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∆E potential drop-down during sliding, V 

∆Eoc open circuit potential fluctuation, V 

a radius of the Hertzian static contact area, mm 

A0 total surface area, cm
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A’0 total surface area of surface modified sample, cm
2

 

Aact area of active material in the wear track, cm
2

 

ASTM American Society for Testing and Materials 

Arepass area of repassivated material in the wear track, cm
2
 

Atr whole wear track area, cm
2
 

A’tr whole wear track area of surface modified sample, cm
2

 

B constant of 26 mV in this work 

CaP Calcium phosphate 

CE counter electrode 

cp Ti commercially pure titanium (Grade 2 in this study) 

CPE constant phase element 

d density of bare material, g·cm
-3

 

d
*
 arithmetic mean of the two diagonals in hardness measurement, mm 

D diameter of the wear track, cm 

e average wear track width, cm 

e’ average wear track width of surface modified sample, cm 

E electrical voltage, V 

E
*
 Elastic modulus, MPa 

Eapplied applied potential, V vs. RE 

Ecorr corrosion potential, V vs. RE 

EDS energy-dispersive X-ray spectroscopy 

EIS electrochemical impedance spectroscopy 

Emax maximum potential value at the start of sliding, V vs. RE 

E’max maximum potential value during intermittent sliding, V vs. RE 

Emin minimum potential value during continuous sliding, V vs. RE 

E’min minimum potential value during intermittent sliding, V vs. RE 

Eoc open circuit potential, V vs. RE 

Epp primary passive potential, V vs. RE 

Et potential at time t, V vs. RE 

Etp transpassive potential, V vs. RE 
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f frequency, Hz 

F Faraday constant, 96 485 C·mol
-1

 

F
*
 load in hardness measurement, kg 

Fn normal loading force, N 

Ft tangential force, N 

HV Vickers hardness 

i applied current density, A·cm
-2

 

i0 exchange current density, A·cm
-2

 

iact corrosion current density of the active material, A·cm
-2

 

icorr corrosion current density, A·cm
-2

 

icrit critical current density, A·cm
-2 

ip passive current density, A·cm
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I electrical current, A 

ICDD International Center for Diffraction Data 

It current at time t, A 

Kc 
ratio of the material loss due to corrosion over the material loss due to 

mechanical wear in the wear track 

Km 

ratio of the specific material loss due to mechanical wear of the active 

material over the specific material loss due to mechanical wear of the 

repassivated material in the wear track 

L length of the wear track, cm 

M molecular weight, g·mol
−1

 

N total rotation number of cycles 

n number of electrons involved in the oxidation process 

OCP open circuit potential 

p exponent 

PBS phosphate buffered solution 

Pmax maximum contact pressure, MPa 

Pm average contact pressure, MPa 

ract specific polarization resistance of the active material, Ω·cm
2

 

rp specific polarization resistance, Ω·cm
2

 

r’p specific polarization resistance of surface modified sample, Ω·cm
2

 

R electrical resistance, Ω 

R
* 

radius of the tip of the curved counterbody, mm 

Ra average roughness value, μm 

Ract 
polarization resistance of the active material under continuous sliding 

condition, Ω 

Rct charge transfer resistance results from the electrochemical reactions at 
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the interface of electrode and electrolyte, Ω 

RE reference electrode 

Rfilm 
resistance of the outer porous Ca3(PO4)2 layer for the CaP/TiO2 

bioceramic film coated Ti, Ω 

Rinner 
resistance of the inner compact oxygen-diffused titanium layer for the 

thermal oxidized Ti, Ω 

Roxide 
resistance of the inner compact CaTi21O38 and TiO2 layers for the 

CaP/TiO2 bioceramic film coated Ti, Ω 

Router resistance of the outer porous TiO2 layer for the thermal oxidized Ti, Ω 

Rp 
polarization resistance of passive and repassivated area under 

continuous unidirectional sliding conditions, Ω 

R’p polarization resistance of surface modified sample, Ω 

Rps polarization resistance during continuous sliding of the total area, Ω 

R’ps 
polarization resistance during continuous sliding of the total area of 

surface modified sample, Ω 

Rs solution resistance, Ω 

S average cross-sectional area of the wear track, cm
2
 

S’ 
average cross-sectional area of the wear track of surface modified 

sample, cm
2

 

SEM scanning electron microscope 

SHE standard hydrogen electrode 

tlat latency time, s 

toff immobile off-time during intermittent unidirectional sliding tests, s 

treact reaction time to form passive surface film, s 

trot rotation period, s 

T constant, F·cm
-2

·s
ϕ-1 

TO thermal oxidation 

w
c
act specific material loss due to the corrosion of active material, cm/cycle 

w
c
repass 

specific material loss due to the corrosion of repassivated material, 

cm/cycle 

w
m

act 
specific material loss due to the mechanical wear of active material, 

cm/cycle 

w
m

repass 
specific material loss due to the mechanical wear of repassivated 

material, cm/cycle 

W
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material loss removed by corrosion, cm
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W
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 modification of the corrosive material loss caused by wear, cm
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c
act material loss due to corrosion of active area in the wear track, cm

3
 

W
c
repass 

material loss due to corrosion of repassivated material in the wear 

track, cm
3
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material loss due to mechanical wear of active material in the wear 

track, cm
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film material loss due to the mechanical wear of surface modified film, cm
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repass 
material loss due to mechanical wear of repassivated material in the 
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W’tr total material loss in the wear track of surface modified sample, cm
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XRD X-ray diffraction 
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Zim imaginary part of the impedance, Ω 
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1.1 Background 

The field of biomaterials in orthopedic and dental implants application has attracted more and 

more attentions, as these materials enhance the quality and longevity of human life. The science and 

technology associated with this field has led to multi-million dollar business now. According to a 

research survey [1], the global bio-implants market is estimated to be $94.1 billion in 2012 and is 

poised to grow at a CAGR (Compound Annual Growth Rate) of 7.3% from 2012 to 2017. As dental 

implant for example, statistics show that 69% of adults ages 35 to 44 have lost at least one permanent 

tooth because of an accident, gum disease, a failed root canal or tooth decay. By age 74, 26% of adults 

have lost all of their permanent teeth. Recently, about 10 millions patients are treated per year with 12 

millions implants, but that only covers 1% of missing teeth and the major 99% are untreated due to 

lack of education of professionals at dental college as well as high out-of-pocket treatment cost [2]. 

These obtained data indicate that biomedical implants are becoming a personal health issue for most of 

us with an increase in the number of implantation procedures.  

1.2 Titanium based biomedical implants 

Titanium and its alloys, as one of the important biomaterials for orthopedic and dental implants, 

have been tremendously used due to their good mechanical properties, excellent corrosion resistance 

and adequate biocompatibility [3-5]. The use of titanium in dentistry began in the 1960s with the 

Branemark system for prosthesis design and surgical procedure [6, 7]. In parallel with this, orthopedic 

prostheses of titanium for hip-joint fixation or replacement were also developed. However, the 

bio-inertial property of titanium and its alloys commonly cause a long osseointegration process [8, 9]. 

The release of ions due to corrosion and wear debris from mechanical friction can result in the 

infection/inflammation of the surrounding tissues [9, 10]. These disadvantages limit the development 

of titanium and its alloys as biomedical implant materials. Therefore, to improve the wear resistance 

and biocompatibility of titanium based implants is not only the focus of most implant industries and 

manufacturers (see Figure 1-1), but also research interest of scientists and engineers. 
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Figure 1-1 International major manufacturers of implant [11]. 

1.3 Aims and objectives 

Wear and corrosion are considered as two important issues for titanium based implants, but few 

studies have been investigated to understand their combined effect – tribocorrosion for loading 

implants. Therefore, the aim of this work is to provide a deep insight in the area of tribocorrosion 

behavior for commercially pure titanium (cp Ti). And then three different surface modification 

treatments, as (1) one-step thermal oxidation of titania (TiO2) film, (2) one-step electrochemical 

deposition of calcium phosphate (CaP) bioactive film, and (3) two-step electrochemical 

deposition/thermal sintering of CaP/TiO2 bioceramic film, have been prepared on cp Ti to improve its 

corrosion/wear resistance, and even to give a promising method in shortening the osseointegration 

process. Preliminary study in the culture of NiH/3T3 fibroblast cells was done to investigate the 

cell’s proliferation on cp Ti as bioimplant material. The main objectives of this study can be 

summarized as: 

 To analyze the corrosion and tribocorrosion behavior of cp Ti in simulated body fluid by 

combining tribological and electrochemical tests. 

 To characterize the thermal oxidized TiO2 film and analyze its effect on corrosion and 



Chapter 1 

4 

 

tribocorrosion behavior of cp Ti. 

 To characterize the CaP bioactive film and analyze its effect on corrosion and 

tribocorrosion behavior of cp Ti. 

 To characterize the CaP/TiO2 bioceramic film and analyze its effect on corrosion and 

tribocorrosion behavior of cp Ti. 

 To study the NiH/3T3 fibroblast cell’s proliferation on cp Ti and propose a cell culture 

procedure on cp Ti. 

1.4 Outline of the thesis 

This thesis contains nine chapters. General introduction is presented here in Chapter One. 

Chapter Two covers the state-of-the-art in the area of biomaterials, basic theories of corrosion 

and wear, and titanium and its alloys as biomedical implants. Related topics like the development of 

biomedical implant, the current research status in surface modification of titanium and its alloys, and 

the understanding of corrosion and tribocorrosion are reviewed. 

In Chapter Three, the experimental methodologies, procedures and equipments used in this study 

are described. Details of a tribocorrosion protocol for cp Ti as a passivating material is also delineated. 

Chapter Four, which describes the corrosion behavior of cp Ti in static condition and its 

tribocorrosion behavior under mechanical loaded condition, represents the contributions of loading 

force and depassivation/repassivation phenomena in material loss of cp Ti under the guidance of the 

tribocorrosion protocol. 

The influences of thermal oxidized TiO2 film, CaP bioactive film and CaP/TiO2 bioceramic film 

on corrosion and tribocorrosion behavior of cp Ti are discussed in Chapter Five, Chapter Six and 

Chapter Seven, respectively. 

The preliminary study in the culture of NiH/3T3 fibroblast cells on cp Ti without any surface 

modification was done in Chapter Eight and a feasible cell culture procedure was proposed. 

The main conclusions from this study and the possible future work which might be continued are 

given in Chapter Nine. 
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2.1 Biomaterials and biomedical implants 

Biomaterials are defined as the materials of natural or manmade origin that are used to direct, 

supplement, or replace the functions of living tissues [12]. The field of biomaterials is not new and can 

track back to about 2000 BC, when the Egyptians and Romans had used linen for sutures, gold and iron 

for dental applications and wood for toe replacement. These were the earliest evidences in the field of 

biomaterials. Now, this field is of importance for human beings in different area of medical industry 

[13], especially for the less fortunate people who are suffering from congenital heart disease and also 

for the aged population who require biomedical implants to increase their lifespan (see Table 2-1). 

Table 2-1 Use of Biomaterials [13]. 

 

In the case of biomedical implants, thanks to the availability of better diagnostic tools and the 

advancements in the knowledge on materials and on surgical procedures, implantology has assumed 

greater. Biomedical implants now can be commonly used in dentistry, orthopedics, reconstructive 

surgery, ophthalmology, cardiovascular surgery, neurosurgery, immunology, histopathology, 

experimental surgery and veterinary medicine (see Figure 2-1) [14]. 
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Figure 2-1 Biomaterials for human application [14]. 

As a very high boom in implant manufacturing is expected in coming years, decreasing the pain 

during surgery for the patient, cutting down the surgical cost and increasing the success rate are 

necessary and they require the collaborative effort between material scientists and engineers, 

biomedical engineers, pathologists and clinicians. In order to serve for longer period without rejection, 

biomedical implants should meet the special requirements [5, 9]. The first and important requirement 

is that the material must be biocompatible. That means that the device does not cause any adverse 

reaction in the body and can be well integrated with the surrounding tissues. The second requirement is 

that the material must be corrosion resistant in the body aggressive environment. Corrosion resistance 

ensures that metal ions will not release into the body to take inflammation to human organs and/or 
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tissues. Furthermore, the implantable device will retain its integrity and not degrade due to corrosion. 

The third requirement is that the device must have sufficient mechanical strength and fatigue strength. 

This guarantees the match of modulus between natural tissue, like bones and foreign implants. The 

fourth requirement is the appropriate design for the intended use. Crevices should be avoided to 

provide good corrosion resistance. Implant with identified shape of each patient is recommended to 

increase the success rate of osseointegration. The fifth requirement is the proper surface treatment. 

Once the device is implanted into the bone, its surface is the part that contacts and interacts directly 

with body fluids and tissues. Surface treatment controls the nature of surface and is important to act as 

a method of improving biocompatibility. 

Nowadays, implantable devices intended in biomedical application as implants are mainly from 

bioceramics, biodegradable polymers and metallic material [13, 15-17]. 

2.1.1 Bioceramics 

Bioceramics are generally employed to produce biomedical devices for the functional 

replacement of hard tissues. In the use of bone tissue engineering, bioceramics can be classified as 

bioinert (e.g., zirconia and alumina), bioresorbable (e.g., tricalcium phosphate [TCP]) and bioactive 

(e.g. hydroxyapatite [HA] bioactive glasses and HA glassceramics) [18-21]. They can be found in 

many applications as orthopedic and dental restorations. In the case of orthopedics, bioceramic 

materials are mainly used in the manufacture of prostheses for joint replacements, and also in 

osteosynthesis for the reconstruction of a bone. In the case of density, ceramics are used for implants 

and for the production of artificial teeth, typically in abutment part. In 1969, the first paper about the 

use of zirconia in biomedical applications was reported [22] and then the first paper to illustrate its use 

in manufacturing of ball heads for total hip replacement was published in 1988 [23]. 

When it refers to alumina, a ceramic consists of a polycrystalline monophasic structure and 

possesses the highest oxidation state (as Al
3+

), allowing hydrodynamic stability, chemical inertness 

and corrosion resistance [24]. The hardness of alumina, which is about three times more than that of 

metallic biomaterials, makes it resistant to scratches and wear. But its flexural strength and fracture 

toughness are limited under in vivo bearing conditions. Comparing with aluminia, zirconia is a white 

crystalline oxide of zirconium (as Zr
4+

) and owes a polycrystalline biphasic structure. At high 

temperatures, pure zirconia has an unstable state of tetragonal phase, but a stable state of monoclinic 

structure at room temperature. A volume increase of the grain results from the phase transformation 

from the metastable tetragonal phase into the monoclinic phase, so ageing of zirconia can result in 

surface roughening. This phenomenon makes the zirconia ceramic with higher tenacity, density and 

flexural strength, but its hardness, stiffness and grain size are lower than alumina. These properties 

decrease the risk of breakage in orthopedic application [25]. 



Chapter 2 

9 

 

2.1.2 Biodegradable polymers 

Natural and synthetic polymers have shown promise as bone graft materials due to their plastic 

and viscoelastic properties, degradability, and biocompatibility [26]. Natural polymers like collagen, 

silk, fibrin, hyaluronic acid, chitosan, and alginate, are often used as bone grafts. The application of 

synthetic biodegradable polymers started only in 1960s [27], in spite of the fact that the biomedical 

applications of natural polymers dates back thousands of years. Due to the facility to be shaped with 

desired pore morphologic features and be designed with chemical functional groups to induce tissue 

in-growth, synthetic polymers become more and more attractive in recent years. According to the 

literatures [27-29], the most common biodegradable polymers for bone grafts include poly(glycolic 

acid) (PGA), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), poly(caprolactone) (PCL), 

poly(propylene fumarate) (PPF), polyethylene (PE), polytetrafluoro ethylene (PTFE), poly(ethylene 

glycol) (PEG) and ultra high molecular weight polyethylene (UHMWPE). As a total hip replacement 

device for instance, biodegradable polymers like PE, PTFE and UHMWPE are often used as 

acetabular cup, mating with the metallic femoral.  

However, even most of the natural and synthetic polymers are biodegradable and biocompatible, 

the interior mechanical strength always limits their use in bone repair application. In the use of 

acetabular cups made of PE, wear creating debris from PE articulating surfaces might accumulate in 

the interfacial area between tissue and implant, which further leads to loosening of the implant stem 

[17].  

2.1.3 Metallic materials 

Metallic materials as metals and alloys are widely employed to produce many types of biomedical 

devices [30]. They are used for the manufacture of surgical instruments in orthopedic and dental 

prostheses or as devices for osteosynthesis. In modern history, metals have been used as implants for 

bone fracture fixation since more than 100 years ago [31]. In the early development, corrosion and 

insufficient strength were two main problems faced by metal implants [32]. But after the introduction 

of corrosion resistant 18-8 stainless steel in 1920, it solved the corrosion problem and thereafter 

promoted the vast clinical use of metal implants.  

Up to now, hundreds of type of metals and alloys has been used and commonly been divided into 

three groups: (1) Stainless steel [33]; (2) cobalt-chromium (Co-Cr) alloys [34]; (3) titanium and its 

alloys [16, 35]. The corrosion resistance of these metallic biomaterials relies on their passivation by 

forming a thin surface oxide layer, like Cr2O3 and TiO2 [4, 36-38]. Table 2-2 shows the type of metals 

which are generally used for different implants division. 
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Table 2-2 Implants division and type of used metals [39]. 

 

The first stainless steel used for implants contains ~18 wt% Cr and ~8 wt% Ni which make it 

stronger than the steel and more resistant to corrosion. Further addition of Mo has improved its 

corrosion resistance, known as SS316. Afterwards, the carbon content has been reduced from 0.08 to 

0.03 wt% to improve its corrosion resistance to chloride solution, and named as SS316L. Co-Cr alloys 

have been utilized for many decades in making artificial joints. They are generally known for their 

excellent wear resistance. The wrought Co-Ni-Cr-Mo alloy has been used for making heavily loaded 

joints such as ankle implants. However, elements such as Ni, Cr and Co are found to be released from 

stainless steel and Co-Cr alloys in the body corrosive environment. The toxic effects of metals are 

harmful and may cause local adverse tissue reactions. In addition, both stainless steel and Cr-Co alloys 

possess much higher modulus than bone, leading to insufficient stress transfer to bone, which leads to 

bone resorption and loosening of implant after some years of implantation. Figure 2-2 shows the 

elastic modulus of biomedical alloys commonly used in biomedical implants [16]. 
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Figure 2-2 Modulus of elasticity medical alloys [16]. 

Comparing with stainless steel and Co-Cr alloys, titanium has lower modulus vary from 112 GPa 

to 48 GPa. Furthermore, the light weight of titanium, whose density is only 4.5 g/cm
3
 compared to 7.9 

g/cm
3
 for 316 stainless steel and 8.3 g/cm

3
 for cast Co-Cr-Mo alloy, also attracts attentions from 

patients and manufacturers. The early attempt to use titanium for implant fabrication can date back to 

the late 1930s, when titanium was found to be well tolerated in cat femur like stainless steel and 

vitallium (a Co-Cr alloy). Titanium can be alloyed with many elements, like iron (Fe), aluminium (Al), 

vanadium (V) and molybdenum (Mo), to produce strong, lightweight alloys as desired by the 

application of medical prostheses, orthopedic implants and dental implants. In order to get a concise 

understanding about their excellent mechanical properties, cp Ti and some of its important alloys 

employed in the field of biomedical devices are listed in Table 2-3. With these properties, the use of 

titanium and its alloys is developed quickly nowadays. 
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Table 2-3 Mechanical properties of biomedical titanium alloys [16]. 

 
*ASTM: American Society for Testing and Materials 

2.2 Corrosion and wear of metallic materials 

Metallic materials have been used for oral implants and joint replacements due to their high 

strength, ductility and toughness. There is no doubt that they are good choices for a short-term fixation 

or substitute of hard tissues. However, the electrochemical reactivity of metal components in a 

physiological environment (typically as a 37 ºC aqueous solution at pH of 7.4) restricts their life span 

as long-term biomedical implants. The applications of metallic material rely on their stability during 

continuous interactions with biochemical compositions in human body (such as dissolved gases, 

electrolytes, cells and proteins). The electrochemical potential between metal components and the 

surrounding corrosive body fluids causes localized anodic reactions. These undesired 

chemical/electrochemical reaction of metallic implants is also affected by mechanical loading, which 

is caused during the patient’s living activities [40]. The combination effects of 

chemical/electrochemical and mechanical behavior ultimately incite the degradation of implants and 

then significantly limit their service life in the human body. This part represents some basic theories of 

corrosion and wear of metallic materials, and the synergism effect of corrosion and wear defined as 

tribocorrosion in true application as biomedical implants. 

2.2.1 Corrosion 

Corrosion is defined as the reaction of a material with its surrounding environment (like seawater, 

chloride containing body fluid and so forth) with a gradual deterioration in properties of the material. 

The reaction can be chemical, electrochemical, physical or their combination [41]. Three factors are 
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essential to study the corrosion phenomenon: the material, the environment and the 

material/environment interface. Although corrosion can also occur in materials as ceramics and 

polymers, electrochemical reaction of metallic materials is well referred in the most common sense. It 

has long been thought to occur by these three means: oxidation, dissolution and electrochemical 

interaction. 

2.2.1.1 Basic processes 

Electrochemical corrosion consists of two half-cell reactions: an oxidation reaction at the anode 

and a reduction reaction at the cathode. The oxidation and reduction reactions which are occurring on 

the interface of metal/electrolyte during the electrochemical process can be schematically interpreted 

as: 

Oxidation of a metal atom M with transfer of n electrons e
-
: 

M → M
n+

 + ne
-
                           (2-1a)    or 

M + nH2O → MOn/2 + nH
+
 + ne

-
             (2-1b) 

Reduction of the oxidizing agent: 

H
+
 + 2e

- 
→ H2                            (2-2a)    or 

O2 + 2H2O + 4e
-
 → 4OH

-
                   (2-2b) 

For the passive metallic materials typically used in biomedical implants (as stainless steel, 

Co-Cr-based and Ti-based alloys), a self-protected thin oxide film is formed spontaneously, as 

explained by Eq. 2-1b. This phenomenon of metallic passivity was discovered early in 1790 by Keir, 

who found that metallic iron violently corroding in the active state in concentrated nitric acid (HNO3) 

solution suddenly turned into the passive state where no corrosion was observed. But the presence of 

an oxide film with several nanometers thick on the surface of passivated metals was not confirmed 

until 1960s [42, 43]. The passive films formed on stainless steel and Co-Cr-based alloys are stongly 

enriched in Cr2O3 oxide, whereas on Ti-based alloys is mostly composed of TiO2 [36-38]. Although 

the thickness of these passive films is only a few nanometers (normally < 10 nm) at room temperature, 

they act as a high protective barrier between the metal surface and the aggressive environment. The 

protectiveness of the passive film can be determined by the rate of ion transfer through the film, as well 

as the stability against oxide film’s dissolution. 
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2.2.1.2 Potential-pH diagram and corrosion potential 

Thermodynamics can show that an electrode reaction is reversible at the equilibrium potential, 

where no net reaction current is observed. It provides a mean to predict the equilibrium state of a 

system of metallic components. The anodic reaction of metallic corrosion occurs only in the potential 

range more positive than its equilibrium potential and the cathodic reaction of oxidant reduction occurs 

only in the potential range more negative than its equilibrium potential. Moreover, it is well known that 

metallic corrosion in an aqueous solution depends on both the electrode potential and the pH value of 

solution. In 1974, the thermodynamic prediction of metallic corrosion was firstly illustrated by 

Pourbaix in the form of a potential-pH diagram, as shown for iron corrosion in Figure 2-3. 

 

Figure 2-3 Potential-pH diagram for iron corrosion in water at room temperature [44]. 

(EO2/H2O is the equilibrium potential for the oxygen electrode reaction, EH
+

/H2 is the equilibrium potential for 

hydrogen electrode reaction, and VNHE is voltage on the normal hydrogen electrode scale.) 

The corrosion of metallic iron occurs in the potential-pH regions where ferrous ions Fe
2+

, ferric 

ions Fe
3+

 and hydroxo-ferrous ions Fe(OH)3
－
 are stable. In contrast, no iron corrosion happens in the 

region where metallic iron is thermodynamically stable at relatively negative electrode potentials. And 

in the regions where solid iron oxides Fe2O3 and Fe3O4 are stable, no iron corrosion into water is 

expected and the surface of iron substrate is covered with these solid oxide films. From Figure 2-3 

we also observe the equilibrium potentials of the hydrogen and oxygen electrode reactions. 
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Dissolved oxygen from atmosphere may result in ion corrosion in the potential range more negative 

than the oxygen equilibrium potential, EO2/H2O. While protons in aqueous solution can carry iron 

corrosion in the potential range more negative than the hydrogen equilibrium potential, EH
+

/H2. Here 

is the potential-pH diagram measured in pure water containing no foreign species. But normally, the 

presence of foreign ions in aqueous solution like chloride and sulfides [44] affects the corrosion and 

anticorrosion regions of metallic component in the potential-pH diagram. The diagram in real system 

is more complicated than in pure water. For metallic biomaterials, it is worth noting that metallic 

passivity (or passivation) is caused by the formation of an oxide film on the metal in aqueous 

solution. The passive oxide film with a thickness of several nanometers is sensitive to the 

environment where it is formed. Its formation and growth processes can be illustrated as: the oxide 

ions migrate from the solution across the film to the metal-oxide interface forming an inner oxide 

layer, while the metal ions migrate from the metal to the oxide-solution interface to react with 

adsorbed water molecules and solute anions forming an outer oxide layer. The passive oxide film on 

metal is either an insulator (for metallic iron, titanium, nickel, chromium, etc.) or a semiconductor 

(for metallic aluminium, tantalum, etc.). 

Corrosion potential is the electrode potential where a metallic electrode corrodes in aqueous 

solution. It stands in the range between the equilibrium potential of the anodic metal dissolution and 

the equilibrium potential of the cathodic oxidant reduction [42]. At the corrosion potential, the 

anodic oxidation current of the metal dissolution and the cathodic reduction current of the oxidant 

are equal. Figure 2-4 shows the schematic corrosion kinetics, which is often called as the polarization 

curves of corrosion reactions. The corrosion rate of metals is controlled by both the anodic and the 

cathodic reactions. In acidic solution, the cathodic hydrogen ion reduction controls the rate of 

metallic corrosion, while the cathodic oxygen reduction controls the corrosion rate of metals in 

neutral or basic solution.  
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Figure 2-4 Conceptual polarization curves for metallic corrosion [42]. 

(ia is the anodic reaction current, ic is the cathodic reaction current, icorr is the corrosion current, Ea is the 

equilibrium potential of the anodic reaction, Ec is the equilibrium potential of the cathodic reaction, and Ecorr is 

the corrosion potential. ) 

2.2.1.3 Special modes of corrosion in metallic implants 

Due to the corrosive environment of human body and the complicated using conditions after 

implantation, the metallic implants suffer from the risks of different modes of corrosion [45, 46].  

 Pitting corrosion: Pitting corrosion is one common type of localized corrosion, which is 

caused by local dissolution of the passive film and the formation of cavities surrounded by a 

passivated surface. In the presence of aggressive ions in body fluid, like chloride ions [47], the 

passive film on metals breaks down and makes the underlying metals naked and directly exposed 

to the aggressive environment. 

 Crevice corrosion: Crevice corrosion is another type of localized corrosion closely 

related to pitting corrosion. Preferentially, it occurs in regions on the metal surface where mass 

transfer is limited, e.g. under the deposits or in narrow crevices. In these blocked areas, surface 

can be activated by the concentration of aggressive chloride ions, the decrease of pH value and 

the consummation of oxygen [48, 49]. The anodic metal dissolution in a crevice is usually 

coupled with the cathodic oxidant reduction surrounding the crevice, where a local corrosion cell 

forms in the view of electrochemistry.  

 Galvanic corrosion: Galvanic corrosion occurs between dissimilar metals or alloys in 

direct electrical contact in a conducting corrosive environment. As a bone screw and a bone plate 

made of different types of metallic materials for instance, galvanic couple forms in the contact 
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interface of these two parts. Thereafter, an increase in corrosion is generally observed in the less 

noble alloy and a decrease or suppression of corrosion in the nobler alloy [50, 51]. 

 Fretting corrosion and/or wear-corrosion: Fretting corrosion and/or wear-corrosion are in 

the form of a damage occurring at the interface of two contacting surfaces under continuous 

oscillating rubbing or cyclic loading[52, 53]. Mechanical damage of the passive oxide film 

resulting from fretting and/or wear can significantly change the corrosion behavior of metallic 

materials. Conversely, the corrosion products (acting as the three-body for example) may alter 

the interface state of the contacting surfaces and then affect the fretting or wear mechanisms. The 

synergism between mechanical friction and chemical/electrochemical corrosion always leads to 

an acceleration of material degradation [54-56]. 

Pitting corrosion was usually found on stainless steel implant materials, resulting in extensive 

damage and causing release of significant amounts of metal ions. But Ti and Ti-based alloys show very 

high pitting potentials even in chloride-containing solutions (about 10 V) [46]. Almost no pitting 

corrosion can be observed for Co-Cr alloys. In simulated physiological solutions, metastable pitting 

corrosion (taking place in the potential region of stable passivity which is below the pitting corrosion) 

can be observed in the form of current transients. Even though metastable pitting corrosion does not 

lead to a serious deterioration of the system, it still indicates that the metal is not completely stable in 

its environment. 

Stainless steel is also the most susceptible to crevice-induced localized corrosion, comparing 

with other two alloy groups (Co-Cr-based alloys and Ti-based alloys) used as biomedical implants 

[48]. For Co-Cr-based alloys, due to the very high Cr-content in the passive film, this kind of metallic 

biomaterial can be expected to be more resistant against activation on local acidification. When 

referring to Ti-based alloys, the crevice corrosion in chloride ions containing solutions can only occur 

at elevated temperatures like 70-80 ºC [57]. 

Relating to the patients’ living activities, fretting corrosion and/or wear corrosion are commonly 

observed for biomedical implants such as hip, knee and shoulder replacements. Repetitive relative 

frictional movements are induced at the interface between biomedical implants and natural bones or 

between different parts of implants in the corrosive body fluids. The generated debris (normally the 

metal oxide) accumulated at the interface may result in the loosening and failure of implantation 

surgery. An increase in the hardness of biomedical implant can lead to a reduction of fretting wear, 

stainless steel and Co-Cr alloys with high value of hardness were found to exhibit better fretting 

corrosion behavior than titanium and its alloys [58, 59].  

2.2.2 Wear 

Wear is defined [60-62] as “damage to a solid surface, generally involving progressive loss of 

material, due to relative motion between that surface and a contacting substance or substances”. It is a 
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critical issue for prostheses, implants and other medical devices. The wear mechanisms in biomedical 

implants are reported to be a function of type of used materials, contact pressures, surface hardness and 

roughness, fretting/sliding/rolling velocity, number of applying cycles, environment and lubricant.  

2.2.2.1 Classification of wear mechanisms 

In biomedical application as implants, wear can occur through five major mechanisms (as seen in 

Figure 2-5):  

 

Figure 2-5 Schematic representations of wear mechanisms in biomedical implants: (a) abrasive wear; 

(b) adhesive wear; (c) oxidative wear; (d) fretting wear; (e) fatigue wear in metal-on-metal mode (1) 

and metal-on-coating mode (2), respectively. 

 Abrasive wear: Abrasive wear [61] occurs when a hard and rough surface slides across a 

softer surface, resulting in the loss of material mainly on the later one. Two-body and three-body 

abrasive wears are the two typical abrasive wear modes. 

