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Après cette longue étape de plus de 3 ans de travail, je voudrais dans ces quelques lignes
remercier tous ceux qui y ont participé et contribué.
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Abstract

An increasing demand for railway transportation is observed in many countries around the
world. Achieving higher network capacity requires the evaluation of the existing structure
regarding the required traffic, speed and axle load, as well as the reduction of maintenance
interventions. A higher track performance in terms of these metrics can be achieved by
enhanced design standards and predictive tools accounting for the whole structure’s life
span.

Within this context, this thesis aims to provide a global framework for combining
geotechnical perspective and numerical modeling for the railway infrastructure. A rational
approach for railway track modeling is proposed. It is composed by three main aspects:
(i) railway track dynamics, (ii) probabilistic analysis and (iii) geomaterials’ non linear
behavior. This approach allows assessing the track behavior during different instants of
its life span.

The first step of this thesis is the development of a dynamic numerical model of the
railway track for both probabilistic and non linear analysis. For this purpose, the Finite
Element method in time domain is chosen as general modeling framework. A 2D plane-
strain model with a modified width is used in this thesis, the out-of-plane width being
calibrated from 3D static analysis. The advantages and drawbacks of such methodology
are discussed in the light of the representativeness of the in-plane stress field and associated
computational cost for probabilistic analysis. A loading methodology for reducing spurious
wave generation is also discussed and implemented. With the developed model, the track
structural response and the crossed influence of speed and subgrade stiffness are first
analyzed under linear elasticity hypothesis.

The influence of track properties variability in the track stiffness measurement is dis-
cussed in the second part of this thesis. Spatial variations are introduced by considering
the rigidity of each track layer as an invariant scalar random field. The first-order marginal
probability distributions are calibrated from statistical analysis of in situ measurements.
By considering different theoretical correlation structures, the crossed influence of the
discrete sleeper support and the input correlation length on the track stiffness field is
highlighted. In order to verify the importance of each input parameter in the track stiff-
ness’ variability, a global sensitivity analysis is conducted for different track configurations.
It is shown that track stiffness variations are primarily caused by variations of subgrade
stiffness and possible variations of rail pad stiffness.

Furthermore, the importance of geomaterials’ non linear behavior is discussed in the
last part of the thesis. A suitable framework for the description of geomaterials’ behavior
under cyclic loading, for a large range of stress paths, is provided by a fully elastoplastic
multimechanism model. This approach is well adapted for assessing the track behavior



during the so-called “conditioning phase”, or the the first cycles when high track settle-
ments are observed and materials cumulate high plastic strains.

The model parameters are calibrated from triaxial test results available in the liter-
ature for different track materials (ballast, interlayer, subgrade soil). The model is able
to capture the main mechanisms acting during the conditioning phase: densification and
increase in stiffness of the different materials by accumulation of plastic strains. The load
transfer mechanisms and the stress-strain response of the materials are then analyzed.
Different stress-strain paths and plastic strains are observed in the ballast layer according
to the position of the control point relative to the sleepers. The load speed influence on
track permanent settlement and ballast stress-strain response is also studied. Finally, the
influence of both interlayer and subgrade behavior on the track response is assessed via a
parametric analysis.

Keywords: ballasted railway track, finite element method, moving loads, probabilistic
analysis, soil mechanics, advanced elastoplastic constitutive model



Résumé

Une forte progression du transport ferroviaire est observée les dernières années dans
plusieurs pays. L’augmentation de la capacité du réseau ferroviaire demande à la fois
l’évaluation de l’infrastructure existante selon le trafique attendu, la vitesse des trains,
la charge à l’essieu, ainsi que la réduction des interventions de maintenance. Une per-
formance accrue de la voie ferrée par rapport à ces critères nécessite l’amélioration des
normes de conception et des outils de prédiction qui puissent prendre en compte toute la
durée de vie de la structure.

Dans ce contexte, l’objectif de cette thèse est d’apporter un point de vue géotechnique
à la modélisation numérique du comportement des voies ferrées sous charge mobile. Un
modèle numérique rationnel est developpé dans la thèse, composé de trois aspects prin-
cipaux: (i) comportement dynamique de la voie ferrée, (ii) analyse probabiliste et (iii)
comportement non linéaire des géomatériaux. Cette approche permet d’appréhender le
comportement mécanique de la voie ferrée à différents instants de son cycle de vie.

La première partie de cette thèse est consacrée au développement d’un modèle numérique
en dynamique de la voie ferrée, adapté à l’analyse probabiliste et au comportement non
linéaire. Une modélisation par Eléments Finis dans le domaine temporel est choisie pour
cadre général. Ainsi, un modèle 2D en déformation plane avec épaisseur est proposé dans
cette thèse, l’épaisseur hors plan étant calibrée à partir des calculs 3D en statique. Les
avantages et inconvéniants de cette méthodologie sont discutés selon la répresentativité
du champ de contraintes dans le plan et du temps de calcul associé, paramètre impor-
tant pour l’analyse probabiliste. Une méthodologie pour la mise en charge est discutée et
implementée afin de réduire la génération d’ondes parasites. La réponse dynamique de la
voie ferrée et l’influence croisée de la vitesse de la charge et de la rigidité de la platforme
sont évaluées sous hypothèse de comportement élastique linéaire.

L’influence de la variabilité des propriétés mécaniques de la voie ferrée dans la mesure
de la raideur de voie est discutée dans la deuxième partie de cette thèse. Des variations
spatiales du module d’Young des couches ferroviaires sont modélisées par des champs aléa-
toires invariants scalaires. La densité de probabilité de la loi marginale d’ordre 1 associée
au champ est obtenue grâce à une analyse statistique des mesures in situ. L’influence
croisée du support discret et de la distance de corrélation des champs d’entrée dans les
variations de la raideur de voie est mise en évidence à partir de différentes structures de
corrélation. Afin de vérifier l’importance de chaque paramètre d’entrée sur les variations
de raideur de voie, une analyse de sensibilité globale est effectuée pour différentes con-
figurations de voie. La raideur de voie est principalement affectée par des variations de
rigidité de la plateforme et des semelles.

L’importance du comportement non linéaire des géomatériaux est soulignée dans la



dernière partie de la thèse. Le modèle de comportement élastoplastique développé à l’Ecole
Centrale Paris fournit un cadre approprié pour l’étude du comportement des géomatériaux
sous chargement cyclique. Cette approche est bien adaptée au comportement des matéri-
aux pendant leur “conditionnement initial”, ou les premiers cycles de charge, quand les
tassements permanents sont plus importants et les matériaux cumulent des déformations
plastiques élevées.

Les paramètres du modèle sont calibrés pour les différents géomatériaux ferroviaires
(ballast, couche intermédiaire, sol de la platforme) à partir d’essais triaxiaux disponibles
dans la littérature. Les résultats obtenus illustrent les mécanismes prépondérants dans
cette phase : densification et augmentation de la rigidité des différents matériaux par accu-
mulation des déformations plastiques. Les mécanismes de transfert de charge et la réponse
en contrainte-déformation pendant le conditionnement et le cyclage des matériaux sont
discutés. Les résultats obtenus montrent que le ballast est soumis à différents chemins de
contrainte selon la position observée par rapport à la traverse. En outre, l’influence de
la vitesse de la charge dans le tassement permanent et dans les déformations plastiques
est aussi étudié. Finalement, la sensibilité du comportement obtenue pour le ballast par
rapport aux matériaux de la couche intermédiaire et de la plateforme est estimée à partir
des simulations numériques.

Mot-clés: voie ferrée ballastée, méthode des éléments finis, charge mobile, analyse
probabiliste, mécanique des sols, modèle de comportement élastoplastique avancé
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Notations

Latin Alphabet

a acceleration
ȧ jerk
a1, a2 deviatoric hardening parameters (ECP model)
A rail cross section (Chapter 3)

A3D, A2D influence area of loading for width optimization on 2D plane-strain
approach (Chapter 3)

AL area enclosed by hysteresis loop

AT
area enclosed by the triangle defined by maximum strain and max-
imum stress for a hysteresis loop

b yield surface shape parameter (ECP model)

b
width of the soil slide considered in equivalent 2D plane-strain ap-
proach (Chapter 3)

c1, c2 isotropic hardening parameter (ECP model)

d
distance between critical state line and isotropic consolidation line
(ECP model)

D damping ratio
Dr relative density
D50 mean grain size
e void ratio
emax maximum void ratio
emin minimum void ratio
E Young’s Modulus
Esec secant Young’s Modulus
Eref Young’s Modulus under the reference pressure
F , F1, F2 load applied by an axle
f frequency
fk, fiso yield surfaces (ECP model)
Fk yield function (ECP model)
g gravity acceleration
G shear modulus
Gsec secant shear modulus



vi Notations

Gmax maximum shear modulus
Gref maximum shear modulus under the reference pressure
Gs specific gravity
I second-order unit tensor
I rail inertial moment
Id density index for sands
k track global stiffness
k0 earth pressure coefficient
K track bogie-stiffness (Chapter 4)
K bulk modulus
Kref bulk modulus under the reference pressure
lc scale of fluctuation

m coefficient for nonlinear evolution of deviatoric behavior domains
(ECP model)

M slope of the critical stat line in the plane (q − p′)
Mr resilient modulus
n soil porosity
nel exponent of nonlinear elastic laws
n normal vector
N number of load cycles
PI plasticity index (Chapter 2)
p total mean stress
p′ effective mean stress
pc critical mean stress (ECP model)
pc0 initial critical mean stress (ECP model)
p′ref effective reference pressure
qd dynamic cone resistance
qc static cone resistance
q deviatoric stress
rmk , r

c
k friction mobilization degree (ECP model)

relak , rhysk , rmobk relaiso threshold domains parameters (ECP model)
R autocorrelation matrix
Si first-order sensitivity indices
Sr degree of saturation
t time
to time spent on first loading phase
t stress vector
T specific period of the model
ub displacement field in the superstructure domain
[uN ] normal interface jump
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us displacement field of soil domain
[uT ] tangent interface jump vector
Cu coefficient of uniformity
uw pore water pressure
upz permanent settlement
v, vt load nominal speed
vs shear wave velocity

Vb
set of kinematically acceptable displacement fileds for the super-
structure domain

Vs
set of kinematically acceptable displacement fileds for the soil do-
main

wb, ws virtual displacement fields
x material point coordinates
x spatial coordinate
X random variable (Chapter 4)
y spatial coordinate
z spatial coordinate
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Greek Alphabet and other symbols

αk hardening evolution function (ECP model)
αψ constant parameter for volumetric behavior (ECP model)
αyz principal stress axes rotation angle in the (y, z) plane
β Newmark integration parameter (Chapter 3)
β plastic compressibility (ECP model)
γ Newmark integration parameter (Chapter 3)
γ shear strain
γd dry density
Γs, Γb mechanical boundaries of soil and superstructure domains
Γsym symmetry boundary
Γsσ , Γbσ parts of boundaries where stresses are imposed
Γsu , Γbu parts of boundaries where displacements are imposed
∆h layer thickness
∆p′ effective mean stress increment
∆t time step
∆uz layer settlement
∆x mesh discretization in the x direction
∆y mesh discretization in the y direction
∆z mesh discretization in the z direction

ǫb
estimation error for width optimization on 2D plane-strain ap-
proach

ǫk
estimation error between track global stiffness and Winkler foun-
dation stiffness

ε strain tensor
εv volumetric strain
εd deviatoric strain
εpv volumetric plastic strain
εp plastic strain
εr resilient strain
ζ numerical damping
η stress ratio
θ correlation length
λ compression index (Chapter 5)

λ̇p plastic multiplier
µ mean value
ν Poisson’s ratio
νr resilient Poisson’s ratio
ρ volumetric mass density
ρ autocorrelation function (Chapter 4)
ρb superstructure’s mean density
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ρd dry volumetric mass density
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σ standard deviation (Chapter 4)
σ′ effective stress tensor
σ total stress tensor
σ1, σ2, σ3 principal stresses
Σbs, Σ interfaces between domains
τ shear stress
φ friction angle
φ′
pp friction angle at critical state (ECP model)
ψ characteristic angle (ECP model)
ωi assigned generation frequencies for FAST
ωn water content
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: contracted product
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a second-order tensor a
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∆(·) variation of a quantity
grad(·) gradient operator
div(·) divergence operator
△(·) Laplace operator
E[·] expectation
∑

sum
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2 1.1. Background and Motivations

1.1 Background and Motivations

Railway tracks are common structures in many countries, as passenger and freight rail-
roads have proved to be a reliable and cost-effective transportation mode. Nowadays, the
increasing demand for both freight and passenger railway transportation has motivated
infrastructure managers to seek for higher capacity of the existing network by increasing
traffic frequency, maximum allowed train speed and maximum allowed axle load for freight
trains. To meet this challenge, one key aspect is to increase the network availability by
reducing the number of maintenance interventions. This can only be achieved by pushing
forward the limits of the actual structures and by proposing new design standards and
predictive tools accounting for the dynamic behavior of the track.

A large program of rehabilitation and renewal of existing conventional tracks in the
French network is being performed since 2009. This is accompanied by a research program
conducted by the French national railway company SNCF in different domains such as:

• Development of in situ diagnostic tools;

• Laboratory characterization of track geomaterials;

• Development of numerical models and methods adapted for a geotechnical descrip-
tion of the track;

• Assessment of new materials and design concepts influence on the short-term (one
vehicle passage) and long-term (lifespan of the structure) behavior of the structure;

• Assessment of new materials and design concepts influence on the short-term (one
vehicle passage) and long-term (lifespan of the structure) behavior of the structure;

• Evaluation of the main maintenance operation parameters controlling the subse-
quent response of the track.

In the context of the present thesis two scientific challenges can be highlighted:

1. Different time scales: the short-term and long-term behavior of the structure de-
pends on the materials’ behavior subjected to cyclic dynamic loading. It is well
understood that soil behavior depends on stress history, moisture content, drainage
conditions and the characteristics of the applied cyclic load (Biarez and Hicher,
1994). After track construction or maintenance operations, a rapid accumulation of
track settlement is observed during the first 100 or 1000 cycles (Shenton, 1984; Jeffs
and Marich, 1987). This phase can be related to the so-called “conditioning phase”
observed on laboratory tests results of specimens under cyclic load (Brown, 1974). It
is well-known that the accumulation of plastic strains in granular materials during
this phase influences the material’s further response (Kolisoja, 1997; Balay et al.,
1998; Suiker et al., 2005, among others). Although some insights have been brought
by these laboratory characterization and track feedback, taking these phenomena
into account for the prediction of the structure’s mechanical response at different
instants of its lifespan is an open challenge.
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2. Stochastic characteristics of the system: railway networks are composed of long linear
structures passing by different soil formations, which are submitted to variable train
loads, maintenance operations and environmental conditions. It is well known from
in situ measurements that both track geometry (Perrin, 2013) and track layers
thickness and mechanical properties (Duong et al., 2014b) are inhomogeneous along
the track. Therefore, the main challenge is in effectively characterizing this variability
in tracks and assessing the importance on the long-term response of the structure.

1.2 Objectives

The main objective of this work is to propose a global framework for combining both
geotechnical and numerical approaches in the railway field. The above scientific challenges
are tackled by independently considering the nonlinear constitutive model ECP for the
mechanical behavior of geomaterials and spatial variations of mechanical properties along
the track.

The main objectives of this work can be summarized by the following points:

• Development of a numerical model of the railway track adapted for dynamic moving
loads, nonlinear behavior and stochastic analysis;

• Assessment of the impact of mechanical properties variability on the track stiffness
measurement;

• Improvement of the knowledge of the main mechanisms controlling the conditioning
phase of the track and how train speed affects the cyclic response of the materials.

1.3 Outline

This thesis is organized in four main chapters:
Chapter 2 is devoted to a literature review on different aspects concerning the mechan-

ical behavior of railway tracks. It is broadly divided in 3 main topics: a global description
of the railway structure and the usual used materials, followed by the main in situ di-
agnostic tools used in French railway network, whose results are used in the thesis; an
overview of soil behavior under cyclic load, both in terms of laboratory test results and
modeling techniques; and finally, an overview of the different modeling strategies usually
implemented for studying the track mechanical response.

Chapter 3 describes the numerical model developed in this thesis. The choice of the
numerical model strategy in this work considers a 2D FE model with a modified width
in plane-strain condition coupled with adapted boundary conditions. To calibrate the
out-of-plane width from a 3D static model, the method proposed by Ribeiro (2012) is
used. Different numerical aspects developed within the model are discussed. Results for a
parametric study under linear elastic hypothesis are given in order to give a first insight
of stress and strains developed in the materials during loading.

Chapter 4 is devoted to the study of how spatial variations of mechanical properties of
the track geomaterials affect the track stiffness. A probabilistic nonintrusive framework is
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considered, under which the mechanical properties are modeled as invariant scalar random
fields. The probabilistic description is obtained from an extensive in situ cone penetration
test campaign performed by SNCF, from which Young’s Modulus of the geomaterials are
obtained by applying empirical relations available in the literature. The influence of the
input field’s correlation length on the track stiffness measure is analyzed both in terms
of the first and second-order marginals. The influence of moving load speed on the track
stiffness variability is assessed under the model hypothesis. Global sensitivity analysis
is performed and the influence of different track configurations and model hypothesis is
discussed under this approach.

Chapter 5 is dedicated to the description of the conditioning phase of the materials in
track. The nonlinear constitutive model developed at Ecole Centrale Paris, ECP model,
is chosen for representing the ballast, interlayer and subgrade soil responses under cyclic
load. In the first part of the chapter, the laboratory test results obtained from the literature
for the different materials are presented, followed by the methodology for calibrating the
model parameters for ballast and interlayer. Then, the importance of the nonlinearity is
discussed in the light of the influence of speed, loading history, subgrade soil characteristics
and the interlayer material on the mechanical response of the structure.

Conclusions arising from this work and suggestions for future research are presented
in the last chapter, followed by the appendices.
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2.1 Introduction

The assessment of the mechanical response of the track requires a good comprehension
of the different phenomena taking place in the railway structure and soil subjected to
dynamic moving loads. On one hand, the track is subjected to variable static and dynamic
loading conditions according to vehicle type, speed, track geometry irregularities and
changes in track stiffness.

On the other hand, geomaterials in place have different scales of complexity and hetero-
geneity. From the coarse grained ballast material to the subgrade soil, grain size, geometry
and nature vary not only between layers but also inside each layer. Geomaterial’s mechan-
ical response is known to be nonlinear and influenced by the initial state, stress history,
plastic deformation rate and water content, according to the grain size and/or nature.
Within this context, aspects such as the characterization of track materials’ state and
their variability; the prediction of their response under train load and the evaluation of
their evolution with train traffic loading, and to better anticipate maintenance operations,
are key aspects for a rational approach of track modeling.

This chapter gives a briefly overview of these different aspects. The railway track
structures present in the French network are discussed in the first section, followed by an
overview of the railway materials and train loading characteristics. The second section is
devoted to the different tools used for characterization and diagnostic of the materials in
situ. Although track maintenance is mainly based on the track geometry measurement,
these tools provide valuable information for better analyzing the encountered geometry
problems and planning future track renewal works. For instance, results from Panda cone
penetration tests are used in Chapter 4 in order to estimate the Young’s Modulus of
geomaterials and their variability.

The third section presents an overview of the laboratory characterization of the soil
behavior under cyclic loading. The main physical phenomena taking place on soil are
discussed in the light of the soil mechanics concepts developed for monotonic loading.
These concepts are used in Chapter 5 as the theoretical basis in order to better identify the
mechanical load transfer mechanisms on railway tracks. The approach chosen in pavement
engineering for describing the cyclic response of soils is presented as a complementary
view of the described cyclic behavior of soils. The main modeling strategies associated
with the observed laboratory test responses are presented as possible ways of describing
the materials in the track.

In the last section, the different numerical modeling strategies used for studying the
railway response to moving loads are presented. The advantages and drawbacks of each
method are discussed in the light of the considered hypothesis, possible observed phenom-
ena and train-track interaction strategies.

2.2 The railway track

Different track configurations are exploited by the French national railway company SNCF
in the French railway network. These can be principally divided into two groups: conven-
tional and high-speed lines. Conventional lines were built prior to the high-speed lines and
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both followed different design specifications. These two track configurations are presented
in a comparative form in Figure 2.1. The main difference between them is the fact that
historically, ballast on conventional lines was laid down directly over the natural ground,
while in high-speed lines a subballast layer and eventually a capping layer exists in order
to prevent ballast from penetrating in the subgrade. According to SNCF (2009), conven-
tional lines represent around 91% of the 32000 km of French railway network exploited
by SNCF and high-speed lines only 9%.

The major points in order to increase the industrial performance of both structures are
different, reflecting the construction age, design and the different operation requirements
of each structure. For the high speed line network, the main concern is in improving the
performance of ballasted tracks by decreasing the maintenance interventions. Research
in this case is mainly focused on applying new components (under sleeper pads (USP),
geosynthetics, etc) and materials (bituminous layer for example) that may contribute to
this performance. The conventional line network is undergoing massive renewal works in
order to improve its performance in terms of increasing train speed, axle load and track
availability. In this case, research effort in France is concentrated on two different main
points:

• characterizing the materials in place both by in situ and laboratory tests and un-
derstanding different specific phenomena occurring in these structures, such as the
interlayer creation and mud pumping appearing in some sites (Trinh et al., 2012;
Duong et al., 2013, among others).

• studying the influence of critical design specifications for renewal works, such as the
thickness of ballast layer to be renewed and the need of installing a drainage system
due to the presence of water in the interlayer and the subgrade.

In this work, the choice is made of studying the conventional line structure. It is mo-
tivated by the increasing importance in France of understanding the mechanical response
of this structure. Besides being representative of the largest portion of the French rail-
way network, conventional lines present the actual challenge of modernizing a centenary
structure to nowadays objectives and performance. In the following sections, the main
components of the structure will be briefly described as well as the load characteristics of
trains transiting in these lines.

Figure 2.1: Schematic representation of the two track structures of the French railway
network (adapted from Cui et al., 2014).
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Figure 2.2: Sleepers, rail pad, fastening system and rail (from Rhayma, 2010).

2.2.1 Railway track materials and components

The rail is the element assuring the contact between the train and the track. It guarantees
the wheelset guidance along the track and aslo vertical and lateral load distribution along
the sleepers and subsequent track components (Alias, 1984). The rail profile and geometry
determines the guidance and vehicle stability in curves. The UIC60 is the standard rail in
France for high-speed lines and conventional lines with high traffic. The rail cross section
is chosen in order to provide a high flexural strength and good internal stresses repartition
during load.

The fastening system guarantees the positioning of the rail over the sleepers. The
rail pad is a viscoelastic component of 9 mm width present within the fastening system,
which allows for an increased elasticity of the rail-sleeper mechanical coupling. It also
guarantees damping the high frequency content of the contact forces transmitted to the
track (Kaewunruen and Remennikov, 2009).

Historically made of wood, nowadays sleepers are mainly made of reinforced pre-
stressed concrete both in conventional and high-speed lines. Sleepers main functions are
to transmit the static and dynamic loads to the ballast layer and to guarantee the track
geometry, mainly the track gauge (distance between rails) and the rail inclination. Two
sleeper’s type exists: mono and duo block sleepers. Duo block sleepers are present in high-
speed lines, while mono block are present in conventional lines, although Le Pen (2008)
argues that it is not clear which type of sleeper is more advantageous in terms of lateral
resistance and stress distribution. All these elements are schematically showed in Figure
2.2.

The ballast layer is composed of a coarse granular material traditionally obtained from
angular, crushed, hard stones and rocks, such as crushed granite, basalt, limestone, slag
and gravel (Selig and Waters, 1994). Although ballast specifications varies from country
to country depending on materials locally available, they are usually based on the rock
petrology, hardness, abrasion resistance and grain morphology. The main objectives of the
ballast layer are:

• Attenuate the stress developed at the vicinity of the sleeper to an acceptable value
to the subgrade materials, limiting the track permanent settlement;

• Ensure vibration damping from dynamic loads;

• Guarantee drainage capacity from pluvial water;

• Provide easy installation and maintenance.
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The standard ballast particle size distribution in France is 31.5/50 mm. The ballast
layer thickness depends mainly on the type of railway line, characterized by the UIC group
(Union Internationale des Chemins de fer, International Union of Railways), train speed
and the sleeper type. The layer thickness is usually between 15 cm and 35 cm, although
higher thicknesses may be found in conventional lines.

During the track lifespan, grain attrition and breakage due to both train load and
usual maintenance operations lead to smaller rounded grains and fines (Aursudkij, 2007;
Paderno, 2010; Indraratna et al., 2011). Fine material can also migrate to the ballast
layer from the interaction with the layer below and from outside conditions, e.g. fines
from coal transportation in Australia (Indraratna et al., 2011). In France, ballast in con-
ventional lines is then classified in fresh or clean ballast and fouled ballast, the former
being composed of ballast following the prescribed granulometry and angularity and the
latter composed of the smaller rounded grains and fines. Laboratory tests presented by
Indraratna et al. (2011) show that fresh and fouled ballast present different mechanical
responses, the fine content influencing the response of fouled ballast as expected.

In high-speed lines, a subballast layer built of well-graded gravel (grain size distribution
of 0/31.5 mm) exists under the ballast layer. Its thickness varies between 15 cm and 55 cm
depending to the soil bearing capacity. Besides assuring a better load transmission from
the ballast layer to the subgrade, it protects the subgrade against the rain water flow
and frost. The form layer allows adapting the embankment to the designed characteristics
of the substructure. It can either be composed of the same natural soil in place or by a
different soil with lower deformability.

For the conventional track configuration, these layers are not always present as the
ballast was directly posed over the natural soil in place. What is nowadays called interlayer
in France is the heterogeneous material formed by the mix of ballast fine particles and
the soil (either natural ground or a combination of fill material and natural ground) with
cyclic loading cycles (Trinh et al., 2012; Duong et al., 2014a).

Concerning the subgrade, the bearing capacity is the main design characteristic of
new lines. The subgrade has a relatively larger deformability than the other track layers,
depending on the geotechnical characteristics of the soil and the hydrological and hydro-
geological conditions of the site. For conventional lines, the subgrade or natural soil has
already been subjected to a larger number of cycles. Assessing the bearing capacity in
this case is not straightforward and the design of renewal works is mainly based on the
geotechnical analysis tools presented in Section 2.3.1.

2.2.2 Train load characteristics

The train load is usually divided into static and dynamic loads. The static load corresponds
to the train weight and it is usually discussed in terms of maximum wheelset load. For
instance, the TGV (Train à Grande Vitesse) is limited to a maximum of 17 tonnes per
axle. Freight trains are allowed for a maximum of 22.5 tonnes per axle in the French railway
network. However, heavy-haul transportation is allowed in different countries (e.g. Brazil,
Australia, United States). One of the main questions discussed by authors in this case is
how to estimate the adequacy and long-term response of existing lines to the increased
static load, very often higher than 30 ton per axle (Paulsson and Berggren, 2005; Roney,



Chapter 2. Mechanical behavior and modeling aspects of the railway structure 11

2005; Korpanec et al., 2005; Singh, 2005).
An analytical function of the vehicle static load applied by the sleeper over the ballast

is proposed by Al Shaer et al. (2008) (Equation 2.1), based on the numerical simulation
results obtained by Profillidis (1982) and Sauvage (1993). It represents the “double M
wavelet” cycle characteristic of a TGV bogie (Figure 2.3).

F (t, Q, v) =
QY

2

[

X
(vt−a)2

d2 +X
(vt−a−L)2

d2

]

(2.1)

where Q is the load supported by an axle, v is the train speed, t is the time, d the distance
between two sleepers, a is a critical distance, L the distance between two axles of a bogie
and X and Y are dimensionless parameters varying between 0 and 1 which depend on the
subgrade stiffness.

From the railway vehicle dynamics point of view, dynamic loads appear when the
vehicle passes over track irregularities, changes in track stiffness or in curves. In this
case, the dynamic loads can be viewed as vehicle’s response to the different above track
excitations. The wheel-rail contact forces can be directly measured from the wheel strains
in the laboratory. However, the contact forces cannot be measured directly in trains and
have to be estimated by the contact theory. Hertz (1896) was the first to provide a solution
of the contact between two elastic bodies, by considering the contact surface much smaller
than the surface of the bodies in contact and also of their respective curvatures. A hertzian
contact is then characterized by an ellipsoidal contact surface and a semi-elliptical pressure
distribution. Creep appears when one body rotates relatively to the other, their tangential
speeds at the contact surface no longer being equivalent. As discussed by Wickens (2003),
Carter (1916) was the first to use this concept in order to explain the mechanism of
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Figure 2.3: Typical “double M wavelet” cycle characteristic of a TGV bogie (adapted from
Al Shaer et al., 2008).
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Figure 2.4: Ellipsoidal rolling contact (from Sauvage, 1993).

lateral dynamics of the railway wheelset, by linking the variations of creep appearing in
the wheel-rail contact to the tangential contact forces. Kalker (1990) proposed a general
solution of the wheel-rail contact problem and showed that the contact surface is divided
in an adhesion surface and a creep surface (Figure 2.4). The tangential contact forces
are obtained from the nonlinear geometrical and mechanical properties of the wheel-rail
contact and creep.

The importance of the train-track interaction and dynamic loads increase with in-
creasing speed. In conventional lines, passenger train speed is limited at a maximum of
220 km/h. However, different passenger train vehicles transit at the same line at different
speeds, such as TER (regional trains) and TGVs. High speed lines are used exclusively
by TGV trains at a maximum speed of 320 km/h. Freight trains are only allowed in
conventional lines and their speed is limited to 80 km/h.

The aspects related to train-track interaction and vehicle dynamics should be taken
into account in a fine modeling of loads applied by the train on the track. Even if the
static load remains the highest part, the variations of the dynamic load can be understood
as consequence of track differential settlement and track irregularities. However, linking
the track geometrical aspects and variations of dynamic loads to the mechanical response
of the track materials is outside the scope of this thesis.

From the geomaterials point of view, the stress path induced by a moving load is well
understood in pavement engineering (Chan and Brown, 1994; Brown, 1996; Balay et al.,
1998; Lekarp et al., 2000a). Both normal (vertical and lateral) and shear stresses varies
during loading as represented in Figure 2.5. Rotation of the principal stress axes happens
as a consequence of the variations of the shear stress component. For a tridimensional
stress path, two main parameters are thus defined: αyz, which is the rotation angle in
the load propagation (y, z) plane, and b, which characterizes the role of the intermediate
principal stress. These are defined by Equations 2.2 and 2.3. The influence of the rotation
of principal stress axes on the cyclic behavior of soils is discussed in Section 2.4.

αyz =
1

2
tan−1

(

2σyz
σzz − σyy

)

(2.2)

b =
σ2 − σ3
σ1 − σ3

(2.3)
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Figure 2.5: Stress beneath a rolling wheel load (obtained from Lekarp et al., 2000a).

2.3 In situ analysis: characterization and diagnostic

of the railway track

Track irregularities are historically characterized by their geometrical aspect and in this
sense railway quality and maintenance indicators are based on the track geometry. Besides
earthquakes, slope failure and other possible soil failures, it is broadly accepted that the
evolution of the track geometry is caused by the train-track interaction and by the dynamic
forces that the train imposes in the track due to track irregularities. This is a complex
mechanism putting together different time scales and wavelengths. One of the necessary
bricks in order to better evaluate the risk and possible roots of track geometry degradation
is the characterization and diagnosis of the geomaterials in place, and more broadly the
mechanical characterization of the track response.

From this background, several methods and tools are currently available in order to
characterize the materials in situ and the mechanical response of the railway track struc-
ture. These can be divided in punctual or discrete diagnostic tools and continuous diag-
nostic tools. In the first case, very often the characterization is based on geotechnical and
pavement engineering tools adapted for the railway domain, such as the core sample train
and the dynamic cone penetration test Panda. In the second case, geophysical tools, such
as the Ground Pentetrating Radar (GPR) (Jack and Jackson, 1999; Olhoeft and Selig,
2002; Su et al., 2010, among others), have been successfully applied in the last years in
coarse granular media such as ballast. Specific tools for measuring the mechanical response
of the track to moving loads have been also developed and from them a measure of the
track stiffness is assessed. These different tools are discussed in the next sections.
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Figure 2.6: Typical core sample from conventional lines (obtained from Duong et al.,
2014b).

2.3.1 Discrete analysis tools of track materials

Geotechnical tools are commonly used for the characterization of the railway materials.
The specific characteristics of railways in terms of track availability and materials currently
favored using two main diagnostic tools: the core sample train and the Panda dynamic
cone penetrometer. These are presented in the following sections.

2.3.1.1 Core sample train

The core sample train is an adapted train with a drilling equipment. A continuous core
sample of the track layers is obtained by dynamically driving a tube into the track,
which is shown in Figure 2.6. The thickness of each layer can be estimated from the
obtained sample as well as the nature of the soil, which are important parameters in the
assessment of conventional track substructure (Brough et al., 2003, 2006; Duong et al.,
2014b). Although complete samples of track layers can be obtained by the core sample
train, it has the disadvantage of being a relatively slow procedure, not adapted to face the
needs for increasing the quantity of renewed track sections. Moreover, the core sample is
an intrusive method and subsequent filling of the drilled hole is necessary.

These drawbacks lead to adapt lighter and faster diagnostic tools from the pavement
engineering to the railway context. In France, the dynamic cone penetrometer test Panda
is used coupled with a geoendoscopic analysis as a fast and effective way of characterizing
the track layers’ width and materials.

2.3.1.2 Panda dynamic cone penetrometer (DCP) and Geoendoscopic anal-
ysis

The dynamic cone penetrometers are largely used for pavement evaluation after construc-
tion in order to assure the prescribed compaction level (Zhou, 1997; Chaigneau, 2001).
The test consists in driving a standard cone into the soil by manual hamming the head of
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the tip. For each hammer blow, an automatic numerical procedure is implemented which
allows to record both the vertical displacement and the cone resistance qd. The cone re-
sistance is obtained by the Hollandais formula, which links the blow energy and vertical
displacement of the tip to the soil resistance.

qd =
E

A.e

M

M + P
(2.4)

where M is the hammer weight (2.35 kg), P is the dead weight, e is the plastic vertical
displacement at each blow (normally between 0.5 and 2 cm), A is the cone cross section
and E is the kinetic energy given by the hammer blow.

Panda is a lightweight cone penetrometer of variable energy developed by Gourvès
(1991). It has been adapted for railway track configuration and materials, presenting the
advantages of being portable and easily installed on the railway track. It allows then a
fast characterization of the dynamic cone resistance qd of the track layers. Quezada (2012)
particularly discussed the use of the Panda cone penetration test in the ballast layer as
an effective way for characterizing the material in the track.

The Panda test is usually coupled with a geoendoscopic analysis. It consists of passing
a camera through the hole previously obtained from the cone penetration test (or any
other drilling test). These images help on defining the thickness of each layer and allow
a qualitative characterization of both the subgrade soil nature and the presence of water
within the interlayer and the subgrade. Figure 2.7 presents a typical result of the dynamic
cone resistance and the geoendoscopic images.

Coupling the Panda and geondoscopic analysis is a standard procedure for the geotech-
nical characterization prior to the renewal works in the French network since 2009. These
informations contribute on the design and decision making process, specially when the
soil presents a poor drainage capacity and a drainage system should be installed.

2.3.2 Continuous analysis of track stiffness parameter

Different definitions exist for the track stiffness (k). The straightforward definition is the
ratio of the applied load (F (s)) by the vertical rail displacement (uz(s)) at the point of
the applied load, i.e. both are functions of the considered load application position (s).

k(s) =
F (s)

uz(s)
(2.5)

From quasi-static moving load measurements, Berggren (2005) and Hosseingholian
et al. (2011) showed that the applied load is not a linear function of the rail vertical
displacement and presents an hysteresis loop (Figure 2.8). The measured static track
stiffness value depends on the applied load and on the considered slope. For instance,
Hosseingholian et al. (2011) propose to calculate the secant track stiffness from the loading
path between 30% and 90% of the maximum applied force (Equation 2.6) as shown in
Figure 2.8.

k90%−30%Fmax
(s) =

F90%(s)− F30%(s)

uz90%(s)− uz30%(s)
(2.6)
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Figure 2.7: Typical result of Panda and geoendoscopic analysis (obtained from Duong
et al., 2014b).

The track stiffness is also frequency dependent, which means that both the excitation
frequency and the vehicle speed will affect the measured value. In this sense, although the
definition of a dynamic track stiffness can be used, the receptance or dynamic flexibility
concept is preferably used in the literature. It represents the transfer function between
the applied force and displacement and is simply the inverse of a dynamic track stiffness.

According to Nielsen et al. (2013), the track stiffness characterization can be applied as
a criteria for verifying the accordance of newly built tracks or after renewal operations, or
for track maintenance purposes. In the last case, track stiffness measurement can be used
in order to detect hanging sleepers, soft soils and possible causes of track irregularities.
It can be used for evaluation of transition zones and soil vibration and possibly the
causes of rail bending or crack propagation according to the latter authors. As discussed
by Berggren (2005) and Berggren et al. (2010), although track stiffness measurement
tools are being used for some years, there is no common agreement on how carrying
out the measurement and how interpreting the results. For instance, Berggren (2005) and
Nielsen et al. (2013) describe the main aspects which may differ for different track stiffness
measurement methods:

• Static preload;

• Excitation frequency and vehicle speed;

• Spatial resolution of the measurement;
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Figure 2.8: Nonlinear displacement of the rail under quasi-static moving load excitation
(obtained from Hosseingholian et al., 2011).

• Model dependency if the rail deflection is measured at some distance away from the
applied load, as in this case a model for the rail bending has to be used;

• Influence of track irregularities.

Some of the available tools characterize the dynamic track stiffness by means of an
oscillating mass. A very good review of the different track stiffness measurement strategies
is given by Berggren (2005) and Nielsen et al. (2013). In the following, the EMW and the
Rolling Stiffness Measurement Vehicle (RSMV) equipments will be briefly described as the
commonly used tools for continuous quasi-static and dynamic track stiffness estimation,
respectively.

2.3.2.1 EMW

The EMW vehicle developed by the the Swiss Federal Railways allows obtaining track
deflections at the speed range of 10 - 15 km/h, which can be linked to the quasi-static
track stiffness. The measurement method consists in obtaining the track deflection for a
loaded axle of 20 ton and an unloaded axle, i.e. negligible load. The total track deflection
is given by the difference of the two measures. The track deflection is measured each 5
cm and the associated error is of ± 0.2 mm for the rail deflection and ± 1 mm for the
longitudinal position. The used equipment is shown in Figure 2.9a.

According to Nielsen et al. (2013), low-pass filter is normally used with cut-off wave-
length of 10-20 m. The use of a low-pass filter appears to be justified by the fact that
even low levels of wheel out-of-roundness can significantly influence the measurement. The
track deflection can then be linked to the track stiffness by one of the presented above
formulations.

An example of the EMWmeasurements in a high speed line is given in Figure 2.9b. The
track vertical deflection and the associated track stiffness present a large range of values
and important variations at both small and large wavelengths. Although track stiffness
variations are much discussed in the literature in terms of transition zones, e.g. bridge -
embankment and ballasted - slab track (Dimitrovová and Varandas, 2009; Ribeiro, 2012;
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Figure 2.9: EMW track stiffness measurement. a) EMW equipment (obtained from Nielsen
et al., 2013); b) EMW measure at a portion of high speed line. Red line represents the
mean displacement value along a certain distance y.

Ang and Dai, 2013; Shan et al., 2013, among others), variations appearing in the same
track structure are seldom discussed. On transition zones, authors have showed that the
abrupt track stiffness variation is responsible for an important increase in dynamic train-
track interaction force, leading to rapid development of track irregularities and hanging
sleepers (Dahlberg, 2010). On current track zones, the observed track stiffness variations
can possibly lead to track irregularities, by the same process as observed in transition
zones. Studying the importance of this aspect in the mechanical response of the track and
train-track interaction is an important subject which has not yet been addressed in the
literature.

2.3.2.2 Rolling Stiffness Measurement Vehicle (RSMV)

The Rolling Stiffness Measurement Vehicle (RSMV) measures the dynamic track stiffness
at frequencies up to 50 Hz (Berggren, 2005; Berggren et al., 2010). The equipment is a
rebuilt two-axle freight wagon (Figure 2.10a). The proposed method consists in dynam-
ically excitating the track by two oscillating masses and measuring the corresponding
accelerations, as schematically represented in Figure 2.10b. The method compensates the
vertical deflection due to the wheel-rail contact and filters the excitation frequency of the
signal before resampling in the spatial domain. Measurements at speeds up to 60 km/h
can be done with sinusoidal excitation frequency. Results of track stiffness measurements
performed by Berggren (2005) using RSMV presented good correlations with the depth of
clay layer, obtained from borehole investigation (Figure 2.11), high values of track stiffness
corresponding to lower depth of the clay layer.
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(a) (b)

Figure 2.10: RMSV measurement equipment. a) Photo of the equipment; b) Schematic
representation (one side only) (obtained from Berggren, 2005).

Figure 2.11: RSMV measure at a track section of 1.2 km with speed of 20 km/h and
excitation frequency of 5.7 Hz. The dark line represents the mean of 4 conducted mea-
surements of the track stiffness and the x-mark represents the depth of the clay layer
present in the site (obtained from Berggren, 2005).
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2.4 Soil behavior under cyclic load

In pavement engineering and railway applications, geomaterials are subjected to cyclic
loads at different magnitudes and frequencies. During the construction phase, cyclic load-
ing is applied as an effective way of compacting the material. It is well understood that
this phase is critical in improving the performance of the structure to future loads (Mar-
tins, 2011). In this sense, a large range of equipments and technologies exist both in
compaction techniques and in compaction control. However, compaction is not the only
physical phenomena that soil can experiment during cyclic loading. Although seldom dis-
cussed in the railway field, liquefaction and cyclic mobility can also occur during cyclic
loading, depending mainly on the drainage conditions as well as the load amplitude.

The experimental results and modeling strategies presented in this section consider
that the soil is fully saturated with water or completely dry. Under these hypotheses, the
soil behavior can be explained in the light of the effective stress concept introduced by
Terzaghi:

p = p′ + uw (2.7)

where p = (σ1 + 2σ3)/3 is the total mean stress, p′ is the effective mean stress and uw is
the pore water pressure. The effective mean stress and the deviatoric stress q = σ1 − σ3
are used in order to define the main aspects of the soil’s stress response.

In the following, an overview of soil behavior under cyclic loading is presented. The
main laboratory equipments used in soil mechanics are presented followed by the main
concepts used to describe the soil behavior under monotonic load. The physical phenom-
ena taking place during cyclic loading are then discussed in the light of these concepts.
In pavement engineering, very often the deformational response of unbound aggregates
during loading is characterized by recoverable (resilient) and residual (permanent) defor-
mations. An example of this approach is presented in Figure 2.12. Uncoupling the resilient
and the permanent responses and considering the soil response only resilient relies in the
hypothesis that during loading, the increment of permanent deformation is insignificant
regarding the observed resilient deformation. Under these hypothesis, an overview of the
different aspects affecting the resilient and permanent response of soil are presented. Fi-
nally, an overview of the numerical models used for studying the cyclic behavior of soils
are presented in the last section based on these experimental evidences.

2.4.1 Current laboratory equipments

Different experimental devices are used in soil mechanics in order to characterize the soil
behavior under cyclic loading. The loading characteristics can be divided between quasi-
static and dynamic loading, the difference being considering or not inertial forces during
loading. Among quasi-static cyclic loading, the main used equipments are the triaxial cell,
the simple shear cell and the torsional shear device. The triaxial cell is probably the most
used equipment for soil testing. From an isotropic initial state, total lateral stress (σr
or σ3) is kept constant while cyclically varying the total vertical stress (σa or σ1). Both
drained and undrained conditions can be used and they are representative of different
loading characteristics simulating two opposites cases:
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Figure 2.12: Cyclic triaxial test results obtained by Trinh et al. (2012). Evolution of
resilient (εr1 and εrv) and permanent (εp1 and εpv) strains with cycles.

• Drained condition: volume change takes place and no increment in pore water pres-
sure is allowed;

• Undrained condition: volume is kept constant and in this case the soil skeleton
deformation during the test leads to changes in the pore water pressure.

Both are idealized conditions, as in many applications fully drained or undrained
conditions are not verified and both pore water pressure and volume changes are likely to
occur.

Concerning the applied load, sinusoidal cycles at different stress levels are usually
applied, although the “double M wavelet” cycle presented in Section 2.2.2 is also used (Al
Shaer et al., 2008).

In pavement engineering, a modification of the standard triaxial test at constant con-
fining pressure (CCP) is the variable confining pressure (VCP) equipment. In this case,
the variations of lateral stress during load passage can be taken into account. However,
none of these allows applying shear stress, thus not representing the continuous principal
stress axes rotation observed in pavements and railways (Tutumluer and Seyhan, 1999).

In the case of the simple shear test, from an oedometric initial state, shear stress is
cyclically varied. In this case, under drained conditions the stress path imposed by the
loading in the (q, p′) plane is purely deviatoric, ∆p′=0. This is considered as an idealized
stress path followed by soil layers during seismic events.
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(a) (b)

Figure 2.13: Different configurations of torsional shear tests. a) Wilson equipment (from
Bolton and Wilson, 1989); b) Hollow cylinder (from Ishikawa et al., 2011).

Torsional shear test allows applying a torque momentum on the upper or lower plate
of the equipment, which is superimposed to a triaxial state also controllable during the
test. In this class of equipments, samples shape can either be of a filled or hollow cylinder.
Examples of the first and second class are given in Figures 2.13a and 2.13b. The hollow
cylinder apparatus (HCA) is usually preferred as it allows testing the soil in a large range
of stress paths and the stress and strain fields can be considered as almost homogeneous.
Particularly to pavement engineering, the HCA allows correctly modeling the stress path
and the rotation of principal stress axes imposed by the moving load (Ishikawa et al.,
2011; Caicedo et al., 2012). By independently controlling the inner and outer pressure, the
stress rotation and the state of stress can be completely decoupled (Miura et al., 1986), i.e.
parameters αyz and b are decoupled (Equations 2.2 and 2.3). When the inner and outer
pressures are the same, parameters αyz and b are linked by the following relationship
b = sin2 αyz. As discussed by Caicedo et al. (2012), very few HCAs are adapted for
unbounded aggregates, as the particle size requires very large equipments.

For dynamic loading, the resonant column device is the main used equipment. It
consists of a triaxial cell equipped with a cyclic torsional loading system. Figure 2.14
represents the Stokoe apparatus described by Bolton and Wilson (1989). From an initial
triaxial stress state, cyclic shear stress is imposed by the torsional loading system, while
the lateral and vertical stresses are kept constant. By continuously varying the loading
frequency, the specimen’s resonance can be obtained and this can be well approximated as
a function of the soil specimen’s mass and the shear stiffness (G). By varying the imposed
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Figure 2.14: Resonant column (Stokoe apparatus) (from Bolton and Wilson, 1989).

shear stress, the specimen’s resonance frequency changes and this allows characterizing
the shear stiffness at different shear strains. Damping can be studied by the decaying
vibrations obtained by switching off the loading system at the resonant frequency (Bolton
and Wilson, 1989).

2.4.2 Main concepts from monotonic loading tests

Three main concepts used in soil behavior modeling are defined for explaining the soil
behavior from monotonic test results. These concepts are used as envelopes for explaining
the soil behavior under cyclic load. These are:

• The critical state: it is a fundamental concept in soil mechanics first proposed by
Roscoe et al. (1958). It can be defined as a state when the soil continues to deform
without any variations of stress and volume. The critical state line (CSL) in the
(q, p′) plane can be viewed as the perfect plastic behavior obtained by the Mohr-
Coulomb failure criterion (Figure 2.15a). Any state of the soil can thus be defined
relatively to the CSL in the (e, p′) plane (Figure 2.15b), e being the void ratio.
The volumetric behavior (contraction, dilatancy) can be explained according to the
distance of the initial state (A,B in Figure 2.15b) to the critical state line. For
undrained samples, the steady state (Poulos, 1981) can be supposed as being the
same as the critical state if the behavior is independent of the strain rate (Sladen
et al., 1985; Canou et al., 2002).

• The characteristic state: it represents the change from the contractive to the dilative
behavior in sands and defines the characteristic line in the (q, p′) plane. It can be
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(a) (b)

Figure 2.15: Typical behavior of soils for monotonic drained and undrained triaxial tests
with projection of the critical state line (CSL). (adapted from Canou et al., 2002). a)
Effective stress paths; b) Variation of void ration during the tests.

graphically interpreted as in Figure 2.16a. For undrained tests, the characteristic
state is called phase transformation or quasi-steady state (Ishihara, 1993) and in
this case it also represents the locus of minimum effective mean stress p′. Some
authors have argued, however, that the critical state and characteristic states in
sands present the same slope in the (q, p′) plane.

• The instability line: it is the locus of peak deviatoric stress for an initial void ratio
obtained for undrained tests (Figure 2.16b). This also called in the literature as
collapse line or flow line. In elasto-plasticity models, these are related to maximum
value of plastic potential surface and of the yield surface, respectively. The phase
transformation line and instability line are distinctly different for sands, while for
normally consolidated and insensitive clays these two lines coincide (Lade and Ibsen,
1997).

These concepts can be used for explaining both the behavior of granular and fine
soils, the degree of consolidation of clays playing an analogous role as the density index
(Id = (emax − e)/(emax − emin)) for sands.

2.4.3 Experimental results of the cyclic behavior of soils

When performing cyclic triaxial loading under drained conditions, volume changes are
allowed to happen. In this case, the cyclic loading can either lead to reduction or increase
of the specimen volume. In the first case, cyclic compaction takes place, volume reduction
being associated with the increase of the specimen relative density during cycles. Whereas
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Figure 2.16: Schematic representation of different lines in the effective stress plane. a)
Critical state and characteristic state lines (adapted from Luong, 1980); b) Instability line
(from Lade, 1992).

in the second case, cyclic dilation and failure of the specimen after a certain number of
cycles could be observed. According to Prisco and Zambelli (2003), the two main factors
affecting this behavior are the initial state of the specimen and the cycle amplitude. Luong
(1980) performed a comprehensive study of volume change characteristics of sand drained
samples under cyclic loading. By performing cycles of small amplitude at different initial
states (Figure 2.17), the author showed that cycles of maximum deviatoric stress lower
than the characteristic state lead to compaction and stiffening of the sample. Dilation of
the soil specimen takes place when values higher than the characteristic state are imposed.

Luong (1980) also showed that different final states can be achieved by performing
cycles of different amplitudes and that densification of the sample can be maximized by
performing cycles of compression and extension exceeding the characteristic state, cycles of
great amplitude rather than small amplitude. In this case, the increase in volume observed
after the characteristic state is exceeded leads to important fabric rearrangement and helps
in the rapid densification of the material. Similar results can be found in Biarez and Hicher
(1994).

When performing cyclic triaxial or torsional stress under undrained conditions, volume
changes in the specimen are not allowed to happen. In this case, the pore water pressure
(uw or pw) changes as a consequence of the tendency of the soil skeleton to suffer volumetric
deformation, which implies in a reduction of effective mean stress (p′) at each cycle. When
the pore water pressure approaches total pressure (p), a sudden important increase of axial
strain is observed, characterizing softening of the specimen. According to Ishihara (1993),
initial liquefaction or simply liquefaction can be defined as the soil state when a 100%
build-up of the water pore pressure is observed or alternatively when axial strain is about
5% in double amplitude (Ishihara, 1993). Two main cases can be then observed, depending
on the initial state of the soil specimen:

• the volume change tendency of the soil skeleton is only contractive. In this case,
the effective mean stress p′ drops to very low values, a complete loss of strength
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Figure 2.17: Cyclic loading at different initial states at drained triaxial test performed by
Luong (1980).

is observed and infinitely large deformations are produced. The typical stress path
obtained in this case is presented in Figure 2.18a.

• the volume change tendency of the soil skeleton is contractive at low strains and
dilative at higher strains. In this case, the effective mean stress p′ does not drop to
zero as the dilatancy tendency presented by the soil skeleton at high strains coun-
terbalances the pore water pressure build-up. The sample then does not present a
complete loss of strength and continuing applying cyclic load does not lead to infinite
large deformations. This case is often described as cyclic mobility in the literature,
although some authors define both states as liquefaction. The corresponding stress
path for this case is presented in Figure 2.18b.

According to Sladen et al. (1985), the liquefaction potential is usually studied with
monotonic undrained triaxial tests on very loose samples. This is mainly due to the triaxial
equipements being widely available, loose samples remaining contractive and in this case
nonuniformities due to the shear plane appearing during dilatancy phase are avoided.
Constant volume condition of the undrained test also helps avoiding nonuniformities of the
sample. According to Ishihara et al. (1975), the state defined by the phase transformation
line has to be reached at least once for a sample in order to attain liquefaction.

