2014 B R AEFEEFAL T #ERE: 10269

245 52101500002

PR AR

A |
e LI 1T S AR

e

LA AT
W5 T
LRI Wat
TRE A

SEE

fa

S

I\ B G HY

\

BB

AR INTAEEES %N

Bfr TR

PR¥E S

JeHr R

FIEER B 55T, 9T3WIHR M & T

FRINZ, Eric Madelaine

Université
Nice

| S()pl;ia Antipolis
—F g+ A

DISSERTATION FOR School Code: 10269
DOCTOR DEGREE, 2014 Student Number: 52101500002

EAST CHINA NORMAL UNIVERSITY
&
UNIVERSITY DE NICE
SOPHIA ANTIPOLIS

A Timed Communication Behaviour Model

for Distributed Systems

Department: Software Engineering Institute
Major: Computer Application Technology
Subject: Software Theories

Author: Yanwen Chen

Project: Joint Project, 973 CPS Project
Tutor: Professor Yixiang Chen, Eric Madelaine

2014. 10

ERIMDEXRFFMIRIRRMEERA
HESY: AARLHROET (55 RGTHIN LI (17
RY) REEHRITOAEIGRAL /M (FaE) AR, £ IFHEs
FRFRIBIS TIERIBBISAR . RCH ERENIS RN A, &
IR B & EA AT SR R RBE T B RR. XA CHBES il
R AT, 8B T IR

VEE T4 H 3 F H

e R TSR S S S SO (A 15 A P

ARG EHLEET NRE) RANFERIRINE R B0k
FL3ABAE SN TE S T e s AR L /T £ (GBak) A0, A3 Kbt
FRMRIFLEIRITIE R TR « AR LRI 8K 22 AR AR 5 AL RE £/ B AT
FEFH AR ST, FRRFEETR] AR EREBE, FEHM
73R AL ALV SCRIENRIBRAT L TR SRV SO AR TR TS R 22] 5
Ve BRI AR, G, RS2 Oe S UnAe L, s
WO BAEIRETIOR, FAA0E U ARG AR, R H]
RN, YEE s HoAth 7y A A A AR S

AR T (B2

() LELRTRIMIE K2 AE KR T 8 B E B PN R ml “OR e 22 AL

w3 F £ A HWE, WEEEH LR
() 2NRE, JER AR
SN - ANEH:
£ A H

VR 2L RN R BRI RITE KA NP E R A 2 A BERE LR R 2 Ed
A2 AR S0 (REFFERALR) (AR R % FETAE B A AR S RE FLR) T E
), RELRETEEPAAOR AN ATF AT s R NEE R, BOANATT
ALRTL, BE LR

#iE

B

%

fr
1)\

O
N\

i

LS

WEE MR BRI & F, WK /Y13 (= B Rl & RGN H RTBT 500
R E . — PR RE 7 EEEEAL (ITS). BEEEREER
WL, CACNIERMBT I ORI —. R RESCE ARG, W
FIAS ARG HOEE (VD) , HAEAL E AT LME T EW 2 2
M2 2EE, FHANEHAMERZ B LUEE (V2V), WM& e
Rz att, BRI EE SRR A

ZARGURE R SRR IR W EE A o0 2 RS0 (S R A2
FERFER. O HAIR IR — P B BiE T o0 A =0 R SEE 15 RO TR L R 2%
BEHAY (Timed-pNets) - IR EFE T ZIEF [E AL BI1E (Time Action)f]
WA (Logical Clock) ~ B[] ALY (Timed Specification)~ B [A]Z%1L
21T # 255 (timed Parameterized Label Transition System,timed-pLTS)%&
FARN . Timed-pNets2 W 2 3 G, Hi 777 5 HTimed-
pLTSFA, FEM T RETMEMSR, HT D5 M Z RS-

IR FEZ DTN T -

o BT — oz B RPN A E A IR 1A LAY Timed-pNets -
EG | NI RSV ETE B VBB S P LAt -, 32 (B {LBIp LTS &
5t (Timed-pLTS). Timed-pLTSH IFRZ A B A8, A ThlA
RGN —TIRE TR 7 — 1 RE 0B (EE %I A Timed-
pLTS, BEHGEREZMA LXMW IEZEA B, FHEMRRDE
f§. ETTimed-pLTS, & T Timed-pNetst | & /[R5 [
= A THRART S Z BB FPEE. B9 Timed-pNetsH) A 2 1%
(Compatibility) FIZERME (Delay) -

o PR TIFEHIE (Timed Specication) HIMEER. W RIFMTLE L —A
WA R LR R, BRI E R R MBS EEE KR
SR T R o A a I O DURCES AT, B30 1 BB
PLIERAME L R A VERAER 5 B b 178 S

o Wit T —HAEEH T Timed-pLTSFI Timed-pNets¥ AL N B 8] #17E
HIRH T —EF AR E BRI BB A T . X

i

MR LR G R THEE RS R DUEigitit 1 s, REdAE
F¥ Timed-pNets 11 /X F 2 Z A LRI AR RSE, Wl LUt —
S F)Timed-pNets 248, I8N FH BRI Timed-pLTSSL 1 1L 1% &
ZHRENHRALH L2 T TS ERS-

o LIF AL AL P EWAH BB A F . LI 40T & SZTimed-
pNetsti !, DU E@EERZ 2 E M. A TimeSquare T.
B 5 X Ee BT Ak, 45 SRR BIS SUE L Btimed-pNets B 18 A
PRI R IETE -

KR ARG, YEK, ZEEE, BEHTE, ERLTE,
BRessERG (ITS), [FP#E, FPEfE

11

Abstract

With the development of the Internet, CPSs (Cyber Physical Systems)
become a hot topic. A typical example are I'TSs (Intelligent Transportation
Systems), where communication is a critical part. In this kind of systems,
vehicles can communicate with the infrastructure (V2I) to inform their ex-
istence for safety checking; and vehicles can also communicate between each
other to improve the efficiency of traffic and avoid accidents.

The real-time communication in the system is a critical aspect. This
thesis presents a novel timed model called timed-pNets for modeling and
verifying the timed communication behaviours for distributed systems. Since
the nodes in distributed systems have no common physical clock, this brings
the challenge of correctly specifying the system time constraints. Timed-
pNets build the time model on top of logical clocks such that the time of this
model does not rely on a common physical clock.

The main contribution of the thesis are as follows:

e A formalism named Timed-pNets that is based on tree style hierarchi-
cal structures. The leaves of the structures are represented by timed
Parametrized Label Transition Systems (timed-pLTSs). Non-leaf nodes
(called timed-pNets nodes) are synchronisation devices that synchro-
nize the behaviours of subnets (these subnets can be leaves or non-leaf
nodes). Moreover, we discuss the compatibility and delay properties of
the model.

e Timed specifications, which are at the core of this model and are de-
signed to specify the system behaviours including synchronous and
asynchronous communications. They consist of sets of logical clocks
and some relations on these clocks. Moreover, we proposed the concept
of clock partition and clock union to simplify the timed specifications,

and investigate the clock relations on clock partitions.
e Algorithms design for the translation of timed-pLTS and timed-pNets

11

to timed specifications. Thanks to the timed specification, timed-pNets
are able to model systems in a flexible way: from bottom to up, starting
with detailed timed-pLTSs and assembling them in a compatible way;
or from top to down, constructing timed specifications for abstract
timed-pNets, using their holes timed specifications as hypotheses in an
assume-guarantee style, and providing later some specific (compatible)

implementations for these holes in various contexts.

e A discussion on time bound analysis, safety and latency properties
based on the analysis of the relations conflicts between system logical
clocks. We take a simple case of car insertion from the area of Intelligent
Transportation Systems (ITS) as an example to demonstrate the use
of the timed-pNets model. In the end, the TimeSquare tool is used to

perform a logical simulation and check the validity of our model.

Key words: Distributed Systems, CPS (Cyber Physical Systems), Log-
ical Clock, Timed Specification, Formal Methods, I'TS, Synchronous Com-

munication, Asynchronous Communication

v

Résumé

Cette these présente un nouveau modele temporisé appelé timed-pNets
pour la modélisation et la vérification des comportements des systemes dis-
tribués hétérogenes. Un défi essentiel de ces systemes est de spécifier cor-
rectement les contraintes de temps du systeme, dans la mesure ou les nceuds
dans les systemes distribués n’ont pas ’horloge physique commune. Timed-
pNets utilise un modele de temps basé sur des horloges logiques, de maniere
a ce que les mesures de temps dans ce modele ne reposent pas sur une horloge
physique commune. Les timed-pNets ont une structure hiérarchique en arbre:
les feuilles de cet arbre sont des Systemes de Transition Etiquetés paramétrés
temporisés (timed-LTSs), et les autres noeuds (appelés eux-aussi, par abus,
Timed-pNets) sont des dispositifs de synchronisation qui permettent de com-
poser les comportements de leurs sous-réseaux (eux-mémes des timed-pNets).
A chaque noeud d’un timed-pNet peut-étre associée une Spécification tempo-
risée, qui consiste en un ensemble d’horloges logiques et de relations sur ces

horloges.

Les spécifications temporisées, en tant que le noyau de ce modele, sont
utilisées pour spécifier les comportements du systeme, y compris les commu-
nications synchrones et asynchrones. Grace a la spécification temporisée, les
timed-pNets peuvent modéliser des systemes de maniere flexible: soit de bas
en haut, en commencant par des timed-pLT'Ss détaillés et en les composant
de maniere compatible; ou de haut en bas, construisant les spécifications tem-
porisées pour des timed-pNets abstraits, en utilisant les spécifications tem-
porisées de leurs arguments (trous) comme des hypotheses du style assume-
garantee, et en fournissant plus tard des implémentations spécifiques (com-
patibles) pour ces trous dans divers contextes. Notre méthodologie per-
met un cycle de conception, qui part d’une spécification temporisée ab-
straite, et passe par des étapes de décisions d’architecture et de conception
dépendant de I'infrastructure visée, correspondant a un raffinement des hor-

loges logiques, contraint par des décisions d’ordonnance et de placements.

La version finale (entierement raffinée) sera soumise a des vérifications de
propriétés et de contraintes temporelles. Les analyses des limites de temps
(relatives aux différentes horloges ou a une horloge de référence), de la streté
et de la latence sont discutées par I'étude des conflits de relations entre
les horloges logiques du systeme. Nous utilisons un scénario d’insertion de
voitures dans les systemes de transport intelligents (ITS) comme un exemple
pour illustrer 'utilisation de notre modele timed-pNets. Finalement, 1'outil
TimeSquare est utilisé pour effectuer une simulation logique et vérifier la

validité de notre modele.

vi

Acknowledgement

The work described in this thesis was not and could not have been
performed in isolation. It involved the help and support of many, to whom
I am largely indebted. There are many people I would like to thank who
directly or indirectly helped me achieve the milestone of completing this
PhD thesis.

Foremost, I thank my PhD advisers Eric Madelaine and Yixiang Chen,
for giving all possible support so that I make a successful research work.
Thanks you for your encouragement and guidance throughout my research,
for giving me opportunity to come to INRIA, Sophia Antipolis and to perform
this work together with an enthusiastic team of researchers. Thanks Eric, for
all useful discussions and wonderful words of wisdom. He has taught me most
of what I know about formal method and supported me during a long period
of research. It has been a wonderful time working with you and I couldn’t
have asked for more from you as my PhD adviser. This thesis would not be

possible without you two!

I would like to thank all teachers, researchers, professors in SCALE team,
INRIA and Fost team, ECNU for valuable discussions during round table,
EPW and also many other occasions. Interacting with you all has always been
a great learning experience. Special thanks to Ludovic HENRIO, Fabrice
Huet for valuable suggestions. I also would like extend special thanks to
Frangoise BAUDE for her kindly support during my difficult period. Many
thanks to Robert de Simone, Frédéric MALLET and Julien Deantoni for
you suggestions on logical time, CCSL and TimeSquare. And thanks all

vil

professors and colleges of FOST team in ECNU, especially thanks to Min
ZHANG, Tianmin BU, Jie ZHOU, Yanfang MA, etc. for all your supports.
I thank all members of administrative staff and research coordinators for
helping in many practical things. Special thanks to Christel KOZINSKI,
Changbo WANG, Linjuan YE, Linying WU, etc.for their kindly help. I
would like to thank all former and present members of my research group
SCALE for inspiring research discussions and presentations. Thanks Sophie
Song, for always giving an extra effort in making sure I continue my work
without losing focus and passion during critical moments. I also would like
to give my thanks to my office mate Alexandra Bardiau, even though you
went to another world, your kindness will be always in my heart.

Finally, I would like to thank my family for always being there as an
anchor of support and strength through all the trials and tribulations. I would
like to thank my parents for all of the support, love, and encouragement they
have given me. Their direction and advice has been invaluable, and without
them, I could not have achieved nearly so much. I also thank my parents-in-
law and sister-in-law for all the support they gave me.

Finally, T would like to thank my husband, Quirino Zagarese, for ev-
erything he has given to me. There is no other person I am indebted to on
so many levels. Academically, his excellence has profoundly influenced me.
I have learned uncountable lessons from his rigorous and careful pursuit of
“the truth”. He has been my sounding board, my expert reader, and my
example to follow. For all of these, I thank him. Personally, his love and
support has kept me alive and happy for the past three years. I am very
lucky to have found such a wonderful person.

My deepest love to you all!

viil

Table of Contents

Acknowledgement

1 Introduction

1.1
1.2
1.3
1.4

1.5

1.6

Motivation and Challenges
Research Approach
Research Contributions
Technical Background
1.4.1 Logical Clocks
1.42 CCSL
1.4.3 TimeSquare Tool
1.4.4 pNetsModel
Use Case o o e
1.5.1 Vehicle-to-Infrustructure Communications
1.5.2 Vehicle-to-Vehicle Communications
The Outline of The Thesis

2 Related Work

2.1
2.2
2.3
24
2.5
2.6
2.7

Discrete-event Models
Synchronous and Asynchronous Communication Models
BIP Framework

Timed-automata

vil

10
11
14
14
15
17
18
22
22
23
24

pNets With Timed-Actions and Logical Constraints

3.1 Model Building
3.1.1 Timed Actions
3.1.2 Logical Constraints
3.1.3 Introduce Logical Clocks into pNets Model

3.2 Simulation
3.2.1 Formalisation of the Architecture
322 Result

3.3 Conclusion

Timed-pNets Model
4.1 Context and problematic
4.2 Timed Specification
4.2.1 Syntax and Semantic of Clock Relations
4.2.2 Properties of the logical clock relations
4.3 Timed-pLTS
4.4 Timed-pNetso
4.5 Generating Timed Specification
4.5.1 Generating TS of timed-pLTS
4.5.2 Auxiliary functions: Pre/Postsets.
4.5.3 Relations and assignment rules
4.5.4 The Method for Generating Timed Specification
4.5.5 Generating TS of timed-pNets
4.6 Compatibility
4.7 Assembling multi-layer timed-pNets system
4.8 Simulation
4.8.1 Simulation 1:o
4.8.2 Simulation 2: o oo

4.9 Conclusion,

47
48
48
48
49
o1
52
o4
95

5

6

7

Delay in Timed-pNets 101

5.1 Context and problematic 102
5.2 Virtual TimeStamps 104
5.3 Time Constraint Conflicts 106
5.4 Calculate Delays and Delay Bounds 106
5.4.1 Causal Clocks and Causality Paths 107
5.4.2 Computing Delays of clocks 108
5.4.3 Computing Delay Bounds of Clocks 109
5.5 Simulation 114
5.5.1 Encode Properties into TimeSquare 115
5.5.2 Property Checking 116
5.5.3 Discussion 119
5.6 Conclusion 120
Extension of Timed-pNets 121
6.1 Context and problematic 122
6.2 Clock Partition 123
6.2.1 Semantics of Precedence Relations on Partition Clocks 125
6.2.2 Semantics of Coincidence Relations on Partition Clocks 127
6.2.3 Partition Clock Property 131
6.3 Clock Union 134
6.4 Examples and Simulations 136
6.4.1 The Timed Specification of “Control” Component . . . 137
6.4.2 Timed Specification of “Initial” Component 138
6.4.3 Simulate the “Control” component 139
6.4.4 Simulate the “Initial” component 140
6.5 Conclusion 141
Full Use Case 143
71 UseCase. e 144
7.1.1 Background of ITS 144
7.1.2 Car Inserting Use Case Scenario 145

3

7.1.3 Propertieso 146

7.2 Build Timed-pNets Model 147
7.2.1 System Structure 147

7.2.2 Fill Holes 149

7.3 Simulation 149
7.3.1 Simulate the leaf level 152

7.3.2 Simulate the middle level 153

7.3.3 Simulate the top level 158

7.4 Other Simulations 161
7.4.1 Car0 communicates with m cars (m >2) 161

7.5 Conclusion 163

8 Conclusion 165
8.1 Summary and Conclusions 166
8.2 Future Work 167

9 i I3XEHR (F3R) 171
References 176
List of publications 189
list of figures 191
list of tables 193

Chapter 1 Introduction

Introduction

1.1 Motivation and Challenges

The world is moving rapidly towards ubiquitous connectivity of smart
devices that are interconnected and collaborating, which provides people
with a wide range of innovative applications and services. It will further
change how and where people associate, gather and share information, and
consume media, which may be unimaginable today. The new world creates an
unprecedented opportunity to connect not just devices, but peoples, data and

processes as well, making networked connections more relevant and valuable.

One typical example is next-generation intelligent transportation sys-
tems (ITSs), in which wireless communications are used to exchange infor-
mation among smart vehicles. These vehicles can communicate with service
centers, inform other vehicles of their existence, monitor safety and use the
latest road and weather conditions. Communications are needed to support
safe driving, curtail traffic congestion and decrease travel delays by improving
the way of the overall transportation system and its infrastructure work. The
future of automotive safety is not about more airbags or stronger steel. It
is about building smarter automobile that can “talk” to each other, so a car
knows that another car is about to run a red light and applies brakes to avoid
a possible accident. The U.S. Department of Transportation and the National
Highway Traffic Safety Administration [91] have approved vehicle-to-vehicle
(V2V) communication systems that will pave the way for connected cars to
increase safety and reduce accidents. V2V communications can provide the
vehicle and driver with 360-degree situational awareness to address additional
crash situations. This technology would improve safety by allowing vehicles
to “talk” to each other and ultimately avoid many crashes altogether by ex-
changing basic safety data, such as speed and position, ten times per second.
In addition to enhancing safety, these future applications and technologies
could help drivers to save fuel and time. Besides, German automakers have
launched a pilot program that combines V2V with vehicle-to-infrastructure

technology, allowing cars to communicate with each other and with traffic

1.1. Motivation and Challenges

lights.

Not only vehicles, every devices can also connect to each other and com-
municate to provide better services. These devices include everything from
cell phones, coffee makers, washing machines, headphones, lamps, wearable
devices and almost anything else you can think of. The connection and com-
munication of these devices bring a huge potential value to our life. For
example, when you are on your way to a meeting, your car could have access
to your calendar and already know the best route to take. If the traffic is
heavy your car might send a text to the other parties to notify them that
you will be late. It is also possible that your alarm clock can wake up you
at 6 am and then notify your coffee maker to start brewing coffee for you.
Also it will happen that your office equipment knows when it is running low
on supplies and automatically re-orders more. And the wearable device you
used in the workplace could tell you when and where you were most active
and productive and share that information with other devices that you used
while working. All these applications can help us reduce waste and improve
efficiency and energy use. They will help us understand and improve how we

work and live.

To realize the systems we expect especially for the efficiency we men-
tioned, very often it is necessary to consider real-time aspects of communi-
cation behaviours: quantitative information about time elapsing has to be
handled explicitly. This can be the case to describe a particular behaviour
(for instance, a time-out) or to state a complex property (for example, “the
alarm has to be activated within at most 10 time units after a problem has

occurred”).

The real-time aspects for centralized systems such as embedded systems
have been discussed for more than a decade. Usually, the communications
in centralized systems are simple (synchronized communications) and lim-
ited (fixed number of communications are generated in a closed embedded
system). Even though some systems include complex communications (asyn-

chronous communication), the response time of the communications can be

7

Introduction

measured by a global physical clock. Comparing to the centralized systems,
the decentralized system in the next generation world will generate large
quantities of communications. These communications are created by mil-
lions of diverse devices periodically sending observations about certain mon-
itored phenomena or reporting the occurrence of certain abnormal events of
interest [88]. Furthermore, distributed smart devices in our future system
may have their own clocks and the time measurements of the behaviour of
each device are based on the physical clock of the device. The fact that
no common physical global clock exists causes the most typical problems of
the next generation heterogeneous distributed systems. The time measure-
ment of communication behaviour and deadlock detection are much more
difficult to solve in a distributed environment than in a classical centralized

environment.

Besides, depending on communications between these distributed smart
devices, the distributed systems can be classified as either synchronous or
asynchronous. Synchronous communication is direct communication where
time is synchronized. This means that all parties involved in the communi-
cation are present at the same time and ready to accept input signals. Asyn-
chronous communication is the exchange of messages with a certain time lag
between sending and responding. This means that the data in asynchronous
communication can be transmitted intermittently. Future systems need the
collaboration of synchronous and asynchronous communication. Further-
more, future distributed sensors, actuators, and smart devices with both
deterministic and stochastic data traffic require a new paradigm for timed
communication behaviour model that goes far beyond traditional methods.
The interconnection topology of smart devices is dynamic and the system
infrastructure can also be dynamically reconfigured in order to contain sys-
tem disruptions or optimize system performance. There is a need of novel

distributed communication models for dynamic topology control.

When talking about asynchronous communications models of distributed

systems, most published research is based on the time-free model [13] [37],

8

1.1. Motivation and Challenges

[47]. In these models, the specifications describe what outputs and state
transitions should occur in response to inputs, without placing any bounds
on the time it takes for these outputs and state transitions to occur. This
kind of free-time models are of importance in practice, such as consensus,
election, or membership. However, investigating time properties (e.g. if sys-
tem behaviours can be successfully executed before a certain deadline [78])
in distributed systems become important aspects. So we need a timed asyn-
chronous distributed system model (or, for short, a timed model) where all
the behaviours are timed: their specification prescribes not only the outputs
and state transitions that should occur in response to inputs, but also the
time intervals within which a client can expect these outputs and transitions

to occur.

As we know, formal methods provide powerful techniques for specifying
and verifying complex distributed systems. Most formal methods strive for
simplicity, to allow for efficient analysis. A formal model can be very ab-
stract, capturing precisely those aspects that are to be analysed, or can be
very detailed, trying to capture as many of the design aspects as possible.
Formalisms to construct mathematical models of systems include process
algebra, labelled transitions systems, finite state automata, petri nets, and
markov chains. All have their particular views on a system and focus on
particular aspects. Design a formal model for the distributed systems and
assess the correctness of the design of the system especially taking the time
constraints into account is a difficult problem, because distributed systems
have complex communication mechanisms and lack of a common physical
clock. The mix of synchronous and asynchronous communications, as well as
the possible time bound requirement in the distributed systems may lead to
incorrect behaviours. This requires us to check the correctness of the formal
models in terms of property requirements. If the required properties are sat-
isfied, the result should have a meaningful interpretation for the verification
of the actual design. Formal models for modeling time constrained systems
include timed automata [4], timed petri net [94], AUTOSAR [55], STeC [39],

9

Introduction

BIP [14], etc. Each of them has its own special advantages, but, as far as
we know, all of them use physical global time variables for time constraints,
which does not match our goal of avoiding using a global common time when

buidling models.

1.2 Research Approach

Heterogeneous distributed systems, as targeted in this thesis, can be
characterized by the fact that the processors are spatially separated and
that a common time base does not exist. Distinct processors in such systems
communicate with each other by exchanging messages with an unpredictable
(but non-zero) transmission delay. Each action in those processors is either a
local step of a process, a send action, or a receive action. Since the processors
in the systems may neither have synchronized clocks nor common physical
time base, the logical order of the actions may not agree with the clock times
associated with them. For example, we expect a logical view of the system in
which the send action for a given message happens before the receive action
for that message. However, if the clocks at the sender and the receiver are
sufficiently skewed, a clock-based trace of the events might report that the
receive occurred before the send.

One solution of this problem is to run algorithms to keep clocks closely
synchronized, within some tolerance. In the Internet world, this is typically
done with the Network Time Protocol (NTP). NTP is one of the earliest
Internet protocols used and is probably one of the most used protocols today.
However, it is much complicated and may cause problems by drastically
changing time [70].

A better and simpler approach is to maintain logical clocks at the proces-
sors. Time-constrained models for distributed systems should take advantage
of the system logical nature. The fact that one action causally affects another
makes it possible to determine the practical order among actions. We use

the concept of logical time to capture the causal relations of actions, which

10

1.3. Research Contributions

do not rely on a real time/clock. By this way, we are able to assign time
values to actions such that it is possible to infer potential causality between
these actions or to exclude causal influence in the sense that a “later” action

cannot affect an “earlier” action.

To reflect the fact that the actions in a processor can repetitively oc-
cur and their causality relations keep the same, we define a logical clock
as a sequence of repetitive occurrences of an action. A logical clock does
not “tick” like a real time clock that is equally spaced, but instead keeps
track of the order of action occurrences. Furthermore, inspired by the CCSL
model [7] (the detail technique background of CCSL is presented in section
1.4), we define clock relations to specify logical time constraints between
clocks. In distributed systems, as communication between processors is ei-
ther synchronous or asynchronous, we choose the basic CCSL clock relations
like coincidence and precedence to specify synchronous and asynchronous
communications. We propose a novel way of modeling distributed systems
by building system logical clocks and clock relations (called timed specifi-
cation). A timed specification is usually used to specify the behaviour of a
processor. Since a clock relation of two clocks is applied on all corresponding
action occurrences of them, we can ensure that these action occurrences are
assigned consistent logical times according to the relations between clocks.
Then we employ time specifications into pNets(parameterized networks of
synchronized automata) [13] to build a hierarchical structure of timed speci-
fication framework. The timed specification in a higher level is an abstraction
of it low level subsystems. In our design model, by analyzing the inherent
conflicts that might exist in the timed specifications, we check the logical

correctness of the systems.

1.3 Research Contributions

In this thesis, we attempt to build a formal timed model (called timed-

pNets) by introducing a set of logical clocks and clock relations into an

11

Introduction

untimed model called pNets (parameterized networks of synchronized au-
tomata) [13]. In this novel model, timed specifications (a set of logical
clocks and clock relations) are used to specify the system behaviours, and
furthermore, be used to build a hierarchical structure by composing the timed
specifications of subsystems. By taking advantage of the timed specifications,
system time constraints and properties (e.g. safety, latency properties) can

be specified and verified. The main contributions of the thesis are as follows.

We design a novel model that is capable to specify logical time con-
straints in terms of system behaviours without relying on physical clocks
(ref. chapter 3). In this new model, logical clock relations in bottom-level
(synchronous) components are derived from the corresponding label transi-
tion systems (called timed-pLTS). Usually logical clocks are a priori inde-
pendent. They become dependent when the instants (or the timed-action
occurrences) from different clocks are linked by relationships (e.g. coinci-
dence or precedence). Instead of imposing local dependencies between the
instants (or the timed-action occurrences), we impose dependencies directly
between clocks. A clock relation specifies many (usually an infinity of) indi-
vidual time instant relations. As a result of adding clock relations to multiple
clocks, these clocks are no longer independent and the instants (or the timed-
action occurrences) are partially ordered. This partial ordering of instants

characterizes the time specifications (T'Ss) of an application.

Timed specifications (TSs) are logical characterizations, that can be
either provided by the application designer, or computed from the model.
The consequence is that the two procedures above can be used arbitrarily in a
bottom-up fashion, starting with detailed timed-pLL.TSs and assembling them
in a compatible way; or in a top-down fashion, constructing T'Ss for abstract
timed-pNets, using their holes TSs as hypotheses in an assume-guarantee
style, and providing later some specific (compatible) implementations for
these holes in various contexts. As our model has a hierarchical structure,
the timed specification of an upper layer must be compatible with the timed

specifications of its subnets (or subsystems). In order to be able to build a

12

1.3. Research Contributions

compatible model, we discuss the compatibility of refined implementations
and abstract specifications. Moreover, we propose a theorem to generate a

compatible structure of timed-pNets (ref. chapter 4).

Since the model does not rely on common physical clocks, the delays in
the timed specifications that come from different subnets are uncomparable,
which brings the difficulty of building a higher layer structure especially
when the delays are taken into account. To solve the issue, we introduce
the concept of reference clocks and virtual timestamps into our model so
that the delays can be calculated in terms of a reference clock that a user
choose (ref. chapter 5). The introducing of a reference clock also helps us to
specify delay bounds and latency properties that are important aspects for a
timed model. Therefore, this model has the capability of checking not only
system’s correctness and safety properties, but also the timed properties (e.g.

deadline, latency properties).

The fact of using timed specifications in the new model paves the way
of utilizing the TimeSquare tool to check system time constraint conflicts.
Thanks to the timed specifications, timed-pNets are able to represent the ba-
sic behaviours of heterogeneous distributed systems. However, when facing
to complex behaviours (e.g. undetermined clock choices), the current timed
specifications are not easy to specify them. To simplify the way of encoding
the complex situations, we design the concept of clock partition and clock
union (ref. chapter 6). The clock partition allows us to flexibly split the
timed-action occurrences into groups so that the clock relations can be ap-
plied to the groups instead of to every single occurrence. We prove that the
relations (precedence and coincidence relations) on partition clocks can be
substituted by those relations on a set of filtered clocks, which illustrates the
advantages of using partition clocks: simple and easy to understand. An-
other extension, clock union, provides us a way to compose logical clocks.

Usually it is used to specify the branches of transition systems.

In the end, to gain insight into our model, we apply our model on the

Intelligent Transportation Systems (ITSs). We choose the TimeSquare [41]

13

Introduction

tool to do simulation (ref. chapter 7). TimeSquare is a software environ-
ment for modelling and analyzing of timed systems. It displays possible time
evolutions as waveforms generated in the standard VCD format (more in-
formation of TimeSquare are introduced in the next section). Errors can be
reported if conflicts exist in timed specifications.

As a conclusion, we contribute to design a formal model that provides
a simple and flexible way to model communication behaviours (synchronous
and asynchronous) with time constraints without relying on physical clocks.
This is the main difference with other current timed models. Moreover, our
model is able to check the logical correctness and verify time properties of

distributed systems.

1.4 Technical Background

In this section, we introduce the technique background of timed-pNets,

including logical clocks, CCSL, TimeSquare and pNets.

1.4.1 Logical Clocks

The logical nature of time is of primary importance when designing or
analyzing distributed systems. The concept of logical clocks was first intro-
duced by Leslie Lamport in 1978 to represent the execution of distributed
systems [58]. It has then been extended and used in distributed systems to
check the communication and causality path correctness [45]. The logical
clock timestamps each event with an integer value such that the resulting or-
der of events is consistent with a happened-before relation. Logical time has
also been intensively used in synchronous languages [23] [20] for its multiform
nature. The multiform nature of logical time consists in the ability to use
any repetitive event as a reference for the other ones. It is then possible to
express temporal properties between various references. In the synchronous
domain it has proved to be adaptable to any level of description, from very

flexible causal time descriptions to very precise scheduling descriptions [30].

14

1.4. Technical Background

Based on Lamport’s logical clock, two more advanced logical clock (vec-
tor clock and matrix clock) have been proposed to capture causality between
events of a distributed computation. Vector clock is proposed in order to
retain the complete partial order information in a logical clock system. It is
represented by an n-dimensional vector. Such clocks have been introduced
and used by several authors. Parker et al. used in 1983 a very rudimen-
tary vector clocks system to detect inconsistencies of duplicated data due to
partitioning [72]. Liskov and Ladin proposed a vector clock system to de-
fine highly available distributed services [63]. The theory associated to these
vector clocks has been developed in 1988 independently by Fidge [46] [45],
Mattern [67] and Schmuck [76]. Similar clocks systems have also been pro-
posed and used by Strom and Yemini [81] to implement an optimistic recovery
mechanism, and by Raynal to prevent drift between logical clocks [73]. An-
other advanced logical clock called matrix clock is represented by an n x n
matrix. Such a clock system has been proposed in 1984 by Wuu and Bern-
stein [90] to discard obsolete information of a log system. A similar mecha-
nism has also been used by Lynch and Satin in 1987 for a similar purpose [75].

The aim of the logical time is to be able to timestamp consistently events
in order to ensure some properties such as liveness, consistency, fairness,
etc. In order to coordinate distributed processes, Jefferson proposed virtual
time (or logical time, model time) [54] in 1985 for the causally connected
distributed time. The virtual time is implemented with an optimistic time
warp mechanism that is able to process messages quickly with independent of
the future messages. The aim of using such virtual time is to ensure that the
simulation program has the liveness property. The logical time is nothing else
than the logical counterpart of the physical time offered by the environment

and used in real-time applications [22].

1.4.2 CCSL

Logical time has been proved very useful to model heterogeneous and

concurrent systems at various abstraction levels. The Clock Constraint Spec-

15

Introduction

ification Language (CCSL) [7] uses logical clocks as first-class citizens and
supports a set of (logical) time patterns to specify the time behaviours of
systems. It is initially specified in an annex of MARTE [92], providing
an expressive set of constructs to specify causality (both synchronous and
asynchronous) as well as chronological and timing properties of the system

models.

CCSL is a declarative language that specifies constraints imposed on the
logical clocks of a model. A CCSL clock is defined as a sequence of clock
instants (event occurrences). If ¢ is a CCSL clock, for any k € N, ¢[k] denotes
its k' instant. Below, we describe only the constraints used in this thesis.

A comprehensive description of CCSL constructs can be found in [7].

The basic clock relations can be classified in three main categories: 1)
coincidence-based constraints, 2) precedence-based constraints, and 3) mixed

constraints.

Synchronous constraints rely on the notion of coincidence of clock
instants. For example, the clock constraint ¢; isSubclockO f ¢y, denoted by
1 co, specifies that each instant of ¢; must coincide with an instant of
¢o. In logical words this says that ¢y ticks only if ¢, ticks. Another example is
coincidence constraint (c; coincides ¢3), denoted by ¢; [=] c2. It is a special
case of subclocking, when there is a bijection between the sets of instants of
the two clocks. It states that c; ticks if and only if ¢y ticks. Other examples
of synchronous constraints are excludes (denoted) or discretizedBy . The
former prevents two clocks from ticking simultaneously. The latter discretizes
a dense clock to derive discrete chronometric clocks, mostly from IdealClk,
a perfect dense chronometric clock, predefined in MARTE Time Library [§],
and assumed to follow “physical time” faithfully (without jitter).

Asynchronous constraints are based on instant precedence, which
may appear in a strict ((<|) or a non-strict () form. The clock constraint
c1 isFasterThan ¢y (denoted ¢; ¢2) specifies that clock ¢; is (non-strictly)
faster than clock ¢y, that is for all natural number k, the k' instant of
c1 precedes or coincides the k™ instant of ¢y (Vk € N, a[k:]b[k]). The

16

1.4. Technical Background

constraint ¢, o specifies that clock ¢ is strictly faster than clock co, that
is for all natural number k, the k™ instant of ¢; precedes the k" instant of
co (Vk € N, alk] < b[E]).

Mixed constraints combine coincidence and precedence. For example,
The constraint c3 = ¢; delayedFor n on cy enforces a delayed coincidence,
i.e., imposes c3 to tick synchronously with the n'* tick of ¢, following a tick
of ¢;. It is considered as a mixed constraint since ¢; and ¢y are not assumed
to be synchronous.

Moreover, CCSL includes clock expressions that define a set of new
clocks from existing ones. A CCSL specification consists of clock declarations
and conjunctions of clock relations between clock expressions. All these clock

relations and clock expressions constitute the kernel of CCSL.

1.4.3 TimeSquare Tool

TimeSquare [41] is a software environment dedicated to analyze timed
systems specified with clock constraints using the CCSL language [7]. Tt is
composed of a set of Eclipse plugins and has been integrated into the Open-
EmbeDD platform. It developed with Ganymede Eclipse Modeling Tools:
ANTLR for constraint parsing, and JavaBDD for the solver.

TimeSquare has four main functionalities: 1) interactive clock-related
specifications, 2) clock constraint checking, 3) generation of a consistent tem-
poral structure, using a Boolean solver, 4) displaying and exploring wave-
forms, written in the IEEE standard VCD format.

TimeSquare has been designed to be used with the UML tools applying
the MARTE profile. In this profile, clocks and clock constraints are asso-
ciated with various model elements. A wizard is included in TimeSquare.
It facilitates clock definitions, clock constraint specifications, model element
browsing, and parameter setting. The second functionality checks constraint
sanity. The third functionality relies on a constraint solver that yields a sat-
isfying execution trace or issues an error message in case of inconsistency.

The traces are given as waveforms written in VCD format. VCD (Value

17

Introduction

main::c1

main::ic2

Fig. 1.1: VCD view of an example

Change Dump) is an IEEE standard textual format for dump files used by
EDA (Electronic Design Automation) logic simulation tools. The solver in-
tensively uses Binary Decision Diagrams (BDD). Waveforms can be displayed
with any VCD viewer. TimeSquare has its own viewer enriched with inter-
active constraint highlighting and access facilities. For instance, the screen
copy in Figure 1.1 shows precedence relations (white oblique dashed arrows)

and coincidence relations (red vertical solid lines).

