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Résumé

Cette thèse est organisée en deux parties indépendantes. La première partie s’intéresse à

l’estimation convexe de matrice en prenant en compte à la fois la parcimonie et le rang.

Dans le contexte de graphes avec une structure de communautés, on suppose souvent

que la matrice d’adjacence sous-jacente est diagonale par blocs dans une base appropriée.

Cependant, de tels graphes possèdent généralement une matrice d’adjacente qui est aussi

parcimonieuse, ce qui suggère que combiner parcimonie et rang puisse permettre de mod-

éliser ce type d’objet de manière plus �ne. Nous proposons et étudions ainsi une pénalité

convexe pour promouvoir parcimonie et rang faible simultanément. Même si l’hypothèse

de rang faible permet de diminuer le sur-apprentissage en diminuant la capacité d’un mod-

èle matriciel, il peut être souhaitable lorsque su�samment de données sont disponibles

de ne pas introduire une telle hypothèse. Nous étudions un exemple dans le contexte

multiple kernel learning localisé, où nous proposons une famille de méthodes á vaste-

marge convexes et accompagnées d’une analyse théorique. La deuxième partie de cette

thèse s’intéresse à des problèmes de détection d’objets ou de signaux structurés. Dans un

premier temps, nous considérons un problème de test statistique, pour des modèles où

l’alternative correspond à des capteurs émettant des signaux corrélés. Contrairement à la

littérature traditionnelle, nous considérons des procédures de test séquentielles, et nous

établissons que de telles procédures permettent de détecter des corrélations signi�cative-

ment plus faibles que les méthodes traditionnelles. Dans un second temps, nous consid-

érons le problème de localiser des objets dans des images. En s’appuyant sur de récents

résultats en apprentissage de représentation pour des problèmes similaires, nous intégrons

des features de grande dimension issues de réseaux de neurones convolutionnels dans les

modèles déformables traditionnellement utilisés pour ce type de problème. Nous démon-

trons expérimentalement que ce type d’approche permet de diminuer signi�cativement le

taux d’erreur de ces modèles.





Abstract

This thesis is organized in two independent parts. The �rst part focused on convex matrix

estimation problems, where both rank and sparsity are taken into account simultaneously.

In the context of graphs with community structures, a common assumption is that the

underlying adjacency matrices are block-diagonal in an appropriate basis. However, these

types of graphs are usually far from complete, and their adjacency representations are thus

also inherently sparse. This suggests that combining the sparse hypothesis and the low

rank hypothesis may allow tomore accurately model such objects. To this end, we propose

and analyze a convex penalty to promote low rank and high sparsity simultaneously. Al-

though the low rank hypothesis allows to reduce over-�tting by decreasing the modeling

capacity of a matrix model, the opposite may be desirable when enough data is available.

We study such an example in the context of localized multiple kernel learning, which ex-

tends multiple kernel learning by allowing each of the kernels to select di�erent support

vectors. In this framework, multiple kernel learning corresponds to a rank one estimator,

while higher-rank estimators have been observed to increase generalization performance.

We propose a novel family of large-margin methods for this problem that, unlike previ-

ous methods, are both convex and theoretically grounded. The second part of the thesis

is about detection of objects or signals which exhibit combinatorial structures, and we

present two such problems. First, we consider detection in the statistical hypothesis test-

ing sense, in models where anomalous signals correspond to correlated values at di�erent

sensors. In most existing work, detection procedures are provided with a full sample of

all the sensors. However, the experimenter may have the capacity to make targeted mea-

surements in an on-line and adaptive manner, and we investigate such adaptive sensing

procedures. Finally, we consider the task of identifying and localizing objects in images.

This is an important problem in computer vision, where hand-crafted features are usually

used. Following recent successes in learning ad-hoc representations for similar problems,

we integrate the method of deformable part models with high-dimensional features from

convolutional neural networks, and shows that this signi�cantly decreases the error rates

of existing part-based models.
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1
Introduction

“The most exciting phrase to hear in
science, the one that heralds new
discoveries, is not ’Eureka!’ (I found it!) but
’That’s funny ...’

— Isaac Asimov

The cognitive process in the brain can be simpli�ed down to two processes around

which thinking is structured: induction and deduction. In induction, we build new mental

models from observations, while in deduction, we use these mental models to make pre-

dictions and take actions. These two phases are continuously alternating, and although

deduction is easy, induction is fundamentally harder and ill-de�ned. At a high-level, many

methods in machine learning can be understood as such continuously alternating phases

of induction and deduction. This is particularly visible in methods which aim at learning a

feature representation from the data, such as in dictionary learning, where induction cor-

responds to the estimation of codewords, and deduction to the coding problem. Convex

methods correspond to a rather simpli�ed modeling environment where induction and

deduction are actually done jointly through some well-grounded optimization algorithm.

Although the cognitive process is a highly non-convex process, simple mental models can

be useful to get some initial insight on a problem or a concept at a moderate cost. Similarly,

convex methods have proven dramatically useful to approach many statistical modeling

and learning problems, and we believe that advancing the state of knowledge in what can

be e�ectively handled with this type of methods is of utmost interest. This does not mean,

however, that non-convex methods should be avoided, and many such methods have re-

cently proven very e�ective at achieving state of the art results in a variety of problems.

Instead, we believe that the classical debate of which of convex or non-convex methods

are best is actually moot, and that these two classes correspond to largely di�erent trade-

o�s. If one were to draw a cartoon picture, convex methods are usually associated with

lower computational and modeling e�orts, and can often be used to quickly gain signi�-

cant insight on a given problem. Non-convex methods are generally signi�cantly heavier

to deploy and require an arguably more hands-on expertise, but have repeatedly proven

e�ective at going further than convex methods in many learning and pattern recognition

tasks.

This thesis is organized in two independent parts. This chapter summarizes our results

and contributions. The �rst part of the thesis is on convex estimation problems, with

an emphasis on combining classical hypotheses usually handled in isolation for matrix
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estimation. We consider how objects such as graphswith community structure, covariance

matrices or mixtures of kernel machines can be modeled in a convex framework, and we

focus in particular on models involving rank and sparsity hypotheses. The second part of

the thesis is on two examples of detection problems, where objects or signals to be detected

have some type of combinatorial structure. This departs largely from convex models, as

we consider both information-theoretically optimal procedures and numerically successful

methods which are highly non-convex.
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1.1 Contributions: Interactions Between Rank and Sparsity

The �rst part of this thesis is focused on penalized estimation problems for regression and

classi�cation. More speci�cally, we consider convex problems for estimating matrices.

A key element which di�erentiate this problem from standard high dimensional vector

estimation is that di�erent structural assumptions can be formulated in this context: al-

though sparsity hypotheses can be transposed from the vector case, genuinely di�erent

hypotheses can be formulated, such as the low rank hypothesis.

The concepts of sparsity and of low rank have been central in statistics and machine

learning in the last decade, and have been at the source of numerous successes. At the

core of the sparsity hypothesis lies the idea that the data may be well modeled by a limited

number of features or variables, and that performing variable selection may increase the

predictive performance (Mallat, 1999; Bühlmann and Van De Geer, 2011). The low rank

hypothesis is at the source of a variety of models usually referred to as latent factor models,

which are also widely recognized as e�ective in practice, such as in clustering (Shahnaz

et al., 2006), recommender systems (Koren, 2008), or blind source separation (Cichocki

et al., 2009).

Chapter 2 is dedicated to reviewing the ideas underlying sparsity and of low rank

models. We also brie�y retrace the history of penalized estimation, and present general

geometric tools which can be used to study the estimation performance of a large array

of convex penalties from a theoretical point of view. In Chapter 3 and Chapter 4, we

consider two matrix estimation problems, where both rank and sparsity are taken into

account simultaneously, albeit in di�erent ways. In the following, we present a preview

of the results from these two works.

1.1.1 Estimation of Sparse and Low Rank Matrices

In recent years, the notion of sparsity for vectors has been transposed into the concept of

low rank matrices, and this latter hypothesis has opened up the way to numerous achieve-

ments (Srebro, 2004; Cai et al., 2008). In Chapter 3, we argue that being low rank is not

only an equivalent of sparsity for matrices but also that low rank and sparsity can actually

be seen as two orthogonal concepts. The underlying structure we have in mind is that of a

block diagonal matrix. This situation occurs for instance in covariance matrix estimation

in the case of groups of highly correlated variables or when clustering social graphs.

Consider the adjacency matrix of a graph with community structure, as illustrated on

the leftmost panel of Figure 1.1: this is characterized by fully (or densely) connected blocks,

or clusters. This can be translated into the hypothesis that the matrix is low rank. In many

graph problems, a central assumption is that we are observing a noisy or partial version of

a graph with this kind of structure, as pictured in the second leftmost panel of Figure 1.1.

This low rank assumption is used, for instance, in matrix completion to predict unobserved

movie ratings. Methods based on low rank approximations or low rank inducing penalties

such as the trace norm usually yield dense matrices as estimators. This is shown on the

third panel of Figure 1.1: even after thresholding of small magnitude entries for display

purposes, the support is still quite dense. Although this may be �ne for predicting ratings,

this is not adapted for graph adjacency matrices, which are usually sparse. This is the

case, in particular, for most communication networks, for social networks, or for biological

interaction networks. By using a sparsity inducing penalty in addition of the low rank
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Figure 1.1: Adjacency matrix with community structure, sparse regularization, low rank

regularization, and sparse low rank regularization

inducing penalty, we obtain the support shown on the rightmost panel of Figure 1.1, which

is a much better recovery of the original graph structure.

The problem of leveraging both types of structures at the same time is largely di�erent

from demixing or decomposition problems (Amelunxen et al., 2013) such as Robust PCA

(Candès et al., 2011; Chandrasekaran et al., 2011), where the objective is to recover a sparse

matrix S ∈ Rd1×d2 and a low rank matrix L ∈ Rd1×d2 from the knowledge of their sum

X = L+ S only. For this type of problem, objective functions usually take the form of

an in�mal convolution (Rockafellar, 1997) of penalties (Agarwal et al., 2012). On the other

hand, we consider here a single matrix that is simultaneously sparse and low rank.

Contributions. We propose a novel convex penalty to encourage solutions that achieve

a tradeo� between low rank and high sparsity. The penalty is based on a linear combina-

tion of the classical surrogates, the matrix ℓ1-norm, and the trace norm : for a matrix

W ∈Rd×d , the penalty is

γ‖W ‖1+ (1−γ)‖W ‖∗.
We derive oracle inequalities for penalized estimation using this penalty.

Proposition 1. LetW ⋆ ∈Rd×d and A =W ⋆ + ǫ with ǫ ∈Rd×d having i.i.d. entries with
zero mean. Assume for some α ∈ [0,1] that τ ≥ 2α‖ǫ‖op and γ ≥ 2(1−α)‖ǫ‖∞. Let

Ŵ = argmin
W∈Rd×d

[
‖W −A‖2F + γ‖W ‖1+ τ‖W ‖∗

]
.

Then,

‖Ŵ −W ⋆‖2F ≤ inf
W∈Rd×d

[
‖W −W ⋆‖2F + 2γ‖W ‖1+ 2τ‖W ‖∗

]
,

‖Ŵ −W ⋆‖2F ≤
[
2γ‖W ⋆‖1+ 2τ‖W ⋆‖∗

]
∧

[
γ
√
‖W ⋆‖0+ τ

√
rank(W ⋆)

√
2+ 1

2

]2
.

This is extended in Proposition 13 to constrained optimization (for instance over the cone

of semi-de�nite positive matrices), and generalizes previous sharp bounds for Lasso or

trace norm regression (Koltchinskii et al., 2011a). Combined with proper choices of reg-

ularization parameters that we discuss, this allows to control the prediction error. Using

proximal methods, we demonstrate the bene�ts of combining these two hypotheses both

on synthetic data, and on real data such as protein interaction data and social networks.

This chapter is an extended version of a paper with Emile Richard and Nicolas Vayatis

which has appeared in the proceedings of ICML (Richard et al., 2012).
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Future directions. We propose a convex relaxation to the intersection of the two classi-

cal manifolds that are sparse matrices and low rank matrices. However, it may well be that

there are some more interesting joint measure of rank and sparsity to relax when model-

ing the type of data we are interested in. We discuss possible directions based on matrix

factorizations and atomic norms in Section 3.7. More generally, the following problem

appears of interest: how can multiple priors on a model be combined to estimate the model

with fewer observations, and for what prior structures is this a signi�cant improvement over

using a single prior? For instance, Kamal and Vandergheynst (2013) consider combining

rank and sparsity, but in di�erent bases. An interesting direction to tackle this problem

could be learning to combine such priors, as done with kernels and Hilbert space metrics

in multiple kernel learning.

1.1.2 Convex Localized Multiple Kernel Learning

The low rank hypothesis allows to decrease the modeling capacity of a matrix model,

which may be helpful in a high-dimensional setting to avoid over-�tting. In other set-

tings, however, the opposite may be desirable: more complex models may allow to obtain

better generalization performance if enough data is available. We consider in Chapter 4

such an examples, in the context of localized multiple kernel learning. Kernel-based meth-

ods such as SVMs are very e�ective tools for classi�cation and regression. In addition to

good empirical performance in a wide range of situations, these method and backed by a

strong theoretical background (Steinwart and Christmann, 2008), as well as mature algo-

rithms (Platt, 1999) and implementations (Chang and Lin, 2011). The kernel is traditionally

either selected from generic parametric o�-the-shelf kernels (e.g., Gaussian or polynomial)

using some sort of cross-validation, or hand-crafted by domain speci�c experts through an

expensive empirical process. Multiple kernel learning (MKL) has been proposed to allevi-

ate part of this expensive model selection problem (Lanckriet et al., 2002; Bach et al., 2004;

Gönen and Alpaydın, 2011). In MKL, the SVM formulation is modi�ed to jointly learn a

classi�er and linear combination weights for a set K1, . . . ,KM of kernels. This results in

classi�ers of the form

f (x) =
N∑

i=1

yiαi



M∑

m=1

smKm(xi ,x)




︸                ︷︷                ︸
kernel is a mixture of kernels

,

where α ∈ RN and s1, . . . ,sM ∈ R+ are to be both learned at the same time. In the wake

of the success of MKL, there has been recent interest in combining kernels in a localized

or data-dependent way (Bi et al., 2004; Gönen and Alpaydin, 2008; Cao et al., 2009; Gehler

and Nowozin, 2009), as opposed to more traditional linear combinations where all the

kernels must agree on a common set of support vectors. By allowing each kernel to select

separate and possibly di�erent support vectors, these may be more relevant with respect

to the information encoded by the kernels. These approaches are referred to as either

localized, or data-dependent multiple kernel learning.

In the chapter, we focus on fully nonparametric localized MKL classi�ers of the form

f (x) =
N∑

i=1

M∑

m=1

yiαi,mKm(xi ,x),
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where α ∈RN×M is a matrix. While the solution to the linear MKL problem can be written

in this form with rank(α) = 1, we are interested in higher rank solutions which exhibit

localization, in the sense that the relative weights of the kernels vary depending on the

support vectors. Informally, this corresponds to a kernel combination that is di�erent in

di�erent regions of the feature space. Previous methods are either non-convex, are not

large margin methods, or consider only parametric models for α.

Contributions. We propose a family of large-margin methods that are both convex and

theoretically grounded for combining kernels in a data-dependent manner, based on ag-

gregating hinge losses over each of the kernels. For p ∈ [1,∞], we consider large margin

programs of the form

min
ω=(ω1,...,ωM )∈H



1

2

M∑

m=1

‖ωm‖22+C
N∑

i=1



M∑

m=1

(1− yi〈ω1,φm(xi)〉)p+




1/p


,

where φ1, . . . ,φM are the feature mappings associated to the kernels. This allows through

p to adjust the amount of coupling between the kernels. When p = ∞, kernels are the

most tightly coupled, while when p = 1, the method amounts to averaging the decisions

of independently trained SVMs. We show that classi�ers de�ned from these programs

(and actually more general aggregations) are universally consistent, and we consider the

question of whether intermediate levels of coupling can be bene�cial in practice.

We evaluate these methods on real data, including both UCI datasets, and image classi-

�cation tasks from computer vision. Our experimental validation includes multiple meth-

ods which have not been previously compared, although they address a similar question.

Our experimental validation shows that p = 1 (i.e., averaging the decisions of independent

SVMs) is superior to any other value of p, but also to standard MKL and previously intro-

duced methods for localized MKL. In addition of being by far the simplest and cheapest to

implement and run, this yields the best (or close to the best) classi�cation accuracy in all of

our benchmarks. Similarly to how the simple average kernel often achieves performances

comparable to that of MKL (Gehler and Nowozin, 2009), this suggests that straightforward

methods may achieve close to state-of-the-art accuracies for localized MKL as well. This

chapter is joint work with Antoine Poliakov, and has been submitted.

1.2 Contributions: Detection of Structured Objects

Detection problems are a wide and pervasive class of problem, where the high-level goal

is to detect expected or unexpected patterns from observations and data. This type of

problem di�ers signi�cantly from matrix estimation problems as presented in the �rst

part of this thesis, in that themodels and structures involved are usually radically di�erent.

In the second part of this thesis, we consider two types of detection problems involving

structured target objects, from statistical hypothesis testing and computer vision.

In the �rst problem, we consider detection in the statistical hypothesis testing sense:

we want to known whether there is some anomalous signal, but we do not seek to identify

precisely where. We characterize the minimax risk in di�erent models where anomalous

signals correspond to correlated values at di�erent sensors. In the second problem, we

consider the more applied task of identifying di�erent types of real-world objects in im-

ages. The detection terminology has a di�erent meaning here than in statistical testing:
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the objective is to precisely localizing where in the image these object are. We integrate

the method of deformable part models with high-dimensional features from convolutional

neural networks, and shows that this signi�cantly decreases the error rate of DPMs.

1.2.1 Detection of Correlations with Adaptive Sensing

The �rst detection problem that we consider is a statistical hypothesis testing problem.

Given multiple observations from a Gaussian multivariate distribution, we want to test

whether the corresponding covariance matrix is diagonal against non-diagonal alterna-

tives. More precisely, we consider a testing problem over a Gaussian vectorU ∈Rn, where

under the alternative hypothesis, there exists an unknown subset S of {1, . . . ,n} such that

the corresponding components are positively correlated with strength ρ ∈]0,1[, while the
others are independent.

This can be interpreted as an anomaly detection problem: picture a spatially arranged

array of sensors. In the normal regime, signals at each of the sensors consists only of

zero-mean uncorrelated Gaussian noise. In the anomalous regime, some of the sensors

instead have correlated signals. This has to be distinguished from many classical anomaly

detection problems where one assume that the anomaly is characterized by an elevated

signal mean at some of the sensors. In the model that we consider, anomalies cannot

be detected by looking at sensors in isolation, but only when considering correlations

between multiple sensors.

The models that we consider are very similar to the rank one spiked covariance model,

which has been associated in recent years to sparse PCA (Johnstone and Lu, 2009; Berthet

and Rigollet, 2013; Cai et al., 2013). We focus on detection of positive correlations (Arias-

Castro et al., 2012, 2014), and we consider the sparse regime where only a relatively small

number of the n components are correlated, if any. The subset S can be any subset of size

of a known size k (which we refer to as the k-sets problem), or may have additional struc-

ture known to the experimenter. For instance, it can consists of k contiguous coordinates
in {1, . . . ,n}, in which case one expects that detection will be easier due to this extra infor-

mation. This last setting is referred to as the k-intervals problem, and can be generalized

for instance to rectangles {i0, . . . , i0 + k1 − 1} × {j0, . . . , j0 + k2 − 1} with k1k2 = k, when
the n coordinates are arranged spatially on a two dimensional grid {1, . . . ,n1} × {1, . . . ,n2}
with n1n2 = n.

In the litterature (Hero and Rajaratnam, 2012; Arias-Castro et al., 2014, 2012; Berthet

and Rigollet, 2013; Cai et al., 2013), this problem or related problems have been analyzed

under uniform sensing, where i.i.d. draws U1, . . . ,Um ∈ Rn of the Gaussian vector are

available. Our approach deviates from this in that we consider an adaptive sensing or se-

quential experimental design setting. More precisely, data is collected in a sequential and

adaptive way, where data collected at earlier stages informs the collection of data in future

stages. In particular, the experimenter may choose to acquire only a subset of the coor-

dinates from the Gaussian vector. In the previous sensor array illustration, a cost may be

associated to obtaining a measurement from a sensor, and the experimenter may choose

to activate only speci�c subsets of sensors. This is illustrated in Figure 1.2. Here, coor-

dinates {1, . . . ,n} are laid out according to a grid. The set of correlated coordinates is a

convex shape, and these are shown in red. These coordinates form a clique in the graph

of correlations, and this is shown through light red edges. At every step, the experimenter

selects coordinates to be sensed, and these are shown circled. At the �rst step, the exper-
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imenter samples all the coordinates, while at the two subsequent steps, the experimenter

reduced the amount of coordinates sampled. This illustrates an important point: we only

Figure 1.2: Adaptive sensing over a two dimensional grid of sensors

consider the testing problem of �nding out whether there are correlated coordinates, not

the problem of estimating which. As a consequence, it may be �ne for the experimenter to

discard some coordinates from S . Indeed, all that is needed is that, under the alternative

hypothesis, we may detect at least two correlated components with some certainty, as this

is su�cient to reject the null hypothesis.

Adaptive sensing has been studied in the context of other detection and estimation

problems, such as in detection of a shift in the mean of a Gaussian vector (Castro, 2012;

Haupt et al., 2009), in compressed sensing (Arias-Castro et al., 2013; Haupt et al., 2012;

Castro, 2012), in experimental design, optimizationwithGaussian processes (Srinivas et al.,

2010), and in active learning (Chen and Krause, 2013). Adaptive sensing procedures are

quite �exible, as the data collection procedure can be “steered” to ensure most collected

data provides important information. As a consequence, procedures based on adaptive

sensing are often associated with better detection or estimation performances than those

based on non-adaptive sensing with a similar measurement budget.

In non-adaptive sensing, all the decisions regarding the collection of data must be

taken before any observations are made, which generalizes slightly the setting of uniform

sensing. As already mentioned, uniform sensing corresponds to the case where m full

vectors are observed, corresponding to a total of M = mn coordinate measures. This

problem has been thoroughly studied in (Arias-Castro et al., 2014). To allow for easier

comparison with the special case of uniform sensing, we will use adaptive sensing with a

budget ofM coordinate measurements, and we ultimately express our results in terms of

m, the equivalent number of full vector measurements.

We are interested in the high-dimensional setting, where the ambient dimension n is

high. All quantities such as the correlation coe�cient ρ, the correlated set size k = o(n),
and the number of vector measurements m will thus be allowed to depend on n, and to

go to in�nity simultaneously, albeit possibly at di�erent rates. We seek to identify the

range of parameters in which it is possible to construct adaptive tests whose minimax

risks converge to zero.

Contributions. We show in Chapter 5 that adaptive sensing procedures can signi�-

cantly outperform the best non-adaptive tests both for k-intervals and k-sets. In the fol-

lowing, we provide a preview of our results for the case where ρk → 0 (that is, the total

amount of correlation is asymptotically vanishing), although we also provide results for

the case where ρk→∞. The constants are omitted.

For k-intervals, our necessary and su�cient conditions for asymptotic detection are

almost matching. In particular, the number of measurementsm necessary and su�cient to
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ensure that the risk approaches zero has essentially no dependence on the signal dimension

n:

Necessary: ρk
√
m→∞, Su�cient: ρk

√
m ≥

√
loglog

n

k
.

This is in stark contrast with the non-adaptive sensing results, where it is su�cient (and

almost necessary) for m to grow logarithmically with n according to

ρk
√
m ≥

√
log

n

k
.

This type of dependence that is almost independent of the dimension has been observed

before in the context of adaptive sensing: due to the ability to sequentially adapt the exper-

imental design, the experimenter may abstract himself almost completely from the original

problem dimension.

For k-sets, we obtain a su�cient condition that still depend logarithmically in n, but
which improves nonetheless upon uniform sensing in some regimes:

Su�cient: ρ
√
km ≥

√
log

n

k
and ρkm ≥ log

n

k
.

This should be compared to uniform sensing, where it is su�cient (and, again, almost

necessary) when k = o(
√
n) that

ρ
√
km ≥

√
logn and ρm ≥ logn.

In addition to this, in a slightly di�erent model (a rank-one spiked covariance model), we

obtain a tighter su�cient condition for detection of k-sets, that is nearly independent of

the dimension n, and also improves signi�cantly over non-adaptive sensing:

Su�cient: ρ
√
km ≥ loglog

n

k
.

This chapter is joint work with Rui Castro and Gábor Lugosi (Castro et al., 2013).

Future directions. For k-sets, we obtain the same lower bound as for k-intervals: for
detection to be possible, it must hold that ρk

√
m goes to in�nity. While this lower bound

is tight for k-intervals, we do not know if this is the case for k-sets, as the dependence

in k does not match that of our su�cient condition. This leaves open an important ques-

tion: does the structure of the correlated set help when using adaptive sensing? This is the

case for uniform sensing, and may appear reasonable for adaptive sensing as well. How-

ever, in a similar study on adaptive testing for elevated means (as opposed to correlations),

many symmetric classes of correlated sets such as k-sets or k-intervals have been shown

to all have minimax risk which converge to zero under the same necessary and su�cient

conditions (Castro, 2012), such that structure does not help in this setting.

1.2.2 Detection of Objects with High-dimensional CNN Features

The second detection problem that we consider is a computer vision problem, where one

is given images, and should detect and precisely localize objects of di�erent types. This
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is an important problem in computer vision, and has been the subject of a large body of

work. Although signi�cant progress has been made in recent years (Sermanet et al., 2014;

Girshick et al., 2014), error rates are still signi�cant, ranging from 30% to 60% depending

on the object type, and averaging at 40% for the state of the art methods on the 20-classes

PASCAL VOC 2007 dataset (Everingham et al., 2007, 2010b). The problem di�ers from the

classi�cation task of �nding the class of a single dominant object in the image. Instead, in

the task that we consider, multiples objects of identical or di�erent types may be present,

and their location must be predicted accurately.

Challenges for detection are multiple. The detection of a given object type requires to

correctly learn to separate this object from other similar looking objects (and from back-

ground), but also to precisely pinpoint the position of the object in the image. Driven partly

by the availability of larger datasets and partly by increasing industrial demand, the inter-

est for detection of a large number of classes of objects has raised recently. Computational

considerations pose additional challenges when working with such datasets.

A general approach for object detection is that of sliding windows: for all possible

patches of a prede�ned size, we run a classi�er to predict whether or not this corresponds

to a given type of object. A natural approach consists in transforming each window into

a feature vector, and training a binary black-box classi�er to detect whether the window

correspond to the object. However, objects in natural images are usually subject to a large

variability in terms of orientation, scale, structure, illumination, or general appearance,

and such monolithic classi�ers over the window may not lead to the best performance.

Instead, Bag-of-Words (BOW) models represent an image or object as the unstructured

collection of all its patches of a given size. This simplifying representation was originally

used in natural language processing and information retrieval, but has been the subject

of signi�cative interest in the vision community. In this context, BoW models are also

referred to as bags of visual words (Yang et al., 2007). Unlike with approaches based on

monolithic classi�ers, BOW models may allow to independently detect small distinctive

features of objects, and can hence be more robust to variabilities in natural images. How-

ever, these models do not allow to model any kind of structure.

Part-based models have received a lot of interest due to their ability to handle vari-

abilities similarly as with BOW, while allowing to model the spatial structure of the visual

words. Consider the task of learning to detect persons: this can be broken up into the

arguably easier tasks of learning to detect heads, feet, legs, torsos, and of learning in what

spatial arrangement these parts usually appear in images. This is the main idea behind de-

formable part models (DPMs), and has been largely successful (Everingham et al., 2010b).

DPMs are sliding window detectors that are structured. In practice, models do not enforce

any kind of interpretability of the parts, unlike what we mentioned. Formally, part posi-

tions are treated as latent variables, and detections correspond to windows for which one

can �nd a highly-scoring latent part con�guration, as illustrated in Figure 1.3. On the 20-

classes PASCAL VOC 2007 dataset, Felzenszwalb et al. (2010b) have achieved error rates

of 70% using DPMs.

Like numerous methods in computer vision, DPMs are based on hand-crafted image

features: in (Felzenszwalb et al., 2010b), Histograms of Gradient features (also referred to

as HOG) are used. Numerous other features have been proposed, including SIFT (Lowe,

1999), Haar wavelet coe�cients (Viola and Jones, 2001), Shape Contexts (Belongie et al.,

2002) or Local Binary Patterns (Ojala et al., 2002). Recently, techniques aiming at learning

the feature representation directly from the data have proved extremely e�ective in various
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Figure 1.3: Part basedmodels, sample detections from Felzenszwalb et al. (2010b): detection

bounding box (red), latent parts (blue)

domains including computer vision. In particular, convolutional neural networks (CNNs)

have achieved state of the art error rates on image classi�cation tasks (Krizhevsky et al.,

2012), which suggested that such techniques could be of interest for detection as well.

This was recently con�rmed by the R-CNN (Girshick et al., 2014) method for detection,

where promising regions are obtained from segmentation considerations and warped to

a �xed size window, which is then used as input to a CNN as in classi�cation tasks. R-

CNN achieves a dramatic improvement with respect to the state of art (Fidler et al., 2013),

with a mean error rate of about 40% over the 20 classes of the PASCAL VOC 2007 dataset.

However, this type of method based on training monolithic classi�ers must be contrasted

with structured detectors such as DPMs. Indeed, reducing the problem to a classi�cation

problem for �xed size windows does not allow for as much modeling �exibility as in part-

based models. For instance, part-based method are inherently structured, which render

them extendable to much more general problems such as human pose estimation (Yang

and Ramanan, 2011), facial expression recognition (Zhu and Ramanan, 2012b), or three-

dimensional structure estimation (Kakadiaris et al., 2007). However, none of this is possible

with the type of approach used in R-CNN.

Contributions. In Chapter 6, we show how to integrate features from CNNs in the

framework of DPMs. This constitutes a challenge: compared to HOG features, this cor-

responds to an eight fold increase in the dimension (from 32 to 256), within a framework

which is already quite computationally expensive. Due to computational e�ciency con-

sideration, we use features computed from convolutional layers only. This is unlike the

features used in classi�cation or in R-CNN, for which features are computed using extra

fully-connected layers on top of the convolutional layers. We demonstrate an increase of

up to +9.7% in mean average precision (mean AP) with respect to DPMs on the PASCAL

VOC 2007 dataset. This chapter is joint work with Iasonas Kokkinos and Stavros Tsogkas.

Future directions. Although we are able to signi�cantly improve with respect to HOG-

based DPMs, themean AP that we achieve is still below the performance of recent methods

such as R-CNNwhen using features from fully-connected layers. However, using only fea-

tures from convolutional layers, we still achieve a mean AP close to what R-CNN achieves

based only on these same layers. This suggests that adding further nonlinearities on top

of our framework may help.





Part I

Interactions Between Rank and

Sparsity in Penalized Estimation

27





2
Penalized Matrix Estimation

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Linear Models: Generalization and Estimation . . . . . . . . . . . . 30

2.1.2 Occam’s Razor and Minimum Description Length . . . . . . . . . . 33

2.1.3 Priors and Penalized Estimation . . . . . . . . . . . . . . . . . . . . 34

2.1.4 Penalized Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . 35

2.1.5 Penalized or Constrained? . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 The ℓ0-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 The ℓ1-norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Elastic-net and Variations . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Other Regularizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Rank and Latent Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 The Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 The Trace Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.3 Nuclear and Atomic Norms . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4 The Max Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.5 Other Heuristics and Open Problems . . . . . . . . . . . . . . . . . 50

2.4 Measuring Quality of Regularizers and Theoretical Results . . . . . . . . . 51

2.4.1 Estimation: Exact and Robust Recovery . . . . . . . . . . . . . . . 52

2.4.2 High-Dimensional Convex Sets and Gaussian Width . . . . . . . . 53

2.4.3 Optimality Conditions for Penalized Estimation . . . . . . . . . . . 54

2.4.4 Kinematic Formula and Statistical Dimension . . . . . . . . . . . . 57

2.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.6 Estimation with Non-gaussian Designs . . . . . . . . . . . . . . . . 60



30 CHAPTER 2. PENALIZED MATRIX ESTIMATION

2.1 Introduction

In this thesis, we consider two ubiquitous problems of statistical learning: classi�cation

and regression. In both settings, one is given points x1, . . . ,xN ∈ Rd as well as associated

target values (or labels) that we denote by y1, . . . ,yN ∈ Y . The target values are to be

predicted from the points. The points are also referred to as examples, as they constitute

the input data to be learned from, and individual variables (coordinates of the examples)

are referred to as features.

In classi�cation, the label set Y is a �nite set of categories. The most common example

is that of binary classi�cation, where Y = {−1,1}. More recently, there has been a large

body of work on multi class classi�cation (Bengio et al., 2010), where Y = {1, . . . ,K} is a
possibly large set of categories, and on structured prediction (Bakir et al., 2007), where Y
is a �nite set usually induced by some combinatorial structure (such as a set of spanning

trees or perfect matchings of a given tree). At the intersection between multi class and

structure, multi label classi�cation consists in Y = P ({1, . . . ,K}), where P is the power

set. In this last setting, each example may be associated with any number of the K la-

bels. In regression, Y is a continuous space, such as the real line. Although classi�cation

is concerned with predicting binary values, it is usually more practical and more inter-

esting to associate this prediction with a real-valued con�dence score. We will focus on

regression and on binary classi�cation, and we will consider in both cases predictors of

the form f : Rd → R. For classi�cation, the predictor provides a label through its sign,

and a con�dence score through its magnitude. For regression, the predictor directly esti-

mates the real-valued target. Although providing con�dence intervals for regression is an

interesting problem, we do not consider it here.

2.1.1 Linear Models: Generalization and Estimation

A common choice is to use linear predictors of the form f (x) = 〈x,w〉+ b, for w,x ∈Rd ,

and a bias term b ∈ R. For binary classi�cation, this consists in assuming that labels are

generated according to the model

yi = εi sign(〈xi ,w⋆〉+ b), with w⋆ ∈Rd , b ∈R, ε ∈ {−1,1}N , (2.1)

for i ∈ [N ], where ε is the label noise, which may �ip some labels randomly. For regression,

this corresponds to assuming targets following the model

yi = 〈xi ,w⋆〉+ b+ εi , with w
⋆ ∈Rd , b ∈R, ε ∈RN , (2.2)

for i ∈ [N ], where ε is the noise. We refer to the case where ε = 1 for classi�cation (resp.

where ε = 0 for regression) as the noiseless setting. Here, 1 denotes the all-ones vector.