The lines obtained from the monotonic response and discussed in Section 2.4.2 define
three different zones for liquefaction potential in the stress plane defined by the stress
invariants t = (σ1 − σ3)/2 and s = (σ1 + σ3)/2 = s′ + uw. These are shown in Figure 2.19
and can be defined as:

• Zone A: the cyclic shear stress levels are lower than the steady state deviatoric stress
tss and in this case liquefaction cannot happen,
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(a) (b)

Figure 2.18: Typical stress paths for cyclic undrained tests on Houstun RF sand performed
by Canou et al. (2002). a) Liquefaction; b) Cyclic mobility.

Figure 2.19: Effect of soil state on liquefaction potential (from Sladen et al., 1985).

• Zone B: liquefaction is possible under cyclic loading, depending on the cycle ampli-
tude, deviatoric mean value and the number of cycles, Liquefaction takes place once
the soil state during loading intercepts the collapse line.

• Zone C: in this case soil failure occurs under static loading.

As showed by Lanier et al. (1991), liquefaction can also be observed under other stress
paths, for example at a hollow cylinder apparatus by rotating the principal stress axes
and keeping constant both mean pressure and the second invariant of stress. Moreover,
isotropic and anisotropic samples can present different liquefaction potential (Ishihara,
1993).

In real applications, cyclic increase of pore water pressure in sands depends in general
on the permeability boundary conditions, i.e. the possibility of the material to evacuate
the pore water pressure during loading relatively to the loading characteristics. Undrained
conditions can be observed for instance when a sand layer is surrounded by a clay forma-
tion during earthquakes and liquefaction is indeed one of the main concerns on geotech-
nical earthquake engineering. In the railway field, liquefaction of the soil as defined above
is unlikely to occur. However, some experimental evidence on the interlayer formation
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(a)

(b)

Figure 2.20: Torsional shear tests on Toyoura sand (from Iwasaki et al., 1978). a) Stress-
strain records; b) Shear modulus and damping ratios.

on conventional lines and possibly mud-pumping formation presented by Duong et al.
(2014a) is linked to the increase of pore water pressure in the subgrade soil. Liquefaction
as defined by Ishihara (1993) does not occur in the subgrade soil but migration of fines to
the ballast layer takes place during the dissipation of the excess of pore water pressure.

Another phenomena influencing the soil behavior under cyclic loading is the nonlinear
dependency of the shear stiffness (G) and damping ratio (D) with the shear strain (γ).
Figure 2.20 presents the results from Iwasaki et al. (1978) on drained torsional shear tests
on isotropically consolidated Toyoura sand. Increasing the shear strain amplitude leads
to higher hysteresis loops and lower secant modulus. The damping ratio is defined for a
hysteresis loop as (Hardin and Drnevich, 1972):

D =
AL

4πAT
(2.8)

where AL is the area enclosed by the hysteresis loop and AT the area enclosed by the
triangle defined by the maximum strain and the maximum stress. By normalizing G by
its maximum value Gmax, obtained at γ=10−4% or less for different laboratory results
on fine and granular soils, at different confining pressures, Seed and Idriss (1970) showed
that the influence of the shear strain on the shear modulus and the damping ratio defines
a narrow area, as shown in Figure 2.21.

Vucetic and Dobry (1991) compared different results available in the literature and
showed that plasticity index for fine materials is one of the most influencing parameters
in the shape of the shear modulus reduction and damping increase. The documented curves
are presented in Figure 2.22. Highly plastic soils present an increased linear domain and
lower damping ratio than low plastic soils.
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(a) (b)

Figure 2.21: Influence of the shear strain amplitude on cyclic load (from Seed and Idriss,
1970). a) Shear modulus; b) Damping ratio.

(a) (b)

Figure 2.22: Effect of plasticity index (PI) on soil response (from Vucetic and Dobry,
1991). a) Shear modulus; b) Damping ratio.

According to Bolton and Wilson (1990b), soil damping should be divided in two com-
ponents: one related to the hysteresis loop, (hysteretic damping), and one related to
the pore fluid (viscous damping). The first term is solely related to the used aggregate,
whether the second varies according to the viscosity of the considered pore fluid. Com-
paring the behavior of dry and saturated with water Leighton Buzzard sand on resonant
column tests, Bolton and Wilson (1989) showed that for maximum soil strains of 0.07%,
steady state conditions and loading frequencies from 0.001 to 120 Hz, the soil behavior
is independent of the frequency. As discussed by Bolton and Wilson (1990a), the cyclic
behavior of the soil can thus be assessed by quasi-static tests. Using silicone oil as pore
fluid instead of water, whose viscosity is 100 times larger, Bolton and Wilson (1990a)
showed that the damping ratio increases by 2 to 3 times. According to the authors, it is
then necessary to consider the viscosity of the pore fluid in order to assess its influence
on soil damping. From the above results, damping on dry sand and saturated sand with
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water can be considered as hysteretic and not viscous.
These results have an important impact on how train speed affects the response of

granular materials. The soil strain and load frequency range tested by Bolton and Wilson
(1990b) are representative of those encountered in tracks and in this sense the cyclic
behavior of the materials is not expected to change with the train speed. Therefore, the
effect of load speed is suitably measured by the impact on stresses and strains during
load.

2.4.4 Resilient and permanent response of unbound aggregates

When splitting the mechanical behavior into a resilient and permanent responses (Figure
2.12), the elasticity hypothesis for the resilient behavior is considered and it is charac-
terized by a resilient modulus (Mr), also called secant Young’s Modulus (Esec), and the
resilient Poisson’s ratio (νr). Brown and Hyde (1975) suggested characterizing the resilient
properties by bulk (K) and shear (G) moduli instead of resilient modulus and resilient
Poisson’s ratio. The authors provide the following reasons: they do not rely on elasticity
assumptions in their calculation, the volumetric and shear components are uncoupled and
they have a more realistic meaning in three-dimensional stress regime. However, many
results are still published in terms of resilient modulus (Heelis et al., 1999; Christie et al.,
2007; Fortunato et al., 2010; Trinh, 2011, among others).

The Rankine Lecture and the subsequent paper from Professor Brown (Brown, 1996)
establishes a milestone on the techniques and main results of soil mechanics applied in
pavement engineering. A literature review of different aspects affecting the resilient and
permanent deformational behavior of unbound aggregates is given by Lekarp et al. (2000a)
and Lekarp et al. (2000b), respectively. More recently, Brecciaroli and Kolisoja (2006)
made a specific literature review of this approach for railway embankment materials.
Further elements are given hereafter.

2.4.4.1 Resilient behavior

According to Brecciaroli and Kolisoja (2006), the resilient response is mainly affected
by the level of applied stress and moisture content. The resilient modulus increases with
increasing confining pressure and the sum of principal stresses, but only slightly with
increasing deviator stress. Brown and Hyde (1975) have showed that similar resilient
modulus can be obtained by both triaxial tests at constant confining pressure (CCP) and
variable confining pressure (VCP), when the mean lateral stress of the VCP test is used
in the CCP test (Figure 2.23a). The resilient Poisson’s ratio increases with decreasing
confining pressure and increasing deviator stress according to Brown and Hyde (1975)
and Kolisoja (1997). However in this case, the CCP and VCP tests give opposite trends
for the resilient Poisson’s ratio. These aspects are represented in Figure 2.28.

Concerning the moisture content, not all materials present the same dependence as it
is mainly affected by the amount and mineralogy of fines present in the material. Dry and
saturated materials present the same resilient properties under effective stress analysis
(Pappin et al., 1992).

For partially saturated materials, a comprehensive study was performed by Wu et al.
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(a) (b)

Figure 2.23: Difference results for CCP and VCP test results (from Brown and Hyde,
1975). a) Resilient modulus; b) Resilient Poisson’s ratio.

(1984) on resonant column tests for five different materials at different degrees of sat-
uration. Figure 2.24 presents the results of shear modulus variation with the degree of
saturation and confining pressure, and it is clearly showed that the degree of saturation
plays an important role in the evolution of the resilient properties. According to Pappin
et al. (1992) and Brown (1996), the resilient modulus of partially saturated materials
could also be explained by an effective stress analysis, but in this case estimating the
effective stress from the measured total stress is not straightforward.

According to the Brecciaroli and Kolisoja (2006), it is not yet clear in the literature
the impact on the resilient characteristics of other factors, such as the soil density, the
considered strain level and the loading characteristics.

For unbound aggregates, a type of anisotropy called cross-anisotropy appears from the
stratification and compaction applied during construction and the structure life (Tutum-
luer and Seyhan, 1999). In laboratory tests, the cross-anisotropy is obtained by highly
compacting the material; very dense samples are obtained and the cross-anisotropy ap-
pears as a consequence from the strain history. Authors have showed that in this case the
resilient modulus increases up to a certain axial strain level before decreasing (Kolisoja,
1997; Tatsuoka et al., 1999; Coronado Garcia, 2005, among others). Figure 2.25 shows
the results obtained by Tatsuoka et al. (1999) for virgin and prestrained Houston sand
samples. The modulus increases for axial strain between 0.01% and 0.7%, the latter being
characteristic of the volumetric behavior changing from contractive to dilative. The ap-
peareance of a cross-anisotropy on railway materials due to cyclic loading is less discussed
in the railway literature.

Regarding the effect of principal stress axes rotation on the resilient response, Brown
(1996) stated that there is no impact. According to the author, both principal stress and
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Figure 2.24: Variation of shear modulus with the imposed degree of saturation and the
confining pressure for Glacier Way Silt material tested by Wu et al. (1984).

Figure 2.25: Variation of the tangent modulus with the axial strain for virgin (V) and
prestrained (P) Houston sand samples (left); evolution of q and εv on small strains (right)
(from Tatsuoka et al., 1999).

strain axes rotate together during the moving load cycle.

2.4.4.2 Permanent behavior

Differently from the resilient response, whereas the level of applied stress and moisture
content are the most contributing factors affecting the mechanical response, the develop-
ment of permanent strains is affected by several factors (Brecciaroli and Kolisoja, 2006).
These are:

• soil state;

• stress level;

• number of load applications;
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• principal stress rotation;

• moisture content;

• grading and aggregate type;

• physical properties of aggregate particles.

Some of these aspects are highlighted in the following. The reader is invited to refer
to the following references (Brown, 1996; Lekarp et al., 2000a,b; Brecciaroli and Kolisoja,
2006) for further results.

The analysis of the permanent behavior of unbounded aggregates generally relies on
measuring the axial permanent strain on drained cyclic triaxial tests. The importance
of volume behavior and compaction/dilation mechanisms is seldom discussed in the lit-
erature, although (Chan, 1990) discuss the influence of soil dilatancy on the increase of
permanent strains. Maybe this intrinsic assumption that cyclic compaction is the main
mechanism of volume behavior mainly relies on the empirical evidence that pavements
and railroads settle. However, this does not guarantee volume reduction, as lateral strains
are allowed to develop. Increase in volume, liquefaction and cyclic mobility can also occur
during cyclic loading, depending on the stress level, soil initial state, moisture content
and drainage conditions. In the case of studying moisture’s content influence, undrained
tests are performed, but in this case liquefaction is avoided by performing cyclic loading
of small amplitude. Besides the shakedown concept, there seems to be a gap between the
permanent deformation analysis and the concepts and different defined locus from static
failure.

In pavement engineering, the effect of soil state is generally studied separately in terms
of the soil density and stress history. Regarding soil density, which is usually described by
the degree of compaction, it has been showed that accumulated permanent deformation
decreases as a consequence of increased soil density. Barksdale (1972) showed for instance
that compacting unbound granular materials at 95% instead of 100% of the maximum
compaction density leads to higher permanent axial strains on cyclic triaxial tests (Figure
2.26) .

Figure 2.26: Effect of density on permanent strains (from Barksdale, 1972).
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Regarding the stress history, it has been showed that the stress level of the first cycle
determines the subsequent plastic strain accumulation. In this sense, applying low stresses
before higher stresses leads to lower permanent strains than directly applying higher
stresses. The tests conducted by Brown and Hyde (1975) on granular materials showed
in Figure 2.27 exemplifies this behavior: higher permanent strains are obtained when the
highest stress level is immediately applied. This is due to progressive compaction and
stiffening of the material obtained during the incremental loading.

Figure 2.27: Effect of loading history for different type of loading on permanent strain
(from Brown and Hyde, 1975).

The level of applied stress and the number of applied cycles play an important role
on the accumulation of permanent strain. Concerning the level of cyclic stress, Barksdale
(1972) stated that the permanent axial deformation is directly related to the deviatoric
stress and inversely related to the mean stress. In contrast, Brown and Hyde (1975)
stated that the permanent axial strain is governed by some form of stress ratio between
deviatoric and confining stress. Moreover, Brown and Hyde (1975) discussed that using
CCP or VCP apparatus lead to similar permanent axial strain if the mean value of the
applied confining stress in the VCP test is used in the CCP test. This result is revised by
Rondon et al. (2009), who obtained larger permanent axial strain values for VCP tests
than CCP (Figure 2.28b). According to the authors, the ratio of permanent axial strain
obtained by the VCP and CCP tests increases as the slope of the VCP test in the (q, p′)
plane decreases, e.g. tests VCP1 and VCP2 in Figure 2.28a.

Concerning the number of applied cycles at the same cyclic stress, rapid increase in
the first cycles is always observed, followed by three different responses depending on the
material, its initial state and the cyclic stress amplitude:

• Asymptotic stabilization of the accumulation of plastic strain at a certain number
of cycles;

• Linear (Barksdale, 1972) or hyperbolic (Chan, 1990) increase of plastic strain with
the logarithm of the number of cycles;

• Continuous rapid increase of plastic strains and failure of the soil specimen.
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(a) (b)

Figure 2.28: Laboratory test results on VCP and CCP tests performed by Rondon et al.
(2009). a) Considered stress paths; b) Permanent axial strain with cycles for VCP1 and
CCP1 stress paths.

Kolisoja (1997) performed cyclic loading at a large number of cycles and observed that
permanent strain became unstable after approximately reaching a stable condition. The
author argues that these instabilities come from grain attrition and crushing during the
test. Suiker et al. (2005), Karraz (2008) and Indraratna et al. (2011) showed that grain
attrition is the main cause of granulometric evolution of ballast material under cyclic load.

Using hollow cylinder apparatus, Chan (1990) showed that principal stress axes ro-
tation increases the plastic strain accumulation during cyclic loading when compared to
tests when no principal stress axes rotation occurs. Figure 2.29a from Chan and Brown
(1994) illustrates this fact by showing the increase in the rate of strain when shear re-
versal is applied after the specimen had been subjected to triaxial cyclic loading. Similar
results were obtained by Grabe and Clayton (2009) on subballast material at different
clay contents (Figure 2.29b).

Higher shear stress and stresses close to failure lead to higher difference in the cu-
mulated plastic strain. Inversely, when the shear stress is low compared to the normal
stress, only slightly differences are observed. Differences between unidirectional and bidi-
rectional shear reversal (representing one-way or two-way load reversal) are also observed
by Chan (1990); Brown (1996); Kolisoja (1997, among others), one-way load leading to
lower strains. This aspect is illustrated in Figure 2.30.

Drainage conditions can also play an important role on the plastic strain accumula-
tion. It is reminded that in the resilient and permanent strain decoupling approach, the
amplitude of loading cycles is low and increase of pore water pressure is limited. Other-
wise, liquefaction takes place and uncoupling the resilient and permanent behavior is no
longer valid. With this aspect in mind, Figure 2.31 shows that undrained conditions lead
to higher permanent strains as the increase in pore water pressure reduces the effective
stress in the material. Guaranteeing good drainage conditions seems essential in order to
limit the permanent deformation development on railway tracks.
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(a) (b)

Figure 2.29: Influence of shear stress reversal (principal stress axes rotation) on plastic
strain accumulation. a) Results from Chan and Brown (1994); b) Results from Grabe and
Clayton (2009) (PSR: Principal stress rotation).

Figure 2.30: Variation of permanent axial and horizontal permanent strains with cycles
(from Chan, 1990).

Figure 2.31: Influence of drainage on permanent deformation development (cited by Lekarp
et al., 2000b).
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2.5 Modeling the cyclic behavior of soils

Different modeling strategies exist in the literature for the cyclic behavior of soils, de-
pending on the hypothesis and considered physical phenomena. In the following, three
different modeling strategies are presented as representative of the mechanical models
used in pavement and railway engineering. The first class are elastic models accounting
for the shear modulus reduction and damping in soils during cyclic load. The second class
are developed based on the resilient response of the soil and have been developed mainly
for pavement engineering. Finally, the general framework given by the plasticity theory is
briefly presented as an effective way of modeling the cyclic behavior of soils under different
stress paths.

2.5.1 Models adapted for the cyclic shear response

Within the elasticity framework, the equivalent linear analysis (Madshus and Kaynia,
2000; Costa et al., 2010; Cunha, 2013) is the simplest way in order to take into account
the reduction of stiffness and increase of damping with the induced cyclic shear strain. In
this case, an iterative procedure is defined based on linear elastic calculations where the
shear stiffness and damping are updated according to the obtained effective shear strain
in the previous step. The procedure continues until no relevant change in the shear strain
is observed. The main question in applying this approach is in obtaining an equivalent
shear strain from the shear strain time signal. According to Cunha (2013), in earthquake
engineering the effective shear strain has been empirically obtained as between 50% and
70% of the strain peak value; 65% of the strain peak value is commonly used.

Viscoelastic models relying in arrangements of spring and dashpots are also commonly
used, such as the Kelvin model and the Maxwell model (Adam et al., 2010; Ansari et al.,
2011). However, the main drawback of such arrangements is that they are frequency-
dependent, contradicting the laboratory evidence previously discussed in Section 2.4.

Correctly modeling the energy dissipation appearing in the soil during cyclic loading
requires specific models that take into account hysteretic and not viscous damping. Cyclic
nonlinear elastic models relying in the description of the hysteresis curve seem to be more
adapted than both the equivalent linear approach and viscoelastic models in reproducing
the shear behavior and damping. According to Kramer (1996), these models usually follow
the extended Masing Rules:

1. In the initial load, the stress-strain curve follows a prediscribed backbone curve;

2. When stress reversal takes place at a point (γa, τa), the stress-strain curve follows
the path described by Equation 2.9.

τ − τa
2

= Fbb

(

γ − γa
2

)

(2.9)

The unloading and reloading curves have the same shape but they are increased by
a factor of 2;

3. When the unloading or the reloading exceeds the maximum past strain and intersects
the backbone curve, it follows the backbone curve until the next stress reversal;
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4. If during an unloading or reloading curve crosses an unloading or reloading curve
from the previous cycle, the stress-strain curve follows the one from the previous
cycle.

Figure 2.32 schematically represents these rules for a given stress time signal. A popular
model intrinsically taking into account these assumptions is the Iwan model (Iwan, 1966,
1967). It relies in the assumption that the backbone curve can be represented by a parallel
arrangement of Jenkin elements, each composed of linear spring in series with a frictional
slider (Figure 2.33a). The main idea is to set different yield levels for each Jenkin element,
the backbone curve being approximated by a series of lines according to the representation
in Figure 2.33b.

(a) (b)

Figure 2.32: Extended Masing rules (from Kramer, 1996). a) Variation of shear stress with
time; b) Stress-strain behavior.

(a) (b)

Figure 2.33: Iwan model (from Cunha, 2013). a) Arrangement of Jenkin elements; b)
Approximated stress-strain behavior.
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2.5.2 Models for the resilient response of unbound aggregates

The idea of splitting the resilient and the permanent behavior in the mechanical response
of unbound aggregates lead researchers to separately modeling the resilient and the perma-
nent deformation. From the above discussed experimental results, the resilient behavior
is usually modeled by a nonlinear elastic and inelastic models. The difference of these
models is either accounting or not for energy dissipation at each loading cycle. Among
nonlinear elastic models, a first class of models considers the resilient modulus (Mr) as
a function of the sum of principal stresses or the bulk stress θ=σ1 + σ2 + σ3 normalized
by a reference pressure po. In this sense, different authors (Seed et al., 1967; Hicks, 1970,
among others) first suggested a hyperbolic relationship called K-θ model:

Mr = k1

(

θ

po

)k2

(2.10)

where k1 and k2 are model constants which have to be calibrated from experimental
results. The simplicity of the model contrasts with two main drawbacks: first, considering
a constant Poisson’s ratio is not representative of the experimental findings; secondly, the
resilient modulus Mr is not only dependent on the bulk stress but also of the shear strain
induced by the deviatoric stress. The Uzan model (Uzan, 1985) described by Equation
2.11 is a modification of the K-θ model that better captures the variations of the resilient
modulus.

Mr = k1po

(

θ

po

)k2 ( q

po

)k3

(2.11)

A second class of models considers splitting the resilient deformational behavior in vol-
umetric εvr and deviatoric εqr components instead of only considering the axial response,
which is represented by the resilient modulus. Boyce (1980) proposes a nonlinear elastic
model with no net loss of strain energy described by Equations 2.12 and 2.13.

εvr =
1

Ka

p′n

p′a
n−1

[

1− β
q2

p′2

]

(2.12)

εqr =
1

3Ga

p′n

pn−1
a

(

q

p′

)

(2.13)

where p′ is the effective mean normal stress, q the deviator stress and n, Ga and Ka

are the model parameters, pa a reference pressure for which bulk Ka and shear modulus
Ga are measured and β = (1 − n)Ka/6Ga. The Boyce model requires only 3 parameters
and accounts for different volume behavior depending on the stress path (Hornych et al.,
1998).

An important modification of the Boyce model is proposed by Hornych et al. (1998)
in order to account for soil cross-anisotropy appearing from the compaction. Anisotropy
is introduced by considering a coefficient of orthotropy γ multiplying the major principal
stress σ1, which is considered as the vertical direction. The stress-strain relationships are
then written as Equations 2.14 and 2.15. The value of γ is usually lower than 1, which
leads to higher stiffness in the vertical than the lateral direction.
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ε∗vr =
1

Ka

p′∗n

p′a
n−1

[

1 +
(n− 1)Ka

6Ga

(

q∗

p′∗

)2
]

(2.14)

ε∗qr =
1

3Ga

p′∗n

p′a
n−1

(

q∗

p′∗

)

(2.15)

where p′∗ = (γσ′
1+2σ′

3)/3, q
∗ = γσ′

1−σ′
3, ε

∗
vr = ε1/γ+2ε3, ε

∗
q = ε1/γ− ε3. Hornych et al.

(1998) reported good results from cyclic load triaxial test with this model (Figure 2.34).
The inelastic contour model proposed by Brown and Pappins (1985) is also based on

the shear and volumetric resilient strains. The model considers the representation of the
resilient strains as contours in the (q, p′) plane proposed by Pappin and Brown (1980)
and shown in Figure 2.35. For a given effective stress path between points (q1, p

′
1) and

(q2, p
′
2), resilient strains are obtained by Equations 2.16 and 2.17.

εvr =

[(

p′2
A

)m(

1− B

(

q2
p′2

)n)]

−
[(

p′1
A

)m(

1−B

(

q2
p′2

)n)]

(2.16)

εsr = C

[

q2
p′2 +D

− q1
p′1 +D

]

[

√

p′r
2 + q2r
p′m

]r

(2.17)

where A, B, C, D, m, n and r are model parameters, qr = qmax − qmin, pr = pmax − pmin
and pm = (pmax+pmin)/2. The shear resilient strain in this case depends only on the stress
values whereas the volumetric resilient strain depends also of the length of the induced
stress path in the (q, p′) plane.

2.5.3 Advanced constitutive models for cyclic soil behavior

A general framework in order to model the different aspects of soil behavior under cyclic
loading must include the importance of initial state, volume behavior, drainage conditions,
stress-path dependency and possibly rotation of principal stress axes. Models accounting

Figure 2.34: Example of cross-anisotropic Boyce model results (from Hornych et al., 1998).
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(a) (b)

Figure 2.35: Contour representation of resilient strains in the (q, p′) space (from Pappin
and Brown, 1980). a) Resilient volumetric strain; b) Resilient shear strain.

for these aspects are called advanced constitutive models (Kramer, 1996). The plasticity
theory gives a suitable framework to model the different aspects of soil behavior previously
discussed. In this case the following aspects are present:

• Partition of the total strain rate ε̇ in independent elastic ε̇e and plastic ε̇p strain
rates:

ε̇ = ε̇e + ε̇p (2.18)

• The elastic domain, which corresponds to stress state which can be attained without
producing plastic deformation. Hyperelastic and hypoelastic models can be used, the
former corresponding to admissible thermodynamic potentials and the latter related
to empirical formulations.

• The yield surface f(σ, k), which depends on the stress state and the hardening
variables k. It defines the threshold splitting the elastic and plastic domains. Three
cases can be defined:

– If f(σ, k) < 0, the stress state is inside the elastic domain;

– if f(σ, k) = 0, the stress state is on the yield surface and plastic strain appears

if the loading direction is outside the domain, i.e. ∂f
∂σ
σ̇ > 0; otherwise, ∂f

∂σ
σ̇ ≤ 0

and no plastic strain is obtained;

– f(σ, k) > 0 is impossible to attain.

• The hardening law, which defines how the yield surface evolves with hardening. Two
categories exist: isotropic and kinematic (also called anisotropic). Isotropic harden-
ing controls the size of the yield surface by a scalar parameter, while kinematical
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laws permit to impose rotations, translations and distortions to the yield surface.
These are schematically represented in Figure 2.36.

• The plastic flow rule, which gives the direction of plastic strain rates and links the
increase in the plastic strains to the stress state and the hardening variables:

ε̇p = λ̇
∂g

∂σ
(2.19)

where g(σ, k) is the plastic potential and λ̇ is the plastic multiplier. When g(σ, k) =
f(σ, k) the plastic flow rule is considered associated, otherwise it is considered nonas-
sociated.

Within this general framework, different models emerged in soil mechanics, among
which the most probably known are Cam-Clay, modified Cam-Clay and subsequent adap-
tations. Among these, the nonlinear constitutive model developed at Ecole Centrale Paris
called ECP model, also known as Hujeux model, is adapted for both monotonic and cyclic
loading of soils (Aubry et al., 1982; Hujeux, 1985). It is based on the critical state concept
and written in effective stress. It considers 3 plane-strain deviatoric hardening mechanisms
and one isotropic, and hardening is controlled by the plastic strain evolution. Cyclic be-
havior uses kinematical hardening and a double memory approach. This model is chosen
in Chapter 5 for describing the mechanical behavior of track geomaterials. More on the
mathematical formulation of the ECP model is presented in Appendix A.

Figure 2.36: Effect of various types of hardening law on the yield surface (from Jeremic
and Yang, 2002). a) Isotropic; b) Rotational; c) Translational; d) Distortional.
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2.6 Modeling strategies of the railway track response

to moving loads

Different modeling strategies exist in order to account for the mechanical response of the
railway track. A very good review of available methods at the time is given by Knothe and
Grassie (1993). According to the authors, two major differences exist among numerical
models: considering or not the sleeper discrete support and finite or infinite domain size.
The latter is closely connected to the solution technique, whereas analytical solutions and
frequency domain solutions consider infinite domain and time domain solutions consider a
finite domain. More recently, Beskou and Theodorakopoulos (2011) presented an exhaus-
tive literature review of the modeling strategies for moving loads on road pavements. The
following model classification is proposed, which can be analyzed in the view of railway
track models:

• Modeling strategy: beam over Winkler foundation and related strategies, beam over
homogeneous or layered half-spaces and mixed strategies, spatial discretization tech-
niques (FEM, BEM);

• Material mechanical behavior: linear elasticity or viscoelasticity, equivalent linear
analysis and shear stiffness degradation models, nonlinear models;

• Solution strategy: analytical or numerical in frequency or time domain;

• Load methodology: concentrated or distributed, constant or varying magnitude and
speed.

In the following, an overview of the different strategies is presented. These are classified
by their increasing aptitude in completely reproducing the geometrical and mechanical
behavior of the railway track.

2.6.1 Beam resting on Winkler foundation and related models

Consider an infinite Euler-Bernoulli beam on a viscoelastic Winkler-type foundation being
loaded by a constant force P moving at constant speed v from the infinite to infinite. The
differential equation of the above problem may be written as follows:

EI
∂4ν(x, t)

∂x4
+ µ

∂2ν(x, t)

∂t2
+ 2µωb

∂ν(x, t)

∂t
+ kν(x, t) = Pδ(x− vt) (2.20)

where x is the length coordinate with the origin at the left-hand end of the beam, t is
the time coordinate, ν(x, t) is the beam deflection at a point x at the instant t, E is the
Young’s Modulus of the beam, I is the constant moment of inertia of the beam cross
section, µ is constant mass per unit length of the beam, ωb is the circular frequency of
damping of the beam, P is the concentrated force of constant magnitude, v is the constant
speed of the load motion, k is the coefficient of the Winkler foundation and δ(x − vt) is
the Dirac function. Fryba (1972) proposed an analytical solution for the quasi-stationary
state, i.e. the beam is at rest in relation to the moving coordinate system. Appendix B
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Author Equation

Vesic (1963) k = 0.65Es

1−ν2s

√

EsB4

EI

Biot (1937) k = 0.95Es

1−ν2s

(

EsB4

(1−ν2s )EI

)0.108

Vlaslov and Leontiev (1956) k = Es(1−νs)
(1+νs)(1−2νs)

µB
2

Table 2.1: Different methods in estimating the foundation stiffness k (adapted from Heelis
et al., 1999).

presents the mathematical development of the solution, which is based on the Fourier
integral method and the Cauchy’s residue theorem.

As discussed by Heelis et al. (1999), the difficulty in using this model is in relating
the coefficient of the Winkler foundation k to measurable mechanical parameters and in
defining which components are considered as being part of the “beam”and which are part
of the foundation. For the first point, analytical relations given by different authors and
showed in Table 2.1 can be used, where Es and νs are the considered Young’s Modulus
and Poisson’s ratio of the foundation and B is the effective width of the beam. For the
second point, most authors consider the beam as being the rail only, and the foundation
stiffness as the combination of stiffness from all other materials, from the rail pads to
the subgrade (Fryba et al., 1993; Frohling, 1997; Krylov et al., 2000; Steenbergen, 2008;
Dimitrovová and Varandas, 2009; Ang and Dai, 2013, among others). However, some
authors also considered different configurations, as obtaining the flexural stiffness of the
beam (EI) from a combination of different track layers (Hunt, 1994) or adding the mass
of the sleepers and ballast to the total mass of the beam, but considering the flexural
stiffness of the rail only (Fortin, 1983).

From the idea of the Winkler foundation, discrete models based on a combination
of springs, dashpots and lumped masses are proposed in the literature (Nielsen, 1995;
Lei and Noda, 2002; Sun, 2002; Zhai et al., 2004; Xie and Iwnicki, 2008; Zhai et al.,
2009; Kouroussis et al., 2011a; Sadeghi and Fesharaki, 2013, among others). An example
from the work of Xie and Iwnicki (2008) is given in Figure 2.37. These are usually more
realistic than the Winkler foundation only, as they allow to reproduce different track
vibration modes. Either discrete or continuous rail support can be considered, the first
being solved in the time domain and the second in the frequency domain. As pointed out
by Knothe and Grassie (1993), the support conditions lead to important differences for
rail receptance on frequencies higher than 500 Hz, which is shown in Figure 2.38 for the
rail receptance results obtained by Xie and Iwnicki (2008).

On all cases, model parameters can be obtained by calibrating the track receptance
from in situ measurements. Although in some cases the obtained parameters are repre-
sentative of certain materials due to the modeling strategy (rail pads, sleepers), global
coefficients for ballast and other layers are usually obtained. Moreover, these can be only
representative of the vertical vibration modes of the track and do not take into account
the wave propagation in the medium caused by the moving train. In this sense, these
models do not seem adapted for studying soil vibration and the mechanical behavior of
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Figure 2.37: Track model proposed by Xie and Iwnicki (2008).

Figure 2.38: Amplitude of rail receptance above sleeper and at mid-sleeper bay (adapted
from Xie and Iwnicki, 2008).

track components and the geomaterials composing the railway track. Nonetheless, some
of these models consider shear development in the ballast layer by adding stiffness and
damping elements between ballast masses (Zhai et al., 2004; Kouroussis et al., 2011a).

The Winkler foundation and related models are usually the most adapted strategy
for train-track interaction analysis (Xie and Iwnicki, 2008; Steenbergen, 2008; Zhai et al.,
2009; Kouroussis et al., 2011a; Sadeghi and Fesharaki, 2013), as they are sufficiently rep-
resentative of the track mechanical response at the rail level for a large range of frequen-
cies. This strategy is also applied on studies about stiffness variation (Fryba et al., 1993;
Frohling, 1997; Oscarsson, 2002; Andersen and Nielsen, 2003) and transition zones (Dim-
itrovová and Varandas, 2009; Ang and Dai, 2013), although in this case other modeling
techniques can be also applied.

2.6.2 Beam resting on half-space and related models

In this case the Winkler foundation is replaced by a half-space or layered half-space in
order to better represent wave propagation effects in the soil. Different mathematical
approaches for solving the beam over a half-space problem are proposed in the literature.
They are all based on a Fourier transform in the frequency-wavenumber domain of the
elastodynamics or Navier equation:

µ△u+ (λ+ µ) grad (divu) = ρ
∂2u

∂2t2
(2.21)
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where u is the displacement field, µ and λ are the Lamé coefficients, ρ is the mass density
and t is the time. The Navier equation describes the mechanical response of a linear
elastic medium under infinitesimal strain hypothesis. For infinite medium, Sommerfeld or
radiation conditions are also necessary to describe the behavior of the medium at infinity.

A fundamental solution of the medium, also called Green’s function of the medium, is
obtained when a concentrated impulsive load is considered (Luco and Apsel, 1983; Apsel
and Luco, 1983). A first approach to obtain the Green’s functions of a layered half space
is given by Thomson (1950) and Haskell (1953), based on transfer matrices accounting
for the exact solution of the wave equation. A second approach of obtaining the Green’s
function called direct stiffness formulation was given by Kausel and Roesset (1981). In
this case, stiffness matrices are proposed instead of transfer matrices, which relates the
Fourier transform of stresses and displacements at the upper and lower surfaces of each
layer. These present the advantage of being symmetric and allowing for faster numerical
implementation (Lombaert, 2001) by means of the Boundary Element Method (BEM)
formulation. The BEM for railway applications is discussed in the next section, as it is
based on space discretization by shape functions. For all cases, the numerical evaluation of
the Green’s functions by the Fast Fourier Transform (FFT) or more adapted quadrature
rules must be carried out.

In railway track applications, the beam can be either considered as characteristic or
equivalent to the whole track system (rail, pads, sleepers and ballast) (Dieterman and
Metrikine, 1997; Auersch, 2008) or only to the rail (Sheng et al., 1999). Rail pads are
usually modeled as distributed stiffness, sleepers as distributed mass and ballast as both
distributed stiffness and mass. An example of this type of model is given in Figure 2.39.
Hysteretic damping is used for rail pads and ballast by considering complex stiffness
properties (Sheng et al., 1999), as well as complex Lamé coefficients for the soil. Cosserat
material model (Suiker et al., 1999) is also considered by some authors (Cai et al., 2008,
2010) under this approach, although it can also be used for other modeling techniques.
Slab tracks are also considered by some authors (Steenbergen et al., 2007), and in this case
the discrete support hypothesis is only related to rail pad distributed stiffness. Poroelastic
half-space (Xu et al., 2007) and poroviscoelastic layered half-spaces (Lefeuve-Mesgouez
and Mesgouez, 2010) for the soil can be considered based on Biot’s theory.

Considering a half-space, smooth contact and uniform stress distribution along the
cross section of the beam, Dieterman and Metrikine (1996) analytically obtained an
“equivalent stiffness” coupling the beam and the half-space. This concept allows to ob-
tain a reduction of the 3D half-space to a 1D wavenumber-dependent complex stiffness,
although only the vertical reaction of the half-space can be studied. This approach was
further developed by Vostroukhov and Metrikine (2003) for the case of a beam on pe-
riodically positioned supports of a spring-dashpot (rail pads) and mass (sleeper), which
is in contact with the half-space. Takemiya and Bian (2005) also worked under a similar
concept, but in this case a substructure technique was employed in order to obtain the
“equivalent stiffness” from the Green’s function of a layered half-space, which is used on
a second model of the track. The main advantage of these models rely in the fact that
discrete support can be considered, although Vostroukhov and Metrikine (2003) do not
obtain relevant differences between the discrete support model and the homogenized one.

This technique has been mostly used in order to estimate soil vibration and track-soil
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Figure 2.39: Model for track and ground proposed by Sheng et al. (1999).

receptance and dispersion characteristic curves (Sheng et al., 2003, 2004a,b; Steenbergen
et al., 2007). Train-track interaction is considered in some works (Sheng et al., 2003; Cai
et al., 2008), and rail irregularities can be studied (Sheng et al., 2004b; Cai et al., 2010).
Time signals can be studied by applying the inverse Fourier transform (Xu et al., 2007;
Cai et al., 2010). Noise and vibration problems in environing structures are the usual ap-
plication of these models. However, this technique depends on the invariant homogeneous
structure hypothesis, not being adapted for studying track stiffness variations or material
nonlinearity for example.

2.6.3 Finite Elements, Boundary Elements and other spatial dis-
cretization techniques

The last class of railway models proposed in the literature relies on spatial discretization
techniques such as the Finite Element Method (FEM) and the Boundary Element Method
(BEM). FEM has been extensively used in the different engineering applications, as it
allows for modeling complex geometries and can naturally consider different material
constitutive models. Modeling unbounded domains by FEM requests a special attention on
the boundary conditions in order to avoid wave reflection. In this sense, different strategies
are proposed in the literature, such as absorbing boundaries, infinite elements, paraxial
elements, PML, among others. A review of these methods is presented in Appendix C.

Another way of dealing with the unbounded domain is by the Boundary Element
Method: the unbounded domain is modeled as a half-space or layered half-space with
complex Lamé coefficients and using the associated fundamental solution or Green’s func-
tion. On both FEM and BEM the numerical solution relies in an Galerkin approximation
of an integral equation by shape functions. While the geometrical support for FEM is
the whole considered domain, for BEM only the surface of the unbounded domain is
discretized.

These models represent a very large class, mainly because of the model dimensions
(2D, 2.5D and 3D), time or frequency domain and material properties. In the following the
main implemented strategies are discussed in the light of the capabilities and drawbacks
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Figure 2.40: 2D FE model proposed by Çelebi and Göktepe (2012).

of each methodology. Some examples of models proposed in the literature are given in
order to illustrate these strategies.

2.6.3.1 Finite Element models

Different domain sizes and symmetry planes are considered by the FEM models proposed
in the literature. A first class of models are 2D models solved in the time domain and
considering either the lateral (Figure 2.40) or the longitudinal plane (Figure 2.41) under
plane-strain condition. In the first category, Çelebi and Göktepe (2012) uses a 2D model in
order to study the impact of surface waves induced by railway traffic on nearby buildings.
Suiker (2002) considers the same symmetry plane for studying the cumulated cyclic plastic
strains of ballast and subballast materials. For this case the plane-strain condition cannot
take into account the sleeper discrete support and authors need to consider a hypothetical
load function obtained from an analytical expression or a simplified model.

In the second category, Yang et al. (2009) study the effect of track imperfections, ac-
celeration, break and hanging sleepers on the stress path in different track materials. This
model is further confronted with in situ measurements by Priest et al. (2010). Rhayma
et al. (2011, 2013) also considers a 2D model in order to study the impact of uncertainty
and variability of the railway geomaterials mechanical properties on different maintenance
operations. Ribeiro (2012) proposed a 2D model with variable width in the third dimen-
sion. The width can thus be optimized in order to match the static vertical strain under
the load regarding the obtained value from a 3D model. The model is then used for study-
ing different types of transition zones. For the second category, the discrete support is
taken into account but the plane-strain condition with variable thickness supposes a re-
peatable mono-rail structure in the dimension perpendicular to the moving load direction,
as shown in Figure 2.41.

Although computationally intensive, different 3D models in the time domain are pro-
posed in the literature (Kumaran et al., 2003; Hall, 2003; Ju and Lin, 2004; Powrie et al.,
2007; Banimahd, 2008; Araújo, 2010; El Kacimi et al., 2012; Connolly et al., 2013; Thach
et al., 2013; Shan et al., 2013; Cunha, 2013, among others). In this case, the full ge-
ometry characteristics of the railway track can be correctly modeled. However, in order
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Figure 2.41: 3D representation of the 2D FE model accounting for variable width in the
third direction proposed by Ribeiro (2012).

to give an idea of the involved computational cost, Ju and Li (2011) report a computer
time requirement of 9 days using a personal computer for a 3D finite element mesh con-
taining around 13 million degrees-of-freedom and 4000 time steps. An example of a 3D
model proposed in the literature is given in Figure 2.42. This technique is particularly
adapted for complex geometries such as pile-supported embankments (Thach et al., 2013)
and transition sections between bridges and embankments (Shan et al., 2013). Authors
have studied surface vibration characteristics for trans-Rayleigh train speeds (Ju and Lin,
2004; El Kacimi et al., 2012) and more generally ground vibrations (Hall, 2003; Connolly
et al., 2013). Powrie et al. (2007) conducted static analysis in order to verify the effect
of increasing stiffness with depth, variations of Poisson’s ratio, soil anisotropy and initial
stress state conditions on the mechanical response of the geomaterials.

Some authors consider simplified models for the railway vehicle (Kumaran et al., 2003;
Ju and Lin, 2004; El Kacimi et al., 2012; Connolly et al., 2014, among others), which
account only for the vertical vehicle dynamics. More recently, Ju and Li (2011) propose a
3D train model accounting for both vertical and lateral vehicle dynamics. This is used in
order to study the derailment risk during earthquakes. Kouroussis et al. (2011c) propose a
substructure technique by decoupling the train-track interaction model (beam over elastic

Figure 2.42: 3D FE model used by Connolly et al. (2013) for ground vibration studies.
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foundation) and the soil (FEM). In this case the train can be finely modeled and the
reaction of the foundation in the first model is applied as a load under sleeper in the
second model. Maglev trains are also considered by Ju et al. (2012).

The main advantage of FEM models in the time domain is the possibility to account
for constitutive laws adapted for geomaterials. On numerical modeling applied in the
railway field, authors have used different classes of models besides linear elasticity and
viscoelasticity. The first class is based on the resilient behavior of soils discussed in Sec-
tion 2.5.2 and are nonlinear elastic models: K − θ model (Ferreira, 2013), Uzan model
and Boyce model (Banimahd, 2008). The second class are elastic models based on soil
dynamic results obtained on cyclic response and they consider mainly the evolution of the
shear stiffness G with the increase of cyclic shear strain γ, e.g. equivalent linear (Costa
et al., 2010), Iwan model (Cunha, 2013). The third class is based on mechanical models
adapted for the monotonic response of soils and account for plastic deformations, e.g.
linear elastic perfect plastic with a Mohr Coulomb yield criteria (Çelebi and Göktepe,
2012) and modified approaches (Cunha, 2013), Drucker-Praguer, Cam-Clay and modified
Cam-Clay (Desai and Siriwardane, 1982), an adapted version of the model developed by
Pender (1978) for ballast accounting for particle breakage (Indraratna and Nimbalkar,
2011). However, this class is not always adapted for cyclic loading, as kinematical hard-
ening is not considered. A fourth class considers the cyclic plastic strains cumulated for
a large number of cycles under an approach called “overstress formulation”, similar to
the viscoplastic model of Perzyna (1966) (Suiker, 2002). Finally, some authors (Paderno,
2010; Araújo, 2010) considered advanced cyclic constitutive models as presented in Section
2.5.3, which can correctly consider the soil behavior under monotonic and cyclic loading.

Considering the frequency-wavenumber domain, the 2.5D approach is the most adapted
technique for finite elements. In this case, by considering the 3D railway structure invariant
in the longitudinal direction, i.e. continuously supported, the equilibrium equation can be
posed in the frequency-wavenumber domain and only the 2D lateral plane is discretized.
The main advantage of this technique is the computational cost reduction compared to
a 3D model while being able to consider a 3D structure. The main drawback is that
the discrete support characteristic is lost, but differently from 2D models considering
the same lateral plane under plane-strain conditions, the loading function is independent
from the support characteristics. Using this approach, authors have considered poroelastic
materials (Gao et al., 2012), vibration caused by underground moving trains (Yang and
Hung, 2008), reduction of shear stiffness with shear strain by “equivalent linear” analysis
(Costa et al., 2010), vibration caused by rail irregularities (Hung et al., 2013). Concerning
boundary conditions, the infinite element approach adapted for 2.5D calculation is a very
popular technique (Yang and Hung, 2001), although other strategies based on the hypoth-
esis that the wave propagates in a semi-cylindrical form are developed in the literature
(Gao et al., 2012). An example of 2.5D FE model is given in Figure 2.43.

It is important to highlight that a different technique is also proposed in the litera-
ture based on the Floquet transform of periodic structures under moving loads (Chebli
et al., 2006). In this case, a 3D periodic cell can be studied and the discrete support
characteristics maintained while solving a smaller and more computational cost efficient
model. In this sense, Clouteau et al. (2013) present a literature review of different nu-
merical modeling techniques applied in soil-structure interaction. Using the Fourier or the
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Figure 2.43: 2.5D FE model proposed by Costa et al. (2010).

Floquet transform with Finite Element models present the main disadvantage of loosing
the possibility of directly considering nonlinear constitutive laws.

2.6.3.2 Beam resting on Boundary Elements

The Boundary Element Method presents the advantage of correctly accounting for wave
propagation in the considered half-space or layered half-space, but it is not adapted for
complex structures and nonlinearities (Kausel and Roesset, 1981). In this sense, it is often
used for modeling the soil and another technique is used for the track structure. A first
approach is to consider the rail, rail pads, sleepers and ballasted layers as a series of springs
and dashpots or more complex arrangements, as discussed in Section 2.6.1. In this case,
the frequency-wavenumber domain is preferred and the hypothesis of continuous support
is made. The main difference with the case of beam resting on half-space discussed in
Section 2.6.2 lies in the fact that in the present case, the railway track lateral plane can
be correctly modeled, e.g. 2 parallel rails, sleeper finite length in the lateral direction. The
model developed by Lombaert et al. (2006) is shown in Figure 2.44 and it is used in order
to study the free field response due to the passage of high speed trains.

Models based on this approach are scarce in the literature as authors prefer to couple
a Finite Element model for the track with a Boundary Element model for the soil. This
approach is discussed in the next section.

Figure 2.44: Track-soil model proposed by Lombaert et al. (2006).
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2.6.3.3 Coupling Finite Elements and Boundary Elements

Coupling FE and BE strategies is a very promising field, as one can expect to benefit from
the advantages of both methods: modeling complex geometries and nonlinear mechanical
behavior for the track materials thanks to FEM and considering wave dissipation in the
soil thanks to BEM.

In the railway track domain, two main class of models are proposed in the litera-
ture: 2.5D models or 3D models. Concerning 2.5D models, some are very similar to 2.5D
FE models and the Boundary Elements are considered as simple absorbing elements,
specially on railway over embankment applications (Costa et al., 2012a,b; Galv́ın et al.,
2010a). When studying surface vibration caused by underground trains, the 2.5D FE-BE
methodology seems very adapted as wave propagation from the tunnel to the surface can
be correctly captured (François et al., 2010; Galv́ın et al., 2010a). However, these mod-
els are developed in the frequency-wavenumber domain and the capability of considering
nonlinear mechanical behavior in the FE structure is lost. The Floquet transform is also
developed for FE-BE models and in this case the Green-Floquet fundamental solution is
computed in the periodic cell (Clouteau et al., 2005; Chebli et al., 2008). An example of
this approach is given in Figure 2.45.

In 3D models, this drawback no longer exists as time domain numerical schemes can be
used. However, the FEM-BEM coupling in this case is more laborious and the stability of
the numerical scheme is not guaranteed (Clouteau et al., 2013). The model developed by
Galv́ın and Domı́nguez (2009) and shown in Figure 2.46 considers an iterative algorithm
proposed by Estorff and Hagen (2005) for coupling the FE and BE domains and the model
is used for studying vibration induced in the soil. Transition zones are considered in a
secondary paper from the authors (Galv́ın et al., 2010b). Nonlinear mechanical behavior is
not considered and as it seems, this aspect was not yet addressed by the railway researchers
using this approach.

Figure 2.45: 3D FE-BE model accounting for track periodicity using the Floquet transform
(from Chebli et al., 2008).
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Figure 2.46: 3D FE-BE model in the time domain proposed by Galv́ın and Domı́nguez
(2009). The right-hand side figure presents a closer zoom on a track section.

2.6.4 Discrete Element Models

Particularly to the ballast layer, the Discrete Element Method (DEM) has being suc-
cessfully applied by many authors (Lim and McDowell, 2005; Saussine et al., 2006; Zhou
et al., 2013, among others) in order to better capture the granular and discrete charac-
teristics of the ballast material in the railway track. The main advantage of this method
is that the micromechanics of the ballast layer is well represented, this approach being
particularly suitable for studying granular thin layers and the localized rigid structures
appearing during loading (Saussine et al., 2006). Two main algorithms are proposed in
the literature:

1. The Distinct Element Method, first developed by Cundall and Strack (1979), which
is characterized by a regular treatment of the contact forces and an explicit time
integration scheme,

2. The Non Smooth Contact Dynamics (NSCD), developed by Jean and Moreau (1992),
which considers unilateral contact conditions and permits an implicit time integra-
tion scheme.

In both cases contact characteristics between grains must be assessed, but no constitu-
tive law is necessary. Figure 2.47 gives an overview of the actual track model developed at
SNCF by using a DEM approach. Rail and rail pads are usually neglected as for instance
only rigid bodies are considered. When studying moving load applications, the load is
directly applied at the sleeper and in this sense an assumption of load repartition over the
sleepers is necessary.

Simulating maintenance procedure such as tamping (Azéma, 2007; Saussine et al.,
2008; Perales et al., 2011; Zhou et al., 2013; Voivret et al., 2013) and ballast flight phe-
nomenon (Saussine et al., 2011) are possible within this framework. Grain cracking (Donzé
et al., 2009) and ballast layer reinforcement by geogrid interaction (Kwan, 2006; Ferellec
and McDowell, 2012; Chen et al., 2013) can also be suitably studied by discrete element
models. However, applying these methods in real track applications has a high computa-
tional cost. Domain decomposition using parallel computing strategies can be implemented
(Hoang et al., 2012), but nowadays a distance corresponding only of a few sleepers can
be studied. Moreover, these models usually considers an infinitely rigid subgrade, which
is not representative of real track applications. Coupling Discrete Element Models with
Finite Elements (Ricci et al., 2005; Nitka et al., 2011, among others) in order to better
capture the subgrade mechanical behavior is a promising field still in progress.
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Figure 2.47: Track model obtained by DEM (obtained from Voivret et al., 2013).

2.7 Background on railway track models accounting

for track properties variability

In this section, a brief overview of different railway track models accounting for track
properties variability is given. The implemented methodologies and main results obtained
by different authors are also discussed.

Frohling (1997) considers the railway track degradation with vehicle loading and non-
linear spatially varying track stiffness. The author proposes a dynamic and static track
deterioration prediction models. These are based on an experimental work focused on the
dynamic behavior of the railway vehicle and the corresponding response of the track. In
these models, settlement equations are based on measurable parameters of the different
track layers and wheel loading. Particularly for the dynamic prediction model, it also
considers vehicle/track dynamic interaction. The obtained results show that the spatial
variations of the track stiffness contributes significantly to track deterioration, in terms
of differential settlement and increase in vehicle’s dynamic loading.

In this sense, Steenbergen (2013) discusses the physical mechanisms leading to track
degradation and mainly the role of mechanical properties variability. The dynamic stiffness
concept introduced by Dieterman and Metrikine (1996) is used by the later author in
order to discuss the influence of damping on track degradation. According to the author,
viscoelastic drag (from material damping) and dynamic drag (from radiation damping)
are responsible for track degradation. Some conceptual track designs taking into account
these concepts for track transitions are given and the use of geogrids as increasing the
waveguide characteristic of the track is discussed.

Oscarsson (2002) considers the influence of track properties variability on the wheel-
rail contact force, the wheel vertical acceleration and the sleeper vertical displacement.
Two techniques are used: the Latin Hypercube Sampling with correlation control and the
perturbation method, the former being a nonintrusive technique and the later an intru-
sive one. The variability in a particular set of input parameters of the considered model
(sleepers spacing, rail pad stiffness, ballast stiffness and the dynamic ballast-subgrade
mass) is obtained through in situ measurements and laboratory tests. Small coefficients
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of variation are found for ballast stiffness, rail pad stiffness and sleeper spacing. However,
the dynamic ballast-subgrade mass coefficient of variation is high. The author argues that
the sleeper support stiffness probably varies significantly from one sleeper to the other
while the fundamental track resonance is basically constant along the track.

