional systematic errors. With RZA, we therefore may have
found a near-optimal method of reconstructing initial conditions from peculiar velocities.

For a reconstruction of the three-dimensional galaxy peculiar velocities from the observed
radial components, we used the well-established Wiener filter method. We found that the WF
performs very well in compensating for the radial limitation and the observational errors, but
suffers from a filtering bias due to its conservative nature. To obtain an accurate unbiased
reconstruction and sufficiently constrain the cosmological initial conditions, we require as many
data points as possible. Since increasing the amount of data, increasing the data volume, and
decreasing the observational errors all improve the resulting constrained simulations, we expect
that the quality of constrained simulations of the observed Local Universe will significantly
improve if the RZA method is applied with the upcoming high-quality observational data.

With the obtained results we can make a point about what kind of peculiar velocity data
is optimal for setting up constrained simulations. We think that methods focussing on spiral
galaxies, such as the Tully-Fisher method, are a better choice than data covering early-type
galaxies such as the fundamental plane and surface brightness fluctuations methods. Spiral
galaxies provide a more homogeneous mapping of the sky and are less biased towards high-
density regions where non-linear effects become stronger. These regions are exactly where the
RZA reconstruction fails. It may also be important to find an optimal data grouping method for
filtering out virial motions. In general, the best strategy is to reduce each group of data points
that form a virialised or otherwise strongly grativationally interacting structure into a single data
point, in order to remove non-linear virial motions completely.

Considering the re-simulations that we obtained from the BOX160 simulation, at first sight
the overall accuracy of the constrained realisations method does not seem to be very high if one
considers recovered positions and masses of clusters at z = 0. On the other hand, and more
importantly, the peculiar velocity field – which is the focus of this work – is recovered to a very
high degree. We know that the large-scale peculiar velocity field that drives the dynamics of the
Universe is largely determined by the most massive observable objects, within the scales that
are recovered in constrained simulations. Within the RZA re-simulations that used the better
mock, the velocity field within the local subvolume is structurally almost indistinguishable from
the original field. This quality makes the method of RZA constrained simulations a perfect
numerical laboratory to study the large-scale velocity field of the Local Universe despite its
limitations towards smaller scales.

However, we have to remember that although we performed the tests on fairly realistic mock
catalogues, the considered “Universe” was itself a simulation. We could therefore not consider
the effects of the finite simulation volume and the imposed periodic boundary conditions when
estimating the reconstruction quality. We found that these effects unfortunately have a consid-
erable negative impact if one wants to recreate a faithful representation of the observed Local
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Universe in a constrained simulation. Therefore we can trust only the result in the innermost
part of the box (approximately within a distance of L/4 from the box centre, where L is the
simulation boxsize), and only if the box is large enough. Despite a self-consistent method of
treating those effects when generating constrained initial conditions that we implemented, small
boxsizes below 100 Mpc/h will always be subject to large systematic errors. This must be taken
into account when constructing constrained realisations on such small boxsizes. Finite volume
has a very strong effect on the variance and correlations of the peculiar velocity field in the
resulting realisation. This variance is underestimated even on boxsizes of several hundreds of
Mpc/h. If the goal is to model the large cosmic flows, such as the flow towards the Shapley
concentration which is a subject of the current scientific debate, with constrained simulations,
we even may need boxsizes as large as 1000 Mpc/h. At these scales, it will become very interest-
ing to combine the methods presented here with constraints coming from deep galaxy redshift
surveys and encompassing very large volumes. Such methods are currently in development (e.g.
Kitaura 2012).

6.2 Outlook

We want to give an outlook for further developments of the methodology presented in this
work. The obvious next step of the technique developed here is to apply the machinery of RZA
reconstruction to produce constrained initial conditions and perform constrained simulations
from the most current observational datasets of galaxy peculiar velocities. This is straightforward
since all tests presented here were applied on realistic mock radial peculiar velocity catalogues
with observational errors, sparseness, incompleteness, and limited data volume. From the results
presented here we expect that constrained simulations constructed in this way from observational
data will be a significant step forward compared to the current CLUES simulations. It will be
interesting to study the cosmography of the Local Universe mapped by this new data not only
by reconstructions of the underlying field, but in the framework of constrained simulations that
gives access to the dynamics and evolution of the system.

Further studies have to go into improving the procedure of RZA reconstruction and subse-
quent constraining of the initial condions. It is important to search for optimal ways of grouping
or linearisation of the peculiar velocity data. One step would be to explicitly add a theoretical
or empirical model that describes the non-linear enhancement of peculiar velocities in overdense
regions. We also saw that the WF reconstruction of radial peculiar velocities yields results that
are not quite consistent with the assumed Gaussian statistics if the data density is high, and
introduces a significant skewness. One could therefore explore methods that result in a better
Gaussianisation of the field. Because the local Zeldovich approximation works so well when
applied to peculiar velocities, we do not expect that higher-order schemes, which invariably be-
come non-local, will perform significantly better on sparse data, but it still may be interesting
to explore them. It may be possible to obtain better results with higher-order LPT, if the WF
reconstruction from radial peculiar velocities would be replaced by a reconstruction procedure
that would be self-consistent with that higher-order LPT.

One fundamental problem remains with constrained simulations. The linear initial conditions
for smaller scales down to the mass scale of our Local Group, i.e. scales of the order of 1012 –
1013M�, seem to be unrecoverable from the data. The total virial mass of the Local Group is of
the order of 5× 1012 M�, with the virial mass of the Milky Way being of the order of 2× 1012

M� (Li & White 2008). Although the tidal field of the Local Group region is constrained well,
the scale of structural features in the initial conditions that would lead to the formation of
such Local Group-like haloes is quite small and cannot be constrained directly from the data.
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The efforts so far indicate that this may be unfeasible even with a significantly better method
of reconstructing the initial conditions. If we still want to study the formation and evolution
of our Local Group with constrained simulations, we can follow the approach taken before by
Gottlöber et al. (2010). Using high-quality observational data and the methods presented here
we can construct a large sample with hundreds of realisations of constrained simulations. From
such an ensemble of constrained simulations we can then find instances where Local Group-like
objects happen to appear at approximately the right location and then study those in high
resolution.

However, here we want to point out another approach that we will explore in future studies.
The peak-patch theory suggests that a majority of haloes form from regions in the vicinity
of peaks in the initial conditions, and that the scale of such a peak determines the mass of the
resulting collapsed halo within a factor of 2 or so (Ludlow & Porciani 2011). The primordial peaks
that would be associated with the formation of the haloes hosting the Milky Way and Andromeda
galaxies are so small that these scales are completely unconstrained by the data in our method.
We can turn this fundamental problem into a virtue. By placing appropriate constraints on the
initial overdensity field at relatively small scales, we can introduce overdensity peaks at manually
selected positions and smoothing scales in the initial conditions. Working on Local Group-like
mass scales, corresponding to approximately a 2 Mpc/h Gaussian smoothing scale, we would
not disturb the larger scales that are constrained by peculiar velocities. We can then iteratively
find the optimal position and smoothing scale for the additional peak constraints such that we
recover in the evolved simulation Local Group-like haloes with exactly the desired positions and
masses. By construction, the peculiar velocities of these emergent haloes would be determined
by the large-scale tidal field that is directly constrained by the data. This would combine two
opposed approaches of constraining initial conditions: running Local Universe simulations and
creating tailor-made initial conditions with predefined peaks. We will explore such methods in
upcoming studies. On the other hand, if the formation of the Local Group is in fact tied to its
large-scale environment, it could also turn out that a better quality of constrained simulations
of the Local Universe already leads to a higher rate of Local-Group like objects to form in the
simulations, making it unnecessary to introduce them manually to the simulations. This could
provide valuable clues about whether the Local Group and its large-scale environment are indeed
an unusual case in a ΛCDM Universe.





147

Appendix A

ICeCoRe User’s Guide

ICeCoRe (Initial Conditions & Constrained Realisations) is a command-line program written
in C++ and developed for this work. It implements a combination of very efficient algorithms to
create constrained (as well as conventional, i.e. unconstrained) initial conditions for cosmological
N -body simulations and to compute Wiener filter mean fields from density and/or peculiar
velocity data. The concepts and the theoretical framework behind these applications have been
discussed in Chapter 3; knowledge of this material is assumed here. What sets ICeCoRe apart
from previous implementations is that it allows us to impose very large numbers of constraints
on the linear density and velocity fields (up to M ≈ 105 and possibly more), while at the same
time the evaluation of the WF/CR operator is still numerically efficient and feasible to perform
on consumer-grade hardware without having to resort to high-performance parallel computing.
Beyond this main objective, ICeCoRe also offers some basic tools to analyse and edit density
and velocity fields that may be useful when setting up cosmological initial conditions for N -body
simulations. However, ICeCoRe is primarily designed to generate these fields and not to analyse
them, for example it contains no visualisation tools. It also focuses on dark-matter-only density
and velocity fields given on uniform cubic grids, and contains no functionality towards multi-
scale fields (such as for zoom-in initial conditions), multi-phase fields (such as initial conditions
for baryonic matter), or manipulating particle data such as N -body simulation snapshots. See
Section 3.5 for further information.

ICeCoRe features a simple command-line driven interactive user interface. This is separated
from the underlying C++ API that contains the actual numerical implementation. The interface
was designed for ease of use and flexibility. It is possible to make full use of the program without
having to deal with the underlying C++ source code. In this User’s guide, we discuss how to
install and use ICeCoRe and provide a tutorial on the command-line interface covering most of
the available functions. The focus lies on how to generate initial conditions and perform Wiener
filtering in practice with ICeCoRe. A full documentation of the underlying C++ API is beyond
the scope of this document (it is available in the form of Doxygen-generated code documentation
from the author). The knowledge of the C++ implementation is however not required in order to
use ICeCoRe, as all its functions can be triggered directly from the command-line user interface.
As a supplement to this User’s guide, the code reference in Appendix B contains a complete
documentation of the user interface covering all functions currently available in ICeCoRe. This
Appendix discusses ICeCoRe version 1.0. The functionality of the code may be changed and
expanded in future versions.

ICeCoRe may be released as an open-source, publicly available code in the future. Until
then, please contact the author to obtain your copy of the code. Suggestions for improving the
code and adding more features, as well as reports of existing bugs, are also greatly appreciated.
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A.1 Getting started

A.1.1 Requirements

ICeCoRe should install and run in any Unix/Linux environment if all required external libraries
are present. It was successfully tested on several Linux distributions and on Mac OS X. ICeCoRe

is written in C++ and therefore requires a C++ compiler to build. We successfully tested the
code with both the GNU C++ compiler (g++) and the Intel C++ compiler (icpc); the latter
tends to produce significantly faster code, so we do not recommend to use g++. ICeCoRe makes
extensive use of the C++ standard library and the C++ standard template library (STL), which
usually come with the compiler. It also includes a parallelisation with OpenMP. Compiling
with OpenMP is optional. In addition, ICeCoRe requires the following non-standard external
libraries:

• GNU scientific library (GSL), available at www.gnu.org/gsl. GSL functions are used,
among other things, for generating Gaussian-distributed random numbers, performing
spline interpolation on tabulated functions, numerically evaluating integrals, and com-
puting spherical Bessel functions.

• LAPACK (Linear Algebra PACKage), available at www.netlib.org/lapack. This library
is used for the inversion of the data autocorrelation matrix via Cholesky decomposition (see
Section 3.4.3). The original LAPACK library is written in Fortran 90 and somewhat
intricate to link against from a C/C++ compiler; CLAPACK could be used instead. On
Linux, we obtained best results with the LAPACK implementation contained in the MKL
(Intel Math Kernel Library). Of all implementations that we tested, it is the easiest to
link against and by far the fastest (it also includes parallelisation), therefore we strongly
recommend to use MKL for compiling and running ICeCoRe. On Mac OS X (as of version
10.7), a LAPACK implementation comes preinstalled with Apple’s Accelerate framework,
which is an integral part of the operating system.

• FFTW3, available at www.fftw.org. This is used for performing discrete Fourier trans-
forms on the density and velocity grids, which are required for many functions of ICeCoRe.
FFTW3 must be compiled in double precision, i.e. without the --enable-float option.

• GNU readline library. This is optional but highly recommended if you use ICeCoRe in
interactive mode. It enables several convenient features on the ICeCoRe command line,
such as command history and editing with the arrow keys and tab completion on file names,
mimicking the behaviour of other Unix-compatible command-line interpreters such as bash
or python. In most Linux distributions, the GNU readline library is either preinstalled or
available through the default package manager. It can also be installed from source, which
is available at www.gnu.org/software/readline.

A.1.2 Install and run

The ICeCoRe source directory contains a Makefile compatible with GNU make. In order to
compile ICeCoRe, most probably you will have to modify the Makefile. Currently it contains
predefined link lines for Linux, with or without OpenMP (assuming that the MKL is available),
and for Mac OS X (without OpenMP). In order to use them, uncomment the line SYSTEM =

... that suits your configuration. In the Linux/MKL case, you will also have to specify the
locations of the libraries by setting the FFTW3PATH and MKLPATH correctly, if they are not in one
of your standard PATH directories. For Mac OS X, everything should work out of the box if
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you specify SYSTEM = "OSX". If you use another configuration, especially in the case of another
LAPACK implementation, you will have to write your own link line. The Makefile also offers
some additional compilation options. They can be triggered by (un)commenting and/or editing
the lines starting with CXXFLAGS += ... setting the compiler flags. The predefined options are
optimal in most cases, so change them only if you need to. Details are given in the Makefile.

In order to compile ICeCoRe with GNU make, go into the ICeCoRe source directory and
type make. This will generate an executable binary called icecore in the same directory. In
order to run ICeCoRe, simply copy this executable to your working directory and there type
./icecore. A copy of the icecore executable should be kept in every directory where you
intend to run it; ICeCoRe currently cannot access files outside of the directory where it is
running. If you use OpenMP, you may also want to set the OMP_THREADS environment variable
before running ICeCoRe to specify the number of threads that should be used. If you change
the compiler options, run make clean in the source directory before re-compiling to remove the
pre-compiled object files and the old executable.

A.1.3 The user interface

There are two ways to run ICeCoRe, interactive mode and script mode. Launching the
ICeCoRe executable with ./icecore will start the interactive mode. This offers a command-
line interface where the user can enter commands which are then executed. All functions of
ICeCoRe are accessed by entering such commands. Appendix B includes a list all available
commands in alphabetic order.

The script mode is started by launching ICeCoRe with the filename of a script file as an
argument, for example ./icecore my_scriptfile.ic . Then, ICeCoRe will go through the
script line by line, execute the commands specified there, and then quit when the end of the
script file is reached. Also, in script mode ICeCoRe will immediately quit if it encounters an
error, while in interactive mode it will merely display an error message but the session can be
continued. In interactive mode, the session is terminated by entering the command quit.

The command language of ICeCoRe is case sensitive, with all command names written
in lowercase. Generally, there must be always one command per line, i.e. commands must be
separated by a newline. Redundant newline, whitespace, and tab characters will be ignored.
After a hash character (#), the rest of the line will be ignored, which can be used to place
comments into script files. If a line starts with an exclamation mark (!), the following command
will be passed to the system. In this way, it is possible to execute external Unix commands from
within ICeCoRe. For example, with the command !ls one can display all files in the current
working directory without leaving an interactive ICeCoRe session. One could also move, copy
or delete files in this way. This can also be used in ICeCoRe scripts.

The help command gives access to the built-in help and code reference. If entered with no
arguments, help will display some general info about ICeCoRe and provide references to other
help topics. help commands will display a list of all available commands. Giving the name of a
command as an argument, help will display a short description of the command along with an
explanation of its options, arguments, and their syntax.

A.2 Basic usage

A.2.1 Density and velocity fields

The data inside ICeCoRe is organised into objects, which are responsible to manage the different
fields, vectors, matrices and tables in computer memory that are needed for calculations. Most
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of the ICeCoRe commands operate on one of these objects. The central objects are dgrid

and vgrid, which hold the overdensity field δ(x) and peculiar velocity field u(x), respectively.
The dgrid object holds the field δ(x) sampled on a three-dimensional, uniform cubic grid with
boxsize L, given in Mpc/h, and resolution n, which is the number of grid cells per dimension.
The total number of grid cells is N = n3. The vgrid object holds three such grids, one for each
cartesian component of u(x), i.e. ux(x), uy(x), and uz(x). A new dgrid object is allocated with
the command new dgrid resolution boxsize . We use the convention to write arguments in
italic typewriter font which are tokens and have to be replaced by some actual name or
value. For example, a new density grid with boxsize L = 160 Mpc/h and resolution N = 2563 is
allocated with the command

new dgrid 256 160

which will not only allocate the grid, but also initialise the values of all its cells to zero. In
the same way, new vgrid 256 160 allocates and initialises to zero a peculiar velocity field
with matching boxsize and resolution. These grids can be manipulated with several different
ICeCoRe commands, and written to or read from files. ICeCoRe supports several different
file formats for these grids. The simplest is binary, which simply dumps the grid (for dgrid)
or the three grids (for vgrid) as arrays of N3 binary 4-byte floats; the produced files will have
a size of 4 · N3 bytes. A more advanced format is bov, which corresponds to the BOV (Brick
Of Values) format also used by the visualisation software VisIt

23. In BOV format, each grid
consists of a data file (*.bov.data) in the same binary format and an accompanying human-
readable header file (*.bov), which lists several parameters like the boxsize and the resolution.
Another format is the Grafic format, which is a binary float array file similar to binary, but
containing Fortran-style record markers and a header record with parameters. This format
comes in two flavours: grafic for cosmological fields and graficwn for white noise fields. Using
the ascii format, the grids can also be dumped as a list of N3 human-readable values in a
text file, although such files are rather inefficient, because they are slower to read and write and
can become very large compared to binary files. Appendix B.5 provides an overview over all
currently supported formats. Grids can be written to files with the write command, where the
second argument is the object that will be written, the third argument is the format, and the
fourth is the filename:

write dgrid bov my_file.bov

write dgrid binary my_file.dat

write dgrid grafic my_file.dat

write dgrid graficwn my_file.dat

write dgrid ascii my_file.txt

...