1.4.4 pNets Model

We build our behavioral semantic model by introducing logical clocks
into pNets (parameterized networks of synchronized automata) [13]. pNets is
an expressive and flexible semantic model for the modeling and verification of
(untimed) distributed systems. pNets are networks of processes: they provide
a hierarchical structure to organize processes. At the leaves of the structure,
they have pLTS (parameterised labelled transition systems) describe in the
definition II. Definition II describes the hierarchical composition. pNets are d
To encode both families of processes and data value passing communications,
parameters are used in pNets as communication arguments. The parameters
is a set P of variables. The P is supposed to be defined globally, but it
can also be defined locally in each pNet. The usage of parameters enables
compact and generic description of parameterized and dynamic topologies.
In the following part we recall definitions of pLTS and pNets. We start
by giving the notion of parameterized actions that are basic elements for

pLTSs. Parameterized Actions have a rich structure, because they take care

18

1.4. Technical Background

of value passing in the communication actions, assignment of state variables
and process parameters.

Definition I [Parameterized Actions| Let P be a set of parameter
names, £ 4p a term algebra built over P, including at least a distinguished
sort. A for actions, and a constant action 7. We call v € P a parameter,
and a € £ 4p a parameterized action, B4 p is the set of boolean expressions
(guards) over L 4p.

The behaviour of a process is modelled as a parameterized labelled tran-
sition system (pLTS), in which the variables can be written and read by the
actions performed in the transitions. A pLTS can have guards and assign-
ment of variables on transitions. Variables can be manipulated, defined,
or accessed inside states, actions, guards, and assignments. Parameters are
used both for encoding data in value passing messages and for manipulating
indexed families of processes.

Definition IT [pLTS| A parameterized LTS is a tuple < P, S, sg, L, —>

where:

e P s afinite set of parameters, from which we construct the term algebra

LA,P;

e S is a set of states; each state s € S is associated to a finite indexed
set of free variables fu(s) =7, C P,

e 59 € S is the initial state,

e [is the set of labels, — the transition relation —-C S x L x .5,

e Labels have the form | =< «, ey, 75, := €5, > such that if s — s,
then:

— « is a parameterized action, expressing a combination of inputs
iv(a) C P (defining new variables) and outputs oe(a) (using ac-

tion expressions),

— e, € B4 p is the optional guard,

19

Introduction

— the variables 7;, are assigned during the transition by the optional
expressions €, with the constraints: fv(oe(a)) C iv(a) U2, and
fu(es) U fo(es,) Civ(a) Uz, ULy,

pNets are constructors for hierarchical behavioural structures: a pNet
is formed of other pNets, or pLTSs at the bottom of the hierarchy tree.
A composite pNet consists of a set of subnets, each exposing a set of ac-
tions. The synchronisation between a global action of the pNet and the
actions of the subnets is given by synchronisation vectors [10] with the form
< @,...,a; >— a4 a synchronisation vector synchronises one or several
actions of subnets, and exposes a single resulting global action («,). The
synchronous vectors are used to synchronise a (potentially infinite) number
of processes. A pNet can either compose sub-pNets given explicitly, or be
used as an operator accepting other pNets as parameters. Placeholders for
the pNets that will be provided later are called holes. Actions synchronised
in synchronisation vectors can involve both some sub-pNets that are given
in the definition and some other that will be provided later. The holes in
pNets can be indexed by a parameter, to represent (potentially unbounded)
families of similar arguments. We represent the definition of pNets taken
from [13] as follows:

Definition III [pNets] A pNet is a tuple < P,pAg,J,ﬁJ,5J,7 >
where: P is a set of parameters, pAg C L4 p is its set of (parameterized)
external actions, J is a finite set of holes, each hole 5 being associated with
(at most) a parameter p; € P and with a sort O; C L4 p. V= {7} is a set
of synchronisation vectors of the form: T =< ag, {ou}ierep, > such that:
I CJAB; € Dom(p;) Na; € O; A fo(ag) C P.

Each hole in the pNet has a parameter p; , expressing that this “pa-
rameterized hole” corresponds to as many actual processes as necessary in a
given instantiation of its parameter. In other words, the parameterized holes
express parameterized topologies of processes synchronised by a given Net.
Each parameterized synchronisation vector in the pNet expresses a synchro-

nisation between some instances ({t}+cp,) of some of the pNet holes (I C J).

20

1.4. Technical Background

The hole parameters being part of the variables of the action algebras can

be used in communications and synchronisations between the processes.

The pNets allow to model a large variety of synchronisation mechanisms
and have been traditionally used for systems of either synchronously or asyn-
chronously communicating objects, and of distributed components [13]. The
flexibility of the synchronisation vectors mechanism naturally provides de-
scriptions of heterogeneous systems, from point-to-point or multipoint syn-
chronisations, to sophisticated asynchronous queuing policies. It is a low-
level semantic model, supporting a large variety of parallel operators and
communication mechanisms that are flexible enough to address a large set of
distributed programming concepts. pNets can be used typically as the tar-
get of behaviour semantics for same high level language. For example, [13]
gives the semantics of the component based framework in terms of pNets.
Parametrization and hierarchy also makes pNet models compact, and close
to the program structure, and as a consequence easy to generate in a com-
positional way [6]. Its parameterized and hierarchical features can build
a tree like structure in which each node is pNets and leaves are pLTSs.
Each pNets node, which can also be presented as a pLTS, is an upper layer
abstract node composed by its subsystems in terms of the communication
behaviours among them. The parameterized models have successfully been
used for modelling ProActive [35] that is a pure Java implementation of dis-
tributed active objects with asynchronous remote method calls and replies.
It has been proven that the pNets are suitable as a specification language
for the distributed systems, and for the models resulting from static analysis
of source code. Moreover, the model enables us to have a finite representa-
tion of infinite systems. It naturally encodes the semantics of languages for

distributed applications.

All these incomparable advantages attracted us to choose it for mod-
elling distributed systems. However, pNets have no mechanism to describe

system time constraints.

21

Introduction

1.5 Use Case

In this section, we represent two use cases taken from I'TS. One is vehicle-
to-infrastructure communication application which intends to avoid vehicles
accidents and to increase environmental benefits by wireless exchange of
critical data between vehicles and highway infrastructures. Another is a
vehicle-to-vehicle communication application that offers the opportunity for
significant safety improvements by dynamic wireless exchange of data be-
tween nearby vehicles. The two cases will be used from the chapter 3 to the

chapter 7 to explain our approach of building semantic behaviour models.

1.5.1 Vehicle-to-Infrustructure Communications

We present a use case called speed controlling system taken from [91].
The speeds of cars are monitored by an infrastructure that collects informa-
tion from cars and sends brake signals back to cars if they exceed the speed
limit. To realize it, the cars in a highway keep on sending signal “I’'m here”
with their location and speed data. The infrastructure along the highway
collects the heartbeat signals and checks the speeds of those cars. If the
speed of a car exceeds the speed limit of the highway, the infrastructure will
send a “brake” signal to let the car to reduce its speed. The communication

protocol is described as follows:

e Cars send heartbeat signals "I'm here” with parameters ”(location,

speed)”;
e A infrastructure collects heartbeat signals from cars;

e The infrastructure sends ”brake” signal to the cars that exceed the

speed limit;
e The cars reduce their speed when they get the ”brake” signals.

We require that the cars can receive brake signals and response to the

infrastructure before sending the next heartbeat signal. This use case will

22

1.5. Use Case

Lane 1

Fig. 1.2: Car Insertion

be simulated in chapter 3.

1.5.2 Vehicle-to-Vehicle Communications

We choose another small scenario on vehicle-to-vehicle communications.
It is about an autonomous lane change involving 3 smart cars. These cars are
equipped with sensors to detect the physical environments and parameters
(e.g. such as the speeds and distances of the cars). And they communi-
cate among each other to coordinate their movements and avoid collisions.
Assume three vehicles (car0, carl and car2) are running on a road as Fig.
7.1.

The scenario of inserting car0O between carl and car2 may follow the
following steps: 0) car0 gets a change-lane request (e.g. from a human user);
1) car0 sends “notify” requests to carl and car2 to get an agreement; 2)
carl (resp. car2) acknowledges car0 “yes” or “no”; 3) car0 collects results
from carl and car2; 4) If both carl and car2 answer “yes”, car0 signals the
consensus to carl and car2 and then go to step 5, otherwise car0 aborts the
procedure; 5) carl slows down and/or car2 speeds up to leave more space
between them for car0; 6) car0 changes its direction and moves to lane2; 7)
car(notifies the end of the procedure with a "finish” signal.

We require that the system has no deadlock or clock relation conflicts.
Furthermore, assuming that the network communication delay is less than 10
time units, we require that the latency from sending notifications to finishing
collecting all acknowledgements is no more than 30 time units. And the

latency of whole procedure from car(getting change-lane requests to sending

23

Introduction

“finish” signals is no more than 55 time units.

This use case will be used to explain the timed-pNets model in the

chapters 4, 5 and 6. Moreover, the full simulation is represented in chapter

7.

1.6 The Outline of The Thesis

The rest of the thesis has been organized as follows.

e chapter 2 discusses related works and carefully investigates some time

models like timed-automata, timed petri Nets, MARTE and AADL

that are famous on modelling real-time systems.

chapter 3 generalizes a novel semantic model by introducing logical
clocks and clock relations into pNet so that it has the capability of

modeling time constrained distributed systems.

chapter 4 describes a communication behavioural semantic model called
timed-pNets. It is an extension of chapter 3. Timed-pNets build a hi-
erarchical structure of timed specifications by which the system timed
constraints can be specified in a more compatible and easier way. More-
over we discuss the compatibility and refinement of timed specifications,
as well as the property checking. We demonstrate that timed-pNets
are able to model the timed constrained communication behavior for
heterogeneous distributed systems that include synchronous and asyn-

chronous communications.

chapter 5 discusses how to compute the delays and delay bounds in
timed-pNets. Moreover, we define the concept of time conflicts and

propose a way to detect them.

chapter 6 discusses advanced extensions of timed-pNets, including clock

partition and clock union for simplify the timed specifications.

24

1.6. The Outline of The Thesis

e chapter 7 represents the full details of car insertion use case to demon-
strate how we build and refine a timed-pNets model and check its safety

and timed properties.

e chapter 8 concludes our work and represents future works.

25

Chapter 2 Related Work

If you want to understand today, you have to search yesterday.

Pear]l Buck, American female writer

Our idea of avoiding using any common physical clock when modelling dis-
tributed systems leads us to investigate logical time and some existing time
models. This chapter starts from introducing discrete-event model to un-
derstand how system behaviours are specified by taking advantage of events.
Then we investigate globally asynchronous locally synchronous (GALS) model
including HipHop to understand how synchronous and asynchronous commu-
nications are handled. BIP, as a framework for the incremental composition
of heterogeneous components, is also investigated. Moreover, we carefully
investigate some time models like timed-automata, timed petri net, MARTE
and AADL that are famous on modelling real-time systems. Other time
related systems like STeC are introduced to see how they specify time and

location constraints for actions.

27

Related Work

Model-integrated development [53] [56] commonly uses actor-oriented
software component models [60] [61]. In such models, software components
(called actors) execute concurrently and communicate by sending messages
via interconnected ports [71] [29]. Examples that support such designs in-
clude Simulink, LabVIEW, SystemC, SysML, UML and pNets.

A well-defined actor-oriented model of computations (MoCs) should al-
ways has well-defined semantics. One of the key challenges is to integrate
actor-oriented models with practical and realistic notions of time. For exam-
ple, when modeling distributed behaviours, it is essential to provide multi-
form models of time. The frameworks that include a semantic notion of time,
such as Simulink, assume that time is homogeneous in the sense that it ad-
vances uniformly across the entire system. In practical distributed systems,
even those as small as systems-on-chip, however, no such homogeneous notion
of time is measurable or observable. In a distributed system, even though
it uses network time synchronization protocols (such as IEEE 1588 [62]),
local notions of time will differ. So when introducing time into the pNets
model, we should carefully handle the notions of time. Failing to model such
differences of time could cause errors in the design.

Based on the idea of logical time, the related models such as discrete-
event models, asynchronous language models and so on have been proposed.
Besides, some formal models or frameworks with time constraints have also
been proposed to describe timed systems. Here we list and describe these

previous works that relate to our work.

2.1 Discrete-event Models

Discrete-event (DE) [36] [59] [93] models are formal system specifications
that have analyzable deterministic behaviours. DE models are concurrent
compositions of components that interact via events. An event is a time-
stamped value, where time is “logical time” or “modeling time” [58]. Cor-

rect execution of such models requires respecting the order of time stamps.

28

2.1. Discrete-event Models

Using a global, consistent notion of time, DE components communicate via
time-stamped events. DE models have primarily been used in performance
modeling and simulation, where time stamps are a modeling property bearing

no relationship to real time during execution of the model.

One interesting project that directly confronts the multiform nature of
time in distributed systems is the PTIDES (Programming Temporally In-
tegrated Distributed Embedded Systems) project [42] [43]. PTIDES serves
as a coordination language for model-based design of distributed real-time
systems. PTIDES provides a framework for exploring a family of execu-
tion strategies so that it can directly confront the multiform nature of time
in distributed systems. DE is usually a simulation technology (e.g. in hard-
ware description languages such as Verilog and VHDL and network modeling
languages such as OPNET Modelerl and Ns-22). When DE models are exe-
cuted on distributed platforms, the objective is usually to accelerate simula-
tion, not to implement distributed real-time systems [36] [48] [93]. However,
PTIDES does not use DE as a simulation technology, but rather an appli-
cation specification language, which serves as a semantic basis for obtaining
determinism in distributed real-time systems. Applications of PTIDES are
given as distributed DE models, where for certain events, their modeling
time is mapped to physical time. Simulations of it can simultaneously have
many time lines, with events that are logically or physically placed on these
time lines. PTIDES has DE semantics, but with carefully chosen relations
between model time and real time. It provides semantics for the interactions
between events to model the communications of distributed systems. Key to
making this model effective is to ensure that the constraints that guarantee
determinacy in the semantics are preserved at runtime. To accomplish this,
a distributed execution strategy is given, which obeys DE semantics without
the penalty of totally ordered executions based on time stamps. The exe-
cution strategies are divided into two layers: global coordination, and local
resource scheduling. When receiving an event from the network, the global

coordination layer determines whether the event can be processed immedi-

29

Related Work

ately or it has to wait for other potentially proceeding events. Once it is
sure that the current event can be processed according to DE semantics,
it delivers the event over to local resource scheduler, which may use exist-
ing real-time scheduling algorithms, such as earliest deadline first (EDF) to
prioritize the processing of all pending events. Based on causality analysis
of DE models, relevant dependency and relevant orders is defined to enable
out-of-order execution without compromising determinism and without re-
quiring backtracking. Since the global, consistent notion of time may lead to
a total ordering of execution in a distributed system, which is an unnecessary
waste of resources, PTIDES takes this event-driven execution strategy. Un-
like many hard real-time distributed systems that depend on domain specific
network architectures, PTIDES only requires a reliable packets delivery with
a known bounded delay.

The DE models encourage us to take advantage of logical nature of
systems and to introduce logical time into models. However, we need more
mature communication mechanisms like synchronous and asynchronous com-
munications that are not yet supported in PTIDES. This drives us to inves-

tigate heterogeneous communication models.

2.2 Synchronous and Asynchronous

Communication Models

Synchronous languages [20] have been effectively applied to design re-
active systems. These languages (which include Esterel, SCADE, Lustre,
Signal, etc.) provide deterministic concurrent semantics. Synchronous pro-
grams can be efficiently and safely implemented. The correctness is ensured
by usual verification methods. However, in the domain of distributed sys-
tems, asynchronous languages (e.g., SDL [80]) are naturally be used. Tt
brings the needs for programming the system “globally asynchronous locally
synchronous (GALS)” [38]. GALS is a model of computation that allows

to design computer systems consisting of several synchronous components,

30

2.2. Synchronous and Asynchronous Communication Models

among which the communications are asynchronous, e.g., FIFOs. It can be
used both in software and hardware. In software, these synchronous com-
ponents usually are specified as finite state machines (FSMs) and the asyn-
chronous communication between them is modeled with a buffer [40]. The
idea of the GALS approach provides a methodology for combining concur-
rent embedded systems within loosely coupled systems. Several formalisms
have been proposed which combine synchronous and asynchronous primitives
(e.g., [5]). And the concept of GALS has been used in several models and
tools [19] [21] [12].

Another model that can deal with asynchronous communication events
is HipHop language [24] [26]. It came out for helping programming rich ap-
plications driven by computers, smart phones or tablets. Since they interact
with various external services and devices, safe programming of this network
of devices requires tight cooperation between many sequential and parallel
programming models, as well as orchestration techniques that merge classical
computing, client-server concurrency, web-based interfaces, and event-based

programming.

HipHop is an Esterel-based [25] orchestration language embedded into
the Hop language [77] and system. Hop is a scheme-based multi-tier language
to develop complex web applications with a single source code for the server
and client, making code migration and client/server communication fully
transparent. HipHop is used to orchestrate asynchronous activities launched
by Hop, by providing a synchronous view and control of them. HipHop
is based on synchronous concurrency and preemption primitives, which are
known to be key components for the modular design of complex temporal
behaviors. It adds the possibility of orchestrating complex concurrent behav-
iors into Hop. Compared to Esterel, it is a much more dynamic language,
whose programs are Hop values that can be constructed on the fly and run by
an interpreter that implements the constructive causality of Esterel. HipHop

can be used both on the server and client side for maximal flexibility.

Our model partly takes the idea of GALS to specify both synchronous

31

Related Work

and asynchronous communication. The main difference is that we specify the
synchronous components as timed specifications (a set of clocks and clock
relations) instead of FSMs so that we are able to take advantage of the
TimeSquare tool to check system properties. Moreover, in our model, the
synchronous communications are specified by the coincidence relations be-
tween clocks, while the asynchronous communications are modeled by chan-
nels in which precedence relations are applied on two clocks. Compared to
HipHop, we both handle asynchronous events and multi-tier structure, but
the different aims drive us to different directions. They focus on orchestrat-
ing complex concurrent behaviours for web applications, while we need not
only the correctness of system behaviours, but also take account the time
constraints of these behaviours. Thus, we go further to investigate some
time-constrained models. Timed-automata is the first one we would like to
investigate that is famous for specifying and verifying the time constraints

of real-time systems.

2.3 BIP Framework

BIP (Behaviour Interaction Priority) [14] is a framework for the incre-
mental composition of heterogeneous components. It allows building complex
systems by the coordinating the behaviour of a set of atomic components.
The BIP framework provides constructs for dealing with parametric and hi-
erarchical descriptions as well as for expressing timing constraints associated
with behaviour.

BIP supports a component-based modeling methodology based on the
theory that components are obtained as the superposition of three indepen-
dent layers. The lowest layer describes the behaviour of a component (basic
components) as a set of transitions (i.e. a finite state automaton extended
with data); the intermediate layer includes a set of connectors describing the
interactions between transitions of the layer underneath; the upper layer con-

sists of a set of priority rules describing scheduling policies for interactions.

32

2.3. BIP Framework

Such a layering offers a clear separation between component behaviour
and structure of a system (interactions and priorities). The states inside a
component denote control locations where the component waits for interac-
tions. A transition is an execution step from one control location to another.
Each transition has an associated condition that enables this transition and

an action that is executed at this transition.

In BIP, all actions executed by transitions are written in C/C++. The
BIP language provides additional structural syntactic constructs for defining
component behaviour, interactions and priorities. BIP supports the con-
struction of sub-systems and allows developers compose systems by layered
application of interactions and priorities [51]. A hierarchical structure can
be built by composing components from atomic one that consists of a set of
ports (for the synchronization with other components), a set of transitions
and a set of local variables. There is a clear separation between behaviour
(the finite-state machines) and composition glue (stateless interactions and
priorities).

“BIP encompasses heterogeneity. It provides a powerful mechanism
for structuring interactions involving strong synchronization (rendezvous)
or weak synchronization (broadcast). Synchronous execution is character-
ized as a combination of properties of the three layers.” — taken from the

reference [15].

The BIP framework consists of a language and a toolset including a
frontend for editing and parsing BIP programs and a dedicated platform for
model validation. The platform consists of an Engine and software infras-
tructure for executing models. It allows state space exploration and provides
access to model checking tools of the IF toolset [32] such as Aldebaran [31]
and the D Finder tool [18]. This permits to validate BIP models and ensure
that they meet properties such as deadlock-freedom, state invariants [18] and

schedulability.
Real-time (RT) BIP [1] is an extension of the BIP component-based

design language to continuous time model closely related to timed automata

33

Related Work

[4]. In addition to offering syntax and semantics for the time-aware modeling
of concurrent systems, the real-time BIP also envisions a general model-based
implementation method for safety-critical multicore systems. This method
is based on the use of two models: (1) an abstract model representing the
behaviour of real-time software with user-defined timing constraints; (2) a
physical model representing the behaviour of the real-time software running
on a given platform.

The BIP and its real-time extension RT-BIP are currently supported
by an extensible toolset including a concrete modeling language together
with associated analysis and implementation. The toolset provides functional
validation, model transformation and code generation features.

However, modeling timed components in BIP involves references to a
specific “tick” port expressing the passage of (discrete) time, and such “tick”
events must be synchronized between various components of a system before
computing worst case execution time (WCET) or task period properties.
With contrast to this approach, we do not want to use one clock to syn-
chronize the components, but rather embedded multiple logical clocks into
a model to specify the synchronous and asynchronous communications by

building logical clock relations.

2.4 Timed-automata

Timed-automata [4] is a widely studied formalism for timed systems
and is famous for modelling the behaviour of real-time systems. It provides
a simple and powerful way to annotate state transition graphs with time
constraints using finite real-value clocks. A timed automaton is a finite au-
tomaton extended with a finite set of real-valued clocks. It can be seen as
classical finite state automata with clock variables and logical formulas on the
clock (temporal constraints) [17]. A timed automaton accepts timed words
— infinite sequences in which a real-valued time of occurrence is associated

with each symbol. Transition tables in automata are extended to timed tran-

34

2.4. Timed-automata

sition tables so that they can read timed words. A finite set of (real-valued)
clocks are involved in each transition table. The clocks in timed-automata
are initialized to zero when a system is started and then increase at the uni-
form rate counting time with respect to a fixed global time frame. Each clock
can be separately reset to zero [3]. The clocks keep track of the time elapsed
since the last reset. When an automaton makes a state-transition, the choice

of the next state depends upon the input symbol read.

Each transition is associate with a clock constraint, and require that the
transition may be taken only if the current values of the clocks satisfy this
constraint. The constraints on the clock variables are used to restrict the
behaviour of the automaton. There are two types of clock constraints: con-
straints associated with transitions and constraints associated with locations.
The constraints associated with transitions make use of guards. A guard is
a Boolean combination of integer bounds on clocks and clock differences. A
transition can be taken when the clock values satisfy the guard labeled on
it. The constraints associated with locations are called invariants and they
specify the amount of time that may be spent in a location. The invariant
“true” for a location means there are no constraints for the time spent in
the location. Semantics for a time automaton are defined as “a transition
system where a state or configuration consists of the current location and the

current values of clocks” [17].

In Automata, delays can be established for transitions. The delays are
counted from a physical clock which should be reset when it starts counting.
Since the clock in timed-automata is dense time, the discretization of delay
in timed-automata is investigated so that qualitative behaviour of circuit can

be preserved [11].

Timed automata can be used to model and analyse the timing behaviour
of computer systems, e.g., real-time systems or networks. Methods for check-
ing both safety and liveness properties have been developed and intensively
studied over the last 20 years. It has been shown that the state reachability

problem for timed automata is decidable, which makes this an interesting

35

Related Work

sub-class of hybrid automata. Extensions have been extensively studied,
among them stopwatches, real-time tasks, cost functions, and timed games.
Closure properties, decision problems as well as automatic verification of
real-time requirements were considered in timed-automata. There exists a
variety of tools to input and analyse timed automata and extensions, in-
cluding the model checkers UPPAAL [16], Kronos, and the schedulability
analyser TIMES. These tools are becoming more and more mature, but are
still all academic research tools.

Timed-automata can be a good reference for building and verifying
timed models. The strong theory basis and verification tools support many
industry implementations. Compared to timed-automata, we do not directly
use real-valued clocks whose values increase all with the same speed. Instead,
we build our model with two steps: We first define a finite set of logical clocks
whose ticks happen in terms of the occurrences of actions. Thus, the dis-
tance between two adjacent ticks may not be the same. And the speed of
two logical clocks may not be comparable. We specify system behaviours
and constraints by timed specifications, which help us to specify and check
system safety properties like deadlock. Then, we assign timestamps for clock
ticks in terms of a reference clock. The reference clock for our model is still
a logical clock that provides a time base for other logical clocks. By taking
advantage of the reference clock, we are able to check time properties such
as latency in terms of the timestamps of the reference clock. Therefore, our
model is flexible to fit for distributed systems that have no common physical
time base. Meanwhile, time properties can be checked under the assumption

of a reference clock.

2.5 Timed Petri Nets

Another famous semantic model for real-time systems is timed petri
nets. Timed petri nets (TdPNs) [83] is one of several mathematical model-

ing languages for the description of distributed systems. It is widely used

36

2.5. Timed Petri Nets

for the modeling and analysis of concurrent systems with time-dependent
behavior like communication systems. It includes a set of directed bipartite
graphs, in which the nodes represent transitions (i.e. events that may occur,
signified by bars) and places (i.e. conditions, signified by circles). The di-
rected arcs describe which places are pre- and/or post- conditions for which
transitions (signified by arrows). Each arc associates with an interval (or
bag of intervals). In TdPNs, each token has an age. This age is initially
set to a value belonging to the interval of the arc which has produced it or
set to zero if it belongs to the initial marking. Afterwards, ages of tokens
evolve synchronously with time. A transition may be fired if tokens with
age belonging to the intervals of its input arcs may be found in the current

configuration.

In most timed petri nets models, transitions determine time delays [84]
[86] [57]. In only a few models, time delays are determined by places and/or
arcs [79]. Three types of delay are discussed in timed petri net, deterministic,
nondeterministic, and stochastic delays. Many of the older timed petri net
models, such as [87], [74], [79], [94], use deterministic delays i.e., the delay
assigned by a transition, place, or arc is fixed. Deterministic delays allow
for simple analysis methods but have limited applicability. In most cases,
delays correspond to the duration of activities which are typically variable.
Therefore, fixed delays are often less appropriate. There are two ways to
describe the variability. One way is to assume constraints on delays (e.g., it
takes less than 2 seconds to send a notification). Another way is to assume
a probability distribution for each delay. Most models use time intervals to
specify the duration of the delay. Such a model introduced by Merlin [69] [68]
in the early seventies. Other models [84] [85] [27] that use interval timing
have been proposed. Some timed petri nets models, such as [49] [2], proposed
stochastic delays in the sense that each delay is described by a probability

distribution.

Another way to classify the types of delay used in a timed petri net model

is to distinguish between discrete and continuous delays. Most discrete mod-

37

Related Work

els use the natural numbers as the time domain. Continuous models typically
use the set of non negative real numbers as the time domain. Nearly all timed
petri nets allow for continuous delays. There exist several analysis tools, such
as TINA or Romeo. TINA (TIme Petri Net Analyzer) [28] is a toolbox for
the edition and analysis of petri nets and timed petri nets. Moreover, an
approach has been proposed in the work [50] to translate UML-MARTE Ac-
tivity Diagrams to time petri net (TPN) with the aim of verifying efficiently
time properties (synchronization, schedulability, boundedness, WCET, etc)
in real time embedded system. This work focuses on how to define TPN
based formal semantics for UML-MARTE Activity Diagrams to avoid the
core problem of state space explosion in model checking. TPN is selected
as verification model, because of the maturity of both its theory and the
associated TINA toolset, as well as its powerful capacity to express temporal

semantics.

Compared to timed petri nets, we use a different way to build a timed
model. First, we build our model by means of label transition systems (LTSs)
to model system behaviours. Our model graph comprises a set of states, with
arcs between them labeled by the activities of a system. Second, by translat-
ing LTSs to timed specifications, we actually build a unified way to specify
system behaviours and logical constraints, and pave the way to use the tool
TimeSquare. For real-time constraints, we also define delays, but our delays
are neither in states nor in labels. We encode delays in each action. These
delays are non-deterministic delay in the sense that the delay bounds are
specified as (logical) time intervals. We choose action-based LTSs to model
our systems with two reasons. 1) Our goal is to check the correctness of sys-
tem communication behavior, not to verify the correctness of programming
computations. So we hide unnecessary detail information like state variables,
but highlight the information that related to communication behaviours like
actions. 2) Action-based LTSs help us to build a compact and hierarchical

model since the states of them are abstract nodes.

38

2.6. AADL

2.6 AADL

Then we investigate two model-based engineering (MBE) tools for real-
time systems: AADL and MARTE (extended from UML). They automate
the analysis and facilitate the modeling of software architecture. UML was
conceived as a way to model functional structures of software (data, inter-
action, and evolution); while AADL is a way to model and analyze runtime

architecture.

The SAE architecture analysis & design language (AADL) [44] is a pro-
gramming language not only to define the textual representation of software
architecture but also (and more importantly) to formally define the syntax
and static semantics. In addition to textual representation, AADL allows
the software designer to depict the system graphically. It simplifies the
way of designing and analyzing the software and hardware architecture of

performance-critical real-time systems.

Descriptions in AADL comply with the syntax and semantics of the
language and can be verified by the syntactic and semantic analyzer of the
language to ensure that the description is analyzable and consistent. In other
words, constructs in a model are checked by the compiler to verify that they
are “legal”. Verification of the descriptions checks that a program is properly
structured, consistent, and semantically correct. AADL provides an exten-
sion construct called annex to add complementary description elements for
different kinds of analysis. These annexes are embedded in the descriptions
of its core language. AADL analysis tools, for example “open source AADL
tool environment (OSATE) [52], implement annexes as parsers, resolvers,
and semantic checkers. They execute the basic checking of the core language

and provide full consistency verification.

AADL focuses on runtime architecture modeling and analysis. Runtime
architecture is the software structure that defines the final execution sequence
of instructions. This software structure called software component is defined

by threads, processes, processors, and their interactions (data, event, and

39

Related Work

event data communication). Runtime architecture provides the software sys-
tem with specific quality attributes such as timeliness, fault-tolerance, or

security.

AADL language semantics, enforced by compilation techniques, provide
a clear execution semantics that is defined as a hybrid automaton. A hybrid
automaton is a mathematical model for describing how software and phys-
ical processes interact. The AADL hybrid automata are hierarchical finite
state machines with real-valued variables that denote the time. They de-
fine, unambiguously, the specific combinations of events that trigger or stop
the execution of the different elements of the model. Temporal constraints,
expressed as state invariants and guards over transitions, define when the

discrete transitions occur.

AADL offers a binding mechanism to assign software components (data,
thread, process, etc.) to execution platform components (memory, proces-
sor, buses, devices, etc.). Each software component can define several pos-
sible bindings and properties that may have different values depending on
the actual binding. Execution platform components support the execution
of threads, the storage of data and code, and the communication between
threads. This execution model in AADL encodes the most effective struc-
tures used by embedded systems developers and assumed by the theory of
real-time systems. Concurrent executions are modeled using threads man-
aged by a scheduler. The dispatch protocol (periodic, aperiodic, sporadic and

background) determines when an active thread executes its computation.

In AADL, communications can be immediate or delayed. A immediate
communication means that the dispatch time for sending thread and receiv-
ing thread is the same. A delayed communication means that the value from
the sending thread is transmitted at its deadline and is available to the re-
ceiving thread at its next dispatch. For delayed communications, additional
constraints are needed to get a deterministic schedule. Several criteria can
be considered, like for instance, the size of the buffer used for the commu-

nication, or applying a well-known scheduling policy, like Earliest Deadline

40

2.7. MARTE

First (EDF).

AADL permits software and execution platform components to be or-
ganized into hierarchical structures with well-defined interfaces. An AADL
description is almost always hierarchical, with the topmost component being
an AADL system that contains, for example, processes and processors, where
the processes contain threads and data, and so on. Besides, components may
be hierarchical, i.e. they may contain other components. Compared to other
modeling languages, AADL defines low-level abstractions including hardware
descriptions. These abstractions are more likely to help design a detailed
model close to the final product.

Even though AADL supports multiform time models, since it focuses
on the runtime architecture, the functional structure is extracted away. It
results in the lack of model elements to describe the application itself, inde-
pendently of the resources. Besides, AADL requires large amount of details
to capture even simple systems. Comparing to AADL, UML activities allow
for a description of the application, actions executed sequentially or concur-
rently, without knowing, at first, whether actions are executed by a periodic
thread or a subprogram. So in the next section we investigate MARTE: a

UML extension on real-time systems.

2.7 MARTE

The UML profile for Modeling and Analysis of real-time and embedded
systems (MARTE) [92] is a special extension of UML for modeling real-time
embedded systems. MARTE defines a broadly expressive Time Model to
provide for a generic timed interpretation of UML models. The time model
is based on partial ordering of instants. MARTE precisely defines a semantics
within UML profile rather than allowing tools, possibly incompatible with
other tools of the same domain, to support time modeling. MARTE OMG
specification introduces a time structure inspired from time models of the

concurrency theory [33] and proposes a new clock constraint specification

41

Related Work

language (CCSL) to specify, within the context of UML, usual logical and

chronometric time constraints.

The clock constraint specification language (CCSL) [7] has been intro-
duced to specify timed annotations on UML diagrams and thus provides
them with formally defined timed interpretations. CCSL offers a general set
of notations to specify causal, chronological and timed properties and has
been used in various sub-domains [65] [66] [9]. CCSL is intended to be used
at various modeling levels following a refinement strategy. It allows both
coarse, possibly non-deterministic, infinite, unbounded specifications at the
system level but also more precise specifications from which code generation,
schedulability and formal analysis are possible. Thus, MARTE, as a profile
of UML, presents a time model in a more precise and clear manner than UML
for the design of real-time embedded systems (RTES). And it provides more
precise expression of domain-specific phenomena such as mutual exclusion

mechanisms, concurrency, deadline specifications, and so on.

In MARTE, time can be physical, and considered as dense or discretized,
but it can also be logical, and related to user-defined clocks. Time may even
be multiform, allowing different times to progress in a non-uniform fashion,
and possibly independently to any (direct) reference to physical time. In real
world technical systems, special devices, called clocks, are used to measure
the progress of physical time. In MARTE, a clock, which can be chronometric
or logical, is a model giving access to the time structure. MARTE qualifies
a clock referring to physical time as a chronometric clock, emphasizing on
the quantitative information attached to this model. A logical clock mainly

addresses concrete instant ordering, making reference to a timebase.

MARTE explicit time model with powerful logical time constraints al-
lows to specify precisely and thoroughly the scheduling aspects of application
elements. Timed processing is a generic concept for modeling activities that
have known start and finish times, or a known duration. For a timed message,
start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation last-

42

2.7. MARTE

ing for a given duration. It is used to obtain delayed signals according to a
faster clock. For example “Clock C = A delayedFor n on B” specifies a clock
C that has all its instants coincident with the n'* instant of B that follows an
instant of A. The MARTE time model allows multiform/polychronous time
modeling, which is inspired by synchronous languages. It supports model-
ing and analysis of component-based architectures, as well as a variety of
different computational paradigms (asynchronous, synchronous, and timed).
MARTE enables the specification of not only real-time constraints but also
other embedded systems characteristics, such as memory capacity and power
consumption. Furthermore, MARTE can be used to check the communi-
cation and causality path correctness by introducing event relations into
models. Paper [82] proposed a technique for transforming MARTE/CCSL
mode behaviors into timed automata so that a system can be checked by the
model-checking tool UPPAAL. This approach enables verification of both

logical and chronometric properties of the system.

MARTE, as a standard model-based description for real-time and em-
bedded systems, provides a way to specify several aspects of embedded sys-
tems, ranging from large software systems on top of an operating system
to specific hardware designs. It provides a support to capture structural
and behavioral, functional and non-functional aspects by including CCSL.
However, MARTE, as an extension of UML, keeps some drawbacks from it.
As we know, UML provides a set of diagrams to depict software structures
graphically. These diagrams appeal to practitioners and help them tackle
complex software structures. Even though its individual diagrams are use-
ful to depict software structures, UML cannot fully define the relationships
between diagrams. The diagrams are developed as separate entities that ex-
press different aspects of the software, not as parts of a common construct.
Thus, when using MARTE, a designer is able to model a system with multi-
ple functional, runtime, and hardware diagrams. Then, connections between
the diagrams are used to model the allocation of entities from one diagram

to another. However, the consistency across diagrams is largely left to be

43

Related Work

resolved by the designer. Besides, UML is large and complex. It comprises
many different concepts and semantics that we do not need. Since we mainly
focus on communication behaviours and would like to keep the semantic as

simple as possible,

2.8 STeC

Spatio-temporal consistence language (STeC) [39] is a spatio-temporal
consistence language for real-time systems. It provides a location-triggered
specification in which agents are specified with location and time constraints.
The spatio-temporal consistence means that an agent, e.g., a mobile device,
executes a task when it arrives at a required location or time. The location
is an abstract concept, which can be a physical address, an IP address, a
channel or others.

Similar to CSP (Communicating Sequential Processes), STeC handles
the interactions between agents by two atomic communication commands
“Send” and “Get”. The difference between CSP and STeC is that STeC
includes time and location variables. And STeC defines guards as actions
and statuses of agents as well as their logical compositions. STeC handles
two kinds of interrupts: time break and interaction break. Following the
Dijkstra’s guard style, in STeC, nondeterministic choice phase is guarded by
communications. Syntax and semantics of the language have been proposed
to address the issue of spatial-temporal consistence. Based on it, STeC de-
fines denotational semantics [89] for describing distributed systems with time
and location constraints. The language specifies the time and location con-
straints for each action, and then computes the execution time of processes.

