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Abstract

This thesis is organized in two independent parts. The rst part focused on convex matrix estimation problems, where both rank and sparsity are taken into account simultaneously. In the context of graphs with community structures, a common assumption is that the underlying adjacency matrices are block-diagonal in an appropriate basis. However, these types of graphs are usually far from complete, and their adjacency representations are thus also inherently sparse. This suggests that combining the sparse hypothesis and the low rank hypothesis may allow to more accurately model such objects. To this end, we propose and analyze a convex penalty to promote low rank and high sparsity simultaneously. Although the low rank hypothesis allows to reduce over-tting by decreasing the modeling capacity of a matrix model, the opposite may be desirable when enough data is available. We study such an example in the context of localized multiple kernel learning, which extends multiple kernel learning by allowing each of the kernels to select di erent support vectors. In this framework, multiple kernel learning corresponds to a rank one estimator, while higher-rank estimators have been observed to increase generalization performance. We propose a novel family of large-margin methods for this problem that, unlike previous methods, are both convex and theoretically grounded. The second part of the thesis is about detection of objects or signals which exhibit combinatorial structures, and we present two such problems. First, we consider detection in the statistical hypothesis testing sense, in models where anomalous signals correspond to correlated values at di erent sensors. In most existing work, detection procedures are provided with a full sample of all the sensors. However, the experimenter may have the capacity to make targeted measurements in an on-line and adaptive manner, and we investigate such adaptive sensing procedures. Finally, we consider the task of identifying and localizing objects in images. This is an important problem in computer vision, where hand-crafted features are usually used. Following recent successes in learning ad-hoc representations for similar problems, we integrate the method of deformable part models with high-dimensional features from convolutional neural networks, and shows that this signi cantly decreases the error rates of existing part-based models.
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Finally, I want to dedicate this work to Ben Taskar, who is missed by all more than my words can clumsily express. Matrix Norms and Balls The cognitive process in the brain can be simpli ed down to two processes around which thinking is structured: induction and deduction. In induction, we build new mental models from observations, while in deduction, we use these mental models to make predictions and take actions. These two phases are continuously alternating, and although deduction is easy, induction is fundamentally harder and ill-de ned. At a high-level, many methods in machine learning can be understood as such continuously alternating phases of induction and deduction. This is particularly visible in methods which aim at learning a feature representation from the data, such as in dictionary learning, where induction corresponds to the estimation of codewords, and deduction to the coding problem. Convex methods correspond to a rather simpli ed modeling environment where induction and deduction are actually done jointly through some well-grounded optimization algorithm. Although the cognitive process is a highly non-convex process, simple mental models can be useful to get some initial insight on a problem or a concept at a moderate cost. Similarly, convex methods have proven dramatically useful to approach many statistical modeling and learning problems, and we believe that advancing the state of knowledge in what can be e ectively handled with this type of methods is of utmost interest. This does not mean, however, that non-convex methods should be avoided, and many such methods have recently proven very e ective at achieving state of the art results in a variety of problems. Instead, we believe that the classical debate of which of convex or non-convex methods are best is actually moot, and that these two classes correspond to largely di erent tradeo s. If one were to draw a cartoon picture, convex methods are usually associated with lower computational and modeling e orts, and can often be used to quickly gain signicant insight on a given problem. Non-convex methods are generally signi cantly heavier to deploy and require an arguably more hands-on expertise, but have repeatedly proven e ective at going further than convex methods in many learning and pattern recognition tasks.
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This thesis is organized in two independent parts. This chapter summarizes our results and contributions. The rst part of the thesis is on convex estimation problems, with an emphasis on combining classical hypotheses usually handled in isolation for matrix estimation. We consider how objects such as graphs with community structure, covariance matrices or mixtures of kernel machines can be modeled in a convex framework, and we focus in particular on models involving rank and sparsity hypotheses. The second part of the thesis is on two examples of detection problems, where objects or signals to be detected have some type of combinatorial structure. This departs largely from convex models, as we consider both information-theoretically optimal procedures and numerically successful methods which are highly non-convex.

Contributions: Interactions Between Rank and Sparsity

The rst part of this thesis is focused on penalized estimation problems for regression and classi cation. More speci cally, we consider convex problems for estimating matrices.

A key element which di erentiate this problem from standard high dimensional vector estimation is that di erent structural assumptions can be formulated in this context: although sparsity hypotheses can be transposed from the vector case, genuinely di erent hypotheses can be formulated, such as the low rank hypothesis.

The concepts of sparsity and of low rank have been central in statistics and machine learning in the last decade, and have been at the source of numerous successes. At the core of the sparsity hypothesis lies the idea that the data may be well modeled by a limited number of features or variables, and that performing variable selection may increase the predictive performance [START_REF] Mallat | A wavelet tour of signal processing[END_REF][START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF]. The low rank hypothesis is at the source of a variety of models usually referred to as latent factor models, which are also widely recognized as e ective in practice, such as in clustering [START_REF] Shahnaz | Document clustering using nonnegative matrix factorization[END_REF], recommender systems [START_REF] Koren | Factorization meets the neighborhood: a multifaceted collaborative ltering model[END_REF], or blind source separation [START_REF] Cichocki | Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation[END_REF].

Chapter 2 is dedicated to reviewing the ideas underlying sparsity and of low rank models. We also brie y retrace the history of penalized estimation, and present general geometric tools which can be used to study the estimation performance of a large array of convex penalties from a theoretical point of view. In Chapter 3 and Chapter 4, we consider two matrix estimation problems, where both rank and sparsity are taken into account simultaneously, albeit in di erent ways. In the following, we present a preview of the results from these two works.

Estimation of Sparse and Low Rank Matrices

In recent years, the notion of sparsity for vectors has been transposed into the concept of low rank matrices, and this latter hypothesis has opened up the way to numerous achievements [START_REF] Srebro | Learning with matrix factorizations[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. In Chapter 3, we argue that being low rank is not only an equivalent of sparsity for matrices but also that low rank and sparsity can actually be seen as two orthogonal concepts. The underlying structure we have in mind is that of a block diagonal matrix. This situation occurs for instance in covariance matrix estimation in the case of groups of highly correlated variables or when clustering social graphs.

Consider the adjacency matrix of a graph with community structure, as illustrated on the leftmost panel of Figure 1.1: this is characterized by fully (or densely) connected blocks, or clusters. This can be translated into the hypothesis that the matrix is low rank. In many graph problems, a central assumption is that we are observing a noisy or partial version of a graph with this kind of structure, as pictured in the second leftmost panel of Figure 1.1. This low rank assumption is used, for instance, in matrix completion to predict unobserved movie ratings. Methods based on low rank approximations or low rank inducing penalties such as the trace norm usually yield dense matrices as estimators. This is shown on the third panel of Figure 1.1: even after thresholding of small magnitude entries for display purposes, the support is still quite dense. Although this may be ne for predicting ratings, this is not adapted for graph adjacency matrices, which are usually sparse. This is the case, in particular, for most communication networks, for social networks, or for biological interaction networks. By using a sparsity inducing penalty in addition of the low rank The problem of leveraging both types of structures at the same time is largely di erent from demixing or decomposition problems [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF] such as Robust PCA [START_REF] Candès | Robust principal component analysis[END_REF][START_REF] Chandrasekaran | Rank-sparsity incoherence for matrix decomposition[END_REF], where the objective is to recover a sparse matrix S ∈ R d 1 ×d 2 and a low rank matrix L ∈ R d 1 ×d 2 from the knowledge of their sum X = L + S only. For this type of problem, objective functions usually take the form of an in mal convolution [START_REF] Rockafellar | Convex analysis[END_REF] of penalties [START_REF] Agarwal | Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions[END_REF]. On the other hand, we consider here a single matrix that is simultaneously sparse and low rank.

Contributions. We propose a novel convex penalty to encourage solutions that achieve a tradeo between low rank and high sparsity. The penalty is based on a linear combination of the classical surrogates, the matrix ℓ 1 -norm, and the trace norm : for a matrix W ∈ R d×d , the penalty is

γ W 1 + (1 -γ ) W * .
We derive oracle inequalities for penalized estimation using this penalty.

Proposition 1. Let W ⋆ ∈ R d×d and A = W ⋆ + ǫ with ǫ ∈ R d×d having i.i.d. entries with zero mean. Assume for some α ∈ [0, 1] that τ ≥ 2α ǫ op and γ ≥ 2(1α) ǫ ∞ . Let

W = arg min W ∈R d×d W -A 2 F + γ W 1 + τ W * .
Then,

W -W ⋆ 2 F ≤ inf W ∈R d×d W -W ⋆ 2 F + 2γ W 1 + 2τ W * , W -W ⋆ 2 F ≤ 2γ W ⋆ 1 + 2τ W ⋆ * ∧ γ W ⋆ 0 + τ rank(W ⋆ ) √ 2 + 1 2 2 .
This is extended in Proposition 13 to constrained optimization (for instance over the cone of semi-de nite positive matrices), and generalizes previous sharp bounds for Lasso or trace norm regression (Koltchinskii et al., 2011a). Combined with proper choices of regularization parameters that we discuss, this allows to control the prediction error. Using proximal methods, we demonstrate the bene ts of combining these two hypotheses both on synthetic data, and on real data such as protein interaction data and social networks. This chapter is an extended version of a paper with Emile Richard and Nicolas Vayatis which has appeared in the proceedings of ICML [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF].

Future directions. We propose a convex relaxation to the intersection of the two classical manifolds that are sparse matrices and low rank matrices. However, it may well be that there are some more interesting joint measure of rank and sparsity to relax when modeling the type of data we are interested in. We discuss possible directions based on matrix factorizations and atomic norms in Section 3.7. More generally, the following problem appears of interest: how can multiple priors on a model be combined to estimate the model with fewer observations, and for what prior structures is this a signi cant improvement over using a single prior? For instance, [START_REF] Kamal | Joint low-rank and sparse light eld modelling for dense multiview data compression[END_REF] consider combining rank and sparsity, but in di erent bases. An interesting direction to tackle this problem could be learning to combine such priors, as done with kernels and Hilbert space metrics in multiple kernel learning.

Convex Localized Multiple Kernel Learning

The low rank hypothesis allows to decrease the modeling capacity of a matrix model, which may be helpful in a high-dimensional setting to avoid over-tting. In other settings, however, the opposite may be desirable: more complex models may allow to obtain better generalization performance if enough data is available. We consider in Chapter 4 such an examples, in the context of localized multiple kernel learning. Kernel-based methods such as SVMs are very e ective tools for classi cation and regression. In addition to good empirical performance in a wide range of situations, these method and backed by a strong theoretical background [START_REF] Steinwart | Support vector machines[END_REF], as well as mature algorithms [START_REF] Platt | Fast training of support vector machines using sequential minimal optimization[END_REF] and implementations [START_REF] Chang | LIBSVM: a library for support vector machines[END_REF]. The kernel is traditionally either selected from generic parametric o -the-shelf kernels (e.g., Gaussian or polynomial) using some sort of cross-validation, or hand-crafted by domain speci c experts through an expensive empirical process. Multiple kernel learning (MKL) has been proposed to alleviate part of this expensive model selection problem [START_REF] Lanckriet | Learning the Kernel Matrix with Semi-De nite Programming[END_REF][START_REF] Bach | Multiple Kernel Learning, Conic Duality, and the SMO Algorithm[END_REF][START_REF] Gönen | Multiple kernel learning algorithms[END_REF]. In MKL, the SVM formulation is modi ed to jointly learn a classi er and linear combination weights for a set K 1 , . . . , K M of kernels. This results in classi ers of the form

f (x) = N i=1 y i α i        M m=1 s m K m (x i , x)       
kernel is a mixture of kernels , where α ∈ R N and s 1 , . . . , s M ∈ R + are to be both learned at the same time. In the wake of the success of MKL, there has been recent interest in combining kernels in a localized or data-dependent way [START_REF] Bi | Column-generation boosting methods for mixture of kernels[END_REF][START_REF] Gönen | Localized multiple kernel learning[END_REF][START_REF] Cao | Heterogeneous feature machines for visual recognition[END_REF][START_REF] Gehler | On feature combination for multiclass object classi cation[END_REF], as opposed to more traditional linear combinations where all the kernels must agree on a common set of support vectors. By allowing each kernel to select separate and possibly di erent support vectors, these may be more relevant with respect to the information encoded by the kernels. These approaches are referred to as either localized, or data-dependent multiple kernel learning.

In the chapter, we focus on fully nonparametric localized MKL classi ers of the form

f (x) = N i=1 M m=1 y i α i,m K m (x i , x),
where α ∈ R N ×M is a matrix. While the solution to the linear MKL problem can be written in this form with rank(α) = 1, we are interested in higher rank solutions which exhibit localization, in the sense that the relative weights of the kernels vary depending on the support vectors. Informally, this corresponds to a kernel combination that is di erent in di erent regions of the feature space. Previous methods are either non-convex, are not large margin methods, or consider only parametric models for α.

Contributions. We propose a family of large-margin methods that are both convex and theoretically grounded for combining kernels in a data-dependent manner, based on aggregating hinge losses over each of the kernels. For p ∈ [1, ∞], we consider large margin programs of the form

min ω=(ω 1 ,...,ω M )∈H          1 2 M m=1 ω m 2 2 + C N i=1        M m=1 (1 -y i ω 1 , φ m (x i ) ) p +        1/p          ,
where φ 1 , . . . , φ M are the feature mappings associated to the kernels. This allows through p to adjust the amount of coupling between the kernels. When p = ∞, kernels are the most tightly coupled, while when p = 1, the method amounts to averaging the decisions of independently trained SVMs. We show that classi ers de ned from these programs (and actually more general aggregations) are universally consistent, and we consider the question of whether intermediate levels of coupling can be bene cial in practice.

We evaluate these methods on real data, including both UCI datasets, and image classication tasks from computer vision. Our experimental validation includes multiple methods which have not been previously compared, although they address a similar question. Our experimental validation shows that p = 1 (i.e., averaging the decisions of independent SVMs) is superior to any other value of p, but also to standard MKL and previously introduced methods for localized MKL. In addition of being by far the simplest and cheapest to implement and run, this yields the best (or close to the best) classi cation accuracy in all of our benchmarks. Similarly to how the simple average kernel often achieves performances comparable to that of MKL [START_REF] Gehler | On feature combination for multiclass object classi cation[END_REF], this suggests that straightforward methods may achieve close to state-of-the-art accuracies for localized MKL as well. This chapter is joint work with Antoine Poliakov, and has been submitted.

Contributions: Detection of Structured Objects

Detection problems are a wide and pervasive class of problem, where the high-level goal is to detect expected or unexpected patterns from observations and data. This type of problem di ers signi cantly from matrix estimation problems as presented in the rst part of this thesis, in that the models and structures involved are usually radically di erent. In the second part of this thesis, we consider two types of detection problems involving structured target objects, from statistical hypothesis testing and computer vision.

In the rst problem, we consider detection in the statistical hypothesis testing sense: we want to known whether there is some anomalous signal, but we do not seek to identify precisely where. We characterize the minimax risk in di erent models where anomalous signals correspond to correlated values at di erent sensors. In the second problem, we consider the more applied task of identifying di erent types of real-world objects in images. The detection terminology has a di erent meaning here than in statistical testing: the objective is to precisely localizing where in the image these object are. We integrate the method of deformable part models with high-dimensional features from convolutional neural networks, and shows that this signi cantly decreases the error rate of DPMs.

Detection of Correlations with Adaptive Sensing

The rst detection problem that we consider is a statistical hypothesis testing problem. Given multiple observations from a Gaussian multivariate distribution, we want to test whether the corresponding covariance matrix is diagonal against non-diagonal alternatives. More precisely, we consider a testing problem over a Gaussian vector U ∈ R n , where under the alternative hypothesis, there exists an unknown subset S of {1, . . . , n} such that the corresponding components are positively correlated with strength ρ ∈]0, 1[, while the others are independent.

This can be interpreted as an anomaly detection problem: picture a spatially arranged array of sensors. In the normal regime, signals at each of the sensors consists only of zero-mean uncorrelated Gaussian noise. In the anomalous regime, some of the sensors instead have correlated signals. This has to be distinguished from many classical anomaly detection problems where one assume that the anomaly is characterized by an elevated signal mean at some of the sensors. In the model that we consider, anomalies cannot be detected by looking at sensors in isolation, but only when considering correlations between multiple sensors.

The models that we consider are very similar to the rank one spiked covariance model, which has been associated in recent years to sparse PCA [START_REF] Johnstone | On consistency and sparsity for principal components analysis in high dimensions[END_REF][START_REF] Berthet | Optimal detection of sparse principal components in high dimension[END_REF]Cai et al., 2013). We focus on detection of positive correlations (Arias- [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF], and we consider the sparse regime where only a relatively small number of the n components are correlated, if any. The subset S can be any subset of size of a known size k (which we refer to as the k-sets problem), or may have additional structure known to the experimenter. For instance, it can consists of k contiguous coordinates in {1, . . . , n}, in which case one expects that detection will be easier due to this extra information. This last setting is referred to as the k-intervals problem, and can be generalized for instance to rectangles {i 0 , . . .

, i 0 + k 1 -1} × {j 0 , . . . , j 0 + k 2 -1} with k 1 k 2 = k, when the n coordinates are arranged spatially on a two dimensional grid {1, . . . , n 1 } × {1, . . . , n 2 } with n 1 n 2 = n.
In the litterature [START_REF] Hero | Hub discovery in partial correlation graphs[END_REF][START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF][START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Berthet | Optimal detection of sparse principal components in high dimension[END_REF]Cai et al., 2013), this problem or related problems have been analyzed under uniform sensing, where i.i.d. draws U 1 , . . . , U m ∈ R n of the Gaussian vector are available. Our approach deviates from this in that we consider an adaptive sensing or sequential experimental design setting. More precisely, data is collected in a sequential and adaptive way, where data collected at earlier stages informs the collection of data in future stages. In particular, the experimenter may choose to acquire only a subset of the coordinates from the Gaussian vector. In the previous sensor array illustration, a cost may be associated to obtaining a measurement from a sensor, and the experimenter may choose to activate only speci c subsets of sensors. This is illustrated in Figure 1.2. Here, coordinates {1, . . . , n} are laid out according to a grid. The set of correlated coordinates is a convex shape, and these are shown in red. These coordinates form a clique in the graph of correlations, and this is shown through light red edges. At every step, the experimenter selects coordinates to be sensed, and these are shown circled. At the rst step, the exper-imenter samples all the coordinates, while at the two subsequent steps, the experimenter reduced the amount of coordinates sampled. This illustrates an important point: we only Figure 1.2: Adaptive sensing over a two dimensional grid of sensors consider the testing problem of nding out whether there are correlated coordinates, not the problem of estimating which. As a consequence, it may be ne for the experimenter to discard some coordinates from S. Indeed, all that is needed is that, under the alternative hypothesis, we may detect at least two correlated components with some certainty, as this is su cient to reject the null hypothesis.

Adaptive sensing has been studied in the context of other detection and estimation problems, such as in detection of a shift in the mean of a Gaussian vector [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Haupt | Distilled sensing: Selective sampling for sparse signal recovery[END_REF], in compressed sensing [START_REF] Arias-Castro | On the fundamental limits of adaptive sensing[END_REF][START_REF] Haupt | Sequentially designed compressed sensing[END_REF][START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF], in experimental design, optimization with Gaussian processes [START_REF] Srinivas | Gaussian process optimization in the bandit setting: No regret and experimental design[END_REF], and in active learning [START_REF] Chen | Near-optimal batch mode active learning and adaptive submodular optimization[END_REF]. Adaptive sensing procedures are quite exible, as the data collection procedure can be "steered" to ensure most collected data provides important information. As a consequence, procedures based on adaptive sensing are often associated with better detection or estimation performances than those based on non-adaptive sensing with a similar measurement budget.

In non-adaptive sensing, all the decisions regarding the collection of data must be taken before any observations are made, which generalizes slightly the setting of uniform sensing. As already mentioned, uniform sensing corresponds to the case where m full vectors are observed, corresponding to a total of M = mn coordinate measures. This problem has been thoroughly studied in [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF]. To allow for easier comparison with the special case of uniform sensing, we will use adaptive sensing with a budget of M coordinate measurements, and we ultimately express our results in terms of m, the equivalent number of full vector measurements.

We are interested in the high-dimensional setting, where the ambient dimension n is high. All quantities such as the correlation coe cient ρ, the correlated set size k = o(n), and the number of vector measurements m will thus be allowed to depend on n, and to go to in nity simultaneously, albeit possibly at di erent rates. We seek to identify the range of parameters in which it is possible to construct adaptive tests whose minimax risks converge to zero.

Contributions. We show in Chapter 5 that adaptive sensing procedures can signicantly outperform the best non-adaptive tests both for k-intervals and k-sets. In the following, we provide a preview of our results for the case where ρk → 0 (that is, the total amount of correlation is asymptotically vanishing), although we also provide results for the case where ρk → ∞. The constants are omitted.

For k-intervals, our necessary and su cient conditions for asymptotic detection are almost matching. In particular, the number of measurements m necessary and su cient to ensure that the risk approaches zero has essentially no dependence on the signal dimension n:

Necessary: ρk √ m → ∞, Su cient: ρk √ m ≥ log log n k .
This is in stark contrast with the non-adaptive sensing results, where it is su cient (and almost necessary) for m to grow logarithmically with n according to

ρk √ m ≥ log n k .
This type of dependence that is almost independent of the dimension has been observed before in the context of adaptive sensing: due to the ability to sequentially adapt the experimental design, the experimenter may abstract himself almost completely from the original problem dimension.

For k-sets, we obtain a su cient condition that still depend logarithmically in n, but which improves nonetheless upon uniform sensing in some regimes:

Su cient: ρ √ km ≥ log n k and ρkm ≥ log n k .
This should be compared to uniform sensing, where it is su cient (and, again, almost necessary) 

when k = o( √ n) that ρ √ km ≥ log n and ρm ≥ log n.
In addition to this, in a slightly di erent model (a rank-one spiked covariance model), we obtain a tighter su cient condition for detection of k-sets, that is nearly independent of the dimension n, and also improves signi cantly over non-adaptive sensing:

Su cient: ρ √ km ≥ log log n k .
This chapter is joint work with Rui Castro and Gábor Lugosi [START_REF] Castro | Detection of correlations with adaptive sensing[END_REF].

Future directions. For k-sets, we obtain the same lower bound as for k-intervals: for detection to be possible, it must hold that ρk √ m goes to in nity. While this lower bound is tight for k-intervals, we do not know if this is the case for k-sets, as the dependence in k does not match that of our su cient condition. This leaves open an important question: does the structure of the correlated set help when using adaptive sensing? This is the case for uniform sensing, and may appear reasonable for adaptive sensing as well. However, in a similar study on adaptive testing for elevated means (as opposed to correlations), many symmetric classes of correlated sets such as k-sets or k-intervals have been shown to all have minimax risk which converge to zero under the same necessary and su cient conditions [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF], such that structure does not help in this setting.

Detection of Objects with High-dimensional CNN Features

The second detection problem that we consider is a computer vision problem, where one is given images, and should detect and precisely localize objects of di erent types. This is an important problem in computer vision, and has been the subject of a large body of work. Although signi cant progress has been made in recent years [START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF][START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], error rates are still signi cant, ranging from 30% to 60% depending on the object type, and averaging at 40% for the state of the art methods on the 20-classes PASCAL VOC 2007 dataset [START_REF] Everingham | The PAS-CAL Visual Object Classes Challenge[END_REF](Everingham et al., , 2010b)). The problem di ers from the classi cation task of nding the class of a single dominant object in the image. Instead, in the task that we consider, multiples objects of identical or di erent types may be present, and their location must be predicted accurately.

Challenges for detection are multiple. The detection of a given object type requires to correctly learn to separate this object from other similar looking objects (and from background), but also to precisely pinpoint the position of the object in the image. Driven partly by the availability of larger datasets and partly by increasing industrial demand, the interest for detection of a large number of classes of objects has raised recently. Computational considerations pose additional challenges when working with such datasets.

A general approach for object detection is that of sliding windows: for all possible patches of a prede ned size, we run a classi er to predict whether or not this corresponds to a given type of object. A natural approach consists in transforming each window into a feature vector, and training a binary black-box classi er to detect whether the window correspond to the object. However, objects in natural images are usually subject to a large variability in terms of orientation, scale, structure, illumination, or general appearance, and such monolithic classi ers over the window may not lead to the best performance. Instead, Bag-of-Words (BOW) models represent an image or object as the unstructured collection of all its patches of a given size. This simplifying representation was originally used in natural language processing and information retrieval, but has been the subject of signi cative interest in the vision community. In this context, BoW models are also referred to as bags of visual words [START_REF] Yang | Evaluating bag-of-visual-words representations in scene classi cation[END_REF]. Unlike with approaches based on monolithic classi ers, BOW models may allow to independently detect small distinctive features of objects, and can hence be more robust to variabilities in natural images. However, these models do not allow to model any kind of structure.

Part-based models have received a lot of interest due to their ability to handle variabilities similarly as with BOW, while allowing to model the spatial structure of the visual words. Consider the task of learning to detect persons: this can be broken up into the arguably easier tasks of learning to detect heads, feet, legs, torsos, and of learning in what spatial arrangement these parts usually appear in images. This is the main idea behind deformable part models (DPMs), and has been largely successful (Everingham et al., 2010b). DPMs are sliding window detectors that are structured. In practice, models do not enforce any kind of interpretability of the parts, unlike what we mentioned. Formally, part positions are treated as latent variables, and detections correspond to windows for which one can nd a highly-scoring latent part con guration, as illustrated in Figure 1.3. On the 20classes PASCAL VOC 2007dataset, Felzenszwalb et al. (2010b) have achieved error rates of 70% using DPMs.

Like numerous methods in computer vision, DPMs are based on hand-crafted image features: in (Felzenszwalb et al., 2010b), Histograms of Gradient features (also referred to as HOG) are used. Numerous other features have been proposed, including SIFT [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], Haar wavelet coe cients [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF], Shape Contexts [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF] or Local Binary Patterns [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classi cation with local binary patterns[END_REF]. Recently, techniques aiming at learning the feature representation directly from the data have proved extremely e ective in various domains including computer vision. In particular, convolutional neural networks (CNNs) have achieved state of the art error rates on image classi cation tasks [START_REF] Krizhevsky | ImageNet Classi cation with Deep Convolutional Neural Networks[END_REF], which suggested that such techniques could be of interest for detection as well.

This was recently con rmed by the R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] method for detection, where promising regions are obtained from segmentation considerations and warped to a xed size window, which is then used as input to a CNN as in classi cation tasks. R-CNN achieves a dramatic improvement with respect to the state of art [START_REF] Fidler | Bottom-up segmentation for top-down detection[END_REF], with a mean error rate of about 40% over the 20 classes of the PASCAL VOC 2007 dataset. However, this type of method based on training monolithic classi ers must be contrasted with structured detectors such as DPMs. Indeed, reducing the problem to a classi cation problem for xed size windows does not allow for as much modeling exibility as in partbased models. For instance, part-based method are inherently structured, which render them extendable to much more general problems such as human pose estimation [START_REF] Yang | Articulated pose estimation with exible mixtures-of-parts[END_REF], facial expression recognition (Zhu and Ramanan, 2012b), or threedimensional structure estimation [START_REF] Kakadiaris | Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach[END_REF]. However, none of this is possible with the type of approach used in R-CNN.

Contributions. In Chapter 6, we show how to integrate features from CNNs in the framework of DPMs. This constitutes a challenge: compared to HOG features, this corresponds to an eight fold increase in the dimension (from 32 to 256), within a framework which is already quite computationally expensive. Due to computational e ciency consideration, we use features computed from convolutional layers only. This is unlike the features used in classi cation or in R-CNN, for which features are computed using extra fully-connected layers on top of the convolutional layers. We demonstrate an increase of up to +9.7% in mean average precision (mean AP) with respect to DPMs on the PASCAL VOC 2007 dataset. This chapter is joint work with Iasonas Kokkinos and Stavros Tsogkas.

Future directions. Although we are able to signi cantly improve with respect to HOGbased DPMs, the mean AP that we achieve is still below the performance of recent methods such as R-CNN when using features from fully-connected layers. However, using only features from convolutional layers, we still achieve a mean AP close to what R-CNN achieves based only on these same layers. This suggests that adding further nonlinearities on top of our framework may help.

Introduction

In this thesis, we consider two ubiquitous problems of statistical learning: classi cation and regression. In both settings, one is given points x 1 , . . . , x N ∈ R d as well as associated target values (or labels) that we denote by y 1 , . . . , y N ∈ Y . The target values are to be predicted from the points. The points are also referred to as examples, as they constitute the input data to be learned from, and individual variables (coordinates of the examples) are referred to as features.

In classi cation, the label set Y is a nite set of categories. The most common example is that of binary classi cation, where Y = {-1, 1}. More recently, there has been a large body of work on multi class classi cation [START_REF] Bengio | Label embedding trees for large multi-class tasks[END_REF], where Y = {1, . . . , K} is a possibly large set of categories, and on structured prediction [START_REF] Bakir | Predicting structured data[END_REF], where Y is a nite set usually induced by some combinatorial structure (such as a set of spanning trees or perfect matchings of a given tree). At the intersection between multi class and structure, multi label classi cation consists in Y = P ({1, . . . , K}), where P is the power set. In this last setting, each example may be associated with any number of the K labels. In regression, Y is a continuous space, such as the real line. Although classi cation is concerned with predicting binary values, it is usually more practical and more interesting to associate this prediction with a real-valued con dence score. We will focus on regression and on binary classi cation, and we will consider in both cases predictors of the form f : R d → R. For classi cation, the predictor provides a label through its sign, and a con dence score through its magnitude. For regression, the predictor directly estimates the real-valued target. Although providing con dence intervals for regression is an interesting problem, we do not consider it here.

Linear Models: Generalization and Estimation

A common choice is to use linear predictors of the form f (x) = x, w + b, for w, x ∈ R d , and a bias term b ∈ R. For binary classi cation, this consists in assuming that labels are generated according to the model

y i = ε i sign( x i , w ⋆ + b), with w ⋆ ∈ R d , b ∈ R, ε ∈ {-1, 1} N , (2.1) for i ∈ [N ],
where ε is the label noise, which may ip some labels randomly. For regression, this corresponds to assuming targets following the model

y i = x i , w ⋆ + b + ε i , with w ⋆ ∈ R d , b ∈ R, ε ∈ R N , (2.2) for i ∈ [N ],
where ε is the noise. We refer to the case where ε = 1 for classi cation (resp. where ε = 0 for regression) as the noiseless setting. Here, 1 denotes the all-ones vector.

In the following and when more convenient for presentation, we will omit the bias term b, and state models for regression, although similar models for binary classi cation can be obtained. In the statistics literature, the set {x 1 , . . . x N } of feature vectors we are testing against is referred to as the design. We will often use the matrix notation

X =           x T 1 . . . x T N           ∈ R N ×d .
The following are classical designs:

• Fixed design. This is the case where {x 1 , . . . , x N } is assumed xed and known. This case is common in practice when one has limited control over the acquisition of the data.

• Fixed orthogonal design. A special case of xed design is the case where X T X = I d , where I d is the identity of R d . When the elements {x 1 , . . . , x N } of the design are unit-Euclidean length, they are also referred to as a tight frame of R d . In particular, for N = d and X = I d , observations are simply a noisy version of the parameters of the model: for i ∈ [N ],

y i = w ⋆ i + ε i .
The corresponding regression problem is also referred to as denoising.

• Random design. This is the case where the design is randomly chosen according to some distribution. This random choice may or may not be in the control of the experimenter. In any case, the experimenter will almost always have budget restrictions on the number of observations that can be acquired.

The linear framework is actually quite general and powerful, as higher dimensional vector representations ( xi ) can be devised from the initial vector representations (x i ) of the examples. This can be used to introduce nonlinearities.

