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Τὰ πάντα ῥεῖ καὶ οὐδὲν μένει. 1

— attributed to Heraclitus

1Everything flows, nothing stands still.



‹

Preface

Networks. . . networks are everywere.

Food webs, lymphatic systems, brains, electrical circuits, crystals and qua-
sicrystals, the Internet—many systems contain a lot of elements connected (or
related) to each other in some sence. In mathematics we call these things
“graphs”, in other sciences we may use another words. But regardless of cho-
sen language, the essence remains the same. Many real-world networks are,
in fact, not so di�erent. They share some common structural properties, and
when we study a particular network, we actually study all of them in some
way.

During my primary and secondary school, I was a great fan of the emerging
Internet. I remember well the time when we used 56K modems in order to
get something from the net. It was cool. Just after ten years, we begin to use
another technology that is about a hundred times faster. This progress is really
awesome. But not only the hardware part has been a�ected. Software has
also been changed. Moreover, the Internet has been evolved structurally, it has
been grown up by thousands of companies and millions of users. Now, when
its prodigious structure is well-formed, we start to consider the Internet as a
mature thing that deserves true scientific aention. Furthermore, the Internet
is not stopped in its development, it continues to change, showing its own
dynamics.

That’s why I’m very happy to study the dynamics of the Internet here, in this
thesis❀

‹Electron diffraction pattern of an icosahedral Zn-Mg-Ho quasicrystal, a kind of network
(http://en.wikipedia.org/wiki/File:Ho-Mg-Zn_E8-5Cube.jpg license: CC BY-SA 3.0, au-
thor: jgmoxness).
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Introduction

The Internet is a complex structure that connects approximately three billions
people3. No official map being available, researchers have to conduct costly measure-
ment campaigns, and deal with the fact that the obtained data can be biased [40, 65].
Studying the dynamics of this topology is therefore an equally hard, if not harder,
problem.

Many studies have already studied its topology and focused on the nodes’
degree distribution, with the question whether or not it follows a power law (see for
example [24, 27, 36]). However few of these studies have asked how this topology
evolves in time. Indeed, it is well known that the Internet is also a living organism
with many nodes and links added and removed every day. Characterising the
Internet dynamics can provide interesting insights that may help in the design of
future routing protocols or the conception of new types of applications that make
use of its evolving topology.

Instead of trying to obtain a complete view of the Internet topology dynamics,
it is possible to use an orthogonal approach to obtain insight on the dynamics of the
routing topology observed at the IP-level. This approach has been introduced in [72].
We follow it in this manuscript and study ego-centred views of this topology. Given a
monitor and a fixed set of destinations, one such view is obtained by measuring the
routes from a monitor to a set of destinations. This can be performed quickly and
with low network load with the tracetree tool [72]. Repeating this measurement
periodically therefore allows us to study the dynamics of this view. Figure 1 shows
five consecutive ego-centred views.

Previous work has shown that ego-centred views exhibit strong dynamics, and
in particular that the set of observed nodes evolves much more quickly than what
was previously expected [64]. Our goal in this thesis is to go further in this direction
and effectively understand the dynamics of the Internet at the IP-level. To this
end we use a combination of analysis and simulation. We use real data to extract
key properties that characterise these dynamics. Based on those observations,
we then propose a model for the underlying mechanisms of the Internet topology
dynamics and we study both this model and the real data. Our main goal is to
understand the impact of the model’s parameters (and the impact of parameters of
real measurements) on the observed dynamics. We will look for the most important
parameters and general laws that govern these dynamics.

This manuscript is organised as follows. In Chapter 1 we present a brief
historical context and the current state of network science. Next, in Chapter 2 we

32,802,478,934 people are connected according to “Internet World Stats” http://www.

internetworldstats.com/stats.htm, December 31, 2013.
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8 INTRODUCTION

identify underlying mechanisms of the Internet topology dynamics and propose a
model for the dynamic topology and ego-centred measurements. In Chapter 3 we
study in details how the observed characteristics of dynamics change when we vary
the parameters of our model, and compare it to what happens when we vary the
parameters of the real-world measurement process (a part of the this Chapter was
published as [80]). We find in particular that the number of routes between two
computers, which corresponds to shortest paths in the model, plays an important
role in the observed network dynamics. We therefore investigate the size of the
shortest path subgraph between two nodes in Chapter 4 (a part of this Chapter
was submitted to a journal [82]). Finally, in Chapter 5 we study how the frequency
of measurements affects the observed network dynamics and how can we infer the
real dynamics using only partial measurements (the first part of this Chapter was
presented at a conference [79], and the second part exists in a preprint form [83]).
In the Conclusion we discuss our main achievements and possible future works.

Figure 1 – Ego-journey. Visual representation of the Internet topology dynamics.
Using ego-centred measurements [72] we obtain a sequence of topology snapshots.
Time goes from left to right. Every little figure corresponds to one measurement
round, i.e. one snapshot. All links observed at least once are shown: in black we
display nodes and links seen at the current round, and in grey we display nodes
and links seen in other rounds. Changes are most visible in the bottom part of the
Figure. The original video, called “Dynamics of the internet topology around me”,
was created by Assia Hamzaoui and Matthieu Latapy.4

4See original video here: http://www.complexnetworks.fr/dynamics-of-the-internet-

topology-around-me/

http://www.complexnetworks.fr/dynamics-of-the-internet-topology-around-me/
http://www.complexnetworks.fr/dynamics-of-the-internet-topology-around-me/
http://www.complexnetworks.fr/dynamics-of-the-internet-topology-around-me/


Chapter 1

Brief history and state of the art

Most real-world networks are continuously evolving structures
that cannot be fully observed, in particular due to their tremen-
dous sizes and dynamics. Scientists from various fields have stud-
ied real-world networks sometimes together, sometimes indepen-
dently, for a long time. However, only in the last decades has
this study become systematic. In this chapter we present a brief
historical context and the current state of network science; both
theoretical and empirical results are considered.

This chapter is organised as follows. In Section 1.1 we recall and discuss the
notions and mathematical formulations of networks and related structures. Practical
and theoretical aspects of network measurements are considered in Section 1.2. In
Section 1.3 we review the definitions, examples and measurement methods in the
case of dynamic networks. Finally, in Section 1.4 we describe several important
models of static and dynamic networks.

1.1 Graphs and complex networks

The notion of graph goes back to the paper “Seven Bridges of Königsberg” written
by Euler in 1736. However, the term “graph” was introduced by Sylvester in his
paper “Chemistry and Algebra” [3] only 152 years after Euler’s work. The first
textbook about graphs “Theorie der endlichen und unendlichen Graphen” has been
written by Dénes Kőnig and published in 1936 [91]. Two other notable books—
“Théorie des Graphes et ses applications” (1958) by Claude Berge [85], and “Graph

9



10 CHAPTER 1. BRIEF HISTORY AND STATE OF THE ART

Theory” (1969) by Frank Harary [89]—finally enabled scientists and engineers from
different fields to communicate using the same language.

At the present time, researchers use words “graph” and “network” when they talk
about an idealised representations of a real-world network. The formal definitions
may vary, but the intuitive idea is the following:

A graph (in a broad sense) is a collection of nodes connected by
links.

Some nodes (or even all) can be isolated. Sometimes, nodes are called “vertexes”
or even “points”, and links are called “edges”.

Using different mathematical definitions of “links” and “collection of nodes”,
researchers obtain different types of graphs: weighted graphs, directed graphs,
multigraphs, coloured graphs, signed graphs, hypergraphs, infinite graphs, graphons,
graphins, etc. Among these types, we are mainly interested in the simplest one.
Following a convention from modern textbooks in graph theory, by a graph (in a
strict sense) we mean undirected finite simple graph, that is:

An undirected finite simple graph G is a graph with finite sets
of nodes V and links E . Every link connects two different nodes.

Again some nodes (or even all) can be isolated.
We present here essential definitions that allow us to speak about a graph’s

topology:

• When a link connects two nodes v and u, we say that u and v are adjacent.
One can go from v to u, by traversing this link. A path from a node v to
another node w is a sequence of several nodes and links, passing along which
we can go from v to w.

• We say that a graph is connected when there are paths between any two
nodes.

• Two graphs are called isomorphic when there is a bijection f between their
sets of nodes, that preserves adjacency. In other words there is a link between
nodes u and v if and only if there is a link between their images fpuq and
fpvq.

• The degree of a node v is its number of direct neighbours, or equivalently the
number of links that connects the node v to other nodes.
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Other definitions will be given when its needed.

Researchers tend to consider larger and larger graphs. Four papers written by
Rapoport [5], Solomonoff and Rapoport [6], Gilbert [8], and Erdős and Rényi [7],
published between 1940 and 1960, initiated the study of some properties of random
graphs when their sizes tends to infinity. In particular they studied whether random
graphs are connected or not. The next step consisted in graphs with countable
number of nodes. Surprisingly, it turns out that almost all random graphs with
countable number of nodes are isomorphic. In other words, there is only one
countable random graph (see Cameron’s work [30]). This graph is called Rado
graph [10]. However, one can go beyond countable set of nodes. For example Lovász
in his recent book [92] considers two kinds of uncountable graphs: graphons and
graphins. These structures can be regarded as the limits of sequences of random
graphs when their size tends to infinity. Lovász showed that these notions are much
more appropriate than the Rado graph. Developing of practical applications of
these techniques is the very important direction of the future works. We hope it
will be done in the coming decades.

Mathematicians are not the only scientists studying very large graphs. Many
researchers from various areas have studied networks for a long time. In fact,
there is an emerging interdisciplinary academic field devoted to studying very large
and complex real-world networks: logistical networks, gene regulatory networks,
computer networks, chemical reaction networks, social and linguistic networks, etc.
Researchers use empirical, theoretical and computer-aided methods in order to
understand the structures of these networks and their functions. The interested
reader is referred to Newman’s review [41].

Imagine that we have two graphs G1 and G2 perhaps of different size. Currently
we do not know how to directly compare their structures. However, we can compare
some characteristics of these structures. Below we present two most commonly
used characteristics.

• The first characteristic is the density. The density of a graph is the ratio
between the number of existing links and the maximum number of links that
a graph can contain. In the case of simple graphs the density is equal to

2m
npn´1q

, where m is the number of links, and n is the number of nodes in the
graph.

• The second, and perhaps the most popular characteristic of a graph’s topology,
is the degree distribution. The degree distribution shows how many there
nodes have degree one, two, etc. Random graphs have a binomial degree
distribution. But, according to Barabási and Albert [23], many networks in
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the real world have degree distributions that are very different from binomial
one and approximately follow a power law.

There exist other, finer characteristics of the topology: clustering coefficient [20],
assortativity coefficient [31], distance distributions, graph genus, graph spectra [67],
subgraph densities and neighbourhood distributions [92].

Now let us consider the object of our study, the Internet. The Internet is a
notable example of a complex network. It should be noted that the Internet, as any
other complex network, attracts enormous attention from scientists, and we cannot
review all papers and books about it in this thesis. We can construct different
graphs that will reflect various levels of the Internet structure. Below we briefly
describe important levels and cite some works as examples.

• Researchers study graphs of physical and radio connections between com-
puters. For example, Akyildiz et al. published a survey on wireless mesh
networks [50], and Narula-Tam considered the design of physical topology
that will guarantee some level of protection against link failures in certain
physical networks [44].

• At the IP-level the topology of the Internet is represented by a graph with
IP-addresses of routers as nodes. A link exists between two nodes if the
corresponding routers are connected at the IP level. Works that consider
the IP-level topology of the Internet include (but are not limited to) a paper
about connectivity of the IP-level graph written by Broido and kc claffy [29],
and a paper written by F. de Montgolfier et al. about the treewidth and
hyperbolicity of the Internet [74].

• The Internet topology can also be represented by a graph with Autonomous
Systems (ASes)1 as nodes and AS connections as links. Many studies have
already characterised the Internet topology at the AS-level (see for example
papers of Faloutsos et al. [24], Medina et al. [27], and Chen et al. [36]). As
suggested by Wang et al. [75] the structure of IP-level graph differs from the
structure of AS-level graph.

• In the webgraph vertexes represent WWW pages, and an edge connects two
pages if there exists a hyperlink between these pages. Many researchers study
the webgraph, see for example the works of Bontato [49] and Kleinberg et al.
[25].

1 An AS is a connected group of routers run by one or more network operators which has a
single and clearly defined routing policy [17].
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In this thesis we focus on the IP-level graph and its dynamics. The first question
that arises is how can we measure the actual topology of the Internet at the IP-level?.
In fact, the measurement problem is one of the most important problems in the
study of real-world networks. The next section reviews the current situation in this
topic.

1.2 Network metrology

The study of large graphs and networks is very important from practical and
theoretical points of views, because many real and theoretical objects show a
certain structure that can be well described using the language of graphs. But
often such graphs are so large that we cannot study them using classical graph
theoretical methods and algorithms. For example, if some graph has billions of
nodes, algorithms with quadratic complexity become practically intractable, and
even linear algorithms may take a very long time. Moreover, some real-world
networks cannot be fully observed due to their tremendous sizes, while others
cannot be fully observed in principle, because their structures continuously changes
over time.

Perhaps the most rapidly developing area of mathematics and theoretical
computer science that deals with these problems, is property testing 2. Generally
speaking, a property testing algorithm is a probabilistic algorithm with sublinear
time complexity than tries to decide whether a given graph has some global property
using only partial information about this graph (see for example Alon’s paper [37]).
There is even some connections between property testing and continuous graphs
(see Lovász and Szegedy [69]).

In the case of real-world networks, it is not immediately clear which properties of
the network structure we want to test. We just want to collect as much information
about the structure as we can, using real-world measurement tools. And only then
can we start to study the network’s properties. Maybe this is why the majority of
network scientists have not yet adopted the property testing approach. We need
maybe a few decades to fully understand and develop this idea in order to apply
it in practice. Guillaume and Latapy [46] argue for the necessity of developing
a science of metrology of complex networks. Here we insist that this science of
metrology should be developed using the force of contemporary mathematics.

Real-world networks are very different from one another, and we should use
different measurement tools in order to obtain some information about their

2The interested reader may consider the following online reviews about current achievements
of property testing: http://ptreview.sublinear.info/ and http://www.wisdom.weizmann.

ac.il/~oded/test.html.

http://ptreview.sublinear.info/
http://www.wisdom.weizmann.ac.il/~oded/test.html
http://www.wisdom.weizmann.ac.il/~oded/test.html
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structure. Methods used for measuring brain networks [66] are clearly different
from methods used to collect data from social networks [95]. Often, the available
measurement methods are intrinsically biased.

Lakhina et al. [40] showed that IP-level topologies collected via traceroute-like
measurements [93, 52] may be highly biased. In addition to the seminal paper of
Lakhina et al. there are other papers in this area, for instance [72, 65, 75]. The AS-
level topology is better understood mainly because there are better measurement
tools [45]. The interested reader is also referred to a survey about the Internet
topology discovery [57] written by Donnet and Friedman, and to a CAIDA technical
report [76], wherein Huffaker et al. discussed the results of their “systematic
comparison of Internet topologies derived from different data sources”3.

Once the data is collected and transformed into a graph G, we can study some
properties of G, or we can try to estimate the most likely underling real-world
network topology that leads to G. If measurements are biased, there are several
possible real-world topologies that can lead to G. How can we infer the most
likely one? Some researchers, for example Coates et al. [34], start to use statistical
methods in order to answer this question.

Finally, other works of interest concerning the metrology of the Internet are
worth mentioning. Crespelle and Tarissan [70] evaluate a new method for measuring
the Internet degree distribution. Latapy and Magnien [60] discussed the relevance
of observed properties. Augustin et al. [61] discussed detection and prevention of
anomalies that arises when we measure the Internet graph.

The structure of many real-world networks changes over time. This complicates
both measurements and analysis. In the next section we discuss the notion of
dynamic network and the problems that arise in this context.

1.3 Dynamic networks and metrology

Most real-world phenomena, including networks, are not static, they change over
time, for example:

• The information flows in our brain. Electrical properties of neurons and
neural connections may change (see for example Mozzachiodi and Byrne [68]).
Moreover, new neurons may grow even in an adult human’s brain, as indicated
by Eriksson et al. [22]. Graph theoretical analysis of structural and functional
brain networks are discussed in the review by Bullmore and Sporns [63].

• Computers are being connected to the Internet and start to communicate.
The changes of network topology reflect, for example, the technical progress

3This is a direct quotation from CAIDA’s page http://www.caida.org/publications/

papers/2012/topocompare-tr/.

http://www.caida.org/publications/papers/2012/topocompare-tr/
http://www.caida.org/publications/papers/2012/topocompare-tr/
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and the economic interests of users. Many researchers have observed the
Internet dynamics at different levels, see for example papers by Magnien et
al. [64] and Oliveira et al. [59].

Here we give a classification of dynamic networks from different points of view
and briefly discuss theoretical and practical approaches used by researchers to
study these networks.

Conceptually there are two main kinds of dynamic networks:

• when the network topology changes, for example new nodes (or links)
appear (or disappear);

• when the topology remains the same, but there is some dynamic process
that happens on the network (for example random walk or information
transmission).