Loading a grid from a file is done in the same way with the load command:

load dgrid bov my_file.bov

...

The velocity grid vgrid is stored in three such files, one for each component. Therefore, writing
and loading them requires to supply three files:

write vgrid bov vx.bov vy.bov vz.bov

...

23available at visit.llnl.gov .



A.2 Basic usage 151

load vgrid bov vx.bov vy.bov vz.bov

...

The ICeCoRe code assumes that for all operations on the density and velocity fields the linear
theory of Gaussian random fields is valid. In this framework, the linear displacement field ψ(x)
and velocity field u(x) are proportional to each other, u = ȧfψ. For this reason, ICeCoRe

consistently uses internal units of Mpc/h. The peculiar velocity field in ICeCoRe is always
given in terms of the displacement field, i.e. in units of Mpc/h. These internal units have the
advantage that no operation explicitly depends on the cosmology, i.e. on the factor ȧf . Before
using a peculiar velocity field given in km/s in ICeCoRe, it has to be converted to units of
Mpc/h by multiplying all values by the factor 1/ȧf . The numerical value of this factor can be
accessed by the predefined token kmstompch. These predefined tokens can be used wherever a
number is expected. The conversion of a velocity grid from km/s to Mpc/h can be accomplished
with

multiply vgrid kmstompch

where multiply vgrid factor is a command that can be used to multiply the vgrid with any
number factor . Velocity fields that are computed within ICeCoRe will always be in units of
Mpc/h. The conversion to km/s can be used in the same way with

multiply vgrid mpchtokms

where mpchtokms is a predefined token for the numerical value of ȧf .

A.2.2 Cosmology and power spectrum

Besides the density and velocity fields, several other objects exists. The cosmology object holds
the cosmological parameters Ωm and ΩΛ, the Hubble constant H0, the current redshift z, and
all parameters that are derived from them and needed in the calculations: the scale factor a,
the expansion rate ȧ, the linear growth factor D+ and the linear growth rate f . The cosmology
object is initialised with the command

new cosmology omega_m omega_L H_0 z

where numbers have to be given for Ωm, ΩΛ, H0, and z. For generating initial conditions, z will
be the starting redshift of the simulation zinit, while for Wiener filter reconstruction of the large-
scale structure from observational data one takes z = 0. For example, a WMAP7 cosmology for
generating initial conditions at zinit = 30 is initialised with

new cosmology 0.272 0.728 70.2 30

The value of H0 is not actually used in any calculations, since the internal units of Mpc/h do
not depend on it. However, the value of H0 is needed if one wants to write cosmological initial
conditions in the Grafic and Gadget-2 formats: both include a header with the cosmological
parameters. It is therefore also possible to initialise the cosmology object by directly reading
the parameters from such files, instead of manually entering them. This is done with load

cosmology grafic file and load cosmology gadget file , respectively.
Another object required for most calculations in ICeCoRe is the pk object. It holds the tab-

ulated power spectrum P (k) that describes the assumed cosmological prior model, and computes
values of P (k) by interpolating over this table. ICeCoRe does not contain code to compute
P (k) from cosmological parameters; this has to be done with other software such as Cmbfast,
Camb or iCosmo (see Section 2.2.4). The tabulated P (k) can then be loaded with the command
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load pk file

The input format consists of a whitespace or tab-separated ASCII table with two columns, k (in
units of h/Mpc) and P (k), with no additional lines in the file. This is the same format that the
Camb code uses for output.

Before use, the P (k) has to be normalised to a normalisation parameter σ8. This is done
with the normalise command and the desired σ8 as an argument, for example

normalise 0.807

for a WMAP7 cosmology. This command will normalise the tabulated power spectrum in the
pk object such that the integral in equation 2.58 has the given σ8 value at z = 0. Additionally,
if the redshift specified in cosmology is z > 0, then according to equation 2.57 P (k) is scaled
with the square of the linear growth factor. The integral in equation 2.58 is by default evaluated
over the whole range of wavenumbers k where P (k) is tabulated. As discussed in Section 3.1.3,
there are other methods of normalising P (k) which take into account the finite-volume effect
and use equation 3.9 instead. This can be performed in ICeCoRe with additional arguments to
normalise:

normalise 0.807 kl kny # use CLUES convention (e.g.\ BOX160)

normalise 0.807 kl2 kny # use Klypin & Holtzman (1997) convention

The two additional arguments specify the interval [ kmin, kmax ] that defines the integration range
in equation 2.58. normalise 0.807 kl kny causes the integral to be evaluated from kmin = kL,
the fundamental frequency of the box, to kmax = kNy, the Nyquist frequency. normalise 0.807

kl2 kny option instead uses kmin = kL/
√
2, where kl2 is a token for the value kL/

√
2. The

involved frequencies kL and kNy are evaluated on the basis of the boxsize and resolution of the
currently loaded dgrid.

Since the cosmology and pk objects and the correct normalisation of the latter are required
for most computations in ICeCoRe, especially everything that has to do with generating initial
conditions, these objects should always be set up at the beginning of an ICeCoRe script/session.

A.2.3 Generating initial conditions for cosmological N-body simulations

With the objects introduced so far, generating a random realisation of cosmological initial con-
ditions can be done with just a few commands, following the algorithm laid out in Section 3.1.1.
The cosmology, boxsize L, resolution n, and starting redshift zinit are all determined by initial-
ising the cosmology, pk and dgrid objects. Then, the first step is to create a Gaussian white
noise field w(x) (equation 3.2) on dgrid. This is done with the command

seed number

where number is an integer used as the seed. With this seed, ICeCoRe will initialise a ran-
dom number generator and then fill dgrid with zero-mean, unity-variance Gaussian-distributed
random numbers. The initial overdensity field δ(x) is then generated with the command

colour

This command first performs a forward FFT, then evaluates equation 3.3, using the pk object to
determine P (k) for every k on the grid, and then performs a backward FFT. The resulting δ(x) is
stored in dgrid, overwriting the white noise field. ICeCoRe will also check the variance of δ(x),
which for cosmological initial conditions should lie approximately in the range 0.1 < 〈|δ|〉 < 0.2.
If this is not the case, a warning will be displayed recommending another choice for zinit.

The linear displacement field ψ(x) that corresponds to δ(x) can be obtained with
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vsolve

which will evaluate equation 3.5 for dgrid and store the resulting comoving linear displacement
field in vgrid in units of Mpc/h. At this point, the initial field of the random realisation is
defined and the further proceeding depends on what you want to do: directly start an N -body
simulation or just write the grids to files and/or do something else with them. The grids can be
written to files at any time in any supported format using the write dgrid and write vgrid

commands. To start a simulation from the created random realisation with the Ramses code,
it is sufficient to write them in Grafic format with specific predefined filenames:

multiply vgrid mpchtokms # convert displacement to velocity for RAMSES!

write dgrid grafic ic_deltab

write vgrid grafic ic_velcx ic_velcy ic_velcz

and then to supply these four files as input. Ramses will then itself set up particle initial
conditions. Section B.5.3 provides more information about the Grafic format.

To start a simulation with Gadget, you have to set up those particle initial conditions
yourself and supply them in a Gadget-format snapshot file. This can be done within ICeCoRe

with the method discussed in Section 3.1.2. The whole procedure is encapsulated in the single
command

writeics gadget file

which will set up the N -body particles and write the initial conditions to file . It is important
that for this command the displacement field must be kept in units of Mpc/h and not converted
to velocity in km/s. The code will print out warnings if something goes wrong. For example, if
the unit of vgrid is wrong or the starting redshift zinit was chosen too low, shell crossing can
occur on the initial particle distribution, and no valid particle initial conditions can be generated.

Below is a complete ICeCoRe example script that generates random initial conditions for a
WMAP7 cosmology with a resolution of N = 2563, a boxsize of L = 100 Mpc/h, and a starting
redshift of zinit = 30, and writes them into a file in Gadget format that can be directly used to
start a simulation.

# Example 1 - generating random cosmological ICs for GADGET-2

new cosmology 0.272 0.728 70.2 30 # compute cosmology from parameters

load pk WMAP7.dat # load tabulated power spectrum

normalise pk 0.807 # normalise to sigma8

new dgrid 256 100 # alloc grid with N=256^3, L=100 Mpc/h

seed 12345 # generate white noise field

colour # compute deltaRR

vsolve # compute linear displacement field

writeics gadget ics.gadget # write Gadget-2 initial conditions

quit

For the overdensity and displacement/velocity grids stored in the dgrid and vgrid objects,
ICeCoRe provides a few basic analysis tools. With the commands stat dgrid and stat vgrid,
it is possible to check the most important statistical properties of the grids, such as the mini-
mum and maximum values and the first four statistical moments. The command binpk computes
a periodogram estimate of the power spectrum P (k) of the current dgrid, and the command
histogram computes the distribution function of dgrid and vgrid. The xcorr command com-
putes the Fourier-space cross-correlation (equation 2.85) between the currently loaded dgrid and
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a reference overdensity field that will be read from a file. See the code reference in Appendix
B for details on these commands. For more advanced analysis and especially for visualisation,
other tools have to be used, for example the VisIt software, which can directly open grids saved
in BOV format, or IDL, which can handle both binary and ASCII files. Most of the plots in this
thesis were generated with Gnuplot

24, which understands binary data as well.

A.2.4 Computing correlators

For constrained realisations and Wiener filtering it is first necessary to initialise the correlator

object. It holds the precomputed correlation functions ξ, ψR, ψT and ζ needed to compute the
data autocorrelation matrix 〈cicj〉 and to evaluate the WF/CR operator. This object is respon-
sible for computing all necessary correlation values when needed, which it does by interpolation
on the precomputed functions.

There are two types of correlators: analytic and grid. They have been discussed in Sec-
tions 3.4.1 and 3.4.2. The analytic correlator computes and stores one-dimensional correlation
functions as tables over the comoving distance x and the smoothing radius RG, and computes
correlation values with GSL cubic spline interpolation. The grid correlator instead computes
three-dimensional correlation functions with FFTs on grids, stores them, and computes cor-
relation values with trilinear grid interpolation. Initialising the correlator, i.e. precomputing
these correlation functions, can be performed with the command new correlator analytic, or
new correlator grid, respectively. This requires the pk object to be present and correctly nor-
malised to the assumed σ8 and z. It also requires a dgrid object, since the correlator may depend
on the boxsize L and resolution n. In the case of the analytic correlator, the new correlator

command accepts some additional options. The general syntax is:

new correlator analytic [ k_min k_max [ R_G_max ] ]

where square brackets denote optional arguments. By default, the integration range for the
integrals 3.46 – 3.49 goes over the whole k range of the tabulated P (k). With k_min and k_max
one can specify other upper and lower bounds by giving numerical values in units of h/Mpc, which
of course have to be within the tabulated range. Instead of numerical values, it is also possible
to specify kl for k_min , which corresponds to the fundamental mode kL = 2π/L of the current
dgrid, and kny for k_max , which is the Nyquist frequency25 kNy = π/Δx. The kl option can
be used in order to explicitly take into account the large-scale cutoff by the finite-volume effect
of the computational box on the correlation functions. The tokens kminpk and kmaxpk stand for
the default option, the tabulated range of P (k). The optional R_G_max argument specifies up to
what smoothing radius RG (in Mpc/h) the tables should be computed. By default this will be
the maximum value that can occur for the loaded data/constraints, or RG = 0 if no constraints
were loaded. For example,

new correlator analytic kminpk kmaxpk 10

will compute analytic correlation functions using the full tabulated range of P (k) for the inte-
gration interval, and tabulate them for smoothing radii RG between 0 and 10 Mpc/h. When you

24available at www.gnuplot.info .
25It is however not recommended to limit the analytic correlator integration to frequencies below kNy if you

want to take into account the finite grid resolution. The cut at some kmax will invariably result in Gibbs ringing
artefacts on the small-x end of the correlation functions, which should be kept well below the grid resolution to
avoid numerical errors (i.e. kmax should be larger than at least ≈ 5 kNy). If you want to accurately describe the
effects of the grid discretisation on the level of kNy with correlation functions, use the grid correlator instead.
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determine the required RG, note that the correlation function of two constraints c1 and c2 will
be evaluated at RG =

√
R2

G,1 +R2
G,2 .

Both types of correlators can also be backed up to files and then loaded from these files
later. The command write correlator analytic will write four files to the current working
directory, containing the precomputed tables: xi.dat, psiR.dat, psiT.dat, and zeta.dat. The
command write correlator grid will instead write four grids with similar names in BOV
format. The corresponding commands load correlator analytic and load correlator grid

will then search for files with exactly these names and initialise the correlator object from
them. While the grid correlator can be computed very fast, with only four FFTs, the procedure
of backing up the correlator makes more sense for the analytic correlator. Especially if the tables
go over a wide range of smoothing radii RG, computing all integrals can take considerable time. It
would be a waste of time to repeat that same computation over and over again in each ICeCoRe

session. On the other hand, if you use only data with RG = 0, computing the analytic correlator
is in general also very fast, and backing it up may not be worth the effort. Using a backed up
correlator also carries the risk that it may not be compatible with the loaded data/constraints
and boxsize L. This is not checked by the code; it is the user’s responsibility to keep all objects
consistent with each other.

A.2.5 Placing constraints

In order to compute a Wiener filter reconstruction or a constrained realisation from a set of
data, or constraints, they have to be prepared in the correct format and loaded into ICeCoRe.
Internally they are managed via the constraints object, which is simply a list of all constraints.
This is initialised by loading a data file:

load constraints file

We use the convention to add the .co extension to data files in the ICeCoRe constraints format,
but this is not required. The file must consist of an ASCII table, one line per constraint, with ten
whitespace or tab-separated columns. The value of each column corresponds to the quantities
listed in Table 3.1: the constraint type Yi, the constraint position (xi, yi, zi), the constraint
value ci, the estimated constraint error εi, the direction vector (êμ,x, êμ,y, êμ,z) and the Gaussian
smoothing radius RG. The constraint type is encoded with an integer (δ ≡ 1, ψμ ≡ 2). The
other fields contain their numerical values as real numbers. If the position of the constraints
is given in terms of distance, latitude and longitude, it first has to be converted to cartesian
coordinates (equations 3.31) to yield the constraint positions xi = (xi, yi, zi) for columns 2 – 4.
For type 2 constraints, the value ci and error εi must be in units of Mpc/h (displacement). If
the original data file uses units of km/s (velocity), the loaded constraints can be converted using
the command

multiply constraints kmstompch

which will multiply all ci and εi with 1/ȧf . If the data uses mixed constraint types (density and
velocity), one should apply the above multiplication to the type 2 constraints only with

multiply constraints2 kmstompch

If using radial peculiar velocity data, care must be taken that εi (column 6) actually contains
the estimated absolute error on the velocity/displacement, and not the relative error or the error
on the distance. Also, with radial peculiar velocity data, the values of columns 7 – 9 (the êμ
vector) must be set to the cartesian components of the distance vector from the observer to the
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datapoint in units of Mpc/h. If the observer is at r0 = (0, 0, 0) in the original data, then columns
7-9 will simply contain the same values as columns 2 – 4. The êμ vector must be normalised to
|êμ| = 1; this is required to evaluate equations 3.29 and 3.30. However this does not have to be
done for the datafile by the user, because columns 7 – 9 will be normalised anyway by ICeCoRe

automatically by the load constraints command.
Another limitation with the constraints object is that all constraints must lie within the

computational volume, i.e. 0 ≤ xi, yi, zi ≤ L. In the case of radial peculiar velocity data, if the
observer is at r0 = (0, 0, 0) initially, all data positions have to be shifted such that they lie fully
inside the box, for example to r0 = (L2 ,

L
2 ,

L
2 ) in order to be aligned around the centre of the

box. This can be done with the shift constraints command. For example, to shift such data
to the centre of a box with L = 120 Mpc/h, the command is

shift constraints vector 60 60 60

which will add the vector r0 = (60, 60, 60) to the positions of constraints xi = (xi, yi, zi). Note
that the vector êμ in columns 7 – 9 is not shifted and now points along the radial direction with
respect to r0 = (60, 60, 60). An example line in a constraint file could then be like this:

2 63 64 60 400 50 3 4 0 0

In a box with L = 120 Mpc/h with the observer at r0 = (60, 60, 60), this places a radial velocity
constraint (type 2) at a distance of r − r0 = (3, 4, 0), absolute distance r = |r| = 5 Mpc/h with
a value of ci = 400 km/s. The absolute velocity error is εi = 50 km/s, corresponding to an
estimated relative distance error of δr = 10%. There is no smoothing attached to the constraint,
RG = 0. It will then be necessary to convert this file from km/s to Mpc/h before running cr or
crv. As another example,

1 60 60 90 9 0 0 0 0 7

places an overdensity constraint on the position r = (60, 60, 90), or r − r0 = (0, 0, 30) with
respect to the box centre, constraining the Gaussian smoothed density with RG = 7 Mpc/h to
a value of 9. In this case, the values in columns 7 – 9 are irrelevant. Note that the overdensity
field scales with the linear growth factor, δ ∝ D+, so the numerical value of such a constraint
must be chosen carefully.

