
HAL Id: tel-01127384
https://theses.hal.science/tel-01127384

Submitted on 7 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of multimedia applications on embedded
multicore processors

Elias Michel Baaklini

To cite this version:
Elias Michel Baaklini. Optimization of multimedia applications on embedded multicore processors.
Other. Université de Valenciennes et du Hainaut-Cambresis; Arab open university. Lebanon branch
(Antelias, Liban), 2014. English. �NNT : 2014VALE0004�. �tel-01127384�

https://theses.hal.science/tel-01127384
https://hal.archives-ouvertes.fr

Thèse de doctorat

Pour obtenir le grade de Docteur de l’Université de

VALENCIENNES ET DU HAINAUT-CAMBRESIS

et de l’ARAB OPEN UNIVERSITY, LIBAN

Discipline : Informatique

Présentée et soutenue par Elias Michel, Baaklini.

Le 12/02/2014, à Valenciennes, France.

Ecole doctorale :

Sciences Pour l’Ingénieur (SPI), Collège Doctoral Lille Nord de France

Equipe de recherche, laboratoire :

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines (LAMIH)

Optimisation des Applications Multimédia sur des Processeurs

Multicoeurs Embarqués

JURY

Président du jury

- Artiba, Abdelhakim, Professeur, Université de Valenciennes, France.

Rapporteurs

- Goossens, Bernard, Professeur, Université de Perpignan, France.
- Diguet, Jean-Philippe, Docteur, Directeur de recherche CNRS, LAB-STICC, Lorient, France.

Examinateurs

- Yurdakul, Arda, Professeur, Bogazici University, Istanbul, Turquie.
- Artiba, Abdelhakim, Professeur, Université de Valenciennes, France.

Directeur de thèse
- Niar, Smail, Professeur, LAMIH, Université de Valenciennes, Valenciennes, France.

Co-encadrant
- Sbeity, Hassan, Assistant Professor, Arab Open University, Beyrouth, Liban.

Optimization of Multimedia

Applications on Embedded

Multicore Processors

Elias Michel Baaklini

University of Valenciennes

France

A thesis submitted for the degree of

Doctor of Philosophy

February 2014

mailto:elias.baaklini@gmail.com
http://www.univ-valenciennes.fr
http://www.univ-valenciennes.fr

Acknowledgments

The work presented in this thesis was carried out in the computer

science departments at the University of Valenciennes in France and

the Arab Open University in Lebanon. I would like to thank all the

people who made this research successful.

In the first place, I would like to show my greatest gratitude to my

thesis director Smail Niar, professor at University of Valenciennes,

France, and to my supervisor Hassan Sbeity, assistant professor at

Arab Open University in Beirut, Lebanon, for their continuous gui-

dance, inspiration, and motivation.

Moreover, I would like to deeply thank my reviewers, Bernard Goos-

sens, professor at University of Perpignan, and Jean-Philippe Diguet,

research director at LAB-STICC in Lorient, for reviewing, correcting,

and enhancing my thesis dissertation with their detailed comments

and constructive feedback.

In addition, I would like to thank and to show my appreciation to

my examiners, Arda Yurdakul, professor at Bogazici University in

Istanbul, Turkey, and Abdelhakim Artiba, professor at University of

Valenciennes, France.

Furthermore, I cannot forget all the support of my friends and col-

leagues who helped me during my long journey. Thank you all for

your company and assistance.

Finally, I am very thankful for the valuable support of my family.

Special gratitude goes to my mother, Fairouz, for her permanent love

and encouragement.

I would like to dedicate this PhD thesis to my loving mother Fairouz

and to my late father Michel.

Elias Baaklini

Résumé

L’utilisation de plusieurs cœurs pour l’exécution des applications mo-

biles sera l’approche dominante dans les systèmes embarqués pour les

prochaines années. Cette approche permet en générale d’augmenter

les performances du système sans augmenter la vitesse de l’horloge.

Grace à cela, la consommation d’énergie reste modérée. Toutefois, la

concurrence entre les tâches doit être exploitée afin d’améliorer les per-

formances du système dans les différentes situations ou l’application

peut s’exécuter.

Les applications multimédias comme la vidéoconférence ou la vidéo

haute définition, ont de nombreuses nouvelles fonctionnalités qui néce-

ssitent des calculs complexes par rapport aux normes précédentes de

codage vidéo. Ces applications créent une charge de travail très impor-

tante sur les systèmes multiprocesseurs. L’exploitation du parallélisme

pour les applications multimédia, comme le codec vidéo H.264/AVC,

peut se faire à différents niveaux : au niveau de données ou bien au

niveau tâches.

Dans le cadre de cette thèse de doctorat, nous proposons de nouvelles

solutions pour une meilleure exploitation du parallélisme dans les ap-

plications multimédia sur des systèmes embarqués ayant une architec-

ture parallèle symétrique (ou SMP pour Symmetric Multi-Processor).

Des approches innovantes pour le décodeur H.264/AVC qui traitent

des composantes de couleur et des blocs de l’image en parallèle sont

proposées et expérimentées.

Mots Clés : Multimédia, Standard H.264/AVC, Compression Vidéo,

Optimisation, Calcul Parallèle, Systèmes Embarqués, Processeurs Mul-

ticoeurs.

Abstract

Parallel computing is currently the dominating architecture in em-

bedded systems. Concurrency improves the performance of the sys-

tem rather without increasing the clock speed which affects the power

consumption of the system. However, concurrency needs to be exploi-

ted in order to improve the system performance in different applica-

tions environments.

Multimedia applications (real-time conversational services such as vi-

deo conferencing, video phone, etc.) have many new features that re-

quire complex computations compared to previous video coding stan-

dards. These applications have a challenging workload for future mul-

tiprocessors. Exploiting parallelism in multimedia applications can be

done at data and functional levels or using different instruction sets

and architectures.

In this research, we design new parallel algorithms and mapping me-

thodologies in order to exploit the natural existence of parallelism in

multimedia applications, specifically the H.264/AVC video decoder.

We mainly target symmetric shared-memory multiprocessors (SMPs)

for embedded devices such as ARM Cortex-A9 multicore chips. We

evaluate our novel parallel algorithms of the H.264/AVC video decoder

on different levels : memory load, energy consumption, and execution

time.

Keywords : Multimedia, H.264/AVC Standard, Video Compression,

Optimization, Parallel Computing, Embedded Systems, Multicore Pro-

cessors.

Contents

Contents ix

List of Figures xiv

Nomenclature xvii

1 Introduction 2

1.1 Background and Motivation . 2

1.2 Problem Statement . 3

1.3 Existing Solutions . 4

1.4 Contributions . 4

1.5 Outline . 5

2 Parallel Computing 6

2.1 Introduction . 6

2.2 Types of Parallelism . 7

2.2.1 Classification of Processors 7

2.2.2 Instruction-Level Parallelism 9

2.2.3 Data-Level Parallelism . 9

2.2.4 Thread-Level Parallelism 11

2.3 Memory Architecture for Parallel Systems 17

2.3.1 Main Memory . 17

2.3.2 Processor Communication 18

2.3.3 Memory Access . 18

2.3.4 Caches . 18

ix

CONTENTS CONTENTS

2.3.5 Cache Coherency . 19

2.4 Parallel Applications . 21

2.4.1 Amdahl’s Law . 21

2.4.2 Challenges of Parallel Processing 22

2.4.3 Programming Languages 25

2.5 Conclusion . 27

3 H.264/AVC Standard Overview 28

3.1 Introduction . 28

3.2 Video Coding Review . 29

3.2.1 Digital Video . 29

3.2.2 Block Based Video Coding 32

3.2.3 Video Coding Standards 37

3.3 Standard Development . 39

3.4 Features and Tools . 40

3.4.1 Layer Structure . 41

3.4.2 Profiles and Levels . 41

3.4.3 Picture Format . 42

3.5 Video Coding . 43

3.5.1 Encoder . 43

3.5.2 Decoder . 45

3.6 Coding Tools and Functions . 45

3.6.1 Intra Prediction . 46

3.6.2 Inter Prediction . 47

3.6.3 Transform and Quantization 50

3.6.4 Skipped Macroblocks . 50

3.6.5 Deblocking Filter . 51

3.7 Parallel Implementations . 51

3.7.1 Slice-Level . 51

3.7.2 Macroblock-Level . 52

3.7.3 Deblocking Filter . 53

3.7.4 Discussion . 53

3.8 Summary and Conclusion . 54

x

CONTENTS CONTENTS

4 H.264 Color Components Parallel Decoding 56

4.1 Introduction . 56

4.2 Parallel Decoding . 57

4.2.1 Stages Decomposition . 57

4.2.2 Color Components Processing 58

4.2.3 Parallel Execution and Synchronization 59

4.2.4 Pipeline Execution . 62

4.3 Experiments with JM H.264 Reference Software 63

4.3.1 MPARM simulator and H.264 porting 64

4.3.2 Profiling H.264 Stages . 64

4.3.3 Discussion . 64

4.3.4 Speedup using Parallelism 65

4.4 Experiments with FFmpeg H.264 Decoder 66

4.4.1 Multi2Sim Simulator . 66

4.4.2 FFmpeg H.264 Implementation 67

4.4.3 Speedup using Parallelism 67

4.4.4 Power Efficiency . 69

4.4.5 FFmpeg Multi-Threaded Version 70

4.5 Conclusion . 71

5 H.264 Macroblocks Rows Parallel Decoding 74

5.1 Introduction . 74

5.2 Decoder Decomposition . 76

5.2.1 Decoding Stages . 76

5.2.2 Macroblocks . 77

5.3 Parallel Implementation . 78

5.3.1 Parallel Motion Compensation 79

5.3.2 Macroblocks Dependencies 80

5.3.3 IDR Frame Frequency . 81

5.3.4 Macroblock Dependency Check Algorithm 82

5.3.5 Macroblocks Partitioning 84

5.3.6 Scalability of Parallel Motion Compensation 85

5.3.7 Parallel Deblocking Filter 86

xi

CONTENTS CONTENTS

5.4 Experimental Results on Multicore Systems 87

5.4.1 Parallel Execution . 88

5.4.2 Environment and Configurations 88

5.4.3 Results for Parallel Motion Compensation 89

5.4.4 Comparison with Related Work 91

5.4.5 Results for Parallel Deblocking Filter 93

5.4.6 Results for Overall Execution 93

5.4.7 Simulated Execution . 97

5.4.8 Theoretical Speedup . 97

5.5 Parallel Execution on Graphics Processor 99

5.5.1 General-Purpose Graphical Processing Unit 99

5.5.2 OpenCL C Programming Language 100

5.5.3 Experimental Results . 101

5.6 Conclusion . 103

6 Parallel Cache Efficiency 104

6.1 Introduction . 104

6.2 Parallel Environment . 105

6.2.1 Processor Architecture . 105

6.2.2 Parallel Algorithms . 105

6.3 Multicore Cache Memory . 106

6.3.1 L1 Cache Misses Statistics 106

6.3.2 Common L1 Cache Misses among Cores 107

6.3.3 Parallel Cache Efficiency 110

6.4 Cache Optimization . 111

6.4.1 Prefetching Algorithm . 111

6.4.2 Performance Efficiency . 113

6.5 Instructions and Cycles Statistics 114

6.6 Conclusion . 115

7 Conclusion 116

8 Résumé en Français 118

8.1 Introduction . 118

xii

CONTENTS CONTENTS

8.1.1 Contexte . 118

8.1.2 Déclaration du Problème 119

8.1.3 Solutions Existantes . 119

8.1.4 Contributions . 120

8.1.5 Plan . 120

8.2 Programmation Parallèle . 121

8.2.1 Processeurs Multicœurs 122

8.3 Standard H.264 . 123

8.3.1 Décodeur H.264 . 124

8.4 Décodage des Couleurs en Parallèle 124

8.4.1 Composants de Couleurs 125

8.4.2 Exécution en Parallèle and Synchronisation 126

8.4.3 Exécution en Mode Pipeline 128

8.4.4 Résultats . 129

8.5 Décodage de Macroblocks en Parallèle 131

8.5.1 Compensation des Mouvements en Parallèle 132

8.5.2 Algorithme de Vérification des Dépendances entre les Mac-

roblocks . 134

8.5.3 Résultats de Compensation des Mouvements en Parallèle . 135

8.5.4 Résultats pour l’Exécution Complète 137

8.6 Conclusion . 139

References 142

xiii

List of Figures

2.1 Basic structure of a vector architecture (VMIPS). The scalar archi-

tecture is similar to MIPS. The processor contains eight 64-element

vector registers and all functional units are vector functional units. 10

2.2 Basic structure of a Symmetric MultiProcessor (SMP) with a single

address space on the same physical memory shared by all proces-

sors. This multiprocessor architecture is also called Uniform Mem-

ory Access (UMA). 13

2.3 Multicore architecture of the ARM Cortex-A9 multiprocessor with

an L2 cache shard by 4 cores each having an L1 private cache. . . 14

2.4 Basic structure of a Distributed MultiProcessor (DSM) with a sin-

gle address space composed of several physical memories shared

by all processors. This multiprocessor architecture is also called

Non-Uniform Memory Access (NUMA). 16

2.5 Graphical representation of Amdahl’s law. The number of threads

are displayed horizontally and its corresponding speedup vertically.

The values depend on the amount in percentage of the sequential

program that can be executed in parallel. 22

3.1 Digital Video Sampling. 30

3.2 Progressive and Interlaced Video. 31

3.3 Sub-sampling patterns for chrominance components. 32

3.4 Block based encoder diagram. 33

3.5 Motion estimation and compensation of an n x n block. 34

3.6 H264 Encoder. 44

3.7 H264 Decoder. 45

xiv

LIST OF FIGURES LIST OF FIGURES

3.8 Macroblock and sub-macroblock partitions. 48

3.9 Current and neighboring blocks (macroblock partition) used for

motion vector prediction. 49

4.1 Simplified H.264 decoding process 58

4.2 H.264 decoding stages workload percentages of the baseline profile. 59

4.3 YUV 4:2:0 color components sampling format 60

4.4 H.264 parallel color components decoding on a dual core processor 61

4.5 H.264 parallel color components decoding on a quad core processor 62

4.6 H.264 pipeline execution on a 4 cores multiprocessor 63

4.7 Execution speedup per benchmark and resolution 65

4.8 Speedup for parallel luma and chroma decoding, pipelined entropy

decoder, and combined pipeline and parallel decoding. 68

4.9 Energy consumption decrease with parallel-pipeline decoding. . . 69

4.10 Speedup increase for FFmpeg multithread version. 70

5.1 H.264 decoding process . 76

5.2 H.264 decoding stages workload percentages 77

5.3 Decoding groups of macroblock rows in parallel using N threads . 78

5.4 Dependencies between macroblocks 80

5.5 Macroblock row-based parallel algorithm. In step 1, all the mac-

roblocks are scanned and I-MBs are identified. In step 2, rows of

P-MBs and B-MBs are processed simultaneously. Finally in step

3, the remaining I-MBs are decoded sequentially. 83

5.6 Parallel decoding of macroblocks mapped to (a) 4 cores and (b) 8

cores . 84

5.7 Sequential and parallel deblocking filter of macroblocks in the

H.264 decoder . 86

5.8 Speedup of H.264 parallel execution of the motion compensation

stage. 90

5.9 Speedup of H.264 parallel execution of the deblocking filter. . . . 92

5.10 Overall H.264 decoding stages with parallel algorithms. 93

5.11 Total speedup for the complete decoding process on multicore pro-

cessor. 95

xv

LIST OF FIGURES LIST OF FIGURES

5.12 Total energy saving for the complete decoding process on multicore

processor. 96

5.13 Speedup of H.264 parallel execution using the Multi2Sim simulator. 96

5.14 Theoretical speedup of H.264 parallel execution. 98

5.15 Architecture of the graphical processor AMD Radeon HD 6850. . 99

5.16 OpenCL parallel model. 100

5.17 Complete H.264 decoding stages with parallel motion compensa-

tion on graphics processors (GPU). 102

5.18 Speedup of H.264 parallel execution of motion compensation on

graphics processor using CIF and HD video sequences. 102

6.1 Multicore architecture of the ARM Cortex-A9 multiprocessor with

an L2 cache shard by 4 cores each having an L1 private cache. . . 105

6.2 Total L1 cache misses for sequential, row-based and wavefront par-

allel implementations. 106

6.3 L1 cache misses per core for row-based and wavefront parallel im-

plementations of the shields video sequence. 107

6.4 Common L1 cache misses between each 2 cores for row-based and

wavefront parallel algorithms. 108

6.5 Percentage distribution depending on cycles difference of common

L1 cache misses between each 2 core for row-based parallel imple-

mentation. 109

6.6 Percentage distribution depending on cycles difference of common

L1 cache misses between each 2 core for wavefront parallel imple-

mentation. 109

6.7 Prefetching algorithm for the two parallel motion compensation

techniques. 111

6.8 Speedup percentage for the row-based and wavefront parallel im-

plementations depending on the successful rate of data prefetching. 113

6.9 Total number of cycles for row-based and wavefront parallel im-

plementations. 114

6.10 Average Instructions per Cycle (IPC) for sequential, row-based and

wavefront parallel implementations. 115

xvi

LIST OF FIGURES LIST OF FIGURES

8.1 Architecture du multiprocesseur ARM Cortex-A9 avec 4 noyaux . 122

8.2 Processus du décodeur H.264 . 123

8.3 Charges moyennes des étapes du décodeur H.264 sur le processeur

ARM Cortex-A9 . 125

8.4 Format 4:2:0 des échantillons de couleurs 125

8.5 Décodage H.264 des composantes des couleurs en parallèle sur un

processeur dual-core . 127

8.6 Décodage H.264 des composantes des couleurs en parallèle sur un

processeur quad-core . 128

8.7 Exécution en pipeline H.264 sur un processeur quad-core 130

8.8 Décodage des lignes de macroblocks en parallèle 132

8.9 Algorithme parallèle de la compensation des mouvements 133

8.10 Accélération de l’exécution parallèle de l’étape Motion Compensa-

tion sur la plateforme ARM Cortex-A9 avec 4 cores 135

8.11 Exécution parallèle globale du H.264/AVC 136

8.12 Accélération totale du décodeur H.264 sur ARM Cortex-A9 avec 4

cores . 137

8.13 Économies Globales de Consommation d’Energie 138

xvii

Chapter 1

Introduction

1.1 Background and Motivation

Nowadays, mobile devices supporting multimedia applications are pervasive

in our modern world. Most hand-held devices are equipped with high resolution

screens and fast multicore embedded processors. Dual and quad cores are found in

recent smartphones and tablet devices like high end devices offered by Samsung

and Apple [5, 53]. ARM Cortex-A9 processors can have up to 4 cores per chip

[6]. Cortex-A15 processors can have up to 8 cores per chip (each chip can con-

tain 2 clusters where each cluster can have up to 4 cores) [7]. On the other hand,

applications do not benefit automatically from these powerful top-of-the-line pro-

cessors. Even with new cutting-edge processors, video resolutions are increasing

rapidly which require more processing time and consequently more energy con-

sumption. Operating systems simply map independent applications, or multiple

threads within an application, on different cores. Therefore, one application alone

may not benefit from the additional resources available unless it is designed to

execute in parallel. Thus, sequential applications need to be redesigned and re-

compiled in order to support parallelism. The process of parallelization faces many

challenges like dependencies, synchronization, data coherency, etc.

Video players, digital cameras, televisions, and phones support complex video

codecs with high resolutions. However, few multimedia applications benefit from

the computational potentials that multicore processors offer in these emerging

2

1. INTRODUCTION

powerful embedded devices. Video coding standards, like H.264/AVC [26] and

HEVC [63], adopted complex algorithms in order to achieve better compression

and to lower transmission bitrates. The additional complexity of these algorithms

has negative impacts on execution time and energy consumption.

H.264/AVC [26] is currently the most widely used video compression stan-

dard for recording, compressing, and distributing high definition (HD) videos.

The standard’s first draft was released in 2003 and its latest version in 2012

[26]. Most HD video streaming websites like YouTube currently support H.264 as

their default video codec [71]. H.264 is a high computational video compression

standard that emerged as a result of the joint effort for Moving Picture Experts

Group (MPEG) and the Video Coding Experts Group (VCEG). The H.264 stan-

dard offers better compression and higher quality compared to other standards

like MPEG-2 [65]. This increase in compression results is the cost of high com-

putational blocks like Deblocking Filters (DF) and complex Entropy Decoding

techniques.

In our research, we choose the H.264/AVC video decoder [26] as a high compu-

tational multimedia application to be parallelized. We solve the problem of high

complexity of the H.264 decoder using parallel execution on multicore embedded

processors.

1.2 Problem Statement

H.264/AVC [26] is a high computational video coding standard. The codec

achieves a good compression at the expense of a slow performance. Even with

new cutting-edge processors, video resolutions are increasing rapidly which re-

quire more processing time and consequently more energy consumption. One of

the best time and energy optimization strategies is to execute an application on

parallel cores. Converting or redesigning an application in order to be executed

in parallel present many challenges like dependencies, synchronization, data co-

herency, shared memory, etc. In our research, we shall use the H.264 video decoder

as a complex multimedia application to be paralleled. We solve the problem of

high complexity of the H.264 decoder using parallel execution on multicore em-

bedded processors in order to decrease execution time and energy consumption.

3

1. INTRODUCTION

1.3 Existing Solutions

Many parallel implementations of the H.264 decoder exist ranging from par-

allel decoding of macroblocks (fine-grain implementation) till parallel decoding of

groups of pictures (coarse-grain implementation). A macroblock is a 16x16 square

pixel component of an image in a video sequence. A macroblock can also be di-

vided into sub-blocks of smaller size. Macroblock parallel decoding is highly scal-

able since many independent macroblocks can be processed in parallel. However,

dependencies and huge overheads are created as a result of memory communi-

cation and execution synchronization between macroblocks. On the other hand,

parallel decoding of groups of pictures require large memory especially for high

definition video sequences. In addition, they have a lower scalability than parallel

macroblock decoding because of the small number of groups of frames that can

be decoded in parallel.

1.4 Contributions

Our approaches to decode H.264 videos in parallel range from single mac-

roblock level until rows of macroblocks. Additional techniques are used to mini-

mize the overhead of the sequential part like the entropy decoder.

At first, we separate the decoding process between color components for each

data sample of every macroblock. Then we apply a pipeline in order to minimize

the stall time caused by synchronization of parallel cores. The parallel imple-

mentation is experimented on dual and quad core embedded processor simulator.

In addition to execution time and memory usage statistics, power consumption

results are presented using an advanced power estimation tool.

For our second approach, we process rows of independent macroblocks in

parallel using a innovative algorithm that minimizes synchronization overhead

without adding additional steps to the decoder. The motion compensation stage

is processed using a proposed row-based algorithm and the deblocking filter stage

using the so-called wavefront algorithm. This level of parallel execution that is

based on macroblock rows may be considered between the coarse-grain and the

fine-grain parallel approaches offering a balance between large overheads and high

4

1. INTRODUCTION

scalability of previous solutions. The proposed parallel algorithm is evaluated on

a multicore simulator and on real-board platforms with multicore and graphics

processors.

Finally, a detailed study is provided for the impact of parallel algorithms

on cache misses in symmetric multiprocessors. Two parallel algorithms for the

motion compensation of the H.264 decoder are experimented and analyzed. A

prefetching algorithm is proposed in order to minimize the cache misses caused

by sharing data between cores.

In the following section, the outline of the thesis with a brief description for

every chapter is provided.

1.5 Outline

In chapter 2, we present parallel computing concepts in terms of parallelism,

memory architecture, and applications. In chapter 3, an overview of the H.264

standard is presented. The standard’s coding process with it features and tools

are explained in details. In addition, existing parallel implementations and related

work for the H.264 standard are also presented. Our first H.264 parallel imple-

mentations that is based on color components parallel decoding is explained and

evaluated in chapter 4. Speedup in execution time and energy saving statistics

are illustrated. In chapter 5, another parallel algorithm for the H.264 decoder

is described and experimented. Groups of macroblocks are processed in parallel

on different cores. The algorithm is evaluated on real-board multicore platforms

and on graphics processors. Simulation results with high number of parallel cores

are also presented and discussed. In chapter 6, a cache optimization technique

is proposed that is based on prefetching data of parallel macroblocks. Finally, a

conclusion summarizes our contribution in the last chapter.

5

Chapter 2

Parallel Computing

2.1 Introduction

Parallel computing is a form of computer processing when tasks are executed

concurrently at the same time [2]. There are different levels of parallel computing:

instruction-level parallelism, data-level parallelism, and thread-level parallelism.

Parallelism was mainly used in high-performance computing servers and super-

computers. A decade ago, parallel computing emerged as a solution to frequency

scaling due to the physical constraints [48]. As energy consumption by computers

has become an important factor in computer systems, parallel computing became

the dominant model in computer architecture, mainly in multicore processors. [8]

Several types of parallel computers exist like multicore and multiprocessor

computers which have multiple processors in a single machine. Clusters and grids

use multiple computers to work on the same task simultaneously. Specialized par-

allel computer architectures like GPUs are also used with traditional processors

in order to accelerate specific tasks like graphics calculations.

Parallel programs are much more difficult to write than sequential programs

[21]. Concurrency usually introduces several potential software bugs like race con-

ditions. Communication and synchronization between parallel tasks are typically

some of the biggest drawbacks which affect significantly the performance. The-

oretically, the maximum possible speedup of a program as a result of parallel

processing is known as Amdahl’s law. [4]

6

2. PARALLEL COMPUTING

From the mid-1980s until 2004, frequency scaling was the dominant reason

for improvements in computer performance. Each generation of processors of-

fered an increased frequency compared to previous versions while maintaining

the remaining components almost the same. The runtime of a program is equal

to the number of instructions multiplied by the average time per instruction. So

maintaining everything else constant, increasing the clock frequency decreases the

average time it takes to execute an instruction [21]. However, a higher frequency

increases the amount of power used in a processor. Increasing processor power

consumption caused the cancellation of Intel’s Tejas and Jayhawk processors in

May 2004. This date is generally cited as the end of frequency scaling as the

dominant computer architecture paradigm. [18]

Moore’s Law states that transistor density in a microprocessor doubles every

18 to 24 months [40]. Moore’s law is still in effect despite repeated predictions

of its end. With the end of frequency scaling, additional transistors are used to

support parallel computing.

In section 2.2, we classify the types of processors and we describe three levels of

parallelism: instruction, data, and thread. In section 2.3, the memory architecture

for parallel systems is explained. In addition, shared memory communication and

cache coherency are also discussed. At last, section 2.4 presents Amdahl’s law,

challenges for parallel computing, and most common programming languages for

parallel development.

2.2 Types of Parallelism

Parallel computers can be roughly classified according to the level at which

the hardware supports parallelism. This classification is broadly similar to the

distance between main computing nodes. These are not mutually exclusive; for

example, clusters of symmetric multiprocessors are relatively common.

2.2.1 Classification of Processors

Michael Flynn created in 1972 one of the earliest and most commonly used

classification systems for parallel and sequential computers, the Flynn’s taxonomy

7

2. PARALLEL COMPUTING

Table 2.1: Flynn’s classification scheme
Single Instruction Multiple Instructions

Single Data SISD MISD
Multiple Data SIMD MIMD

[21, 59]. Flynn classifies programs and computers by whether they were operating

using a single set or multiple sets of instructions. He also specifies whether or not

those instructions were using a single set or multiple sets of data. Table 2.1 lists

Flynn’s taxonomy in a tabular form.

Single-Instruction-Single-Data (SISD)

SISD classification is equivalent to a sequential program execution. The

processor has a single memory and it executes one instruction at a time.

Uniprocessors, like Pentium 4, falls in this category.

Single-Instruction-Multiple-Data (SIMD)

SIMD classification is similar to repeating the same operation over a large

data set. This is usually found in signal and image processing applications.

Another example is matrix multiplication where the same operation is per-

formed on different data. SIMD microprocessors are currently available in

most general-purpose processors. The x86 instruction set includes hundreds

of SSE instructions that are aimed to improve the performance of multime-

dia applications.

Multiple-Instruction-Single-Data (MISD)

MISD is a rarely used classification. No machine had been classified in this

category mainly because few applications would fit in this class.

Multiple-Instruction-Multiple-Data (MIMD)

MIMD programs are by far the most common type of parallel programs

where a set of processors simultaneously execute different instruction se-

quences on different data sets. MIMD organization is a generalization of

the other categories. It has been adopted by most general-purpose proces-

sors which allowed the exploitation of thread-level parallelism.

8

2. PARALLEL COMPUTING

2.2.2 Instruction-Level Parallelism

Basically, a computer program is a stream of instructions that are executed

by a processor. These instructions can be re-ordered and assigned into groups

which are then executed in parallel without changing the outcome of the pro-

gram. Since the mid-80s, all processors use pipelining to overlap the execution of

instructions and improve performance. This potential overlap of instructions is

known as instruction-level parallelism (ILP). [21]

Modern processors have multi-stage instruction pipelines. Each stage in the

pipeline corresponds to a different action that is performed by the processor.

Thus, a processor with an n-stage pipeline can have up to n different instructions

at different stages of completion. A simple example of a pipelined processor is

a RISC processor, with five stages: instruction fetch, decode, execute, memory

access, and write back. [48]

There are two main approaches to exploit ILP. The first approach relies on

hardware to help discover and exploit parallelism. The second approach relies

on software technology to find parallelism statically at compile time. Processors

that use dynamic, hardware-based approach, dominate the servers, desktops, and

mobile markets. The recent Intel Core [24] and the ARM Cortex-A9 [6] processors

families use this dynamic technology. Compiler-based approaches have not been

successful except for a small range of scientific applications. [21]

In addition to instruction-level parallelism from pipelining, some processors

can issue more than one instruction at a time. These are known as superscalar

processors. Instructions can be grouped together only if there is no data depen-

dency between them. Scoreboarding and Tomasulo algorithms are two of the most

common techniques for implementing out-of-order execution and instruction-level

parallelism. Also speculative execution and branch prediction are used to avoid

stalling between instructions due to data dependencies. [27]

2.2.3 Data-Level Parallelism

For many years, the single-instruction multiple data (SIMD) architectures

were mainly used for matrix-oriented scientific applications. Nowadays, multime-

dia applications, like image and sound compression, are being used to exploit

9

2. PARALLEL COMPUTING

Figure 2.1: Basic structure of a vector architecture (VMIPS). The scalar architec-
ture is similar to MIPS. The processor contains eight 64-element vector registers
and all functional units are vector functional units.

data-level parallelism (DLP) on SIMD architectures. In an SIMD processor, a

single instruction can be executed on many data operations. Thus, SIMD is po-

tentially more energy-efficient than multiple instructions multiple data (MIMD)

architecture, which needs to fetch and execute one instruction per data operation.