In the following and when more convenient for presentation, we will omit the bias term

b, and state models for regression, although similar models for binary classi�cation can

be obtained. In the statistics literature, the set {x1, . . .xN } of feature vectors we are testing
against is referred to as the design. We will often use the matrix notation

X =




xT1
...

xTN



∈RN×d .

The following are classical designs:
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• Fixed design. This is the case where {x1, . . . ,xN } is assumed �xed and known. This

case is common in practice when one has limited control over the acquisition of the

data.

• Fixed orthogonal design. A special case of �xed design is the case where XTX =
Id , where Id is the identity of Rd . When the elements {x1, . . . ,xN } of the design are

unit-Euclidean length, they are also referred to as a tight frame of Rd . In particular,

forN = d and X = Id , observations are simply a noisy version of the parameters of

the model: for i ∈ [N ],

yi = w⋆i + εi .

The corresponding regression problem is also referred to as denoising.

• Random design. This is the case where the design is randomly chosen according

to some distribution. This random choice may or may not be in the control of the

experimenter. In any case, the experimenter will almost always have budget restric-

tions on the number of observations that can be acquired.

The linear framework is actually quite general and powerful, as higher dimensional vec-

tor representations (x̄i) can be devised from the initial vector representations (xi) of the
examples. This can be used to introduce nonlinearities.

A central problem in statistics and machine learning is to devise and analyze proce-

dures which can learn with the smallest amount of examples, possibly in the presence

of noise. This minimal number of examples needed to learn within a particular model is

called the sample complexity. What should learn mean here? We distinguish two types of

objectives:

• Generalization. In many cases, the objective is to be able to predict targets (labels

or continuous values) on new unseen data. In this context, one does not necessarily

seeks to estimate w⋆ directly, but pursues the potentially easier objective of making

accurate predictions. For this problem, a method needs to produce a predictor of the

form f : Rd →R.

• Estimation. A harder task consists in estimating the original parameters w⋆ of

the model. This estimate can in turn be used to make predictions, but may also be

interesting in its own right to gain insight on the data. For arbitrary designs, thismay

not be possible, while for orthogonal designs, this is equivalent to the generalization

problem. For this task, a method is required to produce an estimator ŵ ∈Rd .

These two problems are of course closely related, and although we will mostly use the

estimation terminology, both objectives should be kept in mind. The following problem is

a classical example of estimation problem.

Exemple 1 (Compressed sensing). In compressed sensing, the model is of the form

y = Xw⋆ , {i : w⋆i , 0}= k.

This can be extended to a noisy model. The distinctive feature of this model is that it is sparse:

only k coe�cients of the model are nonzero.
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As was already hinted at, how well one can succeed in these two types of problems is

highly dependent on the true model dimension (if any) and on the amount of observations

available. A general method to handle such problems is empirical risk minimization (ERM),

wherein one de�nes a risk criterion directly from the observations. The traditional way to

approach regression problems is through through least-squares, where one selects

ŵ = argmin
w∈Rd

N∑

i=1

(yi − 〈xi ,w〉)2.

This coincides with the maximum likelihood estimator of w given (yi) when the noise

vector ε is a standard Gaussian vector. We distinguish di�erent regimes:

• When N ≥ d , there may exist a unique solution with loss zero, which can then be

obtained in closed form. When this is not the case (the linear system is overdeter-

mined), there still exists a solution to the least-squares problem that can be obtained

in closed form, although the loss is not zero.

• When N < d (the associated linear system is underdetermined), there is an in�nity

of solution. Among these solutions, the pseudo-inverse allows to construct the one

with the minimum Euclidean norm.

For classi�cation, the situation is already nontrivial even if N ≥ d . The most natural

estimator consists in minimizing the classi�cation loss (or, zero-one loss):

ŵ = argmin
w∈Rd

N∑

i=1

1[yi , sign〈xi ,w〉],

where 1[C] is the indicator function that is one when condition C is true, and zero other-

wise. Although this is arguably a good estimator at least in the noiseless case whenN ≥ d ,
the computation of the estimator reduces to a highly non-convex optimization problem in

w that cannot usually be solved. In addition, such hard zero-one costs for misclassi�cation

can deteriorate the predictor in the presence of label noise. For these reasons, one almost

always work with di�erent real-input and real-output loss functions ℓ : Y ×Rd → R+

instead of the classi�cation loss: here, ℓ(y, t) measures the cost of predicting a target (or,

in classi�cation, a con�dence level) t ∈ R while the true target is y. Such loss functions

are often referred to as surrogates, as they are to be minimized in place of some original

loss.

In the regime where N ≥ d , the generalization and estimation problems are well un-

derstood for both regression and classi�cation. Di�culties there mostly arise when con-

sidering how to e�ciently obtain the estimators, possibly in the presence of a lot of data.

The challenges in this case are hence mostly about optimization and systems engineering.

The regime where N < d is usually referred to as the high-dimensional setting. This

regime di�ers from classical statistics in that when considering asymptotics, the dimension

of the model is usually assumed to diverge at the same time that the number of observa-

tions (i.e., N →∞ and d →∞), such that the problem does not automatically get easier

with more observations. In this case, even what is a good predictor is not necessarily clear.

In general, recovering a high-dimensional model with very few observations is of course

doomed in advance, and one has to come up with ways to select predictors amongst the

many which may reasonably �t to the data.
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2.1.2 Occam’s Razor and Minimum Description Length

A general principle is Occam’s razor, wherein the simplest predictor or estimator which

allows to approximate the data should be preferred. According to this principle, the sim-

plest model is deemed the most able to generalize to new unseen examples, while very

complex models are deemed to have over �tted to the training data. This informal princi-

ple leaves unspeci�ed how to measure simplicity (or complexity) of a predictor, and how

to balance this with the �t to the data. This has been formalized in the minimum descrip-

tion length principle (Grünwald, 2007), where models which can be best compressed should

be preferred. This principle is at the root of most penalized methods, which vary in how

compressibility is measured.

A very early measure of compressibility is the Kolmogorov complexity (Li and Vitányi,

2009). Consider a programming language in which any universal Turing machine can be

implemented, such as the C programming language, and the binary sequence

S = [01010101 . . .01010101] ∈ {0,1}1000.

The Kolmogorov complexity of S is the length of the shortest program that prints the

sequence and halts. A trivial program just prints the full sequence:

printf("01010101...01010101");

However, this can be compressed much more through:

for (i = 0; i < 500; ++i) printf("01");

This allows to de�ne complexity for predictors as well. In spite of its important histori-

cal role, Kolmogorov complexity can seldom ever be computed in practice, and has to be

replaced by other measures of compressibility.

Another information theoretical notion of complexity is Shannon’s mutual informa-

tion (Cover and Thomas, 2012). Unlike the Kolmogorov complexity, this is a measure of

complexity over random objects. Consider a discrete input random variable X ∈ X , and a

discrete output random variable Y ∈ Y , with joint distribution PX,Y and marginal distri-

butions PX and PY . The mutual information between X and Y is

I(X;Y ) =
∑

x∈X

∑

y∈Y
PX,Y (x,y) log

(
PX,Y (x,y)

PX(x)PY (y)

)
.

In particular, I(X;Y ) is zero when X and Y are independent, and is maximal when X =
Y , where it is equal to the Shannon entropy of X . The mutual information has many

interesting properties, and is in particular invariant with respect to relabelings ofX andY .
Informally, I(X;Y ) measures how predictable Y is, given that X is known, or vice-versa.

Equipped with mutual information, one may seek to construct a proxy random variable T
to be used for predicting Y as follows: pick T such that it compresses the information in

X , while retaining the maximum amount of information about Y . The complexity of the

proxy predictor T is measured here using I(X;T ): when the mutual information between

X and T is low, the predictor T only encode a small subset of the information of X , and
can thus be deemed to be compression of X . This measure of complexity is notably used
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in the Information Bottleneck (IB) method (Tishby et al., 1999), where, for some parameter

β, one seeks to minimize

CIB(T ) = I(X;T )− βI(Y ;T ),

with respect to the distribution of the random variable T . This objective is the Lagragian
associated to a problem of the form

min
T
−I(Y ;T ) s.t. I(X;T ) ≤ γ ,

where ones aims to compress information in the example X under a constraint on how

well the target Y can be predicted. In penalized estimation terminology, −I(Y ;T ) is a loss
function, while I(X;T ) is a penalty. This type of tradeo� will be central to all penalized

estimation methods that we will cover. In principle, the optimization is over all distribu-

tions pT |X and pT . Although this provides an interesting unifying framework for learning

and coding, this is usually not practical, unless in special cases such as with the Gaussian

Information Bottleneck (Chechik et al., 2005).

2.1.3 Priors and Penalized Estimation

We focus in this thesis on measuring complexity of predictors or estimators through con-

vex functions. Formally, this corresponds to selecting a predictor using a rule of the form

f̂ = argmin
f ∈F



N∑

i=1

ℓ(yi , f (xi)) +λΩ(f )


 ,

where ℓ : Y × F → R+ is the loss function, λ is the regularization parameter, and Ω :

F →R+ ∪ {∞} is the penalty (or, regularizer). Linear predictors correspond to F ⊂ {x 7→
〈x,w〉 : w ∈ Rd}, and one can directly de�ne the regularizer as a function of the hyper-

plane through Ω(f ) = Ω(w) for some Ω : Rd → R+ ∪ {∞}. In the following, we will

almost always consider regularizers which are norms, and we will denote the correspond-

ing unit ball (resp. unit sphere) by BΩ (resp. by SΩ ). WhenΩ is a ℓp-norm for some p, we
will write for simplicity Bp and Sp , such that B2 is the unit-ball for the Euclidean norm. A

simple example of penalized estimation is ℓ2-penalized classi�cation or regression, which

considers linear predictors of the form

f (x) = 〈x̂,w〉, with ŵ = argmin
w∈Rd


C

N∑

i=1

ℓ(yi ,〈xi ,w〉) +
‖w‖22
2


 . (2.3)

As already mentioned, the pseudo-inverse allows to construct the least squares solution

to a linear system with the minimum Euclidean norm. This can be interpreted as a sort

of ℓ2-regularization of the least squares loss, although with C =∞, such that there is no

way to balance the �t to the data and the ℓ2-norm complexity. The following is a classical

example of method based on a ℓ2-norm penalty for regression.

Exemple 2 (Regression: Ridge regression). Ridge regression corresponds to the case of the

squared loss in Equation (2.3):

ℓ2(y, t) = (y − t)2.
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This is equivalent to standard least squares on a regularized Gram matrix (Tibshirani et al.,

2009), and is usually more used for regression, although this can in principle be used for

classi�cation.

The following are examples for classi�cation, where the primary objective is usually to

obtain good generalization performance.

Exemple 3 (Classi�cation: SVMs). The case where the loss in Equation (2.3) is the so-called

hinge loss

ℓhinge(y, t) = (1− yt)+
is referred to as a Support Vector Machines (SVMs) (Boser et al., 1992; Steinwart and Christ-

mann, 2008).

Exemple 4 (Classi�cation: Penalized logistic regression). Penalized logistic regression is

another method for classi�cation with the ℓ2-norm penalty, which uses the logistic loss in

Equation (2.3):

ℓlogit(y, t) = log(1+ exp(−yt)).
With ℓ2-norm penalization, the resulting objective function is twice di�erentiable everywhere,

which allows to leverage second-order optimization methods.

A common way to view penalized estimation is that of priors as in Bayesian statis-

tics. Assume that you have some prior information on the object to estimate (e.g., on its

support, sign, sparsity, maximum magnitudes, etc.). In this case, one may use penalized

estimation to try to �nd a predictor with the desired properties, by designing a regularizer

Ω which favors such predictors. In many situations, a probabilistic model can be de�ned

from a penalized objective. Informally, this consists in making additional hypotheses on

the model, thus making it easier to estimate. For instance, even if N < d , a linear model

may actually be straightforward to estimate if you know in advance that only a single or

a small number of features are useful. Two main types of such additional hypotheses on

models have both had an immense in�uence in the past years in machine learning: spar-

sity, and latent factors. Section 2.2 and Section 2.3 are devoted to exploring in depth these

two hypotheses, and associated regularizers. However, before going in detail into these

ideas, we generalize slightly the linear models that we consider.

2.1.4 Penalized Matrix Estimation

In this part of the thesis, we are mostly interested in the estimation of matrices, and we

actually consider more general matrix linear models of the form

yi = 〈Xi ,W ⋆〉+ εi , withW
⋆ ∈Rd1×d2 , (2.4)

for design matrices Xi ∈ Rd1×d2 , and i ∈ [N ]. As previously, we refer to the collection

{X1, . . . ,XN } as the design. Most priors on vectors can be extended in straightforward

ways to priors on matrices. For instance, consider the problem of learning to classify

with K classes (i.e., a multi class problem). This can be reduced to K binary classi�ers

(each of them classifying a given class against the rest of the classes), in the form of a

matrix W ∈ RK×d . However, viewing coe�cients as a rectangular array opens up new

possibilities to take into account more structure.
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Exemple 5 (Covariance matrix estimation). Consider the task of estimating the covari-

ance matrix of a d-dimensional vector (Karoui, 2008; Cai et al., 2010), from observations

x1, . . . ,xN ∈Rd . The usual estimator is the sample covariance matrix

Σ̂ =
1

N

N∑

i=1

xix
T
i ∈Rd×d .

When N < d , this estimator is singular, and further hypotheses may allow to obtain a better

estimator. For instance, there may only be a small number of variables (features) interacting

with each other, and penalized estimation may allow to de�ne an estimator that takes this

into account. The estimator Σ̂ needs to be a valid covariance matrix, and hence must be a

positive semi-de�nite matrix.

Exemple 6 (Dynamic link prediction). Consider a graph G with a �xed vertex set V , but

with a dynamically changing edge set Et , where t denotes the time. The adjacency matrix At
of the graph at time t is observed at subsequent time instants t1, . . . , tN , leading to a series

of snapshots At1 , . . . ,AtN of the graph. In the simplest model, edges can only be added to the

graph, although one may in principle consider a fully general evolution where edges can be

both added or removed. In link prediction (Taskar et al., 2003; Liben-Nowell and Kleinberg,

2007), the objective is to predict from the snapshots what the next state of the graph will be:

produce an estimator ÂtN+1
of the next adjacency matrix AtN+1

. This can be formulated as a

regression/classi�cation problem over a symmetric binary (or weighted) matrix.

This last example can actually be expressed in the more general framework ofmatrix com-

pletion.

Exemple 7 (Matrix completion). In matrix completion (Candès and Recht, 2009), the obser-

vation is an incomplete version of a matrixW ⋆ ∈Rd1×d2 . The model is of the form

Y =Ω ◦W ⋆

whereΩ ∈ {0,1}d1×d2 is a known observation mask, and the Hadamard product is de�ned for

two matrices X and Y as (X ◦Y )i,j = Xi,jYi,j . This can be extended to include noise in the

observations, and more complicated observation masks or designs (Koltchinskii et al., 2011b).

These three problems will be discussed further in Chapter 3. We will consider a matrix

estimation problem related tomultiple kernel learning in Chapter 4. Many other problems,

such as multi-task learning (Evgeniou and Pontil, 2004), can be cast as matrix problems.

Similarly as in the vector case, matrix predictors can be obtained through penalized prob-

lems of the form

f (X) = 〈X,Ŵ 〉, with Ŵ = argmin
W∈Rd1×d2



N∑

i=1

ℓ(yi ,〈Xi ,W 〉) +λΩ(W )


 ,

where Ω : Rd1×d2 →R+ ∪ {∞} is a matrix regularizer.



2.1. INTRODUCTION 37

2.1.5 Penalized or Constrained?

A variation on penalized estimation is constrained estimation, where a hard-constraint is

used instead of the penalty:

f̂ = argmin
f ∈F

N∑

i=1

ℓ(yi , f (xi)) s.t. Ω(f ) ≤ γ .

Unless γ is large enough, the predictor will satisfy Ω(f̂ ) = γ (that is, the constraint

is active). This allows to precisely constraint the complexity of the predictor as mea-

sured by Ω. However, from Lagrangian duality, any such constrained program can be

reformulated as a penalized estimation problem with a regularization parameter λ =
λ(γ , (x1,y1), . . . , (xN ,yn)). This mapping is usually unknown and data-dependent, and,

in both cases, the hyper-parameter λ or γ usually has to be tuned empirically. Depend-

ing on the situation, one or the other formulation may be more amenable to optimization

or theoretical analysis. The family (f̂ )γ∈R+
of all estimators which can be obtained by

varying the hyper-parameter is referred to as the regularization path. In some cases, full

regularization paths can be obtained in a �nite number of steps for penalized estimators.

The following characterization is from Rosset and Zhu (2007).

Proposition 2. Consider the estimator ŵ = argminw∈Rd [L(w) +λΩ(w)] with λ ≥ 0 and

L,Ω convex over Rd . If L is piecewise quadratic and Ω piecewise linear, the estimator has a

piecewise linear regularization path.

This applies, in particular, to SVMs (Hastie et al., 2004) or Lasso (Efron et al., 2004), for

which the full regularization path can be obtained at a cost of the same order as that of

obtaining the estimator for a single parameter (provided that the piecewise linear path has

only a constant number of segments). This does not apply to many other models, such as

Ridge regression which has polynomial paths as illustrated in Figure 2.1, although other

techniques can be used to e�ciently approximate smooth paths over a �nite grid of hyper-

parameters (Bach et al., 2005). However, for many methods, there is no low-cost way of

obtaining regularization paths, and how sensitive a method is to hyper-parameters is a

paramount element when comparing penalized methods.
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Figure 2.1: Example of regularization paths for Lasso (left) and Ridge regression (right):

each curve corresponds to a coordinate of the solution w⋆
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2.2 Sparsity

The notion of sparsity has played a paramount role in machine learning and statistics over

the last decades, andwe study the associated concepts and ideas in this section. For a linear

predictor f (x) = 〈x,w〉, sparsity ofw can be interpreted as a variable selection, where only

a small subset of all available variables are deemed useful for prediction. Performing fea-

ture selection has many advantage: corresponding predictors are usually associated with

lower generalization errors than full models, are amenable to theoretical analysis, and can

be more computationally e�cient both at training and testing. The sparsity terminology

is often used with di�erent meanings. A matrix (or vector) is considered sparse if it has

few nonzero elements. On the other hand, it is common to refer to the number of nonzero

elements of a matrix as its sparsity, in a slight abuse of language. In the context of sparse

methods, the sparsity pattern refers to the support.

2.2.1 The ℓ0-norm

The problem of selecting variables (in a binary fashion) can be cast as constraints or regu-

larizers based upon the size of the support of the vector to estimate, which we refer to as

the ℓ0-norm:

‖w‖0 = card {i : wi , 0} .
Although we use the norm terminology, ‖.‖0 is not actually a norm, as it does not sepa-

rate points and it is not positively homogeneous. The use of the ℓ0-norm traces back to

greedy methods (Mallows, 1973; Akaike, 1974; Mallat and Zhang, 1993; Efron et al., 2004)

which at every step add (or, possibly, remove) a single coordinate to or from the model ,

until reaching the desired sparsity. This includes forward stage wise selection and related

methods which can produce full regularization paths.

The Iterative Hard Thresholding (IHT) method is geared towards optimization prob-

lems of the form

min
w∈Rd

L(w) s.t. ‖w‖0 ≤ k

for a loss L : Rd →R. IHT corresponds to projected gradient descent with respect to the

loss L, and the non-convex constraint set B0 = {w : ‖w‖0 ≤ k}. In particular, for sparse

least-squares regression with L(w) = ‖Xw−y‖22 and ‖X‖op ≤ 1, this is theoretically guar-

anteed to converge to a local minimum (Blumensath and Davies, 2009), and IHT consists

in this case in the iteration

wn+1 =HTk(wn+XT (y −Xwn)),

where HTk is the hard thresholding operator that keeps only the largest k elements (in

magnitude) of a vector, and set the remaining coordinates to zero. Unlike greedy methods,

IHT does not build up a sparse vector by iteratively adding new nonzero coordinates, but

maintains a k-sparse vector throughout.
In general, however, optimization problems involving the size of the support often are

combinatorial and NP-hard to solve to a global optimum. In addition, it may not always

be desirable to measure complexity through the size of the support. In practice and when

computing with �oating-point numbers, a threshold needs to be set to control when a coef-

�cient is deemed small enough to be zero. In all cases, this measure of complexity is highly

unstable under arbitrarily small energy perturbations. These reasons have prompted the
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development of other means for measuring to what extent a vector is concentrated over a

few coordinates only.

2.2.2 The ℓ1-norm

A popular approximation (Chen and Donoho, 1994; Tibshirani, 1996b; Chen et al., 1998)

consists in substituting the size of the support with the ℓ1-norm, de�ned for w ∈Rd as

‖w‖1 =
d∑

i=1

|wi |.

In addition to leading to usually tractable convex optimization problems, the ℓ1-norm
as a measure of complexity alleviates the unstability of the size of the support. The ℓ1-
norm penalty is not di�erentiable at any point where ‖w‖0 , d , which prevents the use

of second-order methods out of the box. However, it does admit a sub di�erential every-

where, which is for any i ∈ [d]

[∂‖.‖1]i (w) =

sign(wi) if wi , 0,

[−1,1] if wi = 0.

This allows to perform optimization with the ℓ1-norm, as we will show in Chapter 3.

The ℓ1-norm admits various variational expressions. Duality between norms provide the

following:

‖w‖1 = sup {〈z,w〉 : ‖z‖∞ ≤ 1} ,

where the supremum is attained at z = (signw1, . . . , signwd). Another variational ex-

pression can be derived from the Cauchy-Schwarz inequality, leading to

‖w‖1 =
1

2
min



d∑

i=1



w2
i

zi
+ zi


 : z ∈Rd

+

 .

A simple everywhere di�erentiable approximation to the ℓ1-norm is

‖w‖1,ε =
d∑

i=1

√
|wi |2+ ε2.

This penalty retains the linear rate of increase away from zero, and also allows to avoid

non-di�erentiability issues. In practice, this later penalty is rarely used, probably due

to the availability of e�cient non-di�erentiable optimization methods (such as proximal

methods), due to good performance of everywhere di�erentiable regularizers such as the

ℓ2-norm, or because this introduces the extra parameter ε.

Exemple 8 (Lasso). The Lasso (Tibshirani, 1996b) is the estimator

ŵ = argmin
w∈Rd

[
‖Xw− y‖22+λ‖w‖1

]
.
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Figure 2.2: Illustration of convex conjugacy on a convex quadratic (left), non-convex func-

tion (right): original function (red), supporting hyperplanes to epigraph (blue)

The choice of the ℓ1-norm for measuring sparsity can be derived from a geometrical

perspective. In words, the ℓ1-norm is the largest convex lower bound to the ℓ0-norm over

the ℓ∞-norm unit ball. Indeed, notice that ‖w‖1 ≤ ‖w‖∞‖w‖0 for w ∈ Rd . The ℓ1-norm
can be shown to be the largest such lower bound. This can be formalized through convex

duality.

De�nition 1. Consider f : Rd →R∪{∞}. The convex conjugate of f is de�ned for z ∈Rd

as

f ⋆(z) = sup
x∈Rd

[〈x,z〉 − f (x)] .

The conjugate of a function is a description of the function not in terms of function values

in the original space, but in terms of all the supporting hyperplanes to the epigraph. For

convex lower semi-continuous functions, these two descriptions are equivalent (Rockafel-

lar, 1997).

Proposition 3. Let f : Rd → R be convex and lower semi-continuous, and denote by f ⋆⋆

the biconjugate of f de�ned as (f ⋆)⋆ . Then, f = f ⋆⋆ .

This property is not true for non-convex functions, as illustrated in Figure 2.2. However,

for non-convex functions, it holds that f ⋆⋆ ≤ f , and the convex biconjugate is always

a lower bound of f . In fact, by Proposition 3, the biconjugate is necessarily the largest

convex lower bound to f . This can be used to �nd a convex surrogate or convex envelope to

the ℓ0-norm. To simplify notation, de�ne the barrier indicator function of a set X ⊂ Rd

by

δX(w) =


0 if w ∈ X,
∞ otherwise.

Consider the following restriction of the ℓ0-norm: f (w) = ‖w‖0 δ‖.‖∞≤1(w). Then,

f ⋆(z) =
d∑

i=1

sup
|wi |≤1

[wizi − 1(wi , 0)] =
d∑

i=1

(zi − 1)+.
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The biconjugate is thus

f ⋆⋆(w) =
d∑

i=1

sup
zi

[wizi − (zi − 1)+] =

‖w‖1 if ‖w‖∞ ≤ 1,

∞ otherwise.

Hence, over bounded vectors, the ℓ1-norm is the tightest convex relaxation to the ℓ0-norm.

Note that it is necessary here to �x the scale by looking at the unit ball for the ℓ∞-norm:

the convex envelope to the ℓ0-norm over Rd is the uniformly zero function.

2.2.3 Elastic-net and Variations

This rationale for using the ℓ1-norm has been criticized in various ways, and one of them

is related to how it behaves in terms of correlated variables. Consider the case where

some relevant variables are very much correlated. The ℓ1-norm penalty may only select

a single of these variables, and which variable is selected might be numerically unsta-

ble. In particular, consider the case where features 1 and 2 are always equal: for any

given C , any ℓ1-norm penalized objective in dimension two has the same value over all of{
w ∈R2 : w1+w2 = C

}
. The elastic net penalty (Zou and Hastie, 2005b) was introduced

in part to remedy this problem, and consists in

‖w‖elastic = ‖w‖1+ γ‖w‖22.

The strict convexity of the ℓ2-norm part encourages joint selection of correlated features.

In the previous examples of equal features,

‖(C,0)‖elastic = C + γC2 > ‖(C/2,C/2)‖elastic = C +
γ

2
C2,

such that the elastic net encourages con�gurations where both features are equally used.

The ℓ2-norm penalty shrinks the estimator, and the resultingw is usually rescaled by 1+γ
to make up for this. The Trace Lasso penalty (Grave et al., 2011) induces a similar e�ect in

a data dependent matter, through a spectral technique:

‖w‖TL = ‖X diag(w)‖∗,

where ‖.‖∗ is the trace norm, which is the sum of the singular values. Informally, this mea-

sures the dimension of the linear subspace spanned by the selected features. In particular,

the penalty does not increasewhen selecting additional features verymuch correlatedwith

a feature that was already selected. Unlike most regularizers, the Trace Lasso penalty mea-

sures complexity of the predictor w based on the knowledge of the data. This is similar in

principle to the mutual information regularizer I(X,T ) from the Information Bottleneck.

The k-support norm ‖ · ‖spk (Argyriou et al., 2012) corresponds to the tightest convex

surrogate of the ℓ0-norm, but over the Euclidean unit ball instead of the ℓ∞-norm unit

ball. This can be formulated in a slightly di�erent framework than before. Instead of

taking the point of view of convex functions, where one looks for the largest convex lower

bound, consider that of convex sets, where one looks on the opposite for the smallest convex

superset of a non-convex subset (also referred to as the convex hull), as illustrated in Figure

2.3. For the k-support norm, this can be stated as

conv {w : ‖w‖0 ≤ k, ‖w‖2 ≤ 1}=
{
w : ‖w‖spk ≤ 1

}
,
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Figure 2.3: Convex set view of ℓ1-norm relaxation: ℓ∞-norm unit ball (dashed black), 1-

sparse vectors (red), intersection of both (red points), convex hull of intersection (light

red)

where conv is the convex hull operator . There is a noteworthy di�erence with the ℓ1-
norm relaxation, which in similar terms can be written

conv {w : ‖w‖0 ≤ k, ‖w‖∞ ≤ 1}=
{
w :

1

k
‖w‖1 ≤ 1

}
.

In the ℓ1-norm case, the convex relaxation depends in an homogeneous fashion in the

number k of nonzero elements, while with the k-support norm, this dependence is more

intricate. Although the relaxation result for the ℓ1-norm can be equally easily formulated

in terms of convex biconjugate or convex hulls, the k-support norm comes up most natu-

rally with convex hull. The k-support norm is closely related to the following constraint

reformulation of the elastic net

‖w‖elastick =max

{
‖w‖2,

‖w‖1√
k

}
,

which is such that ‖w‖elastick ≤ ‖w‖spk ≤
√
2‖w‖elastick for w ∈ Rd . In spite of this, the k-

support norm has been shown to outperform the elastic net in a variety of settings.

2.2.4 Other Regularizers

Many other notions of sparsity have been proposed, and we only mention a few. Non-

uniform weightings over the features can be used, and some interesting such weightings

are adaptive: they are chosen directly from the data. A simple example is the adaptive

Lasso (Zou, 2006): given an initial estimate ŵ, consider the penalty

‖w‖1,ŵ =
N∑

i=1

|wi |
|ŵi |γ

for some γ . This procedure was shown to have theoretical guarantees superior to that of

Lasso in terms of estimation and recovery of the support of w⋆ . This type of reweighting
can also be iterated multiple times: the estimator obtained using an adaptive Lasso-like

penalty can be used to de�ne a weighting for a new penalty, and so on.
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The previous regularizers are mostly convex, but non-convex regularizers have been

studied as well. The sparseness measure (Hoyer, 2004b) consists in an a�ne transforma-

tion of

‖w‖1,e� =
‖w‖1
‖w‖2

,

which is referred to as the e�ective sparsity (Plan and Vershynin, 2013a). Others regular-

izers have been de�ned to limit the increase of the ℓ1-norm away from zero. The simplest

example is the capped ℓ1-norm:

‖w‖1,capped =min
[
‖w‖1,

1

2

]
.

This introduces more singularities though, andmany variants have been proposed, such as

SCAD (Fan and Li, 2001) and MCP (Zhang, 2010). Finally, note that all of these regularizers

can be extended in a straightforward manner to matrices by viewing them as vectors in

Rd2 .

2.3 Rank and Latent Factor Models

Latent factormodels are awide class ofmodels, based on a very di�erent type of hypothesis

than sparse models. They apply to problems with relational or high-order structures, such

as in the following example.

Exemple 9 (Recommender systems). In recommender systems (Koren, 2008), one seeks to

recommend products to customers. These systems are ubiquitous in e-commerce and social

websites, but extend well beyond these. In the simplest setting, one has data corresponding

to past purchases. When the only information available is whether a purchase was made

for each user/product combination, this is link prediction as in Example 6. However, in many

cases, ratings are collected to quantify how happy each user was with each product purchased.

This allows to cast the problem as a matrix completion problem as in Example 7: consider the

ratings matrixW ⋆ of size (number of users) × (number of products), where for a user u and

a product p,

W ⋆
u,p =


rating given by u to p if u purchased p,

� otherwise.

Here, the symbol � indicates that the information is unavailable and must be inferred. The

objective is, for each user u, to provide a shortlist of products. In general, the problem is very

much ill-posed from a mathematical standpoint (due to the absence of clear statistical model

in practice), and evaluation metrics are thus an important part of a recommender system.

In Example 9, there aremultiple types of entities, which interact according to someweight-

ing W to be estimated. In latent factor models, the hypothesis is that there are a small

number of latent factors, which regulate how entities interact. The latent factors are new

kinds of entities (ui) and (vj) in some common vector space Rr and such that

Wi,j ≃ 〈ui ,vj〉.

Formally, this means thatA ∈Rd1×d2 can decompose as a product of matrices, or factorizes,

as

A ≃UV T
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whereU ∈Rd1×r ,V ∈Rd2×r for some r which is the number of latent factors. In Example

9, this means that every user i has a representation ui in Rr , and every product j has a
representation vj in Rr , such that the rating given by user i to product j can be modeled

by the norms and angle in this common vector space. This is illustrated on the left panel

of Figure 2.4. Equivalently, this can be seen as in the right panel of Figure 2.4, where the

the rating given by user i to product j is modeled by the sum of all the products of values

across paths of length two from i to j . The assumption that there are only a small number

ui
vji

j
i

j
(ui)1

(ui)2

(vj)1

(vj)2
×

×

Figure 2.4: Pictorial representation of latent factor models in the context of recommender

systems: users (blue), products (green), latent factors (red)

of latent factors (i.e., r is small) can greatly reduce the dimension of the problem. The usual

reformulation of this hypothesis is that A should have approximately low rank. This has

received a large amount of attention in the last decade, and we review in the following

some of the main concepts related to it.

2.3.1 The Rank

The rank is the minimal number of elementary matrices of the form abT for a ∈ Rd1 ,b ∈
Rd2 which can be used to additively decompose a linear operator from Rd2 to Rd1 . For-

mally, the rank ofW ∈Rd1×d2 is

rank(W ) = inf

‖σ‖0 : W =
∑

i

σibia
T
i , ‖bi‖2 = ‖ai‖2 = 1

 ,

with ai ∈ Rd2 and bi ∈ Rd1 . Decompositions which achieve the in�mum are given by

the Singular Value Decomposition (SVD) of W , and the corresponding (ai) (resp. the

corresponding (bi)) are mutually orthogonal. The rank is a non-convex matrix functional:

in dimension two, and as illustrated in Figure 2.5, the manifold of symmetric 2×2matrices

with rank at most one is {[
a b
b c

]
: ac = b2

}
,

which is simply the union of two cones. In higher dimensions, more polynomial equations

are required to describe the corresponding manifolds, and the actual geometry becomes

intricate very quickly.

2.3.2 The Trace Norm

Denote by σ(W ) =
(
σ1(W ), . . . ,σrank(W )(W )

)
the singular values of W ∈ Rd1×d2 . The

trace norm is the spectral analogue of the ℓ1-norm.
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Figure 2.5: Manifold of symmetric 2× 2 matrices with rank at most one

De�nition 2. The trace norm ofW ∈Rd1×d2 is

‖W ‖∗ =
rank(W )∑

i=1

σi(W ).

In particular, ‖W ‖∗ = ‖σ(W )‖1 andwhenW is positive semi-de�nite (which wewill write

W � 0 ), the trace norm is simply the trace: ‖W ‖∗ = Tr(W ) . This norm is a special case,

corresponding to p = 1 in the Schatten p-norms family, de�ned as

‖W ‖∗,p =


d∑

i=1

σi(W )p




1/p

.

These norms are invariantwith respect to unitary transformations, and are sub-multiplicative.

As with classical ℓp-norms, the dual norm to ‖ · ‖∗,p is ‖ · ‖∗,q , where 1/p+1/q = 1. In the

case of the trace norm, the dual norm is the operator norm

‖W ‖op =max
i
σi(W ).

