
2014 届研究生博士学位论文 学校代号: 10269

学号: 52101500002

分布式系统的
时间化通信行为模型

院系：

专业名称:

研究方向:

博士研究生:

法国学校：

项目：

指导老师:

软件学院

计算机应用技术

软件工程理论

陈艳文

尼斯大学

中法联合培养，973物联网专项

陈仪香， Eric Madelaine

二零一四年十月

DISSERTATION FOR School Code: 10269

DOCTOR DEGREE, 2014 Student Number: 52101500002

EASTCHINANORMALUNIVERSITY

&

UNIVERSITYDENICE

SOPHIAANTIPOLIS

A Timed Communication Behaviour Model

for Distributed Systems

Department:

Major:

Subject:

Author:

Project:

Tutor:

Software Engineering Institute

Computer Application Technology

Software Theories

Yanwen Chen

Joint Project, 973 CPS Project

Professor Yixiang Chen, Eric Madelaine

2014. 10

华东师范大学学位论文原创性声明

郑重声明： 本人呈交的学位论文《分布式系统的时间化通信行为模

型》是在华东师范大学攻读硕士/博士（请勾选）学位期间，在导师的指导

下进行的研究 工作及取得的研究成果。除文中已经注明引用的内容外，本

论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究 做出重

要贡献的个人和集体，均已在文中做了明确说明并表示谢意。

作者签名: 日期: 年 月 日

华东师范大学学位论文著作权使用声明

《分布式系统的时间化通信行为模型》系本人在华东师范大学攻读学

位期间在导师指导下完成的硕士/博士（请勾选）学位论文，本论文 的研

究成果归华东师范大学所有。本人同意华东师范大学根据相关规定保留和

使用此学位论文，并向主管部门 和相关机构如国家图书馆，中信所和“知

网”送交学位论文的印刷版和电子版；允许学位论文进入华东师范大学图书

馆及 数据库被查阅，借阅；同意学校将学位论文加入全国博士，硕士学位

论文共建单位数据库进行检索，将学位论文的标题 和摘要汇编出版，采用

影印，缩印或者其他方式合理复制学位论文。

本学位论文属于（请勾选）

（ ）1.经华东师范大学相关部门审查核定的“内部”或“保密”学位

论文1 于 年 月 日解密， 解密后适用上述授权。

（ ）2.不保密，适用上述授权。

导师签名 : 本人签名 :

年 月 日

1“保密”学位 论文应是已经华东师范大学学位评定委员会办公室或保密委员会审定过

的学位论文（需附获批的《华东师范大学 研究生申请学位论文“保密”审批表》方为有

效），未经上述部门审定的学位论文均为公开学位论文。此声明栏 不填写的，默认为公开

学位论文，均适用上述授权。

博士学位论文答辩委员会成员名单

姓名 职称 单位 备注

摘要

随着网络技术的不断发展，物联网/物理信息融合系统成为目前研究和

发展的热点。 一个典型的例子是智能交通系统（ITS)。 通信作为信息交

换的媒介，已成为物联网研究的核心问题之一。 在智能交通系统中，车辆

可以与服务中心沟通（V2I），告知其他车辆他们的存在以便于车辆的安全

监控和安全驾驶; 另外车辆和车辆之间也可以通信（V2V），从而提高交通

的安全性，避免恶性交通事故的发生。

该系统通信的实时性研究是非常重要的。分布式的系统通信更强调逻

辑时钟。 为此本论文提出一种新型的适用于分布式系统通信的时间化网络

通信模型（Timed-pNets）。 该模型包括了刻画时间化动作(Time Action)的

逻辑时钟（Logical Clock）、时间化规范(Timed Specification)、时间参数化

标签迁移系统(timed Parameterized Label Transition System,timed-pLTS)等

基本构件。 Timed-pNets是树型分层结构模型， 其叶子节点由Timed-

pLTS表述，非叶子节点是子网的抽象，用于同步子网之间的通信。

本论文的主要贡献如下：

• 建立了一个分布式具有同步和异步通信的时间化模型Timed-pNets。

在引入时间化动作形成动作逻辑时钟基础上， 建立时间化的pLTS系

统（Timed-pLTS）。 Timed-pLTS中的标签为逻辑时钟， 用于触发

系统从一个状态迁移到另一个状态。 论文把信道设计为Timed-

pLTS，具有信息接受和发送两个动作逻辑时钟，用来描述异步通

信。 基于Timed-pLTS，论文构造了Timed-pNets模型，它的同步向

量用于描述不同节点之间的同步通信。 研究Timed-pNets的相容性

（Compatibility）和延迟性（Delay）。

• 提出了时间规范（Timed Specication）的概念。时间规范定义为一组

逻辑时钟和这些时钟上的关系， 包括时钟优先关系和时钟同步关系。

提出了时钟划分和时钟合并的概念以简化时间规范， 研究了时钟的

优先关系和同步关系作用在划分后时钟上的语义。

• 设计了一组算法用于把Timed-pLTS和Timed-pNets转化为时间规范，

并提出了一套利用时间规范来建立层次化模型的理论和方法。 这样

i

人们可以灵活地设计通信系统：既可以先设计叶子节点， 然后组合

成Timed-pNets节点这种层层向上的方法构建系统， 也可以先设计一

个抽象的Timed-pNets系统， 然后用具体的Timed-pLTS实例化该系

统中每个抽象孔的由上至下方式构建系统。

• 以智能交通系统中车辆相互通信为例子，实现如何建立Timed-

pNets模型，以及检查通信的安全性和时间性质。 使用TimeSquare工

具完成这些性质的测试，结果表明论文建立的timed-pNets具有通用

性和灵活性。

关键词：分布式系统，物联网，逻辑时钟，时间规范，形式化方法，

智能交通系统（ITS）， 同步通信，异步通信

ii

Abstract

With the development of the Internet, CPSs (Cyber Physical Systems)

become a hot topic. A typical example are ITSs (Intelligent Transportation

Systems), where communication is a critical part. In this kind of systems,

vehicles can communicate with the infrastructure (V2I) to inform their ex-

istence for safety checking; and vehicles can also communicate between each

other to improve the efficiency of traffic and avoid accidents.

The real-time communication in the system is a critical aspect. This

thesis presents a novel timed model called timed-pNets for modeling and

verifying the timed communication behaviours for distributed systems. Since

the nodes in distributed systems have no common physical clock, this brings

the challenge of correctly specifying the system time constraints. Timed-

pNets build the time model on top of logical clocks such that the time of this

model does not rely on a common physical clock.

The main contribution of the thesis are as follows:

• A formalism named Timed-pNets that is based on tree style hierarchi-

cal structures. The leaves of the structures are represented by timed

Parametrized Label Transition Systems (timed-pLTSs). Non-leaf nodes

(called timed-pNets nodes) are synchronisation devices that synchro-

nize the behaviours of subnets (these subnets can be leaves or non-leaf

nodes). Moreover, we discuss the compatibility and delay properties of

the model.

• Timed specifications, which are at the core of this model and are de-

signed to specify the system behaviours including synchronous and

asynchronous communications. They consist of sets of logical clocks

and some relations on these clocks. Moreover, we proposed the concept

of clock partition and clock union to simplify the timed specifications,

and investigate the clock relations on clock partitions.

• Algorithms design for the translation of timed-pLTS and timed-pNets

iii

to timed specifications. Thanks to the timed specification, timed-pNets

are able to model systems in a flexible way: from bottom to up, starting

with detailed timed-pLTSs and assembling them in a compatible way;

or from top to down, constructing timed specifications for abstract

timed-pNets, using their holes timed specifications as hypotheses in an

assume-guarantee style, and providing later some specific (compatible)

implementations for these holes in various contexts.

• A discussion on time bound analysis, safety and latency properties

based on the analysis of the relations conflicts between system logical

clocks. We take a simple case of car insertion from the area of Intelligent

Transportation Systems (ITS) as an example to demonstrate the use

of the timed-pNets model. In the end, the TimeSquare tool is used to

perform a logical simulation and check the validity of our model.

Key words: Distributed Systems, CPS (Cyber Physical Systems), Log-

ical Clock, Timed Specification, Formal Methods, ITS, Synchronous Com-

munication, Asynchronous Communication

iv

Résumé

Cette thèse présente un nouveau modèle temporisé appelé timed-pNets

pour la modélisation et la vérification des comportements des systèmes dis-

tribués hétérogènes. Un défi essentiel de ces systèmes est de spécifier cor-

rectement les contraintes de temps du système, dans la mesure où les nœuds

dans les systèmes distribués n’ont pas l’horloge physique commune. Timed-

pNets utilise un modèle de temps basé sur des horloges logiques, de manière

à ce que les mesures de temps dans ce modèle ne reposent pas sur une horloge

physique commune. Les timed-pNets ont une structure hiérarchique en arbre:

les feuilles de cet arbre sont des Systèmes de Transition Étiquetés paramétrés

temporisés (timed-LTSs), et les autres nœuds (appelés eux-aussi, par abus,

Timed-pNets) sont des dispositifs de synchronisation qui permettent de com-

poser les comportements de leurs sous-réseaux (eux-mêmes des timed-pNets).

A chaque nœud d’un timed-pNet peut-être associée une Spécification tempo-

risée, qui consiste en un ensemble d’horloges logiques et de relations sur ces

horloges.

Les spécifications temporisées, en tant que le noyau de ce modèle, sont

utilisées pour spécifier les comportements du système, y compris les commu-

nications synchrones et asynchrones. Grâce à la spécification temporisée, les

timed-pNets peuvent modéliser des systèmes de manière flexible: soit de bas

en haut, en commençant par des timed-pLTSs détaillés et en les composant

de manière compatible; ou de haut en bas, construisant les spécifications tem-

porisées pour des timed-pNets abstraits, en utilisant les spécifications tem-

porisées de leurs arguments (trous) comme des hypothèses du style assume-

garantee, et en fournissant plus tard des implémentations spécifiques (com-

patibles) pour ces trous dans divers contextes. Notre méthodologie per-

met un cycle de conception, qui part d’une spécification temporisée ab-

straite, et passe par des étapes de décisions d’architecture et de conception

dépendant de l’infrastructure visée, correspondant à un raffinement des hor-

loges logiques, contraint par des décisions d’ordonnance et de placements.

v

La version finale (entièrement raffinée) sera soumise à des vérifications de

propriétés et de contraintes temporelles. Les analyses des limites de temps

(relatives aux différentes horloges ou à une horloge de référence), de la sûreté

et de la latence sont discutées par l’étude des conflits de relations entre

les horloges logiques du système. Nous utilisons un scénario d’insertion de

voitures dans les systèmes de transport intelligents (ITS) comme un exemple

pour illustrer l’utilisation de notre modèle timed-pNets. Finalement, l’outil

TimeSquare est utilisé pour effectuer une simulation logique et vérifier la

validité de notre modèle.

vi

Acknowledgement

The work described in this thesis was not and could not have been

performed in isolation. It involved the help and support of many, to whom

I am largely indebted. There are many people I would like to thank who

directly or indirectly helped me achieve the milestone of completing this

PhD thesis.

Foremost, I thank my PhD advisers Eric Madelaine and Yixiang Chen,

for giving all possible support so that I make a successful research work.

Thanks you for your encouragement and guidance throughout my research,

for giving me opportunity to come to INRIA, Sophia Antipolis and to perform

this work together with an enthusiastic team of researchers. Thanks Eric, for

all useful discussions and wonderful words of wisdom. He has taught me most

of what I know about formal method and supported me during a long period

of research. It has been a wonderful time working with you and I couldn’t

have asked for more from you as my PhD adviser. This thesis would not be

possible without you two!

I would like to thank all teachers, researchers, professors in SCALE team,

INRIA and Fost team, ECNU for valuable discussions during round table,

EPW and also many other occasions. Interacting with you all has always been

a great learning experience. Special thanks to Ludovic HENRIO, Fabrice

Huet for valuable suggestions. I also would like extend special thanks to

Françoise BAUDE for her kindly support during my difficult period. Many

thanks to Robert de Simone, Frédéric MALLET and Julien Deantoni for

you suggestions on logical time, CCSL and TimeSquare. And thanks all

vii

professors and colleges of FOST team in ECNU, especially thanks to Min

ZHANG, Tianmin BU, Jie ZHOU, Yanfang MA, etc. for all your supports.

I thank all members of administrative staff and research coordinators for

helping in many practical things. Special thanks to Christel KOZINSKI,

Changbo WANG, Linjuan YE, Linying WU, etc.for their kindly help. I

would like to thank all former and present members of my research group

SCALE for inspiring research discussions and presentations. Thanks Sophie

Song, for always giving an extra effort in making sure I continue my work

without losing focus and passion during critical moments. I also would like

to give my thanks to my office mate Alexandra Bardiau, even though you

went to another world, your kindness will be always in my heart.

Finally, I would like to thank my family for always being there as an

anchor of support and strength through all the trials and tribulations. I would

like to thank my parents for all of the support, love, and encouragement they

have given me. Their direction and advice has been invaluable, and without

them, I could not have achieved nearly so much. I also thank my parents-in-

law and sister-in-law for all the support they gave me.

Finally, I would like to thank my husband, Quirino Zagarese, for ev-

erything he has given to me. There is no other person I am indebted to on

so many levels. Academically, his excellence has profoundly influenced me.

I have learned uncountable lessons from his rigorous and careful pursuit of

“the truth”. He has been my sounding board, my expert reader, and my

example to follow. For all of these, I thank him. Personally, his love and

support has kept me alive and happy for the past three years. I am very

lucky to have found such a wonderful person.

My deepest love to you all!

viii

Table of Contents

Acknowledgement vii

1 Introduction 5

1.1 Motivation and Challenges . 6

1.2 Research Approach . 10

1.3 Research Contributions . 11

1.4 Technical Background . 14

1.4.1 Logical Clocks . 14

1.4.2 CCSL . 15

1.4.3 TimeSquare Tool . 17

1.4.4 pNets Model . 18

1.5 Use Case . 22

1.5.1 Vehicle-to-Infrustructure Communications 22

1.5.2 Vehicle-to-Vehicle Communications 23

1.6 The Outline of The Thesis . 24

2 Related Work 27

2.1 Discrete-event Models . 28

2.2 Synchronous and Asynchronous Communication Models 30

2.3 BIP Framework . 32

2.4 Timed-automata . 34

2.5 Timed Petri Nets . 36

2.6 AADL . 39

2.7 MARTE . 41

1

2.8 STeC . 44

2.9 Conclusion . 45

3 pNets With Timed-Actions and Logical Constraints 47

3.1 Model Building . 48

3.1.1 Timed Actions . 48

3.1.2 Logical Constraints . 48

3.1.3 Introduce Logical Clocks into pNets Model 49

3.2 Simulation . 51

3.2.1 Formalisation of the Architecture 52

3.2.2 Result . 54

3.3 Conclusion . 55

4 Timed-pNets Model 57

4.1 Context and problematic . 58

4.2 Timed Specification . 59

4.2.1 Syntax and Semantic of Clock Relations 62

4.2.2 Properties of the logical clock relations 63

4.3 Timed-pLTS . 66

4.4 Timed-pNets . 68

4.5 Generating Timed Specification 75

4.5.1 Generating TS of timed-pLTS 75

4.5.2 Auxiliary functions: Pre/Post sets 75

4.5.3 Relations and assignment rules 77

4.5.4 The Method for Generating Timed Specification 79

4.5.5 Generating TS of timed-pNets 85

4.6 Compatibility . 91

4.7 Assembling multi-layer timed-pNets system 93

4.8 Simulation . 95

4.8.1 Simulation 1: . 95

4.8.2 Simulation 2: . 96

4.9 Conclusion . 98

2

5 Delay in Timed-pNets 101

5.1 Context and problematic . 102

5.2 Virtual TimeStamps . 104

5.3 Time Constraint Conflicts . 106

5.4 Calculate Delays and Delay Bounds 106

5.4.1 Causal Clocks and Causality Paths 107

5.4.2 Computing Delays of clocks 108

5.4.3 Computing Delay Bounds of Clocks 109

5.5 Simulation . 114

5.5.1 Encode Properties into TimeSquare 115

5.5.2 Property Checking . 116

5.5.3 Discussion . 119

5.6 Conclusion . 120

6 Extension of Timed-pNets 121

6.1 Context and problematic . 122

6.2 Clock Partition . 123

6.2.1 Semantics of Precedence Relations on Partition Clocks 125

6.2.2 Semantics of Coincidence Relations on Partition Clocks 127

6.2.3 Partition Clock Property 131

6.3 Clock Union . 134

6.4 Examples and Simulations . 136

6.4.1 The Timed Specification of “Control” Component . . . 137

6.4.2 Timed Specification of “Initial” Component 138

6.4.3 Simulate the “Control” component 139

6.4.4 Simulate the “Initial” component 140

6.5 Conclusion . 141

7 Full Use Case 143

7.1 Use Case . 144

7.1.1 Background of ITS . 144

7.1.2 Car Inserting Use Case Scenario 145

3

7.1.3 Properties . 146

7.2 Build Timed-pNets Model . 147

7.2.1 System Structure . 147

7.2.2 Fill Holes . 149

7.3 Simulation . 149

7.3.1 Simulate the leaf level 152

7.3.2 Simulate the middle level 153

7.3.3 Simulate the top level 158

7.4 Other Simulations . 161

7.4.1 Car0 communicates with m cars (m > 2) 161

7.5 Conclusion . 163

8 Conclusion 165

8.1 Summary and Conclusions . 166

8.2 Future Work . 167

9 附附附录录录: 论论论文文文综综综述述述（（（中中中文文文版版版））） 171

References 176

List of publications 189

list of figures 191

list of tables 193

4

Chapter 1 Introduction

5

Introduction

1.1 Motivation and Challenges

The world is moving rapidly towards ubiquitous connectivity of smart

devices that are interconnected and collaborating, which provides people

with a wide range of innovative applications and services. It will further

change how and where people associate, gather and share information, and

consume media, which may be unimaginable today. The new world creates an

unprecedented opportunity to connect not just devices, but peoples, data and

processes as well, making networked connections more relevant and valuable.

One typical example is next-generation intelligent transportation sys-

tems (ITSs), in which wireless communications are used to exchange infor-

mation among smart vehicles. These vehicles can communicate with service

centers, inform other vehicles of their existence, monitor safety and use the

latest road and weather conditions. Communications are needed to support

safe driving, curtail traffic congestion and decrease travel delays by improving

the way of the overall transportation system and its infrastructure work. The

future of automotive safety is not about more airbags or stronger steel. It

is about building smarter automobile that can “talk” to each other, so a car

knows that another car is about to run a red light and applies brakes to avoid

a possible accident. The U.S. Department of Transportation and the National

Highway Traffic Safety Administration [91] have approved vehicle-to-vehicle

(V2V) communication systems that will pave the way for connected cars to

increase safety and reduce accidents. V2V communications can provide the

vehicle and driver with 360-degree situational awareness to address additional

crash situations. This technology would improve safety by allowing vehicles

to “talk” to each other and ultimately avoid many crashes altogether by ex-

changing basic safety data, such as speed and position, ten times per second.

In addition to enhancing safety, these future applications and technologies

could help drivers to save fuel and time. Besides, German automakers have

launched a pilot program that combines V2V with vehicle-to-infrastructure

technology, allowing cars to communicate with each other and with traffic

6

1.1. Motivation and Challenges

lights.

Not only vehicles, every devices can also connect to each other and com-

municate to provide better services. These devices include everything from

cell phones, coffee makers, washing machines, headphones, lamps, wearable

devices and almost anything else you can think of. The connection and com-

munication of these devices bring a huge potential value to our life. For

example, when you are on your way to a meeting, your car could have access

to your calendar and already know the best route to take. If the traffic is

heavy your car might send a text to the other parties to notify them that

you will be late. It is also possible that your alarm clock can wake up you

at 6 am and then notify your coffee maker to start brewing coffee for you.

Also it will happen that your office equipment knows when it is running low

on supplies and automatically re-orders more. And the wearable device you

used in the workplace could tell you when and where you were most active

and productive and share that information with other devices that you used

while working. All these applications can help us reduce waste and improve

efficiency and energy use. They will help us understand and improve how we

work and live.

To realize the systems we expect especially for the efficiency we men-

tioned, very often it is necessary to consider real-time aspects of communi-

cation behaviours: quantitative information about time elapsing has to be

handled explicitly. This can be the case to describe a particular behaviour

(for instance, a time-out) or to state a complex property (for example, “the

alarm has to be activated within at most 10 time units after a problem has

occurred”).

The real-time aspects for centralized systems such as embedded systems

have been discussed for more than a decade. Usually, the communications

in centralized systems are simple (synchronized communications) and lim-

ited (fixed number of communications are generated in a closed embedded

system). Even though some systems include complex communications (asyn-

chronous communication), the response time of the communications can be

7

Introduction

measured by a global physical clock. Comparing to the centralized systems,

the decentralized system in the next generation world will generate large

quantities of communications. These communications are created by mil-

lions of diverse devices periodically sending observations about certain mon-

itored phenomena or reporting the occurrence of certain abnormal events of

interest [88]. Furthermore, distributed smart devices in our future system

may have their own clocks and the time measurements of the behaviour of

each device are based on the physical clock of the device. The fact that

no common physical global clock exists causes the most typical problems of

the next generation heterogeneous distributed systems. The time measure-

ment of communication behaviour and deadlock detection are much more

difficult to solve in a distributed environment than in a classical centralized

environment.

Besides, depending on communications between these distributed smart

devices, the distributed systems can be classified as either synchronous or

asynchronous. Synchronous communication is direct communication where

time is synchronized. This means that all parties involved in the communi-

cation are present at the same time and ready to accept input signals. Asyn-

chronous communication is the exchange of messages with a certain time lag

between sending and responding. This means that the data in asynchronous

communication can be transmitted intermittently. Future systems need the

collaboration of synchronous and asynchronous communication. Further-

more, future distributed sensors, actuators, and smart devices with both

deterministic and stochastic data traffic require a new paradigm for timed

communication behaviour model that goes far beyond traditional methods.

The interconnection topology of smart devices is dynamic and the system

infrastructure can also be dynamically reconfigured in order to contain sys-

tem disruptions or optimize system performance. There is a need of novel

distributed communication models for dynamic topology control.

When talking about asynchronous communications models of distributed

systems, most published research is based on the time-free model [13] [37],

8

1.1. Motivation and Challenges

[47]. In these models, the specifications describe what outputs and state

transitions should occur in response to inputs, without placing any bounds

on the time it takes for these outputs and state transitions to occur. This

kind of free-time models are of importance in practice, such as consensus,

election, or membership. However, investigating time properties (e.g. if sys-

tem behaviours can be successfully executed before a certain deadline [78])

in distributed systems become important aspects. So we need a timed asyn-

chronous distributed system model (or, for short, a timed model) where all

the behaviours are timed: their specification prescribes not only the outputs

and state transitions that should occur in response to inputs, but also the

time intervals within which a client can expect these outputs and transitions

to occur.

As we know, formal methods provide powerful techniques for specifying

and verifying complex distributed systems. Most formal methods strive for

simplicity, to allow for efficient analysis. A formal model can be very ab-

stract, capturing precisely those aspects that are to be analysed, or can be

very detailed, trying to capture as many of the design aspects as possible.

Formalisms to construct mathematical models of systems include process

algebra, labelled transitions systems, finite state automata, petri nets, and

markov chains. All have their particular views on a system and focus on

particular aspects. Design a formal model for the distributed systems and

assess the correctness of the design of the system especially taking the time

constraints into account is a difficult problem, because distributed systems

have complex communication mechanisms and lack of a common physical

clock. The mix of synchronous and asynchronous communications, as well as

the possible time bound requirement in the distributed systems may lead to

incorrect behaviours. This requires us to check the correctness of the formal

models in terms of property requirements. If the required properties are sat-

isfied, the result should have a meaningful interpretation for the verification

of the actual design. Formal models for modeling time constrained systems

include timed automata [4], timed petri net [94], AUTOSAR [55], STeC [39],

9

Introduction

BIP [14], etc. Each of them has its own special advantages, but, as far as

we know, all of them use physical global time variables for time constraints,

which does not match our goal of avoiding using a global common time when

buidling models.

1.2 Research Approach

Heterogeneous distributed systems, as targeted in this thesis, can be

characterized by the fact that the processors are spatially separated and

that a common time base does not exist. Distinct processors in such systems

communicate with each other by exchanging messages with an unpredictable

(but non-zero) transmission delay. Each action in those processors is either a

local step of a process, a send action, or a receive action. Since the processors

in the systems may neither have synchronized clocks nor common physical

time base, the logical order of the actions may not agree with the clock times

associated with them. For example, we expect a logical view of the system in

which the send action for a given message happens before the receive action

for that message. However, if the clocks at the sender and the receiver are

sufficiently skewed, a clock-based trace of the events might report that the

receive occurred before the send.

One solution of this problem is to run algorithms to keep clocks closely

synchronized, within some tolerance. In the Internet world, this is typically

done with the Network Time Protocol (NTP). NTP is one of the earliest

Internet protocols used and is probably one of the most used protocols today.

However, it is much complicated and may cause problems by drastically

changing time [70].

A better and simpler approach is to maintain logical clocks at the proces-

sors. Time-constrained models for distributed systems should take advantage

of the system logical nature. The fact that one action causally affects another

makes it possible to determine the practical order among actions. We use

the concept of logical time to capture the causal relations of actions, which

10

1.3. Research Contributions

do not rely on a real time/clock. By this way, we are able to assign time

values to actions such that it is possible to infer potential causality between

these actions or to exclude causal influence in the sense that a “later” action

cannot affect an “earlier” action.

To reflect the fact that the actions in a processor can repetitively oc-

cur and their causality relations keep the same, we define a logical clock

as a sequence of repetitive occurrences of an action. A logical clock does

not “tick” like a real time clock that is equally spaced, but instead keeps

track of the order of action occurrences. Furthermore, inspired by the CCSL

model [7] (the detail technique background of CCSL is presented in section

1.4), we define clock relations to specify logical time constraints between

clocks. In distributed systems, as communication between processors is ei-

ther synchronous or asynchronous, we choose the basic CCSL clock relations

like coincidence and precedence to specify synchronous and asynchronous

communications. We propose a novel way of modeling distributed systems

by building system logical clocks and clock relations (called timed specifi-

cation). A timed specification is usually used to specify the behaviour of a

processor. Since a clock relation of two clocks is applied on all corresponding

action occurrences of them, we can ensure that these action occurrences are

assigned consistent logical times according to the relations between clocks.

Then we employ time specifications into pNets(parameterized networks of

synchronized automata) [13] to build a hierarchical structure of timed speci-

fication framework. The timed specification in a higher level is an abstraction

of it low level subsystems. In our design model, by analyzing the inherent

conflicts that might exist in the timed specifications, we check the logical

correctness of the systems.

1.3 Research Contributions

In this thesis, we attempt to build a formal timed model (called timed-

pNets) by introducing a set of logical clocks and clock relations into an

11

Introduction

untimed model called pNets (parameterized networks of synchronized au-

tomata) [13]. In this novel model, timed specifications (a set of logical

clocks and clock relations) are used to specify the system behaviours, and

furthermore, be used to build a hierarchical structure by composing the timed

specifications of subsystems. By taking advantage of the timed specifications,

system time constraints and properties (e.g. safety, latency properties) can

be specified and verified. The main contributions of the thesis are as follows.

We design a novel model that is capable to specify logical time con-

straints in terms of system behaviours without relying on physical clocks

(ref. chapter 3). In this new model, logical clock relations in bottom-level

(synchronous) components are derived from the corresponding label transi-

tion systems (called timed-pLTS). Usually logical clocks are a priori inde-

pendent. They become dependent when the instants (or the timed-action

occurrences) from different clocks are linked by relationships (e.g. coinci-

dence or precedence). Instead of imposing local dependencies between the

instants (or the timed-action occurrences), we impose dependencies directly

between clocks. A clock relation specifies many (usually an infinity of) indi-

vidual time instant relations. As a result of adding clock relations to multiple

clocks, these clocks are no longer independent and the instants (or the timed-

action occurrences) are partially ordered. This partial ordering of instants

characterizes the time specifications (TSs) of an application.

Timed specifications (TSs) are logical characterizations, that can be

either provided by the application designer, or computed from the model.

The consequence is that the two procedures above can be used arbitrarily in a

bottom-up fashion, starting with detailed timed-pLTSs and assembling them

in a compatible way; or in a top-down fashion, constructing TSs for abstract

timed-pNets, using their holes TSs as hypotheses in an assume-guarantee

style, and providing later some specific (compatible) implementations for

these holes in various contexts. As our model has a hierarchical structure,

the timed specification of an upper layer must be compatible with the timed

specifications of its subnets (or subsystems). In order to be able to build a

12

1.3. Research Contributions

compatible model, we discuss the compatibility of refined implementations

and abstract specifications. Moreover, we propose a theorem to generate a

compatible structure of timed-pNets (ref. chapter 4).

Since the model does not rely on common physical clocks, the delays in

the timed specifications that come from different subnets are uncomparable,

which brings the difficulty of building a higher layer structure especially

when the delays are taken into account. To solve the issue, we introduce

the concept of reference clocks and virtual timestamps into our model so

that the delays can be calculated in terms of a reference clock that a user

choose (ref. chapter 5). The introducing of a reference clock also helps us to

specify delay bounds and latency properties that are important aspects for a

timed model. Therefore, this model has the capability of checking not only

system’s correctness and safety properties, but also the timed properties (e.g.

deadline, latency properties).

The fact of using timed specifications in the new model paves the way

of utilizing the TimeSquare tool to check system time constraint conflicts.

Thanks to the timed specifications, timed-pNets are able to represent the ba-

sic behaviours of heterogeneous distributed systems. However, when facing

to complex behaviours (e.g. undetermined clock choices), the current timed

specifications are not easy to specify them. To simplify the way of encoding

the complex situations, we design the concept of clock partition and clock

union (ref. chapter 6). The clock partition allows us to flexibly split the

timed-action occurrences into groups so that the clock relations can be ap-

plied to the groups instead of to every single occurrence. We prove that the

relations (precedence and coincidence relations) on partition clocks can be

substituted by those relations on a set of filtered clocks, which illustrates the

advantages of using partition clocks: simple and easy to understand. An-

other extension, clock union, provides us a way to compose logical clocks.

Usually it is used to specify the branches of transition systems.

In the end, to gain insight into our model, we apply our model on the

Intelligent Transportation Systems (ITSs). We choose the TimeSquare [41]

13

Introduction

tool to do simulation (ref. chapter 7). TimeSquare is a software environ-

ment for modelling and analyzing of timed systems. It displays possible time

evolutions as waveforms generated in the standard VCD format (more in-

formation of TimeSquare are introduced in the next section). Errors can be

reported if conflicts exist in timed specifications.

As a conclusion, we contribute to design a formal model that provides

a simple and flexible way to model communication behaviours (synchronous

and asynchronous) with time constraints without relying on physical clocks.

This is the main difference with other current timed models. Moreover, our

model is able to check the logical correctness and verify time properties of

distributed systems.

1.4 Technical Background

In this section, we introduce the technique background of timed-pNets,

including logical clocks, CCSL, TimeSquare and pNets.

1.4.1 Logical Clocks

The logical nature of time is of primary importance when designing or

analyzing distributed systems. The concept of logical clocks was first intro-

duced by Leslie Lamport in 1978 to represent the execution of distributed

systems [58]. It has then been extended and used in distributed systems to

check the communication and causality path correctness [45]. The logical

clock timestamps each event with an integer value such that the resulting or-

der of events is consistent with a happened-before relation. Logical time has

also been intensively used in synchronous languages [23] [20] for its multiform

nature. The multiform nature of logical time consists in the ability to use

any repetitive event as a reference for the other ones. It is then possible to

express temporal properties between various references. In the synchronous

domain it has proved to be adaptable to any level of description, from very

flexible causal time descriptions to very precise scheduling descriptions [30].

14

1.4. Technical Background

Based on Lamport’s logical clock, two more advanced logical clock (vec-

tor clock and matrix clock) have been proposed to capture causality between

events of a distributed computation. Vector clock is proposed in order to

retain the complete partial order information in a logical clock system. It is

represented by an n-dimensional vector. Such clocks have been introduced

and used by several authors. Parker et al. used in 1983 a very rudimen-

tary vector clocks system to detect inconsistencies of duplicated data due to

partitioning [72]. Liskov and Ladin proposed a vector clock system to de-

fine highly available distributed services [63]. The theory associated to these

vector clocks has been developed in 1988 independently by Fidge [46] [45],

Mattern [67] and Schmuck [76]. Similar clocks systems have also been pro-

posed and used by Strom and Yemini [81] to implement an optimistic recovery

mechanism, and by Raynal to prevent drift between logical clocks [73]. An-

other advanced logical clock called matrix clock is represented by an n × n

matrix. Such a clock system has been proposed in 1984 by Wuu and Bern-

stein [90] to discard obsolete information of a log system. A similar mecha-

nism has also been used by Lynch and Satin in 1987 for a similar purpose [75].

The aim of the logical time is to be able to timestamp consistently events

in order to ensure some properties such as liveness, consistency, fairness,

etc. In order to coordinate distributed processes, Jefferson proposed virtual

time (or logical time, model time) [54] in 1985 for the causally connected

distributed time. The virtual time is implemented with an optimistic time

warp mechanism that is able to process messages quickly with independent of

the future messages. The aim of using such virtual time is to ensure that the

simulation program has the liveness property. The logical time is nothing else

than the logical counterpart of the physical time offered by the environment

and used in real-time applications [22].

1.4.2 CCSL

Logical time has been proved very useful to model heterogeneous and

concurrent systems at various abstraction levels. The Clock Constraint Spec-

15

Introduction

ification Language (CCSL) [7] uses logical clocks as first-class citizens and

supports a set of (logical) time patterns to specify the time behaviours of

systems. It is initially specified in an annex of MARTE [92], providing

an expressive set of constructs to specify causality (both synchronous and

asynchronous) as well as chronological and timing properties of the system

models.

CCSL is a declarative language that specifies constraints imposed on the

logical clocks of a model. A CCSL clock is defined as a sequence of clock

instants (event occurrences). If c is a CCSL clock, for any k ∈ N, c[k] denotes

its kth instant. Below, we describe only the constraints used in this thesis.

A comprehensive description of CCSL constructs can be found in [7].

The basic clock relations can be classified in three main categories: 1)

coincidence-based constraints, 2) precedence-based constraints, and 3) mixed

constraints.

Synchronous constraints rely on the notion of coincidence of clock

instants. For example, the clock constraint c1 isSubclockOf c2, denoted by

c1 ⊂ c2, specifies that each instant of c1 must coincide with an instant of

c2. In logical words this says that c1 ticks only if c2 ticks. Another example is

coincidence constraint (c1 coincides c2), denoted by c1 = c2. It is a special

case of subclocking, when there is a bijection between the sets of instants of

the two clocks. It states that c1 ticks if and only if c2 ticks. Other examples

of synchronous constraints are excludes (denoted ♯) or discretizedBy . The

former prevents two clocks from ticking simultaneously. The latter discretizes

a dense clock to derive discrete chronometric clocks, mostly from IdealClk,

a perfect dense chronometric clock, predefined in MARTE Time Library [8],

and assumed to follow “physical time” faithfully (without jitter).

Asynchronous constraints are based on instant precedence, which

may appear in a strict (≺) or a non-strict (�) form. The clock constraint

c1 isFasterThan c2 (denoted c1 � c2) specifies that clock c1 is (non-strictly)

faster than clock c2, that is for all natural number k, the kth instant of

c1 precedes or coincides the kth instant of c2 (∀k ∈ N, a[k] � b[k]). The

16

1.4. Technical Background

constraint c1 ≺ c2 specifies that clock c1 is strictly faster than clock c2, that

is for all natural number k, the kth instant of c1 precedes the kth instant of

c2 (∀k ∈ N, a[k] ≺ b[k]).

Mixed constraints combine coincidence and precedence. For example,

The constraint c3 = c1 delayedFor n on c2 enforces a delayed coincidence,

i.e., imposes c3 to tick synchronously with the nth tick of c2 following a tick

of c1. It is considered as a mixed constraint since c1 and c2 are not assumed

to be synchronous.

Moreover, CCSL includes clock expressions that define a set of new

clocks from existing ones. A CCSL specification consists of clock declarations

and conjunctions of clock relations between clock expressions. All these clock

relations and clock expressions constitute the kernel of CCSL.

1.4.3 TimeSquare Tool

TimeSquare [41] is a software environment dedicated to analyze timed

systems specified with clock constraints using the CCSL language [7]. It is

composed of a set of Eclipse plugins and has been integrated into the Open-

EmbeDD platform. It developed with Ganymede Eclipse Modeling Tools:

ANTLR for constraint parsing, and JavaBDD for the solver.

TimeSquare has four main functionalities: 1) interactive clock-related

specifications, 2) clock constraint checking, 3) generation of a consistent tem-

poral structure, using a Boolean solver, 4) displaying and exploring wave-

forms, written in the IEEE standard VCD format.

TimeSquare has been designed to be used with the UML tools applying

the MARTE profile. In this profile, clocks and clock constraints are asso-

ciated with various model elements. A wizard is included in TimeSquare.

It facilitates clock definitions, clock constraint specifications, model element

browsing, and parameter setting. The second functionality checks constraint

sanity. The third functionality relies on a constraint solver that yields a sat-

isfying execution trace or issues an error message in case of inconsistency.

The traces are given as waveforms written in VCD format. VCD (Value

17

Introduction

Fig. 1.1: VCD view of an example

Change Dump) is an IEEE standard textual format for dump files used by

EDA (Electronic Design Automation) logic simulation tools. The solver in-

tensively uses Binary Decision Diagrams (BDD). Waveforms can be displayed

with any VCD viewer. TimeSquare has its own viewer enriched with inter-

active constraint highlighting and access facilities. For instance, the screen

copy in Figure 1.1 shows precedence relations (white oblique dashed arrows)

and coincidence relations (red vertical solid lines).