From these results, Oscarsson (2002) argues that although the perturbation technique
has the advantage of being simple and fast when compared with other stochastic methods,
it has the important disadvantage of being restricted to cases where the random properties
exhibit small scatter around mean values. In this sense, Kleiber and Hien (1992) state that
perturbation techniques can be used for a maximum coefficient of variation of 10%, which
is small compared to the scatter encountered on mechanical properties of geotechnical
materials (Phoon and Kulhawy, 1999a,b). Therefore, Monte Carlo methods seem to be
better suited for numerical models accounting for the encountered variations of the railway
track properties. By using Latin Hypercube Sampling with correlation control, Oscarsson
(2002) shows that the contact force is hardly affected by input variability, as its quasi-
static part remains almost constant, but wheel vertical acceleration and sleeper vertical
displacement are strongly affected.

More recently, Rhayma et al. (2011) uses the collocation method (Bressolette et al.,
2010) to study the impact of uncertainty on railway track mechanical properties. Linear
elastic mechanical behavior is considered and Young’s Modulus are calibrated from in
situ data obtained from the project Innotrack (Ekberg and Paulsson, 2010). The authors
show that the encountered Young’s Modulus variability is more influential than track
layers’s width variability regarding different indicators, such as rail and sleeper vertical
maximum deflection. Current maintenance operations are studied in order to verify their
effectiveness in terms of reducing the scatter on model’s response. However, one drawback
from the chose stochastic method, the influence of spatial variations along the track are
not considered.

An additional source of uncertainty is the variability on the moving load amplitude
applied by the vehicle on the track. In his classical book, Fryba (1972) discusses the ran-
domly effect of the moving load as caused by track irregularities, train speed or traffic
flow, random motions of vehicles, effects of vehicle engines, among others. The pertur-
bation method is used to account for an infinite beam on random elastic foundation, i.e.
Winkler foundation, subjected to a random moving load.

In a later work from the same author (Fryba et al., 1993), spatial variations of the
elastic and viscous properties of the foundation are considered. The perturbation method
is used in order to evaluate the variance of the deflection and bending moment of a beam
model. Two types of covariance functions are used: cosine and exponential. Correlation
length influence is studied at small speed and the variance of the deflection and bending
moments seems to stabilize at 5 m and 3 m, respectively. At higher speeds (near or
greater than the critical speed of the foundation), the variance of the rail deflection and
bending moment reduces and then increases, stabilizing at higher values of the correlation
length. The final values are higher for higher speed than at small speeds, the coefficient
of variation of the beam deflection is greater than the beam bending moment. Moreover,
random beam stiffness variations result on greater variance of the output than random
beam damping variations.

More generally, Elkateb et al. (2003) discuss that soil heterogeneity may be classi-
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fied as lithological heterogeneity and inherent spatial soil variability. According to the
later authors, the main elements to be identified in order to be able to account for spa-
tial variability are: classical statistical characteristics, spatial correlation structure, the
limit of spatial continuity and the volume-variance relationships. One important remark
concerning the first point is that high variability is usually associated with soil’s strength
parameters. There is no clear evidence for choosing a priori a particular probabilistic den-
sity function (pdf) or a correlation structure for soil’s physical properties (Popescu et al.,
2005a; Griffiths et al., 2009, among others). However, physical properties are nonnega-
tive quantities and this condition must be satisfied by the considered pdf. In this sense,
lognormal, beta and gamma distributions are usually chosen for fitting in situ data.

The results summarized above show the increasing importance of performing proba-
bilistic analysis in the railway domain. There is a common understanding that variations
in the track support can lead to track geometry degradation, even though the mechanical
mechanisms are not yet completely understood. Nonintrusive techniques based on sam-
pling strategies seem to be more adapted for considering the expected variation range and
spatial variations along the track. Moreover, variations of material’s stiffness and load
speed seem to be important parameters to be taken into account. Concerning the prob-
abilistic parameters, no particular probability density function or correlation structure is
expected for railway materials.

2.8 Concluding remarks

The present chapter gives an overview of the different aspects regarding railway tracks and
materials’ mechanical behavior. The large scope of this review reflects the complexity of
the topic and the fact that different scientific domains have to be accounted for a complete
description of the system.

From the presented in situ results obtained from commonly used diagnostic tools, the
track mechanical properties present important variations along the track. Track geometry
variations are acknowledged as being the most important factor on derailment risk and
safety, hence maintenance standards are based on this measure. Track stiffness variations,
however, are seldom studied, although it is physically related to the track geometry as
representing the support on which the rail is posed. From track transition zones, it seems
clear that track stiffness variations play an important role on the evolution of track ge-
ometry. Hence, the first step toward better understanding the influence of track stiffness
variations on the track geometry is to better understand the variations of the track stiff-
ness itself, and possibly which track layers and materials contribute the most to these
variations.

It arises from the different presented laboratory test results that nonlinear mechanical
models are better suited for correctly reproducing the different aspects of the behavior of
soils. Separately considering a resilient and permanent behavior instead of advanced cyclic
constitutive models has the main advantage of considerably simplifying the model. For
example, the Boyce model for anisotropic materials requires only 4 parameters. However,
no evolution of the material state is considered by such models. Therefore, this hypoth-
esis only holds after several loading cycles, when materials experiment low permanent
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deformation. It is clear that the main drawback of such models is in assuming the correct
reproduction of the material state from the track to the laboratory test, in order to obtain
representative parameters that can be further transposed in a numerical model.

In this sense, when modeling the first loading cycles, it is important to account for the
role of initial state and volume variations on the mechanical response. This last cannot be
accounted for by resilient models. Using cyclic advanced constitutive models such as the
ECP model requires indeed calibrating several parameters, but once this task is done the
mechanical model is representative of the material behavior under different conditions.
However, it is important to highlight that the ECP model is not expected to be used for
large number of cycles. One of the reasons is the considered nonlinear elastic domain, which
cannot be written in terms of a thermodynamical potential. Therefore, energy is dissipated
within elastic cycles. More generally, according to Gidel (2001), different authors pointed
out that advanced constitutive models based on elastoplasticity theory and kinematical
hardening lead to higher values of permanent strains for a large number of cycles.

The modeling strategies presented in the previous section give an overview of the
possibilities and constraints of the different techniques. The choice of the most adapted
modeling strategy depends on the aspect and physical phenomena of interest. When only
the rail vertical response is of interest, a beam resting on Winkler foundation and related
models give consistent results for a large range of frequencies. Considering discrete support
can lead to even better results at high frequency content and the pin-pin frequency can
be correctly modeled. Material nonlinearity can be captured depending on the solution
technique, but parameters are very often only approximations from the real materials in
order to reproduce the track receptance measured at the rail.

When soil vibration and mitigation techniques are of interest, considering the soil
as a half-space seems to be the most cost efficient technique. An increasing interest in
the Boundary Element Method is observed in the literature, as it is more versatile than
analytical or semi-analytical methods. However, in this case the soil constitutive law is
restrained to viscoelasticity.

When specific nonlinear material behavior is of interest, the Finite Element Method
is the most adapted numerical tool to model the railway track. As in different domains,
FEM has imposed itself as a versatile and multi-purpose technique and recent models
account for train-track interaction and soil-pile interaction, among other applications,
while absorbing boundary conditions are properly implemented in order to avoid spurious
wave reflection on boundaries. However, interestingly most part of FEM proposed models
do not take advantage of the FEM capabilities and consider only linear elastic material
behavior.

From the above discussed points, a representative description of the mechanical re-
sponse of the track have to account for the effect of speed and dynamic loads, nonlinear
behavior of the materials and possible variations of track properties encountered along
the track. FEM appears as the most adapted strategy for the numerical tool. The devel-
oped model in the thesis accounts for all these aspects and it is presented in the following
chapter.
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3.1 Introduction

In the past years, physical and numerical railway track models have allowed a better
understanding of the railway infrastructure and the different physical mechanisms act-
ing during train loading. Choosing the most adapted model depends on the considered
hypotheses and physical parameters as well as the objectives and output quantities of
interest. In this chapter, the development of the model proposed in this work respects the
different constrains imposed by the three aspects developed in the thesis:

• Wave propagation analysis: in the case of linear elastic material properties, correctly
describing the wave propagation up to a certain wavelength in the model imposes a
maximum element size given the considered interpolation function, requires apply-
ing adapted boundary conditions and considering a numerical integration scheme
with an adapted time step. In the case of moving loads, it will be shown that the
initialization procedure can also play an important role in avoiding spurious waves
in the results.

• Stochastic analysis: in this case, the main constrain is the computational time, as a
large number of simulations are required. In this work, this constrain is considered
by optimizing the model size and dimensions. Moreover, the chosen representation
of mechanical properties variations in the model imposes also a maximum element
size.

• Nonlinear analysis: in this case, considering higher order for FE basis function is
necessary as well as correctly capturing the sleeper kinematics. These aspects will
be further addressed in Chapter 5.

The numerical model of the railway track used in this work is presented in this chapter.
Some key aspects of the track’s mechanical response to moving loads are also discussed
under linear elasticity mechanical behavior.

The chapter is composed of three main sections. In the first section, the mathematical
formulation of the present railway track mechanical problem is rapidly revisited in the
general framework of a soil-structure interaction problem. Then, in the second section the
optimized characteristics of the proposed numerical model are developed, namely: model
dimension, domain size and finite element discretization, boundary conditions and loading
procedure.

The third section presents the main characteristics of stress and strain response of the
railway track subjected to one bogie loading cycle. The role of speed and subgrade stiffness
is assessed from a series of numerical simulations. This analysis provides a comparative
basis for further discussion in Chapter 5, when mechanical nonlinearity is considered.
Concluding remarks are given in the end of the chapter.



Chapter 3. Numerical model and elastic response of the track 61

3.2 Formulation of the dynamic mechanical problem

The schematic representation of a single line on a conventional railway track in France,
considered in this work, is presented in Figure 3.1. The structure is composed from top to
bottom of two rails, which are connected to the sleepers by a fastening system presenting
an elastic rail pad component. Around the sleepers, unconfined ballast is present, which
helps maintaining the sleeper in the lateral and longitudinal positions. Under the sleep-
ers, fresh ballast, fouled ballast and the interlayer material forms the three observed track
layers, which are followed by the subgrade soil or natural ground, above which the track is
constructed. Standard track gauge of 1.435 m is considered. The geometrical characteris-
tics are typical from conventional lines in France. The layer thickness ∆h of the different
track materials are also showed in Figure 3.1.

The loading conditions are modeled by punctual forces over the rails representing the
load carried by the two wheelsets of a train bogie, F1 and F2, which move forward in the
y direction at the same speed v(y).

This problem can be viewed in the framework of soil-structure interaction, under which
the structure domain Ωb composed of the rail, rail pads and the sleepers is embedded in
a multilayer semi-infinite soil domain Ωs. The problem is complex due to the geometrical
aspects imposed by the soil-structure interface Σbs and the fact that both the structure
and the soil are infinite in the longitudinal direction. Artificial boundaries Γb and Γs are
then introduced in both the structure and the soil domains in order to tackle this problem
in a finite element formulation. These boundaries can be further partitioned into imposed
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∆x=1.435 m
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Figure 3.1: Complete model of the the railway track.
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displacement or Dirichlet conditions Γ·u and imposed tractions or Neumann conditions
Γ·σ , where the subscript · denotes either b or s. Moreover, the following conditions hold:
Γ·u ∪ Γ·σ = Γ· and Γ·u ∩ Γ·σ = ∅. Finally, the considered system presents a full symmetry
boundary Σsym at the (y, z) plane defined at the center of the track.

The dynamic mechanical problem consists thus in obtaining the stress field σ
s
(u) and

the displacement field us(x, t) in both domains. In the soil domain, the total stress field σ
s

is usually decomposed in an effective stress tensor σ′
s and the pore pressure uw according

to Terzaghi’s principle:

σ
s
= σ′

s
− uwI (3.1)

where I is the identity tensor. In this work, the pore pressure is neglected. Therefore,
σ
s
= σ′

s
. Under small strain hypothesis, the momentum conservation in the soil domain

can be written as:

div σ′

s
+ ρg = ρüs, ∀x ∈ Ωs (3.2)

where σ′
s
is the effective stress tensor, g is the gravity, üs is the absolute acceleration

vector of the soil and ρ is the specific mass obtained as:

ρ = (1− n)ρs (3.3)

where n is the soil porosity and ρs is the volumetric weight of soil grains. Evidently, the
equilibrium equation must be satisfied at each track layer.

In the structure domain, the momentum conservation (Equation 3.4) takes the same
formulation as in the soil, the difference being that in this case σ

b
is the stress tensor

in the structure, ρb is the specific mass of the structure elements and üb is the absolute
acceleration vector of the structure.

div σ
b
+ ρbg = ρüb, ∀x ∈ Ωb (3.4)

Specifically to the rail, the Bernoulli beam kinematics is considered. In this case, under
linear elastic hypothesis Equation 3.4 can be reduced to:

σrr = Eεrr (3.5)

σrs = 2Gεrs (3.6)

σrt = 2Gεrt (3.7)

where r,s and t are the principal local system of axes, E is the Young’s Modulus and G
the shear stiffness. Please refer to Sáez (2009) for the full mathematical development of
the beam formulation used in this work.

The weak form of the the momentum conservation (Equations 3.1 and 3.4) can be
obtained using the Variational formulation. A set of kinematically acceptable displacement
fields Vb for the Ωb domain and Vs for the Ωs are defined as:
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Vb = {wb | wb regular in Ωb, wb(x) = 0 on Γbu}
Vs = {ws | ws regular in Ωs, ws(x) = 0 on Γsu}

Using the Stoke’s formula the following expressions are obtained:

∫

Ωb

σ
b
: ε

b
(wb)dV +

∫

Ωb

ρbüb · wbdV =

∫

Ωb

ρbg · wbdV +

∫

Σbs

tb · wbdS+ (3.8)

∫

Γbσ

tb · wbdS +

∫

Γbu

tb · wbdS, ∀x ∈ Ωb

∫

Ωs

σ′

s
: ε

s
(ws)dV +

∫

Ωs

ρsüs · wsdV =

∫

Ωs

ρg · wsdV +

∫

Σbs

ts · wsdS+ (3.9)

∫

Γsσ

ts · wsdS +

∫

Γsu

ts · wsdS, ∀x ∈ Ωs

where ε
b
and ε

s
are the strain tensors associated with the virtual displacement fields wb

and ws at the structure and soil domains, respectively, and the stress vectors tb and ts are
obtained as follows:

tb(x, t) = σ
b
· nb (3.10)

ts(x, t) = σ′

s
· ns (3.11)

where nb and ns are the exterior normal vector of Ωb and Ωs with respect to the interface
Σbs, respectively. Thus, the continuity of the stress vector at the interface Σbs is assured
by introducing the coupling between the structure and soil given by Equation 3.12.

∫

Γbs

tb · wbdS +

∫

Γbs

ts · wsdS =

∫

Γbs

tbs · [w]dS (3.12)

where [w] represents the jump in the displacement field [w] = wb−ws at the interface Σbs.
If [w] = 0, then the displacement fields wb and ws are equivalents at the interface Σbs.
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3.2.1 Boundary conditions

Concerning the model boundary conditions, the main focus is in avoiding wave reflexion
caused by the dynamic moving load. This is a large research topic and different strate-
gies exist (boundary approximations, viscous elements, among others) in order to proper
decompose infinite media into a finite domain. A review of different methods is presented
in Appendix C.

The imposed boundary conditions can be defined as follows:

• In the soil domain, normal displacements on the bottom boundaries are set to zero:

un = 0, ∀x ∈ Γsu (3.13)

In the soil lateral boundaries, absorbing boundaries conditions are applied, which
will be further described in Section 3.3.4.

The free surface condition at the unconfined ballast elements is given as:

σ′
s · n = 0, ∀x ∈ Γsσ (3.14)

• In the structure domain, normal displacements to lateral boundaries are also set to
zero:

un = 0, ∀x ∈ Γb (3.15)

Specifically to the rail, no particularly boundary condition is imposed (free displace-
ment condition).

• At the soil-structure interface Σbs, displacement continuity is imposed:

us = ub, ∀x ∈ Σbs (3.16)

This boundary condition is modified for the nonlinear model by considering interface
elements.

• At the symmetry boundary Σsym, normal displacements are set to zero:

un = 0, ∀x ∈ Σsym (3.17)

• Wheelset load application is conducted by prescribing a stress at the rail:

σb · n = F , ∀x ∈ Γbσ (3.18)

The moving load function is further described in Section 3.3.3.

3.2.2 Domain discretization

The space discretization is conducted by Finite Element approach, and linear shape func-
tions are considered both for the soil and the structure domains. The obtained 3D finite
element model is presented in Figure 3.2. The dashed line represents the symmetry plane
existing in the rail track structure.
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Figure 3.2: Schematic representation of track layers and the associated 3D model. Left-
hand side: cut at the (x, z) plane. Right-hand side: associated 3D model.

3.2.3 Material properties

For the linear model, isotropic linear elastic mechanical properties are considered, which
are characterized by the Young’s Modulus E and the Poisson’s ratio ν. Table 3.1 presents
these physical properties values and the mass density ρ of the different components. Par-
ticularly for the rail, the Euler-Bernoulli beam hypothesis requires the definition of the
inertial moment I and the cross-sectional area A. These are taken from the UIC60 rail
standard, I=3.05·10−5 m4 and A=0.007686 m2. Particularly to the rail pad, the vertical
stiffness is usually given rather than the Young’s Modulus and Poisson’s ratio. In this
work stiff rail pads are considered, kRP=120 kN/mm, which are characteristic of conven-
tional lines in France. By considering the Poisson’s ratio νRP equal to 0.25, it is possible
to obtain an equivalent Young’s Modulus by the following relation:

ERP = kRP
∆hRP
ARP

(1 + νRP )(1− 2νRP )

(1− νRP )
(3.19)

where ∆hRP=0.009 m is the thickness of the rail pad element and ARP ≈0.0225 m2 is the
considered contact surface between the rail and the rail pad.

The Young’s Modulus of the granular materials are estimated from the methodology
further discussed in Chapter 4.

In the following sections, soft and stiff soils are considered in order to verify the role of
the subgrade’s mechanical characteristics on the numerical aspects of the model. In this
case, stiff soil corresponds to E=100 MPa and soft soil to E=20 MPa.

3.2.4 Time integration and numerical damping

The time integration scheme used is implicit Newmark with the following parameters
γ = 0.625 and β = 0.375 (Katona and Zienkiewicz, 1985). These are unconditionally
stable as 2β ≥ γ ≥ 0.5 and induce numerical damping. The choice of inducing numer-
ical damping in the model is based on the fact that better results can be obtained by
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Component
Young’s Modulus Poisson’s ratio Mass density

E [MPa] ν [.] ρ [kg/m3]
Rail 210 · 103 0.25 7850

Rail pads 40 0.25 900
Sleeper 30 . 103 0.25 1300

Unconfined ballast 50 0.20 1500
Fresh ballast 150 0.20 1600
Fouled ballast 250 0.30 1600
Interlayer 80 0.30 2000
Subgrade 20 - 100 0.40 1800

Table 3.1: Mechanical properties of different components of the structure and soil.

removing the participation of high frequency modes induced by the spatial discretization
(Hughes, 2000), even if second-order accuracy is lost. It is important to highlight that
no viscous damping or Rayleigh matrix is used, and numerical damping comes only from
chosen time integration scheme. When elasticity is considered, this is then the only factor
affecting damping in the model. For the nonlinear model, damping can be induced by the
constitutive equations once strains are higher than the elastic domain.

From a series of simple one dimensional wave propagation tests of a single elastic
homogenous layer overlying an elastic half-space bedrock, Sáez (2009) verified that this
set of parameters induce numerical damping of order of magnitude ζ=0.8%. In this work,
the expression given by Hughes (2000) in order to estimate the numerical damping is
prefered:

ζ = π

(

γ − 1

2

)

∆t

T
+O

(

(

∆t

T

)2
)

(3.20)

where T is the specific period of the model.
The time step used in this work is ∆t=5.10−4 s, and neglecting the quadratic terms

for low ∆t/T values leads to a good approximation of the numerical damping induced by
the numerical scheme. It is a linear function of the frequency given by ζ ≈0.0002f .

3.3 Optimized characteristics of the FE model

The modeling framework presented in the previous section provides a general basis in
order to study the mechanical response of the railway track under moving loads. However,
different aspects can be enhanced in order to reduce the numerical simulation time. This
can become an important issue for very large models, specially when dealing with 3D
models, or when a large number of simulations are required, as in stochastic analysis. In
the next sections the following main points of the optimized dynamic linear numerical
model are discussed:

• model dimension (3D and 2D);
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• domain size and finite element discretization;

• load application methodology;

• appropriate boundary conditions.

In Chapter 5, some of these aspects are revisited when the influence of nonlinear
mechanical behavior is considered.

3.3.1 Modeling approaches for the 3D railway track domain

Different classical geotechnical problems present an important 3D component, such as
pile-soil interaction for a group of piles, finite slope stability, among others. Nonetheless,
hypothesis on considered dimensions and symmetries are usually necessary in order to
carry out numerical simulations. The moving load problem over the railway track struc-
ture is a 3D problem, mainly because of the sleeper discrete support. In the finite element
framework, although some authors (Hall, 2003; Kouroussis et al., 2011c; El Kacimi et al.,
2012; Shan et al., 2013; Thach et al., 2013; Connolly et al., 2014) propose to use directly
3D models, these are computationally intensive both in terms of CPU time and memory,
therefore not being suitable in order to perform probabilistic calculations. Modal sub-
structure reduction strategies can lead to significantly simulation time reduction (Balmès,
1996; Ferreira, 2010). However, considering nonlinear mechanical properties within a re-
duced model is a current challenge. In the railway track framework, different modeling
assumptions regarding the considered dimensions are discussed in the literature:

• Simplifying the load propagation dimension (y) (in Figure 3.2) by considering it
invariant by translation. This approach is also called 2.5D approach. In this case,
only the lateral (x) and vertical (z) planes are considered. This approach is usually
implemented when nearby soil vibration caused by wave propagation in the lateral
direction is of interest (Galv́ın et al., 2010a; Costa et al., 2012b,a; Gao et al., 2012;
Hung et al., 2013). A continuous sleeper support is considered, which is an important
drawback as the discrete support plays an important role on the stress distribution
and its role on ballast response.

• Simplifying the load propagation direction (y) by considering an invariant periodical
reference structure and using the Floquet theorem to solve the mechanical problem
in the convective reference frame (Clouteau et al., 2005; Chebli et al., 2006, 2008;
Ferreira, 2010). In this case, the periodical structure is well represented, but no
variations of the material parameters in the load propagation direction (y) can be
considered in this case.

• Simplifying the lateral direction (x) by using a plane deformation hypothesis with
variable lateral width. In this case, lateral width can be optimized regarding a certain
quantity of interest. Ribeiro (2012) proposes to match the vertical deformation from
the 3D and 2D models for all points under load, under linear elasticity hypothesis.
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Figure 3.3: 3D mesh and simplification to 2D mesh.

Sáez et al. (2013) presented a 2D plane-strain approach with modified width in order
to take into account periodicities in the out-of-plane direction, which is in the x direction
in the model. Normal stress in the x plane is obtained by considering a mean value over a
certain out-of-plane width (b). The value of b can be optimized in order to match the ver-
tical strain (εzz) of both 3D and 2D models for the column of soil directly under the load.
Moreover, Ribeiro (2012) showed an iterative procedure for calibrating b values, which is
briefly presented as follows. A schematic representation of the proposed simplification is
exposed in Figure 3.3.

Consider ε3Dzz the vertical strain of the column of soil in the 3D model directly beneath
the applied load, ε2Dzz the vertical strain of the column of soil in the 2D model also directly
beneath the load, the out-of-plane width (b) of the soil column at iteration i can be defined
as:

(b)i+1 = f(ε3Dzz , (ε
2D
zz )i) (3.21)

where i is the index from the iterative process defined hereafter. From a FE perspective,
the out-of-plane width (b) is constant at each FE soil element, while strains are obtained
at each Gauss point and their location depends on the considered degree of the polynomial
approximation. From the FE solution obtained both by the 3D and 2D models, the vertical
strains ε3Dzz n and ε2Dzz n are defined as the vertical strains interpolated at the middled of
the nth FE element among the N FE elements in the discretized soil column. bn is defined
as the out-of-plane width of the nth FE element, which is considered constant for all soil
elements at the same depth. The index n is dropped from the following equations in order
to simplify the mathematical notation. Under linear elastic hypothesis and a sufficiently
small element size for the finite element mesh, the vertical strain under load for both the
3D and the 2D models can be expressed by the following relation:

ε3Dzz · A3D = ε2Dzz · A2D (3.22)
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where A3D and A2D are the influence area of the loading in the considered soil element.
It is then convenient in this case to impose the same discretization in both the 2D and
3D models in the (y, z) plane. Equation 3.22 can be approximated by:

ε3Dzz · b3D = ε2Dzz · b2D (3.23)

where b3D is an equivalent width for the 3D model and b2D is the width to be used in the
2D model in order to match the vertical strain of the 3D model. Equation 3.23 can be
solved iteratively by considering the following relation:

(b2D)i+1 =
(ε2Dzz b

2D)i
ε3Dzz

(3.24)

Equation 3.24 is verified at each node of the finite element mesh for points under the
load. The estimation error (ǫb) based on an L2 norm defined in Equation 3.25 is used in
order to control the convergence of the approximation algorithm. Convergence is achieved
when (ǫb)i<0.1.

(ǫb)i =

√

√

√

√

N
∑

n=1

(ε3Dzz n − ε2Dzz n)
2 (3.25)

The above formulation allows to correctly characterize the vertical strain and displace-
ment in the soil elements under the applied load in the 2D model. An example is conducted
for both soft and stiff soils. The considered domain size for this application is presented in
the Figure 3.3. The obtained out-of-plane width (b) for both cases are presented in Figure
3.4a. The initial width profile is chosen equal to the values of the used 3D mesh. Values
are very close, despite the important differences of stiffness on both discussed cases. The
error is presented in Figure 3.4b, the threshold proposed value is reached for both cases
after 5 iterations. Good agreement is obtained for both vertical strain (εzz) (Figure 3.5a)
and vertical displacement (uz) (Figure 3.5b) of soil elements under the loaded sleeper.
However, both initial vertical stress (σ0

zz) (Figure 3.6a) and during load vertical stress
(σzz) under the application point (Figure 3.6b) are higher in the 2D model for elements
in the upper half of the model, the difference being higher for soft soils than stiff soils.

One important drawback emerges from the fact that the out-of-plane width (b) is
kept constant for all elements at the same depth: values at both sides of the the load
are the same, therefore not optimized. The shear component of stress and strain tensor
is mainly concerned, as under the load elements present null shear. The representation of
the difference between the 3D and 2D calculations after width calibration on shear stress
(σyz) in the considered plane is presented in Figure 3.7 for soft and stiff soil. It is shown
that mainly differences occur in the ballast layer and between the sleepers, these being
attenuated in the subgrade.

3.3.2 Domain size and finite element discretization

Considering large domains in the FE formulation require intensive computational effort,
while the result’s accuracy can be undermined by considering small domains. In order to
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Figure 3.4: Width calibration procedure for soft and stiff soils. a) Calibrated width (b);
b) Estimation error (ǫ).
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Figure 3.5: Width calibration procedure for soft and stiff soils. a) Vertical strain (εzz); b)
Vertical displacement (uz).

control the adequacy of the model’s dimension, a sensitivity study on the length and the
width of the necessary domain size is performed in this section.

Modeling unbounded domains by the finite element method requires to decide where
to place the model boundaries and how to ensure that the effect of the boundaries in the
model can be neglected. The main concern is to ensure that the boundaries do not affect
the results. In static models, the influence of both bottom and lateral boundaries are to
rigidify the structure as a consequence from the Dirichlet condition imposed on the normal
direction to the boundary. In the case of dynamic models, boundaries are also responsible
for wave reflection appearing from the dynamic loading. In this case, special boundary
conditions must be applied in order to reduce their impact on the obtained results. The
paraxial approximation and viscous boundaries based on a Kelvin-Voigt model are used
in this work as effective ways of preventing wave reflection at lateral boundaries. Their
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Figure 3.6: Width calibration procedure for soft and stiff soils. a) Initial vertical stress
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Figure 3.7: Difference between shear stress (σyz) in the 2D and 3D models obtained after
out-of-plane width (b) calibration. a) Soft soil; b) Stiff soil.

performance is further compared in Section 3.3.4.
The element size is also an important issue when dealing with finite element models.

On the dynamic models, the element size defines up to which wavelength, i.e. frequency,
the model provides reliable values. It is widely accepted on finite element modeling that
at least 10 elements per wavelength is sufficient to describe the considered wavelength. In
this case the following rule of thumb may be applied:

10∆y =
vmin
fmax

(3.26)

fmax =
vmin
10∆y

(3.27)
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vmin is the minimum speed of waves traveling in the medium, which can be approximated
by the shear wave velocity (vs). For a given FE discretization, soft soils present lower
maximum frequency than stiff soils. For example, in the case of a shear wave velocity
vs=120 m/s (G=25.9 MPa and E=67.4 MPa, considering ρ=1800 kg/m3 and Poisson’s
ratio ν=0.3), the maximum representative frequencies are 400 Hz for an average element
size of ∆y=0.03 m.

3.3.2.1 Vertical size and mesh discretization

The position of the bottom boundary as well as the discretization of the subgrade soil
in the model are optimized from static track stiffness results of a single static load. The
track stiffness is defined as:

kstatic =
Fst
ust

(3.28)

where Fst is the nominal static load for the EMW test, Fst=100 kN, and ust is the vertical
displacement of the rail where Fst is applied.

For this study the reference mesh is 20 m × 12 m. The soil depth is then optimized
in order to reduce the necessary mesh size. Three vertical mesh discretizations for the
soil are considered: fine (∆z=0.15 m), regular (∆z=0.30 m) and coarse (∆z=0.50 m)
for both stiff and soft soil cases. All other layers are discretized with elements presenting
∆z ≈0.05m. Figure 3.8a shows how the track stiffness varies when increasing the soil depth
for the two considered soil types. The track stiffness is a nonlinear decreasing function
of the soil depth. This is a direct result from the considered linear elastic mechanical
behavior for the soil. In this case, increasing the considered mesh depth always leads to
higher displacements thus lower stiffness. This condition is not physically possible, as soil
stiffness increases with increasing depth due to higher confining stress. Rather than the
track stiffness, its numerical derivative in respect to the increasing considered soil depth
is preferentially used, which is defined by Equation 3.29. The numerical derivative has the
main advantage of providing an approximation measure relative to the influence of the
constant drift observed on the track stiffness. Figure 3.8b shows that variations of ∆k are
more important in soft soil case rather than stiff soil. The value of ∆k=0.3% is considered
as the acceptable variation in this work, which is obtained for ∆h=6 m. On the other
hand, no influence of the soil vertical discretization is observed for this measure.

∆k =
k(i)− k(i− 1)

k(i)
· 100 [%] (3.29)

In order to further analyze the model bottom boundary influence, the vertical strain
(εzz) at all layers and their numerical derivatives (∆εzz) as defined by applying Equation
3.29 are verified. Results are presented in Figure 3.9 and Figure 3.10, where solid line
represents stiff soil results and dashed line the soft soil results. Vertical strain at the fresh
and fouled ballast layers are not affected by the soil vertical discretization, as they present
higher Young Modulus values than the interlayer and the subgrade. The interlayer is more
affected by subgrade vertical discretization for stiff soil case, and the subgrade is more
affected for the soft soil case. In all cases convergence in terms of the ∆εzz ≤0.3% is
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Figure 3.8: Influence of considered subgrade thickness ∆h on track stiffness. Solid line
represents stiff soil results and dashed line the soft soil results. a) Subgrade thickness’
influence on the track stiffness; b) Subgrade thickness’ influence on the derivative of the
track stiffness.

obtained for a subgrade thickness ∆h=6 m, which is kept as the reference value for the
numerical model.

3.3.2.2 Lateral size and mesh discretization

The lateral size of the mesh is chosen based on the loading characteristics and different
mesh lengths are used in this work. The reference case is a track section of 84 m long,
which corresponds to 140 sleepers. The sleeper discrete support introduces a periodicity
in the railway track structure which must be correctly modeled, as well as the rail pad
geometry and position on the sleeper. These geometrical constrains lead to a maximum
lateral discretization of 0.075 m. The chosen value in this work is 0.06 m, as it allows to
correctly describe the longitudinal dimension of the rail pad (0.18 m) and its position on
the sleeper.
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Figure 3.9: Evolution of vertical strain (εzz) with increasing considered subgrade thickness
(∆h). Solid line represents stiff soil results and dashed line the soft soil results. a) Fresh
ballast; b) Fouled ballast; c) Interlayer; d) Subgrade.
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Figure 3.10: Convergence of vertical strain (εzz) in terms of ∆εzz for different track layers.
Solid line represents stiff soil results and dashed line the soft soil results. a) Fresh ballast;
b) Fouled ballast; c) Interlayer; d) Subgrade.
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3.3.3 Moving load application methodology

The way to start dynamic moving load calculations on finite element models are still an
open point of discussion in the scientific community. Different methods of load application
on the scope of railway track modeling by the finite element method are proposed in the
literature. In the case of linear elastic mechanical behavior, some authors have tried to
apply full load at maximum speed and only to observe the point in the middle of the
track (Hall, 2003; Rhayma, 2010) as to avoid errors arising from the finite domain. On the
nonlinear case, Araújo (2010) applied full load and waited for wave dissipation through
the medium and then full speed was applied. On all these cases no boundary condition was
implemented to deal with wave reflexion. Some authors have also used viscous boundaries
with infinite elements, although in this case no special attention was paid on the load
application methodology (Kouroussis et al., 2011c; Connolly et al., 2013).

A more consensual point is how to apply the loading on a discretized beam element
modeling the rail. Most authors use a triangle loading principle, which is presented in
Figure 3.11. In this case, the maximum load is applied on a specific node and it moves
forward to the next node according to a specified time-displacement function. When the
load is between two nodes, the parallelogram principle is applied in order to equilibrate
the load respective to the distance to each node.

In this work, the load application phase is decomposed in two steps: load magni-
tude initialization and speed initialization. The first phase consists of increasing the load
magnitude on a fixed point yo of the track. Without loss of generality, in the following
development it is considered that yo=0. During this phase, the load increases from 0 to the
nominal applied load (Fmax) on a given time to. The second phase consists of increasing
the speed of the load gradually, from 0 to the nominal speed (vt). The parametrization of
the load acceleration (a(t)), speed (v(t)) and displacement (y(t)) functions is given by:

0 < t < to a(t) = 0

to ≤ t < τo/2 + to a(t) = ȧt+ C1

τo/2 + to ≤ t < τo + to a(t) = −ȧt+D1

t ≥ τo + to a(t) = 0

(3.30)

Figure 3.11: Triangle principle used on load application over rail nodes (from Hall, 2003).
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0 < t < to v(t) = 0

to ≤ t < τo/2 + to v(t) =
ȧt2

2
+ C1t+ C2

τo/2 + to ≤ t < τo + to v(t) = − ȧt
2

2
+D1t+D2

t ≥ τo + to v(t) = vt =
ȧτ 2o
4

(3.31)

0 < t < to y(t) = yo = 0

to ≤ t < τo/2 + to y(t) =
ȧt3

6
+
C1t

2

2
+ C2t+ C3

τo/2 + to ≤ t < τo + to y(t) = − ȧt
3

6
+
D1t

2

2
+D2t+D3

t ≥ τo + to y(t) = vtt+ E3

(3.32)

with:

C1 = −ȧto

C2 =
ȧt2o
2

C3 = − ȧt
3
o

6
D1 = ȧ(to + τo)

D2 = − ȧt
2
o

2
− ȧtoτo −

ȧτ 2o
4

D3 =
ȧt3o
6

+
ȧt2oτo
2

+
ȧtoτ

2
o

4
+
ȧτ 3o
24

E3 = − ȧ(to + τo)
3

6
+
D1(to + τo)

2

2
+D2(to + τo) +D3 − vt(to + τo)

τo = 2

√

(vt
ȧ

)

The function a(t) described by Equations 3.30 is a triangular function. It is fully
parametrized by three parameters:

• to: time spent on the first phase (loading),

• vt: nominal speed,

• ȧ: rate of change of the acceleration, also called jerk.

Figure 3.12 shows the acceleration (a(t)), speed (v(t)) and displacement (y(t)) func-
tions using the described methodology, where the given set of parameters is considered:
ȧ=150 m/s3, to=0.5 s and vt=220 km/h.
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Figure 3.12: Load application method. a) Acceleration function (a(t)); b) Speed function
(v(t)); c) Displacement function (y(t)).

From the proposed parametrization, the load function (F (y(t), t)) can be written as:

0 < t < to F (y(t), t)) = Fmax
t

to
t ≥ to F (y(t), t) = Fmax

For the given parameters, this methodology implies on a load sequence as presented in
Figure 3.13. The first phase ends when Fmax is applied on the first considered node. Then
the load moves forward at increasing speed as defined by Equation 3.30, until it reaches
its nominal value (vt), at some point further at the track. Starting from this point, any
numerical study may be performed considering the load Fmax at speed vt. Moreover,
applying multiple loads is easy to implement.

The first parameter (to) is only related on the first phase, while the second (vt) and
third (ȧ) parameters are related only to the second phase. It is worth observing that in-
creasing the final speed increases also the necessary displacement in order to reach a given
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Figure 3.13: Triangle principle used on load application over rail nodes.

final speed, for a given jerk (ȧ). Increasing the jerk reduces the necessary displacement,
but then the dynamic perturbation imposed in the model by the loading methodology is
increased. A compromise between the jerk and the necessary load displacement must be
found in order to be able to model high speeds on a relatively small mesh. Applying full
speed corresponds to the worst case, as modeled by a Dirac on the acceleration.

It is important to highlight that the time step (∆t) must be carefully chosen in order
to allow a correct description of the loading function at each node. The maximum ∆t can
be obtained as:

∆tmax =
∆ymin
2vt

(3.33)

where ∆ymin is the minimum discretization size of the rail (which is constant for all per-
formed simulations, ∆ymin=∆y=0.06 m) and vt is the nominal speed, which characterizes
the highest speed. A factor of 2 is chosen as the minimal number in order to let the load to
smoothly move forward from node to node. For example, simulating vt=220 km/h requires
a minimum time-step of around 5.10−4 s.

Coupling the proposed methodology with an appropriate boundary condition and the
numerical damping from the time integration scheme allows to improve the model dynamic
results and to obtain more robust and reliable values. These results are presented in the
next sections.

3.3.3.1 Comparison for dynamic loads before using proper boundary condi-
tions

In this section the considered loading methodology considering parameters to=0.5 s and
ȧ=150 m/s3 is compared with a traditional full-load full-speed method (to=0 s and ȧ=∞),
hereafter called “No method”, for the case of v=120 km/h. Figure 3.14 compares the
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Figure 3.14: Comparison of different loading strategies on the vertical rail response for a
moving load at 120km/h. a) Vertical displacement (uz); b) Vertical speed (vz); c) Vertical
acceleration (az).

vertical response of the rail the two cases. The considered model is 36 m long and the
comparison is made at the instant when the moving load is at the same point for both
cases. The proposed methodology permits to obtain better results on displacement, speed
and acceleration curves before implementing any appropriate boundary.

In order to have a more global view of the improvement on the dynamic calculation,
a criteria based on the energy arriving on and reflected by the boundaries is used. It is
based on the Specific Energy Density (SED) used in earthquake engineering and it is
defined by Equation 3.34.

SED(z) =

∫ t

0

v2(z)dt [m2/s] (3.34)

Figure 3.15 compares the SED for the case when no method is used, i.e. force is
applied at maximum value and maximum speed, and the proposed method. In the Figure
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Figure 3.15: SED for the proposed method and no method loading cases for a moving
load at 120 km/h. a) Right boundary (RB) / Left boundary (LB); b) Bottom boundary.

PM stands for proposed method and NM for no method. SED values reduce with depth
for the left and right boundaries, SEDPM , being almost 1000 times smaller than SEDNM

(Figure 3.15a). Improvement is also obtained on the bottom boundary (Figure 3.15b),
although in this case SEDPM is only 10 times smaller than SEDNM . It is expected that
SEDPM < SEDNM , as in the proposed methodology less energy is introduced in the
system.

The proposed loading methodology reduces the dynamic effects of the loading proce-
dure and yields better results. Wave reflection on boundaries is then addressed by appro-
priate boundary conditions discussed in the next section.

3.3.4 Comparison of different boundary conditions for moving
loads

The viscous elements with Kelvin-Voigt mechanical model and the paraxial approxima-
tion are used in this work. Both are implemented in the lateral boundaries of the railway
track model in order to reduce wave reflection due to the moving load. More on their
mathematical formulation can be found in Appendix C. Their performance is compared
by considering the results of a model composed of 60 sleepers (36 m), schematically rep-
resented in Figures 3.16 and 3.17. A very long model composed of 140 sleepers (84 m),
denoted as 140SLP hereafter, is considered to yield sufficiently undisturbed results from
lateral boundaries and is used reference model for the comparisons. A bogie load com-
posed of two wheelsets of 85 kN and at final speed of 120 km/h is applied, following the
proposed loading methodology. The following two cases are defined:

• Case I: absorbing boundary with Kelvin-Voigt model (60SLP KV). Elastic parame-
ters are kept the same as the nearest layer, and the viscous parameter η is equal to
105 s−1 on all layers.



82 3.3. Optimized characteristics of the FE model

fresh ballast

fouled ballast

interlayer

subgrade

FF

KV KV

4m 4m

Control Point A

Control Point B

Figure 3.16: Case I: Absorbing elements on boundaries (60SLP KV).
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Figure 3.17: Case II: Paraxial approximation on boundaries (60SLP PARX).

• Case II: paraxial approximation with elastic domain E of 40 m at each side, which
follows the same elastic parameters as the nearest layer (60SLP PARX).

Two control points are verified: control point A, which is fully loaded and unloaded,
and control point B, which is not loaded during the simulation and is just next to the
boundary on cases I and II. The vertical displacements and accelerations at all layers
are only slightly affected at control point A as shown in Figure 3.18 for the interlayer
material. However, the lateral response in terms of lateral velocity is better approximated
by the paraxial solution rather than the Kelvin-Voigt boundary before and after loading
(Figure 3.19). During loading, the maximum values are only slightly affected and in the
case where only these values are of interest both approaches give similar results.

On the control point B, however, both vertical and lateral responses are very different
depending on the considered boundary solution. A comparison is shown in Figure 3.20.
The paraxial solution in this case better approximates the response of the 140 sleeper
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Figure 3.18: Comparison of the interlayer vertical response at control point A for different
boundary conditions for a bogie load at 120 km/h. a) Vertical displacement (uz); b)
Vertical acceleration (az).
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Figure 3.19: Comparison of the lateral speed (vy) at control point A for different boundary
conditions for a bogie load at 120 km/h. a) Rail; b) Interlayer.

model, presenting even a better description of the vertical response (zero before load
arrival). The viscous Kelvin-Voigt boundary imposes rather a constrained motion, as the
lateral displacements are almost zero next to the boundary.

Figure 3.21 compares the SED as defined by Equation 3.34 for the three considered
cases on control point A. On the topmost layers the values are the same, although deeper
in the subgrade the paraxial approximation leads to lower levels of energy. On control
point B, however, the paraxial approximation is the one allowing the most energy to leave
the model through the elastic boundaries and to be absorbed by the paraxial elements.

These comparisons show that both boundary solutions yield similar results when only
the vertical maximum values are of interest, i.e. only the values beneath the moving load
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Figure 3.20: Comparison of the interlayer vertical response at control point B for different
boundary conditions for a bogie load at 120 km/h. a) Vertical displacement (uz); b) Lateral
displacement (uy).
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Figure 3.21: Comparison of different boundary conditions: SED values at different control
points for a bogie load at 120 km/h. a) Control Point A; b) Control Point B.

at the moment of the applied force. This is often the case when measuring maximum
displacement or stress on layers. Although the lateral behavior is poorly approximated
by the viscous Kelvin-Voigt boundary, this solution can be used when the vertical track
response is of interest.
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3.4 Elastic response of the railway track

In this section, the dynamic response of a conventional track structure subjected to moving
load at speeds up to 270km/h is analyzed. The geometrical and mechanical characteristics
of the conventional track structure considered in the previous sections is maintained (Table
3.1). It is composed of three layers (fresh ballast, fouled ballast and interlayer) and the
subgrade (stiff soil, E = 100 MPa). A total length of 84 m is modeled, corresponding to 140
sleepers’ bay. The mesh is composed of 56082 nodes, 60625 4-node bilinear qudrilateral
elements and 1405 beam elements modeling the rail.

Two moving loads of 85kN are applied, which are 3 m apart in order to model the
passage of a TGV bogie on a conventional line. The remaining load parameters are to=0.5 s
and ȧ=150 m/s3. The maximum necessary displacement imposed by the load methodology
is of 53 m, obtained for the 270 km/h case. The chosen zone of interest is under the 100th

sleeper, or between y=60 m and y=60.6 m. Under sleeper points are at position y=60.12
m and between sleeper at position y=60.42 m. These characteristics are summarized in a
schematic representation in Figure 3.22.

3.4.1 Mechanical response at small speed

The track response for a bogie passing at 15 km/h is first analyzed for elements under
the sleeper. The choice of first characterizing the small speed response is motivated by
providing a basis for the study of the influence of speed on the track response showed in
the next section. Figure 3.23a presents the vertical displacement profile of points under
the sleeper on the different layers. At the subgrade, the considered point is at a total
depth of 1.10 m under the sleeper. All other points represent the middle point of the
respective track layer. The rail vertical maximum displacement is around 0.6 mm, which
is coherent with observed values on highly compacted conventional lines. Rail pads are
responsible for 50% of the total maximum displacement of the rail (difference between
the rail and sleeper vertical maximum displacement, Figure 3.23a), which highlights the
importance of this elastic component on load distribution. All track layers are sensible
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Subgrade
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Figure 3.22: Schematic representation of the conventional track for linear elastic results
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Figure 3.23: Kinematic response of the track components for bogie load passing at 15
km/h. a) Vertical displacement (uz); b) Vertical acceleration (az). Rl: Rail, Sl: Sleeper,
FB: Fresh ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade.

to the loading/unloading imposed by the axle distance, the subgrade in a smaller degree
than the other layers. The vertical acceleration is shown from the sleeper to the subgrade
in Figure 3.23b. As values are very small (≈0.1m/s2) due to the considered low speed, the
numerical noise is of the same order of magnitude of the acceleration levels, specially at the
subgrade. The 15 km/h can thus be considered as a quasi-static loading. On higher speeds
the observed numerical noise can be neglected, as will be shown in the next sections.

Stress and strain on materials are also obtained from the model. Figures 3.24a, 3.24b
and 3.24c show the evolution of lateral, vertical and shear stress with loading, respectively.
The fresh ballast material is the one presenting the highest increase in vertical stress, pass-
ing from 5kPa to 35kPa during loading. Moreover, two loading cycles almost independent
are observed on the vertical applied stress (Figure 3.24b). Lateral stress showed to be very
dependent regarding material layer and depth (Figure 3.24a). The lateral stress of fresh
and fouled ballast layers is sensitive to the different axles, although these layers presented
out-of-phase maximums. On the contrary, lateral stress of the interlayer and the subgrade
is less sensitive to axles, i.e. a global increase and decrease of lateral stress is observed at
the bogie scale rather than the axle scale. This could be explained by the lower Young’s
Modulus values and higher Poisson’s ratio of the subgrade material. Shear stress is not
very sensitive with depth, which is a direct result from linear elasticity hypothesis.

Principal stress axes rotation in the moving load problem has been already discussed
by many authors (Chan and Brown, 1994; Grabe and Clayton, 2009; Chang et al., 2012,
among others). This phenomenon is characterized by the nonalignment between principal
stress axes and vertical/horizontal axes. Thus, principal stress rotation is controlled by
shear stress variations compared with normal stress variations. As the moving load ap-
proaches a certain point, the major stress axis points to the loading and follows it along
its trajectory. During loading, the principal stress axes are only aligned with vertical and
horizontal axis when the load is exactly over the considered point, thus the vertical stress
is maximum and shear stress is null, as observed in Figure 3.24d, where the principal
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stress axes rotation angle (αyz) is presented. It is obtained by Equation 3.35. Maximum
and minimum values are not obtained at maximum values of shear stress but rather at
certain combinations of normal and shear stress.

αyz =
1

2
tan−1

(

2σyz
σzz − σyy

)

· 180
π

[°] (3.35)

The same characteristics can be studied in terms of the stress and strain invariants.
As the in-plane stresses and strains are fully considered by the 2D model, mean (px) and
deviatoric (qx) stress invariants and volumetric (εxv) and deviatoric (εxd) strain invariants
defined in the plane (y, z) are used. These are defined as:
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Figure 3.24: Time response of stresses on track layers a) Lateral stress (σyy); b) Vertical
stress (σzz); c) Shear stress (σyz); d) Principal stress rotation angle (αyz). FB: Fresh
ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade.
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px =
σyy + σzz

2
(3.36)

qx =

√

(

σyy − σzz
2

)2

+ σ2
yz (3.37)

εxv = εv = εyy + εzz (3.38)

εxd =

√

(

εyy − εzz
2

)2

+ ε2yz (3.39)

Figures 3.25a and 3.25b present these results in terms of stress invariants px and qx.
Both mean and deviatoric stresses increase when the load approaches and their maximum
values occur when the load is exactly over the considered point. Following vertical stress
response, fresh and fouled ballast layers present the highest increase on deviatoric stress
during load, from 2-3 kPa to 15 kPa at each axle passage. At the subgrade, mean stress
is less sensitive to the combination of axles on the considered case, while deviatoric stress
is sensitive to each axle passage. As the axle loads spread by the sleepers through the
ballasted layers over the subgrade, their effects are added over larger distances and reduc-
tion on mean stress is thus less pronounced between axles. In this sense, the characteristic
distance between axles defining a bogie is a key parameter on the reduction/increase of
stresses in the track layers.

Figures 3.25c and 3.25d present the results in terms of strain invariants εv and εxd.
These results give an insight of strain levels which the materials are submitted to. Ballast
layer present the highest values of both volumetric and deviatoric strain. In the considered
case, the deviatoric strain in the other layers presents a two-pic response for each axle
passage, due to the out-of-phase response of lateral and vertical strains. This effect is
caused by the discrete sleeper support, each pic being representative of the action of the
load over the track when the load is at the sleeper just before and then just after the
considered sleeper.

Figure 3.26a presents the stress response in the (px, qx) plane. The first interesting
finding is that increase and decrease of stresses do not happen through the same slope
once the two axle loads spread and interconnect, below the fresh ballast layer. Moreover,
each material is subjected to a different stress slope at each cycle. In the (px, qx) plane
the triaxial test condition is obtained at the 1/2 slope (45°). The fouled ballast is the only
one following this condition, while other materials are subjected to slopes lower than the
triaxial and in some cases even lower than the unitary slope.

The previous analysis considered points under the sleeper, thus fully loaded during
the moving load passage. However, the fresh ballast material is not equally loaded: points
under the sleeper and between sleeper present different stress paths. Between sleepers
points are laterally loaded by the action of ballast elements under the sleeper directly
receiving the load. In this case, both mean and deviatoric stress levels are lower, but
they follow a different stress path. Indeed, as shown in Figure 3.26b, the stress path is
characterized by increase of px and qx, followed first by a decrease of qx with px constant
and then a decrease of px with low variation of qx. This cycle is repeated for the second axle
of the bogie. Fouled ballast material presents also different stress path, although in this
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Figure 3.25: Time response of stress invariants on track layers. a) Mean stress (px); b)
Deviatoric stress (qx); c) Volumetric strain (εv); d) Deviatoric strain (εxd). FB: Fresh
ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade.

case the differences are less pronounced. These differences were already discussed by Bodin
(2001) on modeling aspects of the mechanical response of ballast on the track. However,
Bodin (2001) provided a point of view of differences on stiffness between under sleeper
and between sleeper ballast, without discussing the role of the stress path imposed by the
load on different representative points of the ballast layer. At further depth, the discrete
support characteristics are less important thus, do not lead to significant differences in
the interlayer and the subgrade soil.

3.4.2 Influence of speed on the track response

In this section the influence of load speed on the considered railway track structure is
assessed for speeds from 15 km/h to 270 km/h. Figures 3.27a and 3.27b show the increase
on maximum vertical displacement and accelerations, normalized by the maximum value
obtained at 15 km/h, respectively. The relative increase over the speed shows that the
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Figure 3.26: Stress paths at different materials for load at 15 km/h and stiff soil. FB:
Fresh ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade. Slopes of 30° and 45°
are drawn in gray in order to better identify friction angle. a) Under the sleeper points;
b) Between sleepers points.

maximum displacements are slightly affected by the increase of speed in the considered
case, maximum values at 270 km/h are only 14% higher on the subgrade than the 15
km/h speed case. Maximum displacement at the rail level seems to be even less sensitive
to the increse of speed. Accelerations, however, increase significantly as the speed of the
moving load increases.