As shown by Fazel (2002), the trace norm is the tightest convex relaxation to the rank over

the operator norm ball. This is illustrated in Figure 2.6. Here, we show unit balls for the

Figure 2.6: Operator norm ball (left), Trace norm ball (right)

operator norm (which is diamond-shaped) and the trace norm (which is cylinder-shaped)

relaxation in the space of 2×2 symmetric matrices, with the manifold of rank 1matrices in
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overlay. In particular, the unit ball of the trace norm is the convex hull of the intersection

between the rank one manifold and the operator unit ball. Formally, the fact that this is the

tightest relaxation can be shown similarly as with the ℓ1-norm relaxation of the ℓ0-norm.

Consider

f (W ) = rank(W ) δ‖·‖op≤1(W ).

Using the equality case in the von Neumann trace theorem allows to transport the problem

into the space of singular values, where the calculation is identical as for the ℓ0-norm:

f ⋆(Z) = sup
X∈Rd1×d2

[〈X,Z〉 − f (X)] =
min(d1,d2)∑

i=1

(σi(Z)− 1)+.

As a consequence,

f ⋆⋆(W ) = ‖W ‖∗ δ‖·‖op≤1(W ).

As previously, one may consider the point of view of convex sets instead of convex func-

tions. In this framework,

conv
{
W : rank(W ) ≤ r, ‖W ‖op ≤ 1

}
=

{
W :

1

r
‖W ‖∗ ≤ 1

}
.

As with ℓ1-norm, this is homogeneous in the rank r . From a geometric point of view, the

associated unit ball B∗ is generated by unit-norm rank one matrices:

B∗ = conv
{
uvT : ‖u‖2 = ‖v‖2 = 1

}
.

As a consequence,B∗ has an in�nite number of extremal points. In spite of this and perhaps

remarkably, projection onto B∗ can be achieved in time O(d3) through a singular value

decomposition. The trace norm can also be formulated as

‖W ‖∗ = inf
UV T=W

‖U‖F‖V ‖F =
1

2
inf

UV T=W

[
‖U‖2F + ‖V ‖2F

]
.

In this formulation, the dimensions of U and V may be left unconstrained, although the

in�mum will be attained at elements corresponding to the SVD of W . Through this for-

mulation, it appears that the trace norm measures the average row norm of factorizations

of the matrix.

Exemple 10 (ConvexMatrix Completion). Thematrix completion problem can be addressed

whenW ⋆ is low rank using an estimator of the form

Ŵ = argmin
W∈Rd1×d2

‖W ‖∗ s.t. W ◦Ω = Y .

The theoretical performances of this estimator have been analyzed by Candès and Recht

(2009).

In a matrix completion context, the trace norm regularizer can be very sensitive to

the sampling distribution of the observed entries. A common theoretical model for matrix

completion assumes that observed entries are sampled according to the uniform distribu-

tion (with or without replacement), but this is rarely the case in practice. Consider that

one observesN entries of a matrix A ∈Rd1×d2 , where these entries are selected i.i.d. from
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a distribution P over [d1] × [d2]. A meaningful metric in this case is the generalization

error under the sampling distribution, for instance in ℓ2-norm. As shown by Srebro and

Salakhutdinov (2010), even with respect to this metric, the trace norm regularizer may

yield poor performance (formally, the sample complexity is unnecessarily high) when P

deviates from uniform. In order to remedy this, they propose when the marginals of the

sampling distribution are known to use a weighted variant of the trace norm. Denote by

Prow (resp. by Pcol) the row marginal (resp. the column marginal), such that Prow can be

viewed as a d1-dimensional vector, and similarly for Pcol. The weighted trace-norm is

‖W ‖tr(Prow,Pcol) =
∥∥∥∥diag

(√
Prow

)
X diag

(√
Pcol

)∥∥∥∥∗ .

In practice, these marginal distributions have to be estimated empirically. A generalization

is the local max norm (Foygel et al., 2012): consider a set R (resp. a set C) of marginal

distributions over rows (resp. over columns), and de�ne

‖W ‖(R,C) = max
Prow∈R,
Pcol∈C

‖W ‖tr(Prow,Pcol).

Note that R and C are then extra parameters, which need to be chosen properly.

2.3.3 Nuclear and Atomic Norms

In machine learning and statistics, the trace norm is also often referred to as the nuclear

norm, although we will avoid this terminology, as this is a term from functional analysis

which goes much further beyond the trace norm, which is merely a nuclear norm. In

the following, we give some background on 1-nuclear norms for operators between �nite

dimensional spaces, as they provide inspiration for some interesting generalizations. More

information can be found in the book by Jameson (1987).

Consider a matrixW ∈Rd1×d2 . This can be viewed as an operator from Rd2 into Rd1 .

We will consider that the input space Rd2 is equipped with a norm ‖ · ‖A. The dual norm
is de�ned as

‖z‖⋆A = sup {〈w,z〉 : ‖w‖A ≤ 1} .
Similarly, the output space Rd1 is equipped with a norm ‖ · ‖B. The 1-nuclear norm is a

norm from (Rd2 ,‖ · ‖A) into (Rd1 ,‖ · ‖B).

De�nition 3. The 1-nuclear norm from (Rd2 ,‖ · ‖A) into (Rd1 ,‖ · ‖B) ofW is

‖W ‖nuc = inf



(
max
i
‖bi‖B

)
·
∑

i

‖ai‖⋆A : W =
∑

i

bia
T
i

 ,

with ai ∈Rd2 ,bi ∈Rd1 .

The 1-nuclear norm is actually the dual matrix norm to the operator norm from (Rd1 ,‖·‖B)
into (Rd2 ,‖ · ‖A), given for Z ∈Rd2×d1 by

‖Z‖B→A = sup
‖b‖B≤1

‖Zb‖A.

Formally, we have the following characterization.
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Proposition 4. For Z ∈Rd2×d1 ,

‖Z‖⋆nuc = sup
{
aTZb : ‖a‖A ≤ 1,‖b‖B ≤ 1

}
= ‖Z‖B→A.

In practice, other de�nitions for the 1-nuclear norms can be used equivalently. For any

decompositionW =
∑
i bia

T
i , a decomposition with equal cost is given by

W =
∑

i

bi
‖bi‖B

(‖bi‖Bai)T .

As a consequence, the norm can be equivalently expressed as

‖W ‖nuc = inf


∑

i

‖bi‖B‖ai‖⋆A : W =
∑

i

bia
T
i

 .

= inf


∑

i

σi : W =
∑

i

σibia
T
i , ‖bi‖B = ‖ai‖⋆A = 1, σi ≥ 0

 .

It can be seen from this representation that the unit ball of a nuclear norm is of the form

Bnuc = conv
{
baT : ‖b‖B = ‖a‖⋆A = 1

}
.

We recover the following familiar example of 1-nuclear norm.

Exemple 11 (Trace norm). The case where ‖.‖⋆A = ‖.‖B = ‖.‖2 (the Euclidean norm, which

satis�es ‖.‖2 = ‖.‖⋆2) leads to the trace norm:

‖W ‖∗ = inf


∑

i

σi : W =
∑

i

σibia
T
i , ‖bi‖2 = ‖ai‖2 = 1, σi ≥ 0

 .

The 1-nuclear normsmeasure costs of decompositionwith respect to rank one elemen-

tary elements. This can be generalized to arbitrary elementary elements through atomic

norms (Chandrasekaran et al., 2012). Consider a centrally symmetric setA ⊂Rd , the atom

set.

De�nition 4. The atomic norm (with atom set A) ofW is

‖W ‖A = inf


∑

i

σi : W =
∑

i

σiai , ai ∈ A, σi ≥ 0

 .

When convA contains an open set that contains 0, this is indeed a norm over Rd . Unlike

nuclear norms, atomic norms include norms over vectors.

Exemple 12 (ℓ1-norm). The ℓ1-norm on Rd is an atomic norm, with atom set

A = {±ei : i ∈ [d]},

where ei is the i-th vector from the canonical basis of Rd .
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2.3.4 The Max Norm

Recall that the trace norm can be obtained as the nuclear norm for ‖ · ‖⋆A = ‖ · ‖B = ‖.‖2.
Hence, the trace norm measures the cost of decomposing a linear operator into rank one

elementary elements of unit-Euclidean length. An interesting variation consists in using

rank one elements with bounded coe�cients. This can be obtained with ‖ · ‖⋆A = ‖ · ‖B =
‖.‖∞. The corresponding nuclear norm is

‖W ‖⋆∞→1 = inf


∑

i

σi : W =
∑

i

σibia
T
i , ‖bi‖∞ = ‖ai‖∞ = 1, σi ≥ 0

 .

For d1 = d2 = 2, one simply has ‖W ‖⋆∞→1 = ‖W ‖∞. The associated unit ball is

B
⋆
∞→1 = conv

{
yf T : ‖y‖∞ = ‖f ‖∞ = 1

}
= conv

{
yf T : yi , fi ∈ {−1,1}

}
.

This norm can be seen to provide a convex relaxation to the rank over the ℓ∞-norm unit

ball (Lee et al., 2008): [
‖W ‖⋆∞→1

]2 ≤ rank(W )‖W ‖∞.
Is this a practical choice of penalty? This norm is actually a constant factor approximation

to the so-called CUT norm, and both can be shown to be NP-hard. Indeed, they both can

be used to compute maximum cut values in graphs (Alon and Naor, 2006) by computing

the norm of a well-chosen matrix. However, ‖.‖⋆∞→1 is closely approximated by the max

norm (or γ2-norm) (Srebro, 2004).

De�nition 5. The max norm ofW ∈Rd1×d2 is de�ned equivalently as

‖W ‖max = inf
UV T=W

‖U‖2→∞‖V ‖2→∞ =
1

2
inf

UV T=W

[
‖U‖22→∞+ ‖V ‖22→∞

]
.

In this expression, the number of columns of U and V are left unbounded. This is similar

to the expression given for the trace norm, and is an example of a factorization constant.

Here, instead of the average ℓ2-norm of the rows of the factors, the maximum ℓ2-norm of

the rows of the factor are used:

‖U‖2→∞ =max
i∈[d1]

‖Ui,·‖2.

This norm has also be referred to as the Hadmard product operator norm (Lee et al., 2008),

due to the alternative expression

‖W ‖max =max
Q

‖Q ◦W ‖op
‖Q‖op

= max
‖u‖2=‖v‖2=1

‖uvT ◦W ‖∗.

This latter expression has been used to derive sub di�erentials related to the max norm by

Jalali and Srebro (2012). The max norm is not a spectral norm: unlike the trace norm, it

cannot be expressed as a function of singular values only. However, unlike the previous

cut-related norms, the max norm can be expressed as the optimal value of a semi-de�nite

program, and thus can lead to tractable optimization problems:

‖W ‖max = inf

{
t :
‖diag(A)‖∞
‖diag(B)‖∞

≤ t and

(
A X
XT B

)
� 0

}
,
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over A ∈ Rd1×d1 ,B ∈ Rd2×d2 , t ∈ R. This property is called semi-de�nite representabil-

ity. The max norm has numerous more properties, see previous references and references

therein.

The aforementioned relation to ‖ · ‖⋆∞→1 can be seen as follows. Duality and Grothen-

dick’s inequality imply with 1.67 < KG < 1.79 that

KG‖A‖⋆∞→1 ≤ ‖A‖max ≤ ‖A‖⋆∞→1.

Aswith ‖·‖⋆∞→1, the max norm provides a convex relaxation to the rank over the ℓ∞-norm,

albeit less tight:

[‖W ‖max]
2 ≤

[
‖W ‖⋆∞→1

]2 ≤ rank(W )‖W ‖∞.
The theoretical performances of the max norm have been analyzed in various settings,

such as in clustering (Jalali and Srebro, 2012), or in matrix completion. In this last setting,

Foygel and Srebro (2011) showed that the max norm is much less sensitive than the trace

norm to the marginals of the sampling distributions: while the trace norm can be inter-

preted as penalizing the average row-norm of factorizations, the max norm penalizes the

maximum row-norm. The local max norm ‖ ·‖(R,C) can be used to interpolate between the

trace norm and the max norm through a proper choice of R and C (Foygel et al., 2012).

2.3.5 Other Heuristics and Open Problems

The experimenter may be faced with the problem of estimating not matrices, but higher

dimensional objects such as tensors. Unlike with matrices, even symmetric tensors do

not necessarily admit an orthogonal decomposition in terms of rank one atoms. Rank

and equivalent of the trace norm have still be proposed, although these de�nitions are

less canonical than in the matrix case. A standard idea consists in generalizing concepts

from the matrix case, such as power iterations and Rayleigh quotients (Anandkumar et al.,

2012). Another path to de�ne convex relaxations consists in unfolding: given an order

three tensor T ∈ Rd1×d2×d3 , the unfolding along the k-th mode for k ∈ [3] is a matrix

rearrangement of the coe�cients T(k) ∈ Rdk×
∏
i,k di . Tensor trace norm equivalents have

been studied, where trace norms of the unfoldings are combined in various ways (Liu

et al., 2013). Recently, other relaxations have been proposed by Romera-Paredes and Pontil

(2013).

Finally, there are also some open problems. The trace norm is the convex envelope

of the rank over the operator norm unit ball. However, in many settings (e.g., matrix

completionwith bounded ratings), imposing such a constraint on themaximumeigenvalue

of matrices may not be relevant. As we have seen, the max norm and its nuclear norm

approximation are convex relaxations to the rank over the ℓ∞-norm ball. However, we do

not know whether this nuclear norm is the tightest convex relaxation. This prompts the

following question.

Open Problem 1. What is the convex envelope of the rank over the ℓ∞-norm unit ball?

Formally, this amounts to determining

conv
{
W ∈Rd1×d2 : rank(W ) ≤ r, ‖W ‖∞ ≤ 1

}
.

In addition, is this homogeneous in r as with the trace norm?
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This requires to understand relationships between a spectral-oriented quantity, and a coe�cient-

oriented quantity, which appears di�cult. This motivates to consider di�erent concepts

of rank, or of complexity based on atoms.

De�nition 6. Let A be an atom set, and let ΣA(W ) denote the set of all optimal cost rep-

resentations (σi ,ai) ofW with respect to the corresponding atomic norm. The atomic repre-

sentation length ofW is

µA(W ) = inf
{‖σ‖0 : σ ∈ ΣA(W )

}
.

The atomic sup norm of w is

MA(w) = sup
{‖σ‖∞ : σ ∈ ΣA(W )

}
.

For A = {±ei : i ∈ [d]}, the atomic norm is the ℓ1-norm, while µA is the ℓ0-norm, and

MA is the ℓ∞-norm. Similarly, for A = {uvT : ‖u‖2 = ‖v‖2 = 1}, the atomic norm is the

trace norm, while µA is the rank, andMA is the operator norm. In both examples above,

optimal representations for µA and MA are obtained with atoms that are orthogonal to

each others. An interesting question lies in how this can be generalized to non-orthogonal

settings.

Proposition 5. Let A be a centrally symmetric atom set. Then, µA is sub-additive, and

µA(λ·) = µA(·) for any λ , 0. We also have

MA(w) ≤ ‖w‖A ≤ µA(w)MA(w).

In addition,MA(λ·) = |λ|MA(·) for any λ ∈R, andMA(w) = 0 if and only if w = 0.

Hence, ‖ · ‖A is a convex relaxation to µA over {w : MA(w) ≤ 1}. This suggests the

following problems.

Open Problem 2. Under what conditions on A is MA convex, and hence, a norm? Under

what conditions is the atomic norm ‖ · ‖A the tightest convex relaxation to µA over {w :

MA(w) ≤ 1}?

2.4 Measuring Quality of Regularizers and Theoretical

Results

In the previous sections, we have presented many interesting regularizers to enforce vari-

ations of the notion of sparsity or low rank. A given penalty will be useful if it allows

to guarantee a good generalization performance, or estimate the model with a minimum

amount of training data, while remaining computationally tractable (so that the estima-

tor can actually be computed in practice). There is a very large literature on theoretical

analysis of the generalization performance of various penalized ERM programs (Bartlett

and Mendelson, 2003; Shorack and Wellner, 2009), and we do not review this question in

depth here. We will provide such an analysis in Chapter 4 in the context of multiple kernel

learning. Instead, we focus in this section on theoretical results for the estimation problem.
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2.4.1 Estimation: Exact and Robust Recovery

We will assume that there is a true linear model of the form (2.2) (vector form) or (2.4) (ma-

trix form) to estimate. The usefulness of a given penalty in recovering a model of course

depends a lot on how simple the true model is in the view of this penalty. Results that

involve the complexity of the true object according to the penalty, e.g., Ω(ω⋆) or similar

geometric characterizations usually fall within the realm of oracle inequalities, and we give

such an example in Chapter 3. On the other hand, results may involve the complexity of

the true object according to a hard notion to which the penalty is a relaxation, e.g., ‖ω⋆‖0.
This is usually the ultimate objective, and we focus on such a type of results in this section.

In the absence of noise, the problem is exact recovery: can we perfectly estimate ω⋆ in the

absence of noise? Formally, this consists in determining when

w⋆ = argmin
w∈Rd

Ω(w) s.t. 〈xi ,w〉= yi for i ∈ [N ]. (2.5)

When there is noise, the problem is robust recovery: how well can we estimate in the

presence of noise? Formally, this consists in determining upper bounds on ‖ŵ − w⋆‖,
where

ŵ = argmin
w∈Rd

Ω(w) s.t. ‖Xw− y‖ ≤ ε (2.6)

or variations on this, where ‖ · ‖ is usually the Euclidean norm. Note that these two for-

mulations di�er slightly from our penalized estimation problem, but this allows for more

�exibility in order to describe common theoretical results.

The types of results that can be obtained depends greatly on the design. We consider

Gaussian designs, and use the notation A ∈RN×d for such designs: in this case, all entries

ofA are independent standard normals. The choice of Gaussian designs has a longstanding

history. In particular, random Gaussian vectors are isotropic, and thus have an important

connection to uniformly random directions. Most importantly, random projections onto

Gaussian direction have been known for long to approximately preserve the Euclidean

length, and pairwise Euclidean distances of points (Bourgain, 1985; Dasgupta and Gupta,

2003).

Proposition 6. Let x ∈ Rd , 0 < ε < 1, and consider a random Gaussian design A ∈ RN×d .
Then, with probability at least 1− 2e−(ε2−ε3)N4 ,

(1− ε)‖x‖22 ≤
∥∥∥∥∥∥

1√
N
Ax

∥∥∥∥∥∥

2

2

≤ (1+ ε)‖x‖22.

A major advance in recent years was to show that much more structure (such as the sup-

port of sparse vectors, or the singular spaces of low rank matrices) could also be recovered

from Gaussian random projections, and most of the results we will discuss in the rest of

this chapter are of this sort.

In problems of the form (2.5) or (2.6), the recovery is dictated by the geometry of the

kernel of the design, that we refer to by kerA. Due to rotational invariance of the Gaus-

sian distribution, the subspace kerA is actually a random subspace of codimension N
distributed uniformly at random.
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2.4.2 High-Dimensional Convex Sets and Gaussian Width

Millman has proposed a pictorial representation of high-dimensional convex sets (Milman,

1998) that we reproduce in Figure 2.7: a convex set is made of a bulkwhich containsmost of

the mass, and of tentacles. Due to the fact that the representation is only two-dimensional,

this includes hyperbolic boundaries. Before we consider the case of penalized estimation,

H

maxz∈C〈z,u〉

minz∈C〈z,u〉

Figure 2.7: Pictorial representation of convex sets in high-dimension: intersection with a

random subspace H (left), Gaussian width (right)

consider the following simple feasibility problem, where we simply take as estimator any

point consistent with the data, and in the unit-ball of the regularizer:

�nd w s.t. Ω(w) ≤ 1, Aw = y.

How accurately can we hope to estimate w⋆ using this type of program? This is fully

characterized by the size of the intersection of the kernel ofA and ofw⋆+BΩ . In particular,

when this intersection is reduced to zero, exact recovery succeeds. The following notion

of average width of a set will be useful to characterize when this is the case.

De�nition 7. The Gaussian width of C ⊂Rd is

w(C) = E

[
sup
z∈C
〈z,g〉

]
,

where g is a standard Gaussian vector in Rd .

This is a classical quantity in Gaussian process theory, and a treatment of Gaussian widths

in our context can be found in (Chandrasekaran et al., 2012). The following are easy

but useful properties of the Gaussian width. Here, the mean Euclidean length of a k-
dimensional standard Gaussian vector is denoted by λk ∈ [k/

√
k+ 1,

√
k].

Proposition 7. The Gaussian width has the following properties: for any C ⊂Rd ,

• Mean width formula.

w(C) =
λd
2

∫

S2

[
max
z∈C
〈z,u〉 −min

z∈C
〈z,u〉

]
du.
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• Convex hull. w(conv(C)) = w(C),

• Symmetrization. w(C) ≤ w(C −C) ≤ 2w(C) ,

• w is invariant by orthogonal transformations or translations of C ,

• w(C) =
√
k if C is a linear subspace with dimension k,

• when C is the unit-ball of a norm ‖ · ‖, then w(C) = E[‖g‖⋆ ].

The �rst property shows that the Gaussian width can be interpreted as the mean width

in uniformly random directions, as illustrated in Figure 2.7. A central intuition here is

that a random subspace H will tend to miss the tentacles of the convex set. We have the

following result (Milman, 1985; Pajor and Tomczak-Jaegermann, 1986).

Proposition 8. Let H be a random subspace of codimension N , and C a symmetric convex

set, then, with probability at least 1− e−N , for some constant c0,

diam(C ∩H) ≤ c0
w(C)√
N

,

where diam(X) is the diameter of set X in Euclidean norm.

Although a bit longer to state formally, there exists similar matching lower bounds for the

diameter of the intersection: see, for instance, (Giannopoulos et al., 2005), where such a

lower bound is actually shown to hold for all subspaces of codimension N . As a conse-

quence, setting H = kerA, recovery up to ε-accuracy (in ℓ2-norm) is possible for

N ≥ w(C)
2

ε2
.

This approach allows to characterize whenwe can obtain ε-approximation using feasibility

problems. To consider penalized estimation instead of simply feasibility, we need to look at

slightly di�erent geometrical objects, although similar results and intuitions will remain

valid.

2.4.3 Optimality Conditions for Penalized Estimation

Consider

TΩ(w) = cone
{
z −w : Ω(z) ≤Ω(w)

}
,

the tangent cone at w to the corresponding scaled unit ballΩ(w)BΩ = {x ∈Rd : Ω(x) ≤
Ω(w)}. Here, cone denotes the conical hull operator. The success of a noiseless penalized
program is characterized by whether the nullspace of A intersects with the tangent cone.

The following result can be found in (Chandrasekaran et al., 2012).

Proposition 9. Let Ω : Rd → R+ be a norm. In the noiseless setting, w⋆ is the unique

optimal point of (2.5) if and only if

ker(A)∩TΩ(w⋆) = {0}.
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In the noisy setting, assume that noise is bounded as ‖ε‖2 ≤ δ, and that for ν ∈]0,1[, it holds
that

∀w ∈ TΩ(w⋆), ‖Aw‖2 ≥ ν‖w‖2.
Then, all solutions to (2.6) satisfy

‖w−w⋆‖2 ≤
2δ

ν
.

For robust recovery, the error bound on w is always larger than 2δ, which can be inter-

preted as the total standard deviation of the noise. The condition for exact recovery is

illustrated in Figure 2.8.

The following result is a variation on Proposition 8 due to Gordon (1988), that is ex-

pressed directly in terms of the kernel of A, instead of an abstract random subspace H .

Proposition 10 (Escape Through a Mesh Phenomenon). Let C be a closed set in Rd . Then,

for A ∈RN×d a random Gaussian design,

E

[
min

w∈C∩S2

‖Aw‖2
]
≥ λN −w (C ∩S2) .

In addition, A 7→minw∈C∩S2
‖Aw‖2 is Lipschitz with constant one with respect to the Frobe-

nius norm.

Intuitively, if the number N of measures is large enough compared to the squared Gaus-

sian width, the lower bound is bounded away from zero such that elements in C ∩ S2

cannot be in the kernel with high probability. Equipped with the conditions for recovery

of Proposition 9, we can apply Proposition 10 to TΩ(w
⋆)∩S2. This can be used to deduce

su�cient condition for exact or robust recovery with penalized estimation.

Proposition 11. In the noiseless setting, exact recovery succeeds with high probability if

N ≥ w(TΩ(w⋆)∩S2)2+ 1.

This result can actually be recovered using di�erent tools from integral convex geometry,

as we will see in the next section. The previous result emphasizes the importance of the

BΩ −w⋆

TΩ(w
⋆)

kerA

w⋆
•

Figure 2.8: Illustration of optimality conditions for exact recovery for the ℓ1-norm
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geometry of the unit ball, and an interesting analysis for a given regularizer consists in

identifying and classifying special points on the unit ball. In the following, we give a few

examples of such points.

An extremal point of a convex set C is any point of C which cannot be decomposed as

a convex combination of other points in C . Formally, a point x on the boundary of C is

an extremal point of C if and only if C \{x} is still convex. The set of extremal points can

be understood in the framework of atomic norms as an atom set of minimal size, but does

not directly allow to characterize the smoothness of convex sets.

De�nition 8. Let C be a full-dimensional convex set. A boundary point x of C is said of

order ̺(x) if the intersection of all the supporting hyperplanes to C at x is an a�ne subspace

of dimension ̺(x).

For a convex set in Rd , a point x ∈ C such that ̺(x) = d − 1 is said smooth. On the other

hand, a point such that ̺(x) = 0 is referred to as a vertex (Gallier, 2008). The extremal

points and the vertices do not necessarily coincide: a vertex is extremal, but the converse

is not necessarily true (e.g., consider the Euclidean ball B2 for which the set of extremal

points is the Euclidean sphere S2, but has no vertices). WhenC = BΩ , points xwhereΩ is

non-di�erentiable are such that ̺(x) < d−1 (i.e., they are not smooth), but not necessarily

such that ̺(x) = 0 (i.e., they are not necessarily vertices).

Figure 2.9: A boundary point of order 1 on a cylinder (red dot), and supporting hyperplanes

(blue, green)

The points such that 0 < ̺(x) < d−1 correspond to intermediate levels of smoothness.

This is illustrated in Figure 2.9: we consider a convex set that is a cylinder (similarly to the

unit ball for the trace norm over 2×2 symmetric matrices), and a point x on the boundary,

indicated by a red dot. Unlike points in the interior of the top disk, this point is not smooth.

However, this point is not a vertex either, as ̺(x) = 1. Indeed, there are two supporting

hyperplanes to the cylinder at x, shown in blue and green, and their intersection is a line,

shown in red. From similar considerations, one can show that the unit ball for the trace

norm has no vertices, although any rank-de�cient matrix is not a smooth point.

We note that even two norms related up to a constant factor can have di�erent perfor-

mances for recovery, as the geometry of their unit balls can be signi�cantly di�erent. This

is, for instance, the case with the k-support norm and the elastic net: any point x such that



2.4. MEASURING QUALITY OF REGULARIZERS AND THEORETICAL RESULTS 57

‖x‖0 < k is smooth for the ball of the k-support norm, but not for the ball of the elastic

net. Similarly, the extremal points of the ‖ · ‖⋆∞→1-unit ball are all extremal points of the

max norm unit ball, but the latter actually has strictly more (as otherwise, the two norms

would coincide, contradicting lower bounds on Grothendick’s constant KG).

2.4.4 Kinematic Formula and Statistical Dimension

When working with convex programs and their optimality conditions, the main objects

involved are convex cones. The kinematic formula for cones allows to quantify the prob-

ability that a convex cone C and another random rotated cone K intersect. Denote byΠC

the projection operator onto the convex set C . For a k-dimensional linear subspace L of

Rd , we also denote the probability that a random point on the sphere has a nontrivial pro-

jection on L by Idk (ε) = P(‖ΠL(θ)‖22 ≥ ε). In order to generalize this to cones, consider

the following quantities.

Proposition 12 (Conic Instrinsic Volumes). Let C be a closed convex cone in Rd , then for

any ε ∈ [0,1] and θ uniformly distributed on the Euclidean unit sphere S2, there exists d+1

scalars

(v0(C), . . . ,vd(C))

such that

P(‖ΠC(θ)‖22 ≥ ε) =
d∑

k=0

vk(C)I
d
k (ε).

The elements v0(C), . . . ,vd(C) are the intrinsic volumes of C .

The Kinematic Formula shows that the intrinsic volumes characterize the probability of

intersection of two cones when one of them is rotated uniformly at random.

Theorem 1 (Cone Kinematic Formula). Assume that C and K are closed convex cones in

Rd , one of which is not a linear subspace, and denote by R a rotation uniformly at random.

Then,

P (C ∩RK , {0}) = 2hd+1(C ×K)
where

hd+1(C ×K) = vd+1(C ×K) + vd+3(C ×K) + . . .

is the (d + 1)-th half-tail functional.

In practice, the intrinsic volumes may be di�cult to compute. Remarkably, Amelunxen

et al. (2013) show that viewed as a discrete distribution, the sequence of intrinsic volumes

concentrates around its mean, and that this can be used to provide an approximate version

of the Kinematic formula. Although less precise, this approximation still allows to show a

sharp threshold e�ect on the number of observations in terms of only a single dimension-

like quantity of each of the cones. The mean intrinsic volume of a cone C is referred to as

the statistical dimension, and can be expressed as

∆(C) =
d∑

k=0

kvk(C) = E
[
‖ΠC(g)‖22

]
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for a closed convex cone C in Rd , and g ∈Rd a standard Gaussian vector. The characteri-

zation of the statistical dimension in terms of average norm of the projection of Gaussian

vectors is paramount in allowing for practical calculations of the dimension. Notably, this

is quite similar to the Gaussian width, and Amelunxen et al. (2013) actually show that,

albeit arising from di�erent considerations, these quantities are vey closely related, as for

a cone C ,

w2(C ∩S2) ≤ ∆(C) ≤ w2(C ∩S2) + 1.

This leads to the following result (Amelunxen et al., 2013).

Theorem 1 (Approximate Kinematic Formuma for Inverse Problems). Let η ∈]0,1[ and
Ω be a norm on Rd . For A ∈RN×d with independent standard Gaussian entries, it holds that

N ≤ ∆(TΩ(w
⋆))−αη

√
d⇒ exact recovery with probability less than η,

N ≥ ∆(TΩ(w
⋆)) +αη

√
d⇒ exact recovery with probability at least 1− η,

with αη =
√
8log(4/η).

This completes many previous results which provided either only upper or lower bounds.

This is a remarkable result, which shows the existence of a sharp threshold on the number

of observations for exact recovery. Although the �rst results of this type were in the

setting of ℓ1-norm penalized estimation, this result shows that this threshold phenomenon

actually applies to a wide class of random convex programs.

2.4.5 Examples

We now give examples of regularizers, together with their geometric characteristics and

statistical dimensions. The unit balls corresponding to some of these norms are shown in

Figure 2.10. We indicate asymptotic orders of magnitude without constants using the tilde

symbol ∼.

Figure 2.10: Unit balls for ℓ∞-norm, ℓ2-norm, ℓ1-norm, elastic-net norm (γ = 1), 2-support

norm

Unit balls. Although not directly useful in characterizing sample complexity, we give

the widths of a few classical unit balls. Using the characterization of the Gaussian width

as the expected dual norm of a standard Gaussian vector, we easily obtain the following

(Vershynin, 2011):

w(B1)
2 ∼ logd, w(B2)

2 ∼ d, w(B∞) ∼ d2.
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Sparse vectors with the ℓ1-norm. Consider the set of k-sparse vectors

Sk =
{
w ∈Rd : ‖w‖0 ≤ k

}
,

such thatw(Sk∩B2)
2 ∼ k log(2d/k) (Plan and Vershynin, 2013b). In addition, letw⋆ ∈ Sk ,

and Ω = ‖ · ‖1, then

w(TΩ(w
⋆)∩S2)2 ≤ 2k log(d/k) + 5/4k.

This upper bound can be found in (Chandrasekaran et al., 2012). This is a key result of

sparsity: the sample complexity only depends logarithmically on the ambient dimension.

This logarithmic factor of order log (dk) corresponds to the cost of not knowing what the

support of the model is.

Sparse vectors with the s-support norm. For Ω equal to the s-support norm (for s
that does not necessarily match k), one has similarly

w(TΩ(w
⋆)∩S2)2 ≤

[√
2s log(d + 2) +

√
s
]2 ⌈k

s

⌉
+ k.

This upper bound is from Chatterjee et al. (2014), and is based on a technique proposed for

the analysis of the Group Lasso penalty (Rao et al., 2012). This recovers the extreme cases

of Ω = ‖ · ‖1 (when s = 1) and Ω = ‖ · ‖2 (when s = d).

Sign vectors. Consider the set of k-saturated vectors

Ck =
{
w ∈Rd : card{i : |wi |= ‖w‖∞}= k

}
,

such that w(Ck∩B2)
2 = d2. Note that Ck∩B∞ is actually a k-face of the unit ball for the

ℓ∞-norm. In addition, let w⋆ ∈ Ck , and Ω = ‖ · ‖∞, then

∆(TΩ(w
⋆)) = d − s − k

2
.

The derivation of the exact value of the statistical dimension can be found in (Amelunxen

et al., 2013).

Low-rank matrices with the trace norm. Consider the set of rank r matrices

Lr =
{
W ∈Rd1×d2 : rank(W ) = r

}
.

ForW ⋆ ∈ Lr , and Ω = ‖ · ‖∗, then

w(TΩ(W
⋆)∩S2)2 ≤ 3r(d1+ d2 − r).

This result can be found in (Chandrasekaran et al., 2012). Analyses of penalized estimation

with themax norm usually use other routes, see, for instance, (Srebro and Shraibman, 2005;

Cai and Zhou, 2013) for results in matrix completion based on Rademacher complexities.
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Nonnegative entries. In most of the previous cases, one may additionally incorporate

the knowledge that the model only has nonnegative entries, such that the ambient space

becomes Rd
+ (Donoho and Tanner, 2010). In some particular settings (e.g., using non-

Gaussian designs), this has been shown to lead to a surprising sample complexity of order

k for exact recovery of k-sparse nonnegative vectors (Donoho and Tanner, 2005; Wang

and Tang, 2009) using a simple feasibility problem as in Section 2.4.2. This corresponds to

strictlymore than a constant factor improvement over sample complexities of order k logd ,
as this is completely dimension-independent. In other settings, however, it is frequent to

observe only constant factor improvements.

2.4.6 Estimation with Non-gaussian Designs

Drawing inspiration from the domain of random projections at large, various conditions

have been proposed (usually in speci�c cases) to ensure that a non-Gaussian (but possibly

still random) design may lead to exact recovery. This includes the Random Fourier en-

semble, the Bernoulli ensemble or Count-Min matrices (Berinde et al., 2008). Many of the

associated analyses are speci�c to ℓ1-norm minimization (and ℓ0-sparse models), and rely

on properties such as Restricted Isometry Property (Berinde et al., 2008), or the Null Space

Property (Cohen et al., 2009). Testing whether these properties hold on �xed matrices is

usually NP-hard, although relaxations have been proposed (d’Aspremont and El Ghaoui,

2011). Recently, an imposed real world design has been shown to exhibit a phase transition

(Vattikuti et al., 2014), but such examples remain scarce.