STeC language is able to specify real-time systems especially for the
consistence of location and time. However, our model has a quite different
goal compared to STeC. Our model timed-pNets mainly focuses on time
properties. We set the time information as parameters that rely on a reference

clock. Even though we need check car’s locations in our use-case, but such

44

2.9. Conclusion

data is not treated at the same level as the time information. This is quite
different from what the STeC does by adding location constraints. Moreover,
since we mainly focus on modeling the communication behavior of distributed
systems, we abstract location information as parameters and highlight the
synchronous and asynchronous communications, which also lead us taking

different way to model timed-systems.

2.9 Conclusion

These previous efforts are of importance since they provide crucial in-
sights on building timed-models for real-time systems. Their mechanisms
and strategies contribute to build our model.

Discrete-event models inspire the use of specifying system behaviours
by taking advantage of events. The events that trigger the communications
can be used to build a logical view of system behaviour. The investiga-
tion of globally asynchronous locally synchronous (GALS) model including
HipHop help us to have a deep understanding of handling synchronous and
asynchronous communications. They provide sophisticated mechanism for
coordinating the synchronous and asynchronous communications. However,
since we use pNets as our untimed framework, we do not take FSM (as
GALS did) to model the synchronous component. Instead, we wrap system
events into logical clocks and design the timed specifications (a set of logical
clocks and clock relations) to model synchronous and asynchronous com-
munications. Moreover, GALS focuses on orchestrating complex concurrent
behaviours and discusses the correctness of system behaviours, but we need
to take account the time constraints of these behaviours to analyze the sys-
tem time properties. BIP, as a framework for the incremental composition of
heterogeneous components, helps us to understand how they introduce the
time concept into its model. With contrast to BIP that takes a special port
for the synchronization of its components, we choose to build synchronous

relations between events so that we can flexible setting the synchronization

45

Related Work

on components and furthermore on events.

The other timed model like timed-automata, timed petri net, MARTE
and AADL provide us a broad view on modelling real-time systems. For
example, timed-automata succeeds on using real-valued clocks (whose values
increase all with the same speed) to specify time constraints. It is very
popular in industry for modelling real-time embedded systems. However,
since we would like to avoiding using common physical time in our model,
we choose a different way to model time constraints. In our model, we wrap
events as logical clocks and then set time constraints by means of these clocks
and clock relations. This idea is close to the MARTE model that introduces
CCSL as its timed model. However, MARTE is a framework in the software
level to model real-time system. Since we would like to build a low level
behaviour model in the sense that it is able to express behaviour mechanisms
for different various of languages or component models, we choose pNets
model and introduce timed specification into it. Other time related systems
like STeC are also be investigated to see how they specify time and location
constraints for actions.

These previous works provide us a global view of the current situation
of timed models, and their mechanism of handling time and asynchronous

communications.

46

Chapter 3 pNets With Timed-
Actions and Logical

Constraints

In this chapter, we solve two issues. One is how to define timed-actions and
introduce them into pNets. Another one is how to define logical clocks and
clock relations so that logical time constraints can be specified in our model.

We propose timed-actions by adding time variables into actions. The
variables are used to record delay time of actions. We then define a logical
clock as a set of occurrences of a timed-action. A logical clock is a mechanism
for capturing chronological and causal relationships in distributed systems.
Usually multiple logical clocks in a system are dependent. We define clock re-
lations to specify the dependence and interactions among these logical clocks.
Thanks to logical clocks and clock relations, our model can keep track of the
order of timed-actions that occur at each process, and ensure that these
timed-actions are assigned by consistent logical times.

The chapter is structured as follows. Section 3.1 introduces the defi-
nitions of timed-actions, logical clocks, clock relations as well as our timed
model. Then in section 3.2, we take a simple use case from ITS to demon-
strate the formalism of our model. TimeSquare tool is used to simulate
the system and check its properties. In the end, in section 3.3, we give a

conclusion for this chapter.

47

pNets With Timed-Actions and Logical Constraints

3.1 Model Building

3.1.1 Timed Actions

We follow the pNets assumption on Action algebra £ 4 p» which includes
all required operators for building action expressions in the language (P is a
set of parameters used to build open expressions, typically expressing data
variables) [13]. In our model, we define £4p 7 as the timed-action algebra,
in which 7 is a set of (discrete) timed variables. We denote for example
a (€ Lap7) as an action name, then we consider «, la(m) and 7a(m)
as timed-actions. « means that the timed-action executes locally but not
delivers messages. la(m) (m € P) is denoted as sending a message and

Ta(m) (m € P) as receiving a message.

Definition 1 (Timed-Actions) timedAction Let 7 be a set of discrete time
variables with domains in the natural numbers N. B is the set of closed
intervals (bounds) over time variables. The Timed-action Algebra £ 47 p is
an action set built over 7 and P. We call a(p)!® € L4+ a timed-action
in which o € A is an action, p € P is a parameter, t € T is a time variable
describing a time delay before the action can be executed, b € B is a delay
bound of .

We set o’ = a, which means the action « is always ready. As an
example, a!ll'3] means the action a cannot be executed until ¢ units times are
passed.

Since the next two chapters (chapter 3 and chapter 4) do not discuss
the delay bounds, for simplification, we do not represent them in the two
chapters. However, the bound intervals will be exposed in the chapter 5

where we will investigate the delay bounds.

3.1.2 Logical Constraints

We define a Clock as a sequence of occurrences of a timed-action. The

clock, in the sense of CCSL; is a logical clock. The logical clock means the

48

3.1. Model Building

distance between occurrences is not related with the passage of physical time.

Definition 2 (Clock) A Clock C, is a sequence of occurrences of a timed-
action a(p)’. We write:

Co = {a(p)t 1, a(ps)te2 2, ..., a(p;)i,...} (i € N), in which a(p;)ti_i
denotes the i** occurrence on clock C,.

For simplification, in this thesis, an occurrence a(p;)"i_i can be denoted

as a_t for short when not ambiguous.

Clock Relations A Clock Relation defines the relation between two clocks.

We take the syntax and semantics of clock relations from [64], which is a lan-
guage to express time constraints by defining clock relations in timed models.
The clock relations include: = (coincidence), < (strict precedence),=(prece-

dence), C (subclock), # (exclusion). They are defined as follows:
e C, = Cjs (C, coincides with Cj), which means clock C, ticks if and
only if clock Cj ticks.

e C, < Cj (C, strictly precedes Cg), which means Vk (k € N), the k™"

occurrence of C, strictly precedes the k" occurrence of Cj.

o C, = Cp (C, precedes Cp), which similar to the previous one. The
only difference is that the clock C, can tick as late as Cjs ticks.

e C, C Cp (C, is a subclock of Cy), which means clock Cz must tick at

the same time as clock C,, ticks.

o C,iC5s (C, excludes C3), which means none of their occurrences coin-

cide.

3.1.3 Introduce Logical Clocks into pNets Model

In pNets, the leaves are pLLT'Ss. To construct pNets with logical clock
constraints, we first introduce logical clocks into pLTS [13]. These logical
clocks are built from timed-actions. The following definition represents a

Logical pL'TS in which each transition is triggered by a timed-action.

49

pNets With Timed-Actions and Logical Constraints

Definition 3 (Logical pLTS) A Logical pLTS is a tuple < P, S, sg, A, C, —>,

where
e P is a finite set of parameters

S is a set of states

so € S is the initial state

A is a set of timed-actions

e (' is a set of logical clocks over the timed-action set A

— is the set of transitions: —C S x A x S. We write s — ¢ for
(s,a,s") €=, in which a € A, C, € C.

The next definition extends the classical pNets definition from [13] by
introducing clock constraints. The pNets retain a hierarchical structure and
a parameterization of subnets: holes in a pNet can be instanciated by a
variable number of subnets (e.g. a number of logical pLTSs). Then synchro-
nisation vectors allow very flexible and expressive multi-way synchronisation

mechanisms, that naturally we extend here with clock constraints.

Definition 4 (Clock Constrained pNet) A Clock Constrained pNet is a
tuple < P, Ag, Rg, J, C, 5J,§J, 7 > where:

o P ={p;/pi € Dom;} is a finite set of parameters

Aq C La7p is aset of global actions
e ('is a set of clocks for all timed-actions
e R is a set of relations between actions taken from each subnet

e J is a countable set of argument indexes: each index j € J is called
a hole and is associated with a sort O; C L47» and a set of clock

constraints R

V= {7} is a set of synchronous vectors of the form:

20

3.2. Simulation

. . . t .
* (binary communication) ¥ =< o lafy g tal gy > (ag), in
: ¢
which Clgg € Ag,k'il € Doml,kﬂ € Domg,!aﬂ S Oﬂ,!atQ € Oig,

Ciatr, Chye2, Catg eC, ty= max{tl, 12}
g

* or (visibility) T =< ..,afl;,... > (af), in which ag € Ag, k1 €
Doml,a“ € 0;1,Clqnn € C,| tg =11

Remark: We define the model in a form inspired by the synchronisation
vectors of Arnold and Nivat [10], that we use to synchronise clocks from
different processors. One of the main advantages of using its high abstrac-
tion level is that almost all interaction mechanisms encountered so far in the
process algebra literature become particular cases of a very general concept:
synchronisation vectors. We structure the synchronisation vectors as parts
of network. Contrary to synchronisation constraints, the network allows dy-
namic reconfigurations between different sets of synchronisation vectors. In
our model, we define two kinds of synchronous vectors. One is a binary com-
munication vector. The vector represents the communication of two holes
through timed-action !a@“] and ?afgﬂ]. The two timed-actions that come from
different holes stay between two symbols “<” and “>". The last element of
the vector appears behind the symbol “—”. It is a global timed-action gen-
erated by this synchronous vector. Another vector (called visibility) makes

a local timed-action (e.g. af,il]) visible by generating a global timed-action

(e.g. al).

3.2 Simulation

In this section we build a timed model for the use case named Vehicle-
to-Infrustructure Communication given in section 1.5.1 in page 22. Fig. 3.1
presents its architecture in which cars and infrastructures are distributed
nodes. Every Car consists of three sub components: a sensor, a controller
and a brake component. Sensors are used to detect the current locations
and speeds of cars and to receive control signals from infrastructures. Con-

trollers receive signals from sensors and then call brake components to exe-

o1

pNets With Timed-Actions and Logical Constraints

-
Car [k]
Car sensors
[result = keeping]
T
?T.s
——
ﬁ Infrastructure
| hib(loc, speed)
[result = trake] hb{k] {loc, speed)
| ctrl Corake)
1T s T l il (hrake) Control
Car Control
IT s Petrd (brake) calllbrake) | yrare 7 call brake chrl{ k brake)
O 7 call |
0
IT bralce
T O
7T | call brake)

Fig. 3.1: Timed-pNets architecture with details of the car’s subcomponents

cute brake operations if necessary. Local communications between these sub
components of cars are synchronized in the sense that sending actions and
receiving actions coincide. The LTSs of these sub components are shown in
Fig. 3.1. We specify sensors by two LTSs: one describes periodical emis-
sions of heartbeat signals to report the locations and speeds of cars; another

describes reactions to control signals.

3.2.1 Formalisation of the Architecture

Here we explain how to formalize this use case. We build our model with
two holes: one is for receiving an arbitrary number of cars; another represents
a single Infrastructure. We assume that the communications between the
two holes are asynchronous, while in each hole, the communications between
its subcomponents (e.g. Sensors, Controllers) are synchronous. We list the
formalisation of this system as follows.

< P,Ag. R, J,.C;.0,. R,V >

P ={k :Nloc: R, speed : R, brake : bool }

Ag = {CI_hb"(k,loc, speed), CI _ctrit(k, brake)}

52

3.2. Simulation

J = {car[k],infrastructure}
Ocar = {lc_hb™<(loc, speed), Tc_ctri<(brake), call (brake), Ty, ...}
Ornfrastructure = {T1-hb!™-1(k, loc, speed), I _ctrit- (k, brake),
[Tsensor_hb'"-I[k](loc, speed),
?Icontrol _hb" (k, loc, speed), ...}
R = {!lc_hb™v-<[k](loc, speed) <71_hb'-1(k, loc, speed);
I _ctrite-1 (k, brake) <?c_ctri[k](brake);}
7 :< Ocar|K], Oinfrastreuture >— AcCar_in frastreuture
=<lc_hb'v-<[k](loc, speed), 1 _hbtm-1(k, loc, speed) >— CI_hb'™ (k,loc, speed);
<?c_ctrlte<[k](brake), I _ctrit1 (k, brake) >— CI _ctri*(k,brake).}

An interesting point is that the Infrastructure receives independent
heartbeats from the Cars, that are subsequently interleaved within the Infras-
tructure structure. This is expressed by a clock relation on the link between
the sensors and control in the Infrastructure structure: !Isensor_hb'-1[k|(loc, speed)
c?1 control,hbtf (k,loc, speed). This relation tells that the heartbeat signals
transmitted by the k™ Sensor component are the subset of the heartbeat

signals received by the Control component.

Finally, we take a Car Sensor component as an example to represent its

clock relations:
RearSensor = {hb(loc, speed) £ idealClockdiscretized Byrate (1);
(t8lctri(brake)) (2);
Te_ctri(result) < (TAlctrl(brake)) (3);
letrl(brake) <7T_s (4);
(7T _s[i] V 7[i]) <?c_ctri(result)[i + 1] (5);}
where (1) describes that heartbeat signals are sent periodically; (2) in-
dicates that the events 7 and !ctril(brake) are exclusive; (3) denotes that the
event 7c_ctrl(result) always precedes the event 7 and lctri(brake); (4) tells

us that the event !ctri(brake) precedes the event 77'_s; (5) explains that the

events in the i cycle precedes those in the (i + 1) cycle.

23

pNets With Timed-Actions and Logical Constraints

3.2.2 Result

We use TimeSquare [41] to simulate the clock relations and check its
logic correctness. The input of TimeSquare is a CCSL file including clock
relations, bound requirements and properties. The tool proceeds with a
symbolic simulation, and generates a trace model. Output files (text and
graph) are generated to display the traces and eventually show if properties
are satisfied.

In our use-case, in order to check time properties, apart from the clock
relations, we also need to specify boundary requirements. Let a heartbeat
interval be “h:” that is defined as the distance between two adjacent heart-
beat occurrences (hb_(i + 1) — hb_i). We set communication delay bounds,

computation delay bounds and a deadline requirement as follows:

e The minimum and maximum communication delays between the cars
and the infrastructure are (1/5)hi and (3/5)hi;

e The computation delays are no more than (2/5)h;

e Each heartbeat signal should be processed before sending the next

heartbeat.

Through this simulation, we check if all heartbeat signals finally can be
processed before their deadlines. We formalize the property as (77 _si <
hbo_(i + 1))V (72 < hb_(i + 1)), which means that the action ?7"_s or 7 of the
it" cycle occurs before the heartbeat signal of the (i + 1) cycle.

The result of this simulation is shown in Fig.3.2, in which a red vertical
line is the deadline of a cycle. The figure tells that the property is not satisfied
since an occurrence of the action ?7'_s is later than its deadline. One reason
that cause the failure might be the large latency of communication delay or
computation delay. After we modify the maximum computation boundary
from “(2/5)hi” to ‘(1/5)hi”, we found out that the property is satisfied.

54

3.3. Conclusion

main::baseClock

main::car_hb

main::car_ctrl_R

main::c_ctrl_brake_!

main::c_T_s R

main::deadline

main::expression_0

Fig. 3.2: property checking

3.3 Conclusion

In this chapter, we defined a novel behavior semantic model by intro-
ducing logical clocks and clock relations to pNets model.

In this new model, logical clocks are derived from timed-actions. Clock
relations are specified in terms of the logical relations of timed-actions. Be-
sides, we take advantage of synchronous vectors to flexibly specify syn-
chronous communications.

A simple use case taken from Intelligent Transport Systems is used to
explain our approach, including how to formalize the system, how to check
time properties by TimeSquare tool. From the result of the simulation, we
conclude that this new approach helps to check system logical correction as
well as some time properties.

However, the different ways to specify local constraints (by synchronous
vectors) and global constraints (precedence relations) make it more difficult
to build a hierarchical structure. Besides, this model is not so compact since
synchronous vectors and global relations handle time constraints on actions.

Therefore, in the next chapter, based on this first attempt, we will im-
prove the current one to make it more compact. Besides, we will take care
of the structure of the model so that it will be flexible enough to adapt the

component-based design approaches.

95

Chapter 4 Timed-pNets Model

This chapter represents a communication behavioural semantic model called
timed-pNets that is an extension of the previous model we proposed in the
chapter 3.

The main contributions of this chapter are as follows. First, we develop
the extended model timed-pNets with a tree-style hierarchical structure. Its
leaves are represented by timed-pLTSs. Its non-leaf nodes (called timed-pNet
nodes) are synchronisation devices that synchronize the behaviours of sub-
nets (these subnets can be leaves or non-leaf nodes). Second, we let all nodes
(leaves or non-leaf nodes) associate with timed specifications. A timed spec-
ification is a set of logical clocks and clock relations. By proposing the solu-
tions of translating timed-pLTSs and timed-pNets to timed specifications, we
can analyze our model by investigating the hierarchical timed specifications.
Third, we design channels to model asynchronous communications instead
of directly using precedence relations. Thus, by using synchronous vectors
and channels, we can specify the communication behaviours (synchronous
and asynchronous communications). Last but not least, we update the syn-
chronous vectors from action-based synchronous vectors to clock-based syn-
chronous vectors so that we can handle a set of synchronous actions for each
vectors.

The use case “Vehicle-to-Vehicle Communication” taken from the sec-
tion 1.5.2 in page 23 is used to explain the timed-pNets model including the
notations, definitions and theorems. In the end, we simulate the system and

check the validity of this model.

27

Timed-pNets Model

timed-pNets

node
timed-pNets
node

@

Fig. 4.1: Timed-pNets tree structure

4.1 Context and problematic

In the previous chapter we proposed our first attempt on the time con-
strained model, including the notions of logical clocks imported from CCSL.
A set of clock relations were designed to describe the system constraints.
However, this model is not sufficient to build hierarchical timed specifica-
tions starting from timed-pLT'Ss.

In this chapter, we enhance the compositional aspects of our specifi-
cation methodology: a system is modelled as hierarchy of timed-pNets as
Fig.4.1, where leaves are timed-pLTSs, i.e. finite state transition systems
with logical clocks on the transitions, and nodes are synchronisation devices.
Products between subnets can be synchronous (modelling local components
sharing synchronous clocks), or involve asynchronous communications be-

tween unrelated events, that we model as channels.

From such a hierarchical model, we propose procedures for:

- at the bottom level, analyzing timed-pLTSs, and build the timed spec-
ifications (sets of clocks and clock constraints) encoding its temporal

behaviours;

- for each timed-pNets node, building an abstract timed specification (=

at level N), from its lower-level timed specifications (level N-1).

o8

4.2. Timed Specification

One important point is that Timed Specifications (TSs) are logical char-
acterizations, that can be either provided by the application designer, or
computed from the model. The consequence is that the two procedures
above can be used arbitrarily in a bottom-up fashion, starting with detailed
timed-pLTS and assembling them in a compatible way; or in a top-down
fashion, constructing TSs for abstract timed-pNets, using their holes T'Ss as
hypotheses in an assume-guarantee style, and providing later some specific
(compatible) implementations for these holes in various contexts.

In the end, we are able to use the TimeSquare tool [41] to simulate the
possible executions of timed specifications.

This rest of the chapter is organized as follows. Section 4.2 describes
the meaning of timed specifications including the formal definitions of timed-
actions, logical clocks and their relations. Then we give the definition of
timed-pLTSs in section 4.3. In section 4.4, we discuss how to build timed-
pNets. The procedure of generating timed specifications from timed-pLTSs
and timed-pNets are presented in section 4.5. The issue of checking the
compatibility of timed-pNets is discussed in section 4.6. In section 4.7 we
discuss how to build multi-layer timed-pNets systems. Then in section 4.8 we
represent the simulations by using the TimeSquare tool. Finally, the chapter

ends with conclusions and future researches.

4.2 Timed Specification

In this section, we present the preliminary denotations and definitions
of timed-actions, logical clocks, clock relations and timed specifications. We
shall use the example presented in section 1.5.2 in page 23 to illustrate all
definitions and results.

We define a logical clock as a sequence of occurrences of a timed-action.
The clock, in the sense of CCSL, is a logical clock. The logical clock means
that the distance between occurrences is not related with the passage of real

time.

29

Timed-pNets Model

Fig. 4.2: count the delay t,, when C, is an independent clock

Definition 5 (Logical Clock) A Logical Clock C, is a sequence of occur-

rences of a timed-action «(p)’. We write:
Co = {a(p)lr 1, a(pg)te2 2, ... a(p;)teii,...} (i € NT), in which a(p;)ti 4
denotes the " occurrence of clock C,.

For simplification, in our thesis, an occurrence a(p;)'i i can be denoted

as a_t for short when not ambiguous.

The assignment of the delay variable t,, in each occurrence a(p;)'i i can
be different. The delay variable captures the minimum time (delay) that an
action must wait before it can occur after the previous action. More precisely
when a clock is independent (has no precedence relation with another clock),
the delay is counted from the previous occurrence of the same action as shown
in the Fig. 4.2. If a clock Cjp directly precedes a clock C,, then the delay of
the i occurrence of the timed-action « is counted from the " occurrence
of the timed-action 8 as shown in the Fig. 4.3. The relation of coincidence
(discussed in the next subsection) does not effect on the way of counting the
delay. For example, if there is another clock C., that coincides with the clock

C,, then the delay ¢,, is still be counted as shown in the Fig.4.3.

For convenience, we define here two clock expressions, time shift, and

filtering:

Definition 6 (Clock Offset) Let C, be a clock built over a timed-action «,
C,li] be the i" occurrence of the clock C,. The n* offset of the clock C,, is
the clock defined as: C5™ = {Can+1]1,Chn+2]2,...,Cqn +i|d,...}.

From the definition we can see that the (n + 1) occurrence of C,

becomes the first occurrence of the new clock Cay (n), and so on.

60

4.2. Timed Specification

Fig. 4.3: count the delay t,, when Cg < C,

Definition 7 (Clock Filtering) Assume N’ is a subset of N. Let C, be a
clock built over a timed-action . The new clock that is filtered from the clock

C, by N'is denoted as CY' = {Cy,[i1]-1, Cylia] 2, . .. Culix] -7, .. .} (ir,in, . . ik, - ..

N'iy <ig < ...<lip,...,j5,k €N).

For convenience, we will write the filter N’ either as a boolean function
over N, or as a subset of N, e.g.: C2n—nen accepts only the odd occurrences

of the clock C,. 05”28} filters out the first 8 occurrences.

So if Cp = {a(pr)ter 1, apa)te2 2. .., a(p;)tei 4, ...},

then C" e — {a(py)or 1, a(pe)s 2, ... a(pan-1))'"en b m, ..}, CE —

{a(ps)tes 1, a(pg)tes 2,...}.

Finally we define Timed Specifications: a timed specification is com-
posed of a set of logical clocks, together with a set of clock relations, express-
ing the temporal ordering constraints between the clocks. This is an abstract
specification in the sense that it captures just enough information to check
the time safety (validity of time requirements) of a system, and the compat-
ibility relations required for assembling sub-systems together. In the next
sections we shall describe procedures to compute the timed specifications of

systems (timed-pLTSs and timed-pNets), and to check the compatibility.

Definition 8 (Timed Specification) Let Z¢ be the set of occurrences of the
clock C. A Timed Specification is a pair < €, R > where € is a set of clocks,

R is a set of clock relations on (Jiee Zo-

61

S

Timed-pNets Model

4.2.1 Syntax and Semantic of Clock Relations

A Clock Relation defines the relation between two clocks. With respect

to the original definition of clock relations in CCSL [7], we have slightly
different goals, and different needs. In particular we do not need exclusion
(that is most important with some families of reactive formalisms). We do not
define “subclock” relation in this paper because we need a more concrete way
to define how to build a new subclock from original one. Instead, we defined
“clock filtering” which can specify the way of selecting action occurrences.
Therefore, here we only define two relation operations (’<’, '=") to describe

the different dependence relations between clocks.

[

o

B g2 8.3

9

|

)
W [Co =Cy] =VieN, (a_i=p1i)

o1 a_2 o3

SRANSE ANEI AN

i N N N

1\ A1 ’r A2 T 3.3
C‘,-,»

@[Ca < Cg] = Vi € N,(a_i < B_i)

Fig. 4.4: Constraints

e The relation 'C, = C3" (C, coincides with Cjy) describes the strict
synchronization of clocks. It means that the occurrence of C,, appears
if and only if the occurrence of Cz appears. In other words, the clock C,
and Cjp tick at the same time. Formally, [C, = Cg] = Vi € N, (ai =
f-i) (shown in Fig. 4.4(1)). This operator can naturally be used to

describe synchronous communications.

e The relation 'C,, < C3’ (C, precedes Cjp) describes the precedence
relation of clocks. It says that the action § from the clock Cs can-

not occur until the corresponding action « in the clock C, occurs. In

62

4.2. Timed Specification

another word, clock C, ticks always earlier than clock Cg. Formally
[Coa < Cs] =Vi € N, (azi < B4). As shown in Fig. 4.4(2), the i oc-
currence of the clock C,, always appears earlier than the i occurrence
of the clock Cz. The relation usually relates to the causality induced

by an asynchronous communication.

4.2.2 Properties of the logical clock relations

Not surprisingly, these relations have their expected properties: coinci-

dence is an equivalence relation, and precedence is a strict preorder.

13

Proposition 1 (Properties of the Coincidence Relation “=%). Given a set
of clocks C' . The relation “=* on the set C is reflexive, symmetric and

transitive.

Proof: This follows from the fact that “=” is an equivalence relation on
timed-action occurrences.

(1) Choose any clock C,, € €. Let its i (i € N) occurrence be a_i. Obviously,
Vi, the occurrence a_i coincides with itself. So we know C, = C,; the
coincidence relation is reflexive. (2) Now choose another clock Cg € €. If
we have the relation C, = Cp, then we know that Vi € N, a_i = 4, which
means the action a occurs if and only if the action occurs. According
to the symmetric relation of the operator “=”, we know that the action
occurs if and only if the action a occurs. So we have Vi € N, i = a1. We
know Cjs = C,; the coincidence relation is symmetric. (3) choose another
clock C, € €. If we have the relations C, = Cg and Cs = C,, then Vi € N,

—»

ot = B4 N B = . From the transitivity relation of “=”, we infer Vi €

N, a_i = ~.; so we know C, = C,; the coincidence relation is transitive. [

Proposition 2 (The properties of Precedence Relation “<”). Given a clock
set €. The relation “<7 on the set € s transitive, but not reflexive, not

symmetric.

This follows from the same properties on the relation < on occurrences.

The proofs are similar to those of Proposition 1.

63

Timed-pNets Model

Car0 Car[m] (Carl / Car 2)
Control C. Initial Control [m]
onsensus Channel
= 3 Can t -
[ExpRes CurtDat c Wl equest(Ins)-q P> [ExpRes = CurDat. .
1Finish ?7Cgnsensus(ExpRes) Finish o) wmnte [Cocansensus(expres)®
C Cicmd(ins)e ' [m| tm
1Terminal |
SO S
<
[ExpRes != CutrData] 4| (ExpRes i= CarDatal
LocE:
et b=True] Channel Cuocexe
Crte
Crte
C Ini Cema [k = 0; K'++; k' < 2] [K':=0; K'++4; k' 2]
ommini CFinish(i)tf C\consensus(ExpRes, k)0
Cirp)R Emd(ins)'c
b=Vr, Cr CommRes[m]
‘i@:l; k++; k2] ¢ ,—l CNot\fy 2
Noti 92[m]
Cinotify(ins ot g1 »| ChannelNtfim] >
C 1
[KT=1; k++: k< 2] Cack ,—L Ack
Conckikrmta g4 (m] ChannelAck[m] [« 93 [m]

Fig. 4.5: Communication Behaviour Model of Cars Insertion Scenario

Proposition 3 (Substitutivity of "="). Given four clocks C,, Cs, C,, C,
which are built on the timed-action o, B, v and 7 separately. Let C, = Cp
and C, = C,. If C, < C,, then we have Cg < C,,.

Proof. According to the coincidence definition, C, = Cs = Vi,ai = (i,
and C, = C,, = Vi,y1 = nai. If C, < C,, then according to the precedence
definition, we know Vi, a_t < i, which means the action « always occurs
earlier than the action . Since Vi, a4 = [_i tells us the action a occurs if
and only if the action S occurs, so we know [always occurs earlier than ~
(Vi, f_i < ~y_i). Similar, since Vi,v_i = n_ tells us the action v occurs if and
only if the action n occurs, so we furthermore have the relation Vi, 5.1 < n_i.

According to precedence relation definition, we get Cz < C,,. O

Example 1 In this example, we illustrate how to represent timed-actions,
clocks, and clock relations for our “car inserting” scenario presented in the
section 1.5.2 in page 23. As shown in the Fig. 4.5, on-board car systems are
modeled by several components including “Initial”, “CommIni” “CommRes”,
“Control”, etc. (In this figure we only show the components that participate
in the protocol.) In the example, the procedure starts with a user’s request
by sending an “insertion” order (encoded here as a “! Request(Ins)'” timed-

action) to the “Initial” component. Then the procedure runs in two phases:

64

4.2. Timed Specification

(1) The agreement phase: car0 sends a noti fy(Ins) message to the other two
cars, and waits for their answers. This phase is managed by the “CommIni”
process, that communicates to the “ComRes” processes of other cars through
asynchronous channels. In the model, there is one such channel for each
type of messages, and for each pair of communicating processes; we use the
parametrized structure of pNets to represent such families of processes, e.g.
“channelNtf[m]” in the figure 4.5. The “CommlIni” process is in charge of
collecting the answers from the other cars asynchronously, and sending the
final decision to “Initial”. If it is negative, then “Initial” aborts and signals
Cancel to the user, otherwise we go to the next phase.

(2) The execution phase: this phase is triggered and controlled directly by the
“Initial” process. It sends Ciconsensus(Ezpres)to t0 all cars including itself to
initiate the execution and to tell them the final expected result (“ExpRes”).
The “Control” process of each car is in charge of the local Execution of the
movement (that we leave unspecified here), till the expected result is observed
([ExpRes = CurData)). Then the |Finish signals are collected by “Initial”,

and termination is notified to the user.

We use label transition systems (LTSs) to model each component. Each
transition will be triggered by a clock. Precedence relations are used to spec-
ify the causality relations of LTSs. For example, in the “CommRes” compo-
nent, the clock “Copotify(ms)y” occurs earlier than the clock “Claeg(r,,)ia”. We
denote the clock relation as “Coyopify(rnsytn < Clack(rm)ta - For simplification,
in the following sections, we will omit the parameters and time variables
when expressing a clock relation if it is not ambiguous. For example, we use

7

the short version “Coporify < Claer” instead of “Conotify(insyin < Clack(rmy)te

In this use-case, we assume for simplicity that the communication inside
a car is synchronous (in realistic modern car systems, this hypothesis would
have to be refined, since the onboard systems include several process com-
municating through data buses). Here, the timed-action “!Cmd(par)’” in
the “Initial” process and the timed-action “?Cmd(par)t” in “CommlIni” are
always synchronous when the two components communicate and transmit
the message “par”. So the two clocks coincide
(Critial..cmdaryte = CCommni.?Cmd(par)te)-

By contrast, the communications between two different cars are asyn-

65

Timed-pNets Model

chronous (typically over some wireless ad-hoc network). For this we insert a
specific asynchronous channel (built as a special timed-pLTS) between cars
for each type of messages exchanged between them.

The two mechanisms illustrate our approach to model heterogeneous
(synchronous/asynchronous communication) systems. In the next section,

we show how we formalise this by using the timed-pNets formalism.

4.3 Timed-pLTS

This section introduces timed transition systems (timed-pLTSs), includ-
ing the special cases: channels. We illustrate each definition with a piece of

the running example.

Definition 9 (Timed-pLTS) A Timed-pLTS is a tuple < P, S, sy, A, €, —>,

where

e P is a finite set of parameters

e S is a set of states

e 5o € S is the initial state

e Ais a set of timed-actions

e (¢ is a set of clocks over the timed-action set A

e — is the set of transitions: —C S x € x S. We write s Loy o for

(s,C4,s") €=, in which a € A, C, € €.

Example 2 Consider the “CommlIni” component in Fig. 4.6. The clock
relations will correspond to the precedence (causality) relations between the
transitions of the LTS, with a special case for the loops on states s; (a state for
sending notifications) and s, (a state for receiving “ack” signals), where the
communication events are indexed by k € [1..N] (N is the (fixed) number of
neighbors of the initiating car (here N = 2)). The first loop on s; means that
car(sends a notification signal to carl and car2 separately. The second loop

on s, means that car(collects “ack” signals from carl and car2. Moreover,

66

4.3. Timed-pLTS

Commini

C!R(b)tR md(lns)tc

b=V 'm

= 1; k++; k< 2]
Crtr Cinotify(ins kot
=1, k++; k< 2]

C, t
?Ack(k,ry)a

Fig. 4.6: The timed-pLTS of the CommIni component

we use the silent action 7 to build a clock C% that labels the transition to
state so when the component finishes sending two notifications. We build

the timed-pLTS elements as:
e Parameters P = {k, Ins,r,,,b, N},
e Action algebra A = {?Cmd(par)', \noti fy(par), 2ack(k, v,), 'R(b)'R, 7'}
o Clocks € = {Crcmds Crnotifys Cracks Cir, Cr}

e (we do not detail the clock relations here, they can be easily deduced

from the figure)

Note that the system designers only need specify the timed-pLTSs. The
clock relations can be automatically deduced from the timed-pLTSs (see sec-
tion 4.5.1).

Channels. We introduce channels to model asynchronous communication
behaviours. A channel is defined as a special transition system with two
timed-events: one for receiving messages, another for sending messages. The
two events have a precedence constraint which models the delay of message
transmission. For simplification, the channel definition here just describes
a simple one place asynchronous buffer, sufficient to illustrate the hetero-
geneity of synchronous and asynchronous communications. More realistic
asynchronous mechanisms are possible (e.g. n-places buffers, lousy channels,
or ProActive/GCM request queues with futures [34] but they are not the
topics of this thesis).

67

Timed-pNets Model

Definition 10 (Channel) A channel is a transition system with tuple <
P S A € <, —> in which

e P is a finite set of parameters,
e S is state set in which S = {Scmpty; Sdata }»
o A= {%in(par)t,lout(par)te} (par € P) is the timed-action set,
e Cis a set of clocks over timed-actions A,
. .. C?in C!out
e — is a set of two transitions: Sempty — Sdata and Sggtq —— Sempty-

In the channel definition, the timed-action ?in(par)’ is an action for
receiving messages from one component, while the timed-action lout(par)'

is an action for sending the messages to another component as shown in Fig.
4.7.

channel
Crin (par) fi

Sempty Sdata

G,

Fig. 4.7: The timed-pLTS of channel Component

4.4 Timed-pNets

Finally we define Timed-pNets, that are our main structure used to com-
bine sub-systems to build bigger systems. Similar to the original (untimed)
pNets, a Timed-pNet is a generalized composition operator, defining the syn-
chronization between a number of subsystems (holes). In timed-pNets, holes
are characterized by action algebra (a sort); here it is complemented by a
Timed Specification. Building a timed-pNet tree representing a full system

requires filling holes with (compatible) sub-nets.

Definition 11 (Timed-pNets) A Timed-pNet is a tuple < P, Ag, €, J, Ai;, EJ, 7€J, 7 >

where:

68

4.4. Timed-pNets

P is a finite set of parameters,

e As is a set of global timed-actions, and €4 is the set of global clocks
that are built over Ag,

e J is a countable set of argument indexes: each index j € J is called
a hole and is associated with a set of local timed-actions A;, and an
associated Timed Specification < €;, R; >.

o V= {7} is a set of synchronization vectors of the form:

- (binary communication between holes j; and j5)
7:< ...,C;a,...,C?a,... >—>Cg, !
in which {C;a = C?a = Cg}, Cg € Q:G, C[a c Q:jla C?a € ¢j2,j1,j2 < J,

- or (visibility from hole j)
T =<...,Ca,... > Cy, in which {C,, = Cy},Cy € €5, Crq € €, j €
J.

Furthermore, each global clock can be generated by only one synchro-
nization vector:

Voum eV, Cpy=Cpy — W =07

(Cyi(resp. Cyyr) be a global clock generated by the vector o (resp. o),
i,i € N)

Remark: We define Nets in a form inspired by the synchronisation vec-
tors of Arnold and Nivat [10], that we use to synchronise clocks from different
processors. One of the main advantages of using its high abstraction level
is that almost all interaction mechanisms encountered so far in the process
algebra literature become particular cases of a very general concept: syn-
chronisation vectors. We structure the synchronisation vectors as parts of
network. Contrary to synchronisation constraints, the network allows dy-
namic reconfigurations between different sets of synchronisation vectors. In

our timed-pNets, we define two kinds of synchronous vectors. One is the

“ b2

Lwhere represents an arbitrary number of holes that do not participate in this

synchronization

69

Timed-pNets Model

communication vector (< ...,Cl,...,Cs%,... >= C,). The vector repre-
sents the communication of two holes through clock C, and C%,. The two
local clocks that come from different holes are put between the two symbols
“<” and “>”. The last element of the vector appears behind the symbol
“—”, and specifies the global clock generated by this synchronous vector.
Another vector (< ...,C,,... >—= () makes the local clock C, visible by
generating a global clock Cy. For both kinds of synchronous vectors, the lo-
cal clocks (that appear between “<” and “>”) are transparent to the upper
layer nodes. Only the global clocks (the last elements in the synchronous
vectors) can be observed from the upper level. These global clocks can be
used for building a higher level timed-pNets node.

