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Abstract

This thesis is focused on the investigation of the impact of various lattice de-
fects, i.e., screw dislocations, anti-phase boundaries, twinning boundaries, and
vacuum gaps, on the thermal conductivity of nanowires by molecular dynamic
simulations and Green's function calculations.

We �rstly calculated the thermal conductivity of <110> Si nanowires with a
screw dislocation in the center through non-equilibrium molecular dynamics.
We �nd that with the inclusion of a dislocation, the phonon-phonon scattering
rate is enhanced dramatically due to the dislocation-induced strain �eld. This
anharmonic scattering process increases with the Burger's vector. As a result,
the thermal conductivity of dislocated nanowires is largely reduced and the
reduction percentage is proportional to the magnitude of Burger's vector.

Secondly, the concept of anti-phase superlattice nanowire is proposed and its
thermal conductivity is investigated with equilibrium molecular dynamics. It
is found that the anti-phase boundary can strongly scatter phonons and reduce
the phonon group velocity. The interplay between phonon coherent transport
and boundary scattering results in a minimum thermal conductivity at a spe-
ci�c period length. The combination of anti-phase boundary scattering and
nanowire surface scattering reduces the thermal conductivity of SiC by two
orders of magnitude, which is of great interest for potential thermoelectric ap-
plications.

Thirdly, we demonstrate that phonon transport can be hindered to a large
extent in a Si nanowire with periodically distributed twinning boundaries. A
minimum thermal conductivity is observed due to a pure geometrical e�ect,
which produces a thorough disappearance of favored phonon polarization di-
rections at a speci�c period length. The minimum thermal conductivity and
the corresponding period length are diameter dependent. The advantage of this
structure is that it largely suppresses the thermal transport without deterio-
rating the electron transport.

Finally, the transition from heat conduction to near �eld radiation in a SiO2

cluster chain system is investigated with the phonon Green's function. Three
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conductance variation regions within the studied distances are identi�ed, more
speci�cally, the heat conduction region with shared electrons in the middle of
a gap, the near �eld region predominated by surface charge interactions, and
the near �eld region predominated by volume dipole-dipole interactions. This
study �nally provides a description of the transition between radiation and heat
conduction in gaps smaller than a few nanometers.



Résumé

Cette thèse se concentre sur l'étude de l'impact de divers défauts de réseau,
c'est-à-dire de dislocations, de parois entre phases inversées, de décalages de
mailles et de gaps, sur la conductivité thermique de nano-�ls par simulation de
dynamique moléculaire et les calculs de fonctions de Green atomiques.

Tout d'abord, nous calculons la conductivité thermique de nano�ls de silicium
orientés <110> incluant une dislocation spirale par la dynamique moléculaire
de non-équilibre. Nous constatons qu'avec l'inclusion d'une dislocation, le taux
de di�usion phonon-phonon est amélioré de façon signi�cative en raison de
l'existence du champ de déformation induit. Ce processus de di�usion anhar-
monique augmente avec le vecteur de Burger. Par conséquent, la conductivité
thermique de nano-�ls disloqués est largement réduite et le pourcentage de ré-
duction est proportionnel à la grandeur du vecteur de Burger.

Deuxièmement, le concept de nano-�ls de super-réseau anti-phase est pro-
posé et leur conductivité thermique est étudiée avec la dynamique moléculaire
d'équilibre. On constate que la frontière anti-phase peut di�user fortement les
phonons et réduire la vitesse de groupe des phonons. Le jeu entre le transport
cohérent de phonons et la di�usion de surface conduit à une conductivité ther-
mique minimale à une période de longueur spéci�que. La combinaison de la
di�usion des phonons à l'interface et la di�usion de surface des nano�ls réduit
la conductivité thermique de SiC de deux ordres de grandeur, ce qui est d'un
grand intérêt pour les applications en thermoélectricité.

Troisièmement, nous démontrons que le transport des phonons peut être en-
travé en grande partie dans un nano-�l de Si avec une structure en zig-zag
périodique. Une conductivité thermique plus faible est observée du fait d'un
pur e�et géométrique, qui produit une disparition complète des directions prin-
cipales de polarisation de phonon à une période de longueur spéci�que. La
conductivité thermique minimale et la longueur de période correspondante sont
dépendantes du diamètre. L'avantage de cette structure est qu'elle supprime
en grande partie le transport thermique sans détériorer le transport d'électrons.

En�n, la transition entre la conduction de la chaleur et le rayonnement de
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champ proche dans un système de chaîne de clusters de SiO2 est étudiée avec la
méthode des fonctions de Green. Trois régions de variation de la conductance
dans ce domaine de largeur de gap sont identi�és, plus particulièrement, la
région liée à la conduction où les électrons des deux corps sont mis en commun
au milieu du gap, la région de champ proche prédominée par des interactions de
charges de surface, et la région de champ proche prédominée par des interactions
dipôle-dipôle de volume. Cette étude fournit �nalement une description de la
transition entre le rayonnement et la conduction de la chaleur dans les gaps de
dimensions inférieures à quelques nanomètres.
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Chapter 1

Introduction

1.1 Energy Challenges

The world's demand for energy is causing a dramatic escalation of social and
political unrest. With the development of modern civilizations, the expense of
energy has increased progressively and the energy crisis has become a global
issue (Snyder and Toberer 2008). World energy demand will expand by 45% be-
tween now and 2030 � an average rate of increase of 1.6% per year � with coal ac-
counting for more than a third of the overall rise, as presented in Fig.1.1 (http:
//www.energy4me.org/energy-facts/energy-sustainability/). This lat-
ter �gure also shows that more than 85% of the world's current energy needs
are met through fossil fuels such as coal, oil and natural gas. However, fossil
energy will become rare and expensive in a not very distant future. If oil pro-
duction remains constant until its disappearance, resources will last 42 years.
Oil wells produce less as they become depleted which will make it impossible
to keep production constant. Similarly, there is enough natural gas to last 61
years and there is enough coal to last 133 years. Also, energy e�ciency has
yet to impact expectations of rising demand. By improving the e�ciency of
energy processes, less total energy will be needed to power devices that we use.
Besides, a large amount of heat is wasted in factories, home cooking, vehicle
driven. Rather than letting this heat escape as wasted energy, it is possible to
convert it to another energy like electric power with the help of energy convert-
ers.

On the other hand, the consumption of fossil fuels massively produces carbon
dioxide, which causes greenhouse e�ect and changes the global climate. As a
result, expansion of economic and clean energy sources will be required, such as
nuclear, biomass, other renewables, and unconventional oil. Options like these
are part of a concept called energy sustainability.

It goes without saying that sustainable energy is one of the pressing problems

http://www.energy4me.org/energy-facts/energy-sustainability/
http://www.energy4me.org/energy-facts/energy-sustainability/
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Figure 1.1: World energy demand in the past and future 30 years (Source: EIA,
World Energy Outlook 2008).

facing modern society with materials at the heart of its solutions. Whether it
is high-temperature materials for e�cient combustion, nanostructures for hig-
power density batteries, or metastructures for light harvesting, breakthroughs
in energy conversion and e�ciency have relied on breakthroughs in materials
research. What remains to be said, loudly and forcefully, is that society has
taken mere baby steps toward a sustainable energy future (Haile 2014).

1.1.1 Thermoelectric Materials

Thermoelectric materials, which can generate electricity from waste heat or be
used as solid-state coolers, could play an important role in a global sustainable
energy solution. Home heating, automotive exhaust, and industrial processes
all generate an enormous amount of unused waste heat that could be converted
to electricity by using thermoelectrics. As thermoelectric generators are solid-
state devices with no moving parts, they are silent, reliable and scalable, making
them ideal for small, distributed power generation (Snyder and Toberer 2008;
Rowe 1995).

The Seebeck and Peltier e�ects are the two major phenomena involved in ther-
moelectric performances. When an electric conductor is subjected to a tem-
perature gradient, a voltage can be generated between the two ends of the
conductor, which is known as the Seebeck e�ect. By using the Seebeck e�ect,
one can convert waste heat to electric power. Inversely, for the Peltier e�ect, a
temperature di�erence can be obtained when a voltage is applied on the con-
ductor, which allows us to use thermoelectric materials as cooling packages or
solid state refrigeration devices.
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Thermoelectric devices contain many thermoelectric couples consisting of n-
type (containing free electrons) and p-type (containing free holes) thermoelec-
tric elements wired electrically in series through metallic electric contact pads
and thermally in parallel as shown in Fig. 1.2. The e�ciency of a thermo-

Figure 1.2: Schematic of the thermoelectric module for both cooling and power gen-
eration. The arrows indicate the direction of charge �ow. Figure from G. Je�rey and
Eric S. Toberer, Nat. Mater., 2008, 7: 105

electric material for both power generation and cooling is characterized by the
dimensionless �gure of merit (ZT ):

ZT =
S2σT

κ
(1.1)

where T denotes the absolute temperature. σ and S are the electrical conduc-
tivity and the Seebeck coe�cient, respectively. κ = κe + κph is the thermal
conductivity with κe and κph being the electronic and lattice thermal conduc-
tivities. The ZT value is expected to be the higher the better. To improve the
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Figure 1.3: A summarize of the �gure of merit of state-of-the-art for (a) n-type and
(b) p-type commercial thermoelectric materials. Figure from G. Je�rey and Eric S.
Toberer, Nat. Mater., 2008, 7: 105

�gure of merit, one must therefore maximize the power factor S2σ and/or mini-
mize the thermal conductivity κ. As S, σ and κ are coupled to each other and as
all depend strongly on the detailed electronic structure, carrier concentration,
and crystal structure, the task of �nding new compounds with large values of
ZT is extremely di�cult (Madsen 2006). The best thermoelectric materials to
date have ZT between 1 and 2; however ZT ∼ 4 is needed for competitive power
generation. The �gure of merit of state-of-the-art commercial thermoelectric
materials for both n-type and p-type has been summarized in Fig. 1.3. Since
1960s, only slow progress has been made in enhancing �gure of merit, either
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in the widely used Bi2Te3 alloys or in other thermoelectric materials. Until
1993, a pioneering work was done by Hicks and Dresselhaus(Hicks and Dres-
selhaus 1993), where they theoretically showed that ZT can be enhanced with
nanostructured materials. In nanomaterials, the electrons can be con�ned in
a quantum well, as a result, the Seebeck coe�cient can be largely enchanced.
In the meantime, the numerous boundaries in nanomaterials can signi�cantly
increase the scattering of phonons. As a result, the phonon mean free path will
be shortened dramatically, which makes the thermal conductivity to be sup-
pressed to a large extent. Stimulated by their ideas, excellent �gures of merit
have been realized in di�erent systems including Bi2Te3/Sb2Te3 superlattices
(Venkatasubramanian et al. 2001), PbSe0.98Te0.02/PbTe quantum dot super-
lattices (Harman et al. 2002), quantum nanodot bulk AgPbmSbTe2+m alloys
(Hsu et al. 2004), and SrTiO3/SrTi0.8Nb0.2O3 superlattices (Ohta et al. 2007).

On the other hand, high �gures of merit have also been obtained in recent
years with heavy elements doping. For example, �lled skutterudite antimonides
La0.9Fe3CoSb12 (ZT=0.9 at 750 K) (Sales et al. 1996), Zn4Sb3 (ZT=1.3 at 670
K) (Snyder et al. 2004), and half-Heusler alloys (Poon 2001). These develop-
ments have essentially been derived from chemical manipulation, on the basis
of the guiding principle of the use of heavy elements as constituents to reduce
the thermal conductivity. Due to the excellent thermal stability, transition
metal oxides have attracted growing attention for thermoelectric power gen-
eration at high temperatures. However, the large thermal conductivity (3-10
W/mK) of metal oxides originating from the high phonon frequencies of O2−

ions (Touloukian et al. 1970) makes it a great challenge for the realization of
ZT ∼ 2 (Ohta et al. 2007). As a result, one of the key points for improving
the �gure of merit is to suppress the thermal conductivity.

1.1.2 Thermal Interface Materials

With the development of nanotechnology in recent decades, electronic devices
continue to scale down in dimension and scale up in power density (increasing
processing speeds and higher frequencies). The excessive heat generated during
operation not only harms their performance, but also degrades the performance
and reliability of the overall system and can cause system failure. As a result,
thermal management becomes a critical issue to ensure high device performance
(Ni et al. 2012).

Roughness is inevitably existing on the surface of materials. When two solid
surfaces are apparently in contact, they actually touch each other only at a few
individual spots while other spaces are �lled by air. Consequently, the heat is
constrained to �ow through the sparsely spaced actual contact spots (Fig. 1.4)
and the insulating air gaps created by multiple voids of "contacting" hard sur-
faces are large thermal barriers. The discontinuity of heat �ow at the interface
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Figure 1.4: Schematic of a rough interface with (right) and without (left) thermal
interface material �lling. Heat can only propagate through sparse spots when no ther-
mal interface material is used while heat can dissipate through the entire interface
when a thermal interface material is �lled. Figure from internet (http://www.bit-
tech.net/hardware/2009/02/16/all-about-tim/)

of di�erent components in the system makes the thermal management even
more complicated. To reduce the thermal interface resistance, a third medium
is usually used to �ll the space between the two solids to eliminate these in-
terstitial air gaps from the interface by conforming to surface irregularities and
uneven mating surfaces (Fig. 1.4). This kind of conducting media is usually
referred as thermal interface materials (TIMs). Extreme compliance of TIMs
reduces component stress while higher thermal conductivity provides thermal
performance required for next generation designs that continue to pack more
power into smaller spaces. The TIMs are used in many applications such as
notebook computers, mass storage devices, and audio and video components.
It has been theoretically shown by Yovanovich et al. (Yovanovich et al. 1997)
that simply replacing air with Si grease between aluminum/ceramic interface
can reduce the thermal resistance by a factor of �ve.

An e�cient thermal interface material should be highly thermal conducting
itself and also should have a small contact resistance between itself and the
host materials. The total thermal resistance RTotal for heat �owing from one
solid to another by crossing the TIMs can be written as follows:

RTotal = R1 +RTIM +R2 (1.2)

where R1 and R2 are the thermal resistances between the TIMs and solid 1,
the TIMs and solid 2, respectively. RTIM = t

κTIM
represents the resistance of

the TIMs with t and κTIM being the thickness and the thermal conductivity
of TIMs, respectively.

Based on the principle of high e�ciency, ease of use in assembly, and long-term
stability/reliability, several types of TIMs, including greases, elastomeric pads,
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phase change materials, thermal tapes, thermally conductive adhesives and so
on, has been developed in response to the changing needs of the electronic
packaging market.

1.1.3 Thermal Diode Materials

Analogously to electric diode, a thermal diode that provides an asymmetric heat
conduction is one of the most important building blocks for phononics (Wang
and Wu 2014). It has become a focus since the theoretical models where clear
physical underlying mechanisms and great performances were proposed from
nonlinear lattices in the past decade (Terraneo et al. 2002; Li et al. 2004; Li

Figure 1.5: Sketch of the thermal diode module (up) and the heat current vs the
relative temperature bias behavior of a thermal diode (down). Figure from Li, Lan and
Wang, 2005, Phys. Rev. Lett. 95: 104302

et al. 2005; Hu et al. 2006). The concept of thermal diode involves, just as
in its electronic counterpart, the presence of a symmetry-breaking mechanism.
This symmetry breaking is most conveniently realized by merging two materials
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exhibiting di�erent heat transport characteristics.

Fig 1.5 shows the module of a thermal diode composed by the junction between
two dissimilar materials and the heat recti�cation with the change of temper-
ature di�erence. It can be clearly seen that when a positive temperature bias
(TL > TR) is applied, the heat current gradually increases with increasing of
the temperature di�erence △, i.e., the setup behaves as a "good" thermal con-
ductor. However, when a negative temperature bias (TL < TR) is applied, most
of the heat is re�ected at the interface and the transmitted heat is almost zero.
The two-segment structure thus behaves as a "poor" thermal conductor. This
recti�cation behavior is explained with the overlap of the power spectra of the
two junction materials (Li et al. 2004). If the power spectrum in one part of
the device matches the one in the neighbouring part, heat energy is exchanged
e�ciently. In the absence of such overlapping spectral properties, the exchange
of energy becomes strongly diminished. In particular, the response behavior
of realistic materials is typically anharmonic by nature. As a consequence, the
corresponding power spectra become strongly dependent on temperature. If
an asymmetric system is composed of di�erent parts with di�erent physical
parameters, the resulting temperature dependences of the power spectra will
di�er likewise (Li et al. 2012). This match or mismatch of spectral properties
provides the salient mechanism for thermal recti�cation.

Because the power spectra of an arbitrary nonlinear material typically become
temperature dependent, any asymmetric nonlinear system is expected to dis-
play an inequivalent heat transport upon reversal of the temperature bias.
Experimentally, the thermal recti�cation has been realized with mass-loading
carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) by Chang
(Chang et al. 2006). In their experiments, CNTs and BNNTs were �rstly
synthesized and then trimethyl-cyclopentadienyl platinum (C9H16Pt) was de-
posited non-uniformly along the length of the nanotubes in an attempt to
achieve the non-uniform mass-loading geometry (Fig. 1.6). Thermal recti�-
cation of the nanotube is obtained as:

Rectification =
KH→L −KL→H

KL→H
× 100 (1.3)

where KL→H and KH→L are the thermal conductances of the nanotube when
heat �ows from the low-mass to high-mass ends or from the high-mass to low-
mass ends, respectively. As can be seen from Fig. 1.6, no thermal recti�cation
is observed with the pristine NTs while after the mass-loading, a clear thermal
recti�cation is achieved.

Except for the mass asymmetric nanostructures, the geometrically asymmetric
nanostructures based thermal recti�ers were also extensively studied. For in-
stance, carbon nanocones exhibiting a high asymmetric geometry was found to
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Figure 1.6: Experimental realization of thermal recti�cation with mass-loading
nanotubes. (a) Scanning electron microscope images of BNNTs after deposition of
C9H16Pt. (b) Sensor temperature (△Ts) vs heater temperature (△Th) for the NTs
before and after deposition of C9H16Pt. Figure from Chang, Majumdar, and Zettl,
2006 Science, 314: 1121

be a good thermal diode material (Yang et al. 2008). In order to compare the
impact of mass asymmetry versus geometry asymmetry for thermal recti�ca-
tion, the same nanocone with a graded mass distribution was simulated. The
results yield a recti�cation ratio of 10% in the uniformed mass case and 12%
in the the mass-graded nanocone. This 2% increase for the mass-graded distri-
bution evidences the role of geometric asymmetry as more e�ective in boosting
thermal recti�cation (Yang et al. 2008).

1.1.4 Thermal Cloak Materials

Transformation optics has made a major contribution to the advancement of
modern electromagnetism and related research assisted by the development of
metamaterials (Ma et al. 2013). Recently, many signi�cant achievements of
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invisibility cloaking have been achieved hitherto, owing to the pioneering the-
oretical proposals of Pendry (Pendry et al. 2006) and Leonhardt (Leonhardt
2006). On the basis of the invariance of heat conduction equation under co-
ordinate transformations, transformation thermodynamics has provided a new
method to manipulate heat �ux at will (Han et al. 2013). The most attractive
application is the thermal cloaking: making the temperature of a certain region
invariant.

Figure 1.7: Thermal invisibility cloak: Heat is passed around the central area from
the left to the right. Temperature characteristics (white lines) remain parallel. Figure
from internet: http://www.sciencedaily.com/releases/2013/05/130508092924.htm

If a simple, solid metal plate is heated at the left edge, heat migrates uniformly
to the right side. The temperature of the plate decreases from the left to the
right. For a thermal cloak, for example, a metamaterial consisting of copper
and silicon outside of the annular structure illustrated by Schittny et al (Schit-
tny et al. 2013), exactly the same behavior is exhibited and no heat penetrates
inside the annular structure. Outside, there is no indication of what happens
inside, as shown in Fig.1.7. Clearly, by design, the cloak recovers the overall
downstream heat �ow of the homogeneously perforated plate under transient
as well as under static conditions. It is important to stress that thermal cloaks
cannot violate the classical laws of thermodynamics, which are still strictly
preserved. Therefore, in the static or long-time limit, due to the �nite heat
conductivity of the innermost isolating ring, the to-be-protected inner region
does eventually heat up. Hence, thermal protection works only transiently, as
pointed out by Schittny et al.

Thermal invisibility cloaks are a rather new �eld in fundamental research. In
the long term, they might be applied in areas needing e�ective heat manage-
ment, such as in microchips, electric components, or machines.

As illustrated by the examples of the above sections, it is of vital importance
to control the heat transfer or manipulate phonons as demanded by nowaday's
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technologies. Di�erent thermal transport behaviours are needed for di�erent
applications (low thermal conductivity for thermoelectrics, high thermal con-
ductivity for interface materials, preferred heat �ow orientations for thermal
diode and so on). So, it is essential to design new structures which allow us to
control the heat transfer in a given point of view so as to feed back targeted
applications.

1.2 Scienti�c Background

1.2.1 Lattice Vibrations and Phonons

In most solid materials, atoms or molecules are arranged in a regular array
of sites, or points in a three-dimensional space, which is known as the crystal
lattice. A crystal structure describes a highly ordered structure, occurring due
to the intrinsic nature of molecules to form symmetric patterns. At any �nite
temperature, atoms vibrate about their equilibrium positions. Under the clas-
sical approximations, those atom motions can be mathematically described by
the Newton's second law if the force applied on each atom and the atomic mass
are known.

To simplify the formulation, we consider here an one-atomic chain with lattice
parameter and atomic mass denoted as a and M as illustrated in Fig. 1.8.
To describe the interatomic forces, we introduce a potential energy labelled
as V, which is the function of the positions of all atoms and we assume that
only the nearest-neighbours interact with each other. Expending V around the
equilibrium position according to Taylor series yields

Figure 1.8: An one-atomic chain with the lattice constant a and mass M at the
equilibrium position (up) and with a displacement for each atom (down)
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where −→u = (u1, u2, ..., un, ...uN ) and un are the displacements o� equilibrium
of the nth atom (Fig. 1.8). Since we are dealing with the problem around
equilibrium positions, the �rst derivative of the potential in Eq. 1.4 ∂V/∂un =
0. The constant energy term V0 is arbitrary, and will be set to zero. Let
K = ∂2V

∂un∂uk
represents the force constant between the nth and kth atoms and

ignoring the third and higher orders of the potential energy in Eq. 1.4, the
equation of motion can be easily casted as:

Mün = K(un−1 + un+1 − 2un) (1.5)

We call this relation the atomic motion equation in the harmonic approximation
because it only includes the harmonic force terms. We now decompose the
displacements into a set of normal modes with the plane wave form, i.e., un =
A0e

i(qna−ωt). Substituting un into the equation of motion, we derive

−ω2M = K(eiqa + e−iqa − 2) (1.6)

As a result, the relationship between the wave vector q and the frequency ω
can be obtained as:

ω =

√

4K

M
| sin 1

2
qa| (1.7)

This relation is called the dispersion relation.
The Hamiltonian of the system can be written as:

H =
1

2m

∑

n

p2n +
1

2
K
∑

n

(2u2n − unun+1 − unun−1) (1.8)

where pn is the momentum of the nth atom. Let's transform the displacements
and the momenta into coordinates of the reciprocal space with Fourier series:

Uq =
1√
N

∑

n

une
iqn Pq =
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pne
−iqn (1.9)

The corresponding inverse transform reads as:
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Substituting Eq. 1.10 into the Hamiltonian expression 1.8 and simplifying it,
one obtains (Ziman 1960):

H =
1

2M

∑

q

PqP−q +K
∑

q

UqU−q(1− cos q) (1.11)

The states labelled with q and -q corresponding to running waves in the op-
posite directions. It can be easily �nd from the Fourier transform (Eq. 1.9)
that the pairs Pq−P−q and Uq−U−q are complex conjugate to each other, i.e.,
P ∗
q = P−q, U

∗
q = U−q. So Eq. 1.11 can be recasted as:

H =
1

2
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q

{ 1

M
PqP

∗
q + 2K(1− cos q)UqU

∗
q } (1.12)

Let's now introduce the second coordinate operators, aq and a∗q , which are
de�ned in terms of Pq and Uq by the relations:

aq =

√

1

2m~ω
Pq − i

√

K(1− cos q)

~ω
U∗
q

a∗q =
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1

2m~ω
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q + i

√

K(1− cos q)

~ω
Uq

(1.13)

It can be shown that the commutation relations of the above de�ned operators
have the specially simple form

[aq, a
∗
q ] = (i/2~){[Pq, Uq] + [P ∗

q , U
∗
q ]} = 1 (1.14)

consequently the Hamiltonian reduces to

H =
∑

q

~ω(a∗qaq +
1

2
) (1.15)

The operators de�ned in Eq. 1.13 are known as the annihilation and creation
operators. And nq ≡ a∗qaq is called the number operator, whose eigenstates are
characterized by sets of positive integers which tell us the number of 'particles'
present in the �eld, or the number of quanta in the particular mode. So the
total energy in the system is quantized with the quantum energy of ~ω. Having
analysed the motion into quanta distributed over the various modes, we �nd it
convenient to give to each of such quantum the name of phonon. Phonons bear
exactly the same relation to the vibrations of the solid as do photons to the
vibrations of the electromagnetic �eld. We sometimes talk of them as if they
are particles ('phonon gas'), but this is only in the Pickwickian sense. Unlike
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the atoms which make up an ordinary gas, thermal phonons can be created
and destroyed by random energy �uctuations. In the language of statistical
mechanics this means that the chemical potential for adding a phonon is zero.

