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CHAPTER 1

Introduction

1.1 General Context

Over the last decade, embedded systems have been one of the most remarkable techno-
logical advances, driving the development of many industries, and entering the daily life of
most human beings. An embedded system is an integrated electronic and computer system
designed to serve a dedicated purpose. Car Anti-lock Braking Systems (ABS), Global Po-
sitioning Systems (GPS), e-readers, pacemakers, digital cameras, and autonomous vacuum
cleaners are examples of modern appliances containing one or more embedded systems.

Embedded Systems Development Constraints

The development of an embedded system requires consideration of many constraints.
These constraints can be classified in three categories, application constraints, cost con-
straints and external constraints.

� Application constraints refer to the requirements that an embedded system must
satisfy to serve its intended purpose. For example, many embedded systems have
performance requirements and must react to external events within a limited amount
of time, or must produce results at a fixed rate. Another example of an application
constraint is the reliability of an embedded system that restricts the probability of a
system failure, primarily for safety reasons. Size limitation and power consumption
are also major requirements for handheld or autonomous embedded systems.

� Cost constraints refer to all factors influencing the total cost of an embedded
system. These factors cover the engineering development cost, the production cost,
the maintenance cost, and also include the recycling cost of an embedded system.

� External constraints refer to the requirements that an embedded system must
satisfy but that are nonessential to its purpose. Regulations and standards are
examples of external constraints that dictate certain characteristics of an embedded
system, but non-compliance would not prevent an embedded system from serving
its purpose. The environment in which an embedded system is used can also have
an impact on its design. Extreme temperatures, high humidity, rapidly changing
pressure are examples of external constraints.
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All these constraints are often contradictory, even within a single category. For exam-
ple, reducing the power consumption of an embedded system can be achieved by lowering
its clock frequency, which in turn will decrease the performance of this system. Hence,
the development of an embedded system often consists of satisfying the most important
constraints, and finding an acceptable trade-off between remaining ones.

Hardware and Software of Embedded Systems

Embedded systems, like most computer systems, are composed of two complementary
parts: the Hardware and the Software part.

� Hardware refers to all the physical components that are assembled in order to
create an embedded system. These components include processing elements, clock
generators, sensors, actuators, analog-to-digital converters, memories, external com-
munication interfaces, user interfaces, internal means of communication, and power
management units among other elements. The set of hardware components con-
tained in an embedded system and the connections between these components is
defined as the architecture of this system. The most important hardware com-
ponents are the processing elements that are responsible both for controlling the
embedded system, and for performing its computation. Depending on the purpose
of an embedded system, different kind of processing elements can be used. For
example, simple low-power microcontrollers are often used in control systems that
require little or no computation. For computation intensive systems, like audio and
video Digital Signal Processing (DSP) systems, specialized processors providing a
high computational power for a limited cost are used.

In the early 1960s, following the creation of the first integrated circuit by Jack
Kilby [Kil64], the first embedded systems were expensive, were composed of dis-
crete hardware components, and were used only for military and space exploration
projects. Progressively, the miniaturization of integrated circuits led to the integra-
tion of more and more hardware components within a single chip called a System-
on-Chip (SoC). Nowadays, embedded systems are often based on complex integrated
circuits called heterogeneous Multiprocessor Systems-on-Chips (MPSoCs). An het-
erogeneous MPSoC integrates all the elements of an embedded system, including
different processing elements, on a single chip.

� Software refers to the computer programs executed by the processing elements of
an embedded system. A program is a sequence of instructions stored as binary
words in memory components of an embedded system. Processing elements of an
embedded system iteratively read and execute the primitive operations encoded by
the successive instructions of a program. Primitive operations include arithmetic
and logic operations, jumps in the program sequence, configuration and control of
other components of the embedded system, communication and synchronization with
other processing elements, and read and write operations to the system memories.

Programming an embedded system consists of writing a sequence of instructions
that specify the behavior of its processing elements. In early embedded systems,
program binary words were written directly by system developers. Progressively,
this technique was replaced with higher-level programming methods that allow the
specification of a program behavior with languages easier to understand for develop-
ers. Programs written in these high-level languages are then automatically translated
into equivalent binary instructions by a computer program called a compiler.
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In an effort to reduce development time of embedded systems, hardware and software
parts are generally developed jointly as part of a hardware/software co-design process.

Embedded System Software Productivity Gap

In 1965, Moore predicted that the number of transistors in an integrated circuit would
double every two years [Moo65]. Since then, this prediction has revealed itself to be
true, driving an ever-increasing complexity of hardware components. In the meantime,
the introduction of new programming languages with higher levels of abstraction has
considerably improved the software productivity of developers. The software productivity
measures the complexity of a program written by a developer within a given amount of
time. As presented by Ecker et al. in [EMD09], the software productivity of developers
is doubled every five years, or 2.5 times slower than hardware complexity. Hence, it is
becoming more and more difficult for software developers to fully exploit the capabilities
of hardware systems. This problem is often referred as the software productivity gap.

In recent years, the computational power of hardware was increased primarily by mul-
tiplying the number of processing elements running concurrently in MPSoCs. To fully
exploit the computational power offered by these new architectures, programming lan-
guages must allow developers to specify applications where computations can be executed
in parallel. A reason for the software productivity gap is that, as presented in [Bar09],
the most popular language for programming embedded systems, namely the C language,
is an imperative language whose basic syntax has a limited ability to express parallelism.
This issue highlights the pressing need for new software programming techniques, such as
dataflow programming, to bridge the software productivity gap.

Dataflow Programming

Dataflow Models of Computation (MoCs) have emerged as efficient programming para-
digms to capture the parallelism of software. Applications modeled with dataflow MoCs
consist of a directed graph where each vertex represents an independent computational
module, and each edge represents an explicit communication channel between two vertices.
The popularity of dataflow models and languages in the research, academic, and industrial
communities is due to their natural expressivity of parallelism, their modularity, and their
compatibility with legacy code. Indeed, dataflow graphs are used to specify networks of
computational modules, but the specification of the internal behavior of these modules
can be written in any programming language, including C code. The compatibility with
legacy code has a positive impact on developers’ productivity, since development time can
be reduced by reusing previously developed and optimized programs.

Since the introduction of the first dataflow MoC by Kahn in [Kah74], many dataflow
models have been proposed in the literature, each promoting a custom set of properties
for application descriptions. For example, some dataflow models define construction rules
for dataflow graphs that guarantee certain application properties at compile time, such as
the performance or the reliability of applications. Such dataflow models are often used to
capture the application constraints of embedded systems.

Rapid Prototyping Context

Rapid prototyping techniques and tools are developed as part of an effort to accelerate
and ease the development of embedded systems. The classic embedded system design flow
is a relatively straightforward process whose ultimate goal is to produce an embedded
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system satisfying all design constraints. By contrast, the purpose of rapid prototyping
techniques is to create an inexpensive prototype as early as possible in the development
process. Generating new prototypes and analyzing their characteristics allow developers
to identify critical issues of the prototype, and then to iteratively improve and refine the
developed embedded system.

The work presented in this thesis is developed as part of a rapid prototyping framework
called the Parallel and Real-time Embedded Executives Scheduling Method (Preesm).
Preesm is a software rapid prototyping framework being developed at the Institute of
Electronics and Telecommunications of Rennes (IETR) since 2007. The main objective of
Preesm is to automate the deployment of applications modeled with dataflow graphs on
heterogeneous MPSoCs. In addition to dataflow specification of the application, Preesm
inputs include a System-Level Architecture Model (S-LAM) for specifying the targeted
hardware components, and a scenario specifying design constraints of the embedded sys-
tem. Using these inputs, Preesm can generate simulations of the embedded system be-
havior and can generate compilable code for the targeted MPSoC. Preesm has been suc-
cessfully used for the rapid prototyping of real-time constrained Digital Signal Processing
applications, computer vision, telecommunication, and multimedia applications on several
heterogeneous MPSoCs [PAPN12, HDN+12, Zha13].

1.2 Scope of Thesis

After the processing elements, memories are the next most important components of an
architecture. Indeed, from the hardware perspective, memory banks can cover up to 80%
of the silicon area of an integrated circuit [DGCDM97]. Despite this large area overhead,
and the associated power consumption, memory is still a scarce resource from the software
perspective. For example, in the MPPA256 many-core chip from Kalray, each memory
bank of 2 MBytes is shared between 16 processing elements, for a total of 32 MBytes of
on-chip memory [Kal14]. Another example is the TMS320C6678 from Texas Instrument
where 8.5 MBytes of memory are embedded on a chip with 8 DSP cores [Tex13]. These
memory capacities remain relatively low compared to software requirements. For example,
in a video decoding application, more than 3 MBytes are needed to store a single Full HD
frame of 1920×1080 pixels. Although external memories can still be used as a complement
to the memory embedded in MPSoCs, access to these external memory banks is much
slower, and has a negative impact on the performance of an embedded system. Hence,
the study and optimization of memory issues is a critical part in the development of an
embedded system, as it can strongly impact the system performance and cost.

In this thesis, new techniques are introduced to study the memory issues encountered
during the deployment of applications modeled with dataflow graphs onto heterogeneous
multiprocessors architectures. The main contributions of this thesis are:

1. A method to derive the memory bound requirements of an embedded sys-
tem in the early stages of its development, when there is a complete abstraction
of the system architecture [DPNA12]. This method is based on an analysis of the
system application, and allows the developer of a multi-core shared-memory system
to adequately size the chip memory.

2. A flexible method to minimize the amount of memory allocated for applications
implemented on a shared-memory MPSoC [DPNA13]. In this method, memory
allocation can be performed at three distinct stages of the rapid prototyping process,
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each offering a distinct trade-off between memory footprint and flexibility of the
application execution.

3. A set of annotations for dataflow graphs that allows software developers to
specify internal data dependencies of the computational modules. An optimization
technique is also presented to automatically exploit the memory reuse opportu-
nities offered by these new annotations and reduce the amount of memory allocated
by the rapid prototyping process.

4. A case study of the deployment of a state-of-the-art computer-vision appli-
cation on a physical MPSoC. In addition to showing the efficiency of the new
memory optimization technique, this case study also presents technical solutions to
support the execution of a dataflow graph on a cache-incoherent MPSoC [DPNA14].

5. A new reconfigurable dataflow meta-model that overcomes the limitations of
the dataflow model currently used in Preesm while preserving its most advantageous
characteristics [DPN+13].

All these contributions have been developed as part of a scientific collaboration between
the IETR, Texas Instrument France (contributions 1 to 5), and the DSPCAD group from
the University of Maryland (contribution 5).

1.3 Outline

This thesis is organized in two parts: Part I introduces the concepts and research issues
studied in this thesis, and Part II presents and evaluates the contributions of this thesis.

In Part I, Chapter 2 formally defines the concept of dataflow Model of Computation
(MoC) and presents the specific characteristics of all dataflow MoCs studied in this thesis.
Then, Chapter 3 details the design challenges addressed in rapid prototyping frameworks
and emphasizes the importance of memory-related issues.

In Part II, the memory bounding technique and the memory allocation techniques
based on dataflow descriptions of applications are presented and evaluated in Chapter 4.
Then, Chapter 5 presents the memory minimization technique based on a new set of an-
notations for the computational modules of a dataflow graph. In Chapter 6, the memory
analysis and optimization techniques are evaluated for the rapid prototyping of a computer
vision application on a real MPSoC. Chapter 7 defines the semantics of the new dataflow
meta-model and compares its characteristics with existing MoCs. Finally, Chapter 8 con-
cludes this work and proposes potential research directions for future research.
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CHAPTER 2

Dataflow Models of Computation

2.1 Introduction

Sketches are commonly used by engineers, scholars, and researchers as a way to concep-
tualize and illustrate systems and ideas in early stages of development. These informal
graphical representations are used in many engineering domains to specify the purpose of
the components of a system and the relations between these components.

Block diagrams are among the most popular informal models for the high-level spec-
ification of electronic and computer systems. A block diagram is a drawing composed of
a set of boxes, usually representing the components of the system, and a set of lines and
arrows representing the relations between components. In 1921, Gilbreth et al. [GG21]
proposed a first formalization of block diagrams called “process chart” for the specification
of production processes.

In the computer science domain, Kelly et al. [KLV61] introduced the BLOck DIagram
compiler (Blodi) in 1961. Blodi is the first compiler for programs described with a
formalized block diagram language. At the time of punched cards, the main objective of
the Blodi language was to make computer programming accessible to persons with no
knowledge in programming languages. The Blodi language was composed of a set of 30
primitive blocks, like adders, filters, and quantizers, that could be used to compose Digital
Signal Processing (DSP) applications.

Nowadays, graphical languages are still popular for the specification and the develop-
ment of software and hardware systems. For example, the MCSE (methodology for the
design of electronic systems) [Cal93], is a hardware/software co-design methodology that
is partly based on a formal block diagram description of the specified system. In computer
science, the UML (Unified Modeling Language) [RJB04] is a collection of diagrams used
for the high-level specification of software solutions. Following the Blodi language, several
diagram-based alternatives to classical text-based programming languages have been pro-
posed for different purposes. Labviewr [Joh97] and Matlab Simulinkr [Mat96] are among
the most popular diagram-based programming languages used in commercial development
environments.

This thesis focuses on the study of applications described with diagram-based Models of
Computation (MoCs) called dataflow MoCs. Dataflow MoCs can be used to specify a wide
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range of Digital Signal Processing (DSP) applications such as video decoding [TGB+06],
telecommunication [PAPN12], and computer vision [NSD05] applications.

Dataflow MoCs and their properties are formally defined in Section 2.2. Sections 2.3,
2.4, and 2.5, respectively, present state-of-the-art static, hierarchical, and dynamic dataflow
models proposed in the literature. Finally, Section 2.6 summarizes the properties of all
dataflow MoCs presented in this chapter.

2.2 What is a Dataflow Model of Computation?

2.2.1 Models of Computation

A Model of Computation (MoC) is a set of operational elements that can be composed to
describe the behavior of an application. The set of operational elements of a MoC and the
set of relations that can be used to link these elements are called the semantics of a MoC.

As presented in [Sav98], MoCs can be seen as an interface between the computer
science and the mathematical domain. A MoC specifies a set of rules that control how
systems described with the MoC are executed. Each element of the semantics of a MoC
can be associated to a set of properties such as timing properties or resource requirements.
These rules and properties provide the theoretical framework that can be used to formally
analyze the characteristics of applications described with a MoC. For example, using a
mathematical analysis, it may be possible to prove that an application described with a
MoC will never get stuck in an unwanted state or that it will always run in a bounded
execution time.

There exists a wide variety of MoCs that each have their own specificities and objec-
tives. The following MoCs are examples of popular MoCs among programmers and system
designers.

� Finite-State Machine (FSM): The FSM MoC semantics consists of 2 elements:
states and transitions between states. Each transition of the model is associated with
a condition that guards the traversal of this transition. In an FSM, a unique state is
active at any given time. A transition from a state to another can be traversed only
when the associated condition is valid. FSMs are commonly used for the description
of sequential control systems. For example, FSMs are used in VHDL to capture the
control part of a hardware system [Gol94].

� Lambda calculus: The lambda calculus MoC semantics consists of a single element
called lambda term [Chu32]. A lambda term is either a variable, a function with a
unique lambda term argument, or the application of a function to a lambda term.
Any lambda calculus is obtained by composing lambda terms. Lambda calculus
was originally developed by mathematicians as a way to study and characterize
functions [Ros84]. Today, MoCs derived from the lambda calculus MoC are the
foundation of functional programming languages such as Haskell, Lisp, Scheme, and
OCaml.

� Process network: The process network MoC semantics consists of 2 elements:
processes and unbounded First-In First-Out queues (Fifos). The processes of a
process network are independent tasks that perform computation concurrently. Pro-
cesses communicate with each other by sending quanta of data, called data tokens,
through the Fifos of the process network. The process network MoC was originally
developed by Kahn as a semantics for parallel programming languages [Kah74]. The
dataflow MoCs studied in this thesis are derivatives of the process network MoC.
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� Logic circuit: The logic circuit MoC semantics consists of 2 elements: logic gates
and boolean signals. In the logic circuit MoC, systems have no state and the boolean
value (true or false) of an output signal of a logic gate only depends on the current
values of the input signals of this logic gate [Sav98]. The logic circuit MoC is com-
monly used in VHDL to describe the basic blocks composing a hardware system.

Most programming languages implement the semantics of several MoCs. For example,
the VHDL language supports many MoCs including logic circuits, finite state machines,
and process networks [Ash90]. Composing several MoCs into a single programming lan-
guage allows the developer of a system to choose the best suited MoC for the description
of each part of the system.

2.2.2 Dataflow Process Network

In [LP95], Lee and Parks formalize the semantics of the Dataflow Process Network (DPN)
MoC as a subset of the process network MoC. Although the Dataflow Process Network
(DPN) MoC is not the first dataflow MoC published in the literature [Kah74, Den74], it
constitutes a first attempt to provide a formal semantics for dataflow MoCs. In this thesis,
a DPN is formally defined as follows:

Definition 2.2.1. A Dataflow Process Network (DPN) is a directed graph denoted by
G = 〈A,F〉 where:

� A is the set of vertices of G. Each vertex a ∈ A is a computational entity named an
actor of the DPN. Each actor a ∈ A is defined as a tuple a = 〈Pin

data ,P
out
data ,R, rate〉

where:

– Pin
data and Pout

data respectively refer to the set of data input and output ports of
the actor.

– R = {R1, R2, ..., Rn} is the set of firing rules of the actor. A firing rule Ri ∈ R
is a condition that, when satisfied, can start an execution, called firing, of the
associated actor.

– rate : (R,P in
data ∪ P out

data) → N associates a firing rule to the number of atomic
data objects, called data tokens, consumed or produced on a given data port,
for a firing of the actor resulting from the validation of this firing rule.

� F ⊆ A×A is the set of edges of G. Each edge f ∈ F is an unbounded First-In First-
Out queue (F ifo) that transmits data tokens between actors. Each F ifo f ∈ F is
defined as a tuple f = 〈prod, cons, src, snk,delay〉 where:

– prod : F → A and cons : F → A associate producer and consumer actors to a
F ifo.

– src : F → P out
data and snk : F → P in

data associate source and sink ports to a F ifo.

– delay : F → N corresponds to a number of data tokens present in the F ifo
when the described application is initialized.

The semantics of the DPN MoC only specifies the external behavior of the actors:
the firing rules specify when an actor should be executed and the port rates specify how
many tokens are exchanged by an actor for each firing. The description of the internal
behavior of an actor is not part of the DPN MoC. In order to specify the actual com-
putation performed by the actor at each firing, a host language must be used. In most
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dataflow programming frameworks, imperative languages, like C or Java, or hardware
description languages, like VHDL, are used as host languages to describe the internal
behavior of actors [GLS99]. Alternatively, dedicated languages, like the CAL Actor Lan-
guage (CAL) [EJ03] or ΣC [Bod13, GSLD11, ABB+13], have been proposed to describe
both the external and internal behaviors of actors.

Figure 2.1 illustrates the graphical elements associated to the semantics of the DPN
MoC and gives an example of a DPN graph. The example graph presented in Figure 2.1(b)
contains 5 actors interconnected by a network of 6 Fifos. The Fifos linking actors B to
C, actors B to D, and actor D to itself contain 3, 2, and 1 initial tokens respectively.

Delay and
number of 
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FIFO

ActorA
Data 
Ports

x4

(a) Semantics
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D
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x2

x1

(b) Graph example

Figure 2.1: Dataflow Process Network (DPN) MoC

Dataflow MoCs

The semantics presented in Definition 2.2.1 serves as a basis for the semantics of many
dataflow MoCs. Indeed, most dataflow MoCs are the result of a specialization or a gener-
alization of the DPN semantics. Specializing the DPN semantics consists of adding new
restrictions to the MoC. For example, the Synchronous Dataflow (SDF) MoC [LM87b]
restricts the rates of data ports to a single scalar value [LM87b]. The DPN MoC it-
self is a specialization of the Kahn Process Network (KPN) MoC [Kah74]. Generalizing
the DPN semantics consists of adding new elements to its semantics. For example, the
Scenario-Aware Dataflow (SADF) MoC [TGB+06] introduces, among other new elements,
a stochastic model of the execution time of actors. Specialization and generalization of
the DPN semantics are often used jointly to derive new dataflow MoCs.

DPN and its derivatives (Sections 2.3 to 2.5) are popular MoCs for the description of
Digital Signal Processing (DSP) applications and systems. Indeed, as shown in [LP95],
data tokens provide an intuitive representation of the samples of a discrete signal, and
networks of actors naturally capture the successive transformations applied to a digital
signal. Finally, DPNs are often used to model repetitive DSP applications whose purpose
is to process a continuous stream of data tokens.

2.2.3 Expression of Parallelisms

One of the major objectives of dataflow graphs is to ease the description of parallelism.
In [ZDP+13], Zhou et al. identify 4 different sources of parallelism in a dataflow graph:
task parallelism, data parallelism, pipeline parallelism, and parallel actor parallelism.

Figure 2.2 presents 4 Gantt diagrams that illustrate the different sources of parallelism.
Each Gantt diagram represents a sequence of actor firings, called schedule, corresponding
to an execution of the DPN presented in Figure 2.1(b) on two processing elements. In
these schedules, it is assumed that the DPN is a repetitive process whose schedule can be
repeated indefinitely. Each schedule contains a complete repetition, called iteration, of
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the periodic schedule. Actors with a dotted border belong to prior or next iterations of
the schedule, as indicated by the +1, -1, and +2 notations on these actors.
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(c) Pipeline parallelism
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(d) Parallel actor parallelism

Figure 2.2: Illustration of the 4 sources of parallelism in dataflow MoCs

� Task parallelism: A Fifo of a dataflow graph induces a dependency constraint be-
tween its source and sink actors. A chain of actors linked by dependency constraints
is called a data-path. Two actors belong to parallel data-paths if there exists no
data-path between these actors. In such a case, there is no dependency constraint
between these actors and their firings can be processed in parallel. For example, in
Figure 2.1(b), actors C and D belong to parallel data-paths and can be executed
concurrently, as can be seen in Figure 2.2(a).

� Data parallelism: In dataflow graphs, the computation of an actor only depends
on the data tokens consumed during a firing. Hence, each firing of a single actor
is independent from its other firings, and no state or context needs to be restored
before firing an actor [LP95]. Since successive firings of an actor are independent,
if enough data tokens are present in the input Fifos, then several firings can be
executed concurrently. For example, in Figure 2.2(b), it is assumed that actors C
and D produce enough data tokens for actor E to be executed twice in parallel. If the
behavior of an actor requires the definition of a state, this state must be explicitly
specified in the dataflow graph with a self-loop Fifo conveying state data-tokens
from a firing to the next, as illustrated by actor D in Figure 2.1(b).

� Pipeline parallelism: Pipelining an application consists of starting a new iteration
of a dataflow graph before the end of the previous iteration. Pipelining is possible
if there is no data dependency between successive iterations of a dataflow graph. In
order to pipeline a dataflow graph, the sequence of actor firings is divided into sub-
sequences, called stages, that can be executed concurrently. Initial data tokens, also
called delays, can be used to separate two pipeline stages explicitly in the application
graph. For example, in Figure 2.2(c), Fifos BC and BD contain initial data tokens
that can be used to fire actors C and D without waiting for the first data tokens
produced by actor B. Hence, actors A and B and actors C, D, and E respectively
compose the two pipeline stages that can be repeatedly executed in parallel.

� Parallel actor parallelism: A parallel actor is an actor that embeds inner (intra-
firing) parallelism, and whose execution may be accelerated by the use of multiple
processing elements [ZDP+13]. The inner parallelism of a parallel actor can have
different sources:
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– The host language describing the internal behavior of actors allows parallel
computation. For example, thread-based programming languages can be used
to describe parallel computations. The advantage of running several threads
in parallel instead of firing several actors concurrently is that multiple threads
may access shared variables whereas several actors can not.

– The parallel actor is a hierarchical actor whose internal behavior is itself de-
scribed with a dataflow graph. To this purpose, several hierarchical dataflow
MoCs have been proposed in the literature [PBR09, BB01, NL04].

In Figure 2.2(d), it is assumed that actor A is a parallel actor whose firings require
the concurrent use of 2 processing elements of the architecture.

In Figure 2.2, each subfigure illustrates a single source of parallelism. In real schedules,
these 4 sources of parallelism are combined in order to fully exploit the parallelism offered
by dataflow graphs.

2.2.4 Dataflow Models Properties

Research on dataflow modeling leads to the continuing introduction of new dataflow mod-
els [JHM04]. New dataflow MoCs are often introduced to fulfill objectives that preexisting
models failed to achieve. For example, some dataflow models are introduced with a math-
ematical formalism that enforces the analyzability of the model [SGTB11]. Other models
simply extend the semantics of existing models in order to improve their expressivity and
enable the description of a broader range of applications [BB01].

To help the developer of an application select the dataflow MoC that best suits his
needs, a set of application and model properties can be used to compare the capabilities
of existing dataflow MoCs.

Application properties

To fully understand the model properties used for comparing dataflow MoCs, some prop-
erties of applications when described with dataflow graphs must be in introduced first.

� Schedulability: A dataflow graph is schedulable if it is possible to find at least
one sequence of actor firings, called a schedule, that satisfies all the firing rules
defined in the graph. Depending on the dataflow MoC used to model an application,
the schedulability of this application can be checked at compile time or during the
execution of the system. A possible cause of non-schedulability for a dataflow graph
is the possibility to reach a deadlock state where no Fifo contains enough data
tokens to initiate a firing of an actor. The non-schedulability of an application can
also be caused by external factors such as the lack of sufficient hardware resource to
schedule a dataflow graph under a time constraint.

� Consistency: A dataflow graph is consistent if its execution does not cause an
indefinite accumulation of data tokens in one or several Fifos of the graph. Although
in Definition 2.2.1, the Fifos of a DPN are supposed to be unbounded, in practice,
the amount of memory used to execute a DPN is always limited. Hence, if a dataflow
graph is inconsistent, its execution will eventually generate more data tokens than
the available storage capacity.
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Dataflow MoCs properties

The following properties can be used to compare several dataflow MoCs. The presented list
of properties is not meant to be an exhaustive list of all the properties used for comparing
dataflow MoCs. Indeed, many other terms are used in the literature to compare dataflow
MoCs, often with an overlapping meaning with one or several of the properties defined in
this list.

� Decidability: A dataflow MoC is decidable if the schedulability and the consistency
of applications described with this model can be proved statically (i.e. at compile-
time) [BL06]. Hence, using a decidable dataflow MoC makes it possible to guarantee
at compile-time that a dataflow graph will never reach a deadlock state and that its
execution will require a finite amount of memory. As presented in [BL06], decidable
dataflow MoCs are not Turing complete and may be unable to describe certain
applications.

� Determinism: A dataflow MoC is deterministic if the output of an algorithm only
depends on its inputs, but not on external factors such as time or randomness [LP95].
If determinism is a desired feature for most control and DSP applications, non-
determinism may also be needed to describe applications reacting to unpredictable
inputs [LP95].

� Compositionality: A dataflow MoC is compositional if the properties of a dataflow
graph described with this MoC are independent from the internal specification of
the actors that compose it [Ost95, TBG+13]. Compositionality is a desirable feature
especially for hierarchical dataflow MoCs where the internal behavior of actors may
be specified with a dataflow graph (cf. Section 2.4.2). In hierarchical dataflow
MoCs, compositionality guarantees that modifications made to the subgraph of an
actor will have no impact on the consistency or the schedulability of graphs in upper
levels of hierarchy [TBG+13, PBR09, NL04].

� Reconfigurability: A dataflow MoC is reconfigurable if the firing rules and rates
associated to the data ports of its actors can be changed dynamically depending on
the application inputs [NL04]. DPN is a reconfigurable MoC since each data port
can be associated to a set of firing rules and token rates that are dynamically selected
during the application execution, depending on the number and value of available
data tokens.

These four properties are predicates that can be used to characterize a dataflow MoC
objectively. Indeed, a dataflow MoC is either deterministic or non-deterministic but can-
not be somewhere in between. In addition to these objective properties, several informal
properties can be used to compare dataflow MoCs. Although these properties cannot be
objectively measured, they are commonly used as arguments for the relative comparison
of new dataflow MoCs with existing MoCs.

� Predictability: The predictability property is related to the reconfigurability prop-
erty of a dataflow MoC. This property evaluates the amount of time between the
reconfiguration of the firing rules of an actor and the actual firing of this actor. The
predictability of a dataflow MoC is inversely proportional to how often the firing rule
of an application graph can be reconfigured [NL04].
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� Conciseness: The conciseness (or succinctness [SGTB11]) of a dataflow MoC eval-
uates the ability of a MoC to model an application with a small number of actors.
When a graphical interface is used to edit dataflow graphs, conciseness is an impor-
tant property to limit the size of edited graphs.

� Analyzability: The analyzability of a dataflow MoC evaluates the availability
of analysis and synthesis algorithms that can be used to characterize application
graphs. For example, analysis algorithms can be applied at compile-time to com-
pute the worst-case latency or the maximum memory requirements of a dataflow
graph [SGTB11].

� Expressivity: The expressivity, or expressive power of a dataflow MoC evaluates
the complexity of application behaviors that can be described with this MoC. For
example, the expressivity of the DPN MoC has been proven to be equivalent to a
Turing machine [BL93], and can thus be used to describe any application. Special-
izations of the DPN MoCs often restrict the expressivity of the MoC in order to
increase its analyzability and predictability. Expressivity is often mistaken for con-
ciseness. For example, the CSDF MoC is often said to be more expressive than the
SDF MoC, but meaning instead that it has a better conciseness (Section 2.3).

The following sections present the semantics and the properties of the dataflow MoCs
that will be studied in this thesis. These dataflow MoCs are sorted into two categories
depending on their reconfigurability. Static MoCs, which are non-reconfigurable MoCs,
are presented in Sections 2.3 and 2.4, and dynamic MoCs, which are reconfigurable MoCs,
are presented in Section 2.5.

2.3 Static Dataflow Models of Computation

Static dataflow MoCs are non-reconfigurable and deterministic MoCs where the sequence
of firing rules executed by all actors of a graph is known at compile time [LM87b]. Since
the sequence of firing rules of an actor is known a priori, the production and consumption
rates of an actor never depend on the value of the data tokens processed by the actor.
This condition restricts the expressivity of static dataflow MoCs. For example, conditional
behaviors such as if-then-else statements have no equivalent in static dataflow MoCs.

As a counterpart for their restricted expressivity, static dataflow MoCs are decidable
MoCs for which all application graphs can be scheduled at compile-time [LP95].

2.3.1 Synchronous Dataflow (SDF)

Synchronous Dataflow (SDF) [LM87b] is the most commonly used static specialization
of the DPN MoC. Production and consumption token rates set by firing rules are fixed
scalars in an SDF graph. Formally, the SDF MoC is defined as follows:

Definition 2.3.1. A Synchronous Dataflow (SDF) graph is a graph G = 〈A,F 〉 respecting
the Dataflow Process Network (DPN) MoC with the following restrictions:

� Each actor a ∈ A, with a = 〈P in
data , P

out
data , R, rate〉, is associated to a unique firing

rule: R = {R1}

� For each data input port p ∈ P in
data of an actor, the consumption rate associated to

the unique firing rule R1 of the actor is a static scalar that also gives the number of
data tokens that must be available in the F ifo to start the execution of the actor.
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� For each data output port p ∈ P out
data of an actor, the production rate associated to

the unique firing rule R1 of the actor is a static scalar.

In addition to these restrictions, the following simplified notation is introduced.

� rate : A × F → N is the production or consumption rate of actor a ∈ A on F ifo
f ∈ F . If a is both producer and consumer of f , then rate(a, f) is the difference
between the production and the consumption rates on f .

Figure 2.3 illustrates the graphical elements associated to the semantics of the SDF
MoC and gives an example of SDF graph.
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Figure 2.3: Synchronous Dataflow (SDF) MoC

The popularity of the SDF MoC comes from its great analyzability. Indeed, low com-
plexity algorithms have been published to check the consistency and schedulability of SDF
graphs [LM87b], to derive mono-core looped schedules of minimal length [BML96], but
also to compute the maximum achievable throughput for the multicore execution of a
graph [GGS+06].

Consistency and Schedulability

Checking the schedulability and the consistency of an SDF graph is a critical step in all
dataflow programming frameworks, as it proves the absence of deadlock and the bounded
memory requirements of an application.

The method introduced by Lee and Messerschmitt in [LM87b] to verify the consistency
of an SDF graph is based on a topology matrix that characterizes the Fifos and the
rates of an SDF graph. The topology matrix is formally defined as follows:

Definition 2.3.2. Considering an SDF graph G = 〈A,F 〉, the associated topology matrix
Γ is a matrix of size |F | × |A|such that:

� Each column Γj of the matrix is associated to an actor aj ∈ A of G.

� Each row Γi of the matrix is associated to a F ifo fi ∈ F of G.

� Matrix coefficient Γi,j =


rate(aj , fi) if aj = prod(fi)

−rate(aj , fi) if aj = cons(fi)

0 otherwise

The topology matrix associated to the SDF graph of Figure 2.3(b) is presented here-
after. The columns and rows of the matrix are labeled with the corresponding actors and
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Fifos respectively.

Γ =



A B C D

AB 3 −1 0 0
AC 1 0 −1 0
CC 0 0 0 0
BD 0 2 0 −3
CD 0 0 4 −2


An interesting coefficient in this matrix is the coefficient corresponding to tokens pro-

duced and consumed by actor C on Fifo CC. Because actor C produces and consumes
the same number of token on this Fifo, the positive and negative rates cancel each other,
and the coefficient is set to 0. When an actor possesses a self-loop Fifo, its production
and consumption rates on this Fifo should always be equal. Otherwise, tokens will either
accumulate indefinitely on this Fifo, or this Fifo will eventually cause a deadlock.

The state of an SDF graph is characterized by the number of data tokens stored in
each Fifo, and can be represented by a vector of size |F |. For example, the initial state

of the SDF graph of Figure 2.3(b) is: state(0) =
(
1 0 2 0 0

)T
. Given a state vector

state(n), the state resulting from the firing of the jth actor of the graph can be computed
with the following equation: state(n+ 1) = state(n) + Γ · ej where ej is the jth canonical
basis vector in Euclidean space (the vector with all coefficients equal to 0 but the jth equal
to 1). For example, the state resulting from firing of actor B of the example SDF graph

is state(1) = state(0) + Γ · e1 =
(
0 0 2 2 0

)T
.

Theorem 2.3.1. A connected SDF graph G = 〈A,F 〉 with a topology matrix Γ is consistent
if and only if rank(Γ) = |A| − 1

A non-connected SDF graph is a graph whose actors can be separated in two (or
more) groups with no Fifo between actors belonging to different groups. Proving the
consistency of a non-connected SDF graph consists of applying Theorem 2.3.1 separately
to the connected SDF subgraphs formed by each group of actors.

A proof for Theorem 2.3.1 can be found in [LM87a]. Using Theorem 2.3.1, it is thus
possible to prove that the repeated execution of an SDF graph will not result in an infinite
accumulation of data tokens on a Fifo of this graph.

The consistency of an SDF graph implies the existence of a Repetition Vector (RV)
of size |A|. The integer coefficients of the RV give the minimal number of firings of each
actor to return the graph back to its original state. Executing an iteration of an SDF
graph consists of firing each actor of this graph as many times as given by the RV.

Computing the RV q of a topology matrix Γ consists of finding a positive and integer

vector that solves the following equation: Γ · q =
(
0 · · · 0

)T
. The RV for the SDF graph

of Figure 2.3(b) is q =
(
1 3 1 2

)T
.

Theorem 2.3.2. An SDF graph G = 〈A,F 〉 is schedulable if and only if all following
conditions are verified:

� G is consistent

� A sequence of actor firing can be constructed such that:

– each actor is fired as many times as required in the Repetition Vector (RV).

– the firing rule of each actor is respected: enough data tokens are available to
start each firing of the sequence.
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The existence of the RV (i.e. the consistency) is not a sufficient condition to guarantee
the schedulability of an application. For example in Figure 2.3(b), if there were no initial
data token in the self-loop Fifo of actor C, the graph would still be consistent, since the
topology matrix does not depend on delays, but it would never be possible to fire actor C.

In [BELP96], Bilsen et al. propose an algorithm to build a sequence of actor firings
that verifies the second condition of Theorem 2.3.2. If the algorithm fails, the SDF cannot
be executed without reaching a deadlock. An example of valid sequence of actor firings
for the SDF graph of Figure 2.3(b) is: B, A, B, D, C, B, D.

It is important to note that consistency and schedulability of an SDF graph can be
checked without any information on the actual hardware architecture executing the appli-
cation.

2.3.2 Single-Rate SDF, Homogeneous SDF, and Directed Acyclic Graph

The single-rate SDF MoC is a specialization of the SDF MoC defined as follows:

Definition 2.3.3. A single-rate SDF graph is an SDF graph where the production and
consumption values on each F ifo are equal. Formally:

∀f ∈ F, rate(prod(f), f) = rate(cons(f), f)

The single-rate SDF MoC has the same expressivity as the SDF MoC. Consequently,
for all consistent SDF graphs, there exists an equivalent single-rate SDF graph.

Unrolling an SDF graph into an equivalent single-rate SDF graph consists of dupli-
cating the SDF actors by their number of firings in the RV [LM87b]. As a result of this
transformation, data tokens produced by a single producer can be consumed by several
consumers and vice-versa. Since the SDF MoC forbids the connection of multiple Fifos to
a single port of an actor, new Fork and Join actors are introduced [Pia10]. The purpose
of Fork actors, also called Split [CDG+14] or Explode [FGG+13] actors, is to distribute
data tokens produced by a single actor to several consumers. Conversely, Join actors,
also called Implode [FGG+13] actors, are used to gather data tokens produced by several
producers for a single consumer.
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Figure 2.4: Single-rate SDF graph derived from the SDF graph of Figure 2.3(b)

Figure 2.4 illustrates the graph resulting from the conversion of the SDF graph of
Figure 2.3(b) into its single-rate equivalent. In addition to the 7 actors resulting from
duplication of the original 4 actors of the SDF graph, 3 Fork actors and 2 Join actors
have been added to the graph. Each single-rate Fifo of the graph is labeled with its
production/consumption rate. As illustrated in this example, Fifos of a single-rate graph
only contain a number of delays that is a multiple of their production/consumption rate.
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In [SB09], Sriram and Bhattacharyya propose an algorithm to realize the transforma-
tion of an SDF graph into the equivalent single-rate SDF graph. As shown in [PBL95], the
single-rate transformation may result in the addition of an exponential number of actors
to the graph.

The single-rate transformation is commonly used in many dataflow programming frame-
works as a way to reveal data parallelism, by transforming it into explicit task parallelism
(Section 2.2.3). Another advantage of single-rate SDF graphs is that each actor needs to
be fired only once per iteration of the graph. For this reason, single-rate SDF graphs are
often used as an input to scheduling processes.

As presented in [PBL95], transforming an SDF graph into an equivalent single-rate
SDF graph may require an exponential number of actor duplications. However, despite
this limitation, the single-rate transformation is still used in many dataflow programming
frameworks [PAPN12, SB09]. In practice, it is the developer responsibility to ensure
that the specified production and consumption rates will not result in a prohibitively large
single-rate graph. This constraint has been showed to be compatible with the description of
real applications from the telecommunication [PAPN12], the image processing [HDN+12],
and the computer vision domains [Zha13].

The homogeneous SDF MoC is a specialization of the single-rate SDF MoC where
all production and consumption rates are equal to 1. The straightforward transformation
of a single-rate SDF graph into an equivalent homogeneous SDF graph consists of setting
the size of data tokens on each single-rate Fifo to the production/consumption rate of
this Fifo.

The Directed Acyclic Graph (DAG) MoC is a specialization of the SDF MoC
where cyclic data-paths are forbidden. Given a consistent and schedulable SDF graph,
its transformation into an equivalent Directed Acyclic Graph (DAG) consists of replacing
Fifos that contain delays with a pair of special actors: Save and Restore. In order to be
schedulable, all cyclic data-paths must contain at least one initial data token, consequently,
replacing Fifos with delays will naturally break all cycles. The purpose of the Save actor
is to backup as many data tokens as the number of delays of the Fifo. The Save actor
must be executed before the end of an iteration, saving data tokens that will be consumed
during the next iteration. Then, the purpose of the Restore actor is to read the backed
up data tokens and send them to the appropriate consumer. A Save actor must always be
scheduled before its corresponding Restore actor. Indeed, the transformation of an SDF
graph into a DAG hides a causality property.
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Figure 2.5: Directed Acyclic Graph (DAG) derived from the SDF graph of Figure 2.3(b)

Figure 2.5 illustrates the DAG derived from the SDF graph of Figure 2.3(b). In this
DAG, the self-loop Fifo, also called feedback Fifo, of actor C has been replaced with a
pair of Save/Restore actors that transmit the two data tokens from an iteration of the
DAG to the next. A second pair of Save/Restore actors replaces the unique delay of Fifo
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AB. Since only one data token out of the 3 produced by actor A is delayed, Fork and
Join actors are added in order to isolate and regroup the delayed data token.

The single-rate and the DAG transformations are often combined to produce a single-
rate DAG, also called an Acyclic Precedence Expansion Graph (APEG) [SL90].

2.3.3 Cyclo-Static Dataflow (CSDF) and Affine Dataflow (ADF)

The Cyclo-Static Dataflow (CSDF) MoC is a generalization of the SDF MoC [BELP96],
and a specialization of the DPN MoC, defined as follows:

Definition 2.3.4. A Cyclo-Static Dataflow (CSDF) graph is a graph G = 〈A,F 〉 respect-
ing the Synchronous Dataflow (SDF) MoC with the following additions:

� Each port p ∈ P in
data ∪ P out

data , is associated to a sequence of static integers of size n
noted seq(p) ∈ Nn.

� Considering an actor a ∈ A and a port p ∈ P in
data ∪ P out

data , the firing rule (i.e. the
number of available tokens) and the production/consumption rates of p for the ith

firing of actor a is given by the (i mod n+ 1)th element of seq(p).

Figure 2.6 illustrates the graphical elements associated to the semantics of the CSDF
MoC and gives an example of CSDF graph.
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Figure 2.6: Cyclo-Static Dataflow (CSDF) MoC

The expressivity of the CSDF MoC is equivalent to the expressivity of the SDF MoC.
In [PPL95], Parks et al. propose a method to transform a CSDF graph into an equivalent
SDF graph. Using this transformation enables the use of all optimization and analysis
techniques of the SDF MoC for applications modeled with a CSDF graph.
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Figure 2.7: SDF graph equivalent to the CSDF graph of Figure 2.6(b).

The graph presented in Figure 2.7 results from the transformation of the CSDF graph
of Figure 2.6(b) into its SDF equivalent. The SDF graph contains 6 additional actors and
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8 additional Fifos compared to the original CSDF graph. This example illustrates that,
although the SDF and the CSDF MoCs have the same expressivity, the CSDF MoC has
a better conciseness (Section 2.2.4).