The influence of speed on vertical stress is shown in Figure 3.28a. Vertical stress
increase is more pronounced in the subgrade than in the other layers, for a maximum
increase of around 8% compared to the 15 km/h case. From the performed simulations,
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Figure 3.27: Normalized kinematic response of the track materials with increasing moving
load speed. a) Vertical displacement (uz); b) Vertical acceleration (az). Rl: Rail, Sl: Sleeper,
FB: Fresh ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade.
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Figure 3.28: Normalized mechanical response of the track materials with increasing moving
load speed. a) Vertical stress (σzz); b) Shear stress (σyz). FB: Fresh ballast, FoB: Fouled
ballast, ITL: Interlayer, Sbg: Subgrade.
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Figure 3.29: Maximum rotation angle (αyz) of principal stress axes with increasing moving
load speed. FB: Fresh ballast, FoB: Fouled ballast, ITL: Interlayer, Sbg: Subgrade.

the fresh ballast layer does not present any increase in vertical stress with the load speed
increase. Shear stress variation with speed is presented in Figure 3.28b. In this case, a
more notable increase is observed for all layers. This result endorses the low increase of
vertical displacements and shows that the increase of speed has an effect more prononced
on shear stress rather than on vertical stress. Increase of speed imposes thus higher values
of shear stress, leading to higher principal stress rotation angles, which are presented in
Figure 3.29. This is an interesting preliminarly result, as the principal stress rotation is
usually related in the literature to higher plastic deformation. This last could be one of the
mechanisms leading to higher values of track settlement observed on conventional lines
when nominal speed is increased.

The invariants px and qx do not give the same perspective of these results. Figures
3.30a and 3.30b show the influence of increasing speed on the maximum values of px
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Figure 3.30: Normalized mechanical response of the track materials with increasing moving
load speed. a) Mean stress (px); b) Deviatoric stress (qx). FB: Fresh ballast, FoB: Fouled
ballast, ITL: Interlayer, Sbg: Subgrade.

and qx, respectively. The maximum mean stress px is quasi insensitive to increase of
speed, in all layers, as maximum values increase at most of 1.5%. This increase could be
neglected for pratical pourpuses or for calibration of laboratory test conditions reproducing
different load speeds. Even if the deviatoric stress is more sensitive, the maximum observed
increase is of around 8% on the subgrade. Interestingly, maximum deviatoric stress in the
fresh ballast layer slightly decreases with increasing speed, which can be explained by the
concurrent effect of increase of shear and vertical stress during the load passage.

From these results, load speed mainly influences the shear stress component developed
in the materials during loading. and thus principal stress rotation angles. The mean stress
is insensitive to load speed and the deviatoric response is influenced by the concurrent
effects of increase on lateral and vertical stress.

3.4.3 Crossed influence of moving load speed and subgrade stiff-
ness

A parametric study concerning the influence of the subgrade stiffness with increasing
moving load speed is conducted. In order to be able to compare different temporal signals
at different moving load speeds, the temporal axis is multiplied by speed of the considered
moving load. Considering the convective axis t.v [m] is a direct method to superpose signals
at different speeds. Figure 3.31a presents the rail vertical displacement (uz) during loading.
Increasing speed leads to higher vertical displacements on soft soils rather than stiff soils,
the train speed not affecting the vertical displacement profile in this case. Figure 3.31b
shows the sleeper vertical acceleration (az) during loading. Although soft soils condition
leads to higher accelerations, the observed increase in values can be mainly attributed to
the moving load speed.

The influence of the subgrade stiffness on the stress and strain characteristics of the
fresh ballast is presented in Figures 3.32 and 3.33. Volumetric characteristics (px and
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Figure 3.31: Influence of subgrade stiffness and moving load speed on the kinematic re-
sponse of the track materials. a) Rail vertical displacement (uz); b) Sleeper vertical accel-
eration (az).
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Figure 3.32: Influence of subgrade stiffness and moving load speed on the stress response
of the fresh ballast layer. a) Mean stress (px); b) Deviatoric stress (qx).

εv) are insensitive to variations on moving load speed and subgrade stiffness, while qx
decreases and εxd increases with increasing speed and decreasing subgrade stiffness. On
the other materials, increase in load speed leads to higher deviatoric stress and strain, the
effect being more pronounced for low stiffness. Deviatoric stress and strain in the subgrade
are presented in Figure 3.34. While maximum deviatoric stress increases slightly from 15
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Figure 3.33: Influence of subgrade stiffness and moving load speed on the strain response
of the fresh ballast layer. a) Volumetric strain (εv); b) Deviatoric strain (εxd).
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Figure 3.34: Influence of subgrade stiffness and moving load speed on the deviatoric re-
sponse of the subgrade soil. a) Deviatoric stress (qx); b) Deviatoric strain (εxd).

km/h to 270 km/h, maximum deviatoric strain values increase more than two times in
the case of low stiffness of the subgrade soil.
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3.4.3.1 Influence of speed and subgrade stiffness on rotation of the principal
stress axes

As discussed in Section 2.4, rotation of the principal stress axes is a key issue on the
deformation characteristics of soil materials. In this section, some insights on the stress
rotation characteristics of different materials is discussed, and the role of the subgrade
stiffness in this case is assessed. Figures 3.35a and 3.35b present the rotation stress angle
(αyz) as a function of the deviatoric and the mean stresses for points under the sleeper
at the fresh ballast layer, for both soft and stiff subgrades. The projections of each two
variables from the 3D representation is also presented in the figures in order to facilitate the
comprehension of the described 3D path. Some of the key features already presented are
once again observed: low influence of speed at stiff subgrades, low variation of maximum
px with increasing speed, reduction of maximum qx with increasing speed for soft soils
and increase of maximum rotation angles with increasing speed also for soft soils. These
variations result from a change in the imposed stress path in the (px, qx) plane and in the
curve characteristics in the (αyz, qx) plane. The maximum obtained rotation angle values
are of 15° for stiff soils and as high as 30° for soft soils for the 270 km/h case.

Between sleeper points in the fresh ballast layer are also verified. As previously dis-
cussed, they are submitted to a different stress path as the loading characteristics are
essentially different from under sleeper points. Figure 3.36 presents the results for soft
and stiff soils in this case. Rotation angles αyz are higher for points between sleepers than
under the sleeper (Figure 3.35). Moreover, the differences on deviatoric stress on positive
and negative values of αyz are more pronounced, as the characteristic stress path is dif-
ferent from the under sleeper case. The maximum obtained values of αyz are in this case
of 30° for the stiff soil case and as high as 40° for the soft soil case.
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Figure 3.35: Rotation of the principal stress axes at the for points at the fresh ballast
layer under the sleeper as a function of both deviatoric and mean stresses. a) Soft soil; b)
Stiff soil.
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Figure 3.36: Rotation of the principal stress axes for points at the fresh ballast layer
between sleepers as a function of both deviatoric and mean stresses. a) Soft soil; b) Stiff
soil.
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Figure 3.37: Rotation of the principal stress axes (αyz) at the subgrade as a function of
both deviatoric and mean stresses. a) Soft soil; b) Stiff soil.

At the subgrade level, the influence of the smaller reduction in px compared to qx
between axles characterizes the upper circles in the (αyz, px) and (αyz, qx) planes. From
the obtained results, the influence of speed on soft soils is to impose higher slopes in
the (qx, px) plane, characterizing as an anticlockwise rotation around its initial value.
Maximum rotation angle is 15° for all cases except the soft soil at 270 km/h, for which
20° is obtained.
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3.5 Concluding remarks

The main aspects of the numerical model used in this work are presented and discussed in
this chapter. Mechanical and geometrical parameters representing a conventional railway
line are used. A 2D finite element model with a modified width plane strain condition
is proposed. Width calibration by matching the vertical strain of the 2D and 3D models
subjected to static loading is performed. This procedure leads to good approximations on
vertical strain and displacements, but differences exist in both vertical stress and mainly
shear stress. The 2D model is not capable of correctly defining the radiation condition
existing in the 3D medium, as widths are constant at each depth. This is showed by
the variations in the shear stress obtained for the static load condition. However, it is
considered as a good approximation of the mechanical response in the (y, z) plane and it
is certainly more adapted to perform stochastic calculations, as the computational cost is
lower than the 3D model.

Domain size and discretization are verified by both static and dynamic considerations
and tests. Absorbing boundary conditions based on a viscous elastic Kelvin-Voigt model
and the paraxial approximation are implemented and their performance compared. For
the linear elastic model, both presented comparable results in loaded points. Numerical
damping on high frequencies is considered by using a particular set of parameters of the
Newmark numerical scheme. A two-step loading strategy, composed on load initialization
and speed initialization phases is proposed in order to reduce spurious wave generation in
the model. All these aspects are the basis for the numerical model used in the following
chapter. Some of them are rediscussed in Chapter 5, when the nonlinear numerical model
is presented.

A first analysis of the mechanical response of the railway track model is made for a
bogie passing at 15 km/h and discussed in terms of stress and strain invariants for a stiff
subgrade soil. The role of the discrete support on load repartition over sleepers and stress
in layers is assessed. It is then noted that under sleeper and between sleepers control
points at the fresh ballast layer do not follow the same stress path. Principal stress axes
rotation occurs as a natural consequence of shear stress in the layers caused by the moving
load.

One of the studied aspects is the influence of load speed. It mainly affects the vertical
acceleration levels and the maximum shear stress thus, the maximum principal stress axes
rotation angle. However, this effect is less important in terms of stress invariants.

In addition, the subgrade stiffness influence is verified for different speeds and as
expected, soft soils are more sensitive to moving load speed than stiff soils. Deviatoric
stress and strains are more sensitive to variations in the subgrade stiffness than volumetric
stress and strains. The coupled effect of volumetric and deviatoric stress at the principal
stress axes rotation angle is verified for soft and stiff soils. Once again, different paths
are obtained for ballast depending if under sleeper or between sleepers control points are
considered. Between sleeper points are those presenting the highest values of rotation
angle, specially when soft soils are considered. In this case, speed significantly affects the
stress path and maximum rotation angles.

Four main conclusions are drawn from these results:

1. The importance of the discrete support on the ballast mechanical response. While
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considerations from static load are mainly based on load repartition over sleepers,
the discrete support also plays an important role in the moving load case, imposing
different stress paths on materials depending on their position. This is an important
aspect, as deformation characteristics of geomaterials are stress path dependent.
With cycles, variations of the mechanical properties are expected to appear, as at
each position a different stress path is mobilized.

2. It is also shown that materials are subjected to stress paths different from the one
imposed by the triaxial apparatus (1/2 slope in the (px, qx) plane). Assessing the
long-term behavior in terms of settlement laws from cyclic loading using this device
does not seem appropriate, as it is not representative of the imposed stress variations
the track materials are subjected by the moving load.

3. The influence of the moving load speed and subgrade stiffness on the mechanical
response of the track. From the model response, speed influences mainly shear stress
and deviatoric stress and strain. In this work, no increase in load magnitude is
considered with speed, as only the dynamic influence of speed is of interest and not
the train-track dynamic interaction. In this sense, the volumetric response is seldom
affected, as it depends more on the load magnitude than load speed.

4. Principal stress axes rotation is expected in moving load problems, as the shear
stress component is related to the moving load speed. The obtained maximum values
(between 15° and 40°) depend on the stress state of materials, the rotation angle
being higher for the same shear stress for low vertical and lateral stresses. In the
literature, the occurrence of principal stress axes rotation is often related to higher
plastic strains when compared to stress paths not presenting this aspect, i.e. not
presenting shear stress.

In the next chapter, the impact of stiffness variations of the different geomaterials
on the track stiffness is discussed. A nonintrusive probabilistic framework is considered
and spatial variability is modeled by the random field theory. These aspects give a close
look on how stiffness variations are captured by the track stiffness measurement and the
conducted global sensitivity analysis gives a better insight of the relative importance of
each material in the global response.
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4.1 Introduction

Railway track geomaterials present different scales of complexity and heterogeneity. From
the coarse grained ballast material to the subgrade, grain size, geometry and nature vary
not only between layers but also inside each layer. Random variations of the mechanical
properties of railway materials have been verified both in situ and in laboratory tests
(Shenton, 1984; Jacobsson, 1998; Baessler and Ruecker, 2003; Duong et al., 2014b, among
others). Authors seem to agree that spatial variations of track properties may contribute
to track degradation (Dahlberg, 2010; Steenbergen, 2013), although more in situ data in
this sense seems necessary in order to consolidate this result.

Further insight in the impact of track properties variability on the mechanical response
of the railway track is given in this chapter. A probabilistic nonintrusive methodology
is considered and the influence of mechanical properties variations is studied in terms
of different track stiffness measures and track layers settlement during train passage at
different speeds.

This chapter is organized in five sections. A background on railway track models ac-
counting for track properties’ variability is given in the first section. Then, the probabilistic
nonintrusive methodology used in this work is summarized. In the third section, the input
data obtained from an extensive cone penetration test Panda campaign performed on a
classical line by SNCF is discussed. Hypothesis of how to link the cone resistance to the
Young’s Modulus are presented.

The fourth section is devoted to main results regarding track global stiffness as mea-
sured by a point load force, either with spatial variability or not. Global sensitivity analysis
is performed and conclusions are drawn regarding model hypothesis and mechanical prop-
erties of each layer. These results are further compared to those obtained from high-speed
line parameters. The influence of rail pads variability on the global analysis is also assessed
on a parametric basis. Finally, the influence of the deterministic rail bending stiffness on
the obtained values is assessed by means of the analytical solution proposed by Fryba
(1972) of a beam resting on an elastic foundation subjected to moving loads. The speed
influence on the track global stiffness as observed by a train bogie is discussed in the fifth
section. The impact of the different boundary solutions implemented in the model and
discussed in Chapter 3 is assessed and some conclusions are drawn in terms of modeling
characteristics. Final remarks are presented in the last section.

4.2 Probabilistic nonintrusive methodology

A probabilistic nonintrusive methodology is applied in this work in order to characterize
the mechanical response of the railway track. This approach is largely used on risk analysis
for different scientific and industrial domains (Sudret, 2007; Helton et al., 2006, among
others). It is a robust and versatile method, as it allows to keep the model description
in a classical deterministic way, and concentrate the uncertainties in input variables and
their influence on the output variability. It can be presented as in Figure 4.1 (adapted
from Sudret, 2007). Phase A consists on obtaining a numerical model which correctly
reproduces the physical phenomena in question. This may be, in some cases, a simplified
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numerical model (or surrogate model) which was previously compared and validated with
a more complex model or existing data. The model is often already available from previous
developments. Phase B consists on obtaining a full probabilistic description of the input
variables, in terms either of random variables or random fields if a spatial description is
available or needed. This probabilistic description may be obtained either by available data
(in situ or laboratory test), or from expert analysis and previous experience. This step is
a crucial one for the probabilistic analysis. Results of numerical simulations will depend
strongly on the input variability and correlations that may exist between them. Once
this probabilistic description is obtained, Phase C consists on propagating the input’s
uncertainties through the model, in order to estimate a certain quantity of interest’s
variability. Moreover, failure analysis may be conducted based on existing or proposed
failure thresholds. Finally, conducting both local and global sensitivity analysis may reveal
which inputs impact the most the quantity of interest’s variability. In this case, the sources
of uncertainty may be reduced to only those that play an important role on the quantity
of interest’s variability.

Phase B

Quantifying

uncertainty

sources

Random variables

Random fields

Phase A

Numerical model Phase C

Incertainties

propagation

through the

model

Response variability

Failure probability

Sensitivity analysis

Figure 4.1: Nonintrusive methodology (adapted from Sudret, 2007).
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4.3 Probabilistic characterization of materials’ stiff-

ness

The characterization of the railway track layers’ stiffness in classical lines using the dy-
namic cone penetration test Panda (Gourvès, 1991) has become a standard procedure in
France since 2009. These tests are usually coupled with a geoendoscopic analysis, which
consists in passing a camera through the bore-holes obtained from the Panda tests. A
quantitative characterization of material’s resistance is obtained from the dynamic cone
resistance measure (qd) and a full qualitative characterization of the soil nature is ob-
tained from the geondoscopic images. These tests are prescribed previously to renewal
track works, as different useful engineering parameters can be estimated, such as layers
thickness, soil nature and water presence (useful if the soil presents a poor drainage ca-
pacity and when a drainage system should be installed). The Panda test and adjacent
parameters are described in more details in Appendix F.

In this work, in situ data coming from a conventional railway line (used by both
regional trains and high speed trains at reduced speeds) is considered. Figure 4.2 presents
a global scheme of a conventional line in France. Usually, conventional lines are composed
by three layers, from top to bottom: fresh ballast, fouled ballast and the interlayer. The
interlayer layer is composed of crushed ballast grains and soil fines (Trinh et al., 2012),
which was not initially built but was created due to repeated loading over the years. In
many classical lines the subgrade is the natural soil already in place when the track was
built.

The Panda tests used in this work were made at irregular distances, from 30 m to 600
m along the track, in order to characterize more than 60 km of the railway track. Measures
were made indistinctly on either the left and right side or in the middle of the track. The
mean thickness values obtained for the fresh ballast, fouled ballast and interlayer were 25
cm, 15 cm, 20 cm, respectively. Interlayer and subgrade were identified as sandy material
by the geoendoscopic analysis.

From these tests, a statistical description of the dynamic cone resistance is made under
the hypothesis of invariance of each soil layer on the longitudinal direction. This hypothesis
holds as a first approach to verify the influence of mechanical properties variability on the
railway track response.

The empirical histograms obtained are presented in Figure 4.3. The total number of
Panda tests considered on the analysis is presented in Table 4.1. All four layer were not
always observed at each test. It is noted that the coefficient of variation is particularly
high for the fresh ballast layer, as it is composed of a highly coarsed granular material.
Interlayer layer also presents a high coefficient of variation, as it is a very heterogeneous
material. Nevertheless, all four layers present coefficients of variation higher than 40%,
which endorse with the strong variability encountered on geomaterials. The Kolmogorov-
Sminorv test was carried out for each empirical distribution and the lognormal probability
distribution was accepted for all layers with a 5% level of rejecting the null hypothesis.

Even if the dynamic cone resistance (qd) is used to evaluate in situ soil strength, soil
mechanical behavior parameters are needed in order to carry out numerical simulations.
In this sense, researchers have worked on characterizing empirical relations between useful
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Figure 4.2: Material layers in a conventional railway line in France (adapted from Trinh
et al., 2012).
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Figure 4.3: Histograms of qd for the four layers. a) Fresh ballast; b) Fouled ballast; c)
Interlayer; d) Subgrade.
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Layer N° measurements

Fresh ballast 146

Fouled ballast 128

Interlayer 45

Subgrade 112

Table 4.1: Number of measurements for each layer.

mechanical parameters, as the California Bearing Ratio (CBR), the static cone penetra-
tion resistance, and the soil stiffness, among others. More on the different analytical and
empirical relations between the Young’s Modulus and the dynamic cone resistance are
discussed in Appendix F. In this work fresh ballast and fouled ballast are considered
as gravel/crushed stones material and the interlayer and subgrade follows their charac-
terization obtained from the geondoscopic tests. The relations used are summarized in
Equations 4.1 and 4.2.

Gravel/crushed stones (Chua, 1988):

E = 67.8 · q0.55d [MPa] (4.1)

Sand (Lunne et al., 1997):

E = 4 · qd ∀qd ≤ 10 [MPa] (4.2)

E = 2 · qd + 20 ∀10 ≤ qd ≤ 50 [MPa]

These relations are based on the secant modulus in order to account for the fact that
the physical phenomenon taking place are of small “plastic deformation”and the deforma-
tion levels are beyond the elastic domain of the soils (i.e. ε > 10−5). These assumptions
are based on the numerical simulations presented in Chapter 3, which showed that soil
experiments strains greater than the elastic limit. They are further discussed in Chapter
5, when the results from the nonlinear mechanical model are presented.

Applying these equations on the obtained distributions of cone resistance (qd), the
probabilistic description of the Young’s Modulus for all layers in terms of its probability
density function (pdf) is obtained (Figure 4.4). As Equation 4.1 is nonlinear, statistical
moments of the qd distributions of fresh and fouled ballast are not conserved by the
transformation. These functions depend on the soil nature and in this sense they amplify
the input data uncertainty, although this fact could not be taken into account on this
study.

It must be pointed out, however, that empirical relations established in the literature
must be applied with caution, as they were obtained for a particular set of conditions
(initial stresses, loading path, soil nature). Moreover, these parameters are not always fully
related (as the physical phenomena may not be the same), and uncertainty in obtaining
these relations always exists. Nevertheless, this approach is considered as a relevant one
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Figure 4.4: Probability density function (pdf) of the Young Modulus E for the four layers.
a) Fresh ballast; b) Fouled ballast; c) Interlayer; d) Subgrade.

as it permits to characterize the variability on the Young’s Modulus of track materials
directly from in situ tests.

The spatial variations are modeled by an independent and invariant random fields
associated with each material. More details on the stochastic methods used in this work
are discussed in the Appendix D. No correlation structure was identified from the test
results, as they were performed on long distances thus considered in this analysis as
independent. A theoretical correlation function is imposed in order to verify the influence
of the correlation structure on the variability of the response. Random fields are generated
by the decomposition of the correlation structure. The squared exponential autocorrelation
function (Equation 4.3) was chosen to describe the correlation structure of the random
field.

ρij(τ) = exp

(

−πτ
2
y

θ2y
− π

τ 2z
θ2z

)

(4.3)

The correlation lengths θy and θz in Equation 4.3 are a measure of the common in-
fluence between two points distant of τy = yi − yj and τz = zi − zj, respectively, y being
the longitudinal axis and z the vertical axis of the railway track. In this chapter, different
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correlation lengths θy are studied. The limiting case θy = ∞ is also considered in order
to model when no spatial variability is present. Thus, the considered random field being
fully described by the first marginal distribution and being equivalent to a random vari-
able formulation. This approach is useful for the sensitivity analysis performed in Section
4.4.4.

The correlation length θz is considered as infinite on the vertical direction, so each
column of soil at the same layer assumes the same value of elastic modulus at each
simulation. This hypothesis holds as the width of track layers is much smaller than track
length. In the case of the subgrade, the same assumption is maintained, as only the
variability over the track length is of interest rather than over layer’s width. Each layer
is assumed to be independent of each other, although the presented formulation can take
into account correlated random fields.

4.4 Variability of track global stiffness

In this section the track global stiffness measure k is studied using the proposed numerical
model. A moving force of magnitude Fz=100 kN at constant speed v=15 km/h is applied
on the track, following the characteristics of the EMW vehicle discussed in Chapter 2.
The track global stiffness (k) is then defined as being the vertical force applied by the
wheel on the rail (Fz) over the rail vertical displacement (uz) at the point of the applied
force, k = Fz/uz. Although being a local measure, it is expected to give an insight of
the complete structure’s response as the track structure distributes the wheel load over
several sleepers.

The followed methodology in this section is: first, a deterministic case is defined and
the railway track global stiffness kdet is compared to one obtained when random fields
have no spatial variability (i.e. θy = ∞). Then the impact of the spatial variability and
inhomogeneities (i.e. θy <∞) existing in track geomaterials is taken into account and their
influence is assessed by comparing it to the homogeneous case. The adopted simulation
scheme/procedure is the following:

1. A given value of cone resistance (qd) is considered for each layer at each finite
element. These may be all assume the same value (θy = ∞) along y or be dependent
upon the position y along the railway track (θy < ∞). In all cases cone resistance
values are the same for any depth, in the same layer, at a given position y (θz = ∞).

2. Young’s Modulus (E) is obtained from the cone resistance (qd) from the relationship
functions presented on Section 4.3. Their values are used on numerical calculations
but only the cone resistance field at each layer is characterized probabilistically. In
this sense the cone resistance field is subjected to linear or nonlinear determinis-
tic transformation in order to obtain the Young’s Modulus, which is used on the
numerical model.

3. The railway track global stiffness at each position along the track (y) is obtained
from each calculation of the numerical model.

4. Statistical analysis of the results is performed.
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The numerical model used in this section has the same geometrical characteristics as
the one discussed in Section 3.4. The full track system is composed of rail, pads, sleepers,
unconfined ballast between sleepers and the four identified layers (fresh and fouled ballast,
interlayer and subgrade soil). The model is composed of 25468 nodes, 850 beam elements
for the rail and 23982 4-node bilinear qudrilateral elements for the track infrastructure.
Track mesh is 24m long, modeling 40 sleepers bay. Linear elastic mechanical behavior is
considered for all materials (i.e. solid and structural ones). The mesh is kept the same on all
simulations in this section in order to prevent variabilities due to the numerical procedure.
Dirichlet boundary condition is imposed on the normal direction to boundaries (i.e. uy = 0
over lateral boundaries and uz = 0 over bottom boundary). Track is loaded from 6m to
18m in order to avoid boundary effects.

4.4.1 Random variables

As recalled before, the deterministic case is defined by considering only the mean values
of the cone resistance (qd) at each layer. A comparative result of the deterministic case
and 500 Monte Carlo simulations of the random fields with no spatial variability is given
in Figure 4.5. Rails, pads, sleepers and unconfined ballast are kept deterministic.

Results of the railway track stiffness random field are presented between 8 m and 17 m.
The sleeper’s discrete support is well observed from both the deterministic and probabilis-
tic simulations. In this sense, depending upon the position along the track (considering
over sleeper or between sleepers) the value of k is not the same. The obtained track stiff-
ness random field is thus nonhomogeneous, as its values depend on the sleeper positioning.
So, although supposing homogeneity of input random fields, elastic mechanical behavior
and perfectly horizontal layers, the geometry of the railway track impose a nonhomoge-
neous probabilistic result. Indexing the track stiffness random field in the relative position
in the unitary cell simplifies the field to the homogeneous case, i.e. constant mean values.

As depicted in Figure 4.5a, kdet differs from the mean values of the random fields
with no spatial variability case, which is a characteristic of nonlinear models. In the
present case, the nonlinearity between the layers Young’s Modulus and the track global
stiffness (k) can be viewed as intrinsic of the modeled problem: beam vertically loaded
and discretely supported over a multilayer medium. Although the degree of nonlinearity
can be considered small, as the obtained values are close, this result demonstrates that
considering only the input mean values is not equivalent to mean values of the output.

In this work, as two transformations are considered (from cone resistance (qd) to
Young’s Modulus (E) and then numerical simulation of railway track global stiffness k, as
explained above), this effect is even more pronounced. However, when no homogeneities
are considered, the same value of k is obtained at the same position of the railway track
periodic cell. The case with spatial variability will further reveal the impact of the corre-
lation length on the variance of the railway track global stiffness.

Figure 4.5b represents the coefficient of variation for both mean (CVµ̂k) and standard
deviation (CVσ̂k) estimators. It was considered that convergence was achieved when CVµ̂k
and CVσ̂k were smaller than 1%.
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Figure 4.5: Results of track global stiffness for the homogeneous case. a) Railway track
global stiffness (k) computed at each position. Green dashed line represents the deter-
ministic case (kdet), red solid line represents the mean values of the random fields case,
blue dashed line represents a random sample and gray represent all obtained results; b)
Evolution of the coefficient of variation of mean and standard deviation estimators.

4.4.2 Spatial variability

The first step when considering spatial variability is obtaining Young’s Modulus random
fields for each layer from cone resistance fields. Figure 4.6 represents 500 Monte Carlo
samples of the Young’s Modulus fields considering a correlation length of 0.5 m, where a
random sample generated with a squared exponential autocorrelation function (Equation
4.3) is shown in blue solid line and all samples are represented on gray. These Young’s
Modulus fields are used as input parameters for finite element calculations.

The mechanical simulations’ results for the cases θy=0.5 m and θy=5.0 m are presented
in Figure 4.7. Convergence was verified and achieved under the same criteria proposed in
the previous case. The blue dashed line represents one random sample, the red solid line
is the spatial mean and gray lines represent all obtained results. It is observed that spatial
variability may be captured by random samples, which can be interpreted as a possible
value of the track stiffness for the considered part of the track.

Results regarding variance reduction for correlation lengths from 0.25 m to 5.0 m ob-
tained by 500 Monte Carlo simulations are presented in Figure 4.8, as well as for the case
where all points are fully correlated (i.e. random field with infinity correlation length).
Dashed lines represents the minimum and maximum values obtained at each considered
case. These variations are due mainly to the sleeper’s presence: minimum values corre-
spond to the position between sleepers and maximum values to the position over sleeper.
The correlation length (θy) plays an important role on the variance of the global stiffness
field. Figure 4.8a shows that the mean values of the field are almost unaffected with the
reduction of the correlation length, excepted for small correlation lengths, when an in-
crease is observed. The coefficient of variation (Figure 4.8b), reduces with the reduction
of the correlation length. It can be noticed that random spatial variability reduces the
variability of the output as a whole, as letting some variability to exist at each sample.
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Figure 4.6: Young’s Modulus stochastic fields, blue solid line represents one random sample
of the field. Squared exponential autocorrelation function with correlation length θy=0.5
m. a) Fresh ballast; b) Fouled ballast; c) Interlayer; d) Subgrade.

In the railway context, this result is only half of the necessary information on how
the track variability will impact the railway system. The vehicle dynamic behavior will
certainly not be the same if spatial variability exists or not, and its response to the
obtained global railway track stiffness fields must be assessed. However, this analysis was
not conducted in this thesis and remains as a proposition for further works.

Another important point is that the variability on the global track stiffness is smaller
than the input’s one. Comparing the cone resistance coefficient of variation (shown in Fig-
ure 4.3, 47.0% < CV < 81.5%) and the ones obtained for the railway track global stiffness
(shown in Figure 4.8, 4.0% < CV < 10.5%), it is observed that the spatial coefficient of
variation is much smaller for all cases than the variability obtained on the measured data
(and imposed on the model’s input). Two main key factors are proposed as to explain
this reduction. Firstly, the geometry of the system (specifically the force distribution over
sleepers) would play a role on homogenizing the applied forces and then accounting for
less variation for this global result. Secondly, the fact that the superstructure was kept
deterministic during simulations reduced the output variations. Indeed, rail pads are the
less stiff element on the track and they are responsible for much of the total rail deflection,
as discussed in Section 3.4.1.
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Figure 4.7: Track global stiffness k computed at each position. Blue dashed line represents
a random sample, red solid line is the spatial mean and gray represent all obtained results.
a) Correlation length of input fields θy=0.5 m; b) Correlation length of input fields θy=5.0
m.
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Figure 4.8: Variance reduction of track stiffness. Red line represents the fully correlated
case and blue lines the different correlation lengths. Maximum and minimum obtained
values are represented by dashed lines. a) Mean values (µk); b) Coefficient of variation
(CV ).

The homogenizing role of the force distribution over the sleepers can be further studied
by the autocorrelation structure of the global track stiffness random field. In this case, it
is not the variance reduction that is of interest but rather the importance of the railway
structure on how the imposed correlation lengths on the input field will be measured by
the track global stiffness. Figure 4.9 presents the autocorrelation coefficient (ρ) of the
first considered position relative to the other positions. Higher input correlation lengths
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(θy) lead to strongly correlated output fields, i.e. the global stiffness is self-correlated to
a longer distance. In order to evaluate it more precisely, the global stiffness random field
can also be characterized by its scale of fluctuation (lc), which is obtained by the following
expression (Vanmarcke, 1983):

lc(x) =

∫ ∞

−∞

R(x, x′)dx (4.4)

where R(x, x′) is the autocorrelation matrix of the random field. For the exponential
autocorrelation function used in this work (Equation 4.3), the scale of fluctuation (lc) and
the correlation length (θy) represent the same quantity. In the following, the term scale of
fluctuation will be used for the output field and correlation length for the input field.

The obtained values of lc for the track global stiffness at each considered case are
represented in Figure 4.10a. As the simulated track global stiffness field is finite, values
near the boundaries must not be considered as they do cannot take into account both sides
of the correlation structure. In this case smaller values are obtained as the integrand from
4.4 is finite. In order to keep the second-order hypothesis, this effect can be neglected
starting the analysis from lc meters from each boundary. Figure 4.10b represents the
values of lc using this methodology. Bars are plotted as to show minimum and maximum
values obtained of the scale of fluctuation at each case. The unitary slope is also plotted
in order to better verify the variations of lc according to θy. As expected, the scale of
fluctuation increases with increasing correlation length. As the correlation length (θy)
reduces, a limiting value of 3 m is obtained, which corresponds to 5 sleepers bay. This
result means that superstructures homogenizes the variability on the track layers in such a
way that the global track stiffness field presents at least a scale of fluctuation equal to the
distance on which the forces spreads over the structure. Moreover, the force spread over
the structure is much related to the rail pad stiffness. Reducing rail pad stiffness increases
the importance of the environing sleepers, which can in turn increase the limiting value of
lc of the track global stiffness field and probably change the slope of the curve in Figure
4.10b, although these hypothesis were not verified during this work.

From another point of view, Figure 4.10b also shows that a limiting value of θy is
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Figure 4.9: Autocorrelation coefficient (ρ) for the track global stiffness random field of the
first position relative to the others.
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Figure 4.10: Scale of fluctuation (lc) of the global stiffness random field. a) Full represen-
tation of lc according to the position; b) Increase of lc with the correlation length of the
input fields.

obtained, for which no further reduction of lc is obtained. Although this value is not
completely characterized in this work, it can be seen that variations of lc are irelevant for
θy <0.5 m. The work from Cottereau et al. (2011) showed that the scale of fluctuation
of the ballast material is in the order of magnitude of the grain size, approximately 3
cm. From the presented results, such small correlation lengths cannot be measured by the
track global stiffness. Considering random fields with such small correlation lengths seen
to not be appropriate in this case, as a limiting distance higher than the grain size exists
in the track global stiffness field.

4.4.3 Influence of the structural response on the output vari-
ability

In the case of homogeneous layers, the railway global stiffness values can be compared
with the analytic solution of a beam resting on a Winkler foundation proposed by Fryba
(1972), whose mathematical derivation is presented on Appendix B. In this sense, the
structural influence of the rail bending stiffness on the calculated value of track global
stiffness can be assessed.

An iterative procedure is used in order to solve the inverse problem posed by imposing
a certain vertical displacement of the rail (uzFEM

) under the moving load (calculated by the
finite element model) and obtaining the corresponding stiffness of the Winkler foundation
(kWinkler). A first trial value of kWinkler is considered and as the response of the analytical
solution is linear with respect to k, a fixed direction of convergence is determined. The
maximum error (ǫmaxk ) is fixed at 10−6 m between the vertical displacement of the rail
obtained from the analytical solution (uzWinkler

) and the finite element model (uzFEM
),

ǫk = uzWinkler
− uzFEM

. These operations are schematically represented in Figure 4.11.
This procedure is repeated for each longitudinal position and each simulation.
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Figure 4.11: Schematic representation of the implemented algorithm for solving the inverse
problem posed by imposing a vertical displacement under the load and obtaining the
corresponding stiffness of the soil foundation.

The comparison of the track global stiffness and the soil stiffness calculated from
the analytic solution of Fryba (1972) is presented in Figure 4.12 for stiff and soft soil,
where kWinkler stands for stiffness of the Winkler foundation and kFEM is the track global
stiffness. The downscript FEM is used in this section in order to clearly differentiate the
stiffness measurement value. It can be observed that the finite element model and the
analytical solution present different displacement profiles, specially in the case of stiff
soil (Figure 4.12b). Load distribution is more concentrated on the near sleepers in the
case of the finite element model. This is mainly caused by the difference between the
analytical approach and the finite element model concerning the discrete support. An
idealized unique attach point is considered in the first, while in the finite element model
different nodes link the rail to the rail pads and further to the sleeper. In the case of soft
soils (Figure 4.12a), the rail deflection profiles are almost the same for both cases, even if
positive vertical displacement of the rail is not obtained near the load in the finite element
model. Indeed, once again, support conditions are the main reason for these differences.
Therefore, the rail bending stiffness plays an important role on the measured value of the
track global stiffness.

The results presented in Figure 4.8 are reanalyzed in the view of the analytical solu-
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Figure 4.12: Comparison of the rail vertical displacement uz obtained from the finite
element calculation and the analytical solution of a beam over Winkler fondation proposed
by Fryba (1972). a) Soft soil; b) Stiff soil.
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Figure 4.13: Variance reduction of track stiffness after considering rail bending by the
analytical solution proposed by Fryba (1972). Red line represents the fully correlated case
and blue lines the different correlation lengths. Maximum and minimum obtained values
are represented by dashed lines. a) Mean values (µk); b) Coefficient of variation (CV ).

tion in order to verify the importance in the variance reduction of the deterministic rail
bending stiffness in Figure 4.13. It is important to point out that a local homogeneity
hypothesis is made when dealing with spatial variability results, as the analytical solution
is described only for constant values of kWinkler. The curve showed in Figure 4.8b is re-
plotted (downscript FEM) in Figure 4.13b in order to compare the variance reduction in
both cases. A constant relation of 0.75 is obtained when dividing the obtained coefficient
of kFEM and kWinkler, i.e. CVkFEM

=0.75CVkWinkler
. The role of the rail bending can thus

be viewed as constantly reducing the variability of the track materials measured by the
track global stiffness.

An important aspect of the proposed analysis is to be able to study the relation
between the proposed measure obtained from the numerical simulations and the possible
applications of the track global stiffness in other railway engineering fields. Train-track
interaction models used to study the train dynamic behavior on tracks usually relies
on simplified models for the track mechanical behavior, such as the analytical solution
discussed above. In this sense, transposing the track global stiffness measure presented in
this work to such a model must take into account the rail bending stiffness.

4.4.4 Sensitivity analysis

In order to verify the importance of the variability of each layer on the variability of
the railway track global stiffness, a global sensitivity analysis is performed using the
Fourier Amplitude Sensitivity Test (FAST). The FAST method was developed only for
the case of independent random variables, thus only the case with no spatial variability
is assessed in this section (i.e. θy = ∞). The method is based on a multidimensional
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Fourier transform. Independent frequencies are assigned for each variable and a space-
filling harmonic function is used in order to explore the space spanned by each variable.
Cukier et al. (1973) showed that the the Fourier transform of the response can be used
in order to estimate the first-order sensitivity indices (Si) by calculating the contribution
of each assigned frequency and its harmonics. More details on local and global sensitivity
analysis and the FAST methodology are given in Appendix E. The generation frequencies
(wi) assigned for each random variable X are shown in Table 4.2. Input frequencies are
taken as proposed by Saltelli et al. (1999).

Even if noninterference is assured for a minimum sample size of 281 points, 350 simu-
lations are performed using the same set of parameters discussed in Section 4.3. Results
are shown in Figures 4.14a and 4.14b. Figure 4.14a shows the power spectrum obtained
from FAST and mainly the effect of the first harmonic of each assigned frequency to each
random variable is observed. Figure 4.14b shows a histogram for the first-order sensitiv-
ity indices (Si), and two main features must be highlighted: first of all, 98% the output
variance may be explained by first order variances, which means that only 2% of the total
variance is due to higher order effects imposed by the model; secondly, the variance of
the subgrade is responsible for 82% of the variance of the global track stiffness. This is a
direct result from the linear elastic hypothesis, as the subgrade layer is the largest layer
on the multilayer system and it presents lower Young’s Modulus values than fresh and
crushed ballast layers (see Figure 4.4). Inversely, the fouled ballast layer do not contribute
at all to the variance of the track global stiffness, as it is a thin very stiff layer. The fresh
ballast is responsible for 4% and the interlayer for 12% of the output’s total variance.

In order to further understand the influence of the subgrade variability on the track
stiffness, the same analysis was performed but in this case considering a nonlinear elastic
model for the subgrade. In this case, the following expression (Biarez and Hicher, 1994)
is considered:

E(p′) = Eref

(

p′

pref

)nel

(4.5)

where E(p′) is the Young’s Modulus at a certain mean stress p′ = (σ1 + σ2 + σ3)/3. Eref
is the Young’s Modulus obtained at a predefined mean stress pref and nel is the degree of
nonlinearity.

Indeed, according to expression 4.5, the Young’s Modulus will increase as confining
stress increases thus with increasing depth, as shown in Figure 4.15 for different nonlinear
coefficients (nel). It is considered that the Young’s Modulus value is obtained at 20 cm
depth from the interface with the interlayer, which represents the half of the mean values

Layer wi [Hz]

Fresh ballast 11

Fouled ballast 21

Interlayer 27

Subgrade 35

Table 4.2: Assigned frequencies for FAST.
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Figure 4.14: Results of Global Sensitivity Analysis FAST of the railway track global stiff-
ness (k). a) Power spectrum; b) First-order sensitivity indices (Si). FB: Fresh Ballast,
FoB: Fouled Ballast, ITL: Interlayer, Sbg: Subgrade.

of the maximum measured depth of the Panda test. Indeed, the cone penetration tests
considered in this work usually stopped at after the measured interface between the inter-
layer and the subgrade. At this point, all lines crosses at the value of 109 MPa, which is
the mean value obtained from the empirical relations used (Figure 4.4d). The case nel = 0
is the linear elastic case previously addressed.

Figure 4.16 presents the results of the first-order sensitivity indices (Si) for all con-
sidered models. Results of the linear elastic model are also presented as to compare with
the nonlinear case. Subgrade’s influence on the total variance reduces as the nonlinear
coefficient (nel) increases. However, it is still responsible for a large amount of the vari-
ability of the track stiffness. Interlayer as well as the fresh ballast layer present an increase
on their respective importance as the nonlinear elasticity of the subgrade mechanical be-
havior increases, as a consequence of the their relative importance in the total vertical
displacement of the rail. As for the linear elastic case, the total sum of the first-order index
represents more than 95% of the total variance, although a slight reduction is observed as
nel increases.
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Figure 4.15: Evolution of Young’s Modulus with depth.
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Figure 4.16: First-order sensitivity indices (Si) for nonlinear elastic subgrade. FB: Fresh
Ballast, FoB: Fouled Ballast, ITL: Interlayer, Sbg: Subgrade.

To summarize the sensitivity analysis performed on the proposed track structure,
subgrade quality plays an important role on assuring good track quality, both in terms of
its mechanical resistance and homogeneity. Reducing the uncertainty on the mechanical
parameters of subgrade materials is a very important issue in order to correctly predict
the railway track response, both on design and maintenance phases.

4.4.4.1 Influence of rail pads variability

Although the focus of this section is on the variability of mechanical properties of railway
geomaterials on global track stiffness, rail pads play an important role on the mechanical
response of the track measured at the rail on classical lines. As shown in Section 3.4.1, this
component is responsible for 50% of all the measured vertical deflection of the rail in the
case of stiff soils. Variability of the mechanical response of this component is expected to
be lower than from granular materials, as they are industrially manufactured and quality
control are easier to be implemented and achieved. However, some variability is to be
expected, and in this section a parametric study of the impact of rail pads variability
on the balance of first-order index is conducted, in the linear elastic case (i.e. nel=0 in
Equation 4.5).

Rail pads Young’s Modulus are considered to follow a lognormal distribution whose
mean value is unchanged from the previous analysis (µE=40 MPa), and the coefficient
of variation is considered either of 5%, 10% or 20%. It is important to highlight that for
each numerical simulation, all rail pads are considered as presenting the same mechanical
properties, just as the railway track layers when no spatial variability is present. The
considered case is then different from considering variable rail pads mechanical properties
inside each numerical simulation, which is not treated in this work.

As shown in Figure 4.17, the rail pad variability impacts greatly the first-order indices
balance observed in Figure 4.14b. The uncertainty in the rail pads Young’s Modulus di-
rectly affects the track global stiffness, as the load balance between sleepers is directly
affected when rail pads variability is introduced. As the uncertainty in the Young’s Mod-
ulus grow, i.e. higher CVRP values, the importance of rail pad on the track global stiffness
variance increases. Quality control on rail pad production and correct characterization of
their mechanical properties are then important aspects in order to reduce the influence of
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Figure 4.17: First-order sensitivity indices (Si) with variable rail pad’s properties. RP:
Rail Pads, FB: Fresh Ballast, FoB: Fouled Ballast, ITL: Interlayer, Sbg: Subgrade.

rail pad uncertainty on the mechanical response of the track.

4.4.4.2 Comparative results with other track configurations

The aim of this analysis is to compare the conclusions of Section 4.4.4, which are based
on a set of mechanical parameters adapted to a classical railway line, with the results
obtained from a set of parameters describing the high-speed line between Brussels and
Paris/London (Kouroussis et al., 2011c; Connolly et al., 2013). The Young’s Modulus of all
track layers are supposed to follow a lognormal distribution of mean value (µE) according
to the values presented by the respective authors. Two different cases are considered
depending on the hypothesis made on the coefficient of variation value:

• Case 1 (C1): The coefficient of variation is supposed to be the same as the one
obtained in Section 4.3,

• Case 2 (C2): All layers are supposed to have the same coefficient of variation of 40%.

The mechanical and geometrical parameters of different materials are shown in Table
4.3. Moreover, case 2 provides a theoretical case where the differences on the variability
characteristics of each layer are not considered thus, the role of the mechanical response
of each layer on the railway track stiffness can be evaluated.

A sensitivity analysis of the numerical model for both Cases 1 and 2 is performed
using the FAST methodology, considering linear elastic material behavior. The results for
Case 1 are summarized in Figure 4.18, where the first-order sensitivity indices (Si) are
represented. In this case the first soil layer is responsible for 61% of the track stiffness
variance. Ballast layer is responsible for 17% and the subgrade for 8.5% of the track
stiffness variance. Subballast does not contribute to track stiffness variance, as it is very
stiff compared to the other layers. The second soil layer contributes to 6.5% and the last
soil layer marginally contributes to the track stiffness variance. These results agree entirely
to those previously obtained on Section 4.4.4, i.e. variability encountered on the stiff layers
of the railway track system contribute very little to the variability of the track stiffness
and the subgrade soil is responsible for most of the measured variance. Moreover, the first
meters of the subgrade soil play a major role on the output’s variance, as it presents the
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Component
Young’s Modulus Poisson’s ratio Mass density Layer thickness

µE [MPa] CV C1
E [.] CV C2

E [.] ν [.] ρ [kg/m3] ∆h [m]

Rail 210.103 - - 0.25 7900 -
Sleepers 30.103 - - 0.40 2400 -
Ballast 100 0.41 0.40 0.35 1800 0.3

Subballast 300 0.28 0.40 0.35 2200 0.2

Subgrade 127 0.66 0.40 0.35 2100 0.5

Soil layer 1 129 0.47 0.40 0.30 1600 2.7

Soil layer 2 227 0.47 0.40 0.30 2000 3.9

Soil layer 3 659 0.47 0.40 0.30 2000 3.4

Table 4.3: Data obtained from Connolly et al. (2013) and adapted for the current analysis.
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Figure 4.18: First-order sensitivity indices (Si) for Case 1.
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Figure 4.19: First-order sensitivity indices (Si) for Case 2.

lower mechanical resistance and is subjected to higher deformation levels compared to the
other subgrade soil layers.

Case 2 results are summarized in Figure 4.19. In this case, reduction of 5% of the
first-order indices of both the first soil layer and ballast layer are observed. These 10%
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are directly attributed to the subgrade layer, although its coefficient of variation reduces
from Case 1 to Case 2. One reason for this increase is that the imposed variability on the
subballast layer imposed larger deformations on the subgrade (which is just below and is
softer than the subballast layer), increasing its importance on the railway track stiffness
variance.

4.5 Dynamic analysis for train loading

In the previous section, the probabilistic characteristics of the mechanical response of the
railway track subjected to a single moving load at low speed (i.e. 15 km/h) were discussed.
Different aspects relating to material’s variability and the structural and homogenizing role
of the rail bending stiffness were discussed. This section focus on verifying the influence of
the load speed on the probabilistic characteristics of the railway track response obtained
at different speeds. In order to reproduce the railway vehicle load, a bogie loading type is
hereafter considered, which means that a moving load consisting of two loads 3 m apart
is applied on the track. Load magnitude is of 85 kN, representing half of the wheelset
weight. Track structure is kept the same from the previous analysis, but a longer mesh is
considered, as a consequence of the load methodology discussed in Section 3.3.3. Material
properties and its probabilistic description are also kept the same as presented in Section
4.3. Three load speeds are considered: 15 km/h, 120 km/h and 220km/h, representing
both quasi-static and dynamic moving loads. Viscous boundaries are used as to avoid
spurious wave reflection on lateral boundaries.

The output quantities of interest are in this case the track bogie-stiffness (K), measured
as the force applied by a the first wheelset divided by the vertical displacement of the
rail at the point of the applied force. Clearly, the value of K is smaller than the value
of k defined in 4.4.4.2 for the same track structure, as in this case higher settlements are
expected due to the mutual interaction of deflection zones of each wheelset. This effect is
evidently dependent of the distance between wheelsets, smaller distances leading to lower
values of K. Further studying the dynamic impact of the wheelset distance is outside the
scope of this work.

The layer settlement (∆uz) is also studied in this section, defined as:

∆uz =
utz − ubz

h
(4.6)

where utz is the vertical displacement at the top, ubz is the vertical displacement at the
bottom and h is the width of the considered layer. This is similar to a local measure of
the deformation level to which the material is subjected to.

Random field generation and discretization is obtained by decomposition of the cor-
relation structure reduced by the Proper Orthogonalization Decomposition (POD). As
discussed in the Appendix D, this method allow to reduce to probabilistic dimension
of the problem and to ensure a good description of the imposed correlation structure.
This technique is chosen in this section as the model is significantly longer than the one
discussed in Section 4.4, in order to achieve the desired speed following the methodol-
ogy proposed in Section 3.3.3. Sampling strategy is based on Latin Hypercube Sampling
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(LHS) with correlation control. The formulation, hypothesis and results obtained in Sec-
tion 4.3 are considered in order to describe the probabilistic description of the input data.
The squared exponential autocorrelation structure (Equation 4.3) is considered for three
different correlation lengths θy, 2 m, 5 m and 8 m.

4.5.1 Random variables and spatial variability analysis

Figure 4.20 presents the results of 300 Latin Hypercube samples for bogie speed of 120
km/h for the cases where θy equal to infinity and 2 m. As already observed in the case
of single moving load discussed in Section 4.4.1, variations in mean values are due to the
sleeper positioning in the track. The mean value of the output field is different from the
result obtained when considering the input mean values, which is called as deterministic
value in Figure 4.20a. This highlights the importance of conducting a probabilistic analysis
rather than a deterministic one. In the case of spatial variability, a random sample captures
again the variations in the track bogie stiffness value.

The autocorrelation structure of the output random field is studied, in order to high-
light the importance of the railway structure on how the imposed correlations on the input
field are measured by the track bogie-stiffness (K). Figure 4.22 presents the autocorre-
lation coefficient (ρ) of the first considered position relative to the others, for the three
considered speeds (15 km/h, 120 km/h and 220 km/h) and correlation lengths (2 m, 5 m
and 8 m). Higher input correlation lengths (θy) lead to strongly correlated output fields,
i.e. K is autocorrelated to a longer distance.

The scale of fluctuation (lc) of the output field is studied, as defined by Equation
4.4. The values of lc are represented in Figure 4.21a. As previously discussed, values
near the boundaries must not be considered. Figure 4.21b represents the values of lc
using this methodology. Bars are plotted in order to show minimum and maximum values
obtained of the scale of fluctuation (lc) at each case. This result is considerably similar
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Figure 4.20: Results of track bogie-stiffness (K) measured at 120 km/h. a) Correlation
length θy=∞ case; b) Correlation length θy=2 m.
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Figure 4.21: Scale of fluctuation (lc) of the track bogie-stiffness random field. Solid line
represents θy=2 m, dashed line represents θy=5 m and dash-dot line represents θy=8 m.
a) Full representation of lc according to the position; b) Increase of lc with the correlation
length of the input fields.

to the case discussed in Section 4.4.2. The scale of fluctuation increases with increasing
correlation length and lower limiting value of around 3 m is once again expected to be
obtained. Therefore, speed seems to play a minor role in the above results, even if lc is
smaller in the case of 220 km/h comparatively to the other two speeds, in all considered
autocorrelation lengths. The structural characteristics of the structure is for the considered
set of parameters preponderant than the moving load speed.

Figure 4.22 presents the autocorrelation coefficient (ρ) of the first considered position
relative to the others, for the three considered speeds (15 km/h, 120 km/h and 220 km/h)
and correlation lengths (2 m, 5 m and 8 m), and for the squared exponential autocor-
relation function considering a correlation length defined by the mean value of the scale
of fluctuation of the output field, i.e. values presented in Figure 4.21b. The output field
keeps some of the second-order characteristics of the input field, the load spread among
sleepers does not leading to an important change in the correlation structure of the field.

The same simulations are also analyzed in terms of each layer settlement (∆uz). In this
case, the maximum settlement of the fresh ballast layer and the subgrade are analyzed
during train passage. Figures 4.23 and 4.24 present the settlement under load as obtained
by Equation 4.6. Once again, mean values are only affected by sleeper positioning in both
cases. The amplitude characteristics of a random sample are different from the fresh ballast
layer and the subgrade: while the first is influenced both by the sleeper positioning and the
input field, the second is mainly affected only by the input random field characteristics.