These two reasons make SIMD attractive for Personal Mobile Devices. There are

three main variations of SIMD: vector architectures, multimedia SIMD instruc-

tion set extensions, and graphics processing units (GPUs). [21]

Vector Architectures

Vector processors, which are available for more than 30 years ago, support

pipelined execution of many data operations. They were very expensive

until recently. There are considered a generalized architecture for SIMDs

compared to other architectures. They require relatively more transistors

and higher DRAM bandwidth with comparison to conventional computers

[21]. Figure 2.1 shows the basic architecture of a vector processor with the

instruction set architecture VMIPS which is a logical extension of MIPS.

Multimedia SIMD Instruction Set Extensions

SIMD instruction set extensions are currently available in most instruction

set architectures that support multimedia applications. These additional

10

2. PARALLEL COMPUTING

instructions are mainly used to perform simultaneous parallel data opera-

tions. For x86 architectures, the SIMD instruction extensions started with

the MMX (Multimedia Extensions) in 1996. They were followed by several

SSE (Streaming SIMD Extensions) versions, and lately, by AVX (Advanced

Vector Extensions) instructions. Programmers need to use these SIMD in-

structions, especially for floating-point operations, in order to get the most

of an x86 computer. [21]

General-Purpose Graphics Processing Units (GPGPU)

Traditional multicore computers today have a graphical processing unit

(GPU) hardware. Together with the main processor (CPU) form a hetero-

geneous architecture that is suitable for multimedia extensive applications

[21]. General-purpose computing on graphics processing units (GPGPU) is a

fairly recent trend in computer engineering research. GPUs are co-processors

that have been heavily optimized for computer graphics processing. Com-

puter graphics processing is a field dominated by data parallel operations,

particularly by linear algebra matrix operations. In the early days, GPGPU

programs used the normal graphics APIs for executing programs. However,

several new programming languages and platforms have been built to do

general purpose computation on GPUs with both Nvidia and AMD releas-

ing programming environments with CUDA and Stream SDK respectively

[3, 43]. The technology consortium Khronos Group has released the OpenCL

specification, which is a framework for writing programs that execute across

platforms consisting of CPUs and GPUs. AMD, Apple, Intel, Nvidia and

others support OpenCL. [30]

2.2.4 Thread-Level Parallelism

In this section, we focus on exploiting thread-level parallelism (TLP) through

multiple-instruction-multiple-data (MIMD) architectures. Thread-level parallelism

became relatively recently available in high-end servers, embedded and general-

purpose applications. Computers who share the same memory address space and

who have a single operating system are called multiprocessors. Typically, the num-

ber of processors in a multiprocessor system ranges in size from dual processor

11

2. PARALLEL COMPUTING

to dozens of processors. Multiprocessors which have their shared memory address

space on a single chip are called multicores. Multiprocessors may also consist of

several multicore chips.

In order to benefit from an MIMD multiprocessor with n processors, we must

have n threads or processes to run concurrently. These independent threads are

typically identified by the programmer. The granularity, or grain size, of each

thread, which is the amount of computation assigned to a thread, usually con-

sists of hundreds of millions of instructions that will be executed in parallel.

Threads can also exploit data-level parallelism (DLP). However, the overhead

of data communication is relatively higher than single-instruction-multiple-data

(SIMD) architectures. The grain size of parallel threads should be large enough

in order to exploit parallelism efficiently.

Shared-memory multiprocessors are divided into two classes depending on the

memory organization and the communication protocol. Each memory organiza-

tion model is suitable for a system with a specific number of processors. For

example, 32 processors are likely not to have, at least for now, all the processors

and the shared memory on the same chip.

2.2.4.1 Symmetric Shared-Memory Multiprocessors (SMP)

For a small number of processors, typically 16 or fewer, processors may share a

single centralized memory to which all the processors have equal access. In other

terms, all the processors are symmetric in terms of memory access. This group of

multiprocessors is called symmetric shared-memory multiprocessors (SMPs). All

existing multicore chips are SMPs in a sense that they all have symmetric access,

or a uniform latency, to a centralized shared memory. Hence, SMP architectures

are also called uniform memory access (UMA) multiprocessors. Figure 2.2 shows

a basic architecture of an SMP with 4 processors. These processors communi-

cate with each other through shared variables in memory. Access to the shared

variables must be coordinated via synchronization primitives, called locks, that

prevent multiple access to the same data by different processors at the same time.

SMPs share memory and connect via a bus. However, bus contention prevents

bus architectures from scaling. As a result, SMPs generally do not comprise more

12

2. PARALLEL COMPUTING

Figure 2.2: Basic structure of a Symmetric MultiProcessor (SMP) with a sin-
gle address space on the same physical memory shared by all processors. This
multiprocessor architecture is also called Uniform Memory Access (UMA).

than 32 processors. Because of the small size of the processors and the signifi-

cant reduction in the requirements for bus bandwidth achieved by large caches,

symmetric multiprocessors became cost-effective. [21]

Multicore Processors

The most common SMP chips are the multicore processors that are nowa-

days available in most desktop and portable computer devices. A multicore

processor is a processor that includes multiple execution units, called cores,

on the same chip. A multicore processor can issue multiple instructions per

cycle from multiple instructions streams. Each core in a multicore processor

can potentially be superscalar where each core can issue multiple instruc-

tions on every cycle from one instruction stream. Communication between

the cores is usually maintained by a shared memory access. Multicore pro-

cessors dominate the consumer market for personal computers with the Intel

Core processor family [24] and hand-held devices with the ARM Cortex-A9

processors [6]. Figure 2.3 illustrates the simplified architecture of the ARM

13

2. PARALLEL COMPUTING

Figure 2.3: Multicore architecture of the ARM Cortex-A9 multiprocessor with an
L2 cache shard by 4 cores each having an L1 private cache.

Cortex-A9 multicore processor with four 32-bit cores and a shared level-2

cache.

Reconfigurable Computing with Field-Programmable Gate Arrays

Reconfigurable computing is the use of a field-programmable gate array

(FPGA) as a co-processor to a general-purpose computer. An FPGA is,

in essence, a computer chip that can rewire itself for a given task. FPGAs

can be programmed with hardware description languages such as VHDL or

Verilog. [45]

Application-Specific Integrated Circuits (ASIC)

Several application-specific integrated circuit (ASIC) approaches have been

devised for dealing with parallel applications. [1, 37, 56] By definition, an

ASIC is specific to a given application for which it can be fully optimized

for that application. As a result, for a given application, an ASIC tends to

outperform a general-purpose computer. However, ASICs can be extremely

expensive which has rendered ASICs unfeasible for most parallel computing

14

2. PARALLEL COMPUTING

applications.

2.2.4.2 Distributed Shared-Memory Multiprocessors (DSM)

Multiprocessors with physically distributed memory are called distributed shared-

memory (DSMs). Figure 2.4 illustrates the basic architecture of a DSM with 8

nodes where each node can be a multicore processor. A centralized memory will

cause dramatically long access latency in order to support the bandwidth of a

large number of processors. Thus, the need arises to have a distributed shared

memory in order to connect many processors together. However, distributing the

memory among the nodes of a DSM both increases the bandwidth and reduces

the latency to local memory. Hence, a DSM multiprocessor is also called a non-

uniform memory access (NUMA) for the reason that access latency depends on

the location of the data being accessed. A major disadvantage for a DSM is the

complex communication among processors. Additional effort in the application

level should be performed by programmers in order to manipulate the distributed

shared data.

The term shared memory in both SMP and DSM architectures refers to the

fact that both architectures have an address space which is shared. Any proces-

sor can access a memory reference to any memory location. In contrast, clusters

and warehouse-scale computers are individual computers connected by a network.

In these architectures, the memory of one computer cannot be accessed by an-

other without the assistance of message-passing protocols that are used for data

communication among processors.

A distributed shared-memory multiprocessor (DSM) is a distributed computer

system in which the processing elements are connected by a network. Distributed

computers are highly scalable. The network communication may have different

types of topologies like stars, rings, trees, and meshes. The following architectures

are the most common types of distributed systems.

Clusters

A cluster is a group of loosely coupled computers that work together closely

so that they can be regarded as a single computer. Clusters are composed of

multiple standalone machines connected by a network. While machines in a

15

2. PARALLEL COMPUTING

Figure 2.4: Basic structure of a Distributed MultiProcessor (DSM) with a sin-
gle address space composed of several physical memories shared by all proces-
sors. This multiprocessor architecture is also called Non-Uniform Memory Access
(NUMA).

16

2. PARALLEL COMPUTING

cluster do not have to be symmetric, load balancing is more difficult if they

are not. A typical cluster is implemented on multiple identical commercial

off-the-shelf computers connected with a local area network.

Massively Parallel Processors

A massively parallel processor (MPP) is a single computer with many con-

nected processors. MPPs have many of the same characteristics as clus-

ters, but MPPs have specialized interconnect networks (whereas clusters

use commodity hardware for networking). MPPs also tend to be larger

than clusters, typically having more than 100 processors [21]. In a MPP,

each CPU contains its own memory and copy of the operating system and

application. Each subsystem communicates with other subsystems via a

high-speed interconnect.

Grids

Distributed grid computing is the most distributed form of parallel comput-

ing. It makes use of computers communicating over the Internet to work on

a given problem. Because of the low bandwidth and extremely high latency

available on the Internet, grid computing typically deals only with embar-

rassingly parallel problems. Most grid computing applications use middle-

ware, software that sits between the operating system and the application

to manage network resources and standardize the software interface. The

most common distributed computing middleware is the Berkeley Open In-

frastructure for Network Computing (BOINC).

2.3 Memory Architecture for Parallel Systems

2.3.1 Main Memory

Main memory in a parallel computer is either shared or distributed. When

all processing elements have a single address space, then the memory is shared

among those elements. When each processing element has its own private memory,

a local address space, then the memory is distributed. Accesses to local memory

are typically faster than accesses to non-local memory. [48]

17

2. PARALLEL COMPUTING

2.3.2 Processor Communication

Processor-processor and processor-memory communication can be implemented

in hardware in several ways. Networks with different types of topologies can be

used like stars, rings, trees, hypercubes, and meshes. Interconnect networks usu-

ally have message passing routines for communications. Lower level communica-

tions can be done using a shared multiplexed memory, a crossbar switch, and a

shared bus. Large multiprocessors machine usually use a hierarchical architectures

for communications between processors.

2.3.3 Memory Access

Computer architectures in which each element of main memory can be ac-

cessed with equal latency and bandwidth are known as Uniform Memory Access

(UMA) systems. Typically, that can be achieved only by a shared memory sys-

tem, in which the memory is not physically distributed. A system that does not

have this property is known as Non-Uniform Memory Access (NUMA) architec-

ture. Distributed memory systems have non-uniform memory access. Figure 2.4

on page 16 illustrates 8 processors classified into 2 groups. When a processor ac-

cesses the memory, its memory latency will depend on its directory which can be

relative to its location.

2.3.4 Caches

Most computer systems use caches which are small, fast memories located

close to the processor that store temporary copies of memory values. These mem-

ory blocks are close to the processor physically and logically. Parallel computer

systems have difficulties with caches that may store the same value in more than

one location. These inconsistencies may result in the possibility of incorrect pro-

gram execution. These computers require a cache coherency system, which keeps

track of cached values and ensures correct program execution. Designing large,

high-performance cache coherence systems is a very difficult problem in computer

architecture. For this reason, shared-memory computer architectures do not scale

as well as distributed memory systems do. [48]

18

2. PARALLEL COMPUTING

2.3.5 Cache Coherency

The main purpose of cache coherency is to keep data consistent across multiple

cache memories. The two common write policies used in caches are:

Write back - write operations are made only in the cache. Main memory is

updated only when the corresponding cache line is flushed from the caches.

Write through - all write operations are made in the cache and in the main

memory, ensuring that data in the main memory is always valid.

The write-back approach can result in data inconsistency. If two caches con-

tain the same data, and such data is updated in one cache, the other cache will

unknowingly have an invalid value. Subsequently, invalid reads will produce in-

valid results. Inconsistency can occur even with the write-through policy, unless

the other cache monitor the memory traffic or receive some direct notification

of the update [21, 48]. The cache coherence protocols that have been proposed

to solve these problems have generally been divided into software and hardware

approaches. Some implementations adopt a hybrid strategy that involves both

software and hardware approaches.

2.3.5.1 Software Solution

Software cache coherence schemes attempt to avoid the need for additional

hardware circuitry and logic, by relying on the compiler and operating system

to deal with the problem [48]. Software approaches are attractive because the

overhead of detecting potential problems is paid during compile time instead of

run time, and the design complexity is transferred from hardware to software. On

the other hand, compile-time software approaches usually make very conservative

decisions, thus frequently leading to inefficient cache utilization. One of the sim-

plest approaches is to prevent any shared data variables from being cached. This

is usually too conservative, because a shared data structure may be exclusively

used during some periods and may be effectively read-only during other periods.

Only during certain periods, when at least one process may update the variable

and at least one other process may access the variable, is cache coherence an

issue. More efficient approaches analyze the code to determine safe periods for

shared variables access. The compiler then inserts specific instructions into the

19

2. PARALLEL COMPUTING

generated code to enforce cache coherence during the critical periods. [48]

2.3.5.2 Hardware Solution

These solutions provide a runtime recognition of potential inconsistency con-

ditions. Because this approach is on-the-fly, cache coherency is more efficient than

the software approach. In addition, the hardware approach is transparent to the

programmer and to the compiler, thus reducing the software development respon-

sibilities. Hardware approaches are mainly divided into two categories: directory

and snoopy protocols. [21, 48]

Directory protocols

Directory protocols collect and maintain information about where copies of

shared data reside in one location, called directory. Typically, the directory

is managed and manipulated by a centralized controller integrated in the

main memory controller. When an individual cache controller makes a re-

quest, the directory controller checks and issues the necessary commands

for data transfer between memory and caches or between caches themselves.

[21, 48]

Snoopy Protocols

In snoopy protocols, the responsibility for maintaining cache coherence is

distributed among all cache controllers. A cache must recognize when a

memory block is shared with other caches. When an update action is per-

formed on a shared block, it must be announced to all other caches by a

broadcast mechanism. Each cache controller is able to snoop on the net-

work to observe these notifications, and react accordingly [21, 48]. Snoopy

protocols are ideally suited to a bus-based multiprocessor, since the shared

bus provides a simple way of broadcasting and snooping. However, care

must be taken so that the increased bus traffic required for broadcasting

and snooping does not cancel out the gains from the use of local caches.

[21]

20

2. PARALLEL COMPUTING

2.4 Parallel Applications

Originally, computer applications were written for sequential execution where

only one thread handles the entire processing of the program. The central pro-

cessing unit (CPU) executes the instructions of an algorithm, one instruction at

a time. On the other hand, parallel computing solves a problem by using multi-

ple processing elements simultaneously. This is mainly accomplished by breaking

the problem into independent parts that can be executed simultaneously. These

problems are usually complex algorithms with heavy workload and time consum-

ing. Another type where parallel computing is mainly used is the gaming and

multimedia applications like image and video compression. The processing ele-

ments that support parallel computing are diverse and they may include several

resources such as a single computer with multiple processors, several networked

computers, specialized hardware, or any combination of the above. [47]

2.4.1 Amdahl’s Law

Theoretically, the runtime of a parallel computer program should be divided

by the number of processing elements that are executing the parts of the program

concurrently. However, very few parallel algorithms achieve this optimal speedup.

Most parallel algorithms can achieve near-linear speedup using small numbers of

processing elements. When the number of parallel processors becomes high, the

speedup remains constant as the maximum theoretical value is reached.

The potential speedup of an algorithm on a parallel computing platform is

given by Amdahl’s law [4]. The law states that the overall speedup of a program

is limited by the part of the program which cannot be executed in parallel. A

program typically consists of several parallel parts and several sequential parts.

If n is the number of available processors and p is the proportion that can be

executed in parallel, then the speedup, according to Amdahl’s law, is calculated

using the equation s(n) = 1 / ((1 - n) + p/n). Figure 2.5 illustrates the speedup

of a parallel algorithm when 25%, 50%, 75%, 90%, or 95% of the overall program

is executed in parallel. A threshold is reached when a certain number of processors

is used. For example, when 50% of a program is executed in parallel, the optimal

speedup is 2. A maximum speedup of 10 is attained when 90% of the program

21

2. PARALLEL COMPUTING

Figure 2.5: Graphical representation of Amdahl’s law. The number of threads are
displayed horizontally and its corresponding speedup vertically. The values de-
pend on the amount in percentage of the sequential program that can be executed
in parallel.

is executed in parallel no matter how many processors are added. In addition

to the limitation caused by the serial part in a program, the speedup of parallel

algorithms is also affected by several factors like dependencies, scheduling, load

balancing, synchronization, and communication overhead.

2.4.2 Challenges of Parallel Processing

A parallel application may have independent threads without communication

required to complete the task or it may have dependent threads where commu-

nication is essential between the threads to complete the require execution. The

speedup of a parallel program, as explained by Amdahl’s law [4], mainly faces

two important challenges which their difficulty depends on the application and

the multiprocessor architecture.

The first challenge is the amount of parallelism available in a program and

the second issue deals with the high cost of communication. For example, in

order to achieve a speedup of 80 using 100 processors, the sequential part should

not be more than 25% of the overall application. Parallel applications with such

high parallelism are currently rare, and thus, there are hard to find in typical

22

2. PARALLEL COMPUTING

algorithms. [21]

The second challenge deal with the large latency of remote access in a paral-

lel processor. Communication of data between different cores in existing shared

memory multiprocessor may cost from 35 to 50 clock cycles. On the other hand,

communication of data between separate chips in large-scale multiprocessors may

cost from 100 to 500 clock cycles. The high memory latency may have a dramatic

effect on the overall execution of parallel applications which can be slower than

sequential execution of the application.

The two problems described above, insufficient parallelism and long-latency

remote communication, deeply affect the usage of multiprocessors. Parallel algo-

rithms should be designed in a way to maximize the size of parallel tasks and

to reduce as much as possible the amount of communications. Some techniques

include caching shared data, prefetching, reducing remote access frequency, load

balancing, etc.

In our research, we explore the possibilities of parallelism of the H.264/AVC

[26] decoder as a high computational application. As stated above, we intend to

maximize the size of parallel tasks and to decrease the amount of data communi-

cations. In addition, we implement parallel algorithms with high scalability with

a good load balance in order to improve the overall performance of the video

decoder.

In this section, we describe the main characteristics of parallel programs.

These features which affect the overall performance of parallel programs provide

the efficiency of parallelism applied on parallel applications.

2.4.2.1 Granularity

Applications are often classified according to how often their parallel subtasks

need to synchronize or communicate with each other. Fine-grain parallelism is

identified when parallel threads of a program communicate heavily between each

other, many times per second. On the opposite, coarse-grain parallelism occurs

when parallel threads communicate few times per second. If parallel threads rarely

or never have to communicate with each other, these threads are embarrassingly

parallel, which is considered the easiest to implement. [48]

23

2. PARALLEL COMPUTING

2.4.2.2 Synchronization

A computer program is usually called a process. A process can create mul-

tiple lightweight sub-processes that consider the main process as their parent.

These lightweight processes are usually called threads. All communications and

synchronization between parallel threads are considered an overhead to the over-

all execution compared to the original serial version of the program. Eventually,

an excessive amount of locks for mutual exclusion sections and synchronization

barriers will increase the runtime of the program. This increase in execution time

is known as parallel slowdown or overhead. [58]

2.4.2.3 Dependencies

Whenever a parallel algorithm is implemented, dependencies among its data

should be respected. Some calculations are needed to be completed before sub-

sequent calculations can be performed. This dependency will limit the portion

of code that can be processed in parallel. Thus, the parallel segments of code

of a program should not have any data dependencies between them in order to

obtain correct output as the original sequential program. In addition, the overall

execution of the parallel code is limited to the biggest parallel chunk of code.

That is some parts may finish before other parts and the program execution is

completed only when all the parts of code have been processed. [48]

2.4.2.4 Scalability

In order to achieve a good speedup, parallel programs should scale well with

the increase in the number of processors. The speedup should be close to the

theoretical speedup of Amdahl’s Law [4]. A parallel program is said to have a

strong scaling when the size of the program remains almost the same compared

to the original serial program. On the other hand, a weak scaling is achieved

when the size of the parallel program increases proportionally with the number

of processors. [48]

24

2. PARALLEL COMPUTING

2.4.2.5 Load Balance

In a parallel algorithm, the total execution time of the whole program is

limited by the biggest part of code among the parallel parts. Some processors

that are executing in parallel parts of a program may finish before or after other

processors [48]. If the offset is large between the execution times of parallel codes

on different processors, then the speedup will be affected. The calculation of the

speedup using Amdahl’s law will not apply if load balancing is not respected. So

a parallel program with a good load balance has all his parts of codes, which will

be executed in parallel on different processors, almost with equal size.

2.4.3 Programming Languages

Concurrent programming languages, libraries, APIs, and parallel program-

ming models have been created for programming parallel computers. These can

be generally divided into classes based on the memory architecture: shared mem-

ory and distributed memory. Shared memory programming languages communi-

cate by manipulating shared memory variables. POSIX Threads and OpenMP are

two of most widely used shared memory APIs [58]. Distributed memory uses mes-

sage passing. Message Passing Interface (MPI) is the most widely used message-

passing system API citegropp. CUDA and OpenCL are used to write C-like code

for GPGPU kernels [30, 44].

Message Programming Interface (MPI)

MPI is a low-level API which provides a standard communication mecha-

nism and which is implemented on top of high-performance network drivers.

The MPI is based on a process fork model. It runs on both distributed and

shared memory-systems. MPI scales well to very large numbers of proces-

sors. However, the application development in MPI is often rather difficult

since each node has to be separately programmed. [52]

Portable Operating System Interface for Unix (POSIX)

In the POSIX standard, parallel programming is exploited by using pro-

cesses and threads. Processes are defined as independent execution units

that contain their own state information, have individual address spaces,

25

2. PARALLEL COMPUTING

and only interact with each other via interprocess mechanisms managed by

the operating system. On the other hand, threads within a process share

the same state and memory space, which leads to a lightweight processing

flow with a low latency context switching. Communication between threads

is usually performed using shared variables. [13]

OpenMP

OpenMP is a standard defining a set of compiler directives for C/C++

and Fortran languages based on the thread-fork model. These directives

allow an easy and explicit way to define the code that can be executed in

parallel. When OpenMP is used, parallel regions are simply defined using

the #pragma keyword, reducing the parallelization complexity. Despite of

its advantages, the scalability is limited by the number of cores of the certain

platform. [13]

CUDA and OpenCL

Recently, General Purpose Graphic Processor Units (GPGPU) have emerged

as a powerful and an alternative solution in computer graphics manip-

ulation. Their highly parallel structure makes them very suitable to run

complex algorithms. In the past, GPUs used to be programmed using pro-

grammable shaders found in graphics API (OpenGL, DirectX), which re-

quire the adaptation of general purpose code to graphic API. In 2007,

NVIDIA released CUDA (Computed Unified Device Architecture), allow-

ing a code written in C language to be executed on a GPU. Meanwhile,

the generic framework OpenCL (Open Computing Language) has been also

used for GPUs programming. A code written in OpenCL can be executed

across heterogeneous platforms, mainly formed by CPUs and GPUs [60].

Nevertheless, despite their efficiency in parallel computation, the usage of

CUDA or OpenCL often require a high bus bandwidth between the CPU

and the GPU, leading to bus bottleneck. [30]

26

2. PARALLEL COMPUTING

2.5 Conclusion

In this chapter, we described parallel computing at the hardware and the

software levels. At the beginning, we list Flynn’s classification scheme of proces-

sors. Then, brief explanations of the instruction-level and data-level parallelism

are presented. Afterwards, thread-level parallelism with its different hardware

parallel devices is explained in details. Moreover, different memory architectures

for parallel processors are explained at the main memory and the cache levels.

Cache coherency constraints and solutions are also described. In addition, parallel

applications characteristics and challenges are also listed. Amdahl’s law is also

described briefly. Finally, the most common programming languages for parallel

software implementations are presented.

27

Chapter 3

H.264/AVC Standard Overview

3.1 Introduction

The Moving Picture Experts Group (MPEG) and the Video Coding Experts

Group (VCEG) developed jointly in 2003 the Advanced Video Coding (AVC)

standard published as ITU-T Recommendation H.264 and as part 10 of MPEG-

4 [26]. Since the first commercial implementations, several multimedia device

manufacturers adopted the new video codec. Ten years after the first release of the

final draft of the standard, H.264 is currently the mostly used video compression

standard in multimedia devices according to many articles and magazines like

PCWorld.com [23]. Cameras, smartphones, PDAs, CCTV recorders, blu-ray disc

players and many other devices use H.264 for encoding and decoding videos. H.264

achieves better compression and higher quality at the expense of more complex

algorithms. Thus, more computation resources are exploited and more energy is

consumed when increasing compression ratio of video files. This chapter provides

an overview of some of the main features of the standard. The following chapters

will use this chapter content as a reference to the concepts and features of the

H.264 standard. The proposed parallel algorithms and optimization are based on

the H.264 decoding process which is explained in this chapter.

A review on video coding is presented in section 3.2. The development history

of the standard is briefly discussed in section 3.3. Next, a high level overview of

H.264/AVC is provided in section 3.4. Section 3.5 discusses the functional stages

28

3. H.264/AVC STANDARD OVERVIEW

of the encoder and the decoder. Section 3.6 focuses on some of the specific coding

tools available in the video coding layer. Section 3.8 summarizes the H.264/AVC

profiles and concludes the chapter.

3.2 Video Coding Review

This section provides essential background information on video coding. A

brief description is presented for digital video sampling, color spaces and common

picture formats. Then, block based video coding is explained with the different

stages for encoding a video sequence. Common video compression standards are

also listed with short descriptions.

3.2.1 Digital Video

Digital video is a stream of fixed size images captured at regular time intervals.

The images are represented as digitized samples containing visual information

(color and light) at each spatial and temporal location.

3.2.1.1 Sampling and Resolution

Figure 3.1 shows the sampling process of digital video relative to time and

space. The resolution of the image is determined by the number of horizontal

and vertical samples, or pixels. The frequency at which each image is captured

(temporal sampling) affects the motion smoothness of the video.

Typical temporal sampling frequencies (frame rates) are 25 Hz and 30 Hz for

low resolutions. For high definition resolutions, typical frequencies are 50 Hz and

60 Hz. The frame rate determines the motion smoothness of the video, where

motion appears smoother at higher frame rates.

In digital video processing, different spatial resolutions are used depending on

the target application. For example, for Blu-ray movies and gaming consoles, the

typical resolutions are 1280 x 720 pixels (HD 720) and 1920 x 1080 pixels (HD

1080). On the other hand, in video conferencing and web contents applications,

video sequences typically have low resolutions like CIF (Common Intermediate

Format) which is composed of 352 x 288 pixels, and VGA (Video Graphics Array)

29

3. H.264/AVC STANDARD OVERVIEW

Figure 3.1: Digital Video Sampling.

Table 3.1: Common video formats and resolutions
Format name Pixel resolution (Horizontal x Vertical)

CIF 352 x 288
VGA 640 x 480
SVGA 800 x 600
XVGA 1024 x 768
HD 720 1280 x 720
HD 1080 1920 x 1080

which is composed of 640 x 480 pixels. Some of the most widely used formats are

displayed in Table 3.1.

3.2.1.2 Frames and Fields

A video signal can be sampled in either frames (progressive) or fields (inter-

laced). In progressive video, a complete frame is sampled at each time instant.

In interlaced video, only half of the frame, either odd or even rows of samples,

is captured at a particular time instant which are called fields. The field which

has the odd rows of samples including the first row is called the top field and the

field which has the even rows of samples is called the bottom field. Figure 3.2

illustrates the concept of progressive and interlaced video sampling of frames, in

other words, frames and fields.

30

3. H.264/AVC STANDARD OVERVIEW

Figure 3.2: Progressive and Interlaced Video.

3.2.1.3 Color Spaces

Visual information at each sample point may be represented by the values

of three basic color components Red (R), Green (G) and Blue (B). This color

representation is called the RGB color space. Each value is stored in an n-bit

number which is also called color depth. For example, an 8-bit color depth can

store 256 levels to represent each color component.

The YCrCb color space is widely used to represent digital video. The lumi-

nance component Y (also called luma) is extracted using a weighted average of

the three color components R, G and B. The components Cr and Cb are called

the chrominance (or chroma) components are the color differences with Y. Cr is

the red chrominance component (Cr = R - Y) and Cb is the blue chrominance

component (Cb = B - Y). The computation of YCrCb color space from RGB color

space can be found in Richardson’s book on Video Codec Design [50]. The hu-

man visual system has less sensitivity to color information than luminance (light

intensity) information [70]. Therefore, with the separation of luminance informa-

tion from the color information, it is possible to represent color information with

a lower resolution than the luminance information. Figure 3.3 shows the three

widely used formats for representing chroma and luma samples: 4:4:4, 4:2:2, and

4:2:0 formats.