Besides shifting the constraint positions by a constant position vector with shift constraints

vector, there is also the possibility to shift them by a vector field with shift constraints

vgrid; this will become interesting for RZA in Section A.3.1. Other commands manipulating
the constraints are: addvector, which adds a constant vector to velocity/displacement-type
constraint values and is useful for frame-of-reference conversions; deoverlap, which detects and
removes constraints with RG > 0 and overlapping smoothing volumes; and sparse, which detects
and removes constraints that are closer to each other than some critical distance. See the code
reference in Appendix B for details. An edited set of constraints can be saved to a new file with
the command write constraints file .

A.2.6 Wiener filter and constrained realisations

Using the constraints and correlator objects, it is possible to compute Wiener filter (WF)
reconstructions and constrained realisations (CR). The command

cr sigma_nl
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computes δCR(x), the overdensity field of a CR defined by equation 3.38, with the non-linearity
parameter σNL (equation 3.45) given as an argument. The cr command assumes that the required
random realisation is currently loaded, i.e. dgrid contains δRR(x) and vgrid contains uRR(x).
The latter must be in units of Mpc/h, so it actually will contain ψRR(x). The cr command
will then trigger a series of computations. First, the data autocorrelation matrix 〈cicj〉 will be
computed. Then, the chosen σNL will be added to its diagonal and the matrix will be inverted
with Cholesky decomposition to yield 〈cicj〉−1. Then, using lookups on dgrid and vgrid, the set
of mock constraints c̃i is computed. The next step consists of computing the correlation vector ηi
(equation 3.39). Finally, the WF/CR operator (equation 3.40) is applied to every cell of dgrid.
As a result, dgrid will be overwritten with δCR(x).

The cr command is also used to compute δWF(x). The only difference is that to compute
the WF instead of a CR, dgrid and vgrid should contain only zeroes. This can be achieved
by calling new dgrid and new vgrid immediately before cr. Then, both the mock constraints
c̃i and the δRR term will be zero, and the equations 3.39 and 3.40 will reduce to 3.26 and 3.27,
respectively. The result saved in dgrid at the end of the computation will then be δWF(x)
instead of δCR(x).

Explicitly giving a σNL parameter is optional; one could also just type cr without additional
arguments. Then the code will try to find a value for σNL such that χ2/dof ≈ 1, where dof = M
is the number of constraints. This involves several iterative matrix inversions and can take a
very long time if the matrix is large. It is therefore recommended to always provide a sigma_nl
parameter. In order not to repeat this step in each run that uses the same data, it is also
possible to pre-compute the inverted data autocorrelation matrix with a defined σNL; this will
be explained in Section A.3.3.

The following example script illustrates the complete procedure of computing a δWF(x) field
with ICeCoRe. It uses a WMAP7 cosmology and a box of L = 100 Mpc/h with resolution
N = 2563. By using the analytic correlator it assumes an infinite, homogeneous and isotropic
Universe. It loads a datafile data.co containing constraints, carries out the computation of
δWF(x), and writes it to a file in BOV format.

# Example 2 - computing a WF mean field

new cosmology 0.272 0.728 70.2 0 # compute cosmology from parameters

load pk WMAP7.dat # load tabulated power spectrum

normalise pk 0.807 # normalise to sigma8

new dgrid 256 100 # alloc grids with N=256^3, L=100 Mpc/h

new vgrid 256 100

load constraints data.co # load constraints (all of type 2)

multiply constraints kmstompch # convert from km/s to Mpc/h

shift constraints vector 50 50 50 # shift to box centre

new correlator analytic # generate correlator object

cr 3 # compute deltaWF with sigma_NL=3 Mpc/h

write d bov delta_wf.bov # write deltaWF to file

quit

If you want to obtain the WF mean field of the peculiar velocity, uWF(x), there are several
possibilities depending on what exactly you want to do. In principle there are two possibilities:
either to obtain uWF(x) by FFTs from δWF(x) using equation 3.5, or directly computing it with
the WF/CR operator using equation 3.41. The same options exists for a CR, where uCR(x) is
determined either through δCR(x) and equation 3.5, or directly through equation 3.41. Although
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these two options seem to be equivalent in Gaussian linear theory, they are not. The FFT
approach, which can be easily performed by running the vsolve command on δWF(x) or δCR(x),
assumes periodic boundary conditions (PBCs) on the box, and the resulting uWF(x) or uCR(x)
will be periodic. The direct evaluation of the WF/CR operator for the velocity field, on the other
hand, depends on the correlator. The analytic correlator assumes an infinite, homogeneous and
isotropic Universe instead of PBCs, and the resulting uWF(x) or uCR(x) will not be periodic.
The ramifications of this difference have been discussed in Sections 3.3.3 and 3.4.2.

Solving for uCR(x) by explicitly evaluating the WF/CR operator in equation 3.41 can be
accomplished with the command

crv sigma_nl

This command behaves in the same way as cr, but additionally it also evaluates equation 3.41
for each grid cell of vgrid. This means that at the end not only dgrid will contain δWF(x)
or δCR(x), but also vgrid will contain uWF(x) or uCR(x). The latter will be again in units of
Mpc/h, so it is actually the linear displacement field ψWF(x) or ψCR(x). Whether it is WF or
CR again depends only on the state of dgrid and vgrid before calling crv. Running crv instead
of cr will be many times slower, because for equation 3.41 many more correlation function values
have to be evaluated. To carry out the procedure, the script example 2 will have to be changed
to

...

crv 3 # compute deltaWF and uWF

multiply vgrid mpchtokms # convert uWF to km/s

write d bov delta_wf.bov # write deltaWF to file

write v bov vx_wf.bov vy_wf.bov vz_wf.bov # write uWF to files

quit # - this will have no PBCs!

Typically the crv method will be used if one wants to obtain a WF reconstruction of the LSS
for cosmographic studies, where an infinite, homogeneous and isotropic Universe is assumed and
no PBCs are desired on the fields.

On the other hand, the FFT approach of obtaining uWF(x) will use the cr and vsolve

commands:

...

cr 3 # compute deltaWF

vsolve # solve uWF assuming PBCs

multiply vgrid mpchtokms # convert uWF to km/s

write d bov delta_wf.bov # write deltaWF to file

write v bov vx_wf.bov vy_wf.bov vz_wf.bov # write uWF to files

quit

This will be typically used if one wants to obtain constrained initial conditions, which must have
a displacement field with PBCs. The complete procedure of first generating a random realisation,
then load the constraints, and then generate a CR from that, is illustrated in the following script:

# Example 3 - generating a CR

new cosmology 0.272 0.728 70.2 0 # compute cosmology from parameters

load pk WMAP7.dat # load tabulated power spectrum

normalise pk 0.807 # normalise to sigma8
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new dgrid 256 100 # alloc grid with N=256^3, L=100 Mpc/h

seed 12345 # generate white noise field

colour # compute deltaRR

vsolve # solve uRR needed for mock constraints

new correlator grid # generate correlator object

load constraints data.co # load constraints

multiply constraints kmstompch # convert from km/s to Mpc/h

shift constraints vector 50 50 50 # shift to box centre

cr 3 # compute deltaCR with sigma_NL=3 Mpc/h

vsolve # solve uCR assuming PBCs

multiply vgrid mpchtokms # convert uCR to km/s (if you want)

write dgrid bov delta_cr.bov # write deltaCR to file

write vgrid bov vx_cr.bov vy_cr.bov vz_cr.bov # write uCR to files

quit

The computations in this script are all carried out at z = 0. This is a useful normalisation
to analyse the resulting CR. However, cosmological initial conditions have to be generated at
the starting redshift zinit of the simulation, which must be chosen such that the overdensity
perturbations are sufficiently close to the linear regime at all scales represented in the box.
There are two possibilities: either the CR is rescaled to zinit after it has been generated, and
before writing ICs for a simulation, or the constrained ICs are generated at zinit in the first
place. In the case of peculiar velocity data, the first option is more useful for several reasons:
the constraints are usually normalised to z = 0, as is the σNL parameter, and the ψCR(x) field
necessary for RZA has to be normalised to z = 0 as well. We followed this approach in this work,
and for this reason all the scatter plots in Chapter 5 illustrating the generated constrained ICs
use the z = 0 normalisation. Rescaling an overdensity field δ(x) from z = 0 to some other z can
be done later with the command

multiply dgrid growthd

where growthd is the numerical value of the linear growth factor D+ that corresponds to the
currently loaded values of the cosmology object. By definition, growthd has the value 1 at z = 0.
The following script illustrates the process of loading a δCR(x) field from a file, rescaling it from
z = 0 to zinit = 30, and then generating Gadget ICs from it:

# Example 4 - rescale CR to z_init and then generate ICs

new cosmology 0.272 0.728 70.2 30 # this time we use z=30 for ICs!

load dgrid bov delta_cr.bov # read deltaCR (at z=0) from file

multiply dgrid growthd # renormalise deltaCR to z=30

vsolve # solve for uCR at z=30

writeics gadget ics_cr.gadget # write constrained ICs for GADGET

quit

The alternative approach of generating δCR(x) directly at zinit = 30 can be done by loading
a cosmology with z = 30 at the beginning and then to rescale the constraints themselves to
zinit = 30 before calling cr:

new cosmology 0.272 0.728 70.2 30 # working at z=30

...

load constraints data.co # load constraints
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multiply constraints2 kmstompch # convert from km/s to Mpc/h

multiply constraints growthd # scale from z=0 to to z=30

shift constraints vector 50 50 50

cr # now sigma_nl will have changed!

...

Since in linear theory, ψ(x) scales with D+ just like δ(x), multiply constraints growthd

will rescale both type 1 and type 2 constraints from z = 0 to z = 30 (remember that type 2
constraints have to be in units of the displacement ψ, i.e. Mpc/h). However, at least for velocity-
type constraints drawn from z = 0 data, we do not recommend to run cr at redshifts other than
z = 0 for the reasons mentioned above. Always having the CR normalised to z = 0 is also more
flexible: it can be later re-normalised to any other redshift without ambiguity. All manipulations
on the CR, such as changing the boxsize and/or resolution (see Section A.4), can be done at
z = 0, and rescaling to zinit can be performed as the last step immediately before writing the
actual simulation ICs.

A.3 Advanced usage

A.3.1 Reverse Zeldovich approximation

In this section, we discuss how setting up ICs from radial peculiar velocity data with the RZA
reconstruction (Chapter 4) can be performed in ICeCoRe. To set up ICs, we use Method II
discussed in Section 5.1. The first step is to generate an ordinary WF mean field with the cr

command from the data normalised at z = 0, i.e. a δWF field, with the technique illustrated
in Example 2. The data should be well within the box, ideally within L

4 of the box centre, to
avoid problems due to the inconsistency of the data with the PBCs. The box should be also
large enough to reduce finite-volume effects. We can then obtain ψWF from δWF by running
vsolve. The RZA method rests on the assumption that ψWF ≡ ψRZA is an estimate of the
cosmic displacement field ψ from early redshift zinit in the linear regime to z = 0. We saw in
Section 4.4.7 that in this case one should use σNL = 0 for the sigma_nl parameter of cr to
reduce the WF filtering bias. To generate ICs with RZA, we now have to displace all constraints
from their positions ri at z = 0 to their estimated comoving positions xinit

i at zinit,

xinit
i = ri −ψWF(ri) . (A.1)

In order to shift the positions of the constraints with a vector field, ICeCoRe provides the
command

shift constraints vgrid

where the field is assumed to be loaded into the vgrid object. This command will go through
the list of constraints in the constraints object. For each constraint, it will take its position xi

(equivalent to ri at z = 0), lookup/interpolate the value of vgrid at this position, and then add
this vector to xi. The other quantities defining the constraint are left unchanged. Since we want
to subtract ψWF(ri) from ri, the procedure consists of first loading the previously computed
δWF(x) into vgrid, then compute ψWF(x), then multiply it with -1 to reverse the sign, and then
run shift constraints vgrid. If you already ran the WF-generating script in Example 2, this
whole procedure will be performed like this:
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# Example 5 - generating RZA constraints

new cosmology 0.272 0.728 70.2 0 # RZA must be done at z=0 !

load constraints data.co # load the original constraints again

multiply constraints kmstompch # convert from km/s to Mpc/h

shift constraints vector 50 50 50 # shift to box centre

load dgrid bov delta_wf.bov # load deltaWF with L=100 Mpc/h

vsolve # compute psiWF == psiRZA

multiply vgrid -1 # psiRZA -> -psiRZA

shift constraints vgrid # perform RZA: xRZA_i = x_i - psi_RZA

write constraints rza.co # write RZA constraints to file

quit

This must be done with everything normalised to z = 0. The RZA shifted set of constraints in
rza.co can then be used to run the WF/CR operator again to produce a CR (like in Example
2), this time using σNL such that χ2/dof ≈ 1. The new δCR(x) can then be scaled to zinit to
generate ICs, or processed further if required, such as whitening it and using the resulting white
noise field to set up high-resolution ICs with another code. As we saw in Chapter 5, this is the
ideal method to set up ICs for constrained simulations from radial peculiar velocity data.

A.3.2 Display and delete objects

As already illustrated, the ICeCoRe user interface is organised around a set of objects. These
can be written to files, initialised from files, or created within an ICeCoRe session. The current
state of a session is completely defined by the state of its objects. For an overview, the stat

command displays information for all objects, whether they are currently initialised or not, and
some basic parameters for each one. It is possible to display more detailed information about
each object by giving its name as an argument. For example, stat cosmology will display the
loaded cosmological parameters, the current redshift z, and the derived quantities a, ȧ, D+, f ,
and t. stat pk will display the tabulated range and current σ8 normalisation of the loaded power
spectrum P (k). stat dgrid will display some statistical properties of the current overdensity
field, such as the minimum and maximum values and the first four statistical moments, and
stat vgrid will do the same for the velocity/displacement field. With the reset command, it is
also possible to manually delete objects and free their previously allocated memory; for example
reset dgrid will delete and deallocate the overdensity grid. If called without arguments, reset
will delete all currently loaded objects. This “cleans up” the session and leaves it in the same
state as if it would be terminated and a new one started.

A.3.3 Splitting the WF/CR procedure

There are three ICeCoRe objects not yet discussed here: corrmatrix, invmatrix, and eta.
If you only work with small sets of constraints, you may never need them, but they come in
handy if running many WF/CR computations with large sets of constraints (M > 104). The cr

command performs a sequence of several computational steps in order to compute the WF/CR
from the constraints and the correlator. If working many times with the same set of constraints,
it may be inefficient to repeat all those steps for each run of cr. The additional objects help to
reduce some redundancy.

If called like in the previous examples, the cr command first computes the data autocorre-
lation matrix 〈cicj〉, then inverts it to obtain 〈cicj〉−1, then computes ηi, and finally evaluates
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the WF/CR operator. The crv command behaves in the same way. Let us consider the first
step of computing 〈cicj〉. Each time this happens, the result is stored in the auxiliary object
corrmatrix. It is also possible to perform just this first step with the command new corrmatrix.
The numerical values of the matrix can be written to a file with write corrmatrix and anal-
ysed separately. It is then possible to re-load this matrix in another ICeCoRe session with
load corrmatrix. Then, calling cr will not re-compute it, but instead directly continue with
the pre-computed corrmatrix, picking up where you left off.

In the second step, cr inverts 〈cicj〉. When this step is complete, the result is saved in
the invmatrix object. Again, it is possible to perform just this step with new invmatrix,
back up the inverted matrix with write invmatrix, and re-load it with load invmatrix. If an
invmatrix object was loaded, cr will pick up at that point and continue directly with computing
the correlation vector ηi and evaluating the WF/CR operator. Thus, calling

cr 3

will do exactly the same thing as

new corrmatrix

new invmatrix 3

cr

but the latter can be split and computed in separate sessions:

...

new corrmatrix # you have to do that only

write corrmatrix binary corrm.dat # once per set of constraints!

...

load corrmatrix binary corrm.dat # you have to do that only

new invmatrix 3 # once per set of constraints

write invmatrix binary invm.dat # if you do not change sigma_nl!

...

load invmatrix binary invm.dat # load that each time you need it

cr # ... and this will now be faster!

The binary argument is one of the possible storage formats for matrices (the other one is ascii).
The sigma_nl parameter (here the value of 3) is added to the diagonal of corrmatrix before
inversion. Therefore, it is not stored with corrmatrix, but considered a part of the inversion
process. If you give a σNL explicitly (recommended), and you compute the WF/CR step-wise
as above, the sigma_nl argument goes to the new invmatrix command. With no sigma_nl
parameter, new invmatrix will try to iteratively find one such that χ2/dof ≈ 1.

Finally the ηi vector computed by cr is stored in the eta object and can be exported to a
file with write eta. However it makes no sense to split that step as well, since ηi also depends
on the RR via the mock constraints c̃i and therefore has to be recomputed for each individual
CR anyway. For this reason, there is no load eta command.