The scale of fluctuation characteristics in the case of track layers settlement are pre-
sented in Figures 4.25a and 4.25b for the fresh ballast layer and the subgrade. The input
correlation length and the output scale of fluctuation and variations are the same for the
fresh ballast layer settlement thus, its settlement characteristics being directly propor-
tional to the local mechanical properties variations. In the case of the subgrade, a certain
spread as with track stiffness characteristics is obtained, although in a smaller degree
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Figure 4.22: Autocorrelation coefficient (ρ) of the first position relative to the others. Solid
line represents θy=2 m, dashed line represents θy=5 m and dashed-dotted line represents
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Figure 4.23: Results of settlement of the fresh ballast layer at 120 km/h. a) Random
variables case; b) Spatial variability with θy=2 m for all track layers.

compared to the track bogie-stiffness (K).
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Figure 4.24: Results of settlement of the subgrade at 120 km/h. a) Random variables case;
b) Spatial variability with θy=2 m for all track layers.
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Figure 4.25: Scale of fluctuation (lc) of the track layers settlement. a) Fresh ballast layer;
b) Subgrade soil.
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4.5.2 Sensitivity analysis

The FAST methodology is applied in this section in order to verify the role of increasing
moving load speed on the variance of both track bogie-stiffness (K) and layers settlement
(∆uz). It is reminded that only the random variables case is considered, i.e. θy=∞.

As shown in Figure 4.26, moving load speed presents little effect on the first-order
sensitivity indices (Si). The subgrade is responsible for more than 80% of the output
variance, as previously observed in Section 4.4.4. From the numerical results presented in
Section 3.4.3 for the influence of speed and subgrade stiffness on the mechanical response
of the railway track, the subgrade material in the studied site is stiff (µE=109 MPa) thus,
leading to small influence of moving load speed on the measured vertical displacement of
the rail and the measured track stiffness under linear elasticity mechanical behavior.

The first-order sensitivity index of track layers’ settlement are presented in Tables
4.4 and 4.5 for the fresh ballast layer and the subgrade, respectively. The settlement be-
ing a local measure of deformation, its variance is mainly influenced by the mechanical
properties of the considered layer. Higher order effects (i.e. interaction between layers) is
responsible for around 8% of the total variance. In this sense, although reducing the uncer-
tainty in the subgrade mechanical properties can certainly reduce the obtained variance
in the track stiffness, only better characterizing the mechanical properties of the ballast
material can reduce uncertainty in the ballast settlement.

Layer 15 km/h 120 km/h 220 km/h

Fresh Ballast 91.7% 91.6% 91.4%

Fouled Ballast 0.0% 0.0% 0.0%

Interlayer 0.2% 0.2% 0.2%

Subgrade 0.3% 0.4% 0.6%

Table 4.4: First-order sensitivity indices (Si) of fresh ballast layer settlement.
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Figure 4.26: First-order sensitivity indices (Si) of track bogie-stiffness (K). FB: Fresh
Ballast, FoB: Fouled Ballast, ITL: Interlayer, Sbg: Subgrade.
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Layer 15 km/h 120 km/h 220 km/h

Fresh Ballast 0.3% 0.3% 0.4%

Fouled Ballast 0.0% 0.0% 0.0%

Interlayer 0.0% 0.0% 0.1%

Subgrade 92.7% 92.5% 92.0%

Table 4.5: First-order sensitivity indices (Si) of subgrade settlement.

4.5.3 Impact of boundary conditions on the output field

In this section the impact of using either the paraxial approximation or absorbing bound-
aries is assessed in the case where spatial variability is present. Both solutions are con-
sidered as rather approximative in this case, as Rayleigh waves are expected to appear in
wave propagation in heterogeneous media. However, this is still an open question in the
literature and are outside the scope of this thesis. Please refer to Appendix C.1.1 for a
discussion of the paraxial approximation for random media.

The analysis is performed in the case of input fields with squared exponential corre-
lation structure, correlation length of 2 m and speed of 120 km/h. A lower correlation
length is chosen as it is expected to be the one leading to more differences on the output
responses. The same data (i.e. same seed) is used in both cases, as to avoid differences
appearing from the statistical convergence. Comparisons are made by using the following
proposed field:

H(x) =
Kabs(x)

Kparx(x)
(4.7)

where Kabs is the output random field obtained with absorbing boundaries and Kparx with
the paraxial approximation. If both calculations are exactly the same at every point, then
µH(x)=1 and σH(x)=0 at every point. Both Kparx and Kabs are not expected to be zero as
they represent stiffness, which is physically bounded to positive values. This representation
allows to better take into account the differences brought about by each modeling option
on the dynamic results.

Mean and standard deviation values of H are represented in Figures 4.27a and 4.27b,
respectively. Comparatively, results are very consistent using either boundary solution,
as µH ≈1 and σH ≈0, although using the viscous boundary lead to higher values of K
and differences are higher near the mesh left boundary. It can be concluded that both
boundary solutions yield similar results in the considered case.
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Figure 4.27: Analysis ofH(x). a) First-order moment (µH); b) Second-order moment (σH).

4.6 Concluding remarks

A probabilistic nonintrusive methodology is applied in order to characterize the variability
of the track stiffness based on Panda tests (i.e. dynamic cone penetration tests). Cone
resistance is considered as being a random field characterized by its marginal probability
density function and a theoretical autocorrelation function. Young’s Modulus of each layer
is obtained from empirical/analytical relations proposed in the literature. This approach
allowed to obtain a probabilistic description of the Young’s Modulus considering spatial
variability along the track. According to the performed simulations and for the used
configurations, the following conclusions can be drawn:

1. The railway track global stiffness variability showed to be smaller than the input’s
variability. Two main key factors are proposed to explain this reduction. First, the
sleeper’s positioning and load distribution over the track would play a role on ho-
mogenizing the track stiffness measure. Secondly, track superstructure was kept
deterministic for all simulations (except in Section 4.4.4.1). The analytical solution
of a moving load over a beam resting on a elastic foundation is used in order to
verify the rail bending influence on the track global stiffness variance. It is showed
that higher coefficient of variations are obtained after excluding the rail bending
from the track global stiffness measure.

2. Correlation length θy plays an important role on the variance of the track stiffness.
Reduction of variance is observed, which means that smaller correlation lengths
leads to smaller variance of output field. Interestingly, this property means that
allowing more variability at smaller distances leads to less variability on the output
field. However, the full impact on the railway system of such spatial variability can
only be assessed by a train-track coupled system as to verify the impact of track
stiffness variability on the vehicle dynamic response. This analysis is proposed as
further work from this thesis based on the obtained track stiffness.

3. Both the track global stiffness field k the track bogie stiffness K present a minimum
scale of fluctuation around 3 m, which corresponds to the load spread among the
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sleepers. In this sense, a direct in situ measurement of the track global stiffness seems
to be unable to characterize fluctuations smaller than this distance. Although in the
case of track bogie stiffness K no simulations was performed with small correlation
lengths (θy<0.5m), it is expected that such minimum also exists.

4. Global sensitivity analysis was performed based on the Fourier Amplitude Sensitivity
Test (FAST), in the case of no spatial variability. For the analysed field case, first-
order sensitivity indices were obtained and in the case of linear elastic behavior,
the subgrade is responsible for more than 80% of track stiffness variance. Nonlinear
elasticity was also verified as to better model the increase of soil’s stiffness in depth
compared to a linear elastic model. Its influence reduces as the nonlinearity increases,
however its influence is of more than 60% on the simulations performed. This result
stresses the importance of taking into account the subgrade’s mechanical behaviour
coherently with soil mechanics on track models. Rail pads variability also contributes
to the variance of the output field, although their variability is expected to be low
as quality control on industrial production can prevent scatter in the mechanical
properties of this equipement. Performing laboratory tests on rail pads can confirm
this hypothesis.

These results emphasize the importance of the subgrade soil behavior on the response
of the railway track. After track construction, the subgrade is considered to be homo-
geneously compacted and presenting the same mechanical characteristics at every point
along the track. However, the in situ test results presented in this chapter showed the
different results obtained at the same track. In this sense, correcting evaluating the me-
chanical response of the subgrade soil seems to be of great interested in order to correctly
characterize the mechanical response of the railway track system.
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5.1 Introduction

In the previous chapters, the mechanical behavior of the different track materials was
modeled as linear and nonlinear elastic (Section 4.4.4). The Young’s Modulus in this case
was approximated by secant modulus at a strain level of 0.1%. The elastic limit of soils, i.e.
reversible strain during shear, is very small and usually considered around 0.001%. Ballast,
interlayer and the subgrade soil experiment higher strains during load (Selig and Waters,
1994). Although the elasticity hypothesis is used for many applications, e.g. train-track
interaction problems and soil vibration, it is not representative of the soil and granular
materials behavior during loading. Indeed, once the elastic limit is exceeded, irreversible
volume changes take place leading to an evolution of stress and strains which cannot be
accounted for by elastic models.

As discussed in Section 2.4, it is common practice in highway applications to split the
soil behavior into two different parts: resilient and permanent responses (Brown, 1996).
These are considered as representative of both short-term (one train passage) and long-
term behavior (track’s lifespan) of the railway track. The resilient response is considered
elastic and a resilient modulus Mr can be defined. This last is obtained by unloading
and reloading the material at different strain levels during the drained triaxial test, for
example. The permanent response is characterized by the evolution of the plastic strains
with loading cycles. In this case, instead of considering a secant modulus at a certain strain
level, a resilient modulus is used as representative of the soil stiffness for cyclic loading
applications at a certain strain level. This approach supposes the strain level during each
loading cycle to be very small and not contributing to state evolution of the materials
after each cycle.

However, soil behavior depends on the stress history and the subsequent resilient
response depends on the so-called“conditioning phase”, or the first 100 or 1000 load cycles
when the material is subjected to larger permanent deformation. Therefore, assessing the
state of materials in the railway structure and the influence of stress history and load
speed during this phase is an important step toward establishing a modeling approach
based on the resilient behavior.

Capturing the main mechanical mechanisms of the different track layers response dur-
ing the conditioning phase can be achieved by advanced nonlinear mechanical models,
which can account for the different aspects of soil’s mechanical response. In this chap-
ter, the elastoplastic multimechanism constitutive law developed at Ecole Centrale Paris,
called ECP model (Aubry et al., 1982; Hujeux, 1985), is used to capture the different irre-
versible phenomena and the cyclic hardening and softening appearing in soil during cyclic
load. Different authors have implemented nonlinear railway track models using the ECP
model (Paderno, 2010; Araújo, 2010). However, the latter authors pointed out difficulties
in obtaining a coherent set of parameters for the ballast material.

These different aspects are discussed in this chapter. The first section is devoted to
the mechanical response of the different railway geomaterials. The mechanical parameters
of the ECP model for ballast and the interlayer are calibrated from drained triaxial shear
test results available in the literature (Suiker et al., 2005; Indraratna et al., 2011; Trinh
et al., 2012). The methodology used in calibrating the different materials is presented and
follows the proposed method discussed by Lopez-Caballero (2003). Two subgrade soils are



Chapter 5. Nonlinear railway track model 131

considered and their ECP model parameters are directly obtained from the literature. In
the second section, the nonlinear track model is presented along with different numerical
strategies used for considering nonlinear behavior. The response of a conventional track
structure subjected to a bogie load at different speeds is presented in the third section.
The influence of stress history and load speed on cyclic response is also discussed. The
fourth section is devoted to verify the influence of the subgrade’s initial density and the
interlayer material on the response of the track materials. Finally, the main conclusions
and mechanisms observed from the numerical simulations are highlighted at the end of
this chapter.

5.2 Railway geomaterials and associated mechanical

model

In this section, the parameters of the ECP model for ballast and the interlayer material
are calibrated from standard triaxial test results available in the literature. These are
considered representative of the mechanical response of these materials in the complete
model of the railway track used in the subsequent sections.

In this thesis, using a constitutive law from continuum mechanics is considered a valid
hypothesis for ballast and the interlayer. However, it is important to keep in mind that
ballast and interlayer are thin layers, for which the mean grain-size relative to the track
layer’s width is very high (e.g. around 10 grains for ballast layer in France). As discussed
in Section 2.6.4, Discrete Element Method (DEM) is an effective way of considering the
grain-size scale on the mechanics of thin granular layers. However, coupling DEM and
FEM models (Nitka et al., 2011) can be computationally intensive and it is still not
completely developed for railway applications.

5.2.1 Ballast material

Mechanical tests on ballast material have been performed by different authors (Lim, 2004;
Suiker et al., 2005; Fortunato, 2005; Aursudkij, 2007; Paderno, 2010; Indraratna et al.,
2011, among others). Ballasted track design is still very common in many countries. How-
ever, the ballast material itself comes from different gravel materials, such as dolomite,
rheolite, gneiss, granite, basalt, quartzite (Raymond, 1979), and the grain-size specifica-
tions change in different countries depending on the used standards.

In this work, standard triaxial shear tests performed by Suiker et al. (2005) (Nether-
lands) and Indraratna et al. (2011) (Australia) on ballast are analyzed and compared, in
order to have a better insight of its different mechanical characteristics. The grain-size
distribution curves of both materials are presented in Figure 5.1, along with the actual
French standard for ballast material (SNCF, 2010). Ballast tested by Suiker et al. (2005)
is composed of smaller grains comparatively to ballast tested by Indraratna et al. (2011)
and the French standard. The maximum particle size from Suiker et al. (2005) corresponds
to only the 60% passing of the ballast grains tested by Indraratna et al. (2011).
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Figure 5.1: Grain-size distribution curves for ballast specimens tested by Suiker et al.
(2005) and Indraratna et al. (2011).

5.2.1.1 Ballast tested by Suiker et al. (2005)

Ballast grains tested by Suiker et al. (2005) followed the requirements of gradation No. 4
from the AREMA Manual for Railway Engineering (AREMA, 2002). The authors tried
to follow the characteristics of the ballast present in the test track in Pueblo, Colorado
(Selig et al., 1981). The obtained samples presented a mean dry density γd between 16.1
and 17.0 kN/m3. The triaxial cell used is presented in Figure 5.2a. It has 645 mm height
and diameter of 254 mm, which corresponds to a mean ratio of 7 grains per diameter.
Three different radial measurement points were installed at H/3, H/2 and 2H/3, where H
is the total height of the triaxial cell, as shown in Figure 5.2a. Three different confining
pressures are considered: 10.1, 41.3 and 68.9 kPa. According to the authors, these are
representative of the applied stress at the layer during a train passage. The tests were
carried out with a prescribed displacement and the obtained results are plotted in Figure
5.3.

As expected, higher deviatoric stresses are developed by specimens subjected to higher
initial confining stress (Figure 5.3a). The volumetric behavior of all three specimens is first
contractant, then dilatant for larger strains (Figure 5.3c). However, the developed volu-
metric strain is lower for the sample at initial confining pressure of 41.3 kPa relatively to
the the sample at 68.9 kPa. This is inconsistent with the expected volumetric behavior
of soils during drained triaxial test. Although the author does not discuss this particular
point, Araújo (2010) points out that probably problems with the radial strain measure-
ments occurred.

5.2.1.2 Ballast tested by Indraratna et al. (2011)

Indraratna et al. (2011) also conducted different laboratory tests in order to characterize
the mechanical behavior of the ballast used in Australian railways. The mean dry density
γd obtained for the samples was between 15.4 and 15.6 kN/m3. The triaxial cell is shown in
Figure 5.2b. It measures 600 mm height and has a diameter of 300 mm, which corresponds
to a ratio of around 8 grains per diameter. Indraratna et al. (2011) tested ballast under 5
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(a) (b)

Figure 5.2: Triaxial cells used for testing ballast material. a) Triaxial cell used by Suiker
et al. (2005); b) Triaxial cell used by Indraratna et al. (2011).

different confining pressures: 10, 50, 100, 200 and 300 kPa. The obtained drained triaxial
test results are plotted in Figure 5.4. In the present work, only the 10, 50 and 100 kPa
initial confining pressures are used for the calibration procedure further presented in
Section 5.3.1, as being more representative of the confining pressures which the ballast
material is submitted to.

5.2.1.3 Discussion about laboratory test results on ballast material

As a coarse granular material, the ballast presents two main characteristics at low confining
stress: it develops high stress ratio (η=q/p′) and presents significant volume increase
during shear. These characteristics were observed in the test results from Suiker et al.
(2005) and Indraratna et al. (2011). However, the stress ratio evolution during the tests
are very different for both material (Figures 5.3b and 5.4b). A constant value of η around
1.98 is obtained by Suiker et al. (2005) for all the considered confining pressures, while
the results from Indraratna et al. (2011) present high values of η (maximum around 2.7)
at the lowest confining pressure (10 kPa). These different evolutions of the stress ratio
during the drained triaxial test can be related to the different grain-size distributions, the
sample preparation procedure and the obtained relative density. Indeed, while Suiker et al.
(2005) prepared the ballast specimen by compacting eight layers of equal thickness, each
one tamped 40 strokes with a steel rod, Indraratna et al. (2011) divided the specimen in
4 layers of equal thickness and compacted each one with a hand-held vibratory hammer.
Moreover, it has been showed for soils that not only the grain assembly but also grain
shape and geometry can result in differences in the mechanical response (Biarez and
Hicher, 1994). The results obtained by both authors at the lowest confining pressure show
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Figure 5.3: Results of drained triaxial tests performed by Suiker et al. (2005) on ballast
material.

completely different behaviors in terms of mobilized internal friction. η can be related to
the friction angle φ for a Mohr-Coulomb failure criterion at the critical state (η=M) by
the following relation:

φ = arcsin
3η

6 + η
(5.1)

Indraratna et al. (2011) analyzed these test results from a peak friction angle (φp)
point of view, i.e. friction angle obtained from η at the highest deviatoric stress q and
not at the critical state. The authors argue that in this case a nonlinear relation exists
between the peak friction angle and the confining pressure at low pressures for crushed
basalt and other rockfill materials. High values of peak friction at low confining pressures
are thus obtained, which decreases with increase in confinement and stabilizes at more
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Figure 5.4: Results of drained triaxial tests performed by Indraratna et al. (2011) on
ballast material.

usual values around 35 ° for high confining pressures. This reflects the influence of the
initial state and particle size on the stress state evolution during triaxial load.

5.2.2 Interlayer material

Trinh et al. (2012) characterized the interlayer material of a conventional railway track
and investigated both mechanical and hydraulic properties in the laboratory by a series
of drained triaxial tests, at different water contents, and infiltration tests. The grain-size
distribution curve for the material directly obtained from in situ material and tested
by Trinh et al. (2012) is presented in Figure 5.5. A dry volumetric mass density ρd of
2.39 Mg/m3 and water content of ωn=5.13% was measured in the in situ material. The
dry volumetric mass density ρd achieved in the laboratory was of 2.01 Mg/m3, showing
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Figure 5.5: Grain-size distribution curve for interlayer material tested by Trinh et al.
(2012).

how compact this material is in the railway track. Trinh et al. (2012) characterized the
mechanical response of the material using the drained triaxial test for two different wa-
ter contents: ωn=4% and ωn=12%. The first is representative of the obtained Optimum
Moisture Content (OMC) by modified Proctor compaction tests and is characterized by
an initial degree of saturation Sri=32%; the second is representative of the saturated state,
Sr=100%. The obtained results are plotted in Figure 5.6.

Trinh et al. (2012) showed that the water content influences considerably the me-
chanical response of the intermediate layer material. In the saturated state, the material
develops lower deviatoric stress during the triaxail test and does not present increase in
volume for the considered initial confining stresses. More recently, Duong et al. (2013)
also studied the mechanical response of the interlayer material and similar results were
obtained.
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Figure 5.6: Results of drained triaxial tests performed by Trinh et al. (2012) on interlayer
material at ωn=4% and ωn=12%.

5.3 Calibration of ECP model parameters

The ECP model, also called Hujeux model, is an elastoplastic multimechanism model
developed at Ecole Centrale Paris (Aubry et al., 1982; Hujeux, 1985). It considers the
effective stress concept developed by Terzaghi and is based on a Coulomb type failure
criterion and the critical state concept. All irreversible phenomena is modeled by four
coupled elementary plastic mechanisms: one isotropic and three plane-strain deviatoric
on three orthogonal planes. Hardening is controlled by plastic strain: volumetric plastic
strain for the isotropic mechanism and both deviatoric and volumetric plastic strains for
the three deviatoric ones. Cyclic behavior uses kinematical hardening based on the state
variables at the last load reversal. This model is chosen for representing the mechanical
behavior of the different track geomaterials. The model’s mathematical formulation is
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presented in Appendix A.

Optimization algorithms are commonly used in order to obtain a set of mechanical
parameters of a constitutive law reproducing laboratory tests. The choice of the best al-
gorithm to use depends on both the available data and the constitutive model. An elasto-
plastic multimechanism model as the ECP model can correctly capture the mechanical
response of soil on different stress paths, however its complexity and number of param-
eters increase the difficulty on the parameter calibration procedure. Regarding the ECP
model, Cekerevac et al. (2006) proposed an optimization strategy based on a combination
of stochastic and quasi-Newton methods, which combines the advantages of both direct
search algorithms and gradient-based algorithms. The procedure is implemented in order
to optimize a set of parameters adapted for triaxial tests results on isotropically consol-
idated and overconsolidated clays. Gamboa (2011) used a combination of quasi-Newton
and line search algorithms (Bonnans et al., 2006) for numerical modeling of rockfill dam
materials. Lopez-Caballero et al. (2011) used a similar approach for obtaining the ECP
model parameters of highway materials from Falling Weigth Deflectometer (FWD) tests.

In the railway context, Araújo (2010) used an optimization procedure based on the
Evolution Strategies (ESs) algorithm proposed by Miranda (2007). Araújo (2010) con-
sidered the test results presented by Suiker et al. (2005) for modeling ballast, but the
objective function was the cumulative axial plastic strain for cyclic drained triaxial test
and not the mechanical response to monotonic loading. Araújo (2010) justified this choice
by the inconsistent volumetric response at different initial stresses obtained by Suiker et al.
(2005). However, the choice of the cumulative axial plastic strain as objective function is
questionable, as the total plastic strain is a product of the different plastic mechanisms
and the obtained parameters hardly reflect the response of the soil to monotonic tests.

Lopez-Caballero and Modaressi-Farahmand-Razavi (2008) proposed to classify the
ECP model parameters in terms of their estimation method. This approach separates
the parameters in two categories: directly measured (either by in situ or laboratory tests)
and not-directly measured. However, very often not all the necessary tests are performed
in order to calibrate the directly measured parameters. In this case, tests on similar soils
can be used in order to provide the necessary basis for calibration. In the case of the
railway geomaterials, usually only oedometric and triaxial test are performed. The diffi-
culty relies mainly on the necessary equipment to test coarse heterogeneous geomaterials.
Although large-scale triaxial cells are available, hollow cylinders or shaking tables are not
yet commonly used equipments for these materials. The elastic domain is usually not
measured and only parameters related to the critical state can be directly obtained.

In this work, the adopted strategy for parameter calibration did not use any opti-
mization algorithm, but was rather based on a manual and operator-based procedure to
control the model parameters. The manual calibration looked for a compromise between
a good correspondence for the drained triaxial test response and a coherent response on a
large panel of stress paths (e.g. isotropic and oedometric consolidation tests and drained
cyclic strain-controlled shear test, presented in Appendix G), which are obtained by direct
integration of the constitutive law. The methodology described by Lopez-Caballero (2003)
in order to calibrate the model parameters is followed. This choice is motivated by the
fact that the model response is stress path dependent.

In Section 3.4.1, it was shown from linear elastic simulations that ballast experiments
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different stress paths when loaded, depending on the control point relatively to the sleeper
(i.e. under or between sleepers). These will activate both the monotonic and cyclic devia-
toric and volumetric mechanisms in different ways from the drained triaxial test. In this
sense, good calibration of the drained triaxial tests response does not necessarily corre-
spond to correctly accounting for the material’s response on the railway track. Ensuring
a consistent behavior at different stress paths is an effective way of obtaining a coherent
set of parameters.

5.3.1 Ballast material

The differences in the mechanical response of ballast tested by Suiker et al. (2005) and
Indraratna et al. (2011) are described by different sets of parameters of the ECP model
(Table 5.2). These are representative of the mechanical behavior observed from the drained
triaxial test (Figures 5.7 and 5.8) and give an overall consistent response for a set of drained
laboratory tests numerically obtained by the direct integration of the ECPmodel (isotropic
and oedometric consolidation tests and drained cyclic strain-controlled shear test). The
numerical test results are presented in Appendix G. In the following, the calibration
procedure methodology is presented for both tested materials.

Elasticity parameters are obtained by considering test results on crushed-rock-soil-
mixtures from Mok et al. (2011). The choice is made of considering linear elasticity (i.e.
nel=0), as ballast layer is thin (≈ 40 cm in conventional lines) and no important variations
of the elastic coefficients K and G are expected in depth. In this case, the coefficients Kref

and Gref are evaluated by considering a constant mean value p′ of 10 kPa. High friction
angle φ′

pp is obtained from the drained triaxial tests and it is representative of the critical
state for coarse aggregates.

The critical state line in both cases could not be directly defined, as in the ballast
tested from Suiker et al. (2005) the volumetric measurement is not consistent and in the
case of ballast tested by Indraratna et al. (2011) the critical state was not reached during
the test. In order to estimate the model parameters, it is then considered that the tendency
observed in the (e, p′) for the ballast tested by Indraratna et al. (2011) is representative

Directly Not-directly
measured measured

Elastic Kref , Gref ,
nel, pref

Critical state φ′
pp, β, b

and plasticity pc0, d
Flow rule and ψ a1, a2,

Isotropic hardening αψ, m, c1, c2
Threshold domains rela, rhys,

rmob, relaiso

Table 5.1: Classification of ECP elastoplastic model parameters as proposed by Lopez-
Caballero and Modaressi-Farahmand-Razavi (2008).



140 5.3. Calibration of ECP model parameters

of the slope of the critical state line for both cases.
The plastic compressibility modulus β is estimated from the slope of the critical state

line in the (e, p′) plane. Neglecting the elastic volumetric strain, β can be determined as:

β =
1 + e0
λ

(5.2)

where λ is the compression index, which characterizes the slope of the critical state line
at the (e, p′) plane (as in the Cam Clay model). For both cases λ ≈ 0.15, which leads to
β ≈10. The estimated value of β in both cases is low, which accounts for the fact that the
influence of material densification is low on the observed final resistance, which is to say
that the influence of the variation of pc from its initial state pc0 is low.

The initial state defined by the critical mean effective stress pc0 is usually related to
the overconsolidation ratio for clays and to the relative density Dr for sands. Neglecting
the elastic volumetric strain, it can be approximated as the pressure at the critical state
line corresponding to the same void ratio as the initial pressure p′0.

Ballast material
Suiker et al. (2005) Indraratna et al. (2011)

Elasticity
Kref (MPa) 69.4 87.0
Gref (MPa) 52.0 60.0
nel 0.00 0.00
pref (MPa) 1.0 1.0

Critical State and Plasticity
φ′
pp(

◦) 42 43
β 10 8
d 3.00 8.80
b 0.06 0.65
pco(MPa) 0.70 0.50

Flow Rule and Isotropic Hardening
ψ(◦) 42 43
αψ 3.00 1.20
a1 0.00002 0.00002
a2 0.00080 0.01500
c1 0.00200 0.80000
c2 0.00100 0.40000
m 1.50 1.20

Threshold Domains
rela 0.00001 0.00001
rhys 0.01000 0.00400
rmob 0.98000 0.80000
relaiso 0.00002 0.00002

Table 5.2: ECP model’s parameters for ballast.
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Figure 5.7: Comparison of drained triaxial test results performed by Suiker et al. (2005)
(dash-dot line) and numerical results obtained by the calibrated model (solid line) for the
ballast material.

The parameter d is defined as the distance between the isotropic consolidation line
and the critical state line (Equation 5.3). Säım (1997) proposes to consider ∆e ≈ 0.1
for both sands and clays. Nguyen (2006) argued that a higher distance is necessary for
coarse grained materials. In this case, the importance of the volumetric mechanism in the
volumetric stress evolution is increased.

d = exp

(

∆e

λ

)

(5.3)

The yield functions fk of the different deviatoric mechanisms are differently considered
in both cases: while for ballast tested by Suiker et al. (2005) a small value of b is considered
as representative of the stress-strain response obtained from the drained triaxial test and
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Figure 5.8: Comparison of drained triaxial test results performed by Indraratna et al.
(2011) (dash-dot line) and numerical results obtained by the calibrated model (solid line)
for the ballast material.

represented in the (η, εd) plane. In the case of the ballast tested by Indraratna et al. (2011),
a higher value of b is considered in order to model the high deviatoric stress obtained at
low confining pressure. It is reminded that b=0 represents a Mohr-Coulomb type yield
surface and b=1 the Cam Clay yield surface.

Parameters a1 and a2 govern the evolution of the deviatoric yield surface of each
deviatoric mechanism, controlling the soil rigidity in the plastic domain. These must be
calibrated for both monotonic and cyclic response. The domain radius parameters rela,
rhys and rmob are calibrated in order to obtain a coherent response in the (G/Gmax, γ)
plane for the drained cyclic strain-controlled shear test (Appendix G). The test curves
used in this work are based on large-scale free-free resonant column test results on crushed-
rock-soil-mixtures tested by Mok et al. (2011) and presented in Figure 5.9. As expected,
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Figure 5.9: Evolution of the shear modulus G with increasing shear strain γ for crushed-
rock-soil-mixtures tested by Mok et al. (2011).

these can be interpreted by the locus determined by Seed et al. (1986). The considered
values for ballast tested by Suiker et al. (2005) and Indraratna et al. (2011) reflect the
similarities and differences in their mechanical responses: both present very small elastic
domain rela and small a1 values, which imposes a rapid evolution of the mobilized friction
rk toward the hysteretic domain. The a2 value obtained for the ballast material tested
by Suiker et al. (2005) is considerably smaller than for the ballast material tested by
Indraratna et al. (2011), as the influence of Fk on the deviatoric yield surface is different
in both cases. The degree of nonlinearity m in the evolution of α(rk) is calibrated in order
to better capture the evolution of the mobilized friction during shear.

As discussed in Section 2.4.2, the characteristic angle ψ represents the change from the
contractive to the dilative behavior in sands and defines the characteristic state line, phase
transformation line or quasi-steady state in the (q, p′) plane (Ishihara, 1993). Experimental
data supports that φ′

pp = ψ and neither are affected by the relative density (Lade and
Ibsen, 1997).

The increment of volumetric plastic strain of each deviatoric mechanism depends also
on the internal variable αψ. In the case of the ballast material tested by Suiker et al. (2005),
this parameter is high in order to better capture the volume changes in the drained triaxial
test. However, the proposed set of parameters does not completely captures the dilatancy
observed in the laboratory test, mainly because b is small and ψ=φ′

pp. In the case of the
ballast tested by Indraratna et al. (2011), this is not necessary as dilatancy is directly
obtained from the proposed set of parameters.

The elastic domain radius of the volumetric mechanism relaiso is taken similar as rela from
the deviatoric mechanism. The parameters c1 and c2 govern the evolution of the isotropic
hardening mechanism and can be calibrated either by undrained triaxial tests or isotropic
consolidation tests. These are not available for the ballast material and the considered
values are calibrated for a coherent response of numerical isotropic consolidation tests.
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5.3.2 Interlayer material

In this section, two sets of parameters are calibrated for the interlayer material following
drained triaxial test results: the first at water content ωn=4%, which corresponds to an
initial degree of saturation Sri=32% and the second of the saturate state, Sr=100%, at
water content ωn=12%. These will be further called as interlayer material A and interlayer
material B, respectively. In both cases, test results obtained at a confining stress of 400
kPa are not considered as they are not representative of the stress state of the material
in situ.

It is important to highlight that for the interlayer material A, no information is given
about the evolution of the degree of saturation during the test. Therefore, the ECP model
is applied to this material in terms of total stresses, and the capillary cohesion and hard-
ening due to the unsaturated state are neglected. Although the ECP model can further
account for unsaturated conditions (Modaressi and Abou-Bekr, 1994), these are not con-
sidered in this work. Not considering the degree of saturation evolution during the test is
a very strong hypothesis, but the obtained adequacy of the calibrated set of parameters
in reproducing the drained triaxial test response is very good, as shown in Figure 5.10.
Concerning interlayer material B, effective stress approach is considered.

The obtained set of parameters is presented in Table 5.3 and the comparison between
the drained triaxial test response for the numerical parameters are presented in Figure
5.10 and 5.11 for both cases. The mechanical response of both set of parameters under
different stress paths is presented in Appendix G.

The calibration procedure is identical to the one presented in the previous section.
The main difference in the two set of parameters is the definition of the initial state by
parameter pc0, its evolution with the plastic volumetric strain εpv defined by parameter β
and the definition of the both deviatoric and volumetric yield surfaces (fk and fiso) by
parameters b and d. The higher value of parameter pc0 for material A comparatively to
material B reflects the over-consolidation induced by the unsaturated state (Modaressi
and Abou-Bekr, 1994). These choices reflect the volumetric and deviatoric responses of
the saturated material during shearing: less deviatoric stress is developed for the same
initial confining pressure and more pronounced reduction of volume.
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Interlayer material
A B

Elasticity
Kref (MPa) 133.0 133.0
Gref (MPa) 61.0 61.0
nel 0.00 0.00
pref (MPa) 1.0 1.0

Critical State and Plasticity
φ′
pp(

◦) 41 41
β 10 30
d 1.00 2.50
b 0.30 0.15
pco(MPa) 0.65 0.18

Flow Rule and Isotropic Hardening
ψ(◦) 41 41
αψ 1.70 1.10
a1 0.00001 0.00001
a2 0.00400 0.00120
c1 0.00800 0.01000
c2 0.00400 0.00500
m 1.20 1.00

Threshold Domains
rela 0.00001 0.00001
rhys 0.02000 0.02000
rmob 0.90000 0.90000
relaiso 0.00002 0.00002

Table 5.3: ECP model’s parameters for interlayer materials.



146 5.3. Calibration of ECP model parameters

0 5 10 15
0

100

200

300

400

500

600

700

800

900

ε
d
 [%]

q 
[k

P
a]

(a) q − εd

0 5 10 15
0

0.5

1

1.5

2

2.5

η 
[.]

ε
d
 [%]

(b) η − εd

0 5 10 15

−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

ε
d
 [%]

ε v [%
]

(c) εv − εd

10
1

10
2

−10

−8

−6

−4

−2

0

2

p’ [kPa]

ε v [%
]

 

 

p
o
 = 30kPa

p
o
 = 100kPa

p
o
 = 200kPa

(d) εv − p′

Figure 5.10: Comparison of drained triaxial test results performed by Trinh et al. (2012)
(dash-dot line) and numerical results obtained by the calibrated model (solid line) for the
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5.3.3 Subgrade soil materials

Different subgrade soil materials are studied in this work, the main objective being to
verify the differences on track mechanical response regarding the subgrade. Two different
soils are considered: dense sand (Toyoura sand at relative dry density Dr=93%) and
medium-to-dense sand (Toyoura sand at relative dry density Dr=40%).

The Toyoura sand is a Japanese sand well studied and characterized (Fukushima and
Tatsuoka, 1984; Tatsuoka et al., 1986). It is a uniform sand with mean grain size D50 of
0.16 mm, coefficient of uniformity Cu of 1.46 and specific gravity Gs of 2.64. The ECP
model parameters used in this work have been already calibrated by Lopez-Caballero
(2003) and Costa d’Aguiar (2008). The mechanical response of these soils to different
stress paths is presented in Appendix G.

A comparative result of numerical drained triaxial tests performed for an initial con-
fining pressure p′o=20 kPa on the two materials are presented in Figure 5.12. The used set
of parameters for the different materials is presented in Table 5.4.

Subgrade soil
Dense sand (Dr=93%) Medium-to-dense sand (Dr=40%)

Elasticity
Kref (MPa) 296.0 296.0
Gref (MPa) 222.0 222.0
nel 0.40 0.40
pref (MPa) 1.0 1.0

Critical State and Plasticity
φ′
pp(

◦) 30 30
β 17 43
d 3.50 3.50
b 0.22 0.22
pco(MPa) 4.90 1.40

Flow Rule and Isotropic Hardening
ψ(◦) 30 30
αψ 1.00 1.00
a1 0.00010 0.00010
a2 0.01500 0.01500
c1 0.00600 0.06000
c2 0.00300 0.03000
m 1.00 1.00

Threshold Domains
rela 0.00500 0.00500
rhys 0.03000 0.03000
rmob 0.80000 0.80000
relaiso 0.00010 0.00010

Table 5.4: ECP model’s parameters for the considered subgrade soils.
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Figure 5.12: Comparison of numerical drained triaxial tests performed on considered sub-
grade materials (p′o=20 kPa).
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5.4 Numerical strategy for the nonlinear railway track

model

Considering advanced elastoplastic models for unbounded domain problems is very often
a challenge, as at low effective confining stress soil presents high dilative behavior and very
low resistance. In many applications (pile resistance, deep foundations, etc) the unbounded
layer contributes marginally to the total structure’s mechanical resistance. In this case,
usually the soil mechanical behavior near the free surface is modified and/or simplified in
order to avoid numerical errors due to the singularity of zero mean pressure in the soil
constitutive models (Berenguer Todo Bom, 2014).

However, in railway applications and more generally in moving load applications, the
structure’s response is affected by the mechanical behavior of the materials directly be-
neath it, which are subjected to low confining pressure at rest. In this context, using the
ECP model in a numerical model of the track for railway geomaterials and particularly
for ballast presents some issues. These can be related to two factors:

1. Stress initialization conditions. Soil mechanical response depends on the initial con-
ditions and these must be correctly modeled in order to obtain an adequate response.
As the ballast layer is the topmost layer, it is subjected to low confining pressures.
Stewart et al. (1985) presented laboratory test results on cyclic loading on ballast
at a confined trackbox and inferred that confinement may increase during the rail-
way track life (measured as an increase on lateral stress and described in their work
by an increase in the ratio k0 = σ0

yy/σ
0
zz, where σ

0
yy and σ0

zz are the initial lateral
and vertical stresses). However, the boundary conditions used in the test were not
representative of the railway track, as ballast was tested on a confined trackbox but
on track it presents a free surface at lateral boundaries. In real tracks, a standard
procedure after renewal or tamping of ballast is to stabilize it before subjecting the
track to train loads, as ballast experiments high settlement and grain rearrangement
during the conditioning phase or the first 100 loading cycles (Jeffs and Marich, 1987).
In this work, stress initialization considers only material self-weight. A procedure
based on layer construction is used in order to correctly model the initial state of
the materials on the track.

2. Contact conditions between the sleeper and the ballast layer. Shared nodes between
the sleeper and the ballast in the FE mesh are not representative of the real track
conditions. The rail bending tends to uplift the sleepers at a certain distance from the
load, which depends on the load repartition among sleepers and rail pad stiffness.
This uplift is directly applied on ballast material right down the sleepers, which
reduces the confining stress to very low values, leading to material failure. Moreover,
by considering shared nodes between the sleeper and the ballast, shear stress near the
interface is poorly approximated by the model as a consequence from the difference
in stiffness of both materials.

These aspects motivated some modifications in the numerical model, regarding the
elastic simulations presented in Section 3.4. These are described in next sections.
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Particularly for ballast material, the calibrated sets of parameters reflect the high
dilative behavior at low confining stress. However, the plane-strain hypothesis in the
numerical 2D model leads to incompatible volume changes when increase in volume is
obtained, as no lateral strain is allowed, i.e. εxx=0. From the two sets of parameters,
the one representing the ballast tested by Indraratna et al. (2011) is the one presenting
highest dilative characteristics. As discussed in Section 5.3.1, the parameter b calibrated
from the response in the (εd, η) plane plays an important role on increasing the volume
change at other stress paths than the triaxial one. The set of parameters representing the
ballast tested by Suiker et al. (2005) presented less volumetric strain and lower dilatancy
at low confining pressures. Therefore, the latter is the only one considered in the numerical
simulations presented in following sections.

5.4.1 Materials initial state on the track

In the linear elastic case presented in Section 3.4, the methodology in obtaining a coherent
initial state was not addressed as it is irrelevant regarding the considered mechanical be-
havior. However, this is an important step for nonlinear models relying on the stress state.
The procedure must be coherent with the construction phase of the studied geotechnical
structure, as the initial stress state will depend on it. For instance, this initialization phase
is particularly necessary in excavation problems, when the stress state of the soil next to
the excavated area is influenced by the excavation process.

In GEFDyn software (Aubry et al., 1986; Aubry and Modaressi, 1996), a comprehen-
sive method is implemented, which allows to “construct” the model from the bottom to
the top as in real tracks. In order to reach equilibrium, a first initial state is given in terms
of the earth pressure coefficient, ko. For all layers, the value 0.5 was considered for ko. In
this case, the following initial conditions are imposed:

σ′
yy
o = σ′

xx
o = koσ

′
zz
o

σoyz = 0
(5.4)

where σ′
zz
o is basically obtained as a function of depth, σ′

zz
o = ρg∆h. Equilibrium is then

achieved by evolving the different materials from this initial state to the geostatic stress
level. Initializing a material means not only considering both its stiffness and mass matri-
ces in the FE methodology but also estimating the internal variables of the constitutive
model that ensures plastically admisible states. After all track layers are initialized and
equilibrated, sleepers, rail pads and rails are introduced in the model. This procedure
allows to install the sleeper after the ballast layer is in place, which reduces initial shear
stress in the sleeper-ballast interface due to equilibrium conditions. This aspect is also
addressed by interface elements, which are discussed in the section 5.5.

However, it is important to highlight that the construction phase described above
does not account for any compaction procedure coming from either specific compaction
equipments or by trains used during track construction. In this sense, materials can be
considered as still “virgin” to the stress characteristics imposed by the moving load. This
is particularly important concerning shear stress and the increase in deviatoric stress due
to shearing, as will be shown in the next section.
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5.4.2 Sleeper kinematics

In the nonlinear model, it is necessary to correctly model the sleeper kinematical response
during the moving load passage. In tracks, the sleeper is posed over the ballast layer and is
maintained in place due to: self-weight, ballast weight (in the lateral direction) and volume
(in the longitudinal direction) and shear stress developed due to friction with the ballast
grains in the lateral and bottom surfaces. In the numerical model presented in Section 3.3,
shared nodes are used between the sleeper and the ballast layer in the finite element mesh.
This assumption is not representative of the physical characteristics of the sleeper-ballast
interface. In order to better capture the sleeper boundary condition, mechanical interfaces
are considered. These allow discontinuities in the stress field once uplift is verified. The
mathematical formulation and parameters of the mechanical interfaces used in this work
is presented in Appendix H. Decoupling the sleeper and ballast in the FE mesh showed to
be an important step toward using a nonlinear model for ballast. Indeed, this procedure
allowed to significantly reduce the initial shear stress (σoyz) appearing at the sleeper-ballast
interface after track construction, as shown in Figure 5.13.

In the numerical model, shear stress developed from friction between the sleepers and
the ballast layer is neglected (shear modulus G of the interface model is very low), as the
main interest in using the mechanical interface is to correctly model the vertical response
of the sleeper. The mechanical parameters used can be viewed as penalty factors in both
vertical and lateral directions, in order to avoid overlapping of the FE nodes.

σyz [kPa]

(a)

σyz [kPa]

(b)

Figure 5.13: Example of shear stress σyz around the sleeper-ballast interface according
to initialization procedure and interface conditions. a) Sleeper-ballast shared nodes and
no initialization procedure; b) Considered methodology (sleeper-ballast interface element
and initialization procedure).
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5.4.3 Ballast stress path identification and discussion

The numerical simulation results presented in Section 3.4 gave some insights about the
stress paths imposed on the materials by the moving load (Figure 3.26). Different stress
paths are observed depending on the observation point regarding the sleeper, i.e. directly
under or between sleepers. In the particular case of the ballast layer, under sleeper points
closely follow a stress path characterized by a unitary slope and between sleepers points are
subjected to a more complex stress path. Although these results are obtained considering
linear elasticity, they provide an initial basis for further verification of the calibrated set of
parameters on stress paths other than the triaxial. Therefore, it is proposed to verify the
aptitude of the calibrated set of parameters for ballast in reproducing the material response
under cyclic load, for a stress path characterized by a slope lower than the triaxial one. The
choice is made of conducting numerical cyclic oedometric tests under initial low confining
pressures. The test is performed by numerically integrating the constitutive model for the
boundary conditions imposed by the oedometer apparatus (ε3=0 → εv=εd=ε1). The test
is defined by fours steps:

1. From an isotropic initial state at p′0=10 kPa, increase and reduction of the vertical
stress σ1 of 10 kPa;

2. Increase and reduction of σ1 of 40 kPa;

3. Increase and reduction of σ1 of 70 kPa;

4. Increase and reduction of σ1 of 100 kPa.

These steps of increasing and reducing σ1 are defined in order to verify the aptitude
of the calibrated parameters on capturing the volumetric evolution during the reloading
phases. The reloading phase can be defined in this case when the material is subjected to
stresses which it has already been subjected to. This test is considered relevant regarding
the stress path imposed by the moving load on the observation points under the sleeper.
The main advantage of imposing oedometric conditions instead of directly imposing a
numerically obtained stress path from simulations is assuring the numerical convergence
of the test.

Two cases are considered for exemplifying the importance of the calibration procedure
in the response of the material. These are the following:

• Case 1 is defined by the set of parameters given in Table 5.2 representing the ballast
material tested by Suiker et al. (2005);

• Case 2 the same set of parameters as Case 1 is considred, with the slight difference
that the elastic domain radius rela is changed from 1.10−5 to 1.10−3.

Figure 5.14 shows the mechanical response to the proposed numerical test for Case
1 and 2, where blue solid line represents Case 1, red dashed line represents Case 2 and
q = σ1 − σ3 as for the triaxial test. The obtained response for Case 1 is coherent with
the oedometric path (Biarez and Hicher, 1994), the hysteresis loop on deviatoric and vol-
umetric responses being correctly represented during the reloading phases. However, by
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Figure 5.14: Numerical cyclic oedometric test results for the set of parameters calibrated
for the ballast material tested by Suiker et al. (2005). Blue solid line represents Case 1
and red dashed line represents Case 2.

increasing the elastic domain radius of the deviatoric mechanism, the considered set of pa-
rameters is not able to correctly capture the unloading/reloading phases and a uncoherent
response is obtained.

The ECP model considers a double memory system in order to model the cyclic re-
sponse. Both monotonic and cyclic mobilized friction parameters rmk and rck evolve de-
pending on the load direction to the normal vector to both deviatoric and volumetric
yield surfaces. The evolution of these parameters during the oedometric cyclic loading is
verified for the different calibrated materials. The results for both monotonic and cyclic
degrees of mechanism mobilization for the devatoric and isotropic mechanisms, obtained
from the test results shown in Figure 5.14, are presented in Figure 5.15. Dashed gray lines
represent the end of increasing σ1 and dashed black lines represent the end of reducing σ1
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Figure 5.15: Evolution of monotonic and cyclic degrees of mechanism mobilization during
the numerical cyclic oedometric test for the set of parameters calibrated for the ballast
material tested by Suiker et al. (2005). N stands for each step of the proposed numerical
test. a) Deviatoric yield surface; b) Isotropic yield surface.

thus, the end of the considered step. Correctly triggering the cyclic mechanism during the
load reversal has proved to be an essential aspect in order to capture a coherent response
for the numerical cyclic oedometric test. The elastic domain radius of both deviatoric and
isotropic mechanisms, rela and relaiso respectively, are the important parameters in order
to correctly capture the unloading/reloading phases. As shown in Figure 5.15, both the
deviatoric and isotropic cyclic mobilized friction parameters are triggered for Case 1 dur-
ing the unloading phase and this aspect is the main point controlling the response in the
reloading phase, thus controlling the observed hysteresis in the material behavior.

ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd

5.5 Nonlinear response of the railway track

The main advantage of using the proposed nonlinear modeling methodology regarding
elastic modeling techniques is the possibility of taking into account initial state evolution of
the different materials. This approach is particularly adapted for studying the first loading
cycles the railway track is subjected to, when materials develop the highest deviatoric
and volumetric strains. Soil behavior depends on the loading history and in this sense
considering the influence of permanent strains on the evolution of the soil initial state is
essential to study this first phase of the track behavior.

5.5.1 Numerical model characteristics

A schematic representation of the conventional track considered in the following sections
is given in Figure 5.16. It is composed of two layers (ballast and interlayer) and the
subgrade soil. Differently from the previous sections, the choice is made in the nonlinear
model of considering fresh and fouled ballast as one and same material. The total width
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(parameters calibrated from Suiker et al. (2005))
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Figure 5.16: Schematic representation of the nonlinear model for a conventional track
configuration.

of the ballast layer corresponds thus to 40 cm. The 4-node bilinear quadrilateral elements
from the linear model are replaced by 8-node biquadratic quadrilateral elements with 9
integration points. These provide better numerical convergence for the nonlinear model.
In order to keep the same computational cost, the mesh elements are bigger, maintaining
roughly the same total number of integration points. The element lateral size is increased
from 6 cm to 10 cm and elements are two times higher in the vertical direction than in the
linear elastic model. The total length of 84 m is maintained, the mesh being composed
of 58807 nodes, 16142 8-node biquadratic quadrilateral elements modeling the track and
soil, 1686 beam elements modeling the rail and 983 6-node quadratic interface elements
modeling the sleeper-ballast interface.

The representative observation points for each layer are also presented in Figure 5.16.
It was shown in Section 3.4 that two representative stress paths are observed for the
ballast layer depending on the position of the observation point regarding the sleeper. In
this sense, two observation points are chosen for the ballast layer, which are called ballast
under the sleeper (BUS) and ballast between sleepers (BBS) in the following analysis.

The time integration scheme discussed in Section 3.2.4 is maintained, i.e. numerical
damping from the Newmark scheme is considered. However, the time step is reduced in
order to assure a better convergence of the nonlinear model, ∆t=5.10−5 s. In this case, the
estimated numerical damping is 10 times smaller than in the linear elastic simulations,
ζ ≈0.00002f . It is important to highlight that soil damping is considered by the nonlinear
model (i.e. material damping). Numerical damping is introduced as a mean to ensure low
high frequency energy due to the spatial discretization and damping in the elastic domain.

Concerning the boundary conditions, the paraxial approximation is preferred to the
proposed Kelvin-Voigt absorbing boundaries for the nonlinear model, as it can better
approximate both vertical and lateral soil responses. Obtaining more adapted boundary
conditions for dynamic nonlinear numerical models is a research topic by itself and it is
not in the scope of this work. Material damping induced by plastic deformation is also
expected to attenuate wave energy before arriving to the boundaries.

In Section 3.4, the mechanical response of the track and materials for different track



Chapter 5. Nonlinear railway track model 157

conditions was characterized by applying one bogie load. This approach is useful when
one train passage can be decomposed in independent bogie loads, as often considered for
the passenger cars from TGV high-speed trains. The same simulation strategy is kept in
this chapter. The choice is made of presenting separately the results for one bogie load
(first loading cycle) and for multiple bogies (cyclic load).

In the following sections, the results of the nonlinear mechanical model are presented.
The load transfer mechanisms between layers and the differences appearing in the me-
chanical response of ballast are highlighted for one bogie load at 15 km/h. The influence
of speed on the stress-strain path and shear response of materials is then analyzed by
performing numerical simulations for one bogie load at 220 km/h. The cyclic response
of materials and the influence of stress histories is then discussed by considering 5 bogie
cycles at different speeds.

5.5.2 Mechanical response at small speed

A general view of the model response during the first loading cycle is shown in Figure
5.17, where the vertical displacement is presented over a scaled deformed mesh of a 15 m
track section. Rail and rail pad elements are omitted from this representation for the sake
of clarity. Forces F1 and F2 model the two axle loads applied on the track. These forces
represent a train bogie crossing the track from left to right. Permanent settlement, i.e.
plastic deformation, is observed at the different materials after loading. The empty spaces
observed between sleepers and unconfined ballast are a consequence of the mechanical
interfaces used for ensuring the sleeper kinematics.

The time response of vertical displacement (uz) on the selected control points is shown

F2 F1Permanent settlement

Already loaded soil Soil in initial condition

∆z=6.81 m

uz [mm]

Figure 5.17: Vertical displacements (uz) obtained by the model (scaled deformation) for
a bogie at 15 km/h.
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Figure 5.18: Vertical displacement for different materials at 15 km/h. a) Time scaled
response; b) Profile of permanent settlement in a track section (Dashed dark line repre-
sents considered points in a)). Rl: Rail; Sl: Sleeper; BUS: ballast under the sleeper; ITL:
interlayer; Sbg: subgrade.

in Figure 5.18. The convective axis t.v [m], also used in Section 3.4.3, is an effective way
for further comparison of time signals at different speeds. Higher values of vertical dis-
placement are obtained for the second axle passage for all layers, as a consequence of
permanent settlement occurring during the first axle passage. At the rail, a total perma-
nent settlement of 0.4 mm is obtained during the first loading cycle. However, as shown
from Figure 5.18b, permanent settlements observed in a track section are not homogeneous
and depend mainly on the local behavior of the materials.