The phonon states comply to the Boltzmann de�nition of entropy and as those
states exist within the canonical ensemble, the distribution of phonons are
governed by the Bose-Einstein statistics, which reads as

fBE =
1

exp( ~ω
kBT )− 1

(1.16)

where kB is the Boltzmann constant, and T is the absolute temperature.
In Eq. 1.7, we have derived the phonon dispersion relation of the one-atomic
chain. In the one-atomic chain case, the phonon dispersion has only one branch
as the primitive cell contains only one degree of freedom. In the usual case, if
there are more than one atoms in the primitive cell, the phonon dispersion has
D ×N branches, where N is the number of atoms in the primitive cell and D
denotes the degree of freedom of each atom. Among the DN branches, there are
D acoustic branches having the frequency equalling to zero at the Brillouin zone
center (Γ point, q = 0) and (DN-D) optical branches. The acoustic branches
describe the displacement of the primitive cell as a whole while the optical
branches describe the relative displacement of the atoms in the primitive cell.
Similar to the one-atomic chain, the phonon dispersion relation of the diatomic
chain with atomic masses M1 and M2 can be easily obtained as follows:

ω2
± = K(

1

M1
+

1

M2
)±K

√

(
1

M1
+

1

M2
)2 − 4 sin2(qa/2)

M1M2

=
K(M1 +M2)

M1M2
{1± [1− 4M1M2

(M1 +M2)2
sin2(qa/2)]1/2}

(1.17)

The phonon dispersion of the diatomic chain described by Eq. 1.17 is depicted
in Fig. 1.9(a). The maximum frequency (cut o� frequency) is known as the
Debye frequency, which links with the Debye temperature Θ according to the
relation Θ = ~ω

kB
. According to the phonon dispersion relation, the phonon

group velocity vg, which is de�ned as the �rst derivative of the frequency ω
with respect to the wave vector q, i.e., vg = dω

dq , can be obtained (Fig. 1.9(b)).
We now discuss two limit situations, i.e., at the Brillouin zone center qa ≪ 1
and at the Brillouin zone boundaries qa = ±π.

At the Brillouin zone center, qa ≪ 1 and the dispersion relation described by
Eq. 1.17 can be simpli�ed as follows by considering the relationships sinx ≈ x
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Figure 1.9: (a) Phonon dispersion curve and (b) phonon group velocity of the di-
atomic chain

and
√
1− x ≈ 1− 1

2x when x ≪ 1:

ω2 ≈ 2K(
1

M1
+

1

M2
) (optical branch)

ω2 ≈ K

2(M1 +M2)
q2a2 (acoustic branch)

(1.18)

This derivation provides a constant frequency and a linear dependence of fre-
quency on q for the optical and acoustic phonons, respectively, which means
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that the group velocity is zero for the optical phonons and a non-zero constant
for the acoustical phonons (Fig. 1.9(b)). The non-zero constant velocity for
acoustic phonons is known as the sound velocity in materials.

On the Brillouin zone boundary, qa = ±π and Eq. 1.17 is reduced to:

ω2 = 2K/M2 (optical branch)

ω2 = 2K/M1 (acoustic branch)
(1.19)

It comes out that the frequencies for both acoustic and optical modes are con-
stants and the corresponding phonon modes are non-propagative.

1.2.2 Phonon Transport in Nanoscale

Phonon transport in nanostructures can be largely di�erent from the situa-
tion in bulk and strongly depends on the system size. New phenomena such
as phonon con�nement, anomalous heat transport, breakdown of Fourier law,
and quantization of thermal conductance emerge when the size is reduced to
nanoscale. These new behaviours are of great importance for both fundamental
considerations and modern technologies.

Boundary Scattering and Con�nement: When the size of a material de-
creases, the density of boundary or interface increases dramatically. As a result,
phonon boundary scattering is of key importance and the thermal conductivity
in nanoscales could be one order of magnitude smaller than the one of the bulk
material (Li et al. 2003). The scattering of phonons on the crystal boundaries
has been known since the pioneering work of Casimir (Casimir 1938), but for
many years it was thought to be essentially a low-temperature phenomenon.
The strong boundary scattering can shorten the phonon mean free path Λ to
the order of the size of systems. Let's take a cylindrical nanowire with diameter
D for example, if the asperity of the surface is large, then the boundary scatter-
ing is purely di�usive. When the diameter D is smaller than the bulk mean free
path Λbulk, the mean free path in the nanowire will be given by the diameter D.

When phonons scatter with a boundary, none of them will be transmitted and
all of them will be re�ected. Those backscattered phonons will interact with
the incoming phonons and form a standing wave. This phenomenon is called
phonon con�nement. The group velocity of the con�ned phonons is zero, hence,
they do not propagate heat.

Anomalous Heat Transport: Traditionally, the phenomenon of heat con-
duction is believed to follow the Fourier's law

J = −κ▽ T (1.20)
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where J refers to the heat �ux density in the system, ▽T is the gradient of
temperature and the coe�cient κ is de�ned as the thermal conductivity, which
is the intrinsic property of a material. Although the Fourier's law has met a
great success in describing macroscopic heat transport in the past 200 years,
recent studies of thermal conductivity in low dimensional systems show the
breakdown of the Fourier's law and anomalous heat transport occurs (Liu et al.
2012). Theoretically, the �ndings that contradict our traditional understand-
ings is that the thermal conductivity typically diverges with the system size (Liu
et al. 2012; Lepri et al. 1997; Lepri, S. et al. 1998; Dhar 2001; Grassberger
et al. 2002):

κ ∼ Lβ (β > 0) (1.21)

for one dimensional (1D) models and

κ ∼ logL (1.22)

for two dimensional (2D) models. These models predict a very large thermal
conductivity for low dimensional systems with large L.

Experimentally, Chang et al (Chang et al. 2008) measured the thermal con-
ductivities of fully suspended multi-wall CNTs and BNNTs as the functions of
NT length, where they found the violation of the Fourier's law even if L ≫ Λ.
By �tting their experimental data with Eq. 1.21, the β values are found to be
0.6-0.8 for CNTs and 0.4-0.6 for BNNTs. By using non-equilibrium molecular
dynamics (NEMD) simulations, the length dependence of the thermal conduc-
tivity of SiNWs has been studied by Yang et al (Yang et al. 2010). It is found
that the thermal conductivity of SiNWs increases with the length as κ ∝ Lβ ,
even when the wire length is as long as 1.1 µm. The β value is found to be
di�erent in di�erent length regimes. At room temperature, when SiNW length
remains less than 60 nm, the thermal conductivity increases linearly with the
length (β ≈ 1). For the SiNW with a length larger than 60 nm, the divergence
exponent β reduces to 0.27. In addition, this divergence exponent β also de-
pends on temperature. At 1000 K, β value is only 0.15 when the NW length
is longer than 60 nm. The reduction of β is ascribed to the stronger phonon-
phonon interactions at high temperatures.

Quantized Thermal Conductance: The thermal conductance of phonon
waveguides in the ballistic, one-dimensional limit can be calculated using the
Landauer formula. This approach leads to an expression for the reservoir-to-
reservoir heat current Jth taking the form (Schwab et al. 2000; Yamamoto and
Watanabe 2006):

Jth =
∑

m

∫ ∞

0

dk

2π
~ωmvm[fhot − fcold]Trm (1.23)
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where m is the phonon branch index, ωm and vm are the frequency and group
velocity of the mth branch, f represents the Bose-Einstein occupation factor for
the two (hot/cold) thermal reservoirs, and Trm is the transmission coe�cient
of the mth branch. In the nanowire case, the group velocity can be cancelled
with the density of states and Eq. 1.23 can be easily converted to an integral
over frequency ω. Let x = ~ω/kBT and in the limit of small temperature
di�erences between the hot and the cold reservoirs, the thermal conductance
σ = Jth/(Thot − Tcold) is given by

σ(T ) =
k2BT

h

∫ ∞

0
dx

x2ex

(ex − 1)2
Tr(kbTx/~) (1.24)

In the low temperature limit, i.e., when T → 0, only four acoustic phonon
branches (one dilatational, one torsional, and two �exural) contribute to the
conductance. For the ideal coupling between the ballistic thermal conductor
and the reservoirs, yielding the transmission coe�cient, Trm, to equal unity.
Eq. 1.24 leads to a quantized thermal conductance σ0 de�ned as

σ0 =
π2k2BT

3h
(1.25)

an expression devoided of any material related parameters. This quantum of
thermal conductance, σ0 = (9.456 × 10−13W/K2)T , represents the maximum
possible value of energy transported per phonon branch. Surprisingly, it does
not depend on particle statistics, but is universal for fermions, bosons and
anyons (Rego and Kirczenow 1999; Krive and Mucciolo 1999).

Di�ering from the electrical conductance quantization, a factor of T is included
in Eq. 1.25, which provides to the thermal conductance quantum a linear depen-
dence upon temperature. This re�ects the fact that the transported quantity
is energy (that is, entropy times temperature). In the case of electronic con-
duction, the corresponding quantity is the electron charge, e, and the electrical
conduction quantum per spin-degenerated band is temperature independent,
σe
0 = 2e2/h. The thermal conductance quantization has been experimentally

observed by Schwab et al (Schwab et al. 2000) in suspended insulating nanos-
tructures at very low temperatures. Fig. 1.10 shows the measured thermal
conductance versus temperature, where a conductance plateau appears when
the temperature is lower than 0.8 K, indicating the quantization of the thermal
conductance.

1.2.3 Phonon Engineering with Defects

In materials science and engineering, defects are of vital importance in mechan-
ical, electronic, optical, thermal and many other properties design. Usually,
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Figure 1.10: Experimentally measured normalized thermal conductance with the
change of temperature. When the temperature is below 0.8 K, a saturation in con-
ductance at a value near the expected quantum of thermal conductance. Figure from
K. Schwab et al. Nature (2000) 404: 974.

crystal defects can be classi�ed into 3 types: point defects, line defects, and
plane defects. Since phonons are tightly linked with lattice vibrations, lattice
imperfection will have a large impact on phonon transport.

The point defects such as vacancies and isotopes can produce localized modes
around the vacancy and these localized modes can interact with the running
phonons, especially with optical phonons which have shorter wavelength. For
example, the thermal conductivity of the room temperature thermoelectric ma-
terial Bi2Te3 with Bi and Te vacancies has been studied by Termentzidis et al.
(Termentzidis et al. 2013) and the results for thermal conductivity are shown
in Fig.1.11. It is found that the thermal conductivity of bismuth telluride de-
creases both in the presence of Bi and Te vacancies. The decrease is greater
than 60% when the bismuth vacancy concentration is 5% and it is greater than
70% for a tellurium vacancy concentration of 4%.

The presence of line defects, usually referring to the edge or screw disloca-
tions, will produce non-uniformed strain in materials. Calculating the thermal
conductivities in materials with dislocations is rather complicated because of
the anisotropic nature of the displacement �eld. A dislocation usually can be
divided into two parts, i.e., the core region undergoing a plastic deformation
and having a volume limited by the radius r = b, where b is the magnitude
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Figure 1.11: Calculated thermal conductivity for defected bulk Bi2Te3 as a function
of the vacancy concentration. Left side of the �gure corresponds to Bi40−xTe60 and
right side to Bi40Te60−y. Figure from Konstatinos et al. J. App. Phys. (2013) 113:
013506

of the Burger's vector; the shell region with elastic deformation exists in the
volume de�ned by r > b. The well known method for estimating the impact of
dislocation on thermal conductivity is given by Klemens (Carruthers 1961). In
Klemens' theory, the speci�c scattering by the core is in general small due to
the small size of this region and it can be modelled as a row of vacancies. The
relaxation time is given by 1/τ ∝ ω3. In the shell region, the strain �eld has a
very long range. One can approximate the relaxation time as follows according
to the elastic theory:

1

τ
≈ Cρb2q (Edge dislocation)

1

τ
≈ ργ2b2ω (Screw dislocation)

(1.26)

where C is de�ned as a constant related to materials properties, such as the
elastic constant and the sound velocity, ρ is the dislocation density, q and γ
represent the wave-vector and the Grüneisen parameter.

The plane defects are two dimensional crystal imperfections and have di�erent
types. Any interface or boundary in crystals such as twinning boundaries, grain
boundaries, and heterostructure interfaces can be regarded as plane defects.
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Plane defects can scatter phonons e�ciently as they extend in two dimensions.
The most studied systems containing plane defects in the heat transfer �eld
in recent years are the heterostructure superlattices (SLs), which are periodic
arrays of alternating materials where one layer in the array consists of n-atomic
layers of material A and the alternating layer has m-atomic layers of material
B. For a crystal SL, the thermal conductivity parallel to the layers is typically
comparable to the average of the two bulk materials, as long as the interfaces
between the layers do not have a large density of defects. While the most
interesting measurement is the cross-plane thermal conductivity, which could
be one order of magnitude smaller than the values of the corresponding bulk
constituents, and in some cases, even smaller than the value of a random al-
loy with the same components due to the numerous interface scatterings (Volz
et al. 2000; Cahill et al. 2014; Hyldgaard and Mahan 1997; Koh et al. 2009;
Lee and Venkatasubramanian 2008). Also, in certain SLs, a minimal thermal
conductivity exists at a speci�c period length (Simkin and Mahan 2000).

In this thesis, we will focus on the impact of the line defect of screw disloca-
tions, of the plane defects of anti-phase SLs, of twinning SLs and of vacuum
gaps, on the thermal transport phenomena by analysing the detailed physical
mechanisms involved.

1.3 Organization of the Thesis

We begin Chapter 2 with a brief introduction to the methods that will be used
for the heat transfer calculations and the corresponding phonon related cal-
culations. These methods include the equilibrium molecular dynamics (EMD)
and the nonequilibrium molecular dynamics (NEMD) simulations for thermal
conductivity calculations, the phonon Green's function for ballistic thermal
conductance calculations, and lattice dynamics for eigenmodes analysis.

In Chapter 3, we start with the investigation of the impact of line defect � screw
dislocations on thermal conductivity. We consider <110> Si nanowire and nan-
otube structures containing an axial screw dislocation, simulated by objective
molecular dynamics including the classical Terso� potential. By means of di-
rect nonequilibrium molecular dynamics simulations, we uncover a decrease in
thermal conductivity due to the presence of axial screw dislocations with closed
and open cores. An analysis based on the atomistic Green function method re-
veals that this decrease originates in the phonon-phonon scattering due to the
anharmonicity introduced especially by the highly distorted core region. As
high-strain is intrinsic to dislocations, the e�ect should occur to various ex-
tents in other nano-materials.

From Chapter 4 on, we deal with the problems of how plane defects a�ect heat
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transfer in nanowires. In Chapter 4, a new type of SiC superlattice, i.e. anti-
phase superlattice nanowires (APSL NWs) composed of only SiC component
but with di�erent stacking sequence is addressed. Our equilibrium molecu-
lar dynamics simulations (EMD) show that the thermal conductivity of period
modulated APSL NWs can be signi�cantly reduced up to 52% at room temper-
ature compared to the one of pristine NWs. Phonon density of states reveals
that new vibrational modes emerge on the interfaces due to the formation of
Si-Si and C-C bonds. We identi�ed that the increased phonon interfacial scat-
tering is the predominant factor that hinders the thermal transport along the
wires with long period length. Phonon coherent transport is also observed in
the structures with short period length, which leads to a minimum thermal
conductivity at the period of 6 nm. These results provide clear guidelines to
design structures with minimal thermal conductivity and possibly promote SiC
as a competitive thermoelectric material.

In Chapter 5, by using Non-equilibrium Molecular Dynamic simulations, the
thermal conductivity of a new type of Si nanowires with a twinning superlat-
tice structure has been investigated. We �rst show that this latter structural
modulation can yield a 65% thermal conductivity reduction compared to the
one of the straight wire case at room temperature. Secondly, a purely geometry
induced minimal thermal conductivity is observed at a speci�c period depend-
ing on diameter. Mode analysis reveals that the minimal thermal conductivity
arises due to the disappearance of favored atom polarization directions. The
current thermal conductivity reduction mechanism can also collaborate with
the other well-known reduction mechanisms, such as the one related to coating,
to further reduce the thermal conductivity, which enables the Si twinning su-
perlattice nanowires to be a promising candidate for thermoelectric conversion.

Chapter 6 addresses the heat transfer between two silica clusters with a gap by
means of the non-equilibrium Green's function method. Critical gap distances
of 4 Å and 3-5 times of the cluster size are found. Beyond 4 Å the thermal con-
ductance decreases as predicted by the charge-charge interaction in the range
of 4 Å to 3 times the cluster size and by the dipole-dipole interaction in the
range larger than 5 times the cluster size. However, when the distance becomes
smaller than 4 Å, it is shown to be the range of a quantum interaction where
the electrons of both clusters are shared. This quantum interaction leads to the
dramatic increase of the thermal coupling between neighbor clusters due to the
strong interactions. This study �nally provides a description of the transition
between radiation and heat conduction in gaps smaller than a few nanometers.

Finally, we conclude the thesis in Chapter 7.



Chapter 2

Methods

2.1 Molecular Dynamics

2.1.1 Background

We carry out computer simulations in the hope of understanding the proper-
ties of assemblies of molecules in terms of their structure and the microscopic
interactions between them. This serves as a complement to conventional exper-
iments, enabling us to learn something new, something that cannot be found
out in other ways. Computer simulations act as a bridge between microscopic
length and time scales and the macroscopic world of the laboratory. It also act
as a bridge in another sense: between theory and experiment (Allen 2004).

Molecular dynamics simulation consists of the numerical, step-by-step, solution
of the classical equations of motion:

d2r⃗i
dt2

=
F⃗i

mi
(2.1)

where t refers to the time, mi is the mass of atom i, r⃗i is its position vector, and
F⃗i is the total force vector acting on the atom i. The force applied on any atom
is derived from the �rst derivative of the potential energy U . For example, in
a two body interaction situation,

F⃗i =
∑

j ̸=i

F⃗ij = −
∑

i ̸=j

∂U(rij)

∂r⃗ij
(2.2)

where F⃗ij is the force applied on atom i by atom j, r⃗ij = r⃗i− r⃗j is the distance
vector between the two atoms. The potential energy U is essentially the soul of
molecular dynamics. A good potential can provide us with reasonable results
comparable with the ones of experiments when the structure is properly set
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up. Ideally, a potential energy function must combine simplicity, accuracy, and
transferability. It is usually designed according to the �tting from experimental
data, or density functional theory calculations. Generally, the total potential
energy of a system can be expressed as a sum of terms involving single, pairs,
triplets, and so forth, of atoms (Allen and Tildesley 1989):

U =
∑

i

U1(ri) +
∑

i

∑

j>i

U2(ri, rj) +
∑

i

∑

j>i

∑

k>j>i

U3(ri, rj , rk) + ... (2.3)

The �rst term in the potential energy function, U1(ri), can be used to incor-
porate the e�ect of an external �eld acting on the system. The remaining
terms denote the interactions between two atoms, three atoms and so on. The
summation index relation i, j, and k in the second and third terms prevents
the inclusion of the interaction potential between a set of atoms more than once.

Molecular dynamics can usually be conducted in several ensembles with the
conditions of constant energy (E) or temperature (T ), constant atomic number
(N) or chemical potential (µ), and constant volume (V ) or pressure (P ), de-
pending on the properties that one wants to measure. The most widely adopted
statistical sampling ensembles are the microcanonical ensemble (NV E), the
canonical ensemble (NV T ) and the isobaric-isothermal ensemble (NPT ) for
solids. However, there is increasing interest in conducting MD simulations
which do not fall within the classi�cation of these classical ensembles. Accord-
ing to statistical physics, all the macroscopic properties can be derived from
the �uctuation-dissipation theorem. Here we list the formula of several of the
most measured quantities in MD simulations.

The total energy of the system, E, is the sum of the total potential energy U ,
and the kinetic energy Ke:

⟨E⟩ = ⟨U⟩+ ⟨Ke⟩ (2.4)

where the brackets ⟨⟩ represent the ensemble average. The potential energy
term is expressed in Eq. 2.3. The kinetic energy can be calculated as follows:

Ke =
1

2

N
∑

i

miv
2
i (2.5)

N is the total number of atoms in the system. mi and vi are the mass and
velocity of atom i. The kinetic energy is also tightly related to the temperature
(T ) of the system with the following relation:

T =
2⟨Ke⟩
3NkB

=

∑N
i miv

2
i

3NkB
(2.6)
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where kB is the Boltzmann constant. This equation is derived from the En-
ergy equipartition theorem, which states that, in thermal equilibrium, energy is
shared equally among all of its various forms. At temperature T , the energy
for each degree of freedom is kBT/2. Without considering the spin motion of
atoms, the kinetic energy of each atom can be written as Es =

3
2kBT (3 is the

degree of freedom of kinetic energy). So the temperature T can be expressed
with Eq 2.6 in a system with atom number N . The pressure is also one of the
frequently measured quantities in MD simulations and it is written as:

P =
NkBT

V
+

1

3V
⟨
N−1
∑

i

N
∑

j>i

rij · Fij⟩ (2.7)

Here V is the volume of the system of interest. In heat transfer simulations,
one usually needs to calculate the heat �ux in di�erent directions in order to
further cast the thermal properties like conductivity. The heat �ux is de�ned
as (Schelling et al. 2002):

J⃗ =
1

V

d

dt

∑

i

r⃗i(t)Ei(t) (2.8)

where r⃗i(t) is the time-dependent coordinate of atom i and Ei is the total
energy of atom i. Taking the pair term of potential energy in Eq. 2.3, one can
derive the heat �ux in the following form:

J⃗ =
1

V
[
∑

i

Eiv⃗i +
∑

i<j

(F⃗ij · v⃗j)r⃗ij ]

=
1

V
[
∑

i

Eiv⃗i +
1

2

∑

i<j

(F⃗ij · (v⃗i + v⃗j))r⃗ij ]

(2.9)

where F⃗ij is the force vector between atom i and j. With the obtained heat
�ux, one can calculate the thermal conductivity of the system of interest ac-
cording to the Green-Kubo formula in EMD simulations or according to the
Fourier's law together with the temperature pro�le in NEMD simulations. In
the heat transfer analysis, one often needs to check the atomic vibrational den-
sity of states (VDOS), which measures the number of vibrations within a given
frequency range. The VDOS can be numerically computed by decomposing the
time correlation function of the atomic velocities into the Fourier space as:

V DOS(ω) =
1

kBT

∑

i

mi | vi(ω) |2

| vi(ω) |2=
∫ ∞

0
< vi(0)vi(t) > dt

(2.10)
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the sum index i is over all atoms and mi is the atom mass of the ith atom.
By dumping the velocity trajectories of di�erent regions, one can calculate
the local VDOS, which is useful when the material is not homogeneous. By
selecting di�erent atom types, the relative contribution of VDOS from di�erent
atom types can be identi�ed easily.

