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Abstract 

This work focuses on measurements of soot particle size and volume fraction at Diesel engine condi-
tions. A combination of laser-induced incandescence (LII) imaging, line-of-sight laser extinction, soot 
pyrometry, and transmission electron microscopy (TEM) measurements of thermophoretically-sam-
pled soot was used. Particle sizing strategies were developed with LII model for the analysis of particle-
size poly-dispersity with time-resolved LII signal that is suitable for point-wise measurements at at-
mospheric pressure, and for spatially-resolved characterization with two-time-step LII imaging. Meas-
urements were performed with these strategies in a flame at atmospheric pressure and in Diesel en-
gine combustion to investigate their applicability. Additional measurements were performed for tem-
perature and soot volume fraction. 

A novel method, called two-exponential reverse fitting (TERF), is introduced to extract information 
about the size distribution. The method is based on mono-exponential fits to the LII signal decay at a 
delayed time. It approximates the particle-size distribution as a combination of one large and one 
small mono-disperse equivalent mean particle size and does not require a distribution assumption. It 
also provides a ratio of the contribution of both size classes. The systematic error caused by describing 
LII signals by mono-exponential decays was calculated as less than 2% for LII signals simulated for 
mono-disperse aggregated soot with heat-up temperatures for which evaporation is negligible. The 
method was applied to LII data acquired in a laminar non-premixed ethylene/air flame at various 
heights above the burner. The particle size of the large particle-size class evaluated with the method 
showed good consistency with TEM results, however the size of the small particle-size class and its 
relative contribution could not be compared due to insufficient information in the TEM results for 
small particles.  

Simultaneous line-of-sight laser extinction measurements and LII imaging were performed to derive 
the soot volume fraction in a high-temperature high-pressure constant-volume pre-combustion ves-
sel under the Engine Combustion Network’s (ECN) "Spray A" conditions with parametric variations of 
gas temperature and composition. Extinction measurements were used to calibrate LII images for 
quantitative soot distribution measurements. OH-chemiluminescence imaging was used to determine 
the lift-off length, and used to interpret the soot measurements. Maximum soot volume fractions 
around 2–3 ppm were obtained at the nominal ambient temperature defined for Spray A (i.e. 900 K) 
that rise to 12 ppm at elevated temperature (1030 K). Variations of ambient temperature and oxygen 
concentration were carried out showing effects on soot formation and oxidation that are consistent 
with the literature. 

The method for particle-size imaging is based on evaluating gated LII signals acquired with two cam-
eras consecutively after the laser pulse and using LII modeling to deduce particle size from the ratio 
of local signals. A strategy was developed with a model-based analysis: the dependence of LII particle-
size imaging on the assumed boundary conditions was identified such as bathgas temperature, pres-
sure, particle heat-up temperature, thermal accommodation coefficients, and soot morphology. Var-
ious laser-fluence regimes and gas pressures were considered. Effects of laser attenuation were eval-
uated. A combination of one detection gate starting with the particle-heating and the other starting 
with 11 ns delay with twice as long gate width was found to provide the highest sensitivity for particle 
sizing at 60 bar. The optimum gate delays for different pressures were calculated. The effects of timing 
jitter for laser pulse and poly-dispersity were investigated. Systematic errors in pyrometry imaging at 
60 bar was evaluated. Parallel to the model-based analysis, experiments were conducted in near Spray 
A conditions with parametric variations of injection pressure, gas temperature and composition. The 
results were compared to particle-size measurements from TEM of soot sampled at multiple axial 
distances from the injector. The discrepancies between the two measurement techniques are dis-
cussed to analyze uncertainties and related error sources of the two diagnostics methodologies. It is 
found that in such an environment where particles are small and pressure is high, LII signal decay 
times are such that LII suffers from a strong bias towards large particles. 





Zusammenfasung 

Diese Arbeit beschäftigt sich mit abbildenden laseroptischen Verfahren zur Messungen von 
Rußpartikelgröße und -volumenbruch bei dieselmotorischen Bedingungen. Eine Kombination von 
bildgebender laserinduzierter Inkandeszenz (LII), Laserextinktion und Zweifarben-Pyrometrie wird für 
in-situ Messungen eingesetzt. Vergleichend wird die Partikelgröße in thermophoretisch 
abgeschiedenem Ruß mit Transmissionselektronenmikroskopie (TEM) bestimmt. Der Messstrategie 
liegt ein LII-Modell zugrunde, das die zeitliche Variation des LII-Signals in Punktmessungen bzw. das 
Signalverhältnis bei abbildender Detektion mit zwei Zeitschritten nutzt. Messungen wurden in einer 
Flamme bei Atmosphärendruck und in einer Hochdruck-Einpritzkammer unter dieselmotorischen 
Bedingungen durchgeführt. Hierzu wurde ein neues Verfahren, das two-exponential reverse fitting 
(TERF) genannt wird, entwickelt und angewendet. Das Verfahren basiert auf einer 
monoexponentiellen Anpassungen des LII-Signalabfalls in einer gegenüber dem Laserpuls verzögerten 
Zeitspanne. Das Verfahren liefert Information zur Partikelgrößenverteilung als eine Kombination aus 
einer großen und einer kleinen monodispersen äquivalente Teilgröße ohne eine a-priori Annahme 
einer Größenverteilung zu erfordern. Ein Verhältnis des Beitrags der beiden Größenklassen wird 
ermittelt. Der systematische Fehler, der durch die monoexponenzielle Anpassung des LII-
Signalverlaufs hervorgerufen wird, liegt bei weniger als 2% für monodisperse Ruß-Aggregate in einem 
Temperaturbereich, in dem Verdampfung vernachlässigt werden kann. Das Verfahren ist auf LII-Daten 
gestützt, die in einer nicht-vorgemischten Ethylen/Luft-Flamme, in verschiedenen Höhen über einem 
Brenner ermittelt wurden. Die ermittelte Partikelgröße der großen Partikelfraktion zeigt eine gute 
Übereinstimmung mit den TEM-Ergebnissen, allerdings kann die Größe der kleinen Partikelfraktion 
und ihr relativer Beitrag aufgrund unzureichender Informationen in den TEM-Ergebnisse für kleine 
Partikel nicht verglichen werden. 

Laserextinktions-Messungen und LII-Bildgebung wurden gleichzeitig durchgeführt, um den Partikel-
Volumenbruch in einer Hochdruckzelle unter den vom Engine Combustion Network (ECN) definierten 
"Spray A"-Bedingungen zu bestimmen. Absorptions-Messungen wurden verwendet, um die LII-
Messungen zu kalibrieren. Bildgebende Messungen der OH-Chemilumineszenz wurden eingesetzt, 
um die Lift-off-Länge der Diesel-Sprayflamme zu bestimmen. Eine maximale Partikel-
Volumenkonzentration von 2–3 ppm wurde bei der Nenn-Umgebungstemperatur für Spray A (900 K) 
gefunden. Bei erhöhter Temperatur (1030 K) wurden Werte bis 12 ppm beobachtet.  

Das Verfahren zur bildgebenden Partikelgrößenmessung basiert auf der Auswertung von LII-Signalen, 
die mithilfe von zwei Kameras nach dem Laserpuls innerhalb bestimmter Zeitfenster detektiert 
werden. Das Verfahren wurde mit dem LII-Modell optimiert: Die Abhängigkeit von den 
angenommenen Randbedingungen (Gastemperatur, Druck, Aufheiztemperatur, Energie-
Akkomodationskoeffizienten, Ruß-Morphologie, Laserabschwächung) wurde untersucht. Die 
optimale Kombination von Detektionsfenstern wurde für Anwendung bei 60 bar ermittelt.  

Experimente im Dieselspray wurden mit parametrischen Variationen von Einspritzdruck, 
Gastemperatur und Gemischzusammensetzung durchgeführt. Die LII-Ergebnisse wurden mit TEM-
Messungen verglichen. Die Diskrepanzen zwischen beiden Messtechniken werden diskutiert. Es 
wurde festgestellt, dass in einer Umgebung, in der Partikel klein sind und der Druck hoch ist, die sehr 
kurzen LII-Signalabfallzeiten dazu führen, dass große Partikel überbewertet werden.





Résumé  

Le travail présenté dans ce manuscrit concerne les mesures de taille de particule et de fraction volumique 
de suies dans des conditions moteur Diesel. Les techniques utilisées sont la laser-induced incandescence 
(LII), la méthode d’extinction laser (LEM), la pyrométrie, et l’analyse d’images de microscopie électronique 
par transmission (TEM) d’échantillons prélevés in-situ.  Des stratégies de mesure de tailles de particules 
sont développées en se basant sur l’utilisation d’un modèle LII et en analysant la poly-dispersion des tailles 
de particules, aussi bien à partir de signaux de LII résolu en temps (mesures ponctuelles) à pression atmos-
phérique, que d’informations résolues spatialement provenant d’images acquises a deux instants diffé-
rents. Des mesures sont effectuées avec ces stratégies sur une flamme à pression atmosphérique et dans 
des conditions représentatives des conditions moteur Diesel pour évaluer leur applicabilité. Des mesures 
supplémentaires de température et de fraction volumique de suies sont aussi réalisés. 

Une nouvelle méthode, appelée two-exponential reverse fitting (TERF) est introduite. Elle vise à extraire 
des informations sur la distribution de tailles de particules. Cette méthode est basée sur l’utilisation de fits 
mono-exponentiel du signal de décroissance de LII à différents intervalles de temps. La distribution de 
tailles de particules est approximée par la combinaison de deux distributions de tailles de particules mono-
disperses: une petite et une large. Aucune hypothèse sur la forme de la distribution n’est nécessaire.  La 
méthode permet aussi de fournir le ratio de la proportion respective des deux classes de particules. L’er-
reur systématique induite par la description mono-exponentielle de la décroissance du signal de LII a été 
calculée et est inférieure à 2% pour des décroissances de signal de LII d’aggregats mono-disperses avec des 
températures de chauffe pour lesquels la sublimation des suies est négligeable. La méthode a été appli-
quée à des données de LII obtenus sur une flamme laminaire atmosphérique éthylene/air à différentes 
hauteurs. Les résultats obtenus montrent un bon accord entre les tailles des grosses particules évaluées 
avec la méthode TERF et celle obtenue par analyse des images TEM. En revanche l’accord n’est pas obtenu 
pour les petites particules, ce qui est attribué à un manque d’information sur cette classe de particule dans 
l’analyse TEM. 

Des champs de fraction volumique de suies sont ensuite obtenus dans une cellule haute pression haute 
température dans les conditions opératoires du réseau ECN (Engine Combustion Network) par technique 
combinée de LEM et LII simultanées. Les mesures sont réalisées dans les conditions du spray A et incluent 
des variations paramétriques (température et dilution). La distance de Lift Off de la flamme est déterminée 
en parallèle par visualisation directe de la chimiluminescence OH. Des niveaux de fraction volumique maxi-
male de 2–3 ppm sont obtenus dans les conditions nominales du spray A (i.e. 900K), et peuvent atteindre 
12 ppm à haute température (1030 K). L’effet des variations de température et de concentration d’oxygène 
sur la formation et l’oxydation des suies et cohérente avec les résultats issus de la littérature. 

Une méthode d’imagerie de taille de particules est développée. Elle est basée sur l’acquisition de deux 
images de LII obtenues à deux instants différents après le pulse laser et l’analyse de ces images à l’aide de 
la simulation du signal LII pour déduire les tailles des particules à partir du rapport des images. Une straté-
gie basée sur une analyse par modèle LII est développée pour évaluer les incertitudes de mesure. La dé-
pendance aux conditions limites de l’imagerie de taille de particule par LII est ainsi évaluée. Les conditions 
limites considérées sont: température ambiante, pression, température de chauffe des particules, coeffi-
cient d’accommodation thermique, morphologie des suies…. Plusieurs régimes d’énergie laser et de pres-
sion sont évalués. Une combinaison optimale de timing d’acquisition est trouvée. La première image est 
prise au pic du signal de LII et la second image est prise 11ns plus tard avec un temps d’intégration doublé. 
L’analyse montre que cette stratégie permet d’optimiser la sensibilité de la technique à 60 bar. L’effet du 
jitter en temps et de la poly dispersion sont aussi analysés et l’erreur systématique de la pyrométrie à 
60 bar est évaluée.  

A l’issu de cette analyse par modèle, la méthodologie de mesure ainsi développée est utilisée pour effec-
tuer des mesures expérimentales conduites dans les conditions du Spray A avec des variations de pression 
d’injection, de température ambiante et de composition. Les résultats sont comparés à des mesures de 
tailles de particules effectuées par analyse TEM d’échantillons de suies prélevés à différentes distances du 
nez de l’injecteur. Les différences obtenues entre les deux techniques sont discutées pour analyser les 
incertitudes de mesure et les sources d’erreur associées. Il est montré que dans un environnement moteur 
ou la pression est très élevée et ou les particules sont très petites, la méthode d’imagerie de tailles de 
particules par LII souffre d’un biais significatif vers les grosses particules. 
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1 Introduction 

Soot is an amorphous-shaped particle emitted into the air during fossil-fuel combustion, biofuel com-

bustion, and biomass burning as a result of incomplete reaction. It consists of amorphous carbona-

ceous particles and smaller amounts of sulfur, metallic ashes and other chemicals [1]. Soot production 

can be useful in various real-life and industry applications: Soot in a flame gives the flame its typical 

luminous orange or yellow appearance which makes torches and candles practical lighting sources. It 

helps furnaces and boilers efficiently transfer energy to heating pipes by thermal radiation [2]. Carbon 

black is essential for products such as tires, paints, varnishes and ink [3]. Airborne soot is reported to 

accelerate plant growth at certain situations [4] and it acts as a protector in the soil from insects and 

slugs [5] (the overall negative impacts on cultivation is greater though).  

In almost all energy production plants and transportation systems, however, soot is an undesired by-

product of combustion processes: Soot particles significantly affect the performance and durability of 

many engineering systems such as gas turbines and Diesel engines [6]. Particulate matter, in the form 

of smoke, can drastically reduce visibility [7]. Epidemiological studies indicated that exposure to ele-

vated levels of particulate matter exacerbates pulmonary diseases, including asthma, bronchitis, and 

viral infections [8,9]. The World Health Organization reported that there is sufficient evidence that 

exposure to outdoor airborne particulate matter causes lung cancer [10]. Soot particles heat the air 

by converting sunlight into infrared radiation and emitting that heat radiation to the air around them. 

Furthermore soot particles contribute to the melting of glaciers at high-altitudes and polar regions by 

darkening them [1]. Both mechanisms adversely affect the climate and make soot a major contributor 

to global warming. In order to restrain these negative effects, legislation reduces particle matter emis-

sions in transportation sectors.  

Direct-Injection (DI) systems (Diesel and gasoline) are becoming the dominant technology in internal 

combustion engines in the European market due to their better fuel economy [11]. Soot emission is 

significant in these engines, because regions of high fuel concentration are generated and can form 

soot during the combustion process. Aftertreatment of exhaust gases using particulate filters are cur-

rently implemented in modern vehicles but this technology adds cost to production and maintenance 

and lowers the fuel economy [12]. Meeting the stringent regulations more efficiently requires the 

understanding of formation, growth, aggregation, and oxidation of soot. A quantitative understanding 

of these processes enables the development of methodologies to limit pollutant emissions and to 

develop soot prediction models to be used in CFD (computational fluid dynamics) codes. Powerful 
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diagnostics tools are required that measure the properties of soot in various environments and espe-

cially during the combustion. Optical diagnostic techniques are widely used for characterizing com-

bustion systems as they are non-intrusive and, therefore, do not influence the process under investi-

gation. Laser diagnostics have added advantages such as higher temporal resolution or acquiring 

cross-sectional information of three-dimensional flame structures. In soot diagnostics, soot volume 

fraction fv, primary particle size, and its distribution during the combustion are essential information 

for the investigation of soot formation and burn out.  

Laser-induced incandescence (LII) emerged as a powerful in situ technique for measuring soot particle 

sizes. Soot particles are heated via absorption of light from a laser pulse to temperatures well above 

the flame temperature and the subsequent blackbody radiation is recorded during the heat-up and 

cooling phase. Small particles cool down faster than large ones due to their larger surface-to-volume 

ratio and therefore provide signal with different decay times [13]. Quantitative particle-size infor-

mation can be obtained from a best-fit comparison of the temporal signal decay and simulations 

based on the particles’ energy and mass balance equations [14,15]. Similarly particle-size information 

with high spatial resolution can be also deduced by comparison of the local ratio of temporally-differ-

ent LII signals from images and the simulations [16–18]. For particle sizing another frequently used 

method is transmission electron microscopy (TEM) measurements of thermophoretically sampled 

soot. Although it does not allow in situ measurements to be made, TEM is the broadly accepted ref-

erence measurement technique for size and structure determination [2]. Line-of-sight laser extinction 

method is widely preferred in soot volume fraction measurements. By coupling this method with the 

planar LII technique, spatially-resolved quantitative information can also be obtained.  

The principal aim of this study is to optimize two-dimensional particle sizing via LII imaging for Diesel 

engine conditions and to assess its applicability in comparison to results of sampling measurements. 

The particle-size measurements with LII imaging is complemented with particle-size distribution anal-

ysis in a flame at atmospheric pressure, and soot volume fraction measurements in a Diesel jet. From 

an experimental point of view the study is structured in a three-stage time frame:  

At the initial stage the development of particle-size imaging techniques is performed in a laminar non-

premixed ethylene/air flame (Santoro burner) at atmospheric pressure. The steady-state nature of 

this flame, its well-known temperature properties, and the atmospheric pressure enable an easy-to-

do performance assessment of the technique and an enhanced understanding of the involved physical 

processes. Soot particle-size imaging with LII is carried out with a single camera, where LII signal-decay 

is determined for each pixel through time-gate-sweeping of the camera gate relative to the laser 

pulse. These preliminary imaging experiments provide a roadmap for the size-imaging experiments at 
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high pressure in the succeeding stages. In addition to particle-size imaging, time-resolved (TiRe) LII 

measurements are also performed at various flame locations with a conventional photomultiplier 

tube (PMT) setup. Soot in this flame has poly-disperse size distribution and small and large particles 

show a distinctly different behavior. With a high temporal resolution signal, the aim of the study is 

expanded to the investigation of soot poly-dispersity at atmospheric pressure. A novel strategy, called 

two-exponential reverse fitting (TERF), is introduced for determining particle-size distribution infor-

mation from TiRe-LII. The evaluation is based on a simplifying exponential approximation and does 

not require any particle-size distribution assumption. It provides one large and one small mono-dis-

perse equivalent mean particle size and a ratio of the contribution of these size classes. Size-dispersion 

results are compared with TEM results. 