The use of nonlinear models and designs is of course an interesting area (Plan and Ver-

shynin, 2013b). An interesting such example consists in using quantized measurements.

Indeed, in all the previous designs, measurements are assumed to be a vector in RN , where

components are encoded with in�nite precision. In practice, this is rarely the case as most

measurement systems have a limited dynamic and can handle a limited number of bits per

measurement. In addition to this, the �oating point arithmetic used in the computers has

also a limited bit resolution. Hence, the bit resolution is potentially limited at many stages.

Consider a quantization operator Q : R→ {1, . . . ,K} over an alphabet (c1, . . . ,cK ) ∈ RK

of length K . A quantized linear model can be obtained as

yi = Q(〈ai ,w〉), i ∈ [N ].

In the extreme case, the alphabet can reduce to (−1,1) only: that is, only the sign of the

projection is measured:

yi = sign(〈ai ,w〉), i ∈ [N ].

This model is referred to as one-bit compressed sensing. This also corresponds to random

hyperplane hashing, which is a hashing scheme for approximating the angular similarity

θ(w1,w2) = 1− 1

π
cos−1

( 〈w1,w2〉
‖w1‖2‖w2‖2

)

between vectorsw1,w2 ∈Rd . Consider the Hamming distance dH(x,y) =
∑N
i=1 xiyi over

the boolean hypercube {0,1}N . An estimation of the angle between any two pair of vectors

can be obtained through the Hamming distance between the one-bit observations in the

corresponding models: with N observations, and A a random Gaussian design,

E

[
1

N
dH(sign(Aw1), sign(Aw2))

]
=
θ(w1,w2)

π
.
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Figure 2.11: Illustration of random hyperplane hashing

This is natural, as illustrated in Figure 2.11, as the Hamming distance counts the number of

circular sectors where both vectors get projected, and averaging over many hyperplanes

provides an estimation of the angle. A similar intuition carries over to the estimation

problem, and recently, many works have considered the question of characterizing when

exact or robust recovery is possible with this type of measurements (Gupta et al., 2010).

As shown by Plan and Vershynin (2013a), in the one-bit setting, robust recovery up to

precision ε can be achieved with about the same number of measurements based on the

squared Gaussian width, albeit with a worse dependence on ε.
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3.1 Introduction

Matrix estimation is at the center of many modern applications and theoretical advances

in the �eld of high dimensional statistics. The key element which di�erentiates this prob-

lem from standard high dimensional vector estimation lies in the structural assumptions

that can be formulated in this context. Indeed, the notion of sparsity assumption has been

transposed into the concept of low rank matrices and opened up the way to numerous

achievements (Srebro, 2004; Cai et al., 2008). In this chapter, we argue that being low rank

is not only an equivalent of sparsity for matrices but that being low rank and sparse can

actually be seen as two orthogonal concepts. The underlying structure we have in mind is

that of a block diagonal matrix. This situation occurs for instance in covariance matrix es-

timation in the case of groups of highly correlated variables or when denoising/clustering

social graphs.

E�cient procedures developed in the context of sparse model estimation mostly rely

on the use of ℓ1-norm regularization (Tibshirani, 1996a). Natural extensions include cases

where subsets of related variables are known to be active simultaneously (Yuan and Lin,

2006). These methods are readily adapted to matrix valued data and have been applied

to covariance estimation (El Karoui, 2009; Bien and Tibshirani, 2010) and graphical model

structure learning (Banerjee et al., 2008; Friedman et al., 2008). In the low rank matrix

completion problem, the standard relaxation approach leads to the use of the trace norm

as themain regularizer within the optimization procedures (Srebro et al., 2005; Koltchinskii

et al., 2011a) and their resolution can either be obtained in closed form (loss measured in

terms of Frobenius norm) or through iterative proximal solutions (Combettes and Pesquet,

2011; Beck and Teboulle, 2009) (for general classes of losses). However, solutions of low

rank estimation problems are in general not sparse at all, while denoising and variable

selection on matrix-valued data are blind to the global structure of the matrix and process

each variable independently. In this chapter, we study the bene�ts of using the sum of

ℓ1 and trace-norms as regularizer. This sum of regularizers on the same object allows to

bene�t from the virtues of both of them, in the sameway as the elastic-net (Zou andHastie,

2005a) combines the sparsity-inducing property of the ℓ1 normwith the smoothness of the

quadratic regularizer.

The trace norm and the ℓ1 regularizers have already been combined in a di�erent con-

text. In Robust PCA (Candès et al., 2011) and related literature, the signal W is assumed

to have an additive decompositionW = X + Y where X is sparse and Y low rank. Note

that W is not in general sparse nor low rank and that this decomposition is subject to

identi�ability issues, as analyzed, e.g., in (Chandrasekaran et al., 2011). The decomposi-

tion is recovered by using ℓ1-norm regularization over X and trace norm regularization

over Y . This technique has been successfully applied to background substraction in image

sequences, to graph clustering (Jalali et al., 2011) and covariance estimation (Luo, 2011).

We would like to emphasize that this type of demixing problems are largely di�erent from

what we consider here.

Here, we consider the di�erent situation where a single matrixW is both sparse and

low rank at the same time. We demonstrate the applicability of ourmixed penalty on di�er-

ent problems. We develop proximal methods to solve these convex optimization problems

and we provide numerical evidence as well as theoretical arguments which illustrate the

trade-o� which can be achieved with the suggested method.
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3.1.1 Model

For amatrixW = (Wi,j)i,j , wewill consider the followingmatrix norms: ‖W ‖1 =
∑
i,j |Wi,j |

and ‖W ‖∗ =
∑rank(W )
i=1 σi(W ). We consider the following setup. Let Y ∈ Rd×d be an ob-

served matrix and ℓ : Rd×d ×Rd×d →R+ a loss function over matrices. We introduce the

following optimization problem:

argmin
W∈W

[ℓ(W ,Y ) + γ‖W ‖1+ τ‖W ‖∗]

for some convex admissible setW ⊂ Rd×d and nonnegative regularization parameters γ
and τ.

3.1.2 Main Examples

The underlying assumption in this work is that the unknown matrix to be recovered has

a block-diagonal structure. We now describe the main modeling choices through the fol-

lowing motivating examples:

• Example 5: Covariance matrix estimation - the matrix Y represents a noisy estimate

of the true covariance matrix obtained for instance with very few observations; the

search space isW = S+ the class of positive semi-de�nite matrices; for the loss, we

consider the squared norm ℓ(W ,Y ) = ‖W −Y‖2F .

• Graph denoising - the matrix Y is the adjacency matrix of a noisy graph with both ir-

relevant and missing edges; the search space is all ofW = Rd×d and the coe�cients

of a candidatematrix estimate S are interpreted as signed scores for adding/removing

edges from the original matrix Y ; again, we use ℓ(W ,Y ) = ‖W −Y‖2F .

• Example 6: Link prediction - the matrix Y is the adjacency matrix of a partially

observed graph: entries are 0 for both not-existing and undiscovered links. The

search space is unrestricted as before and the matrixW contains the scores for link

prediction; the ideal loss function is the empirical average of the zero-one loss for

each coe�cient

ℓE(W ,Y ) =
1

|E|
∑

(i,j)∈E
1{(Yi,j − 1/2) ·Wi,j ≤ 0},

where E is the set of edges in Y . However, as in classi�cation theory, practical

algorithms should use a convex surrogate (e.g., the hinge loss).

3.1.3 Outline

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 are devoted

to theoretical results on the interplay between sparse and low rank e�ects. Section 3.4

presents algorithms used for resolution of the optimization problem. Section 3.5 discusses

how clusters can be recovered from matrix estimates and Section 3.6 is devoted to numer-

ical experiments. We close this chapter by giving some perspectives in Sections 3.7. This

chapter is an extended version of a paper with Emile Richard and Nicolas Vayatis which

has appeared in the proceedings of ICML (Richard et al., 2012).
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3.1.4 Notation

In the sequel, the projection of a matrix M onto a convex setW is denoted by ΠW (M).
The matrix M+ is the componentwise positive part of the matrix M, and sgn(M) is the
sign matrix associated to M with the convention sgn(0) = 0. The componentwise or

Hadamard product of matrices is denoted by ◦. The class S+ of matrices is the convex cone

of positive semi-de�nite matrices inRd×d . The sparsity index ofM is ‖M‖0 = card{Mi,j ,

0} and the Frobenius norm of a matrix M is de�ned by ‖M‖2F =
∑
i,jM

2
i,j . The operator

norm ofM is ‖M‖op = supx : ‖x‖2=1 ‖Mx‖2, while ‖M‖∞ =max |Mi,j |

3.2 Oracle Inequality

The next result shows how matrix recovery is governed by the trade-o� between the rank

and the sparsity index of the unknown target matrix, or by their convex surrogates: the

trace norm and the ℓ1-norm.

Proposition 13. LetW ⋆ ∈Rd×d and Y =W ⋆+ǫ with ǫ ∈Rd×d having i.i.d. entries with
zero mean. Assume for some α ∈ [0,1] that τ ≥ 2α‖ǫ‖op and γ ≥ 2(1−α)‖ǫ‖∞. Let

Ŵ = argmin
W∈W

[
‖W −Y‖2F + γ‖W ‖1+ τ‖W ‖∗

]
.

Then,

‖Ŵ −W ⋆‖2F ≤ inf
W∈W

[
‖W −W ⋆‖2F + 2γ‖W ‖1+ 2τ‖W ‖∗

]
,

‖Ŵ −W ⋆‖2F ≤
[
2γ‖W ⋆‖1+ 2τ‖W ⋆‖∗

]
∧

[
γ
√
‖W ⋆‖0+ τ

√
rank(W ⋆)

√
2+ 1

2

]2
.

The techniques used in the proof, that we defer to Section 3.8.1, are similar to those in-

troduced in (Koltchinskii et al., 2011a). Note that the upper bound interpolates between

the results known for trace-norm penalization and Lasso. In fact, for α = 0, τ can be set

to zero, and we get a sharp bound for Lasso, while the trace-norm regression bounds of

(Koltchinskii et al., 2011a) are obtained for α = 1.

From a theoretical point of view, Proposition 13 provides us with performance guar-

antees when the regularization parameters are large enough. From random matrix theory,

the operator norm of a randomGaussianmatrix is known to concentrate around
√
d , which

enforces a stringent constraint on τ for τ ≥ 2α‖ǫ‖op to hold with high probability. Sim-

ilarly, the ∞-norm ‖ǫ‖∞ can be bounded by ‖ǫ‖op or using the multivariate Tchebyche�

inequality of Olkin and Pratt (1958) which implies that the condition γ ≥ 2(1 − α)‖ǫ‖∞
is satis�ed with probability 1 − δ when γ = Ω

(
(1−α)2dσδ

)
. In practice, γ should not

exceed the order of magnitude of the entries of the matrix, as this leads to a trivial zero

solution. Asymptotically, to keep the sparsity regularization parameter γ of the order of

magnitude of elements of the observation matrix Y , the free parameter α must be chosen

so that 1 − αd ∼d 1
d . This gives the same asymptotic behavior in O(

√
d) for the lower

bound on τ as in matrix completion.

The proof can also easily be extended to more general �xed matrix designs where

observations are of the form yi = 〈Xi ,W ⋆〉+ εi for i ∈ [N ]. In this case, the bound is in
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terms of the design-dependant norm given by

‖Ŵ −W ⋆‖=

√√√
N∑

i=1

〈Xi ,Ŵ −W ⋆〉2.

Proposition 13 corresponds to a design {X1, . . . ,Xd2} which is the canonical basis of Rd×d .

3.3 Generalization Error in Link Prediction

We dwell for a moment on the task of link prediction in order to illustrate how rank and

sparsity constraints can help in this setting. Consider a graph over d vertices with adja-

cency matrix Y ∈ {0,1}d×d , and a subset E of coordinates (i, j) ∈ [d] × [d] of this matrix

that have been observed: for (i, j) ∈ E, the value Yi,j ∈ {0,1} is known to the experimenter.

We set out to predict the values of the remaining entries of Y by �nding a sparse rank r
predictorW ∈Rd×d with small zero-one loss

ℓ(W ,Y ) =
1

d2

∑

(i,j)∈[d]×[d]
1{(Yi,j − 1/2) ·Wi,j ≤ 0}

by minimizing the empirical zero-one loss

ℓE(W ,Y ) =
1

|E|
∑

(i,j)∈E
1{(Yi,j − 1/2) ·Wi,j ≤ 0}.

The objective of a generalization bound is to relate ℓ(W ,Y ) with ℓE(W ,Y ). In the case

of the sole rank constraint, Srebro (2004) remarked that all low rank matrices with the

same sign pattern are equivalent in terms of loss and applied a standard argument for

generalization in classes of �nite cardinality. In the work of Srebro, a beautiful argument

is used to upper bound the number of distinct sign con�gurations for predictors of rank r

slr(d,r) = card{sgn(W ) |W ∈Rd×d ,rank(W ) ≤ r}|

leading to the following generalization performance: for δ > 0, Y ∈ {0,1}d×d and with

probability 1 − δ over choosing a subset E of entries in {1, . . . ,d}2 uniformly among all

subsets of |E| entries, we have for any matrixW of rank at most r and ∆(d,r) =
(
8ed
r

)2dr

that

ℓ(W ,Y ) < ℓE(W ,Y ) +

√
log∆(d,r)− logδ

2|E| . (3.1)

We consider the class of sparse rank r predictors

M(d,r,s) = {UV T |U ,V ∈ Rd×r , ||U ||0+ ||V ||0 ≤ s}

and let ssplr(d,r,s) be the number of sign con�gurations for the setM(d,r,s). By upper

bounding the number of sign con�gurations for a �xed sparsity pattern in (U ,V ) using
an argument similar to (Srebro, 2004), a union bound gives

ssplr(d,r,s) ≤ Γ(d,r,s) =

(
16ed2

s

)s (
2dr

s

)
.
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Using the same notations as previously, we deduce from this result the following general-

ization bound: with probability 1− δ and for allW ∈M(d,r,s),

ℓ(W ,Y ) < ℓE(W ,Y ) +

√
logΓ(d,r,s)− logδ

2|E| . (3.2)

In general, the square-root deviation term in bound (3.2) is smaller than the one in (3.1) for

su�ciently large values of d as shown in the next proposition. The two bounds coincide

when s = 2dr , that is, when (U ,V ) is dense and there is no sparsity constraint.

Proposition 14. For rd = dβ with β ∈]0,1] and sd = dα with α ≤ 2β,

∆(d,rd)

Γ(d,rd ,sd)
=Ω




[
8ed(βd −α)

(βd)2

]2d2β ,

which diverges when d goes to in�nity.

Proof. The result follows from the application of Stirling’s formula.

By considering a predictor class of lower complexity than low rank matrices, we can thus

achieve better generalization performances. Although this illustrates that combining rank

and sparsity allows to improve generalization performance, minimizing the classi�cation

error overM(d,r,s) does not lead to a practical procedure.

3.4 Algorithms

We now present how to solve the optimization problem with the proposed regularizer.

We consider a loss function ℓ(W ,Y ) convex and di�erentiable inW , and assume that its

gradient is Lipschitz with constant L and can be e�ciently computed. This is, in particular,

the case for the previously mentioned squared Frobenius norm, and for other classical

choices such as the logistic loss.

3.4.1 Proximal Operators

We encode the presence of a constraint setW using the indicator function δW (W ) that is
zero whenW ∈W and∞ otherwise, leading to

Ŵ = argmin
W∈Rd×d

[ℓ(W ,Y ) + τ‖W ‖1+ γ‖W ‖∗+ δW (W )] .

This formulation involves a sumof a convex di�erentiable loss and of convex non-di�erentiable

regularizers which renders the problem non trivial. A string of algorithms have been de-

veloped for the case where the optimal solution is easy to compute when each regularizer

is considered in isolation. Formally, this corresponds to cases where the proximal operator

de�ned for a convex regularizer Ω : Rd×d →R at a point Z by

prox
Ω

(Z) = argmin
W∈Rd×d

[
1

2
‖W −Z‖2F +Ω(W )

]
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is easy to compute for each regularizer taken separately. See (Combettes and Pesquet,

2011; Parikh and Boyd, 2013) for a broad overview of proximal methods.

The proximal operator of the indicator function is simply the projection ontoW , which

justi�es the alternate denomination of generalized projection operator for proxΩ . The

proximal operator for the trace norm is given by the shrinkage operation as follows (Beck

and Teboulle, 2009). If Z = U diag(σ1, · · · ,σd)V T is the singular value decomposition of

Z ,
SHRτ(Z) = prox

τ‖·‖∗
(Z) = U diag((σi − τ)+)iV T .

Similarly, the proximal operator for the ℓ1-norm is the soft thresholding operator

STγ (Z) = prox
γ‖·‖1

= sgn(Z) ◦ (|Z | −γ)+.

3.4.2 Generalized Forward-backward Splitting

The family of Forward-Backward splitting methods are iterative algorithms applicable

when there is only one non-di�erentiable regularizer. These methods alternate a gradi-

ent step and a proximal step, leading to updates of the form

Wk+1 = prox
θΩ

(Wk −θ gradW ℓ(Wk ,Y )),

for a stepsize θ. In particular, this corresponds to projected gradient descent when Ω

is the indicator function of a convex set. On the other hand, Douglas-Rachford splitting

tackles the case of q ≥ 2 terms but does not bene�t from di�erentiability. A generalization

of these two setups has been recently proposed in (Raguet et al., 2013) under the name of

Generalized Forward-Backward, which we specialize to our problem in Algorithm 1. The

proximal operators are applied in parallel, and the resulting (Z1,Z2,Z3) is projected onto
the constraint that Z1 = Z2 = Z3 which is given by the mean. The auxiliary variable

Z3 can be simply dropped when W = Rd×d . The algorithm converges under very mild

conditions when the step size θ is smaller than 2
L .

Algorithm 1 Generalized Forward-Backward

InitializeW ,Z1,Z2,Z3 = Y , q = 3

repeat

Compute G = ∇W ℓ(W ,Y ).
Compute Z1 = proxqθτ‖·‖∗(2W −Z1 −θG)
Compute Z2 = proxqθγ‖·‖1(2W −Z2 −θG)
Compute Z3 =ΠW (2W −Z3 −θG)
SetW = 1

q

∑q
k=1Zk

until convergence

return W

3.4.3 Incremental Proximal Descent

Although Algorithm 1 performs well in practice, theO(d2)memory footprint with a large

leading constant due to the parallel updates can be a drawback in some cases. As a conse-

quence, we mention a matching serial algorithm (Algorithm 2) introduced in (Bertsekas,
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2011) that has a �avor similar to multi-pass stochastic gradient descent. We present here

a version where updates are performed according to a cyclic order, although random se-

lection of the order of the updates is also possible.

Algorithm 2 Incremental Proximal Descent

InitializeW = Y
repeat

SetW =W −θ∇W ℓ(W ,Y )
SetW = proxθτ‖·‖∗(W )
SetW = proxθγ‖·‖1(W )

SetW =ΠW (W )
until convergence

return W

3.4.4 Positive Semi-de�nite Constraint

For any positive semi-de�nite matrix, we have ‖Z‖∗ = Tr(Z). The simple form of the trace

norm allows to take into account the positive semi-de�nite constraint at no additional

cost, as the shrinkage operation and the projection onto the convex cone of positive semi-

de�nite matrices can be combined into a single operation.

Lemma 1. For τ ≥ 0 andW ∈Rd×d ,

prox
τ‖·‖∗+δS+

(W ) = argmin
Z�0

[
1

2
‖Z −W ‖2F + τ‖Z‖∗

]
=ΠS+ (W − τI) .

3.5 Recovering Clusters

The estimators described previously may allow to estimate a covariance or adjacency ma-

trix, but not to directly recover clusters or groups. Although outside of the scope of this

work, we mention here a few methods which could be used.

Consider a symmetric and sparse square matrixW ∈Rd×d . This can be viewed as the

adjacency matrix of a graph G = (V ,E), where V = [d], and E = {(i, j) : Wi,j > 0}. The
graph bandwidth allow to measure to what extent a graph corresponds to a chain of some

order.

De�nition 9 (Graph Bandwidth). The graph bandwidth of matrixW (or graph G) is

GBW(W ) =min
f ∈Sd

max
{
|f (i)− f (j)| : Wi,j > 0

}
,

where Sd is the set of all permutations f : [d]→ [d].

For instance,

GBW




1 1
. . .

1 1



= GBW




1 1

1 1
. . .

1



= 2.
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The path graph on d vertices has bandwidth 1, while a star over k+ 1 vertices has band-

width ⌊(k − 1)/2⌋+ 1. The Cuthil-McKee algorithm (Cuthill and McKee, 1969) seeks to

simultaneously permute the lines and rows ofW such that the resulting matrix is banded

with the smallest bandwidth. This is done in a Breadth-First Search (BFS) manner: �x

a vertex, and visit each of its neighbor in the reverse order of their degrees. This is an

heuristic, as both the optimal ordering and the associated cost are NP-hard to �nd, but

that can still be used to reorder estimators. More elaborate methods have been proposed

to estimate the bandwidth (Blum et al., 1998; Dunagan and Vempala, 2001), although these

cannot usually be used on large scale data. Alternate notions of bandwidths have been

proposed, such as the 2-SUM, where the squared di�erence is used in place of the abso-

lute di�erence. In this case as well, various relaxations have been proposed by Fogel et al.

(2013).

Although this may allow for easier visual inspection and representation, this still does

not output clusters. The literature on clustering weighted or unweighted graphs (also

often referred to as community detection, by analogy with social networks) is ample, and

we refer the reader on this topic to surveys by Fortunato (2010) and Von Luxburg (2007),

and to Section 3.7 on factorization-based methods.

3.6 Numerical Experiments

We present numerical experiments to highlight the bene�ts of our method. For e�ciency

reasons, we use the serial proximal descent algorithm (Algorithm 2).

3.6.1 Synthetic Data

Covariance matrix estimation. We draw N vectors xi ∼ N (0,Σ) for a block diagonal co-

variance matrix Σ ∈Rn×n. We use r blocks of random sizes and of the form vv⊤ where the
entries of v are drawn i.i.d. from the uniform distribution on [−1,1]. Finally, we add Gaus-
sian noiseN (0,σ2) on each entry. In our experiments r = 5,N = 20, d = 100, σ = 0.6.

We apply our method (SPLR), as well as trace norm regularization (LR) and ℓ1 norm regu-

larization (SP) to the empirical covariance matrix, and report average results over ten runs.

Figure 3.1 shows the RMSE normalized by the norm of Σ for di�erent values of τ and γ .
Note that the e�ect of the mixed penalty is visible as the minimum RMSE is reached in-

side the (τ,γ) region. We perform, on the same data, separate cross-validations on (τ,γ)
for SPLR, on τ for LR and on γ for SP. We show in Figure 3.2 the supports recovered by

each algorithm, the output matrix of LR being thresholded in absolute value. The support

recovery demonstrates how our approach discovers the underlying patterns despite the

noise and the small number of observations.

3.6.2 Real Data Sets

Protein Interactions. We use data from Hu et al. (2009), in which protein interactions in

Escherichia coli bacteria are scored by strength in [0,2]. The data is, by nature, sparse. In

addition to this, it is often suggested that interactions between two proteins are governed

by a small set of factors, such as surface accessible amino acid side chains Bock and Gough

(2001), which motivates the estimation of a low rank representation. Representing the

data as a weighted graph, we �lter to retain only the 10% of all 4394 proteins that exhibit
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Figure 3.1: Covariance estimation. Cross-validation: normalized RMSE scores (SPLR)

True cov. n =20 ,N =100 ,σ = 0.6 Sparse  RMSE=0.6

Low−Rank  RMSE=0.685 SP&LR  RMSE=0.549

Figure 3.2: Covariance estimation. Support of Σ (top left), and of the estimates given by

SP (top right), LR (bottom left), and SPLR (bottom right)

the most interactions as measured by weighted degree. We corrupt 10% of entries of the

adjacency matrix selected uniformly at random by uniform noise in [0,η]. Parameters

are selected by cross-validation and algorithms are evaluated using mean RMSE between

estimated and original adjacency matrices over 25 runs. RMSE scores are shown in Table

3.1 and show the empirical superiority of our approach (SPLR).

η SPLR LR SP

0.1 0.0854 ±0.012 0.1487 ±0.02 0.1023 ±0.02
0.2 0.2073 ± 0.03 0.2673 ± 0.3 0.2484 ± 0.03
0.3 0.3105 ± 0.03 0.3728 ± 0.03 0.3104 ± 0.02

Table 3.1: Prediction of interactions in Escherichia coli. Mean normalized RMSE and stan-

dard deviations.
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Social Networks. We have performed experiments with the Facebook100 data set analyzed

by Traud et al. (2012). The data set comprises all friendship relations between students

a�liated to a speci�c university, for a selection of one hundred universities. We select a

single university with 41554 users and �lter as in the previous case to keep only the 10%

users with highest degrees. In this case, entries are corrupted by impulse noise: a �xed

fraction σ of randomly chosen edges are �ipped, thus introducing noisy friendship rela-

tions and masking some existing relations. The task is to discover the noisy relations and

recover masked relations. We compare our method to standard baselines in link prediction

(Liben-Nowell and Kleinberg, 2007). Nearest Neighbors (NN) relies on the number of com-

mon friends between each pair of users, which is given by Y 2 when Y is the noisy graph

adjacency matrix. Katz’s coe�cient connects a pair of nodes according to a score based

on the number of paths connecting them, emphasizing short paths. Results are reported

in Table 3.2 using the area under the ROC curve (AUC). SPLR outperforms LR but also NN

and Katz which do not directly seek a low rank representation.

σ SPLR LR NN Katz

5 % 0.9293 0.9291 0.7680 0.9298

10 % 0.9221 0.9174 0.7620 0.9189

15 % 0.9117 0.9024 0.7555 0.9068

20 % 0.8997 0.8853 0.7482 0.8941

Table 3.2: Facebook denoising data. Mean AUC over 10 simulation runs. All standard

deviations are lower than 3 · 10−4.

3.7 Discussion

In this last section, we discuss various aspects of the proposed methods, as well as related

work and perspectives.

3.7.1 Other Loss Functions

The methods presented in this chapter can be seamlessly extended to non-square matrices,

which can arise, for instance, from adjacency matrices of bipartite graphs. Our work also

applies to a wide range of other losses. A useful example that links our work to the matrix

completion framework is when linear measurements of the target matrix or graph are

available, or can be predicted as in (Richard et al., 2010). In this case, the loss can be

de�ned in the feature space. Due to the low rank assumption, our method does not directly

apply to the estimation of precision matrices often used for Gaussian graphical model

structure learning (Friedman et al., 2008), and the applications of conditional independence

structures generated by low rank and possibly sparse models is to be discussed. Note that

the trace norm constraint is vacuous for some special classes of positive semi-de�nite

matrices. For instance, it is not useful for estimating a correlation matrix as, in this case,

the trace is always equal to the dimension.
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3.7.2 Optimization

Other optimization techniques can be considered for future work. A trace norm constraint

alone can be taken into account without projection or relaxation into a penalized form by

casting the problem as a semi-de�nite program as proposed by Jaggi (2013). The special

form of this semi-de�nite program can be leveraged to use the e�cient resolution tech-

nique from (Hazan, 2008)., based on the Frank-Wolfe algorithm. This method applies to

a di�erentiable objective whose curvature determines the performances. Extending these

methods with projection onto the ℓ1 ball or a sparsity-inducing penalty could lead to in-

teresting developments.

3.7.3 Geometry

A major drawback of the proposed method is that the unit ball of the proposed penalty

has extreme points that are either sparse or low rank, but that are not usually both. In

a recent analysis (Drusvyatskiy et al., 2014) focused on the geometry of the unit ball of

the combined penalty, a more precise characterization of the extremal points is given: any

extremal pointW has to satisfy

r(r + 1)

2
≤ k+ 1,

where r and k are the rank and the ℓ0-norm of W , respectively. In addition, they show

that the unit ball of the combined penalty does not have more vertices than the ℓ1-norm
unit ball. This is not surprising: as we have mentioned in Section 2.4.3, the unit ball for

the trace norm has no vertices, although it has higher-order non-smooth points. However,

it is not clear how relevant the number of vertices (i.e., of maximally non smooth points)

is for recovery. A further analysis of higher-order points of the unit ball of the combined

norm could be fruitful.

We have provided an analysis for recovery of fully-observed but noisy matrices. An

interesting alternate problem consists in characterizing the sample complexity, both with

or without noise, as shown in Chapter 2. As was shown recently based on Gaussian width

arguments (Oymak et al., 2012), the sample complexity is not reduced when combining ℓ1-
norm and trace norm for exact or robust recovery with Gaussian designs. This suggests

that the experimental design matters signi�cantly when designing regularizers.

Another interesting question consists in determining tighter convex relaxations to the

rank and the sparsity. In particular, one may ask what is the convex hull of

{
W ∈Rd1×d2 : rank(W ) ≤ r, ‖W ‖0 ≤ k

}

intersected with the ℓ∞-norm ball, or over other balls. However, it may also be that there

are somemore interesting joint measures of rank and sparsity to relax than the intersection

of these two classical manifolds. The ranksity index (Richard et al., 2013) provides such

an alternative measure, along with a convex relaxation based on the trace norm. This

convex penalty has the bene�t of being non-di�erentiable at points which are both low

rank and sparse. Although such a modeling work can also be done through atomic norms

in principle (e.g., considering rank one atoms with limited sparsity), it remains unclear

how the resulting norms can be used in practice.
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3.7.4 Factorization Methods

A related task is �nding low rank factorizations of matrices of the form UV T (Srebro,

2004; Srebro et al., 2005), thus jointly optimizing in U ,V ∈ Rd×r loss functions of the
form ℓ((U ,V ),Y ) = ‖UV T −Y‖2F for some target maximum rank r . This implicitly en-

codes the low rank constraint which leads to e�cient optimization schemes, and allows

for interpretability as estimated (U ,V ) pairs can be considered as latent factors. Although
optimization with the trace norm or the max norm implicitly assumes such a factorization,

factorization-based method work with the factorization directly. Although formulations

are usually convex in U or V, they are not in general jointly convex and optimization pro-

cedures can get stuck in local minima. However, these methods have been associated with

good empirical performances (Xu et al., 2003; Koren, 2008). Factorization methods param-

eterized inU and V are not very practical to control the sparsity ofW = UV T . However,

one may alternatively seek to control the sparsity of the factors U and V , which can lead

to sensible models. In the following, we give more background on these methods, which

could potentially be of interest to de�ne regularizers based on factorizations.

Sparse Factors

Nonnegative Matrix Factorization (NMF) (Lee et al., 1999) imposes nonnegativity con-

straints on the coe�cients of U and V to enhance interpretability by allowing only for

additive e�ects and tends to produce sparse factor matrices U ,V , although this a rather

indirect e�ect. There is no strong guarantee on the sparsity achieved by NMF nor is it easy

to set the target sparsity. Di�erent methods for sparse NMF have been proposed (Hoyer,

2004a; Kim and Park, 2008), where sparsity inducing regularizers are applied on the coef-

�cients of the factors. Sparse matrix factorizations have also been proposed without the

positivity constraint, such as for sparse coding (Hoyer, 2002), or for extending the classi-

cal PCA and �nding sparse directions that maximize the variance of the projection. This

last problem is often referred to as sparse principal component analysis. SPCA (Zou et al.,

2004) penalizes the ℓ1 norm of the principal components and can be reduced to solving

independent elastic-nets. A di�erent formulation using SDP programming is introduced

by d’Aspremont et al. (2007) with good empirical results. In addition, some methods give

up up orthogonality between the components (Mackey, 2009).

An important special case of matrix factorizations is that of rank one factorizations.

The detection of cliqueswithin adjacencymatrices correspond to factorizations of the form

1S1
T
S where S ⊂ [d] is a set of coordinates. A penalty similar to the one we proposed

has been used in (Ames and Vavasis, 2011) to detect cliques, although with a di�erent

loss, which can be shown to lead to exact recovery of the support of the clique in some

circumstances. These types of models are discussed more in the second part of this thesis,

in Chapter 5.

Interpolation of Nuclear Norms

The combined penalty γ‖.‖1 + (1−γ)‖.‖∗ that we propose interpolates between two nu-

clear norms: the trace norm, and the ℓ1-norm. Indeed, from duality with operator norms,
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the ℓ1-norm can be expressed in nuclear form as well:

‖W ‖1 = ‖W ‖1→∞ = inf


∑

i

|σi | : W =
∑

i

σibia
T
i , ‖bi‖1 = ‖ai‖1 = 1

 .

The linear combination that we propose is surely not the only way to interpolate between

the ℓ1-norm and the trace norm, and this suggests the following question: what are in-

teresting alternative interpolation methods? A potential choice consists in using semi-

de�nite programming relaxations: consider

F(X) = γ‖X‖1+ (1−γ)Tr(X),

such that for any u ∈Rn,

F(uuT ) = γ‖u‖21+ (1−γ)‖u‖22.

This allows to de�ne the following norms.

De�nition 10.

‖X‖uv =
1

2
min

UV T=X

∑

i≥1

{
F(uiu

T
i ) + F(viv

T
i )

}
,

‖X‖SDP =
1

2
min

[Z1X;XTZ2]�0
{
F(Z1) + F(Z2)

}
.

As usual, the dimensions of U and V are not restricted. Although ‖ · ‖uv interpolates

between the trace norm and the ℓ1-norm when γ ∈ [0,1], this norm cannot usually be

computed. However, both the SDP norm and the sum of ℓ1-norm and trace norm are

lower bounds on ‖ · ‖uv, and are thus convex relaxation which can be used in practice.

As it turns out, ‖ · ‖SDP does not interpolate correctly at γ = 1: although for γ = 0,

‖X‖SDP = ‖X‖uv = ‖X‖∗, there exists matrices W such that ‖W ‖SDP < ‖W ‖uv = ‖W ‖1
for γ = 1 (consider, for instance, W = [11;1 − 1] ∈ R2×2, which has ‖W ‖1 = 4, but

‖W ‖SDP < 3 < ‖W ‖1.) As a consequence, this does not provide an acceptable interpolation.
However, we believe that investigating other interpolations and relaxations along these

lines could be of interest.

Factorization Constants

Straying away from the idea of interpolation between rank and sparsity, one may seek

to de�ne a penalty directly, using factorizations. Like the trace norm and the max norm,

many more norms can be de�ned through factorizations.