2.1.2 Thermal Conductivity from Equilibrium Molecular Dy-

namics Simulation

In equilibrium molecular dynamics simulations, we use the �uctuation-dissipation
theorem from linear response theory to provide the connection between the en-
ergy dissipation in irreversible processes and the thermal �uctuations in equi-
librium (Kubo et al. 1985). The net �ow of heat in a solid, given by the heat
current vector J , �uctuates around zero at equilibrium. In the Green-Kubo
(GK) method, the thermal conductivity is related to how long it takes to these
�uctuations to relax to equilibrium. In the case of an isotropic material, the
conductivity is de�ned by (Kubo et al. 1985)

κ =
1

kBV T 2

∫ ∞

0
⟨Jx(t)Jx(0)⟩dt =

1

3kBV T 2

∫ ∞

0
⟨J⃗(t) · J⃗(0)⟩dt (2.11)

where V represents the volume of the simulation cell, t is the time, Jx(t)Jx(0)
and J⃗(t) · J⃗(0) are the heat current autocorrelation functions (HCACF) in the x
direction and all directions, respectively. In crystals where the �uctuations have
long life times (i.e., the mean free path of phonons is large), the HCACF decays
slowly. The thermal conductivity is related to the integral of the HCACF, and
is accordingly large. In materials such as amorphous solids, where the mean
free path of phonons is small, thermal �uctuations are quickly damped, leading
to a small integral of the HCACF and a low thermal conductivity (McGaughey
and Kaviany 2004).

In real computational procedures, instead of integrating up to in�nity in Eq.
2.11, the upper limit is a �nite but long enough time period that captures
the correct statistics. The continuous integral is also replaced by a discrete
summation. To remove the arbitrariness on the choice of the upper limit,
di�erent methods have been proposed in the literatures (Volz et al. 1996; Che
et al. 2000; McGaughey and Kaviany 2004; Li et al. 1998). According to the
Cattaneo-Vernotte's relation (Vernotte 1958; Cattaneo 1958), Volz et al derived
the time autocorrelation function of the heat �ux as (Volz et al. 1996)

⟨J⃗(t) · J⃗(0)⟩ = ⟨J⃗(0) · J⃗(0)⟩ exp(−t/τ) (2.12)

A similar exponential function was used by Li et al to �t the heat �ux auto-



Chapter 2 - Methods 27

Figure 2.1: An example of heat �ux autocorrelation function with the �tting of dif-
ferent methods. The insert represents the integral of the thermal conductivities over
time. Figure from McGaughey, A. and M. Kaviany (2004), International Journal of
Heat and Mass Transfer 47: 1783

correlation function

⟨J⃗(t) · J⃗(0)⟩
3

= g exp(−t/τ) (2.13)

However, in Li's approach, the single exponential function is not used to �t
the whole HCACF curve but only the range [t1, t2]. This approach is used to
determine the tail contribution of HCACF. Instead of using a single exponential
function to �t the HCACF in the full time interval, Che et al (Che et al. 2000)
proposed a double exponential function to �t the whole HCACF curve. This
approach has also been used by McGaughey et al (McGaughey and Kaviany
2004) for solid Ar but with di�erent explanations. The �tting function reads
as

⟨J⃗(t) · J⃗(0)⟩
3

= Ash exp(−t/τsh) +Alg exp(−t/τlg) (2.14)

where the subscripts sh, and lg refer to short range and long range, respectively.
Fig. 2.1 shows an example of HCACF obtained from solid Ar at 10 K and the
corresponding �tting curves with Eq.2.12, 2.13 and 2.14.
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2.1.3 Thermal Conductivity from Non-equilibrium Molecular

Dynamics Simulation

Non-equilibrium molecular dynamics, also known as the direct method, ex-
tracts the thermal conductivity from the Fourier's law. In this method, one
needs to impose a one-dimensional temperature gradient on a simulation cell
by allowing thermal power exchange between the heat source and sink and
measure the resulting heat �ux. The thermal conductivity is then obtained
as the ratio of the heat �ux and the temperature gradient. An alternative,
but equivalent way consists in inducing a heat �ux and to measure the result-
ing temperature gradient. In both cases the system is �rst allowed to reach
a steady state, after which long simulations are conducted allowing to obtain
correct statistical measurements. The NEMD method is often the method of
choice for studies of nanomaterials while for bulk thermal conductivity, particu-
larly high-conductivity materials, the equilibrium method is typically preferred
due to less severe size e�ects (Termentzidis and Merabia 2012).

Figure 2.2: The inverse of the thermal conductivities measured with NEMD simula-
tions for Si and diamond at speci�ed temperatures versus 1/L and the corresponding
�tting with Eq. 2.16. κ∞ is get at 1/L = 0. Figure from Schelling et al (2002), Phys.
Rev. B 65: 144306

In NEMD simulations, �nite-size e�ects arise when the length of the simulation
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cell L is not signi�cantly longer than the phonon mean free path. This is
understood to be a result of scattering that occurs at the interfaces with the
heat source and sink. As a result, the phonon mean free path is limited by
the system size. To eliminate the size e�ect, Schelling et al (Schelling et al.
2002) proposed a method based on the Matthiessen's rule to determine the
e�ective mean free path Λeff when L ∼ Λ∞, where Λ∞ is the mean free path
for an in�nite system. The e�ective mean free path is obtained by the following
relation:

1

Λeff
=

1

Λ∞
+

4

L
(2.15)

Here, the factor of 4 accounts for the fact that as phonons travel along the
length of the simulation cell from the source to the sink, its average distance
since the last scattering event should be L/4. In kinetic theory, the thermal
conductivity is given as κ = 1

3CvvΛ, where Cv and v are the speci�c heat
and the phonon group velocity. Combing with Eq. 2.15, the e�ective thermal
conductivity is obtained:

1

κeff
=

1

κ∞
+

12

Cvv

1

L
(2.16)

Eq. 2.16 suggests that a plot of 1/κ vs 1/L should be linear, and that the
thermal conductivity of an in�nite system can be obtained by extrapolating to
1/L = 0. Fig. 2.2 shows the examples of using Eq. 2.16 to extract the thermal
conductivity with in�nite sizes for Si and diamond. Good linear �ts are found
in these cases imply the successful application of Eq. 2.16.

2.1.4 Challenges of Molecular Dynamic Simulations

Molecular Dynamics has been widely used to predict varies properties in bulk
and nanomaterials. It has been regarded as a successfully tool to assist the
experimental designs and understand the mechanisms at the atomic scales.
Despite its successful applications, it also su�ers from several important and
fundamental challenges.

The �rst challenge comes from the simulation size and time. Nowadays, with
the assistance of supercomputing, the usual MD simulations contains hundreds
to millions of atoms, corresponding to a cubic box with the side length less
than 50 nm. However, in some of the simulations, the simulation box could
exceed hundreds of nanometers. For example, if one needs to study the grain
boundary properties, at least tens of grains should be contained in a simulation
box and each grain could have a size of 50 nm in diameter. The simulation time
normally ranges from several picoseconds to hundreds of nanoseconds, which
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is far from enough in some cases. Examples can be listed from the studies of
phase transitions. Most of the phase transitions takes place from milliseconds
to minutes or even hours in bulk state, which is far beyond the timescales that
can be achieved to date. The challenges from the simulation size and time are
important but not fundamental and can be solved with the development of fu-
ture supercomputing. The most fundamental challenges is that the simulation
is classical, that is , the trajectories of the atoms are integrated according to
the classical Newtonian mechanics without considering quantum e�ect. This is
usually justi�ed by stating that for most of the elements at room temperature,
the atomic mass is su�ciently large in order the de Broglie wavelength to be
considerably smaller than the interatomic distance and atoms can be treated
classically. Nevertheless, due to the classical assumptions, phonons follow the
Boltzmann distributions, i.e., f = AeEi/kBT instead of the Bose-Einstein distri-
butions, and as a result, energy equipartition principle applies. This means that
at any temperature T , all phonon modes are fully populated and each phonon
mode has the energy kBT . This is valid at high temperatures (T >> TD, TD

is the Debye temperature), at which the Bose-Einstein distribution can be sim-
pli�ed to the Boltzmann distribution. At the temperatures below the Debye
temperature, the high-frequency modes will be at least partially unoccupied
in contrast with MD simulations. Consequently, MD simulations are usually
conducted above the Debye temperature (or approximately above TD/2). To
overcome this fundamental shortcoming, di�erent quantum corrections in MD
simulations have been tried including a temperature correction (Wang et al.
1990) and a quantum thermal bath (Dammak et al. 2009). Besides, the size
scaling in non-equilibrium MD calculations of thermal conductivity is far from
been solved, especially in low dimensional systems (Yang et al. 2010).

2.2 Phonon Green's Function

The Green's function method has been developed originally for the calculation
of electron transport (Keldysh 1965) and it was developed after to describe the
phonon transport by Mingo et al (Mingo and Yang 2003; Zhang et al. 2006).
It is a powerful method in dealing with ballistic transport phenomena.

2.2.1 General Formulation

In a harmonic system, the matrix form of the system Hamiltonian in Eq. 1.8
can be written as

H =
M

2
u̇†u̇+

1

2
u†Ku (2.17)

Where M and K are the mass matrix and force constant matrix. The dynamics
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of a system is governed by the Hamilton-Jacobi equation, which reads as

dP

dt
= −dH

du
(2.18)

substituting the matrix form of the system Hamiltonian into the Hamilton-
Jacobi equation and considering the plane wave solution of the displacement,
i.e., u = A0e

i(qR−ωt), we obtain the equation of motion as

(ω2I −K)u = 0 (2.19)

Hence, the motion of atoms is completely determined by its mass normalized
force constant matrix K, with matrix elements related to the second derivative
of potential energy U , i.e.,

Kij =
1

√

MiMj

K =
1

√

MiMj

∂2U

∂ui∂uj
(2.20)

where the subscript i or j represents the ith or jth degree of freedom. So the
resolvent Green's function of the system is de�ned as

G(ω) =
1

(ω + i∆)2I −K
(2.21)

where ∆ → 0+ is an in�nitesimal imaginary part that maintains the causality
of the Green's function, I is a identity matrix.
Considering a system composed by three parts, the left and right leads and the
central scattering region denoted with symbols L, R and C, respectively (Fig.
2.3). To obtain the Green's function of the central scattering region, we rewrite
the force constant matrix K in the following form

K =





KL V LC 0
V CL KC V CR

0 V RC KR



 (2.22)

With Kα and V β being the force constant matrices of di�erent regions and
coupling force constant matrices between di�erent regions, respectively, as de-
�ned in Fig. 2.3. Correspondingly, we can write the system Green's function
in terms of the three regions as

G =





GL GLC GLR

GCL GC GCR

GRL GRC GR



 (2.23)
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Figure 2.3: Schematic for the Green's function calculation with the lelf and right leads
and the central scattering region. The force constant matrices for the three regions are
denoted as KL, KR and KC , respectively. The coupling matrices between the lelf lead
and the central region, the right lead and the central region are denoted as V LC and
V RC , respectively

So Eq. 2.21 can be rewritten as follows in terms of Eqs. 2.22 and 2.23





(ω + i∆)2I −KL −V LC 0
−V CL (ω + i∆)2I −KC −V CR

0 −V RC (ω + i∆)2I −KR





×





GL GLC GLR

GCL GC GCR

GRL GRC GR



 =





I 0 0
0 I 0
0 0 I





(2.24)

From the above equation, the following three equations can be easily casted,

[

(ω + i∆)2I −KL
]

GLC − V LCGC = 0

V CLGLC +
[

(ω + i∆)2I −KC
]

GC − V CRGRC = I

−V RCGC +
[

(ω + i∆)2I −KR
]

GRC = 0

(2.25)

Now we de�ne the surface Green's functions of the left and right leads as

gα =
1

(ω + i∆)2I −Kα
(2.26)

with α = L,R. The retarded Green's function of the central scattering region
Gr

s can be derived with the combination of Eq. 2.25 and 2.26 as

Gr
s = GC =

1

(ω + i∆)2I −KC − ΣL − ΣR
(2.27)
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where ΣL and ΣR are the self energies of the left and right leads and they are
linked with the surface Green's functions as follows

ΣL = V CLgLV LC

ΣR = V CRgRV RC
(2.28)

Here, V L(R)C is the complex conjugate of V CL(R), i.e., V L(R)C = (V CL(R))†.
Once the Green's function of the central scattering region is obtained, the
phonon transmission function Tr from the left side to the right side by crossing
the central region can be derived in terms of the Landauer formula and it is
expressed as

Tr(ω) = Trace(Gr
sΓLG

a
sΓR) (2.29)

where Ga
s = (Gr

s)
† represents the advanced Green's function of the central

region, ΓL/R is the broadening function of the left or right lead and it is written
as

ΓL = i(ΣL − Σ†
L)

ΓR = i(ΣR − Σ†
R)

(2.30)

Assuming that the temperature di�erence between the two reservoirs is �nite,
the thermal conductance from the left to the right reservoir can be written as
the integral of the transmission function over all frequencies

σ =

∫ ωmax

0
Tr(ω)

∂

∂T

(

1

e~ω/kBT − 1

)

~ω
dω

2π
(2.31)

where ωmax is the Debye frequency. From Eq. 2.27 - 2.29 we know that in
order to calculate the thermal conductance, the main task is to get the surface
Green's functions.

2.2.2 Recursive method for surface Green's function calcula-

tion

The surface Green's functions can be computed rather quickly by recursive
iterations (Sancho et al. 1985). Recursive methods for the evaluation of the
Green's function are based on the division of the device in smaller sections,
where the Green's functions can be calculated easily. These sections are then
"glued together" by using the so-called Dyson's equation (Volz 2009).

G = g + gV G (2.32)
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which allows to relate the Green's function g of two disconnected subsystems
to the Green's function G of the connected system, where V describes the con-
necting force constant matrix.

Figure 2.4: Schematics for the surface Green's function calculation by gluing each
sections together. All the blocks are �rstly isolated (top). After the second block is glued
on the �rst block (middle) and the Green's function of each section can be calculated.
By repeating the process, the N th section can be attached on the nth section and forming
a chain with N blocks (bottom). The Green's functions of each blocks can be evaluated
consequently.

Fig. 2.4 illustrates how these sections are glued together. We consider that
all the sections are identical and only interact with their two neighbours. The
force constant matrix of the whole system is

K =











K00 V 0 · · ·
V † K11 V 0
0 V † K11 V

· · · 0 V † . . .











(2.33)

The block K00 is the section immediately adjacent to the center region. At
the beginning, all of the sections are isolated, so their Green's function can be
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obtained according to the de�nition of Eq. 2.21. Then the �rst two sections can
be glued together with the Dyson's equation and we can get the surface Green's
function of both sections 1 and 2. Afterwards we glue the third, the forth, ...,
the N th sections together, and can obtain the surface Green's functions of the
�rst and N th sections. For example, when the N th section is coupled to the
previous block, according to the Dyson's equation, we have

GNN = gNN + gNNVNnGnN

GnN = gnnVnNGNN
(2.34)

where GNN and GnN are the coupled Green's function of the N th section and
the coupled Green's function between the nth and N th sections, respectively.
gNN is the decoupled Green's function of the N th section. VnN = V †

Nn = V is
the coupling matrix between two neighbour sections as illustrated in Fig. 2.4.
As a result, the surface Green's function of the N th section can be obtained

GNN = [I − gNNVNngnnVnN ]−1 gNN (2.35)

The other useful Green's function such as G11 and G1N can be derived similarly
using the Dyson's equation .

The Green's functions allow one to treat semi-in�nite, non-periodic systems.
Thus, no spurious periodicities need to be imposed. The conductance calcu-
lation is based on the quantum Bose-Einstein distributions, so in such a way
that the quantum e�ect is included. Generally, the atomistic Green's function
is quite useful when the size of a system is comparable or shorter than the
bulk mean free path, phonons travel nearly ballistically, and anharmonic ef-
fects are less important. The harmonic approximations simpli�es the problem
enormously, since it reduces to the question of non-interacting phonons. In a
purely harmonic case, Green's functions have advantages over a molecular dy-
namics simulation at low temperatures where quantum e�ect is important. The
anharmonic Green's function has also been developed in the literature (Mingo
2006; Wang et al. 2006). However, due to the dramatic increase of the compu-
tational time, it is limited to small systems such as molecular junctions.

Molecular dynamics represents an alternative to Green's function techniques.
In summary, the two most fundamental di�erences between the two, physically
speaking, are (Volz 2009):

• Green's function is quantum mechanical whereas MD is classical and thus
restricted to high temperatures.
• MD includes anharmonic interactions to all orders, whereas Green's function
is presently limited to length scales at which anharmonicity is of secondary



36 2.3. LATTICE DYNAMICS

importance.

Therefore, despite their radically di�erent formulations, the two techniques can
complement one another, each of them working best in the cases where the
other one might fail. It is thus important to carry out studies to compare the
outcomes from both types of calculation.

2.3 Lattice Dynamics

2.3.1 Phonon Dispersion Relation

In the previous section, we derived the equation of motion of a system and it
is expressed in Eq. 2.19. In principle, for a non-zero dimensional system, K
and u are in�nite and Eq. 2.19 is unsolvable. However, for a periodic system,
the problem can be largely simpli�ed. In a periodic system, the potential is
also periodic, as a result, the wave function (atomic displacement here) has the
Bloch wave form. The displacement vectors in di�erent unit cells only di�er
with a phase factor of qR. That is the reason why a factor of eiqR in the plane
wave solution of u appears. Let u0 = A0e

−iωt with A0 being a vector with 3N
components (N is the number of atoms within one unit cell), u is then written
as the Bloch form as

u = u0e
iqR (2.36)

Eq. 2.19 can be written as the following form when Eq. 2.36 is substituted

ω2

















u0e
iqR1

u0e
iqR2

...
u0e

iqRn

...

















=

















k11 k12 · · ·
k21 k22 · · ·

...
· · · knm · · ·
...

































u0e
iqR1

u0e
iqR2

...
u0e

iqRn

...

















(2.37)

Here knm is a 3N × 3N matrix. The equivalence of each matrix element in the
above equation yields

ω2u0 =
∑

m

knmeiqRnmu0 (2.38)

where Rnm = Rm −Rn is the unit cell vector di�erence between the unit cell
m and n. Let

D(q) =
∑

m

knmeiqRnm (2.39)
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Figure 2.5: An example of the dynamic force constant summation (Eq. 2.39) in a
two dimensional lattice. Due to the cut o� of potential energy, only the near neighbour
cells have non-zero elements in the real space force constant matrices. As a result, the
summation is restricted to the near interact neighbour cells.

which is called the dynamical matrix. From the summation, we know that the
dynamical matrix is just the Fourier transform of the real space force constant
matrices into the reciprocal space (q space). It can be proved that D(q) is
Hermitian for real valued wave numbers q. So Eq. 2.38 can be rewritten as

ω2u0 = D(q)u0 (2.40)

which is the dynamical equation in one unit cell of a periodic system (applica-
tion form of Eq. 2.19). In principle, the discrete Fourier transform of the force
constant matrices in Eq. 2.39 has in�nite terms. However, due to the cut o� of
potential energy, it can always be restricted to a limited number of neighbours.
For most of the empirical potentials, the interactions are limited to the nearest
or second nearest neighbours. Consequently, the summation can be performed
to the nearest or second nearest neighbours. Fig. 2.5 illustrates an example of
the force constant summation of a two dimensional lattice. Once the dynamical
matrix is obtained, the general eigenvalue problem in Eq. 2.40 can be solved
numerically. The eigenfrequency-eigenvector pairs ω − u0 can be obtained at
each q point. This ω − u0 pair is called the normal mode in a phonon analy-
sis. The relation between q and frequency is called phonon dispersion relation,
which is of vital importance in heat transfer calculations.
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2.3.2 Phonon Group Velocity

The empirical models for calculating the thermal conductivities, e.g., the Boltz-
mann and Callaway-Holland model, take the group velocity as one of the basic
input parameters. The predicted results by these models largely depend on
the input group velocities. Also, group velocity is often used for qualitative
analysis in heat transfer. So it is useful to derive the phonon group velocity at
each frequency and wave vector. From Eq. 2.40, ω is an implicit function of q
which makes the explicit evaluation of the group velocity vg seemingly di�cult.
However, an analytical expression for vg can be derived by using a perturba-
tion method (Zhao and Freund 2005). Here we take the group velocity in the x
direction vx for example. According to the de�nition of the group velocity, vx
is written as

vx =
∂ω

∂qx
|qy,z (2.41)

Assuming that there are only the nearest neighbour interactions (long range
interaction cases can be treated in a similar way), which is valid for most
empirical potentials, the dynamical force constant in Eq. 2.39 can be divided
into three parts as

D(q) = DLe
−iqxL +DC +DRe

iqxL (2.42)

where L is the distance between neighbouring cells (which is the lattice constant
for a simple cubic lattice and half of the lattice constant for a FCC or a BCC
lattice). DL, DC and DR are independent of qx and represent lattice site
interactions with atoms in neighbouring unit cells of the left, coincident, and
of the right, respectively. For example, in the schematic presented in Fig. 2.5,
DL, DC and DR can be expressed as

DL = K11 +K10 +K11

DC = K01 +K00 +K01

DL = K11 +K10 +K11

(2.43)

Where Kij represents the force constant matrix between the central unit cell
(index 00) and its neighbouring cell with index ij. The notation i means the
opposite direction of i. If there is no phonon branch degeneracy, both ω and
u0 for a speci�c phonon branch are continuous functions of qx. When a small
perturbation δqx is added to qx in Eq. 2.40, the following di�erential relation
can be derived (Zhao and Freund 2005)

δD(q)u0 +D(q)δu0 = 2ωδωu0 + ω2δu0 (2.44)
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where

δD(q) = δqx
[

−iLe−iqxLDL + iLeiqxLDR

]

(2.45)

Taking the inner product of Eq. 2.44 with u0 and combining it with Eq. 2.40
, a new relation is yielded

u†0δD(q)u0 = 2ωδω | u0 |2 (2.46)

Note that the matrices DL and DR are complex conjugates of each other, there-
fore, the x component of the phonon group velocity has the simple expression

vx =
∂ω

∂qx
=

δω

δqx
= −Im[Lλu†0DRu0]

ω | u0 |2
(2.47)

where

λ = eiqxL (2.48)

So when the ω − u0 pairs are obtained by solving Eq. 2.40, the group velocity
can be evaluated analytically from Eq. 2.47. The group velocities in the other
directions can be calculated in a similar way.

2.3.3 Vibrational Mode Analysis

The vibrational properties of a lattice can help us to understand the heat trans-
fer behaviours. Except the VDOS extracted from MD simulations as shown in
section 2.1.1, some other vibrational properties, such as mode localization and
phase quotient, can be evaluated directly from lattice dynamics Eq. 2.40.