The Affine Dataflow (ADF) MoC is a generalization of the CSDF MoC introduced
by Bouakaz et al. in [BTV12]. In ADF, each port is associated to a finite initialization
sequence in addition to the periodic sequence of rates. The sequence formed by the two
sequences is called an ultimately periodic sequence. Hence, the firings of an actor can
be separated in two successive phases: first, an initialization phase where the actor uses
the rates defined in the initialization sequence, and then a periodic phase where the actor
behaves as a CSDF actor. ADF has the same expressivity as SDF and CSDF, but offers
a better conciseness than both.

2.4 Hierarchical SDF Modeling

Modularity in programming languages is an important feature that allows developers to
specify the different elements that compose a system separately. Modular MoCs favor:

� Composability: Application and system descriptions consist of a set of indepen-
dent components and a set of relationships between these components. Independent
components of a composable system can, in general, be developed and compiled sepa-
rately. In imperative programming languages, composability enables the incremental
compiling of source code.

� Dependability: Modeling a system with several small components, instead of a
unique large system, makes it easier to maintain. Indeed, each independent compo-
nent can be tested separately and, if a problem arises, only the defective component
will require fixing.

� Reusability: Similarly to classes in object-oriented programming, components of
a modular MoC can be instantiated multiple times in a description. Components
can also be reused in several applications, like DSP primitive building blocks (Fast
Fourier Transform (FFT), Finite Impulse Response (FIR) filter, ...). Hence, several
applications may benefit from the optimization of a single component.

Dataflow MoCs are inherently modular MoCs, since each actor is a clearly delineated
module with its own behavior. In SDF, however, modularity is not part of the semantics as
the internal behavior of actors is not part of the MoC. Several generalizations of the SDF
MoC have been proposed [PBR09, TBG+13, LM87b] to make modularity an explicit part
of the SDF MoC. These extensions of the SDF MoC rely on a hierarchy mechanism that
enables the specification of the internal behavior of actors with a dataflow graph instead
of host code.

2.4.1 Naive Hierarchy Mechanism for SDF

The first hierarchy mechanism for SDF graphs, introduced in [LM87b], simply consists of
associating a hierarchical actor with an SDF subgraph in the development environment.
When executing the application, the hierarchical actor is replaced with its content. Fig-
ure 2.8 shows an example of graph implementing this hierarchy mechanism. The top-level
graph contains regular actors A and B and a hierarchical actor h. The subgraph describing
the internal behavior of actor h contains 2 actors C and D.
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Figure 2.8: Hierarchical SDF graph

As presented in [Pia10, TBG+13], the main issue with this naive hierarchy mechanism
is that the resulting MoC is not compositional as the properties of a graph depend on the
internal specification of its components. To illustrate this issue, Figure 2.9(a) and 2.9(b)
show the single-rate SDF graphs corresponding to the execution of the hierarchical SDF
graph of Figure 2.8 with N , the consumption rate of actor D, set to 1 and 2 respectively.
For clarity, Fork and Join actors are omitted in these single-rate graphs.
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Figure 2.9: Non-compositionality of naive hierarchical SDF MoC

With N = 1, as expected with the production and consumption rates of actor h, actors
A and B are each fired once per iteration, and actors C and D are fired three times each,
once for each “firing” of actor h. With N = 2, the topology of the single-rate SDF graph
is completely changed: in order to provide enough data tokens for the execution of actor
B, actors D, C, and A must be fired 3, 6, and 2 times respectively. Hence, a modification
in the graph associated to a hierarchical actor induces a modification of the RV of the
graph containing this hierarchical actor, which is a non-compositional behavior.

Because of this non-compositional behavior, all hierarchical actors of a hierarchical SDF
graph must be flattened (i.e. replaced with their content) before checking the consistency
and schedulability of an application. Flattening the hierarchy may result in the creation
of a graph with a large number of actors, which will require heavy computations to prove
its schedulability.

2.4.2 Interface-Based SDF (IBSDF): a Compositional Dataflow MoC

The Interface-Based SDF (IBSDF) MoC [PBR09] is a compositional generalization of the
SDF MoC defined as follows:

Definition 2.4.1. An Interface-Based SDF (IBSDF) graph G = 〈A,F, I〉 is a graph re-
specting the SDF MoC with the following additional elements of semantics:

� A hierarchical actor a ∈ A is an SDF actor whose internal behavior is specified
with an IBSDF graph, called the subgraph of actor a.
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� I = (I indata , I
out
data) is a set of hierarchical interfaces. An interface i ∈ I is a vertex

of a subgraph. Interfaces enable the transmission of information between levels of
hierarchy. Each interface i ∈ I corresponds to a data port p ∈ Pdata of the enclosing
hierarchical actor.

– A data input interface iindata ∈ I indata in a subgraph is a vertex transmitting to
the subgraph the tokens received by its corresponding data input port. If more
data tokens are consumed on a data input interface than the number of tokens
received on the corresponding data input port, the data input interface behaves
as a ring buffer, producing the same tokens several times. Formally, the ith

token produced by a data input interface is the (i mod n+ 1)th token consumed
on the corresponding data input port, with n the consumption rate associated to
this data input port

– A data output interface ioutdata ∈ Ioutdata in a subgraph is a vertex transmitting
tokens received from the subgraph to its corresponding data output port. If a
data output interface receives too many tokens, it will transmit only the last
received tokens to the upper level of hierarchy.

– A subgraph of an actor a ∈ A must be iterated until all data tokens produced
by the data input interfaces have been read at least once, and all data tokens
consumed by the data output interfaces have been written at least once.

Contrary to the naive hierarchy mechanism presented in Section 2.4.1, the IBSDF MoC
introduces new elements of semantics whose purposes are to insulate the different levels
of hierarchy and guarantee the compositionality of the MoC. As proved in [PBR09], a
necessary and sufficient condition to check the schedulability and consistency of an IBSDF
graph is to check the schedulability of each subgraph separately. Hence, contrary to the
naive hierarchy mechanism, a complete flattening of the hierarchy is not needed to prove
the schedulability of an application.

An example of IBSDF graph and an illustration of the graphical elements associated
to the semantics of IBSDF are given in Figure 2.10.
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Figure 2.10: Interface-Based SDF (IBSDF) MoC

As presented in Definition 2.4.1, the data input and output hierarchical interfaces of
the IBSDF MoC have a special behavior if the number of data tokens exchanged in the
subgraph is greater than the rate of the corresponding data port of the hierarchical actor.
For example, in Figure 2.10(b), 1 firing of actor D and 2 firings of actor C are needed
to produce one data token on the data output interface. Since only one data token is
consumed on the data input port of actor h, this data token will be produced twice by the
corresponding data input interface: once for each firing of actor C.
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Hierarchy Flattening

Flattening the hierarchy of an IBSDF graph consists of replacing hierarchical actors with
their subgraph and, when needed, replacing data interfaces with actors implementing
their special behavior. As presented in [PBPR09], Broadcast (or Brd) actors implement
the special behavior of data input interfaces that produce several times the same data
tokens and Roundbuffer (or Rnd) actors implement the special behavior of data output
interfaces that only transmit the last data tokens received to their output Fifo.
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Figure 2.11: Flattening and single-rate transformations of the IBSDF graph of Figure 2.10(b)

Figure 2.11(a) and 2.11(b), respectively, present the flattened and the single-rate graphs
derived from the IBSDF graph of Figure 2.10(b). In the flattened graph, the data input
interface of the subgraph was replaced with a Broadcast actor that duplicates twice each
data token produced by actor A. The number of data tokens produced by actor D in
the subgraph is equal to the number of data tokens produced by the hierarchical actor
h. Consequently, since the data output interface does not discard any data token, a
Roundbuffer actor is not needed, and actor D can be directly connected to actor B.

In the single-rate graph of Figure 2.11(b), the firings of actors Brd, C, and D are sep-
arated in three identical groups, each corresponding to a distinct firing of the hierarchical
actor h.

By flattening a selected set of hierarchical IBSDF actors, the developer of an applica-
tion can easily change the granularity of an application without modifying its functional
behavior. For example, if actor h had not been flattened in Figure 2.11(b), the single-rate
graph would only contain 5 actors instead of 14. In such a case, the subgraph of non-
flattened actors can be translated into host language using code generation techniques
presented in [PBPR09].

The memory characteristics of applications modeled with the IBSDF MoC are studied
in Chapters 4 to 6 of this thesis, and a reconfigurable generalization of the IBSDF MoC
is introduced in Chapter 7.

2.4.3 Deterministic SDF with Shared FIFOs

In [TBG+13], Tripakis et al. propose another hierarchical and compositional generalization
of the SDF MoC called Deterministic SDF with Shared Fifos (DSSF). The main difference
between the DSSF and the IBSDF MoCs is that in DSSF, a set of acceptable production
and consumption rates on the data ports of a hierarchical actor is inherited from the
topology of its subgraph (bottom-up approach) instead of being fixed by the interfaces
(top-down approach), as in IBSDF. A second difference between the two models is that
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in DSSF, firing a hierarchical actor does not necessarily imply a complete iteration of
its subgraph. For example, considering actor h of Figure 2.10(b) as a DSSF actor with
inherited consumption and production rates of 2 and 1, its single-rate equivalent is the
single-rate graph of Figure 2.9(b). This single-rate graph corresponds to three firings
of actor h, consisting of actors (C1, C2, D1), actors (C3, C4, D2), and actors (C5, C6, D3)
respectively.

2.5 Dynamic Dataflow Models of Computation

As presented in Section 2.3, static dataflow MoCs have a limited expressivity and cannot
be used to model all applications. In particular, the sequence of firing rates of each actor
is known at compile time in static MoCs, which lends static MoCs a total predictability
and a great analyzability.

Many generalizations of the SDF MoC have been introduced over the years to en-
able the description of dynamically reconfigurable applications. While improving the ex-
pressivity of the static MoC, the purpose of these generalizations is to preserve as much
predictability and analyzability as possible.

In [NL04], Neuendorffer an Lee propose a unified model to analyze the trade-off between
reconfigurability and predictability of a dataflow MoC. In particular, they show that the
predictability of a MoC can be characterized by allowing reconfiguration only at certain
points, called quiescent points, during the execution of applications. Next sections present
the PSDF, SPDF, and SADF dynamic dataflow MoCs.

2.5.1 Parameterized SDF (PSDF)

Parameterized dataflow is a meta-modeling framework introduced by Bhattacharya and
Bhattacharyya in [BB01]. In the context of dataflow MoCs, a meta-model is a set of
elements that can be added to the semantics of an existing MoC in order to bring new
capabilities to this MoC.

The parameterized dataflow meta-model is applicable to all dataflow MoCs that present
graph iterations. When this meta-model is applied, it extends the targeted MoC semantics
by adding dynamically reconfigurable hierarchical actors. Examples of applications of the
meta-model to the SDF and the CSDF MoCs can be found in [BB01] and [KSB+12]
respectively. Parameterized dataflow is formally defined as follows:

Definition 2.5.1. The parameterized dataflow meta-model extends the semantics of a
targeted dataflow MoC with the following elements:

� param(a) is a set of parameters associated to an actor a ∈ A. A parameter p ∈
param(a) is an integer value that can be used as a production or consumption rate
for actor a, and that can influence the internal behavior of actor a. The value of
parameters is not defined at compile time but instead is assigned at run time by
another actor. Optionally, a parameter can be restricted to take values only in a
finite domain noted domain(p).

� Hierarchy levels, including subgraphs of hierarchical actors, are specified with
3 subgraphs, namely the init φi, the subinit φs, and the body φb subgraphs.

– the φi subgraph sets parameter values that can influence both the production
and consumption rates on the ports of the hierarchical actor and the topology
of the φs and φb subgraphs. The φi subgraph is executed only once per iteration
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of the graph to which its hierarchical actor belongs and can neither produce nor
consume data tokens.

– the φs subgraph sets the remaining parameter values required to completely con-
figure the topology of the φb subgraph. The φs subgraph is executed at the be-
ginning of each firing of the hierarchical actor. It can consume data tokens on
input ports of the hierarchical actor but can not produce data tokens.

– the φb subgraph is executed when its configuration is complete, right after the
completion of φs. The body subgraph behaves as any graph implemented with
the MoC to which the parameterized dataflow meta-model was applied.

In parameterized dataflow, a reconfiguration occurs when values are dynamically as-
signed to the parameters of an actor, causing changes in the actor computation and in the
production and consumption rates of its data ports.

Parameterized SDF (PSDF) is the MoC obtained by applying the parameterized dataflow
meta-model to the SDF MoC. Examples of real DSP applications described with the PSDF
MoC can be found in [KSB+12, PAPN12].
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Figure 2.12: Example of Parameterized SDF (PSDF) graph

Figure 2.12 presents an example of PSDF graph using the graphical semantics proposed
in [BB01]. In this example, the top level specification contains 4 actors. The setX actor,
contained in the Top.init subgraph, assigns a value to parameter x, thus influencing the
dataflow behavior of actor h in the Top.body subgraph. Actor h is a hierarchical actor
whose subgraphs contain 5 actors. A parameter set in a level of hierarchy cannot influence
directly parameters in body subgraphs of lower levels of hierarchy. For example, the value
assigned to parameter x in the Top.init subgraph must be explicitly propagated by actor
propagateX in subgraph h.init in order to be used in the body subgraph of actor h.

Runtime Operational Semantics

The runtime operational semantics of the PSDF MoC, as presented in [BB01], defines the
successive steps followed during the execution of a hierarchical actor a ∈ A whose internal
behavior is specified with 3 subgraphs. The execution of actor a restarts to step 1 each
time actor a is instantiated in its parent graph (cf. steps 2, 6, 9). Here, the instantiate
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operation can be seen as a signal sent to an actor, triggering its initialization process and
other operations such as reservation of memory for its execution, or retrieval of code to
execute. The execution of actor a can be decomposed into the following steps:

1. Wait for actor a to be instantiated in its parent graph.

2. Instantiate all actors in the init subgraph a.φi.

3. Fire all actors in the init subgraph a.φi.

4. Compute the Repetition Vector (RV) of the subinit subgraph a.φs and pre-compute
the RV of the body subgraph a.φb. Parameter values used in this step are the values
set in step 3 and default values for parameters whose values will be set in step 7.
The computed RV is used to determine the production and consumption rates of
actor a in its parent graph.

5. Wait for the next firing of actor a.

6. Instantiate all actors in the subinit subgraph a.φs.

7. Fire all actors in the subinit subgraph a.φs.

8. Compute the RV of the body subgraph a.φb with parameter values set in steps 3
and 7.

9. Instantiate all actors in the body subgraph a.φb.

10. Fire all actors in the body subgraph a.φb.

11. Go back to step 5.

Following this operational semantics, the actors of the PSDF graph of Figure 2.12 are
fired in the following order, assuming that parameters x, y and z are always set to 1:
{SetX, propagateX, A, 3×(SetY, SetZ, C, D), B}. Notation “3×(· · · )” means that the
content of the parenthesis is executed 3 times.

As presented in [SGTB11, NL04], this operational semantics makes the PSDF MoC
less predictable than the SDF MoC, but more predictable than the DPN MoC. Indeed,
contrary to the topology of SDF graphs, the topology of a PSDF graph is unknown at
compile time, as it depends on dynamically set parameter values. However, this topology
is fixed as soon as actors of the subinit subgraph are executed, and remains constant over
several iterations of the body subgraph. Consequently, firing rates of actors are more
stable than in the DPN MoC where the firing rates can non-deterministically change at
each actor firing.

PSDF Analyzability

In parameterized dataflow, the schedulability of a graph can be guaranteed at compile time
for certain applications by checking their local synchrony [BB01]. A PSDF (sub)graph
is locally synchronous if it is schedulable for all reachable configurations and if all its
hierarchical children are locally synchronous. As presented in [BB01], a PSDF hierarchical
actor must satisfy the 5 following conditions in order to be locally synchronous:

1. φi, φs and φb must be locally synchronous, i.e. they must be schedulable for all
reachable configurations.
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2. Each invocation of φi must give a unique value to each parameter set by this sub-
graph.

3. Each invocation of φs must give a unique value to each parameter set by this sub-
graph.

4. Consumption rates of φs on interfaces of the hierarchical actor cannot depend on
parameters set by φs.

5. Production/consumption rates of φb on interfaces of the hierarchical actor cannot
depend on parameters set by φs.

The first condition cannot always be verified at compile time because it requires a
formal analysis of all reachable configurations. Indeed, using numerous parameters with
large domains of values will lead to an exponential number of reachable configurations,
and testing all of them in reasonable time may not be possible. Nevertheless, failing to
check the local synchrony of a PSDF graph at compile time does not mean that the graph
is not schedulable. In such a case, the consistency and the schedulability of a PSDF graph
will be checked in steps 4 and 8 of the operational semantics. In these steps, values of all
parameters have been dynamically assigned, and the PSDF graph becomes an SDF graph
whose schedulability can be checked using Theorem 2.3.2.

In Chapter 7, a novel integration of the PSDF and the IBSDF MoCs is introduced,
with an enhanced conciseness and a new explicit parameterization mechanism.

2.5.2 Schedulable Parametric Dataflow (SPDF)

The Schedulable Parametric Dataflow (SPDF) MoC [FGP12] is a generalization of the
SDF MoC of equivalent expressivity with the DPN, but with a better predictability. The
SPDF is defined as follows:

Definition 2.5.2. A Schedulable Parametric Dataflow (SPDF) graph G = 〈A,F, P 〉 is a
graph respecting the SDF MoC with the following additional elements of semantics:

� P is a set of parameters. The value of a parameter p ∈ P can influence the production
and consumption rates of the actors of the graph. A parameter is defined as a tuple
p = 〈M,α〉 where:

– M : P → A associates a modifier actor to a parameter. The modifier actor of
a parameter is the only actor of the graph that can, when it fires, assign a new
value to the parameter.

– α : P → N associates a change period to a parameter. The change period
of a parameter is an integer that defines the number of firings of the modifier
actor between two changes of the parameter value. The change period may itself
depend on the value of a parameter.

An example of SPDF graph from [FGP12], is shown in Figure 2.13. The p[1] graphical
notation within actor A means that this actor is the modifier actor for parameter p.
The number between the square brackets depicts the change period associated to the
parameter. As illustrated by actor B, the modifier actor for parameter q, the change
period of a parameter can itself depend on the value of another parameter.

As illustrated in the SPDF graph of Figure 2.13, a modifier actor can, like actor A,
change its firing rate at each firing. As shown in [BL93], adding this capability to the
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Figure 2.13: Example of Schedulable Parametric Dataflow (SPDF) graph

SDF MoC is a sufficient condition to make SPDF a Turing-complete model, and thus of
equivalent expressivity with the DPN MoC.

To enforce the analyzability of the SPDF MoC, a safety criterion is also introduced
in [FGP12]. In order to satisfy this safety criterion, the modifier actor must not change
the value of a parameter during the iteration of a part of a graph where this parameter is
used. For example, in Figure 2.13, parameter q is used in the part of the graph formed
by actors B and C. According to the production and consumption rates of actors B and
C, actor C is fired once every p firings of actor B. Consequently, the value of parameter
q must remain constant over p firings of actor B, as is the case in this example. The
consistency and the schedulability of SPDF graphs meeting this criterion can be checked
at compile time.

The addition of parameters to the semantics of the SPDF MoC gives SPDF a better
predictability than the DPN MoC. Indeed, the production and consumption rates of SPDF
actors that are not modifier actors are fixed before the firing of the actor. For example,
in Figure 2.13, the consumption rate of actor C is fixed as soon as actor B sets the value
of parameter q. Since actor C is fired once every p firings of actor B, time for p − 1
firings of actor B passes between the resolution of the consumption rate of actor C and
its firing. This example illustrates the predictability of the SPDF MoC where production
and consumption rates may be known some time before the actual firing of an actor. This
predictability is in contrast with the DPN MoC where each actor sets it own consumption
and production rates when it fires.

2.5.3 Scenario Aware Dataflow (SADF)

The Scenario-Aware Dataflow (SADF) MoC [TGB+06] is a reconfigurable generalization of
the SDF MoC. Like the SPDF MoC, it has an equivalent expressivity with the DPN MoC.
The semantics of the SADF MoC, defined hereafter, is designed to enforce the analyzability
of applications.

Definition 2.5.3. A Scenario-Aware Dataflow (SADF) graph G = 〈A,F 〉 is a graph
respecting the semantics of the SDF MoC with the following additions:

� Actors a ∈ A are associated with a non-empty finite set of scenarios Sa. For
each actor, a unique scenario s ∈ Sa is active for each firing. The active scenario
determines the production and consumption rates on the ports of the actor as well
as the execution time t of the actor.

� Actors a ∈ A are associated with a possibly empty set of control input ports.
Before firing an actor, a single control token is consumed from each control input
port. The consumed control tokens are used to determine the scenario of the actor
for the next firing.

� D ⊂ A is a set of special actors called detectors. Each detector d ∈ D is associated
with a Markov chain. The scenario of a detector changes depending on the current
state of the Markov chain. Detectors are the only actors that can write control
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tokens on an output port. The value and the number of control tokens produced by
a detector solely depend on the current state of its Markov chain.

� C ∈ F is the set of special F ifos called control channels. A control channel c ∈ C
is used to transmit control tokens from a detector to another actor or detector of
the graph.

Figure 2.14 presents the graphical elements associated to the semantics of the SADF
MoC and an example of SADF graph.
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Figure 2.14: Scenario-Aware Dataflow (SADF) MoC

The SADF graph of Figure 2.14(b) contains 2 detectors (A and C), and 3 “regular”
actors (B, D, and E). In this graph, production and consumption rates written with
numbers are statically fixed rates whereas rates written with letters depend on the scenario
of their actor. As required by Definition 2.5.3, the consumption rate of all control ports is
statically set to 1.

The stochastic process used in SADF to determine the production and consump-
tion rates and the execution time of actors has been shown to give a great analyzability
to the MoC. Indeed, beside proving the consistency or the schedulability of an SADF
graph [TGB+06], methods exist to derive useful metrics for real-time applications such
as the worst-case latency, or the long-time average throughput of an application modeled
with an SADF graph [SGTB11].

Although Markov chain of SADF lends a great analyzability to the MoC, this stochastic
process is not practical for describing the functional behavior of applications. For this
reason, an executable FSM-based SADF MoC is introduced in [SGTB11]. In the FSM-
based SADF MoC, the Markov chains associated to the detectors of the MoC are replaced
with deterministic FSMs.

2.6 Summary of Presented Dataflow MoCs

Table 2.1 summarizes the properties of the main dataflow MoCs presented in this chapter.
A black dot indicates that the feature is implemented by a MoC, an absence of dot means
that the feature is not implemented, and an empty dot indicates that the feature may be
available for some applications described with this MoC. Vertical lines in this table, are
used to separate the dataflow MoCs in groups of equivalent expressivity.

As presented in Section 2.2.4, the compositionality property is an important property
when working with hierarchical dataflow MoCs. Table 2.1 reveals the lack of compositional
dataflow MoC with a greater expressivity than the SDF MoC. To fill this gap, a new
dataflow meta-model is introduced in Chapter 7, bringing reconfigurability, hierarchy, and
compositionality properties to any dataflow MoC with a well defined concept of graph
iteration.
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Feature SDF
CSDF

ADF
IB

SDF

DSSF
PSDF

SADF
SPDF

DPN

Expressivity low med. Turing

Hierarchical • • •
Compositional • •
Reconfigurable • • • •
Statically schedulable • • • • •
Decidability • • • • • ◦ • ◦
Variable rates • • • • • •
Non-determinism • • •

Table 2.1: Features comparison of presented dataflow MoCs

Next chapter introduces the rapid prototyping context of this thesis and presents pre-
vious work on the dataflow-related issues studied in this thesis.



CHAPTER 3

Rapid Prototyping Context

3.1 Introduction

The memory analysis and optimization techniques for dataflow graphs presented in this
thesis were developed as part of a rapid prototyping framework. Rapid prototyping consists
of models and methodologies that give developers the possibility to quickly co-design and
validate a hardware/software system. The purpose of rapid prototyping is to enable the
creation of a simulated or a working prototype in early stages of development in order to
assess the feasibility of a system with regards to design constraints.

The concepts and tasks involved in the rapid prototyping of a system are detailed in
Section 3.2. Section 3.3 presents the rapid prototyping framework within which the con-
tributions of this thesis were developed. Section 3.3 also compares the rapid prototyping
framework used in this thesis with other State-of-the-Art dataflow programming environ-
ments. Then, Section 3.4 presents related work on the topic of memory optimization for
applications modeled with dataflow graphs. Finally, Section 3.5 concludes the Background
part of this thesis.

3.2 What is Rapid Prototyping?

As presented by Cooling and Hughes in [CH89], rapid prototyping in computer science
relies on two pillars: models to describe the behavior and the requirements of systems, and
automatic methods and tools to quickly generate system simulations or system prototypes
from the system models.

Figure 3.1 presents an overview of a typical rapid prototyping design flow. This design
flow can be separated in 3 parts:

� Developer Inputs: Developer inputs consist of high-level models that enable the
specification of all important properties of a system. In the co-design context, where
designed systems have both hardware and software parts, developer inputs often
gather a model of the application (Section 3.2.2), a model of the targeted architecture
(Section 3.2.1), and a set of constraints for the deployment of the application on the
architecture (Section 3.2.3). As presented in the Algorithm-Architecture Adequation
(AAA) methodology [GS03], the separation between the three inputs of the design
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flow ensures the independence between them, which eases the deployment of an
application on several architectures or the use of a single architecture to deploy
several applications.

� Rapid Prototyping: The rapid prototyping part of the design flow regroups the
tasks that are executed to automatically explore the design space and to generate
a prototype of the system described in the developer inputs. An important char-
acteristic of these tasks is the rapidity with which they can be executed, even for
complex applications and architectures. Contrary to a classic design flow, the pur-
pose of a rapid prototyping design flow is not to generate an optimal solution, but to
rapidly assess the feasibility of a system by generating a functional prototype that
respects the specified constraints. Ideally, the obtained prototype will be refined and
optimized in later stages of development.

� Legacy Development Toolchain: Optionally, the prototype generated by the
design flow may be executed on a real target. In such a case, the generation of the
executable is supported by legacy development toolchains associated to the target.
During the execution of the generated prototype, monitoring is generally used to
record and characterize the system behavior in order to provide feedback to the
rapid prototyping design flow and to the developer.

Architecture
Model

Constraints

Execution

Code
Generation Simulation

Mapping
Scheduling

Application
Model

LegacyIDevelopmentIToolchain

Developer

RapidIPrototyping

DeveloperIInputs

Compiler

Figure 3.1: Overview of a rapid prototyping design flow.

As illustrated in Figure 3.1, the rapid prototyping design flow is an iterative process
that can use feedback from the simulation and the execution of the generated prototype
to improve its quality. More importantly, the simulation or the execution of the generated
prototype gives valuable information to the developer to guide the evolution of the design
flow inputs. For example, this feedback can reveal resource deficiency of the architecture
model or the presence of contradictory constraints.

The following sections detail challenges behind the different elements of the rapid
prototyping design flow and surveys existing solutions from the literature.
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3.2.1 Heterogeneous Architecture Modeling

In recent years, following Moore’s law [Moo65], the ever-increasing number of transistors
in integrated circuits has lead to the introduction of more and more complex architec-
tures. The heterogeneity of modern architectures, that assemble a wide variety of complex
components into a single chip, makes their accurate modeling and simulation a tiresome
task.

In rapid prototyping, the purpose of the architecture model is to provide a system-level
description of the targeted architecture system [PNP+09]. A system-level model describes
the components of an architecture and the relation between them with a limited accuracy
compared to lower-level hardware descriptions. Hence, the components described in a
system-level model mainly consist of processing elements and communication channels.
Processing elements are the processors and accelerators performing the computation of
the system, and communication channels are the buses, hardware queues, Direct Memory
Accesses (DMAs), and shared memories that enable data transmissions from a processing
element to another. A counterpart for the limited accuracy of system-level models is the
possibility to quickly simulate the behavior of a described architecture.

As presented by Blake et al. in [BDM09], state-of-the-art multiprocessor architectures
can be classified using 5 attributes: application domain, power/performance ratio, types
of processing elements, memory hierarchy, and on-chip accelerators. Since these attributes
can be captured by the components of system-level models, these models can successfully
be used to describe state-of-the-art architectures, including:

� Central Processing Units (CPUs). They are general purpose architectures that
can be found in most desktop computers and servers. These architectures are charac-
terized by their small number of homogeneous processing elements (1 to 8) organized
around a shared memory. The cache-coherency mechanism, and the numerous ac-
celerators and peripherals embedded on CPUs results in a poor power/performance
ratio compared to other architectures. Intel’s i7-3610 [Int13] processor is an example
of commercial CPU.

� Graphics Processing Units (GPUs). They were originally dedicated to the ren-
dering of 2D and 3D graphics, but have also been used for general purpose applica-
tions in recent years. These architectures are characterized by their large number of
homogeneous processing elements (512 to 8192) organized in clusters with a global
memory address space. Processing elements of a GPU have a Single Instruction,
Multiple Data (SIMD) behavior [Fly72], which means that all processing elements of
a cluster execute the same operation simultaneously with different inputs. Although
the power/performance ratio of GPUs is better than the one of CPUs, their SIMD
behavior restricts the range of suitable applications.

� Many-core architectures. They are massively parallel architectures characterized
by their large number of homogeneous processing elements (≥64). Contrary to CPUs
and GPUs, the memory of many-core architectures is distributed and each processing
element accesses a private address space. Hence, many-core architectures have a
Multiple Instructions, Multiple Data (MIMD) behavior [Fly72], where all processing
elements concurrently execute different operations on different inputs. Many-core
architecture have a good power/performance ratio which makes them interesting
architectures for embedded applications that involve heavy computations. Kalray’s
MPPA256 [Kal14], Tilera’s Tile-Gx72 [Til14], and Adapteva’s Epipany-IV [Ada14]
are examples of commercial many-core processors.
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� Heterogeneous Multiprocessor Systems-on-Chips (MPSoCs). They are em-
bedded systems designed to support specific applications with performance, power,
or size constraints. Heterogeneous MPSoCs combine different types of processing el-
ements and accelerators on a single chip, with both shared and distributed memories.
For example, Texas Instrument’s 66AK2H14 MPSoC [Tex14] combines a quad-core
ARM processor, 8 high-performance DSP cores, and several hardware accelerators.

The work presented in this thesis focuses on the memory study of applications imple-
mented on CPUs and heterogeneous MPSoCs with shared memory. Figure 3.2 presents a
simple example of architecture model that will be used in the following sections to illus-
trate the different parts of the rapid prototyping process. This heterogeneous architecture
consists of a shared memory connecting 3 processing elements, a CPU, a DSP processor,
and a hardware accelerator.

Hardware
Accelerator

Shared Memory

DSPCPU

Figure 3.2: Example of heterogeneous architecture model

3.2.2 Parallel Application Modeling

The application model used as an input for a rapid prototyping design flow is a coarse-
grain description of the application: a description where each atomic element represents
an important amount of computation. A key property of application descriptions is their
independence from any architectural consideration. Beside giving the possibility to deploy
an application on several targets, the independence of the application model from archi-
tectural information is also the most important degree of freedom exploited by the rapid
prototyping in its design space exploration tasks (Section 3.2.4).

Like the architecture model, a coarse-grain application model is preferable to ease
the rapid prototyping process. Indeed, the fine granularity of low-level application mod-
els makes them more difficult to analyze and optimize, thus requiring substantially more
time for the automated design space exploration of the rapid prototyping. Using coarse-
grain models allows the application developer to specify high-level software components,
such as actors, that are seen as indivisible elements from the rapid prototyping perspec-
tive. These coarse-grain software elements considerably ease the automated design space
exploration compared to the fine-grain elements of low-level models. Indeed, analyzing
data-dependency in imperative languages in order to identify the independent parts of an
application will take much more time than exploiting explicitly independent actors of a
dataflow graph.

As presented in Section 3.2.1, the trend in modern architectures is to increase the
number of processing elements working concurrently. Hence, to fully exploit the computing
power offered by these architectures, models must explicitly express the parallelism of
applications. As presented in Section 2.2.3, dataflow MoCs are well suited for this purpose.
There exist other parallel programming models that can be used to exploit the parallelism
offered by multiprocessor architectures, including:

� Threads: An application modeled with threads consists of several sequences of in-
structions executed concurrently, each with a dedicated context. The main drawback
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of threads is that they require the programmer to specify all synchronization points
between threads explicitly, using mechanisms such as semaphores or mutexes. A
number of threads close to the number of processing elements of the targeted archi-
tecture is usually preferable to avoid excessive context switching, i.e. to keep as low
as possible the number of times the registers related to a thread execution need to
be stored in memory.

� Tasks: An application modeled with tasks also consists of several sequences of in-
structions executed concurrently. Contrary to threads, tasks are non-preemptible,
which means that once started, their execution cannot be interrupted. The granu-
larity of tasks is much finer than threads and hundreds of light-weight tasks are used
for the description of an application [Rei07].

� Semi-automated parallelization: This approach consists of adding pragma direc-
tives to the source code of an application to indicate loops or sections of code that
can be parallelized. These directives can then be automatically analyzed in order to
generate corresponding tasks or threads [CJVDP08]. Because it requires an analysis
of the source code of an application, this parallel programming method is unsuitable
for rapid prototyping.

The work presented in this thesis focuses on the rapid prototyping of applications mod-
eled with dataflow MoCs. Figure 3.3 presents a simple example of application model that
will be used in following sections to illustrate the different parts of the rapid prototyping
process. This homogeneous SDF graph contains 6 actors linked by a network of single-rate
Fifos.
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1 1

1
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1

Figure 3.3: Example of application model: a homogeneous SDF graph.

3.2.3 Application Deployment Constraints

In addition to the independent application and architecture models, the user of a rapid
prototyping design flow can also describe a set of specific constraints for the deployment
of an application on a given architecture.

The first objective of these constraints is to model the cost of the design choices made
by the rapid prototyping process. For example, the cost of mapping an actor of a dataflow
application on a given processing element can be expressed in terms of execution time or
power consumption. Evaluating the cost of design choices allows the rapid prototyping
process to automatically optimize the overall cost of the generated prototype.

Tables 3.1(a) and 3.1(b) give, respectively, the execution time and energy consumption
costs for executing actors of the application presented in Figure 3.3 on the processing
elements of the architecture presented in Figure 3.2.

The second objective of the deployment constraints is to define requirements that the
generated prototype must satisfy. Common requirements are:
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Actor CPU DSP Acc.

A 2 3 -
B 4 8 -
C 5 2 -
D 2 1 -
E 3 4 -
F 10 5 1

(a) Execution time (in seconds)

Actor CPU DSP Acc.

A 2 1.5 -
B 4 4 -
C 5 1 -
D 2 0.5 -
E 3 2 -
F 10 2.5 0.1

(b) Energy consumption (in Joules)

Table 3.1: Costs for the execution of actors from Figure 3.3 on processing elements from Fig-
ure 3.2.

� Mapping restrictions: Some parts of the application can be executed only by a re-
stricted set of processing elements of the architecture. For example, this may happen
in heterogeneous architectures where IO modules can be accessed by a single process-
ing element, or where floating point operations are not supported by all processing
elements. For example, in Tables 3.1, no actor, except actor F , can be executed on
the hardware accelerator, as denoted by the “-” in the accelerator column.

� Real-time constraints: The application must complete its processing within a lim-
ited amount of time. There are three types of real-time constraints: latency (total
processing time), throughput (output rate), and simultaneity (synchronization be-
tween outputs or processes). For example, video decoding applications must process
at least 25 Frames per second (fps) in order to be comfortably viewable by human
beings.

� Power limitations: The power consumption of the system is limited. For example,
the power consumption of the application responsible for keeping a cellphone con-
nected to the network must remain as low as possible in order to extend the battery
life.

3.2.4 Mapping and Scheduling

Mapping an application on an architecture consists of assigning each part of the application
to a specific processing element of the architecture. Hence, mapping a dataflow graph
consists of selecting the processing elements that will execute each actor of the application.
Scheduling (also called ordering) an application on an architecture consists of choosing the
execution order of the different parts of the application mapped to a processing element.

As presented by Lee et al. in [LH89], the mapping and scheduling choices can be
made at compile time or at runtime. Mapping and scheduling an application at runtime
yields a great flexibility to the system, giving it the possibility to adapt its behavior to
dynamically changing constraints, such as unpredictable actor execution time or external
events. A counterpart of this dynamism is the need for a runtime management process
that handles the mapping and scheduling choices dynamically. This runtime manage-
ment process is executed concurrently with the application, which induces a performance
overhead. Dynamic mapping and scheduling make the application performance hard to
predict, because the external factors influencing the runtime management are unknown at
compile time. For this reason, in the context of rapid prototyping, as much mapping and
scheduling choices as possible should be shifted to compile time.
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The objective of the mapping and scheduling processes is to find a solution that sat-
isfies the constraints described by the developer (Section 3.2.3), while optimizing a trade-
off between other criteria such as application throughput, energy consumption of the
system, or the balanced distribution of the computing load on the different processing
elements [PAPN12]. Mapping and scheduling an application on a multiprocessor archi-
tecture under constraints has been showed to be an NP-complete problem [Bru07]. Nev-
ertheless, many mapping and scheduling heuristic algorithms can be found in the litera-
ture [Kwo97, Bru07, ZDP+13].
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Figure 3.4: Gantt charts for 2 mappings of the application from Figure 3.3 on the architecture
from Figure 3.2.

Figure 3.4 presents two execution Gantt charts resulting from two different mappings
of the application of Figure 3.3 on the architecture of Figure 3.2, using costs defined
in Table 3.1. With a total execution time of 8 seconds, the first mapping presented in
Figure 3.4(a) is a faster solution than the second mapping presented in Figure 3.4(b).
However, from the energy consumption perspective, despite its longer execution time, the
second mapping requires 2 joules less than the first. This simple example illustrates the
tradeoff between the different system costs, and how user-defined constraints of the rapid
prototyping process may influence the outcome of mapping and scheduling process.

3.2.5 Simulation

In the rapid prototyping context, the simulation process, or simulator, serves two purposes:
predict the behavior of the generated prototype for the developer and evaluate the costs of
the mapping and scheduling choices to improve them iteratively. The two most important
characteristics of simulators are their accuracy and their speed of execution [PMAN09].

The accuracy of a simulator measures the difference between the system characteristics
predicted by the simulation and the actual characteristics observed on the real system. The
timing accuracy of a simulator is often qualified with one of the following terms [RK08]:

� Functional: A functional simulator only predicts the result produced by the simu-
lated system by executing the same computation. Functional simulation is used by
developers to quickly check the correct behavior of designed systems.

� Approximately timed: An approximately-timed simulator predicts the perfor-
mance of a system based on simplified models of the architecture [PMAN09]. The
advantage of approximately timed simulations is that they can be generated quickly,
but the actual performance of the system may slightly differ from the performance
predicted by the simulator.

� Cycle accurate: A cycle accurate simulator predicts the exact performance of
the system. Cycle-accurate simulators are based on low-level models of the system



42 Rapid Prototyping Context

which make them significantly slower than other simulators. These simulators are
often used when the hardware of the system is not available, and when the simu-
lation results are used to prove that a safety critical system respects its real-time
constraints.

These different degrees of accuracy also exist for other simulated characteristics such as
the energy consumption [BASC+13] or the cache hit/miss ratio [RG13]. Approximately-
timed simulators offer a good tradeoff between accuracy and speed of execution, which
makes them good candidates for use in a rapid prototyping design flow. [PMAN09]

Next section presents the specificities of the rapid prototyping framework that served
as a basis for the work presented in this thesis.

3.3 Preesm Rapid Prototyping Framework

The Parallel and Real-time Embedded Executives Scheduling Method (Preesm) is a rapid
prototyping framework that provides methods to study the deployment of IBSDF applica-
tions onto heterogeneous multicore DSP systems [PDH+14]. Preesm is developed at the
Institute of Electronics and Telecommunications of Rennes (IETR) as a set of open-source
plugins for the Eclipse Integrated Development Environment (IDE) [IET14b].

Preesm is currently developed for research, development, and educational purposes. It
has been successfully used for the rapid prototyping of real telecommunication, multime-
dia, DSP, and computer vision applications on several heterogeneous MPSoCs [PAPN12,
HDN+12, Zha13].

After a presentation of related work on dataflow programming tools in Section 3.3.1, a
typical workflow of Preesm is detailed in Section 3.3.2. Then, the graphical editors, the
code generation, and the import/export features of Preesm are presented in Section 3.3.3

3.3.1 Related Work on Dataflow Programming

The creation of the Preesm rapid prototyping framework has been inspired by the Al-
gorithm-Architecture Adequation (AAA) methodology [GS03]. AAA consists of simul-
taneously searching the best software and hardware configurations for respecting system
constraints. The SynDEx tool [GLS99] is also based on the AAA methodology but it
differs from Preesm in several ways: SynDEx is not open-source, it has a unique dataflow
MoC that does not support schedulability analysis, and although the code generation task
exists, it is not provided with the tool. Schedulability analysis is an important feature of
Preesm because it ensures deadlock freeness in the generated code.

SDF For Free (SDF3) [Ele13] is an open-source dataflow analysis framework that
supports the SDF, CSDF and SADF MoCs. SDF3 is developed by the Electronic Systems
Group of the Eindhoven University of Technology. SDF3 is a command-line framework
oriented towards transformation, analysis, and simulation of applications modeled with
dataflow MoCs including the SDF, the CSDF and the SADF MoCs. In particular, SDF3
includes a tool to generate random SDF graphs that mimic the properties of DSP appli-
cations. This random graph generator is used in Chapter 4 to test the proposed memory
allocation technique on a large number of SDF graphs with varying properties. SDF3
focuses on the theoretical study of the deployment of dataflow applications on MPSoCs,
but cannot be used to generate an executable prototype.

Ptolemy (I and II) [BHLM94] is one of the first and most complete open-source
frameworks for modeling and simulation of applications modeled with dataflow MoCs.
Since 1990, Ptolemy is developed by the eponymous group led by Professor Edward A.



PREESM Rapid Prototyping Framework 43

Lee at U.C. Berkeley. The specificity of the Ptolemy framework is the possibility to
graphically edit hierarchical application graphs where each level of hierarchy respects a
different MoC, including DPN, PSDF, and SDF. Ptolemy focuses on the theoretical study
of real-time applications and their simulation on multicore CPUs. Like SDF3, Ptolemy
cannot be used to generate code for MPSoCs.

The DSPCAD Lightweight Dataflow Environment (LIDE) [SWC+11] is a com-
mand-line tool supporting the modeling, simulation, and implementation of DSP systems
modeled with dataflow graphs. LIDE is developed by the DSPCAD Research Group at
the University of Maryland. LIDE supports applications modeled with the Enable-Invoke
Dataflow (EIDF) MoC [PSK+08]: a specialization of the DPN MoC equivalent in ex-
pressivity. The Open RVC-CAL Compiler (Orcc) [YLJ+13] is an open-source tool
that generates different types of hardware [SWNP12] and software codes from a unique
dataflow-based language named RVC-CAL. An important difference between Orcc, LIDE
and Preesm is the MoC used for describing applications. While Preesm uses the decid-
able [BL06] IBSDF MoC, the EIDF MoC and the DPN MoC implemented in RVC-CAL
are not decidable. Consequently, in the general case, no guarantee can be given in LIDE
and Orcc on the deadlock-freeness and memory boundedness of applications.