A central problem in statistics and machine learning is to devise and analyze procedures which can learn with the smallest amount of examples, possibly in the presence of noise. This minimal number of examples needed to learn within a particular model is called the sample complexity. What should learn mean here? We distinguish two types of objectives:

• Generalization. In many cases, the objective is to be able to predict targets (labels or continuous values) on new unseen data. In this context, one does not necessarily seeks to estimate w ⋆ directly, but pursues the potentially easier objective of making accurate predictions. For this problem, a method needs to produce a predictor of the form f : R d → R.

• Estimation. A harder task consists in estimating the original parameters w ⋆ of the model. This estimate can in turn be used to make predictions, but may also be interesting in its own right to gain insight on the data. For arbitrary designs, this may not be possible, while for orthogonal designs, this is equivalent to the generalization problem. For this task, a method is required to produce an estimator w ∈ R d .

These two problems are of course closely related, and although we will mostly use the estimation terminology, both objectives should be kept in mind. The following problem is a classical example of estimation problem.

Exemple 1 (Compressed sensing). In compressed sensing, the model is of the form

y = Xw ⋆ , {i : w ⋆ i 0} = k.
This can be extended to a noisy model. The distinctive feature of this model is that it is sparse: only k coe cients of the model are nonzero.

As was already hinted at, how well one can succeed in these two types of problems is highly dependent on the true model dimension (if any) and on the amount of observations available. A general method to handle such problems is empirical risk minimization (ERM), wherein one de nes a risk criterion directly from the observations. The traditional way to approach regression problems is through through least-squares, where one selects w = arg min

w∈R d N i=1 (y i -x i , w ) 2 .
This coincides with the maximum likelihood estimator of w given (y i ) when the noise vector ε is a standard Gaussian vector. We distinguish di erent regimes:

• When N ≥ d, there may exist a unique solution with loss zero, which can then be obtained in closed form. When this is not the case (the linear system is overdetermined), there still exists a solution to the least-squares problem that can be obtained in closed form, although the loss is not zero.

• When N < d (the associated linear system is underdetermined), there is an in nity of solution. Among these solutions, the pseudo-inverse allows to construct the one with the minimum Euclidean norm.

For classi cation, the situation is already nontrivial even if N ≥ d. The most natural estimator consists in minimizing the classi cation loss (or, zero-one loss):

w = arg min w∈R d N i=1 1[y i sign x i , w ],
where 1[C] is the indicator function that is one when condition C is true, and zero otherwise. Although this is arguably a good estimator at least in the noiseless case when N ≥ d, the computation of the estimator reduces to a highly non-convex optimization problem in w that cannot usually be solved. In addition, such hard zero-one costs for misclassi cation can deteriorate the predictor in the presence of label noise. For these reasons, one almost always work with di erent real-input and real-output loss functions ℓ : Y × R d → R + instead of the classi cation loss: here, ℓ(y, t) measures the cost of predicting a target (or, in classi cation, a con dence level) t ∈ R while the true target is y. Such loss functions are often referred to as surrogates, as they are to be minimized in place of some original loss.

In the regime where N ≥ d, the generalization and estimation problems are well understood for both regression and classi cation. Di culties there mostly arise when considering how to e ciently obtain the estimators, possibly in the presence of a lot of data. The challenges in this case are hence mostly about optimization and systems engineering.

The regime where N < d is usually referred to as the high-dimensional setting. This regime di ers from classical statistics in that when considering asymptotics, the dimension of the model is usually assumed to diverge at the same time that the number of observations (i.e., N → ∞ and d → ∞), such that the problem does not automatically get easier with more observations. In this case, even what is a good predictor is not necessarily clear. In general, recovering a high-dimensional model with very few observations is of course doomed in advance, and one has to come up with ways to select predictors amongst the many which may reasonably t to the data.

Occam's Razor and Minimum Description Length

A general principle is Occam's razor, wherein the simplest predictor or estimator which allows to approximate the data should be preferred. According to this principle, the simplest model is deemed the most able to generalize to new unseen examples, while very complex models are deemed to have over tted to the training data. This informal principle leaves unspeci ed how to measure simplicity (or complexity) of a predictor, and how to balance this with the t to the data. This has been formalized in the minimum description length principle [START_REF] Grünwald | The minimum description length principle[END_REF], where models which can be best compressed should be preferred. This principle is at the root of most penalized methods, which vary in how compressibility is measured.

A very early measure of compressibility is the Kolmogorov complexity [START_REF] Li | An introduction to Kolmogorov complexity and its applications[END_REF]. Consider a programming language in which any universal Turing machine can be implemented, such as the C programming language, and the binary sequence

S = [01010101 . . . 01010101] ∈ {0, 1} 1000 .
The Kolmogorov complexity of S is the length of the shortest program that prints the sequence and halts. A trivial program just prints the full sequence:

printf("01010101...01010101");

However, this can be compressed much more through:

for (i = 0; i < 500; ++i) printf("01");

This allows to de ne complexity for predictors as well. In spite of its important historical role, Kolmogorov complexity can seldom ever be computed in practice, and has to be replaced by other measures of compressibility.

Another information theoretical notion of complexity is Shannon's mutual information [START_REF] Cover | Elements of information theory[END_REF]. Unlike the Kolmogorov complexity, this is a measure of complexity over random objects. Consider a discrete input random variable X ∈ X , and a discrete output random variable Y ∈ Y , with joint distribution P X,Y and marginal distributions P X and P Y . The mutual information between X and Y is

I (X; Y ) = x∈X y∈Y P X,Y (x, y) log P X,Y (x, y) P X (x)P Y (y) .
In particular, I (X; Y ) is zero when X and Y are independent, and is maximal when X = Y , where it is equal to the Shannon entropy of X. The mutual information has many interesting properties, and is in particular invariant with respect to relabelings of X and Y . Informally, I (X; Y ) measures how predictable Y is, given that X is known, or vice-versa. Equipped with mutual information, one may seek to construct a proxy random variable T to be used for predicting Y as follows: pick T such that it compresses the information in X, while retaining the maximum amount of information about Y . The complexity of the proxy predictor T is measured here using I (X; T ): when the mutual information between X and T is low, the predictor T only encode a small subset of the information of X, and can thus be deemed to be compression of X. This measure of complexity is notably used in the Information Bottleneck (IB) method [START_REF] Tishby | The information bottleneck method[END_REF], where, for some parameter β, one seeks to minimize

C IB (T ) = I (X; T ) -βI (Y ; T ),
with respect to the distribution of the random variable T . This objective is the Lagragian associated to a problem of the form

min T -I (Y ; T ) s.t. I (X; T ) ≤ γ,
where ones aims to compress information in the example X under a constraint on how well the target Y can be predicted. In penalized estimation terminology, -I (Y ; T ) is a loss function, while I (X; T ) is a penalty. This type of tradeo will be central to all penalized estimation methods that we will cover. In principle, the optimization is over all distributions p T |X and p T . Although this provides an interesting unifying framework for learning and coding, this is usually not practical, unless in special cases such as with the Gaussian Information Bottleneck [START_REF] Chechik | Information bottleneck for gaussian variables[END_REF].

Priors and Penalized Estimation

We focus in this thesis on measuring complexity of predictors or estimators through convex functions. Formally, this corresponds to selecting a predictor using a rule of the form

f = arg min f ∈F        N i=1 ℓ(y i , f (x i )) + λ Ω(f )        ,
where ℓ : Y × F → R + is the loss function, λ is the regularization parameter, and Ω : F → R + ∪ {∞} is the penalty (or, regularizer). Linear predictors correspond to F ⊂ {x → x, w : w ∈ R d }, and one can directly de ne the regularizer as a function of the hyperplane through Ω(f ) = Ω(w) for some Ω : R d → R + ∪ {∞}. In the following, we will almost always consider regularizers which are norms, and we will denote the corresponding unit ball (resp. unit sphere) by B Ω (resp. by S Ω ). When Ω is a ℓ p -norm for some p, we will write for simplicity B p and S p , such that B 2 is the unit-ball for the Euclidean norm. A simple example of penalized estimation is ℓ 2 -penalized classi cation or regression, which considers linear predictors of the form

f (x) = x, w , with w = arg min w∈R d        C N i=1 ℓ(y i , x i , w ) + w 2 2 2        . (2.3)
As already mentioned, the pseudo-inverse allows to construct the least squares solution to a linear system with the minimum Euclidean norm. This can be interpreted as a sort of ℓ 2 -regularization of the least squares loss, although with C = ∞, such that there is no way to balance the t to the data and the ℓ 2 -norm complexity. The following is a classical example of method based on a ℓ 2 -norm penalty for regression.

Exemple 2 (Regression: Ridge regression). Ridge regression corresponds to the case of the squared loss in Equation (2.3):

ℓ 2 (y, t) = (y -t) 2 .
This is equivalent to standard least squares on a regularized Gram matrix [START_REF] Tibshirani | The Elements of Statistical Learning[END_REF], and is usually more used for regression, although this can in principle be used for classi cation.

The following are examples for classi cation, where the primary objective is usually to obtain good generalization performance.

Exemple 3 (Classi cation: SVMs). The case where the loss in Equation (2.3) is the so-called hinge loss

ℓ hinge (y, t) = (1 -yt) +
is referred to as a Support Vector Machines (SVMs) [START_REF] Boser | A training algorithm for optimal margin classi ers[END_REF][START_REF] Steinwart | Support vector machines[END_REF].

Exemple 4 (Classi cation: Penalized logistic regression). Penalized logistic regression is another method for classi cation with the ℓ 2 -norm penalty, which uses the logistic loss in Equation (2.3):

ℓ logit (y, t) = log(1 + exp(-yt)).
With ℓ 2 -norm penalization, the resulting objective function is twice di erentiable everywhere, which allows to leverage second-order optimization methods.

A common way to view penalized estimation is that of priors as in Bayesian statistics. Assume that you have some prior information on the object to estimate (e.g., on its support, sign, sparsity, maximum magnitudes, etc.). In this case, one may use penalized estimation to try to nd a predictor with the desired properties, by designing a regularizer Ω which favors such predictors. In many situations, a probabilistic model can be de ned from a penalized objective. Informally, this consists in making additional hypotheses on the model, thus making it easier to estimate. For instance, even if N < d, a linear model may actually be straightforward to estimate if you know in advance that only a single or a small number of features are useful. Two main types of such additional hypotheses on models have both had an immense in uence in the past years in machine learning: sparsity, and latent factors. Section 2.2 and Section 2.3 are devoted to exploring in depth these two hypotheses, and associated regularizers. However, before going in detail into these ideas, we generalize slightly the linear models that we consider.

Penalized Matrix Estimation

In this part of the thesis, we are mostly interested in the estimation of matrices, and we actually consider more general matrix linear models of the form

y i = X i , W ⋆ + ε i , with W ⋆ ∈ R d 1 ×d 2 , (2.4)
for design matrices X i ∈ R d 1 ×d 2 , and i ∈ [N ]. As previously, we refer to the collection {X 1 , . . . , X N } as the design. Most priors on vectors can be extended in straightforward ways to priors on matrices. For instance, consider the problem of learning to classify with K classes (i.e., a multi class problem). This can be reduced to K binary classi ers (each of them classifying a given class against the rest of the classes), in the form of a matrix W ∈ R K×d . However, viewing coe cients as a rectangular array opens up new possibilities to take into account more structure.

Exemple 5 (Covariance matrix estimation). Consider the task of estimating the covariance matrix of a d-dimensional vector [START_REF] Karoui | Operator norm consistent estimation of large-dimensional sparse covariance matrices[END_REF][START_REF] Cai | Optimal rates of convergence for covariance matrix estimation[END_REF], from observations x 1 , . . . , x N ∈ R d . The usual estimator is the sample covariance matrix

Σ = 1 N N i=1 x i x T i ∈ R d×d .
When N < d, this estimator is singular, and further hypotheses may allow to obtain a better estimator. For instance, there may only be a small number of variables (features) interacting with each other, and penalized estimation may allow to de ne an estimator that takes this into account. The estimator Σ needs to be a valid covariance matrix, and hence must be a positive semi-de nite matrix.

Exemple 6 (Dynamic link prediction). Consider a graph G with a xed vertex set V , but with a dynamically changing edge set E t , where t denotes the time. The adjacency matrix A t of the graph at time t is observed at subsequent time instants t 1 , . . . , t N , leading to a series of snapshots A t 1 , . . . , A t N of the graph. In the simplest model, edges can only be added to the graph, although one may in principle consider a fully general evolution where edges can be both added or removed. In link prediction [START_REF] Taskar | Link prediction in relational data[END_REF][START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF], the objective is to predict from the snapshots what the next state of the graph will be: produce an estimator A t N +1 of the next adjacency matrix A t N +1 . This can be formulated as a regression/classi cation problem over a symmetric binary (or weighted) matrix.

This last example can actually be expressed in the more general framework of matrix completion.

Exemple 7 (Matrix completion). In matrix completion [START_REF] Candès | Exact matrix completion via convex optimization[END_REF], the observation is an incomplete version of a matrix W ⋆ ∈ R d 1 ×d 2 . The model is of the form

Y = Ω • W ⋆
where Ω ∈ {0, 1} d 1 ×d 2 is a known observation mask, and the Hadamard product is de ned for two matrices X and Y as (X • Y ) i,j = X i,j Y i,j . This can be extended to include noise in the observations, and more complicated observation masks or designs (Koltchinskii et al., 2011b).

These three problems will be discussed further in Chapter 3. We will consider a matrix estimation problem related to multiple kernel learning in Chapter 4. Many other problems, such as multi-task learning [START_REF] Evgeniou | Regularized multi-task learning[END_REF], can be cast as matrix problems. Similarly as in the vector case, matrix predictors can be obtained through penalized problems of the form f (X) = X, W , with W = arg min

W ∈R d 1 ×d 2        N i=1 ℓ(y i , X i , W ) + λΩ(W )        ,
where Ω : R d 1 ×d 2 → R + ∪ {∞} is a matrix regularizer.

Penalized or Constrained?

A variation on penalized estimation is constrained estimation, where a hard-constraint is used instead of the penalty:

f = arg min f ∈F N i=1 ℓ(y i , f (x i )) s.t. Ω(f ) ≤ γ.
Unless γ is large enough, the predictor will satisfy Ω( f ) = γ (that is, the constraint is active). This allows to precisely constraint the complexity of the predictor as measured by Ω. However, from Lagrangian duality, any such constrained program can be reformulated as a penalized estimation problem with a regularization parameter λ = λ(γ, (x 1 , y 1 ), . . . , (x N , y n )). This mapping is usually unknown and data-dependent, and, in both cases, the hyper-parameter λ or γ usually has to be tuned empirically. Depending on the situation, one or the other formulation may be more amenable to optimization or theoretical analysis. The family ( f ) γ∈R + of all estimators which can be obtained by varying the hyper-parameter is referred to as the regularization path. In some cases, full regularization paths can be obtained in a nite number of steps for penalized estimators.

The following characterization is from [START_REF] Rosset | Piecewise linear regularized solution paths[END_REF]. This applies, in particular, to SVMs [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF] or Lasso [START_REF] Efron | Least angle regression[END_REF], for which the full regularization path can be obtained at a cost of the same order as that of obtaining the estimator for a single parameter (provided that the piecewise linear path has only a constant number of segments). This does not apply to many other models, such as Ridge regression which has polynomial paths as illustrated in Figure 2.1, although other techniques can be used to e ciently approximate smooth paths over a nite grid of hyperparameters [START_REF] Bach | Computing regularization paths for learning multiple kernels[END_REF]. However, for many methods, there is no low-cost way of obtaining regularization paths, and how sensitive a method is to hyper-parameters is a paramount element when comparing penalized methods. 

Sparsity

The notion of sparsity has played a paramount role in machine learning and statistics over the last decades, and we study the associated concepts and ideas in this section. For a linear predictor f (x) = x, w , sparsity of w can be interpreted as a variable selection, where only a small subset of all available variables are deemed useful for prediction. Performing feature selection has many advantage: corresponding predictors are usually associated with lower generalization errors than full models, are amenable to theoretical analysis, and can be more computationally e cient both at training and testing. The sparsity terminology is often used with di erent meanings. A matrix (or vector) is considered sparse if it has few nonzero elements. On the other hand, it is common to refer to the number of nonzero elements of a matrix as its sparsity, in a slight abuse of language. In the context of sparse methods, the sparsity pattern refers to the support.

The ℓ 0 -norm

The problem of selecting variables (in a binary fashion) can be cast as constraints or regularizers based upon the size of the support of the vector to estimate, which we refer to as the ℓ 0 -norm:

w 0 = card {i : w i 0} .
Although we use the norm terminology, . 0 is not actually a norm, as it does not separate points and it is not positively homogeneous. The use of the ℓ 0 -norm traces back to greedy methods [START_REF] Mallows | Some comments on c p[END_REF][START_REF] Akaike | A new look at the statistical model identi cation[END_REF][START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF][START_REF] Efron | Least angle regression[END_REF] which at every step add (or, possibly, remove) a single coordinate to or from the model , until reaching the desired sparsity. This includes forward stage wise selection and related methods which can produce full regularization paths. The Iterative Hard Thresholding (IHT) method is geared towards optimization problems of the form min

w∈R d L(w) s.t. w 0 ≤ k
for a loss L : R d → R. IHT corresponds to projected gradient descent with respect to the loss L, and the non-convex constraint set B 0 = {w : w 0 ≤ k}. In particular, for sparse least-squares regression with L(w) = Xwy 2 2 and X op ≤ 1, this is theoretically guaranteed to converge to a local minimum [START_REF] Blumensath | Iterative hard thresholding for compressed sensing[END_REF], and IHT consists in this case in the iteration

w n+1 = HT k (w n + X T (y -Xw n )),
where HT k is the hard thresholding operator that keeps only the largest k elements (in magnitude) of a vector, and set the remaining coordinates to zero. Unlike greedy methods, IHT does not build up a sparse vector by iteratively adding new nonzero coordinates, but maintains a k-sparse vector throughout.

In general, however, optimization problems involving the size of the support often are combinatorial and NP-hard to solve to a global optimum. In addition, it may not always be desirable to measure complexity through the size of the support. In practice and when computing with oating-point numbers, a threshold needs to be set to control when a coefcient is deemed small enough to be zero. In all cases, this measure of complexity is highly unstable under arbitrarily small energy perturbations. These reasons have prompted the development of other means for measuring to what extent a vector is concentrated over a few coordinates only.

The ℓ 1 -norm

A popular approximation [START_REF] Chen | Basis pursuit[END_REF]Tibshirani, 1996b;[START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] consists in substituting the size of the support with the ℓ 1 -norm, de ned for w ∈ R d as

w 1 = d i=1 |w i |.
In addition to leading to usually tractable convex optimization problems, the ℓ 1 -norm as a measure of complexity alleviates the unstability of the size of the support. The ℓ 1norm penalty is not di erentiable at any point where w 0 d, which prevents the use of second-order methods out of the box. However, it does admit a sub di erential everywhere, which is for any

i ∈ [d] [∂ . 1 ] i (w) =        sign(w i ) if w i 0, [-1, 1] if w i = 0.
This allows to perform optimization with the ℓ 1 -norm, as we will show in Chapter 3.

The ℓ 1 -norm admits various variational expressions. Duality between norms provide the following:

w 1 = sup { z, w : z ∞ ≤ 1} ,
where the supremum is attained at z = (sign w 1 , . . . , sign w d ). Another variational expression can be derived from the Cauchy-Schwarz inequality, leading to

w 1 = 1 2 min        d i=1       w 2 i z i + z i       : z ∈ R d +        .
A simple everywhere di erentiable approximation to the ℓ 1 -norm is

w 1,ε = d i=1 |w i | 2 + ε 2 .
This penalty retains the linear rate of increase away from zero, and also allows to avoid non-di erentiability issues. In practice, this later penalty is rarely used, probably due to the availability of e cient non-di erentiable optimization methods (such as proximal methods), due to good performance of everywhere di erentiable regularizers such as the ℓ 2 -norm, or because this introduces the extra parameter ε.

Exemple 8 (Lasso). The Lasso (Tibshirani, 1996b) is the estimator The choice of the ℓ 1 -norm for measuring sparsity can be derived from a geometrical perspective. In words, the ℓ 1 -norm is the largest convex lower bound to the ℓ 0 -norm over the ℓ ∞ -norm unit ball. Indeed, notice that w 1 ≤ w ∞ w 0 for w ∈ R d . The ℓ 1 -norm can be shown to be the largest such lower bound. This can be formalized through convex duality.

w = arg min w∈R d Xw -y 2 2 + λ w 1 .

De nition 1. Consider

f : R d → R ∪ {∞}. The convex conjugate of f is de ned for z ∈ R d as f ⋆ (z) = sup x∈R d [ x, z -f (x)] .
The conjugate of a function is a description of the function not in terms of function values in the original space, but in terms of all the supporting hyperplanes to the epigraph. For convex lower semi-continuous functions, these two descriptions are equivalent [START_REF] Rockafellar | Convex analysis[END_REF].

Proposition 3. Let f : R d → R be convex and lower semi-continuous, and denote by f ⋆⋆ the biconjugate of f de ned as (f ⋆ ) ⋆ . Then, f = f ⋆⋆ .

This property is not true for non-convex functions, as illustrated in Figure 2.2. However, for non-convex functions, it holds that f ⋆⋆ ≤ f , and the convex biconjugate is always a lower bound of f . In fact, by Proposition 3, the biconjugate is necessarily the largest convex lower bound to f . This can be used to nd a convex surrogate or convex envelope to the ℓ 0 -norm. To simplify notation, de ne the barrier indicator function of a set X ⊂ R d by

δ X (w) =        0 if w ∈ X, ∞ otherwise.
Consider the following restriction of the ℓ 0 -norm: f (w) = w 0 δ . ∞ ≤1 (w). Then,

f ⋆ (z) = d i=1 sup |w i |≤1 [w i z i -1(w i 0)] = d i=1 (z i -1) + .
The biconjugate is thus

f ⋆⋆ (w) = d i=1 sup z i [w i z i -(z i -1) + ] =        w 1 if w ∞ ≤ 1, ∞ otherwise.
Hence, over bounded vectors, the ℓ 1 -norm is the tightest convex relaxation to the ℓ 0 -norm. Note that it is necessary here to x the scale by looking at the unit ball for the ℓ ∞ -norm: the convex envelope to the ℓ 0 -norm over R d is the uniformly zero function.

Elastic-net and Variations

This rationale for using the ℓ 1 -norm has been criticized in various ways, and one of them is related to how it behaves in terms of correlated variables. Consider the case where some relevant variables are very much correlated. The ℓ 1 -norm penalty may only select a single of these variables, and which variable is selected might be numerically unstable. In particular, consider the case where features 1 and 2 are always equal: for any given C, any ℓ 1 -norm penalized objective in dimension two has the same value over all of w ∈ R 2 : w 1 + w 2 = C . The elastic net penalty (Zou and Hastie, 2005b) was introduced in part to remedy this problem, and consists in

w elastic = w 1 + γ w 2 2 .
The strict convexity of the ℓ 2 -norm part encourages joint selection of correlated features.

In the previous examples of equal features,

(C, 0) elastic = C + γC 2 > (C/2, C/2) elastic = C + γ 2 C 2 ,
such that the elastic net encourages con gurations where both features are equally used.

The ℓ 2 -norm penalty shrinks the estimator, and the resulting w is usually rescaled by 1+γ to make up for this. The Trace Lasso penalty [START_REF] Grave | Trace lasso: a trace norm regularization for correlated designs[END_REF] induces a similar e ect in a data dependent matter, through a spectral technique:

w TL = X diag(w) * ,
where . * is the trace norm, which is the sum of the singular values. Informally, this measures the dimension of the linear subspace spanned by the selected features. In particular, the penalty does not increase when selecting additional features very much correlated with a feature that was already selected. Unlike most regularizers, the Trace Lasso penalty measures complexity of the predictor w based on the knowledge of the data. This is similar in principle to the mutual information regularizer I (X, T ) from the Information Bottleneck.

The k-support norm • sp k [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF] corresponds to the tightest convex surrogate of the ℓ 0 -norm, but over the Euclidean unit ball instead of the ℓ ∞ -norm unit ball. This can be formulated in a slightly di erent framework than before. Instead of taking the point of view of convex functions, where one looks for the largest convex lower bound, consider that of convex sets, where one looks on the opposite for the smallest convex superset of a non-convex subset (also referred to as the convex hull), as illustrated in Figure 2.3. For the k-support norm, this can be stated as where conv is the convex hull operator . There is a noteworthy di erence with the ℓ 1norm relaxation, which in similar terms can be written

conv {w : w 0 ≤ k, w 2 ≤ 1} = w : w sp k ≤ 1 ,
conv {w : w 0 ≤ k, w ∞ ≤ 1} = w : 1 k w 1 ≤ 1 .
In the ℓ 1 -norm case, the convex relaxation depends in an homogeneous fashion in the number k of nonzero elements, while with the k-support norm, this dependence is more intricate. Although the relaxation result for the ℓ 1 -norm can be equally easily formulated in terms of convex biconjugate or convex hulls, the k-support norm comes up most naturally with convex hull. The k-support norm is closely related to the following constraint reformulation of the elastic net

w elastic k = max w 2 , w 1 √ k , which is such that w elastic k ≤ w sp k ≤ √ 2 w elastic k for w ∈ R d .
In spite of this, the ksupport norm has been shown to outperform the elastic net in a variety of settings.

Other Regularizers

Many other notions of sparsity have been proposed, and we only mention a few. Nonuniform weightings over the features can be used, and some interesting such weightings are adaptive: they are chosen directly from the data. A simple example is the adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]: given an initial estimate w, consider the penalty

w 1, w = N i=1 |w i | | w i | γ
for some γ. This procedure was shown to have theoretical guarantees superior to that of Lasso in terms of estimation and recovery of the support of w ⋆ . This type of reweighting can also be iterated multiple times: the estimator obtained using an adaptive Lasso-like penalty can be used to de ne a weighting for a new penalty, and so on.

The previous regularizers are mostly convex, but non-convex regularizers have been studied as well. The sparseness measure (Hoyer, 2004b) consists in an a ne transformation of

w 1,e = w 1 w 2 ,
which is referred to as the e ective sparsity (Plan and Vershynin, 2013a). Others regularizers have been de ned to limit the increase of the ℓ 1 -norm away from zero. The simplest example is the capped ℓ 1 -norm:

w 1,capped = min w 1 , 1 2 .
This introduces more singularities though, and many variants have been proposed, such as SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF] and MCP [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]. Finally, note that all of these regularizers can be extended in a straightforward manner to matrices by viewing them as vectors in R d 2 .

Rank and Latent Factor Models

Latent factor models are a wide class of models, based on a very di erent type of hypothesis than sparse models. They apply to problems with relational or high-order structures, such as in the following example.

Exemple 9 (Recommender systems). In recommender systems [START_REF] Koren | Factorization meets the neighborhood: a multifaceted collaborative ltering model[END_REF], one seeks to recommend products to customers. These systems are ubiquitous in e-commerce and social websites, but extend well beyond these. In the simplest setting, one has data corresponding to past purchases. When the only information available is whether a purchase was made for each user/product combination, this is link prediction as in Example 6. However, in many cases, ratings are collected to quantify how happy each user was with each product purchased. This allows to cast the problem as a matrix completion problem as in Example 7: consider the ratings matrix W ⋆ of size (number of users) × (number of products), where for a user u and a product p,

W ⋆ u,p =        rating given by u to p if u purchased p, otherwise.
Here, the symbol indicates that the information is unavailable and must be inferred. The objective is, for each user u, to provide a shortlist of products. In general, the problem is very much ill-posed from a mathematical standpoint (due to the absence of clear statistical model in practice), and evaluation metrics are thus an important part of a recommender system.

In Example 9, there are multiple types of entities, which interact according to some weighting W to be estimated. In latent factor models, the hypothesis is that there are a small number of latent factors, which regulate how entities interact. The latent factors are new kinds of entities (u i ) and (v j ) in some common vector space R r and such that

W i,j ≃ u i , v j .
Formally, this means that A ∈ R d 1 ×d 2 can decompose as a product of matrices, or factorizes, as

A ≃ U V T where U ∈ R d 1 ×r , V ∈ R d 2 ×r
for some r which is the number of latent factors. In Example 9, this means that every user i has a representation u i in R r , and every product j has a representation v j in R r , such that the rating given by user i to product j can be modeled by the norms and angle in this common vector space. This is illustrated on the left panel of Figure 2.4. Equivalently, this can be seen as in the right panel of Figure 2.4, where the the rating given by user i to product j is modeled by the sum of all the products of values across paths of length two from i to j. The assumption that there are only a small number

u i v j i j i j (u i ) 1 (u i ) 2 (v j ) 1 (v j ) 2 × × Figure 2
.4: Pictorial representation of latent factor models in the context of recommender systems: users (blue), products (green), latent factors (red) of latent factors (i.e., r is small) can greatly reduce the dimension of the problem. The usual reformulation of this hypothesis is that A should have approximately low rank. This has received a large amount of attention in the last decade, and we review in the following some of the main concepts related to it.

The Rank

The rank is the minimal number of elementary matrices of the form ab T for a ∈ R d 1 , b ∈ R d 2 which can be used to additively decompose a linear operator from R d 2 to R d 1 . Formally, the rank of

W ∈ R d 1 ×d 2 is rank(W ) = inf        σ 0 : W = i σ i b i a T i , b i 2 = a i 2 = 1        , with a i ∈ R d 2 and b i ∈ R d 1 .
Decompositions which achieve the in mum are given by the Singular Value Decomposition (SVD) of W , and the corresponding (a i ) (resp. the corresponding (b i )) are mutually orthogonal. The rank is a non-convex matrix functional: in dimension two, and as illustrated in Figure 2.5, the manifold of symmetric 2×2 matrices with rank at most one is

a b b c : ac = b 2 ,
which is simply the union of two cones. In higher dimensions, more polynomial equations are required to describe the corresponding manifolds, and the actual geometry becomes intricate very quickly.

The Trace Norm

Denote by

σ(W ) = σ 1 (W ), . . . , σ rank(W ) (W ) the singular values of W ∈ R d 1 ×d 2 .
The trace norm is the spectral analogue of the ℓ 1 -norm. 

W * = rank(W ) i=1 σ i (W ).
In particular, W * = σ(W ) 1 and when W is positive semi-de nite (which we will write W 0 ), the trace norm is simply the trace: W * = Tr(W ) . This norm is a special case, corresponding to p = 1 in the Schatten p-norms family, de ned as

W * ,p =        d i=1 σ i (W ) p        1/p .
These norms are invariant with respect to unitary transformations, and are sub-multiplicative.

As with classical ℓ p -norms, the dual norm to • * ,p is • * ,q , where 1/p + 1/q = 1. In the case of the trace norm, the dual norm is the operator norm

W op = max i σ i (W ).
As shown by [START_REF] Fazel | Matrix rank minimization with applications[END_REF], the trace norm is the tightest convex relaxation to the rank over the operator norm ball. This is illustrated in Figure 2.6. Here, we show unit balls for the operator norm (which is diamond-shaped) and the trace norm (which is cylinder-shaped) relaxation in the space of 2×2 symmetric matrices, with the manifold of rank 1 matrices in overlay. In particular, the unit ball of the trace norm is the convex hull of the intersection between the rank one manifold and the operator unit ball. Formally, the fact that this is the tightest relaxation can be shown similarly as with the ℓ 1 -norm relaxation of the ℓ 0 -norm. Consider

f (W ) = rank(W ) δ • op ≤1 (W ).
Using the equality case in the von Neumann trace theorem allows to transport the problem into the space of singular values, where the calculation is identical as for the ℓ 0 -norm:

f ⋆ (Z) = sup X∈R d 1 ×d 2 [ X, Z -f (X)] = min(d 1 ,d 2 ) i=1 (σ i (Z) -1) + .
As a consequence,

f ⋆⋆ (W ) = W * δ • op ≤1 (W ).
As previously, one may consider the point of view of convex sets instead of convex functions. In this framework,

conv W : rank(W ) ≤ r, W op ≤ 1 = W : 1 r W * ≤ 1 .
As with ℓ 1 -norm, this is homogeneous in the rank r. From a geometric point of view, the associated unit ball B * is generated by unit-norm rank one matrices:

B * = conv uv T : u 2 = v 2 = 1 .
As a consequence, B * has an in nite number of extremal points. In spite of this and perhaps remarkably, projection onto B * can be achieved in time O(d 3 ) through a singular value decomposition. The trace norm can also be formulated as

W * = inf U V T =W U F V F = 1 2 inf U V T =W U 2 F + V 2 F .
In this formulation, the dimensions of U and V may be left unconstrained, although the in mum will be attained at elements corresponding to the SVD of W . Through this formulation, it appears that the trace norm measures the average row norm of factorizations of the matrix.