The VDOS or local VDOS provide information averaged over all vibrational
modes existing in the structure. By contrast, the participation ratio pλ, de�ned
for each mode λ as (Schelling and Phillpot 2001; Bodapati et al. 2006)

p−1
λ = N

N
∑

i=1

(

∑

α

u∗iα,λuiα,λ

)2

(2.49)

where uiα,λ is the element component of the vibrational eigenvector u0 in Eq.
2.40, α and i correspond to the Cartesian component (x, y or z) and the atom
index. The participation ratio characterizes each mode individually and serves
as a useful discriminant of spatial localization. The participation ratio measures
the fraction of atoms participating in a mode and hence varies between O(1)
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(order 1) for delocalized states and O(1/N) for localized states and e�ectively
indicates the fraction of atoms participating in a given mode. Like the local
VDOS, we can de�ne a parameter to characterize the relative contributions of
individual modes from di�erent regions in a non-homogeneous structure. This
parameter is called the mode weight factor, which is de�ned as follows in the
region J

fJ,λ =
∑

j

∑

α

(uiα,λ)
2 (2.50)

where the summation over j is restricted to the atom indexes in the region
J . The mode weight factors in all regions of the system are complementary to
each other, i.e., the sum of fJ,λ over all regions equals to 1. The mode weight
factor can be used to analysis the vibrational properties in di�erent regions. For
some purposes in a phonon analyse, sometimes we need to know the vibrational
direction of each atom for a speci�c mode. This can be elucidated by examining
the Cartesian components of the unitary polarization vectors eiα,λ, of an atom
i, for a given mode λ, de�ned as (Allen et al. 1999)

eiα,λ =
uiα,λ

∑

α u
∗
iα,λuiα,λ

(2.51)

In a crystal without defects, the normal modes are all phonon modes and possess
well-de�ned polarization vectors. For example, for a LA mode, if the polariza-
tion vector is parallel to q (say, the z direction), then each atom has a unitary
polarization vector component of ±1 in the z direction and 0 in the x and y
directions. However, in amorphous structures, the atomic displacements are
usually uncorrelated and eiα,λ �ll in a sphere more or less uniformly (Bodapati
et al. 2006). The phase quotient Φλ, of a mode λ, which is a discriminant of
the acoustic versus the optical nature of the mode, is de�ned as (Allen et al.
1999)

Φλ =

∑

<i,j>

(

∑

α
uiα,λujα,λ

)

∑

<i,j>
|∑

α
uiα,λujα,λ | (2.52)

where i and j are the nearest neighbours. A value of Φλ → 1 indicates that the
nearest-neighbour atoms vibrate mostly in-phase like an acoustic mode while
values near -1 indicate that they vibrate out of phase in a manner characteristic
of an optical mode.
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2.4 Conclusions

The most commonly used methods for thermal conductivity calculations in
molecular dynamics simulations - EMD and NEMD methods-, have been �rstly
reviewed and formulated brie�y in this chapter. The EMD method is based on
the �uctuation and dissipation of the heat �ux computed in a system that
freely evolves with given interaction potentials and boundary conditions. The
Green-Kubo formula is used for thermal conductivity calculations. While the
NEMD method consists in applying a temperature gradient, and measuring the
corresponding heat �ux or vice versa. Thermal conductivity is then extracted
with the Fourier's law. MD simulations have proven to be fairly robust in pre-
dicting thermal properties of dielectric materials. The main limitation is that
the simulation is classic, which limits the simulations to the high temperature
ranges (T > Θ/2), where quantum e�ects can be neglected.

The phonon Green's function, which is an alternative to MD simulations in
heat transfer calculations, has also been introduced. The formulation of the
Green's function is based on quantum mechanics, so quantum e�ect is basically
included. However, due to the computational complexity, the Green's function
is usually limited to the harmonic systems. Generally, the atomistic Green's
function is quite useful when the size of a system is comparable or shorter than
the bulk mean free path, phonons travel nearly ballistically, and anharmonic
e�ects are less important. Since MD includes anharmonic interactions to all or-
ders but limited to high temperatures, whereas the Green's function is presently
limited to length scales and low temperatures at which anharmonicity is of sec-
ondary importance. Therefore, despite their radically di�erent formulations,
the two techniques can complement themselves, each of them working best in
the cases where the other one might fail.

To analyse the phonon properties, we �nally introduced the lattice dynamics
method in this chapter. The phonon dispersion curve, phonon group velocity
can be easily obtained from lattice dynamics. Based on the calculated phonon
eigenvectors, the phonon participation ratio, mode weight factor, phonon po-
larization and phase quotient are evaluated. These parameters are quite useful
to help better understand heat transport behaviours in di�erent systems.

In the following chapters, we will use the introduced methods to calculate the
thermal conductivities/conductances in various defect systems and also to in-
vestigate the corresponding mechanisms.





Chapter 3

Strain Defects in Nanowires:

Thermally-Active Screw

Dislocations in Si Nanowires

and Nanotubes

In this chapter, we try to understand the e�ect of line defects on the thermal
conductivity of nanowires. We choose screw dislocations as our study defects
since it has been commonly found in nanowires and nanotubes. New proper-
ties appear when nanomaterials contain dislocations. Understandings whether
these features, which arise naturally during growth, are bene�cial or problem-
atic becomes essential for developing applications. Here we investigate <110>
Si nanowire and nanotube structures containing an axial screw dislocation, as
described by objective molecular dynamics coupled with the classical Terso�
potential. By means of direct nonequilibrium molecular dynamics simulations,
we uncover a decrease in thermal conductivity in the presence of axial screw
dislocations with closed and open cores. Analysis based on the atomistic Green
function method reveals that this decrease originates in the phonon-phonon
scattering due to the anharmonicity introduced especially by the highly dis-
torted core region. As high-strain is intrinsic to dislocations, the e�ect should
occur to various extents in other nano-materials.

3.1 Introduction

Dislocations are de�ned as a boundary between deformed and nondeformed re-
gions in the crystalline structure. In other words, dislocation line represents the
slip front of propagation of a line defect. The Burgers vector, which is generally
used to de�ne a dislocation in a crystal, depicts the direction and amount of
slip. Its magnitude gives a characteristic discontinuity of displacement caused
by dislocation. There are two basic types of dislocations, i.e., edge and screw
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dislocations, which are schematically shown in Fig. 3.1.

Figure 3.1: Schematic of the formation of an edge and a screw dislocation from a
perfect lattice (left).

Typically, dislocations are studied in relation with the mechanical properties of
materials. They allow plastic deformations to occur at lower applied stresses
since they permit glide of one entire crystal plane over the one below in a dis-
crete way. Besides, the motion, multiplication, and interaction of dislocations
cause strain hardening, a common phenomenon in which continued deformation
increases the strength of a crystal. The strength and ductility, and thereby the
mechanical behavior of a crystal, are controlled by dislocations.

Dislocations distort the crystal structure in a complex manner. Away from the
dislocation line, the deformation �eld can be well described with linear elastic-
ity, the highly deformed core region is inaccessible to continuum methods, and
it is largely treated on an empirical basis. For example, consider a screw dislo-
cation of Burgers vector's magnitude b. The elastic strain energy is calculated
by integrating the strain energy density and by simply adding an empirical core
term Ec,

Escrew =
Gb2

4π
ln(

R

rc
) + Ec (3.1)

where G is the shear modulus of a material, R and rc denote the outer dimen-
sion of the structure and the dislocation core size, respectively.
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Because screw dislocations o�er a non-vanishing growth step at surface allow-
ing the growth to advance in a spiral manner without the need for nucleation
of a new layer, they are of importance for the growth of both bulk crystals and
nanomaterials (Morin et al. 2010; Morin and Jin 2010; Bierman et al. 2008).
Recent experiments presented convincing evidences that both nanowire (Bier-
man et al. 2008; Jin et al. 2010) and nanotubes (Morin et al. 2010; Morin
and Jin 2010) can be grown via a common mechanism of the propagation of an
axial screw dislocation (Fig. 3.2). According to classical crystal growth the-
ory, the supersaturation of a system can be manipulated to dictate the growth
mechanism. At low supersaturation, dislocation-driven spiral growth prevails,
at intermediate the layer-by-layer growth dominates, while at high supersatura-
tion, dendritic growth sets in. Therefore, screw dislocation line defects provide
an endless source of crystal steps to enable nanostructure growth at low su-
persaturation conditions. As yet, screw dislocations have been identi�ed in
a variety of quasi-one-dimensional materials, including (Morin and Jin 2010;
Bierman et al. 2008; Meng et al. 2013; Jacobs et al. 2008; Jia et al. 2008;
Maestre et al. 2011; Wu et al. 2012; Hanrath and Korgel 2003) PbS, GaN,
PbSe, PbTe, ZnO, Si, Ge, In2O3, InP, Cu2O, CdSe and CdS. Moreover, the
dislocation-driven growth just reached the point where realistic progress can be
made towards growing nanomaterials with controllable morphologies (Burgers
vectors, chirality, nanotubes or nanowires), in large quantities, and at reason-
able costs. Unfortunately, little is known about the way dislocations in�uence
the properties of these new states of matter.

Figure 3.2: (a) SEM microscopy of screw dislocations in a PbS nanowire; (b)
schematic representation of screw-dislocation-driven trunk growth combined with
slower epitaxial vapor-liquid-solid-driven branch growth; (c) a simpli�ed scheme il-
lustrating that the self-perpetuating steps of a screw dislocation spiral at the tip of a
trunk can enable 1D crystal growth of nanowires. Figure from M. J. Bierman et al,
Science, 2008, 320: 1060.
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3.2 Impact of Dislocation on Thermal Conductivity:
The Classical Theory

In the early work of Klemens (Klemens 1958), dislocation was recognized as
one of the main sources of phonon scatterers. The various scattering mecha-
nisms are treated as perturbations to the harmonic approximation. Scattering
probabilities are then computed with the Fermi Golden rule while transport
properties are captured by the Boltzmann transport equation. After invoking
the Debye approximation for the phonon dispersion, Klemens expressed the
thermal conductivity as an integral over all possible phonon frequencies ω

κ =
1

2π2v

∫ ωd

0
Cv(ω)ω

2τdω (3.2)

where Cv is the heat capacity at constant volume and at a given frequency,
ωd to the Debye frequency, and τ to the phonon lifetime. The phonon lifetime
caused by the dislocation scattering is mixed in with di�erent e�ects via the
Matthiessen's rule (Berman 1976)

1

τdis
=

1

τs
+

1

τc
+

1

τd
(3.3)

where τs, τc, and τd are the contributions from the linear-elastic strain �eld of
the dislocation, the non-linear elastic region of the dislocation, and the disloca-
tion dynamics, respectively. The linear-elastic strain �eld contribution can be
written as (Klemens 1958)

1

τs
∝ Ndb

2γ2ω (3.4)

Nd is the dislocation density, b is the magnitude of the Burger's vector, and
γ the Grüneisen parameter. The e�ect of the non-linear elastic region of the
dislocation is expressed as (Klemens 1958)

1

τc
= Nd

r4c
v2p

γω3 (3.5)

where rc is the radius of the dislocation core and vp is the phonon phase veloc-
ity. Finally, the dislocation dynamics term, which accounts for the dislocation
motion, can be approximated as (Kneeze and Granato 1982; Ninomiya 1968)

1

τd
∝ 1

ω
(3.6)
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The analytical theory of Klemens correctly predicts a decrease in thermal con-
ductivity perpendicular to the dislocation line. However, as it is well recognized
nowadays, its use in the present context is limited to qualitative predictions.
This theory fails by at least an order of magnitude in comparison with the ex-
perimental data (Sproull et al. 1959). Moreover, in the cases of screw dislocated
nanowires and nanotubes, we encounter the unexplored case of thermal trans-
port along the dislocation line. As a result, to predict the thermal conductivity
of dislocated nanowires or nanotubes from the underlying atomic-level molecu-
lar dynamics resulting from rigorously described interatomic interactions is of
vital importance to understand the impact of dislocation on heat transfer.

3.3 Simulation Details

We simulated a set of pristine and screw dislocation (SD) Si <110> nanowires
(NWs) and nanotubes (NTs) with cubic diamond structure and hexagonal cross
sections. The number of 111 layers L in the cross-section was taken to be 12,
16, 20 and 30, so that the radii of the created NWs ranged from 18.8 Å to 47.1
Å. Next, from the pristine L = 12 NW we created a set of (L,h) NTs, by system-
atically removing central atomic layers. We label by h the number of 111 inner
layers that have been removed. Finally, in all these structures, we introduce
SDs with the axis located at the center. We considered minimal Burgers vector
of magnitude b = 3.8 Å and multiples of it, 2b and 3b. In 1b NWs, the created
core structure is of Hornstra type, where all atoms remain fourfold coordinated.

Figure 3.3: Schematic presentation of a simulated pristine Si nanowire (left) and a
dislocated Si nanowire with Eshelby twist (right).

As evidenced by experiment (Morin et al. 2010; Morin and Jin 2010; Bierman
et al. 2008; Jin et al. 2010) and theory (Akatyeva et al. 2012; Akatyeva and
Dumitric  2012; Nikiforov et al. 2011; Zhang et al. 2011), the axial screw dis-
location couples to the shapes of NWs and NTs, by twisting them. This is the
Eshelby twist (Eshelby 1953) γE , which is well known at the macroscale. Fig.
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3.3 shows one example of a pristine and screw dislocated NWs. The presence of
γE creates challenges for the atomistic simulations as it prevents the applica-
bility of the standard periodic boundary conditions with the conventional small
unit cells. Here, in order to �nd the optimal morphologies (atomic positions,
unit cell length, and twist angles corresponding to minimum energy), we used
objective MD (Dumitrica and James 2007) coupled with a Terso� classical po-
tential (Terso� 1989). The method allows for performing simulations of SD
NWs and NTs under arbitrary twist in an economic fashion without introduc-
ing any additional approximations, always using the same N number of atoms
located in the primitive cell of the pristine structure. The in�nitely long NWs
and NTs are described as objective structures (James 2006; Akatyeva et al.
2012), with

Xj,ς = RςXj + ςT, j = 1, ..., N ; −∞ < ς < ∞ (3.7)

where Xj,ς and Xj represent the cartesian coordinates of atom j located on
the cell labeled by integer ς and initial cell, respectively. Matrix R indicates
a rotation with angle θ around the direction indicated by the vector T. In
objective molecular dynamics, only the N atoms in the initial cell are explicitly
simulated under the objective boundary conditions indicated by Eq. 3.7.

After the relaxation with objective molecular dynamics, non-equilibrium molec-
ular dynamics simulations were carried out with LAMMPS code (Plimpton
1995) for long NWs and NTs constructed with the optimized structures. Dur-
ing this procedure, a temperature gradient was imposed on the system by ther-
mostatting di�erent "bath" regions at di�erent temperatures. From the variety
of thermostatting options, we used the Nosé-Hoover (Nosé 1984; Hoover 1985)
thermostat. With the structure oriented along the z direction, we applied �xed
boundary conditions on the end atomic layers. Next to these �xed layers, mul-
tiple layers of atoms were placed into hot and cold baths with temperatures
TH = T0 + ∆/2 and TC = T0 −∆/2, respectively, with T0 = 300K the mean
temperature and ∆ = 20K the temperature di�erence. A 5 ns run was per-
formed to reach steady-state, and another 5 ns run to time-average the local
temperature T and heat �ux j along z. κ was then extracted with the Fourier's
law.

It is important to realize that the simulations are subject to size e�ects due to
phonon scattering at the system (or thermostat) boundaries, and restrictions on
the maximum phonon mean free path. The �nite size thermal conductivity has
been extrapolated up to the bulk value using analytical predictions (Schelling
et al. 2002).
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3.4 Physical Analysis of SD NWs and NTs Thermal
Conductivity

3.4.1 Structure Optimisation and Eshelby Twist Angle

Figure 3.4: Optimal con�guration (left) and total energy vs. twist angle (right) for
(a) (12,0) NW and (b) (12,4)b NT. The dashed line indicates the cut made to create
the dislocation.

Examples of optimized structures are shown in Fig. 3.4. Each structure cor-
responds to the minimum of the computed total energy vs. twist angle θ. As
illustrated in table 3.1, in accordance with Eshelby theory (Eshelby 1953) we
�nd that γE increases with the magnitude of the Burgers vector. As shown in
Fig. 3.5, for all of the diameters studied, the twist angle increases linearly with
the Burger's vector. Moreover, we �nd that γE decreases with the enlargement
of the size of NWs, which is also in agreement with Eshelby theory. With the
remove of the core (corresponding to NTs), the Eshelby twist decreases. This is
because the Eshelby twist is originating from the highly distort core, where the
deformation is plastic. With the remove of the core region, the strain energy
produced by dislocation is released and the twist angle decreases. Moreover, the
obtained γE and formation energies of the dislocations compare very well with
those computed with a higher-level ab initio description of bonding (Akatyeva
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Figure 3.5: Eshelby twist angles as a function of the Burger's vector magnitude for
SD NWs with speci�c diameters.

et al. 2012), thus indicating the reliability of our modeling. Note also that the
dislocation does not a�ect the surface structural relaxation (Morin et al. 2010).

The formation energy Ef , which is de�ned as the di�erence between the total
energy of a considered structure and its corresponding bulk state with the same
number of atoms, has also been calculated. For a NW or NT, Ef contains only
the surface energy term. While for a SD NW or NT, an additional strain energy
of the dislocation term Efd should be included. Efd can also be explained as
the formation energy of a dislocation and it can be deduced as

Efd = Ef − Ef (p) (3.8)

where Ef (p) is the formation energy of the corresponding NW or NT.

Fig. 3.6 represents the formation energies compared to the corresponding bulk
state and NW/NT state as a function of h/L with L = 12. For the pristine
NWs or NTs, due to the linear increase behavior of surface areas with h/L, the
formation energy increases linearly with h/L as shown in Fig. 3.6(a). While for
SD NWs and NTs, Ef increases slowly when h/L is small and the increase rate
becomes larger and larger when enlarges the hole size and �nally converges to
the value of the pristine NT. This phenomenon originates from the fact that
the strain energy of a dislocation is mostly stored at the core region of a dislo-
cation. This is shown more clearly in Fig. 3.6(b), where the formation energy
of a dislocation decreases quickly with the increase of the hole size.
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Figure 3.6: Formation energies as a function of the ratio h/L with L = 12. (a)
formation energies compared to bulk state (Ef ); (b) formation energies compared to
the corresponding pristine structures (Efd).

3.4.2 Thermal Conductivity

Having identi�ed the atomic positions inside the objective cell and γE , we con-
structed long nanostructures. We computed the thermal conductivity with the
direct method, based on nonequilibrium classical MD at a 300 K mean temper-
ature as detailed in the previous section. During our MD runs, the NWs and
NTs maintain their crystalline structure as well as the central location of the
dislocation. Thereby, we recognize that scattering by other defects (vacancies,
isotopes et al) and dislocation motion (Klemens 1958) contributions are not
included in our results. Nevertheless, our MD simulations are subject to size
e�ects. Therefore, for the (12,0) NWs and (12,4) NTs, we simulated structures
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with lengths of 10, 20, 30, and 40 nm. The computed �nite-size thermal con-
ductivity has been extrapolated (Schelling et al. 2002) to predict κ for the
in�nitely-long structure.

Table 3.1: Number of Si atoms in the objective cell, twist, energet-
ics, and thermal conductivity of (12,0) NWs and (12,4) NTs. The
magnitude of the Burgers vector (1b, 2b, and 3b, where b = 3.8
Å) is indicated in the subscript notation.

(L,h) N γE (deg/Å) Ef (eV/Å) κ(W/m ·K)∗∗

(12,0) 228 0 0 50
(12,0)b 228 0.19(0.19∗) 0.79(0.94∗) 36
(12,0)2b 228 0.39 (0.36∗) 2.05 (2.15∗) 20
(12,0)3b 228 0.56 (0.53∗) 3.74 (3.40∗) 12
(12,4) 204 0 0 28
(12,4)b 204 0.18 0.09 23
(12,4)2b 204 0.35 0.35 17
(12,4)3b 204 0.52 0.77 12
* These values, shown here for a comparison, were obtained with a
density-functional-theory based method (Akatyeva et al. 2012).

** These values correspond to the in�nitely-long structures.

Fig. 3.7 depicts an example of the simulation set up of a SD NW with a Burger's
vector of 2b for measuring the thermal conductivity. Fixed boundary conditions
are applied on the end atomic layers. Next to the �xed layers, multiple layers
are coupled to thermal baths with temperatures 310 K and 290 K, respectively.
The temperature pro�le averaged over 5 ns is shown with the solid line in Fig.
3.7(a). In the intermediate region, the temperature varies linearly along the
NW and the temperature gradient can be measured in this region with a linear
�t (dashed line). The time evolution of the total energy injected into the hot
bath and subtracted from the cold bath is shown in Fig. 3.7(b). These two
curves (corresponding to energy injection and subtraction) should be nearly
symmetric according to energy conservation. The heat �ux j used to deduce
the thermal conductivity calculated as

j =
1

2
(⟨dEin

dt
⟩ − ⟨dEout

dt
⟩) (3.9)

where Ein and Eout denote the total energy injection and subtraction. ⟨· · · ⟩
means the average over time.

Consistent with previous studies, we �nd that the presence of surfaces in pris-
tine Si NWs leads to signi�cant thermal conductivity reduction. For example,
in a (12,0) NW we measured κ = 50 W/m·K, which represents 25% of the
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Figure 3.7: Example of thermal conductivity measuring set up with NEMD method
for a SD NW with 2b Burger's vector (top). The atoms at the two ends are �xed
and next to the �xed layers, a couple of atom layers are coupled to the Nosé-Hoover
thermal bath with the temperature T0 +∆/2 and T0 −∆/2, respectively. (a) Raw data
of the averaged temperature pro�le (solid line) and the linear �t (dashed line) for the
intermediate region; (b) Energy E injected into and subtracted from the hot and cold
thermal baths, respectively.

bulk Si value (He and Galli 2012) of 196 W/m·K. This value agrees well with
that obtained from other simulations (Hu et al. 2011) but is larger than in
experiment (Li et al. 2003) because realistic e�ects, such as structural defects
(He and Galli 2012; Martin et al. 2009), are not included. Nevertheless, our
pristine structures only serve here as useful references, to help us distinguish
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the potential impact of SDs.

Figure 3.8: Dependence of 1/κ on 1/Lz for pristine and SD (a) (12,0) NWs and (b)
(12,4) NTs. The intercept of the linear �t with the vertical axis gives for in�nitely-long
structures. Relative comparison of for (c) NWs and (d) NTs with Lz = 20 nm. The
�lled (open) symbols correspond to untwisted (twisted) structures. Here b = 3.8 Å.

Remarkably, a screw dislocation leads to a sizable κ decrease. The values en-
tered in the last column of Table 3.1, demonstrate a consistent decrease in κ
with the magnitude of the Burgers vector. Likewise, an open core dislocation
in NTs is reducing κ to a similar extent. For example, in both (12,0)3b NWs
and (12,4)3b NTs, κ = 12 W/m·K, which represents only 6% of the bulk value.

For more insight, Fig. 3.8(c) shows the computed thermal conductivity for a se-
ries of NWs 20 nm in length. In Eshelby's theory, the amount of twist depends
inversely on the cross-sectional area, so it decreases with the NW diameter.
For example a (30,0)b NW stores a twist of only 0.03 deg/Å. Fortunately, Fig.
3.8(c) demonstrates that the Eshelby twist does not play a key role for heat
transport. The reduction in κ occurs to the same extent in smaller and larger
diameter untwisted and twisted NWs.