MPSoC Application Programming Studio (MAPS) [CCS+08] is a framework
enabling the automated deployment of applications described with KPNs on heterogeneous
MPSoCs. MAPS is a closed-source project developed at the RWTH Aachen University. A
similar tool is the AccessCore IDE that supports the deployment of applications modeled
with CSDF graphs on Kalray ’s many-core processors [Kal14].

The features that differentiate Preesm from the related works and similar tools are:

� the tool is open-source and accessible online [IET14b];

� the algorithm description is based on a single well-known and predictable MoC;

� the scheduling is totally automatic;

� the functional code for heterogeneous MPSoC is generated automatically;

� rapid prototyping metrics are generated to help the system designer to take decisions;

� the IBSDF algorithm model provides a helpful hierarchical encapsulation;

� the System-Level Architecture Model (S-LAM) architecture model provides a high-
level architecture description to study system bottlenecks [PNP+09].

3.3.2 Preesm Typical Rapid Prototyping Workflow

When using Preesm, a developer can customize the set of operations that are successively
executed by the rapid prototyping framework. This feature is supported by a graphically
edited directed acyclic graph called a workflow. Each vertex of the workflow repre-
sents an operation, called workflow task, that must be executed by the rapid prototyping
framework. Examples of workflow tasks are the application of a graph transformation, the
generation of compilable code, the simulation of the system, or the mapping and scheduling
of the application. As in dataflow graphs, the directed edges of a workflow represent data
dependencies between the workflow tasks. For example, edges can be used to transmit ap-
plication and achitecture models to the mapping scheduling task, or mapping/scheduling
choices to the code generation task.



44 Rapid Prototyping Context

Preesm provides a set of predefined tasks that can be used to compose a workflow.
Each task is implemented in a different Eclipse plug-in, providing a high scalability to
the tool. Workflow support is a feature that makes Preesm scalable and adaptable to
designers’ needs. A developer tutorial1 provides all necessary information to create new
workflow tasks and adapt Preesm (e.g. for exporting a graph in a custom syntax or for
experimenting new scheduling methods).

Figure 3.5 presents a typical example of Preesm workflow for deploying an application
modeled with an IBSDF graph on a heterogeneous architecture. As illustrated, Preesm
workflow is consistent with the rapid prototyping design flow presented in Figure 3.1.

IBSDF
Graph

Scenario

SingleWrate
DAG

Transfok

Hierarchy
Flattening

Display
Gantt2and2

Metrics

C2Code
Generation

Actors
C2Code

TMS32bC6678

C66x C66x C66x C66x

C66x C66x C66x C66x

Legacy2Development2Toolchain
Developer2

Inputs

PREESM
WorkflowSWLAM

Archik

Static
Scheduling

TI2Code
Composer

StudioCode2Genk
Support
Libraries

Figure 3.5: Example of typical Preesm workflow

Developer Inputs

In addition to the IBSDF graph and the S-LAM architecture description, the developer
inputs of Preesm include a scenario that specifies the deployment constraints for a pair
of application and architecture. In this example, the developer also provides C code
describing the internal behavior of actors.

Preesm Workflow Tasks

In the workflow presented in Figure 3.5, the following workflow tasks are executed:

� Hierarchy flattening. By selecting the depth of the hierarchy flattening, the
developer of an application can customize the granularity of the application before
the mapping and scheduling process. Flattening an IBSDF graph into an equivalent
SDF graph consists of instantiating subgraphs of hierarchical actors into their parent
graph (cf. Section 2.4.2).

� Single-rate DAG transformation. The purpose of the single-rate transformation
is to expose data parallelism of the flattened IBSDF graph. This parallelism will
be exploited by the mapping/scheduling process when targeting a multiprocessor
architecture. The transformation into a Directed Acyclic Graph (DAG) is applied to
isolate an iteration of the original IBSDF graph where each vertex of the single-rate
DAG corresponds to a single actor firing. This property will simplify the work of
the mapping and scheduling task since the mapping of each actor of the DAG needs
to be considered only once.

1http://preesm.sourceforge.net/website/new-workflow-task
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� Static scheduling. Several static mapping and scheduling strategies are available in
Preesm including LIST and FAST scheduling [Kwo97]. Schedulers are implemented
using the Architecture Benchmark Computer (ABC) scalable scheduling framework
introduced by Pelcat et al. in [PMAN09]. The ABC framework allows developers
to customize the tradeoff between accuracy and speed of execution of the simulation
process used within the mapping/scheduling task.

� Display Gantt and Metrics. The purpose of this task is to give a feedback to
the developer on the characteristics of the generated prototype. The Gantt chart
graphically represents the simulated execution of actors on the processing elements of
the architecture as well as the data transiting on the communication channels. Beside
the Gantt chart, this task also evaluates the throughput and load balancing of the
generated solution, and display a speedup assessment chart that draws the expected
application execution speedup depending on the number of cores [PAPN12].

� C Code Generation. In its current version, Preesm can generate C code for multi-
C6x DSP architectures from Texas Instrument [Tex13], for multi-X86 CPUs run-
ning with Linux or Windows, and for OMAP4 heterogeneous platforms [HDN+12].
Preesm generates a specific C file for each processing element, containing actor C
function calls, inter-core communication and synchronization.

Legacy Development Toolchain

Preesm provides runtime libraries to support the execution of generated code on the set of
supported architectures. The purpose of these libraries is to abstract the communication
and synchronization mechanisms of the targeted architecture and support calls to high-
level primitives in the generated code.

Since all mapping and scheduling choices are statically made during the workflow
execution, the execution of the application is self-timed [SB09]. In a self-timed execution,
the execution time of an actor is not fixed and the precedence between actor firings is
guaranteed by inter-core synchronizations and communications.

In the example of Figure 3.5, a compiler from Texas Instrument is used to compile the
generated code for a multi-C6x DSP chip. Hence, the generated executable benefits from
all optimization techniques implemented in the compiler.

3.3.3 Preesm Additional Features

Architecture, Dataflow, and Workflow Graphical Editors

One of the main objectives of Preesm is to ease the rapid prototyping of complex sys-
tems by enforcing the user friendliness of the framework. To this purpose, 3 graphical
editors are implemented in Preesm for the edition of S-LAM architecture models, IBSDF
application models, and Preesm workflows. These 3 editors provide a unified interface to
the developer since they are implemented with the same open-source graph editor library
named Graphiti [IET14a]. Figure 3.6 presents a screenshot of the IBSDF graph editor.
The application graph illustrated in this example is a parallel version of a Sobel image
filter.

Beside editing developer inputs, these graph editors also make it possible to display
results produced by a workflow execution. For example, tasks can be added to a workflow
to generate files containing the SDF graphs resulting from the hierarchy flattening and the
single-rate transformation. These files can then be opened with the graph editor to check
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Figure 3.6: Screenshot of the IBSDF graph editor of Preesm

their properties, which can be helpful when debugging the original IBSDF graph. In the
educational context, these intermediary graphs can also be used to illustrate the result of
graph transformations.

Instrumented Code-Generation Optional Feature

The code generation workflow task of Preesm generates self-timed code for different multi-
processor architectures. Optionally, the generated code can be automatically instrumented
in order to trace its execution and provide a feedback to the developer on the actual execu-
tion time of actors. As presented in an online tutorial 2, the instrumented code generates
and fills a spreadsheet that automatically summarizes the results of an execution. This
spreadsheet can then be imported into the scenario editor of Preesm in order to refine
the execution time constraints used for subsequent executions of the mapping/scheduling
process.

Compatibility with Other Tools

Workflow tasks have been implemented in Preesm to allow application developers to
import and export dataflow graphs into formats supported by third-party dataflow pro-
gramming tools. For example, an exporter of SDF graphs in the Dataflow Interchange
Format (DIF) used in LIDE was used in [ZDP+13]. An tutorial explaining the import/ex-
port process of SDF graphs in the SDF3 format is available online3. This process is used
in Chapter 4 to compare the efficiency of proposed memory allocation techniques with
those implemented in SDF3.

A generator of Preesm projects was also developed in Orcc. Since the DPN MoC
supported by Orcc has a greater expressivity than the IBSDF MoC used in Preesm, this
generator can only be used for applications that are classified as static. This generator has
been successfully used to export image processing [HDN+12], and computer vision [Zha13]
applications.

2http://preesm.sf.net/website/index.php?id=automated-measurement-of-actor-execution-time
3http://preesm.sf.net/website/index.php?id=import-export-an-sdf3-graph
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3.4 Memory Optimization for MPSoCs

Like most MPSoC programming environments, dataflow-based or not, the primary goal of
Preesm is to generate solutions with optimal latency and throughput [PAPN12]. Hence,
the traditional rapid prototyping design flow presented in Section 3.2 is naturally centered
around the mapping and scheduling process that plays a critical role in the optimization
of application performance.

Memory-related issues are often treated as secondary issues, subsequent to the schedul-
ing of computations on the different processing elements. Nevertheless, the memory issues
addressed during the development of an embedded system often yield a strong impact
on system quality and performance. Indeed, the silicon area occupied by the memory
can be as large as 80% of the chip and be responsible for a major part of the power
consumption [DGCDM97]. A bad memory management can thus result in memory and
power waste but also in poor system performances if, for example, memory accesses are a
bottleneck of the system.

Moreover, memory issues often lead to modifications of the application description in
order to make it fit in the available memory. These modifications are sometimes made at
the expense of quality of the result produced by the application [MNMZ14].

3.4.1 Modern Memory Architectures

As presented in Section 3.2.1, memory hierarchy is one of the 5 attributes that can be
used to characterize a modern multiprocessor architecture [BDM09]. In [Rai92], Raina
proposes a comprehensive terminology to classify the organization of memory in a hardware
architecture. This terminology focuses on two binary criteria: the address space accessed
by the processing elements, and the physical memory organization of the architecture.

The address space of an architecture can either be shared or disjoint. In a shared
address space, each address represents a unique place in memory that can be accessed by
all processing elements of the architecture. In a disjoint address space, each processing
element possesses a private address space that no other processing element can access
directly.

The physical memory organization of an architecture can either be shared or distributed.
A shared memory is a memory bank that is connected to several processing elements of an
architecture. A distributed memory architecture is an architecture with several memory
banks, each associated to a different processing elements.

Each combination of these two criteria characterizes a family of architecture. For ex-
ample, in an SADM (Shared Address space, Distributed Memory) architecture, although
each memory bank is associated to a processing element, it can be accessed by any pro-
cessing element of the architecture using memory addresses that are globally associated to
this memory bank.

The terminology proposed in [Rai92] also introduces terms to characterize the cache
coherence protocols supported by multicore architectures.

A cache is a fast memory bank of small capacity that is accessible by a unique pro-
cessing element, in addition to the slower main memory bank of the architecture. Cache
replacement algorithm refers to the hardware mechanism responsible for selecting which
data from the main memory will be duplicated in the cache in order to accelerate the
computation performed by the associated processing element [Smi82]. A scratchpad is
also a fast memory bank associated to a processing element, with the difference that the
content of a scratchpad is controlled by the software running on this processing element.
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In shared address space architectures where each processing element possesses its own
cache (or scratchpad), consistency issues may arise if the same piece of data is stored
and modified simultaneously in multiple caches. The purpose of coherence protocols is
to ensure that accesses to a shared address range will produce the same content for all
processing elements.

3.4.2 Memory Management for Multicore Architectures

Memory management designates the set of processes, mechanisms, and protocols used to
administer the memory resources of an architecture. Memory management for multicore
architectures primarily consists of allocation processes, cache replacement algorithms, and
coherence protocols.

Allocating an application in memory consists of assigning a range of memory addresses
to each piece of data and program that is read or written during the execution of this
application.

The memory management supporting the execution of parallel applications on multi-
core architectures must address the following challenges:

� Ensure data availability. The memory allocation process must ensure that all
memory objects (i.e. variables, constants, instructions, ...) used for the execution
of an application are allocated in memory ranges that are accessible when and where
they are needed. This constraint is particularly challenging in DADM (Disjoint
Address space, Distributed Memory) architectures where each processing element
possesses a private address space that no other processing element can access.

� Minimize the memory footprint. Memory resources are often limited, especially
in embedded systems. Hence, an objective of memory allocation processes is to
minimize the memory footprint of applications: the total range of memory addresses
used at any moment during the execution of an application. A typical strategy to
achieve this purpose is to reuse previously allocated memory spaces as soon as their
content is no longer relevant to the running application.

� Ensure data integrity. Memory allocation must guarantee that data stored by
an application will not be corrupted or lost until it is no longer needed by this
application. This objective is not trivial in complex memory hierarchies where data
corresponding to a given address range can be stored simultaneously in different levels
of memory (caches, scratchpads, internal/external memories, ...). In such a case, the
memory allocation process must work jointly with cache replacement algorithms and
coherence protocols to ensure data integrity.

� Optimize data locality. The performance of an application can be optimized
by allocating in adjacent address ranges the memory objects that are successively
accessed by a processing element [WL91]. Since adjacent memory ranges are often
duplicated in cache simultaneously, this strategy increases the chances of processing
elements accessing data that is already duplicated in their cache.

3.4.3 Usual Memory Allocation Techniques

Like the mapping and scheduling process, the allocation of an application in memory
can be realized statically or dynamically. The static allocation is performed during the
compilation process and associates a fixed address to each memory object. In the dynamic
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case, memory objects are given their address at runtime by a dedicated process that
handles the available memory. Only the static approach will be covered in this thesis.

Static memory optimization for multicore systems has generally been studied in the
literature as a post-scheduling memory allocation process. Using the scheduling infor-
mation, the lifetimes of the different memory objects of an application are derived. The
lifetime of a memory object is the period between the first and last scheduled accesses to
this memory object. Minimization of the memory footprint of an application is achieved
by allocating several memory objects whose lifetimes do not overlap in the same memory
space.

As presented in [BAH09], the minimization of the memory footprint allocated for
memory objects of variable sizes is a problem with an NP-Hard complexity. Therefore, it
would be prohibitively long to find an optimal solution to this problem in the context of
rapid prototyping. Instead, many heuristic algorithms have been proposed in the literature
to perform the memory allocation of applications in reasonable computational time:

� Online allocation (greedy) algorithms [Rau06]. Online allocators assign mem-
ory objects one by one in the order in which they are fed to the allocator. The most
commonly used online allocators are the First-Fit (FF) and the Best-Fit (BF) algo-
rithms [Joh73]. FF algorithm consists of allocating an object to the first available
space in memory of sufficient size. The BF algorithm works similarly but allocates
each object to the available space in memory whose size is the closest to that of the
allocated object.

� Offline allocation algorithm [DGCDM97, MB00]. In contrast to online al-
locators, offline allocators have a global knowledge of all memory objects requiring
allocation, thus making further optimizations possible.

� Coloring an exclusion graph [BAH09, Rau06]. An exclusion graph (or con-
flict graph) is a simple graph whose vertices are the memory objects and whose
undirected edges represent exclusions (i.e. overlapping lifetimes) between objects.
Coloring the exclusion graph consists of assigning a set of colors to each object
such that two connected memory objects have no color in common. The purpose
of graph coloring technique is to minimize the total number of colors used in the
graph [BAH09, Rau06]. An equivalent approach is to use the complement graph,
where memory objects are linked if they have non-overlapping lifetime, and perform
a clique partitioning of its memory objects [KS02].

� Using constraint programming [SK01] where memory constraints can be spec-
ified together with resource usage and execution time constraints.

Although memory optimization has mostly been studied as a post-scheduling allocation
process, pre-scheduling memory optimization techniques can also be found in the litera-
ture. These optimization techniques mostly consist of modifying the description of the
application behavior to maximize the impact of later optimization processes. Variable re-
naming, instruction re-ordering, loop merging and splitting are examples of modifications
for imperative languages that can reduce the memory needs of an application [Fab79].
Similar modifications can be applied to SDF graphs, as was done in [PBPR09].

As explained in [BKV+08], these memory allocation and optimization techniques often
require a partial system synthesis and the execution of time-consuming algorithms. Al-
though these techniques provide an exact or highly optimized memory requirement, they
may be too slow to be used in the rapid prototyping context. In [BKV+08], Balasa et al.
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survey existing estimation techniques that provide a reliable memory size approximation
in a reasonable computation time. Unfortunately, these techniques are based on the anal-
ysis of imperative code, and no such technique exists for higher level programming models
such as dataflow graphs.

In this thesis, a new method is introduced to quickly evaluate the memory requirement
of applications modeled with IBSDF graphs. As will be shown in Chapter 4, this method
is independent from architectural consideration and can be used prior to any scheduling
process.

3.4.4 Literature on Memory Optimization and Dataflow Graphs

Minimizing the memory footprint of dataflow applications is usually achieved by using
Fifo dimensioning techniques [Par95, SGB06, MB10, BMMKU10]. Fifo dimensioning
techniques, also called buffer sizing techniques, consist of finding a schedule of the appli-
cation that minimizes the memory space allocated to each Fifo of the dataflow graph.
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Figure 3.7: Example of the impact of scheduling choice on F ifo size

An illustration of the impact of scheduling choices on Fifo sizes is given in Figure 3.7.
Figures 3.7(b) and 3.7(c) present two mono-core schedules of actors A and B from the
SDF graph of Figure 3.7(a). The evolution of the number of data tokens stored in Fifo
AB during an iteration of the graph is depicted below each schedule. It is assumed that
an actor can access input tokens until the end of its firing, and that it can write its output
data tokens from the start of its firing. In the first schedule, three firings of actor A are
executed before the two firings of actor B. This schedule results in a maximum number
of 6 data tokens stored in Fifo AB. In the second schedule, where a firing of actor B
is inserted before the last firing of actor A, at most 4 data tokens are stored in the Fifo
during an iteration.
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The main drawback of Fifo dimensioning techniques is that they do not consider the
reuse of memory since each Fifo is allocated in a dedicated memory space. For example,
Figure 3.8 illustrates the content of the Fifos throughout a complete iteration of the SDF
graph from Figure 3.7(a). Even though Fifos AB and CD never contain data tokens
simultaneously, they will not be allocated in overlapping memory spaces. Hence, Fifo
dimensioning techniques often result in wasted memory space [MB04].

The memory analysis and optimization techniques presented in this thesis focus on the
revelation and the exploitation of memory reuse opportunities for minimizing the memory
footprint of dataflow graphs.

3.5 Conclusion of the Background Part

In these background chapters, the challenges and existing solutions related to the de-
ployment of parallel applications on modern heterogeneous MPSoCs have been surveyed.
Chapter 2 introduced the semantics and the properties of the dataflow MoCs that will
be used for describing applications in this thesis. In Chapter 3, the challenges addressed
in the different steps of a rapid prototyping design flow were presented and the memory
issues studied in this thesis were introduced.

Next chapters present a complete method to study and take advantage of the memory
reuse opportunities offered by applications modeled with the IBSDF MoC. Chapters 4
and 5 focus on the exploitation of memory reuse opportunities at graph and actor levels
respectively. In Chapter 6, these memory optimization techniques are applied to a state-
of-the-art computer vision application. Then, Chapter 7 introduces a new dataflow meta-
model, that combines advantages of the IBSDF and IBSDF MoCs.
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CHAPTER 4

Dataflow Memory Optimization: From Theoretical Bounds to Buffer
Allocation

4.1 Introduction

Bounding the amount of memory needed to implement an application on a multicore
architecture is a key step of a development process. Indeed, memory upper and lower
bounds are crucial information in the co-design process. If these bounds can be computed
during the early development of an embedded system, they might assist the developer
in correct memory dimensioning. For example, memory bounds allow the developer to
adjust the size of the architecture memory accordingly to the application requirements.
Alternatively, memory bounds can drive the refactoring of an application description to
comply with the amount of available memory on the targeted architecture [MNMZ14].

This chapter presents a complete method to study the memory characteristics of an
application modeled with an IBSDF graph. Section 4.2 presents the intermediate repre-
sentation used to model the memory characteristics of an IBSDF graph. The bounding
and allocation techniques based on this intermediate representation are presented in Sec-
tions 4.3 and 4.4 respectively.

4.2 Memory Exclusion Graph (MEG)

Memory optimization techniques presented in this chapter require an accurate modeling
of the memory characteristics of an input IBSDF graph. A preliminary step to these op-
timization techniques is the construction of a weighted graph, called Memory Exclusion
Graph (MEG), that models the memory characteristics of an application. The Memory
Exclusion Graph (MEG) then serves as a basis for the analysis and allocation techniques.
Next sections detail how the original IBSDF is transformed to expose its memory charac-
teristics, and how a MEG is built to capture these characteristics.

4.2.1 IBSDF Pre-Processing for Memory Analysis

The first step to derive the MEG of an application consists of successively flattening the
hierarchy of its IBSDF graph, transforming the resulting SDF graph into a single-rate
SDF graph, and then into a DAG. As presented in Section 3.3.2, these transformations
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Figure 4.1: Example of IBSDF graph

are already applied by the rapid prototyping workflow of Preesm in order to reveal the
embedded parallelism of applications before the mapping and scheduling process.

In the context of memory analysis and allocation, the single-rate and the DAG trans-
formations are applied with the following objectives:

� Break Fifos into shared buffers: In the IBSDF model, channels carrying data
tokens between actors behave like Fifo queues. The memory needed to allocate each
Fifo corresponds to the maximum number of tokens stored in the Fifo during an
iteration of the graph [MB00]. As exposed in [SGB06, BMMKU10], this maximum
number of tokens can be determined only by deriving a schedule of the SDF graph.

In Preesm, memory analysis and allocation techniques can be independent from
scheduling considerations. Since the exact size of Fifos remains undefined until the
scheduling process, Fifos are replaced with synchronized buffers of fixed size during
the transformation of the original application graph into a single-rate SDF graph.

� Expose data parallelism: Concurrent analysis of data parallelism and data prece-
dence gives information on the lifetime of memory objects prior to any scheduling
process. For example, if two Fifos belong to parallel data-paths, a schedule can be
derived so that the two Fifos contain data tokens simultaneously. Consequently,
Fifos belonging to parallel data-paths cannot be allocated in overlapping address
ranges because otherwise they would overwrite each others’ content. Conversely, two
single-rate Fifos linked with a precedence constraint can be allocated in the same
memory space since they will never store data tokens simultaneously. In Figure 4.3
for example, Fifo AB1 is a predecessor to C1D1 . Consequently, these two Fifos
may share a common address range in memory.

� Derive an acyclic graph: Cyclic data-paths in an SDF graph are an efficient
way to model iterative or recursive calls to a subset of actors. In order to use
efficient static scheduling algorithms [Kwo97], SDF models are often converted into
a single-rate DAG before being scheduled. Besides revealing data-parallelism, this
transformation makes it easier to schedule an application, as each actor is fired only
once per execution of the resulting DAG. Similarly, in the absence of a schedule,
deriving a single-rate DAG permits the use of single-rate Fifos that will be written
and read only once per iteration of DAG. Consequently, before a single-rate Fifo is
written and after it is read, its memory space will be reusable to store other objects.

Figures 4.1 to 4.3 illustrate the successive transformations applied to an IBSDF graph
to reveal its memory characteristics. The DAG resulting from these transformations will
be used to build the MEG that serves as a basis to the memory optimization techniques
of Preesm.
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The first transformation consists of flattening the hierarchy of the graph by replacing
all hierarchical actors with their content. The IBSDF graph from Figure 4.1 is thus
transformed into an SDF graph presented in Figure 4.2. More information on the rules
for flattening the IBSDF hierarchy is given in Section 2.4.2.
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Figure 4.2: SDF graph resulting from the flattening of Figure 4.1

The second transformation applied to the input graph is a conversion into a single-rate
SDF graph. In Figure 4.3, actors B, C, and D are each split in two instances and new
Fifos are added to ensure the equivalence with the SDF graph of Figure 4.2. For clarity,
the Fork and Join actors added during the single-rate transformation are not depicted in
Figure 4.3 nor in subsequent illustrations. However, the reader should keep in mind that
a strict application of the SDF MoC forbids the connection of multiple Fifos to a single
data port of an actor.
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Figure 4.3: Single-rate SDF graph derived from IBSDF graph of Figure 4.1 (Directed Acyclic
Graph (DAG) if dotted F ifos are ignored)

The last conversion consists of generating a Directed Acyclic Graph (DAG) by isolating
one iteration of the algorithm. This conversion is achieved by ignoring Fifos with initial
tokens, or delays, in the single-rate SDF graph. In the example, this approach means that
the feedback Fifo C2C1 , which stores 75 initial tokens, and Fifo EA, which stores 100
initial tokens, are ignored.

4.2.2 MEG Definition

Once an IBSDF graph has been pre-processed into a DAG to expose its memory charac-
teristics, a MEG is built to capture these characteristics.

Definition 4.2.1. A Memory Exclusion Graph (MEG) is an undirected weighted graph
denoted by G = 〈M,E,w〉 where:

� M is the set of vertices of the MEG. Each vertex represents an indivisible memory
object of the application.

� E ⊆M ×M is the set of edges representing the memory exclusions, i.e. the impos-
sibility to share memory.

� w : M → N is a function with w(m) the weight of a memory object m. The weight
of a memory object corresponds to the amount of memory required for its allocation.
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In addition to this formal definition, the following notations are also introduced:

� N(m) the neighborhood of m ∈M , i.e. the set of memory objects linked to m by an
exclusion e ∈ E. Memory objects of this set are said to be adjacent to m.

� |S| the cardinality of a set S. |M | and |E| are the number of memory objects and
exclusions respectively of a graph.

� δ(G) = 2·|E|
|M |·(|M |−1) the edge density of the graph corresponding to the ratio of existing

exclusions to all possible exclusions.

Memory Objects

A memory object m ∈M is an indivisible quantum of memory that must be allocated (i.e.
be mapped in a system memory) to enable the execution of an application. The DAG
resulting from the transformations of an IBSDF graph contains three types of memory
objects:

� Single-rate Fifos/buffers: The first type of memory object is the buffers used
to transfer data tokens between consecutive actors. These buffers correspond to the
single-rate Fifos of the DAG.
Formally, the memory object associated to a single-rate Fifo AB is noted mAB.

� Working memory of actors: The second type of memory object corresponds to
the maximum amount of memory allocated by an actor during its execution. This
working memory represents the memory needed to store the data used during the
computations of the actor but does not include the input nor the output buffers stor-
age. In Preesm as in most dataflow programming frameworks [MB04], it is assumed
that an actor keeps exclusive access to its working memory during its execution. This
memory is equivalent to a task stack space in an operating system. In Figures 4.1
to 4.3, the size of the working memory associated with each actor is given by the
number below the actor name.
Formally, the memory object associated to the working memory of an actor A is
noted mA.

� Feedback/pipeline Fifos: The last type of memory object corresponds to the
memory needed to store feedback Fifos ignored by the transformation of a single-
rate SDF into a DAG. In Figure 4.3, there are two feedback Fifos: C2C1 and EA.
Each feedback Fifo is composed of 2 memory objects: the head and the (optional)
body. The head of the feedback Fifo corresponds to the data tokens consumed during
an iteration of the single-rate SDF graph. The body of the feedback Fifo corresponds
to data tokens that remain in the feedback Fifo for several iterations of the graph
before being consumed. A body memory object is needed only if the amount of delay
on the feedback single-rate Fifo is greater than its consumption rate, as is the case
with feedback Fifo EA in Figure 4.3. On the contrary, the feedback Fifo C2C1

does not need a body memory object.
Formally, the memory objects associated to the head and body of feedback Fifo AB
are noted mhead(AB) and mbody(AB) respectively.

Exclusions

Two memory objects of any type exclude each other in the MEG if they can not be
allocated in overlapping address ranges.
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Definition 4.2.2. Considering a DAG = 〈A,F 〉 and its derived MEG = 〈M,E,w〉, two
memory objects ma,mb ∈M are linked by an exclusion e ∈ E if they may store valid data
simultaneously during the execution of the DAG.

Sources of exclusion are given by the following rules. Two memory objects exclude
each other in the MEG if:

1. The DAG can be scheduled in such a way that both these memory objects store
data tokens simultaneously. Memory objects belonging to parallel data-paths fall
within this category. For example, in Figure 4.3, there is no precedence relationship
between mAB2 and mD1 . Hence, actor D1 may be scheduled after actor A and before
actor B2, thus using its working memory mD1 while data tokens are stored in mAB2 .

2. The memory objects are working memory, input, or output buffers of the same actor.
In Preesm, the memory allocated to these buffers is reserved from the execution start
of the producer actor until the completion of the consumer actor. This choice is made
to enable custom token accesses throughout actor firing time. As a consequence, the
memory used to store an input buffer of an actor should not be reused to store an
output buffer of the same actor. In Figure 4.3, the memory used to carry the 100
data tokens of memory object mAB1 can not be reused, even partially, to transfer
data tokens from actor B1 to actor C1 .

3. The first memory object of a feedback Fifo f is a head memory object mhead(f), and
the second does not belong to the consumer-producer data-path of f . In Figure 4.3,
actors B, C, and D and the Fifos between them are both successors to the consumer
A and predecessors to the producer E of the feedback Fifo EA. Consequently, the
working memory of these actors (mB1 , mB2 , mC1 , mC2 , mD1 , mD2) and the memory
allocated to the single-rate Fifos (mB1C1 , mB2C2 , mC1C2 , mC1D1 , mC2D2) can be
allocated in an overlapping memory space with mhead(EA).

4. One of the memory objects is a body memory object. For example, the body memory
object mbody(EA) associated to the feedback Fifo EA will have exclusions with all
other memory objects of the MEG.

These four rules are formally expressed as follows, with pred : A ∪ F → {A ∪ F}n∈N a
function that associates an actor a ∈ A (or a Fifo f ∈ F ) to its list of predecessors, i.e.
the list of actors and Fifos that precede a (or f) in the data dependency order of the
graph.

Theorem 4.2.1. Considering a DAG = 〈A,F 〉 and its derived MEG = 〈M,E,w〉
∀a, b ∈ {A,F} | a 6= b, if a 6∈ pred(b) ∧ b 6∈ pred(a) then ∃e ∈ E linking ma to mb.

Proof. Since there is no precedence relationship between a and b, the scheduling order of
a (or its producer if a ∈ F ) is independent from the scheduling order of b. Consequently,
nothing prevents a and b from being scheduled in parallel on two distinct processing ele-
ments. In such a case, the application will access data stored in ma and mb simultaneously,
which requires the presence of an exclusion e ∈ E between ma and mb according to Defi-
nition 4.2.2.

Theorem 4.2.2. Considering a DAG = 〈A,F 〉 and its derived MEG = 〈M,E,w〉,
∀f ∈ F , ∀b ∈ {A,F} | b 6= f ,

if

{
b ∈ A ∧ [prod(f) = b ∨ cons(f) = b]

b ∈ F ∧ [prod(f) = prod(b) ∨ prod(f) = cons(b)]
then ∃e ∈ E linking mf to mb
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Proof. In the case where b ∈ A ∧ [prod(f) = b ∨ cons(f) = b], f is an input or an output
buffer of actor b. In the case where b ∈ A∧ [prod(f) = b∨cons(f) = b], f and b are output
buffers, or input and output buffer, of the same actor prod(f).

Since an actor a ∈ A keeps access to its input and output buffers (and its working
memory) during its whole firing time, these buffers can simultaneously store valid data.
Consequently, following Definition 4.2.2, the memory objects corresponding to these buffers
must be linked by an exclusion in the corresponding MEG.

Theorem 4.2.3. Considering a DAG = 〈A,F 〉 and its derived MEG = 〈M,E,w〉, let f
be a feedback F ifo of the corresponding single-rate SDF graph.
∀b ∈ {A,F}, if b 6∈ pred(prod(f)) ∨ cons(f) 6∈ pred(b) then ∃e ∈ E linking mhead(f) to
mb

Proof. During a graph iteration, the head memory object mhead(f) of a feedback Fifo f
stores data tokens before the Fifo consumer cons(f) is fired, and after the Fifo producer
prod(f) is fired. If b is a Fifo or an actor of the DAG that is both a predecessor to
prod(f) and a successor to cons(f), its associated memory objects will never store valid
data simultaneously with the feedback Fifo head. If both these conditions are not met,
a schedule of the DAG can be derived where cons(f) is scheduled after b, or prod(f) is
scheduled before b. In such cases, mhead(f) and mb store valid data simultaneously, so they
must exclude each other in the MEG according to Definition 4.2.2.

Theorem 4.2.4. Considering a DAG = 〈A,F 〉 and its derived MEG = 〈M,E,w〉, let f
be a feedback F ifo of the corresponding single-rate SDF graph.
∀m ∈M \mbody(f), ∃e ∈ E linking mbody(f) to m

Proof. Body memory objects store data tokens for periods spanning over several iterations
of the graph. Since all other memory objects have a lifespan bounded by a graph iteration,
they will all store data tokens simultaneously with body memory objects. Consequently,
following Definition 4.2.2, body memory objects must always have exclusions with all other
memory objects in their MEG.

A MEG is valid only if the previous rules are respected for all pairs of memory objects.

MEG Example

C1C2
75

C2D2
50

C1D1
50

D1E
25

D2E
25

AB2
100

AB1
100

B2C2
150

B1C1
150

Figure 4.4: Memory Exclusion Graph (MEG) derived from the IBSDF graph of Figure 4.1

The MEG presented in Figure 4.4 is derived from the IBSDF graph of Figure 4.1.
The complete MEG contains 20 memory objects and 95 exclusions but, for clarity, only
the memory objects corresponding to the single-rate Fifos (1st type memory objects) are
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presented. The values printed below the vertices names represent the weight w of the
memory objects.

4.2.3 MEG Construction

Building a MEG based on a DAG consists of scanning its actors and single-rate Fifos
in order of precedence, so as to identify its parallel branches. As part of this scan, the
memory objects and the exclusions caused by a precedence relationship are added to the
MEG. Then, exclusions are added to the MEG between all memory objects belonging to
parallel data-paths.

The pseudo-code of an algorithm to build the complete MEG of an application is given
in Algorithm 4.1.

Algorithm 4.1 can be divided in three main parts each responsible for the creation of
one type of memory objects. Creation of working memory of actors is handled between
lines 5 and 10. Single-rate Fifos are processed between lines 12 and 21, and the memory
objects associated to feedback Fifos are generated between lines 24 and 39.

The MEG obtained at this point of the method models all possible exclusions for all
possible schedules. Hence, from the memory reuse perspective, this MEG corresponds to
the worst-case scenario. As will be shown in Section 4.4, it is possible to update a MEG
with scheduling information in order to reduce the number of exclusions, thus favoring
memory reuse.

An alternative way of building a MEG is to first build its complement graph, within
which two memory objects are linked if they can share a memory space. Then, the exclu-
sion graph is simply obtained by considering that two of its memory objects exclude each
other if they are not connected by an edge in the complement graph. Using a complement
graph instead of a MEG may be advantageous when allocating MEGs with exclusion den-
sity greater than 0.5. Indeed, in such a case, the complement graph will have fewer edges
than the MEG and hence, it will be faster to check if two memory objects exclude each
other by checking the absence of link between them in the complement graph than the
presence of an exclusion in the MEG.

The next two sections present memory analysis and optimization techniques based on
MEGs derived from IBSDF graphs.

4.3 Bounds for the Memory Allocation of IBSDF Graphs

A MEG is an intermediary representation that captures the memory characteristics of
an IBSDF graph. Hence, a MEG can serve as a basis for analyzing and optimizing the
allocation of memory objects for the execution of an application on an embedded MPSoC.
In this section, an analysis technique is presented for deriving the memory allocation
bounds (Figure 4.5) of an application modeled with an IBSDF graph. This bounding
technique has been the subject of a publication in an international conference [DPNA12].

0 ≤ Optimal
Allocation

Upper
Bound

Worst
Allocation≥Lower

Bound
Available
Memory

Wasted
memory

Insufficient
memory

Possible
allocated memory

Figure 4.5: Memory Bounds

The upper and lower bounds of the static memory allocation of an application are a
maximum and a minimum limit respectively to the amount of memory needed to run this
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Algorithm 4.1: Building the Memory Exclusion Graph (MEG)

Input: a single-rate SDF srSDF =< A,F > with:
A the set of actors
F the set of Fifos

Output: a Memory Exclusion Graph (MEG) MEG =< V,E,w >
1 Define Pred[], I[], O[] : A→ V ∗ ⊂ V ;
2 Sort A in the DAG precedence order;
3 for each a ∈ A do
4 /* Process working memory of a */

5 workingMem← new v ∈ V ;
6 w(workingMem)← workingMemorySize(a);
7 for each v ∈ V \ {Pred[a], workingMem} do
8 Add e ∈ E between workingMem and v;
9 endfor

10 I[a]← I[a] ∪ {workingMem};
11 /* Process output buffers of a */

12 for each f ∈ (F \ feedbackFIFOs) ∩ outputs(a) do
13 bufMem← new v ∈ V ;
14 w(bufMem)← size(f);
15 for each v ∈ V \ {Pred[a], bufMem} do
16 Add e ∈ E between bufMem and v;
17 endfor
18 Pred[consumer(f)]← Pred[a] ∪ I[a];
19 I[consumer(f)]← I[consumer(f)] ∪ {bufMem};
20 O[a]← O[a] ∪ {bufMem};
21 endfor

22 endfor
23 /* Process Feedback Fifos */

24 for each ff ∈ F ∩ feedbackFIFOs(F ) do
25 headMem← new v ∈ V ;
26 w(headMem)← rate(ff );
27 set← (V ∩ P [producer(ff )]) \ P [consumer(ff )];
28 set← set \ I[consumer(ff )] ∪O[consumer(ff )];
29 for each v ∈ V \ set do
30 Add e ∈ E between headMem and v;
31 endfor
32 if rate(ff ) < delays(ff ) then
33 bodyMem← new v ∈ V ;
34 w(bodyMem)← delays(ff )− rate(ff );
35 for each v inV do
36 Add e ∈ E between bodyMem and v;
37 endfor

38 end

39 endfor
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application, as presented in Figure 4.5. The following four sections explain how the upper
bound can be computed and give three techniques to compute the memory allocation lower
bound. These three techniques offer a trade-off between accuracy of the result (Figure 4.8)
and complexity of the computation.

4.3.1 Least Upper Bound

The least upper memory allocation bound of an application corresponds to the size of
the memory needed to allocate each memory object in a dedicated memory space. This
allocation scheme is the least compact allocation possible as a memory space storing a
memory object is never reused to store another.

Definition 4.3.1 (Least Upper Bound). Given a MEG = 〈M,E,w〉, its upper memory
allocation bound is the sum of the weights of its memory objects:

BoundMax(G) =
∑
m∈M

w(m)

The upper bound for the MEG of Figure 4.4 is 725 memory units without considering
the working memory of actors. As presented in Figure 4.8, using more memory than the
upper bound means that part of the memory resources is wasted. Indeed, if a memory
allocation uses an address range larger than this upper bound, some addresses within this
range will never be read nor written. The upper bound is 1140 memory units for the
complete MEG when the working memory of actors are considered.

Although the least upper bound gives a pessimistic evaluation of the memory needed for
the allocation of an application, its O(|N |) complexity, where |N | is the number of memory
objects, makes it an interesting metric to quickly evaluate the memory requirements of an
application.

4.3.2 Lower Bounds

The greatest lower memory allocation bound of an application is the least amount of
memory required to execute it. A lower bound to the memory allocation is a value inferior
or equal to the greatest lower bound, and thus inferior to the smallest achievable memory
allocation. This section presents two state-of-the-art methods and a new heuristic to
compute lower bounds of an application. These methods offer a tradeoff between accuracy
of the result and speed of the computation.

Method 1 to Compute the Greatest Lower Bound: Interval Coloring Problem

Finding the optimal allocation, and thus the greatest lower bound, using a MEG can be
achieved by solving the equivalent Interval Coloring Problem [BAH09, Fab79].

A k-coloring of a MEG = 〈M,E,w〉 is the association of each memory object mi ∈M
with an interval Ii = {a, a + 1, · · · , b − 1} of consecutive integers called colors, such that
b − a = w(mi). Two memory objects mi and mj linked by an exclusion e ∈ E must be
associated to non-overlapping intervals. Assigning an interval of integers is equivalent to
allocating a range of memory addresses to a memory object. Consequently, a k-coloring
of a MEG corresponds to an allocation of its memory objects.

Solving the Interval Coloring Problem consists of finding a k-coloring of the MEG
with the fewest integers used in the Ii intervals. This objective is equivalent to finding the
allocation of memory objects that uses the least memory possible, thus giving the greatest
lower bound of the memory allocation.
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As presented in [BAH09], the Interval Coloring Problem has an NP-Hard complex-
ity. Therefore, it would be prohibitively long to solve this problem for applications with
hundreds or thousands of memory objects.

A sub-optimal solution to the Interval Coloring Problem [Rau06] corresponds to an
allocation that uses more memory than the minimum possible: more memory than the
greatest lower bound. Consequently, a sub-optimal solution to the Interval Coloring Prob-
lem fails to achieve the bounding objective which is to find a lower bound to the size of
the memory allocated for a given application.

Method 2 to Compute a Lower Bound: Exact Solution to the Maximum-
Weight Clique Problem

Since the greatest lower bound can not be found in reasonable time, an alternative is to
find a lower bound close to the size of the optimal allocation. In [Fab79], Fabri introduces
another lower bound derived from a MEG: the weight of the Maximum-Weight Clique
(MWC).

A clique is a subset of vertices that forms a subgraph within which each pair of vertices
is linked with an edge. Formally:

Definition 4.3.2. Considering a MEG = 〈M,E,w〉, a clique C ⊆M is such that:
∀mi,mj ∈ C,mi 6= mj => ∃e ∈ E|mi ∈ N(mj)

Since memory objects belonging to a clique can not share memory space, their allo-
cation requires a memory as large as the sum of the weights of the clique elements, also
called the clique weight.

Theorem 4.3.1. Considering a clique C ⊆M of a MEG = 〈M,E,w〉, the memory space
needed to allocate C in memory is:

weight(C) =
∑
m∈C

w(m)

Proof. Let m0 and m1 be memory objects of a clique C ⊆ M . The memory required for
their allocation is w(m0) and w(m1) respectively.