In 4:4:4 format, each pixel position has both luma and chroma samples. In

4:2:2 format, chroma components are sub-sampled (every other pixel) in horizon-

tal direction. In 4:2:0 format, chroma samples are sub-sampled in both vertical

and horizontal directions. This is the most popular format used in entertainment

31

3. H.264/AVC STANDARD OVERVIEW

Figure 3.3: Sub-sampling patterns for chrominance components.

quality applications such as DVD video because the human eye does not eas-

ily recognize missing color information. All video sequences that are used in our

research have the 4:2:0 color sampling format.

3.2.2 Block Based Video Coding

In block based video coding, the basic unit of coding is a block containing n

x n array of luma samples and their corresponding chroma samples. The image

is divided into a number of fixed size blocks. These blocks are processed in raster

scan order, from left to right of each row and top to bottom row by row. Figure 3.4

shows a block diagram of a typical block based video encoder. The encoder has

two data flow paths. The forward path represents the encoding process for coding

of blocks and the reverse path (grey lines) shows the decoding reconstruction path

within the encoder. Major elements of block based encoding are inter and intra

prediction processes, transform, quantization and entropy coding.

3.2.2.1 Intra Prediction

Block based video encoders use prediction as a tool for removing redundant

information. A prediction signal is obtained from previously coded samples for

the coding unit and it is subtracted from the original coding unit to create a

residual signal that has much less data than the original coding unit. It is the

32

3. H.264/AVC STANDARD OVERVIEW

Figure 3.4: Block based encoder diagram.

residual signal that is encoded and transmitted to the decoder (node A in figure

3.4). The decoder obtains the same prediction signal using previously decoded

samples, decodes the residual signal and adds them together to reconstruct the

coding unit.

In intra prediction each coding unit is predicted using the surrounding pixels

which have been already coded in the same image. Intra coding is always used in

the first image of a sequence. Intra coding is also very useful in coding uniform

regions where surrounding pixels of the block has similar value as the pixels inside

the block. Intra prediction is used in relatively new video coding standards such

as H.263 [19] and H.264/AVC [26].

3.2.2.2 Inter Prediction

In general, consecutive video images are very similar to each other. Differences

in images mostly arise due to the movement of the objects in the video scene.

Inter prediction is used to remove this temporal redundancy of video images.

The prediction signal of a coding unit is obtained from a previously encoded and

reconstructed image. The aim is to find a good match for the current block from

the previously coded image. This can be done by following the motion of the

object over time between the two images. Usually it is very difficult to find an

exact match by precisely following the motion. However, a reasonably accurate

33

3. H.264/AVC STANDARD OVERVIEW

Figure 3.5: Motion estimation and compensation of an n x n block.

match can be found by searching for a similar block within a restricted region of

the image. This process is illustrated in figure 3.5.

Common terms related to inter prediction process can now be introduced as

follows:

Reference Image is the previously encoded and reconstructed image that is

used for the prediction of blocks in the current image.

Motion Estimation is the process of searching and finding the closest matching

block (B) from the reference image to the current block (A).

Motion Compensation is selecting the best matching block as the prediction

and obtaining the residual by subtracting the prediction from the original

block.

Motion Vector (MV) is the vector representing the displacement (horizontal

and vertical) of the matching block from the position of the original block.

For inter predicted coding units, the residual signal is encoded and transmitted

to the decoder along with the motion vector values. The decoder uses the motion

34

3. H.264/AVC STANDARD OVERVIEW

vector values to find the correct prediction block and the decoded residual is

added to reconstruct the coding unit.

3.2.2.3 I, P and B Frames

In I-Frames, all the coding units are predicted using intra prediction only.

These are used for the first frames of a sequence and as random access frames

for reversing and fast forwarding without the need for decoding all the pictures.

P-Frames are inter predicted pictures with the reference as the nearest previously

coded picture. They cannot be used for random access, because of the dependency

on previously coded pictures. They are also used as reference pictures. B-pictures

are bidirectional predicted frames which require two reference frames for inter

prediction, one from past and one from future in display order. They typically

have high compression efficiency; however, they are not used for reference and

cannot be used for random access.

3.2.2.4 Transform Coding

The residual block obtained after prediction stages is transformed from spatial

domain into transform domain using a two dimensional block transform process

resulting in a block of transform coefficients. These transform coefficients rep-

resent the residual image block. The transform needs to be reversible (inverse

transform) in order to obtain the image residuals from the transform coefficients.

The transform in itself does not achieve any compression. However, it serves for

energy compaction where the transform concentrates most of the energy within

a small number of large coefficients. The transform also de-correlates the data

as its coefficients have minimal inter-dependency between each other. The most

widely used block based transform in image and video compression is the Discrete

Cosine Transform (DCT) [19].

3.2.2.5 Quantization

Quantization is the process of converting a continuous range of values to a

finite range of discrete levels. For example, in digital video an 8-bit color sample

is obtained by approximating the signal level of the color component into one

35

3. H.264/AVC STANDARD OVERVIEW

of the finite discrete levels, which is 256 levels in this case. Some of the color

information is lost and cannot be recovered due to approximation and therefore

more levels are needed to retain more information. In video compression, lossy

compression is achieved by quantization. The quantization process consists of

two stages. Forward quantization is carried out during encoding and rescaling is

carried out during decoding. The two stages are also referred to as quantization

and de-quantization. In forward quantization, the original transform coefficient

value is typically divided by the quantization stage and rounded to the nearest

integer. Information is lost during the rounding process. These integer values are

transmitted to the decoder along with the quantization process used. Rescaling

is carried out at the decoder, where the received integer is multiplied by the

quantization integers in order to obtain the actual quantized transform coefficient.

Lower bit rates can be achieved at higher quantization levels at the expense of a

large approximation error and therefore higher image distortion.

3.2.2.6 Entropy Coding

The encoder needs to transmit data such as residual quantized transform

coefficients, quantization values, motion vectors and other overhead information

such as coding parameters to the decoder. Entropy coding is carried out to reduce

the statistical redundancy of the transmitted data. This is a lossless compression

technique where data with high probability of occurrence is coded with a smaller

number of bits and data with lower probability of occurrence is coded with a larger

number of bits. Commonly used entropy coding methods are Huffman coding and

Arithmetic coding [26].

3.2.2.7 Decoder

The decoding process is identical to the reverse path of the encoder in figure

3.4 on page 33. The bit stream received from the encoder is first entropy decoded

and then, inverse quantized and inverse transformed to create the residual. This

residual is added to the prediction signal to construct the image. Due to lossy

coding (quantization) the reconstructed image is not identical to the original

image; however, the reconstructed images of the encoder and decoder are identical

36

3. H.264/AVC STANDARD OVERVIEW

to each other because the decoding process at the decoder and the processing

carried out by the reverse path of the encoder are identical.

3.2.3 Video Coding Standards

Standardization of video coding technology has played a major role in the

advancement of digital video communication technologies over recent years [54].

Standardization enables interoperability between different manufacturers and is a

major requirement for the communications industry. The two international stan-

dardization bodies are namely, Video Coding Experts Group (VCEG) of Interna-

tional Telecommunications Union – Telecommunication Standardization Sector

(ITU-T) and Motion Picture Experts Group (MPEG) of International Organiza-

tion for Standardization – International Electrotechnical Commission (ISO/IEC).

The standards released by the ITU-T have been named H.26x series and

ISO/IEC has released the MPEG series of standards. The MPEG standards have

been mainly aimed at media storage and distribution while the H.26x standards

have been aimed at real-time video communication applications [50, 54]. Some of

the popular standards are named below:

MPEG-1

The draft MPEG-1 standard was released in 1993. Although this is a generic

video coding standard, it was primarily designed for storage on digital me-

dia such as CD-ROM supporting bit rates up to 1.5 Mbit/s. The standard

employs a block based coding algorithm similar to block based video cod-

ing described in the previous section. The standard supports flexible picture

types: I-frames, P-frames and B-frames in order to provide good compres-

sion efficiency and added functionality such as fast forwarding.

MPEG-2

The MPEG-2 standard, released in 1995, was aimed at broad variety of

applications such as media storage, satellite terrestrial TV broadcasting.

It builds on MPEG-1 algorithm including new tools for better quality and

functionality such as interlaced video and scalable video coding for applica-

tions such as digital TV and HDTV. This is the first standard to introduce

the concept of profiles and levels as means of implementing compliant de-

37

3. H.264/AVC STANDARD OVERVIEW

coders that support only a subset of syntax with restriction on capability

such as maximum supported bit rate.

MPEG-4 Visual

The MPEG-4 Part 2: Visual, released in 1998, supports a wide variety of

applications including internet video streaming and digital TV broadcasting

as well as applications with combined real world video scenes and computer

generated graphics. The standard can support lower bit rates than MPEG-1

and MPEG-2. MPEG-4 Visual supports object-based video coding where a

video scene is divided into different video objects that can be coded inde-

pendently of each other.

H.261

This standard, approved in 1993, was widely used for videophone and video

conferencing applications over the Internet. The H.261 standard uses hybrid

coding algorithm, similar to MPEG-1, for efficient coding at lower bit rates

using relatively a computationally simple algorithm. The H.261 standard

only supports QCIF and CIF resolution non-interlaced video.

H.263

This standard was originally aimed at low bit rate video communications.

The core algorithm is based on the H.261 standard. However, it supports a

broad range of video formats and advanced coding tools such as half pixel

precision motion compensation and a variety of coding tools such as unre-

stricted motion vectors, where the motion vector points to a region outside

the picture boundary and advanced prediction, where the macroblock (the

basic unit of coding of 16 X 16 pixels) is divided into four blocks. Each

block is motion compensated using individual motion vectors, resulting in

higher degree of compression efficiency and flexibility. The baseline profile

of H.263 and the simple profile of MPEG-4 are functionally identical. [19]

H.264 / MPEG-4 Part 10: Advanced Video Coding

The relatively recent video coding standard commonly known as H.264/AVC

was jointly developed by the ITU-T VCEG and the ISO/IEC MPEG. The

H.264/AVC is capable of achieving significantly improved compression ef-

ficiency and flexibility compared with all previous video coding standards.

38

3. H.264/AVC STANDARD OVERVIEW

The increase in performance is due to the variety of coding tools and options

available in the standard which, on the other hand, increases the computa-

tional complexity significantly.

H.265 / HEVC: High Efficiency Video Coding

High Efficiency Video Coding (HEVC) is currently the newest video cod-

ing standard of the ITU-T Video Coding Experts Group and the ISO/IEC

Moving Picture Experts Group. The main goal of the HEVC standardiza-

tion effort is to significantly improve compression performance relative to

existing standards in the range of 50% bit-rate reduction for equal per-

ceptual video quality. HEVC has been designed to address essentially all

existing applications of H.264/AVC and to particularly focus on two key

issues: increased video resolution and increased use of parallel processing

architectures. [63]

This research is aimed at optimizing the performance of the H.264/AVC de-

coder. Therefore, a good understanding of the H.264/AVC standard is required.

The following sections provide an overview of the features and the coding tools

available in the H.264/AVC standard. [26]

3.3 Standard Development

In 1998 a call for proposals was issued by ITU-T Video Coding Experts Group

(VCEG) for a new video coding standard with the objective of doubling the com-

pression efficiency compared to any video coding standard available at the time.

The new proposal was referred to as H.26L. As a result of similar interest by

ISO/IEC, the Joint Video Team (JVT), consisting of ITU-T VCEG and ISO/IEC

Moving Picture Experts group (MPEG), was formed in 2001 to make the devel-

opment of the new standard a combined effort. The standard was finalized and

the draft was approved in May 2003 [26].

The H.264/AVC standard was originally developed for web quality video

where sampling format is limited to 4:2:0 with 8 bit sample accuracy. An amend-

ment was added to the standard in July 2004 called the Fidelity Range Extensions

(FRExt) [26, 36, 62] which introduced the so-called ‘High Profiles’ in order to ad-

39

3. H.264/AVC STANDARD OVERVIEW

dress professional applications and to enhance the compression performance. The

high profiles can support up to 4:4:4 sampling format and 12 bit sample accuracy.

The H.264/AVC standard was designed for high compression efficiency, error

resilience and flexibility so that it could support a wide variety of applications

and different transport environments such as wired and wireless networks. The

H.264/AVC standard is intended to support a wide range of applications such as:

– Video conferencing and video telephony services over networks such as LAN,

DSL, wireless and mobile networks

– Video on demand and multimedia streaming services

– Digital broadcasting services

– Video storage on media

– Multimedia messaging services

Similarly to previous standards, H.264 only specifies the syntax structure of

the bit stream and the decoding process of the syntax. This ensures high flexi-

bility in encoder implementation as long as the generated bit stream conforms to

the syntax, while guaranteeing interoperability and correct decoding of content.

However, the decoder is also flexible to some extent since the decoder is allowed

to decode the syntax in any way as long as the decoding process produces nu-

merically identical results to the process specified in the standard. The flexibility

enables the optimization of the encoding process to suit different applications. For

example, in a video storage and reproduction application such as DVD, more em-

phasis can be given to maximize the video quality, whereas in a video telephony

application, more emphasis can be given to complexity and implementation costs.

3.4 Features and Tools

The H.264 standard consists of various features and coding tools that con-

tribute to the high compression efficiency, flexibility and robustness. This section

describes the structure and some of the high level features of the standard.

40

3. H.264/AVC STANDARD OVERVIEW

3.4.1 Layer Structure

H.264 is designed to be flexible and customizable to handle a variety of ap-

plications and transport methods. To achieve the flexibility, the standard was

designed to contain two layers.

1. The Video Coding Layer (VCL) represents the video encoding process which

carries out actual video compression and the data which consists of coded

bits.

2. The Network Abstraction Layer (NAL) handles the transportation of VCL

data and other header information by encapsulating them in NAL units.

The separation of video coding and transportation into two layers ensures that

the video coding layer provides an efficient representation of video content. The

network abstraction layer transports the coded data and other header information

in a flexible manner by adapting to a variety of delivery frameworks.

3.4.2 Profiles and Levels

Profiles and levels are used to specify the tools and capabilities of the decoder

that is needed to support different applications and to provide interoperability

points between different decoder implementations. Each profile is designed to have

particular coding tools to support various coding requirements. The H.264/AVC

standard originally specified the following three ‘basic’ profiles.

1. Baseline: low-latency, low-complexity, error resilience, and robustness. Ap-

plications: video conferencing.

2. Main: high compression efficiency. Applications: video storage and broad-

casting

3. Extended: Superset of the baseline profile with enhanced error resilience

and video stream switching capabilities. Applications: internet video stream-

ing.

The fidelity range extensions introduced a new set of profiles called the ‘High’

profiles intended for high quality applications (e.g. HD-DVD, HDTV) and pro-

fessional applications like studio editing.

41

3. H.264/AVC STANDARD OVERVIEW

Levels are defined as performance limits for decoders supporting each profile.

Performance limits generally apply to processor load, memory capabilities and the

maximum bit rates which in turn affect the frame sizes, frame rates and number

of reference frames supported by a compliant decoder.

3.4.3 Picture Format

The source video is coded as a stream of pictures. The color spaces and the

sampling formats of the pictures and the process of dividing a picture into coding

units comprised of slices and macroblocks are discussed in this section.

3.4.3.1 Color Space and Sampling

The basic profiles support YCrCb 4:2:0 sampling format with 8-bit sample

accuracy while the high profiles support 4:2:2 and 4:4:4 with up to 10 and 12

bit sample accuracy. The width and height of the luma sample array of a picture

should be a multiple of 16, while the width and height of the chroma sample

array is a multiple of 8 or 16 depending on the sampling format, so that the

picture includes all the chroma samples associated with the luma samples. Both

progressive and interlaced video are supported.

3.4.3.2 Macroblocks

The smallest coding unit in a picture is a Macroblock (MB). A macroblock

contains data belonging to a region of 16x16 luma samples along with the associ-

ated Cr and Cb component samples. A picture should contain an integral number

of macroblocks.

3.4.3.3 Slices

A picture consists of one or more slices. Each slice contains an integral number

of macroblocks which should be processed in raster scan order. H.264 has the

following slice types:

– I-Slices: All the macroblocks are coded using intra prediction. Macroblocks

are coded using data already coded within the same slice (Intra).

42

3. H.264/AVC STANDARD OVERVIEW

– P-Slices: Contains inter coded macroblocks using one reference picture

and/or intra coded macroblocks (Predictive).

– B-Slices: Contains inter coded macroblocks using two reference pictures as

well as macroblock types in P-slices (Bi-predictive).

– SP and SI-Slices: Special types of slices, Switching Predictive (SP) and

Switching Intra (SI), for efficient switching between different video streams,

random access and error resilience [29].

3.5 Video Coding

The core video compression is carried out by the Video Coding Layer (VCL).

The VCL compresses the pictures by dividing the pictures into one or more slices

which contain an integral number of macroblocks. Macroblocks are the basic

coding units of the H.264/AVC encoder. The basic architecture of H.264/AVC is

similar to previous coding standards such as MPEG-2 and H.263 where a motion

compensated block based transform is used to achieve compression.

Functional block diagrams of H.264 encoder and decoder are shown in fig-

ure 3.6 and figure 3.7 respectively. These figures show the high level functional

elements which should be present in an encoder and a decoder which complies

with H.264/AVC. The operation of the H.264/AVC encoder and decoder is briefly

described here.

3.5.1 Encoder

The macroblocks in the current picture are processed as either intra or in-

ter coded macroblocks. The encoder consists of a forward path (represented with

thick black arrows in figure 3.6) for the encoding and a reverse path (grey arrows)

for decoding and reconstruction of the current picture. A prediction signal for the

macroblock is calculated using either intra prediction or inter prediction. In intra

prediction, the current macroblock is predicted from the neighboring samples in

the current slice which have been already encoded, decoded and reconstructed by

the encoder. In inter prediction the prediction signal is obtained through motion

estimation and compensation using one or two reference pictures from the refer-

43

3. H.264/AVC STANDARD OVERVIEW

Figure 3.6: H264 Encoder.

ence picture buffer. The reference picture buffer contains previously coded and

decoded pictures that can be selected for inter prediction.

The prediction macroblock is then subtracted from the original macroblock to

create a residual macroblock at node A. The residual macroblock is transformed,

quantized and reordered before entropy coding. Entropy coding is done to re-

move the statistical redundancy of the data. The entropy coder also processes

other information necessary for correct decoding of the residual data such as the

quantization parameter, macroblock partition modes, the reference frames used,

motion vector information for inter coded macroblocks and intra mode informa-

tion for intra coded macroblocks. The output of the entropy coder is compressed

video bits which are encapsulated in NAL units before transmission or storage.

The objective of the reverse path (marked by thin arrows) is to reconstruct

the lossy coded picture exactly the same as the decoder. The reconstructed sam-

ples of the neighboring macroblocks in the current slice may be used for intra

prediction of macroblocks and the current reconstructed picture may be used for

inter prediction of future pictures. The picture is reconstructed after applying a

deblocking filter (DF) in order to reduce the blocking artifacts appearing due to

44

3. H.264/AVC STANDARD OVERVIEW

Figure 3.7: H264 Decoder.

quantization of block transforms.

3.5.2 Decoder

The decoder block diagram is shown in figure 3.7. Starting from the right hand

side, NAL units are the input of the decoder. The NAL units are first entropy

decoded to obtain the quantized coefficients and other information necessary to

reconstruct the macroblocks using the quantized coefficients. Inverse quantiza-

tion and inverse transform are applied to the coefficients to produce the residual

macroblock. For inter coded macroblocks, a prediction is obtained by carrying

out motion compensation using the decoded information such as macroblock par-

tition modes, reference pictures and motion vectors. Intra coded macroblocks are

predicted using the decoded intra mode information and previously decoded pix-

els of neighboring macroblocks. The macroblock is reconstructed by adding the

prediction to the residual at node B. The deblocking filter is applied to recon-

struct the current picture. The reconstructed picture is displayed and may also

be used as a reference picture for decoding future pictures.

3.6 Coding Tools and Functions

The H.264/AVC standard offers a wide range of coding tools to achieve a high

level of compression efficiency. Some of the important coding tools and functions

45

3. H.264/AVC STANDARD OVERVIEW

of the H.264/AVC standard will be discussed in this section.

3.6.1 Intra Prediction

In intra prediction, the prediction signal is produced using the neighboring

samples of previously encoded and reconstructed blocks which are located on the

left of and above the current block. Therefore, intra prediction exploits spatial

correlation of image pixels. The following intra coding modes are supported in

all slice types. Note that intra prediction is not carried out across slice bound-

aries. Therefore, slices can be decoded independently of each other to limit error

propagation.

3.6.1.1 Intra 4x4 prediction for luma samples

Intra prediction is carried out for each individual 4x4 block of the macroblock.

The small prediction block sizes are particularly useful for areas which have high

detail. The pixel values of each 4x4 block are predicted from the neighboring pixel

values.

3.6.1.2 Intra 16x16 prediction for luma samples

The samples of the macroblock are predicted without partitioning. This is

useful for homogeneous areas that do not contain much detail. A block of 16x16

samples and the corresponding left and above samples are used in the predic-

tion process. There are four intra 16x16 prediction modes which are similar to

corresponding modes of intra 4 x 4:

1. Intra 16x16 Vertical: pixel values of the macroblocks are predicted from

the pixels just above the macroblock.

2. Intra 16x16 Horizontal: pixel values are predicted from the pixels to the

left of the macroblock.

3. Intra 16x16 DC: every pixel of the macroblock is predicted from the mean

of upper and left neighboring samples of the macroblock.

4. Intra 16x16 Plane: Pixels of the macroblock are predicted using a linear

equation that uses both above and left pixels.

46

3. H.264/AVC STANDARD OVERVIEW

3.6.1.3 Intra prediction for chroma samples

The chroma samples are considered to be more homogeneous than luma sam-

ples and therefore, chroma intra prediction is always done on macroblocks without

partitioning. The same prediction mode is used for both Cr and Cb components.

There are four chroma prediction modes which are similar to intra 16x16 modes.

However, the exact prediction process is specified for different chroma formats

due to the difference in chroma macroblock size. For 4:2:0 sampling format the

chroma macroblock size is 8x8.

3.6.1.4 I_PCM

This is a lossless coding mode where the image sample values are transmitted

directly without prediction, transform or quantization. Although this is a very

inefficient method of coding, this method is useful to represent image regions

without any loss.

3.6.2 Inter Prediction

Inter prediction is carried out to exploit the temporal redundancy between

pictures. Block based motion estimation and compensation is carried out in or-

der to create the inter prediction signal. The inter prediction tools contribute

significantly to the improved compression efficiency of the H.264/AVC standard

over previous coding standards. Some of these tools are discussed here.

3.6.2.1 Variable block size motion compensation

Motion compensation is carried out for macroblocks by dividing the mac-

roblocks into partitions and sub-macroblock partitions. Figure 3.8 shows how

the luma component of a macroblock can be partitioned for motion compensa-

tion. Each macroblock can be partitioned into one 16x16 (whole macroblock),

two 8x16, two 16x8 or four 8x8 partitions. Each partition is individually motion

compensated using a separate motion vector.

47

3. H.264/AVC STANDARD OVERVIEW

Figure 3.8: Macroblock and sub-macroblock partitions.

3.6.2.2 Quarter pixel accurate motion vectors

Motion estimation and compensation is carried out by generating a predic-

tion signal for each macroblock or sub-macroblock partition from the reference

picture. Motion vectors indicate the relative position of the matching area in

the reference picture. In H.264/AVC, motion vectors have luma quarter pixel ac-

curacy. Therefore, the reference picture is interpolated to represent sub sample

and quarter sample pixel positions. These pixel positions are obtained by linear

interpolation between four neighboring samples.

3.6.2.3 Motion vector prediction

H.264/AVC allows motion vectors to point to regions outside the picture

boundary. The pixels of the outside region are obtained by extrapolating the pixel

values at the picture boundary. This allows for effective motion compensation of

objects moving in or out of the picture boundary.

Encoding of motion vectors may result in large number of bits, in particular

because there can be a number of motion vectors corresponding to a number of

small partitions used for motion estimation. Therefore, motion vector prediction

is used to reduce the number of bits needed to transmit the motion vectors.

The motion vector of the current partition is predicted (MVP) from the motion

vectors of the neighboring partitions if they are available. Figure 3.9 shows the

48

3. H.264/AVC STANDARD OVERVIEW

Figure 3.9: Current and neighboring blocks (macroblock partition) used for mo-
tion vector prediction.

neighboring blocks that are used for motion vector prediction. The shaded block E

is the current partition and the blocks A, B and C are the neighboring partitions.

Only the Motion Vector Difference (MVD), which is the difference between the

actual motion vector for the current partition and the Motion Vector Prediction

(MVP), is transmitted. The number of bits needed for the motion vectors can

be reduced due to high correlation between the motion vectors of neighboring

blocks.

3.6.2.4 P and B slices

Macroblocks in P-slices are inter-predicted using one reference prediction with

a reference picture selected from the reference picture ‘list0’. Macroblock in B-

Slices can have one or two motion vectors. Macroblock partitions can be predicted

from a reference picture in ‘list0’ or in ‘list1’ where only one motion vector and

reference index is used. Macroblock partitions can also be bi-predicted from two

reference pictures, one from ‘list0’ and one from ‘list1’ and therefore two motion

vectors and reference indexes are used. When weighted prediction is not used, the

average pixel values of the two reference predictions are used as the bi-prediction

signal. If weighted prediction is used, bi-prediction pixel values are obtained as

the weighted average of the two reference predictions. There is also a special

mode for 16x16 partition size called the direct mode where no motion vectors or

reference picture indexes are sent. They are derived from the macroblocks that

have already been decoded.

49

3. H.264/AVC STANDARD OVERVIEW

3.6.3 Transform and Quantization

A residual macroblock is generated by subtracting the prediction from the

original macroblock. The residual macroblock is transformed to remove the spatial

correlation. The Baseline, Main, and Extended profiles only use an 4x4 integer

transform [35, 50] which is based on the DCT, to transform the residual data of the

macroblock by dividing the macroblock into 4x4 blocks. The integer transforms

can be carried out using integer arithmetic and are less complex than the DCT

[36, 62]. Since no floating point arithmetic is used, the possible mismatch between

the forward and reverse transform is eliminated.

Lossy compression is achieved by quantizing the transformed residual data.

The Quantization Parameter (QP) specifies the quantization step size. Each mac-

roblock can be encoded using different quantization parameter values. The QP

is differentially coded and therefore only the change in QP is transmitted to the

decoder.

3.6.4 Skipped Macroblocks

H.264/AVC specifies a special type of macroblocks called skipped macroblocks.

For skipped macroblocks, no coded information is sent to the decoder. A syntax

element in slice data indicates the skipped macroblocks to the decoder. Skipped

macroblocks in P-Slices and in B-Slices are called P-Skip and B-Skip respectively.

The decoder does not receive any motion information or residual data for the

skipped macroblock. Since the motion vector differences are zero, the motion vec-

tor prediction becomes the actual motion vectors used to obtain the predicted

macroblock. Therefore, the prediction macroblock is simply copied as the recon-

structed macroblock.

Typically, skipped macroblocks occur in regions with low movements, and

therefore, the predicted macroblock is very similar to the original macroblock.

The residual data of this type of macroblocks is low resulting in zero coefficients

after transform and quantization.

50

3. H.264/AVC STANDARD OVERVIEW

3.6.5 Deblocking Filter

The quantization of block transform coefficients can lead to visible blocks

edges in the reconstructed picture. The H.264/AVC standard specifies an in-loop

deblocking filter (DF) to minimize the blocking artifacts. The deblocking filter

is applied in-loop, meaning that the reconstructed and filtered pictures are used

as reference pictures for inter prediction. The same filter parameters are used

at both the encoder and the decoder to avoid any prediction errors. Typically a

filtered picture provides a closer match to the original picture than the unfiltered

reconstruction. Therefore a better prediction can be obtained using the filtered

reference picture, resulting in higher objective and subjective quality. The filter is

applied over 4x4 block boundaries in macroblocks and the filter strength depends

on the quantization parameters, prediction modes of neighboring blocks and the

actual pixel values across the boundary [34]. In addition, the filter strength can

be explicitly changed or the filter can be completely turned off by the encoder.

3.7 Parallel Implementations

Ever since the H.264/AVC standard [26] was published in 2003, researchers

started to solve the high complexity issue of the new standard mainly using paral-

lelism. Several modifications were suggested for the H.264 encoders and decoders

to improve the performance in terms of execution time and memory usage. Paral-

lel decoding techniques of H.264 starts from the highest level, which is the group

of frames or pictures (GOP), coarse-grain level, till the lowest level which is the

block inside a macroblock, fine-grain level.

3.7.1 Slice-Level

Gurhanli et al. [20] suggested a parallel approach by decoding independent

groups of frames on different cores. The speedup is conditioned with the modifi-

cation of the encoder in order to omit the start-code scanner process. Any mod-

ification to the encoder will require the exclusion of previously encoded video

sequences which will need to be re-encoded in order to benefit from the proposed

approach. In our parallel implementation, we only modify the decoder which sup-

51

3. H.264/AVC STANDARD OVERVIEW

port all previously encoded video sequences. Nishihara et al. [42] proposed a load

balancing mechanism among cores where partitions sizes are adjusted at run-

time. The authors also reduced the memory access contention based on execution

time prediction. Horowitz et al. [22] compared different H.264 implementations

including FFmpeg [17] and the H.264 reference software JM [61]. The authors

also analyzed the complexity of the H.264 decoder subsystems.

3.7.2 Macroblock-Level

Kannangara et al. [28] reduced the complexity of the H.264 decoder (19-

65%) by predicting the SKIP macroblocks using an estimation based on a La-

grangian rate-distortion cost function. Our experimental results show a better

overall speedup (230%) and a better parallel scalability relative to the number of

cores in a multicore processor. Zhao et al. [72] proposed a wavefront algorithm

for processing independent macroblocks within the same frame and among differ-

ent frames. This method for parallel processing of macroblocks does not equally

distribute workload of different cores as the number of independent macroblocks

varies with time. Mesa et al. [39] proposed a similar approach, the 2D-Wave,

which decodes independent macroblocks in parallel on different cores. A good

scalability is proved for high resolutions. Moreover, an advanced parallel tech-

nique that is based on the 2D-wave algorithm, the dynamic 3D-Wave approach,

is proposed by Meenderinck et al. [38]. The dynamic 3D-Wave algorithm, which

combines spatial and temporal MB-level parallelism, uses a dynamic scheduler

that assigns independent macroblocks to parallel threads. The dynamic scheduler

minimizes the differences in workload on different threads, and thus, it optimizes

the parallel execution of independent macroblocks on parallel threads. Chong et

al. [14] added a pre-parsing stage in order to resolve control dependencies for

macroblock-level parallelism. Vandertol et al. [67] mapped video sequences data

over multiple processors providing better performance over functional parallel al-

gorithms. The authors group macroblocks in a frame with minimal dependency

between cores.