At the second stage soot volume fraction measurements are performed for Diesel engine-relevant 

combustion conditions. To avoid the complications of experiments in a real engine and to better de-

couple the impacts of different variables on fuel sprays, the measurements are conducted in an en-

gine-relevant high-temperature high-pressure constant-volume pre-combustion vessel. To relate this 

research to other similar works in the literature, the experiments are conducted for the "Spray A" 

conditions that have been investigated within the Engine Combustion Network (ECN) with a multitude 

of diagnostics and simulations [19,20]. The study addresses the measurement of local fv in transient 

and quasi-stationary cases of Spray A. Line-of-sight laser extinction is used to quantitatively measure 

the soot concentration along a line in the spray. This information is coupled with LII imaging for the 

quantification of the fv maps for cross-sections through the combustion zone. OH-chemiluminescence 

imaging is used to determine the lift-off length, and is used to interpret the soot measurements. Ad-

ditional measurements with parametric variations of the standard conditions permit investigations of 

the effect of the various operating conditions on the lift-off length and the soot level. These measure-

ments provide a basis for understanding the combustion boundary conditions, and also provide the 

basis for interpreting the soot measurement results. By quantifying the effects of laser attenuation 

and signal trapping [21] the suitability of Spray A to LII and extinction diagnostics is explored. Further-

more, among different conditions, the most suitable one is identified to be used for particle-size im-

aging with LII in the next step. 

At the final stage, strategies developed for particle-size imaging are applied to Diesel engine-relevant 

combustion. In order to understand the effects of high pressure on the particle-size imaging with LII 

and to quantify the uncertainties, the signal-ratio method is investigated analytically and numerically. 

The measurement strategies are adapted to engine conditions upon the model-based analysis. Based 

on these simulations, a sensitivity analysis of the LII signal with respect to boundary conditions that 
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are assumed for data interpretation is also performed. Additional parametric variations in pressure, 

temperature, and gas composition are carried out. Measurements are performed with two cameras 

and the LIISim code [22] is used to assess all these information within the present work. At each con-

dition two-color soot pyrometry is performed to measure particle and –thus- bathgas temperatures. 

The LII results are compared to particle-size and size-distribution measurements by TEM of thermo-

phoretically-sampled soot at multiple axial distances from the nozzle. By varying the fuel injection 

pressure, ambient temperature and oxygen concentration, their effects on the evaluated soot particle 

size and its spatial distribution are analyzed. 
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2 Research focus 

In the present work, LII is used as the main technique for the quantitative measurements of soot 

particle size and volume fraction as mentioned in section 1. Therefore, it is aimed to obtain accurate 

results by optimizing the experimental technique in a combined approach that includes detailed data 

analysis to interpret the significance of acquired signals. Although LII is thought to be a reliable tech-

nique, there are many issues with the measurement. These can be grouped into experimental appa-

ratus, numerical model, and signal evaluation topics. Smallwood described most of these known is-

sues for conventional LII in ref. [23].  

Poly-disperse size distribution of the soot particles is one of these issues in particle sizing with LII. The 

primary particle diameter dp is one of the key indicators for interpreting the effects of soot formation 

and burnout. However, describing a poly-disperse soot ensemble at a location with a sole dp may not 

always be sufficient. Information about the size distribution is therefore important for a better under-

standing of soot processes. Different solution schemes and LII signal processing strategies have been 

developed [24–31] for the measurements of particle-size distributions. However, all the strategies are 

based on assumed certain particle-size distribution shapes. They also suffer from being mathemati-

cally ill-posed, and having long computation times. The new method presented in this work, TERF, is 

an alternative to conventional mono-disperse equivalent mean particle-size evaluation. It differenti-

ates between signal contributions from small and large particles. It determines mono-disperse equiv-

alent mean particle sizes for both size groups and evaluates the relative ratio of particle number den-

sities for both groups. Compared to time-consuming poly-disperse fitting algorithms, the extracted 

information is limited. Nevertheless, the TERF method evaluation is much faster which makes it suit-

able for real-time analysis. In chapter 4, overviews and associated problems for each of poly-disperse 

solution schemes are given, and the aspects of how the TERF method can be useful are explained. 

The development of soot particles from liquid or vapor phase hydrocarbons mainly involves the py-

rolysis, nucleation, coalescence, surface growth, agglomeration and oxidation processes [32]. The 

soot formation and oxidation processes are constantly competing within the flame and their rates 

depend on the fuel structure, oxygen content and gas temperature [33]. Glassman [34] classified hy-

drocarbons with respect to their sooting propensities. The effects of ambient temperature and reac-

tant composition on soot are studied extensively in ref. [35–43]. Some of these effects, however, 

have not been fully understood, especially for high pressure conditions.  
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The vast majority of publications regarding the development of LII have performed measurements in 

laboratory flames for atmospheric pressure. The laminar non-premixed flames in Santoro or Gülder 

configurations and the laminar rich premixed flame in the McKenna burner are most frequently used 

within the LII community [14]. Although these laminar flames provide a near-ideal environment for 

development of the LII technique, they do not evaluate the performance of the technique over the 

full range of possible applications [23]. In many practical combustion devices, soot formation occurs 

at elevated pressure in time-varying turbulent flames where pressure, temperature, and species con-

centrations have a significant effect on soot formation [44]. In this work, it is aimed to further de-

velop/optimize the LII technique so that the measurements could also be performed for Diesel engine 

conditions. The soot processes in a reacting Diesel jet are interconnected with injection and air/fuel 

mixing processes. Therefore, a thorough understanding of soot formation and oxidation can be 

achieved by an integrated analysis of various jet combustion parameters. 

The Engine Combustion Network (ECN) aims to improve the fundamental understanding of Diesel 

spray formation and combustion in engines, and to develop predictive models to optimize these en-

gines. It brings experimental and computational research together for collaborative comparisons of 

measured and simulated results at standardized conditions (Spray A operating conditions and its par-

ametric variants) [20]. Spray A represents a relatively low-temperature Diesel engine combustion con-

dition relevant to engines that use a moderate rate of exhaust-gas recirculation (EGR) [45]. The fuel 

used in Spray A is a single-component fuel, n-dodecane, which is known as a good surrogate for Diesel, 

and it enables a complete knowledge of the physical and chemical properties of the fuel. The commu-

nity has investigated hydraulic properties, spray development, and ignition processes in the target 

sprays. Datasets from these measurements are available for the further development of experiments 

and for the validation of model-based simulations and it expands constantly with various experiments 

performed by different labs from around the world [20]. Prior to this present work, however, soot 

volume fraction measurements were not performed for the exact Spray A conditions, and therefore 

parameters like the soot formation and oxidation locations, soot inception time and optical thickness 

were unknown. Shortly before the start of this work Kook et al. [38] performed soot volume fraction 

measurements at the identical Spray A operating conditions with a different surrogate jet fuel. Be-

cause of the effects of molecular structure of fuel on soot formation [34], the exact trends of soot 

formation and oxidation processes could not be predicted prior to pure n-dodecane experiments. 

In chapter 5 soot volume fraction measurements are derived for Spray A conditions with parametric 

variations of gas temperature and composition by performing the well-established simultaneous line-

of-sight laser extinction measurements and LII imaging.  Measurements were performed in an engine-
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relevant high-temperature high-pressure constant-volume pre-combustion vessel. The optical thick-

ness is measured to assess the suitability of Spray A conditions to such diagnostics. The effects of 

ambient temperature and oxygen concentration variations on soot formation and oxidation processes 

are analyzed.  

Recording signal traces with fast multipliers is well-established for particle-size measurements. How-

ever, this approach is limited to point-wise measurements. The spatial distribution of particle sizes 

can be revealed only with repeating the measurements at different locations – an approach not pos-

sible for rapidly fluctuating situations like those in internal combustion (IC) engines. Will et al. [16–18] 

developed a strategy for two-dimensional particle sizing where LII signals are acquired at two delay 

times after the laser pulse with gated intensified cameras and where the particle size is deduced from 

the local signal ratio. This technique provided particle-size distributions with high spatial resolution 

for laminar flames at atmospheric pressure [16–18,46]. The loss in temporal information, however, 

reduces accuracy and precision of the resulting particle-size measurements. 

In chapter 6, the applicability of time-gated LII particle-size imaging is first numerically investigated 

for engine-relevant conditions. At high pressure, the lifetime of the LII signal is significantly reduced 

due to enhanced heat exchange of the particles with their environment. Because of this rapid cooling, 

the normalized LII signal decay profiles for particle classes of different size fall into a very narrow 

envelope, and curves measured under different conditions become similar to each other. The effects 

of such convergence of signal decay profiles on particle sizing was mostly unknown and they are ana-

lyzed in this work. For LII under high-pressure conditions, a known problem is that in poly-disperse 

soot samples a non-uniform heat-up temperature distribution is reached among the different particle-

size groups [27,44]. At high pressure, conductive cooling during the nanosecond laser pulse is not 

negligible which leads to lower heat-up temperatures of the small particles compared to the larger 

ones. In this work, the resulting variations in heat-up temperature are determined for moderate and 

high laser fluences for 60 bar and the effect on particle sizing is evaluated. LII diagnostics can also be 

affected by attenuation of the pump-laser [21,47,48]. Laser attenuation causes spatial variations in 

heat-up temperatures along the laser path. The influence of this effect on particle-size measurements 

is also evaluated. 

For imaging applications, various detector gating strategies are assessed to maximize the sensitivity 

of the particle-size evaluation. Various gate widths and delays are convoluted with the simulated time-

dependent signals. By determining the variation of the ratio of both gated signals within the range of 

expected particle-sizes, the sensitivity of the gating strategies can be obtained. Previous studies [48] 

showed that the gating approach can be significantly affected by timing jitter which was up to ±2 ns. 
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Because of the short signal lifetime at high pressure, such jitter can cause severe changes in the gated 

signals and their ratio. Effects of such timing jitter are included in the evaluation. The loss in the tem-

poral information compared to the evaluation of full signal traces prevents a detailed analysis of par-

ticle-size dispersion. The evaluated particle sizes more represent mono-disperse equivalent mean par-

ticle diameters and are inherently biased to the larger sizes. The magnitude of this bias is investigated 

for soot ensembles with lognormal particle-size distribution. Additionally, an accuracy and jitter anal-

ysis for two-color pyrometry imaging of heated particles at high pressure is achieved based on Planck’s 

thermal radiation modeling. 

Following the numerical analysis in chapter 6, soot particle sizing with two-time step LII imaging is 

performed under the Spray A conditions with additional parametric variations of injection pressure, 

gas temperature and composition. The results were compared to particle-size and size-dispersion 

measurements from transmission electron microscopy (TEM) of soot thermophoretically sampled at 

multiple axial distances from the injector.  With this work, the applicability and reliability of time-

gated LII particle-size imaging for engine-relevant conditions is investigated for the first time in soot 

research community. 
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3 Background 

Several measurement techniques exist for soot investigations. For a quantitative analysis, the photo-

physical processes in these techniques should be well understood. In this chapter the optical diagnos-

tics applied in this work for temperature, fv, and particle-size measurements are reviewed.  

3.1 Temperature measurement 

Knowledge of flame temperature can provide valuable insight for the processes responsible in soot 

production. Furthermore the bathgas temperature and the heat-up temperature of soot must be 

known to solve particles’ energy and mass balance equations that is necessary in particle sizing with 

LII. In flames, the gas-phase temperature can be obtained by various in situ laser-based techniques 

such as coherent anti-Stokes Raman scattering (CARS) [49], laser-induced fluorescence (LIF) [50,51] 

or laser-induced thermal grating spectroscopy (LITGS) [52]. Emission-based techniques, on the other 

hand, generally employ a simpler optical setup, require less optical access and also have much lower 

cost when compared with laser-based techniques. Multi-wavelength optical pyrometry [53–55] is a 

well-established emission-based technique and is used to determine the flame temperature in this 

work. The technique allows temporally- and under some conditions spatially-resolved measurements. 

Furthermore, unlike the laser-based methods, the soot pyrometry can be used to measure the heat-

up temperature of soot particles at any instant after the laser pulse in an LII measurement. 

Two-color soot pyrometry 

Soot in a flame stands at high temperatures, and as a result emits blackbody-like radiation, also called 

incandescence signal. Depending on temperature, the absolute intensity of this emission and the 

shape of its spectrum can change. In pyrometry soot emission is typically sampled at two (or three) 

different wavelengths using spectral filters. The relative intensity of the detected radiation at the dif-

ferent channels can then be related to temperature using Planck's law. 

The Planck's law describes that the intensity of radiation 𝐼𝜆 of a particle at wavelength 𝜆 depends on 

the particle temperature 𝑇 and its monochromatic emissivity 𝜀(𝜆): 

𝐼𝜆(𝜆, 𝑇) = 𝜀(𝜆)
2𝜋ℎ𝑐2

𝜆5(𝑒ℎ𝑐/𝑘𝜆𝑇)−1)
  ( 1 ) 
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where 𝑐 is the speed of light, ℎ is Planck's constant, and 𝑘 is the Boltzmann constant. By acquiring the 

incandescence signal 𝑆 at two different spectral wavelengths and ratioing them, the following equa-

tion can be written: 

𝑆𝜆1

𝑆𝜆2

= 𝐶𝜆1𝜆2
(

𝜀𝜆1

𝜀𝜆2

) [
(𝑒ℎ𝑐/𝑘𝜆1𝑇) − 1)

(𝑒ℎ𝑐/𝑘𝜆2𝑇) − 1)
] ( 2 ) 

where the system constant 𝐶𝜆1𝜆2
 is a function of the ratio of detection wavelengths, spectral band-

widths, the quantum efficiency of the detectors, and the combined lens and filter transmittance at 

the respective wavelength [46,54]. 𝐶𝜆1𝜆2
 can be determined using a blackbody source of known tem-

perature for calibration. Alternatively, various light sources of known incident irradiance on a diffuser 

of known scattering efficiency and angular distribution can be used for such calibration [56]. Normally 

𝜀 is a bulk property of a material and its concept does not precisely apply to soot; in the analysis of 

soot incandescence, it can be viewed as efficiency of radiation and absorption [46]. Within the Ray-

leigh regime, 𝜋𝑑𝑝/λex < 0.3, (with the wavelength λex), 𝜀 can be related to the soot absorption func-

tion, 𝐸(𝑚): 

𝜀(𝜆) =
4𝜋𝑑𝑝𝐸(𝑚)

𝜆
 ( 3 ) 

𝑚 is the soot refractive index and the values of wavelength dependent 𝐸(𝑚) obtained from different 

experimental conditions are presented in [14,57–63]. In the current work, 𝐸(𝑚) is calculated accord-

ing to the linear expression proposed by Snelling et al. [60]: 

𝐸(𝑚, 𝜆) = 0.232 + 1.254 ∙ 10−4𝜆 ( 4 ) 

Eq. 2 is an implicit equation of temperature that can be solved iteratively for a measured signal ratio. 

A much practical lookup table approach can be also used to calculate the temperature in Eq. 2 for a 

given system constant and various signal ratios [64]. 

The selection of detection wavelengths in soot pyrometry is a problem of a multivariable optimization 

and different factors affecting the detection system performance and the accuracy should be taken 

into account. Liu et al. [65] showed how the detection wavelengths affect the sensitivity of soot tem-

perature measurements. To achieve a better accuracy for soot temperature, it is desirable to use a 

shorter lower detection wavelength and a longer upper detection wavelength in the spectral range of 

about 400 nm to near infrared [65,66]. It is also recommended that the filter bandwidths are narrow 

compared with the spacing in-between. 

One concern in soot pyrometry is the self-absorption of the incandescence signal on the detection 

path. As shown in the Eq. 3, the emissivity of soot, hence the absorption efficiency, is wavelength 
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dependent and therefore signals at different spectra are subjected to different attenuation. Depend-

ing on the local fv the soot pyrometry measurements may show systematic deviation from the actual 

temperature. Schraml et al. [66] performed extinction measurements to correct the Planck spectra 

for wavelength-dependent absorption. For low or moderate fv, the systematic error due to self-ab-

sorption is limited. 

Although two-color pyrometry is a robust method to measure the LII heat-up temperature of soot 

particles, it has some additional drawbacks in measuring the bathgas temperature. First, the obtained 

temperature is the soot temperature and not the gas-phase temperature. However, it can be assumed 

that these temperatures are similar when particle and gas phase are in thermal equilibrium [55,67,68]. 

Second, this method is a line-of-sight technique and if the flame under investigation has temperature 

gradients along this line-of-sight direction, the measured temperature is strongly biased to the highest 

temperature layers [69]. When imaging of cylindrically symmetric flames, the lost spatial information 

through the projection can be recovered by performing a tomographic inversion and the data in pixel 

rows can be deconvoluted to radial profiles [70–72]. 