 Adhesive wear: Adhesive wear [63] (scoring, galling, or seizing) occurs when two solid 

surfaces in intimate contact with each other, slide under pressure. It can be found between 

surfaces during frictional contact and generally refers to unwanted displacement and attachment 

of wear debris and material compounds from one surface to another. 

 Oxidative (Corrosive) wear: Oxidative wear [64] occurs when chemical reactions 

corrode a surface by forming an oxide film, which is then removed through wear. Once the oxide 

film is dissipated, the implant metals are susceptible to the releasing particles and metal ions. 

The oxide particles mix with metal and form a debris layer in oxidative wear. This type of wear 
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depends seriously on the environment which determines the growth rate of surface oxide films. 

 Fretting wear: Fretting wear [52, 65] is the repeated cyclical rubbing between two 

surfaces, which is known as fretting, over a period of time which will remove material from one 

or both surfaces in contact. 

 Fatigue wear: Fatigue wear [66] is a process by which the surface of a material is 

weakened by cyclic loading and surface cyclic shear stresses or strains exceed the fatigue limit 

for that material. It is produced when the wear particles are detached by cyclic crack growth of 

microcracks (either superficial cracks or subsurface cracks) on the surface. 

In biomedical application as implants, two-body abrasive wear commonly occurs at the interface 

of ceramic-on-metal total hip replacement, where the harder surface (usually means ceramic part) cuts 

material away from the opposed metallic part. Three-body abrasive wear occurs when the wear debris 

(some small hard particles like oxide debris) trapped between the two rubbing surfaces. These 

particles are not constrained and free to roll and slide down a surface. Due to the average loose 

abrasive grain spends more time on rolling rather than abrading the sliding surfaces, abrasive wear 

rates during three-body abrasion are about 10 times less than during two-body abrasion [67].  

Adhesive wear is one of the major observations on surface damage and degeneration of ultra-high 

molecular weight polyethylene (UHMWPE) used in artificial joints [68, 69]. Adhesion is a function of 

the counterpart material, the relative velocity, the contact pressure and the actual contact area. Because 

of the strong affinity between metals and carbon or hydrogen, a strong adhesion leads to transfer of 

polymer to metal surface. The transfer effect can be enhanced when tests are conducted with high 

loading, but be diminished in exist of lubricant. 

Oxidative wear, also called as corrosive wear, is an indirect wear mechanism which occurs 

commonly in metallic implants. Metallic passivity can form a thin oxide film on the surface of 

biomedical metals and alloys, like stainless steel, Co-Cr-based alloys, Ti and Ti-based alloys [36-38]. 

The spall of oxidation acts as wear debris and brings in the third-body effect on the surfaces of contact 

materials.  

Fretting wear is the damage that induced under load and in the presence of repeated relative 

surface motion, like vibration. It takes place at the contact area of metal-on-metal, ceramic-on-metal, 

ceramic-on-ceramic, polymer-on-ceramic, and polymer-on-metal prostheses replacements and even 

the contact area between the natural bone and implants [65, 70]. When fretting wear happens on the 

surface of metallic implants in a corrosive environment, oxidative wear occurs consequently as the 

result of passivation/depassivation and repassivation. 

Fatigue wear has been identified as one of the major problems associated with implant failure in 

orthopedic applications like hip joint prostheses [66, 71, 72]. Surface fatigue is observed in metallic, 
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polymeric and ceramic implant materials. It is influenced by a variety of factors, such as temperature, 

surface finish, metallurgical microstructure, residual stresses, size and distribution of internal defects, 

etc. 

We should recognize that these corrosion modes and wear mechanism don’t exist alone but take 

place consequently or simultaneously in biomedical application as implants. In order to know 

precisely the degradation of biomaterials, one new research area combining multidisciplinary 

approaches in tribology and corrosion domains, defined as tribocorrosion, is developed in recent 

decades [37, 38, 54, 73-83]. 

2.2.3 Tribocorrosion 

Tribocorrosion is a material degradation process due to the combined effect of corrosion and wear 

[84]. It is defined [73] as the study of the influence of chemical, electrochemical and/or biological 

environmental factors on the friction and wear behavior of surfaces of materials in mechanical contact 

with each other, and undergoing a relative motion to each other. Both the separated knowledge of the 

tribological behavior in the absence of any aggressive media, and the separated knowledge of the 

electrochemical behavior in the absence of any mechanical impacts are not sufficient to derive the 

tribocorrosion behavior of a material couple system [85].  

In biomedical application as implants, friction between two components or the component and 

the natural bone may modify the sensitivity of metallic biomaterials to corrosion, and conversely, 

metallic corrosion may affect the friction between two moving contacts by changing the surface state. 

Normally, the synergism between mechanical friction and electrochemical corrosion leads to an 

acceleration of the tribo-chemical degradation of the material [86]. When it concerns to the factors 

affecting tribocorrosion process and mechanism, three considerations are listed as: (1) the properties 

of the contacting materials, (2) the mechanics of the tribological contact, and (3) the physiochemical 

properties of the solution.  

In a separated tribological test, some macroscopic quantities are measured conventionally as: 

the coefficient of friction based on the friction force recorded in situ; the wear rate determined ex situ 

from a loss of material on one or both contacting materials (the loss results from the formation and 

escape of debris by mechanical interactions); the contact temperature measured in situ due to the 

conversion of mechanical energy to heat; the vibrations of the contacting parts and the noise 

eventually emitted during the test. Referring to the tribocorrosion test, complementary in situ 

measurements [86-89] like the electrochemical potential of the contacting surfaces immersed in a 

corrosive electrolyte, and/or in situ measurement of the corrosion current can be performed during 

the relative motion of contacting parts. To simulate the patients’ living activities, this motion is either 

a continuous one or an intermittent one, and moving mode is either a unidirectional one (sliding) 

with different circumferences or a reciprocating one (fretting) with different oscillation amplitudes. 
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Figure 2-6 presents the influencing factors on tribocorrosion in the case of a sliding contact under 

electrochemical control conditions.  

 

Figure 2-6 Factors influencing the tribocorrosion [84]. 

Materials’ properties like hardness, ductility and yield strength, determine the wear resistance 

and the existence of a surface oxide film provides good corrosion resistance for passivated metals. 

The microstructure of materials like phase distribution, grain size and orientation, dislocation density 

and so forth are critical for the mechanical behavior. The topography and chemical composition of 

the contacting surfaces like the roughness, the formation of plastically deformed surface layers, the 

growth and mechanical properties of oxide films, etc. also have effects on the tribocorrosion 

behavior of tested materials. 

Mechanical/Operational loading forces, motion velocity and the type of contact (sliding or 

fretting) determine the rate of trbocorrosion for a given system. The shape and size of contact bodies 

determine the area of contact zone and the alignment of the rubbing surfaces. While the solution 

viscosity, conductivity, pH value, temperature and so forth play important roles in tribocorrosion. In 

the case of aqueous electrolyte, the concentration of dissolved oxygen, aggressive chloride ions and 

the pH influence the reactivity of metals, which further have effect on tribocorrosion behavior. 
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Moreover, electrochemical parameters like ohmic resistance, applied potential, passive film 

growth, active dissolution, and so forth, also have influences on the tribocorrosion. The repassivation 

kinetics of metal surface activated by the destruction during sliding or fretting attracts more interests 

from eletrochemists. 

The synergistic effect of mechanical friction and electrochemical corrosion (for passivated 

metals and alloys) is schematically represented in the Figure 2-7. The fact that mechanical removal 

of a surface passive layer makes the bare material directly exposed to the aggressive electrolyte 

accelerates corrosion of that bare material; consequently, the corrosion of the bare material can be 

weakened by the re-growth of a passive film [90], known as repassivation phenomenon. Conversely, 

the solid corrosion products (like oxide debris) resulting from the mechanical removal of the passive 

layer lead to a three-body effect in tribocontact [91], and further induce abrasive wear on the bare 

material. The methodology for tribocorrosion test [92] has evolved recently, the scientists and 

engineers are trying to build up a standard system to collect and monitor the involving mechanical 

and corrosion responses. (A protocol for determination of synergism in tribocorrosion of titanium 

used in this thesis will be illustrated in Chapter 3.) 

 

Figure 2-7 Synergistic effect of corrosion on wear and vice versa: (a) Corrosion accelerated by friction; 

(b) Abrasion accelerated by corrosion products [92]. 

2.3 Titanium and its alloys as biomedical implants 

Titanium is a lustrous transition metal with an incomplete shell in its electromic structure, 

which enables it to form solid solutions with substitutional elements having a size factor within 

±20%. It was discovered in 1798 but until 1910, pure titanium was firstly produced [93]. To get a 

deep insight into its application as biomedical implants, properties of titanium, titanium oxidation, 



Chapter 2 

23 

 

corrosion-wear behavior of titanium and its alloys, and current surface modification methods to 

improve their corrosion-wear resistance are reviewed. 

2.3.1 Titanium properties 

Titanium and its alloys can be classified into three groups [94]: α type (HCP: hexagonal 

closed-packed crystalline structure) and near α type, (α + β) type, and β type (BCC: body 

centered-cubic crystalline structure) and near β type. The transforming temperature of pure titanium 

from the HCP (α-phase) to the BCC (β-phase) is 882 ºC as β-transus temperature. In this regard, 

alloying elements for titanium can be divided into two groups: α-stabilizers, such as Al, Sn, Ga, Zr, 

O, N and C; and β-stabilizers, such as V, Mo, Nb, Ta, and Cr. When α-stabilizing elements dissolve 

into the titanium matrix, they increase the phase transformation temperature, while β-stabilizing 

elements decrease it. It is known that α alloys exhibit superior corrosion resistance, and β alloys 

exhibit higher strength, good formability and high hardenability. Moreover, β alloys also owns 

unique possibility of both low elastic modulus and superior corrosion resistance [95, 96]. Table 2-4 

shows three groups of titanium materials and the influences of some major alloying elements on 

titanium. 

Commercially pure titanium (cp Ti) and Ti-6Al-4V ELI (representing Extra Low Interstitial) are 

most commonly used titanium materials for the replacement of hard tissues in biomedical implant 

applications [3, 77, 97-104]. It is known that Ti-6Al-4V was originally developed for aerospace 

applications, its high corrosion resistance and excellent biocompatibility led its entry into biomedical 

industry. However, the long-term performance of Ti-6Al-4V has raised some concerns due to the 

release of aluminum and vanadium, which are found to be associated with long-term health problems, 

such as Alzheimer disease, neuropathy and ostemomalacia [105, 106]. 
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Table 2-4 Effects of major alloying elements on titanium [94]. 

 
1:

 
room temperature; 2: high temperature. 
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2.3.2 Titanium oxidation 

Titanium is a highly reactive metal and a compact oxide layer is easily produced due to its 

strong chemical affinity to oxygen. It was investigated that an oxide layer with a thickness greater 

than 10 Å can form rapidly in less than a microsecond in atmosphere [107]. Normally, titanium 

quickly forms an oxide of 2-7 nm thickness in air or water at room temperature. This oxide layer, 

which is primarily TiO2, adheres strongly to the titanium substrate surface. The adhesion and 

adhesive strength are controlled by the oxidation temperature, the thickness of the oxide layer and 

the presence of nitrogen in oxidation process [108, 109]. Referring to the primarily formed titanium 

oxide – TiO2 on titanium materials, three crystalline structures should be discussed: anatase, brookite 

and rutile [110]. Anatase-phase TiO2 is a tetragonal crystalline system with a0 = 3.78 Å and c0 = 9.5 

Å; brookite-phase TiO2 has an orthorhombic crystalline structure with a0 = 9.17 Å, b0 = 5.43 Å and 

c0 = 5.13 Å. The third rutile-phase TiO2 is also a tetragonal structure and known as the most stable 

phase. 

When titanium materials are used as surgical implants in an aggressive environment, their 

excellent corrosion resistance is induced due to the formation of a dense, protective and strongly 

adhered film, which is called a passive film. This passivity appears on certain so-called passivating 

metals, like Fe, Cr, Zr, and Ti in the category of “transition metals”, characterized by an unfilled 

group of electrons in an inner electron shell. Therefore, the chemical properties and the interface 

chemistry are determined by the oxide layer rather than the metal itself. The potential-pH (Pourbaix) 

diagram for titanium (see Figure 2-8) shows the range where the passive oxide films form, the range 

where titanium corrodes. 
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Figure 2-8 Potential-pH (Pourbaix) diagram for the system titanium/water at 37 ºC [111]. 

According to the passivity theory, the titanium material system has both the active and passive 

surfaces simultaneously in contact with electrolytes [112], and undergoes a continuous process of 

partial dissolution and reprecipitation in the aqueous solution (see Figure 2-9). It was also found that 

calcium, phosphorous and sulfur are incorporated in the oxide layer on titanium implanted in bones 

[113]. Calcium phosphates regarded as the main composition of natural bone are precipitated on 

titanium and its alloys in simulated body fluids. The first stage of calcium phosphate formation is the 

adsorption of phosphate ions on a hydrated titanium oxide with the release of protons are 

schematically illustrated as follows [114]: 

      Ti(OH)
3+

(ox) + H2PO4
－

(aq)  ↔ Ti
4+

(ox)HPO4
2－

(ads) + H2O          (2-3) 

      Ti
4+

(ox)HPO4
2－

(ads) + OH
－

 ↔ Ti
4+

(ox)PO4
3－

(ads) +H2O             (2-4a)    or 

      Ti(OH)
3+

(ox) + HPO4
2－

(aq)  ↔ Ti
4+

(ox)PO4
3－

(ads) + H2O            (2-4b) 

where (ads), (ox) and (aq) represent adsorbed ions, ions in oxide and aqueous solution, 

respectively. Then calcium ions accumulated on the adsorbed phosphates to form calcium phosphate 

on titanium implants. The formation of calcium phosphate can promote the osseointegration of 

biomedical implants and lengthen the life span under in vivo condition. 
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Figure 2-9 Schematics of surface oxide film of titanium and film reconstruction in vivo [115]. 

2.3.3 Corrosion and tribocorrosion of titanium implants 

As mentioned above, the excellent corrosion resistance and adequate biocompatibility of 

titanium materials in biomedical application as implants is due to the simultaneous formation of a 

thin passive oxide film, mainly as TiO2. However, when titanium materials are implanted in the body 

environment, corrosion happens in contact with the aggressive body fluids containing chloride ions 

and proteins, even other foreign species [116-120] such as fluoride ion (F
-
), hydrogen peroxide 

(H2O2) and lactic acid. 

The F
-
 content of commercially fluoridated toothpastes or mouthrinses is known to be corrosive 

for Ti. It was found that the degradation of titanium in fluoride containing artificial saliva is 

corresponding to the occurrence of a localized corrosion process, namely pitting corrosion. The 

fluoride ions are aggressive ions which could cause the breakdown of the protective passivation 

layer[118], which can be described as resulting from the formation of Ti oxides layer as Ti(OH)2F
+
, 

and the salts as TiOF2, TiH2, Na3Ti3F14, TiF4, [TiF6]
2-

 in the presence of HF according to the 

following reactions [116]: 

                 TiO2 + 2HF → TiOF2 + H2O             (2-5a)        or 

                 TiO2 + 4HF → TiF4 + 2H2O              (2-5b)       or 

                 Ti2O3 + 6HF → 2TiF3 + 3H2O            (2-5c) 
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Huang et al. [121] investigated the effect of fluoride concentration in the additive form of NaF 

on the corrosion behavior of Ti6Al4V alloy in acid artificial saliva (pH = 5) at 37 ºC. It was found 

that both the corrosion rate (Icorr) and the passive current density (Ipass) increased on increasing the 

NaF concentration from 0% to over 0.15%. When the concentration was increased up to 0.5%, the 

Icorr was around 70 times larger than that in the absence of NaF in the test media, and an anodic 

active polarization behavior was observed rather than an active-to-passive transition behavior. 

In orthopedic implant application, especially the total joint replacements, cyclic loading is 

inescapable as a consequence of the patients’ movements. In this case, fretting corrosion/fretting 

wear and the induced ions release or corrosion/wear debris in vivo are the main reasons of implant 

failure. It is well known that the accumulation of these wear debris can produce an adverse cellular 

response leading to inflammation, release of damaging enzymes, bone cell lysis, infection and pain, 

then implant loosening eventually ensuing [94]. 

As the original study, Miller et al. [122] studied the friction and wear properties of titanium, the 

results showed the poor wear characteristics for unalloyed Ti. Since the development of 

electrochemical measurements, in situ characterization methods are imposed to investigate the 

corrosion and tribocorrosion behavior of titanium materials in recent years [70, 123, 124]. Research 

results indicated that the pH and corrosion inhibitors influenced the tribocorrosion behavior of pure 

Ti under fretting [125]. The lowering in open circuit potential (OCP) resulted during tribocorrosion 

test was considered as a mixed potential of unworn and worn surfaces. The higher anodic current 

measured with sliding than the anodic current measured without sliding was due to more dissolution 

of titanium in anodic potential range under sliding condition [124]. Comparing with pure titanium, 

alloying elements like Al and V in the titanium biomaterial reduced the active and passive 

dissolution, but no effect of the mechanical properties was found on the tribocorrosion response and 

wear volumes. The presence of bovine serum albumin (BSA) had negligible influence on the 

corrosion behavior of titanium alloys, and had only a small effect on the mechanical detachment of 

particles in the continuous sliding tests [123]. The containing of F
-
 in artificial saliva decreased the 

OCP under sliding conditions, increased the wear weight loss of cp titanium with the increase of F
-
 

concentration [116]. 

2.3.4 Surface modifications 

From above we know that titanium materials are with poor wear resistant, and their corrosion 

resistance loose in some cases. Further considered the bio-inert property of titanium materials, which 

causes a long osseointegration process as implant applications, surface modifications have been 

widely applied to improve the mechanical, chemical, and biological properties such as wear 

resistance, corrosion resistance, biocompatibility of titanium and its alloys, aiming to reduce the 

costs and improve the longevity after implantation inside the bones. Several main methods are 

reviewed in this section, concerning to the corrosion resistance, wear resistance and biocompatibility 
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of titanium materials with surface modifications. 

2.3.4.1 Ion implantation 

Ion implantation is a material engineering process by which ions of a material are accelerated in 

an electrical field and impacted into a solid. The ions alter the elemental composition of the target, 

since the ions acting as foreign element stop and stay in the target. The physical, chemical or 

electrical properties of the target solid are then changed after ion implantation. 

Thin-film layer of titanium nitride (TiN) are of great interest in the range of biomedical 

application, due to its desired mechanical (extreme hardness), thermal (high melting point), chemical 

(high corrosion resistance) properties [126]. Fernandes et al. investigated the tribocorrosion behavior 

of plasma nitrided Ti-6Al-4V alloy in a 0.9 wt.% NaCl electrolyte with in situ electrochemical 

measurements like OCP and electrochemical impedance spectroscopy (EIS) [127]. The results 

clearly showed that nitridation leads to Ti2N layer on Ti-6Al-4V surface, which resulted in hardness 

enhancement. The samples after nitridation at 700 ºC (thickness of 0.7 μm) owned higher wear and 

corrosion resistance than at 600 ºC (thickness of 0.25 μm), indicating that the layer thickness plays a 

critical role in tribocorrosion. Hanawa et al. [128] studied the in vivo early bone formation around 

calcium ion (Ca
2+

)-implanted titanium and found the treated titanium was superior to untreated 

titanium for bone conduction. In their study, calcium ions were implanted into one side of titanium 

plates at 10
17

 ions/cm
2
. After ion implantation, the Ca

2+
-treated titanium was surgically implanted 

into rat tibia for 2, 8, and 18 days. The results showed that even at implantation time of 2 days, a 

larger amount of new bone was formed on the Ca
2+

-treated side and part of the bone made contact 

with this Ca
2+

-treated surface. But for the untreated side, bone formation was delayed and the bone 

did not make contact with the surface at 2 days.  

2.3.4.2 Chemical treatment 

Due to the simplicity, cost effectiveness, bone bonding ability and being applicable to implants 

with complicated shapes, surface modification of titanium materials by chemical treatment attracted 

many attentions in recent years. In chemical treatment, the most commonly used reagents for 

titanium biomaterials are sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) solutions [129]. 

Tamilselvi et al. found that chemically treated Ti with NaOH produced sodium-titanate gel 

layer, which induced the formation of a dense and uniform bone like apatite layer after immersion in 

simulated body fluid (SBF) and then exhibited excellent corrosion resistance [130]. Pan and 

co-workers investigated the influence of an H2O2 pretreatment on the cell culture process [131]. 

They found that during the cell culture, the H2O2-treated titanium surface favors the ion 

incorporation and precipitation of the hydroxylcarbonated apatite (HCA)-like compound, which 

probably is inlaid into the oxide film. Similar phenomenon was observed by Park [132], who found 
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that a porous coating comprising of mainly hydroxyapatite formed on the H2O2-treated titanium 

substrate, while a uniformed coating comprising of amorphous calcium phosphate (APC) formed on 

the untreated titanium substrate by electrodeposition in a modified SBF solution. The increased 

surface area of titanium substrate after H2O2-treatment and the OH
-
 ions released from this modified 

surface during electrodeposition were considered as the attributions to this great difference. 

Furthermore, chemical treatment with alkali-hydrogen peroxide and subsequent heat treatment at 600 

ºC for 1 h to improve both the biocompatibility and the corrosion resistance was investigated by 

Sasikumar [133]. A nanoporous titanate gel layer with anatase phase was obtained on cp Ti and 

Ti-15Mo alloy after this two-step surface modification. After 7 days of immersion in SBF solution, 

an apatite layer formed over the gel layer and provided the highest corrosion resistance comparing 

with the untreated, alkali-hydrogen peroxide treated and alkali-hydrogen peroxide plus heat treated 

specimens. 

2.3.4.3 Thermal oxidation 

Thermal oxidation, as a surface modification method, has been successfully developed in recent 

years. It is a thermochemical process, which is usually carried out in a controlled atmosphere 

containing oxygen as well as nitrogen. To solve the poor wear resistance and the loss of corrosion 

resistance by the in vivo removal of the simultaneous formed thin passive oxide film of titanium 

biomedical implants, thermal oxidation is commonly used to form a thick oxide layer with higher 

hardness, lower electrical and ions conductivity, etc. 

In 1980s, the growth of titanium oxide overlayers by thermal oxidation of titanium was studied 

by Padma and co-workers [134]. A layered structure consisting of TiO2, Ti2O3, TiO, titanium, etc. 

from the surface to the metal-oxide interface was observed when the oxide is prepared by a thermal 

oxidation process. A model for growth of titanium oxide was proposed in their study: when a fresh 

titanium surface is exposed to an oxygen atmosphere, oxygen is absorbed in the titanium and lower 

oxides of titanium are expected to form in the first instance; with time progressing, oxygen passes 

through the initial oxide layer to reach the titanium oxide-titanium interface and forms fresh oxide; 

as it passes through the lower oxide, some of the oxygen is expected to be absorbed by the oxide 

which is then converted into a higher oxide form. The oxygen transport and the formation of oxide 

depend on the temperature and time for thermal oxidation process. With increase in either 

temperature or time of oxidation, more and more layers from the surface become rich in TiO2 of the 

rutile type. The oxide thickness increases with the increase of oxidation temperature [135]. 

Although it is well known that thermal oxidation can improve the corrosion and wear resistance 

of titanium materials, there is no one standard modification process until now. Based on the different 

experimental conditions, the structural features and corrosion resistant properties for thermal 

oxidized titanium and its alloys differ from each other. Table 2-5 summarizes some of the current 

literatures results on corrosion and tribological behavior of titanium and its alloys after thermal 
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oxidation. Recently, TiO2 nanowires, obtained by thermal oxidation under a limited supply of 

oxygen, was investigated as a means of improving cell adhesion and proliferation of human 

osteosarcoma (HOS) cells on Ti-6Al-4V substrates [136, 137]. The nanowire coated samples showed 

increased cell adhesion and proliferation compared to the non-nanostructured TiO2 and untreated 

Ti-6Al-4V samples. This research opened a new sight for thermal oxidation in the fields of material 

synthesis and biomedical applications. 

Table 2-5 Current studies on corrosion and tribological behavior of thermal oxidized titanium. 
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2.3.4.4 Bioactive coating 

The accurate metal analysis of bone and tooth specimens [148] showed that human bone 

consists of 24.5 wt.% Ca, 11.5 wt.% P, 5.8 wt.% CO3
-
, 0.7 wt.% Na, 0.55 wt.% Mg, 0.03 wt.% K, 

and a number of trace elements at the ppm level, like Zn, Fe, Sr, Pb, Ba and Cu. Among them, Ca 

and P as the two main inorganic constituents of bones and teeth, the most abundant mineral in human 

hard tissues is a basic calcium phosphate idealized as hydroxyapatite (HA, Ca10(PO4)6(OH)2). Other 

calcium phosphates (CaP), such as brushite (DCPD: dicalcium phosphate dihydrate, CaHPO4·2H2O), 

octacalcium phosphate, Ca8H2(PO4)6·5H2O, whitlockite (β-TCP: β-tricalcium phosphate, Ca3(PO4)2), 

CPPD: calcium pyrophosphate dehydrate, Ca2P2O7, and ACP: amorphous calcium phosphates have 

been identified with or without association with apatite [149].  

In the field of biomedical implants, how to enhance the surface biocompatible and 

osseoconductive properties is then closely related to the surface modification of implants with CaP 

bioactive coatings. It is well demonstrated that CaP bioactive coatings enhance the cellular adhesion, 

proliferation and differentiation to promote bone regeneration. The osseoconductive processes 

occurring at the interface of biomaterials with CaP coating and natural bone after implantation into a 

living system are schematically represented in Figure 2-10. Partial dissolution of the CaP coating 

happens when the local pH value decreases. Subsequently, the released Ca
2+

 and PO4
3-

 ions 

reprecipitate and incorporate into apatite crystals with the collagen matrix (organic component in 

bone). The increased concentrations of Ca
2+

 and PO4
3- 

simulate chemotaxis and promote the 

osseointegration of biomedical implants and natural bones. Several commonly used CaP phases with 

Ca/P ratio are summarized in Table 2-6, comparing with that of natural bone. 
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Figure 2-10 Schematic representation of osteoconduction induced CaP coating [150]. 

 

Table 2-6 Summary of the CaP phases used as bioactive coatings in orthopedic devices. 
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DCPD, exhibiting greater solubility than most other calcium phosphate phases, has been used in 

recent investigations as an inexpensive and relatively easy CaP to deposit on to a given metallic 

substrate. It is stable in the range of pH lower than 5, but with the increase of OH
-
 ions, DCPD starts 

to act as a precursor to the more stable phase, like TCP and HA [151, 152]. As an electrochemical 

deposition process for instance, the formations of DCPD, TCP and HA can be illustrated as 

followings [153, 154]: 

                    H2O + 2e
-
 → H2 + 2OH

-
                     (2-6a)      or 

O2 + 2H2O + 4e
-
 → 4OH

-
                     (2-6b) 

2H2PO4
-
 + 2e

-
 → 2HPO4

2-
 + H2                (2-7a)      or 

H2PO4
-
 + OH

-
 → HPO4

2-
 + H2O               (2-7b) 

Ca
2+

 + HPO4
2-

 +·2H2O → CaHPO4·2H2O       (2-8) 

2HPO4
2-

 + 2e
-
 → 2PO4

3-
 + H2                  (2-9a)      or 

HPO4
2-

 + OH
-
 → PO4

3-
 + H2O                 (2-9b) 

3Ca
2+

 + 2PO4
3-

 → Ca3(PO4)2                   (2-10) 

10Ca
2+

 + 6 PO4
3-

 + 2OH
-
 → Ca10(PO4)6(OH)2        (2-11) 

Numerous experimental deposition processes such as dip coating [155-157], sol-gel [158], 

electrophoretic deposition [159], anodization [160, 161], micro-arc oxidation [162-164], plasma 

spraying [165-167] and electrochemical deposition [168, 169]. In order to get a desired CaP 

bioactive coating with other properties like good adhesion to the substrate, adequate mechanical 

stress loading and excellent corrosion and wear resistance, composite coatings like CaP 

bioceramic/titania [150, 168-172], carbon nanotube reinforced HA, Al2O3-TiO2 nanoparticles/HA 

bilayer [167, 173] are obtained by the combination of different processes. 

The corrosion behavior of some CaP bioactive coating modified titanium biomaterials is 

summarized in Table 2-7. 
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Table 2-7 Corrosion resistance of bioactive coating modified titanium. 

 
1
: simulated body fluid; 

2
: carbon nanotubes; 

3
: saturated calomel electrode; 

4
: nanotubular. 

Until now, a huge number of studies have concentrated on the corrosion and biocompatibility of 

CaP bioactive coating modified titanium materials as biomedical implants, but few work [170] was 

published on their tribocorrosion behavior, which is commonly investigated under mechanical 

loading conditions in an aggressive environment. It is important to study the tribocorrosion behavior 

of CaP bioactive film coated titanium as biomedical implants.
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Chapter 3: Materials and Experimental 

Methods 
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In this chapter, chemical composition/mechanical properties of Ti, thermal oxidation 

pretreatment, electrochemical deposition of CaP bioactive film, procedures to prepare CaP/TiO2 

bioceramic film and electrolyte used for in situ electrochemical characterization will be introduced. 

Electrochemical and tribological techniques used in the analysis of corrosion and tribocorrosion 

behavior will be described as well as physical characterization techniques to determine the surface 

properties. One protocol for the quantitative calculation of material loss of metals and their alloy in 

tribocorrosion test will be interpreted in the case of untreated cp Ti. For the surface modified Ti by 

thermal oxidation, electrochemical deposition of CaP bioactive film before and after sintering at high 

temperature in this work, a simplified assessment criterion in tribocorrosion test will be also proposed. 

3.1 Materials and electrolyte 

Commercially pure titanium (cp Ti grade 2) (Goodfellow Cambridge Limited, UK) samples 

were cut into square shape of 20 mm × 20 mm × 2 mm. Chemical composition of this material is 

shown in Table 3-1. Its mechanical properties are summarized in Table 3-2. All samples were polished 

with SiC emery papers until to 1200 mesh followed by an ultrasonic cleaning in acetone and then in 

ethanol for each 5 min before experiment, the final average roughness is about 0.39 μm. 

Table 3-1 Chemical composition of cp Ti grade 2. 

 

Table 3-2 Mechanical properties of cp Ti grade 2. 
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Thermal oxidation of cp Ti specimen is carried out in a furnace performing at 650 ºC for 48 h in 

air atmosphere. After thermal oxidation treatment, samples are gradually cooled to room temperature 

for about 12 h in the furnace by itself. 

Modification of cp Ti with CaP bioactive film is achieved via an electrochemical deposition 

method in a mixed solution containing 0.042 mol/L Ca(NO3)2·4H2O and 0.025 mol/L NH4H2PO4 (pH 

= 4.2). Then sintering step is carried out at 650 ºC for 6 h to get the CaP/TiO2 bioceramic film coated Ti 

samples. 

Electrochemical measurements were performed in a phosphate buffered saline (PBS) solution at 

room temperature (22 ± 1 ºC). The composition of the PBS solution with a pH value of 7.4 is displayed 

in Table 3-3. All chemicals were of analytical grade and used as purchase without any further treatment. 

De-ionized water was employed for the preparation of the PBS solution. 

Table 3-3 Chemical composition of the PBS solution. 

 

3.2 Electrochemical techniques 

3.2.1 Open circuit potential technique 

Open circuit potential (OCP, also referred to as the equilibrium potential, the rest potential, or the 

corrosion potential) is the potential of the working electrode relative to the reference electrode when no 

potential or current is being applied to the cell. OCP is a mixed potential determined by oxidation and 

reduction reactions at the surface of a metal electrode. 