Exemple 10 (Convex Matrix Completion). The matrix completion problem can be addressed when W ⋆ is low rank using an estimator of the form

W = arg min W ∈R d 1 ×d 2 W * s.t. W • Ω = Y .
The theoretical performances of this estimator have been analyzed by [START_REF] Candès | Exact matrix completion via convex optimization[END_REF].

In a matrix completion context, the trace norm regularizer can be very sensitive to the sampling distribution of the observed entries. A common theoretical model for matrix completion assumes that observed entries are sampled according to the uniform distribution (with or without replacement), but this is rarely the case in practice. Consider that one observes N entries of a matrix A ∈ R d 1 ×d 2 , where these entries are selected i.i.d. from

a distribution P over [d 1 ] × [d 2 ].
A meaningful metric in this case is the generalization error under the sampling distribution, for instance in ℓ 2 -norm. As shown by [START_REF] Srebro | Collaborative ltering in a non-uniform world: Learning with the weighted trace norm[END_REF], even with respect to this metric, the trace norm regularizer may yield poor performance (formally, the sample complexity is unnecessarily high) when P deviates from uniform. In order to remedy this, they propose when the marginals of the sampling distribution are known to use a weighted variant of the trace norm. Denote by P row (resp. by P col ) the row marginal (resp. the column marginal), such that P row can be viewed as a d 1 -dimensional vector, and similarly for P col . The weighted trace-norm is

W tr(P row ,P col ) = diag P row X diag P col * .
In practice, these marginal distributions have to be estimated empirically. A generalization is the local max norm [START_REF] Foygel | Matrix reconstruction with the local max norm[END_REF]: consider a set R (resp. a set C) of marginal distributions over rows (resp. over columns), and de ne

W (R,C) = max P row ∈R, P col ∈C
W tr(P row ,P col ) .

Note that R and C are then extra parameters, which need to be chosen properly.

Nuclear and Atomic Norms

In machine learning and statistics, the trace norm is also often referred to as the nuclear norm, although we will avoid this terminology, as this is a term from functional analysis which goes much further beyond the trace norm, which is merely a nuclear norm. In the following, we give some background on 1-nuclear norms for operators between nite dimensional spaces, as they provide inspiration for some interesting generalizations. More information can be found in the book by [START_REF] Jameson | Summing and nuclear norms in Banach space theory[END_REF]. Consider a matrix W ∈ R d 1 ×d 2 . This can be viewed as an operator from R d 2 into R d 1 . We will consider that the input space R d 2 is equipped with a norm • A . The dual norm is de ned as

z ⋆ A = sup { w, z : w A ≤ 1} . Similarly, the output space R d 1 is equipped with a norm • B . The 1-nuclear norm is a norm from (R d 2 , • A ) into (R d 1 , • B ). De nition 3. The 1-nuclear norm from (R d 2 , • A ) into (R d 1 , • B ) of W is W nuc = inf        max i b i B • i a i ⋆ A : W = i b i a T i        , with a i ∈ R d 2 , b i ∈ R d 1 .
The 1-nuclear norm is actually the dual matrix norm to the operator norm from (R

d 1 , • B ) into (R d 2 , • A ), given for Z ∈ R d 2 ×d 1 by Z B→A = sup b B ≤1 Zb A .
Formally, we have the following characterization.

Proposition 4. For Z ∈ R d 2 ×d 1 , Z ⋆ nuc = sup a T Zb : a A ≤ 1, b B ≤ 1 = Z B→A .
In practice, other de nitions for the 1-nuclear norms can be used equivalently. For any decomposition W = i b i a T i , a decomposition with equal cost is given by

W = i b i b i B ( b i B a i ) T .
As a consequence, the norm can be equivalently expressed as

W nuc = inf        i b i B a i ⋆ A : W = i b i a T i        . = inf        i σ i : W = i σ i b i a T i , b i B = a i ⋆ A = 1, σ i ≥ 0        .
It can be seen from this representation that the unit ball of a nuclear norm is of the form

B nuc = conv ba T : b B = a ⋆ A = 1 .
We recover the following familiar example of 1-nuclear norm.

Exemple 11 (Trace norm). The case where . ⋆ A = . B = . 2 (the Euclidean norm, which satis es . 2 = . ⋆

2 ) leads to the trace norm:

W * = inf        i σ i : W = i σ i b i a T i , b i 2 = a i 2 = 1, σ i ≥ 0        .
The 1-nuclear norms measure costs of decomposition with respect to rank one elementary elements. This can be generalized to arbitrary elementary elements through atomic norms [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. Consider a centrally symmetric set A ⊂ R d , the atom set.

De nition 4. The atomic norm (with atom set

A) of W is W A = inf        i σ i : W = i σ i a i , a i ∈ A, σ i ≥ 0        .
When conv A contains an open set that contains 0, this is indeed a norm over R d . Unlike nuclear norms, atomic norms include norms over vectors.

Exemple 12 (ℓ 1 -norm). The ℓ 1 -norm on R d is an atomic norm, with atom set

A = {±e i : i ∈ [d]},
where e i is the i-th vector from the canonical basis of R d .

The Max Norm

Recall that the trace norm can be obtained as the nuclear norm for

• ⋆ A = • B = . 2 .
Hence, the trace norm measures the cost of decomposing a linear operator into rank one elementary elements of unit-Euclidean length. An interesting variation consists in using rank one elements with bounded coe cients. This can be obtained with

• ⋆ A = • B = . ∞ . The corresponding nuclear norm is W ⋆ ∞→1 = inf        i σ i : W = i σ i b i a T i , b i ∞ = a i ∞ = 1, σ i ≥ 0        .
For

d 1 = d 2 = 2, one simply has W ⋆ ∞→1 = W ∞ .
The associated unit ball is

B ⋆ ∞→1 = conv yf T : y ∞ = f ∞ = 1 = conv yf T : y i , f i ∈ {-1, 1} .
This norm can be seen to provide a convex relaxation to the rank over the ℓ ∞ -norm unit ball [START_REF] Lee | A direct product theorem for discrepancy[END_REF]:

W ⋆ ∞→1 2 ≤ rank(W ) W ∞ .
Is this a practical choice of penalty? This norm is actually a constant factor approximation to the so-called CUT norm, and both can be shown to be NP-hard. Indeed, they both can be used to compute maximum cut values in graphs [START_REF] Alon | Approximating the cut-norm via grothendieck's inequality[END_REF]) by computing the norm of a well-chosen matrix. However, . ⋆ ∞→1 is closely approximated by the max norm (or γ 2 -norm) [START_REF] Srebro | Learning with matrix factorizations[END_REF].

De nition 5. The max norm of W ∈ R d 1 ×d 2 is de ned equivalently as

W max = inf U V T =W U 2→∞ V 2→∞ = 1 2 inf U V T =W U 2 2→∞ + V 2 2→∞ .
In this expression, the number of columns of U and V are left unbounded. This is similar to the expression given for the trace norm, and is an example of a factorization constant.

Here, instead of the average ℓ 2 -norm of the rows of the factors, the maximum ℓ 2 -norm of the rows of the factor are used:

U 2→∞ = max i∈[d 1 ] U i,• 2 .
This norm has also be referred to as the Hadmard product operator norm [START_REF] Lee | A direct product theorem for discrepancy[END_REF], due to the alternative expression

W max = max Q Q • W op Q op = max u 2 = v 2 =1 uv T • W * .
This latter expression has been used to derive sub di erentials related to the max norm by [START_REF] Jalali | Clustering using max-norm constrained optimization[END_REF]. The max norm is not a spectral norm: unlike the trace norm, it cannot be expressed as a function of singular values only. However, unlike the previous cut-related norms, the max norm can be expressed as the optimal value of a semi-de nite program, and thus can lead to tractable optimization problems:

W max = inf t : diag(A) ∞ diag(B) ∞ ≤ t and A X X T B 0 , over A ∈ R d 1 ×d 1 , B ∈ R d 2 ×d 2 , t ∈ R.
This property is called semi-de nite representability. The max norm has numerous more properties, see previous references and references therein.

The aforementioned relation to • ⋆ ∞→1 can be seen as follows. Duality and Grothendick's inequality imply with 1.67 < K G < 1.79 that

K G A ⋆ ∞→1 ≤ A max ≤ A ⋆ ∞→1 .
As with • ⋆ ∞→1 , the max norm provides a convex relaxation to the rank over the ℓ ∞ -norm, albeit less tight:

[ W max ] 2 ≤ W ⋆ ∞→1 2 ≤ rank(W ) W ∞ .
The theoretical performances of the max norm have been analyzed in various settings, such as in clustering [START_REF] Jalali | Clustering using max-norm constrained optimization[END_REF], or in matrix completion. In this last setting, [START_REF] Foygel | Concentration-based guarantees for low-rank matrix reconstruction[END_REF] showed that the max norm is much less sensitive than the trace norm to the marginals of the sampling distributions: while the trace norm can be interpreted as penalizing the average row-norm of factorizations, the max norm penalizes the maximum row-norm. The local max norm • (R,C) can be used to interpolate between the trace norm and the max norm through a proper choice of R and C [START_REF] Foygel | Matrix reconstruction with the local max norm[END_REF].

Other Heuristics and Open Problems

The experimenter may be faced with the problem of estimating not matrices, but higher dimensional objects such as tensors. Unlike with matrices, even symmetric tensors do not necessarily admit an orthogonal decomposition in terms of rank one atoms. Rank and equivalent of the trace norm have still be proposed, although these de nitions are less canonical than in the matrix case. A standard idea consists in generalizing concepts from the matrix case, such as power iterations and Rayleigh quotients [START_REF] Anandkumar | Tensor decompositions for learning latent variable models[END_REF]. Another path to de ne convex relaxations consists in unfolding: given an order three tensor T ∈ R d 1 ×d 2 ×d 3 , the unfolding along the k-th mode for k ∈ [3] is a matrix rearrangement of the coe cients

T (k) ∈ R d k × i k d i .
Tensor trace norm equivalents have been studied, where trace norms of the unfoldings are combined in various ways [START_REF] Liu | Tensor completion for estimating missing values in visual data[END_REF]. Recently, other relaxations have been proposed by [START_REF] Romera-Paredes | A new convex relaxation for tensor completion[END_REF].

Finally, there are also some open problems. The trace norm is the convex envelope of the rank over the operator norm unit ball. However, in many settings (e.g., matrix completion with bounded ratings), imposing such a constraint on the maximum eigenvalue of matrices may not be relevant. As we have seen, the max norm and its nuclear norm approximation are convex relaxations to the rank over the ℓ ∞ -norm ball. However, we do not know whether this nuclear norm is the tightest convex relaxation. This prompts the following question.

Open Problem 1. What is the convex envelope of the rank over the ℓ ∞ -norm unit ball? Formally, this amounts to determining

conv W ∈ R d 1 ×d 2 : rank(W ) ≤ r, W ∞ ≤ 1 .
In addition, is this homogeneous in r as with the trace norm?

This requires to understand relationships between a spectral-oriented quantity, and a coe cientoriented quantity, which appears di cult. This motivates to consider di erent concepts of rank, or of complexity based on atoms.

De nition 6. Let A be an atom set, and let Σ A (W ) denote the set of all optimal cost representations (σ i , a i ) of W with respect to the corresponding atomic norm. The atomic representation length of W is

µ A (W ) = inf σ 0 : σ ∈ Σ A (W ) .
The atomic sup norm of w is

M A (w) = sup σ ∞ : σ ∈ Σ A (W ) . For A = {±e i : i ∈ [d]}, the atomic norm is the ℓ 1 -norm, while µ A is the ℓ 0 -norm, and M A is the ℓ ∞ -norm. Similarly, for A = {uv T : u 2 = v 2 = 1}
, the atomic norm is the trace norm, while µ A is the rank, and M A is the operator norm. In both examples above, optimal representations for µ A and M A are obtained with atoms that are orthogonal to each others. An interesting question lies in how this can be generalized to non-orthogonal settings.

Proposition 5. Let A be a centrally symmetric atom set. Then, µ A is sub-additive, and µ A (λ•) = µ A (•) for any λ 0. We also have

M A (w) ≤ w A ≤ µ A (w)M A (w).
In addition, M A (λ•) = |λ|M A (•) for any λ ∈ R, and M A (w) = 0 if and only if w = 0.

Hence, • A is a convex relaxation to µ A over {w : M A (w) ≤ 1}. This suggests the following problems.

Open Problem 2. Under what conditions on

A is M A convex, and hence, a norm? Under what conditions is the atomic norm • A the tightest convex relaxation to µ A over {w : M A (w) ≤ 1}?

Measuring Quality of Regularizers and Theoretical Results

In the previous sections, we have presented many interesting regularizers to enforce variations of the notion of sparsity or low rank. A given penalty will be useful if it allows to guarantee a good generalization performance, or estimate the model with a minimum amount of training data, while remaining computationally tractable (so that the estimator can actually be computed in practice). There is a very large literature on theoretical analysis of the generalization performance of various penalized ERM programs [START_REF] Bartlett | Rademacher and gaussian complexities: Risk bounds and structural results[END_REF][START_REF] Shorack | Empirical processes with applications to statistics[END_REF], and we do not review this question in depth here. We will provide such an analysis in Chapter 4 in the context of multiple kernel learning. Instead, we focus in this section on theoretical results for the estimation problem.

Estimation: Exact and Robust Recovery

We will assume that there is a true linear model of the form (2.2) (vector form) or (2.4) (matrix form) to estimate. The usefulness of a given penalty in recovering a model of course depends a lot on how simple the true model is in the view of this penalty. Results that involve the complexity of the true object according to the penalty, e.g., Ω(ω ⋆ ) or similar geometric characterizations usually fall within the realm of oracle inequalities, and we give such an example in Chapter 3. On the other hand, results may involve the complexity of the true object according to a hard notion to which the penalty is a relaxation, e.g., ω ⋆ 0 . This is usually the ultimate objective, and we focus on such a type of results in this section. In the absence of noise, the problem is exact recovery: can we perfectly estimate ω ⋆ in the absence of noise? Formally, this consists in determining when

w ⋆ = arg min w∈R d Ω(w) s.t. x i , w = y i for i ∈ [N ].
(2.5)

When there is noise, the problem is robust recovery: how well can we estimate in the presence of noise? Formally, this consists in determining upper bounds on ww ⋆ , where

w = arg min w∈R d Ω(w) s.t. Xw -y ≤ ε (2.6)
or variations on this, where • is usually the Euclidean norm. Note that these two formulations di er slightly from our penalized estimation problem, but this allows for more exibility in order to describe common theoretical results.

The types of results that can be obtained depends greatly on the design. We consider Gaussian designs, and use the notation A ∈ R N ×d for such designs: in this case, all entries of A are independent standard normals. The choice of Gaussian designs has a longstanding history. In particular, random Gaussian vectors are isotropic, and thus have an important connection to uniformly random directions. Most importantly, random projections onto Gaussian direction have been known for long to approximately preserve the Euclidean length, and pairwise Euclidean distances of points [START_REF] Bourgain | On lipschitz embedding of nite metric spaces in hilbert space[END_REF][START_REF] Dasgupta | An elementary proof of a theorem of johnson and lindenstrauss[END_REF].

Proposition 6. Let x ∈ R d , 0 < ε < 1, and consider a random Gaussian design A ∈ R N ×d . Then, with probability at least 1 -2e -(ε 2 -ε 3 ) N 4 , (1 -ε) x 2 2 ≤ 1 √ N Ax 2 2 ≤ (1 + ε) x 2 2 .
A major advance in recent years was to show that much more structure (such as the support of sparse vectors, or the singular spaces of low rank matrices) could also be recovered from Gaussian random projections, and most of the results we will discuss in the rest of this chapter are of this sort.

In problems of the form (2.5) or (2.6), the recovery is dictated by the geometry of the kernel of the design, that we refer to by ker A. Due to rotational invariance of the Gaussian distribution, the subspace ker A is actually a random subspace of codimension N distributed uniformly at random.

High-Dimensional Convex Sets and Gaussian Width

Millman has proposed a pictorial representation of high-dimensional convex sets [START_REF] Milman | Surprising geometric phenomena in high-dimensional convexity theory[END_REF] that we reproduce in Figure 2.7: a convex set is made of a bulk which contains most of the mass, and of tentacles. Due to the fact that the representation is only two-dimensional, this includes hyperbolic boundaries. Before we consider the case of penalized estimation, H max z∈C z, u How accurately can we hope to estimate w ⋆ using this type of program? This is fully characterized by the size of the intersection of the kernel of A and of w ⋆ +B Ω . In particular, when this intersection is reduced to zero, exact recovery succeeds. The following notion of average width of a set will be useful to characterize when this is the case.

min z∈C z, u

De nition 7. The Gaussian width of

C ⊂ R d is w(C) = E sup z∈C z, g ,
where g is a standard Gaussian vector in R d . This is a classical quantity in Gaussian process theory, and a treatment of Gaussian widths in our context can be found in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. The following are easy but useful properties of the Gaussian width. Here, the mean Euclidean length of a kdimensional standard Gaussian vector is denoted by

λ k ∈ [k/ √ k + 1, √ k].
Proposition 7. The Gaussian width has the following properties: for any C ⊂ R d ,

• Mean width formula.

w(C) = λ d 2 S 2 max z∈C z, u -min z∈C z, u du. • Convex hull. w(conv(C)) = w(C), • Symmetrization. w(C) ≤ w(C -C) ≤ 2w(C) ,
• w is invariant by orthogonal transformations or translations of C,

• w(C) = √ k if C is a linear subspace with dimension k, • when C is the unit-ball of a norm • , then w(C) = E[ g ⋆ ].
The rst property shows that the Gaussian width can be interpreted as the mean width in uniformly random directions, as illustrated in Figure 2.7. A central intuition here is that a random subspace H will tend to miss the tentacles of the convex set. We have the following result [START_REF] Milman | Random subspaces of proportional dimension of nite dimensional normed spaces: approach through the isoperimetric inequality[END_REF][START_REF] Pajor | Subspaces of small codimension of nitedimensional banach spaces[END_REF].

Proposition 8. Let H be a random subspace of codimension N , and C a symmetric convex set, then, with probability at least 1e -N , for some constant c 0 ,

diam(C ∩ H) ≤ c 0 w(C) √ N ,
where diam(X) is the diameter of set X in Euclidean norm.

Although a bit longer to state formally, there exists similar matching lower bounds for the diameter of the intersection: see, for instance, [START_REF] Giannopoulos | Asymptotic formulas for the diameter of sections of symmetric convex bodies[END_REF], where such a lower bound is actually shown to hold for all subspaces of codimension N . As a consequence, setting H = ker A, recovery up to ε-accuracy (in ℓ 2 -norm) is possible for

N ≥ w(C) 2 ε 2 .
This approach allows to characterize when we can obtain ε-approximation using feasibility problems. To consider penalized estimation instead of simply feasibility, we need to look at slightly di erent geometrical objects, although similar results and intuitions will remain valid.

Optimality Conditions for Penalized Estimation

Consider T Ω (w) = cone z -w : Ω(z) ≤ Ω(w) ,
the tangent cone at w to the corresponding scaled unit ball Ω(w

)B Ω = {x ∈ R d : Ω(x) ≤ Ω(w)}.
Here, cone denotes the conical hull operator. The success of a noiseless penalized program is characterized by whether the nullspace of A intersects with the tangent cone.

The following result can be found in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF].

Proposition 9. Let Ω : R d → R + be a norm. In the noiseless setting, w ⋆ is the unique optimal point of (2.5) if and only if

ker(A) ∩ T Ω (w ⋆ ) = {0}.
In the noisy setting, assume that noise is bounded as ε 2 ≤ δ, and that for

ν ∈]0, 1[, it holds that ∀w ∈ T Ω (w ⋆ ), Aw 2 ≥ ν w 2 .
Then, all solutions to (2.6) satisfy

w -w ⋆ 2 ≤ 2δ ν .
For robust recovery, the error bound on w is always larger than 2δ, which can be interpreted as the total standard deviation of the noise. The condition for exact recovery is illustrated in Figure 2.8.

The following result is a variation on Proposition 8 due to [START_REF] Gordon | On milman's inequality and random subspaces which escape through a mesh in ? n[END_REF], that is expressed directly in terms of the kernel of A, instead of an abstract random subspace H.

Proposition 10 (Escape Through a Mesh Phenomenon). Let C be a closed set in R d . Then, for A ∈ R N ×d a random Gaussian design, E min w∈C∩S 2 Aw 2 ≥ λ N -w (C ∩ S 2 ) .
In addition, A → min w∈C∩S 2 Aw 2 is Lipschitz with constant one with respect to the Frobenius norm.

Intuitively, if the number N of measures is large enough compared to the squared Gaussian width, the lower bound is bounded away from zero such that elements in C ∩ S 2 cannot be in the kernel with high probability. Equipped with the conditions for recovery of Proposition 9, we can apply Proposition 10 to T Ω (w ⋆ ) ∩ S 2 . This can be used to deduce su cient condition for exact or robust recovery with penalized estimation.

Proposition 11. In the noiseless setting, exact recovery succeeds with high probability if

N ≥ w(T Ω (w ⋆ ) ∩ S 2 ) 2 + 1.
This result can actually be recovered using di erent tools from integral convex geometry, as we will see in the next section. The previous result emphasizes the importance of the

B Ω -w ⋆ T Ω (w ⋆ ) ker A w ⋆ • Figure 2
.8: Illustration of optimality conditions for exact recovery for the ℓ 1 -norm geometry of the unit ball, and an interesting analysis for a given regularizer consists in identifying and classifying special points on the unit ball. In the following, we give a few examples of such points.

An extremal point of a convex set C is any point of C which cannot be decomposed as a convex combination of other points in C. Formally, a point x on the boundary of C is an extremal point of C if and only if C \ {x} is still convex. The set of extremal points can be understood in the framework of atomic norms as an atom set of minimal size, but does not directly allow to characterize the smoothness of convex sets.

De nition 8. Let C be a full-dimensional convex set. A boundary point x of C is said of order ̺(x) if the intersection of all the supporting hyperplanes to C at x is an a ne subspace of dimension ̺(x).

For a convex set in R d , a point x ∈ C such that ̺(x) = d -1 is said smooth. On the other hand, a point such that ̺(x) = 0 is referred to as a vertex [START_REF] Gallier | Notes on convex sets, polytopes, polyhedra, combinatorial topology, voronoi diagrams and delaunay triangulations[END_REF]. The extremal points and the vertices do not necessarily coincide: a vertex is extremal, but the converse is not necessarily true (e.g., consider the Euclidean ball B 2 for which the set of extremal points is the Euclidean sphere S 2 , but has no vertices). When C = B Ω , points x where Ω is non-di erentiable are such that ̺(x) < d -1 (i.e., they are not smooth), but not necessarily such that ̺(x) = 0 (i.e., they are not necessarily vertices).

Figure 2.9: A boundary point of order 1 on a cylinder (red dot), and supporting hyperplanes (blue, green)

The points such that 0 < ̺(x) < d -1 correspond to intermediate levels of smoothness. This is illustrated in Figure 2.9: we consider a convex set that is a cylinder (similarly to the unit ball for the trace norm over 2×2 symmetric matrices), and a point x on the boundary, indicated by a red dot. Unlike points in the interior of the top disk, this point is not smooth. However, this point is not a vertex either, as ̺(x) = 1. Indeed, there are two supporting hyperplanes to the cylinder at x, shown in blue and green, and their intersection is a line, shown in red. From similar considerations, one can show that the unit ball for the trace norm has no vertices, although any rank-de cient matrix is not a smooth point.

We note that even two norms related up to a constant factor can have di erent performances for recovery, as the geometry of their unit balls can be signi cantly di erent. This is, for instance, the case with the k-support norm and the elastic net: any point x such that x 0 < k is smooth for the ball of the k-support norm, but not for the ball of the elastic net. Similarly, the extremal points of the • ⋆ ∞→1 -unit ball are all extremal points of the max norm unit ball, but the latter actually has strictly more (as otherwise, the two norms would coincide, contradicting lower bounds on Grothendick's constant K G ).

Kinematic Formula and Statistical Dimension

When working with convex programs and their optimality conditions, the main objects involved are convex cones. The kinematic formula for cones allows to quantify the probability that a convex cone C and another random rotated cone K intersect. Denote by Π C the projection operator onto the convex set C. For a k-dimensional linear subspace L of R d , we also denote the probability that a random point on the sphere has a nontrivial projection on L by

I d k (ε) = P( Π L (θ) 2 2 ≥ ε).
In order to generalize this to cones, consider the following quantities.

Proposition 12 (Conic Instrinsic Volumes). Let C be a closed convex cone in R d , then for any ε ∈ [0, 1] and θ uniformly distributed on the Euclidean unit sphere S 2 , there exists

d + 1 scalars (v 0 (C), . . . , v d (C))
such that

P( Π C (θ) 2 2 ≥ ε) = d k=0 v k (C)I d k (ε).
The elements v 0 (C), . . . , v d (C) are the intrinsic volumes of C.

The Kinematic Formula shows that the intrinsic volumes characterize the probability of intersection of two cones when one of them is rotated uniformly at random.

Theorem 1 (Cone Kinematic Formula). Assume that C and K are closed convex cones in R d , one of which is not a linear subspace, and denote by R a rotation uniformly at random. Then,

P (C ∩ RK {0}) = 2h d+1 (C × K ) where h d+1 (C × K ) = v d+1 (C × K ) + v d+3 (C × K ) + . . . is the (d + 1)-th half-tail functional.
In practice, the intrinsic volumes may be di cult to compute. Remarkably, [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF] show that viewed as a discrete distribution, the sequence of intrinsic volumes concentrates around its mean, and that this can be used to provide an approximate version of the Kinematic formula. Although less precise, this approximation still allows to show a sharp threshold e ect on the number of observations in terms of only a single dimensionlike quantity of each of the cones. The mean intrinsic volume of a cone C is referred to as the statistical dimension, and can be expressed as

∆(C) = d k=0 kv k (C) = E Π C (g) 2 2
for a closed convex cone C in R d , and g ∈ R d a standard Gaussian vector. The characterization of the statistical dimension in terms of average norm of the projection of Gaussian vectors is paramount in allowing for practical calculations of the dimension. Notably, this is quite similar to the Gaussian width, and [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF] actually show that, albeit arising from di erent considerations, these quantities are vey closely related, as for a cone C,

w 2 (C ∩ S 2 ) ≤ ∆(C) ≤ w 2 (C ∩ S 2 ) + 1.
This leads to the following result [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF].

Theorem 1 (Approximate Kinematic Formuma for Inverse Problems). Let η ∈]0, 1[ and Ω be a norm on R d . For A ∈ R N ×d with independent standard Gaussian entries, it holds that

N ≤ ∆(T Ω (w ⋆ )) -α η √ d ⇒ exact recovery with probability less than η, N ≥ ∆(T Ω (w ⋆ )) + α η √ d ⇒ exact recovery with probability at least 1 -η, with α η = 8 log(4/η).
This completes many previous results which provided either only upper or lower bounds. This is a remarkable result, which shows the existence of a sharp threshold on the number of observations for exact recovery. Although the rst results of this type were in the setting of ℓ 1 -norm penalized estimation, this result shows that this threshold phenomenon actually applies to a wide class of random convex programs.

Examples

We now give examples of regularizers, together with their geometric characteristics and statistical dimensions. The unit balls corresponding to some of these norms are shown in Figure 2.10. We indicate asymptotic orders of magnitude without constants using the tilde symbol ∼. 

w(B 1 ) 2 ∼ log d, w(B 2 ) 2 ∼ d, w(B ∞ ) ∼ d 2 .
Sparse vectors with the ℓ 1 -norm. Consider the set of k-sparse vectors and Vershynin, 2013b). In addition, let w ⋆ ∈ S k , and

S k = w ∈ R d : w 0 ≤ k , such that w(S k ∩B 2 ) 2 ∼ k log(2d/k) (Plan
Ω = • 1 , then w(T Ω (w ⋆ ) ∩ S 2 ) 2 ≤ 2k log(d/k) + 5/4k.
This upper bound can be found in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. This is a key result of sparsity: the sample complexity only depends logarithmically on the ambient dimension. This logarithmic factor of order log ( d k ) corresponds to the cost of not knowing what the support of the model is.

Sparse vectors with the s-support norm. For Ω equal to the s-support norm (for s that does not necessarily match k), one has similarly

w(T Ω (w ⋆ ) ∩ S 2 ) 2 ≤ 2s log(d + 2) + √ s 2 k s + k.
This upper bound is from [START_REF] Chatterjee | Generalized dantzig selector: Application to the k-support norm[END_REF], and is based on a technique proposed for the analysis of the Group Lasso penalty [START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF]. This recovers the extreme cases of Ω = • 1 (when s = 1) and Ω = • 2 (when s = d).

Sign vectors. Consider the set of k-saturated vectors

C k = w ∈ R d : card{i : |w i | = w ∞ } = k , such that w(C k ∩ B 2 ) 2 = d 2 . Note that C k ∩ B ∞ is actually a k-face of the unit ball for the ℓ ∞ -norm. In addition, let w ⋆ ∈ C k , and Ω = • ∞ , then ∆(T Ω (w ⋆ )) = d - s -k 2 .
The derivation of the exact value of the statistical dimension can be found in [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF].

Low-rank matrices with the trace norm. Consider the set of rank r matrices

L r = W ∈ R d 1 ×d 2 : rank(W ) = r .
For W ⋆ ∈ L r , and Ω = • * , then

w(T Ω (W ⋆ ) ∩ S 2 ) 2 ≤ 3r(d 1 + d 2 -r).
This result can be found in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. Analyses of penalized estimation with the max norm usually use other routes, see, for instance, [START_REF] Srebro | Rank, trace-norm and max-norm[END_REF][START_REF] Cai | Matrix completion via max-norm constrained optimization[END_REF] for results in matrix completion based on Rademacher complexities.

Nonnegative entries. In most of the previous cases, one may additionally incorporate the knowledge that the model only has nonnegative entries, such that the ambient space becomes R d + [START_REF] Donoho | Counting the faces of randomly-projected hypercubes and orthants, with applications[END_REF]. In some particular settings (e.g., using non-Gaussian designs), this has been shown to lead to a surprising sample complexity of order k for exact recovery of k-sparse nonnegative vectors [START_REF] Donoho | Sparse nonnegative solution of underdetermined linear equations by linear programming[END_REF][START_REF] Wang | Conditions for a unique non-negative solution to an underdetermined system[END_REF] using a simple feasibility problem as in Section 2.4.2. This corresponds to strictly more than a constant factor improvement over sample complexities of order k log d, as this is completely dimension-independent. In other settings, however, it is frequent to observe only constant factor improvements.

Estimation with Non-gaussian Designs

Drawing inspiration from the domain of random projections at large, various conditions have been proposed (usually in speci c cases) to ensure that a non-Gaussian (but possibly still random) design may lead to exact recovery. This includes the Random Fourier ensemble, the Bernoulli ensemble or Count-Min matrices [START_REF] Berinde | Combining geometry and combinatorics: A uni ed approach to sparse signal recovery[END_REF]. Many of the associated analyses are speci c to ℓ 1 -norm minimization (and ℓ 0 -sparse models), and rely on properties such as Restricted Isometry Property [START_REF] Berinde | Combining geometry and combinatorics: A uni ed approach to sparse signal recovery[END_REF], or the Null Space Property [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF]. Testing whether these properties hold on xed matrices is usually NP-hard, although relaxations have been proposed (d 'Aspremont and El Ghaoui, 2011). Recently, an imposed real world design has been shown to exhibit a phase transition [START_REF] Vattikuti | Applying compressed sensing to genome-wide association studies[END_REF], but such examples remain scarce.