52

3. H.264/AVC STANDARD OVERVIEW

3.7.3 Deblocking Filter

Among the literature that already exists for parallel deblocking filter, Sihn et

al. [57] proposed a multicore pipeline for the deblocking filter based on the group

of pictures data level partitioning. He also suggested software memory throttling

and fair load balancing techniques in order to improve multicore processors per-

formance when several cores are used. Wang et al. [68] partitions a slice into

independent rectangles with arbitrary granularity. These independent regions are

identified by examining the influence of vertical and horizontal lines of pixels.

Parallel deblocking of these regions has good scalability, minimal synchroniza-

tion overhead, and good cache utilization. However, a small number of pixels will

have erroneous output without affecting the overall deblocking filter process with

what they refer to as the Limited Error Propagation Effect. For an optimized

deblocking filter, a speedup of 95% and 224% is achieved on 2 cores and 4 cores

respectively. For an H.264 decoder, the overall speedups are 21% on 2 cores and

34% on 4 cores. Pieters et al. [49] proposed a macroblock partitioning algorithm

that is based on a parallel version described by Wang et al. [68] with the avoid-

ance of the Limited Error Propagation Effect. The proposed algorithm filters

the pixels of macroblocks concurrently. The parallel technique is also tested on

GPU platforms. The parallel implementation outperforms both CPU-based and

GPU-based implementations by a factor up to 10.2 and 19.5 respectively.

3.7.4 Discussion

Many optimization techniques are proposed in order to increase the efficiency

of H.264 video standard. A straight-forward comparison between different litera-

ture is not applicable because of many criteria and assumptions adopted in these

researches. In addition to software implementation diversities, hardware platforms

are rarely similar which makes direct comparisons unreliable. Some assumptions

cannot be applied in both our work and related work. In our experimental re-

sults in the following chapters, we compare values with related work using almost

similar units and hardware platforms.

53

3. H.264/AVC STANDARD OVERVIEW

3.8 Summary and Conclusion

The design of the H.264/AVC standard is targeted at a wide rage of applica-

tions from video conferencing to HDTV and professional studio editing applica-

tions. Therefore, as mentioned earlier in this chapter, the standard defines a set

of ‘profiles’ that include subsets of available coding tools and features targeted at

different application scenarios. Table 3.2 indicates the features and coding tools

contained in the baseline, main and extended profiles.

The H.264/AVC video coding standard delivers significantly improved com-

pression efficiency compared with previous standards, supporting higher quality

video over lower bit rate channels. Due to improved compression efficiency and

increased flexibility of coding and transmission, H.264 has the potential to enable

new video services such as mobile video phones and multimedia streaming over

mobile networks. The H.264/AVC standard supports a wide range of applications

from consumer applications like video conferencing to professional applications

like video editing. The H.264/AVC standard has a range of coding tools contribut-

ing to its high compression performance, flexibility and robustness. However, the

performance improvements come at a cost of significantly high computational

complexity. Therefore, the decoder implementations should make use of the avail-

able coding tools effectively to achieve the desired compression performance with

the available processing resources.

In the following chapters, we describe in detail efficient and scalable parallel

implementations of the H.264 decoder in order reduce execution time and energy

consumption.

54

3. H.264/AVC STANDARD OVERVIEW

Table 3.2: Features of the Baseline, Extended, Main, and High profiles
Feature Baseline Main High

Bit depth 8 8 8
Chroma formats 4:2:0 4:2:0 4:2:0

Flexible
macroblock

ordering (FMO) Yes No No
Arbitrary slice
ordering (ASO) Yes No No

Redundant
slices (RS) Yes No No
Interlaced

coding (MBAFF) No Yes Yes
B slices No Yes Yes

CABAC entropy
coding No Yes Yes

4:0:0 Monochrome No No Yes
8x8 vs. 4x4
transform
adaptivity No No Yes

Quantization
scaling matrices No No Yes
Separate Cb and
Cr QP control No No Yes

Remarks low complexity high high
high robustness compression compression
error resilience efficiency efficiency

Applications video conference digital TV high resolution
web videos media storage HD TV & DVD

55

Chapter 4

H.264 Color Components Parallel

Decoding

4.1 Introduction

Multimedia applications are found in almost every device in our modern tech-

nological world. Mobile devices like cell phones and PDAs are essential in our daily

life needs. Their growing features require better hardware performance, larger

storage, and smoother display resulting in higher power consumption. As systems

performance and workload are remarkably increasing, so do network communi-

cations. Massive amounts of data are interchanged daily using various wireless

networks and infrastructures. Consequently, improved compression algorithms are

needed to minimize the size of video files, and thus, benefiting from the growing

performance of embedded processors. Enhanced compression will in turn require

higher processing power which may affect the overall performance of the embed-

ded device.

Nowadays, most processors for desktop computers and mobile devices are mul-

ticore chips. The adoption of multicore processors improved the multi-tasking user

experience of all applications. Nevertheless, the majority of existing multimedia

applications do not benefit from multicore processors because they are designed to

be executed sequentially like the open-sourced H.264 reference software [61] and

the FFmpeg codec [17]. Parallelizing the H.264 decoding process offers a huge

56

4. H.264 COLOR COMPONENTS PARALLEL DECODING

credit to existing embedded systems enabling them to decode video sequences

with higher resolution more efficiently by benefiting from existing and unused

hardware resources like unused cores, private and shared memories, etc.

In this research, we propose our approach that processes each color component

(luma and chroma) on a separate core in a multicore processor in order to increase

the overall performance of the H.264 decoder. Our novel idea is based on the fact

that the H.264 decoder process color components in every frame sequentially;

thus, simultaneous processing of the color components is possible due to the

reason that luma and chroma processing are independent. In addition, a pipeline

version is designed in order to improve load balancing and to hide synchronization

overhead. Simulations are conducted using video sequences benchmarks that are

simulated on multicore embedded processors. Experiments are conducted on dual

and quad core processor simulator in order to collect execution time and energy

consumption statistics. [9]

The rest of the chapter is organized as follows. Section 4.2 presents our tech-

nique for decoding color components of video frames in parallel. Section 4.3 dis-

plays and analyzes experimental results using the H.264 reference software, JM

[61]. Section 4.4 shows the results for a parallel H.264 using the FFmpeg codec

library [17]. Finally, section 4.5 concludes the chapter.

4.2 Parallel Decoding

In this section, we decompose the H.264 decoder process. Then we explain our

algorithm for parallel processing of color components. The H264/AVC [26] video

decoder and its features are explained in depth in chapter 3. We also describe our

proposed pipeline implementation of the H.264 decoder.

4.2.1 Stages Decomposition

A thorough check of the reference implementation for H.264 codec [61] shows

that the decoder can be divided into five main functional parts: entropy decoding

(ED), de-quantization and inverse transform (IQT), motion compensation (MC)

and intra-prediction (IP), and deblocking filter (DF). Figure 4.1 illustrates a sim-

57

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.1: Simplified H.264 decoding process

plified representation of the H.264 decoder’s stages. Entropy decoding and motion

compensation are applied for every macroblock of size 16x16 pixels. Deblocking

filter is executed at the end of the decoding process. The average workload of

every stage using the baseline profile is shown in figure 4.2. The entropy decod-

ing and the de-quantization and inverse transform stages are merged into one

stage in the statistics in figure 4.2. The workload of this stage is 14% on av-

erage which is mainly consumed by the context-adaptive variable length coding

(CAVLC). The CAVLC algorithm is adopted by the baseline profile and it has a

lower complexity than the CABAC algorithm which is explained in the previous

chapter. The prediction stage which is composed of intra-prediction and motion

compensation has a high impact on the overall decoding process which 41% on

average. Finally, the deblocking filter stage is also a heavy process that consumes

around 45% of the overall process. These workload statistics are profiled using

several video benchmarks with low and high resolutions that are listed in the

experiments section.

4.2.2 Color Components Processing

The frames in a video sequence are represented as bit streams. Pixels are

sampled using three color components: YUV (or YCrCb). Y stands for luminance

color sample (luma) which is the light info. UV (or CrCb) stands for the red

and blue color samples respectively (chroma). In a 4:2:0 format, each four luma

58

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.2: H.264 decoding stages workload percentages of the baseline profile.

samples have one red sample and one blue sample as shown in figure 4.3. The

4:2:0 sampling format is the most widely used format. Other formats, 4:2:2 or

4:4:4, where more color samples are available, shows no significant difference to

the human vision. The reason is that the vision is more affected by the light than

the colors of video sequences.

In our research, we reveal an independent pattern which is found in the de-

coding process of color components. As we described above, each frame of a video

sequence is represented in YCrCb color samples. A pixel is formed by these three

color components. The decoder reconstructs each frame picture of each color sep-

arately starting with the luma then the chroma colors. The color information in

each frame and thus in each macroblock are independent from each other. The

H.264 Standard [26] does not show any dependency between the color information

data of the decoding algorithm during the motion compensation stage.

4.2.3 Parallel Execution and Synchronization

Parallel execution is considered as a major potential solution for complex al-

gorithms where available resources like parallel cores are being used without any

modifications to hardware components. These additional cores are available in

most devices nowadays where sequential applications do not effectively benefit

59

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.3: YUV 4:2:0 color components sampling format

from multiprocessor systems. Performance optimization using parallel execution

can be applied to many extensive processing applications. Even optimized imple-

mentations can still take advantage of parallelism using multicore processors.

The H.264 decoding process and all major video decoding algorithms are

generally designed to be executed sequentially. The H.264 standard [26] does not

support parallelism, and thus, does not benefit from multicore processors that

are available in today’s market. Several approaches have been studied in order

to parallelize the execution of the decoding process. Most of these approaches

are based on slices and macroblocks (which are explained in section 3.4.3.3 and

3.4.3.2 in chapter 3) parallel processing [14, 51, 67]. Similar approaches for parallel

processing of H.264 are described in details in section 3.7 of chapter 3.

In our research, we modified the H.264 source code in order to decode the luma

and chroma components of macroblocks in parallel. The parallelization uses the

PThread library with critical sections mutual exclusion and condition variables.

One core handles all the stages except the chroma motion compensation and

intra-prediction which are executed on the second core. As shown in figure 4.4,

the second core handles the motion compensation and intra-prediction for chroma

color samples only. The first core executes the luma color samples in addition

to all the remaining decoding stages. As stated above, color components are

independent of each other. Therefore, decoding different color components in

parallel is proved to be correct in theory as well as in experiments. Thus, parallel

processing of color components increase the performance of the decoder when it

60

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.4: H.264 parallel color components decoding on a dual core processor

is executed on a multicore system.

The intra-prediction and motion compensation (inter-prediction) should be

completed before applying the deblocking filter. Thus, a synchronization barrier

is needed before the deblocking filter stage. With this configuration, the synchro-

nization is performed at the end of the luma and chroma decoding using condition

variables. At the end of the entropy decoding stage, the parallel execution step of

the decoding process is initiated. Once intra-prediction and motion compensation

are completed, all parallel threads will wait at the synchronization barrier before

starting the deblocking filter stage.

A complex structure variable, which contains all the information needed to

represent a picture frame, is saved in the shared memory. This picture variable

can be accessed by all cores. The communication between multiple cores is imple-

mented using a memory that is shared by different cores. When using a dual-core

processor, core 2 uses the chroma data in order to decode the color components

while core 1 decodes the luma data and executes the remaining sequential algo-

rithms as illustrated in figure 4.4. The average workload of the second core using

the Akiyo and Container benchmarks (CIF and QCIF) is 18% which is in turn

the average performance gain using dual-core processors.

Figure 4.5 illustrates the workload partitioning over 4 cores. The first core

reads the data from NAL units (which are explained in section 3.4 of chapter

3)and it performs the entropy decoding and transformation stages. The second

core processes luma data while the third core processes chroma data. They both

perform the same work, intra-prediciton and motion compensation, on different

color components at the same time. The fourth core executes the remaining part

of the deblocking filter and then it outputs the decoded frame picture. The per-

61

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.5: H.264 parallel color components decoding on a quad core processor

formance gain using quad core processors is almost the same as the dual core

processors due to the sequential characteristics of the H.264 decoder. Thus in

order to benefit from quad core architectures, a pipelined execution is proposed

and discussed in the following section.

4.2.4 Pipeline Execution

In order to minimize the waiting time between parallel cores, the H.264 de-

coding stages are executed in pipeline mode over four cores when motion compen-

sation is used. Theoretically, the execution time can be dramatically decreased to

the time needed by the core that executes to biggest chunk of code. The processor

idle time is reduced leading to higher efficiency by using available resources. The

pipeline is illustrated in figure 4.6.

A shared memory storing the blocks of information is used in order to ac-

cess the consistent data by the four processors. The data variables and their

manipulation in the current H.264 implementation went through extensive modi-

fication and testing in order to prove the proposed pipeline execution. Figure 4.6

illustrates the best case scenario where the four decoding stages are completely

independent, allowing parallel execution using the four cores. This case is applied

when the current frame is dependent on a previously decoded frame (P-frames).

62

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.6: H.264 pipeline execution on a 4 cores multiprocessor

P-frames contain intra and inter macroblocks. Intra-prediction frames (I-frames)

do not allow pipelined decoding execution because macroblocks depend on other

macroblocks in the same frame. I-frames contain only intra macroblocks (I-MBs).

Performance gain depends on the number of I-frames in the encoded video frames

where the first decoded frame is always an I-frame. On the other hand, subse-

quent frames encoded using the Baseline or the Main profiles are mostly P-frames

considering the fact that there is a motion in the video sequence. I-MBs are use-

ful when adjacent frame are pretty similar and minor motion took place. For the

Akiyo and Container benchmarks, only the 1st frame was decoded using intra-

prediction among 300 frames. This fact leads us to concur that at least 99% of the

decoded frames are P-frames. The maximum load of the H.264 pipelined version

over 4 cores is 41% which is executed by the fourth core (P4) in order to perform

the deblocking filter process. So the maximum performance speedup is limited by

the largest load which is the deblocking filter.

4.3 Experiments with JM H.264 Reference Soft-

ware

In order to demonstrate the feasibility of our approach, we have performed

experiments on our parallel version of the H.264 reference decoder [61] using the

MPARM simulator [31]. Runtime statistics of each stage are collected in addition

to overall execution results.

63

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Table 4.1: H.264 decoder profiling based on luma and chroma
Benchmark Total (ms) Luma (%) Chroma (%)
Akiyo CIF 754234 29.48 20.06

Akiyo QCIF 379928 24.56 15.93
Container CIF 763781 29.45 20.45

Container QCIF 397664 24.55 15.91
Average 27.01 18.08

4.3.1 MPARM simulator and H.264 porting

MPARM is a multiprocessor cycle-accurate architectural simulator [31]. RTEMS

is a real-time operating system for embedded multiprocessor systems [15]. An

H.264 ported version of the RTEMS operating system runs on MPARM simu-

lating ARMv6 embedded multicore processor [12]. H.264 reference software [61]

is designed to run on desktop systems. Thus, a preliminary step is to port the

reference software so that it can be executed by the RTEMS operating system

which in turn runs on the MPARM simulator.

4.3.2 Profiling H.264 Stages

The parallel H.264 decoder is executed using the MPARM simulator. Two

benchmarks are used, Akiyo (news presenter) and Container (slow moving cargo

ship). The encoded video sequences have two formats, QCIF (176 x 144) and CIF

(352 x 288). The simulator profiles each stage of the decoder and each luma and

chroma components in each phase. Outputs of the simulator include the number

for cycles and the execution time for each part of code that we specified for every

stage of the H.264 decoding process. Table 4.1 lists the total execution time in

milliseconds for each video sequence. In addition, the respective percentages for

luma and chroma processing are displayed.

4.3.3 Discussion

The test results in table 4.1 show a difference between the CIF and the QCIF

formats. The motion compensation percentages from the total time of execution

are quite similar with a 1% difference between video sequences of the same format.

64

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.7: Execution speedup per benchmark and resolution

The Akiyo and the Container benchmark have a 5% difference between CIF and

QCIF. The deblocking filter, last stage of the decoder, is divided into three parts:

strength calculation, deblocking macroblocks, and edge filtering. The strength,

which is the amount of filtering, depends on the boundaries differences between

macroblocks and on the gradient of image sample across the boundary. The wider

the difference is between pixel information across macroblocks boundaries the

more complex the strength calculation.

Color component differences between the two video sequences and across all

stages are similar as shown in table 4.1. For a 4:2:0 sampling, each 4 luma sample

are grouped with 2 chroma samples. Thus, luma processing needs more time than

chroma leading to a double time difference at least. By grouping all the luma color

information together summed up to 27% on average of the total execution time.

However the total chroma execution time is 18% on average of the total execution

time.

4.3.4 Speedup using Parallelism

Careful inspection of the source code and the algorithms in the H.264 imple-

mentation allows us to conclude that the luminance and chrominance processing

and manipulation are completely independent within each slice. Thus, the execu-

tion the chroma decoding block of code on a different core simultaneously with

the execution of the luma decoding process eliminates 16% of the total execution

time for QCIF resolution and 20% for CIF resolution. The total execution part

that can be parallelized using color component is limited by the chroma execu-

65

4. H.264 COLOR COMPONENTS PARALLEL DECODING

tion time. This part of the code varies between different video formats. The total

performance gain that is achieved using parallel color decoding ranges between

15 - 21% as shown in figure 4.7.

Our proposed parallel H.264 implementation enables embedded devices, which

are available in today’s market, to benefit from multicore processors in order to

increase the video decoding performance and to decrease power consumption.

No specific and additional hardware is needed to use our algorithm. The H.264

codec is being widely adopted by most manufacturers for low resolution devices

using the baseline profile. High definition resolutions mainly use the Main and

the High profiles. Decreasing the decoding process time has many benefits on

the user-experience level and hardware performance level. In addition, lowering

the execution and processing time extends the battery life of the mobile device.

The user enjoys watching higher quality video while the hardware consumes less

resources regarding to processing time and power.

4.4 Experiments with FFmpeg H.264 Decoder

The simulator that was used in the previous section is limited to a small

number of parallel cores. In this section, we experiment our proposed parallel

color components algorithm using the Multi2Sim multicore simulator [66] with

the FFmpeg H.264 implementation [17].

4.4.1 Multi2Sim Simulator

Multi2Sim simulator supports multithreading and multicore processors. The

cache and memory configurations comply with ARM Cortex9MP processor. The

FFmpeg H.264 decoder [17] is used as the main application that is being exploited

on multicore processors. The simulator collects several statistic factors including

the total number of instructions and cycles, reads and misses, and memory usage.

We used 3 video benchmarks with CIF resolution (352x288) and 3 benchmarks

with WXVGA (HD) resolution (1280x720). We simulated the H.264 decoding

process of 30 frames for each benchmark.

The use of a different is due to the limitation of the MPARM simulator to

66

4. H.264 COLOR COMPONENTS PARALLEL DECODING

simulate more than 4 cores and due to its straightforward execution of C pro-

grams. M2S comprehensive pipeline and memory statistics are also easily mapped

by the McPAT power estimation tool [33].

4.4.2 FFmpeg H.264 Implementation

FFmpeg [17] is an optimized implementation that supports most common

video and audio formats. It is still evolving by open source developers experts.

Many researches were made on different H.264 implementations which vary ex-

tremely in terms of performance and reliability. FFmpeg is considered as one of

the fastest video codec implementations in terms of performance and reliabil-

ity. The library is open sourced and it is licensed under the GNU Lesser General

Public License (LGPL). FFmpeg decode most existing open and proprietary mul-

timedia formats. The source code is implemented with a modular design using C

language. It also includes many hardware specific optimizations available for par-

ticular processors. Several video codec with similar functionality can access the

same code without rewriting or copying the required code. For example, H.264

uses many functions implemented for the MPEG-2 codec. Modifying existing code

in general is not easy; however, adding new standards to the library is much easier

than rewriting the whole implementation.

4.4.3 Speedup using Parallelism

Comparing the sequential execution on 1 core and the parallel execution on

2 cores shows an increase in performance around 18%. Video sequences with

fast moving objects usually have a lower performance increase. This difference in

speedup is mainly due to the large number of macroblocks that depends on pre-

vious reference frames resulting in more data communication between cores. In

addition, macroblocks may be divided into sub-blocks reaching the size of 4x4 pix-

els. As a consequence for the overall speedup, synchronization overhead is added

to the whole execution. An average of 3% of instructions is added to handle syn-

chronizations between cores. Having calculated the overhead, the net performance

speedup for parallel execution has an average of 12% as displayed in figure 4.8. An

important similarity of speedup is noticed between CIF and HD resolutions. The

67

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.8: Speedup for parallel luma and chroma decoding, pipelined entropy
decoder, and combined pipeline and parallel decoding.

parallel implementation seems unaffected by video sequences resolution. However

it is mainly affected by the complexity of moving objects in the frames. For exam-

ple, Shields, Into Tree, and Foreman benchmarks share the similarity of having a

moving object in the middle with a slow moving background. Park Run has the

lowest performance gain while News achieves the highest speedup.

Applying the pipeline structure illustrated in figure 4.6, we get an important

increase in performance by significantly reducing the execution time of entropy

decoding. Figure 4.8 displays the speedup gained with the combined structure

ranging from 24% to 32% with an average of 29%. Experiments are performed

using CIF and HD formats. We also notice that the speedup is indirectly pro-

portional between parallel and pipeline approaches. As the speedup with parallel

luma-chroma execution increases, then the speedup with pipelining decreases.

This is mainly due to the complexity of the video sequences. When the objects

are more complex, the entropy encoding compression efficiency is lower. So the

68

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.9: Energy consumption decrease with parallel-pipeline decoding.

time needed for entropy decoding becomes higher.

4.4.4 Power Efficiency

One of the most important factors in computer processing nowadays is power

efficiency. New chips aim to achieve lower power consumption as display screens

become wider and programs require more processing. Multicore processors need

more energy at the expense of more processing performance. In our parallel H.264

implementation, overlapping instructions are executed at the same time. The total

number of instructions and the numbers of loads and stores are increased. On the

other side, the total number of cycles and the total execution time is decreased.

Figure 4.9 plots the percentage decrease in energy consumption of the H.264

parallel implementation using 2 cores over the original sequential implementation

on 1 core. The average percentage saving is 19%. High definition video sequences

have higher power consumption. Power measurements are generated using the

McPAT tool [33].

69

4. H.264 COLOR COMPONENTS PARALLEL DECODING

Figure 4.10: Speedup increase for FFmpeg multithread version.

4.4.5 FFmpeg Multi-Threaded Version

In the Google Summer of Code of the year 2008, the multi-threaded decod-

ing branch FFmpeg-mt was created. This version can decode multiple frames in

parallel. Recently, work has started to merge the multi-threaded branch to the

main FFmpeg source code. In our research, we experiment the multi-threaded

FFmpeg version on multiple cores. We further integrate our novel luma-chroma

parallel decoding with entropy decoder pipelining into the source code. The new

implementation, which decodes frames in parallel, requires doubling the number

of cores for color parallel decoding. Synchronization is only required when a frame

depends on a reference frame that is being decoded. In order to decode luma and

chroma in parallel, we decode each frame using 2 cores. One core executes all the

processes for frame decoding except chroma related tasks. The other core executes

the motion compensation and intra-prediction of chroma color samples. The en-

tropy decoder pipeline as illustrated in figure 4.6 is applied. Thus our approach

is totally integrated in the H.264 parallel source code of FFmpeg [17].

As a result of our combined parallel implementation, we prove that our luma

and chroma parallel technique can be applied to existing coarse grain and fine

grain methods for parallelism. Coarse grain methods are mainly parallel decod-

70

4. H.264 COLOR COMPONENTS PARALLEL DECODING

ing for a group of frames, frames, and slices. Fine grain methods decode multiple

macroblocks or blocks in parallel. Luma and chroma parallel decoding is applied

when entropy decoding, inverse transform and de-quantization processes are com-

pleted. Depending on the H.264 decoder implementations, these processes can be

performed for the whole slice before moving on to inter- or intra-prediction, or,

they can be partially executed for each macroblock. FFmpeg uses the latter tech-

nique which is based on the macroblock level. Deblocking filter is executed when

a row of macroblocks is completely decoded. We execute the decoding process of

color components in parallel for each line of macroblocks. Thus one core decodes

luma color samples for all macroblocks on the same row in parallel with another

core decoding the chroma colors for the same macroblocks on the same row. This

level of parallelism may be considered in the middle between coarse grain and

fine grain methods.

Executing the H.264 decoder on multicore processors revealed an increase in

performance over multi-threaded execution on one core. Adding color components

parallelization with entropy decoder pipelining shows a relatively similar perfor-

mance gain. The performance gain varies between 10% and 60% depending on

the number of cores and the number of frames decoded in parallel. The speedup

percentages in performance are similar to the numbers shown earlier for both high

definition (HD) and low definition (CIF) resolutions. However, 8 cores shows the

highest gain offset compared to 4 and 2 cores as displayed in figure 4.10. With

16 cores and above, the gain remains almost the same. Thus, we conclude that

a saturation point is reached with 8 cores. The number of reference frames in a

video sequence depends mainly on the encoder. In fact, using more cores does

not always increase performance due to many factors like data communication,

synchronization, frames dependencies in videos sequences, and many others.

4.5 Conclusion

H.264 is being widely adopted in multimedia applications on general-purpose

and embedded systems. The high complexity imposed by the H.264 decoder re-

quires enhancement in order to increase the efficiency and to lower power con-

sumption. The proposed H.264 decoding of luma and chroma in parallel provides

71

4. H.264 COLOR COMPONENTS PARALLEL DECODING

high and realistic potentials for video decoding on dual and quad core processors.

Execution time speedup of our parallel implementation of the H.264 decoder is

around 18%. Moreover, the speedup reaches 32% with our proposed pipeline im-

plementation with an energy saving of 24%.

In the following chapter, an advanced parallel algorithm is proposed to execute

motion compensation on large number of parallel cores. The parallel approach

is based on processing groups of independent macroblock rows in parallel. The

proposed parallel algorithm shows a higher scalability than the color components

approach described in this chapter. Thus, good speedup and energy saving are

reached on multicore processors with more than 8 cores.

72

Chapter 5

H.264 Macroblocks Rows Parallel

Decoding

5.1 Introduction

Many parallel implementations of the H.264 codec exist ranging from par-

allel decoding of macroblocks (fine-grain implementations) till parallel decoding

of groups of pictures (coarse-grain implementations). A macroblock is a 16x16

square pixel component of an image in a video sequence. Moreover, a macroblock

can also be divided into sub-blocks of smaller size. Macroblock parallel decoding

is highly scalable since many independent macroblocks can be processed in par-

allel. However, dependencies and huge overheads are created as a result of mem-

ory communication and execution synchronization between macroblocks. On the

other hand, parallel decoding of groups of pictures require large memory especially

for high definition video sequences. In addition, they have a lower scalability than

parallel macroblock decoding because of the small number of groups of frames

that can be decoded in parallel. In our approach, we process rows of independent

macroblocks in parallel using a new algorithm that eliminates dependencies be-

tween macroblocks and minimizes synchronization overhead. This level of parallel

execution may be considered between the coarse-grain and the fine-grain parallel

approaches, thus, offering a balance between large overheads and high scalability.

Our main contribution in this research is the design and implementation of

74

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

a new algorithm for processing macroblock rows of the H.264 decoder in par-

allel. In addition, a small footprint data dependency detection algorithm that

isolates intra-prediction macroblocks (I-MBs) is implemented and executed on

macroblocks of the same slice of a video frame. Experiments are conducted by

executing our scalable parallel decoder on a Cuda Development Kit platform [43]

with an ARM Cortex-A9 processor including 4 cores [6]. Execution time and en-

ergy consumption statistics are collected by running the application on the real-

board platform. For HD and Full-HD resolutions, video sequences benchmarks

reach their maximum throughput using 4 threads on 4 cores with a speedup of

3.3x for motion compensation and an overall speedup of 2.3x in terms of execu-

tion time and with an energy saving percentage of 63%. Moreover, the parallel

algorithm has a very high theoretical speedup that is applicable on manycore and

vector processors. [10, 11]

In our research, we enhance the H.264 decoder execution time knowing that

our approach is also applicable to the H.264 encoder. We focus on improving the

efficiency of the H.264 decoder using multicore processors. We decode groups of

rows of macroblocks in parallel where each group is mapped to one core. De-

pendencies between macroblocks are avoided by decoding intra-prediction mac-

roblocks sequentially at the end of the decoding stage. We prove that our approach

has a better load balancing on multiple cores in addition to lower synchroniza-

tion overhead than other approaches. With these advantages, we eventually reach

higher theoretical and realistic speedups. We evaluate our approach on a real

platform equipped with a quad core processor. Execution time and energy con-

sumption statistics are gathered and analyzed.

The remainder of the chapter is organized as follows. In section 5.2, we briefly

describe the H.264 decoding process and the macroblocks that form a slice of

picture. In section 5.3, we describe our approach for parallelizing the motion

compensation phase and the deblocking filter. In section 5.4, we present our real-

board experimental results for execution time and energy consumption. We also

discuss and analyze simulated executions and the theoretical scalability of our

algorithm. Section 5.5 presents experiments and results of our parallel algorithm

on graphics processors. Conclusion and future work are given in section 5.6.

75

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.1: H.264 decoding process

5.2 Decoder Decomposition

In this section, we provide brief description of the H.264 video decoding pro-

cess and the macroblocks in a frame. We also profile the different H.264 decoder

stages.