3.2 Soot volume fraction measurement 

fv is the relative volume occupied by the particles in respective gas sample and is an important param-

eter to understand the soot mechanisms. One well-established method to measure fv is using LII cou-

pled with the above mentioned multi-wavelength optical pyrometry after an absolute intensity cali-

bration of the detectors (auto-compensating LII) [8,73]. In the present work, LII imaging coupled with 

line-of-sight extinction is used: 

3.2.1 Laser extinction 

The laser extinction method (LEM) is a non-intrusive line-of-sight technique based on the attenuation 

of light when a laser beam passes through a particle cloud, see Fig. 1. The attenuation of light is caused 

both by elastic scattering and absorption in the particles [21,74]. 
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Fig. 1: Laser extinction method 

The relation between the incident light intensity (𝐼o) and the light intensity after passing through the 

particle cloud (𝐼) is given by Lambert-Beer’s law, Eq. 5: 

𝐼

𝐼o
= exp (−𝐾𝐿LEM) ( 5 )  

where 𝐿 [m] is the path length through the cloud and 𝐾 [m−1] is the mean extinction coefficient along 

this path length. Following small particle Mie theory [39] (soot morphology corresponds to the re-

quirements of Mie’s theory for small particles, i.e., spherical geometry) the path-length-averaged ex-

tinction coefficient can then be related to the soot volume fraction as given in Eq. 6: 

𝐾 =  
𝑘𝑒

𝜆
𝑓v ( 6 ) 

where 𝜆 [m] is the laser wavelength and 𝑘𝑒 is a non-dimensional optical coefficient that depends on 

the soot morphology and the particle size. This coefficient can be related to the soot absorption func-

tion at the detection wavelength [39]: 

𝑘𝑒 =  (1 + 𝛼sa) 6𝜋 𝐸(𝑚) ( 7 ) 

Where 𝛼sa is the scattering-to-absorption ratio and it corresponds to the ratio of the scattering and 

absorption cross-sections. As it was shown for 𝐸(𝑚) in section 3.1, the accuracy of this value is de-

bated in the literature and a systematic error on this value must be taken into account [75]. Based on 

Rayleigh-Debye-Gans (RDG) theory, Manin et al. [76] showed that 𝑘𝑒 depends on the soot primary 

particle diameter and aggregate size. and In this work, a value of 𝑘𝑒 = 7.8 is used [59] and it is as-

sumed to be uniform throughout the flame [77]. 

If the laser beam is replaced with a diffused light source [75,76], spatially resolved fv measurements 

can also be achieved by line-of-sight extinction. The known issues in all types of extinction measure-

ments that should be taken care of, are forward scattering of the incident light, collection of the flame 

luminosity, and beam steering of the incident light [35]. These problems and remedies to mitigate the 

related uncertainties will be explained more in detail in section 5.5. 

3.2.2 fv imaging with LII 

As introduced in section 1, LII is an optical diagnostics technique that uses a pulsed laser to heat soot 

particles to temperatures significantly above the ambient temperature and uses photo-detectors to 

record the incandescence emitted from these heated particles. LII can be applied either in a point-

wise or in an imaging manner, and for soot volume fraction measurements the latter is mostly pre-

ferred.  
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Incandescence is a blackbody-like radiation and strongly depends on the temperature of the soot par-

ticles. Therefore, the signal intensity per particle increases with the energy fluence (i.e., pulse energy 

per area) of the pulsed heating laser, because the temperature increases. This correlation is valid (but 

not linear) until soot sublimates at around 4000 K. Beyond this point, excess energy does not further 

increase the particle temperature or LII signal. In contrary, sublimation of particles leads to a decrease 

in the signal due to rapid evaporation of the radiating particles [14]. 

For soot ”concentration” measurements it is important that the LII signal is proportional to the 

amount of soot particles and their size. Assuming a homogenous temperature distribution of the la-

ser-heated soot particles in a measurement volume the signal is proportional to the fv. fv is presented 

in terms of parts per million (ppm). TEM analysis [78–80] shows that soot particles consist of 

agglomerated nearly spherical primary particles. Within one measurement location it is often as-

sumed that the size of the primary particles and the aggregates are nearly the same [81,82]. With this 

simplification, the relation between fv and the LII signal (𝐼LII) turns into a linear form as given in Eq. 8: 

𝑓v =  𝛼 𝐼LII ( 8 ) 

where 𝐼LII can be acquired by a camera and can be written in photon-counts units. The assumption 

of a homogenous temperature distribution among the heated soot particles is crucial for the accuracy 

of the volume-fraction measurement. Nevertheless, possible inhomogeneities in the spatial profile of 

the laser and inhomogeneous initial temperatures of particles prior to the laser pulse necessitate an 

additional effort to make this assumption valid. One simple way of providing uniform conditions is to 

bring the particles into the sublimation regime with excessive energy. Then, all particles are heated 

to the sublimation temperature. However, the laser profile has a key influence on the LII signal in the 

sublimation regime. As mentioned above, rapidly sublimating particles cause a decrease in the overall 

LII signal when all particles contributing to the signal are exposed to the same laser fluence (top-hat 

laser profile in direction of signal detection). An (approximately) stable LII signal intensity at increasing 

laser power can be maintained by a laser sheet with a Gaussian spatial profile. The reduced signal 

caused by the sublimating particles in the center line of the laser beam is compensated by the increas-

ing temperature of particles exposed to wings of laser beam. The resulting “plateau zone” where the 

signal is insensitive to variations in laser fluence is often used in cases where beam attenuation and 

laser pulse-to-pulse energy variation needs to be compensated [82]. This fluence dependence of the 

LII signal as a function of the spatial profile of the laser beam was evaluated by Michelsen et al. [83] 

and is shown in Fig. 2. 
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Fig. 2: Fluence dependence of LII signal as a function of laser beam spatial profile for top-hat (homogeneous) 

and 1D Gaussian (Gaussian sheet) profiles. The results for Gaussian profile was simulated by summing the flu-

ence-dependence measurements from a top-hat profile weighted by a Gaussian distribution in one dimension 

(squares). Gated detection was simulated by integrating the time-resolved signal over the first 25 ns after start 

of particle heating [83]. 

The threshold for this signal saturation regime is given as ~0.3 J/cm2 at 1064 nm [14]. Detailed de-

scriptions of the effects of the spatial laser profile have been reported [14,55,83]. The fv measure-

ments with LII imaging carried out within this study use the high-fluence approach with a laser light 

sheet where the laser fluence distribution is approximately Gaussian in the direction of signal detec-

tion. 

3.2.3 LEM-LII coupling 

LEM provides quantitative but path-integrated information about the soot volume fraction. LII, on the 

other hand, yields information about the spatial distribution of the soot volume fraction in a selected 

cross-section but is not quantitative per se. By aligning the two systems in a way that the LEM line-of-

sight is part of the LII cross-sectional area it is possible to use the LEM result to calibrate the LII signal 

integrated along the same direction of LEM pathway as long as the LII image covers a cross-section 

though the entire soot cloud. In a turbulent environment, the soot volume fraction at a given location 

can vary considerably with time. Therefore, it is important to consider the different temporal charac-

teristics of LII and LEM measurements. While the LII signal shows the instantaneous spatial distribu-

tion of soot, LEM depends on the soot during the integration time (that can be considerably longer). 

For minimizing the effect of this, LEM signals recorded within short integration times at nearly identi-

cal instants should be used for the calibration of the LII images. In contrast, a phase-averaged calibra-

tion in a quasi-stationary part of the spray has been used in [39].  
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From the combined measurement, a calibration factor can be derived that connects the LII signal in-

tensity integrated along the path of the LEM laser and the laser attenuation and the laser attenuation 

with the soot volume fraction. The LII signal along the LEM laser path is integrated according to Eq. 9: 

𝐾𝐿LII = ∫ 𝐼LII𝑑𝑥

𝐿

0

 ( 9 ) 

By combining Eq. 5, 6, 8, and 9 one can calculate the linear calibration constant 𝛼 in Eq. 8 and use Eq. 

10 for soot the determination of volume fractions for the entire LII image [21]. 

𝑓v(𝑥, 𝑦) =  𝛼𝐼LII(𝑥, 𝑦) =  
𝜆

𝑘𝑒

𝐾𝐿LEM

𝐾𝐿LII
𝐼LII(𝑥, 𝑦) ( 10 ) 

3.3 Particle sizing 

The primary soot particle diameter dp is another important quantity to understand soot mechanisms. 

dp shows an immediate reaction to any change in the ambient temperature or oxygen availability. The 

size and distribution of particles can be measured by various in situ techniques such as photoioniza-

tion aerosol mass spectrometry (PIMS) [84], small angle X-ray scattering (SAXS) [85], and scanning 

mobility particle-sizer (SMPS) [86]. In this work particle size of soot is obtained via TiRe-LII and LII 

imaging coupled with LII modeling. The ex situ technique TEM analysis of thermophoretically sampled 

soot is also used to measure the reference dp for validation and calibration purposes. 

3.3.1 TiRe-LII 

The discovery of LII as a potential diagnostic technique for soot particle sizing traces back to 70’s 

[87,88]. It was first considered as an experimental tool by Melton [13]. He numerically showed that 

LII could be used to deduce information of relative soot volume fraction, particle temperature and 

primary particle-size distributions. The first quantitative application of LII as a diagnostic for soot par-

ticle sizing was made by Will et al. [16] and Roth et al. [24]. Almost a decade later, Dankers et al. [31] 

introduced a simplified approach to evaluate the particle-size distribution. Michelsen [89] introduced 

a new heat and mass balance model that also accounts for oxidation, melting, and annealing of the 

particles and non-thermal photodesorption of carbon clusters from the particle surface. LII model 

modifications for aggregates were presented for the first time by Snelling et al. [60] and were im-

proved by Liu and coworkers [90,91]. Hofmann et al. [29,68] conducted particle-size measurements 

with two-color LII at high pressure. Particles of non-carbonaceous materials such as metal and silicon 

were also measured with TiRe-LII [92–94]. Many different experimental approaches and data evalua-
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tion techniques exist and are employed by various research groups that are currently working on mak-

ing LII truly quantitative. In order to strengthen the community, a series of joint meetings, called LII 

Workshop, has been established biennially since 2005 to discuss the status of the current understand-

ing regarding LII diagnostics.  

Particle-size measurements with TiRe-LII are based on the fact that, after the initial laser pulse, smaller 

particles cool down faster than large ones due to their larger surface-to-volume ratio [13]. In a quan-

titative approach, assuming that all soot primary particles are spheres, the temperature and size of 

any known particle size can be modeled for any given time by solving the energy and mass balances. 

As a consequence, the size of a particle can be evaluated from the temporally-resolved temperature 

or incandescence signal by using a numerical scheme. In this present work, LIISim, developed by Hof-

mann et al. [22,29] is used for this analysis. The heat exchange mechanisms considered in the LIISim 

are: 

𝑄̇abs =  𝑄̇int + 𝑄̇cond + 𝑄̇rad + 𝑄̇evap  ( 11 ) 

where 𝑄̇abs is the energy flux of laser absorption, 𝑄̇int is the rate of change of total internal energy, 

𝑄̇cond is the energy flux related to heat conduction, 𝑄̇rad  is the heat loss due to radiation, and 𝑄̇evap 

is the energy flux due to evaporation of material from the surface. The latter term is effective only 

when the total energy gain due to absorption is sufficient to heat the particle above the vaporization 

threshold. Once the evaporation starts, soot particles are subjected to a mass loss and the mass of 

the gas phase increases. This mass balance is described as 

𝑑𝑚p

𝑑𝑡
=  𝐽evap ( 12 ) 

with the particle mass 𝑚p, the time 𝑡, and the mass flux 𝐽evap. The underlying physics of all heat- and 

mass-exchange mechanisms used in LIISim are explained in the literature [22,29] and therefore will 

not be discussed here. Even though LIISim includes an evaporation sub-model, it should be noted that 

the current understanding of evaporation is not accurate. Therefore, it is recommended to avoid high 

laser fluences to keep the soot temperature below the vaporization threshold. For atmospheric con-

ditions, evaporation starts around 3300–3400 K [27] and becomes considerable above 3700 K, how-

ever soot evaporation at elevated pressure is not exactly known.  

LIISim allows choosing between mono- or poly-disperse particles. It is known that soot formation, 

surface growth, and oxidation are continuous processes and therefore primary soot particles in a 

flame are poly-disperse which LIISim describes as log-normal distributions. In real systems, primary 

particles tend to form aggregates [95,96]. A soot particle within an aggregate cools down slower than 
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an isolated single particle because of shielding by surrounding particles. These effects are considered 

in LIISim as well, and the details of poly-dispersion and aggregation can be also found in Refs. [14,22]. 

For moderate or low laser fluence, which can be simulated by keeping heat-up temperatures below 

~3500 K, evaporation is negligible and cooling is dominated by heat conduction. Fig. 3 shows normal-

ized LII signals for various particle sizes at atmospheric and engine-relevant conditions, i.e. at 1 and 

60 bar. Such a collection of simulated data that forms the basis for subsequent analysis is called a 

signal “library” in this thesis. Increasing pressure further increases conduction and significantly re-

duces the LII lifetime [97] as can be seen in the time ranges of plots in Fig. 3. 

 

Fig. 3: LII signal “library” showing normalized time-dependent LII-signals for various primary soot particle  

diameters (𝑑p) at 1 bar (a) and 60 bar (b). 

In these simulations the particles are assumed to be graphite-like and hence values of material con-

stants associated with graphite are used [68,98]. For heat conduction the Fuchs approach [99] is cho-

sen in LIISim that is known as the most appropriate model for particle-gas energy exchange in a wide 

range of gas pressures [100]. Other relevant boundary conditions are given in Tab. 1. 

Tab. 1: Simulation parameters for the LII model 

LII model input Atmospheric condition Engine-relevant condition 

Ambient pressure 01 bar 60 bar 

Detection spectral range 410–440 nm 410–440 nm 

Bathgas temperature 1800 K 1800 K 

Laser fluence at 1064 nm 0.08 J/cm2 0.15 J/cm2 

Laser duration (FWHM) 7 ns 7 ns 

E(m) 0.4 0.4 

Aggregate size 50 50 

Thermal accommodation coefficient 0.25 0.25 
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TEM studies of thermophoretically sampled soot from high-pressure combustion [12,79,101] show 

that primary particle sizes typically vary in between 5 and 40 nm. Fig. 3b shows that in this range the 

LII signal lifetime (time between 100 and 5 % of peak signal) varies from ~5 to ~50 ns. Therefore, when 

determining particle sizes from LII lifetimes, small uncertainties in data acquisition or modeling can 

lead to considerable errors. Fig. 3b shows that particle-size-dependent conductive cooling at high 

pressure is already relevant during the heat-up phase as each curve has a different shape. In practical 

applications, nano-second Nd:YAG lasers are widely preferred in LII soot research for their availability, 

high power and pulsed operating modes. These lasers have typically Gaussian temporal profiles with 

a full width at half maximum of 6–8 ns. Particles reach the maximum temperature only after some 

delay (~7 ns) after start of absorption. Within this period, particles loose energy at different rates 

depending on their size and therefore they have different signal histories in this phase. As a conse-

quence each particle-size class reaches a different peak temperature [44]. This shows that including 

the heat-up phase in the simulation of the LII signal is essential in high-pressure LII particle sizing. 

Effects related to the heat-up phase in high-pressure environments are discussed in section 6.1.2. 

3.3.2 Particle-size imaging with LII 

The method is based on evaluating gated LII signals acquired with intensified cameras consecutively 

after the laser pulse and using LII modeling to deduce particle size from the ratio of local signals. With 

the state-of-the-art intensified camera technology, it is not possible for a single detector to provide 

consecutive images within the typical LII cooling time and multiple detectors (that are in few cases 

combined into a single “camera”) must be used. The temporal resolution of the collected data de-

pends on the number of imaging detectors. In experiments in stationary flames the temporal LII signal 

trace can be determined with a single imaging sensor through time-gate sweeping relative to the laser 

pulses [16,17,46]. Fig. 4 shows an example of a LII signal trace that was constructed with 95 images 

acquired at different delays after consecutive laser pulses. The curve is normalized with respect to its 

peak point. Each data point is an ensemble average of a pixel-bundle in a 2 x 2 mm2 area at 50 mm 

height above burner (HAB). For this measurement a co-annular non-premixed flame (Santoro burner) 

[102–104] was used at atmospheric pressure (also shown in Fig. 4). Five randomly chosen LII images 

in the figure have the identical color-mapping and the reducing signal intensity with increasing delay 

can be clearly seen. The accuracy of time-gate sweeping method is verified by comparing the con-

structed decay curve with a PMT acquired high-temporal resolution LII signal. Both signals are rec-

orded at the identical flame location, HAB 50 mm and they are normalized with their respective peak 
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points. Each signal is ensemble average of 100 consecutive single measurements. Two curves are sat-

isfactorily overlapping as shown in Fig. 5. The optical setup used in these measurements and the laser 

settings will be introduced more in detail in section 4.5. 

 

Fig. 4: A temporal LII signal trace determined through time-gate sweeping of camera relative to the  

consecutive laser pulses at 95 time delays. 

 

Fig. 5: LII signals acquired with a PMT and a camera (CCD) through time-gate sweeping. Both signals are  

acquired at the same flame location. Each signal is ensemble average of 100 single measurements. 

For particle sizing two images are sufficient. These two images must capture different temporal infor-

mation so that the ratio of both signals is a sensitive measure of the decay. Both images can be ac-

quired either with various delays [17,82] and/or gate widths [105,106] within the signal decay. For 

each combination of delays and gate widths, signals and signal ratios can be computed by convoluting 

the temporal characteristics of the detectors with the respective LII signal library (cf. Fig. 3). There is 

a unique ratio of the two gated signals for each particle size as shown in Fig. 6. The ratio relates the 
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signal in the second gate (delayed) to the first gate and therefore is always below unity. The resulting 

look-up table can be then used for evaluation of the measured data. The example shown in Fig. 6 is 

based on data for the conditions in Tab. 1 at 1 bar and presents “look-up curves” for laser fluences 

from 50 to 100 mJ/cm2. These curves are based on evaluated libraries simulated for all fluences with 

10 mJ/cm2 increments. Virtual gates with top hat (rectangular) temporal profiles of 20 ns are assumed 

for both gates.  

 

Fig. 6: Look-up table for the particle size as a function of signal ratio created from a modeled library for 1 bar. 

The influence of the laser fluence is shown for 50 to 100 mJ/cm2 (10 mJ/cm2 increments). 

The comparison of an experimentally-obtained signal ratio image with this look-up table allows to 

determine particle sizes for each pixel. It is, however, important, that local conditions are well known. 

Fig. 6 shows that for a given signal ratio, a variation in the laser fluence by 50 mJ/cm2 can cause a 30% 

deviation in the evaluated particle size.  

To demonstrate the importance of input parameters in particle-size imaging, the combined effect of 

the aggregate size and the local bathgas temperature on the particle-size imaging is measured with 

the LII images acquired at the co-annular non-premixed flame between 40 and 65 mm HAB. As a typ-

ical characteristic of non-premixed flames, aggregate sizes changes with the flame height [62] and the 

values shown in Fig. 7 are estimations based on TEM analysis of thermophoretically sampled soot. 