A.3.4 Scripting

The possibility to run ICeCoRe in script mode makes it very easy to run repetitive tasks from
the command line. As an example, we show one possible way to generate a large number of
constrained initial conditions with RZA from the same data, varying just the seed of the random
component. We assume here that you already performed the RZA shift of the data (Example 4)
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and then precomputed the inverted correlation matrix 〈cicj〉−1 of the RZA shifted constraints
with a suitable σNL parameter. The basic script to generate ICs with RZA could then be as
follows:

# Example 6 - basic_rza_script.ic

new cosmology 0.272 0.728 70.2 0 # compute cosmology from parameters

load pk WMAP7.dat # load tabulated power spectrum

normalise pk 0.807 # normalise to sigma8

new dgrid 256 100 # alloc grid with N=256^3, L=100 Mpc/h

seed 12345 # generate white noise field

colour # compute deltaRR

vsolve # solve uRR needed for mock constraints

load correlator grid # load pre-computed correlator

load constraints rza.co # load RZA-shifted constraints

multiply constraints2 kmstompch # convert from km/s to Mpc/h

load invmatrix binary rza_invm.dat # load precomputed <ci cj>^-1

cr # compute deltaCR

vsolve # solve uCR assuming PBCs

writeics gadget ics_cr_12345.gadget # write gadget ICs

quit

Running the same ICeCoRe script one hundred times varying the seed integer can now be easily
accomplished, for example with a short bash script:

#!/bin/bash

for i in {1..100}

do

sed "s/12345/$i/g" basic_rza_script.ic > temp.ic

./icecore temp.ic

done

In each loop iteration, this will execute ICeCoRe with a script where the original seed integer
has been replaced with another number from 1 to 100. In the end, one hundred different Gadget

IC files ics_cr_1.gadget, . . . , ics_cr_100.gadget will be written, each with a different random
seed. This is just an example how scripting can be used with ICeCoRe, of course much more
is possible.

Just like other command-line interpreters on Unix/Linux-style systems, instead of launching
ICeCoRe with a script file as the argument (./icecore my_script.ic), you can just execute
the script itself (./my_script.ic) if you add a hash-bang sequence as the first line of the script
file, i.e. the characters ‘#!’ followed by the absolute or relative path of the icecore executable.

A.4 Editing overdensity and velocity grids

Besides the essential functionality of generating random and constrained cosmological ICs, com-
puting Wiener filter mean fields, and performing RZA reconstruction, the ICeCoRe code pro-
vides several additional utilities. Most of them are tools to analyse and modify the dgrid and
vgrid objects, i.e. the grid-discretised overdensity and velocity fields. The analysis commands
binpk, histogram, stat, and xcorr have already been mentioned. ICeCoRe further has some
commands that modify the grids, providing some functionality that could be useful for setting
up or analysing cosmological ICs.
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A.4.1 Whitening

In Section 3.5 we discussed how the white noise field w(x) of an overdensity field realisation can
be used as an input for other IC-generating codes such as Grafic-2, Mpgrafic, Music and
Ginnungagap. This allows us to generate high-resolution, multi-scale and baryonic ICs with
these codes from constrained realisations generated by ICeCoRe. The white noise field w(x)
corresponding to a realisation δ(x) can be computed in Fourier space through equation 3.3. This
is performed with the command whiten. The overdensity field δ(x) will be read from dgrid, and
the resulting w(x) will be also saved in dgrid, overwriting the original field. This command is
the exact opposite of colour. Both commands require the correct power spectrum to be loaded
in the pk object. For whitening with the whiten command, it is absolutely necessary that the
power spectrum is exactly the same that was used for colour, normalised to the same σ8 at the
same redshift with the same normalisation method (cf. Sections 3.1.3 and A.2.2). After running
whiten, you should check with stat dgrid that the result satisfies the white noise condition
(equation 3.2).

For compatibility with other IC-generating codes, the Grafic white noise (graficwn) format
is the most suitable option to write whitened fields. Technical details about this format are given
in Section B.5.4. Below is an example script to whiten a previously generated δCR(x) field and
write the resulting white noise field w(x):

# Example 7 - converting a CR to white noise

load dgrid bov delta_cr.bov # load deltaCR (normalised to z=0)

load pk WMAP7.dat # load P(k) used to generate that deltaCR

normalise pk 0.807 # normalise to z=0 exactly as before

whiten # compute white noise field

write dgrid graficwn wn.dat # write output in grafic white noise format

quit

A.4.2 Smoothing filters

The filter command can be run on either dgrid or vgrid to apply a linear smoothing filter.
The syntax is

filter { dgrid | vgrid } filter_type radius

where the notation { dgrid | vgrid } means that dgrid and vgrid are mutually exclusive
options. The filter_type argument can be either gauss, applying a Gaussian filter (equation
2.54), or sth, applying a spherical top-hat filter (equation 2.55) on the chosen grid. The radius
parameter specifies the smoothing radius R in units of Mpc/h. The computation is carried out
by forward FFT, multiplying with the filter kernel, and backward FFT. The Gaussian filter was
used in many places of this work, for example the fields plotted with contour lines in the bottom
row of Figure 2.8 were created with the command filter dgrid gauss 2.5. The spherical
top-hat filter can be used, for example, to compute the value of σ8 of a given overdensity field:

# Example 8 - compute actual sigma8 on grid

load dgrid bov delta_cr.bov # load an overdensity field at z=0

filter dgrid sth 8 # apply spherical tophat filter, R=8 Mpc/h

stat dgrid # show statistical moments

quit # (sigma8 will be the standard deviation)
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A.4.3 Downsampling and cropping

The commands degrade, kdegrade, and crop can be used to reduce either the resolution of dgrid
or vgrid (by downsampling), or the boxsize (by cropping). Both procedures share the Fourier
uncertainty principle: they can be performed either exact in real space, which will introduce
errors in Fourier space, or exact in Fourier space, which preserves the correct P (k) but leads to
artefacts in the real-space distribution. A discussion of these effects can be found in Bertschinger
(2001). The command degrade performs a downsampling in real space. The syntax is

degrade { dgrid | vgrid } new_resolution

which will overwrite the original grids. The integer argument new_resolution specifies the new
resolution nnew of the downsampled field and has to be smaller than the original resolution n,
but n does not have to be a multiple of new_resolution , and neither have to be powers of two.
The downsampling is performed by trilinear interpolation. If new_resolution is exactly n/2,
then degrade is equivalent to replacing each group of 2 × 2 × 2 cells with one cell that will be
assigned the average value of the original eight cells. This procedure will be exact in real-space
in the sense of preserving mass (dgrid) and momentum (vgrid), but introduce a power aliasing
error on the P (k) of the downsampled grid which significantly underestimates the input P (k) for
wavenumbers above ≈ 0.2 kNy. An alternative is the command kdegrade, which performs the
downsampling in Fourier space (similar to the degraf utility of Mpgrafic, see Prunet et al.
2008). This will preserve the correct P (k) for all wavelengths below the Nyquist frequency of the
downsampled grid, but on the other hand introduce significant non-local errors in the real-space
distribution of the field (“Gibbs ringing”).

The crop command can be used to crop either the dgrid or the vgrid to a smaller boxsize
while keeping the same grid cell spacing. The cropped box will be again a cubic box. The syntax
is

crop { dgrid | vgrid } new_resolution x_offset y_offset z_offset

The argument new_resolution specifies the new resolution nnew of the cropped box, which must
be smaller than the original resolution n. The arguments x_offset , y_offset , and z_offset
specify the position of the resulting sub-box relative to the 0,0,0 cell of the original box, i.e.
how many grid cells will be cut off at the left/lower edge in each dimension. They must be
non-negative integers and specify the cropping positions in cells, i.e. in units of Δx, and not in
units of Mpc/h. For example, the following command takes a dgrid with resolution n = 256
and arbitrary boxsize L and crops it to a sub-box with boxsize L/2 centred on the original box
centre:

crop dgrid 128 64 64 64

As with degrade and kdegrade, n does not have to be a multiple of nnew, and neither have
to be powers of two. After the cropping procedure, the remaining grids will not any longer
have periodic boundary conditions (PBCs), regardless of whether they had PBCs before. Grids
without PBCs cannot be used to generate cosmological ICs. Furthermore, cropping in real space
introduces artefacts on the power spectrum P (k). A more advanced application of the crop

command is the method introduced in Bertschinger (2001), which leads to a cropping that is
correct in Fourier space and preserves PBCs. The algorithm consists of first whitening the grid,
then cropping it, and then colouring it again:

whiten

crop dgrid 128 64 64 64

colour
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Figure A.1: Left: original periodic box with n = 256, L = 160 Mpc/h. Middle: cropped box with
n = 128, L = 80 Mpc/h. Right: box cropped while preserving periodic boundary conditions (PBCs).
Notice how the density distribution at the edge of the cropped box changed to reflect the PBCs, while
everywhere else the field stays the same. Shown is the overdensity field smoothed with a 2.5 Mpc/h
Gaussian kernel.

This can be used to obtain sub-boxes with smaller boxsize from a larger original box, while
retaining PBCs and zero mean, so that they have the required statistical properties to be used
for setting up cosmological ICs. The result is depicted in Figure A.1. This simple algorithm can
be useful if one wants to simulate the same cosmic structures with different simulation boxsizes.

A.4.4 Snapshot binning with mass assignment schemes

ICeCoRe performs all calculations with fields discretised on uniform cubic grids and generates
N -body particle data only when it writes ICs in Gadget format. However, as an additional
tool, ICeCoRe also offers the possibility to convert a cosmological simulation snapshot, con-
taining particle data, to density and velocity fields on a uniform cubic grid. This can be done
with the bin command. It can be useful to quickly analyse the evolved fields of cosmological
simulations. Currently, Gadget and Art-format snapshots are supported. Snapshots from
the Ramses code can be used as well after conversion to Gadget format; please contact the
author for an appropriate conversion tool. ICeCoRe was specifically developed for this work
and for this reason currently supports only single-file dark matter snapshots. Large simulations
(N > 10243), zoom-in simulations containing multiple particle masses, and snapshots contain-
ing baryonic physics, such as hydrodynamical data, star particles, etc. are not supported by
ICeCoRe; appropriate analysis tools have been developed by other authors.

The basic syntax of the bin command is:

bin { dgrid | vgrid } format input_file resolution mas_type

This will open the snapshot contained in the file input_file , assuming a snapshot file format
format , read all contained particle positions xi (bin dgrid) and velocities ui (bin vgrid) and
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bin them to a grid with resolution n, specified with the resolution argument, using a mass
assignment scheme specified with the argument mas_type . The bin dgrid command will first
evaluate in each cell the number density n(x) of particles convolved with W (x),

n(x) =
∑
i

W (x− xi) , (A.2)

where W (x) is the kernel of the mass assignment scheme, and then convert this to density ρ in
units of the mean density ρ̄:

ρ(x)

ρ̄
=

Ncells

Nparticles
n(x) . (A.3)

The field ρ(x)/ρ̄ will then be saved in the dgrid object. The bin vgrid command will instead
evaluate

u(x) =

∑
i uiW (x− xi)∑
iW (x− xi)

(A.4)

and save the result in the vgrid object. In both cases, the boxsize of the grid L in Mpc/h will
be read automatically from the snapshot file. Note that bin dgrid produces a density field in
units of the mean density ρ̄, and not an overdensity field δ = ρ/ρ̄− 1, which would otherwise be
the quantity represented with dgrid. If you need to convert this density field to the overdensity
δ(x), it is sufficient to subtract 1 from the field, which can be done with

addconst dgrid -1

The unit of the result produced in vgrid by bin vgrid will be whatever unit was used in the
snapshot to store the particle velocities. It is the responsibility of the user to pay attention to
the units when using the bin command.

The three most commonly used mass assignment schemes are available (Hockney & Eastwood
1992): nearest grid cell (NGC), cloud-in-cell (CIC), and triangular-shaped cloud (TSC). To select
one of these, type ngc, cic or tsc for the mas_type argument. This will determine the window
function W (x) that will be used for the binning. These window functions are not isotropic, as
for example the Gaussian or top-hat kernels, but instead follow the cubic-symmetrical geometry

W (x) = W (xx) ·W (xy) ·W (xz) , (A.5)

where the one-dimensional kernels corresponding to the three schemes write

WNGC(x) =

⎧⎪⎨
⎪⎩

1 if
x

Δx
< 1

2 ,

0 else ;

(A.6)

WCIC(x) =

⎧⎪⎨
⎪⎩

1−
∣∣∣ x

Δx

∣∣∣ if
x

Δx
< 1 ,

0 else ;

(A.7)
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WTSC(x) =
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(A.8)

with Δx = L/n being the chosen grid cell spacing. Choosing a mass assignment scheme is always
a tradeoff between a large smoothing of the field and a large amount of shot noise from the
inhomogeneous particle distribution. The NGC scheme features the least smoothing, while the
TSC scheme features the least amount of shot noise. The CIC scheme is a popular compromise.
For example, the density field slices shown in Figure 5.12 are plotted from grids generated with
the command

bin dgrid gadget snapshot_006 256 cic

where in this case snapshot_006 is the Gadget-format snapshot file at z = 0.
The binpk command, which computes periodogram estimates of the power spectrum P (k)

of dgrid, offers the option to compensate for the smoothing introduced by the mass assignment
schemes by adding ngc, cic or tsc as an additional option. Combined with bin, this can be
used to quickly generate an estimate of the non-linear P (k) from a simulation snapshot. For
example, the black curve in Figure 2.12 was generated from an overdensity grid with

load dgrid bov box160_ics_delta.bov # read IC overdensity grid (n=256)

binpk box160_ics_pk.dat 256 # write P(k) to file

while the red curve was generated from a Gadget-2 snapshot at z = 0 with

bin dgrid gadget box160_snapshot_006 256 cic # bin z=0 Gadget snapshot

binpk box160_z0_pk.dat 256 cic # write P(k) to file

Please note that the binpk command corrects for the effect of mass assignment smoothing, but
does not correct for aliasing effects due to the particle distribution, as this requires a prior
knowledge of the power spectrum (Jing 2005). This is still very well usable because the mass
assignment smoothing is usually much stronger than the other effects. A more precise correction
method may be included in a future ICeCoRe version.

Care must be taken when binning the particle velocities. In a snapshot of an evolved cos-
mological simulation, neighbouring particles will often be separated by distances equivalent to
several grid cell spacings in underdense regions. In this case, if a cell does not touch the window
kernel of any particle, the value of equation A.4 will be undefined. The bin command prints a
message about whether this case occured and writes NaN (not a number) values in affected cells.
For a continuous velocity field binning from a snapshot at z = 0, the grid resolution should be
always chosen at least a factor of two lower than the number of particles per dimension, together
with the TSC mass assignment scheme, which has the widest window function. Another possi-
bility to overcome the inhomogeneous sampling would be the use of an adaptive mass assignment
scheme; this feature will possibly be included in future ICeCoRe versions.

Because of the significant shot noise, smoothing from the mass assignment, and alias errors
of fields binned from particle data, use density or velocity fields that were generated with bin

only for analysis. Never use them to set up cosmological initial conditions or do anything else
that would normally require fields generated on a grid.
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Appendix B

ICeCoRe reference

B.1 Objects

The data inside ICeCoRe is organised into objects which are responsible to manage the different
fields, vectors, matrices and tables in computer memory that are needed for calculations. Most
of the ICeCoRe commands operate on one of these objects. If a command can be applied to
different objects, it will feature the name of the desired object as its first argument, such as for
example the load, write, and new commands. This section provides a description of all objects
available in ICeCoRe version 1.0 in alphabetic order.

constraints

The constraints object is a list of M constraints (or data points) c1, . . . cM . Each of these
constraints has ten numbers attached to it (see Table 3.1): the constraint type Yi, the constraint
position (xi, yi, zi), the constraint value c, the estimated constraint error εi, the direction vector
(êμ,x, êμ,y, êμ,z) and the Gaussian smoothing radius RG. The constraint type is encoded with
an integer (δ ≡ 1, ψμ ≡ 2). The other fields contain their numerical values as real numbers.
The input data format for constraints consists of an ASCII table with ten whitespace or tab-
separated columns corresponding to these ten quantities, one line per constraint. Such a data
file can be loaded into the constraints object with the load constraints command. Several
commands exist to manipulate the constraints: addvector, deoverlap, multiply, shift, and
sparse. Using these commands, the RZA method discussed in Chapter 5 can be performed
within ICeCoRe. An edited set of constraints can be written to a file in the same ten-column
format with write constraints.

correlator

The correlator object holds the precomputed correlation functions ξ, ψR, ψT and ζ needed
to compute the data autocorrelation matrix 〈cicj〉 and to evaluate the WF/CR operator. It is
also responsible to compute all necessary correlation values when needed by interpolation on the
precomputed functions. The correlator object needs to be initialised with the new correlator

command and requires the pk object (the power spectrum P (k)) and the dgrid object (in order
to know the box parameters: resolution and boxsize).

There are two types of correlators: analytic and grid. The analytic correlator is a very
efficient method for Wiener filtering from peculiar velocity data and for constructing CRs if
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the finite-volume effect and the periodic boundary conditions are not expected to lead to large
systematic inconsistencies (i.e. if the constraints are well inside the central part of the box and
the boxsize is not smaller than at least 100 Mpc/h). The grid correlator provides an alternative
by computing all correlations in a way that is self-consistent with the finite volume and periodic
boundary conditions. See Sections 3.4.1 and 3.4.2 for details.

The analytic correlator computes the isotropic one-dimensional correlation functions ξ, ψR,
ψT and ζ over a wide range of distances x and smoothing radii RG and stores them in two-
dimensional lookup tables. Values for given x and RG are computed by interpolation over these
tables using the GSL cubic spline interpolation. The grid correlator instead stores the three-
dimensional correlation grids ξ, ψxx, ψxy and ζx. Values for given x are computed using trilinear
interpolation on these grids. For nonzero smoothing radii RG, an additional Gaussian smoothing
is performed on the grids, either locally in real space or with FFT, depending on what is faster
for the given RG.