1.4.4 pNets Model

We build our behavioral semantic model by introducing logical clocks

into pNets (parameterized networks of synchronized automata) [13]. pNets is

an expressive and flexible semantic model for the modeling and verification of

(untimed) distributed systems. pNets are networks of processes: they provide

a hierarchical structure to organize processes. At the leaves of the structure,

they have pLTS (parameterised labelled transition systems) describe in the

definition II. Definition II describes the hierarchical composition. pNets are d

To encode both families of processes and data value passing communications,

parameters are used in pNets as communication arguments. The parameters

is a set P of variables. The P is supposed to be defined globally, but it

can also be defined locally in each pNet. The usage of parameters enables

compact and generic description of parameterized and dynamic topologies.

In the following part we recall definitions of pLTS and pNets. We start

by giving the notion of parameterized actions that are basic elements for

pLTSs. Parameterized Actions have a rich structure, because they take care

18

1.4. Technical Background

of value passing in the communication actions, assignment of state variables

and process parameters.

Definition I [Parameterized Actions] Let P be a set of parameter

names, LA,P a term algebra built over P , including at least a distinguished

sort A for actions, and a constant action τ . We call v ∈ P a parameter,

and a ∈ LA,P a parameterized action, BA,P is the set of boolean expressions

(guards) over LA,P .

The behaviour of a process is modelled as a parameterized labelled tran-

sition system (pLTS), in which the variables can be written and read by the

actions performed in the transitions. A pLTS can have guards and assign-

ment of variables on transitions. Variables can be manipulated, defined,

or accessed inside states, actions, guards, and assignments. Parameters are

used both for encoding data in value passing messages and for manipulating

indexed families of processes.

Definition II [pLTS] A parameterized LTS is a tuple < P, S, s0, L,→>

where:

• P is a finite set of parameters, from which we construct the term algebra

LA,P ,

• S is a set of states; each state s ∈ S is associated to a finite indexed

set of free variables fv(s) = x̃Js ⊆ P ,

• s0 ∈ S is the initial state,

• L is the set of labels, → the transition relation →⊂ S × L× S,

• Labels have the form l =< α, eb, x̃Js′
:= ẽJs′ > such that if s → s′ ,

then:

– α is a parameterized action, expressing a combination of inputs

iv(α) ⊆ P (defining new variables) and outputs oe(α) (using ac-

tion expressions),

– eb ∈ BA,P is the optional guard,

19

Introduction

– the variables x̃Js′
are assigned during the transition by the optional

expressions ẽJs′ with the constraints: fv(oe(α)) ⊂ iv(α)∪ x̃Js and

fv(eb) ∪ fv(ẽJs′) ⊆ iv(α) ∪ x̃Js ∪ x̃Js′
.

pNets are constructors for hierarchical behavioural structures: a pNet

is formed of other pNets, or pLTSs at the bottom of the hierarchy tree.

A composite pNet consists of a set of subnets, each exposing a set of ac-

tions. The synchronisation between a global action of the pNet and the

actions of the subnets is given by synchronisation vectors [10] with the form

< αi, . . . , αj >→ αg: a synchronisation vector synchronises one or several

actions of subnets, and exposes a single resulting global action (αg). The

synchronous vectors are used to synchronise a (potentially infinite) number

of processes. A pNet can either compose sub-pNets given explicitly, or be

used as an operator accepting other pNets as parameters. Placeholders for

the pNets that will be provided later are called holes. Actions synchronised

in synchronisation vectors can involve both some sub-pNets that are given

in the definition and some other that will be provided later. The holes in

pNets can be indexed by a parameter, to represent (potentially unbounded)

families of similar arguments. We represent the definition of pNets taken

from [13] as follows:

Definition III [pNets] A pNet is a tuple < P, pAG, J, p̃J , ÕJ ,
−→
V >

where: P is a set of parameters, pAG ⊂ LA,P is its set of (parameterized)

external actions, J is a finite set of holes, each hole j being associated with

(at most) a parameter pj ∈ P and with a sort Oj ⊂ LA,P .
−→
V = {−→v } is a set

of synchronisation vectors of the form: −→v =< αg, {αt}i∈I,t∈Bi
> such that:

I ⊆ J ∧Bi ⊆ Dom(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊂ P .

Each hole in the pNet has a parameter pj , expressing that this “pa-

rameterized hole” corresponds to as many actual processes as necessary in a

given instantiation of its parameter. In other words, the parameterized holes

express parameterized topologies of processes synchronised by a given Net.

Each parameterized synchronisation vector in the pNet expresses a synchro-

nisation between some instances ({t}t∈Bi
) of some of the pNet holes (I ⊆ J).

20

1.4. Technical Background

The hole parameters being part of the variables of the action algebras can

be used in communications and synchronisations between the processes.

The pNets allow to model a large variety of synchronisation mechanisms

and have been traditionally used for systems of either synchronously or asyn-

chronously communicating objects, and of distributed components [13]. The

flexibility of the synchronisation vectors mechanism naturally provides de-

scriptions of heterogeneous systems, from point-to-point or multipoint syn-

chronisations, to sophisticated asynchronous queuing policies. It is a low-

level semantic model, supporting a large variety of parallel operators and

communication mechanisms that are flexible enough to address a large set of

distributed programming concepts. pNets can be used typically as the tar-

get of behaviour semantics for same high level language. For example, [13]

gives the semantics of the component based framework in terms of pNets.

Parametrization and hierarchy also makes pNet models compact, and close

to the program structure, and as a consequence easy to generate in a com-

positional way [6]. Its parameterized and hierarchical features can build

a tree like structure in which each node is pNets and leaves are pLTSs.

Each pNets node, which can also be presented as a pLTS, is an upper layer

abstract node composed by its subsystems in terms of the communication

behaviours among them. The parameterized models have successfully been

used for modelling ProActive [35] that is a pure Java implementation of dis-

tributed active objects with asynchronous remote method calls and replies.

It has been proven that the pNets are suitable as a specification language

for the distributed systems, and for the models resulting from static analysis

of source code. Moreover, the model enables us to have a finite representa-

tion of infinite systems. It naturally encodes the semantics of languages for

distributed applications.

All these incomparable advantages attracted us to choose it for mod-

elling distributed systems. However, pNets have no mechanism to describe

system time constraints.

21

Introduction

1.5 Use Case

In this section, we represent two use cases taken from ITS. One is vehicle-

to-infrastructure communication application which intends to avoid vehicles

accidents and to increase environmental benefits by wireless exchange of

critical data between vehicles and highway infrastructures. Another is a

vehicle-to-vehicle communication application that offers the opportunity for

significant safety improvements by dynamic wireless exchange of data be-

tween nearby vehicles. The two cases will be used from the chapter 3 to the

chapter 7 to explain our approach of building semantic behaviour models.

1.5.1 Vehicle-to-Infrustructure Communications

We present a use case called speed controlling system taken from [91].

The speeds of cars are monitored by an infrastructure that collects informa-

tion from cars and sends brake signals back to cars if they exceed the speed

limit. To realize it, the cars in a highway keep on sending signal “I’m here”

with their location and speed data. The infrastructure along the highway

collects the heartbeat signals and checks the speeds of those cars. If the

speed of a car exceeds the speed limit of the highway, the infrastructure will

send a “brake” signal to let the car to reduce its speed. The communication

protocol is described as follows:

• Cars send heartbeat signals ”I’m here” with parameters ”(location,

speed)”;

• A infrastructure collects heartbeat signals from cars;

• The infrastructure sends ”brake” signal to the cars that exceed the

speed limit;

• The cars reduce their speed when they get the ”brake” signals.

We require that the cars can receive brake signals and response to the

infrastructure before sending the next heartbeat signal. This use case will

22

1.5. Use Case

Fig. 1.2: Car Insertion

be simulated in chapter 3.

1.5.2 Vehicle-to-Vehicle Communications

We choose another small scenario on vehicle-to-vehicle communications.

It is about an autonomous lane change involving 3 smart cars. These cars are

equipped with sensors to detect the physical environments and parameters

(e.g. such as the speeds and distances of the cars). And they communi-

cate among each other to coordinate their movements and avoid collisions.

Assume three vehicles (car0, car1 and car2) are running on a road as Fig.

7.1.

The scenario of inserting car0 between car1 and car2 may follow the

following steps: 0) car0 gets a change-lane request (e.g. from a human user);

1) car0 sends “notify” requests to car1 and car2 to get an agreement; 2)

car1 (resp. car2) acknowledges car0 “yes” or “no”; 3) car0 collects results

from car1 and car2; 4) If both car1 and car2 answer “yes”, car0 signals the

consensus to car1 and car2 and then go to step 5, otherwise car0 aborts the

procedure; 5) car1 slows down and/or car2 speeds up to leave more space

between them for car0; 6) car0 changes its direction and moves to lane2; 7)

car0 notifies the end of the procedure with a ”finish” signal.

We require that the system has no deadlock or clock relation conflicts.

Furthermore, assuming that the network communication delay is less than 10

time units, we require that the latency from sending notifications to finishing

collecting all acknowledgements is no more than 30 time units. And the

latency of whole procedure from car0 getting change-lane requests to sending

23

Introduction

“finish” signals is no more than 55 time units.

This use case will be used to explain the timed-pNets model in the

chapters 4, 5 and 6. Moreover, the full simulation is represented in chapter

7.

1.6 The Outline of The Thesis

The rest of the thesis has been organized as follows.

• chapter 2 discusses related works and carefully investigates some time

models like timed-automata, timed petri Nets, MARTE and AADL

that are famous on modelling real-time systems.

• chapter 3 generalizes a novel semantic model by introducing logical

clocks and clock relations into pNet so that it has the capability of

modeling time constrained distributed systems.

• chapter 4 describes a communication behavioural semantic model called

timed-pNets. It is an extension of chapter 3. Timed-pNets build a hi-

erarchical structure of timed specifications by which the system timed

constraints can be specified in a more compatible and easier way. More-

over we discuss the compatibility and refinement of timed specifications,

as well as the property checking. We demonstrate that timed-pNets

are able to model the timed constrained communication behavior for

heterogeneous distributed systems that include synchronous and asyn-

chronous communications.

• chapter 5 discusses how to compute the delays and delay bounds in

timed-pNets. Moreover, we define the concept of time conflicts and

propose a way to detect them.

• chapter 6 discusses advanced extensions of timed-pNets, including clock

partition and clock union for simplify the timed specifications.

24

1.6. The Outline of The Thesis

• chapter 7 represents the full details of car insertion use case to demon-

strate how we build and refine a timed-pNets model and check its safety

and timed properties.

• chapter 8 concludes our work and represents future works.

25

Chapter 2 Related Work

If you want to understand today, you have to search yesterday.

Pearl Buck, American female writer

Our idea of avoiding using any common physical clock when modelling dis-

tributed systems leads us to investigate logical time and some existing time

models. This chapter starts from introducing discrete-event model to un-

derstand how system behaviours are specified by taking advantage of events.

Then we investigate globally asynchronous locally synchronous (GALS) model

including HipHop to understand how synchronous and asynchronous commu-

nications are handled. BIP, as a framework for the incremental composition

of heterogeneous components, is also investigated. Moreover, we carefully

investigate some time models like timed-automata, timed petri net, MARTE

and AADL that are famous on modelling real-time systems. Other time

related systems like STeC are introduced to see how they specify time and

location constraints for actions.

27

Related Work

Model-integrated development [53] [56] commonly uses actor-oriented

software component models [60] [61]. In such models, software components

(called actors) execute concurrently and communicate by sending messages

via interconnected ports [71] [29]. Examples that support such designs in-

clude Simulink, LabVIEW, SystemC, SysML, UML and pNets.

A well-defined actor-oriented model of computations (MoCs) should al-

ways has well-defined semantics. One of the key challenges is to integrate

actor-oriented models with practical and realistic notions of time. For exam-

ple, when modeling distributed behaviours, it is essential to provide multi-

form models of time. The frameworks that include a semantic notion of time,

such as Simulink, assume that time is homogeneous in the sense that it ad-

vances uniformly across the entire system. In practical distributed systems,

even those as small as systems-on-chip, however, no such homogeneous notion

of time is measurable or observable. In a distributed system, even though

it uses network time synchronization protocols (such as IEEE 1588 [62]),

local notions of time will differ. So when introducing time into the pNets

model, we should carefully handle the notions of time. Failing to model such

differences of time could cause errors in the design.

Based on the idea of logical time, the related models such as discrete-

event models, asynchronous language models and so on have been proposed.

Besides, some formal models or frameworks with time constraints have also

been proposed to describe timed systems. Here we list and describe these

previous works that relate to our work.

2.1 Discrete-event Models

Discrete-event (DE) [36] [59] [93] models are formal system specifications

that have analyzable deterministic behaviours. DE models are concurrent

compositions of components that interact via events. An event is a time-

stamped value, where time is “logical time” or “modeling time” [58]. Cor-

rect execution of such models requires respecting the order of time stamps.

28

2.1. Discrete-event Models

Using a global, consistent notion of time, DE components communicate via

time-stamped events. DE models have primarily been used in performance

modeling and simulation, where time stamps are a modeling property bearing

no relationship to real time during execution of the model.

One interesting project that directly confronts the multiform nature of

time in distributed systems is the PTIDES (Programming Temporally In-

tegrated Distributed Embedded Systems) project [42] [43]. PTIDES serves

as a coordination language for model-based design of distributed real-time

systems. PTIDES provides a framework for exploring a family of execu-

tion strategies so that it can directly confront the multiform nature of time

in distributed systems. DE is usually a simulation technology (e.g. in hard-

ware description languages such as Verilog and VHDL and network modeling

languages such as OPNET Modeler1 and Ns-22). When DE models are exe-

cuted on distributed platforms, the objective is usually to accelerate simula-

tion, not to implement distributed real-time systems [36] [48] [93]. However,

PTIDES does not use DE as a simulation technology, but rather an appli-

cation specification language, which serves as a semantic basis for obtaining

determinism in distributed real-time systems. Applications of PTIDES are

given as distributed DE models, where for certain events, their modeling

time is mapped to physical time. Simulations of it can simultaneously have

many time lines, with events that are logically or physically placed on these

time lines. PTIDES has DE semantics, but with carefully chosen relations

between model time and real time. It provides semantics for the interactions

between events to model the communications of distributed systems. Key to

making this model effective is to ensure that the constraints that guarantee

determinacy in the semantics are preserved at runtime. To accomplish this,

a distributed execution strategy is given, which obeys DE semantics without

the penalty of totally ordered executions based on time stamps. The exe-

cution strategies are divided into two layers: global coordination, and local

resource scheduling. When receiving an event from the network, the global

coordination layer determines whether the event can be processed immedi-

29

Related Work

ately or it has to wait for other potentially proceeding events. Once it is

sure that the current event can be processed according to DE semantics,

it delivers the event over to local resource scheduler, which may use exist-

ing real-time scheduling algorithms, such as earliest deadline first (EDF) to

prioritize the processing of all pending events. Based on causality analysis

of DE models, relevant dependency and relevant orders is defined to enable

out-of-order execution without compromising determinism and without re-

quiring backtracking. Since the global, consistent notion of time may lead to

a total ordering of execution in a distributed system, which is an unnecessary

waste of resources, PTIDES takes this event-driven execution strategy. Un-

like many hard real-time distributed systems that depend on domain specific

network architectures, PTIDES only requires a reliable packets delivery with

a known bounded delay.

The DE models encourage us to take advantage of logical nature of

systems and to introduce logical time into models. However, we need more

mature communication mechanisms like synchronous and asynchronous com-

munications that are not yet supported in PTIDES. This drives us to inves-

tigate heterogeneous communication models.

2.2 Synchronous and Asynchronous

Communication Models

Synchronous languages [20] have been effectively applied to design re-

active systems. These languages (which include Esterel, SCADE, Lustre,

Signal, etc.) provide deterministic concurrent semantics. Synchronous pro-

grams can be efficiently and safely implemented. The correctness is ensured

by usual verification methods. However, in the domain of distributed sys-

tems, asynchronous languages (e.g., SDL [80]) are naturally be used. It

brings the needs for programming the system “globally asynchronous locally

synchronous (GALS)” [38]. GALS is a model of computation that allows

to design computer systems consisting of several synchronous components,

30

2.2. Synchronous and Asynchronous Communication Models

among which the communications are asynchronous, e.g., FIFOs. It can be

used both in software and hardware. In software, these synchronous com-

ponents usually are specified as finite state machines (FSMs) and the asyn-

chronous communication between them is modeled with a buffer [40]. The

idea of the GALS approach provides a methodology for combining concur-

rent embedded systems within loosely coupled systems. Several formalisms

have been proposed which combine synchronous and asynchronous primitives

(e.g., [5]). And the concept of GALS has been used in several models and

tools [19] [21] [12].

Another model that can deal with asynchronous communication events

is HipHop language [24] [26]. It came out for helping programming rich ap-

plications driven by computers, smart phones or tablets. Since they interact

with various external services and devices, safe programming of this network

of devices requires tight cooperation between many sequential and parallel

programming models, as well as orchestration techniques that merge classical

computing, client-server concurrency, web-based interfaces, and event-based

programming.

HipHop is an Esterel-based [25] orchestration language embedded into

the Hop language [77] and system. Hop is a scheme-based multi-tier language

to develop complex web applications with a single source code for the server

and client, making code migration and client/server communication fully

transparent. HipHop is used to orchestrate asynchronous activities launched

by Hop, by providing a synchronous view and control of them. HipHop

is based on synchronous concurrency and preemption primitives, which are

known to be key components for the modular design of complex temporal

behaviors. It adds the possibility of orchestrating complex concurrent behav-

iors into Hop. Compared to Esterel, it is a much more dynamic language,

whose programs are Hop values that can be constructed on the fly and run by

an interpreter that implements the constructive causality of Esterel. HipHop

can be used both on the server and client side for maximal flexibility.

Our model partly takes the idea of GALS to specify both synchronous

31

Related Work

and asynchronous communication. The main difference is that we specify the

synchronous components as timed specifications (a set of clocks and clock

relations) instead of FSMs so that we are able to take advantage of the

TimeSquare tool to check system properties. Moreover, in our model, the

synchronous communications are specified by the coincidence relations be-

tween clocks, while the asynchronous communications are modeled by chan-

nels in which precedence relations are applied on two clocks. Compared to

HipHop, we both handle asynchronous events and multi-tier structure, but

the different aims drive us to different directions. They focus on orchestrat-

ing complex concurrent behaviours for web applications, while we need not

only the correctness of system behaviours, but also take account the time

constraints of these behaviours. Thus, we go further to investigate some

time-constrained models. Timed-automata is the first one we would like to

investigate that is famous for specifying and verifying the time constraints

of real-time systems.

2.3 BIP Framework

BIP (Behaviour Interaction Priority) [14] is a framework for the incre-

mental composition of heterogeneous components. It allows building complex

systems by the coordinating the behaviour of a set of atomic components.

The BIP framework provides constructs for dealing with parametric and hi-

erarchical descriptions as well as for expressing timing constraints associated

with behaviour.

BIP supports a component-based modeling methodology based on the

theory that components are obtained as the superposition of three indepen-

dent layers. The lowest layer describes the behaviour of a component (basic

components) as a set of transitions (i.e. a finite state automaton extended

with data); the intermediate layer includes a set of connectors describing the

interactions between transitions of the layer underneath; the upper layer con-

sists of a set of priority rules describing scheduling policies for interactions.

32

2.3. BIP Framework

Such a layering offers a clear separation between component behaviour

and structure of a system (interactions and priorities). The states inside a

component denote control locations where the component waits for interac-

tions. A transition is an execution step from one control location to another.

Each transition has an associated condition that enables this transition and

an action that is executed at this transition.

In BIP, all actions executed by transitions are written in C/C++. The

BIP language provides additional structural syntactic constructs for defining

component behaviour, interactions and priorities. BIP supports the con-

struction of sub-systems and allows developers compose systems by layered

application of interactions and priorities [51]. A hierarchical structure can

be built by composing components from atomic one that consists of a set of

ports (for the synchronization with other components), a set of transitions

and a set of local variables. There is a clear separation between behaviour

(the finite-state machines) and composition glue (stateless interactions and

priorities).

“BIP encompasses heterogeneity. It provides a powerful mechanism

for structuring interactions involving strong synchronization (rendezvous)

or weak synchronization (broadcast). Synchronous execution is character-

ized as a combination of properties of the three layers.” — taken from the

reference [15].

The BIP framework consists of a language and a toolset including a

frontend for editing and parsing BIP programs and a dedicated platform for

model validation. The platform consists of an Engine and software infras-

tructure for executing models. It allows state space exploration and provides

access to model checking tools of the IF toolset [32] such as Aldebaran [31]

and the D Finder tool [18]. This permits to validate BIP models and ensure

that they meet properties such as deadlock-freedom, state invariants [18] and

schedulability.

Real-time (RT) BIP [1] is an extension of the BIP component-based

design language to continuous time model closely related to timed automata

33

Related Work

[4]. In addition to offering syntax and semantics for the time-aware modeling

of concurrent systems, the real-time BIP also envisions a general model-based

implementation method for safety-critical multicore systems. This method

is based on the use of two models: (1) an abstract model representing the

behaviour of real-time software with user-defined timing constraints; (2) a

physical model representing the behaviour of the real-time software running

on a given platform.

The BIP and its real-time extension RT-BIP are currently supported

by an extensible toolset including a concrete modeling language together

with associated analysis and implementation. The toolset provides functional

validation, model transformation and code generation features.

However, modeling timed components in BIP involves references to a

specific “tick” port expressing the passage of (discrete) time, and such “tick”

events must be synchronized between various components of a system before

computing worst case execution time (WCET) or task period properties.

With contrast to this approach, we do not want to use one clock to syn-

chronize the components, but rather embedded multiple logical clocks into

a model to specify the synchronous and asynchronous communications by

building logical clock relations.

2.4 Timed-automata

Timed-automata [4] is a widely studied formalism for timed systems

and is famous for modelling the behaviour of real-time systems. It provides

a simple and powerful way to annotate state transition graphs with time

constraints using finite real-value clocks. A timed automaton is a finite au-

tomaton extended with a finite set of real-valued clocks. It can be seen as

classical finite state automata with clock variables and logical formulas on the

clock (temporal constraints) [17]. A timed automaton accepts timed words

— infinite sequences in which a real-valued time of occurrence is associated

with each symbol. Transition tables in automata are extended to timed tran-

34

2.4. Timed-automata

sition tables so that they can read timed words. A finite set of (real-valued)

clocks are involved in each transition table. The clocks in timed-automata

are initialized to zero when a system is started and then increase at the uni-

form rate counting time with respect to a fixed global time frame. Each clock

can be separately reset to zero [3]. The clocks keep track of the time elapsed

since the last reset. When an automaton makes a state-transition, the choice

of the next state depends upon the input symbol read.

Each transition is associate with a clock constraint, and require that the

transition may be taken only if the current values of the clocks satisfy this

constraint. The constraints on the clock variables are used to restrict the

behaviour of the automaton. There are two types of clock constraints: con-

straints associated with transitions and constraints associated with locations.

The constraints associated with transitions make use of guards. A guard is

a Boolean combination of integer bounds on clocks and clock differences. A

transition can be taken when the clock values satisfy the guard labeled on

it. The constraints associated with locations are called invariants and they

specify the amount of time that may be spent in a location. The invariant

“true” for a location means there are no constraints for the time spent in

the location. Semantics for a time automaton are defined as “a transition

system where a state or configuration consists of the current location and the

current values of clocks” [17].

In Automata, delays can be established for transitions. The delays are

counted from a physical clock which should be reset when it starts counting.

Since the clock in timed-automata is dense time, the discretization of delay

in timed-automata is investigated so that qualitative behaviour of circuit can

be preserved [11].

Timed automata can be used to model and analyse the timing behaviour

of computer systems, e.g., real-time systems or networks. Methods for check-

ing both safety and liveness properties have been developed and intensively

studied over the last 20 years. It has been shown that the state reachability

problem for timed automata is decidable, which makes this an interesting

35

Related Work

sub-class of hybrid automata. Extensions have been extensively studied,

among them stopwatches, real-time tasks, cost functions, and timed games.

Closure properties, decision problems as well as automatic verification of

real-time requirements were considered in timed-automata. There exists a

variety of tools to input and analyse timed automata and extensions, in-

cluding the model checkers UPPAAL [16], Kronos, and the schedulability

analyser TIMES. These tools are becoming more and more mature, but are

still all academic research tools.

Timed-automata can be a good reference for building and verifying

timed models. The strong theory basis and verification tools support many

industry implementations. Compared to timed-automata, we do not directly

use real-valued clocks whose values increase all with the same speed. Instead,

we build our model with two steps: We first define a finite set of logical clocks

whose ticks happen in terms of the occurrences of actions. Thus, the dis-

tance between two adjacent ticks may not be the same. And the speed of

two logical clocks may not be comparable. We specify system behaviours

and constraints by timed specifications, which help us to specify and check

system safety properties like deadlock. Then, we assign timestamps for clock

ticks in terms of a reference clock. The reference clock for our model is still

a logical clock that provides a time base for other logical clocks. By taking

advantage of the reference clock, we are able to check time properties such

as latency in terms of the timestamps of the reference clock. Therefore, our

model is flexible to fit for distributed systems that have no common physical

time base. Meanwhile, time properties can be checked under the assumption

of a reference clock.

2.5 Timed Petri Nets

Another famous semantic model for real-time systems is timed petri

nets. Timed petri nets (TdPNs) [83] is one of several mathematical model-

ing languages for the description of distributed systems. It is widely used

36

2.5. Timed Petri Nets

for the modeling and analysis of concurrent systems with time-dependent

behavior like communication systems. It includes a set of directed bipartite

graphs, in which the nodes represent transitions (i.e. events that may occur,

signified by bars) and places (i.e. conditions, signified by circles). The di-

rected arcs describe which places are pre- and/or post- conditions for which

transitions (signified by arrows). Each arc associates with an interval (or

bag of intervals). In TdPNs, each token has an age. This age is initially

set to a value belonging to the interval of the arc which has produced it or

set to zero if it belongs to the initial marking. Afterwards, ages of tokens

evolve synchronously with time. A transition may be fired if tokens with

age belonging to the intervals of its input arcs may be found in the current

configuration.

In most timed petri nets models, transitions determine time delays [84]

[86] [57]. In only a few models, time delays are determined by places and/or

arcs [79]. Three types of delay are discussed in timed petri net, deterministic,

nondeterministic, and stochastic delays. Many of the older timed petri net

models, such as [87], [74], [79], [94], use deterministic delays i.e., the delay

assigned by a transition, place, or arc is fixed. Deterministic delays allow

for simple analysis methods but have limited applicability. In most cases,

delays correspond to the duration of activities which are typically variable.

Therefore, fixed delays are often less appropriate. There are two ways to

describe the variability. One way is to assume constraints on delays (e.g., it

takes less than 2 seconds to send a notification). Another way is to assume

a probability distribution for each delay. Most models use time intervals to

specify the duration of the delay. Such a model introduced by Merlin [69] [68]

in the early seventies. Other models [84] [85] [27] that use interval timing

have been proposed. Some timed petri nets models, such as [49] [2], proposed

stochastic delays in the sense that each delay is described by a probability

distribution.

Another way to classify the types of delay used in a timed petri net model

is to distinguish between discrete and continuous delays. Most discrete mod-

37

Related Work

els use the natural numbers as the time domain. Continuous models typically

use the set of non negative real numbers as the time domain. Nearly all timed

petri nets allow for continuous delays. There exist several analysis tools, such

as TINA or Romeo. TINA (TIme Petri Net Analyzer) [28] is a toolbox for

the edition and analysis of petri nets and timed petri nets. Moreover, an

approach has been proposed in the work [50] to translate UML-MARTE Ac-

tivity Diagrams to time petri net (TPN) with the aim of verifying efficiently

time properties (synchronization, schedulability, boundedness, WCET, etc)

in real time embedded system. This work focuses on how to define TPN

based formal semantics for UML-MARTE Activity Diagrams to avoid the

core problem of state space explosion in model checking. TPN is selected

as verification model, because of the maturity of both its theory and the

associated TINA toolset, as well as its powerful capacity to express temporal

semantics.

Compared to timed petri nets, we use a different way to build a timed

model. First, we build our model by means of label transition systems (LTSs)

to model system behaviours. Our model graph comprises a set of states, with

arcs between them labeled by the activities of a system. Second, by translat-

ing LTSs to timed specifications, we actually build a unified way to specify

system behaviours and logical constraints, and pave the way to use the tool

TimeSquare. For real-time constraints, we also define delays, but our delays

are neither in states nor in labels. We encode delays in each action. These

delays are non-deterministic delay in the sense that the delay bounds are

specified as (logical) time intervals. We choose action-based LTSs to model

our systems with two reasons. 1) Our goal is to check the correctness of sys-

tem communication behavior, not to verify the correctness of programming

computations. So we hide unnecessary detail information like state variables,

but highlight the information that related to communication behaviours like

actions. 2) Action-based LTSs help us to build a compact and hierarchical

model since the states of them are abstract nodes.

38

2.6. AADL

2.6 AADL

Then we investigate two model-based engineering (MBE) tools for real-

time systems: AADL and MARTE (extended from UML). They automate

the analysis and facilitate the modeling of software architecture. UML was

conceived as a way to model functional structures of software (data, inter-

action, and evolution); while AADL is a way to model and analyze runtime

architecture.

The SAE architecture analysis & design language (AADL) [44] is a pro-

gramming language not only to define the textual representation of software

architecture but also (and more importantly) to formally define the syntax

and static semantics. In addition to textual representation, AADL allows

the software designer to depict the system graphically. It simplifies the

way of designing and analyzing the software and hardware architecture of

performance-critical real-time systems.

Descriptions in AADL comply with the syntax and semantics of the

language and can be verified by the syntactic and semantic analyzer of the

language to ensure that the description is analyzable and consistent. In other

words, constructs in a model are checked by the compiler to verify that they

are “legal”. Verification of the descriptions checks that a program is properly

structured, consistent, and semantically correct. AADL provides an exten-

sion construct called annex to add complementary description elements for

different kinds of analysis. These annexes are embedded in the descriptions

of its core language. AADL analysis tools, for example “open source AADL

tool environment (OSATE) [52], implement annexes as parsers, resolvers,

and semantic checkers. They execute the basic checking of the core language

and provide full consistency verification.

AADL focuses on runtime architecture modeling and analysis. Runtime

architecture is the software structure that defines the final execution sequence

of instructions. This software structure called software component is defined

by threads, processes, processors, and their interactions (data, event, and

39

Related Work

event data communication). Runtime architecture provides the software sys-

tem with specific quality attributes such as timeliness, fault-tolerance, or

security.

AADL language semantics, enforced by compilation techniques, provide

a clear execution semantics that is defined as a hybrid automaton. A hybrid

automaton is a mathematical model for describing how software and phys-

ical processes interact. The AADL hybrid automata are hierarchical finite

state machines with real-valued variables that denote the time. They de-

fine, unambiguously, the specific combinations of events that trigger or stop

the execution of the different elements of the model. Temporal constraints,

expressed as state invariants and guards over transitions, define when the

discrete transitions occur.

AADL offers a binding mechanism to assign software components (data,

thread, process, etc.) to execution platform components (memory, proces-

sor, buses, devices, etc.). Each software component can define several pos-

sible bindings and properties that may have different values depending on

the actual binding. Execution platform components support the execution

of threads, the storage of data and code, and the communication between

threads. This execution model in AADL encodes the most effective struc-

tures used by embedded systems developers and assumed by the theory of

real-time systems. Concurrent executions are modeled using threads man-

aged by a scheduler. The dispatch protocol (periodic, aperiodic, sporadic and

background) determines when an active thread executes its computation.

In AADL, communications can be immediate or delayed. A immediate

communication means that the dispatch time for sending thread and receiv-

ing thread is the same. A delayed communication means that the value from

the sending thread is transmitted at its deadline and is available to the re-

ceiving thread at its next dispatch. For delayed communications, additional

constraints are needed to get a deterministic schedule. Several criteria can

be considered, like for instance, the size of the buffer used for the commu-

nication, or applying a well-known scheduling policy, like Earliest Deadline

40

2.7. MARTE

First (EDF).

AADL permits software and execution platform components to be or-

ganized into hierarchical structures with well-defined interfaces. An AADL

description is almost always hierarchical, with the topmost component being

an AADL system that contains, for example, processes and processors, where

the processes contain threads and data, and so on. Besides, components may

be hierarchical, i.e. they may contain other components. Compared to other

modeling languages, AADL defines low-level abstractions including hardware

descriptions. These abstractions are more likely to help design a detailed

model close to the final product.

Even though AADL supports multiform time models, since it focuses

on the runtime architecture, the functional structure is extracted away. It

results in the lack of model elements to describe the application itself, inde-

pendently of the resources. Besides, AADL requires large amount of details

to capture even simple systems. Comparing to AADL, UML activities allow

for a description of the application, actions executed sequentially or concur-

rently, without knowing, at first, whether actions are executed by a periodic

thread or a subprogram. So in the next section we investigate MARTE: a

UML extension on real-time systems.

2.7 MARTE

The UML profile for Modeling and Analysis of real-time and embedded

systems (MARTE) [92] is a special extension of UML for modeling real-time

embedded systems. MARTE defines a broadly expressive Time Model to

provide for a generic timed interpretation of UML models. The time model

is based on partial ordering of instants. MARTE precisely defines a semantics

within UML profile rather than allowing tools, possibly incompatible with

other tools of the same domain, to support time modeling. MARTE OMG

specification introduces a time structure inspired from time models of the

concurrency theory [33] and proposes a new clock constraint specification

41

Related Work

language (CCSL) to specify, within the context of UML, usual logical and

chronometric time constraints.

The clock constraint specification language (CCSL) [7] has been intro-

duced to specify timed annotations on UML diagrams and thus provides

them with formally defined timed interpretations. CCSL offers a general set

of notations to specify causal, chronological and timed properties and has

been used in various sub-domains [65] [66] [9]. CCSL is intended to be used

at various modeling levels following a refinement strategy. It allows both

coarse, possibly non-deterministic, infinite, unbounded specifications at the

system level but also more precise specifications from which code generation,

schedulability and formal analysis are possible. Thus, MARTE, as a profile

of UML, presents a time model in a more precise and clear manner than UML

for the design of real-time embedded systems (RTES). And it provides more

precise expression of domain-specific phenomena such as mutual exclusion

mechanisms, concurrency, deadline specifications, and so on.

In MARTE, time can be physical, and considered as dense or discretized,

but it can also be logical, and related to user-defined clocks. Time may even

be multiform, allowing different times to progress in a non-uniform fashion,

and possibly independently to any (direct) reference to physical time. In real

world technical systems, special devices, called clocks, are used to measure

the progress of physical time. In MARTE, a clock, which can be chronometric

or logical, is a model giving access to the time structure. MARTE qualifies

a clock referring to physical time as a chronometric clock, emphasizing on

the quantitative information attached to this model. A logical clock mainly

addresses concrete instant ordering, making reference to a timebase.

MARTE explicit time model with powerful logical time constraints al-

lows to specify precisely and thoroughly the scheduling aspects of application

elements. Timed processing is a generic concept for modeling activities that

have known start and finish times, or a known duration. For a timed message,

start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation last-

42

2.7. MARTE

ing for a given duration. It is used to obtain delayed signals according to a

faster clock. For example “Clock C = A delayedFor n on B” specifies a clock

C that has all its instants coincident with the nth instant of B that follows an

instant of A. The MARTE time model allows multiform/polychronous time

modeling, which is inspired by synchronous languages. It supports model-

ing and analysis of component-based architectures, as well as a variety of

different computational paradigms (asynchronous, synchronous, and timed).

MARTE enables the specification of not only real-time constraints but also

other embedded systems characteristics, such as memory capacity and power

consumption. Furthermore, MARTE can be used to check the communi-

cation and causality path correctness by introducing event relations into

models. Paper [82] proposed a technique for transforming MARTE/CCSL

mode behaviors into timed automata so that a system can be checked by the

model-checking tool UPPAAL. This approach enables verification of both

logical and chronometric properties of the system.

MARTE, as a standard model-based description for real-time and em-

bedded systems, provides a way to specify several aspects of embedded sys-

tems, ranging from large software systems on top of an operating system

to specific hardware designs. It provides a support to capture structural

and behavioral, functional and non-functional aspects by including CCSL.

However, MARTE, as an extension of UML, keeps some drawbacks from it.

As we know, UML provides a set of diagrams to depict software structures

graphically. These diagrams appeal to practitioners and help them tackle

complex software structures. Even though its individual diagrams are use-

ful to depict software structures, UML cannot fully define the relationships

between diagrams. The diagrams are developed as separate entities that ex-

press different aspects of the software, not as parts of a common construct.

Thus, when using MARTE, a designer is able to model a system with multi-

ple functional, runtime, and hardware diagrams. Then, connections between

the diagrams are used to model the allocation of entities from one diagram

to another. However, the consistency across diagrams is largely left to be

43

Related Work

resolved by the designer. Besides, UML is large and complex. It comprises

many different concepts and semantics that we do not need. Since we mainly

focus on communication behaviours and would like to keep the semantic as

simple as possible,

2.8 STeC

Spatio-temporal consistence language (STeC) [39] is a spatio-temporal

consistence language for real-time systems. It provides a location-triggered

specification in which agents are specified with location and time constraints.

The spatio-temporal consistence means that an agent, e.g., a mobile device,

executes a task when it arrives at a required location or time. The location

is an abstract concept, which can be a physical address, an IP address, a

channel or others.

Similar to CSP (Communicating Sequential Processes), STeC handles

the interactions between agents by two atomic communication commands

“Send” and “Get”. The difference between CSP and STeC is that STeC

includes time and location variables. And STeC defines guards as actions

and statuses of agents as well as their logical compositions. STeC handles

two kinds of interrupts: time break and interaction break. Following the

Dijkstra’s guard style, in STeC, nondeterministic choice phase is guarded by

communications. Syntax and semantics of the language have been proposed

to address the issue of spatial-temporal consistence. Based on it, STeC de-

fines denotational semantics [89] for describing distributed systems with time

and location constraints. The language specifies the time and location con-

straints for each action, and then computes the execution time of processes.