The obtained vertical stress (σ′
zz) in the track is shown in Figure 5.19. A further zoom

on the dashed box is presented in Figure 5.20. From a homogeneous initial state of the
materials, an inhomogeneous final state is obtained after the load has passed, which is
shown in the left hand-side of Figure 5.19. These inhomogeneities in the final state of the
materials arise naturally as a consequence of the differences in plastic deformation along
the track observed in Figure 5.18b. The main consequence of this process is the occurrence
of variations of stiffness at different locations of the track. The effet of such variations in
stiffness in the track stiffness measurement has been extensively discussed in Chapter 4.
These results highlight one of the motivations for considering material variability in elastic
track models.

The vertical load transfer mechanism between layers can be analyzed from Figure 5.20.
For this track profile, only 3 sleepers are responsible for distributing the load from the
rail to the ballast. Low load spread is observed under the ballast: while points directly
beneath the sleeper are subjected to maximum vertical stress of 35 kPa, points between
sleepers are subjected to much lower values, the maximum being around 20 kPa for points
near the interlayer. The closer look on the first axle presented in Figure 5.20b shows the
different layer profiles during load. Differently from static analysis, the vertical load is
not equally distributed among the sleepers, as the soil already loaded presents higher
stiffness. This effect cannot be observed with a linear elastic model. An uniform vertical
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Figure 5.19: Vertical stress (σ′
zz) obtained by the model (scaled deformation) for a bogie

at 15 km/h.
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Figure 5.20: Vertical stress (σ′
zz) obtained by the model (scaled deformation) for a bogie

at 15 km/h. a) Zoom for a small track section; b) Zoom on the first axle passage.

load distribution is obtained at the subgrade, thanks to the interlayer material. As a
consequence of the increase of the initial vertical stress in depth, variations imposed by
the moving load rapidly decrease below 1 m in the subgrade.

The same track profiles are given for the obtained lateral stress (σ′
yy) (Figure 5.21)

and shear stress (σyz) (Figure 5.22). In the ballast layer, higher maximum lateral stress
is observed between sleepers than under the sleeper, although the stress levels are lower
than for vertical stress. As for the previous case, the interlayer is responsible for homog-
enizing the stress variations in the lateral direction. However, the subgrade is subjected
to the highest maximum lateral stresses. An increase of residual values is observed for all
materials, specially at the subgrade.

These two mechanisms are highlighted in Figure 5.23, where the maximum vertical and
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Figure 5.21: Lateral stress (σ′
yy) obtained by the model (scaled deformation) for a bogie

at 15 km/h. a) Track section; b) Zoom on the first axle passage.
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Figure 5.22: Shear stress (σyz) obtained by the model (scaled deformation) for a bogie at
15 km/h. a) Track section; b) Zoom on the first axle passage.

lateral stresses relative to the initial value for the points at the zone of interest are shown.
As expected, the values are higher at lower depth as maximum stresses are higher and
initial vertical and lateral stresses are lower. The main differences concerning the position
relative to the sleeper are concentrated in the ballast layer, whereas at the subgrade, no
differences are observed.

Concerning the obtained shear stress results, once again the importance of the control
point position in ballast regarding the sleeper is highlighted, the highest values being
obtained for points between sleepers during the loading cycle. A final state of non null
shear stress is obtained after load for all materials. Differently from normal stresses, the
interlayer does not seem to play a particular role in the shear stress spread to the subgrade.

The same analysis can be performed regarding the deformation characteristics of the
track. Figure 5.25 presents the vertical strain (εzz) on materials during load. It can be
seen that a discontinuous strain profile is observed on ballast, vertical strains being con-
centrated on points under the sleeper. The subgrade presents vertical strain values higher
than the interlayer. Therefore, the interlayer can be viewed in this track profile as a low
deformable layer, which guarantees its capability in homogenizing vertical stress varia-
tions due to discrete sleeper support. The lateral strains (εyy) developed by the materials
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Figure 5.23: Comparison of maximum stresses during load relative to the initial value for
a load speed of 15 km/h. a) Vertical stress (σ′

zz); b) Lateral stress (σ
′
yy).
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Figure 5.24: Vertical strain (εzz) obtained by the model (scaled deformation) for a bogie
at 15 km/h. a) Track section; b) Zoom on the first axle passage.

during load are approximately 10 times lower than vertical strains (Figure 5.25). For the
first axle (F1), a clear profile of the wave propagation in the soil is observed (Figure 5.24a),
although during the second axle passage this is less visible due to different plastic strains
cumulated by the materials.

The profiles of maximum vertical and lateral strains in the zone of interested are
shown in Figure 5.26. The same conclusions from the stress characteristics regarding the
differences on under the sleeper and between sleepers points (Figure 5.23) can be draw
for the strain characteristics. Moreover, it can be seen that maximum vertical and lateral
strains are higher at the subgrade than at the interlayer.

A local analysis of the mechanical response for the different control points is hereafter
discussed. Stresses on the (y, z) plane are presented in Figure 5.27. As expected, maxi-
mum vertical stress (σ′

zz) is higher for ballast under the sleeper, which presents a stress
amplitude (∆σ′

zz) of 20 kPa. Interlayer and the subgrade present similar maximum val-
ues, although reduction of the final value of vertical stress is observed for the interlayer.
Concerning lateral stress (σ′

yy), an increase of residual values is observed for all layers,
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Figure 5.25: Lateral strain (εyy) obtained by the model (scaled deformation) for a bogie
at 15 km/h. a) Track section; b) Zoom on the first axle passage.
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Figure 5.26: Comparison of maximum strains during load for a load speed of 15 km/h. a)
Vertical strain (εzz); b) Lateral strain (εyy).

which leads to an increased confining pressure.

Concerning shear stress (σyz), the interlayer presents the highest amplitude and ballast
under the sleeper the lowest. Residual shear stress is observed for all layers. The principal
stress axes rotation angle (αyz) (Figure 5.27d) varies significantly for all materials after
load, reflecting the increase of lateral stress relative to vertical stress and the existence of
residual shear stress after the load has passed. The earth pressure coefficient (ko) is shown
in Figure 5.27e for these materials. Values of ko near the unity are obtained after load
for all materials, therefore important variations of αyz can be produced by low variations
of shear stress. Even though this is less important at the subgrade, a total amplitude of
around 40° is observed during load.

Regarding the strain levels, Figure 5.28 shows the vertical (Figure 5.28a), lateral (Fig-
ure 5.28b) and shear strains (Figure 5.28c) on materials during load. Ballast under the
sleeper and the subgrade present the highest strain levels, the interlayer presenting lower
strain variations. Both vertical and shear strain levels are higher than lateral strains, max-
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Figure 5.27: Time scaled response of different materials during the first loading cycle at
15 km/h. a) Vertical stress (σ′

zz); b) Lateral stress (σ
′
yy); c) Shear stress (σyz); d) Principal

stress axes rotation angle (αyz); e) Earth pressure coefficient (ko). BUS: ballast under the
sleeper; ITL: interlayer; Sbg: subgrade.
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Figure 5.28: Time scaled response of different materials during the first loading cycle at 15
km/h. a) Vertical strain (εzz); b) Lateral strain (εyy); c) Shear strain (εyz). BUS: ballast
under the sleeper; ITL: interlayer; Sbg: subgrade.

imum vertical strain being 10 times higher than maximum lateral strain. The second axle
imposes on ballast under the sleeper higher total vertical strains than the first axle, as
the material cumulates vertical plastic strain during both axle passage. For the interlayer
and the subgrade, this effect is less pronounced, plastic vertical strains being cumulated
mainly during the first axle passage. Moreover, only the subgrade cumulates lateral plastic
strain during the load cycle (Figure 5.28b), as both residual and initial values for ballast
under the sleeper and the interlayer are similar. Concerning shear strains, maximum val-
ues increase during the second axle passage, as a consequence of material cyclic softening.
The interlayer presents similar initial and residual values, while ballast under the sleeper
and the subgrade cumulates either positive or negative shear strains. The strain response
is further analyzed in details in section 5.5.3.1.

The stress and strain invariants in the (y, z) plane are also analyzed in Figure 5.29.
They are defined in Equations 5.5 to 5.8. Ballast presents the highest maximum strains and
the maximum stress variations, as previously observed. After loading, a slight increase in
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Figure 5.29: Time scaled response of different materials during the first loading cycle at
15 km/h. a) Effective mean stress (p′x); b) Deviatoric stress (qx); c) Volumetric strain (εv);
d) Deviatoric strain (εxd). BUS: ballast under the sleeper; ITL: interlayer; Sbg: subgrade.

the effective mean stress (p′x) is observed, specially at the subgrade. Inversely, deviatoric
stress (qx) decreases as a consequence of the final lateral stress increase compared to
vertical stress. Permanent volume reduction is obtained for all materials, ballast and the
subgrade presenting comparable maximum and residual values of volumetric strain (εv).
The interlayer presents the lowest maximum and residual strain levels.
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εxv =εv = εyy + εzz (5.7)
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2

)2

+ ε2yz (5.8)

These results are replotted in a more convenient stress-strain path in Figure 5.30.
The stress path defined in the (qx, p

′
x) plane (Figure 5.30b) can be compared to the one

obtained at linear elastic case in Section 3.4.1 (Figure 3.26). On both cases, a stress-
path characterized by different slopes at the decrease and increase of stresses is obtained.
However, in the present case the material behavior evolves during loading due to plastic
volumetric and deviatoric strains. The first axle is responsible for the most part of volume
changes taking place in the materials (Figure 5.30d), as plastic deformation takes place
mainly during the first axle passage. The second axle contributes marginally to the increase
in plastic volumetric strain.

It is also important to highlight that both the volumetric and deviatoric strains are
of the same order of magnitude (Figure 5.30c). In this sense, it is expected that both
volumetric and deviatoric behavior to have an impact on the materials’ response.

The stress-strain response of ballast under the sleeper shown in Figure 5.30 can be
suitably characterized by an oedometric path. This is a consequence of the load transfer
mechanism from the axle load to the ballast imposed by the discrete sleeper support. The
track can be viewed as a series of footings, each one representing one sleeper. Different
sleepers are loaded at the same time, with different load amplitudes. The lateral displace-
ment of ballast under the sleeper is constrained by the surrounding sleepers, which leads
to higher values of lateral stress in points between sleepers. Therefore, under one given
sleeper, ballast is subjected to higher vertical stress relatively to lateral and shear stress,
whereas between sleepers it presents lower values of vertical stress but higher maximum
values of lateral stress. This mechanism is less pronounced at further depth, both by the
homogenizing role of the interlayer and the stress radiation into the soil. Evidently, these
variations depend on the characteristics of the load repartition over sleepers of the track.

The stress-strain paths of ballast under the sleeper (BUS) and ballast between sleepers
(BBS) are compared in Figure 5.31. Maximum mean stress values are similar, as increase
on lateral and vertical stresses compensate each other, but BUS is subjected to higher
deviatoric stress. The obtained stress paths (Figure 5.31b) are then very different for
BUS and BBS. The latter presents mainly three phases for one axle passage: increase
of mean and deviatoric stresses, decrease of deviatoric stress with constant mean stress
and then decrease of mean stress with a slight decrease of deviatoric stress. Concerning
the volumetric response (Figure 5.31d), lower maximum volumetric strain is observed
and residual mean stress is lower in the case of BBS. On the other hand, the maximum
and residual deviatoric strains are higher for BBS, mainly because of the last part of the
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Figure 5.30: Stress-strain response of different materials during the first loading load at 15
km/h. Black dashed line in (b) is the unitary slope (45°). BUS: ballast under the sleeper;
ITL: interlayer; Sbg: subgrade.

cycles, when the second axle has passed the considered point. This phase is characterized
by a rapid increase of deviatoric strains due to the rapid reduction of mean stress without
important variations in deviatoric stress.

From these results, it is then expected that the behavior of ballast under the sleeper
and between sleepers to be significantly different in the track. At the grain level, grains
under the sleeper are subjected to higher deviatoric stress, but they present lower strains.
Inversely, grains between sleepers are expected to be able to rotate and rearrange more
often. The present model cannot account for this level of detail, as ballast is modeled as
a continuous material. DEM approach can give a further insight in these aspects, as well
as in the impact of the discrete sleeper support on ballast response and possibly in the
mechanisms behind grain attrition and breakage.



168 5.5. Nonlinear response of the railway track

0 0.005 0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6

7

8

9

10

ε
d
x [%]

q x [k
P

a]

(a) qx − εxd

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

p
x
’ [kPa]

q x [k
P

a]

 

 

BUS
BBS

(b) qx − p′x

0 0.005 0.01 0.015 0.02 0.025 0.03

−2

0

2

4

6

8

10

12

14

x 10
−3

ε
d
x [%]

ε v [%
]

(c) εv − εxd

10
1

−2

0

2

4

6

8

10

12

14

x 10
−3

p’
x
 [kPa]

ε v [%
]

(d) εv − p′x

Figure 5.31: Comparison of the stress-strain response of ballast under the sleeper (BUS)
and ballast between sleepers (BBS) for load speed of 15 km/h during the first loading
cycle. Black dashed line is the unitary slope (45°).

5.5.3 Influence of speed during the first loading cycle

In the previous section, the evolution of stress and strains at the different materials is
presented for a stress path imposed by the bogie load at 15 km/h. The performed numerical
simulations show that the stress levels on ballast layer depend on the position of the control
point relative to the sleepers, these differences not being observed further in depth. The
residual stress on materials is characterized by an increase of mean stress and reduction of
deviatoric stress, and increase in density is obtained as a consequence of volume reduction.

In this section, the impact of the load speed is analyzed in terms of both the stress-
strain response of the materials at the different points of interest. This comparison is
obtained by considering a bogie load at 220 km/h instead of 15 km/h as in the previous
section.

An overview of the difference in vertical displacements for the speed of 220 km/h
relative to 15 km/h is given in Figure 5.32 (uz220km/h-uz15km/h), for an instant when the
bogie is at the same position on the track for both speeds. Higher vertical displacements
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are obtained for the load speed at 220 km/h. A maximum difference of 0.12 mm in the
ballast layer is obtained, which decreases with increasing depth. As a consequence of
nonlinear behavior, the influence of speed on the maximum vertical displacement and
permanent settlement is not homogeneous, although differences in a same layer are small.
The global profile of vertical displacements and accelerations at the selected control points
are given in Figure 5.33. At the rail, a permanent settlement of 0.5 mm is obtained, which
is 25% higher than the settlement obtained at 15 km/h. The obtained acceleration levels
at the sleeper are of the same order of magnitude as the elastic model (Figure 3.31b) for
stiff soils.

Concerning the stress levels, it has been shown that in the case of linear elastic ma-
terials, the moving load speed mainly affects the magnitude of shear response, increasing
the measured principal stress rotation angle (Section 3.4.2). In this sense, the deviatoric
response was more sensitive than the volumetric one with the increase of the load speed.
In addition, this effect was more pronounced with soft soils.

For the present case, an important increase of maximum mean and deviatoric stresses
with increasing speed in ballast under the sleeper (BUS) is observed (Figure 5.34). The
residual mean stress is also higher for the 220 km/h case, which linked with the volume
reduction leads to higher compaction and stiffening of the material in this case (Figure
5.34d). The counterpart of rapid material stiffening is that residual deviatoric stress and
strain are also higher for the cycle at 220 km/h (Figure 5.34a). Higher stress and strains
values can be related to higher grain attrition in the ballast layer.

The comparison for ballast between sleepers (BSB) is presented in Figure 5.35. Stress
paths are equivalent on both cases, although the 15 km/h speed case presents higher mean
and deviatoric stress (Figure 5.35b). The material presents sensibly lower stiffness during

F2 F1

∆z=6.81 m

uz [mm]

Figure 5.32: Difference in vertical displacements obtained by the model (scaled deforma-
tion) for a bogie load at 220km/h relative to 15 km/h (uz220km/h-uz15m/h).
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Figure 5.33: Time scaled response of different materials at 220 km/h. a) Vertical dis-
placement (uz); b) Vertical acceleration (az). Rl: Rail, Sl: sleeper, BUS: ballast under the
sleeper, ITL: interlayer, Sbg: subgrade.

the first axle passage (Figure 5.35a), which leads to higher residual deviatoric strain. It is
important to highlight that the increase in volumetric strain for the 220 km/h speed case
during the reloading phase (Figure 5.35d) is not coherent with the expected volumetric
behavior (unloading and reloading phases following the same slope in the (εv, p

′
x) plane),

due possibly to the numerical convergence of the constitutive law.

The stress-strain response of the interlayer material A presented low sensitivity to the
load speed. The comparative results are presented in Figure 5.36. The volumetric response
is not affected by the bogie speed (Figure 5.36d), whereas the maximum deviatoric strain
(Figure 5.36c) is slightly higher for the 220 km/h speed case. The stress paths are very
similar (Figure 5.36b), the observed differences in the deviatoric strains appearing mainly
after the second axle has passed the considered point.

One reason for the low sensitivity regarding load speed of the interlayer material A is
the considered initial state, which is that of the triaxial test. Trinh et al. (2012) estimated
from oedometric tests that a vertical stress of 700 kPa is necessary for obtaining the dry
density of the soil specimen used in the triaxial test (γd=2.01Mg/m3). Moreover, it is
reminded the dry density of the interlayer in tracks was measured by Trinh et al. (2012)
as 2.39 Mg/m3. In this sense, the interlayer material A is less sensible to load speed as a
consequence of a denser state regarding the other materials in the track.

Concerning the subgrade, the load speed affects both the volumetric and deviatoric
responses. Figure 5.37 shows the comparative stress-strain behavior of the subgrade for
the two considered speeds. Maximum values of both mean stress and volumetric strain are
higher for 220 km/h load speed (Figure 5.37d), specially because of the higher volumetric
strain experimented during the first axle passage. Maximum and residual deviatoric strains
are also higher during the cycle at 220 km/h.

These results highlight that the moving load speed differently affects the stress-strain
response of the materials during the first cycle. Ballast is more susceptible to variations in
speed during the first loading cycle. Under sleeper points being subjected to higher stresses
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Figure 5.34: Impact of load speed on the stress-strain response of ballast under the sleeper
(BUS). Black dashed line is the unitary slope (45°).

and between sleepers points presenting higher strains. In the next section, the effect of
speed in the cyclic response of ballast is further discussed. The considered interlayer
material presented low sensitivity to the load speed. Finally, speed also affected the stress-
strain response of the subgrade, the material being subjected to higher maximum mean
stress and residual strains during the load cycle.
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Figure 5.35: Impact of load speed on the stress-strain response of the ballast between
sleepers (BBS). Black dashed line is the unitary slope (45°).
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Figure 5.36: Impact of load speed on the stress-strain response of the interlayer.



174 5.5. Nonlinear response of the railway track

0 0.005 0.01 0.015
0

1

2

3

4

5

6

7

ε
d
x [%]

q x [k
P

a]

(a) qx − εxd

10 12 14 16 18
0

1

2

3

4

5

6

7

p
x
’ [kPa]

q x [k
P

a]

(b) qx − p′x

0 0.005 0.01 0.015

−2

0

2

4

6

8

10

12

14

x 10
−3

ε
d
x [%]

ε v [%
]

(c) εv − εxd

10
1

−2

0

2

4

6

8

10

12

14

x 10
−3

p’
x
 [kPa]

ε v [%
]

(d) εv − p′x

Figure 5.37: Impact of load speed on the stress-strain response of the subgrade soil.
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5.5.3.1 Shear response analysis

In earthquake engineering, the imposed load is mainly deviatoric (∆p=0) and in this case
the shear response completely describes the behavior of the soil. Therefore, the relations
between shear modulus and damping with the cyclic shear strain are the parameters of
interest. In this section, these parameters are studied directly from the present numerical
model.

Figure 5.38 shows the scaled time response of both shear stress and strain of the
interlayer during loading at speed 15 km/h. The full cycle can be decomposed in four
steps:

• From the initial state, as the load approaches from a far distance both shear stress
and strain slightly increase, before decreasing when the load is near the considered
point. Minimum value of shear strain (represented by the number 1 in Figure 5.38)
is obtained when the first axle approaches the considered point in the track.

• After this instant, both shear stress and strain increase. The null shear stress cor-
responds to the moment when the load is maximum over the considered point. The
maximum shear strain value (represented by the number 2) is achieved when the
first axle has already passed the considered point.

• When the second axle approaches, the same process takes place. The minimum
value (represented by the number 3) takes place when the second axle approaches
the considered point.

• The last part of the cycle is characterized by the increase of shear stress and strain.
The maximum shear strain value (represented by the number 4) takes place after
the second axle has passed the considered point. After this instant, both shear stress
and strain reduce. However, initial and final values are different as a consequence of
nonlinear behavior.

The shear response is usually represented in the (σyz, γ) plane (γ=2εyz), as shown in
Figure 5.39. Points 1, 2, 3 and 4, representative of the maximum and minimum values
of shear strain during the cycle, are also represented. From this representation, both the
secant shear modulus (Gsec or simply G) and the damping (D) can be suitably measured.
The secant shear modulus is obtained for each axle load and for the whole bogie cycle.
These are represented by dashed lines in Figure 5.39. The damping can also be estimated
for each axle load and for the whole cycle by applying Equation 5.9.

D =
AL

4πAT
(5.9)

where AL is the area enclosed by the hysteresis loop and AT the area enclosed by the right
triangle whose hypotenuse is defined by the following pair of points: 1-2 for the first axle,
3-4 for the second axle and 1-4 for the whole bogie.

The shear response of the different considered points is summarized in Figure 5.40.
The values of the obtained secant shear modulus normalized by the maximum secant
shear modulus (Gmax) and the damping for each material are summarized in Table 5.5. It
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Figure 5.38: Scaled time response of the interlayer material at first cycle at 15 km/h. a)
Shear stress σyz; b) Shear strain γ = 2εyz.
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Figure 5.39: Shear response of the interlayer during the first cycle at 15 km/h. Numbered
points represent the maximum shear strain value during the cycle and dashed lines the
secant shear modulus obtained from these values.

can be seen that ballast and the subgrade are the layers presenting the highest damping
characteristics, as expected from Figure 5.40. Both present larger permanent shear strains
after load and the obtained higher values of damping for the first loading cycle reflect the
dissipated energy through plastic deformation.

Although deviatoric stress is lower at ballast between sleepers, shear stress and strain
are higher during both cycles. The obtained shear modulus is then lower for ballast be-
tween sleepers than for ballast under the sleeper, although the obtained damping values
are similar considering the observed variations between the first and second axle values.
From these results, the idea presented by Bodin (2001) of using two different stiffnesses
for ballast under the sleeper and between sleepers can be justified as being representative
of the stiffness presented by ballast at different points during loading.

As nonlinear elasticity is considered for the subgrade, the soil experiments an increase
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Figure 5.40: Shear response according to load speed for the first loading cycle. a) Ballast
under the sleeper; b) Ballast between sleepers; c) Interlayer; d) Subgrade.

in the maximum secant modulus with increasing mean stress. The evolution of mean stress
during load will then dictate the variations of maximum secant modulus. The values of
G/Gmax showed in Table 5.5 present the maximum secant modulus calculated with the
mean value of the mean stress during the considered load (first axle, second axle or the
whole cycle).

These results can be further analyzed by comparing the values of shear modulus re-
duction and damping curves obtained for the numerical drained cyclic strain-controlled
shear test (Appendix G). In Figure 5.41, cross stands for results at 15 km/h and circle at
220 km/h, red representing ballast under the sleeper, blue ballast between sleepers, black
the interlayer and green the subgrade. The cyclic shear strain values of ballast under the
sleeper, the interlayer and the subgrade considered points are rather equivalent and com-
prised between 1.10−2 and 2.10−2%. As previously discussed, ballast between sleepers is
subjected to higher cyclic shear strains, specially at 220 km/h, the obtained range be-
ing from 2.10−2 to 6.10−2%. Therefore, higher shear modulus degradation is obtained in
this case (Figure 5.41a). Moreover, the low influence of speed on the interlayer’s damping
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First axle Second axle Full bogie
(1-2) (3-4) (1-4)

Speed [km/h] G/Gmax [.] D [%] G/Gmax [.] D [%] G/Gmax [.] D [%]

BUS
15 0.85 2.5 0.80 9.8 0.73 7.7
220 0.86 2.5 0.50 13.9 0.51 12.3

BBS
15 0.48 5.8 0.62 6.6 0.36 8.3
220 0.40 6.8 0.35 7.8 0.31 9.9

ITL
15 0.95 2.8 0.80 3.4 0.81 4.8
220 0.75 3.6 0.77 4.2 0.60 6.4

Sbg
15 0.9 5.9 0.59 11.2 0.72 14.9
220 0.8 4.9 0.69 9.9 0.92 20.7

Table 5.5: Secant shear modulus reduction and damping at the different materials during
the first loading cycle at 15 km/h and 220 km/h. BUS: ballast under the sleeper; BBS:
ballast between sleepers; ITL: interlayer; Sbg: subgrade.

results can be viewed as a consequence of a large elastic domain (Figure 5.41d).
To summarize the observed influence of speed on the shear response during the first

loading cycle, both ballast and the subgrade are affected by the load speed and higher
shear stress and strains are observed during the cycle at speed of 220 km/h. Shear strains
are sensibly higher at speed 220 km/h for BSB. Speed leads to lower shear modulus
and higher damping values, according to the obtained numerical results. Concerning the
subgrade shear response, shear modulus and damping are rather equivalent in both cases,
although strain values are higher at 220 km/h. Load speed has little impact on the shear
behavior of the considered interlayer material, in terms of secant modulus reduction,
damping and cyclic values of shear stress and strain. This is a consequence of large elastic
domain observed for this material from the numerical drained cyclic strain-controlled shear
test.

In the next section, the effect of speed in the cyclic response of ballast is further
discussed.
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Figure 5.41: Comparison of shear modulus degradation and damping obtained from the
numerical model and the results of numerical drained cyclic strain-controlled shear test.
Cross stands for results at 15 km/h and circle at 220 km/h. Red: ballast under the
sleeper; blue: ballast between sleepers; black: interlayer; green: subgrade. a) Ballast’s shear
modulus reduction; b) Ballast’s damping; c) Interlayer’s shear modulus reduction; d)
Interlayer’s damping; e) Subgrade’s shear modulus reduction; f) Subgrade’s damping.
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5.5.4 Influence of speed on the cyclic response of the track

In the previous sections, the different aspects concerning the first loading cycle were
addressed. Permanent settlement was obtained as a consequence of plastic deformation
occurring in the materials during load, higher values being obtained for higher moving
load speed. In this section, the cyclic response of the track is studied by subsequently
applying 5 bogie cycles at 15 km/h and at 220 km/h. These 5 cycles can be viewed as
representative of how the materials will cyclically evolve under track loading conditions.

The obtained vertical displacements in the track during the 5th cycle (∆u5z
th) for cycles

at 220 km/h are shown in Figure 5.42. Rail and rail pad elements are omitted from this
representation for the sake of clarity. Maximum vertical displacements in the ballast are
around 0.3 mm, and values are similar under both axles. Differently from the first cycle
analysis (Figure 5.17), the zone already loaded by the bogie (left hand-side of forces F1

and F2) present small variations on permanent settlement (upz).

After the first loading cycle, upz slowly varies with cycles, depending on the considered
load speed (Figure 5.46). For cycles at 15 km/h, small variations are observed after the
2nd cycle on all layers. The reduction in the observed rate of accumulation of permanent
settlements after the first loading cycle is a consequence of increase in stiffness due to
cyclic hardening in materials. For cycles at 220 km/h, the same tendency is observed for
the interlayer and the subgrade, although permanent settlement values are higher. As
expected, in this case ballast continues to settle with cyclic load. It was shown in the pre-
vious section that ballast was the material presenting the highest stress-strain variations
with the load speed. In order to have a better insight on how the cyclic response of ballast
during the early stages of the track is linked to the observed increase in settlement for

F2 F1

∆z=6.81 m

∆u5
th

z [mm]

Figure 5.42: Vertical displacements obtained during the 5th loading cycle (∆u5
th

z ) for speed
of 220 km/h.
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Figure 5.43: Permanent settlement (upz) in the different materials for 5 loading cycles. a)
Cycles at 15 km/h; b) Cycles at 220 km/h. Rl: rail, Sl: sleeper, BUS: ballast under the
sleeper, ITL: interlayer, Sbg: subgrade.

loads at 220 km/h, the stress-strain response of ballast under the sleeper is compared for
both loading conditions.

Figure 5.44 presents the stress-strain response of ballast under the sleeper for cycles at
speed 15 km/h. Cyclic compaction takes place in the material, and hardening is observed
by an increase of maximum deviatoric stress developed in the material during loading after
the first cycle. Maximum volumetric stress is slighlty affected by the cyclic load, as well
as the initial state after each cycle. This slow accumulation of volumetric and deviatoric
strains without important changes in the initial state of the material is characteristic for
cycles at low speed.

The stress-strain response of ballast under the sleeper for a moving load at speed of
220 km/h is presented in Figure 5.45. From the first cycle analysis, it was shown that
stresses were higher for 220 km/h and an important increase in mean stress was observed
during the first cycle. With cycles, maximum stresses are sensibly higher in the present
case. Higher compaction is obtained as a consequence of higher stresses. The obtained
vertical settlement in the ballast layer is a consequence of the cyclic volume reduction.
However, increase in mean and deviatoric residual stresses are also observed.

In this sense, with more cycles, it is expected that the stress-path touches the char-
acteristic state line and in this case increase in volume can happen (Section 2.4.2). This
is an unwanted situation in tracks, as it can lead to important track settlements as a
consequence of increase in strain levels. Strains are expected to be low and materials to
evolve slowly with cycles toward reduction in volume and increase in mean stress, without
increase in deviatoric stresses.

The previous discussed behavior is avoided in tracks by limiting train speed during the
conditioning phase before allowing trains at the nominal speed. In this sense, the increase
in shear strains imposed by the load speed is avoided during the first cycles and increase in
density can be obtained without increase in stresses. In order to verify the importance of
the first loading cycle in the cyclic response, results of numerical simulations considering a
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Figure 5.44: Cyclic stress-strain response of under sleeper ballast for load speed of 15
km/h. Black dashed line is the unitary slope (45°).

first cycle at 15 km/h, called preloading cycle, and then cycles at 220 km/h are presented.
This method can be viewed as a way to better understand the role of load speed and
initial state on material evolution.

The evolution of permanent settlements with cycles at the chosen control points is given
in Figure 5.46a. The obtained track settlements is reduced by considering a preloading
cycle (first cycle). Indeed, the observed final settlement is 20% lower when the preloading
cycle is applied. Figure 5.46b shows the comparative results for the rate of permanent
settlement variation (∆upz) at each cycle. Similar trends are observed for both cases, al-
though a more pronounced reduction of ∆upz is observed after 5 cycles when no preloading
cycle is applied. However, it is expected that ∆upz will also reduce with more cycles for
the case when a preloading cycle is applied.

Figure 5.47 presents the stress-strain results for this case. Maximum stresses are higher
than the 15 km/h but sensibly lower than the 220 km/h case, as well as the observed
permanent strains. Material densification and increase in initial mean stress with low
accumulation of strains are obtained, which is the expected behavior for stable evolution



Chapter 5. Nonlinear railway track model 183

0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

ε
d
x [%]

q x [k
P

a]

(a) qx − εxd

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

p
x
’ [kPa]

q x [k
P

a]

 

 

1st cycle
2nd cycle
3rd cycle
4th cycle
5th cycle

(b) qx − p′x

0 0.01 0.02 0.03 0.04 0.05

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

ε
d
x [%]

ε v [%
]

(c) εv − εxd

10
1

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

p
x
’ [kPa]

ε v [%
]

(d) εv − p′x

Figure 5.45: Cyclic stress-strain response of under sleeper ballast for load speed of 220
km/h. Black dashed line is the unitary slope (45°).

of the materials on tracks.
For all cases, the observed increase of stresses with cyclic loading is characteristic of

material hardening and increase in stiffness due to plastic strains. Higher compaction of
ballast under the sleeper is obtained by loads at 220 km/h, but this leads to higher residual
deviatoric stress, increase in plastic strains and settlement with cycles. In real tracks, this
behavior is avoided by imposing a reduced traffic speed during the conditioning phase
of the material. Optimizing the train speed and required tonnage for a certain axle load
during this phase in order to ensure good track quality for the long-term behavior is an
open challenge, as nowadays standards are mainly based on field feedback.
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Figure 5.46: Settlement analysis for 5 loading cycles. a) Permanent settlements (upz) for
cycles at 220 km/h after a preloading; b) Rate of permanent settlement variation (∆upz).
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Figure 5.47: Cyclic stress-strain response of under sleeper ballast for load speed of 220
km/h with a preloading cycle at 15 km/h. Black dashed line is the unitary slope (45°).
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5.6 Influence of subgrade and interlayer materials on

the track response

The impact of other track profiles on the mechanical response of the track is studied
in this section by considering separately a medium-to-dense sand subgrade and another
interlayer material. The preloading cycle, as considered in the previous section (one bogie
load at 15 km/h), is used as numerical protocol for comparing the mechanical behavior
of the different profiles under loads at 220 km/h.

5.6.1 Influence of subgrade’s initial density

Good compaction characteristics are required for the subgrade in railway tracks in order
to increase the material stiffness and decrease its deformability by increasing its density, as
discussed in Chapter 2. However, in practice it is very difficult to guarantee a homogeneous
compaction level everywhere in the subgrade. The impact of variations of the compaction
level can be ultimately viewed as variations of material stiffness, and results from Chapter
4 showed the important role played by the subgrade in the track stiffness.

In order to assess the influence of the subgrade’s initial relative density on the con-
ditioning phase of the track materials, an extreme case of low initial relative density is
considered by modeling the subgrade as a medium-to-dense sand (Dr=40%). All other
materials are kept unchanged (ballast, interlayer material A). The numerical protocol
proposed in Section 5.5.4 for applying loads at 220 km/h is considered. It consists in ap-
plying preloading conditions (a bogie load at 15 km/h) previously to the nominal speed
of 220 km/h. As discussed, this procedure better represents the soil history concerning
the specific stress-path imposed by the bogie load. The numerical simulations performed
considered 5 load cycles at 220 km/h.

Figure 5.48 compares the shear response of the different materials for both subgrade
densities during the preloading cycle. The dense sand response is replotted (it was already
presented in Figure 5.40) for a better comparison of the influence of the subgrade initial
relative density. Shear stress and strains are higher at the subgrade for the medium-to-
dense case, specially during the second axle (Figure 5.48d). In this case, the interlayer also
presents higher shear strains, although maximum shear stress is equivalent in both cases.
Inversely, ballast presents lower shear strains at any position on the track. Particularly
for ballast under the sleeper, the material presents an elastic shear response in the case
of medium-to-dense sand. Energy dissipation in ballast by damping occurs mainly by the
material present between sleepers.

From these results, Figure 5.53 compares the values of damping and shear modulus
reduction for the different layers for subgrade soil at relative densities Dr=40% (medium-
to-dense sand) and Dr=93% (dense sand). As a consequence of the increase of shear strain
in the interlayer, shear modulus reduces (Figure 5.49c) and damping increases (Figure
5.49d). On the other hand, ballast presents lower damping characteristics (Figure 5.49b).
Lower damping is also observed in the subgrade (Figure 5.49f).

Figure 5.50 presents the stress-strain response of the subgrade during cyclic load. Solid
line represents dense sand and dashed dotted line represents medium-to-dense sand. The
preloading cycle and the last performed cycle are highlighted in order to better view the
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Figure 5.48: Shear response according to subgrade relative density. a) Ballast under the
sleeper; b) Ballast between sleepers; c) Interlayer; d) Subgrade.

evolution of stresses and strains with cycles. Initial values of each cycle are represented by
a circle, whereas the final value is represented by a cross mark. The stress paths during
the preloading cycle are similar (Figure 5.50b), but with cycles at 220 km/h the medium-
to-dense soil experiments higher mean stress and lower deviatoric stress.

Slightly higher volumetric and deviatoric strains are observed in the medium-to-dense
sand case (Figure 5.50c), but globally the deformation behavior is similar in both cases.
It can be concluded that mainly the deviatoric response is affected and that the dense
sand case presents higher stiffness with cycles than the medium-to-dense case.

This cyclic increase in stiffness of the subgrade has an important impact on the cyclic
response of ballast. Figure 5.51 presents the results for ballast under the sleeper, following
the same notation as in Figure 5.50. The deviatoric response is mainly affected by the
differences in the subgrade, the lower initial relative density case leading to higher per-
manent deviatoric strains. Initial state of ballast for the medium-to-dense subgrade case
evolves toward higher values of mean and deviatoric stresses.
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Figure 5.49: Comparison of shear modulus degradation and damping obtained from the nu-
merical model and the results of numerical drained cyclic strain-controlled shear test. Cross
stands for results of sand subgrade at relative density Dr=93% and circle at Dr=40%.
Red: ballast under the sleeper; blue: ballast between sleepers; black: interlayer; green: sub-
grade. a) Ballast’s shear modulus reduction; b) Ballast’s damping; c) Interlayer’s shear
modulus reduction; d) Interlayer’s damping; e) Subgrade’s shear modulus reduction (solid
line: Dr=93%; dashed line: Dr=40%); f) Subgrade’s damping (solid line: Dr=93%; dashed
line: Dr=40%).
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Figure 5.50: Impact of the subgrade relative density on its cyclic response. Solid line rep-
resents dense sand (Dr=93%) and dashed dotted line medium-to-dense sand (Dr=40%).
Circle represents the initial value of the cycle and a cross mark the last value.
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Figure 5.51: Impact of the subgrade relative density on the cyclic response of ballast
under the sleeper. Solid line represents dense sand (Dr=40%) and dashed dotted line
medium-to-dense sand (Dr=40%). Gray dashed line is the unitary slope (45°).
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5.6.2 Influence of interlayer material

In this section, the influence of the interlayer mechanical characteristics on the cyclic
response of the materials is assessed by considering a track profile with interlayer material
B instead of interlayer material A. Interlayer material B presents lower peak resistance, it
has a more contractant volume behavior on the triaxial test at a given confining pressure
and it presents higher shear modulus degradation and damping than interlayer material A.
All other materials are kept unchanged (ballast, subgrade as dense sand Dr=93%). This
section follows the same organization layout as Section 5.6.1. The track’s cyclic response
is analyzed by considering a preloading cycle at 15 km/h followed by cycles at 220 km/h.

The shear response of the different layers is compared for both interlayer materials
in Figure 5.52. As expected, larger cyclic strains are observed for the interlayer when
material B is considered (Figure 5.52c). In turn, lower cyclic shear strain amplitudes per
axle are observed for the other materials, specially at the ballast layer. This is particularly
observed for ballast under the sleeper, which presented lower cyclic shear stress and strain.
An increase of permanent shear strain is observed for the interlayer and the subgrade.
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Figure 5.52: Shear response according to interlayer material. a) Ballast under the sleeper;
b) Ballast between sleepers; c) Interlayer; d) Subgrade.
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Figure 5.53 presents the damping and shear modulus reduction for the different ma-
terials during the preloading cycle at 15 km/h, when considering interlayer materials A
or B. As expected, shear modulus reduction and damping when the interlayer material
B is considered are higher (Figures 5.53c and 5.53d, respectively). In turn, for this case
the other layers are submitted to lower shear strains and present smaller shear modulus
reduction and damping. Particularly the subgrade, the shear modulus observed for the
complete cycle in the case of the interlayer material B is higher than the maximum shear
modulus of the material at its mean stress. This is the consequence of the mutual influ-
ence of both axles on the subgrade response. It can be seen from Figure 5.52d that the
hysteresis loop after the first axle is not closed. This effect is less pronounced in the case
of the interlayer material A, as it presents smaller shear modulus degradation. Therefore,
the definition of secant shear modulus for the whole cycle cannot be used for the subgrade,
as the hypothesis of a closed hysteresis loop is not verified. Therefore, in Figure 5.53e it
is represented as no shear modulus degradation (G/Gmax=1).

The cyclic stress-strain response of the interlayer is first analyzed in Figure 5.54. Solid
line represents the interlayer material A and dashed dotted line represents the interlayer
material B. The preloading cycle and the last performed cycles are highlighted in order
to better view the evolution of stresses and strains with cycles. Cyclic softening of the
interlayer material B is observed, characterized by reduction of residual mean stress and
stiffness with an increase of permanent strains.

The behavior of interlayer material B presents major consequences for the ballast re-
sponse. Figure 5.55 compares the stress-strain response for ballast under the sleeper for the
two considered interlayer conditions. For both cases, cyclic increase in material’s stresses
is observed as a consequence from ballast densification and increase in stiffness. However,
when the interlayer material B is considered, ballast under the sleeper is subjected to
higher residual deviatoric stress and presents higher permanent deviatoric and volumetric
strains. The observed cyclic softening leads to an increase in the stresses applied in bal-
last. From the first cycle analysis, decrease of shear stress was observed for the case with
interlayer material B, which means that the increase in deviatoric stress is caused by an
increase of vertical stress applied in the material. Moreover, the residual deviatoric stress
increase is not followed by mean stress increase and this condition can possibly lead to
larger permanent deformations of the ballast layer.

Concerning the subgrade, whose results are presented in Figure 5.56, the main conse-
quence of considering the interlayer material B is the decrease in volumetric strain during
the preloading cycle, which is further kept during the following cycles at 220 km/h. The
deviatoric response is not affected and stress and strain levels per cycle are very similar
in both cases.

From the above results, the interlayer plays an important role in the evolution of
stresses and strains on ballast. Depending on the material conditions in the track, ballast
can be subjected to higher stresses and strains as a consequence of interlayer’s softening
during cycles. Therefore, abrasion and breakage of ballast particles are more likely to
occur. Although these aspects are not taken into account in the considered ECP model,
the stress level which ballast is subjected to during cyclic load for different interlayer
conditions can be used as input of specific models for ballast.
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Figure 5.53: Comparison of shear modulus degradation and damping obtained from the
numerical model and the results of numerical drained cyclic strain-controlled shear test.
Cross stands for results for interlayer material A and circle for interlayer material B. Red:
ballast under the sleeper; blue: ballast between sleepers; black: interlayer; green: subgrade.
a) Ballast’s shear modulus reduction; b) Ballast’s damping; c) Interlayer’s shear modulus
reduction (solid line: material A; dashed line: material B); d) Interlayer’s damping (solid
line: material A; dashed line: material B); e) Subgrade’s shear modulus reduction; f)
Subgrade’s damping.
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Figure 5.54: Impact of interlayer material on its cyclic response. Solid line represents the
interlayer material A and dashed dotted line the interlayer material B. Gray dashed line
is the unitary slope (45°).



194 5.6. Influence of subgrade and interlayer materials on the track response

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

2

4

6

8

10

12

14

16

18

20

ε
d
x [%]

q x [k
P

a]

(a) qx − εxd

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

p
x
’ [kPa]

q x [k
P

a]

 

 

Pre loading
5th cycle

material A
material B

(b) qx − p′x

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

−0.005

0

0.005

0.01

0.015

0.02

0.025

ε
d
x [%]

ε v [%
]

(c) εv − εxd

10
1

−0.005

0

0.005

0.01

0.015

0.02

0.025

p
x
’ [kPa]

ε v [%
]

(d) εv − p′x

Figure 5.55: Impact of interlayer material on the cyclic response of under sleeper bal-
last. Solid line represents the interlayer material A and dashed dotted line the interlayer
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Figure 5.56: Impact of interlayer material on the cyclic response of the subgrade. Solid
line represents the interlayer material A and dashed dotted line the interlayer material B.
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5.7 Concluding remarks

In this section, the impact of nonlinear behavior of granular materials during the condi-
tioning phase of the track is discussed. The elastoplastic nonlinear constitutive law de-
veloped at Ecole Centrale, called ECP model, is used in order to model the soil behavior
under cyclic load. The model parameters used for ballast and the interlayer are calibrated
from triaxial tests available in the literature. An additional verification of the calibrated
parameters is proposed for ballast, based on numerical results for cyclic oedometric test.

The numerical model developed in Chapter 3 is adapted for considering nonlinear
behavior. The initial stress is obtained by “constructing” the different track layers, and
relative displacements between the sleeper and the ballast layer are allowed by the use
of mechanical interfaces. These modifications particularly allowed to better represent the
initial shear stress at the sleeper/ballast interface.

From the performed simulations and the considered materials’ behavior, the following
conclusions can be drawn:

1. The load transfer mechanisms during the conditioning phase of the materials are
assessed for a moving load at small speed. It is well known that the vertical load
is mainly transmitted by ballast zone directly beneath the sleeper, which develops
the highest deviatoric stresses. In this zone, the stress path followed by ballast can
be interpreted by an oedometric path. The performed simulations showed that the
zone between sleepers is then subjected to a different mechanism, as lateral stresses
are higher and vertical stresses are lower in this area. Ballast is then subjected to
different stress paths and it presents different shear responses according to position
of the control point regarding the sleeper. The interlayer plays an important role in
homogenizing the vertical and lateral loads observed in the ballast, as the differences
in normal stresses are no longer observed in the subgrade. As a consequence of the
nonlinear behavior, load is asymmetrically distributed among sleepers for moving
loads, sleepers ahead the moving load transmitting lower stresses than the sleeper
behind the load.

2. After loading, inhomogeneous track settlement is observed along the track. The vari-
ations measured at the rail level are mainly caused by variations of settlement at the
subgrade, which can be mainly attributed to the impact of shear stress variations
the subgrade is subjected to. These variations should be viewed under a larger con-
text of material inhomogeneities appearing from sleeper/ballast contact conditions
and variations in subgrade stiffness. The impact of variations of Young’s Modulus
in the track stiffness measured at the rail level was extensively discussed in Chapter
4.

3. Cyclic increase in materials’ confinement and density is observed from the numer-
ical simulations, as a consequence of both volumetric and deviatoric residual plas-
tic strains. For cycles at low speed, low residual shear and deviatoric stresses are
obtained during this phase. Therefore, the accumulation of plastic strains in the
materials mainly occurs during the first cycles. Although shear stress values are low



Chapter 5. Nonlinear railway track model 197

compared to vertical and lateral stresses, the combination of stress variations dur-
ing load lead to high amplitudes of principal stress axes rotation angle, specially in
ballast.

4. The simulations performed confirmed that during the conditioning phase of the
materials, load speed has an impact on ballast behavior. Differently from cycles at
small speed, ballast settlement continuously increases for cycles at nominal speed
as a consequence of higher residual strains. Therefore, higher stresses are developed
during loading and the material evolves toward higher stress values. After track
maintenance or renewal, this situation is avoided by imposing speed restriction for
trains during the first cycles (usually measured in terms of cumulated tonnage).
This mechanism is exemplified in the numerical model by considering a preloading
cycle at small speed followed by cycles at nominal speed. In this case, the material
cumulates lower strains and is subjected to lower stresses for cycles at 220 km/h.

5. The sensitivity of these results to the subgrade soil and the interlayer material was
separately assessed. By considering a lower initial density for the subgrade soil, it was
shown that ballast is mainly affected by the subgrade behavior. Higher deviatoric
stresses and strains are observed for ballast during cyclic load for the subgrade with
lower initial density. Concerning the interlayer material, by considering a material
presenting higher shear modulus degradation and lower peak resistance, it was shown
that ballast also develops higher deviatoric stress and strain during cyclic load. In
this particular case, this is a direct consequence of the reduction of mean stress in
the interlayer. Therefore, according to the subgrade and interlayer materials, ballast
can be subjected to higher grain abrasion and breakage as a consequence of the
increased stress level.

The results presented in this chapter illustrate the soil behavior mechanisms during
the conditioning phase of the track. Although track settlement and plastic deformation
accumulation decrease rapidly after this phase, the strain levels which the materials are
subjected to during cyclic load require considering nonlinear behavior. Among the different
nonlinear mechanisms inherent of soil behavior, the stress path dependency and cyclic
evolution of stiffness are pointed out as important components to be considered by models
interested in the track response under train load. When considering the accumulation of
settlement for a large number of cycles, the influence of the principal stress axes rotation
angle should also be taken into account.
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6.1 Conclusions

A global framework for geotechnical modeling of the railway track is proposed in the
present thesis. It is based on a multi-purpose dynamic finite element model of the railway
track, accounting for uncertainty and material nonlinearity. Partial conclusions were al-
ready given throughout the dissertation. Thus, the main obtained results are highlighted
in this chapter and discussed in the light of their impact on the structure’s behavior.

Concerning the numerical model, the choice was made of simplifying the 3D domain by
a 2D plane-strain model with a modified width. Therefore, reduction of the computational
cost for probabilistic analysis was obtained and the representativeness of the model in the
2D plane was demonstrated. Moreover, a procedure for initializing a moving load on finite
discretized domains was also proposed in this work. It permitted to considerably improve
the results by reducing spurious wave generation before implementing any appropriate
boundary condition. This loading methodology is based on a two-step approach, by first
initializing the applied load magnitude and then the load speed, in order to avoid infinite
acceleration. In sum, this is a straightforward methodology which can be used for all
moving load problems on finite discretized domains.

Concerning Chapter 4, a rational methodology to account for track material’s variabil-
ity was proposed, based on a nonintrusive probabilistic approach. To assess this variability,
a probabilistic description of the dynamic cone resistance was obtained, based on statisti-
cal analysis from track characterization campaigns performed by SNCF prior to renewal
works. Results showed large coefficients of variation for each layer, as a consequence of
the material heterogeneity encountered along the track. Finally, empirical relations pro-
posed in the literature were used to link the dynamic cone resistance and the Young’s
Modulus, which provided the necessary input data for the numerical model. In addition,
spatial variations could also be modeled by considering invariant scalar random fields with
a prescribed correlation structure.

This methodology was implemented in order to verify the aptitude of the track stiffness
measurement in describing spatial variations of material’s mechanical properties. From the
obtained results, the following conclusions can be drawn:

1. The track stiffness measurement captures the correlation structure imposed in the
materials. However, due to the load distribution along the sleepers, the scale of
fluctuation of the track stiffness field is higher than the input field. Moreover, small
spatial fluctuations of material stiffness (autocorrelation length lower than 1 m) do
not lead to variations of the track stiffness. In this sense, the track stiffness measure
seems unable to characterize fluctuations smaller than 1 m.

2. The track stiffness’ first marginal coefficient of variation presents smaller variations
regarding to the large values for the Young’s Modulus. The importance of the rail
bending stiffness in reducing the output variability is assessed by calculating the
foundation stiffness of an analytical solution of beam on elastic foundation loaded
by a moving force. Moreover, small autocorrelation distances lead to lower track
stiffness’ first marginal coefficient of variation.

3. According to the performed sensitivity analysis, the subgrade stiffness variations
impact the most the track stiffness. This result was obtained for different track
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configurations (conventional and high speed lines) and different load speeds. It was
shown that considering the increase of the subgrade Young’s Modulus with increas-
ing depth reduces its impact on the track stiffness. Nonetheless, the subgrade was
still preponderant regarding the track stiffness. The simulations performed highlight
the importance of a homogeneous subgrade’s stiffness, as variations of track stiffness
are expected to lead to an increased train-track dynamic forces and possibly to track
geometry irregularities.

Therefore, the characterization of track’s variability through the performed track stiff-
ness measurement is adapted for long autocorrelation distances appearing in the subgrade.
This is to say that, short variations (< 1 m) in materials cannot be distinguished by the
measurement, which is expected to be the case in the ballast layer. However, it is also
expected that short variations appearing from hanging sleepers and variability in rail pads
stiffness can be captured by measuring the track stiffness.

The importance of nonlinear behavior and loading history during the conditioning
phase of the track materials was also studied in this thesis. The conditioning phase can
be viewed as the first loading cycles, when track settlement rapidly increases and mate-
rials cumulate the highest plastic strains. Nonlinear behavior of track geomaterials was
modeled by the elastoplastic constitutive model ECP, which provides a suitable frame-
work for the description of geomaterials’ behavior under cyclic loading. Model parameters
were calibrated from triaxial test results available in the literature, following the calibra-
tion methodology proposed by Lopez-Caballero and Modaressi-Farahmand-Razavi (2008).
From the numerical simulation results presented in Chapter 5, the following conclusions
can be drawn:

4. Cyclic increase in density and confinement are obtained as a consequence of the
strains accumulation during cycles. Shear modulus decreases and damping increases
in materials with increasing speed, as a result of shear strain increase. Principal
stress axes rotation was also observed during load caused by shear stress.

5. Different stress paths were observed at different positions relatively to the sleeper.
Vertical stress was higher under the sleeper and lateral stress was higher between
sleepers. These differences were mainly observed in the ballast layer, which was sub-
jected to the highest increase in stresses during load. This aspect is less important at
the subgrade level, as the interlayer homogenizes the normal stresses along the track.
Therefore, ballast grains under the sleeper are subjected to higher deviatoric stress,
while grains between sleepers are expected to rotate and rearrange more often. This
leads to different residual states after load, thus two distinct behaviors are obtained
for ballast under cyclic load. Bodin (2001) has pointed out this aspect from heuristic
considerations about track construction and possible compaction characteristics of
ballast under and between sleepers.