Following Definition 4.3.2, since there is an exclusion e ∈ E linking m0 to m1, the
two memory objects form a clique C2 of the MEG, and they must be allocated in non-
overlapping address ranges. The amount of memory required for the allocation of C2 is
thus

weight(C2) = w(m0) + w(m1) =
∑
m∈C2

w(m) (4.1)

Now, let’s consider a clique Cn whose weight is weight(Cn) =
∑

m∈Cn
w(m). Following

Definition 4.2.2, a new clique Cn+1 can be formed by adding a new memory object mn to
Cn if ∀mi ∈ Cn,∃e ∈ E linking mi to mn. Consequently, mn can not be allocated in an
address range overlapping with any memory object of Cn. Hence,

weight(Cn ∪ {mn}) = weight(Cn) + w(mn) (4.2)

Which implies:

weight(Cn+1) =
∑

m∈Cn

w(m) + w(mn) =
∑

m∈Cn+1

w(m) (4.3)

Recursively, using equations 4.1 and 4.3, the theorem equation is obtained for a clique C
of size |C| ∈ N.
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Figure 4.6: Cliques examples

Subsets Ca :={D2E, C2D2, D1E} and Cb :={AB2,B1C1,B2C2,C1C2,C1D1} are exam-
ples of cliques in the MEG of Figure 4.6. Their respective weights are 100 and 525.
Following Definition 4.3.2, a single memory object can be considered as a clique. A clique
is called maximal if no memory object from its MEG can be added to it to form a larger
clique. In Figure 4.6, clique Cb is maximal, but clique Ca is not as C1D1 is linked to all
the clique memory objects and can therefore be added to the clique.

The Maximum-Weight Clique (MWC) of a graph is the clique whose weight is the
largest of all cliques in the graph. Solving the MWC problem consists of finding the
MWC in a MEG. Like the Interval Coloring Problem, the MWC problem is known to be
NP-Hard. Several branch-and-bound algorithms can be found in the literature to solve
the MWC problem efficiently. In [Ö01], Österg̊ard proposes an exact algorithm which
is, to our knowledge, the fastest algorithm for MEGs with an edge density δ(G) ≤ 0.80.
For graphs with an edge density δ(G) ≥ 0.80, a more efficient algorithm was proposed
by Yamaguchi et al in [YM08]. Both algorithms are recursive and use a similar branch-
and-bound approach. Beginning with a subgraph composed of a single memory object,
they search for the MWC Ci in this subgraph. Then, a memory object is added to the
considered subgraph, and the weight of Ci is used to bound the search for a larger clique
Ci+1 in the new subgraph. In Section 4.3.3, the two algorithms were implemented to
compare their performances on exclusion graphs derived from different applications.

The weight of the MWC corresponds to the amount of memory needed to allocate
the memory objects belonging to this subset of the graph. By extension, the allocation
of the whole graph will never use less memory than the weight of its MWC. Therefore,
this weight is a lower bound to the memory allocation and is less than or equal to the
greatest lower bound, as illustrated in Figure 4.8. In the MEG of Figure 4.4, the MWC is
{AB2,B1C1,B2C2,C1C2,C1D1} with a weight of 525 memory units.

Method 3 to Compute a Lower Bound: Heuristic for the Maximum-Weight
Clique Problem

Österg̊ard’s and Yamaguchi’s algorithms are exact algorithms and not heuristics. Since
the MWC problem is an NP-Hard problem, finding an exact solution in polynomial time
can not be guaranteed. For this reason, a new heuristic algorithm for the MWC problem
was developed in Preesm.

The proposed heuristic approach, presented in Algorithm 4.2, is an iterative algorithm
whose basic principle is to remove a judiciously selected memory object from the MEG
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at each iteration. This operation is repeated until the remaining memory objects form a
clique.

Algorithm 4.2: Maximum-Weight Clique Heuristic Algorithm

Input: a Memory Exclusion Graph G =< M,E,w >
Output: a maximal clique C

1 C ←M ;
2 nbedges ← |E|;
3 for each m ∈ C do
4 cost(m)← w(m) +

∑
m′∈N(m)w(m′)

5 endfor

6 while |C| > 1 and
2·nbedges
|C|·(|C|−1) < 1.0 do

7 Select m∗ from C that minimizes cost(·);
8 C ← C \ {m∗};
9 nbedges ← nbedges − |N(m∗) ∩ C|;

10 for each m ∈ N(m∗) ∩ C do
11 cost(v)← cost(m)− w(m∗);
12 endfor

13 end
14 Select a vertex mrandom ∈ C;
15 for each m ∈ N(mrandom) \ C do
16 if C ⊂ N(m) then
17 C ← C ∪ {m};
18 end

19 endfor

Our algorithm can be divided into 3 parts:

� Initializations (lines 1-5): For each memory object of the MEG, the cost function
is initialized with the weight of the memory object summed with the weights of
its neighbors. In order to keep the input MEG unaltered through the algorithm
execution, its set of memory objects M and its number of edges |E| are copied in
local variables C and nbedges.

� Algorithm core loop (lines 6-13): During each iteration of this loop, the memory
object with the minimum cost m∗ is removed from C (line 8). In the few cases where
several memory objects have the same cost, the lowest number of neighbor |N(m)|
is used to determine the memory object to remove. If the number of neighbors is
equal, then selection is performed based on the smallest weight w(m). By doing
so, the number of edges removed from the graph is minimized and the edge density
of the remaining memory objects will be higher, which is desirable when looking
for a clique. If there still are multiple vertices with equal properties, a random
memory object is selected among them. For clarity, these criteria were not included
in Algorithm 4.2.

This loop is iterated until the memory objects in subset C become a clique. This
condition is checked line 6, by comparing 1.0 (the edge density of a clique) with the
edge density of the subgraph of G formed by the remaining memory objects in C.
To this purpose nbedge, the number of edges of this subgraph, is decremented line 9
by the number of edges in E linking the removed memory object m∗ to vertices in C.
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Lines 10 to 12, the costs of the remaining memory objects are updated for the next
iteration.

� Clique maximization (lines 14-19): This last part of the algorithm ensures that the
clique C is maximal by adding neighbor memory objects to it. To become a member
of the clique, following Definition 4.3.2, a memory object must be adjacent to all
its members. Consequently, the candidates to join the clique are the neighbors of a
memory object randomly selected in C. If a memory object among these candidates
is linked to all memory objects in C, it is added to the clique.

The complexity of this heuristic algorithm is of the order of O(|N |2), where |N | is the
number of memory objects of the MEG.

In Table 4.1, the heuristic algorithm is applied to the MEG of Figure 4.4. For each
iteration, the costs associated to the remaining memory objects are given. The memory
object removed during an iteration is crossed out. Column δ(C) corresponds to the edge
density of the subgraph formed by the remaining memory objects. For example, in the
first iteration, the memory object D2E has the lowest cost and is thus removed from the
MEG. Before beginning the second iteration, the costs of memory objects C1D1, C2D2,
and D1E are decremented by 25: the weight of the removed memory object.

Costs

Iter δ(C) AB1 AB2 B1C1 B2C2 C1C2 C1D1 C2D2 D2E D1E

1 0.67 500 650 625 700 600 625 375 150 475
2 0.75 500 650 625 700 600 600 350 450
3 0.81 500 650 625 650 550 550 400
4 0.87 500 625 625 625 525 525
5 1.00 525 525 525 525 525

Table 4.1: Algorithm proceeding for the MEG of Figure 4.4

In this example, the clique found by the heuristic algorithm and the exact algorithm is
the same, and its weight also correspond to the size of the optimal allocation (Figure 4.7).
This example proves that, as shown in Figure 4.8, the result of the heuristic can be equal
to the exact solution of the MWC problem, whose size can also equal that of the optimal
allocation.
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Figure 4.7: Example of optimal memory allocation for the MEG of Figure 4.4.

Figure 4.8 summarizes the positions of the 4 bounding techniques presented in this sec-
tion on the memory allocation axis. Next section presents a comparison of the performance
of these 4 techniques on a set of real and randomly generated MEGs.

4.3.3 Experiments

To compare the performance and accuracy of the four bounding techniques introduced in
previous sections (Figure 4.8), each of them has been implemented in Preesm. All results
presented in this section are obtained by running the algorithms on an Intel Xeon E3-1225
quad-core CPU clocked at 3.1GHz.
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Figure 4.8: Four techniques for the computation of memory bounds.

MEGs properties Exact algorithms Heuristic

|M | δ(G) Österg̊ard’s [Ö01] Yamaguchi’s [YM08] Time Efficiency

60 0.80 0.05 s 0.25 s 0.004 s 91%
80 0.80 0.43 s 2.04 s 0.009 s 89%
100 0.80 3.4 s 11.73 s 0.014 s 87%
120 0.80 17.93 s 55.23 s 0.024 s 86%
60 0.90 0.35 s 0.56 s 0.004 s 94%
80 0.90 9.34 s 7.83 s 0.009 s 93%
100 0.90 188.00 s 90.90 s 0.016 s 91%

Efficiency: Ratio of the size of the clique found by the heuristic algorithm over the size of the MWC

Table 4.2: Performance of Maximum-Weight Clique algorithms on random MEGs

Table 4.2 shows the performance of three algorithms for the MWC problem. Each entry
presents the mean performance obtained from 400 randomly generated MEGs with a fixed
number of memory objects (|M |) and a fixed density of edges (δ(G)). For each MEG,
the weights of its memory objects are uniformly distributed in a predefined range. The
400 graphs are generated with ranges varying from [1000; 1010] to [1000; 11000]. Columns
Österg̊ard’s, Yamaguchi’s and Time respectively give the mean runtime of each of the
three algorithms. The Efficiency column gives the average ratio of the clique size found
by the heuristic algorithm over the size of the MWC. Results for MEG density are plotted
in Figure 4.9.

It should be noted that the clique maximization part of the heuristic Algorithm 4.2 was
deactivated in all tests of this section. Indeed, several tests showed that this maximization
improved the mean efficiency of the heuristic algorithm by only 2%, while multiplying the
runtime of the heuristic by a factor 1.6.

Table 4.2 and Figure 4.9(a) show that the runtime of exact algorithms grows exponen-
tially with the number of memory objects of the MEGs. The runtime of exact algorithms
is also highly dependent on the edge density of the graphs. On average, a change of density
from 0.80 to 0.90 slows down exact algorithms by a factor 15. Conversely, as illustrated in
Figure 4.9(b), the runtime of the heuristic algorithm is roughly proportional to |M |2 and
is not strongly influenced by the edge density of the MEGs. The results in table 4.2 also
reveal that the mean efficiency of the heuristic algorithm for random MEGs is of the order
of 90%, and decreases slightly as the number of vertices increases. Finally, as showed in
[YM08], these results confirm that Yamaguchi’s algorithm has better performance than
Österg̊ard’s algorithm for graphs with more than 80 memory objects and an edge density
higher than 0.80.

The performance of the three algorithms was also tested using MEGs derived from
IBSDF graphs of functional applications. Table 4.3 shows the characteristics of the tested
graphs. The first three entries of this table, namely RACH, LTE1 and LTE2, correspond
to application graphs describing parts of the Long Term Evolution (LTE) wireless com-
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Österg̊ard

Heuristic

(a) Runtime = f(|M |)

|M|2

302 502 702 902 1102

time

0.000 sec.

0.005 sec.

0.010 sec.

0.015 sec.

0.020 sec.

0.025 sec.

0.030 sec. Yamaguchi
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Figure 4.9: Runtime of the three MWC algorithms for random MEGs of density 0.80.

munication standard [PAPN12]. The last two entries, MP4P2 and Diff, respectively, are
a description of the MPEG-4 (Moving Picture Experts Group) Part2 video encoder, and
a dummy application that computes the difference between successive video frames. The
values given for Actors and F ifos are those of the flattened IBSDF graph, before its
conversion into a DAG. The lower memory bounds stated in Table 4.3 correspond to the
size of the MWC. Because the application models did not specify the working memory of
actors, only the memory objects corresponding to the Fifos were considered to generate
the MEGs.

SDF graph MEG Memory Bounds

Graph Actors Fifos |M | δ(G) Lower Upper

RACH 233 468 457 0.83 317 kB 752 kB
LTE1 667 907 4240 0.72 ≤3492 kB 4899 kB
LTE2 56 84 606 0.82 451 kB 714 kB

MP4P2 143 146 143 0.80 963 kB 2534 kB
Diff 19 27 165 0.93 779 kB 1378 kB

RACH: LTE Preamble detection MP4P2: MPEG-4 Part2 Encoder

LTE1: Coarse Grain Physical+MAC Layer Diff: Difference of 2 CIF pictures

LTE2: Coarser Grain Physical+MAC Layer

Table 4.3: Properties of the test graphs

To take advantage of a multi-core architecture, an application modeled with an SDF
graph must present a high degree of parallelism. MEGs derived from such applications
will therefore have a high edge density, as is the case with the graphs of Table 4.3. The
performance of each of the three algorithms on these graphs are related in Table 4.4.

Exact algorithms Heuristic

Graph Österg̊ard’s Yamaguchi’s Time Efficiency

RACH ∞ 207.00 s 1.200 s 99.9%
LTE1 ∞ ∞ 869.320 s -
LTE2 996.70 s 219.60 s 3.300 s 100.0%

MP4P2 1.12 s 0.50 s 0.052 s 99.9%
Diff 0.42 s 0.49 s 0.120 s 100.0%

Table 4.4: Performance of MWC algorithms on MEGs derived from the test graphs of Table 4.3
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As shown in Table 4.4, the efficiency of the heuristic algorithm for MEGs derived from
real applications is much higher than for randomly generated MEGs. Indeed, the heuristic
algorithm always finds a clique with a weight almost equal to the weight of the MWC.
For these real application graphs, the runtime of the heuristic Algorithm 4.2 is at least
4 times faster than its exact counterparts. Moreover, contrary to the exact algorithms
which sometimes fail to find a solution within 12 hours (as denoted by ∞), the runtime
of the heuristic algorithm is highly predictable as it is solely dependent on the number
of memory objects |M | of the MEG. In the case of LTE1, because of the large number
of memory objects in the MEG, exact algorithms never ran to completion. Consequently,
neither the MWC exact size nor the efficiency of the heuristic algorithm can be computed
for this graph. This example shows that the heuristic algorithm may succeed in finding a
lower bound to memory requirements in cases where exact approaches fail. Additionally,
it can also be noted that Yamaguchi’s algorithm presents a slightly better performance
than Österg̊ard’s algorithm for MEGs derived from SDF graphs.

Finally, the algorithms were tested against 120 MEGs derived from randomly generated
SDF graphs. The resulting exclusion graphs presented edge densities from 0.49 to 0.93 and
possessed between 50 and 500 memory objects. These tests confirmed that Yamaguchi’s
algorithm is faster than Österg̊ard’s for exclusion graphs derived from SDF graphs. These
tests also showed that the heuristic approach finds the optimal solution 81% of the time.
When the optimal solution is not found, the average efficiency of the heuristic algorithm
is 96.5%.

The next section describes and evaluates several allocation strategies that are based on
MEGs.

4.4 Memory Allocation of a MEG

Computing memory bounds of an application provides key information to the developer
of an embedded system. A rapid computation of the memory bounds, such as the one
enabled by heuristic Algorithm 4.2, can also be used to rapidly assess the quality of an
allocation algorithm or the result of a memory optimization process.

A MEG constructed from a non-scheduled DAG can be used as an input for a bounding
process (Section 4.3), and can also serve as a basis for the allocation of the application
in memory. As illustrated in Figure 4.10, a MEG can be allocated in shared memory at
four different implementation stages: prior to any scheduling process, after an untimed
multicore scheduling of actors, after a timed multicore scheduling of the application, or
dynamically during the application execution. The scheduling flexibility resulting from the
four alternatives is detailed in the following sections. The memory allocation techniques
presented in this section have been published in [DPNA13].

MappingD&
Scheduling

Application
Optimization Execution

Timed
Simulation

1 2 3 4

Post-Scheduling Post-Timing DynamicPre-Scheduling

Figure 4.10: Simplified development flow of Preesm with possible stages for memory allocation.
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4.4.1 MEG Updates with Scheduling and Time Information

As presented in Section 4.2, the MEG built from the non-scheduled DAG is a worst-case
scenario that models all possible exclusions for all possible schedules of the application on
any number of cores. If a multicore schedule of the application is known, this schedule can
be used to update the MEG and lower its density of exclusions.

Post-Scheduling MEG Update

Scheduling a DAG on a multicore architecture introduces an order of execution between
the actors of the graph, which is equivalent to adding new precedence relationships between
actors. Adding new precedence edges to a DAG results in a decreased inherent parallelism
of the application. For example, Figure 4.11 illustrates the new precedence edges that
result from the dual-core schedule of the DAG presented in Figure 4.13. In this example,
Core1 executes actors B1 , C1 , D1 and D2 ; and Core2 executes actors A, B2 , C2 and E .
A new precedence relationship between D1 and D2 results from the schedule of Core2 .
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Figure 4.11: Update of the DAG from Figure 4.3 with scheduling information.

As exposed in Theorem 4.2.1, memory objects belonging to parallel data-paths may
have overlapping lifetimes. Reducing the parallelism of an application results in creat-
ing new precedence paths between memory objects, thus preventing them from having
overlapping lifetimes and removing exclusions between them. Since all the parallelism
embedded in a DAG is explicit, the scheduling process cannot augment the parallelism of
an application and cannot create new exclusions between memory objects. In Figure 4.12,
updating the MEG with the multicore schedule of Figure 4.11 results in removing the
exclusion between C1D1 and D2E .
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Figure 4.12: MEG updated with scheduling information from Figure 4.11 and 4.13.
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Post-Timing MEG Update

A second update of the MEG is possible if a timed schedule of the application is available.
A timed schedule is a schedule where not only the execution order of the actors is fixed,
but also their absolute starting and ending times. Such a schedule can be derived if, for
example, the exact or the worst-case execution times of all actors are known at compile
time [PAPN12]. Updating a DAG with a timed schedule consists of adding new precedence
edges between all actors with non-overlapping lifetimes.

Following Theorem 4.2.2, the lifetime of a memory object begins with the execution
start of its producer, and ends with the execution end of its consumer. In the case of
working memory, the lifetime of the memory object is equal to the lifetime of its associated
actor because, contrary to the stack of a thread, working memory can be discarded between
two actor firings. Using a timed schedule, it is thus possible to update a MEG so that
exclusions remain only between memory objects with overlapping lifetimes. For example,
the timed schedule of Figure 4.13 introduces a precedence relationship between actors B2

and C1 which translates into removing from the MEG exclusions between memory objects
AB2 and: C1D1 , C1C2 , and D1E .

time

time

Core2

Core1 A C2

D2

EB2

C1B1 D1

Figure 4.13: Example of timed schedule for the DAG of Figure 4.3.

Each version of the MEG obtained during the successive updates with scheduling and
timing information can be used as a basis for the allocation process. The next section
details the advantages and drawbacks offered by the different versions of the MEG for its
memory allocation.

4.4.2 Memory Allocation Strategies

During the development of an application modeled by an IBSDF graph, three versions of
its corresponding MEG are obtained at three stages of the implementation process: prior
to the scheduling process, after an untimed multicore schedule is decided, and after a timed
multicore schedule is decided. Each of these three alternatives offers a distinct trade-off
between the amount of allocated memory and the flexibility of the application multicore
execution.

Pre-Scheduling Allocation

A compile-time memory allocation of a pre-scheduling MEG will never violate any ex-
clusion for any multicore schedule of its original IBSDF graph on any shared-memory
architecture. Indeed, before scheduling the application, the MEG models all possible ex-
clusions that may prevent memory objects from being allocated in overlapping memory
spaces (Definition 4.2.2). Hence, a pre-scheduling MEG models all possible exclusions for
all possible multicore schedules of its corresponding application IBSDF graph.

Since a compile-time memory allocation based on a pre-scheduling MEG is compatible
with any multicore schedule, it is compatible with any runtime schedule. The great flexi-
bility of this first allocation approach is that it supports any runtime scheduling policy for
the DAG and can accommodate any number of cores that can access a shared memory.



Memory Allocation of a MEG 73

A typical scenario where this pre-scheduling compile-time allocation is useful is the
concurrent execution of multiple applications on a multicore architecture. In such a sce-
nario, the number of cores used for an application may change at runtime to accommodate
applications with high priority or those with high processing needs. In this scenario us-
ing a compile-time allocation relieves runtime management from the weight of a dynamic
allocator while guaranteeing a fixed memory footprint for the application.

The downside of this first approach is that, as will be shown in the results of Sec-
tion 4.4.3, this allocation technique requires substantially more memory than post-schedul-
ing allocators.

Post-Scheduling Allocation

Post-scheduling memory allocation offers a trade-off between amount of allocated memory
and multicore scheduling flexibility. The advantage of post-scheduling allocation over pre-
scheduling allocation is that updating the MEG greatly decreases its density which results
in using less allocated memory.

Like pre-scheduling memory allocation, the flexibility of post-scheduling memory allo-
cation comes from its compatibility with any schedule obtained by adding new precedence
relationships to the scheduled DAG. Indeed, adding new precedence edges will make some
exclusions useless but it will never create new exclusions. Any memory allocation based
on the updated MEG of Figure 4.11 is compatible with a new schedule of the DAG that
introduces new precedence edges. For example, the post-scheduling MEG of Figure 4.12
can be updated with a single core schedule combining schedules of Core1 and Core2 as
follows A, B2 , B1 , C1 , C2 , D1 , D2 and E . Updating the MEG with this schedule would
result in removing the exclusions between memory objects AB2 and: B1C1 , C1C2 , C1D1 ,
and D1E .

The scheduling flexibility for post-scheduling allocation is inferior to the flexibility
offered by pre-scheduling allocation. Indeed, the number of cores allocated to an applica-
tion may be only decreased at runtime for post-scheduling allocation while pre-scheduling
allocation allows the number of cores to be both increased and decreased at runtime.

Post-Timing Allocation

A MEG updated with a timed schedule has the lowest density of the three alternatives,
which leads to the best results in terms of allocated memory size. However, its reduced
parallelism makes it the least flexible scenario in terms of multicore scheduling and runtime
execution.

Figure 4.14 illustrates the possible loss of flexibility resulting from the usage of post-
timing allocation. In the timed schedule of Figure 4.14(a), the same memory space can be
used to store memory objects AB2 and C1D1 since actor B2 execution ends before actor C1

execution starts. In Figures 4.14(b) and 4.14(c), the execution time of actor B2 is double
that of the timed schedule. With timed allocation (Figure 4.14(c)), the execution of C1

must be delayed until B2 completion; otherwise actor C1 might overwrite and corrupt
data of the AB2 memory object. With post-scheduling allocation (Figure 4.14(b)), only
the actor order on each core must be guaranteed. Actor C1 can thus start its execution
before actor B2 completion since memory objects AB2 and C1D1 exclude each other in
the corresponding MEG (Figure 4.12).

This example illustrates why timed allocation is a bad option for implementation of
an application on a non-deterministic time MPSoC. Indeed, using post-timing allocation
on such an architecture requires the addition of synchronization points after each actor
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Figure 4.14: Loss of runtime flexibility with timed allocation for DAG of Figure 4.11.

completion to ensure that the exact same order of execution is always respected. These
synchronization points would cause a large overhead for the execution of the application
that would greatly decrease the performance of the system.

Although timed allocation provides the smallest memory footprints (Section 4.4.3),
its lack of runtime flexibility makes it a bad option for implementation on MPSoCs with
non-deterministic behavior because of caches, pipelined ALUs, or non-deterministic buses.
Nevertheless, computing the memory bounds for a MEG updated with a timed schedule
is a convenient way to approximate the memory footprint that would be allocated by a
dynamic allocator. Indeed, like timed allocation, dynamic allocation allows memory reuse
as soon as the lifetime of a memory object is over.

Next section illustrates the memory allocation efficiency offered by the three imple-
mentation stages.

4.4.3 Experiments

The allocation of MEGs at the four implementation stages presented in Figure 4.10 was
tested within the Preesm rapid prototyping framework.

Memory Allocators

For each stage, the following allocation algorithms were tested to allocate the MEGs in
memory:

� First-Fit (FF) algorithm: the FF algorithm consists of allocating each mem-
ory object to the first available space in memory that is sufficiently large to store
it [Joh73].

� Best-Fit (BF) algorithm: The BF algorithm works similarly to the FF algorithm
but allocates each memory object to the available space in memory whose size is the
closest to the size of the allocated object [Joh73].

� Placement algorithm: The placement algorithm was introduced by DeGreef et al.
in [DGCDM97]. In the placement algorithm, each memory object is associated to an
offset that is set to 0 at the beginning of the allocation process. The memory objects
to allocate are stored in a list that is sorted according to the offsets associated to
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the memory objects. Iteratively, the placement algorithm checks if the head memory
object of the list can be allocated in memory at its associated offset. If no exclusion
forbids this allocation, the memory object is allocated and removed from the sorted
list. Otherwise, the offset associated to the memory object is updated to the first
valid offset possible, and the memory object is put back in the sorted list.

The FF and the BF algorithms are online allocators that allocate memory objects in
order in which they are received. Three ordering techniques were tested to feed these
online allocators:

� Largest-first order: In the largest-first order, memory objects are allocated in
decreasing order of size.

� Stable-sets order: The stable-sets order is inspired by interval coloring tech-
niques [BAH09]. The memory objects are first grouped into stables: sets of memory
objects within which no pair of objects exclude each other. Then, one by one, the
stables are allocated in the largest-first order by the online allocator. To compose
the stables, heuristic Algorithm 4.2 is used to find cliques in the complement graph
of the MEG. Indeed, as presented in [KS02], if a set of memory objects forms a clique
in the complement graph of a MEG, this same set of memory objects forms a stable
in this MEG.

� Scheduling order: Possible only for post-scheduling and timed allocations, the
allocation of the memory objects in scheduling order consists of feeding the online
allocators with memory objects sorted in order in which they are created in the
schedule. Using the scheduling order is equivalent to using an online allocator at
runtime.

Test Graphs

The different allocation algorithms and implementation stages were tested on a set of
MEGs derived from IBSDF and SDF graphs of real applications. Table 4.5 shows the
characteristics of the tested graphs.

Single-rate SDF graph Memory Exclusion Graph (MEG)

Nr Graph Actors Fifos |M | δpre δsch δtim Bmax

1 MPEG4 Enc. 74 143 143 0.80 0.60 0.50 2475 kB
2 H263 Enc.∗ 207 402 603 0.98 0.76 0.50 5115 kB
3 MP3 Dec.∗ 33 44 71 0.64 0.55 0.31 354 kB
4 PRACH 308 897 897 0.94 0.67 0.56 4413 kB
5 Sample Rate 624 1556 1289 0.50 0.22 0.03 1.601 kB

*: Actors of this graph have working memory

Table 4.5: Properties of the test graphs

The first three entries of this table, namely MPEG4 Enc., H263 Enc., and MP3 Dec.,
model standard multimedia encoding and decoding applications. The Sample Rate graph
models an audio sample rate converter. The MPEG4 Enc., H263 Enc. and Sample
Rate graphs were taken from the SDF3 example database [Ele13]. The PRACH graph
models the preamble detection part of the LTE telecommunication standard [PAPN12].
Information on the working memory of actors was only available for the MPEG4 Enc. and
the MP3 Dec. graphs. In Table 4.5, columns δpre, δsch, and δtim respectively correspond
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to the density of the MEG in the pre-scheduling, post-scheduling, and timed stages. Bmax

gives the upper bound for the memory allocation of the applications.

To complete these results, the allocation algorithms were also tested on 45 random
SDF graphs. The random SDF graphs were randomly generated with SDF3 tool [Ele13].
The corresponding 45 MEGs cover a wide range of complexities with a number of memory
objects |M | ranging from 47 to 2208, and exclusion densities δ ranging from 0.03 to 0.98.

Experimental Results

For each implementation stage, a table presents the performance of the allocators for each
application. Performance is expressed as a percentage corresponding to the amount of
memory allocated by the algorithm compared to the smallest amount of memory allocated
by all algorithms. So, 0% means that the algorithm determined the best allocation. A
positive percentage value indicates the degree of excess memory allocated by an allocator
compared to the value of the Best Found column. The Bmin column gives the lower
memory bound found using the heuristic presented in Section 4.3.

For each implementation stage, a box-plot diagram presents performance statistics
obtained with all 50 graphs. For each allocator, the following information is given: the
leftmost and rightmost marks are the best and worst performance achieved by the allocator,
left and right sides of the rectangle respectively are inferior and superior to 75% of the 50
measured performances, and the middle mark of the rectangle is the median value of the
50 measured performances.

Pre-Scheduling Allocation

First-Fit (FF) Best-Fit (BF)

Nr Best Bmin LF SS LF SS PA

1 988470 -3% +3% +15% 0% +15% +13%
2 2979776 0% +1% +0% +1% +5% 0%
3 144384 -3% +2% +5% +2% +5% 0%
4 2097152 0% 0% +5% +1% +5% +29%
5 347 -17% 0% +8% +4% +18% +18%

LF: Algorithm fed in largest-first order SS: Algorithm fed in stable-sets order

PA: Placement Algorithm from [DGCDM97]

Table 4.6: Pre-scheduling memory allocation

Performances obtained for pre-scheduling allocation are displayed in Table 4.6 and
Figure 4.15. These results clearly show that the FF algorithm fed in the largest-first
order tends to generate a smaller footprint than the other algorithms. Indeed, the FF-LF
algorithm finds the best allocation for 29 of the 50 tested graphs. When it fails to find
the best solution, it assigns only 1.35% more memory, on average, than the Best Found
allocation. Moreover, the solution of the FF-LF is 4% superior, on average, to the lower
bound Bmin.

Since the pre-scheduling allocation is performed at compile-time, it is possible to ex-
ecute all allocation algorithms and keep only the best results. Indeed, in the 50 tests,
the BF allocator fed in largest-first order found the best solution for 13 graphs and the
placement algorithm for 12 graphs.
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Figure 4.15: Performance of pre-scheduling allocation algorithms for 50 graphs.

Post-scheduling Allocation

First-Fit (FF) Best-Fit (BF)

Nr Best Bmin LF SS Sch. LF SS Sch. PA

1 861726 -3% 0% +18% +6% +3% +18% +6% +9%
2 1570240 -37% +0% 0% +5% +2% 0% +17% 0%
3 117184 -1% +8% +8% +34% +8% +8% +55% 0%
4 1365906 -16% 0% +19% +51% +11% +26% +51% +13%
5 185 -2% +1% +2% 0% 0% +2% +4% +5%

LF: Algorithm fed in largest-first Order SS: Algorithm fed in stable-sets order

PA: Placement Algorithm from [DGCDM97] Sch.: Algorithm fed in Scheduling Order

Table 4.7: Post-scheduling memory allocation

Table 4.7 and Figure 4.16 present the performance obtained for post-scheduling allo-
cation on a multicore architecture with 3 cores. Because the 50 graphs have very different
degrees of parallelism, mapping them on the same number of cores decreases their paral-
lelism differently and results in a wide variety of test cases.

On average, updating MEGs with scheduling information reduces their exclusion den-
sity by 39% which in turns leads to a diminution of the amount of allocated memory
by 32%.
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Figure 4.16: Performance of post-scheduling allocation algorithms for 50 graphs.

As for pre-scheduling allocation, the FF-LF is the most efficient algorithm as it finds
the best allocation for 29 of the 50 graphs. For the 21 remaining graphs, it allocates
on average 1.74% more memory than the Best Found solution. Although the average
performance of algorithms fed in scheduling order is better than those of the placement
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algorithm or the stable-sets order, these algorithms generate allocations up to 56% larger
than the best solution. Contrary to other allocators, these online algorithms do not exploit
global knowledge of all memory objects and simply allocate them in the raw scheduling
order. This allocation order sometimes results in a greater fragmentation of the memory,
which in turn leads to larger memory footprints.

Timed allocation

Performances obtained for timed allocation are presented in Table 4.8 and Figure 4.17. The
FF-LF allocator is once again the most efficient algorithm as it finds the best allocation
for 31 of the 50 graphs, including all 5 real applications.

First-Fit (FF) Best-Fit (BF)

Nr Best Bmin LF SS Sch. LF SS Sch. PA

1 760374 -0% 0% +13% +13% +0% +13% +13% +13%
2 1243072 -0% 0% +2% +28% +10% +3% +48% +3%
3 111008 -3% 0% +8% +3% 0% +8% +3% +1%
4 1231968 -8% 0% +9% +17% +14% +13% +22% +26%
5 41 -10% 0% +7% +5% +5% +7% +2% +17%

LF: Algorithm fed in largest-first Order SS: Algorithm fed in stable-sets order

PA: Placement Algorithm from [DGCDM97] Sch.: Algorithm fed in Scheduling Order

Table 4.8: Timed memory allocation

The online allocators fed in scheduling order assign more memory than the FF-LF
algorithm for 38 graphs with up to 48% more memory being assigned. In the timed stage,
allocators fed in scheduling order assign only 7% less memory, on average, than the FF-
LF algorithm in the post-scheduling stage. In 5 cases, including the PRACH application,
online allocators assign even more memory in the timed stage than which was allocated by
the FF-LF algorithm in the post-scheduling stage. Considering the O(nlogn) complexity
of these online allocators [Joh73], where n is the number of allocated memory objects,
using the post-scheduling allocation is an interesting alternative. Indeed, using post-
scheduling allocation removes the computation overhead of dynamic online allocation while
guaranteeing a fixed memory footprint slightly superior to that which could be achieved
dynamically. This problem is illustrated in the case study presented in Chapter 6.
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FF-Sch.

PA

FF-SS

BF-SS

Figure 4.17: Performance of timed allocation algorithms for 50 graphs.

On average, the Best Found timed allocation uses only 11% less memory than the
post-scheduling allocations and only 2.7% more memory than the minimum bound Bmin.
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Considering the small gain in footprint and the loss of flexibility induced by this imple-
mentation stage (Section 4.4.2), timed allocation appears to be a good choice only for
systems with restricted memory resources where flexibility is not important. However, for
systems where the memory footprint is important, but scheduling flexibility is also desired,
the post-scheduling allocation offers the best trade-off. Finally, for systems where a strong
flexibility is essential, the pre-scheduling allocation offers all the required parallelism while
ensuring a fixed memory footprint.

4.5 Discussion

4.5.1 Approach Limitations

Using a MEG produced by Algorithm 4.1 as a basis for the memory analysis and opti-
mization techniques presents some limitations:

� MEG-based optimization techniques do not allow the concurrent execu-
tion of successive graph iterations. When building a MEG, the lifetime of
memory objects is bounded by the span of a graph iteration. Indeed, one of the ob-
jectives of the transformation of the original IBSDF graph into a DAG is to isolate
one iteration of the algorithm. Since MEGs are built from DAGs, the precedence
relationships causing exclusions between memory objects are thus bounded by the
span of a DAG iteration. To make-up for this limitation, as presented in [LM87b],
delays can be used in a dataflow graph as a way to pipeline an application. By
doing so, the developer can divide a graph into several unconnected graphs whose
iterations can be executed in parallel, thus improving the application throughput.
From the memory perspective, pipelining a graph will increase the graph parallelism
and consequently the number of exclusions in its MEG and the amount of memory
required for its allocation.

� Transformation of an SDF graph into its equivalent single-rate SDF can
be exponential in terms of number of actors [PBL95]. As a consequence, the
proposed analysis and allocation technique should only be applied to SDF graphs
with a relatively coarse grained description: graphs whose single-rate equivalent have
at most hundreds of actors and thousands of single-rate Fifos. Despite this limita-
tion, the single-rate transformation has proven to be efficient for many real appli-
cations, notably in the telecommunication [PAPN12] and the multimedia [DPNA13]
domains.

4.5.2 Comparison with a Fifo dimensioning technique

As presented in Chapter 3, Fifo dimensioning is currently the most widely used technique
to minimize the memory footprint of applications modeled with a dataflow graph [Par95,
SGB06, MB10]. Fifo dimensioning techniques consist of finding a schedule of the appli-
cation that minimizes the memory space allocated to each Fifo of the SDF graph. The
main drawback of Fifo dimensioning techniques is that, contrary to the MEG allocation
technique, they do not consider memory reuse since each Fifo is allocated in a dedicated
memory space.

Table 4.9 compares allocation results of a Fifo dimensioning algorithm with the reuse
technique based on a MEG allocation for 4 application graphs. The Fifo dimensioning
technique tested is presented in [SGB06] and its implementation is part of the SDF For
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Free (SDF3) framework [Ele13]. The stereo graph is the application studied in Chapter 6.
The H263 Enc. graph is a video encoder taken from the SDF3 database [Ele13]. The
sobel and chaotic graphs are a sobel video filtering application and a generator of chaotic
sequences inspired by [EAN13].

Graph Upper Bound1 Pre-sched.1 Post-sched.1 Fifo dim.

stereo +109% +20% -15% 0%
h263 enc. +116% -1% -17% 0%

sobel +46% -43% -43% 0%
chaotic +222% +77% +33% 0%

1: Percentages are relative to the Fifo dimensioning result.

Table 4.9: Comparison of MEG allocation results with F ifo dimensioning technique from
SDF3 [Ele13].

Results presented in Table 4.9 consist of: the upper bound for the allocation of the
MEG in memory (Section 4.3), the MEG allocation result in the pre-scheduling and post-
scheduling implementation stages, and the result of the Fifo dimensioning technique. For
each application, the results are expressed as percentages relative to the Fifo dimensioning
case which is marked with 0%.

For the first 3 graphs, the post-scheduling scenario of MEG allocation offers the best
results, with memory footprints up to 43% lower than the Fifo dimensioning technique.
The Fifo dimensioning technique itself offers memory footprints on average 51% lower
than the computed upper bound.

In Table 4.9, the Fifo dimensioning technique provides the best result for the chaotic
graph, with 25% less memory than the post-scheduling memory allocation of the MEG.
This result reveals two current limitations of the MEG allocation.

� Bad handling of fork/join operations. During the single-rate transformation
presented in Section 4.2, special fork and join actors are introduced to replace Fifos
with unequal production and consumption rates. These actors are responsible for di-
viding a memory object produced (or consumed) by an actor into subparts consumed
(or produced) by other actors. Since the divided memory object and its subparts
are input and output buffers of a single special actor, they exclude each other in the
MEG and their allocation requires twice the size of the divided memory object in
memory. This issue is not present in the Fifo dimensioning technique since buffer
division is naturally implemented by successive data token reads in Fifos. The nu-
merous fork and join operations of the single-rate chaotic graph are thus responsible
for its higher memory footprint. A solution to this issue is presented in Chapter 5.

� Absence of memory-aware scheduling process. As presented in Chapter 3,
Fifo dimensioning techniques consist of finding the schedule of the application that
minimizes the memory space allocated to each Fifo of the graph. In Preesm, the
aim of the scheduling process is to minimize the latency of the schedule, independent
of memory allocation concerns. This policy often results in bad choices from the
memory perspective, as is the case for the chaotic application where several actors
producing large memory objects are executed before any of the large memory objects
are consumed. With Fifo dimensioning techniques, the consuming actor of the large
memory object would be scheduled immediately after its producer.

In this chapter, a new method was introduced to study and optimize the memory
allocation of applications modeled with IBSDF graphs. In this method, minimization of
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the memory footprint is achieved by exploiting the memory reuse opportunities derived
from dataflow graphs. In the next chapter, an abstract model is introduced to specify
memory reuse opportunities between ports of an actor, and enable a further reduction of
the memory footprint of applications.
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CHAPTER 5

Actor Memory Optimization: Studying Data Access to Minimize
Memory Footprint

5.1 Introduction

As presented in Chapter 2, dataflow MoCs are high-level Models of Computation (MoCs)
that do not specify the internal behavior of actors. Hence, memory optimization tech-
niques presented in Chapter 4 only rely on an analysis of the high-level data dependencies
specified in IBSDF graphs. The memory reuse opportunities exploited by these optimiza-
tion techniques is limited by the high abstraction level considered and by the lack of
information about the internal data dependencies of actors.

In this chapter, a new set of annotations for dataflow graphs is introduced to allow
the developer of an application to specify memory reuse opportunities between input and
output buffers of an actor. Section 5.2 details the numerous memory reuse opportunities
that can be revealed by considering internal data dependencies of dataflow actors. Then
Section 5.3 presents related work on this topic. The new graph annotations enabling
the description of actor-level memory reuse opportunities are introduced in Section 5.4.
Finally, Section 5.5 shows how these new memory reuse opportunities can be exploited to
reduce the memory footprint allocated for IBSDF graphs.

5.2 Motivation: Memory Reuse Opportunities Offered by
Actor Internal Behavior

A major objective of the Preesm rapid prototyping framework is to generate executable
code for shared memory MPSoCs from an IBSDF model of applications. To achieve
this goal, Preesm automatically performs the mapping and scheduling of the IBSDF
actor firings and the memory allocation of the IBSDF Fifos (Section 3.3). Then, the
code generation task of Preesm translates mapping and scheduling choices and memory
allocation into compilable code for the targeted architecture.

In the generated code, the firing of an actor on a processing element of the target
architecture is translated into a call to the function implementing the actor behavior for
this processing element. To enable the correct execution of actors, each function call must
be parameterized with references to the memory allocated for its inputs and outputs.
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Listing 5.1 gives an example of a function prototype that can be called in the generated C
code. As shown in this example, in C code, references to the memory allocated for input
and output buffers are given by pointers.

void sobel(int height , int width , char *in, char *out);

Listing 5.1: Sobel actor prototype in C code

To simplify the description of the internal behavior of actors, and for performance
reasons, it is convenient to assume that the memory allocated to each input or output
buffer of an actor constitutes a contiguous memory space. By using contiguous memory
spaces, the developer of an application avoids the multiple jumps in memory that would
have a negative impact on the system performance. By doing so, the developer also
avoids the writing of complex pointer operations that would decrease the source code
readability [CDG+14].

From the Preesm framework perspective, actors firings are thus seen as function calls
accessing indivisible buffers. As presented in Chapter 4, since Preesm has no knowledge
of the internal behavior of actors, the worst-case scenario must be assumed. The memory
allocated for input and output buffers of actors is thus reserved for the complete execution
time of actors and each input and output buffer must be allocated in a separate memory
space.

To allow memory reuse between input and output buffers of actors, new information
must be provided to Preesm about the internal behavior of actors and how they access
the data contained in their input and output buffers. Next section presents the memory
reuse opportunities offered by IBSDF graphs through the example of an image processing
application presented in Figure 5.1

Read
RGB

w*(h+2*n) w*hw*h w*hw*h/nw*(h/n+2)w*h3*w*h

RGB2
Gray

Sobel Median DisplaySplit

Figure 5.1: Image processing SDF graph

5.2.1 Actors Inserted During Graph Transformations

As presented in [PAPN12] and in Section 4.2.1, a preliminary step to the mapping/schedul-
ing process and the allocation process is the application of a set of transformations to the
IBSDF graph of an application. As presented in Section 3.3.2, the hierarchy flattening and
the single-rate transformations are successively applied to expose the application charac-
teristics implicitly embedded in its IBSDF model.

During these graph transformations, new actors are introduced to ensure the equiva-
lence with the original IBSDF graph. Figure 5.2 illustrates the new Fork and Join actors
introduced during the single-rate transformation of the SDF graph of Figure 5.1.

Figure 5.3 illustrates the Memory Exclusion Graph (MEG) derived from the input and
output buffers of the actors introduced during graph transformations.