STeC language is able to specify real-time systems especially for the

consistence of location and time. However, our model has a quite different

goal compared to STeC. Our model timed-pNets mainly focuses on time

properties. We set the time information as parameters that rely on a reference

clock. Even though we need check car’s locations in our use-case, but such

44

2.9. Conclusion

data is not treated at the same level as the time information. This is quite

different from what the STeC does by adding location constraints. Moreover,

since we mainly focus on modeling the communication behavior of distributed

systems, we abstract location information as parameters and highlight the

synchronous and asynchronous communications, which also lead us taking

different way to model timed-systems.

2.9 Conclusion

These previous efforts are of importance since they provide crucial in-

sights on building timed-models for real-time systems. Their mechanisms

and strategies contribute to build our model.

Discrete-event models inspire the use of specifying system behaviours

by taking advantage of events. The events that trigger the communications

can be used to build a logical view of system behaviour. The investiga-

tion of globally asynchronous locally synchronous (GALS) model including

HipHop help us to have a deep understanding of handling synchronous and

asynchronous communications. They provide sophisticated mechanism for

coordinating the synchronous and asynchronous communications. However,

since we use pNets as our untimed framework, we do not take FSM (as

GALS did) to model the synchronous component. Instead, we wrap system

events into logical clocks and design the timed specifications (a set of logical

clocks and clock relations) to model synchronous and asynchronous com-

munications. Moreover, GALS focuses on orchestrating complex concurrent

behaviours and discusses the correctness of system behaviours, but we need

to take account the time constraints of these behaviours to analyze the sys-

tem time properties. BIP, as a framework for the incremental composition of

heterogeneous components, helps us to understand how they introduce the

time concept into its model. With contrast to BIP that takes a special port

for the synchronization of its components, we choose to build synchronous

relations between events so that we can flexible setting the synchronization

45

Related Work

on components and furthermore on events.

The other timed model like timed-automata, timed petri net, MARTE

and AADL provide us a broad view on modelling real-time systems. For

example, timed-automata succeeds on using real-valued clocks (whose values

increase all with the same speed) to specify time constraints. It is very

popular in industry for modelling real-time embedded systems. However,

since we would like to avoiding using common physical time in our model,

we choose a different way to model time constraints. In our model, we wrap

events as logical clocks and then set time constraints by means of these clocks

and clock relations. This idea is close to the MARTE model that introduces

CCSL as its timed model. However, MARTE is a framework in the software

level to model real-time system. Since we would like to build a low level

behaviour model in the sense that it is able to express behaviour mechanisms

for different various of languages or component models, we choose pNets

model and introduce timed specification into it. Other time related systems

like STeC are also be investigated to see how they specify time and location

constraints for actions.

These previous works provide us a global view of the current situation

of timed models, and their mechanism of handling time and asynchronous

communications.

46

Chapter 3 pNets With Timed-

Actions and Logical

Constraints

In this chapter, we solve two issues. One is how to define timed-actions and

introduce them into pNets. Another one is how to define logical clocks and

clock relations so that logical time constraints can be specified in our model.

We propose timed-actions by adding time variables into actions. The

variables are used to record delay time of actions. We then define a logical

clock as a set of occurrences of a timed-action. A logical clock is a mechanism

for capturing chronological and causal relationships in distributed systems.

Usually multiple logical clocks in a system are dependent. We define clock re-

lations to specify the dependence and interactions among these logical clocks.

Thanks to logical clocks and clock relations, our model can keep track of the

order of timed-actions that occur at each process, and ensure that these

timed-actions are assigned by consistent logical times.

The chapter is structured as follows. Section 3.1 introduces the defi-

nitions of timed-actions, logical clocks, clock relations as well as our timed

model. Then in section 3.2, we take a simple use case from ITS to demon-

strate the formalism of our model. TimeSquare tool is used to simulate

the system and check its properties. In the end, in section 3.3, we give a

conclusion for this chapter.

47

pNets With Timed-Actions and Logical Constraints

3.1 Model Building

3.1.1 Timed Actions

We follow the pNets assumption on Action algebra LA,P which includes

all required operators for building action expressions in the language (P is a

set of parameters used to build open expressions, typically expressing data

variables) [13]. In our model, we define LA,P,T as the timed-action algebra,

in which T is a set of (discrete) timed variables. We denote for example

α (∈ LA,P,T) as an action name, then we consider α, !α(m) and ?α(m)

as timed-actions. α means that the timed-action executes locally but not

delivers messages. !α(m) (m ∈ P) is denoted as sending a message and

?α(m) (m ∈ P) as receiving a message.

Definition 1 (Timed-Actions) timedAction Let T be a set of discrete time

variables with domains in the natural numbers N. BT is the set of closed

intervals (bounds) over time variables. The Timed-action Algebra LA,T ,P is

an action set built over T and P . We call α(p)t|b ∈ LA,T ,P a timed-action

in which α ∈ A is an action, p ∈ P is a parameter, t ∈ T is a time variable

describing a time delay before the action can be executed, b ∈ BT is a delay

bound of t.

We set α0 = α, which means the action α is always ready. As an

example, at|[1,3] means the action a cannot be executed until t units times are

passed.

Since the next two chapters (chapter 3 and chapter 4) do not discuss

the delay bounds, for simplification, we do not represent them in the two

chapters. However, the bound intervals will be exposed in the chapter 5

where we will investigate the delay bounds.

3.1.2 Logical Constraints

We define a Clock as a sequence of occurrences of a timed-action. The

clock, in the sense of CCSL, is a logical clock. The logical clock means the

48

3.1. Model Building

distance between occurrences is not related with the passage of physical time.

Definition 2 (Clock) A Clock Cα is a sequence of occurrences of a timed-

action α(p)t. We write:

Cα = {α(p1)tα1 1, α(p2)
tα2 2, . . . , α(pi)

tαi i, . . .} (i ∈ N), in which α(pi)
tαi i

denotes the ith occurrence on clock Cα.

For simplification, in this thesis, an occurrence α(pi)
tαi i can be denoted

as α i for short when not ambiguous.

Clock Relations A Clock Relation defines the relation between two clocks.

We take the syntax and semantics of clock relations from [64], which is a lan-

guage to express time constraints by defining clock relations in timed models.

The clock relations include: = (coincidence), ≺ (strict precedence),�(prece-
dence), ⊆ (subclock), ♯ (exclusion). They are defined as follows:

• Cα = Cβ (Cα coincides with Cβ), which means clock Cα ticks if and

only if clock Cβ ticks.

• Cα ≺ Cβ (Cα strictly precedes Cβ), which means ∀k (k ∈ N), the kth

occurrence of Cα strictly precedes the kth occurrence of Cβ.

• Cα � Cβ (Cα precedes Cβ), which similar to the previous one. The

only difference is that the clock Cα can tick as late as Cβ ticks.

• Cα ⊆ Cβ (Cα is a subclock of Cβ), which means clock Cβ must tick at

the same time as clock Cα ticks.

• Cα♯Cβ (Cα excludes Cβ), which means none of their occurrences coin-

cide.

3.1.3 Introduce Logical Clocks into pNets Model

In pNets, the leaves are pLTSs. To construct pNets with logical clock

constraints, we first introduce logical clocks into pLTS [13]. These logical

clocks are built from timed-actions. The following definition represents a

Logical pLTS in which each transition is triggered by a timed-action.

49

pNets With Timed-Actions and Logical Constraints

Definition 3 (Logical pLTS) A Logical pLTS is a tuple< P, S, s0, A, C,→>,

where

• P is a finite set of parameters

• S is a set of states

• s0 ∈ S is the initial state

• A is a set of timed-actions

• C is a set of logical clocks over the timed-action set A

• → is the set of transitions: →⊆ S × A × S. We write s
α−→ s′ for

(s, α, s′) ∈→, in which α ∈ A, Cα ∈ C.

The next definition extends the classical pNets definition from [13] by

introducing clock constraints. The pNets retain a hierarchical structure and

a parameterization of subnets: holes in a pNet can be instanciated by a

variable number of subnets (e.g. a number of logical pLTSs). Then synchro-

nisation vectors allow very flexible and expressive multi-way synchronisation

mechanisms, that naturally we extend here with clock constraints.

Definition 4 (Clock Constrained pNet) A Clock Constrained pNet is a

tuple < P,AG, RG, J, C, ÕJ , R̃J ,
−→
V >, where:

• P = {pi/pi ∈ Domi} is a finite set of parameters

• AG ⊆ LA,T ,P is a set of global actions

• C is a set of clocks for all timed-actions

• RG is a set of relations between actions taken from each subnet

• J is a countable set of argument indexes: each index j ∈ J is called

a hole and is associated with a sort Oj ⊆ LA,T ,P and a set of clock

constraints R̃J

• −→V = {−→v } is a set of synchronous vectors of the form:

50

3.2. Simulation

* (binary communication) −→v =< ..., !at1[ki1], ..., ?a
t2
[ki2]

, ... >→ (a
tg
g), in

which a
tg
g ∈ AG, ki1 ∈ Dom1, ki2 ∈ Dom2, !a

t1 ∈ Oi1, !a
t2 ∈ Oi2,

C!at1 , C!at2 , Ca
tg
g
∈ C, tg = max{t1, t2}

* or (visibility) −→v =< ..., at1[k1], ... >→ (a
tg
g), in which a

tg
g ∈ AG, k1 ∈

Dom1, a
t1 ∈ Oi1, C!at1 ∈ C, tg = t1

Remark: We define the model in a form inspired by the synchronisation

vectors of Arnold and Nivat [10], that we use to synchronise clocks from

different processors. One of the main advantages of using its high abstrac-

tion level is that almost all interaction mechanisms encountered so far in the

process algebra literature become particular cases of a very general concept:

synchronisation vectors. We structure the synchronisation vectors as parts

of network. Contrary to synchronisation constraints, the network allows dy-

namic reconfigurations between different sets of synchronisation vectors. In

our model, we define two kinds of synchronous vectors. One is a binary com-

munication vector. The vector represents the communication of two holes

through timed-action !at1[ki1] and ?at2[ki2]. The two timed-actions that come from

different holes stay between two symbols “<” and “>”. The last element of

the vector appears behind the symbol “→”. It is a global timed-action gen-

erated by this synchronous vector. Another vector (called visibility) makes

a local timed-action (e.g. at1[k1]) visible by generating a global timed-action

(e.g. a
tg
g).

3.2 Simulation

In this section we build a timed model for the use case named Vehicle-

to-Infrustructure Communication given in section 1.5.1 in page 22. Fig. 3.1

presents its architecture in which cars and infrastructures are distributed

nodes. Every Car consists of three sub components: a sensor, a controller

and a brake component. Sensors are used to detect the current locations

and speeds of cars and to receive control signals from infrastructures. Con-

trollers receive signals from sensors and then call brake components to exe-

51

pNets With Timed-Actions and Logical Constraints

Fig. 3.1: Timed-pNets architecture with details of the car’s subcomponents

cute brake operations if necessary. Local communications between these sub

components of cars are synchronized in the sense that sending actions and

receiving actions coincide. The LTSs of these sub components are shown in

Fig. 3.1. We specify sensors by two LTSs: one describes periodical emis-

sions of heartbeat signals to report the locations and speeds of cars; another

describes reactions to control signals.

3.2.1 Formalisation of the Architecture

Here we explain how to formalize this use case. We build our model with

two holes: one is for receiving an arbitrary number of cars; another represents

a single Infrastructure. We assume that the communications between the

two holes are asynchronous, while in each hole, the communications between

its subcomponents (e.g. Sensors, Controllers) are synchronous. We list the

formalisation of this system as follows.

< P,AG, RG, J, C̃J , ÕJ , R̃J ,
−→
V >

P = {k : N, loc : R, speed : R, brake : bool}
AG = {CI hbth(k, loc, speed), CI ctrltct(k, brake)}

52

3.2. Simulation

J = {car[k], infrastructure}
OCar = {!c hbthb c(loc, speed), ?c ctrltct c(brake), !call(brake), Ts, ...}
OInfrastructure = {?I hbthb I (k, loc, speed), !I ctrltct I (k, brake),

..........!Isensor hbthb I [k](loc, speed),

?Icontrol hbtII (k, loc, speed), ...}
RG = {!c hbthb c [k](loc, speed) ≺?I hbthb I (k, loc, speed);

............!I ctrltct I (k, brake) ≺?c ctrltct c [k](brake);}
−→
V :< Ocar[k], Oinfrastrcuture >→ ACar infrastrcuture

... =<!c hbthb c [k](loc, speed), ?I hbthb I (k, loc, speed) >→ CI hbth(k, loc, speed);

...... <?c ctrltct c [k](brake), !I ctrltct I (k, brake) >→ CI ctrltct(k, brake).}

An interesting point is that the Infrastructure receives independent

heartbeats from the Cars, that are subsequently interleaved within the Infras-

tructure structure. This is expressed by a clock relation on the link between

the sensors and control in the Infrastructure structure: !Isensor hbthb I [k](loc, speed)

⊆?Icontrol hbtII (k, loc, speed). This relation tells that the heartbeat signals

transmitted by the kth Sensor component are the subset of the heartbeat

signals received by the Control component.

Finally, we take a Car Sensor component as an example to represent its

clock relations:

RCarSensor = {hb(loc, speed) , idealClockdiscretizedByrate (1);

........................(τ♯!ctrl(brake)) (2);

........................?c ctrl(result) ≺ (τ∧!ctrl(brake)) (3);

........................!ctrl(brake) ≺?T s (4);

........................(?T s[i] ∨ τ [i]) ≺?c ctrl(result)[i+ 1] (5);}
where (1) describes that heartbeat signals are sent periodically; (2) in-

dicates that the events τ and !ctrl(brake) are exclusive; (3) denotes that the

event ?c ctrl(result) always precedes the event τ and !ctrl(brake); (4) tells

us that the event !ctrl(brake) precedes the event ?T s; (5) explains that the

events in the ith cycle precedes those in the (i+ 1)th cycle.

53

pNets With Timed-Actions and Logical Constraints

3.2.2 Result

We use TimeSquare [41] to simulate the clock relations and check its

logic correctness. The input of TimeSquare is a CCSL file including clock

relations, bound requirements and properties. The tool proceeds with a

symbolic simulation, and generates a trace model. Output files (text and

graph) are generated to display the traces and eventually show if properties

are satisfied.

In our use-case, in order to check time properties, apart from the clock

relations, we also need to specify boundary requirements. Let a heartbeat

interval be “hi” that is defined as the distance between two adjacent heart-

beat occurrences (hb (i+ 1) − hb i). We set communication delay bounds,

computation delay bounds and a deadline requirement as follows:

• The minimum and maximum communication delays between the cars

and the infrastructure are (1/5)hi and (3/5)hi;

• The computation delays are no more than (2/5)hi;

• Each heartbeat signal should be processed before sending the next

heartbeat.

Through this simulation, we check if all heartbeat signals finally can be

processed before their deadlines. We formalize the property as (?T s i ≺
hb (i+ 1))∨ (τ i ≺ hb (i+ 1)), which means that the action ?T s or τ of the

ith cycle occurs before the heartbeat signal of the (i+ 1)th cycle.

The result of this simulation is shown in Fig.3.2, in which a red vertical

line is the deadline of a cycle. The figure tells that the property is not satisfied

since an occurrence of the action ?T s is later than its deadline. One reason

that cause the failure might be the large latency of communication delay or

computation delay. After we modify the maximum computation boundary

from “(2/5)hi” to ‘(1/5)hi”, we found out that the property is satisfied.

54

3.3. Conclusion

Fig. 3.2: property checking

3.3 Conclusion

In this chapter, we defined a novel behavior semantic model by intro-

ducing logical clocks and clock relations to pNets model.

In this new model, logical clocks are derived from timed-actions. Clock

relations are specified in terms of the logical relations of timed-actions. Be-

sides, we take advantage of synchronous vectors to flexibly specify syn-

chronous communications.

A simple use case taken from Intelligent Transport Systems is used to

explain our approach, including how to formalize the system, how to check

time properties by TimeSquare tool. From the result of the simulation, we

conclude that this new approach helps to check system logical correction as

well as some time properties.

However, the different ways to specify local constraints (by synchronous

vectors) and global constraints (precedence relations) make it more difficult

to build a hierarchical structure. Besides, this model is not so compact since

synchronous vectors and global relations handle time constraints on actions.

Therefore, in the next chapter, based on this first attempt, we will im-

prove the current one to make it more compact. Besides, we will take care

of the structure of the model so that it will be flexible enough to adapt the

component-based design approaches.

55

Chapter 4 Timed-pNets Model

This chapter represents a communication behavioural semantic model called

timed-pNets that is an extension of the previous model we proposed in the

chapter 3.

The main contributions of this chapter are as follows. First, we develop

the extended model timed-pNets with a tree-style hierarchical structure. Its

leaves are represented by timed-pLTSs. Its non-leaf nodes (called timed-pNet

nodes) are synchronisation devices that synchronize the behaviours of sub-

nets (these subnets can be leaves or non-leaf nodes). Second, we let all nodes

(leaves or non-leaf nodes) associate with timed specifications. A timed spec-

ification is a set of logical clocks and clock relations. By proposing the solu-

tions of translating timed-pLTSs and timed-pNets to timed specifications, we

can analyze our model by investigating the hierarchical timed specifications.

Third, we design channels to model asynchronous communications instead

of directly using precedence relations. Thus, by using synchronous vectors

and channels, we can specify the communication behaviours (synchronous

and asynchronous communications). Last but not least, we update the syn-

chronous vectors from action-based synchronous vectors to clock-based syn-

chronous vectors so that we can handle a set of synchronous actions for each

vectors.

The use case “Vehicle-to-Vehicle Communication” taken from the sec-

tion 1.5.2 in page 23 is used to explain the timed-pNets model including the

notations, definitions and theorems. In the end, we simulate the system and

check the validity of this model.

57

Timed-pNets Model

Fig. 4.1: Timed-pNets tree structure

4.1 Context and problematic

In the previous chapter we proposed our first attempt on the time con-

strained model, including the notions of logical clocks imported from CCSL.

A set of clock relations were designed to describe the system constraints.

However, this model is not sufficient to build hierarchical timed specifica-

tions starting from timed-pLTSs.

In this chapter, we enhance the compositional aspects of our specifi-

cation methodology: a system is modelled as hierarchy of timed-pNets as

Fig.4.1, where leaves are timed-pLTSs, i.e. finite state transition systems

with logical clocks on the transitions, and nodes are synchronisation devices.

Products between subnets can be synchronous (modelling local components

sharing synchronous clocks), or involve asynchronous communications be-

tween unrelated events, that we model as channels.

From such a hierarchical model, we propose procedures for:

- at the bottom level, analyzing timed-pLTSs, and build the timed spec-

ifications (sets of clocks and clock constraints) encoding its temporal

behaviours;

- for each timed-pNets node, building an abstract timed specification (=

at level N), from its lower-level timed specifications (level N-1).

58

4.2. Timed Specification

One important point is that Timed Specifications (TSs) are logical char-

acterizations, that can be either provided by the application designer, or

computed from the model. The consequence is that the two procedures

above can be used arbitrarily in a bottom-up fashion, starting with detailed

timed-pLTS and assembling them in a compatible way; or in a top-down

fashion, constructing TSs for abstract timed-pNets, using their holes TSs as

hypotheses in an assume-guarantee style, and providing later some specific

(compatible) implementations for these holes in various contexts.

In the end, we are able to use the TimeSquare tool [41] to simulate the

possible executions of timed specifications.

This rest of the chapter is organized as follows. Section 4.2 describes

the meaning of timed specifications including the formal definitions of timed-

actions, logical clocks and their relations. Then we give the definition of

timed-pLTSs in section 4.3. In section 4.4, we discuss how to build timed-

pNets. The procedure of generating timed specifications from timed-pLTSs

and timed-pNets are presented in section 4.5. The issue of checking the

compatibility of timed-pNets is discussed in section 4.6. In section 4.7 we

discuss how to build multi-layer timed-pNets systems. Then in section 4.8 we

represent the simulations by using the TimeSquare tool. Finally, the chapter

ends with conclusions and future researches.

4.2 Timed Specification

In this section, we present the preliminary denotations and definitions

of timed-actions, logical clocks, clock relations and timed specifications. We

shall use the example presented in section 1.5.2 in page 23 to illustrate all

definitions and results.

We define a logical clock as a sequence of occurrences of a timed-action.

The clock, in the sense of CCSL, is a logical clock. The logical clock means

that the distance between occurrences is not related with the passage of real

time.

59

Timed-pNets Model

Fig. 4.2: count the delay tαi
when Cα is an independent clock

Definition 5 (Logical Clock) A Logical Clock Cα is a sequence of occur-

rences of a timed-action α(p)t. We write:

Cα = {α(p1)tα1 1, α(p2)
tα2 2, . . . , α(pi)

tαi i, . . .} (i ∈ N+), in which α(pi)
tαi i

denotes the ith occurrence of clock Cα.

For simplification, in our thesis, an occurrence α(pi)
tαi i can be denoted

as α i for short when not ambiguous.

The assignment of the delay variable tαi
in each occurrence α(pi)

tαi i can

be different. The delay variable captures the minimum time (delay) that an

action must wait before it can occur after the previous action. More precisely

when a clock is independent (has no precedence relation with another clock),

the delay is counted from the previous occurrence of the same action as shown

in the Fig. 4.2. If a clock Cβ directly precedes a clock Cα, then the delay of

the ith occurrence of the timed-action α is counted from the ith occurrence

of the timed-action β as shown in the Fig. 4.3. The relation of coincidence

(discussed in the next subsection) does not effect on the way of counting the

delay. For example, if there is another clock Cγ that coincides with the clock

Cα, then the delay tαi
is still be counted as shown in the Fig.4.3.

For convenience, we define here two clock expressions, time shift, and

filtering:

Definition 6 (Clock Offset) Let Cα be a clock built over a timed-action α,

Cα[i] be the ith occurrence of the clock Cα. The nth offset of the clock Cα is

the clock defined as: C
∆(n)
α = {Cα[n+ 1] 1, Cα[n+ 2] 2, . . . , Cα[n+ i] i, . . .}.

From the definition we can see that the (n + 1)th occurrence of Cα

becomes the first occurrence of the new clock C
∆(n)
α , and so on.

60

4.2. Timed Specification

Fig. 4.3: count the delay tαi
when Cβ ≺ Cα

Definition 7 (Clock Filtering) Assume N ′ is a subset of N. Let Cα be a

clock built over a timed-action α. The new clock that is filtered from the clock

Cα byN ′ is denoted as CN ′

α = {Cα[i1] 1, Cα[i2] 2, . . . Cα[ik] j, . . .}(i1, i2, . . . ik, . . . ∈
N ′, i1 < i2 < . . . < ik, . . . , j, k ∈ N).

For convenience, we will write the filter N ′ either as a boolean function

over N, or as a subset of N, e.g.: C{2n−1}n∈N

α accepts only the odd occurrences

of the clock Cα. C
{n≥8}
α filters out the first 8 occurrences.

So if Cα = {α(p1)tα1 1, α(p2)
tα2 2, . . . , α(pi)

tαi i, . . .},
then C

{2n−1}n∈N

α = {α(p1)tα1 1, α(p3)
tα3 2, . . . α(p(2n−1))

tα(2n−1) n, . . .}. C{n≥8}
α =

{α(p8)tα8 1, α(p9)
tα9 2, . . .}.

Finally we define Timed Specifications: a timed specification is com-

posed of a set of logical clocks, together with a set of clock relations, express-

ing the temporal ordering constraints between the clocks. This is an abstract

specification in the sense that it captures just enough information to check

the time safety (validity of time requirements) of a system, and the compat-

ibility relations required for assembling sub-systems together. In the next

sections we shall describe procedures to compute the timed specifications of

systems (timed-pLTSs and timed-pNets), and to check the compatibility.

Definition 8 (Timed Specification) Let IC be the set of occurrences of the

clock C. A Timed Specification is a pair < C,R > where C is a set of clocks,

R is a set of clock relations on
⋃

C∈C IC .

61

Timed-pNets Model

4.2.1 Syntax and Semantic of Clock Relations

A Clock Relation defines the relation between two clocks. With respect

to the original definition of clock relations in CCSL [7], we have slightly

different goals, and different needs. In particular we do not need exclusion

(that is most important with some families of reactive formalisms). We do not

define “subclock” relation in this paper because we need a more concrete way

to define how to build a new subclock from original one. Instead, we defined

“clock filtering” which can specify the way of selecting action occurrences.

Therefore, here we only define two relation operations (’≺’, ’=’) to describe

the different dependence relations between clocks.

Fig. 4.4: Constraints

• The relation ’Cα = Cβ’ (Cα coincides with Cβ) describes the strict

synchronization of clocks. It means that the occurrence of Cα appears

if and only if the occurrence of Cβ appears. In other words, the clock Cα

and Cβ tick at the same time. Formally, JCα = CβK = ∀i ∈ N, (α i ≡
β i) (shown in Fig. 4.4(1)). This operator can naturally be used to

describe synchronous communications.

• The relation ’Cα ≺ Cβ’ (Cα precedes Cβ) describes the precedence

relation of clocks. It says that the action β from the clock Cβ can-

not occur until the corresponding action α in the clock Cα occurs. In

62

4.2. Timed Specification

another word, clock Cα ticks always earlier than clock Cβ. Formally

JCα ≺ CβK = ∀i ∈ N, (α i ≺ β i). As shown in Fig. 4.4(2), the ith oc-

currence of the clock Cα always appears earlier than the ith occurrence

of the clock Cβ. The relation usually relates to the causality induced

by an asynchronous communication.

4.2.2 Properties of the logical clock relations

Not surprisingly, these relations have their expected properties: coinci-

dence is an equivalence relation, and precedence is a strict preorder.

Proposition 1 (Properties of the Coincidence Relation “=“). Given a set

of clocks C . The relation “=“ on the set C is reflexive, symmetric and

transitive.

Proof: This follows from the fact that “≡” is an equivalence relation on

timed-action occurrences.

(1) Choose any clock Cα ∈ C. Let its ith (i ∈ N) occurrence be α i. Obviously,

∀i, the occurrence α i coincides with itself. So we know Cα = Cα; the

coincidence relation is reflexive. (2) Now choose another clock Cβ ∈ C. If

we have the relation Cα = Cβ, then we know that ∀i ∈ N, α i ≡ β i, which

means the action α occurs if and only if the action β occurs. According

to the symmetric relation of the operator “≡”, we know that the action β

occurs if and only if the action α occurs. So we have ∀i ∈ N, β i ≡ α i. We

know Cβ = Cα; the coincidence relation is symmetric. (3) choose another

clock Cγ ∈ C. If we have the relations Cα = Cβ and Cβ = Cγ, then ∀i ∈ N,

α i ≡ β i ∧ β i ≡ γ i. From the transitivity relation of “≡”, we infer ∀i ∈
N, α i ≡ γ i; so we know Cα = Cγ; the coincidence relation is transitive.

Proposition 2 (The properties of Precedence Relation “≺”). Given a clock

set C. The relation “≺” on the set C is transitive, but not reflexive, not

symmetric.

This follows from the same properties on the relation ≺ on occurrences.

The proofs are similar to those of Proposition 1.

63

Timed-pNets Model

Control

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

C?Request(Ins)tq

C !Cmd(Ins)tc

C ?R(b)tR

C

C C

C
C

ττ t

C ττ t

[b=True]

!Consensus(ExpRes, k')
to

[k' := 0; k'++; k'

?Finish(k')t f
[k' := 0; k'++; k'

!Terminal t T [b=False]
!Cancel t L

Initial

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k := 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

C ?Notify(Ins)tn

!Ack(r)C m
ta

CommRes[m]

ChannelNtf[m]

ChannelAck[m]

Car0

Control [m]

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

Car[m] (Car1 / Car 2)

[m]

[m]

[m]

[m]

[m]

Channel

Channel

CConsensus

C Finish

C Cmd

C R

C Notifyg1
CNotify g2

C Ackg3CAckg4

2]

[k := 1; k++; k 2]

2]2]

[m]
[m]

[m][m]

Fig. 4.5: Communication Behaviour Model of Cars Insertion Scenario

Proposition 3 (Substitutivity of ”=”). Given four clocks Cα, Cβ, Cγ, Cη

which are built on the timed-action α, β, γ and η separately. Let Cα = Cβ

and Cγ = Cη. If Cα ≺ Cγ, then we have Cβ ≺ Cη.

Proof. According to the coincidence definition, Cα = Cβ ⇒ ∀i, α i ≡ β i,

and Cγ = Cη ⇒ ∀i, γ i ≡ η i. If Cα ≺ Cγ, then according to the precedence

definition, we know ∀i, α i ≺ γ i, which means the action α always occurs

earlier than the action γ. Since ∀i, α i ≡ β i tells us the action α occurs if

and only if the action β occurs, so we know β always occurs earlier than γ

(∀i, β i ≺ γ i). Similar, since ∀i, γ i ≡ η i tells us the action γ occurs if and

only if the action η occurs, so we furthermore have the relation ∀i, β i ≺ η i.

According to precedence relation definition, we get Cβ ≺ Cη.

Example 1 In this example, we illustrate how to represent timed-actions,

clocks, and clock relations for our “car inserting” scenario presented in the

section 1.5.2 in page 23. As shown in the Fig. 4.5, on-board car systems are

modeled by several components including “Initial”, “CommIni” “CommRes”,

“Control”, etc. (In this figure we only show the components that participate

in the protocol.) In the example, the procedure starts with a user’s request

by sending an “insertion” order (encoded here as a “!Request(Ins)tq” timed-

action) to the “Initial” component. Then the procedure runs in two phases:

64

4.2. Timed Specification

(1) The agreement phase: car0 sends a notify(Ins) message to the other two

cars, and waits for their answers. This phase is managed by the “CommIni”

process, that communicates to the “ComRes” processes of other cars through

asynchronous channels. In the model, there is one such channel for each

type of messages, and for each pair of communicating processes; we use the

parametrized structure of pNets to represent such families of processes, e.g.

“channelNtf[m]” in the figure 4.5. The “CommIni” process is in charge of

collecting the answers from the other cars asynchronously, and sending the

final decision to “Initial”. If it is negative, then “Initial” aborts and signals

Cancel to the user, otherwise we go to the next phase.

(2) The execution phase: this phase is triggered and controlled directly by the

“Initial” process. It sends C!Consensus(ExpRes)to to all cars including itself to

initiate the execution and to tell them the final expected result (“ExpRes”).

The “Control” process of each car is in charge of the local Execution of the

movement (that we leave unspecified here), till the expected result is observed

([ExpRes = CurData]). Then the !Finish signals are collected by “Initial”,

and termination is notified to the user.

We use label transition systems (LTSs) to model each component. Each

transition will be triggered by a clock. Precedence relations are used to spec-

ify the causality relations of LTSs. For example, in the “CommRes” compo-

nent, the clock “C?notify(Ins)tn” occurs earlier than the clock “C!ack(rm)ta”. We

denote the clock relation as “C?notify(Ins)tn ≺ C!ack(rm)ta ”. For simplification,

in the following sections, we will omit the parameters and time variables

when expressing a clock relation if it is not ambiguous. For example, we use

the short version “C?notify ≺ C!ack” instead of “C?notify(Ins)tn ≺ C!ack(rm)ta ”.

In this use-case, we assume for simplicity that the communication inside

a car is synchronous (in realistic modern car systems, this hypothesis would

have to be refined, since the onboard systems include several process com-

municating through data buses). Here, the timed-action “!Cmd(par)tc” in

the “Initial” process and the timed-action “?Cmd(par)tc” in “CommIni” are

always synchronous when the two components communicate and transmit

the message “par”. So the two clocks coincide

(CInitial.!Cmd(par)tc = CCommIni.?Cmd(par)tc).

By contrast, the communications between two different cars are asyn-

65

Timed-pNets Model

chronous (typically over some wireless ad-hoc network). For this we insert a

specific asynchronous channel (built as a special timed-pLTS) between cars

for each type of messages exchanged between them.

The two mechanisms illustrate our approach to model heterogeneous

(synchronous/asynchronous communication) systems. In the next section,

we show how we formalise this by using the timed-pNets formalism.

4.3 Timed-pLTS

This section introduces timed transition systems (timed-pLTSs), includ-

ing the special cases: channels. We illustrate each definition with a piece of

the running example.

Definition 9 (Timed-pLTS) A Timed-pLTS is a tuple < P, S, s0, A,C,→>,

where

• P is a finite set of parameters

• S is a set of states

• s0 ∈ S is the initial state

• A is a set of timed-actions

• C is a set of clocks over the timed-action set A

• → is the set of transitions: →⊆ S × C × S. We write s
Cα−→ s′ for

(s, Cα, s
′) ∈→, in which α ∈ A,Cα ∈ C.

Example 2 Consider the “CommIni” component in Fig. 4.6. The clock

relations will correspond to the precedence (causality) relations between the

transitions of the LTS, with a special case for the loops on states s1 (a state for

sending notifications) and s2 (a state for receiving “ack” signals), where the

communication events are indexed by k ∈ [1..N] (N is the (fixed) number of

neighbors of the initiating car (here N = 2)). The first loop on s1 means that

car0 sends a notification signal to car1 and car2 separately. The second loop

on s2 means that car0 collects “ack” signals from car1 and car2. Moreover,

66

4.3. Timed-pLTS

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k := 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

2]

[k := 1; k++; k 2]

Fig. 4.6: The timed-pLTS of the CommIni component

we use the silent action τ to build a clock Ctτ
τ that labels the transition to

state s2 when the component finishes sending two notifications. We build

the timed-pLTS elements as:

• Parameters P = {k, Ins, rm, b, N},

• Action algebraA = {?Cmd(par)tc , !notify(par)tn , ?ack(k, rm)
ta , !R(b)tR , τ tτ}

• Clocks C = {C?Cmd, C!notify, C?ack, C!R, Cτ}

• (we do not detail the clock relations here, they can be easily deduced

from the figure)

Note that the system designers only need specify the timed-pLTSs. The

clock relations can be automatically deduced from the timed-pLTSs (see sec-

tion 4.5.1).

Channels. We introduce channels to model asynchronous communication

behaviours. A channel is defined as a special transition system with two

timed-events: one for receiving messages, another for sending messages. The

two events have a precedence constraint which models the delay of message

transmission. For simplification, the channel definition here just describes

a simple one place asynchronous buffer, sufficient to illustrate the hetero-

geneity of synchronous and asynchronous communications. More realistic

asynchronous mechanisms are possible (e.g. n-places buffers, lousy channels,

or ProActive/GCM request queues with futures [34] but they are not the

topics of this thesis).

67

Timed-pNets Model

Definition 10 (Channel) A channel is a transition system with tuple <

P, S,A,C,≺,→> in which

• P is a finite set of parameters,

• S is state set in which S = {sempty, sdata},

• A = {?in(par)ti , !out(par)to} (par ∈ P) is the timed-action set,

• C is a set of clocks over timed-actions A,

• → is a set of two transitions: sempty
C?in−−→ sdata and sdata

C!out−−−→ sempty.

In the channel definition, the timed-action ?in(par)ti is an action for

receiving messages from one component, while the timed-action !out(par)to

is an action for sending the messages to another component as shown in Fig.

4.7.

Fig. 4.7: The timed-pLTS of channel Component

4.4 Timed-pNets

Finally we define Timed-pNets, that are our main structure used to com-

bine sub-systems to build bigger systems. Similar to the original (untimed)

pNets, a Timed-pNet is a generalized composition operator, defining the syn-

chronization between a number of subsystems (holes). In timed-pNets, holes

are characterized by action algebra (a sort); here it is complemented by a

Timed Specification. Building a timed-pNet tree representing a full system

requires filling holes with (compatible) sub-nets.

Definition 11 (Timed-pNets) A Timed-pNet is a tuple< P,AG,CG, J, ÃJ , C̃J , R̃J ,
−→
V >,

where:

68

4.4. Timed-pNets

• P is a finite set of parameters,

• AG is a set of global timed-actions, and CG is the set of global clocks

that are built over AG,

• J is a countable set of argument indexes: each index j ∈ J is called

a hole and is associated with a set of local timed-actions Aj, and an

associated Timed Specification < Cj,Rj >.

• −→V = {−→v } is a set of synchronization vectors of the form:

- (binary communication between holes j1 and j2)
−→v =< . . . , C!α, . . . , C?α, . . . >→ Cg,

1

in which {C!α = C?α = Cg}, Cg ∈ CG, C!α ∈ Cj1 , C?α ∈ Cj2 , j1, j2 ∈ J,

- or (visibility from hole j)
−→v =< . . . , Cα, . . . >→ Cg, in which {Cα = Cg}, Cg ∈ CG, C?α ∈ Cj, j ∈
J .

Furthermore, each global clock can be generated by only one synchro-

nization vector:

∀ −→vi ,−→vi′ ∈
−→
V , Cgi = Cgi′ =⇒ −→vi = −→vi′

(Cgi(resp. Cgi′) be a global clock generated by the vector −→vi (resp. −→vi′),
i, i′ ∈ N)

Remark: We define Nets in a form inspired by the synchronisation vec-

tors of Arnold and Nivat [10], that we use to synchronise clocks from different

processors. One of the main advantages of using its high abstraction level

is that almost all interaction mechanisms encountered so far in the process

algebra literature become particular cases of a very general concept: syn-

chronisation vectors. We structure the synchronisation vectors as parts of

network. Contrary to synchronisation constraints, the network allows dy-

namic reconfigurations between different sets of synchronisation vectors. In

our timed-pNets, we define two kinds of synchronous vectors. One is the

1where “. . .” represents an arbitrary number of holes that do not participate in this

synchronization

69

Timed-pNets Model

communication vector (< . . . , C!α, . . . , C?α, . . . >→ Cg). The vector repre-

sents the communication of two holes through clock C!α and C?α. The two

local clocks that come from different holes are put between the two symbols

“<” and “>”. The last element of the vector appears behind the symbol

“→”, and specifies the global clock generated by this synchronous vector.

Another vector (< . . . , Cα, . . . >→ Cg) makes the local clock Cα visible by

generating a global clock Cg. For both kinds of synchronous vectors, the lo-

cal clocks (that appear between “<” and “>”) are transparent to the upper

layer nodes. Only the global clocks (the last elements in the synchronous

vectors) can be observed from the upper level. These global clocks can be

used for building a higher level timed-pNets node.