5.2.1 Decoding Stages

The H.264 decoder can be divided into five main functional phases: Entropy

Decoder (ED), De-Quantization and Inverse Transform (IQT), Motion Compen-

sation (MC) and Intra-Prediction (IP), and Deblocking Filter (DF). The H.264

decoder stages are illustrated in Figure 5.1. The decoder process starts by entropy

decoding the input bitstream. Then, de-quantization and inverse transformation

are applied to the resulting data. Afterwards, in every slice of a frame, mac-

roblocks are processed in raster mode. Each macroblock is intra- or inter-predicted

(motion compensation) using the reference frames. The deblocking filter is applied

at the end in order to make the edges between macroblocks smooth and invisible

to human vision. Figure 5.2 illustrates the average execution percentage of each

main phase using the baseline and the main profiles. De-quantization and inverse

transform phase are grouped with the entropy decoder phase because they have

a small footprint on overall execution. Both predictions phases, motion compen-

sation and intra-prediction, are also merged together into one phase. Our parallel

76

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.2: H.264 decoding stages workload percentages

algorithm is applied to the prediction phase that ranges from 41% till 45% of the

overall decoding process. The entropy decoder with de-quantization and inverse

transform is executed sequentially with a percentage ranging from 14% till 19%.

We use the wavefront algorithm [72] for the deblocking filter of the H.264 decoder.

The deblocking filter has a huge impact on the overall performance of the decoder

that is 45% for the baseline profile and 36% for the main profile.

5.2.2 Macroblocks

Each slice of a picture frame is partitioned into square blocks of 16 x 16 pix-

els called Macroblock (MB). The number of horizontal and vertical macroblocks

varies with the resolution of the frame. A macroblock can be divided into sub-

blocks of 16 x 8, 8 x 8, 8 x 4, and 4 x 4 pixels. The encoder chooses the sub-blocks

sizes depending on the amount of details (complexity) for specific parts of an im-

age frame. An image, or part of an image, is considered complex when it contains

objects with tiny details. For example, in a video of a flying bird with a con-

sistent blue background, the encoder will divide the macroblocks in the region

displaying the bird into sub-blocks smaller than 16x16 and the blue sky mac-

roblocks will remain with the same of size of 16 x 16. The motion compensation

stage uses a reference buffer in order to calculate the values of macroblocks in the

current frame. The reference buffer contains a list of previously decoded frames.

Macroblocks that are inter-predicted and motion compensated from previously

77

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.3: Decoding groups of macroblock rows in parallel using N threads

decoded frames are either of type P or B (P-MBs and B-MBs). P-MBs depend

on macroblocks in one reference frame. B-MPs are calculated using macroblocks

in two reference frames. Macroblocks that depend on other macroblocks in the

current frame (called I-MBs) are intra-predicted. Finally, deblocking filtering is

applied at the end of the decoding process in order to reduce the edging effect

between macroblock borders.

In the following section, we describe in detail our parallel implementation of

the H.264 decoder.

5.3 Parallel Implementation

In this Section, we elaborate on our parallel implementation of the H.264

video decoder. We explain how we apply parallelism to the motion compensa-

tion and the deblocking filter stages of the decoder. We also discuss macroblocks

partitioning and their dependencies.

78

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

5.3.1 Parallel Motion Compensation

The H.264 reference implementation, JM [61], is an open source implementa-

tion used as a reference implementation for the H.264 standard. In our research,

we modified the JM [61] source code of the H.264 decoder in order to decode rows

of macroblocks in parallel using the PThread library in C programming language.

A thread is created for every group of macroblock rows. Each thread is mapped

to one core. The number of thread is specified by the user or the application. If

the number of threads is greater than the number of cores, then the scheduler

will assign more than one thread for one core. As shown in figure 5.3, each thread

handles the motion compensation stage for a group of macroblocks rows. All

threads should complete their task before moving on to the next phase which is

intra-predication for I-MBs.

The maximum numbers of parallel decoding blocks is equal to the number

of macroblock rows. This level of parallel decoding of macroblock rows may be

considered in between coarse-grain and fine-grain approaches. Coarse-grain ap-

proaches process multiple slices or frames in parallel. These high level methods,

like [20] [28] [42] [57], need high memory usage in order to decode multiple frames

in parallel because of the required size to store and to transfer data of several

frames. Fine-grain approaches decode macroblocks or blocks inside a macroblock

in parallel. These low-level methods, like [14] [67] [72], cause an enormous syn-

chronization overhead affecting deeply the speedup for the reason of large number

of macroblocks in every frame. The balance between both approaches is also re-

flected on synchronization overheads and data communication requirements.

Our approach is aimed to benefit from the balance between both advantages

and disadvantages. Macroblock rows require less memory than a frame and more

than one macroblock. In fact, our approach is scalable up to the macroblock level.

Such granularity will create a huge overhead of parallelism on current multicore

architectures. On the other hand, the number of macroblock rows is much less

than the total number of macroblocks. For example, in HD resolution (1280 x

720), each frame has 3600 macroblocks, 80 horizontal MBs and 45 vertical MBs.

Thus, the number of macroblocks rows is less by a factor of 80 than the total

number of macroblocks. As a result, the overhead for synchronization and com-

79

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.4: Dependencies between macroblocks

munications between cores is also reduced by a factor of 80.

5.3.2 Macroblocks Dependencies

In H.264, there are 4 types of macroblocks: I, P, B, and SKIP. Figure 5.4

illustrates the dependencies between macroblocks of types I and P. I-MBs de-

pend on other macroblocks in the same slice of a frame as shown in figure 5.4-a

where the macroblock pointed at by the arrows may be dependent on one or more

macroblocks. P-MBs depend on macroblocks from previously decoded frames as

shown in figure 5.4-b where the origin of the arrow is a macroblock in a pre-

viously decoded frame. Motion vectors info is required for P-MBs in order to

reconstruct the coded macroblocks. B-MBs depend on past and future reference

frames. They are available in B-Frames and they can have one or two motion

vectors. The SKIP macroblock data remains the same when it is compared to

another macroblock in a previously decoded frame. So the motion vector differ-

ences are zero, and therefore, the prediction macroblock is simply copied as the

reconstructed macroblock.

In a frame, all macroblocks can be processed in parallel except I-MBs because

they depend on macroblocks which are being decoded in the same slice. So a

dependency identification procedure is needed to satisfy intra-prediction depen-

dencies. In order to overcome this constraint, we start by decoding all macroblocks

80

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

of type P, B, and SKIP in parallel. During this step, we skip all I-MBs and we

save a reference to the skipped macroblocks for future processing. When this stage

is completed, the remaining I-MBs macroblocks in the current slice are decoded

sequentially as illustrated in figure 5.3. Among the remaining I-MBs, independent

macroblocks can be processed in parallel as they depend on macroblocks in the

same slice that are already processed. For simplicity and because of their small

number in each frame (except I-Frames), we process I-MBs sequentially in our

algorithm.

With this ordering mechanism, dependencies between macroblocks in the same

slice are satisfied. Table 5.1 lists the percentages of I-MBs, P-MBs and SKIP-MBs

in the video sequences that we use in our experiments. The average number of

I-MBs for all video sequences is about 2%. I-MBs also exist in P-frames and B-

Frames. The number of I-MBs in a P-Frame or a B-Frame depends on objects with

high details and on objects rate of movements in the video sequences. P-Frames

and B-Frames are mostly composed of P-MBs and SKIP-MBs with a small num-

ber of I-MBs. So the small number of I-MBs in P-Frames and B-Frames does not

significantly affect the overall speedup for the parallel decoding of macroblocks.

5.3.3 IDR Frame Frequency

An encoded video always starts with an I-Frame (IDR) which is composed

completely of I-MBs. This type of frames is available typically every one second

in a video sequences in order to overcome communication errors and their prop-

agation when data is lost during transmission. A high number of IDR frames

significantly impacts the parallel efficiency and the scalability of our algorithm.

The interval between IDR frames is typically equal to the frame rate (as in the

default settings of the x264 encoder [46]). For example, an HD video sequence

with a frame rate of 60 frames per second (fps) will have an IDR frame every 60

frames (equivalent to 1 second). We can increase or decrease the frequency of IDR

frames in the encoder configuration. However, a high frequency of IDR frames,

for example one I-frame every 10 frames, decreases the compression efficiency of

the encoder and the visual results will not be noticeable by the human vision.

The recommended configuration for the IDR period in the x264 [46] and the JM

81

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Table 5.1: Percentages of different types of macroblocks per video sequence
Name Resol. Fr. I P SKIP

bus 352x288 150 1.70 79.20 19.10
foreman 352x288 300 1.80 70.95 27.25
waterfall 352x288 260 0.25 70.05 29.70
johnny 854x480 600 0.10 22.35 77.55

basketball 854x480 500 3.40 62.25 34.35
cactus 854x480 500 1.50 42.30 56.20
johnny 1280x720 600 0.15 22.50 77.35

basketball 1280x720 500 3.95 58.50 37.55
cactus 1280x720 500 1.90 42.50 55.60

basketball 1920x1088 500 4.95 55.30 39.75
cactus 1920x1088 500 3.15 44.05 52.80
terrace 1920x1088 600 0.80 56.50 42.70

Average 1.97 52.20 45.83

[61] H.264 encoders is set to an adaptive decision which basically inserts an IDR

whenever a scene changes. We use this feature in our experiments in order to

encode the video benchmarks. The numbers of I, P, and B frames are listed in

table 5.2 on page 87. The IDR period for low frame rates (25 fps) is around 150

(6 seconds) and for high frame rates (50-60 fps) is 200-250 (3-5 seconds).

5.3.4 Macroblock Dependency Check Algorithm

The macroblock dependency check algorithm is straightforward and simple to

implement. Figure 5.5 shows a simple illustration of the algorithm. Given a list

containing all the macroblocks in a slice, a loop that iterates over all macroblocks

flags all intra-prediction macroblocks (I-MBs) and assigns each remaining mac-

roblock to a group specific for an available core. Then, these groups of macroblocks

are decoded in parallel. When all macroblock groups are processed, a loop iterates

over all I-MBs that were flagged initially. All the macroblocks in the I-MBs list

are decoded sequentially. I-MBs can be processed in parallel if they are not neigh-

bors, meaning they do not have any dependencies between them. The number of

I-MBs is not significant in P-Frames and B-Frames as shown in table 5.1. If we

assign one macroblock to a different core, the workload is not very important and

synchronization overhead will also be added. So we just execute them sequentially

82

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.5: Macroblock row-based parallel algorithm. In step 1, all the mac-
roblocks are scanned and I-MBs are identified. In step 2, rows of P-MBs and
B-MBs are processed simultaneously. Finally in step 3, the remaining I-MBs are
decoded sequentially.

in our experiments for the reasons of simplicity and less communication overhead.

With the previously mentioned steps, inter-prediction and intra-prediction stages

are completed. The output of this stage complies fully with the H.264 standard

[26], which means that the output is exactly the same when sequential execution

is performed. Decoded macroblocks are then submitted to the deblocking filter

in order to make these edges between macroblocks smooth and nearly invisible.

The asymptotic worst-case complexity of the proposed parallel algorithm re-

mains almost the same as the sequential algorithm. All the macroblocks are pro-

cessed one time, which is similar to sequential execution. An additional iteration

with a constant operation overhead is added before parallel execution. During this

process, I-MBs are identified and their pointers are added to a list for further pro-

cessing in a following step. The runtime cost of this additional loop is linear and is

considered negligible among the total complexity of the algorithm. After parallel

decoding of the independent macroblocks, the remaining macroblocks which are

in the previously described list are processed sequentially and in order. Thus, the

worst-case complexity of the algorithm in comparison with the original sequential

algorithm remains the same with or without the gain of parallel computing.

83

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.6: Parallel decoding of macroblocks mapped to (a) 4 cores and (b) 8
cores

5.3.5 Macroblocks Partitioning

In the parallel decoding algorithm described above, groups of macroblocks are

decoded in parallel. In this part, we explain why we chose groups of macroblocks

to be decoded in parallel. As explained above, while iterating over macroblocks in

a frame slice, we skip intra-prediction macroblocks (I-MBs) and we decode inter-

prediction macroblocks (P-MBs and SKIP-MBs) in parallel on multiple cores.

Depending on the number of available cores, we group rows of macroblocks in

order to be decoded in parallel. The slice is divided by the number of cores

horizontally.

Seitner et al. [55] compare 6 parallel representations in terms of stall time and

core usage. Among the presented data partitioning approaches, our partition is

similar to the slice-parallel splitting approach that is described in [55]. As shown

by the authors, this approach has significant stall time overhead which is caused

by synchronization procedures in order to satisfy macroblock dependencies. How-

ever, with our approach for satisfying dependencies between macroblocks, the

stall time overhead does not apply. We chose this method because of data lo-

cality and also due to minimal data transfer overhead. For example, in order to

execute a slice of 80 rows of macroblocks on 4 cores processor, each core decode a

84

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

chunk of 20 rows of macroblocks. Using this partition method, one frame requires

four transfers in order to send data to each core’s local memory. This number of

transfers is minimal because it is equal to the number of available cores. Com-

munication overhead between caches of different cores is required when I-MBs

depend on other macroblocks that are processed by another core. In Figure 5.6,

we show an example of a frame of size 8 x 8 MB (64 x 64 pixels) mapped on 4

cores in 5.6-a and on 8 cores in 5.6-b. The numbers inside the squares are the

numbers of corresponding cores. Macroblocks in Figure 5.6 are assumed to be all

P-MBs or B-MBs. I-MBs are not displayed for illustration purposes.

In a sequential implementation, macroblocks are processed in raster scan

mode, starting from top to bottom rows and for each row from left to right

macroblock. All independent macroblocks in a slice can be processed at the same

time. However, the level of parallelism is limited by the number of available

cores. In our parallel implementation, we choose to group macroblocks in rows

because it offers a good load balance on different cores. In addition, this level

of parallelism has a low synchronization overhead between cores and it can be

considered simple to implement and to manage. Moreover, decoding independent

macrobocks vertically or diagonally did not show any significant difference with

horizontal decoding because all these macroblocks depend on previously decoded

macroblocks. Further studies will be performed in order to group macroblocks

based on their dependencies to previously decoded macroblocks. In this chapter,

we limit our study to the row-based algorithm that is tested on an embedded

multicore processor.

5.3.6 Scalability of Parallel Motion Compensation

In our approach, the highest scalability level is the maximum number of inde-

pendents macroblocks in a frame slice. Once the dependency detection algorithm

isolates the I-MBs, all remaining macroblocks can be processed at the same time.

However, the level of parallelism is limited by the available cores in a multi-

processor chip. The optimal speedup will occur when all groups of macroblocks

are assigned to available parallel cores. This will eliminate the context switching

overhead which affects the performance in general. For manycore processors, an

85

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.7: Sequential and parallel deblocking filter of macroblocks in the H.264
decoder

important limitation that remains unsolved is the huge data communication over-

head between cores. For vector processors or general-purpose graphical processing

units (GPGPUs) which offer a very high level of parallelism, great potentials exist

that may also benefit from the high scalability of our approach.

5.3.7 Parallel Deblocking Filter

The deblocking filter, last stage of the H.264 decoder, makes the edges be-

tween macroblocks smoother. This process decreases the artifacts that appear

when a slice is partitioned into macroblocks. This final stage of the decoder that

consists of 41% to 45% of the total decoding time as illustrated in figure 5.2 on

page 77 is also modified to be executed in parallel on different cores. However,

dependencies between macroblocks in this stage are different than the dependen-

cies of motion compensation and intra-prediction. During the deblocking filter

stage, each macroblock requires that the top and the left macroblocks are al-

ready processed. Figure 5.7 illustrates the sequential (a) and the parallel (b)

filtering modes that are applied on macroblocks in a slice. Both scanning modes

satisfy the dependencies requirements of the deblocking filter stage. In figure 5.7-

a, one marcoblock is filtered at a time. In figure 5.7-b, macroblocks colored in

dark gray are processed on different cores in parallel. This method, also known as

wavefront scheduling, is considered as a commonly used approach for processing

86

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Table 5.2: Video sequences resolution and frames types info.
Name Resol. fps I P B Total

bus 352x288 25 1 75 74 150
foreman 352x288 25 2 161 137 300
waterfall 352x288 25 2 116 142 260
johnny 854x480 60 3 151 446 600

basketball 854x480 50 2 250 248 500
cactus 854x480 50 2 249 249 500
johnny 1280x720 60 3 151 446 600

basketball 1280x720 50 2 247 251 500
cactus 1280x720 50 2 244 254 500

basketball 1920x1088 50 2 236 262 500
cactus 1920x1088 50 2 181 317 500
terrace 1920x1088 60 3 231 367 600

independent macroblocks. It can be applied at the intra-prediction, the motion

compensation and the deblocking filter stages as proposed and explained by Zhao

et al. [72].

We implement the wavefront parallel method for the deblocking filter stage

only. This method satisfies the dependencies requirements of the deblocking fil-

ter process as illustrated in Figure 5.7-b. We implement this parallel processing

approach in order to complement our proposed parallel motion compensation

algorithm. Both stages process independent macroblocks in parallel. In the fol-

lowing section, experimental results will be provided for the complete parallel

implementation of the motion compensation and the deblocking filter stages.

5.4 Experimental Results on Multicore Systems

In this section, we evaluate our H.264 parallel implementation on a multicore

embedded processor. We describe the configuration environment for the real-

time execution and the tools that were used to collect all execution information.

We gather real-board execution time and energy consumption statistics. We also

compare our results with similar literature for parallel H.264 implementations.

Moreover, we experiment and we collect runtime statistics for our parallel imple-

mentation using a multicore simulator and a graphical processor.

87

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

5.4.1 Parallel Execution

Parallel execution is considered as a major potential solution for complex

applications where sequential execution bounds the performance of these appli-

cations. Most processors that are currently available in the market have multiple

cores. Applications with high computational complexity may benefit from poten-

tial speedup from multiple cores when data or functional parallelism is applicable.

Even optimized implementations can still take advantage from parallel techniques.

In our research, we choose the H.264/AVC video decoder as our multimedia ap-

plication benchmark for which we provide an innovative parallel approach. We

further gather execution statistics and compare results with other relatively sim-

ilar implementations. In our H.264 parallel approach, the motion compensation

(MC) stage for each row of inter-prediction macroblocks (P-MB) is executed

in parallel on different cores. We experiment our parallel implementation using

video sequences with CIF (352x288), WVGA (854x280), HD (1280x720), and

FHD (1920x1080) resolutions on an embedded multicore processor. Macroblock

dependencies in the same picture slice are avoided by decoding intra-prediction

macroblocks (I-MBs) when all other macroblocks of the same slice are already

decoded. Overheads emerged as a result of shared memory communications and

synchronization between cores. We collect execution time and energy consumption

statistics using experiments on a real board with an embedded multicore proces-

sor. A virtual threshold for the speedup to the number of cores ratio is identified

when large numbers of threads are used. Parallel execution is also tested on a

multicore and a graphical simulator [66].

5.4.2 Environment and Configurations

Our H.264 parallel implementation described in section 5.3 is executed and

tested on a Cuda Development Kit platform [43] with an ARM Cortex-A9 pro-

cessor with 4 cores [6]. The processor has a memory size of 2 GB and an L2 cache

size of 1MB. L1 instruction and data caches both have the size of 32 KB. The

maximum frequency is 1.3 GHz when 4 cores are used. This high-end and low-

power processor is currently available in many portable devices like smartphones,

tablets, notebooks, etc. We execute our parallel H.264 decoder using 2, 4, 6, 8, 12,

88

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

and 16 threads. Each thread is mapped automatically by the operating system

(Ubuntu in our case) to a different core. When the number of threads is more

than 4, context switching is required to run all threads that are created by the

application. We gather statistics using 4 different resolutions: CIF, WGVA, HD,

and FHD. With each resolution, we use 3 different video sequences with different

image complexities in terms of movement speed and number of objects. Table 5.2

on page 87 lists all the video benchmarks that were used in our experiments. The

information in table 5.2 include the resolution, the rate of frames per second, the

number of I-Frames, the number of P-Frames, the number of B-Frames, and the

total number of frames. Real-time execution for all the above video sequences is

performed. Execution time is simply calculated by the application and the oper-

ating system. Energy statistics are collected by a power measuring instrument,

the Agilent LXI digitizer [64]. The digitizer accurately measures the static and

dynamic power consumption across the resistors place. The Agilent Technologies

L4532A [64] is a high-resolution, standalone LXI digitizer. It offers 2 channels of

simultaneous sampling at up to 20 mega samples per second (MSa/s), with 16

bits of resolution. Inputs are isolated and can measure up to 250 volts to handle

the most demanding applications. Time and energy results are illustrated and

analyzed in the following subsections.

5.4.3 Results for Parallel Motion Compensation

Experiments are preformed on the videos sequences listed in table 5.2. The

number of parallel rows of macroblocks increases with the video resolution. Thus,

high resolutions scale better than low resolutions with the number of core due to

higher number of macroblocks in each frame. Experiments are conducted using

2, 4, 6, 8, 12, and 16 threads on an ARM Cortex-A9 with 4 cores [6]. Figure

5.8 shows the average speedup of the motion compensation stage for every res-

olution for different number of threads. For the CIF resolution, the maximum

speedup of 1.8 is attained using 4 threads. The speedup decreases as the number

of threads increases due to large data communication overhead. HD and FHD

video sequences have a speedup higher than 3.3 with 4 threads where each thread

is mapped to different core. The best speedup to the number of threads ratio is

89

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.8: Speedup of H.264 parallel execution of the motion compensation stage.

when 4 threads are used. The ratio of speedup to number of threads for high

definition resolutions is around 0.8 when 4 threads are used. Doubling the num-

ber of threads drops the ratio to 0.6 which cannot be considered as efficient as

expected when running a parallel application on a multicore processor. Using a

number of threads that is more than the number of cores causes the scheduler to

assign more than one thread for one core. Hence, the resulted context switching

does not increase the efficiency of the application as shown in our results.

Results for high resolutions in general have better speedups. This is mainly

due to greater workload for each core than smaller resolutions. A larger workload

reduces the impact of synchronization and data transfer between cores. One of

the reasons is less dependencies between macroblocks being processed on different

cores. Another reason is the data transfer overhead which is required for sending

data to different cores. Synchronization also adds an overhead which is indepen-

dent of the video resolution. Thus, speedup will be much more efficient for higher

resolutions.

90

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Table 5.3: Comparison of macroblock parallelism scalability with Dynamic 3D-
Wave in [38].

Resolution Total MBs 3D-MBs Par-MBs Diff.
SD (720 x 576) 1620 1288 1592 +23.6%

HD (1280 x 720) 3600 2886 3528 +22.3%
FHD (920 x 1088) 8160 5819 7917 +36.1%

5.4.4 Comparison with Related Work

For the 2D-Wave approach described in [39], the speedup using 4 cores is

2.6 and the highest speedup is around 9.5 using 24 cores. These results assume

minimal data communications and dependencies between cores. Our results have

a better ratio between the speedup and the number of cores; however, we can

only compare the speedup up to 4 cores. In addition, our approach has a higher

theoretical speedup as the number of independent macroblocks that can be pro-

cessed at the same time is higher. When processing macroblocks simultaneously,

workload on different cores is almost equal. On the other side, when applying

the wavefront approach in [39] and [72], the number of independent macroblocks

reaches its maximum only when almost half of all macroblocks of the current slice

are already decoded. Furthermore, the experimental environment is not the same.

We are testing our parallel implementation on a real platform, on the other side,

most results in other researches like [55] and [39], use simulators. In following

sections, we will show simulated results for the overall execution of the parallel

H.264 decoder.

Exact comparisons with related work cannot be accurate for several reasons

like decoder implementation, processor configurations, video resolutions, and data

communication between parallel cores. However, a comparison of the macroblock

scalability between our approach and the Dynamic 3D-Wave [38] is shown in

table 5.3. The 3D-Wave paper [38] performed a detailed analysis of the parallel

scalability of macroblocks. We intend to compare the maximum number of mac-

roblocks that can be processed in parallel between our approach and the Dynamic

3D-Wave approach. Three video resolutions are being compared. SD resolution

(720 x 576) is compared to WVGA (854 x 480) because it has the same total

number of macroblocks per frame. The remaining resolutions being compared are

91

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.9: Speedup of H.264 parallel execution of the deblocking filter.

HD and FHD. The second column lists the total number of macroblocks per frame

for each video resolution. The third column displays the average of the maximum

number of parallel macroblocks of the four video benchmarks listed in table 4 in

[38]. The fourth column shows the total number of macroblocks per frame that

can be processed in parallel using our parallel motion compensation algorithm.

Finally, the last column is the difference of the level of parallel macroblock scala-

bility between both approaches. A difference of 22% till 36% is calculated in favor

of our approach. In addition, all parallel macroblocks using our approach are in

the same frame. Whereas, in the 3D-Wave approach [38], parallel macroblocks

are from several frames that are being processed concurrently. We note that the

numbers in table 5.3 are maximum values which, in practice, cannot be effectively

executed in parallel using today’s manycore systems. We choose the group par-

allel macroblocks in groups of rows depending on the number of available cores

in a multicore architecture.

92

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.10: Overall H.264 decoding stages with parallel algorithms.

5.4.5 Results for Parallel Deblocking Filter

Similarly to the motion compensation experiments, we gather statistics results

of our parallel implementation of the deblocking filter using the wavefront algo-

rithm. For the deblocking filter, the wavefront algorithm is the best known par-

allel algorithm that satisfies the dependency constraints of this stage. The same

videos sequences that are listed in table 5.2 are used. As described previously,

the wavefront algorithm reaches the highest number of independent macroblocks

that can be filtered in parallel when the diagonal divides the slice into almost two

equal partitions. Parallel deblocking achieves a speedup of 1.44 using 4 threads

for CIF resolution and a speedup of 2.6 using 4 threads for Full-HD resolution.

Figure 5.9 displays the average speedup results for different resolutions and dif-

ferent number of threads. As mentioned earlier, the scalability of the wavefront

algorithm is not as high as our parallel decoding algorithm for motion compen-

sation and intra-prediction stages. In addition, the workload for every core using

the wavefront algorithm is only one macroblock, whereas, the workload of the

motion compensation algorithm is composed of many macroblocks depending on

the number if available cores. A smaller workload also adds more synchronization

overhead. Thus, the speedups of the parallel deblocking filter are lower than the

motion compensation speedups displayed in the previous subsection.

5.4.6 Results for Overall Execution

Our main goal is to optimize all the stages the H.264 decoder. We apply

parallel techniques for the motion compensation and the deblocking filter stages.

On the other hand, the entropy decoder stage is inherently sequential. Thus,

parallel techniques for the entropy decoder are very hard to apply or sometimes

93

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Table 5.4: Overall speedup of video sequences executed with multiple threads on
multicore processors.

Seq/Threads 2 4 6 8 12 16

CIF-Bus 0.94 1.40 1.34 1.23 1.12 1.09

CIF-Foreman 0.85 1.30 1.35 1.10 1.13 1.01

CIF-Waterfall 0.82 1.58 1.40 1.27 1.12 1.08

WVGA-John. 1.06 2.15 1.74 1.65 1.26 1.05

WVGA-Bask. 1.13 1.92 1.68 1.62 1.35 1.14

WVGA-Cact. 1.07 1.81 1.62 1.56 1.29 1.10

HD-Johnny 1.27 2.42 1.91 1.93 1.60 1.36

HD-Basket 1.28 2.14 1.81 1.81 1.58 1.39

HD-Cactus 1.26 2.09 1.78 1.78 1.55 1.34

FHD-Basket 1.40 2.26 1.93 1.89 1.68 1.52

FHD-Cactus 1.42 2.28 1.93 1.86 1.68 1.51

FHD-Terrace 1.44 2.33 1.97 1.93 1.72 1.53

impossible due to its specification requirements. Figure 5.10 depicts the stages

with parallel algorithms of the H.264 decoder. We collect execution time and

energy consumption statistics for the proposed H.264 parallel implementation.

The fractions of the different stages vary among different video sequences. As a

result, the overall performance is considered as a weighted average of all speedups

based on the average percentage of each phase.

Figure 5.11 illustrates the overall speedups attained for the complete execution

of the decoder with the described optimization techniques. The total speedups of

1.4, 2.0, 2.2, and 2.3 are reached using 4 threads on 4 cores for the resolutions

CIF, WVGA, HD, and FHD respectively. The detailed results for every video

sequence are listed in table 5.4. The sequential execution of the entropy decoding

stage which is about 14-19% of the overall decoding scales down significantly

the overall speedup. This stage may be enhanced by implementing a hardware

version of the entropy decoder. FHD resolutions have the highest speedup because

of their large frame sizes. All maximum speedups are attained using 4 threads on

4 cores. This is mainly due to the absence of context switching where each thread

is mapped to one core. Using more than 4 threads will require the operating

94

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.11: Total speedup for the complete decoding process on multicore pro-
cessor.

system to assign more than one thread to a core causing context switching and,

as a result, more overhead and stall time will be added to the overall execution.

Only CIF video sequences have speedups less than 2 when 4 threads are mapped

onto 4 cores. The ratio of speedup to the number of cores is therefore around

0.6. This leads us to conclude that high resolution benefit more from multicore

processors than lower resolutions. So Full-HD resolutions have the best speedup

with higher number of cores. 4K resolution appeared recently in high-end TVs

and in movies theaters.

Energy measurements for the complete execution are displayed in Figure 5.12.

The best energy saving results corresponds to the FHD resolutions using 4 threads

which attain 63%. These results are also measured for the complete execution of

the optimized decoder. For 12 and 16 threads, energy consumption will increase

compared to sequential execution. Thus, we conclude that energy saving does not

scale linearly with the number of threads or cores.

95

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.12: Total energy saving for the complete decoding process on multicore
processor.

Figure 5.13: Speedup of H.264 parallel execution using the Multi2Sim simulator.