Especially if you use the analytic correlator and a wide range of smoothing radii RG, which
requires a large array of precomputed interpolation tables, computing the correlator can take
some time, because many numerical integrals with highly oscillatory integrand terms have to be
evaluated in equations 3.46 – 3.49. In order to use the same correlator for many ICeCoRe runs,
it can make sense to precompute and store the correlator and then to quickly reload it in each
run, instead of recomputing it. This can be accomplished with write correlator and load

correlator. On the other hand, computing the grid correlator requires only four FFTs and will
not take much time in most cases.

corrmatrix

The corrmatrix object holds the data autocorrelation matrix 〈cicj〉 that was last computed,
using the definition 3.21 and 3.24, without the σNL parameter. The σNL is a constant term added
to the diagonal of the matrix before it is inverted, which is performed by the commands cr, crv, or
new invmatrix. It is therefore not stored in corrmatrix to avoid unnecessary computations and
added only immediately before inversion. After the inverted data autocorrelation matrix 〈cicj〉−1

has been computed, the result will be stored in the invmatrix object, and the corrmatrix object
will be deleted to save space in memory. It therefore normally only exists in between computing
and inverting the matrix (although the deletion of corrmatrix can be prevented with the retain
option).

If computing the matrix takes a long time and you want to re-use the same matrix in several
ICeCoRe runs, it is possible to write corrmatrix to a file with write corrmatrix and then to
load it later with load corrmatrix before the inversion. If you decide to use this possibility, be
extremely careful that the pre-computed corrmatrix is fully consistent with the currently loaded
constraints and correlator, as load corrmatrix does not check this. This is only recommended
if you will try different σNL parameters on the same matrix. Otherwise, it is more efficient to
pre-compute and store the inverted matrix using write invmatrix and load invmatrix.

cosmology

The cosmology object holds all necessary quantities that directly depend on the cosmological
parameters. It is initialised with the new cosmology command, which takes as arguments the
parameters Ωm (total matter density), ΩΛ (dark energy density), H0 (the numerical value of
the Hubble constant in units of km s−1 Mpc−1, i.e. the value of 100h), and the redshift z.
For Wiener filter reconstructions of the contemporary large-scale structure, the redshift will be
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z = 0, while for constrained and unconstrained cosmological initial conditions it will be the
starting redshift zinit of the simulation. During initialisation, the cosmology object computes
and stores the parameters a (scale factor), ȧ (expansion rate), D+ (linear growth factor), f
(linear growth rate), and t (age of the Universe) at the given redshift z. These values can be
retrieved at any time with the command stat cosmology. In this sense, ICeCoRe can be used
as a “cosmological calculator” to quickly compute these quantities.

dgrid

The dgrid object contains the three-dimensional overdensity grid δ(x) with resolution N = n3,
where n is the number of grid cells per dimension, and boxsize L given in Mpc/h. The overdensity
is assumed to be a real-valued scalar field with no imaginary part. Therefore, its Fourier transform
is Hermitian, δ(k) = δ∗(−k). The data is stored internally as a std::complex<double> array
with n3 entries. Assuming an 8-byte double, the object takes 16n3 bytes of memory, plus a
small overhead for the box parameters. This format in memory is directly compatible with the
fftw_complex array type of FFTW3 that is used by ICeCoRe for all discrete Fourier transforms.

The dgrid can be read and written to files in various formats (see load dgrid and write

dgrid) as well as created within ICeCoRe (see new dgrid). Many of the ICeCoRe com-
mands directly manipulate the dgrid object, such as add, cr, crop, degrade, filter, seed,
and whiten. Others allow to analyse the overdensity grid, such as computing its power spec-
trum (binpk), probability distribution (histogram), its statistical moments (stat dgrid), or its
cross-correlation with another overdensity grid (xcorr). A dgrid can also be created by binning
(with a mass assignment scheme) from the dark matter particles of a cosmological simulation
snapshot (bin dgrid). In this case, the resulting dgrid will be a windowed density field instead
of an overdensity field.

eta

The eta object holds the correlation vector ηi (equation 3.39) that was last computed in a
WF/CR run. It can be written to a file using the write eta command, if one wants to examine
the values of ηi. The eta object is accessible only for this diagnostic purpose and will be
automatically recomputed in each WF/CR run.

invmatrix

The invmatrix object holds the inverted data autocorrelation matrix 〈cicj〉−1 that was last
computed (using the definition 3.45). This object is needed to execute the WF/CR operator
(commands cr and crv). If the WF/CR does not find an invmatrix object, it will automatically
compute and store it. The inverted data autocorrelation matrix depends on the constraints,
the correlator, and the non-linearity parameter σNL. Therefore, the invmatrix object will be
invalidated and deleted each time one of these objects/parameters changes and automatically
recomputed if the WF/CR operator is run afterwards. It can also be pre-computed explicitly
using the new invmatrix command. To re-use a precomputed inverted data autocorrelation
matrix, the commands write invmatrix and load invmatrix can be used. This is especially
useful if one wants to generate many CRs in different ICeCoRe runs using the same constraints
and σNL and save the time that would be needed to compute invmatrix each time. If you
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decide to use this possibility, be extremely careful that the pre-computed invmatrix is fully
consistent with the currently loaded constraints, correlator, and σNL, as load invmatrix does
not check this. If you want to use different σNL parameters with the same pre-computed data
autocorrelation matrix, you can instead pre-compute and store the non-inverted matrix using
write corrmatrix and load corrmatrix.

pk

The pk object holds the currently loaded tabulated power spectrum P (k) that describes the
assumed cosmological prior model. It computes values of P (k) by interpolating over this table.
Currently this is implemented with cubic spline interpolation using the GSL. The pk object is
required for generating cosmological random realisations from white noise fields (colour com-
mand) and the reverse procedure of whitening (whiten command). It is further needed to load
a correlator object, i.e. to compute the correlation functions needed for WF/CR. ICeCoRe

does not contain code to compute P (k) from cosmological parameters; this has to be done with
other software such as Cmbfast, Camb or iCosmo (see Section 2.2.4). The tabulated P (k)
can then be loaded with the load pk command. The input format consists of a whitespace or
tab-separated ASCII table with two columns, k (in units of h/Mpc) and P (k), with no additional
lines in the file. This is the same format that the Camb code uses for output. Before use, the
P (k) has to be normalised to a normalisation parameter σ8 and a redshift z. This is done with
the normalise command.

vgrid

The vgrid object holds the three grids ψx, ψy and ψz that descibe the three cartesian components
of the linear displacement field ψ. This is equivalent to the linear peculiar velocity field u divided
by the factor ȧf . Numerically the object behaves very similar to the dgrid object, except that it
contains three such grids instead of one. Input and output is done with load vgrid and write

vgrid, in the same way as with dgrid, except that three files have to be provided instead of one,
each file holding one grid. Many of the grid operations possible with dgrid can be applied to
vgrid and will do the same except with all three grids, such as crop, degrade, and filter. It
is also possible to compute the probability distribution (histogram) and the statistical moments
(stat vgrid) of the three displacement grids.

The vgrid can be converted from displacement in Mpc/h to peculiar velocity in km/s and
vice versa using the commands multiply vgrid mpchtokms and multiply vgrid kmstompch,
respectively. This should be done only for handling input and output, since ICeCoRe always
assumes internal units of Mpc/h for all computations. The linear displacement field correspond-
ing to the overdensity field stored in dgrid can be computed with the command vsolve, which
evaluates equation (3.5), and the reverse operation is performed with dsolve. Both assume
periodic boundary conditions.

A vgrid object can also be created by binning (with a mass assignment scheme) from the
peculiar velocities of the dark matter particles of a cosmological simulation snapshot (bin vgrid).
In this case, the unit of vgrid will correspond to whatever unit the particle peculiar velocities
have in the snapshot. It is up to the user to handle these units correctly. Special care must
be taken to select a grid resolution and mass assignment scheme that will create a continuous
velocity field from the discrete particle data; see Section A.4.4 reference for details.
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B.2 Commands

This section provides a reference for all available commands in ICeCoRe version 1.0 in alphabetic
order. For each command it explains the syntax, the required arguments/parameters, and what
action the command performs.

For the syntax explanation we use the following conventions. The names of commands,
objects, and everything else that has to be typed as it is written, appear in typewriter font.
Arguments which are tokens and have to be replaced by some actual name or value appear in
italic typewriter font. In the example scripts shown for some commands, we will insert some
example names and values for them. Arguments that are mutually exclusive are separated by
a pipe symbol “ | ”. Arguments that are optional are surrounded by square brackets “ [ ] ”.
Arguments that are required are instead surrounded by curly brackets “ { } ” where necessary.
Comments in the example scripts are preceded by a hash symbol “ # ”.

add

Load grids and add them together.

Syntax:
add dgrid format file [ options ]

add vgrid format vx_file vy_file vz_file [ options ]

This command uses the same syntax, formats and options as load dgrid and load vgrid,
respectively. The difference between add and load is that after reading from file, the grids are
added to the existing ones, instead of overwriting them. This can be used, for example, to quickly
average over several grids:

add dgrid bov dgrid_1.bov # add up four overdensity grids

add dgrid bov dgrid_2.bov

add dgrid bov dgrid_3.bov

add dgrid bov dgrid_4.bov

mult dgrid 0.25 # average: divide by nr. of grids

write dgrid bov dgrid_averaged.bov # write result

If there is no grid loaded initially, add will simply load the grid, i.e. do the same as the load

command.

addconst

Add a constant number to the overdensity field.

Syntax:
addconst number

This command adds a constant real number to the field stored in dgrid. This can be used, for
example, to convert from normalised density ρ/ρ̄ to overdensity δ = ρ/ρ̄− 1:

bin dgrid gadget snapshot.gadget 256 cic # particle mass assignment produces

addconst dgrid -1 # a normalised density field!

write dgrid bov snapshot_delta.bov
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addvector

Add a constant vector to displacement field or constraints.

Syntax:
addvector { constraints2 | vgrid } vx vy vz

This commands adds a vector with three cartesian components to either the currently loaded
vgrid, or to the values ci of the currently loaded vector-type constraints (type 2; displacement
type). The three cartesian components of the vector that will be added must be given as argu-
ments vx , vy , and vz .

addvector vgrid is the vector analogue to the addconst command and can be used, for
example, to add or subtract an overall bulk motion to/from the currently loaded velocity/dis-
placement field ψ. addvector constraints2 can be used to do the same for the currently
loaded set of constraints. Overdensity-type constraints (type 1) will be ignored in this case.
Each type 2 constraint constrains only one component of ψ parallel to some unit vector êμ.
So what addvector actually does is computing for each type 2 constraint the dot product of
êμ and the vector given in the argument, and then adding this value to the constraint value
ci. This can be used to convert velocity-type data from one rest frame to another (cf. Section
3.2.2). For example, let us assume that we want to compute a Wiener filter reconstruction from
observational radial peculiar velocities v�r given in the solar standard of rest in units of km/s,
but the reconstruction shall be performed from velocities in the Galactic standard of rest (GSR).
The conversion from the solar frame to the GSR frame is given by (Tully et al. 2008):

vGSR
r = v�r + 9.3 êx − 218 êy + 7.6 êz . (B.1)

This conversion and the subsequent WF reconstruction can be performed with ICeCoRe like
this:

load constraints data.co # load data (in the correct format!)

addvector constraints2 9.3 -218 7.6 # perform conversion to GSR frame

multiply constraints kmstompch # convert to internal units of Mpc/h

cr # compute Wiener filter mean field

bin

Compute density and velocity fields by binning the dark matter particles from a simulation
snapshot to a grid.

Syntax:
bin { dgrid | vgrid } format file resolution mas_type

This function can be used to map the density and velocity fields represented as a set of N -body
particles in a simulation snapshot to a uniform cubic grid. It will open the snapshot contained
in file , assuming a snapshot file format format , read the contained particle positions xi and
velocities ui, and then bin them to a grid. bin dgrid will produce the normalised density
field ρ/ρ̄ (equation A.2 and A.3) and store the result in dgrid, while bin vgrid will produce the
binned velocity field (equation A.4) and store the result in vgrid (in whatever units ui was stored
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in the snapshot). The resolution n (i.e. number of cells per dimension) of the grid is specified
with the resolution argument. The boxsize of the grid L in Mpc/h will be read automatically
from the snapshot file. The mass assignment scheme is specified with the argument mas_type ,
which can be either ngc (nearest grid cell), cic (cloud-in-cell), or tsc (triangular-shaped cloud).
See Section A.4.4 a more detailed discussion.

Currently supported snapshot file formats are: gadget – single-file Gadget format with
additional identifier blocks; gadget1 – single-file Gadget format without these identifier blocks;
and art – single-file Art snapshot format. For Gadget snapshots, the length unit in the
file is assumed to be kpc/h (the Gadget standard unit); see Gadget User’s guide (avail-
able at www.mpa-garching.mpg.de/gadget) for more information. Snapshots from the Ramses

code can be used as well after conversion to Gadget format; please contact the author for an
appropriate conversion tool. Multiple-file snapshots, large simulations (N > 10243), zoom-in
simulations containing multiple particle masses, and snapshots containing baryonic physics, such
as hydrodynamical data, star particles, etc. are currently not supported.

binpk

Compute a periodogram estimate for the power spectrum P (k) of an overdensity grid.

Syntax:
binpk file [ n_bins [ correction_type ] ]

This command computes a periodogram estimate of the power spectrum P (k) on the currently
loaded dgrid and writes the result into file . The output format is the same as the input
format for tabulated power spectra: a whitespace or tab-separated two-column ASCII table
with k in units of h/Mpc in the first column and P (k) in the second. The computation is
carried out with a forward FFT on dgrid and a binning of δ(k) over the wavenumbers k = |k|
that correspond to the grid cells in Fourier space. The bins are placed equidistant in log space
between the smallest wavenumber kL = 2π/L (fundamental wave) and the highest wavenumber√
3 kNy = |(kNy, kNy, kNy)| that occurs in the box (where kNy = π/Δx is the Nyquist frequency

of the grid). The DC mode at k = 0 (total mean overdensity of the box) will be ignored; its
value can be determined with stat dgrid instead.

Two optional arguments can be specified. The first, n_bins , is the number of bins which will
be used to sample the grid P (k). If not specified, the number of bins will be set to the value of n
(the resolution of the grid). The second, correction_type , is used if the grid was generated by
a particle binning with a mass assignment scheme (bin dgrid command) to perform a correction
on P (k) for the mass assignment smoothing effect; see Jing (2005). correction_type can be
either ngc, cic, or tsc, following the names of the corresponding mass assignment schemes. This
option should be used only for density grids created from particle data with one of these three
mass assignment schemes.

chisquare

Compute the value of χ2/dof.

This command evaluates χ2/dof (equation 3.43) from the constraints ci and their inverse auto-
correlation matrix, where dof (degrees of freedom) is the number of constraints. This command
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requires the constraints and invmatrix objects. χ2/dof is also computed each time the auto-
correlation matrix is inverted by new invmatrix.

colour

Generate a Gaussian random field with power spectrum P (k) from a Gaussian white noise field.

This command assumes that dgrid contains a Gaussian white noise field w(x) as defined by
equation 3.2 (such a field can be created with seed). First, a forward FFT is performed. Then,
the currently loaded power spectrum P (k) (pk object) is used to evaluate equation 3.3 for each
grid cell. The final step is a backward FFT. The result is an overdensity field δ(x) on the grid,
a random realisation of a Gaussian random field with periodic boundary conditions and power
spectrum P (k). This grid is stored in dgrid, overwriting the white noise field, and can be used
to set up ICs. The procedure can be reversed with whiten.

cr

Compute a constrained realisation or a Wiener filter mean field.

Syntax:
cr [ sigma_nl ]

The cr command computes the linear overdensity field δCR(x) of a constrained realisation by
computing the mock constraints c̃i, the correlation vector ηi (equation 3.39), and then evaluating
equation 3.40 for all grid cells of the currently loaded dgrid. To compute the correlations,
the currently loaded correlator and constraints objects are used. The optional argument
sigma_nl enables to specify the value of the non-linearity parameter σNL that will be used for
the inversion of the data autocorrelation matrix (3.45).

If a sigma_nl is specified, cr first checks if the data autocorrelation matrix 〈cicj〉 was com-
puted yet, i.e. if there is a corrmatrix object. If yes, this matrix is inverted using the specified
σNL by automatically calling new invmatrix, and cr proceeds with computing c̃i, ηi and δCR(x).
If no, corrmatrix is computed first by automatically calling new corrmatrix.

If no sigma_nl is specified, cr first checks if the inverted data autocorrelation matrix 〈cicj〉−1

was computed yet, i.e. if there is an invmatrix object. If yes, cr proceeds directly with computing
c̃i, ηi and δCR(x). If no, invmatrix is computed first by automatically calling new invmatrix.
In this case, σNL will be automatically chosen such that 0.995 < χ2/dof < 1.005 . This involves
several iterative matrix inversions and can take a very long time if the matrix is large. It is
therefore recommended to always provide a sigma_nl parameter if no invmatrix is loaded,
except if there are only a few thousand constraints or less.

In order to compute the mock constraints c̃i and the RR term in equation 3.40, the currently
loaded dgrid and vgrid are used, assuming that they contain δRR(x) and uRR(x), respectively.
The latter must be in units of displacement (Mpc/h). The contents of dgrid will be overwritten
with δCR(x).