The use of nonlinear models and designs is of course an interesting area (Plan and Vershynin, 2013b). An interesting such example consists in using quantized measurements. Indeed, in all the previous designs, measurements are assumed to be a vector in R N , where components are encoded with in nite precision. In practice, this is rarely the case as most measurement systems have a limited dynamic and can handle a limited number of bits per measurement. In addition to this, the oating point arithmetic used in the computers has also a limited bit resolution. Hence, the bit resolution is potentially limited at many stages. Consider a quantization operator Q : R → {1, . . . , K} over an alphabet (c 1 , . . . , c K ) ∈ R K of length K. A quantized linear model can be obtained as

y i = Q( a i , w ), i ∈ [N ].
In the extreme case, the alphabet can reduce to (-1, 1) only: that is, only the sign of the projection is measured:

y i = sign( a i , w ), i ∈ [N ].
This model is referred to as one-bit compressed sensing. This also corresponds to random hyperplane hashing, which is a hashing scheme for approximating the angular similarity

θ(w 1 , w 2 ) = 1 - 1 π cos -1 w 1 , w 2 w 1 2 w 2 2
between vectors w 1 , w 2 ∈ R d . Consider the Hamming distance d H (x, y) = N i=1 x i y i over the boolean hypercube {0, 1} N . An estimation of the angle between any two pair of vectors can be obtained through the Hamming distance between the one-bit observations in the corresponding models: with N observations, and A a random Gaussian design, This is natural, as illustrated in Figure 2.11, as the Hamming distance counts the number of circular sectors where both vectors get projected, and averaging over many hyperplanes provides an estimation of the angle. A similar intuition carries over to the estimation problem, and recently, many works have considered the question of characterizing when exact or robust recovery is possible with this type of measurements [START_REF] Gupta | Sample complexity for 1-bit compressed sensing and sparse classi cation[END_REF]. As shown by Plan and Vershynin (2013a), in the one-bit setting, robust recovery up to precision ε can be achieved with about the same number of measurements based on the squared Gaussian width, albeit with a worse dependence on ε. 

E 1 N d H (sign(Aw 1 ), sign(Aw 2 )) = θ(w 1 , w 2 ) π .

Introduction

Matrix estimation is at the center of many modern applications and theoretical advances in the eld of high dimensional statistics. The key element which di erentiates this problem from standard high dimensional vector estimation lies in the structural assumptions that can be formulated in this context. Indeed, the notion of sparsity assumption has been transposed into the concept of low rank matrices and opened up the way to numerous achievements [START_REF] Srebro | Learning with matrix factorizations[END_REF][START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF]. In this chapter, we argue that being low rank is not only an equivalent of sparsity for matrices but that being low rank and sparse can actually be seen as two orthogonal concepts. The underlying structure we have in mind is that of a block diagonal matrix. This situation occurs for instance in covariance matrix estimation in the case of groups of highly correlated variables or when denoising/clustering social graphs.

E cient procedures developed in the context of sparse model estimation mostly rely on the use of ℓ 1 -norm regularization (Tibshirani, 1996a). Natural extensions include cases where subsets of related variables are known to be active simultaneously [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. These methods are readily adapted to matrix valued data and have been applied to covariance estimation (El [START_REF] Karoui | Operator norm consistent estimation of large-dimensional sparse covariance matrices[END_REF][START_REF] Bien | Sparse estimation of a covariance matrix[END_REF] and graphical model structure learning [START_REF] Banerjee | Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data[END_REF][START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF]. In the low rank matrix completion problem, the standard relaxation approach leads to the use of the trace norm as the main regularizer within the optimization procedures (Srebro et al., 2005;Koltchinskii et al., 2011a) and their resolution can either be obtained in closed form (loss measured in terms of Frobenius norm) or through iterative proximal solutions [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] (for general classes of losses). However, solutions of low rank estimation problems are in general not sparse at all, while denoising and variable selection on matrix-valued data are blind to the global structure of the matrix and process each variable independently. In this chapter, we study the bene ts of using the sum of ℓ 1 and trace-norms as regularizer. This sum of regularizers on the same object allows to bene t from the virtues of both of them, in the same way as the elastic-net (Zou and Hastie, 2005a) combines the sparsity-inducing property of the ℓ 1 norm with the smoothness of the quadratic regularizer.

The trace norm and the ℓ 1 regularizers have already been combined in a di erent context. In Robust PCA [START_REF] Candès | Robust principal component analysis[END_REF] and related literature, the signal W is assumed to have an additive decomposition W = X + Y where X is sparse and Y low rank. Note that W is not in general sparse nor low rank and that this decomposition is subject to identi ability issues, as analyzed, e.g., in [START_REF] Chandrasekaran | Rank-sparsity incoherence for matrix decomposition[END_REF]. The decomposition is recovered by using ℓ 1 -norm regularization over X and trace norm regularization over Y . This technique has been successfully applied to background substraction in image sequences, to graph clustering [START_REF] Jalali | Clustering partially observed graphs via convex optimization[END_REF] and covariance estimation [START_REF] Luo | High dimensional low rank and sparse covariance matrix estimation via convex minimization[END_REF]. We would like to emphasize that this type of demixing problems are largely di erent from what we consider here.

Here, we consider the di erent situation where a single matrix W is both sparse and low rank at the same time. We demonstrate the applicability of our mixed penalty on di erent problems. We develop proximal methods to solve these convex optimization problems and we provide numerical evidence as well as theoretical arguments which illustrate the trade-o which can be achieved with the suggested method.

Model

For a matrix W = (W i,j ) i,j , we will consider the following matrix norms:

W 1 = i,j |W i,j |
and W * = rank(W ) i=1 σ i (W ). We consider the following setup. Let Y ∈ R d×d be an observed matrix and ℓ : R d×d × R d×d → R + a loss function over matrices. We introduce the following optimization problem:

arg min W ∈W [ℓ(W , Y ) + γ W 1 + τ W * ]
for some convex admissible set W ⊂ R d×d and nonnegative regularization parameters γ and τ.

Main Examples

The underlying assumption in this work is that the unknown matrix to be recovered has a block-diagonal structure. We now describe the main modeling choices through the following motivating examples:

• Example 5: Covariance matrix estimation -the matrix Y represents a noisy estimate of the true covariance matrix obtained for instance with very few observations; the search space is W = S + the class of positive semi-de nite matrices; for the loss, we consider the squared norm

ℓ(W , Y ) = W -Y 2 F .
• Graph denoising -the matrix Y is the adjacency matrix of a noisy graph with both irrelevant and missing edges; the search space is all of W = R d×d and the coe cients of a candidate matrix estimate S are interpreted as signed scores for adding/removing edges from the original matrix Y ; again, we use

ℓ(W , Y ) = W -Y 2 F .
• Example 6: Link prediction -the matrix Y is the adjacency matrix of a partially observed graph: entries are 0 for both not-existing and undiscovered links. The search space is unrestricted as before and the matrix W contains the scores for link prediction; the ideal loss function is the empirical average of the zero-one loss for each coe cient

ℓ E (W , Y ) = 1 |E| (i,j)∈E 1{(Y i,j -1/2) • W i,j ≤ 0},
where E is the set of edges in Y . However, as in classi cation theory, practical algorithms should use a convex surrogate (e.g., the hinge loss).

Outline

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 are devoted to theoretical results on the interplay between sparse and low rank e ects. Section 3.4 presents algorithms used for resolution of the optimization problem. Section 3.5 discusses how clusters can be recovered from matrix estimates and Section 3.6 is devoted to numerical experiments. We close this chapter by giving some perspectives in Sections 3.7. This chapter is an extended version of a paper with Emile Richard and Nicolas Vayatis which has appeared in the proceedings of ICML [START_REF] Richard | Estimation of simultaneously sparse and low rank matrices[END_REF].

Notation

In the sequel, the projection of a matrix M onto a convex set W is denoted by Π W (M).

The matrix M + is the componentwise positive part of the matrix M, and sgn(M) is the sign matrix associated to M with the convention sgn(0) = 0. The componentwise or Hadamard product of matrices is denoted by •. The class S + of matrices is the convex cone of positive semi-de nite matrices in R d×d . The sparsity index of M is M 0 = card{M i,j 0} and the Frobenius norm of a matrix M is de ned by

M 2 F = i,j M 2 i,j . The operator norm of M is M op = sup x : x 2 =1 Mx 2 , while M ∞ = max |M i,j |

Oracle Inequality

The next result shows how matrix recovery is governed by the trade-o between the rank and the sparsity index of the unknown target matrix, or by their convex surrogates: the trace norm and the ℓ 1 -norm.

Proposition 13. Let W ⋆ ∈ R d×d and Y = W ⋆ + ǫ with ǫ ∈ R d×d having i.i.d. entries with zero mean. Assume for some α ∈ [0, 1] that τ ≥ 2α ǫ op and γ ≥ 2(1 -α) ǫ ∞ . Let W = arg min W ∈W W -Y 2 F + γ W 1 + τ W * .
Then,

W -W ⋆ 2 F ≤ inf W ∈W W -W ⋆ 2 F + 2γ W 1 + 2τ W * , W -W ⋆ 2 F ≤ 2γ W ⋆ 1 + 2τ W ⋆ * ∧ γ W ⋆ 0 + τ rank(W ⋆ ) √ 2 + 1 2 2 .
The techniques used in the proof, that we defer to Section 3.8.1, are similar to those introduced in (Koltchinskii et al., 2011a). Note that the upper bound interpolates between the results known for trace-norm penalization and Lasso. In fact, for α = 0, τ can be set to zero, and we get a sharp bound for Lasso, while the trace-norm regression bounds of (Koltchinskii et al., 2011a) are obtained for α = 1.

From a theoretical point of view, Proposition 13 provides us with performance guarantees when the regularization parameters are large enough. From random matrix theory, the operator norm of a random Gaussian matrix is known to concentrate around √ d, which enforces a stringent constraint on τ for τ ≥ 2α ǫ op to hold with high probability. Similarly, the ∞-norm ǫ ∞ can be bounded by ǫ op or using the multivariate Tchebyche inequality of [START_REF] Olkin | A multivariate tchebyche inequality[END_REF] which implies that the condition γ ≥ 2(1α) ǫ ∞ is satis ed with probability 1δ when γ = Ω (1α) 2dσ δ . In practice, γ should not exceed the order of magnitude of the entries of the matrix, as this leads to a trivial zero solution. Asymptotically, to keep the sparsity regularization parameter γ of the order of magnitude of elements of the observation matrix Y , the free parameter α must be chosen so that 1α d ∼ d 1 d . This gives the same asymptotic behavior in O( √ d) for the lower bound on τ as in matrix completion.

The proof can also easily be extended to more general xed matrix designs where observations are of the form y i = X i , W ⋆ + ε i for i ∈ [N ]. In this case, the bound is in terms of the design-dependant norm given by

W -W ⋆ = N i=1 X i , W -W ⋆ 2 .
Proposition 13 corresponds to a design {X 1 , . . . , X d 2 } which is the canonical basis of R d×d .

Generalization Error in Link Prediction

We dwell for a moment on the task of link prediction in order to illustrate how rank and sparsity constraints can help in this setting. Consider a graph over d vertices with adjacency matrix Y ∈ {0, 1} d×d , and a subset E of coordinates (i, j) ∈ [d] × [d] of this matrix that have been observed: for (i, j) ∈ E, the value Y i,j ∈ {0, 1} is known to the experimenter. We set out to predict the values of the remaining entries of Y by nding a sparse rank r predictor W ∈ R d×d with small zero-one loss

ℓ(W , Y ) = 1 d 2 (i,j)∈[d]×[d] 1{(Y i,j -1/2) • W i,j ≤ 0}
by minimizing the empirical zero-one loss

ℓ E (W , Y ) = 1 |E| (i,j)∈E 1{(Y i,j -1/2) • W i,j ≤ 0}.
The objective of a generalization bound is to relate ℓ(W , Y ) with ℓ E (W , Y ). In the case of the sole rank constraint, [START_REF] Srebro | Learning with matrix factorizations[END_REF] remarked that all low rank matrices with the same sign pattern are equivalent in terms of loss and applied a standard argument for generalization in classes of nite cardinality. In the work of Srebro, a beautiful argument is used to upper bound the number of distinct sign con gurations for predictors of rank r

s lr (d, r) = card{sgn(W ) | W ∈ R d×d , rank(W ) ≤ r}|
leading to the following generalization performance: for δ > 0, Y ∈ {0, 1} d×d and with probability 1δ over choosing a subset E of entries in {1, . . . , d} 2 uniformly among all subsets of |E| entries, we have for any matrix W of rank at most r and

∆(d, r) = 8ed r 2dr that ℓ(W , Y ) < ℓ E (W , Y ) + log ∆(d, r) -log δ 2|E| . (3.1)
We consider the class of sparse rank r predictors

M(d, r, s) = {U V T | U , V ∈ R d×r , ||U || 0 + ||V || 0 ≤ s}
and let s splr (d, r, s) be the number of sign con gurations for the set M(d, r, s). By upper bounding the number of sign con gurations for a xed sparsity pattern in (U, V ) using an argument similar to [START_REF] Srebro | Learning with matrix factorizations[END_REF], a union bound gives

s splr (d, r, s) ≤ Γ(d, r, s) = 16ed 2 s s 2dr s .
Using the same notations as previously, we deduce from this result the following generalization bound: with probability 1δ and for all W ∈ M(d, r, s),

ℓ(W , Y ) < ℓ E (W , Y ) + log Γ(d, r, s) -log δ 2|E| . (3.2)
In general, the square-root deviation term in bound (3.2) is smaller than the one in (3.1) for su ciently large values of d as shown in the next proposition. The two bounds coincide when s = 2dr, that is, when (U, V ) is dense and there is no sparsity constraint.

Proposition 14. For r d = dβ with β ∈]0, 1] and

s d = dα with α ≤ 2β, ∆(d, r d ) Γ(d, r d , s d ) = Ω        8ed(βd -α) (βd) 2 2d 2 β        ,
which diverges when d goes to in nity.

Proof. The result follows from the application of Stirling's formula.

By considering a predictor class of lower complexity than low rank matrices, we can thus achieve better generalization performances. Although this illustrates that combining rank and sparsity allows to improve generalization performance, minimizing the classi cation error over M(d, r, s) does not lead to a practical procedure.

Algorithms

We now present how to solve the optimization problem with the proposed regularizer.

We consider a loss function ℓ(W , Y ) convex and di erentiable in W , and assume that its gradient is Lipschitz with constant L and can be e ciently computed. This is, in particular, the case for the previously mentioned squared Frobenius norm, and for other classical choices such as the logistic loss.

Proximal Operators

We encode the presence of a constraint set W using the indicator function δ W (W ) that is zero when W ∈ W and ∞ otherwise, leading to

W = arg min W ∈R d×d [ℓ(W , Y ) + τ W 1 + γ W * + δ W (W )] .
This formulation involves a sum of a convex di erentiable loss and of convex non-di erentiable regularizers which renders the problem non trivial. A string of algorithms have been developed for the case where the optimal solution is easy to compute when each regularizer is considered in isolation. Formally, this corresponds to cases where the proximal operator de ned for a convex regularizer Ω : R d×d → R at a point Z by

prox

Ω (Z) = arg min W ∈R d×d 1 2 W -Z 2 F + Ω(W )
is easy to compute for each regularizer taken separately. See [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Parikh | Proximal algorithms[END_REF] for a broad overview of proximal methods.

The proximal operator of the indicator function is simply the projection onto W , which justi es the alternate denomination of generalized projection operator for prox Ω . The proximal operator for the trace norm is given by the shrinkage operation as follows (Beck and Teboulle, 2009).

If Z = U diag(σ 1 , • • • , σ d )V T is the singular value decomposition of Z, SHR τ (Z) = prox τ • * (Z) = U diag((σ i -τ) + ) i V T .
Similarly, the proximal operator for the ℓ 1 -norm is the soft thresholding operator

ST γ (Z) = prox γ • 1 = sgn(Z) • (|Z| -γ ) + .

Generalized Forward-backward Splitting

The family of Forward-Backward splitting methods are iterative algorithms applicable when there is only one non-di erentiable regularizer. These methods alternate a gradient step and a proximal step, leading to updates of the form

W k+1 = prox θΩ (W k -θ grad W ℓ(W k , Y )),
for a stepsize θ. In particular, this corresponds to projected gradient descent when Ω is the indicator function of a convex set. On the other hand, Douglas-Rachford splitting tackles the case of q ≥ 2 terms but does not bene t from di erentiability. A generalization of these two setups has been recently proposed in [START_REF] Raguet | A generalized forward-backward splitting[END_REF] under the name of Generalized Forward-Backward, which we specialize to our problem in Algorithm 1. The proximal operators are applied in parallel, and the resulting (Z 1 , Z 2 , Z 3 ) is projected onto the constraint that Z 1 = Z 2 = Z 3 which is given by the mean. The auxiliary variable Z 3 can be simply dropped when W = R d×d . The algorithm converges under very mild conditions when the step size θ is smaller than 2 L .

Algorithm 1 Generalized Forward-Backward Initialize W , Z 1 , Z 2 , Z 3 = Y , q = 3 repeat Compute G = ∇ W ℓ(W , Y ). Compute Z 1 = prox qθτ • * (2W -Z 1 -θG) Compute Z 2 = prox qθγ • 1 (2W -Z 2 -θG) Compute Z 3 = Π W (2W -Z 3 -θG) Set W = 1 q q k=1 Z k until convergence return W

Incremental Proximal Descent

Although Algorithm 1 performs well in practice, the O(d 2 ) memory footprint with a large leading constant due to the parallel updates can be a drawback in some cases. As a consequence, we mention a matching serial algorithm (Algorithm 2) introduced in [START_REF] Bertsekas | Incremental gradient, subgradient, and proximal methods for convex optimization: a survey[END_REF] that has a avor similar to multi-pass stochastic gradient descent. We present here a version where updates are performed according to a cyclic order, although random selection of the order of the updates is also possible.

Algorithm 2 Incremental Proximal Descent Initialize W = Y repeat Set W = W -θ∇ W ℓ(W , Y ) Set W = prox θτ • * (W ) Set W = prox θγ • 1 (W ) Set W = Π W (W ) until convergence return W

Positive Semi-de nite Constraint

For any positive semi-de nite matrix, we have Z * = Tr(Z). The simple form of the trace norm allows to take into account the positive semi-de nite constraint at no additional cost, as the shrinkage operation and the projection onto the convex cone of positive semide nite matrices can be combined into a single operation.

Lemma 1. For τ ≥ 0 and W ∈ R d×d , prox τ • * +δ S + (W ) = arg min Z 0 1 2 Z -W 2 F + τ Z * = Π S + (W -τI ) .

Recovering Clusters

The estimators described previously may allow to estimate a covariance or adjacency matrix, but not to directly recover clusters or groups. Although outside of the scope of this work, we mention here a few methods which could be used. Consider a symmetric and sparse square matrix W ∈ R d×d . This can be viewed as the adjacency matrix of a graph G = (V , E), where V = [d], and E = {(i, j) : W i,j > 0}. The graph bandwidth allow to measure to what extent a graph corresponds to a chain of some order.

De nition 9 (Graph Bandwidth). The graph bandwidth of matrix

W (or graph G) is GBW(W ) = min f ∈S d max |f (i) -f (j)| : W i,j > 0 ,
where S d is the set of all permutations f :

[d] → [d]. For instance, GBW           1 1 . . . 1 1           = GBW                1 1 1 1 . . . 1                = 2.
The path graph on d vertices has bandwidth 1, while a star over k + 1 vertices has bandwidth ⌊(k -1)/2⌋ + 1. The Cuthil-McKee algorithm [START_REF] Cuthill | Reducing the bandwidth of sparse symmetric matrices[END_REF] seeks to simultaneously permute the lines and rows of W such that the resulting matrix is banded with the smallest bandwidth. This is done in a Breadth-First Search (BFS) manner: x a vertex, and visit each of its neighbor in the reverse order of their degrees. This is an heuristic, as both the optimal ordering and the associated cost are NP-hard to nd, but that can still be used to reorder estimators. More elaborate methods have been proposed to estimate the bandwidth (Blum et al., 1998;[START_REF] Dunagan | On euclidean embeddings and bandwidth minimization[END_REF], although these cannot usually be used on large scale data. Alternate notions of bandwidths have been proposed, such as the 2-SUM, where the squared di erence is used in place of the absolute di erence. In this case as well, various relaxations have been proposed by [START_REF] Fogel | Convex relaxations for permutation problems[END_REF].

Although this may allow for easier visual inspection and representation, this still does not output clusters. The literature on clustering weighted or unweighted graphs (also often referred to as community detection, by analogy with social networks) is ample, and we refer the reader on this topic to surveys by [START_REF] Fortunato | Community detection in graphs[END_REF] and Von [START_REF] Luxburg | A tutorial on spectral clustering[END_REF], and to Section 3.7 on factorization-based methods.

Numerical Experiments

We present numerical experiments to highlight the bene ts of our method. For e ciency reasons, we use the serial proximal descent algorithm (Algorithm 2).

Synthetic Data

Covariance matrix estimation. We draw N vectors x i ∼ N (0, Σ) for a block diagonal covariance matrix Σ ∈ R n×n . We use r blocks of random sizes and of the form vv ⊤ where the entries of v are drawn i.i.d. from the uniform distribution on [-1, 1]. Finally, we add Gaussian noise N (0, σ 2 ) on each entry. In our experiments r = 5, N = 20, d = 100, σ = 0.6. We apply our method (SPLR), as well as trace norm regularization (LR) and ℓ 1 norm regularization (SP) to the empirical covariance matrix, and report average results over ten runs. Figure 3.1 shows the RMSE normalized by the norm of Σ for di erent values of τ and γ. Note that the e ect of the mixed penalty is visible as the minimum RMSE is reached inside the (τ, γ ) region. We perform, on the same data, separate cross-validations on (τ, γ ) for SPLR, on τ for LR and on γ for SP. We show in Figure 3.2 the supports recovered by each algorithm, the output matrix of LR being thresholded in absolute value. The support recovery demonstrates how our approach discovers the underlying patterns despite the noise and the small number of observations.

Real Data Sets

Protein Interactions. We use data from [START_REF] Hu | Global functional atlas of escherichia coli encompassing previously uncharacterized proteins[END_REF], in which protein interactions in Escherichia coli bacteria are scored by strength in [0,2]. The data is, by nature, sparse. In addition to this, it is often suggested that interactions between two proteins are governed by a small set of factors, such as surface accessible amino acid side chains [START_REF] Bock | Predicting protein-protein interactions from primary structure[END_REF], which motivates the estimation of a low rank representation. Representing the data as a weighted graph, we lter to retain only the 10% of all 4394 proteins that exhibit Social Networks. We have performed experiments with the Facebook100 data set analyzed by [START_REF] Traud | Social structure of facebook networks[END_REF]. The data set comprises all friendship relations between students a liated to a speci c university, for a selection of one hundred universities. We select a single university with 41554 users and lter as in the previous case to keep only the 10% users with highest degrees. In this case, entries are corrupted by impulse noise: a xed fraction σ of randomly chosen edges are ipped, thus introducing noisy friendship relations and masking some existing relations. The task is to discover the noisy relations and recover masked relations. We compare our method to standard baselines in link prediction [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF]. Nearest Neighbors (NN) relies on the number of common friends between each pair of users, which is given by Y 2 when Y is the noisy graph adjacency matrix. Katz's coe cient connects a pair of nodes according to a score based on the number of paths connecting them, emphasizing short paths. Results are reported in Table 3 

Discussion

In this last section, we discuss various aspects of the proposed methods, as well as related work and perspectives.

Other Loss Functions

The methods presented in this chapter can be seamlessly extended to non-square matrices, which can arise, for instance, from adjacency matrices of bipartite graphs. Our work also applies to a wide range of other losses. A useful example that links our work to the matrix completion framework is when linear measurements of the target matrix or graph are available, or can be predicted as in [START_REF] Richard | Link discovery using graph feature tracking[END_REF]. In this case, the loss can be de ned in the feature space. Due to the low rank assumption, our method does not directly apply to the estimation of precision matrices often used for Gaussian graphical model structure learning [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF], and the applications of conditional independence structures generated by low rank and possibly sparse models is to be discussed. Note that the trace norm constraint is vacuous for some special classes of positive semi-de nite matrices. For instance, it is not useful for estimating a correlation matrix as, in this case, the trace is always equal to the dimension.

Optimization

Other optimization techniques can be considered for future work. A trace norm constraint alone can be taken into account without projection or relaxation into a penalized form by casting the problem as a semi-de nite program as proposed by [START_REF] Jaggi | Revisiting {Frank-Wolfe}: Projection-free sparse convex optimization[END_REF]. The special form of this semi-de nite program can be leveraged to use the e cient resolution technique from [START_REF] Hazan | Sparse approximate solutions to semide nite programs[END_REF]., based on the Frank-Wolfe algorithm. This method applies to a di erentiable objective whose curvature determines the performances. Extending these methods with projection onto the ℓ 1 ball or a sparsity-inducing penalty could lead to interesting developments.

Geometry

A major drawback of the proposed method is that the unit ball of the proposed penalty has extreme points that are either sparse or low rank, but that are not usually both. In a recent analysis [START_REF] Drusvyatskiy | Extreme point inequalities and geometry of the rank sparsity ball[END_REF] focused on the geometry of the unit ball of the combined penalty, a more precise characterization of the extremal points is given: any extremal point W has to satisfy

r(r + 1) 2 ≤ k + 1,
where r and k are the rank and the ℓ 0 -norm of W , respectively. In addition, they show that the unit ball of the combined penalty does not have more vertices than the ℓ 1 -norm unit ball. This is not surprising: as we have mentioned in Section 2.4.3, the unit ball for the trace norm has no vertices, although it has higher-order non-smooth points. However, it is not clear how relevant the number of vertices (i.e., of maximally non smooth points) is for recovery. A further analysis of higher-order points of the unit ball of the combined norm could be fruitful.

We have provided an analysis for recovery of fully-observed but noisy matrices. An interesting alternate problem consists in characterizing the sample complexity, both with or without noise, as shown in Chapter 2. As was shown recently based on Gaussian width arguments [START_REF] Oymak | Simultaneously structured models with application to sparse and low-rank matrices[END_REF], the sample complexity is not reduced when combining ℓ 1norm and trace norm for exact or robust recovery with Gaussian designs. This suggests that the experimental design matters signi cantly when designing regularizers.

Another interesting question consists in determining tighter convex relaxations to the rank and the sparsity. In particular, one may ask what is the convex hull of

W ∈ R d 1 ×d 2 : rank(W ) ≤ r, W 0 ≤ k
intersected with the ℓ ∞ -norm ball, or over other balls. However, it may also be that there are some more interesting joint measures of rank and sparsity to relax than the intersection of these two classical manifolds. The ranksity index [START_REF] Richard | Intersecting singularities for multi-structured estimation[END_REF] provides such an alternative measure, along with a convex relaxation based on the trace norm. This convex penalty has the bene t of being non-di erentiable at points which are both low rank and sparse. Although such a modeling work can also be done through atomic norms in principle (e.g., considering rank one atoms with limited sparsity), it remains unclear how the resulting norms can be used in practice.

Factorization Methods

A related task is nding low rank factorizations of matrices of the form U V T [START_REF] Srebro | Learning with matrix factorizations[END_REF]Srebro et al., 2005), thus jointly optimizing in U , V ∈ R d×r loss functions of the form ℓ

((U , V ), Y ) = U V T -Y 2
F for some target maximum rank r. This implicitly encodes the low rank constraint which leads to e cient optimization schemes, and allows for interpretability as estimated (U, V ) pairs can be considered as latent factors. Although optimization with the trace norm or the max norm implicitly assumes such a factorization, factorization-based method work with the factorization directly. Although formulations are usually convex in U or V, they are not in general jointly convex and optimization procedures can get stuck in local minima. However, these methods have been associated with good empirical performances [START_REF] Xu | Document clustering based on non-negative matrix factorization[END_REF][START_REF] Koren | Factorization meets the neighborhood: a multifaceted collaborative ltering model[END_REF]. Factorization methods parameterized in U and V are not very practical to control the sparsity of W = U V T . However, one may alternatively seek to control the sparsity of the factors U and V , which can lead to sensible models. In the following, we give more background on these methods, which could potentially be of interest to de ne regularizers based on factorizations.

Sparse Factors

Nonnegative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF] imposes nonnegativity constraints on the coe cients of U and V to enhance interpretability by allowing only for additive e ects and tends to produce sparse factor matrices U, V , although this a rather indirect e ect. There is no strong guarantee on the sparsity achieved by NMF nor is it easy to set the target sparsity. Di erent methods for sparse NMF have been proposed (Hoyer, 2004a;[START_REF] Kim | Sparse nonnegative matrix factorization for clustering[END_REF], where sparsity inducing regularizers are applied on the coefcients of the factors. Sparse matrix factorizations have also been proposed without the positivity constraint, such as for sparse coding [START_REF] Hoyer | Non-negative sparse coding[END_REF], or for extending the classical PCA and nding sparse directions that maximize the variance of the projection. This last problem is often referred to as sparse principal component analysis. SPCA [START_REF] Zou | Sparse principal component analysis[END_REF] penalizes the ℓ 1 norm of the principal components and can be reduced to solving independent elastic-nets. A di erent formulation using SDP programming is introduced by d' Aspremont et al. (2007) with good empirical results. In addition, some methods give up up orthogonality between the components [START_REF] Mackey | De ation methods for sparse pca[END_REF].

An important special case of matrix factorizations is that of rank one factorizations. The detection of cliques within adjacency matrices correspond to factorizations of the form 1 S 1 T S where S ⊂ [d] is a set of coordinates. A penalty similar to the one we proposed has been used in [START_REF] Ames | Nuclear norm minimization for the planted clique and biclique problems[END_REF] to detect cliques, although with a di erent loss, which can be shown to lead to exact recovery of the support of the clique in some circumstances. These types of models are discussed more in the second part of this thesis, in Chapter 5.

Interpolation of Nuclear Norms

The combined penalty γ . 1 + (1γ ) . * that we propose interpolates between two nuclear norms: the trace norm, and the ℓ 1 -norm. Indeed, from duality with operator norms, the ℓ 1 -norm can be expressed in nuclear form as well:

W 1 = W 1→∞ = inf        i |σ i | : W = i σ i b i a T i , b i 1 = a i 1 = 1        .
The linear combination that we propose is surely not the only way to interpolate between the ℓ 1 -norm and the trace norm, and this suggests the following question: what are interesting alternative interpolation methods? A potential choice consists in using semide nite programming relaxations: consider

F(X) = γ X 1 + (1 -γ ) Tr(X),
such that for any u ∈ R n ,

F(uu T ) = γ u 2 1 + (1 -γ ) u 2 2 .
This allows to de ne the following norms.

De nition 10.

X uv = 1 2 min U V T =X i≥1 F(u i u T i ) + F(v i v T i ) , X SDP = 1 2 min [Z 1 X;X T Z 2 ] 0 F(Z 1 ) + F(Z 2 ) .
As usual, the dimensions of U and V are not restricted. Although • uv interpolates between the trace norm and the ℓ 1 -norm when γ ∈ [0, 1], this norm cannot usually be computed. However, both the SDP norm and the sum of ℓ 1 -norm and trace norm are lower bounds on • uv , and are thus convex relaxation which can be used in practice.

As it turns out, • SDP does not interpolate correctly at γ = 1: although for γ = 0,

X SDP = X uv = X * , there exists matrices W such that W SDP < W uv = W 1 for γ = 1 (consider, for instance, W = [1 1; 1 -1] ∈ R 2×2 , which has W 1 = 4, but W SDP < 3 < W 1 .
) As a consequence, this does not provide an acceptable interpolation. However, we believe that investigating other interpolations and relaxations along these lines could be of interest.