In Fig. 3.8(d) we compare the dependence of thermal conductivity on the Burg-
ers vector for NTs with di�erent inner diameters. In pristine NTs, we �nd that
the e�ect of the gradual increase of the inner surface is bene�cial for thermo-
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electricity, as it leads to a κ decrease. When accounting for the size e�ects in
the same manner as in Fig. 3.8(b), we obtained a 56% κ reduction between
pristine (12,4) NTs and (12,0) NWs (see Table 3.1). This is an interesting result
by itself considering the recent progress in the synthesis of pristine Si NTs (Ishai
and Patolsky 2009). Examining now the SD data, we �nd that as the NT's wall
gets thinner, the impact of SD on κ diminishes: While in (12,2) NT the strain
�eld leads to a signi�cant κ reduction, in (12,8) NT κ is hardly a�ected by the
size of the Burgers vector. Moreover, the thermal conductivity of SD NT with a
hollow size near to the Burger's vector is almost the same with the one without
hollow, indicating the contribution of the thermal conductivity from the core
region is negligible. As a result, hollow sizes smaller than the size of distorted
core will not a�ect thermal conductivity of dislocated NWs. This phenomenon
may lead to design metamaterials and tune the material properties. For exam-
ple, in core-shell structures, if we introduce a dislocation in the centre of the
structure and the core is of the same size as the one of the dislocation distort
region, we may change the core material and the thermal conductivity will not
be a�ected while the other properties, such as electronic properties, may be de-
signed. Overall, this study shows that the thermal reduction is strongly linked
to the complex SD strain �eld, which is most severe at the core and signi�cantly
diluted in strength near the outer surface.

3.4.3 Eigen-mode Analysis

What is the microscopic mechanism responsible for lowering the thermal con-
ductivity? In search for the answer, we have �rst invoked the harmonic approxi-
mation and performed a mode analysis within the solution u⃗n,λ ∝ ε⃗n,λ exp(iωλt).
Here u⃗n,λ is the displacement of atom n and λ denotes the phonon-mode branch.
The eigenfrequencies and eigenvectors were obtained by numerically solving the
lattice dynamical equations. The oscillation direction of these modes is provided
by the unit polarization vector ε⃗n,λ/ |ε⃗n,λ| (More details for mode polarization
calculation can be found in Chapter 2). In Fig. 3.9, points have the x and y
components of the longitudinal acoustic polarization vectors near 2 THz.

We �nd that under dislocations, the polarization characteristics di�er consid-
erably: In Fig. 3.9(a), the points are concentrated around the center with x
and y components near 0. Thus, the modes of the pristine (12,0) NW have one
dominant polarization along z (wave vector direction), approaching the case of
phonon in a bulk crystal with a well-de�ned polarization. In Fig. 3.9(b), points
are distributed in a broader range, with x and y components much larger than
the one of pristine for a large portion of modes. This depolarized nature of the
(12,0)3b NW modes resembles instead the amorphous structure case. Since loss
of polarization is associated (Bodapati et al. 2006) with low thermal conductiv-
ity, our analysis might suggest that the κ reduction is linked to the di�erences
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Figure 3.9: Phonon polarization distributions of a longitudinal acoustic mode for (a)
(12,0) and (b) (12,0)3b NWs at the frequency 2 THz.

in microscopic structure.

3.4.4 Green's Function Analysis

Before drawing a conclusion, we have further investigated how di�erences in
vibrational modes impact thermal transport. For this, we performed atomistic
Green's function (AGF) conductance calculations within the harmonic approx-
imation, Fig. 3.10(a). Note that AGF captures all wave-related scatterings
(including surface scatterings) and quantum populations of phonons. To our
surprise, we �nd that the transmittance curves for the pristine and SD (12,0)
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NWs practically overlap, leading to small di�erences in thermal conductance,
Fig. 3.10(b). For example, at 300 K there is a thermal conductance decrease
of 7%, 12% and 18% for (12,0)1b, (12,0)2b, and (12,0)3b, NWs, respectively.
Overall, this amounts to only 25% of the total thermal conductivity decrease
obtained in MD. The key point is that AGF analysis rules out the hypothe-
sis that the signi�cant κ reduction can be mainly attributed to di�erences in
structure since all the structure information is contained in the force constant
matrices.
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Figure 3.10: (a) Phonon transmission function and (b) thermal conductance un-
der harmonic approximation for (12,0) pristine and SD NWs; (c) modi�ed phonon
transmission function and (d) thermal conductance with manually introduction of an-
harmonicity.

The only remaining way to explain our notable MD results is to go beyond the
harmonic approximation and accept that phonons can be scattered by other
phonons. Indeed, the harmonic approximation is permissible as long as atoms
remain very close to their equilibrium positions, forming bond lengths of 2.36
Å. Instead, in SD NWs large strains are involved. For example we identi�ed
bond lengths measuring 2.5 Å in the Hornstra core of the (12,0)1b SiNW. Thus,
anharmonicity of the interatomic potential is expected, which leads in turn to
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phonon-phonon scatterings (Li et al. 2010; Chalopin et al. 2012).

To implement the anharmonic e�ect in the AGF formalism, we manually insert
anharmonicity by broadening each phonon eigenfrequency with a relaxation
time τ , by replacing the frequency by ω + i2π

τ . For qualitative predictions, we
have used the frequency-independent τ approximation, where the meaning of τ
becomes the mean-scattering time. The τ values matching the MD data with
the same decrease percentage were 9.5 ps, 4.7 ps and 2.7 ps for the (12,0)1b,
(12,0)2b, and (12,0)3b NWs, respectively. (Note that the τ decrease with the
increase in the Burgers vector magnitude means an increase in phonon anhar-
monicity.) We emphasize that non-harmonic behavior exists in the pristine
and SD NWs due to other causes, such as inelastic scattering on surfaces. The
above τ values solely capture the e�ects of SDs. With the incorporated τ ,
the AGF-predicted transmission functions for SD NW are signi�cantly reduced
with respect to the pristine one, Fig. 3.10(c). This leads indeed to a more
sizable conductance decrease at all temperatures, Fig. 3.10(d).

An attractive feature is that the e�ect uncovered here can act in combination
with the known thermal conductivity limiting mechanisms. To illustrate this
point, we have performed exploratory MD calculations on (12,0) Si NWs coated
with four layers of Ge. After accounting for the size e�ects, we obtained that the
addition of a Ge shell leads to κ = 40 W/m·K for NW with pristine core, and
to the even smaller values of 28.6, 11.8, and 7.2 W/m·K for (12,0)1b, (12,0)2b,
and (12,0)3b NWs, respectively.

In conclusion, we investigated <110> Si NWs and NTs containing an axial
screw dislocation and uncovered a sizable thermal conductivity reduction with
respect to the pristine structures. We attributed this e�ect to the enhanced
phonon-phonon scattering caused by the potential anharmonicity in the highly-
distorted cores and, to a lesser extent, to di�erences in structure. As high-strain
is intrinsic to dislocations, the e�ect should occur to various extents in other
nano-materials. Our �nding is especially important for thermoelectricity. The
thermal e�ect of SDs can be combined with other κ-lowering mechanisms.

3.5 Conclusions

In this chapter, we brie�y introduced the line defect dislocation in materials
and the classical Klemens theory accounting for the e�ect of dislocation on
heat transfer in the direction perpendicular to dislocation lines. We emphasis
the failure of this theory in quantitatively predicting the thermal conductivity
decrease by dislocations and the uninvestigated heat transfer behavior along
the dislocation line direction, especially in the recent fabricated SD nanomate-
rials (NWs and NTs). To quantitatively predict the thermal conductivity along
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the dislocation line, we performed molecular dynamic simulations for SD Si
NWs and NTs in the <110> crystallographic direction. The structure relax-
ation, Eshelby twist angle, as well as formation energy of SD NWs and NTs
were �rstly carried out with objective molecular dynamics, which allows to per-
form the simulations with a small unit cell by applying the objective boundary
conditions. We found that in accordance with the Eshelby theory, the twist
angle of a SD NW or NT increases with the Burger's vector while decreases
with the cross-section area. After identifying the Eshelby angle, long NWs and
NTs were constructed and thermal conductivity was calculated with NEMD
simulations for di�erent wire lengths. The thermal conductivity was extrapo-
lated to in�nite long structures. It was found that a large thermal conductivity
suppression can be achieved for the NWs and NTs containing an axial screw
dislocation with respect to pristine structures. The phonon mode polarization
calculation together with the phonon Green's function calculation reveal that
the sizeable reduction of thermal conductivity by dislocation is attributed to
the enhanced phonon-phonon scattering caused by the potential anharmonicity
in the highly-distorted core and, to a lesser extent, to di�erences in structure.
To further illustrate whether the uncovered e�ect by dislocation can collaborate
with other well-known e�ects, such as coating, we performed the thermal con-
ductivity calculation of SD Si NW with 4 layers of Ge atoms coating. We found
the thermal conductivity can be further decreased with the introduction of dis-
locations, which is of vital importance for extreme low thermal conductivity
design and for the improvement of thermoelectricity performance.





Chapter 4

Structural Defects in Nanowires:

E�ciently Phonon Blocking in

SiC with Antiphase Superlattice

Nanowires

The high thermal conductivity of SiC prevents the improvement of its ther-
moelectric �gure of merit although excellent power factor has been achieved.
Here we propose a new type of SiC superlattice, i.e. anti-phase superlattice
nanowires (APSL NWs) composed of SiC only. Thermal conductivity of pe-
riod modulated APSL NWs can be signi�cantly reduced up to 52% at room
temperature compared to the one of pristine NW, as shown by means of equi-
librium molecular dynamics simulations. Similar to the heterostructure SLs,
a minimum thermal conductivity is found at the period of 6 nm, which arises
from phonon coherent transport in short period structures. Density of states
studies reveal that new vibrational modes emerge on the interfaces due to the
new Si-Si and C-C bond. The reduction of thermal conductivity is explained by
the modi�cation of the phonon group velocity, which is markedly suppressed
in APSL NWs. Clear guidelines are provided here to design structures with
minimal thermal conductivity and possibly promote SiC as a competitive ther-
moelectric material.

4.1 Introduction

Silicon carbide (SiC) is a broadly used and available semiconductor with a
wide electronic band gap and a high saturated electron drift velocity. It also
presents excellent mechanical and physical/chemical properties such as excel-
lent strength, hardness, corrosion resistance and oxidation resistance, which
make of SiC an excellent candidate for high temperature, high power and high
frequency devices (Morko et al. 1994; Yang et al. 2001; Yang et al. 2005;
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Cheng et al. 2014; KIM et al. 2009). For example, SiC is widely used in
high-temperature/high-voltage semiconductor electronics due to its high break-
down voltage and excellent physical stability at high temperatures (Morko et al.
1994). Nanometer-scale SiC resonators are also capable of yielding substantially
higher frequencies than GaAs and Si resonators (Yang et al. 2001). With the
incorporation of randomly oriented single-crystal SiC NWs in a SiC matrix, the
fracture toughnesses and �exural strengths of the composites doubles (Yang
et al. 2005).

Recently, the thermoelectric properties of SiC have also been studied and it
is shown that doped SiC can be a potential thermoelectric candidate at high
temperatures (Cheng et al. 2014; KIM et al. 2009; Kim et al. 2011; Ivanova
et al. 2006; Kitagawa et al. 2002; Wang et al. 2003). The e�ciency of a
thermoelectric material is characterized by the dimensionless �gure of merit
ZT = S2σ

κ T , where S represents the Seebeck coe�cient, σ and κ refer to the
electrical and thermal conductivities, respectively. Kim et al (KIM et al. 2009;
Kim et al. 2011) found that the thermoelectric properties of SiC could be sig-
ni�cantly tuned by the e�ect of diluent gases and the chemical vapor deposition
temperatures. Ivanova et al (Ivanova et al. 2006) found that heavy nitrogen
doped SiC has a high power factor S2σ value of 1.7× 10−3 W/(m· K2) in the
temperature range from 1400 to 1600 K. With the doping of Si3N4, Kitagawa
et al (Kitagawa et al. 2002) found that the power factor of SiC increased dra-
matically at high temperatures bene�ting from the increase of both Seebeck
coe�cient and electrical conductivity. By means of thermal plasma physical
vapor deposition, 300 µm thick SiC �lms doped by nitrogen was fabricated by
Wang et al (Wang et al. 2003) and the corresponding power factor reaches as
high as 1.0×10−3 W/(m· K2) at 973 K. Although the above mentioned studies
show that SiC has a good power factor at high temperatures, its �gure of merit
is small due to the fatal shortcomings of a fairly large thermal conductivity ∼
100 W/(m K) even though at high temperatures. As a result, to make SiC a
competitive thermoelectric materials, it is crucial to block phonon transport at
least by one order of magnitude.

In the past decade, several studies have proven superlattices (SLs) to be e�-
cient in blocking phonon transport. The cross-plane thermal conductivity of a
crystalline SL can be one order of magnitude smaller than the values of bulk
materials with a single component, and in some cases, even smaller than the
value of a random alloy with the same components due to interfacial scattering
(Cahill et al. 2014; Hyldgaard and Mahan 1997; Simkin and Mahan 2000; Koh
et al. 2009; Lee and Venkatasubramanian 2008; Volz et al. 2000; Rajabpour
and Volz 2010). However, most of the previous studies were focused on the
heterostructure SLs, where materials in the two sides of interfaces are di�erent.
As a result, mass mismatch and lattice mismatch are usually regarded as the
main phonon scattering mechanisms at the interfaces.
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Figure 4.1: (a) The observation of a local anti-phase domain in GeTe nanowire from
a TEM image. (b) electron di�raction image shows spot splitting (circled in white)
along the nanowire growth direction. Figure from Pavan Nukala et al, Nano Lett. 14:
2201 (2014)

Anti-phase (AP) boundary/domain, in which the atoms are con�gurated in the
opposite order compared to the one of the perfect lattice, has been directly ob-
served by experiments in many types of materials, such as GaN (Maria Kemper
et al. 2011), Fe3Al (Marcinkowski and Brown 1962), SiC (Pirouz et al. 1987;
Shibahara et al. 1987), and Fe3O4 (So�n et al. 2011). The peculiar proper-
ties and promising perspective in nanoelectronic design of domain boundaries
have recently brought interest to this intriguing and challenging research sub-
ject. As one kind of domain boundary, AP domain shows attractive interest for
both fundamental science and possible practical applications. For instance, the
presence of AP boundary in Fe3O4 �lms will induce a strong crystallographic
direction dependence on the low-�eld magnetoresistance behavior (So�n et al.
2011). AP boundaries in antiferroelectrics with a π phase shift of the order
parameter exhibit polarity, implying the existence of local ferroelectricity (Wei
et al. 2014) in the antiferroelectric material. The impact of AP domain on
electronic properties has been investigated (So�n et al. 2011; Wei et al. 2014),
however, its in�uence on thermal properties is still unknown. Many materials
possess translational AP boundaries, as a result, it is possible to babricate SLs
with AP domain. In fact, alternating AP domain has been locally found very
recently in GeTe nanowires synthesised via vapor-liquid-solid process by Nukala
et al (Fig. 4.1) (Nukala et al. 2014). This kind of new SLs are challenging for
both electronic and thermal properties as the material on the two sides of the
interfaces are composed by exactly the same elements but with atoms con�g-
ured in the opposite order. Consequently, the conventional continuum models
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for SLs properties, such as the e�ective mass model, are not applicable (Ikoni¢
et al. 1993). In APSLs, the con�guration of lattices are very much di�erent
from heterostructure SLs because no lattice mismatch and mass mismatch are
involved. So it could be very interesting to study the fundamental phenomenons
in the aspect of heat transfer, such as minimum thermal conductivity, phonon
interface scattering and phonon coherence, which are commonly observed in
heterostructure SLs.

In this chapter, we propose a new type of SiC SL nanowire � APSL nanowire
for potential thermoelectric applications. Thermal conductivities of SiC APSL
nanowires with di�erent periods have been systematically studied with equilib-
rium molecular dynamics (EMD). It is found that the thermal conductivity of
SiC APSLs can be signi�cantly decreased, o�ering a possibility to increase the
thermoelectric performance of SiC.

4.2 Structure and Simulations

SiC exhibits a variety of stable lattice structure and stacking fault polytypes,
such as 2H, 3C, 4H and 6H. These structures di�er only in the stacking or-
der along the ⟨111⟩ crystallographic direction, as shown in Fig. 4.2. In this
work, we choose SiC with a 3C structure as our reference system. In the 3C
structures, an {111} atomic layer contains one layer of Si and one layer of C
atoms and the coordinates of Si/C layer can be obtained from C/Si layer with
a shift of

√
3
4 a in the ⟨111⟩ direction, where a is the lattice parameter. So in a

perfect SiC lattice, the arrangement of Si and C atoms in the ⟨111⟩ direction
can be either SiCSiC or CSiCSi. Now if the lattice stacks according to the
SiCSiC sequence and changes at a given plane to the CSiCSi sequence, then
an anti-phase boundary is formed. If this stacking sequence changes periodi-
cally, an anti-phase superlattice can be generated with C-C and Si-Si interfaces
as shown in Fig. 4.3(a). The cross-section of APSL nanowires in the current
study has been chosen as an hexagonal shape and with the diameter D = 3nm
as depicted in Fig. 4.3(b).

The thermal conductivities were calculated by Equilibrium Molecular Dynamic
(EMD) simulations with the LAMMPS code (Plimpton 1995). The interaction
between atoms is described with the empirical Terso� potential (Terso� 1989).
The equation of motion is solved with the velocity Verlet algorithm and a short
integration time step of 0.15 fs was used to ensure the conservation of the total
energy. Periodic boundary conditions are applied in all directions but with a
vacuum surrounded in the x and y directions to mimic the in�nite NW environ-
ment. The minimum length of the NWs in all the simulations is 18.2 nm, which
is long enough to avoid the size e�ect on thermal conductivity. All the struc-
tures are fully relaxed in the isothermal-isobaric ensemble (NPT) corresponding
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Figure 4.2: Stacking sequence of double layers of the four most common SiC poly-
types. Figure from http: // staff. csc. fi/ ~raback/ sic/ thesis/ node6. html

Figure 4.3: Schematics of the SiC APSLs; (a) A SL with two periods along the z
direction showing the stacking sequence of Si and C atoms and the Si-Si and C-C
interfaces; (b) An example of hexagonal cross-section of APSL nanowires.

to the target temperature and zero pressure for 1.5 ns with the coupling to a
Nosé-Hoover thermostat (Nosé 1984; Hoover 1985) and in the canonical ensem-
ble (NVT) for 1 ns. We then moved to the microcanonical ensemble (NVE) for
1 ns before collecting the data. Heat �ux along the wire direction (z) is then
recorded every 60 timesteps (9 fs) for another 1 ns in the NVE ensemble. Ther-
mal conductivity is calculated according to the Green-Kubo's formula (Kubo
et al. 1985) with the averaging over 24 ensembles obtained by setting di�erent
initial random velocities.

http://staff.csc.fi/~raback/sic/thesis/node6.html


66 4.3. PHYSICAL ANALYSIS OF SIC AP SLNW THERMAL

CONDUCTIVITY

4.3 Physical Analysis of SiC AP SLNWThermal Con-
ductivity

4.3.1 Thermal Conductivity
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Figure 4.4: Example of a heat �ux autocorrelation function (a) and its integral (b)
vary with the correlation time for the antiphase nanowire with period of 9.06 nm. The
black and blue curves are the ACF and ACF integral of each simulation (in total 24).
The red curve in (a) and pink curve in (b) are the average of ACF and integral of
ACF, respectively.

According to the �uctuation dissipation theory, thermal conductivity can be
derived from the Green-Kubo formula, i.e., the integral of heat �ux autocor-
relation function (ACF). Fig. 4.4 depicts an example of ACF of the obtained
heat �ux during simulation and their corresponding integral. The averaged
ACF (red curve in Fig. 4.4(a)) decreases rapidly at the beginning and then



Chapter 4 - Structural Defects in Nanowires: Efficiently Phonon

Blocking in SiC with Antiphase Superlattice Nanowires
67

0 5 10 15 20 25 30 35 40
5

6

7

8

9

10

11

12

13

14

15
(a)

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

/m
 ⋅K

)

 

 

0 5 10 15 20 25 30 35 40
20

25

30

35

40

45

50

55

60

Period of SLs L
p
 (nm)

R
ed

uc
tio

n 
pe

rc
en

ta
ge

 (
%

)

κ from EMD
κ from Eq.1
κ reduction %

200 300 400 500 600 700 800 900
5

6

7

8

9

10

11

12

13

14

15

Temperature (K)

T
he

rm
al

 c
on

du
ct

iv
ity

 (
W

/m
 ⋅K

)

 

 

(b) Pristine
L

p
 = 1.51 nm

L
p
 = 6.04 nm

Figure 4.5: Thermal conductivity of APSL NWs with diameter of 3 nm. (a), κ
as the function of period length Lp at 300 K (blue circles). Triangles correspond to
thermal conductivities calculated with Eq. 4.1 and the dashed line denotes the thermal
conductivity of pristine NW with the same cross-section. All these conductivities data
refer to the left coordinate axis. Green diamonds, corresponding to the relative thermal
conductivity decrease with respect to the one of pristine NWs, are referring to the
right coordinate axis. (b), κ as a function of temperature for pristine and APSLs with
speci�ed periods.

changes to a smooth decrease with a long tail oscillating around zero. The
rapid decay of ACF in short correlation time (about 1 ps) comes from the short
mean free path phonons, which are scattered in a short time interval. While
the long decay tail of ACF presents the long mean free path phonons having
a long relaxation time. These phonons are typically long wave length acous-
tical phonons at the Brillouin zone centre. Due to the behavior of ACF, the
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averaged integral of ACF (pink curve in Fig. 4.4(b)) increases with very large
slops at the �rst 1 ps. After it increases gradually with time and reaches to
a plateau. The value of the plateau is used to evaluate the thermal conductivity.

The thermal conductivity of APSL NWs 3 nm in diameter is depicted as the
function of period in Fig. 4.5(a). Similar to heterostructure SLs, a minimum
thermal conductivity is found around the period Lp = 6 nm. The minimum
thermal conductivity originates from the interplay between phonon wave e�ect
and phonon particle behavior (Cahill et al. 2014). When the SL period is
smaller than the wave packet coherence length, phonon wave e�ect is predomi-
nant and phonons do not scatter at the interfaces. This means that the atoms
located in the two sides of the interface vibrate coherently and the phonons
travel coherently along the wire. With the increase of the period, this coherence
breaks down progressively and results in the decrease of the thermal conductiv-
ity. Now, if the period is larger than the wave packet size, the phonon particle
behavior predominates. As a result, thermal conductivity increases monotoni-
cally with period as the interface density decreases. Compared to pristine NWs,
the thermal conductivity of period modulated APSL NWs is notably reduced
as revealed by the diamond symbols in Fig. 4.5(a). The maximum reduction
around the thermal conductivity minimum can reach 52%, which corresponds
to only 2.6% of bulk SiC value at 300 K (Samolyuk et al. 2011). With the
increase of temperature, the thermal conductivity of the pristine NW decreases
by a large amount due to the phonon-phonon scattering process while κ remains
almost the same for period modulated APSL NWs as shown in Fig. 4.5(b). This
latter behavior is due to the predominance of the interfacial scattering over the
phonon-phonon scattering. The weak temperature dependence APSL thermal
conductivity leads to a decrease of the relative κ suppression percentage with
the increase of temperature. However, even at 800 K, the maximum thermal
conductivity reduction can reach 33%, corresponding to about 6% of the bulk
value (Samolyuk et al. 2011). This large thermal conductivity suppression may
be bene�cial to the thermoelectric performance of SiC in the form of APSL NWs
especially if the electronic properties improve with increasing temperature.

4.3.2 Coherent and Incoherent Phonon Transport

To check the coherent phonon transport at short periods, we performed NEMD
simulations of APSL NWs with di�erent periods. The temperature pro�le along
the wires is reported in Fig. 4.6. As clearly shown, the temperature pro�le is
linear along the z direction for the small period case (Lp = 3 nm). No tempera-
ture drop is observed across the interfaces, indicating that the atomic vibrations
in the vicinity of the interfaces are coherent. With the increase of the period,
phonon coherence becomes weaker and weaker and interfaces start to scatter
phonons. As a result, a temperature drop at the interfaces starts to emerge.
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Figure 4.6: Temperature pro�le along z direction obtained from NEMD simulations
for APSL NWs with periods Lp = 3 nm, 6 nm and 18.1 nm, respectively. The arrows
indicate the position of interfaces.