Moreover, from the definition 11 we can see that the synchronous vec-

tors only catch the coincidence relations between clocks (for describing syn-

chronous communications), which makes our timed-pNets models cannot

directly specify asynchronous communications. So when modelling asyn-

chronous communications, we need to introduce channels into systems. The

two subsystems that asynchronously communicate with each other are con-

nected by a channel in which a communication delay is modelled. Example

3 shows us how to take advantage of channels to specify asynchronous com-

munications.

Notations for parameterized systems. In practice, we use parametric no-

tations, both for holes and for synchronization vectors, making the notations

more compact and more user-friendly. These are only abbreviations, their

meaning must be understood as a (finite) expansion of the structure.

Using such abbreviations, for a pNet in which j1, j2, j are parametric

holes with indexes k1, k2, k, with respective domains Dom1, Dom2, Dom,

the synchronization vectors will look like:

- binary communication

Depending on the combination of actions from j1 and j2, this vector

will generate a family of global clocks indexed by a parameter k, that

is a function of k1 and k2. The domain of k is a subset of the product

70

4.4. Timed-pNets

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k = 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

2]

[k = 1; k++; k 2]

C ?Notify(Ins)tn

!Ack(r)C m
ta

CommRes[m]

[m]

[m]

ChannelNtf[m]

ChannelAck[m]

C c.?Notify(Ins,k)tn
[m]C c.!Notify(Ins,k)tn

[m]

C c.?Ack(r)m
ta
[m]

C c.!Ack(r)m
ta
[m]

C !R(b) g6

C ?Cmdg5
Notifyg1

C Notifyg2
C

Ackg3
C Ackg4

C
CommIni

ChannelNtf[m]

ChannelAck[m]

CommRes[m]

[m] [m]

[m][m]

Timed-pNets

Hole implementations

Fig. 4.8: A Timed-pNets with one of its implementations

Dom1 × Dom2. < ..., C!α[k1], ..., C?α[k2], ... >→ Cg[k],

in which {C!α[k1] = C?α[k2] = Cg[k]}, Cg[k] ∈ CG, C!α[k1] ∈ Cj1 , C?α[k2] ∈
Cj2

- visibility

Each visible action from hole j generates a corresponding global clock.

< ..., Cα[k], ... >→ Cg[k], in which {Cα[k] = Cg[k]}, Cα[k] ∈ Cj, Cg[k] ∈ CG.

Example 3 We go on the use case to illustrate how to build a timed-

pNets model. To make the example smaller, we have extracted here the

respective “communication” subNets of 2 cars, and the channels on which

they communicate, and we show how to build a pNet encoding this small

subsystem.

As shown in the Fig.4.8, the subsystem consists of components ”Com-

mIni”, ”CommRes[m]”, ”ChannelNtf[m]” and ”ChannelAck [m]”. The com-

ponents ”ChannelNtf[m]” and ”ChannelAck[m]” are channels in which the

parameter ”[m]” denotes to which car the corresponding channel transmits

71

Timed-pNets Model

data. By using the parameter ”m”, we give a more compact representation of

the model. According to our scenario, car0 sends a notification to car1 (resp.

car2) via ”ChannelNtf[1]” (resp.”ChannelNtf[2]”), and then car1 (resp.car2)

answers an “ack” to car0 via ”ChannelAck[1]” (resp. ChannelAck[2]”). So in

the upper layer timed-pNets nodes, we can link these components by building

synchronous vectors. For example:

- the vector2 < −, C!ack[1] ,−, Cc.?ack[1] >→ Cackg3[1]
represents the commu-

nication between the components “CommRes[1]” and “ChannelAck[1]” and

generates the global clock “Cackg3[1]
”. Notice that even though we actually

have 7 subnets (CommIni, CommRes[1], CommRes[2], ChannelNtf[1], Chan-

nelNtf[2], ChannelAck[1], ChannelAck[2]), by using parameters, we represent

our pNet and its synchronous vectors with only 4 holes.

- the vector < C
{2s−1}s∈N

!notify ,−, Cc.?notify[1] ,− >→ Cnotifyg1[1]
represents the com-

munication between the components ”CommIni” and ”ChannelNtf [1]” and

builds a global clock ”Cnotifyg1[1]
” (remember C

{2s−1}s∈N

!notify is the clock built from

the clock C!notify by choosing the occurrences with odd indexes).

Following the timed-pNets definition, we can formalize this timed-pNets as

follows:

• P = {k, Ins,m, rm, b},

• AG = {notify(Ins, k)tg1g1[m]
, notify(Ins, k)

tg2
g2[m]

, ack(rm, k)
tg3
g3[m]

,

ack(rm, k)
tg4
g4[m]

, ?Cmd(Ins)
tg5
g5 , !R(b)

(tg6
g6 }

• CG = {Cnotifyg1[m]
, Cnotifyg2[m]

, Cackg3[m]
, Cackg4[m]

, C?Cmdg5 , C!Rg6}

• J = {CommIni, CommRes[m], ChannelNtf [m],

ChannelAck[m]}(m := 1, 2)

Next we formalize the Timed Specifications of these holes as:

• For the hole “CommIni”:

ACommIni = {?Cmd(Ins)tc , !notify(Ins, k)tn , ?ack(k, rm)ta , !R(b)tR}

CCommIni = {C?Cmd, C!notify, C?ack, C!R}
2where “−” represents a single hole that does not participate in this synchronization

72

4.4. Timed-pNets

RCommIni = {C?Cmd ≺ C
{2s−1}s∈N

!notify , C
{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify ,

C
{2s−1}s∈N

!notify ≺ C
{2s−1}s∈N

?ack , C
{2s}s∈N

!notify ≺ C
{2s}s∈N

?ack ,

C
{2s−1}s∈N

?ack ≺ C
{2s}s∈N

?ack , C
{2s}s∈N

?ack ≺ C!R ≺ C
∆(1)
?cmd}

• For the hole “CommRes[m]” (m := 1, 2):

ACommRes[m] = {?notify(Ins, k)tn[m], !ack(k, rm)ta[m]}

CCommRes[m] = {C?notify[m]
, C!ack[m]

}

RCommRes[m] = {C?notify[m]
≺ C!ack[m]

≺ C
∆(1)
?notify[m]

}

• For the hole “ChannelNtf[m]” (m := 1, 2):

AChannelNtf [m] = {c.?notify(Ins, k)tn1

[m], c.!notify(Ins, k)
tn2

[m]}

CChannelNtf [m] = {Cc.?notify[m]
, Cc.!notify[m]

}

RchannelNtf [m] = {Cc.?notify[m]
≺ Cc.!notify[m]

≺ C
c.?notify

∆(1)
[m]

}

• For the hole “ChannelAck[m]” (m := 1, 2):

AChannelAck[m] = {c.?ack(k, rm)ta1[m], c.!ack(k, rm)ta1[m]}

CChannelAck[m] = {Cc.?ack[m]
, Cc.!ack[m]

}

RchannelAck[m] = {Cc.?ack[m]
≺ Cc.!ack[m]

≺ C
∆(1)
c.?ack[m]

}

In the end, we specify the synchronous vectors:
−→
V = {

V1 :< C
{2s−1}s∈N

!notify(Ins,k=1),−, Cc.?notify(Ins)[1]
,− >→ Cnotifyg1[1]

,

V2 :< −, C?notify[1] , Cc.!notify[1] ,− >→ Cnotifyg2[1]
,

V3 :< −, C!ack[1] ,−, Cc.?ack[1] >→ Cackg3[1]
,

V4 :< C
{2s−1}s∈N

?ack(k=1,rm),−,−, Cc.!ack(rm)[1]
>→ Cackg4[1]

V5 :< C
{2s}s∈N

!notify(Ins,k=2),−, Cc.?notify(Ins)[2]
,− >→ Cnotifyg1[2]

,

V6 :< −, C?notify[2] , Cc.!notify[2] ,− >→ Cnotifyg2[2]
,

V7 :< −, C!ack[2] ,−, Cc.?ack[2] >→ Cackg3[2]
,

V8 :< C
{2s}s∈N

?ack(k=2,rm),−,−, Cc.!ack(rm)[2]
>→ Cackg4[2]

V9 :< C?Cmd,−,−,− >→ C?Cmdg5 ,

73

Timed-pNets Model

V10 :< C!R,−,−,− >→ C!Rg6}

Discussion: The Timed specification of holes. Let us now argue how

the timed specifications of this upper-level timed-pNet holes may have been

specified, in a top-down approach, before building their timed-pLTS imple-

mentations. This, intuitively, is done from the informal description of the

scenario and the knowledge of the top level component and communication

architecture:

Take the “CommIni” component as an example, the scenario related to

the component is:

(1) the component “CommIni” gets a change-lane request by clock C?cmd

from the “Initial” component;

(2) the component “CommIni” sends requests by clock C!notify, in sequence,

to car1 and car2 to get agreements;

(3) the component “CommIni” collects results from car1 and car2 by clock

C?ack;

(4) the component reports result to “Initial” component by clock C!R.

Since the step (1) happens earlier than the step (2), the clock C?cmd must

precede the clock C!notify. Then, in our use case, the component “Com-

mIni” sends notification signal twice, so we have clock relation {C?Cmd ≺
C

{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify }. In generally, if there are N neighbors, the clock rela-

tion should be {C?Cmd ≺ C
{Ns−(n−1)}s∈N

!notify ≺ C
{Ns−(n−2)}s∈N

!notify ≺ . . . ≺ C
{Ns}s∈N

!notify }.
Similar to the step (2), since the component receives “ack” signal twice, so

we have the clock relation {C{2s−1}s∈N

?ack ≺ C
{2s}s∈N

?ack }. Furthermore, the clock

C!notify in step (2) should precede the clock C?ack in step (3), so we have

the relations C
{2s−1}s∈N

!notify ≺ C
{2s−1}s∈N

?ack and C
{2s}s∈N

!notify ≺ C
{2s}s∈N

?ack . Finally the

scenario goes to the step (4), we have the relation {C{2s}s∈N

?ack ≺ C!R}. Since

the scenario is repeatable, we specify the clock relation {C!R ≺ C
∆(1)
?cmd}. In

the end, we conclude:

R{CommIni} = {C?Cmd ≺ C
{2s−1}s∈N

!notify , C
{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify ,

C
{2s−1}s∈N

!notify ≺ C
{2s−1}s∈N

?ack , C
{2s}s∈N

!notify ≺ C
{2s}s∈N

?ack ,

C
{2s−1}s∈N

?ack ≺ C
{2s}s∈N

?ack , C
{2s}s∈N

?ack ≺ C!R ≺ C
∆(1)
?cmd}

74

4.5. Generating Timed Specification

In the section 4.6, we will show that these Timed Specifications are

indeed fulfilled by the corresponding timed-pLTS “CommIni”, “ComRes”,

“ChannelNtf”, and “ChannelAck”.

4.5 Generating Timed Specification

4.5.1 Generating TS of timed-pLTS

As we see in the Fig.4.8, timed-pLTSs are concrete implementations

of those holes. In order to check the compatibility, we need to generate

timed specifications for those concrete timed-pLTSs. Here we propose rules

to automatically generate a timed specification from the LTS part of a timed-

pLTS. More precisely, given the action algebra and the transition relations of

a timed-pLTS, we compute its set of clocks, and the relations between these

clocks.

This procedure runs in 4 phases as shown in the Fig. 4.9. The inputs

of the procedure include a timed-pLTS and a set of rules that tell how to

set the occurrence relations and its index functions. In step 1, we traverse

the timed-pLTS and generate a “symbolic” table that gathers all possible

causally related pairs of transitions of the timed-pLTS, and the correspond-

ing relations between clock occurrences. In step 2 we go through the symbolic

table and build a “concrete” table in which each column represents one spe-

cific “round” of execution through the symbolic table (with concrete index

assignments). In the concrete table, guards of the timed-pLTS can be re-

solved, so some of the symbolic transitions may be eliminated. In step 3 we

generate a general formula for each relation. In the end (step 4), we lift those

occurrence relations to clock relations, and generate the Timed Specification.

4.5.2 Auxiliary functions: Pre/Post sets

Before describing Step 1, we need to define the functions computing the

pre/post sets of the timed-pLTS states.

75

Timed-pNets Model

Fig. 4.9: Steps for generating the TS of a timed-pLTS

For a timed-pLTS transition system < P, S, s0, A,C,→>, we denote

PreAct(s, s′) the set of direct preceding timed-action occurrences of s from

s′; and PostAct(s, s′) the set of direct succeeding timed-action occurrences of

state s towards state s′. Then we denote PreAct(s) (resp. PostAct(s)) as the

set of all direct preceding (resp. succeeding) timed-action occurrences of state

s. Furthermore, we define PreActIndex(s) (resp. PostActIndex(s)) as the

sum of the indexes of the set of preceding (resp. succeeding) timed-action

occurrences of state s. The sum corresponds to the cases where branches

in the LTS allow some executions to go several times through alternative

transitions out of some states. Formally:

Definition 12 (Preceding Timed-Action Occurrences) Let< P, S, s0, A,C,→>

be a timed-pLTS transition system. For s ∈ S and α(p)tα ∈ A, (p ∈ P), the

direct preceding timed-action occurrence of s is defined as PreAct(s, s′) =

{α i|s′ Cα−→ s, α i ∈ Cα, } (s, s′ ∈ S). The set of direct preceding timed-

action occurrences of s is defined as PreAct(s) =
⋃

s′∈S PreAct(s, s′). Fur-

thermore, we denote the index of a preceding timed-action occurrence as

PreActIndex(s, s′) = {i|s′ Cα−→ s, α i ∈ Cα(s, s
′ ∈ S)}, and the sum of

76

4.5. Generating Timed Specification

State Transition Occurrence Relations Index Assignment

s0 tr0 : s2
C!R−−→ s0

C?Cmd−−−−→ s1 !R m ≺ ?Cmd n ftr0 : n = m+ 1

s1 tr1 : s0
C?Cmd−−−−→ s1

Cτ−→ s2 ?Cmd n ≺ τ r ftr1 : r = n

tr2 : s0
C?Cmd−−−−→ s1

C!Notify−−−−−→ s1 ?Cmd n ≺ !notify i ftr2 : i := i+ 1

tr3 : s1
C!Notify−−−−−→ s1

C!Notify−−−−−→ s1 !notify i ≺!notify (i+ 1)

tr4 : s1
C!Notify−−−−−→ s1

Cτ−→ s2 !notify i ≺ τ r ftr4 : r = n

s2 tr5 : s1
Cτ−→ s2

C!R−−→ s0 τ r ≺!R m ftr5 : m = r

tr6 : s1
Cτ−→ s2

C?Ack−−−→ s2 τ r ≺ ?ack j ftr6 : j := j + 1

tr7 : s2
C?Ack−−−→ s2

C?Ack−−−→ s2 ?Ack j ≺ ?ack (j + 1)

tr8 : s2
C?Ack−−−→ s2

C!R−−→ s0 ?Ack j ≺!R m ftr8 : m = r

Fig. 4.10: Time assignment for the Timed-pLTS “Car.CommIni”

the indexes of a set of preceding timed-action occurrences of state s as

PreActIndex(s) =
∑

s′∈S PreActIndex(s, s′).

Definition 13 (Succeeding Timed-Action Occurrences) Let< P, S, s0, A,C,→>

be a timed-pLTS transition system. For s ∈ S and α(p)tα ∈ A, (p ∈
P), the direct succeeding timed-action occurrence of state s is defined as

PostAct(s, s′) = {α i|s Cα−→ s′, α i ∈ Cα}, (s, s′ ∈ S). The set of direct

succeeding timed-action occurrences of state s is defined as PostAct(s) =⋃
s′∈S PostAct(s, s′). Furthermore, we denote the index of a succeeding

timed-action occurrence as PostActIndex(s, s′) = {i|s Cα−→ s′, α i ∈ Cα},
(s, s′ ∈ S), and the sum of the indexes of a set of succeeding timed-action

occurrences of s as PostActIndex(s) =
∑

s′∈S PostActIndex(s, s′).

4.5.3 Relations and assignment rules

The computation in Step 1 is based on a set of rules identifying spe-

cific configurations of the states in the timed-pLTS traversal. For each such

configuration, we define a rule that expresses the relation(s) between the set

of preceding and succeeding clock occurrences of the current state, and the

changes in the clock occurrence indexes.

77

Timed-pNets Model

The main configurations are: initial state, in which we have to initialize

indexes, and increase an index each time when the system goes through a

new global round; standard state in which we register the increase of one of

the involved index; and looping states, in which we have to take care of the

guards for entering/leaving loops, in terms of a specific “loop counter”.

We define a restrictive notion of looping states, which is reasonable

configurations for timed analysis. A looping state may have one or more

loops of arbitrary length, but coming back to the same state. And each

loop must start with a transition with a guard taking the precise form of

a “loop counter” control, namely [k=1; k++; k ≤ kMax] for some counter

variable k, in which kMax may be a natural number, or a variable. Loop

guards can share a loop counter (see e.g. Fig. 4.11), so several loops will be

executed the same number of times; otherwise different loop counters must

be independent. Of course one could imagine more complex structures for

our timed-pLTSs, but this restriction already covers a lot of interesting cases,

and make the generation of the Times Specification easier.

In these rules, for simplification, we represent relations on two sets (S1

(resp. S2) is a set of occurrences of clocks): S1 ≺ S2 means ∀αm ∈ S1, βn ∈
S2, αm ≺ βn (m,n ∈ N).

(1) Initial state. If PreAct(s0) 6∈ ∅, then PreAct(s0) ≺ PostAct(s0),

[Assign: PostActIndex(s0)⇐ PreActIndex(s0) + 1];

(2) Standard state. ∀s\s0, PreAct(s) ≺ PostAct(s),

[Assign: PostActIndex(s)⇐ PreActIndex(s)];

(3) Looping state. ∀s, if ∃α.s Cα−→ s and the loop executes N times, then

(3.1) go inside the loop

PreAct(s) ≺ α i,

[Assign: i := i+ 1]

(3.2) stay in the loop,

α i ≺ α (i+ 1)

78

4.5. Generating Timed Specification

(3.3) leave the loop:

(3.3.1) leave the loop to another loop, e.g. ∃β.s Cβ−→ s (β j ∈ PostAct(s, s)\α i):

α i ≺ β j,

[Assign: j := j + 1]

(3.3.2) to one post-action out of PostAct(s, s0) :

α i ≺ PostAct(s)\PostAct(s, s0),

[Assign:

PostActIndex(s)⇐ PreActIndex(s)].

(3.3.3) to one post-action in PostAct(s, s0):

α i ≺ PostAct(s, s0),

[Assign:

PostActIndex(s)⇐ PreActIndex(s) + 1].

4.5.4 The Method for Generating Timed Specification

This subsection introduces a method of generating a timed specification

from a timed-pLTS. We state two algorithms and 4 steps.

Step 1: generate occurrence relations table

The algorithm 1 uses the rules above to build an occurrence relation

table. More precisely each row in the table lists a specific pair of Pre/Post

transitions of a state, with the corresponding occurrence relation and the

index increase function deduced from the corresponding rule.

Fig. 4.11: Simplification of CommIni Component

79

Timed-pNets Model

Algorithm 1 Generate occurrence relations table

Input: a timed-pLTS graph and rules.

Output: A table of occurrence relation with its index assignment function.

for each state si in LTS graph do

for each pair (s1, s2) such that s1
C1−→ si

C2−→ s2 do

insert a row with State = si, Transition = s1
C1−→ si

C2−→ s2.

if si = s0 AND si has no self-loop then

apply case (1) rules, adding the relations and assignments in the

corresponding rows.

end if

if si 6= s0 AND si has no self-loop then

apply case (2) rules

end if

if si includes one self-loop then

if si = s0 then

apply case (1), (3.1), (3.2) and (3.3.3) rules

else

apply case (2), (3.1), (3.2) and (3.3.2) rules

end if

else

if si = s0 then

apply case (1), (3.1), (3.2), (3.3.1) and (3.3.3) rules

else

apply case (2), (3.1), (3.2), (3.3.1) and (3.3.2) rules

end if

end if

end for

end for

80

4.5. Generating Timed Specification

Example 4 Let us take the “CommIni” component from Fig. 4.6 as an

example. We first transform Fig. 4.6 into Fig. 4.11 by removing all param-

eters but adding index variables. Then we generate occurrence relations for

each state. For example, we take the state “s0”, from the timed-pLTS graph

we get the transitions s2
C!R−−→ s0

C?Cmd−−−−→ s1. According to the rule (1) we

have !R m ≺?Cmd n and the assignment n = m + 1 (n,m ∈ N). Take the

state s1 as another example. Since it includes a self-loop, we apply the rules

(2), (3.1), (3.2) and (3.3.2). When a transition directly brings to the next

state without passing the loop, according to the rule (2), we have the relation

?Cmd n ≺ τ r and the assignment r = n. When a transition enters the loop,

according to the rule (3.1), we have the relation ?Cmd n ≺ !notify i and the

assignment i := i+1 (i ∈ N). When a transition stays in the loop, according

to the rule (3.2), we can get the relation “!notify i ≺ !notify i+ 1” (i ∈ N).

Then when a transition leaves the loop, according to the rule (3.3.2), we have

the relation !notify i ≺ τ r and the assignment r = n (r ∈ N).

Step 2: Enumerate occurrence relations

Now we go through the symbolic occurrence table built in step 1 and

build a “concrete” table in which each column represents one specific “round”

of execution through the symbolic table (with concrete index assignments).

In the concrete table the guards of the timed-pLTS can be resolved, so some

of the symbolic transitions (rows of the table) may be eliminated.

In the guards (including the loop control guards), there may be some

parameters occurring in a symbolic form. Before we run the algorithm in

step 2, we need to instantiate these parameters, to be able to compute the

guards. In particular the maximum value of the loop counters (in our use-

case, corresponding to the number of neighbor cars) must be fixed.

Moreover, we must set a bound (N) to the number of rounds that we

shall unfold in the algorithm. This bound should be large enough for the

generalization procedure in step 3 to work properly.

For each round of traveling, we compute a set of occurrence relations.

The indexes of these occurrences tell the (logical) times of the actions that

81

Timed-pNets Model

have occurred till this round. For loops, the loop control guard says that if

a transition satisfies the initial condition “k = 1”, then the transition goes

into the loop. Each time after executing the loop, the variable k increases

by 1. Then the transition continues to execute the loop till the condition

k ≤ kMax is not satisfied.

We present algorithm 2 to enumerate these relations. The results of the

algorithm are illustrated in the table in Fig. 4.12 in which the rth column

presents a set of occurrence relations in the round r, and the jth rows presents

a sequence of relations on two clock occurrences.

Example 5 Take the component “commIni” as an example, we enumerate

its occurrence relations. Let all occurrence index variables initially be 0

(m,n, r, i, j := 0) and the loop control variable k be 1 (k := 1). Starting

from s0, we get the transition tr0 : s2
C!R−−→ s0

C?Cmd−−−−→ s1. From the first line of

the Fig. 4.10, we get n = 1 (because m = 0 and ftr0 : n = m+ 1) and so we

get the relation !R 0 ≺ ?Cmd 1. Then the transition goes to s1. Since k := 1,

the transition goes into the self-loop. So we get the transition tr2 : s0
C?Cmd−−−−→

s1
C!Notify−−−−−→ s1. From the third line of Fig. 4.10, we can compute i = 1

(because ftr3 : i := i+ 1) and then we get the relation ?Cmd 1 ≺!Notify 1.

According to the loop control, we know k increases by 1 (k + +), so k = 2.

Since the condition k ≤ 2 still is satisfied, the transition goes into the self-

loop again. According to the transition tr3 : s1
C!Notify−−−−−→ s1

C!Notify−−−−−→ s1, then

we get the relation !notify 1 ≺!notify 2. Then k increases by 1 (k ++), so

at this time k = 3 that cannot satisfy the condition k ≤ 2. So the transition

goes out of the loop, then we have tr4 : s1
C!Notify−−−−−→ s1

Cτ−→ s2. According

to the table 4.10, we know r = 1 (because ftr4 : r = n). Then the state

s2 is similar as the state s1. In the end of this inner loop we get the first

column of the Fig. 4.12. Remark that the rows corresponding to transitions

tr1 and tr5 from Fig. 4.10 have been eliminated in this process, because the

corresponding loops cannot exit immediately. Then by repeating the second

round, third round, etc, we can get the relations listed in the second column,

the third column of Fig. 4.12, etc., until we reach to the column N .

82

4.5. Generating Timed Specification

1st round 2nd round 3rd round sth round . . . clock relations

!R 0 ≺ ?Cmd 1 !R 1 ≺ ?Cmd 2 !R 2 ≺ ?Cmd 3 !R (s− 1) ≺ ?Cmd s . . . C!R ≺ C
∆(1)
?Cmd

?Cmd 1 ≺ !notify 1 ?Cmd 2 ≺ !notify 3 ?Cmd 3 ≺ !notify 5 ?Cmd s ≺ !notify (2s− 1) . . . C?Cmd ≺ C
{2s−1}
!notify

!notify 1 ≺!notify 2 !notify 3 ≺!notify 4 !notify 5 ≺!notify 6 !notify (2s− 1) ≺!notify 2s. . .C
{2s−1}
!notify

≺ C
{2s}
!notify

!notify 2 ≺ τ 1 !notify 4 ≺ τ 2 !notify 6 ≺ τ 3 !notify 2s ≺ τ s . . . C
{2s}
!notify

≺ Cτ

τ 1 ≺ ?ack 1 τ 2 ≺?ack 3 τ 3 ≺?ack 5 τ s ≺?ack (2s− 1) . . . Cτ ≺ C
{2s−1}
?ack

?ack 1 ≺ ?ack 2 ?ack 3 ≺?ack 4 ?ack 5 ≺?ack 6 ?ack (2s− 1) ≺?ack 2s . . . C
{2s−1}
?ack ≺ C

{2s}
?ack

?ack 2 ≺ !R 1 ?ack 4 ≺!R 2 ?ack 6 ≺!R 3 ?ack 2s ≺!R s . . . C
{2s}
?ack ≺ C!R

Fig. 4.12: Steps 2-3-4: Unfold rounds, generalize, and deduce clock relations

Step 3: Generalize the occurrence relations

In table 4.12, in each line we get a sequence of occurrence relations. To

induce the corresponding general relation, we transfer the problem to finding

a general formula for a sequence of nature numbers. We could use here stan-

dard arithmetic method (e.g. Neville’s algorithm [?]) that are able to deduce

polynomial formulas generating natural number sequences. However, such a

general approach would make difficult to estimate the minimum number of

unfoldings required for finding the general formula. But in fact, due to our

hypothesis on the independence of the loop control counters, the formula we

seek here will be linear in the clock indexes, and the length of unfolding may

be estimated from the maximum value of the loop indexes. A proof of this

property, and a detailed estimation of the bound, is out of the scope of this

thesis. The result of generalisation is shown in “column s” in the Fig. 4.12.

Example 6 Let us go on the Fig. 4.11 as an example. Since the loop

counter is 2, so we need unfold the relations at most for 3 times. As shown

in the second line of the table 4.12, the sequence of occurrence indexes of

the clocks C?Cmd and C!Notify are {1, 2, 3} and {1, 3, 5}. According to the

Neville’s algorithm, we can get the general formulas for the clock C?Cmd as

an = n, and for the clock C!Notify as an = 2n− 1. So in the second line, the

relation of the s round (∀s < 0) is ?Cmd s ≺!Notify {2s− 1}.

83

Timed-pNets Model

Algorithm 2 Unfold occurrence relation table

Input: A symbolic occurrence table with a clock set C with n clocks.

C = {C1, C2, . . . Cn}
Output: enumerate occurrence relations of N rounds in the matrix R[j][r], in

which j is the index of rows and r is the index of columns (rounds).

for all Ci do

Indexof(Ci) := 0 {initialisation}
end for

set var j, r :=0

var s := s0

set var Cα := anyone from PreAct(s)

set var Cβ := one from PostAct(s) that satisfies a certain guard

set var s′ ← {s′|s′ Cα−→ s}
set var s′′ ← {s′′|s Cβ−→ s′′}
while r ≤ N do

while C 6= ∅ do
if s = s0 then

r ++; j := 0

end if

for all row in table do

if tr = s′
Cα−→ s

Cβ−→ s′′ then

Indexof(Cβ)← compute by ftr

R[j][r] = α Indexof(Cα) ≺ β Indexof(Cβ)

C ← C − Cα − Cβ

j ++

s′ ← s; s← s′′; s′′ ← one from PostAct(s) that satisfies a certain

guard;

Cα := Cβ

Cβ := {Cβ|s
Cβ−→ s′′}

end if

end for

end while

reset C with n clocks C = {C1, C2, . . . Cn}
end while

84

4.5. Generating Timed Specification

Step4: lifting to clock relations

In the last step, we lift the concurrence relations to clock relations, using

the clock operators “lift” and “filter” from definitions 6 and 7. This step is

straightforward, and the result is shown in the last column of Fig. 4.12.

4.5.5 Generating TS of timed-pNets

A timed-pNets node actually consists of a set of holes (J) with timed

specifications (TSj), synchronous vectors (Vi), and global clocks (CG) gen-

erated from the synchronous vectors. Therefore, generating the external

timed specification for a timed-pNets node (called global timed specification

TSg) boils down to compute the global clock relations from the local timed-

specifications of its holes (TSj) and the coincidence relations deduced from

the synchronous vectors (Vi), using the properties on clock relations from

section 4.2.2. Formally:

Definition 14 (Global Clock Relation Set) Given a timed-pNet T -pNets =<

P,AG,CG, J, ÃJ , C̃J , R̃J ,
−→
V > The global time specification of T -pNets is the

pair < CG,RG >, where RG is the Global Clock Relation Set deduced from:

- all local clocks relations Rj from its holes,

- the (coincidence) relations deduced from all its synchronization vectors,

- symmetry and transitivity of coincidence, transitivity of precedence.

During this logical saturation process, it may happen that contradictory

relations are deduced, when 2 clocks would be proved both coincident and

precedent, or precedent both ways. This we call a conflict:

Definition 15 (Clock Conflicts) Given a timed specification < C,R >:

- two clocks Cα and Cβ in C are in conflict if either Cα = Cβ∧(Cα ≺ Cβ∨Cβ ≺
Cα) ∈ R or Cα ≺ Cβ ∧ Cβ ≺ Cα ∈ R
- the Global Clock Conflict Set of a timed-pNet is the set of pairs of clocks

in conflict in its Global Clock Relation Set.

Example 7 Let us take the Fig. 4.8 as an example. From the user spec-

ification in example 3 (page 72), we know the clock relations of these holes

are:

85

Timed-pNets Model

• R{CommIni} = {C?Cmd ≺ C
{2s−1}s∈N

!notify , C
{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify , C
{2s−1}s∈N

!notify ≺
C

{2s−1}s∈N

?ack , C
{2s}s∈N

!notify ≺ C
{2s}s∈N

?ack , C
{2s−1}s∈N

?ack ≺ C
{2s}s∈N

?ack , C
{2s}s∈N

?ack ≺
C!R ≺ C

∆(1)
?cmd}

• R{ChannelNtf [m]} = {Cc.?notify[m]
≺ Cc.!notify[m]

≺ C
c.?notify

∆(1)
[m]

},

• R{ChannelAck[m]} = {Cc.?ack[m]
≺ Cc.!ack[m]

≺ C
∆(1)
c.?ack[m]

},

• R{CommRes[m]} = {C?notify[m]
≺ C!ack[m]

≺ C
∆(1)
?notify[m]

}.

Besides, we derive the clock relations from the synchronous communications

defined by synchronous vectors as:

• RV1 = {C
{2s−1}s∈N

!notify = Cc.?notify[1] = Cnotifyg1[1]
},

• RV2 = {Cc.!notify[1] = C?notify[1] = Cnotifyg2[1]
},

• RV3 = {C!ack[1] = Cc.?ack[1] = Cackg3[1]
},

• RV4 = {Cc.!ack[1] = C
{2s−1}
?ack = Cackg4[1]

},

• RV5 = {C
{2s}s∈N

!notify = Cc.?notify[2] = Cnotifyg1[2]
},

• RV6 = {Cc.!notify[2] = C?notify[2] = Cnotifyg2[2]
},

• RV7 = {C!ack[2] = Cc.?ack[2] = Cackg3[2]
},

• RV8 = {Cc.!ack[2] = C
{2s}
?ack = Cackg4[2]

},

• RV9 = {C?Cmd = C?Cmdg5},

• RV10 = {C!R = C!Rg6}.

Take the relation between the global clocks Cnotifyg1[1]
and Cnotifyg2[1]

as an

example. They are generated by the synchronous vectors V1 and V2. From the

relations of hole ChannelNtf[1] and the relations of these two vectors, we can

get the formula Cnotifyg1[1]
=(RV1

) Cc.?notify[1] ≺R‘ChannelNtf [1]) Cc.!notify[1] =(RV2
)

Cnotifyg2[1]
. In the end, we conclude Cnotifyg1[1]

≺ Cnotifyg2[1]
.

86

4.5. Generating Timed Specification

Fig. 4.13: The 4 cases of theorem 1

The formal definition above is not very practical. The following theorem

defines the case analysis procedure, and states its correctness (all relations

computed are correct). The next theorem will prove its completeness. In one

particular case, this case analysis procedure may detect a local conflict be-

tween two global actions, more precisely between two synchronization vectors

representing communication between the same 2 holes. In this case, we shall

signal the conflict, but produce no relations between these actions. Other

types of conflicts could be created by configurations involving more than 2

holes. These cannot be detected at the level of this case-analysis procedure;

a full conflict detection procedure is out of the scope of this thesis.

Theorem 1 (Global clock relation analysis) Given a timed-pNet T -pNets =<

P,AG,CG, J, ÃJ , C̃J , R̃J ,
−→
V >. LetHα, Hβ, Hγ be three holes of T -pNets and

CHα
, CHβ

, CHγ
⊂ C̃J be the sets of clocks of holes Hα, Hβ and Hγ. Let the

clocks Cα1 , Cα2 ∈ CHα
, the clocks Cβ1 , Cβ2 ∈ CHβ

, the clock Cγ1 ∈ CHγ
, with

CHα

⋂
CHβ

⋂
CHγ

= ∅). For each pair of global clocks Cag1 and Cag2 , we

enumerate the pairs of synchronization vectors able to generate them, and

match them with the following cases (note that both pairs (Cag1 , Cag2) and

(Cag2 , Cag1) will be enumerated, so we do not consider symmetric conditions

in the cases below). Each match may add a clock relation in the Global

87

Timed-pNets Model

Clock Relation Set R:

• (Case1:) If the global clocks Cag1 and Cag2 are generated from syn-

chronous vectors

< . . . , Cα1 , . . . , Cβ1 , . . . >→ Cag1 and

< . . . , Cα2 , . . . , Cβ2 , . . . >→ Cag2 ,

which are related to two holes CHα
and CHβ

as shown in Fig. 4.13(1),

then

– if Cα1 = Cα2 ∧ Cβ1 = Cβ2 then (Cag1 = Cag2) ∈ R .

– if Cα1 ≺ Cα2 ∧ Cβ1 ≺ Cβ2 then (Cag1 ≺ Cag2) ∈ R.
– if Cα1 = Cα2 ∧ Cβ1 ≺ Cβ2 or if Cα1 = Cα2 ∧ Cβ2 ≺ Cβ1 then

conflict found.

• (Case2:) If the global clock Cag1 and Cag2 are generated from the

synchronous vectors

< . . . , Cβ1 , . . . , Cγ1 >→ Cag1 and

< Cα1 , Cβ2 , . . . , . . . >→ Cag2 , which are related to three holes CHα
, CHβ

and CHγ
as shown in Fig. 4.13, then

– if Cβ1 = Cβ2 then (Cag1 = Cag2) ∈ R,
– if Cβ1 ≺ Cβ2 then (Cag1 ≺ Cag2) ∈ R.

• (Case3:) If the global clock Cag1 and Cag2 are generated from the

synchronous vectors

< . . . , Cβ1 , . . . >→ Cag1 and

< . . . , Cβ2 , . . . , Cγ1 , . . . >→ Cag2 ;; as shown in Fig. 4.13(3). then

– if Cβ1 = Cβ2 then (Cag1 = Cag2) ∈ R,
– if Cβ1 ≺ Cβ2 then (Cag1 ≺ Cag2) ∈ R.

• (Case4:) If the global clock Cag1 and Cag2 are generated from the syn-

chronous vectors < . . . , Cβ1 , . . . >→ Cag1 and < . . . , Cβ2 , . . . , . . . >→
Cag2 as shown in Fig. 4.13(4). then

– if Cβ1 = Cβ2 then (Cag1 = Cag2) ∈ R,

88

4.5. Generating Timed Specification

– if Cβ1 ≺ Cβ2 then (Cag1 ≺ Cag2) ∈ R.

• (Otherwise) In any other case, this pair of clocks is NOT directly

related in R

Proof. For each of the cases, we prove that the deduced relation is indeed

correct with respect to definition 14.

• Case1: From the two synchronous vectors < . . . , Cα1 , . . . , Cβ1 , . . . >→
Cag1 ,

< . . . , Cα2 , . . . , Cβ2 , . . . >→ Cag2 ,

we know that Cα1 = Cβ1 = Cag1 and Cα2 = Cβ2 = Cag2 . (1) If

Cα1 = Cα2 ∧ Cβ1 = Cβ2 , according to the transitivity property of

“=”, we get the relation Cag1 = Cag2 .

(2) If Cα1 ≺ Cα2 ∧ Cβ1 ≺ Cβ2 , then we have Cag1 = Cα1 ≺ Cα2 = Cag2 .

So using substitutivity of = w.r.t. ≺, we get the relation Cag1 ≺ Cag2 .

• Case2: From the two synchronous vectors< . . . , Cβ1 , . . . , Cγ1 >→ Cag1

and < Cα1 , Cβ2 , . . . , . . . >→ Cag2 ,

we know that Cβ1 = Cγ1 = Cag1 and Cα1 = Cβ2 = Cag2 . (1) If

Cβ1 = Cβ2 , then according to the transitivity property of “=”, we know

that Cag1 = Cag2 . (2) If Cβ1 ≺ Cβ2 , since Cag1 = Cβ1 ≺ Cβ2 = Cag2 ,

then we have the relation Cag1 ≺ Cag2 .