Factorization Constants

Straying away from the idea of interpolation between rank and sparsity, one may seek to de ne a penalty directly, using factorizations. Like the trace norm and the max norm, many more norms can be de ned through factorizations.

Proposition 15. Consider normed vector spaces (R d 2 , • X ), (Z, • Z ) and (R d 1 , • Y ). Then, γ Z (W ) = inf { V X→Z U Z→Y : W = U V } is a norm over R d 1 ×d 2 .
Again, the number of columns of U and V in the factorizations is left unbounded. This type of norm is referred to as a factorization constant, as it measures how well a linear operator W can be factorized through some latent space Z. This suggests the following type of norm.

Proposition 16. Consider for W ∈ R d×d the functionals

q(W ) = min U V T =W U 1 V 1 , c r (W ) = min U ∈R d×r V ∈R d×r U V T =W U 1 V 1 .
Then, q is a norm over R d×d , but c 2 is not a norm over R 2×2 .

The proof is deferred to Section 3.8.2. Although leaving the number of factors unbounded yields a norm which can measure sparsity of factorizations, this norm cannot be computed in practice. On this other hand, capping the number of factors even at the ambient dimension does not necessarily leads to a convex function. Again, we believe that variations on this type of approach could be developed and yield interesting results.

Proofs

Sketch of Proof of Proposition 13

Proof. For any W in W and by optimality of W ,

-2 W -W , W ⋆ ≤ 2α W -W * ǫ op + 2(1 -α) W -W 1 ǫ ∞ + τ( W * -W * ) + γ ( W 1 -W 1 ) + W 2 F -W 2 F for any α ∈ [0; 1].
The assumptions on τ, γ and triangular inequality lead to the rst bound.

Let

r = rank(W ), k = W 0 , W = r j=1 σ j u j v ⊤ j the SVD of W , W = Θ • |W |
, where Θ = sgn(W ), and Θ ⊥ ∈ {0, 1} d×d the complementary sparsity pattern. We use P W ⊥ 1 (resp.

P W ⊥

2 ) to denote the projection operator onto the orthogonal of the left (resp. right) singular space of W . We also note

P W (X) = X -P W ⊥ 1 XP W ⊥ 2 such that X = P W (X) + P W ⊥ 1 X W ⊥ 2 . Any element V of the subgradient of the convex function W → τ W * + γ W 1 can be decomposed as V = τ r j=1 u j v ⊤ j + P W 1 ⊥ Q * P W 2 ⊥ + γ Θ + Q 1 • Θ ⊥ for Q 1 , Q * with Q * op ≤ 1, Q 1 ∞ ≤ 1, which can be chosen such that V , W -W = τ r j=1 u j v ⊤ j , W -W + τ P W 1 ⊥ W P W 2 ⊥ * + γ Θ, W -W + γ Θ ⊥ • W 1 .
By monotonicity of the subdi erential and optimality conditions,

2 W -W ⋆ , W -W ≤ 2 ǫ, W -W -τ r j=1 u j v ⊤ j , W -W -τ P W ⊥ 1 W P W ⊥ 2 * -γ Θ, W -W -γ Θ ⊥ • W 1 . Decompose ǫ = α P W (ǫ) + P W ⊥ 1 ǫP W ⊥ 2 + (1 -α) |Θ| • ǫ + Θ ⊥ • ǫ .
Using results on dual norms, we have

| M 1 , M 2 | ≤ M 1 * M 2 op | M 1 , M 2 | ≤ M 1 1 M 2 ∞ for all M 1 , M 2 ∈ R n×n and hence, ǫ, W -W ≤ α P W (ǫ) F P W 1 ( W -W )P W 2 F + α P W ⊥ 1 ǫP W ⊥ 2 op P W ⊥ 1 SP W ⊥ 2 * + (1 -α) Θ • ǫ F Θ • W -W F + (1 -α) Θ ⊥ • ǫ ∞ Θ ⊥ • W 1 . Using P W (ǫ) F ≤ √ 2 r ǫ op , Θ • ǫ F ≤ √ k ǫ ∞ leads for τ ≥ 2α ǫ op and γ ≥ 2(1 -α) ǫ ∞ to W -W ⋆ 2 F + W -S 2 F ≤ W -W ⋆ 2 F + τ √ r( √ 2 + 1) + 2γ √ k W -W F . Using βx -x 2 ≤ β 2 2
, we obtain

W -W ⋆ 2 F ≤ W -W ⋆ 2 F + 1 4 √ rτ( √ 2 + 1) + 2 √ kγ 2
and setting W = W ⋆ gives the result.

Proof of Proposition 16

Proof. q is a norm from the previous proposition, as the ℓ 1 -norm is an operator norm. Let X = uv T ∈ R d×d a rank one matrix, then for any r ≥ 1,

c r (X) = u 1 v 1 . Let d = 2, E 1,1 = diag(1, 0), E 2,2 = diag(0, 1) ∈ R 2×2
, and I 2 be the identity matrix of size 2. We will begin by showing that c 2 (I 2 ) = 4. Then, this will imply c 2 (E 1,1 ) +

c 2 (E 2,2 ) < c 2 (E 1,1 +E 2,2
) and as a consequence, c 2 does not satisfy the triangle inequality.

For any decomposition such that U V T = I 2 , it must hold that

V T = U -1 . Since X 1 = X T 1 , we have c 2 (I 2 ) = min U ∈R 2×2 det(U ) 0 U 1 U -1 1 . Consider d 2 (I 2 ) = min U =diag(d 1 ,d 2 ) det(U ) 0 U 1 U -1 1 .
Assume without loss of generality that d i > 0 for i ∈ {1, 2}. We have

U 1 U -1 1 = (d 1 + d 2 ) (1/d 1 + 1/d 2 ) = 2 + d 1 d 2 + d 2 d 1 . Since (d 1 -d 2 ) 2 ≥ 0, we have d 1 d 2 + d 2 d 1 ≥ 2 and hence, U 1 U -1 1 ≥ 4. This implies d 2 (I 2 ) = 4, achived at U = I 2 . Now, let U = a c d b .
We have

U 1 U -1 1 = U 2 1 /| det(U )|, which is minimum either when U is diagonal (c = d = 0) or anti-diagonal (a = b = 0).
Without of loss generality, we can exclude this last case as . 1 is invariant to permutations. This implies that d 2 (I 2 ) = c 2 (I 2 ), and thus c 2 (I 2 ) = 4.

Introduction

Kernel-based methods have become a classical tool of the trade in machine learning. In addition to good empirical performance in a wide range of situations, there is a strong theoretical background behind some kernel machines such as SVMs [START_REF] Steinwart | Support vector machines[END_REF], as well as mature algorithms [START_REF] Platt | Fast training of support vector machines using sequential minimal optimization[END_REF] and implementations [START_REF] Chang | LIBSVM: a library for support vector machines[END_REF]. The kernel is traditionally either selected from generic parametric o -the-shelf kernels (e.g., Gaussian or polynomial) using some sort of cross-validation, or hand-crafted by domain speci c experts through an expensive empirical process. Recently, metric learning has become an increasingly active research eld [START_REF] Kulis | Metric learning: A survey[END_REF], with the goal of learning a kernel suitable for a given task. Multiple kernel learning (MKL) has appeared as an alternative, in between manual kernel selection and metric learning, where a weighting of di erent representations of the data points is learnt at the same time as a large margin classi er [START_REF] Lanckriet | Learning the Kernel Matrix with Semi-De nite Programming[END_REF][START_REF] Bach | Multiple Kernel Learning, Conic Duality, and the SMO Algorithm[END_REF][START_REF] Gönen | Multiple kernel learning algorithms[END_REF]. Representations may correspond to multiple scales, or to more orthogonal types of information (e.g., in images, di erent types of geometric or color information).

Although this has been successful, the linear kernel mixture in MKL is global in the sense that the weighting of the kernels is independent of training data points. Recently, alternatives have been proposed where the kernel mixture is local [START_REF] Gönen | Localized algorithms for multiple kernel learning[END_REF], in the sense that the weighting of each kernel depends on where it is evaluated. These approaches are referred to as either localized, or data-dependent multiple kernel learning. Indeed, in many problems, noise levels and discrimination ability in di erent views may vary across the input feature space, and this observation is a strong incentive for further exploration of localization with MKL methods. This has been approached in di erent ways. Parametric forms of data-dependent kernel weighting have been proposed by [START_REF] Gönen | Localized multiple kernel learning[END_REF]. Nonparametric data-dependent kernel weighting methods have also been proposed, including large-margin approaches [START_REF] Yang | Per-sample multiple kernel approach for visual concept learning[END_REF], other types of losses and penalizations [START_REF] Bi | Column-generation boosting methods for mixture of kernels[END_REF][START_REF] Cao | Heterogeneous feature machines for visual recognition[END_REF], and ensemble methods [START_REF] Gehler | On feature combination for multiclass object classi cation[END_REF].

These methods are either non-convex, lack theoretical guarantees, or do not correspond to large margin approaches. In this chapter, we propose a family of large-margin methods that are both convex and theoretically grounded for combining kernels in a datadependent manner.

Linear MKL

Consider the setting of binary supervised classi cation in R d , with N training data points (x 1 , y 1 ), . . . , (x N , y N ) independently drawn from a distribution P over R d × {-1, 1}. We consider a family (K m ) 1≤m≤M of kernels, with associated feature mappings φ m : R d → H m for 1 ≤ m ≤ M, where H m is the corresponding RKHS. For kernel mixing weights s = (s 1 , . . . , s M ) ∈ R M + , the global mixture kernel K = M m=1 s m K m corresponds to the feature mapping

Φ(x) = [ √ s 1 φ 1 (x), . . . , √ s M φ M (x)] T ,
and is associated with the product RKHS H = H 1 ×. . .×H M . Plugging K into the standard SVM optimization problem yields

min ω=(ω 1 ,...,ω M )∈H, s≥0        1 2 M m=1 ω m 2 2 + C N i=1        1 -y i M m=1 √ s m ω m , φ m (x i )        +        , (4.1) 
where s ≥ 0 denotes a componentwise nonnegativity constraint (which ensures that the mixture is a valid kernel), and (•) + denotes the positive part. Although this objective is non-convex, the change of variable √ s m ω m = w m leads to an objective that is jointly convex in (w, s). In addition, a regularizer Ω : R M → R + ∪{∞} can be used to control the mixture coe cients -classical choices include ℓ p -norms for p ≥ 1, indicator functions of the corresponding unit balls, or Bregman divergences. In particular, an ℓ 1 -norm constraint can force the weights associated to the kernels to sum to unity. The resulting problem is then

min w=(w 1 ,...,w M )∈H, s≥0        1 2 M m=1 w m 2 2 s m + C N i=1        1 -y i M m=1 w m , φ m (x i )        + + Ω(s)        .
The partial convex dual to this problem (with respect to w only) is of the form

min s≥0 max α∈[0,C] N        1 T α - 1 2 α T        M m=1 s m H m        α + Ω(s)       
with H m = diag(y)K m diag(y), where diag(y) is the diagonal matrix with diagonal elements y ∈ R N , and 1 is the all ones vector. This saddle point problem has been solved using various methods, and many optimization methods have been developed in order to address certain choices of regularizers on s. This variant of MKL is usually referred to as linear MKL, and results in decision functions of the form

f (x) = N i=1 y i α i        M m=1 s m K m (x i , x)        ,
which can be augmented by a constant bias term. This form of decision function is not localized, as the relative weights of the kernels are the same at all the support vectors, meaning that the same kernel combination is used everywhere in the feature space.

Hinge Loss Aggregation

In this work, we set out to learn decision functions of the more general form

f (x) = N i=1 M m=1 y i α i,m K m (x i , x) (4.2)
with α ∈ R N ×M . While the solution to the linear MKL problem can be written in this form with rank(α) = 1, we are interested in higher rank solutions which exhibit localization, in the sense that the relative weights of the kernels vary depending on the support vectors.

Informally, this corresponds to a kernel combination that is di erent in di erent regions of the feature space. In order to induce such a structure on the solution while maintaining the large-margin interpretation, we consider optimization problems of the form

min ω=(ω 1 ,...,ω M )∈H        1 2 M m=1 ω m 2 2 + C N i=1 ℓ (y i , ω 1 , φ 1 (x i ) , . . . , ω M , φ M (x i ) )        , (4.3)
where ℓ(y, t 1 , . . . , t M ) is a generalization of the hinge loss to a collection of classi ers (t 1 , . . . , t M ) with t i = ω i , φ i (x) for a data point x. For certain classes of losses ℓ, problems of the form (4.3) can be shown to lead to universally consistent estimators. Among these estimators, some choices of ℓ may result in a localized solution of the form (4.2), and we study examples of such choices in this chapter. More precisely, with z = (z 1 , . . . , z M ) the vector of hinge losses such that z m = (1yt m ) + , we propose to use ℓ(y, t 1 , . . . , t M ) = z p , the ℓ p -norm of z. With q such that 1/p + 1/q = 1, this leads to a dual problem of the form

max α≥0        1 T α1 - 1 2 M m=1 α T •,m H m α •,m        s.t. α i,• q ≤ C for i ∈ [N ],
where for any matrix α ∈ R N ×M , we denote by α i,• the i-th row of X, and by α •,m the m-th column of X. Hence, this choice of loss results in a coupling of the SVMs associated to the di erent kernels to be combined, which can be adjusted through the choice of p.

In case where p = 1, the problem consists in training M independent SVMs and averaging their decision functions, while a coupling constraint between the weights associated to di erent kernels is present in the case p = ∞. Intermediate values of p correspond to intermediate amounts of couplings between the kernels. The following question is at the core of this work: what is the best amount of coupling between the kernels? From a theoretical perspective, we show that all couplings lead to universally consistent classi ers. From a practical perspective, we show on various experimental benchmarks that low or no coupling between the kernels seems to be best, and allow to outperform existing methods for localized MKL.

Related Work

A localized MKL (LMKL) was proposed by [START_REF] Gönen | Localized multiple kernel learning[END_REF], with localized weighting of the kernels according to the data-dependent parametric form

f (x) = N i=1 y i α i        M m=1 η m (x) K m (x i , x)        with η m (x) = e a m + b •,m ,x M n=1 e a n + b •,n ,x
, and a ∈ R M , b ∈ R d×M to be learned from the data in addition to α. The gating functions (η m ) allow to activate di erent kernels depending on the input point. Although a general kernel can in principle be used instead of an explicit feature representation to de ne the gating functions, the original training procedure is based on gradient descent with respect to the gating parameters, which precludes the use of kernelized gating functions. This form of decision function is di erent from what we consider in this work: in LMKL, although the weighting of the individual kernels depends on the input point, the support vectors are identical for all the kernels. In particular, at a xed input point, this corresponds as in MKL to a rank one weighting. Indeed, when the original vector representation used for gating has dimension d, LMKL estimates a model of dimension N +M(d+1), which can be much less than N M. In addition, although the decision functions of LMKL can be obtained by iteratively resorting to a black-box SVM solver, the problem of jointly estimating the gating weights and SVM weights is non-convex, and the resulting estimator may result from high variance due to the e ect of initialization.

The CG-Boost method [START_REF] Bi | Column-generation boosting methods for mixture of kernels[END_REF] consists in plugging a classi er of the form (4.2) into the hinge loss, together with ℓ 2 -norm regularization, leading to

min α∈R N ×M +          1 2 M m=1 α •,m 2 2 + C N i=1         1 -y i M m=1 N j=1 α j,m K m (x i , x j )         +          .
This can be interpreted as a linear SVM with N M features that correspond to kernel evaluations with all elements of the training set. In particular, the regularization is independent of the original geometry of the kernels, and there is no direct large margin interpretation.

The per-sample MKL (PS-MKL) [START_REF] Yang | Per-sample multiple kernel approach for visual concept learning[END_REF][START_REF] Yang | Group-sensitive multiple kernel learning for object categorization[END_REF] is another localized ("persample") MKL approach with decision functions of the form

f (x) = N i=1 y i M m=1 α i β m (x i , x)K m (x i , x) for α ∈ R N + .
In order to obtain a tractable problem, the weighting is assumed for learning to be of the form β m (x i , x j ) = 1 2 β i,m + β j,m , while for testing, the authors consider either β m (x i , x) = β i,m /M or β m (x i , x) = 1 2 (β i,m + 1/M), which is to say that the weighting is uniformly a ected by unseen examples. With β ∈ R N ×M + , this form of the decision function is plugged into the classical SVM formulation, as when deriving the classical linear MKL formulation in (4.1). Unlike CG-Boost, this leads to a regularization that is dependent on the kernels. However, the change of variable trick used with MKL to transform the problem into a convex optimization problem does not apply here, and this leads to a saddle-point problem, to be solved using alternating optimization over β and α. This corresponds to the same class of decision functions that we consider, albeit with a di erent parameterization which does not lead to a convex formulation.

Outside of the realm of SVMs, [START_REF] Cao | Heterogeneous feature machines for visual recognition[END_REF] have introduced the Heterogeneous Feature Machine (HFM), where localized decision functions of the form (4.2) are trained using a group-lasso regularized logistic loss with groups correspond to training samples, resulting in a problem of the form (4.4) with f as in (4.2). Although this is also similar to our approach in terms of the class of decision functions, this is not a large margin approach. In addition, as for all the previous methods, no theoretical guarantees are provided. MKL is also related to multi-view learning [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF], which is traditionally interested in problems where features can be divided into subsets (views), each of which is su cient to learn a good predictor (such that there is redundancy between the views). On the opposite, MKL can also be seen as an ensemble method, which are usually concerned with aggregating estimators, which may be potentially loosely or not correlated. This dual view is well re ected in the two methods that we propose. For p = ∞, we penalize the models associated to each kernel according to by how much they disagree on the data points, as is common in multi-view learning. On the other hand, for p = 1, the solution consists in averaging decision functions of independent SVMs, which can be seen as an ensemble method with base classi ers corresponding to SVMs with di erent kernels. Ensemble methods of similar sorts have been previously proposed, such as LP-β [START_REF] Gehler | On feature combination for multiclass object classi cation[END_REF] which consists in using independently trained SVMs as base learners, and nding a weighting of these through a LPboost-like penalized linear program [START_REF] Demiriz | Linear programming boosting via column generation[END_REF]. This has been shown to yield good results, but requires to tune both penalization in the base learners, and when combining these.

min α∈R N ×M N i=1 log 1 + e -y i f (x i ) + λ N i=1 α i,• 2 ,
Finally, the problem of localized MKL has close ties to metric learning, where one seeks to learn a full N ×N kernel matrix over the training set, and, possibly, to extrapolate to new data points (see, for instance, [START_REF] Yang | Distance metric learning: a comprehensive survey[END_REF][START_REF] Ong | Learning the kernel with hyperkernels[END_REF] and references therein). MKL appears as a special case of metric learning, over a parametric class of kernels, while localized MKL corresponds to a larger class of kernels. Using a localized MKL, we only need to learn N M parameters, as opposed to N 2 for learning a full kernel. Although there has been some interest in using MKL with a large number of kernels [START_REF] Gehler | In nite kernel learning[END_REF], the number M of kernels remains small for a wide variety of applications in which metric learning is thus a more di cult task.

Outline

In Section 4.2, we study some properties of optimization problems of the form (4.3) for di erent families of losses. We give examples, along with a representer theorem. In addition, we give conditions under which these losses lead to universally consistent classi ers. In Section 4.3, we look into more detail at the ℓ p -norm loss aggregation, and show that this leads to a localized MKL solution which can be computed using a convex program. Experimental results are presented in Section 4.4, and a discussion is provided in Section 4.5. This chapter is joint work with Antoine Poliakov.

Notation

Throughout the chapter, we denote {1, . . . , N } by [N ], and, similarly, {1, . . . , M} by [M]. For a vector x ∈ R d for some d, we usually denote by (x 1 , . . . , x d ) the corresponding components. The classical hinge loss is ℓ hinge (y, x) = (1-yx) + . The all ones vector is denoted by 1, while 1(A) designates the indicator vector that is one when condition A is true, and zero otherwise.

Generalized Hinge Losses

In this section, our objective is to study some properties of the minimizer of the following optimization problem where we aggregate hinge losses associated to all M kernels:

min ω=(ω 1 ,...,ω M )∈H        1 2 M m=1 ω m 2 2 + C N i=1 ℓ (y i , ω 1 , φ 1 (x i ) , . . . , ω M , φ M (x i ) )        . (4.5)
Although we use the aggregation terminology, this di ers from approaches which consider aggregation of estimators [START_REF] Freund | A short introduction to boosting[END_REF][START_REF] Dalalyan | Aggregation by exponential weighting and sharp oracle inequalities[END_REF], while (4.5) consists in aggregating loss functions. We impose the following conditions on the loss function.

De nition 11. A loss function

ℓ : {-1, 1} × R M → R + is a generalized hinge loss (GHL) if, for y ∈ {-1, 1}, • ℓ(y, •) is Lipschitz with constant L ℓ with respect to the sup norm t ∞ = max i∈[M] |t i |: for any t, t ′ ∈ R M , |ℓ(y, t) -ℓ(y, t ′ )| ≤ L ℓ t -t ′ ∞ .
• ℓ(y, t1) = (1yt) + , and there exists θ : R M → R such that for any

t ∈ R d , ℓ(y, t 1 , . . . , t M ) ≥ (1 -yθ(t 1 , . . . , t M )) + .
Following classical terminology in generalized linear models, we refer to θ as the link function, and the probabilistic classi er associated to the optimization problem is de ned as

f ℓ (x) = θ ( ω 1 , φ 1 (x) , . . . , ω M , φ M (x) ) .
where ω = (ω 1 , . . . , ω M ) ∈ H is the minimizer of (4.5). Note that this is slightly more general than (4.2), which corresponds to a link function that is simply the sum. This allows for more exibility, and still can be considered a localized classi er. In practice, we shall further require that ℓ(y, •) be convex for any y. In this chapter, we consider two classes of GHLs, that are built either by combining hinge losses with scalar inputs, or feeding a combination of scalar inputs into the hinge loss.

De nition 12.

A GHL ℓ is of outer combination type if there exists A : R M → R + such that ℓ(y, t 1 , . . . , t M ) = A((1yt 1 ) + , . . . , (1yt M ) + ).

Similarly, a GHL ℓ is of inner combination type if there exists A : R M → R such that ℓ(y, t 1 , . . . , t M ) = (1 -yA(t 1 , . . . , t M )) + .

In both cases, we refer to A as the corresponding aggregation function. Note that the aggregation function must satisfy the scaling condition A(t, . . . , t) = t for t ∈ R. In particular, GHLs of outer combination type can be interpreted as generalizations of the classical arithmetic average. By de nition, any GHL ℓ is lower bounded by a GHL of inner combination type, and the corresponding aggregation function is a link function for ℓ. Although it may appear from this fact that inner combinations should always be preferred, general GHLs or GHLs of outer combination type may lead to more tractable optimization problems, as is already the case with the hinge loss relaxation to the classi cation loss. When A is linear, we recover the two extreme cases that are averaging the decisions of individual SVMs, and training a SVM on the average kernel.

Lemma 1. Let ℓ be of outer combination type with A = [a 1 , . . . , a M ] linear, then the solution of (4.5) is w = (a 1 w1 , . . . , a M wM ) where wm is the solution of the SVM trained with kernel K m only. Similarly, if ℓ is of inner combination type with the same A, then the solution of (4.5) is the solution of the SVM trained with K = M m=1 a m K m .

Choosing an interesting combination type and aggregation function is not simple because the resulting problem easily becomes either oversimpli ed or untractable, especially with nonlinear A. One of the most natural examples of nonlinear outer combination type GHL corresponds to A = max, leading to

ℓ max (y, t 1 , . . . , t M ) = max m∈{1,...,M}
(1yt m ) + .

In Section 4.3, we will see that ℓ max has the advantage of being convex and of leading to a localized MKL solution at the same time. The signed maximum on R M de ned as smax(v) = v arg max|v| , or, equivalently,

smax (v) =        min v if min v < -|max v| , max v if max v ≥ |min v| , (4.6)
is an example of aggregation function that can used to de ne an inner combination loss.

A di erence between the losses based on smax and ℓ max lies in that using the outer combination loss with ℓ max , we penalize each training sample according to the worse kernel, while in the inner combination loss with smax, the predictions of the kernels are aggregated independently of the target sample label, and thus independently of what the worse kernel is.

Representer Theorem

We extend the classical representer theorem from the single kernel case to the minimizer of (4.5). Recall that the product RKHS is H = H 1 × . . . × H M . In addition, we de ne for any kernel K m the sample space as

Hm = span{φ m (x i ) : 1 ≤ i ≤ N },
and the joint sample space as H = H1 × . . . × HM .

Theorem 2. The solution of (4.5) belongs to H, which is isomorphic to a subset of R MN .

Proof. For 1 ≤ m ≤ M, let H⊥ m be the subspace of H m orthogonal to Hm . We also denote the product orthogonal by H⊥ = H⊥ 1 × . . . × H⊥ M . Let ω = (ω 1 , . . . , ω M ) be a minimizer of (4.5). For any m, we can decompose

ω m ∈ H m as ω m = ωm + ω ⊥ m , with ωm ∈ Hm and ω ⊥ m ∈ H⊥ m . For 1 ≤ i ≤ N , ω m , φ m (x i ) = ωm , φ m (x i ) + ω ⊥ m , φ m (x i ) = ωm , φ m (x i ) .
Assume that ω H. Then, there exists m such that

ω m 2 2 = ωm 2 2 + ω ⊥ m 2 2 > ωm 2 2 .
As a consequence, ω = ( ω1 , . . . , ωm ) has a strictly smaller cost, which contradicts the optimality of ω. As a consequence, ω ∈ H.

This theorem generalizes the classical representer theorem for SVMs, for which H will be a strict subset of R MN of dimension N . The main di erence with the classical representer theorem for SVMs lies in the fact that the loss is allowed to depend on an additional block structure on the Hilbert space H. Note that this theorem does not guarantee that the solution will be localized (that is, that the solution subspace has dimension strictly greater than N). A study of representer theorems for similar losses and general regularizer functions can be found in [START_REF] Argyriou | When is there a representer theorem? vector versus matrix regularizers[END_REF]. In this context, the block structure is derived from multi-task learning problems.

Universal Consistency

We now state the main result of this section, which requires the following notation. We consider here a distribution P over X × {-1, 1}, where X ⊂ R d is a compact space. The classi cation and Hinge risks of a classi er g :

X → R are R 0-1 P (g) = E (x,y)∼P [1(sign g(x) y)] , R Hinge P (g) = E (x,y)∼P ℓ hinge (y, g(x)) .
Let ℓ be a GHL, and Q be a distribution on X × {-1, 1}, then the risk of h :

X → R M is R Q (h) = E (x,y)∼Q [ℓ (y, h 1 (x), . . . , h M (x))] .
For simplicity, for ω ∈ H, we write where P N is the empirical measure based on N observations from P, which corresponds to C = 1 2N λ in (4.5). The regularization parameter is allowed to depend on N , and when required, we explicitly write λ N = λ. In addition, let

R Q (ω) = R Q ( ω 1 , φ 1 (•) , . . . , ω M , φ M (•) ). The regularized risk is de ned for ω ∈ H as R Q,λ (ω) = R Q (ω) + λ ω 2 H . Let ω Q,λ be the minimizer of R Q,λ ,
δ λ = 2 λ , L K = sup x∈X max m∈{1,...,M} K m (x, x).
We denote by C(X, Z) the set of continuous functions from X into some space Z. A continuous kernel over X is universal if the corresponding RKHS is dense in C(X, R). We say that a classi er f N depending on N data points is

universally consistent if R 0-1 P (f N ) → inf R 0-1
P holds in probability for all distributions P over the data, where the in mum is over all classi ers. Let B H = {ω ∈ H : ω H ≤ 1} be the unit ball of H. In order to measure the complexity of δ λ B H , we will use covering numbers. We denote by N (X, . , ε) the ε-covering number of X with respect to norm . , and by H(X, . , ε) = ln N (X, . , ε) the corresponding metric entropy.

Theorem 3. Let ℓ be a GHL, (K 1 , . . . , K M ) be universal kernels, and for any ε > 0, assume that when N → ∞, λ N → 0, and

(L ℓ L K ) 2 N λ N M m=1 H 2 λ N B H m , . H m , ε L ℓ L K → 0,
then, f P N ,λ N (the classi er associated to the minimizer of R P N ,λ N through the link function) is universally consistent.

In particular, if all kernels have metric entropy H(B m , . H m , ε) ≤ ε -ρ for some ρ, and L K and L ℓ are constant, then the su cient condition is

λ N = o(1), λ N = Ω       M N 1 1+ρ/2       ,
which requires that λ N converges to zero at a limited rate. The result is di erent from consistency results for multi-class SVMs [START_REF] Tewari | On the consistency of multiclass classi cation methods[END_REF][START_REF] Glasmachers | Universal consistency of multi-class support vector classi cation[END_REF], as we consider multiple representations for each point and a single label, as opposed to a single representation and multiple labels. The proof proceeds in four steps, and is inspired by that of [START_REF] Steinwart | Consistency of support vector machines and other regularized kernel classiers[END_REF] for SVMs. We present an outline of the proof, while the details are deferred to Section 4.6. First, we show that R P N ,λ and R P,λ both attain their minimum over H in a ball of radius δ λ .

Lemma 2 (Optimal risk is attained in a ball). Let ℓ be a GHL, then for any Borel probability measure Q on X × {-1, 1} and λ > 0, there exists

ω Q,λ ∈ H such that ω Q,λ H ≤ δ λ and R Q,λ (ω Q,λ ) = inf ω∈H R Q,λ (ω).
Then, we show that over this ball, the unregularized risk R P N concentrates around R P at a rate that we make explicit.

Lemma 3 (Concentration of R P N (f P N ,λ )). Let ℓ be a GHL, then

P P N R P N (ω P N ,λ ) -R P (ω P N ,λ ) ≥ ε ≤ 2e -2ε 2 N (L ℓ δ λ L K ) 2 M m=1 N δ λ B H m , . H m , ε L ℓ L K .
Note that R P N ,λ also concentrates around R P,λ . Then, we check that asymptotically and as the regularization vanishes, the minimum of R P,λ over H is close to that of R P .

Lemma 4 (Minimum of R P,λ is close to that of R P ). If K 1 , . . . , K m are universal and ℓ is a GHL, then

lim λ→0 inf ω∈H R P,λ (ω) = inf h R P (h)
where the second in mum is over all measurable functions h : X → R M .

Finally, we use the fact that minimizing the surrogate risk R P over all classi ers is su cient for minimizing the classi cation risk. This is implied by the classical analysis of SVMs with hinge loss, and the following lemma.

Lemma 5 (R P and R Hinge P have same minimum). For any GHL ℓ,

inf h R P (h) = inf g R Hinge P
(g).

In addition, for any δ > 0, h :

X → R M such that R P (h) ≤ inf h R P (h) + δ,
then for θ a link function for ℓ, it holds that

R Hinge P (θ • h) ≤ inf g R Hinge P (g) + δ.
The theorem then follows from these lemmas. Remark that we show that all GHLs have the same minimum risk over all possible classi ers. In light of this, and in the situation where one would be able to compute (and represent in a machine) the optimal classi er associated to, say, R Hinge P

, there would be no interest in using GHLs. However, this is not the case, and as we will see in the next section, the advantage of using (tractable) GHLs is that it may allow to optimize the risk over a wider class of decision functions than with SVMs or linear MKL.

ℓ p -norm Aggregation of Hinge Losses

So far, we have shown that GHLs can lead to universal consistency, and bene t from a representer theorem in R MN , but they do not in general lead to a localized solution, that is, α can be of low rank. In this section, we propose a family of losses which lead to a localized solution, based on outer aggregation with ℓ p -norms for p ∈ [1, ∞], also referred to as power-means. More precisely, we consider

ℓ agg,p (y, t 1 , . . . , t M ) = M -1/p        M m=1 (1 -yt m ) p +        1/p = M -1/p ((1 -yt m ) + ) m∈[M] p for p ∈ [1, ∞],
which is a convex GHL.