The open circuit potential technique or corrosion potential monitoring technique is the simplest 

and most frequently used technique in corrosion and tribocorrosion measurements. Using a 

potentiostat or a multimeter and then a reference electrode (RE), the evolution of OCP of a working 

electrode (WE) can be monitored during immersion in the electrolyte or the corrosive environment. 

The potential is a basic indicator of the thermodynamic corrosion status. It can be used in conjunction 

with Pourbaix diagrams. OCP can provide a useful indication of active or passive behavior of 

investigated metallic material in certain system. For example, the oxide film formation on the surface 
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of a passive metal or alloy may become more protective with time, resulting of a noble shift in 

potential. Such a potential shift is thus beneficial to the reduction of corrosion rate if it does not exceed 

the pitting potential. On the contrary, a potential shift in negative direction may indicate a loss of 

passivity, see Figure 3-1. Curve (a) is the representative of a passivation process, there is an increase in 

the more noble direction. Curve (b) is characteristic of an activation process of material that undergoes 

a uniform corrosion. Curve (c) and curve (d) characterized by a potential drop on immersion indicates 

the cases where a surface evolution is required to achieve a film growth, like curve (c), or a 

depassivation phenomenon occurs after the damage of protective film for a short immersion period, 

like curve (d). 

 

Figure 3-1 OCP evolution classically recorded for passive materials (a, c) and active materials (b, d). 

Furthermore, OCP recorded during tribocorrosion tests is a mixed potential reflecting the state of 

material in the unworn area and the material in the wear track area. We must be aware that a galvanic 

coupling between worn and unworn parts of the material may take place. Consequently, the OCP value 

depends on the following parameters: [89] 

 The respective intrinsic OCP of the materials in worn and unworn areas. These two OCP 

are different because that the electrochemical state of the metallic material is disturbed by a 

wiping of the surface films that may consist of adsorbed species, passive films, or corrosion 

products in the sliding contact and by a straining of the metal. 

 The ratio of worn and unworn areas. In particular, if the extent of the worn area increases, 
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the OCP of the metallic material will shift depending on the controlling electrochemical 

processes, being either the anodic reaction (e.g., the dissolution of the metal) or the cathodic 

reaction (e.g., the reduction of hydrogen or dissolved oxygen). 

 The relative position of worn and unworn areas. As a result of the galvanic coupling, a 

current is flowing between anodic and cathodic areas. The ohmic drop may induce a 

non-uniform distribution of potential and current density over the disk surface. The measured 

OCP is thus an average value depending on that distribution. 

 The mechanism and kinetics of the anodic and cathodic reactions in worn and unworn 

areas. 

Figure 3-2 shows the typical evolution of OCP before, during, and after loading. A noble shift in 

potential before loading applied indicates the corrosion behavior of material is becoming passive with 

time. When load applied, the quick drop-down of OCP displays the disturbance of film removing, and 

then the placid stage of OCP in cathodic range shows the mixed potential of worn and unworn areas 

during tribocorrosion. When load stopped, OCP shifts in the noble direction, revealing the 

repassivation of the worn area. 

 

Figure 3-2 Variation of the OCP of a stainless steel disk immersed in 0.5 M H2SO4 before (e.g., areas 1 

and 2), during (e.g., area 3), and after loading (e.g., area 4) against a corundum ball [89]. 

3.2.2 Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) is the most sophisticated technique among the 

electrochemical methods. This technique normally used in a typical three-electrode system controlled 

by a potentiostat which applies AC voltage amplitude (±10 mV) imposed to the OCP of WE and 

measures a current response flowing through the electrode. The AC potentials and current responses 
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are then passed to a frequency response analyzer or a lock-in amplifier to calculate the impedance and 

phase shift. By varying the frequency of the AC voltage signal, a complete spectrum can be obtained. 

Explanations of EIS results are usually based on the equivalent circuit models [177].  

As known to us, electrical resistance, R is the ability of a circuit element to resist the flow of 

electrical current. Ohm’s law (Eq. 3-1) defines resistance in terms of the ratio between voltage, E, and 

current, I: 

R = E / I                      (3-1) 

while this is a well known relationship, its use is limited to only one circuit element as the ideal resistor. 

An ideal resistor has several simplifying properties as described below: 

 It follows Ohm’s law at all current and voltage levels. 

 Its resistance value is independent of frequency. 

 AC current and voltage signals through a resistor are in phase with each other. 

However, the ‘real world’ contains circuit elements that exhibit much more complex behavior. 

These elements force us to use impedance in place of the simple concept of resistance. Like resistance, 

impedance is a measure of the ability of a circuit to resist the flow of electrical current, but it is not 

limited by the simplifying properties listed above. 

Usually, electrochemical impedance is measured by applying an AC potential to an 

electrochemical cell and then measuring the current through the cell. We apply a sinusoidal potential 

excitation and the response to this potential is an AC current signal which can be analyzed as a sum of 

sinusoidal functions (a Fourier series). In order to obtain a pseudo-linear response, electrochemical 

impedance is normally measured using a small excitation signal. In a linear (or pseudo-linear) system, 

the current response to a sinusoidal potential will be a sinusoid at the same frequency but shifted in 

phase (as seen in Figure 3-3). 
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Figure 3-3 Sinusoidal current response in a linear system. 

The excitation signal, expressed as a function of time, has the form as: 

                              Et = E0 sin(ωt)              (3-2) 

where Et is the potential at time t, E0 is the amplitude of the signal, and ω is the radial frequency. The 

relationship between angular frequency ω (expressed in rad/s) and frequency f (expressed in hertz) is: 

                              ω = 2 π f                    (3-3) 

In a linear system, the response signal, It, is shifted in phase (φ) and has a different amplitude than 

I0. 

                             It = I0 sin(ωt + φ)             (3-4) 

An expression analogous to Ohm’s law allows us to calculate the impedance of the system as: 

        Z = Et / It = [E0 sin(ωt)] / [I0 sin(ωt +φ)] = Z0 [sin(ωt) / sin(ωt +φ)]    (3-5) 

The impedance is therefore expressed in terms of a magnitude, Z0, and a phase shift, φ. 

With Euler’s relationship:  

                         exp(jφ) = cosφ+ j sinφ            (3-6) 

it is possible to express the impedance as a complex function. The potential is then described as: 
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                           Et = E0 exp(jωt)                 (3-7) 

and the current response as:  

                          It = I0 exp(jωt + φ)                (3-8) 

The impedance is then represented as a complex number: 

                 Z(ω) = E / I = Z0 exp(jφ) = Z0 (cosφ + j sinφ)         (3-9) 

When the phase angle, φ, between the applied voltage and the induced current is zero, a pure 

resistance is present. When a phase angle of – 90° is measured between the voltage and current at the 

same frequency, a pure capacitance is present. Normally, angles between these values mean that a 

combination of a capacitor and resistor is present. The expression of Z(ω) is composed of a real and an 

imaginary part. Figure 3-4 shows the Nyquist plot and Bode plot with one time constant, which is 

characterized as a semicircle. The equivalent circuit is also displayed (see the insert).  

 

Figure 3-4 Nyquist plot and Bode plot with one time constant (equivalent circuit as the insert). 

On the Nyquist plot, the impedance can be represented as a vector (arrow) of length |Z|. The angle 

between this vector and the X-axis, commonly called the “phase angle”, is f (= arg Z). It should be 

noticed that the Y-axis is negative and each point on Nyquist plot is the impedance at one frequency. It 

is annotated that low frequency data are on the right side of the plot and higher frequencies are on the 

left. The limitation of Nyquist plot is it cannot show direactly what frequency was used to record each 

data point on the plot. 

Another popular presentation method for impedance test is the Bode plot, which supplements and 
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shows the frequency information in correspondence with the absolute impedance value, |Z|, and the 

phase angle, φ. 

EIS data are commonly analyzed by fitting it to an equivalent electrical circuit model. Most of the 

circuit elements in the model are common electrical elements such as resistors, capacitors, and 

inductors. To be useful, the elements in the model should have a basis in the physical electrochemistry 

of the system. The common circuit elements, the equation for their current versus voltage relationship, 

and their impedance are listed in Table 3-4. 

Table 3-4 Common eletrical elements. 

 

The mostly used elements in equivalent circuits to analyze the impedance data in this work are 

shown as following: 

 Rs: Solution resistance. It represents the solution resistance between the reference 

electrode and the working electrode. The ionic concentration, type of ions, temperature, and the 

geometry of the exposed area are the main effects on the resistance of an ionic solution. 

 Rp: Polarization resistance. It is the transition resistance between the electrodes and the 

electrolyte. Polarization of an electrode causes current to flow due to electrochemical reactions 

at the electrode surface. High Rp values indicate high corrosion resistance at the electrode 

surface. 

 Router: Resistance of the outer porous TiO2 layer for the thermal oxidized Ti samples. 

 Rinner: Resistance of the inner compact oxygen-diffused titanium layer for the thermal 

oxidized Ti samples. 

 Rfilm: Resistance of the outer porous Ca3(PO4)2 layer for the CaP/TiO2 bioceramic film 

coated Ti samples. 

 Roxide: Resistance of the inner compact CaTi21O38 and TiO2 layers for the CaP/TiO2 

bioceramic film coated Ti samples. 

 Rct: Charge transfer resistance results from the electrochemical reactions at the interface 

of electrode and electrolyte. 
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 CPE: Constant phase element. It describes a non-ideal capacitor when non-uniform 

current distribution occurs and normally models the behavior of a double layer. The impedance 

of CPE can be expressed as:  

                         ZCPE = 1 / [T (jω)
ϕ
]              (3-10) 

The corresponding equivalent circuits used in this thesis are presented in the following four 

Chapters, as presented in Figure 4-3, Figure 5-7, Figure 5-12 and Figure 7-8. 

3.2.3 Potentiodynamic polarization technique 

The potentiodynamic polarization is a technique where the potential of working electrode is 

varied at a selected rate by application of a current through the electrolyte. This technique is used as a 

standard corrosion research method and is mainly applied to measure polarization curve to provide 

significant useful information regarding the corrosion mechanism, corrosion rate and susceptibility of 

specific materials to corrosion in designated environment. 

Figure 3-5 shows a schematic anodic polarization curve in which it is possible to identify different 

regions related to the surface behavior. In the active region, as the potential is increased from the 

corrosion potential, the current increases quickly according to the normal dissolution of metal until a 

critical value (icrit). This point is defined as the beginning of stability for passive films, which occurs at 

the potential higher than the primary passive potential (Epp). Beyond this point, the current measured 

can decrease several orders of magnitude to a residual current, which we call the passive current 

density (ip). The correspondence region is defined as the passive region on potentiodynamic 

polarization curve plot. At higher potential (Etp), breakdown of the passive film might occur with an 

increase of current in anodic activity region, as metal or alloy enters the transpassive state.  

A potentiodynamic anodic polarization plot can give important information such as: 

 The ability of the material to spontaneously form a passive film on its surface in the 

particular medium. 

 The potential region over which the specimen remains passive. 

 The corrosion rate in the passive region. 

Potentiodynamic polarization technique can be also used to measure the corrosion potential (Ecorr) 

and its dependent corrosion current density (icorr) if the scan potential starts from more negative range 

where cathodic current predominates and cannot be ignored. Tafel plot (see Figure 3-6) is the 

representative method which respects the Tafel equation: 

                      η = Eapplied – Eoc = β log(i/i0)        (3-11) 
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where η is the overpotential, β is the Tafel slope, i the applied current density and i0 the exchange 

current density (the reaction rate at the reversible potential for that particular reaction). 

 

Figure 3-5 Schematic anodic polarization curve. 

 

Figure 3-6 Experimentally measured Tafel plot in acidic medium. 

The Tafel slope for the anodic and cathodic reactions occurring at open circuit may be obtained 

from the linear regions of the polarization curve, as illustrated in Figure 3-6. Once these slopes (βa and 

βc) have been established, it is possible to extrapolate back from both the anodic and cathodic regions 

to the point where the anodic and cathodic currents are equivalent. The current density at that point is 

the corrosion current density (icorr) and the potential at which it falls is the corrosion potential (Ecorr). 
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3.2.4 Potentiostatic technique 

Potentiostatic technique needs a typical three-electrode system controlled by a potentiostat, 

which applies an anodic or cathodic potential to the working electrode and measures the current 

flowing through working electrode as a function of time. In this mode, the potentiostat will accurately 

control the potential of the counter electrode (CE) against the WE so that the potential difference 

between the WE and the RE is well defined, and correspond to the value specified by the user. 

This technique can be used to directly observe anodic and cathodic behaviors of a metal surface in 

electrolytes by applying a constant potential. Furthermore, the investigation of the effect of applied 

electrochemical potential on the tribocorrosion behavior as well as the wear-corrosion synergism has 

taken attentions from relative research area in recent years (see in Figure 3-7). More information and 

further details can be found in [178, 179]. 

 

Figure 3-7 Evolution of time with the current density during sliding of a smooth alumina ball against 

CoCrMo alloy at several imposed potentials (a) -1 V, (b)-0.5 V, (c) 0.05 V, (d) 0.5 V and (e) 0.75 V vs. 

Ag/AgCl in NaCl and Bovine Serum. Normal loading force of 5 N, pH 7.4 and 37ºC [179]. 
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3.3 Characterization techniques 

The following paragraphs will summarize the techniques used for the ex situ surface 

characterization in this work. 

3.3.1 Vikers hardness test 

The Vickers hardness test method consists of indenting the test material with diamond indenter, in 

the form of a pyramid with a square base and an angle of 136° between opposite faces subjected to a 

test force of between 1 g and 100 kg. The full load is normally applied for 10 to 15 seconds. The two 

diagonals of the indentation left in the surface of the material after removal of the load are measured 

using a microscope and their average value is calculated. The area of the sloping surfaces of the 

indentation is then calculated. The Vickers hardness is the quotient obtained by dividing the kg load by 

the square mm
2
 area of indentation, as illustrated in Figure 3-8. 

 

Figure 3-8 Schematic Vickers hardness test. 

The formula to calculate is: 

HV = [2 F
*
 sin(136°/2)] / d

*2
 = 1.854 F* / d*

2
           (3-12) 
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where F
*
 is the load in kg, d

*
 is the arithmetic mean of the two diagonals (d

*
1 and d

*
2 in mm), and HV 

is the Vickers hardness. 

The Vickers hardness should be reported like 800 HV0.1, which means a Vickers hardness of 800, 

was obtained by using a 0.1 kg force. 

3.3.2 3D microtopography measurement 

Surface microtopography of specimen is measured by a 3D optical profilometry (Micromesure 

STIL, France) in this work (see Figure 3-9). It is a measuring instrument used to measure surface’s 

profile by a non-contact method. The evaluation of the initial surface roughness for each specimen is 

obtained by taking the mean value of five squares of 1000 μm × 1000 μm (step of measurement of 1 

μm and cadency frequency of 300 Hz) that are displaced in center and ± 4 mm in X-axis and Y-axis 

from the center of sample, as illustrated in Figure 3-10.  

 

Figure 3-9 3-D optical profilometry used in this work. 
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Figure 3-10 Illustration of 5 squares for the measurement of surface roughness. 

This profilometry can also be used to measure the total wear track volume of specimen after 

tribocorrosion test. In order to get a more credible value of the wear track volume, measurement is 

performed on 4 parts of the wear track (0°/90°/180°/270°), as illustrated in Figure 3-11. The dimension 

of the rectangle is keeping the width as 500 μm and the length from 1 mm to 5 mm depending on the 

track length (step of measurement of 1 μm and cadency frequency of 300 Hz). All data will be 

analyzed and evaluated by the software (MountainsMap Universal). 

 

Figure 3-11 Interpretation for the measurement of wear track volume. 

3.3.3 Scanning electron microscope 

Scanning electron microscope (SEM) is a type of electron microscope that produces images of a 

sample by scanning it with a high-energy beam of electrons. The electrons interact with atoms in the 

sample, producing various signals that contain information about the sample’s surface topography, 

composition and other properties such as the electrical conductivity. The electron beam is generally 

scanned in a raster scan pattern, and the beam’s position is combined with the detected signal to 

produce an image. Specimens can be observed in high vacuum, in low vacuum, and in wet conditions. 
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The types of signals produced by SEM include secondary electrons (SE), back-scattered electrons 

(BSE), characteristic X-ray, light (cathodoluminescence, CL) specimen current and transmitted 

electrons. The signals result from interactions of the electron beam with atoms at or near the surface of 

the sample. In the most common or standard detection mode, secondary electron imaging, the SEM 

can produce very high-resolution images of a sample surface, revealing details less than 1 nm in size. 

Due to the very narrow electron beam, SEM micrographs have a large depth of field yielding a 

characteristic 3-D appearance useful for understanding the surface structure of a sample. A wide range 

of magnifications is possible from about 10 times to more than 500 000 times. 

3.3.4 Energy-dispersive X-ray spectroscopy 

Energy-dispersive X-ray spectroscopy (EDS) is an analytical technique used for the elemental 

analysis or chemical characterization of some source of a sample. Its characterization capabilities are 

due in large part to the fundamental principle that each element has a unique atomic structure allowing 

unique set of peaks on its X-ray spectrum.  

To stimulate the emission of characteristic X-rays from a specimen, a high-energy beam of 

charged particles such as electrons or protons, or a beam of X-ray, is focused into the sample being 

studied. At rest, an atom within the sample contains ground state (or unexcited) electrons in discrete 

energy levels or electron shells bound to the nucleus. The incident beam may excite an electron in an 

inner shell, ejecting it from the shell while creating an electron hole where the electron was. An 

electron from an outer, higher-energy shell then fills the hole, and the difference in energy between the 

higher-energy shell and the lower-energy shell may be released in the form of an X-ray. The number 

and energy of the X-ray emitted from a specimen can be measured by an energy-dispersive 

spectrometer. As the energies of the X-rays are characteristics of the difference in energy between two 

shells, and of the atomic structure of the element from which they were emitted, this allows the 

elemental composition of the specimen to be measured. 

SEM coupled with EDS (FEI Quanta 200 FEG) is used to evaluate the morphology and chemical 

composition of each specimen in this work, shown in Figure 3-12. It is the most versatile high 

resolution low-vacuum FEG SEM, extending low-vacuum capabilities for the really challenging 

samples with special properties such as low electrical conductivity.  
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Figure 3-12 Setup of SEM coupled with EDS. 

3.3.5 X-ray diffraction 

X-ray diffraction (XRD) is a spectroscopic technique for elucidation of structural information 

relating to the crystal lattice. Because the physical properties of solid depend on atomic arrangements 

of materials, determination of the crystal structure is an indispensable part of the structural and 

chemical characterization of materials. X-ray patterns are used to establish the atomic arrangements of 

the materials for the fact that the lattice parameter, d (spacing between different planes) is of the order 

of X-ray wavelength. Further, X-ray diffraction method can be used to distinguish crystalline materials 

from noncrystalline (amorphous) materials. The structure identification is made from the X-ray 

diffraction pattern analysis and comparing it with the internationally recognized database containing 

the reference pattern from the International Center for Diffraction Data (ICDD). 

From X-ray pattern we can obtain the information as follows: 

 To judge the formation of a particular material system. 

 Unit cell structure, lattice parameters, miller indices (hkl). 

 Types of phases present in the material. 

 Estimation of crystalline/amorphous content in the sample. 

 Evaluation of the average crystalline size from the width of the peak in a particular phase 
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pattern. Large crystal size gives rise to sharp peaks, while the peak width increases with 

decreasing crystal size. 

 An analysis of structural distortion arising as a result of variation in d-spacing caused by 

the strain, thermal distortion. 

In this work, the diffraction patterns are obtained using CuKα (λ = 1.54 Å) radiation source for a 

maximum scan range from 10° to 90° at a scan rate of 0.02°/s by a X-ray Diffractometer (D2 PHASER, 

BRUCKER). 

3.4 Tribocorrosion tests 

Tribocorrosion experiments were performed in a unidirectional pin-on-disc mode by a tribometer 

(FALEX TRIBOLOGY or CSM) combined with in situ electrochemical measurements, schematic 

setup is shown in Figure 3-13 (the diameter of rotation cycle is 1 cm in this study). In order to 

investigate the influence of normal loading force on tribocorrosion behavior of specimen, three 

different tribometers are used in this work. All equipments and the usage information are shown in 

Figure 3-14. It should be noticed that the rotation mode for the first tribometer (fabricated by CSM, 

Switzerland), with the smallest loading force (Fn) range from 10 mN to 1 N, is the disc rotating with a 

constant speed. The rotation mode for the other two from FALEX TRIBOLOGY (loading force range 

from 200 mN to 5 N for the second one and from 2 N to 50 N for the last one) is the pin rotating 

instead.  

 

Figure 3-13 Schematic setup for tribocorrosion test. 
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Figure 3-14 Tribocorrosion setup with three different tribometers, loading force range is (I) from 10 

mN to 1 N, (II) from 200 mN to 5 N, and (III) from 2 N to 50 N, respectively. 

The selection of loading force is based on a principle, which is to generate a maximum Hertzian 

contact pressure smaller than the yield strength of cp Ti (275 MPa) to avoid plastic deformation. For 

the cp Ti sample, we consider it as a sphere whose radius is intinity after polishing. According to the 

Hertzian contact theory where contact happens between two spheres, the calculation of maximum 

contact pressure (Pmax) and average contact pressure (Pm) can be illustrated as follows: 

Pmax = 3Fn / (2πa
2
)           (3-13) 

Pm = Fn / (πa
2
)              (3-14) 
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where a is the radius of the Hertzian static contact area: 

a
3
 = 3FnR

*
 / (4E

*
)         (3-15) 

with Fn the applied normal load, R
*
 the radius of the tip of the curved counterbody, and E

*
 the 

equivalent elastic modulus given by: 

1 / E
*
 = (1- v1

2) / E
*
1 + (1- v2

2) / E
*

2    (3-16) 

with v1 and v2 the Poisson’s ratios, and E
*

1 and E
*

2 the elastic moduli of the cp Ti sample and 

zirconia pin, respectively. 

The evolution of maximum and average pressures between ZrO2 pin with an effective radius of 10 

cm and cp Ti are presented in Figure 3-15, from which it can be deduced that loading forces less than 

20 N are reasonable in this work.  

 

Figure 3-15 Evolution of maximum and average pressures as a function of Fn for cp Ti. 

Electrochemical measurements are performed before, during and after unidirectional sliding 

tests. As working electrode, specimen is fixed in an integrated electrochemical cell (three-electrode 

setup), a platinized titanium gauze was used as counter electrode and a Ag/AgCl (saturated KCl 

solution) as reference electrode (+ 197 mV vs. Standard Hydrogen Electrode, SHE). All potentials 

are given with respect to Ag/AgCl reference electrode. The electrochemical measurements are done 

using a Solartron 1287 Electrochemical Interface and a Solartron 1255 Frequency Response 
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Analyzer controlled by a PC running Corrware and Zplot software. Further data analysis was carried 

out by Cview and ZView softwares from Scribner Associates, Inc. 

In the part of tribocorrosion behavior of cp Ti, two types of sliding tests are performed, namely 

continuous and intermittent unidirectional sliding tests to identify the depassivation/repassivation 

phenomena during sliding pause periods and their effects on tribocorrosion behavior of cp Ti. During 

continuous unidirectional sliding tests, the pin rotates permanently with a constant rate as one cycle 

in trot during the whole test duration. During intermittent unidirectional sliding tests, the pin rotates 

for one cycle in trot, and then remains immobile for a given period of time, toff. The latency time, tlat, 

is defined as the time between two successive contact events at a given point in the sliding track, so 

that tlat = trot + toff. In the case of continuous unidirectional sliding tests, the latency time is equal to the 

rotation period trot since toff = 0. In the case of intermittent unidirectional sliding tests, two different 

values of toff are selected. The total number of rotation for each test is fixed at 10 000 cycles. 

3.5 Tribocorrosion protocol for cp Ti 

Over the last years, many studies have been undertaken to investigate the combined 

corrosion-wear degradation of metallic materials by electrochemical methods in different aqueous 

media. One common agreement is widespreadly recognized among the tribologists, engineers and 

scientists in this domain. That is, during tribocorrosion, the synergy between mechanical wear and 

(electro)chemical corrosion results in a phenomenon that the total loss of removed material, Wtr, 

differs from the sum of material removed seperately by wear and corrosion. The Wtr is given as a 

function of three components: 

                        Wtr = W
m

 + W
c
 + W

s
              (3-17) 

where W
m
 and W

c
 are the loss of material removed separately by the effects of mechanical wear and 

(electro)chemical corrosion, respectively. And W
s
 represents the synergistic effect between wear and 

corrosion. The W
s
 is often expressed as the sum of two terms: 

W
s
 = W

mc
 + W

cm
               (3-18) 

with W
mc

 the modification of the mechanical material loss caused by the effect of (electro)chemical 

phenomena, like formation of oxide films, changement of roughness, etc. W
cm

 the modification of the 

corrosive material loss caused by the mechanical sliding effects, like destruction of surface films, 

straining, etc. This approach is used in the current ASTM G119-09 ‘Standard guide for determination 

synergism between wear and corrosion’[180]. 

Eq. 3-17 then can be written as follows: 
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Wtr = W
m

 + W
c
 + W

mc
 + W

cm
            (3-19) 

In this work, a test protocol refered to “A methodology for the assessment of the tribocorrosion 

passivating metallic materials” [92] is designed to evaluate the contribution of each component 

mentioned above on tribocorrosion behavior of untreated cp Ti. It is based on the fact that the surface 

state of a wear evolves with time for passivating materials. Apart from the general wear for all 

tribological conditions, another evolution also occurs in the case of tribocorrosion of cp Ti. This 

evolution results from the repeated removal and subsequent re-growth of a passive surface film when a 

mechanical loading is applied. The synergism effect in tribocorrosion is thus possible to be 

investigated by controlling the frequency of the depassivation-repassivation events with respect to the 

time necessary for film growth. Descriptions for each step are illustrated below 

3.5.1 Electrochemical behavior in the absence of unidirectional sliding 

The first step of the test protocol [92] is the measurement of electrochemical comportment of cp 

Ti immersed in PBS without any sliding. Figure 3-16 shows the evolution of OCP, Eoc, and from an 

electrochemical point of view, a stable Eoc is obtained at the point where the long-term fluctuations of 

Eoc are below 60 mV/h. The time necessary to reach such a stationary OCP in PBS is an important 

characteristic of passivating process of cp Ti. In this protocol, it is called the reaction time, treact, and a 

value of 6000 s is selected for cp Ti in this work. All other time-relative parameters in this 

tribocorrosion protocol are based on treact = 6000 s. 

 

Figure 3-16 OCP evolution versus time of cp Ti in PBS solution. 
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After achieving a long-term stable OCP which indicates the passivation state of cp Ti in PBS, the 

polarization resistance value of the passive material, Rp, is measured by EIS. Based on Rp, the specific 

polarization resistance of passive material, rp, can be calculated as: 

                             rp = Rp A0             (3-20) 

where A0 is the total surface area exposed directly to the test electrolyte. 

It should be noticed that specific polarization resistance values for metallic materials of 10
3 

Ω·cm
2
 or lower indicate the presence of an active sample surface, while value around 10

5 
Ω·cm

2
 or 

higher indicate a passive sample surface [181]. This criterion is a parallel judgment with the 

fluctuation of Eoc less than 60 mV/h. 

The corrosion current density of cp Ti covered by a passive surface film, ip, is then calculated as: 

                              ip = B / rp             (3-21) 

with B a constant. For metallic materials, B normally varies between 13 mV and 35 mV, depending on 

the nature of the material and the environment. In this tribocorrosion protocol for cp Ti in PBS, a value 

of 26 mV is assumed, more details can be referred to Part 4.5 in Ref. [73]. 

3.5.2 Electrochemical behavior under continuous unidirectional sliding 

The second step for this protocol is the determination of the corrosion rate of the depassivated 

material, which means the corrosion rate of the fully active sliding track of cp Ti in PBS. In order to 

keep a part of the immersed sample surface in a full and enduring active state, the passive film should 

be continuously removed by mechanical sliding. It is necessary to select a rotation period, trot, which is 

so small compared to treact that the passive film has no time to repassivate in between two successive 

contact events. Generally, it is assumed that values of trot less than 1/10 000 of treact reach this 

requirement. In this work, the rotation period for cp Ti is thus taken as: 

trot = treact / 10 000 = 0.6 s             (3-22) 

During unidirectional continuous sliding test, the whole wear track area, Atr, is in an active state, 

so that it equals to the active area, Aact, as:  

                            Atr = Aact                     (3-23) 

After sliding tests, the total area of the sliding track, Atr, and the wear volume, Wtr, can be 

derived from profilometric measurements. Calculations are carried out by the following formula: 
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                      Atr = eL = e πd                (3-24)  

Wtr = SL = S πd              (3-25) 

with e the average track width, L the length of the sliding track, d the diameter of the sliding track as 1 

cm used in this work, and S the average area of the cross-section of the wear track, see in Figure 3-17. 

 

Figure 3-17 A presentation of the intersecting surface of wear track after sliding test. 

Despite the fact that the width of the sliding track increases gradually due to wear during sliding, 

the average track width in this work is still using the track width at the end of sliding test. If we 

consider the track depth, it is easy to find that the real active track area is larger than the product of 

track width with the length of sliding track for each contact cycle.  

In the second step, the sliding is initiated at the time of a stable Eoc is achieved. The Eoc value 

recorded during sliding is a mixed potential resulting from the galvanic coupling of two types of 

materials existing spontaneously on the surface of sample. One is the material inside the sliding track 

with an area of Atr, the other is the material outside the sliding track with an area of (A0 – Atr). It is 

assumed that the kinetics of the redox reactions taking place on each of these two areas, do not vary 

with the real potential of the sliding track. That means the ohmic drop effect is considered to be 

negligible in the galvanic coupling between the sliding track and the surrounding area. 

EIS can be used to measure the polarization resistance during continuous unidirectional sliding, 

Rps, of the total surface. As the illustration of Eoc during sliding, Rps can be considered as the 

combination of two polarization resistances, namely Ract related to the active area Aact (equals to the 

wear track area, Atr in this case), and Rp which is related to the surrounding unworn and passive area, 

(A0 – Atr). 

1/Rps = 1/Ract + 1/Rp            (3-26) 

where: 
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                           Ract = ract / Atr               (3-27) 

and: 

Rp = rp / (A0 – Atr)            (3-28) 

Because rp is known from Eq. 3-20, the specific polarization resistance of the active surface can 

be derived by substituting Eq. 3-27 and Eq. 3-28 into Eq. 3-26: 

ract = (Atr Rps rp) / [rp – Rps (A0 – Atr)]         (3-29) 

It is then possible to calculate the corrosion current density of the active material, iact, by 

substituting rp with ract in Eq. 3-21: 

iact = B / ract                (3-30) 

3.5.3 Electrochemical comportment under intermittent unidirectional sliding 

In this step, two extreme cases will be characterized for untreated cp Ti in the wear track area, i.e. 

the repassive material and the active material. When tribocorrosion occurs under intermittent 

unidirectional sliding, the surface of cp Ti undergoes subsequential events of depassivation and 

repassivation in-between two successive sliding contacts. It means that a part of the wear track surface 

at any given time repassivates progressively. Comparing with the continuous unidirectional sliding, 

where the latency time is defined as tlat1 = trot = 0.6 s, the selection of tlat in this part can be carried out 

with two different values as tlat2 = trot + toff = 6.6 s where toff = treact /1000 and tlat3 = trot + t’off = 12.6 s 

where t’off = treact /500. The re-growth of a surface film between two successive contact events with tlat2 

or tlat3 is not negligible anymore, and the wear track area, Atr, is thus separated by two distinct zones as 

follows: 

Atr = Aact + Arepass           (3-31) 

where Aact is the representative of a fraction of the sliding track from which the initial passive film has 

been removed during sliding, Arepass the remaining sliding track area covered by a repassivated film 

that is in the same state as the surface before sliding, as illustrated in Figure 3-18. 
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Figure 3-18 Schematic top view of cp Ti: (a) in the absence of sliding, (b) during continuous 

unidirectional sliding test at tlat1 of 0.6 s, and (c) during intermittent unidirectional sliding test at tlat2 of 

6.6 s or tlat3 of 12.6 s. 