Moreover, from the definition 11 we can see that the synchronous vec-
tors only catch the coincidence relations between clocks (for describing syn-
chronous communications), which makes our timed-pNets models cannot
directly specify asynchronous communications. So when modelling asyn-
chronous communications, we need to introduce channels into systems. The
two subsystems that asynchronously communicate with each other are con-
nected by a channel in which a communication delay is modelled. Example
3 shows us how to take advantage of channels to specify asynchronous com-
munications.

Notations for parameterized systems. In practice, we use parametric no-
tations, both for holes and for synchronization vectors, making the notations
more compact and more user-friendly. These are only abbreviations, their
meaning must be understood as a (finite) expansion of the structure.

Using such abbreviations, for a pNet in which j;, jo, j are parametric
holes with indexes ki, ko, k, with respective domains Domy, Domsy, Dom,

the synchronization vectors will look like:

- binary communication
Depending on the combination of actions from j; and js, this vector
will generate a family of global clocks indexed by a parameter k, that

is a function of k; and ky. The domain of £ is a subset of the product

70

4.4. Timed-pNets

Crte

[K=1; k++; k <2]
Conckikrmta
! T'm

1; k++; k 2]

Cinotify(ins k)

ChannelAck[m]

t,
C.2A (rm)?m]
t
Cerackity) 2
m

Timed-pNets
C Noti C ori
C?Cm o Not'fygl[m] Notlfygzlml
° ChannelNtfim] ¢ 3
Commini CommRes[m]
o c Ackg4[] c Ackg3
™ eChannelAck[m] {omd
Cirepy | r
| Hole impleme&ations
ChannelNtf[m]
Commini A . CommRes[m]
. 2Nggify(Ins,k) "
Cc.!Notify(Ins tn (m]
Cirgp)R Emd(ins)'c ")
b=V m

t
otify(Ins) "[m]
c 1Ack(ry)a
"LO

Fig. 4.8: A Timed-pNets with one of its implementations

Domq x Domsy. < -'-7C!a[k1]7 ---7C?a[k2]> e > Cg[k],

in which {Ciai,) = Craky) = Comi}s Cyiy € €as Crali) € iy Craliy) €

¢;

_ visibility

Each visible action from hole j generates a corresponding global clock.

< .., Ca[k]7 > Cg[k], in which {Ca[k] = Cg[k}}, Coz[k] € ¢, Cg[k] € ¢q.

Example 3 We go on the use case to illustrate how to build a timed-

pNets model.

To make the example smaller, we have extracted here the

respective “communication” subNets of 2 cars, and the channels on which

they communicate, and we show how to build a pNet encoding this small

subsystem.

As shown in the Fig.4.8, the subsystem consists of components ”Com-
mIni”, ”CommRes[m]”, ”ChannelNtf[m]” and ”ChannelAck [m]”. The com-

ponents ”ChannelNtf[m]” and ”ChannelAck[m|” are channels in which the

parameter ”[m]” denotes to which car the corresponding channel transmits

71

Timed-pNets Model

data. By using the parameter "m”, we give a more compact representation of
the model. According to our scenario, car(sends a notification to carl (resp.
car2) via " ChannelNtf[1]” (resp.” ChannelNtf[2]”), and then carl (resp.car2)
answers an “ack” to car0 via ”Channel Ack[1]” (resp. ChannelAck[2]”). So in
the upper layer timed-pNets nodes, we can link these components by building
synchronous vectors. For example:

- the vector? < —,C;ack[l],—,Cc,?ack >— Cackg3[1] represents the commu-

]
nication between the components “CommRes[1]” and “Channel Ack[1]

7

and

7

generates the global clock * ackgsy, Notice that even though we actually
have 7 subnets (CommIni, CommRes[1], CommRes|2], ChannelNtf[1], Chan-
nelNtf[2], ChannelAck[1], ChannelAck[2]), by using parameters, we represent
our pNet and its synchronous vectors with only 4 holes.

- the vector < C’,fjt;;; seN | Cetnotifyy s — >— C’notifygl[l] represents the com-

munication between the components ”CommIni” and ”Channel Nt f[1]” and

{25=1},en

motify 18 the clock built from

builds a global clock ” C,,04 Fuonyy ” (remember C
the clock Cuotify by choosing the occurrences with odd indexes).

Following the timed-pNets definition, we can formalize this timed-pNets as

follows:

o P={k,Ins,m,ry,b},

o Ag = {notify(Ins, k);"’f[m],notify(lns, k);";{m],ack(rm, k);‘?{m],

ack(rm, k)¢t 7Cmd(Ins) %, IR(b)\ee

L4 €G = {Cnotifygl[m] 9 Cnotifygg[m]) Cackgg) Cackg4]) C?Cmdg57 C!RQG}

[m] [m

o J = {CommlIni,CommRes|m]|, Channel Nt f[m],
Channel Ack[m]}(m = 1,2)

Next we formalize the Timed Specifications of these holes as:

e For the hole “CommlIni”:
Acommini = {?7Cmd(Ins)te, Inoti fy(Ins, k)t 2ack(k,rpy)te, | R(b)!7 }

Q:Commlni = {C7Cmd7 C!notify7 C?acka C!R}

2where “—” represents a single hole that does not participate in this synchronization

72

4.4. Timed-pNets

25—1}, 2s—1}, 2s}s
Rcommimi = {Cromd < C!{noti f; <, C!{noti f; < C!{not}; oo

0{25_1}561\1 = 0{25_1}36N C{2S}SGN = C{2S}SGN

Inotify ?ack ’ Inotify ?ack)
{2s—1}sen {2s}sen {2s}sen A(1)
C?ack: : = Cf?aclcS) C?acks = C!R = C’?cmd}

e For the hole “CommRes[m]” (m := 1, 2):
AC’ommRes[m] - {?notify(]ns, k)l[:;]a !aCk(ka Tm)f:n]}

Q:C’071”L7)1}~'i:23[m} = {C?notify[m]) C!ack[m] }

A1
RCommRes[m] = {C?notify[m] = C!ack[m] = C?n(ot)ify[m]}

e For the hole “ChannelNtf[m]” (m := 1, 2):
AcChanneintfim] = 1¢-notify(Ins, k)%,c.!notify(ln& k;)m}
CChannelNtflm] = {CC~?notify[m1 ’ CC-’notify[ml }

A}

[m]

Rchannethf[m] = {Cc.?notify[m] = Cc.!notify[m] = Cc.?notify

e For the hole “ChannelAck/m]” (m := 1, 2):
AChannelAck[m] = {c.?ack(k, Tm)z[t;r;] s c.!ack(kz, rm)l[ﬁ:ri]}

Q:ChannelAck[m] = {Cc.?ack[m] ’ Cc.!ack[m] }

A1)
7echamnelAck[m] = {Cc.?aCk[m] = C&!adf[m] = Cc.?ack[m]}

In the end, we specify the synchronous vectors:

. {QS_I}SGN
VYI < C!notify([ns,k:l)’ g Cc,?notify(lns)[l]7 - > Cnotifygl[l] 5
‘/2 <=, C?notify[l]a Cc.!notify[l]a - > Cnotifygz[ll)
VES < =, C!ack[l]a R Oc.?ack[1] >— Cackgg

(1’

. {25—1},en
‘/;1 < C?ack(kzl,rm)7 R Cc.!ack(rm)[l] >— Cackg4m

. {23}36N
‘/5 < O!notify([ns,kz?)’ I Cc.?notify([ns)mv - > Cnotifyg1[2] 5
‘/6 <, C?notify[2]7 Cc.!notify[z]a - > Cnotifyggm)
‘/} <, C!ack[g]a B Cc.?ack[g] >— Cackgg

2’

. {QS}SEN
‘/8 < C?ack(k:277‘m)7 R Cc.!ack(rm)[Q] >— Cackg4
Vo :< Coomd, — —, — > Cromdys,

(2]

73

Timed-pNets Model

VVlO < C!Ra — T, > C!Rge}

Discussion: The Timed specification of holes. Let us now argue how
the timed specifications of this upper-level timed-pNet holes may have been
specified, in a top-down approach, before building their timed-pLT'S imple-
mentations. This, intuitively, is done from the informal description of the
scenario and the knowledge of the top level component and communication
architecture:

Take the “CommlIni” component as an example, the scenario related to

the component is:

(1) the component “CommlIni” gets a change-lane request by clock Coepa

from the “Initial” component;

(2) the component “CommlIni” sends requests by clock Cly,ei 7y, in sequence,

to carl and car2 to get agreements;

(3) the component “CommlIni” collects results from carl and car2 by clock
O?ack;

(4) the component reports result to “Initial” component by clock Cx.

Since the step (1) happens earlier than the step (2), the clock Cyepng must
precede the clock Cipoify. Then, in our use case, the component “Com-
mlIni” sends notification signal twice, so we have clock relation {Crcpmag <

C,{fo‘st;cl; e < C’,{fjt;:}?} In generally, if there are N neighbors, the clock rela-

tion should be {Crcmg < C,Ejzt‘ifyn Dlsen C,‘%nyn Dbsen ,EZJZZ }fSyEN}

Similar to the step (2), since the component receives “ack” signal twice, so
we have the clock relation {C’ijjk_ e C;fngEN}. Furthermore, the clock
Chnotify in step (2) should precede the clock Chyer in step (3), so we have

the relations C,fjt;;jsel“ Ci2o- et ang C!fjt];}eyN C2skae - Finally the
{2S}SEN

scenario goes to the step (4), we have the relation {C5,;/°*<" < Cig}. Since
the scenario is repeatable, we specify the clock relation {Cig < c2W }. In

?emd

the end, we conclude:

25—1}5 2s—1}s 2s}s
Ricommini = {Cr0ma = Chyigy™ ™, Chuigy ™™ < CLlE",

C{Qs 1}sen C{2S l}seN’ C{2S}seN Cijj?eN)

Inotify Tack Inotify 7 A
25—1}, 25} 2s}s 1
O’;{acskr oer = C’;{acsli EN? Ciajk < = O!R = 0707(n¢)i}

74

4.5. Generating Timed Specification

In the section 4.6, we will show that these Timed Specifications are
indeed fulfilled by the corresponding timed-pLTS “CommlIni”, “ComRes”,
“ChannelNtf”, and “ChannelAck”.

4.5 Generating Timed Specification

4.5.1 Generating TS of timed-pLTS

As we see in the Fig.4.8, timed-pL.TSs are concrete implementations
of those holes. In order to check the compatibility, we need to generate
timed specifications for those concrete timed-pLTSs. Here we propose rules
to automatically generate a timed specification from the LTS part of a timed-
pLTS. More precisely, given the action algebra and the transition relations of
a timed-pLT'S, we compute its set of clocks, and the relations between these
clocks.

This procedure runs in 4 phases as shown in the Fig. 4.9. The inputs
of the procedure include a timed-pLTS and a set of rules that tell how to
set the occurrence relations and its index functions. In step 1, we traverse
the timed-pLTS and generate a “symbolic” table that gathers all possible
causally related pairs of transitions of the timed-pLTS, and the correspond-
ing relations between clock occurrences. In step 2 we go through the symbolic
table and build a “concrete” table in which each column represents one spe-
cific “round” of execution through the symbolic table (with concrete index
assignments). In the concrete table, guards of the timed-pLTS can be re-
solved, so some of the symbolic transitions may be eliminated. In step 3 we
generate a general formula for each relation. In the end (step 4), we lift those

occurrence relations to clock relations, and generate the Timed Specification.

4.5.2 Auxiliary functions: Pre/Post sets

Before describing Step 1, we need to define the functions computing the

pre/post sets of the timed-pLTS states.

5

Timed-pNets Model

generate occurrence relation
table for the timed-pLTS

v

Step 2| enumerate occurrence relations

L

Step 1

Step 3 Induce general formula
Step 4 Lift to clock relations

Timed Specificatio

Output

Fig. 4.9: Steps for generating the TS of a timed-pLTS

For a timed-pLTS transition system < P,S,sg, A,&, —>, we denote
PreAct(s,s') the set of direct preceding timed-action occurrences of s from
s'; and PostAct(s, s') the set of direct succeeding timed-action occurrences of
state s towards state s’. Then we denote PreAct(s) (resp. PostAct(s)) as the
set of all direct preceding (resp. succeeding) timed-action occurrences of state
s. Furthermore, we define PreActIndex(s) (resp. PostActIndex(s)) as the
sum of the indexes of the set of preceding (resp. succeeding) timed-action
occurrences of state s. The sum corresponds to the cases where branches
in the LTS allow some executions to go several times through alternative

transitions out of some states. Formally:

Definition 12 (Preceding Timed-Action Occurrences) Let < P, S, 59, A, €, —>
be a timed-pLTS transition system. For s € S and a(p)'> € A, (p € P), the
direct preceding timed-action occurrence of s is defined as PreAct(s,s’) =
{ails’ Loy s 0 € Ca, } (5,8 € S). The set of direct preceding timed-
action occurrences of s is defined as PreAct(s) = |J, g PreAct(s,s’). Fur-
thermore, we denote the index of a preceding timed-action occurrence as
PreActindex(s,s") = {ils' Loy 5,0l € Co(s, s € S)}, and the sum of

76

4.5. Generating Timed Specification

State Transition Occurrence Relations Index Assignment
So tr0 : s9 Gin, So Croma, S1 'Rom < 7C'md_n firo:n=m+1
S1 trl : sg Lrema, S1 SN S 7Cmd-n < 1_r fir1:r=mn

tr2 : sg Croma, S1 C!NOtify> S1 ?Cmd_n < notify_ fro i :=i4+1
tr3 : sy Cinotity 51 Civotity, s1 Inotifyi <notify_(i+ 1)
trd : s; M $1 N S9 Inotifyi < tr fira:T=mn
S trd : s; N S9 % So Tr <!R_m fous:m=r
tr6 : s; SN S9 M) S9 Tr < Tack_j foe:ji=7+1
tr7 : sy Crack S9 Crack, S9 TAck_j < Tack_(j + 1)
tr8 : sy % S % So ?Ack_j <!R_m fus:m=r

Fig. 4.10: Time assignment for the Timed-pLTS “Car.CommIni”

the indexes of a set of preceding timed-action occurrences of state s as
PreActIndex(s) =) g PreActIndex(s, s').

Definition 13 (Succeeding Timed-Action Occurrences) Let < P, S, sg, A, &, —>

be a timed-pLTS transition system. For s € S and a(p)> € A, (p €
P), the direct succeeding timed-action occurrence of state s is defined as
PostAct(s,s') = {ails Loy i € Co}, (s, € S). The set of direct
succeeding timed-action occurrences of state s is defined as PostAct(s) =
Uy g PostAct(s,s"). Furthermore, we denote the index of a succeeding
timed-action occurrence as PostActIndex(s,s’) = {ils Loy o ai € Cat,
(s, € S), and the sum of the indexes of a set of succeeding timed-action
occurrences of s as PostActIndex(s) = g PostActIndex(s,s’).

4.5.3 Relations and assignment rules

The computation in Step 1 is based on a set of rules identifying spe-
cific configurations of the states in the timed-pLTS traversal. For each such
configuration, we define a rule that expresses the relation(s) between the set
of preceding and succeeding clock occurrences of the current state, and the

changes in the clock occurrence indexes.

7

Timed-pNets Model

The main configurations are: initial state, in which we have to initialize
indexes, and increase an index each time when the system goes through a
new global round; standard state in which we register the increase of one of
the involved index; and looping states, in which we have to take care of the
guards for entering/leaving loops, in terms of a specific “loop counter”.

We define a restrictive notion of looping states, which is reasonable

configurations for timed analysis. A looping state may have one or more
loops of arbitrary length, but coming back to the same state. And each
loop must start with a transition with a guard taking the precise form of
a “loop counter” control, namely [k=1; k++; k < kMax] for some counter
variable k, in which kMax may be a natural number, or a variable. Loop
guards can share a loop counter (see e.g. Fig. 4.11), so several loops will be
executed the same number of times; otherwise different loop counters must
be independent. Of course one could imagine more complex structures for
our timed-pLTSs, but this restriction already covers a lot of interesting cases,
and make the generation of the Times Specification easier.

In these rules, for simplification, we represent relations on two sets (.S;
(resp. S) is a set of occurrences of clocks): S; < Sy means Vo, € Sy, 5, €

So, Ay < B (m,n € N).

(1) Initial state. If PreAct(sg) € 0, then PreAct(sq) < PostAct(so),
[Assign: PostActIndex(sy) < PreActIndex(sg) + 1];

(2) Standard state. Vs\sg, PreAct(s) < PostAct(s),
[Assign: PostActindex(s) <= PreActIndex(s) |;

(3) Looping state. Vs, if Ja.s Coy s and the loop executes N times, then

(3.1) go inside the loop
PreAct(s) < ai,
[Assign: ¢ :=1i + 1]
(3.2) stay in the loop,
ad<a(i+1)

78

4.5. Generating Timed Specification

(3.3) leave the loop:

(3.3.1) leave the loop to another loop, e.g. 35.s N (B_j € PostAct(s,s)\a-i):
i =< B,
[Assign: j:=j+ 1]
(3.3.2) to one post-action out of PostAct(s, o) :
a_i < PostAct(s)\PostAct(s, so),
[Assign:
PostActIndex(s) < PreActindex(s)].
(3.3.3) to one post-action in PostAct(s, s¢):
a_i < PostAct(s, sg),
[Assign:
PostActIndex(s) <= PreActIndex(s) + 1].

4.5.4 The Method for Generating Timed Specification

This subsection introduces a method of generating a timed specification

from a timed-pLTS. We state two algorithms and 4 steps.

Step 1: generate occurrence relations table

The algorithm 1 uses the rules above to build an occurrence relation
table. More precisely each row in the table lists a specific pair of Pre/Post
transitions of a state, with the corresponding occurrence relation and the

index increase function deduced from the corresponding rule.

Commini

r=1; k++: k €2]

T.r INotify i

[k™=1; k++: k< 2]
?Ack_j

Fig. 4.11: Simplification of CommIni Component

79

Timed-pNets Model

Algorithm 1 Generate occurrence relations table
Input: a timed-pLTS graph and rules.

Output: A table of occurrence relation with its index assignment function.

for each state s; in LTS graph do
for each pair (s, s2) such that s, =N S , sy do
insert a row with State = s;, Transition = s; g> S; % Sg.
if s; = so AND s; has no self-loop then
apply case (1) rules, adding the relations and assignments in the
corresponding rows.
end if
if s; # so AND s; has no self-loop then
apply case (2) rules
end if
if s; includes one self-loop then
if s;, = s then
apply case (1), (3.1), (3.2) and (3.3.3) rules
else
apply case (2), (3.1), (3.2) and (3.3.2) rules
end if
else
if s;, = so then
apply case (1), (3.1), (3.2), (3.3.1) and (3.3.3) rules
else
apply case (2), (3.1), (3.2), (3.3.1) and (3.3.2) rules
end if
end if
end for

end for

80

4.5. Generating Timed Specification

Example 4 Let us take the “CommlIni” component from Fig. 4.6 as an

example. We first transform Fig. 4.6 into Fig. 4.11 by removing all param-

eters but adding index variables. Then we generate occurrence relations for

each state. For example, we take the state “sg”, from the timed-pLT'S graph
Cig C2cmad

we get the transitions sy 50 s1. According to the rule (1) we
have !R-m <?C'md_n and the assignment n = m + 1 (n,m € N). Take the

state s; as another example. Since it includes a self-loop, we apply the rules
(2), (3.1), (3.2) and (3.3.2). When a transition directly brings to the next
state without passing the loop, according to the rule (2), we have the relation
?C'md_n < 7_r and the assignment » = n. When a transition enters the loop,
according to the rule (3.1), we have the relation 7Cmd_n < notify_i and the
assignment ¢ := i+ 1 (¢ € N). When a transition stays in the loop, according
to the rule (3.2), we can get the relation “Inotify_i < Inotifyi+ 17 (i € N).
Then when a transition leaves the loop, according to the rule (3.3.2), we have

the relation !notify_i < 7_r and the assignment r =n (r € N).

Step 2: Enumerate occurrence relations

Now we go through the symbolic occurrence table built in step 1 and
build a “concrete” table in which each column represents one specific “round”
of execution through the symbolic table (with concrete index assignments).
In the concrete table the guards of the timed-pLT'S can be resolved, so some
of the symbolic transitions (rows of the table) may be eliminated.

In the guards (including the loop control guards), there may be some
parameters occurring in a symbolic form. Before we run the algorithm in
step 2, we need to instantiate these parameters, to be able to compute the
guards. In particular the maximum value of the loop counters (in our use-
case, corresponding to the number of neighbor cars) must be fixed.

Moreover, we must set a bound (V) to the number of rounds that we
shall unfold in the algorithm. This bound should be large enough for the
generalization procedure in step 3 to work properly.

For each round of traveling, we compute a set of occurrence relations.

The indexes of these occurrences tell the (logical) times of the actions that

81

Timed-pNets Model

have occurred till this round. For loops, the loop control guard says that if
a transition satisfies the initial condition “k& = 17, then the transition goes
into the loop. Each time after executing the loop, the variable k increases
by 1. Then the transition continues to execute the loop till the condition
k < kMaz is not satisfied.

We present algorithm 2 to enumerate these relations. The results of the
algorithm are illustrated in the table in Fig. 4.12 in which the 7" column
presents a set of occurrence relations in the round 7, and the j* rows presents

a sequence of relations on two clock occurrences.

Example 5 Take the component “commlIni” as an example, we enumerate
its occurrence relations. Let all occurrence index variables initially be 0
(m,n,r,i,j := 0) and the loop control variable k& be 1 (k := 1). Starting
from sg, we get the transition ¢r0 : s, Cin, So Croma, s1. From the first line of
the Fig. 4.10, we get n = 1 (because m = 0 and f;,0 : n =m + 1) and so we
get the relation |R_.0 < 7C'md_1. Then the transition goes to s;. Since k := 1,

the transition goes into the self-loop. So we get the transition tr2 : sq Crema,

S1 M s1. From the third line of Fig. 4.10, we can compute 7 = 1
(because fy.3:1:=1i+ 1) and then we get the relation 7Cmd_1 <!Notify_1.
According to the loop control, we know k increases by 1 (k + +), so k = 2.
Since the condition k < 2 still is satisfied, the transition goes into the self-
loop again. According to the transition ¢r3 : s; Chvotisy, 51 Chvetisu, s1, then

we get the relation !notify_1 <!notify 2. Then k increases by 1 (k + +), so

at this time k = 3 that cannot satisfy the condition k£ < 2. So the transition
goes out of the loop, then we have trd : s; Clovotity 51 I sy, According
to the table 4.10, we know r = 1 (because fi.4 : ¥ = n). Then the state
So is similar as the state s;. In the end of this inner loop we get the first
column of the Fig. 4.12. Remark that the rows corresponding to transitions
trl and tr5 from Fig. 4.10 have been eliminated in this process, because the
corresponding loops cannot exit immediately. Then by repeating the second
round, third round, etc, we can get the relations listed in the second column,

the third column of Fig. 4.12, etc., until we reach to the column N.

82

4.5. Generating Timed Specification

15t round 274 round 37 round st" round ... clock relations

IR0 < ?Cmd-1 IR_1 < ?Cmd_2 IR2 < ?Cmd_3 IR(s—1) < ?Cmds ... Cig<Citt),
20md_1 < notify_1 “ 2Cmd_2 < Inotify.3 “ 2Cmd_3 < Inotify.5 | ?Cmd_s < Inotify(2s — 1) |... Cooma < CL20 1)
Inotify-1 <notify-2 Inotify-3 <notify-4 'notify-5 <notify_6 'notify_(2s — 1) <!notify_2s... C,{f:t;;; =< C!{fjt];fy

lnotify2 < 7-1 lnotify-4 < 172 Inotify6 < 73 lnotify2s < 7_s . C!{'fosiify < Cr

71 < ?ack-1 72 <%ack-3 T3 <7ack.5 T.s <?ack_(2s — 1) e Cr < C?{jzk_l}
?ack-1 < ?ack-2 ?ack-3 <7ack_4 ?ack-5 <?ack_6 ?ack-(2s — 1) <?ack2s ... C?{zzk_l} =< C;{fcsg

?ack 2 < |R_1 ?ack4 <IR2 ?ack_6 <!R3 ?ack_2s <!R._s NRe s ger

Fig. 4.12: Steps 2-3-4: Unfold rounds, generalize, and deduce clock relations

Step 3: Generalize the occurrence relations

In table 4.12, in each line we get a sequence of occurrence relations. To
induce the corresponding general relation, we transfer the problem to finding
a general formula for a sequence of nature numbers. We could use here stan-
dard arithmetic method (e.g. Neville’s algorithm [?]) that are able to deduce
polynomial formulas generating natural number sequences. However, such a
general approach would make difficult to estimate the minimum number of
unfoldings required for finding the general formula. But in fact, due to our
hypothesis on the independence of the loop control counters, the formula we
seek here will be linear in the clock indexes, and the length of unfolding may
be estimated from the maximum value of the loop indexes. A proof of this
property, and a detailed estimation of the bound, is out of the scope of this

thesis. The result of generalisation is shown in “column s” in the Fig. 4.12.

Example 6 Let us go on the Fig. 4.11 as an example. Since the loop
counter is 2, so we need unfold the relations at most for 3 times. As shown
in the second line of the table 4.12, the sequence of occurrence indexes of
the clocks Cooma and Ciyoipy are {1,2,3} and {1,3,5}. According to the
Neville’s algorithm, we can get the general formulas for the clock Cocpg as
a, = n, and for the clock Ciyotiry as a, = 2n — 1. So in the second line, the
relation of the s round (Vs < 0) is 7Cmd_s <!Notify_{2s — 1}.

83

Timed-pNets Model

Algorithm 2 Unfold occurrence relation table
Input: A symbolic occurrence table with a clock set C' with n clocks.

C: {01,027...Cn}

Output: enumerate occurrence relations of N rounds in the matrix R[j][r], in

which j is the index of rows and r is the index of columns (rounds).

for all C; do
Indexof(C;) := 0 {initialisation }
end for
set var j, r :=0
var s 1= Sg
set var C, := anyone from PreAct(s)
set var Cg := one from PostAct(s) that satisfies a certain guard
set var s’ + {s'|¢' Coy s}
set var s” « {s"|s G, s}
while » < N do
while C # () do
if s = 55 then
r++;7:=0
end if
for all row in table do
if tr = %% s % & then
Indexof(Cg) < compute by f,
R[j]lr] = a-Indexof(C,) < p_Indexof(Cjp)
C+C—-C,—0Cp
j++
s ¢ s; 5 < §"; s < one from PostAct(s) that satisfies a certain
guard;
Co:=0Cp
Cy = {Cyls = 5"}
end if
end for
end while
reset C with n clocks C' = {C4,C%,...C,}
end while

84

4.5. Generating Timed Specification

Step4: lifting to clock relations

In the last step, we lift the concurrence relations to clock relations, using
the clock operators “lift” and “filter” from definitions 6 and 7. This step is

straightforward, and the result is shown in the last column of Fig. 4.12.

4.5.5 Generating TS of timed-pNets

A timed-pNets node actually consists of a set of holes (J) with timed
specifications (7'S;), synchronous vectors (V;), and global clocks (€¢) gen-
erated from the synchronous vectors. Therefore, generating the external
timed specification for a timed-pNets node (called global timed specification
TS,) boils down to compute the global clock relations from the local timed-
specifications of its holes (7°S;) and the coincidence relations deduced from
the synchronous vectors (V;), using the properties on clock relations from

section 4.2.2. Formally:

Definition 14 (Global Clock Relation Set) Given a timed-pNet T-pNets =<
P Ag, Cq, J, ZJ, a], 754, 7 > The global time specification of T-pNets is the
pair < €q, Rg >, where R is the Global Clock Relation Set deduced from:

- all local clocks relations R; from its holes,

- the (coincidence) relations deduced from all its synchronization vectors,

- symmetry and transitivity of coincidence, transitivity of precedence.

During this logical saturation process, it may happen that contradictory
relations are deduced, when 2 clocks would be proved both coincident and

precedent, or precedent both ways. This we call a conflict:

Definition 15 (Clock Conflicts) Given a timed specification < €, R >:

- two clocks C, and Cj in € are in conflict if either C,, = C3A(C, < CsVC5 <
Co) ERoOrC, <CsNCs<Ce€R

- the Global Clock Conflict Set of a timed-pNet is the set of pairs of clocks
in conflict in its Global Clock Relation Set.

Example 7 Let us take the Fig. 4.8 as an example. From the user spec-
ification in example 3 (page 72), we know the clock relations of these holes

are:

85

Timed-pNets Model

25—1}, 25—1}, 2, 251},
® Ricommmiy = {Croma < C‘Ewstz ; <, C!{nosti f} < C!Ewst];fZN7 '{n;tzf; <

0{25 1}sen C{Qs}seN C{Qs}seN C«{?S 1}sen C{Qs}seN 0{28 seN

?ack ’ Inotify ?ack ’ ?ack Tack) ?ack

Cir < Crgpi}

i R{C’hannethf[m]} = {Cc.?notify[m] < Cc.!notify[m] = Cc.?notify[A(]l)}’
b R{ChannelAck[m]} - {Cc Tacky, '< C clackm] = C 7ack]}

i R{C’ommRes[m]} - {C?notify < C'ack:[m] = C7notzfy[}

Besides, we derive the clock relations from the synchronous communications

defined by synchronous vectors as:

{2s—1} eN
® Ry, = {C!notifys = CC-7n0tify[1] = Cnotifyg1[1] }v

o Ry, = {Cemotiry,, = Conotifyy = notinyQ[l]}7
® Rys = {Cuackyy; = Ceracky; = Cackys, 1

o Rvy = {Cutacky = ooy = Clackyu, b

o Ry, = {C!f;t};}ef = Cernotifyp = Chnoti F1 I
o Ry = {Cemotifyy = Conotifyy = notinyQ[Q]}7
® Ryi = {Cuackyy = Ceracky = Cackysy }

® Ryy = {Ceracky = o = Cackgagy b

® Ry, = {Cooma = Cr0mdys b

d RVIO = {C!R = C!Rg6}'

Take the relation between the global clocks C,, Fygry, and C,ot T2, as an
example. They are generated by the synchronous vectors V; and V5. From the
relations of hole Channel Nt fj;; and the relations of these two vectors, we can
get the formula Crorigy,, =(Rv,) Cetnotifyn) <R cnamnenesny) Cetnotiryn) =(Ruy)
Choti Ty In the end, we conclude C,,.; Togig, < Choti Togrg,

86

4.5. Generating Timed Specification

Case1l
ko Case? Hy
C‘,I. C"xl C,Hl " -
o b B C‘,I CYl
€ @ C"x! Cﬁl C"xi L Hﬁ 4 C(f;:l
C
<iCapei iG> Co, Cp A
<o Chgnenns Cg,.. >=C,, <., Cpuenns C,, >—= C,,
<Co.Cparnnsn.. >— C,,
Case 3 Case 4
Hg Cs. Car Gy Hy " :' Ce
-)
CI Cﬁl c Cﬁl
. PP a,
Cﬁl C—> 141 c Cﬁu ,,,,,,, > C, |
ven. > ¥
h " N <otiCpyaenne > Gy

Fig. 4.13: The 4 cases of theorem 1

The formal definition above is not very practical. The following theorem
defines the case analysis procedure, and states its correctness (all relations
computed are correct). The next theorem will prove its completeness. In one
particular case, this case analysis procedure may detect a local conflict be-
tween two global actions, more precisely between two synchronization vectors
representing communication between the same 2 holes. In this case, we shall
signal the conflict, but produce no relations between these actions. Other
types of conflicts could be created by configurations involving more than 2
holes. These cannot be detected at the level of this case-analysis procedure;

a full conflict detection procedure is out of the scope of this thesis.

Theorem 1 (Global clock relation analysis) Given a timed-pNet T-pNets =<
P Ag, Cq, J, IZ(J, €J, ﬁj, 7 >. Let H,, Hg, H, be three holes of T-pNets and
Ch.,Cu,, Ch, C &J be the sets of clocks of holes H,, Hg and H,. Let the
clocks Cy,, Co, € Ch,, the clocks Uy, Cs, € Cpy, the clock C,, € Cp,, with
Cu, N Cu; (N Cr, = 0). For each pair of global clocks C,,, and C,,, we
enumerate the pairs of synchronization vectors able to generate them, and
match them with the following cases (note that both pairs (C,,,,C,,,) and
(Cays» Cayy) Will be enumerated, so we do not consider symmetric conditions

in the cases below). Each match may add a clock relation in the Global

87

Timed-pNets Model

Clock Relation Set R:

e (Casel:) If the global clocks C,,
chronous vectors
<...,Cq4,...,Cpy, ... >= O,y and
<oy Cayye o, Cpyy oo >— Cyy,
which are related to two holes Cy, and Cp, as shown in Fig. 4.13(1),
then

, and C,, , are generated from syn-

— if Cal = Coéz A 0,31 = Cﬁz then (Cagl = Caﬁﬂ) €R.
- lf Cal = COQ A Cﬁl = CBZ then (Cagl = Cag2) € R
—if Oy = Cay A Cp, < Cs, or if Gy = Coy A Cg, < O, then

conflict found.

o (Case2:) If the global clock C,, and C,, are generated from the
synchronous vectors
<...,C0s,...,C, >= C,,, and
< Coy,Cpyy o vyo oo > Gy, which are related to three holes Cg,,, Ch,
and Cp, as shown in Fig. 4.13, then

— if Cg, = Cp, then (C,,, = Cy,,) € R,

— if Ogl < ng then (Cagl < 0%2) eER.

e (Case3:) If the global clock C,,
synchronous vectors

<...,Cp,... > C,,, and
<...,Cg,...,C, ... >= (s as shown in Fig. 4.13(3). then

, and C, , are generated from the

— if Cgl = CgQ then (Cagl = Ca92> S R,
— if C@l < CgQ then (Cag1 < Cagg) eR.

e (Case4:) If the global clock C,,, and C,,, are generated from the syn-
chronous vectors < ...,Cp,... >— C,, and < ..., Cg,,...,... >—
Ca,, as shown in Fig. 4.13(4). then

— if Cﬁl = OBZ then (Cagl = Oagz) S R,

88

4.5. Generating Timed Specification

—if Cﬂ1 = 052 then (Cagl < Ca92> eR.

e (Otherwise) In any other case, this pair of clocks is NOT directly
related in R

Proof. For each of the cases, we prove that the deduced relation is indeed

correct with respect to definition 14.

e Casel: From the two synchronous vectors < ...,Cy,,...,Cps,... >—
Cag17
< --->Ca27---7062a~-- >— CQQQ,

we know that C,, = Cs = C,, and C,, = C, = C,,,. (1) If
Co, = Cuy, N Cp = Cp,, according to the transitivity property of

43

=", we get the relation Cy,, = C,,.

(2) If Co, = Cay A Cg, < Cp,, then we have C,,, = Co, < Co, = Cy,,.
So using substitutivity of = w.r.t. <, we get the relation Cy , < Cg,.

e Case2: From the two synchronous vectors < ..., Cg,,...,C,, >— Cy,
and < Cy,,Cyy v vyeo > Copys
we know that Cs = C,, = C,, and Cy, = Cg, = C,,. (1) If
Cs, = Cp,, then according to the transitivity property of “=", we know

that C,,, = Co,,. (2) If Cg < Cp,, since Cy,, = Cp, < Cpg, = Cyy,

then we have the relation C,,, < C,,.

e Case3 and Case4: The proofs are similar to Case2.
]

Example 8 Let us take again the Fig. 4.8 as an example to compute the

. We know the two global ac-

clock relation between Cnotz’fygg[l] and Cackggm
tions are generated by the vectors Vo: < ..., C’C.motifym, . 7C?notify[1]7 S>>
Cnotifyg2m and V3 : < ..., C’;ackm, el Oc.?ack[l]; > C’ackg3[1]. So we are in

the case 2). Moreover, from TS{CommReS[l]} we know that C’?notify[ll =< C!ackm.

Therefore, we conclude C,,s; T2y =< Cackgg[l].

89

Timed-pNets Model

Theorem 2 (Completeness) There exist four and only four combinations of
synchronous vectors, as listed in Theorem 1, for deducing a relation between

a pair of global clocks.

Proof. From the timed-pNets definition, we know that there are two ways
to build a global clock: binary communication and visibility. So there are 3

combinations:
(1) both global clocks are generated by binary communication

(2) one global clock is generated by binary communication and another

one is generated by visibility
(3) both global clocks are generated by visibility

Now we analyze the three situations one by one. Given a timed-pNet

T-pNet =< P, Ag, €, J, Ay €0 Ry, V >

(1) Let < ...,C4,...,C3 >= Cy and < ...,C,,...,C, >= Cyp (Cy, Cg,
c,,C, € ¢ 7) be two synchronous vectors generating the global clocks Cy; and
Cg2. Obviously the four local clocks C,, Cs, C,,C}, cannot be in one hole
since the synchronous vectors build binary communications between holes.
If the four local clocks come from two holes, then the possible combinations
are C, and C, are in one hole, the other two are in another hole. Or C, and
C,, are in one hole, the other two are in another hole. Case 1 of the theorem
1 covers the both situations. If the four local clocks come from three holes,
then any two local clocks that come from different synchronous vectors must
be in one hole, and the rest two local clocks are in other two different holes.
For example, C,, and C,, are in one hole, the other two are in other two holes
separately. Case 2 of the theorem 1 covers the situation. Furthermore, the
four local clocks cannot be in 4 holes (or more than 4 holes). Otherwise there
is no local clock relations in R J can be used to deduce global clock relations.
Therefore, no direct clock relation can be built between Cy; and Cls.