96

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

5.4.7 Simulated Execution

As a complementary step to experiment our parallel H.264 algorithm, we ex-

ecute our implementation on the multicore simulator Multi2Sim [66]. Figure 5.13

shows the speedup of our parallel H.264 implementation on 2, 4, 8, 16, and 32

cores. HD and FHD resolutions are used with the Baseline and the Main profiles.

These results display the average of the three video sequences listed in table 5.2.

On 2 cores, the speedup for Baseline profile is 1.7 and 1.5 for Main profile. The

speedup increases with the number of cores; however, this increase is not linear.

Using 32 cores, the speedup reaches 5.2 for the Baseline profile and 3.2 for the

Main profile. The difference between both profiles becomes more significant as

the number of cores increases. The time needed for motion compensation and

deblocking filtering in the Baseline profile is higher than the Main profile. The

entropy decoding execution time is less for the Baseline profile compared to the

Main profile. This is mainly due to the CABAC algorithm for the entropy de-

coder which is used in the Main profile. CABAC has a better compression at the

expense more complexity. Thus, our parallel method is better exploited with the

Baseline profile where the entropy decoder, which is executed sequentially, has

less impact on the overall speedup. The parallel scalability of our H.264 decoder

is significantly affected by data communication between cores. The results shown

in figure 5.13 for 8 cores and more are inefficient compared to theoretical speedup.

The ratio of speedup to the number of cores is 0.85 on 2 cores and 0.65 on 4 cores.

For higher numbers of cores, the ratio is below 0.5 which is considered inefficient

and unworthy of parallel execution. Manycore processors with 16 or more cores

should have special memory architecture than dual and quad cores processors.

Thus, parallel algorithms, like our H.264 parallel decoder, should be adapted to

benefit from manycore processors and to minimize data communication overhead

imposed by a large number of parallel cores.

5.4.8 Theoretical Speedup

Figure 5.14 shows the theoretical speedup that can be reached for the over-

all execution of the H.264 parallel decoder. The differences with the simulated

execution results displayed in figure 5.13 are relatively small up to 8 cores. For

97

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.14: Theoretical speedup of H.264 parallel execution.

16 cores, the speedup of our parallel H.264 algorithm should be around 12. The

speedups keep increasing until 64 cores for HD resolutions and 128 cores for FHD

resolutions. This threshold appears when the number of cores becomes more than

the number of macroblock rows. However, using our algorithm for parallel mo-

tion compensation, the granularity can become smaller so that we can benefit

from additional cores. If the number of cores is close to the number of parallel

macroblocks that are listed in table 5.3, then the speedup would become much

higher. In real manycore architecture, this speedup comes with a huge memory

communication overhead that affects the speedup dramatically. New parallel pro-

cessing architectures should be used for such high levels of parallelism. This issue

is still a major bottleneck in the computing industry. In our research, we also aim

to explore and to experiment new parallel architectures in order to show to the

full benefits of parallel computing.

98

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.15: Architecture of the graphical processor AMD Radeon HD 6850.

5.5 Parallel Execution on Graphics Processor

In this section, we experiment our parallel algorithm for motion compensation

on a general-purpose graphical processor (GPGPU). Brief overviews about GPUs

and OpenCL are provided. Experimental results are then listed and analyzed.

5.5.1 General-Purpose Graphical Processing Unit

Originally, a GPU is a specialized hardware unit that is limited for rendering

graphics on screen. Modern GPUs are massively parallel processors that are spe-

cial types of stream computing processors or SIMDs that are explained in chapter

2. These parallel processors can compute large number of values concurrently.

Early generations of GPUs had a fixed pipeline with limited programming capa-

bilities. Nowadays, modern GPUs enable general purpose programming through

C-like languages such as nVidia CUDA [44] and OpenCL by the Khronos Group

[30]. Hence, many high computational algorithms that are not related to graph-

ics processed can now be executed on GPUS which is known as general-purpose

computing on graphics processing units (GPGPU). GPGPUs have much less con-

trol logic, freeing up more die space for arithmetic logic units (ALUs). This low

complexity of the architecture gives GPUs more calculation capabilities at the

cost of programming complexity. So in order to reach a good performance, the

programmer must explicitly design the application for the target GPU.

Figure 5.15 illustrates the architecture of the GPGPU AMD Radeon HD 6850.

99

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Table 5.5: Specifications for AMD Radeon HD 6850 (Barts PRO).

Description Value

Engine Speed 775 MHz

Compute Units 12

Stream Cores 192

L1 Cache Size 8 kB

L2 Cache Size 512 kB

Bus Width 256 bits

Frame Buffer 1 GB

Figure 5.16: OpenCL parallel model.

This particular GPGPU has 12 Compute Units and each compute unit has 16

Stream Cores. Compute units are similar to a core with a private cache in a

multicore processor. Stream cores can be represented as hardware light-weight

threads that share a local memory. Table 5.5 lists some of the specifications of

the AMD GPGPU. We use this hardware device in order to evaluate our parallel

algorithm on modern massively parallel processors.

5.5.2 OpenCL C Programming Language

The OpenCL C programming language [30] is used to create programs that

describe data-parallel kernels and tasks that can be executed on one or more

heterogeneous devices such as CPUs, GPUs, and other processors referred to as

100

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

accelerators such as DSPs and the Cell Broadband Engine processor. An OpenCL

program is formed of two parts: the host that executes CPU code and the kernel

that execute GPU code. Applications cannot call an OpenCL kernel directly but

instead queue the execution of the kernel to a command-queue created for a de-

vice. The kernel is executed asynchronously with the application code running on

the host CPU. OpenCL C is based on the ISO/IEC 9899:1999 C language speci-

fication (referred to as C99) [25] with some restrictions and specific extensions to

the language for parallelism.

Figure 5.16 illustrates the parallel model from the OpenCL perspective. Work-

groups represent the compute units in AMD GPUs. Work items that execute

OpenCL kernel functions are the stream cores.

5.5.3 Experimental Results

In order to run our parallel algorithm on graphics processors, we write the code

for parallel motion compensation of macroblocks with the OpenCL C Language

specifications. The GPU kernel processes independent macroblocks data that are

processed in parallel. The frame is divided into 12 groups of macroblocks in

order to be executed by compute units. Then, each compute unit processes 16

macroblocks concurrently. The source code is compiled and debugged using the

AMD Accelerated Parallel Processing (APP) SDK [3]. Figure 5.17 shows the part

of the H.264 decoding process that is executed on the GPU kernel (the shaded

rectangle). The remaining stages are executed on the host CPU.

Figure 5.18 shows the speedups attained with the parallel motion compen-

sation on the AMD GPGPU Radeon HD 6850 device. HD resolutions have a

speedup of 12.1 and CIF resolutions a speedup of 7.4. These results exclude the

data transfer time between the main processor and the graphics processor. In

fact, data transfer overhead is still an important limitation in the usage of GPG-

PUS especially when the level of parallelism is low. In our case, the ratio of the

speedup to the number of work-groups is around 0.75 which is considered effi-

cient. Speedup results for CIF and HD resolutions parallel motion compensation

on GPU are listed in table 5.6.

Graphics processors have high potential for parallel optimization. The number

101

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

Figure 5.17: Complete H.264 decoding stages with parallel motion compensation
on graphics processors (GPU).

Figure 5.18: Speedup of H.264 parallel execution of motion compensation on
graphics processor using CIF and HD video sequences.

Table 5.6: Speedup of H.264 parallel execution of motion compensation on graph-
ics processor.

Resolution MB Rows 2 4 8 16

HD (1280 x 720) 45 1.983 3.884 7.301 12.095

CIF (352 x 288) 18 1.928 3.560 5.839 7.417

of stream cores is increasing significantly in new devices. These large numbers

of parallel cores with recent fast transfer rates with CPUs have huge impact on

applications with high parallel data processing like compression algorithms, video

games, rendering, etc.

102

5. H.264 MACROBLOCKS ROWS PARALLEL DECODING

5.6 Conclusion

We have introduced a novel parallel technique for the H.264 video decoder

standard. Our approach decodes groups of macroblock rows in parallel with an

algorithm that detects dependencies on-the-fly based on isolating intra-prediction

macroblocks (I-MBs). Low and high definition video sequences are used in our

experiments. The most efficient speedup with the highest ratio to the number of

cores of the motion compensation parallel implementation is 3.3 using 4 threads

on 4 cores. A parallel macroblock-based implementation of the deblocking filter

is also implemented. An overall speedup of 2.3 is attained for the complete H.264

parallel implementation. Our optimized decoder is tested on a real device with

an ARM Cortex-A9 processor with 4 cores. The proposed parallel algorithm is

tested on a mutlicore simulator in order to explore to scalability of our algorithm

on multiprocessors up to 32 cores. Additional experiments are performed on a

graphics processor that shows great enhancement with speedups up to 12.1 and

high scalability of the proposed parallel motion compensation algorithm.

103

Chapter 6

Parallel Cache Efficiency

6.1 Introduction

Parallel execution of multi-threaded applications has a great impact on cache

memories. We believe that part of cache misses is due to the distribution of the

macroblocks data on different cores (data parallelism). Macroblock data signals

(YCbCr) are stored in continuous memory area. When decoding takes place on

a single core, prefetching of a single cache line (L1, 64 bytes) works very well;

however, wrong data are prefetched when different cores decodes different mac-

roblocks that are located in separate memories. Another cause for these misses

is due to the processing of the same data at different cores in different decoding

phases. These additional data dependencies are not present in sequential imple-

mentations because only one core executes the complete sequence of instructions

in a program.

In this chapter, we show cache level 1 data bottlenecks of two parallel motion

compensation algorithms for the H.264 decoder. Results are compared showing

the difference between the row-based and the wavefront parallel processing algo-

rithms. We also present customized software prefetching methodologies for both

parallel algorithms. Moreover, we show the results of the impact of data prefetch-

ing on speedup of these parallel applications.

104

6. PARALLEL CACHE EFFICIENCY

Figure 6.1: Multicore architecture of the ARM Cortex-A9 multiprocessor with an
L2 cache shard by 4 cores each having an L1 private cache.

6.2 Parallel Environment

6.2.1 Processor Architecture

In order to collect statistic data among caches in a multicore architecture, we

use the Multi2Sim simulator [66]. The processor and the memory configurations

are in accordance with ARM Cortex-A9 4-core processor specification [6]. The

processor is composed of 4 cores that all have access to a shared memory, the

L2 cache, which has 2048 sets with an associativity of 8 and a block size of 64.

Each private L1 cache of each core has a geometry that is composed of 128 sets

of blocks of size 64 bits each block. The block replacement policy is the Last

Recently Used (LRU) algorithm. Figure 6.1 illustrates the basic components of

the ARM Cortex-A9 architecture.

6.2.2 Parallel Algorithms

In the experiments that are described and evaluated in this chapter, we use the

row-based and the wavefront parallel processing of macroblocks for the motion

105

6. PARALLEL CACHE EFFICIENCY

Figure 6.2: Total L1 cache misses for sequential, row-based and wavefront parallel
implementations.

compensation stage of the H.264 decoder. For the row-based algorithm, groups

of rows of macroblocks are processed in parallel without intra-prediction mac-

roblocks (I-MBs) during the motion compensation stage. These I-MBs are then

processed sequentially at the end of the motion compensation stage. For the

wavefront algorithm, macroblocks are processed in diagonals where independent

macroblocks are processed concurrently. Both the row-based and the wavefront

algorithms are explained in more details in chapter 5 section 5.3.

6.3 Multicore Cache Memory

6.3.1 L1 Cache Misses Statistics

Using the configurations described above for the Multi2Sim simulator [66], we

experiment the row-based and the wavefront parallel algorithms using three video

sequences benchmarks: waterfall (352 x 288), four people (854 x 480), and shields

(1280 x 720). We show in figure 6.2 the factor of increase of the total number

of L1 cache misses when executing the parallel implementations for each video

sequence compared with the sequential execution. The total number of misses

for both parallel versions is much higher than the original sequential version. The

row-based has about 1.5 times the number of misses of the sequential version. For

106

6. PARALLEL CACHE EFFICIENCY

Figure 6.3: L1 cache misses per core for row-based and wavefront parallel imple-
mentations of the shields video sequence.

the wavefront implementation, the number of misses reaches 3.2 times compared

to the number of misses in sequential execution. The increase factors for the total

misses displayed in figure 6.2 are considered high. The sequential implementation

is executed on only one core. However, the two parallel versions are executed

on a quad-core processor. The total number of misses is increased mainly due to

data dependencies between cores during the decoding process. Different cores may

require accessing the data of a macroblock that was processed by another core.

These dependencies are higher for the wavefront parallel version where nearby

macroblocks are processed on different cores. As for the row-based version, several

rows of macroblocks are processed on the same core which decreases the data

dependencies between cores.

6.3.2 Common L1 Cache Misses among Cores

In this study, we show detailed statistics for L1 cache misses and their distri-

bution among cores of the parallel processor. In figure 6.3, level 1 cache misses

per each core of the available 4 cores of the simulated processor are illustrated.

Similarly to figure 6.2, the results shown in figure 6.3 show that the number of

misses per core for the wavefront parallel version has almost double the number of

107

6. PARALLEL CACHE EFFICIENCY

Figure 6.4: Common L1 cache misses between each 2 cores for row-based and
wavefront parallel algorithms.

misses for the row-based implementation for HD resolution. One exception is the

first core where the difference in the number of misses is only about 20% less of

the wavefront algorithm. Moreover, the total number of misses for the first core

is higher than other cores. The motion compensation stage always starts with

the first core for both parallel versions. Furthermore, in the wavefront parallel

version, the first core processes the largest number of macroblocks because at the

beginning and at the end of the slice, the number of macroblocks that can be

processed in parallel is low. The maximum number of independent macroblocks

that can be processed in parallel is when the diagonals divide the frame in its di-

agonal. As for the row-based version, the rows of macroblocks are divided equally

by the number of available cores. However, the remaining rows of macroblocks

at the end of the frame are assigned to the first core. For these reasons, the first

core has a higher number of misses while the numbers of misses in the remaining

cores are almost equal in the same parallel implementation.

Figure 6.4 shows the number of common misses among L1 caches of each core.

The misses are gathered when one core access the same data that was already used

by another core. These common misses is around 8.4 million for the wavefront

version and 4.1 million for the row-based version. The differences between the two

versions are almost doubled. These statistics info tells us the number of common

108

6. PARALLEL CACHE EFFICIENCY

Figure 6.5: Percentage distribution depending on cycles difference of common L1
cache misses between each 2 core for row-based parallel implementation.

Figure 6.6: Percentage distribution depending on cycles difference of common L1
cache misses between each 2 core for wavefront parallel implementation.

109

6. PARALLEL CACHE EFFICIENCY

misses between each combination of two cores. These common misses among cores

are almost equal for each parallel version. They are almost equal to the sum of

the total misses for each combination of two cores. These results mainly show

that in both implementations most misses are the same for all cores. However,

these misses may not occur in short time differences.

Figures 6.5 and 6.6 show the percentages of the level 1 common misses among

cores with the difference of cycles. As we notice, the percentage of misses drops

significantly when the difference of cycles is below 100000. These common misses

are almost negligible below 100 cycles. In general, the numbers for the wavefront

version are much lower than the row-based version which basically means that

the wavefront algorithm has higher dependencies between cores as the offset of

cycles between the common misses is much higher than the row-based parallel

algorithm. The statistics info shown in figures 6.5 and 6.6 reveals the potentials

of applying cache optimization techniques like prefetching. Using the statistics

from the above figures, prefetching will allow an important decrease in the misses

that are common between cores where these misses have a high percentage of the

total number of misses.

6.3.3 Parallel Cache Efficiency

The statistics of cache misses that are displayed above reveal several issues

related to shared memory architectures in multicore systems.

First, the number of misses that are common among different cores is relatively

high. A percentage of 25% or 30% can significantly affect the overall performance

of the parallel application. Second, the time difference between common misses

for L1 cache memory on parallel cores is large. Most cache misses occur after 100K

cycles eliminating time correlation. For this big number of cycles differences, a

typical hardware prefetcher will assume that data is no longer needed allowing

it to be replaced. Therefore, we cannot apply aggressive hardware prefetching

because of cache trashing. Keeping prefetched data for a long time will make

the cache inefficient as part of the cache will be blocked with data that will be

requested after a long period. Third, any prefetching algorithm that can increase

the performance of a parallel algorithm will be suitable only for this specific

110

6. PARALLEL CACHE EFFICIENCY

Figure 6.7: Prefetching algorithm for the two parallel motion compensation tech-
niques.

algorithm. In our case, different software prefetching algorithms need to be im-

plemented for each of the row-based and wavefront parallel algorithms. For this

reason, hardware optimization is not applicable as it will be only suitable for one

specific application. Thus, a software optimization technique is proposed for ev-

ery algorithm. The software programmer implements hardware dependent source

codes which target parallel architectures at compile-time. [21, 32]

In the following section, we will describe our software prefetching algorithms

for both the row-based and the wavefront parallel applications. Their performance

efficiency will also be tested and analyzed.

6.4 Cache Optimization

6.4.1 Prefetching Algorithm

For any video sequence resolution, the size of each macroblock which is 16 x

16 pixels in the H.264 standard is fixed. So the approximate number of cycles to

process each macroblock can be calculated in advance. In our experiments, the

average number of cycles that a macroblock required for motion compensation is

about 44 thousand cycle. Figures 6.5 and 6.6 on page 109 show the fraction or the

number of macroblocks that is equivalent to the number of cycles. Macroblocks

111

6. PARALLEL CACHE EFFICIENCY

in both parallel algorithms of the H.264 decoder are processed in parallel where

their dependencies to other macroblocks are known in advance. A smart software

prefetching algorithm loads data of specific macroblocks that will be used during

the decoding stages.

In our example, we load the data of 23 macroblocks in order to get the most

of data prefetching. So, a software prefetching algorithm is implemented in order

to load the data of the macroblocks that will be accessed during motion com-

pensation. As shown in our cache statistics, most of common cache misses are

within 1 million cycles of difference. Hence, there is no need to load the data

of more than 23 macroblocks. For the row-based and the wavefront algorithms,

the following macroblocks that will be processed in parallel are prefetched to the

cache. Figure 6.7 shows which macroblocks are prefetched for the row-based and

the wavefront algorithms. In this figure, a small frame of a video is depicted. The

squares in dark gray are the macroblocks that are being prefetched. The squares

in light gray are macroblocks which are already processed or are currently be-

ing processed. The example in figure 6.7 shows that data continuity exists only

on the same row in the row-based and wavefront algorithms. The segmentation

of data that is shown in the memory access pattern through their distribution

on different cores misleads the built-in hardware prefetcher. Any enhancement

should work on this problem by providing a global view of the data that needs to

be prefetched by cache memories on different cores. Therefore, our proposed soft-

ware prefetching algorithms are only applicable to the above parallel algorithms

used in our experiments.

A software prefetching algorithm that is specific for MPEG-4 had been pro-

posed by Cucchiara et al. [16]. On the other hand, Wang et al. [69] implemented

private caches with dynamic reconfiguration where the shared cache is partitioned

for multicore systems with real-time tasks. In addition, Nesbit et al. [41] proposed

a FIFO history buffer which can improve the accuracy of correlation prefetching

by eliminating stale data. In the following section, we will show the performance

of our proposed prefetching technique.

112

6. PARALLEL CACHE EFFICIENCY

Figure 6.8: Speedup percentage for the row-based and wavefront parallel imple-
mentations depending on the successful rate of data prefetching.

6.4.2 Performance Efficiency

Using our proposed data prefetching algorithm for H.264 parallel motion com-

pensation, we minimize data dependencies and memory stalls between local pri-

vate cache blocks of each core in a multicore processor. This decrease in data

dependencies will eventually decrease the number of cache misses leading to a

better performance. A bigger buffer has no impact on the performance. How-

ever, a smaller buffer affects the performance speedup that is achieved by data

prefetching.

We illustrate in figure 6.8 the impact if data prefetching on the row-based

and wavefront parallel implementations. The average number of cycles for load

instructions in L1 cache is 5 cycles and in L2 cache of 30 cycles. Figure 6.8

displays the projected percentage of the number of cycles that will be eliminated

with data prefetching. The results also depends on the rate of success of data

prefetching. For example, with a 60% success rate, the total number of cycles in

order to complete the program will decrease by 21% for the wavefront parallel

implementation and by 13% for the row-based parallel implementation. In the

following section, we will discuss the overall performance in terms of cycles and

instructions.

113

6. PARALLEL CACHE EFFICIENCY

Figure 6.9: Total number of cycles for row-based and wavefront parallel imple-
mentations.

6.5 Instructions and Cycles Statistics

Having displayed statistics related to misses, we now focus on the number of

cycles and the average instructions per cycle in order to compare overall execution

of the parallel implementations. Figure 6.9 illustrates the total number of cycles

for the sequential and the parallel versions. We notice that the number of cycles

for the row-based and the wavefront parallel implementations is almost 1.7 and

1.5 times less than the sequential execution. In addition, the average number of

instructions per cycles is shown in figure 6.10 where the row-based algorithm is

almost 3.0, the wavefront version is about 2.3, and the sequential version equal

to 1.5. These numbers shows that an average speedup close to 1.6 is attained by

the two parallel algorithms in comparison with the sequential implementation.

In addition, these speedups results show that the data prefetch algorithm that

is discussed above has a successful rate close to 60% of the maximum speedup

that can be reached. These overall values include overheads in terms of additional

cycles, data transfer, shared memory, etc.

After gathering all the above statistics, we conclude that the row-based paral-

lel algorithm of the H.264 decoder is efficient in terms of parallel execution among

cores. The low number of data dependencies between cores which makes the core

execution independent of others as much as possible. This low dependency is also

very important because it minimizes memory bottlenecks and the need to wait

114

6. PARALLEL CACHE EFFICIENCY

Figure 6.10: Average Instructions per Cycle (IPC) for sequential, row-based and
wavefront parallel implementations.

for memory coherency protocols between private caches of multiple cores. On the

other hand, the wavefront algorithm require enhancement in order to become

more efficient. As shown in our results, minimizing the number of common misses

between cores has a huge effect on the overall speedup of the application and on

its scalability with the number of parallel cores.

6.6 Conclusion

In this chapter, we presented detailed memory statistics of two parallel algo-

rithms for the H.264 motion compensation stage. The experiments are conducted

on a multicore simulator in order to collect and to analyze level 1 cache memory

misses. Common misses among cores of the same address are also collected and

discussed. The impact of cache memory on the overall execution is also evaluated.

Furthermore, a software prefetching algorithm is proposed for the row-based and

wavefront parallel algorithms. The impact of prefetching is also calculated for

both parallel algorithms.

115

Chapter 7

Conclusion

H.264 is being widely adopted in multimedia applications on general-purpose

and embedded systems. The high complexity imposed by the H.264 decoder re-

quires enhancement in order to increase the efficiency and to lower power con-

sumption.

We proposed and evaluated a parallel algorithm for the H.264 decoder. Luma

and chroma color components for the motion compensation stages are processed

in parallel providing high and realistic potentials for video decoding on dual and

quad core processors. Execution time speedup of our parallel implementation of

the H.264 decoder is around 18%. Moreover, the speedup reaches 32% with our

proposed pipeline implementation with an energy saving of 24%.

Moreover, an advanced parallel algorithm is also proposed that executes mo-

tion compensation on large number of parallel cores. The parallel approach is

based on processing groups of independent macroblock rows in parallel. The pro-

posed parallel algorithm shows a higher scalability than the color components

approach. Thus, good speedup and energy saving are reached on multicore pro-

cessors with more than 8 cores. In this approach, groups of macroblock rows

are decoded in parallel with an algorithm that detects dependencies on-the-fly

based on isolating intra-prediction macroblocks (I-MBs). Low and high definition

video sequences are used in our experiments. The most efficient speedup with

the highest ratio to the number of cores of the motion compensation parallel

implementation is 3.3 using 4 threads on 4 cores. A parallel macroblock-based

implementation of the deblocking filter is also implemented. An overall speedup

116

7. CONCLUSION

of 2.3 is attained for the complete H.264 parallel implementation. Our optimized

decoder is tested on a real device with an ARM Cortex-A9 processor with 4

cores. The proposed parallel algorithm is tested on a mutlicore simulator in or-

der to explore to scalability of our algorithm on multiprocessors up to 32 cores.

Additional experiments are performed on a graphics processor that shows great

enhancement with speedups up to 12.1 and high scalability of the proposed par-

allel motion compensation algorithm.

In addition, we evaluated and discussed the impact of cache misses on the over-

all performance of the row-based and wavefront parallel algorithms of the H.264

decoder. Detailed memory statistics of two parallel algorithms for the motion

compensation stage are presented and analyzed. The experiments are conducted

on a multicore simulator collecting level 1 cache memory misses. Common misses

among cores of the same address are also collected and discussed. Furthermore,

customized software prefetching algorithms are proposed for two parallel algo-

rithms. The impact of prefetching is also calculated for both parallel algorithms.

The work in this research presents solutions to the high complexity of the

H.264 decoder using parallel computing. These algorithms can be applied to most

block-based video compression standards. Further experiments and enhancements

need to be performed in order to apply our parallel algorithms in commercial prod-

ucts. Our intention is to continue our research in order to increase the efficiency

and lower the energy consumption of recent video coding standards.

117

Chapter 8

Résumé en Français

8.1 Introduction

8.1.1 Contexte

Aujourd’hui, les appareils mobiles qui supportent les applications multimédias

sont omniprésents dans notre monde moderne. La plupart des appareils portatifs

sont équipés d’écrans hauts résolution et des processeurs multicœurs embarqués.

Les processeurs aux cœurs doubles et quadruples sont trouvés dans les smart-

phones et les tablettes comme les appareils offerts par Samsung et Apple [5, 53].

Le processeur ARM Cortex-A9 peut avoir jusqu’à 4 cœurs par puce [6]. Le pro-

cesseur Cortex-A15 peut avoir jusqu’à 8 cœurs par puce [7]. Néanmoins, les appli-

cations ne bénéficient pas automatiquement de ces processeurs puissants haut-de-

gamme. Même avec les nouveaux processeurs de pointe, les résolutions vidéo sont

en croissance rapide qui nécessite plus de temps de traitement, et par conséquent,

plus de consommation d’énergie. Les systèmes d’exploitation affectent tout sim-

plement des applications indépendantes, ou les threads d’une application, sur des

différents noyaux. Pour cette raison, une application seule ne peut pas bénéficier

des ressources supplémentaires que si elle est conçue pour exécuter en parallèle.

Ainsi, les applications séquentielles doivent être modifiées et recompilées afin de

soutenir le parallélisme. Le processus de parallélisation confronte à de nombreux

défis comme la dépendance, la synchronisation, la cohérence des données, etc.

Les lecteurs vidéo, les appareils photo numériques, les téléviseurs et les téléphones

118

8. RÉSUMÉ EN FRANÇAIS

utilisent des codecs vidéo complexes pour les résolutions élevées. Cependant,

quelques applications multimédia bénéficient des potentiels de calcul parallèle

offert par des processeurs multicœurs embarqués. Les codecs vidéo récents, comme

H.264/AVC [26] et HEVC [63], ont adopté des algorithmes complexes afin d’optimiser

la compression et de diminuer les débits de transmission. La complexité supplémentaire

de ces algorithmes a des impacts négatifs sur le temps d’exécution et la consom-

mation d’énergie.

8.1.2 Déclaration du Problème

H.264/AVC [26] est un standard de codage vidéo puissant avec des algorithmes

complexes. Le codec réalise une bonne compression mais il cause un ralentissement

des performances. Même avec les nouveaux processeurs de pointe, les résolutions

des vidéos sont en croissance rapide, ce qui nécessite plus de temps de traitement

et par conséquent plus de consommation d’énergie. Une des meilleures stratégies

d’optimisation de temps et d’énergie est d’exécuter une application sur des noyaux

multiple en parallèle. La conversion ou la modification d’une application afin

d’être exécuté en parallèle présentent de nombreux défis tels que les dépendances,

la synchronisation, la cohérence des données, la mémoire partagée, etc. Dans

notre recherche, nous utilisons le décodeur vidéo H.264 comme une application

multimédia complexe pour appliquer le parallélisme. Nous résolvons le problème

de la grande complexité du décodeur H.264 en utilisant l’exécution en parallèle

sur des processeurs multicœurs embarqués afin de réduire le temps d’exécution

et la consommation d’énergie.

8.1.3 Solutions Existantes

De nombreuses implémentations parallèles du décodeur H.264 existent allant

du décodage en parallèle des macroblocks (grains fins) jusqu’au décodage en par-

allèle des groupes d’images (gros grains). Un macroblock est un composant de

16x16 pixels en carré d’une image dans une séquence vidéo. Il peut également

être divisé en sous-blocs. Le décodage en parallèle des macroblocks est haute-

ment évolutif en raison de nombreux macroblocks indépendants qui peuvent être

traitées en parallèle. Toutefois, les dépendances sont créées à la suite de la commu-

119

8. RÉSUMÉ EN FRANÇAIS

nication de la mémoire et de la synchronisation d’exécution entre les macroblocks.

En plus, le décodage parallèle des groupes d’images nécessite une grande capacité

de mémoire, en particulier pour des séquences vidéo avec une haute définition. En

outre, ils ont une extensibilité inférieure à celle des macroblocks à cause du petit

nombre des groupes de frames (images) qui peuvent être décodées en parallèle.

8.1.4 Contributions

Nos approches pour décoder des vidéos H.264 en parallèle au niveau des mac-

roblocks sont originales et uniques. D’autres techniques sont utilisées pour réduire

la charge de la partie séquentielle comme le décodeur entropique.

Tout d’abord, nous séparons le processus de décodage entre les composantes

de couleur pour chaque échantillon de données de chaque macroblock. Ensuite, on

applique un pipeline afin de minimiser le temps de blocage provoquée par la syn-

chronisation des taches parallèles. L’implémentation en parallèle est expérimenté

sur un simulateur des processeurs embarqués dual et quad. En plus, le temps

d’exécution et les statistiques d’utilisation de la mémoire, les résultats de la con-

sommation d’énergie sont présentés à l’aide d’un outil d’estimation puissant.