It should be noticed that under continuous unidirectional sliding, the Arepass is assumed as zero 

because of the stationary electrochemical state condition by constant sliding contacts. Under 

intermittent unidirectional sliding, the active and repassivated areas in the slidng track evolve with toff 

since a gradual increase in the coverage of the repassivated area takes place between two successive 

contact events. It is assumed that the fraction of the sliding track surface covered by the repassive film 

Arepass/Atr, is constant and given by the ratio of tlat/treact: 

Arepass/Atr = tlat/treact            (3-32) 

and: 

Aact/Atr = 1 – tlat/treact           (3-33) 

As a result, for the two selected values of latency time tlat2 = 6.6 s and tlat3 = 12.6 s, the 

corresponding relationships between the repassivated area and the total wear track area are Arepass2 = 

0.0011 Atr and Arepass3 = 0.0021 Atr, and thus Aact2 = 0.9989Atr and Aact3 = 0.9979Atr, respectively. 

3.5.4 Analysis and interpretation of sliding test results 

The procedure for analyzing the tests results obtained from these three steps above is interpreted 

in the following paragraphs. For cp Ti without any pretreatment, the total volume of removed material, 

Wtr, is a sum of four components related to both types of zones on the wear track, the zone Aact in the 

active state and Arepass in the repassivated state, Eq. 3-19 thus can be expressed as: 
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Wtr = W
m

act + W
c
repass + W

m
repass + W

c
act            (3-34) 

with: 

 Wtr the total material loss in the wear track 

 W
m

act the material loss due to mechanical wear of active material in the wear track 

 W
c
repass the material loss by corrosion of repassivated material in the wear track 

 W
m

repass the material loss due to mechanical wear of repassivated material in the wear 

track 

 W
c
act the material loss by corrosion of active material in the wear track 

Here, the synergism effect is corresponding to the destruction of the passive/repassive film by a 

mechanical sliding and the material loss due to the dissolution of active metal as: 

W
s
 = W

m
repass + W

c
act        (3-35) 

Under continuous unidirectional sliding at low latency time of tlat1 = 0.6 s, the calculation of the 

corrosion current density iact1 of the active material was explained in Section 3.5.2 and can be deduced 

from EIS measurement. The volumetric material loss due to corrosion of the active surface, W
c
act1, can 

be calculated by using the appropriate Aact1 and tlat1 values (Aact1 = Aact and tlat1 = tlat = 0.6 s) in the 

following equation: 

W
c
act1 = [M/(nFd)] iact1 Aact1 N tlat1    (3-36) 

where M the molecular weight of cp Ti (47.9 g/mol), n the number of elctrons involved in the oxidation 

process (for TiO2, n = 4), d the density of cp Ti (4.508 g/cm
3
), F the Faraday constant (96 485 C/mol), 

and N the total rotation number of cycles (10 000). 

In the case of continuous sliding, there is no immobile time between two successive contacts. The 

components resulted from Arepass area can be negligible in Eq. 3-34, from which the volumetric 

material loss due to mechanical wear of active material in the wear track, W
m

act, can be calculated by 

subtracting the material loss by corrosion, W
c
act, from the total material loss in the wear track, Wtr, 

measured at the end of continuous unidirectional sliding test: 

W
m

act1 = Wtr1 – W
c
act1            (3-37) 

For the tests performed under intermittent unidirectional sliding at high latency times (tlat2 = 6.6 s 

and tlat3 = 12.6 s), the processing of the test results for calculating W
c
act is different from that under 

continuous sliding. Due to the instability of Eoc under intermittent sliding, EIS measurement cannot be 
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performed. The calculation of iact and the volumetric material loss by corrosion of active material in the 

wear track,W
c
act, cannot be determined. In this case, an alternative solution is to use the following 

equation with the appropriate Aact and tlat values [73]: 

                      W
c
act2/3 = W

c
act1 (tlat2/3/tlat1)

 (1-p)
(Aact2/3/Aact1)    (3-38) 

where W
c
act1, tlat1, and Aact1 are the components related to the continuous unidirectional sliding test at 

low latency time [see Eq. 3-36]. In this formula, p is an exponent whose value varies from one 

material-environment system to another, but always 0 < p < 1. In this tribocorrosion protocol for cp Ti 

in the PBS solution, a value of p = 0.7 is used according to previous studies on the tribocorrosion 

mechanism of passivating metals and alloys [182]. 

Under intermittent unidirectional sliding, it is assumed that the mechanical degradation on the 

active zone of the wear track Aact is the same as that under continuous sliding. The duration of latency 

time does not affect the mechanical wear resistance of the active material. The material loss due to 

mechanical wear of active material in the wear track, W
m

act, is calculated by the following equation: 

W
m

act2/3 = W
m

act1 (Aact2/3/Aact1)     (3-39) 

where W
m

act1 and Aact1 from the previous results under continuous unidirectional sliding test at low 

latency time of tlat1 = 0.6 s. 

The material loss by corrosion of repassivated material in the wear track, W
c
repass, is calculated by 

analogy to Eq. 3-36 but with the corrosion current density of initial material covered by a passive 

surface film, ip, 

W
c
repass2/3 = [M/(nFd)] ip Arepass2/3 N tlat2/3    (3-40) 

for the reason that the repassivated material in Arepass is assumed to have the same corrosion behavior 

as the initial passive material in A0. The material loss due to mechanical wear of repassivated material 

in the wear track, W
m

repass, is then calculated from Eq. 3-34 as follows: 

W
m

repass2/3 = Wtr2/3 – (W
m

act2/3 + W
c
repass2/3 + W

c
act2/3)           (3-41) 

For the interpretation of the outcome of tribocorrosion tests, the specific material loss 

components in the sliding track, w
j
i, are calculated per unit area and per cycle, based on the material 

loss and the corresponding surface area and the number of cycles: 

w
j
i = W

j
i / (NAi)              (3-42) 
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with i = act or repass and j = c or m. The value w
j
i, expressed in cm/cycle, corresponds to the thickness 

of the material removed by a corrosive or mechanical action from active or repassivated parts in the 

wear track area. 

A more detailed assessment of the tribocorrosion of a material is possible based on the ratio 

between corrosive and mechanical material losses, namely: 

Kc = (W
c
act + W

c
repass) / (W

m
act + W

m
repass)            (3-43) 

The following three cases can be distinguished based on the value of Kc: 

 when Kc > 1, corrosion is the predominant contribution to material loss. The total wear 

will be mainly controlled by the reactivity of the substrate in the test environment. 

 when Kc < 1, the material loss due to mechanical removal predominates. 

 when Kc << 1, the contribution due to the acceleration of corrosion induced by the 

destruction of the passive film, even if it is large (W
c
act >> W

c
repass), will be negligible compared 

to the total wear. 

The effect of the formation of the passive film on the mechanical wear can be evaluated based on 

the ratio between the specific mechanical wear on the active and on the repassivated part of the sliding 

track: 

Km = w
m

act / w
m

repass              (3-44) 

 when Km > 1, the passive film provides a protection to the material against mechanical 

removal. The material will be more sensitive to tribocorrosion at low latency time. 

 when Km < 1, the formation of the passive film accelerates the mechanical removal of the 

material. The sensitivity to tribocorrosion will increase with the increase of the latency time, tlat.  

3.6 Tribocorrosion protocol for cp Ti after surface modification 

After surface modification as thermal oxidation, CaP bioactive film deposit and CaP/TiO2 

bioceramic film modification, the tribocorrosion protocol for cp Ti mentioned above is not suitable to 

evaluate the tribocorrosion behavior of these modified materials in this work, for the following reasons 

(more details will be illustrated in the following chapters from Chapter 5 to Chapter 7): 

 It is only the oxide film, CaP bioactive film or CaP/TiO2 bioceramic film who directly 

contacts with the counter body (ZrO2) during the whole tribocorrosion test in pin-on-disc mode. 
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 The modifications change the surface properties of cp Ti, such as microhardness, 

corrosion resistace and wear resistance. 

 The oxide film, CaP bioactive film or CaP/TiO2 bioceramic film inhibits the passivation 

and depassivation/repassivation phenomena of cp Ti, which might be negligible if the removal of 

material is not sufficient to reach the substrate. 

To investigate the tribocorrosion behavior of surface modified cp Ti, tests are just performed in 

the absence of unidirectional sliding and under continuous unidirectional sliding.  

3.6.1 Electrochemical behavior in the absence of unidirectional sliding 

Electrochemical measurements such as OCP, EIS and potentiodynamic polarization of surface 

modified cp Ti are performed in PBS without any sliding. The evolution of OCP is measured at the 

beginning of immersion time. After a stable Eoc achieving, the polarization resistance of surfaced 

modified cp Ti with the oxide film or CaP bioactive film, R’p, is measured by EIS. Based on R’p, the 

specific polarization resistance of modified material, r’p, can be calculated as: 

                           r’p = R’p A’0             (3-45) 

with:  

R’p = Router+ Rinner         (3-46a) for thermal oxidized Ti 

R’p = Rp                  (3-46b) for CaP bioactive film coated Ti 

R’p = Rfilm+ Roxide + Rct     (3-46c) for CaP/TiO2 bioceramic film coated Ti 

where A’0 is the total surface area of surface modified cp Ti, Router and Rinner the resistance of the outer 

rutile film and the inner oxygen-diffused titanium film for thermal oxidized Ti, Rp the polarization 

resistance for CaP bioactive film coated Ti, Rfilm and Roxide the resistance of CaP bioceramic film and 

oxide film between CaP bioceramic film and cp Ti substrate. 

3.6.2 Electrochemical behavior under continuous unidirectional sliding 

The second step for this protocol is to determine the effect of continuous unidirectional sliding on 

the corrosion behavior of surface modified cp Ti. The rotation period, t’rot = 0.6 s (equals to the value of 

tlat in Section 3.5.2), is chosen in order to compare the tribocorrosion behavior under sliding with 

untreated cp Ti. If the oxide film, CaP bioactive film or CaP/TiO2 bioceramic film remains on the 

surface of modified cp Ti and not mechanical degradation occurs on cp Ti substrate during the whole 

sliding period, it can be assumed that the material loss of modified cp Ti in the wear track, W’tr, entirely 
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corresponds to the material loss due to mechanical wear of oxide film, CaP bioactive film or CaP/TiO2 

bioceramic film in the wear track area, W
m

film, as follows: 

W’tr = W
m

film                  (3-47) 

The calculation of W’tr is carried out by substituting e and S with e’ and S’ for surface modified cp 

Ti at the end of sliding test (10 000 cycles in total) if they can be detected with the testing equipments. 

The calculation is carried out as follows: 

                         A’tr = e’L = e’ πd                (3-48) 

W’tr = S’L = S’ πd              (3-49) 

In this step, the sliding is initiated at the time of a stable Eoc is achieved (|∆Eoc| < 60 mV/h). Due to 

no cp Ti substrate is destroyed during sliding, the Eoc value recorded here reflects the effect of the 

degradation of oxide film or CaP bioactive film on the oxidation and reduction reactions at the surface 

of cp Ti substrate. A cathodic shift of Eoc during sliding indicates an enhanced anodic reactivity of cp 

Ti, but an increase in the more noble direction represents a declined anodic reactivity to the contrary. 

EIS can be used to measure the polarization resistance of surface modified cp Ti during 

continuous unidirectional sliding, R’p2. For the same reason as Eq. 3-42, it is assumed that the variation 

of R’ps is the product mainly due to the mechanical degradation of oxide film, CaP bioactive film or 

CaP/TiO2 bioceramic film on the surface of modified cp Ti. And R’ps can be still used to evaluate the 

corrosion resistance property of surface modified cp Ti during continuous unidirectional sliding test as 

follows: 

R’ps = Router2+ Rinner2         (3-50a) for TO Ti 

R’ps = Rp2                   (3-50b) for CaP bioactive film coated Ti 

R’ps = Rfilm2+ Roxide2+ Rct2     (3-50c) for CaP/TiO2 bioceramic film coated Ti 

with 2 the symbol of results during sliding. 
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4.1 Introduction 

In this chapter, corrosion and tribocorrosion behavior of cp Ti was monitored and evaluated by 

electrochemical and friction measurements in the PBS solution at room temperature. Electrochemical 

measurements such as OCP, EIS, and potentiodynamic polarization were used to characterize the 

corrosion behavior of cp Ti. SEM coupled with EDS was performed to analyze the surface 

morphology and chemical compositions inside and outside the track area after sliding tests. Optical 

profilometry was used to characterize the total wear volume at the end of the sliding tests. The 

tribocorrosion behavior of cp Ti was investigated under mechanical loaded condition by using a 

pin-on-disc tribometer. Contributions of normal force and depassivation/repassivation in material loss 

of cp Ti were determined based on the tribocorrosion protocol [92]. The results showed that cp Ti was 

a high corrosion resistant metal under static condition. But this capability lost when the surface was 

destroyed by mechanical friction. The applied normal force affected the corrosion-wear degradation 

of cp Ti during continuous unidirectional sliding tests. The effect of latency time under intermittent 

unidirectional sliding had an influence on the depassivation/repassivation behavior of passive films on 

cp Ti. The high material loss after tribocorrosion tests showed the poor wear resistance property of cp 

Ti, revealing the necessity of surface modification to improve its anti-corrosion/anti-wear 

performance in biomedical applications. 

4.2 Experimental details 

The well polished and cleaned cp Ti specimens were covered with an electrically insulating 

silicone paste and then kept in air for about 1 h to dry the paste and meanwhile, a stable passive thin 

film spontaneously forms prior to the start of electrochemical measurements. The exposed geometric 

surface areas were measured separately for each sample. All tests were performed in the PBS solution 

at room temperature (22 ± 1 ºC). The composition of this electrolyte has been demonstrated in Chapter 

3 (see Table 3-3). 

Corrosion behavior of cp Ti was characterized under static condition (in the absence of sliding). 

In order to determine the passivation of cp Ti with immersion time, the evolution of OCP, Eoc, within 

24 h was performed continuously as well as the EIS measurements with a sinusoidal potential variation 

of ±10 mV to OCP at frequencies from 10 kHz down to 1.58 mHz, which were measured at different 

immersion time of 3 h, 6 h, 12 h and 24 h, respectively. Potentiodynamic polarization curve of cp Ti 

was obtained at the immersion time of 24 h. 

Tribocorrosion experiments were performed at OCP in a unidirectional pin-on-disc tribometer, 

combined with the mentioned three-electrode cell in Chapter 3. Counter bodies (ZrO2 pins) were 

degreased and positioned 5 mm eccentric from the rotation axis on top of the test samples. Two types 

of sliding tests were done, namely continuous and intermittent unidirectional sliding tests. In the case 

of continuous unidirectional sliding tests, normal loadings, Fn from 1 N to 10 N, corresponding to a 
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maximum Hertzian contact pressure from 51 MPa to 110 MPa, were used with the latency time as tlat1 

= trot = 0.6 s, to investigate the effect of Fn on corrosion-wear degradation of cp Ti. In the case of 

intermittent unidirectional sliding tests, Fn of 5 N was imposed with the latency time as tlat2 = 6.6 s 

and tlat3 = 12.6 s to identify the depassivation/repassivation phenomena during sliding pause periods 

and their effects on tribocorrosion behavior of of cp Ti. 

Under mechanical loaded conditions, OCP evolutions were performed before, during and after 

unidirectional sliding tests. For EIS, a sinusoidal potential variation of ± 10 mV was superimposed on 

OCP at frequencies from 10 kHz down to 100 mHz recorded during continuous unidirectional sliding 

tests or to 1.58 mHz recorded before and after both continuous and intermittent unidirectional sliding 

tests. The rotation rate was chosen at 100 rpm and the total number of rotation for each test was fixed 

as 10 000 cycles. The surface morphology and chemical composition inside and outside the track 

area were characterized by SEM coupled with EDS. The microhardness is detected by Vickers 

hardness test with a force of 200 gf and full loading period of 15 s. The total wear volume at the end 

of sliding was observed by optical profilometry. 

The experiments were carried out at least twice and the representative mean values were figured 

out in this work. All calculations were carried out under the guidance of the tribocorrosion protocol 

for cp Ti, as illustrated in Chapter 3. 

4.3 Corrosion behavior of cp Ti under static condition 

For the passive metallic material, the potential value during immersion time normally increased 

in the noble direction with time as the gradual formation of passive film on its surface. This 

phenomenon is well defined as passivation of metals and alloys, such as Fe, Cr, Ni, Al, Co, Mo and 

stainless steels [183, 184]. In this study, the electrochemical reactivity of cp Ti was monitored by OCP 

evolution versus time upon immersion of a fresh sample in the PBS solution under static condition, as 

seen in Figure 4-1. At the beginning of immersion, Eoc is around -0.48 V vs. Ag/AgCl and increases 

rapidly to -0.25 V vs. Ag/AgCl during the first 5 h. Then the potential increasing rate is slowing down 

and only a small variation is observed from -0.20 V vs. Ag/AgCl at immersion time of 10 h to -0.16 V 

vs. Ag/AgCl at immersion time of 24 h. As mentioned in Chapter 3, a stable Eoc is obtained where 

the long-term function of |∆Eoc| < 60 mV/h (see Section 3.5.1). Here, the potential variations indicate 

the quasi steady-state of sample surface reaching and keeping more and more stable in the PBS 

solution. This phenomenon can be further proved by the evolution of the polarization resistance, Rp, at 

the interface between cp Ti and the PBS solution at different immersion time as 3 h, 6 h, 12 h and 24 

h. Figure 4-2 shows the EIS plots for cp Ti specimens. 
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Figure 4-1 OCP evolution of cp Ti within 24 h under static condition in the PBS solution. 

The Nyquist plot (Figure 4-2a) shows the imaginary part of the impedance, -Zim, versus the real 

part, Zre, is an arc of a circle. Such an impedance plot corresponds to the equivalent circuit of 

Rs(CPE||Rp) [183], where Rs is the solution resistance, Rp the polarization resistance of cp Ti due to the 

barrier property of passive film and CPE a constant phase element (see Figure 4-3). The selection of 

this circuit was a compromise between a reasonable fitting of the experimental values and a minimum 

of components in the equivalent circuit. And the impedance of CPE is expressed by Eq. 3-10 in 

Chapter 3, as follows [185]: 

ZCPE = 1 / [T (jω)
ϕ
]                  (3-10) 

where j is the imaginary number, j
2
 = -1, ω is the angular frequency (ω = 2 πf, f being the frequency), 

T is a constant in F·cm
-2

·s
ϕ-1

 and ϕ is related to the angle of rotation purely capacitive line on the 

complex plane plots. The value of ϕ, between 0 and 1, implies the CPE of the circuit to be pure 

resistor and pure capacitor, respectively. 
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Figure 4-2 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for cp Ti in the 

PBS solution measured at immersion time of 3 h (black square), 6 h (red square), 12 h (green square) 

and 24 h (blue square). 

 

Figure 4-3 Equivalent circuit with one time constant for cp Ti in the PBS solution. 
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The calculated equivalent circuit elements are shown in Table 4-1. The specific polarization 

resistance (value per unit of area), rp, is calculated on the basis of Eq. 3-20. The values of ϕ close to 1 

at different immersion time show a near capacitive response for cp Ti in the PBS solution. This 

phenomenon is indicative of a typical thin passive oxide film on the surface of cp Ti [8]. The rp value 

of cp Ti at immersion time of 3 h is 7.69 × 10
5 
Ω·cm

2
, which is higher than 10

5 
Ω·cm

2
 confirming the 

presence of a passive surface [181, 183]. And its increment with immersion time from 3 h to 24 h 

reveals that the barrier property of thin passive film becomes stronger and stronger. It should be 

noticed that no obvious rp value change is found at immersion time from 3 h to 6 h, but it increases 

quickly after a longer immersion period, such as 12 h (rp = 1.86× 10
6 
Ω·cm

2
) and 24 h (rp = 4.70× 

10
6 
Ω·cm

2
) in the PBS solution, where the rp values are about 2.5 times and 6 times of that measured 

at immersion time of 3 h. 

Table 4-1 Parameters of the equivalent circuit for cp Ti. 

 

Potentiodynamic polarization curves of cp Ti in the PBS solution were measured from -1 V to 3V 

vs. Ag/AgCl at a scan rate of 1 mV/s after immersion for 3 h and 24 h, respectively. The results are 

plotted in Figure 4-4. For the metals and alloys, which can spontaneously form a passive film on the 

surface, the obtained potentiodynamic polarization curve is different from that of schematic anodic 

polarization curve, as shown in Figure 3-5 in Chapter 3. No active region occurs for both 

measurements, due to the excellent barrier property of cp Ti in the PBS solution. In this case, four 

domains [161] obtained from potentiodynamic polarization curves for cp Ti are defined as: (I) 

cathodic domain; (II) prepassive domain; (III) passive domain and (IV) transpassive domain. From 

Figure 4-4, it is obviously found that immersion time has an important influence on the comportment 

of prepassive domain. The end potential for prepassive domain of cp Ti extends in the noble 

direction, approximately from 0.25 V vs. Ag/AgCl after immersion for 3 h to 0.45 V vs. Ag/AgCl 

after immersion for 24 h in the PBS solution. Meanwhile, the corresponding current density in the 

anodic branch after immersion for 24 h, as 0.1 V vs. Ag/AgCl for instance, decreases about one order 

of magnitude when comparing with that of cp Ti after immersion for 3 h. It is consistent with the 

continuous increment of Eoc for cp Ti within 24 h (still in its prepassive domain) in Figure 4-1 and 

the larger rp value measured at immersion time of 24 h in Figure 4-2. In the passive domain, the 

current density keeps the same for both potentiodynamic polarization curves, revealing that the 
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passive current of cp Ti is not affected by immersion time in the PBS solution. At higher potentials (> 

2.8 V vs. Ag/AgCl), current density begins to increase and the transpassivation is induced owing to 

the dissolution of titanium oxide film in such a high potential range. Under static condition, all 

experimental results measured by these three mentioned electrochemical methods, demonstrate the 

excellent corrosion resistant capability of cp Ti in the PBS solution.  

 

Figure 4-4 Potentiodynamic polarization curves of cp Ti from -1 V to 3 V vs. Ag/AgCl at a scan rate 

of 1 mV/s after immersion for 3 h and 24 h in the PBS solution. 

4.4 Tribocorrosion behavior of cp Ti 

As illustrated in Chapter 3, the tribocorrosion behavior of cp Ti is investigated under the 

guidance of the tribocorrosion protocol for cp Ti. The influences of loading force, Fn, and latency 

time, tlat, are studied under continuous unidirectional sliding tests and intermittent unidirectional 

sliding tests, respectively. More details can be seen in Section 3.5. Under mechanical unloaded 

condition, the surface state of cp Ti becomes passive quickly (treact = 6000 s, as illustrated in Figure 

3-16, where the surface state of cp Ti is depassivated at -1.6 V vs. Ag/AgCl for 5 min previous to 

OCP measurement) in the PBS solution. In order to get a well-organized procedure for tribocorrosion 

test, the whole measurement is divided into three parts: (1) before unidirectional sliding (OCP 

evolution with immersion time of 3 h and EIS measurement at immersion time of 3 h under 

mechanical unloaded condition); (2) during continuous unidirectional sliding (OCP evolution in 40 

min and after that EIS measurement) or during intermittent unidirectional sliding (OCP evolution in 
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the whole mechanical loaded period); (3) after unidirectional sliding (OCP evolution in 3 h and after 

that EIS measurement under mechanical unloaded condition as that before sliding). 

4.4.1 Electrochemical behavior of cp Ti before unidirectional sliding test 

Figure 4-5 shows the OCP evolution curves of three different cp Ti specimens before 

unidirectional sliding. The results show that in spite of the different start potentials and end potentials, 

the evolution tendencies for these three curves are similar to raise in the noble direction. The 

difference might result from the influence of test conditions, such as the room temperature, the 

amount of dissolved oxygen and the passive state of cp Ti surface. 

 

Figure 4-5 Comparison of OCP evolution curves before unidirectional sliding tests, measured with 

three different cp Ti specimens in the PBS solution. 

Here, the red line (curve 1) is chosen as the representative and discussed as following: The 

electrochemical reactivity of cp Ti under mechanical unloaded condition was monitored by OCP 

evolution versus time upon immersion of a fresh specimen in the PBS solution for 3 h. At the 

beginning of immersion, Eoc is around -0.45 V vs. Ag/AgCl and increases to -0.26 V vs. Ag/AgCl at 

the end of OCP measurement (where the variation of potential, |∆Eoc|, is less than 60 mV/h). It 

indicates a quasi steady-state of sample surface reaching after immersion in the PBS solution for 3 h. 

The passive state can be further proved by the measurement of the polarization resistance, Rp, at the 

interface between cp Ti and the PBS solution. EIS spectra of three different cp Ti specimens are 

plotted in Figure 4-6. The corresponding equivalent circuit is still as presented in Figure 4-3. Under 
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the guidance of the tribocorrosion protocol for cp Ti in Chapter 3, the calculated equivalent circuit 

elements on the basis of Eq. 3-20 and Eq. 3-21 are then summarized in Table 4-2. 

 

 

Figure 4-6 Comparison of Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) 

for cp Ti before unidirectional sliding tests, measured with three different specimens at immersion time 

of 3 h before sliding in the PBS solution. 
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Table 4-2 Specific polarization resistance and corrosion current density of cp Ti immersed in the PBS 

solution at stable OCP under mechanically unloaded conditions. 

 

The average values of the specific polarization resistance, rp, and the corresponding corrosion 

current density, ip, in Table 4-2 demonstrate that a stable passive surface state is reached on cp Ti in the 

absence of mechanical loading. The surface of cp Ti can be considered as covered by a passive TiO2 

film and ip is linked to the dissolution of Ti through this passive film in the PBS solution. 

4.4.2 Tribocorrosion behavior of cp Ti during and after continuous 

unidirectional sliding test 

Tribocorrosion behavior of cp Ti under continuous unidirectional sliding will be discussed in this 

section. Electrochemical measurements such as OCP and EIS are imposed to characterize the 

reactivity and polarization resistance of cp Ti during sliding at different normal forces of 1 N, 2 N, 5 N 

and 10 N. When sliding test stops, OCP evolution and EIS spectra are also measured to investigate 

the repassivation ability of cp Ti under mechanical unloaded condition. 

Figure 4-7 shows the representative OCP evolutions of cp Ti during continuous unidirectional 

sliding tests. Measurements were performed at different loading forces, Fn of 1 N, 2 N, 5 N and 10 N 

with a fixed rotation rate of 100 rpm (tlat1 = trot = 0.6 s). The results indicate that although the 

potential at the start of sliding, Emax, is different from each test, the potential drop-down, ∆E = |Emax – 

Emin| (Emin represents the minimum potential during each continuous unidirectional sliding test), 

during continuous unidirectional sliding tests increases versus Fn from 1 N to 5 N and then keeps 

similar from 5 N to 10 N, as seen in Figure 4-8. At the loading force of 1 N or 2 N, OCP evolution 

during unidirectional sliding is stable in the test period of 40 min. But at the loading force of 5 N or 

10 N, the variation of OCP during sliding becomes larger after ~1500 s at Fn of 5 N and after ~1200 s 

at Fn of 10 N. 
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Figure 4-7 OCP evolution of cp Ti during continuous unidirectional sliding tests performed at 

different Fn of 1 N, 2 N, 5 N and 10 N. 

 

Figure 4-8 Potential drop-down during continuous unidirectional sliding tests versus Fn. 
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EIS measurements were carried out during continuous unidirectional sliding tests due to the more 

or less constant Eoc value. Figure 4-9 shows the representative EIS spectra of cp Ti during continuous 

unidirectional sliding test at Fn of 1 N and the fitting results with the corresponding equivalent circuit 

(inset of Figure 4-9a). In this equivalent, a polarization resistance during sliding, Rps, was obtained 

instead of the initial polarization resistance, Rp, before sliding. More details have been explained in 

Section 3.5.2. It should be noticed that Rps can be considered as the combination of two polarization 

resistances in parallel, namely Ract related to the active area Aact and Rp related to the surrounding 

unworn and passive area, (A0 – Aact), where Aact is equal to Atr [92, 183], as shown in Figure 3-18. 

 

 

Figure 4-9 Representative Nyquist plot (a), Bode impedance plot (b) and Bode phase angle plot (c) 

for cp Ti measured during continuous unidirectional sliding test at Fn of 1N in the PBS solution and 

the fitting results (red line) with the corresponding equivalent circuit as the inset of Nyquist plot. 
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At Fn of 1 N, three measurements were carried out with different cp Ti specimens. The 

measured sliding track area, Atr, calculated specific polarization resistance, ract, and corrosion current 

density, iact, related to the active area of cp Ti on the basis of equations from Eq. 3-26 to Eq. 3-30 are 

summarized in Table 4-3. 

Table 4-3 The sliding track area, specific polarization resistance and corrosion current density of cp Ti 

under continuous unidirectional sliding test at Fn of 1N. 

 

The average values of ract (1160 Ω·cm
2
) and iact (2.34 × 10

-5
 A·cm

-2
) in Table 4-3 demonstrate 

that an active surface state occurs on cp Ti under mechanical loaded condition. The formed passive 

film is destroyed by the continuously mechanical sliding of ZrO2 pin on cp Ti surface and meanwhile, 

iact is linked to the dissolution of Ti substrate through this active area in the PBS solution. 

When continuous unidirectional sliding test ends, the Eoc of cp Ti increases quickly due to the 

repassivation of thin oxide barrier film on the sliding track, as seen in Figure 4-10. After continuous 

unidirectional sliding at Fn of 1 N, the state of cp Ti surface on the sliding track returns back to 

passive under mechanical unloaded condition, resulting in a potential value of -0.2 V vs. Ag/AgCl at 

immersion time of 3 h, which is even higher than the value of -0.22 V vs. Ag/AgCl at the beginning 

of sliding in Figure 4-7. 
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Figure 4-10 OCP evolution of cp Ti after continuous unidirectional sliding test at Fn of 1 N. 

Another evidence to support this repassivation phenomenon is the specific polarization resistance, 

rp’, measured when the re-stabilization of Eoc reaches after 3 h immersion in the PBS solution from 

the end of continuous unidirectional sliding at Fn of 1 N (see Figure 4-11). The measured rp’ value of 

near 10
6
 Ω·cm

2
 was obtained. This order of magnitude of rp’ ensures the repassivative surface of cp Ti 

after continuous unidirectional sliding test. 
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Figure 4-11 Representative Nyquist plot (a), Bode impedance plot (b) and Bode phase angle plot (c) 

for cp Ti measured after 3 h immersion in the PBS solution from the end of continuous unidirectional 

sliding at Fn of 1 N and the fitting results (red line) with the corresponding equivalent circuit as the 

inset of (a). 