• Case3 and Case4: The proofs are similar to Case2.

Example 8 Let us take again the Fig. 4.8 as an example to compute the

clock relation between Cnotifyg2[1]
and Cackg3[1]

. We know the two global ac-

tions are generated by the vectors V2: < . . . , Cc.!notify[1] , . . . , C?notify[1] , . . . >→
Cnotifyg2[1]

and V3 : < . . . , C!ack[1] , . . . , Cc.?ack[1] , . . . >→ Cackg3[1]
. So we are in

the case 2). Moreover, from TS{CommRes[1]} we know that C?notify[1] ≺ C!ack[1] .

Therefore, we conclude Cnotifyg2[1]
≺ Cackg3[1]

.

89

Timed-pNets Model

Theorem 2 (Completeness) There exist four and only four combinations of

synchronous vectors, as listed in Theorem 1, for deducing a relation between

a pair of global clocks.

Proof. From the timed-pNets definition, we know that there are two ways

to build a global clock: binary communication and visibility. So there are 3

combinations:

(1) both global clocks are generated by binary communication

(2) one global clock is generated by binary communication and another

one is generated by visibility

(3) both global clocks are generated by visibility

Now we analyze the three situations one by one. Given a timed-pNet

T -pNet =< P,AG,CG, J, ÃJ , C̃J , R̃J ,
−→
V >.

(1) Let < . . . , Cα, . . . , Cβ >→ Cg1 and < . . . , Cγ, . . . , Cη >→ Cg2 (Cα, Cβ,

Cγ,Cη ∈ C̃J) be two synchronous vectors generating the global clocks Cg1 and

Cg2. Obviously the four local clocks Cα, Cβ, Cγ,Cη cannot be in one hole

since the synchronous vectors build binary communications between holes.

If the four local clocks come from two holes, then the possible combinations

are Cα and Cγ are in one hole, the other two are in another hole. Or Cα and

Cη are in one hole, the other two are in another hole. Case 1 of the theorem

1 covers the both situations. If the four local clocks come from three holes,

then any two local clocks that come from different synchronous vectors must

be in one hole, and the rest two local clocks are in other two different holes.

For example, Cα and Cγ are in one hole, the other two are in other two holes

separately. Case 2 of the theorem 1 covers the situation. Furthermore, the

four local clocks cannot be in 4 holes (or more than 4 holes). Otherwise there

is no local clock relations in R̃J can be used to deduce global clock relations.

Therefore, no direct clock relation can be built between Cg1 and Cg2.

(2) Let < . . . , Cα, . . . , Cβ >→ Cg1 and < . . . , Cγ, . . . , >→ Cg2 (Cα, Cβ,

Cγ ∈ C̃J) be two synchronous vectors to generate the global clocks Cg1 and

Cg2. Similar to the proof in the previous situation, the three local clocks

cannot be in one hole and cannot be in 3 holes or more. So the only possible

90

4.6. Compatibility

==> TSATSA
TSB TSC

C Impl[2]C Impl[1]

TSB TSC

Subsystem

A Impl

Fig. 4.14: Partial instantiation of a Timed-pNets subsystem

combination is that Cγ is in the same hole that one of the others. Case 3 of

the theorem 1 covers the situation.

(3) Let < . . . , Cα, . . . , >→ Cg1 and < . . . , Cγ, . . . , >→ Cg2 (Cα, Cγ ∈ C̃J)

be two synchronous vectors to generate the global clocks Cg1 and Cg2. The

two local clocks cannot be in 2 different holes. Otherwise there is no local

relation can be find between them. So the only possible situation is the

two local clocks are in the same hole. Case 3 of the theorem 1 covers the

situation.

In conclusion, if the relation of two global clocks Cg1, Cg2 ∈ CG can be

deduced by the local clock relations from R̃J , then the four cases listed in

the theorem 1 cover all possible combinations of synchronous vectors.

4.6 Compatibility

When assembling timed-pNets, the architect has to ensure that the

timed-pLTS that will be plugged into a hole indeed matches the hole Timed

Specification. The ultimate goal is to provide a refinement-based approach:

timed properties proved on an open (abstract) timed-pNet system will be

preserved by refinement of Timed Specifications. One of the basic tool for

building such refinement is to ensure the compatibility of a subsystem with

the enclosing holes before composing the system. E.g. in Fig. 4.14, the

Timed Specification (TS) of the subsystem “A Impl” must be compatible

with TSA, and each of the “C Impl” must be compatible (individually) with

TSC .

Our notion of compatibility will be based on the inclusion relations be-

tween the Clock relation sets. Before giving its formal definition, we introduce

the concepts of “Saturated relation set” and “Relation set inclusion”.

91

Timed-pNets Model

Definition 16 (Saturated Relation Set) Let TS =< C,R > be a timed

specification with a set of clocks C and a set of relations R. The saturated

relation set (denoted as R+) is the clock relation set R augmented by all rela-

tions possibly deduced from R, by transitivity of precedence and reflexivity,

symmetry, and transitivity of coincidence.

For example, if R = {c1 ≺ c2 ≺ c3} (c1, c2, c3 ∈ C), then according

to the transitivity property of the relation ≺, we can get a new relation set

R+ = {c1 ≺ c2 ≺ c3, c1 ≺ c3, c1 = c1, c2 = c2, ...}
Definition 17 (Inclusion of time specifications) Given two timed specifi-

cations TS1 =< C1, R1 > and TS2 =< C2, R2 >. Let R+
1 (resp. R+

2) be a

set of saturated relations in the TS1 (resp. TS2). We say TS2 includes TS1

(denoted as TS1 ≪ TS2) if and only if C1 ⊆ C2∧ R1 ⊆ R+
2 .

According to the definition, TS1 ≪ TS2 means that the relation existing

in the timed specification TS1 must exist in TS2 or can be deduced from the

relations in TS2. For example, assume TS1 = {c1 ≺ c3}, TS2 = {c1 ≺ c2 ≺
c3}. According to the transitivity property of the “≺”, we can get the the

saturated relation set of the TS2 as R
+ = {c1 ≺ c2 ≺ c3, c1 ≺ c3, c1 = c1, c2 =

c2, ...}. Since the relation in TS1 can be deduced from the relations in TS2,

we say TS2 includes TS1 (TS1 ≪ TS2).

Lemma 1 If TS1 =< C1, R1 > and TS2 =< C2, R2 > are two timed

specifications, then TS1 ≪ TS2 =⇒ R+
1 ⊆ R+

2

Proof. Taken any two relation r1, r
′
1 ∈ R1. Let r+1 ∈ R+

1 be the relation

deduced from the two relations r1, r
′
1 in terms of the property P proposed

in section 4.2. Assume r+1 6∈ R+
2 . Since TS1 ≪ TS2, from the definition

of inclusion we know R1 ⊆ R+
2 . Furthermore, we know r1, r

′
1 ∈ R+

2 . So in

the set R+
2 we can get the relation r+1 by using the same property P . So we

have r+1 ∈ R+
2 that is contradict with our assumption. Therefore, we have

r+1 ∈ R+
2 . Moreover, because r+1 ∈ R+

1 , so R+
1 ⊆ R+

2 .

Definition 18 (Compatibility) Let TS be the timed specification of a

timed-pNets hole H, and TS ′ be the timed specification of an implemen-

tation H Impl. We say H Impl is compatible with H, denoted by H Impl

⊑ H if and only if TS ≪ TS ′.

92

4.7. Assembling multi-layer timed-pNets system

Theorem 3 Let TS be the timed specification of hole H. Let TS ′
1 (resp.

TS ′
2) be the timed specification of an implementationH Impl1 (resp. H Impl2).

If H Impl1 ⊑ H and TS ′
1 ≪ TS ′

2, then H Impl2 ⊑ H.

Proof. Assume TS ′
1 =< C ′

1, R
′
1 >, TS ′

2 =< C ′
2, R

′
2 > and TS =< C,R >.

Let R′+
1 (resp. R′+

2 , R+) be the saturated relation from TS ′
1 (resp. TS ′

2,

TS). Since H Impl1 ⊑ H, according to the compatibility definition, we have

TS ≪ TS ′
1. Furthermore, according to the Inclusion definition, we have

R ⊆ R′+
1 . Moreover, because we know that TS ′

1 ≪ TS ′
2, according to the

Lemma 1, we have R′+
1 ⊆ R′+

2 . According to the set theory, we know that

R ⊆ R′+
2 . Finally, according to the Inclusion and compatibility definition,

we get H Impl2 ⊑ H.

4.7 Assembling multi-layer timed-pNets

system

After generating a timed specification for a timed-pNets node, we can

use the generated timed specification to prove that it would be compatible

with the specification of a hole of a higher-level timed-pNet node. This way,

a layered tree structure can be built as shown in the Fig. 4.15. In this

structure, each layer uses an abstraction of its lower layer. The clocks in the

lower layer (at level N) are transparent to its abstract layer (at level N+1)

in which only holes with its timed specification (TSj), synchronous vectors

(Vi) and global clocks (Cg) can be seen.

As we have already mentioned, this construction can be done in a very

flexible way either bottom-up or top-down. The result timed-pNet system

can be open (if it still contains some unfilled holes at the leaves), or closed if

all holes are filled with timed-pNets and timed-pLTS.

Example 9 We now have all elements required for checking the compati-

bility of our timed-pLTSs with the holes of the upper layer pNet. Let us look

at “CommIni” as an example:

- the relation set of the hole “CommIni” for open timed-pNets isRCommIni =

93

Timed-pNets Model

Fig. 4.15: Layered Structure

{C?Cmd ≺ C
{2s−1}s∈N

!notify , C
{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify , C
{2s−1}s∈N

!notify ≺ C
{2s−1}s∈N

?ack , C
{2s}s∈N

!notify ≺
C

{2s}s∈N

?ack , C
{2s−1}s∈N

?ack ≺ C
{2s}s∈N

?ack , C
{2s}s∈N

?ack ≺ C!R ≺ C
∆(1)
?cmd},

- the relation set of the “CommIni” timed-pLTS component from Fig.

4.12 as R′
Commini = {C?Cmd ≺ C

{2s−1}s∈N

!notify ≺ C
{2s}s∈N

!notify ≺ C
{2s−1}s∈N

?ack ≺
C

{2s}s∈N

?ack ≺ Cτ ≺ C!R ≺ C
∆(1)
?cmd}.

Since we can easily get RCommIni ⊆ R′
Commini, according to Inclusion defini-

tion we have TS{CommIni} ≪ TS ′
Commini . Therefore, from the compatibility

definition, we know that the “CommIni” timed-pLTS is compatible with the

hole “CommIni”.

The validations that have been defined in our paper, namely the compat-

ibility of hole composition, and the conflict detection between timed-pNets

synchronization vectors, ensure some specific validity properties of the global

Time Specification of the system, as defined by Definition 14. However, this

does not mean that there cannot be more complex conflicts in the interaction

between more than 2 holes of a timed-pNets, or more specific timed proper-

ties that can be computed from refined implementations of some sub-nets. In

the next section, we show how to use simulation with the TimeSquare tool,

to address such cases.

94

4.8. Simulation

4.8 Simulation

In this section we explain how to use TimeSquare [41] to detect com-

plex conflicts of timed-pNets. Two inputs are required by TimeSquare (see

the Fig. 5.7). One is an open timed-pNets system. Another is a set of re-

fined implementations. If a closed timed-pNets composed by those refined

implementations has no conflict, we say the closed timed-pNets is safe. Oth-

erwise, the TimeSquare reports violations, which means that conflicts exist

in the closed timed-pNets system. Before running simulations, the two in-

puts are translated into timed specifications that are acceptable format for

TimeSquare. The way of generating timed specification is described in sec-

tion 4.5.

Fig. 4.16: Property Checking by TimeSquare

4.8.1 Simulation 1:

• We take the system shown in the Fig. 4.8 as an example. We first

build an open timed-pNet node with the timed specifications of holes (

TS: TS{CommIni}, TS{ChannelNtf [m]}, TS{ChannelAck[m]}, TS{CommRes[m]})

and synchronous vectors (Vi), by which we can generate global clock

relations (we call it an abstract specification). From section 4.5.5,

we can get the abstract specification TSg =< Cg, Rg > with Rg =

95

Timed-pNets Model

{C?Cmdg5 ≺ Cnotifyg1[m]
≺ Cnotifyg2[m]

≺ Cackg3[m]
≺ Cackg4[m]

≺ C!Rg6 ;

Cnotifyg1[1]
≺ Cnotifyg1[2]

; Cackg4[1]
≺ Cackg4[2]

}. Then we import the

timed specifications of the refined implementations of those holes (TS ′:

TS ′
{CommIni}, TS ′

{ChannelNtf [m]}, TS ′
{ChannelAck[m]}, TS ′

{CommRes[m]}) to

replace TS. The timed-pNets node that composed by these refined im-

plementations is called closed timed-pNets node. And its global clock

relations is named concrete specification TS ′
g.

• Result of Simulation 1: The Fig. 4.17 illustrates the concrete speci-

fication TS ′
g. In this figure, each line represents a clock and the red

arrows represent the precedence relations. For simplification, here we

represent two cycles of simulation. From the figure we can see that the

abstract specification TSg is satisfied by the refined concrete system

since we have TSg ≪ TS ′
g.

Fig. 4.17: system’s specification checking

4.8.2 Simulation 2:

• In this simulation, we choose TS ′
{UpdatedCommIni} = {C?Cmd ≺ C

{2s−1}
!Notify ≺

C
{2s−1}
?Ack ≺ C

{2s}
!Notify ≺ C

{2s}
?Ack ≺ C!R ≺ C

∆(1)
?Cmd}, TS ′

{UpdatedCommRes[m]} =

{C?NotifyInfo[m]
≺ CExchangeInfo[m]

≺ C!Ack[m]
} and we add a synchronous

96

4.8. Simulation

vector between hole CommRes[1] and CommRes[2] to get a new re-

lation RVnew
= {CExchangeInfo[1]

= CExchangeInfo[2]
= CExchangeInfog11

}.
Obviously, the updated implementation of hole CommIni is compat-

ible with the abstract timed specification of this hole TS{CommIni}

since we have TS{CommIni} ≪ TS ′
{UpdatedCommIni}. And the same to

the other two holes CommRes[m] since we have TS{CommRes[m]} ≪
TS ′

{UpdatedCommRes[m]}.

• Result of simulation 2: By simulation, we found violations as shown in

Fig.4.18.

Fig. 4.18: Conflict Detected

• Analyzing the result: By analyzing our updated closed timed-pNets, we

found the conflict is caused by a cycle represented in the Fig.4.19. In

this Figure, according to the theorem 1, we can get the set of global

relations as {CNotifyg1[2]
≺ CNotifyg2[2]

≺ CExchangeInfog7 ≺ CAckg3[1]
≺

CAckg4[1]
}. Obviously, relation {CNotifyg1[2]

≺ CAckg4[1]
} is hold in terms

of the transitivity property of precedence relations. However, by using

the theorem 1 again, from the TS ′
{UpdatedCommIni} we can get the re-

lation {CAckg4[1]
≺ CNotifyg1[2]

} which is contradict with the relation

{CNotifyg1[2]
≺ CAckg4[1]

}. To fix the conflict, we need to find an-

97

Timed-pNets Model

other implementation that still compatible with these holes but with-

out making conflicts. For our example, we can just simply change

the TS ′
{UpdatedCommIni} to TS ′

{FixedCommIni} = {C?Cmd ≺ C
{2s−1}
!Notify ≺

C
{2s}
!Notify ≺ C

{2s−1}
?Ack ≺ C

{2s}
?Ack ≺ C!R ≺ C

∆(1)
?Cmd}. And in the end, by

simulation, no conflict exists any more.

Fig. 4.19: system’s specification checking

4.9 Conclusion

This chapter proposed a flexible time-related behavioral semantic model

(called Timed-pNets) for modeling communication behavior of distributed

systems. We specify a system with several components and communications

between them. We are able to build a hierarchical tree structure for compos-

ing complicated component-based systems. The refinement and compatibil-

ity are considered in the chapter. An concrete example is given to represent

how to build a hierarchical specification and how to refine the system. In the

end, we use TimeSquare to check the compatibility of the refined system.

Three advantages are implied in our model: first, by introducing logi-

cal clock relations, timed-pNets model is able to specify the system’s time-

related communication behavior constrains without relying on physical com-

mon clock; second, by using timed specifications, our model is easy to be

composed and has the capability of building a hierarchical structure; last but

not least, our model can flexible model heterogeneous communication includ-

ing synchronous and asynchronous communications by introducing channel

LTS. We believe that the timed-pNets model is helpful for analyzing the

98

4.9. Conclusion

time-related behaviors for distributed systems including cyber physical sys-

tems.

After checking the system compatibility, another interesting point is

to check system’s physical time constrains such as deadline property that

expresses whether system communications can be successfully finished before

a certain deadline. To check this, we shall choose a reference clock and

specify the delay constrains in terms of the reference clock. In this chapter,

even though we define delay variables for actions, we do not provide a way

to specify delay constrains here. In the next chapter we will investigate the

delay variables of timed-pNets model and check system time properties.

99

Chapter 5 Delay in Timed-pNets

In this chapter, we discuss the delay variables in timed-pNets. Since this

model does not rely on common physical clocks, the delays from different

subnets are uncomparable, which brings the difficulty of computing delays of

the clocks in the upper layer. We solve the issue by introducing the concept

of reference clocks and virtual timestamps so that delays can be calculated

in terms of a reference clock specified by the users. Moreover, we define time

constraint conflicts and investigate time properties like latency property.

101

Delay in Timed-pNets

5.1 Context and problematic

In the previous chapter, timed-pNets have been proposed to specify

communication behaviours of heterogeneous distributed systems. This model

is able to specify logical time constrains such as “action α must happen

before action β” or “action α and action β must finish at the same time”,

etc. However, other requirements like “action α must occur 5ms later than

action β” is difficult to express because our model lacks of common physical

clocks. To solve the issue, we introduce the concept of reference clocks and

virtual timestamps. A reference clock can be either chronometric or logical.

In our daily life, an event is often expressed relative to another one, that is

used as a reference. For example, “action α occurs twice as often as action

β”, or “action α must occur after action β occurs 5 times”, or furthermore,

“after action γ occurs, action α must occur after 5 occurrences of action β”.

For all these cases, if one action occurs more often, the others are impacted.

This is the main idea of using reference clocks. In this context, physical time

is a particular case of logical time where the time generated by a physical

clock is taken as a reference. In CCSL, a time library predefines a clock type

(IdealClock) and a clock (idealClk) whose type is IdealClock. idealClk

is a dense chronometric clock with the second as time unit. This clock is

assumed to reflect the evolutions of physical time. Based on this idealClk,

for example, a reference clock with the period 1 ms (for milliseconds) can

be defined as RefCLK = idealClk discretizedBy 0.001. In our model, a

reference can be defined by user like in CCSL or can be anyone chosen from

the logical clock set of this model. No matter by which way, the link between

the logical clock set and the reference clock should be clear.

In timed-pNets, delays specify the distances between two timed-actions.

Before introducing a reference clock, actually the delays of timed-actions

in different nodes are uncomparable. By introducing a reference clock and

assigning virtual timestamps to those timed-actions, we can manage to com-

pare those delays and compute them with mathematical operators (e.g. “+,

102

5.1. Context and problematic

-”).

The concept of virtual time for distributed system was brought into

prominence by Lamport in 1978 [58]. In Lamport, virtual time is identified

by the succession of events (and therefore is discrete). It does not “flow” by

its own means like real time whose passage can not be escaped or influenced.

The virtual timestamps in this thesis are little bit different than it. We define

two dimension values for each timestamp: one represents the time when a

timed-action occurs in terms of a reference clock, another represents the order

of the occurrences of a timed-action. These virtual timestamps are not fixed

in the sense that they can be reassigned in terms of the changes of system’s

timed specifications.

The delay of a timed-action describes the time that must elapse before

the action can be executed. A delay bound constrains the minimal and maxi-

mal time delay the timed-action can accept. In order to keep the hierarchical

structure of timed-pNets, all clocks (including the generated clocks in upper

layer) have the same schema in the sense that they equip with delays and

delay bounds. In this chapter, we propose a way to calculate the delays of

global logical clocks and deduce the delay bounds of them from subnets.

In the end, we use TimeSquare to check correctness and latency prop-

erties. A latency property checks the minimal (or maximal) distance of two

clocks in the sense that at least (at most) how much it takes for an occurrence

of a clock to occur after the corresponding occurrence of another clock. The

property is usually used to check if an action can occur during an expected

time. For example, after sending a request to a system, a user is able to

know if the system can give a response in time.

The rest of this chapter is organized as follows. In section 5.2 we in-

troduce virtual timestamps. Section 5.3 represents the definition of time

constraint conflicts. Then in section 5.4 we propose and prove a theorem

allowing to compute delays and delay bounds of global logical clocks. Time

properties and simulations are illustrated in section 5.5. In the end we give

a conclusion of this chapter.

103

Delay in Timed-pNets

Fig. 5.1: Time Diagram

5.2 Virtual TimeStamps

We define a virtual timestamp as a pair of natural numbers: one rep-

resents when a timed-action occurs in terms of a reference clock (X-axis),

another represents the order of the occurrences of a timed-action (Y-axis).

Fig.5.1 shows us an example in which the timed-actions are assigned with

virtual timestamps. In the figure, the processes are presented as solid black

lines. The sequence of timed-actions executed in these processes are pre-

sented as solid black points on these black lines (X-axis). The actions in

each process are totally ordered. The communications between processes are

represented by clock relations. For example, in the Fig. 5.1, the clock Ca

and clock Cd are coincident. We use a sequence of red lines to represent the

coincidence relation of two clocks. Similarly, we use a sequence of red arrows

to represent the precedence relations (e.g. Ca ≺ Cb). We define the virtual

timestamps and their assignment rules as follows.

Definition 19 (Virtual Timestamps) A virtual timestamp (denoted as

T (α i)) of a timed-action occurrence α i is a pair of natural numbers (xα i, i)

(xα i ∈ N, i ∈ N).

Definition 20 (Virtual Timestamp Assignment Rules) Let T (α i) , (xα i, i)

be the virtual timestamp of the occurrence α i of the clock Cα (α ∈ LA,T ,P),

and T (β i) , (xβ i, i) be the virtual timestamp of the occurrence β i of the

clock Cβ (β ∈ LA,T ,P). Then we have:

104

5.2. Virtual TimeStamps

Fig. 5.2: Updated Time Diagram

• Cα = Cβ ⇒ ∀i, xα i = xβ i := max(xβ i, xα i)

• Cα ≺ Cβ ⇒ ∀i, xα i < xβ i and xβ i := max(xα i, xβ i)+tβi
(the variable

tβi
presents the delay time from the occurrence α i to β i in terms of

the reference clock that a user chose. tβi
≥ 1, tβi

∈ N)

Initially, for an independent clock (without any relation with other

clocks), the X-axis value of the timestamps of the clock can be set with

any natural number. The values will be updated according to the clock re-

lations applied on this clock. Let us take a look on the Fig. 5.1, the clock

Cb has relations with the clocks Ca and Cc (Ca ≺ Cb ≺ Cc), accroding to the

assignment rules, we must have xa 1 < xb 1 < xc 1. In this figure, the times-

tampe of the first occurrence of clock Cb is initially set as (5, 1). However, it

can also be intially set as (7, 1) only if the value is larger than the timestamp

of the first occurrence of clock Ca (in the figure xa 1 := 1) and smaller than

the timestamp of the first occurrence of clock Cc (in the figure xc 1 := 8).

More clock constraints may be added because of new requirements. In

this case, these timestamps in the Fig.5.1 may also be updated according to

the assignment rules. For example, after we add other four clock relations

(Ca ≺ Cg, Cg ≺ Ce, Cf ≺ Cc, Ce = Cp), if the delay from Cf to Cc is 2,

then the virtual timestamps are updated as shown in Fig.5.2 by following

the rules.

105

Delay in Timed-pNets

5.3 Time Constraint Conflicts

Since timestamps may be updated because of new adding relations, clock

delays are also updated, which may cause time constraint conflicts. For

example, in Fig. 5.1, assume the delay bound of Cc is [2, 5]. Before we add

the relation Cf ≺ Cc, there is no time constraint conflict since tCc[1] = 8−5 =

3 ∈ [2, 5]. However, after adding this relation, as shown in the Fig. 5.2, we

found out that tCc[1] = 12 − 5 = 7 6∈ [2, 5]. Here we give a formal definition

of time constraint conflicts.

Definition 21 (Time Constraints conflicts) Let Cα be a clock built on

timed-action α(p)tα|btα 1. A time constraint conflict of clock Cα exists if

∃i ∈ N, tαi
6∈ btαi

.

5.4 Calculate Delays and Delay Bounds

In timed-pNets, non-leaf nodes are the synchronization devices of their

subsystems. The delays and delay bounds of the global logical clocks in

these non-leaf nodes are computed in terms of the local logical clocks in the

subsystems. When building these non-leaf nodes, time constraint conflicts

may happen. In this section, we discuss how to compute the delays and delay

bounds of these global clocks in the non-leaf nodes so that we can check if

time constraint conflicts exist.

According to the timed-pNets definition (see definition 11), local logical

clocks coincide with the corresponding global logical clock. According to the

virtual timestamp assignment rules, the virtual timestamps of these local

clocks equal to the timestamps of their global clocks. Usually, the delay of a

global clock could be the sum of delays of a sequence of local clocks along a

causality path. Let us take Fig. 5.3 as an example. In this simple system,

Cg1 and Cg2 are global clocks of Cα and Cβ. The delay between the two

1where the delay bound b is exposed since we need to discuss it in this chapter. The

definition of timed-action can be found in the chapter 3.

106

5.4. Calculate Delays and Delay Bounds

Fig. 5.3: A Small Example

global clocks is calculated from Cα to Cβ along path Cα → Cγ → Cβ as

shown in the time diagram part in Fig. 5.3.

Since the delay of a global clock could be the sum of the delays of local

clocks, in order to clearly define delays for global clocks, here we first give

the definitions of causal clocks and causality paths.

5.4.1 Causal Clocks and Causality Paths

Definition 22 (Causal Clocks) Given a timed specification TS :< C,R >

with a set of clocks C and clock relationsR. Let Cα(∈ C) be a clock. C∠α(∈ C)
is a causal clock of Cα if it satisfies:

(1.) relation C∠α ≺ Cα ∈ R,

(2.) ∄ a clock Cγ(Cγ ∈ C) with relation C∠α ≺ Cγ ≺ Cα.

For example, assume we have a timed specification TS :< C,R > with

clock set C = {Cα, Cβ, Cγ} and relation set R = {Cα ≺ Cβ ≺ Cγ}. We say that

Cα is a causal clock of Cβ, but not a causal clock of Cγ.

107

Delay in Timed-pNets

Definition 23 (Causality Paths) Given a timed specification TS :< C,R >.

A causality Path from clock C0 to clock Cn (denoted as p{C0→Cn}) is a se-

quence of clocks with the conditions of:

(1.) starting from clock C0

(2.) ending with clock Cn

(3.) ∀Ci(i ∈ [0, n]), Ci is a causal clock of C(i+1)

For example, in Fig. 5.2, Ca → Cb → Cc is a causality path from Ca to

Cc. Cd → Ce → Cf → Cc is a causality path from Cd to Cc.

Notice that we do not count Ca → Cd → Ce → Cf → Cc as a causality

path because 1) usually in our model the coincidence relations exist between

two components for modelling synchronous communications. However we

do not handle the delays between different components in local component

level。 They will be handled in the upper level; 2) by including the paths

with coincidence relations, we only increase the unnecessary paths that do

not contribute to compute the delays.

5.4.2 Computing Delays of clocks

Here we define two kinds of delays. One is a simple clock delay that is the

maximum time gap from the causal clocks of a clock to this clock. Another

is a delay between two clocks that are connected by a path. The second one

helps us to compute the delays of any two clocks that are not closed to each

other but can be reached from one clock to another one following a causal

path.

Definition 24 (Delays of Clock Occurrences) Given a timed specification

TS :< C,R >. Let {Ck}(k ∈ K ⊂ N) be the set of causal clocks of

Cα(Cα, Ck ∈ C) in the TS. The delay of the occurrence Cα[i](i ∈ N) is

denoted as tCα[i], which describes a time delay before the occurrence Cα[i]

can be executed. The delay is calculated from the corresponding occurrences

of the causal clocks of Cα by the formula tCα[i] = max{xCα[i]− xCk[i]|k ∈ K}.

108

5.4. Calculate Delays and Delay Bounds

The delay variable of a timed-action captures the time (delay) that must

elapse before the actions can be executed. In a logical clock, the delays of

the different timed-action occurrences may be different. Let us take Fig.

5.2 as an example. The delay of the first occurrence of Cb (which is tCb[1] =

xCb[1]−xCa[1] = 5−1 = 4) is different from the delay of the second occurrence

of Cb (which is tCb[2] = xCb[2] − xCa[1] = 14 − 13 = 1). When a clock has

more than one causal clocks, the delay of the clock takes the maximum

value among the delays that come from all the causal clocks of the clock

to this clock. Let us take the clock Cc as an example. Since it has two

causal clocks Cb and Cf , the delay of the first occurrence of Cc is tCc[1] =

max{(xCc[1] − xCb[1]), (xCc[1] − xCf [1])} = max{7, 2} = 7. Similarly, we can

compute the delays of other occurrences.

Definition 25 (Delays along a Causality Path) Given a causality path

p{C0→Cn} = C0 → C1 → . . . Ci → . . . → . . . Cn. The delay from occurrence

C0[r] to Cn[r] along the causality path (denoted as tp{C0[r]→Cn[r]}
) is defined

as tp{C0[r]→Cn[r]}
= xCn[r] − xC0[r](r ∈ N) .

Let us take the path Cd → Ce → Cf → Cc as an example. The delay

from Cd[1] to Cc[1] along the causality path pCd→Cc
is tpCd[1]→Cc[1]

= 12− 1 =

11.

5.4.3 Computing Delay Bounds of Clocks

We define delay bounds as closed intervals over natural numbers. Three

cases are discussed: the delay bound of a clock, the delay bound along a

causal path and the delay bound along a set of causal paths. In the end, we

propose theorem 4 to compute the delay bounds of global logical clocks from

the local clocks in subsystems.

Definition 26 (The Delay Bound of a Clock) Given a clock Cα that is built

on timed-action α(p)tα|btα . The delay bound of the clock Cα (denoted as bCα
)

is a closed interval [l(bCα
), u(bCα

)] over a set of natural numbers N. The lower

bound l(bCα
) is the minimal value of the closed interval. The upper bound

109

Delay in Timed-pNets

of u(bCα
) is the maximal value of the closed interval. The clock delay bound

applies to all occurrences Cα[i], formally ∀i, btαi
= bCα

.

Definition 27 (The Delay Bound along a Causality Path) Given a causal-

ity path p{C0→Cn} = C0 → C1 → . . . Ci → . . .→ . . . Cn. Let the delay bound

of the clock Ci(i ∈ [0, n]) be [l(bCi
), u(bCi

)]. Then the delay bound from C0

to Cn along the causal path p{C0→Cn} (denoted as bp{C0→Cn}
) is defined as

bp{C0→Cn}
= [

∑
i∈[1,n] l(bCi

),
∑

i∈[1,n] u(bCi
)].

We take the causality path pCd→Cc
as an example. Assume the delay

bound of Cd, Ce, Cf and Cc are [1, 3], [3, 8], [1, 7] and [2, 9], then the delay

bound of the causality path bp{Cd→Cc}
= [6, 24].

Definition 28 (Delay Bound on a set of Causality Paths) Let P{C0→Cn}

= {pj{C0→Cn}
}(j ∈ N) be a set of causality paths from C0 to Cn. Let the

delay bound from C0 to Cn on the jth path be b
p
j

{C0→Cn}
. The delay bound

from C0 to Cn on the set of paths P{C0→Cn} (denoted as bP{C0→Cn}
) is defined

as bP{C0→Cn}
= [max{l(b

p
j
C0→Cn

)|j ∈ N},min{u(b
p
j
C0→Cn

)|j ∈ N}] in which

(l(b
p
j
C0→Cn

) is the lower bound of b
p
j
C0→Cn

and u(b
p
j
C0→Cn

) is the upper bound

of b
p
j
C0→Cn

.

Example 10 Let us still take the Fig.5.2 as an example. The set P{Ca→Cc}

includes two paths p1Ca→Cc
= Ca → Cb → Cc and p2Ca→Cc

= Ca → Cg →
Ce → Cf → Cc. Assume the delay bound of Ca, Cb, Cg, Ce, Cf and Cc

are [1, 3], [3, 19], [2, 8], [3, 8], [1, 7] and [2, 9]. Then from definition 27 we

know that bp1Ca→Cc
= [5, 28] and bp2Ca→Cc

= [8, 32]. Then the delay bound of

P{Ca→Cc} can be computed as bPCa→Cc
= [max{5, 8},min{28, 32}] = [8, 28].

Compute The Delay Bounds of Global Clocks in Timed-pNets

According to the definition of timed-pNets in chapter 4, a global logical

clock is generated by at least one local logical clock. The delay of two global

logical clocks can be calculated from their local clocks. And the two local

clocks (one for generating the global clock, another one for generating the

causal clocks of the global clock) must exist in one hole. The theorem 4 tells

110

5.4. Calculate Delays and Delay Bounds

Fig. 5.4: Three cases in Theorem 4

us how to calculate the delay bounds of global clocks from their local clocks.

Theorem 4 (The Delay Bounds of Global Clocks) Given a timed-pNet

< P,AG,CG, J, ÃJ , C̃J , R̃J ,
−→
V >. Assume that all local clocks (in the set

C̃J) have no time constraint conflict. Consider a global clock Cγ and let

Cg = {Cgk}(k ∈ N) be the set of causal clocks of Cγ (Cg ⊆ CG, Cγ ∈ CG,

γ , γ(pγ)
tγ |btγ).

(1) When −→v =< ..., Cα, ..., Cβ, ... >→ Cγ. As shown in Fig. 5.4, let

Cm = {Cmk′
}(k′ ∈ N) be a set of local clocks that are in the same hole

as Cα, and that contribute to generate the global clocks in Cg. Let

Cn = {Cnk′′
} be a set of local clocks that are in the same hole as Cβ,

and that contribute to generate the global clocks also in Cg.

(1.1) If < . . . , Cmk′
, . . . , Cnk′′

, . . . >→ Cgk as shown the case (1.1) in

Fig. 5.4, then

bCγ
= [min{min{l(bPCm

k′
→Cα

)|k′ ∈ N},min{l(bPCn
k′′

→Cβ
)|k′′ ∈

N}},
max{max{u(bPCm

k′
→Cα

)|k′ ∈ N},max{u(bPCn
k′′

→Cβ
)|k′′ ∈ N}}] (Cmk′

∈
Cm, Cnk′′

∈ Cn, k
′, k′′ ∈ N);

(1.2) If < . . . , Cmk′
, . . . , . . . , . . . >→ Cgk as shown the case (1.2) in Fig.

5.4, then

111

Delay in Timed-pNets

Fig. 5.5: Case 2 in Theorem 4

bCγ
= [min{l(bPCm

k′
→Cα

)|k′ ∈ N},max{u(bPCm
k′

→Cα
)|k′ ∈ N}]

(Cmk′
∈ Cm, k

′ ∈ N),

(1.3) If < . . . , . . . , . . . , Cnk′′
, . . . >→ Cgk as shown the case (1.3) in Fig.

5.4, then

bCγ
= [min{l(bPCn

k′′
→Cβ

)|k′′ ∈ N},max{u(bPCn
k′′

→Cβ
)|k′′ ∈ N}]

(Cnk′′
∈ Cn, k

′′ ∈ N),

(2) When −→v =< ..., Cα, ..., . . . , ... >→ Cγ. Let Cm be a set of local clocks

that in the same hole as Cα, and that contribute to generate the global

clocks in Cg as shown in Fig. 5.5. Then bCγ
= [min{l(bPCm

k′
→Cα

)|k′ ∈
N},max{u(bPCm

k′
→Cα

)|k′ ∈ N}] (Cmk′
∈ Cm, k

′ ∈ N).

Proof. (1.1)Choose any occurrence of Cγ, for example, the ith occurrence

Cγ[i] (i ∈ N). According to definition 24 in page 108, tγ i = max{xCγ [i] −
xCgk

[i]|k ∈ N}(Cgk [i] ∈ Cg). Let L (resp. U) be the lower (resp. upper)

bound of bCγ
, that is

(L = min{min{l(bPCm
k′

→Cα
)|k′ ∈ N},min{l(bPCn

k′′
→Cβ

)|k′′ ∈ N}});
U = max{max{u(bPCm

k′
→Cα

)|k′ ∈ N},max{u(bPCn
k′′

→Cβ
)|k′′ ∈ N}}).

To simplify the proof, we set l(bPCm
k′
) < l(bPCm

k′+1
) (resp.l(bPCn

k′′
) < l(bPCn

k′′+1
)).

Moreover, if Cmk′
(resp. Cnk′′

) generates clock Cgk , then we let k′ = k′′ = k.

Assume tγ i < L, then we have max{xCγ [i] − xCgk
[i]|k ∈ N} < L. Let

us take any causal clock from Cg, for example Cg1 (Cg1 ∈ Cg), then we have

xCγ [i]−xCg1 [i]
< max{xCγ [i]−xCgk

[i]|k ∈ N} < L = min{min{l(bPCm
k′

→Cα
)|k′ ∈

N},min{l(bPCn
k′′

→Cβ
)|k′′ ∈ N}} ≤ min{l(bPCm1→Cα

), l(bPCn1→Cβ
)}. According

to the definition 20 in page 104, we have xCα[i]− xCm1 [i]
= xCγ [i]− xCg1 [i]

. By

the two formulas, we conclude xCα[i]−xCm1 [i]
< min{l(bPCm1→Cα

), l(bPCn1→Cβ
)} <

112

5.4. Calculate Delays and Delay Bounds

l(bPCm1→Cα
), which means that the delay of Cα[i] (from Cm1 [i] to Cα[i]) is less

than its lower delay bound. It contradicts the fact that all local clocks have

no time confict. So, we have tγ i ≥ L.