Proposition 15. Consider normed vector spaces (Rd2 ,‖ · ‖X), (Z ,‖ · ‖Z) and (Rd1 ,‖ · ‖Y ).
Then,

γZ(W ) = inf {‖V ‖X→Z‖U‖Z→Y : W = UV }
is a norm over Rd1×d2 .

Again, the number of columns of U and V in the factorizations is left unbounded. This

type of norm is referred to as a factorization constant, as it measures how well a linear

operator W can be factorized through some latent space Z . This suggests the following
type of norm.
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Proposition 16. Consider forW ∈Rd×d the functionals

q(W ) = min
UV T=W

‖U‖1‖V ‖1, cr(W ) = min
U∈Rd×r
V∈Rd×r
UV T=W

‖U‖1‖V ‖1.

Then, q is a norm over Rd×d , but c2 is not a norm over R2×2.

The proof is deferred to Section 3.8.2. Although leaving the number of factors unbounded

yields a normwhich can measure sparsity of factorizations, this norm cannot be computed

in practice. On this other hand, capping the number of factors even at the ambient dimen-

sion does not necessarily leads to a convex function. Again, we believe that variations on

this type of approach could be developed and yield interesting results.
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3.8 Proofs

3.8.1 Sketch of Proof of Proposition 13

Proof. For any W inW and by optimality of Ŵ ,

−2〈Ŵ −W ,W ⋆〉 ≤ 2α‖Ŵ −W ‖∗‖ǫ‖op+ 2(1−α)‖Ŵ −W ‖1‖ǫ‖∞
+ τ(‖W ‖∗ − ‖Ŵ ‖∗) + γ(‖W ‖1 − ‖Ŵ ‖1) + ‖W ‖2F − ‖Ŵ ‖2F

for any α ∈ [0;1]. The assumptions on τ,γ and triangular inequality lead to the �rst

bound.

Let r = rank(W ), k = ‖W ‖0,W =
∑r
j=1σjujv

⊤
j the SVD ofW ,W = Θ ◦ |W |, where

Θ = sgn(W ), and Θ⊥ ∈ {0,1}d×d the complementary sparsity pattern. We use PW⊥1 (resp.

PW⊥2 ) to denote the projection operator onto the orthogonal of the left (resp. right) singular
space ofW . We also note PW (X) = X −PW⊥1 XPW⊥2 such that X = PW (X) + PW⊥1 XW

⊥
2
.

Any element V of the subgradient of the convex functionW 7→ τ‖W ‖∗+γ‖W ‖1 can
be decomposed as

V = τ

( r∑

j=1

ujv
⊤
j + PW1⊥Q∗PW2⊥

)
+ γ

(
Θ+Q1 ◦Θ⊥

)

for Q1,Q∗ with ‖Q∗‖op ≤ 1, ‖Q1‖∞ ≤ 1, which can be chosen such that

〈
V ,Ŵ −W

〉
= τ

〈 r∑

j=1

ujv
⊤
j ,Ŵ −W

〉
+ τ‖PW1⊥ŴPW2⊥‖∗+ γ〈Θ,Ŵ −W 〉+ γ‖Θ⊥ ◦ Ŵ ‖1 .

By monotonicity of the subdi�erential and optimality conditions,

2〈Ŵ −W ⋆ ,Ŵ −W 〉 ≤ 2〈ǫ,Ŵ −W 〉 − τ
〈 r∑

j=1

ujv
⊤
j ,Ŵ −W

〉

− τ‖PW⊥1 ŴPW⊥2 ‖∗ −γ〈Θ,Ŵ −W 〉 −γ‖Θ⊥ ◦ Ŵ ‖1 .

Decompose

ǫ = α

(
PW (ǫ) + PW⊥1 ǫPW

⊥
2

)
+ (1−α)

(
|Θ| ◦ ǫ+Θ

⊥ ◦ ǫ
)
.

Using results on dual norms, we have

|〈M1,M2〉| ≤ ‖M1‖∗‖M2‖op
|〈M1,M2〉| ≤ ‖M1‖1‖M2‖∞

for allM1,M2 ∈Rn×n and hence,

〈ǫ,Ŵ −W 〉 ≤ α‖PW (ǫ)‖F‖PW1
(Ŵ −W )PW2

‖F
+α‖PW⊥1 ǫPW⊥2 ‖op‖PW⊥1 ŜPW⊥2 ‖∗
+ (1−α)‖Θ ◦ ǫ‖F‖Θ ◦

(
Ŵ −W

)
‖F

+ (1−α)‖Θ⊥ ◦ ǫ‖∞‖Θ⊥ ◦ Ŵ ‖1 .
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Using

‖PW (ǫ)‖F ≤
√
2 r‖ǫ‖op, ‖Θ ◦ ǫ‖F ≤

√
k‖ǫ‖∞

leads for τ ≥ 2α ‖ǫ‖op and γ ≥ 2(1−α)‖ǫ‖∞ to

‖Ŵ −W ⋆‖2F + ‖Ŵ − S‖2F
≤ ‖W −W ⋆‖2F +

(
τ
√
r(
√
2+ 1) + 2γ

√
k

)
‖Ŵ −W ‖F .

Using βx − x2 ≤
(
β
2

)2
, we obtain

‖Ŵ −W ⋆‖2F ≤ ‖W −W ⋆‖2F +
1

4

(√
rτ(
√
2+ 1) + 2

√
kγ

)2

and settingW =W ⋆ gives the result.

3.8.2 Proof of Proposition 16

Proof. q is a norm from the previous proposition, as the ℓ1-norm is an operator norm. Let

X = uvT ∈Rd×d a rank one matrix, then for any r ≥ 1,

cr(X) = ‖u‖1‖v‖1.
Let d = 2, E1,1 = diag(1,0),E2,2 = diag(0,1) ∈ R2×2, and I2 be the identity matrix

of size 2. We will begin by showing that c2(I2) = 4. Then, this will imply c2(E1,1) +
c2(E2,2) < c2(E1,1+E2,2) and as a consequence, c2 does not satisfy the triangle inequality.
For any decomposition such that UV T = I2, it must hold that V T = U−1. Since ‖X‖1 =
‖XT ‖1, we have

c2(I2) = min
U∈R2×2
det(U),0

‖U‖1‖U−1‖1.

Consider

d2(I2) = min
U=diag(d1,d2)

det(U),0

‖U‖1‖U−1‖1.

Assume without loss of generality that di > 0 for i ∈ {1,2}. We have

‖U‖1‖U−1‖1 = (d1+ d2) (1/d1+ 1/d2) = 2+
d1
d2

+
d2
d1

.

Since (d1 − d2)2 ≥ 0, we have d1
d2

+ d2
d1
≥ 2 and hence, ‖U‖1‖U−1‖1 ≥ 4. This implies

d2(I2) = 4, achived at U = I2. Now, let

U =

[
a c
d b

]
.

We have ‖U‖1‖U−1‖1 = ‖U‖21/|det(U)|, which is minimum either when U is diagonal

(c = d = 0) or anti-diagonal (a = b = 0). Without of loss generality, we can exclude this

last case as ‖.‖1 is invariant to permutations. This implies that d2(I2) = c2(I2), and thus

c2(I2) = 4.





4
Convex Localized Multiple Kernel

Learning
Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1 Linear MKL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.2 Hinge Loss Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Generalized Hinge Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Universal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 ℓp-norm Aggregation of Hinge Losses . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Dual Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Link Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 UCI Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Image Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.2 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6.3 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.4 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6.5 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



82 CHAPTER 4. CONVEX LOCALIZED MULTIPLE KERNEL LEARNING

4.1 Introduction

Kernel-based methods have become a classical tool of the trade in machine learning. In

addition to good empirical performance in a wide range of situations, there is a strong the-

oretical background behind some kernel machines such as SVMs (Steinwart and Christ-

mann, 2008), as well as mature algorithms (Platt, 1999) and implementations (Chang and

Lin, 2011). The kernel is traditionally either selected from generic parametric o�-the-shelf

kernels (e.g., Gaussian or polynomial) using some sort of cross-validation, or hand-crafted

by domain speci�c experts through an expensive empirical process. Recently, metric learn-

ing has become an increasingly active research �eld (Kulis, 2013), with the goal of learning

a kernel suitable for a given task. Multiple kernel learning (MKL) has appeared as an al-

ternative, in between manual kernel selection and metric learning, where a weighting of

di�erent representations of the data points is learnt at the same time as a large margin

classi�er (Lanckriet et al., 2002; Bach et al., 2004; Gönen and Alpaydın, 2011). Representa-

tions may correspond to multiple scales, or to more orthogonal types of information (e.g.,

in images, di�erent types of geometric or color information).

Although this has been successful, the linear kernel mixture in MKL is global in the

sense that the weighting of the kernels is independent of training data points. Recently,

alternatives have been proposed where the kernel mixture is local Gönen and Alpaydın

(2013), in the sense that the weighting of each kernel depends on where it is evaluated.

These approaches are referred to as either localized, or data-dependent multiple kernel

learning. Indeed, in many problems, noise levels and discrimination ability in di�erent

views may vary across the input feature space, and this observation is a strong incentive

for further exploration of localization with MKL methods. This has been approached in

di�erent ways. Parametric forms of data-dependent kernel weighting have been proposed

by Gönen and Alpaydin (2008). Nonparametric data-dependent kernel weighting methods

have also been proposed, including large-margin approaches (Yang et al., 2010), other types

of losses and penalizations (Bi et al., 2004; Cao et al., 2009), and ensemble methods (Gehler

and Nowozin, 2009).

These methods are either non-convex, lack theoretical guarantees, or do not corre-

spond to large margin approaches. In this chapter, we propose a family of large-margin

methods that are both convex and theoretically grounded for combining kernels in a data-

dependent manner.

4.1.1 Linear MKL

Consider the setting of binary supervised classi�cation in Rd , withN training data points

(x1,y1), . . . , (xN ,yN ) independently drawn from a distribution P over Rd × {−1,1}. We

consider a family (Km)1≤m≤M of kernels, with associated feature mappings φm : Rd →
Hm for 1 ≤ m ≤ M , where Hm is the corresponding RKHS. For kernel mixing weights

s = (s1, . . . ,sM) ∈ RM
+ , the global mixture kernel K =

∑M
m=1 smKm corresponds to the

feature mapping

Φ(x) = [
√
s1φ1(x), . . . ,

√
sM φM(x)]

T
,
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and is associated with the product RKHSH = H1× . . .×HM . Plugging K into the standard

SVM optimization problem yields

min
ω=(ω1,...,ωM )∈H ,

s≥0



1

2

M∑

m=1

‖ωm‖22+C
N∑

i=1


1− yi

M∑

m=1

√
sm

〈
ωm,φm(xi)

〉


+


 , (4.1)

where s ≥ 0 denotes a componentwise nonnegativity constraint (which ensures that the

mixture is a valid kernel), and (·)+ denotes the positive part. Although this objective is

non-convex, the change of variable
√
smωm = wm leads to an objective that is jointly

convex in (w,s). In addition, a regularizerΩ : RM →R+∪{∞} can be used to control the

mixture coe�cients - classical choices include ℓp-norms for p ≥ 1, indicator functions of

the corresponding unit balls, or Bregman divergences. In particular, an ℓ1-norm constraint

can force the weights associated to the kernels to sum to unity. The resulting problem is

then

min
w=(w1,...,wM )∈H ,

s≥0



1

2

M∑

m=1

‖wm‖22
sm

+C
N∑

i=1


1− yi

M∑

m=1

〈
wm,φm(xi)

〉


+

+Ω(s)


 .

The partial convex dual to this problem (with respect to w only) is of the form

min
s≥0

max
α∈[0,C]N


1
Tα − 1

2
αT



M∑

m=1

smHm


α+Ω(s)




with Hm = diag(y)Kmdiag(y), where diag(y) is the diagonal matrix with diagonal el-

ements y ∈ RN , and 1 is the all ones vector. This saddle point problem has been solved

using various methods, and many optimization methods have been developed in order to

address certain choices of regularizers on s. This variant of MKL is usually referred to as

linear MKL, and results in decision functions of the form

f (x) =
N∑

i=1

yiαi



M∑

m=1

smKm(xi ,x)


 ,

which can be augmented by a constant bias term. This form of decision function is not

localized, as the relative weights of the kernels are the same at all the support vectors,

meaning that the same kernel combination is used everywhere in the feature space.

4.1.2 Hinge Loss Aggregation

In this work, we set out to learn decision functions of the more general form

f (x) =
N∑

i=1

M∑

m=1

yiαi,mKm(xi ,x) (4.2)

with α ∈RN×M . While the solution to the linear MKL problem can be written in this form

with rank(α) = 1, we are interested in higher rank solutions which exhibit localization,

in the sense that the relative weights of the kernels vary depending on the support vectors.

Informally, this corresponds to a kernel combination that is di�erent in di�erent regions
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of the feature space. In order to induce such a structure on the solution while maintaining

the large-margin interpretation, we consider optimization problems of the form

min
ω=(ω1,...,ωM )∈H



1

2

M∑

m=1

‖ωm‖22+C
N∑

i=1

ℓ (yi ,〈ω1,φ1(xi)〉, . . . ,〈ωM ,φM(xi)〉)

 , (4.3)

where ℓ(y, t1, . . . , tM) is a generalization of the hinge loss to a collection of classi�ers

(t1, . . . , tM) with ti = 〈ωi ,φi(x)〉 for a data point x. For certain classes of losses ℓ, prob-
lems of the form (4.3) can be shown to lead to universally consistent estimators. Among

these estimators, some choices of ℓ may result in a localized solution of the form (4.2), and

we study examples of such choices in this chapter.

More precisely, with z = (z1, . . . ,zM) the vector of hinge losses such that zm = (1 −
ytm)+, we propose to use ℓ(y, t1, . . . , tM) = ‖z‖p , the ℓp-norm of z. With q such that

1/p+ 1/q = 1, this leads to a dual problem of the form

max
α≥0


1
Tα1− 1

2

M∑

m=1

αT·,mHmα·,m


 s.t. ‖αi,·‖q ≤ C for i ∈ [N ],

where for any matrix α ∈RN×M , we denote by αi,· the i-th row ofX , and by α·,m them-th

column of X . Hence, this choice of loss results in a coupling of the SVMs associated to the

di�erent kernels to be combined, which can be adjusted through the choice of p.
In case where p = 1, the problem consists in trainingM independent SVMs and aver-

aging their decision functions, while a coupling constraint between the weights associated

to di�erent kernels is present in the case p =∞. Intermediate values of p correspond to

intermediate amounts of couplings between the kernels. The following question is at the

core of this work: what is the best amount of coupling between the kernels? From a the-

oretical perspective, we show that all couplings lead to universally consistent classi�ers.

From a practical perspective, we show on various experimental benchmarks that low or no

coupling between the kernels seems to be best, and allow to outperform existing methods

for localized MKL.

4.1.3 Related Work

A localized MKL (LMKL) was proposed by Gönen and Alpaydin (2008), with localized

weighting of the kernels according to the data-dependent parametric form

f (x) =
N∑

i=1

yiαi



M∑

m=1

ηm(x)Km(xi ,x)


 with ηm(x) =

e
am+〈b·,m,x〉

∑M
n=1 e

an+〈b·,n,x〉 ,

and a ∈ RM ,b ∈ Rd×M to be learned from the data in addition to α. The gating functions
(ηm) allow to activate di�erent kernels depending on the input point. Although a general

kernel can in principle be used instead of an explicit feature representation to de�ne the

gating functions, the original training procedure is based on gradient descent with respect

to the gating parameters, which precludes the use of kernelized gating functions. This form

of decision function is di�erent from what we consider in this work: in LMKL, although

the weighting of the individual kernels depends on the input point, the support vectors

are identical for all the kernels. In particular, at a �xed input point, this corresponds as in
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MKL to a rank one weighting. Indeed, when the original vector representation used for

gating has dimension d , LMKL estimates amodel of dimensionN+M(d+1), which can be
much less thanNM . In addition, although the decision functions of LMKL can be obtained

by iteratively resorting to a black-box SVM solver, the problem of jointly estimating the

gating weights and SVM weights is non-convex, and the resulting estimator may result

from high variance due to the e�ect of initialization.

The CG-Boost method (Bi et al., 2004) consists in plugging a classi�er of the form (4.2)

into the hinge loss, together with ℓ2-norm regularization, leading to

min
α∈RN×M

+



1

2

M∑

m=1

‖α·,m‖22+C
N∑

i=1


1− yi

M∑

m=1

N∑

j=1

αj ,mKm(xi ,xj)



+



.

This can be interpreted as a linear SVMwithNM features that correspond to kernel evalu-

ations with all elements of the training set. In particular, the regularization is independent

of the original geometry of the kernels, and there is no direct large margin interpretation.

The per-sample MKL (PS-MKL) (Yang et al., 2010, 2009) is another localized ("per-

sample") MKL approach with decision functions of the form

f (x) =
N∑

i=1

yi

M∑

m=1

αi βm(xi ,x)Km(xi ,x)

forα ∈RN
+ . In order to obtain a tractable problem, theweighting is assumed for learning to

be of the form βm(xi ,xj) =
1
2

(
βi,m+ βj ,m

)
, while for testing, the authors consider either

βm(xi ,x) = βi,m/M or βm(xi ,x) =
1
2 (βi,m+ 1/M), which is to say that the weighting is

uniformly a�ected by unseen examples. With β ∈ RN×M
+ , this form of the decision func-

tion is plugged into the classical SVM formulation, as when deriving the classical linear

MKL formulation in (4.1). Unlike CG-Boost, this leads to a regularization that is depen-

dent on the kernels. However, the change of variable trick used with MKL to transform

the problem into a convex optimization problem does not apply here, and this leads to a

saddle-point problem, to be solved using alternating optimization over β and α. This cor-
responds to the same class of decision functions that we consider, albeit with a di�erent

parameterization which does not lead to a convex formulation.

Outside of the realm of SVMs, Cao et al. (2009) have introduced the Heterogeneous

Feature Machine (HFM), where localized decision functions of the form (4.2) are trained

using a group-lasso regularized logistic loss with groups correspond to training samples,

resulting in a problem of the form

min
α∈RN×M

N∑

i=1

log
(
1+ e−yi f (xi )

)
+λ

N∑

i=1

‖αi,·‖2, (4.4)

with f as in (4.2). Although this is also similar to our approach in terms of the class of

decision functions, this is not a large margin approach. In addition, as for all the previous

methods, no theoretical guarantees are provided.

MKL is also related to multi-view learning (Blum and Mitchell, 1998), which is tradi-

tionally interested in problems where features can be divided into subsets (views), each of

which is su�cient to learn a good predictor (such that there is redundancy between the
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views). On the opposite, MKL can also be seen as an ensemble method, which are usually

concerned with aggregating estimators, which may be potentially loosely or not corre-

lated. This dual view is well re�ected in the two methods that we propose. For p = ∞,

we penalize the models associated to each kernel according to by how much they disagree

on the data points, as is common in multi-view learning. On the other hand, for p = 1,

the solution consists in averaging decision functions of independent SVMs, which can be

seen as an ensemble method with base classi�ers corresponding to SVMs with di�erent

kernels. Ensemble methods of similar sorts have been previously proposed, such as LP-β
(Gehler and Nowozin, 2009) which consists in using independently trained SVMs as base

learners, and �nding a weighting of these through a LPboost-like penalized linear program

(Demiriz et al., 2002). This has been shown to yield good results, but requires to tune both

penalization in the base learners, and when combining these.

Finally, the problem of localizedMKL has close ties to metric learning, where one seeks

to learn a fullN×N kernel matrix over the training set, and, possibly, to extrapolate to new

data points (see, for instance, (Yang and Jin, 2006; Ong et al., 2005) and references therein).

MKL appears as a special case of metric learning, over a parametric class of kernels, while

localized MKL corresponds to a larger class of kernels. Using a localized MKL, we only

need to learnNM parameters, as opposed toN2 for learning a full kernel. Although there

has been some interest in using MKLwith a large number of kernels (Gehler and Nowozin,

2008), the numberM of kernels remains small for a wide variety of applications in which

metric learning is thus a more di�cult task.

4.1.4 Outline

In Section 4.2, we study some properties of optimization problems of the form (4.3) for

di�erent families of losses. We give examples, along with a representer theorem. In addi-

tion, we give conditions under which these losses lead to universally consistent classi�ers.

In Section 4.3, we look into more detail at the ℓp-norm loss aggregation, and show that

this leads to a localized MKL solution which can be computed using a convex program.

Experimental results are presented in Section 4.4, and a discussion is provided in Section

4.5. This chapter is joint work with Antoine Poliakov.

4.1.5 Notation

Throughout the chapter, we denote {1, . . . ,N } by [N ], and, similarly, {1, . . . ,M} by [M ].
For a vector x ∈Rd for some d , we usually denote by (x1, . . . ,xd) the corresponding com-

ponents. The classical hinge loss is ℓhinge(y,x) = (1−yx)+. The all ones vector is denoted
by 1, while 1(A) designates the indicator vector that is one when condition A is true, and

zero otherwise.

4.2 Generalized Hinge Losses

In this section, our objective is to study some properties of the minimizer of the following

optimization problem where we aggregate hinge losses associated to allM kernels:

min
ω=(ω1,...,ωM )∈H



1

2

M∑

m=1

‖ωm‖22+C
N∑

i=1

ℓ (yi ,〈ω1,φ1(xi)〉, . . . ,〈ωM ,φM(xi)〉)

 . (4.5)
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Althoughwe use the aggregation terminology, this di�ers from approaches which consider

aggregation of estimators (Freund et al., 1999; Dalalyan and Tsybakov, 2007), while (4.5)

consists in aggregating loss functions. We impose the following conditions on the loss

function.

De�nition 11. A loss function ℓ : {−1,1} ×RM →R+ is a generalized hinge loss (GHL) if,

for y ∈ {−1,1},

• ℓ(y, ·) is Lipschitz with constant Lℓ with respect to the sup norm ‖t‖∞ =maxi∈[M ] |ti |:
for any t, t′ ∈RM ,

|ℓ(y, t)− ℓ(y, t′)| ≤ Lℓ‖t − t′‖∞.

• ℓ(y, t1) = (1− yt)+, and there exists θ : RM →R such that for any t ∈Rd ,

ℓ(y, t1, . . . , tM) ≥ (1− yθ(t1, . . . , tM))+.

Following classical terminology in generalized linear models, we refer to θ as the link

function, and the probabilistic classi�er associated to the optimization problem is de�ned

as

fℓ(x) = θ (〈ω1,φ1(x)〉, . . . ,〈ωM ,φM(x)〉) .
where ω = (ω1, . . . ,ωM) ∈ H is the minimizer of (4.5). Note that this is slightly more

general than (4.2), which corresponds to a link function that is simply the sum. This allows

for more �exibility, and still can be considered a localized classi�er. In practice, we shall

further require that ℓ(y, ·) be convex for any y. In this chapter, we consider two classes

of GHLs, that are built either by combining hinge losses with scalar inputs, or feeding a

combination of scalar inputs into the hinge loss.

De�nition 12. A GHL ℓ is of outer combination type if there exists A : RM → R+ such

that

ℓ(y, t1, . . . , tM) =A((1− yt1)+, . . . , (1− ytM)+).

Similarly, a GHL ℓ is of inner combination type if there exists A : RM →R such that

ℓ(y, t1, . . . , tM) = (1− yA(t1, . . . , tM))+.

In both cases, we refer toA as the corresponding aggregation function. Note that the aggre-

gation function must satisfy the scaling condition A(t, . . . , t) = t for t ∈ R. In particular,

GHLs of outer combination type can be interpreted as generalizations of the classical arith-

metic average. By de�nition, any GHL ℓ is lower bounded by a GHL of inner combination

type, and the corresponding aggregation function is a link function for ℓ. Although it may

appear from this fact that inner combinations should always be preferred, general GHLs or

GHLs of outer combination type may lead to more tractable optimization problems, as is

already the case with the hinge loss relaxation to the classi�cation loss. WhenA is linear,

we recover the two extreme cases that are averaging the decisions of individual SVMs, and

training a SVM on the average kernel.

Lemma 1. Let ℓ be of outer combination type withA = [a1, . . . ,aM ] linear, then the solution
of (4.5) is w = (a1w̄1, . . . ,aMw̄M) where w̄m is the solution of the SVM trained with kernel

Km only. Similarly, if ℓ is of inner combination type with the same A, then the solution of

(4.5) is the solution of the SVM trained with K =
∑M
m=1 amKm.
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Choosing an interesting combination type and aggregation function is not simple because

the resulting problem easily becomes either oversimpli�ed or untractable, especially with

nonlinearA. One of the most natural examples of nonlinear outer combination type GHL

corresponds to A =max, leading to

ℓmax(y, t1, . . . , tM) = max
m∈{1,...,M}

(1− ytm)+.

In Section 4.3, we will see that ℓmax has the advantage of being convex and of leading

to a localized MKL solution at the same time. The signed maximum on RM de�ned as

smax(v) = vargmax|v|, or, equivalently,

smax (v) =


minv if minv < −|maxv| ,
maxv if maxv ≥ |minv| ,

(4.6)

is an example of aggregation function that can used to de�ne an inner combination loss.

A di�erence between the losses based on smax and ℓmax lies in that using the outer com-

bination loss with ℓmax, we penalize each training sample according to the worse kernel,

while in the inner combination loss with smax, the predictions of the kernels are aggre-

gated independently of the target sample label, and thus independently of what the worse

kernel is.

4.2.1 Representer Theorem

We extend the classical representer theorem from the single kernel case to the minimizer

of (4.5). Recall that the product RKHS isH = H1× . . .×HM . In addition, we de�ne for any

kernel Km the sample space as

H̃m = span{φm(xi) : 1 ≤ i ≤N },

and the joint sample space as H̃ = H̃1 × . . .× H̃M .

Theorem 2. The solution of (4.5) belongs to H̃ , which is isomorphic to a subset of RMN .

Proof. For 1 ≤ m ≤M , let H̃⊥m be the subspace of Hm orthogonal to H̃m. We also denote

the product orthogonal by H̃⊥ = H̃⊥1 × . . . × H̃⊥M . Let ω = (ω1, . . . ,ωM) be a minimizer

of (4.5). For any m, we can decompose ωm ∈ Hm as ωm = ω̃m+ω⊥m, with ω̃m ∈ H̃m and

ω⊥m ∈ H̃⊥m . For 1 ≤ i ≤N ,

〈
ωm,φm (xi)

〉
=

〈
ω̃m,φm (xi)

〉
+

〈
ω⊥m,φm (xi)

〉
=

〈
ω̃m,φm (xi)

〉
.

Assume that ω < H̃ . Then, there exists m such that

‖ωm‖22 = ‖ω̃m‖22+ ‖ω⊥m‖22 > ‖ω̃m‖22.

As a consequence, ω̃ = (ω̃1, . . . , ω̃m) has a strictly smaller cost, which contradicts the

optimality of ω. As a consequence, ω ∈ H̃ .

This theorem generalizes the classical representer theorem for SVMs, for which H̃ will be

a strict subset of RMN of dimensionN . The main di�erence with the classical representer

theorem for SVMs lies in the fact that the loss is allowed to depend on an additional block
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structure on the Hilbert spaceH . Note that this theorem does not guarantee that the solu-

tion will be localized (that is, that the solution subspace has dimension strictly greater than

N). A study of representer theorems for similar losses and general regularizer functions

can be found in (Argyriou et al., 2009). In this context, the block structure is derived from

multi-task learning problems.

4.2.2 Universal Consistency

We now state the main result of this section, which requires the following notation. We

consider here a distribution P over X × {−1,1}, where X ⊂ Rd is a compact space. The

classi�cation and Hinge risks of a classi�er g : X→R are

R0-1
P (g) = E(x,y)∼P [1(signg(x) , y)] , R

Hinge
P (g) = E(x,y)∼P

[
ℓhinge(y,g(x))

]
.

Let ℓ be a GHL, and Q be a distribution on X × {−1,1}, then the risk of h : X→RM is

RQ(h) = E(x,y)∼Q [ℓ (y,h1(x), . . . ,hM(x))] .

For simplicity, for ω ∈ H , we write RQ(ω) = RQ(〈ω1,φ1(·)〉, . . . ,〈ωM ,φM(·)〉). The

regularized risk is de�ned for ω ∈H as

RQ,λ(ω) = RQ(ω) +λ‖ω‖2H .
Let ωQ,λ be the minimizer of RQ,λ, and fQ,λ : X→R the corresponding classi�er de�ned

from ωQ,λ through the link function. In this section, we analyze the regularized empirical

risk minimization program

min
ω∈H

RPN ,λ(ω),

where PN is the empirical measure based on N observations from P , which corresponds

to C = 1
2Nλ in (4.5). The regularization parameter is allowed to depend on N , and when

required, we explicitly write λN = λ. In addition, let

δλ =

√
2

λ
, LK = sup

x∈X
max

m∈{1,...,M}

√
Km(x,x).

We denote by C(X,Z) the set of continuous functions from X into some space Z . A

continuous kernel over X is universal if the corresponding RKHS is dense in C(X,R). We

say that a classi�er fN depending on N data points is universally consistent if R0-1
P (fN )→

infR0-1
P holds in probability for all distributions P over the data, where the in�mum is over

all classi�ers. Let BH = {ω ∈ H : ‖ω‖H ≤ 1} be the unit ball of H . In order to measure

the complexity of δλBH , we will use covering numbers. We denote by N (X,‖.‖,ε) the
ε-covering number of X with respect to norm ‖.‖, and by H(X,‖.‖,ε) = lnN (X,‖.‖,ε)
the corresponding metric entropy.

Theorem 3. Let ℓ be a GHL, (K1, . . . ,KM) be universal kernels, and for any ε > 0, assume

that when N →∞,

λN → 0, and
(Lℓ LK )

2

NλN

M∑

m=1

H

(√
2

λN
BHm ,‖.‖Hm ,

ε

LℓLK

)
→ 0,

then, fPN ,λN (the classi�er associated to the minimizer of RPN ,λN through the link function)

is universally consistent.
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In particular, if all kernels have metric entropy H(Bm,‖.‖Hm ,ε) ≤ ε−ρ for some ρ, and LK
and Lℓ are constant, then the su�cient condition is

λN = o(1), λN =Ω



(
M

N

) 1
1+ρ/2


 ,

which requires that λN converges to zero at a limited rate. The result is di�erent from

consistency results for multi-class SVMs (Tewari and Bartlett, 2007; Glasmachers, 2010),

as we consider multiple representations for each point and a single label, as opposed to a

single representation and multiple labels. The proof proceeds in four steps, and is inspired

by that of Steinwart (2005) for SVMs. We present an outline of the proof, while the details

are deferred to Section 4.6. First, we show that RPN ,λ and RP,λ both attain their minimum

over H in a ball of radius δλ.

Lemma 2 (Optimal risk is attained in a ball). Let ℓ be a GHL, then for any Borel probability
measure Q on X × {−1,1} and λ > 0, there exists ωQ,λ ∈H such that ‖ωQ,λ‖H ≤ δλ and

RQ,λ(ωQ,λ) = inf
ω∈H

RQ,λ(ω).

Then, we show that over this ball, the unregularized risk RPN concentrates around RP at

a rate that we make explicit.

Lemma 3 (Concentration of RPN (fPN ,λ)). Let ℓ be a GHL, then

PPN

(∣∣∣RPN (ωPN ,λ)−RP(ωPN ,λ)
∣∣∣ ≥ ε

)
≤ 2e

− 2ε2N
(Lℓ δλ LK )2

M∏

m=1

N
(
δλBHm ,‖.‖Hm ,

ε

LℓLK

)
.

Note that RPN ,λ also concentrates around RP,λ. Then, we check that asymptotically and

as the regularization vanishes, the minimum of RP,λ over H is close to that of RP .

Lemma 4 (Minimum of RP,λ is close to that of RP ). If K1, . . . , Km are universal and ℓ is a
GHL, then

lim
λ→0

[
inf
ω∈H

RP,λ(ω)
]
= inf

h
RP(h)

where the second in�mum is over all measurable functions h : X→RM .

Finally, we use the fact thatminimizing the surrogate riskRP over all classi�ers is su�cient

for minimizing the classi�cation risk. This is implied by the classical analysis of SVMswith

hinge loss, and the following lemma.

Lemma 5 (RP and R
Hinge
P have same minimum). For any GHL ℓ,

inf
h
RP(h) = inf

g
R
Hinge
P (g).

In addition, for any δ > 0, h : X→RM such that

RP(h) ≤ inf
h
RP(h) + δ,

then for θ a link function for ℓ, it holds that

R
Hinge
P (θ ◦ h) ≤ inf

g
R
Hinge
P (g) + δ.
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The theorem then follows from these lemmas. Remark that we show that all GHLs have

the same minimum risk over all possible classi�ers. In light of this, and in the situation

where one would be able to compute (and represent in a machine) the optimal classi�er

associated to, say, R
Hinge
P , there would be no interest in using GHLs. However, this is not

the case, and as we will see in the next section, the advantage of using (tractable) GHLs is

that it may allow to optimize the risk over a wider class of decision functions than with

SVMs or linear MKL.

4.3 ℓp-norm Aggregation of Hinge Losses

So far, we have shown that GHLs can lead to universal consistency, and bene�t from a

representer theorem in RMN , but they do not in general lead to a localized solution, that

is, α can be of low rank. In this section, we propose a family of losses which lead to a

localized solution, based on outer aggregation with ℓp-norms for p ∈ [1,∞], also referred

to as power-means. More precisely, we consider

ℓagg,p(y, t1, . . . , tM) = M−1/p



M∑

m=1

(1− ytm)p+




1/p

=M−1/p
∥∥∥∥((1− ytm)+)m∈[M ]

∥∥∥∥
p

for p ∈ [1,∞], which is a convex GHL.

4.3.1 Dual Problem

Wenow go intomore detail into the optimization problem associatedwith these losses, and

derive the corresponding dual problem. Due to strong duality, optimizing the dual problem

will be equivalent. Although we have not included a bias term so far for convenience of

the theoretical analysis (see also (Steinwart et al., 2011)), our formulation will include one

o�set per kernel, such that the classi�er is

f (x) = θ (〈ω1,φ1(x)〉+ b1, . . . ,〈ωM ,φM(x)〉+ bM) .

The methods that we propose correspond to the primal problem

min
ω=(ω1,...,ωM )∈H

b∈RM



1

2

M∑

m=1

‖ωm‖22+C
N∑

i=1

ℓagg,p (yi ,〈ω1,φ1(xi)〉+ b1, . . . ,〈ωM ,φM(xi)〉+ bM)


 .