4.4.3 Characterization and interpretation of the wear track on cp Ti after 

continuous unidirectional sliding test 

Surface morphologies of cp Ti after continuous unidirectional sliding at different Fn from 1 N to 

10 N were obtained by SEM, as shown in Figure 4-12. The average track widths, e, are 2.21 mm at Fn 

of 1 N, 2.67 mm at Fn of 2 N, 2.78 mm at Fn of 5 N and 3.09 mm at Fn of 10 N, respectively. The 

regular pattern of grooves and a large number of attached debris inside each of the four tracks in 

Figure 4-12a-d indicate that both abrasive wear and adhesive wear took place interactively during 

continuous unidirectional sliding tests on cp Ti. The chemical compositions inside (site 1) and outside 
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(site 2) the track area obtained at Fn of 5 N were analyzed by EDS, and the results are presented in 

Figure 4-12e and 4-12f. 

 

Figure 4-12 SEM of the tracks after continuous unidirectional sliding in the PBS solution at different 

Fn of 1 N (a), 2 N (b), 5 N (c) and 10 N (d); EDS analysis of the chemical composition inside (site 1, e) 

and outside (site 2, f) the track area of (c). 
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Chemical composition analysis of site 1 shows the appearance of small amount of phosphorus (P, 

0.6 wt%, originally existing in the PBS solution) inside the track area. Combined with the high content 

of oxygen (O, 10.9 wt%), corrosion is obviously accelerated in the presence of mechanical wear. Due 

to the limitations of EDS analysis, it is impossible to identify the forms and valences of Ti, so the 

corrosion products inside the track are indistinctly considered to consist of titanium oxide, titanium 

phosphate or trace amount of cladding potassium/sodium phosphate. Chemical composition of site 2 

(O, 6.6 wt% and Ti, 93.4 wt%) reveals titanium oxide formed spontaneously when cp Ti was immersed 

in the PBS solution. This passive film inhibits the corrosive attacks and provides high corrosion 

resistance under mechanically unloaded conditions.  

Figure 4-13 shows the profile of the track and the corresponding microhardness outside/inside 

the track area after tribocorrosion test at Fn of 1 N. Comparing with the initial microhardness before 

immersion (176 ± 2 HV0.2), there is no change for the value outside the track area (175 ± 7 HV0.2). 

But for the microhardness inside the track area, it increases slightly to 233 HV0.2 due to the increase 

of the roughness in the wear track and the existence of corrosion products like titanium oxide, which 

is harder than the cp Ti substrate. 

 

 

Figure 4-13 Profile of the track (a) and mircohardness (b) of cp Ti outside (red line), inside (green 

line) the track area after tribocorrosion test at Fn of 1 N. 
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Under the guidance of tribocorrosion protocol in Chapter 3, the experimental outcomes and 

calculated two tribocorrosion components, obtained on cp Ti under continuous mechanical loaded 

condition at different Fn of 1 N, 2 N, 5 N and 10 N, are summarized in Table 4-4. The wear results 

versus normal force are plotted in Figure 4-14. All wear values are expressed in volumetric material 

loss. 

Table 4-4 Experimental outcomes and calculated two tribocorrosion components obtained on cp Ti 

under continuous mechanical loding condition at different Fn from 1 N to 10 N in the PBS solution. 

 

 

Figure 4-14 Contribution of two different tribocorrosion components to the total volumetric material 

loss inside the sliding track of cp Ti under continuous mechanical loaded condition at different Fn 

from 1 N to 10 N in the PBS solution. 
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In accordance with the track width, the calculated track area enlarges with the increase of Fn 

from 1 N to 10 N. The increases of both the material loss by corrosion of active material, W
c
act, and 

the material loss due to mechanical wear of active material, W
m

act, are also observed when the 

loading force increase, which can be mainly related to the increase of active area in the sliding track. 

For all results performed at different Fn, W
m

act keeps its dominant contribution to the total volumetric 

material loss inside the sliding track, revealing the poor wear resistant property of cp Ti. 

4.4.4 Tribocorrosion behavior of cp Ti during intermittent unidirectional 

sliding test 

From Figure 4-10, the repassivation ability of cp Ti after continuous unidirectional sliding 

occurs quickly in the PBS solution. In order to understand the effect of latency time, tlat, on the 

depassivation/repassivation behavior of passive films on cp Ti, intermittent unidirectional sliding tests 

are imposed. Such intermittent tests consist of sequences of one sliding cycle (duration of trot = 0.6 s) 

followed by a pause for a given time, toff. It can be used to analyze the periodic removal and re-growth 

of surface films, reflected by a cyclic evolution of Eoc. The immobile time, toff, is imposed immediately 

after each sliding cycle to allow the reaction of bare material in the active area with surrounding 

electrolyte, resulting in partial or full re-growth of passive film. More details can be seen in Chapter 3 

(Section 3.5.3 and Section 3.5.4). 

In the case of intermittent unidirectional sliding tests, the re-growth of a surface film in-between 

two successive contact events cannot be ignored as that in the case of continuous unidirectional sliding 

tests. The immobile time, toff was selected as treact/1000 and treact/500 in this section. Correspondently, 

the latency time, tlat = trot + toff was set as tlat2 = 6.6 s and tlat3 = 12.6 s.  

The experimental outcomes of these two intermittent unidirectional sliding tests are compared to 

the data from continuous unidirectional sliding test where toff is 0 s (as tlat1 = 0.6 s). All three tests were 

performed on cp Ti at Fn of 5 N in the PBS solution. The evolution of Eoc during continuous and 

intermittent sliding tests is shown in Figure 4-15, demonstrating the effect of latency time, tlat. 

During the studied sliding period between 1400 s and 1500 s, in the case of continuous 

unidirectional sliding tests with tlat1 of 0.6 s, the value of Eoc is stable around – 0.8 V vs. Ag/AgCl. In 

the case of intermittent unidirectional sliding tests with tlat2 of 6.6 s, Eoc drops during the on-period, 

and then rises during the off-period with a fluctuation between – 0.73 V vs. Ag/AgCl and – 0.53 V vs. 

Ag/AgCl. A similar trend is noticed at tlat3 of 12.6 s with a larger fluctuation between – 0.71 V vs. 

Ag/AgCl and – 0.46 V vs. Ag/AgCl. These fluctuations of Eoc indicate the capacity of cp Ti to reform 

its surface passive film inside the sliding track in-between successive sliding contacts when immersed 

in the PBS solution. This self-healing property increases with prolonging tlat from 6.6 s to 12.6 s by 

observing the higher E’min (the minimum value of Eoc during intermittent unidirectional sliding) for 

the blue line measured at tlat3 = 12.6 s.  
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Figure 4-15 Variation of OCP during continuous (tlat1 = 0.6 s, black line) and intermittent (tlat2 = 6.6 s, 

red line and tlat3 = 12.6 s, blue line) unidirectional sliding tests of cp Ti performed at Fn of 5 N. 

The increase of E’max (the maximum value of Eoc during intermittent unidirectional sliding) with 

prolonging tlat from 6.6 s to 12.6 s indicates that the restoration of the passive surface film inside the 

sliding track during off-time period is just partial, since the E’max (even at tlat = 12.6 s) is still below the 

stabilized Eoc (about – 0.23 V vs. Ag/AgCl) recorded before sliding happened. The full restoration of 

passive film inside the sliding track needs more time than one hour, as previously investigated Eoc 

evolution after sliding test in Figure 4-10. 

The fact that both E’min values for intermittent unidirectional sliding tests are higher than the 

value of Eoc during continuous unidirectional sliding illustrates the significant restoration ability of the 

passive film inside the sliding track during the off-time period. The repassive film is then partially 

destroyed during the intermittent unidirectional sliding on-period. The difference between E’min and 

E’max for tlat3 = 12.6 s is 0.25 V and for tlat2 = 6.6 s is 0.2 V, respectively. This comparison reveals that 

surface passive film formation happens faster at the beginning of the sliding off-period. With time 

going on, this self-healing ability decreases gradually until a full restoration of passive film inside the 

sliding track. Similar evolutions of E’min and E’max with off-time augmentation were also found in the 

case of stainless steel [183] and Al71Cu10Fe9Cr10 complex metallic alloy [184]. 
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4.4.5 Results interpretation of corrosion and mechanical wear on cp Ti after 

intermittent unidirectional sliding test 

Under the guidance of tribocorrosion protocol in Chapter 3, the experimental outcomes and 

calculated tribocorrosion components, obtained on cp Ti for continuous unidirectional sliding and 

intermittent unidirectional sliding tests at Fn of 5 N in the PBS solution, are summarized in Table 4-5. 

The wear results versus latency time are plotted in Figure 4-16. As previous results, all wear values 

are expressed in volumetric material loss. 

Table 4-5 Experimental outcomes and calculated tribocorrosion components obtained on cp Ti for 

continuous unidirectional sliding (tlat1 = 0.6 s) and intermittent unidirectional sliding (tlat2 = 6.6 s and 

tlat3 = 12.6 s) tests performed at Fn of 5 N in the PBS solution. 

 

 

Figure 4-16 Contribution of different tribocorrosion components to the total volumetric material loss 

inside the sliding track of cp Ti for continuous unidirectional sliding (tlat1 = 0.6 s) and intermittent 

unidirectional sliding (tlat2 = 6.6 s and tlat3 = 12.6 s) tests performed at Fn of 5 N in the PBS solution. 
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At Fn of 5 N, the track area and all calculated tribocorrosion components obtained on cp Ti 

enlarge with the increase of latency time. In order to well identify the interpretation of the outcomes 

of tribocorrosion tests under intermittent sliding condition, the specific material loss components 

inside the sliding track, w
j
i, are calculated per unit area and per circle, based on the Eq. 3-42. More 

detailed assessment of the tribocorrosion of cp Ti is possible based on the ratio Kc and the effect of 

the formation of the passive film on the mechanical wear can be also evaluated based on the ratio Km, 

as explained in Section 3.5.4. 

From the data in Table 4-5, the specific material loss components, the ratios Kc and Km are 

calculated and summarized in Table 4-6. 

Table 4-6 Calculated specific wear components and Kc and Km ratios from Table 5. 

 

The increase of w
c
act with tlat is linked to the increase of the corrosive wear volume on the active 

area with time. As a result of assumptions in Section 3.5.4, the value of w
m

act is constant and shows tlat 

has no effect on the mechanical wear resistance of the active material. The value of w
c
repass is 

proportional to tlat, revealing that the increase of the latency time increases the corrosion of 

repassivated material inside the wear track. Finally, the increase in the value of w
m

repass with tlat might 

be related to the decrease in the mechanical wear resistance of the passive film, which can further 

result in the abrasive wear of debris to remove more material inside the track. 

The value of Kc obtained for continuous unidirectional sliding (tlat1 = 0.6 s) test indicates that the 

contribution of mechanical material loss is dominant in total material loss of cp Ti at Fn of 5 N in the 

PBS solution. Although Kc increases from 0.0118 to 0.0225 with tlat2 = 6.6 s and tlat2 = 12.6 s, the 

contribution of corrosive material losses under intermittent mechanical loaded conditions is still 

smaller than that of mechanical material losses. The small value Km (< 1) indicates that the formation 

of the passive film accelerates the mechanical removal of cp Ti. And the sensitivity of the passive 

film to mechanical material loss is higher than that of the active bare material. Due to the constant of 

w
m

act, the decrease of Km with tlat can be explained by the increase of w
m

repass due to the decrease in the 

mechanical wear resistance of the passive film. 
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4.5 Conclusions 

The corrosion behavior of cp Ti was investigated under static condition by electrochemical 

measurements like OCP, EIS and potentiodynamic polarization. The OCP evolution and EIS results 

obtained at different immersion time in the PBS solution indicate the enhancement of passivation of 

cp Ti with immersion time. Moreover, immersion time has effect on the reactivity of cp Ti in its 

prepassive domain where OCP sites, but it doesn’t change the current densities in the cathodic and 

passive domains in this study. These results show that the corrosion resistance of cp Ti is excellent in 

the absence of mechanical loading. 

Continuous unidirectional sliding and intermittent unidirectional sliding tests were imposed to 

study the tribocorrosion behavior of cp Ti, under the guidance of the tribocorrosion protocol (as 

illustrated in Chapter 3). Electrochemical techniques like OCP and EIS combined with friction 

measurements was applied to characterize in situ the surface state before, during and after 

unidirectional sliding. OCP evolution and EIS measurement results during sliding tests show the 

degradation of passive film when mechanical loading started, resulting in the significant drop-down 

of potential and huge decrease of the specific polarization resistance. 

The quantitative analysis results based on the tribocorrosion protocol indicate that the 

contribution of mechanical material loss is dominant in the total material loss of cp Ti for both 

continuous and intermittent unidirectional tests. In the case of continuous unidirectional sliding test, 

the materials loss increases with the increase of Fn from 1 N to 10 N. In the case of intermittent 

unidirectional sliding test, the extension of tlat increases the material loss at Fn of 5 N. The formation 

of the passive film accelerates the mechanical removal of cp Ti and the sensitivity of the passive film 

to mechanical material loss is higher than that of the active bare material. 
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Chapter 5: Effect of thermal oxidation on corrosion 

and tribocorrosion behavior of cp Ti 
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5.1 Introduction 

The use of cp Ti has been limited by its poor resistance to surface degradation processes under 

mechanical loaded condition. In this chapter, thermal oxidation method is employed to improve the 

wear resistance and corrosion protective property of cp Ti during continuous unidirectional sliding 

test. An oxide layer without any spallation is obtained at 650 ºC for 48 h. The oxide layer consists of 

rutile (TiO2) and oxygen-diffused Ti (Ti/TiOx, x <2) as the predominant phases by the characterization 

of XRD. Electrochemical and friction measurements in the PBS solution indicate that the oxide layer 

with an enhanced surface microhardness provides distinguished barrier property to the corrosion and 

wear degradation of cp Ti. During continuous unidirectional sliding at Fn of 5 N, the variation of OCP 

is small and the value of polarization resistance obtained by EIS measurement decreases but still 

keeps in the order of magnitude of passive state. Optical profilometry was used to characterize the 

initial surface roughness and the total wear volume at the end of the sliding tests. SEM coupled with 

EDS was performed to analyze the initial surface morphology/chemical composition and the surface 

morphology/chemical composition inside and outside the track area after sliding tests. Results show 

that thermal oxidation is an efficient way to modify the surface of cp Ti and further to improve its 

corrosion and tribocorrosion resistance in biomedical application as implants. 

5.2 Experimental details 

The well polished and cleaned cp Ti specimens were further oxidized by using a furnace in air 

atmosphere at 650 ºC for 48 h, following by a slow cooling rate to the room temperature in the 

furnace itself. Optical profilometry was used to measure the surface topography of samples and the 

average roughness value was calculated on square regions with length of 1000 μm × 1000 μm. 

Vickers microhardness test was performed with a test force of 200 gf and full load period of 15 s. 

The phase constituents of the untreated Ti and thermal oxidized Ti (TO Ti) samples were determined 

by XRD using a Cu Kα (λ = 1.54 Å) radiation source over a scan range from 20° to 80° at a scan rate of 

0.02°/s. Surface morphology and chemical composition of the oxide film were observed by SEM 

coupled with EDS. 

Electrochemical and tribocorrosion measurements were performed at OCP in a unidirectional 

pin-on-disc tribometer, combined with a three-electrode cell in the PBS solution at room temperature 

(22 ± 1 ºC) as mentioned in Chapter 4. Under static condition, corrosion behavior of TO Ti was 

characterized. The evolution of OCP, Eoc, within 3 h was performed continuously. EIS measurements 

with a sinusoidal potential variation of ±10 mV to OCP at frequencies from 10 kHz down to 1.58 mHz 

were measured as well as the potentiodynamic polarization curves from -1 V to 3 V vs. Ag/AgCl at a 

scan rate of 1 mV/s under static condition at immersion time of 3 h and 24 h, respectively. 

Tribocorrosion experiments were performed under continuous mechanical loaded condition at Fn of 5 

N, with a rotation rate of 100 rpm. The total number of rotation for each test was fixed at 10 000 

cycles as the same value in Chapter 4. During continuous unidirectional sliding test, OCP evolution 
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was recorded following with EIS measurement at frequencies from 10 kHz down to 10 mHz. Friction 

coefficient was recorded in the whole sliding period. When sliding ended, OCP evolution was 

performed for 3 h, and EIS measurement was carried out at frequencies from 10 kHz down to 1.58 

mHz under static condition as that before sliding. The surface morphology and chemical composition 

inside the track area were characterized by SEM coupled with EDS. The topography after 

tribocorrosion test was observed by optical profilometry. 

In this chapter, untreated Ti was used as the reference material throughout the experiment. All 

experiments were repeated at least twice to ensure the reproducibility and the representative mean 

values were figured out in this work. 

5.3 Surface characterization 

The surface topographies of TO Ti prepared at 650 ºC for 48 h and untreated Ti are shown in 

Figure 5-1. Comparing with the untreated Ti, TO Ti keeps the initial polishing groove on the surface 

and the average roughness retains and only changes from the initial value of 0.39 μm to 0.40 μm 

after thermal oxidation at 650 ºC for 48 h in the furnace, as seen in Figure 5-2. The increase of 

microhardness value from 176 HV0.2 for untreated Ti to 747 HV0.2 for TO Ti indicates that thermal 

oxidation has significant influence on the mechanical property of cp Ti due to the formation of 

titanium oxides. The higher value of microhardness is one important reason that can improve the 

wear resistance of titanium and its alloys [145, 186, 187]. 
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Figure 5-1 Profiles of TO Ti prepared at 650 ºC for 48 h (a) and untreated Ti (b). 

 

Figure 5-2 Microhardness and surface roughness of TO Ti prepared at 650 ºC for 48 h and untreated 

Ti. 
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As Garcia-Alonso et al. [188] have reported, the surface of Ti-6Al-4V alloy can be fully covered 

with oxides in just one hour at 700 ºC. But considering the influence of treatment time of thermal 

oxidation on the corrosion resistance of cp Ti, Kumar et al [141] have found that thermal oxidation at 

650 ºC for 48 h is the best surface treatment among thermally oxidized samples for different 

treatment time. In this work, thermal oxidation at different temperatures for different time was also 

investigated, and the experimental results showed that TO Ti at 750 ºC for 48 h or at 650 ºC for 96 h 

results in poor adhesion of the film to cp Ti substrate, revealing the importance of optimized 

condition in thermal oxidation treatment of cp Ti. 

Figure 5-3 shows the XRD patterns of TO Ti and untreated Ti. The untreated Ti is entirely 

composed of hexagonal α-phase (denoted as “Ti”, ICDD card No. 00-005-0682). Compared with 

untreated Ti, rutile (TiO2, denoted as “R”, ICDD card No. 01-089-4920) peaks were clearly 

identified in the pattern of TO Ti sample, and the presence of oxygen-diffused Ti (TiOx) [144] as well 

as α-Ti indicated that the Cu Kα radiation could penetrate through the thick rutile layer to the cp Ti 

substrate. Thermal oxidation process in this study contains the nucleation of oxides, the formation of 

a thin oxide layer and the growth to a thick scale. Hence, the sample weight will gain after thermal 

oxidation. The weight gain value of cp Ti after TO 650 ºC for 48h is 0.595 ± 0.032 mg/cm
2
, 

confirming the adsorbance of oxygen on sample surface. 

  

Figure 5-3 XRD patterns of TO Ti prepared at 650 ºC for 48 h (red line) and untreated Ti (black 

line). 
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Surface morphology and chemical composition of TO Ti and untreated Ti were characterized by 

SEM coupled with EDS analysis, as seen in Figure 5-4. The chemical composition of TO Ti shows 

a higher oxygen containing status: O = 36.7 wt% and Ti = 63.3 wt%. The atomic ratio of O/Ti is 

1.73 (< 2.00, as the standard molar ratio in rutile), revealing the existence of oxygen-diffused Ti as 

mentioned in Figure 5-3. For untreated Ti, although it is well known that a thin passive oxide film 

(of several nanometers thick) can spontaneously form on cp Ti surface, but it is so small that cannot 

be detected in the EDS analysis. So the chemical composition of untreated Ti is only titanium as 

100 wt%. It should be also noticed that after thermal oxidation at 650 ºC for 48 h, some 

aggregations can be found on sample surface, which might result from the favorite of nucleation of 

oxides in special sites like the grain boundaries of crystallites. 

 

Figure 5-4 SEM and EDS analysis of chemical composition of the surface of TO Ti prepared at 650 

ºC for 48 h (a, c) and untreated Ti (b, d). 

5.4 Corrosion behavior of TO Ti under static condition 

The OCP evolution curves of TO Ti and untreated Ti in the PBS solution under static condition 

are shown in Figure 5-5. Like untreated Ti, OCP evolution of TO Ti also shifts in the noble direction 

but owns a much higher value of -0.08 V vs. Ag/AgCl at the beginning of immersion time. The 

potential value, Eoc raises up quickly during the first 6 minutes from -0.08 V to -0.015 V vs. Ag/AgCl 
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and then increase smoothly to 0.04 V vs. Ag/AgCl after immersion in the PBS solution for 3 h. For 

untreated Ti, Eoc raises up from -0.45 V to -0.26 V vs. Ag/AgCl after immersion for 3 h, revealing the 

stronger extent of anodic shift than TO Ti. The OCP of both TO Ti and untreated Ti in the PBS 

solution are in the TiO2 stability region of the Ti-H2O Pourbaix diagram (see Figure 2-8 [111]). 

 

Figure 5-5 OCP evolution of TO Ti prepared at 650 ºC for 48 h (red line) and untreated Ti (black line) 

in the PBS solution. 

The Nyquist plots for TO Ti and untreated Ti, measured at immersion time of 3 h and 24 h in the 

PBS solution under static condition, are shown in Figure 5-6a. The untreated Ti exhibits only a single 

semicircle in the entire frequency range, which corresponds to the equivalent circuit with one time 

constant as illustrated in Figure 5-7a (the same as Figure 4-3), where Rs is the solution resistance and 

Rp is the polarization resistance of cp Ti due to the barrier property of passive film. But TO Ti 

exhibits an irregular arc that can be divided into two semicircles: one in the high frequency range and 

another in the low frequency range. Such two semicircles can be illustrated by the equivalent circuit 

in Figure 5-7b, where Router and Rinner correspond to the resistance of the outer porous rutile layer and 

the resistance of the inner compact oxygen-diffused titanium layer [4, 189], respectively. As 

illustrated before, the use of CPE rather than a pure capacitance can be expressed by Eq. 3-10 in 

Chapter 3.  

Figure 5-6b and 5-6c show the Bode plots for TO Ti and untreated Ti after immersion for 3 h 

and 24 h in the PBS solution. From the Bode impedance plots, it is clearly observed that the specific 

polarization resistance, rp, of untreated Ti increases from 7.69 × 10
5
 Ω·cm

2
 at the immersion time of 
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3 h to 4.70 × 10
6
 Ω·cm

2
 at the immersion time of 24 h, indicating the barrier property of passive film 

on cp Ti becomes stronger. Correspondingly, the Bode phase angle plot shows a broader frequency 

range close to -85º. But for TO Ti, rp value, the sum of the router and rinner, decreases from 6.07 × 10
7 

Ω·cm
2
 measured at immersion time of 3 h to 4.08 × 10

7
 Ω·cm

2
 measured at immersion of 24 h. This 

phenomenon is due to the solution penetration though the oxide layers, which weakens the barrier 

property of oxide layers. The phase angle keeps in the entire frequency range for TO Ti, revealing the 

corrosion mechanism of TO Ti doesn’t change within 24 h immersion in the PBS solution. 

  

Figure 5-6 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for TO Ti 

prepared at 650 ºC for 48 h (red square) and untreated Ti (black square) measured at immersion time 

of 3 h and 24 h under static condition. 



Chapter 5 

101 

 

 

Figure 5-7 Equivalent circuit for untreated Ti with one time constant (a) and TO Ti prepared at 650 ºC 

for 48 h with two time constants (b) under static condition. 

All the calculated equivalent circuit elements are shown in Table 5-1. The value of ϕ-1 is closed 

to 1 for both untreated Ti and TO Ti at different immersion time, revealing a near capacitive response 

for and the outer rutile layer and untreated Ti in the PBS solution. The small value of ϕ-2, 0.44 at the 

immersion time of 3 h and 0.50 at the immersion time of 24 h for TO Ti shows the near resistive 

response for the inner oxygen-diffused titanium layer. Both the Router and Rinner values decrease with 

the increase of immersion time, which might be induced by the deterioration of layers due to the 

solution penetration. 

Figure 5-8 shows the potentiodynamic polarization curves of TO Ti and untreated Ti in the 

potential range from -1 V to 3 V vs. Ag/AgCl, measured at immersion time of 3 h and 24 h under 

static condition in the PBS solution. The corrosion potential (Ecorr) and specific passive current 

density (ipass) of the TO Ti and untreated Ti are summarized in Table 5-2. Compared with the 

untreated Ti, TO Ti exhibits a shift in Ecorr towards the noble direction and both the current density at 

Ecorr and ipass show a significant decrease at immersion time of 3 h or 24 h. With immersion time 

increase, the Ecorr and ipass of untreated Ti have almost no changes. The same tendency was found for 

the value of Ecorr of TO Ti. In spite a slight increase of ipass for TO Ti from 1.88 × 10
-8

 A·cm
-2

 at 

immersion of 3 h to 3.05 × 10
-8

 A·cm
-2

 at immersion time of 24 h in the PBS solution, it is still two 

orders of magnitude smaller than that values of untreated Ti. 
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Figure 5-8 Potentiodynamic polarization curves of untreated Ti and TO Ti from -1 V to 3 V vs. 

Ag/AgCl at a scan rate of 1 mV/s measured at immersion time of 3 h and 24 h under static condition. 

 

Table 5-2 Electrochemical data obtained from potentiodynamic polarization tests. 

 
*ipass: specific passive current density at 1 V vs. Ag/AgCl. 
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5.5 Tribocorrosion behavior of TO Ti during and after continuous 

unidirectional sliding test 

Tribocorrosion tests were performed when Eoc got stabilized after immersion for 3 h in the PBS 

solution. A loading force, Fn of 5 N is imposed to evaluate the wear-corrosion behavior of TO Ti and 

untreated Ti during continuous unidirectional sliding at a rotation rate of 100 rpm and the total 

rotation number of 10 000 cycles. The OCP evolution curves and friction coefficient curves of both 

the TO Ti and untreated Ti during sliding are shown in Figure 5-9. For untreated Ti, with the onset of 

sliding, a sudden drop from -0.22 V to -0.87 V vs. Ag/AgCl (cathodic shift of potential in the 

negative direction with respect to Eoc before sliding) is observed, revealing the change of surface 

state from passive to active inside the sliding track area of untreated Ti. During sliding test period, 

although the Eoc variation of untreated Ti is large, the Eoc value is still below -0.7 V vs. Ag/AgCl. The 

variation might result from the periodic removal and growth of corrosion debris of cp Ti. Similar 

observations were made earlier by Kumar et al. [147] for cp Ti in Ringer’s solution and by Barill et 

al. [58] for Ti-6Al-4V alloy in 0.9% NaCl. 

 

Figure 5-9 OCP evolution (a) and friction coefficient curves (b) of TO Ti prepared at 650 ºC for 48 h 

(red line) and untreated Ti (black line) during continuous unidirectional sliding tests performed at Fn 

of 5 N. 

Unlike untreated Ti, TO Ti did not exhibit many fluctuations in Eoc value during sliding. Since 

the surface is still covered with a thick oxide film, and no fluctuation in OCP is reflected if the oxide 

film haven’t been destroyed in the sliding period at Fn of 5 N and a rotation rate of 100 rpm. For TO 

Ti, the slight increase of Eoc when sliding starts and continuous increase during the whole sliding 

period might result either from the growth of a passive film on the electrode with a consequent 

decrease in anodic current or from the promotion of oxygen reduction with a consequent increase in 
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cathodic current from an electrochemical reaction point of view. With the protection of thermal 

oxidized thick film, the passive film on the surface of cp Ti substrate cannot be destroyed by the 

counter body (ZrO2) under mechanical loaded condition. In contrast, it grows continuously even 

during sliding test. The corresponding high friction coefficient fluctuation in this study provides 

supplemental evidence for this phenomenon (see Figure 5-9b). Comparing with untreated Ti, the 

friction coefficient curve for TO Ti keeps below that value of untreated Ti and its fluctuation is 

smoother than untreated Ti. These two aspects indicate that thermal oxidation of cp Ti has 

significantly improved the friction characteristics.  

When continuous unidirectional sliding motion stops, the OCP evolution curve for untreated Ti 

exhibits an anodic shift, suggesting the occurrence of repassivation of the active surface inside the 

sliding track area, and the continuous increase of Eoc for TO Ti after sliding indicates the growth of 

passive film on the cp Ti substrate, as seen in Figure 5-10. After continuous unidirectional sliding test 

for about 3 h, untreated Ti returns back to the Eoc value of -0.25 V vs. Ag/AgCl close to the initial 

potential value before sliding test (see in Figure 5-9a). Similar observation has been illustrated in the 

previous Chapter 4 after continuous unidirectional sliding test at Fn of 1 N, as seen in Figure 4-10. 

Comparing with the final potential values of these two tests, it can be found that after the same 

immersion time when sliding motion stops, Eoc in Figure 4-10 is higher than that in Figure 5-10, 

indicating that the total wear area (corresponding values can be seen in Table 4-4) has an effect on 

the recovery potential (a mixed potential of the worn and unworn areas).  

 

Figure 5-10 OCP evolution of TO Ti prepared at 650 ºC for 48 h (red line) and untreated Ti (black 

line) after continuous unidirectional sliding tests. 
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The Nyquist plots for TO Ti and untreated Ti, measured before, during and after unidirectional 

sliding at Fn of 5 N in the PBS solution, are shown in Figure 5-11a1 and 5-11a2. For TO Ti, the 

impedance comportment during and after sliding test exhibits an irregular arc in the high frequency 

region that can be divided into two semicircles like those before sliding (Figure 5-7b), but an added 

arc appears in the low frequency region shows another time constant, corresponding to the charge 

transfer resistance (Rct) and double layer capacitance (CPE3) at the interface of cp Ti substrate and 

the penetrated electrolyte. As explained in Chapter 4, the selection of equivalent circuit was a 

compromise between a reasonable fitting of the experimental values and a minimum of components in 

the equivalent circuit. So, such a complex Nyquist plot for TO Ti during and after sliding test can be 

illustrated by the equivalent circuit in Figure 5-12. The fitted parameters of the equivalent circuits for 

TO Ti before and during/after sliding test are summarized in Table 5-3. The Rct values obtained by 

the fitting results for TO Ti during and after sliding test are 1 × 10
20

 Ω toward infinity (ɷ), due to the 

lack of experimental results in the low frequency region towards 0 Hz (the actual lowest frequency is 

1.58 mHz in this study). In this case, we also use the Rp value as the sum of Router and Rinner as 

illustrated in Figure 5-7b and Table 5-1. The real rp value is no doubt much higher than the calculated 

one as shown in Table 5-3. From the inset of Figure 5-11a2, it is obviously to see that even during 

sliding test, the Nyquist plot for untreated Ti still exhibits only one single semicircle in the entire 

frequency range. The equivalent circuit for untreated Ti in the whole test period (before, during and 

after sliding) is the same as illustrated in Figure 5-7a with one time constant, Rs(CPE||Rp). The fitted 

parameters of the equivalent circuit for untreated Ti are summarized in Table 5-4. 
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Figure 5-11 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for TO Ti 

prepared at 650 ºC for 48 h (1) and untreated Ti (2) measured before (square), during (ring) and after 

(star) continuous unidirectional sliding tests at Fn of 5 N in the PBS solution. 
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Figure 5-12 Equivalent circuit with three time constants for TO Ti prepared at 650 ºC for 48 h during 

and after sliding tests. 