Similar, assume tγ i > U , then we have max{xCγ [i] − xCgk
[i]|k ∈ N} >

U . Let us take clock Cgh that satisfies xCγ [i] − xCgh
[i] = max{xCγ [i] −

xCgk
[i]|k ∈ N}. Then we have xCγ [i] − xCgh

[i] = xCα[i] − xCmh
[i] > U =

max{max{u(bPCm
k′

→Cα
)|k′ ∈ N},max{u(bPCn

k′′
→Cβ

)|k′′ ∈ N}} ≥
max{u(bPCmh

→Cα
), u(bPCnh

→Cβ
)} ≥ u(bPCmh

→Cα
). So we get xCα[i] − xCmh

[i] >

u(bPCmh
→Cα

), which means the delay of Cα[i] (from Cmh
[i] to Cα[i]) is more

than its upper delay bound. It contradicts the fact that all local clocks have

no time confict. So we have tγ i ≤ U .

For the other cases (1.2), (1,3) and (2), their proofs are similar as the

proof for (1.1).

Notice that we cannot use the theorem if constraint conflicts exist among

the local clocks. To build a upper level of timed-pNets and compute the delay

bounds of global clocks, we must first solve all conflicts in local holes. Besides,

according to the timed-pNets definition 11 in the page 68, we know that each

global clock can be generated by only one synchronization vector, so in our

proof we just discuss a single vector not a set of vectors.

Example 11 Let us take Fig. 5.6 as an example. In this figure, p1, p2 and

p3 are in one hole. p4 is in another hole. From the previous analysis, we

know that the delay bound of the set of paths from Ca to Cc is [8, 28]. From

the figure we can see that global clock Cg2 is generated by synchronous vector

< ..., Cc, ..., Cv, ... >→ Cg2. Global clock Cg1 is generated by the synchronous

< ..., Ca, ..., Cu, ... >→ Cg1. And clock Cg1 is the causal clock of Cg2. Assume

the delay bound from Cu to Cv is [7,18] as shown in the figure with green

numbers. According to the case (1.1) in theorem 4, we can get the delay

bound of the global clock Cg2 is bCγ
= [min{7, 8},max{18, 28}] = [7, 28].

113

Delay in Timed-pNets

Fig. 5.6: Example of computing Global Delay Bound

5.5 Simulation

We simulate the system shown as the Fig. 4.8 in page 71 by means of

the TimeSquare tool [41]. This tool is able to check system time constraint

conflicts and time properties. Two input files are required by TimeSquare

(see Fig. 5.7). One contains the system timed specifications deduced from

Fig.4.8; another contains the system timed properties. We import a reference

clock into the two files. For simplifcication, we choose a reference clock that

ticks periodically. All delays and delay bounds of other logical clocks are

specified in terms of this reference clock. For example, in our simulation, we

assume that the delay bounds of all action occurrences are between [1, 3] in

the sense that the delays of those actions should stay between the first and

the third occurrences of the reference clock. The simulation results tell us

if the time properties are satisfied by the specifications. For simplification, .

We do not fix their delays so that our model is more flexible. The properties

we would like to check are as follows:

• (P1.) No conflict exists.

114

5.5. Simulation

Fig. 5.7: Property Checking

• (P2.) The delay of the global clock Cnotifyg1 is no more than 3. For-

mally, let notifyg1 i (i ∈ N), notify
tnotifyg1 i|bnotifyg1

g1 , then ∀i ∈ N, 1 ≤
tnotifyg1 i ≤ 3.

• (P3.) The minimal and maximal distance between clock C?Cmd and

C!R are 6 and 11. We denote them as MinDis(C?Cmdg5 , C!Rg6) = 6 and

MaxDis(C?Cmdg5 , C!Rg6) = 11.

5.5.1 Encode Properties into TimeSquare

Here we explain how to encode our properties into the TimeSquare. We

translate the properties to the form that the TimeSquare tool can accept.

We design bounded precedence relations (denoted as “≺[min,max]”) that are

precedence relations with minimal and maximal bounds. For example, for the

property P2, we check if the delay of the clock Cnotifyg1 is in the interval [1,3].

Since the delay of the clock Cnotifyg1 captures the time that must elapse from

the clock C?Cmdg5 , checking the property P2 translates to check the bounded

relation C?Cmdg5 ≺[1,3] Cnotifyg1 .

We use the “DelayFor” function provided in TimeSquare to create the

bounded precedence relations. The “DelayFor” function has three parame-

ters: 1) the causal clock of Cnotifyg1 (in our example the clock is C?Cmdg5),

2) the base counter (in our case is a reference clock “baseCounter”), 3) the

delay value to be set. We encode the bounded precedence relation function

115

Delay in Timed-pNets

by following the steps:

• First we define minimal and maximal bound expressions. For ex-

ample, in our case, we define two expressions “minDelayBound ,

DelayFor(C?Cmdg5 , baseCounter, 1)” and “maxDelayBound,DelayFor(C?Cmdg5 ,

baseCounter, 3)”,

• Then we limit the clock Cnotifyg1 into the bound by using precedence re-

lations. For example, we set two precedence relations: “minDelayBound

≺ Cnotifyg1” and “ Cnotifyg1 ≺ maxDelayBound”.

Similarly, the property P3 can be translated to C?Cmdg5 ≺[6,11] C!Rg6 .

5.5.2 Property Checking

We input the system timed specifications and properties into TimeSquare

to check if a violation exists .

• TimeSquare reports us an error as shown in Fig. 5.8 when checking

the property P1.

Fig. 5.8: Checking the property (1)

This error is caused by time constraint conflicts. Fig.5.9 represents a

time diagram with possible virtual timestamps. In this figure, the blue

numbers illustrate the virtual timestamps when those components are

independent (without communications). These numbers are assigned

randomly but following the virtual timestamp assignment rules 20. Af-

ter composing those components by adding communications among

116

5.5. Simulation

Fig. 5.9: Time Constraint Conflicts

them (represented by coincidence relations in terms of the synchronous

vectors), those virtual timestamps are recomputed in terms of the as-

signment rules 20 as shown with red numbers. By analyzing those

updated virtual timestamps, we can see that a time constraint conflict

happens on the clock C
{2s−1}
?Ack (x

C
{2s−1}
?ack [1]

−x
C

{2s}
!notify

[1]
= 9−5 = 4 6∈ [1, 3]).

To fix the issue, we set the delay of ?Notify i in component “Comm-

Res” to 1 (denoted as ∀i ∈ N, t?Notify i := 1). Moreover, we limit

the delays of all clocks less than 2 except clock C
{2s−1}
?Ack (formally,

∀i ∈ N, tα i ≤ 2, Cα ∈ C̃J\C{2s−1}
?Ack). After redoing the simulation,

we found out that no conflict exists. TimeSquare outputs VCD view

as shown in Fig.5.10, in which the first row is the reference clock and

the other rows are global logical clocks. The red arrows in this figure

demonstrate the precedence relations of these clocks. For simplification,

we take few clocks that will be used to explain the next two properties

from the VCD view. And then we add white and blue lines for giving a

clear explanation. The blue lines are used to separate the cycles. Here

we list 5 cycles.

117

Delay in Timed-pNets

Fig. 5.10: Checking property P1 and P2

Fig. 5.11: The dependency graph of global clocks

• To check property P2, we encode C?Cmdg5 ≺[1,3] Cnotifyg1 into TimeSquare

as an assert. TimeSquare tool does not report any violation, which

means the property is satisfied. This result can also be seen from

the white arrows and white numbers in Fig.5.10, in which the the

delays of the occurrence Notifyg1 i in these cycles are less than 3

(∀i ∈ N, tnotifyg1 i < 3).

Actually, from the Fig. 5.9 we can get the dependency graph of the sys-

tem global logical clocks as shown in Fig. 5.11, in which the precedence

relations of these global clocks are represented by arrows. According

to the theorem 4, we can compute the delay bounds of these global

clocks. Take the clock CNotifyg1 as an example, we get the delay bound

btNotifyg1[1]
= [1, 3] and the delay tNotifyg1 1 = xCNotifyg1

[1] − xC?Cmdg5
[1] =

118

5.5. Simulation

2. The delays and delay bounds of other global clocks can also be cal-

culated. And they are represented with red numbers in Fig.5.11. So

we can also check the delay constraints of other global clocks as we did

for the clock CNotifyg1 in this property.

• To check property P3, we set assertion C?Cmdg5 ≺[6,11] C!Rg6 . TimeSquare

does not report any error. But if we modify the property, for example,

as C?Cmdg5 ≺[5,10] C!Rg6 , then we get an error reported from TimeSquare

as shown in Fig.5.12.

Fig. 5.12: Checking property P3

5.5.3 Discussion

From the simulation we can see that our model is able to check the

time properties after we import a reference clock to this model. Compared

to other real-time models such as timed-automata, we actually decouple the

real-time from our model. In other words, if we choose chronometric clock as

a reference clock, then our model can be used to analyze real-time systems.

According to the paper [82], it is possible to transfer our model to automata.

Since it is not the topic of our thesis, we do not investigate how to do it

and so it is not clear about the comparison. It will be our future work.

However, it is clear that the real advantage of our model is that even though

we do not necessarily rely on real-time clock (or common physical clock),

we still can analyze the system time properties if we choose a logical clock

as the reference clock. This character makes our model fit for modelling

119

Delay in Timed-pNets

distributed systems. Moreover, this decoupling also helps to release the work

of refinement. Think about that the system requirement on time constraints

may be changed, which may result to modify the system specification since

from beginning, but if we import the reference clock in the end before we

check the time properties, what we need to modify on the specification is

just the links between the reference clock and other logical clocks.

5.6 Conclusion

In this chapter, we investigated the delay constraints of timed-pNets.

We took an example from chapter 4 to explain how to compute the delays

and the delay bounds of global logical clocks. In the end, we use TimeSquare

to check time constraint conflicts and some latency properties. From the

chapters 4 and 5, we conclude that our model is able to detect system’s

logical design errors, to check time constraint conflicts, and to verify time

properties.

The flexibility and simplicity of the timed-pNets mainly due to the de-

sign of timed specifications that is the critical part of the model. However,

the basic ways of building timed specifications introduced in chapter 4 are

not enough to model some complex situations. For example, we can easily

model a precedence relation on two clocks, in which the relation applies to

all occurrences. But in reality, it may happen that the precedence relation of

two clocks only applies to some occurrences of them. It is much more com-

plicated to implement it by only using the precedence definition proposed in

the chapter 4.

In next chapter we will introduce an extension of timed-pNets, which

includes clock partition and clock union to simplify the way of generating

the timed specifications for complicated situations.

120

Chapter 6 Extension of Timed-

pNets

In this chapter, we design the concepts of clock partition and clock union to

simplify the way of encoding timed specifications. The clock partition allows

us to flexibly split the occurrences of timed-actions into groups so that the

clock relations can be applied to the groups instead of to a single occur-

rence. We prove that the relations (precedence and coincidence relations)

on partition clocks can be substituted by those relations on a set of filtered

clocks, which illustrates the advantages of using partition clocks: simple and

easy to understand. Another extension, Clock Union, provides us with a

way to compose logical clocks. Usually it is used to specify the branches of

transition systems. We apply the two concepts to our car inserting example,

and demonstrate the way of building the timed specifications by them. In

the end, the simulations and corrections are implemented in the TimeSquare

tool.

121

Extension of Timed-pNets

6.1 Context and problematic

In chapter 4 we discussed precedence and coincidence relations, in which

the relation operators (“≺” and “=”) apply to all pairs of corresponding

timed-action occurrences as shown in Fig 4.4 in page 62. The small kernel

used in the chapters 4 and 5 keeps the definitions and proofs as small as pos-

sible. However, this way is not flexible when facing the case that the relations

do not apply to all occurrences. Let us take the “Control” component in Fig.

4.5 in the page 64 as an example. After the action “?Consensus(ExpRes)to”

executes, the action “LocExetx” can execute undetermined times before go-

ing to the next action “!Finishtf”. In other words, the precedence relation

between clock C?Consensus(ExpRes)to and CLocExetx does not apply to all cor-

responding occurrences. To solve the issue, we design the concept of clock

partition that provides a way to split timed-action occurrences into groups.

Then partition clocks and the relations on them are defined to help us flex-

ibly set relations on those timed-action occurrences, and in the end provide

us flexibility for system specifications.

In order to be able to specify the undetermined clock choices (e.g.

branches) in the transition systems, we define a clock union operator (“∔”)

to compose two logical clocks (e.g. Cα ∔ Cβ) in the sense that either clock

Cα or clock Cβ ticks. We call it clock union because we can consider the

two united clocks (e.g. Cα ∔ Cβ) as a new logical clock (e.g. Cγ) that is

created by the union of the two clocks and Cγ ticks whenever Cα or Cβ ticks.

Let us take “Initial” component in Fig. 4.5 as an example. After clock

“C?R(b)tR
” ticks, either clock C!CanceltL ticks or clock Cτ tτ ticks. In this case,

we specify their relations as C?R(b)tR
≺ C!CanceltL ∔ Cτ tτ or C?R(b)tR

≺ Cγ if

Cγ , C!CanceltL ∔ Cτ tτ . Notice that we can not simply specify the branch as

the relation C?R(b)tR
≺ C!CanceltL and C?R(b)tR

≺ Cτ tτ , because the two prece-

dence relations do not cover the semantics that the clocks C!CanceltL and Cτ tτ

are exclusive.

Then, we take the “Control” and “Initial” components in Fig.4.5 in the

122

6.2. Clock Partition

pager 64 as an example to represent how to specify the systems by using the

partition clocks and clock union operators. In the end, we check the system

safety properties and timed properties in the TimeSquare tool.

This chapter is organized as follows. In section 6.2 we introduce clock

partition as well as formal definitions of precedence and coincidence relations

on partition clocks. Then, clock union is defined in section 6.3. Examples

and simulations are illustrated in the section 6.4. In the end, we conclude

the chapter in section 6.5.

6.2 Clock Partition

We define a partition of clock Cα as a division of the occurrences of

timed-action α. It is a sequence of subsequences of the occurrences of α such

that every occurrence α i is in exactly one of these subsequences.

Definition 29 (Clock Partition) LetX = {xi} (xi, i ∈ N+) be a sequence of

natural numbers. The partition of clock Cα (= {α 1, α 2, . . . , α k, α k′, . . .}, k, k′ ∈
N, k′ = k+1) is a sequence of subsequences S = {Si}= ({α i1, α i2, . . . , α ik, α ik′ , . . . , α ixi

},
ik′ = ik+1, ik, ik′ , ixi

∈ N+) of the occurrences of the timed-action α in terms

of X such that:

• The length of the ith subsequence of S equals to xi. (|Si| = xi)

• The union of the subsequences in S equals to the occurrences of the

timed-action α. (
⋃

Si∈S
Si = Cα)

• The order of the subsequences reserves the original order of the oc-

currences in Cα (let Sj = {α j1, α j2, . . . , α jk, α jk′ , . . . , α jxj
}, jk′ =

jk +1, jk, jk′ , jxj
∈ N+. ∀i, j ∈ N+, if j = i+1, then α j1 = α ixi

+ 1).

• The intersection of any two distinct subsequences in S is empty. (if

Si,Sj ∈ S and Si 6= Sj then Si ∩ Sj = ∅, i, j ∈ N+)

According to the clock partition, we define a new clock in which timed-

action occurrences are grouped in terms of the partition schema X. Fox

123

Extension of Timed-pNets

example, if X = {2, 3, 1, 5, . . .}, then the new clock can be represented as

{{α 1, α 2}, {α 3, α 4, α 5}, {α 6}, {α 7, α 8, α 9, α 10, α 11}, . . .}.
In order to flexibly adjust the speed of the new clock, we introduce the

concept of idle actions in the sense that these actions do not participate in

any communication and task execution. In a consequence, we do not build

the relations between the idle actions and other timed-actions, but they do

have an effect on the clock speed. This point will be well explained after

we give the definition of Idle Actions, and it also can be seen in the sections

6.2.1 and 6.2.2. Here we first give the definitions of Idle Actions, and then

define Partition Clocks in which idle actions are used in a partitioned clock

to adjust the clock speed.

Definition 30 (Idle Actions) Idle Actions are the actions that stay in a

logical clock to slow down the speed of the clock.

For example, let ρ be a idle action. Given a clock Cα = {α1, α2, α3, α4, . . .},
the clock C ′

α = {α1, α2, ρ, α3, α4, . . .} is a new clock that is one step slower

than Cα after the timed-action occurrence α2. Similar, C ′′
α = {α1, α2, ρ, ρ, α3, α4, . . .}

is a new clock that is two steps slower than Cα.

The effect on the speed of a clock can be seen clearly when we compare

it with another clock. For example, let Cβ = {β1, β2, β3, β4, . . .} be a clock

without idle actions. Assume Cα = Cβ as shown in the Fig. 6.1 (1), we can

see that the two clocks are coincident in the sense that both clocks increase

the same number of steps at any stopwatch. However, after adding a idle

action in Cα as shown in the right side of the Fig. 6.1 (1), we can see that

when α 3 occurs, the clock Cβ has reached step β 4. It tells us that the clock

Cα is one step slower than clock Cβ due to the idle action. The same effect

also applies to precedence relations as shown in the Fig. 6.1 (2).

Definition 31 (Partition Clocks) Let X = {xi} (xi, i ∈ N) be a sequence

of natural numbers. Let ρ be an idle action. The new clock that is generated

by the clock partition on clock Cα in terms of X and idle actions is called

a partition clock (denoted as C
P{X}
α). The empty subsequences (xi = 0) are

filled by idle actions.

124

6.2. Clock Partition

Fig. 6.1: Clock Relations with Idle Actions

Notice that in this definition, the assignment of xi can be 0, which is

looser than that is in the definition 29, so that the speed of the partition clocks

is able to be adjusted. Fox example, if X = {2, 3, 0, 1, 5, . . .}, then C
P{X}
α =

{{α 1, α 2}, {α 3, α 4, α 5}, {ρ}, {α 6}, {α 7, α 8, α 9, α 10, α 11}, . . .}. It

is slower than the clock {{α 1, α 2}, {α 3, α 4, α 5}, {α 6}, {α 7, α 8, α 9, α 10, α 11},
. . .}.

6.2.1 Semantics of Precedence Relations on Partition

Clocks

Here we introduce the semantics of precedence relations on partition

clocks in three cases. In order to illustrate them, we take the same example

for all cases. In this common example, we let C
P{X}
α be a partition clock

with X = {xi} = {2, 3, 0, 1, 5, . . .}(i ∈ N) and clock Cβ be a normal clock

that has not been partitioned.

• [R1:] JC
P{X}
α ≺ CβK = ∀i, if xi 6= 0, then α (

i∑
j=1

xj) ≺ β i

Relation R1 applies to the case where a partition clock precedes a

normal clock. The semantics of R1 tells that for each non empty

subsequence on C
P{X}
α , the last occurrence of the ith subsequence in

C
P{X}
α precedes the ith occurrence of clock Cβ. Fig.6.2 shows us a table

in which we deduce the occurrence relations as well as a figure that

125

Extension of Timed-pNets

i xi Relations α (
i∑

j=1

xj) ≺ β i

i = 1 xi = 2 α2 ≺ β1

i = 2 xi = 3 α5 ≺ β2

i = 3 xi = 0 −−−−−
i = 4 xi = 1 α6 ≺ β4

i = 5 xi = 5 α11 ≺ β5

.

Fig. 6.2: Relation 1

demonstrates the relations.

• [R2:] JCβ ≺ C
P{X}
α K = Let x0 = 0, ∀i, if xi 6= 0, then β i ≺

α (1 +
i−1∑
j=0

xj)

Relation R2 applies to the case where a normal clock precedes a par-

tition clock. The semantics of R2 tells that for each non empty sub-

sequence on C
P{X}
α , the ith occurrence of clock Cβ precedes the first

occurrence of the ith subsequence in C
P{X}
α . Fig.6.3 shows us a table

in which we deduce the occurrence relations as well as a figure that

demonstrates the relations.

• [R3:] Let Y = {yi} and y0 = 0, JC
P{X}
α ≺ C

P{Y }
γ K = ∀i, j, if xi 6=

0, yi 6= 0, then α (
i∑

j=1

xj) ≺ γ (1 +
i−1∑
k=0

yk)

Let C
P{Y }
γ be a partition clock. Relation R3 illustrates the case of

a precedence relation on two partition clocks. The semantics of R3

tells that for each non empty subsequence on C
P{X}
α and C

P{Y }
γ , the

last occurrence of the ith subsequence in clock C
P{X}
α precedes the first

126

6.2. Clock Partition

i xi Relations β i ≺ α (1 +
i−1∑
j=0

xj)

i = 1 xi = 2 β1 ≺ α1

i = 2 xi = 3 β2 ≺ α3

i = 3 xi = 0 −−−−−
i = 4 xi = 1 β4 ≺ α6

i = 5 xi = 5 β5 ≺ α7

.

Fig. 6.3: Relation 2

occurrence of the ith subsequence in C
P{X}
α . Assume Y = {yi} =

{3, 2, 1, 0, 4, . . .}. Fig.6.4 shows us a table in which we deduce the

occurrence relations as well as a figure that demonstrates the relations.

Example 12 Let us take the “Control” component in Fig. 4.5 as an ex-

ample. The way of partition depends on the guard “[ExpRes != CurData]”.

Assume the guard triggers 3 times self-loops in the first cycle, twice self-loops

in the second cycle, and keep on triggering twice self-loops for the rest cy-

cles. Then we can write a partition X = {xi} = {3, 2, 2, . . .}. The timed

specification of the “Control” component can be written as: C?Consensus ≺
C

P{X}
LocExe ≺ C!Finish ≺ C

∆(1)
?Consensus. According to the relations R1 and R2, we

can draw the clock relations as shown in Fig.6.5.

6.2.2 Semantics of Coincidence Relations on Partition

Clocks

This section represents the semantics of coincidence relations on parti-

tion clocks. We first define Occurrence Filter on a partition clock.

127

Extension of Timed-pNets

i xi yi Relations α (
i∑

j=1

xj) ≺ γ (1 +
i−1∑
k=0

yk)

i = 1 xi = 2 yi = 3 α 2 ≺ γ 1

i = 2 xi = 3 yi = 2 α 5 ≺ γ 4

i = 3 xi = 0 yi = 1 −−−−−
i = 4 xi = 1 yi = 0 −−−−−
i = 5 xi = 5 yi = 4 α 11 ≺ γ 7

.

Fig. 6.4: Relation 3

Fig. 6.5: One example of Control Component Clock Relations

128

6.2. Clock Partition

Definition 32 (The kth Filter of a partition clock) Let C
P{X}
α = {{α 11, α 12, . . . , α 1x1},

{α 21, α 22, . . . , α 2x2}, . . . , {α i1, α i2, . . . , α ixi
}, . . .} be a partition clock

(X = {xi}). The kth (k ∈ N) filter of CP{X}
α is C

P{X}⊲k

α = {α 1k, α 2k, . . . , α ik, . . .}

in which α ik =

{
ρ for ik > xi

α ik for ik ≤ xi

. The new clock filters out the kth oc-

currence of each subsequence from the partition clock C
P{X}
α .

For example, assume we have a partition clock C
P{X}
α = {{α 1, α 2}, {α 3, α 4, α 5}, {ρ},

{α 6}, {α 7, α 8, α 9, α 10, α 11}, . . .}. If we set k=2, then we have C
P{X}⊲2

α

= {α 2, α 4, ρ, ρ, α 8, . . .}.

Two cases of relations are discussed: a partition clock coincides with a

normal clock; a partition clock coincides with a family of normal clocks.

• [R4:] JC
P{X}⊲k
α = CβK = JCβ = C

P{X}⊲k
α K = Let x0 = 0, ∀i, if xi 6=

0 ∧ k ≤ xi, then α (k +
i−1∑
j=0

xj) = β i

Relation R4 applies to the case where a filtered partition clock coincides

a normal clock. The semantics of R4 tells that the kth occurrence of

the ith subsequence in C
P{X}
α coincides the ith occurrence of clock Cβ.

Fig.6.6 shows us an example with k = 1, in which a table represents

the occurrence relations we deduced and a figure that demonstrates the

relations.

• [R5:] JC
P{X}
α = Cη[n]K = Let x0 = 0, ∀i, j ≤ xi, if xi 6= 0, then

α (
i−1∑
r=0

xr + j) = η[j] kj (j ∈ [1, n]), in which kj = N(ρ) +
i−1∑
r=0

xr +

j − (
n∑

j′ 6=j,j′=1

kj′) (N(ρ) is the sum of the occurrences of ρ till the ith

subsequence).

Relation R5 applies to the case where a partition clock coincides with

a family of normal clocks. Let Cη[n] be a family of clock Cη, in which n

is the length of the set Cη[n] = {Cη [1], Cη [2], . . . , Cη [n]}. The semantics

of R5 tells that for each non empty subsequence in the C
P{X}
α , the jth

129

Extension of Timed-pNets

i xi Relations α (1 +
i−1∑
j=0

xj) = β i

i = 1 xi = 2 β1 = α1

i = 2 xi = 3 β2 = α3

i = 3 xi = 0 −−−−−
i = 4 xi = 1 β4 = α6

i = 5 xi = 5 β5 = α7

.

Fig. 6.6: Relation 4

occurrence of the ith subsequence in the clock C
P{X}
α coincides with the

kth
j occurrence in the clock Cη [j](j ∈ [1, n]).

The relation can be used to specify a flexible number of communica-

tions. In chapter 4, the use case 4.5 given in the page 64 has a fix

number of cars (car1 and car2) that communicate with car0. How-

ever, in reality, the number of cars may change, for example, in the

first cycle, there are 2 cars that communicate with car0; then in the

second cycle, it may change to 3 cars that communicate with car0. It

is very complicated to specify this situation without using the relations

R5.

Fig.6.7 shows us an example with a table in which we deduce the oc-

currence relations and a figure that illustrates the relations. Let us

take relation “α 7 = η[1] 5” as an example. At the 5th cycle (i = 5),

we have N(ρ) = 1, x5 = 5. Since j = 1, we can calculate the index

of α by the formula
i−1∑
i=0

x(i−1) + j = x0 + x1 + x2 + x3 + x4 + j =

0 + 2 + 3 + 0 + 1 + 1 = 7, and the index of η[1] by the formula

130

6.2. Clock Partition

j Relation i=1
x1=2

i=2
x2=3

i=3
x3=0

i=4
x4=1

i=5
x5=5

. . .

j = 1 α (
i−1∑

i=0
xi + 1) = η[1] k1 α 1 = η[1] 1 α 3 = η[1] 2 −− α 6 = η[1] 4 α 7 = η[1] 5 . . .

j = 2 α (
i−1∑

i=0
xi + 2) = η[2] k2 α 2 = η[2] 1 α 4 = η[2] 2 −− −− α 8 = η[2] 3 . . .

j = 3 α (
i−1∑

i=0
xi + 3) = η[3] k3 −− α 5 = η[3] 1 −− −− α 9 = η[3] 2 . . .

j = 4 α (
i−1∑

i=0
xi + 4) = η[4] k4 −− −− −− −− α 10 = η[4] 1 . . .

j = 5 α (
i−1∑

i=0
xi + 5) = η[5] k5 −− −− −− −− α 11 = η[5] 1 . . .

.

Fig. 6.7: Relation 5

kj = N(ρ) +
i−1∑
i=0

x(i−1) + j − (
n∑

j′ 6=j,j′=1

k′
j) = 1 + 6 + 1− (2 + 1) = 5.

6.2.3 Partition Clock Property

The design of clock partition helps us to flexibly group the timed-action

occurrences. In consequence, we are able to flexibly build relations between

the occurrences of two clocks. It alleviates our workload on constructing

clock filters and results in an easier and more flexible way to build timed

specifications. Hereafter, in the theorem 5, we prove that the relation on

partition clocks can be expressed by a set of filtered clocks. This theorem

tells that the precedence and coincidence relations can also apply to the

partition clocks and keeps the correction of the relation properties in the

131

Extension of Timed-pNets

section 4.2.2 of the chapter 4. Therefore, the theorem 1 from the chapter 4

also applies to the partition clocks.

Theorem 5 Let Cβ be a normal clock that has not been partitioned and

Cη[n] be a set of normal clocks. Let C
P{X}
α (resp. C

P{Y }
γ) be a partition

clock with X = {xi} (i ∈ N, x0 = 0) (resp. Y = {yi} (y0 = 0)). Given

a set of relations {CP{X}
α ≺ Cβ, Cβ ≺ C

P{X}
α , C

P{X}
α ≺ C

P{Y }
γ , C

P{X}⊲k
α =

Cβ, C
P{X}
α = Cη[n]}. We say that these clock relations can be expressed by

a set of filtered clocks as shown in the following cases:

• Case1: the relation C
P{X}
α ≺ Cβ can be substituted by C

{
i∑

j=1
xj}i∈N

α ≺
C

{i|xi 6=0}i∈N

β ;

• Case2: the relation Cβ ≺ C
P{X}
α can be substituted by C

{i|xi 6=0}i∈N

β ≺

C
{1+

i−1∑

j=0
xj}i∈N

α ;

• Case3: the relation C
P{X}
α ≺ C

P{Y }
γ can be substituted by C

{
i∑

j=1
xj |yi 6=0}i∈N

α ≺

C
{1+

i−1∑

j=0
yj |xi 6=0}i∈N

γ ;

• Case4: the relation C
P{X}⊲k
α = Cβ can be substituted by C

{k+
i−1∑

j=0
xj}i∈N

α =

C
{i|xi 6=0∧k≤xi}
β ;

• Case5: the relation C
P{X}
α = Cη[n] can be substituted by a set of rela-

tions {C
{1+

i−1∑

r=0
xr}i∈N

α = C
{k1|xi 6=0∧1≤xi}
η[1] , C

{2+
i−1∑

r=0
xr}i∈N

α = C
{k2|xi 6=0∧2≤xi}
η[2] , . . . ,

C
{n+

i−1∑

r=0
xr}i∈N

α = C
{kn|xi 6=0∧n≤xi}
η[n] };

Proof. Let us analyze these clock relations case by case.

• For the Case1, the semantics of the relation C
P{X}
α ≺ Cβ is JC

P{X}
α ≺

CβK = ∀i, if xi 6= 0, then α (
i∑

j=1

xj) ≺ β i. According to the definitions

of precedence and clock filtering, we can construct two filtered clocks

132

6.2. Clock Partition

C
{

i∑

j=1
xj}i∈N

α and C
{i|xi 6=0}i∈N

β such that the semantics of JC
{

i∑

j=1
xj}i∈N

α ≺

C
{i|xi 6=0}i∈N

β K = ∀i, if xi 6= 0, then α (
i∑

j=1

xj) ≺ β i. So the relation

C
P{X}
α ≺ Cβ can be substituted by a precedence relation on the two

filtered clocks.

• For the Case2, the semantics of the relation Cβ ≺ C
P{X}
α is JCβ ≺

C
P{X}
α K = ∀i, if xi 6= 0, then β i ≺ α (1 +

i−1∑
j=0

xj). According to

the definitions of precedence and clock filtering, we can construct two

filtered clocks C
{1+

i−1∑

j=0
xj}i∈N

α and C
{i|xi 6=0}i∈N

β such that the semantics

of JC
{i|xi 6=0}i∈N

β ≺ C
{1+

i−1∑

j=0
xj}i∈N

α K = ∀i, if xi 6= 0, then β i ≺ α (1 +
i−1∑
i=0

x(i−1)). So the relation Cβ ≺ C
P{X}
α can be substituted by a prece-

dence relation on the two filtered clocks.

• For theCase3, the semantics of the relation C
P{X}
α ≺ C

P{Y }
γ is JC

P{X}
α ≺

C
P{Y }
γ K = ∀i, if xi 6= 0, yi 6= 0, then α (

i∑
j=1

xj) ≺ γ (1 +
i−1∑
j=0

yj). We

can construct two filtered clocks C
{

i∑

j=1
xj |yi 6=0}i∈N

α and C
{1+

i−1∑

j=0
yj |xi 6=0}i∈N

γ

such that C
{

i∑

j=1
xj |yi 6=0}i∈N

α ≺ C
{1+

i−1∑

j=0
yj |xi 6=0}i∈N

γ has the same semantics

as C
P{X}
α ≺ C

P{Y }
γ .

• For theCase4, the semantics of the relation C
P{X}⊲k
α = Cβ is JC

P{X}⊲k
α =

CβK = JCβ = C
P{X}⊲k
α K = ∀i, if xi 6= 0∧k ≤ xi, then α (k+

i−1∑
j=0

xj) = β i

(k is a fixed natural number). We can construct two filtered clocks

C
{k+

i−1∑

j=0
xj}i∈N

α and C
{i|xi 6=0∧k≤xi}
β such that the semantics of clock rela-

tion JC
{k+

i−1∑

j=0
xj}i∈N

α = C
{i|xi 6=0∧k≤xi}
β K = ∀i, if xi 6= 0 ∧ k ≤ xi, then

α (k +
i−1∑
j=0

xj) = β i.

133

Extension of Timed-pNets

• For theCase5, the semantics of the relation C
P{X}
α = Cη[n] is JC

P{X}
α =

Cη[n]K = ∀i, j ≤ xi, if xi 6= 0, then α (
i−1∑
r=0

xr + j) = η[j] kj (j ∈ [1, n]).

We can construct a set of filtered clocks {C
{1+

i−1∑

r=0
xr}i∈N

α , C
{2+

i−1∑

r=0
xr}i∈N

α ,

. . . , C
{n+

i−1∑

r=0
xr}i∈N

α } and {C{k1|xi 6=0∧1≤xi}
η[1] , C

{k2|xi 6=0∧2≤xi}
η[2] , . . . , C

{kn|xi 6=0∧n≤xi}
η[n] }.

Then we can build a set of coincidence relations on these filtered clocks

as follows:

JC
{1+

i−1∑

r=0
xr}i∈N

α = C
{k1|xi 6=0∧1≤xi}
η[1] K = ∀i, if xi 6= 0∧1 ≤ xi, then α (

i−1∑
r=0

xr + 1) =

η[1] k1,

JC
{2+

i−1∑

r=0
xr}i∈N

α = C
{k2|xi 6=0∧2≤xi}
η[2] K = ∀i, if xi 6= 0∧2 ≤ xi, then α (

i−1∑
r=0

xr + 2) =

η[2] k2

. . .

JC
{n+

i−1∑

r=0
xr}i∈N

α = C
{kn|xi 6=0∧n≤xi}
η[n] K = ∀i, if xi 6= 0 ∧ n ≤ xi, then

α (
i−1∑
r=0

xr + n) = η[n] kn

under the condition
n∑

j=1

kj = N(ρ) +
i−1∑
r=0

xr + j. From the set of seman-

tics we can see that the set of coincidence filtered clocks has the same

semantics as the relation C
P{X}⊲k
α = Cβ. Therefore, the relation can be

substituted by a set of relations {C
{1+

i−1∑

r=0
xr}i∈N

α = C
{k1|xi 6=0∧1≤xi}
η[1] ,

C
{2+

i−1∑

r=0
xr}i∈N

α = C
{k2|xi 6=0∧2≤xi}
η[2] , . . . , C

{n+
i−1∑

r=0
xr}i∈N

α = C
{kn|xi 6=0∧n≤xi}
η[n] }.

6.3 Clock Union

Here, we define a clock union operator “∔” that is able to create a

new clock from two different clocks. In CCSL [7], a simple version of clock

union is defined as Jc1 + c2K = (c1 ∨ c2) (c1 and c2 are two logical clocks)

in the sense that the union clock expression c1 + c2 ticks whenever c1 or c2

134

6.3. Clock Union

Fig. 6.8: clock union

ticks. In our thesis, we extend the clock union of CCSL by adding exclusion

constraints between clock c1 and c2. Therefore, our clock union is typical for

uniting the clocks that are forbidden to coincide. We mainly use the operator

for specifying the branches in the transition systems in order to simplify the

expressions of timed specifications. We give the definition of the Clock Union

operator as follows.

Definition 33 (Clock Union on two clocks) Let Cα and Cβ be two logical

clocks. Clock Cγ is the union of the two clocks (denoted as Cα ∔ Cβ). We

say that clock Cγ can tick if

• the clocks Cα and Cβ are exclusive (Cα♯Cβ);

• either Cα or Cβ ticks.

Formally, JCγK = JCα ∔ CβK = (γ k = α i ∨ β j) ∧ (k = i+ j)(i, j, k ∈ N).

From the definition, we know that the clocks Cα and Cβ cannot tick

at the same time. In other words, only one clock can tick each time. Fig.

6.8 demonstrates a simple example of the clock union. Furthermore, we can

build the union of a set of clocks C. The definition below defines a clock

union on n clocks.

Definition 34 (Clock Union on a set of clocks) Let clock Cγ be a new clock

generated by the union of a finite set of logical clocks {Ci}(i ∈ [1, n], n ∈ N).

(denoted as ∔{Ci}). We say that clock Cγ can tick if

135

Extension of Timed-pNets

Control

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

C?Request(Ins)tq

C !Cmd(Ins)tc

C ?R(b)tR

C

C C

C
C

ττ t

C ττ t

[b=True]

!Consensus(ExpRes, k')
to

[k' := 0; k'++; k'

?Finish(k')t f
[k' := 0; k'++; k'

!Terminal t T [b=False]
!Cancel t L

Initial

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k := 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

C ?Notify(Ins)tn

!Ack(r)C m
ta

CommRes[m]

ChannelNtf[m]

ChannelAck[m]

Car0

Control [m]

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

Car[m] (Car1 / Car 2)

[m]

[m]

[m]

[m]

[m]

Channel

Channel

CConsensus

C Finish

C Cmd

C R

C Notifyg1
CNotify g2

C Ackg3CAckg4

2]

[k := 1; k++; k 2]

2]2]

[m]
[m]

[m][m]

Fig. 6.9: Timed-pNets: Communication Behaviour Model of Cars Insertion Scenario

• ∀i, the clocks Ci are exclusive among them (C1♯C2♯ . . . ♯Ci♯ . . . ♯Cn);

• whenever Ci ticks.