The nature of this soot sampling process and the small radius of the flame does not allow a measure-

ment of gradients in the radial direction. Therefore aggregate sizes along the radial direction are un-

known and are assumed uniform at each flame height. In non-premixed flames large gradients can be 

observed in the bathgas temperature [103,107]. It should be also noted that any spatial variation in 

the bathgas temperature causes the same amount of change in the heat-up temperature (assuming 
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constant E(m)). In this analysis the bathgas temperature distribution of the flame is imported from 

the ref. [103] and shown in Fig. 7 at six different HAB for the left hand side of the axis-symmetric 

flame. The spatial resolution in the radial direction is set to 32 nodes per line by performing a linear 

interpolation between the known data. For every node in every line, a unique LII library is simulated 

with the respective aggregate size, bathgas and heat-up temperatures. The remaining simulation pa-

rameters are those from Tab. 1 at atmospheric condition. 

 

Fig. 7: Bathgas temperature distribution within the left hand side of the co-annular non-premixed flame. The 

image consists of radial profiles at six different HAB. At each HAB, the respective aggregate size is given. 

Even though the flame is laminar and protected with a chimney (cf. section 4.5) in this experiment, 

slight random movement of the flame cannot be fully avoided. On the other hand, a precise one-to-

one matching of pixels showing the identical physical location is essential when calculating signal ra-

tios. Ensemble averaging of single measurements helps for increasing the correlation, nevertheless it 

does not provide a 100% satisfactory mapping of pixels. To further reduce the uncertainty related to 

this problem, radial profiles are created at every 5 mm HAB in the measurement domain, by binning 

the pixels vertically in 2-mm-tall pixel columns. Once the profiles are created, they are shifted hori-

zontally until the respective maxima intensity pixels of different time-gates meet at the same point. 

By doing this, a perfect matching of pixels along the profiles is achieved with a compromise of spatial 

resolution. A second challenge in this experiment is the laser-attenuation (cf. section 6.1.3) which 

causes a spatial variation in laser fluence, hence in heat-up temperature, along the beam propagation 

direction. The stronger intensity at the left wing of the flame (laser enters from this side) is shown in 

the LII images in Fig. 4. The LII signal emitted from the right wing is 40% weaker compared to that of 

the left wing. To avoid any complexity related to this non-uniformness, in this analysis only the left 

hand side of the flame is considered.  
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The starting time of the first gate is fixed to the peak signal and the delay time 𝛿 for the second gate 

is set to 200 ns after the first gate. The width of both gates is 20 ns. Once the signal ratio is calculated, 

the particle size in each pixel is evaluated with the respective library of that specific location and 

shown in Fig. 8a. In another attempt, the spatial variations of the bathgas temperature and the aggre-

gate size in the measurement domain are not taken into account, and at all locations one single library 

is used that was created with a bathgas temperature value of 1800 K and an aggregate size of 60. The 

particle sizes evaluated with this single library are shown in Fig. 8b, and Fig. 8c shows the particle-size 

difference between the two methods. Although an evaluation with a single library is much more time 

effective, local deviations of the result are as high as 25%. Effects of simulation input parameters at 

high pressures are discussed in section 6.1.1. 

 

Fig. 8: Particle-size distribution in the left hand side of the axis-symmetric non-premixed flame between 40–

65 mm HAB. At each node particle sizes are evaluated with (a) unique libraries created with the respective 

aggregate size, bathgas and heat-up temperature, (b) with a single library created with Np = 60 and Tbathgas = 

1800 K. (c) Temperature difference between the two methods. 

Crucial for LII particle-size imaging is optimizing the delays of the detector gates. Will et al. [17] 

showed an optimum timing for high-fluence scenarios that provided the minimum contribution from 

photoelectron noise to the signal ratio. Mewes and Seitzman [82] reported that both gates must be 

placed in the temporal section of particle cooling past the end of the laser pulse to provide good size 
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sensitivity. To optimize gate timings, multiple effects must be considered such as particle-size disper-

sion, signal-to-noise ratio and LII lifetime. Especially at atmospheric pressure, where the LII signal life-

time is much longer than the camera gate width, additional information about particle-size dispersion 

can be derived by altering the delay timing. To demonstrate this, particle sizing in the non-premixed 

flame is performed with five delay times 𝛿 of the second gate from 300 to 700 ns and the results are 

shown in Fig. 9. The starting time of the first gate is again fixed to the peak signal and the width of the 

gates are kept at 20 ns. Before the ratioing, high resolution images are again reduced to spatially 

overlapping radial profiles with 5 mm intervals as explained above. The evaluation is performed with 

the multiple libraries those are simulated with location-specific input parameters. In Fig. 9 half-side 

images (profiles) are mirrored around the flame axis for an enhanced visualization. 

 

Fig. 9: Particle-size distribution in the non-premixed flame evaluated with five different delays of the second 

gate. The first gate is fixed to the peak signal. The analysis is conducted only in the left hand side of the flame 
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and the resulting image is mirrored around the flame axis. With increasing delay smaller size classes fade out 

and evaluated particle size increases. 

As mentioned earlier, in a poly-disperse soot ensemble, particles in smaller size-classes reach thermal 

equilibrium faster than the larger particles. Therefore, at long delays, the LII signal does not contain 

information from such small size-classes and info about large particles is gained. This preliminary par-

ticle-size imaging study at this non-premixed flame provided an insight for the two-time step size-

imaging technique. Experience gained at this step formed a basis for the measurements at high pres-

sure in the succeeding stages. For the 60 bar case considered in section 6, weak signals and hence 

signal-to-noise ratios are the major concern. This strongly restricts the choice of potential gate tim-

ings. Fig. 3b shows that the LII signal of a 20 nm diameter particle falls below the 10% of its peak value 

in less than 20 ns. Therefore, only gates in the vicinity of the signal peak provide sufficient signal. 

Effects of gate timing are discussed in section 6.1.4. In turbulent flows time-gate sweeping at consec-

utive laser pulses is not possible. Thus, a two-camera strategy for instantaneous imaging is necessary 

(cf. section 6.2.1). 

3.3.3 Transmission electron microscopy (TEM) 

The principle of TEM is similar to the principle of optical microscopy. However, the wavelength asso-

ciated with the electron beam is much lower than the wavelength of light and the resolution in elec-

tron microscopy is clearly improved. The use of electrons require the use of ultra-thin samples (thick-

ness of about 100 nm) to be as transparent as possible to electrons. The major interest of TEM is to 

obtain structural and morphological information [108]. 

For TEM soot deposited on special support grids via thermophoresis. Thermophoretic deposition is 

driven by the presence of a temperature gradient in the vicinity of a cold surface in a particle-laden 

gas [109]. Therefore the probe must be much colder than the flame. This can be achieved by intro-

ducing a probe that is initially at room temperature rapidly into the hot flame with a pneumatic or 

mechanic actuator. The exposure time should be long enough to capture sufficient material but short 

enough to present a cold surface to the flame-born particles. This cold surface serves a second im-

portant purpose which is that it freezes heterogeneous reactions of the captured particles. This freez-

ing prevents changes in the soot morphology after the particles have impacted upon the cold surface 

[109]. When a dynamic probing is not possible, for example in a high-pressure spray vessel or in an IC 

engine [12,79,110], TEM grids have been installed on a stationary probe. The temperature difference 

necessary for thermophoresis is then realized by keeping the combustion duration limited. 

TEM grid materials depend on the application (temperature, hardness, corrosion resistance, etc.). All 

grids are 3.05 mm diameter, but the thickness (a few micrometers) varies with mesh size. The mesh 
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size of the grid indicates the number of holes per inch and generally varies from 50 to 400. The grid 

material is responsible for rigidity, and the sampling of the soot is achieved by the electron transpar-

ent carbon film coated on this grid, see Fig. 10. Depending on the necessity, the thickness and the 

structure (solid, amorphous, holey, or lacey) can vary. 

 

Fig. 10: Schematic of a TEM grid [111]. 

From the analysis of TEM images of soot aggregates, different information such as the primary parti-

cle-size distribution, and the number of primary particles per aggregate, 𝑁, and the fractal dimension, 

𝐷𝑓, can be obtained. Although frequently considered as a primary reference method, TEM has uncer-

tainties. The ex situ nature of the sampling (changing flame flow, changing local temperature, etc.) 

has an effect on the soot processes. The TEM images are only projection of soot aggregates, therefore 

interpretation of the three-dimensional (3D) features from the two-dimensional (2D) TEM images is a 

nontrivial task and loss of information is unavoidable. Additionally, analysis of particle size from the 

micrographs is an operator-dependent task and therefore obtained results include user subjectivity. 
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4 Particle-size dispersion 

Regardless of the actual particle-size distribution, a direct fitting for the entire TiRe-LII signal trace 

yields a mono-disperse equivalent mean particle-size that is known to be biased towards larger sizes 

for poly-disperse ensembles [62]. By assuming a size distribution, information about the different par-

ticle-size groups (the shape of a size distribution and its mean value) can be gained from a two-pa-

rameter fit of TiRe-LII [24]. Lehre et al. [25] applied an implicit scheme to solve for the size distribution 

of a poly-disperse aerosol using a multidimensional non-linear regression. Liu et al. [27] describe an 

approach that transforms the multivariate minimization problem into a univariate minimization prob-

lem by also using a size distribution assumption. Lognormal size distributions are good approximations 

for soot formed under various flame conditions and are widely assumed for data evaluation 

[14,27,29,56]. Nevertheless, it is generally challenging to fit poly-disperse distributions to LII signal-

decays because the fitting problem is ill-posed [28,62]. Particle-size distributions with various combi-

nations of count median diameter dcmd and geometric width 𝜎g might produce identical simulated LII 

signal decay profiles and therefore the evaluation of measured data does not always lead to unique 

solutions. Also, a lognormal size distribution may not always be the best assumption. It is reported 

that multi-lognormal [30] or bimodal distributions [98,112] may show better agreement for some 

specific environments. Dankers et al. [31] showed a rather simple engineering approach that deter-

mines dcmd and  𝜎g from exponential fits to the LII signal decay at two different delay times and within 

predetermined time intervals. Nevertheless, this method is also based on pre-assumed lognormal dis-

tributions.  

The new method presented in this work, TERF, shows similarity to Dankers et al. [31] as it also uses a 

simple exponential fit for a delayed part of the LII-signal trace. In TERF approach, however, it is not 

necessary to make assumptions about the shape of the particle-size distribution. The TERF method 

differentiates between signal contributions from small and large particles. It determines mono-dis-

perse equivalent mean particle-sizes for both size groups and evaluates the relative ratio of particle 

number densities for both groups. 

4.1 Poly-dispersity 

The TiRe-LII signal acquired from poly-disperse soot is the superposition of individual decaying func-

tions for the various size classes weighted by their respective probability df. For a lognormal distribu-

tion, df of a particle-size class between dp and dp + ddp is 
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𝑑𝑓 =
1

√2𝜋 𝑑pln𝜎g

 exp [−
(ln𝑑p − ln𝑑cmd)

2

2(ln𝜎g)
2 ] 𝑑𝑑p  ( 13 ) 

The distribution is characterized by the count median diameter dcmd and the geometric width devia-

tion 𝜎g. The geometric width is a multiplicative factor, and thus is dimensionless, rather than having 

the same dimension as the input values. The distribution is not symmetric but has a long tail towards 

larger particles. Some examples for different values of the dcmd and  𝜎g.  are shown in Fig. 11. 

 

Fig. 11 Lognormal distribution for a fixed geometric width of 1.2 with different dcmd  (a) and a fixed dcmd and 

different 𝜎𝑔 (b). 

Evaluating the particle size from such a signal with a mono-disperse assumption yields a mono-dis-

perse equivalent mean particle-size that is biased towards larger sizes. The magnitude of this bias is 

related to the width (i.e., 𝜎g) of the distribution. To quantify the bias, a set of LII signals was simulated 

with a poly-disperse (lognormal) particle ensembles for dcmd varying from 10 to 50 nm in 1 nm incre-

ments and 𝜎g varying from 1.1 to 1.8 in 0.02 increments. To ensure that each signal trace covers the 

entire process from reaching the peak temperature back to thermal equilibrium with the bathgas, the 

duration of each simulation was set to 2 µs. Input parameters are given in Tab. 2. For each case, the 

signal was then evaluated using a mono-disperse approach.  
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Fig. 12: Mono-disperse particle-sizes evaluated from synthetic LII signals simulated for lognormal particle-size 

distributions with various values of dcmd and 𝜎𝑔. 

The results for the mono-disperse response to the poly-disperse input are shown in Fig. 12. The de-

termination of the particle-size distribution using an inverse approach is an ill-posed problem. To bet-

ter illustrate this, six TiRe-LII signal traces with the same mono-disperse equivalent mean particle-size 

of 40.2 nm (same color code in Fig. 12) but differing values of dcmd and g are selected. The almost 

identical LII-signal traces are plotted on Fig. 13a. Fig. 13b shows the strongly varying underlying parti-

cle-size distributions with the respective color code (each data point on the distribution curve repre-

sents the probability density of a 1 nm wide bin). 

 

Fig. 13: (a) TiRe-LII signals simulated for soot ensembles with the particle-size distributions shown in (b). 

This comparison makes clear that signal interpretation based on standard inversion schemes suffers 

from this ambiguity with a fairly wide range of satisfactory solutions. To overcome this problem, var-

ious approaches were proposed and Daun et al. [28] reviewed various implicit solution schemes for 
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recovering particle-size distributions from TiRe-LII data. It is shown that such implicit solution ap-

proaches suffer loss of accuracy when the input data is slightly modified or when the noise contribu-

tion to the measured signal is considerable. Furthermore, approaches that aim at solving the forward 

problem are time intensive, thus they are not suitable for on-line analysis. 

4.2 Simple exponential approximation 

In the absence of strong evaporation, heat conduction is the dominant cooling mechanism of soot 

particles after laser heating. During this cooling, the decay rate remains almost unchanged for an iso-

lated particle or a soot aggregate composed from mono-disperse particles, and therefore the LII signal 

can be approximated by a simple exponential decay. Liu et al. [90] showed histories of the particle 

temperature of mono-disperse soot ensembles (with various mean particle sizes) in log scales. The 

conditions for simulating the LII signal were set for a moderate laser fluence and non-premixed at-

mospheric flame conditions. For all mean particle sizes, the results exhibit a nearly linear decay (in log 

scale), i.e., the signal decays almost exponentially. A simple exponential decay is defined by the fol-

lowing equation: 

𝑦 = 𝑘 𝑒−𝑡/𝜏  ( 14 ) 

where k is the pre-exponential factor, t is the time and 𝜏 is the lifetime of the LII signal of the respective 

size group. To verify the accuracy of this approximation, a “control LII signal” is simulated for the input 

parameters shown in Tab. 2 that is later on used as a reference case for comparison with simulated 

signals with varying input parameters. 
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Tab. 2: Input parameters for modeling the standard “control signal”. 

Property Standard condition 

Particle-size distribution mono-disperse 

Particle size 30 nm 

Aggregate size 50 

Ambient pressure 1 bar 

Bathgas temperature 1750 K 

Maximum heat-up temperature 3300 K 

Thermal accommodation coefficient 0.25 

Soot absorption function E(m) 0.4 

Detection spectral range 410–440 nm 

 
An exponential function is fitted to this control signal with a least-squares minimization routine for 

the time range where the LII signal intensity decays to 5% of its peak value. Both curves are shown in 

Fig. 14. 

 

Fig. 14: Simulated LII signal for a mono-disperse aggregate (conditions cf. Tab. 1) and a mono-exponential fit.  

The goodness of the fit R2 is over 0.9994. To quantify the systematic error in particle sizing due to such 

an approximation, LII-signal curve-fitting is performed by using the new exponential fit (red dashed 

curve) and the identical input parameters of the control LII signal as model input. This fitting yielded 

a particle size of 30.6 nm which is only 2% larger than the original input. This minor deviation results 

from the small contributions of radiation and evaporation to the total cooling. Each of these heat 

exchange mechanisms contributes its own independent exponential decay rate leading to a deviation 

from the mono-exponential decay. Because of the low heat-up temperature in the control case, the 

difference, however, is negligible.  
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For the validity of the mono-exponential approximation, the experimental conditions (i.e., input pa-

rameters of the simulation) are important as they influence the relative importance of the various 

heat-exchange mechanisms. To quantify this influence, the same procedure is repeated by systemat-

ically changing one individual input parameter (keeping all others fixed), and the resulting systematic 

errors (i.e., the difference caused by the exponential approximation relative to the input data) are 

shown in Fig. 15 for varying pressure, particle size, aggregate size, and heat-up temperature. Unless 

otherwise stated, each simulation is performed with the conditions shown in Tab. 2. 

 

Fig. 15: Systematic errors in particle sizing due to approximating a simulated LII decay with a mono-exponen-

tial decay for varying pressure (a), particle size (b), aggregate size (c), and heat-up temperature (d). 

In many practical combustion devices soot is formed at elevated pressure. At high pressure, the LII-

signal lifetime is significantly reduced due to enhanced heat transfer caused by increased collision 

rates. In comparison, pressure has a negligible effect on the evaporation rate and radiation is not 

affected at all. Therefore, with increasing pressure, the importance of conduction in the total heat 

exchange further increases and the LII signal converges to a simple exponential decay. Fig. 15a shows 

this effect for pressures from 1 to 60 bar in 1 bar increments. The systematic error further reduces 
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from 2% at 1 bar to below 0.5% at high pressures. The particle sizing routine of LIISim has a resolution 

of 0.1 nm. Therefore, the evaluated systematic error shows distinct steps as a function of pressure. 

The systematic error evaluated for particles from 4 to 80 nm with 1 nm increments is shown in Fig. 4b 

(4 nm is the minimum input value for LIISim). The actual data is shown with black dots and the curve 

is a second-order polynomial fit to illustrate the trend. The oscillation of the data is caused by the 0.1 

nm resolution of LIISim. Theoretically, no dependence on the error on particle size is expected be-

cause all the heat exchange mechanisms are affected equally. Nevertheless, a slight 1% change in the 

systematic error is observed over the given particle-size range (systematic error starts to reduce after 

around 40 nm). This is, however, a result of the data format of LIISim. By default, LIISim uses the first 

microsecond of the data only for fitting. When the particle size increases from 4 to 80 nm, the LII-

signal lifetime increases from ~30 ns to ~2 µs (it exceeds 1 µs at around 40 nm). With large particles, 

a part of the signal trace is thus disregarded. Such a partial using of the LII signal results in a better 

fitting by a simple exponential function. Therefore, for particles larger than 40 nm smaller systematic 

errors are observed. If the curve-fitting routine was not limited in time, no particle-diameter depend-

ence would occur. 