 

Table 5-3 Parameters of the equivalent circuit for TO Ti prepared at 650 ºC for 48 h, measured before, 

during and after continuous unidirectional sliding test at Fn of 5 N in the PBS solution. 

 
 *Rp = Router + Rinner for TO Ti before, during and after sliding test. 

 

Table 5-4 Parameters of the equivalent circuit for cp Ti measured before, during and after continuous 

unidirectional sliding test at Fn of 5 N in the PBS solution. 

 

 



Chapter 5 

109 

 

Comparing the rp values for TO Ti and untreated Ti measured with different samples in Table 

5-1, 5-3 and 5-4, it should be noticed that for both TO Ti and untreated Ti, the reproducibility of 

electrochemical measurement results is not well but the values for each type are in the same order of 

magnitude. The intrinsic property of sample surface and the actual experimental environment have 

significant influence on the electrochemical measurement results. So, for the explication of resistance 

change before, during and after siding test, all values presented here should be considered as the 

qualitative changes rather than the quantitative changes. To get more accurate information, the strict 

control of experimental operation in the thermal oxidation process for TO Ti and in the 

electrochemical measurement process and more parallel repetitions with different samples are 

necessary in the future work. 

For untreated Ti, the rp value decreases from 1.19 × 10
6
 Ω·cm

2
 measured before sliding to 5000 

Ω·cm
2
 measured during continuous unidirectional sliding test at Fn of 5 N. Not like a further 

calculated specific polarization resistance in the active area, ract, under the guidance of a 

tribocorrosion protocol for surface modified Ti in Chapter 3, a general specific polarization 

resistance is used in this chapter to give a qualitative comparison with that value of TO Ti during 

sliding test. The tremendous decrease in rp value indicates the destruction of passive film on 

untreated Ti surface, which makes the active area contact directly with the aggressive electrolyte (the 

PBS solution). Since the continuous sliding motion of ZrO2 counter body, repassivation inside the 

track area cannot occur during sliding test. But once sliding stops, the rp value returns back to 1.05 × 

10
6
 Ω·cm

2
, revealing the strong repassivation ability of untreated Ti to form again a passive film 

inside the track area in the PBS solution. 

For TO Ti, the Router value keeps stable before, during and after sliding test but the Rinner value 

decreases significantly from 1.44 × 10
7
 Ω measured before sliding to 3.38 × 10

5
 Ω measured during 

continuous unidirectional sliding test at Fn of 5 N. The later results in the decrease of rp value 

decreases from 4.80 × 10
7
 Ω·cm

2
 measured before sliding to 1.74 × 10

6
 Ω·cm

2
 measured during 

sliding. This value change indicates that the thermal oxidized film at 650 ºC on cp Ti was destroyed 

when sliding motion occurs at Fn of 5 N. This film deterioration couldn’t be detected by the OCP 

evolution in Figure 5-9. When sliding motion stops, the destroyed thermal oxidized film doesn’t 

show a self-healing process like repassivation of untreated Ti in the PBS solution. The increase of rp 

to 2.66 × 10
6
 Ω·cm

2
 measured after sliding might result from the continuous growth of passive film 

on cp Ti substrate under the thermal oxidized film. Although the destruction of TO Ti is an 

irrecoverable process, the corrosion resistance after sliding is still much higher than untreated Ti by 

considering the great Rct value for TO Ti. 
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5.6 Characterization of the wear track on TO Ti after continuous 

unidirectional sliding test 

Surface morphologies of TO Ti and untreated Ti after continuous unidirectional sliding at Fn of 5 

N were obtained by SEM, as shown in Figure 5-13. The track width of untreated Ti is about 2.78 mm 

after sliding test at Fn of 5 N. The regular pattern of grooves and a large number of attached 

corrosion debris inside the track area reveals that the untreated Ti was worn severely by both the 

abrasive and adhesive wear mechanisms, so that the wear track is wide and deep with a very rough 

surface appearance, as seen the track profile of untreated Ti in Figure 5-14b. The track depth of ~ 9 

μm indicates the serious material loss of untreated Ti, which has been quantitatively analyzed in 

Chapter 4 under continuous unidirectional sliding tests. On the contrary, TO Ti experiences only mild 

wear caused by the abrasion of the counter body. The resultant wear track on TO Ti surface is narrow 

with a width of 0.35 mm and shallow with a smooth and polished appearance, as seen in Figure 

5-14a. No spallation and flake of the oxide layer has been observed in the track of TO Ti after sliding 

test at Fn of 5 N. The superior wear resistance of TO Ti is derived from its good adhesion with the 

substrate, high hardness and much improved frictional behavior during sliding. 

The chemical compositions inside the track areas of TO Ti (square in Figure 5-13a) and 

untreated Ti (square in Figure 5-13b) obtained at Fn of 5 N were analyzed by EDS, and the results are 

presented in Figure 5-13c and 5-13d. For untreated Ti, the appearance of high amount of oxygen (O, 

10.9 wt%) indicates the repassivation of cp Ti to form the titanium oxide film. The small amount of 

phosphorus (P, 0.6 wt%, existing originally in the PBS solution) shows that species in the solution 

takes part in the corrosion of substrate or is packed into the corrosion product. Chemical composition 

of the track on TO Ti after sliding test is listed as O 39.9 wt%, Ti 58.9 wt%, P 0.9 wt% and Ca 0.3 

wt%. Comparing with the initial chemical composition in Figure 5-4 (O, 63.4 at% and Ti 36.6 at%), 

the Ti/O atomic ratio inside the track area (O, 66.3 at% and Ti 32.7 at%) increases slightly, revealing 

the oxygen containing species in the solution like HPO4
2-

 and H2PO4
-
 penetrate through the thermal 

oxidized film to augment the percentage of O after sliding test. 
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Figure 5-13 SEM images (a, b) and EDS analysis inside the tracks (c, d) of TO Ti prepared at 650 ºC 

for 48 h (left) and untreated Ti (right) after continuous unidirectional sliding tests at Fn of 5 N in the 

PBS solution. 

 

Figure 5-14 Profiles of TO Ti prepared at 650 ºC for 48 h (a) and untreated Ti (b) after continuous 

unidirectional sliding tests at Fn of 5 N in the PBS solution. 
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5.7 Conclusions 

Thermal oxidation of cp Ti in air atmosphere at 650 ºC for 48 h leads to the formation of an 

oxide film throughout the surface without any spallation. The oxide film consists of rutile and 

oxygen diffused titanium as the predominant phases characterized by XRD. Comparing with 

untreated Ti, the oxide film has no effect on the average roughness of the surface but significantly 

increases the microhardness from 176 HV0.2 to 747 HV0.2.  

The OCP evolution before sliding under static condition, during sliding under mechanical 

loaded condition at Fn of 5 N and after sliding under static condition, for untreated Ti clearly changes 

when sliding motion starts or stops. While for TO Ti, a mild continuous increase of Eoc in the whole 

test period reveals the growth of passive film on the substrate under the thermal oxidized film. 

Results of EIS and potentiodynamic polarization measurements at immersion time of 3 h and 24 h 

showed that the corrosion resistance of untreated Ti enhances with immersion time incrase. The ipass 

value for untreated Ti decreases and the rp value incrases at immersion time of 24 h. In contrast, the 

ipass value increases and the rp value decreases at immersion time of 24 h for TO Ti. Deterioration of 

thermal oxidized film occurs during the long-term immersion in the PBS solution. 

Under mechanical loaded condition, the impedance values rp of both TO Ti and untreated Ti 

decrease due to the removal of passive film for untreated Ti and the destruction of thermal oxidized 

film for TO Ti. After sliding test, unlike the repassivation ability of cp Ti inside the track area on 

untreated Ti, the destruction of the thermal oxidized film on TO Ti is an irrecoverable process. 

Although the rp value of TO Ti after sliding is smaller than the value measured before sliding, its 

corrosion resistance is still much higher than untreated Ti. Combined with the improved frictional 

behavior during sliding, thermal oxidation is sure to be considered as an excellent method to 

ameliorate the corrosion and tribocorrosion behavior of cp Ti, especially under a high mechanical 

loaded condition 

.
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6.1 Introduction 

As a biomedical material, cp Ti is expected to own bioactivity to promote the growth of bone on 

its surface. In this chapter, CaP bioactive film in the form of brushite (CaHPO4·2H2O) was obtained 

directly on cp Ti by electrochemical deposition method. The influences of cathodic potential and 

deposition time were investigated in a calcium and phosphate containing solution. An optimized 

deposition condition was chosen as -1.8 V vs. Ag/AgCl for 30 min from the potential range from -1.4 

V to -2.1 V vs. Ag/AgCl, basing on a relative compact and uniform film measured by X-ray 

fluorescence (XRF) spectrometry. Surface morphology/chemical composition, crystalline phase and 

topography were characterized by SEM coupled with EDS, XRD and optical profilometry. The effect 

of CaP bioactive film on the corrosion behavior of cp Ti was studies by electrochemical measurements 

like OCP, EIS and potentiodynamic polarization in the PBS solution. Considering the fragile property 

of CaP bioactive film and preventing the strong destruction of cp Ti substrate, a relative small 

loading force, Fn of 500 mN was imposed to investigate the tribocorrosion behavior of CaP bioactive 

film coated Ti under continuous mechanical loaded condition by using a pin-on-disc tribometer. 

Results show that surface modification of cp Ti with CaP bioactive film can provide not only higher 

corrosion and tribocorrosion resistance but also becomes the in situ source of Ca and P ions by the 

dissolution of its own as the precursor for the hydroxyapatite (HA) deposition. 

6.2 Experimental details 

The well polished and cleaned cp Ti specimens were used as working electrodes and the 

electrochemical deposition of CaP bioactive film was carried out potentiostatically at -1.8 V vs. 

Ag/AgCl for 30 min in a calcium and phosphate containing solution [0.042 mol/L Ca(NO3)2·4H2O + 

0.025 mol/L NH4H2PO4] with a pH value of 4.2. The deposition conditions were based on the 

experimental results of a relative compact and uniform film measured by XRF spectrometry, choosing 

from the analysis results of films obtained at different potentials from -1.4 V to -2.1 V vs. Ag/AgCl. 

Optical profilometry was used to measure the surface topography of samples before and after surface 

modification and the average roughness value was calculated on square regions with length of 1000 

μm × 1000 μm. Vickers microhardness test was performed with a test force of 200 gf and full load 

period of 15 s. The phase constituents of the untreated Ti and CaP bioactive film coated Ti samples 

were determined by XRD using a Cu Kα (λ = 1.54 Å) radiation source over a scan range from 10° to 80° 

at a scan rate of 0.02°/s. Surface morphology and chemical composition of the film were observed by 

SEM coupled with EDS. 

Electrochemical and tribocorrosion measurements were performed at OCP in a unidirectional 

pin-on-disc tribometer, combined with a three-electrode cell in a PBS solution at room temperature 

(22 ± 1 ºC). Under static condition, corrosion behavior of CaP bioactive film coated Ti was 

characterized. The evolution of OCP, Eoc, within 3 h was performed continuously. EIS measurements 

with a sinusoidal potential variation of ± 10 mV to OCP at frequencies from 10 kHz down to 3.98 mHz 
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were measured as well as the potentiodynamic polarization curves from -1 V to 1 V vs. Ag/AgCl at a 

scan rate of 1 mV/s of CaP bioactive film coated Ti at immersion time of 3 h and 24 h, respectively. 

Tribocorrosion experiments were performed under continuous mechanical loaded condition at Fn of 

500 mN, with a rotation rate of 100 rpm and a total rotation number of 10 000 cycles. During 

continuous unidirectional sliding test, OCP evolution was recorded following with EIS measurement 

at frequencies from 10 kHz down to 39.8 mHz. Friction coefficient was recorded in the whole sliding 

period. When sliding ended, OCP evolution was performed for 3 h, and EIS measurement was 

carried out at frequencies from 10 kHz down to 3.98 mHz as that before sliding. Untreated Ti was 

used as control throughout the experiment. The surface morphology and chemical composition inside 

the track area were characterized by SEM coupled with EDS. The topography after tribocorrosion 

test was observed by optical profilometry. 

In this chapter, untreated Ti was used as the reference material throughout the experiment. All 

experiments were repeated at least twice to ensure the reproducibility and the representative mean 

values were figured out in this work. 

6.3 Electrochemical deposition of CaP bioactive film 

In a mixing solution of Ca(NO3)2·4H2O and NH4H2PO4, three cathodic reactions [190] can be 

identified as:  

The reduction of oxygen in the region from -0.15 V to -0.9 V vs. Ag/AgCl: 

O2 + 2H2O + 4e
-
 → 4OH

-
                     (6-1) 

The cathodic reaction of hydrogen ions from H2PO4
-
 from -0.9 V to -2 V vs. Ag/AgCl: 

2H2PO4
-
 + 2e

-
 → 2HPO4

2-
 + H2                (6-2) 

The reduction of water at more cathodic potentials (< -2 V vs. Ag/AgCl): 

2H2O + 2e
-
 → H2 + 2OH

-
                     (6-3) 

The HPO4
2-

 ions produced by cathodic reaction completely react with Ca
2+

 ions and form a CaP 

bioactive film in the mixing solution on the electrode surface according to the following reaction: 

Ca
2+

 + HPO4
2-

 +·2H2O → CaHPO4·2H2O (brushite)       (6-4) 

The current-time curves for CaP bioactive film deposition on cp Ti at different potentials from 

-1.4 V to -2.1 V vs. Ag/AgCl for 30 min were shown in Figure 6-1. The current density decreases 



Chapter 6 

116 

 

quickly at the very beginning, revealing the formation of CaP bioactive film which covers the surface 

of cp Ti substrate and inhibits the ions transfer at the interface between the solution and the substrate. 

Then a relative stable current density occurs after several minutes and no big difference in the ending 

current density is found when deposition potential is higher than -2 V vs. Ag/AgCl. But at the 

deposition potential of -2.1 V vs. Ag/AgCl, current density is enhanced possibly due to the reduction 

of water. 

 

 

Figure 6-1 Current-time curve during deposition (a) and the ending current density of deposition (b) 

of CaP bioactive film on cp Ti at different potentials (vs. Ag/AgCl) for 30 min. 
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The thickness and Ca/P molar ratio of CaP bioactive film on cp Ti obtained at different 

deposition potentials for 30 min are measured by XRF spectrometry, as seen in Figure 6-2. The film 

thickness is around 3 μm when the deposition potential is in the range from -1.4 V to -1.9 V vs. 

Ag/AgCl. And then film thickness increases with the decrease of deposition potential from -1.9 V to 

-2.1 V vs. Ag/AgCl. The corresponding Ca/P molar ratio values obtained at potential range from -1.4 

V to -2.0 V vs. Ag/AgCl are about 1.2 as referred to hydroxyapatite (HA, Ca/P ratio of 1.67), 

confirming the main cathodic reaction in this region is Eq. 6-2. It should be noticed that the Ca/P 

molar ratio vale is not 1.0 as that value of CaHPO4·2H2O, indicating either the existence of other 

CaP components or the inaccuracy of XRF test results. Photos of CaP bioactive film coated Ti at 

different deposition potential for 30 min in Figure 6-3 shows the effect of deposition potential on the 

macrostructure of films. Combined with the results of film thickness and Ca/P molar ratio, an 

optimized deposition potential at -1.8 V is chosen to prepare a relative compact and uniform CaP 

bioactive film on cp Ti from an energy-saving point of view. All the following sections in this study 

are based on samples obtained under this electrochemical deposition condition. 

 

Figure 6-2 Film thickness (a) and Ca/P molar ratio (b) of CaP bioactive film on cp Ti obtained at 

different deposition potentials (vs. Ag/AgCl) for 30 min. 
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Figure 6-3 Photos of CaP bioactive film coated Ti obtained at different potentials (vs. Ag/AgCl). 

6.4 Surface characterization 

The surface topographies of CaP bioactive film coated Ti obtained at -1.8 V vs. Ag/AgCl for 30 

min and untreated Ti are shown in Figure 6-4. And from this part on, all CaP bioactive film coated Ti 

samples were obtained at this cathodic potential for 30 min. Comparing with the untreated Ti, 

volcano-like topography on the surface CaP bioactive film coated Ti reveals that the film formation 

was faster at some sites, which might result from the preferred evolution of hydrogen and then get 

suitable local pH value for the formation of brushite during cathodic charging process at -1.8 V vs. 

Ag/AgCl. The average roughness value (Ra) of the CaP bioactive coated Ti increases from 0.39 μm 

to 2.01 μm and the microhardness value decreases from 176 HV0.2 to 122 HV0.2 (see Figure 6-5), 

indicating that the CaP bioactive film totally changes the surface topography and mechanical 

property of cp Ti. 
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Figure 6-4 Profiles of CaP bioactive film coated Ti (a) and untreated Ti (b). 

 

Figure 6-5 Microhardness and surface roughness of CaP bioactive film coated Ti and untreated Ti. 
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XRD patterns of CaP bioactive film coated Ti and untreated Ti samples are shown in Figure 6-6. 

Comparing with untreated Ti, typical brushite (CaHPO4·2H2O, ICDD card No. 00-011-0293) peaks 

were clearly identified in the pattern of CaP bioactive film coated Ti. The diffraction peak (2θ) values 

of 11.8°, 21.1°, 23.5° and 29.4° were assigned to (020), (-121), (040) and (-112) planes of brushite. The 

remaining small peaks at 38.5° and 40.2° were attributed to (002) and (101) planes of cp Ti (ICDD card 

No. 00-005-0682). From this XRD patterns, it is concluded that cp Ti samples was covered with CaP 

bioactive film in the form of brushite, which is in accordance with Eq. 6-4. 

 

Figure 6-6 XRD patterns of CaP bioactive film coated Ti (red line) and untreated Ti (black line). 

Surface morphology and chemical composition of CaP bioactive film coated Ti and untreated Ti 

were characterized by SEM coupled with EDS analysis, as seen in Figure 6-7. A complanate surface 

with regular grooves and small dot-like defaults was observed on untreated Ti after polishing with SiC 

emery papers. However, after electrochemical deposition process at -1.8 V vs. Ag/AgCl for 30 min, a 

flower-like CaP bioactive film entirely covered the surface of cp Ti. The similar morphologies were 

obtained in other groups [152, 154, 190, 191]. Comparing with the EDS analysis result of untreated Ti 

(see Figure 6-7d), the CaP bioactive film has a following composition: O = 52.1 wt%, P = 17.0 wt%, 

Ca = 20.3 wt% and Ti = 10.6 wt% (see Figure 6-7c). The atomic ratio value of Ca/P is 0.92, which is 

very close to 1.00 as the standard molar ratio value of Ca/P in CaHPO4·2H2O. Different Ca/P molar 

ratio values, as ~ 1.2 obtained by XRF analysis and 0.92 obtained from EDS analysis, are shown in 

this study, revealing the fact that further accurate atomic analysis methods are needed in 

characterization of CaP bioactive film. 
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Figure 6-7 SEM images and EDS analysis of chemical composition of CaP bioactive film coated Ti 

(a, c) and untreated Ti (b, d). 

6.5 Corrosion behavior of CaP bioactive film coated Ti under static 

condition 

The OCP evolution curves of CaP bioactive film coated Ti and untreated Ti under static condition 

in the PBS solution are shown in Figure 6-8. It was observed that the OCP evolution of both samples 

shifted significantly in the noble direction. For untreated Ti, the Eoc value raises up from -0.45 V to 

-0.25 V vs. Ag/AgCl after immersion in the PBS solution for 3h due to the continuous growth of the 

passive oxide film on the surface of untreated Ti. For CaP bioactive film coated Ti, the Eoc value of 

-0.28 V vs. Ag/AgCl at the beginning of immersion is higher than that of untreated Ti and shifted to 

-0.14 V vs. Ag/AgCl after immersion in the PBS solution for 3 h. The OCP of both untreated Ti and 

CaP bioactive film coated Ti are in the TiO2 stability region of the Ti-H2O Pourbaix diagram (as seen 

in Figure 2-8 [111]). And the more noble OCP exhibits by CaP bioactive film reveals the improved 

corrosion resistance of film coated Ti surface. That can be attributed to the inhibition property of CaP 

bioactive film to the ions penetration combined with the continuous growing TiO2 passive layer at the 

interface between cp Ti substrate and CaP bioactive film. 
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Figure 6-8 OCP evolution of CaP bioactive film coated Ti (red line) and untreated Ti (black line) in 

the PBS solution. 

The Nyquist plots for CaP bioactive film coated Ti and untreated Ti, measured at immersion 

time of 3 h and 24 h under static condition in the PBS solution, are shown in Figure 6-9a. Both CaP 

bioactive film coated Ti and untreated Ti exhibit only a single semicircle in the entire frequency 

range, which corresponds to the equivalent circuit of Rs(CPE||Rp) with one time constant as presented 

as the inset in Figure 6-9a (the same as Figure 4-3), where Rs is the solution resistance and Rp is the 

polarization resistance of CaP bioactive film coated Ti or untreated Ti due to the barrier property of 

passive film. No existence of an added constant phase element (CPE2) for the CaP bioactive film 

reveals that this film has no effect on the corrosion mechanism of the cp Ti substrate. The selection of 

this equivalent circuit was a compromise between a reasonable fitting of the experimental values and a 

minimum of components in the equivalent circuit. The fitting procedure revealed that better agreement 

between theoretical and experimental data was obtained for both CaP bioactive film coated Ti and 

untreated Ti as seen the fitting curves in Figure 6-9. The parameters of the equivalent circuit are 

shown in Table 6-1. 

The Bode impedance plots and Bode phase angle plots for CaP bioactive film coated Ti and 

untreated Ti after immersion for 3 h and 24 h in the PBS solution are shown in Figure 6-9b and 6-9c, 

respectively. From the Bode impedance plots, it is clearly observed that the specific polarization 

resistance, rp, of CaP bioactive film coated Ti increases from 1.02 × 10
7
 Ω·cm

2
 at the immersion time 

of 3 h to 1.56 × 10
7
 Ω·cm

2
 at the immersion time of 24 h. For untreated Ti, rp value increases from 
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7.69 × 10
5
 Ω·cm

2
 at the immersion time of 3 h to 4.70 × 10

6
 Ω·cm

2
 at the immersion time of 24 h, 

indicating that the corrosion resistance becomes stronger due to the growth of the passive film on the 

surface of untreated Ti. Correspondingly, the Bode phase angle plot shows a broader frequency range 

close to -85º.  

 

 

Figure 6-9 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for CaP 

bioactive film coated Ti (red square) and untreated Ti (black square) measured at immersion time of 

3 h and 24 h under static condition in the PBS solution. 
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Table 6-1 Parameters of the equivalent circuit for CaP bioactive film coated Ti and untreated Ti 

under static condition. 

 

*A0 is the total surface area exposed to the electrolyte. 

As demonstrated in previous chapters, the specific polarization resistance values for metallic 

materials in the range of 10
3
 Ω·cm

2
 (or lower) indicate the presence of an active surface, while values 

around 10
5
 Ω·cm

2
 (or higher) indicate a passive surface [181, 183]. All the rp values in Table 6-1 

reveal that a passive surface state reached on either CaP bioactive film coated Ti or untreated Ti under 

static condition in the PBS solution. And the increase of rp value in this study confirms the enhanced 

anti-corrosive property of cp Ti due to the growth of passive oxide layer on the surface. It should be 

noticed that during the studied period, even the increase extent of rp for untreated Ti is larger, the rp 

value measured at immersion time of 24 h is still smaller than rp of CaP bioactive film coated Ti at 

immersion time of 3 h. The results indicate that surface modification of cp Ti with CaP bioactive film 

strongly improves the corrosion resistance of cp Ti but still keeps the growth of passive oxide layer on 

its surface.  

Figure 6-10 shows the potentiodynamic polarization curves of CaP bioactive film coated Ti and 

untreated Ti in the potential range from -1 V to 1 V vs. Ag/AgCl, measured at immersion time of 3 h 

and 24 h under static condition in the PBS solution. As illustrated in Chapter 4, the potentiodynamic 

polarization curves for untreated Ti can be divided into four domains: (I) cathodic domain; (II) 

prepassive domain; (III) passive domain and (IV) transpassive domain (see Section 4.3). Under static 

condition in this study, all OCP evolution values of CaP bioactive film coated Ti and untreated Ti are 

in the prepassive domain. And as dental and orthopedic implant materials, the current densities in the 

body potential range of 400-500 mV vs. Ag/AgCl (defined by Velten et al. [192]) are more interested. 

Here, the polarization parameters like corrosion potential (Ecorr), the specific current density at the 

prepassive potential of 0.1 V vs. Ag/AgCl, iprepass and the specific current density at the body 

potential of 0.4 V vs. Ag/AgCl, ibp of CaP bioactive film coated Ti and untreated Ti are summarized 

in Table 6-2. Compared with the untreated Ti, CaP bioactive film coated Ti shows a shift of Ecorr 

(about -0.08 V) in the cathodic direction, but the decrease in current density at Ecorr indicates the 

improved corrosion resistance of CaP bioactive film coated Ti. The shift of Ecorr in cathodic direction 

might due to the influence of the easy hydrogen evolution in the presence of CaHPO4, as illustrated 

as follows: 



Chapter 6 

125 

 

2HPO4
2-

 + 2e
-
 → 2PO4

3-
 + H2                (6-5) 

With local pH value changes during potential scanning, the corrosion mechanism on cp Ti 

substrate under CaP bioactive film is altered. With immersion time increase, the iprepass for untreated 

Ti significantly decreases, revealing the improved corrosion resistance of untreated Ti due to the 

growth of passive oxide film on cp Ti substrate in the PBS solution. Almost no change occurs in the 

value of ibp for untreated Ti. But for CaP bioactive film coated Ti, both the values of iprepass and ibp 

increase slightly, might resulting from the dissolution of CaP bioactive film when local pH value 

changes, see Figure 6-11. It is clearly observed the film prints, where preferential growth of calcium 

phosphate took place. But the major CaP bioactive film has disappeared and only very small amount 

of film remains (P, 5.3 wt% and Ca, 5.9 wt% can be detected by EDS) on the surface of cp Ti 

substrate after immersion time of 24 h under static condition in the PBS solution. 

 

Figure 6-10 Potentiodynamic polarization curves of CaP bioactive film coated Ti and untreated Ti 

from -1 V to 1 V vs. Ag/AgCl at a scan rate of 1 mV/s measured at immersion time of 3 h and 24 h 

under static condition in the PBS solution.  

 

 



Chapter 6 

126 

 

Table 6-2 Electrochemical data obtained from potentiodynamic polarization tests. 

 
*iprepass: specific current density at prepassive potential of 0.1 V vs. Ag/AgCl 

*ibp: specific current density at body potential of 0.4 V vs. Ag/AgCl 

 

Figure 6-11 SEM image and EDS analysis (the marked square) of CaP bioactive film coated Ti after 

potentiodynamic polarization test at immersion time of 24 h in the PBS solution. 

6.6 Tribocorrosion behavior of CaP bioactive film coated Ti during 

and after continuous unidirectional sliding test 

Tribocorrosion tests were performed when Eoc got stabilized after immersion for 3 h in the PBS 

solution. In order to evaluate the wear-corrosion behavior of CaP bioactive film coated Ti and 

untreated Ti during continuous unidirectional sliding, a relative small loading force, Fn of 500 mN is 

imposed at a rotation rate of 100 rpm and the total rotation number of 10 000 cycles. The OCP 

evolution curves and friction coefficient curves of both CaP bioactive film coated Ti and untreated Ti 

samples during sliding are shown in Figure 6-12. 
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The results in Figure 6-12a shows that Eoc dropped sharply down to a more negative potential 

value at the moment when sliding motion starts. It reveals the change of surface state from passive to 

active on the sliding track of both samples. In the case of untreated Ti, the potential drop-down, ∆E = 

|Emax – Emin| during sliding test was 0.26 V, where Emax presents the potential at the start of sliding and 

Emin the minimum potential during continuous unidirectional sliding at Fn of 500 mN. And for CaP 

bioactive film modified Ti, a larger ∆E value of 0.51 V was obtained. Furthermore, the Eoc variation of 

CaP bioactive film coated Ti during sliding test period is higher than that of untreated Ti. These 

phenomena demonstrate the influence of the destruction and dissolution of CaP bioactive film on 

OCP evolution of cp Ti. 

The friction coefficient curves were measured during sliding, as shown in Fig. 5-15b. Unlike the 

higher Eoc fluctuation, the coefficient evolution of CaP bioactive film coated Ti is a bit smaller and 

smoother than that of untreated Ti in the time range from 1500 s to 3000 s, corresponding to the 

rotation number range from 2500 cycles to 5000 cycles. This may be due to the lubricant effect of CaP 

bioactive film in the wear track. After that, the coefficient values for both samples are almost the same 

(about 0.62) until the end of sliding tests, revealing that a similar contact mode as untreated Ti was 

inducted for CaP bioactive film coated Ti when the major CaHPO4·2H2O was dissolved after rotation 

of 5000 cycles under mechanical loaded condition. 

 

Figure 6-12 OCP evolution (a) and friction coefficient (b) of CaP bioactive film coated Ti (red line) 

and untreated Ti (black line) during continuous unidirectional sliding tests performed at Fn of 500 

mN. 

When continuous unidirectional sliding motion stops, the OCP evolution curves for both the 

untreated Ti and CaP bioactive film coated Ti exhibit an anodic shift (see Figure 6-13), indicating the 

occurrence of repassivation of the active surface inside the sliding wear track area. Although it takes 

shorter time to return back to the initial Eoc value of -0.25 V vs. Ag/AgCl for untreated Ti, the final 

potential of CaP bioactive film coated Ti is still higher than untreated Ti after sliding for ~3 h 

immersion under static condition in the PBS solution. 
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Figure 6-13 OCP evolution of CaP bioactive film coated Ti (red line) and untreated Ti (black line) 

after continuous unidirectional sliding tests. 

The Nyquist plots for CaP bioactive film coated Ti and untreated Ti, measured before, during 

and after unidirectional sliding at Fn of 500 mN in the PBS solution, are shown in Figure 6-14a1 and 

6-14a2. It is clearly to see that only one single semicircle in the entire frequency range was plotted 

for both samples measured before, during and after sliding tests. The same equivalent circuit as the 

inset of Figure 6-9a with one time constant, Rs(CPE||Rp) can be used to fit the experimental data 

obtained by EIS measurement. The fitted parameters of the equivalent circuit for CaP bioactive film 

coated Ti and untreated Ti are summarized in Table 6-3. 

Table 6-3 Parameters of the equivalent circuit for for CaP bioactive film coated Ti and untreated Ti 

measured before, during and after continuous unidirectional sliding test at Fn of 500 mN. 
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Figure 6-14 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for CaP 

bioactive film coated Ti (1) and untreated Ti (2) measured before (square), during (ring) and after 

(star) continuous unidirectional sliding test at Fn of 500 mN. 
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Comparing the rp values for CaP bioactive film coated Ti and untreated Ti measured with 

different samples in Table 6-1 and 6-3, it should be noticed that the reproducibilities of 

electrochemical measurement results are not well but the values for each type of material are in the 

same order of magnitude. As explained in the previous chapters, the intrinsic property of sample 

surface and the actual experimental environment have significant influence on the electrochemical 

measurement results. So, all values presented here should be considered as the qualitative changes 

rather than the quantitative changes for the explication of resistance change before, during and after 

sliding test. To get more accurate information, the strict control of experimental operation in the 

electrochemical measurement and more parallel repetitions with different samples are necessary in 

the future work. 