Formally, JCγK = J∔{Ci}K = (Cγ[k] = C1[j1]∨ . . .∨Ci[ji]∨ . . .∨Cn[jn])∧(k =
n∑

i=1

ji)(k, ji ∈ N)

The operator is commutative and associative. Furthermore, since the

operator is used to build a new logical clock by means of building a union of

clocks, we actually do not change the definition of a logical clock. Therefore,

the precedence and coincidence relations can still apply to the new generated

clocks (built by clock union operators) and the properties in the section 4.2.2

in the page 63 are still hold for these new clocks.

6.4 Examples and Simulations

In this section, we take the components “Control” and “Initial” from

the Fig. 4.5 in the page 64 as examples to represent how to specify them by

using partition clocks and union operators. Here, we copy the figure to this

section as shown in the Fig. 6.9.

136

6.4. Examples and Simulations

Let Cf be a reference clock chosen for our simulation. For simplification,

we set the Cf as a logical clock in which the occurrences appear periodically.

we assume the delay bounds of all clocks are [1,2] (based on Cf), and require

that the execution time of car0 moving to another lane must less than 5 steps

of Cf after the clock C?Consensus(ExpRes)to ticks. Here, we define two properties

to be checked in our simulation:

• Safety Property: no clock relation conflict exists.

• Time Property: the clock C!Finish
tf must tick within 5 steps (based on

Cf) after the clock C?Consensus(ExpRes)to ticks (formally, C?Consensus(ExpRes)to ≺[1,5]

C!Finish
tf).

We then input the timed specifications of these components into the TimeSquare

tool to check the safety and time properties.

6.4.1 The Timed Specification of “Control” Compo-

nent

From the Fig. 6.9 we can see that the execution of clock CLocExetx

depends on the guard “[ExpRes != CurData]”. The system keeps on check-

ing the guard. If it is satisfied, it triggers the clock CLocExetx to tick once.

Then the system checks the guard again. If it is still satisfied, the system

keeps on triggering the clock to tick until the guard is not satisfied. So

the clock CLocExetx can be triggered many timed before the system tran-

sits to the next state. We use the partition clock C
P{X}
LocExetx

to specify the

situation. And the way of partition X = {xi} is built from the function

below: xi =
v∑

j=u

aj, in which u = i +
i−1∑
k=1

xk, v = i +
i−1∑
k=1

xk + xi, and

aj =

{
1 for ExpRes! = CurData

0 for ExpRes = CurData
.

For example, if we get a sequence of aj = 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, then

we can calculate x1 = a1 + a2 + a3 + a4 = 3. It stops at a4 because a4 =

0. Then x2 = a5 + a6 + a7 = 2 (a7 = 0). Then x3 = a8 = 0. Then

137

Extension of Timed-pNets

6.1밀: Calculate the Way of Partition X

j 1 2 3 4 5 6 7 8 9 10 11

aj 1 1 1 0 1 1 0 0 1 1 0

i 1 2 3 4

xi 3 2 0 2

x4 = a9 + a10 + a11 = 2 (a11 = 0). The result is shown in the table 6.1.

In the end we have X = {xi} = {3, 2, 0, 2}. Furthermore, according to the

Fig.4.5, we can get the timed specification of the “Control ”component as:

C?Consensus(ExpRes)to ≺ C
P{X}
LocExetx

≺ C!Finish
tf ≺ C

∆(1)
?Consensus(ExpRes)to in which

X = {xi}(xi ∈ N).

6.4.2 Timed Specification of “Initial” Component

The “Initial” component in the Fig. 4.5 includes a branch. It tells

that after clock C?RtR , either clock Cτ tτ or clock C!CanceltL ticks. In this

case we use the clock union operator to specify the relation as C?R(b)tR ≺
Cτ tτ ∔C!CanceltL . Similarly, when finishing a cycle, a clock union C!TerminaltT ∔

C!CanceltL precedes C
∆(1)

?Request(Ins)tq
. Besides, from the guard “[k′ = 0, k′ +

+, k′ ≤ 2]” we can see that the selfloop on clock C!Consensus(ExpRes,k′)to and

C?Finish(k′)
tf execute 3 times. So we have the relation C

{3s−2}s∈N

!Consensus(ExpRes,k′)to ≺
C

{3s−1}s∈N

!Consensus(ExpRes,k′)to ≺ C
{3s}s∈N

!Consensus(ExpRes,k′)to and C
{3s−2}s∈N

?Finish(k′)
tf
≺ C

{3s−1}s∈N

?Finish(k′)
tf
≺

C
{3s}s∈N

?Finish(k′)
tf

. The timed specification of this component is as follows:

TS of “Initial” Component:

C?Request(Ins)tq ≺ C!Cmd(Ins)tc ≺ C?R(b)tR ≺ Cτ tτ ∔ C!CanceltL ≺
Cτ tτ ≺ C

{3s−2}s∈N

!Consensus(ExpRes,k′)to ≺ C
{3s−1}s∈N

!Consensus(ExpRes,k′)to

≺ C
{3s}s∈N

!Consensus(ExpRes,k′)to ≺ C ′
τ tτ ≺ C

{3s−2}s∈N

?Finish(k′)
tf

≺ C
{3s−1}s∈N

?Finish(k′)
tf
≺ C

{3s}s∈N

?Finish(k′)
tf
≺ C!TerminaltT ;

C!TerminaltT ∔ C!CanceltL ≺ C
∆(1)

?Request(Ins)tq

Actually, we can use a partition clock C
P{Y }
!Consensus(ExpRes,k′)to and C

P{Z}
?Finish(k′)to

138

6.4. Examples and Simulations

(Y = Z = {3, 3, 3, . . .}) to substitute a set of clocks for the two loops. In the

end, the timed specification can be simplified as:

The simple version of “Initial” Component:

C?Request(Ins)tq ≺ C!Cmd(Ins)tc ≺ C?R(b)tR ≺ Cτ tτ ∔ C!CanceltL ≺
Cτ tτ ≺ C

P{Y }
!Consensus(ExpRes,k′)to ≺ C ′

τ tτ ≺ C
P{Z}
?Finish(k′)to ≺ C!TerminaltT ;

C!TerminaltT ∔ C!CanceltL ≺ C
∆(1)

?Request(Ins)tq

6.4.3 Simulate the “Control” component

Let us take “Control” component as an example. When doing simula-

tion, assume X = {xi} = {3, 2, 0, 2, . . .}.1 By the tool TimeSquare, we find

that there is no clock relation conflict. However, when we check the time

property, we found a time constraint conflict.

The reason for this conflict is that the action “LocExe” may repeat 3

times. Since we assumed that the delay of each clock is among [1,2], the

delay between Clock C?Consensus(ExpRes)to and C!Finish
tf falls among [3, 6] 6⊂

[1,5]. So we need refine the specification to remove the conflict.

One solution is to design a new guard [xi ≥ 3] and a new clock C!Abortiontb

that communicates with “Initial” component. When the guard is satisfied

(it means that the action “LocExe” executes more than 3 times), the clock

C!Abortiontb ticks (see Fig. 6.10). We update the timed specification of the

“Control” component as follows:

TS of updated Control component:

C?Consensus(ExpRes)to ≺ C
P{X}
LocExetx

;

C
P{X}
LocExetx

≺ [xi < 3]C!Finish
tf ∔ [xi ≥ 3]C!Abortiontb ;

C!Abortiontb ∔ C!Finish
tf ≺ C

∆(1)
?Consensus(ExpRes)to

1the dots “. . . ” mean that the number 2 is repeated. If we need repeat a set of numbers,

we can use brace simbols. For example, {3, 2, 0, (2, 3), . . . } means the set numbers (2,3)

are repeated. So it has the same meaning as {3, 2, 0, 2, 3, 2, 3, (2, 3), . . . }.

139

Extension of Timed-pNets

Fig. 6.10: Control Component Update

Notice that we do not put the guard [ExpRes != ExpData] as a guard in

the timed specification. Because as we explained before, when we generate

the partition clock C
P{X}
LocExetx

, we already use the guard [ExpRes != ExpData]

to get the partiton X.

6.4.4 Simulate the “Initial” component

Since the “Abortion” signal will be sent from the “Control” component

to the “Initial” component, we add a clock C?Abortiontb in the “Initial” com-

ponent. The new timed-pLTS of the component is shown in Fig.6.11. We

also update its timed specification as follows:

TS of updated Initial component:

Cτ tτ ≺ C
P{Y }
!Consensus(ExpRes,k′)to ; (Y = {3, 3, 3, . . .})

C
P{Y }
!Consensus(ExpRes,k′)to ≺ C

P{Z}zi∈[0,3]

?Finish(k′) ; (Y = Z = {3, 3, 3, . . .})
C

P{Z}zi∈[0,3]

?Finish(k′) ≺ [zi = 3]C!TerminaltT ∔ [zi < 3]C?Abortiontb ;

C?Abortiontb ≺ C!Abortiontb ;

C!TerminaltT ∔ C!Abortiontb ∔ C!CanceltL ≺ C
∆(1)

?Request(Ins)tq
;

After simulating again the corrected component, we found both proper-

140

6.5. Conclusion

Fig. 6.11: Initial Component Update

ties are satisfied.

6.5 Conclusion

In this chapter, we defined clock partition and clock union to easy the

building of timed specifications. The simulation of applying them to the

“Control” and “Initial” components illustrated the advantages: making the

timed specifications easier to understand and providing users a flexible way

to specify complicated situations. The extensions are conservation in the

sense that they preserve the theorem 1 and properties in the section 4.2.2.

In the next chapter, we will model the full “car inserting” use case and

represent how we build a hierarchical timed-pNets. System properties (e.g.

safety, latency properties) will be designed for the system. We will use the

TimeSquare tool to check these properties in each layer. Besides, corrections

of the use case model will be discussed when these properties are not satisfied.

141

Chapter 7 Full Use Case

In this chapter, a full use case is represented to demonstrate how we build a

timed-pNets model and check its safety and time properties. We start with

a full scenario of the car inserting use case in the section 1.5.2 of the page

23. Then we design five properties that we are interested in. We represent

the procedure of building time-pNets model including the structure designing

of the model. Since timed-pNets have a hierarchical structure, we build and

simulate the model from bottom to top. In each layer we use the TimeSquare

tool to check the properties that are related to this layer. Refinements are

proposed if the properties are not satisfied. Furthermore, we design some

advanced simulations like communicating with undetermined number of cars.

In the end, we conclude our works.

143

Full Use Case

7.1 Use Case

7.1.1 Background of ITS

An Intelligent Transportation System (ITS) is an application integrated

the technologies of communication, control and information processing. All

elements of the transportation system, including the vehicles, the infrastruc-

tures, and the drivers or users, interact dynamically among them. The aim

of ITS is to improve real time decision making, thereby improving the effi-

ciency of the entire transport system. In ITS, vehicles and infrastructures are

equipped with sensors and actuators. They communicate with each other to

update physical information and accomplish remote controlling. Currently,

Research and Innovative Technology Administration (RITA) [91] in U.S. De-

partment of Transportation has started research work on it to achieve a

vision of national transportation by feature a connected transportation envi-

ronment among vehicles, infrastructures and passengers’ portable devices. It

raises the importance of real-time communications among these distributed

nodes since the data out of date would make big mistakes even sometimes

could lead to a car accidence. For example, the late delivery of global traffic

information to cars may result to a wrong guiding for cars to choose their

best way. Moreover, the late information exchange among cars may cause a

car accidence especially when they cannot see each other at cross.

Two communication safety applications are considered in ITS: vehicle to

infrastructure (V2I) communications and vehicle to vehicle (V2V) communi-

cations. In the two applications, the vehicles are allowed to access network

resources (e.g. MB-Portal, A-Class-Online, smart webmove, ...), and the

back-end infrastructures are able to retrieve information (e.g. diagnostics

data) from the vehicles. Vehicles and infrastructures share and exchange

information and sensor data among each other. We took a use case mainly

from vehicle to vehicle application to build a timed-pNets model and analyze

its properties. We call the use case as Car Inserting. It describes that car0

can change its current lane and insert between other two cars after getting

144

7.1. Use Case

Fig. 7.1: Car Insertion

an “insert” request from human beings or other smart devices, as shown in

the Fig. 7.1. Before inserting, car0 sends a request to other two cars to ask if

it can execute the inserting action. If one of the two cars does not agree, the

inserting action will be aborted. If both cars agree to let car0 insert between

them, then car0 starts to change its lane and to insert between the two cars.

The next section represents us the scenarios and requirements.

7.1.2 Car Inserting Use Case Scenario

In this section, we list detailed scenarios and timed requirements. These

requirements are used to check the time constraint conflicts and latency prop-

erties. We import into our model a reference clock Cf in which the timed-

action occurs periodically. All the timed requirements are designed based

on the reference clock. We separate the use case into two phases: agree-

ment phase and execution phase. For the agreement phase, the scenario is

as follows:

• car0 gets a change-lane request (e.g. from a human user);

• car0 sends “notify” requests to car1 and car2 to get an agreement, and

the time delay from getting a change-lane request to sending a “notify”

is no more than 3 time units(based on Cf);

• car1 (resp. car2) acknowledges car0 “yes” or “no” within 10 time

units(based on Cf);

145

Full Use Case

• after sending “notify”, car0 collects all results from car1 and car2 ;

• If both car1 and car2 answer “yes”, car0 signals the consensus to car1

and car2 and then goes to the execution phase scenario,

• otherwise car0 aborts the procedure.

The scenario of the execution phase is:

• car1 slows down and/or car2 speeds up to leave more space between

them for car0, and this execution must finish within 5 units (based on

Cf);

• Meanwhile, car0 changes its direction and moves to lane2;

• car0 notifies the end of the procedure with a ”finish” signal.

In the use case, for simplification, the delay bounds of those clocks that we

do not specified in the scenario are set as [1, 2].

7.1.3 Properties

Here we design some properties in which the time units of these prop-

erties are based on the reference clock Cf . The properties P1 and P2 are

meta-properties in the sense that they do not need to be encoded and can

be checked directly by the TimeSquare tool. The other three properties need

to be encoded with CCSL format (detailed information can be found in the

section 7.3).

(P1.) Safety Property: no logical clock relation conflict exists.

(P2.) Safety Property: system clock relations satisfy the following relation

requirements: 1) the change-lane requests happen before sending noti-

fications; 2) the sending notifications happen before getting acknowl-

edgements; 3) the changing lane execution actions happen before send-

ing the “finish” signal.

146

7.2. Build Timed-pNets Model

(P3.) Safety Property: no time constraint conflicts.

(P4.) Latency Property: assume that the network communication delay is

less than 10 time units, then the latency from sending a notification

to finishing collecting all acknowledgements is no more than 30 time

units.

(P5.) Latency Property: the latency from car0 getting change-lane requests

to sending “Terminal” signals is no more than 55 time units.

7.2 Build Timed-pNets Model

Here we represent the procedure of building timed-pNets as following

steps:

(1.) According to the scenario of the use case, we design a component-based

structure that includes timed-pNets holes and communications between

holes;

(2.) Fill holes with timed-pLTSs and then transform to timed specifications.

7.2.1 System Structure

We use the component-based modelling approach to design the system

structure. Since the communications between cars are asynchronous, we

design channel components to build communications between cars. As shown

in the Fig. 7.2, the top level (level 2) represents a coarse design of our

system. Then we refine the system as shown in the level 1 in the Fig. 7.2.

Since the communications in this level is synchronous, we directly build the

communications by using synchronous vectors. In the leaf level (level 0,

as shown with green circles), we represent the timed specifications of those

components.

For simplification, we directly represent the structure with all levels as

shown in the Fig. 7.3. In this structure, on-board car systems are modeled by

147

Full Use Case

Fig. 7.2: Tree Structure of Use Case

Fig. 7.3: The Component-based Structure of Car Inserting Use Case

148

7.3. Simulation

several components including “Initial”, “CommIni”, “CommRes”, “Control”,

etc. In the figure we only show the components that participate in the

protocol. The change-lane requests are received by the “Initial” component.

Then the request triggers “CommIni” component that takes charge of the

communication part. The component “CommIni” sends “Notify” signals to

the component “CommRes” of other cars and waits for the “ack” signals

from them. Then the “CommIni” transmits a communication result to the

“Initial” component. According to the result, the component decides whether

or not to send “Consensus” signals to other cars to execute their movements.

In the end, “Initial” component sends “Terminal” or “Cancel” signals to

users or drivers. The red numbers give the order of these actions.

7.2.2 Fill Holes

Then these holes in the Fig.7.3 are filled with timed-pLTSs as shown in

the Fig. 7.4. These timed-pLTSs are then translated to the timed specifica-

tions before inputting to the TimeSquare to check the properties. Since we

already discussed the timed specifications of these holes in the chapters 4 and

6. For simplification, here we directly represent the holes with their timed

specification as shown in the Fig.7.5. Notice that the timed specifications

are not the final version. They would be modified later if the properties we

required are not satisfied.

7.3 Simulation

We use the TimeSquare tool to simulate and check our model. Since the

timed-pNets have a tree structure, and the timed-pNets we designed for the

“Car Inserting” use case has three levels, by analysing the properties designed

in the section 7.1, we locate these properties in the levels where they would

be checked. As shown in the Table 7.1, the symbol
√

says that the properties

of the columns should be checked in the level of their crossed rows. We start

our simulation from the bottom level and check the properties that located

149

Full Use Case

Control

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

C?Request(Ins)tq

C !Cmd(Ins)tc

C ?R(b)tR

C

C C

C
C

ττ t

C ττ t

[b=True]

!Consensus(ExpRes, k')
to

[k' := 0; k'++; k'

?Finish(k')t f
[k' := 0; k'++; k'

!Terminal t T [b=False]
!Cancel t L

Initial

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k := 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

C ?Notify(Ins)tn

!Ack(r)C m
ta

CommRes[m]

Car0

Control [m]

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

Car[m] (Car1 / Car 2)

[m]

[m]

[m]

[m]

[m]

CConsensus

C Finish

C Cmd

C R

C Notifyg1

CNotify g2

C Ackg3
CAckg4

2]

[k := 1; k++; k 2]

2]2]

[m]

[m]

[m]

[m]

ChannelCons[m]

ChannelFin[m]

C
[m]

C

C
[m]

C [m]

ChannelNtf[m]

ChannelAck[m]

C c.?Notify(Ins,k)tn
[m]C c.!Notify(Ins,k)tn

[m]

C c.?Ack(r)m
ta
[m]

C c.!Ack(r)m
ta
[m]

c.?Consensus(ExpRes)
to

[m]
c.!Consensus(ExpRes)

to

c.?Finish
tfc.!Finish

tf

CConsensus

CConsensus

C Finish C Finish

g5[m]
g6[m]

g7[m]
g8[m]

Fig. 7.4: Fill Timed-pLTS into Holes

Fig. 7.5: Put Timed Specification into Holes

7.1밀: Levels and properties

P1 P2 P3 P4 P5

Level 0
√

-
√

- -

Level 1
√ √ √

- -

Level 2
√ √ √ √ √

150

7.3. Simulation

in this level. Then we build an upper level and check the properties located

in this level till we finish all the levels. Here we represent the procedure of

simulating the model and checking the properties as follows:

(1.) simulate the leaf nodes of Fig. 7.2 and check if property P1 and P3 are

satisfied;

(2.) build the middle level of Fig. 7.2 by composing these components into

timed-pNets nodes, and check the properties P1, P2 and P3;

(3.) build the top level of Fig. 7.2 and check the properties P1 to P5.

Since the properties P1 and P3 are meta-properties, they should be checked

in all the levels. Among these properties, some need to be translated to the

form that can be accepted by the TimeSquare tool, some do not need. For

example, usually the property P1 does not need to be translated, because

the property can be check directly by the TimeSquare. Take another exam-

ple, the property P3, needs to be translated. Actually it includes a set of

properties. According to the scenario from the section 7.1, we list its sub

properties as follows:

• (P3.1) C?Consensus(ExpRes)to ≺[1,5] C!Finish
tf , this property is located in

the “Control” component of the level 0;

• (P3.2) Car0.C?Request(Ins)tq ≺[1,3] Car0.C!Notify(Ins,k)tn , this property is

located in the “Car0” component of the level 1.

• (P3.3)Car0.C!Notify(Ins,k)tn ≺[1,10] Car[m].C!Ack(rm)ta , this property is

located in the top level (level 2) between the components “Car0” and

“Car[m]”.

Usually a property can be represented as different forms when they are lo-

cated in different levels. Let us take the property P3.1 as an example, when

we discuss it in the level 0, the property is presented as C?Consensus(ExpRes)to ≺[1,5]

C!Finish
tf . When we discus it in the level 1, it is presented as Car0.CConsensus(ExpRes)to ≺[1,5]

151

Full Use Case

Car0.CFinish
tf . Furthermore, when we discuss it in the level 2, it is presented

as CConsensus(ExpRes)to g6[m]
≺ CFinish

tf g7[m]
. In other words, the property does

not change, but the clocks related to the property may be changed in terms

of the level they are located. For the other properties P2, P4 and P5, they

also need to be encoded with the different clocks when we discuss them in

different levels. The detailed difference will be represented in the sections

7.3.2 and 7.3.3.

7.3.1 Simulate the leaf level

In the leaf level, we check the components “Control”, “Initial”, “Com-

mIni”, “CommRes” and the channels (“ChannelNtf”, “ChannelAck”, etc.).

We import the timed specifications (see the Fig.7.5) of these components into

TimeSquare.

Translate properties

We encode the timed specifications of these leaves into the TimeSquare

tool [41]. Then we check if the clock relation conflict (P1) and the time con-

straint conflict (P3) exist. If a conflict exists, we need to correct our model.

We do not need to translate property P1. In the leaf level, only the property

P3.1 is located in this level and it is translated to C?Consensus(ExpRes)to ≺[1,5]

C!Finish
tf .

Simulation Result

Since we already discussed the timed specifications of those leaves in

the chapters 4 and 6. Here we directly give the results. According to the

two chapters, to satisfy the property P1 and P3.1, we refined the system as

shown in the Fig. 7.6.

After encoding these timed specifications of the refined system to the

TimeSquare, we find that there is no clock relations conflict. And the latency

property P3.1 is also satisfied.

152

7.3. Simulation

Control

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

C?Request(Ins)tq

C !Cmd(Ins)tc

C ?R(b)tR

C

C C

C
C

ττ t

C ττ t

[b=True]

!Consensus(ExpRes, k')
to

[k' := 0; k'++; k'

?Finish(k')t f
[k' := 0; k'++; k'

!Terminal t T [b=False]
!Cancel t L

Initial

C ?Cmd(Ins)tc

C !Notify(Ins,k)tn
[k := 1; k++; k

C ττ t

?Ack(k,r)C m
ta

C !R(b)
tR

b=V rm

CommIni

C ?Notify(Ins)tn

!Ack(r)C m
ta

CommRes[m]

Car0

Control [m]

C ?Consensus(ExpRes)
t o

[ExpRes != CurData]
CLocExe tx

[ExpRes = CurData]
C !Finisht f

Car[m] (Car1 / Car 2)

[m]

[m]

[m]

[m]

[m]

CConsensus

C Finish

C Cmd

C R

C Notifyg1

CNotify g2

C Ackg3
CAckg4

2]

[k := 1; k++; k 2]

2]2]

[m]

[m]

[m]

[m]

ChannelCons[m]

ChannelFin[m]

C
[m]

C

C
[m]

C [m]

ChannelNtf[m]

ChannelAck[m]

C c.?Notify(Ins,k)tn
[m]C c.!Notify(Ins,k)tn

[m]

C c.?Ack(r)m
ta
[m]

C c.!Ack(r)m
ta
[m]

c.?Consensus(ExpRes)
to

[m]
c.!Consensus(ExpRes)

to

c.?Finish
tfc.!Finish

tf

CConsensus

CConsensus

C Finish C Finish

g5[m]
g6[m]

g7[m]
g8[m]

C !Abortion t b

C ?Abortiont b

C !Abortiont b C !Abortiont b
[m]

Fig. 7.6: The first Refinement

7.3.2 Simulate the middle level

Then we compose these well designed components and build the upper

level timed-pNet nodes. From the Fig.7.2, we can see that car0 and car1

(resp.car2) are located in the middle level. These cars are composed by the

components “Initial”, “Control”, “CommIni” and “CommRes”. Let us take

car0 as an example to represent how to build its timed specification. Other

timed specifications in this layer can also be built by the same way.

Timed-pNets formalization of car0

Fig.7.7 represents the timed-pNet node of car0 including the communi-

cations between its local components. Even though the component “Comm-

Res” in car0 does not participate to the local communications, we still keep

it here to represent a complete car model.

We formalize the node as follows:

• P = {k, Ins,m, rm, b}(m := 1, 2),

• CGCar0 = {Car0.C?Request(Ins)tq , Car0.CCmd(Ins)tC , Car0.CR(b)tR ,

Car0.CConsensus(ExpRes)to , Car0.C
Finish

tf , Car0.CAbortiontb , Car0.C!Notify(Ins,k)tn [m]
,

Car0.C?Ack(k,rm)ta [m]
, Car0.C!Consensus(ExpRes)to , Car0.C

?Finish
tf ,

Car0.C?Abortiontb , Car0.C!TerminaltT , Car0.C!CanceltL , Car0.C!Abortiontb}

• J = {CommIni, Control, Initial}

153

Full Use Case

Fig. 7.7: Timed-pNets node of Car0

In the Fig.7.7, the global clocks of car0 are generated by a set of synchronous

vectors as follows:

V 1 :< Initial.C!Cmd(Ins)tC ,−, CommIni.C?Cmd(Ins)tC >→ Car0.CCmd(Ins)tC

V 2 :< Initial.C?R(b)tR ,−CommIni.C!R(b)tR >→ Car0.CR(b)tR

V 3 :< Initial.C
P{Y }⊲1
!Consensus(ExpRes)to , Control.C?Consensus(ExpRes)to →

Car0.C
P{Y }⊲1
Consensus(ExpRes)to

V 4 :< Initial.C
P{Z}⊲1

?Finish
tf
, Control.C!Finish

tf ,− >→ Car0.C
P{Z}⊲1

Finish
tf

V 5 :< Initial.C?Abortiontb , Control.C!Abortiontb ,− >→ Car0.CAbortiontb

V 6 :< −,−, CommIni.C!Notify(Ins,k)tn >→ Car0.C!Notify(Ins,k)tn

V 7 :< −,−, CommIni.C?Ack(k,rm)ta >→ Car0.C?Ack(k,rm)ta

V 8 :< Initial.C
P{Y }⊲{2,3}
!Consensus(ExpRes)to ,−,− >→ Car0.C

P{Y }⊲{2,3}
!Consensus(ExpRes)to

V 9 :< Initial.C
P{Z}⊲{2,3}

?Finish
tf

,−,− >→ Car0.C
P{Z}⊲{2,3}

?Finish
tf

V 10 :< Initial.C?Abortiontb ,−,− >→ Car0.C?Abortiontb

V 11 :< Initial.C!TerminaltT >→ Car0.C!TerminaltT

V 12 :< Initial.C!CanceltL >→ Car0.C!CanceltL

V 13 :< Initial.C!Abortiontb >→ Car0.C!Abortiontb

V 14 :< Initial.C?Request(Ins)tq >→ Car0.C?Request(Ins)tq .

154

7.3. Simulation

Translate properties

To check the property P2, we need translate the property to the form

that accepted by the TimeSquare, and then we run the tool to see if conflicts

exist. The P2 is translated to:

• (1) Car0.C?Request(Ins)tq ≺ Car0.C!Notify(Ins,k)tn

• (2) Car0.C!Notify(Ins,k)tn ≺ Car0.C?Ack(k,rm)ta

• (3) Car0.C?Request(Ins)tq ≺ Car0.C!TerminaltT .

For the property P3, we translate the P3.1 to Car0.CConsensus(ExpRes)to ≺[1,5]

Car0.CFinish
tf that is the relations based on the global clocks in the level

1. This property comes from the scenario in the section 7.1.2 which re-

quires that the three cars would not take more than 5 time units (based on

Cf) to finish moving themselves to their expect positions after receiving the

consensus signals. Another property in the level 1 is P3.2. The property

requires that the delay from getting a change-lane request to sending a “no-

tify” is no more than 3 timed unites (based on Cf). Formally, it is written

as Car0.C?Request(Ins)tq ≺[1,3] Car0.C!Notify(Ins,k)tn .

Simulation result

We encode the timed specifications of those components and the syn-

chronous vectors into TimeSquare to check the properties P1, P2, P3.1 and

P3.2. For the property P1 and P2, the tool does not report any error. How-

ever, when we check P3.1, an error is reported.

The main reason is that the system cannot get “Finish” signals before

finishing sending all “Consensus” signals. According to the assumption in the

section 7.1.2 , the remote communication time (from sending “Consensus” to

getting “Finish” signals) may take 20 time units (based on Cf). By waiting

for the remote “Finish” signals from other cars, the delay between the clocks

CConsensus(ExpRes)to and CFinish
tf in car0 may be more than 5 units. It results

to the failure of the property P3.1.

155

Full Use Case

Fig. 7.8: Refined Initial Component

One solution is to let the local “Consensus” directly precede local “Fin-

ish” so that it can avoid waiting for the responses from other cars. Fig.7.8

represents the modified “Initial” component, in which we put the “local con-

sensus” and “local finish” signals behind the remote ones. It guarantees that

car1 and car2 have left enough space for car0 before it starts changing its

lane. The timed specifications of the modified “Initial” component are listed

as follows:

TS of refined Initial component:

Cτ tτ ≺ C
P{Y={2,2,2...}}
!Consensus(ExpRes,k′)to ;

C
P{Y={2,2,2...}}
!Consensus(ExpRes,k′)to ≺ C

P{Z={zi}}zi∈[0,2]

?Finish(k′) ;

C
P{Z={zi}}zi∈[0,2]

?Finish(k′) ≺ ([zi = 2]C!LocConsensus(ExpRes)tlo ∔ [zi < 2]C?Abortiontb);

C!LocConsensus(ExpRes)tlo ≺ C?LocF inish
tlf ∔ C?Abortiontb ;

C?Abortiontb ≺ C!Abortiontb

C?LocF inish
tlf ≺ C!TerminaltT ;

C!TerminaltT ∔ C!Abortiontb ∔ C!CanceltL ≺ C
∆(1)

?Request(Ins)tq
;

Meanwhile, the synchronous vectors V 3, V 4, V 8 and V 9 should be up-

dated as follows:

V 3 :< Initial.C!LocConsensus(ExpRes)to , Control.C?Consensus(ExpRes)to ,− >→

156

7.3. Simulation

Fig. 7.9: Refined Version of Car Inserting Use Case

Car0.CLocConsensus(ExpRes)to

V 4 :< Initial.C?LocF inish
tf , Control.C!Finish

tf ,− >→ Car0.CLocF inish
tf

V 8 :< Initial.C
P{Y }⊲{1,2}
!Consensus(ExpRes)to ,−,− >→ Car0.C

P{Y }⊲{1,2}
!Consensus(ExpRes)to

V 9 :< Initial.C
P{Z}⊲{1,2}

?Finish
tf

,−,− >→ Car0.C
P{Z}⊲{1,2}

?Finish
tf

After updating the TSs of the Initial component and the synchronous

vectors into the TimeSquare, we recheck the property P3.1 and it is satisfied.

The Fig.7.9 demonstrates the refined version of our car inserting use case.

The global TS of Car0

According to the Theorem 1 in the page 87, we can generate the global

timed specifications of car0. These logical clocks and clock relations in the

global timed specifications can be observed from the top level. Furthermore,

they are used to build the timed specifications of the top level. The global

timed specifications TScar0 are generated as follows:

Global TS of car0:

Car0.C?Request(Ins)tq ≺ Car0.CCmd(Ins)tc ≺ Car0.C!Notifytn [m] ≺
Car0.C?Ackta [m] ≺ Car0.CR(b)

tR ;

157

Full Use Case

Fig. 7.10: Global Timed Specification Graph of car0

Car0.CR(b)
tR ≺ Car0.C!CanceltL ∔ Car0.C!Consensusto [m];

Car0.C!Consensusto [m] ≺ Car0.C?Finish[m] ∔ Car0.C!Abortiontb ;

Car0.CLocConsensus(ExpRes)tlo ≺ Car0.CLocF inish
tlf ∔ Car0.C!Abortiontb ;

Car0.C?Finish[m] ≺ Car0.CLocConsensus(ExpRes)tlo ;

Car0.CLocF inish
tlf ≺ Car0.C!TerminaltT ;

The Fig.7.10 demonstrates the precedence relations of these global clocks

of car0, in which the black points are clocks, and the arrow lines illustrate

the relations. In the figure, for simplification, we omit the prefix “Car0”.

7.3.3 Simulate the top level

The Formalization of the Node in the Top Level

In the end we build the node in the top level by composing the com-

ponents car0, car[m](m=1,2) and channels as shown in the Fig. 7.11. The

formalization of the node in the top level is as follows:

• P = {Ins,m,ExpRes}(m := 1, 2),

• CG {top} = {C?Request(Ins)tq g11
, CNotifytn g1[m]

, CNotifytn g2[m]
, CAckta g3[m]

,

CAckta g4[m]
, CConsensus(ExpRes)to g5[m]

, CConsensus(ExpRes)to g6[m]
, C

Finish
tf g7[m]

,

C
Finish

tf g8[m]
, CAbortiontb g9[m]

, CAbortiontb g10[m]
,

C!TerminaltT g12, C!CanceltL g13, C!Abortiontb g14}

158

7.3. Simulation

Fig. 7.11: Top Level Timed-pNets Node

• J = {Car0, Car[m], ChannelNtf [m], ChannelAck[m], ChannelCon[m],

ChannelF in[m], ChannelAbot[m]}

We list part of the synchronous vectors that build the communications

between those components as follows. These synchronous vectors generate

the system global clocks CG {top}.
V 1g :< Car0.C?Request(Ins)tq ,−,−,−,−,−,− >→ C?Request(Ins)tq g11

V 2g :< Car0.C
{2s−1}
!Notify(Ins,k)tn , ChannelNtf [1].C?Notify(Ins,k)tn [1]

,−,−,−,−,− >→
CNotifytn g1[1]

V 3g :< Car0.C
{2s}
!Notify(Ins,k)tn , ChannelNtf [2].C?Notify(Ins,k)tn [1]

,−,−,−,−,− >→
CNotifytn g1[2]

V 4g :< −, ChannelNtf [m].C!Notify(Ins,k)tn [m]
,−,−,−,−, Car[m].C?Notify(Ins,k)tn [m]

>→
CNotifytn g2[m]

V 5g :< Car0.C
{2s−1}
?Ack(k,rm)ta ,−, ChannelAck[1].C!Ack(k,rm)ta [1]

,−,−,−,− >→
CAckta g3[1]

V 6g :< Car0.C
{2s}
?Ack(k,rm)ta ,−, ChannelAck[2].C!Ack(k,rm)ta [2]

,−,−,−,− >→
CAckta g3[2]

V 7g :< Car0.C
P{X}⊲{1,2}
!Consensus(ExpRes)to ,−,−, ChannelCon[m].C?Consensus(ExpRes)to [m]

,−,−,− >→
CConsensus(ExpRes)to g5[m]

;

. . .

159

Full Use Case

Translate properties

In the top level, property P1 does not need to be translated. The other

properties are translated with the global clocks of this level. For property

P2, we translate it to:

• (1) C?Request(Ins)tq g11
≺ CNotifytn g1[m]

• (2) CNotifytn g1[m]
≺ CAckta g3[m]

• (3) C?Request(Ins)tq g11
≺ C!TerminaltT g12.

The property P3.1, P3.2, P3.3, P4 and P5 are translated to:

P3.1: CConsensus(ExpRes)to g6[m]
≺[1,5] CFinish

tf g7[m]

P3.2: C?Request(Ins)tq g11
≺[1,3] CNotify

tn
g1[m]

P3.3: CNotify
tn

g1[m]
≺[1,10] CAckta g3[m]

P4: CNotifytn g1[m]
≺[1,30] CAckta g4[m]

P5: C?Request(Ins)tq g11
≺[1,55] C!TerminaltT g12

Simulation result

We encode the timed specifications of car0, car1, car2 and the channels

into the TimeSquare to check the five properties from P1 to P5. Properties

P1 to P4 are all satisfied. An error is reported when checking the property

P5. It says that the whole procedure from receiving a request to finish

changing the lane cannot be finished in 55 time units. To solve the issue, we

either reduce the communication latency between cars or relax the real-time

requirement. By analysing, when we reduce the communication latency to 5

time units, the property P5 can be satisfied.

160

7.4. Other Simulations

7.4 Other Simulations

In this section, we discuss a more complex situation that is car0 com-

municates with more than two cars. Then we investigate if these properties

still can be satisfied.

7.4.1 Car0 communicates with m cars (m > 2)

In this experiment, our aim is to check at most how many cars the

system can afford such that these properties are still satisfied.

Simplify Specification

In order to simplify our simulation, we use the partition clocks C
P (U)
!Notify

and C
P (W)
?Ack instead of C!Notify and C?Ack in the “CommIni” component. By

modifying the assignment of U and W , we can easily change the num-

ber of cars that communicate with car0. For example, if we set m = 3,

U = {3, 3, 3, . . .} and W = {3, 3, 3, . . .}, then we can simulate the situation

of communicating with 3 cars. Moreover, since we use partition clocks, we

need to modify the synchronous vectors. In our use case, we combine V 2g

and V 3g to V 2′g as follows.

Original synchronous vectors:

V 2g :< Car0.C
{2s−1}
!Notify(Ins,k)tn , ChannelNtf [1].C?Notify(Ins,k)tn [1]

,

−,−,−,−,− >→ CNotifytn g1[1]

V 3g :< Car0.C
{2s}
!Notify(Ins,k)tn , ChannelNtf [2].C?Notify(Ins,k)tn [1]

,

−,−,−,−,− >→ CNotifytn g1[2]

To simplified vectors:

V 2′g :< Car0.C
P (U)
!Notify(Ins,k)tn , ChannelNtf [m].C?Notify(Ins,k)tn [m]

,

161

Full Use Case

−,−,−,−,− >→ CNotifytn g1[m]

Similarly, we combine V 5g and V 6g to V 5′g as follows.