Soot aggregates can be described as random fractal structures. In LII modeling, the evaporation rate, 

the change in internal energy and the heat loss due to radiation are not affected by aggregation as 

long as the individual particles remain in the Rayleigh regime. The signal scales linearly with the num-

ber of primary particles within an aggregate and hence the mass [68]. However, heat conduction is 

affected by aggregation. A primary soot particle within an aggregate cools down more slowly than an 

isolated one because of shielding by the surrounding particles [8]. Fig. 15c shows the systematic error 

for an isolated particle and aggregates with 5 to 100 particles. With increasing aggregate size, the 

contribution of heat conduction to the total cooling decreases which leads to the assumption of an 

increasing deviation from a mono-exponential decay. Surprisingly, the results show the opposite 

trend. The greatest change occurs when switching from isolated particles to the aggregate model. For 

aggregates larger than 20 particles the magnitude of the change is below the resolution of LIISim. This 

contradiction requires further investigation and might indicate an incorrect treatment of shielding 

effects in the underlying submodel in LIISim. 

The particle heat-up temperature reached during the laser pulse depends on laser fluence. A change 

of this parameter influences the heat exchange rates of radiation, conduction, and evaporation. The 

most critical change occurs with evaporation when the temperature exceeds approx. 3400 K (Fig. 

15d). Its contribution to the total cooling increases significantly which causes a strong deviation from 

the simple exponential decay. 
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All these analyses indicate that, compared to other uncertainties in LII particle sizing [18], the error 

due to the mono-exponential approximation is minor for mono-disperse particle ensembles heated 

in the low-fluence regime. Deviating from the low-fluence regime, however, causes a strong deviation 

from the mono-exponential assumption. Increasing pressure in contrast is beneficial. Hence, to ben-

efit from the simplicity of fitting exponential functions, this approximation can be used as a tool for 

further detailed size-distribution analysis. 

4.3 Size-distribution analysis with the TERF method 

In poly-disperse particle ensembles where each size group has a unique LII-signal lifetime, the signal 

superposition causes a deviation from the mono-exponential decay behavior. The relative contribu-

tion of each size group is linearly proportional to its relative volume fraction 𝑓𝑣. Hence, such a LII signal 

cannot be accurately approximated by mono-exponential decay. Nevertheless, with increasing time 

after the laser heat-up, the particle temperature depends on size. Because smaller particles cool faster 

than larger ones, their contribution to the overall LII signal decreases over time and the remaining 

signal becomes increasingly dominated by the larger particles [14]. 

The TERF method couples the fact that the LII signal is dominated by large particles at long delay times 

and the mono-exponential approximation to derive information about the particle-size distribution. 

When starting the signal evaluation after a certain delay after laser heat-up, the remaining signal trace 

preferentially represents the largest particles. Although this signal still contains contributions from 

particles with various particle sizes, the relative size distribution is narrowing with increasing delay. 

For such narrow distributions, it has been shown [31,62] that particle sizing via a mono-disperse fitting 

yields a good approximation for the mean particle-size. Therefore, mono-exponential fitting eventu-

ally becomes possible with an acceptable uncertainty that represents the large particles in the ensem-

ble. Once the parameters of the mono-exponential fit are determined, the respective signal contribu-

tion of the subsection of the particle ensemble can be extrapolated back in time into the time domain 

before the above-mentioned delay and into the data disregarded before. This extrapolated curve rep-

resents the theoretical cooling of the large particle fraction right after the laser pulse and has a slower 

decay rate than the overall signal. The additional signal (the difference between the measured signal 

and the back-extrapolated signal) then stems from smaller particles. 

To illustrate this approach, a LII-signal trace is simulated with a wide lognormal distribution (dcmd = 20 

nm,  𝜎g = 1.8, black curve in Fig. 16a). All the other parameters are those from Tab. 2. The delay time 

for starting the data evaluation is 300 ns (dash-dotted grey vertical line) and a mono-exponential 

function is fitted to the delayed signal portion that is then extrapolated back to the 0–300 ns time 
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range (dashed red line). The original LII signal has a steeper decay than that of the back-extrapolated 

fit and it is stronger because of the additional contribution of signal from small particles (shown by 

the blue dotted curve). The comparison of the normalized curves (Fig. 16b) shows the difference in 

decay times and thus the origin from different sub-sections of the particle-size ensemble. It should be 

noted that the signal representing the small particle class (blue dotted line) is also composed of con-

tributions from various particle sizes, however the distribution is again narrower than that of the total 

ensemble.  

 

Fig. 16: (a) Simulated LII signal for poly-disperse soot with a lognormal distribution (dcmd = 20 nm,  𝜎𝑔= 1.8, black 

solid line). A mono-exponential decay is fitted to the section of the LII signal from 300 ns down to 5% of the peak 

signal and extrapolated back into the time domain from 0 to 300 ns (red dashed line). The difference between 

both curves represents the signal contribution from small particles (blue dotted line). (b) The same data nor-

malized to the respective peak values. 

A mono-disperse equivalent particle-size can be evaluated from each of these LII signals representing 

small and large particles, respectively. The evaluation of the time-delayed data requires the 

knowledge of the actual temperature of the particles at that delay as heat-up temperature for the 

LIISim simulation. When calculating the extrapolated exponential curve starting at 0 ns, the original 

heat-up temperature can be used and a temporally-resolved temperature information is not neces-

sary. In Fig. 17, the evaluated small and large mono-disperse equivalent particle-sizes, dp,small = 15 nm 

and dp,large = 57 nm, are shown along with the actual distribution of the particle size used for the sim-

ulation (each data point on the distribution curve represents the probability density of a 1 nm wide 

bin). These particle sizes represent a mean of different size classes at the two ends of the distribution 

curve. When particle sizing is performed with the entire LII signal (from peak signal to 5% of this peak) 

using a mono-disperse approach, the evaluated particle size is 45.3 nm.  
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Fig. 17: Lognormal distribution function of particle sizes for dcmd = 20 nm and 𝜎𝑔= 1.8. The vertical lines show the 

mono-disperse equivalent particle-sizes evaluated from the exponential decays (see text) representing the small 

and large particle class of dp,small = 15 nm and dp,large = 57 nm, respectively. 

In addition to the mean particle sizes from both size classes, the ratio of their number densities can 

be evaluated from the pre-exponential intensities with the TERF method. In a mono-disperse soot 

ensemble, the LII signal is linearly proportional to the soot volume fraction [48] which can be defined 

in terms of the primary particle diameter, and the average number of primary particles, np: 

𝑓v =
𝜋

6
𝑛p𝑑p

3  ( 15 ) 

The magnitude of the LII signal at 𝑡 = 0 for the small and large particle-size classes where all particles 

are at the same temperature (at least for atmospheric or sub-atmospheric pressure, see [44]), is given 

in Fig. 16a by the ratio of the LII signal intensities, 𝑆LII(0) at the time of the laser pulse (t = 0 s): 

𝑆LII,small

𝑆LII,large
=

𝑛p,small 

𝑛p,large

𝑑p,small
3

 𝑑p,large
3   ( 16 ) 

The ratio of number densities, 𝑛p,small 𝑛p,large⁄  (denoted with ℛ𝑛 hereafter) is calculated as 12.9. The 

actual ratio for the identical dp,small and dp,large is 14.4 over the assumed lognormal distribution curve. 

Because the particle-size distribution is a continuous function, the diminishing contribution of the 

small particles to the overall signal also continuously decreases with time. Therefore, there is not a 

perfect delay time that can be defined to separate the range of small and large particles. To see the 

effect of various chosen delay times, this value is changed from 10 to 600 ns in 10 ns increments while 

determining dp,small, dp,large, and ℛ𝑛 (Fig. 18). 
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Fig. 18: (a) dp,small and dp,large and (b) ratio of the number densities as a function of the chosen delay time. 

As the delay time increases, the contribution of the small particles to the signal segment after the 

delay gradually decreases, and the lifetime of this signal segment increases resulting in evaluation of 

larger particles. Similarly, when the delay time increases, the difference curve representing the cool-

ing of the small particles contains a larger contribution from larger particle classes, and consequently 

the evaluated particle size increases (Fig. 18a). However, an optimum delay time range exists for this 

strategy. When the delay time is too short, the latter segment used for the exponential fit contains 

too much information from the different size classes leading to a severe reduction of the fitting accu-

racy. Likewise, with a too large delay, the weight of larger particles in the difference curve increases 

and the evaluated dp,small does not represent an accurate mean size for the smallest size classes. The 

ℛ𝑛 curves in Fig. 18b also verify this argument: For too early or too late delay times, the predicted 

results with the TERF method deviate from the actual ℛ𝑛 that is evaluated from the original distribu-

tion. For the present conditions, a delay time at around 200 ns gives a ratio close to the actual distri-

bution. This optimum delay may vary for different distributions (this will be further analyzed in sec-

tion 4.6.2). 

4.4 Evaluation of various particle-size distributions 

The strategy described before was tested on poly-disperse soot ensembles with various distribution 

characteristics. In addition to the wide lognormal distribution introduced in section 4.3, a narrower 

lognormal distribution and two bimodal distributions with distinctive shapes were analyzed. The bi-

modal distribution functions, 𝑝bimodal, were created from two standard lognormal distributions su-

perimposed with independent weight functions [98]: 

𝑝bimodal = 𝑤1𝑝1(𝑑cmd,1, 𝜎g,1) + 𝑤2𝑝2(𝑑cmd,2, 𝜎g,2)  ( 17 ) 
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𝑝1 and 𝑝2 are the probability density functions with lognormal distributions, whereas 𝑤1 and 𝑤2 are 

the weight factors for the small-size mode and the large-size mode, respectively. The distribution pa-

rameters used in this section are listed in Tab. 3.  

Tab. 3: Parameters of the investigated particle-size distributions.  

Parameters a b c 

Distribution lognormal bimodal bimodal 

𝑑cmd,1 / nm 15 15 15 

 𝜎g,1 1.5 1.4 2 

 𝑤1 1 3 1 

𝑑cmd,2 / nm - 40 30 

 𝜎g,2 - 1.3 1.5 

 𝑤2 - 1 1 

 

The distribution functions are shown in Fig. 19 (each data point on the distribution curves represents 

the probability density of a 1 nm-wide bin) along with the evaluated small and large mono-disperse 

equivalent mean particle-sizes (vertical lines). For all the three cases, the delay time was 220 ns. The 

actual ℛ𝑛 calculated from the distribution function (ratio of P(dp) at dp,small and dp,large) and the ℛ𝑛 

calculated with the TERF method are given on the respective plots. In all three cases the evaluated 

dp,small and dp,large fall within the distribution and represent a mean particle-size within their size classes. 

The ℛ𝑛 values evaluated with the TERF method also show good agreement with the actual ℛ𝑛 derived 

from the probability density functions at dp,small and dp,large. 
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Fig. 19: Probability density functions for lognormal (a) and bimodal (b, c) distributions. Vertical lines show the 

mono-disperse equivalent s evaluated for the small and large particle classes. 
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4.5 Experiment 

Particle-size measurements were performed in a non-premixed ethylene/air Santoro flame [102] op-

erated under standard conditions (C2H4: 0.232 standard liters per minute (slm), air co-flow: 43 slm). 

To stabilize the flame, a chimney with a 25 cm diameter was mounted 30 cm above the burner. The 

schematics of the experiment is shown in Fig. 20. For LII, the fundamental of a Nd:YAG laser at 1064 

nm was used with a pulse width of 7 ns. A set of cylindrical lenses forms a horizontal laser sheet, and 

a 1 mm slit aperture crops the laser sheet into a rectangular shape that is relay-imaged into the center 

of the flame with a spherical lens at a 2f distance creating a nearly top-hat intensity profile. This spatial 

profile was measured with a beam profiler. The laser fluence was set to 0.08 J/cm2 which does not 

cause any considerable soot evaporation. The LII signal was detected with a fast photomultiplier (PMT, 

Hamamatsu R7400U-04, rise time ~0.78 ns) coupled with a bandpass filter (425±15 or 676±14 nm) 

and stored on a 1 GHz oscilloscope. The photomultiplier was combined with a system of two spherical 

lenses and a circular aperture to provide high spatial resolution. This collection volume (circular probe 

zone) in the flame has a diameter of 1.5 mm and it was located at a 2 mm distance to the burner axis 

on the pump laser entrance side. This radial location has a higher soot mass with respect to the burner 

axis location, thus better signal-to-noise ratios can be achieved. The burner and the chimney were 

mounted on a vertical translation stage independent from the optical path, which enables different 

heights in the flame to be probed. 
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Fig. 20: Experimental arrangement 

The measured LII decay curves were recorded at heights between 30–70 mm above the burner (HAB) 

in steps of 5 mm. At each location 100 single measurements were recorded with each of the two 

bandpass filters. Prior to the LII measurements, the detection system was spectrally calibrated by 

replacing the burner with a broad-band halogen lamp with known irradiance. 

For ex situ characterization, thermophoretic sampling was achieved at five HAB positions using a 

pneumatically-driven soot sampling probe on which lacey carbon-coated copper grids were attached. 

Grids were purchased from Tedpella (Product No: 01895) [111]. The probe consisted of two thin me-

tallic plates in a sandwich form, with a 3-mm-diameter hole exposing both sides of the TEM grid to 

the flame (a similar design is shown in ref. [109]). The purpose of using a lacey grid was to minimize 

the distortion of the electron beam by the carbon film during the microscope imaging. A high-frame-

rate camera (1000 fps) positioned perpendicular to the pneumatic cylinder axis was mounted to meas-

ure the probe trajectory and the timing precisely. The exposure time of the probe to the flame envi-

ronment (time duration where the grid rests within the flame) was set to 40 ms whereas the transit 

time (where the grid moves within the flame boundary) was shorter than 3 ms. Additional samples 

were collected with 60 and 80 ms exposure times at 50 mm HAB to analyze the effect of exposure 

time on soot sampling. The radial distance of the grid center was 2 mm from the burner axis. The 
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sampled soot was analyzed with a Tecnai FEG 200 kV transmission electron microscope and images 

were recorded at 26000× magnification and micrographs were manually analyzed using the freeware 

ImageJ. It should be noted that the TEM analysis of grids in this work were conducted by a third party 

TEM operator who had no extensive experience in soot research. The operator acquired ~40 images 

from each grid, and it is lately understood that in each of these images large aggregates were targeted 

and all the possible isolated particles and small aggregates were omitted. Therefore, the TEM-derived 

results in this work do not represent the entire soot ensemble in the respective sampling location. 

4.6 Results and discussion 

4.6.1 Input parameters 

At each probe volume along the flame, the ambient conditions must be known for accurately model-

ing the LII heating and cooling processes that may vary due to radiative cooling, changing mixture 

fraction, and changing soot morphology. In this study, the heat-up temperature of the laser-heated 

soot particles was derived via pyrometry from the ratio of peak LII signal intensities within two detec-

tion bands by using a lookup table method [64]. These spectral bands (425±15 and 676±14 nm) were 

selected according to the recommendation of [65]. The specific emissivity values for each of these 

spectral bands are calculated with Eq. 4. A variation of the soot absorption function E(m), therefore 

emissivity, along the flame height was not considered in this work and identical values were used at 

all locations. To suppress the influence of background signal, i.e., line-of-sight integrated flame lumi-

nosity, the baseline signal before the laser pulse was subtracted at each location. To measure the 

effective bathgas temperature, the measurements were repeated at HAB 60 mm without the laser 

pulse. At around this height the radial temperature gradients are minimal and the temperature is 

radially uniform [103], thus a biasing towards lower temperatures due to edge effects was negligible. 

Through subtracting the the bathgas temperature from the heat-up temperature, the temperature 

increase due to the laser light absorption was calculated as 1650 K at this height. By assuming a con-

stant soot absorption function E(m) at all flame heights, the temperature increase was also assumed 

constant at all locations, and the bathgas temperatures were calculated for the flame heights, respec-

tively. The flame- and heat-up temperatures used for simulating LII signals are shown in Tab. 4. 
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Tab. 4: Heat-up temperature, bathgas temperature, and aggregate size input parameters  

imposed for particle sizing at different heights above burner (HAB). 

HAB / nm Theat-up / K Tgas / K Np 

30 3414 1764 40 

35 3390 1740 50 

40 3351 1701 60 

45 3271 1621 70 

50 3259 1609 80 

55 3282 1632 90 

60 3225 1575 80 

65 3235 1585 70 

70 3162 1512 60 

 

At the investigated radial location bathgas temperatures decrease with increasing HAB due to the 

cooling of the flame via radiation and convection (at another radial position different trends might 

occur depending on air entrainment). Aggregate sizes also change with flame height [62] and the val-

ues shown in Tab. 4 are estimations based on TEM analysis. The other input parameters used at each 

location are shown in Tab. 2. With a rough estimation, the precision of the heat-up temperature meas-

urement via two-color pyrometry can be taken as ±100 K, the bathgas temperature ±200 K and the 

aggregate size ±40 particles. The influence of these uncertainties on the evaluated particle size is 

shown in Fig. 21. The total uncertainty of the evaluated particle size due to these input parameters is 

approximately ±20%. 
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Fig. 21: Uncertainties of the particle-size determination from the TiRe-LII signal traces due to variations in the 

underlying heat-up temperature (a), bathgas temperature (b), and aggregate size (c) compared to Tab. 2 condi-

tions. 

For this analysis, a control LII signal for Tab. 2 conditions is generated. Subsequently, this simulated 

signal trace is fitted by the LII model by systematically changing the assumed values for the relevant 

input parameters within a given range (one by one). The differences between the evaluated sizes and 

the initial particle size for the control signal shows the sensitivity of the particle-size determination on 

the respective parameters.  