(2) Let < ...,C,,...,C3 > Cp and < ..., C,,...,>—= Cyp (C,, Cs,
C, € ¢ 7) be two synchronous vectors to generate the global clocks Cj; and
Cg2. Similar to the proof in the previous situation, the three local clocks

cannot be in one hole and cannot be in 3 holes or more. So the only possible

90

4.6. Compatibility

o] - [e—og
e

Fig. 4.14: Partial instantiation of a Timed-pNets subsystem

combination is that C, is in the same hole that one of the others. Case 3 of
the theorem 1 covers the situation.

(3) Let < ..., Cay...,>= Cgp and < ..., C,,..., > Cpy (Co, C, € €))
be two synchronous vectors to generate the global clocks Cy; and Cye. The
two local clocks cannot be in 2 different holes. Otherwise there is no local
relation can be find between them. So the only possible situation is the
two local clocks are in the same hole. Case 3 of the theorem 1 covers the
situation.

In conclusion, if the relation of two global clocks Cy, Cypo € €¢ can be
deduced by the local clock relations from R J, then the four cases listed in

the theorem 1 cover all possible combinations of synchronous vectors.]

4.6 Compatibility

When assembling timed-pNets, the architect has to ensure that the
timed-pLTS that will be plugged into a hole indeed matches the hole Timed
Specification. The ultimate goal is to provide a refinement-based approach:
timed properties proved on an open (abstract) timed-pNet system will be
preserved by refinement of Timed Specifications. One of the basic tool for
building such refinement is to ensure the compatibility of a subsystem with
the enclosing holes before composing the system. E.g. in Fig. 4.14, the
Timed Specification (TS) of the subsystem “A_Impl” must be compatible
with T'Sy, and each of the “C'_I'mpl” must be compatible (individually) with
TSc.

Our notion of compatibility will be based on the inclusion relations be-
tween the Clock relation sets. Before giving its formal definition, we introduce

the concepts of “Saturated relation set” and “Relation set inclusion”.

91

Timed-pNets Model

Definition 16 (Saturated Relation Set) Let T'S =< C,R > be a timed
specification with a set of clocks C' and a set of relations R. The saturated
relation set (denoted as R™) is the clock relation set R augmented by all rela-
tions possibly deduced from R, by transitivity of precedence and reflexivity,

symmetry, and transitivity of coincidence.

For example, if R = {¢1 < ¢2 < ¢3} (¢1,¢9,¢3 € C), then according

to the transitivity property of the relation <, we can get a new relation set
Rt ={c1 <y <c3,01 < 3,01 =c1,00 =0Ca,...}
Definition 17 (Inclusion of time specifications) Given two timed specifi-
cations T'S; =< C1, Ry > and T'Sy =< Cy, Ry >. Let R} (resp. Ry) be a
set of saturated relations in the T'S; (resp. T'Ss). We say T'Sy includes T'S;
(denoted as T'S; < T'S,) if and only if C; € Con Ry C Ry

According to the definition, T'S; < T'S; means that the relation existing
in the timed specification T'S7 must exist in T'S, or can be deduced from the
relations in T'Ss. For example, assume T'S7 = {¢; < ¢z}, T'Ss = {c1 < ¢a <
c3}. According to the transitivity property of the “<”, we can get the the
saturated relation set of the T'Sy as RT = {c; < ¢3 < ¢3,¢1 < ¢3,01 = ¢1,09 =
¢, ...}. Since the relation in 7'S; can be deduced from the relations in T'Ss,
we say T'Sy includes T'S; (T'S; < T'Ss).

Lemma 1 If T'S; =< Ci,R; > and T'S; =< (5, Ry > are two timed
specifications, then TS, < T'S; = RT C Ry

Proof. Taken any two relation ry, 7; € R;. Let r{ € R be the relation

deduced from the two relations ry, r] in terms of the property P proposed
in section 4.2. Assume r{ ¢ RJ. Since T'S; < TSy, from the definition
of inclusion we know R; C Ry . Furthermore, we know r,7; € Rf. So in
the set R we can get the relation 7 by using the same property P. So we
have r; € Rj that is contradict with our assumption. Therefore, we have

ri € Ry . Moreover, because 7" € R, so R C Ry . O

Definition 18 (Compatibility) Let T'S be the timed specification of a
timed-pNets hole H, and T'S’" be the timed specification of an implemen-
tation H_I'mpl. We say H_Impl is compatible with H, denoted by H_Impl
C H if and only if T'S < T'S".

92

4.7. Assembling multi-layer timed-pNets system

Theorem 3 Let T'S be the timed specification of hole H. Let T'S] (resp.
T'S%) be the timed specification of an implementation H _I'mply (resp. H_Impls).
If H Imply, C H and T'S] < TS, then H _Imply, C H.

Proof. Assume T'S] =< C}, R} >, TS}, =< C4, R, > and TS =< C, R >.
Let R* (resp. R,", RT) be the saturated relation from T'S] (resp. TS5,
TS). Since H_Imply © H, according to the compatibility definition, we have
TS <« TS]. Furthermore, according to the Inclusion definition, we have
R C R}*. Moreover, because we know that T'S] < T'S}, according to the
Lemma 1, we have R{" C R,". According to the set theory, we know that
R C R, Finally, according to the Inclusion and compatibility definition,
we get H_Impls C H. O

4.7 Assembling multi-layer timed-pNets

system

After generating a timed specification for a timed-pNets node, we can
use the generated timed specification to prove that it would be compatible
with the specification of a hole of a higher-level timed-pNet node. This way,
a layered tree structure can be built as shown in the Fig. 4.15. In this
structure, each layer uses an abstraction of its lower layer. The clocks in the
lower layer (at level N) are transparent to its abstract layer (at level N+1)
in which only holes with its timed specification (7'S;), synchronous vectors
(Vi) and global clocks (C,) can be seen.

As we have already mentioned, this construction can be done in a very
flexible way either bottom-up or top-down. The result timed-pNet system
can be open (if it still contains some unfilled holes at the leaves), or closed if
all holes are filled with timed-pNets and timed-pLTS.

Example 9 We now have all elements required for checking the compati-
bility of our timed-pL'TSs with the holes of the upper layer pNet. Let us look

at “CommlIni” as an example:

- the relation set of the hole “CommlIni” for open timed-pNets is Rcommini =

93

Timed-pNets Model

TSy, of timed-pNets node 2
Cgs
TS a1 Tsd
Vg
TSq, of timed-pNets node 1 \
c TS
91 3 y
TS4 v of hole 3 T4
of hole 1 1 - of
v va < timed-pLTS 4
Cqy TS, | g
Por hole 2

TS TS5 TS3
of of of
timed-pLTS 1 timed-pLTS 2 timed-pLTS 3

Fig. 4.15: Layered Structure

25—1}, 25—1}, 25}, 25—1}, 25—1},
{Cocma < C!Eufti fy} <, C!Ezosti fy} < C!{mft}ifZN7 C!Emsti fy} =< C‘.iajk Joen

25}, 251}, 25}s 25}, Al
C’?{ajli €N7 C;ajk oer = C';{a(fl]; EN’ C’jiacsli < = C!R = C?cinzl}7
- the relation set of the “CommlIni” timed-pLTS component from Fig.

4.12 as R/Commini = {C?Cmd = C!f;t;;;SEN = C!f;t}i;zN = C(.gcsk_l}seN =
clsden 2 0L < O < o2l

TemdJ

Since we can easily get Rcoommini € R commini, according to Inclusion defini-

tion we have T'Sicomminiy <K T'Stommini - Lherefore, from the compatibility
definition, we know that the “CommlIni” timed-pLTS is compatible with the

hole “CommIni”.

The validations that have been defined in our paper, namely the compat-
ibility of hole composition, and the conflict detection between timed-pNets
synchronization vectors, ensure some specific validity properties of the global
Time Specification of the system, as defined by Definition 14. However, this
does not mean that there cannot be more complex conflicts in the interaction
between more than 2 holes of a timed-pNets, or more specific timed proper-
ties that can be computed from refined implementations of some sub-nets. In
the next section, we show how to use simulation with the TimeSquare tool,

to address such cases.

94

)

C'{QS}SEN

notify

<

4.8. Simulation

4.8 Simulation

In this section we explain how to use TimeSquare [41] to detect com-
plex conflicts of timed-pNets. Two inputs are required by TimeSquare (see
the Fig. 5.7). One is an open timed-pNets system. Another is a set of re-
fined implementations. If a closed timed-pNets composed by those refined
implementations has no conflict, we say the closed timed-pNets is safe. Oth-
erwise, the TimeSquare reports violations, which means that conflicts exist
in the closed timed-pNets system. Before running simulations, the two in-
puts are translated into timed specifications that are acceptable format for

TimeSquare. The way of generating timed specification is described in sec-

tion 4.5.
refined
implemetations
TiimeSquare

Fig. 4.16: Property Checking by TimeSquare

opened
timed-pNets
system

4.8.1 Simulation 1:

e We take the system shown in the Fig. 4.8 as an example. We first
build an open timed-pNet node with the timed specifications of holes (
TS: T'Stcomminiys T'Sichanneintfim)y> T'S{Channeiackim]}> T'S{CommResim]})
and synchronous vectors (V;), by which we can generate global clock
relations (we call it an abstract specification). From section 4.5.5,

we can get the abstract specification T'S, =< Cy, R, > with R, =

95

Timed-pNets Model

= Cackg4 = C!Rg(;;

{C?Cmdgs < Cnotifygl[m = CnotinyQ[m] < Cack:g3

| 2[m] [m]

Cnotifygl[l < Onotifyglpl; Cackg4[1] < Cackg4[2]}. Then we import the

]
timed specifications of the refined implementations of those holes (T'S":

TSj[CommIm’}’ TS‘/{C'hannethf[m]}’ TSEChannelAck[m]}’ TSiCommRes[m]}) to
replace T'S. The timed-pNets node that composed by these refined im-
plementations is called closed timed-pNets node. And its global clock

relations is named concrete specification T'S7.

o Result of Simulation 1: The Fig. 4.17 illustrates the concrete speci-
fication T'S}. In this figure, each line represents a clock and the red
arrows represent the precedence relations. For simplification, here we
represent two cycles of simulation. From the figure we can see that the
abstract specification TS, is satisfied by the refined concrete system

since we have TS, < TS&.

Cinotify

Fig. 4.17: system’s specification checking

4.8.2 Simulation 2:

e In this simulation, we choose T'S{;; 1scacommmiy = 1C70md < C,{]\z,f);g <

2s—1 2s 2s A(1
C‘.;{Ack / = C!{JVDI};ify = CTEAC}I;’, = CIR = C?C(Wzd}’ TSf{UpdatedCommRes[m]} =

{C?Notify]nfo[m] < OExchunge]nfo[m] < C!Ack[m]} and we add a SyIlChIOIlOUS

96

4.8. Simulation

vector between hole CommRes[1] and CommRes[2] to get a new re-
lation Ry,.,, = {Cruchangeinfoy; = Crachangeinfoy = CExchangelnfoy, }-
Obviously, the updated implementation of hole CommlIni is compat-
ible with the abstract timed specification of this hole T'S{commini}
since we have T'S{commmiy < TS;(UpdatedCommlni}‘ And the same to

the other two holes CommRes|m] since we have T'S{commpesim)} <

TS% UpdatedCommRes[m]|}*

o Result of simulation 2: By simulation, we found violations as shown in

Fig.4.18.

main::Ack_g3

main::Ack_g4

main::Ack_g7

main::Ack_g8

main::Ack_r

@ @ Error during simulation

B instep3:
@ There is a deadlock, no solution can be Found

Reason:
There is a deadlock, no solution can be Found

| Details>> | 0K

Fig. 4.18: Conflict Detected

o Analyzing the result: By analyzing our updated closed timed-pNets, we
found the conflict is caused by a cycle represented in the Fig.4.19. In
this Figure, according to the theorem 1, we can get the set of global

relations as {C’Notifygl[2 < ONotinyQ[Q] < CEmchangeInfog7 < CAckggm <

]
CAck94[1]}- Obviously, relation {Cx Fugry C Ackg4[1]} is hold in terms

of the transitivity property of precedence relations. However, by using
the theorem 1 again, from the TS«,{UpdatedC’ommIni} we can get the re-

lation {Cac,,, , < C NOtifygl[z]} which is contradict with the relation

(1]

{CNotifygl[Q] < C’Ackg4[1]}. To fix the conflict, we need to find an-

97

Timed-pNets Model

other implementation that still compatible with these holes but with-

out making conflicts. For our example, we can just simply change

_ {25-1)
the TS%UpdatedCommIni} to TS*,{Fi:vedComm]ni} - {C?Cmd = C!Notify =

C!{ziiiify = C’g\igl} = C’ifﬁc < Cr < C?Acsizd}' And in the end, by

simulation, no conflict exists any more.

C Nt
Notity g1 C Notifygp 2
Commini CommRes[2]
) ChannelNtf [2] c Cexchangelnfo [2]
2notifyf2]

S C o nofi e
Inaitfy c.7notify[2] c.Inotify[2] Exchangelnfog;,-

2s.1y | € clack(fi] C c.7hck[1] C exchangeinfo[1]
{2s-1) ChannelAck[1] CommRes [1]

7ack C
c c lack[1]
Ack gg] Ackga 1]

Fig. 4.19: system’s specification checking

4.9 Conclusion

This chapter proposed a flexible time-related behavioral semantic model
(called Timed-pNets) for modeling communication behavior of distributed
systems. We specify a system with several components and communications
between them. We are able to build a hierarchical tree structure for compos-
ing complicated component-based systems. The refinement and compatibil-
ity are considered in the chapter. An concrete example is given to represent
how to build a hierarchical specification and how to refine the system. In the
end, we use TimeSquare to check the compatibility of the refined system.

Three advantages are implied in our model: first, by introducing logi-
cal clock relations, timed-pNets model is able to specify the system’s time-
related communication behavior constrains without relying on physical com-
mon clock; second, by using timed specifications, our model is easy to be
composed and has the capability of building a hierarchical structure; last but
not least, our model can flexible model heterogeneous communication includ-
ing synchronous and asynchronous communications by introducing channel
LTS. We believe that the timed-pNets model is helpful for analyzing the

98

4.9. Conclusion

time-related behaviors for distributed systems including cyber physical sys-
tems.

After checking the system compatibility, another interesting point is
to check system’s physical time constrains such as deadline property that
expresses whether system communications can be successfully finished before
a certain deadline. To check this, we shall choose a reference clock and
specify the delay constrains in terms of the reference clock. In this chapter,
even though we define delay variables for actions, we do not provide a way
to specify delay constrains here. In the next chapter we will investigate the

delay variables of timed-pNets model and check system time properties.

99

Chapter 5 Delay in Timed-pNets

In this chapter, we discuss the delay variables in timed-pNets. Since this
model does not rely on common physical clocks, the delays from different
subnets are uncomparable, which brings the difficulty of computing delays of
the clocks in the upper layer. We solve the issue by introducing the concept
of reference clocks and virtual timestamps so that delays can be calculated
in terms of a reference clock specified by the users. Moreover, we define time

constraint conflicts and investigate time properties like latency property.

101

Delay in Timed-pNets

5.1 Context and problematic

In the previous chapter, timed-pNets have been proposed to specify
communication behaviours of heterogeneous distributed systems. This model
is able to specify logical time constrains such as “action a must happen
before action 57 or “action « and action [must finish at the same time”,
etc. However, other requirements like “action o must occur 5ms later than
action (7 is difficult to express because our model lacks of common physical
clocks. To solve the issue, we introduce the concept of reference clocks and
virtual timestamps. A reference clock can be either chronometric or logical.
In our daily life, an event is often expressed relative to another one, that is
used as a reference. For example, “action a occurs twice as often as action
[£7, or “action a must occur after action S occurs 5 times”, or furthermore,
“after action 7 occurs, action o must occur after 5 occurrences of action 5”.
For all these cases, if one action occurs more often, the others are impacted.
This is the main idea of using reference clocks. In this context, physical time
is a particular case of logical time where the time generated by a physical
clock is taken as a reference. In CCSL, a time library predefines a clock type
(IdealClock) and a clock (idealClk) whose type is IdealClock. idealClk
is a dense chronometric clock with the second as time unit. This clock is
assumed to reflect the evolutions of physical time. Based on this ¢dealClk,
for example, a reference clock with the period 1 ms (for milliseconds) can
be defined as RefC LK = idealClk discretizedBy 0.001. In our model, a
reference can be defined by user like in CCSL or can be anyone chosen from
the logical clock set of this model. No matter by which way, the link between

the logical clock set and the reference clock should be clear.

In timed-pNets, delays specify the distances between two timed-actions.
Before introducing a reference clock, actually the delays of timed-actions
in different nodes are uncomparable. By introducing a reference clock and
assigning virtual timestamps to those timed-actions, we can manage to com-

pare those delays and compute them with mathematical operators (e.g. “+,

102

5.1. Context and problematic

_”)‘

The concept of virtual time for distributed system was brought into
prominence by Lamport in 1978 [58]. In Lamport, virtual time is identified
by the succession of events (and therefore is discrete). It does not “flow” by
its own means like real time whose passage can not be escaped or influenced.
The virtual timestamps in this thesis are little bit different than it. We define
two dimension values for each timestamp: one represents the time when a
timed-action occurs in terms of a reference clock, another represents the order
of the occurrences of a timed-action. These virtual timestamps are not fixed
in the sense that they can be reassigned in terms of the changes of system’s

timed specifications.

The delay of a timed-action describes the time that must elapse before
the action can be executed. A delay bound constrains the minimal and maxi-
mal time delay the timed-action can accept. In order to keep the hierarchical
structure of timed-pNets, all clocks (including the generated clocks in upper
layer) have the same schema in the sense that they equip with delays and
delay bounds. In this chapter, we propose a way to calculate the delays of

global logical clocks and deduce the delay bounds of them from subnets.

In the end, we use TimeSquare to check correctness and latency prop-
erties. A latency property checks the minimal (or maximal) distance of two
clocks in the sense that at least (at most) how much it takes for an occurrence
of a clock to occur after the corresponding occurrence of another clock. The
property is usually used to check if an action can occur during an expected
time. For example, after sending a request to a system, a user is able to

know if the system can give a response in time.

The rest of this chapter is organized as follows. In section 5.2 we in-
troduce virtual timestamps. Section 5.3 represents the definition of time
constraint conflicts. Then in section 5.4 we propose and prove a theorem
allowing to compute delays and delay bounds of global logical clocks. Time
properties and simulations are illustrated in section 5.5. In the end we give

a conclusion of this chapter.

103

Delay in Timed-pNets

. R
9 hy PR 9-

(1,1) (3,1) (9,1) (24,1)

Fig. 5.1: Time Diagram

5.2 Virtual TimeStamps

We define a virtual timestamp as a pair of natural numbers: one rep-
resents when a timed-action occurs in terms of a reference clock (X-axis),
another represents the order of the occurrences of a timed-action (Y-axis).
Fig.5.1 shows us an example in which the timed-actions are assigned with
virtual timestamps. In the figure, the processes are presented as solid black
lines. The sequence of timed-actions executed in these processes are pre-
sented as solid black points on these black lines (X-axis). The actions in
each process are totally ordered. The communications between processes are
represented by clock relations. For example, in the Fig. 5.1, the clock C,
and clock Cy are coincident. We use a sequence of red lines to represent the
coincidence relation of two clocks. Similarly, we use a sequence of red arrows
to represent the precedence relations (e.g. C, < Cj). We define the virtual

timestamps and their assignment rules as follows.

Definition 19 (Virtual Timestamps) A virtual timestamp (denoted as
T(c-i)) of a timed-action occurrence «_i is a pair of natural numbers (x_;, %)
(0 € NJi € N).

Definition 20 (Virtual Timestamp Assignment Rules) Let T(ai) = (z4.,1)
be the virtual timestamp of the occurrence ai of the clock C, (o € La7p),
and T(B2) = (w4.,7) be the virtual timestamp of the occurrence 3_i of the
clock Cs (B € La7p). Then we have:

104

5.2. Virtual TimeStamps

clock Ca

X

process (13.2)

—t8:2F
a P (5,1) /‘A—v/ (12,1)
/ e/ il

- -

(1,1) “ (10,1)
/ O e oo
oy. hy B~ Cog

-1 31 (9.1) (24, 1)

Fig. 5.2: Updated Time Diagram
o Co,=C3=Vi,x0; =25, :=max(Tp, Toi)

o Cy < Cg=Vi,x,, <zp;and xg,; = max(xa, T5;)+ts, (the variable
tp, presents the delay time from the occurrence a_i to 8.7 in terms of

the reference clock that a user chose. t5, > 1,15, € N)

Initially, for an independent clock (without any relation with other
clocks), the X-axis value of the timestamps of the clock can be set with
any natural number. The values will be updated according to the clock re-
lations applied on this clock. Let us take a look on the Fig. 5.1, the clock
C}, has relations with the clocks C,, and C. (C, < Cy, < C.), accroding to the
assignment rules, we must have z, 1 < x,1 < x.1. In this figure, the times-
tampe of the first occurrence of clock Cj is initially set as (5, 1). However, it
can also be intially set as (7, 1) only if the value is larger than the timestamp
of the first occurrence of clock C, (in the figure z,; := 1) and smaller than
the timestamp of the first occurrence of clock C, (in the figure z.; := 8).

More clock constraints may be added because of new requirements. In
this case, these timestamps in the Fig.5.1 may also be updated according to
the assignment rules. For example, after we add other four clock relations
(C, < Cy,Cy < Ce,Cp = C,C. = (), if the delay from Cf to C. is 2,
then the virtual timestamps are updated as shown in Fig.5.2 by following

the rules.

105

Delay in Timed-pNets

5.3 Time Constraint Conflicts

Since timestamps may be updated because of new adding relations, clock
delays are also updated, which may cause time constraint conflicts. For
example, in Fig. 5.1, assume the delay bound of C. is [2,5]. Before we add
the relation C'y < C., there is no time constraint conflict since t¢ ;) = 8 =5 =
3 € [2,5]. However, after adding this relation, as shown in the Fig. 5.2, we
found out that te,y) = 12 =5 =7 ¢ [2,5]. Here we give a formal definition

of time constraint conflicts.

Definition 21 (Time Constraints conflicts) Let C, be a clock built on

timed-action a(p)feltta 1. A time constraint conflict of clock C, exists if

3i €N, to, &by,

5.4 Calculate Delays and Delay Bounds

In timed-pNets, non-leaf nodes are the synchronization devices of their
subsystems. The delays and delay bounds of the global logical clocks in
these non-leaf nodes are computed in terms of the local logical clocks in the
subsystems. When building these non-leaf nodes, time constraint conflicts
may happen. In this section, we discuss how to compute the delays and delay
bounds of these global clocks in the non-leaf nodes so that we can check if
time constraint conflicts exist.

According to the timed-pNets definition (see definition 11), local logical
clocks coincide with the corresponding global logical clock. According to the
virtual timestamp assignment rules, the virtual timestamps of these local
clocks equal to the timestamps of their global clocks. Usually, the delay of a
global clock could be the sum of delays of a sequence of local clocks along a
causality path. Let us take Fig. 5.3 as an example. In this simple system,
Cy1 and Cypy are global clocks of C, and Cg. The delay between the two

Iwhere the delay bound b is exposed since we need to discuss it in this chapter. The

definition of timed-action can be found in the chapter 3.

106

5.4. Calculate Delays and Delay Bounds

Global Component
Component 1 (.‘yl Ccmponent;? (1542 Component 3
Co s
Synchronous Vectors: R S (T’gl Sy g o oe® 2 CTyg
Timed-pNets
_ delay 1 .
Cstl Ef a2

Global Component

|<7 delay 3 %}(— delay 49—

Component 2 i
(15 c, "

delay 2

delay 1 =delay 2 = delay 3 + delay 4

Time Diagram

Fig. 5.3: A Small Example

global clocks is calculated from C, to Cjs along path C, — C, — Cjs as
shown in the time diagram part in Fig. 5.3.

Since the delay of a global clock could be the sum of the delays of local
clocks, in order to clearly define delays for global clocks, here we first give

the definitions of causal clocks and causality paths.

5.4.1 Causal Clocks and Causality Paths

Definition 22 (Causal Clocks) Given a timed specification 7S :< C, R >
with a set of clocks C and clock relations R. Let C, (€ C) be a clock. C,(€ C)

is a causal clock of C,, if it satisfies:
(1.) relation C,, < C, € R,

(2.) B aclock C,(C, € C) with relation Cy, < Cy < C,.

For example, assume we have a timed specification T'S :< C, R > with
clock set C = {C,,Cg,C,} and relation set R = {C, < Cs < C,}. We say that

Cy is a causal clock of Cg, but not a causal clock of C,,.

107

Delay in Timed-pNets

Definition 23 (Causality Paths) Given a timed specification 'S :< C, R >.
A causality Path from clock Cj to clock C, (denoted as picy—c,}) is a se-
quence of clocks with the conditions of:

(1.) starting from clock Cy
(2.) ending with clock C,,
(3.) VC;(i € [0,n]), C; is a causal clock of C;41)

For example, in Fig. 5.2, C, — C, — C. is a causality path from C, to
C.. Cqg — Ce — Cy — C, is a causality path from C; to C..

Notice that we do not count C, —+ Cy — C. — Cy — C, as a causality
path because 1) usually in our model the coincidence relations exist between
two components for modelling synchronous communications. However we
do not handle the delays between different components in local component
levelo They will be handled in the upper level; 2) by including the paths
with coincidence relations, we only increase the unnecessary paths that do

not contribute to compute the delays.

5.4.2 Computing Delays of clocks

Here we define two kinds of delays. One is a simple clock delay that is the
maximum time gap from the causal clocks of a clock to this clock. Another
is a delay between two clocks that are connected by a path. The second one
helps us to compute the delays of any two clocks that are not closed to each
other but can be reached from one clock to another one following a causal
path.

Definition 24 (Delays of Clock Occurrences) Given a timed specification
TS :< C,R >. Let {Cy}(k € K C N) be the set of causal clocks of
Co(Cy,Cy € C) in the T'S. The delay of the occurrence C,[i](i € N) is
denoted as t¢,p;, which describes a time delay before the occurrence C,|i]
can be executed. The delay is calculated from the corresponding occurrences
of the causal clocks of C,, by the formula tc, ;) = mar{xc,) — o |k € K}.

108

5.4. Calculate Delays and Delay Bounds

The delay variable of a timed-action captures the time (delay) that must
elapse before the actions can be executed. In a logical clock, the delays of
the different timed-action occurrences may be different. Let us take Fig.
5.2 as an example. The delay of the first occurrence of Cy (which is t¢,) =
Toyn—To,n = 90— 1= 4) is different from the delay of the second occurrence
of Cy (which is te, ;9 = ey — e, = 14 — 13 = 1). When a clock has
more than one causal clocks, the delay of the clock takes the maximum
value among the delays that come from all the causal clocks of the clock
to this clock. Let us take the clock C. as an example. Since it has two
causal clocks (3, and Cy, the delay of the first occurrence of C. is o) =
maz{ (e, — Teyn)s (Te.n — Tepn)} = mar{7,2} = 7. Similarly, we can

compute the delays of other occurrences.

Definition 25 (Delays along a Causality Path) Given a causality path
Pico—cay = Co = Cy — ...C; — ... — ...Cy. The delay from occurrence

Co[r] to C,[r] along the causality path (denoted as ¢ is defined

p{CO[T]HCn[T]})
as tp{CO[r]%Cn[r]} = TCulr] — xCo[T](T €EN).

Let us take the path Cy — C. — Cy — C, as an example. The delay
from Cy[1] to C.[1] along the causality path pc,_c, is ¢ [=12-1=

11.

Pcy1]—Ce1

5.4.3 Computing Delay Bounds of Clocks

We define delay bounds as closed intervals over natural numbers. Three
cases are discussed: the delay bound of a clock, the delay bound along a
causal path and the delay bound along a set of causal paths. In the end, we
propose theorem 4 to compute the delay bounds of global logical clocks from

the local clocks in subsystems.

Definition 26 (The Delay Bound of a Clock) Given a clock C,, that is built
on timed-action a(p)teltta. The delay bound of the clock C,, (denoted as b¢,)
is a closed interval [I(b¢c,), u(bc,)] over a set of natural numbers N. The lower

bound I(bc,) is the minimal value of the closed interval. The upper bound

109

Delay in Timed-pNets

of u(be,) is the maximal value of the closed interval. The clock delay bound

applies to all occurrences C,[i], formally Vi, b, = bc

o

Definition 27 (The Delay Bound along a Causality Path) Given a causal-
ity path p;,—c,y = Co =+ C1 —...C; — ... — ... C,. Let the delay bound
of the clock C;(i € [0,n]) be [I(be,), u(be,)]. Then the delay bound from C

to C, along the causal path pyc,—c,} (denoted as b) is defined as

P{Cu—Cn}
bp{coecn} = [Zie[l,n] l(bCi)> Zie[l,n} u(b0i>]'

We take the causality path pc,—,c. as an example. Assume the delay
bound of Cy, C., Cy and C. are [1,3], [3,8], [1,7] and [2,9], then the delay
bound of the causality path b, = [6,24].

{Cq—Cc} —

Definition 28 (Delay Bound on a set of Causality Paths) Let Pc,—c,}
= {pico_)cn}}(j € N) be a set of causality paths from Cy to C,. Let the

delay bound from Cj to C,, on the j** path be bpfc . The delay bound
0—Cn
from Cy to C,, on the set of paths Pyg,—.c,} (denoted as b Picys cn}) is defined
as bP{COHCn}' — [maw{“bpjco_»cn)’j € N},min{u(bpgéwcn).]j € N} in which
(l(bijOHCn) is the lower bound of bp]éwcn and u<bp]éwon> is the upper bound
of b j .
Pcy—cn

Example 10 Let us still take the Fig.5.2 as an example. The set Pic,_c.)
includes two paths p¢, o = Co — Cy — C, and pg_,o. = Co — Cy —
C. = Cy — C.. Assume the delay bound of C,, C;, Cy, Ce, C; and C.
are [1,3], [3,19], [2,8], [3,8], [1,7] and [2,9]. Then from definition 27 we
= [5,28] and by, e = [8,32]. Then the delay bound of
Pc,—c,) can be computed as bp, ., = [max{5,8},min{28,32}] = [8,28].

know that bpl
Ca

—Cec

Compute The Delay Bounds of Global Clocks in Timed-pNets

According to the definition of timed-pNets in chapter 4, a global logical
clock is generated by at least one local logical clock. The delay of two global
logical clocks can be calculated from their local clocks. And the two local
clocks (one for generating the global clock, another one for generating the

causal clocks of the global clock) must exist in one hole. The theorem 4 tells

110

5.4. Calculate Delays and Delay Bounds

(e

y

- o —
5

Cm

Case (1.1) Case (1.2) Case (1.3)

Fig. 5.4: Three cases in Theorem 4

us how to calculate the delay bounds of global clocks from their local clocks.

Theorem 4 (The Delay Bounds of Global Clocks) Given a timed-pNet

< P Ag,€q, J, AJ,CJ,RJ,7 >. Assume that all local clocks (in the set
¢ s) have no time constraint conflict. Consider a global clock C, and let
C, = {Cy, }(k € N) be the set of causal clocks of C, (C, C &g, C, € €,

7= 5(py)0).

(1) When v =< i Coy .. Cg, ... >= C,. As shown in Fig. 5.4, let
Cp = {Chm,, } (K" € N) be a set of local clocks that are in the same hole
as C,, and that contribute to generate the global clocks in C,. Let
C, = {Cy,, } be a set of local clocks that are in the same hole as Cj,

and that contribute to generate the global clocks also in C,.

(11) If <...,Cn,,...,Cnpyy. .. >= Cy, as shown the case (1.1) in
Fig. 5.4, then
be, = [min{min{l(bp, HCa)|k:’ € N},mm{l(bpcnklﬁcﬁﬂk‘” €
N},
max{max{u(bpcmkﬁca) kK € N},max{u(bpcnku_)%)\k” € N}} (Cn,, €
Cn,Cn,,, € Cy, k' K" € N);

(12) If<....,Cpnpysevvyevny... > Cy, as shown the case (1.2) in Fig.
5.4, then

111

Delay in Timed-pNets

Fig. 5.5: Case 2 in Theorem 4

be, = [min{ibre, c.)

(C,, € Ci, K €N),
(13) If<...,...,....Ch,... > C, as shown the case (1.3) in Fig.

5.4, then

be, = [min{l(br, .,

(Cn,, € Co K" €N),

LS N},max{u(bpcmk/_)caﬂk’ € N}

k" € N}vmax{u(chnk,,acﬁ)’kU € N}]

(2) When U =<y Coyovey ey > C,. Let C,, be a set of local clocks
that in the same hole as C,, and that contribute to generate the global
clocks in C, as shown in Fig. 5.5. Then bc, = [min{l(bpcmkﬁcaﬂk’ €
N},maa:{u(bpcmk/_)ca)\k’ € N}] (Ch,, € Cpp, k' €N).

Proof. (1.1)Choose any occurrence of C.,, for example, the i occurrence
C,[i] (i € N). According to definition 24 in page 108, t,,; = max{zc, ;) —
zc, ik € N}(Cy,li] € Cy). Let L (resp. U) be the lower (resp. upper)
bound of b¢. , that is

(L= mm{min{l(bpcmkﬁcaﬂk:' € N}, mm{l(bpcnklﬁcﬁﬂk” e N}});

U= max{max{u(bpcmk,_}ca)]k’ € N},max{u(bpcnkﬂ_}%)\k‘” € N}}).

To simplify the proof, we set l(bpcmk/) < l(bpcmk/+1) (resp.l(bpcnk”) < l(bpcnk”+1).
) generates clock Cy,, then we let k' = k" = k.
Assume t,; < L, then we have max{zc) — l"cgk[iﬂk’ € N} < L. Let

Moreover, if Cy, , (resp. C,

us take any causal clock from C,, for example C,, (C,, € C,), then we have
Ty —T0, i) < mar{ro,p—xc, m|k € N} < L = min{min{l(bpcmk/_)ca)\k’ €
N}, mz’n{l(bpcnklﬁcﬁﬂk’” € N} < min{l(br,,, e,) l(bpcnﬁcﬁ)}. According
to the definition 20 in page 104, we have xc, ;) — T, [i] = Tyl — Loy, [i]- BY

the two formulas, we conclude z¢, ;—2c,, [< mm{l(bpcmﬁca) l(bpcnﬁcﬁ)} <

112

5.4. Calculate Delays and Delay Bounds

l(bpcml_@a), which means that the delay of C,[i] (from C,,, [i] to C,[7]) is less
than its lower delay bound. It contradicts the fact that all local clocks have

no time confict. So, we have t,; > L.

Similar, assume t,; > U, then we have mar{zc) — Te,, ik € N} >
U. Let us take clock Cy, that satisfies z¢c ;) — Ty,] = max{:vcw[i] —
x()gk[i”k € N}. Then we have Teyli] = XCg, i) = TCali] = TCm, [i] > U =
maz{maz{u(bp, .)|k € N}, maz{u(bp, Hcﬂ)|k” eN}} >

k)/ @ nk)”

max{u(bpcmhaca)v u(bpcnhacﬁ)} > u(bpcmhaca)' So we get LColi] = LCmy, [i] >
U(bpcmhqca), which means the delay of C,[i] (from C,,,[i] to C4[i]) is more
than its upper delay bound. It contradicts the fact that all local clocks have

no time confict. So we have ¢, ; < U.

For the other cases (1.2), (1,3) and (2), their proofs are similar as the
proof for (1.1). O

Notice that we cannot use the theorem if constraint conflicts exist among
the local clocks. To build a upper level of timed-pNets and compute the delay
bounds of global clocks, we must first solve all conflicts in local holes. Besides,
according to the timed-pNets definition 11 in the page 68, we know that each
global clock can be generated by only one synchronization vector, so in our

proof we just discuss a single vector not a set of vectors.

Example 11 Let us take Fig. 5.6 as an example. In this figure, p1, p2 and
p3 are in one hole. p4 is in another hole. From the previous analysis, we
know that the delay bound of the set of paths from C, to C. is [8, 28]. From
the figure we can see that global clock Cys is generated by synchronous vector
<., C.,...,Cy, ... >= Cyo. Global clock Cy; is generated by the synchronous
< ..;Cqy ..., Cy, ... >= Cg1. And clock Cy; is the causal clock of Cye. Assume
the delay bound from C, to C, is [7,18] as shown in the figure with green
numbers. According to the case (1.1) in theorem 4, we can get the delay
bound of the global clock Cy, is bc, = [min{7, 8}, max{18,28}] = 7, 28].

113

Delay in Timed-pNets

Cgt Cg2
CU CV
p4 - -
il L
p1 D b ¢, [2.9]

[1.3] (5.1) [3, 19]/\34+ (12,1)
Ce [3.8] Cf
l/ ao.hun
<

-2, 1)[2, 8] (3‘1) (9,1) (24, 1)

p2

p3

Fig. 5.6: Example of computing Global Delay Bound

5.5 Simulation

We simulate the system shown as the Fig. 4.8 in page 71 by means of
the TimeSquare tool [41]. This tool is able to check system time constraint
conflicts and time properties. Two input files are required by TimeSquare
(see Fig. 5.7). One contains the system timed specifications deduced from
Fig.4.8; another contains the system timed properties. We import a reference
clock into the two files. For simplifcication, we choose a reference clock that
ticks periodically. All delays and delay bounds of other logical clocks are
specified in terms of this reference clock. For example, in our simulation, we
assume that the delay bounds of all action occurrences are between [1, 3] in
the sense that the delays of those actions should stay between the first and
the third occurrences of the reference clock. The simulation results tell us
if the time properties are satisfied by the specifications. For simplification, .
We do not fix their delays so that our model is more flexible. The properties

we would like to check are as follows:

e (P1.) No conflict exists.