The o�sets are not regularized, as is common for SVMs. We omit in the following the

scaling factorM1/p as this can be integrated into C . Using slack variables, the problem is

inf
ω∈H

ξ∈RN×M

b∈RM



‖ω‖2H
2

+C
N∑

i=1

‖ξi,·‖p

s.t.

ξi,m ≥ 0 for i ∈ [N ],m ∈ [M ]
ξi,m ≥ 1− yi [

〈
ωm,φm(xi)

〉
+ bm] for i ∈ [N ],m ∈ [M ].

Introducing Lagrange multipliers α,β ∈RN×M
+ , the Lagrangian is

L =
‖ω‖2H
2

+
N∑

i=1

[
C ‖ξi,·‖p − 〈ξi,·,αi,·+ βi,·〉

]
+

N∑

i=1

M∑

m=1

αi,m (1− yi [
〈
ωm,φm(xi)

〉
+ bm]) .
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Hence,

inf
ω∈H

ξ∈RN×M

b∈RM

L(α,β,ω,ξ ,b)

=
N∑

i=1

inf
ξi,·∈RN

[
C ‖ξi,·‖p − 〈ξi,·,αi,·+ βi,·〉

]

+ inf
ω∈H
b∈RM



‖ω‖2H
2

+
N∑

i=1

M∑

m=1

αi,m (1− yi [
〈
ωm,φm(xi)

〉
+ bm])




= −C
N∑

i=1

sup
ξi,·∈RM

[〈
ξi,·,

αi,·+ βi,·
C

〉
− ‖ξi,·‖p

]

+ inf
ω∈H
b∈RM



‖ω‖2H
2

+
N∑

i=1

M∑

m=1

αi,m (1− yi [
〈
ωm,φm(xi)

〉
+ bm])


 .

Denote by f ∗ the convex conjugate of a function f : RM →R, such that

f ∗(z) = sup
x∈RM

[〈x,z〉 − f (x)] .

For any i ∈ [N ], the value of the maximization problem over ξi,· is precisely the convex

conjugate of the ℓp-norm as a function of RM . As is classical, the convex conjugate of a

norm ‖ ·‖ over RM is the indicator function of the unit ball of the so-called dual norm ‖ ·‖∗
de�ned for z ∈RM as ‖z‖∗ = supx∈RM {〈x,z〉 : ‖x‖ ≤ 1}. Formally,

(‖ · ‖)∗ = δ‖·‖∗≤1,

where δA is such that δA(x) = 0 if x ∈ A, and δA(x) =∞ otherwise. The dual norm of the

ℓp-norm is well known to be the ℓq-norm, for q such that 1
p +

1
q = 1. As a consequence,

for C ≥ 0,

−C
N∑

i=1

sup
ξi,·∈RM

[〈
ξi,·,

αi,·+ βi,·
C

〉
− ‖ξi,·‖p

]
=


0 if

∥∥∥αi,·+ βi,·
∥∥∥
q
≤ C for i ∈ [N ],

−∞ otherwise.

As β has no in�uence on the second term, the condition can be equivalently written

‖αi,·‖q ≤ C for i ∈ [N ]. In the second term, minimizing with respect to b = (b1, . . . ,bM)

leads to the condition
∑N
i=1 yiαi,m = 0 for all m ∈ [M ] (which we abbreviate in the fol-

lowing by α ∈ B), while minimizing with respect to ω gives ωm =
∑N
i=1αi,myiφm(xi).

This leads to the dual problem

sup
α≥0
β≥0

inf
ω∈H

ξ∈RN×M

b∈RM

L = sup
α≥0


1
Tα 1− 1

2

M∑

m=1

αT·,mHmα·,m


 s.t. ‖αi,·‖q ≤ C for i ∈ [N ], α ∈ B,

with, as previously, Hm = diag(y)Kmdiag(y). The quadratic part can be rewritten as

vec(α)T Qvec(α) with vec the concatenation operator, and

Q =




H1 0 0

0
. . . 0

0 0 HM



.
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In particular, this is a convex quadratic program. From this dual problem, it follows that

the decision function is localized, and of the form

f (x) = θ



N∑

i=1

yiαi,1K1(xi ,x) + b1, . . . ,
N∑

i=1

yiαi,MKM(xi ,x) + bM ,


 .

As already mentioned, this corresponds to a slight generalization to (4.2). The biases can

be recovered as follows: let D denote the previous dual objective, such that the KKT opti-

mality conditions at an optimal dual estimate α∗ imply that, for any m ∈ [M ],

max
i∈Iu(m)

yi∇D(α∗) ≤ bm ≤ min
i∈Id (m)

yi∇D(α∗), (4.7)

where for m ∈ [M ],

Iu(m) =
{
i : yi = 1, ‖α∗i,·‖q < C

}
∪

{
i : yi = −1, α∗i,m > 0

}
,

Id(m) =
{
i : yi = 1, α∗i,m > 0

}
∪

{
i : yi = −1, ‖α∗i,·‖q < C

}
.

As is common, we use for numerical stability the average over all i ∈ Iu(m) ∩ Id(m).
When this set is empty, bm may not be unique, and we set bm to the midpoint of the

interval de�ned by Equation (4.7).

In the presence of the ℓq-norm constraints, the dual problem can be formulated as a

second-order cone programming (SOCP) problem, which consists in minimizing a linear

function over the intersection of second order cones of the form

‖Aix+ bi‖2 ≤ 〈ci ,x〉+ di .

As shown in Alizadeh and Goldfarb (2003), ℓq-norm constraints with 1 < q < ∞ can be

reformulated using such second order cone constraints, although this transformation re-

sults in a very signi�cant increase in the dimensionality of the problem. This simpli�es

to a QP when p ∈ {1,∞}, or a quadratically-constrained quadratic program (QCQP) for

p = 2. When N andM are moderate, the estimator can hence be obtained using o�-the-

shelf optimization packages. Naturally, the case where p = 1 is readily solved using any

SVM solver.

4.3.2 Regularization

The dual is regularized through a ‖ · ‖∞,q-norm constraint, where for α ∈RN×M ,

‖α‖∞,q =max
i∈[N ]
‖αi,·‖q,

which is dual to the ‖ · ‖1,p-norm that we use to aggregate the losses corresponding to

di�erent kernels. This latter norm is often used to induce group sparsity - see, e.g., (Sra,

2011) and references therein. We do not require any additional regularization, which has to

be contrasted with classical method for even non-localized MKL. In the early days of MKL,

the interest was focused on ℓ1 regularization of the kernel weights, i.e., Ω(s) = λ‖s‖1,
or on constrained versions of this, such as in SimpleMKL (Rakotomamonjy et al., 2008).

However, this type of regularization leads to a non-di�erentiable dual problem, which
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precludes coordinate descent methods such as SMO that have been most in�uential in

terms of accessibility and scalability of SVMs. More recently, there has been interest in ℓp
regularization for p > 1, i.e., Ω(s) = λ‖s‖pp , or constrained versions of this (Kloft et al.,

2009). Although this produces non-sparsemixtures of kernels, this has been shown to yield

at least comparable classi�cation performance as ℓ1 regularization in a variety of settings.

In many penalized variants of non-localized MKL, the amount of regularization has to be

adjusted in addition to the C parameter, which can be quite expensive. For p > 1, this was

alleviated by Kloft et al. (2009), who have studied the constrained version where ‖s‖p ≤ 1,

and shown that there exists choices of C such that the problem is equivalent to the (C,λ)-
penalized problem. Along the lines of these successive developments for MKL, our method

based on ℓp-norm aggregation of hinge losses can be generalized to arbitrary aggregation

functions A, which we believe could lead to some other interesting formulations. For a

GHL of outer combination type with aggregation function A, one similarly obtains the

dual problem

sup
α≥0


1
Tα 1− 1

2

M∑

m=1

αT·,mHmα·,m −C
N∑

i=1

A∗(αi,·)

 s.t. α ∈ B,

where A∗ : RM → R is the convex conjugate of A, such that aggregation functions may

be designed to enforce certain penalizations, while retaining a single regularization pa-

rameter.

4.3.3 Link Functions

In order to de�ne classi�ers, we need to specify link functions. As ‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1
for p ∈ [1,∞] and x ∈ RM , any link function for p = ∞ can be rescaled to obtain a link

function for any other value of p. Note that ultimately, only the sign of the link function

is used for testing. The mean of the kernel scores provides such a valid link function.

Lemma 6. avg(t1, . . . , tM) = 1
M

∑M
m=1 tm is a link function for ℓagg,∞, i.e., for any y and

t ∈RM ,

ℓagg,∞(y, t1, . . . , tM) ≥ (1− yavg(t1, . . . , tM))+ .

4.4 Experiments

In this section, we assess on real data the performance of the two proposed methods,

together with that of alternative methods for localized MKL. We consider the following

baselines in our experiments:

• ℓp-MKL.We used linear MKL, both with ℓ1 and ℓ2 regularization, using the SHOGUN
library. For ℓ1 regularization, we used the SILP formulation and chunking-based al-

gorithm from Sonnenburg et al. (2006), where the nonnegativeweights of the kernels

are constrained to sum to one, while the ℓp-constrained formulation and algorithm

from Kloft et al. (2009) was used for ℓ2 regularization.

• HFM. We implemented Heterogeneous Feature Machines from Cao et al. (2009)

which uses a logistic loss with a ℓ1,2 regularization, as described in (4.4).
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• LMKL.We used the localized MKL formulation and implementation introduced by

Gönen and Alpaydin (2008). The gating functions are based on the original vector

data representation when available, and the method was omitted from the compar-

isons when unavailable.

• PS-MKL.We implemented PS-MKL as described in (Yang et al., 2010) using alternate

optimization. When (βi,m) is �xed, (αi) is optimized using LIBSVM. When (αi) is
�xed, (βi,m) is optimized using a linear programming solver. Note that with respect

to (βi,m), the problem is actually a semi-in�nite linear program (SILP), which can

be solved by constraint generation. As described in the original paper, we add a

constraint at every iteration, such that the cost of solving the corresponding linear

program (in dimensionMN ) increases with the iteration number.

To the best of our knowledge, there was no previous experimental comparison of any two

of HFM, LMKL, and PS-MKL, although they address a similar question. In addition, we

consider the following algorithms based on ℓp-norm hinge loss aggregation:

• ℓagg,1 - average of SVMs. This corresponds to p = 1, and amounts to aggregating

the decision of independent SVMs.

• ℓagg,∞ - maximum of hinge losses. This corresponds to p =∞, and amounts to

aggregation of the hinge losses using themax, or, alternatively, to a ‖.‖∞,1 constraint

in the dual.

For each of these two methods that we propose, we use avg as link function.

4.4.1 UCI Datasets

We conducted experiments on wpbc, ionosphere, sonar, liver and pima (see Table

4.1). In each case, we used 25 Gaussian kernels with bandwidths regularly distributed in

logarithmic space. The SVM parameter C is selected using 10-fold cross validation. The

average testing accuracy (in percentage) over 10 train/test splits is shown in Figure 4.1.

Dataset Num. training examples Num. testing examples Num. features

wpbc 136 58 33

ionosphere 246 105 34

sonar 146 62 60

liver 140 201 6

pima 538 230 8

Table 4.1: Characteristics of UCI datasets used

We �rst note that in pima and sonar, MKL performed as well or nearly as well as

the localized MKL methods. This has also been observed in (Gönen and Alpaydın, 2011)

when comparing LMKL to various MKL variants, and is likely a consequence of the im-

portant expressive power of the Gaussian kernels. No method for localized MKL seem to

exhibit uniformly better results. Among localized methods, LMKL, HFM, and ℓagg,1 tend

to perform best.
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Figure 4.1: Testing accuracy (in percent) on UCI datasets

4.4.2 Image Classi�cation

In addition, we performed experiments on classical image classi�cation tasks:

• Caltech101. This dataset (Fei-Fei et al., 2007) comprises images from 101 classes,

with about 40 to 800 images per category. We used exponential kernels based on

χ2 divergences over PHOW gray/color and SSIM features at three di�erent scales,

following Vedaldi et al. (2009), and amounting to a total of 9 kernels.

• Oxford Flowers. This dataset consists in images from 102 classes of �owers (Nils-

back and Zisserman, 2008), with about 40 to 250 images per category, and signi�cant

pose, scale and illumination variations. We used kernels from Nilsback and Zisser-

man (2008), which consists in exponential kernels based on χ2 divergences over

color histograms, SIFT features both on pre-segmented foreground region and on

the corresponding boundary, and histogram of gradients (HOG) features, resulting

in a total of 4 kernels.

In each case, we used three training/testing splits, with 15 positive examples per class. One-

vs-rest (OVR) classi�cation was used, and all algorithms were modi�ed to include di�erent

weightsC+ andC− in their loss for positive and negative examples, respectively. Although

oversampling positive examples can sometimes be bene�cial (Perronnin et al., 2012), we

used unbiased weights C+ = C/N+,C− = C/N−, where N+ and N− are the number of

positive and negative examples in the training set, respectively. The same parameter C
was used for all classes. The results are summarized in Figure 4.2.

The methods that we propose achieve the highest testing accuracies in both bench-

marks. We obtain similar accuracies both for p = 1 and p =∞. This is discussed further

in Section 4.5. On the other hand, we obtained the lowest test accuracy using PS-MKL.

This is surprising, as particularly good results compared to various MKLs are provided

on this dataset in (Yang et al., 2010). First note that we use di�erent and somewhat sim-

pler kernels here, such that we do not expect to necessarily match or exceed accuracies

provided in the original paper. More importantly, PS-MKL sometimes failed to converge

within our maximum time window of two hours for some combinations of parameters

and classes, which can have a large impact on OVR classi�cation. Although this could be
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Figure 4.2: Testing accuracy (in percent) on Caltech101 and Oxford �owers datasets

�xed in principle (e.g., using multiple initializations), we believe that this is an inherent

drawback of alternate optimization.

In the previous experiments, we do not provide formal timings for training, as there are

no publicly available implementations of either HFM and PS-MKL, and not all algorithms

have a computational cost that can be easily summarized in terms of number of calls to a

SVM solver or gradient evaluations as is often done. Informally, the two variants of MKL,

as well as LMKL and our method with ℓagg,1 were the fastest, followed by HFM and our

method with ℓagg,∞, while PS-MKL was the slowest.

4.5 Discussion

The �rst method that we propose based on averaging decision functions from indepen-

dent SVMs clearly achieves the best tradeo� between accuracy and training time (as well

as ease of implementation). The good performance of this simple method may be infor-

mally explained in the following way: averaging decisions associated to di�erent kernels

amounts to a weighted voting. Due to the large margin property of SVMs, kernels that are

unsure are likely to abstain by producing low magnitude decisions, while kernels that are

con�dent are likely to sway the �nal decision.

In all our results, p = 1 is always at least as good as p = ∞. Although we have

not reported such results here, the methods corresponding to aggregation with p ∈]1,∞[
are also outperformed by p = 1 on our experiments. Hence, coupling the kernels does

not in general seem to improve accuracy. This can be explained through the idea that by

forcing kernels to agree through the coupling, the classi�ers associated to each kernel are

individually not as good as without coupling. The previous observations re�ects a result

fromMKL (Gehler and Nowozin, 2009), that under reasonable scalings of the kernels, using

a SVMswith the average kernel K̄ = 1
M

∑M
m=1Km leads inmany situation to a performance

close to that of full-�edgedMKL, which is very similar to the phenomenon that we observe

here.
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4.6 Proofs

4.6.1 Proof of Lemma 2

Proof. Let ε ∈ (0,1), and ωε ∈H that is ε-optimal for the risk RQ,λ, such that

RQ,λ(ωε) ≤ inf
ω∈H

RQ,λ(ω) + ε.

Since

λ‖ωε‖2H ≤ RQ,λ(ωε) ≤ RQ,λ(0) + ε ≤ 1+ ε ≤ 2,

such that ‖ωε‖H ≤ δλ. The rest of the proof proceeds as in (Steinwart, 2005, Lemma 3.1)

for SVMs.

4.6.2 Proof of Lemma 3

Proof. We will consider covering numbers with respect to

‖ω‖H ,∞ = max
m∈[M ]

‖ωm‖Hm .

Let (ω(1), . . . ,ω(n)) ∈Hn be an ε-cover of δλBH with respect to ‖.‖H ,∞, and for any i ≤ n,
decomposeω(i) = (ω

(i)
1 , . . . ,ω

(i)
M ). In particular, for anyω = (ω1, . . . ,ωM) ∈ δλBH , there

exists i ≤ n such that ‖ω −ω(i)‖H ,∞ < ε. Let x ∈ X , and y ∈ {−1,1} be �xed. For any m,

∣∣∣∣〈ωm −ω(i)
m ,φm(x)〉

∣∣∣∣ ≤ ‖ωm −ω(i)
m ‖Hm ‖φm(x)‖Hm ≤ ε

√
Km(x,x).

As ℓ is a GHL,
∣∣∣∣∣ℓ (y,〈ω1,φ1(x)〉, . . . ,〈ωM ,φM(x)〉)− ℓ

(
y,〈ω(i)

1 ,φ1(x)〉, . . . ,〈ω(i)
M ,φM(x)〉

)∣∣∣∣∣

≤ Lℓ max
m∈[M ]

∣∣∣∣〈ωm −ω(i)
m ,φm(x)〉

∣∣∣∣

≤ εLℓ max
m∈[M ]

√
Km(x,x).

Hence,

sup
x∈X,

y∈{−1,1}

∣∣∣∣∣ℓ (y,〈ω1,φ1(x)〉, . . . ,〈ωM ,φM(x)〉)− ℓ
(
y,〈ω(i)

1 ,φ1(x)〉, . . . ,〈ω(i)
M ,φM(x)〉

)∣∣∣∣∣

≤ εLℓ
[
sup
x∈X

max
m∈{1,...,M}

√
Km(x,x)

]
.

As a consequence, the functions fi = ℓ
(
·, (〈ω(i)

m ,φm(·)〉)m∈[M ]

)
, 1 ≤ i ≤ n form an (εLℓ LK )-

covering of F =
{
ℓ
(
·, (〈ωm,φm(·)〉)m∈[M ]

)
: ω ∈ δλBH

}
,which is a subset of the space of

continuous functions from X×{−1,1} to R+ (endowed with the supremum norm). Hence,

N (F ,‖.‖∞,ε) ≤N
(
δλBH ,‖.‖H ,∞,

ε

LℓLK
.

)
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For any f ∈ F , we have ‖f ‖∞ ≤ 1+ Lℓ δλLK . Hence, using Hoe�ding’s inequality,

PPN


 sup
ω∈δλBH

∣∣∣RPN (ω)−RP(ω)
∣∣∣ ≥ ε


 ≤ 2N

(
δλBH ,‖.‖H ,∞,

ε

LℓLK

)
e
− 2ε2N

(Lℓ δλ LK )2 .

Finally, for any ε̄ > 0,

N (δλBH ,‖.‖H ,∞, ε̄) ≤
M∏

m=1

N (δλBHm ,‖.‖Hm , ε̄).

The result follows.

4.6.3 Proof of Lemma 4

Proof. Let ε > 0 and ωε ∈H such that RP(ωε) ≤ infω∈H RP(ω) + ε
2 . For all λ ≤ ε

2‖ωε‖2H
,

inf
ω∈H

RP,λ(ω) ≤ RP,λ(ωε) ≤ RP(ωε) +
ε

2
≤ inf
ω∈H

RP(ω) + ε.

Hence,

lim
λ→0

[
inf
ω∈H

RP,λ(ω)
]
= inf

ω∈H
RP(ω).

We sketch the rest of the proof, which consists in showing that one can approximate the

optimal risk over all measurable functions from X to RM using bounded functions, and

in turn that bounded functions from X to RM can be approximated by elements from

the RKHS. Let g = (g1, . . . ,gM) with ‖gm‖∞ < ∞ for m ∈ [M ]. From classical argu-

ments, there exists (gn) such that gn = (gn1 , . . . ,g
n
M) ∈ C(X,RM), with supm∈[M ] ‖gnm‖∞ ≤

supm∈[M ] ‖gm‖∞, and supm∈[M ] ‖gnm − gm‖1→ 0. For any m, since Km is universal, Hm is

dense inC(X,R). As the closure of a cartesian product of sets coincides with the cartesian
product of the closures, H is dense in C(X,R)× . . .×C(X,R) = C(X,RM). As a conse-
quence, there exists (hn) such that hn = (hn1, . . . ,h

n
M) ∈H , and supm∈[M ] ‖hnm−gnm‖∞→ 0.

Hence, for n large enough, hn is bounded and the sequence converges point wise PX -
almost everywhere to g . The results follows from the fact the a generalized hinge loss

is a Lipschitz function, and Lebesgue’s theorem, as in (Steinwart and Christmann, 2008,

Proposition 5.27).

4.6.4 Proof of Lemma 5

Proof. Let g0 : X → R such that R
Hinge
P (g0) = infg R

Hinge
P (g). Consider h0 : X → RM ,

such that h0(x) = (g0(x), . . . ,g0(x)). Then,

RP(h0) = R
Hinge
P (g0) ≤ inf

g
R
Hinge
P (g).

As a consequence, infhRP(h) ≤ infg R
Hinge
P (g). Conversely, let h0 : X → RM , such that

h0 = (h10, . . . ,h
M
0 ), and let ψ(x) = θ(h10(x), . . . ,h

M
0 (x)), such that

RP(h0) ≥ RHinge
P (ψ) ≥ inf

g
R
Hinge
P (g).
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As a consequence, infhRP(h) ≥ infg R
Hinge
P (g). This shows that

inf
h
RP(h) = inf

g
R
Hinge
P (g).

4.6.5 Proof of Theorem 3

Proof. Let ǫ > 0. From (Steinwart, 2005, Proposition 3.3), there exist δ > 0, such that for

all measurable g0 : X × {−1,1} →R,

R
Hinge
P (g0) ≤ infR

Hinge
P + δ ⇒ R0-1

P (g0) ≤ R0-1
P + ǫ.

Let us pick such a δ > 0. Since λ→ 0, by Lemma 4, we have lim
N→∞

[
infω∈H RT ,λN (ω)

]
=

infhRP(h), and as a consequence, there exists N1 such that for N ≥N1,

∣∣∣∣∣ infω∈H
RT ,λN (ω)− infh RP(h)

∣∣∣∣∣ ≤
δ

3
. (4.8)

Since λ→ 0, there exists ρ > 0 and N2 ∈N such that for N ≥ N2 we have by Lemma 3

and using the condition on (λN ),

∣∣∣RPN (ωPN ,λ)−RP(ωPN ,λ)
∣∣∣ < δ

3
(4.9)

occurs with probability less than ε/2. Similarly, using Hoe�ding’s inequality,

∣∣∣RPN (ωP,λ)−RP(ωP,λ)
∣∣∣ < δ

3
(4.10)

occurs with probability less than ε/2. Hence, the probability that both of these two hold

is at least 1− ε. For N ≥max (N1,N2), with probability 1− ǫ,

RP(ωPN ,λN ) ≤ RP,λN (ωPN ,λN )

≤ RPN ,λN (ωPN ,λN ) +
δ

3
by (4.9)

≤ RPN ,λN (ωP,λN ) +
δ

3
by de�nition of ωT ,λN

≤ RP,λN (ωP,λN ) +
2δ

3
by (4.10)

≤ inf
h
RP(h) + δ by (4.8) .

Finally, using Lemma 5, with h : X→RM associated toωPN ,λN and g = θ◦h, it holds that

R
Hinge
P (g) ≤ inf

g
R
Hinge
P (g) + δ.

Then, R
Hinge
P (g) ≤ infR

Hinge
P + δ, and as a consequence, R0-1

P (signg) ≤ R0-1
P + ǫ.



Part II

Detection of Structured Objects

101





5
Detection of Correlations with Adaptive

Sensing
“Half the money I spend on advertising is
wasted; the trouble is, I don’t know which
half."

— John Wanamaker (attributed)
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5.1 Introduction

In this chapter, we are interested in the following statistical problem: given multiple ob-

servations from a Gaussian multivariate distribution we want to test whether the corre-

sponding covariance matrix is diagonal against non-diagonal alternatives. This type of

problem has recently received a lot of attention in the literature, where di�erent models

and choices of non-diagonal covariance alternatives were considered (Hero and Rajarat-

nam, 2012; Arias-Castro et al., 2014, 2012; Berthet and Rigollet, 2013; Cai et al., 2013). In

this work, we consider the detection of sparse positive correlations, which has been treated

in the case of a unique multivariate sample (Arias-Castro et al., 2014), or of multiple sam-

ples (Arias-Castro et al., 2012). However, our work deviates from the existing literature

in that we consider an adaptive sensing or sequential experimental design setting. More

precisely, data is collected in a sequential and adaptive way, where data collected at earlier

stages informs the collection of data in future stages. Adaptive sensing has been stud-

ied in the context of other detection and estimation problems, such as in detection of a

shift in the mean of a Gaussian vector (Castro, 2012; Haupt et al., 2009), in compressed

sensing (Arias-Castro et al., 2013; Haupt et al., 2012; Castro, 2012), in experimental design,

optimization with Gaussian processes (Srinivas et al., 2010), and in active learning (Chen

and Krause, 2013). Adaptive sensing procedures are quite �exible, as the data collection

procedure can be “steered” to ensure most collected data provides important information.

As a consequence, procedures based on adaptive sensing are often associated with better

detection or estimation performances than those based on non-adaptive sensing with a

similar measurement budget. In this work, our objective is to determine whether this is

also the case for detection of sparse positive correlations, and if so, to quantify how much

can be gained.

5.1.1 Model

LetU t ∈Rn, t = 1,2, . . . be independent and identically distributed (i.i.d.) normal random

vectors with zero mean and covariance matrix ΣS , where S is a subset of {1, . . . ,n}. Let
ρ > 0 and de�ne the covariance matrix as

(ΣS)i,j =



1, i = j
ρ, i , j , with i, j ∈ S
0, otherwise

.

Our main goal is to solve the hypothesis testing problem

H0 :S = ∅
H1 :S ∈ C ,

where C is some class of non-empty subsets of {1, . . . ,n}, each of size k. In other words,

under the alternative hypothesis, there exists an unknown subset S ∈ C such that corre-

sponding components are positively correlated with strength ρ > 0. We will often denote

the elements of S as the subset of contaminated coordinates. In all cases we assume that

the cardinality of each S ∈ C is the same: card(S) = k. We consider the following types

of classes C for the contaminated coordinates:

• k-intervals: all sets of k contiguous coordinates, of the form {z,z+1, . . . ,z+ k −1}
for some 1 ≤ z ≤ n− k+ 1; this class has size linear in n, and we denote it by C[k].
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• disjoint k-intervals: the class D[k] de�ned as

D[k] = {I1, . . . , I⌊n/k⌋}, Ij = {(j − 1)k+ 1, . . . , jk}, j ∈ {1, . . . ,⌊n/k⌋} .

• k-sets: all subsets of {1, . . . ,n} of cardinality k. We denote this class by Ck .

For any t = 1,2, . . . denote by P∅ the distribution of U t under the null, and by PS the

distribution under the alternative with contaminated set S ∈ C. In addition, for a positive

integer N , we denote by P⊗N the product measure P⊗ . . .⊗P with N factors, and we let

as previously [N ] = {1, . . . ,N }.

5.1.2 Adaptive vs. Non-adaptive Sensing and Testing

Clearly, the above hypothesis testing problem would be trivial if one has access to an in�-

nite number of i.i.d. samples (U t)t∈{1,...,∞}. Therefore, one must include some further re-

strictions on the data that is made available for testing. In particular, we will only consider

testing procedures that make use of at mostM entries of the matrix (U t
i )t∈{1,...,∞},i∈[n]. It

is useful to regard this as a matrix with n columns and an in�nite number of rows.

The key idea of adaptive sensing is that information gleaned from previous observa-

tions can be used to guide the collection of future observations. To formalize this idea

consider the following notational choices: for any subset A ⊆ [n], we write |A|= card(A)
the cardinality ofA. WhenA is nonempty wewriteUA = (Ui)i∈A ∈R|A| for the subvector
of a vector U ∈Rn indexed by coordinates in A. Finally, if U is a random variable taking

values in Rn denote by P|A the distribution of UA.
Let S ∈ C∪{∅} be the set of contaminated coordinates, andM ≥ 2 be an integer. In our

model we are allowed to collect information as follows. We consider successive rounds.

At round t ∈N, one chooses a non-empty query subset At ⊆ [n] of the components, and

observes U t
At . To avoid technical di�culties later on, we de�ne the observation made at

time t asXt , so thatXtAt = UAt andX
t
[n]\At = 0. In words, one observes theAt coordinates

of U t , while the remaining coordinates are completely uninformative. Each successive

round proceeds in the same fashion, under the requirement that the budget constraint

∞∑

t=1

|At | ≤M (5.1)

is satis�ed. Note that clearly, the number rounds is no larger than M . Again, to avoid

technical di�culties we assume the total number of rounds to beM in what follows, even

if this means At = ∅ for some values of t. Figure 5.1 illustrates how information can

be obtained within the sensing model for n = 60, under the alternative hypothesis with

S = [10] (i.e., the leftmost 10 components are contaminated). The query sequence is

A1 = [60], A2 = [30], A3 = {6, . . . ,15} ∪ {25, . . . ,30}, corresponding to a budgetM of at

least |A1|+ |A2|+ |A3|= 106 coordinate measurements.

In our setting, one can select the query sequence randomly and sequentially, and hence,

we write the query sequence (a1, . . . ,aM) as a realization of a sequence (A1, . . . ,AM) of
M random subsets of [n], some of which may be empty, and such that

∑M
t=1 |At | ≤M .

A key aspect of adaptive sensing is that the query at round T may depend on all the

information available up to that point. We assume At can depend on the history at time
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Figure 5.1: Illustration of a query sequence: samples from X1 (top), X2 (middle), X3 (bot-

tom)

t−1, which we denote byH t−1 = (Aj ,Xj)j∈[t−1]. More precisely, we assume At is a mea-

surable function of H t−1, and possibly of additional randomization. We call the collection

of all the conditional distributions of At given H t−1 for t ∈ [M ] the sensing strategy. In

particular, if there is no additional randomization, At is a deterministic function of H t−1.
We denote the set of all possible adaptive sensing strategies with sensing budget M as

AS(M).
At this point it important to formally also clarify what is meant by non-adaptive sens-

ing. This is simply the scenario where (At)t∈[M ] is independent of (U t
i )t∈[M ], i ∈ [n].

In other words, all the decisions regarding the collection of data must be taken before

any observations are made. The collection (At)t∈[M ] is known as a non-adaptive sensing

strategy, and the collection all such strategies satisfying the sensing budget (5.1) is de-

noted by NAS(M). A natural and important choice is uniform sensing, where At = [n]
for t = 1, . . . ,M/n (assume M is divisible by n). In words, one collects m = M/n i.i.d.

samples from PS . This problem has been thoroughly studied in (Arias-Castro et al., 2014);

we summarize some of the main results of (Arias-Castro et al., 2014) in Section 5.1.3.

Now that we have formalized how data is collected, we can perform statistical tests.

Formally, a test is a measurable binary function φ : HM 7→ φ(HM) ∈ {0,1}, that is, a
binary function of all the information obtained by the (adaptive or non-adaptive) sensing

strategy. The result of the test is φ(HM), and if this is one we declare the rejection of the

null hypothesis. Finally, an adaptive testing procedure is a pair (A,φ)whereA is a sensing

strategy and φ is a test.

For any sensing strategy A and S ∈ C, de�ne PA∅ (resp. PAS ) as the distribution un-

der the null (resp. under the alternative with contaminated set S) of the joint sequence

(A1,X1, . . . ,AM ,XM) of queries and observations. The performance of an adaptive test-

ing procedure (A,φ) is evaluated by comparing the worst-case risk

R(A,φ) = PA∅ (φ , 0) +max
S∈C

PAS (φ , 1)

to the corresponding minimax risk R∗AS = infA∈AS(M),φR(A,φ), where the in�mum is

over all adaptive testing procedures (A,φ) with a budget ofM coordinate measurements.

The minimax risk R∗AS depends onM , although we do not write this dependence explicitly
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for notational ease. Likewise, the non-adaptive minimax risk R∗NAS can be de�ned in an

analogous way.

Letm =M/n be the equivalent number of full vector measurements. In the following,

we will just say m measurements for simplicity. This change of parameters allows for

easier comparison with the special case of uniform sensing, where a full vector of length

n is measured m times. In particular, when m = M/n is an integer, uniform sensing

corresponds to the deterministic sensing procedure with At = [n] for t ∈ [m], At = ∅ for
t > m, and PAS = P⊗mS for S ∈ C ∪ {∅}.

We are interested in the high-dimensional setting, where the ambient dimension n is

high. All quantities such as the correlation coe�cient ρ, the contaminated set size k, and
the number of vector measurements m will thus be allowed to depend on n. In particular,

we always assume that n, k and m all go to in�nity simultaneously, albeit possibly at

di�erent rates, and our main concern is to identify the range of parameters in which it is

possible to construct adaptive tests whose risks converge to zero. We consider the sparse

regime where k = o(n). Although the case of �xed ρ is of interest, most of our results will

be concerned with the case where ρ converges to zero with n. When ρ = 1, the problem is

trivial as detecting duplicate entries in a single sample vector from the distribution allows

one to perform detection perfectly, while for �xed ρ < 1, the problem essentially becomes

easier as the measurement budget m increases.

5.1.3 Uniform Sensing and Testing

The simplest and most-natural type of non-adaptive sensing strategy we can consider is

uniform sensing. As stated before, this corresponds to the choice At = [n] for t = 1, . . . ,m
(recall that m = M/n), that is one collects m i.i.d. samples from PS . The minimax risk

and the performance of several uniform sensing testing procedures have been analyzed

in (Arias-Castro et al., 2014). The authors of that work analyzed the performance of tests

based on the localized squared sum statistic

Tloc =max
S∈C

m∑

t=1



∑

i∈S
Xti




2

,

which was shown to be near-optimal in a variety of scenarios. The localized squared sum

test that rejects the null hypothesis when Tloc exceeds a properly chosen threshold was

shown to have an asymptotically vanishing risk when, for some positive constant c,

ρk ≥ cmax




√
log |C|
m

,
log |C|
m


 . (5.2)

This condition was shown to be near-optimal in most regimes for the classes of k-sets
and k-intervals, unless k exceeds

√
n. In this latter and rather easier case, the simple non-

localized squared sum statistic Ts =
∑m
t=1

(∑n
i=1X

t
i

)2
is near optimal. From (5.2), it is

easy to see that the size of the class plays an important role, as a smaller class C leads to a
weaker su�cient condition for detection. In particular, the localized squared sum test has

asymptotically vanishing risk when

k-sets: ρ ≥ cmax




√
logn

km
,
logn

m


 , k-intervals: ρ ≥ cmax



1

k

√
logn

m
,
logn

km


 .
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Necessary conditions for detection almost matching the previous su�cient conditions

have been derived in (Arias-Castro et al., 2014). Although the dependence on the am-

bient dimension n is only logarithmic, this can still be signi�cant in regimes where n is

large but m is small.