Sometimes, we have networks with mixed dynamics, i.e. there is a dynamic
process on the network and the topology also changes. Eventually one may develop
a formalism under which these two kinds of dynamic networks can be studied using
the same language. But traditionally, researchers tend to make a clear difference
between them. In this thesis by dynamics we mainly mean topological dynamics.

From the epidemiological point of view there are two kinds of dynamics:

• The dynamics defined by a model. This kind of dynamics is usually studied
in the context of discrete dynamical systems wherein an object changes at
each time step due to some fixed rule, and continuous dynamical systems in
which time is continuous. Prisner in his monograph [94] considered a special
case of discrete dynamical systems where the objects are graphs and changes
are modelled by certain graph operators.

• The real-world dynamics observed by scientists. This kind of dynamics is
very important in empirical research. The main problem here is that the real
dynamics should be observed in some way. Thus, we have to answer at least
to the following questions:

– Which tools we can use to measure a dynamical real-world system?

– Which tools will provide the best results?

– How do we represent the results of our measurements?

The choice of the measuring tool intrinsically depends on the nature of the real
system. We have many systems, and there are a lot of different measuring tools.

Performing measurements of dynamic networks, we are faced with the same
problems as in the case of measurements of static networks: the large size of
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networks and the measurement bias. Moreover, the dynamics itself complicates the
measurement process. The measurements of dynamic networks can be even more
biased and more incomplete than the measurements of static network.

There are several works that considered these problems in P2P networks. The
create-based method, considered by Roselli et al. [26] and Saroiu et al. [39], is
based on the observation that being able to only capture accurately the length of
sessions that begin and end within the measurement window creates a bias towards
short sessions. To remove this bias, the measurement window of length T is divided
into two halves, and only the sessions that begin during the first half and last less
than T {2 are considered. This leads to an unbiased estimation of sessions with
length less than T {2.

The problem of measurement bias in the dynamic P2P network was further
examined by Benamara and Magnien [73]. They studied several properties in large
P2P systems and introduced an empirical methodology for deciding when the bias
induced by the finiteness of the observation window in dynamic systems becomes
negligible.

Oliveira et al. [59] formulated the Liveness Problem, that arises when an
observed change in the AS-level topology of the Internet does not necessarily reflect
the real change. Using three processes: birth, death, and revelation, Oliveira et
al. developed an empirical model of the observed changes at the AS-level topology.
Based on the model, the authors are able to distinguish real topology changes from
transient routing changes at the AS-level topology with a given confidence level.

Representations of observed dynamic can also vary from one system to another.
In the context of real-world networks with dynamic topology, there are several
representations of the observed dynamics, for example:

• Graph snapshots. We perform periodic measurements of a network. We
represent the observed dynamics as a sequence tgtu of measurement results,
where by gt is the graph obtained at time t. This representation is particularly
relevant when one measurement gives a whole network topology.

• Link streams that were recently introduced by Latapy and Viard in [81].
The verbatim definition is as follows: link streams are series of triplets pt, a, bq
meaning that a and b interacted at time t. This approach a typically relevant
when we observe instantaneous interactions between nodes. For example in
the case of email conversations a link pt, a, bq corresponds to a message from
a to b sent at time t.

• Time-varying graphs (TVGs) are graphs in which nodes, or edges may
vary in time. Wehmuth et al. [78] proposed an unifying model for representing
time-varying graphs by H “ pV,E, T q, where V is the set of nodes, T is the
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finite set of time instants, and E Ă V ˆ T ˆ V ˆ T is the set of dynamics
edges. A dynamic edge e is defined as a tuple e “ pu, ta, v, tbq, where u and v

are two nodes from V (not necessary different), while ta and tb are the origin
and destination time instants from T (again not necessarily different).

Fundamentally, graph snapshots and link streams are special cases of the
following representation schema:

At time t we perform a measurement. This measurement gives
us some, maybe partial, information about a structure of the
real-world network. We denote this information by rt. The sym-
bol r can represent one link, subgraph, or even the whole graph.
In this language, the dynamical graph observations is repre-
sented by a sequence trtu.

We note that this schema can be modified in order to capture the lifetime of rt, if
our measurements can provide this information.

There are several monographs that cover some aspects of dynamic networks. The
physicists’ point of view is presented in the book by Dorogovtsev and Mendes [87].
The reader interested in random graph dynamics may consider Durrett’s book [88],
and the reader interested in dynamics of small-world networks (wherein most nodes
are not adjacent, but one can go from a node to another using only a logarithmically
small number of links comparing to the total number of nodes) may read Watts’
PhD thesis [20].

The first paper about the Internet topology dynamics has been written in 1993
by Chinoy [16]. Chinoy considered the dynamics of NSFNET backbone network
at the AS-level. The first thesis in this context has been defended by Paxson
in 1997 [18]. In particular, Paxson “found that most Internet paths are heavily
dominated by a single dominant route”. In 1997 it was indeed true, but in 2014 we
know that there are several different routes between almost any pair of computers
(see for example Cunha et al. [71]).

Earlier papers in this area abound with technical details and terms, while in
modern works, including this thesis, authors try to abstract a bit from specific
networks. This makes sense, since it turns out that many real-world networks have
similar properties. For example Krioukov et al. showed “that the causal network
representing the large-scale structure of space-time in our accelerating universe is a
power-law graph with strong clustering, similar to many complex networks such as
the Internet, social, or biological networks” [77].

Many researchers studied the evolution of some structural characteristics of
the Internet topology. For example, Fabien de Montgolfier et al. considered
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the treewidth and hyperbolicity of the Internet [74]; large-scale topological and
dynamical properties of the Internet were considered by Vázquez et al. [32]; the
dynamics of the multicast topology was studied by Pansiot [58]; Park et al. in [42]
compared static and dynamic measurements and models of the Internet’s AS-level
topology; and Lad et al. discussed the visualisation of the Internet dynamics [55].

Almost all works in the area of the Internet topology are about large-scale
dynamics of the Internet, and only few works considered fine-scale dynamics. The
Internet is very big, and it is impossible to actually observe how the complete
topology changes every few minutes. However, it is possible to use an orthogonal
approach to obtain insight on the dynamics of the routing topology observed at
the IP-level [72]. In this thesis, we follow this approach and study ego-centred
views of this topology. Given a monitor and a fixed set of destinations, one such
view is obtained by measuring the routes from a monitor to a set of destinations.
This can be performed quickly and with low network load with the tracetree

tool [72]. Repeating this measurement periodically therefore allows us study the
dynamics of this view. Previous work has shown that ego-centred views exhibit
strong dynamics, and in particular that the set of observed nodes evolves much
more quickly than what was previously expected [64].

1.4 Models of networks

In order to understand better the structure and function of real-world networks,
researchers model them. Perhaps the first model was introduced by Rapoport
in 1948 [5]. Rapoport considered a random graph as a possible model of some
biological networks. A related idea has been developed by Erdős and Rényi in their
seminal paper [7].

However, in 1965, Derek de Solla Price showed that the topology of paper-
citation networks is different from the typical topology of a random graph. In
particular the degree distribution of this network follows a power law [11], while
in random graphs degrees are distributed according to a binomial law. In 1999
Faloutsos et al. showed that the degree distribution of AS-level Internet graph
also approximately follows a power law [24]. Later,’ researchers have found many
other examples of real-world networks that have power-law degree distributions.
We conclude that classical Erdős-Rényi model does not reflect the reality very
well. But the superrealism has never been the main purpose of this model, and
researchers continue to study random graphs due to their elegance and simplicity.

In order to improve Erdős-Rényi model, scientists have proposed many other
models, notable examples include:

• The configuration model, that allows us to uniformly generate a random graph
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with a given degree distribution, developed by Bender and Canfield [14].

• The model of small-world networks by Watts and Strogatz [21]. In such
networks most nodes are not adjacent, but the typical distance is small.

• The preferential attachment model considered by Barabási and Albert [23].
In this case the probability that a node is connected to another node u is
proportional to the degree of u.

In the Internet context, specific models have also been proposed. In [19] Zegura
et al. presented a quantitative comparison of different Internet topology models.
Tangmunarunkit et al. compared degree-based and structural network topology
generators [35]. Quoitin and Uhlig in [48] considered a model of routing between
autonomous systems.

As we know from Section 1.3 almost all real-world networks are intrinsically
dynamic. And models should also take this into account. Large-scale dynamic
models are widespread in the scientific literature. The Barabási–Albert model [23]
is a classical example of a growing network. Vázquez et al. [33] studied the Internet
at the AS-level and compared “the properties of growing network models with the
present real Internet data analysis”.

In this thesis we introduce a model of fast topology dynamics [64, 72]. This
model adds some dynamics to a static graph of any topology. We discuss this
model in details in Chapter 2.

Many studies have already characterised the static topology of
the Internet. However few of these studies have asked how this
topology evolves with time. Indeed, it is well known that the
Internet is a living organism with many of nodes and links added
and removed every day. Therefore, characterising the Internet
dynamics can provide interesting insights that may help in the
design of future routing protocols or the conception of new types
of applications that make use of its evolving topology.



Chapter 2

Model

In this chapter we review previous studies of the dynamics of the
Internet topology that consist in periodic measurements of rout-
ing trees from a single monitor to a fixed set of destinations. We
then identify invariant properties of these dynamics. Based on
those observations, we then propose a model for the underlying
mechanisms of the topology dynamics. Our model remains sim-
ple as it only incorporates load-balancing phenomena and routing
changes. By extensive simulations, we show that, despite its sim-
plicity, this model effectively captures the observed behaviours,
thus providing key insights on relevant mechanisms governing
the Internet routing dynamics.

Previous work has shown that the Internet topology changes much faster than
it was expected [64]. In Section 2.1, we review the analysis of these results. In
Section 2.2 we identify two factors that play a key role in the observed dynamics:
load-balancing routers, and the evolution of the routing topology. Based on these
observations, we propose in Section 2.3 a baseline model for the routing dynamics
in the Internet that incorporates these two ingredients, using simple choices for
modelling these factors. Schematically this model is represented in Figure 2.1.
Finally, we present preliminary results of our simulations in 2.4. The next chapters
will be devoted to an in-depth study of the model behavior.

20
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tracetree measurements

Preliminary analysis:
extract key fatures

Load-balancingRoute evolution

Dynamical model

Topology model

Figure 2.1 – Schematic representation of the model

2.1 Motivation: tracetree measurements

The tracetree tool [72] collects the ego-centred view from a given monitor to a given
set of destinations by measuring the routes from this monitor to each destination.
This corresponds to a subset of the routing topology, in which nodes are the
ip-addresses of routers, and a link exists between two nodes if the corresponding
routers are connected at the ip level. Note that the routing topology is different
from the physical topology, as two routers may be physically connected by a link
that is not used for routing. Note also that we only observe a subset of the whole
routing topology, as measuring the routes from a single monitor to a limited set of
destinations certainly does not allow the discovery of all nodes and links in this
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Figure 2.2 – Properties of the observed dynamics.

topology. Moreover, this subset is not representative of the whole topology, see for
instance [40, 65]. Keeping this in mind, we will see that we are still able to make
interesting observations about the dynamics of this topology.

Running the tracetree tool periodically allows us to capture the dynamics of
ego-centred views. We collected two datasets in this way. The first one, woolthorpe,
was collected from a monitor in University Pierre and Marie Curie in Paris towards
a set of 3, 000 destinations. The collection frequency is of one measurement
round every 15 minutes approximately. It started in September, 2011 and lasted
approximately a year with some small interruptions due to power shortages. This
represents a total of 32,018 rounds. The second one, ovh, was collected from
a French server hosting company. Only 500 destinations were used in order to
increase the measurement frequency, which is of one round every one and a half
minute approximately. It started in October, 2010 and ended in September, 2011,
which represents a total of 318, 000 rounds. In both cases, the destinations were
chosen by sampling random ip addresses that answered to a ping at the time of
the list creation 1. These datasets are publicly available [1]. Notice that previously
measured datasets are also available, for different durations, at different times since
2008.

It is possible that, at a given time, several routes to a same destination co-exist,
in particular because of load balancing. Therefore, two consecutive measurement
rounds may capture different routes to a same destination even if no routing
change has occurred. We study this in the next section, and present below the
main characteristics of the observed dynamics. We performed our analysis on a
representative set of the existing datasets, and made similar observations to the
ones we present here. This shows the generality of our observations.

1Previous work has indeed shown that tracing routes to unused ip addresses can introduce
measurement artefacts [47].
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Discovery of new ip addresses. A previous study of the same type of data has
shown that the set of observed ip addresses does not stabilize with time [64]. Instead,
it was observed that these measurements continuously discover new ip addresses
that had never been observed before, at a significant rate. These observations were
made on two-months-long measurements. Fig. 2.2a shows that it is also true for
very long measurements. It presents the number of ip addresses observed since the
beginning of the measurement, for both datasets. A dot px, yq in this figure means
that y different addresses have been observed at least once before time x 2. We
see that, after an initial fast growth, the plot increases significantly for extended
periods of time.

This plot presents the number of distinct ip addresses observed, and not
the number of distinct routers, as in general several ip addresses, or interfaces,
correspond to a same router. Detecting which interfaces correspond to which
routers is a difficult task. Though several methods exist, none is 100% accurate.
We used the midar tool developed by caida [2], and studied the number of
discovered routers observed since measurement beginning. The corresponding plot,
not presented here due to lack of space, clearly displays the same shape as those
of Figure 2.2a. Moreover, previous work has studied the number of distinct ases
discovered by such measurements, and showed that it also increases significantly [64].
All in all, there is a good evidence that new routers are actually discovered at a
significant rate, even if part of the observed growth may be caused by discovering
new interfaces for already observed routers. As there is no method that allows
us to know with certainty which interfaces correspond to a same router, we limit
ourselves to the study of interfaces in the rest of the paper.

Stability of ip addresses. To analyse more in depth the dynamics of the ego-
centred views, we compute two quantities for each ip address. Its observation
number is simply the number of distinct rounds it was observed in. Moreover, an ip

address is in general observed in blocks of several consecutive rounds, preceded and
followed by one or more rounds during which it is not observed. More precisely,
the block number of an ip address is the number of groups of consecutive rounds in
which it is observed. For example, an ip address which was observed on rounds 1,
3, 4, 7, 8, 9, and 10 has an observation number of 7 and a block number of 3.

Fig. 2.2b presents the correlation between these quantities for the woolthorpe

dataset 3. Each dot corresponds to an ip address, and its coordinates are its
observation number on the x-axis and its block number on the y-axis. The plot

2Since the woolthorpe dataset was collected after the end of the ovh dataset measurement,
we shifted x-axis one year for the plot for the woolthorpe dataset, so that both plots appear in
the same time span.

3We computed this plot for the longest uninterrupted part of the measurement, which represents
25322 rounds, i.e. approximately 264 days.
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presents a clear parabola shape. This can be explained by load-balancing routers.
If a load-balancing router randomly spreads traffic among k paths 4, each router
belonging to any of these paths has a probability p “ 1{k of being observed at
each round, leading to an observation number equal to rp approximately, where
r is the total number of rounds performed. A given round is then the first of a
consecutive block of observations for one of these routers with the probability p

that this router was observed in this round, multiplied by the probability 1 ´ p

that it was not observed in the previous round. Multiplying this probability by
r gives the expected block number, which is then equal to rpp1 ´ pq and is the
equation of the parabola. This is a simplification of the real case in which a router
may belong to paths used by several load balancers, themselves belonging to paths
used by other load balancers. In practice, an ip address belonging to load-balanced
paths can have any probability p, 0 ă p ă 1, of being observed.

We can also observe many dots close to the y “ x{2 line. They correspond to
addresses that are observed only during a finite part of the measurement, and have
during that time a probability p “ 1{2 of being observed, due to load balancing.
If such an ip address is observed with a probability 1{2 during k rounds, its
observation number will indeed be x “ k{2, and its expected block number will be
y “ kp1{2q2 “ x{2.

Finally, many ip addresses are close to the x-axis. This means that, whether
they are observed in a large or small number of rounds, they are mainly observed
during blocks of consecutive rounds, with few interruptions.

2.2 Causes of the observed dynamics

It is acknowledged that load-balancing routers play a significant role in the observed
dynamics of routes with traceroute-like measurements [71, 61]. Previous work
also suggests that routing dynamics play a key role in the continuous discovery of
new IP addresses in our measurements [64]. This section identifies the strong role
played by these factors in our observations.

These two factors play different roles. Suppose first that there is no load
balancing. In this case, a measurement will discover routing changes as they occur,
and the longer a measurement lasts, the more IP addresses it will observe (because
more changes will occur). If on the contrary there are no routing changes but load
balancing is used, then performing more measurement rounds will lead to observe
more IP addresses, independently of the time elapsed between consecutive rounds5.

4It has been shown [61] that per-packet or per-flow load-balancing routers spread traceroute

probes equally among all paths to the destination, which is roughly equivalent to randomly
choosing a path.

5This is of course only true under certain conditions on the number of measurement rounds
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Figure 2.3 – How the frequency impacts the number of discovered IP addresses.