Dual Problem

We now go into more detail into the optimization problem associated with these losses, and derive the corresponding dual problem. Due to strong duality, optimizing the dual problem will be equivalent. Although we have not included a bias term so far for convenience of the theoretical analysis (see also [START_REF] Steinwart | Training svms without o set[END_REF]), our formulation will include one o set per kernel, such that the classi er is

f (x) = θ ( ω 1 , φ 1 (x) + b 1 , . . . , ω M , φ M (x) + b M ) .
The methods that we propose correspond to the primal problem

min ω=(ω 1 ,...,ω M )∈H b∈R M        1 2 M m=1 ω m 2 2 + C N i=1 ℓ agg,p (y i , ω 1 , φ 1 (x i ) + b 1 , . . . , ω M , φ M (x i ) + b M )        .
The o sets are not regularized, as is common for SVMs. We omit in the following the scaling factor M 1/p as this can be integrated into C. Using slack variables, the problem is

inf ω∈H ξ∈R N ×M b∈R M        ω 2 H 2 + C N i=1 ξ i,• p        s.t. ξ i,m ≥ 0 for i ∈ [N ], m ∈ [M] ξ i,m ≥ 1 -y i [ ω m , φ m (x i ) + b m ] for i ∈ [N ], m ∈ [M]. Introducing Lagrange multipliers α, β ∈ R N ×M + , the Lagrangian is L = ω 2 H 2 + N i=1 C ξ i,• p -ξ i,• , α i,• + β i,• + N i=1 M m=1 α i,m (1 -y i [ ω m , φ m (x i ) + b m ]) .
Hence,

inf ω∈H ξ∈R N ×M b∈R M L(α, β, ω, ξ, b) = N i=1 inf ξ i,• ∈R N C ξ i,• p -ξ i,• , α i,• + β i,• + inf ω∈H b∈R M        ω 2 H 2 + N i=1 M m=1 α i,m (1 -y i [ ω m , φ m (x i ) + b m ])        = -C N i=1 sup ξ i,• ∈R M ξ i,• , α i,• + β i,• C -ξ i,• p + inf ω∈H b∈R M        ω 2 H 2 + N i=1 M m=1 α i,m (1 -y i [ ω m , φ m (x i ) + b m ])        .
Denote by f * the convex conjugate of a function f : R M → R, such that

f * (z) = sup x∈R M [ x, z -f (x)] .
For any i ∈ [N ], the value of the maximization problem over ξ i,• is precisely the convex conjugate of the ℓ p -norm as a function of R M . As is classical, the convex conjugate of a norm • over R M is the indicator function of the unit ball of the so-called dual norm

• * de ned for z ∈ R M as z * = sup x∈R M { x, z : x ≤ 1}. Formally, ( • ) * = δ • * ≤1 ,
where δ A is such that δ A (x) = 0 if x ∈ A, and δ A (x) = ∞ otherwise. The dual norm of the ℓ p -norm is well known to be the ℓ q -norm, for q such that 1 p + 1 q = 1. As a consequence, for C ≥ 0,

-C N i=1 sup ξ i,• ∈R M ξ i,• , α i,• + β i,• C -ξ i,• p =        0 if α i,• + β i,• q ≤ C for i ∈ [N ],
-∞ otherwise.

As β has no in uence on the second term, the condition can be equivalently written

α i,• q ≤ C for i ∈ [N ].
In the second term, minimizing with respect to b = (b 1 , . . . , b M ) leads to the condition N i=1 y i α i,m = 0 for all m ∈ [M] (which we abbreviate in the following by α ∈ B), while minimizing with respect to ω gives ω m = N i=1 α i,m y i φ m (x i ). This leads to the dual problem

sup α≥0 β≥0 inf ω∈H ξ∈R N ×M b∈R M L = sup α≥0        1 T α 1 - 1 2 M m=1 α T •,m H m α •,m        s.t. α i,• q ≤ C for i ∈ [N ], α ∈ B,
with, as previously, H m = diag(y)K m diag(y). The quadratic part can be rewritten as vec(α) T Q vec(α) with vec the concatenation operator, and

Q =           H 1 0 0 0 . . . 0 0 0 H M           .
In particular, this is a convex quadratic program. From this dual problem, it follows that the decision function is localized, and of the form

f (x) = θ        N i=1 y i α i,1 K 1 (x i , x) + b 1 , . . . , N i=1 y i α i,M K M (x i , x) + b M ,        .
As already mentioned, this corresponds to a slight generalization to (4.2). The biases can be recovered as follows: let D denote the previous dual objective, such that the KKT optimality conditions at an optimal dual estimate α * imply that, for any m ∈ [M],

max i∈I u (m) y i ∇D(α * ) ≤ b m ≤ min i∈I d (m) y i ∇D(α * ), (4.7)
where for m ∈ [M],

I u (m) = i : y i = 1, α * i,• q < C ∪ i : y i = -1, α * i,m > 0 , I d (m) = i : y i = 1, α * i,m > 0 ∪ i : y i = -1, α * i,• q < C .
As is common, we use for numerical stability the average over all i ∈ I u (m) ∩ I d (m).

When this set is empty, b m may not be unique, and we set b m to the midpoint of the interval de ned by Equation (4.7).

In the presence of the ℓ q -norm constraints, the dual problem can be formulated as a second-order cone programming (SOCP) problem, which consists in minimizing a linear function over the intersection of second order cones of the form

A i x + b i 2 ≤ c i , x + d i .
As shown in [START_REF] Alizadeh | Second-order cone programming[END_REF], ℓ q -norm constraints with 1 < q < ∞ can be reformulated using such second order cone constraints, although this transformation results in a very signi cant increase in the dimensionality of the problem. This simpli es to a QP when p ∈ {1, ∞}, or a quadratically-constrained quadratic program (QCQP) for p = 2. When N and M are moderate, the estimator can hence be obtained using o -theshelf optimization packages. Naturally, the case where p = 1 is readily solved using any SVM solver.

Regularization

The dual is regularized through a • ∞,q -norm constraint, where for

α ∈ R N ×M , α ∞,q = max i∈[N ] α i,• q ,
which is dual to the • 1,p -norm that we use to aggregate the losses corresponding to di erent kernels. This latter norm is often used to induce group sparsity -see, e.g., [START_REF] Sra | Fast projections onto ℓ 1,q -norm balls for grouped feature selection[END_REF] and references therein. We do not require any additional regularization, which has to be contrasted with classical method for even non-localized MKL. In the early days of MKL, the interest was focused on ℓ 1 regularization of the kernel weights, i.e., Ω(s) = λ s 1 , or on constrained versions of this, such as in SimpleMKL [START_REF] Rakotomamonjy | SimpleMKL[END_REF]. However, this type of regularization leads to a non-di erentiable dual problem, which precludes coordinate descent methods such as SMO that have been most in uential in terms of accessibility and scalability of SVMs. More recently, there has been interest in ℓ p regularization for p > 1, i.e., Ω(s) = λ s p p , or constrained versions of this [START_REF] Kloft | E cient and accurate lp-norm multiple kernel learning[END_REF]. Although this produces non-sparse mixtures of kernels, this has been shown to yield at least comparable classi cation performance as ℓ 1 regularization in a variety of settings. In many penalized variants of non-localized MKL, the amount of regularization has to be adjusted in addition to the C parameter, which can be quite expensive. For p > 1, this was alleviated by [START_REF] Kloft | E cient and accurate lp-norm multiple kernel learning[END_REF], who have studied the constrained version where s p ≤ 1, and shown that there exists choices of C such that the problem is equivalent to the (C, λ)penalized problem. Along the lines of these successive developments for MKL, our method based on ℓ p -norm aggregation of hinge losses can be generalized to arbitrary aggregation functions A, which we believe could lead to some other interesting formulations. For a GHL of outer combination type with aggregation function A, one similarly obtains the dual problem

sup α≥0        1 T α 1 - 1 2 M m=1 α T •,m H m α •,m -C N i=1 A * (α i,• )        s.t. α ∈ B,
where A * : R M → R is the convex conjugate of A, such that aggregation functions may be designed to enforce certain penalizations, while retaining a single regularization parameter.

Link Functions

In order to de ne classi ers, we need to specify link functions. As x ∞ ≤ x p ≤ x 1 for p ∈ [1, ∞] and x ∈ R M , any link function for p = ∞ can be rescaled to obtain a link function for any other value of p. Note that ultimately, only the sign of the link function is used for testing. The mean of the kernel scores provides such a valid link function.

Lemma 6. avg(t 1 , . . . , t M ) = 1 M M m=1 t m is a link function for ℓ agg,∞ , i.e., for any y and

t ∈ R M , ℓ agg,∞ (y, t 1 , . . . , t M ) ≥ (1 -yavg(t 1 , . . . , t M )) + .

Experiments

In this section, we assess on real data the performance of the two proposed methods, together with that of alternative methods for localized MKL. We consider the following baselines in our experiments:

• ℓ p -MKL. We used linear MKL, both with ℓ 1 and ℓ 2 regularization, using the SHOGUN library. For ℓ 1 regularization, we used the SILP formulation and chunking-based algorithm from [START_REF] Sonnenburg | Large scale multiple kernel learning[END_REF], where the nonnegative weights of the kernels are constrained to sum to one, while the ℓ p -constrained formulation and algorithm from [START_REF] Kloft | E cient and accurate lp-norm multiple kernel learning[END_REF] was used for ℓ 2 regularization.

• HFM. We implemented Heterogeneous Feature Machines from [START_REF] Cao | Heterogeneous feature machines for visual recognition[END_REF] which uses a logistic loss with a ℓ 1,2 regularization, as described in (4.4).

• LMKL. We used the localized MKL formulation and implementation introduced by [START_REF] Gönen | Localized multiple kernel learning[END_REF]. The gating functions are based on the original vector data representation when available, and the method was omitted from the comparisons when unavailable.

• PS-MKL. We implemented PS-MKL as described in [START_REF] Yang | Per-sample multiple kernel approach for visual concept learning[END_REF] using alternate optimization. When

(β i,m ) is xed, (α i ) is optimized using LIBSVM. When (α i ) is xed, (β i,m
) is optimized using a linear programming solver. Note that with respect to (β i,m ), the problem is actually a semi-in nite linear program (SILP), which can be solved by constraint generation. As described in the original paper, we add a constraint at every iteration, such that the cost of solving the corresponding linear program (in dimension MN ) increases with the iteration number.

To the best of our knowledge, there was no previous experimental comparison of any two of HFM, LMKL, and PS-MKL, although they address a similar question. In addition, we consider the following algorithms based on ℓ p -norm hinge loss aggregation:

• ℓ agg,1 -average of SVMs. This corresponds to p = 1, and amounts to aggregating the decision of independent SVMs.

• ℓ agg,∞ -maximum of hinge losses. This corresponds to p = ∞, and amounts to aggregation of the hinge losses using the max, or, alternatively, to a . ∞,1 constraint in the dual.

For each of these two methods that we propose, we use avg as link function.

UCI Datasets

We conducted experiments on wpbc, ionosphere, sonar, liver and pima (see Table 4.1). In each case, we used 25 Gaussian kernels with bandwidths regularly distributed in logarithmic space. The SVM parameter C is selected using 10-fold cross validation. The average testing accuracy (in percentage) over 10 train/test splits is shown in Figure 4 We rst note that in pima and sonar, MKL performed as well or nearly as well as the localized MKL methods. This has also been observed in [START_REF] Gönen | Multiple kernel learning algorithms[END_REF] when comparing LMKL to various MKL variants, and is likely a consequence of the important expressive power of the Gaussian kernels. No method for localized MKL seem to exhibit uniformly better results. Among localized methods, LMKL, HFM, and ℓ agg,1 tend to perform best. 

Image Classi cation

In addition, we performed experiments on classical image classi cation tasks:

• Caltech101. This dataset [START_REF] Fei-Fei | Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF] comprises images from 101 classes, with about 40 to 800 images per category. We used exponential kernels based on χ 2 divergences over PHOW gray/color and SSIM features at three di erent scales, following [START_REF] Vedaldi | Multiple kernels for object detection[END_REF], and amounting to a total of 9 kernels.

• Oxford Flowers. This dataset consists in images from 102 classes of owers (Nilsback and Zisserman, 2008), with about 40 to 250 images per category, and signi cant pose, scale and illumination variations. We used kernels from [START_REF] Nilsback | Automated ower classi cation over a large number of classes[END_REF], which consists in exponential kernels based on χ 2 divergences over color histograms, SIFT features both on pre-segmented foreground region and on the corresponding boundary, and histogram of gradients (HOG) features, resulting in a total of 4 kernels.

In each case, we used three training/testing splits, with 15 positive examples per class. Onevs-rest (OVR) classi cation was used, and all algorithms were modi ed to include di erent weights C + and C -in their loss for positive and negative examples, respectively. Although oversampling positive examples can sometimes be bene cial [START_REF] Perronnin | Towards good practice in large-scale learning for image classi cation[END_REF], we used unbiased weights The methods that we propose achieve the highest testing accuracies in both benchmarks. We obtain similar accuracies both for p = 1 and p = ∞. This is discussed further in Section 4.5. On the other hand, we obtained the lowest test accuracy using PS-MKL. This is surprising, as particularly good results compared to various MKLs are provided on this dataset in [START_REF] Yang | Per-sample multiple kernel approach for visual concept learning[END_REF]. First note that we use di erent and somewhat simpler kernels here, such that we do not expect to necessarily match or exceed accuracies provided in the original paper. More importantly, PS-MKL sometimes failed to converge within our maximum time window of two hours for some combinations of parameters and classes, which can have a large impact on OVR classi cation. Although this could be xed in principle (e.g., using multiple initializations), we believe that this is an inherent drawback of alternate optimization.

C + = C/N + , C -= C/N -,
In the previous experiments, we do not provide formal timings for training, as there are no publicly available implementations of either HFM and PS-MKL, and not all algorithms have a computational cost that can be easily summarized in terms of number of calls to a SVM solver or gradient evaluations as is often done. Informally, the two variants of MKL, as well as LMKL and our method with ℓ agg,1 were the fastest, followed by HFM and our method with ℓ agg,∞ , while PS-MKL was the slowest.

Discussion

The rst method that we propose based on averaging decision functions from independent SVMs clearly achieves the best tradeo between accuracy and training time (as well as ease of implementation). The good performance of this simple method may be informally explained in the following way: averaging decisions associated to di erent kernels amounts to a weighted voting. Due to the large margin property of SVMs, kernels that are unsure are likely to abstain by producing low magnitude decisions, while kernels that are con dent are likely to sway the nal decision.

In all our results, p = 1 is always at least as good as p = ∞. Although we have not reported such results here, the methods corresponding to aggregation with p ∈]1, ∞[ are also outperformed by p = 1 on our experiments. Hence, coupling the kernels does not in general seem to improve accuracy. This can be explained through the idea that by forcing kernels to agree through the coupling, the classi ers associated to each kernel are individually not as good as without coupling. The previous observations re ects a result from MKL [START_REF] Gehler | On feature combination for multiclass object classi cation[END_REF], that under reasonable scalings of the kernels, using a SVMs with the average kernel K = 1 M M m=1 K m leads in many situation to a performance close to that of full-edged MKL, which is very similar to the phenomenon that we observe here.

Proofs

Proof of Lemma 2

Proof. Let ε ∈ (0, 1), and ω ε ∈ H that is ε-optimal for the risk R Q,λ , such that

R Q,λ (ω ε ) ≤ inf ω∈H R Q,λ (ω) + ε. Since λ ω ε 2 H ≤ R Q,λ (ω ε ) ≤ R Q,λ (0) + ε ≤ 1 + ε ≤ 2, such that ω ε H ≤ δ λ .
The rest of the proof proceeds as in (Steinwart, 2005, Lemma 3.1) for SVMs.

Proof of Lemma 3

Proof. We will consider covering numbers with respect to

ω H,∞ = max m∈[M] ω m H m .
Let (ω (1) , . . . , ω (n) ) ∈ H n be an ε-cover of δ λ B H with respect to . H,∞ , and for any i ≤ n,

decompose ω (i) = (ω (i) 1 , . . . , ω (i) M ). In particular, for any ω = (ω 1 , . . . , ω M ) ∈ δ λ B H , there exists i ≤ n such that ω -ω (i) H,∞ < ε. Let x ∈ X, and y ∈ {-1, 1} be xed. For any m, ω m -ω (i) m , φ m (x) ≤ ω m -ω (i) m H m φ m (x) H m ≤ ε K m (x, x).
As ℓ is a GHL,

ℓ (y, ω 1 , φ 1 (x) , . . . , ω M , φ M (x) ) -ℓ y, ω (i) 1 , φ 1 (x) , . . . , ω (i) M , φ M (x) ≤ L ℓ max m∈[M] ω m -ω (i) m , φ m (x) ≤ ε L ℓ max m∈[M] K m (x, x). Hence, sup x∈X, y∈{-1,1} ℓ (y, ω 1 , φ 1 (x) , . . . , ω M , φ M (x) ) -ℓ y, ω (i) 1 , φ 1 (x) , . . . , ω (i) M , φ M (x) ≤ ε L ℓ sup x∈X max m∈{1,...,M} K m (x, x) .
As a consequence, the functions

f i = ℓ •, ( ω (i) m , φ m (•) ) m∈[M] , 1 ≤ i ≤ n form an (ε L ℓ L K )- covering of F = ℓ •, ( ω m , φ m (•) ) m∈[M] : ω ∈ δ λ B H ,
which is a subset of the space of continuous functions from X ×{-1, 1} to R + (endowed with the supremum norm). Hence,

N (F , . ∞ , ε) ≤ N δ λ B H , . H,∞ , ε L ℓ L K .
For any f ∈ F , we have f ∞ ≤ 1 + L ℓ δ λ L K . Hence, using Hoe ding's inequality,

P P N       sup ω∈δ λ B H R P N (ω) -R P (ω) ≥ ε       ≤ 2N δ λ B H , . H,∞ , ε L ℓ L K e -2ε 2 N (L ℓ δ λ L K ) 2 .
Finally, for any ε > 0,

N (δ λ B H , . H,∞ , ε) ≤ M m=1 N (δ λ B H m , . H m , ε).
The result follows.

Proof of Lemma 4

Proof. Let ε > 0 and

ω ε ∈ H such that R P (ω ε ) ≤ inf ω∈H R P (ω) + ε 2 . For all λ ≤ ε 2 ω ε 2 H , inf ω∈H R P,λ (ω) ≤ R P,λ (ω ε ) ≤ R P (ω ε ) + ε 2 ≤ inf ω∈H R P (ω) + ε.
Hence,

lim λ→0 inf ω∈H R P,λ (ω) = inf ω∈H R P (ω).
We sketch the rest of the proof, which consists in showing that one can approximate the optimal risk over all measurable functions from X to R M using bounded functions, and in turn that bounded functions from X to R M can be approximated by elements from the RKHS. Let g = (g 1 , . . .

, g M ) with g m ∞ < ∞ for m ∈ [M]. From classical argu- ments, there exists (g n ) such that g n = (g n 1 , . . . , g n M ) ∈ C(X, R M ), with sup m∈[M] g n m ∞ ≤ sup m∈[M] g m ∞ , and sup m∈[M] g n m -g m 1 → 0. For any m, since K m is universal, H m is dense in C(X, R).
As the closure of a cartesian product of sets coincides with the cartesian product of the closures,

H is dense in C(X, R) × . . . × C(X, R) = C(X, R M ). As a conse- quence, there exists (h n ) such that h n = (h n 1 , . . . , h n M ) ∈ H, and sup m∈[M] h n m -g n m ∞ → 0.
Hence, for n large enough, h n is bounded and the sequence converges point wise P Xalmost everywhere to g. The results follows from the fact the a generalized hinge loss is a Lipschitz function, and Lebesgue's theorem, as in (Steinwart and Christmann, 2008, Proposition 5.27).

Proof of Lemma 5

Proof. Let g 0 :

X → R such that R Hinge P (g 0 ) = inf g R Hinge P (g). Consider h 0 : X → R M , such that h 0 (x) = (g 0 (x), . . . , g 0 (x)). Then, R P (h 0 ) = R Hinge P (g 0 ) ≤ inf g R Hinge P (g). As a consequence, inf h R P (h) ≤ inf g R Hinge P (g). Conversely, let h 0 : X → R M , such that h 0 = (h 1 0 , . . . , h M 0 ), and let ψ(x) = θ(h 1 0 (x), . . . , h M 0 (x)), such that R P (h 0 ) ≥ R Hinge P (ψ) ≥ inf g R Hinge P (g).
As a consequence, inf h R P (h) ≥ inf g R Hinge P

(g). This shows that

inf h R P (h) = inf g R Hinge P
(g).

Proof of Theorem 3

Proof. Let ǫ > 0. From (Steinwart, 2005, Proposition 3.3), there exist δ > 0, such that for all measurable g 0 :

X × {-1, 1} → R, R Hinge P (g 0 ) ≤ inf R Hinge P + δ ⇒ R 0-1 P (g 0 ) ≤ R 0-1 P + ǫ.
Let us pick such a δ > 0. Since λ → 0, by Lemma 4, we have lim

N →∞ inf ω∈H R T ,λ N (ω) = inf h R P (h)
, and as a consequence, there exists N 1 such that for

N ≥ N 1 , inf ω∈H R T ,λ N (ω) -inf h R P (h) ≤ δ 3 . (4.8) 
Since λ → 0, there exists ρ > 0 and N 2 ∈ N such that for N ≥ N 2 we have by Lemma 3 and using the condition on (λ N ),

R P N (ω P N ,λ ) -R P (ω P N ,λ ) < δ 3 (4.9)
occurs with probability less than ε/2. Similarly, using Hoe ding's inequality,

R P N (ω P,λ ) -R P (ω P,λ ) < δ 3 (4.10)
occurs with probability less than ε/2. Hence, the probability that both of these two hold is at least

1 -ε. For N ≥ max (N 1 , N 2 ), with probability 1 -ǫ, R P (ω P N ,λ N ) ≤ R P,λ N (ω P N ,λ N ) ≤ R P N ,λ N (ω P N ,λ N ) + δ 3 by (4.9) ≤ R P N ,λ N (ω P,λ N ) + δ 3 by de nition of ω T ,λ N ≤ R P,λ N (ω P,λ N ) + 2δ 3 by (4.10) ≤ inf h R P (h) + δ by (4.8) .
Finally, using Lemma 5, with h : X → R M associated to ω P N ,λ N and g = θ •h, it holds that

R Hinge P (g) ≤ inf g R Hinge P (g) + δ.
Then, R Hinge P (g) ≤ inf R Hinge P + δ, and as a consequence, R 0-1 P (sign g) ≤ R 0-1 P + ǫ.

Part II Detection of Structured Objects

Introduction

In this chapter, we are interested in the following statistical problem: given multiple observations from a Gaussian multivariate distribution we want to test whether the corresponding covariance matrix is diagonal against non-diagonal alternatives. This type of problem has recently received a lot of attention in the literature, where di erent models and choices of non-diagonal covariance alternatives were considered [START_REF] Hero | Hub discovery in partial correlation graphs[END_REF][START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF][START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Berthet | Optimal detection of sparse principal components in high dimension[END_REF]Cai et al., 2013). In this work, we consider the detection of sparse positive correlations, which has been treated in the case of a unique multivariate sample (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF], or of multiple samples (Arias- [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF]. However, our work deviates from the existing literature in that we consider an adaptive sensing or sequential experimental design setting. More precisely, data is collected in a sequential and adaptive way, where data collected at earlier stages informs the collection of data in future stages. Adaptive sensing has been studied in the context of other detection and estimation problems, such as in detection of a shift in the mean of a Gaussian vector [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Haupt | Distilled sensing: Selective sampling for sparse signal recovery[END_REF], in compressed sensing (Arias- [START_REF] Castro | Detection of correlations with adaptive sensing[END_REF][START_REF] Haupt | Sequentially designed compressed sensing[END_REF][START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF], in experimental design, optimization with Gaussian processes [START_REF] Srinivas | Gaussian process optimization in the bandit setting: No regret and experimental design[END_REF], and in active learning [START_REF] Chen | Near-optimal batch mode active learning and adaptive submodular optimization[END_REF]. Adaptive sensing procedures are quite exible, as the data collection procedure can be "steered" to ensure most collected data provides important information. As a consequence, procedures based on adaptive sensing are often associated with better detection or estimation performances than those based on non-adaptive sensing with a similar measurement budget. In this work, our objective is to determine whether this is also the case for detection of sparse positive correlations, and if so, to quantify how much can be gained.

Model

Let U t ∈ R n , t = 1, 2, . . . be independent and identically distributed (i.i.d.) normal random vectors with zero mean and covariance matrix Σ S , where S is a subset of {1, . . . , n}. Let ρ > 0 and de ne the covariance matrix as

(Σ S ) i,j =          1, i = j ρ, i j, with i, j ∈ S 0, otherwise . 
Our main goal is to solve the hypothesis testing problem

H 0 : S = ∅ H 1 : S ∈ C ,
where C is some class of non-empty subsets of {1, . . . , n}, each of size k. In other words, under the alternative hypothesis, there exists an unknown subset S ∈ C such that corresponding components are positively correlated with strength ρ > 0. We will often denote the elements of S as the subset of contaminated coordinates. In all cases we assume that the cardinality of each S ∈ C is the same: card(S) = k. We consider the following types of classes C for the contaminated coordinates:

• k-intervals: all sets of k contiguous coordinates, of the form {z, z + 1, . . . , z + k -1} for some 1 ≤ z ≤ nk + 1; this class has size linear in n, and we denote it by C [k] .

• disjoint k-intervals: the class D [k] de ned as

D [k] = {I 1 , .
. . , I ⌊n/k⌋ }, I j = {(j -1)k + 1, . . . , jk}, j ∈ {1, . . . , ⌊n/k⌋} .

• k-sets: all subsets of {1, . . . , n} of cardinality k. We denote this class by C k .

For any t = 1, 2, . . . denote by P ∅ the distribution of U t under the null, and by P S the distribution under the alternative with contaminated set S ∈ C. In addition, for a positive integer N , we denote by P ⊗N the product measure P ⊗ . . . ⊗ P with N factors, and we let as previously [N ] = {1, . . . , N }.

Adaptive vs. Non-adaptive Sensing and Testing

Clearly, the above hypothesis testing problem would be trivial if one has access to an innite number of i.i.d. samples (U t ) t∈{1,...,∞} . Therefore, one must include some further restrictions on the data that is made available for testing. In particular, we will only consider testing procedures that make use of at most M entries of the matrix (U t i ) t∈{1,..., ∞},i∈[n] . It is useful to regard this as a matrix with n columns and an in nite number of rows.

The key idea of adaptive sensing is that information gleaned from previous observations can be used to guide the collection of future observations. To formalize this idea consider the following notational choices: for any subset A ⊆ [n], we write |A| = card(A) the cardinality of A. When A is nonempty we write U A = (U i ) i∈A ∈ R |A| for the subvector of a vector U ∈ R n indexed by coordinates in A. Finally, if U is a random variable taking values in R n denote by P| A the distribution of U A .

Let S ∈ C ∪{∅} be the set of contaminated coordinates, and M ≥ 2 be an integer. In our model we are allowed to collect information as follows. We consider successive rounds. At round t ∈ N, one chooses a non-empty query subset A t ⊆ [n] of the components, and observes U t A t . To avoid technical di culties later on, we de ne the observation made at time t as X t , so that X t A t = U A t and X t

[n]\A t = 0. In words, one observes the A t coordinates of U t , while the remaining coordinates are completely uninformative. Each successive round proceeds in the same fashion, under the requirement that the budget constraint

∞ t=1 |A t | ≤ M (5.1)
is satis ed. Note that clearly, the number rounds is no larger than M. Again, to avoid technical di culties we assume the total number of rounds to be M in what follows, even if this means A t = ∅ for some values of t. Figure 5.1 illustrates how information can be obtained within the sensing model for n = 60, under the alternative hypothesis with S = [10] (i.e., the leftmost 10 components are contaminated). The query sequence is

A 1 = [60], A 2 = [30], A 3 = {6, . . . , 15} ∪ {25, . . . , 30}, corresponding to a budget M of at least |A 1 | + |A 2 | + |A 3 | = 106 coordinate measurements.
In our setting, one can select the query sequence randomly and sequentially, and hence, we write the query sequence (a 1 , . . . , a M ) as a realization of a sequence (A 1 , . . . , A M ) of M random subsets of [n], some of which may be empty, and such that M t=1 |A t | ≤ M. A key aspect of adaptive sensing is that the query at round T may depend on all the information available up to that point. We assume A t can depend on the history at time Figure 5.1: Illustration of a query sequence: samples from X 1 (top), X 2 (middle), X 3 (bottom)

t -1, which we denote by H t-1 = (A j , X j ) j∈ [t-1] . More precisely, we assume A t is a measurable function of H t-1 , and possibly of additional randomization. We call the collection of all the conditional distributions of A t given H t-1 for t ∈ [M] the sensing strategy. In particular, if there is no additional randomization, A t is a deterministic function of H t-1 . We denote the set of all possible adaptive sensing strategies with sensing budget M as AS(M).

At this point it important to formally also clarify what is meant by non-adaptive sensing. This is simply the scenario where

(A t ) t∈[M] is independent of (U t i ) t∈[M] , i ∈ [n].
In other words, all the decisions regarding the collection of data must be taken before any observations are made. The collection (A t ) t∈ [M] is known as a non-adaptive sensing strategy, and the collection all such strategies satisfying the sensing budget (5.1) is denoted by NAS(M). A natural and important choice is uniform sensing, where A t = [n] for t = 1, . . . , M/n (assume M is divisible by n). In words, one collects m = M/n i.i.d. samples from P S . This problem has been thoroughly studied in (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF]; we summarize some of the main results of (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF] in Section 5.1.3. Now that we have formalized how data is collected, we can perform statistical tests. Formally, a test is a measurable binary function φ : H M → φ(H M ) ∈ {0, 1}, that is, a binary function of all the information obtained by the (adaptive or non-adaptive) sensing strategy. The result of the test is φ(H M ), and if this is one we declare the rejection of the null hypothesis. Finally, an adaptive testing procedure is a pair (A, φ) where A is a sensing strategy and φ is a test.

For any sensing strategy A and S ∈ C, de ne P A ∅ (resp. P A S ) as the distribution under the null (resp. under the alternative with contaminated set S) of the joint sequence (A 1 , X 1 , . . . , A M , X M ) of queries and observations. The performance of an adaptive testing procedure (A, φ) is evaluated by comparing the worst-case risk

R(A, φ) = P A ∅ (φ 0) + max S∈C P A S (φ 1)
to the corresponding minimax risk R * AS = inf A∈AS(M),φ R(A, φ), where the in mum is over all adaptive testing procedures (A, φ) with a budget of M coordinate measurements. The minimax risk R * AS depends on M, although we do not write this dependence explicitly for notational ease. Likewise, the non-adaptive minimax risk R * NAS can be de ned in an analogous way.

Let m = M/n be the equivalent number of full vector measurements. In the following, we will just say m measurements for simplicity. This change of parameters allows for easier comparison with the special case of uniform sensing, where a full vector of length n is measured m times. In particular, when m = M/n is an integer, uniform sensing corresponds to the deterministic sensing procedure with A t = [n] for t ∈ [m], A t = ∅ for t > m, and P A S = P ⊗m S for S ∈ C ∪ {∅}. We are interested in the high-dimensional setting, where the ambient dimension n is high. All quantities such as the correlation coe cient ρ, the contaminated set size k, and the number of vector measurements m will thus be allowed to depend on n. In particular, we always assume that n, k and m all go to in nity simultaneously, albeit possibly at di erent rates, and our main concern is to identify the range of parameters in which it is possible to construct adaptive tests whose risks converge to zero. We consider the sparse regime where k = o(n). Although the case of xed ρ is of interest, most of our results will be concerned with the case where ρ converges to zero with n. When ρ = 1, the problem is trivial as detecting duplicate entries in a single sample vector from the distribution allows one to perform detection perfectly, while for xed ρ < 1, the problem essentially becomes easier as the measurement budget m increases.