Fork/Join Actors

The MEG associated to a Fork actor is illustrated in Figure 5.3(d). It is composed of
n + 1 memory objects, where n is the number of Fifos connected to the output ports
of the actor. Since these memory objects form a clique (Definition 4.3.2), they must be
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Figure 5.2: Single-rate SDF graph derived from the SDF graph of Figure 5.1.

allocated in non-overlapping memory spaces, which require twice as much memory as the
size of the input buffer.

As illustrated in Figure 5.3(a), the purpose of a Fork actor is to distribute the tokens
received on its input port on the Fifos connected to its output ports. Hence, the internal
behavior of the Fork actor simply consists of copying a part of the data from its input
buffer to each of its output buffers.

An obvious way to take advantage of this internal behavior is to force the allocation
of output buffers directly in the corresponding subranges of the input buffer memory.
Applying this optimization will result in a reduction by 50% of the memory footprint of
Fork actors.

A similar optimization is possible with Join actors, by allocating input buffers directly
in corresponding subranges of the output buffer memory.

Broadcast Actors

The MEG associated to a Broadcast actor is illustrated in Figure 5.3(e). It is composed
of n + 1 memory objects, where n is the number of Fifos connected to the output ports
of the actor. Since these memory objects form a clique, they must be allocated in non-
overlapping memory spaces, which require n+ 1 times as much memory as the size of the
input buffer.

As illustrated in Figure 5.3(b), the purpose of a Broadcast actor is to produce a copy
of the tokens received on its input port on each Fifo connected to its output ports. Hence,
the internal behavior of the Broadcast actor consists of copying all the data from its input
buffer into each output buffer.
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Figure 5.3: Automatically inserted actors and corresponding MEG. Diagram within actors repre-
sent the copy operations realized by the actor.
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To take advantage of this internal behavior the allocation of output buffers can be
matched directly in the input buffer memory. By doing so, the memory footprint of
Broadcast actors is divided by a factor n+ 1.

The allocation of the output buffers of a Broadcast actor directly within the input
buffer requires additional precautions. Indeed, if this allocation is used, all actors receiving
a copy of the broadcasted buffer will access the same memory space. To ensure a correct
functioning of the application, the developer must make sure that actors accessing the
broadcasted data do not write anything in the shared memory space. If such an actor
exists, it must be given a private copy of the broadcasted data, allocated in a distinct
memory space.

Roundbuffer Actors

The MEG associated to a Roundbuffer actor is illustrated in Figure 5.3(f). Like the MEG
of the Broadcast actor, its allocation requires n+ 1 times as much memory as the size of
the input buffer, where n is the number of input ports of the actor.

As illustrated in Figure 5.3(c), the purpose of a Roundbuffer actor is to forward on its
output port only the last tokens received on its input ports. Hence, the internal behavior
of the Roundbuffer actor consists of copying the last tokens consumed on its input buffers
to its output buffer.

To take advantage of this internal behavior the allocation of the last input buffer can
be matched directly in the output buffer memory. Moreover, since only the last data to-
kens consumed by a Roundbuffer actor are forwarded to the output port, all other data
tokens consumed by this actor are useless. Since the content of these buffers is not used,
they can be allocated in overlapping memory spaces. By doing so, the memory footprint
of a Roundbuffer actor can be reduced to a footprint only twice as large as the size of the
output buffer.

Besides reducing the memory footprint of the Fork, Join, Broadcast, and Roundbuffer
actors, these optimizations will also improve the performance of applications since copying
data from input to output buffers is no longer required. The memory reuse opportunities
presented in this section can be applied systematically since the concerned actors are
“special” actors whose behaviors are not defined by the application developer. The next
section presents memory reuse opportunities resulting from the internal behavior of user-
defined actors.

5.2.2 Actors with User-Defined Behavior

The description of the internal behavior of a dataflow actor is not part of the SDF MoC.
Consequently, many SDF programming frameworks have no knowledge of the internal
behavior of actors [PAPN12, Ele13].

Last section showed that advanced memory optimization is possible for input and
output buffers of “special” actors whose behaviors are not user-defined. Although their
behavior is defined by the application developer, user-defined actors also present internal
behaviors that favor the use of advanced memory reuse techniques.

In-place Algorithms

In-place algorithms is a first example of data access pattern that a developer might want
to use to optimize the memory footprint of his application [HKB05].
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An in-place algorithm is an algorithm that can write its results directly in its input
buffer during its execution. Beside the input buffer, the execution of an in-place algorithm
requires a small constant working memory whose size is independent of the size of the
processed data. Examples of in-place signal processing algorithms can be found in the
literature such as FFT algorithms [BE81], and sorting algorithms [GG11].

Line Buffer 
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Input/Output
(72 bytes)
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Line n-1

Line n-1

Line n
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Figure 5.4: Median actor internal behavior with in-place results.

Figure 5.4 illustrates the in-place behavior of the Median actor from the SDF graph
of Figure 5.2. The Median actor purpose is to replace each pixel with the median value
of its 3x3 pixels neighborhood. Its implementation is based on a sliding-window of 3x3
pixels that successively scans the lines of the filtered image [Tex08].

To compute the filtered value of a pixel, the median filter must keep in memory the
original values of the 8 pixels around it. If the result of the filter is directly written in the
original image, the algorithm behavior will be corrupted since the new value assigned to
a pixel will be used for the computation of its neighbor pixels.

By buffering two pixel lines of the input image, the Median actor can be implemented
in such a way that its results are written directly in its input buffer. As illustrated in
Figure 5.4, to compute the value of a pixel, 3 pixels are read from the original image
and 6 pixels are read from the line buffer. The line buffer stores the original value of
pixels that have been overwritten in the input image by the application of the median
filter on previous lines of pixels. It is important to note that the Median actor is not an
in-place algorithm in the strict sense as it requires a working memory (i.e. the line buffer)
proportional to the width of the processed input frame.

Mergeable Input and Output Buffers

Information on the data dependencies between the input and output buffers of an actor
can be used to reveal the disjoint lifetimes of subranges of the buffers [DGCDM97].

Data dependencies can be used to identify when a subrange of an input buffer is last
read, and when an output buffer is first written. If an input subrange is last read before an
output buffer is first written, this two subranges might be allocated in the same memory
space. Indeed, in such a case, corrupting the input buffer by writing the result into it
is not an issue since this input will no longer be used. An allocation technique taking
advantage of the data dependencies exposed by an automatic analysis of application data
access is presented in [DGCDM97].

Figure 5.5(a) illustrates the data dependencies of the RGB2Gray actor for a 4x4 pixels
image. In this example, 3 input bytes are read to produce each output byte. Assuming
that a raster scan of the input pixels is used, the input bytes will never be read again and
the result can be stored directly in the input. Hence, as illustrated in Figure 5.5(a), the
16 output bytes can be stored in a contiguous subrange of the input buffer. The chosen
subrange must ensure that no output byte overwrites an input byte that has not yet been
read. In the example, the 16 bytes of the Gray output buffer are stored between the [2; 17]
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Figure 5.5: Memory reuse opportunities for custom actors.

subrange of the RGB input buffer. Another valid solution would be to store these 16 bytes
in the [0; 15] subrange.

A special case of mergeable buffers is the Split actor presented in Figure 5.5(b). The
purpose of the Split actor is to divide an input image into several overlapping slices. In
this example, each slice has a 1-pixel line overlap with the previous and the next slices.
Like special actors (Fork, Join, Broadcast, Roundbuffer), output values of the Split actors
are simple copies of the inputs. Provided that the consumer of the slices do not write
within the slices memory, slices can be allocated directly within the input memory. As
illustrated in Figure 5.5(b), border slices of the image may require the allocation of extra
lines of pixel. If each slice is allocated in its corresponding contiguous memory space of the
input buffer, then these extra lines will be allocated before and after the memory allocated
for the input buffer.

Next section presents related work on memory optimization techniques taking advantage
of application data access and actor internal behavior. Then, Sections 5.4 and 5.5 present
a new generic technique to enable input and output buffers allocation optimization for any
“special” and user-defined actors.

5.3 Related Work

The analysis of data dependencies to optimize the memory allocation of an application has
been an important research subject for many years and has been studied at many levels
of abstraction.

5.3.1 Compiler optimization

Data dependencies analysis is an important optimization process of modern compilers.
This optimization consists of automatically parsing the source code of an application to
identify data accesses and expose variables with disjoint lifetimes. Graph coloring [QC93]
and clique partitioning [KS02] techniques are then used to perform the memory allocation
of these variables with a minimal memory footprint. Such approaches have been widely
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used to optimize the memory allocation for procedural programming languages such as
C [DGCDM97] and Fortran [Fab79].

For example, in [DGCDM97], De Greef et al. expose the order in which array elements
are last read and first written in a C program. Using this information, they propose an al-
location algorithm that partially merges the memory allocated for arrays with overlapping
lifetimes.

Keywords have been introduced in programming languages to specify explicitly the
type of access for a given variable or array. For example, the const keyword in C or
the final keyword in Java both specify that the associated primitive object will be read
but never written. There exists other keywords such as the restrict or the volatile

keywords in C language [Mag05]. Using these keywords, the developer of an application
gives information to the compiler that can not be deduced from code analysis because of
complex nested function calls or call to external libraries. This information is used by the
compiler to minimize the allocated memory footprint of applications.

5.3.2 Dataflow Optimization

In most SDF programming frameworks [Ele13, SWC+11, Rau06], memory optimization
only consists of graph-level optimization of the memory allocated to the Fifos. Indeed,
the internal behavior of actors is often unknown to the SDF frameworks and cannot be
exploited for optimization purposes. However, separate solutions to the issues presented
in Section 5.2 can be found in the literature.

Several solutions to the Broadcast actor issue can be found in the literature. Non-
destructive reads, or Fifo peeking, is a well-known way to read data tokens without
popping them from Fifos, hence avoiding the need for Broadcast actors [FWM07]. Unfor-
tunately, this technique cannot be applied without considerably modifying the underlying
SDF MoC. Indeed, using Fifo peeking means that an actor does not have the same behav-
ior for all firings. Otherwise, tokens of peeked Fifos would never be consumed and would
accumulate indefinitely. Another solution to the Broadcast issue is to use a Broadcast
F ifo [MFK+11]. Broadcast F ifos are single-writer, multiple-readers Fifos that discard
data tokens only when all readers have consumed them. The drawbacks of this solution is
that it requires a modification of the SDF MoC semantics but only solves the Broadcast
issue.

In [CDG+14], Cudennec et al. propose a compile-time optimization technique for
CSDF graphs that enables access to a shared buffer for the producers and consumers
of special actors (Fork, Join, Broadcast, ...) called system agents in this publication.
Contrary to the method presented in this chapter, this technique does no allow buffer
merging for input and output buffers of actors with a used-defined behavior.

The allocation of input and output buffers of an actor in overlapping memory spaces
has been studied in [MB04, HKB05]. In [MB04], Murthy and Bhattacharyya introduce
an annotation system for SDF actors to specify a relation between the number of data
tokens produced and consumed for a pair of input and output buffers of an actor. This
information is then used jointly with scheduling information to enable the merging of the
annotated buffers. In [HKB05], another annotation system is introduced to specify buffers
that may be used for the in-place execution of actors. The SynDEx framework also provides
supports for in-place computations through the use of input/output ports [FGG+13].

The advantage of these annotation-based techniques is that they do not require any
modification of the underlying SDF MoC. Even though to fully benefit from these an-
notations, the SDF Fifos must be replaced with buffers, a regular SDF graph can still
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be obtained by ignoring these annotations. The main drawback of these two annotation
systems is that they only allow pairwise merging of input and output buffers. Hence, these
annotation systems are unable to model the behavior of Fork, Broadcast, or Split actors
that require merging several output buffers into a single input. Moreover, the optimization
technique presented in [MB04] relies on a single-core scheduling of the application graph.
The application of this optimization technique to multicore architectures and schedules is
not straightforward.

Like the existing annotation systems, the buffer merging technique presented in follow-
ing sections does not require any modification of the underlying MoC. Contrary to existing
techniques, the buffer merging technique can be used for any number of input and output
buffers.

5.4 Abstract Description of Actor Internal Behavior

To enable the merging of input and output buffers of an SDF actor, development tools
must be given information on their internal behavior. Besides the application SDF graph,
the memory optimization technique presented in this chapter relies on two additional
inputs abstracting the internal behavior of actors: a script-based specification of mergeable
buffers, and a set of annotations of the ports of the SDF actors. Advantages of this
technique are:

� No impact on SDF graphs: Annotating an application with these new inputs does
not require any modification of the underlying SDF graph. These new optional inputs
are only used by the development framework as part of a compile time optimization
process. If an annotated application were to be implemented on a target that does
not support these optimizations, these annotations could simply be ignored without
any impact on the application behavior. Conversely, the proposed annotations are
not indispensable for the description of a functional application. Annotations can
be added to an application description only in late stages of development, when
optimization of the application memory footprint is needed.

� Independence from the host language: The host language is the language used
to specify the internal behavior of actors. The proposed optimization technique is
not based on an automated analysis of the host code of actors. Instead, a script-
based description of the mergeable buffers is provided by the application developer.
This abstract description can be suitable for several implementations of a given actor
in different host languages.

� Semi-automated graph annotation: Since the behavior of some “special” actors
is predefined (cf. Section 5.2.1), annotations associated to these actors can be added
automatically during the graph transformations.

5.4.1 Matching Input and Output Buffers with Memory Scripts

The first input used to abstract the internal behavior of actors is a script-based specification
of the mergeable input and output buffers of an actor.

As presented in Section 5.2, many actors offer opportunities for reusing memory allo-
cated to input buffers for the allocation of output buffers. The objective of memory scripts
is to allow the application developer to specify directly which input buffer can be merged
with which output buffer, and what the relative position of the merged buffers is. To this
purpose, each actor of the SDF graph can be associated with a memory script.
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The memory scripts are executed by the development framework at compile time. The
script inputs are similar to those provided for the execution of actors: a list of the input
buffers of the actor, a list of the output buffers of the actor, and a list of parameters in-
fluencing the internal behavior of actors. The script execution produces a list of matches
between the input and output buffers of the actor. Each match corresponds to the asso-
ciation of a subrange of memory from an input buffer with a subrange of memory from
an output buffer. Applying a match consists of merging the memory allocated to the two
subranges in a unique address range.

The following definitions give the formal notations associated to the buffers and matches
concepts used in this chapter.

Definition 5.4.1 (Buffers). Considering an actor a ∈ A of an SDF graph G = 〈A,F 〉:
Ba is the set of input and output buffers of actor a. Bin

a ⊆ Ba and Bout
a ⊆ Ba are the

sets of input and output buffers respectively associated to ports P in
data and P out

data of actor a.
Each buffer b ∈ Ba is defined as a tuple b = 〈rbytes, size〉 where:

� rbytes is the range of bytes associated with buffer b ∈ Ba. By definition rbytes =
[start, end[ with start, end ∈ Z and start < end. The default value of rbytes for
buffer b ∈ Ba associated to port p ∈ P in

data ∪ P out
data is b.rbytes = [0, rate(p)[.

� size: B → N∗ is the amount of memory needed to allocate a given buffer in memory.
The size of a buffer b ∈ Ba is deduced from the range of bytes b.rbytes associated to
this buffer: size(b) := b.rbytes.end− b.rbytes.start.

Definition 5.4.2 (Matches). Considering an actor a ∈ A of an SDF graph G = 〈A,F 〉:
Ma is the set of matches associated to buffers Ba of actor a. Each match m ∈ Ma is
defined as a tuple m := 〈bsrc, rsrc,bdst, rdst〉 where:

� bsrc,bdst ∈ Ba are the source and the destination buffers of match m ∈Ma.

� rsrc and rdst are the matched subranges of bytes from buffers bsrc and bdst.

It is important to note that a match m ∈ M can be applied in both directions: the desti-
nation subrange m.rdst can be merged into the source buffer m.bsrc or the source subrange
m.rsrc can be merged into the destination buffer m.bdst.

Examples

Figures 5.6 to 5.8 present examples of memory scripts and illustrate the matches resulting
from an execution of these scripts.

The memory script of Figure 5.6(a) is a generic script supporting Fork actors with any
number of output buffers. The only condition for this script to run correctly is that the
sum of the sizes of output buffers (

∑
i=1..n size(Outi)) equals the size of the input buffer

size(In). As illustrated in Figure 5.6(b), the execution of this script results in matching
the output buffers of the Fork actor one after the other within the input buffer.

For clarity, memory scripts presented in Figures 5.6(a), 5.7(a), and 5.8(a) are written
in pseudo-code. In Preesm, memory scripts are written with a dynamically interpretable
derivative of the Java language called BeanShell [Nie14]. Listing 5.2 presents the BeanShell
memory script for the Fork actor.
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// Input Buffer: In

// Output Buffers: Out1,...,Outn
var inIdx = 0 ;
for i← 1 to n do

srcRange← [inIdx, inIdx+ size(Outi)];
dstRange← [0, size(Outi)];
Match In.srcRange with Outi.dstRange;
inIdx← inIdx+ size(Outi);

end

(a) Fork memory script (pseudo-code)
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(b) Fork matches example

Figure 5.6: Memory script for Fork actors

inIdx = 0;

for(output : outputs){

outSize = output.getNbTokens ();

inputs.get (0).matchWith(inIdx ,output ,0,outSize);

inIdx += outSize;

}

Listing 5.2: Fork actor memory script in BeanShell

Figure 5.7(a) presents the memory script that can be used for Broadcast actors with
any number of output buffers. For a correct execution of this memory script, all output
buffers must have the same size as the input buffer. As illustrated in Figure 5.7(b), the
execution of this memory script results in matching all output buffers at the beginning
of the input buffer. The source ranges rsrc of all the matches produced by the script
execution are thus identical.

// Input Buffer: In

// Output Buffers: Out1,...,Outn
range← [0, size(In)[;
for i← 1 to n do

Match In.range with Outi.range;
end

(a) Broadcast memory script (pseudo-code)
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(b) Broadcast matches example

Figure 5.7: Memory script for Broadcast actors

The memory script associated to user-defined Split actors is presented in Figure 5.8.
This memory script is more complex than the previous ones as its execution requires a set
of parameters in addition to the list of input and output buffers. The h, w, overlap, and
nbslice parameters correspond respectively to the height and width of the sliced image, to
the number of pixel lines overlapping between slices, and to the number of slices produced.
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Figure 5.8(b) illustrates the matches obtained for h = 9, w = 8, overlap = 1, and nbslice =
3. The output buffer of the Split actor is divided into three subranges of equal size
(h/nbslice + 2 ∗ overlap) ∗ w. Each output subrange is matched in the corresponding
subrange of the input buffer, thus creating overlaps between the matched input subranges.
It is interesting to note that the first and the last subranges of the output buffer are
partially matched outside the boundaries of the input buffer byte range rbytes = [0, 72[.

// Input Buffer: In

// Output Buffers: Out

// Parameters: h, w, overlap, nbslice
hslice ← h/nbslice + 2 ∗ overlap;
sizeslice ← hslice ∗ w;
for i← 0 to nbslice − 1 do

srcIdx← (i ∗ h/nbslice − overlap) ∗ w;
srcRange← [srcIdx, srcIdx+ sizeslice];
dstRange← [i ∗ sizeslice, (i+ 1) ∗ sizeslice];
Match In.srcRange with Out.dstRange;

end

(a) Split memory script (pseudo-code)
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(b) Split matches example

Figure 5.8: Memory script for Split actors

These 3 examples illustrate the great expressiveness of memory scripts that allows
the specification of complex matching patterns with only a few script lines. Indeed, as
illustrated in these examples, it is possible to match a single buffer with several other
buffers, to match several buffers in overlapping subranges, to match contiguous subranges
into non-contiguous ranges, and to match subranges partially outside the range of bytes
of another buffer.

Matching Rules

The matches resulting from the memory script execution serve as an input to the optimiza-
tion process presented in Section 5.5. Although memory scripts offer a great liberty for
defining custom matching patterns, a set of rules must be respected to ensure the correct
behavior of an application.

R1. Both subranges rsrc and rdst of a match m ∈ Ma must cover the same number of
bytes: rdst.end− rdst.start = rsrc.end− rsrc.start.

R2. A match m ∈ Ma can only be created between an input buffer bsrc ∈ Bin
a and an

output buffer bdst ∈ Bout
a .

R3. A subrange of bytes of an output buffer bdst ∈ Bout
a can not be matched several

times by overlapping matches. Formally, if ∃ m = 〈bsrc, rsrc, bdst, rdst〉 ∈ Ma then
@ m′ = 〈b′src, r′src, b′dst, r′dst〉 ∈Ma|b′dst = bdst and r′dst ∩ rdst 6= ∅

R4. All matches m ∈ Ma must involve at least one byte from the default byte range
bsrc.rbytes and one byte from the default byte range bdst.rbytes. Formally, the following
condition must always be true: ∀m = 〈bsrc, rsrc, bdst, rdst〉 ∈Ma, rsrc ∩ bsrc.rbytes 6= ∅
and rdst ∩ bdst.rbytes 6= ∅.
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R5. Only bytes within the default byte range b.rbytes of their buffer b ∈ Ba can be matched
with bytes falling outside the default byte range of the matched buffer. Formally,
considering a match m = 〈bsrc, rsrc, bdst, rdst〉 ∈ Ma, for each byte n ∈ rsrc and its
matched byte n′ ∈ rdst, if n /∈ bsrc.rbytes then n′ ∈ bdst.rbytes.

The first rule R1 enforces the validity of the matches. It is impossible to allocate a
contiguous subrange of n bytes within a memory range of m bytes if m < n. Indeed, a
subrange of a buffer can not be matched or merged within a smaller subrange of another
buffer. Since matches are always bidirectional, it is also impossible to match a subrange
of a buffer within a larger subrange of another buffer and thus m = n is needed.

Rules R2 and R3 forbid the creation of useless matching patterns. Merging several
input buffers of an actor together would result in allocating the corresponding single-rate
Fifos in overlapping memory ranges. Consequently, all actors producing data tokens
on these Fifos would write these data tokens in the same memory, thus overwriting each
other results. For this reason, merging several inputs together is forbidden both directly, by
matching them together, or indirectly, by matching several inputs in overlapping ranges of
output buffers. However, the indirect merge of several output buffers through overlapping
matches with an input buffer is allowed. This matching pattern means that several actors
consuming data tokens from the merged outputs will read these data tokens from the same
memory. This matching pattern is thus valid as long as the consuming actors do not write
in the shared memory (cf. Figure 5.7 and 5.8).

Rules R4 and R5 forbid the creation of matches that, when applied, would result in
merging “virtual” bytes from the input and output buffers. A byte is called “virtual” if
it does not belong to the default range of bytes of a buffer, otherwise the byte is called
“real”. All bytes of a buffer, “virtual” and “real”, are mapped in memory when a buffer
is allocated. As illustrated by the Split actor (Figure 5.8), memory scripts can be used
to match a subrange of a buffer partially outside the range of “real” bytes, or default
byte range, of the remote buffer. Misused, this feature could be used to merge a buffer
completely out of the “real” byte range of the remote buffer, thus resulting in no memory
reuse between the two buffers. Such matches are made impossible by forcing matches
to have at least one “real” byte on both sides of the match, and by forbidding matches
between “virtual” bytes.

5.4.2 Port Annotations

As illustrated by the Broadcast and the Split actors, memory scripts allow the creation of
overlapping matches. Applying overlapping matches results in merging several subranges
of output buffers in the same input buffer. Hence, actors reading data from the merged
output buffers are accessing the same memory. To ensure the correct behavior of the
application, the memory optimization process must check that actors accessing the merged
buffer do not write in this shared memory. If one of the consumer actor does not respect
this condition, its corresponding output buffer should not be merged and it should be
given a private copy of the data. Indeed, writing in the shared memory would modify the
input data of other actors, which might change their behavior.

By default, the most permissive actor behavior is assumed. All actors are supposed
to be both writing to and reading from all their input and output buffers. Since this
assumption forbids the application of overlapping matches, a set of graph annotations has
been introduced. Each data port p ∈ P in

data ∪ P out
data can be annotated with the following

keywords:
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� Read-Only: The actor possessing a read-only input port can only read data from
this port. Like a const variable in C or a final variable in Java, the content of a
buffer associated to a read-only port can not be modified during the computation of
the actor to which it belongs.

� Write-Only: The actor possessing a write-only output port can only write data on
this port. During its execution, an actor with a write-only buffer is not allowed to
read data from this buffer, even if data in the buffer was written by the actor itself.

� Unused: The actor possessing an unused input port will never write nor read data
from this port. Like the /dev/null device file in Unix operating systems, an unused
input port can be used as a sink to consume and immediately discard data tokens
produced by another actor.

It is important to note that if the application of a match created by a memory script
results in merging an input buffer into an output buffer written by the actor, then the input
buffer should not be marked as read-only. This condition holds even if all write operations
are performed in ranges of the output buffer that fall outside the ranges merged with the
input buffer. For example, the input port of the Split actor presented in Figure 5.8 cannot
be marked as read-only because it is matched in an output buffer whose first and last lines
of pixel will be written by the Split actor. Input ports of Fork (Figure 5.6) and Broadcast
(Figure 5.7) actors can be marked as read-only ports since, if the matches are applied, no
write operation will be issued to the output buffers of these actors.

An example of use-case for the write-only and unused port annotations are the Round-
buffer actors. As illustrated in Figure 5.3(c), the only purpose of Roundbuffer actors is
to forward on their output port the last data tokens consumed on their input ports. All
input ports of a Roundbuffer actor except the last one can thus be marked as unused. If
a Fifo connects an unused input port to a write-only output port, the memory allocated
for this Fifo can be reused to store other memory objects as soon as the Fifo producer
completes its execution.
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Figure 5.9: Single-rate SDF graph from Figure 5.2 for h = 9, w = 8, and n = 3. r and w mark
read-only and write-only ports respectively. Red letters uniquely identify the F ifos.

In Preesm, annotations are automated for the data ports of the Fork, Join, Broadcast,
and Roundbuffer actors that are inserted during graph transformations. All output ports
of these special actors are thus automatically marked as write-only ports, and all input
ports, except the first ports of the Roundbuffer actors, are marked as read-only ports. For
user-defined actors, it is the developer’s responsibility to make sure that the actors inter-
nal behavior is consistent with the port annotations. In the single-rate graph presented
in Figure 5.9, input ports of the Sobel actors must be marked as read-only ports to allow
these actors to read their input slices directly from the input buffer of the Split actor if all
matches created by the scripts of the Fork and Split actors are applied.
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The memory scripts and port annotations presented in this section allow the developer of
an application to specify how the input and output buffers can be merged, and how actors
access these buffers. In the next section, an optimization process is presented to make use
of these inputs to reduce the memory footprints of SDF graphs.

5.5 Match Tree Memory Minimization

The execution of a memory script associated to an actor produces a list of matches that
represent merging opportunities for the input and output buffers of this actor. Once all
the memory scripts associated to the actors of an SDF graph have been executed, the
memory minimization process builds trees of buffers and matches by chaining the lists of
matches produced by the memory scripts.

Definition 5.5.1. A match tree is a directed tree denoted by T = 〈B,M〉 where:

� B is the set of vertices of the tree. Each vertex is a buffer b ∈ Ba of an actor a from
the SDF graph (cf. Definition 5.4.1). In the match tree, a single buffer b ∈ B is used
to represent two buffers bo ∈ Bout

prod and bi ∈ Bin
cons linked by a single-rate F ifo.

� M ⊆ B × B is the set of directed edges of the tree. Each edge m ∈ M is a match
produced by the memory script of an actor (cf. Definition 5.4.2).

The combination of all the buffers and matches of an application results in the creation
of a forest (i.e. the creation of several unconnected match trees).

An example of match tree is given in Figure 5.10 below the corresponding single-rate
SDF graph. In this figure, the single-rate Fifos between actors RGB2Gray and Split, and
actors Split and Fork each are represented by a single buffer.
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Figure 5.10: Match tree associated to buffers of actors RGB2Gray, Split, and Fork.

The match trees derived from an application are used by the optimization process to
identify the matches that can be applied without corrupting the behavior of the applica-
tion. All applicable matches are applied by merging their corresponding memory objects
in the MEG derived from the SDF graph.

5.5.1 Applicability of Buffer Matches

A match m ∈ Ma is said to be applicable if it can be applied without changing the
behavior of the application. The 5 matching rules presented in Section 5.4.1 are necessary
conditions to ensure the applicability of a created match. However, following these rules
is not sufficient to guarantee the applicability of the created matches.
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Buffer Merging Issues

Figure 5.11 gives examples of matches that respect the matching rules presented in Sec-
tion 5.4.1 but that can not be applied without corrupting the application behavior.
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Figure 5.11: Matching patterns with inapplicable matches.

� Source merge issue: Matches with overlapping source subranges can be applied
only if their destination buffers are read-only or unused. In Figure 5.11(a), only one
of the Broadcast matches can be applied because neither actor A nor actor B have
a read-only input port. If both matches were applied, actors A and B would write
in each other input buffer and corrupt the application behavior.

� Destination merge issue: A chain of matches cannot be applied if it results
in merging several source subranges in overlapping destination subranges. In Fig-
ure 5.11(b), if all matches were applied, the output buffers of actors A and C would
be merged in ranges [0, 15[ and [10, 20[ respectively of the output buffer of the Join
actor. Hence, if all matches were applied and actor A was scheduled after actor C,
then actor A would partially overwrite the data tokens produced by actor C, thus
corrupting the application behavior.

In order to detect and avoid the application of matches involved in a merging issue, a
set of new properties is introduced by the memory optimization process.

Definition 5.5.2. The tuple associated to a buffer b ∈ B is extended as follows:
b = 〈rbytes, size, rmerge〉 where rmerge is the set of ranges of mergeable bytes of the buffer.
Buffers corresponding to F ifos connected to a read-only or an unused input buffer are
initialized with a mergeable range rmerge = {rbytes}, otherwise rmerge = {∅}.

rmerge is defined as a set of ranges because it can contain several non-contiguous ranges
as a result of an update of the buffer properties (cf. Section 5.5.2).

A range of bytes of a buffer is mergeable only if the consumer actor associated to the
corresponding Fifo does not write in this buffer (i.e. sink port of the Fifo is either read-
only or unused). If all ranges of bytes involved in a source merge issue are mergeable, then
the corresponding matches can be applied without corrupting the application behavior.

Property 5.5.1 (Source merge issue). Two matches m1,m2 ∈M with overlapping source
subranges m1.rsrc and m2.rsrc can both be applied if and only if (m1.rsrc ∩ m2.rsrc) ⊆
(m1.rmerge ∩m2.rmerge). If this condition is not satisfied, the two matches are said to be
in conflict, and at most one of them can be applied.
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Property 5.5.2 (Destination merge issue). Two matches m1,m2 ∈ M with overlapping
destination subranges m1.rdst and m2.rdst are in conflict and can never be both applied.
Formally, if m1.rdst ∩m2.rdst 6= ∅, then m1 and m2 mutually exclude each other.

Properties 5.5.1 and 5.5.2 present the applicability rules for the source merge issue and
the destination merge issue respectively.

Buffer Division Issue

To ensure that the behavior of an application is not modified when buffer merging is
applied, a necessary condition is that all actors must always have access to all their input
and output buffers. For example, as illustrated in Listing 5.3, a null output pointer can
be given to an in-place actor like RGB2Gray, if the memory allocated for its output buffer
is merged into its input buffer memory.

// Call to RGB2Gray actor

// 16 output bytes are merged in byte range [2, 17] of the input buffer.

rgb2gray (4 /* height */, 4 /*width */,

ptr /* pointer to 48 bytes */, NULL /*null pointer */);

Listing 5.3: Possible call to RGB2Gray actor if buffers are merged as in Figure 5.5(a).

As illustrated by the memory script of actor Split in Figure 5.8, contiguous subranges of
bytes can be matched in non-contiguous ranges of bytes. The application of this matching
pattern requires the division of the output buffer of actor Split into several subranges,
each matched in a distinct location.

A buffer can be divided into non-contiguous subranges only if all actors accessing this
buffer can still access all its subranges. Hence, a divided buffer remains accessible to
an actor only if the memory script of this actor matches all the subranges of this buffer
into other buffers accessible by this actor. To apply the matching pattern illustrated in
Figure 5.12(a), either the output buffer of actor A or the input buffer of actor B must be
divided in two non-contiguous subranges in memory. If actors A and B are not associated
with memory scripts, neither one of them expects the buffer division. Since applying the
Swap matches can only be achieved by dividing the output buffer of actor A or the input
buffer of actor B, these matches cannot be applied.
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Figure 5.12: Divisibility of buffers

In Figure 5.12(b), the Swap actor is followed by a Fork actor. In this case, all subranges
of the input buffer of actor Fork are matched within its output buffers. Consequently,
actors Swap and Fork both expect a division of the buffer corresponding to the Fifo
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between them. In such a case, the buffer can be divided into two non-contiguous ranges of
bytes merged respectively into the input buffer of actor Swap and into the output buffers
of actor Fork.

A set of new properties is introduced by the memory optimization process to detect
and check the applicability of matching patterns requiring the division of a buffer.

Definition 5.5.3. The tuple associated to a buffer b ∈ B is extended as follows:
b = 〈rbytes, size, rmerge, rdiv〉 where rdiv is a set of indivisible ranges of bytes of the buffer.
If a range of bytes is indivisible it will compulsorily be allocated in a contiguous memory
space.

Considering the set of matches S ⊂ M involving a buffer b ∈ B, the set of indivisible
ranges rdiv of this buffer is initialized as the lazy union of the matched subranges.

Definition 5.5.4. Considering two ranges of bytes r1 = [a, b[ and r2 = [c, d[, the lazy

union
lazy
∪ of these ranges is computed as follows:

r1

lazy
∪ r2 =

{
if r1 ∩ r2 6= ∅ then [min(a, c);max(b, d)[

if r1 ∩ r2 = ∅ then {[a, b[; [c, d[}

Considering two consecutive ranges of bytes r1 = [a, b[ and r2 = [b, c[, contrary to the
standard union operator whose result is r1 ∪ r2 = [a, c[, the result of the lazy union is

r1

lazy
∪ r2 = {[a, b[; [b, c[}.

Property 5.5.3. Considering a buffer b ∈ B and the set of associated matches

S = {m ∈M |m.bdst = b ∨m.bsrc = b}

Let m.rb be the matched subrange (source or destination) of m ∈ S associated to buffer b.
The indivisible range rdiv associated to buffer b is initialized as follows:

b.rdiv =

if ∪
m∈S

m.rb = b.rbytes then
lazy
∪

m∈S
m.rb

else b.rbytes

In Figure 5.12(b), the input buffer of actor Swap and the output buffer of actor Swap
(and input buffer of actor Fork) both have several indivisible ranges rdiv = {[0, 10[; [10, 20[}.
The two output buffers of actor Fork each have a single indivisible range that covers their
complete range of bytes: rdiv = rbytes = [0; 10[.

If only part of the range of bytes of a buffer b ∈ B is matched, then this buffer is
indivisible, and its indivisible range is b.rdiv = b.rbytes. For example, in Figure 5.10, the
indivisible range of bytes associated to the input buffer of actor RGB2Gray is [0; 216[.

Property 5.5.3 specifies how the indivisible ranges of a buffer can be computed. The
following property gives the conditions that must be satisfied for a buffer to be divided
into these indivisible subranges.

Property 5.5.4. Considering a buffer b ∈ B and the set of associated matches S ⊂ M
(as defined in Property 5.5.3), buffer b can be divided into subranges b.rdiv and matched
into non-contiguous ranges of bytes if and only if all the following conditions are met:

1. Matches in S with m.bsrc = b completely cover the range of bytes of buffer b and
have no overlap. Formally, with Ssrc = {m ∈ S|m.bsrc = b}, the condition is
( ∪
m∈Ssrc

m.rsrc = b.rbytes)1 ∧ ( ∩
m∈Ssrc

m.rsrc = ∅)2.
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2. Matches in S with m.bdst = b completely cover the range of bytes of buffer b and
have no overlap. Formally, with Sdst = {m ∈ S|m.bdst = b}, the condition is
( ∪
m∈Sdst

m.rdst = b.rbytes)1 ∧ ( ∩
m∈Sdst

m.rdst = ∅)2.

3. All matches in S are applicable under Properties 5.5.1 and 5.5.2

4. All matches in S must match buffer b only with indivisible buffers. Formally, with
m.bremote the second buffer ( 6= b) matched by m ∈ S, the condition is
∀m ∈ S,m.bremote.rdiv = m.bremote.rbytes.

When a buffer b ∈ B is divided, it can no longer be accessed as a contiguous memory
space. Consequently, a unique reference can not be sufficient to access all the memory
associated to this buffer. It is thus assumed that when a buffer is divided, no reference at
all can be given for this buffer.

In order to preserve the behavior of the application, actors must find another access to
the divided buffer. Consequently, all actors accessing a divided buffer must have matched
the divided buffer into other buffers accessed by the actor. Hence, a buffer b can be divided
only if both its producer and consumer actors completely match b into other buffers. This
condition is expressed by the first parenthesis ()1 in the formal expression of conditions 1
and 2 of Property 5.5.4. The programmer is responsible for accessing the divided buffer
through the subranges matched in other buffers.

To avoid ambiguities, all subranges of the divided buffer must be matched exactly
once in other buffers accessed by the actors. This condition is expressed by the second
parenthesis ()2 in the formal expression of conditions 1 and 2 of Property 5.5.4.

Following conditions 1 and 2, each subrange of a divided buffer is matched exactly once
in buffers of its producer actor, and once in buffers of its consumer actor. If one of this
match is not applied, the corresponding actor will not be able to access the unmatched
subrange of the divided buffer. Consequently, all matches must be applicable for the buffer
to be divided (condition 3).

Finally, subranges of a divided buffer can only be accessed in the remote buffers in which
they were merged. Consequently, these remote buffers cannot be divisible themselves since
their content must remain accessible to the actors through a simple reference (condition 4).

In Figure 5.12(b), the buffer corresponding to the output of the Swap actor satisfies
these conditions. Hence, if this buffer is divided, a null pointer will be given in its place
to actors Swap and Fork. Listing 5.4 presents the function call of these two actors if the
buffer between them was divided.

// Call to actor Swap

// Output range [0;10[ is accessible in range [10;20[ of the input

// Output range [10;20[ is accessible in range [0;10[ of the input

swap(ptrIn /*Input */, NULL /* Output: null pointer */);

// Call to actor Fork

// Input range [0;10[ is accessible in range [0;10[ of the first output

// Input range [10;20[ is accessible in range [0;10[ of the second output

fork(NULL /*Input: null pointer */, ptrOut1 /* Output */, ptrOut2 /* Output */);

Listing 5.4: Call to actors Swap and Fork from Figure 5.12(b) if the buffer between them is
divided.

In Figure 5.10, the buffer corresponding to the output of the Split actor satisfies these
conditions.
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Properties 5.5.1, 5.5.2, and 5.5.4 give the necessary conditions that a match must satisfy
to be applicable. Using these properties, the purpose of the minimization process is to
select and apply as many matches as possible in order to minimize the memory footprint
of an application.

5.5.2 Match Trees Optimization Process

The minimization process responsible for selecting the matches to apply can be divided
in two steps. First, the forest of match trees obtained by combining results of the mem-
ory scripts for all actors are separated into independent match trees. Then, a heuristic
algorithm is used to process each match tree and select the matches to apply.

Algorithm 5.1 gives the pseudo-code of the optimization process. The purposes of the
different parts of this optimization process are detailed in following sections.

Algorithm 5.1: Optimization process for the application of buffer matches.

Input: B a set of buffers
M a set of matches

Output: Mapplied: a set of applied matches
1 Separate T = 〈B,M〉 into independent match trees TreeSet = {Ti = 〈Bi,Mi〉};
2 // Fold match tree Ti
3 for each Ti ∈ TreeSet do
4 repeat
5 Msel ← ∅;
6 // A match m = 〈bsrc, rsrc, bdst, rdst〉 can be selected only if:

7 // @m′ ∈Msel such that m′.bdst = m.bsrc or m′.bsrc = m.bdst
8 Msel ← Select applicable match(es) in Mi ;
9 Apply selected matches Msel in Ti;

10 Mapplied ←Mapplied ∪Msel;

11 until Mi = ∅ or Msel = ∅;
12 endfor

Independent Match Trees

The first line of the optimization process (Algorithm 5.1) consists of separating the buffers
and matches into a set of independent match trees.

Considering all actors of an SDF graph, the number of buffers that can be matched by
the memory scripts is equal to the number of single-rate Fifos of the graph. As shown
in [PBL95], the number of Fifos of an SDF graph might grow exponentially during the
transformation of this graph into a single-rate equivalent. To keep the performance over-
head of the optimization process as low as possible, the forest of match trees produced by
the execution of the memory scripts is clustered into independent match trees. Clustering
is achieved by ignoring buffers that are not involved in any match, and identifying the sub-
sets of connected buffers. Because the Sobel actor is not associated with a memory script,
there is no match between its input and output buffers. Consequently, the single-rate SDF
graph of Figure 5.9 contains two unconnected match trees: a tree formed by Fifos a to f
presented in Figure 5.10, and a tree formed by Fifos g to k. Processing the match trees
separately presents two main advantages:
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� Some match trees might be much faster to optimize than others. The minimization
heuristic algorithm presented in Algorithm 5.1 is an iterative algorithm that repeti-
tively tests the applicability of matches until none is applicable. If the whole forest
of match trees was processed at once, the applicability of some matches might be
tested unnecessarily several times while these same matches only require a single test
as part of a smaller independent match tree.

� Each match tree can be processed in parallel by the optimization process. Since
match trees are independent from each other, there is no common buffer between
match trees nor matches linking a match tree to another. Consequently, there can be
no merge issues between the matches of independent match trees, and the processing
can be done in parallel.

Applying Matches

The heart of the optimization process is the application of selected matches at line 9 of
Algorithm 5.1. Applying a match consists of merging a buffer, or a subrange of a buffer
in case of a division, into a target buffer. The merged subrange can either be part of the
source or the destination buffer, respectively merged in a target subrange at the other end
of the match (cf. Definition 5.4.2).

Applying a set of matches is a complex operation that requires many transformations in
the corresponding match tree. The following list describes the transformations resulting
from the application of a match m = 〈bsrc, rsrc, bdst, rdst〉 ∈ M where bsrc is the target
buffer and bdst is the merged buffer. All notations can thus be reversed (src � dst) for
the application of a match where the target is the destination range.

Applying a match consists of:

� Updating the target buffer properties: The mergeable ranges rmerge, the indi-
visible ranges rdiv, and the range of bytes rbytes of the target buffer must be updated
with the properties of the merged subrange. Formally,

bsrc.rbytes ←[min(bsrc.rbytes.start, rsrc.start),max(bsrc.rbytes.end, rsrc.end)[

(bsrc.rmerge ∩ rsrc)←[bsrc.rmerge ∩ (bdst.rmerge)
dst

m−→src] ∩ rsrc

(bsrc.rdiv ∩ rsrc)←[bsrc.rdiv
lazy
∪ (bdst.rdiv)dst

m−→src] ∩ rsrc

Where ()dst
m−→src denotes the translation of a range of bytes of the destination buffer

into the corresponding range of the source buffer according to match m. Notation
bsrc.rmerge ∩ rsrc on the left-hand part of an assignation is used to specify that only
the subrange rsrc of the mergeable range bsrc.rmerge is updated (i.e. rsrc can be seen
as mask for the assignation).