During continuous unidirectional sliding tests at Fn of 500 mN, the rp value decreased from 1.65 

× 10
7
 Ω·cm

2
 measured before sliding to 3.17 × 10

4
 Ω·cm

2
 for CaP bioactive film coated Ti and from 

4.63 × 10
5
 Ω·cm

2
 measured before sliding to 1.05 × 10

4
 Ω·cm

2
 for untreated Ti. Under the guidance 

of the tribocorossion protocol for surface modified Ti in Chapter 3, a general specific polarization 

resistance is used in this chapter to give a qualitative comparison between CaP bioactive film coated 

Ti and untreated Ti. The significant decrease in rp value can be explained by the destruction of passive 

film on the surface of cp Ti under mechanical loading condition. In the absence of protective oxide 

layers in the sliding track, bared substrate directly exposes to the corrosive electrolyte, which 

permitted the entrance of corrosive species and then corrosion reactions occur at the interface between 

cp Ti and the PBS solution. The higher rp value of CaP bioactive film coated Ti during sliding test 

confirms the better barrier performance of CaP bioactive film on cp Ti. It might prolong the path of 

entrance for corrosive species and inhibit the corrosion reactions on the surface of Ti substrate. 

When sliding motion stops, both the rp values of CaP bioactive film coated Ti and untreated Ti 

increase quite a lot, suggesting a self-healing process as repassivation of cp Ti in the PBS solution. 

But it should be noticed that a significant decrease of specific polarization resistance from 1.65 × 10
7
 

Ω·cm
2
 measured before sliding down to 5.79 × 10

6
 Ω·cm

2
 measured after sliding is observed for CaP 

bioactive film coated Ti. This reveals that the destruction of CaP bioactive film affects the recovery of 

sample’s barrier property. In contrast, an increase of the rp value from 4.63 × 10
5
 Ω·cm

2
 measured 

before sliding up to 8.54 × 10
5
 Ω·cm

2
 measured after sliding for untreated Ti indicates the efficient 

repassivation inside the track area of cp Ti without any modification. Combined with the sustained 

TiO2 film growth outside the track area, corrosion resistance of untreated Ti enlarges with immersion 

time after mechanical loading perturbation at Fn of 500 mN. This excellent property attracts the 

attentions in biomedical application as dental and orthopedic implants. And the higher corrosion 

resistance property of CaP bioactive film coated Ti makes it become an attractive material instead of 

the untreated Ti. 
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6.7 Characterization of the wear track on CaP bioactive film coated Ti 

after continuous unidirectional sliding test 

Figure 6-15 shows the SEM images and EDS analysis inside the track areas of CaP bioactive 

film coated Ti (a, c) and untreated Ti (b, d) after 10 000 cycles of continuous unidirectional sliding at 

Fn of 500 mN. For CaP bioactive film modified Ti, a track width of 0.62 mm is obtained. The track 

area covers the removal of CaP bioactive film and the further destruction of cp Ti substrate under 

CaP bioactive film. Chemical composition analysis result inside the track area is presented in Figure 

6-15c. Although major amount of CaP bioactive film has been dissolved, the remaining contents of 

phosphorus (P, 0.8 wt%) and calcium (Ca, 0.4 wt%) indicate that a small amount of CaP bioactive 

film still stays on the surface of cp Ti even after rotation of 10 000 cycles. The higher wear resistance 

of CaP bioactive film coated Ti is derived from the good adhesion of the initial not the further 

growing CaP bioactive film with the substrate. Once this film is extremely thin or partially total 

destroyed by sliding motion of ZrO2 counter body, the friction coefficient value becomes similar as 

that of untreated Ti, as seen in Figure 6-12b. For untreated Ti, a track width of about 0.5 mm is 

obtained. The regular pattern of grooves and attached corrosion debris inside the track area of 

untreated Ti shows the substrate was worn by sliding motion of ZrO2 counter body in this study. 

Chemical composition analysis result in Figure 6-15d shows the appearance of high oxygen content 

(O, 12.0 wt%) indicates the repassivation of cp Ti to form the titanium oxide film on its surface. 

The track profiles of CaP bioactive film coated Ti and untreated Ti after continuous 

unidirectional sliding tests at Fn of 500 mN are shown in Figure 6-16. The track depth and track 

width of both samples are difficult to well identified, due to the higher roughness of CaP bioactive 

film coated Ti and the tiny material loss of untreated Ti. At Fn of 500 mN, the low material loss in 

this study reveals that both CaP bioactive coated Ti and untreated Ti are good choice for biomedical 

implant application in the mild loading applied parts. But CaP bioactive film coated Ti is the better 

one as it can be regard as the source of Ca and P ions for the formation of HA. 
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Figure 6-15 SEM images (a, b) and EDS analysis inside the tracks (c, d) of CaP bioactive film 

coated Ti (a, c) and untreated Ti (b, d) after continuous unidirectional sliding tests at Fn of 500 mN. 

 

Figure 6-16 Profiles of CaP bioactive film coated Ti (a) and untreated Ti (b) after continuous 

unidirectional sliding tests at Fn of 500 mN. 
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6.8 Conclusions 

Surface modification of cp Ti with electrochemical deposition of CaP bioactive film is a good 

method to improve its bioactivity. An optimized deposition condition was selected as -1.8 V vs. 

Ag/AgCl for 30 min in this study. This film is mainly in the form of brushite (CaHPO4·2H2O) 

characterized by XRD. The surface roughness and microhardness of CaP bioactive film are different 

from the values of cp Ti substrate. 

The OCP evolution curves before sliding under static condition, during sliding under 

mechanical loaded condition at Fn of 500 mN and after sliding under static condition, for both CaP 

bioactive film coated Ti and untreated Ti, change significantly in the whole test period. The decrease 

of Eoc at the moment when sliding motion starts is due to the destruction of passive film on the 

surface of cp Ti substrate. While the increase of Eoc at the moment when sliding motion stops is due 

to the repassivation of passive film. Results of EIS and potentiodynamic polarization measurements 

show that the corrosion resistance of untreated Ti enhances with immersion time increase. The iprepass 

value for untreated Ti decreases and its rp value incrases at immersion time of 24 h, comparing with 

the values measured at immersion time of 3 h. For CaP bioactive film coated Ti, the same tendency 

occurs to its rp value, but the iprepass value just slightly increases at immersion time of 24 h. The 

dissolution of CaP bioactive film is thought to change the local pH value and further induce the 

increase of iprepass. 

Under mechanical loaded condition, the impedance values rp of both CaP bioactive film coated 

Ti and untreated Ti decrease significantly due to the dissolution and removal of CaP bioactive 

film/passive film on CaP bioactive film coated Ti and the removal of passive film on cp Ti. Although 

the value of Eoc during sliding decreases more for the former sample, its higher rp value combined 

with the relative lower friction coefficient in the rotation number range from 2500 cycles to 5000 

cycles indicates the improved corrosion-wear performance of cp Ti with surface modification of CaP 

bioactive film. 

When mechanical solicitation stops, the higher impedance value rp of CaP bioactive film coated 

Ti than that of untreated Ti indicates that surface modification with CaP bioactive film can become 

an attractive method to promote the application of cp Ti as biomedical implants. 
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Chapter 7: Effect of CaP/TiO2 bioceramic film on 

corrosion and tribocorrosion behavior of cp Ti 
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7.1 Introduction 

From Chapter 6, the dissolution of CaP bioactive film (in the form of brushite, CaHPO4·2H2O) 

and high friction coefficient limits this material as an excellent surface modification of cp Ti. In 

order to improve the wear resistance and keep a long term bioactive effect on cp Ti, CaP bioactive 

film coated Ti was further sintered at 650 ºC for 6 h. Longer sintering time as 48 h as mentioned in 

Chapter 5 is not suggested, since the aim of this step is mainly to change the property of CaP film 

rather than cp Ti substrate. A composite of CaP/TiO2 bioceramic film was then obtained in the forms 

of whitlockite (Ca3(PO4)2), rutile (TiO2) as well as a few CaTi21O38 at the interface of CaP bioactive 

film and cp Ti substrate by the characterization of XRD. Surface morphology/chemical composition 

and topography were characterized by SEM coupled with EDS and optical profilometry. The effect of 

CaP/TiO2 bioceramic film on the corrosion behavior of cp Ti was studies by electrochemical 

measurements like OCP, EIS and potentiodynamic polarization under static condition in the PBS 

solution. The tribocorrosion behavior of CaP bioactive film coated Ti before and after sintering was 

investigated under mechanical loaded condition by using a pin-on-disc tribometer at Fn of 500 mN to 

prevent the strong destruction of cp Ti substrate. Results show that a significant improvement in 

corrosion and tribocorrosion resistance was detected for the CaP/TiO2 bioceramic film coated Ti than 

CaP bioactive film coated Ti. Moreover, material loss of the CaP/TiO2 bioceramic film coated Ti was 

significantly decreased due to the low dissolution rate and the high hardness of the bioceramic film. 

Moreover, thermal oxidized Ti prepared at 650 ºC for 6 h without any CaP bioactive film (TO Ti_6h) 

was also studied as a supplementary reference in this study. Although TO Ti_6h owns better 

corrosion and tribocorrosion resistance (similar to that value in Chapter 5) than CaP/TiO2 bioceramic 

film coated Ti, it is still inferior to CaP/TiO2 bioceramic film coated Ti due to its mismatch in 

mechanical property with natural bone and its poor bioactivity. 

7.2 Experimental details 

The CaP bioactive film coated Ti samples, prepared by an electrodeposition method at -1.8 V vs. 

Ag/AgCl for 30 min as mentioned in Chapter 6, were further sintered in a furnace at 650 ºC for 6 h, 

following by a slow cooling rate to the room temperature in the furnace itself to obtain the CaP/TiO2 

bioceramic film coated Ti samples. Optical profilometry was used to measure the surface topography 

and the average roughness value was calculated on square regions with length of 1000 μm × 1000 

μm. Vickers microhardness test was performed with a test force of 200 gf and full load period of 15 s. 

The phase constituents CaP/TiO2 bioceramic film coated Ti was determined by XRD using a Cu Kα 

(λ = 1.54 Å) radiation source over a scan range from 20° to 80° at a scan rate of 0.02°/s. Surface 

morphology and chemical composition of the film were observed by SEM coupled with EDS. 

Electrochemical and tribocorrosion measurements were performed at OCP in a unidirectional 

pin-on-disc tribometer, combined with a three-electrode cell in a PBS solution at room temperature 

(22 ± 1 ºC). Before sliding, corrosion behavior of CaP/TiO2 bioceramic film coated Ti was 
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characterized by electrochemical measurements, such as OCP evolution within 3 h, the 

potentiodynamic polarization curves from -1 V to 3 V vs. Ag/AgCl at a scan rate of 1 mV/s as well as 

EIS measurements with a sinusoidal potential variation of ± 10 mV to OCP at frequencies from 10 kHz 

down to 3.98 mHz at immersion time of 3 h. Tribocorrosion experiments were performed under 

continuous mechanical loaded condition at Fn of 500 mN, with a rotation rate of 100 rpm and a total 

rotation number of 10 000 cycles. During continuous unidirectional sliding test, OCP evolution was 

recorded following with EIS measurement at frequencies from 10 kHz down to 39.8 mHz. Friction 

coefficient was recorded in the whole sliding period. After sliding, OCP evolution was performed for 

3 h, and EIS measurement was carried out at frequencies from 10 kHz down to 3.98 mHz as that 

before sliding. The surface morphology and chemical composition inside the track area were 

characterized by SEM coupled with EDS. The topography after tribocorrosion test was observed by 

optical profilometry.  

In this chapter, both CaP bioactive film coated Ti before sintering and TO Ti_6h (prepared at 

650 ºC for 6 h without any CaP bioactive film) were used as the reference materials throughout the 

experiment. All experiments were repeated at least twice to ensure the reproducibility and the 

representative mean values were figured out in this work. 

7.3 Surface characterization 

The surface topographies of CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti 

and TO Ti_6h are shown in Figure 7-1. Comparing with CaP bioactive film coated Ti, the 

volcano-like topography keeps on the surface of CaP/TiO2 bioceramic film coated Ti, indicating that 

the sintering condition at 650 ºC for 6 h takes no collapse of CaP bioactive film. The average 

roughness value of CaP/TiO2 bioceramic film coated Ti increases from 2.01 μm to 2.37 μm and the 

microhardness value increases from 122 HV0.2 to 177 HV0.2 (see Figure 7-2), revealing that the 

sintering process slightly changes the surface topography of CaP bioactive film coated Ti and the 

higher wear resistance of CaP/TiO2 bioceramic film coated Ti occurs due to the formation of harder 

titanium oxides. As supplementary reference, TO Ti_6h exhibits a rather smooth surface with an 

average roughness value of 0.39 μm (the same as that of untreated Ti, seen in Figure 5-1), and it 

owns a harder surface with the microhardness value of 395 HV0.2. 
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Figure 7-1 Profiles of CaP/TiO2 bioceramic film coated Ti (a), CaP bioactive film coated Ti (b) and 

TO Ti_6h (c).  
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Figure 7-2 Microhardness and surface roughness of CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive film coated Ti and TO Ti_6h. 

Figure 7-3 shows the XRD patterns of CaP/TiO2 bioceramic film coated Ti, CaP bioactive film 

coated Ti and TO Ti_6h samples. To avoid the influence of the strongest peak (11.8°) of brushite and 

get more details around diffraction peak value of 40°, a scan range from 20° to 80° was used in this 

study. As illustrated in Chapter 6, typical brushite (CaHPO4·2H2O, ICDD card No. 00-011-0293) 

peaks were clearly identified in the pattern of CaP bioactive film coated Ti. The remaining small peaks 

of cp Ti (ICDD card No. 00-005-0682) indicate that the Cu Kα radiation could penetrate through CaP 

bioactive film to the cp Ti substrate. Typical rutile (TiO2, ICDD card No. 01-089-4920) peaks were 

identified in the pattern of TO Ti_6h sample, and the presense of oxygen-diffused Ti (TiO) [144] as 

well as Ti indicated that the penetration of Cu Kα radiation to the cp Ti substrate. Comparing with 

CaP bioactive film coated Ti and TO Ti_6h, all peaks of brushite disappear and typical Ca3(PO4)2 

(ICDD card No. 00-009-0169), rutile (exhibiting lower intensity than TO Ti_6h) and CaTi21O38 

(ICDD card No. 00-042-1368) peaks are identified in the pattern of CaP/TiO2 bioceramic film coated 

Ti. From XRD patterns, it is concluded that sintering process at 650 ºC for 6 h makes the major phase 

transfer from CaHPO4·2H2O to Ca3(PO4)2. Meanwhile, thermal oxidation of cp Ti results in the 

product of rutile of the substrate with different composition from that of TO Ti_6h prepared at 650 

ºC for 6 h without any CaP bioactive film. And at the interface of CaP bioactive film and cp Ti, the 

appearance of CaTi21O38 shows the element shift or replacement at high temperature. The same 

observation was found by Wei et al. [193] in the preparation of calcium titanate/titania bioceramic 

composite coatings on titanium alloy. Another calcium titanate (CaTiO3) was commonly produced 

[194] by the interaction between titanium and hydroxyapatite (HA, Ca10(PO4)6(OH)2). But in this 
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study, no peak from CaTiO3 was observed. 

 

Figure 7-3 XRD patterns of CaP/TiO2 bioceramic film coated Ti (green line), CaP bioactive film 

coated Ti (red line), TO Ti_6h (blue line) and untreated Ti (black line). 

Surface morphology and chemical composition of CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive film coated Ti and TO Ti_6h were characterized by SEM coupled with EDS analysis, as 

seen in Figure 7-4. The flower-like morphology of CaP bioactive film on cp Ti keeps after sintering at 

650 ºC for 6 h. Chemical compositions of CaP/TiO2 bioceramic film coated Ti, CaP bioactive film 

coated Ti and TO Ti_6h are noted as follows: (i) O = 40.8 wt%, P = 20.2 wt%, Ca = 25.1 wt% and Ti = 

13.9 wt% for CaP/TiO2 bioceramic film coated Ti (see Figure 7-4d); (ii) O = 52.1 wt%, P = 17.0 wt%, 

Ca = 20.3 wt% and Ti = 10.6 wt% for CaP bioactive film coated Ti (see Figure 7-4e); (iii) O = 33.6 wt% 

and Ti = 66.4 wt% for TO Ti_6h (see Figure 7-4f). Comparing with CaP bioactive film coated Ti, the 

decrease of oxygen content in CaP/TiO2 bioceramic film indicates that the elimination of crystal 

water of CaHPO4·2H2O at high temperature, even the formation of TiO2 offsets somewhat of oxygen 

decrease. The atomic ratio value of Ca/P for CaP/TiO2 bioceramic film coated film is 0.96, which is 

similar as that value (0.92) for CaP bioactive film coated Ti. As identified by XRD pattern, the 
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existence of CaTi21O38 can enhance the content of Ca in CaP/TiO2 bioceramic film, but the atomic 

ratio value of Ca/P is still lower than 1.5 the standard molar ratio value of Ca3(PO4)2. This might be 

explained by the existence of amorphous phosphates that cannot be characterized by XRD. 

 

Figure 7-4 SEM images and EDS analysis of CaP/TiO2 bioceramic film coated Ti (a, d), CaP 

bioactive film coated Ti (b, e) and TO Ti_6h (c, f). 

7.4 Corrosion behavior of CaP/TiO2 bioceramic film coated Ti under 

static condition before sliding 

Figure 7-5 shows the OCP evolution curves of CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive film coated Ti and TO Ti_6h in the PBS solution. For CaP bioactive film coated Ti, the Eoc 

value raises up quickly from -0.28 V to -0.18 V vs. Ag/AgCl after immersion for 1200 s in the PBS 

solution, following with a smooth potential increase to -0.14 V vs. Ag/AgCl at the end of immersion 

time. For TO Ti_6h, Eoc value also raises up from a higher initial starting value of -0.08 V to -0.03 V 

vs. Ag/AgCl at the end of immersion time (3 h under static condition). On the contrary, the Eoc value 

of CaP/TiO2 bioceramic film coated Ti goes down from 0.03 V to -0.04 V vs. Ag/AgCl after 

immersion for 20 min in the PBS solution. Then an insignificant potential difference of 10 mV was 

found until the end of immersion time of 3 h in this study. The decrease of Eoc during the first 20 min 

might be resulted from the penetration of electrolyte through Ca3(PO4)2/CaTi21O38 bioceramic film, 

which are more hydrophilic than TiO2 passive film or cp Ti substrate. When electrolyte reaches the 

interface between the substrate and the film, passivation occurs on cp Ti substrate, which leads to a 

slight increase of Eoc. The more noble OCP value of CaP/TiO2 bioceramic film coated Ti reveals its 

improved corrosion resistance than CaP bioactive film coated Ti before sintering. 
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Figure 7-5 OCP evolution of CaP/TiO2 bioceramic film coated Ti (green line), CaP bioactive film 

coated Ti (red line), TO Ti_6h (blue line) in the PBS solution. 

The potentiodynamic polarization curves of CaP/TiO2 bioceramic film coated Ti, CaP bioactive 

film coated Ti and TO Ti_6h measured in the potential range from -1 V to 3 V vs. Ag/AgCl after 

immersion for 3 h in the PBS solution are shown in Figure 7-6. The values of corrosion potential 

(Ecorr), specific current density at body potential of 0.4 V vs. Ag/AgCl (ibp) and specific current 

density at passive potential of 1 V vs. Ag/AgCl (ipass) are summarized in Table 7-1. The Ecorr of 

CaP/TiO2 bioceramic film coated Ti is more noble than that of CaP bioactive film coated Ti but much 

less than that of TO Ti_6h, its corresponding current density at Ecorr and even up to 0 V is the highest 

among these three samples. From Figure 7-6, no prepassive domain could be identified for the 

CaP/TiO2 bioceramic film coated Ti and TO Ti_6h, due to the formation of more resistant CaTi21O38 

and TiO2 layers on cp Ti substrate after sintering at 650 ºC for 6 h for the former and the formation of 

TiO2 and Oxygen-diffused TiOx layers on cp Ti substrate after thermal oxidation at 650 ºC for 6 h for 

the later. 

Not like the quick current density increase for CaP bioactive film coated Ti in the prepassive 
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domain, the current density keeps stable in the whole passive domain from -0.32 V to ~ 1 V vs. 

Ag/AgCl for CaP/TiO2 bioceramic film coated Ti and from 0.2 V to 1.7 V vs. Ag/AgCl for TO Ti_6h. 

It should be noticed that for TO Ti_6h, current density increases significantly at 1.7 V vs. Ag/AgCl 

and then keeps more or less stable after 2V vs. Ag/AgCl, revealing the dissolution and repassivation 

of titanium oxides in such a high potential range. Comparing with CaP bioactive film coated Ti, the 

difference of one order of magnitude in current densities of ibp and ipass for CaP/TiO2 bioceramic film 

coated Ti shows its better corrosion resistance in this potential range. But after 1 V vs. Ag/AgCl, the 

current density increases significantly and even exceeds the value of CaP bioactive film coated Ti in 

the potential range from 2.5 V to 3 V vs. Ag/AgCl. This might be resulted from the local 

concentration increase of the ions, due to the chemical transformation of Ca3(PO4)2 to CaHPO4 or 

Ca(H2PO4)2 as the following reactions: 

The anodic reaction at high potential (referred to the Pourbaix diagram of titanium/water system 

in Figure 2-8 [111]): 

                        2H2O → O2 + 4H
+
+ 4e

-
                      (7-1) 

The chemical transformations between calcium phosphate salts: 

                       Ca3(PO4)2 + 2H
+
 → 2CaHPO4 + Ca

2+
          (7-2a)  or 

                       Ca3(PO4)2 + 4H
+
 → Ca(H2PO4)2 + 2Ca

2+
       (7-2b) 
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Figure 7-6 Potentiodynamic polarization curve of CaP/TiO2 bioceramic film coated Ti (green line), 

CaP bioactive film coated Ti (red line) and TO Ti_6h (blue line) from -1 V to 3 V vs. Ag/AgCl at a 

scan rate of 1 mV/s measured at immersion time of 3 h under static condition in the PBS solution. 

 

Table 7-1 Electrochemical data obtained from potentiodynamic polarization tests measured at 

immersion time of 3 h. 

 
*ibp: specific current density at body potential of 0.4 V vs. Ag/AgCl. 

*ipass: specific current density at passive potential of 1 V vs. Ag/AgCl. 
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The Nyquist plots for CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti and TO 

Ti_6h, measured at immersion time of 3 h in the PBS solution under static condition before sliding, 

are shown in Figure 7-7a. The CaP bioactive film coated Ti exhibits only a single semicircle in the 

entire frequency range, which corresponds to the equivalent circuit of Rs(CPE||Rp) with one time 

constant as illustrated in Figure 7-8a (the same as Figure 4-3), where Rs is the solution resistance and 

Rp is the polarization resistance of CaP bioactive film coated Ti due to the barrier property of passive 

film. TO Ti_6h exhibits an irregular arc that can be divided into two semicircles. This can be 

illustrated by the equivalent circuit in Figure 7-8b with two time constants (the same as Figure 5-7b), 

where Router and Rinner correspond to the resistance of the outer porous rutile layer and the resistance 

of the inner compact oxygen-diffused layer [4, 189], respectively. But CaP/TiO2 bioceramic film 

coated Ti exhibits a more complicated irregular arc that can be divided into three semicircles: one in 

the high frequency range, one in the medium frequency range and a third in the low frequency range. 

Such three semicircles can be illustrated by the equivalent circuit in Figure 7-8c, where Rfilm 

corresponds to the resistance of the outer porous Ca3(PO4)2 layer, Roxide is the resistance of the inner 

compact CaTi21O38 and TiO2 layers and Rct is the charge transfer resistance due to the 

chemical/electrochemical reaction on cp Ti substrate, respectively. 

As illustrated before, the use of CPE rather than a pure capacitance can be expressed by Eq. 

3-10 in Chapter 3. The well agreement between the theoretical and the experimental data can be seen 

by the fitting results plotted in Figure 7-7 for all these three samples. The parameters of the 

equivalent circuits are shown in Table 7-2. Comparing with Rct, the sum of Rfilm (930 Ω) and Roxide 

(1530 Ω) is negligible that the total polarization resistance Rp for CaP/TiO2 bioceramic film coated Ti 

is equal to the value of Rct as 2.43 × 10
7
 Ω. And for TO Ti_6h, the total polarization resistance Rp is 

the sum of Router and Rinner. 

Figure 7-7b and 7-7c show the Bode plots for CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive film coated Ti and TO Ti_6h after immersion for 3 h in the PBS solution. From the Bode 

impedance plots, it is clearly observed that at the lowest frequency of 3.98 mHz in this study, the 

resistance value of TO Ti_6h is the highest in the study, and the resistance value of CaP bioactive 

film coated Ti is also higher than that of CaP/TiO2 bioceramic film coated Ti. But combined with the 

Bode phase angle plots, a phase decrease occurs for both TO Ti_6h and CaP bioactive film coated Ti. 

In contrast, a continuous increased tendency of Bode phase angle for CaP/TiO2 bioceramic film 

coated Ti indicates that higher resistance value will reach if the test frequency could get close to 0 Hz. 

The fitting results in Table 7-2 give the simulated values of both samples. And the rp value of 6.32 × 

10
7
 Ω·cm

2
 for CaP/TiO2 bioceramic film coated Ti is about 4 times of the rp value of 1.65 × 10

7
 

Ω·cm
2
 for CaP bioactive film coated Ti and more than 4 times of the rp value of 1.46 × 10

7
 Ω·cm

2
 for 

TO Ti_6h. This phenomenon shows the barrier property of CaP bioactive film is further enhanced 

after sintering at 650 ºC for 6 h by forming a CaP/TiO2 bioceramic film on cp Ti, which is also 

higher than the TO Ti_6h prepared at 650 ºC for 6 h without any CaP bioactive film. 
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Figure 7-7 Nyquist plot (a), Bode plots (b and c) for CaP/TiO2 bioceramic film coated Ti (green 

square), CaP bioactive film coated Ti (red square), TO Ti_6h (blue square) measured at immersion 

time of 3 h before sliding tests in the PBS solution. 



Chapter 7 

147 

 

 

Figure 7-8 Equivalent circuit for CaP bioactive film coated Ti (a) with one time constant, TO Ti_6h 

(b) with two time constants sand CaP/TiO2 bioceramic film coated Ti (c) with three time constants in 

the PBS solution. 

Table 7-2 Parameters of the equivalent circuit for CaP/TiO2 bioceramic film coated Ti, CaP bioactive 

film coated Ti and TO Ti_6h before sliding tests. 

 
*Rp = Rfilm + Roxide + Rct [= Rct if (Rfilm + Roxide) << Rct] for CaP/TiO2 bioceramic film coated Ti under static condition. 

*Rp = Router + Rinner for TO Ti_6h under static condition.  

7.5 Tribocorrosion behavior of CaP/TiO2 bioceramic film coated Ti 

during and after continuous unidirectional sliding test 

After immersion for 3 h in the PBS solution, tribocorrosion test of CaP/TiO2 bioceramic film 

coated Ti was performed by imposing the continuous unidirectional sliding at Fn of 500 mN with a 

rotation rate of 100 rpm. The tribocorrosion behavior of CaP bioactive film coated Ti without 

sintering treatment and tribocorrosion behavior of TO Ti_6h were also evaluated as the references. 
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The OCP evolution curves and friction coefficient curves of all three samples during sliding are shown 

in Figure 7-9.  

For CaP bioactive film coated Ti, with the onset of sliding, a sudden drop occurs from -0.14 V to 

-0.51 V vs. Ag/AgCl, the cathodic shift of Eoc in the negative direction reveals the change of surface 

state from passive to active inside the sliding track area of CaP bioactive film coated Ti. Meanwhile, 

the friction coefficient of CaP bioactive film coated Ti during sliding keeps a high value as 0.6 due to 

the continuous destruction of CaP bioactive film and/or the thin passive oxide film on cp Ti substrate. 

For CaP/TiO2 bioceramic film coated Ti, only a slight Eoc decrease of about 0.03 V occurs when 

sliding motion starts within the first 5 min. The corresponding friction coefficient during this period 

decreases quickly from 0.55 to 0.35, revealing the destruction of the outer Ca3(PO4)2 layer by the 

sliding of the harder counter body (ZrO2). After that, a stable Eoc with a continuous slight increase in 

the noble direction was observed with almost the same Eoc value as that of TO Ti_6h. Even lower 

friction coefficient of about 0.3 for CaP/TiO2 bioceramic film coated Ti can be detected until the end 

of sliding motion, it is still higher than that of TO Ti_6h (about 0.2). This reveals the effects of initial 

roughness and hardness on friction coefficient evolution during continuous sliding test. These results 

show the CaP/TiO2 bioceramic film coated Ti after sintering at 650 ºC for 6 h in the furnace has 

significantly improved corrosion and friction characteristics under mechanical loaded condition at Fn 

of 500 mN. 

  

Figure 7-9 OCP evolution (a) and friction coefficient (b) of CaP/TiO2 bioceramic film coated Ti 

(green line), CaP bioactive film coated Ti (red line) and TO Ti_6h (blue line) during continuous 

unidirectional sliding tests performed at Fn of 500 mN. 

The Nyquist plots for CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti and TO 

Ti_6h during continuous unidirectional sliding at Fn of 500 mN in the PBS solution are shown in 

Figure 7-10a. There is no doubt that the Nyquist plot for CaP bioactive film coated Ti during sliding 

test still exhibits only one single semicircle in the entire frequency range and its equivalent circuit is 

the same as illustrated in Figure 7-8a. The Nyquist plots for TO Ti_6h and CaP/TiO2 bioceramic film 



Chapter 7 

149 

 

coated Ti still have the similar comportments as those before sliding and the corresponding 

equivalent circuits are the same as illustrated in Figure 7-8b and 7-8c. It should be noticed that in the 

Bode impedance plots, the resistances during sliding tests at lowest frequency of 39.8 mHz for all 

three samples are smaller than those values measured at the same frequencies before sliding. This 

decrease phenomenon can be further proved by the fitting results (also plotted in Figure 7-10) with 

the equivalent in Figure 7-8, as seen in Table 7-3. 

 

 

Figure 7-10 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for CaP/TiO2 

bioceramic film coated Ti (green square), CaP bioactive film coated Ti (red square), TO Ti_6h (blue 

square) during continuous unidirectional sliding tests performed at Fn of 500 mN. 
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Table 7-3 Parameters of the equivalent circuit for CaP/TiO2 bioceramic film coated Ti, CaP bioactive 

film coated Ti and TO Ti_6h during sliding tests at Fn of 500 mN. 

 
*Rp = Rfilm + Roxide + Rct for CaP/TiO2 bioceramic film coated Ti under mechanical loaded condition. 

*Rp = Router + Rinner for TO Ti_6h under mechanical loaded condition. 