114

5.5. Simulation

system's
imed specificatio

timed
properties

TiimeSquare

Fig. 5.7: Property Checking

e (P2.) The delay of the global clock Cyfy,, is no more than 3. For-
noti) bno 0 .
mally, let notify, i (i € N)= 710752']‘in1 tifug1-ilPmotifugn , then Vi e N, 1 <
tnotifygl—i < 3.

e (P3.) The minimal and maximal distance between clock Cyopmg and
Cig are 6 and 11. We denote them as MinDis(Cocmd,s, Cir,s) = 6 and
MazDis(Cocmdys> Cirye) = 11

5.5.1 Encode Properties into TimeSquare

Here we explain how to encode our properties into the TimeSquare. We
translate the properties to the form that the TimeSquare tool can accept.
We design bounded precedence relations (denoted as “<[mm,mm]”) that are
precedence relations with minimal and maximal bounds. For example, for the
property P2, we check if the delay of the clock Coify,, is in the interval [1,3].
Since the delay of the clock Cyotify,, captures the time that must elapse from
the clock Crcima,;, checking the property P2 translates to check the bounded
relation Cromdys <[1,3) Crotifyg: -

We use the “DelayFor” function provided in TimeSquare to create the
bounded precedence relations. The “DelayFor” function has three parame-
ters: 1) the causal clock of Cpopify,, (in our example the clock is Coomd,s),
2) the base counter (in our case is a reference clock “baseCounter”™), 3) the

delay value to be set. We encode the bounded precedence relation function

115

Delay in Timed-pNets

by following the steps:

e First we define minimal and maximal bound expressions. For ex-
ample, in our case, we define two expressions “minDelayBound =
DelayFor(Crcma,s, baseCounter, 1)” and “ max Delay Bound = DelayFor(Crcmd,s

baseCounter, 3)”,

e Then we limit the clock Cytify,, into the bound by using precedence re-
lations. For example, we set two precedence relations: “minDelayBound

=< Chotify,, and * Cpopipy,, < maxDelayBound”.

Similarly, the property P3 can be translated to Croma,s <(6,11] Cirys-

5.5.2 Property Checking

We input the system timed specifications and properties into TimeSquare

to check if a violation exists .

e TimeSquare reports us an error as shown in Fig. 5.8 when checking

the property P1.

@ @ Error during simulation

- instep 44:
e There is a deadlock, no solution can be found

Reason:
There is a deadlock, no solution can be found

| Details>> | oK

Fig. 5.8: Checking the property (1)

This error is caused by time constraint conflicts. Fig.5.9 represents a
time diagram with possible virtual timestamps. In this figure, the blue
numbers illustrate the virtual timestamps when those components are
independent (without communications). These numbers are assigned
randomly but following the virtual timestamp assignment rules 20. Af-

ter composing those components by adding communications among

116

5.5. Simulation

c Cr

2cmd g6
197 g 5 \7\\&5 \&‘H\w T, tal 12
Commini - - . . -
c {As-1) {2s) ds-1 (2s}
remd Gy INatity cign Comex Crrtbigg
ChannelNtf[1] c\- 3 - s
PNotify[1] INotify [1] C, .
C ot fyg1 1] jiNot fygim Ackaa]
] Lo
CommRes[1] .
PNotify[1] Coacin
C Mot f'_.,'m 2] \.‘;‘\3(93 M 3\\9‘ ,
ChannelAck[1] a0 o
Comaqy € 1Ack[1]
5 7
ChannelNtf[2] - -
Conotiizl C ihotiry 2] a
Crottygzpp) w7 “s.a s Akgarg]
CommRes[2] . -
C anotity2) C!ick[z]
c
Ag 1. 10

ChannelAck[2] L Akg3py S

XN

€ TAck[2] C 1ackiz]

Fig. 5.9: Time Constraint Conflicts

them (represented by coincidence relations in terms of the synchronous
vectors), those virtual timestamps are recomputed in terms of the as-
signment rules 20 as shown with red numbers. By analyzing those
updated virtual timestamps, we can see that a time constraint conflict

happens on the clock C’;ii;l} (xc{zs_l}[l]—xc{zs} =9-5=4¢[1,3]).
?ack

Inotify [1}

To fix the issue, we set the delay of ?Notify_i in component “Comm-
Res” to 1 (denoted as Vi € N,tonotifys = 1). Moreover, we limit

} (formally,

the delays of all clocks less than 2 except clock C{,{iscgl
Vi € Nyto, <2, C, € GJ\C’%ZI}). After redoing the simulation,
we found out that no conflict exists. TimeSquare outputs VCD view
as shown in Fig.5.10, in which the first row is the reference clock and
the other rows are global logical clocks. The red arrows in this figure
demonstrate the precedence relations of these clocks. For simplification,
we take few clocks that will be used to explain the next two properties
from the VCD view. And then we add white and blue lines for giving a
clear explanation. The blue lines are used to separate the cycles. Here

we list 5 cycles.

117

Delay in Timed-pNets

i . 2 1
refClock I I i | *l*l_l_l_l_l_l 7bI_IMTI_I_I_I_I_L 1]
] | || |

Cmd_g5

Notify_g1

R_g6

Fig. 5.10: Checking property P1 and P2

{tib}={2111.31 210130 {1111.3p 210130

C ot C notify c
MOty 1 4 92 (1] C A[kgsm Ak oad)

. -

- > > *
/ \ ° ¢ ¢ C
IRg6
e ® \1 / 2
L > . > - 3 =X
10
C

21031

1
7
c
Motify
gliz) C Ack
Not\fygz 2] @ AC a4[2]

ke
P an 93(2) , a
@i @iy A 2111.3)

Fig. 5.11: The dependency graph of global clocks

e To check property P2, we encode Croma,s <[1,3] Chotify,, into TimeSquare
as an assert. TimeSquare tool does not report any violation, which
means the property is satisfied. This result can also be seen from
the white arrows and white numbers in Fig.5.10, in which the the
delays of the occurrence Notifyg i in these cycles are less than 3

(Vl e N, tnotifygl—i < 3)

Actually, from the Fig. 5.9 we can get the dependency graph of the sys-
tem global logical clocks as shown in Fig. 5.11, in which the precedence
relations of these global clocks are represented by arrows. According
to the theorem 4, we can compute the delay bounds of these global

clocks. Take the clock Cnoify,, as an example, we get the delay bound

thotifygl[l] = [17 3] and the delay tNOtifyglfl = xCNotifygl[l] - xC?Cmdg5 (1] =

118

5.5. Simulation

2. The delays and delay bounds of other global clocks can also be cal-
culated. And they are represented with red numbers in Fig.5.11. So
we can also check the delay constraints of other global clocks as we did

for the clock Cnotify,, in this property.

e To check property P3, we set assertion Cocima,; <[6,11] Cir,e- TimeSquare
does not report any error. But if we modify the property, for example,
as Cromdys <[5,10) C1r,g, then we get an error reported from TimeSquare

as shown in Fig.5.12.

Error during simulation

. instep 0:
e Index: 610958384, Size: 3

Reason:
Index: 610958384, Size: 3

| Details>> | | oK

Fig. 5.12: Checking property P3

5.5.3 Discussion

From the simulation we can see that our model is able to check the
time properties after we import a reference clock to this model. Compared
to other real-time models such as timed-automata, we actually decouple the
real-time from our model. In other words, if we choose chronometric clock as
a reference clock, then our model can be used to analyze real-time systems.
According to the paper [82], it is possible to transfer our model to automata.
Since it is not the topic of our thesis, we do not investigate how to do it
and so it is not clear about the comparison. It will be our future work.
However, it is clear that the real advantage of our model is that even though
we do not necessarily rely on real-time clock (or common physical clock),
we still can analyze the system time properties if we choose a logical clock

as the reference clock. This character makes our model fit for modelling

119

Delay in Timed-pNets

distributed systems. Moreover, this decoupling also helps to release the work
of refinement. Think about that the system requirement on time constraints
may be changed, which may result to modify the system specification since
from beginning, but if we import the reference clock in the end before we
check the time properties, what we need to modify on the specification is

just the links between the reference clock and other logical clocks.

5.6 Conclusion

In this chapter, we investigated the delay constraints of timed-pNets.
We took an example from chapter 4 to explain how to compute the delays
and the delay bounds of global logical clocks. In the end, we use TimeSquare
to check time constraint conflicts and some latency properties. From the
chapters 4 and 5, we conclude that our model is able to detect system’s
logical design errors, to check time constraint conflicts, and to verify time
properties.

The flexibility and simplicity of the timed-pNets mainly due to the de-
sign of timed specifications that is the critical part of the model. However,
the basic ways of building timed specifications introduced in chapter 4 are
not enough to model some complex situations. For example, we can easily
model a precedence relation on two clocks, in which the relation applies to
all occurrences. But in reality, it may happen that the precedence relation of
two clocks only applies to some occurrences of them. It is much more com-
plicated to implement it by only using the precedence definition proposed in
the chapter 4.

In next chapter we will introduce an extension of timed-pNets, which
includes clock partition and clock union to simplify the way of generating

the timed specifications for complicated situations.

120

Chapter 6 Extension of Timed-
pNets

In this chapter, we design the concepts of clock partition and clock union to
simplify the way of encoding timed specifications. The clock partition allows
us to flexibly split the occurrences of timed-actions into groups so that the
clock relations can be applied to the groups instead of to a single occur-
rence. We prove that the relations (precedence and coincidence relations)
on partition clocks can be substituted by those relations on a set of filtered
clocks, which illustrates the advantages of using partition clocks: simple and
easy to understand. Another extension, Clock Union, provides us with a
way to compose logical clocks. Usually it is used to specify the branches of
transition systems. We apply the two concepts to our car inserting example,
and demonstrate the way of building the timed specifications by them. In
the end, the simulations and corrections are implemented in the TimeSquare

tool.

121

Extension of Timed-pNets

6.1 Context and problematic

In chapter 4 we discussed precedence and coincidence relations, in which
the relation operators (“<” and “=") apply to all pairs of corresponding
timed-action occurrences as shown in Fig 4.4 in page 62. The small kernel
used in the chapters 4 and 5 keeps the definitions and proofs as small as pos-
sible. However, this way is not flexible when facing the case that the relations
do not apply to all occurrences. Let us take the “Control” component in Fig.
4.5 in the page 64 as an example. After the action “?Consensus(ExpRes)"”

7

executes, the action “LocExe’” can execute undetermined times before go-
ing to the next action “!Finish!/”. In other words, the precedence relation
between clock Crconsensus(Ezpresyte and Crocgzet= does not apply to all cor-
responding occurrences. To solve the issue, we design the concept of clock
partition that provides a way to split timed-action occurrences into groups.
Then partition clocks and the relations on them are defined to help us flex-
ibly set relations on those timed-action occurrences, and in the end provide

us flexibility for system specifications.

In order to be able to specify the undetermined clock choices (e.g.
branches) in the transition systems, we define a clock union operator (“+”)
to compose two logical clocks (e.g. C, + Cjp) in the sense that either clock
C, or clock Cp ticks. We call it clock union because we can consider the
two united clocks (e.g. C, 4 Cjs) as a new logical clock (e.g. C.,) that is
created by the union of the two clocks and C,, ticks whenever C, or Cjs ticks.
Let us take “Initial” component in Fig. 4.5 as an example. After clock
“Crrepyt,” ticks, either clock Ciogpeetr ticks or clock Crer ticks. In this case,
we specify their relations as Crrpyt, < Cloancers + Crer or Coppy,, < Cy if
Cy 2 Cioaneatr. + Crir. Notice that we can not simply specify the branch as
the relation Cogpyt, < Cioancertr and Cogpy < Crer, because the two prece-
dence relations do not cover the semantics that the clocks Ciogpeertr and Chre,

are exclusive.

Then, we take the “Control” and “Initial” components in Fig.4.5 in the

122

6.2. Clock Partition

pager 64 as an example to represent how to specify the systems by using the
partition clocks and clock union operators. In the end, we check the system
safety properties and timed properties in the TimeSquare tool.

This chapter is organized as follows. In section 6.2 we introduce clock
partition as well as formal definitions of precedence and coincidence relations
on partition clocks. Then, clock union is defined in section 6.3. Examples
and simulations are illustrated in the section 6.4. In the end, we conclude

the chapter in section 6.5.

6.2 Clock Partition

We define a partition of clock C, as a division of the occurrences of
timed-action «. It is a sequence of subsequences of the occurrences of o such

that every occurrence «_i is in exactly one of these subsequences.

Definition 29 (Clock Partition) Let X = {z;} (x;,7 € NT) be a sequence of

natural numbers. The partition of clock C,, (= {a_1,a2,...,a k,ak',...} kK €

N, k" = k+1) is a sequence of subsequences S = {S;} = ({aiy, aia, ..., aig, @ ip, ..., iy, },
ik =i+ 1, i, ig, iz, € NT) of the occurrences of the timed-action « in terms

of X such that:

e The length of the i subsequence of S equals to z;. (|S;| = z;)

e The union of the subsequences in S equals to the occurrences of the
timed-action . (USieS S; = Cy)

e The order of the subsequences reserves the original order of the oc-
currences in Cy (let S; = {a_ji, a_jo, ..., jr, @ jpr, ..., Qfo, }y Jor =
jk +]-)jkajk’vjxj S N+' \V/Z,j € NJr’ lf] = Z+]-7 then Oé*jl - OZ,Z.%. + 1)

e The intersection of any two distinct subsequences in S is empty. (if
SZ',SJ' € S and S; 7é Sj then S; N Sj = @, 1,] € N+>

According to the clock partition, we define a new clock in which timed-

action occurrences are grouped in terms of the partition schema X. Fox

123

Extension of Timed-pNets

example, if X = {2,3,1,5,...}, then the new clock can be represented as
{{al, a2} {a3,a4,a5},{a b6}, {a 7, a8 a9,a10,a 11}, .. .}.

In order to flexibly adjust the speed of the new clock, we introduce the
concept of idle actions in the sense that these actions do not participate in
any communication and task execution. In a consequence, we do not build
the relations between the idle actions and other timed-actions, but they do
have an effect on the clock speed. This point will be well explained after
we give the definition of Idle Actions, and it also can be seen in the sections
6.2.1 and 6.2.2. Here we first give the definitions of Idle Actions, and then

define Partition Clocks in which idle actions are used in a partitioned clock

to adjust the clock speed.

Definition 30 (Idle Actions) Idle Actions are the actions that stay in a

logical clock to slow down the speed of the clock.

For example, let p be a idle action. Given a clock Cy, = {1, g, a3, ay, ...},
the clock C! = {ay,as, p,as,ay,...} is a new clock that is one step slower
than C, after the timed-action occurrence ay. Similar, C7 = {1, ag, p, p, a3, aa, ...}
is a new clock that is two steps slower than C,.

The effect on the speed of a clock can be seen clearly when we compare
it with another clock. For example, let Cs = {1, B2, B3, B4, - - .} be a clock
without idle actions. Assume C, = Cj as shown in the Fig. 6.1 (1), we can
see that the two clocks are coincident in the sense that both clocks increase
the same number of steps at any stopwatch. However, after adding a idle
action in C, as shown in the right side of the Fig. 6.1 (1), we can see that
when a_3 occurs, the clock Cs has reached step 5.4. It tells us that the clock
C, is one step slower than clock C3 due to the idle action. The same effect

also applies to precedence relations as shown in the Fig. 6.1 (2).

Definition 31 (Partition Clocks) Let X = {z;} (z;,7 € N) be a sequence
of natural numbers. Let p be an idle action. The new clock that is generated
by the clock partition on clock C\, in terms of X and idle actions is called
a partition clock (denoted as cr {X}). The empty subsequences (z; = 0) are

filled by idle actions.

124

6.2. Clock Partition

at a2 a3 a_l a_2 o a 3
M
c, o) !
-1 8.2 8.3 $! 1 g1 5.2 P 7.
6,)
(1) C(r = C,{j’
a1 a_2 a3 a1 a2 P a3
h
. N N N c, T\N T\N | T\N
N B N B2 N g3 3 T A B2 lrﬁ 3 Tu_ 4
¢ o c, !

‘g

(2) C(r < C,b’

Fig. 6.1: Clock Relations with Idle Actions

Notice that in this definition, the assignment of x; can be 0, which is
looser than that is in the definition 29, so that the speed of the partition clocks
is able to be adjusted. Fox example, if X = {2,3,0,1,5,...}, then ch =
{{a1,a2},{a3,a4,a.5}, {p}, {ab6}, {a7,08,09,a.10,a 11}, ...}. It
is slower than the clock {{a_1, v 2}, {a 3, a4, a 5}, {a 6}, {a 7,08 a9, a 10, 11},

)

6.2.1 Semantics of Precedence Relations on Partition
Clocks

Here we introduce the semantics of precedence relations on partition
clocks in three cases. In order to illustrate them, we take the same example
for all cases. In this common example, we let cr & be a partition clock
with X = {x;} = {2,3,0,1,5,...}(i € N) and clock Cs be a normal clock
that has not been partitioned.

o [R1:] [CIV < Cjs] = Vi, if x; # 0, then a,(i xj) < [

j=1
Relation R1 applies to the case where a partition clock precedes a

normal clock. The semantics of R1 tells that for each non empty
subsequence on ct &0 , the last occurrence of the ¥ subsequence in
chx precedes the i occurrence of clock Cs. Fig.6.2 shows us a table

in which we deduce the occurrence relations as well as a figure that

125

Extension of Timed-pNets

7

i x; Relations a_()_ z;) < B-i
Jj=1
1=1 x; =2 Qg < 51
1=2 x;=3 o5 < 62
1=3 =y - = — —
=4 x;= g < P4
1=25 xTr; = 5 app < ﬂg,
al a2 a3 o4 ab ab a7 a8 a9 410 1l
P
cPix) /A A G M A A A M
pN— N L N —
X={23015.1 32 ’\ 3 \: 1\ 5 \
8.1 5.2 83 B4 8.5
c. ik T i !

Fig. 6.2: Relation 1

demonstrates the relations.

o [R2:] [[C < CE™Y) = Let wy = 0, Vi, if 3 # 0, then B4 <
a(1+ Z)

]_
Relation R2 applies to the case where a normal clock precedes a par-

tition clock. The semantics of R2 tells that for each non empty sub-
sequence on cr {X}, the i occurrence of clock Cj precedes the first
occurrence of the " subsequence in ot Fig.6.3 shows us a table
in which we deduce the occurrence relations as well as a figure that

demonstrates the relations.

e [R3:] Let Y = {yl} and yo = 0, [[CP{X} =< CP{Y}]] = Vi, j, if x; #
0,9; # 0, then a_ (Z z;) < y(1+ Z Yk

j=1 =0
Let 05 5 be a partition clock. Relatlon R3 illustrates the case of

a precedence relation on two partition clocks. The semantics of R3
tells that for each non empty subsequence on Cj, P and Cf {Y}, the

last occurrence of the it subsequence in clock Ca{ } precedes the first

126

6.2. Clock Partition

i x; Relations i < a_(1 + 221 ;)
j=0
1=1 x;,=2 b1 < o
1=2 x;=3 By < s
1=3 =0 @ —————
1= T; = By <
i=5 x;=5 Bs < oy

51 g2 33 A4 (5

3 [S S
| NN NN

al a2 ad ad ab alb af a8 a9 410 o411

P
crix N S A A S A
N—rv | R /

X =1{2,3,0,1,5,...} 2 3 0 1 5

Fig. 6.3: Relation 2

occurrence of the i" subsequence in C4}. Assume ¥V = {yi} =
{3,2,1,0,4,...}. Fig.6.4 shows us a table in which we deduce the

occurrence relations as well as a figure that demonstrates the relations.

Example 12 Let us take the “Control” component in Fig. 4.5 as an ex-
ample. The way of partition depends on the guard “[ExpRes != CurData|”.
Assume the guard triggers 3 times self-loops in the first cycle, twice self-loops
in the second cycle, and keep on triggering twice self-loops for the rest cy-
cles. Then we can write a partition X = {z;} = {3,2,2,...}. The timed
specification of the “Control” component can be written as: Choonsensus =<
ijjgce < CFinish < oo According to the relations R1 and R2, we

?Consensus"*

can draw the clock relations as shown in Fig.6.5.

6.2.2 Semantics of Coincidence Relations on Partition
Clocks

This section represents the semantics of coincidence relations on parti-

tion clocks. We first define Occurrence Filter on a partition clock.

127

Extension of Timed-pNets

i T y; Relations oz,(zz: x;) < v-(1+ ZZI Yk)
j=1 k=0
1= xr; = Yi a2 <vy1
1=2 ;=3 y; =2 ab<~v4
1=3 =0 y=1 - —=———
1=4 z,=1 y,=0 - —=—=——
1=95 ;=5 y; =4 a1l < ~.7

al a2 a3 ad ab ob a7 a8a9 410 411
SP{X}

: TMTT??}T

c | A M
N~ \
X=1{23015..} 3 \ 3 X 1 5

Tl ov2 73 Y4 V576 o Y7 ov8 Y9 710
crv I i i b Y
ANE— N N 0 7
v=1{32104..} 4 2 1 4
Fig. 6.4: Relation 3
TConsensus _1 TConsensus 2 TConsensus _3

: ’1\ { {
(-".’(.‘on.'s('n.'s us

L(,(.Eﬂ.(‘kj LocExe 3 /1 LocExe 5 / \‘
Cracine A M (A {

X =320 LocExe 2 \ %(}(-Ea-('_‘l \ / LocExe 6

CiFinish 1\)]\

!Finish _1 !Finish 2

Fig. 6.5: One example of Control Component Clock Relations

128

6.2. Clock Partition

Definition 32 (The k' Filter of a partition clock) Let cltXr = Haly, a0y, .. al,,)
{a21,a29,.. ., 2,,}, ... {ady,adiy, ... ad,, }, ...} be a partition clock

>k
(X = {z;}). The k™ (k € N) filter of C1L ¥V is PP = {a 14, 02, ..., oy, ...}

p for i >ux;

in which a_t; = . The new clock filters out the k" oc-

oty for i < xy
P{X}

currence of each subsequence from the partition clock Cy

For example, assume we have a partition clock C4 ™} = {{al, a2}, {a3, a4, a5}, {p},
{a6},{a 7,08, a9, a10,a_11},...}. If we set k=2, then we have Cj, Py
={a2,a4,pp,as8, ...}

Two cases of relations are discussed: a partition clock coincides with a

normal clock; a partition clock coincides with a family of normal clocks.

o [R4:] [CEVIF = ¢y] = [[0 = CPR) = Let 29 = 0, Vi, if 2; #
0Ak < x;, then a_(k + ij) pi

Relation R4 applies to the case where a filtered partition clock coincides
a normal clock. The semantics of R4 tells that the k™ occurrence of
the i subsequence in Ci I coincides the it occurrence of clock Cp.
Fig.6.6 shows us an example with £ = 1, in which a table represents
the occurrence relations we deduced and a figure that demonstrates the

relations.

o [R5] [[CP{X} = Cyn]] = Let zp = 0, Vi,j < z;, 1fx17é0 then
(Z z, +j) = ny-k; (€ [1,n]), in which k; = N(p) + Zxr

r=

Jj—(Z ki) (N(p) is the sum of the occurrences of p till the ™"
J'#5,3'=1
subsequence).

Relation R5 applies to the case where a partition clock coincides with
a family of normal clocks. Let C,[n] be a family of clock C,,, in which n

is the length of the set Cy[n] = {Cy), ,Cypyy}- The semantics

77[2
of R5 tells that for each non empty subsequence in the ¢ {X}, the ;"

129

Extension of Timed-pNets

i—1
1 T Relations a_(1+) z;) = B_i
Jj=0
i=1 ;=2 B =
i 3 ZT; 0 _____
g Ti Ba = ag
1=5 x;=295 Bs = o
A1 3.2 53 B4 A5
(-’,_} q\ q\ q\ q\ q\
al a2 a3 ad abd al a7 a8 a9 410 oll

(S O R S S |

/

crx) re Tt
) ~ N
X=123015.1 o 3 0 1 5

Fig. 6.6: Relation 4

occurrence of the i'" subsequence in the clock cr &% coincides with the

k" occurrence in the clock Cop (U € [1,n]).

The relation can be used to specify a flexible number of communica-
tions. In chapter 4, the use case 4.5 given in the page 64 has a fix
number of cars (carl and car2) that communicate with car0. How-
ever, in reality, the number of cars may change, for example, in the
first cycle, there are 2 cars that communicate with car0; then in the
second cycle, it may change to 3 cars that communicate with car0. It

is very complicated to specify this situation without using the relations

R5.

Fig.6.7 shows us an example with a table in which we deduce the oc-
currence relations and a figure that illustrates the relations. Let us
take relation “a_7 = n;;)-5” as an example. At the 5 cycle (i = 5),
we have N(p) = 1, x5 = 5. Since j = 1, we can calculate the index
of a by the formula Zix(i,l) +i =0+t +rata3st+ay+j =
0+2+43+0+1+1 =7 and the index of my by the formula

130

6.2. Clock Partition

. : =1 1=2 =3 1=4 1=5
J Relation r1=2 r2=3 x3=0 ra=1 xr5=5H
B i—1
] — OL,(. Owi =+ 1) = 77[1]—k1 al= 7][1],1 a3 = 77[1],2 —_— a b= 17[1],4 all = 7][1],5
i=
. i—1
] = 2 Oc,(ZO zi+2) = 77[2]J<,‘2 a2 = M[2) -1 ad= M[2) 2 — — a8 = Uip) 3
i=
. i—1
] = a(Z:o xi+3) = 77[3]J<33 —_ a5 = n3)-1 —_ —_ a9 = nz)-2
-
J=4 a(Zai+4)=nuth - - - - a-10 = nq)-1
=0
. i—1
J = a (3 @i +5) = ns)-ks - - - - a-11 = n5)-1
i=0
al a2 a3 ad ob ob ol al o9 10 o1l
P
crx S A N O O A S
S—t | S R W /
X=1{2,3,0,1,5....} E [~ 0 | 5
1] 1]2] 1413]1 -5 ‘
c T TT7
1l I | 414 [
2] _1 2] 2 - 2] 3
o T T i
2]
sl 1 N3] 2
(1.”3] 1\
"4l 1
Cnja) -
nis)1
Cris)
Fig. 6.7: Relation 5

k.

J

1—1
N(p) + ;ﬁ(z‘—n +7—(

6.2.3 Partition Clock Property

> M) =146+1—(2+1) =5
J'#5.3'=1

The design of clock partition helps us to flexibly group the timed-action

occurrences. In consequence, we are able to flexibly build relations between

the occurrences of two clocks.

It alleviates our workload on constructing

clock filters and results in an easier and more flexible way to build timed

specifications. Hereafter, in the theorem 5, we prove that the relation on

partition clocks can be expressed by a set of filtered clocks. This theorem

tells that the precedence and coincidence relations can also apply to the

partition clocks and keeps the correction of the relation properties in the

131

Extension of Timed-pNets

section 4.2.2 of the chapter 4. Therefore, the theorem 1 from the chapter 4

also applies to the partition clocks.

Theorem 5 Let Cg be a normal clock that has not been partitioned and
Cyln] be a set of normal clocks. Let CE (resp. €IY) be a partition
clock with X = {z;} (i € Nyzg = 0) (resp. Y = {y;} (o = 0)). Given
a set of relations {C’f{x} < C3,C5 < ch ofta 2 Cf{y},Cf{X}Dk =
Cy,Cx X = Cyn]}. We say that these clock relations can be expressed by

a set of filtered clocks as shown in the following cases:

{ i Tjtien
e Casel: the relation C4 ™) < Cp can be substituted by Cy'~" <
Cgﬂﬂfﬁéﬂ}ieN.

e Case2: the relation Cy < C4™} can be substituted by C’éilw#o}ieN <

i1
{14+ 3 zj}ien
/=0)

Ca ;

{3 @jlyi#0}ien

e Case3: the relation C}) < Cf) can be substituted by Cy’ ™"

i—1
{1+ ZO yjlzi#0}ien
= .

07)

SN
+ 2. TjjieN
e Cased: the relation C4 ¥ = Cj can be substituted by C, 7~ _

e Caseb: the relation CL ¥ = Cy[n] can be substituted by a set of rela-

i—1 i—1
{1+ 3 @rtien {2+ @r}ien
: r=0 _ dkilzi#A0A1<z;} r=0 _ dkel|zi#0N2<z;}
tions iC’a = Cn[u ,Ca = Cn[2] ey
{n+>" zr}ien
=0 o knlzi#A0An<Zz;} .
Ca = Cifn) b

Proof. Let us analyze these clock relations case by case.

e For the Casel, the semantics of the relation ol < Cjs is ﬂCf{X} <

Cs] = Vi, if x; # 0, then a_() x;) < f_i. According to the definitions

7j=1
of precedence and clock filtering, we can construct two filtered clocks

132

<

6.2. Clock Partition

{Z zj}ien 0 {Z z; bien
Cy'™ and C{leﬁé Vet guch that the semantics of [Cy'™" =<

C’éﬂm#o}ieN]] = Vi, if z; # 0, then oz,(z z;) < f-i. So the relation
j=1
< Cjp can be substituted by a precedence relation on the two

filtered clocks.

Cof’{x}

For the Case2, the semantics of the relation C’ < CPX) s [Cs <
g{x}]] = Vi, if z; # 0, then 14 < a (1 + ij) According to

the definitions of precedence and clock ﬁlterlng, we can construct two

{1+2 xj}’LGN s £0
filtered clocks C, *~° and C’ézlwﬁé Yien such that the semantics

{ilzi#0}ien {IJFJE:O:EJ}IGN _ .. .
of[[C < Cq | = Vi, if x; # 0, then f4 < a_(1+

Z T(—1y). So the relation Cs < C PAX} can be substituted by a prece-

dence relation on the two filtered clocks.

For the Case3, the semantics of the relation Cq P4 C’P{Y} is HC'P{X} <
IOV = Vi iy # 0,y # 0, then a (3 a;) < 1.1+ z y;)- We

7j=1
{Z x]|yz7’éo}zeN {1+ Z yj|xz7éo}leN
can construct two filtered clocks C’ = and C, =0
{Zl 5’73|yz7£0}zeN {1+ Z y]‘xzio}zel\!
such that C,/ < =0 has the same semantics

as CLY < C’f{y}.

For the Case4, the semantics of the relation Cft 1" = Cs is [[C’P{X}Dk =

Csl =1Cs = = CPV M) =i if 2y #£ OAk < 3, then a (k+2 x;) = [

(k is a fixed natural number). We can construct two ﬁltered clocks

{k+ Z Tj}ien

C, ° and C’éﬂxi#ong"} such that the semantics of clock rela-
i—1
{k+>" zj}ien '
tion [Cy = = CFIFONSII = i it @y #£ O Ak < @y, then
i—1
Oé,(k' + Z l'j) = B,Z
=0

133

Extension of Timed-pNets

e For the Caseb, the semantics of the relatlonC PIXy C,[n] is [[Cf{X} —
Cyn]] = Vi,j < x;, if z; # 0, then a_ (ZIL‘T—F]) = ny-k; (j € [1,n]).

IS mdian (24X #rhien
We can construct a set of filtered clocks {Ch "° , Cq 7° :

i—1
{n+ 2 zr}ien

LG T Yand (Ol mrONSTY gliainronisey L glinlniA0nsity

n[2] n[n]
Then we can build a set of coincidence relations on these filtered clocks

as follgxivs:
{1+ Z xr}zEN
[Ca ™= _ 07‘7{[1311]|$1750/\1<331}]] = Vi, if x; # OA1 < x;, then a_ (Z T +
r=0
-k,
7—1
{24+ > @r}ien it
[[Ca r=0 C;E[]ZQ]':EZ#O/\2SwZ}]] — VZ, 1f T % O/\2 S xiu then ai(z Xy —|— 2) e
r=0
77[2]J<72
i—1
{n+ Z Ir}zeN
[[Oa r=0 _ C{[lj;i\m#O/\nSmi}]] = Vi, if z; # 0 An < xz;, then
1—1
a-(D- T +n) = np)-kn

r=0
n 1—1
under the condition) k; = N(p)+ > x, + j. From the set of seman-
7j=1 r=0
tics we can see that the set of coincidence filtered clocks has the same

P{X}ok

semantics as the relation C, = (3. Therefore, the relation can be

i1
{1+ 3" zr}ien

substituted by a set of relations {C "=° = C;ﬁllmémlql}

i1 i1
C{2+T§0€Br}i€N C({k'2|xz7£0/\2<xz} C{”+T§OIT}1‘€N _ C{[k,ﬂxﬁéO/\nSm}}
o ey o n[n *

n[2]

6.3 Clock Union

Here, we define a clock union operator “+” that is able to create a
new clock from two different clocks. In CCSL [7], a simple version of clock
union is defined as [¢; + 2] = (¢1 V ¢2) (1 and ¢p are two logical clocks)

in the sense that the union clock expression c; + ¢ ticks whenever ¢l or ¢2

134

6.3. Clock Union

ol 2 o3
. A A A
5.1) 323
polA |
g I | I I |
c, Tl v 2v3 Y4 7T 576
NSRS SO I/ NSO

Co + (13

Fig. 6.8: clock union

ticks. In our thesis, we extend the clock union of CCSL by adding exclusion
constraints between clock ¢; and ¢y. Therefore, our clock union is typical for
uniting the clocks that are forbidden to coincide. We mainly use the operator
for specifying the branches in the transition systems in order to simplify the
expressions of timed specifications. We give the definition of the Clock Union

operator as follows.

Definition 33 (Clock Union on two clocks) Let C, and Cs be two logical
clocks. Clock C, is the union of the two clocks (denoted as C, + C3). We
say that clock C., can tick if

e the clocks C, and Cjp are exclusive (CpiCj);
e cither C, or U ticks.
Formally, [C,] = [Ca+ Cs] = (v-k=aiV B j) A (k=1i+j)(i,j,k €N).

From the definition, we know that the clocks C, and Cjs cannot tick
at the same time. In other words, only one clock can tick each time. Fig.
6.8 demonstrates a simple example of the clock union. Furthermore, we can
build the union of a set of clocks C. The definition below defines a clock

union on n clocks.

Definition 34 (Clock Union on a set of clocks) Let clock C, be a new clock
generated by the union of a finite set of logical clocks {C;}(i € [1,n],n € N).
(denoted as +{C;}). We say that clock C., can tick if

135

Extension of Timed-pNets

Car0 Car[m] (Carl / Car 2)
Control (o Initial Control [m]
onsensus Channel
= 3 C2R © g
[ExpRes CurtDat c . equest(Ins)*a [ExpRes = CurDat: .
IFinishf ?Cgnsensus(ExpRes) Finish Q irinishts [Cocgnsensus(ExpRes)
C Cicmd(ins)e ' [m| tm
1Terminal |
e L]
<]
[ExpRes != C“thata] il [ExpRes != CurData]
LocE:
et b=True] Channel Cuocexe
Crte
Crte
c T Cemd |l i=0ik++ik <21 k= 0K+ k< 2]
ommini Crrinish(k) Ciconsensus(Expres, k1™
Cirp)R Emd(ins)tc
b=Vr, Cr CommRes[m]
=1 k++ k2] ¢ ,—l CNot\fy 2
Noti 92[m]
Cinotify(ins, k)N gL »| ChannelNtf[m] > @)
t\fy(\ns)t"[)
K=1; ket +i k< 2] Coack ———— C ack C,
3 1Ack(rm) @
Conckikm)ta 94 (m] ChannelAck[m] |« 83(ml 3

Fig. 6.9: Timed-pNets: Communication Behaviour Model of Cars Insertion Scenario

e Vi, the clocks C; are exclusive among them (C14Csf ... 4Cif ... £Cy);
e whenever C; ticks.

Formally, [C,] = [H{C}] = (C,[k] = Gilj] V... VLIV VCalin) Ak =

The operator is commutative and associative. Furthermore, since the
operator is used to build a new logical clock by means of building a union of
clocks, we actually do not change the definition of a logical clock. Therefore,
the precedence and coincidence relations can still apply to the new generated
clocks (built by clock union operators) and the properties in the section 4.2.2

in the page 63 are still hold for these new clocks.

6.4 Examples and Simulations

In this section, we take the components “Control” and “Initial” from
the Fig. 4.5 in the page 64 as examples to represent how to specify them by
using partition clocks and union operators. Here, we copy the figure to this

section as shown in the Fig. 6.9.

136

6.4. Examples and Simulations

Let C¢ be a reference clock chosen for our simulation. For simplification,
we set the Cy as a logical clock in which the occurrences appear periodically.
we assume the delay bounds of all clocks are [1,2] (based on C), and require
that the execution time of carQ) moving to another lane must less than 5 steps
of Cy after the clock Crconsensus(Eapresyto ticks. Here, we define two properties

to be checked in our simulation:
e Safety Property: no clock relation conflict exists.

e Time Property: the clock C\, . t; must tick within 5 steps (based on

Cf) after the clock C?C’onsensus(Epres)tO ticks (fOTmaH}f, C?Consensus(Epres)tO _<[1,5]

C!Finishtf) :

We then input the timed specifications of these components into the TimeSquare

tool to check the safety and time properties.