Pour notre deuxième approche, nous traitons les lignes de macroblocks indépendants

en parallèle en utilisant un algorithme innovant qui minimise la synchronisation

sans ajouter des mesures supplémentaires pour le décodeur. L’étape de compensa-

tion de mouvement (motion compensation) est générée en utilisant un algorithme

sur les lignes de macroblocks. L’étape de filtre de déblocage utilise un algorithme

appelé wavefront. Ce niveau d’exécution en parallèle qui est basé sur les lignes de

macroblocks peut être considéré entre approches parallèles à grain gros et à grain

fin offrant un équilibre entre les deux solutions. L’algorithme parallèle proposé

est évalué sur un simulateur multicœurs avec des plates-formes multicœurs et des

processeurs graphiques.

8.1.5 Plan

Dans la section 8.2, nous présentons les concepts de calcul parallèle en ter-

mes des algorithmes, des architectures de mémoire, et des applications. Dans

la section 8.3, un aperçu du standard H.264 est présenté. Les implémentations

120

8. RÉSUMÉ EN FRANÇAIS

parallèles existantes et les recherches reliés au standard H.264 sont également

présentées. Notre première implémentation du H.264 en parallèle qui est basé sur

les composants de couleurs en parallèle est expliquée et évaluée dans la section 8.4.

L’accélération du temps d’exécution et les statistiques d’économie d’énergie sont

illustrés. Dans la section 8.5, le deuxième algorithme parallèle pour le décodeur

H.264 est décrit et expérimenté. Les groupes de macroblocks sont traités en par-

allèle sur des différents noyaux. L’algorithme est évalué sur des plateformes mul-

ticœurs en temps réel. Les résultats de simulation avec un nombre élevé de noyaux

parallèles sont également présentés et discutés. Enfin, une conclusion dans la sec-

tion 8.6 résume notre contribution dans la dernière section.

8.2 Programmation Parallèle

Le calcul parallèle est une forme de traitement de l’ordinateur lorsque les

tâches sont exécutées simultanément en même temps [2]. Il existe des différents

niveaux de calcul parallèle: parallélisme au niveau des instructions, parallélisme

au niveau des données, et parallélisme au niveau des tâches. Le parallélisme a

été principalement utilisé dans les serveurs à haute performance et les super-

computers. Il y a dix ans, le calcul parallèle a apparu comme une solution à

l’augmentation de la fréquence en raison des contraintes physiques [48]. Comme

la consommation d’énergie par les ordinateurs est devenue un facteur important

dans les systèmes informatiques, le calcul parallèle est devenu le modèle dom-

inant dans les architectures informatique, principalement pour les processeurs

multicœurs. [8]

Plusieurs types d’ordinateurs parallèles existent comme multicœurs et mul-

tiprocesseurs équipés de plusieurs processeurs dans une seule machine. Clusters

et grids utilisent plusieurs ordinateurs pour travailler sur la même tâche simul-

tanément. Les architectures parallèles spécialisées comme les GPU sont également

utilisés avec les processeurs traditionnels afin d’accélérer des tâches spécifiques

comme les calculs graphiques.

Les programmes parallèles sont beaucoup plus difficiles à écrire que les pro-

grammes séquentiels [21]. La simultanéité présente généralement plusieurs bugs

logiciels, tels que les races conditions. La communication et la synchronisation

121

8. RÉSUMÉ EN FRANÇAIS

Figure 8.1: Architecture du multiprocesseur ARM Cortex-A9 avec 4 noyaux

entre les tâches parallèles sont généralement les plus grands inconvénients qui

affectent considérablement la performance. Théoriquement, l’accélération maxi-

male possible d’un programme à la suite d’un traitement parallèle est connue par

la loi d’Amdahl. [4]

8.2.1 Processeurs Multicœurs

Les puces génériques les plus courantes sont les processeurs multicœurs qui

sont aujourd’hui disponibles dans la plupart des ordinateurs desktops et portables.

Un processeur multicœurs est un processeur qui comprend de multiples unités

d’exécution, appelés noyaux (cores), sur la même puce. Un processeur multicœur

peut émettre plusieurs instructions par cycle. Chaque noyau dans un processeur

multicœur peut potentiellement être superscalaire, où chaque noyau peut émettre

plusieurs instructions par cycle pour un flux d’instructions. La communication

entre les noyaux est habituellement maintenue par un accès à la mémoire partagée.

Les processeurs multicœurs dominent le marché de la consommation pour les

ordinateurs personnels avec la famille des processeurs Intel Core [24] et pour

les appareils portables avec la famille des processeurs ARM Cortex [6]. Figure

8.1 illustre l’architecture simplifiée du processeur multicœur ARM Cortex-A9 à

122

8. RÉSUMÉ EN FRANÇAIS

Figure 8.2: Processus du décodeur H.264

quatre noyaux 32 bits et un cache partagé à 2 niveaux.

8.3 Standard H.264

Le groupe Moving Picture Experts (MPEG) et le groupe Video Coding Ex-

perts (VCEG) ont élaboré conjointement en 2003 le standard Advanced Video

Coding (AVC) publié comme la Recommandation ITU-T H.264 et la partie 10

de MPEG-4 [26]. Dès les premières applications commerciales, plusieurs fabri-

cants d’appareils multimédia ont adopté le nouveau codec vidéo. Dix ans après

la première publication de la version finale, le standard H.264 est actuellement

le plus utilisé pour la compression vidéo dans les appareils multimédia selon de

nombreux articles et des revues comme PCWorld.com [23]. Les appareils photo,

smartphones, PDA, vidéosurveillance, lecteurs de disques Blu-ray et de nombreux

autres dispositifs utilisent H.264 pour l’encodage et le décodage des vidéos. H.264

permet d’obtenir une meilleure compression et une meilleure qualité au détriment

des algorithmes plus complexes. Ainsi, plus de ressources de calcul sont exploitées

et plus d’énergie est consommée lors de l’augmentation du taux de compression

des fichiers vidéo. Cette section donne un aperçu de quelques-unes des principales

caractéristiques du standard.

123

8. RÉSUMÉ EN FRANÇAIS

8.3.1 Décodeur H.264

Le processus du décodeur est représenté dans la figure 8.2. Le décodeur peut

être divisé en cinq parties fonctionnelles principales: entropy decoding (ED), de-

quantization et inverse transform (IQT), motion compensation (MC) et intra-

prediction (IP), et deblocking filter (DF).

La figure 8.2 illustre une représentation simplifiée des étapes du décodeur

H.264. Le décodage entropique (ED) et la compensation de mouvement (MC)

sont appliqués pour chaque macroblock de taille 16x16 pixels. Le déblocage de

filtrage (DF) est exécuté à la fin du processus de décodage. La charge de travail

moyenne de chaque étape à l’aide du profil de base (baseline) est illustré dans la

figure 8.3. Les étapes de décodage entropique et la de-quantification et la trans-

formation inverse (IQT) sont fusionnés en une seule étape dans les statistiques

de la figure 8.3. La charge de travail de cette étape est de 14% en moyenne qui

est principalement consommée par l’algorithme context-adaptive variable length

coding (CAVLC). L’algorithme CAVLC est adopté par le profil baseline et il a une

complexité inférieure à celle de l’algorithme de CABAC. L’étape de prédiction qui

est constitué d’intra-prédiction et de motion compensation a un impact important

sur l’ensemble du processus de décodage dont 41% en moyenne. Enfin, l’étape de

filtre de déblocage est également un processus lourd qui consomme environ 45%

de l’ensemble du processus. Ces statistiques de la charge de travail sont profilées

à l’aide de plusieurs benchmarks vidéo avec basse et haute résolutions.

8.4 Décodage des Couleurs en Parallèle

Nous proposons notre approche qui traite chaque composante de couleur (lu-

minance et chrominance) sur un noyau séparé dans un processeur multicœur afin

d’augmenter la performance globale du décodeur H.264. Notre nouvelle idée est

basée sur le fait que le décodeur H.264 traite en série les composantes de couleurs

dans chaque image; ainsi, le traitement simultané des composantes de couleur est

possible grâce à l’indépendance des données du luma et du chroma. En outre, une

version de pipeline est conçu pour améliorer l’équilibrage de charge et de cacher

les effets de la synchronisation. Des simulations sont effectuées en utilisant des

124

8. RÉSUMÉ EN FRANÇAIS

Figure 8.3: Charges moyennes des étapes du décodeur H.264 sur le processeur
ARM Cortex-A9

Figure 8.4: Format 4:2:0 des échantillons de couleurs

vidéos benchmarks qui sont simulés sur des processeurs multicœurs embarqués.

Des expérimentations sont menées sur le simulateur des processeurs dual et quad

cores afin de recueillir le temps d’exécution et les statistiques de consommation

d’énergie. [9]

8.4.1 Composants de Couleurs

Les frames (images) d’une séquence vidéo sont représentés comme des streams

de bits. Les pixels sont échantillonnés à l’aide de trois composantes de couleur:

YUV (ou YCrCb). Y représente un échantillon de couleur de luminance (luma)

qui est l’information de la lumière. UV (ou CrCb) représente les échantillons

des couleurs rouge et bleue respectivement (chrominance). Dans un format 4:2:0

125

8. RÉSUMÉ EN FRANÇAIS

chaque quatre échantillons de luminance ont un échantillon rouge et un échantillon

bleu comme le montre la figure 8.4. Le format d’échantillonnage 4:2:0 est le format

le plus utilisé. Des autres formats 4:2:2 ou 4:4:4 où plusieurs échantillons de

couleurs sont disponibles, ne montrent pas une différence significative pour la

vision humaine. La raison est que la vision est plus affectée par la lumière que

par les couleurs des séquences vidéo.

Dans notre recherche, nous révélons un model indépendant qui se trouve dans

le processus de décodage des composantes de couleur. Comme nous l’avons décrit

plus haut, chaque image d’une séquence vidéo est représentée dans les échantillons

de couleurs YCrCb. Un pixel est constitué par ces trois composantes de couleur.

Le décodeur reconstruit les données des couleurs dans chaque image séparément à

partir des couleurs de luminance et de chrominance. Les informations de couleur

dans chaque frame, et donc dans chaque macroblock sont indépendants l’un de

l’autre. Le H.264 Standard [26] ne montre aucune dépendance entre les données

d’information de couleur de l’algorithme de décodage lors de l’étape de compen-

sation de mouvement.

8.4.2 Exécution en Parallèle and Synchronisation

Le processus de décodage H.264 et tous les principaux algorithmes de décodage

vidéo sont généralement conçus pour être exécutées séquentiellement. Le stan-

dard H.264 [26] ne prend pas en charge le parallélisme, et donc, ne bénéficie pas

des processeurs multicœurs qui sont disponibles dans le marché d’aujourd’hui.

Plusieurs approches ont été étudiées afin de paralléliser l’exécution du processus

de décodage. La plupart de ces approches sont basées sur les slices (une image est

composée d’une ou de quelques slices) et sur les macroblocks (ils sont expliqués

dans la section 3.4.3.3 et 3.4.3.2 dans le chapitre 3). Des approches similaires

pour le traitement parallèle de H.264 sont décrits en détail dans la section 3.7 du

chapitre 3.

Dans notre recherche, nous avons modifié le code source H.264 afin de décoder

les composants de luma et de chroma dans chaque macroblock en parallèle. Un

noyau gère toutes les étapes sauf la compensation des mouvements de chromi-

nance et l’intra-prédiction qui sont exécutés sur le second noyau comme le montre

126

8. RÉSUMÉ EN FRANÇAIS

Figure 8.5: Décodage H.264 des composantes des couleurs en parallèle sur un
processeur dual-core

la figure 8.5. Le premier noyau exécute les échantillons de couleurs de luminance

en plus de tous les étapes de décodage restantes. Comme indiqué ci-dessus, les

composantes de couleur sont indépendantes l’une de l’autre. Par conséquent, le

décodage des différentes composantes de couleur en parallèle est correct en théorie,

ainsi que dans les expérimentations.

L’intra-prédiction et la compensation de mouvement (inter-prédiction) doivent

être terminées avant d’appliquer le filtre de déblocage. Ainsi, une barrière de

synchronisation est nécessaire avant que l’étape de filtre de déblocage commence.

Avec cette configuration, la synchronisation est effectuée à la fin du décodage de

la luminance et de la chrominance. A la fin de l’étape de décodage entropique,

l’étape de l’exécution en parallèle du processus de décodage est déclenchée. Une

fois l’intra-prédiction et la compensation de mouvement sont terminées, toutes les

taches parallèles attendent à la barrière de synchronisation avant de commencer

l’étape du filtre de déblocage.

Lors de l’utilisation d’un processeur dual-core, le second noyau utilise les

données de chrominance afin de décoder les composantes de couleur. Le premier

noyau décode les données de luminance et exécute les algorithmes séquentiels

restants comme illustré dans la figure 8.5. La charge de travail moyenne du

deuxième noyau en utilisant les vidéos Akiyo et Container (CIF et QCIF) est

de 18%, ce qui est à son tour le gain de performance moyen en utilisant des

processeurs dual-core.

Figure 8.6 illustre la répartition de la charge de travail sur 4 noyaux. Le

premier noyau lit les données à partir des unités NAL (qui sont expliqués dans la

127

8. RÉSUMÉ EN FRANÇAIS

Figure 8.6: Décodage H.264 des composantes des couleurs en parallèle sur un
processeur quad-core

section 3.4 du chapitre 3) et effectue le décodage d’entropie et la transformation.

Le second noyau traite les données de luminance tandis que le troisième noyau

traite les données de chrominance. Ils ont tous deux effectué le même travail,

intra-prédiction et compensation de mouvement, sur les différentes composantes

de couleur en même temps. Le quatrième noyau exécute la partie restante du

filtre de déblocage. Le gain de performance en utilisant des processeurs quad-core

est presque le même que les processeurs dual-core en raison des caractéristiques

séquentielles du décodeur H.264. Ainsi, afin de bénéficier des architectures quad-

core, une exécution en pipeline est proposée et discuté dans la partie suivante.

8.4.3 Exécution en Mode Pipeline

Afin de minimiser le temps d’attente entre les noyaux parallèles, les étapes de

décodage H.264 sont exécutées en mode pipeline sur quatre noyaux, lorsque la

compensation de mouvement est appliquée. Théoriquement, le temps d’exécution

peut être considérablement diminué au temps requis par le noyau qui s’exécute

au plus grand morceau de code. Le temps d’inactivité d’un processeur est réduit

pour une plus grande efficacité en utilisant les ressources disponibles. Le pipeline

128

8. RÉSUMÉ EN FRANÇAIS

est illustré dans la figure 8.7.

Une mémoire partagée stockant les blocks de données sont utilisées afin d’accéder

à des données cohérentes par les quatre processeurs. Les variables de données et

leur manipulation dans l’implémentation du H.264 actuel sont passés par des

modifications importantes et par des essais pour prouver l’exécution du pipeline

proposé. Figure 8.7 illustre le meilleur des cas où les quatre étapes de décodage

sont totalement indépendantes, ce qui permet l’exécution parallèle en utilisant

les quatre cœurs. Ce cas est appliqué lorsque l’image actuelle est dépendante

d’une image précédemment décodée (P-frames). P-frames contiennent des mac-

roblocks intra et inter. Les images d’intra-prédiction (images I) ne permettent pas

l’exécution de décodage pipeline parce que les macroblocks dépendent d’autres

macroblocks dans la même image. I-Frames ne contiennent que des macroblocks

intra (I-MB). Le gain de performance dépend du nombre des I-frames dans les im-

ages vidéo codées où la première image décodée est toujours une I-frame. D’autre

part, les images suivantes codées en utilisant les profils principaux sont pour la

plupart des images des P-Frames. Les I-MBs sont utiles lorsque les images ad-

jacentes sont assez similaires et avec mineur mouvement. Pour les benchmarks

de vidéo Akiyo et Container, seule la 1ère image a été décodée à l’aide d’intra-

prédiction parmi 300 images. Ce fait nous amène à souscrire au moins 99% des

images décodées sont des P-Frames. La charge maximale de la version pipeline

H.264 sur 4 noyaux est de 41% qui est exécuté par le quatrième noyau (P4) afin

d’effectuer le processus de filtre de déblocage. Donc, l’accélération de la perfor-

mance maximale est limitée par la plus grande charge qui est le filtre de déblocage.

8.4.4 Résultats

Afin de démontrer la faisabilité de notre approche, nous avons réalisé des

expérimentations sur notre version parallèle du référence décodeur H.264 [61] en

utilisant le simulateur de MPARM [31]. Les statistiques d’exécution de chaque

étape sont collectées en plus des résultats globaux d’exécution.

La différence des composantes de couleur entre les deux séquences vidéo et

à travers toutes les étapes sont similaires, comme indiqué dans le tableau 8.1.

Pour un échantillonnage 4:2:0, chaque échantillon de 4 luma est regroupé avec 2

129

8. RÉSUMÉ EN FRANÇAIS

Figure 8.7: Exécution en pipeline H.264 sur un processeur quad-core

Table 8.1: Résultats d’exécution parallèle de luma and de chroma
Benchmark Total (ms) Luma (%) Chroma (%)
Akiyo CIF 754234 29.48 20.06

Akiyo QCIF 379928 24.56 15.93
Container CIF 763781 29.45 20.45

Container QCIF 397664 24.55 15.91
Average 27.01 18.08

échantillons chroma. Ainsi, le traitement de luminance a besoin un temps double

que celui de chrominance. Les informations de couleur de luminance ont 27% en

moyenne de la durée totale d’exécution. Le temps total d’exécution du chroma

est de 18% en moyenne de la durée totale d’exécution.

Dans la section suivante, un algorithme parallèle avancé est proposé pour

l’exécution de la compensation de mouvement sur un grand nombre de cœurs

parallèles. L’approche parallèle est basée sur le traitement des groupes de lignes

de macroblocks indépendants en parallèle. L’algorithme parallèle proposé montre

une évolutivité supérieure à l’approche des composantes de couleur décrite dans

cette section. Ainsi, une bonne accélération et économie d’énergie sont atteintes

sur des processeurs multicœurs avec plus de 8 cœurs.

130

8. RÉSUMÉ EN FRANÇAIS

8.5 Décodage de Macroblocks en Parallèle

De nombreuses implémentations parallèles du codec H.264 existent allant

du décodage en parallèle des macroblocks (implémentations grain fin) jusqu’au

décodage en parallèle des groupes d’images (implémentations grain gros). Un

macroblock est un composant de 16x16 pixel d’une image dans une séquence

vidéo. En outre, un macroblock peut également être divisé en sous-blocks de taille

plus petite. Le décodage en parallèle des macroblocks est hautement évolutif pour

la raison que de nombreux macroblocks indépendants peuvent être traités en par-

allèle. Toutefois, des dépendances et des synchronisations sont créées à la suite

de la communication de la mémoire et de la synchronisation d’exécution entre les

macroblocks. D’autre part, le décodage parallèle des groupes d’images nécessite

une grande capacité mémoire en particulier pour la haute définition des séquences

vidéo. Ils ont une extensibilité inférieure à celle des macroblocks à cause du petit

nombre de groupes de frames qui peuvent être décodées en parallèle. Dans notre

approche, nous traitons les lignes de macroblocks indépendants en parallèle en

utilisant un nouvel algorithme qui élimine les dépendances entre les macroblocks

et qui minimise le surcoût de la synchronisation. Ce niveau d’exécution en par-

allèle peut être considéré entre les approches parallèles à gros-grain et à grain-fin,

ainsi, offrant un équilibre entre la disponibilité et l’extensibilité.

Notre principale contribution de cette recherche est la conception et l’implémentation

d’un nouvel algorithme de traitement parallèle des lignes de macroblocks du

décodeur H.264. En plus, un algorithme de détection de dépendance de données

qui isole les macroblocks d’intra-prédiction (I-MB) est développé. Des expérimentations

sont menées par l’exécution de notre décodeur parallèle évolutive sur une plate-

forme de développement Cuda [43] avec un processeur ARM Cortex-A9 contenant

4 noyaux [6]. Des statistiques du temps d’exécution réel et de la consommation

d’énergie sont collectées par l’exécution de l’application sur une plateforme réelle.

Pour les résolutions HD et Full-HD, les séquences vidéo de référence ont atteint

leur débit maximum en utilisant 4 threads sur 4 cœurs avec une accélération de

3.3x pour la compensation de mouvement et d’une accélération globale de 2,3x en

termes de temps d’exécution et avec un pourcentage de 63% d’économie d’énergie.

En plus, l’algorithme parallèle a une accélération théorique très important qui est

131

8. RÉSUMÉ EN FRANÇAIS

Figure 8.8: Décodage des lignes de macroblocks en parallèle

applicable sur les many-cores et les processeurs vecteurs. [10, 11]

8.5.1 Compensation des Mouvements en Parallèle

Dans notre recherche, nous avons modifié l’implémentation référence de H.264,

JM [61] code source du décodeur H.264, afin de décoder les lignes de macroblocks

en parallèle à l’aide de la bibliothèque pthread en langage de programmation C.

Un thread est créé pour chaque groupe de lignes de macroblocks. Chaque

thread est associé à un noyau. Le nombre de threads est spécifié par l’utilisateur

ou par l’application. Si le nombre de threads est plus grand que le nombre de

cores, alors le scheduler n’attribue plus qu’un thread pour chaque noyau. Comme

le montre la figure 8.8, chaque thread gère l’étape de compensation de mouvement

pour un groupe de lignes de macroblocks. Tous les threads doivent remplir leur

tâche avant de passer à la phase suivante qui est l’intra-prédiction pour les I-MBs.

Le nombre maximal de blocs de décodage en parallèle est égal au nombre de

lignes de macroblocks. Ce niveau de décodage en parallèle peut être considéré

entre les approches à grains gros et à grains fins. D’autres approches traitent

plusieurs slices ou frames en parallèle. Ces méthodes de haut niveau, comme [20]

132

8. RÉSUMÉ EN FRANÇAIS

Figure 8.9: Algorithme parallèle de la compensation des mouvements

[28] [42] [57], necessitent une utilisation élevée de la mémoire afin de décoder

plusieurs frames en parallèle en raison de la taille nécessaire pour stocker et

transférer des données de plusieurs frames. Les approches de décodage à grains

fins sont au niveau des macroblocks ou des blocs à l’intérieur d’un macroblock.

Ces méthodes de bas niveau, comme [14] [67] [72], provoquent un énorme surcoût

de synchronisation affectant profondément l’accélération à cause du grand nombre

de macroblocks dans chaque image. L’équilibre entre les deux approches se reflète

également sur les surcoûts de synchronisation et les exigences de communication

de données.

Notre approche vise à bénéficier de l’équilibre entre avantages et des in-

convénients. Les lignes de macroblocks nécessitent moins de mémoire que d’une

image et plus de mémoire qu’un macroblock. En fait, notre approche est évolutive

au niveau de macroblock. Cette granularité va créer une énorme charge de par-

allélisme des architectures multicœurs actuels. D’autre part, le nombre de lignes

de macroblocks est beaucoup moins que le nombre total de macroblocks. Par ex-

emple, en résolution HD (1280 x 720), chaque image a 3600 macroblocks, 80 MB

et 45 MB horizontales verticales. Ainsi, le nombre de rangées de macroblocks est

inférieur d’un facteur de 80, le nombre total de macroblocks. En conséquence,

les surcoûts pour la synchronisation et la communication entre les noyaux sont

également réduites d’un facteur de 80.

133

8. RÉSUMÉ EN FRANÇAIS

8.5.2 Algorithme de Vérification des Dépendances entre les

Macroblocks

L’algorithme de vérification de dépendance des macroblocks est relativement

simple. Figure 8.9 montre une illustration simple de l’algorithme. Étant donné une

liste contenant tous les macroblocks dans une image, une boucle qui parcourt tous

les macroblocks signale tous les macroblocks intra-prédiction (I-MB) et attribue

à chaque macroblock restant à un groupe spécifique pour un noyau disponible.

Ensuite, ces groupes de macroblocks sont décodés en parallèle. Lorsque tous les

groupes de macroblocks sont traitées, une boucle parcourt tous les I-MBs qui ont

été signalées au départ. Tous les macroblocks dans la liste I-MB sont décodés

séquentiellement. Les I-MBs peuvent être traitées en parallèle si elles ne sont pas

des voisins. Ce qui signifie qu’ils n’ont pas des dépendances entre elles. Le nombre

de I-MBs dans P-Frames et B-Frames est 2% en moyenne. Si nous attribuons un

macroblock à un noyau différent, la charge de travail n’est pas très importante

et les surcoûts de la synchronisation seront également ajoutés. Alors on exécute

les I-MBs d’une manière séquentielle pour des raisons de simplicité et moins de

surcoûts de communication. Le résultat de cette étape est entièrement conforme

à la norme H.264 [26], ce qui signifie que la sortie est exactement la même lorsque

l’exécution séquentielle est effectuée. Les macroblocks décodés sont ensuite soumis

au filtre de déblocage afin de rendre les bords entre les macroblocks lisses et

presque invisibles.

Le pire cas asymptotique de la complexité de l’algorithme parallèle proposé

reste pratiquement le même que l’algorithme séquentiel. Tous les macroblocks sont

traités une seule fois, ce qui est similaire à l’exécution séquentielle. Une itération

supplémentaire avec une surcharge de fonctionnement constant est ajoutée avant

l’exécution parallèle. Au cours de ce processus, les I-MBs sont identifiés et leurs

pointeurs sont ajoutés à une liste pour un traitement ultérieur dans une étape

suivante. Le coût d’exécution de cette boucle supplémentaire est linéaire et il

est considéré comme négligeable pour la complexité totale de l’algorithme. Après

le décodage en parallèle des macroblocks indépendants, les macroblocks restants

qui sont dans la liste précédemment décrite sont traitées séquentiellement et dans

l’ordre. Ainsi, dans le pire des cas la complexité de l’algorithme en comparaison

134

8. RÉSUMÉ EN FRANÇAIS

Figure 8.10: Accélération de l’exécution parallèle de l’étape Motion Compensation
sur la plateforme ARM Cortex-A9 avec 4 cores

avec l’algorithme séquentiel d’origine reste le même avec ou sans le gain de calcul

parallèle.

8.5.3 Résultats de Compensation des Mouvements en Par-

allèle

Les expérimentations sont préformées sur les séquences vidéo. Le nombre

de rangées parallèles de macroblocks augmente avec la résolution. Ainsi, des

résolutions élevées s’adaptent mieux que les basses résolutions avec le nombre

de noyau en raison du nombre plus élevé de macroblocks dans chaque image. Des

expérimentations sont effectuées à l’aide de 2, 4, 6, 8, 12, et 16 threads sur un

processeur ARM Cortex-A9 avec 4 cœurs [6]. Figure 8.10 montre l’accélération

moyenne de la phase de compensation du mouvement (motion compensation)

pour chaque résolution pour un nombre différent de thread. Pour la résolution

135

8. RÉSUMÉ EN FRANÇAIS

Figure 8.11: Exécution parallèle globale du H.264/AVC

CIF, l’accélération maximale de 1,8 est atteinte à l’aide de 4 threads. L’accélération

diminue quand le nombre de threads augmente à cause du gros surcoût de com-

munication de données. Les séquences vidéo HD et FHD ont une accélération

supérieure à 3.3 avec 4 threads où chaque thread est attribué à un noyau différent.

La meilleure accélération au nombre de rapport de threads est lorsque quatre

threads sont utilisés. Le rapport d’accélération de nombre de threads de résolution

haute définition est d’environ 0.8 quand quatre threads sont utilisés. Le dou-

blement du nombre de threads baisse le ratio à 0.6 qui ne peut être considéré

efficace comme prévu lors de l’exécution d’une application parallèle sur un pro-

cesseur multicœur. L’utilisation d’un certain nombre de threads qui est plus que

le nombre de noyaux provoque le scheduler d’affecter plus qu’un thread pour un

noyau. Par conséquent, la commutation de contexte n’augmente pas l’efficacité

de l’application, comme indiqué dans les résultats.

Les résultats pour les hautes résolutions ont en général de meilleures accélérations.

Ceci est principalement dû à une plus grande charge de travail pour chaque noyau.

Un plus grand volume de travail réduit l’impact du transfert de données et la syn-

chronisation entre les noyaux. L’une des raisons est la diminution des dépendances

entre les macroblocks en cours de traitement sur les différents noyaux. Une autre

raison est les surcoûts du transfert des données qui est nécessaire pour l’envoi des

données aux différents noyaux. La synchronisation ajoute également des charges

indépendantes de la résolution des vidéos. Ainsi, l’accélération sera beaucoup plus

efficace pour des résolutions plus élevées.

136

8. RÉSUMÉ EN FRANÇAIS

Figure 8.12: Accélération totale du décodeur H.264 sur ARM Cortex-A9 avec 4
cores

8.5.4 Résultats pour l’Exécution Complète

Notre objectif principal est d’optimiser toutes les étapes du décodeur H.264.

Nous appliquons des techniques parallèles pour la compensation de mouvement

et les étapes de filtre de déblocage. D’autre part, l’étape de décodage d’entropie

est principalement séquentielle. Ainsi, les techniques parallèles pour le décodeur

entropique sont très difficiles à appliquer ou parfois impossible en raison de ses

spécifications. Figure 8.11 dépeint les étapes avec des algorithmes parallèles du

décodeur H.264. Nous recueillons le temps d’exécution et les statistiques de con-

sommation d’énergie pour l’implémentation parallèle proposée du H.264. Les

fractions des différentes étapes varient entre les différentes séquences vidéo. En

conséquence, le rendement global est considéré comme la moyenne totale de toutes

les accélérations en fonction de la moyenne de chaque phase.