Uniform Sensing and Testing

The simplest and most-natural type of non-adaptive sensing strategy we can consider is uniform sensing. As stated before, this corresponds to the choice A t = [n] for t = 1, . . . , m (recall that m = M/n), that is one collects m i.i.d. samples from P S . The minimax risk and the performance of several uniform sensing testing procedures have been analyzed in [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF]. The authors of that work analyzed the performance of tests based on the localized squared sum statistic

T loc = max S∈C m t=1        i∈S X t i        2 ,
which was shown to be near-optimal in a variety of scenarios. The localized squared sum test that rejects the null hypothesis when T loc exceeds a properly chosen threshold was shown to have an asymptotically vanishing risk when, for some positive constant c,

ρk ≥ c max        log |C| m , log |C| m        . (5.2)
This condition was shown to be near-optimal in most regimes for the classes of k-sets and k-intervals, unless k exceeds √ n. In this latter and rather easier case, the simple nonlocalized squared sum statistic T s = m t=1 n i=1 X t i 2 is near optimal. From (5.2), it is easy to see that the size of the class plays an important role, as a smaller class C leads to a weaker su cient condition for detection. In particular, the localized squared sum test has asymptotically vanishing risk when

k-sets: ρ ≥ c max       log n km , log n m       , k-intervals: ρ ≥ c max       1 k log n m , log n km       .
Necessary conditions for detection almost matching the previous su cient conditions have been derived in (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF]. Although the dependence on the ambient dimension n is only logarithmic, this can still be signi cant in regimes where n is large but m is small.

Related Work

A closely related problem is that of detecting non zero mean components of a Gaussian vector X, referred to as the detection-of-means problem. This problem has received ample attention in the literature, see, for instance, [START_REF] Ingster | Some problem of hypothesis testing leading to in nitely divisible distributions[END_REF][START_REF] Baraud | Non-asymptotic minimax rates of testing in signal detection[END_REF][START_REF] Donoho | Higher criticism for detecting sparse heterogeneous mixtures[END_REF][START_REF] Arias-Castro | Searching for a trail of evidence in a maze[END_REF][START_REF] Addario-Berry | On combinatorial testing problems[END_REF][START_REF] Hall | Innovated higher criticism for detecting sparse signals in correlated noise[END_REF]) and references therein. The detection-of-means problem can be formulated as the multiple hypothesis testing problem

H 0 : X ∼ N (0, I n ), H 1 : X ∼ N (µ1 S , I n ), for some S ∈ C .
where 1 S is the indicator vector of S, I n is the identity matrix, and µ 0. In other words, one needs to decide whether the components of X are independent standard normal random variables or they are independent normals with unit variance, and there is a (unknown) subset S of k components that have non-zero mean. The set of contaminated components S is assumed to belong to a class C of subsets of [n]. The behavior of the minimax risk has been analyzed for various class choices C [START_REF] Ingster | Some problem of hypothesis testing leading to in nitely divisible distributions[END_REF][START_REF] Butucea | Detection of a sparse submatrix of a high-dimensional noisy matrix[END_REF][START_REF] Arias-Castro | Searching for a trail of evidence in a maze[END_REF][START_REF] Addario-Berry | On combinatorial testing problems[END_REF]. Detection and estimation in this model has been analyzed under adaptive sensing in [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF][START_REF] Haupt | Distilled sensing: Selective sampling for sparse signal recovery[END_REF], where it is shown that, perhaps surprisingly, all su ciently symmetric classes C lead to the same almost matching necessary and su cient conditions for detection. This is quite di erent from the non-adaptive version of the problem where size and structure of C in uence, in a signi cant way, possibilities of detection (see [START_REF] Addario-Berry | On combinatorial testing problems[END_REF]).

Observe that the correlation model of Section 5.1.1 can be rewritten as

H 0 : U t i = Y t i , i ∈ {1, . . . , n}, H 1 : U t i =        Y t i , i S, 1 -ρY t i + √ ρN t , i ∈ S for some S ∈ C .
with (Y t i ), N t independent standard normals, and that, as a consequence, the correlation model can be seen as a random mean shift model, with a slightly di erent normalization. However, most results on adaptive sensing for detection-of-means heavily hinge on the independence assumption between coordinates, which is not applicable for the detection of correlations. In particular, we shall see that the picture is more subtle in the presence of correlations.

A second problem, perhaps even more related, is that of detection in sparse principal component analysis (sparse PCA) within the rank one spiked covariance model, de ned as the testing problem

H 0 : X ∼ N (0, I n ), H 1 : X ∼ N (0, I n + θuu T ), for some u ∈ R n with u 0 = k , u 2 = 1 ,
where u 0 is the number of nonzero elements of u, and u 2 is the Euclidean norm of u. There is, also for this problem, a growing literature, see [START_REF] Johnstone | On consistency and sparsity for principal components analysis in high dimensions[END_REF][START_REF] Berthet | Optimal detection of sparse principal components in high dimension[END_REF]Cai et al., 2013). Note that when the coordinates of u are constrained in {0, 1/ √ k}, we recover a problem akin to that of detection of positive correlations, but with unnormalized variances over the contaminated set. The related problem of support estimation has been considered in [START_REF] Amini | High-dimensional analysis of semide nite relaxations for sparse principal components[END_REF] under the similar assumption that coordinates of u are constrained in 0, ±1/ √ k .

Outline

The main contribution of this work is to show that adaptive sensing procedures can signi cantly outperform the best non-adaptive tests for the model in Section 5.1.1. We tackle the classes of k-intervals and k-sets. For k-intervals, necessary and su cient conditions are almost matching. In particular, the number of measurements m necessary and sucient to ensure that the risk approaches zero has essentially no dependence on the signal dimension n. This is in stark contrast with the non-adaptive sensing results, where it is necessary for m to grow logarithmically with n.

For k-sets, we obtain su cient conditions that still depend logarithmically in n, but which improve nonetheless upon uniform sensing in some regimes. Although not uniform, the proposed sensing strategy is still non-adaptive. In addition to this, in a slightly di erent model akin to that of sparse PCA mentioned above, we show that all previous results (both non-adaptive and adaptive) carry on, and we obtain a tighter su cient condition for detection of k-sets, that is nearly independent of the dimension n, and also improves signi cantly over non-adaptive sensing. Our results are summarized in Table 5.1. The chapter is structured as follows. We obtain a general lower bound in Section 5.2, and study various classes of contaminated sets. In Section 5.3, we propose procedures for ksets and k-intervals. In Section 5.4, we prove a tighter su cient condition under a slightly di erent model, for k-sets. Finally, we conclude with a discussion in Section 5.5. This chapter is joint work with Rui Castro and Gábor Lugosi [START_REF] Castro | Detection of correlations with adaptive sensing[END_REF] 

Notation

We denote by E P the expectation with respect to a distribution P. The Kullback-Leibler (KL) divergence between two probability distributions P and Q such that P is absolutely continuous with respect to Q is KL(P || Q) = E P [log (dP/dQ)], with dP/dQ the Radon- Nikodym derivative of P with respect to Q. When P and Q admit densities f and g, respectively, with respect to the same dominating measure, we write KL(P || Q) = KL(f || g). We denote by 1 A the indicator function of an event or condition A.

Lower Bounds

We say that a sequence z = (a 1 ,

x 1 , . . . , a M , x M ) ∈ 2 [n] × R n M is M-admissible if M t=1 |a t | ≤ M.
Consider an adaptive testing procedure (A, φ), with query sequence (A 1 , . . . , A M ) ∈ 2 [n] M , and (X 1 , . . . , X M ) ∈ (R n ) M the corresponding sequence of observations. Let S ∈ C ∪ {∅} be the set of contaminated coordinates. For t ∈ [M], we denote by

f A t | H t (• | h t )
the probability mass function of A t given H t = h t , and by f X t | A t ; S (•|a t ) the density of X t | A t = a t over R n with respect to a suitable dominating measure over R n (e.g., the product of Lebesgue measure and a point mass at 0). Therefore, the joint sequence Z = (A 1 , X 1 , . . . , A M , X M ) admits a density f S with respect to some appropriate dominating measure. For any M-admissible sequence (a 1 , x 1 , . . . , a M , x M ), this density factorizes as

f S (a 1 , x 1 , . . . , a M , x M ) = M t=1 f A t | H t (a t | a 1 , x 1 , . . . , a t-1 , x t-1 ) f X t | A t ; S (x t | a t ) .
For concreteness, let the density f S be zero on any joint subsequence that is not Madmissible. It is crucial to note that all the terms in the factorization corresponding the sensing strategy do not depend on S. This is central to our arguments, as likelihood ratios simplify. More precisely, for any M-admissible sequence (a 1 , x 1 , . . . , a M , x M ),

f ∅ (a 1 , x 1 , . . . , a M , x M ) f S (a 1 , x 1 , . . . , a M , x M ) = M t=1 f X t | A t ; ∅ (x t | a t ) f X t | A t ; S (x t | a t ) = M t=1 f X t A t | A t ; ∅ (x t a t | a t ) f X t A t | A t ; S (x t a t | a t )
, where the second equality follows from the sensing model. Likelihood ratios play a crucial role in the characterization of testing performance. In particular, a classical argument (see, e.g., (Tsybakov, 2009, Lemma 2.6)) shows that, for any distributions P, Q over a common measurable space Ω and any measurable function φ : Ω → {0, 1},

P(φ 0) + Q(φ 1) ≥ 1 4 exp (-KL(P || Q)) . Therefore R * = inf (A,φ) P A 0 (φ 0) + max S∈C P A S (φ 1) = inf (A,φ) max S∈C P A 0 (φ 0) + P A S (φ 1) ≥ inf (A,φ) max S∈C 1 4 exp(-KL(P A 0 || P A S )) = 1 4 exp(-sup A min S∈C KL(P A 0 || P A S )).
This entails that the minimax risk under adaptive sensing can be lower bounded by upper bounding the maximin KL divergence. Here, in order to bound the maximum KL divergence, we will take an approach similar to [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF] for detection-of-means under adaptive sensing, although our setup di ers slightly. In [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF], the testing procedures measure a single coordinate at a time, while we need multiple measures per step in order to capture correlations. We have the following necessary condition.

Theorem 2. Let C be either the class of k-sets or k-intervals or disjoint k-intervals, and de ne

D(ρ, k) = min ρ 2(1 -ρ)
, ρ 2 (k + 1) .

Then the minimax risk R * AS of adaptive testing procedures with a measurement budget of M = mn coordinates is lower bounded as

R * AS ≥ exp (-mkD(ρ, k)) 4 .
Proof. First remark the following: for ρ ≤ 1/2, and for any A ⊆ [n],

KL(P 0 | A || P S | A ) ≤ D(ρ, k) |A ∩ S| .
The proof is given in Appendix 5.6.2. The KL divergence between the joint probability models can we written as

KL(P A 0 | P A S ) = M t=1 E P A 0        E P A 0        log f X t A t |A t ; ∅ (x t A t |A t ) f X t A t |A t ; S (x t A t |A t ) A t               = M t=1 E P A 0 KL(f X t A t |A t ; ∅ (•|A t ) || f X t A t |A t ; S (•|A t )) = M t=1 E P A 0 [KL(P 0 | A t || P S | A t )] ≤ D(ρ, k) M t=1 E P A 0 |A t ∩ S| = D(ρ, k) i∈S b i using the shorthand b i = M t=1 E P A 0 [1 i∈A t ]. Hence, sup A min S∈C KL(P A 0 | P A S ) ≤ D(ρ, k) sup A min S∈C i∈S b i .
De ne the class complexity

C(C, M) = sup        min S∈C i∈S b i : b ∈ R n + , n i=1 b i ≤ M        .
For any sensing strategy A, it holds that The lower bound argument in Theorem 2 yields the same lower bound for detection using any of the three classes of interest. This phenomenon is akin to what was observed in the context of detection-of-means under adaptive sensing, where the lower bounds are the same provided the classes of contaminated components are symmetric. In this setting, it was shown in addition in [START_REF] Castro | Adaptive sensing performance lower bounds for sparse signal estimation and testing[END_REF] that the condition in the lower bound is essentially su cient and therefore, unlike in the non-adaptive counterpart of the problem, knowledge of the structure of C does not make the detection problem any easier. However, the problem of detection of correlations considered here seems to be more subtle in that one lacks matching upper bounds for all cases. Namely, we do not know whether: (a) for detectionof-correlations structure does not help; or (b) the lower bound is loose for some classes, in particular the class of k-sets.

n i=1 b i = M t=1 E P A 0 [|A t ∩ S|] ≤ M, such that sup A min S∈C KL(P A 0 | P A S ) ≤ D(ρ, k) C(C, M) .
Recall that we are interested in the characterization of the regimes for which the risk R *

AS converges to zero as m, k, n → ∞. Clearly, if ρ decays at a rate no faster than 1/k, the previous necessary condition for the risk to vanish asymptotically is always satis ed. Nevertheless, the lower bound gives an indication about the rate at which the risk converges to zero. However, when ρ = o (1/k) the situation is di erent, and Theorem 2 leads to the following necessary condition.

Corollary 1. Let C denote either the class of k-sets, k-intervals or disjoint k-intervals, and suppose ρ = o (1/k). For R * AS to converge to zero it is necessary that ρk √ m → ∞.

Proof. From the previous results, it is necessary that

mk min ρ 2(1 -ρ) , ρ 2 (k + 1)
goes to in nity for the risk to converge to zero. This quantity is bounded by mρ 2 k 2 asymptotically, and

mρ 2 k 2 → ∞ if and only if ρk √ m → ∞.
Recall that a su cient condition for non-adaptive detection of k-intervals with the localized squared sum test is ρk √ m > c log(n) and ρkm > c log(n) .

When ρ = o(1/k) one has, asymptotically, ρk < 1 and the rst condition is stronger than the second. Non-adaptive detection with k-intervals is thus possible asymptotically for ρk √ m > c log(n). This corresponds to the condition of Corollary 1 up to a logarithmic factor in n, which implies that in the case of k-intervals, one can improve at most by a factor logarithmic in n with adaptive sensing. This can be still quite signi cant, however, and we show in Section 5.3 that this can indeed be achieved.

Adaptive Tests

Sequential Thresholding

In the context of support recovery from signals with independent entries using adaptive sensing, (Malloy and Nowak, 2011b,a) have proposed the sequential thresholding (ST) procedure, which is based on an intuitive bisection idea. Although initially introduced for support estimation, ST can be easily adapted to detection, and we present such results here. In addition, we present a slight generalization to signals with independent vector entries.

Let Q 0 and Q 1 be two probability distributions over R d , and let Z ∈ R ñ× d be a random matrix. Consider the multiple testing problem de ned as follows. Under the null, Z has rows identically distributed according to Q 0 Under the alternative, a small unknown subset of k rows of Z are distributed according to Q 1 , while the remaining rows are distributed according to Q 0 . In both cases, all rows are independent. More formally, denote by Z 1 , . . . , Z ñ the rows of Z, such that the testing problem is

H 0 : Z i ∼ Q ⊗ ñ 0 , H 1 : Z i ∼ Q 0 for i S, Z i ∼ Q 1 for i ∈ S, for some S ∈ C with |S| = k,
where, as already mentioned, all rows are independent in both cases. We refer to this testing problem as that of detection from signals with independent (vector) entries. The framework of adaptive sensing introduced in Section 5.1.2 can be easily adapted to this model. In this case, in order to allow for vector entries, we consider that the experimenter is allowed to obtain samples from rows of Z, and that he can select which rows to query in a sequential manner as previously, under the constraint that the total number of rows measured be less than M. We also refer to this straightforward extension as adaptive sensing, and we say that m = M/ ñ is the number of measurements (i.e., m is the equivalent number of times the full matrix Z was observed).

Sequential thresholding is a procedure for testing with adaptive sensing within the type of model just mentioned. Assume that Q 0 and Q 1 admit densities f 0 and f 1 , respectively, with respect to some common dominating measure, and for i ∈ [n] , denote by

LR(f 1 |f 0 ; z 1 i , . . . , z m i ) = m t=1 f 0 (z t i ) m t=1 f 1 (z t i )
the likelihood ratio associated to i.i.d. observations z 1 i , . . . , z m i ∈ R d of Z i , the i-th row of Z. ST proceeds as outlined in Figure 5.3. Initially, ST measures all ñ rows m times, and throws away a fraction (of about half under the null) of the ñ rows based on the values of the likelihood ratios. This is repeated with the remaining rows a number of times logarithmic in ñ, at which point ST calls detection if some coordinates have not been thrown away. This is illustrated in Figure 5.2.

The following result is easily deduced from the analysis of ST for support estimation.

Proposition 17 (Su cient condition for ST). Assume k/ ñ → 0, and Input: Proof. We begin by showing that the event of termination upon K r=0 |S r | > 4 ñ has an asymptotically vanishing probability. Assume the alternative hypothesis with contaminated set S. Then, similarly as in (Castro, 2012, Proposition 4.1), using Bernstein's inequality for sums of truncated hypergeometric variables,

lim inf ñ→∞ m KL(f 0 || f 1 ) log log 2 ñ > 1,
K ≃ log 2 ( ñ) (number of steps), γ = median z 1 1 ,...,z m 1 ∼f 0 (LR(f 1 |f 0 ; z 1 1 , . . . , z m 1 )) (threshold) Initialization: S 0 = {1, . . . , ñ} for all r = 1, . . . , K do for all i ∈ S r-1 do measure z 1 i , . . . , z m i ∼ Z i compute LR i = LR(f 1 |f 0 ; z 1 i , . . . , z m i ) end for S r = {i ∈ S r-1 : LR i > γ} if K r=0 |S r | > 4 ñ then return no detection end if end for return detection if S K ∅
P        K r=0 |S r | > 4 ñ       ≤ exp       - ñ - k 4 + 2K 3       ,
which converges to zero. The application of Cherno -Stein's lemma as in (Malloy and Nowak, 2011a) allows us to bound the probability of error as follows. The type I error of the procedure is bounded by ñ -k 2 K . Let E i,t denote the event that the likelihood ratio is below γ for coordinate i at step t (in which case, coordinate i will not be included in S t ). Without loss of generality, assume that 1 ∈ S. The type II error is

Q 1 ∩ i∈S ∪ K t=1 E i,t ≤ (KQ 1 (E 1,1 )) k .
We write a = e -mD for lim m→∞ log a m = D. From the Cherno -Stein lemma,

Q 1 (E 1,1 ) = e -m KL(f 0 || f 1 ) .
Hence, for K = (1 + ε 1 ) log 2 n and ε 2 > 0, there exists m0 such that for m ≥ m0 , the type II error is bounded by

Ke -m(KL(f 0 || f 1 )-ε 2 ) k = exp k log [(1 + ε 1 ) log 2 n] -m k(KL(f 0 || f 1 ) -ε 2 ) .
Hence, the risk goes to zero if for some ε 1 , ε 2 > 0, it holds that

lim inf ñ→∞ m(KL(f 0 || f 1 ) -ε 2 ) log [(1 + ε 1 ) log 2 n] > 1.
As a consequence, for the risk to go to zero, it is su cient that

lim inf ñ→∞ m KL(f 0 || f 1 ) log log 2 n > 1.
Note that the ST procedure does not require knowledge of k. ST can be applied to the case of k-intervals, as we demonstrate in the next section.

The Case of k-intervals

In this section, we look at the case of the class C [k] of intervals of length k. It is su cient to work with the class D [k] of disjoint intervals for the following reason: assume that one has a procedure for detection of disjoint k-intervals. Then, for detection of general k-intervals, this procedure can be applied as if the objective was detection of disjoint k/2intervals. Indeed, if S is any k-interval, there exist at most two sets in D [k/2] that intersect S, and at least one of them, say S ′ , has a full intersection with S, i.e., |S ∩ S ′ | = k/2. As a consequence, under mild conditions on the procedure, this leads to a su cient condition for detection of k-intervals identical up to constants to that associated with the original procedure for disjoint k-intervals. In the following, we show how to perform detection in the case of disjoint k-intervals.

Recall that D [k] = {I 1 , . . . , I ⌊n/k⌋ }, where I j = {(j -1)k + 1, . . . , jk} for j ∈ [⌊n/k⌋]. For simplicity, we will assume that n/k is an integer. In order to apply ST, we will treat intervals as n/k independent k-dimensional observations. De ne ñ = n/k, k = 1, m = m, Proof. The detailed computations can be found in Appendix 5.6.3. Assume that ρk > 1, then

KL(Q 0 || Q 1 ) ≥ log(1 + ρk) 10 .
Similarly, when ρk < 1/2 and k > 32,

KL(Q 0 || Q 1 ) ≥ ρ 2 k 2 16 .
Combined with Proposition 17, this gives the desired result.

Consider the case where ρk → ∞. In that case, omitting constant factors, sequential thresholding would succeed for m ≥ log log(n) log(1+ρk) . Recall that uniform non-adaptive testing is possible for m ≥ c log n ρk . When ρk > log(n) asymptotically, both conditions are trivially satis ed for m constant, while when ρk < log(n), we already improve upon non-adaptive tests. In spite of this, the dependence on ρk of our su cient condition when ρk → ∞ is logarithmic, while it is only linear for ρk → 0. This may appear surprising, as one may argue the former case corresponds to a regime where the signal is stronger (and so the problem should be easier). However, this surprising fact is solely an artifact from the sequential thresholding procedure, and can be xed through a small modi cation of the sensing methodology.

In order to recover the same linear dependence in both cases, we propose to add a subsampling stage prior to sequential thresholding. This subsampling can be decided before any data is collected, and thus can be viewed as a non-adaptive aspect of the entire procedure. Consider the simple subsampling scheme wherein one keeps p coordinates per interval, for some p ∈ {2, . . . , k}, and measures each p-tuple mn pn/k = mk p times. This prompts the following question: is there a value of p that allows one to detect more easily? De ne the p-truncated intervals as which is independent of S . Due to nonlinearity in the KL divergence the optimal value of p is generally di erent than k, as illustrated in Figure 5.5. The optimal p and corresponding optimal value seem hard to compute analytically, but numerical evidence shows that, for ρ away from zero, the optimal p is of the order of ρ -1 . This observation is su cient for our purposes, and is formalized below. Remark that when ρk < 1, the optimal value of p is clamped to k.

I p j = {(j -1)k + 1, . . . , (j -1)k + p} for j ∈ [n/k].
Equipped with this subsampling stage when ρk → ∞, we can now modify the ST for k-intervals procedure as follows: when ρk → ∞, set m = mk p , d = 1 ρ , and use only observations corresponding to d coordinates per interval. We refer to this new procedure as the modi ed sequential thresholding for disjoint k-intervals. for some constants C 5 , C 6 . Then the modi ed sequential thresholding for disjoint k-intervals has risk converging to zero.

Proof. We have the following straightforward new lower bound, proved in Appendix 5.6.4.

Although the lower bound appears weaker than previously, this corresponds to a setting where more measurements can be carried out. When ρk > 1, then, using subsampling with p = 1 ρ , The su cient condition for ST leads to the result.

KL(P

The adaptive procedure allows us to obtain a mild dependence on the original dimension n of the problem. When ρ = o(1/k), this su cient condition almost matches the lower bound of Corollary 1, while when ρk → ∞, the su cient condition is already satis ed for m = log log(n/k).

The Case of k-sets: Randomized Subsampling

In this section, we consider the class C k of k-sets. In this case, we do not currently know whether a procedure along the lines of ST can be successfully applied. However, the idea of subsampling the coordinates can still be used to yield modest but important performance gains. While for disjoint k-intervals a deterministic subsampling was su cient, this is not the case for k-sets, where any deterministic subsampling that selects less than about nk coordinates cannot have risk converging to zero. For this reason, we consider a randomized subsampling of the coordinates. Consider a sample B of We refer to the adaptive sensing procedure ((A t ), θ) as the randomized testing procedure. De ne Y = |B ∩ S| (resp. Y = 0) under the alternative with contaminated S ∈ C k (resp. under the null), which is the number of contaminated elements in the subsample. Clearly Y is a hypergeometric random variable with expectation k n 2n

k p ∈ [2p -k/n, 2p].
In words, we consider a subsample of the coordinates, with about 2p contaminated coordinates (in expectation) under the alternative, and we apply the (non-adaptive) localized squared sum test.

Note that the procedure is strictly non-adaptive, as the subsampling can be decided in advance. However, this sensing strategy is a bit di erent than uniform sensing, as not all coordinates are measured. Nonetheless, this allows one to detect under weaker conditions than with uniform non-adaptive sensing when k is large enough.

Proposition 20. Let 2 ≤ p ≤ k such that p goes to in nity. Assume that ρ converges to zero and that

ρmk ≥ C 1 1 -1 m -1 k log 2pn k , and ρ √ mk ≥ C 1 (p -1) 1 -1 m -1 k log 2pn k ,
for some constant C 1 , then the randomized testing procedure has risk converging to zero.

Proof. Let η I (resp. η II ) be the risk of type I (resp. of type II) for θ. 

≥ mk 2 1 -1/p + 2(1-p) mk ≥ mk 2 [1 -1/p -1/m].
Hence, the su cient conditions for the localized squared sum test θ provides the result.

In particular, for p = log log n, it is su cient that, omitting constants,

ρmk ≥ log n k , ρ √ mk ≥ log n k ,
to ensure the detection risk converges to zero. This does not match the adaptive lower bound, and the dependence on n is still logarithmic. However, this already improves upon the setting of uniform non-adaptive sensing when k ≥ m log n . Indeed, recall that using uniform sensing, the su cient condition is

ρ √ mk ≥ log n, ρm ≥ log n.
The rst condition is insensitive to subsampling, due to the dependence in mk, and we do not improve with respect to it. The second condition, however, only depends on m, and does not get easier to satisfy when k is large. Hence, our result shows that it is more ecient when k is large enough to reduce to a problem with an almost constant contaminated set size, but with an increased budget of full vector measurements.

Unnormalized Correlation Model

Model and Extensions of Previous Results

An alternative choice to the previous correlation model is the following unnormalized model with covariance matrix

( ΣS ) i,j =                  1, i = j, i S, 1 + ρ, i = j, i ∈ S,
ρ, i j, and i, j ∈ S, 0 otherwise.

under the alternative with contaminated set S ∈ C. This model is a special case of the rank one spiked covariance model introduced in [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF]. Observe that this correlation model can also be rewritten as

H 0 : X t i = Y t i , i ∈ {1, . . . , n}, H 1 : X t i =        Y t i , i S, Y t i + √ ρN t , i ∈ S for some S ∈ C.
with (Y t i ), N t independent standard normals. This can thus be interpreted as a random additive noise model, as for the model of Section 5.1.1. Observe that our original correlation detection model is obtained by normalizing each component such that the components have unit variance. This is a minor di erence that does not essentially change the diculty of detection in the non-adaptive setting (indeed all upper and lower bounds proved in (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF] can be reproved for this model with minor modi cations). Interestingly, however, under adaptive sensing the information provided by the higher variance in the contaminated components can be exploited to give a major improvement over the normalized model. This may be done by applying the sequential thresholding algorithm to the squares of the components as described below.

In the following, for any quantity X relative to the normalized model of Section 5.1.1, we denote by X the corresponding quantity related to the unnormalized model. All of previous results can be shown to hold for this model as well. As already mentioned, this includes the necessary and su cient conditions of (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF] (Proposition 26 in Appendix), but also the lower bound of Theorem 2 (Proposition 27 in Appendix), and su cient conditions for k-sets and k-intervals of Propositions 20 and 19 (Proposition 29 in Appendix). In particular, the procedures associated to the su cient conditions can be used with little modi cations.

The Case of k-sets

The procedure proposed below combines randomized subsampling with sequential thresholding, in order to capitalize on the unnormalized model. Consider the second moments

Y i = X 2 i .
Under the alternative with contaminated set S ∈ C, Y i is distributed as follows: (a) for i S, Y i is distributed according to a chi-squared distribution with one degree of freedom (that we denote by χ 2 1 ), (b) for i ∈ S, Y i is distributed as (1 + ρ) χ 2 1 . Note that under our sensing model, it is perfectly legitimate to sample A 1 = {1}, . . . , A n = {n}, and thus obtain independent samples of each of the coordinates of the random vector. In particular, this allows us to obtain independent samples from the coordinates of Y . As a consequence, we can directly apply ST to detect increased variance over a subset of the coordinates.

As already mentioned, ST does not require knowledge of k, which results in a su cient condition that is independent of k. In particular, it does not become easier to satisfy as k increases. This condition can, however, be signi cantly weakened using the random subsampling used in last section. As in Proposition 20, this is due to the fact that by subsampling, one can increase the budget of full vector measurements, while the decrease in the contaminated set size does not impact the su cient condition for detection. This is summarized in the following result, which can be proved similarly as Proposition 20.

Proposition 21 (Su cient condition for ST+randomized subsampling). Assume k/ ñ → 0, and

lim inf ñ→∞ m k KL(f 0 || f 1 ) (log log 2 ñ) 2 > 1,
then the sequential thresholding procedure with randomized subsampling (p = log log 2 ñ) and a budget of 4 m full vector measurements has risk tending to zero as ñ goes to in nity.

Let ñ = n, k = k, and m = m. Let Q 0 be the χ 2 1 distribution, and Q 1 be the (1 + ρ) χ 2 1 distribution, both with respect to Lebesgue's measure. We consider the associated sequential thresholding procedure (with randomized subsampling), with the previous modi cation of sampling independent single coordinates. We refer to this procedure as variance thresholding. This leads to the following su cient condition for detection.

Proposition 22. Assume that ρ converges to zero and that ρ √ km ≥ C 2 log log 2 n for some constant C 2 . Then, the risk of the variance thresholding procedure converges to zero.

Proof. Let g be the density of a χ 2 1 -distributed random variable, such that the density of a (1 + ρ)χ 2 1 -distributed random variable is given by 1

1+ρ g • 1+ρ . Then, using g(x) ∝ x -1/2 e -x/2 , KL(χ 2 1 || (1 + ρ)χ 2 1 ) = R log         g(x) 1 1+ρ g x 1+ρ         g(x)dx = log(1 + ρ) + R log           x -1/2 e -x/2 x 1+ρ -1/2 e -x 2(1+ρ)           g(x)dx = log(1 + ρ) + R log        e -ρx 2(1+ρ) (1 + ρ) 1/2        g(x)dx = log(1 + ρ) 2 - ρ 2(1 + ρ) R xg(x)dx.
As the expectation of a χ 2 1 -distributed random variable is one, this leads to

KL(χ 2 1 || (1 + ρ)χ 2 1 ) = 1 2 log(1 + ρ) - ρ 1 + ρ = ρ 2 4 + o(ρ 2 ).
Plugging this expression into the su cient condition of Proposition 21 provides the result.

Assume for the following discussion that ρk → 0. The necessary condition that we have established previously is that ρk √ m goes to in nity. Neglecting the double log factor, the su cient condition that we have just obtained is that ρkm goes to in nity, which is stronger. Hence, there is a gap between the su cient and necessary condition. In particular, that ρk √ m goes to in nity was shown to be near-su cient for detection with k-intervals, and the gap that we observe for k-sets does not allow us to conclude as to whether structure helps for detection (as is the case under non-adaptive sensing).

Recall that the unnormalized model is similar to that of detection in the problem of sparse PCA. The method of diagonal thresholding (also referred to as Johnstone's diagonal method) is a simple and tractable method for detection (and support estimation) in sparse PCA (with uniform non-adaptive sensing), which consists in testing based on the diagonal entries of empirical covariance matrix -that is, the empirical variances. Hence, it is similar to the method that we consider here, except that we estimate variances based on independent samples for each coordinate. Note that this last point is essential to our method. Indeed, consider the opposite case where we do not use independent samples for each coordinates. For the sake of illustration, assume ρ = 1, such that the contaminated components are exactly equal. In this case, the probability of throwing away one component is equal to that of throwing away all contaminated components, and failure will occur with xed non small probability due to the use of dependent samples.

Finally, it is noteworthy that a naïve implementation of the optimal test in the nonadaptive setting has complexity O(n k ), while with adaptive sensing, we obtain a procedure that can be carried out in time and space linear in n, and still improves signi cantly with respect to the non-adaptive setting.