The observed dynamics is a combination of these factors.
In order to study this rigorously, we use the woolthorpe data set and simulate

slower measurements by considering only one out of every two rounds. Fig. 2.3
presents the number of distinct IP addresses observed with both these measurements,
as a function of time elapsed since the beginning of the measurement, and the
number of measurement rounds performed.

As expected, less IP addresses are observed over time with the slow measure-
ments than with the faster ones. Fig. 2.3a shows that in a given time interval,
performing more measurement rounds therefore allows us to discover more IP
addresses. This confirms that several measurement rounds are needed to discover
all existing routes. This is caused by factors such as load balancing. Conversely,
Fig. 2.3b shows that the slow measurements discover more IP addresses at each
round than the faster ones. Therefore if more time elapses between two consecutive
rounds, then each round discovers more IP addresses. This indicates that routes
evolve with time.

In both cases, the gap between the plots for the slow and faster measurements
are significant, which shows that both factors play an important role in the observed
dynamics. This is why we propose a model that incorporates load balancing and
route dynamics.

2.3 Model description

Our purpose here is to propose relevant and simple mechanisms that reproduce the
observations made in Section 2.1. We do not aim at proposing a realistic model, but
rather at providing a first and significant step towards understanding the impact

and the time elapsed between consecutive rounds.
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of simple mechanisms on the observed dynamics. This model incorporates four
ingredients: the routing topology, the routes from the monitor to the destinations in
this topology, load balancing, and routing changes. For modelling each ingredient,
we try to make the simplest choice possible, our goal being to obtain a baseline
model which makes it possible to investigate the role of each component, and to
which future and more realistic models should be compared.

Topology model. We represent the topology by a random graph. In order to
strengthen the conclusions drawn from our study, we used two different models
generating different topologies: the Erdös-Rényi model [7] which makes no hypoth-
esis on the structure of the graph and is therefore the simplest model possible, and
the configuration model [14] in order to generate graphs with power-law degree
distributions. The random graph model has two parameters: the numbers n of
nodes and m of links. The configuration model has two parameters: the number n
of nodes and the exponent γ of the power-law. As we will see in the next section,
the comparison between results obtained with both generation processes gives
insights on the impact of the topology on the observed dynamics.

Measurements model. Given a graph representing the topology, we assume
that the route between the monitor and a destination is a shortest path, which can
be obtained by performing a breadth-first search (BFS).

Load-balancing. In order to simulate load balancing, each node chooses at
random the next node on a shortest path to the destination, and we therefore
implement a random BFS. It generates a shortest-path tree from the monitor to
the destinations by considering the neighbours of explored nodes in a random order.
These routing trees will therefore be different from one random BFS to the next,
even if the underlying graph does not change.

Routing evolution. Second, we need to model changes in the routing topology.
We use a simple approach based on link rewiring, or swap. It consists in choosing
uniformly at random two links pu, vq and px, yq6 and swap their extremities, i.e.
replace them by pu, yq and px, vq.

Finally, our simulation setup consists in the following. First, we generate a
graph G1. From G1, we randomly select one node as the monitor and d nodes as the
destinations. We then simulate r measurement rounds by iterating the following
steps:

6We choose them such that the four nodes are distinct.
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Figure 2.4 – Number of nodes observed since measurement beginning for various
values of s (random graphs, n “ 500, 000, m “ 1, 000, 000, d “ 3, 000).

1. extract a routing tree Ti from Gi (i P r1..rs) by performing a random BFS
from the monitor towards the destinations;

2. modify the graph Gi by performing s random swaps, which produces the
graph Gi`1. s is a parameter of the model.

This process generates a series of r trees T1, T2, . . . , Tr which simulate periodic
tracetree measurements, on which we can conduct similar analysis as those we
performed on real data.

2.4 Preliminary results of simulation

In this section we show that this model is relevant to explain the dynamic properties
presented in Section 2.1. To that purpose, we perform several simulations varying
the parameters of the model: the numbers n of nodes, m of links, d of destinations,
and s of swaps per round. Our goals are to find (1) whether the simulations
reproduce the observations and (2) how the different parameters impact the results
and what are the relations between them.

2.4.1 Evolution of the number of distinct nodes.

In order to answer the first question, we present in Figure 2.4 the evolution of
the number of distinct nodes observed over time for Erdös-Rényi random graphs
with n “ 500, 000, m “ 1, 000, 000, d “ 3, 000 and various values of the number s

of swaps. It shows a similar behaviour to the one we observed in real data (see
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Fig. 2.2a). In particular all the curves present clearly a fast initial growth7 and
then a more or less linear progression. Moreover, the slopes of the curves increase
with the number of swaps. This is due to the fact that with a higher number of
swaps, the paths to the destinations change more quickly and thus more nodes are
discovered at each step.

This figure also shows that when the underlying graph does not evolve (s “ 0),
there is only an initial growth in which all shortest paths are explored. Once all
nodes on these paths have been discovered, the curve becomes constant. This
confirms the intuition that the regular discovery of new IP addresses in real data
may stem from route dynamics.

0 200 400 600 800 1000

20
0

60
0

r

C

Figure 2.5 – Number of nodes observed since measurement beginning (small and
fast evolving random graph, n “ 1000,m “ 2000, d “ 10, s “ 200). We rapidly
arrive at the point when almost all nodes have been observed. We do not observe
all 1000 nodes, because there are some nodes of degree 0. We cannot access them
with a BFS and their degree does not change with swaps.

We should note that parameters of our model should be chosen carefully. While
performing tracetree measurements we see only a small part of the Internet and
the curve of the number of observed nodes is almost linear. However, this increase
must slow down at some time because there are only a finite number of IP addresses.
Imagine that we have observed all possible 232 IP addresses, after that our curve
will no longer grow, because we have already observed all IPv4 nodes. But we are
very far from that point, which probably means that we observe a very small part

7this phase lasts more than 1 round, although it is difficult to visualise it on the plot.
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Figure 2.6 – Observation number vs. block number for various values of s (random
graphs, n “ 500, 000, m “ 1, 000, 000, d “ 3, 000).

of the whole Internet topology. On the other hand, in the model we may use very
small and (or) fast evolving graphs. In this case we rapidly arrive at the point
when almost all nodes (links) have been observed and there is no linear dependence
(see for example Figure 2.5). We must therefore be careful to use large enough
graphs and small enough numbers of swaps in order to reproduce the observations.

2.4.2 Observation number vs. block number.

We present in Figure 2.6 the correlations between the observation number and
block number for the same simulations as in Figure 2.4.

For s “ 10 (Fig. 2.6b), the main invariants we observed in Fig. 2.2b are
reproduced: the parabola, the y “ x{2 line and a dense strip close to the x-axis.
As already explained in Section 2.1, the line y “ x{2 corresponds to nodes that
are observed with probability p “ 1{2 for a given duration, and are not observed
before or after. We also observe a high density of nodes on a line with equation
y “ pr ´ xq{2, r being the total number of rounds performed. This line has a
similar explanation: it corresponds to nodes which are observed with probability
p “ 1{2 for a given duration, and are observed in all rounds before and after that.
Although this line is not present in Fig. 2.2b, it sometimes can be observed in other
datasets, although not as clearly as here.
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When no route dynamics is simulated (s “ 0, Fig. 2.6a), only the parabola
is present, thus confirming that this phenomenon observed in real data is due to
load balancing mechanisms which are well captured by the random BFS model.
At the opposite, when the number of swaps is too high (Fig. 2.6c and 2.6d), route
dynamics get the better of load balancing phenomena and the parabola tends to
vanish.

In this chapter we conducted periodic measurements of ego-centred
views of the Internet topology and studied their dynamics. We
isolated invariant characteristics of these dynamics, and identified
load balancing and evolution of the routing topology as key fac-
tors in the observed properties. Based on this observation, we
proposed a model for the dynamics of the topology, which inte-
grates both load balancing and routing changes. Simulations show
that this model captures the main characteristics of the dynamics
of the ego-centred views.



List of notations

Here you can find the most frequently used notations. Note that this list is not
necessarily complete.

G — simple graph
V — set of nodes
E — set of links
n — number of nodes in graph (the size of graph)
m — number of links in graph
p — probability of an edge between two nodes in Erdős-Rényi model
d — number of destinations
d — number of destinations
s — number of swaps per round

SPT — shortest path tree
SPS — shortest path subgraph
spt — number of nodes in shortest path tree
sps — number of nodes in shortest path subgraph
spt l — number of links in shortest path tree
sps l — number of links in shortest path subgraph
S — random variable that is equal to the number of nodes in SPS

Sl — random variable that is equal to the number of links in SPS

r — measurement round number
∆ — delay between measurements
α — slope of the curve of the number of observed nodes/links
λ — mean rate of change (in the context of Poisson processes)

Prchange — probability of observing some new links at each measurement round
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Chapter 3

Characterising the dynamics

The simulations presented in the previous chapter indicate that
the model that we have introduced for simulating the internet
topology and its dynamics succeeds in reproducing the main char-
acteristics of the dynamics of the ego-centred views.

In this chapter we will study how the observed characteristics
change when we vary the parameters of our model. Our goal
here is to understand the influence of parameters on the obser-
vations. Ideally, we should be able to predict the behaviour of
the model from the parameters without running expensive simu-
lations.

We also examine the case of real-world measurements, keep-
ing in mind that in this case we can control only a few param-
eters such as: the number of destinations and the frequency of
measurements.

Recall that we study is a sequence graph snapshots. Such snapshots may have
different shapes and sizes. It is not immediately clear how to study them and which
proprieties are the most interesting and relevant. In Section 2.4 we explored some
global characteristics of such dynamic graphs, and it turns out that the number
of observed routers (or links) observed since measurement beginning captures an
important part of the Internet dynamic. Figure 3.1 displays this number as a
function of the measurement round. Considering this curve we observe a clear
linear trend after an initial phase of faster increase. We are therefore interested in
the slope of this curve, because it captures a large portion of the graph’s dynamics

32
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Figure 3.1 – Number of distinct ip addresses observed since measurement beginning:
woolthorpe and ovh datasets.

The main question that arises is whether the curve is truly linear, i.e. whether
the plot follows C “ αr ` β (here C is the number of nodes or links, and r is the
measurement round), or just seems so, both for real data and simulations. It is
clear that, due to the random nature of our model and to the number of factors
which influence our real-world measurements, we cannot expect an exact linear
dependence between r and C. Thus, we should use some tools in order to measure
the degree of linearity. Next, it should be noted that our results vary from one
simulation to another, due to the random nature of our simulations. However we
expect these variations to be small fluctuations around an expected behaviour.
Thus, we want to be able to compute the typical slope of the curve in the case of
the model.

In Section 3.1 we will study whether the curve of the number of observed nodes
(or links) is linear or not. In Section 3.2 we will show how we compute the typical
slope of the curve and discuss how the slope depends on the model parameters.
We experimentally determine some general laws of observed network dynamics in
Section 3.3. And finally, we validate our findings by considering real-world radar

measurements (Section 3.4).

3.1 Linearity of the evolution

The curve of the number of observed nodes (or links) presents clearly a fast initial
growth and then a more or less linear progression. Stojmenovic, Nayak and Zunic
in [54] discussed several measures of linearity that can be applied in order to test
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whether a curve (or any shape in general) is (almost) linear. Moreover, they studied
which methods provide the closest results to human perception. Inspired by this
work we used two methods to test our hypothesis about the linear nature of the
curve of the number of observed nodes (or links):

• Pearson’s correlation coefficient;

• consistency of coefficients of segmented (piecewise) linear regression;

In the following we describe these methods in details.

3.1.1 Correlation coefficient

Pearson’s product-moment coefficient or Pearson’s correlation coefficient [4] is
the most familiar measure of linear dependence between two variables X and Y .
Usually it is called the correlation coefficient. Its absolute value is close to 1 when
there is a strong linear dependence between two variables, and it is equal to 0 when
there is no linear dependence. Pearson’s correlation coefficient, denoted by ρ, is
calculated using the following formula:

ρX,Y “
covpX, Y q

σXσY

“
ErpX ´ ErXsqpY ´ ErY sqs

σXσY

,

where cov is the covariance, σ is the standard deviation and E is the expected value.
If we have samples drawn from the variables Xi and Yi, we calculate a sample
correlation coefficient as follows:

ρ̂X,Y “

řn

i“1
pXi ´ X̄qpYi ´ Ȳ qařn

i“1
pXi ´ X̄q2

ařn

i“1
pYi ´ Ȳ q2

,

where X̄ and Ȳ are sample means.
Note that the correlation, as a measure of linearity, makes sense not only for

random variables, but can be applied to any finite sets of points in R
2 (see [54] for

example).

We manually identify a value r0 such that the initial fast increase is over after r0
rounds. We are not interested here in the smallest such value, so it is not difficult.
Then we calculate the correlation coefficient between the measurement round r

and the number of observed nodes (or links) C for the for the right part of our
curve (r ą r0). We also compute this coefficient for the left part (r ă r0) that
corresponds to the fast initial growth and should be less linear than the right part.

Perfectly linear data should have a correlation coefficient equal to 1. But our
data is not ideal: there are small fluctuations. We say that our data is almost
perfectly linear, if the correlation coefficient is greater than or equal to 0.995.
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Figure 3.2 shows the correlation coefficients for real and simulated measurements.
We use red background colour when the correlation coefficient is less than 0.995

and green otherwise. We see that in all cases, except small and (or) fast evolving
graph (see Fig. 3.2a), the right half of the curve is almost perfectly linear and the
left part is highly nonlinear. This agrees with visual analysis.

3.1.2 Coefficients of segmented linear regression

Using a simple linear regression we can fit a straight line C “ αr ` β through the
set tpri, Ciqu of data points by minimising the sum of squared residuals, i.e. squared
vertical distances between the original points and the fitted line. For detailed
explanations and formulæ see [9].

Let us divide our curve into several segments, compute the linear fit for each
segment, and check that all obtained values for the slopes are consistent. The results
are similar for real and simulated data. Let us discuss here only the woolthorpe

dataset. Figure 3.3 presents the number of observed routers (black curve) and
corresponding slopes of segmented linear regression (blue points). Each blue point
corresponds to the slope of one segment of the black curve. Each segment has a
length of 200 rounds, and starts at the abscissa of the corresponding blue point.
We see clearly that after an initial fast decrease, the value of the slope stabilises
around an average. Between round 25000 and 30000 we observe an outlier. This
happens because our curve is not completely linear, and sometimes there are sharp
increases at some points. Such increases may have a strong impact on the local
slope but a very small impact on the overall slope.

3.2 Characterisation of the slope

In the previous section we showed that the curve of the number of observed nodes
is almost linear after an initial fast increase. Since this curve is a representation of
the network dynamics, we can characterise an important part of such dynamics by
its slope. Informally, the slope corresponds to the observed speed of the network
evolution. In this section we study the dependence between the slope and the
model parameters (and the parameters of real-world measurements).

Our results naturally vary from one simulation to another and the plot may
present some sharp increases at some points. In order to capture the notion of
typical slope of a curve in the model, we run a large number of simulations with
a given set of parameters and consider the average plot of the result over all
simulations1. It should be noted that we do not apply this averaging procedure to

1Usually we compute an average over 200 simulations.
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Figure 3.2 – Correlation coefficient for several curves of the number of nodes
observed since measurement beginning. Red background means low linearity (corr.
ă 0.995), green background means high linearity.
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Figure 3.3 – Coefficients of segmented linear regression. The black curve represents
the number of observed routers as a function of the number of measurement rounds
performed (we use the woolthorpe dataset). Each blue point corresponds to the
slope of one segment of the black curve. Each segment has a length of 200 rounds,
and starts at the abscissa of the corresponding blue point. The histograms present
the distribution of the slopes in the initial phase (r ď 5000) and after.

the real data, because we have only one curve for each dataset and the averaging
across different datasets is meaningless.

We manually identify a value r0 such that the initial fast increase is over after
r0 rounds, i.e. the curve is linear for all r ą r0. We recall that we are not interested
here in the smallest such value, so it is not difficult. Then we calculate the slope of
the remaining stable part, using a linear regression.

We apply this methodology to explore the simulations over Erdös-Rényi graphs,
which we call random graphs (Subsection 3.2.1) and we then we compare the
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Figure 3.4 – Impact of the number of swaps on the slope (random graphs, n “
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obtained results with simulations performed on random graphs with a power-law
degree distribution, which we call power-law graphs (Subsection 3.2.2).

3.2.1 Random graphs

We applied the methodology presented above on simulations for random graphs
with n “ 100, 000 nodes and d “ 300 destinations for various numbers of links and
swaps. It makes it possible to study the impact of the number of swaps s on the
slope α. Results are presented Figure 3.4. We observe that the slope increases
almost linearly with the number of swaps. This indicates a strong correlation
between the observation of new nodes and the underlying dynamics. With a higher
number of swaps, the topology changes more frequently and, consequently, more
paths are affected at each round.

Besides, the plot also shows that the relation between the two quantities is
affected by the total number of links in the graph. Intuitively, the swaps are less
likely to impact the paths from the monitor to the destinations if the graph is more
dense. This is confirmed on the plot: for a given number of swaps, the slope is
higher for graphs with 200, 000 links than for graphs with 800, 000 links.