The command cr is also used to compute the Wiener filter mean field, δWF(x). If the currently
loaded dgrid and vgrid are empty and contain only zeroes, both the mock constraints c̃i and the
RR term will be zero as well, and the equations will reduce to 3.26 and 3.27, respectively. Thus,
if you want to compute δWF(x) instead of δCR(x), call new dgrid and new vgrid immediately
before cr.
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The velocity field of the WF or CR is not computed by cr. It can be obtained instead from
δCR(x) by running vsolve, which assumes periodic boundary conditions (PBCs). If you want to
compute a WF velocity field from the data without PBCs, e.g. for an analysis of the cosmography
of the Local Universe, run crv instead, using the analytic correlator.

crop

Crop density and velocity fields to smaller boxsizes.

Syntax:
crop { dgrid | vgrid } new_resolution x_offset y_offset z_offset

This command can be used to crop either the dgrid or the vgrid to a smaller boxsize while
keeping the same grid cell spacing. The cropped box will be again a cubic box. The argument
new_resolution specifies the new resolution nnew of the cropped box, which must be smaller
than the original resolution n. The arguments x_offset , y_offset , and z_offset specify the
position of the resulting sub-box relative to the 0,0,0 cell of the original box, i.e. how many grid
cells will be cut off at the left/lower edge in each dimension. They must be non-negative integers
and specify the cropping positions in cells, not in units of Mpc/h. For example, the following
command takes a dgrid with resolution n = 256 and boxsize L and crops it to a sub-box with
boxsize L/2 centred on the original box centre:

crop dgrid 128 64 64 64

The old resolution does not have to be a multiple of the new resolution, and neither resolutions
have to be powers of two. After the cropping procedure, the remaining grid will not any longer
have periodic boundary conditions (PBCs), regardless of whether it had PBCs before, and cannot
be used to generate cosmological initial conditions. To preserve PBCs while cropping, the method
of Bertschinger (2001) can be used; see Section A.4.3.

crv

Compute a constrained realisation or a Wiener filter mean field for both the overdensity and the
velocity field.

Syntax:
crv [ sigma_nl ]

This command behaves in the same way as cr, but additionally it also evaluates equation 3.41
for each grid cell of vgrid. After this process, vgrid will contain ψCR (or ψWF) in units of
Mpc/h; the previous values of vgrid will be overwritten. If the analytic correlator is used, this
is the only method to compute ψCR, and equivalently uCR, without assuming periodic boundary
conditions on this field. It generally makes no sense to run crv with the grid correlator.
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degrade

Resample grids to lower resolution in real space.

Syntax:
degrade { dgrid | vgrid } new_resolution

This command resamples either the dgrid or the vgrid from the original resolution n (number
of cells per dimension) to a lower resolution nnew, specified with the new_resolution argument,
using trilinear interpolation in real space. n does not have to be an integer multiple of nnew.
If it is, the resampling will be equivalent to an averaging over cells. This procedure preserves
mass (for dgrid) and momentum (for vgrid) in real space, but the power spectrum P (k) of the
downsampled grid will be underestimated at high frequencies due to power aliasing errors. If
you need to preserve P (k), use kdegrade instead.

deoverlap

Remove constraints with overlapping smoothing volumes.

Syntax:
deoverlap [ factor ]

This command goes through the list of constraints in the constraints object and performs a
pair-wise check of the constrained positions xi and the corresponding smoothing radii RG. If
two constraints are found closer than fG · (RG,1 + RG,2) to each other, the constraint with the
smaller RG is removed. If RG,1 = RG,2 the constraint that is further down in the list will be
removed. The value of the parameter fG can be specified with the optional argument factor .
If no argument is given, the default value fG = 1 will be used.

dsolve

Compute the overdensity field corresponding to a displacement field in linear theory.

This command solves the inverse of equation 3.5 to obtain the overdensity field δ(x) correspond-
ing to a linear displacement field ψ(x) stored in vgrid. It performs a forward FFT on each
component ψx(x), ψy(x), and ψz(x), followed by the multiplication

δ(k) = −ik ·ψ(k) (B.2)

and finally a backward FFT to obtain δ(x). This result is then stored in dgrid. The inverse
procedure can be carried out with vsolve.

filter

Apply a linear smoothing filter to the density or velocity field.

Syntax:
filter { dgrid | vgrid } filter_type radius
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This command smooths either dgrid or vgrid with a linear filter. The type of the filter is
specified with filter_type . This can be either gauss for the Gaussian filter (equation 2.54), or
sth for the spherical top-hat filter (equation 2.55). The filter radius R in Mpc/h is specified by
radius . The smoothing is performed by forward FFT, multiplying with the smoothing kernel
W (kR), and backward FFT. This method assumes periodic boundary conditions on all grids.

hann

Apply a Hann filter to the power spectrum.

This command applies a Hann filter to the tabulated power spectrum P (k) currently stored in
the pk object. The filter kernel is defined by

WH(k) =

⎧⎪⎪⎨
⎪⎪⎩

cos

(
πk

2kNy

)
if k ≤ kNy ,

0 else ,

(B.3)

where kNy = π/Δx is the Nyquist frequency of the currently loaded dgrid. This filtering damps
high-frequency modes and completely removes the frequencies between kNy and

√
3 kNy, which

are anisotropically sampled on the grids because of Fourier-space discretisation. As opposed to
filter, the hann command does not modify the grids, but instead the pk object by replacing
the P (k) stored there by the modified power spectrum PH(k) = WH(k) ·P (k). This modified pk

object can then be used to set up Hann-filtered ICs sometimes used for cosmological simulations,
for example the MareNostrum simulation (see Prunet et al. 2008). The benefit of this method
is that small-scale anisotropies in the correlation functions will be suppressed. The downside is
that a lot of useful small-scale resolution is lost. The Hann-filtered P (k) can also be used to set
up the grid correlator, which otherwise features small-scale anisotropies as numerical artefacts
along the x, y, z axes in the grid correlation functions (Figure 3.5; see also Bertschinger 2001).
This should be done consistently: use the Hann filter on the grid correlator for a CR if and
only if you use it to generate the random component as well. However, we did not use Hann
filtering for the simulations presented in this work, arguing that the small-scale anisotropies do
not significantly affect the outcome of a simulation at z = 0.

help

Display built-in help and code reference.

Syntax:
help [ topic ]

If called with no arguments, help will display some general info about ICeCoRe and an overview
over the most important help topics. If given an ICeCoRe command name as an argument,
help will display a short description of the command along with an explanation of the syntax
and required arguments. Some commands are divided into subcommands, for example help

correlator will contain some general information about the correlator object, while help

correlator analytic and help correlator grid provide more details about how to use the
different correlator types. If given the name of an ICeCoRe object, it displays information
about the object and its purpose. If called with commands, objects, or tokens as the topic
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argument, help will display a list of all available commands, objects, and predefined tokens,
respectively.

histogram

Compute histograms of the overdensity or velocity/displacement field distribution functions.

Syntax:
histogram { dgrid | vgrid } file min max n_bins

The histogram command computes a histogram of all grid cell values of dgrid and vgrid,
respectively, i.e. the distribution functions on the grid, and write them into file . The binning
range and number of bins has to be specified explicitly with the arguments min , max , and
n_bins . For example, Figure 2.9 was created using this function. The output file is an ASCII
table containing the centre of each bin in the first column and the corresponding cell count of
δ(x) in the second column (for dgrid) or the cell counts of ψx(x), ψy(x), and ψz(x) in columns
two, three, and four, respectively (for vgrid).

kdegrade

Resample grids to lower resolution in Fourier space.

Syntax:
kdegrade { dgrid | vgrid } new_resolution

The kdegrade command is similar to degrade, but the downsampling is performed in Fourier
space. kdegrade will perform a forward FFT, then execute the downsampling in the same way
as degrade (but in the correct coordinates of Fourier space), and finally a backward FFT. The
downsampled grid will preserve the power spectrum P (k) of the original grid for scales above the
resolution of the new grid. The disadvantage is that the real-space distribution of the field will
be corrupted with numerical artefacts (Gibbs ringing). On the other hand, the degrade method
preserves the correct real-space distribution, but features power aliasing errors in Fourier space.

load

Load objects from files.

Syntax:
load constraints file
load correlator { analytic | grid }

load corrmatrix format file [ retain ]

load cosmology format file
load dgrid format file [ options ]

−→ load dgrid ascii file n boxsize
load dgrid binary file n boxsize [ swap ]

load dgrid bov file
load dgrid grafic file
load dgrid graficwn file boxsize
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load invmatrix format file [ retain ]

load pk file

load vgrid format vx_file vy_file vz_file [ options ]

−→ load vgrid ascii vx_file vy_file vz_file n boxsize

load vgrid binary vx_file vy_file vz_file n boxsize [ swap ]

load vgrid bov vx_file vy_file vz_file

load vgrid grafic vx_file vy_file vz_file

load vgrid graficwn vx_file vy_file vz_file boxsize

The load command is responsible for initialising ICeCoRe objects from data stored in files. All
objects except eta can be initialised in this way. Generally, if an object was written to a file using
write, the load command can restore the object from that file in the exact same state. However,
load can also be used to read data generated by other software. In the current version 1.0, all
input/output files must always be located in the same directory as the ICeCoRe executable.

load constraints will read a set of constraints from file in the ten-column ASCII format
described in Section A.2.5.

load correlator will read a precomputed correlator from files. In this case, the filenames are
predefined. load correlator analytic will search for tabulated correlation functions in files
named xi.dat, psiR.dat, psiT.dat, and zeta.dat. The command will also figure out from those
files over what range in distance x and smoothing radius RG the tables were computed. Make sure
this is compatible with your constraints; this is not checked by the code. load correlator grid

will instead search for four correlation grids in BOV files named xi.bov, psiXX.bov, psiXY.bov,
and zetaX.bov, together with the corresponding binary data files (*.bov.data). Make sure that
the boxsize L and resolution N of these grids matches the dgrid and vgrid objects you are
currently working with; this is not checked by the code.

load corrmatrix will read the correlation matrix 〈cicj〉 from file . Make sure that it is com-
patible with the loaded correlator and constraints; this is not checked. format can be either
ascii, which stores the matrix in human-readable text format, or binary, which is analogous
to the binary format used by the grids but in 2D. If an invmatrix object is loaded, it will be
deleted before initialising corrmatrix to save space in memory, except if the option retain is
specified.

load cosmology will read the cosmological parameters Ωm and ΩΛ, the Hubble constant H0,
and the redshift z from the header of cosmological IC files and initialise the cosmology object
with the values found. format can be: gadget – Gadget snapshot file with additional identifier
blocks; gadget1 – Gadget snapshot file without these identifier blocks; art – Art snapshot
format; and grafic – any cosmological field in Grafic format.

load dgrid will load an overdensity field δ(x) into dgrid from the data in file . The supported
formats are discussed in detail in Section B.5; currently, they are ascii, binary, bov, grafic,
and graficwn. For bov and grafic, no further arguments are required. For ascii and binary,
the boxsize L in Mpc/h and resolution n have to be given as options . For graficwn, only the
boxsize L in Mpc/h has to be given. For binary, there is also the additional option swap to
reverse the endianness.
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load invmatrix will read the inverted correlation matrix 〈cicj〉−1 from file . The options are
the same as for load corrmatrix. If an corrmatrix object is loaded, it will be deleted before
initialising invmatrix to save space in memory, except if the option retain is specified.

load pk will read a tabulated power spectrum P (k) from file . This has to be a whitespace-
or tab-separated ASCII table with two columns, k in h/Mpc and P (k), with no additional lines
in the file. The same format is used by the Camb code, so its output can be directly read by
ICeCoRe.

load vgrid will load a velocity or displacement field ψ(x) into vgrid from the data in the three
files vx_file , vy_file , and vz_file , containing the fields corresponding to the three cartesian
components ψx(x), ψy(x), ψz(x), respectively. The formats and options are the same as for load
dgrid, except that three filenames have to be given instead of one. If the files contain a peculiar
velocity field u(x) in km/s instead of a displacement field ψ(x) in Mpc/h, it has to be converted
to Mpc/h with multiply vgrid kmstompch before using it for cosmological computations.

multiply

Multiply the values stored in objects with a constant factor.

Syntax:
multiply { constraints | constraints2 | dgrid | pk | vgrid } factor

multiply constraints will multiply both the constraint values ci and their given absolute errors
εi in the constraints object with factor . multiply constraints2 will do the same but only
for type 2 (displacement-type) constraints. multiply dgrid and multiply vgrid multiply the
values of all cells of those fields with factor . multiply pk will multiply the values of the
tabulated power spectrum P (k) in the pk object with factor .

This command is useful to perform normalisations of the above quantities by hand, and
for unit conversions. For example, the conversion from velocities in km/s to displacements
in Mpc/h (the standard unit of ICeCoRe) can be executed with multiply vgrid kmstompch

and multiply constraints2 kmstompch, respectively. The reverse unit conversion can be done
using the token mpchtokms instead. With multiply dgrid growthd, it is possible to renormalise
the overdensity field by hand from z = 0 to another redshift, where growthd is a token for the
linear growth factor D+ of the currently loaded cosmology. The same renormalisation can be
done for pk by executing multiply dgrid growthd twice (since P (k) ∝ D2

+). Of course, it is
possible to give any other number for factor instead of the predefined tokens.

new

Initialise objects.

Syntax:
new correlator { analytic | grid } [ k_min k_max [ R_G_max ] ]

new corrmatrix [ retain ]

new cosmology omega_m omega_L H_0 z
new dgrid resolution boxsize
new invmatrix [ sigma_nl ] [ retain ]

new vgrid resolution boxsize
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The new command initialises objects based on some default values, or computes them from other
objects if possible. The objects constraints and pk cannot be initialised that way: they always
have to be loaded from external data files. It is also not useful to initialise an eta object, since
it is used only for diagnostic purposes.

new correlator will compute the correlator from the power spectrum P (k) in the currently
loaded pk object. A dgrid object has to be present as well, otherwise new correlator would
not know what boxsize L and resolution n you want to work with when computing Wiener
filter mean fields and CRs. new correlator analytic provides some options. With k_min
and k_max , the integration range [ kmin, kmax ] for evaluating the integrals in equations 3.46 –
3.49 can be specified in units of h/Mpc; they default to kminpk and kmaxpk, respectively. The
R_G_max option allows one to specify up to what smoothing radius RG in Mpc/h the correlation
functions should be tabulated; this defaults to the maximum RG that can occur for the current
constraints, or to RG = 0 if no constraints are present. The command new correlator

grid will ignore these additional options.

new corrmatrix computes the data autocorrelation matrix 〈cicj〉 based on the currently loaded
constraints and correlator and stores the result in the corrmatrix object. If an invmatrix

object is loaded, it will be deleted before initialising corrmatrix to save space in memory, except
if the option retain is specified.

new cosmology initalises the cosmology object from the cosmological parameters Ωm and ΩΛ, the
Hubble constant H0, and the redshift z, which have to be given as arguments. This command
can also be used as a “cosmological calculator”: it immediately computes the scale factor a,
expansion rate ȧ, linear growth factor D+, linear growth rate f , and the age of the Universe t
for the given cosmological parameters and redshift.

new dgrid takes a resolution n (number of cells per dimension) and boxsize L in Mpc/h as
arguments and allocates a dgrid object with these parameters. All values of the field will be
initialised to zero.

new invmatrix computes the inverted data autocorrelation matrix 〈cicj〉−1 and stores the result
in the invmatrix object. If a corrmatrix object containing the non-inverted matrix 〈cicj〉 is
present, it will add the σNL value given by the sigma_nl parameter to its diagonal, invert the
matrix using Cholesky decomposition (see Section 3.4.3) and then delete the corrmatrix object,
except if the option retain is specified. If no corrmatrix object is present, it will first call
new corrmatrix to compute it. If no σNL parameter is provided, a value will be automatically
chosen such that 0.995 < χ2/dof < 1.005 . This involves several iterative matrix inversions and
can take a very long time if the matrix is large. It is therefore recommended to always provide
a sigma_nl parameter to new invmatrix if there are more than a few thousand constraints.

new vgrid takes a resolution n (number of cells per dimension) and boxsize L in Mpc/h as
arguments and allocates a vgrid object with these parameters. All values of the field will be
initialised to zero.
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normalise

Normalise P (k) to a given σ8 and redshift z.

Syntax:
normalise sigma_8 [ k_min k_max ]

The normalise command first computes the value of σ8 of the power spectrum P (k) in the
currently loaded pk object using equation 2.58. It then normalises the power spectrum such
that this value equals the given sigma_8 parameter. Finally, if the current redshift in the
cosmology object is z �= 0, it also normalises P (k) with the redshift using P (k) ∝ D2

+. By
default, the integration range [ kmin, kmax ] in equation 2.58 is given by the tabulated range of
P (k). This can be overridden with the optional k_min and k_max options. You can either give
wavenumbers in units of h/Mpc, or use the predefined tokens. normalise sigma_8 kl kny will
use the integration range between the fundamental mode kL and the Nyquist frequency kNy of
the current dgrid (CLUES convention); normalise sigma_8 kl2 kny will instead use the range
between kL/

√
2 and kNy (method of Klypin & Holtzman 1997). See Section 3.1.3 for details.

peakfind

Find peaks in the overdensity field.

Syntax:
peakfind file

peakfind is a simple peak finding utility. This command will search for peaks in the overdensity
field δ(x) stored in dgrid. A peak is defined as a grid cell with a higher value than all of
its six direct neighbours (assuming periodic boundary conditions). The coordinates x, y, z and
overdensity values δ of all found peaks will be written to file in ASCII table format.

quit

Delete all objects and quit the current ICeCoRe session.

The quit command is the default method to deallocate and delete all objects and cleanly quit
ICeCoRe from within an interactive session. In script mode, it is not necessary to use it, since
the code will quit anyway as soon as it reaches the end of the script file, or if an error occurs.

reorder

Switch row-major order and column-major order on a grid.