6. Load speed influences decisively the evolution of track’s permanent settlement dur-
ing the conditioning phase and the proposed model is able to capture this aspect.
Cyclically applying loads at the nominal speed leads to an increase in ballast settle-
ment, not observed for loads at small speed. As a consequence, residual mean and
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deviatoric stresses are also higher, which is unwanted in tracks as ballast is then
subjected to higher cyclic stresses and cumulates higher permanent strains.

7. The sensitivity of these results to the interlayer and subgrade materials was assessed
by separately considering a subgrade at lower initial density and a softer interlayer.
For both cases, ballast was subjected to higher maximum and residual stresses and
developed higher residual strains. In the first case, this increase is caused by the
lower subgrade stiffness. In the second case, cyclic reduction of the interlayer mean
stress is the main cause. Insufficient stiffness of the track formation is well known to
increase ballast settlements (Meissonnier, 2000). Moreover, railway standards require
sufficient bearing capacity of the track formation below the ballast layer, which is
achieved by well compacted materials. The obtained results are then in accordance
with the expected behavior of the track under the considered conditions.

After the conditioning phase, the accumulation of residual strains is very low and the
resilient behavior of materials can give good results on the track response subjected to
moving loads. The obtained results provide some insights on the necessary load transfer
mechanisms that a constitutive model should account for. Stress path dependency and
material softening are pointed out as important mechanisms for correctly assessing the
resilient response of materials in tracks. For the long term response, considering the rota-
tion of principal stress axes in the constitutive model seems necessary, as there are many
experimental evidences on the role of this effect in the accumulation of plastic deformation
on materials (Chan, 1990; Grabe and Clayton, 2009; Ishikawa et al., 2011, among others).
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6.2 Further research topics

In this section some recommendations and topics for further research are discussed in the
light of the obtained results in this thesis.

Train-track interaction

The choice is made in this work to not consider train-track interaction aspects. Therefore,
the effect of dynamic loads on the obtained results is not assessed, i.e. mainly track geom-
etry irregularities. When no spatial variability is considered (Chapters 3 and 5), the effect
of dynamic loads can be considered by Eisenmann or Prud’Homme dynamic amplification
factors (DAF) as a first approach (Ferreira, 2010). However, train-track interaction can
only be assessed by considering coupled vehicle and track models. A coupled model could
be used to verify the crossed influence of track stiffness variability and track geometry
irregularities on the vehicle response.

Coupling the probabilistic and nonlinear analysis

Applying the same probabilistic methodology for the nonlinear model is not straight-
forward. One of the main challenges is in assessing which parameters to vary and their
subsequent probabilistic properties, specially for not-directly measurable parameters. First
results on how to induce material’s response variability for different stress paths (drained
and undrained triaxial tests, drained cyclic strain-controlled shear test) and applied to seis-
mic analysis with the ECP model have been presented in the literature (Lopez-Caballero
and Modaressi-Farahmand-Razavi, 2010a,b). Transposing these results for railway mate-
rials on the present model is one way of considering the impact of material’s properties
variability.

Another way of tackling this point is in considering binary random fields (Koutsoure-
lakis and Deodatis, 2005, 2006). In this case, the medium is supposed to be composed of
two distinct and deterministic materials, which assumes random positions according to
a prescribe probability density function and autocorrelation function. This methodology
seems more adapted to model material clustering and it has also been extended for mul-
tidimensional cases. In this case, the heterogeneity encountered in railway materials such
as the interlayer could be finely accounted for.

Water content

The presence of water is not considered in this work. Although the ballast layer is ex-
pected to be dry, a water phase exists in the interlayer and the subgrade. Pore water
pressure possibly increases during train load, depending on the site drainage conditions,
load magnitude and speed. A first step toward considering the water presence is consider-
ing these materials under saturated conditions. However, it is well known that unsaturated
conditions prevail on compacted soils (Delage and Cui, 2001; Alonso et al., 2013). In this
sense, correctly accounting the in situ water content requires considering unsaturated soil



204 6.2. Further research topics

behavior. In GEFDyn software, the ECP model formulation for unsaturated soils (Moda-
ressi and Abou-Bekr, 1994) is directly available and can be used for future research on
this topic.

Material anisotropy and comparison with resilient models

Experimental evidence discussed in Chapter 2 has showed that compacted materials
present an anisotropic behavior called cross-anisotropy, due to the loading history (Kolisoja,
1997; Tatsuoka et al., 1999; Coronado Garcia, 2005, among others). In the ECP model,
this aspect is taken into account by the hardening evolution, which is translated by the
plastic yield surfaces’ evolution of each plastic mechanism. The numerical results pre-
sented in this thesis have showed that plastic strains accumulation mainly occur during
the first loading cycles, depending on the stress history. For instance, for cycles at low
speed or after track preloading, an almost resilient response is obtained after the 5th cycle.
Therefore, the ECP model can be used for studying the resilient response of the materials
in the track once the plastic strain accumulation is small and the plastic yield surfaces
do not evolve. At this state, a comparison of the ECP model and a resilient model such
as the Boyce anisotropic model (Hornych et al., 1998) could be performed. Moreover, by
modifying the initializing conditions of the ECP model in order to consider the materials
after the conditioning phase, numerical laboratory tests could be conducted on materi-
als on a state closer to the state in the track. Such procedure has been applied in other
geotechnical context by Salager et al. (2012).

High number of cycles and long-term behavior of the structure

The focus is given in this thesis in studying the material’s response during the conditioning
phase of the track. Although some insights are given on how this phase affects the subse-
quent response of the materials, the question on how these affect the long-term response
still remains. In Chapter 2, it has been discussed that elastoplastic models with kinemat-
ical hardening do not seem adapted for studying high number of cycles, as the predicted
plastic strains are higher in this case (Gidel, 2001). For instqnce, such overestimation of
plastic strains is observed by Aubry et al. (1999) when simulating around a million bogie
passages on ballast, by direct integrating the ECP model in the stress path obtained from
the wave propagation software MISS3D (Modélisation de l’Interaction Sol Structure en
3D). More recently, interesting results for the long-term behavior of unbound granular
materials have been obtained by Chazallon et al. (2006), by considering en elastoplastic
model similar to the ECP model but with an elastic domain characterized by the Boyce
anisotropic model. The latter could be used in the present model in order to evaluate the
long-term behavior of the structure given the considered conditioning phases and track
preloading characteristics.
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Appendix A

ECP multimechanism model

The ECP model or also called Hujeux model is an elastoplastic multimechanism model
developed at Ecole Centrale Paris (Aubry et al., 1982; Hujeux, 1985). It considers the
effective stress concept developed by Terzaghi and is based on a Coulomb type failure
criterion and the critical state concept. All irreversible phenomena is modeled by four
coupled elementary plastic mechanisms: one isotropic and three plane-strain deviatoric
on three orthogonal planes. Hardening is controlled by plastic strain: volumetric plastic
strain for the isotropic mechanism and both deviatoric and volumetric plastic strains for
the three deviatoric ones. Cyclic behavior uses kinematical hardening based on the state
variables at the last load reversal.

The model assumes a complete decomposition of strains on elastic and plastic parts,
as proposed by the incremental plasticity theory. The elastic part is supposed to follow a
nonlinear elasticity behavior. Bulk (K) and shear (G) moduli are functions of the mean
effective stress (p′):

K(p′) = Kref

(

p′

pref

)nel

(A.1)

G(p′) = Gref

(

p′

pref

)nel

(A.2)

where Kref and Gref are the bulk and shear moduli measured at the mean reference
pressure pref , and nel is the degree of nonlinearity. The deviatoric primary yield surface
on the k plane is given:

fk(σ, ε
p
v, rk) = qk − sinφ′

pp · p′k · Fk · rk k ∈ [1, 2, 3] (A.3)

with:

Fk = 1− b ln

(

p′k
pc

)

(A.4)

pc = pc0 exp(βε
p
v) (A.5)

• φ′
pp is the friction angle at the critical state or perfect plasticity;
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• b controls the form of the yield surface, from a Mohr-Coulomb type yield surface
(b=0) to a Cam-Clay type (b=1);

• β is the plasticity compression modulus and it introduces the densification effect of
the material after loading;

• pc0 represents the critical state stress corresponding to the initial void’s ratio.

Each deviatoric plastic mechanism is simply defined by a scalar quantity rk called
degree of mobilized friction and it is associated with the plastic deviatoric strain. Its
evolution law is given by:

ṙk = λ̇pk
(1− rk)

2

a
(A.6)

where λ̇pk is the plastic multiplier of the k mechanism and a is obtained as:

a = a1 + (a2 − a1)αk(rk) (A.7)

with:

αk =0 if relask < rk < rhysk (A.8)

αk =

(

rk − rhysk

rmobk − rhysk

)m

if rhysk < rk < rmobk (A.9)

αk =1 if rmobk < rk < 1 (A.10)

where a1, a2 and m are model parameters. It allows the decomposition of shear hardening
into pseudo-elastic, hysteretic and mobilized domains. The extent of each domain is given
by relast, rhyst and rmob. The model considers an associated flow rule in each deviatoric
plane k. Roscoe’s dilatancy rule (Roscoe et al., 1958) is assumed to obtain the increment
of the volumetric plastic strain of each mechanism:

ε̇pvk = λ̇pk · αψ · αk(rk)
(

sinψ − qk
p′k

)

(A.11)

where ψ is the characteristic angle defining the limit between dilatancy and contractancy
on the (qk, pk) plan and αψ is a constant parameter.

The isotropic mechanism produces only volumetric change. The yield surface is as-
sumed to be:

fiso = |p′| − d · pc · riso (A.12)

with:

ṙiso = ε̇pviso
(1− riso)

2

c1
pc
pref

(A.13)
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• d defines the distance of the isotropic consolidation line to the critical state line in
the plane (e, ln p′) or (εpv, ln p

′);

• cmon controls the volumetric hardening.

The four mechanisms are coupled by the hardening variable εpv as follows:

εpv =
3
∑

k=1

εpvk + εpviso (A.14)

Lopez-Caballero and Modaressi-Farahmand-Razavi (2008) proposed to classify the
model parameters in terms of their estimation method. This approach separates the pa-
rameters in two categories: directly measured (either by in-situ or laboratory tests) and
not-directly measured.

Directly Not-directly
measured measured

Elastic Kref , Gref ,
nel, pref

Critical state φ′
pp, β, b

and plasticity pc0, d
Flow rule and ψ a1, a2,

Isotropic hardening aψ, m, c1, c2
Threshold domains rela, rhys,

rmob, relaiso

Table A.1: Classification of ECP elastoplastic model parameters as proposed by Lopez-
Caballero and Modaressi-Farahmand-Razavi (2008).
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Appendix B

Analytical solution of infinite beam
on elastic foundation

B.1 Formulation of the problem

Consider an infinite Euler beam on an elastic foundation being loaded by a constant
force P moving at constant speed c from the infinite to infinite. A Winkler-type elastic
foundation is considered. The differential equation of the above problem may be written
as follows:

EJ
∂4ν(x, t)

∂x4
+ µ

∂2ν(x, t)

∂t2
+ 2µωb

∂ν(x, t)

∂t
+ kν(x, t) = Pδ(x− vt) (B.1)

where: x is the length coordinate with the origin at the left-hand end of the beam, t is
the time coordinate, ν(x, t) is the beam deflection at a point x at the instant t, E is the
Young’s Modulus of the beam [Pa], J is the constant moment of inertia of the beam cross
section [m2], µ is the constant mass per unit length of the beam[kg/m], ωb is the circular
frequency of damping of the beam [Hz], P is the concentrated force of constant magnitude
[N], c is the constant speed of the load motion [m/s], k is the coefficient of the Winkler
foundation [N/m2] and δ(x− vt) is the Dirac function.

Considering an infinite beam and the force, P , coming from the infinite, the deflection,
the slope of the deflection line, the bending moment as well as the shear force should be
zero at the boundaries at each instant. It can also be considered that these quantities are
null as initial conditions. In order to consider a discrete support with constant span rather
than a continuous one, the value of the coefficient k can be calculated as:

k =
kt
L

(B.2)

where kt is stiffness of the discrete support [N/m] and L: span between two supports [m].
Within these conditions, this problem presents a quasi-stationary state, i.e. the beam is
at rest in relation to the moving coordinate system. The coordinate system can then be
changed and the new dimensionless variable s is adopted:

s = λ(x− vt) (B.3)
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λ =

(

k

4EJ

)1/4

(B.4)

For the quasi-stationary state, the solution ν(x, t) of Equation B.1 will be of the form:

ν(x, t) = νoν(s) (B.5)

where ν(s) is dimensionless deflection of the beam given as:

νo =
P

8λ3EJ
=
Pλ

2k
(B.6)

Shifting parameters x and t by the dimensionless parameter s in Equation B.1 gives:

∂4ν(s)

∂s4
+ 4α

∂2ν(s)

∂s2
− 8αβ

∂ν(s)

∂s
+ 4ν(s) = Pδ(s) (B.7)

where:

α =
v

vcr
=

v

2λ

( µ

EJ

)1/2

(B.8)

β =
(µ

k

)1/2

ωb (B.9)

vcr = 2λ

(

EJ

µ

)1/2

(B.10)

The parameter α represents the effect of the speed of the load P regarding the critical
speed of the beam vcr, and the parameter β represents the effect of the damping of the
beam. The solution ν(s) of the Equation B.7 express the steady-state vibration of the
beam, and although it fails to satisfy the initial conditions, it may be shown that the
quasi-stationary state is attained in a short period of time once the moving load P is
applied.

Equation B.7 will be solved by the method of Fourier integral equations using the
following relationships:

ν(s) =
1

2π

∫ ∞

−∞

V (q)eisqdq (B.11)

where:

V (q) =

∫ ∞

−∞

ν(s)e−iqsds (B.12)

It is then obtained:

q4V (q)− 4α2q2V (q)− i8αβqV (q) + 4V (q) = 8

which leads to:

V (q) =
8

q4 − 4α2q2 − i8αβq + 4
(B.13)

The solution of the integral equation will be of the form:
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ν(s) =
4

π

∫ ∞

∞

8

q4 − 4α2q2 − i8αβq + 4
(B.14)

The roots of the denominator Q(q) of Equation B.14 must be obtained. It is assumed
that they have the form:

A1 = a1 + ib A2 = −a1 + ib

A3 = a2 − ib A4 = −a2 − ib
(B.15)

which leads to:

Q(q) =q4 − 4α2q2 − i8αβq + 4

=(q − A1)(q − A2)(q − A3)(q − A4) = 0
(B.16)

After substituting the solutions from B.15 in Equation B.16 and some handling with
real and imaginary parts, the following expression is obtained:

b6 + 2α2b4 + (α4 − 1)b2 − α2β2 = 0 (B.17)

In order not to loose the sign sense impose on roots of Q(q), only the positive one of
the six roots from Equation B.17 is taken. It has always a positive root at α ≥ 0,β ≥ 0
according to Descartes rule of signs. This is a third order polynomial equation on b2 and
solutions of a1 and a2 may be obtained as:

a21 =2α2 + b2 + 2αβ/b

a22 =2α2 + b2 − 2αβ/b
(B.18)

Approximate or analytic solutions may be obtained for all cases, i.e. no damping
(β = 0), light damping (β ≤ 0), critical damping (β = βcr) and supercritical damping
(β ≥ βcr), for all values of α (α ≤ 1, α = 1 and α ≥ 1). However, for the specific case
of the railway track, the great difference between values of mechanical properties of the
steel rail and the sleeper and soil structure leads to small values of β. Also, the combined
effect of the actual vehicle speed c, the steel rail properties E, J, µ and the sleeper plus
soil stiffness k leads to small values of α. Considering regular rail properties of Young’s
Modulus E=210 GPa, moment of inertia J=3.05.105 m2 and constant mass per unit length
µ=300 kg/m, and a vehicle at speed c=350 km/h and a typical track stiffness value of
k=52.6 MPa (Krylov et al., 2000):

α =
cµ1/2

2

(

4

kEJ

)1/4

α ∼=0.27

(B.19)

Also, considering a circular damping frequency wb=3Hz as representative of a regular
track (Krylov et al., 2000), the following value of β is obtained:
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β =
(µ

k

)1/2

ωb

β =0.15
(B.20)

In the following sessions the full analytical or approximate solutions for the static, no
damping and light damping cases will be presented, for which β << 1 and α < 1. In these
cases, the values of a1, a2 and b are:

• Static Case
b = 1, a1 = 1, a2 = 1 (B.21)

• Case with no damping(β = 0)

b =(1− α2)1/2

a =a1 = a2 = (1 + α2)1/2
(B.22)

• Case with light damping (β ≤ 1) - approximative solutions

b ≈(1− α2)1/2

a1,2 ≈
[

1 + α2 ± 2αβ

(1− α2)1/2

]1/2 (B.23)

B.2 Analytical solution

In order to obtain the analytic solutions of the integral Equation B.14, the Cauchy’s
residue theorem may be applied over an integral in the counter-clockwise direction around
a curve consisting of segments -R,+R and semicircle CR at limR = ∞.

The mathematical development is shown in Fryba (1972). The obtained solution is of
the following form:

ν(s) =
1

a1(D2
1 +D2

2)
[(D1 −D2i)e

iA1s + (D1 +D2i)e
iA2s] =

=
2

a1(D2
1 +D2

2)
e−bs[D1 cos (a1s) +D2 sin (a1s)], s ≥ 0

ν(s) =
1

a2(D2
3 +D2

4)
[(D3 +D4i)e

iA3s + (D3 −D4i)e
iA4s] =

=
2

a1(D2
3 +D2

4)
ebs[D3 cos (a2s)−D4 sin (a2s)], s ≤ 0

(B.24)

where the coefficients D1, D2, D3 and D4 are described as:
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D1 =a1b

D2 =b
2 − 1

4
(a21 − a22)

D3 =a2b

D4 =b
2 +

1

4
(a21 − a22)

(B.25)

The bending moment M(s) and the shear force T (s) may be calculated from the
derivatives of the expression of ν(s):

M(x, t) = −EJν ′′(x, t) =MoM(s) =
P

4λ
M(s) (B.26)

T (x, t) = −EJν ′′′(x, t) = ToT (s) = PM(s) (B.27)

M(s) = −1

2
v′′(s) =

=
1

a1(D2
1 +D2

2)
e−bs[(a21D1 + 2a1bD2 − b2D1) cos (a1s)

+ (a21D2 − 2a1bD1 − b2D2) sin (a1)s], s ≥ 0

=
1

a1(D2
3 +D2

4)
ebs[(a22D3 + 2a2bD4 − b2D3) cos (a2s)

− (a22D4 − 2a2bD3 − b2D4) sin (a2)s], s ≤ 0

(B.28)

T (s) = −1

8
v′′′(s)

=
1

4a1(D2
1 +D2

2)
e−bs[(a31D2 − 3a21bD1 − 3a1b

2D2 + b3D1) cos (a1s)

− (a31D1 + 3a21bD2 − 3a1b
2D1 − b3D2) sin (a1)s], s ≥ 0

=
1

4a2(D2
3 +D2

4)
ebs[(a32D4 − 3a22bD3 − 3a2b

2D4 + b3D3) cos (a2s)

+ (a32D3 + 3a22bD4 − 3a2b
2D3 − b3D4) sin (a2)s], s ≤ 0

(B.29)

Equations B.24, B.28 and B.29 may be simplified considering the expressions of a1, a2
and b obtained above for each particular case.

Static Case

ν(s) =e−|s|(cos s+ sin |s|) (B.30)

M(s) =e−|s|(cos s− sin |s|) (B.31)

T (s) =− sign (s).
1

2
e−|s| cos s (B.32)
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Case with no damping (β = 0)

ν(s) =
1

ab
e−b|s|(a cos (as) + b sin (a|s|)) (B.33)

M(s) =
1

ab
e−b|s|(a cos (as)− b sin (a|s|)) (B.34)

T (s) =− 1

2ab
e−b|s|(sign (s)ab cos (as) + α2 sin (as)) (B.35)

Case with light damping

In this case the full expressions B.24, B.28 and B.29 should be used, as no simplification
may be easily obtained.



Appendix C

Boundary conditions for finite
models of infinite media

Modeling infinite media by the finite domains imposes fictive boundaries on the continuous
medium. Using the Finite Element Method for dynamic applications demands a fine study
of boundary conditions. They must ensure that all energy (or as an approximation at
least most of it) will pass from the finite model to the exterior through the boundary,
i.e. the boundary will absorb most of the incoming energy with no reflection. Correctly
modeling wave propagation and dissipation on the finite element context is an actual
field of research. Three main different ways of dealing wave reflection on boundaries are
discussed in this appendix:

• Boundary conditions: in this case a particular or more general solution of the wave
equation is imposed on the boundary. Paraxial approximation (Engquist and Ma-
jda, 1977) and Perfectly Matched Layers (PML) (Berenger, 1994) are examples for
the first and second cases, respectively. Local conditions and easy computational
implementation are often requirements for good boundary conditions.

• Absorbing elements: in this case viscoelastic elements are used to absorb wave en-
ergy. Wave reflection on boundaries is not fully avoided, but depending on the com-
plexity and parameter values of the viscoelastic mechanical behavior one could ex-
pect high wave absorption and energy dissipation. The Lysmer boundary (Lysmer
and Kuhlemeyer, 1969) is a classical example of this type of condition, although
other common viscoelastic models can be applied (Kelvin-Voigt, Maxwell).

• Infinite elements: it consists on approximating the element behavior at infinity by a
reasonable reflection of the physics of the problem (Bettes, 1992).

In the following a comprehensive development of the above boundary solutions is given
in order to present their hypothesis and drawbacks when applied on finite element models.

C.1 Paraxial approximation

The mathematical development presented hereafter follows Engquist and Majda (1977).
Consider the 2D scalar wave equation with velocity c > 0:
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1

c

∂2u

∂t2
−∆u = 0 (C.1)

A family of solutions consisting of plane harmonic waves is of the form:

u(x1, x2, t) = exp (i(ωt− k1t− k2x2)) (C.2)

The wave vector k = (k1, k2) and the frequency ω satisfying the dispersion relation
described in Equation C.3. It defines two frequencies ω+(k) and ω−(k) for waves traveling
in the positive x2 (u+(x, t)) direction and negative x2 (u−(x, t)) direction, respectively
(Equation C.4).

ω2 = c2|k2| = c2(k21 + k22) (C.3)

c
k2

ω+(k)
= +

(

1−
(

c
k1

ω+(k)

)2
)1/2

(C.4)

c
k2

ω−(k)
= −

(

1−
(

c
k1

ω−(k)

)2
)1/2

(C.5)

Solutions u(x, t) may be obtained as the sum of (u+(x, t)) and (u−(x, t)). All solutions
with finite energy may be obtained by the superposition of plane waves related to the
frequencies ω+(k) and ω−(k). The ideal dispersion equation would be of the form:

c
k2
ω

= +

(

1−
(

c
k1
ω

)2
)1/2

(C.6)

However, Equation C.6 does not correspond to a differential equation. The paraxial ap-
proximation proposes an adequate approximation for waves traveling close to the positive
x2 direction:

∣

∣

∣

∣

c
k1
ω

∣

∣

∣

∣

= |sin θ| small (C.7)

Applying the Taylor expansion of the term
(

1−
(

c k
ω

)2
)1/2

:

(

1−
(

c
k1
ω

)2
)1/2

= 1− c2
k21
ω2

+O(c4
k41
ω4

) (C.8)

The following dispersion relation is then obtained:

• First-order approximation:

c
k2
ω

= 1 (C.9)
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• Second-order approximation:

c
k2
ω

= +

(

1− 1

2
c2
k21
ω2

)

− ω2 + ck2ω +
1

2
c2k21 (C.10)

Leading the the following differential equation:

• First-order approximation:

c
∂u

∂x2
− ∂u

∂t
= 0 (C.11)

• Second-order approximation:

∂2u

∂t2
+ c

∂2u

∂x2∂t
− 1

2
c2
∂2u

∂x21
= 0 (C.12)

The paraxial approximation may be viewed as a parabolic approximation of the
wave equation. This approximation is also called 15°-approximation (first-order) or 45°-
approximation (second-order). Engquist and Majda (1977) discuss that good boundary
conditions should fulfill both the following criteria: locality and to lead to well-posed
mixed boundary problem for the wave equation. The first criteria is related to the imple-
mentation easiness of the boundary condition. Indeed, although nonlocal conditions lead
to perfectly absorbing layers, they are difficult to implement as a point’s state is related
to all other points on the boundary. The second criteria must always be fulfilled, either
by a perfectly or approximated boundary condition. Engquist and Majda (1977) showed
that the paraxial approximation satisfies both the above criteria.

C.1.1 Paraxial approximation for heterogeneous media

Bamberger et al. (1988) proposed a further development on the parabolic approximation
of the wave equation for heterogeneous media. Consider the scalar wave equation of the
form:

1

c(x)2
∂2u

∂t2
−∆u = 0 (C.13)

In this case the heterogeneity comes from the variation of the wave velocity c(x) along
the x direction. The simplest way of tackling the problem is considering that the wave
equation is locally homogeneous and the value of c on the parabolic approximation may
be directly replaced by the value of c(x). In this case the following equation is obtained:

1

c(x)2
∂2u

∂t2
+

1

c(x)

∂2u

∂t∂x2
− 1

2

∂2u

∂x21
= 0 (C.14)

A second approach using a change of variables on the parabolic equation leads to the
following approximation:

1

c2
∂2u

∂t2
+

1

c1/2
∂

∂x2

(

1

c1/2
∂u

∂t

)

− 1

2

∂2u

∂x21
= 0 (C.15)
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A third approach consists on decomposing the hyperbolic operator (1/c2)(∂2/∂t2)−∆
into a product of two pseudo-differential operators, which is valid in the case of smooth
variations of c. In this case the following approximation is obtained for waves traveling in
the positive x2 direction:

1

c2
∂2u

∂t2
+

1

c1/2
∂

∂x2

(

1

c1/2
∂u

∂t

)

− 1

2c

∂

∂x1

(

c
∂u

∂x1

)

= 0 (C.16)

The three proposed methods may be represented by the following approximation:

1

c2
∂2u

∂t2
+

1

cφ(c)

∂

∂x2

(

φ(c)
∂u

∂t

)

− 1

2ψ(c)

∂

∂x1

(

ψ(c)
∂u

∂x1

)

= 0 (C.17)

where φ and ψ are smooth positive functions. When c is constant this equation reduces
to the parabolic approximation on homogeneous medium. Functions φ and ψ are defined
as follows:

• Equation C.14: φ(c) = 1, ψ(c) = 1

• Equation C.15: φ(c) = c1/2, ψ(c) = 1

• Equation C.16: φ(c) = c1/2, ψ(c) = c

However, Bamberger et al. (1988) showed that the above three approximations do not
fulfill the following criteria:

1. At null incident angle and normal incidence, the transmission coefficient is equal to
the one of the wave equation, up to the second order with respect to ∆c/c.

2. Reflection and transmission coefficients are continuous functions of the incident
angle.

3. The Cauchy problem is well-posed for any velocity distribution.

In this case, authors showed that the parabolic Equation C.18 fulfill all the cited criteria
and represents a good parabolic approximation of the wave equation on heterogeneous
media.

1

c2
∂2u

∂t2
+

1

cφ(c)

∂

∂x2

(

φ(c)
∂u

∂t

)

− 1

2ψ(c)ξ(c)

∂

∂x1

(

ψ(c)
∂

∂x1
(ξ(c)u)

)

= 0 (C.18)

They showed that conditions (1) and (2) are satisfied if and only if φ(c) = ξ(c) = c−1/2

and choosing ψ(c) = c then condition (3) is satisfied and the energy-measure stated by
Equation C.19 is constant at with respect to time t.

E(t) =
1

2

∫ ∫

1

c2

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

dx+
1

4

∫ ∫

c

∣

∣

∣

∣

∂

∂x1
(c−1/2u)

∣

∣

∣

∣

2

dx (C.19)

Using an auxiliary unknown ν the following form is obtained:
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ν = c−1/2u (C.20)

1

c

∂2ν

∂t2
+

∂2ν

∂t∂x2
− 1

c

∂

∂x1

(

c
∂ν

∂x1

)

= 0 (C.21)

C.2 Perfectly Matched Layer

On the context of the electromagnetism, Berenger (1994) introduced the“Perfectly Matched
Layer” (PML) to the first order wave equation (speed-displacement equation on the me-
chanics context). It was called perfectly matched layer as it assure no wave reflection at
any incident angle and at any frequency, before equation discretization. Komatitsch and
Tromp (2003) presented a mathematical formulation for the second-order wave equation
(acceleration-displacement equation), which is more adapted to finite element codes.

C.3 Absorbing elements

The idea of absorbing incoming energy from the system by the boundary can be applied
on different type of boundary conditions presenting a damping term.

Lysmer and Kuhlemeyer (1969) proposed an absorbing boundary of the following type:

σ = aρVpu̇n (C.22)

τ = bρVsu̇t (C.23)

where σ and τ are the normal and shear stress, respectively, u̇n and u̇t are the normal and
tangential velocities respectively; ρ is the mass density; Vp and Vs are the velocities of S-
waves and P-waves in the medium, respectively; and a and b are dimensionless parameters.

In order to verify the ability of the viscous boundary on absorbing incoming elastic
waves, they proposed to compare the energy ratio of different a and b values. The energy
ratio is defined as the ratio between the energy of the reflected waves over the energy
of the incident waves. Its value varies from 0 (full absorption) to 1 (full reflection). The
energy transmitted per unit of time through a unit area of the wave front of a P-wave
with amplitude A and a S-wave with amplitude B is:

Wp =
1

2
ρVpω

2A2 (C.24)

Ws =
1

2
ρVsω

2B2 (C.25)

where ω is the wave frequency.
Expressions of the energy ratio have been recently corrected by Kouroussis et al.

(2011a) from the original paper of Lysmer and Kuhlemeyer (1969), although the figures
showed on the paper are correct. In the case of an incoming P-wave, the energy ratio is
given by:
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Er
Ei

= A2 + s
tan ν

tan θ
B2 (C.26)

where:

s2 =
1− 2µ

2(1− µ)
(C.27)

cos ν = s cos θ (C.28)

θ is the incident angle of the P-wave and ν the reflected angle of the S-wave, both measured
from the boundary surface.

The energy ratio depends only on the incident angle θ and the Poisson’s ratio µ.
Lysmer and Kuhlemeyer (1969) showed that using a = b = 1 gives maximum absorption.
It presents nearly perfect absorption of incident P-waves with an incident angle higher
than 30°. The average product (Er/Ei) sin θ represents the overall ability of the boundary
to absorb energy (as the energy at the boundary is proportional to the width of sin θ).

In the case of an incoming S-wave, the energy ratio may be expressed by:

Er
Ei

= B2 +
tan θ

tan ν
A2 ν > νcr (C.29)

Er
Ei

= B2
1 + B2

2 ν ≤ νcr (C.30)

where νcr is the critical incident angle defined by cos νcr = s and B1 and B2 are the real
and complex amplitude of the reflected wave. The meaning of a complex amplitude is that
in this case a reflected P-wave do not exist. Instead, a Rayleigh-wave appears traveling
along the boundary. Once again using a = b = 1 gives maximum absorption.

The same idea of damping on the boundary may be also applied using volume elements
presenting visco-elastic mechanical behavior. In this case, the finite medium is composed
of an inner medium accounting for all the relevant physical phenomena and materials,
and an outer medium where a viscoelastic material is implemented.

C.3.1 Kelvin-Voigt model for boundary damping

The Kelvin-Voigt model is a visco-elastic model commonly used in geomechanics. It con-
sists on an elastic spring of stiffness E connected in parallel to a purely viscous damper of
vicosity η. It is used on modeling a solid material with a reversible deformation on long
duration, but which may present low deformation on a short duration. The differential
equation governing the material behavior is presented in Equation C.31.

σ(t) = Eε(t) + η
dε(t)

dt
(C.31)

Considering suddenly applying a constant stress σ0 on the material, strain evolves
during time following Equation C.32. The rate of relaxation λ = E

η
defines long and short

process according to:
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η

Figure C.1: Kelvin-Voigt mechanical model.
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Figure C.2: Loading / unloading cycle for a Kelvin-Voigt material

• λ << 1: short process, during which the material is almost not deformed.

• λ ≈ 1 midway process, during which the material presents some deformation.

• λ >> 1: long process, during which the material deformed as elastic material during
almost the whole process.

ε(t) =
σ0
E

(

1− e−λt
)

(C.32)

Once the applied stress σ0 vanishes, the material fully recovers its initial state, pre-
senting null deformation. The loading / unloading cycles are fully elastic, although energy
is dissipated on the viscous element. In this sense this model is used to represent creep
on material behavior. An example is shown in Figure C.2, considering λ = 1 and the
dimensionless time t∗ = λt and the dimensionless deformation ε∗ = E ε(t)

σ0
.

The dynamic modulus is given by Equation C.33. The imaginary part is directly pro-
portional to the frequency.

E∗(ω) = E + iηω (C.33)

The aptitude of such rheological model to be used as boundary condition in a dynamic
model is to be able to dissipate wave incoming energy either by:

• loading/unloading cycles;
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• presenting an adapted rate of relaxation λ such that the accumulated energy from
the incoming waves is not released in the model during the considered time simula-
tion.

C.4 Infinite elements

The Infinite Element Method consists on approximating the value of the element toward
infinity as a reasonable approximation of the physics of the problem (Bettes, 1992). Two
main approaches exist:

• Decay function Infinte Elements.

• Mapping Infinite Elements.

The basic idea behind the decay function infinite elements is to multiply the regular
finite element shape function by a decaying function. This ensures that the field variable
will tend monotonically to its far field value. Consider a parent shape function written
as Pi(ξ, η) and a decay function fi(ξ, η), where ξ and η are the local coordinates and the
subscript denotes the node number. The final shape function is then written as:

Ni(ξ, η) = Pi(ξ, η)fi(ξ, η) (C.34)

Two types of decay function are commonly used:

• Exponential: an obvious choice as it decays to zero faster than any polynomial and
therefore ensures convergence toward zero in the far field. As an example, the 2D
exponential decay function on positive ξ and η directions is given by Equation C.35.

fi(ξ, η) = exp

[

(ξi − ηi − ξ − η)

L

]

(C.35)

• Reciprocal: in this case the decay is ensured by an inverse function of the form L/r.
As an example, the 2D reciprocal decay function on positive ξ and η directions is
given by Equation C.36.

fi(ξ) =

(

ξi − ξ0
ξ − ξ0

)l(
ηi − η0
η − η0

)m

(C.36)

ξ0 and η0 are the coordinates of an origin point outside the infinite element as to
avoid a singularity within the element. l andm are selected bigger than the maximum
polynomial degree of the parent shape function Pi(ξ, η).

This procedure requires modification on the numerical integration procedures as the
integration formula on the infinite element is of the form:

∫ ∞

0

f(x)exp(−x)dx (C.37)
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Figure C.3: Infinite Element Mapping (adapted from Kouroussis et al., 2011b).

In the case of mapped infinite elements, the infinite element extends from point x1
through x2 to x3, which is at the infinity. A pole x0 outside the infinity element is taken
as to control the radial behavior. This element is then mapped on the standard finite
domain −1 < ξ < 1 on 1D direction, as shown in Figure C.3.

Assuming a = x2 − x1 = x1 − x0, a suitable mapping have the form:

x = N0(ξ)x0 +N2(ξ)x2 (C.38)

N0(ξ) =
−ξ
1− ξ

(C.39)

N2(ξ) = 1 +
ξ

1− ξ
(C.40)

which gives:

x = x0
2a

1− ξ
(C.41)

ξ = 1− 2a

x− x0
(C.42)

Using the above obtained mapping, a general polynomial P on the finite χ domain
described by Equation C.43 is transformed by the inverse mapping on a new polynomial
P ′ on inverse powers of r = x− x0 (Equation C.44)

P = α0 + α1ξ + α2ξ
2 + ... (C.43)

P ′ = β0 +
β1
r

+
β2
r2

+ ... (C.44)

The β coefficients are fully characterized by αi and a. β0 = 0 as in the infinity P ′ = 0.
The main advantage of such procedure is that the original numerical integration procedure
is maintained. The only change needed on standard Finite Element routines is on obtaining
the Jacobian matrix. This approach is implemented in some standard finite element codes
and is used when dealing with dynamic problems. For instance, Kouroussis et al. (2011c)
successfully used this approach in numerical calculations of track vibrations.
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Appendix D

Theoretical background on random
field theory

Many physical process exhibits complex patterns of variation on both space and/or time.
These may be characterized by random fields in order to complete describe the patterns of
a complex random phenomena on which space and/or time are also important. According
to Vanmarcke (1983), random field theory may be successfully applied on domains such
as:

• Efficient stochastic characterization;

• Prediction of the stochastic response;

• Assessment of the impact of alternative strategies on decision making situations.

Following the definition given by Sudret (2007), a scalar random field U(u, x) is a
collection of random variables indexed by a continuous parameter x ∈ B, where B is an
open set of Rm describing the geometry of the system. In this case, each point x0 ∈ B,
U(u, x0) defines a random variable and U(u0, x) describes a realization u0 of the field.
A vector-valued random field is defined when each point x defines a random vector. In
this case a vector valued random field is characterized by its infinite set of marginal
distributions:

p(u, x) = p(u1, ..., um; x1, ..., xm) (D.1)

In the following the simplified notation U(u, x) = U(x) will be used for sake of sim-
plicity. The mean, correlation and covariance are obtained as follows:

ū(x) = E[U(x)] =

∫

up(u; x)du (D.2)

RU(x, x
′) = R(x, x′) = E[U(x)⊗ U(x′)] =

∫

u⊗ u′p(u, u′; x, x′)dudu′ (D.3)

CU(x, x
′) = C(x, x′) = E[(U(x)− ū(x))⊗ (U(x′)− ū(x′))] (D.4)

=

∫

(u− ū(x))⊗ (u′ − ū′(x))p(u, u′; x, x′)dudu′ (D.5)
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Some hypothesis and definitions in the random field theory are commonly used when
modeling random fields on physical parameters:

• Second-order: random fields with finite energy. This is a broadly used assumption
when physical quantities are of interest. This implies on the definition of a second-
order random field as having a finite mean energy (either local and instantaneous
mean energy) for all points x at all time instants t. Additional constraints are re-
quired in order to impose finite total energy.

• Homogeneity, invariance or stationarity: all marginal distributions are invariant
when translating the parametric space. The invariance terminology is used mainly
on random mediums and the stationarity terminology for random process. In this
case, the following conditions hold:

E[U(x)] = ū(x) = u0 (D.6)

E[U(x)U(x′)] = R(x, x′) = R0(x− x′) (D.7)

In this case the mean ū(x) is constant over the space dimension and the correlation
R(x, x′) depends only on the distance between two points. A homogeneous field is
always indexed on infinite bounds.

• Gaussian random fields: all marginal distributions are Gaussian distributions given
by Equation D.8. The field is then fully characterized only by the deterministic
function u(x) and a covariance function CU(x, x

′).

p(u1, ..., um; x1, ..., xm) =
exp

(

(u− ū)TC−1(u− ū)/2
)

√
2π

n√
detC

(D.8)

Non-Gaussian fields may be defined as linear or nonlinear translations of Gaussian
fields (Grigoriu, 1984; Liu and Der Kiureghian, 1986).

The simplest purely random field would have independent values taken from identically
distributed random variables. In this case it is fully characterized by its first marginal
probability density function D.9. This means that the location where observations are
made are independent from each other and does not influence probability assessments
about nearby values. For random process, it would mean that values of the given process
X(t) at each t are independent and identically distributed. Techniques from classical
statistics consider that samples are independent and identically distributed. If they are
considered to be sampled from a random field, it means that it is unnecessary to retain
information about where observations where made on the parametric space.

p(u, x) = p(u1, x1)p(u2, x2), ..., p(um, xm) (D.9)

Random process with independent increments considers the accumulation of observa-
tions of independent random process. A specific class of random process with indepen-
dent increments is called Markov process. They are characterized by limited memory:
their future state is independent from their past state, given the present state. A Markov
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chain is defined as being the discrete-state, discrete-parameter Markov process. At time t,
t = 0, 1, 2, ... and a set of discrete states i = 1, 2, 3, ..., we define a probability distribution
of being at state i at a time t as being:

pi(t) = P [X(t) = i] (D.10)

The transitional probability from state i at time t to state j at time t+ τ is:

q
(t)
ij (τ) = P [X(t+ τ) = j|X(t) = i] (D.11)

As a consequence of the Markovian property, the state at time t + τ may be fully
expressed by the probability distribution at time t and the transitional probability distri-
bution:

pj(t+ τ) =
∑

i

pi(t)q
(t)
ij (τ) (D.12)

For homogeneous Markov chain, all transitional probabilities do not depend on t and
the one step (τ = 1) transition probability may be denoted only by qij. In this case, any
transition probability may be obtained by a recursive formulation as:

qij(τ) =
∑

k

qik(τ − 1)qkj (D.13)

In diffusion theory, the simplest Brownian movement of particles is modeled by a
Markov chain often called “random walk”. In this case, the marginal probability distribu-
tion pi is a Gaussian distribution with zero mean and a given variance.

As presented by Vanmarcke (1983), the Markovian property does not arise as naturally
on the context of random fields as in the context of random process. This is mainly because
there are no obvious directionality on spatial coordinates as on time coordinate. There is
an obvious past, present and future states for the time coordinate and the independence
of the future state from the past given the present is completely defined. However, on
the context of spatial coordinates such concepts are not entirely natural. Therefore, other
approaches are preferred when dealing with random fields, which will be briefly discussed
in the next section.

D.1 Random fields generation and discretization

Generating random fields may be based on different methods, depending on the consid-
ered hypothesis and the available information. Second-order invariant fields (stationary
processes) are usually obtained from linear or nonlinear transformations of a Gaussian
random field. Noninvariant fields (or nonstationary processes) may also be obtained from
Gaussian fields, in cases such that it can be decomposed as the sum of a invariant field
and a deterministic function. This is the case of many applications where the mean value
may vary but the correlation structure is the same at all points. In the general case of
noninvariant fields, the Karhunen-Loève Expansion (KLE) is usually deployed as a general
method.
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Obtaining invariant fields may depend upon the representation given for the field. All
generating methods are based on the decomposition of the correlation structure. Three
main classes of methods are commonly used in the literature in order to apply random
fields on practical numerical applications: point discretization, shape function and series
expansion methods. Point discretization methods are among the most direct and easy
methods to be used with a nonintrusive approach (Popescu et al., 2005b; Lopez-Caballero
and Modaressi-Farahmand-Razavi, 2010a, among others). In the context of finite element
modeling, very often the numerical codes allow to give a certain value of the constitutive
parameters at each cell mesh, which is a direct transposition of the obtained values of
the random field by a point discretization method. However, one important drawback is
that this family of methods lead to discontinuities at element boundaries. Shape function
methods have the advantage of ensuring a continuous description of the field over the
elements, but the shape functions must be coded in the finite element code. Average
discretization methods are based on weighted integrals of the random field, for which
a better fit is expected due to the averaging process (Huyse and Walters, 2001). Series
expansion methods are probably the most complete representation of random fields, as
both invariant and noninvariant fields can be equally represented. The Karhunen-Loève
Expansion is an example of this category and it is briefly further described in Section
D.1.3.

In this work, the midpoint method was chosen over the other methods because: (i)
it is a nonintrusive approach and (ii) the random field is considered invariant and both
the probability density function and the correlation structure are known and described
by parametric functions.

D.1.1 Variance decomposition method

The variance decomposition method is a simple method to generate random fields based
on a point discretization method. It consists on the following steps:

• Obtaining the autocorrelation matrix [R] from a considered autocorrelation struc-
ture of the random field of dimensionm. This matrix gives the correlation coefficient
ρij between the random variables Xi and Xj for any two locations zi and zj. It is
represented on Equation D.14.

[R] =











1 ρ12 · · · ρ1m
ρ21 1 · · · ρ2m
...

...
. . .

...
ρm1 ρm2 · · · 1











(D.14)

• Calculating the eigenvalues and eigenvectors of the autocorrelation matrix [R]. The
eigenvectors are a independent uncorrelated basis (by construction) on which the
autocorrelation matrix is decomposed. The eigenvalues represent the variance of
each component of this base.
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• Obtaining N realizations of a standard Gaussian random field of dimension m by
multiplyingN xm independent standard normal random variables [G] by the matrix
[Λ] of the square root of the eigenvalues and by the matrix [B] of m independent
eigenvectors of the autocorrelation matrix [R], which is summarized in Equation
D.15.

[P ] = [B] · [Λ] · [G] (D.15)

A non-Gaussian random field fB(x) may be obtained from a Gaussian random field
fP (x) by the inverse cdf method (Grigoriu, 1984), Equation D.16.

fB(x) = F−1
B {FG[fP (x)]} (D.16)

where FG and FB are respectively the Gaussian cdf and the non-Gaussian cdf. This method
relies on being capable of obtaining the non-Gaussian cdf, which may not always be the
case (specially when dealing with in situ data).

Some of the common autocorrelation functions used in the literature and presented by
Huyse and Walters (2001) are shown in Table D.1, where θ is the autocorrelation length
and τ = xi − xj. Vanmarcke (1983) proposed the use of a scale of fluctuation (lc) rather
than the correlation length (θ) as to compare two correlation functions. It is defined by
the expression given in Equation D.17. Therefore, Table D.1 compares the values of θ and
lc for different autocorrelation functions.

lc =

∫ ∞

−∞

R(x, x′)dx (D.17)

Correlation model Autocorrelation function ρ(τ) [.] Scale of fluctuation lc [m]

Exponential ρ(τ) = exp
(

−2 |τ |
θ

)

lc=θ

Squared exponential ρ(τ) = exp
(

−π τ
2

θ2

)

lc=θ

Triangular ρ(τ) = 1− |τ |
θ if τ ≤ θ, 0 otherwise lc=2θ

Cubic ρ(τ) = θ3

(θ+|τ |)3
lc=

2θ
5

Damped sinusoidal ρ(τ) =
sin

(

π
|τ |
θ

)

π
|τ |
θ

lc=θ

Table D.1: Theoretical autocorrelation functions used in the literature.

For a multidimensional random field, the following correlation structures are commonly
considered:
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• Isotropic: the covariance function depends only in the euclidean distance between
two points.

τ = |τ | =|x− x′| =
√

(τ 21 + ...+ τ 2m) (D.18)

R(τ) =R(τ1, ..., τm) = R(τ1, 0, ..., 0) = RR(τ) (D.19)

RR(τ) is called the radial covariance function and suffices to describe the random
variance on any direction from a given point.

• Ellipsoidal: the random field is obtained by scaling and isotropic random field.

τ =

√

(

τ1
a1

)2

+ ...+

(

τm
am

)2

(D.20)

• Separable: in this case the correlation structure may be decomposed on unidimen-
sional correlation functions.

R(τ1, ..., τm) = σ2ρ1(τ1)...ρm(τm) (D.21)

Partially separable random fields are considered when the autocorrelation structure
can be expressed as a product of lower dimension correlation structures.

One important drawback from the variance decomposition method is the need of sam-
pling a high number of standard normal random variables. Indeed, the autocorrelation
matrix ([R]) increases in size with increasing length of the random field thus, increas-
ing the size of [G] and the probabilistic dimension of the problem. In turn, obtaining the
requested correlation structure becomes difficult. In the following, the Proper Orthogonal-
ization Decomposition (POD) is presented as a way to reduce the probabilistic dimension
by obtaining a compact representation of the autocorrelation matrix ([R]).

D.1.2 The Proper Orthogonalization Decomposition (POD)

The main idea behind the Proper Orthogonalization Decomposition (POD) is to retain
the maximum available information of the covariance between variables while reducing
their number to a much smaller number of uncorrelated variables. The orthogonal basis
of the correspondent eigenvectors of the covariance matrix is obtained and then the data
are projected in the subspace spanned by the eigenvectors corresponding to the largest
eigenvalues. The eigenvalues in this case have the following property:

m
∑

i=1

λi = 1 (D.22)

One important property of this decomposition is that it minimizes the mean-square
error. In the case when only a few terms are considered, it is equivalent to the principal
component analysis (PCA).
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Using the formalism of the variance decomposition method presented above, the POD
method leads to a reduced order autocorrelation matrix [Rd] by keeping only the largest
eigenvalues and the corresponding eigenvectors. In this case, Equation D.15 may be rewrit-
ten as:

[P ] = [Bd] · [Λd] · [Gd] (D.23)

where [Bd] is the reduced eigenvector basis, [Λd] the matrix of square root of the largest
eigenvalues of matrix [R] and [Gd] are d x N independent random variables, d < m and
possibly d << m.

Given an admissible error eadm in the energy description given by the eigenvalue dis-
tribution by Equation D.24, the value of d depends on the relation between the length of
the field L and the correlation length θ for a given autocorrelation function, which defines
the autocorrelation structure of the field. Obtaining long weakly correlated fields demands
higher values of d, the limiting case being an equal representativeness of each eigenvalue,
i.e. every two considered points are uncorrelated.

Results in this sense for the exponential correlation model are presented in Figure D.1a
for different cases of θ/L. Figure D.1b presents the evolution of d for different considered
eadm values. Increasing eadm reduces the necessary number of uncorrelated variables d for
the same θ/L as a consequence of losing information of the autocorrelation structure of the
field. Evidently, the higher the admissible error eadm, the more information is lost during
the dimension reduction and the simulated field will poorly represent the theoretical field.

From the proposed functions in Table D.1, the squared exponential is the one present-
ing the fastest dimension reduction for a given error eadm. A comprehensive comparison
of each correlation function is shown in Figure D.2. In this thesis, the squared exponential
autocorrelation function is chosen and the value of eadm=0.1% is always considered when
the Proper Orthogonalization Decomposition is used (Section 4.5.3).

eadm = 1−
d
∑

i=1

λi (D.24)

In the following section the main features of the Karhunen-Loève Expansion (KLE)
are presented. Although this method was not directly used in this thesis, the equivalence
between the Proper Orthogonalization Decomposition and the Karhunen-Loève expansion
is discussed by Liang et al. (2002),Wu et al. (2003) and Kerschen et al. (2005).

D.1.3 The Karhunen-Loève Expansion (KLE)

The Karhunen-Loève Expansion consists of characterizing a random process or random
field in terms of deterministic orthogonal functions, provided that the second order mo-
ment is available. It may be expressed as follows:

U(x) = ū(x) +
∞
∑

i=1

√

λiξi(u)φk(x) (D.25)

where:

• ū(x): mean of the random process;
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Figure D.1: Dimension reduction properties in the case of exponential autocorrelation
function. a) Evolution of the eigenvalues; b) Value of d for a given error eadm.
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Figure D.2: Comparison of d for different autocorrelation functions for eadm=0.1%.

• ξi(u): set of centered unitary and uncorrelated random variables;

• λi,φi(x): eigenvalues and eigenfunctions of the covariance operator C(x, x′).

The eigenfunctions φi(u) are obtained from the spectral decomposition of the covari-
ance operator, which is mathematically represented by a homogeneous Fredholm integral
equation of the second kind:

∫

B

C(x, x′)φi(x
′)dx′ = λiφi(x) (D.26)

The covariance operator is bounded, symmetric and positive definite in the case of
random fields with finite total mean energy. Thus, the set of eigenfunctions φi(x) forms a
complete orthogonal basis. The spectrum (or eigenvalues) are real, positive and numerable.
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CU(x, x
′) =

∞
∑

i=1

λiφi(x)⊗ φi(x
′) (D.27)

This series expansion presents the following interesting properties:

• Eigenvalues are energy decreasing, which motivates the truncation of the series after
M-th terms:

U(x) = ū(x) +
M
∑

i=1

√

λiξi(u)φk(x) (D.28)

with an error given by:

E[||U − UM ||2] = ǫ2M =
∞
∑

i=M

λi
→

M → ∞ 0 (D.29)

• The covariance eigenfunction basis φi(x) is an optimal basis in the sense of mini-
mizing the mean-square error resulting from the truncation. The error variance is
positive and it means that the Karhunen-Loève expansion always under represents
the true variance of the field.

Closed form solutions of the Fredholm equation of second kind (Equation D.26) ex-
ists for a few covariance functions on certain domains B (Ghanem and Spanos, 1991).
Numerical methods may be applied on the general case, such as Galerkin, collocation
or Rayleigh-Ritz approximations. Presenting these strategies is outside the scope of this
thesis.