Since phonon interface scattering is predominant when the period is large, we
measured the Kapiza resistance of APSL with large periods from NEMD sim-
ulations. Note that there are two kinds of interfaces in APSL NWs as depicted
in Fig. 4.3, i.e., interfaces linked with C-C bonds, marked as a C-C inter-
face type and interfaces linked with Si-Si bonds, marked as a Si-Si interface
type. The measured Kapiza resistance R for the two interfaces are RC−C =
4.7±0.4×10−10 m2 K/W and RSi−Si = 3.6±0.4×10−10 m2 K/W , respectively.
Considering the analogy between the thermal and the electrical resistance, the
total thermal resistance equivalent to one period would be (Termentzidis et al.
2013) Rtot = Rpris+RSi−Si+RC−C = Lp/κpris+RSi−Si+RC−C , where Rpris

and κpris refers to the thermal resistance and conductivity of pristine NW,
respectively. Consequently, the thermal conductivity of the SLs κSL can be
casted as,

κSL =
Lp

Rtot
=

Lp

Lp/κpris +RSi−Si +RC−C
(4.1)

Substituting the obtained thermal conductivity of pristine NW and Kapiza re-
sistance into Eq. 4.1, we can calculate the thermal conductivity for long period
APSL NWs and the results are reported in Fig. 4.5(a) with triangles. The
obtained thermal conductivities agree well with EMD simulation results.
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4.3.3 Phonon Density of States Analysis

To check the vibrational properties of the interface atoms, vibrational density of
state (VDOS) of three regions, i.e. the C-C interface region, the Si-Si interface
region and the Si-C region far from both interfaces, which are highlighted in
Fig. 4.2 with red boxes, has been calculated. In the three regions, atomic
velocities of 4 atomic layers including 2 layers of Si and 2 layers of C atoms are
recorded every 1.5 fs during 75 ps. The VDOS is then numerically computed
by decomposing the time correlation function of the atomic velocities into the
Fourier space as:

V DOS(ω) =
1

kBT

∑

i

mi | vi(ω) |2 (4.2)

The total VDOS is presented in Fig. 4.7(a). As clearly shown, the VDOS
of the two interface atoms are quite di�erent from the atoms far from inter-
faces. For the Si-C region, the VDOS has a similar shape with that of bulk
3C SiC lattices, where it shows three typical peaks separated by two gaps.
The three peaks correspond to the acoustic phonon modes, transverse optical
phonon modes and longitudinal optical phonon modes. In the Si-Si interfaces,
those three peaks remain while new properties also appear. Around 5 THz, two
strong peaks emerged, which can be identi�ed as Si atom vibrational modes as
shown in the Si partial DOS depicted in Fig. 4.7(c). These new peaks are also
observed in the diameter modulated SiC NWs interfaces (Termentzidis et al.
2013). Besides the low frequencies peaks, new modes are also observed in the
two gaps around 22 THz and 30 THz. These new gap modes are produced by
the C atom vibrations, shown clearly in Fig. 4.7(b). In the C-C bonding inter-
face regions, the VDOS changed remarkably compared to the one in the Si-C
region. The main feature of the VDOS is that it shows a long tail above the
cut o� frequency of 35 THz, which is due to the much sti�er C-C interactions.

To check the interaction between di�erent types of bonds, the two body poten-
tial energy which is the main part of the total potential energy, as well as the
second derivative of the two body potential (force constant) as a function of the
inter-atomic distance are plotted in Fig. 4.8. Since the equilibrium position is
in the range rij < R −D, where rij is the inter-atomic distance and R and D
are parameters listed in table 4.1, we only plot the potential energy and force
constant functions in the range rij < R−D. In this range, the potential energy
Vij between a pair atoms is written as:

Vij = A exp(−λ1rij)−B exp(−λ2rij) (4.3)

as a result, the force constant FCij between a pair is deduced as follows:

FCij = Aλ2
1 exp(−λ1rij)−Bλ2

2 exp(−λ2rij) (4.4)
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Figure 4.7: Vibrational density of states obtained with Eq. 4.2 for the Si-C region,
the Si-Si region and the C-C region with period Lp = 18.1 nm. (a), total VDOS in
the three regions; (b), VDOS projected on C atoms in the three regions; (c), VDOS
projected on Si atoms in the three regions.
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Table 4.1: List of the terso� two body potential parameters used in Eq. 4.3 and 4.4.

A B λ1 λ2 R D
Si-Si 1830.8 471.18 2.4799 1.7322 2.85 0.15
Si-C 1597.3 395.15 2.9839 1.9721 2.3573 0.1527
C-C 1393.6 346.74 3.4879 2.2119 1.95 0.15

1 1.5 2 2.5 3
−6

−4

−2

0

2

4

Inter−atomic distance (Angstrom)

P
ot

en
tia

l e
ne

rg
y 

(e
v)

 

 

(a) Si−Si bond
Si−C bond
C−C bond

1 1.5 2 2.5 3

0

0.5

1

1.5

2

Inter−atomic distance (Angstrom)

F
or

ce
 c

on
st

an
t (

kN
/m

)

 

 

(b) Si−Si bond
Si−C bond
C−C bond

Figure 4.8: Inter-atomic potential energies (a) and force constants given by the
second derivative of the corresponding potential energies (b) as a function of the inter-
atomic distance described by eq. 4.3 and 4.4, respectively. The equilibrium positions
obtained from the potential energy minimum are indicated with the dashed lines. The
parameters used for this plot is listed in table 4.1. Note that this plot is only valid in
the range rij < R−D.

Fig. 4.8 depicts the inter-atomic potential energy and force constant for the
three types of bonds described with Eq. 4.3 and 4.4, respectively. The equi-
librium inter-atomic distance (potential energy minimum) of the three types of
bonds follows rsi−si > rsi−c > rc−c (Fig. 4.8(a)). The corresponding force con-
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stants around their equilibrium position indicated by the dashed lines in Fig.
4.8(b) follow the relationship Fsi−si < Fsi−c < Fc−c. A quantitative calculation
on the second derivative of the two body part potential around the equilibrium
position provides a force constant K = 387 N/m for the Si-C bond, which is
almost half of the C-C bond value of 664 N/m. This strong coupling makes
the vibration of both Si and C atoms complex and shows long tails above the
usual cut o� frequency (Fig. 4.7(b) and 4.7(c)). However, those high frequency
modes are localized on the C-C bond interface atoms and do not carry heat.
This can be identi�ed from the VDOS of atoms located next to the C-C inter-
face regions (not shown), showing that the long tail is suppressed dramatically
and almost has the same cut o� as that of the Si-C region. The localization
of high frequency modes is also supported by group velocity calculations (Fig.
4.8), where almost zero group velocity is obtained for the modes above 35 THz.
Compared with the C-C region, the VDOS of the Si-Si region matches more
with the VDOS in the Si-C region. This explains the lower Kapiza resistance
in the Si-Si interface than in the C-C one.

4.3.4 Phonon Group Velocity Analysis

To elucidate the origin of the thermal conductivity decrease of APSL NWs
compared to the one of pristine NWs, the phonon group velocity vg for pristine
NW and APSL NW with Lp = 1.5 nm is calculated based on lattice dynamics
as follows (Zhao and Freund 2005),
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Figure 4.9: Phonon group velocity vg calculated with Eq. 4.5 of a pristine NW and
an APSL NW with Lp = 1.5 nm. The diameter is chosen as D = 2 nm in order to
reduce the number of atoms in the unit cell.
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vg =
∂ω

∂k
= − Im[aλuHDRu]

ω | u |2 (4.5)

where λ = exp(ika), k and a are the wave vector and the unit cell length. DR

denotes the mass normalized coupling force constant matrix between neigh-
bouring unit cells. The superscript H means conjugate transpose. ω − u are
frequency - eigenvector pairs, which are obtained by solving the atomic equation
of motion D(k)u = ω2u with D(k) being the atomic mass normalized dynamic
matrix.

The phonon group velocities variations with frequency for pristine and APSL
NWs having a period length Lp = 1.5 nm and a diameter D = 2 nm, are de-
picted in Fig. 4.9. This latter �gure demonstrates that the APSL NW group
velocity is dramatically decreased compared to that of pristine NWs. This
trend is especially clear in the frequency range of 3 THz to 10 THz, where
these phonons carry most of the heat in pristine NW. The averaged phonon
group velocity of APSL is only 30% to 50% of the value of pristine NWs in
this frequency range. The strong decrease of group velocity �nally leads to the
signi�cant thermal conductivity reduction in APSL NWs. We also note that
the group velocity above 35 THz is almost zero, indicating that these frequency
modes do not contribute to heat transfer. This also support the argument that
the high frequency modes above the cut o� frequency of bulk SiC only localizes
on the C-C interfacial region.

To summarize, the thermal conductivity of a new type of superlattice - APSL
NWs - has been simulated with equilibrium molecular dynamics. A minimal
thermal conductivity is found for a period of about 6 nm due to the interplay
between phonon wave e�ect and phonon particle e�ect. Thermal conductivity
of period modulated APSL NWs is largely suppressed compared to that of
pristine NWs. The maximum conductivity reduction can be as high as 52%
at 300 K while increasing the temperature reduces the suppression percentage.
Due to the formation of new Si-Si bonds and C-C bonds on interfaces, new
vibrational states are observed for interface atoms. The origin of the large
thermal conductivity reduction is investigated by the phonon group velocity
calculation. This analysis shows that phonon group velocity is greatly decreased
for APSL NWs compared to that of pristine NWs. The signi�cant reduction
of thermal conductivity of SiC NWs may help to improve the thermoelectric
performance of SiC, where the high thermal conductivity is the main hurdle for
increasing the �gure of merit.
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4.4 Conclusions

In this chapter, experimental measurements of SiC thermoelectric properties
have been specially introduced. The measured values indicate that the thermo-
electric �gure of merit of SiC is not optimum due to its high thermal conduc-
tivity. Moreover, the experimental synthesis of locally distributed anti-phase
boundary domains as well as the impact of anti-phase boundaries on electrical
properties are reviewed. Based on these experimental �ndings, we proposed a
new type of superlattice, i.e., the anti-phase superlattice, with potential ther-
moelectric conversion e�ciency. We simulated heat transfer properties in the
SiC APSL NWs with equilibrium molecular dynamics. The period length and
temperature have been chosen as variables to tune the thermal conductivity of
superlattice NWs. It was found that the thermal conductivity of the period
modulated APSL NWs can be suppressed noticeably when compared to that
of the pristine one. The maximum reduction can be as high as 52% at 300
K. This minimal value corresponds only to 2.6% of the bulk SiC value at 300
K (Samolyuk et al. 2011). This means that the thermal conductivity of SiC
can be reduced twofold with the combination of APSL and NW e�ects, which
is bene�cial for thermoelectric performance. The origin of the large thermal
conductivity reduction is investigated with phonon group velocity calculations.
The analysis shows that phonon group velocity is greatly decreased for APSL
NWs compared to that of the pristine NW. Besides, a minimal thermal con-
ductivity was found for a period of about 6 nm. By means of non-equilibrium
molecular dynamics simulations, we show that this minimal thermal conduc-
tivity originates from the interplay between phonon wave e�ect and phonon
particle e�ect. Since new Si-Si bonds and C-C bonds are formed on interfaces,
we studied the vibrational density of states in both interface regions and the
region far from interfaces. Phonon density of states reveals that new vibra-
tional states appear for interface atoms. In the Si-Si interfaces, two strong
peaks emerge around 5 THz, which are identi�ed as Si atom vibrational modes.
Besides the low frequency peaks, two gap modes around 22 THz and 30 THz
are also observed due to the C atom vibrations. Because of the sti� C-C inter-
actions, the VDOS in the C-C bonding interface regions shows a long tail above
the usual cut o� frequency of 35 THz. The current study shows that SiC APSL
NWs may serve as a new candidate to improve the thermoelectric performance
of SiC, where the high thermal conductivity is the main hurdle for increasing
the �gure of merit.





Chapter 5
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Using Non-equilibrium Molecular Dynamic simulations, the thermal conductiv-
ity of Si phononic metamaterial nanowires with twinning boundaries distributed
periodically along the nanowire has been investigated in this chapter. We �rst
show that this latter structural modulation can yield 65% thermal conductivity
reduction compared to the straight wire case at room temperature. Secondly, a
purely geometry-induced minimal thermal conductivity of the phononic meta-
material is observed at a speci�c period depending on the nanowire diameter.
Mode analysis reveals that the minimal thermal conductivity arises due to the
disappearance of favored atom polarization directions. The loss of a single po-
larization direction yields a suppression of phonon group velocity in a large
extent, which directly reduces the thermal conductivity. The current thermal
conductivity reduction mechanism collaborates with the other known reduction
mechanisms, such as the one related with coating, to further reduce the thermal
conductivity of the metamaterial. The current studies reveal that the twinning
superlattice phononic metamaterial nanowire is a promising candidate for e�-
cient thermoelectric conversion bene�ted from the large suppression in thermal
transport without deterioration of electron transport properties.

5.1 Introduction

Thermoelectric material, which can convert heat to electric power and vice
versa, is one of the promising candidates for energy harvesting. The dimen-
sionless �gure of merit ZT , measuring the conversion e�ciency, depends on
the electrical conductivity, the Seebeck coe�cient and the thermal conductiv-
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ity (κ). Due to its abundance in nature, to the sum of knowledge accumulated
on its properties and also to its environment friendly features, silicon has been
extensively studied as a thermoelectric material and ZT =1 was achieved for
Si nanowires (NWs) (Hochbaum et al. 2008), a remarkable accomplishment in
view of the poor thermoelectric conversion potential of the bulk counterpart.
This signi�cant progress in �gure of merit for Si is largely attributed to the
remarkable reduction in thermal conductivity of Si NWs. Both experimental
(Hochbaum et al. 2008; Boukai et al. 2008; Li et al. 2003; Bux et al. 2009;
Chen et al. 2013) and theoretical (He and Galli 2012; Hu and Poulikakos 2012;
Volz and Chen 1999; Jiang et al. 2013; Chen et al. 2010; Xiong et al. 2014; Volz
and Lemonnier 2000; Kazan et al. 2010) works show that with the introduction
of defects, such as surface roughness, heterogeneous coating, the thermal con-
ductivity of Si NWs can be two orders of magnitude smaller than that of the
crystalline bulk one. Although this signi�cant achievement has been reached, it
is still far from the desired e�ciency of solid state thermoelectric devices, where
ZT ∼ 4 is required (T. M. Tritt 2011). Consequently, new mechanisms for κ
reduction are greatly needed to reach the next milestone of Si thermoelectrics.

Figure 5.1: Schematic of a twin boundary in a diamond lattice. The twin boundary
is indicated with the red line and the lattices on the two sides of the twin boundary
are mirror-symmetric. Figure from http: // www. tf. uni-kiel. de/ matwis/ amat/

def_ en/ kap_ 7/ backbone/ r7_ 1_ 1. html

Twinning, also known as the planar stacking fault, is one of the most important
defects in materials science and it is most often related to mechanical properties
(Wang and Huang 2006; Lin et al. 2010). A twin boundary can be obtained
by stacking in a mirror-symmetry way compared to a previous stacking order
(Fig. 5.1). To stack in this mirror-symmetric way, we obtain the structure

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_1_1.html
http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_7/backbone/r7_1_1.html
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without changing any bond lengths or bond angles. This indicates that a twin
boundary is coherent and has a smaller formation energy compared to other
grain boundaries.

Figure 5.2: (a) High resolution TEM image of a InP twinning SL nanowire. Long-
range superlattice periodicity can be clearly identi�ed. (b) Fourier-�ltered high resolu-
tion TEM image of the twinning SL in the dashed line box shown in (a). The inset
is a space-�lling model of the twinning boundary. Figure from Xiong et al Nano Lett.
2006, 6: 2736-2742.

Recent experiments (Lopez et al. 2009; Algra et al. 2008; Xiong et al. 2006;
Wang et al. 2008) show that twin planes are commonly found in NWs with
FCC structures grown in the ⟨111⟩ direction, e.g., InP, SiC, GaP, Si etc. These
twin planes are distributed periodically along the NWs and form a twinning SL
metamaterial NW. The diameter and period length of this metamaterial NWs
can be controlled during the synthesis process, o�ering the degree of freedoms
for tuning their properties. More interestingly, NWs with twinning SLs feature
a zigzag arrangement of periodically twinned segments with a rather uniform
thickness along the entire growth length, o�ering a new mechanism for shape
controlling during the growth of NWs (Fig. 5.2). The impact of twinning on
mechanical (Wang and Huang 2006; Lin et al. 2010), electronic (Ikoni¢ et al.
1993; Ikonic et al. 1995), as well as on optical properties (Ikonic et al. 1995)
has been widely studied while this impact remains unexplored concerning ther-
mal properties. Unlike heterostructure SLs with fundamental A and B units,
where the units A and B di�er either in local crystalline structure or local
composition or both, the units A and B of a twinning SL exhibit the same
local structure and composition and they di�er only by a relative rotation of
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the crystal orientation, i.e., A and B are "twins" (Xiong et al. 2006). As a
result, the conventional mechanisms for SL interface scattering, such as mass
mismatch and lattice mismatch, are not applicable and new phonon scattering
mechanisms taking place in twinning SLs should be investigated.

In this work, we perform nonequilibrium molecular dynamics (NEMD) simu-
lations to calculate the thermal conductivity of the Si metamaterial NWs with
twinning SLs. We show that the thermal conductivity of the twinning SL NWs
can be remarkably reduced up to 65% at room temperature compared to their
pristine counterpart. A minimum thermal conductivity due to the geometric
e�ect is found with a speci�c SL period, which equals to 1/3 of the diameter.

5.2 Structure and Simulation details

Fig. 5.3 depicts the structure formation of the twinning SL with the diameter
D and period Lp. For a close-packing structure, there are usually three types of
stacking sites with exactly the same con�guration but having a shift one from
another in a speci�c direction. The three stacking sites are usually labelled as
A, B, and C. The B and C sites can be obtained from the A site with a shift of
(1+3n)bv and (2+3n)bv, respectively, where bv is the minimum shift length as
shown in Fig. 5.3(a) and n is an integer. The stacking sequence of ABCABC
in the ⟨111⟩ direction forms the FCC structure and the ABABAB one forms
the HCP structure. For Si having a FCC diamond lattice, the shift between
di�erent sites is along the ⟨112⟩ crystal orientation with bv = 2.217 Å. The
cross section of the wire is chosen as hexagonal with the diameter D, which
is shown in Fig. 5.3(b). The wire �rstly grows according to a FCC structure,
i.e., following a stacking in the ABCABC sequence with the same shift given
by the vector bv between the neighboring layers. After several ABC periods, a
stacking fault is introduced, instead of stacking a A layer, a B layer is directly
introduced after the C layer with a shift of bv in the opposite direction. After
the stacking fault, the stacking sequence changes to CBACBA, which is purely
symmetrical to the previous stacking as is shown in Fig. 5.3(c). As a result, a
kink is formed with the angle θ = 109.4◦.

NEMD simulations are performed by using LAMMPS software (Plimpton 1995)
with the commonly adopted Stillinger-Weber potential (Stillinger and Weber
1985; Ding and Andersen 1986) describing the interactions between atoms. The
velocity Verlet algorithm with an integration time step of 0.8 fs is used to solve
the equations of motion. All the structures are fully relaxed at zero pressure and
at target temperatures (NPT) for 4 ns and then moved to NVE ensemble with
�xed boundary conditions on the two ends atomic layers. Next to those �xed
layers, with the help of the Nosé-Hoover thermostat (Nosé 1984; Hoover 1985),
several layers of atoms were coupled to hot and cold baths having temperatures



Chapter 5 - Geometrical Defects in Nanowires: Minimum Thermal

Conductivity in Si Twinning Superlattice Nanowires
81

Figure 5.3: Schematic �gure of the twinning SL phononic metamaterial stacking
with diameter D and period length Lp. (a) three possible stacking sites labelled with
A, B, and C in closely packed structures. The three sites are identical but are shifted
in the ⟨112⟩ direction one from another; (b) example of hexagon cross section with the
diameter D of the twinning SL NWs; (c) stacking sequence of a Si twinning SL NW.

T0 +∆/2 and T0 −∆/2, respectively, where ∆ =20 K in all simulations. 5 ns
runs were performed to reach non-equilibrium steady state, and another 5 ns
to time-average the local temperature T and the microscopic heat �ux j along
the z direction. The thermal conductivities κ were then extracted from the
Fourier's law, i.e., κ = j(dT/dz)−1. All the NWs thermal conductivities were
measured with the same kink leg length of 34.5 nm.

5.3 Thermal Conductivity Analysis of Twinning SL
NWs

5.3.1 Thermal Conductivity

Fig. 5.5(a) represents the thermal conductivities of the Si twinning SL NWs
as a function of period Lp and speci�ed diameter D at 300 K. The thermal
conductivities of the pristine NWs having the same diameters and lengths are
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also calculated and summarized in table 5.1. Note that the length dependent
thermal conductivity in nanostructures has been extensively reported (Hu and
Poulikakos 2012; Chang et al. 2008; Yang et al. 2010). In this study, we
focus on the relative reduction of thermal conductivity by the twinning rather
than the absolute value or on the length e�ect on thermal conductivity. As a
result, we �x the length of the simulated NWs to 34.5 nm and consider thermal
conductivity as a function of SL period, temperature, and diameter of NWs.

Table 5.1: Thermal conductivities of pristine NWs and twinning SL phononic meta-
material NWs with di�erent diameters at 300 K. The resulting reductions in percentage
are reported in the last line.

Diameter
(nm)

2 4 6 8 10

Pristine NW
κ (W/m· K) 18.4± 0.15 19.4± 0.17 21.0± 0.10 22.7± 0.08 24.5± 0.11

SL Minimum
κ (W/m· K) 6.5±0.22 7.7±0.20 9.9±0.15 11.3±0.10 12.5±0.12

Maximum
reduction

(%)
64.7 60.3 53.0 50.0 49.0
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Figure 5.4: Temperature pro�le of the twinning SL phononic metamaterial NW with
period Lp = 5 nm and diameter D = 4 nm.

As shown in Fig. 5.5(a), the thermal conductivities of the NWs with twinning
SL are largely decreased compared to the one of the pristine NW. A �rst guess
regarding the thermal conductivity reduction may arise from two reasons, i.e.,
the zigzag geometric e�ect and the twinning boundary scattering. To check the
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Figure 5.5: (a) Thermal conductivities of the twinning SL phononic metamaterial
NWs as a function of the period for di�erent diameters at 300 K. A minimum thermal
conductivity appears at di�erent period lengths for di�erent diameters. (b) Period
length LP and shift length Ls corresponding to the minimum thermal conductivity
versus the diameter. LP and Ls are linked together with the relation Ls = Lp/2 ×
sin(θ/2)

relative contribution of these two aspects, we calculated the thermal conduc-
tivities of the bulk Si twinning SLs by applying periodic boundary conditions
in the x and y directions and compared them with the one of the silicon bulk
material. With the periodic boundary condition in the x and y directions, the
geometric e�ect is eliminated and we can purely focus on the scattering by the
twinning boundaries. Surprisingly, regardless of the number of boundaries, the
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results show nothing di�erence with the value of the perfect bulk, indicating no
impact on heat transfer from the twinning boundaries. All the thermal conduc-
tivity reduction in the SL NWs hence arises from the induced geometric e�ect,
i.e., the zigzag con�guration. This can actually be observed directly from the
temperature pro�le (Fig. 5.4) for both bulk materials and nanowire SLs, where
no temperature jump is observable around the twinning boundaries. The rea-
son may be found from the fact that each atomic layer is actually identical
and the stacking sequence of ABCABC and ABCACB does not alter any bond
lengths or bond angles. Consequently, the force between the neighboring layers
will not change and the atomic motion can be e�ectively transferred through
the twinning boundaries.