� Reconnecting matches of the merged subrange: The merged buffer is not
necessarily a leaf of the match tree. In other words, the merged subrange of the
destination buffer bdst may itself be the source of other matches m′ ∈ M . In such
case, these matches should be reconnected to the target buffer as follows:

m′.bsrc ← bsrc and m′.rsrc ← (m′.rsrc)
dst

m−→src

� Removing conflicting matches: If the applied match m ∈ M is in conflict with
other matches (cf. properties 5.5.1 and 5.5.2), these other matches will no longer be
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applicable once m is applied. The inapplicable matches are thus removed from the
match tree.

� Removing applied matches and merged buffers: Once a match is applied, the
merged buffer and the applied match no longer exist in the match tree, and they
should be removed from it.

Match Tree Folding

The match tree folding algorithm is the iterative optimization process responsible for
selecting the matches to apply (lines 2 to 11 of Algorithm 5.1). This process iterates until
no more applicable match can be found in the match tree.

The order in which the matches are applied is important to maximize the number of
applied matches. In particular, matches that are not involved in any conflict should be
applied first. Since the application of such matches does not require the removal of any
conflicting match from the match tree, applying them first is a good way to maximize the
number of applied matches. For example, if all but one output buffers of a Broadcast actor
are mergeable, applying the match with the non-mergeable output first would be a bad
choice since it would forbid the application of all other matches.

It is important to note that a match can be applied during an iteration only if neither
its source nor its destination buffer is itself merged during the same iteration. Indeed,
when a first match is applied, the properties of the target buffer are updated in such a way
that may prevent the application of a second match. For example, in the match tree of
Figure 5.11(b), all matches are applicable during the first iteration of the folding algorithm,
but only one of the matches implying the output buffer of actor B can be applied at a
time to avoid destination merge issue.
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Figure 5.13: Folding the match tree formed by RGB2Gray-Split-Fork

Figure 5.13 illustrates the processing of the folding algorithm on the match tree from
Figure 5.10. In the first iteration (Figure 5.13(a)), 4 matches can be applied simultane-
ously: the three output buffers of the Fork actor are merged into the output buffer of the
Split actor, and the input buffer of the RGB2Gray actor is merged into the input buffer of
the Split actor. As a result of this last merge, the input buffer of the Split actor is enlarged
to cover a range of bytes rbytes = [0, 214[. In the second iteration (Figure 5.13(b)), the out-
put of the Split actor is divided into three subranges, each corresponding to a previously
merged output buffer of the Fork actor. These three subranges are merged into overlap-
ping subranges of the input buffer of the Split actor. Since all matches of the match tree
were applied, the execution of the match tree folding algorithm is terminated and a single
buffer of 222 bytes remains in the folded match tree. The memory allocation resulting
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from this optimization is presented in Figure 5.14(b). A comparison of this result with the
memory allocation of the same buffers without buffer merging technique (Figure 5.14(a))
reveals a reduction of the memory footprint by 23% for these buffers.
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(a) MEG-based optimal memory allocation of the RGB2Gray, Split, and Fork buffers.
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Figure 5.14: Allocation resulting from match tree folding vs. MEG-based allocation

As presented in Algorithm 5.1, the application of the folding algorithm on all the match
trees of an application produces a list of all the matches that can be applied without
corrupting the behavior of the application. Next section shows how this information can
be integrated in the Memory Exclusion Graph (MEG) of an application to combine the
results of the buffer merging technique with the memory reuse techniques presented in
Chapter 4.

5.5.3 MEG Update

The memory optimization technique presented in Chapter 4 enables the allocation of
single-rate Fifos with disjoint lifetimes in overlapping address ranges of a shared memory
MPSoC. Contrary to match trees that express the merging opportunities between
buffers, this memory reuse technique is based on a Memory Exclusion Graph (MEG)
that only models the exclusions between buffers. This section presents how the
MEG of an application can be updated to benefit from both optimization techniques.

Two updates of the MEG can be successively applied. The first update consists of
integrating the results produced by the match tree minimization process (Section 5.5). The
second update consists of using port annotations provided by the application developer
(Section 5.4.2) to remove exclusions from the MEG.

Merging Memory Objects

Each buffer of the match trees corresponds to a single vertex, called memory object, of the
MEG derived from the same single-rate SDF graph. For example, each memory object in
Figure 5.15(a) corresponds to a single-rate Fifo of the SDF graph of Figure 5.9.

Updating the MEG with the results of the match tree optimization process consists
of replacing the memory objects corresponding to a set of merged buffers with a single
memory object. The weight of this new memory object corresponds to the size of the
merged buffer obtained at the end of the match tree folding process. For example, the
MEG presented in Figure 5.15(b) results from the merge of buffers a to f into a single
buffer of size 222, following buffer merging results of Figure 5.14(a). This MEG can be



Match Tree Memory Minimization 105

c
120

f
40

e
40

d
40

i
24

h
24

g
24

j
72

k
72

b
72

a
216

(a) Original MEG

a - f 
222

i
24

h
24

g
24

j
72

k
72

(b) 1st update: merging
memory objects a to f.

g - k
72

a - f 
222

(c) 2nd update:
merging memory
objects g to k

Figure 5.15: Update of the MEG derived from the single-rate SDF graph of Figure 5.9.

updated a second time by applying the matches of the match tree formed by buffers g to
k, as presented in Figure 5.15(c).

As depicted by the dotted exclusions in Figure 5.15(b) and 5.15(c), memory objects
resulting from the merge of several buffers still have exclusions with other memory objects.
An exclusion is added between a memory object m and a merged memory object mmerged

if any memory object of mmerged previously had an exclusion with m. For example, in
Figure 5.15(b), exclusions are added between the merged memory object a-f and memory
objects g, h, and i because there were exclusions between these memory objects and
memory objects d, e, and f in the original MEG.

Exclusions linking a merged memory object to other memory objects of a MEG are
special exclusions that may express a partial exclusion between memory objects. For
example, in Figure 5.15(b), memory object g had exclusions with three memory objects
d, e, and f of the merged memory object a-f . Since these three memory objects are
packed in the first 80 bytes of the merged memory object (cf. Figure 5.14(a)), memory
object g can safely be allocated between the 80th byte and the end of memory object a-f .
The memory reuse opportunities offered by partial exclusions can be exploited during the
memory allocation process by checking the validity of overlapping allocations for memory
objects linked by a partial exclusion.

Removing Exclusions

Port annotations unused and write-only can be respectively used by the developer of an
application to specify that the data tokens of an input port of an actor will never be used,
and to specify that the data tokens written on an output port will never be read again by
their producer. Hence, if a single-rate Fifo is connected both to a write-only output port
and an unused input port, the data tokens written on this Fifo will never be used by the
application and can be discarded as soon as they are produced. Even though single-rate
Fifos connected to a write-only and an unused port contain only useless data tokens, their
allocation in memory is still required. Indeed, the actor producing the data tokens on this
Fifo has no knowledge that these tokens will never be used, and an output buffer must
still be provided.

Since the allocation of write-only and unused Fifos is mandatory, but their content is
useless, all corresponding buffers can be allocated in overlapping memory spaces, regardless
of their respective lifetimes. Indeed, if two write-only and unused buffers are allocated in
overlapping memory ranges, the content of one buffer might be corrupted when the other
content is written. However, this data corruption will not change the application behavior
since the content of these buffers will never be used. This mechanism is especially useful
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for IBSDF graphs whose hierarchy flattening results in the insertion of many Roundbuffer
actors with unused input ports (cf. Chapter 2).
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Figure 5.16: Removing exclusion between write-only and unused memory objects of a MEG.

To enable the allocation of memory objects corresponding to write-only and unused
Fifos in overlapping memory ranges, the exclusion between them should simply be re-
moved from the MEG. Figure 5.16(a) gives an example of SDF graph with unused and
write-only Fifos. The MEG derived from this SDF graph is presented in Figure 5.16(b).
A first update of this MEG (Figure 5.16(c)) consists of merging memory objects c and e ac-
cording to the matches created by the memory script of actor Roundbuffer. Then, a second
update consists of removing exclusions between memory objects a, b and d that correspond
to single-rate Fifos connecting write-only ports to unused ports (Figure 5.16(d)).

Since all the memory objects of the original MEG exclude each other, 55 bytes of
memory are needed for their allocation. After the first update, the remaining memory
objects still form a clique and 45 bytes are still needed for their allocation. Finally, after
the last update, memory objects a, b, and d are no longer linked by an exclusion and can
be allocated in overlapping memory ranges. Hence, only 25 bytes of memory are needed
to allocate the MEG of Figure 5.16(d). On this application, the application of the buffer
merging technique leads to a reduction of the memory footprint by 55%.

An evaluation of the memory optimization and buffer merging technique on a real
application is presented in the next chapter.



CHAPTER 6

Memory Study of a Stereo Matching Application

6.1 Introduction

The goal of this chapter is to show, through the example of a computer vision applica-
tion, how memory optimization techniques presented in Chapters 4 and 5 can be used
to efficiently address the memory challenges encountered during the development of an
application on an embedded multicore processor.

The computer vision application which serves as a memory case study and the target
MPSoC architectures are described in Section 6.2. The practical challenges addressed in
this chapter are presented in Section 6.3. Finally, experimental results on the computer
vision application are presented in Section 6.4.

6.2 System Presentation

6.2.1 Stereo Matching Application

Over the last decade, the popularity of data-intensive computer vision applications has
rapidly grown. Research in computer vision traditionally aims at accelerating execu-
tion of vision algorithms with Desktop GPUs or hardware implementations. The re-
cent advances in computing power of embedded processors have made embedded systems
promising targets for computer vision applications. Nowadays, computer vision is used
in a wide variety of applications, ranging from driver assistance [ABBB13], to industrial
control systems [MPZ+03], and handheld augmented reality [Wag07]. When developing
data-intensive computer vision applications for embedded systems, addressing the memory
challenges is an essential task as it can dramatically impact the performance of a system.

Despite the large silicon area allocated to memory banks, the amount of internal mem-
ory available on most embedded MPSoCs is still limited. Consequently, supporting the
development of computer vision applications on high-resolution images remains a chal-
lenging objective.

The computer vision application studied in this chapter is a stereo matching algori-
thm. Stereo matching algorithms are used in many computer vision applications such
as [ABBB13, Emb13]. As illustrated in Figure 6.1, the purpose of stereo matching al-
gorithms is to process a pair of images (Figure 6.1(a)) taken by two rectified cameras
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separated by a small distance in order to produce a disparity map (Figure 6.1(b)). A
disparity map is an image the same size as the input image that corresponds to the 3rd

dimension (the depth) of the captured scene. The disparity map is obtained by matching
each pixel of the first image of the stereo pair with a corresponding pixel in the second
image of the pair. The disparity produced in the output map corresponds to the horizontal
distance between the positions of two matched pixels in the stereo pair. The large memory
requirements of stereo matching algorithms make them interesting case studies to validate
the memory analysis and optimization techniques presented in Chapters 4 and 5.

(a) Input Stereo Pair (b) Output Depth Map

Figure 6.1: Stereo Matching Example from [SS02] database

Stereo matching algorithms can be sorted in two classes [SZ00]:

� Global algorithms, such as graph cuts [Roy99], are minimization algorithms that
produce a depth map while minimizing a cost function on one or multiple lines of
the input stereo pair. Despite the good quality of the results obtained with global
algorithms, their high complexity make them unsuitable for real-time or embedded
applications.

� Local algorithms independently match each pixel of the first image with a pixel
selected in a restricted area of the second image [ZNPC13]. The selection of the best
match for each pixel of the image is usually based on a correlation calculus.

The stereo matching algorithm studied in this chapter is the algorithm proposed by
Zhang et al. in [ZNPC13]. The low complexity, the high degree of parallelism, and the good
accuracy of the result make this algorithm an appropriate candidate for implementation
on an embedded MPSoC.

IBSDF Graph

The IBSDF graph of the stereo matching algorithm is presented in Figure 6.2. For the
sake of readability, except in Figure 6.2(c), all token production and consumption rates
displayed in the IBSDF graph are simplified and should be multiplied by the number of
input image pixels (size) to obtain the real exchange rates.

Below each actor, in bold, is a repetition factor which indicates the number of exe-
cutions of this actor during each iteration of the graph. This number of executions is
deduced from the data productions and consumptions of actors. Three parameters are
used in these graphs: namely nbDisparity, nbOffset, and nbSlice. nbDisparity represents
the number of distinct values that can be found in the output disparity map. nbOffset is
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Figure 6.2: Stereo-matching IBSDF graphs.1

a parameter influencing the size of the pixel area considered for the correlation calculus of
the algorithm [ZNPC13]. nbSlice parameterizes the number of image slices processed in
parallel in the MedianFilter subgraph.

Overall, the Top-level IBSDF graph (Figure 6.2(a)) and its 3 hierarchical subgraphs
contain 12 distinct actors.

� ReadRGB produces the 3 color components of an input image by reading a stream
or a file. This actor is called twice: once for each image of the stereo pair.

� PreProcess subgraph (Figure 6.2(b))

– GetLeft gets the RGB left view of the stereo pair.

– RGB2Gray converts an RGB image into its grayscale equivalent.

– BrdX is a Broadcast actor. Its only purpose is to duplicate on its output ports
the data tokens consumed on its input port.

– Census produces an 8-bit signature for each pixel of an input image. This
signature is obtained by comparing each pixel to its 8 neighbors: if the value of
the neighbor is greater than the value of the pixel, one signature bit is set to 1;
otherwise, it is set to 0.

– ComputeWeights produces 3 weights for each pixel using characteristics of
neighboring pixels. ComputeWeights is executed twice for each offset: once

1All rates of the graphs are implicitly multiplied by the picture size, except in graph 6.2(c)
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considering a vertical neighborhood of pixels, and once with a horizontal neigh-
borhood.

� DisparityComputation subgraph (Figure 6.2(d))

– Disparities produces the list of disparities whose matching cost must be com-
puted.

– CostConstruction is executed once per possible disparity level. By combining
the two images and their census signatures, it produces a value for each pixel
that corresponds to the cost of matching this pixel from the first image with
the corresponding pixel in the second image shifted by a disparity level.

– AggregateCosts computes the matching cost of each pixel for a given dispar-
ity. Computations are based on an iterative method that is executed nbOffset
times.

– DisparitySelect produces a disparity map by selecting, for each pixel, the
disparity of the input cost map with the lowest matching cost. The first input
is a cost map computed for a specific disparity level by the AggregateCosts
actor, and the second input is a cost map resulting from a previous firing of the
actor. Hence, the nbDisparity successive firings of this actor iteratively select
the disparity with the lowest matching cost among all tested disparities.

� MedianFilter subgraph (Figure 6.2(c))

– Split divide the input disparity map into nbSlice equal parts. To ensure the
correct behavior of the median filter, two extra lines of pixels are added to each
slice: the last line of the previous slice, and the first line of the next slice.

– Median applies a 3×3 pixels median filter to the input slice of the disparity
map to smooth the results.

� Display displays the result of the algorithm or writes it in a file.

This IBSDF description of the algorithm provides a high degree of parallelism since it
is possible to execute in parallel the repetitions of the three most computationally inten-
sive actors, namely CostConstruction, AggregateCosts, and ComputeWeights. A detailed
description of the original stereo matching algorithm can be found in [ZNPC13] and the
IBSDF implementation studied in this chapter is available online [DZ13].

The DisparityComputation subgraph presented in Figure 6.2(d) illustrates the special
behavior of data interfaces in the IBSDF MoC. Each firing of the AggregateCosts actor
consumes 3∗2∗nbOffset data tokens from the weights data input interface of the subgraph.
Because only 3 ∗ 2 ∗ nbOffset tokens are available on the weights data input interface,
the data input interface will behave as a ring buffer and the same data tokens will be
“produced” on the interface for each firing of the AggregateCosts actor. An equivalent
behavior can be obtained by adding a Broadcast actor between the weights interface and
the AggregateCosts actor. Broadcast actors are also implicitly used after the gray and
census data input interfaces of the subgraph, and after the rgb data input interface of
the PreProcess subgraph (Figure 6.2(b)). Similarly, the disparity data output interface
behaves as a Roundbuffer actor, only forwarding the last consumed data tokens to the
corresponding data output port of the hierarchical actor.
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Memory Scripts

An important challenge to face when implementing the stereo matching application is
the explosion of the memory space requirements caused by the Broadcast actors. For
example in Figure 6.2(d), with nbOffset = 5, nbDisparity = 60 and a resolution of size =
450 ∗ 375 pixels, the implicit Broadcast actor for the weights IBSDF interface produces
3∗2∗nbOffset ∗nbDisparity ∗size float values, or 1.13 GBytes of data. Beside the fact that
this footprint alone largely exceeds the 512 MBytes capacity of the targeted multicore DSP
architecture (cf. Section 6.2.2), this amount of memory is a waste as it consists only of 60
duplications of the 19.3 MBytes of data produced by the firings of the ComputeWeights
actor.

Memory scripts and port annotations (Section 5.4) were added to the stereo match-
ing IBSDF graph to prevent the allocation of excessively large memory footprints. In
Figure 6.2, read-only input ports are marked with a black dot within the port anchor.
Figure 6.3 presents the memory script associated to the RGB2Gray actor. As illustrated
in the figure, the RGB2Gray actor transforms each pixel coded on 3 char values (r, g,
and b) into a single float value (gray). Because the input and output buffers have different
data types, ranges of single precision bytes are used in the memory script instead of ranges
of data tokens (Figure 6.3(a)). To maximize memory reuse, three quarters of the output
buffer can be matched directly within the input buffer, as illustrated in Figure 6.3(b).

// Input Buffer: rgb (array of char)

// Output Buffers: gray (array of float)

// Parameters: size
srcByteRange← [0, 3 ∗ size];
dstByteRange← [size, 4 ∗ size];
Match rgb.srcByteRange with gray.dstByteRange;

(a) RGB2Gray memory script

30 bytes

0

floatchar

10*3 10

40 bytes

[10;40[[0;30[

RGB2
Gray

0

grayrgb

(b) RGB2Gray matches example

Figure 6.3: Memory script for RGB2Gray actors

Memory scripts associated to Broadcast and Split actors are presented in Chapter 5,
in Figures 5.7(a) and 5.8(a) respectively.

6.2.2 Target Multicore Shared Memory Architectures

This section presents the two multicore architectures that were considered for the imple-
mentation of the stereo matching algorithm.

Intel i7-3610QM Multicore CPU

The i7-3610QM is a multicore Central Processing Unit (CPU) manufactured by Intel
[Int13]. For simplicity, this processor will be called i7 in the remainder of this chapter.
This 64-bit processor contains 4 physical hyper-threaded cores that are seen as 8 virtual
cores from the application side. This CPU has a clock speed varying between 2.3 GHz
and 3.3 GHz. Using virtual memory management technique, this CPU provides virtually
unlimited memory resources to the applications it executes. A detailed description of this
architecture can be found in [Int13].
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Texas Instrument TMS320C6678 Multicore DSP Architecture

The TMS320C6678 is a multicore Digital Signal Processing (DSP) architecture manufac-
tured by Texas Instruments [Tex13]. For simplicity, this processor will be called C6678 in
the remainder of this chapter. This MPSoC contains 8 C66x DSP cores, each running at
1.0 GHz on the experimental evaluation module. Each C66x DSP core possesses 32 KBytes
of L1 data cache, 32 KBytes of L1 program cache, and 512 KBytes of L2 unified cache. In
addition, the 8 DSP cores also share 4 MBytes of L2 memory and an addressable memory
space of 8 Gbytes. Although the size of the addressable memory space is 8 GBytes, the
targeted evaluation module contains only 512 MBytes of shared memory.

Contrary to the Intel’s CPU, the C6678 does not have a hardware cache coherence
mechanism to manage the private caches of each of its 8 cores. Consequently, it is the
developer’s responsibility to use writeback and invalidate functions to make sure that data
stored in the two levels of private cache of each core is coherent.

The diverse memory characteristics and constraints of the two architectures must be taken
into account when implementing an application. Section 6.3 presents the memory chal-
lenges encountered when implementing the stereo matching application on these two ar-
chitectures.

6.3 Practical Issues

6.3.1 Multicore Cache Coherence

Cache management is a key challenge when implementing an application on a multicore
target without automatic cache coherence. Indeed, as shown in [URND06], the use of cache
dramatically improves the performance of an application on multicore DSP architectures,
with execution times up to 24 times shorter than without cache.
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Figure 6.4: Cache coherence solution without memory reuse

An automatic method to insert calls to writeback and invalidate functions in code
generated from an SDF graph is presented in [URND06]. As depicted in Figure 6.4, this
method is applicable for shared memory communications between two processing elements.
Actors A and B both have access to the shared memory addresses where data tokens of
the AB Fifo are stored. The synchronization between cores is ensured by the Send and
Recv actors which can be seen as post and pend semaphore operations respectively. A
writeback call is inserted before the Send operation to make sure that all AB data tokens
from Core1 cache are written back in the shared memory. Similarly, an invalidate call
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is inserted after the Recv operation to make sure that cache lines corresponding to the
address range of buffer AB are removed from Core2 cache.

Problem

As depicted in Figure 6.5, a problem arises if the method presented in [URND06] is used
jointly with the memory reuse techniques introduced in Chapters 4 and 5.
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Figure 6.5: Cache coherence issue with memory reuse

In the example of Figure 6.5, overlapping memory spaces in shared-memory are used
to store data tokens of two Fifos: AB and CD. After the firings of actors C and D,
the cache memory of Core2 is “dirty”, containing data tokens of Fifo CD that were not
written back in the shared memory. Because these data tokens are “dirty”, the local cache
manager, which runs the cache replacement algorithm (Section 3.4.1), might generate an
automatic writeback to put new data in the cache. If, as in the example, this automatic
writeback occurs after the writeback from Core1, then the data tokens of Fifo CD will
overwrite tokens of Fifo AB in the shared memory, thus corrupting the data accessed by
actor B.

Solution

Figure 6.6 presents a solution to the issue illustrated in Figure 6.5.
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Figure 6.6: Multicore cache coherence solution

The proposed solution to prevent unwanted writebacks is to make sure that no dirty
lines of cache remains once the data tokens of a Fifo have been consumed. To this purpose,
a call to the invalidate function is inserted for each input buffer, after the completion of
the actor consuming this buffer. As illustrated in Figure 6.6, new calls to the invalidate
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function replace those inserted after the Recv synchronization actor. Insertion of calls to
the writeback function before Send actors is not affected by this solution.

Special care must be taken when inserting cache coherence function calls around the
firing of an actor associated to a memory script. For example, when firing the RGB2Gray
actor from the stereo matching application (Figure 6.3), the memory accessed on the rgb
input port should not be invalidated. Indeed, if the match created by the associated mem-
ory script is applied, the result of the actor firing is stored in a memory range overlapping
the memory allocated for the input buffer. Invalidating the input buffer would result in
discarding the data tokens produced by the actor. To avoid this issue, a call to the in-
validate function is inserted only for ranges of input buffers that are not matched within
output buffers of the actor.

6.3.2 Data Alignment

Aligning a data structure in memory consists of allocating this data structure in a memory
range whose starting address is a multiple of n bytes, where n is generally a power of 2. A
data structure respecting this condition is said to be n-aligned. An aligned memory access
is an access to a data structure of n bytes stored at an n-aligned address. For example, if
a 32-bit float variable is stored at address 0xA8, accesses to this variable will be aligned
since 0xA8 is a multiple of 4 bytes. However, if the same float variable is stored at address
0xA3, accesses to this variable will not be aligned.

Aligning data in memory has a positive impact on application performance. Many
architectures, including the two target architectures [Tex13, Int13], have assembly instruc-
tions that are optimized for aligned data accesses. For example, as exposed in [KLC10],
SSE instructions that are available on most commercial CPU architectures are optimized
for memory accesses aligned on 16 bytes (i.e. 128 bits).

The memory allocators implemented in Preesm and presented in Section 4.4.3 can be
configured to allocate memory objects only on aligned addresses [Des13].

Problem with memory scripts and cache line alignment

Figure 6.7 illustrates an issue that arises when incoherent caches are used on a multicore
architecture.

Figure 6.7(a) presents an SDF graph mapped on 2 cores. All production and con-
sumption rates of this graph are equal to 4 bytes. To ensure the synchronization between
the 2 cores, Send and Recv actors have been added to the SDF graph. Actor C is as-
sociated with a memory script that matches both input buffers into the output buffer.
Figure 6.7(b) shows the memory allocation resulting from the application of the matches
created by the memory script, as well as the initial content of the memory and private
caches of the architecture.

Figure 6.7(c) presents the state of the system after the firing of actors A and B. At
this point, each cache of the architecture has been filled with two lines of 4 bytes. Caches
of Core1 and Core2 contain the result produced by actors A and B respectively. At this
point, the content of the shared memory is unchanged since no writeback call was issued
by the cores.

Figure 6.7(d) presents the state of the system during the firing of actor C. As presented
in Section 6.3.1, lines of Core1 cache corresponding to the A-C data sent by the Send actor
were written back to the shared memory. B-C data however is not written back to the
shared memory since it is not involved in an inter-core communication. Because the last
two bytes of A-C data and the first two bytes of B-C data are allocated in consecutive
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Figure 6.7: Cache Alignment Issue

memory spaces, these bytes are cached as a single 4 bytes line of cache beginning at address
0x08. After firing actor B on Core2, line 0x08 of the cache contains valid data produced
by this actor. When actor C is executed, line 0x08 of the cache will be used as it is,
despite the presence of invalid A-C bytes at the beginning of the cache line. Hence, in the
absence of cache coherence mechanism, actor C will read corrupted A-C data from Core2

cache.

Solution

In the absence of memory scripts, preventing several buffers from being cached in the
same line of cache is achieved by allocating all buffers at addresses that are multiples of
the cache line size. When memory scripts are used, aligning buffers on cache line size is
not sufficient. For example, in Figure 6.7, output buffer of actor C is allocated at address
0x08 which is aligned with the cache line size of 4 bytes. However, because input buffers
of actor C are partially merged in the output buffer, their allocation is not aligned on the
cache line size.

The solution to this issue is to prevent the application of matches that would result in
caching several buffers in the same line of cache. To achieve this purpose, Algorithm 6.1
is executed before applying the matches created by the memory scripts associated to the
actors of the application graph.

The principle of Algorithm 6.1 is to find all output buffers that are involved in a
match (lines 1 to 3), and enlarge the ranges of bytes of these buffers. Enlarging the range
of bytes of all selected buffers is achieved by adding sizecacheLine−1 bytes at the beginning
and at the end of the buffers (lines 6 and 7). If, as in Fork or Broadcast actors, no write
operation is executed on an output buffer, the corresponding lines of cache will not contain
dirty data for these buffers. Consequently, several buffers respecting this condition may
be cached in the same line of cache without corrupting the application behavior. Such
buffers are identified in lines 4 and 5 of the algorithm and their ranges of bytes are not
enlarged.



116 Memory Study of a Stereo Matching Application

Algorithm 6.1: Prevent caching of multiple buffers in a same cache line

Input: G = (A,F ) an IBSDF graph
T = (B,M) the match tree associated to G

1 for each actor a ∈ A do
2 for each output buffer b ∈ Bout

a do
3 if ∃ match m ∈M such that m.bsrc = b or m.bdst = b then
4 if b.rmerge = ∅
5 or (∃ match m ∈M such that m.bdst = b and m.bsrc.rmerge = ∅) then
6 b.rbytes.start← 0− (sizecacheLine − 1);
7 b.rbytes.end← b.rbytes.end+ (sizecacheLine − 1);

8 end

9 end

10 endfor

11 endfor

Adding new ranges of bytes to buffers results in the creation of new conflicts between
matches of the match tree. For example, in Figure 6.7(a), the ranges of bytes of the
output buffers of actors A and B will both be equal to [−3, 7[, instead of [0, 4[, after
the application of Algorithm 6.1. As a consequence, an overlap appears between the
destination ranges of the two matches created by actor C. As presented in Section 5.5.1,
an overlap between destination ranges is a source of conflict that prevents the concurrent
application of corresponding matches.

The sizecacheLine − 1 bytes added to the range of bytes of the buffers can be seen as a
“safety distance” between a buffer and the next. For example, if the last byte of a buffer
is aligned on the sizecacheLine, no buffer will be merged in the following sizecacheLine − 1
bytes, which corresponds to the remaining bytes of the line of cache. Hence, this “safety
distance” guarantees that as soon as a single byte of a buffer is cached in a line of cache,
this whole line of cache will be dedicated to this buffer in the buffer matching process.

A negative counterpart of solutions to data alignment issues is an augmentation of the
memory footprint allocated for applications. Indeed, forcing the allocation of buffers on
aligned addresses and preventing the application of some matches for cache coherence
purposes diminish the efficiency of the memory optimization techniques. However, exper-
imental results presented in the next section show that this augmentation of the memory
footprint is a negligible side effect compared to the performance improvement caused by
the activation of caches.

6.4 Experimental Results

The stereo matching algorithm presented in Figure 6.2 was implemented within the Preesm
rapid prototyping framework. Beside modeling the stereo matching IBSDF graph, Preesm
was used for mapping and scheduling the application, optimizing the memory allocation,
and generating compilable code for each of the two targeted architectures.

6.4.1 Static Memory Optimization

Table 6.1 shows the memory characteristics resulting from the application of memory
optimization techniques presented in this thesis to the IBSDF graph of the stereo matching
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algorithm. The memory characteristics of the application are presented for 4 scenarios,
each corresponding to a different implementation stage of the algorithm. The |M | and δ(G)
columns respectively give the number of memory objects and the density of exclusion of
the MEG derived from the application graph. The next two columns present the upper
and lower allocation bounds for each scenario. Finally, the last two columns present the
actual amount of memory allocated for each target architecture. The allocation results
are expressed as the supplementary amount of memory allocated compared to the lower
bound. These results were obtain with nbOffset = 5, nbDisparity = 60 and a resolution of
size = 450 ∗ 375 pixels.

MEG Bounds (MBytes)) Allocations2 (MBytes)

Scenarios |M | δ(G) Upper Lower i7 C6678

Pre-schedule1 1000 0.68 1453.4 1314.2 +0 +0.051
Pre-schedule 437 0.57 170.2 99.6 +0.164 +0.679
Post-schedule 437 0.47 170.2 79.7 +0 +0.014
Post-timing 437 0.39 170.2 68.4 +0 +0.342

1: Memory scripts not applied in this scenario.
2: Relatively to the lower bound.

Table 6.1: MEGs characteristics and allocation results

Application of Buffer Merging

A comparison between the two pre-schedule scenarios of Table 6.1 reveals the impact of
the merging of buffers presented in Chapter 5. The first pre-schedule scenario presented
in the table corresponds to the memory characteristics of the stereo matching application
when buffer merging is not applied. With a memory footprint of 1314.2 MBytes, this
scenario forbids the allocation of the application in the 512 MBytes shared memory of
the multicore DSP architecture. The application of the buffer merging technique in the
second scenario leads to a reduction of the memory footprint by 92%, from 1314.2 MBytes
to 99.6 MBytes.

Another positive aspect of the buffer merging technique is the simplification of the
MEG. Indeed, 563 vertices are removed from the MEG as a result of the buffer merging
technique. The computation of the memory bounds of the MEG and the allocation of the
MEG in memory are both accelerated by a factor of 6 with the simplified MEG.

In addition to the large reduction of the memory footprint, buffer merging also has
a positive impact on the application performance. On the i7 multicore CPU, the stereo
matching algorithm reaches a throughput of 3.50 fps when buffer merging is applied, and
a throughput of 1.84 fps otherwise. Hence, the suppression of the memcpy calls associated
to Broadcast, Fork, and Join actors results in a speedup ratio of 90%. On the C6678 DSP
architecture, the suppression of the memcpy results in a speedup ratio of 40%, rising from
0.24 fps to 0.34 fps.

Memory Footprints

Results presented in Table 6.1 reveal the memory savings resulting from the application
of the memory reuse techniques presented in Chapter 4. 170.2 MBytes of memory are
required for the allocation of the last three scenarios if, as in existing dataflow frame-
works [BMKDdD12, Par95], memory reuse techniques are not used. In the pre-scheduling
scenario, memory reuse techniques lead to a reduction of the memory footprint by 41%.
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This reduction of the memory footprint does not have any counterpart since the MEG is
compatible with any schedule of the application (cf. Section 4.4). In the post-scheduling
and in the post-timing scenarios, the memory footprints are respectively reduced by 53%
and 59% compared to the memory footprint obtained without memory reuse. The memory
footprints allocated on the i7 CPU for these scenarios are optimal since the lower bounds
for the MEGs and the allocation results are equal.

The memory footprints presented in Table 6.1 result from the allocation of the MEG
with a Best-Fit (BF) allocator fed with memory objects sorted in the largest-first order.
This allocator was selected because it was the most efficient allocation algorithm for the
MEG derived from the stereo matching IBSDF graph.

Since all production and consumption rates of the stereo matching SDF graph are mul-
tiples of the image resolution, the memory footprints allocated with our method are pro-
portional to the input image resolution. Using memory reuse techniques with nbOffset = 5
and nbDisparity = 60, the 512 MBytes of the C6678 DSP architecture allow the processing
of stereo images with a resolution up to 720p (1280*720 pixels). Without memory reuse,
the maximum resolution that can fit within the C6678 memory is 576p (704*576 pixels),
which is 2.27 times less than when memory reuse is in effect.

Cache Activation

Because of cache alignment constraints, the memory allocation results presented in Ta-
ble 6.1 for the C6678 multicore DSP architecture are slightly larger than the results for
the i7 CPU. On average, the alignment of buffers on L2 cache line of 128 bytes results in
an allocation increase of only 0.3% compared with the unaligned allocation of the i7 CPU.

As presented in Section 6.3.1, the insertion of writeback and invalidate calls in the
code generated by Preesm allows the activation of the caches of the C6678 multicore
DSP architecture. Without caches, the stereo-vision application reaches a throughput
of 0.06 fps. When the caches of the C6678 architecture are activated, the application
performance is increased by a factor of 5.7 and reaches 0.34 fps.

Evolution of the Performance and Memory Footprint Depending on the Num-
ber of Cores

Figure 6.8 shows the performance obtained by deploying the stereo matching algorithm on
a variable number of cores of the C6678 multicore DSP chip. On eight cores, a throughput
of 0.34 fps is reached. This throughput corresponds to a speed-up by a factor 3.4 compared
to the execution of the application on one DSP core.

Figure 6.8 also plots the theoretical greedy scheduling throughputs [PAPN12] computed
by Preesm for the stereo matching application. In the current version, the computation
of this theoretical throughput does not take into account inter-core communications nor
cache operations. Consequently, the actual throughput of the stereo matching algorithm
appears to be inferior to the theoretical throughput.

Figure 6.9 shows the memory footprint allocated for the execution of the stereo match-
ing algorithm on a variable number of cores of the C6678 multicore DSP chip. The smallest
memory footprint of 68.4 MBytes is obtained when the application is executed on a single
core of the architecture. When the number of cores executing the application is increased,
more parallelism of the application is preserved, and the allocated memory footprint is
increased. As illustrated in Figure 6.9, the memory optimization techniques presented in
previous chapters help limit this increase of the memory footprint, and only 79.7 MBytes
of memory are needed to execute the application on 3 to 8 cores.
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Figure 6.8: Throughput of the stereo matching application depending on the number of cores.
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Figure 6.9: Memory footprint of the stereo matching application depending on the number of
targeted C6x cores.

6.4.2 Comparison with Dynamic Memory Allocation

As presented in Section 4.4.2, similar footprints are obtained with dynamic allocation
and static allocation in the post-timing scenario. In both cases, the memory allocated to a
memory object can be reused as soon as the lifetime of this memory object ends. However,
although dynamic allocators provide low memory footprints, their runtime overhead and
their unpredictability make them bad choices when compared to static allocation.

Runtime Overhead

Throughput

Target Static Allocation Dynamic Allocation Overhead

i7 CPU 3.57 fps 2.79 fps 22%
C6678 DSP 0.39 fps 0.26 fps 32%

Table 6.2: Comparison of the stereo matching performance with static and dynamic allocations

Table 6.2 presents the performance of the stereo matching algorithm on the i7 CPU
and on the C6678 multicore DSP architectures. Two versions of the code were generated
with Preesm: the first with post-scheduling allocation, and the second with dynamic
memory allocation (malloc and free). For a fair comparison, the same schedule was
used for both allocation strategies. To increase the application throughput in these tests,
a software pipeline stage was added between the AggregateCost and the DisparitySelect
actors.
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Dynamic allocation has a negative impact on the performance of the application. On
the C6678 DSP architecture, the throughput reduction of 32% has four main sources:

� The overhead of the dynamic allocator. Each time a memory object is dynam-
ically allocated, the online allocation algorithm searches for a free space of sufficient
size in the heap to store this memory object.

� The creation of critical sections. Since a unique heap is shared between all cores
of the architecture, access to this heap must be protected with a mutex. Each time a
core executes a dynamic allocation primitive, a few clock cycles may be lost waiting
for the mutex to be released by another core.

� The extra synchronization added to the generated code to dynamically
support the merging of buffers. A semaphore is associated with each merged
buffer and initialized with the number of actors accessing this buffer. Each actor
accessing the merged buffer decrements the value of the semaphore after its firing.
When the semaphore value reaches zero, a free operation is issued for the merged
buffer.

� The insertion of cache operations for the memory object pointers. Each
time a buffer is allocated on one core, a writeback call is issued to ensure that the
pointer value is written back in the shared memory. Similarly, a call to invalidate is
required when a core uses the pointer of a buffer allocated on another core.

On the i7 CPU, the dynamic allocator overhead and the dynamic support for merged
buffers also cause a throughput reduction of 22%.

Unpredictable Footprint

Although dynamic allocation provides memory footprints similar to post-timing allocation,
the dynamic memory footprint cannot be bounded at compile time. To illustrate this is-
sue, the dynamic memory footprint of the stereo matching algorithm was measured during
200 iterations of the graph execution, i.e. the processing of 200 stereo image pairs. This
experiment was conducted on the C6678 by measuring, after each iteration, the maximum
size of the heap on which the memory objects were dynamically allocated. The experi-
ment was repeated 12 times with the same code but with different cache configurations
(activation of level 1 and level 2 caches, location of the code, debug or release). These
different configurations modify actor execution times and thus the order of memory allo-
cation primitive calls. Each blue curve in Figure 6.10 represents the footprints measured
during one of the 12 experiments.

This experiment shows that the dynamic memory footprint of an application increases
during the first iterations. This increase of the memory footprint is caused by the frag-
mentation of the memory. Memory fragmentation happens when a free space in the heap
is too small to allocate new memory objects. Because the multicore DSP architecture has
no defragmenting process, the memory fragmentation tends to accumulate during the first
iterations of the application, which results in an increase of the heap size.

The memory footprints measured in Figure 6.10 range between 118.5 MBytes and
125.7 MBytes. The 6% difference between these two values illustrates the unpredictabil-
ity of the dynamic memory footprint of applications. Finally, post-scheduling allocation
for this schedule results in a memory footprint of 125.4 MBytes. Consequently, these
experiments show that despite a slight reduction in the memory footprint with dynamic
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Figure 6.10: Dynamic allocation: Heap size after N iterations. Each blue line represents the heap
size for an execution of the stereo matching application.

allocation, the exact memory footprint cannot be predicted with dynamic allocation and
this dynamic footprint might exceed its static equivalent.
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CHAPTER 7

Towards Parameterized Results: The PiSDF Model

7.1 Introduction

In this chapter, a new meta-model called Parameterized and Interfaced dataflow Meta-
Model (PiMM) is introduced. PiMM extends the semantics of a targeted dataflow MoC
to enable the specification of dynamically reconfigurable DSP applications. PiMM builds
on a novel integration of two previously developed dataflow modeling techniques called
parameterized dataflow [BB01] and interface-based dataflow [PBR09].

PiMM extends the semantics of a targeted dataflow MoC by introducing explicit pa-
rameters and parameter dependencies. Parameters can influence, both statically and dy-
namically, different properties of a dataflow MoC such as the firing rules of actors. PiMM
also adds to the targeted MoC an interface-based hierarchy mechanism that enforces the
compositionality of the extended model. This hierarchy mechanism also improves the
targeted MoC predictability by restricting the scope of its parameters and by enabling a
top-down parameterization. In this chapter, the capabilities of the PiMM meta-model are
demonstrated by applying it to the SDF MoC.

The semantics of the dataflow MoCs used as a basis for building PiMM are reminded
in Section 7.2. The hierarchy and parameterization semantics of PiMM is introduced in
Section 7.3. Then, the compile time and runtime analyzability of PiMM is discussed in
Section 7.4. Finally, Section 7.5 presents examples of applications modeled with PiMM
and Section 7.6 compares PiMM with state-of-the-art dataflow MoCs.

7.1.1 Motivation: Need for Reconfigurable Models of Computation

The IBSDF MoC studied in previous chapters has a limited expressivity. Indeed, in IBSDF
like in the underlying SDF MoC, the production and consumption rates of actors are fixed
at compile time and cannot be dynamically changed depending on the application inputs
or any other external factor (time, randomness, ...). Hence, the IBSDF MoC cannot be
used to specify applications whose computation strongly depends on external factors.

An example of such an application is the PUSCH part of the LTE mobile telecommu-
nication standard presented in [PAPN12]. The purpose of this application, executed by
a base station of the network, is to decode data sent by the mobile phones connected to
an antenna. The number of mobile phones connected to an antenna, and the bandwidth



124 Towards Parameterized Results: The PiSDF Model

allocated to each mobile phone are two parameters that can not be known and fixed at
compile time. The variation domains of these two parameters results in more than 190
millions possible configurations for the PUSCH application. This great variability makes
it impossible to store a statically computed schedule for each configuration. Hence, the
MoC used to specify this application must support dynamic reconfiguration.

7.2 Foundation Dataflow Models of Computation

The Parameterized and Interfaced dataflow Meta-Model (PiMM) builds on a novel inte-
gration of two previously developed dataflow modeling techniques, called interface-based
dataflow and parameterized dataflow. As presented in Chapter 2, the objective of these
two MoCs is to enable the description of hierarchical and parameterizable graphs respec-
tively. The semantics and important properties of these two models, as well as these of
the SDF MoC, are reminded and detailed in the following sections. These MoCs will then
serve as a basis for the formal definition of PiMM in Section 7.3.

7.2.1 Synchronous Dataflow

Synchronous Dataflow (SDF) [LM87b] is the most commonly used dataflow MoC. Pro-
duction and consumption token rates set by firing rules are fixed scalars in an SDF graph.
A static analysis of an SDF graph can be used to ensure consistency and schedulability
properties of an application. The consistency and schedulability properties are crucial
information for an application developer as they imply the deadlock-free execution and
the bounded Fifo memory needs of the modeled application.