4.6.2 Particle sizing 

Particle sizes were determined from the LII-signal traces acquired at 425±15 nm. The TERF method 

introduced in section 4.3 was applied for each signal trace. Additionally the mono-disperse equivalent 

mean particle-sizes were evaluated by full signal fitting. To investigate the influence of the delay time 

with the TERF method, it was swept from 20 to 800 ns in 20 ns increments and at each delay dp,small 
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and dp,large were calculated (Fig. 22). Similar to the model-based analysis results, dp,small and dp,large in-

creases with increasing delay time due to the increasing contribution of larger particles in the respec-

tive input signal segments. 

 

Fig. 22: (a) dp,small and (b) dp,large at different delay times evaluated for nine HAB positions.  

 

Fig. 23: Derivative of the particle sizes at each HAB with respect to changing delay time.  

As described in section 4.3, the optimum delay time for each signal depends on the actual particle-

size distribution. In an ideal case the evaluated particle-size should be least sensitive to changing delay 

time at around its optimum as it ensures that information blending from different particle-size classes 

is minimal. To define these optimum points, a derivative of the particle sizes (large mode) at each HAB 

was taken with respect to the changing delay time as shown in Fig. 23. The strong oscillations in the 

derivative results (for fixed HAB) were filtered out with a median filter. The optimum delay time is 

defined as the point where ∆𝑑p/∆𝑡 first approaches 0.1 nm/ns and is marked with a white dashed 
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line (parabola). The optimum delay time is as low as 240 ns at zones where particles are relatively 

small and reaches values above 600 ns at flame locations where the largest particle diameters are 

expected. Any increase in ∆𝑑p/∆𝑡 after this optimum delay can be attributed to noise in the acquired 

data. 

By using these optimum delay times, ℛ𝑛 at each HAB is calculated and shown in Fig. 24 with the 

respective dp,small and dp,large. The mono-disperse equivalent particle-size dp,mono is also shown. For all 

size classes, the particle diameter increases with the flame height and reaches a maximum at 50 mm 

HAB for the small mode, and at 45 mm HAB for the large mode and the mono-disperse equivalent 

size. After these peak points, particle diameters gradually decrease indicating that soot particle-sizes 

are affected by increasing oxidation. Within the flame height domain between 30 and 70 mm HAB, 

the deviation in particle size is ~10 nm for the small mode and the mono-disperse equivalent mean 

size, whereas it is more than 20 nm for the large mode. Fig. 24 also shows that ℛ𝑛 has an inverse 

relation with particle sizes. In soot formation and oxidation zones the population of small particles 

with respect to larger ones is greater and reaches its minimum within the zone where the largest 

particle diameters are evaluated (soot oxidation and soot formation are in balance). This trend of ℛ𝑛 

is directly related to different rates of changes in particle-size classes. The relative difference of dp,small 

and dp,large with respect to dp,mono at each flame height shows that the small particles are generally 

much smaller than the mean particle-size in the formation and oxidation zones. This gap reaches its 

minimum around in the zone where formation and oxidation is balanced whereas the difference be-

tween large particles and mean particle-size reach its maximum in the zone.  

 

Fig. 24: dp,small, dp,large and relative ratio of number densities calculated with the respective optimum delays  

(cf. Fig. 22) as a function of HAB. dp,mono is evaluated with full curve-fitting. 
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4.6.3 Comparison of LII and TEM particle sizing 

The soot particle-size was additionally determined from TEM micrographs acquired at five HAB rang-

ing from 30–70 mm. For each position the obtained primary particle diameters were divided into size 

bins and represented as a histogram. The histograms were then fitted by lognormal particle-size dis-

tributions to obtain continuous distribution functions. A lognormal distribution fits the particle sizes 

well for all locations (Fig. 25a). The total number of samples NTEM counted as a function of HAB is given 

in each graph. The dp,small and dp,large values obtained from the TERF-derived LII signal analysis for the 

same locations are also plotted as blue and red dashed vertical lines, resp. dp,mono values obtained by 

full curve fitting are shown with green dash-dotted vertical lines. The TEM measurements yielded a 

similar trend of particle-size change as the LII measurements along the flame height. The mean parti-

cle size reaches a maximum at 40 mm HAB and then gradually decreases due to oxidation.  

In most of the locations, dp,large obtained by LII falls within the particle-size distribution derived from 

TEM measurements, particularly within the large particle classes. On the other hand, dp,small is smaller 

than the smallest particles measured from TEM for all cases. The main reason for this difference is 

attributed to the strong bias in evaluating TEM images. Usually, the small particles are either isolated 

or they exist as small aggregates which reduces the probability of their collision to the lacey carbon 

film used here (cf. Fig. 25b). Furthermore, as mentioned in section 4.5, the TEM operator was prone 

to capturing large aggregates as they provide more information for the statistical analysis of primary 

particle-size measurements (on each grid ~40 images were taken) and mostly ignored isolated parti-

cles. Structures of soot aggregates can also be problematic for the measurement of small particles. 

Identifying the smaller particles at the center of an aggregate is hindered due to the relatively larger 

optical density of large particles that cover the small ones. Additionally, even with a small degree of 

bridging [113] between small and large particles, it becomes more difficult to perceive the spherical 

structure of small particles and a diameter cannot be measured successfully. Such bridging of small 

particles was mostly observed at the periphery of the aggregates and two examples are shown in Fig. 

25c. These images also indicate that initially loosely connected small individual particles that give rise 

to rapidly-cooling LII signal might get fused to the larger particles in the supporting agglomerate dur-

ing sampling and aging in between sampling and TEM measurements. Therefore, the statistical rele-

vance of the TEM-derived number of particles with small diameters may be biased. All these observa-

tions indicate that large numbers of very small particles might be systematically overlooked when 

investigating TEM images of poly-disperse soot samples.  
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Fig. 25: (a) Classification of primary particle-sizes from TEM (gray bars) with lognormal fits (black lines) obtained 

from soot at five HAB from 30 to 70 mm. LII TERF-derived dp,small and dp,large values are shown as blue dotted and 

red dashed vertical lines, resp. dp,mono values are shown with green dash-dotted vertical lines. (b) Soot aggregates 

on a lacey carbon film. (c) Bridging of small particles with the larger ones at the aggregate periphery. Due to the 

lost perception of sphericity, a measurement of diameter is not possible for such particles and therefore they 

are systematically not included in the statistical analysis. Even smaller particles that might have existed on the 

agglomerate surface might have got fused entirely with the surface layer and therefore remain invisible. 

Another reason for the discrepancy may be the unknown thermal accommodation coefficient, 𝛼T. 

Bladh et al. [62] reported that 𝛼T depends on the soot morphology and also may decrease with in-

creasing soot maturity (i.e., higher up in the flame). In this work, however, a constant 𝛼T was used for 

all locations and all size groups. If a relatively larger 𝛼𝑇 was used for the younger particles, i.e., smaller 

particles in the formation zone, a more efficient loss of energy to the surrounding atmosphere would 
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be simulated for these particles. This would eventually lead to a faster signal decay, hence evaluation 

of relatively larger diameters in the small size classes.  

To better understand the discrepancy between the TERF-LII-derived and the TEM-derived small par-

ticle-sizes, for each HAB a phantom poly-disperse TiRe-LII signal was simulated with the respective 

TEM distributions shown in Fig. 25a and input parameters shown in Tab. 4. This means that the re-

sulting phantom signal includes no information for particles smaller than what observed in the TEM. 

Consecutively, dp,small and dp,large were evaluated with the TERF method. At each HAB, the evaluated 

dp,small were found to be larger than the values obtained from the experimental data, cf. Fig. 26. This 

indicates that the discrepancy between in situ and ex situ measurements is most likely due to the 

incomplete information derived from TEM. 

 

Fig. 26: dp,small calculated with acquired LII signal and phantom poly-disperse TiRe-LII signal simulated with the 

respective TEM distributions. The larger dp,small evaluated with the phantom signal at each HAB indicates that 

the TEM may fail to provide correct information about the smallest particles that contribute to the LII signal.  

For thermophoretic sampling, various exposure times of the grid varying from 25 to 300 ms were used 

in the past [62,109,114]. In this study, the effect of varying the exposure time on the TEM particle 

sizing was investigated by exposing the grid to the flame for 40, 60, and 80 ms. The respective particle-

size histograms together with their lognormal fit are compared in Fig. 27. The corresponding dcmd 

and 𝜎g values are given in each plot. A systematic decrease in the dcmd and a widening of the distribu-

tion is observed with increasing exposure time. The measurements were taken at 50 mm HAB where 

soot oxidation dominates and deposited soot particles are exposed to excess oxygen and high tem-

perature. Because the soot particles are only loosely attached to the thin lacey carbon coating, cooling 

from the supporting copper grid is not efficient. During this phase, particles eventually partially oxidize 

and it cannot be excluded that small particles disappear completely. At the same time, additional par-

ticles are continuously deposited until the end of exposure time. Therefore, the width of the particle-

size distribution 𝜎g increases with increasing exposure time and the distribution increasingly deviates 

from lognormal. This exposure-time dependent particle sizing result is in contrast to the conclusion 
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drawn in ref. [109]. Nevertheless, the sampling location in that work is not mentioned which can be 

the reason of the discrepancy. In fuel-rich zones, deposited particles would not oxidize. Instead, the 

deposited particles would be subjected to co-aggregation with the latter particles. To minimize the 

effects of sampling on particle sizing, the shortest exposure time should be selected that permits col-

lecting sufficient particles for the TEM imaging. 

 

Fig. 27: Histograms of TEM-derived particle-sizes with lognormal fits for soot  

sampled at 50 mm HAB with varying exposure times. 

Perturbations of the flame during sampling can cause additional uncertainty in TEM particle sizing. 

The high-repetition-rate movies showed that the flow induced by the moving probe severely distorts 

the flame. This distortion starts shortly after the probe reaches its stationary position and lasts up to 

10 ms. The forced flow and the subsequent unsteadiness of the flame may cause deposition of soot 

on the grid that stems from locations outside the intended probe volume. 

4.7 Conclusions 

A signal-processing method, TERF, was developed for TiRe-LII in poly-disperse soot that provides in-

formation about the size range and the relative weight of the small and the large fraction of the par-

ticle ensemble. The method separates the signal contribution of small and large particles from the 

overall signal by approximating the LII signal from size classes with narrow size distributions with 

mono-exponential decays. A mono-disperse equivalent mean particle-size is then evaluated for both 

size classes and the relative ratio of the number densities of both groups is determined. Compared to 
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time-consuming poly-disperse fitting algorithms, the extracted information is limited. Nevertheless, 

compared to previous methods it is not necessary to assume the shape of the distribution and the 

much faster evaluation makes TERF suitable for real-time analysis. 

The validity of approximating LII signal traces with mono-exponential decays was analyzed with LII-

signal traces simulated for mono-disperse soot for various input parameters such as pressure, aggre-

gate size, and heat-up temperature. Suitable ranges of conditions where the TERF method works re-

liably were determined and the error imposed by the approximation was found to be less than 2%. 

High heat-up temperatures that cause strong soot evaporation was found to be the conditions where 

the method cannot be used. The accuracy of the method was tested on simulated signals with lognor-

mal and bimodal particle-size distributions with various distribution parameters. In all cases the 

method yielded satisfying results. 

The TERF method was applied to measured signal traces acquired with a time-resolved detection 

setup at nine axial locations in a non-premixed atmospheric laminar ethylene/air flame from a Santoro 

burner. The LII measurements were supported by two-color pyrometry of particle heat-up tempera-

tures. Low-fluence excitation prevented soot evaporation. A model-based analysis was performed to 

identify the dependence of LII particle sizing quantitatively on the assumed input parameters such as 

bathgas temperature, heat-up temperature, and soot morphology. At each location a mono-disperse 

equivalent mean particle-size was also evaluated and compared to TERF method results. 

For ex situ characterization, soot particles were sampled at multiple flame heights using a pneumati-

cally-driven soot sampling-probe. Particle-size distributions were derived from TEM measurements 

and compared to the LII-derived results. It was observed that the TERF method provides sizes for the 

large particle class that are in good agreement with the TEM measurements. Substantial discrepancies 

were observed, however, between LII and TEM results for the small mode. The discrepancies were 

mainly associated to the biased sampling and TEM operations that omits the analysis of small size 

classes. The effect of varying exposure times of the TEM grid to the flame was analyzed. At a location 

with excess oxygen, long exposure times cause an increased oxidation of initially deposited soot, thus 

the measured mean particle-size decreases and the distribution widens. 
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5 Soot volume fraction 

Soot investigations in optically-accessible engines as well as high-temperature, high-pressure com-

bustion vessels have shown that soot formation in reacting fuel jets begins shortly after autoignition 

[39,115–119] at a finite distance from the initial high-heat-release reactions and then continues 

throughout the mixing-controlled combustion phase [39,47,117,118]. Investigations indicate that 

mixing-controlled Diesel combustion for quiescent Diesel engine conditions occurs in a lifted, turbu-

lent non-premixed flame mode. The non-premixed flame takes place at the periphery of the spray. 

Inside this hollow high-temperature reaction zone, a fuel-rich mixture with relatively lower tempera-

ture and slower reaction rate is present. Dec [118] showed these two modes, mixing-controlled and 

non-premixed flames, in a Diesel combustion with a conceptual model as shown in Fig. 28. 

 

Fig. 28: Conceptual model of a quasi-stationary Diesel combustion plume by Dec [118]. 

Fuel and air in this core spray zone start to mix upstream of the flame lift-off, hence the position of 

lift-off is important for the mixture fraction downstream of this zone. For soot processes local availa-

bility of oxygen and temperature in the region are two key parameters. Therefore, the flame structure 

in the premixed phase and the lift-off lengths are crucial for the soot formation process 

[35,37,39,118]. 

The ECN has defined target sprays that can be operated in various facilities available in the contrib-

uting labs. The target conditions are confirmed by comparing to existing databases including liquid 

penetration-length, vapor penetration-length, ignition delay and lift-off length measurements 
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[20,45,120,121]. Well-characterized nominally identical injectors [121] are used in all contributing 

labs. Target Spray A (Tab. 5) acts as a reference case for low-temperature Diesel combustion in en-

gines with moderate exhaust-gas recirculation (EGR) [45]. Extensive information about measurements 

on Spray A are given on the ECN website [20]. 

Tab. 5: Operating conditions for Spray A. 

Gas temperature 900 K 

Gas pressure near 6.0 MPa 

Gas density 22.8 kg/m3 

Oxygen concentration 15% O2 reactive and 0% O2 non-reactive 

Gas velocity Near-quiescent, <1 m/s 

Fuel injection pressure 1500 bar 

Fuel n-dodecane 

Fuel temperature at nozzle 363 K (90˚C) 

Injection duration 1.5 ms 

Injection mass ~3.5 mg 

 

This section addresses the measurement of local soot volume fractions in transient and quasi-station-

ary cases of Spray A. Measurements for the standard operating conditions provide a basis for under-

standing the ambient and injector boundary conditions, and also provide the basis for interpreting 

the soot measurement results. Additional measurements with parametric variations (cf. Tab. 6) of the 

standard conditions permit investigation of the effect of the various operating conditions on the lift-

off length and the soot level. For each boundary condition, OH chemiluminescence imaging is used to 

determine the lift-off length. The differences between nominal and actual gas temperatures men-

tioned in Tab. 6 will be explained in section 5.6.1. 

Tab. 6: Parametric variations of the Spray A operating condition. 

Nominal ambient gas temperature (actual) 800 (830), 850 (880), 900 (930), 1000 (1030) K 

Oxygen concentration 11, 13, 15, 21% O2 

Injection duration 1.5, 4 ms 

 

5.1 High-pressure high-temperature (HPHT) vessel 

To mimic the thermodynamical conditions encountered in a real engine at the injection timing, a pre-

combustion type vessel was used in this work. A schematic of the vessel is illustrated in Fig. 29 and its 

characteristics are listed in Tab. 7.  
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Fig. 29: Global view (left) and sectional drawing (right, with an injector in vertical position) of the IFPEN vessel. 

Tab. 7: Characteristics of the IFPEN constant volume vessel. 

Internal width 125 mm 

Windows diameter 80 mm 

Internal volume  1400 cm3 

Combustible gas fill Sequential 

Mixture preparation Stirring fan, in the upper corner (3140 rpm) 

Ignition system 4 spark plugs, in the lower corners 

Wall temperature 473 K (200˚C) 

Nozzle tip protrusion 3 mm 

 

The working principle [122] of this HPHT vessel can be described as: 

1. Filling: The vessel is sequentially filled with the flammable mixture, composed of hydrogen (H2), 

ethylene (C2H4), nitrogen (N2), and oxygen (O2). The pressure and temperature of the mixture at 

the end of the filling process defines its density. The proportions of the gases are controlled by 

their partial pressures when introduced in the vessel. Product compositions are calculated assum-

ing complete combustion [19]. With this method, the oxygen mole fraction at the instant of spray 

injection can be adjusted for different boundary condition targets. 

2. Pre-combustion (or pre-burn): The mixture is mixed with a stirrer during 30 seconds after the end 

of the filling, before the flammable mixture is ignited by 4 spark plugs located in the corners of 

the vessel. The combustion of the mixture generates a rapid rise of the pressure and temperature 

within the vessel. 
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3. Cool down: Following the spark-ignited, premixed combustion, the combustion products cool 

over a relatively long time (700–2500 ms) due to heat transfer to the vessel walls and the pressure 

decreases slowly. 

4. Injection: When the desired temperature is reached, the injection is triggered and the diagnostics 

are performed. 

The wall temperature of the vessels are kept at 473 K (200˚C) with electric resistance heaters that are 

controlled by a closed control unit. This temperature is clearly above the room temperature and it 

provides a slower cool down after the pre-combustion and reduces the thermal stress on the glass 

parts. It also prevents condensation of water on metal and glass parts. More information about the 

facility is given in [109].  

Injection system 

The fuel is supplied to the injector through a pipe linked to a common rail, respecting the ECN speci-

fications [120]. A hydro-pneumatic pump is used to generate the pressure. Its maximum capacity is 

2750 bars. The injector nozzle is an ECN-standard nozzle (ECN reference: 678) and was produced by 

Bosch. It is mounted on commercial CRI 2.16 body. The nominal characteristics of this nozzle is de-

scribed in Tab. 8. 