When the diameter remains invariant, the increase in SL period leads the ther-
mal conductivity to decrease �rst, reaching a minimum value, and then progres-
sively to an increase. The minimum thermal conductivity observed here seems
similar to that observed in the hetereostructure SLs (Hyldgaard and Mahan
1997; Simkin and Mahan 2000; Koh et al. 2009; Lee and Venkatasubrama-
nian 2008). However, the mechanism taking place in the twinning SL phononic
metamaterial NWs completely di�ers from the one observed in heterostructure
SL. In this latter situation, the minimum thermal conductivity is attributed to
the interplay between the phonon coherence and the interface scattering. For
the twinning SL NWs, the twinning boundary has no impact on heat trans-
fer and thermal conductivity change is fully ascribed to the twinning induced
zigzag geometric e�ect as we discussed. This can be further con�rmed from the
diameter dependent SL periods corresponding to the minimum thermal conduc-
tivities as displayed in Fig. 5.5(b). This �gure clearly shows that the period
length of minimal thermal conductivity varies with the diameter according to
the relationship Lp = 0.95D. In Fig. 5.3(c), we also de�ned the shift length
Ls, representing the total length shift in the kink direction within one period.
Lp and Ls are linked with a simple relation, i.e., Ls = Lp/2 × sin(θ/2) with
θ = 109.4◦. As a result, the Ls value corresponding to the minimum ther-
mal conductivity is a function of the diameter and can be simply expressed
as Ls = D/3, which is also shown in Fig. 5.5(b). It has been experimentally
demonstrated that the twinning boundary has almost no e�ect on the elec-
trical conductivity in both bulk (Lu et al. 2004) and nanowire (Zhong et al.
2009) cases. As a result, the thermoelectric �gure of merit of Si can be no-
tably enhanced with the twinning SL phononic metamaterial NWs thanks to
the signi�cant thermal conductivity decrease without deterioration of electron
transport properties.
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5.3.2 Phonon Polarization Analysis

To explain the large thermal conductivity decrease as well as the minimal ther-
mal conductivities, we performed the normal mode polarization calculations.
For a given mode λ, the α (x, y, or z) cartesian component of a unit polarization
vector eiα,λ, of an atom i is de�ned as (Schelling and Phillpot 2001)

eiα,λ =
εiα,λ

∑

α ε
∗
iα,λεiα,λ

(5.1)

The normal mode eigenvectors components εiα,λ and their corresponding eigen-
frequencies ωλ are obtained by solving the lattice dynamical equation.

Figure 5.6: Y-Z components of the LA mode vectors around the frequency 4.0 cm−1

for (a) the straight, (b) Lp = 1.25 nm, (c) Lp = 1.9 nm, and (d) Lp = 10.6 nm
phononic metamaterial NWs with 2 nm in diameter. The color represents the num-
ber of modes and the maximum value has been normalized to 1. The corresponding
structures are indicated in each panel.

Fig. 5.6 depicts the longitudinal acoustic (LA) mode polarization vectors of
each atom projected on the Y-Z plane for the straight and the twinning SL



86 5.3. THERMAL CONDUCTIVITY ANALYSIS OF TWINNING SL NWS

phononic metamaterials with di�erent periods. The polarization vectors are
calculated for the NWs 2 nm in diameter and around the 4.0 cm−1 frequency.
The corresponding structures are also shown in each panel. For the straight
NW, the normal modes possess well de�ned polarization vectors, as indicated
by the dashed arrow in Fig. 5.6(a), where all the atoms show a unit polariza-
tion vector component near 1 in the z direction and almost zero in the x and
y directions. This indicates that all the atoms vibrate along the z direction.
This is of course favorable for phonon transport. When the NW grows with
twinning of small periods, the LA modes for some of the atoms start to have a
small y component but still predominate in the z direction as indicated by the
arrow in Fig. 5.6(b). Those atoms with small y component are typically the
atoms around the kinks.

When the SL period increases to the length corresponding to the minimum ther-
mal conductivity (Fig. 5.6(c)), the polarization vectors signi�cantly broaden in
the y direction and no clear preferential orientation appears. The polarization
vectors homogeneously distributed on the arc ranging from -0.4 to 0.4 in the y
direction and from 0.91 to 1 in the z direction. This means the atomic vibra-
tions are not coherent, hence, the phonon transport is hindered and results the
decrease of the thermal conductivity compared to shorter period cases. With
further elongation of the period, the atomic polarization vectors continue to
broaden in the y direction with a small fraction of interchanges between LA
modes and TA modes indicated by the y component near to the unity. This
outcome agrees with the �ndings of Jiang et al (Jiang et al. 2013). However,
two preferred orientations of the polarization vectors can be clearly observed in
Fig. 5.6(d), which for sure will increase the thermal conductivity compared to
the homogeneously distributed cases. The two preferred orientations have their
y and z components (y,z) around (±0.52, 0.81). It can be easily calculated that
these two preferred directions are along the two legs of kink, respectively. It
follows that most of the atoms vibrate along the two legs. It can be shown that
the atoms having the two preferred directions are located in the middle of the
legs. Those latter also contribute to 60% - 70% of the atom polarization vectors
for the NWs with Lp = 10.6 nm. This percentage increases with the increase
of period length, which agrees well with the increase of thermal conductivities
when period length is increased beyond the minimum thermal conductivity pe-
riod.

Alternatively, the minimum thermal conductivities can be explained with a
more intuitive geometric analysis. As shown in the structures of Fig. 5.6,
phonons can propagate straightforwardly along the wire direction in the pris-
tine NWs, leading to a thermal conductivity labelled as κs, which should be in
proportional to the cross section area of the straight part. While for the twin-
ning SL NWs with long periods, phonons have to go along the legs as shown
by the dash dot arrow in Fig. 5.6(d) in order to propagate from one side to
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the other side. This thermal conductivity is labelled as κb. κb should be in
proportional to the period length and should saturate to κs when Lp is long
enough. When the shift length Ls (de�ned in Fig. 5.3) is larger than the di-
ameter, κs = 0 and the thermal conductivity of the wire is only composed by
the heat �ux involved in κb. However, in the cases where Ls is smaller than
the diameter, phonons can propagate in both ways as illustrated schematically
by the arrows in Fig. 5.6(b) and (c), i.e., κ = κs + κb. Starting from Ls = D,
with the decrease of period, κb decreases and κs increases from zero since the
cross section of the straight part (noted by the red lines) enlarges progressively
from zero. So there is a competition between κb and κs with the variation of
the period, which �nally results the minimal thermal conductivity. This also
interprets the diameter dependence of the minimum thermal conductivity as a
function of period length. Therefore the geometrical-period-dependent thermal
conductivity of twinning SLs enables the control of heat transport and thermo-
electric conversion e�ciency by changing only the geometric properties of such
phononic metamaterials.

5.3.3 Phonon Dispersion and Transmission

To know more about the vibrational properties of the twinning SL phononic
metamaterial NW, we investigated the dispersion relation and compared it with
that of pristine NWs (Fig. 5.7). The dispersion of both pristine and twinned
NWs contain 4 acoustic branches, namely one longitudinal, two transverse and
one torsion polarization branches. All the other branches are optical modes.
As the twinning SL NWs contains much more atoms in a period, its disper-
sion curve has much more branches. However, most of the branches are �at
bands, giving smaller group velocities compared to the pristine structure. This
is more clearly shown in the zoom-in plot in Fig. 5.7(c) and (d). Due to the
band folding e�ect, the acoustic phonon cut o� frequency is much smaller than
that of pristine NW. More interestingly, the acoustic phonon frequency goes
up to the optical phonon range, no band gap between acoustic and optical
phonon branches is observed. While for the twinning SL phononic NW with
Lp = 3.1 nm, a small gap between the optical and acoustic branches appears,
giving a phononic band gap e�ect. The small group velocity of the twinning
SL phononic metamaterial NWs hinders heat transfer, which can be identi�ed
more intuitively from the transmission function in Fig. 5.8 obtained from the
Green's function calculations.

As clearly shown in Fig. 5.8, the transmission function of the twinning SL
NW with Lp = 3.1 nm is much smaller than the value of the pristine NW
although much more branches are contained in the twinning SL NWs, indicating
a decrease of group velocity to a large extent. Especially for the phonons below
7 THz, the transmission is decreased by a factor of 3. Since the phonons in this
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Figure 5.7: Phonon dispersion relation of the pristine NW with D = 2 nm (a) and
the twinning SL phononic metamaterial NW with Lp = 3.1 nm, D = 2 nm; (c) and
(d) are corresponding zoomed in �gures of (a) and (b), respectively.

frequency range carry most of the heat, the thermal transport in the twinning
SL NWs is much hindered. The large group velocity suppression originates from
the disappearance of a favored polarization direction and it is the immediate
cause of thermal conductivity reduction. The transmission function also clearly
shows the band gap between the acoustic and optical modes of the twinning
SL NWs.
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Figure 5.8: Phonon transmission functions calculated with the phonon Green's func-
tion vary with the frequency.

5.3.4 Temperature Dependent Thermal Conductivity

Fig. 5.9 illustrates the temperature dependent thermal conductivity of the
pristine and twinning SL NWs with 4 nm and 34.5 nm in diameter and length,
respectively. Due to the anharmonic e�ect, the thermal conductivity of the
pristine NWs decreases quickly with the increase of temperature. While for
the twinning SL NWs, the thermal conductivities only decrease slightly when
the temperature increases from 300 K to 800 K, showing a weak dependence
on temperature. This trend appears because the phonon mean free path in
the twinning SL NWs is much smaller than in the pristine NWs and lead to
weak temperature dependences for thermal conductivities in twinning SL NWs.

The phonon lifetime is commonly given by the Matheissen's rule, expressing
the total inverse lifetime as the sum of the inverse lifetimes corresponding to
each scattering mechanism. For the structures discussed here, only anharmonic
and boundary scattering take place. Consequently, the total lifetime τ can be
casted as

1/τ = 1/τb + 1/τa (5.2)

where τb and τa are lifetimes of the boundary scattering and of the anharmonic
scattering, respectively. The anharmonic scattering lifetime averaged over fre-
quency can be approximated as (Asen-Palmer et al. 1997; Mingo 2003)

τ−1
a = BTe−C/T (5.3)
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Figure 5.9: Temperature dependent thermal conductivity of the pristine and twinning
SL phononic metamaterial NWs with di�erent periods and a diameter of 4 nm. The
corresponding solid lines are �tted with Eq. 5.5

with T being the absolute temperature, C = 137.3 K and B are constants.
Using the averaged speci�c heat capacity Cv, the group velocity vg and the
relaxation time, κ can be expressed as κ = Cvv

2
gτ for an one-dimensional wire.

From this latter expression, it can be easily shown that

κ = Cvv
2
g/(1/τb +BTe−137.3/T ) (5.4)

Let a = 1
Cvv2gτb

and b = B
Cvv2g

. Considering a and b as �tting parameters,
the following equation can be used to �t the temperature dependent thermal
conductivities of di�erent structures:

κ =
1

a+ bTe−137.3/T
(5.5)

In Fig. 5.9, the corresponding solid lines are �tted with Eq. 5.5 with the
�tting parameters a and b are summarized in table 5.2. The temperature
dependent thermal conductivity κ for all structures can be well �tted with
those parameters.
The parameter a related to the lifetime of the boundary scattering takes the
values of 0.04, 0.08, 0.092, and 0.103 for the pristine and the twinning SLs
corresponding to the periods 12.5 nm, 8.8 nm, and 3.1 nm, respectively. These
values indicate a continuous decrease of the relaxation time due to boundary
scattering for these structures. The parameter b takes the same value of 6.7×
10−5 for all structures. This is because b characterizes the anharmonic e�ect,
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Table 5.2: Summarize of the �tting parameters of a and b used in Eq. 5.5.

a b τb/τa
Pristine 0.04

6.7× 10−5

0.32
Lp = 12.5 nm 0.08 0.16
Lp = 8.8 nm 0.09 0.14
Lp = 3.1 nm 0.10 0.12

which only depends on the material properties. From the expression of a and b,
one can derive the ratio between the boundary and the anharmonic relaxation
time τb/τa as

τb
τa

=
b

a
Te−C/T (5.6)

The ratios predicted by Eq. 5.6 at 300 K have also been summarized in table
5.2. The values are typically between 0.1 and 0.5, indicating that the boundary
and the anharmonic mean free path have the following relationship (noting that
the mean free path of anharmonic scattering is about hundreds of nanometers):

Λb >
Λa

10
> 10nm > D (5.7)

In a purely di�usive boundary scattering case, the boundary mean free path
should be the same as diameter. Contrarily in the current case, Λb is much
larger than the diameter of the NWs, which means that the surfaces of the
NWs are rather specular. This result indicates that the thermal conductivity
can be further reduced by decreasing the surface specularity.

5.3.5 Coating E�ects on Thermal Conductivity

To further reduce the thermal conductivity by decreasing the surface specular-
ity, we coated Si twinning SL NWs (D = 4 nm) with one- or two-Ge atom thick
layers, forming the core-shell twinning SL phononic NWs. Mixed parameters
for Si-Ge were based on the Stillinger-Weber potential according to references
(Ding and Andersen 1986; Ethier and Lewis 1992).

The e�ect of the Ge atom coating on the thermal conductivities for the Si
twinning SL phononic metamaterial NWs with di�erent periods is illustrated
in Fig. 5.10. As a comparison, the thermal conductivities of the Si twinning
SL NWs without coating are also presented in the �gure. Note that the diam-
eters of the pure Si SL NWs and the Si-core in the core-shell structures are the
same. As it can be seen from the �gure, Ge coating still has a large impact on
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Figure 5.10: Thermal conductivity variation with the twinning SL period for the Si
and the Si/Ge core/shell structures with one- and two-atom thick Ge atom layers. D
= 4 nm for the pure Si NWs and the Si core in the core/shell NWs.

the thermal conductivities of Si twinning SL NWs, especially for small periods.
This is expected in terms of Ge coating can reduce the surface specularity and
further shortens the phonon mean free path. With the Ge coating, the period
corresponding to the minimum thermal conductivity does not change and the
maximum reduction can reach almost 20% for only 2 atom layers of Ge coat-
ing. The thermal conductivity of the core-shell twinning SLs decreases with the
increase of coating thickness at short periods while it almost does not change
with coating thickness at large periods.

To summarize, the thermal conductivity of Si twinning SL phononic metama-
terial NWs has been investigated with di�erent periods, diameters as well as
temperatures by using NEMD simulations. It is demonstrated that the ther-
mal conductivity can be reduced by 65% at room temperature compared to the
straight NW case. Pure geometry-induced induced minimal thermal conduc-
tivity of the phononic metamatertial is observed with the variation of the SL
period. The corresponding periods are diameter dependent and almost equal
to the diameter of the NW. A mode analysis shows that the minimal thermal
conductivity is due to the loss of preferential orientation of the polarization
vectors induced by the kink. The group velocity suppression produced by the
loss of a single polarization direction is the key point of thermal conductivity re-
duction. The considered mechanism of geometry-induced reduction of thermal
conductivity in twinning superlattice phononic metamaterials can be comple-
mented by other known mechanisms to further reduce thermal conductivity in
phononic metamaterials.
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5.4 Conclusions

In this chapter, the recent progresses in the thermoelectric performance of Si
based materials have been brie�y reviewed. And we also introduced the experi-
mental observations of the periodically distributed twinning boundaries along a
NW, which forms a twinning SL NW. This type of SL has a novel zigzag geom-
etry and it also o�ers the freedom in changing the diameter and period length,
giving the �exibilities for phononic metamaterial design. Based on the exper-
imental observations, we constructed NWs containing periodically distributed
twinning boundary, i.e., twinning SL NWs, and calculated the thermal conduc-
tivities of those NWs using NEMD simulations. The comparison between the
thermal conductivities of the pristine and twinning SL NWs shows that a large
reduction up to 65% in thermal conductivity can be achieved at room tempera-
ture and the reduction is sensitive to temperature due to the anharmonic e�ect.
When the period of the twinning SL NWs changes, a minimal thermal conduc-
tivity can be observed and the corresponding periods are diameter dependent
and almost equal to the diameter of the NW. A mode analysis shows that the
minimal thermal conductivity is purely due to the zigzag geometry. When the
period is short, the phonon modes have a single polarization direction and they
start to broaden when the period increases. When the period increases to a
speci�c value, the favored phonon polarization direction totally disappears and
becomes homogeneously distributed on an arc. By further increasing the pe-
riod, two new favored polarization directions in the leg directions were observed.
The appearance of the two new favored polarization directions promotes heat
transfer compared to the one without any favored direction. Phonon dispersion
reveals that the zigzag structure of twinning SL NWs results in a small group
velocity, which is the immediate cause of thermal conductivity suppression. The
phonon group velocity decrease is also revealed in phonon transmission spectra,
where the transmission of the twinning SL NWs is much smaller than that of the
pristine one. Moreover, a small phononic band gap between the acoustic and
optical branches was observed in the twinning SL NWs. We also found that the
considered mechanism of geometry-induced reduction of thermal conductivity
in twinning superlattice can be complemented by other known mechanisms to
further reduce thermal conductivity in phononic metamaterials. The current
studies reveal that the twinning SL nanowire is a promising candidate for e�-
cient thermoelectric conversion bene�ted from the large suppression in thermal
transport without deterioration of electron transport properties.





Chapter 6

Void Defects in Nanowires:

Transition from Heat

Conduction to Radiation in

Nanoscale Gaps

In this chapter, we introduce a special plane defect, i.e., vacuum, into a SiO2

nanowire and arrange it periodically and perpendicular to the wire. This pro-
posed structure allows us to study heat transfer between two clusters separated
with a vacuum gap. Since heat transfer between two objects in direct contact
is predominated by conduction while it is predominated by near �eld radia-
tion when the two objects are separated with a vacuum gap, it is possible to
study the fundamental transition between heat conduction and near �eld ra-
diation when we alter the gap distance from zero (corresponding to contact)
to several nanometers. By using the non-equilibrium Green's function method,
we quantitatively investigate heat transfer between two silica clusters. In the
gap range between 4 Å and three times the cluster size, the thermal conduc-
tance decreases as predicted by the surface charge-charge interaction. Above
�ve times the cluster size, the volume dipole-dipole interaction predominates.
Finally, when the distance becomes smaller than 4 Å, a quantum interaction
where the electrons of both clusters are shared takes place. This quantum inter-
action leads to the dramatic increase of the thermal coupling between neighbor
clusters due to strong interactions. This study �nally provides a description of
the transition between radiation and heat conduction in gaps smaller than a
few nanometers.

6.1 Introduction

With the recent developments of nanotechnology, electronic devices continue to
scale down in dimension and scale up in power density (Cheng et al. 2011). As
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Figure 6.1: Near �eld heat transfer measurements. (a) experimental data (diamond
points) from 13 heat transfer-distance measurements by Narayanaswamy. The dashed
line is predicted by proximity approximation, which is far from the experimental data.
This comparison indicates the break down of proximity approximation in describing
near �eld radiation. (b) experimental measurement (solid circles) of thermal con-
ductance between a sphere with diameter 40 µm and a plate by Rousseau. The red
line is the prediction with proximity approximation. the comparison clearly shows
the perfect agreement between experimental data and theory predictions. Figure from
Narayanaswamy et al Phys. Rev. B 2008, 78: 115303 and Rousseau et al Nat. Pho-
tonics 2009, 3: 514.

a result, near �eld radiation starts to play a notable role in the thermal design
at nanoscales. Recently, it has been demonstrated both theoretically (Polder
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and Van Hove 1971; Volokitin and Persson 2007; Joulain et al. 2005; Chapuis
et al. 2008; Chapuis et al. 2008) and experimentally (Narayanaswamy et al.
2008; Shen et al. 2009; Emmanuel et al. 2009) that heat transfer through near
�eld radiation between two parallel plates or between a sphere and a plane
can be several orders of magnitude larger than the black body limit over a
limited range of frequency. This clearly corroborates the fact that when the
gap between two objects is smaller than the characteristic photon wavelength,
a di�erent physical behavior emerges in which near �eld radiation and acous-
tic phonon tunneling signi�cantly contribute to heat transfer (Kosevich 1991;
Prunnila and Meltaus 2010).

The �rst measurement of the radiative heat �ux between two dielectric ma-
terials separated by a nanoscale gap distance has recently been performed by
Narayanaswamy, Shen and Chen (Narayanaswamy et al. 2008; Shen et al.
2009) using a sensitive technique based on bimaterial cantilevers. Their ex-
perimental data show the breakdown of the Planck blackbody radiation law
in the near �eld and also show that the proximity-force approximation is not
valid for near-�eld radiation heat transfer in the range of gaps involved in
their experiment. Shortly after, Rousseau et al. (Emmanuel et al. 2009)
also measured the heat transfer in the near-�eld regime. Interestingly, and in
contrast with Narayanaswamy's conclusions, these later results con�rmed the
proximity approximation. The main results of the measurements from these
two groups are depicted in Fig. 6.1. The di�culty in performing such exper-
iments makes it probable that heat transfer at the nanoscale will continue to
be debated, as commented by Kittel (Achim 2009). Near-�eld radiation under
the dipole/multipole approximation has been extensively investigated on a the-
oretical basis. Nonetheless, mechanisms taking place for separation distances
shorter than 10 nm remain unclear. This range of separation distances may
not be directly accessible by experiments due to the di�culty in fabricating
well-de�ned planes and spheres at those scales. At the same time, as modern
nanostructures might be smaller than 10 nm and are separated in some cases
by only a few fractions of a nanometer, this range of lengths is of great interest
to those who design nanoscale devices (Achim 2009; Ni et al. 2012). From a
fundamental point of view, this domain is also involving the less understood
transition from a classical charge-charge interaction, logically described as a
radiation in the near-�eld, to a chemical bond interaction, yielding pure heat
conduction.

By means of molecular dynamics simulations, Domingues et al (Domingues
et al. 2005) found a interesting transition regime characterized by a thermal
conductance larger than the contact conductance as shown in Fig. 6.2. But the
largest value exceeded the upper physical limit. And the heat transfer behavior
in long distance range can be well described with dipole-dipole approximations.
Using ultra-high vacuum inelastic scanning tunneling microscopy, a previously
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Figure 6.2: Thermal conductance between two silica clusters varies with the separa-
tion distance by means of molecular dynamics simulation. An interesting transition
from heat conduction to radiation is observed. Figure from Domingues et al Phys.
Rev. Lett. 2005, 94: 085901.

unknown mechanism of thermal transport-a �eld-induced phonon tunneling-
has been reported by Altfeder et al (Altfeder et al. 2010). The thermal energy
transmitted through atomically narrow vacuum gap exceeds, by ten orders of
magnitude, the one of blackbody thermal radiation. In fact, before these exper-
imental �ndings, Kosevich (Kosevich 1991) and Prunnila et al (Prunnila and
Meltaus 2010) have modeled how acoustic phonons can directly tunnel through
vacuum by introducing coupling mechanisms, and both of them have shown
that acoustic phonons can travel through the vacuum gap with unitary trans-
mission and thus can lead to signi�cant thermal conductance and heat �ux.

In this work, we estimate the heat transfer through a chain composed by iden-
tical non-contacting silica clusters by means of the phonon non-equilibrium
Green's functions. We show that there are two critical vacuum gaps of about
4 Å and three to �ve times the cluster size. The �rst critical gap, of 4 Å, cor-
responds to a transition between the classical and the quantum regimes with
strong interaction. Above this critical gap, the conductance decreases �rst ac-
cording to a d−3 power law, d being the distance between the center of masses,
and then gradually follows a d−6 power law, when the gap is larger than �ve
times the cluster size. These power laws can be explained by classical surface
charge-charge and volume dipole-dipole interactions, respectively. Below 4 Å,
the conductance shows a much stronger dependence on gap thickness. The �rst
critical gap is con�rmed by ab-initio calculations showing that the electronic
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wave functions indeed merge when the gap becomes shorter than 4 Å.