Syntax:
reorder { dgrid | vgrid }

The reorder command rearranges the way values are stored on the grid in dgrid, or on the three
grids in vgrid, in such a way that row-major order will be transformed to column-major order
and vice versa. More specifically, reorder dgrid changes δ(x, y, z) to δ(z, y, x), and reorder

vgrid changes ψ(x, y, z) to ψ(z, y, x).



B.2 Commands 185

reset

Delete and deallocate objects.

Syntax:
reset [ object ]

If called without arguments, reset deletes all currently loaded objects and frees all memory that
was previously allocated in the current ICeCoRe session. This leaves the session in the same
state as if it would be terminated and a new one started. The reset command can also be called
with the name of one of the ICeCoRe objects as an argument, for example reset dgrid. In
this case, only the specified object will be deleted and its memory freed.

seed

Generate a Gaussian white noise field.

Syntax:
seed integer

This command will initialise a random number generator and then fill all cells of dgrid with zero-
mean, unity-variance Gaussian distributed random numbers. This command uses GSL functions.
By default, the random number generator is the Mersenne Twister MT19937 (Matsumoto &
Nishimura 1998), and the Gaussian distribution is generated with the fast Ziggurat algorithm
(Marsaglia & Tsang 2000). The random number generator has to be seeded with an integer,
which must be given as an argument.

shift

Shift the positions of constraints by a constant vector or a vector field.

Syntax:
shift constraints { vector x y z | vgrid }

shift constraints vector x y z will shift the positions xi of all constraints in the currently
loaded constraints object by adding the constant vector x = (x, y, z). The components of this
vector have to be given as arguments in Mpc/h. All other quantities defining the constraints will
be left unchanged. This can be used, for example, to change the position of the observer relative
to the box when working with radial peculiar velocity constraints. This command will not check
whether the constraints are inside the box before or after shifting and will not assume periodic
boundary conditions.

shift constraints vgrid will instead shift the positions xi of all constraints with the values
of the vector field stored in vgrid. For each constraint at xi, it will look up the value of ψ(xi)
by interpolating on vgrid and then add this value to the position vector of the constraint. This
will check if the constraints are inside the box defined by vgrid, and result in an error if they
are not. If a constraint was inside the box before, but would be shifted outside of the box by this
operation, the code will assume periodic boundary conditions and take the components of the



186 B ICeCoRe reference

new xi modulo the boxsize L such that xi will be again inside the box. This command is useful
to perform the RZA shift on peculiar velocity data; see Chapter 5 and Section A.3.1 for details.

sparse

Remove constraints that are too close to each other.

Syntax:
sparse r_min

This command goes through the list of constraints in the constraints object and performs
a pair-wise check of the constrained positions xi. If any two constraints are found closer than
r_min to each other, the constraint that is further down the list will be removed. However, if two
constraints are found at exactly the same position xi (within floating point precision), the code
will leave both in the list, assuming that the intention was to constrain two different quantities
at the same position (such as different cartesian components of the displacement field).

This command is useful to reduce the density of constraints if there are too many constraints
to efficiently evaluate the WF/CR operator and/or if the WF/CR result features a lot of noise
because of very noisy constraints that are close together. This will typically also have the side
effect that χ2/dof is comparatively large; then, sparse can be an alternative to increasing the σNL
parameter to reduce it, if the latter is not producing satisfactory WF/CR fields. If the constraints
feature non-zero smoothing radii RG, the deoverlap command should be run instead of sparse.

stat

Display information about currently loaded objects.

Syntax:
stat [ object ]

This diagnostic command can be used to retrieve the basic parameters of the currently loaded
objects. If called with no arguments, stat will display a list of all ICeCoRe objects and show
which ones are currently loaded. If called with the argument object , which has to be the name
of an ICeCoRe object, it displays more detailed information about this object: the number of
constraints and their types for stat constraints, all relevant cosmological quantities for stat

cosmology, the tabulated range and σ8 value of P (k) for pk, and so forth. stat corrmatrix,
stat invmatrix and stat eta will display their rank. stat dgrid and stat vgrid will find
the minimum and maximum values of the density and velocity/displacement fields and compute
the fields’ first four statistical moments (mean, standard deviation, skewness, and kurtosis).

vsolve

Compute the displacement field corresponding to an overdensity field in linear theory.

This command solves equation 3.5 to obtain the linear displacement field ψ(x) corresponding to
an overdensity field δ(x) stored in dgrid. It performs a forward FFT, followed by the multipli-
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cations

ψα(k) =
ikα
k2

δ(k) , α ∈ {x, y, z} , (B.4)

and then performs three backward FFTs to obtain ψx(x), ψy(x), and ψz(x), respectively.
This result is then stored in vgrid. The inverse procedure can be carried out with dsolve.

whiten

Reduce a cosmological Gaussian random field to white noise.

This command assumes that dgrid contains a cosmological overdensity field δ(x) and the pk

object contains the exact same power spectrum P (k) that was used to generate it (including
its normalisation with σ8 and z). It then computes the white noise field w(x) corresponding to
δ(x) by solving equation 3.2 and stores the result in dgrid, overwriting the original field. This
is done by performing a forward FFT, multiplying the values in all grid cells with 1/

√
P (k),

and then performing a backward FFT. This method assumes periodic boundary conditions. The
procedure can be reversed with colour.

write

Write data from objects to files.

Syntax:
write constraints file
write corrmatrix format file
write correlator

write dgrid format file [ swap ]

write eta format file
write invmatrix format file
write pk file
write vgrid format vx_file vy_file vz_file [ swap ]

The write command is responsible for writing the data inside ICeCoRe objects to files. All
objects except cosmology can be dumped to files in this way; however, cosmology can instead
be written into the headers of data files using grafic or gadget formats. Generally, if an object
is written to a file using write, the load command can later restore the object from that file in
the exact same state.

write constraints will write the set of constraints in the constraints object to file in the
ten-column ASCII format described in Section A.2.5.

write correlator will dump the data inside the correlator object to files. In this case, the
filenames are predefined. If the current correlator type is analytic, then write correlator

will produce files named xi.dat, psiR.dat, psiT.dat, and zeta.dat containing the tabulated
correlation functions. If the type is grid, the command will instead write four correlation grids
in BOV format using the file names xi.bov, psiXX.bov, psiXY.bov, and zetaX.bov.



188 B ICeCoRe reference

write corrmatrix will dump the correlation matrix 〈cicj〉 that was last computed in the current
session to file . format can be either ascii, which stores the matrix in human-readable text
format, or binary, which is analogous to the binary format used by the grids but in 2D.

write dgrid will write the overdensity field δ(x) currently loaded in dgrid to file . The
supported formats are discussed in detail in Section B.5; currently, they are ascii, binary,
bov, grafic, and graficwn. The binary format offers the option swap, which will swap the
endianness of the output file.

write eta will dump the correlation vector ηi that was last computed in the current session to
file . format can be either ascii or binary.

write invmatrix will dump the inverted correlation matrix 〈cicj〉−1 that was last computed in
the current session to file . The options are the same as for write corrmatrix.

write pk will write the currently loaded tabulated power spectrum P (k) to file . The format
will be a whitespace-separated ASCII table with two columns, k in h/Mpc and P (k).

write vgrid will write the overdensity/displacement field ψ(x) currently loaded in vgrid to the
three files vx_file , vy_file , and vz_file , which will contain the fields corresponding to the
three cartesian components ψx(x), ψy(x), ψz(x), respectively. The formats and options are the
same as for load dgrid, except that three filenames have to be given instead of one.

writeics

Generate particle initial conditions and write them to a file.

Syntax:
writeics format file

This command generates N -body particle initial conditions from the current displacement field
ψ(x) in vgrid using the standard method described in Section 3.1.2. The displacement field has
to be in units of Mpc/h and normalised to the desired starting redshift zinit of the simulation.
After generating the initial particle positions and velocities, the command then writes the particle
data to file in the snapshot format specified by format . The only format currently supported
by this command is gadget, which is the single-file Gadget-2 snapshot format with additional
identifier blocks. See Gadget User’s guide (available at www.mpa-garching.mpg.de/gadget)
for more information. This also requires a cosmology object, since the cosmological parameters
have to be written to the header of the Gadget file. In order to set up ICs for the Ramses

code, you should write Grafic-formatted fields instead of particle data.
Note that if you generate a particle file with writeics, and then map it on a grid again using

the bin command, you will not recover the original density and velocity fields that were used to
generate the particles, because of the significant smoothing introduced by the mass assignment
scheme and the aliasing and shot noise caused by the particle discretisation. There is currently
no method in ICeCoRe to recover the original field from a snapshot file produced by writeics.
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xcorr

Compute the Fourier-space cross-correlation between two grids.

Syntax:
xcorr out_file n_bins format in_file [ options ]

The xcorr utility computes the Fourier-space cross-correlation g(k) (equation 2.85) between the
current overdensity field δ(x) in dgrid and a reference grid δ0(x) that will be read from in_file .
The format argument and the options following infile behave in the same way as the format
and file arguments of the load dgrid command, i.e. it is possible to load the reference grid
in all formats that ICeCoRe supports. However, the reference grid loaded in this way will not
be stored in memory, but only used for evaluating equation 2.85 in Fourier space and discarded
afterwards. g(k) will be computed as a histogram over k and written to out_file as an ASCII
table with two columns, k in h/Mpc and g(k). The n_bins argument specifies the number of
bins used to compute the g(k) histogram, which will be equidistantly spaced in log k-space in
the interval between kL and

√
3 kNy. The curves in Figure 2.10 were computed with this utility.

Below is an example script to compute g(k) for two density grids stored in BOV format:

load dgrid bov dgrid_1.bov # load grid 1

xcorr gk.dat 100 bov dgrid_2.bov # load grid 2, compute and write g(k)

quit
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B.3 Tokens for numerical values

In the ICeCoRe interface, several numerical values can be accessed directly with predefined
tokens. This includes the fundamental and Nyquist frequency of the currently loaded dgrid,
which are useful to define an integration interval for computing the P (k) normalisation or the
grid correlator, the growth factor D+, which can be used to rescale overdensity fields from
z = 0 to another redshift z, and the unit conversion factors from km/s (velocity) to Mpc/h
(displacement) and vice versa. These tokens can be used interchangeably with literal numbers
wherever a number is expected as a command argument. In ICeCoRe version 1.0, the following
tokens are defined:

token numerical value

growthd Linear growth factor D+ of cosmology object

growthf Linear growth rate f of cosmology object

kl Wavenumber of fundamental mode kL = 2π/L of dgrid object

kl2 kL/
√
2

kl3 kL/
√
3

kmaxpk Highest wavenumber kmax for which there is a tabulated P (k) value in pk

kminpk Lowest wavenumber kmin for which there is a tabulated P (k) value in pk

kmstompch Conversion factor 1/ȧf from comoving velocity u in km/s to comoving
displacement ψ in Mpc/h at redshift z of cosmology object

kny Wavenumber of Nyquist frequency kNy = π/Δx of dgrid object

kny2
√
2 kNy

kny3
√
3 kNy

mpchtokms Conversion factor ȧf from comoving displacement ψ in Mpc/h to comoving
velocity u in km/s at redshift z of cosmology object
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B.4 Keyword aliases

The ICeCoRe interface features abbreviations and alternative spellings for the most commonly
typed object names, commands, and tokens. They can be used interchangeably with the original
variant. In ICeCoRe version 1.0, the following keyword aliases are defined:

original alternative

colour color

constraints co

constraints2 co2

correlator corr

corrmatrix corrm

cosmology cosmo, c
dgrid d

filter f

help h

histogram hist

invmatrix invm

kmstompch kms2mpch, k2m, km

load l

mpchtokms mpch2kms, m2k, mk

multiply mult, m
new n

normalise normalize, norm
quit q

reset r

stat s

vgrid v

write w

writeics wi
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B.5 Supported file formats for density and velocity fields

This section describes the file formats currently supported by ICeCoRe for input and output
of overdensity and velocity field data. Please contact the author if you need compatibility with
other file formats; additional reading and writing functions for custom formats can be easily
added to the ICeCoRe code.

In ICeCoRe, all three-dimensional fields are regularly sampled on a uniform cubic grid with
boxsize L and resolution (number of cells per dimension) n. The total number of cells is N = n3.
Each cell contains a single number representing the value of the field at this position (more
precisely, the value of the field averaged over the cell volume). Reading such fields from files is
invoked by the commands load dgrid format and load vgrid format , respectively; writing to
files is done with write dgrid format and write vgrid format , respectively. For each dgrid

object, i.e. overdensity grid δ(x), one file is read/written, with the file name as an argument.
For each vgrid object, i.e. velocity/displacement field ψ(x), three files are read/written in the
exact same format, each containing one cartesian component of the field ψx(x), ψy(x), and
ψz(x), with the three filenames as arguments. The internal code unit of ICeCoRe is Mpc/h,
i.e. velocity fields u(x) are always given in terms of the corresponding linear displacement field
ψ(x) = u(x)/ȧf in units of Mpc/h (and not in km/s). All quantities are assumed to be in the
comoving frame; at z = 0, comoving and physical frames coincide.

A grid containing a scalar field, here δ(x), ψx(x), ψy(x), or ψz(x), is stored in ICeCoRe as
an array of N double-precision floating point complex numbers (see Section B.1). However, the
imaginary part is only needed for operations in Fourier space. In real space, the imaginary part
is always zero, since the fields represent real-valued physical quantities. The files therefore only
contain N real-valued floating point numbers. There are in principle two ways of formatting such
files: either as human-readable ASCII files (or “formatted” files, as they are called in Fortran),
or as binary files (“unformatted” files in Fortran). Binary files generally require much less disk
space and are much faster to read or write; we therefore do not recommend using ASCII files.

There are several different ways to format a binary file; there are notable differences between
the C/C++ way and the Fortran way. In C/C++, usually a variable or array is written
into/read from a binary file in the same way as it would be represented in computer memory.
In Fortran however, each ‘write’ statement will produce a record, which contains not only
the binary data/array itself, but also leading and trailing record markers indicating its size.
Conversely, each Fortran ‘read’ statement will expect these record markers. On most modern
Fortran compilers, these markers will consist of 4-byte integers, whose value equals the size
of the enclosed record (without the markers) in bytes. Another difference between C/C++ and
Fortran is the order in which the elements of multidimensional arrays are stored. The fields
can be represented as three-dimensional arrays of the form δ(x, y, z). The C/C++ convention
uses row-major order, where the fastest-running index is the last one, whereas Fortran uses
column-major order, where the fastest-running index is the first one. Throughout the ICeCoRe

code and all supported formats, we ignore these conventions and consistently use column-major
order, where x will always be the fastest-running index of the array δ(x, y, z). The ordering of a
grid can be changed manually with the reorder command.

B.5.1 Binary format

The basic binary format is used if binary is given as the format option in ICeCoRe’s load

and write commands. This format represents the data on a grid as a simple C/C++ binary
array of N 4-byte floating point numbers in column-major order. Each such file will be exactly
4N bytes long. Although internally, ICeCoRe carries out computations in double precision



B.5 Supported file formats for density and velocity fields 193

(8 bytes per number), the single precision storage format (4 bytes per number) is completely
sufficient, since numerical errors acquired during any ICeCoRe computation (for example due
to interpolation on the tabulated P (k) when generating ICs) will always be higher than the
floating point machine precision, although still negligible for practical purposes. Below is a code
example in C for producing a file in the binary format in order to get data into ICeCoRe:

/* Writing binary format in C */

float data[nz][ny][nx]; /* fill this array with data! */

FILE *file = fopen("data.dat", "wb");

fwrite((void*)data, sizeof(float), nx*ny*nz, file);

fclose(file);

Note the reverse order of the array indices; C and C++ use row-major order by default, but x
has to be the fastest-running index for ICeCoRe. Reading of a file in this format could be done
with

/* Reading binary format in C */

float data[nz][ny][nx];

FILE *file = fopen("data.dat", "rb");

fread((void*)data, sizeof(float), nx*ny*nz, file);

fclose(file);

In C++, the same would be performed with

// Writing binary format in C++

float data[nz][ny][nx]; // fill this array with data!

ofstream file("data.dat", ios::out | ios::binary);

file.write(data, sizeof(float)*nx*ny*nz);

file.close();

// Reading binary format in C++

float data[nz][ny][nx];

ifstream file("data.dat", ios::in | ios::binary);

file.read(data, sizeof(float)*nx*ny*nz);

file.close();

In Fortran, this cannot be done directly with read and write statements for unformatted files,
because it will add record markers that are incompatible with the binary format. Although
this could be circumvented by using direct access files, we recommend to use BOV or Grafic

formats instead if you want to get data into or out of ICeCoRe with your Fortran code.
Note that since the binary format only dumps the data inside the grid, no information

about the boxsize or any other parameters is stored. For this reason, when reading binary files
with ICeCoRe, you have to manually supply the boxsize L in Mpc/h and the resolution n as
arguments to the load command in order to create a valid dgrid or vgrid object. Also, when
reading binary files, ICeCoRe does not check for endianness, so you must make sure that the
endianness of the file matches the one of the machine where you are running ICeCoRe. The
load and write commands also offer the swap option in order to manually swap the endianness
of a binary file.
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B.5.2 BOV format

The BOV format is used if bov is given as the format option in ICeCoRe’s load and write

commands. This format is similar to binary, but more flexible. This format is also directly
supported by the visualisation software VisIt (available at visit.llnl.gov), which can be used
to analyse the fields generated by ICeCoRe.