SDF Brief Definition

An SDF graph G = (A,F ) (Figure 7.1) contains a set of actors A that are interconnected
by a set of Fifos F . An actor a ∈ A comprises a set of data ports (P in

data , P
out
data) where

P in
data and P out

data respectively refer to a set of data input and output ports. Data ports are
used as anchors for Fifo connections. Functions src : F → P out

data and snk : F → P in
data

associate source and sink data ports to a given Fifo. A data rate is specified for each
port by the function rate : A × F → N corresponding to the fixed firing rules of an SDF
actor. A delay d : F → N is set for each Fifo. A delay corresponds to a number of tokens
initially present in the Fifo.

Delay and
number of 
tokens

FIFO

ActorA
Port
and rate3

x4

(a) Semantics

Filter SendRead 34
4 4

41

x8

(b) Graph example

Figure 7.1: Image processing example: SDF graph
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Properties

If an SDF graph is consistent and schedulable, a fixed sequence of actor firings can be
repeated indefinitely to execute the graph, and there is a well defined concept of a minimal
sequence for achieving an indefinite execution with bounded memory. Such a minimal
sequence is called graph iteration and the number of firings of each actor in this sequence
is given by the graph Repetition Vector (RV).

Graph consistency means that no Fifo accumulates tokens indefinitely when the graph
is executed (preventing Fifo overflow). Consistency can be proved by verifying that the
graph topology matrix has a non-zero vector in its null space [LM87b]. When such a
vector exists, it gives the RV for the graph. The topology of an SDF graph characterizes
actor interconnections as well as token production and consumption rates on each Fifo. A
graph is schedulable if and only if it is consistent and has enough initial tokens to execute
the first graph iteration (preventing deadlocks by Fifo underflow).

7.2.2 Interface-Based Synchronous Dataflow

Interface-Based SDF (IBSDF) [PBR09] is a hierarchical extension of the SDF model in-
terpreting hierarchy levels as code closures. IBSDF fosters subgraph composition, making
subgraph executions equivalent to imperative language function calls. Hence, IBSDF is
a compositional MoC: the properties (schedulability, deadlock freeness, ...) of an IBSDF
graph composed of several sub-graphs are independent from the internal specifications of
these sub-graphs [Ost95]. IBSDF has proved to be an efficient way to model dataflow ap-
plications [PAPN12]. IBSDF interfaces are inherited by the PiMM meta-model proposed
in Section 7.3.

IBSDF Brief Definition

In addition to the SDF semantics, IBSDF adds interface elements to insulate levels of
hierarchy in terms of schedulability analysis. An IBSDF graph G = (A,F, I) contains a
set of interfaces I = (I indata , I

out
data) (Figure 7.2).

A data input interface iindata ∈ I indata in a subgraph is a vertex transmitting to the
subgraph the tokens received by its corresponding data input port. If more tokens are
consumed on a data input interface than the number of tokens received on the corre-
sponding data input port, the data input interface behaves as a ring buffer, producing the
same tokens several times.

A data output interface ioutdata ∈ Ioutdata in a subgraph is a vertex transmitting tokens re-
ceived from the subgraph to its corresponding data output port. If a data output interface
receives too many tokens, it will behave like a ring buffer and output only the last pushed
tokens.

[PBR09] details the behavior of IBSDF data input and output interfaces as well as
the IBSDF properties in terms of compositionality and schedulability checking. Through
PiMM, interface-based hierarchy can be applied to other dataflow models than SDF with
less restrictive firing rules.

7.2.3 Parameterized Dataflow

Parameterized dataflow is a meta-modeling framework introduced in [BB01] that is ap-
plicable to all dataflow MoCs that present graph iterations. When this meta-model is
applied, it extends the targeted MoC semantics by adding dynamically reconfigurable hi-
erarchical actors. A reconfiguration occurs when values are dynamically assigned to the
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Figure 7.2: Image processing example: IBSDF graph

parameters of a reconfigurable actor, causing changes in the actor computation and in the
production and consumption rates of its data ports.

PSDF Brief Definition

In parameterized dataflow, each hierarchical actor is composed of 3 subgraphs, namely the
init φi, the subinit φs, and the body φb subgraphs.

The φi subgraph sets parameter values that can influence both the production and
consumption rates on the ports of the hierarchical actor and the topology of the φs and
φb subgraphs. The φi subgraph is executed only once per iteration of the graph to which
its hierarchical actor belongs and can neither produce nor consume data tokens.

The φs subgraph sets the remaining parameter values required to completely configure
the topology of the φb subgraph. The φs subgraph is executed at the beginning of each fir-
ing of the hierarchical actor. It can consume data tokens on input ports of the hierarchical
actor but can not produce data tokens.

The φb subgraph is executed when its configuration is complete, right after the com-
pletion of φs. The body subgraph behaves as any graph implemented with the MoC to
which the parameterized dataflow meta-model was applied.

size size
size/Nsize/N
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size1 3
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graph filter.body

sets kernel.size

Kernel
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Figure 7.3: Image processing example: PSDF graph

PSDF is the MoC obtained by applying the parameterized dataflow meta-model to the
SDF MoC. It has been shown to be an efficient way to prototype streaming applications
[KSB+12]. The objective of PiMM is to further improve parameterization compared to
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parameterized dataflow by introducing explicit parameter dependencies and by enhancing
graph compositionality. Indeed, in a PSDF graph, ports are simple connectors between
data Fifos that do not insulate levels of hierarchy. For example, in the PSDF graph pre-
sented in Figure 7.3 the consumption rate on the data input port of the filter hierarchical
actor depends on the RV of the actor subgraphs.

7.3 Parameterized and Interfaced Dataflow Meta-Modeling

The Parameterized and Interfaced dataflow Meta-Model (PiMM) can be used similarly to
the parameterized dataflow to extend the semantics of all dataflow MoCs implementing
the concept of graph iteration. PiMM adds both interface-based hierarchy and explicit
parameter dependencies to the semantics of the extended MoC.

In this section PiMM is formally presented through its application to the SDF MoC.
The model resulting from this application is called Parameterized and Interfaced SDF
(πSDF) or (PiSDF).

7.3.1 πSDF Semantics

The pictograms associated to the different elements of the Parameterized and Interfaced
SDF (πSDF) semantics are presented in Figure 7.4.

The πSDF semantics is formally defined as follows:

Definition 7.3.1. A πSDF graph G = (A,F, I,Π,∆) contains, in addition to the SDF
actor set A and F ifo set F :

� I is a set of hierarchical interfaces. An interface i ∈ I is a vertex of the graph.
Interfaces enable the transmission of information (data tokens or configurations)
between levels of hierarchy.

� Π is a set of parameters. A parameter π ∈ Π is a vertex of the graph. Parameters
are the only elements of the graph that can be used to configure the application and
modify its behavior.

� ∆ is a set of parameter dependencies. A parameter dependency δ ∈ ∆ is a directed
edge of the graph. Parameter dependencies are responsible for propagating configu-
ration information from parameters to other elements of the graph.
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Figure 7.4: PiMM semantics
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Parameterization Semantics

A parameter π ∈ Π is a vertex of the graph associated to a parameter value v ∈ N that
is used to configure elements of the graph. For a better analyzability of the model, a
parameter can be restricted to take only values of a finite subset of N. A configuration of
a graph is the assignation of parameter values to all parameters in Π.

In a πSDF graph, an actor a ∈ A is associated to a set of ports (P in
data , P out

data , P in
cfg ,

P out
cfg ) where P in

cfg and P out
cfg are a set of configuration input and output ports respectively.

A configuration input port pincfg ∈ P in
cfg of an actor a ∈ A is an input port that depends on a

parameter π ∈ Π and can influence the computation of a and the production/consumption
rates on the dataflow ports of a. A configuration output port poutcfg ∈ P out

cfg of an actor a ∈ A
is an output port that can dynamically set the value of a parameter π ∈ Π of the graph
(Section 7.3.2).

A parameter dependency δ ∈ ∆ is a directed edge of the graph that links a parameter
π ∈ Π to a graph element influenced by this parameter. Formally a parameter dependency
δ is associated to the two functions setter : ∆→ Π ∪ P out

cfg and getter : ∆→ Π ∪ P in
cfg ∪ F

which respectively give the source and the target of δ. A parameter dependency set by a
configuration output port poutcfg ∈ P out

cfg of an actor a ∈ A can only be received by a parameter
vertex of the graph that will dispatch the parameter value to other graph elements, building
a parameter dependency tree. Dynamism in PiMM relies on parameters whose values can
be used to influence one or several of the following properties: the computation of an actor,
the production/consumption rates on the ports of an actor, the value of another parameter,
and the delay of a Fifo. In PiMM, if an actor has all its production/consumption rates
set to 0, it will not be executed.

A Parameter dependency Directed Acyclic Graph (PDAG) T = (Π,∆) is formed by
the set of parameters Π and the set of parameter dependencies ∆ of a πSDF graph. A
PDAG T is similar to a set of combinational relations where the value of each parameter is
resolved virtually instantly as a function of the parameters it depends on. This PDAG is
in contrast to the precedence graph formed by (A,F ) where the firing of actors is enabled
by the data tokens flowing on the Fifos.

πSDF Hierarchy Semantics

The hierarchy semantics used in πSDF inherits from the IBSDF model introduced in
[PBR09]. In πSDF, a hierarchical actor is associated to a unique πSDF subgraph. The set
of interfaces I of a subgraph is extended as follows: I = (I indata , I

out
data , I

in
cfg , I

out
cfg ) where I incfg

is a set of configuration input interfaces and Ioutcfg a set of configuration output interfaces.
Configuration input and output interfaces of a hierarchical actor are respectively seen

as a configuration input port pincfg ∈ P in
cfg and a configuration output port poutcfg ∈ P out

cfg from
the upper level of hierarchy.

From the subgraph perspective, a configuration input interface is equivalent to a locally
static parameter whose value v is left undefined.

A configuration output interface enables the transmission of a parameter value from
the subgraph of a hierarchical actor to upper levels of hierarchy. In the subgraph, this
parameter value is provided by a Fifo linked to a data output port poutdata of an actor that
produces data tokens with values v ∈ N.

In cases where several values are produced during an iteration of the subgraph, the
configuration output interface behaves like a data output interface of size 1 and only the
last value written will be produced on the corresponding configuration output port of the
enclosing hierarchical actor.
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It is important to note that configuration output interfaces are the only elements of
the πSDF semantics that can be used to automatically convert a data token from a data
output port into a parameter value. In the absence of configuration output interface, an
actor firing is needed to convert a data token read on a data input port into a parameter
value written on a configuration output port.
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Figure 7.5: Image processing example: Static πSDF graph

Figure 7.5 presents an example of a static πSDF description. Compared to Figure 7.2,
it introduces parameters and parameter dependencies that compose a PiMM PDAG. The
modeled example illustrates the modeling of a test bench for an image processing algo-
rithm. In the example, one token corresponds to a single pixel in an image. Images are
read, pixel by pixel, by actor Read and sent, pixel by pixel, by actor Send. A whole image
is processed by one firing of hierarchical actor Filter. A feedback edge with a delay stores
previous images for comparison with the current one. Actor Filter is refined by an actor
Kernel processing one Nth of the image. In Figure 7.5, the size of the image size and
the parameter N are locally static.

7.3.2 πSDF Reconfiguration

As introduced in [NL04], the frequency with which the value of a parameter is changed
influences the predictability of the application. A constant value will result in a high
predictability while a value which changes at each iteration of a graph will cause many
reconfigurations, thus lowering the predictability.

There are two types of parameters π ∈ Π in πSDF: configurable parameters and
locally static parameters. Both restrict how often the value of the parameter can change.
Regardless of the type, a parameter must have a constant value during an iteration of the
graph to which it belongs.

Configurable Parameters

A configurable parameter πcfg ∈ Π is a parameter whose value is dynamically set once at
the beginning of each iteration of the graph to which it belongs. Configurable parameters
can influence all elements of their subgraph except the production/consumption rates
on the data interfaces I indata and Ioutdata . As explained in [BB01, NL04], this restriction is
essential to ensure that, as in IBSDF, a parent graph has a consistent view of its actors
throughout an iteration, even if the topology may change between iterations.

The value of a configurable parameter can either be set through a parameter depen-
dency coming from another configurable parameter or through a parameter dependency
coming from a configuration output port poutcfg of an actor. In Figure 7.6, N is a configurable
parameter.
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Locally Static Parameters

A locally static parameter πstat ∈ Π of a graph has a value that is set before the beginning
of the graph execution. Contrary to configurable parameters whose values change at
each graph iteration, the value of a locally static parameter remains constant over one
or several iterations of this graph. In addition to the parameters properties listed in
Section 7.3.1, a locally static parameter belonging to a subgraph can also be used to
influence the production and consumption rates on the I indata and Ioutdata interfaces of its
hierarchical actor.

The value of a locally static parameter can be statically set at compile time, or it can
be dynamically set by configurable parameters of upper levels of hierarchy via parameter
dependencies. From a subgraph perspective, a configuration input interface is equivalent
to a locally static parameter. A configuration input interface can take different values
at runtime if its corresponding configuration input port is connected to a configurable
parameter. In Figure 7.6, size is seen as a locally static parameter both in main graph
and in subgraph Filter.

SetN

Filter

Kernel

SendRead 3size size
size size

size/Nsize/N
size/Nsize/N sizesize

1

N

size

x2*size

sizesize

Figure 7.6: Image processing example: πSDF graph

A partial configuration state of a graph is reached when the parameter values of all
its locally static parameters are set. Hierarchy traversal is the execution instant when a
hierarchical actor is replaced by its subgraph in order to be executed. Hierarchy traversal
of a hierarchical actor is possible only when the corresponding subgraph has reached a
partial configuration state. The partial configuration state of a πSDF graph is equivalent
to the state reached by a parameterized dataflow actor on completion of its init subgraph
φi. In both cases the production/consumption rates on the interfaces of the hierarchical
actor are fixed when this state is reached.

A complete configuration state of a graph is reached when the values of all its
parameters (locally static and configurable) are set. If a graph does not contain any
configurable parameter, its partial and complete configurations are equivalent. Only when
a graph is completely configured is it possible to check its consistency, compute a schedule,
and execute it. The complete configuration state of a πSDF graph is equivalent to the
state reached by a parameterized dataflow actor on completion of its subinit subgraph φs.

Configuration Actors

A firing of an actor a with a configuration output port poutcfg produces a parameter value.
Using a parameter dependency δ, a parameter value produced on a configuration output
port can be used to dynamically set the value of a configurable parameter π, triggering
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a reconfiguration of the graph elements depending on π. In PiMM, actors triggering
reconfigurations of their graph are called configuration actors.

Since the execution of a configuration actor is the cause of a reconfiguration, it may
happen only at quiescent points during the graph execution, as explained in [NL04]. To
ensure the correct behavior of πSDF graphs, a configuration actor acfg ∈ A of a subgraph
G is subject to the following restrictions:

R1. acfg must be fired exactly once per iteration of G. This unique firing must happen
before the firing of any non-configuration actor.

R2. acfg must consume data tokens only from hierarchical interfaces of G and must
consume all available tokens during its unique firing.

R3. The production/consumption rates of acfg can only depend on locally static param-
eters of G.

R4. Data output ports of acfg are seen as a data input interface by other actors of G.
(i.e. tokens produced on these ports are made available using a ring-buffer and can
be consumed more than once).

These restrictions naturally enforce the local synchrony conditions of parameterized
dataflow defined in [BB01] and reminded in Section 7.4.1.

The firing of all configuration actors of a graph is needed to obtain a complete con-
figuration of this graph. Consequently, configuration actors must be executed before all
other (non-configuration) actors of the graph to which they belong. Configuration actors
are the only actors whose firing is not data-driven but driven by hierarchy traversal.

The sets of configuration and non-configuration actors of a graph are respectively
equivalent to the subinit φs and the body φb subgraphs of parameterized dataflow [BB01].
Nevertheless, configuration actors provide more flexibility than subinit graphs as they can
produce data tokens that will be consumed by non-configuration actors of their graph. The
init subgraph φi has no equivalent in PiMM as its responsibility, namely the configuration
of the production/consumption rates on the actor interfaces, is performed by configuration
input interfaces and parameter dependencies.

Figure 7.6 presents an example of a πSDF description with reconfiguration. It is a
modified version of the example in Figure 7.5. In Figure 7.6, parameter N is a configurable
parameter of subgraph Filter, while parameter Size remains a locally static parameter.
The number of firings of actor Kernel for each firing of actor Filter is dynamically con-
figured by the configuration actor setN. In this example, the dynamic reconfiguration
dynamically adapts the number N of firings of Kernel to the number of cores available
to perform the computation of Filter. Indeed, since Kernel has no self-loop Fifo, the N
firings of Kernel can be executed concurrently due to data parallelism.

7.4 Model Analysis and Behavior

The πSDF MoC presented in Section 7.3 is dedicated to the specification of applications
with both dynamic and static parameterizations. This dual degree of dynamism implies
a two-step analysis of the behavior of applications described in πSDF: a compile time
analysis and a runtime analysis. In each step a set of properties of the application can be
checked, such as the consistency, the deadlock freeness, and the boundedness. Other oper-
ations can be performed during one or both steps of the analysis such as the computation
of a schedule or the application of graph transformation to enhance the performance of
the application.
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7.4.1 Compile Time Schedulability Analysis

πSDF inherits its schedulability properties both from the interface-based dataflow mod-
eling and the parameterized dataflow modeling.

In interface-based dataflow modeling, as proved in [PBR09], a (sub)graph is schedulable
if its precedence SDF graph (A,F ) (excluding interfaces) is consistent and deadlock-free.
When a πSDF graph reaches a complete configuration, all its production and consumption
rates are decided and the graph becomes equivalent to an IBSDF graph. Hence, given a
complete configuration, the schedulability of a πSDF graph can be checked using the same
conditions as in interface-based dataflow.

In parameterized dataflow, the schedulability of a graph can be guaranteed at compile
time for certain applications by checking their local synchrony [BB01]. A PSDF (sub)graph
is locally synchronous if it is schedulable for all reachable configurations and if all its
hierarchical children are locally synchronous. As presented in Section 2.5.1, a PSDF
hierarchical actor composed of three subgraphs φi, φs and φb must satisfy the 5 following
conditions in order to be locally synchronous:

1. φi, φs and φb must be locally synchronous, i.e. they must be schedulable for all
reachable configurations.

2. Each invocation of φi must give a unique value to parameters set by this subgraph.

3. Each invocation of φs must give a unique value to parameters set by this subgraph.

4. Consumption rates of φs on interfaces of the hierarchical actor cannot depend on
parameters set by φs.

5. Production/consumption rates of φb on interfaces of the hierarchical actor cannot
depend on parameters set by φs.

The last four of these conditions are naturally enforced by the πSDF semantics pre-
sented in Section 7.3. However, the schedulability condition number 1, which states that all
subgraphs must be schedulable for all reachable configurations, cannot always be checked
at compile time. Indeed, since values of the parameters are chosen in N, an infinite number
of configurations can theoretically be reached. Consequently, only a formal verification can
be used to check if the schedulability condition is satisfied. In graphs where all parameters
take their values in a restricted and finite subset of N, only a finite set of configurations
are possible and the schedulability condition may be checked. In most cases, it is the
responsibility of the developer to make sure that an application will always satisfy the
schedulability condition; this responsibility is similar to that of writing non-infinite loops
in imperative languages.

πSDF inherits from PSDF the possibility to derive quasi-static schedules at compile
time for some applications. A quasi-static schedule is a schedule that statically defines
part of the scheduling decisions but also contains parameterized parts that will be re-
solved at runtime. An example of quasi-static schedule is given for the application case in
Section 7.5.2.

7.4.2 Runtime Operational Semantics

Based on the πSDF semantics presented in Section 7.3, the execution of a subgraph
G = (A,F, I,Π,∆) associated to a hierarchical actor aG follows the following steps. The
execution of G restarts from step 1 each time the parent graph of aG begins a new iteration.
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1. Wait for a partial configuration of G, i.e. wait for all configuration input interfaces
in I incfg to receive a parameter value.

2. Compute the production and consumption rates on the data interfaces I indata and
Ioutdata using the partial configuration.

3. Wait until aG is fired by its parent graph. (enough data tokens must be available on
the Fifos connected to the data input ports P in

data of aG.)

4. Fire the configuration actors of A that will set the configurable parameters of G: a
complete configuration is reached.

5. Check the local synchrony of G with the rates and delays resulting from the complete
configuration and compute a schedule (if possible).

6. Fire the non-configuration actors of A following the computed schedule: this corre-
sponds to an iteration of G.

7. Produce on the output ports P out
data and P out

cfg of aG the data tokens and parameter

values written by the actors of G on the output interfaces Ioutdata and Ioutcfg .

8. Go back to step 3 to start a new iteration of G, i.e. a new firing of aG.

Steps 1 and 2 correspond to a configuration phase of G. These first two steps are not
clocked by data but are the result of the virtually instantaneous propagation of parameter
values in the PDAG T . Steps 3 to 8 correspond to a firing of the enclosing actor aG.
These last six steps are executed each time actor aG is scheduled during the execution of
its parent graph.

If the schedulability of the graph can not be verified at compile time (Section 7.4.1),
it will be checked at runtime in the 5th execution step. If a non-locally synchronous
behavior is detected, i.e. if the graph is not consistent or has deadlocks, the execution of
the application is terminated.

The runtime verification of the schedulability in step 5 can be used as a debug feature
that can be deactivated to improve the performance of the application, thus assuming that
a valid schedule can always be found in this step.

As introduced in Sections 7.3 and 7.3.2, the operational semantics of the πSDF MoC
is equivalent to the one of the PSDF presented in [BB01]. Steps 1 and 2 are equivalent to
the execution of the init subgraph φi, steps 3 to 5 are equivalent to the execution of the
subinit subgraph φs, and steps 6 to 8 are equivalent to the execution of the body subgraph
φb.

7.5 PiMM Application Examples

This section presents two examples of real applications that can be modeled with param-
eterized and interfaced dataflow models. These two applications, an FIR filter and a part
of the LTE telecommunication standard, demonstrate how PiMM fosters the conciseness,
the parallelism, and the composability of application description.
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7.5.1 FIR Filter

The Finite Impulse Response (FIR) filter is an essential basic block of Digital Signal Pro-
cessing (DSP) applications. Applying an FIR filter consists of computing the convolution
of the filter coefficients with an input digital signal. Formally,

y[n] =
N−1∑
k=0

ck · x[n− k]

Where x and y are the input and output signals respectively, and c0 to cN−1 are the filter
coefficients.

The frequency response of an FIR filter depends on two parameters: the number and
the value of the filter coefficients. In some DSP applications, such as adaptive audio filter-
ing [GC04], the number and the value of these coefficients need to be changed dynamically.
To fulfill these requirements, a flexible description of an FIR filter is proposed in this sec-
tion. This description allows the developer of an application to set both statically and
dynamically the number and the values of the coefficient while offering the highest possible
degree of parallelism.

Adder PiMM Models

The computation of an FIR filter can be decomposed in two operations: the multiplication
of the input samples with the filter coefficients, and the summation of the multiplication
results. A πSDF description of the Σ adder subgraph responsible for the N additions of
the FIR filter is presented in Figure 7.7.
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Figure 7.7: πSDF description of a configurable adder

The πSDF description of the adder (Figure 7.7(a)) is composed of two actors: the
+ actor, that computes the sum of the tokens consumed on its two input ports, and
the Broadcast actor that duplicates data tokens from its input port to its output ports.
Configuration input port N is used to parameterize the number of additions realized by the
adder. In this πSDF graph, each data token represents a sample. To compute the addition
between the N data tokens, this πSDF description recursively sums each data token with
the intermediate result obtained by summing previous data tokens. The feedback loop,
which is responsible for feeding the intermediate result to the + actor, initially contains a
single data tokens whose value is 0.
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Figure 7.7(b) shows the homogeneous graph obtained by unrolling the adder πSDF
graph for N = 4. For the sake of readability, only + actors are represented in this
homogeneous graph. As revealed by this homogeneous graph, the drawback of this πSDF
description of the adder is that all actor firings must be executed sequentially one after
the other. Hence, this πSDF description should be used only in cases where parallelism
is not needed.

A πCSDF description of the Σ adder subgraph is given in Figure 7.8. Parameterized
and Interfaced CSDF (πCSDF) is the MoC obtained by applying the PiMM meta-model
to the CSDF MoC. CSDF is a generalization of the SDF MoC where the scalar produc-
tion/consumption rates of actors are replaced with cyclically changing rates [BELP96].
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Figure 7.8: πCSDF description of a configurable adder

The πCSDF graph of the adder (Figure 7.8(a)) is composed of 3 actors: the two actors
used in the πSDF graph of Figure 7.7(a) and a Mux actor that is responsible for selecting
the data tokens fed to the + actor. The lists of consumption and production rates of the
Mux actor each contain log2(N) + 1 values. The first firing of the Mux actor forwards the
N data tokens from the data input interface of the subgraph to the + actor. The following
firings of actor Mux forward the intermediate result from the Broadcast actor to the +
actor.

Figure 7.8(b) shows the homogeneous graph obtained by unrolling the adder πCSDF
graph for N = 8. For the sake of readability, only + actors are represented in this
homogeneous graph. Contrary to the πSDF description, the πCSDF description exposes
the parallelism of the addition process. Indeed, as shown in Figure 7.8(b), the πCSDF
MoC enables the specification of a cascade summation [Hig93]. In the first stage of the
cascade, N/2 additions are computed between pairs of successive data tokens. The results
from the first stage are then used as inputs for the N/4 additions of a second stage. The
process is repeated until a single value is produced. All additions executed in a stage of
this cascade can be executed in parallel.

The πCSDF model presented in Figure 7.8 is only valid if N is a power of 2. A first
solution to support any value of N is to artificially insert new data tokens with value
equals to 0. The drawback of this solution is that it unnecessarily increases the number
of additions. A better solution is to use the production and consumption pattern of the
Mux actor to forward at each firing the greatest possible number of pair of data tokens,
combining tokens from the data input interface and tokens from the Broadcast actor.
Formally, considering ui a recursive sequence such that ui = ui−1−bui−1/2c and u0 = N ,
then the production pattern of the Mux actor is {2 · bui/2c| for i = 0 to blog2(N)c}.
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For example, for N = 7, the Mux actor successively feeds 6, 4 and 2 data tokens to the
+ actor. Besides revealing the parallelism of the addition process, cascade summation also
improves the accuracy of the computed result [Hig93].

FIR filter πSDF model

A generic πSDF description of an FIR filter is presented in Figure 7.9. The FIR actor
processes a single sample at each firing. The FIR actor possesses 5 data ports: coefs
that receives the coefficients of the filter, sample that receives the sample to process, d.in
that receives the delayed samples, out that produces the result sample, and d.out that
produces the delayed samples for the next firing of the FIR actor. The FIR hierarchical
actor possesses a unique configuration input port nbCoef that represents the number of
coefficients of the filter. The self-loop between ports d.out and d.in is used to transmit
the delayed data tokens from a firing of the FIR actor to the next.
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Figure 7.9: πSDF model of an FIR filter

The subgraph of the FIR actor contains 3 actors: the Σ hierarchical actor described
in previous paragraph, actor X which performs multiplications, and actor Delays that is
responsible for feeding the last nbCoef samples to the X actor and forwarding the last
nbCoef − 1 samples to the d.out output interface.

The nbCoef firings of the X actor can be executed in parallel for each sample processed
by the FIR filter. Hence, if the πCSDF description of the adder (Figure 7.7(a)) is used,
most of the computation can be performed in parallel. This example shows that compact
πSDF model can be used to describe configurable applications without sacrificing their
parallelism. Through the example of the Σ actor, the FIR example also illustrates how the
hierarchy mechanism of PiMM can be used to divide applications into smaller, generic,
and reusable subgraphs. Next example focuses on the dynamic configuration semantics
offered by PiMM.

7.5.2 LTE PUSCH

The LTE Physical Uplink Shared Channel (PUSCH) decoding is executed in the physical
layer of an LTE base station (eNodeB). It consists of receiving multiplexed data from
several User Equipments (UEs), decoding it and transmitting it to upper layers of the
LTE standard.
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πSDF Application Model

Figure 7.10 presents a πSDF specification of the bit processing algorithm of the PUSCH
decoding which is part of the LTE telecommunication standard.
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Figure 7.10: πSDF model of the bit processing part of the LTE PUSCH decoding.

As presented in Section 7.1.1, because the number of UEs connected to an eNodeB and
the rate for each UE can change every millisecond, the bit processing of PUSCH decoding
is inherently dynamic and cannot be modeled with static MoCs such as SDF [PAPN12].

The bit processing specification is composed of two hierarchical actors: the PUSCH
Bit Processing actor and the Channel Decoding actor. For clarity, Figure 7.10 shows
a simplified specification of the LTE PUSCH decoding process where some actors and
parameters are not depicted.

The PUSCH Bit Processing actor is executed once per invocation of the PUSCH de-
coding process and has a static parameter, maxCBsPerUE, that represents the maximum
number of data blocks (named Code Block (CB)) per UE. maxCBsPerUE statically sets
the configuration input interface of the lower level of the hierarchy, according to the eNodeB
limitation of bitrate for a single UE. The ConfigNbUE configuration actor consumes data
tokens coming from the Medium Access Control (MAC) layer and sets the configurable
parameter NbUE with the number of UEs whose data must be decoded. The converge
actor consumes the multiplexed CBs received from several antennas on the symbols data
input interface of the graph, produces NbUE tokens, each containing the number of CBs
for one UE, and produces NbUE packets of maxCBsPerUE CBs, each containing the CBs
of an UE.

The Channel Decoding hierarchical actor fires NbUE times, once for each UE, because
each UE has specific channel conditions. This actor has a configuration input interface
maxCBsPerUE that receives the eponymous locally static parameter from the upper hi-
erarchy level. The ConfigNbCB configuration actor sets the NbCB parameter with the
number of CBs allocated for the current UE. A detailed explanation of the role of the
remaining actors is beyond the scope of this thesis and can be found in [PAPN12].
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The LTE PUSCH bit processing algorithm is a good illustration of the conciseness of
the πSDF model (Figure 7.10) compared to the PSDF model (Figure 7.11). Indeed, only
2 πSDF graphs are needed to specify the application whereas 2 sets of 3 subgraphs (φi,
φs and φb) are needed to specify it with the PSDF MoC.
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Figure 7.11: PSDF model of the bit processing part of the LTE PUSCH decoding.

Quasi-Static Schedule

The use of quasi-static schedules is highly desirable in many contexts compared to dy-
namic schedules. In particular, quasi-static schedules for parameterized dataflow graphs
provide significant reductions in runtime overhead, and improvements in predictability
(e.g. see [BB01, Bou09]). By facilitating systematic construction of parameterized sched-
ules — either manually as part of the design process or automatically as part of a graph
transformation flow — the PiMM framework enhances the efficiency and confidence with
which dynamically structured signal processing systems can be implemented.

The dynamic topology of a πSDF graph usually prevents the computation of a static
schedule since the production/consumption rates are unknown at compile time. In the
example of Figure 7.10, despite the dynamic rates, the production rate on all Fifos always
is a multiple of the consumption rate, or vice versa. Consequently, the dynamic RV is an
affine function of the graph parameters and a quasi-static schedule can be computed.
Based on an affine formulation, the following quasi-static schedule (Figure 7.12) can be
derived for the graph of Figure 7.10.

7.6 Comparison with Existing MoCs

Table 7.1 presents a comparison of the properties of the πSDF MoC with the properties
of the dataflow MoCs presented in Chapter 2. The compared MoCs are the SDF [LM87b],
the ADF [BTV12], the IBSDF [PBR09], the PSDF [BB01], the SADF [TGB+06], the
DPN [LP95], the DSSF [TBG+13], the SPDF [FGP12], and the πSDF. In Table 7.1, a
black dot indicates that the feature is implemented by a MoC, an absence of dot means
that the feature is not implemented, and an empty dot indicates that the feature may be
available for some applications described with this MoC. It is important to note that the full
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while true do
/* Execute Top PUSCH */

fire ConfigNbUE ; // Sets nbUE

fire Converge;
repeat nbUE times

/* Execute Channel Decoding */

fire ConfigNbCB ; // Sets nbCB

fire KeepCurrentTones;
fire PerUEProcess;
repeat nbCB times

fire BitProcess;
fire TurboDec;

end
fire CrcCheck;

end

end

Figure 7.12: Quasi-static schedule for graph in Figure 7.10

semantics of the compared MoCs is considered here. Indeed, some features can be obtained
by using only a restricted semantics of the compared MoCs. For example, all MoCs can
be restricted to describe a SDF graph, thus benefiting from the static schedulability and
the decidability but losing all reconfigurability.

Feature SDF
ADF

IB
SDF

DSSF
PSDF

πSDF
SADF

SPDF
DPN

Hierarchical • • • •
Compositional • • •
Reconfigurable • • • • •
Configuration dependency • •
Statically schedulable • • • •
Decidability • • • • ◦ ◦ • ◦
Variable rates • • • • • •
Non-determinism • • •

Table 7.1: Features comparison of different dataflow MoCs

The following features are compared in Table 7.1:

� Hierarchical : composability can be achieved by associating a subgraph to an actor.

� Compositional : graph properties are independent from the internal specifications of
the subgraphs that compose it [Ost95].

� Reconfigurable: actors firing rules can be reconfigured dynamically.

� Configuration dependency : the MoC semantics includes an element dedicated to the
transmission of configuration parameters.

� Statically schedulable: a fully static schedule can be derived at compile time [LM87b].
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� Decidability : the schedulability is provable at compile time.

� Variable rates: production/consumption rates are not a fixed scalar.

� Non-determinism: output of an algorithm does not solely depend on inputs, but also
on external factors (e.g. time, randomness).

7.6.1 PiMM versus Parameterized Dataflow

PiMM and the parameterized dataflow meta-model are equivalent in many points. How-
ever, PiMM introduces new elements of semantics, such as the PDAG, that enhance the
predictability of the model and increase the performance of applications described with
the new meta-model.

Faster parameter propagation

In PiMM, the explicit parameter dependencies enable the instant propagation of parameter
values to lower levels of hierarchy through configuration input ports P in

cfg and corresponding

configuration input interfaces I incfg . With this instant propagation, setting a parameter in a
hierarchical graph may instantly influence parameters deep in the hierarchy, causing some
subgraphs to reach a partial or a complete configuration.

The instant parameter propagation of PiMM is in contrast with the more complex
configuration mechanism of the parameterized dataflow. The body subgraph φb of an actor
aG can be configured only by parameters set by the init subgraph φi or the subinit subgraph
φs, but cannot directly depend on parameters defined in the parent graph of aG [BB01].
This semantics implies that a complete configuration of φb cannot be reached before the
execution of φi, even if actors in φi simply propagate parameters from upper levels of
hierarchy. Consequently, a complete configuration of a subgraph may be reached earlier
for an application modeled with PiMM, providing valuable information to the runtime
management system and leading to better scheduling or resource allocation choices, and
therefore better performance.

Lighter runtime overhead

In parameterized dataflow, the production and consumption rates on the data interfaces
of a hierarchical actor are obtained by computing the Repetition Vector (RV) [LM87b]
of its subgraph. For dynamically scheduled applications, two computations of the RV
are performed at runtime. The first computation is done using a partial configuration
completed with default values for undefined parameters. The second computation is done
when a complete configuration is reached. The default parameter values used in the
first computation must be carefully chosen to ensure that the two RVs present the same
production/consumption rates on the interfaces of the actor, or otherwise the application
will be terminated.

In PiMM, the production and consumption rates on the interfaces of a hierarchical actor
only depend on the value of locally static parameters. Since neither the first computation
of a RV nor the use of default parameter values are needed, the runtime overhead is lighter
and the development of the application simpler as the developer does not need to specify
default values for configurable parameters.
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Improved User-friendliness

In parameterized dataflow, the specification of a parameterized hierarchical actor is com-
posed of three subgraphs, which may lead to a rapid increase in the number of graphs to
maintain when developing an application. For example, the development of an application
with only a dozen parameterized hierarchical actors requires the specification of almost
forty graphs.

In PiMM, a single subgraph is needed to specify the behavior of all hierarchical actors,
parameterized or not. The employment of a single subgraph is enabled by the introduced
parameters and parameter dependencies that replace the init subgraph φi and by the
configuration actors that replace the subinit subgraphs φs. Using explicit parameter de-
pendencies also makes it possible to lower the number of actors of a graph, by eliminating
the actors whose only purpose was to propagate parameters from the upper levels of the
hierarchy. Moreover, using parameter dependencies instead of referencing parameters by
their names makes it easier to identify what is influenced by a parameter. All these features
enhance the readability of πSDF graphs, and hence make the model more user-friendly.

7.6.2 PiMM versus SADF

In [TGB+06], Theleen et al. introduce the Scenario-Aware Dataflow (SADF): a general-
ization of the SDF model where dynamism is handled by special actors, called detectors.
Detector actors can reconfigure other actors of their graph by sending them control tokens
sequentially through specific Fifos called control channels. When consumed by an actor,
these control tokens change the scenario in which the actor is running, possibly modifying
the nature of its computation, its run time, and its production and consumption rates.

A first difference between SADF and πSDF is that in SADF, each actor has a unique
status that denotes the current scenario of the actor. Because of this status, an actor
cannot be fired multiple times in parallel. In πSDF as in SDF, actors have no state unless
explicitly specified with a self-loop Fifo [LM87b]. Consequently, the parallelism embedded
in a πSDF description is implicitly greater than the one of an SADF graph.

A second difference between SADF and πSDF lies in the motivations behind the two
models. SADF is an analysis-oriented model that has proved to be an efficient model to
quickly derive useful metrics such as the worst-case throughput or the long-run average
performance [SGTB11]. To provide such metrics, SADF relies on a timed description of
the actors behavior which corresponds to the execution time of the actor on a specific
type of processing elements. Conversely, like PSDF, πSDF is an implementation-oriented,
untimed, and architecture-independent model which favors the development of portable
applications for heterogeneous MPSoCs. Moreover, it was shown in [SGTB11] that im-
plementation of applications described in SADF are less efficient than PSDF applications.
Finally, the hierarchical compositionality mechanism of πSDF has no equivalent in SADF.

Next chapter concludes this thesis and proposes possible axes for future work.
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CHAPTER 8

Conclusion

8.1 Summary

In recent years, it has become critical to find new development techniques to manage the
increasing complexity of embedded systems, both in terms of hardware and software. In
particular, new programming models and languages must be found to exploit the par-
allel processing capabilities of modern MPSoCs. For this purpose, dataflow MoCs
have emerged as a popular programming paradigm to capture intuitively the parallelism
of applications.

The contributions presented in this thesis address key memory challenges encountered
throughout the deployment of an application modeled with an IBSDF graph on an shared-
memory MPSoC. These contributions were implemented as part of the Preesm software
rapid prototyping framework.

In Chapter 4, new techniques were presented to analyze and optimize the memory
characteristics of applications modeled with IBSDF graphs, from the estimation of the
application memory footprint in early stages of development, to the static reduction of this
memory footprint during the application implementation on a shared memory MPSoC.
Experimental results showed a reduction of the static memory footprint by up to 43%
compared to a state-of-the-art memory minimization technique.

In Chapter 5, a new set of annotations was introduced, allowing application developers
to specify new memory reuse opportunities for the static allocation of input and output
buffers of each dataflow actor. The minimization technique taking advantage of these reuse
opportunities to reduce the memory footprint allocated to applications was also presented
in this chapter.

In Chapter 6, an in-depth study of the memory characteristics of a state-of-the-art
computer vision application was presented. Besides showing the efficiency of the proposed
static memory optimization techniques compared to dynamic allocation, this study also
presented technical solutions for supporting cache-incoherent multiprocessor architectures.

In Chapter 7, a new dataflow meta-model called PiMM was introduced to overcome
the limitations of the IBSDF MoC. PiMM can be applied to a dataflow MoC to increase
its expressivity, to enable the specification of reconfigurable applications, and to promote
derivation of quasi-static schedules. While bringing dynamism and compositionality, the
explicit parameter dependency tree and the interface-based hierarchy mechanism intro-
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duced by PiMM maintain strong predictability for the extended model and enforce the
conciseness and readability of application descriptions.
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Figure 8.1: Preesm typical workflow including new contributions from this thesis.

Figure 8.1 summarizes these new contributions and presents their role in the typi-
cal workflow of Preesm. New contributions and improvements to the rapid prototyping
framework during this thesis are depicted by colored boxes with italic text.

It is important to note that all contributions presented in this thesis were developed as
part of the Preesm open-source project, and can therefore be freely and legally accessed
online for any purposes [IET14b].

8.2 Future Work

The work presented in this thesis opens many opportunities for future research on dataflow
MoCs and rapid prototyping.

8.2.1 Support for Complex Memory Architectures

The memory analysis and allocation techniques presented in this thesis are applicable only
for MPSoCs where all processing elements can access a unique shared-memory. Although
shared-memory MPSoCs are still the most commonly used architectures for embedded
systems, more and more companies propose products that break with this memory or-
ganization. For example, many-core processors from Tilera [Til14], Kalray [Kal14], and
Adapteva [Ada14] are all based on a distributed memory architecture where each processor,
or each group of processors, is associated with a local memory.

Hence, a potential direction for future research would be to extend the memory study
and allocation techniques presented in this thesis to support distributed memory archi-
tectures. This work could also be further extended to encompass memory allocation for
complex memory architectures with a hierarchical organization of memory banks with
variable speeds.

8.2.2 Memory-Aware Scheduling Techniques

The current objective of the mapping and scheduling process implemented in Preesm
is to optimize the throughput, the latency, and the load balancing of applications on
heterogeneous MPSoCs. As presented in Chapter 4, this scheduling policy sometimes
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results in bad choices from the memory perspective. Indeed, actors consuming and freeing
the memory allocated to large buffers are not prioritized by the scheduling process, even
when the throughput is not impacted.

An interesting perspective for future work would be to introduce an evaluation of the
memory footprint in the mapping and scheduling process. As in Fifo dimensioning tech-
niques [SGB06], a memory-aware scheduling process would allow developers to customize
the tradeoff between memory footprint and throughput of applications.

8.2.3 Rapid Prototyping for πSDF graphs

In the current version of Preesm, a graphical editor has been implemented for πSDF
graphs. A converter of static πSDF graphs into IBSDF graphs was also implemented
to enable use of all previously developed workflow tasks on static πSDF graph. Finally,
a runtime manager for applications modeled with πSDF graphs has been developed for
the TMS320C6678 multiprocessor DSP chip from Texas Instrument [Tex13] and is being
ported on the MPPA256 many-core chip from Kalray [Kal14].