6.2 Structure and Simulation methods

We consider a system of identical silica clusters separated by a distance d be-
tween the cluster centers and a gap l (Fig. 6.3, top). It can also be regarded as
inserting vacuum gaps perpendicular to a nanowire periodically. Clusters are
coupled through the van Beest, Kramer, and van Santen (BKS) potential (van
Beest et al. 1990), composed of Coulomb and Buckingham potentials. The
mathematical form of the BKS potential reads as

Figure 6.3: Schematics of the silica cluster systems considered in the Green's func-
tion calculations (top) and the ab-initio computations (bottom). For Green's function
calculation, the clusters are N ×N ×N unit cells cubes with SiO2 lattice constant of
4.52 Å. In ab-initio calculations, two parallel Silica planes separated with di�erent gap
distances are used and electron densities inside the gaps are calculated with this model.

U = Ae−r/ρ − C

r6
+

qiqj
4πε0r

(6.1)

where ε0 is the permittivity of vacuum, q1 and q2 are the charge of atom i
and j, respectively. r represents the distance between atoms and A, C, and ρ
are �tting parameters of this potential. The BKS potential provides the full
physical picture of the long range electromagnetic and the short-range repulsive-
attractive interactions, corresponding to the third part and the �rst two parts
in Eq. 6.1, respectively. We consider one cluster as the reference system and
the clusters on its left and right sides serve as reservoirs. The system period
is illustrated in Figure 1 (top). The gap conductance σ between two clusters
is derived from the energy transmission Tr as follows (Mingo and Yang 2003;
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Wang et al. 2007; Yang et al. 2012):

σ =

∫ ωmax

0
Tr(ω)

∂

∂T
(

1

e~ω/kBT − 1
~ω

dω

2π
) (6.2)

where ω and ωmax are the energy and the Debye frequencies. T refers to the
mean temperature of the system, kB and ~ represent the Boltzmann and the
reduced Planck's constants, respectively.

The transmission Tr is obtained from a non-equilibrium Green's function ap-
proach (Mingo and Yang 2003; Wang et al. 2007; Yang et al. 2012) as
Tr(ω) = Trace [ΓLGsΓRG

+
s ]. The advanced and retarded Green functions

G+
s and Gs can be deduced from:

Gs =
[

(ω + i∆)2 I −Kss − ΣL − ΣR

]−1
(6.3)

where ∆ is an in�nitesimal imaginary part that maintains the causality of the
Green's function and ΣL = KabgLK

+
ab, ΣR = K+

abgRKab are the self-energies of
the left and right leads, the "+" exponent indicating the Hermitian conjugation.
Finally, gL and gR refer to the Green's functions of the left and the right leads,
Kss and Kab being the force constant matrices derived from the BKS potential,
for one cluster and between neighboring clusters, respectively. The expression
of the transmission also includes ΓL = i

(

ΣL − Σ+
L

)

and ΓR = i
(

ΓR − Γ+
R

)

.
The details of Green's function calculations is introduced in chapter 2.

6.3 Physical Analysis of the Thermal Conductance
between Two Clusters

6.3.1 Thermal Conductance

The thermal conductance between clusters obtained from Eq. 6.2 is reported
in Fig. 6.4. The conductance decreases very quickly with distance in the short
gap range. The power law in this range is estimated to be about d−12 and the
absolute value of the power slightly increases with the increase of the parti-
cle size. The thermal conductance per unit cross-section indeed increases with
cross section as the number of interacting pairs per atom increases. This latter
number becomes larger at short distances and leads to a slight growth of the
absolute exchanged power. This growth should however saturate to a maximum
value as the number of interacting pairs per atom also saturates, but this limit
remains beyond the maximum size under consideration here.

In the intermediate distance range, the conductance decrease with distance
turns to be smoother and follows the power law d−3, which is expected in the



Chapter 6 - Void Defects in Nanowires: Transition from Heat

Conduction to Radiation in Nanoscale Gaps
101

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

10
6

Distance d (nm)

C
on

du
ct

an
ce

 (
nW

/K
)

σ
max

T = 300 K

 

 

D = 1.3 nm
D = 1.86 nm
D = 2.4 nm
MD, D=1.44 nm
MD, D=2.2 nm

−1.2e

P

+2.4e

−1.2e

Si

O

O

Figure 6.4: Thermal conductance between two neighboring clusters at 300 K for
di�erent cluster sizes versus the distance d indicated in Figure 1. In our calculations,
the cluster is a cube N ×N ×N unit cells in volume. The diameter D is set in such
a way that the sphere volume is equivalent to that of the simulated cube. The distance
d was used as the abscissa instead of the gap distance l in order to discriminate the
curves otherwise superimposed. The MD results are taken from Domingues et al Phys.
Rev. Lett. 2005, 94: 085901, where the same BKS potential parameters as those
adopted in this work were used.

framework of the non-piezoelectric interactions (Kosevich 1991). Silicon and
oxygen atoms form a dipole as shown in the inset of Fig. 6.4 and each particle
can be regarded as one macroscopic dipole, with bound charges of opposite
sign at front and rear surfaces. When the distance between two clusters is
comparable with the cluster size, the force per unit surface area between surface
charges is proportional to S2

d2
, where S2 is surface area of cluster 2. According

to our model, the transmission of acoustic phonons through the vacuum gap
can be written as (Kosevich 1991):

|Taph|2 =
1

1 + (ω/ω0)
2 (6.4)

where ω0 represents the e�ective width of the acoustic phonon pass band
through the gap; ω0 is proportional to the modulus of the derivative of the
force per unit surface area with respect to the gap width, and as a result,
ω0 ∝ S2

d3
. The total thermal conductance is given by the integral of transmis-

sion (Eq. 6.4) over all frequencies times surface area of cluster 1 S1 and is
proportional to S1ωo, and hence is characterized by the scaling S1S2

d3
(Kosevich
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1991). This means that the conductance in this range of distance d is performed
mainly by acoustic phonons, which is in agreement with our results obtained
from Green's function (shown below). Interestingly, the slope transition in the
log scale occurs at the same gap distance l = 4 Å whatever the cluster diam-
eter. The distance d, gap distance l, and the diameter of cluster D have the
relation l = d −D. When the gap increases further, i.e. the distance between
two neighboring clusters becomes much larger than the particle size, the energy
transfer between two clusters is performed by optical phonon exchange through
dipole-dipole interaction (Domingues et al. 2005), following the Foerster energy
transfer with a 1

d6
decay law (Foerster 1948). The transition from the charge-

charge to dipole-dipole interaction occurs smoothly when d is around three to
�ve times the cluster size. According to the dipole-dipole approximation, the
spectrum heat �ux transfer from one particle to the other can be written as
(Domingues et al. 2005)

Q1→2 =
3α”

1α
”
2

4π3d6
Θ(ω, T ) (6.5)

where α”
1 and α”

2 are the imaginary part of the polarizability of the two particles,
respectively, and Θ(ω, T ) = ~ω/

(

e~ω/kBT − 1
)

refers to the mean energy of an
oscillator. In terms of power exchange, the conductance is written as

σ12 (T ) =
3

4π3

∫ ∞

0

∂Θ(ω, T )

∂T
α”
1 (ω)α

”
2 (ω) dω

1

d6
(6.6)

So the conductance between two dipoles follows the power law of d−6, which is
very close to our �nding.

Furthermore, in the charge-charge interaction region, the conductance at a
given gap width l follows a D3.85 scaling law, while in the dipole-dipole in-
teraction range, the conductance varies with diameter according to D6.5 for
a given distance d. These �ndings further con�rm our proposed mechanism
of surface charge-charge and volume dipole-dipole heat transfer since the total
conductance is proportional to the product of clusters surface areas S1S1, that
is to D2

1
D2

2

d3
, for surface charge-charge interaction, while the conductance is pro-

portional to the product of clusters volumes V1V2, that is to
D3

1
D3

2

d6
, for volume

dipole-dipole interaction.

To validate our predictions, molecular dynamics (MD) simulation results as
taken from reference (Domingues et al. 2005) are plotted in Figure 2 for com-
parison. A clear agreement between MD and Green's function predictions ap-
pears in the long distance range. But there is no intermediate region in MD
predictions and the conductance from Green's function is several orders of mag-
nitude smaller than the one yielded from MD in the small gap range. Also in
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contrast to MD simulations, no conductance decrease is found right before the
contact in our Green's function calculations. Instead, the conductance increases
monotonically while the gap decreases. In fact, the maximum conductance
before contact predicted by MD simulations exceeds the physical upper-limit
σmax as shown in Fig. 6.4. This limit is calculated from the maximum en-
ergy 3Nkb (T1 − T2) possibly transferred between two neighbor clusters of N
atoms each, set to temperatures T1 and T2. Considering the fastest transfer
characterized by the highest mode frequency fmax, the maximum conductance
is obtained asσmax = 3NkBfmax. The MD predicted conductance just before
the contact is one or two orders of magnitude larger than the maximum value
while the non-equilibrium Green's function predictions give estimations below
this limit.

6.3.2 Electron Density Analysis

To understand the origin of the change in the dependence of the conductance
to the distance d, we performed ab-initio calculations (ABINIT code (Gonze
et al. 2002)) of the electron densities for two silica planes schematically shown
in the below panel of Figure 1, and separated by vacuum gaps ranging from 0
to 6 Å. As each plane consists in a 1× 1× 2 supercell, the two cells axis being
perpendicular to the interacting surfaces. Each unit cell contains twelve atoms
and the simulation box includes four cells and 48 atoms. Experimental data
for the atomic positions are used and the exchange-correlation Hamiltonian is
treated within the generalized gradient approximation with the Perdew-Burke-
Ernzerhof functional (Perdew et al. 1996). Fritz-Haber Institute pseudopoten-
tials (Bockstedte et al. 1997) are adopted for Si and O atoms. The cut-o�
energy is set to 820 eV and the k-grid size to 4× 4× 1.

As revealed by Fig. 6.5, the electron density is nonzero in the middle of the
gap, when the gap is smaller than 4 Å but decreases rapidly as the gap widens
from 0 to 4 Å. The electron density reaches zero in the middle of the gap when
l increases beyond 4 Å and the zero electron density domain extends when fur-
ther increasing the gap. This indicates that the electron wave functions of both
sides actually overlap in the short gap range when l < 4 Å to form a bond. In
this region, the atoms of both sides are connected through a single electronic
wave function instead of interacting through electromagnetic forces relating two
separated wave functions. Beyond 4 Å, near �eld radiative heat transfer can be
described by Maxwell equations while the quantum Schrödinger equation has
to be considered when l < 4 Å. Since the bonds between atoms in silica are co-
valent, we may call the bond before the contact as 'pseudo-covalent'. With the
formation of those latter bonds, the force between two neighbors dramatically
increases beyond the force produced by electromagnetic waves. As a result,
heat transfer shifts from radiative to conductive, also leading to a slope change
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Figure 6.5: Ab-initio computation of the electron density generated by two parallel
silica �lms separated by di�erent gap widths.

of the thermal conductance in the small gap range.

6.3.3 Phonon Transmission Spectra

To check the relative contribution of acoustic and optical phonons to heat con-
duction, we now turn to our previous modeling of the transmission of acoustic
phonon modes through a vacuum gap as shown in equation (3). Since ω0 repre-
sents the e�ective width of the acoustic phonon pass-band through the gap and
it is proportional to the derivative of the force between clusters with respect to
the gap width, it decreases with the increase of the gap width. Consequently,
the acoustic phonon cut-o� frequency decreases when the gap widens and the
frequency range of allowed transmission converges to zero.

Fig. 6.6 reports the cumulative transmission coe�cient from one cluster to its
neighbor as a function of frequency and distance l. The cumulative transmis-
sion function increases continuously for the smallest gap of 1 Å (black line)
re�ecting a continuous dependence of the transmission on frequency. The con-
tinuous decrease of the transmission as the frequency ω0 reduces to zero reveals
that the modes involved are indeed acoustical ones.

When the gap width is slightly increased from 1 Å to 4 Å, the cumulative
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Figure 6.6: Angular frequency dependent cumulative phonon transmission for di�er-
ent gap distance l in the cluster of diameter D = 1.3 nm. Inset: phonon transmission
function versus angular frequency at low frequencies.

transmission function dramatically decreases and includes both a continuum
at low frequencies and a set of jumps due to a discrete transmission at higher
frequencies as highlighted by the inset of Figure 4. In qualitative agreement
with the model of Eq. 6.4, widening the gap indeed results in a decrease of
the acoustic frequency pass band, which uncovers the presence of optical con-
tributions appearing as peaks in the transmission spectrum. A careful analysis
of our data shows that the frequency range of the acoustic phonons continuum
reduces to zero as the gap width reaches �ve times of particles size and ac-
complishes most of the heat transfer when the gap width is smaller than three
times the particle size. The discrete set of modes also progressively disappear
when the gap width is further increased and only the modes related to force
constants of long range interactions remain when the gap is enlarged and those
also gradually disappear as those long range interactions vanish.

The acoustic phonon behavior can also be understood with the coupling e�ect.
Due to the acoustic sum rule, all the acoustic phonon frequency at the gamma
point should be zero. Thus the acoustic modes are distributed from zero up
to a maximum frequency ωmax

ac . When the gap is very small, the coupling be-
tween neighbouring clusters is very strong and the group velocity of acoustic
phonons is very large since the group velocity is proportional to the square
root of coupling constant between cells, i.e., vg ∝

√

Kab/M with M being the
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mass of atoms. As a result, the maximum frequency of the acoustic phonons
ωmax
ac is large. By decreasing of the coupling strength (corresponding to a larger

gap), the group velocity will decrease and results in a small frequency range
of acoustic phonons (corresponding to a small ωmax

ac ). Therefore, the acoustic
modes go towards the zero frequency with the increase of the gap distance and
�nally disappear when the group velocity is zero. The discreteness of the opti-
cal modes is due to the same e�ects. If the group velocity of an optical mode
vanishes or becomes very small, this optical mode disappears. Since these lat-
ter modes cannot be coupled by Coulomb interaction they do not contribute to
heat transfer.

By considering the phonon-induced interactions of the gap edges, Kosevich
(Kosevich 1991) and Prunnila and Meltaus (Prunnila and Meltaus 2010) have
shown independently that acoustic phonons could transmit energy between sep-
arated bodies by tunneling through vacuum gap, which can led to a signi�cant
thermal conductance enhancement and which is consistent with our �ndings.
Accordingly, Altfeder et al. (Altfeder et al. 2010) observed phonon tunneling
from a sharp STM tip into a gold �lm at a vacuum gap distance of 3 Å. The
authors claim that the tunneling e�ect is driven by surface electron-acoustic-
phonon interaction. This result supports our argument stating that acoustic
phonons are predominant in the phonon tunneling through small gaps.

In conclusion, the non-equilibrium Green's function technique has been imple-
mented for calculating the heat transfer between two silica clusters. We found
that the studied gap range can be divided into three parts with two critical gaps
of 4 Å and three to �ve times the cluster size. The heat transfer regimes are
characterized by the decay power laws of d−12, d−3 and d−6, successively. The
critical gap of 4 Å corresponds to the classical to quantum transition beyond
which heat transfer between neighboring clusters follows the classical law pre-
scribed by surface charge-charge (intermediate range) and volume dipole-dipole
(long-range) interactions, while the heat �ux drastically increases for the gap
distance below 4 Å. Near-�eld radiation clearly captures the thermal interaction
above l = 4 Å, but the heat transfer below this distance is dominated by heat
conduction as we have shown that electrons are actually forming a chemical
bond in the gap. Our results thus provide a deeper insight into understanding
the behavior of the transition between radiation and heat conduction in gaps
smaller than a few nanometers.

6.4 Conclusions

A periodic plane defect of vacuum has been introduced perpendicularly to the
axis of a SiO2 nanowire in order to study the phonon tunnelling e�ect as well
as the heat transfer transition from conduction to near �eld radiation. The
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thermal conductance between two clusters at di�erent gap distances up to 10
nm was calculated with the non-equilibrium Green's function. It was found
that the studied gap range can be divided into three regions. The �rst region
starts from the contact to the gap distance of 4 Å for all cluster sizes with a
thermal conductance decay according to a power law around d−12. The second
region begins from the gap distance of 4 Å, i.e., l = 4 Å, and ends at a inter-
cluster distance corresponding to 3-5 times the cluster size, i.e., d = (3 ∼ 5)D.
In this regime, the power law of the thermal conductance variation changes
to d−3. The last region where a thermal conductance decay power law d−3

is identi�ed ranges from d = (3 ∼ 5)D up to the maximum distance in this
study. With an ab initio calculation, we claimed that the critical gap of 4
Å corresponds to the classical to quantum transition below which electrons
are actually forming a chemical bond in the gap. The heat transfer behavior
beyond 4 Å was checked with previously reported models and we identi�ed that
when the gap distance is larger than 4 Å, heat transfer between neighboring
clusters follows the classical law prescribed by surface charge-charge interaction
(intermediate range) and volume dipole-dipole (long-range) interaction. Near-
�eld radiation clearly captures the thermal interaction above l = 4 Å, but the
heat transfer below this distance is dominated by heat conduction due to the
formation of chemical bonds which promote the acoustic phonon tunnelling.
Our results thus provide a deeper insight into understanding the behavior of
the transition between radiation and heat conduction in gaps smaller than a
few nanometers.





Chapter 7

Conclusions and Future works

7.1 Conclusions

With a combination of methods including molecular dynamics, phonon Green's
function, lattice dynamics, and density functional theory calculations, we have
investigated the impact of various types of defects, namely screw dislocations,
anti-phase boundaries, twinning boundaries, as well as vacuum gaps, on the
heat transfer behaviors of nanowires. The main conclusions of this thesis are
as follows:

1. The thermal transport properties have been calculated with the Non-
EquilibriumMolecular Dynamics (NEMD) method for <110> Si nanowires
(NWs) and nanotubes (NTs) containing an axial screw dislocation (SD)
in the center, as described by objective molecular dynamics coupled with
the classical Terso� potential. In accordance with the Eshelby theory, we
found that the twist angle of a SD NW or NT increases with the Burger's
vector while decreases with the cross-section area. We uncover a decrease
in thermal conductivity in the presence of axial screw dislocations with
closed and open cores. The phonon mode polarization calculation to-
gether with phonon Green's function calculation reveal that the sizeable
reduction of thermal conductivity by dislocation is attributed to the en-
hanced phonon-phonon scattering caused by the potential anharmonicity
in the highly-distorted core and, to a lesser extent, to di�erences in struc-
ture. As high-strain is intrinsic to dislocations, the e�ect should occur to
various extents in other nano-materials. The dislocation e�ect on ther-
mal transport can be combined with other known mechanisms, such as
coating, to further hinder phonon transport.

2. According to recent experiments on anti-phase (AP) boundaries, we pro-
posed a new type of nanowire, i.e., the anti-phase superlattice (APSL)
NW. The thermal conductivity of this new type of NW 3 nm in diam-
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eter is measured in a 3C SiC system with EMD simulations based on
�uctuation-dissipation theory. We identi�ed that the thermal conduc-
tivity of the period modulated APSL NWs can be suppressed to a large
extent when compared to that of the pristine NW. The maximum reduc-
tion can be as high as 52% at 300 K. This minimal value corresponds
only to 2.6% of the bulk SiC value at 300 K. This means that the ther-
mal conductivity of SiC can be reduced twofold with the combination of
APSL and NW e�ects. A lattice dynamic calculation shows that phonon
group velocity is greatly decreased in APSL NWs compared to that of
pristine NWs. Besides, we uncover a minimal thermal conductivity for a
period of 6 nm. This minimal thermal conductivity originates from the
interplay between phonon wave e�ect and phonon particle e�ect. Phonon
density of states demonstrates that new vibrational states for interface
atoms appear. In the Si-Si interfaces, two strong peaks emerge around 5
THz, which are identi�ed as Si atom vibrational modes. Besides the low
frequencies peaks, two gap modes around 22 THz and 30 THz due to the
C atom vibrations are also observed. Because of the sti� C-C interactions,
the VDOS in the C-C bonding interface regions shows a long tail above
the usual cut o� frequency of 35 THz. The current study shows that SiC
APSL NWs may serve as a new candidate to improve the thermoelectric
performance of SiC, where the high thermal conductivity is the main hur-
dle for increasing the �gure of merit.

3. Using NEMD simulations, we found that the thermal conductivity of the
twinning SL NWs shows a large reduction up to 65% in comparison with
that of the pristine NW at room temperature. Due to the enhanced
anharmonic scatterings at high temperatures, the thermal conductivity
reduction decreases with temperature. When the period of twinning SL
NWs changes, a minimal thermal conductivity can be observed and the
corresponding period is diameter dependent and almost equals to the
diameter of the NW. Mode analysis reveals that the minimal thermal
conductivity arises due to the disappearance of favored atom polariza-
tion directions. Phonon dispersion studies show that the zigzag structure
of the twinning SL NW results in a small group velocity, which is the
immediate cause of the thermal conductivity suppression. The phonon
group velocity decrease is also revealed in the phonon transmission spec-
tra, where the transmission of the twinning SL NWs is much smaller than
that of the pristine one. Moreover, a small phononic band gap between
acoustic and optical branches was observed in the twinning SL NWs. We
also found that the considered mechanism of geometry-induced reduction
of thermal conductivity in twinning SLs can be complemented by other
known mechanisms to further reduce thermal conductivity in phononic
metamaterials.
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4. The thermal conductance between two clusters at sub-10 nm gaps was
calculated with the non-equilibrium Green's function. We captured that
the thermal conductance changes with inter-cluster distances according to
three di�erent behaviors in the studied distance range, i.e., the short range
region with a gap distance below 4 Å for all cluster sizes and the thermal
conductance decay according to a power law around d−12; the intermedi-
ate region from l = 4 Å to d = (3 ∼ 5)D, where the thermal conductance
is proportional to d−3; the long range region with d > (3 ∼ 5)D, where a
thermal conductance decay power law d−6 is identi�ed. With an ab initio
calculation, we have shown that the critical gap of 4 Å corresponds to the
classical to quantum transition below which chemical bonds are formed
by shared electrons in the gap. The heat transfer behavior beyond 4
Å is checked with the previously reported models and we identify that
when the gap distance is larger than 4 Å, heat transfer between neighbor-
ing clusters follows the classical law prescribed by surface charge-charge
interaction (intermediate range) and volume dipole-dipole (long-range)
interaction. Near-�eld radiation clearly captures the thermal interaction
above l = 4 Å, but the heat transfer below this distance is dominated by
heat conduction due to the formation of chemical bonds which promote
the acoustic phonon tunnelling. Our results thus provide a deeper insight
into understanding the behavior of the transition between radiation and
heat conduction in gaps smaller than a few nanometers.

7.2 Future Works

There are three extensions of the work presented here that should be pursued:

1. According to the experimental �ndings, in most cases, a nanowire with
a screw dislocation will also be surrounded by small branched nanowires.
It would be meaningful to perform simulations on thermal properties for
such a real structure as a branched nanowire can produce phonon reso-
nance e�ect. Combining this e�ect with the strain e�ect produced by dis-
locations, this dislocated-branched-nanowire should possess an extremely
low thermal conductivity.

2. The studies on the twinning superlattice nanowires are focused on per-
fect twinning boundaries at present. While in real situations, the twin
boundaries always contain dislocations (screw or edge). We have shown
that a perfect twinning boundary has no impact on phonon transport. To
introduce dislocations on twinning boundaries would change the bound-
ary scatterings, providing an enhanced phonon phonon blocking e�ect.

3. We focused all our studies on thermal transport properties in this thesis,
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while it is also crucial to know the electron transport properties for our
designed structures, especially for thermoelectric applications. Using the
Green's function together with the tight-binding model, it is possible to
calculate the electrical conductance, the Seebeck coe�cient, and also the
thermal conductance. Consequently, the thermoelectric �gure of merit
ZT = S2σT/κ can be calculated within the ballistic regime.
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