Tab. 8: Nominal characteristics of ECN nozzles. 

Number of holes 1 (single hole) 

Nozzle outlet diameter 90 µm 

Nozzle shaping Hydro-eroded 

Nozzle k-factor 1.5 

Mini-sac volume 0.2 mm3 

Discharge coefficient Cd 0.86 (at 100 bar)  

 

Spatially-resolved temperature measurements by thermocouples and schlieren measurements 

showed that in pre-combustion type vessels, temperature stratification in the vertical direction occurs 

[19] which is caused by buoyancy. Temperature can vary by ±4% over a vertical distance of ±15 mm. 

The temperature is uniform, however, along horizontal planes [19]. Therefore, in Spray A measure-

ments, the injector is mounted at the side of the vessel to create a horizontally penetrating jet in a 

uniform temperature environment. 
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5.2 Characterization of the Diesel combustion vessel 

5.2.1 Nozzle-tip temperature 

The evolution of the fuel temperature during the injection event is likely to influence the spray char-

acteristics, in particular the liquid length. Therefore it is important to be able to control its tempera-

ture. Since the measurement of the fuel temperature during the injection event is a challenge, the 

solution chosen by the ECN community is to measure the evolution of the temperature in the sac 

volume during the pre-combustion using a dummy injector [45]. The custom-made nozzle has no ori-

fice, and the injector is equipped with a type K thermocouple which allows to measure the tempera-

ture in the sac volume, at different distances from the bottom of the sac (cf. Fig. 30). To provide the 

heat transfer from the nozzle to the thermocouple homogenously, the sac volume is filled with ther-

mal paste. 

 

Fig. 30: Scheme of the setup used to measure the temperature in the sac volume with a dummy injector. 

In order to limit the temperature rise within the sac volume, ECN injectors are shielded with a ceramic 

cover that insulates the nozzle and reduces the heat transfers between the hot gases within the vessel 

and the injector. The dummy injector is also mounted with the same ceramic shield. In order to keep 

the fuel at the target temperature that is well below the temperature of vessel wall (200˚C), a liquid 

cooling system is integrated to the injector body housing. This cooling system has also a closed control 

unit and the target temperature of the cooling liquid (water) can be adjusted. Fig. 31 shows the time-

resolved nozzle tip temperature measured after the pre-combustion event. To keep the nozzle tip at 

90˚C temperature at the time of injection, the liquid temperature of the cooling system should be set 

to ~70˚C in this setup. The ~5˚C rise within the first 1 s is due to the above-mentioned rapidly increas-

ing temperature inside the vessel with the pre-combustion. Without the ceramic shield this tempera-

ture rise would be more substantial. 
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Fig. 31: Nozzle-tip temperature controlled by the liquid cooling system. 

5.2.2 Ambient temperature and density 

After the pre-combustion event, during the cool down process, the gas temperature and the density 

are not homogeneous in the vessel due to buoyancy and thermal boundary layers generated by heat 

transfer at the walls of the vessel [19]. Meijer et al. [45] investigated this spatial temperature stratifi-

cation in the vessel with fine thermocouple measurements and showed that the average temperature 

values (named as “bulk”) are different from the local values. The ECN standard conditions, however, 

represent the actual values at the region of interest (where the Diesel jet interacts with the ambient 

medium), therefore these local temperatures should be precisely measured and set to these target 

conditions. This geometric center of the vessel can be regarded as a reference point for the region of 

interest and named as “core” in this work. 

Unlike the temperature, the pressure within the vessel 𝑝vessel is homogeneous (at least for the sub-

sonic time scales) and it is continuously monitored with a standard piezoelectric transducer assem-

bled to the vessel. By using the real gas law and this pressure information, a bulk temperature 𝑇bulk 

(i.e. the average temperature) in the vessel can be calculated as 

𝑇bulk =
𝑝vessel

𝑍 𝑟 𝜌bulk
 ( 18 ) 

where 𝑍, 𝑟 and 𝜌bulk are respectively the compressibility factor (needs to be taken into account for 

real gas effects) [122], the gas constant of the mixture, and the average density in the vessel (con-

trolled during the filling of the vessel). The center of the vessel is the furthest point to the vessel walls 

in the combustion chamber, therefore this region is less affected from the colder walls than any other 

point in the vessel. This eventually leads that the core temperature 𝑇core (in the center of the vessel) 
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is higher than 𝑇bulk within the first 2 seconds after the pre-combustion. To quantify this difference, 

the temperature in the center of the vessel is measured with a type K 50 μm diameter thermocouple 

as shown in [45,122]. The raw temperature measured by the thermocouple is corrected to take into 

account the effects of the radiations, convection, and thermocouple inertia [122]. Fig. 32 shows the 

temporal evolution of 𝑇bulk and 𝑇core after the pre-combustion. 𝑇bulk is calculated from the pressure 

data, and 𝑇core is measured by the thermocouple. Each curve is an ensemble average of 5 measure-

ments. The gray and black envelops around the temperature curves are the standard deviation eval-

uated during ensemble averaging. 

 

Fig. 32: Temporal evolution of 𝑇bulk calculated from pressure data,  

and 𝑇core measured by a thermocouple at the center of vessel. 

The ambient temperature during a spray event is adjusted by the delay of injection with respect to 

the pre-combustion. The right delay time for Spray A condition is defined at where the ensemble 

averaged 𝑇core = 900 K. The thermocouple signal in this analysis is smoothed with a low-pass filter 

as described in [19].  

Due to the temperature gradients (and uniform pressure), the density of the gas is also not homoge-

nous within the vessel after the pre-combustion. The actual density in the spray zone 𝜌core can be 

evaluated by using the pressure-temperature relation (Gay-Lussac’s law) and thermocouple measure-

ments: 

𝑇core 𝜌core =  𝑇bulk 𝜌bulk ( 19 ) 

By using a time averaged value of 𝑇bulk and 𝑇core between 700 and 1000 K, the actual 𝜌core is calcu-

lated as 5.3% lower than 𝜌bulk. To compensate this reduction at the spray region, 𝜌bulk is set to 

0 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

Time / s

T
e
m

p
e
ra

tu
re

 /
 K

0 0.5 1 1.5 2
400

600

800

1000

1200

1400

1600

1800

Time / s

T
e
m

p
e
ra

tu
re

 /
 K

 

 

data1

data2

T
bulk

T
core



Chapter 5 

58 

24 kg/m3 by increasing the amount of intake gases prior to the pre-combustion to match 𝜌core = 22.8 

kg/m3. 

5.3 Spray characterization 

5.3.1 Rate of injection 

The mass flow rate was measured with a commercial EMI2-EFS flowmeter. The measurement princi-

ple is the following: The fuel is injected in a chamber filled with fuel. The volume of this chamber is 

controlled by a moving piston. A back pressure is applied to this piston. The piston displacement is 

measured and is used to provide the mass flow rate. With the periodic mass flow rate measurements 

during the measurement campaign and by comparing the flow rates, the repeatability of the experi-

ments is verified. 

5.3.2 Liquid penetration length 

Liquid penetration length is the maximum penetration distance of liquid-phase fuel in a Diesel spray 

at the steady state. At this point the total fuel evaporation rate in the spray is equal to the fuel injec-

tion rate. Once the liquid fuel reaches this point, it begins fluctuating about a mean axial location. The 

liquid penetration length depends strongly on the gas temperature and density, fuel volatility, density 

and viscosity, and the orifice diameter [109]. Therefore, it can be a good indicator to compare with 

the existing ECN database [21] and to verify how well the ECN conditions have been reached. Follow-

ing the recommended best-practices in the ECN community [21], the Diffuse Back-Illumination (DBI) 

technique is used to measure the liquid penetration length in this work. This method is based on the 

extinction of incident light by the liquid-phase fuel. Fig. 33 shows the setup used for DBI. 

 

Fig. 33: Diffuse back-illumination setup for liquid penetration length measurements. 

The light source is a blue diode at 455 nm. The homogeneity of the intensity of the incident light is 

essential for the accuracy of the measurements [110]. In order to obtain an illumination as uniform 
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as possible, an engineered diffuser is placed in front of the diode. A Fresnel lens is then used to colli-

mate the light. The signal is collected by a high repetition rate Photron SA1 camera with a frame rate 

at 120 kHz, equipped with a 50 mm f/1.2 lens and an 8 mm extension ring. The resolution of the 

images is 320×112 pixels, and the spatial scale is 88.5 μm/pixel. In Fig. 34 four DBI images are shown 

obtained at different delays after the start of injection. The image at the lower right corner is acquired 

at the steady-state where the liquid length is fully developed. For extinction measurements the im-

ages acquired at steady-state are time averaged to suppress the fluctuations. 

 

Fig. 34: Extinction images obtained with the DBI setup at different delays after the start of injection. 

By following the Lambert-Beer’s law (see section 3.2.1), the time-averaged intensity images can be 

converted into extinction images. Then, at each pixel column, pixels within the range of +/- 5 mm 

around the spray axis are averaged to a single value, and for each spray an axial extinction profile is 

created. Fig. 35 shows the extinction profiles of 10 sprays (gray thin lines) and the ensemble average 

of these profiles (thick blue line). Near the liquid core tip, beam steering is significant, and thus the 

extinction value is the consequence of both light extinction and beam steering. The profile in this 

region can therefore not be taken into account to compute the liquid length. Instead, the slope of the 

decay of the extinction profile is computed, and the liquid length is defined as its intersection with 

the x-axis [123].  
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Fig. 35: Liquid length defined by the extinction profile at the spray axis. 

Among different techniques [124] the ECN community announced that the DBI technique is the pre-

ferred method for back-to-back comparison of results originality from different labs. The prominent 

advantages of DBI are that it is has a simple setup and it is self-calibrated [124,125]. On the downside 

the DBI method suffers from beam steering and this limits the measurement precision for the actual 

liquid penetration length. 

5.3.3 Vapor penetration length 

The vapor penetration length is the maximum penetration for the length of vapor-phase fuel at a 

given time. It depends on the hydraulic flow rate of the injector (rail pressure and nozzle characteris-

tics) and the ambient density. Therefore, like the liquid length, it is also a useful parameter to verify 

the validity of the ECN conditions in the cell. Schlieren imaging is used to identify the vapor boundary 

of the penetrating jet [19,122–124]. The evaporated fuel has a clearly different temperature and den-

sity than the ambient gas. Therefore its refractive index is also different than the ambient gas. The 

schlieren imaging is sensitive to gradients in refractive index, formed by either such density or com-

position differences along a line-of-sight, and is therefore a robust tool to mark the boundary of the 

vapor-phase of a penetrating jet. Fig. 36 shows the setup used for schlieren imaging. Vapor penetra-

tion length measurements are conducted in non-reactive Spray A (0% O2). 
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Fig. 36: Schlieren imaging setup for vapor penetration length measurements. 

A parallel light beam with a diameter of slightly above 100 mm is created by using a set of a LED, a 

camera lens, a 1 mm aperture, and a parabolic mirror. The collimated light is passed through the 

combustion vessel. A large collection lens is used to direct the parallel light onto a cutoff disk (schlie-

ren stop) with a diameter of 1.2 cm. Deviated rays do not fall onto the disk and they are collected with 

a high repetition rate Photron SA1 camera, equipped with a 100 mm f/2.8 lens and a 8 mm extension 

ring. The resolution of the images is 640×240 pixels, and the spatial scale is 117 μm/mm. The frame 

rate is 30 kHz. As a result, the sprays appear in white on a dark background (dark field schlieren). This 

setup has been chosen over the bright field setup because it gave the best contrast for the spray 

images. A set of schlieren images acquired at different delays after the start of injection is shown in 

Fig. 37. The outer boundary of the fuel vapor is determined through image analysis with MATLAB 

(shown as blue contour line). For each image the vapor length is defined as the maximum distance of 

the contour line along the spray axis to the orifice. Fig. 38 shows the vapor penetration length as a 

function of time for two different ambient bulk density targets. Each curve is an ensemble average of 

five cycles and vertical lines represent the standard deviation due to ensemble averaging. The reason 

why the vapor length curve does not start at 0 mm is related to an error encountered during the 

determination of boundary line.  
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Fig. 37: Schlieren images acquired at different delays after the start of injection to measure  

the vapor penetration length. 

 

Fig. 38: Vapor penetration length at two different bulk ambient density. 

5.3.4 Lift-off length 

In near-stoichiometric, high-heat-release combustion reactions, excited-state OH radicals (OH*) are 

formed as intermediates. Unlike ground-state OH, which exists as an equilibrium product in regions 

of high temperature, including hot exhaust gases, OH* only exists in the flame zone [47] and emits 

chemiluminescence at around 310 nm. Thus, with an appropriate band-pass filter it is possible to lo-

cate zones that can be correlated with near-stoichiometric, high-heat-release conditions 

[47,116,126,127]. Because stoichiometric combustion is expected at the flame base [47,128], i.e., at 
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the lift-off location, chemiluminescence imaging is also the appropriate method to identify the lift-off 

length of a spray flame. During the quasi-stationary phase of the spray, the lift-off length is not varying 

systematically. However, small deviations occur due to turbulent fluctuations. In order to suppress 

these fluctuations and achieve a steady lift-off length measurement, time-averaged imaging is em-

ployed via sufficiently long camera gates (500 µs) within the quasi-stationary phase of the flame. Fig. 

39 shows the OH*-chemiluminescence imaging setup for lift-off length measurements. The lift-off 

length imaging is done in a line-of-sight manner. 

 

Fig. 39: OH*-chemiluminescence imaging setup for lift-off length measurements. 

 

Fig. 40 OH*-chemiluminescence imaging of Spray A. Intensity profiles along the lines indicated in the image 

show the rapid intensity increase that allows identifying the lift-off length. The signal increase towards the right 

is due to interference from soot incandescence. 

Fig. 40 shows an OH*-chemiluminescence image. OH*-chemiluminescence begins at a well-defined 

distance from the injector orifice, initially rising very sharply, and then leveling off. Two lobes of in-

tense chemiluminescence on the top and bottom of the jet are typical near the lift-off length. The lift-

off length was determined by finding the distances between the injector and the first axial locations 



Chapter 5 

64 

above and below the spray centerline with an intensity greater than approximately 50% of the level-

ing-off value. The average of these two axial distances is defined as the lift-off length [20]. The inten-

sity increase downstream is due to broad-band blackbody-like radiation of soot particles. 

5.3.5 Determination of the local oxygen/fuel ratio 

An estimate of the amount of air entrained into a fuel jet was used to help analyze the soot and lift-

off measurements. As shown in Fig. 40, Spray A is a lifted flame. The amount of fuel and air premixing 

that occurs upstream of the lift-off length affects the composition of the reactants downstream of the 

lift-off. Because soot formation and burnout is directly related to oxygen availability in a region, air 

entrainment into the jet is crucial for the soot formation rate and its location. Additionally, air reacting 

in the non-premixed flame and then entrained downstream of the lift-off length will affect soot for-

mation processes further downstream [47].  

When the ambient oxygen concentration is varied, fuel jets have different levels of relative oxygen 

entrainment at a given distance from the injector. For example, because a reduced mole fraction of 

ambient oxygen or reduced ambient density will result in less oxygen entrainment at the same axial 

position. Therefore, to compare the effects of oxygen concentration on soot, it is useful to compare 

the fuel jets at the locations of similar relative oxygen/fuel mixture. For this purpose, Pickett et al. 

[36,39] used the air/fuel ratio at various axial locations in a fuel jet relative to the air/fuel ratio re-

quired for stoichiometric combustion. This value is described as the oxygen/fuel ratio and denoted 

with Ω [36,37,39]. In spray research community Ω is also called as the effective “flame” coordinate 

since the fuel jet combustion and soot formation processes are compared at equal relative oxy-

gen/fuel mixtures [36].  

For non-oxygenated fuels [37], Ω defined by Eq. 20 is inversely proportional to the average equiva-

lence ratio 𝛷̅. 

Ω =
1

𝛷̅
 ( 20 ) 

The average equivalence ratio 𝛷̅ at a given axial distance is calculated with Eq. 21 [39,129]: 

𝛷̅(𝑥) =
2 (𝐴/𝐹)𝑠𝑡

√1 + 16 (𝑥/𝑥+)2 − 1 
 ( 21 ) 

where (𝐴/𝐹)𝑠𝑡  is the stoichiometric air–fuel ratio by mass, and 𝑥+ is a characteristic length scale for 

the fuel jet. The characteristic length scale is defined as: 
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𝑥+ = √
𝜌𝑓

𝜌𝑎

√𝐶𝑎𝑑

𝛼 tan (𝜃/2)
𝛽 ( 22 ) 

where 𝑑 is the injector orifice tip diameter, 𝐶𝑎 is the orifice area contraction coefficient (it is taken as 

0.89 according to the ref. [121]), 𝜌𝑓 is the fuel density, 𝜌𝑎 is the ambient gas density, 𝛼 is a constant 

with a value of 0.75, 𝜃/2 is the jet spreading half-angle (it is taken as 21˚ for ECN Spray A nozzles 

[130]) and 𝛽 = (𝑇𝑎𝑑/𝑇𝑎)2 (𝑇𝑎𝑑 is adiabatic flame temperature of a stoichiometric fuel-ambient mix-

ture and in this study it is calculated with CHEMKIN tool for constant volume conditions. 𝑇𝑎  is the 

ambient gas temperature) is a term that accounts for a reduction in air entrainment in the reacting 

region of a fuel jet downstream of the lift-off length caused by heat-release effects. To estimate the 

air entrained at the lift-off length, a value of β = 1.0 is used since little heat release occurs upstream 

of the lift-off length [36].  

5.4 Optical setup 

Fig. 41 illustrates the arrangement used for coupling LII and laser extinction measurements in the 

vessel. The LEM setup is based on the work of Musculus et al. [40] and minimizes the influence of 

beam steering or soot incandescence interference. The same approach was also used for in-cylinder 

measurements [21]. 

 

Fig. 41: Optical arrangement for combining LII and LEM. 