Swaps vs. links. We studied more deeply the relation between the number of
swaps s and the number of links m by varying the two parameters at the same
time. We set n “ 100, 000 and d “ 300 and made simulations with several values
of s and m. The results are presented on Figure 3.5. We first observe that, for a
given number of swaps, the larger the number of links, the smaller the slope of
the corresponding curve, which confirms that when the number of links increases,
a smaller fraction of them is affected by the swaps. Notice however that, for
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different simulations with a same ratio s{m, the corresponding slopes are not equal.
For instance, we can observe that for s{m “ 10´5 (the two curves marked with
triangles), the slopes are equal to 0.46 and 0.38, respectively.
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Figure 3.6 – Impact of the number of destinations (random graphs, n “ 100, 000,
m “ 800, 000, s “ 2).

Number of destinations. Finally, we also studied the impact of the number of
destinations d for graphs with n “ 100, 000, m “ 800, 000 and s “ 2 (Figure 3.6).
Intuitively, increasing the number of destinations causes the number of nodes on
the shortest paths to the destinations to increase. Indeed, we observe that the
initial growth phase, which corresponds to the discovery of all nodes on all shortest
paths to the destinations, reaches a higher value when the number of destinations
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increases. As before, this phase is followed by a linear progression. Notice that
increasing the number of destinations also increases the slope. This is clearly due
to the fact that since the size of routing trees from the monitor to the destinations
increases with the number of destinations, the probability for a swap to affect such
a routing tree increases likewise.

3.2.2 Power-law graphs

In order to study the impact of the underlying structure, we compared the be-
haviours observed above for random graphs to those obtained for power-law graphs.

In summary, we use the following procedure [28, 14]: (1) given an exponent γ,
we randomly generate a list of degrees that respects the following power law:

fpdq „ d´γ , γ ą 0,

where fpdq is the fraction of nodes with degree d; (2) for each node, create as many
half links as the value of its degree; (3) randomly choose pairs of half-links and
connect them to form links.

The observations made for power-law graphs are the same, qualitatively, as the
ones made for random graphs. The number of nodes observed since measurement
beginning displays a linear progression after a fast initial growth.

We do however observe a quantitative difference: the slope of the curve of
the number of observed nodes for power-law graphs is smaller than the slope
corresponding to random graphs. This can be observed in Figure 3.7, which
presents the number of nodes observed since measurement beginning for a power-
law graph with exponent 2.3, which corresponds to approximately 200,000 links,
and two random graphs. The slope of the curve for the power-law graph is indeed
much smaller than the one for a random graph with the same number of nodes
and links.

The average distance may play a role in this. It has indeed been proven that
the average distance is smaller for power-law graphs with exponents in the range
2 ă γ ă 3 (for which it is in the order of log log n [38]), than for random graphs
with bounded mean degree (for which it is in the order of log n [86]). This implies
that shortest path trees from the monitor to the destinations will have fewer nodes
in power-law graphs than in random graphs, naturally inducing the observation of
fewer new nodes. However, though this certainly plays a role, this is not enough
to explain the observed difference. Figure 3.7 shows that the slope of the curve
for the power-law graph is also smaller than the one for a random graph with the
same average distance (and hence with m “ 1, 200, 000 links).

As we can observe from the three graphs used above as an example, the structural
differences between random and power-law graphs lead to important differences
in the average distance and/or in the number of links. As observations made in
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Avg. dist. spt l
power-law, m “ 2 ¨ 105 4.0 545
random, m “ 12 ¨ 105 3.9 792
random, m “ 2 ¨ 105 8.4 1420

Table 3.1 – Average distance and size of shortest path trees for different graphs.
n “ 100, 000, d “ 300.

the previous section suggest, the slope of the curve for the number of link should
intuitively be proportional to the probability that a given swap will change the
shortest path tree from the monitor to the destinations. Let us call spt l the typical2

number of links in a shortest path tree from the monitor to the destinations.

Table 3.1 compares the value of spt l for a power-law graph and two random
graphs: one with the same average distance and one with the same number of links.
We observe that it highlights additional structural differences between these two
types of graphs: though the average distance is approximately equal in a power-law
graph with exponent 2.3 and a random graph with 12 ¨ 105 links, the numbers of
links in shortest path trees from the monitor to the destinations are significantly
different.

2In the same way that we performed several simulations and averaged the results in order to
obtain the typical behaviour for given model parameters, we generate several graphs with the
same size and number of destinations to compute the typical size of a shortest path tree.
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3.3 In search of unified laws

After analysing the results of our simulations, we have seen that the relations
between the slope of the curve of the number of observed nodes and the model
parameters are qualitatively similar in the cases of random and power-law graphs.
The slope increases with the number of swaps and the number of destinations. In
this context the following question naturally arises: can we find some common
patterns that will unify the model’s behaviour for random and power-law dynamic
graphs? We propose in this subsection some general laws that approximately hold
in both cases.

Since swaps affect links, the probability that a shortest path tree is affected by
a swap depends on its size in terms of links, and it is relevant to study the number
of links observed since measurement beginning, which has the same behaviour as
the number of observed nodes. Therefore, we start by investigating the impact of
the typical number of links in a shortest path tree, spt l, on the observed value of
the slope. Figure 3.8 plots the slope of the curve of the observed number of links
since measurement beginning vs spt l for different types of graphs. For each type
of graph, we perform simulations using different numbers of destinations, which
induces different slopes and different values of spt l. We observe that the slope
increases linearly with spt l, but at different rates for different types of underlying
graphs.
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Figure 3.8 – Slope of the curve of the observed number of links vs spt l for different
graphs and different destination numbers. s “ 2. For all graphs we used several
values of d: d “ 100, 200, 300, 400, 500.

Our intuition suggests that the slope, should be proportional to the ratio
between the typical size of the shortest path subgraph and the total number of
links when. Thus, trying to obtain a general law, we divide the size of the shortest
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path subgraph by the total number of links. Figure 3.9 plots the slope vs spt l
m

. We
observe a strong correlation between these two quantities, meaning that spt l

m
plays

an important role in the observed behaviour, for all types of graph. Though this
does not fully allow us to understand the model’s behaviour, this shows that the
number of links and the size of a shortest path routing tree are key parameters for
understanding the quantitative difference between random and power-law graphs.

Besides the relation between spt l
m

and the slope of the curve of observed links,
there are others that affect the model’s behaviour. Here we present the evolution
of the slope when we simultaneously vary the number of links and the number of
destinations. We use 105 nodes, 2 swaps per round, and we compute the typical
slope by averaging over 460 simulations with the same parameters, we proceed as
follows:

• For random graphs we vary the number of links m P t2 ¨ 105, 3 ¨ 105, 4 ¨ 105, 5 ¨
105, . . . 9 ¨ 105, 106u and the number of destinations d P t100, 200, 500u.

• For power-law graphs we vary the exponent of power-law distribution γ P
t2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9u and the number of destinations d P t100, 200, 500u.

Figure 3.10 presents the interpolated3 surface pm, dq ÞÑ α for random graphs.
Figure 3.11 shows the surface of the same type, but for power-law graphs. Clearly,
both surfaces do not look like planes. Even more, they are not monotonic and
we observe some oscillations. Particularly, the slope evolution is not monotonous

3We use gnuplot’s splines, which is an interpolation based on “thin plate splines” [13].
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Figure 3.10 – Surface pm, dq ÞÑ α and its projections. Random graphs (n “ 100000,
m P t200000, 300000, . . . 1000000u, d P t100, 200, 500u, s “ 2).
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when we increase the density of a graph by increasing the number of links (see
Figures 3.10b and 3.11b).

3.3.1 Impact of the size of the shortest path subgraph

As Figures 3.10b and 3.11b show the slope is not monotonous as the number of
links increases. The state of the art has shown that similar oscillations arises when
we consider the average proportion of links that lie on all shortest paths from a
given node to all other nodes [46].

Here we denote by SPS the subgraph of all shortest paths between the monitor
and destinations. Because of load-balancing, one measurement gives us only one
shortest path tree (SPT ), but the shortest path subgraph may contain several trees.
Thus, the size of the shortest path subgraph should play an important role in the
observed dynamics.

Let sps l be the size of the shortest path subgraph between the monitor and
destinations, i.e. the number of links that are on the union of all shortest paths
between the monitor and destinations. Consider a notion of a unit slope (or slope
per unit of the network structure), i.e. the ratio α

spsl
. We expect that the unit

slope should decrease inversely proportional to the number of links in the graph.
Figure 3.12 shows that this is almost true for different random and power-law
graphs.

Using this relation between α, spt l and m, we are able to predict approximately
the slope without performing costly simlations. For example, if we have Erdős-
Rényi graph with m “ 250000 links 4, n “ 100000 nodes and we perform s “ 2

swaps per round, the slope will be approximately equal to 0.000175 ¨ spt l according
to Figure 3.12a. However, we need to know the value of spt l. For the moment,
we can estimate spt l only experimentally. In Chapter 4 we will make a first step
towards analytical expression for spt l.

We also observe that that there is a non-linear component that causes oscillations
of the slope. On the one hand, the presence of non-linear dependence complicates
the characterisation of the observed dynamics. But on the other hand it naturally
raises another interesting question: how can we explain them? For the moment,
we don’t know the exact answer. In the next Chapter we will give an explanation
of a similar phenomenon: “sps l oscillates when the density of random graphs
grows”. We believe that the underlying mechanisms of these oscillations and the
mechanisms of the oscillations discussed in this section are the same. Clearly, in
order to understand better the dynamics of the network we should study in details
the size of the shortest path subgraph. This will be the focus of Chapter 4.

4Note that we didn’t performe simulations with this value of m.
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Figure 3.11 – Surface pm, dq ÞÑ α and its projections. Power-law graphs (n “ 100000,
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3.3.2 Probability of shortest path subgraph modifications

Let Prchange be the probability of observing some new links at each measurement
round. We estimate empirically Prchange by computing the number of rounds in which
we see a new link divided by total number of rounds. Prchange is another quantity
that describes the curve of the number of observed links. Our intuition suggests
that Prchange, like the slope, should be proportional to spsl

m
:

Prchange 9
sps l

m
.

Figure 3.13a confirms our intuition: we see the same linear law for random
graphs with different densities. The case of power-law graphs is slightly different
(see Fig. 3.13b), but a strong correlation is present.

Experimenting with various relations between different model parameters and
different characteristics of observed dynamic, we have found one very interesting
relation:

The probability that a shortest path subgraph will change before
the next measurement occurs depends almost linearly on the
ratio between the size of shortest path subgraph and the total
number of links in our graph.

3.4 Real-world measurements

Studying the model is an important task, but also we should also study the real
data in order to confirm our findings. Here we explore how the frequency of
measurements and the number of destinations change the observed slope of the
curve of the number of observed nodes. Since the results for the woolthorpe and
ovh datasets are qualitatively similar, we present here only the results for the ovh

dataset.

3.4.1 Frequency of measurements

In the model, the number of swaps corresponds to the frequency of measurements.
For example, when we perform twice as many swaps, it means that we measure two
times less frequently. Therefore, while in real measurements we cannot control the
number of swaps, we can change the frequency, which is equivalent. Figure 3.14
shows how the slope increases when we increase the delay between measurements.
These results are similar to the model’s results presented in Figure 3.4. Note
that here the slope is computed for the curve r ÞÑ C, that is the number of links
observed since measurement beginning as a function of the number of measurement
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rounds performed. The case, where we study the number of observed links as a
function of time (t ÞÑ C, where t is timestamp), will be considered in the first
section of Chapter 5. Actually these two cases are almost equivalent, because we
typically perform our measurements at constant rate, every ∆ seconds, and there is
a transformation t “ t0 ` r∆. But the first case is more illustrative in the context
of this chapter.

5 10 15 20

0.
5

1.
0

1.
5

delay multiplicator

α

Figure 3.14 – Impact of the frequency for ovh dataset: how the slope of the curve
r ÞÑ C changes when we multiply the delay between measurements.

3.4.2 Size of the shortest path tree vs slope

As Figure 3.8 shows, in the model the slope is proportional to the number of links
on the shortest path tree if the other parameters of the model remain the same.
Intuitively, real-world data should exhibit the same behaviour. In order to vary spt l
we change the number of destinations. The original ovh dataset contains a sequence
of shortest path trees from a monitor to 500 destinations. We obtain measurements
with smaller number of destinations by applying the following procedure:

1. We choose x destinations out of 500 available ones.

2. From each shortest path tree we remove nodes and links that do not lead to
any of the previously chosen x destinations.

In Figure 3.15 we plot the slope against spt l. The dependence is approximately
linear like in the case of the model.



3.4. REAL-WORLD MEASUREMENTS 51

0 500 1000 1500 2000 2500

0.
00

0.
05

0.
10

0.
15

sptl

α

Figure 3.15 – Slope of the curve of the observed number of links vs spt l for ovh

dataset.

However, we cannot directly study the dependence between the size of sps-
sequence and Prchange in the case of real-world measurements, because in this case
have only a sequence of spt-s. We will reconsider this problem in slightly different
setting in Chapter 5.

As a conclusion, by exploring the impact of the parameters on the
observed dynamics, we experimentally identified several relations
or laws. Some of them are almost exact, but others give only an
idea of how the observed dynamics will change, if we consider,
for instance a different type of underlying graph. We validated
our findings using real world data. Now, we are able to predict
some characteristics of the model from the parameters without
running expensive simulations.

However, along with successfully identified relations, the model
shows some non-linear and non-monotonic behaviours, that com-
plicate analysis. A search for the explanation of these phenomena
gives a direction for future works. For example in the next Chap-
ter we will show that the typical size of shortest path subgraph,
which play a key role in the observed dynamics, also increases
non-monotonously when then graph’s density grows.



Chapter 4

Size of shortest path subgraphs

In the previous chapter we have seen that the size of the short-
est path subgraph between the source and destinations plays an
important role in the observed network dynamics.

In this chapter we study in details the size of shortest path
subgraph in the case where there is a single destination. We
consider a random graph Gpn, pq, and we denote by SPS pu, vq the
subgraph of all shortest paths between two nodes u and v. We
show that the size of SPS pu, vq follows a nontrivial probability law
with several local maximum values. In particular, in some cases
the average size is a combination of these maxima and not a value
that can be reached in practice. Also we approximate the expected
number of nodes in SPS pu, vq, when the distance between u and
v is known (we give the exact distribution, when the distance is
equal to 2).

We have seen in Chapter 3 that the size of the shortest path subgraph between
the source and destinations plays an important role in the observed dynamics. In
this chapter we start to develop a theoretical approach in order to describe this
size. We use a random graph [5, 6, 7, 8] as a model of the Internet topology. We
recall that if the Internet is modelled by a random graph and if we assume that
information follows a shortest paths, it is only possible to observe links that are
on the shortest paths between the measurement node and other nodes. Previous
works studied through massive numerical simulations the particular case where
all nodes are destinations, i.e. the shortest paths from a given node to all other

52
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nodes [46]. It has been showed that the average ratio between the number of links
in these shortest paths and the total number of links existing in the graph oscillates
when the density grows. These oscillations have bean analysed in [56]. We can see
that the average number of links (not the proportion) also oscillates when p grows
(see Figure 4.1).
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Figure 4.1 – Evolution with p (log scale) of the number of links (log scale) that
belong to a shortest path from a node to all other nodes in Gpn, pq with n “ 500

nodes. For each value of p we generated 200 graphs. Each grey point corresponds
to an observed value. Black circles represent the average over these graphs. A fast
increase around p “ 2 ˚ 10´3 corresponds to the connectivity threshold.

A measurement that uses all IP addresses as destinations takes a very long
time, therefore such measurements cannot be performed with sufficient frequency.
For this reason, in reality we use only a small portion of available IP addresses as
destinations. Thus, in our model we also take only a small portion of all nodes
as the destinations. For example, if we have 500 nodes in total, we take only 3
of them. Figure 4.2a and 4.2b show the size of shortest path subgraph from a
node to 3 other nodes in random graphs of different density. We see that: (i) the
average size oscillates when the density grows; (ii) in contrast to Figure 4.1, points
in Figures 4.2a and 4.2b are less homogeneous, i.e. there are a few dense areas
separated by empty space.

In this chapter we refine these analysis by studying the number of nodes (or
links) which belong to a all shortest path between two nodes. In this case also, we
observe that the averages fluctuates when p varies. The average number of links
(Figure 4.2c) oscillates in similar way to the average number of nodes (Figure 4.2d).
A sharp increase of the average around p “ 2 ˚ 10´3 corresponds to well-known
phenomenon in Erdős–Rényi graphs: the phase transition that corresponds to the
appearance of a giant component (see [86] for detailed explanations). For smaller
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values of p, with high probability, u and v do not belong to the same connected
component and therefore the average number of nodes or links existing on the
shortest paths between them is very small.