6.4.1 The Timed Specification of “Control” Compo-

nent

From the Fig. 6.9 we can see that the execution of clock Cpocpzete
depends on the guard “[ExpRes != CurData]”. The system keeps on check-
ing the guard. If it is satisfied, it triggers the clock Crocpreta to tick once.
Then the system checks the guard again. If it is still satisfied, the system
keeps on triggering the clock to tick until the guard is not satisfied. So

the clock Cpocpzet- can be triggered many timed before the system tran-
CP{X}

LocExetx

situation. And the way of partition X = {;} is built from the function

sits to the next state. We use the partition clock to specify the

v i—1 1—1
below: z; = > a;, in which v = i+ > a3, v = i +) 2 + z;, and
j=u k=1 k=1

CL]‘—

0 for ExpRes = CurData
For example, if we get a sequence of a; = 1,1,1,0,1,1,0,0,1,1,0, then

{ 1 for FExpRes! = CurData

we can calculate 1 = a1 + as + a3 + a4 = 3. It stops at a4 because ay =

0. Then z9 = a5+ ag + a; = 2 (a; = 0). Then z3 = ag = 0. Then

137

Extension of Timed-pNets

6.1 : Calculate the Way of Partition X

J1112]3]4(5]6]7[8[9]|10]11
a; |1 110j1|1{0j0]1|1]O0
v |1 2 314
z; | 3 2 012

Ty = ag + ajg +a;n = 2 (a;; = 0). The result is shown in the table 6.1.
In the end we have X = {z;} = {3,2,0,2}. Furthermore, according to the

Fig.4.5, we can get the timed specification of the “Control ”component as:
P{X} A(1)
C?Consensus(E‘szes)tO = CLocEa:etﬂf = C!Finishtf = C?Consensus(E:vaes)tO

in which

6.4.2 Timed Specification of “Initial” Component

The “Initial” component in the Fig. 4.5 includes a branch. It tells
that after clock Chpip, either clock Cre. or clock Clogpeertr ticks. In this
case we use the clock union operator to specify the relation as Coppyn <
Crir +Cioancerrs - Similarly, when finishing a cycle, a clock union Cypepminaitr -+

Crcancertr. Precedes chW Besides, from the guard “[k = 0,k +

?Request(Ins)ta’
+,k" < 2]” we can see that the selfloop on clock ClConsensus(ExpRes,k)to and

0{3872}561\1

c, Finish(k)'/ execute 3 times. So we have the relation \Consensus(EBxpRes k)to

{3s—1}sen {3s}sen {35—2}sen {3s—1}sen
IConsensus(ExpRes,k')to = C!Consensus(Ea:pRes,k’)to and ?Finish(k’)tf = ?Finish(k’)tf ~
{3S}S€N)
PFimish (k) The timed specification of this component is as follows:
TS of “Initial” Component:
C?Request([ns)tq = C!Cmd([ns)tc = C?R(b)tR = C1T’5" + C!C’anceltL =
{35_2}56N {35_1}56N
CTtT = C!Consensus(E:vaes,k’)to = C!Consensus(E:vaes,k’)tO
{38}56N ! {35_2}861\!
= O!Consensus(Epres,k’)to = CTtT = C?Finish(k’)tf
{3s—1}sen {3s}sen .
= C?Fim’sh(k’)tf = C?Fim’sh(k’)tf < Crrerminattr
i A1)
C!TerminaltT + C!CanceltL = C?Request([ns)tq
.. P{Y} P{Z}
Actually, we can use a partition clock C, Consensus(ExpRes i')to and Cypl h(?to

138

6.4. Examples and Simulations

(Y =7 =1{3,3,3,...}) to substitute a set of clocks for the two loops. In the

end, the timed specification can be simplified as:

The simple version of “Initial” Component:
C?Request(]ns)tq = O!Cmd([ns)‘c < C?R(b)tR = CTtT + C!C’anceltL =
P{Y} P{Z} .
CTtT = C!Consensus(EmpRes,k’)tO = 07/'“' = C?Fim'sh(k’)to = C!TerminaltTa
CA(l)

C!TerminaltT + O!C’cmceltL = ?Request(Ins)ta

6.4.3 Simulate the “Control” component

Let us take “Control” component as an example. When doing simula-
tion, assume X = {x;} = {3,2,0,2,...}.! By the tool TimeSquare, we find
that there is no clock relation conflict. However, when we check the time
property, we found a time constraint conflict.

The reason for this conflict is that the action “LocExe” may repeat 3
times. Since we assumed that the delay of each clock is among [1,2], the
delay between Clock Chconsensus(Bapres)te and Cyp, . .1, falls among [3, 6] ¢
[1,5]. So we need refine the specification to remove the conflict.

One solution is to design a new guard [x; > 3] and a new clock C' 4prtionts
that communicates with “Initial” component. When the guard is satisfied
(it means that the action “LocExe” executes more than 3 times), the clock
C aportionts ticks (see Fig. 6.10). We update the timed specification of the

“Control” component as follows:

TS of updated Control component:

P{X
O?C’onsensus(Eszes)to = CLO{CE];etI;
P{X} ; .
CLocExetm = [wl < 3]C!Finishtf + ['IZ Z 3]C!Abo7‘tiontb7
i A(1)

C!Abortiontb + C!Finishtf = C?Consensus(EmpRes)tO

Lthe dots “...” mean that the number 2 is repeated. If we need repeat a set of numbers,
we can use brace simbols. For example, {3, 2, 0, (2, 3), ...} means the set numbers (2,3)

are repeated. So it has the same meaning as {3, 2, 0, 2, 3, 2, 3, (2, 3), ... }.

139

Extension of Timed-pNets

Control

[ExpRes = CurData

C \finishts

[ExpRes !'= CurData]
ClocExe '

Fig. 6.10: Control Component Update

Notice that we do not put the guard [ExpRes != ExpDatal as a guard in
the timed specification. Because as we explained before, when we generate

P{X}

the partition clock C} ') .., we already use the guard [ExpRes != ExpDatal

to get the partiton X.

6.4.4 Simulate the “Initial” component

Since the “Abortion” signal will be sent from the “Control” component
to the “Initial” component, we add a clock C; gportionts in the “Initial” com-
ponent. The new timed-pLTS of the component is shown in Fig.6.11. We

also update its timed specification as follows:

TS of updated Initial component:

P{Y
CTtT = C!CEmiensus(Epres,k’)to; (Y = {3’ 3,3, .. })
P{Y P{Z}, e,
C!CEmiensus(EmpRes,k’)tO = C?Finishe(lf’;]; (Y =7 = {37 37 3? e })
P{Z}. :
O?F{inis;le(l[:’y;] = [zl = S]C!TerminaltT + [Zi < 3]C7Abortiontb;

C?Abortiontb = C!Abortiontb;

i i A1) .
C!TerminaltT + C!Abortiontb + C!C’anceltL < C?Request([ns)tq7

After simulating again the corrected component, we found both proper-

140

6.5. Conclusion

Initial

C

Terminal

[k :=0; K'++ k' €2] [k':=0; k'++ K'g 2)

C 7Finish(k)t f C

t
IConsensus(ExpRes, k') ©

Fig. 6.11: Initial Component Update

ties are satisfied.

6.5 Conclusion

In this chapter, we defined clock partition and clock union to easy the
building of timed specifications. The simulation of applying them to the
“Control” and “Initial” components illustrated the advantages: making the
timed specifications easier to understand and providing users a flexible way
to specify complicated situations. The extensions are conservation in the
sense that they preserve the theorem 1 and properties in the section 4.2.2.

In the next chapter, we will model the full “car inserting” use case and
represent how we build a hierarchical timed-pNets. System properties (e.g.
safety, latency properties) will be designed for the system. We will use the
TimeSquare tool to check these properties in each layer. Besides, corrections

of the use case model will be discussed when these properties are not satisfied.

141

Chapter 7 Full Use Case

In this chapter, a full use case is represented to demonstrate how we build a
timed-pNets model and check its safety and time properties. We start with
a full scenario of the car inserting use case in the section 1.5.2 of the page
23. Then we design five properties that we are interested in. We represent
the procedure of building time-pNets model including the structure designing
of the model. Since timed-pNets have a hierarchical structure, we build and
simulate the model from bottom to top. In each layer we use the TimeSquare
tool to check the properties that are related to this layer. Refinements are
proposed if the properties are not satisfied. Furthermore, we design some
advanced simulations like communicating with undetermined number of cars.

In the end, we conclude our works.

143

Full Use Case

7.1 Use Case

7.1.1 Background of ITS

An Intelligent Transportation System (ITS) is an application integrated
the technologies of communication, control and information processing. All
elements of the transportation system, including the vehicles, the infrastruc-
tures, and the drivers or users, interact dynamically among them. The aim
of ITS is to improve real time decision making, thereby improving the effi-
ciency of the entire transport system. In I'TS, vehicles and infrastructures are
equipped with sensors and actuators. They communicate with each other to
update physical information and accomplish remote controlling. Currently,
Research and Innovative Technology Administration (RITA) [91] in U.S. De-
partment of Transportation has started research work on it to achieve a
vision of national transportation by feature a connected transportation envi-
ronment among vehicles, infrastructures and passengers’ portable devices. It
raises the importance of real-time communications among these distributed
nodes since the data out of date would make big mistakes even sometimes
could lead to a car accidence. For example, the late delivery of global traffic
information to cars may result to a wrong guiding for cars to choose their
best way. Moreover, the late information exchange among cars may cause a
car accidence especially when they cannot see each other at cross.

Two communication safety applications are considered in I'TS: vehicle to
infrastructure (V2I) communications and vehicle to vehicle (V2V) communi-
cations. In the two applications, the vehicles are allowed to access network
resources (e.g. MB-Portal, A-Class-Online, smart webmove, ...), and the
back-end infrastructures are able to retrieve information (e.g. diagnostics
data) from the vehicles. Vehicles and infrastructures share and exchange
information and sensor data among each other. We took a use case mainly
from vehicle to vehicle application to build a timed-pNets model and analyze
its properties. We call the use case as Car Inserting. It describes that carO

can change its current lane and insert between other two cars after getting

144

7.1. Use Case

£

send request

Lane 1

Fig. 7.1: Car Insertion

an “insert” request from human beings or other smart devices, as shown in
the Fig. 7.1. Before inserting, car(sends a request to other two cars to ask if
it can execute the inserting action. If one of the two cars does not agree, the
inserting action will be aborted. If both cars agree to let car(insert between
them, then car(starts to change its lane and to insert between the two cars.

The next section represents us the scenarios and requirements.

7.1.2 Car Inserting Use Case Scenario

In this section, we list detailed scenarios and timed requirements. These
requirements are used to check the time constraint conflicts and latency prop-
erties. We import into our model a reference clock Cy in which the timed-
action occurs periodically. All the timed requirements are designed based
on the reference clock. We separate the use case into two phases: agree-
ment phase and execution phase. For the agreement phase, the scenario is

as follows:
e car(gets a change-lane request (e.g. from a human user);

e car(sends “notify” requests to carl and car2 to get an agreement, and
the time delay from getting a change-lane request to sending a “notify”

is no more than 3 time units(based on C);

e carl (resp. car2) acknowledges car0 “yes” or “no” within 10 time

units(based on C);

145

Full Use Case

e after sending “notify”, car0 collects all results from carl and car?2 ;

e [f both carl and car2 answer “yes”, car(signals the consensus to carl

and car2 and then goes to the execution phase scenario,
e otherwise car(aborts the procedure.
The scenario of the execution phase is:

e carl slows down and/or car2 speeds up to leave more space between
them for car0, and this execution must finish within 5 units (based on
Cr);

e Meanwhile, car0 changes its direction and moves to lane2;
e car(notifies the end of the procedure with a ”finish” signal.

In the use case, for simplification, the delay bounds of those clocks that we

do not specified in the scenario are set as [1,2].

7.1.3 Properties

Here we design some properties in which the time units of these prop-
erties are based on the reference clock Cy. The properties P1 and P2 are
meta-properties in the sense that they do not need to be encoded and can
be checked directly by the TimeSquare tool. The other three properties need
to be encoded with CCSL format (detailed information can be found in the

section 7.3).
(P1.) Safety Property: no logical clock relation conflict exists.

(P2.) Safety Property: system clock relations satisfy the following relation
requirements: 1) the change-lane requests happen before sending noti-
fications; 2) the sending notifications happen before getting acknowl-
edgements; 3) the changing lane execution actions happen before send-

ing the “finish” signal.

146

7.2. Build Timed-pNets Model

(P3.) Safety Property: no time constraint conflicts.

(P4.) Latency Property: assume that the network communication delay is
less than 10 time units, then the latency from sending a notification
to finishing collecting all acknowledgements is no more than 30 time

units.

(P5.) Latency Property: the latency from car(0 getting change-lane requests

to sending “Terminal” signals is no more than 55 time units.

7.2 Build Timed-pNets Model

Here we represent the procedure of building timed-pNets as following

steps:

(1.) According to the scenario of the use case, we design a component-based
structure that includes timed-pNets holes and communications between

holes;

(2.) Fill holes with timed-pLTSs and then transform to timed specifications.

7.2.1 System Structure

We use the component-based modelling approach to design the system
structure. Since the communications between cars are asynchronous, we
design channel components to build communications between cars. As shown
in the Fig. 7.2, the top level (level 2) represents a coarse design of our
system. Then we refine the system as shown in the level 1 in the Fig. 7.2.
Since the communications in this level is synchronous, we directly build the
communications by using synchronous vectors. In the leaf level (level 0,
as shown with green circles), we represent the timed specifications of those
components.

For simplification, we directly represent the structure with all levels as

shown in the Fig. 7.3. In this structure, on-board car systems are modeled by

147

Full Use Case

car0

[1
\I | ‘ System
card carfm]
[éhannel
control T$ el
¢ Initial
& =

Commini [TS ¢ Commini |-

\ CommRes[m]

]

|\ e
S_Initia
TS Ini

Level 2

car[m]

Initial

Level 1

ICommRes[m]

m Level 0
TS_Contra|[m] TS@ es[m]

Fig. 7.2: Tree Structure of Use Case

Pr Terminal

change-lane Request Cancel
@ @ (?-’) Car0 Car[m] (Carl/ Car 2)
Control i
Consensus | INitial @ Channel Control [m]
F\nish@) Consensus
Finish (‘
Commini Requesrﬂ .._|_ Il-f.
Channel
Result
CommRes[m]
) Motify
otify, 6)-,_ Channel —
Ack Ack
-« Channel - m

Fig. 7.3: The Component-based Structure of Car Inserting Use Case

148

7.3. Simulation

several components including “Initial”, “CommlIni”, “CommRes”, “Control”,
etc. In the figure we only show the components that participate in the
protocol. The change-lane requests are received by the “Initial” component.
Then the request triggers “Commlni” component that takes charge of the
communication part. The component “CommlIni” sends “Notify” signals to
the component “CommRes” of other cars and waits for the “ack” signals
from them. Then the “CommlIni” transmits a communication result to the
“Initial” component. According to the result, the component decides whether
or not to send “Consensus” signals to other cars to execute their movements.
In the end, “Initial” component sends “Terminal” or “Cancel” signals to

users or drivers. The red numbers give the order of these actions.

7.2.2 Fill Holes

Then these holes in the Fig.7.3 are filled with timed-pLTSs as shown in
the Fig. 7.4. These timed-pLTSs are then translated to the timed specifica-
tions before inputting to the TimeSquare to check the properties. Since we
already discussed the timed specifications of these holes in the chapters 4 and
6. For simplification, here we directly represent the holes with their timed
specification as shown in the Fig.7.5. Notice that the timed specifications
are not the final version. They would be modified later if the properties we

required are not satisfied.

7.3 Simulation

We use the TimeSquare tool to simulate and check our model. Since the
timed-pNets have a tree structure, and the timed-pNets we designed for the
“Car Inserting” use case has three levels, by analysing the properties designed
in the section 7.1, we locate these properties in the levels where they would
be checked. As shown in the Table 7.1, the symbol 1/ says that the properties
of the columns should be checked in the level of their crossed rows. We start

our simulation from the bottom level and check the properties that located

149

Full Use Case

Car0 ChannelCons[m] Car[m] (Carl/ Car 2)
c
£ ‘Consensus.
Control CConsensusgs‘m] O b 96(m)
Ceonsensus | Initial > C. \ﬂ — 3| Control[m]
[cftmi
®©
[Epr(e:s = CurDat: . equest(ins)‘a {ExpRes = CurDats
wnisnte | Crcdn) -
A B e Ciematnalt ChannelFin[m] nisnty | Cocgsensus(esores,
c 1cmd(ins)'c Cinish, c (s i
tTerminal {7 98(m) Finish g7,
tr
i, <«
Corpota c t tm
[ExpRes != CurData] c.!Finis! [ExpRes 1= CurData]
s
ocere'x A Cuoctie s)
CT(\'
] —
Comd iei=0ikstik €21 [k 2= 0; k44 K< 2] ChannelNtf[m]
Commlini Cotmonticr' ! o »
inish(k') onsensus(ExpRes, k') ® Crouts CommRes[m]
5 . (SR —— ooz
S kmatinsfe < Cemotiyins m
b=V R !
= 1; k++: k€2)
c — ©
Cinotity(ins k)1 Notifyg1m) t
ChannelAck[m] C pck tify(ins) ™y
93 (m)
K7L ki k< 2] Chekgy < Coack(n
Coackikmts < 94 m <«
Fig. 7.4: Fill Timed-pLTS into Holes
Car0 Car[m] (Carl / Car 2)
Control .
C onsensus | Initial Control [m]
tqg < t
& i - Corequestins)ta Ciemdans'e < Corpyta | |Cfog = Co. iconsdlsl .
? ;
2consensus(Expres) °4 P t, Crom < Cxt + Gt [T an || Cromsensusterores < Ciltety,
; . 1C = Ce.rc m}
P{Y} . [m]]
P{x] t. t
ot i< C pianty Crtr 2 Ciconsensus(Expres, k)10 PP et < i <AIC,. at
. t Piv) s . IFinishf [m]
+ [xi 23] Ciaportion 'b Ciconsensus(ExpRes, k)'o< Crete - = # 141231 Coaporton |
m)
o o o ' B P(z} | |“crrinish,,* “corinish
tFinish’ -+ Ciabortion b Cete < Crrinishik)' Tl "l & c inish 4 Clabortion by,
< cAw t PR _ carnish i < C o.orinis Ao .
r Corinish(k)" <12 =81 Cyrerminal 1 < Csc Bl
+ 2 <31 Copportion '
i Coma Conportionts < Ciabortion tb
Commini c & .
. (2—1}nen TTerminal “T + Cycance't + Ciaportion '
Cremd < Criyorigy ™ AQ)
)) = CoRequest(ins)'a
Cf2e=tsen of2shoc C
motify notify R CommRes[m]
A25—1heen _ ~d25—1}ien - = Chotify . ’
Clnotify = Crack CNMifygl[m _ (c,/vmnjy[m = (_\C',':f“’”' Y 62(m) | Crnotigy, = Clacky
(Z‘)};n P (‘gz‘k)\:—n C Cnotify < Cg }”{WV hannelNtfim] cdm
otify S Clack’ 5 . <C
. mi Claek ?
i Chck, = Gty fack oy Conotif gy
4 erack, < Cetac 03(m]
[m] (,C.‘m:k[m] Clacky |
" LA(1)
(C"““‘[mf‘ Co.rack im/ChannelAck[m]

Fig. 7.5: Put Timed Specification into Holes

7.1 : Levels and properties

P1|P2|P3|P4|P5

Level 0 | / | - NARE -
Level 1 | / |V | V| - | -
Level2 | v/ |V | V| V| V

150

7.3. Simulation

in this level. Then we build an upper level and check the properties located
in this level till we finish all the levels. Here we represent the procedure of

simulating the model and checking the properties as follows:

(1.) simulate the leaf nodes of Fig. 7.2 and check if property P1 and P3 are
satisfied;

(2.) build the middle level of Fig. 7.2 by composing these components into
timed-pNets nodes, and check the properties P1, P2 and P3;

(3.) build the top level of Fig. 7.2 and check the properties P1 to P5.

Since the properties P1 and P3 are meta-properties, they should be checked
in all the levels. Among these properties, some need to be translated to the
form that can be accepted by the TimeSquare tool, some do not need. For
example, usually the property P1 does not need to be translated, because
the property can be check directly by the TimeSquare. Take another exam-
ple, the property P3, needs to be translated. Actually it includes a set of
properties. According to the scenario from the section 7.1, we list its sub

properties as follows:

o (P3.1) Coconsensus(EzpResyte =<[1,5] Cipimisnts» this property is located in

the “Control” component of the level 0;

o (P3.2) Car0.Cpequest(insyta <113 Car0.Cinogify(ins,kytn, this property is

located in the “Car()” component of the level 1.

o (P3.3)Car0.Cinotify(ins ke =<p,10) Car{m].Ciack(r,)ta, this property is
located in the top level (level 2) between the components “Car0” and

“Car[m]”.

Usually a property can be represented as different forms when they are lo-
cated in different levels. Let us take the property P3.1 as an example, when
we discuss it in the level 0, the property is presented as Coconsensus(EzpRes)to <[1,5]

C pinisnts - When we discus it in the level 1, it is presented as C'ar0.Ccopsensus(ExpResyto =<[1,5]

151

Full Use Case

Car0.Cy,, ot - Furthermore, when we discuss it in the level 2, it is presented

as Consensus(ExpRes)to 46, - In other words, the property does

<C Finish'f o7
1 inish'f g7,
not change, but the clocks related to the property may be changed in terms
of the level they are located. For the other properties P2, P4 and P5, they
also need to be encoded with the different clocks when we discuss them in
different levels. The detailed difference will be represented in the sections

7.3.2 and 7.3.3.

7.3.1 Simulate the leaf level

In the leaf level, we check the components “Control”, “Initial”, “Com-
mlIni”, “CommRes” and the channels (“ChannelNtf”, “ChannelAck”, etc.).
We import the timed specifications (see the Fig.7.5) of these components into

TimeSquare.

Translate properties

We encode the timed specifications of these leaves into the TimeSquare
tool [41]. Then we check if the clock relation conflict (P1) and the time con-
straint conflict (P3) exist. If a conflict exists, we need to correct our model.
We do not need to translate property P1. In the leaf level, only the property

P3.1 is located in this level and it is translated to Crconsensus(EzpRes)te <[1,5]

O!Finishtf :

Simulation Result

Since we already discussed the timed specifications of those leaves in
the chapters 4 and 6. Here we directly give the results. According to the
two chapters, to satisfy the property P1 and P3.1, we refined the system as
shown in the Fig. 7.6.

After encoding these timed specifications of the refined system to the
TimeSquare, we find that there is no clock relations conflict. And the latency

property P3.1 is also satisfied.

152

7.3. Simulation

Control

Locxe 'x

Car0

Consensus | Initial

C

cmd

Cinis Cipf

&
K= Ok K < 2)
Cornish()

[k 1= 0; k'+4: k' 2)

t
IConsensus(ExpRes, k') ©

C

Consensusgs,
»

ChannelCons[m]

to

L e

>

R Ggm

C
Finish g

CR

= Lik++i k<2

© S
W
c
Crte Cinotty(ins o

MOty g11m)

ChannelFin[m]

Q
ety
CefinishlT
d

e —

ChannelNtf[m]

[m)

C
Consensus

c Finish

9Tim)

96(m)

Car[m] (Carl/ Car 2)

p-| Control [m]

A

[ExpRes != CurData]
Clocexe tx

[m]

O
bgify(ins, k)1
Ce.tNotify(ns iml
ud

S —

=1 ki k2]
Concitkrm'a

Cack

‘94 (m)

A

ChannelAck[m]

\

C oty

c
Ackg3 (m)

92(m)

CommRes[m]

(©
4
Notify(Ins) "[ml
c 1Ack(fm'Q
S

t
<Rl
C % o
cackl
m

Fig. 7.6: The first Refinement

7.3.2 Simulate the middle level

Then we compose these well designed components and build the upper

level timed-pNet nodes. From the Fig.7.2, we can see that car0 and carl

(resp.car2) are located in the middle level. These cars are composed by the

components “Initial”, “Control”, “CommlIni” and “CommRes”. Let us take

carQ as an example to represent how to build its timed specification. Other

timed specifications in this layer can also be built by the same way.

Timed-pNets formalization of car(Q

Fig.7.7 represents the timed-pNet node of carQ including the communi-

cations between its local components. Even though the component “Comm-

Res” in car0 does not participate to the local communications, we still keep

it here to represent a complete car model.

We formalize the node as follows:

o P={k,Ins,m,rpy,b}(m:=1,2),

CGCarO = {CGTO'C?Request(Ins)tq 5 CCLTO.CCmd(InS)tC s CCLTO.CR(b)tR,

Caro'CConsensus(Epres)to) CQTO-CFZ-nZ‘Shtf > CarO-CAbortiontb ’ CGTO-C!Notify(Ins,k)tn [m]’

CarO-C?Ack(k:,rm)ta

[m]’

Car0.C) Consensus(ExpRes)tos Car0. C?

Finish'f>

CGTO'C?Abortiontb ’ CarO'C!TerminaltT) CGTO‘ClCanceltL) CGTO'C!Aborm’ontb }

e J = {CommlIni,Control, Initial}

153

Full Use Case

Car0.Cpiepucat(inayts Curl.Girerminat's
Car0 Timed-pNets Node - Car0.Creaneet's
® 9, O e
Control) — Car0. Craportions
Car0. Ceonsensus(ExpResfrANitial @
Car0.Cpipian L
6 M [o
Car0.C aporsionts CarD|Ciconsensus(EzpRes)t»
Car0.Cr e Car().C, .
Commini arl.Comd(ingte (; & Finish'f
Car0 Cawyn ‘.C'W”‘C't-uw tionts
Car0.Cinotify(Tns k) [, @
Car0.Coack(kry)ta "
(2)

Fig. 7.7: Timed-pNets node of CarQ

In the Fig.7.7, the global clocks of car(are generated by a set of synchronous
vectors as follows:

V1 :< Initial.Copmaqmsytc , — CommiIni.Cocpmamsytc >— Car0.Copgins)to
V2 :< Initial .Cygpyin, —CommlIni.Cigeyr >— Car0.Crpyin

. o P{Y}r1
V3 :< Initial .C’!Consensus(EupRes)to’ Control.Coconsensus(ExpRes)to —
P{Y}o1
CCLTO'CConsensus(Ea:pRes)iO

Vi< Initial.C’giiitf , Control.Cpy ity — > Carocﬁfﬁ;@

V5 < Initial .Cs gppriionts s Control.C aporsionts ; — >—> Car0.C yportionts

V6 < -, =, COmmITLi.O[Notify([n&k)tn >— CCL’/‘O.C!Notify(Ins,k)tn
VT :< =, —, CommIni.Cogck(k,rpyta >— Car0.Crack(k e,)ta
" P{Y1}>{2,3 P{Y}>{2,3
V8:.<1I nltzal'C!C{ong:isus}(Epres)tO’ B C(”"O'Clc{caniffisus]EEpres)to

V9 :< Initial.CLPES sy Car0.CLUAR
V10 :< Initial .Co gporsionts s —> — >— Car0.Ch gportionts
V11 :< Initial .Ciperminatr >— Car0.Cyrerminait
V12 :< Initial .Cyeppeertr >—> Car0.Cioancerts

V13 :< Imitial .Cy gportionts >— Car0.Ciaportionts

V14 :< Initial Co geguest(insyta > Car0.Copeguest(ins)ta-

154

7.3. Simulation

Translate properties

To check the property P2, we need translate the property to the form
that accepted by the TimeSquare, and then we run the tool to see if conflicts
exist. The P2 is translated to:

d (1> CarO'C?Request(Ins)tq = CarO-C!Notify(Ins,k)tn
L4 (2) C@TO-C!Notify(Ins,k)tn < CGTO'C?ACk(k,Tm)tG
d (3) CaTO'C?Request(Ins)tq = CarO'C!TerminaltT'

For the property P3, we translate the P3.1 to Car0.Ceonsensus(EzpRes)te <[1,5]
Car0.C

Finis

1. This property comes from the scenario in the section 7.1.2 which re-

nt¢ that is the relations based on the global clocks in the level

quires that the three cars would not take more than 5 time units (based on
C) to finish moving themselves to their expect positions after receiving the
consensus signals. Another property in the level 1 is P3.2. The property
requires that the delay from getting a change-lane request to sending a “no-
tify” is no more than 3 timed unites (based on Cf). Formally, it is written

as CGTO'C?Request(Ins)tq —<[1,3] CGTO'O!NOtify(Insak)t"'

Simulation result

We encode the timed specifications of those components and the syn-
chronous vectors into TimeSquare to check the properties P1, P2, P3.1 and
P3.2. For the property P1 and P2, the tool does not report any error. How-
ever, when we check P3.1, an error is reported.

The main reason is that the system cannot get “Finish” signals before
finishing sending all “Consensus” signals. According to the assumption in the
section 7.1.2 , the remote communication time (from sending “Consensus” to
getting “Finish” signals) may take 20 time units (based on Cy). By waiting
for the remote “Finish” signals from other cars, the delay between the clocks
Consensus(EapRes)to and Cp, . ¢r in car0) may be more than 5 units. It results

to the failure of the property P3.1.

155

Full Use Case

Initial

C!Term‘ al
Co LocFipisht c, Cor(o)t
C ILocCo b=True]
CT tT
[k :=1; K++ k' €2) [k =14 K+ K 2)
C?Finis.h(k')tf C!Consensus(Epres, k')to

Fig. 7.8: Refined Initial Component

One solution is to let the local “Consensus” directly precede local “Fin-
ish” so that it can avoid waiting for the responses from other cars. Fig.7.8
represents the modified “Initial” component, in which we put the “local con-
sensus” and “local finish” signals behind the remote ones. It guarantees that
carl and car2 have left enough space for carQ before it starts changing its
lane. The timed specifications of the modified “Initial” component are listed

as follows:

TS of refined Initial component:
OTtT —< C(P{Y:{2,2,2}}

IConsensus(ExpRes,k’)to)
P{Yy={2,2,2..}} CP{Z:{zi}}zie[o,g]]

IConsensus(ExpRes,k')to ?Finish(k’))
P{Z:{Zi}}zie[og] .
C?Finish(k’) = ([ZZ = 2]O!LocConsensus(Epres)tl° + [ZZ < Q]C?Abortiontb)v

O!LocConsensus(Epres)tlO < O?LocFinishtlf + O?Abortiontb;
C?Abortiontb = C!Aborm’ontb
C?LocF@'nishtlf = C!TerminaltT;

i i A1) .
C!TerminaltT + C!Abortiontb + C!CanceltL = O?Request([ns)tq’

Meanwhile, the synchronous vectors V3, V4, V8 and V9 should be up-
dated as follows:

V3:< Initial-C!LocConsensus(Epres)tO7 OontTOl'Cr?C'onsensus(E:ches)tO7 - >

156

7.3. Simulation

Car0 Car[m] (Carl / Car 2)
Control T
Coonsensus | Initial channe || [CoMtrOT I
s = CurtDat “Cansensus(ExpRes) ¥ Request(ins)'a LL| [ExpRes = CurData}
winish s ot . 5 Crmient PConsensus(ExpRer) *
Bortish - Fini
finish c Ciemdans)'e U) fortgn s,
TTermphal
c AT G t,
[ExpRes ! = CurData] Abortion (o ooPnish 2R(b)tR | |
chocExe tx Cohvortonts 0 5 < [ExpRes != CurDatal
Citocoorgus(x Res)'lo b=True] Clocexe)
SE = Channel
p Crte
K i=1; k4 K S 2 lki=tik++ k< 2)
- Com |Mistuksdl c ;
Commini e PFinish(k’) IConsensus(ExpRes, k') ©| [m]
Cir(p)® Cemd(insfc
b=V 1, Cr CommRes[m]
=Lk++ k<2 | ¢ Chrotify o
Notit 92[m]
Cinotify(ins k)™ oY1) ChannelNtf[m] ©
I—I nry(ms)‘n[i
[K= 1 k++:kg2) € ,—| € C
Act Ackg3 1Ack(rm'a
Coacktirm's foamy ChannelAck[m] Sl .

Fig. 7.9: Refined Version of Car Inserting Use Case

Caro-CLocConsensus(Eszes)tO
V4 < Initial .C,p , pinisnts» Control .Cyp. o ip, — >— Car0.Cp g tg
V8 <]nzmal'C!Consensus(Ea:pRes)tO7 i Caro'C!C'onsensus(Eszes)tO

. . P{Z}s{1,2} P{Z}>{1,2}
V9 :< Imtml‘c?mmshtf ,—,— >—> CarO.C?Fimshtf

After updating the TSs of the Initial component and the synchronous
vectors into the TimeSquare, we recheck the property P3.1 and it is satisfied.

The Fig.7.9 demonstrates the refined version of our car inserting use case.

The global TS of Car0

According to the Theorem 1 in the page 87, we can generate the global
timed specifications of carQ. These logical clocks and clock relations in the
global timed specifications can be observed from the top level. Furthermore,
they are used to build the timed specifications of the top level. The global

timed specifications T'S..,¢ are generated as follows:

Global TS of car0:
CarO'C?Request(Ins)tq = CarO-CCmd(Ins)tc = OCLTO-C!Notifytn [m] =
Car0.C7 pgckta [m] = CCLT’O.CR(b)tR;

157

Full Use Case

.
Chraportionts

Qiconsensusto[1)

CiNoti fytn 4, Crackes 1

C !Request(Ins)'a /.ﬁ'\(:ﬁ(b]'{” »
™~ ¢

Comaims)te “'\—.;./_)‘ N ’,

Civotifytn (20 Chpckes 5

Crcanceits

Fig. 7.10: Global Timed Specification Graph of car0

Car0.Cr(b)'" < Car0.Ciogneerts + Car0.Ciconsensusto m);
CGJTO'C!COnsensusto [m] < CGTO-C7Finish[m] —l_ CGTO'C!Aborti(mtb;

Oaro'CLocConsensus(E;rpRes)tlo = CGTO'CL uy + CarO‘C!Abartiontb;

ocFinish

OarO-O?Finish[m] < Caro'CLocConsensus(Eszes)tl“)

Car0.C, . pinisniis =< Car0.Cyrerminartr;

The Fig.7.10 demonstrates the precedence relations of these global clocks
of car0, in which the black points are clocks, and the arrow lines illustrate

the relations. In the figure, for simplification, we omit the prefix “Car(”.

7.3.3 Simulate the top level
The Formalization of the Node in the Top Level

In the end we build the node in the top level by composing the com-
ponents car0, car[m|(m=1,2) and channels as shown in the Fig. 7.11. The

formalization of the node in the top level is as follows:
e P ={Ins,m,ExpRes}(m :=1,2),

i CG*{top} = {C?Request(lns)tq gl1’ CNotifytn 91[m)’ CNotifytn 92[m)’ CAth“ 93[m]’
C(Ackta g4[m)’ CConsensus(EJ:pRes)tD 95(m)’ Consensus(ExpRes)to 96(m’ CFim'shtf 9T’
C

Finish'f g8, C avortion*s 99m)’ C avortion*s 9100
C!TerminaltT gl2» C!CanceltL gl3» C!Abortiontb 914}

158

7.3. Simulation

Top Level Timed-pNets Node

(I"Hw """N'I’““W(}l.l
Cro Ciotifytn o
‘] | et oinn o | ChannelNt [m] Zim| c
Cig erminal'T, Car0 ar [m]
Cackta iy, P ———— Cackta ya»
Lo ChannelAck[m]
Cloancetts - . I_
g1 Coonsensus(ExpRe)0 05 Ceonsensus{ ExpRes)to .
ChannelCon[m] -

Finish'f g8, - Finisht 97(rm)
ChannelFin [m]
—
C Aporti “Abartion®h go;
é ChannelAbot[m]

Fig. 7.11: Top Level Timed-pNets Node

o J = {Car0,Car[m], ChannelNtf[m], Channel Ack[m|, ChannelCon[m],
Channel Fin[m], Channel Abot[m|}

We list part of the synchronous vectors that build the communications
between those components as follows. These synchronous vectors generate

the system global clocks Cg_{top}.

V1 :< Car0.Copequest(insytas —> = —s —> —» — > Crpequest(Ins)ta 7411

V2, :< C’arO.C’,B\Q,ZtZ}Z(MS Ryen Channethf[)-C Notify(Ins,k)ytn T T T T T >
CNotifytn g1

V3, :< CarO.C,{]\Q,‘jlfy(msk tn > Channel Nt f(2].Conotify(ins kytn np T T T T 2T
CNotifytn 41 o

Vg i< —, Channel Nt f[m].Cinotify(ins k)t) T Car[m].Conotify(ins k)tn o >
CNotifytn ga,.,

V5, < CarO. C;{iscklgr yias —» Channel Ack(1]. Clack(kr)tapyy —> = = — >

Cackta g3y,

V6, i< Car0.CEh i s = Channel Ack[2).Ciack(rpyia gy = = = — >—

Cackta g3y

V7, :< C’arO.C’f;{oﬁ:islﬁiEpres)w, —, —, ChannelCon[m|.Coconsensus(ExpRes)to) T T >
CCansensus(Eszes)to 95 (m])

159

Full Use Case

Translate properties

In the top level, property P1 does not need to be translated. The other
properties are translated with the global clocks of this level. For property

P2, we translate it to:

i (1) C?Request([ns)tqgll = CNotifytngl[m]
* (2) CNO”fyt"gl[ml = OAC’ftag?’[mJ

b (3) O?Request(lns)tqgn ~ C!TerminaltTgH'

The property P3.1, P3.2, P3.3, P4 and P5 are translated to:

P3.1: CC’onsensus(Epres)tO96[m] ’<[175] OFinishtffﬂ

[m]

P3.2: C?Request(InS)tqgll =[13] CNOtifyt"gl[m]
P3.3: C’Notifyt“gl[m] ~[1,10] CAcktags[m]

P4 CNOtifyt”gl _<[1,30] CAth"'gll[m]

[m]

P5: C?Request([ns)tqgu —<[1755] C!Te?"minaltTgIQ

Simulation result

We encode the timed specifications of car(, carl, car2 and the channels
into the TimeSquare to check the five properties from P1 to P5. Properties
P1 to P4 are all satisfied. An error is reported when checking the property
P5. It says that the whole procedure from receiving a request to finish
changing the lane cannot be finished in 55 time units. To solve the issue, we
either reduce the communication latency between cars or relax the real-time
requirement. By analysing, when we reduce the communication latency to 5

time units, the property P5 can be satisfied.