5.1.4 Related Work

A closely related problem is that of detecting non zero mean components of a Gaussian

vector X , referred to as the detection-of-means problem. This problem has received ample

attention in the literature, see, for instance, (Ingster, 1997; Baraud, 2002; Donoho and Jin,

2004; Arias-Castro et al., 2008; Addario-Berry et al., 2010; Hall and Jin, 2010) and references

therein. The detection-of-means problem can be formulated as the multiple hypothesis

testing problem

H0 : X ∼N (0, In),

H1 : X ∼N (µ1S , In), for some S ∈ C .

where 1S is the indicator vector of S , In is the identity matrix, and µ , 0. In other words,

one needs to decide whether the components of X are independent standard normal ran-

dom variables or they are independent normals with unit variance, and there is a (un-

known) subset S of k components that have non-zero mean. The set of contaminated

components S is assumed to belong to a class C of subsets of [n]. The behavior of the

minimax risk has been analyzed for various class choices C (Ingster, 1997; Butucea et al.,
2013; Arias-Castro et al., 2008; Addario-Berry et al., 2010). Detection and estimation in this

model has been analyzed under adaptive sensing in (Castro, 2012; Haupt et al., 2009), where

it is shown that, perhaps surprisingly, all su�ciently symmetric classes C lead to the same

almost matching necessary and su�cient conditions for detection. This is quite di�erent

from the non-adaptive version of the problem where size and structure of C in�uence, in
a signi�cant way, possibilities of detection (see (Addario-Berry et al., 2010)).

Observe that the correlation model of Section 5.1.1 can be rewritten as

H0 : U t
i = Y ti , i ∈ {1, . . . ,n},

H1 : U t
i =


Y ti , i < S ,√
1− ρY ti +

√
ρN t , i ∈ S for some S ∈ C .

with (Y ti ),N
t independent standard normals, and that, as a consequence, the correlation

model can be seen as a random mean shift model, with a slightly di�erent normalization.

However, most results on adaptive sensing for detection-of-means heavily hinge on the

independence assumption between coordinates, which is not applicable for the detection

of correlations. In particular, we shall see that the picture is more subtle in the presence

of correlations.

A second problem, perhaps even more related, is that of detection in sparse principal

component analysis (sparse PCA) within the rank one spiked covariance model, de�ned as

the testing problem

H0 : X ∼N (0, In),

H1 : X ∼N (0, In+ θuuT ), for some u ∈Rn with ‖u‖0 = k , ‖u‖2 = 1 ,



5.1. INTRODUCTION 109

where ‖u‖0 is the number of nonzero elements of u, and ‖u‖2 is the Euclidean norm of u.
There is, also for this problem, a growing literature, see (Johnstone and Lu, 2009; Berthet

and Rigollet, 2013; Cai et al., 2013). Note that when the coordinates of u are constrained in

{0,1/
√
k}, we recover a problem akin to that of detection of positive correlations, but with

unnormalized variances over the contaminated set. The related problem of support estima-

tion has been considered in (Amini and Wainwright, 2008) under the similar assumption

that coordinates of u are constrained in
{
0,±1/

√
k
}
.

5.1.5 Outline

The main contribution of this work is to show that adaptive sensing procedures can sig-

ni�cantly outperform the best non-adaptive tests for the model in Section 5.1.1. We tackle

the classes of k-intervals and k-sets. For k-intervals, necessary and su�cient conditions

are almost matching. In particular, the number of measurements m necessary and su�-

cient to ensure that the risk approaches zero has essentially no dependence on the signal

dimension n. This is in stark contrast with the non-adaptive sensing results, where it is

necessary for m to grow logarithmically with n.
For k-sets, we obtain su�cient conditions that still depend logarithmically in n, but

which improve nonetheless upon uniform sensing in some regimes. Although not uniform,

the proposed sensing strategy is still non-adaptive. In addition to this, in a slightly di�erent

model akin to that of sparse PCA mentioned above, we show that all previous results

(both non-adaptive and adaptive) carry on, and we obtain a tighter su�cient condition

for detection of k-sets, that is nearly independent of the dimension n, and also improves

signi�cantly over non-adaptive sensing. Our results are summarized in Table 5.1. The

chapter is structured as follows. We obtain a general lower bound in Section 5.2, and

study various classes of contaminated sets. In Section 5.3, we propose procedures for k-
sets and k-intervals. In Section 5.4, we prove a tighter su�cient condition under a slightly

di�erent model, for k-sets. Finally, we conclude with a discussion in Section 5.5. This

chapter is joint work with Rui Castro and Gábor Lugosi (Castro et al., 2013).

reference ρk→ 0 ρk→∞

k-sets

necessary cdt. Thm. 2 ρk
√
m→∞ -

su�cient cdt. Prop. 20 ρ
√
km ≥

√
log nk , and ρkm ≥ log nk same

su�. cdt. (unnormalized model) Prop. 22 ρ
√
km ≥ loglog nk same

su�. cdt. (uniform, k = o(
√
n)) (Arias-Castro et al., 2012) ρ

√
km ≥

√
logn, and ρm ≥ logn same

necessary cdt. (uniform) (Arias-Castro et al., 2012) ρ
√
km ≥

√
log n

k2
, and ρm ≥ log n

k2
same

k-int.

necessary cdt. Thm. 2 ρk
√
m→∞ -

su�cient cdt. Prop. 19 ρk
√
m ≥

√
loglog nk ρkm ≥ loglog nk

su�cient cdt. (uniform) (Arias-Castro et al., 2012) ρk
√
m ≥

√
log nk ρkm ≥ log nk

necessary cdt. (uniform) (Arias-Castro et al., 2012) ρk
√
m ≥

√
log nk , ρkm ≥ log nk

Table 5.1: Summary of results (constants omitted).

5.1.6 Notation

We denote by EP the expectation with respect to a distribution P. The Kullback-Leibler

(KL) divergence between two probability distributions P and Q such that P is absolutely
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continuouswith respect toQ isKL(P ||Q) = EP [log (dP/dQ)], withdP/dQ the Radon-

Nikodymderivative ofP with respect toQ. WhenP andQ admit densities f and g , respec-
tively, with respect to the same dominatingmeasure, wewriteKL(P ||Q) = KL(f ||g). We

denote by 1A the indicator function of an event or condition A.

5.2 Lower Bounds

We say that a sequence z = (a1,x1, . . . ,aM ,xM) ∈
(
2[n] ×Rn

)M
isM-admissible if

∑M
t=1 |at | ≤

M . Consider an adaptive testing procedure (A,φ), with query sequence (A1, . . . ,AM) ∈(
2[n]

)M
, and (X1, . . . ,XM) ∈ (Rn)M the corresponding sequence of observations. Let

S ∈ C∪{∅} be the set of contaminated coordinates. For t ∈ [M ], we denote by fAt |H t (· |ht)
the probability mass function of At given H t = ht , and by fX t |At ;S(·|at) the density of

Xt |At = at over Rn with respect to a suitable dominating measure over Rn (e.g., the

product of Lebesgue measure and a point mass at 0). Therefore, the joint sequence Z =
(A1,X1, . . . ,AM ,XM) admits a density fS with respect to some appropriate dominating

measure. For anyM-admissible sequence (a1,x1, . . . ,aM ,xM), this density factorizes as

fS(a
1,x1, . . . ,aM ,xM) =

M∏

t=1

fAt |H t (at |a1,x1, . . . ,at−1,xt−1) fX t |At ;S(xt |at) .

For concreteness, let the density fS be zero on any joint subsequence that is not M-

admissible. It is crucial to note that all the terms in the factorization corresponding the

sensing strategy do not depend on S . This is central to our arguments, as likelihood ratios

simplify. More precisely, for anyM-admissible sequence (a1,x1, . . . ,aM ,xM),

f∅(a1,x1, . . . ,aM ,xM)

fS(a1,x1, . . . ,aM ,xM)
=

M∏

t=1

fX t |At ;∅(xt |at)
fX t |At ;S(xt |at)

=
M∏

t=1

fX t
At
|At ;∅(x

t
at |at)

fX t
At
|At ;S(x

t
at |at)

,

where the second equality follows from the sensing model.

Likelihood ratios play a crucial role in the characterization of testing performance. In

particular, a classical argument (see, e.g., (Tsybakov, 2009, Lemma 2.6)) shows that, for

any distributions P,Q over a common measurable space Ω and any measurable function

φ : Ω→ {0,1},
P(φ , 0) +Q(φ , 1) ≥ 1

4
exp (−KL(P ||Q)) .

Therefore

R∗ = inf
(A,φ)

[
PA0 (φ , 0) +max

S∈C
PAS (φ , 1)

]
= inf

(A,φ)
max
S∈C

[
PA0 (φ , 0) +PAS (φ , 1)

]

≥ inf
(A,φ)

max
S∈C

[
1

4
exp(−KL(PA0 ||PAS ))

]

=
1

4
exp(−sup

A
min
S∈C

KL(PA0 ||PAS )).

This entails that the minimax risk under adaptive sensing can be lower bounded by upper

bounding the maximin KL divergence. Here, in order to bound the maximum KL diver-

gence, we will take an approach similar to (Castro, 2012) for detection-of-means under
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adaptive sensing, although our setup di�ers slightly. In (Castro, 2012), the testing proce-

dures measure a single coordinate at a time, while we need multiple measures per step in

order to capture correlations. We have the following necessary condition.

Theorem 2. Let C be either the class of k-sets or k-intervals or disjoint k-intervals, and de�ne

D(ρ,k) =min

[
ρ

2(1− ρ) ,ρ
2(k+ 1)

]
.

Then the minimax risk R∗
AS

of adaptive testing procedures with a measurement budget of

M =mn coordinates is lower bounded as

R∗
AS
≥ exp (−mkD(ρ,k))

4
.

Proof. First remark the following: for ρ ≤ 1/2, and for any A ⊆ [n],

KL(P0|A ||PS |A) ≤D(ρ,k) |A∩ S | .

The proof is given in Appendix 5.6.2. The KL divergence between the joint probability

models can we written as

KL(PA0 |PAS ) =
M∑

t=1

EPA0


EPA0


log

fX t
At
|At ;∅(x

t
At |At)

fX t
At
|At ;S(x

t
At |At)

∣∣∣∣∣∣A
t







=
M∑

t=1

EPA0

[
KL(fX t

At
|At ;∅(·|At) || fX t

At
|At ;S(·|At))

]

=
M∑

t=1

EPA0
[KL(P0|At ||PS |At )]

≤D(ρ,k)
M∑

t=1

EPA0

[
|At ∩ S |

]

= D(ρ,k)
∑

i∈S
bi

using the shorthand bi =
∑M
t=1EPA0

[1i∈At ]. Hence,

sup
A

min
S∈C

KL(PA0 |PAS ) ≤D(ρ,k) sup
A

min
S∈C

∑

i∈S
bi .

De�ne the class complexity

C(C,M) = sup

min
S∈C

∑

i∈S
bi : b ∈Rn

+,

n∑

i=1

bi ≤M
 .

For any sensing strategy A, it holds that ∑n
i=1 bi =

∑M
t=1EPA0

[|At ∩ S |] ≤M , such that

sup
A

min
S∈C

KL(PA0 |PAS ) ≤D(ρ,k) C(C,M) .
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From (Castro, 2012, Lemma 3.1), we conclude that, for the both classes Ck and D[k], re-

spectively k-sets and disjoint k-intervals we have C(Ck ,M) = C(D[k],M) = Mk
n = mk

(assuming without loss of generality that n/k is an integer1). As C(·,M) is decreasing
with respect to set inclusion for any �xed M , C(C[k],M) = mk as well, and the result

follows.

The lower bound argument in Theorem 2 yields the same lower bound for detection

using any of the three classes of interest. This phenomenon is akin towhat was observed in

the context of detection-of-means under adaptive sensing, where the lower bounds are the

same provided the classes of contaminated components are symmetric. In this setting, it

was shown in addition in (Castro, 2012) that the condition in the lower bound is essentially

su�cient and therefore, unlike in the non-adaptive counterpart of the problem, knowledge

of the structure of C does notmake the detection problem any easier. However, the problem

of detection of correlations considered here seems to be more subtle in that one lacks

matching upper bounds for all cases. Namely, we do not know whether: (a) for detection-

of-correlations structure does not help; or (b) the lower bound is loose for some classes, in

particular the class of k-sets.
Recall that we are interested in the characterization of the regimes for which the risk

R∗AS converges to zero as m,k,n→∞. Clearly, if ρ decays at a rate no faster than 1/k,
the previous necessary condition for the risk to vanish asymptotically is always satis�ed.

Nevertheless, the lower bound gives an indication about the rate at which the risk con-

verges to zero. However, when ρ = o (1/k) the situation is di�erent, and Theorem 2 leads

to the following necessary condition.

Corollary 1. Let C denote either the class of k-sets, k-intervals or disjoint k-intervals, and
suppose ρ = o (1/k). For R∗

AS
to converge to zero it is necessary that ρk

√
m→∞.

Proof. From the previous results, it is necessary that

mk min

[
ρ

2(1− ρ) ,ρ
2(k+ 1)

]

goes to in�nity for the risk to converge to zero. This quantity is bounded bymρ2k2 asymp-

totically, and mρ2k2→∞ if and only if ρk
√
m→∞.

Recall that a su�cient condition for non-adaptive detection of k-intervals with the local-

ized squared sum test is

ρk
√
m > c

√
log(n) and ρkm > c log(n) .

When ρ = o(1/k) one has, asymptotically, ρk < 1 and the �rst condition is stronger than

the second. Non-adaptive detection with k-intervals is thus possible asymptotically for

ρk
√
m > c

√
log(n). This corresponds to the condition of Corollary 1 up to a logarithmic

factor in n, which implies that in the case of k-intervals, one can improve at most by a

factor logarithmic in n with adaptive sensing. This can be still quite signi�cant, however,

and we show in Section 5.3 that this can indeed be achieved.

1If n/k is not an integer, one can directly show that C(D[k],M) ≤ 2mk and the result of the theorem

follows with mk replaced by 2mk.
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5.3 Adaptive Tests

5.3.1 Sequential Thresholding

In the context of support recovery from signals with independent entries using adaptive

sensing, (Malloy and Nowak, 2011b,a) have proposed the sequential thresholding (ST) pro-

cedure, which is based on an intuitive bisection idea. Although initially introduced for

support estimation, ST can be easily adapted to detection, and we present such results

here. In addition, we present a slight generalization to signals with independent vector

entries.

Let Q0 and Q1 be two probability distributions over Rd̃ , and let Z ∈ Rñ×d̃ be a ran-

dom matrix. Consider the multiple testing problem de�ned as follows. Under the null, Z
has rows identically distributed according to Q0 Under the alternative, a small unknown

subset of k̃ rows of Z are distributed according to Q1, while the remaining rows are dis-

tributed according to Q0. In both cases, all rows are independent. More formally, denote

by Z1, . . . ,Zñ the rows of Z , such that the testing problem is

H0 :Zi ∼Q⊗ñ0 ,

H1 :Zi ∼Q0 for i < S , Zi ∼Q1 for i ∈ S , for some S ∈ C with |S |= k̃,

where, as already mentioned, all rows are independent in both cases. We refer to this

testing problem as that of detection from signals with independent (vector) entries. The

framework of adaptive sensing introduced in Section 5.1.2 can be easily adapted to this

model. In this case, in order to allow for vector entries, we consider that the experimenter

is allowed to obtain samples from rows of Z , and that he can select which rows to query

in a sequential manner as previously, under the constraint that the total number of rows

measured be less than M . We also refer to this straightforward extension as adaptive

sensing, andwe say that m̃ =M/ñ is the number ofmeasurements (i.e., m̃ is the equivalent

number of times the full matrix Z was observed).

Sequential thresholding is a procedure for testing with adaptive sensing within the

type of model just mentioned. Assume that Q0 and Q1 admit densities f0 and f1, respec-
tively, with respect to some common dominating measure, and for i ∈ [n] , denote by

LR(f1|f0;z1i , . . . ,zm̃i ) =
∏m̃
t=1 f0(z

t
i )∏m̃

t=1 f1(z
t
i )

the likelihood ratio associated to i.i.d. observations z1i , . . . ,z
m̃
i ∈Rd̃ ofZi , the i-th row ofZ .

ST proceeds as outlined in Figure 5.3. Initially, ST measures all ñ rows m̃ times, and throws

away a fraction (of about half under the null) of the ñ rows based on the values of the

likelihood ratios. This is repeated with the remaining rows a number of times logarithmic

in ñ, at which point ST calls detection if some coordinates have not been thrown away.

This is illustrated in Figure 5.2.

The following result is easily deduced from the analysis of ST for support estimation.

Proposition 17 (Su�cient condition for ST). Assume k̃/ñ→ 0, and

liminf
ñ→∞

m̃KL(f0 || f1)
loglog2 ñ

> 1,
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Figure 5.2: Illustration of sequential thresholding with k = 10, n = 60: contaminated

coordinates are the �rst ten on the left. Bars depict likelihood ratios associated with each

coordinate: at each step, coordinates with likelihood ratio below a threshold are thrown

away.

Input: K ≃ log2(ñ) (number of steps),

γ =medianz11 ,...,z
m̃
1 ∼f0(LR(f1|f0;z

1
1, . . . ,z

m̃
1 )) (threshold)

Initialization: S0 = {1, . . . , ñ}
for all r = 1, . . . ,K do

for all i ∈ Sr−1 do
measure z1i , . . . ,z

m̃
i ∼ Zi

compute LRi = LR(f1|f0;z1i , . . . ,zm̃i )
end for

Sr = {i ∈ Sr−1 : LRi > γ}
if

∑K
r=0 |Sr | > 4ñ then

return no detection

end if

end for

return detection if SK , ∅

Figure 5.3: Sequential thresholding procedure

then the sequential thresholding procedure with a budget of 4m̃ measurements has risk tend-

ing to zero as ñ goes to in�nity.

Proof. We begin by showing that the event of termination upon
∑K
r=0 |Sr | > 4ñ has an

asymptotically vanishing probability. Assume the alternative hypothesis with contami-

nated set S . Then, similarly as in (Castro, 2012, Proposition 4.1), using Bernstein’s in-

equality for sums of truncated hypergeometric variables,

P



K∑

r=0

|Sr | > 4ñ


 ≤ exp


−

ñ− k̃
4+ 2K

3


 ,

which converges to zero. The application of Cherno�-Stein’s lemma as in (Malloy and
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Nowak, 2011a) allows us to bound the probability of error as follows. The type I error of

the procedure is bounded by
ñ− k̃
2K

.

Let Ei,t denote the event that the likelihood ratio is below γ for coordinate i at step t (in
which case, coordinate i will not be included in St). Without loss of generality, assume

that 1 ∈ S . The type II error is

Q1

(
∩i∈S

(
∪Kt=1Ei,t

))
≤ (KQ1 (E1,1))

k̃ .

We write a = e−m̃D for limm̃→∞
loga
m̃ = D. From the Cherno�-Stein lemma,

Q1 (E1,1) = e−m̃KL(f0 || f1).

Hence, for K = (1+ ε1) log2n and ε2 > 0, there exists m̃0 such that for m̃ ≥ m̃0, the type

II error is bounded by

(
Ke−m̃(KL(f0 || f1)−ε2)

)k̃
= exp

(
k̃ log [(1+ ε1) log2n]− m̃k̃(KL(f0 || f1)− ε2)

)
.

Hence, the risk goes to zero if for some ε1,ε2 > 0, it holds that

liminf
ñ→∞

m̃(KL(f0 || f1)− ε2)
log [(1+ ε1) log2n]

> 1.

As a consequence, for the risk to go to zero, it is su�cient that

liminf
ñ→∞

m̃KL(f0 || f1)
loglog2n

> 1.

Note that the ST procedure does not require knowledge of k̃. ST can be applied to the case

of k-intervals, as we demonstrate in the next section.

5.3.2 The Case of k-intervals

In this section, we look at the case of the class C[k] of intervals of length k. It is su�cient

to work with the class D[k] of disjoint intervals for the following reason: assume that

one has a procedure for detection of disjoint k-intervals. Then, for detection of general

k-intervals, this procedure can be applied as if the objective was detection of disjoint k/2-

intervals. Indeed, if S is any k-interval, there exist at most two sets inD[k/2] that intersect

S , and at least one of them, say S ′ , has a full intersection with S , i.e., |S ∩S ′ |= k/2. As a

consequence, under mild conditions on the procedure, this leads to a su�cient condition

for detection of k-intervals identical up to constants to that associated with the original

procedure for disjoint k-intervals. In the following, we show how to perform detection in

the case of disjoint k-intervals.
Recall that D[k] = {I1, . . . , I⌊n/k⌋}, where Ij = {(j −1)k+ 1, . . . , jk} for j ∈ [⌊n/k⌋]. For

simplicity, we will assume that n/k is an integer. In order to apply ST, we will treat in-

tervals as n/k independent k-dimensional observations. De�ne ñ = n/k, k̃ = 1, m̃ = m,
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Figure 5.4: Illustration of sequential thresholding for k-intervals, with n/k = 6 intervals

of size k. Bars depict likelihood ratios associated with the intervals.

and d̃ = k. Let Q0 = P0|I1 be the joint probability distribution over an interval under the

null, and Q1 = PI1 |I1 be the joint probability distribution over the contaminated interval

under the alternative. We refer to the corresponding sequential thresholding procedure

as ST for disjoint k-intervals. This procedure is illustrated in Figure 5.4. This provides the

following su�cient condition for detection of disjoint k-intervals.

Proposition 18. Assume that ρ converges to zero, and that either

ρk→∞ and m log(1+ ρk) ≥ C3 loglog(n/k),

or

ρk→ 0 and ρk
√
m ≥ C4

√
loglog(n/k)

for some constants C3 and C4. Then sequential thresholding for disjoint k-intervals has risk
converging to zero.

Proof. The detailed computations can be found in Appendix 5.6.3. Assume that ρk > 1,

then

KL(Q0 ||Q1) ≥
log(1+ ρk)

10
.

Similarly, when ρk < 1/2 and k > 32,

KL(Q0 ||Q1) ≥
ρ2k2

16
.

Combined with Proposition 17, this gives the desired result.
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Consider the case where ρk →∞. In that case, omitting constant factors, sequential

thresholding would succeed for m ≥ loglog(n)
log(1+ρk)

. Recall that uniform non-adaptive testing

is possible for m ≥ c logn
ρk . When ρk > log(n) asymptotically, both conditions are trivially

satis�ed form constant, while when ρk < log(n), we already improve upon non-adaptive

tests. In spite of this, the dependence on ρk of our su�cient condition when ρk → ∞
is logarithmic, while it is only linear for ρk → 0. This may appear surprising, as one

may argue the former case corresponds to a regime where the signal is stronger (and so

the problem should be easier). However, this surprising fact is solely an artifact from the

sequential thresholding procedure, and can be �xed through a small modi�cation of the

sensing methodology.

In order to recover the same linear dependence in both cases, we propose to add a

subsampling stage prior to sequential thresholding. This subsampling can be decided be-

fore any data is collected, and thus can be viewed as a non-adaptive aspect of the entire

procedure. Consider the simple subsampling scheme wherein one keeps p coordinates per

interval, for some p ∈ {2, . . . ,k}, and measures each p-tuple
⌊
mn
pn/k

⌋
=

⌊
mk
p

⌋
times. This

prompts the following question: is there a value of p that allows one to detect more eas-

ily? De�ne the p-truncated intervals as I
p
j = {(j −1)k+1, . . . , (j −1)k+ p} for j ∈ [n/k].

Formally, we consider the deterministic sensing strategy Ap = (At) where for t ∈
[⌊
mk
p

⌋]
,

At =
⋃

j∈[n/k]

I
p
j .

As this involves one simple testing problem per interval, the di�culty of testing is essen-

tially characterized by the KL divergence KL(P
Ap
0 ||P

Ap
S ) between the distributions under

the null and the alternative. In this section, we make explicit the dependence of PS and p
by using the notation P

p
S . Consider any �xed S ∈ D[k], then the best KL divergence that

can be obtained is

max
p∈{2,...,k}

KL
(
P
Ap
0 ||P

Ap
S

)
= max

p∈{2,...,k}




⌊
mk
p

⌋
∑

t=1

KL(P
p
0 ||P

p
S)



=

⌊
mk

p

⌋
max

p∈{2,...,k}
KL(P

p
0 ||P

p
S),

which is independent of S . Due to nonlinearity in the KL divergence the optimal value of

p is generally di�erent than k, as illustrated in Figure 5.5. The optimal p and corresponding
optimal value seem hard to compute analytically, but numerical evidence shows that, for

ρ away from zero, the optimal p is of the order of ρ−1. This observation is su�cient for

our purposes, and is formalized below. Remark that when ρk < 1, the optimal value of p
is clamped to k.

Equipped with this subsampling stage when ρk→∞, we can now modify the ST for

k-intervals procedure as follows: when ρk → ∞, set m̃ =
⌊
mk
p

⌋
, d̃ =

⌈
1
ρ

⌉
, and use only

observations corresponding to d̃ coordinates per interval. We refer to this new procedure

as the modi�ed sequential thresholding for disjoint k-intervals.

Proposition 19. Assume that ρ converges to zero, and that either

ρk→∞ and ρkm ≥ C5 loglog(n/k),
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Figure 5.5: Optimal p as a function of ρ, for k = 100

or

ρk→ 0 and ρk
√
m ≥ C6

√
loglog(n/k)

for some constants C5,C6. Then the modi�ed sequential thresholding for disjoint k-intervals
has risk converging to zero.

Proof. We have the following straightforward new lower bound, proved in Appendix 5.6.4.

Although the lower bound appears weaker than previously, this corresponds to a setting

where more measurements can be carried out. When ρk > 1, then, using subsampling

with p =
⌈
1
ρ

⌉
,

KL(P
p
0 ||P

p
S) ≥

1

11
.

The su�cient condition for ST leads to the result.

The adaptive procedure allows us to obtain a mild dependence on the original dimension

n of the problem. When ρ = o(1/k), this su�cient condition almost matches the lower

bound of Corollary 1, while when ρk→∞, the su�cient condition is already satis�ed for

m = loglog(n/k).

5.3.3 The Case of k-sets: Randomized Subsampling

In this section, we consider the class Ck of k-sets. In this case, we do not currently know

whether a procedure along the lines of ST can be successfully applied. However, the idea of

subsampling the coordinates can still be used to yield modest but important performance

gains. While for disjoint k-intervals a deterministic subsampling was su�cient, this is not

the case for k-sets, where any deterministic subsampling that selects less than about n−k
coordinates cannot have risk converging to zero. For this reason, we consider a randomized

subsampling of the coordinates.

Consider a sample B of
⌊
2np
k

⌋
elements drawn without replacement from [n] for some

p ≥ 2. Let θ : R⌊np/k⌋ → {0,1} be the localized squared sum test with ambient dimen-

sion
⌊
2np
k

⌋
, and contaminated sets C = C⌊p⌋ of size ⌊p⌋, and consider the sensing strategy

de�ned by

A1 = . . .= A
⌊
mk
2p

⌋
= B.



5.3. ADAPTIVE TESTS 119

We refer to the adaptive sensing procedure ((At),θ) as the randomized testing procedure.

De�ne Y = |B ∩ S | (resp. Y = 0) under the alternative with contaminated S ∈ Ck (resp.
under the null), which is the number of contaminated elements in the subsample. ClearlyY

is a hypergeometric random variable with expectation k
n

⌊
2n
k p

⌋
∈ [2p−k/n,2p]. In words,

we consider a subsample of the coordinates, with about 2p contaminated coordinates (in

expectation) under the alternative, and we apply the (non-adaptive) localized squared sum

test.

Note that the procedure is strictly non-adaptive, as the subsampling can be decided in

advance. However, this sensing strategy is a bit di�erent than uniform sensing, as not all

coordinates are measured. Nonetheless, this allows one to detect under weaker conditions

than with uniform non-adaptive sensing when k is large enough.

Proposition 20. Let 2 ≤ p ≤ k such that p goes to in�nity. Assume that ρ converges to zero

and that

ρmk ≥ C1[
1− 1

m − 1
k

] log 2pn

k
, and ρ

√
mk ≥ C1√

(p − 1)
[
1− 1

m − 1
k

]

√
log

2pn

k
,

for some constant C1, then the randomized testing procedure has risk converging to zero.

Proof. Let ηI (resp. ηII ) be the risk of type I (resp. of type II) for θ. The type I error of

the randomized testing procedure is pI = ηI . Let p+ = P(Y ≥ ⌊p⌋) the probability of the

sample containing at least ⌊p⌋ contaminated elements, and p− = 1 − p+. Note that since
2np
k

k
n = 2p goes to in�nity, we can assume that Y is distributed according to a Poisson

distribution with parameter 2p, as this is asymptotically equivalent to the hypergeomet-

ric distribution. Hence, we have p− = P(Y < ⌊p⌋) ≤
(
1+

p(2p)p

p!

)
exp(−2p). Using p! ≥

√
2πp

(
p
e

)p
, we have that p− ≤ exp(−2p)+√p exp(−p/4), which converges to zero. The

type II error of the randomized testing procedure is pII = p+ηII + p−(1−ηI ) ≤ ηII + p−.
It remains to show that ηI and ηII both go to zero. This follows from the su�cient con-

ditions for the localized squared sum test, and from ⌊p⌋
⌊
mk
2p

⌋
≥ mk

2

[
1− 1/p+

2(1−p)
mk

]
≥

mk
2 [1− 1/p − 1/m]. Hence, the su�cient conditions for the localized squared sum test θ
provides the result.

In particular, for p = loglogn, it is su�cient that, omitting constants,

ρmk ≥ log
n

k
, ρ
√
mk ≥

√
log

n

k
,

to ensure the detection risk converges to zero. This does not match the adaptive lower

bound, and the dependence on n is still logarithmic. However, this already improves upon

the setting of uniform non-adaptive sensing when k ≥ m
logn . Indeed, recall that using

uniform sensing, the su�cient condition is

ρ
√
mk ≥

√
logn, ρm ≥ logn.

The �rst condition is insensitive to subsampling, due to the dependence inmk, and we do
not improve with respect to it. The second condition, however, only depends on m, and



120 CHAPTER 5. DETECTION OF CORRELATIONS WITH ADAPTIVE SENSING

does not get easier to satisfy when k is large. Hence, our result shows that it is more e�-

cient when k is large enough to reduce to a problemwith an almost constant contaminated

set size, but with an increased budget of full vector measurements.

5.4 Unnormalized Correlation Model

5.4.1 Model and Extensions of Previous Results

An alternative choice to the previous correlation model is the following unnormalized

model with covariance matrix

(Σ̄S)i,j =



1, i = j , i < S ,

1+ ρ, i = j , i ∈ S ,
ρ, i , j , and i, j ∈ S ,
0 otherwise.

under the alternative with contaminated set S ∈ C. This model is a special case of the rank

one spiked covariance model introduced in (Johnstone, 2001). Observe that this correlation

model can also be rewritten as

H0 : Xti = Y ti , i ∈ {1, . . . ,n},

H1 : Xti =


Y ti , i < S ,

Y ti +
√
ρN t , i ∈ S for some S ∈ C.

with (Y ti ),N
t independent standard normals. This can thus be interpreted as a random ad-

ditive noise model, as for the model of Section 5.1.1. Observe that our original correlation

detection model is obtained by normalizing each component such that the components

have unit variance. This is a minor di�erence that does not essentially change the di�-

culty of detection in the non-adaptive setting (indeed all upper and lower bounds proved

in (Arias-Castro et al., 2014) can be reproved for this model with minor modi�cations).

Interestingly, however, under adaptive sensing the information provided by the higher

variance in the contaminated components can be exploited to give a major improvement

over the normalized model. This may be done by applying the sequential thresholding

algorithm to the squares of the components as described below.

In the following, for any quantity X relative to the normalized model of Section 5.1.1,

we denote by X̄ the corresponding quantity related to the unnormalized model. All of

previous results can be shown to hold for this model as well. As already mentioned, this

includes the necessary and su�cient conditions of (Arias-Castro et al., 2014) (Proposition

26 in Appendix), but also the lower bound of Theorem 2 (Proposition 27 in Appendix), and

su�cient conditions for k-sets and k-intervals of Propositions 20 and 19 (Proposition 29

in Appendix). In particular, the procedures associated to the su�cient conditions can be

used with little modi�cations.

5.4.2 The Case of k-sets

The procedure proposed below combines randomized subsamplingwith sequential thresh-

olding, in order to capitalize on the unnormalized model. Consider the second moments
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Yi = X2
i . Under the alternative with contaminated set S ∈ C, Yi is distributed as follows:

(a) for i < S , Yi is distributed according to a chi-squared distribution with one degree of

freedom (that we denote by χ2
1), (b) for i ∈ S , Yi is distributed as (1+ρ)χ2

1. Note that un-

der our sensing model, it is perfectly legitimate to sampleA1 = {1}, . . . ,An = {n}, and thus
obtain independent samples of each of the coordinates of the random vector. In particular,

this allows us to obtain independent samples from the coordinates of Y . As a consequence,
we can directly apply ST to detect increased variance over a subset of the coordinates.

As alreadymentioned, ST does not require knowledge of k, which results in a su�cient

condition that is independent of k. In particular, it does not become easier to satisfy as

k increases. This condition can, however, be signi�cantly weakened using the random

subsampling used in last section. As in Proposition 20, this is due to the fact that by

subsampling, one can increase the budget of full vector measurements, while the decrease

in the contaminated set size does not impact the su�cient condition for detection. This is

summarized in the following result, which can be proved similarly as Proposition 20.

Proposition 21 (Su�cient condition for ST+randomized subsampling). Assume k̃/ñ→ 0,

and

liminf
ñ→∞

m̃k̃KL(f0 || f1)
(loglog2 ñ)

2
> 1,

then the sequential thresholding procedure with randomized subsampling (p = loglog2 ñ)
and a budget of 4m̃ full vector measurements has risk tending to zero as ñ goes to in�nity.

Let ñ = n, k̃ = k, and m̃ =m. Let Q0 be the χ
2
1 distribution, and Q1 be the (1+ρ)χ

2
1

distribution, both with respect to Lebesgue’s measure. We consider the associated sequen-

tial thresholding procedure (with randomized subsampling), with the previous modi�ca-

tion of sampling independent single coordinates. We refer to this procedure as variance

thresholding. This leads to the following su�cient condition for detection.

Proposition 22. Assume that ρ converges to zero and that

ρ
√
km ≥ C2 loglog2n

for some constant C2. Then, the risk of the variance thresholding procedure converges to zero.