Original synchronous vectors:

V 5g :< Car0.C
{2s−1}
?Ack(k,rm)ta ,−, ChannelAck[1].C!Ack(k,rm)ta [1]

,−,−,−,− >→
CAckta g3[1]

V 6g :< Car0.C
{2s}
?Ack(k,rm)ta ,−, ChannelAck[2].C!Ack(k,rm)ta [2]

,−,−,−,− >→
CAckta g3[2]

To simplified vectors:

V 5′g :< Car0.C
P (W)
?Ack(k,rm)ta ,−, ChannelAck[m].C!Ack(k,rm)ta [m]

,−,−,−,− >→
CAckta g3[m]

.

Simulation Result

We increase the number of cars one by one. First, we let car0 commu-

nicate with 2 cars. We found out that all our properties are satisfied. Then

we increase one more car that communicates with car0 by setting m = 3,

U = {3, 3, 3, . . .} and W = {3, 3, 3, . . .}. We found out the property P5

cannot be satisfied. Then we increase one car more by setting m = 4,

U = {4, 4, 4, . . .} and W = {4, 4, 4, . . .}. We found out both P4 and P5

cannot be satisfied. We keep on increasing the number of cars. The table

7.2 shows us the results. From this table we can see that with the increasing

number of cars, the safety property P1 and P2 can be satisfied. But the

latency properties may not be satisfied.

162

7.5. Conclusion

7.2밀: Simulation with Flexible Number of Cars

P1 P2 P3 P4 P5

m = 2
√ √ √ √ √

m = 3
√ √ √ √ ×

m = 4
√ √ √ × ×

m = 5
√ √ × × ×

m = 50
√ √ × × ×

7.5 Conclusion

In this chapter, we represented a full use case taken from ITS and rep-

resented how to build a timed-pNets semantic model for it. Our simulations

were done layer by layer from bottom to top. In each layer, we checked its

safety properties and time properties. The TimeSquare tool was used to

check these properties. And we represented the detailed corrections when

the properties were not satisfied. Besides, we have done the simulation when

increasing the number of cars. From these simulations, we can see that our

timed-pNets are flexible to compose components. By modeling components

with timed specifications, we can take advantage of the TimeSquare tool to

detect the system logical conflicts and check its latency properties.

163

Chapter 8 Conclusion

In this chapter, we present a summary of the thesis contributions, as well

as corresponding limitations. Finally, we conclude the thesis work with a

discussion of interesting directions for future work.

165

Conclusion

8.1 Summary and Conclusions

In this thesis, we have mainly focused on designing a semantic model

that is able to specify timed-related communication behaviours of distributed

systems with the requirements of addressing the following two goals:

• The timed model does not rely on a common global physical clock;

• Both synchronous and asynchronous communications are able to be

specified.

To achieve the two goals, we have designed a novel timed model called

Time-pNets that is able to specify and verify the time constrained communi-

cation behaviours of heterogeneous distributed systems. By taking advantage

of the logical clock concept, the model can specify the relations (happen be-

fore or happen at the same time) of system behaviours without relying on a

common physical clock.

The design of timed specifications helps us to flexibly specify the syn-

chronous and asynchronous communications, as well as composing different

components and building a hierarchical structure in a flexible and simple

way. Thanks to the timed specification that paves the way to transform our

system to CCSL, the TimeSquare tool can be used to check the system safety

and time properties of timed-pNets systems.

The compatibility issues have been discussed in our thesis, which guar-

antee the correctness of refined timed specifications. We also designed al-

gorithms to generate timed specifications from timed-pLTSs for building a

hierarchical structure in a unify way. By introducing the concepts of reference

clocks and visual timestamps, timed-pNets have the capability of measuring

the delays between logical clocks, which allows for the time bound analysis, as

well as the specification and verification of latency properties. Furthermore,

in order to specify some complex situations, we designed partition clocks and

clock union operators, by which a system can be specified in a simpler and

more flexible way. Examples have been illustrated to show us the advantages:

166

8.2. Future Work

to be adaptable to specify many complex cases, from undetermined numbers

of cycles to unfixed car communications.

Finally, we have also validated the research results by using a typical use

case taken from ITS. We described its timed-pNets model and checked by

simulations the safety and correctness properties by using the TimeSquare

tool.

In a conclusion, our model provides a simple and flexible way to model

communications behaviours (synchronous and asynchronous) with time con-

straints without relying on physical clocks. This is one of the main advantages

comparing to other current timed models. Moreover, our model is able to

check the logical correctness and verify time properties of distributed systems.

We believe that the timed-pNets are helpful for analyzing the time-related

behaviours of distributed systems including cyber physical systems.

8.2 Future Work

As future work, there are several interesting directions.

• First, we can extend the current timed-pNets to durtion-pNets that are

able to specify the system behaviours whose execution takes time.

To realize this, we plan to define duration-events that are an extension

of timed-actions by introducing execution time variables. Duration-

events are expressed with the combinations of two instantaneous ac-

tions (a start action and an end action) with a precedence relation

between them. For example, a car brake event can be described by a

combination of ’start car brake’ and ’end car brake’ actions. In the

duration-event, the start point action happens earlier than the end

point action, except the case that the execution time equals to zero,

which tells that the start point and the end points coincide. Thus we

can say that actually timed-pNets is a specific case of duration-pNets

in which the execution time of actions are zero.

167

Conclusion

Using the preliminary notions of duration-events, we then plan to build

duration-clocks and classify various types of timing constraints on these

logical duration-clocks. In these duration-clocks, the timed-action oc-

currences include execution time. It means that these clock occurrences

are not just ticks. They are a sequence of intervals. Therefore, we will

redefine the relations on these duration-clocks.

Similar to the timed-pNets, in order to build a hierarchical structure of

duration-pNets, we will investigate the timed specifications and discuss

the time bounds on these duration clocks.

• Second, the possibility of using model checking tools to verify the timed-

pNets models is another interesting research direction.

In the thesis, we use simulation to check the properties. As we know

that simulation is an automated analysis technique that is being used

extensively and effectively in industry. However, simulation is usually

non-exhaustive. It means that not all possible behaviours are checked

for conformance with the requirements. In other words, it can expose

erroneous behaviour, but the absence of bad behaviours cannot be guar-

anteed. Compared to simulation, formal verification is a technique that

aims to cover all the behaviours of a system. If the timed-pNets model

is able to translate to timed-automata, we are able to use the model

checking tool UPPAAL [16] to verify our model. As we know form

the paper [82], a technique of transforming MARTE/CCSL behaviours

into timed-automata has been proposed. It helps to address the issue of

verify CCSL-based behaviours in the UPPAAL tool. Since our model

is based on timed specification in which the clock relations are mainly

taken from CCSL, it is possible for us to transform basic logical clocks

and relations in our model into timed automata by using the technique

in the paper [82]. However, for the partition clocks we should define a

clear way to transform to timed-automata. Till now, this point is still

not clear and be worthy to investigate.

168

8.2. Future Work

• Third, the specification formalism are an important aspect for support-

ing the model checking in the future work.

To be able to use model checking tool, it requires a well-defined seman-

tics for our timed-pNets model. In this thesis, we are able to specify

systems by timed specifications that are initially generated from the

timed-pLTSs. Even though we have developed algorithms to generate

timed specifications from timed-pLTSs, we do not have tools to auto-

matically generate these timed specifications and it is not clear how

many situations cannot be covered. Therefore, developing a tool to au-

tomatically generate the timed specifications and proposing a schema

to cover all possible situations are good direction to reinforce our re-

sults.

• Fourth, the system refinement and compatibility are an interesting

point for the future work.

The compatibility should always be conserved in timed-pNets. We did

some work on proposing the definition of compatibility and checking it

by using TimeSquare tools. However, we discussed little about model

refinement and compatibility that is conserved in the refinements. In

the further work, the system refinement should be discussed and proper

methods (e.g. model checking) should be proposed to verify the com-

patibility.

• Fifth, developing a tool to automatically generate TimeSquare input

files is worthy point for the future work.

For simulation, we encode our timed specifications and properties into

TimeSquare tool after translating to the form that the tool accepted.

We have no tool to generate them automatically and no schema to

check if the translation is correct. For a small use case as we proposed

in the thesis it is easy to be checked, but for a big use case, the tool is

necessary.

169

Conclusion

• Last but not least, to apply our model on a large use case to investigate

the scalability of our model is an important task in the future work.

A natural question would arise about the scalability and the efficacy of

the proposed analysis approach on larger case studies. Currently, our

use case covers three layers structure with around fifty logical clocks.

In the future work, the model should be applied to larger case studies

and the scalability of timed-pNets model should be checked.

170

Chapter 9 附附附录录录: 论论论文文文综综综述述述（（（中中中

文文文版版版）））

随着网络技术的不断发展，物联网/物理信息融合系统成为目前研究和

发展的热点。 一个典型的例子是智能交通系统（ITS)。 通信作为信息交换

的媒介，已成为物联网研究的核心问题之一。 在智能交通系统中，车辆可

以与服务中心沟通（V2I），告知其他车辆他们的存在以便于车辆的安全监

控和安全驾驶; 另外车辆和车辆之间也可以通信（V2V），从而提高交通的

安全性，避免恶性交通事故的发生。

我们面临的科学问题是如何在这些分布的车辆间建立通信模型，研究

通信的时实性。 这就需要我们显式的处理时间信息，描述分布式系统行为

的时间特性并讨论其时间属性。 然而分布式系统中所有的处理器都各自的

执行自己的任务，并且系统中没有一个公共的物理时间基准来核定这些处

理器的时间变量。 因此该系统所执行的事件的逻辑顺利可能与各个事件在

各自的处理器中所排列的时钟顺序不同。 例如，我们所期望的系统的逻辑

顺序应该是发送信息的事件发生在接受信息的事件之前。 然而，如果发送

器和接收器的时钟不同步，则有可能会存在接受信息的事件的时刻比发送

信息的事件的时刻早的情况。

为了解决这一问题，我们充分利用分布式系统中事件发生的的逻辑顺

序不会改变这一性质来为分布式系统建立时间约束模型。 我们用逻辑时钟

关系来描述系统行为的因果依赖关系，并给系统的行为赋予不同的逻辑时

间值， 从而来推断行为之间的因果关系或排除一些不可能的情况， 比如，

一个“后期”的动作不能影响一个“早期”的行动。

逻辑时钟最早由Leslie Lamport在1978年提出用于描述分布式系统的

执行情况。 逻辑时钟已经被证明在为并发系统建立各种不同抽象层次的

171

附录: 论文综述（中文版）

模型起着非常大的作用。 时钟约束规范语言(CCSL)使用逻辑时钟作为第

一元素并支持一组(逻辑)时钟来描述系统的时间行为。 在CCSL中，逻辑

时钟定义为一个动作重复出现的序列。 一个逻辑的时钟的每次”滴答“不

像一个真实时钟那样等距，而是用于记录动作发生的先后顺序的值。 根

据CCSL模型的启发（CCSL的具体的技术背景知识在论文第15页中给予详

细的介绍),我们定义时钟关系来约束指定的时钟之间的逻辑限制。

我们尝试把逻辑时钟引入一个没有时间变量的模型pNets（具体定义见

论文第18页）中来建立一个新的时间模型timed-pNets。 pNets是一个用于

为分布式系统建模并进行验证的形式化模型。 它利用标记转换系统（LTS）

描述系统的通信行为，并给LTS引入了参数用于更加洁的描述动态拓扑结

构。 pNets支持种类繁多的通信机制，以至于能够足够灵活的处理大量的

分布式编程。 参数化和层次结构也使得pNets结构紧凑，和程序结构相近，

因此容易用组合的方式建模。 该参数化模型已经成功地用于为ProActive建

模，并已被证明适合作为分布式系统的规范语言。

在该论文中，我们首先引入时间化动作（Timed-Actions）的概念(具

体定义见论文第48页)。 然后，我们在时间化动作的基础上定义逻辑时钟

（具体定义见论文第49页）。 每个逻辑时钟都是一个时间化动作的一组出

现。逻辑时钟的一次“滴答”就表示时间化动作的一个出现（或执行）。

由于系统中的通信行为要么是同步或是异步的， 因此我们可以选

择CCSL中的基本的时钟关系，例如”同时发生（e.g. Cα = Cβ）”和 ”优先

关系（e.g. Cα ≺ Cβ）”来定义逻辑时钟的同步和异步通信。 在此基础上，

我们提出了系统的时间规范Timed Specification（具体定义见论文第61页），

并用它来建立分布式系统的时间模型。

我们把时间规范（Timed Specification）引入pNets（参数化网络同步

自动机） 来建立一个具有树型层次结构的时间规范框架结构如图9.1所示。

其叶子节点是通过timed-pLTSs (具体定义9见论文第66页)表示的。 其非叶

节点（称为timed-pNets节点，具体定义11见论文第68页） 是具有同步子网

的行为的功能的节点（子网可以是叶子或非叶子节点）。 我们让所有的节

点（叶子或非叶子节点）与时间规范（timed specification）相关联。 在这

个框架结构中，上层的时间规范是它的下层子系统的抽象。 并且上层的时

间规范可以由下层的子网中的时间规范推导而来。

172

Fig. 9.1: Timed-pNets tree structure

Timed-pNets是用于描述和验证分布式系统中具有时间约束的通信行

为的语义模型。 它不仅保持pNets模型的优点如层次结构，能够灵活的适

应不同的编程结构和通信模式，而且它还具有其自身的新的优势。

通过引入时间规范，timed-pNets模型可以在不依赖公共的物理时钟

的情况下描述系统的逻辑时间约束。 我们可以把timed-pLTSs和timed-

pNets转换成时间规范（timed specification）， 并通过分析层次化的时间规

范来分析我们的timed-pNets模型。在这种新的模型下， 低层次（同步的）

组件中的逻辑时钟的关系能够由标签转换系统（LTS）来推导出。 通常的

逻辑时钟是一个先验独立的。当不同的时钟建立了关系（例如同时或是优

先关系）时候， 这些时钟变得相互依赖互相制约。一个时钟的关系描述了

许多（可能是无穷的）时间实例的关系。 通过对多个时钟建立关系，这些

时钟不再独立并且他们的时间实例也存在着偏序的关系。 这些偏序的时间

实例构成了我们系统的时间规范（TSs）。

时间规范的引入也使得我们的模型能够灵活的设计系统。时间规范有

其逻辑特性，要么由应用的设计者提供，要么从模型中推导出来。 这使得

我们能够任意的使用至下而上的设计模式：详细的设计时间化的pLTSs并

把它们以一个兼容的方式组装起来； 或采用自上而下的设计方式，构建抽

象的timed-pNets，假设一些以孔的形式表现的时间规范，然后提供一些相

容的实现来填充这些孔。 我们提出了相应的理论和方法（具体定理1, 定

理2, 定理3分别见论文第87页，90页和93页）来检查系统的兼容性，这帮助

我们验证了系统的正确性和安全性。

173

附录: 论文综述（中文版）

由于该模型不依赖于共同的物理时钟，因此来自不同的子网的时钟延

迟是不可比较的。这给我们建立多层模型带来了困难。 为了解决这个问

题，我们引入了参考时钟和虚拟时间戳的概念。参考时钟是用户指定的时

钟， 可以为一般的精密计时时钟，也可以为逻辑时钟。一旦用户指定了一

个参考时钟后， 所有其他的时钟依据该参考时钟得到其相应的虚拟时间

戳，这将帮助我们比较来自不同子网的时钟延迟并计算上层的时钟延迟。

该论文讨论了如何从子网的延迟推导出上层抽象节点的延迟，并帮助我们

分析时间约束冲突（具体定理见论文第111页）， 用于验证模型的延迟属性

（例如截止时间，等待时间等）。这对于一个时间模型来说是非常重要的方

面。

时间规范的引入也给我们利用TimeSquare工具来检查系统的时间约束

冲突铺平了道路。 由于使用时间规范，timed-pNets能够描述分布式系统的

时间化的行为。 为了能够深入了解我们的模型，我们选择TimeSquare工具

做模拟实验。 TimeSquare是用于分析时间模型的软件环境。 它能够根据

时间规范显示由标准的VCD格式生成时间波形图(TimeSquare的更多信息

介绍在论文的第17页加以详细介绍）。 该工具可以在冲突发现后产生错误

报告。

简而言之，Timed-pNets模型提供了一种简单而灵活的方式来建立不

依赖物理时钟的时间化的通信行为（同步和异步）模型。 该模型通过引入

逻辑时钟巧妙的避开了使用系统的物理时钟，解决了分布式系统研究通信

实时性的问题。 这一点是与其他目前存在的时间模型的主要区别。 此外，

通过引用参考时钟以及虚拟时间戳，Timed-pNets模型不但能够检查出分

布式系统逻辑的正确性， 也可以检查模型的时间约束冲突，并验证其时间

属性。

该模型主要应用于物联网/物理信息融合系统中。例如在智能交通系统

中，通过建立车辆之间的实时通信模型， 我们可以分析该系统的实时性

能。这对于车辆的安全监控和安全驾驶，遏制交通拥堵并帮助驾驶员们减

少出行延误， 提高综合交通运输效率起到了至关重要的作用。

本文主要章节如下:

• 第一章主要给出了我们研究的应用背景，研究动机，研究方法及其主
要研究贡献。

174

• 第二章仔细调查了一些现有的时间模型,如时间自动机,时间Pteri网,

MARTE和AADL等著名的实时建模系统。

• 第三章把逻辑时钟和时钟关系引入到pNets模型中，从而定义了一种

新的语义模型, 该模型具有描述分布式系统的时间约束的能力。

• 第四章介绍了timed-pNets的通信行为语义模型。 该模型是在上一章

的基础上提出的一个更新更全的改进版本。 在本节中我们引入了时

间规范的概念，并讨论了如果建立层次化的timed-pNets模型。 此外

我们还讨论了时钟规范的兼容性等问题。 该模型可以用来描述分布

式系统的具有时间约束的通信模型,包括同步通信行为和异步通信行

为。

• 第五章讨论了如何计算timed-pNets模型的延迟和延迟界限。 此外,我

们定义了时间冲突的概念, 并提出检测时间冲突的方法。

• 第六章讨论了提出了时钟分区和时钟合并的概念，用来简化时间规
范，并更加灵活的建立模型。

• 第七章我们用一个完整的用例来演示如何建立和完善一个timed-

pNets模型, 并检查其安全性和实时性能。

• 第八章总结我们目前的工作,并展望今后的工作。

175

附录: 论文综述（中文版）

176

References

[1] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based

implementation of real-time applications. In Proceedings of the tenth

ACM international conference on Embedded software, pages 229–238.

ACM, 2010.

[2] Marco AjmoneMarsan, Gianni Conte, and Gianfranco Balbo. A class of

generalized stochastic petri nets for the performance evaluation of mul-

tiprocessor systems. ACM Transactions on Computer Systems (TOCS),

2(2):93–122, 1984.

[3] Rajeev Alur and David Dill. Automata for modeling real-time systems.

In Automata, languages and programming, pages 322–335. Springer,

1990.

[4] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical

Computer Science, 126(2):183 – 235, 1994.

[5] Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal

Methods in System Design, 15(1):7–48, 1999.

[6] Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, and Alexandra

Savu. Behavioural Semantics for Asynchronous Components. Rapport

de recherche RR-8167, INRIA, December 2012.

[7] Charles André. Syntax and Semantics of the Clock Constraint Specifi-

cation Language (CCSL). Rapport de recherche RR-6925, INRIA, 2009.

177

REFERENCES

[8] Charles André, Frédéric Mallet, Robert De Simone, et al. Time modeling

in marte. In ECSI Forum on specification & Design Languages (FDL),

pages 268–273, 2007.

[9] Charles André, Frédéric Mallet, Julien DeAntoni, et al. Vhdl observers

for clock constraint checking. In Symposium on Industrial Embedded

Systems, 2010.

[10] André Arnold and John Plaice. Finite transition systems: semantics of

communicating systems. Prentice Hall International (UK) Ltd., 1994.

[11] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of

delays in timed automata and digital circuits, 1998.

[12] Felice Balarin. Hardware-software co-design of embedded systems: the

POLIS approach. Springer, 1997.

[13] Tomás Barros, Rabéa Boulifa, Antonio Cansado, Ludovic Henrio, and

Eric Madelaine. Behavioural models for distributed Fractal components.

Annals of Telecommunications, 64(1–2), jan 2009. also Research Report

INRIA RR-6491.

[14] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling hetero-

geneous real-time components in BIP. In Fourth IEEE International

Conference on Software Engineering and Formal Methods (SEFM 2006),

11-15 September 2006, Pune, India, pages 3–12. IEEE Computer Soci-

ety, 2006.

[15] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heteroge-

neous real-time components in bip. In Software Engineering and Formal

Methods, 2006. SEFM 2006. Fourth IEEE International Conference on,

pages 3–12. Ieee, 2006.

[16] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Up-

paal — a Tool Suite for Automatic Verification of Real–Time Systems.

178

REFERENCES

In Proc. of Workshop on Verification and Control of Hybrid Systems III,

LNCS 1066, pages 232–243. Springer–Verlag, October 1995.

[17] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms

and tools. In Lectures on Concurrency and Petri Nets, pages 87–124.

Springer, 2004.

[18] Saddek Bensalem, Marius Bozga, T-H Nguyen, and Joseph Sifakis. Com-

positional verification for component-based systems and application.

IET software, 4(3):181–193, 2010.

[19] Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic. From

synchrony to asynchrony. Springer, 1999.

[20] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-

chronous programming with events and relations: the signal language

and its semantics. Science of computer programming, 16(2):103–149,

1991.

[21] G Berry and E Sentovich. Embedding synchronous circuits in gals-based

systems. In Sophia-Antipolis conference on Micro-Electronics (SAME

98), 1998.

[22] Gérard Berry. Real time programming: Special purpose or general pur-

pose languages. 1989.

[23] Gérard Berry. The foundations of esterel. In Proof, language, and

interaction, pages 425–454, 2000.

[24] Gérard Berry, Cyprien Nicolas, and Manuel Serrano. Hiphop: a

synchronous reactive extension for hop. In Proceedings of the 1st

ACM SIGPLAN international workshop on Programming language and

systems technologies for internet clients, pages 49–56. ACM, 2011.

179

REFERENCES

[25] Gérard Berry and Ellen Sentovich. Multiclock esterel. In Correct

Hardware Design and Verification Methods, pages 110–125. Springer,

2001.

[26] Gérard Berry and Manuel Serrano. Hop and hiphop: Multitier web

orchestration. In Distributed Computing and Internet Technology, pages

1–13. Springer, 2014.

[27] Bernard Berthomieu and Michel Diaz. Modeling and verification of time

dependent systems using time petri nets. IEEE transactions on software

engineering, 17(3):259–273, 1991.

[28] Bernard Berthomieu*, P-O Ribet, and François Vernadat. The tool

tina–construction of abstract state spaces for petri nets and time petri

nets. International Journal of Production Research, 42(14):2741–2756,

2004.

[29] Conrad Bock. Sysml and uml 2 support for activity modeling. Systems

Engineering, 9(2):160–186, 2006.

[30] Frédéric Boussinot and Robert De Simone. The esterel language.

Proceedings of the IEEE, 79(9):1293–1304, 1991.

[31] Marius Bozga, Jean-Claude Fernandez, Alain Kerbrat, and Laurent

Mounier. Protocol verification with the aldebaran toolset. International

Journal on Software Tools for Technology Transfer (STTT), 1(1):166–

183, 1997.

[32] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph

Sifakis. The if toolset. In Formal Methods for the Design of Real-Time

Systems, pages 237–267. Springer, 2004.

[33] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg. Proceedings

of an Advanced Course on Petri Nets: Central Models and Their

Properties, Advances in Petri Nets 1986-Part I. Springer-Verlag, 1986.

180

REFERENCES

[34] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asyn-

chronous sequential processes. Information and Computation, Volume

207, Issue 4, 2008.

[35] Denis Caromel, Wilfried Klauser, and Julien Vayssiere. Towards seam-

less computing and metacomputing in java. Concurrency Practice and

Experience, 10(11-13):1043–1061, 1998.

[36] Christos G Cassandras. Discrete event systems: modeling and perfor-

mance analysis. 1993.

[37] TusharDeepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette

Charron-Bost. On the impossibility of group membership. In

Proceedings of the fifteenth annual ACM symposium on Principles of

distributed computing, pages 322–330. ACM, 1996.

[38] D. M. Chapiro. Globally-asynchronous locally-synchronous systems.

PhD thesis, Stanford Univ., CA., October 1984.

[39] Yixiang Chen. Stec: A location-triggered specification language for real-

time systems. In ISORC Workshops, pages 1–6. IEEE, 2012.

[40] Massimoliano Chiodo, Paolo Giusto, Attila Jurecska, Harry C Hsieh, Al-

berto Sangiovanni-Vincentelli, and Luciano Lavagno. Hardware-software

codesign of embedded systems. Micro, IEEE, 14(4):26–36, 1994.

[41] Julien Deantoni and Frédéric Mallet. TimeSquare: Treat your

Models with Logical Time. In Sebastian Nanz Carlo A. Furia, editor,

TOOLS - 50th International Conference on Objects, Models, Components, Patterns - 2012,

volume 7304 of Lecture Notes in Computer Science - LNCS, pages

34–41, Prague, Tchèque, République, May 2012. Czech Technical

University in Prague, in co-operation with ETH Zurich, Springer.

[42] John Eidson, Edward A Lee, Slobodan Matic, Sanjit A Seshia, and Jia

Zou. A time-centric model for cyber-physical applications. In Workshop

181

REFERENCES

on Model Based Architecting and Construction of Embedded Systems

(ACES-MB), pages 21–35, 2010.

[43] John Eidson, Edward A. Lee, Slobodan Matic, Sanjit A. Seshia, and

Jia Zou. Distributed real-time software for cyber-physical systems.

Proceedings of the IEEE (special issue on CPS), 100(1):45 – 59, January

2012.

[44] Peter H Feiler, David P Gluch, and John J Hudak. The architecture

analysis & design language (aadl): An introduction. Technical report,

DTIC Document, 2006.

[45] Colin Fidge. Logical time in distributed computing systems. Computer,

24(8):28–33, 1991.

[46] Colin J Fidge. Timestamps in message-passing systems that preserve

the partial ordering. In Proceedings of the 11th Australian Computer

Science Conference, volume 10, pages 56–66, 1988.

[47] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossi-

bility of distributed consensus with one faulty process. Journal of the

ACM (JACM), 32(2):374–382, 1985.

[48] George S Fishman. Discrete-event simulation: modeling, programming,

and analysis. Springer, 2001.

[49] Gerard Florin and Stéphane Natkin. Evaluation based upon stochastic

petri nets of the maximum throughput of a full duplex protocol. In

Application and Theory of Petri Nets, pages 280–288. Springer, 1982.

[50] Ning Ge, Marc Pantel, and Xavier Crégut. Time properties dedicated

transformation from uml-marte activity to time transition system. ACM

SIGSOFT Software Engineering Notes, 37(4):1–8, 2012.

[51] Gregor Gossler and Joseph Sifakis. Composition for component-based

modeling. Science of Computer Programming, 55(1):161–183, 2005.

182

REFERENCES

[52] Sei. open source aadl tool environment.

http://www.sei.cmu.edu/dependability/tools/osate/.

[53] Axel Jantsch. Modeling Embedded Systems and SoC’s: Concurrency

and Time in Models of Computation. Morgan Kaufmann, 2004.

[54] David R Jefferson. Virtual time. ACM Transactions on Programming

Languages and Systems (TOPLAS), 7(3):404–425, 1985.

[55] M. Jersak. timing model and methodology for autosa. In Elektronik

Automotive. Special issue AUTOSAR, 2007.

[56] Gabor Karsai, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. Model-

integrated development of embedded software. Proceedings of the IEEE,

91(1):145–164, 2003.

[57] Jensen Kurt. Coloured petri nets: Basic concepts, analysis methods and

practical use. EATCS Monographs on Theoretical Computer Science.

2nd edition, Berlin: Springer-Verlag, 1997.

[58] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565, 1978.

[59] Edward A Lee. Modeling concurrent real-time processes using discrete

events. Annals of Software Engineering, 7(1-4):25–45, 1999.

[60] Edward A Lee. Model-driven development-from object-oriented design

to actor-oriented design. In Workshop on Software Engineering for

Embedded Systems: From Requirements to Implementation (aka The

Monterey Workshop), Chicago. Citeseer, 2003.

[61] Edward A Lee and Eleftherios Matsikoudis. The semantics of dataflow

with firing. From Semantics to Computer Science: Essays in memory of

Gilles Kahn. Cambridge University Press, Cambridge, 2008.

183

REFERENCES

[62] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Ieee 1588-standard

for a precision clock synchronization protocol for networked measure-

ment and control systems. In Conference on IEEE, volume 1588, 2005.

[63] Barbara Liskov and Rivka Ladin. Highly available distributed services

and fault-tolerant distributed garbage collection. In Proceedings of the

fifth annual ACM symposium on Principles of distributed computing,

pages 29–39. ACM, 1986.

[64] Frédéric Mallet. Clock constraint specification language: specifying

clock constraints with uml/marte. Innovations in Systems and Software

Engineering, 4(3):309–314, 2008.

[65] Frédéric Mallet, Charles André, and Julien DeAntoni. Executing aadl

models with uml/marte. In Engineering of Complex Computer Systems,

2009 14th IEEE International Conference on, pages 371–376. IEEE,

2009.

[66] Frédéric Mallet, M-A Peraldi-Frati, and Charles André.

Marte ccsl to execute east-adl timing requirements. In

Object/Component/Service-Oriented Real-Time Distributed

Computing, 2009. ISORC’09. IEEE International Symposium on,

pages 249–253. IEEE, 2009.

[67] Friedemann Mattern. Virtual time and global states of distributed sys-

tems. Parallel and Distributed Algorithms, 1(23):215–226, 1989.

[68] Philip M Merlin and David J Farber. Recoverability of communication

protocols–implications of a theoretical study. Communications, IEEE

Transactions on, 24(9):1036–1043, 1976.

[69] Philip Meir Merlin. A study of the recoverability of computing systems.

1974.

[70] David L Mills. Simple network time protocol (sntp) version 4 for ipv4,

ipv6 and osi. 2006.

184

REFERENCES

[71] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul

Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers,

et al. The open provenance model core specification (v1. 1). Future

Generation Computer Systems, 27(6):743–756, 2011.

[72] Douglas Stott Parker Jr, Gerald J Popek, Gerard Rudisin, Allen

Stoughton, Bruce J Walker, Evelyn Walton, Johanna M Chow, David

Edwards, Stephen Kiser, and Charles Kline. Detection of mutual

inconsistency in distributed systems. Software Engineering, IEEE

Transactions on, (3):240–247, 1983.

[73] Michel Raynal. A distributed algorithm to prevent mutual drift between

n logical clocks. Information Processing Letters, 24(3):199–202, 1987.

[74] RamiR Razouk and Charles V Phelps. Performance analysis using timed

petri nets. In PSTV, volume 84, pages 561–576, 1984.

[75] Sunil K. Sarin and Nancy A. Lynch. Discarding obsolete information in

a replicated database system. Software Engineering, IEEE Transactions

on, (1):39–47, 1987.

[76] Frank B Schmuck. The use of efficient broadcast protocols in asyn-

chronous distributed systems. Technical report, Cornell University,

1988.

[77] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language

for programming the web 2. 0.

[78] Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. Cyber-

physical systems: A new frontier. In Machine Learning in Cyber Trust,

pages 3–13. Springer US, 2009.

[79] Joseph Sifakis. Use of petri nets for performance evaluation. Acta

Cybern., 4:185–202, 1980.

185

REFERENCES

[80] CCITT Specification. description language (sdl). ITU-T

Recommendation, (100):11, 1993.

[81] Rob Strom and Shaula Yemini. Optimistic recovery in distributed sys-

tems. ACM Transactions on Computer Systems (TOCS), 3(3):204–226,

1985.

[82] Jagadish Suryadevara, Cristina Seceleanu, Frédéric Mallet, and Paul

Pettersson. Verifying marte/ccsl mode behaviors using uppaal. In

Software Engineering and Formal Methods, pages 1–15. Springer, 2013.

[83] V Valero Ruiz, David de Frutos Escrig, and F Cuartero Gomez. On

non-decidability of reachability for timed-arc petri nets. In Petri Nets

and Performance Models, 1999. Proceedings. The 8th International

Workshop on, pages 188–196. IEEE, 1999.

[84] Wil MP van der Aalst. Interval timed coloured petri nets and their

analysis. In Application and Theory of Petri Nets 1993, pages 453–472.

Springer, 1993.

[85] Wil MP van der Aalst and Michiel A. Odijk. Analysis of railway sta-

tions by means of interval timed coloured petri nets. Real-time systems,

9(3):241–263, 1995.

[86] Kees M Van Hee. Information systems engineering: a formal approach.

Cambridge University Press, 1994.

[87] KMVanHee, LJ Somers, and MVoorhoeve. Executable specifications for

distributed information systems. Falkenberg and P. Lindgreen, editors,

Information System Concepts: An In-depth Analysis, pages 139–156,

1989.

[88] Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat, and Kevin

D Johnson. M2m: From mobile to embedded internet. Communications

Magazine, IEEE, 49(4):36–43, 2011.

186

REFERENCES

[89] Hengyang Wu, Yixiang Chen, and Min Zhang. On denotational se-

mantics of spatial-temporal consistency language–stec. In Theoretical

Aspects of Software Engineering (TASE), 2013 International Symposium

on, pages 113–120. IEEE, 2013.

[90] Gene TJ Wuu and Arthur J Bernstein. Efficient solutions to the repli-

cated log and dictionary problems. Operating systems review, 20(1):57–

66, 1986.

[91] Intelligent transportation systems. http://www.its.dot.gov/research.htm.

[92] Modeling and analysis of real-time and embedded system.

http://www.omgmarte.org/.

[93] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of

modeling and simulation: integrating discrete event and continuous

complex dynamic systems. Academic press, 2000.

[94] Wlodzimierz M Zuberek. Timed petri nets and preliminary performance

evaluation. In Proceedings of the 7th annual symposium on Computer

Architecture, pages 88–96. ACM, 1980.

187

REFERENCES

188

List of publications

List of the publications of the candidate

[1] Yanwen Chen, Yixiang Chen, and Eric Madelaine. “Timed-pNets:

A Communication Behavioural Semantic Model For Distributed Sys-

tems.” Journal: Frontier of Computer Science (SCIE). (2014).

[2] Yanwen Chen, Yixiang Chen. “Real-time Scheduling in Cyber Physical

System.” Journal of CEAI, Vol.13, No.3, pp. 41-50,(SCIE). (2011).

[3] Yanwen Chen, Yixiang Chen, and Eric Madelaine. “Investigation on

Time Properties of Timed-pNets.” NASAC2014, Journal of Computer

Science. (2014)

[4] Yanwen Chen, Yixiang Chen, and Eric Madelaine. ”Timed-pNets: A

formal communication behavior model for real-time CPS system.” In

Trustworthy Cyber-Physical Systems. (2012).

[5] Yanwen Chen, Fabrice Huet, Yixiang Chen. “Implementation and opti-

mization of RDF query using Hadoop.” First International Conference

on Cloud Computing and Services Science (CLOSER). (2011.)

189

list of figures

1.1 VCD view of an example . 18

1.2 Car Insertion . 23

3.1 Timed-pNets architecture with details of the car’s subcompo-

nents . 52

3.2 property checking . 55

4.1 Timed-pNets tree structure 58

4.2 count the delay tαi
when Cα is an independent clock 60

4.3 count the delay tαi
when Cβ ≺ Cα 61

4.4 Constraints . 62

4.5 Communication Behaviour Model of Cars Insertion Scenario . 64

4.6 The timed-pLTS of the CommIni component 67

4.7 The timed-pLTS of channel Component 68

4.8 A Timed-pNets with one of its implementations 71

4.9 Steps for generating the TS of a timed-pLTS 76

4.10 Time assignment for the Timed-pLTS “Car.CommIni” 77

4.11 Simplification of CommIni Component 79

4.12 Steps 2-3-4: Unfold rounds, generalize, and deduce clock rela-

tions . 83

4.13 The 4 cases of theorem 1 . 87

4.14 Partial instantiation of a Timed-pNets subsystem 91

4.15 Layered Structure . 94

4.16 Property Checking by TimeSquare 95

191

4.17 system’s specification checking 96

4.18 Conflict Detected . 97

4.19 system’s specification checking 98

5.1 Time Diagram . 104

5.2 Updated Time Diagram . 105

5.3 A Small Example . 107

5.4 Three cases in Theorem 4 . 111

5.5 Case 2 in Theorem 4 . 112

5.6 Example of computing Global Delay Bound 114

5.7 Property Checking . 115

5.8 Checking the property (1) . 116

5.9 Time Constraint Conflicts . 117

5.10 Checking property P1 and P2 118

5.11 The dependency graph of global clocks 118

5.12 Checking property P3 . 119

6.1 Clock Relations with Idle Actions 125

6.2 Relation 1 . 126

6.3 Relation 2 . 127

6.4 Relation 3 . 128

6.5 One example of Control Component Clock Relations 128

6.6 Relation 4 . 130

6.7 Relation 5 . 131

6.8 clock union . 135

6.9 Timed-pNets: Communication Behaviour Model of Cars In-

sertion Scenario . 136

6.10 Control Component Update 140

6.11 Initial Component Update . 141

7.1 Car Insertion . 145

7.2 Tree Structure of Use Case . 148

7.3 The Component-based Structure of Car Inserting Use Case . . 148

7.4 Fill Timed-pLTS into Holes 150

7.5 Put Timed Specification into Holes 150

7.6 The first Refinement . 153

7.7 Timed-pNets node of Car0 . 154

7.8 Refined Initial Component . 156

7.9 Refined Version of Car Inserting Use Case 157

7.10 Global Timed Specification Graph of car0 158

7.11 Top Level Timed-pNets Node 159

9.1 Timed-pNets tree structure 173

list of tables

6.1 Calculate the Way of Partition X 138

7.1 Levels and properties . 150

7.2 Simulation with Flexible Number of Cars 163

195