Surprisingly, we observe that for many values of p the distribution is non-trivial,
with several local maxima; correspondingly the average is a combination of these
maxima and not a value that can be observed in practice. Figure 4.3 shows such
distributions for different values of p.
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Figure 4.2 – Evolution with p (log scale) of the number of links and nodes (log scale)
that lie on a shortest path from a node to 1 or 3 other nodes from Gpn “ 500, pq.
For each value of p we generated 200 graphs. Each grey point corresponds to an
observed value. Black circles represent the average over these graphs. A fast growth
around p “ 2 ˚ 10´3 corresponds to the connectivity threshold.
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Figure 4.3 – Histograms of empirically measured sizes (e.g. number of nodes) of
shortest path subgraphs between two nodes for different random graphs with 500
nodes. For each value of p we generated 200 graphs. The size of shortest path
subgraph is denoted by S. The blue line represents the average S.

The rest of this chapter is organised as follows. In Section 4.1 we give the
necessary definitions. Next, in Section 4.2 we study complete and quasi-complete
graphs (i.e. graphs obtained from complete graphs by removing an link), in order
to form an intuition about the results that we will show next: in Section 4.3 we
consider dense random graphs and in Section 4.4 we study sparse random graphs
with unbounded mean degree. In all cases (except complete graphs) we find a
non-trivial multimodal distribution of the number of nodes which belong to a
shortest path between two nodes and we explain this phenomenon. Finally, we
summarise our main results and discuss possible future works.

4.1 Definitions

Here we are interested in the number of nodes or links that belong to the shortest
paths between two nodes. We recall that in the general case there are more than
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one shortest path between two nodes and therefore the number of links (or nodes)
can be very different compared to the distance between them. We will use the
following definitions:

Definition 4.1.1: Given a graph and two of its nodes u and v, let SPS pu, vq be
the subgraph of all shortest paths between u and v, i.e. SPS pu, vq contains all links
and nodes that belong to a shortest path between u and v. When u and v do not
belong to the same connected component SPS pu, vq does not exist.

Definition 4.1.2: Given a graph and two of its nodes u and v, let Spu, vq be the
number of nodes in SPS pu, vq. Similarly, SEpu, vq denotes the number of links in
SPS pu, vq. When u and v do not belong to the same connected component Spu, vq
and SEpu, vq are equal to 0.

Definition 4.1.3: For a given graph, we denote by Dpu, vq the distance between
nodes u and v, i.e. the length of a shortest path from u to v. If there is no path

between u and v, we define Dpu, vq “ 8. For brevity we often write
x

Ăuv instead of
Dpu, vq “ x.

Definition 4.1.4: A random graph Gpn, pq is a graph with n nodes such that each
link belongs to the graph with probability p.

We fix two distinct nodes u and v from a given set V of n nodes, and consider
all realisations of Gpn, pq over V as a probability space.

Definition 4.1.5: Let fd “ Pr
“
Dpu, vq “ d

‰
and fąd “ Pr

“
Dpu, vq ą d

‰
.

Abusing the notation we will denote by S the random variable for the number
of nodes in SPS pu, vq when there is no ambiguity. Analogously, we use SE for the
random variable for the number of links in SPS pu, vq.

4.2 Complete and quasi-complete graphs

Let us consider complete and quasi-complete graphs in order to form an intuition
about the distribution of S. In the case of the complete graph Kn the structure of
SPS pu, vq is trivial, because SPS pu, vq contains only the nodes u, v and the link
uv. Consider now a quasi-complete graph Kn ´ ab, i.e. a graph obtained from Kn

by removing an link ab.

Proposition 4.2.1: For any distinct nodes u and v from the quasi-complete graph
Kn ´ ab we have:

Spu, vq “

#
n if tu, vu “ ta, bu ,

2 otherwise .
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Proof. Suppose u “ a and v “ b (or conversely). Nodes a and b are not adjacent,
but they are connected by n´2 paths of length 2 (see for example Figure 4.4). The
union of these paths contains all nodes of our graph, so Spa, bq “ n. Otherwise, u
and v are adjacent, and Spu, vq “ 2.

The size distribution of shortest path subgraphs of the quasi-complete graph
contains two peaks: 2, n. The average size is equal to 2 ` 2pn´2q

npn´1q
, but there is no

subgraphs with this size.

a b

Figure 4.4 – K6 ´ ab. There are 4 different shortest paths between nodes a and b,
while there is only 1 shortest path between any other two nodes.

4.3 Dense random graphs (p is fixed, n Ñ 8)

In this section we study dense random graphs, i.e. graphs with constant density
p. First, we recall that such graphs almost surely have diameter 2. This allows us

to consider only two cases:
1

Ăuv and
2

Ăuv. We study these cases, and we show that
the size distribution of SPS pu, vq looks similar to the two-peak distribution from
Proposition 4.2.1.

It is well known that almost all random graphs have diameter 2 (see for
example [12]). We use the following formulation for this result:

Theorem 4.3.1 (Random graphs with constant density have diameter 2): For any
given p ą 0 we have f1 “ p, f2 Ñ 1 ´ p, and fą2 Ñ 0 as n Ñ 8.

Proof. By definition of Gpn, pq we have f1 “ p and fą1 “ 1´ p. Next, the distance
between two nonadjacent nodes u and v is larger than 2 if and only if they have
no common neighbours. There are n ´ 2 nodes distinct from u and v, and each of
them is not their common neighbour with probability 1 ´ p2. So, we have:

fą2 “ fą1p1 ´ p2qn´2 .

Since p ą 0 is fixed, limnÑ8 fą2 “ 0 and limnÑ8 f2 “ 1 ´ p.
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Theorem 4.3.1 shows that in dense random graphs there is almost surely only

two cases:
1

Ăuv and
2

Ăuv. The structure of SPS pu, vq in the former case is trivial,
because SPS pu, vq contains only the nodes u, v and the link uv.

In the rest of this section we study the latter case. Let Y denote the number of
nodes that are directly connected to both u and v. Note that Y is equal to S ´ 2.

Lemma 4.3.2: Y is a binomial random variable with parameters n´2 and success
probability p2:

Y „ Bpn ´ 2, p2q .

Proof. The probability that any node c is directly connected to both u and v is
equal to p2. We have n´2 nodes which are independently susceptible to lie between
u and v.

Theorem 4.3.3: When the distance between u and v is equal to 2, the probability

function Pr

„
Y “ k|

2

Ăuv


is equal to

#
0 if k “ 0 ,

PrrY “ks
1´p1´p2qn´2 if k ě 1 .

Proof. From the definition of conditioned probability we have

Pr

„
Y “ k|

2

Ăuv


“

Pr

„
Y “ k and

2

Ăuv


Pr

„
2

Ăuv
 .

Let A be an event “there is no link between u and v”. Observe that

2

Ăuv ðñ A and Y ě 1 .

A is independent from Y and PrrAs “ 1 ´ p, so

Pr

„
Y “ k|

2

Ăuv


“
p1 ´ pqPr rY “ k and Y ě 1s

p1 ´ pqp1 ´ p1 ´ p2qn´2q
.

Note that

Pr rY “ k and Y ě 1s “

#
0 if k “ 0 ,

PrrY “ ks if k ě 1 .

The claimed formula easily follows.
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Corollary 4.3.4: When the distance between u and v is equal to 2, we have the
following expressions for the expectation and the variance of S:

E

„
S

ˇ̌ 2

Ăuv


“ 2 `
pn ´ 2qp2

1 ´ p1 ´ p2qn´2
,

Var

„
S

ˇ̌ 2

Ăuv


“
pn ´ 2q p2 p1 ´ p2 ` pn ´ 2qp2q

1 ´ p1 ´ p2qn´2
´

ˆ
pn ´ 2qp2

1 ´ p1 ´ p2qn´2

˙2

.

Proof. When the distance between u and v is equals to 2, SPS pu, vq contains 2`Y

nodes. Thus, we have E

„
S|

2

Ăuv


“ 2 ` E

„
Y |

2

Ăuv

. From Lemma 4.3.2 we know

that Y is a binomial random variable with parameters n´2 and success probability

p2. From Theorem 4.3.3 we know the probability function Pr

„
Y “ k|

2

Ăuv

. Next,

we write

E

„
Y |

2

Ăuv


“
8ÿ

k“0

k Pr

„
Y “ k|

2

Ăuv


“
8ÿ

k“1

k PrrY “ ks

1 ´ p1 ´ p2qn´2

“
ErY s

1 ´ p1 ´ p2qn´2
.

Now, the claimed formula for the expectation can be easily obtained.
Concerning the variance, we have:

Var

„
S|

2

Ăuv


“ Var

„
Y |

2

Ăuv


“ E

„
Y 2|

2

Ăuv


´

ˆ
E

„
Y 2|

2

Ăuv
˙2

.

Note that

E

„
Y 2|

2

Ăuv


“
8ÿ

k“1

k2 PrrY “ ks

1 ´ p1 ´ p2qn´2

“
ErY 2s

1 ´ p1 ´ p2qn´2

“
pn ´ 2q p2 p1 ´ p2 ` pn ´ 2qp2q

1 ´ p1 ´ p2qn´2
.
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And finally

Var

„
Y |

2

Ăuv


“
pn ´ 2q p2 p1 ´ p2 ` pn ´ 2qp2q

1 ´ p1 ´ p2qn´2
´

ˆ
pn ´ 2qp2

1 ´ p1 ´ p2qn´2

˙2

.

In order to illustrate Corollary 4.3.4 we performed some numerical simulations.
Figure 4.5a shows the values of S in the case when n is fixed and p P r0, 1s.
Different colours correspond to different distances between u and v. The black line

represents ErS|
2

Ăuvs. From Chebyshev’s inequality we know that at least 88% of
the distribution’s values are within 3 standard deviations of the mean, we use red
lines in order to delimit these bounds. Green points correspond to the distance
2, and we see that Corollary 4.3.4 perfectly describes their behaviour when the
density grows. Figure 4.5b shows what happens when p is fixed but n grows: (i)
the probability that we have a pair of nodes at a distance greater than 2 tends to
zero; (ii) the average size (repsented by black circles) of shortest path subgraph

lies between ErS|
2

Ăuvs and ErS|
1

Ăuvs.
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Figure 4.5 – Empirically measured values of S for different random graphs. For
each value of p we generated 200 graphs. Each point corresponds to an observed
value of S. Black circles represent the average size of SPS . Different colours

correspond to different distances between u and v (red:
1

Ăuv, green:
2

Ăuv, blue:
3

Ăuv,
cyan:

4

Ăuv, magenta:
5

Ăuv). The black line represents ErS|
2

Ăuvs. At least 88% of the
distribution’s values are within 3 standard deviations of the mean, we use red lines
in order to delimit these bounds. A log scale is used for both axes.
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Corollary 4.3.5: When the distance between u and v is equal to 2, we have:

Pr

„
SE “ 2k|

2

Ăuv


“ Pr

„
Y “ k|

2

Ăuv

.

Proof. It is sufficient to realise that for each node c P SPS pu, vq, c R tu, vu there
are exactly two distinct links in SPS pu, vq, i.e. pc, uq and pc, vq.

Finally, the probability mass function of S is a mixture of two functions: the

first corresponds to the case
1

Ăuv and the second to
2

Ăuv (see Figure 4.6):

S “

$
’’&
’’%

2 if
1

Ăuv ,

2 ` Y if
2

Ăuv , where Pr

„
Y “ k|

2

Ăuv


“

#
0 if k “ 0 ,

PrrY “ks
1´p1´p2qn´2 if k ě 1 .

.

The distribution of S has two local maxima, and the average size of SPS pu, vq
lies between these maxima. This finally explains why the values of Spu, vq and
SEpu, vq may be very different from the average.

1

ũv
2

ũv

E[S|
2

ũv]2 S

Pr[S]

Figure 4.6 – Schematic representation of the probability mass function of S.

4.4 Sparse random graphs with unbounded mean
degree (p Ñ 0 and np Ñ 8 as n Ñ 8)

We say that a random graph is sparse when its density p tends to zero as n goes
to infinity. There are two classes of sparse graphs: (i) mean degree is bounded by
some constant that does not depend on the size of the graph (np ď c), (ii) mean
degree is unbounded (np Ñ 8). Here we study the second case.

As Figure 4.5a suggests, when p decreases, the number of peaks in the distribu-
tion of S grows. For example, a third peak (dark-blue points on the Figure 4.5a)
appears when the probability that Dpu, vq “ 3 becomes non-negligible, it happens
when p « 0.1318, and Figure 4.3 shows a histogram for this case. Let us give an
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intuitive explanation for the fact that there are several peaks in the size distribution
of SPS pu, vq. We observe that Spu, vq ě Dpu, vq ` 1, so, when Dpu, vq grows,
Spu, vq also grows. Intuitively, when our graphs are not similar to trees, Spu, vq
grows much faster than Dpu, vq:

Dpu, vq ą Dpu1, v1q ñ Spu, vq " Spu1, v1q .

Therefore, each observed value for Dpu, vq will correspond to a peak in the distri-
bution of S.

In subsection 4.4.1 we give an approximation of the expected number of nodes
in SPS pu, vq in the case when we know the distance between u and v. In subsec-
tion 4.4.2 we give a classification of sparse graphs with unbounded mean degree,
and we study the size distribution of SPS pu, vq according to this classification.

4.4.1 Approximated expectation of the size

Recall that we denote by fd (resp. fąd) the probability that the distance between
two nodes is equal to d (resp. greater than d). Authors in [56] showed that fd can
be approximated by a recurrent formula:

fą0 “ 1 ´
1

n
,

fąd “
`
1 ´

1

n

˘
p1 ´ pqp1´fąd´1qn ,

fd “ fąd´1 ´ fąd .

We refer interested reader to [56] for details about fąd. Note however that the
authors considered the case where the two chosen nodes are not necessarily distinct.
Therefore, their definition of fd is a bit different from ours, but asymptotically they
coincide.

Note that the expectation of S, conditioned on the distance between u and v

being equal to x, is equal to

2 ` pn ´ 2q ˚ Pr

„
c P SPS pu, vq

ˇ̌ x

Ăuv

.

But it seems difficult to calculate this probability, so we present here only an
approximation of the expected value.

Approximation 4.4.1: When the distance between u and v is equal to x, we have
the following approximation for the expectation of S.

E

„
S

ˇ̌ x

Ăuv


« x ` 1 ` pn ´ x ´ 1q
x´1ÿ

y“1

fyfx´y .
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Idea. When
x

Ăuv, we know that S ě x ` 1. There are n ´ x ´ 1 possible nodes
which also can lie on a shortest path between u and v, so we have

E

„
S

ˇ̌ x

Ăuv


« x ` 1 ` Pr

„
c P SPS pu, vq

ˇ̌ x

Ăuv


pn ´ x ´ 1q . (4.1)

Note that a node c is on a shortest path between u and v if and only if Dpu, vq “
Dpu, cq ` Dpc, vq. Therefore we have:

Pr

„
c P SPS pu, vq|

x

Ăuv


“

řx´1

y“1
Pr

„
y

ruc and
x´y

Ăcv and
x

Ăuv


Pr

„
x

Ăuv


Assuming that events
y

ruc,
x´y

Ăcv and
x

Ăuv are mutually independent and identically
distributed (actually it is not true, because there is triangular inequality that
creates some dependencies), we approximate:

Pr

„
y

ruc and
x´y

Ăcv


« Pr
” y

ruc
ı
Pr

„
x´y

Ăcv


« fyfx´y ,

and finally

Pr

„
c P SPS pu, vq|

x

Ăuv


«
x´1ÿ

y“1

fyfx´y . (4.2)

Using Blondel et al. relation and our formulæ (4.1) and (4.2), we are able to
calculate this.

Figure 4.7 illustrates our approximation when Dpu, vq P t3, 4u. Clearly we see
several peaks, i.e. typical values of S. Our approximation corresponds to the
centres of these peaks. There are valleys between peaks. But these valleys vanish
when p is very small, due to the variance of S.

Typically our approximation gives very good estimations compared to exper-
imental data. However, when Dpu, vq is very large (compared to the average
distance), the result of approximation is slightly inadequate. This happens due
to the following reasons: (i) Blondel et al. expression for fd is not exact; (ii) we
neglect the dependencies between some events.

4.4.2 Classification of sparse graphs according to the dis-
tance distribution

In appendix of [56] the following was shown:
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Figure 4.7 – Empirically measured values of S in random graph with 500 nodes. For
each value of p we generated 200 graphs. Each point corresponds to an observed
value of S. Black circles represent the average size of SPS . Different colours

correspond to different distances between u and v (red:
1

Ăuv, green:
2

Ăuv, blue:
3

Ăuv,
cyan:

4

Ăuv, magenta:
5

Ăuv). Approximated E

„
S|

x

Ăuv


is represented by black lines. A

log scale is used for both axes.

Theorem 4.4.2: For any given d ě 2 and any given λ P p0,8q, if nd´1pd “ λ we
have:

lim
nÑ8

făd “ 0 ,

lim
nÑ8

fd “ 1 ´ e´λ ,

lim
nÑ8

fd`1 “ e´λ ,

lim
nÑ8

fąd`1 “ 0 .