Proof. Let g be the density of a χ2
1-distributed random variable, such that the density of

a (1 + ρ)χ2
1-distributed random variable is given by 1

1+ρg
( ·
1+ρ

)
. Then, using g(x) ∝

x−1/2e−x/2,

KL(χ2
1 || (1+ ρ)χ2

1) =

∫

R

log




g(x)
1

1+ρg
(

x
1+ρ

)


g(x)dx

= log(1+ ρ) +

∫

R

log




x−1/2e−x/2

(
x

1+ρ

)−1/2
e

−x
2(1+ρ)



g(x)dx

= log(1+ ρ) +

∫

R

log




e
−ρx

2(1+ρ)

(1+ ρ)1/2


g(x)dx

=
log(1+ ρ)

2
− ρ

2(1+ ρ)

∫

R

xg(x)dx.
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As the expectation of a χ2
1-distributed random variable is one, this leads to

KL(χ2
1 || (1+ ρ)χ2

1) =
1

2

[
log(1+ ρ)− ρ

1+ ρ

]
=
ρ2

4
+ o(ρ2).

Plugging this expression into the su�cient condition of Proposition 21 provides the result.

Assume for the following discussion that ρk→ 0. The necessary condition that we have

established previously is that ρk
√
m goes to in�nity. Neglecting the double log factor,

the su�cient condition that we have just obtained is that ρkm goes to in�nity, which is

stronger. Hence, there is a gap between the su�cient and necessary condition. In par-

ticular, that ρk
√
m goes to in�nity was shown to be near-su�cient for detection with

k-intervals, and the gap that we observe for k-sets does not allow us to conclude as to

whether structure helps for detection (as is the case under non-adaptive sensing).

Recall that the unnormalized model is similar to that of detection in the problem of

sparse PCA. The method of diagonal thresholding (also referred to as Johnstone’s diagonal

method) is a simple and tractable method for detection (and support estimation) in sparse

PCA (with uniform non-adaptive sensing), which consists in testing based on the diag-

onal entries of empirical covariance matrix - that is, the empirical variances. Hence, it

is similar to the method that we consider here, except that we estimate variances based

on independent samples for each coordinate. Note that this last point is essential to our

method. Indeed, consider the opposite case where we do not use independent samples for

each coordinates. For the sake of illustration, assume ρ = 1, such that the contaminated

components are exactly equal. In this case, the probability of throwing away one com-

ponent is equal to that of throwing away all contaminated components, and failure will

occur with �xed non small probability due to the use of dependent samples.

Finally, it is noteworthy that a naïve implementation of the optimal test in the non-

adaptive setting has complexityO(nk), whilewith adaptive sensing, we obtain a procedure
that can be carried out in time and space linear in n, and still improves signi�cantly with

respect to the non-adaptive setting.

5.5 Discussion

We showed that for k-intervals, adaptive sensing allows one to reduce the logarithmic

dependence in n of su�cient conditions for non-adaptive detection to a mild loglogn,
and that this is near-optimal in a minimax sense.

For k-sets, the story is less complete. The su�cient condition obtained in the unnor-

malized model is still stronger than the su�cient condition obtained for k-intervals, and
does not match our common lower bounds, which leaves open the question of whether

structure helps under adaptive sensing for detection of correlations? The analogous question

for detection-of-means has a negative answer, meaning structure does not provide addi-

tional information for detection. However, for detection-of-correlations a de�nite answer

is still elusive. Another open question is to what extent adaptive sensing allows one to

overcome the exponential computational complexity barrier that one can encounter in the

non-adaptive setting.

Aside from the normalized and unnormalized correlation models, other types of mod-

els can be considered. A more general version of our normalized model has been analyzed
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in (Arias-Castro et al., 2014), where the correlations need not be all the same, leading to

results that involve the mean correlation coe�cient ρavg =
(∑

i,j∈S : i,j(ΣS)i,j
)

/k(k −1).
In addition, we assume in most procedures that ρ and/or k are known, and it would be of

interest to have procedures that do not require such knowledge.
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5.6 Proofs

5.6.1 Inequalities and KL Divergences

In this section, we collect elementary inequalities that we use repeatedly in the computa-

tions.

For x > −1, log(1+ x) ≤ x, (5.3)

For x > 0, log(1+ x) +
1

1+ x
− 1 ≤ x2, (5.4)

For 0 < x < 1/2, log(1− x) + 1

1− x − 1 ≤ 2x2, (5.5)

For x < 1, − log(1− x)− 1

1− x + 1 ≤ x2, (5.6)

For x ∈]− 1,1], log(1+ x) +
1

1+ x
− 1 ≥ x

2

8
, (5.7)

For x ≥ 1, log(1+ x) +
1

1+ x
− 1 ≥ log(1+ x)

5
. (5.8)

The following expression of the KL divergence is used throughout the chapter.

Proposition 23. We have

KL(P0 ||PS) =
1k≥2
2

[
k

(
−1+ 1

1− ρ + log(1− ρ)
)
−
(

1

1− ρ + log(1− ρ)
)

(5.9)

+

(
1

1+ ρ(k − 1) + log(1+ ρ(k − 1))
)]
.

Proof. The KL divergence betweenP0 andPS can be computed using the standard formula

for KL divergence between two centered Gaussian vectors, with covariance matrices

Σ0 = In, Σ1 = ΣS .

When k < 2, the divergence is zero, and we will thus assume k ≥ 2. Up to a simultaneous

permutation of rows and columns,

ΣS =

[
In−k

Jρ(k)

]

where Jρ(k) ∈ Rk×k has unit diagonal and coe�cients equal to ρ everywhere else. Jρ(k)
is a symmetric matrix, hence diagonalizable, and has eigenvalues 1 − ρ with multiplicity

k − 1 and 1+ (k − 1)ρ with multiplicity one. As a consequence, we have, for k ≥ 2,

logdetΣS = (k − 1) log(1− ρ) + log(1+ ρ(k − 1))

TrΣ−1S = (n− k) + k − 1
1− ρ +

1

1+ ρ(k − 1) .
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The KL divergence is thus

KL(P0 ||PS)

=
1

2

[
Tr(Σ−11 Σ0)−n− log(detΣ0/detΣ1)

]

=
1

2

[
(n− k) + k − 1

1− ρ +
1

1+ ρ(k − 1) −n+ (k − 1) log(1− ρ) + log(1+ ρ(k − 1))
]

=
1

2

[
k

(
−1+ 1

1− ρ + log(1− ρ)
)
−
(

1

1− ρ + log(1− ρ)
)

+

(
1

1+ ρ(k − 1) + log(1+ ρ(k − 1))
)]
.

5.6.2 Proof of Bound on KL Divergence

Proof. First note since the KL divergences are independent of n, it is su�cient to use the

expressions of Proposition 23with a contaminated set of size s = |A∩S | ≤ k. As previously,
we assume s ≥ 2, as the result is trivial otherwise. Consider the expression for the KL

divergence given in (5.9). Using (5.3), we obtain

KL(P0|A ||PS |A)
= KL(P0 ||PS∩A)

≤ 1

2

[
s

(
−1+ 1

1− ρ + log(1− ρ) + ρ

)
−
(

1

1− ρ + log(1− ρ)
)
+

(
1

1+ ρ
− ρ

)]

=
1

2

[
s

(
ρ+

ρ

1− ρ + log(1− ρ)
)
+
−2ρ
1− ρ2 − log(1− ρ)− ρ

]

≤ ρs

2(1− ρ) .

Using (5.4) and (5.6), we obtain

KL(P0 ||PS) ≤
1

2

[
(s − 1)2ρ2+ 2sρ2+ ρ2

]
=
ρ2

2

[
(s − 1)2+ 2s+ 1

]
≤ ρ

2s(k+ 1)

2
.

5.6.3 Proof of Proposition 18

Proof. We have KL(Q0 ||Q1) = kf (ρ) + h(ρ) with

f (ρ) =
1

2

[
(1− ρ)−1+ log(1− ρ)− 1

]
,

h(ρ) =
1

2

[
−
(

1

1− ρ + log(1− ρ)
)
+

(
1

1+ (p − 1)ρ + log(1+ (p − 1)ρ)
)]
.



126 CHAPTER 5. DETECTION OF CORRELATIONS WITH ADAPTIVE SENSING

As previously, using (5.7), f (ρ) ≥ ρ2

16 . Assume that ρk < 1 and k > 7, then using (5.5) and

(5.7),

KL(Q0 ||Q1) ≥
ρ2k

16
+ h(ρ)

≥ ρ
2k

16
− 1

2

[
1+ 2ρ2

]
+

1

2

[
1+

ρ2(k − 1)2
8

]

= ρ2
[
k(k − 1)2

16
− 1

]

≥ (ρk)2

32
.

Now assume that ρk > 1, then for k > 32,

KL(Q0 ||Q1) ≥
ρ2k

16
− 1

2

[
1+ 2ρ2

]
+

1

2

[
1

1+ (k − 1)ρ + log(1+ (k − 1)ρ)
]

≥ ρ2
[
k

16
− 1

]
+

1

2

[
1

1+ (k − 1)ρ + log(1+ (k − 1)ρ)− 1
]

≥ ρ
2k

32
+

log(1+ (k − 1)ρ)− 1
2

.

5.6.4 Proof of Proposition 19

Proof. With p =
⌈
1
ρ

⌉
, when ρk > 1, we have

⌈
1
ρ

⌉
< k+ 1, and as a consequence,

KL(P
p
0 ||P

p
S) ≥

log2− 1/2

2
≥ 1

11
.
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5.7 Appendix: Extensions to Unnormalized Model

5.7.1 Uniform (non-adaptive) Lower Bound

Proposition 24. For any class C, any ρ ∈ [0,0.9), the minimum risk in the normalized

model (resp. the unnormalized model) under uniform (non-adaptive) sensing is bounded as

R∗ ≥ 1

2
− 1

4

√

E

[
coshm

(
8ρZ

1− ρ

)]
− 1

R̄∗ ≥ 1

2
− 1

4

√
E [coshm (8ρZ)]− 1

whereZ is the size of the intersection of two elements of C drawn independently and uniformly

at random.

Proof. This is essentially a reproduction of the proof of (Arias-Castro et al., 2014) with

minor modi�cations. The details are omitted.

5.7.2 Uniform (non-adaptive) Upper Bound

Let H(b) = b − 1− logb for b > 1.

Proposition 25. Under uniform (non-adaptive) sensing, the localized square-sum test that

rejects when

Yscan =max
S∈C

m∑

t=1



∑

i∈S
Xti




2

exceeds
1

2

(
ρk2m+H−1(3log |C|/m)− 1)km

)

is asymptotically powerful when

ρk ≥ c1max




√
log |C|
m

,
log |C|
m




both for the normalized and unnormalized models.

Proof. This is proved in (Arias-Castro et al., 2014) for the normalized model. In the case

of the unnormalized model, the test statistic is distributed as kχ2
m under the null, and as

(k(1+ρ)+ρk(k−1))χ2
m under the alternative, which changes only mildly the proof with

respect to the normalized model.

5.7.3 KL Divergences

Proposition 26. We have

KL(P̄0 || P̄S) =
1k≥2
2

[
−1+ 1

1+ ρk
+ log(1+ ρk)

]
. (5.10)
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Proof. The KL divergence between P̄0 and P̄S can be computed using the standard formula

for KL divergence between two centered Gaussian vectors, with covariances matrices

Σ0 = In, Σ1 = Σ̄S .

When k = 0, the divergence is zero, and we will thus assume k ≥ 1. Up to a simultaneous

permutation of rows and columns,

Σ̄S =

[
In−k

Ik +Kρ(k)

]

where Kρ(k) ∈ Rk×k has coe�cients equal to ρ everywhere. Like previously, Ik +Kρ(k)
is diagonalizable, and has eigenvalue 1with multiplicity k−1, and eigenvalue 1+ρk with
multiplicity one. As a consequence, for k ≥ 1, we have

logdet Σ̄S = log(1+ ρk)

Tr Σ̄−1S = (n− 1) + 1

1+ ρk
.

This leads to

KL(P̄0 || P̄S) =
1

2

[
Tr(Σ−11 Σ0)−n− log(detΣ0/detΣ1)

]

=
1

2

[
(n− 1)−n+ 1

1+ ρk
+ log(1+ ρk)

]
.

Proposition 27. For any A ⊂ [n],

KL(P̄0|A || P̄S |A) ≤min

[
ρ

2
,
ρ2k

2

]
|A∩ S |.

Proof. First note since the KL divergences are independent of n, it is su�cient to use the

expressions of Proposition 23 with a contaminated set of size s = |A∩ S |. As previously,
we assume s ≥ 1, as the result is trivial otherwise. Consider the unnormalized model, with

KL divergence given in (5.10). Using (5.3), we obtain

KL(P̄0|A || P̄S |A) = KL(P̄0 || P̄A∩S) ≤
ρs

2
.

Using (5.4) we obtain

KL(P̄0|A || P̄S |A) = KL(P̄0 || P̄A∩S) ≤
ρ2s2

2
≤ ρ

2sk

2
.

Combining these last two inequalities yields the desired result.

Proposition 28. Assume that ρ converges to zero, and that either

ρk→∞ and m log(1+ ρk) ≥ C3 loglog(n/k),

or

ρk→ 0 and ρk
√
m ≥ C4

√
loglog(n/k)

for some constants C3 and C4. Then sequential thresholding for disjoint k-intervals has risk
converging to zero.



5.7. APPENDIX: EXTENSIONS TO UNNORMALIZED MODEL 129

Proof. For the unnormalized model, when ρk > 1, using (5.8),

KL(Q̄0 ||Q̄1) ≥
log(1+ ρk)

10
.

When ρk < 1, using (5.7),

KL(Q̄0 ||Q̄1) ≥
(ρk)2

16
.

Proposition 29. Assume that ρ converges to zero, and that either

ρk→∞ and ρkm ≥ C5 loglog(n/k),

or

ρk→ 0 and ρk
√
m ≥ C6

√
loglog(n/k)

for some constants C5,C6. Then the modi�ed sequential thresholding for disjoint k-intervals
has risk converging to zero.

Proof. For the unnormalized model with p =
⌈
1
ρ

⌉
, when ρk > 1, we have

⌈
1
ρ

⌉
< k+ 1, and

as a consequence,

KL(P̄
p
0 || P̄

p
S) ≥

log2− 1/2

2
≥ 1

11
.
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6.1 Introduction

In the object detection problem, the goal is to �nd whether certain types of objects are

present in an image, and to precisely estimate their positions when this is the case. In

the last decade, multiple datasets of images with object annotations and bounding boxes

have appeared, including the subsequent PASCAL VOC datasets (Everingham et al., 2007,

2010a, 2012), the INRIA Person dataset (Dalal and Triggs, 2005), or the the ILSVRC datasets

based on subsets of the ImageNet dataset. This has bolstered the development of detection

methods signi�cantly, not simply due to the availability of clean data, but also as it provides

a common and reproducible framework for comparing algorithms and methods.

In recent years, the detection tasks have been dominated by structuredmethods (Felzen-

szwalb et al., 2010b) such as deformable part models (DPMs). DPMs are a particular in-

stance of sliding window detector. In DPMs, an object is modeled as a tree of parts. Both the

appearance and the usual relative positions of the parts are modeled, which allows to be

robust to shape deformations. In order to further account for object variabilities, mixture

models can be trained for each object type, e.g., using latent SVMs classi�ers (Felzenszwalb

et al., 2010b). Through this structure, DPMs can be extended to address much more gen-

eral problems such as human pose estimation (Yang and Ramanan, 2011), facial expression

recognition (Zhu and Ramanan, 2012b), or three-dimensional structure estimation (Kaka-

diaris et al., 2007). As many computer vision models, DPMs are based on hand-crafted

image features. In computer vision, features are usually designed to encode color or ge-

ometrical properties of images while enforcing various type of invariances (e.g., scale in-

variance with SIFT or HOG). This prompts numerous model selection questions and has

generated a very large body of work.

Convolutional neural networks (CNNs) (Hinton and Osindero, 2006; Ranzato et al.,

2011; Krizhevsky et al., 2012; Sermanet et al., 2013; Farabet et al., 2013) have recently ap-

peared to be particularly e�ective at the image recognition task, as was shown on the

ImageNet dataset during the latest ILSVRC annual image classi�cation and object detec-

tion competitions (Deng et al., 2009). CNNs are variants of multilayer perceptrons with

a sparse and local connectivity between neurons of successive layers. CNNs and coding

techniques (such as sparse coding, or structured coding methods) consider a largely dif-

ferent stand from hand-crafted features: the representation is to be learned from the data,

either in an unsupervised fashion (auto encoders, and coding), or coupled with a speci�c

pattern recognition task. The main challenge with such techniques is to make the best

use of their �exibility, while staying in control of their computational complexity. Many

computer vision models have already been revisited using these representation learning

techniques (Eslami et al., 2012; Tang et al., 2012), and one can anticipate this will only

intensify in the future.

In spite of this, it is still not clear how to exploit representation learning techniques for

fast and accurate localization of multiple objects in images. Most existing validations of

suchmodels have focused on classi�cation or labeling tasks, wherein the objective consists

only in identifying a dominant object type in an image. On the other hand, the detection

problem is a structured prediction problems where a label is not only an object type, but

also the coordinates of the bounding box where the object is located. Recently, there have

been attempts at addressing this problem of using CNNs for detection (Girshick et al.,

2014; Sermanet et al., 2014; Iandola et al., 2014), albeit not in a structured framework such

as DPMs.
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In this work, we demonstrate that using CNN feature pyramids within DPMs allows

to obtain a signi�cant boost in DPM performance on VOC2007. In Section 6.2, we review

the object detection problem and the DPM framework. In Section 6.3, we look at CNNs,

and describe how such feature representations can be integrated with DPMs. Finally, we

present experimental results on VOC2007 in Section 6.4, and we close this chapter with a

discussion of the results in Section ??. This chapter is joint work with Iasonas Kokkinos

and Stavros Tsogkas.

6.2 Detection with DPMs

In this section, we review the detection task, and give a high-level overview of DPMs.

6.2.1 Detection Task

In computer vision, the detection task consists in both identifying the types of the objects

in an image, and precisely localizing them. Detection results are usually evaluated based

on the following measure of overlap between a predicted bounding box, and an annotated

bounding box. The Intersection over Union (IoU, also referred to as Jaccard’s coe�cient) of

two bounding boxes B1 = {xmin
1 , . . . ,xmax

1 } × {ymin
1 , . . . ,ymax

1 } and B2 = {xmin
2 , . . . ,xmax

2 } ×
{ymin

2 , . . . ,ymax
2 } is

IoU(B1,B2) =
|B1 ∩B2|
|B1 ∪B2|

.

In the PASCAL VOC detection challenges (Everingham et al., 2007), a predicted bounding

box for a given class is considered a true positive if the best IoU with a ground truth

bounding box for this class exceeds 0.5. A given ground truth bounding box can only be

used for a single predicted bounding box, such that predicting many close bounding boxes

leads to many false positives. Predictions are required to be accompanied by a con�dence

score, such that a varying threshold can be used to explore di�erent detection regimes. The

�nal evaluation is in terms of precision/recall curve, which is usually summarized with the

average precision (AP, the area under the precision/recall curve). The high recall regime

corresponds to many bounding box predictions thus capturing all the objects, while the

high precision regime corresponds to a small number of relevant bound box predictions.

Understanding failures of detectors is paramount to improve their performance. In

detection, errors can be of di�erent types. Localization errors correspond to where an

object was correctly detected, but poorly localized so that the IoU does not exceed the

threshold (this includes duplicate detections). False positives can be classi�ed (Hoiem et al.,

2012) into confusion with similar objects, confusion with dissimilar objects, or confusion

with background. This is illustrated in Figure 6.1.

6.2.2 Deformable Part Models

In this section, we review star-shaped deformable part models. These models are de�ned

by a root node which models the global appearance of the object, and part nodes which

are allowed to �oat around the position of the root node to model certain speci�c features

of the object. As a simple example, the problem of human pose estimation can be cast as

such a star-shaped DPM, with parts for the head, the torso, the arms, and the legs. A given

bounding box is scored in DPMs according to the score of the root model, of the parts
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bottle (loc): ov=0.30  1−r=0.98 bottle (bg): ov=0.00  1−r=0.98

Figure 6.1: Localization error (left), confusion with background (right)

models, and of the value of interaction terms between the root and the parts. When train-

ing in the absence of precise annotation for the parts, their positions are treated as latent

variables, and are estimated. When doing detection, the score of a bounding box corre-

sponds to the highest scoring con�guration over all possible parts locations. Examples of

detections along with the latent part locations are shown in Figure 6.2.

Figure 6.2: Part basedmodels, sample detections from Felzenszwalb et al. (2010b): detection

bounding box (red), latent parts (blue)

Formally, DPMs associate linear �lters with the root and the part nodes. The part

�lters are usually square �lters of �xed size, while the root �lters are larger. Consider a

root-part con�guration z = (z0,z1, . . . zP) , where z0 is the image location of the center of

the root �lter, while, z1, . . . ,zP are the image locations of the centers of each of the part

�lters. Denote by I(z) a feature representation of the image patch around image location

z, of size corresponding to that of the root �lter or of the part �lters, depending on context.
A con�guration is scored using a model of the form

M(z) = 〈w0, I(z0)〉+
P∑

p=1

[
〈wp, I(zp)〉+Bp(zp,z0)

]
.

Here, w0,w1, . . . ,wP are the �lters (in feature space), and the dot product describes how

well the patch at this position matches the part model. The terms Bp are the second order
potentials, and depend only on the relative position di�erence zp − z0. For instance, in

the case of human pose estimation, one may want to penalize when the head part is not
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strictly above the torso, or when the left arm is not to the left of the torso. These terms

are usually simple quadratic forms. At training time, both the �lters w1, . . . ,wP and the

second order potentials B1, . . . ,BP must be learned.

Using this model, bounding box predictions can be produced as follows. First, we

decide on an aspect ratio and a putative root �lter location ẑ0, that leads to a candidate

bounding box. The best score over all compatible part con�gurations is

S(ẑ0) = max
z :z0=ẑ0

M(z).

This provides a con�dence score. Finally, this procedure is actually used for all possible

root positions ẑ0, which justi�es that DPMs are referred to as dense detectors. For this rea-

son, DPMs may be slow both to train and to evaluate. However, DPMs can be accelerated

signi�cantly at test time using cascades (Felzenszwalb et al., 2010a), branch and bound

(Kokkinos, 2011), or score approximations (Kokkinos, 2013).

The procedure that we have described can be used to detect objects at a �xed scale

that depends on the size of the part and of the root �lters. In order to detect objects at all

scales, a feature pyramid is used instead of a simple single-scale feature representation of

the image. At an elementary level, this is equivalent to performing detection on rescaled

version of a single image. This is illustrated on Figure 6.3: down-sampled versions of

the image may allow to detect the head of the horse, while higher resolutions may allow

to detect �ner details such as the ears of the horse. In addition, a mixture of such models

can be considered, leading to an additional latent variable which is the mixture component

identi�er. Thesemixture components allow to account for di�erent viewpoints or subtypes

of objects within a given class. In particular, root �lters with di�erent aspect ratios are

traditionally used.

6.3 Integrating Convolutional Features into DPMs

In this chapter, we consider the core problem of this chapter: how canwe use features from

CNNs for detection with DPMs, instead of using HOG features or similar hand-crafted

representations? In the remainder of this section, we go into detail into the structure of

the CNN that we consider, as well as into practical details for integrating deep features

into DPMs.

6.3.1 The Alexnet Network Structure

Most of recent works with CNNs for image classi�cation or object detection are focused on

the Alexnet network (Krizhevsky et al., 2012), which has won recent ImageNet object clas-

si�cation challenges. The Alexnet name is used both to refer to the network structure (i.e.,

the number, shapes and types of layers), and to refer to already-trained networks based on

this structure. The �rst �ve layers are convolutional, and consist only of convolutions and

pooling layers. Hence, the �rst �ve layers are intrinsically translation equivariant. The

last two layers are classical fully connected layers as in multi-layer perceptrons. The input

of the network consists of a 224×224×3 patch, which is transformed to two 13×13×128
patches after layer 5, and to a 4096 dimensional vector after layer 7. While the features

obtained at the convolutional layers have a spatial interpretation (as is the case with HOG),

this is not the case at the fully-connected layers.
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Figure 6.3: Feature pyramid: original image at di�erent scales (left), energy of CNN feature

representation at layer 5 (right)

The Alexnet network was trained on the ImageNet database, where all images were

rescaled to a �xed size, and the mean of all these images was subtracted. In order to

augment the data for training, random translations and horizontal re�ections were used,

and have been observed to reduce over-�tting. However, the Alexnet network was trained

for classi�cation, and it may be bene�cial to retrain the networkwhenworking on a related

but di�erent task such as detection, as was observed for R-CNN, where this is referred to as

�ne-tuning (Girshick et al., 2014). This can be achieved by setting up a supervised objective

adapted to the task at hand, and performing back-propagation on the original network.

6.3.2 Prior Work

An interesting attempt at using CNNs for detection has been made with OverFeat (Ser-

manet et al., 2014), which considers a sliding window approach. Two CNNs are jointly

trained to predict the class of the object and the coordinates of the bounding box contain-

ing the object, respectively, from a given input window. These networks are then fed with

all possible windows from the original images, at di�erent scales. A squared loss is used

as the loss for the bounding box regression problem.

The Regions with CNN features (R-CNN) method (Girshick et al., 2014) addresses the

detection problem in a remarkably simple and e�ective way, through the use of region

proposals (Uijlings et al., 2013). Many promising regions are obtained from segmentation

considerations and warped to a �xed size window, which is then used as input to a CNN.

This is essentially a reduction to a classi�cation task, but performs extremely well, pro-
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viding a mean average precision (mAP) of 58.5% on 20-classes VOC2007, and of 31.4% on

200-classes ILSVRC2013. These large mAPs are at the expense, however, of the time spent

training and testing: even though the method scales well with the number of classes, the

computation of the CNN features over all warped region proposals is expensive, even on

modern GPU machines. In addition, R-CNN is not a structured detector, and hence cannot

be generalized easily to more di�cult structure estimation problems.

6.3.3 Using CNN Layer 5 Features in DPMs

Due to translational equivariance, the output of the convolutional layers can actually be

computed on images larger than the input patch size used for training. This was lever-

aged in OverFeat (Sermanet et al., 2014) and in other recent works (Iandola et al., 2014;

He et al., 2014). In particular, Iandola et al. (2014) proposed to compute a feature pyramid

based on the convolutional layers (i.e., using the layer 5 features of the network). In or-

der to obtain a multi-scale representation, the patchwork of scales approach (Dubout and

Fleuret, 2012) is used: di�erent scales of an image are stitched in a large patchwork image

as shown in Figure 6.4, and the feature representation of the patchwork image is computed

and transformed back into a pyramid. This work demonstrates how to compute feature

pyramids based on a convolutional network, but no quantitative evaluation on a speci�c

task is provided.

Figure 6.4: Patchwork method: original stitched image (left), energy of CNN feature rep-

resentation at layer 5 (right)

However, a full image cannot be directly propagated through the fully-connected lay-

ers, which require a �xed size input that has to be �xed at the time where the network

is trained. From a feature pyramid at layer 5, one may crop (or warp to) patches of �xed

size to compute the output of the fully-connected layers (He et al., 2014), or simply stick

to the spatially arranged features at layer 5. This is in contrast with the approach used in

R-CNN which �rst warps to a �xed size before even the convolutional layer. In order to

have a structured detector like with DPMs, we need to conserve a spatial arrangement of

the features, as this allows to share computations when scoring part con�gurations. As

a consequence, we choose in this work to directly use the feature pyramid based directly

upon the layer 5 features.

When extracting such features, a key quantity is the subsampling factor sub from the

original input to the spatial feature representation, also referred to as the bin size, as il-

lustrated in Figure 6.5. For Alexnet, sub = 16, such that each feature is computed over

16×16 cells over the input image. As this corresponds to large bins, we oversampled by a

factor of two all images before computing features, which e�ectively leads to sub= 8. We

note that in Figure 6.3, the features have been resized by a factor of sub in order to appear

of the same size as the images. Figure 6.5 illustrates this with sub = 16: each pixel in the
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feature representation corresponds to a 16× 16 cell in the original image. Higher resolu-

Figure 6.5: Illustration of subsampling factor

tions can be obtained similarly, e.g., sub = 4 can be obtained by oversampling by a factor

of four, although feature computation as well as training and testing become prohibitively

long. The layer 5 features in each bin are 256-dimensional, which is eight times more than

with HOG features, which further increases the computational challenges associated with

training such models.

With HOG, the features can be interpreted as normalized frequencies for orientations

of the gradients, and can thus be represented visually, or even transformed back into the

image domain to some extent (Vondrick et al., 2013). With layer 5 CNN features, this type

of interpretation is not possible. Although we have represented CNN features through

their total energy so far, it would be desirable to have a way to visualize the feature rep-

resentations of the images, as well as the �lters.

6.4 Results on Pascal VOC 2007

Instead of the Alexnet network, we use the R-CNN network �ne-tuned for detection with

region proposals. We only report results with sub = 8, as sub = 16 leads to signi�cantly

worse mAPs, while sub = 4 is computationally prohibitive. We consider a normalization

for the CNN feature that is based on the L2-Hys (for hysteresis) scheme (Dalal and Triggs,

2005). Given a feature vector x, normalize in Euclidean norm:

x← x

‖x‖2+ ε
,

with ε = 10−3. Then, x is capped componentwise to a maximum value v = 0.1:

x←min(x,v).

We note that the layer 5 features are nonnegative, such that this is equivalent to capping

to a maximum amplitude. Finally, x is normalized again in Euclidean norm. In addition to

L2H-Hys, we investigated other normalization schemes, such as simple Euclidean norm

normalization, or ℓ1-norm normalization. Both of these alternative schemes yielded simi-

lar results.

In DPMs, it is common to train distinct mixture components for left-facing and right-

facing objects. When using HOG features, one may avoid to double the number of linear

classi�ers by leveraging the fact that the HOG features of a �ipped patch can be obtained

by shu�ing the HOG features of the original patch. This is because HOG features are

de�ned in terms of the geometrical orientations of the image gradient. Hence, given a

�lter for a left-facing object, one may obtain in closed-form a �lter for right-facing objects
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through this shu�ing process. This is no longer the case for CNN features. Instead, for

each image, we compute two feature pyramids, one on the original image, and one on the

mirror image. For each left-facing �lter, we de�ne a right-facing �lter which is constrained

to be the mirror of the left-facing �lter. However, unlike the left-facing �lter, the right-

facing �lter operates on the feature pyramid of the mirror image.

Due to the non-convexity of the latent SVMsmodels, initialization has to be performed

with care. Recently, a simpler method (Girshick and Malik, 2013) was proposed based on

Linear Discriminant Analysis. This method was shown to yield similar mAPs to the full-

blown DPM pipeline, and was used throughout all our experiments.

Our results are reported in Table 6.1. We consider two variants of our method: the

�rst one, C-DPM, combines sliding window detection followed by nonmaximum suppres-

sion; the second one, C-DPM-BB, is augmented with bounding box regression, using the

original bounding box coordinates as input features. We compare these two variants to

the following methods: DPMv5 refers to the baseline DPM implementation using HOG

features and bounding-box regression, as in (Felzenszwalb et al., 2010b), while RCNN5,

RCNN7, RCNN7-BB correspond to the performance of (�ne-tuned) RCNN using layer 5

features, layer 7 features, or layer 7 features with an extra bounding box regression based

on (richer) CNN features, respectively. The last rows of the second and third blocks in-

dicate the di�erence between the AP achieved by our method and DPMv5 or RCNN5, re-

spectively. In order to obtain commensurate performance measures, we compare DPMv5

with our variant that includes bounding box regression (C-DPM-BB), and RCNN5, which

does not include bounding box regression, to C-DPM.

From the second block of Table 6.1, it is clear that we signi�cantly improve over HOG-

based DPMs, while employing the exact same training pipeline; this is indicating the clear

boost we obtain simply by changing the low-level image features. However, the re-

Method aero bike bird boat bottle bus car cat chair cow dtbl dog hors mbike person plant sheep sofa train tv mAP

C-DPM 39.7 59.5 35.8 24.8 35.5 53.7 48.6 46.0 29.2 36.8 45.5 42.0 57.7 56.0 37.4 30.1 31.1 50.4 56.1 51.6 43.4

C-DPM-BB 50.9 64.4 43.4 29.8 40.3 56.9 58.6 46.3 33.3 40.5 47.3 43.4 65.2 60.5 42.2 31.4 35.2 54.5 61.6 58.6 48.2

DPMv5 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

C-DPM-BB vs. DPMv5 +17.7 +4.1 +33.2 +13.7 +13.0 +2.6 +0.4 +23.3 +13.3 +16.4 +20.6 +30.7 +7.1 +12.3 -1.0 +19.4 +14.1 +18.4 +15.6 +15.1 +14.5

RCNN7-BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

RCNN7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

RCNN5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3

C-DPM vs. RCNN5 -18.5 -3.8 -2.1 -2.8 +9.4 -0.4 -18.3 -5.4 +2.5 -18.7 +2.1 -1.1 0.0 -3.0 -8.4 +2.0 -19.7 +9.8 +3.0 -4.8 -3.9

Table 6.1: Results on PASCAL VOC 2007: average precision in percent

sults are not as clear-cut when it comes to comparing with RCNN. Even when comparing

only to RCNN-5, we have a moderate drop in performance, while our DPMs are still quite

behind RCNN-7. The di�erence with respect to RCNN-7 can be attributed to the better dis-

criminative power of deeper features and could be addressed by incorporating nonlinear

classi�ers, or computing all features up to layer 7 in a convolutional manner.

A intriguing point is the di�erence in performance between RCNN-5 and C-DPM, since

both use the same features. One would expect DPMs to have better performance (since

they do not rely on region proposals, and also come with many mixtures and deformable

parts), but this is not the case. We suspect that this is because (i) DPMs split the training

set into roughly 3 subsets (for the di�erent aspect ratios/mixtures), e�ectively reducing

by 3 the amount of training data and (ii) DPMs are somewhat rigid when it comes to the

kind of aspect ratio that they can deal with, (3 �xed ratios) which may be problematic in
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the presence of large aspect ratio variatios; by contrast RCNN warps all region proposals

images onto a single canonical scale. To conclude, we have shown that replacing HOG fea-

tures with CNN features yields a substantial improvement in DPM detection performance;

given the widespread use of DPMs in a broad range of structured prediction tasks (Yang

and Ramanan, 2013; Zhu and Ramanan, 2012a), we anticipate that this will soon become

common practice.
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