La figure 8.12 illustre les accélérations globaux obtenus par l’exécution complète

du décodeur avec les techniques d’optimisation décrites. Les accélérations totales

de 1.4, 2.0, 2.2, et 2.3 sont obtenus en utilisant 4 threads sur 4 cœurs pour les

résolutions CIF, WVGA, HD, et FHD respectivement. L’exécution séquentielle

137

8. RÉSUMÉ EN FRANÇAIS

Figure 8.13: Économies Globales de Consommation d’Energie

de l’étape de décodage entropique qui est d’environ 14% à 19% du décodage glob-

ale réduit l’échelle de l’accélération globale. Cette étape peut être améliorée par

l’implémentation d’une version matérielle du décodeur entropique. Les résolutions

FHD ont la plus forte accélération en raison de leurs grandes tailles d’images.

Toutes les accélérations maximales sont atteintes en utilisant 4 threads sur 4

cœurs. Ceci est principalement dû à l’absence de changement de contexte où

chaque thread est associé à un noyau. Pour plus de 4 threads, le système d’exploitation

doit affecter plus d’un thread à un contexte provoquant de base de commutation

et, par conséquent, plus les surcoûts et le temps mort sera ajouté à l’exécution

globale. Seules des séquences vidéo CIF ont accélérations moins de 2 lorsque

4 threads sont mappés sur 4 cœurs. Le taux d’accélération au nombre de noy-

aux est donc d’environ 0.6. Cela nous amène à conclure que le bénéfice des hautes

résolutions est plus élevé que des processeurs multicœurs en comparaison avec des

résolutions inférieures. Donc les résolutions Full-HD ont la meilleure accélération

avec un nombre élevé de noyaux.

Les mesures de l’énergie pour l’exécution complète sont affichées dans la figure

8.13. Les meilleurs résultats d’économie d’énergie correspondent aux résolutions

138

8. RÉSUMÉ EN FRANÇAIS

FHD en utilisant 4 threads qui atteignent 63%. Ces résultats sont également

évalués pour l’exécution complète du décodeur optimisé. Pour 12 et 16 threads,

la consommation d’énergie va augmenter par rapport à l’exécution séquentielle.

Ainsi, nous concluons que les économies d’énergie ne s’adaptent pas linéairement

avec le nombre de threads ou noyaux.

8.6 Conclusion

H.264 est largement adopté dans les applications multimédias sur les systèmes

embarqués. La grande complexité imposée par le décodeur H.264 nécessite à ac-

crôıtre l’efficacité et à réduire la consommation électrique.

Nous avons proposé et évalué un algorithme parallèle pour le décodeur H.264.

Les composantes de couleur, luminance et chrominance, pour les étapes de com-

pensation de mouvement sont traitées en parallèle fournissant des hauts poten-

tiels et réalistes pour le décodage vidéo sur les processeurs dual et quad cores.

L’exécution parallèle du décodeur H.264 est améliorée d’environ 18%. L’accélération

atteint 32% avec un pipeline et une économie d’énergie de 24%.

En outre, nous avons présenté une technique parallèle innovante pour le stan-

dard vidéo du décodeur H.264. Notre approche décode des groupes des lignes de

macroblocks en parallèle avec un algorithme qui détecte les dépendances sur la

volée basé sur l’isolement des macroblocks intra-prédiction (I-MBs). Les séquences

vidéo aux définitions hautes et basses sont utilisées dans nos expérimentations.

L’accélération la plus efficace avec la meilleur proportion au nombre de noyaux

parallèle est de 3.3 en utilisant 4 threads sur 4 cœurs. Une implémentation par-

allèle à base des macroblocks pour le filtre de déblocage est également implémentée.

Une accélération globale de 2.3 est atteinte pour l’optimisation parallèle complète

du standard H.264. Notre décodeur optimisé est testé sur un vrai appareil avec un

processeur ARM Cortex-A9 avec 4 cœurs. En plus, l’algorithme parallèle proposé

est testé sur un simulateur de multicœurs afin d’explorer à l’évolutivité de notre

algorithme sur des multiprocesseurs jusqu’à 32 cœurs.

Le travail dans cette recherche présente des solutions à la grande complexité

du décodeur H.264 en utilisant le calcul parallèle. Ces algorithmes peuvent être

appliqués à la plupart des standards de compression vidéo à base de macroblocks.

139

8. RÉSUMÉ EN FRANÇAIS

D’autres expérimentations et des améliorations doivent être effectuées afin d’appliquer

nos algorithmes parallèles dans des produits commerciaux. Notre intention est de

continuer notre recherche afin d’augmenter l’efficacité et réduire la consommation

d’énergie des standards de codage vidéo récents.

140

References

[1] J. VLSI Signal Process. Syst., 19(2), 1998. ISSN 0922-5773. 14

[2] G. S. Almasi and A. Gottlieb. Highly parallel computing. Benjamin-

Cummings Publishing Co., Inc., Redwood City, CA, USA, 1989. ISBN 0-

8053-0177-1. 6, 121

[3] Advanced Micro Devices (AMD). Accelerated parallel process-

ing (app) sdk. http://developer.amd.com/tools-and-sdks/heterogeneous-

computing/amd-accelerated-parallel-processing-app-sdk/, 2013. 11, 101

[4] Gene M. Amdahl. Validity of the single processor approach to achiev-

ing large scale computing capabilities, reprinted from the afips confer-

ence proceedings, vol. 30 (atlantic city, n.j., apr. 18 x2013;20), afips press,

reston, va., 1967, pp. 483 x2013;485, when dr. amdahl was at interna-

tional business machines corporation, sunnyvale, california. Solid-State Cir-

cuits Society Newsletter, IEEE, 12(3):19–20, 2007. ISSN 1098-4232. doi:

10.1109/N-SSC.2007.4785615. 6, 21, 22, 24, 122

[5] Apple. iphone. http://www.apple.com/iphone/, 2013. 2, 118

[6] ARM-ltd. Cortex-a9 processor. http://www.arm.com/products/

processors/cortex-a/cortex-a9.php, 2012. 2, 9, 13, 75, 88, 89, 105, 118, 122,

131, 135

[7] ARM-ltd. Cortex-a15 processor. http://www.arm.com/products/

processors/cortex-a/cortex-a15.php, 2013. 2, 118

[8] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt

Keutzer, John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen,

142

REFERENCES REFERENCES

John Wawrzynek, David Wessel, and Katherine Yelick. A view of the parallel

computing landscape. Commun. ACM, 52(10):56–67, October 2009. ISSN

0001-0782. doi: 10.1145/1562764.1562783. URL http://doi.acm.org/10.

1145/1562764.1562783. 6, 121

[9] Elias Baaklini, Hassan Sbeity, Smail Niar, and Nouhad Amaneddine. H.264

color components video decoding parallelization on multi-core processors. In

Proceedings of the 2010 13th Euromicro Conference on Digital System De-

sign: Architectures, Methods and Tools, DSD ’10, pages 785–790, Washing-

ton, DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4171-6. doi:

10.1109/DSD.2010.76. URL http://dx.doi.org/10.1109/DSD.2010.76.

57, 125

[10] Elias Baaklini, Hassan Sbeity, and Smail Niar. H.264 macroblock line level

parallel video decoding on embedded multicore processors. In Proceedings

of the 2012 15th Euromicro Conference on Digital System Design, DSD ’12,

pages 902–906, Washington, DC, USA, 2012. IEEE Computer Society. ISBN

978-0-7695-4798-5. doi: 10.1109/DSD.2012.67. URL http://dx.doi.org/

10.1109/DSD.2012.67. 75, 132

[11] Elias Baaklini, Hassan Sbeity, and Smail Niar. H.264 parallel optimiza-

tion on graphics processors. In The Fifth International Conferences on

Advances in Multimedia, MMEDIA 2013, pages 109–114, Delaware, USA,

2013. IARIA. ISBN 978-1-61208-265-3. URL http://www.thinkmind.org/

index.php?view=article&articleid=mmedia_2013_5_30_40117. 75, 132

[12] David Brash. The arm architecture version 6 (armv6). Architecture Program

Manager, ARM Ltd, 2002. 64

[13] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDon-

ald, and Ramesh Menon. Parallel programming in OpenMP. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2001. ISBN 1-55860-671-8,

9781558606715. 26

[14] Jike Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer. Effi-

cient parallelization of h.264 decoding with macro block level scheduling. In

143

http://doi.acm.org/10.1145/1562764.1562783
http://doi.acm.org/10.1145/1562764.1562783
http://dx.doi.org/10.1109/DSD.2010.76
http://dx.doi.org/10.1109/DSD.2012.67
http://dx.doi.org/10.1109/DSD.2012.67
http://www.thinkmind.org/index.php?view=article&articleid=mmedia_2013_5_30_40117
http://www.thinkmind.org/index.php?view=article&articleid=mmedia_2013_5_30_40117

REFERENCES REFERENCES

Multimedia and Expo, 2007 IEEE International Conference on, pages 1874

–1877, july 2007. doi: 10.1109/ICME.2007.4285040. 52, 60, 79, 133

[15] OAR Corporation. Rtems real-time operating system.

http://www.rtems.com, 2010. 64

[16] R. Cucchiara, M. Piccardi, and A. Prati. Neighbor cache prefetching for

multimedia image and video processing. Trans. Multi., 6(4):539–552, August

2004. ISSN 1520-9210. doi: 10.1109/TMM.2004.830806. URL http://dx.

doi.org/10.1109/TMM.2004.830806. 112

[17] FFmpeg. Ffmpeg project. http://www.ffmpeg.org/, 2012. 52, 56, 57, 66, 67,

70

[18] Laurie J. Flynn. Intel halts development of 2 new microprocessors.

http://www.nytimes.com/2004/05/08/business/intel-halts-development-of-

2-new-microprocessors.html, 2004. 7

[19] T.R. Gardos. H.263+: the new itu-t recommendation for video coding at

low bit rates. In Acoustics, Speech and Signal Processing, 1998. Proceedings

of the 1998 IEEE International Conference on, volume 6, pages 3793–3796

vol.6, 1998. doi: 10.1109/ICASSP.1998.679710. 33, 35, 38

[20] A. Gurhanli, C.C.-P. Chen, and Shih-Hao Hung. Gop-level parallelization

of the h.264 decoder without a start-code scanner. In Signal Processing

Systems (ICSPS), 2010 2nd International Conference on, volume 3, pages

V3–627–V3–630, 2010. doi: 10.1109/ICSPS.2010.5555416. 51, 79, 132

[21] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 5th edition, 2011. ISBN 012383872X, 9780123838728.

6, 7, 8, 9, 10, 11, 13, 17, 19, 20, 23, 111, 121

[22] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro. H.264/avc baseline

profile decoder complexity analysis. Circuits and Systems for Video Tech-

nology, IEEE Transactions on, 13(7):704 – 716, july 2003. ISSN 1051-8215.

doi: 10.1109/TCSVT.2003.814967. 52

144

http://dx.doi.org/10.1109/TMM.2004.830806
http://dx.doi.org/10.1109/TMM.2004.830806

REFERENCES REFERENCES

[23] IDG-Consumer&SMB. Pcworld magazine. http://www.pcworld.com/, 2012.

28, 123

[24] Intel. Intel core processor family. http://www.intel.com/, 2011. 9, 13, 122

[25] ISO. Iso c standard 1999. Technical report, 1999. URL http:

//www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf. ISO/IEC

9899:1999 draft. 101

[26] ITU-T and ISO/IEC(2012). Advanced video coding for generic audiovisual

services. ITU-T Rec. H.264, January 2012. 3, 23, 28, 33, 36, 39, 51, 57, 59,

60, 83, 119, 123, 126, 134

[27] Mike Johnson. Superscalar multiprocessor design. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1991. ISBN 0-13-875634-1. 9

[28] C. S. Kannangara, I. E. G. Richardson, M. Bystrom, J. Solera, Y. Zhao, and

A. Maclennan. Complexity reduction of h.264 using lagrange optimization

methods. In IEE VIE 2005, (Glasgow,UK, 2005. 52, 79, 133

[29] Marta Karczewicz and Ragip Kurceren. The sp- and si-frames design for

h.264/avc. IEEE Trans. Circuits Syst. Video Techn., 13(7):637–644, 2003.

URL http://dblp.uni-trier.de/db/journals/tcsv/tcsv13.html. 43

[30] Khronos. Opencl: The open standard for parallel programming of heteroge-

neous systems. http://www.khronos.org/opencl, 2012. 11, 25, 26, 99, 100

[31] Micrel lab. Mparm simulator. http://www-micrel.deis.unibo.it/

sitonew/research/mparm.html, 2005. 63, 64, 129

[32] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works,

when it doesn’t, and why. ACM Trans. Archit. Code Optim., 9(1):

2:1–2:29, March 2012. ISSN 1544-3566. doi: 10.1145/2133382.2133384. URL

http://doi.acm.org/10.1145/2133382.2133384. 111

[33] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. Mcpat: an integrated power, area, and

timing modeling framework for multicore and manycore architectures. In

145

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://dblp.uni-trier.de/db/journals/tcsv/tcsv13.html
http://doi.acm.org/10.1145/2133382.2133384

REFERENCES REFERENCES

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 42, pages 469–480, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-798-1. doi: 10.1145/1669112.1669172. URL http:

//doi.acm.org/10.1145/1669112.1669172. 67, 69

[34] Peter List, Anthony Joch, Jani Lainema, Gisle Bjøntegaard, and Marta Kar-

czewicz. Adaptive deblocking filter. IEEE Trans. Circuits Syst. Video Techn.,

13(7):614–619, 2003. 51

[35] Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerof-

sky. Low-complexity transform and quantization in h.264/avc. IEEE Trans.

Circuits Syst. Video Technol, pages 598–603, 2003. 50

[36] Detlev Marpe, Thomas Wiegand, and Stephen Gordon. H.264/mpeg4-avc

fidelity range extensions: tools, profiles, performance, and application areas.

In ICIP, pages 593–596. IEEE, 2005. URL http://dblp.uni-trier.de/

db/conf/icip/icip2005-1.html. 39, 50

[37] Oleg Maslennikov. Systematic generation of executing programs for pro-

cessor elements in parallel asic or fpga-based systems and their transfor-

mation into vhdl-descriptions of processor element control units. In Pro-

ceedings of the th International Conference on Parallel Processing and Ap-

plied Mathematics-Revised Papers, PPAM ’01, pages 272–279, London, UK,

UK, 2002. Springer-Verlag. ISBN 3-540-43792-4. URL http://dl.acm.org/

citation.cfm?id=645813.668540. 14

[38] Cor Meenderinck, Arnaldo Azevedo, Ben Juurlink, Mauricio Alvarez Mesa,

and Alex Ramirez. Parallel scalability of video decoders. J. Signal Pro-

cess. Syst., 57(2):173–194, November 2009. ISSN 1939-8018. doi: 10.1007/

s11265-008-0256-9. 52, 91, 92

[39] Mauricio Alvarez Mesa, Alex Ramirez, Arnaldo Azevedo, Cor Meenderinck,

Ben Juurlink, and Mateo Valero. Scalability of macroblock-level parallelism

for h.264 decoding. In Proceedings of the 2009 15th International Conference

on Parallel and Distributed Systems, ICPADS ’09, pages 236–243, Washing-

146

http://doi.acm.org/10.1145/1669112.1669172
http://doi.acm.org/10.1145/1669112.1669172
http://dblp.uni-trier.de/db/conf/icip/icip2005-1.html
http://dblp.uni-trier.de/db/conf/icip/icip2005-1.html
http://dl.acm.org/citation.cfm?id=645813.668540
http://dl.acm.org/citation.cfm?id=645813.668540

REFERENCES REFERENCES

ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3900-3. doi:

10.1109/ICPADS.2009.124. 52, 91

[40] Gordon E. Moore. In Mark D. Hill, Norman P. Jouppi, and Gurindar S.

Sohi, editors, Readings in computer architecture, chapter Cramming more

components onto integrated circuits, pages 56–59. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 2000. ISBN 1-55860-539-8. URL

http://dl.acm.org/citation.cfm?id=333067.333074. 7

[41] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global

history buffer. In Proceedings of the 10th International Symposium on High

Performance Computer Architecture, HPCA ’04, pages 96–, Washington,

DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2053-7. doi: 10.1109/

HPCA.2004.10030. URL http://dx.doi.org/10.1109/HPCA.2004.10030.

112

[42] K. Nishihara, A. Hatabu, and T. Moriyoshi. Parallelization of h.264 video

decoder for embedded multicore processor. In Multimedia and Expo, 2008

IEEE International Conference on, pages 329 –332, 23 2008-april 26 2008.

doi: 10.1109/ICME.2008.4607438. 52, 79, 133

[43] nVIDIA. The cuda development kit from seco. http://www.nvidia.com/

object/seco-dev-kit.html, 2012. 11, 75, 88, 131

[44] nVIDIA Developer Zone. Cuda documents. http://docs.nvidia.com/cuda/,

2013. 25, 99

[45] IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002). Ieee standard vhdl

language reference manual. pages c1–626, 2009. doi: 10.1109/IEEESTD.

2009.4772740. 14

[46] VideoLAN Organization. x264 encoder. http://www.videolan.org/dev-

elopers/x264.html, 2013. 81

[47] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. ISBN

9780123742605. 21

147

http://dl.acm.org/citation.cfm?id=333067.333074
http://dx.doi.org/10.1109/HPCA.2004.10030

REFERENCES REFERENCES

[48] David A. Patterson and John L. Hennessy. Computer Organization and De-

sign, Fourth Edition, Fourth Edition: The Hardware/Software Interface (The

Morgan Kaufmann Series in Computer Architecture and Design). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 4th edition, 2008. ISBN

0123744938, 9780123744937. 6, 9, 17, 18, 19, 20, 23, 24, 25, 121

[49] B. Pieters, C.-F.J. Hollemeersch, J. De Cock, P. Lambert, W. De Neve,

and R. Van De Walle. Parallel deblocking filtering in mpeg-4 avc/h.264 on

massively parallel architectures. Circuits and Systems for Video Technology,

IEEE Transactions on, 21(1):96–100, 2011. ISSN 1051-8215. doi: 10.1109/

TCSVT.2011.2105553. 53

[50] Iain E. Richardson. Video Codec Design: Developing Image and Video Com-

pression Systems. John Wiley & Sons, Inc., New York, NY, USA, 2002.

ISBN 0471485535. 31, 37, 50

[51] Michael Roitzsch. Slice-balancing h.264 video encoding for improved scal-

ability of multicore decoding. In Proceedings of the 7th ACM & IEEE in-

ternational conference on Embedded software, EMSOFT ’07, pages 269–278,

New York, NY, USA, 2007. ACM. ISBN 978-1-59593-825-1. doi: 10.1145/

1289927.1289969. URL http://doi.acm.org/10.1145/1289927.1289969.

60

[52] Priscila Tiemi Maeda Saito, Denis Fernando Wolf, Bruno Alexandre Men-

donça, Kalinka R. L. J. C. Branco, and Ricardo José Sabatine. A parallel ap-

proach for mobile robotic self-localization. In Proceedings of the 2009 Fourth

International Conference on Computer Sciences and Convergence Informa-

tion Technology, ICCIT ’09, pages 762–767, Washington, DC, USA, 2009.

IEEE Computer Society. ISBN 978-0-7695-3896-9. doi: 10.1109/ICCIT.2009.

284. URL http://dx.doi.org/10.1109/ICCIT.2009.284. 25

[53] Samsung. Samsung smartphones. http://www.samsung.com/uk/consumer/

mobile-phones/smartphones/, 2013. 2, 118

[54] R. Schafer and T. Sikora. Digital video coding standards and their role in

148

http://doi.acm.org/10.1145/1289927.1289969
http://dx.doi.org/10.1109/ICCIT.2009.284

REFERENCES REFERENCES

video communications. Proceedings of the IEEE, 83(6):907–924, 1995. ISSN

0018-9219. doi: 10.1109/5.387092. 37

[55] Florian H. Seitner, Michael Bleyer, Margrit Gelautz, and Ralf M. Beuschel.

Evaluation of data-parallel h.264 decoding approaches for strongly resource-

restricted architectures. Multimedia Tools Appl., 53(2):431–457, June 2011.

ISSN 1380-7501. doi: 10.1007/s11042-010-0501-7. 84, 91

[56] Y. Shimokawa, Y. Fuwa, and N. Aramaki. A parallel asic vlsi neurocomputer

for a large number of neurons and billion connections per second speed. In

Neural Networks, 1991. 1991 IEEE International Joint Conference on, pages

2162–2167 vol.3, 1991. doi: 10.1109/IJCNN.1991.170708. 14

[57] Kue-Hwan Sihn, Hyunki Baik, Jong-Tae Kim, Sehyun Bae, and Hyo Jung

Song. Novel approaches to parallel h.264 decoder on symmetric multicore sys-

tems. In Proceedings of the 2009 IEEE International Conference on Acous-

tics, Speech and Signal Processing, ICASSP ’09, pages 2017–2020, Washing-

ton, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-2353-8. doi:

10.1109/ICASSP.2009.4960009. 53, 79, 133

[58] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating Sys-

tem Concepts. Wiley Publishing, 8th edition, 2008. ISBN 0470128720. 24,

25

[59] William Stallings. Computer Organization and Architecture: Designing for

Performance. Prentice Hall Press, Upper Saddle River, NJ, USA, 8th edition,

2009. ISBN 9780136073734. 8

[60] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel pro-

gramming standard for heterogeneous computing systems. IEEE Des. Test,

12(3):66–73, May 2010. ISSN 0740-7475. doi: 10.1109/MCSE.2010.69. URL

http://dx.doi.org/10.1109/MCSE.2010.69. 26

[61] K. Suehring. H.264 reference software. http://bs.hhi.de/ suehring/tml/,

2012. 52, 56, 57, 63, 64, 79, 82, 129, 132

149

http://dx.doi.org/10.1109/MCSE.2010.69

REFERENCES REFERENCES

[62] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra. The h.264/avc ad-

vanced video coding standard: Overview and introduction to the fidelity

range extensions. In SPIE conference on Applications of Digital Image Pro-

cessing XXVII, pages 454–474, 2004. 39, 50

[63] G.J. Sullivan, J. Ohm, Woo-Jin Han, T. Wiegand, and T. Wiegand. Overview

of the high efficiency video coding (hevc) standard. Circuits and Systems for

Video Technology, IEEE Transactions on, 22(12):1649–1668, 2012. ISSN

1051-8215. doi: 10.1109/TCSVT.2012.2221191. 3, 39, 119

[64] Agilent Technologies. High-resolution lxi digitizers. http://www.home.

agilent.com/en/pd-1445167-pn-L4532A/, 2012. 89

[65] P. N. Tudor. Mpeg-2 video compression. Electronics Communication En-

gineering Journal, 7(6):257–264, 1995. ISSN 0954-0695. doi: 10.1049/ecej:

19950606. 3

[66] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David

Kaeli. Multi2sim: a simulation framework for cpu-gpu computing. In Pro-

ceedings of the 21st international conference on Parallel architectures and

compilation techniques, PACT ’12, pages 335–344, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1182-3. doi: 10.1145/2370816.2370865. 66,

88, 97, 105, 106

[67] Erik VanDerTol, Egbert Jaspers, and Rob Gelderblom. Mapping of h.264

decoding on a multiprocessor architecture. In Proc. SPIE Conf. on Image

and Video Communications and Processing, pages 707–718, 2003. 52, 60, 79,

133

[68] Sung-Wen Wang, Shu-Sian Yang, Hong-Ming Chen, Chia-Lin Yang, and Ja-

Ling Wu. A multi-core architecture based parallel framework for h.264/avc

deblocking filters. J. Signal Process. Syst., 57(2):195–211, November 2009.

ISSN 1939-8018. doi: 10.1007/s11265-008-0321-4. 53

[69] Weixun Wang, Prabhat Mishra, and Sanjay Ranka. Dynamic cache re-

configuration and partitioning for energy optimization in real-time multi-

core systems. In Proceedings of the 48th Design Automation Conference,

150

REFERENCES REFERENCES

DAC ’11, pages 948–953, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0636-2. doi: 10.1145/2024724.2024935. URL http://doi.acm.org/

10.1145/2024724.2024935. 112

[70] Stephen Westland, Huw Owens, Vien Cheung, and Iain Paterson-Stephens.

Model of luminance contrast-sensitivity function for application to image

assessment. Color Research & Application, 31(4):315–319, 2006. ISSN 1520-

6378. doi: 10.1002/col.20230. URL http://dx.doi.org/10.1002/col.

20230. 31

[71] YouTube. Youtube advanced encoding settings. https://support.

google.com/youtube/answer/1722171, 2013. 3

[72] Zhuo Zhao and Ping Liang. Data partition for wavefront parallelization of

h.264 video encoder. In Circuits and Systems, 2006. ISCAS 2006. Proceed-

ings. 2006 IEEE International Symposium on, pages 4 pp.–2672, 2006. doi:

10.1109/ISCAS.2006.1693173. 52, 77, 79, 87, 91, 133

151

http://doi.acm.org/10.1145/2024724.2024935
http://doi.acm.org/10.1145/2024724.2024935
http://dx.doi.org/10.1002/col.20230
http://dx.doi.org/10.1002/col.20230

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.3 Existing Solutions
	1.4 Contributions
	1.5 Outline

	2 Parallel Computing
	2.1 Introduction
	2.2 Types of Parallelism
	2.2.1 Classification of Processors
	2.2.2 Instruction-Level Parallelism
	2.2.3 Data-Level Parallelism
	2.2.4 Thread-Level Parallelism

	2.3 Memory Architecture for Parallel Systems
	2.3.1 Main Memory
	2.3.2 Processor Communication
	2.3.3 Memory Access
	2.3.4 Caches
	2.3.5 Cache Coherency

	2.4 Parallel Applications
	2.4.1 Amdahl's Law
	2.4.2 Challenges of Parallel Processing
	2.4.3 Programming Languages

	2.5 Conclusion

	3 H.264/AVC Standard Overview
	3.1 Introduction
	3.2 Video Coding Review
	3.2.1 Digital Video
	3.2.2 Block Based Video Coding
	3.2.3 Video Coding Standards

	3.3 Standard Development
	3.4 Features and Tools
	3.4.1 Layer Structure
	3.4.2 Profiles and Levels
	3.4.3 Picture Format

	3.5 Video Coding
	3.5.1 Encoder
	3.5.2 Decoder

	3.6 Coding Tools and Functions
	3.6.1 Intra Prediction
	3.6.2 Inter Prediction
	3.6.3 Transform and Quantization
	3.6.4 Skipped Macroblocks
	3.6.5 Deblocking Filter

	3.7 Parallel Implementations
	3.7.1 Slice-Level
	3.7.2 Macroblock-Level
	3.7.3 Deblocking Filter
	3.7.4 Discussion

	3.8 Summary and Conclusion

	4 H.264 Color Components Parallel Decoding
	4.1 Introduction
	4.2 Parallel Decoding
	4.2.1 Stages Decomposition
	4.2.2 Color Components Processing
	4.2.3 Parallel Execution and Synchronization
	4.2.4 Pipeline Execution

	4.3 Experiments with JM H.264 Reference Software
	4.3.1 MPARM simulator and H.264 porting
	4.3.2 Profiling H.264 Stages
	4.3.3 Discussion
	4.3.4 Speedup using Parallelism

	4.4 Experiments with FFmpeg H.264 Decoder
	4.4.1 Multi2Sim Simulator
	4.4.2 FFmpeg H.264 Implementation
	4.4.3 Speedup using Parallelism
	4.4.4 Power Efficiency
	4.4.5 FFmpeg Multi-Threaded Version

	4.5 Conclusion

	5 H.264 Macroblocks Rows Parallel Decoding
	5.1 Introduction
	5.2 Decoder Decomposition
	5.2.1 Decoding Stages
	5.2.2 Macroblocks

	5.3 Parallel Implementation
	5.3.1 Parallel Motion Compensation
	5.3.2 Macroblocks Dependencies
	5.3.3 IDR Frame Frequency
	5.3.4 Macroblock Dependency Check Algorithm
	5.3.5 Macroblocks Partitioning
	5.3.6 Scalability of Parallel Motion Compensation
	5.3.7 Parallel Deblocking Filter

	5.4 Experimental Results on Multicore Systems
	5.4.1 Parallel Execution
	5.4.2 Environment and Configurations
	5.4.3 Results for Parallel Motion Compensation
	5.4.4 Comparison with Related Work
	5.4.5 Results for Parallel Deblocking Filter
	5.4.6 Results for Overall Execution
	5.4.7 Simulated Execution
	5.4.8 Theoretical Speedup

	5.5 Parallel Execution on Graphics Processor
	5.5.1 General-Purpose Graphical Processing Unit
	5.5.2 OpenCL C Programming Language
	5.5.3 Experimental Results

	5.6 Conclusion

	6 Parallel Cache Efficiency
	6.1 Introduction
	6.2 Parallel Environment
	6.2.1 Processor Architecture
	6.2.2 Parallel Algorithms

	6.3 Multicore Cache Memory
	6.3.1 L1 Cache Misses Statistics
	6.3.2 Common L1 Cache Misses among Cores
	6.3.3 Parallel Cache Efficiency

	6.4 Cache Optimization
	6.4.1 Prefetching Algorithm
	6.4.2 Performance Efficiency

	6.5 Instructions and Cycles Statistics
	6.6 Conclusion

	7 Conclusion
	8 Résumé en Français
	8.1 Introduction
	8.1.1 Contexte
	8.1.2 Déclaration du Problème
	8.1.3 Solutions Existantes
	8.1.4 Contributions
	8.1.5 Plan

	8.2 Programmation Parallèle
	8.2.1 Processeurs Multicœurs

	8.3 Standard H.264
	8.3.1 Décodeur H.264

	8.4 Décodage des Couleurs en Parallèle
	8.4.1 Composants de Couleurs
	8.4.2 Exécution en Parallèle and Synchronisation
	8.4.3 Exécution en Mode Pipeline
	8.4.4 Résultats

	8.5 Décodage de Macroblocks en Parallèle
	8.5.1 Compensation des Mouvements en Parallèle
	8.5.2 Algorithme de Vérification des Dépendances entre les Macroblocks
	8.5.3 Résultats de Compensation des Mouvements en Parallèle
	8.5.4 Résultats pour l’Exécution Complète

	8.6 Conclusion

	References