Informally, when p “ d

b
λ

nd´1 and n is sufficiently large, there are only two

possibilities:
d

Ăuv and
d`1

Ăuv. It can be shown that limnÑ8 E
“
S|

d

Ăuv
‰

exists and depends

only on λ, while E
“
S|

d`1

Ăuv
‰

grows with n. Correspondingly, we have seen that

for random graphs with constant density the following is true: ErS|
1

Ăuvs “ 2

and E

„
S|

2

Ăuv


« np2 (see Proposition 4.3.3 and Corollary 4.3.4). Therefore, the
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distributions of S in the case of dense and sparse (with unbounded mean degree)
random graphs are quite similar.

We performed numerical simulations using two families of sparse random graphs:
(a) np2 “ 1 and (b) n2p3 “ 1. Figure 4.8 presents the results. For each value
of p we generated 200 random graphs Gpn, pq and we measured S (each point in
Figure 4.8 corresponds to a measured value of S, different colours correspond to

different distances between nodes). We see that E
“
S|

d

Ăuv
‰

stabilises around some

value, but E
“
S|

d`1

Ăuv
‰

grows unboundently. The distance between these two typical
values of S grows also with n.

We see that the average S (represented by black circles) almost always lies in

the valley between E
“
S|

d

Ăuv
‰

and E
“
S|

d`1

Ăuv
‰
. We see some shortest path subgraphs

with sizes that are close to the average, but it happens very rarely. In general, sizes
are concentrated around two peaks.
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Figure 4.8 – Empirically measured values of S. For each value of p we generated 30
graphs. Each point corresponds to an observed value of S. Black circles represent
the average size of SPS . Different colours correspond to different distances between

u and v. Our approximation for E
“
S|

x

Ăuv
‰

is represented by black lines (on the left:
x P t2, 3u, on the right: x P t3, 4u). A log scale is used for both axes.
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The size of the shortest path subgraph between the source and
destinations plays an important role in the observed network dy-
namics, as we know from the previous chapter. In this chapter
we have made the first step towards a rigorous characterisation
of the size of shortest path subgraphs.

Particularly, we studied the size of the shortest path subgraph
between two nodes. We denote by S the number of nodes in that
subgraph. Our study results in a characterisation of S for dense
random graphs and sparse random graphs with unbounded mean
degree.

The probability mass function of S has several local maxima
(peaks). Each peak corresponds to a possible distance between u

and v. Between such peaks we have valleys of “improbable” sizes
of SPS , in other words the distribution of S is multimodal.

For dense random graphs we have asymptotically exact results,
and for sparse random graphs with unbounded mean degree we
have an approximated representation of the expected number of
nodes in SPS pu, vq.

Better approximations (or even exact distributions) are parts
of a future work. One may also investigate the important class of
random graphs with constant mean degree, using the methodol-
ogy described in [62]. Another direction consists in studying real-
world networks or other models of random graphs (e.g. power-
law graphs). In this chapter, we considered only the shortest paths
subgraph between two nodes (one monitor and one destination).
The case of several destinations should also be considered in the
future.

Moreover, the notion of SPS pu, vq can be considered as a sim-
ilarity measure between nodes u and v. In the domain of com-
munity detection methods there are a lot of related notions, for
example: connection subgraph [43] and proximity graphs [53].
Thus, it may be very useful to develop a general theory about
SPS -like objects as an analogue of mathematical theory of metric
spaces, because the notion of SPS generalises, in some sense, the
notion of a distance.



Chapter 5

Real and observed dynamics

In this chapter we study how the frequency of measurements
affects the observed network dynamics. We are interested in the
underlying processes which cause the observed dynamics. We
introduce a non-classical method of stochastic process parameter
estimation and we apply this method to real-world and modelled
measurements in order to attempt to characterise the rate of the
evolution of the topology. We also show that dynamic of the
network is nonuniform, in the sense that different parts of the
network can have different rates of evolution.

This chapter is organised as follows. In Section 5.1 we will show that the
slope of the curve of the number of observed links depends intrinsically on the
measurement frequency, and that it is very difficult to actually observe the real
rate of the topology’s evolution. Next, in Section 5.2 we give a skeleton of a
theory of a non-classical sampling where the goal is to infer the real underlying
process that causes such observations. We applied this theory to real-world and
modelled measurements in order to approximate the true frequency of modifications
of ego-centred views. Finally, in Section 5.3 we will study whether the dynamic
of the network is uniform or not, in other words whether different parts of the
network have different dynamical properties.

67
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5.1 Impact of the measurement frequency

In order to show how the measurement frequency affects the observed behaviour we
analyse both the real data and the behaviour of the model of the topology dynamics
that we introduced in Chapter 2. In this section we focus on the slope of the curve
of the number of observed links, which was introduced and discussed in Chapter 3.
Intuitively, the observed slope depends both on the rate of routing changes and load
balancing: the more changes happen, the more new links will be observed over time;
and the more routes exist between two nodes, the more consecutive measurements
will observe previously existing but unobseerved routes. Figure 5.1 illustrates the
following: when we decrease the frequency of measurements the observed slope also
decreases.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

C
u

m
m

u
la

ti
v
e

 n
u

m
b

e
r 

o
f 

d
is

ti
n

c
t 

IP
-l
in

k
s

Date

original
twice slower

Figure 5.1 – Number of links observed since measurement beginning (ovh dataset).
We observe a difference between the slopes for the original measurements (red) and
measurements performed twice more slowly (green).

If the measurement frequency is low, we will fail to observe some links, because
they will have disappeared before the corresponding route is explored. On the
contrary, if measurements are performed fast enough, all routes from the monitor
to the destinations should be observed. More formally, let ∆ be the time interval
between two consecutive rounds and let α be the corresponding slope. We expect
that there exists a true slope αm and corresponding ideal delay ∆m such that for
all ∆ ď ∆m we should observe the same slope:
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∆ ď ∆m ñ α “ αm .

Thus, ∆m is the optimal interval between measurements.
Figure 5.2a illustrates this.

α
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(a) Expected behaviour
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(c) Model (Erdős–Rényi
graph, n “ 105, m “ 2¨105,
d “ 300).

Figure 5.2 – Impact of the measurement frequency. Each figure represents α (the
slope of the plot of the number of observed links as a function of time) as a function
of the time interval between consecutive rounds ∆. For the model simulations, we
present results for 100 experiments. Each point is the average of the slope, and the
errorbars represent the 25- and 75-percentiles.

In order to test whether we are measuring with high enough frequency or not,
we compute the slopes for different values of ∆. Ideally, for performing a rigorous
analysis with real data, one should perform several measurements at different
frequencies. For these measurements to be comparable, they should be performed
from the same monitor towards the same destination set, and at the same time.
As this is not feasible in practice, we use real measurements, performed with
∆original, to simulate other measurements with different, lower, frequencies. We
do so by taking into account only every n-th measurement round, so that the
simulated interval ∆ will be equal to n ¨ ∆original. We are then able to compute
the corresponding slope αn. We use the ovh dataset that consists of measurements
performed at a high frequency (∆original is equal to 1m 25s) and for a long time, so
that we are able to simulate measurements with a wide frequency interval.

The model has no such parameter as ∆. However we can assume that topology
changes, i.e. swaps, happen at a constant rate on average. Let ∆original stand for
the elapsed period of time between two consecutive rounds if only one swap is
performed at each round. We can assume that ∆original is equal to 1. Then we can
simulate a lower frequency in the model by “performing n swaps at each round,
which will represent a period that is equal to n ¨∆original “ n. Consequently, we can
simulate a higher frequency by performing only one swap every n1 rounds, which
will represent a period that is equal to ∆original{n

1 “ 1{n1.
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Figure 5.2 shows the observed results. Concerning simulations, we found that
the variability between different experiments performed with the same parameters
is quite high (the plot shows the average observed values, as well as the 25- and
75-percentiles). This makes it difficult to draw a rigorous conclusion, but the
observations are compatible with the presence of a plateau for ∆ ď 1. The median
of the observed values, not presented here, also strongly suggests the presence of
a plateau. Then for ∆ ě 1, the slope decreases with ∆, showing that for these
parameters, a frequency smaller than one round each swap is too slow to observe
all changes.

In the case of empirical data, we again observe that, the longer the interval
between measurements, the smaller the slope α. This confirms our expectations in
the case of ∆ ě ∆m. However, in this case, there is no plateau at the beginning of
the curve. It might be the case that the plateau begins at ∆ “ 1 but we have no
data to confirm or refute this. Therefore, we don’t know whether ∆ “ 1 is optimal
or not.

5.2 Inferring the evolution speed

In the previous section we demonstrated that the observed dynamics of ego-centred
views depends intrinsically on the measurement frequency and that it is very
difficult to reveal the actual speed of the Internet topology dynamics.

The goal of this section is to find a method that will allow us to estimate the
actual speed of the Internet topology dynamics. However, it is not easy to directly
study the real-world measurements. We need to introduce some abstractions: we
should forget some details in order to obtain clear comprehension of the underlying
processes. After this, we will put all the removed details back. We will use several
models, from very detailed ones to very simple and analytically solvable ones.
Figure 5.3 represents a hierarchy of processes that can be used to describe the
dynamics of ego-centred views of the Internet at different levels of abstraction.
Below we give give a detailed description of all levels shown in Figure 5.3.

spt-sequence. Inspired by the model introduced in Section 2, we denote by spt ,
i.e. “shortest path tree”, a result of one ego-centred measurement that corresponds
to the result of one round in the model. Typically we have several different spt-s
between the monitor and any destination.

spt-sequence
forget load-balancing
ÞÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ sps-sequence. In order to simplify our prob-

lem, we can decide to study not a sequence of shortest path trees, but rather a
sequence of shortest path subgraphs. Recall that a shortest path subgraph, denoted
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spt-sequence

sps-sequence

stochastic process

Poisson process

forget
load-balancing

forget
structure

forget
dependency

Figure 5.3 – Hierarchy of dynamical processes: from real-world to analytically
solvable.

by sps, contains all shortest paths between two nodes. One sps is formed by the
union of several spt-s.

We cannot directly study the sps-sequence in the case of real-world measure-
ments, because in the real-world we have only a sequence of spt-s. Currently we
don’t know how to infer the desired sps-sequence from the real-world spt-sequence,
and it seems to be a very difficult task. In the model, however, we can easily obtain
a sequence of sps-s.

sps-sequence
forget structure
ÞÝÝÝÝÝÝÝÝÝÝÑ stochastic process. Having a sps-sequence, we

can forget about its structure, i.e. we can consider each subgraph in the sequence
as one solid object. The object may change at some times. We cannot observe
changes directly as they happen, instead we have to perform measurements every
∆ units of time.

Stochastic process
forget dependency
ÞÝÝÝÝÝÝÝÝÝÝÝÝÑ Poisson process If now we assume that

changes occur due to some Poisson process parameterised by λ, we can estimate
the λ from the sequence of object’s states measured every ∆ units of time.

Subsection 5.2.1 describes the case of partially observed Poisson process in
details. Next, in Subsection 5.2.2 we show whether changes in sps-sequence can
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be modelled by Poisson process. And finally, in Subsection 5.2.3 we come back to
spt-sequences.

5.2.1 Poisson process

The goal of this section is to introduce a method of stochastic process parameter
estimation from partial observations. In order to keep this introduction as general
as possible, we forget, for the moment, about dynamic networks, instead we consider
just an generic object.

The object may change at some times, but it never reverts to a previous state.
We also suppose that changes (or modifications) occur due to some Poisson process
parameterised by the mean number of changes per unit of time. We denote this
mean number by λ. We cannot observe changes of the object directly, but instead
we should rely on periodic observations: we can then detect whether the object has
changed from one observation to the next, but we cannot know how many changes
have occurred.

Let xXy be the realisation of a Poisson process. We will call this process
underlying process. Let xY y be the sequence of our observations. Figure 5.4
schematically shows the differences between the underlying and observed processes.

Underlying xXy: ˝1 ˝2 ˝3 ¨ ¨ ¨

Observed xY y: ‚1 ‚1 ‚2 ¨ ¨ ¨
change

nochange

change

Figure 5.4 – Schematic representation of underlying and observed process. The
circle represents our object. At the time of a change we draw a new circle. We
use primes in order to show that the object was changed. Discs represent our
observations.

Every ∆ units of time we observe the object. If we compare two successive
measurements there are only two possibilities:

(no change) ‚ Ñ ‚;

(a change) ‚ Ñ ‚1.

When there is no change p‚ Ñ ‚q, we know that the object has not been modified
between these two measurements. In the case of p‚ Ñ ‚1q we know only that the
object has been modified at least once, but we don’t know the exact number of
changes. Figure 5.5 is a graphical form of our main question: How can we infer the
most likely λ from a sequence of measurements?

In the rest of this subsection we propose an estimator λ̂ and calculate its bias.
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λ xXy

xY y

realisation

observation
?

Figure 5.5 – Inference diagram. How can we infer λ of xXy using only a partial
information represented by a sequence of observations xY y?

Estimator

Consider a sequence of N ` 1 observations xY y: ‚0, ‚∆, ‚2∆, . . . , ‚N∆. Between any
successive pair of observations there is an interval of ∆ units of time. Therefore,
we have a sequence of N intervals. Denote by W the number of intervals without
changes (‚ Ñ ‚). We first present our estimator and show why this estimator is
relevant.

Estimator

λ̂ “ ´∆´1 log
W

N
,

where:

∆ – size of the time interval between observations ;

W – number of intervals without changes ;

N – total number of intervals .

For any Poisson process we have the following expression for the probability of
exactly k changes happening in an interval of ∆ units of time:

Prrks “
e´λ∆pλ∆qk

k!
k “ 0, 1, . . . ,

Note that due to the memorylessness of Poisson processes this probability does not
depend of what happens in other ∆ intervals. We write:

Prr‚ Ñ ‚s “ Prr0s “ e´λ∆ . (5.1)

We have W observed intervals without changes, therefore we can approximate:

Prr‚ Ñ ‚s «
W

N
. (5.2)
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Combining (5.1) and (5.2) we obtain the estimator:

e´λ∆ «
W

N
,

λ∆ « ´ log
W

N
,

λ « ´∆´1 log
W

N
.

Bias of the estimator

Below we present the approximated bias of our estimator λ̂ and a method by which
this approximation was obtained.

Bias

E

”
λ̂ ´ λ

ı
«

1

2N∆

`
eλ∆ ´ 1

˘

In order to calculate the bias of λ̂ we proceed as follows:

E

”
λ̂

ı
“ E

“
´∆´1 logW 1

‰
“ ´∆´1

E rlogW 1s ,with W 1 “
W

N
.

Using a second order Taylor expansion [51] we approximate:

E
“
logW 1

‰
« logErW 1s ´

VarrW 1s

2
`
ErW 1s

˘2 . (5.3)

It is easy to see that W is distributed binomially:

W „ BpN, e´λ∆q ,

where N is the number of trials, and e´λ∆ is the probability of success. Now, we
are able to calculate the expected value of W 1:

ErW 1s “
ErW s

N
“

Ne´λ∆

N
“ e´λ∆ ,

and the variance of W 1:

VarrW 1s “
VarrW s

N2
“

Ne´λ∆p1 ´ e´λ∆q

N2
“

e´λ∆p1 ´ e´λ∆q

N
.
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Now, we return to (5.3):

E
“
logW 1

‰
« log

`
e´λ∆

˘
´

1

N

e´λ∆p1 ´ e´λ∆q

2e´2λ∆

« ´λ∆ ´
1

2N

`
eλ∆ ´ 1

˘
.

And finally:

E

”
λ̂

ı
« λ `

1

2N∆

`
eλ∆ ´ 1

˘
,

E

”
λ̂ ´ λ

ı
«

1

2N∆

`
eλ∆ ´ 1

˘
.

The estimator λ̂ is asymptotically unbiased in the following sense:

lim
NÑ8

E

”
λ̂

ı
“ λ .

Experimental results

In order to illustrate how our estimator works, we perform some experiments in
the following way:

1. We generate a time-sequence of poissonian events with parameter λ.

2. Every ∆-units of time we perform a measurement and we say that the object
changes when at least one event happened since the previous measurement.

The results are presented in Figure 5.6a. Note that λ̂ remains almost constant
when we increase ∆.

5.2.2 sps-process

Let us consider sps-process obtained from our model with an Erdős–Rényi under-
lying graph with n “ 100000 nodes and m “ 200000 links). We use 1 source and
500 destinations; we perform one swap at each round. Our goal here is to check
whether the sps-process is poissonian or not. Suppose that changes in sps-process
occur by some Poisson process. What happens if we try to estimate the rate of
that process?

On Figure 5.6b we plotted the estimated λ as a function of ∆ for several
sps-processes obtained from our model with an Erdős–Rényi underlying graph. It
is clear that the estimator λ̂ is very close to the λ of the underlying process when
∆ « 1, because in this case we observe all changes of the sps . We notice that the
estimator remains almost constant when we increase ∆. We have already seen
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(b) Model with an Erdős–Rényi underly-
ing graph, sps is measured at each round.