A grid in BOV format consists of a binary file, in the same format as binary, and an auxiliary
header text file containing the box parameters. We use the convention to add the file extension
.bov to the header file and .bov.data to the corresponding binary data file. Below is an example
BOV header file dens.bov:

TIME: 0

DATA_FILE: dens.bov.data

DATA_SIZE: 256 256 256

DATA_FORMAT: FLOAT

VARIABLE: Density

DATA_ENDIAN: LITTLE

CENTERING: zonal

BRICK_ORIGIN: 0. 0. 0.

BRICK_SIZE: 160. 160. 160.

BYTE_OFFSET: 0

The header file contains the path of the data file DATA_FILE, the resolution of the grid DATA_SIZE,
the format of the stored numbers DATA_FORMAT (ICeCoRe will always use FLOAT), the endi-
anness DATA_ENDIAN, and the boxsize in Mpc/h BRICK_SIZE. Another interesting option is
BYTE_OFFSET, which lets you specify some number of bytes to skip at the beginning of the data
file. This can be useful if you are writing binary files with Fortran. For example, the code

! write binary file in Fortran 90

real(kind=4) :: data(nx, ny, nz) ! fill this array with data!

open (unit=100, file=’dens.bov.data’, status=’replace’, form=’unformatted’)

write(100) values

close(100)

will write a binary file very similar to the binary format, but with leading and trailing 4-byte
record markers. If you then set BYTE_OFFSET: 4 in the corresponding header file dens.bov,
ICeCoRe can skip the leading record marker and read the binary file correctly.

There are additional options for the BOV header file, which will be ignored by ICeCoRe; see
the document ‘Getting Data into VisIt’ (available at visit.llnl.gov) for details. Since all grids
in ICeCoRe are always cubic, the three numbers in DATA_SIZE and BRICK_SIZE, respectively,
must always be equal. The filename argument for ICeCoRe’s load and write commands will
always be the header file, not the data file; the data file will be generated automatically by write.
In the current ICeCoRe version 1.0, both the header file and the data file must be in the same
directory as the ICeCoRe executable in order to work.

B.5.3 Grafic format

The Grafic format is used for grids describing cosmological density and velocity fields if bov

is given as the format option in ICeCoRe’s load and write commands. This format is useful
to store cosmological ICs and can be directly used to start a simulation with the Ramses code
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if the data was written correctly. The description reproduced here can be found in the on-line
Grafic code documentation at www.projet-horizon.fr .

A Grafic file is a little-endian unformatted Fortran file, i.e. a binary file with Fortran

record markers. The file begins with a 44-byte header record with the following structure:

• np1, np2, np3: three 4-byte integers describing the resolution n of the grid per dimension.
For ICeCoRe, all three must be equal.

• dx: 4-byte float describing the size Δx of a grid cell in Mpc (not in Mpc/h !), where
Δx = L/n.

• x1o, x2o, x3o: three 4-byte floats describing the coordinates of the grid origin. For
ICeCoRe, this will be (0,0,0).

• astart: 4-byte float describing the cosmological scale factor a.

• omegam: 4-byte float describing the cosmological parameter Ωm.

• omegal: 4-byte float describing the cosmological parameters ΩΛ.

• h0: 4-byte float describing the Hubble constant in units of km s−1 Mpc−1.

The data is stored after the header record. It consists of np3 records describing data planes
perpendicular to the z axis, each such record containing an array of np1*np2 4-byte floats that
corresponds to an xy-slice. Such files can be read and written easily in Fortran:

! read grafic file in Fortran 90

integer(kind=4) :: np1, np2, np3

real(kind=4) :: dx, x1o, x2o, x3o, astart, omegam, omegal, h0

open(unit=100, file=’ic_deltab’, status=’read’, form=’unformatted’)

! read header

read (10) np1, np2, np3, dx, x1o, x2o, x3o, astart, omegam, omegal, h0

allocate(f(np1, np2, np3))

! read data

do i3=1, np3

read(10) ((f(i1, i2, i3), i1=1, np1), i2=1, np2)

end do

close(10)

In C/C++, reading and writing such Fortran-style unformatted files is a little bit more difficult,
because we have to explicitly take the record markers into account. There will be 4-byte record
markers around the header record and around each of the n arrays which contain the xy-slices
of the grid.

In order to start a hydrodynamical Ramses simulation with uniform ICs, seven input files
are required:

• ic_deltab : baryon density, used to set up the initial gas density field

• ic_velbx, ic_velby, ic_velbz : baryon velocity field, used to set up the initial gas velocity
field

• ic_velcx, ic_velcy, ic_velcz : dark matter velocity field, used to set up the initial dark
matter particle positions and velocities
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In order to start a dark matter-only simulation, the files ic_velbx, ic_velby, ic_velbz are not
required. The file ic_deltab is required to start the code, but the values of its data field are not
going to be used. Only the fields in the files ic_velcx, ic_velcy, ic_velcz will be used to set
up the ICs. Such ICs can be directly written from ICeCoRe. Below is an example script for
random ICs at zinit = 30:

# Generate random ICs for a RAMSES dark matter-only simulation

new cosmology 0.272 0.728 70.2 30 # compute cosmology from parameters

load pk WMAP7.dat # load tabulated power spectrum

normalise pk 0.807 # normalise to sigma8

new dgrid 256 100 # alloc grid with N=256^3, L=100 Mpc/h

seed 12345 # generate white noise field

colour # compute deltaRR

vsolve # compute linear displacement field

multiply vgrid mpchtokms # convert displacement to velocity !!!

write dgrid grafic ic_deltab # this is needed but will not be used

write vgrid grafic ic_velcx ic_velcy ic_velcz # these are the actual ICs

quit

The Ramses code expects that the velocity field in ic_velcx, ic_velcy, ic_velcz is in units
of comoving km/s, so it has to be converted from Mpc/h to km/s in ICeCoRe before writing.
Because write dgrid grafic and write vgrid grafic must include the header with the cos-
mological parameters in the output files, the cosmology object has to be there and initialised
with the correct parameters and zinit, otherwise writing to grafic will fail.

B.5.4 Grafic white noise format

The Grafic white noise format is a modification of the standard Grafic format which is useful
for white noise files. It will be used if graficwn is given as the format option in ICeCoRe’s
load and write commands. It is the default method to get a white noise field into other IC-
generating codes (see Section 3.5 and Example 6 in Section A.4.1). Besides the Grafic code,
for which this format was designed, and ICeCoRe, most other IC-generating codes understand
the graficwn format as well, such as Grafic-2, Mpgrafic, Music, and Ginnungagap. The
only difference between grafic and graficwn formats is that graficwn uses a different, smaller
header:

• np1, np2, np3: three 4-byte integers describing the resolution n of the grid per dimension.
For ICeCoRe, all three must be equal.

• iseed: 4-byte integer describing the seed of the random number generator.

This header does not contain any cosmological parameters, therefore the cosmology object is
not needed to write graficwn, as opposed to grafic. Another detail is that ICeCoRe does
not store the seed integer in the header, but instead writes a zero in the iseed variable. The
reason is that the same seed integer will produce different fields on different codes and platforms
anyway and therefore has little meaning by itself.

B.5.5 ASCII format

The ASCII format makes it possible to use text files for storing grids as an alternative if working
with binary files is not possible for some reason. Reading and writing grids in ASCII format is
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done by typing ascii as the format option in ICeCoRe’s load and write commands. Reading
a grid in ASCII format assumes that the numbers corresponding to the grid cell values are
stored as human-readable floating point numbers in a text file. The numbers must be separated
by whitespace, tab or newline characters; no other delimiters, such as commas or semicolons, are
allowed. However, whether one uses whitespaces, tabs, newlines, or any combination of those,
does not make any difference for reading grids, as long as there are exactly n3 = N numbers in the
file. The ASCII files written by ICeCoRe feature a combination of whitespaces and newlines for
“historical” reasons (compatibility with an older code that was used by collaborators). However,
reading and writing such files should be no problem in virtually any programming language or
analysis software. When reading grids in ASCII format with ICeCoRe, the boxsize L in Mpc/h
and resolution n have to be provided as arguments to the commands load dgrid ascii and
load vgrid ascii, respectively.

Reading and writing ASCII files will be considerably slower than for binary files; also, they
will use much more disk space. We therefore do not recommend to use them.
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B.6 List of keywords and command syntax

Objects

constraints

correlator

corrmatrix

cosmology

dgrid

eta

invmatrix

pk

vgrid

Command syntax

add dgrid format file [ options ]

add vgrid format vx_file vy_file vz_file [ options ]

addconst number
addvector { constraints2 | vgrid } vx vy vz
bin { dgrid | vgrid } format file resolution mas_type
binpk file [ n_bins [ correction_type ] ]

chisquare

colour

cr [ sigma_nl ]

crop { dgrid | vgrid } new_resolution x_offset y_offset z_offset
crv [ sigma_nl ]

degrade { dgrid | vgrid } new_resolution
deoverlap [ factor ]

dsolve

filter { dgrid | vgrid } filter_type radius
hann

help [ topic ]

histogram { dgrid | vgrid } file min max n_bins
kdegrade { dgrid | vgrid } new_resolution
load constraints file
load correlator { analytic | grid }

load corrmatrix format file [ retain ]

load cosmology format file
load dgrid format file [ options ]

load invmatrix format file [ retain ]

load pk file
load vgrid format vx_file vy_file vz_file [ options ]

multiply { constraints | constraints2 | dgrid | pk | vgrid } factor
new correlator { analytic | grid } [ k_min k_max [ R_G_max ] ]

new corrmatrix [ retain ]

new cosmology omega_m omega_L H_0 z
new dgrid resolution boxsize
new invmatrix [ sigma_nl ] [ retain ]
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new vgrid resolution boxsize
normalise sigma_8 [ k_min k_max ]

peakfind file
quit

reorder { dgrid | vgrid }

reset [ object ]

seed integer
shift constraints { vector x y z | vgrid }

sparse r_min
stat [ object ]

vsolve

whiten

write constraints file
write corrmatrix format file
write correlator

write dgrid format file [ swap ]

write eta format file
write invmatrix format file
write pk file
write vgrid format vx_file vy_file vz_file [ swap ]

writeics format file
xcorr out_file n_bins format in_file [ options ]

Tokens for numerical values

growthd

growthf

kl

kl2

kl3

kmaxpk

kminpk

kmstompch

kny

kny2

kny3

mpchtokms

Keyword aliases

colour = color

constraints = co

constraints2 = co2

correlator = corr

corrmatrix = corrm

cosmology = cosmo = c

dgrid = d

filter = f

help = h

histogram = hist

invmatrix = invm

kmstompch = kms2mpch = k2m = km

load = l

mpchtokms = mpch2kms = m2k = mk

multiply = mult = m

new = n

normalise = normalize = norm

quit = q

reset = r

stat = s

vgrid = v

write = w

writeics = wi
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Appendix C

Abbreviations and acronyms

2dF Two-degree-Field Galaxy Redshift Survey
2LPT second-order Lagrangian perturbation theory
2MASS Two Micron All Sky Survey
AHF AMIGA’s Halo Finder
Amiga Adaptive Mesh Investigations of Galaxy Assembly
AMR adaptive mesh refinement
Art Adaptive Refinement Tree
ASCII American Standard Code for Information Interchange
BAO baryon acoustic oscillations
BBN Big Bang nucleosynthesis
BDM Bound Density Maxima
BOV Brick Of Values
CAMB Code for Anisotropies in the Microwave Background
CDM cold dark matter
Cen Centaurus
CLUES Constrained Local UniversE Simulations
CMB cosmic microwave background
COBE Cosmic Background Explorer
CR constrained realisation
DFT discrete Fourier Transform
EDD Extragalactic Distance Database
FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West
FLRW Firedmann-Lemaître-Robertson-Walker
FoF Friends-of-Friends
For Fornax
FT Fourier Transform
GA Great Attractor
Gadget GAlaxies with Dark matter and Gas intEracT
Grafic Gaussian Random Field Initial Conditions
GSL GNU scientific library
GSR Galactic standard of rest
HDM hot dark matter
Hya Hydra
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ICs initial conditions
ICeCoRe Initial Conditions & Constrained Realisations
IDL Interactive Data Language
LAPACK Linear Algebra PACKage
LG Local Group
LPT Lagrangian perturbation theory
LS Local Sheet
LSC Local Supercluster
LV Local Void
M31 Andromeda galaxy
M33 Triangulum galaxy
MAK Monge-Ampère-Kantorovich
MKL Math Kernel Library
MPI Message Passing Interface
Music Multi-Scale Initial Conditions
MV minimal variance
MW Milky Way galaxy
NAM Numerical Action Method
OpenMP Open Multi-Processing
P3M particle-particle/particle-mesh
PBCs periodic boundary conditions
PDF probability density function
Per-Psc Perseus-Pisces
PIZA Path-Interchange Zeldovich Approximation
PM particle-mesh
R2LPT Reverse 2LPT Approximation
RR random realisation
RZA Reverse Zeldovich Approximation
SDSS Sloan Digital Sky Survey
SFB surface brightness fluctuation
SPH smooth particle hydrodynamics
SG supergalactic
TRGB tip of the red giant branch
UMV unbiased minimal variance
Vir Virgo
VV Virgo Void
WDM warm dark matter
WF Wiener filter
WMAP Wilkinson Microwave Anisotropy Probe
ZA Zeldovich Approximation
ZoA Zone of Avoidance
ΛCDM Lambda cold dark matter
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Appendix D

Constants and units

Constant ......................... Symbol ....... Value in SI units.............................

Vacuum light speed� c 2.99792458× 108 m s−1

Gravitational constant� G 6.67384± 0.00080× 10−11 m3 kg−1 s−2

Unit name ....................... Symbol ....... Value in SI units........................

Megaparsec† Mpc 1 Mpc = 106 pc = 3.08568× 1019 m
Solar mass‡ M� 1 M� = 1.9884± 0.0002× 1030 kg

�from Mohr et al. (2011)
†from Guidry (2010)
‡from Luzum et al. (2011)



203

Bibliography

Adler, R. J. 1981. The Geometry of Random Fields. Chichester: Wiley. 21

Alpher, R. A., Bethe, H., Gamow, G. 1948. The origin of chemical elements. Phys. Rev., 73,
803–804. 1

Ampère, A.-M. 1820. Mémoire concernant . . . l’intégration des équations aux différentielles par-
tielles du prèmier et du second ordre. Journal de l’École Royale Polytechnique, 11, 1. 79

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Sorensen, D. 1999. LAPACK Users’ Guide. Third
edn. Society for Industrial and Applied Mathematics. 72

Antonuccio-Delogu, V., Becciani, U., van Kampen, E., Pagliaro, A., Romeo, A. B., Colafrancesco,
S., Germaná, A., Gambera, M. 2002. Properties of galaxy haloes in clusters and voids. MNRAS,
332, 7–20. 60

Appel, A. W. 1985. An Efficient Program for Many-Body Simulation. SIAM J. Scientific and
Statistical Computing, 6, 85. 32

Bardeen, J. M., Bond, J. R., Kaiser, N., Szalay, A. S. 1986. The statistics of peaks of Gaussian
random fields. ApJ, 304, 15–61. 21, 22, 23, 41, 57

Barnes, J., Hut, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature, 324,
446–449. 32

Begeman, K. G. 1989. H I rotation curves of spiral galaxies. I - NGC 3198. A&A, 223, 47–60.
17

Berger, M. J., Colella, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J.
Comput. Phys., 82, 64âĂŞ84. 32

Bernardeau, F., Colombi, S., Gaztañaga, E., Scoccimarro, R. 2002. Large-scale structure of the
Universe and cosmological perturbation theory. Physics Reports, 367, 1–248. 30

Bertone, G. 2010. Particle dark matter: Observations, models and searches. Cambridge Univer-
sity Press, 1 edition. 31

Bertschinger, E. 1987. Path integral methods for primordial density perturbations - Sampling of
constrained Gaussian random fields. ApJL, 323, L103–L106. 57

Bertschinger, E. 2001. Multiscale Gaussian Random Fields and Their Application to Cosmological
Simulations. ApJS, 137, 1–20. 45, 47, 49, 73, 165, 177, 179



204 BIBLIOGRAPHY

Bertschinger, E., Dekel, A., Faber, S. M., Dressler, A., Burstein, D. 1990. Potential, veloc-
ity, and density fields from redshift-distance samples: Application - Cosmography within 6000
kilometers per second. ApJ, 364, 370–395. 80

Bertsekas, D. P. 1991. An Auction Algorithm for Shortest Paths. SIAM J. Optim., 1, 425–447.
79

Binney, J., Quinn, T. 1991. Gaussian random fields in spherical coordinates. MNRAS, 249,
678–683. 57

Binney, J., Tremaine, S. 2008. Galactic Dynamics: Second Edition. Princeton University Press.
2, 33, 35, 113

Bistolas, V., Hoffman, Y. 1998. Nonlinear Constrained Realizations of the Large-Scale Structure.
ApJ, 492, 439–+. 61

Bode, P., Ostriker, J. P., Turok, N. 2001. Halo Formation in Warm Dark Matter Models. ApJ,
556, 93–107. 30

Bonnor, W. B. 1957. Jeans’ formula for gravitational instability. MNRAS, 117, 104. 20

Bouchet, F. R., Colombi, S., Hivon, E., Juszkiewicz, R. 1995. Perturbative Lagrangian approach
to gravitational instability. A&A, 296, 575. 30, 84, 105, 106

Branchini, E., Eldar, A., Nusser, A. 2002. Peculiar velocity reconstruction with the fast action
method: tests on mock redshift surveys. MNRAS, 335, 53–72. 79

Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., Sobolevskĭi, A.
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