D.2 Sampling methods

Many different sampling strategies are used in the literature in order to fully cover the
probability density function of a given random variable. The simplest and best-known sam-
pling method is the Monte Carlo Sampling (MCS) method, which consists in generating a
large number of random and equally probable samples. Its main drawback is presenting a
slow rate of convergence of O(N−1/2) (N being the size of the sample). Nonetheless, it has
solid mathematical support from the Law of Large Numbers. Different refinements of the
MCS method exist, such as importance sampling and Latin Hypercube sampling (LHS).
Other methods based on quasi-random numbers also exists and are called quasi-Monte
Carlo methods. LHS method and Quasi-Monte Carlo methods will be further developed
as an alternative to the standard MCS as to ensure better convergence with lower number
of samples.

D.2.1 Monte Carlo Sampling methods (MCS)

Monte Carlo Sampling methods are based on the probabilistic interpretation of an integral
(Caflisch, 1998). Indeed, consider the integral over the unitary hypercube Ip,[0, 1]p of an
integrable function f :
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I[f ] =

∫

Ip
f(x)dx (D.30)

If x is a random uniformly distributed variable then I[f ] = E[f(x)]. The empirical
approximation of the expectation E[f(x)] is:

IN [f ] =
1

N

N
∑

i=1

f(xi) (D.31)

Equation D.31 converges to I[f ] with probability one according to the Law of Large
Numbers. The Monte Carlo integration error is defined as:

ǫN [f ] = I[f ]− IN [f ] (D.32)

The bias is defined as E[ǫN [f ]] and the root mean square error (RMSE) as E[ǫ[f ]2]1/2

(Caflisch, 1998).
The Central Limit Theorem is useful on establishing the size N and error properties

of Monte Carlo integration. To ensure an error ǫ with confidence level c the number of
samples N is given by Equation D.33.

N = ǫ−2σ2s(c) (D.33)

σ is the square root of the variance of f and s is the confidence function for normal
variable. In order to obtain an approximation of σ (as usually one does not know a priori
its value), Hogg and Craig (1995) presented the following method:

1. Performing M computations using xi independent points, 1 ≤ i ≤MN

2. Obtaining I
(j)
N values for 1 ≤ j ≤M . The empirical RMSE is:

ǫ̃N =

(

M−1

M
∑

j=1

(

I
(j)
N − ĪN

)2
)1/2

(D.34)

in which:

I
(j)
N =

1

N

N
∑

i=1

f(xi) (D.35)

ĪN =
1

M

M
∑

j=1

I
(j)
N (D.36)

3. The empirical variance is given by Equation D.37. This value may be used on Equa-
tion D.33 in order to obtain the number of samples N .

σ̃ = N1/2ǫ̃N (D.37)
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D.2.2 Quasi-Monte Carlo methods

Quasi-Monte Carlo methods own their name to the use of quasi-random numbers, instead
of random (mathematically) or pseudo-random (numerically) numbers. While pseudo-
random sequences try to randomly cover the space, quasi-random sequences are determin-
istically designed as to provide better uniformity of the number sequence (Sobol, 1998).
Such sequences are also called low discrepancy sequences, as they minimize the discrep-
ancy measure. It is defined as the measure of the deviation of a sequence’s distribution
from the ideal uniform distribution Niederreiter (1978). It is commonly used to compare
the effectiveness of a certain sampling method to reproduce the uniform distribution.
Consider a sequence of N points xn in the unitary cube Id and define:

RN(J) =
1

N
#(xn ∈ J)−m(J) (D.38)

for any subset J of Id. The discrepancy is defined (Caflisch, 1998) either as the L∞ norm
or the L2 norm applied to RN(J):

DN = supJ∈E|RN(J)| (D.39)

TN =

[∫

(x,y)∈I2d,xi<yi

RN(J(x, y))
2dxdy

]

(D.40)

Such series are very interesting as they lead to smaller error than standard Monte-
Carlo method (Caflisch, 1998). They have a convergence rate of O((logN)kN−1), while
Monte Carlo method has a much slower convergence rate of O(N−1/2). Exemples of such
sequences are Halton sequences (Halton, 1960), Sobol’s sequences (Sobol, 1967), Faure
sequence (Faure, 1982), Niederreiter sequence (Niederreiter, 1978). The discrepancy L∞

norm of all these sequences are bounded by

DN ≤ cd(logN)dN−1 (D.41)

where cd is a constant depending on the dimension of the problem and the type of sequence.
The average discrepancy L2 norm is:

E
[

T 2
N

]1/2
= cdN

−1/2 (D.42)

However, some important limitations exist when using such sequences instead of Monte
Carlo. These are:

• There are no theoretical bases for empirical estimates of accuracy of quasi-Monte
Carlo methods (Caflisch, 1998) as the Central Limit Theorem for Monte Carlo meth-
ods.

• They are designed for integration rather than simulation (as points in a quasi ran-
dom sequence are inevitable correlated). However, this may be reduced when one is
looking for the expectation of some quantity, which may be written as an integral.
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• Quasi-Monte-Carlo effectiveness is lost when dealing with high-dimensional prob-
lems. Equation D.41 is controlled by the (logN)d term unless N > 2d, which grows
rapidly with increasing d.

• Quasi-Monte-Carlo effectiveness is also lost when dealing with nonsmooth integrands
(highly nonlinear problems). (Caflisch, 1998) defines as being smooth enough some-
thing between continuity and differentiability.

D.2.3 Latin Hypercube Sampling method (LHS)

Following Helton et al. (2006), in order to generate a sample of size N from the distribu-
tions U1,U2,· · · ,Um associated with the elements of U(x) = [x1, x2, · · · , xm], the cumulative
distribution function of each xi is first divided into N disjoint intervals of equal proba-
bility. Then one value xij is selected randomly from each interval for the first random
variable. The values obtained are randomly combined in order to produce another N
pairs for the second random variable, and this process continues until a set of N m-tuples
xi = [xi1, xi2, ..., xim], i = 1, 2, · · · , N is obtained.

In order to select randomly a value for each interval, the sampled cumulative proba-
bility can be written as (Wyss and Jorgensen, 1998):

Probi =

(

1

N

)

ru +
(i− 1)

N
(D.43)

where ru is uniformly distributed random number ranging from 0 to 1.
In order to better illustrate the procedure, an example is given for two input parame-

ters, x1 and x2. Figure D.3 presents a table where dots are the sampling values obtained
from the respective probability density function (pdf) of variables x1 and x2, which prob-
ability density functions’s are presented in Figure D.4. This sampling method allows a
full coverage of each pdf. However, as it is based in the Monte Carlo Sampling method,
its convergence rate is of O(N−1/2).

D.2.4 Correlation control technique

Correlation control is an important issue on sampling methods as variables should follow
closely a specified correlation structure. If they are independent, the correlation matrix
should be close to the identity. However, some authors using LHS mention that this
technique may induce an unwanted correlation, even if the probability density function of
parameters is well represented (Oscarsson, 2002; Helton et al., 2006). Iman and Conover
(1982) developed a procedure in order to impose rank correlation on sample variables.
This procedure is based on the Cholesky decomposition of the target correlation matrix
and is widely used as it has the following advantages:

• It is independent from the assumed marginal distributions;

• It preserves the intervals from the Latin Hypercube Sampling and is also applicable
for simple random sampling;
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Figure D.3: Latin Hypercube with two parameters, x1 and x2 and six samples (adapted
from Oscarsson, 2002).
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Figure D.4: Example of input to the first sample according to the scheme shown in Figure
D.3 (adapted from Oscarsson, 2002).

• It can impose complex correlation structures among variables.

Figure D.5 shows an example of unwanted correlation between two variables induced
by sampling and the final configuration after using the correlation control, in the case
where the two variables should be independent.

The Cholesky decomposition of the positive definite symmetric matrix [R] is unique
and may be written as follows:

[R] = [P ] · [P ]′ (D.44)

[P ] is the lower triangular matrix with strictly positive diagonal entries and [P ]′ is its
conjugate transpose.
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Figure D.5: Example of the induced correlation that may arise from the LHS method and
the obtained sample after correlation reduction (Oscarsson, 2002).

The method is developed as follows: first, a sample matrix [U ] is generated either
by MCS or LHS method. Then, the correlation matrix [T ] of the sample matrix [U ] is
calculated. The Cholesky factorization of the target correlation matrix [R] and of the
actual correlation matrix [T ] are then calculated and matrix [P ] and [Q] are obtained.

[R] = [P ] · [P ]′ (D.45)

[T ] = [Q] · [Q]′ (D.46)

A matrix [S] should then be found such that

[S][T ][S]′ = [R] (D.47)

Replacing Equations D.46 and D.45 on Equation D.47 gives:

[S][Q][Q]′[S]′ = [P ][P ′] (D.48)

One solution of the above system is of the form:

[S][Q] = [P ] (D.49)

[S] = [P ][Q]−1 (D.50)

The target matrix [U ]∗ can be obtained as:

[U ]∗ = [U ][S]′ (D.51)

The last step is to rearrange the values of [U ] as that they have the same rank of the
target matrix [U ]∗.

The correlation control technique presents the main advantage of ensuring a very good
description of the prescribed correlation structure. However, it imposes the condition on
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the number of samples to be greater or at least equal to the probabilistic dimension of the
problem m, i.e. dimension of the correlation matrix [R] defined by the correlation struc-
ture, as a consequence of the Cholesky decomposition. Although presented as a necessary
step on the Latin Hypercube Sampling, this technique can be used also on Monte Carlo
Sampling in order to ensure a better description of the autocorrelation structure.

When dealing with time consuming numerical models, it is then necessary to find a
compromise between the required number of samples in order to carry out significant
statistical studies and the probabilistic dimension of the problem. As discussed in Section
D.1.2, the Proper Orthogonalization Decomposition can help on reducing the probabilistic
dimension and allowing the use of the correlation control technique presented above.

D.2.5 Comparison of different sampling methods

Bhavsar et al. (1987) presented a numerical procedure in order to evaluate the discrep-
ancy of pseudo-random sequences based on the definition given by Niederreiter (1978) and
presented in Section D.2.2. Using this procedure the discrepancy of Sobol sequence, Hal-
ton sequence and Latin Hypercube Sampling are compared to standard pseudo-random
sampling strategy used on Monte Carlo simulations. Results are presented in Figure D.6.
Clearly, low-discrepancy sequences used on quasi-Monte Carlo methods presents very low
levels compared to Monte Carlo. However, Latin Hypercube Sampling gives even better
results than such sequences, specially with increasing number of samples.
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Figure D.6: Discrepancy measure evolution of different sampling strategies.

However, as previously discussed, quasi-Monte Carlo sequences present some important
drawbacks with increasing dimensionality. Consider a set of 100 independent uniform
random variables. 1000 samples are generated using the the above four different sampling
strategies, Monte Carlo, Latin Hypercube, Sobol sequence and Halton sequence. The
covariance matrix [C] of the output field is expected to be the identity matrix [I], or at
least a good approximation of it, i.e. cij ≈ 0, i 6= j. The covariance matrix of the samples
obtained by each method are presented in Figure D.7. The Halton sequence presents high
values of cij with increasing dimensionality, spreading more and more over values distant
from the main diagonal. The Sobol sequence also presents points for which cij ≈ 1. Both
Monte Carlo and Latin Hypercube Sampling do not present such drawback.
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Figure D.7: Covariance matrix [C] for the different considered samples. a) Halton sequence;
b) Sobol sequence; c) Monte Carlo Sampling; d) Latin Hypercube Sampling.

The representation of the sampling points in the 2-dimensional space spanned by
dimensions i, j, max(cij), i 6= j is showed in Figure D.8. It can be seen that the quasi-
Monte Carlo sequences lead to clustering of the sampling points around some regions in
the unitary cube Ip and poor integration results can be expected. Monte Carlo and Latin
Hypercube Sampling do not presented such clustering issues in the performed simulations
thus, these methods are better fitted as sampling strategies when dealing with weakly
correlated random fields.

The high-dimensionality issued of quasi-random sequences is argued by Sobol (1998)
as being a problem in the case where all variables are equally important. According to the
author, the discrepancy DN would not be a good measure of irregularity of a distribution,
as it is symmetric in all variables. According to Sobol (1998), other type of measures for
high-dimensional nets in this case should be set-up.
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Figure D.8: Sampling points of two different dimensions. a) Halton sequence; b) Sobol
sequence; c) Monte Carlo Sampling; d) Latin Hypercube Sampling.



244 D.2. Sampling methods



Appendix E

Global Sensitivity Analysis and
FAST method

Sensitivity analysis may be divided into two main classes: Local and Global Analysis.
Local analysis (also called parametric analysis), consists on verifying the output response
when each input parameter is changed separately. In this case, local derivatives may be
studied and performance analysis over a nominal point be conducted. On the other hand,
Global Analysis captures the impact of the input’s variability on the output response. For
this goal, all parameters are varied at the same time in other to fully (at a certain degree)
cover the parametric space.

Analysis of Variance (ANOVA) methods are a family of Global Sensitivity Analysis
methods based on the decomposition of variance proposed by Sobol (1967). The derivation
of Sobol Indices or global sensitivity indices is presented in the following section. The
Fourier Amplitude Sensitivity Text (FAST) is then presented as an interesting way of
obtaining the first-order sensitivity indices.

E.1 Sobol Indices

Consider the model:

y = f(x1, x2, ..., xp) (E.1)

where x1, x2, ..., xp are independents real random variables belonging to an unitary hyper-
cube Ip, [0, 1]p, and Y is an output random variable from the model described by f . Sobol
(1967) showed that if f is integrable over Ip, f has a unique decomposition:

f(x1, x2, ..., xp) = f0 +

p
∑

i=1

fi(xi) +
∑

1≤i≤j≤p

fi,j(xi, xj) + ...+ f1,2,...,p(x1, x2, ..., xp) (E.2)

where f0 is the mean value of f(x1, x2, ..., xp) and each function of the above decomposition
verifies the orthogonality condition expressed in Equation E.3.
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∫ 1

0

fi1,i2,...,is(xi1 , xi2 , ..., xis)dxik = 0 ∀k = 1, ..., s, ∀i1, ..., is ⊆ 1, ..., p (E.3)

The Total Variance Theorem states that, if V (Y ) is finite, then it may be decomposed
by the following expression:

V (Y ) = V (E[Y |Xi]) + E[V (Y |Xi)] (E.4)

The second term of Equation E.4 vanishes as all random variables Xi are considered
independent. By applying Equation E.4 on the model represented by Equation E.1, Sobol
(1967) showed that the decomposition on Equation E.2 and decomposition of variance
represented by Equation E.5 are equivalent.

V =

p
∑

p=1

Vi +
∑

1≤i≤j≤p

Vij + ...+ V1...p (E.5)

with the two first terms given by:

Vi =V (E[Y |Xi]) (E.6)

Vij =V (E[Y |Xi, Xj ])− Vi − Vj (E.7)

The global sensitivity indices (also called Sobol Indices) may be obtained in a straight-
forward manner once the partial variances are known by the following expression:

Sij...p =
Vi...p
V

(E.8)

High order indices represent the conjoint effect of variables Xi and Xj over the out-
put variable Y , which is not taken into account when local analysis is performed. For p
independent random variables, there are 2p − 1 sensitivity index.

(Homma and Saltelli, 1996) proposed the Total Sensitivity Index for global sensitivity
analysis. It consists on summing up all the sensitivity indices concerning a particular
random variable Xi as follows:

STi = Si + Sij + Sij...p (E.9)

STi = 1− V (E[Y ‖X∼i])

V (Y )

The Sobol Indices may be obtained from Monte Carlo simulation. Indeed, considering
the model f from Equation E.1, in order to estimate each partial variance, one has to
estimate Ui = E[E[Y |Xi, ..., Xp]

2] obtained from:

Vij...p = V (E[Y |Xi, ..., Xp]) (E.10)

= E[E[Y |Xi, ..., Xp]
2]− E[E[Y |Xi, ..., Xp]]

2 (E.11)

= Ui − E[Y ]2 (E.12)
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which may be approximated by the following expression:

Ui ≈
1

N

N
∑

k=1

f(x
k(1)
1 , x

k(1)
2 , ..., x

k(1)
i , ..., xk(1)p )× f(x

k(2)
1 , x

k(2)
2 , ..., x

k(1)
i , ..., xk(2)p ) (E.13)

where (1) and (2) are independent samples of the random variables X. In Equation E.13,
only the value xi of the variable of interestXi is kept constant. In order to avoid redoubling
computation of f(x), random permutation of X may be used.

The Sobol Indices are a very good descriptors of a model’s sensitivity to its input’s pa-
rameters, as no hypothesis of linearity or monotonicity are required. However, computing
all indices is most of times computation unfeasible for finite element models, as it requires
to compute 2p Monte Carlo integrals. Other methods have been proposed in the litera-
ture to obtain these indices, such as based on the Polynomial Chaos Expansion (PCE)
coefficients (Sudret, 2008) and the Fourier Amplitude sensitivity Test (FAST) (Cukier
et al., 1973; Saltelli et al., 1999). The last permits to compute the first-order sensitivity
indices in a fast and elegant way and has been chosen to be used in this thesis. The main
derivation of the method is presented in the next section.

E.2 FAST method

The first-order sensitivity indices may be computed by the Fourier Amplitude Sensitiv-
ity Test (FAST). It is based on a multidimensional Fourier transform of f(x1, ..., xp) and
the application of the ergodic theorem from Weyl (1938), which allows to compute a
p−dimensional integral by a monodimensional integral. The idea is to explore the Hyper-
cube Ip by a predescribed parametric curve. It is parametrized by a scalar parameter s
and represented by Equation E.14:

xi(s) = Gi sinwis ∀i = 1, 2, ..., p (E.14)

where wi is a set of independent angular frequencies to be chosen properly (no one is linear
combination of the others with integer coefficients), s is the scalar parameter defining the
curve and Gi is a transformation function whose optimal form is solution of Equation
E.15 as stated by Cukier et al. (1978).

π(1− x2i )
1/2Pi(Gi)

dG(xi)

dxi
= 1 (E.15)

The transformation function Gi determines how the parametric space Ip is filled. Dif-
ferent authors have proposed a specific transformation function (Cukier et al., 1973; Koda
et al., 1979). In this work, the one proposed by Saltelli et al. (1999) and described by Equa-
tion E.16 is used, which results on uniformly distributed values for the random variable
Xi.

xi =
1

2
+

1

π
arcsin sin (wis) (E.16)
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When s varies from −∞ to +∞, the p−dimensional curve xi is space-filling. The
ergodic theorem from Weyl (1938) states that the moment ȳ(r) may be obtained by the
following form:

∫

kp
f r(x1(s), x2(s), ..., xp(s))ds = lim

T→∞

1

2T

∫ T

−T

f r(x1(s), x2(s), ..., xp(s))ds (E.17)

The multidimensional integral on the left hand side of Equation E.17 is equal to the
limit of the monodimensional integral on the right hand side. However, it is numerically
impossible to compute Equation E.17 for an incommensurate number of frequencies. As
the sets wi are finite, there exists some T for which the curve will describe a closed-path.
Cukier et al. (1973) showed that if wi’s are positive integers, it describes a periodic curve
with period 2π.

ȳ(r) =
1

2π

∫ T

−T

f r(s)ds (E.18)

Then the Total Variance V is obtained from:

V =ȳ(2) − (ȳ(1))2 (E.19)

=
1

2π

∫ T

−T

f 2(s)ds−
[

1

2π

∫ T

−T

f(s)ds

]2

(E.20)

and f(s) may be expanded on a Fourier basis following Equation E.21:

y = f(s) =
+∞
∑

j=−∞

Aj cos js+ Bj sin js (E.21)

The Parseval’s identity states that:

+∞
∑

j=−∞

|cj|2 =
1

2π

∫ π

−π

|f(x)|2dx (E.22)

where cj are the composition of the Fourier coefficients Aj and Bj (Equation E.23).

c2j = A2
j +B2

j (E.23)

Finally, Cukier et al. (1973) showed that the partial variances Vi, corresponding to
each input variable Xi, may be obtained by calculating the variance obtained only at the
assigned frequency wi. The first-order sensitivity indices Si are then obtained as:

Si =
Vi
V

=

∑+∞
j=1(A

2
jwi

+ B2
jwi

)
∑+∞

j=1(A
2
j + B2

j )
(E.24)

The minimum sample size Ns is given by the maximum assigned frequency wmax and
the interference factor M , following Equation E.25. The interference factor represents
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the number of harmonics for which the independence of the assigned frequencies wi is
preserved. Saltelli et al. (1999) argues that usually four harmonics are enough to fully
capture the response of the model. The maximum frequency wmax depends on the number
of independent random variables and Saltelli et al. (1999) determined the frequency values
for up to 9 independent random variables.

Ns = 2Mwmax + 1 (E.25)
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Appendix F

Panda test and empirical relations

F.1 Uncertainty analysis of the dynamic cone resis-

tance measurement

Despite the natural variability of the dynamic cone resistance values obtained from a soil,
different hypothesis as well as errors from the Panda sensors can contribute to uncer-
tainties in the Panda measurement. These were studied by different authors (Zhou, 1997;
Chaigneau, 2001) both by analytical considerations and from laboratory tests and are
briefly summarized below.

F.1.1 Errors from the Hollandais formula

It is reminded from Chapter 2 that the dynamic cone resistance is obtained by the Hol-
landais formula (Equation F.1). It links the blow energy and the vertical displacement of
the tip to the soil resistance. It corresponds to the static load inducing the same settlement
as obtained from a hammer blow.

qd =
E

A.e

M

M + P
(F.1)

where M is the hammer weight (2.35 kg), P is the dead weight, e is the plastic vertical
displacement at each blow (normally between 0.5 and 2 cm), A is the cone cross section
and E is the kinetic energy given by the hammer blow.

Figure F.1 presents the force (Q) by the settlement (e) during a hammer blow. Two
hypothesis are made in computing the total energy (E): first, the hatched surface in
the left, which corresponds to the soil response, is simplified by considering an elastic
perfect plastic material, i.e hardening is neglected. Secondly, the elastic component is also
neglected, the blow energy being considered equal to the energy absorbed by the soil. In
this case the total energy can be obtained directly by the expression:

E = Qe (F.2)

According to Chaigneau (2001), the error is considered lower than 10% for settlements
higher than 2 mm per blow. The author also points out a systematic under evaluation



252 F.1. Uncertainty analysis of the dynamic cone resistance measurement

Figure F.1: Energy during penetrometer driving (Zhou, 1997).

of 15% of the soil resistance due to the errors in the estimation of Newton restitution
coefficients. This error is systematic to all Panda penetrometers and can be avoided by a
better estimation of these coefficients.

F.1.2 Errors from manufacture and sensors

According to Zhou (1997), both mass and sensor position tolerance during the manufacture
process of the Panda penetrometer lead to a bias of 6.5% between two equipments. This
bias can be avoided if the same equipement is used for all measurements, which is not
always the case with large measurement campaigns. The author also points out that errors
in the settlement sensor are estimated around 10%.

F.1.3 Errors from the lateral friction

Lateral friction become a critical issue for the Panda penetrometer for depths greater than
1.5 m when using a cone tip of 2 cm2 (Chaigneau, 2001), but it can be neglected for cone
tips of 4 and 10 cm2.

F.1.4 Conclusions regarding the measurement errors

These different aspects are summarized in Table F.1. According to Chaigneau (2001),
summing up the different discussed points, the Panda measurement presents an error of
about 10% when using the same equipement and 16% when using different equipements.

ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd
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Error type
Constant energy penetrometer Variable energy penetrometer

Bias Error Bias Error

Manufacture 3 % 6.5 %

Settlement sensor 20 % 10 %

Hypothesis on estimation
-7 % -15 %

of Newton’s coefficients

Hypothesis on Hollandais
10 % 10 %

formula

Table F.1: Uncertainties on the Panda cone resistance measurement (adapted from
Chaigneau, 2001).

F.2 Empirical relations between the dynamic cone

resistance (qd) and Young’s Modulus (E)

Different analytical and empirical relations have been proposed in the literature in order to
link geotechnical characteristics of soils. Authors have showed that these relations depend
both on nature and stress state of the soil, although this last point is less considered in the
proposed relations. In the following, different approaches proposed in the literature are
presented in order to obtain the Young’s Modulus of the soil as a function of the dynamic
cone resistance. One drawback of such relations is that it is not always defined at which
deformation level the Young’s Modulus is obtained.

F.2.1 Direct relations

Chua (1988) proposed an analytical solution to calculate the elastic modulus of a medium
from a 1D model for penetration analysis of a rigid projectile into a ideally locking ma-
terial. A relation between the penetration index and the elastic modulus is therefore
obtained for different soil natures. The results from Chua (1988) are transposed to the
Panda dynamic cone penetrometer by Haddani et al. (2011), which are presented in Table
F.2.

Material Analytical relation

Crushed graves E = 67.8q0.55d

Salty soils E = 53.7 ln qd+ 9.1

Clayed soils E = 35.9 ln qd + 21.2

Plastic clayed soils E = 23.2 ln qd + 12.5

Table F.2: Different direct relations between the dynamic cone resistance and the Young’s
Modulus proposed by Chua (1988) (adapted by Haddani et al., 2011).
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Bellotti et al. (1989) presented relations for the secant Young Modulus obtained from
calibration chamber for an average axial strain of 0.1

E =4 · qd ∀qd ≤ 10 [MPa]

E =2 · qd + 20 ∀10 ≤ qd ≤ 50 [MPa]
(F.3)

F.2.2 California Bearing Capacity (CBR)

Correlations between the dynamic cone resistance (qd) and the California Bearing Ratio
(CBR) have been extensively proposed in the literature. Some of these correlations are
presented in Table F.3. According to Heukelom and Klomp (1962), the CBR and the
Young’s Modulus can be related by a simple linear relation:

E = A ∗ CBR (F.4)

where A is obtained experimentally and depends on both soil nature and the mean effective
stress.

Material Empirical relation Author

Unknown logCBR = 2.62− 1.27 log qd Kleyn (1975)
Granular and cohesive logCBR = 2.56− 1.16 log qd Livneh (1987)
Granular and cohesive logCBR = 2.55− 1.14 log qd Harison (1987)
Granular and cohesive logCBR = 2.45− 1.12 log qd Livneh et al. (1992)

Various soil types logCBR = 2.46− 1.12 log qd Webster et al. (1992)
Aggregate base course logCBR = 2.44− 1.07 log qd Ese et al. (1994)

Aggregate base course and cohesive logCBR = 2.60− 1.07 log qd NCDOT (1998)
Piedmont residual soil logCBR = 2.53− 1.14 log qd Coonse (1999)

Table F.3: Different direct relations proposed in the literature between the California
Bearing Ration (CBR) and the dynamic cone resistance (qd) (adapted from Amini, 2003).

F.2.3 Static cone resistance (qc)

Mohammed et al. (2000) evaluated both in situ static cone resistance of different cohe-
sive soils and the Young’s Modulus by laboratory tests. The following relation has been
proposed:

E = aqnc + bfc + cωn + dρd + e (F.5)

where E is the Young’s Modulus, qc is the static cone resistance, fc is the frictional resis-
tance, ωn is the water content, ρd is the dry volumetric mass density, n is an integer (1,2,3)
and a,b,c,d,e are regression constants. Simpler direct relations have also been proposed by
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Schmertmann (1970) and Trofimenkov (1974), as reported by Amini (2003), according to
the following expression:

E = B ∗ qc (F.6)

Cassan (1988) proposed to link the static cone resistance (qc) and the dynamic cone
resistance (qd) for different soils by a linear relation (Equation F.7). Values of C for
different materials are summarized in Table F.4.

qc = C ∗ qd (F.7)

Material Above the water table Below the water table

Silt 1 1.2 to 3

Sandy clay 0.5 to 0.9 0.1 to 0.4

Sand 1 -
Sand and gravels 1 1 to 2.6

Table F.4: Values of C from Equation F.7 proposed by Cassan (1988)

On the view of these results, some authors have argued that dynamic cone resistance
(qd) can be considered equal to the static cone resistance (qc) for most soils (Zhou, 1997;
Chaigneau et al., 2000).

F.2.4 Oedometric deformation modulus (Eoed)

Empirical relations have also been proposed between the oedometric deformation modulus
(Eeod) and the static cone resistance (qc). Buisman (1940) was the first to propose a
linear relation (Equation F.8) between Eeod and qc. The value of α (also called Buisman
coefficient) for different soil natures was largely studied by authors. The recommended
values are summarized in Table F.5.

Eoed = αqc (F.8)

Author Sand Clayed sand Compacted clay Soft clay Clayed silt Silt

Sanglerat (1965) 1.5 2 to 5 2 to 5 5 to 10 - 1 to 2

Bachelier and Parez (1965) 1 to 2 2 to 4 3 to 5 - 2.5 to 4 -

Table F.5: Buisman coefficient (α) for different soil natures (adapted from Arbaoui, 2005).

The oedometric deformation modulus and the Young’s Modulus are well defined on a
linear elastic material by the following relation:
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E = Eeod
(1 + ν)(1− 2ν)

(1− ν)
(F.9)

The Poisson’s ratio of most soils can be considered equal to 0.3. In the railway context,
this approach is used by Rhayma et al. (2011, 2013) in order to obtain track geomaterial’s
Young’s Modulus from the Panda dynamic cone resistance (qd).

F.3 Remarks and conclusions

An overview of empirical relations proposed in the literature linking the static or dynamic
cone resistance to the Young’s Modulus was presented in the previous section. These
relations highlight the importance of soil nature in defining the soil stiffness. However,
different Young’s Modulus are obtained when considering the same soil nature by different
relations, for a given value of the dynamic cone resistance qd (Figure F.2). Therefore, it
is also important to consider the stress state and deformation level imposed on the soil
when obtaining such relations. In this work, the relations proposed by Chua (1988) and
Lunne et al. (1997) are used, which directly link the Young’s Modulus to the dynamic cone
resistance. As shown in Figure F.2, they lead to higher values of the Young’s Modulus
when compared to relations using the Buisman coefficient.
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Figure F.2: Comparison of different relations between the Young’s Modulus (E) and the
dynamic cone resistance (qd) available in the literature. a) Sand; b) Clay; c) Ballast (con-
sidered as gravel).



Appendix G

Material characterization by
numerical laboratory tests

Numerical laboratory tests results are presented in order to illustrate the different mate-
rial’s response to the usual stress paths applied on laboratory tests.

G.1 Ballast from Suiker et al. (2005)

G.1.1 Laboratory Test Paths

Several soil mechanics tests are modeled in order to show both a global view of the response
of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the coherence of
the set of parameters proposed in this work to simulate the ballast behaviour. Laboratory
tests were conducted by Suiker et al. (2005) on this material. The soil mechanics tests
concern both monotonic and cyclic paths at different consolidation pressures p′o.

The used parameters for the sand model are given in Table G.1. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 10, 41 and
69 kPa) are used in all simulated tests.

Drained triaxial tests

Figures G.1 and G.2 show the response obtained by the model in simulated drained triaxial
tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.
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Model parameters
Elasticity
Kref (MPa) 69.4
Gref (MPa) 52.0
ne 0.00
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 42
β 10
d 3.00
b 0.06
pco(MPa) 0.70

Flow Rule and Isotropic Hardening
ψ(◦) 42
αψ 3.00
a1 0.00002
a2 0.00080
c1 0.00200
c2 0.00100
m 1.50

Threshold Domains
rela 0.00001
rhys 0.01000
rmob 0.98000
relaiso 0.00002

Table G.1: ECP model’s parameters on ballast material tested by Suiker et al. (2005).
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Figure G.1: Simulated drained triaxial tests. a) q − ε1; b) εv − ε1.
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Figure G.2: Simulated drained triaxial tests. a) εv − p′; b) η − ε1.

Consolidation tests

Figure G.3 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.3: Simulated cyclic tests. a) Isotropic consolidation. b) Oedometric consolidation.

Drained cyclic strain-controlled shear test

Figures G.4 and G.5 show the simulated response of drained cyclic strain-controlled shear
tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference curves
given by Seed et al. (1986).
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Figure G.4: Simulated drained cyclic shear test. a) G/Gmax − γ; b) D − γ curves.
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Figure G.5: Simulated drained cyclic shear test. a) G− γ; b) G/Gmax −D curves.
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G.2 Ballast from Indraratna et al. (2011)

G.2.1 Laboratory Test Paths

Several soil mechanics tests are modelled in order to show both a global view of the
response of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the co-
herence of the set of parameters proposed in this work to simulate the ballast behaviour.
Laboratory tests were conducted under the work of Indraratna et al. (2011). The soil me-
chanics tests concern both monotonic and cyclic paths at different consolidation pressures
p′o.

The used parameters for the sand model are given in Table G.2. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 10, 50 and
100 kPa) are used in all simulated tests.

Model parameters
Elasticity
Kref (MPa) 87.0
Gref (MPa) 60.0
ne 0.00
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 43
β 8
d 8.80
b 0.65
pco(MPa) 0.50

Flow Rule and Isotropic Hardening
ψ(◦) 43
αψ 1.20
a1 0.00002
a2 0.01500
c1 0.80000
c2 0.40000
m 1.20

Threshold Domains
rela 0.00001
rhys 0.00400
rmob 0.80000
relaiso 0.00002

Table G.2: ECP model’s parameters for ballast tested by Indraratna et al. (2011).
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Drained triaxial tests

Figures G.6 and G.7 show the response obtained by the model in simulated drained triaxial
tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.
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Figure G.6: Simulated drained triaxial tests. a) q − ε1; b) εv − ε1.

10
1

10
2

10
3

−2

0

2

4

6

8

10

12

14

16

p [kPa]

ε v [%
]

 

 

p’
o
 = 10kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(a)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

ε
1
 [%]

η 
=

 q
/p

’

 

 

p’
o
 = 10kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(b)

Figure G.7: Simulated drained triaxial tests. a) εv − p′; b) η − ε1.

Consolidation tests

Figure G.8 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.8: Simulated cyclic tests. a) Isotropic consolidation; b) Oedometric consolidation.

Drained cyclic strain-controlled shear test

Figures G.9 and G.10 show the simulated response of drained cyclic strain-controlled shear
tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference curves
given by Seed et al. (1986).
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Figure G.9: Simulated drained cyclic shear test. a) G/Gmax − γ; b) D − γ curves.
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Figure G.10: Simulated drained cyclic shear test. a) G− γ; b) G/Gmax −D curves.
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G.3 Interlayer material A tested by Trinh et al. (2012)

G.3.1 Laboratory Test Paths

Several soil mechanics tests are modeled in order to show both a global view of the response
of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the coherence of
the set of parameters proposed in this work to simulate the intermediate layer material
behavior. Laboratory tests were conducted by Trinh et al. (2012) on this material. The
soil mechanics tests concern both monotonic and cyclic paths at different consolidation
pressures p′o.

The used parameters for the sand model are given in Table G.3. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 30, 50 and
100 kPa) are used in all simulated tests.

Model parameters
Elasticity
Kref (MPa) 133.0
Gref (MPa) 61.0
ne 0.00
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 41
β 10
d 1.00
b 0.30
pco(MPa) 0.65

Flow Rule and Isotropic Hardening
ψ(◦) 41
αψ 1.70
a1 0.00001
a2 0.00400
c1 0.00800
c2 0.00400
m 1.20

Threshold Domains
rela 0.00001
rhys 0.02000
rmob 0.90000
relaiso 0.00002

Table G.3: ECP model’s parameters for the interlayer material A.
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Drained triaxial tests

Figures G.11 and G.12 show the response obtained by the model in simulated drained
triaxial tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.
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Figure G.11: Simulated drained triaxial tests a) q − ε1, b) εv − ε1.
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Figure G.12: Simulated drained triaxial tests a) εv − p′, b) η − ε1.

Undrained triaxial tests

Figures G.13 and G.14 show the response obtained by the model in simulated undrained
triaxial tests. The response is showed in the q − ε1, q − p′, ∆U − ε1 and η − ε1 planes.
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Figure G.13: Simulated undrained triaxial tests a) q − ε1, b) q − p′.
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Figure G.14: Simulated undrained triaxial tests a) ∆U − ε1, b) η − ε1.

Consolidation tests

Figure G.15 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.15: Simulated cyclic tests. a) Isotropic consolidation; b) Oedometric consolida-
tion.

Drained cyclic strain-controlled shear test

Figures G.16 and G.17 show the simulated response of drained cyclic strain-controlled
shear tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference
curves given by Seed et al. (1986).
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Figure G.16: Simulated drained cyclic shear test a) G/Gmax − γ; b) D − γ curves.
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Figure G.17: Simulated drained cyclic shear test a) G− γ; b) G/Gmax −D curves.
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G.4 Interlayer material B tested by Trinh et al. (2012)

G.4.1 Laboratory Test Paths

Several soil mechanics tests are modeled in order to show both a global view of the response
of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the coherence of
the set of parameters proposed in this work to simulate the intermediate layer material
behavior. Laboratory tests were conducted by Trinh et al. (2012) on this material. The
soil mechanics tests concern both monotonic and cyclic paths at different consolidation
pressures p′o.

The used parameters for the sand model are given in Table G.4. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 30, 50 and
100 kPa) are used in all simulated tests.

Model parameters
Elasticity
Kref (MPa) 133.0
Gref (MPa) 61.0
ne 0.00
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 41
β 30
d 2.50
b 0.15
pco(MPa) 0.18

Flow Rule and Isotropic Hardening
ψ(◦) 41
αψ 1.10
a1 0.00001
a2 0.00120
c1 0.01000
c2 0.00500
m 1.00

Threshold Domains
rela 0.00001
rhys 0.02000
rmob 0.90000
relaiso 0.00002

Table G.4: ECP model’s parameters for the interlayer material B.
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Drained triaxial tests

Figures G.18 and G.19 show the response obtained by the model in simulated drained
triaxial tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.
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Figure G.18: Simulated drained triaxial tests. a) q − ε1; b) εv − ε1.

10
1

10
2

10
3

−1

−0.5

0

0.5

1

1.5

2

p [kPa]

ε v [%
]

 

 

p’
o
 = 30kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(a) a

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ε
1
 [%]

η 
=

 q
/p

’

 

 

p’
o
 = 30kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(b) b

Figure G.19: Simulated drained triaxial tests. a) εv − p′; b) η − ε1.

Undrained triaxial tests

Figures G.20 and G.21 show the response obtained by the model in simulated undrained
triaxial tests. The response is showed in the q − ε1, q − p′, ∆U − ε1 and η − ε1 planes.
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Figure G.20: Simulated undrained triaxial tests. a) q − ε1; b) q − p′.
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Figure G.21: Simulated undrained triaxial tests. a) ∆U − ε1; b) η − ε1.

Consolidation tests

Figure G.22 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.22: Simulated cyclic tests. a) Isotropic consolidation; b) Oedometric consolida-
tion.

Drained cyclic strain-controlled shear test

Figures G.23 and G.24 show the simulated response of drained cyclic strain-controlled
shear tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference
curves given by Seed et al. (1986).
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Figure G.23: Simulated drained cyclic shear test. a) G/Gmax − γ; b) D − γ curves.
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Figure G.24: Simulated drained cyclic shear test. a) G− γ; b) G/Gmax −D curves.
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G.5 Toyoura sand at Dr=40%

G.5.1 Laboratory Test Paths

Several soil mechanics tests are modeled in order to show both a global view of the response
of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the coherence of
the set of parameters proposed in this work to simulate Toyoura sand at relative density
Dr=40%. Laboratory tests were conducted by Suiker et al. (2005) on this material. The
soil mechanics tests concern both monotonic and cyclic paths at different consolidation
pressures p′o.

The used parameters for the sand model are given in Table G.5. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 20, 50 and
100 kPa) are used in all simulated tests.

Model parameters
Elasticity
Kref (MPa) 296.0
Gref (MPa) 222.0
ne 0.40
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 30
β 43
d 3.50
b 0.22
pco(MPa) 1.40

Flow Rule and Isotropic Hardening
ψ(◦) 30
αψ 1.00
a1 0.00010
a2 0.01500
c1 0.06000
c2 0.03000
m 1.00

Threshold Domains
rela 0.00500
rhys 0.03000
rmob 0.80000
relaiso 0.00010

Table G.5: ECP model’s parameters
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Drained triaxial tests

Figures G.25 and G.26 show the response obtained by the model in simulated drained
triaxial tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.

0 5 10 15 20
0

50

100

150

200

250

300

ε
1
 [%]

q 
[k

P
a]

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(a)

0 5 10 15 20
−1

0

1

2

3

4

5

6

ε
1
 [%]

ε v [%
]

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(b)

Figure G.25: Simulated drained triaxial tests. a) q − ε1; b) εv − ε1.
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Figure G.26: Simulated drained triaxial tests. a) εv − p′; b) η − ε1.

Undrained triaxial tests

Figures G.27 and G.28 show the response obtained by the model in simulated undrained
triaxial tests. The response is showed in the q − ε1, q − p′, ∆U − ε1 and η − ε1 planes.
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Figure G.27: Simulated undrained triaxial tests. a) q − ε1; b) q − p′.
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Figure G.28: Simulated undrained triaxial tests. a) ∆U − ε1; b) η − ε1.

Consolidation tests

Figure G.29 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.29: Simulated cyclic tests. a) Isotropic consolidation. b) Oedometric consolida-
tion.

Drained cyclic strain-controlled shear test

Figures G.30 and G.31 show the simulated response of drained cyclic strain-controlled
shear tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference
curves given by Seed et al. (1986).
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Figure G.30: Simulated drained cyclic shear test. a) G/Gmax − γ; b) D − γ curves.
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Figure G.31: Simulated drained cyclic shear test. a) G− γ; b) G/Gmax −D curves.
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G.6 Toyoura sand at Dr=93%

G.6.1 Laboratory Test Paths

Several soil mechanics tests are modeled in order to show both a global view of the response
of the ECP elastoplastic model Aubry et al. (1982); Hujeux (1985) and the coherence of
the set of parameters proposed in this work to simulate Toyoura sand at relative density
Dr=93%. Laboratory tests were conducted by Suiker et al. (2005) on this material. The
soil mechanics tests concern both monotonic and cyclic paths at different consolidation
pressures p′o.

The used parameters for the sand model are given in Table G.6. All tests are simulated
with the same set of parameters. Three initial confinement pressures p′o (i.e. 20, 50 and
100 kPa) are used in all simulated tests.

Model parameters
Elasticity
Kref (MPa) 296.0
Gref (MPa) 222.0
ne 0.40
pref (MPa) 1.0

Critical State and Plasticity
φ′
pp(

◦) 30
β 17
d 3.50
b 0.22
pco(MPa) 4.90

Flow Rule and Isotropic Hardening
ψ(◦) 30
αψ 1.00
a1 0.00010
a2 0.01500
c1 0.06000
c2 0.03000
m 1.00

Threshold Domains
rela 0.00500
rhys 0.03000
rmob 0.80000
relaiso 0.00010

Table G.6: ECP model’s parameters
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Drained triaxial tests

Figures G.32 and G.33 show the response obtained by the model in simulated drained
triaxial tests. The response is showed in the q − ε1, εv − ε1, εv − p′ and η − ε1 planes.
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Figure G.32: Simulated drained triaxial tests. a) q − ε1; b) εv − ε1.
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Figure G.33: Simulated drained triaxial tests. a) εv − p′; b) η − ε1.

Undrained triaxial tests

Figures G.34 and G.35 show the response obtained by the model in simulated undrained
triaxial tests. The response is showed in the q − ε1, q − p′, ∆U − ε1 and η − ε1 planes.



282 G.6. Toyoura sand at Dr=93%

0 5 10 15 20
0

500

1000

1500

2000

2500

ε
1
 [%]

q 
[k

P
a]

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(a)

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

p’ [kPa]

q 
[k

P
a]

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

(b)

Figure G.34: Simulated undrained triaxial tests. a) q − ε1; b) q − p′.
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Figure G.35: Simulated undrained triaxial tests. a) ∆U − ε1; b) η − ε1.

Consolidation tests

Figure G.36 shows the simulated response of cyclic isotropic and oedometric consolidation
tests.
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Figure G.36: Simulated cyclic tests. a) Isotropic consolidation. b) Oedometric consolida-
tion.

Drained cyclic strain-controlled shear test

Figures G.37 and G.38 show the simulated response of drained cyclic strain-controlled
shear tests. The obtained G/Gmax − γ and D − γ curves are compared to the reference
curves given by Seed et al. (1986).

10
−6

10
−5

10
−4

10
−3

10
−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

G
/G

m
ax

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

Seed et al. 1986

(a)

10
−6

10
−5

10
−4

10
−3

10
−2

0

5

10

15

20

25

30

35

γ

D
 [%

]

 

 

p’
o
 = 20kPa

p’
o
 = 50kPa

p’
o
 = 100kPa

Seed et al. 1986

(b)

Figure G.37: Simulated drained cyclic shear test. a) G/Gmax − γ; b) D − γ curves.
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Figure G.38: Simulated drained cyclic shear test. a) G− γ; b) G/Gmax −D curves.



Appendix H

Mechanical interfaces

The interface model is defined in order to take into account discontinuities over the soil-
structure interface Σbs. They are defined in terms of relative displacements and increments
of the stress vector in both normal and tangential directions. It is supposed that both the
soil domain Ωs and the structure domain Ωb are initially in contact and small-strains
hypothesis. In terms of the relative displacements, it can be written as:

[un] = [u].n

[ut] = [u]− [un]n
(H.1)

where [un] is the relative gap in the normal direction, [ut] is the relative slide in the
tangential direction and n is the normal vector over the interface oriented from Ωb to Ωs.

In terms of stresses at the interface, considering the effective stress tensor σ′ with
respect to the interface, the normal σn and tangential σt stresses can be obtained as:

σn = n.σ′.n

σt = σ′.n− σnn
(H.2)

Three kinematical constrains must be satisfied:

1. Noninterpenetration criterion
[un] ≥ 0

2. Uplift and free-surface criterion

If [un] > eini → σ.n = 0

where eini is the initial thickness of the interface. The eini parameter can also be
viewed as a regularization parameter, as small fluctuations of the displacement field
at the interface lower than this threshold does not lead to uplift.

3. Contact-compression criterion

If [un] ≤ eini → σn = 0 and |σt| 6= 0

where the operator | · | denotes the modulus.
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An elastic perfectly plastic Mohr-Coulomb failure criterion is chosen in order to link the
stress field and the displacement field at the interface. From the elastoplasticity framework,
the normal and tangential jump increments can be decomposed in elastic and plastic
contributions as follows:

[u̇n] = [u̇en] + [u̇pn]

[u̇t] = [u̇et ] + [u̇pt ]
(H.3)

where the superscript e denotes elastic contribution and p the plastic contribution. The
elastic displacement increments are related to the stress field increments as follows:

σ̇n = E[u̇en]

σ̇t = G[u̇et ]
(H.4)

where E and G are the normal stiffness and tangent stiffness modulus of the interface.
These can be also viewed as penalization parameters, in order to regularize the stress jump
appearing from the noninterpenetration criterion. The plastic contribution is obtained
from the Mohr-Coulomb failure criterion. Normal σn and tangential σt stresses are linked
as follows:

|σt| ≤ |σn| tanφ+ c (H.5)

where φ is the friction angle and c is the cohesion of the interface. From these criteria, two
kinematical situations may occur once contact is verified at the interface ([un] ≤ eini):

• No plastic sliding condition:

If |σt| < |σn| tanφ+ c→ [u̇pt ] = 0 and [u̇pn] = 0

• Plastic sliding condition:

If |σt| = |σn| tanφ+ c → ∃λ̇p ≥ 0 t.q.

[u̇pt ] = λ̇p
σt
|σt|

[u̇pn] = λ̇p tanψ
(H.6)

where λ̇p is the plastic multiplier, λ̇p ≤ 0, and ψ is the dilatancy angle of the
interface. Taking ψ=0 completely decouples the vertical and tangential response.
The model is considered associated when ψ=φ.

The plastic multiplier λ̇p is obtained by the following expression:

λ̇p =

G
|σt|

(σt.[u̇t]) + E[u̇n] tanφ

G+ E tanφ tanψ
(H.7)
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Parameter Description Considered value
E [MPa] Normal stiffness modulus 870 MPa
G [MPa] Tangent stiffness modulus 5 Pa
φ [°] Friction angle 10°
ψ [°] Dilatancy angle 0°

c [MPa] Interface cohesion 1 kPa
eini [m] Interface thickness 0.01 mm

Table H.1: Parameters of the interface model with an elastic perfectly plastic Mohr-
Coulomb failure criterion.

Table H.1 summarizes the necessary model parameters for the the presented formula-
tion.
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Çelebi, E. and Göktepe, F. (2012). Non-linear 2-D FE analysis for the assessment of
isolation performance of wave impeding barrier in reduction of railway-induced surface
waves. Construction and Building Materials, 36:1–13.

Cekerevac, C., Girardin, S., Klubertanz, G., and Laloui, L. (2006). Calibration of an
elasto-plastic constitutive model by a constrained optimisation procedure. Computers
and Geotechnics, 33(8):432–443.
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Trinh, V. N., Tang, A. M., Cui, Y.-J., Dupla, J.-C., Canou, J., Calon, N., Lambert, L.,
Robinet, A., and Schoen, O. (2012). Mechanical characterisation of the fouled ballast in
ancient railway track substructure by large-scale triaxial tests. Soils and Foundations,
52(3):511–523.

Trofimenkov, J. G. (1974). Penetration testing in URSS - State of Art Report. In European
Symposium on Penetration Testing, Stockholm.

Tutumluer, E. and Seyhan, U. (1999). Stress path loading effects on granular material
resilient response. In Correia, A. G., editor, Unbound granular materials: Laboratory
testing, in-situ testing and modelling, pages 109–121. A.A. Balkema.

Uzan, J. (1985). Characterization of granular materials. Transportation Research Record,
1022:52–59.

Vanmarcke, E. H. (1983). Random fields: analysis and synthesis. MIT Press.

Vesic, A. S. (1963). Beams on Elastic Subgrade and the Winkler Hypothesis. In 5th
International Conference on Soil Mechanics and Foundation Engineering, pages 845–
850, Paris, France.

Vlaslov, V. L. and Leontiev, N. H. (1956). Beams, Plates and Shells on Elastic Founda-
tions. Fizmatgiz, Moscow.

Voivret, C., Perales, R., Saussine, G., Costa d’Aguiar, S., Laurans, E., and Petit, P. (2013).
Multi-unit tamping machine: beyond the linear performance. In 10th World Congress
on Railway Research, Sydney, Australia.

Vostroukhov, A. V. and Metrikine, A. V. (2003). Periodically supported beam on a visco-
elastic layer as a model for dynamic analysis of a high-speed railway track. International
Journal of Solids and Structures, 40(21):5723–5752.

Vucetic, M. and Dobry, R. (1991). Effect of soil plasticity in cyclic response. Journal of
Geotechnical Engineering, 117(1):89–107.

Webster, S. L., Grau, R. H., and Williams, T. P. (1992). Description and application of
dual mass dynamic cone penetrometer. Technical report, Department of Army, Water-
ways Experiment Station, Vicksburg, MS.

Weyl, H. (1938). Mean Motion. American Journal of Mathematics, 60(4):889–896.

Wickens, A. H. (2003). Fundamentals of Rail Vehicle Dynamics. Swets & Zeitlinger.



Bibliography 311

Wu, C. G., Liang, Y. C., Lin, W. Z., Lee, H. P., and Lim, S. P. (2003). A note on equiv-
alence of proper orthogonal decomposition methods. Journal of Sound and Vibration,
265:1103–1110.

Wu, S., Gray, D. H., and Richart, F. E. J. (1984). Capillary effects on dynamic modulus
of sands and silts. Journal of Geotechnical Engineering, 110(9):1188 – 1203.

Wyss, G. D. and Jorgensen, K. H. (1998). A user’s guide to LHS: Sandia’s Latin Hypercube
Sampling software. Technical report, Sandia National Laboratories, Albuquerque, NM.

Xie, G. and Iwnicki, S. (2008). Simulation of wear on a rough rail using a time-domain
wheel-track interaction model. Wear, 265(11-12):1572–1583.

Xu, B., Lu, J.-f., and Wang, J.-h. (2007). Dynamic response of an infinite beam overlying
a layered poroelastic half-space to moving loads. Journal of Sound and Vibration,
306:91–110.

Yang, L. a., Powrie, W., and Priest, J. a. (2009). Dynamic Stress Analysis of a Ballasted
Railway Track Bed during Train Passage. Journal of Geotechnical and Geoenvironmen-
tal Engineering, 135(5):680.

Yang, Y. B. and Hung, H. H. (2001). A 2.5D finite/infinite element approach for modeling
visco-elastic bodies subjected to moving loads. International Journal of Numerical
Methods in Engineering, 51(11):1317 – 1336.

Yang, Y. B. and Hung, H. H. (2008). Soil Vibrations Caused by Underground Moving
Trains. Journal of Geotechnical and Geoenvironmental Engineering, 134(11):1633–1644.

Zhai, W., Wang, K., and Cai, C. (2009). Fundamentals of vehicle - track coupled dynamics.
Vehicle System Dynamics, 47(11):1349–1376.

Zhai, W., Wang, K., and Lin, J. (2004). Modelling and experiment of railway ballast
vibrations. Journal of Sound and Vibration, 270(4-5):673–683.
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