Figure 5.6 – Estimated λ as a function of ∆. For Figure (a) we simulated 20
Poisson processes with λ “ 0.065. For Figure (b) We used 20 realisations of the
model, and we measure sps at each round. pErdős–Rényi underlying graphs, n “
100000,m “ 200000, d “ 500, 1 swap per unit of timeq. Each process was observed
using different delays ∆ between measurements. Different lines corresponds to
different realisations of the model (or the process).

a similar behaviour in the case of Poisson process on Figure 5.6a. This gives an
intuition that the sps-process is indeed a Poisson one.

The main property of a Poisson process is its memorylessness. Moreover, the
only memoryless continuous stochastic process is Poissonian. In the rest of this
subsection we consider ∆ “ 3 and we use another method to confirm whether
the sps-process is likely to be memoryless or not1. In order to do this we use a
test for serial independence [90]. One also can test whether the distribution of
delays between changes follows an exponential law. In the case of Poisson process
both these tests should give positive results. The application of the second test is
a bit complicated in the case of the model, because the model is not completely
continuous. We describe here only the first test.

1Similar results can be obtained for any other value of ∆.
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Serial independence

We introduce a transformation of the sequence of object’s states into a binary
string. Consider Figure 5.7: the top level represents a sequence of measurements
(different colours and primes mean different object’s states), and the middle level
is a result of our transformation. We have a 0 when two consecutive observations
are the same, and 1 otherwise.

Observed states: ‚ ‚ ‚1 ‚1 ‚2 ‚3 ¨ ¨ ¨

Binary String: 0 1 0 1 1 ¨ ¨ ¨

xXi, Yiy: xX1 Y1y xX2 Y2y xX3 ¨ ¨ ¨

Figure 5.7 – Two transformations: (i) from the sequence of object’s states to a
binary string; (ii) from the binary string to a sequence of pairs xXi, Yiy.

Next, from our binary string we form a sequence of pairs xXi, Yiy as illustrated
on the bottom level of Fig. 5.7. Suppose that our process is memoryless, this
should imply that xXi, Yiy is a sequence of independent observations of independent
random variables X and Y . In order to test this we use the classical χ2-test of
independence [84, p. 36]. The obtained p-values along with expected and actual
counts of patterns are presented in Tab. 5.1. In both cases p-values are good.

Finally, we conclude that our sps-process raised from the model is not far
from memoryless and can be modelled by a Poisson process in the case when the
underlying graph is random.

Pattern 00 01 10 11

Observed 2438 512 542 127
Expected 2429 521 551 118

χ2 “ 0.88,

p-value “ 0.35

(a) Poisson process

Pattern 00 01 10 11

Observed 2232 513 481 107
Expected 2234 511 479 109

χ2 “ 0.5,

p-value “ 0.82

(b) Model with Erdős–Rényi under-
lying graph

Table 5.1 – Count of patterns and p-values for χ2-test of independence.
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5.2.3 spt-process

Because of load-balancing, two consecutive spt-s can be different even when the
underlying spsdid not change. Our goal here is to estimate the λ of the underlying
sps-process using only a sequence of spt-s. It is no longer sufficient to compare only
two consecutive measurements as we did in Subsection 5.2.2. In Subsection 5.2.2,
we considered each measurement of sps as an object and we applied the estimation
method from 5.2.1. But now, in order to reduce the effect of load-balancing we
will use “cumulative measurements”: our object will be equal to the union of all
observations performed since measurement beginning. These measurements corre-
sponds to the curves of the number of nodes (or links) observed since measurement
beginning (see Chapter 3).

Note that usual and cumulative measurements of sps-process have almost
identical rates of evolution, because sps practically never reverts to the previous
state.

Cumulative spt-sequences are very different. In particular our test of memo-
rylessness fails. All together, this means that changes in cumulative spt-sequence
do not occur due to a Poisson process. The estimator λ̂, being applied, may give
strange results. Indeed, in Figure 5.8a we see that λ̂ is not constant when we
increase ∆. However, we observe two facts:

1. λ̂ is always larger for spt-sequences than for the case of sps-sequences;

2. λ̂ calculated using spt-sequences decreases as ∆ increases, while the λ̂ corre-
sponding to sps-sequences is constant.
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Figure 5.8 – Estimated values of λ calculated using spt- (red) and sps- (black)
sequences.
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These facts suggest that λ̂ calculated for spt-sequence may approach the under-
lying rate of sps-process as the delay between measurements tends to infinity, or
mathematically speaking:

lim
∆Ñ8

ˇ̌
λ̂sps ´ λ̂cspt

ˇ̌
“ 0 ,

where λ̂sps denotes the estimated λ from sps-sequence, and λ̂cspt is equal to estimated
λ for the case of cumulative spt-measurements.

Actually, we can prove this limit, if we suppose there are ǫ ą 0 and M ă 8
such that ǫ ď Wcspt

Wsps
ď M independently of ∆ and N2:

lim
∆Ñ8

ˇ̌
λ̂sps ´ λ̂cspt

ˇ̌
“

lim
∆Ñ8

ˇ̌
´

1

∆
log

Wsps

N
`

1

∆
log

Wcspt

N

ˇ̌
“

lim
∆Ñ8

1

∆

ˇ̌
log

Wcspt

N
´ log

Wsps

N

ˇ̌
“

lim
∆Ñ8

1

∆

ˇ̌
log

Wcspt

Wsps

ˇ̌
“ 0 .

The hypothesis ǫ ď Wcspt

Wsps
ď M simply means that numbers of observed changes in

cumulative spt-sequence and usual sps-sequence differ only by a finite factor. It
seems to be reasonable, because one sps typically contains a finite number of spt-s.

These results can be represented in the form of the following diagram:

λ̂sps λsps

λ̂csps λ̂cspt

NÑ8

∆Ñ8

As Figure 5.8a suggest this diagram is valid when we use Erdős–Rényi graph as
the underlying network structure. Our estimator stops working when ∆ becomes
too large, because we start to observe new links (nodes) at every measurement. In
this situation the number of intervals without changes W is equal to 0, and our
estimator λ̂ is equal to infinity. The bias of our estimator is approximately equal
to 1

2N∆

`
eλ∆ ´ 1

˘
. Thus, when we increase the delay between measurements, we

should increase exponentially the total number of measurements in order to insure
that our estimator gives satisfactory results.

2Recall, by N we denote the number of measurements, and W is equal to the number of
intervals without changes (see also Subsection 5.2.1).
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Consider now the model with underlying power-law graphs (see Fig. 5.8b).
Contrary to the case of Poisson processes (see Fig. 5.6), we see that the estimated
value of λ for sps-sequence is not stable. Thus, we conclude that sps-process is not
poissonian in the case of power-law topology. This can be further confirmed by the
serial independence test discussed above.

In the case of real-world measurements we cannot observe any sps-es, and we
cannot check whether the sps-sequence is memoryless or not. We can however
apply our estimator to the spt-sequence. The result for the woolthorpe dataset is
presented in Figure 5.8c. The estimated value of λ decreases as ∆ grows, but we
cannot say to what value it converges.

5.3 Nonuniform dynamics

In Section 5.1 we have introduced a methodology for testing whether measuremens
are performed fast enough to observe all changes that happen in the underlying
topology. Unfortunately it seems that it is impossible to obtain this in real
measurements. However, we can characterise these unobserved changes. More
specifically, we will answer the question: “Which nodes do we fail to observe when
performing our nonideal measurements?” We will use the following notation:

o – the number of measurements that contains an arbitrary node;

∆ – interval between measurements;

tfirst – the first time when this node was observed;

tlast – the last time when this node was observed.

Here we consider only the nodes as the parts the topology, but without loss of
generality we can speak about links, paths of length 2, stars, etc.

We take an arbitrary node and we denote by δ the lifetime of this node, i.e.
a period in which the node can be observed in principle. During the lifetime
of the node we perform about n “ δ

∆
measurements. In practice, because of

load-balancing, we do not observe this nodet at every measurement.
Using our sequence of measurements, we approximate the lifetime δ and the

probability p of being observed in one measurement for a node:

δ “ tlast ´ tfirst, p “
o

n
. (5.4)

Assume for simplicity that the probability p of being observed in one measurement
is constant over the lifetime of the node. Now we can write the probability that a
particular node was never observed:

Pr
never obs.

“ p1 ´ pqn “ p1 ´ pq
δ
∆ .
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From this we conclude that unobserved parts of topology have a short lifetime or
have a very small chance of being observed.
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Figure 5.9 – Probability p and lifetime δ of every observed node from woolthorpe

dataset. Bottom figures are hexbin [15] versions of figures (a), (b) and (c). The
brightness of each hexagon is proportional to the number of points in the corre-
sponding region: “dark” means “there are many points”, “white” means “there is
almost no points here”.

In order to justify this claim using real measurements, we use the woolthorpe

dataset and proceed as follows:

(a) For each observed node we estimate p and δ using formula (5.4). Figure 5.9a
presents δ vs. p for all nodes from woolthorpe dataset. As we can see there
are a lot of points in some regions. This complicates the visual analysis of the
figure. In order to clarify this, we present a hexbin version [15] of the same
figure.
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(b) Next, we simulate a frequency twice slower by considering only every second
measurement. We estimate p and δ for each node observed by every second
measurement, and we plot the results in Figure 5.9b.

(c) Finally, we “subtract’ (b) from (a), in other words we plot on Figure 5.9c
only the points presented in Fig. 5.9a but not in Fig. 5.9b. This allows us
to see which nodes have not been observed when we perform measurements
twice less frequently. Indeed, on Figure 5.9c we see that all unobserved nodes
are concentrated near the axes. Thus, we conclude that nodes that are not
observed have a short lifetime or have a very small chance of being observed.
Also, at hexbin version of 5.9c we see that there are many nodes with p “ 1,
and these nodes were observed only once.

We studied the impact of the measurement frequency on the ob-
served network dynamics. We showed that it is very difficult to
quantify the actual speed of the internet topology evolution. In-
deed, the observed dynamics depends intrinsically on the mea-
surement frequency. We have introduced a methodology for test-
ing whether our measurements are performed fast enough to
observe all changes that happen in the underlying topology. Un-
fortunately it seems that it is impossible to obtain a complete pic-
ture of the changes in the case of real-world network (even when
we perform measurements with a very high frequency).

When the changes occur according to some Poisson processes,
we can very accurately estimate the mean number of changes per
unit of time. With sufficient number of observations, we can guar-
antee any accuracy that we want, regardless of the delay between
measurements. We showed that the changes in the sequence
of shortest path subgraphs in our model with underlying Erdős–
Rényi graph can be modelled by a Poisson processes. We also
showed that the dynamic power-law graph cannot be properly
modelled by a Poisson process. Future works should continue to
study this case.

However, we showed that changes that are not observed are
not very important in the following sense: network’s parts that
are not observed have a short lifetime or they have a very small
chance of being observed.



Conclusion

In this work we considered periodic measurements of ego-centred views of the
Internet topology and studied their dynamics. We isolated invariant characteristics
of these dynamics, and identified load balancing and evolution of the routing
topology as key factors in the observed properties.

Based on this observation, we proposed a model for the dynamics of the topology
and ego-centred measurements, which integrates both load balancing and routing
changes. Simulations show that this model captures the main characteristics of the
dynamics of the ego-centred views. We performed extensive simulations with the
model. We showed that the underlying structure and the measurement frequency
play a strong role in the observed behaviour.

By exploring in the impact of the parameters on observed dynamics, we exper-
imentally identified several relations between measurements parameters and the
characteristics of dynamics. Using these relations, we are able to approximately
predict some characteristics of dynamics from the parameters without running
expensive simulations. We validated our findings using real-world data. Some
relations are almost exact, but others give only a general idea of how the observed
dynamics depends, for instance, on the type of underlying graph. The model shows
some non-linear and non-monotonic behaviours, that complicate the analysis. We
have shown that the number of routes between two computers—in the model routes
correspond to shortest paths—play a key role in the observed dynamics and we
studied in detail the size of the shortest path subgraph between two nodes in
random graphs.

We showed that it is very difficult to quantify the actual speed of the Internet
topology evolution. In order to study this, we considered the impact of the
measurement frequency on the observed network dynamics. Under the hypothesis
that topology changes occur according to some Poisson processes, we can very
accurately estimate the mean number of changes per unit of time. With sufficient
number of observations, we can guarantee any accuracy that we want, regardless
of the delay between measurements. Unfortunately, we showed that real-world
topology changes are not Poisson, and a precise characterisation of the topology
evolution speed is still missed.
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We also showed that changes that are not observed by our periodical sampling
are also not very important in the following sense: network parts that are not
observed have a short lifetime or they have a very small chance of being observed,
i.e. they are a small part of a large set of routes between two computers.

Future work lies in several directions. We strongly believe that our model can be
used to estimate some properties of the actual IP-level routing topology that are not
directly available through measurements. Applying our knowledge obtained from
the study of the model to real-world data would allow us to estimate the real-world
values corresponding to these parameters, such as for instance the frequency of
link changes in the whole topology. Since our model is based on random graphs
and simple mechanics for load balancing and routing dynamics, it lends itself well
to formal analysis. Thus, we should continue the formal investigations started in
Chapters 4 and 5.

The field of Internet topology modelling is very active, and models far more
realistic than random graphs are available. One should explore the combination of
our routing mechanisms principles with these topology models, to investigate the
role played by the topology structure on the observed dynamics. In particular, our
model does not take into account the long term topology evolution, since it does
not model node birth or death. Coupling the ingredients of our routing dynamics
with, e.g. a growing model for the Internet topology which would reflect its long
term dynamics would surely lead to insightful results. Another direction consists in
developing of more realistic model of topology changes (currently we use random
link swaps) and more realistic model of routing (we use shortest paths as a model
of routes, but in real-world not all routes are shortest paths).

One may adapt contemporary mathematical theory of large networks, especially
property testing3 and continuous graphs4 described in Chapter 1, in order to use
them in practice. We also believe that it is possible to eventually develop a general
theory about shortest path subgraphs, considering these objects as an analogue
(or generalisation) of the notion of a distance. There may be several vertexes at
the same distance but with different shortest path subgraphs between them. The
distance is just a number that measures a shortest path between two elements,
while the shortest path subgraph is a whole structure that lies between them.

Finally, one may study other complex networks using the methods described in
this manuscript. For example, we may consider the dynamics of transmission paths
of the information in a social network. In such a case we also have two factors:

3Generally speaking, a property testing algorithm is a probabilistic algorithm with sublinear
time complexity than tries to decide whether a given graph have some global property using only
a partial information about this graph.

4A graph with more than countable number of nodes. These structures can be regarded as
the limits of sequences of random graphs when their size increases.
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the fact that there are several paths that a rumour can use to spread is somewhat
similar to load-balancing, and the topology also evolves. Therefore our work could
be applied to the characterisation of social network dynamics from information of
rumour spreading only.



Appendix A

Résumé

Introduction

L’Internet est une structure complexe qui connecte environ trois milliards de
personnes1. Aucune carte officielle n’étant disponible, les chercheurs doivent mener
des campagnes de mesure coûteuses, et gérer le fait que les données obtenues
peuvent être biaisées [40, 65]. L’étude de la dynamique de cette topologie est donc
aussi difficile, si ce n’est pas plus difficile, que l’étude de la topologie statique.

De nombreuses études se sont déjà intéressés par la topologie et ont mis l’accent
sur la question de savoir si la distribution des degrés des nœuds suit une loi de
puissance (voir par exemple [24, 27, 36]). Cependant, peu d’études ont étudie
comment cette topologie évolue avec le temps. En effet, il est bien connu que
l’Internet est également un organisme vivant avec de nombreux nœuds et liens
ajoutés et supprimés chaque jour. La caractérisation de la dynamique de l’Internet
peut fournir des informations intéressantes qui peuvent aider à la conception des
futurs protocoles de routage ou à la conception de nouveaux types d’applications
qui font usage de l’évolution de la topologie.

Au lieu d’essayer d’obtenir une vue complète de la topologie de l’Internet
dynamique, il est possible d’utiliser une approche orthogonale pour obtenir une
idée sur la dynamique de la topologie de routage observés au niveau IP. Cette
approche a été introduite dans [72]. Nous la suivons dans ce manuscrit et nous
étudions les vues égo-centrées de cette topologie. Étant donné un moniteur et un
ensemble fixe de destinations, une telle vue est obtenue en mesurant les routes
à partir d’un moniteur vers un ensemble de destinations. Ceci peut être effectué
rapidement et avec une faible charge du réseau avec l’outil tracetree [72]. En
répétant cette mesure périodiquement nous pouvons donc étudier la dynamique de

12,802,478,934 personnes sont connectés conformément aux “Internet World Stats” http:

//www.internetworldstats.com/stats.htm, 31 décembre, 2013.
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cette vue égo-centrée. Figure A.1 présente cinq vues consécutives.
Des travaux précédents ont montré que les vues égo-centrées présentent une forte

dynamique, et en particulier que l’ensemble des nœuds observés évolue beaucoup
plus rapidement que ce qui était prévu [64]. Notre objectif dans cette thèse est
d’aller plus loin dans cette direction et comprendre efficacement la dynamique de
l’Internet au niveau IP. Dans ce but, nous utilisons une combinaison d’analyse et de
simulation. Nous utilisons des données réelles pour extraire les propriétés clés pour
caractériser cette dynamique. Sur la base de ces observations, nous avons ensuite
proposè un modèle pour les mécanismes sous-jacents de la topologie de l’Internet
dynamique et nous étudions à la fois ce modèle et les données réelles. Notre
principal objectif est de comprendre l’impact des paramètres du modèle (et l’impact
des paramètres de mesures réelles) sur les dynamiques observées. Nous allons
rechercher les paramètres les plus importants et les lois générales qui gouvernent
ces dynamiques.