160

7.4. Other Simulations

7.4 Other Simulations

In this section, we discuss a more complex situation that is car0 com-
municates with more than two cars. Then we investigate if these properties

still can be satisfied.

7.4.1 Car0 communicates with m cars (m > 2)

In this experiment, our aim is to check at most how many cars the

system can afford such that these properties are still satisfied.

Simplify Specification

In order to simplify our simulation, we use the partition clocks C!PN(ZE fy
and C’;}?k/) instead of Cinotiry and Coae, in the “CommlIni” component. By
modifying the assignment of U and W, we can easily change the num-
ber of cars that communicate with car(). For example, if we set m = 3,
U=1{3,3,3,...} and W = {3,3,3,...}, then we can simulate the situation
of communicating with 3 cars. Moreover, since we use partition clocks, we

need to modify the synchronous vectors. In our use case, we combine V2,
and V3, to V2 as follows.

Original synchronous vectors:
V2, 1< Car0.C5 0 o s Channel NtF[1).Conoriy(tnsiyn
— T, Ty, P ONotifytn

[
gl
V3, :< C’arO.C’!{]\Qf‘gify(lns,k)tn, Channel Nt f[2].Conotify(ins kytn

T, T, T, T > CNotifytn

(1

9l

To simplified vectors:

V2’g < CULTO.C,I;\;(OUtzfy(MS,k)tn, Channethf[m].CyNotify(In&k)tn

[m]’

161

Full Use Case

T, T, T, T 2 CNotifytngl[m]

Similarly, we combine V5, and V6, to V5] as follows.

Original synchronous vectors:
V5, :< Car0. C;{Ziklljr Jias — , Channel Ack[1].Cyack(k,rpn)t ap T T T >
Cackta gay,
V6, :< Car0. Cf,{f‘i; ko yta s —> Channel Ack(2].Crack(k,ryy o oy T >
Cackta g3y

To simpliﬁed vectors:
V5, :< Car0. Cﬁ,ACk hrm)tar — , Channel Ack[m].Ciack(k v,)t mp T T T T
Cackta g3y,

Simulation Result

We increase the number of cars one by one. First, we let car0 commu-
nicate with 2 cars. We found out that all our properties are satisfied. Then
we increase one more car that communicates with carQ by setting m = 3,
U=1{33,3,...} and W = {3,3,3,...}. We found out the property P5
cannot be satisfied. Then we increase one car more by setting m = 4,

= {4,4,4,...} and W = {4,4,4,...}. We found out both P4 and P5
cannot be satisfied. We keep on increasing the number of cars. The table
7.2 shows us the results. From this table we can see that with the increasing
number of cars, the safety property P1 and P2 can be satisfied. But the

latency properties may not be satisfied.

162

7.5. Conclusion

7.2 : Simulation with Flexible Number of Cars

P1| P2 |P3|P4]|P5
m=2 V|V V| V]|V
m=3 v V|V V]X
m=4 |V | V| V]| x| X
m=5 |+ |V | X | x| X
m=>50|+v | v | X | X | X

7.5 Conclusion

In this chapter, we represented a full use case taken from ITS and rep-
resented how to build a timed-pNets semantic model for it. Our simulations
were done layer by layer from bottom to top. In each layer, we checked its
safety properties and time properties. The TimeSquare tool was used to
check these properties. And we represented the detailed corrections when
the properties were not satisfied. Besides, we have done the simulation when
increasing the number of cars. From these simulations, we can see that our
timed-pNets are flexible to compose components. By modeling components
with timed specifications, we can take advantage of the TimeSquare tool to

detect the system logical conflicts and check its latency properties.

163

Chapter 8 Conclusion

In this chapter, we present a summary of the thesis contributions, as well
as corresponding limitations. Finally, we conclude the thesis work with a

discussion of interesting directions for future work.

165

Conclusion

8.1 Summary and Conclusions

In this thesis, we have mainly focused on designing a semantic model
that is able to specify timed-related communication behaviours of distributed

systems with the requirements of addressing the following two goals:
e The timed model does not rely on a common global physical clock;

e Both synchronous and asynchronous communications are able to be

specified.

To achieve the two goals, we have designed a novel timed model called
Time-pNets that is able to specify and verify the time constrained communi-
cation behaviours of heterogeneous distributed systems. By taking advantage
of the logical clock concept, the model can specify the relations (happen be-
fore or happen at the same time) of system behaviours without relying on a
common physical clock.

The design of timed specifications helps us to flexibly specify the syn-
chronous and asynchronous communications, as well as composing different
components and building a hierarchical structure in a flexible and simple
way. Thanks to the timed specification that paves the way to transform our
system to CCSL, the TimeSquare tool can be used to check the system safety
and time properties of timed-pNets systems.

The compatibility issues have been discussed in our thesis, which guar-
antee the correctness of refined timed specifications. We also designed al-
gorithms to generate timed specifications from timed-pLTSs for building a
hierarchical structure in a unify way. By introducing the concepts of reference
clocks and visual timestamps, timed-pNets have the capability of measuring
the delays between logical clocks, which allows for the time bound analysis, as
well as the specification and verification of latency properties. Furthermore,
in order to specify some complex situations, we designed partition clocks and
clock union operators, by which a system can be specified in a simpler and

more flexible way. Examples have been illustrated to show us the advantages:

166

8.2. Future Work

to be adaptable to specify many complex cases, from undetermined numbers
of cycles to unfixed car communications.

Finally, we have also validated the research results by using a typical use
case taken from ITS. We described its timed-pNets model and checked by
simulations the safety and correctness properties by using the TimeSquare
tool.

In a conclusion, our model provides a simple and flexible way to model
communications behaviours (synchronous and asynchronous) with time con-
straints without relying on physical clocks. This is one of the main advantages
comparing to other current timed models. Moreover, our model is able to
check the logical correctness and verify time properties of distributed systems.
We believe that the timed-pNets are helpful for analyzing the time-related

behaviours of distributed systems including cyber physical systems.

8.2 Future Work

As future work, there are several interesting directions.

e First, we can extend the current timed-pNets to durtion-pNets that are

able to specify the system behaviours whose execution takes time.

To realize this, we plan to define duration-events that are an extension
of timed-actions by introducing execution time variables. Duration-
events are expressed with the combinations of two instantaneous ac-
tions (a start action and an end action) with a precedence relation
between them. For example, a car brake event can be described by a
combination of ’start car brake’ and ’end car brake’ actions. In the
duration-event, the start point action happens earlier than the end
point action, except the case that the execution time equals to zero,
which tells that the start point and the end points coincide. Thus we
can say that actually timed-pNets is a specific case of duration-pNets

in which the execution time of actions are zero.

167

Conclusion

Using the preliminary notions of duration-events, we then plan to build
duration-clocks and classify various types of timing constraints on these
logical duration-clocks. In these duration-clocks, the timed-action oc-
currences include execution time. It means that these clock occurrences
are not just ticks. They are a sequence of intervals. Therefore, we will

redefine the relations on these duration-clocks.

Similar to the timed-pNets, in order to build a hierarchical structure of
duration-pNets, we will investigate the timed specifications and discuss

the time bounds on these duration clocks.

e Second, the possibility of using model checking tools to verify the timed-

pNets models is another interesting research direction.

In the thesis, we use simulation to check the properties. As we know
that simulation is an automated analysis technique that is being used
extensively and effectively in industry. However, simulation is usually
non-exhaustive. It means that not all possible behaviours are checked
for conformance with the requirements. In other words, it can expose
erroneous behaviour, but the absence of bad behaviours cannot be guar-
anteed. Compared to simulation, formal verification is a technique that
aims to cover all the behaviours of a system. If the timed-pNets model
is able to translate to timed-automata, we are able to use the model
checking tool UPPAAL [16] to verify our model. As we know form
the paper [82], a technique of transforming MARTE /CCSL behaviours
into timed-automata has been proposed. It helps to address the issue of
verify CCSL-based behaviours in the UPPAAL tool. Since our model
is based on timed specification in which the clock relations are mainly
taken from CCSL, it is possible for us to transform basic logical clocks
and relations in our model into timed automata by using the technique
in the paper [82]. However, for the partition clocks we should define a
clear way to transform to timed-automata. Till now, this point is still

not clear and be worthy to investigate.

168

8.2. Future Work

e Third, the specification formalism are an important aspect for support-

ing the model checking in the future work.

To be able to use model checking tool, it requires a well-defined seman-
tics for our timed-pNets model. In this thesis, we are able to specify
systems by timed specifications that are initially generated from the
timed-pLTSs. Even though we have developed algorithms to generate
timed specifications from timed-pLTSs, we do not have tools to auto-
matically generate these timed specifications and it is not clear how
many situations cannot be covered. Therefore, developing a tool to au-
tomatically generate the timed specifications and proposing a schema
to cover all possible situations are good direction to reinforce our re-

sults.

e Fourth, the system refinement and compatibility are an interesting

point for the future work.

The compatibility should always be conserved in timed-pNets. We did
some work on proposing the definition of compatibility and checking it
by using TimeSquare tools. However, we discussed little about model
refinement and compatibility that is conserved in the refinements. In
the further work, the system refinement should be discussed and proper
methods (e.g. model checking) should be proposed to verify the com-
patibility.

e Fifth, developing a tool to automatically generate TimeSquare input

files is worthy point for the future work.

For simulation, we encode our timed specifications and properties into
TimeSquare tool after translating to the form that the tool accepted.
We have no tool to generate them automatically and no schema to
check if the translation is correct. For a small use case as we proposed
in the thesis it is easy to be checked, but for a big use case, the tool is

necessary.

169

Conclusion

e Last but not least, to apply our model on a large use case to investigate

the scalability of our model is an important task in the future work.

A natural question would arise about the scalability and the efficacy of
the proposed analysis approach on larger case studies. Currently, our
use case covers three layers structure with around fifty logical clocks.
In the future work, the model should be applied to larger case studies
and the scalability of timed-pNets model should be checked.

170

Chapter 9 [Mf3X: B XEER (F
i)

BiE MLEEORRIANET & R, PIE M /Y3 (E B Rl & REUECh H B
RIBHAR . — MBI F2ERERGE (ITS). BEIERFEREH
IS, SRR ORI — FEREGESSERGT, EWn]
LSRS08 (V21), EEnEA WA 1A FE LUME T E M 22l
R 2E Y AN EMMER Z O LLEE (V2v), NS seEm)
Lt B BESEERINAR L

FA T i AR 27 [P 2 A AT AR X 8 93 A) G 3 IR ALl S Y, o
BERRN e X FRERATEI A ER RE R, MmN R5TH
RS [RIREIE SR ES R . SR A TR G T AL B R 04)
PITHOMES, HERGHRE — D2 S YR (Rl B v R A% R X L ik
SR & FIZ RGUTHUT BB BTN 7 §E 5 &1 SR
& LIRS T ARSI BT AR - i, AT A R RGP
NP B %2 R A (S BB R B2 B R E R T AR, WR A £
e AR I B, WA P RE S e 2B B RS I 21 b & %
S S B 2 B IE L -

N RBERX R, BATFEFIH S ARG & A R B R
FAS BRI X—MEBUR N A0 RGN R 2R . AT T2
K ARIIR RGAT A HE TR R R, H48 REAIT AT AR)2 I
[F{E, AT RHERTT R 2 (A B R SR o R HER R — AR REROTE O, bean,
— e BB EARER I — > B 11T 5 .

1B R 8 B 5 FHLeslie LamportfE1978FE 2 H H THIAR 5 = ARG/
PATEO. ZHEN B CEHOETE N & R E LA M F R Z IR

171

Bif3: e 30EA (A 3TR)

BAREEIEHE RPER . I RHLTEIE S (CCSL) {2 B B E R 28
—ILER ISP HGEZ) PR A RGN AT . ZECCSLHY, 124
PP E XA — P EEE HIEFS] . — 85 AR B & 0 2 N
B— P EENBIESEE, MRA TIERIMELZERERINFIE. R
ECCSLIEABIF A (CCSLIIBARIEARE RARTERCEIS T4 TiF
HEINR), A TRE SURTER R 2R RHE & BT 2 (B)2 BR PR -

AT ZRICZ AR5 A— M E I 8] 22 & FRE M pNets (B E LI
WICEE18TL) HREE S — TN Al A timed-pNets. pNetsie— 1T
F AR RGBT IR SR . ERAMMCE RS (LTS)
ik RGEWEEIT R, IFALTSEIA T SHAH T EINE R SIS
Mo pNetsXFFFFREZHEGFILH, DR THRYEWRENCERERN
ARG SRR IR E S pNets 2510 R, FIREFLEEMHHIT,
Rt 7 A AT UERE . SRR O E T L T A ProActive
B, HEROERE S E N ARG RITEIES -

EZL I, BATE LTI AREILEIE (Timed-Actions) FIHES(E
PR E LR SCEEAST) . R, FRATTAERS (Bl 1L shVE R LAt b 8 SGB R Bf
(BARE LR SCEB49TT) « B2 BRI PR & — NI R L Bh R B — 23 H
e SBERET A — IR T SRR LB ERS— N B (5iHUT) -

HTRGTHEGETAELZFPHERDSR, BT DOk
FCCSLHMERPIN B R R, U RN L4 (eg. C, = Cg) "F1 "5
KA (eg C, < Cy) "HRESEENPPIFRISMFEDERE. FEHEM L,
FATR—E T Z2G I RIFLTE Timed Specification (EARTE XL E61T1) |
B RS A 2C R G I RIS

FATHER B FLYE (Timed Specification) 5| ApNets (SEULM 4[]
HEIHL) SREIL— P EEWEZ RGO E VAR ZR G5 Gn 9. LT 7R
B 17 m o2& timed-pLTSs (B4 E LML ICH66T1)Foni). HAEr
T (BRAtimed-pNetsT7 5., BARE X1 RICHE68TL) &BHRPFM
AT RHEIRER T A (F AT LT FEC R 1) - A p Ty
A (MFEl IR 795 5) SEFEEITE (timed specification) FHIREE. FEiX
MEZRLGM T, LREPNEITEE N NEFRENHS . HFHLZERR
[EJRRYE AT DAE R 2 B0 9 A RS] ALY 4 S 17 R

172

timed-pNets
node

timed-pNets
node

Fig. 9.1: Timed-pNets tree structure

Timed-pNets:& F T A FIE UE 53 11 =0 R4 B AR AR BB FE 1T
NHITE ST . BN ERFFpNetstR AL WL SN2 IS, BERS RIE BiE
MR GRRGEFALEERS, mAEEEEEE B & is.

5K E T, timed-pNetst T AT DLUZE AR 2 3 1 9 B B
FIE LT R RGBT A 2R FATT AT PA3Etimed-pLT SsFltimed-
pNetsF it I AIFLTE (timed specification) , HiE 1 7477 2 AL HORSS [E]#A
TR BT AT timed-pNets 2 . FEXFPTARALT, RZE IR (R H)
B BN E R K REEW IR RS (LTS) RESH. #EFED
BN E — RIS . SONE I B TR R (7 [EI I e AR
FERFR) BHE, LR B EE EARE EARHEIST . — DR REA T
wE (TRERTLHH) MESEFRRR. BN E DRI RR, XL
ISP AN AL I BABA TR (B SE G AR E PR R e X S 5 AR [H]
LR R T ARG RN RIELE (TSs) -

O A 5 AR IR AR B RE WS R I Bt REe- IFREIFIVEE
HBHEHE, oMM ERE, Z2MEEPHES . X{H5E
BAREBAEE R 2 T LA =t 4 A T I [E] £L FIp LT Ss 3
TEENTA— AT R, SR B LM Mgt 7=, M
Ftimed-pNets, BIX—LL LA RN RIHLTE, SR /E TR ft—LeM
BHSERIE X AL AR THNEIRF L (BEREHE, &
2, EHE3H R WL ICEESTTL, 90TIHI93TT) RIGE ARG HIFRANE, XHH)
AR T RGP ERRIER 22 2

173

Bif3: e 30EA (A 3TR)

A TFZ R A T 2L R A 3 B, (AL oR B ANTR] 7 W B R 4
RN X4 Bl TN 2 R AT ok T R O T ORI 1 1]
A, BTSN T S SR RS R R & . 25 BB FH - 8 5 FO R
B RO AR TR B, R DU B R . — B PIERE T —
DZEREE, FrE E AR R IR %22 B A5 2 HAE N RE LR [H]
B, IXR A B BATTELBOR B AR T [B R e R T 5 LR A B HEIR -
ZILSCR T AT W ESE R HE S B RS T S REIR, FERE B
AT R R (BAEE eI, TR R B
(BN bR [A], SERE R SE) o X0 T — P A A R R AR A
TH -

IS ALY B 5 AR 28 FAT TR A TimeSquare T E R4S 25 R ST AN [A] £ 3K
(MO T iERS . T EARRMTE, timed-pNetsBERF A 7 i X R GEH)
BFRMEAIIT . O T REMBIR AN T ME R TARERL, A 1155 TimeSquare T &
MO EEE . TimeSquaresg F T 0TS AR R RO B EA 5T - ERESARTE
S 1] IRV S FPRAE AV CDAS 2042 R [RHECIE B (TimeSquare Y 3 £ {5 5L
IR TSTRI LTI LOEA N R) - % TEA LUE MR 2 HR 7= A B ik
Ee=g

T Z, Timed-pNetst 57 At T —Miay 87 & % 19 77 2R LA
A PR SRR L EIE ST (R MRp) R ZEALE 5 A
BRI BRI D REET T RGP B, RR T S RS SR S
SERFPERRIR. X — R e S HAl B BT R) B XA A,
W5 S E R DU E L A, Timed-pNetstEZUNME REAF I 2 H 4
M ARGOZEMERYE, AT LUSERR AR R AR, FFEUE H A [H]
JE I

AR T BN TR S B RS RS BIIERTEOE RS
L, E L FER AR SERNEERR, BT ATz R SR SER
B XX TR L 2 M 220, 38] 50 8 135 5 B 25 30 5 A7 Tl
MHATHER, IRESEEIOEBEEES] T 2 REEE-

AL FHEETIT:

o FELEAH THRNARMNATR, Mi5shil, R TEIEE
ZH 5T -

174

BB T —LIE gORS 8] A qnest [a] B shAL B Rl Pteri i,
MARTEFIAADLES 2 & B SEHT AR RS .

FH=FIDE R R 5 AR pNetstEA b T E LT —7Ff
TR SRS 28T B A o A 2R SRR [2T AR AT RE

BINE A T timed-pNetsHIBE1T 915 AL . IZEARAE L —F
AOEE A _E 4R H B — D BB R R RO RO . AT AT B
FIMVE RS, e TR E LRI Ftimed-pNetst A . b
FAT AT IS T R TE R A S IR T AT DU SRk o A
X AGHIE AR AR PE SR AR EE T IR ET

FHREN IR T WA B timed-pNetstR A FIFEIRMIER F IR gboh 3
TR SCT IR o AR, 5 RGBS (8] v 2) 5 T

FANFEDL TR 7R AR A RS, R LR AR
T, FFEIN R TR AR AR .

FLERAHE — A 5B] A5 7R A0 A 3 3L 58 3% — 1 timed-
pNetstH | FLEH 27 2 MEFERTERE -

5\ FEEEEEA B AT TIE HRE SN T,

175

Bt B 3CERIR (3O

176

References

1]

7]

Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based

implementation of real-time applications. In Proceedings of the tenth

ACM international conference on Embedded software, pages 229-238.

ACM, 2010.

Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of
generalized stochastic petri nets for the performance evaluation of mul-
tiprocessor systems. ACM Transactions on Computer Systems (TOCS),
2(2):93-122, 1984.

Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Automata, languages and programming, pages 322-335. Springer,
1990.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183 — 235, 1994.

Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7-48, 1999.

Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, and Alexandra

Savu. Behavioural Semantics for Asynchronous Components. Rapport
de recherche RR-8167, INRIA, December 2012.

Charles André. Syntax and Semantics of the Clock Constraint Specifi-
cation Language (CCSL). Rapport de recherche RR-6925, INRIA, 2009.

177

REFERENCES

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Charles André, Frédéric Mallet, Robert De Simone, et al. Time modeling
in marte. In ECSI Forum on specification & Design Languages (FDL),
pages 268273, 2007.

Charles André, Frédéric Mallet, Julien DeAntoni, et al. Vhdl observers
for clock constraint checking. In Symposium on Industrial Embedded
Systems, 2010.

André Arnold and John Plaice. Finite transition systems: semantics of

communicating systems. Prentice Hall International (UK) Ltd., 1994.

Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of

delays in timed automata and digital circuits, 1998.

Felice Balarin. Hardware-software co-design of embedded systems: the
POLIS approach. Springer, 1997.

Tomés Barros, Rabéa Boulifa, Antonio Cansado, Ludovic Henrio, and
Eric Madelaine. Behavioural models for distributed Fractal components.
Annals of Telecommunications, 64(1-2), jan 2009. also Research Report
INRIA RR-6491.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling hetero-
geneous real-time components in BIP. In Fourth IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2006),
11-15 September 2006, Pune, India, pages 3—12. IEEE Computer Soci-
ety, 2006.

Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heteroge-
neous real-time components in bip. In Software Engineering and Formal
Methods, 2006. SEFM 2006. Fourth IEEE International Conference on,
pages 3-12. ITeee, 2006.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Up-

PAAL — a Tool Suite for Automatic Verification of Real-Time Systems.

178

REFERENCES

[17]

[18]

[21]

22]

[23]

[24]

In Proc. of Workshop on Verification and Control of Hybrid Systems III,
LNCS 1066, pages 232-243. Springer—Verlag, October 1995.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, pages 87-124.
Springer, 2004.

Saddek Bensalem, Marius Bozga, T-H Nguyen, and Joseph Sifakis. Com-
positional verification for component-based systems and application.
IET software, 4(3):181-193, 2010.

Albert Benveniste, Benoit Caillaud, and Paul Le Guernic. From

synchrony to asynchrony. Springer, 1999.

Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-
chronous programming with events and relations: the signal language
and its semantics. Science of computer programming, 16(2):103-149,
1991.

G Berry and E Sentovich. Embedding synchronous circuits in gals-based
systems. In Sophia-Antipolis conference on Micro-Electronics (SAME
98), 1998.

Gérard Berry. Real time programming: Special purpose or general pur-

pose languages. 1989.

Gérard Berry. The foundations of esterel. In Proof, language, and

interaction, pages 425-454, 2000.

Gérard Berry, Cyprien Nicolas, and Manuel Serrano. Hiphop: a

synchronous reactive extension for hop. In Proceedings of the 1st

ACM SIGPLAN international workshop on Programming language and

systems technologies for internet clients, pages 49-56. ACM, 2011.

179

REFERENCES

[25]

[26]

[27]

[28]

[32]

[33]

Gérard Berry and Ellen Sentovich. Multiclock esterel. In Correct

Hardware Design and Verification Methods, pages 110-125. Springer,
2001.

Gérard Berry and Manuel Serrano. Hop and hiphop: Multitier web
orchestration. In Distributed Computing and Internet Technology, pages
1-13. Springer, 2014.

Bernard Berthomieu and Michel Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE transactions on software
engineering, 17(3):259-273, 1991.

Bernard Berthomieu®, P-O Ribet, and Francois Vernadat. The tool
tina—construction of abstract state spaces for petri nets and time petri
nets. International Journal of Production Research, 42(14):2741-2756,
2004.

Conrad Bock. Sysml and uml 2 support for activity modeling. Systems
Engineering, 9(2):160-186, 2006.

Frédéric Boussinot and Robert De Simone. The esterel language.
Proceedings of the IEEE, 79(9):1293-1304, 1991.

Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat, and Laurent
Mounier. Protocol verification with the aldebaran toolset. International
Journal on Software Tools for Technology Transfer (STTT), 1(1):166—
183, 1997.

Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph
Sifakis. The if toolset. In Formal Methods for the Design of Real-Time
Systems, pages 237-267. Springer, 2004.

Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg. Proceedings
of an Advanced Course on Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986-Part 1. Springer-Verlag, 1986.

180

REFERENCES

[34]

[35]

[36]

[37]

[39]

[40]

[42]

Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asyn-
chronous sequential processes. Information and Computation, Volume
207, Issue 4, 2008.

Denis Caromel, Wilfried Klauser, and Julien Vayssiere. Towards seam-
less computing and metacomputing in java. Concurrency Practice and
Experience, 10(11-13):1043-1061, 1998.

Christos G Cassandras. Discrete event systems: modeling and perfor-

mance analysis. 1993.

Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette
Charron-Bost. On the impossibility of group membership. In

Proceedings of the fifteenth annual ACM symposium on Principles of

distributed computing, pages 322-330. ACM, 1996.

D. M. Chapiro. Globally-asynchronous locally-synchronous systems.
PhD thesis, Stanford Univ., CA., October 1984.

Yixiang Chen. Stec: A location-triggered specification language for real-
time systems. In ISORC Workshops, pages 1-6. IEEE, 2012.

Massimoliano Chiodo, Paolo Giusto, Attila Jurecska, Harry C Hsieh, Al-
berto Sangiovanni-Vincentelli, and Luciano Lavagno. Hardware-software
codesign of embedded systems. Micro, IEEE, 14(4):26-36, 1994.

Julien Deantoni and Frédéric Mallet. TimeSquare: Treat your

Models with Logical Time. In Sebastian Nanz Carlo A. Furia, editor,

TOOLS - 50th International Conference on Objects, Models, Components, Patterns - 2012,

volume 7304 of Lecture Notes in Computer Science - LNCS, pages
34-41, Prague, Tcheque, République, May 2012. Czech Technical

University in Prague, in co-operation with ETH Zurich, Springer.

John Eidson, Edward A Lee, Slobodan Matic, Sanjit A Seshia, and Jia

Zou. A time-centric model for cyber-physical applications. In Workshop

181

REFERENCES

[43]

[45]

[46]

[47]

[50]

[51]

on Model Based Architecting and Construction of Embedded Systems
(ACES-MB), pages 21-35, 2010.

John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and
Jia Zou. Distributed real-time software for cyber-physical systems.
Proceedings of the IEEE (special issue on CPS), 100(1):45 — 59, January
2012.

Peter H Feiler, David P Gluch, and John J Hudak. The architecture
analysis & design language (aadl): An introduction. Technical report,
DTIC Document, 2006.

Colin Fidge. Logical time in distributed computing systems. Computer,
24(8):28-33, 1991.

Colin J Fidge. Timestamps in message-passing systems that preserve

the partial ordering. In Proceedings of the 11th Australian Computer

Science Conference, volume 10, pages 56—66, 1988.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-
bility of distributed consensus with one faulty process. Journal of the
ACM (JACM), 32(2):374-382, 1985.

George S Fishman. Discrete-event simulation: modeling, programming,

and analysis. Springer, 2001.

Gerard Florin and Stéphane Natkin. Evaluation based upon stochastic
petri nets of the maximum throughput of a full duplex protocol. In

Application and Theory of Petri Nets, pages 280-288. Springer, 1982.

Ning Ge, Marc Pantel, and Xavier Crégut. Time properties dedicated
transformation from uml-marte activity to time transition system. ACM
SIGSOFT Software Engineering Notes, 37(4):1-8, 2012.

Gregor Gossler and Joseph Sifakis. Composition for component-based

modeling. Science of Computer Programming, 55(1):161-183, 2005.

182

REFERENCES

[52]

[53]

[54]

[55]

[58]

[59]

[60]

[61]

Sei. open source aadl tool environment.

http://www.sei.cmu.edu/dependability /tools/osate/.

Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency

and Time in Models of Computation. Morgan Kaufmann, 2004.

David R Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(3):404-425, 1985.

M. Jersak. timing model and methodology for autosa. In Elektronik
Automotive. Special issue AUTOSAR, 2007.

Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145-164, 2003.

Jensen Kurt. Coloured petri nets: Basic concepts, analysis methods and

practical use. EATCS Monographs on Theoretical Computer Science.

2nd edition, Berlin: Springer-Verlag, 1997.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

Edward A Lee. Modeling concurrent real-time processes using discrete
events. Annals of Software Engineering, 7(1-4):25-45, 1999.

Edward A Lee. Model-driven development-from object-oriented design

to actor-oriented design. In Workshop on Software Engineering for

Embedded Systems: From Requirements to Implementation (aka The

Monterey Workshop), Chicago. Citeseer, 2003.

Edward A Lee and Eleftherios Matsikoudis. The semantics of dataflow
with firing. From Semantics to Computer Science: Essays in memory of
Gilles Kahn. Cambridge University Press, Cambridge, 2008.

183

REFERENCES

[62]

[63]

[64]

[65]

K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Teee 1588-standard
for a precision clock synchronization protocol for networked measure-

ment and control systems. In Conference on IEEE, volume 1588, 2005.

Barbara Liskov and Rivka Ladin. Highly available distributed services

and fault-tolerant distributed garbage collection. In Proceedings of the

fifth annual ACM symposium on Principles of distributed computing,
pages 29-39. ACM, 1986.

Frédéric Mallet. Clock constraint specification language: specifying
clock constraints with uml/marte. Innovations in Systems and Software
Engineering, 4(3):309-314, 2008.

Frédéric Mallet, Charles André, and Julien DeAntoni. Executing aadl
models with uml/marte. In Engineering of Complex Computer Systems,
2009 14th TEEE International Conference on, pages 371-376. IEEE,

2009.

Frédéric Mallet, M-A Peraldi-Frati, and Charles André.
Marte ccsl to execute east-adl timing requirements. In

Object/Component /Service-Oriented Real-Time Distributed

Computing, 2009. ISORC’09. TEEE International Symposium on,

pages 249-253. IEEE, 2009.

Friedemann Mattern. Virtual time and global states of distributed sys-
tems. Parallel and Distributed Algorithms, 1(23):215-226, 1989.

Philip M Merlin and David J Farber. Recoverability of communication
protocols—implications of a theoretical study. Communications, IEEE
Transactions on, 24(9):1036-1043, 1976.

Philip Meir Merlin. A study of the recoverability of computing systems.
1974.

David L Mills. Simple network time protocol (sntp) version 4 for ipv4,
ipv6 and osi. 2006.

184

REFERENCES

[71]

[72]

73]

[74]

[75]

[76]

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul
Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers,
et al. The open provenance model core specification (v1. 1). Future
Generation Computer Systems, 27(6):743-756, 2011.

Douglas Stott Parker Jr, Gerald J Popek, Gerard Rudisin, Allen
Stoughton, Bruce J Walker, Evelyn Walton, Johanna M Chow, David
Edwards, Stephen Kiser, and Charles Kline. Detection of mutual

inconsistency in distributed systems. Software Engineering, TEEE
Transactions on, (3):240-247, 1983.

Michel Raynal. A distributed algorithm to prevent mutual drift between
n logical clocks. Information Processing Letters, 24(3):199-202, 1987.

Rami R Razouk and Charles V Phelps. Performance analysis using timed
petri nets. In PSTV, volume 84, pages 561-576, 1984.

Sunil K. Sarin and Nancy A. Lynch. Discarding obsolete information in

a replicated database system. Software Engineering, IEEE Transactions

on, (1):39-47, 1987.

Frank B Schmuck. The use of efficient broadcast protocols in asyn-
chronous distributed systems. Technical report, Cornell University,
1988.

Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language

for programming the web 2. 0.

Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. Cyber-
physical systems: A new frontier. In Machine Learning in Cyber Trust,
pages 3—13. Springer US, 2009.

Joseph Sifakis. Use of petri nets for performance evaluation. Acta
Cybern., 4:185-202, 1980.

185

REFERENCES

[80]

[81]

[82]

[83]

[84]

[38]

CCITT Specification. description language (sdl). ITU-T
Recommendation, (100):11, 1993.

Rob Strom and Shaula Yemini. Optimistic recovery in distributed sys-
tems. ACM Transactions on Computer Systems (TOCS), 3(3):204-226,
1985.

Jagadish Suryadevara, Cristina Seceleanu, Frédéric Mallet, and Paul
Pettersson. Verifying marte/ccsl mode behaviors using uppaal. In

Software Engineering and Formal Methods, pages 1-15. Springer, 2013.

V Valero Ruiz, David de Frutos Escrig, and F Cuartero Gomez. On
non-decidability of reachability for timed-arc petri nets. In Petri Nets
and Performance Models, 1999. Proceedings. The 8th International

Workshop on, pages 188-196. IEEE, 1999.

Wil MP van der Aalst. Interval timed coloured petri nets and their
analysis. In Application and Theory of Petri Nets 1993, pages 453-472.

Springer, 1993.

Wil MP van der Aalst and Michiel A. Odijk. Analysis of railway sta-
tions by means of interval timed coloured petri nets. Real-time systems,
9(3):241-263, 1995.

Kees M Van Hee. Information systems engineering: a formal approach.

Cambridge University Press, 1994.

KM Van Hee, LJ Somers, and M Voorhoeve. Executable specifications for

distributed information systems. Falkenberg and P. Lindgreen, editors,

Information System Concepts: An In-depth Analysis, pages 139-156,

1989.

Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat, and Kevin
D Johnson. M2m: From mobile to embedded internet. Communications
Magazine, IEEE, 49(4):36-43, 2011.

186

REFERENCES

[89]

[90]

[91]

[92]

[94]

Hengyang Wu, Yixiang Chen, and Min Zhang. On denotational se-
mantics of spatial-temporal consistency language—stec. In Theoretical
Aspects of Software Engineering (TASE), 2013 International Symposium
on, pages 113-120. IEEE, 2013.

Gene TJ Wuu and Arthur J Bernstein. Efficient solutions to the repli-
cated log and dictionary problems. Operating systems review, 20(1):57—
66, 1986.

Intelligent transportation systems. http://www.its.dot.gov /research.htm.

Modeling and analysis of real-time and embedded system.

http://www.omgmarte.org/.

Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of

modeling and simulation: integrating discrete event and continuous

complex dynamic systems. Academic press, 2000.

Wlodzimierz M Zuberek. Timed petri nets and preliminary performance
evaluation. In Proceedings of the 7th annual symposium on Computer
Architecture, pages 88-96. ACM, 1980.

187

REFERENCES

188

List of publications

1]

List of the publications of the candidate

Yanwen Chen, Yixiang Chen, and Eric Madelaine. “Timed-pNets:
A Communication Behavioural Semantic Model For Distributed Sys-
tems.” Journal: Frontier of Computer Science (SCIE). (2014).

Yanwen Chen, Yixiang Chen. “Real-time Scheduling in Cyber Physical
System.” Journal of CEAIL Vol.13, No.3, pp. 41-50,(SCIE). (2011).

Yanwen Chen, Yixiang Chen, and Eric Madelaine. “Investigation on
Time Properties of Timed-pNets.” NASAC2014, Journal of Computer
Science. (2014)

Yanwen Chen, Yixiang Chen, and Eric Madelaine. ”Timed-pNets: A
formal communication behavior model for real-time CPS system.” In
Trustworthy Cyber-Physical Systems. (2012).

Yanwen Chen, Fabrice Huet, Yixiang Chen. “Implementation and opti-
mization of RDF query using Hadoop.” First International Conference
on Cloud Computing and Services Science (CLOSER). (2011.)

189

list

1.1
1.2

3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16

of figures

VCD view of an example 18

Car Insertion 23

Timed-pNets architecture with details of the car’s subcompo-

nents 52
property checking 25
Timed-pNets tree structure 58
count the delay ¢,, when C|, is an independent clock 60
count the delay t,, when Cs <Co 61
Constraints 62
Communication Behaviour Model of Cars Insertion Scenario . 64
The timed-pLTS of the CommlIni component 67
The timed-pLTS of channel Component 68
A Timed-pNets with one of its implementations 71
Steps for generating the TS of a timed-pLTS 76
Time assignment for the Timed-pLTS “Car.CommlIni” 77
Simplification of CommIni Component 79

Steps 2-3-4: Unfold rounds, generalize, and deduce clock rela-

tlons 83
The 4 cases of theorem 1 87
Partial instantiation of a Timed-pNets subsystem 91
Layered Structure L. 94
Property Checking by TimeSquare 95

191

4.17 system’s specification checking 96

4.18 Conflict Detected 97
4.19 system’s specification checking 98
5.1 Time Diagram o o 104
5.2 Updated Time Diagram 105
53 A Small Exampleo 107
5.4 Three cases in Theorem 4 111
5.5 Case 2in Theorem 4 112
5.6 Example of computing Global Delay Bound 114
5.7 Property Checking 115
5.8 Checking the property (1) 116
5.9 Time Constraint Conflicts 117
5.10 Checking property Pland P2 118
5.11 The dependency graph of global clocks 118
5.12 Checking property P3 119
6.1 Clock Relations with Idle Actions 125
6.2 Relation1 126
6.3 Relation 2 127
6.4 Relation3 128
6.5 One example of Control Component Clock Relations 128
6.6 Relation4 130
6.7 Relation b 131
6.8 clockunion 135
6.9 Timed-pNets: Communication Behaviour Model of Cars In-
sertion Scenarioo 136
6.10 Control Component Update 140
6.11 Initial Component Update 141
7.1 Carlnsertion 145
7.2 Tree Structure of Use Case 148

7.3 The Component-based Structure of Car Inserting Use Case . . 148

7.4 Fill Timed-pLTS into Holes 150
7.5 Put Timed Specification into Holes 150
7.6 The first Refinement 153
7.7 Timed-pNets node of Car0 154
7.8 Refined Initial Component 156
7.9 Refined Version of Car Inserting Use Case 157
7.10 Global Timed Specification Graph of car0 158
7.11 Top Level Timed-pNets Node 159
9.1 Timed-pNets tree structure 173

list

6.1

7.1
7.2

of tables

Calculate the Way of Partition X

Levels and properties
Simulation with Flexible Number of Cars

195