Discussion

We showed that for k-intervals, adaptive sensing allows one to reduce the logarithmic dependence in n of su cient conditions for non-adaptive detection to a mild log log n, and that this is near-optimal in a minimax sense.

For k-sets, the story is less complete. The su cient condition obtained in the unnormalized model is still stronger than the su cient condition obtained for k-intervals, and does not match our common lower bounds, which leaves open the question of whether structure helps under adaptive sensing for detection of correlations? The analogous question for detection-of-means has a negative answer, meaning structure does not provide additional information for detection. However, for detection-of-correlations a de nite answer is still elusive. Another open question is to what extent adaptive sensing allows one to overcome the exponential computational complexity barrier that one can encounter in the non-adaptive setting.

Aside from the normalized and unnormalized correlation models, other types of models can be considered. A more general version of our normalized model has been analyzed in [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF], where the correlations need not be all the same, leading to results that involve the mean correlation coe cient ρ avg = i,j∈S : i j (Σ S ) i,j / k(k -1).

In addition, we assume in most procedures that ρ and/or k are known, and it would be of interest to have procedures that do not require such knowledge.

Proofs

Inequalities and KL Divergences

In this section, we collect elementary inequalities that we use repeatedly in the computations.

For

x > -1, log(1 + x) ≤ x, (5.3) For x > 0, log(1 + x) + 1 1 + x -1 ≤ x 2 , (5.4) For 0 < x < 1/2, log(1 -x) + 1 1 -x -1 ≤ 2x 2 , (5.5) For x < 1, -log(1 -x) - 1 1 -x + 1 ≤ x 2 , (5.6) For x ∈] -1, 1], log(1 + x) + 1 1 + x -1 ≥ x 2 8 , (5.7) For x ≥ 1, log(1 + x) + 1 1 + x -1 ≥ log(1 + x) 5 .
(5.8)

The following expression of the KL divergence is used throughout the chapter.

Proposition 23. We have

KL(P 0 || P S ) = 1 k≥2 2 k -1 + 1 1 -ρ + log(1 -ρ) - 1 1 -ρ + log(1 -ρ) (5.9) + 1 1 + ρ(k -1) + log(1 + ρ(k -1)) .
Proof. The KL divergence between P 0 and P S can be computed using the standard formula for KL divergence between two centered Gaussian vectors, with covariance matrices

Σ 0 = I n , Σ 1 = Σ S .
When k < 2, the divergence is zero, and we will thus assume k ≥ 2. Up to a simultaneous permutation of rows and columns,

Σ S = I n-k J ρ (k)
where J ρ (k) ∈ R k×k has unit diagonal and coe cients equal to ρ everywhere else. J ρ (k) is a symmetric matrix, hence diagonalizable, and has eigenvalues 1ρ with multiplicity k -1 and 1 + (k -1)ρ with multiplicity one. As a consequence, we have, for k ≥ 2,

log det Σ S = (k -1) log(1 -ρ) + log(1 + ρ(k -1)) Tr Σ -1 S = (n -k) + k -1 1 -ρ + 1 1 + ρ(k -1)
.

As previously, using (5.7), f (ρ) ≥ ρ 2 16 . Assume that ρk < 1 and k > 7, then using (5.5) and (5.7),

KL(Q 0 || Q 1 ) ≥ ρ 2 k 16 + h(ρ) ≥ ρ 2 k 16 - 1 2 1 + 2ρ 2 + 1 2 1 + ρ 2 (k -1) 2 8 = ρ 2 k(k -1) 2 16 -1 ≥ (ρk) 2 32 . Now assume that ρk > 1, then for k > 32, KL(Q 0 || Q 1 ) ≥ ρ 2 k 16 - 1 2 1 + 2ρ 2 + 1 2 1 1 + (k -1)ρ + log(1 + (k -1)ρ) ≥ ρ 2 k 16 -1 + 1 2 1 1 + (k -1)ρ + log(1 + (k -1)ρ) -1 ≥ ρ 2 k 32 + log(1 + (k -1)ρ) -1 2 .

Proof of Proposition 19

Proof. With p = 1 ρ , when ρk > 1, we have 

R * ≥ 1 2 - 1 4 E cosh m 8ρZ 1 -ρ -1 R * ≥ 1 2 - 1 4 E [cosh m (8ρZ)] -1
where Z is the size of the intersection of two elements of C drawn independently and uniformly at random.

Proof. This is essentially a reproduction of the proof of (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF] with minor modi cations. The details are omitted.

Uniform (non-adaptive) Upper Bound

Let

H(b) = b -1 -log b for b > 1.
Proposition 25. Under uniform (non-adaptive) sensing, the localized square-sum test that rejects when

Y scan = max S∈C m t=1        i∈S X t i        2 exceeds 1 2 ρk 2 m + H -1 (3 log |C|/m) -1)km is asymptotically powerful when ρk ≥ c 1 max        log |C| m , log |C| m       
both for the normalized and unnormalized models.

Proof. This is proved in (Arias- [START_REF] Arias-Castro | Detecting positive correlations in a multivariate sample[END_REF] for the normalized model. In the case of the unnormalized model, the test statistic is distributed as kχ 2 m under the null, and as (k(1+ρ)+ρk(k -1))χ 2 m under the alternative, which changes only mildly the proof with respect to the normalized model.

KL Divergences

Proposition 26. We have

KL( P0 || PS ) = 1 k≥2 2 -1 + 1 1 + ρk + log(1 + ρk) .
(5.10)

Proof. The KL divergence between P0 and PS can be computed using the standard formula for KL divergence between two centered Gaussian vectors, with covariances matrices

Σ 0 = I n , Σ 1 = ΣS .
When k = 0, the divergence is zero, and we will thus assume k ≥ 1. Up to a simultaneous permutation of rows and columns,

ΣS = I n-k I k + K ρ (k)
where K ρ (k) ∈ R k×k has coe cients equal to ρ everywhere. Like previously,

I k + K ρ (k)
is diagonalizable, and has eigenvalue 1 with multiplicity k -1, and eigenvalue 1 + ρk with multiplicity one. As a consequence, for k ≥ 1, we have

log det ΣS = log(1 + ρk) Tr Σ-1 S = (n -1) + 1 1 + ρk .
This leads to

KL( P0 || PS ) = 1 2 Tr(Σ -1 1 Σ 0 ) -n -log(det Σ 0 / det Σ 1 ) = 1 2 (n -1) -n + 1 1 + ρk + log(1 + ρk) . Proposition 27. For any A ⊂ [n], KL( P0 | A || PS | A ) ≤ min ρ 2 , ρ 2 k 2 |A ∩ S|.
Proof. First note since the KL divergences are independent of n, it is su cient to use the expressions of Proposition 23 with a contaminated set of size s = |A ∩ S|. As previously, we assume s ≥ 1, as the result is trivial otherwise. Consider the unnormalized model, with KL divergence given in (5.10). Using (5.3), we obtain

KL( P0 | A || PS | A ) = KL( P0 || PA∩S ) ≤ ρs 2 .
Using (5.4) we obtain

KL( P0 | A || PS | A ) = KL( P0 || PA∩S ) ≤ ρ 2 s 2 2 ≤ ρ 2 sk 2 .
Combining these last two inequalities yields the desired result. for some constants C 5 , C 6 . Then the modi ed sequential thresholding for disjoint k-intervals has risk converging to zero.

Proof. For the unnormalized model with p = 1 ρ , when ρk > 1, we have 1 ρ < k + 1, and as a consequence,

KL( Pp 0 || Pp S ) ≥ log 2 -1/2 2 ≥ 1 11 .

Introduction

In the object detection problem, the goal is to nd whether certain types of objects are present in an image, and to precisely estimate their positions when this is the case. In the last decade, multiple datasets of images with object annotations and bounding boxes have appeared, including the subsequent PASCAL VOC datasets [START_REF] Everingham | The PAS-CAL Visual Object Classes Challenge[END_REF](Everingham et al., , 2010a[START_REF] Everingham | The PAS-CAL Visual Object Classes Challenge 2012[END_REF], the INRIA Person dataset [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], or the the ILSVRC datasets based on subsets of the ImageNet dataset. This has bolstered the development of detection methods signi cantly, not simply due to the availability of clean data, but also as it provides a common and reproducible framework for comparing algorithms and methods.

In recent years, the detection tasks have been dominated by structured methods (Felzenszwalb et al., 2010b) such as deformable part models (DPMs). DPMs are a particular instance of sliding window detector. In DPMs, an object is modeled as a tree of parts. Both the appearance and the usual relative positions of the parts are modeled, which allows to be robust to shape deformations. In order to further account for object variabilities, mixture models can be trained for each object type, e.g., using latent SVMs classi ers (Felzenszwalb et al., 2010b). Through this structure, DPMs can be extended to address much more general problems such as human pose estimation [START_REF] Yang | Articulated pose estimation with exible mixtures-of-parts[END_REF], facial expression recognition (Zhu and Ramanan, 2012b), or three-dimensional structure estimation [START_REF] Kakadiaris | Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach[END_REF]. As many computer vision models, DPMs are based on hand-crafted image features. In computer vision, features are usually designed to encode color or geometrical properties of images while enforcing various type of invariances (e.g., scale invariance with SIFT or HOG). This prompts numerous model selection questions and has generated a very large body of work.

Convolutional neural networks (CNNs) [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF][START_REF] Ranzato | On deep generative models with applications to recognition[END_REF][START_REF] Krizhevsky | ImageNet Classi cation with Deep Convolutional Neural Networks[END_REF][START_REF] Sermanet | Pedestrian detection with unsupervised multi-stage feature learning[END_REF][START_REF] Farabet | Learning hierarchical features for scene labeling[END_REF] have recently appeared to be particularly e ective at the image recognition task, as was shown on the ImageNet dataset during the latest ILSVRC annual image classi cation and object detection competitions [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. CNNs are variants of multilayer perceptrons with a sparse and local connectivity between neurons of successive layers. CNNs and coding techniques (such as sparse coding, or structured coding methods) consider a largely different stand from hand-crafted features: the representation is to be learned from the data, either in an unsupervised fashion (auto encoders, and coding), or coupled with a speci c pattern recognition task. The main challenge with such techniques is to make the best use of their exibility, while staying in control of their computational complexity. Many computer vision models have already been revisited using these representation learning techniques [START_REF] Eslami | The shape boltzmann machine: A strong model of object shape[END_REF][START_REF] Tang | Deep lambertian networks[END_REF], and one can anticipate this will only intensify in the future.

In spite of this, it is still not clear how to exploit representation learning techniques for fast and accurate localization of multiple objects in images. Most existing validations of such models have focused on classi cation or labeling tasks, wherein the objective consists only in identifying a dominant object type in an image. On the other hand, the detection problem is a structured prediction problems where a label is not only an object type, but also the coordinates of the bounding box where the object is located. Recently, there have been attempts at addressing this problem of using CNNs for detection [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF][START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF][START_REF] Iandola | Densenet: Implementing e cient convnet descriptor pyramids[END_REF], albeit not in a structured framework such as DPMs.

In this work, we demonstrate that using CNN feature pyramids within DPMs allows to obtain a signi cant boost in DPM performance on VOC2007. In Section 6.2, we review the object detection problem and the DPM framework. In Section 6.3, we look at CNNs, and describe how such feature representations can be integrated with DPMs. Finally, we present experimental results on VOC2007 in Section 6.4, and we close this chapter with a discussion of the results in Section ??. This chapter is joint work with Iasonas Kokkinos and Stavros Tsogkas.

Detection with DPMs

In this section, we review the detection task, and give a high-level overview of DPMs.

Detection Task

In computer vision, the detection task consists in both identifying the types of the objects in an image, and precisely localizing them. Detection results are usually evaluated based on the following measure of overlap between a predicted bounding box, and an annotated bounding box. The Intersection over Union (IoU, also referred to as Jaccard's coe cient) of two bounding boxes B 1 = {x min 1 , . . . , x max 1 } × {y min 1 , . . . , y max 1 } and B 2 = {x min 2 , . . . , x max 2 } × {y min 2 , . . . , y max 2 } is

IoU(B 1 , B 2 ) = |B 1 ∩ B 2 | |B 1 ∪ B 2 | .
In the PASCAL VOC detection challenges [START_REF] Everingham | The PAS-CAL Visual Object Classes Challenge[END_REF], a predicted bounding box for a given class is considered a true positive if the best IoU with a ground truth bounding box for this class exceeds 0.5. A given ground truth bounding box can only be used for a single predicted bounding box, such that predicting many close bounding boxes leads to many false positives. Predictions are required to be accompanied by a con dence score, such that a varying threshold can be used to explore di erent detection regimes. The nal evaluation is in terms of precision/recall curve, which is usually summarized with the average precision (AP, the area under the precision/recall curve). The high recall regime corresponds to many bounding box predictions thus capturing all the objects, while the high precision regime corresponds to a small number of relevant bound box predictions.

Understanding failures of detectors is paramount to improve their performance. In detection, errors can be of di erent types. Localization errors correspond to where an object was correctly detected, but poorly localized so that the IoU does not exceed the threshold (this includes duplicate detections). False positives can be classi ed [START_REF] Hoiem | Diagnosing error in object detectors[END_REF] into confusion with similar objects, confusion with dissimilar objects, or confusion with background. This is illustrated in Figure 6.1.

Deformable Part Models

In this section, we review star-shaped deformable part models. These models are de ned by a root node which models the global appearance of the object, and part nodes which are allowed to oat around the position of the root node to model certain speci c features of the object. As a simple example, the problem of human pose estimation can be cast as such a star-shaped DPM, with parts for the head, the torso, the arms, and the legs. A given bounding box is scored in DPMs according to the score of the root model, of the parts Here, w 0 , w 1 , . . . , w P are the lters (in feature space), and the dot product describes how well the patch at this position matches the part model. The terms B p are the second order potentials, and depend only on the relative position di erence z pz 0 . For instance, in the case of human pose estimation, one may want to penalize when the head part is not strictly above the torso, or when the left arm is not to the left of the torso. These terms are usually simple quadratic forms. At training time, both the lters w 1 , . . . , w P and the second order potentials B 1 , . . . , B P must be learned.

Using this model, bounding box predictions can be produced as follows. First, we decide on an aspect ratio and a putative root lter location z 0 , that leads to a candidate bounding box. The best score over all compatible part con gurations is

S( z 0 ) = max z :z 0 = z 0 M(z).
This provides a con dence score. Finally, this procedure is actually used for all possible root positions z 0 , which justi es that DPMs are referred to as dense detectors. For this reason, DPMs may be slow both to train and to evaluate. However, DPMs can be accelerated signi cantly at test time using cascades (Felzenszwalb et al., 2010a), branch and bound [START_REF] Kokkinos | Rapid deformable object detection using dual-tree branch-and-bound[END_REF], or score approximations [START_REF] Kokkinos | Shu ets: shared mid-level parts for fast object detection[END_REF].

The procedure that we have described can be used to detect objects at a xed scale that depends on the size of the part and of the root lters. In order to detect objects at all scales, a feature pyramid is used instead of a simple single-scale feature representation of the image. At an elementary level, this is equivalent to performing detection on rescaled version of a single image. This is illustrated on Figure 6.3: down-sampled versions of the image may allow to detect the head of the horse, while higher resolutions may allow to detect ner details such as the ears of the horse. In addition, a mixture of such models can be considered, leading to an additional latent variable which is the mixture component identi er. These mixture components allow to account for di erent viewpoints or subtypes of objects within a given class. In particular, root lters with di erent aspect ratios are traditionally used.

Integrating Convolutional Features into DPMs

In this chapter, we consider the core problem of this chapter: how can we use features from CNNs for detection with DPMs, instead of using HOG features or similar hand-crafted representations? In the remainder of this section, we go into detail into the structure of the CNN that we consider, as well as into practical details for integrating deep features into DPMs.

The Alexnet Network Structure

Most of recent works with CNNs for image classi cation or object detection are focused on the Alexnet network [START_REF] Krizhevsky | ImageNet Classi cation with Deep Convolutional Neural Networks[END_REF], which has won recent ImageNet object classi cation challenges. The Alexnet name is used both to refer to the network structure (i.e., the number, shapes and types of layers), and to refer to already-trained networks based on this structure. The rst ve layers are convolutional, and consist only of convolutions and pooling layers. Hence, the rst ve layers are intrinsically translation equivariant. The last two layers are classical fully connected layers as in multi-layer perceptrons. The input of the network consists of a 224×224×3 patch, which is transformed to two 13×13×128 patches after layer 5, and to a 4096 dimensional vector after layer 7. While the features obtained at the convolutional layers have a spatial interpretation (as is the case with HOG), this is not the case at the fully-connected layers. The Alexnet network was trained on the ImageNet database, where all images were rescaled to a xed size, and the mean of all these images was subtracted. In order to augment the data for training, random translations and horizontal re ections were used, and have been observed to reduce over-tting. However, the Alexnet network was trained for classi cation, and it may be bene cial to retrain the network when working on a related but di erent task such as detection, as was observed for R-CNN, where this is referred to as ne-tuning [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF]. This can be achieved by setting up a supervised objective adapted to the task at hand, and performing back-propagation on the original network.

Prior Work

An interesting attempt at using CNNs for detection has been made with OverFeat [START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF], which considers a sliding window approach. Two CNNs are jointly trained to predict the class of the object and the coordinates of the bounding box containing the object, respectively, from a given input window. These networks are then fed with all possible windows from the original images, at di erent scales. A squared loss is used as the loss for the bounding box regression problem.

The Regions with CNN features (R-CNN) method [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] addresses the detection problem in a remarkably simple and e ective way, through the use of region proposals [START_REF] Uijlings | Selective search for object recognition[END_REF]. Many promising regions are obtained from segmentation considerations and warped to a xed size window, which is then used as input to a CNN. This is essentially a reduction to a classi cation task, but performs extremely well, pro-viding a mean average precision (mAP) of 58.5% on 20-classes VOC2007, and of 31.4% on 200-classes ILSVRC2013. These large mAPs are at the expense, however, of the time spent training and testing: even though the method scales well with the number of classes, the computation of the CNN features over all warped region proposals is expensive, even on modern GPU machines. In addition, R-CNN is not a structured detector, and hence cannot be generalized easily to more di cult structure estimation problems.

Using CNN Layer 5 Features in DPMs

Due to translational equivariance, the output of the convolutional layers can actually be computed on images larger than the input patch size used for training. This was leveraged in OverFeat [START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF] and in other recent works [START_REF] Iandola | Densenet: Implementing e cient convnet descriptor pyramids[END_REF][START_REF] He | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF]. In particular, [START_REF] Iandola | Densenet: Implementing e cient convnet descriptor pyramids[END_REF] proposed to compute a feature pyramid based on the convolutional layers (i.e., using the layer 5 features of the network). In order to obtain a multi-scale representation, the patchwork of scales approach [START_REF] Dubout | Exact acceleration of linear object detectors[END_REF] is used: di erent scales of an image are stitched in a large patchwork image as shown in Figure 6.4, and the feature representation of the patchwork image is computed and transformed back into a pyramid. This work demonstrates how to compute feature pyramids based on a convolutional network, but no quantitative evaluation on a speci c task is provided. However, a full image cannot be directly propagated through the fully-connected layers, which require a xed size input that has to be xed at the time where the network is trained. From a feature pyramid at layer 5, one may crop (or warp to) patches of xed size to compute the output of the fully-connected layers [START_REF] He | Spatial pyramid pooling in deep convolutional networks for visual recognition[END_REF], or simply stick to the spatially arranged features at layer 5. This is in contrast with the approach used in R-CNN which rst warps to a xed size before even the convolutional layer. In order to have a structured detector like with DPMs, we need to conserve a spatial arrangement of the features, as this allows to share computations when scoring part con gurations. As a consequence, we choose in this work to directly use the feature pyramid based directly upon the layer 5 features.

When extracting such features, a key quantity is the subsampling factor sub from the original input to the spatial feature representation, also referred to as the bin size, as illustrated in Figure 6.5. For Alexnet, sub = 16, such that each feature is computed over 16 × 16 cells over the input image. As this corresponds to large bins, we oversampled by a factor of two all images before computing features, which e ectively leads to sub = 8. We note that in Figure 6.3, the features have been resized by a factor of sub in order to appear of the same size as the images. With HOG, the features can be interpreted as normalized frequencies for orientations of the gradients, and can thus be represented visually, or even transformed back into the image domain to some extent [START_REF] Vondrick | Hoggles: Visualizing object detection features[END_REF]. With layer 5 CNN features, this type of interpretation is not possible. Although we have represented CNN features through their total energy so far, it would be desirable to have a way to visualize the feature representations of the images, as well as the lters.

Results on Pascal VOC 2007

Instead of the Alexnet network, we use the R-CNN network ne-tuned for detection with region proposals. We only report results with sub = 8, as sub = 16 leads to signi cantly worse mAPs, while sub = 4 is computationally prohibitive. We consider a normalization for the CNN feature that is based on the L2-Hys (for hysteresis) scheme [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. Given a feature vector x, normalize in Euclidean norm:

x ← x x 2 + ε ,
with ε = 10 -3 . Then, x is capped componentwise to a maximum value v = 0.1:

x ← min(x, v).

We note that the layer 5 features are nonnegative, such that this is equivalent to capping to a maximum amplitude. Finally, x is normalized again in Euclidean norm. In addition to L2H-Hys, we investigated other normalization schemes, such as simple Euclidean norm normalization, or ℓ 1 -norm normalization. Both of these alternative schemes yielded similar results.

In DPMs, it is common to train distinct mixture components for left-facing and rightfacing objects. When using HOG features, one may avoid to double the number of linear classi ers by leveraging the fact that the HOG features of a ipped patch can be obtained by shu ing the HOG features of the original patch. This is because HOG features are de ned in terms of the geometrical orientations of the image gradient. Hence, given a lter for a left-facing object, one may obtain in closed-form a lter for right-facing objects 6.4. RESULTS ON PASCAL VOC 2007 through this shu ing process. This is no longer the case for CNN features. Instead, for each image, we compute two feature pyramids, one on the original image, and one on the mirror image. For each left-facing lter, we de ne a right-facing lter which is constrained to be the mirror of the left-facing lter. However, unlike the left-facing lter, the rightfacing lter operates on the feature pyramid of the mirror image. Due to the non-convexity of the latent SVMs models, initialization has to be performed with care. Recently, a simpler method [START_REF] Girshick | Training deformable part models with decorrelated features[END_REF] was proposed based on Linear Discriminant Analysis. This method was shown to yield similar mAPs to the fullblown DPM pipeline, and was used throughout all our experiments.

Our results are reported in Table 6.1. We consider two variants of our method: the rst one, C-DPM, combines sliding window detection followed by nonmaximum suppression; the second one, C-DPM-BB, is augmented with bounding box regression, using the original bounding box coordinates as input features. We compare these two variants to the following methods: DPMv5 refers to the baseline DPM implementation using HOG features and bounding-box regression, as in (Felzenszwalb et al., 2010b), while RCNN5, RCNN7, RCNN7-BB correspond to the performance of ( ne-tuned) RCNN using layer 5 features, layer 7 features, or layer 7 features with an extra bounding box regression based on (richer) CNN features, respectively. The last rows of the second and third blocks indicate the di erence between the AP achieved by our method and DPMv5 or RCNN5, respectively. In order to obtain commensurate performance measures, we compare DPMv5 with our variant that includes bounding box regression (C-DPM-BB), and RCNN5, which does not include bounding box regression, to C-DPM.

From the second block of Table 6.1, it is clear that we signi cantly improve over HOGbased DPMs, while employing the exact same training pipeline; this is indicating the clear boost we obtain simply by changing the low-level image features.

However, the re- sults are not as clear-cut when it comes to comparing with RCNN. Even when comparing only to RCNN-5, we have a moderate drop in performance, while our DPMs are still quite behind RCNN-7. The di erence with respect to RCNN-7 can be attributed to the better discriminative power of deeper features and could be addressed by incorporating nonlinear classi ers, or computing all features up to layer 7 in a convolutional manner. A intriguing point is the di erence in performance between RCNN-5 and C-DPM, since both use the same features. One would expect DPMs to have better performance (since they do not rely on region proposals, and also come with many mixtures and deformable parts), but this is not the case. We suspect that this is because (i) DPMs split the training set into roughly 3 subsets (for the di erent aspect ratios/mixtures), e ectively reducing by 3 the amount of training data and (ii) DPMs are somewhat rigid when it comes to the kind of aspect ratio that they can deal with, (3 xed ratios) which may be problematic in the presence of large aspect ratio variatios; by contrast RCNN warps all region proposals images onto a single canonical scale. To conclude, we have shown that replacing HOG features with CNN features yields a substantial improvement in DPM detection performance; given the widespread use of DPMs in a broad range of structured prediction tasks [START_REF] Yang | Articulated human detection with exible mixtures of parts[END_REF]Zhu and Ramanan, 2012a), we anticipate that this will soon become common practice.
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  and f Q,λ : X → R the corresponding classi er de ned from ω Q,λ through the link function. In this section, we analyze the regularized empirical risk minimization program min ω∈H R P N ,λ (ω),
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  where N + and N -are the number of positive and negative examples in the training set, respectively. The same parameter C was used for all classes. The results are summarized in Figure 4.2.
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From (Castro, 2012 ,

 2012 Lemma 3.1), we conclude that, for the both classes C k and D [k] , respectively k-sets and disjoint k-intervals we have C(C k , M) = C(D [k] , M) = Mk n = mk (assuming without loss of generality that n/k is an integer 1 ). As C(•, M) is decreasing with respect to set inclusion for any xed M, C(C [k] , M) = mk as well, and the result follows.
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  Formally, we consider the deterministic sensing strategy A p = (A t ) where for t ∈ mk p As this involves one simple testing problem per interval, the di culty of testing is essentially characterized by the KL divergence KL(P A p 0 || P A p S ) between the distributions under the null and the alternative. In this section, we make explicit the dependence of P S and p by using the notation P p S . Consider any xed S ∈ D [k] , then the best KL divergence that can be obtained is max p∈{2,...,k}
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  replacement from [n] for some p ≥ 2. Let θ : R ⌊np/k⌋ → {0, 1} be the localized squared sum test with ambient dimension 2np k , and contaminated sets C = C ⌊p⌋ of size ⌊p⌋, and consider the sensing strategy de ned by A 1 = . . . = A mk 2p = B.
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Table 3 .

 3 1 and show the empirical superiority of our approach (SPLR).

	η	SPLR	LR	SP
	0.1 0.0854 ±0.012 0.1487 ±0.02 0.2 0.2073 ± 0.03 0.2673 ± 0.3 0.3 0.3105 ± 0.03 0.3728 ± 0.03 0.3104 ± 0.02 0.1023 ±0.02 0.2484 ± 0.03

Table 3 .

 3 1: Prediction of interactions in Escherichia coli. Mean normalized RMSE and standard deviations.

Table 3 .

 3 .2 using the area under the ROC curve (AUC). SPLR outperforms LR but also NN and Katz which do not directly seek a low rank representation. 2: Facebook denoising data. Mean AUC over 10 simulation runs. All standard deviations are lower than 3 • 10 -4 .

	σ	SPLR	LR	NN	Katz
	5 %	0.9293 0.9291 0.7680 0.9298
	10 % 0.9221 0.9174 0.7620 0.9189
	15 % 0.9117 0.9024 0.7555 0.9068
	20 % 0.8997 0.8853 0.7482 0.8941

  .1.

	Dataset	Num. training examples Num. testing examples Num. features
	wpbc	136	58	33
	ionosphere	246	105	34
	sonar	146	62	60
	liver	140	201	6
	pima	538	230	8
		Table 4.1: Characteristics of UCI datasets used	
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  The type I error of the randomized testing procedure is p I = η I . Let p + = P(Y ≥ ⌊p⌋) the probability of the sample containing at least ⌊p⌋ contaminated elements, and p -= 1p + . Note that since The type II error of the randomized testing procedure isp II = p + η II + p -(1η I ) ≤ η II + p -.It remains to show that η I and η II both go to zero. This follows from the su cient conditions for the localized squared sum test, and from ⌊p⌋ mk 2p

	2np k distribution with parameter 2p, as this is asymptotically equivalent to the hypergeomet-k n = 2p goes to in nity, we can assume that Y is distributed according to a Poisson
	ric distribution. Hence, we have p -= P(Y < ⌊p⌋) ≤ 1 + √ p 2πp e	p(2p) p p!	exp(-2p). Using p! ≥

p , we have that p -≤ exp(-2p) +

√ p exp(-p/4), which converges to zero.

  For the unnormalized model, when ρk > 1, using (5.8),

		KL( Q0 || Q1 ) ≥	log(1 + ρk) 10	.
	When ρk < 1, using (5.7),		
		KL( Q0 || Q1 ) ≥	(ρk) 2 16	.
	Proposition 29. Assume that ρ converges to zero, and that either
		ρk → ∞ and ρkm ≥ C 5 log log(n/k),
	or	ρk → 0 and ρk	√	m ≥ C 6 log log(n/k)
	Proposition 28. Assume that ρ converges to zero, and that either
		ρk → ∞ and m log(1 + ρk) ≥ C 3 log log(n/k),

or ρk → 0 and ρk √ m ≥ C 4 log log(n/k)

for some constants C 3 and C 4 . Then sequential thresholding for disjoint k-intervals has risk converging to zero.

Proof.

  Table 6.1: Results on PASCAL VOC 2007: average precision in percent

	Method	aero bike bird	boat bottle bus	car	cat	chair cow	dtbl	dog hors mbike person plant sheep sofa train	tv	mAP
	C-DPM	39.7 59.5 35.8	24.8	35.5	53.7 48.6	46.0	29.2	36.8	45.5	42.0 57.7	56.0	37.4	30.1	31.1	50.4	56.1	51.6	43.4
	C-DPM-BB	50.9 64.4 43.4	29.8	40.3	56.9 58.6	46.3	33.3	40.5	47.3	43.4 65.2	60.5	42.2	31.4	35.2	54.5	61.6	58.6	48.2
	DPMv5	33.2 60.3 10.2	16.1	27.3	54.3 58.2	23.0	20.0	24.1	26.7	12.7 58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
	C-DPM-BB vs. DPMv5	+17.7 +4.1 +33.2 +13.7 +13.0 +2.6 +0.4 +23.3 +13.3 +16.4 +20.6 +30.7 +7.1 +12.3	-1.0	+19.4 +14.1 +18.4 +15.6 +15.1 +14.5
	RCNN7-BB	68.1 72.8 56.8	43.0	36.8	66.3 74.2	67.6	34.4	63.5	54.5	61.2 69.1	68.6	58.7	33.4	62.9	51.1	62.5	64.8	58.5
	RCNN7	64.2 69.7 50.0	41.9	32.0	62.6 71.0	60.7	32.7	58.5	46.5	56.1 60.6	66.8	54.2	31.5	52.8	48.9	57.9	64.7	54.2
	RCNN5	58.2 63.3 37.9	27.6	26.1	54.1 66.9	51.4	26.7	55.5	43.4	43.1 57.7	59.0	45.8	28.1	50.8	40.6	53.1	56.4	47.3
	C-DPM vs. RCNN5	-18.5 -3.8	-2.1	-2.8	+9.4	-0.4 -18.3 -5.4	+2.5 -18.7 +2.1	-1.1	0.0	-3.0	-8.4	+2.0	-19.7	+9.8	+3.0	-4.8	-3.9

If n/k is not an integer, one can directly show that C(D [k] , M) ≤

2mk and the result of the theorem follows with mk replaced by 2mk.
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Part I

Interactions Between Rank and Sparsity in Penalized Estimation

The KL divergence is thus

Proof of Bound on KL Divergence

Proof. First note since the KL divergences are independent of n, it is su cient to use the expressions of Proposition 23 with a contaminated set of size s = |A∩S| ≤ k. As previously, we assume s ≥ 2, as the result is trivial otherwise. Consider the expression for the KL divergence given in (5.9). Using (5.3), we obtain

Using (5.4) and ( 5.6), we obtain

Proof of Proposition 18

Proof. We have 
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