Le manuscrit est organisé comme suit. Dans le Chapitre 1 nous présentons un
bref contexte historique et l’état actuel de la science des réseaux. Ensuite, dans
le Chapitre 2 nous identifions les mécanismes sous-jacents de la dynamique de la
topologie de l’Internet et nous proposons un modèle pour la dynamique de cette
topologie. Dans le Chapitre 3 nous étudions en détail comment les caractéristiques
observées de la dynamique changent lorsque on fait varier les paramètres de notre
modèle, et nous le comparons à ce qui se passe quand on fait varier les paramètres
du processus de mesure réel. Nous trouvons, notamment, que le nombre de routes
entre deux ordinateurs, qui correspond au plus courts chemins dans le modèle, joue
un rôle important dans la dynamique. Nous étudions donc la taille du sous-graphe
des plus courts chemins entre deux nœuds au Chapitre 4. Enfin, dans le Chapitre 5
nous étudions comment la fréquence des mesures affecte la dynamique observées
et comment nous pouvons inférer la dynamique réelle en utilisant seulement des
mesures partielles. Dans la Conclusion nous discutons nos principales réalisations
et les travaux futurs possibles.

2Voir la vidéo originale ici : http://www.complexnetworks.fr/dynamics-de-la-internet-
topologie-autour-me/

http://www.complexnetworks.fr/dynamics-de-la-internet-topologie-autour-me/
http://www.complexnetworks.fr/dynamics-de-la-internet-topologie-autour-me/
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Figure A.1 – Ego-voyage. Une représentation visuelle de la dynamique de la
topologie de l’Internet. En utilisant les mesures égo-centrée [72], on obtient une
séquence des captures instantanées de la topologie. Le temps s’écoule de gauche à
droite. Chaque petite figure correspond à une mesure. Tous les liens observés au
moins une fois sont présentés : en noir nous affichons les nœuds et les liens visibles
dans la mesure actuelle, et en gris nous affichons les nœuds et les liens observés
dans autres mesures. Les changements les plus visibles sont dans la partie basse
de la figure. La vidéo originale, appelée “ Dynamique de la topologie de l’Internet
autour de moi ”, a été créé par Assia Hamzaoui et Matthieu Latapy.2

Petite note historique et l’état de l’art

La plupart des réseaux du monde réel sont des structures qui évolue continuellement.
Ces structures ne peuvent pas être entièrement observées, en particulier en raison
de leur taille et de leur dynamique. Les chercheurs de différentes disciplines ont
étudié des réseaux réels parfois ensemble, parfois indépendamment, pendant une
longue période. Cette étude est devenue systématique dans les dernières décennies.

Dans ce chapitre, nous présentons un bref le contexte historique et l’état actuel
de la science des réseaux; les résultats théoriques et empiriques sont considérées.
Nous rappelons et discutons des notions et des formulations mathématiques des
réseaux et des structures connexes. Nous avons examiné les aspects pratiques
et théoriques de mesures du réseau. Nous avons considérer les définitions, les
exemples et les méthodes de mesure dans le cas des réseaux dynamiques. Enfin,
nous décrivons plusieurs modèles importants de réseaux statiques et de réseaux

http://www.complexnetworks.fr/dynamics-de-la-internet-topologie-autour-me/
http://www.complexnetworks.fr/dynamics-de-la-internet-topologie-autour-me/
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dynamiques.

Modèle

Dans ce chapitre, nous révisons les études précédentes de la dynamique de la
topologie de l’Internet qui consistent à des mesures périodiques des arbres de
routage à partir d’un moniteur vers un ensemble fixe de destinations. Nous
identifions des propriétés invariantes de cette dynamique. Sur la base de ces
observations, nous proposons ensuite un modèle pour les mécanismes sous-jacents
de la dynamique de la topologie. Notre modèle reste simple car il ne tient compte
que des phénomènes d’équilibrage de charge et des changements de routage. Par
des simulations, nous montrons que, malgré sa simplicité, ce modèle capture
efficacement les comportements observés, il fournit un informations clée sur les
mécanismes la dynamique de routage de l’Internet.

Caractérisation de la dynamique

Les simulations présentées indiquent que notre modèle de la topologie de l’Internet
et de sa dynamique réussit à reproduire les caractéristiques principales de la
dynamique des vues égo-centrées.

Dans ce chapitre, nous allons étudier comment les caractéristiques observées
changent lorsque l’on fait varier les paramètres de notre modèle. Notre objectif
ici est de comprendre l’influence des paramètres sur les observations. Idéalement,
nous devrions être capables de prédire le comportement du modèle à partir des
paramètres sans exécuter des simulations coûteuses.

Nous examinons également le cas de mesures réelles, en gardant à l’esprit que,
dans ce cas, nous pouvons contrôler seulement quelques paramètres comme la
nombre de destinations et la fréquence des mesures.

En explorant l’impact des paramètres sur les dynamiques observées, nous
expérimentalement identifié plusieurs relations. Certains d’entre eux sont presque
exacte, mais d’autres ne donnent qu’une idée de la façon dont la dynamique
observées va changer, si nous considérons, par exemple, un type de graphe sous-
jacent différent. Nous avons validé nos résultats à partir des données réelles.
Maintenant, nous sommes capables de prédire certaines caractéristiques du modèle
à partir des paramètres sans exécuter des simulations coûteuses.

Cependant, avec les relations correctement identifiés, le modèle montre quelques
comportements non-linéaires et non-monotones, qui compliquent l’analyse. Une
recherche de l’explication de ces phénomènes donne une direction pour les travaux
futurs. Par exemple, dans le chapitre suivant, nous allons montrer que la taille
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typique de sous-graphe des plus courts chemins, qui jouent un rôle clé dans la
dynamique observée, augmente de manière non-monotone lorsque la densité de
graphe augmente.

Taille du graphe des plus courts chemins

Dans le chapitre précédent, nous avons vu que la taille de sous-graphe des plus
courts chemins entre la source et les destinations joue un rôle important dans la
dynamique observée de réseau.

Dans ce chapitre, nous étudions en détail la taille de sous-graphe des plus courts
chemins dans le cas où il y a une seule destination. Nous considérons un graphe
aléatoire Gpn, pq, et nous notons par SPS pu, vq le sous-graphe de tous les plus
courts chemins entre deux nœuds u et v. Nous montrons que la taille de SPS pu, vq
suit une loi de probabilité avec plusieurs valeurs maximales locales. En particulier,
dans certains cas, la taille moyenne est une combinaison de ces maxima et non
une valeur qui peut être atteint en pratique. Aussi, nous approximons le nombre
moyen de nœuds dans SPS pu, vq, lorsque la distance entre u et v est connue (nous
donnons la formule exacte, lorsque la distance est égale à 2).

Dans ce chapitre, nous avons fait le premier pas vers une caractérisation
rigoureuse de la taille de sous-graphe des plus courts chemins.

En particulier, nous avons étudié la taille du sous-graphe des plus courts chemins
entre deux noeuds. Nous notons par S le nombre de nœuds dans ce sous-graphe.
Notre étude consiste en une caractérisation de S pour les graphes aléatoires denses
et pour les graphes aléatoires creux avec le degré moyen illimité.

La fonction de probabilité de S a plusieurs maxima locaux (pics). Chaque
pic correspond à une distance possible entre u et v. Entre ces pics, nous avons
vallées de tailles “improbables” de SPS . En d’autres termes la distribution de S

est multimodal.
Pour les graphes aléatoires denses nous avons des résultats asymptotiquement

exactes, et pour les graphes aléatoires creux avec le degré moyen non-borné nous
avons une représentation approximative du nombre moyen de nœuds dans SPS pu, vq.

Meilleures approximations (voire des distributions exactes) font partie d’un
travail futur. Nous pouvons également considérer des graphes aléatoires avec le degré
moyen constant, en utilisant la méthodologie décrite dans [62]. Une autre direction
consiste à étudier les réseaux réels ou d’autres modèles de graphes aléatoires (par
exemple, les graphes power-law). Dans ce chapitre, nous avons considéré que
le sous-graphe des plus courts chemins entre deux nœuds (un moniteur et une
destination). Le cas de plusieurs destinations devrait également être envisagée dans
le futur.
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En plus, la notion de SPS pu, vq peut être considéré comme une mesure de
similarité entre les nœuds u et v. Dans le domaine des méthodes de détection
de la communauté, il y a beaucoup des notions liées, par exemple : connection
subgraph [43] et proximity graphs [53].

Ainsi, il peut être très utile de développer une théorie générale relatives aux
objets SPS , un analogue de la théorie mathématique des espaces métriques, parce
que la notion de SPSgénéralise, dans certain sens, la notion de distance.

Dynamique réelle et observée

Dans ce chapitre, nous étudions comment la fréquence des mesures affecte la
dynamique observée. Nous sommes intéressés par les processus sous-jacents qui
causent les dynamiques observées. Nous introduisons une méthode non-classique
de l’estimation des paramètres de un processus stochastique et nous appliquons
cette méthode pour les mesures modélisées et réelles afin de caractériser le taux
de l’évolution de la topologie. Nous montrons aussi que la dynamique de réseau
est une dynamique non-uniforme: les parties différentes du réseau peuvent avoir
différentes vitesses d’évolution.

Dans ce chapitre, nous avons étudié l’impact de la fréquence de mesure sur
la dynamique des réseaux observés. Nous avons montré qu’il est très difficile de
quantifier la vitesse réelle de l’évolution de la topologie de l’Internet. En effet,
la dynamique observée dépend intrinsèquement de la fréquence de mesure. Nous
avons mis en place une méthodologie pour tester si nos mesures sont effectuées
assez rapidement pour observer tous les changements qui se produisent dans la
topologie sous-jacente. Malheureusement, il semble qu’il est impossible d’obtenir
une image complète de l’évolution de l’Internet (même lorsque nous effectuons des
mesures avec une très haute fréquence).

Quand les modifications se produisent selon un processus de Poisson, on peut
estimer le nombre moyen de changements par unité de temps. Avec nombre suffisant
d’observations, nous pouvons garantir la précision voulue, quel que soit le délai
entre les mesures. Nous avons montré que les changements dans la séquence de
sous-graphes des plus courts chemins dans notre modèle avec un graphe sous-
jacent d’Erdös-Rényi peut être modélisé par un processus de Poisson. Nous avons
également montré que la dynamique d’un graphe power-law ne peut pas être
correctement modélisé par un processus de Poisson. Les travaux futurs devraient
continuer à étudier ce cas.

Cependant, nous avons montré que des changements qui ne sont pas observées
ne sont pas très important dans le sens suivant: les parties de réseau qui ne sont
pas observées ont une courte durée de vie ou ils ont très peu de chances d’être
observé.
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Conclusion

Dans ce travail, nous avons examiné les mesures périodiques des vues égo-centrées
de la topologie de l’Internet et nous avons étudié leur dynamique. Nous avons isolé
les caractéristiques invariantes de cette dynamique et identifié que l’équilibrage
de charge et l’évolution de la topologie de routage sont les facteurs clés de la
dynamique observée.

Sur la base de cette constatation, nous avons proposé un modèle de la dynamique
de la topologie et des mesures égo-centrées, qui intègre à la fois l’équilibrage de
charge et des changements de routage. Les simulations montrent que ce modèle
capture les caractéristiques principales de la dynamique des vues égo-centrées. Nous
avons effectué des simulations exhaustives avec le modèle. Nous avons montré que
la structure sous-jacente et la fréquence de mesure jouent un rôle important dans
le comportement observé.

En explorant l’impact des paramètres sur la dynamique observée, nous avons
identifié expérimentalement plusieurs relations entre les paramètres de mesure et les
caractéristiques de la dynamique. En utilisant ces relations, nous pouvons prévoir
approximativement certaines caractéristiques de la dynamique sans exécuter des
simulations coûteuses. Nous avons validé nos conclusions à partir des données
réelles. Certaines relations sont presque exactes, mais d’autres ne donnent qu’une
idée générale de la dépendance entre la dynamique observée et, par exemple, le type
du graphe sous-jacent. Le modèle présente certains comportements non-linéaires et
non-monotones, qui compliquent l’analyse. Nous avons montré que le nombre de
routes entre deux ordinateurs (dans le modèle les routes correspondent aux plus
courts chemins) joue un rôle clé dans la dynamique observée et nous avons étudié
en détail la taille du sous-graphe des plus courts chemins entre deux nœuds dans
les graphes aléatoires.

Nous avons montré qu’il est très difficile de quantifier la vitesse réelle de
l’évolution de la topologie de l’Internet. Pour étudier cela, nous avons pris en
considération l’impact de la fréquence des mesures sur la dynamique observée du
réseau. Sous l’hypothèse que les changements de topologie se produisent selon un
processus de Poisson, nous pouvons estimer très précisément le nombre moyen de
changements par unité de temps. Avec un nombre suffisant d’observations, nous
pouvons garantir la précision voulue quel que soit le délai entre les mesures. Nous
avons montré que les changements de topologie du réseau réel ne sont pas des
changements de Poisson, et la caractérisation précise de la vitesse d’évolution de la
topologie fait toujours partie des travaux futurs.

Nous avons montré que les changements, qui ne sont pas observés par notre
mesures périodiques, sont également les changements peu importants dans le sens
suivant: les parties du réseau qui ne sont pas observées ont une courte durée de la
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vie ou ils ont une très petite chance d’être observé.

Ces travaux ouvrent plusieurs directions de recherche. Nous croyons que notre
modèle peut être utilisé pour estimer certaines propriétés de la topologie dynamique
de routage réelle au niveau IP qui ne sont pas directement accessibles par des
mesures. L’application de nos connaissances, acquises à partir de l’étude du modèle,
aux données réelles nous permettrai d’estimer les valeurs réelles qui correspondent
à ces propriétés de la topologie dynamique, comme la fréquence de changements de
liens dans la topologie entière. Notre modèle est basé sur des graphes aléatoires
et sur une mécanique simple de l’équilibrage de charge et du routage dynamique,
donc il se prête bien à l’analyse formelle.

Le domaine de la modélisation de la topologie de l’Internet est très actif, et
des modèles beaucoup plus réalistes que les graphes aléatoires sont disponibles. Il
faut explorer la combinaison de nos principes de mécanisme de routage avec ces
modèles de topologie, et il faut également étudier le rôle joué par la topologie sur
la dynamique observée. En particulier, notre modèle ne prendr pas en compte
l’évolution de la topologie à long terme, puisque il n’y a pas de naissance (ou de
mort) de noeuds dans notre modèle.

En mélangeant des ingrédients de notre routage dynamique avec, par exemple,
un modèle de croissante de la topologie de l’Internet, qui refléterait la dynamique
à long terme, nous pourrions sûrement arriver à des résultats intéressants. Une
autre direction consiste à développer un modèle plus réaliste pur le changements
de topologie (actuellement nous utilisons les échanges aléatoires des liens) et un
modèle plus réaliste de routage (actuellement nous utilisons les chemins les plus
courts en tant que modèle de routes, mais dans le monde réel les routes ne sont
pas toujours des plus courts chemins).

On peut adapter la théorie mathématique contemporaine des grands réseaux,
en particulier le test de propriété3 et les graphes continus4, afin de les utiliser en
pratique. Nous croyons également qu’il est possible de développer une théorie
générale sur les sous-graphes des plus courts chemins, parce que nous pouvons
considérer ces objets comme un analogue (ou généralisation) de la notion de
distance. Il peut y avoir plusieurs nœuds à une même distance mais avec différents
sous-graphes des plus courts chemins entre eux. La distance est juste un nombre
qui mesure un plus court chemin entre deux éléments, tandis que le sous-graphe
des plus courts chemins capture toute la structure qui se trouve entre eux.

3 Un test de propriété est un algorithme probabiliste avec une complexité sous-linéaire qui
tente de décider si un graphe donné a une propriété globale en utilisant seulement une information
partielle sur ce graphe.

4Un graphe avec un nombre de nœuds plus que dénombrable. Ces structures peuvent être
considérées comme les limites de suites de graphes aléatoires quand leurs tailles tendent vers
l’infini.
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Enfin, on peut étudier d’autres réseaux complexes en utilisant les méthodes
décrites dans ce manuscrit. Par exemple, nous pouvons considérer la dynamique
des chemins de transmission de l’information dans un réseau social. Dans ce cas,
nous avons aussi deux facteurs: le fait qu’il existe des plusieurs chemins qu’une
rumeur peut utiliser pour se propager (l’équilibrage de charge), et le fait que la
topologie évolue également. Par conséquent, notre travail pourrait être appliqué à
la caractérisation de la dynamique de réseau social à partir des informations de la
propagation de rumeurs.
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