It is clearly observed that the Rp value decreased tremendously from 5.01 × 10
6
 Ω measured 

before sliding to 9600 Ω measured during continuous unidirectional sliding test at Fn of 500 mN for 

CaP bioactive film coated Ti. And only small Rp decrease was observed from 4.15 × 10
6
 Ω to 2.87 × 

10
6
 Ω for TO Ti_6h. For CaP/TiO2 bioceramic film coated Ti, the Rfilm value decreases from 930 Ω to 

830 Ω, and Roxide value decreases from 1530 Ω to 1480 Ω. These tiny changes can be ignored when 

comparing with the difference of Rct measured before and during sliding. From Table 7-3, the Rp 

value of 9.60 × 10
6
 Ω for CaP/TiO2 bioceramic film coated Ti was obtained by the sum of Rfilm, Roxide 

and Rct. It is smaller than the Rp value of 2.43 × 10
7
 Ω measured under static condition before sliding 

test. As illustrated in Chapter 3, with the guidance of tribocorrosion protocol for surface modified Ti, 

the specific polarization resistance, rp is obtained directly by the multiplication of Rp with the total 

exposed area, A0 in this study (see Eq. 3-40).  

The decrease of rp from 1.65 × 10
7
 Ω·cm

2
 to 3.17 × 10

4
 Ω·cm

2
 for CaP bioactive film coated Ti, 

from 1.46 × 10
7
 Ω·cm

2
 to 1.01 × 10

7
 Ω·cm

2
 for TO Ti_6h and from 6.32 × 10

7
 Ω·cm

2
 to 2.50 × 10

7
 

Ω·cm
2
 for CaP/TiO2 bioceramic film coated Ti indicate that during sliding tests, the destruction of 

film and disturbance of measured electrolyte by sliding motion of counter body (ZrO2) weaken the 

barrier properties of the previous films on cp Ti and then promote the entrance of chemical ions to 

the surface of cp Ti substrate. 

Figure 7-11 shows the OCP evolution curves of CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive film coated Ti and TO Ti_6h after sliding tests. Once the continuous unidirectional sliding 

motion stops, the Eoc value of CaP bioactive film coated Ti exhibits a strong anodic shift from -0.6 V 

to -0.2 V vs. Ag/AgCl, indicating the occurrence of repassivation of the active surface inside the 

sliding track. For TO Ti_6h, the Eoc increases continuously in the noble direction from -0.04 V to 0.1 

V vs. Ag/AgCl, indicating its high corrosion resistant property in the PBS solution. And for 

CaP/TiO2 bioceramic film coated Ti, the Eoc value with a continuous tiny increase in the noble 

direction from -0.02 V to 0.02 V vs. Ag/AgCl is presented as the similar evolution before and even 

during sliding test. This might be attributed to the continuous growth of the thin passive oxide film 
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on cp Ti substrate. 

 

Figure 7-11 OCP evolution of CaP/TiO2 bioceramic film coated Ti (green line), CaP bioactive film 

coated Ti (red line) and TO Ti_6h (blue line) after continuous unidirectional sliding tests. 

The EIS plots for CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti and TO 

Ti_6h after sliding tests for about 3 h immersion in the PBS solution are shown in Figure 7-12. The 

Nyquist plot for CaP bioactive film coated Ti still has only one single semicircle. An irregular arc 

that can be divided into two semicircles for TO Ti_6h and a more complicated irregular arc that can 

be divided into three semicircles for CaP/TiO2 bioceramic film coated Ti are still observed. The same 

equivalent circuits in Figure 7-8 are used to fit the experimental data after continuous unidirectional 

sliding tests. The fitting results are also plotted in Figure 7-12 and the parameters of the equivalent 

circuits are shown in Table 7-4. 
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Figure 7-12 Nyquist plots (a), Bode impedance plots (b) and Bode phase angle plots (c) for CaP/TiO2 

bioceramic film coated Ti (green square), CaP bioactive film coated Ti (red square), TO Ti_6h (blue 

square) after continuous unidirectional sliding tests. 
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Table 7-4 Parameters of the equivalent circuit for CaP/TiO2 bioceramic film coated Ti, CaP bioactive 

film coated Ti and TO Ti_6h after sliding tests. 

 
*Rp = Rfilm + Roxide + Rct [= Rct if (Rfilm + Roxide) << Rct] for CaP/TiO2 bioceramic film coated Ti under static condition. 

*Rp = Router + Rinner for TO Ti_6h under static condition. 

When sliding stops, repassivation occurs in the track area on CaP bioactive film coated Ti and it 

makes the rp value increases from 3.17 × 10
4
 Ω·cm

2
 to 5.79 × 10

6
 Ω·cm

2
. But for TO Ti_6h and 

CaP/TiO2 bioceramic film coated Ti, both the TiO2 film and the CaP/TiO2 bioceramic film exhibit 

excellent wear resistant properties that can protect cp Ti substrate from the severe destruction by the 

sliding motion of counter body (ZrO2). So the rp value for TO Ti_6h has no significant difference as 

1.13 × 10
7
 Ω·cm

2
 under re-static condition or as 1.01 × 10

7
 Ω·cm

2
 under mechanical loaded 

condition. The same evolution also occurs for CaP/TiO2 bioceramic film coated Ti with a rp value 

change as 3.10 × 10
7
 Ω·cm

2
 under re-static condition and 2.50 × 10

7
 Ω·cm

2
 under mechanical loaded 

condition. 

7.6 Characterization of the wear track on CaP/TiO2 bioceramic film 

coated Ti after continuous unidirectional sliding test 

Surface morphologies of CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti and 

TO Ti_6h after continuous unidirectional sliding at Fn of 500 mN were obtained by SEM, as shown 

in Figure 7-13a-c. The EDS analysis results inside the tracks for all three samples (as the local 

magnifications in the SEM images) are presented in Figure 7-13d-f, respectively. 

For CaP bioactive film modified Ti, the major CaHPO4·2H2O film has disappeared and only the 

film prints, where preferential growth of calcium phosphate took place in electrochemical deposition 

process, are clearly observed outside the track area. A track width of 0.62 mm is obtained after 10 000 

cycles of sliding. The track area consists of the removal of CaP bioactive film and the destruction of 

the thin passive film on cp Ti substrate. Chemical composition analysis results as phosphorus (P, 0.8 

wt%) and calcium (Ca, 0.4 wt%) indicate that a small amount of CaP bioactive film still stays on the 

surface of cp Ti even after the continuous removal of 10 000 cycles. 

For CaP/TiO2 bioceramic film coated Ti, except for the film removal inside the track area, the 
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major film still stays on the surface of cp Ti substrate. Even inside the track area, the remaining 

contents of P (4.1 wt%) and Ca (2.8 wt%) are still higher than those of the CaP bioactive film coated 

Ti. This confirms that the film destruction for CaP/TiO2 bioceramic film coated Ti is less after 10 000 

cycles of sliding. All remaining films inside and outside the track provide excellent corrosion and 

wear resistance during sliding test, resulting of a higher specific polarization, rp value and a lower 

friction coefficient value as illustrated in Section 7-5. 

For TO Ti_6h, the wear track is so small that only a tiny track width of 0.15 mm is observed 

after 10 000 cycles of sliding. But no surface destruction can be detected in the wear track. Chemical 

composition inside the wear track measured by EDS analysis is listed as O 33.9 wt% and Ti 66.1 

wt%, which is almost the same as the initial chemical composition as shown in Figure 7-4f. These 

results indicate that under mechanical loaded condition at Fn of 500 mN, TO Ti_6h exhibits the 

highest wear resistant property among these three samples. 

 

Figure 7-13 SEM images and EDS analysis inside the tracks of CaP/TiO2 bioceramic film coated Ti 

(a, d), CaP bioactive film coated Ti (b, e) and TO Ti_6h (c, f) after continuous unidirectional sliding 

tests at Fn of 500 mN in the PBS solution. 

The track profiles of CaP/TiO2 bioceramic film coated Ti, CaP bioactive film coated Ti and TO 

Ti_6h after continuous unidirectional sliding tests at Fn of 500 mN are shown in Figure 7-14. Due to 

the dissolution of CaHPO4·2H2O film on CaP bioactive film coated Ti, the undetected material loss 

on TO Ti_6h and the high roughness of Ca3(PO4)2 layer on CaP/TiO2 bioceramic film coated Ti, the 

track depth and track width of all three samples are difficult to identified. It seems that the track 

width of CaP/TiO2 bioceramic film coated Ti is the largest one, but it should be noticed that all 

material loss on CaP/TiO2 film coated Ti doesn’t not contain the loss of cp Ti substrate. In this case, 
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it is very hard to compare the material loss for these three samples.  

Besides the film dissolution of CaP bioactive film during immersion in the PBS solution, there 

is no doubt that the material loss for these three samples is relatively low under mechanical loaded 

condition at Fn of 500 mN in this study, revealing that CaP/TiO2 bioceramic film coated Ti, CaP 

bioactive coated Ti and TO Ti_6h are all good choices for biomedical implant applications in the 

mild loading applied parts. However, considering the long-term bioactivity, CaP/TiO2 bioceramic 

film coated Ti is regarded as the best one among these three samples. 

 

Figure 7-14 Profiles of CaP/TiO2 bioceramic film coated Ti (a), CaP bioactive film coated Ti (b) and 

TO Ti_6h (c) after continuous unidirectional sliding tests at Fn of 500 mN in the PBS solution. 

7.7 Conclusions 

Surface modification of cp Ti with electrochemical deposition of CaP bioactive film and then 

sintering at 650 ºC for 6 h to get a composite of CaP/TiO2 bioceramic film is a good method to 

improve its wear resistance and provide a long-term bioactivity. The CaP/TiO2 bioceramic film is 

mainly in the forms of Ca3(PO4)2, TiO2 and CaTi21O38 characterized by XRD. The surface roughness 

of CaP/TiO2 bioceramic film coated Ti increases slightly from increases to 2.37 μm when comparing 

with that of CaP bioactive film coated Ti as 2.01 μm. The microhardness is enhanced to 177 HV0.2 by 

the formation of harder CaTi21O38/TiO2 layers after the sintering treatment, but still less than the 

microhardness value of TO Ti_6h (about 395 HV0.2) prepared at 650 ºC for 6 h without any CaP 

bioactive film. Surface morphology/chemical composition of CaP/TiO2 bioceramic film coated Ti 

remains like the CaP bioactive film coated Ti with the same flower-like structure and the similar 

atomic ratio value of Ca/P. 

Potentiodynamic polarization measurement results show that, the Ecorr of CaP/TiO2 bioceramic 

film coated Ti is more noble than that of CaP bioactive film coated Ti but still less noble than that of 

TO Ti_6h. From the potential polarization curves, it seems like TO Ti_6h exhibits the most excellent 

corrosion resistant property in the whole test potential range from -1 V to 3 V vs. Ag/AgCl. However, 
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the effect of CaP film change on current density cannot be ignored during the test potential range. 

The lower current densities of ibp and ipass (about one order of magnitude less than those of CaP 

bioactive film coated Ti) indicate the better corrosion resistance of CaP/TiO2 bioceramic film coated 

Ti in this study. 

The OCP evolution curves before sliding under static condition, during sliding under 

mechanical loaded condition at Fn of 500 mN and after sliding under re-static condition for CaP 

bioactive film coated Ti significantly change in the whole test period, especially at the moment when 

sliding starts or sliding stops. But those curves for CaP/TiO2 bioceramic film coated Ti and TO Ti_6h 

have relative slight change in the noble direction in the whole test period, revealing that no 

destruction occurs on cp Ti substrate under the protection of CaP/TiO2 bioceramic film and TiO2 film. 

The excellent corrosion resistance can be further confirmed by the specific polarization resistance, rp 

value measured during sliding test at Fn of 500 mN. Unlike the big changes in rp value of CaP 

bioactive film coated Ti before, during and after sliding test, no depassivation/repassivation occurs 

on CaP/TiO2 bioceramic film coated Ti and TO Ti_6h. Their rp values keep relative stable (always in 

the same order of magnitude as 10
7
 Ω·cm

2
) in the whole test period. 

Under mechanical loaded condition, the lower friction coefficients for CaP/TiO2 bioceramic 

film coated Ti and TO Ti_6h in this study indicate the improved wear resistance of cp Ti with surface 

modification of CaP/TiO2 bioceramic film and TiO2 film. The remaining film inside and outside the 

track area of CaP/TiO2 bioceramic film coated Ti after sliding test also proofs its excellent wear 

resistant property. Combining with its long-term bioactivity, CaP/TiO2 bioceramic film coated Ti is 

considered to be the best choice for biomedical implant application in the mild loading applied parts. 
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Chapter 8: Culture of NiH/3T3 fibroblast cells on cp 

Ti 
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8.1 Introduction 

Titanium and its alloys have been widely used in biomedical applications such as dental and 

orthopedic implants, due to their good mechanical properties, excellent corrosion resistance and 

adequate biocompatibility. To investigate the biocompatible property of commercially pure titanium 

(cp Ti), NiH/3T3 fibroblast cells are cultured on its surface. This short study is aim to carry out a 

standard culture procedure and the primary experimental results are discussed. 

8.2 Materials and cell culture procedure 

8.2.1 Material 

Commercially pure titanium (cp Ti, grade 2) (Goodfellow Cambridge Limited, UK) specimens 

were cut into square shape of 2 cm × 2 cm × 0.2 cm, with a working surface area of 4 cm
2
. The samples 

were polished with SiC emery papers until #1200 and followed by an ultrasonic cleaning in acetone 

and then in ethanol for each 5 min.  

NiH/3T3 fibroblast cells (NiH/3T3, ATCC
®
CRL1658™) were obtained from American Type 

Culture Collection (ATCC). Culture medium of Dulbecco's Modified Eagle's Medium (DMEM), 

antibiotics (penicillin-streptomycin, PS), fetal bovine serum (FBS) and trypsin were purchased from 

Life Technologies (Carlsbad, USA); plastic wares and pipettes from TPP (Trasadingen, Switzerland). 

8.2.2 Cell culture 

To investigate the behavior of cell proliferation on cp Ti surface, the modified fibroblast cells 

NiH/3T3 with green fluorescence protein (GFP) were seeded at a density of 5 × 10
4
 cells/cm

2
 on either 

tissue culture polystyrene (TCPS) as control or cp Ti surfaces and cultured in DMEM with 10% FBS 

and 1% PS. They were maintained in a total humidified 5% CO2 incubator at 37
o
C. The enzymatic 

digestion with trypsin was used to harvest the cells. The cells were counted using Hemacytometer 

under an optical microscope (Zeiss). In this study, three samples are tested meanwhile for each analysis 

at the culture time of 1 day, 2 days, 3 days and 7 days. 
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Figure 8-1 Tissue culture test plate with surface area of 8.96 cm
2
 for each well used in this study. 

 

Culture procedure of NiH/3T3 cells 

 

 

 

 

 

 

 

 

 

 

 

Details of cell count are illustrated as following:  

(A) For cp Ti: 

1. 0.5 mL typsin is used to activate the cell and then ejected quickly; 

2. another 0.5 mL typsin is then added and put the sample inside an incubator for about 7 min to 

harvest all the cells; 

3. 1.5 mL medium of [DMEM+10%FBS] is added into previous 0.5 mL typsin, and then mix these 2 

mL solution to make the cells diffused uniformly; 

4. centrigufation of cells inside these 2 mL is done at a speed of 2000 rpm in 3 min; 
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5. pouring the solution out and get the centrifuged cell aggregate; 

6. adding 0.5 mL DMEM to make cell suspended uniformly and counting cell numbers; 

7. taking 0.2 ml out from the 0.5 mL solution and then adding 0.1 mL trypan blue as an indicator of 

dead cells (volume ratio of trypan blue and cell containing DMEM is always 1:2); 

8. counting the cell numbers in total and cell mortality 

9. from the obtained cell numbers, M, on Hemacytometer plate (volume of 1 μL as standard), the cell 

numbers in total, N, for each sample after culture can be calculated as: 

N= 3/2 M 500 = 750 M 

(B) For TCPS, cell culture area and the total cells in one plate is bigger than cp Ti. So the volume of 

each product should be increased and the procedure of counts is changed slightly as followings: 

1. 1 mL typsin is used to activate the cell and then ejected quickly; 

2. another 1 mL typsin is then added and put the sample inside an incubator for about 7 min to harvest 

all the cells; 

3. 1 mL medium of [DMEM+10%FBS] is added into previous 1 mL typsin, and then mix these 2 mL 

solution to make the cells diffused uniformly (centrifugation is not needed); 

4. taking 0.2 ml out from the 2 mL solution and then adding 0.1 mL trypan blue as an indicator of dead 

cells (volume ratio of trypan blue and cell containing DMEM is always 1:2); 

5. counting the cell numbers in total and cell mortality 

6. from the obtained cell numbers, M, on Hemacytometer plate (volume of 1 μL as standard), the cell 

numbers in total, N’, for each sample after culture can be calculated as: 

N’= 3/2 M 2000 = 3000 M 

8.3 Preliminary results 

Table 8-1 Cell numbers of NiH/3T3-GFP in 7 days. 

 



Chapter 8 

161 

 

Table 8-2 Cell viability of NiH/3T3-GFP in 7 days. 

 

  

Figure 8-2 Cell counts at different culture time on TCPS (blue) and untreated cp Ti (red). 
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Figure 8-3 Fluorescence micrographs of NiH/3T3-GFP cells on TCPS (left) and cp Ti (right) at 

different culture time. 

From the preliminary results on cp Ti without any surface modification, it can be concluded that 

this cell culture procedure is feasible and can provide an available method to investigate the 

biocompatibility of different materials like cp Ti with surface modification or other metals and their 

alloys in the application of biomedical implants. 
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Chapter 9: General conclusions and Perspectives 
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This chapter is devoted to the main conclusions obtained in this work and subsequent 

suggestions for further research. 

9.1 General conclusions 

The use of titanium and its alloys in orthopedic and dental-implant applications has increased 

tremendously in recent years. Once the titanium implants are sited in the hard bone tissues, an 

intimate contact occurs in the aggressive body fluid. Tribocorrosion, as the interplay between 

chemical, electrochemical and mechanical processes, leads to a further degradation of titanium 

implants under mechanical loaded condition rather than corrosion under static condition. This study 

has made some progress towards the understanding of fundamental tribocorrosion processes and 

material degradation mechanisms of cp Ti in tribocorrosion systems and thereafter, the modifications 

on cp Ti to improve its corrosion and tribocorrosion behavior. Some important findings are 

summarized in the followings. 

For cp Ti without any modification, its corrosion behavior was investigated under static 

condition by electrochemical measurements like OCP, EIS and potentiodynamic polarization. The 

OCP evolution and EIS results obtained at different immersion time in the PBS solution indicate the 

corrosion resistance of cp Ti is excellent in the absence of mechanical loading and showing an 

enhancement of passivation with immersion time. 

Under the guidance of the tribocorrosion protocol, continuous unidirectional sliding and 

intermittent unidirectional sliding tests were imposed to study the tribocorrosion behavior of cp Ti. 

The significant drop-down of potential and huge decrease of the specific polarization resistance 

indicate the degradation of passive film under continuous mechanical loaded condition. The periodic 

potential raise in the noble direction confirms the repassivation of cp Ti in the wear track under 

intermittent mechanical loaded condition. 

The quantitative analysis results show that the contribution of mechanical material loss is 

dominant in the total material loss of cp Ti. Under continuous mechanical loaded condition, the 

materials loss increases with the increase of Fn in the range from 1 N to 10 N. Under intermittent 

mechanical loaded condition at Fn of 5 N, the extension of tlat increases the material loss and the 

formation of passive film accelerates the mechanical removal of cp Ti. The sensitivity of the passive 

film to mechanical material loss is higher than that of the active bare material. 

From the first experimental part, it is clearly known that cp Ti is a poor wear resistant material. 

To improve its wear-corrosion property, some surface modification methods are imposed. 

For TO Ti, thermal oxidation at 650 ºC for 48 h leads to the formation of an oxide film 

throughout the surface without any spallation. The oxide film consists of rutile and oxygen diffused 
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titanium as the predominant phases, which has no effect on the average roughness but significantly 

increases the microhardness of cp Ti. 

Corrosion resistance of cp Ti is tremendously enhanced by thermal oxidation. Comparing with 

untreated Ti, TO Ti exhibits a more noble potential value, Eoc, a high polarization resistance, rp and a 

low current density in the passive domain, ipass under static condition. Even the corrosion resistance 

of untreated Ti enhances with immersion time increase but the corrosion resistance of TO Ti 

decreases with immersion time increase, it is still the TO Ti owing the higher rp value in this study. 

Under continuous mechanical loaded condition at Fn of 5 N, the impedance values rp of both TO 

Ti and untreated Ti decrease due to the removal of passive film for untreated Ti and the destruction 

of thermal oxidized film for TO Ti. Unlike the repassivation ability of cp Ti, the destruction of the 

thermal oxidized film on TO Ti is an irrecoverable process. The friction coefficient value of TO Ti is 

much lower than that of untreated Ti during the whole mechanical sliding period. Considering the 

improved corrosion resistance and the better anti-wear performance, thermal oxidation is sure to be 

regarded as an excellent method to ameliorate the corrosion and tribocorrosion behavior of cp Ti, 

especially under high mechanical loaded condition. 

For CaP bioactive film coated Ti, an electrochemical deposition method was imposed to get a 

uniform CaP bioactive film in the form of brushite (CaHPO4·2H2O) on cp Ti. An optimized 

deposition condition was selected as -1.8 V vs. Ag/AgCl for 30 min in this study. The surface 

roughness and microhardness of CaP bioactive film are very different from the values of cp Ti 

substrate. 

Corrosion resistance of cp Ti is significantly improved with the modification of CaP bioactive 

film under static condition. Like untreated Ti, the potential value, Eoc and the polarization resistance 

value, rp of CaP bioactive film coated Ti increase with immersion time, revealing that the existence 

of CaP bioactive film doesn’t change the continuous formation of passive film on cp Ti substrate. It 

should be noticed that this CaP bioactive film can be dissolved during immersion in the test 

electrolyte, but still with higher corrosion resistance than untreated Ti in this study. 

Under continuous mechanical loaded condition at Fn of 500 mN, the specific polarization 

resistance value, rp of CaP bioactive film coated Ti decreases significantly due to the dissolution and 

removal of CaP bioactive film/passive film. Meanwhile, the potential value, Eoc during sliding 

decreases quite a lot. However, considering the higher rp value than untreated Ti before, during and 

after sliding test, and the relative lower friction coefficient in the rotation number range from 2500 

cycles to 5000 cycles, CaP bioactive film coated Ti is still an attractive material in biomedical 

application as orthopedic and dental implants. 

For CaP/TiO2 bioceramic film coated Ti, a further thermal sintering step at 650 ºC for 6 h was 
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imposed on CaP bioactive film coated Ti to get a CaP/TiO2 bioceramic film mainly in the forms of 

Ca3(PO4)2, TiO2 and CaTi21O38. Surface morphology/chemical composition of CaP/TiO2 bioceramic 

film coated Ti remains like the CaP bioactive film coated Ti with the same flower-like structure and 

the similar atomic ratio value of Ca/P. 

Corrosion resistance of CaP/TiO2 bioceramic film coated Ti is considered to be the best one by 

comparing the specific polarization resistance, rp with all other samples, like cp Ti, CaP bioactive 

film coated Ti and TO Ti_6h prepared also at 650 ºC for 6 h without any CaP bioactive film. The 

lower current densities of ibp and ipass indicate the better corrosion resistance of CaP/TiO2 bioceramic 

film coated Ti in this study. 

Unlike CaP bioactive film coated Ti, OCP evolution curves before, during and after sliding for 

CaP/TiO2 bioceramic film coated Ti and TO Ti_6h have relative slight change in the noble direction 

in the whole test period, revealing that no destruction occurs on cp Ti substrate under the protection 

of CaP/TiO2 bioceramic film and TiO2 film. The excellent corrosion resistance can be further 

confirmed by the high specific polarization resistance, rp value (above 10
7
 Ω·cm

2
) measured during 

sliding test at Fn of 500 mN. 

Under mechanical loaded condition, the lower friction coefficients for CaP/TiO2 bioceramic 

film coated Ti and TO Ti_6h in this study indicate the improved wear resistance of cp Ti with surface 

modification of CaP/TiO2 bioceramic film and TiO2 film. The remaining film inside and outside the 

track area of CaP/TiO2 bioceramic film coated Ti after sliding test also proofs its excellent wear 

resistant property. Combining with its long-term bioactivity, CaP/TiO2 bioceramic film coated Ti is 

considered to be the best choice for biomedical implant application in the mild loading applied parts. 

A feasible cell culture procedure was assessed, using the NiH/3T3 fibroblast cells on cp Ti 

without any surface modification. The cell proliferation on cp Ti is well accepted in the preliminary 

study. 

9.2 Perspectives 

Corrosion and tribocorrosion behavior of cp Ti is a complicated and interesting process, 

especially for those materials with surface modifications. Although the findings from this work are 

exiting and useful to the understanding and the development of cp Ti and even its alloys as 

biomedical implant materials, several new questions have been proposed. And some directions are 

recommended to continue this study in future work, as listed below: 

For cp Ti without any modification, the current study is based on a tribocorrosion protocol for 

passivated material. However, this protocol is not available to investigate the surface modified 

passivated substrate, due to the destruction and passivation/repassivation behavior under the 
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modification layers is different from that of untreated materials. The protocol might be further 

ameliorated with respect to more complicated surface state. 

An important concern of the use of metallic implants is the influence of released wear debris 

and metal ions to patients. In this study, it is clearly to observe the wear debris after sliding test on 

untreated Ti, its exact effect on corrosion and tribocorrosion behavior of cp Ti should be investigated. 

The investigation of Ca
2+

 and HPO4
2-

/PO4
3-

 ions dissolution from CaP bioactive film coated Ti or 

CaP/TiO2 bioceramic film coated Ti and the corresponding influence on corrosion and tribocorrosion 

behavior of cp Ti substrate is also necessary. 

The electrochemical deposition process used in current study should be developed. Some 

appropriate parameters might exist to directly obtain HA film from calcium phosphate containing 

precursor. Other deposition methods can also be used to get a bioactive film on cp Ti to improve its 

corrosion and tribocorrosion behavior. And further investigation of the effect of different surface 

modification methods on corrosion and tribocorrosion behavior of cp Ti under different mechanical 

solicitation conditions is also important to guide the use of biomedical implants. 

Considering the application of cp Ti in biomaterial field, the biocompatibility and bioactivity of 

untreated and surface modified Ti are essential. The culture of fibroblast and osteoblast cells on the 

surface of biomedical implant materials can give a supplementary instruction in materials selection. 

A cell culture method is proposed at the end of this work and some preliminary results of NiH/3T3 

cell culture on cp Ti without any modification are presented, as seen in Annex. Future work can be 

concerned with the amelioration of this cell culture method and then investigate the effect of surface 

modification on the proliferation and viability of cells. 
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Resume 

Fonctionnalisations d’une surface de Titane commercialement pur en vue d’applications 

biomédicales : Une triple approche combinant corrosion, tribocorrosion et biologie 

La tribocorrosion peut être définie comme l’ tude de l’influence des facteurs environnementaux 

(chimiques et/ou électrochimiques) et mécanique (frottement) sur le comportement tribologique de 

surfaces en mouvement relatifs. 

En raison de leurs caractéristiques particulières: performances mécaniques, associées à une faible 

densité, bonne tenue à la corrosion, biocompatibilité, le titane et ses alliages sont souvent utilisés 

dans le domaine médical comme implants dentaires et orthopédiques. Cependant, leur faible 

résistance vis-à-vis du frottement en milieu agressif et plus spécifiquement biologique reste un frein 

à leur usage courant dans le domaine prothétique. 

Pour améliorer la résistance à la corrosion et à l'usure du titane et de ses alliages, différentes 

méthodes de modification de la surface ont été proposées durant ces dernières décennies. 

Dans ce cadre, le but de ce travail est de comparer les comportements en corrosion et tribocorrosion 

du titane commercialement pur (cp Ti), avec ce même matériau ayant subi au préalable les 

traitements suivants :  

- soit une étape d'oxydation thermique à 650 °C à l’air durant 48 h (formation d’un film 

d'oxyde de titane (TiO2) en surface),  

- soit  un dépôt électrochimique de calcium phosphate (CaP) en surface,  

- soit  un dépôt électrochimique de calcium phosphate (CaP) suivi d’une  tape d’oxydation 

thermique à 650 °C à l’air durant 6 h (formation d’un d pôt de type CaP/TiO2 en surface). 

Les phases cristallines des films modifiés ont été identifiées par diffraction des rayons X (XRD). La 

microscopie électronique à balayage (MEB) en combinaison avec la spectroscopie à dispersion 

d'énergie (EDS) a été utilisée pour caractériser la morphologie et la composition de ces films. 

Le comportement en corrosion pure des échantillons cp Ti avec ou sans modifications de surface à 

été étudié in situ à partir des mesures électrochimiques de suivi du potentiel en circuit ouvert (OCP), 

de la spectroscopie d'impédance électrochimique (EIS) et du tracé de courbes de polarisation 

potentio-dynamiques. 

Le comportement en tribocorrosion à été étudié quant à lui à l'aide d'un tribomètre de type 

pion-disque apte à travailler en milieu aqueux et permettant outre l’enregistrement des paramètres 

tribologiques classiques, la mise en œuvre in situ des techniques  lectrochimiques utilis es lors de 

l’ tude en corrosion pure. 

Caract risation et analyses de la surface(composition, morphologie, rugosit …) sont effectu es avant 

et après chaque étude de comportement (corrosion et tribocorrosion). 

Un protocole pour la culture des cellules sur la surface de titane a été validé, en se basant sur les 

résultats expérimentaux préliminaires.  

Mots clés: corrosion, tribocorrosion, biological, cp Ti, thermal oxidation, CaP bioactive film. 
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Surface treated cp-titanium for biomedical applications: a combined corrosion, tribocorrosion 

and biological approach 

Tribocorrosion is defined as the study of the interplay between chemical, electrochemical and 

mechanical processes that leads to a degradation of passivating materials in a corrosive environment. 

Due to the low density, excellent mechanical properties, high corrosion resistance and good 

biocompatibility, titanium and its alloys are widely used as dental and orthopedic implants. However, 

the poor wear resistant and bio-inert properties limit their further development as more efficient and 

economic biomedical implants. 

To improve the corrosion-wear resistance and even bioactivity of metallic implants, different surface 

modification methods are imposed in the past decades. 

The aim of this work is to provide a deep insight in the area of corrosion and tribocorrosion behavior 

of commercially pure titanium (cp Ti) under the guidance of a tribocorrosion protocol for passivating 

materials. And then three different surface modification treatments, as:  

- one-step thermal oxidation at 650 °C for 48 h  in air atmosphere to form a titania (TiO2) film 

on the surface of cp Ti. 

- one-step electrochemical deposition of calcium phosphate (CaP) bioactive film on the surface 

of cp Ti. 

- electrochemical deposition of CaP bioactive film followed by thermal oxidation at 650 °C for 

6 h in air atmosphere to form a CaP/TiO2 bioceramic film on cp Ti surface. 

The crystalline phases of the modified films were identified by X-ray diffraction (XRD). Scanning 

electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS) was used to 

characterize the morphology and composition of these films on cp Ti surface. 

In situ electrochemical measurements, like open circuit potential (OCP), electrochemical impedance 

spectroscopy (EIS) and potentiodynamic polarization are used to characterize the corrosion behavior 

of cp Ti samples without or with surface modification. 

The tribocorrosion behavior was investigated in an aqueous environment by combining a pin-on-disc 

tribometer with the in situ electrochemical equipment. The classical tribological parameters could be 

also recorded under mechanical loaded condition. 

Surface characterization and analysis (like chemical composition, morphology, roughness...) are 

carried out before and after each corrosion and tribocorrosion test. 

A protocol for the culture of cells on the surface of titanium was validated, basing on the preliminary 

experimental results. 

Keywords: corrosion, tribocorrosion, cp Ti, thermal oxidation, CaP bioactive film 
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