Possibilities for future work on the PiMM meta-model include the development of
analysis techniques to guarantee the local synchrony of πSDF graphs at compile time, the
creation of an algorithm to automate the static scheduling of applications on multi-core
architecture, or the extension of the memory optimization techniques presented in this
thesis for reconfigurable πSDF graphs.
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ANNEXE A

French Summary

A.1 Introduction

Les systèmes embarqués constituent l’une des avancées technologiques les plus remar-
quables des dix dernières années. Ces systèmes sont devenus un vecteur de développement
majeur pour de nombreuses industries, et ont progressivement envahi de nombreux aspects
de la vie quotidienne. Un système embarqué est un système électronique et informatique
intégré, conçu pour réaliser une tâche précise. Les systèmes d’aide au freinage d’urgence,
les terminaux de géolocalisation par satellite, les liseuses, les stimulateurs cardiaques, les
appareils photo numériques (APN), et les aspirateurs autonomes sont autant d’exemples
d’appareils fonctionnant grâce à un ou plusieurs systèmes embarqués.

Matériel et logiciel d’un système embarqué

Comme la plupart des systèmes informatiques, les systèmes embarqués sont composés de
deux parties complémentaires : la partie matérielle et la partie logicielle.

� Le matériel est l’ensemble des composants physiques qui constituent un système
embarqué, comme des unités de traitement, des générateurs d’horloges, des capteurs,
des convertisseurs analogique-numérique, des mémoires, des moyens de communica-
tion interne et externe, ou des unités de gestion de l’alimentation. L’architecture
d’un système embarqué spécifie le type des composants matériels contenus dans ce
système ainsi que les connexions entre ces composants. Les unités de traitement,
processeurs ou accélérateurs matériels, sont les composants matériels les plus impor-
tants d’un système embarqué. En effet, ces unités réalisent les calculs nécessaires au
fonctionnement d’un système embarqué et sont responsables du contrôle des autres
éléments matériels de ce système. Selon le domaine d’application visé par un système
embarqué, différents types d’unités de traitement peuvent être utilisées. Par exemple,
des processeurs spécialisés offrant une forte puissance de calcul pour un coût limité
sont souvent utilisés pour les systèmes nécessitant des calculs intensifs, comme les
systèmes de traitement du signal et de l’image.

De nos jours, les systèmes embarqués sont souvent basés sur des circuits intégrés com-
plexes appelés “systèmes multiprocesseur sur puce” (MPSoC). Un MPSoC hétérogène
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regroupe tous les composants matériels d’un système embarqué, dont plusieurs unités
de traitement de différents types, sur un seul circuit intégré.

� Le logiciel désigne les programmes informatiques exécutés par les unités de trai-
tement d’un système embarqué. Un programme est une séquence d’instructions
exécutées de manière itérative par les unités de traitement d’un système embarqué.
Chaque instruction correspond à une opération primitive, comme une opération
arithmétique et logique, un saut dans le déroulement du programme, la configu-
ration et le contrôle d’autres composants du système embarqué, la communication
et la synchronisation avec d’autres unités de traitement, ou une opération de lecture
ou d’écriture dans la mémoire du système.

Programmer un système embarqué consiste à écrire une séquence d’instructions qui
spécifie le comportement de ses unités de traitement. Les méthodes de programma-
tion, dites de haut-niveau, permettent l’écriture du programme dans des langages
facilement manipulables par les développeurs. Lors d’une étape de compilation, les
programmes écrits dans ces langages de haut-niveau sont automatiquement convertis
en instructions binaires exécutables par les unités de traitement.

Afin de réduire le temps de développement d’un système embarqué, ses parties matériel-
les et logicielles sont généralement développées conjointement.

En quelques années, la multiplication du nombre d’unités de traitement intégrées dans
les MPSoCs a permis une augmentation rapide de leur puissance de calcul. Afin d’exploiter
la puissance de calcul offerte par ces nouvelles architectures, les langages de programma-
tion doivent permettre la spécification d’applications où les calculs peuvent être exécutés
en parallèle. Actuellement, le langage C est le langage de programmation le plus couram-
ment utilisé pour la programmation de systèmes embarqués. La syntaxe du langage C ne
permettant d’exprimer qu’un faible degré de parallélisme, de nouveaux langages et modèles
de calcul sont nécessaire pour exploiter pleinement la puissance de calcul des MPSoCs.

Programmation flux de données

Les modèles de calcul de type flux de données [Kah74] sont des paradigmes de program-
mation efficaces pour exprimer le parallélisme d’applications. Une application modélisée
avec un diagramme de flux de données se présente sous la forme d’un graphe orienté dans
lequel chaque sommet représente un module de calcul indépendant, appelé un acteur, et
chaque arête représente un canal de communication entre deux sommets. La popularité des
modèles de flux de données dans les milieux scientifiques, universitaires, et industriels est
due à leur expressivité naturelle du parallélisme, à leur modularité, et à leur compatibilité
avec le code existant. En effet, le comportement interne des acteurs d’un diagramme de flux
de données peut être spécifié dans n’importe quel langage de programmation, y compris
en langage C. Le temps de développement d’un système peut donc être considérablement
réduit en réutilisant des programmes précédemment développés et optimisés.

Prototypage rapide

L’objectif des outils de prototypage rapide est d’accélérer et de faciliter le développement
des systèmes embarqués. Le flot de conception classique pour systèmes embarqués est un
processus simple dont le l’objectif final est de produire un système embarqué répondant
à toutes les contraintes de conception. Le principe des techniques de prototypage ra-
pide est de créer un prototype peu coûteux, aussi tôt que possible dans le processus de



Modèles de calcul de type flux de données 149

développement. L’analyse des caractéristiques de ce prototype permet aux développeurs
d’identifier les points critiques du système, et d’en améliorer les caractéristiques de manière
itérative en générant de nouveaux prototypes.

Problématique de la thèse

Les composants de mémoire sont, après les unités de traitement, les composants les plus
importants d’une architecture matérielle embarquée. En effet, les composants mémoires
peuvent couvrir jusqu’à 80% de la surface de silicium d’un circuit intégré [DGCDM97].
Malgré ce fort coût en surface de silicium et la forte consommation énergétique qui en
découle, la mémoire est une ressource encore rare du point de vue logiciel. Par exemple,
dans le processeur many-core MPPA256 de Kalray [Kal14], chaque banc mémoire de 2 Mo
est partagé par 16 unités de traitement, pour un total de 32 Mo de mémoire embarquée
sur la puce. Un autre exemple est la TMS320C6678 de Texas Instrument dans lequel
8,5 Mo de mémoire sont partagés par les 8 processeurs de traitement du signal [Tex13].
Ces capacités mémoires restent relativement faibles par rapport aux besoins logiciels. Par
exemple, pour une application de décodage vidéo, plus de 3 Mo sont nécessaires pour
stocker une seule image en résolution Full HD de 1920×1080 pixels. Même si des mémoires
externes peuvent être utilisées en complément de la mémoire intégrée dans un MPSoC,
l’accès à ces bancs mémoires externes est plus lent, et leur utilisation a un impact négatif
sur les performances d’un système embarqué. Par conséquent, l’étude et l’optimisation des
aspects mémoires constituent une étape de développement essentiel qui peut fortement
influer sur les performances et le coût d’un système embarqué.

Plan

Ce résumé reprend l’organisation des chapitres du corps de la thèse. La Section A.2
présente quelques modèles de flux de données utilisés dans ce résumé. La Section A.3
décrit l’environnement de prototypage rapide au sein duquel les travaux de cette thèse
ont été développés. Ensuite, les Sections A.4 et A.5 présentent deux techniques pour op-
timiser la quantité de mémoire allouée pour l’exécution d’une application modélisée par
un diagramme flux de données sur un système multiprocesseur sur puce. Ces méthodes
d’optimisation mémoire sont appliquées à un algorithme d’appariement stéréoscopique en
Section A.6. La Section A.7 introduit un nouveau modèle de flux de données permettant
la modélisation d’applications reconfigurables. Enfin, la Section A.8 conclut ce résumé.

A.2 Modèles de calcul de type flux de données

Un modèle de calcul (MoC) est un ensemble d’éléments opérationnels pouvant être as-
semblés afin de décrire le comportement d’une application. La sémantique d’un MoC
désigne l’ensemble des éléments opérationnels de ce MoC ainsi que l’ensemble des rela-
tions pouvant être utilisées pour assembler ces éléments opérationnels. Par exemple, la
sémantique du MoC des automates finis est composé de deux éléments opérationnels :
des états et des transitions. À un instant t, un unique état d’un automate fini est actif.
Chaque transition d’un automate fini est associée à une condition. Le passage d’un état
actif à un autre état ne peut se faire que si la transition reliant ces deux états est validée.
Le MoC des automates finis est généralement utilisé pour la modélisation d’applications
de contrôle séquentiel [Gol94].

Il existe de nombreux autres MoCs, tels que le lambda calculus [Chu32] ou les circuits
logiques [Sav98], chacun adapté à la modélisation d’un certain type d’applications. Le reste
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de cette section présente la sémantique des modèles de calculs de type flux de données qui
sont utilisés dans ce résumé.

Modèle de flux de données synchrone (SDF)

Le modèle de flux de données synchrone (SDF) a été introduit par Lee et Messerschmitt
en 1987 [LM87b]. Ce modèle est défini comme suit :

Definition A.2.1. Un diagramme de flux de données synchrone (SDF) est un graphe
orienté G = 〈A,F 〉 tel que :

� A est l’ensemble des nœuds de G. Chaque nœud a ∈ A représente un acteur : une
entité de code séquentiel. Le comportement interne des acteurs ne fait pas partie
du modèle de flux de données, il peut être décrit avec n’importe quel langage de
programmation.

� F ⊆ A×A est l’ensemble des arcs de G. Chaque arc f ∈ F représente une file d’at-
tente “premier arrivé, premier sorti” (F ifo) permettant la transmission de quanta
de données, appelés jetons de données, entre les acteurs du graphe.

� Chaque acteur est associé à un ensemble de règles de tirs qui spécifie le nombre
constant de jetons de données que cet acteur consomme et produit à chaque exécution
sur chacune des F ifos auxquelles il est connecté. Une nouvelle exécution d’un acteur
peut débuter dès que suffisamment de jetons de données sont présent sur les F ifos
entrantes de cet acteur.

� Les délais (delay : F → N) sont des jetons de données contenus dans les F ifos du
graphe lors de son initialisation.

Les pictogrammes associés à la sémantique du modèle SDF ainsi qu’un exemple de
diagramme SDF sont présentés en Figure A.1.
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Figure A.1 – Modèle de calcul SDF

La popularité du modèle SDF est principalement due à sa capacité à exprimer le
parallélisme des applications. Dans la Figure A.1(b) par exemple, les acteurs B et C
peuvent être exécutés en parallèle puisqu’ils ne sont liés par aucune dépendance de données.
Dans cette même figure, à chacune de ses exécutions, l’acteur A produit suffisamment de
jetons de données pour déclencher 3 exécutions de l’acteur B. L’acteur B n’ayant pas de
dépendance avec lui-même, contrairement à l’acteur C, il peut effectuer ces 3 exécutions
en parallèle les unes des autres.

La popularité du modèle SDF est également due à sa grande analysabilité qui permet
de vérifier certaines propriétés des applications modélisées lors d’une phase de compila-
tion. Par exemple, il est possible de garantir qu’une application ne rencontrera jamais
d’interblocage (ou étreinte fatale [HRM08]) [LM87b] lors de son exécution.
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Modèle flux de données synchrone basé-interface (IBSDF)

Le modèle flux de données synchrone basé-interface (IBSDF) est une généralisation hié-
rarchique du modèle SDF proposée par Piat et al. dans [PBR09]. Dans le modèle IBSDF,
le comportement interne d’un acteur a ∈ A peut être décrit soit par du code séquentiel,
soit par un diagramme de flux de données appelé sous-graphe de cet acteur. Les picto-
grammes associés à la sémantique de l’IBSDF ainsi qu’un exemple de diagramme IBSDF
sont présentés en Figure A.2.
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Figure A.2 – Modèle de calcul IBSDF

Les interfaces hiérarchiques du modèle IBSDF ont pour rôle d’isoler les niveaux de
hiérarchie les uns des autres. En particulier, si le nombre de jetons nécessaires pour
l’exécution d’un sous-graphe est supérieur aux nombres de jetons fournis sur les ports
de l’acteur hiérarchique, alors les interfaces d’entrée dupliqueront les jetons fournis autant
de fois que nécessaire pour permettre l’exécution du sous-graphe. Par exemple, dans le dia-
gramme IBSDF de la Figure A.2(b), deux exécutions de l’acteur C sont nécessaires pour
fournir les jetons consommés par l’acteur D. Le port d’entrée de l’acteur h ne consom-
mant qu’un seul jeton à la fois, ce jeton doit être dédoublé par l’interface d’entrée in pour
permettre le lancement des deux exécutions de l’acteur C.

En pratique, les interfaces hiérarchiques font du modèle IBSDF un modèle composi-
tionnel. Un modèle de flux de données est compositionnel si les propriétés d’un diagramme
sont indépendantes des spécifications internes des éléments qui le composent [Ost95]. Par
exemple, dans le diagramme de la Figure A.2(b), grâce aux interfaces, quel que soit le
taux de consommation de l’acteur D, l’acteur hiérarchique h consommera toujours un
unique jeton par exécution de son sous-graphe. Le graphe de plus haut niveau contenant
les acteurs A, h, et B est donc bien indépendant de la spécification interne de l’acteur
hiérarchique h.

A.3 Prototypage rapide avec Preesm

Preesm est un outil de prototypage rapide dont l’objectif est d’automatiser le déploiement
d’applications modélisées par des diagrammes IBSDF sur des architectures multipro-
cesseurs hétérogènes [PDH+14]. Preesm est développé à l’Institut d’Électronique et de
Télécommunications de Rennes (IETR) sous la forme de modules d’extension pour l’envi-
ronnement de développement Eclipse. Preesm est un projet au code source ouvert, utilisé
à des fins scientifiques, académiques, et industrielles.
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Flux de travail typique de Preesm

La Figure A.3 présente les 3 parties principales de Preesm. Ces 3 parties se retrouvent
dans la plupart des outils de prototypage rapide existants, tels que SynDEx [GLS99],
SDF3 [Ele13], Ptolemy [BHLM94], ou MAPS [CCS+08].
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Figure A.3 – Flux de travail typique de Preesm

� Entrées : Cette partie de l’outil regroupe tous les modèles permettant au développeur
de décrire les propriétés du système développé. Dans le contexte des systèmes em-
barqués, cette partie regroupe généralement un modèle dédié à la description des
architectures matérielles visées, un modèle pour la description des applications à
exécuter, et un modèle permettant de spécifier des contraintes de déploiement.

Dans le cas de Preesm, le modèle d’architecture utilisé est un modèle de niveau
système nommé S-LAM [PNP+09] et le modèle d’application est le modèle IBSDF.
Dans Preesm, le modèle d’architecture et le modèle d’application sont complètement
indépendants l’un de l’autre. Cette propriété permet de déployer une application
sur plusieurs architectures, mais également d’utiliser une même architecture pour
exécuter plusieurs applications. Pour chaque couple composé d’une application et
d’une architecture cible, les contraintes de déploiement sont spécifiées par le dévelop-
peur dans un scénario.

� Flux de travail : Dans Preesm, il est possible de personnaliser les opérations
qui sont successivement appliquées par l’outil de prototypage rapide. Le flux de
travail de Preesm est un graphe acyclique édité graphiquement par le développeur.
Chacun des nœuds de ce graphe représente une tâche exécutée par l’outil, tel qu’une
transformation de graphe, la simulation du système, ou la génération de code.

Dans la Figure A.3, le flux de travail présenté contient 5 tâches :

– Aplatir hiérarchie : Cette tâche permet de transformer un diagramme IBSDF
hiérarchique en un diagramme SDF équivalent. En contrôlant la profondeur
de hiérarchie devant être aplatie, le développeur peut adapter la granularité
du graphe SDF obtenu. La granularité d’un graphe SDF caractérise la quan-
tité de calcul effectuée par ses acteurs relativement au temps nécessaire pour
transmettre les jetons de données sur les arcs du graphe.

– Dérouler graphe : Cette tâche permet de révéler tout le parallélisme d’une appli-
cation. Dérouler un graphe SDF consiste à transformer ce graphe en un graphe
équivalent dans lequel les taux de production et de consommation de jetons de
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données sont égaux sur chacune des Fifos. Par exemple, le graphe SDF présenté
en Figure A.4 est obtenu en aplatissant puis en déroulant le graphe IBSDF de
la Figure A.2(b).
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Figure A.4 – Graphe SDF obtenu par aplatissement et déroulage du graphe IBSDF présenté en
Figure A.2(b)

– Ordonnancer : Cette tâche a pour but d’assigner les acteurs du graphe SDF
déroulé aux unités de traitement qui seront chargées de leurs exécutions. La
tâche d’ordonnancement détermine également l’ordre d’exécution des acteurs
sur chaque unité de traitement de l’architecture matérielle. L’objectif de cette
tâche est de produire une solution maximisant les performances de l’application.

L’ordonnancement d’une application est un problème complexe pour lequel il est
impossible de trouver une solution optimale en un temps polynomial[Kwo97].
L’ordonnanceur utilisé dans Preesm permet au développeur de contrôler sa
complexité et offre ainsi un compromis entre le temps d’exécution de la tâche
d’ordonnancement et la qualité du résultat produit [PMAN09].

– Afficher Gantt et métriques : Cette tâche a pour rôle de simuler le comportement
du système généré par l’outil de prototypage rapide. Les résultats de simulations
sont présentés sous la forme d’un diagramme de Gantt représentant l’activité
des différentes unités de traitement de l’architecture au cours du temps. Le
diagramme de Gantt est accompagné d’un ensemble de métriques permettant
d’évaluer rapidement certains aspects du système simulé, tels que la répartition
des calculs sur les unités de traitement, ou les performances de l’application par
rapport à son déploiement sur une architecture monocoœur.

– Générer code C : Cette dernière tâche a pour rôle de traduire les choix de
conception faits par l’outil de prototypage rapide en code exécutable par l’ar-
chitecture ciblée. Des architectures multiprocesseurs x86, c6x [Tex13] et ARM
[HDN+12] sont actuellement supportées par la tâche de génération de code de
Preesm.

� Châıne de développement : Afin de compiler le code généré par l’outil de prototy-
page rapide, une châıne de développement traditionnelle est nécessaire. L’utilisation
de cette chaine de développement permet au développeur de profiter de toutes les
optimisations de compilation développées pour l’architecture ciblée, en plus des op-
timisations réalisées par l’outil de prototypage rapide.

Comme présenté en Figure A.3, la tâche d’ordonnancement est au cœur de l’environ-
nement de prototypage rapide. Ainsi, l’objectif principal de Preesm est d’optimiser les
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performances du système en minimisant sa latence et en maximisant son débit. Les pro-
chaines sections proposent de nouvelles techniques permettant d’étudier et d’optimiser les
aspects mémoires des applications à différentes étapes du flux de travail du prototypage
rapide.

A.4 Optimisation mémoire des diagrammes de flux de données

Les travaux de recherche existant sur les aspects mémoires des MPSoCs portent principale-
ment sur la mise au point de techniques visant à minimiser la quantité de mémoire allouée
pour l’exécution d’une application [MB00, Fab79]. Ces techniques ne peuvent généralement
être appliquées que dans les dernières étapes du processus de conception d’un système em-
barqué, après l’étape d’ordonnancement des acteurs de l’application.

La méthode présentée dans cette thèse permet d’étudier et d’optimiser les caractéris-
tiques d’une application dès les premières étapes d’un flux de conception, indépendamment
de toute information sur l’architecture ciblée.

Graphe d’exclusion mémoire

Les techniques présentées dans cette thèse reposent sur un graphe modélisant les ca-
ractéristiques mémoires d’une application modélisée par un graphe IBSDF. Cette repré-
sentation intermédiaire prend la forme d’un graphe non-orienté appelé graphe d’exclusion
mémoire, dont les nœuds représentent les objets à allouer en mémoire, et dont les arêtes
représentent des exclusions entre les objets mémoires. Deux objets mémoires s’excluent s’ils
représentent des données devant coexister durant l’exécution de l’application. De tels ob-
jets mémoires ne peuvent donc pas être alloués dans des espaces mémoire se chevauchant.
À l’inverse, deux objets mémoires ne stockant pas des données valides simultanément ne
s’excluent pas et peuvent être alloués dans des espaces mémoire superposés.
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Figure A.5 – Transformation d’un graphe IBSDF en graphe d’exclusion mémoire
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Le diagramme présenté en Figure A.5 illustre les transformations de graphe appliquées
successivement pour construire le graphe d’exclusion mémoire. L’aplatissement et le dérou-
lage du graphe IBSDF permettent de révéler le parallélisme de l’application, facilitant ainsi
l’identification des objets mémoires pouvant coexister. Dans cet exemple, chaque Fifo du
graphe SDF déroulé représente un objet de taille fixe devant être alloué en mémoire.
Des exclusions sont ajoutées dans le graphe d’exclusion entre les objets mémoires qui ne
sont pas liés par une relation d’antériorité. Par exemple, comme il n’existe aucun arc (ou
chemin) liant les Fifos AB2 et C1D1, les objets mémoires correspondants à ces Fifos sont
liés par une exclusion dans le graphe d’exclusion mémoire.

Le graphe d’exclusion mémoire construit à partir du graphe SDF déroulé peut être mis
à jour afin de prendre en compte l’ordonnancement de l’application. En effet, l’ordonnan-
cement d’un graphe SDF résulte en la création de nouvelles relations d’antériorité entre
certains objets mémoires de l’application. Par exemple, dans la Figure A.5, l’ordonnance-
ment du graphe SDF sur deux unités de traitement crée une relation d’antériorité entre les
Fifos C1D1 et D2E. Le graphe d’exclusion mémoire ainsi construit est utilisé pour borner
les besoins mémoires de l’application et sert de base au processus d’allocation mémoire de
Preesm.

Bornes mémoires

Borner la quantité de mémoire nécessaire pour l’implémentation d’une application sur une
architecture multicœur permet au développeur de dimensionner adéquatement la mémoire
du système développé.
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Figure A.6 – Bornes mémoires

La Figure A.6 illustre la place des bornes mémoires inférieure et supérieure d’une
application sur un axe représentant la quantité de mémoire disponible dans une architec-
ture. Si l’architecture ciblée possède moins de mémoire que la borne mémoire inférieure
d’une application, il sera impossible d’implémenter cette application, en l’état, sur cette
architecture. À l’inverse, si une architecture ciblée possède plus de mémoire que la borne
mémoire supérieure d’une application, certaines parties de cette mémoire ne seront jamais
utilisées pour l’implémentation de cette application. En effet, la borne mémoire supérieure
représente la pire allocation possible pour une application : l’allocation utilisant le plus
grand espace mémoire.

La borne mémoire supérieure d’une application se calcule simplement en sommant
les tailles de tous les objets mémoires contenus dans son graphe d’exclusion mémoire. La
borne mémoire inférieure se calcule en trouvant le clique de poids maximum dans le graphe
d’exclusion mémoire. Plusieurs méthodes pour résoudre ce problème sont présentées dans
le Chapitre 4 de cette thèse.

A.5 Optimisation mémoire des acteurs

Les graphes d’exclusion mémoire ne modélisent que les opportunités de réutilisation mé-
moire révélées en analysant le graphe IBSDF d’applications. Les graphes IBSDF ne conte-
nant pas d’information sur le comportement interne des acteurs, il est supposé qu’un acteur
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conserve un accès à toutes ses entrées et sorties durant tout son temps d’exécution. Pour
relaxer cette contrainte, il est nécessaire de fournir à l’outil de prototypage rapide des
informations sur les dépendances de données internes aux acteurs.

Annotations pour les ports d’acteurs

La première contribution présentée dans le Chapitre 5 est un jeu d’annotations pouvant
être associées aux ports des acteurs par le développeur. Ces annotations permettent de
spécifier le comportement de l’acteur vis-à-vis des données disponibles sur ses ports. Ces
3 annotations sont décrites ci-après :

� Lecture seule : L’acteur possédant un port d’entrée en lecture seule ne peut que
lire des données à partir de ce port. Comme pour une variable const en langage C,
ou pour une variable final en langage Java, il est impossible pour un acteur d’écrire
dans la mémoire tampon associée à un port en lecture seule.

� Écriture seule : L’acteur possédant un port de sortie en écriture seule ne peut
qu’écrire des données dans ce port. Un acteur n’est donc pas autorisé à lire les
données stockées dans la mémoire tampon associée à un port en écriture seule, même
si ces données ont été écrites par l’acteur lui-même.

� Inutilisé : L’acteur possédant un port d’entrée inutilisé n’accèdera jamais aux données
stockées dans la mémoire tampon associée à ce port. Un port d’entrée inutilisé est
semblable à un fichier /dev/null dans les systèmes d’exploitation Unix, tout jeton
de données transmis sur ce port est immédiatement détruit.

Scripts mémoires

La seconde contribution présentée dans le Chapitre 5 est un système de scripts permettant
au développeur de spécifier des opportunités de réutilisation mémoire pour l’allocation des
mémoires tampons associées aux ports d’entrée et de sortie d’un acteur. En d’autres termes,
les scripts mémoires permettent au développeur d’autoriser explicitement l’allocation des
objets mémoires associés à ses ports dans des espaces mémoires se chevauchant.

// Mémoires tampons d’entrée: E

// Mémoires tampons de sortie: S

// Paramètres: h, l, hjointure, nbtranche
htranche ← h/nbtranche + 2 ∗ hjointure;
tailletranche ← htranche ∗ l;
pour i← 0 a nbtranche − 1 faire

idxSrc← (i ∗ h/nbtranche − hjointure) ∗ l;
intervalSrc← [idxSrc, idxSrc+ tailletranche];
intervalDst← [i ∗ tailletranche, (i+ 1) ∗ tailletranche];
Associe E.intervalSrc avec S.intervalDst;

fin
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Figure A.7 – Script mémoire pour les acteurs Split

Le script mémoire présenté en Figure A.7(a) est associé à l’acteur Split qui a pour
rôle de découper une image de hauteur h et de largeur l en nbtranche tranches. Les pixels
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de deux tranches d’image successives se chevauchent sur une bande de hjointure pixels de
haut.

L’objectif principal du script mémoire est de créer des associations entre des inter-
valles d’octets issus des mémoires tampons d’entrée et des intervalles issus des mémoires
tampons de sortie. Par exemple, dans le script présenté en Figure A.7(a), une association
d’intervalles est créée pour chaque tranche produite par l’acteur. La Figure A.7(b) illustre
les intervalles associés pour une exécution de l’acteur Split avec les paramètres suivants :
h = 9, l = 8, nbtranche = 3, et hjointure = 1.

En combinant les informations données par le développeur sous forme d’annotations et
de scripts mémoires, l’outil de prototypage rapide parvient à minimiser automatiquement
la quantité de mémoire allouée pour une application.

A.6 Etude de cas : application d’appariement stéréoscopique

L’appariement stéréoscopique

(a) Paire stéréoscopique (b) Carte de profondeur

Figure A.8 – Exemple de paire stéréoscopique tirée de la base de donnée [SS02]

L’appariement stéréoscopique est un algorithme dont l’objectif est de mettre en corres-
pondance les pixels de deux images d’une même scène capturées par deux caméras séparées
par une faible distance (cf. Figure A.8(a)). Le résultat produit par l’algorithme est une
carte de profondeur permettant d’évaluer la distance entre la caméra et les éléments de la
scène capturée (cf. Figure A.8(b)).

Le graphe IBSDF modélisant l’application d’appariement stéréoscopique est présenté
dans le Chapitre 6. Cette application constitue un cas d’étude intéressant de par l’impor-
tance des calculs qu’elle suppose, mais également pour son fort degré de parallélisme. En
effet, les acteurs nécessitant le plus de calcul peuvent s’exécuter jusqu’à soixante fois en
parallèle. De plus, le déploiement de cette application sur une architecture multiprocesseur
embarquée, où les ressources mémoires sont souvent limitées, présente un réel défi.

Résultats d’expérimentation

Le Tableau A.1 présente les caractéristiques mémoires de l’application d’appariement
stéréoscopique dans 4 scénarios différents. Chaque scénario correspond à une mise à jour
spécifique du graphe d’exclusion mémoire. Les résultats sont présentés pour : un graphe
d’exclusion mémoire n’ayant pas été mis à jour avec les informations d’ordonnancement,
un graphe d’exclusion mis à jour avec les informations d’ordonnancement, et un graphe
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d’exclusion mis à jour avec un minutage de l’application (qui ajoute de nouvelles in-
formations d’antériorités). Les résultats présentés pour chaque scénario sont les bornes
d’allocations inférieures et supérieures, ainsi que les empreintes mémoires allouées pour
le déploiement de l’application sur deux architectures multiprocesseurs : le processeur
généraliste Intel i7-3610QM [Int13] et le processeur de traitement du signal Texas Instru-
ment TMS320C6678 [Tex13].

Bornes (Mo) Allocations2 (Mo)

Scénarios Supérieure Inférieure i7 C6678

Pré-ordonnancement1 1453 1314 +0 +0.051
Pré-ordonnancement 170 100 +0.164 +0.679
Post-ordonnancement 170 80 +0 +0.014
Post-minutage 170 68 +0 +0.342

1 : Scripts mémoires non-appliqués dans ce scénario.
2 : Relativement à la borne inférieure.

Table A.1 – Résultats d’allocation dans différents scénarios

Les deux premières lignes du Tableau A.1 présentent les résultats obtenus avant l’or-
donnancement, sans puis avec les scripts mémoires. L’utilisation des scripts mémoires
permet donc une réduction de l’empreinte mémoire de 92% pour cette application, pas-
sant de 1314Mo à 100Mo. Les mises à jour suivantes du graphe d’exclusion mémoire avec
les informations d’ordonnancement et de minutage permettent des réductions successives
de 19% et 17% de l’empreinte mémoire allouée.

Sur cette application, les techniques d’optimisation mémoire présentées dans cette thèse
résultent en une empreinte mémoire 15% plus faible que celle obtenue avec une technique
de dimensionnement de Fifos [SGB06] qui est une référence dans la littérature sur l’opti-
misation mémoire pour les graphes de flux de données.

A.7 Vers plus de dynamisme : le modèle PiSDF

Le modèle SDF étudié dans les sections précédentes a une expressivité limitée. En effet,
dans le modèle SDF les taux de production et de consommation de jetons de données
des acteurs sont des constantes dont la valeur ne peut être modifiée durant l’exécution de
l’application.

Pour remédier à cette limitation tout en préservant la compositionalité du modèle
IBSDF, un nouveau méta-modèle de flux de données nommé PiMM est introduit dans
le Chapitre 7. Dans le contexte des modèles de calcul de type flux de donnée, un méta-
modèle est un ensemble d’éléments de sémantique pouvant être ajoutés à la sémantique
d’un modèle existant afin de lui apporter de nouvelles capacités. En plus du mécanisme
de composition hiérarchique inspiré du modèle IBSDF, le méta-modèle PiMM apporte un
mécanisme de reconfiguration dynamique au modèle auquel il est appliqué.

Sémantique du PiMM

L’ensemble des éléments de sémantique du méta-modèle PiMM est présenté en Figure A.9.
Comme indiqué dans cette figure, le modèle résultant de l’application du PiMM au modèle
SDF se nomme le πSDF. En plus des interfaces hiérarchiques issues du modèle IBSDF,
la sémantique du modèle πSDF contient également des paramètres et des dépendances de
paramètres. Un paramètre est un nœud du graphe associé à une valeur entière pouvant être
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Figure A.9 – Sémantique du méta-modèle PiMM

utilisée pour calculer les taux de production et de consommation des acteurs du graphe.
Les dépendances de paramètres ont pour rôle de relier les paramètres aux acteurs qu’ils
influencent.

Il existe deux types de paramètres dans le méta-modèle PiMM : les paramètres loca-
lement statiques et les paramètres configurables. Les paramètres localement statiques ont
une valeur constante durant toute la durée d’exécution du graphe auquel ils appartiennent.
Les paramètres configurables en revanche se voient assigner une nouvelle valeur à chaque
nouvelle itération du graphe auquel ils appartiennent. Les acteurs de configuration sont
des acteurs spéciaux qui ont la capacité d’assigner une nouvelle valeur aux paramètres
configurables. En contrepartie, les acteurs de configurations doivent être exécutés exac-
tement une fois au début de chaque itération du graphe auquel ils appartiennent. Cette
restriction permet de garantir que les paramètres reconfigurables recevront une nouvelle
valeur à intervalles réguliers, renforçant ainsi la prédictibilité du modèle et des applications
décrites.

Exemple d’application

La Figure A.10 présente un graphe de flux de données d’une application de traitement
d’image utilisant la sémantique du modèle πSDF. Dans cette application, les acteurs Read
et Send sont respectivement utilisés pour lire une source de pixels, et pour envoyer des
paquets de 3 pixels sur un réseau. L’acteur hiérarchique Filter a pour rôle d’appliquer un
filtre à une image 2D dont la taille est fixée par le paramètre localement statique size.

SetN

Filter

Kernel

SendRead 3size size
size size

size/Nsize/N
size/Nsize/N sizesize

1

N

size

x2*size

sizesize

Figure A.10 – Graphe πSDF d’une application de traitement d’image
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Dans le sous-graphe de l’acteur Filter, l’acteur de configuration SetN a pour rôle d’as-
signer une nouvelle valeur au paramètre configurable N . Ce paramètre influence les taux
de production et de consommation de l’acteur Kernel qui sont utilisés pour déterminer
le nombre d’exécutions de l’acteur. Ainsi, pour chaque nouvelle image traitée par l’acteur
hiérarchique Filter, le nombre d’exécutions simultanées de l’acteur Kernel peut être mo-
difié dynamiquement pour s’adapter, par exemple, au nombre de processeurs disponibles
dans l’architecture.

A.8 Conclusion

Les contributions présentées dans cette thèse sont résumées en Figure A.11. Le principal
objectif de ces contributions est de faciliter l’étude et l’optimisation des caractéristiques
mémoires d’applications modélisées par des graphes de flux de données IBSDF. Toutes
les techniques présentées dans cette thèse sont implémentées dans l’outil de prototypage
rapide Preesm.
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Figure A.11 – Flux de travail typique de Preesm incluant les nouvelles contributions présentées
dans cette thèse.

Perspectives

Le travail réalisé durant cette thèse a permis d’identifier de nombreux axes intéressants
pour de futurs travaux de recherche. Un premier axe possible serait de rendre compatible
les méthodes d’allocation mémoire avec des architectures à mémoire distribuée. En effet,
les méthodes d’allocation basées sur le graphe d’exclusion mémoire ne sont, pour l’instant,
adaptées qu’à des architectures multiprocesseurs possédant une mémoire partagée entre
toutes les unités de traitement. Il serait également intéressant de développer un nouvel
ordonnanceur capable de minimiser à la fois la latence de l’application et l’empreinte
mémoire nécessaire à son déploiement. Enfin, de futurs travaux de recherche pourront
porter sur l’analyse avancée des propriétés des diagrammes πSDF, ou sur l’extension
des techniques d’optimisation mémoire pour supporter le dynamisme offert par le modèle
πSDF.
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A.7 Script mémoire pour les acteurs Split . . . . . . . . . . . . . . . . . . . . . . 156
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2013. 14

[Bou09] J. Boutellier. Quasi-static scheduling for fine-grained embedded multipro-
cessing. PhD thesis, University of Oulu, 2009. 138

[Bru07] P. Brucker. Scheduling algorithms, volume 3. Springer, 2007. 41

[BTV12] A. Bouakaz, J.-P. Talpin, and J. Vitek. Affine data-flow graphs for the
synthesis of hard real-time applications. ACSD, 2012. 24, 138

[Cal93] J.P. Calvez. Embedded Real-Time Systems. Wiley Series in Software Engi-
neering Practice. Wiley, 1993. 11



Bibliography 175

[CCS+08] J. Ceng, J. Castrillón, W. Sheng, H. Scharwächter, Ra. Leupers, G. Ascheid,
H. Meyr, T.i Isshiki, and H. Kunieda. MAPS: an integrated framework
for MPSoC application parallelization. In Proceedings of the 45th annual
Design Automation Conference, pages 754–759. ACM, 2008. 43, 152

[CDG+14] L. Cudennec, P. Dubrulle, F. Galea, T. Goubier, and R. Sirdey. Generating
code and memory buffers to reorganize data on many-core architectures.
Procedia Computer Science, 29:1123–1133, 2014. 21, 84, 89

[CH89] J.E. Cooling and T.S. Hughes. The emergence of rapid prototyping as
a real-time software development tool. In Software Engineering for Real
Time Systems, 1989., Second International Conference on, pages 60–64,
Sep 1989. 35

[Chu32] A. Church. A set of postulates for the foundation of logic. Annals of
mathematics, pages 346–366, 1932. 12, 149

[CJVDP08] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared
memory parallel programming, volume 10. MIT press, 2008. 39

[Den74] J.B. Dennis. First version of a data flow procedure language. In Program-
ming Symposium, pages 362–376. Springer, 1974. 13

[Des13] K. Desnos. Preesm tutorial: Memory footprint reduction, july 2013.
http://preesm.sourceforge.net/website/index.php?id=memory-footprint-
reduction. 114

[DGCDM97] E. De Greef, F. Catthoor, and H. De Man. Array placement for storage
size reduction in embedded multimedia systems. ASAP, 1997. 6, 47, 49,
74, 76, 77, 78, 87, 89, 149

[DPN+13] K. Desnos, M. Pelcat, J.-F. Nezan, S.S. Bhattacharyya, and S. Aridhi.
PiMM: Parameterized and interfaced dataflow meta-model for MPSoCs
runtime reconfiguration. In Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIII), 2013 International Conference
on, pages 41–48. IEEE, 2013. 7

[DPNA12] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. Memory bounds for
the distributed execution of a hierarchical synchronous data-flow graph.
In Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XII), 2012 International Conference on, 2012. 6, 61

[DPNA13] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. Pre-and post-scheduling
memory allocation strategies on MPSoCs. In Electronic System Level Syn-
thesis Conference (ESLsyn), 2013. 6, 70, 79

[DPNA14] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. Memory analysis and
optimized allocation of dataflow applications on shared-memory MPSoCs.
Journal of Signal Processing Systems, Springer, 2014. 7

[DZ13] K. Desnos and J. Zhang. Preesm project - stereo matching, December
2013. svn://svn.code.sf.net/p/preesm/code/trunk/tests/stereo. 110



176 Bibliography

[EAN13] S. El Assad and H. Noura. Generator of chaotic se-
quences and corresponding generating system, February 6 2013.
http://www.google.com/patents/EP2553567A1?cl=en. 80

[EJ03] J. Eker and J. Janneck. CAL Language Report. Technical Report ERL
Technical Memo UCB/ERL M03/48, University of California at Berkeley,
December 2003. 14

[Ele13] Electronic Systems Group - TU Eindhoven. SDF For Free (SDF3), March
2013. http://www.es.ele.tue.nl/sdf3/. 42, 75, 76, 80, 86, 89, 152, 165

[Emb13] Embedded Vision Alliance. Embedded vision alliance website, December
2013. http://www.embedded-vision.com. 107

[EMD09] W. Ecker, W. Müller, and R. Dömer. Hardware-dependent Software.
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Résumé 

 

Le développement d’applications de traitement du signal pour 
des architectures multi-cœurs embarquées est une tâche 
complexe qui nécessite la prise en compte de nombreuses 
contraintes. Parmi ces contraintes figurent les contraintes 
temps réel, les limitations énergétiques, ou encore la quantité 
limitée des ressources matérielles disponibles. Pour satisfaire 
ces contraintes, une connaissance précise des caractéristiques 
des applications à implémenter est nécessaire. La 
caractérisation des besoins en mémoire d’une application est 
primordiale car cette propriété a un impact important sur la 
qualité et les performances finales du système développé. En 
effet, les composants de mémoire d’un système embarqué 
peuvent occuper jusqu’à 80% de la surface totale de silicium et 
être responsable d’une majeure partie de la consommation 
énergétique. Malgré cela, les limitations mémoires restent une 
contrainte forte augmentant considérablement les temps de 
développements. 
 
Les modèles de calcul de type flux de données sont 
couramment utilisés pour la spécification, l’analyse et 
l’optimisation d’applications de traitement du signal. La 
popularité de ces modèles est due à leur bonne analysabilité 
ainsi qu’à leur prédisposition à exprimer le parallélisme des 
applications. L’abstraction de toute notion de temps dans les 
diagrammes flux de données facilite l’exploitation du 
parallélisme offert par les architectures multi-cœurs 
hétérogènes. 
 
Dans cette thèse, nous présentons une méthode complète pour 
l’étude des caractéristiques mémoires d’applications de 
traitement du signal modélisées par des diagrammes flux de 
données. La méthode proposée couvre la caractérisation 
théorique d’applications, indépendamment des architectures 
ciblées, jusqu’à l’allocation quasi-optimale de ces applications 
en mémoire partagée d’architectures multi-cœurs embarquées. 
L’implémentation de cette méthode au sein d’un outil de 
prototypage  rapide permet son évaluation sur des applications 
récentes de vision par ordinateur, de télécommunication, et de 
multimédia. Certaines applications de traitement du signal au 
comportement très dynamique ne pouvant être modélisé par le 
modèle de calcul supporté par notre méthode, nous proposons 
un nouveau méta-modèle de type flux de données répondant à 
ce besoin. Ce nouveau méta-modèle permet la modélisation 
d’applications reconfigurables et modulaires tout en préservant 
la prédictibilité, la concision et la lisibilité des diagrammes de 
flux de données. 
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Abstract 

 

The development of embedded Digital Signal Processing (DSP) 
applications for Multiprocessor Systems-on-Chips (MPSoCs) is 
a complex task requiring the consideration of many constraints 
including real-time requirements, power consumption 
restrictions, and limited hardware resources. To satisfy these 
constraints, it is critical to understand the general characteristics 
of a given application: its behavior and its requirements in terms 
of MPSoC resources. In particular, the memory requirements of 
an application strongly impact the quality and performance of an 
embedded system, as the silicon area occupied by the memory 
can be as large as 80% of a chip and may be responsible for a 
major part of its power consumption. Despite the large 
overhead, limited memory resources remain an important 
constraint that considerably increases the development time of 
embedded systems. 
 
Dataflow Models of Computation (MoCs) are widely used for the 
specification, analysis, and optimization of DSP applications. 
The popularity of dataflow MoCs is due to their great 
analyzability and their natural expressivity of the parallelism of a 
DSP application. The abstraction of time in dataflow MoCs is 
particularly suitable for exploiting the parallelism offered by 
heterogeneous MPSoCs. 
 
In this thesis, we propose a complete method to study the 
important aspect of memory characteristic of a DSP application 
modeled with a dataflow graph. The proposed method spans 
the theoretical, architecture-independent memory 
characterization to the quasi-optimal static memory allocation of 
an application on a real shared-memory MPSoC. The proposed 
method, implemented as part of a rapid prototyping framework, 
is extensively tested on a set of state-of-the-art applications 
from the computer-vision, the telecommunication, and the 
multimedia domains. Then, because the dataflow MoC used in 
our method is unable to model applications with a dynamic 
behavior, we introduce a new dataflow meta-model to address 
the important challenge of managing dynamics in DSP-oriented 
representations. The new reconfigurable and composable 
dataflow meta-model strengthens the predictability, the 
conciseness and the readability of application descriptions. 
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