For LEM the beam of a 35 mW continuous-wave (cw) HeNe laser (632.8 nm) is transmitted horizontally 

through the quartz windows of spray vessel. The laser targets the spray axis 58 mm downstream of 



Chapter 5 

66 

the nozzle orifice. This location is chosen deliberately in the light of preliminary studies. It is observed 

that highest soot concentrations in a Spray A occur at about this distance. The laser beam is modu-

lated using an acousto-optic modulator (AOM) driven by a 100 kHz pulse generator for measuring the 

background luminosity and discrimination against incident laser light (method will be further dis-

cussed in section 5.5). An aperture selects the beam that is deviated to the first order when the AOM 

is active. Behind the vessel, the beam is collected into an integrating sphere using a lens of 50 mm 

diameter and 200 mm focal length. The role of the integrating sphere in front of the photodiode is to 

reduce the sensitivity to variations of the position and incidence angle of the laser beam. A circular 

25-mm aperture is placed in front of the sphere, providing a 125 mrad collection angle. This provides 

a good compromise between the suppression of beam steering and forward-scattering [21,40]. A 

band-pass filter (633±0.5 nm) suppresses unwanted combustion luminosity and soot emission as well 

as 1064 nm laser radiation. It should be noted that the selected laser light (632.8 nm)  can be absorbed 

by non-soot species, such as PAH [131]. This additional extinction of the laser light may lead to a 

discrepancy between the optical thicknesses obtained by LEM and LII measurements and should be 

taken into account as uncertainty for these measurements. 

The LII measurements are based on soot heating with the fundamental of a Nd:YAG laser working at 

10 Hz with a Gaussian beam profile. This 1064 nm wavelength is preferred over the frequency-dou-

bled output to suppress the interference from fluorescence of polycyclic aromatic hydrocarbons (PAH) 

[14]. A set of cylindrical and spherical lenses forms a horizontal laser sheet intersecting the spray axis 

between 24 and 70 mm distance from the nozzle tip. In order to avoid thickness variation in the di-

rection of laser propagation due to the convergence of the observed region, a second lens set (−100 

and 1000 mm focal lengths for a cylindrical and spherical lens, respectively) is used with a focal point 

far behind the vessel. The laser sheet at the region of interest is measured as approximately 1 mm 

thick by a paper burn test. Because the Gaussian profile of the laser sheet in the axial direction, the 

laser sheet thickness loses its uniformity towards to the edges and gets thinner. However, paper burn 

tests also showed that the laser sheet thickness is uniform between 34 and 60 mm. Therefore, for 

soot volume fraction measurements, only the axial distances between these two limits are used. The 

laser sheet is coplanar with the 632.8 nm LEM laser.  

The LII measurements are performed in the high fluence regime with a Gaussian profile of the beam 

across the short axis of the laser light sheet. The beam-integrated laser fluence is above 1 J/cm2 which 

is securely above the saturation regime (~0.3 J/cm2 at 1064 nm) [14,55]. Nevertheless, the reported 

LII signal plateau zone value in the literature for increasing laser fluence was measured under atmos-

pheric conditions. The sublimation behavior of the soot at ~60 bar, however, is not fully known. In this 
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study, it is assumed that the soot at such pressures also reaches to the constant sublimation temper-

ature. The LII signal is detected with a 16 bit intensified CCD camera equipped with a f = 50 mm, f/1.2 

lens and a band pass filter (425±15 nm). In this spectral range, the sensitivity of blackbody radiation 

to temperature is higher when compared to longer wavelengths [65]. Therefore, a better differentia-

tion of natural incandescence of particles outside of the measurement volume and the LII signal can 

be achieved. The temporal camera gate is 50 ns. To prevent the LII laser from hitting the LEM photo-

diode the two laser beams cross the combustion chamber in opposite directions.  

5.5 Measurement strategies 

For each measurement, LEM was conducted in a temporally-resolved manner. Data acquisition 

started with triggering of the injection triggering and continued for the next 8 ms. The high-frequency 

modulation of the laser light enables the suppression of the flame luminosity. Within the entire period 

of a measured time trace (8 ms), the laser is switched on/off 800 times. During the off-time, the pho-

todiode detects only background intensity. During the on-time, photo diode detects both laser and 

background intensity. By subtracting the consecutive off-time from the on-time intensities, one can 

measure the transmitted laser intensity. This consecutive subtraction is done with a lock-in amplifier. 

The output voltage is measured with an oscilloscope. Such high frequencies of modulation are nor-

mally preferred to freeze the chemical and physical processes between consecutive on/off times.  

 

Fig. 42 Extinction signal for a single spray event with 4 ms injection duration. Data acquisition starts with the 

injection triggering signal. After ~2.0 ms the tip of the soot cloud reaches the measurement location. The dashed 

green line indicates the mean during the quasi-stationary period. The sharp signal at 3.2 ms is due to interfer-

ence from LII. 



Chapter 5 

68 

Fig. 42 shows an extinction signal from a single Spray A event with 4 ms injection duration (End of 

Injection event is denoted as EOI and shown with a vertical dotted line). After the injector trigger, a 

~300 µs hydraulic delay occurs. Following this delay, the spray starts to penetrate into the chamber. 

This actual start of injection event is denoted as SOI. Following the autoignition and soot formation 

processes, the first soot particles reach to detection zone at 58 mm depth in spray axis about 1.5 ms 

after the start of injection. Within the first 1.5 ms, the signal exclusively shows the incident signal and 

𝐼0 is calculated as the mean of this data range. The fluctuations in this time zone are due to the elec-

tronic noise in the detection system. 

As shown in the next section, the transient soot cloud head is larger in diameter compared to the 

quasi-stationary spray. Therefore, when the soot cloud first arrives at the measurement location, the 

laser extinction is stronger compared to the quasi-stationary spray. Following this instant, extinction, 

i.e., the line-of-sight integrated soot concentration is steady without any systematic changes. How-

ever, random deviations around the mean value occur due to turbulent fluctuations. The mean value 

is shown with the dash-dotted green line between 2 and 5.2 ms to show these fluctuations. This quasi-

stationary behavior lasts for slightly more than 3 ms. Note that this duration does not represent the 

injection duration time of 4 ms.  

Shortly after 3.2 ms, a sharp signal peak can be seen that is due to interference with the LII laser and 

signal. This signal is almost instantaneous and can easily be subtracted from the LEM signal. It acts as 

a marker for the exact determination of the timing of the LII measurement. The signal trace around 

the LII event is enlarged in the inset. For the calibration of LII with LEM, an LEM signal integrated over 

10 µs right before the LII measurement is used.  

The LII images must be corrected for signal contributions from “natural” incandescence of soot that 

are present behind or in front of the LII laser sheet. Additionally, CH* chemiluminescence is also in 

the spectral range of detection and thus contributes to the collected signal. Therefore, luminosity 

images were taken in independent spray events with the laser off at corresponding boundary condi-

tions and with the same camera gate. For each condition at least five measurements were averaged 

to minimize the influence of turbulent fluctuations. The signal from these background luminosity im-

ages is then subtracted pixel-wise from the LII images. The average contribution of the background to 

the actual LII signal for Spray A is ~6% of the total signal. In lower soot conditions however, this con-

tribution reaches up to 16% of the total signal measured. 

As given in Eq. 8, a field-of-view integration of the LII signal across the sooting zone is necessary for 

the comparison and calibration with LEM measurements. The spatial location of this integration re-

gion is illustrated in Fig. 43 as a vertical line. This can be done by simply adding all the pixels in the 
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corresponding column where the LEM laser intersects the soot cloud. The width of a single pixel col-

umn is ~0.085 mm, however the diameter of the HeNe laser beam used in the LEM setup is ~1.5 mm. 

The HeNe laser has a 2D Gaussian profile and therefore measuring the beam diameter is not trivial. 

Knowing this, the 𝐾𝐿LII𝑥
 value is calculated for 18 consecutive pixel columns at the region of interest, 

and an arithmetic mean of these values is taken for calibration. Before averaging, a Gaussian distribu-

tion is also tried on 𝐾𝐿LII𝑥
 values. However, a higher accuracy over the direct arithmetic averaging is 

not seen. 

 

Fig. 43 Instantaneous LII image. The line at 58 mm indicates the position of the LEM laser beam. KLLII is  

determined from an integration of the LII signal in a 1.5 mm wide area. 

The fidelity of the 𝐾𝐿LII calculation is aided by identification of the spatial boundaries of the soot 

cloud for integration perpendicular to the spray axis. As background luminosity images are subtracted 

from the LII image, there is virtually zero signal outside the soot cloud (marginal deviations around 

zero value is due to noise and cycle to cycle variations). Nevertheless, a threshold can be defined to 

locate the boundaries of the soot zone thereby minimizing errors in the integration.  

5.6 Results 

5.6.1 Assessment of Spray A operating condition 

The first aim of the measurements is to verify that the present experiment matches the target ambi-

ent conditions (temperature and density) for Spray A and compare those conditions with the similar 

vessel at IFPEN [19]. It is assumed that the gas inside the vessel is ideal gas [122] and the measured 

temperature and pressure are used to compute the gas density through the ideal gas law, including 

the compressibility of the gases. Temperature is measured with a thin thermocouple at the spray zone 

and pressure is monitored by a pressure transducer. Depending on the density predictions, the 

amount of fresh input gas prior to pre-combustion is adjusted as discussed in section 5.2.2. However, 
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due to the low signal-to-noise ratio of thermocouple data, the gas density could be calculated with a 

limited precision only. Several months after the soot measurements presented here, an improved 

analysis on the same vessel was conducted with more appropriate thermocouples. These recent 

measurements showed that the gas temperature used in the experiments shown in this work was 30 

K above the Spray A standard. While the temperature was believed to be 900 K, the actual tempera-

ture at the spray instant was 930 K. This systematic error led to an overestimation of the gas density. 

Therefore, measurements in this thesis were done at around 21.8 kg/m3 instead of the Spray A stand-

ard of 22.8 kg/m3.  

The recent determination of the ambient gas temperature also showed that the discrepancy between 

the two IFPEN vessels (that were used for this study and for previous ECN studies [19,45,120]) was 

due to a slight difference between the vessel temperature control systems. Indeed, both vessels are 

equipped with similar heating elements and temperature control systems. Because of the small dif-

ferences found with the new thermocouples, the resulting ambient temperature before pre-combus-

tion varies by about 20 K between the two vessels. If not taken into account, this 20 K difference 

affects the ambient density of the mixture before pre-combustion and is responsible for an error of 

30 K and 1 kg/m3 when targeting Spray A. However, at the time of the soot measurement experiments, 

these deviations have not yet been discerned and therefore soot measurements were conducted at 

these off-target boundary conditions. For future references, these deviations and their possible ef-

fects on the combustion process should be taken into account. Nevertheless, for simplifying the dis-

cussion, the operating point will still be labeled according to the nominal values of Spray A and its 

parametric variants (900, 850, 1000 K) in this work although the actual values (930, 880, 1030 K) will 

be reminded. 

For comparison with the existing ECN data sets, fuel temperature in the sac volume, liquid penetration 

length, vapor penetration length (in non-reacting Spray A, i.e., 0% ambient oxygen), autoignition tim-

ing and lift-off length measurements were done following the best-practice rules of the ECN commu-

nity [20]. The measured results are compared to the ECN database in Tab. 9. In addition, a third col-

umn called “ECN scaled” is presented in Tab. 9. Considering the above-mentioned discrepancies in 

boundary conditions, a scaling to the ECN database figures were applied based on modeling. For liquid 

penetration, the model from Musculus et al. [77] is used. It is found that for a deviation of +30 K and 

−1 kg/m3, the liquid penetration length shortens by 5%. The same model also showed that a decrease 

of 1 kg/m3 leads to about 1 mm increase in vapor penetration length at 1 ms aSOI. Finally, for the lift-

off length scaling, the model from Pickett et al. [41] is used. The stated deviations in the boundary 

conditions resulted in a 15% shorter lift-off length. These scaling models indicate that the departures 
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from the ECN database for the near Spray A conditions in this study are in the expected direction, and 

can be recovered if parameters are scaled to nominal Spray A conditions. 

Tab. 9 Comparison of the results of standard diagnostics to verify Spray A against the ECN database. 

 Measurements ECN database ECN scaled 

Fuel temperature / K 363±1 363 -- 

Liquid penetration length / mm 11±0.35 10-11 9.5-10.5 

Autoignition aSOI / µs 400 390-440 -- 

Lift-off length [mm] 14.5±0.5 15.4-16.7 13-14 

Vapor pen. length at 1 ms aSOI / mm 49.5±4 46.7±0.7 48 

 

For liquid penetration, the measurement results were slightly above the ECN-scaled values. It is known 

that fuel temperature and ambient density have a major influence on the liquid penetration length. 

Sac volume temperature measurements were done by a dedicated injector with a thin thermocouple 

inside. They showed that the initial fuel temperature was precisely set to a predefined value. Consid-

ering the relatively large span of values in the ECN database, the deviation of this measurement is 

considered acceptable. For vapor penetration and lift-off lengths, however, the measurement results 

were still higher than the scaled ECN figures. In the vapor penetration measurements, a large uncer-

tainty could not be avoided. The measurements on different days resulted with large differences. The 

trend of larger vapor penetrations can be explained by a combined effect of higher ambient temper-

ature and lower ambient densities. Nevertheless, scaled ECN figures are acceptably close to what have 

been measured. The measured lift-off lengths are in good coherence with the ECN-scaled figures. Such 

uncertainties in the boundary conditions may most likely affect soot processes. Nevertheless, these 

deviations from the ECN database were also revealed after the soot measurement experiments only.  

5.6.2 Assessing laser and signal attenuation 

Under conventional Diesel spray conditions, high soot concentrations can lead to severe attenuation 

of the LII signal and the laser light. In case of randomly distributed soot between the laser-heated 

plane and the camera, this signal trapping is difficult to correct for. Attenuation of the laser light on 

the other hand prevents the application of low-fluence LII (where the signal depends on the 

knowledge of the local laser intensity). High-fluence LII in the plateau zone can even be limited in its 

applicable range, because the laser intensity can fall below the plateau fluence after traveling through 

a dense soot cloud for a longer distance. Both effects limit the applicability of LII under conditions 

with high soot load and larger geometric dimensions [132].  

Thus, a verification of the applicability of LII diagnostics is required for the present case. In Fig. 44, 

simultaneously recorded KLLII and KLLEM values for over 100 spray events are presented. A linear curve-
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fit to the entire data set (solid red line) and two linear curve-fits to lower and higher edges of the data 

envelope (dashed blue and green lines) based on the ordinary least squares solution are also shown. 

All these curve-fits are also forced to intersect the origin. Note that these measurements were con-

ducted for calibration purposes and to allow for correlation between LII and LEM on a larger range of 

operating conditions and soot volume fractions. Therefore, ambient temperatures were varied for the 

individual measurements around the given Spray A target (±100 K).  

 

Fig. 44: Correlation between KLLII and KLLEM over 100 individual measurements. 

The coefficient of determination for the entire data set linear curve-fit is calculated as 0.54 where the 

slope of the curve is calculated as 90.9. It can be speculated that this data set acknowledges the linear 

assumption between LII and LEM signals. However, the spread of the measurement points around the 

mean line is significant and represents the combined uncertainties of the measurement strategies 

applied here. To show the effect of this uncertainty on LII–LEM coupling quantitatively, the slopes of 

linear curve-fits to maximum and minimum data points are measured as 145.5 and 36.5, respectively. 

For these fits, data points are manually chosen from the scatter plot and can be identified with the 

respective blue or green color code. Concerning LEM, although the experiment was designed to min-

imize uncertainties due to beam steering and the natural soot incandescence as mentioned above, 

interference with forward-scattered laser light may remain [21]. The LEM detection is also affected 

by instabilities in the alignment and by variable transmission of the windows. Additionally, LEM uses 

an integration time of 2 µs and thus does not observe exactly the same conditions as LII (with a de-

tection time in the tens of nanosecond regime) which can affect the correlation in a strongly turbulent 

and spatially inhomogeneous case. The magnitude of the total uncertainty on LEM was measured as 
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5% in a previous study not including the temporal variations that might occur in a turbulent applica-

tion.  

For LII, this present experiment was affected by a ±20 ns random jitter of the camera gate timing 

relative to the laser pulse which was noticed only after finalizing the measurements. The lifetime of 

the LII signal from the peak signal to 10% of the peak signal under the Spray A conditions was less 

than 50 ns (cf. Fig. 45). The LII signal is detected within a 50 ns gate. Its beginning is set 15 ns before 

the laser Q-switch trigger (after the Q-switch trigger, it takes approximately 5.5 ns for the laser pulse 

to travel the 160 cm distance from the laser to the jet). The intended position of the gate is shown by 

the red dotted lines in the figure. In case of a 20 ns positive jitter, shown with dashed green lines, the 

collected signal increases by ~5%. In the case of a 20 ns negative jitter, the collected signal reduces 

~50% (dash-dotted, black lines). This jitter was caused by an electronic problem in the timing circuit 

and is thus responsible to a large extent for the deviations seen in Fig. 44. With an improved system, 

a correlation like that demonstrated in [21] is expected.  

 

Fig. 45: Temporal variation of the LII signal. The red dotted lines show the intended temporal position of the 

50 ns detection gate, black (dash-dotted) and green (dashed) lines indicate the shift of the gate caused by the 

unintended ±20 ns jitter that occurred in the present measurements. 

Although the standard deviation is high, from Fig. 44 it can be derived that Spray A and its variants 

provide moderately sooting conditions with limited laser attenuation and signal trapping that allow 

the application of LII. In case of strong signal trapping, a systematic decrease in KLLII would take place 

for increasing soot concentration showing a systematic deviation from the linear correlation with in-

creasing KLLEM. It should however be taken into account that completely avoiding signal trapping is 

not possible in such measurements. The contribution of the attenuation of the LII signal at 425 nm to 

the overall uncertainty can be estimated by using the extinction measurements at 632.8 nm. The line-

of-sight integrated extinction along the diameter of the soot plume can be roughly halved to associate 

-50 0 50 100 150

0

0.2

0.4

0.6

0.8

Time / ns

S
ig

n
a
l 
in

te
n
s
it
y
 /
 a

.u
.

-20

20



Chapter 5 

74 

it to the signal trapping in LII measurements. The wavelength-dependent absorption characteristics 

can be corrected by using Eq. 4. 

First the transient soot structure in a Spray A with the original injection duration of 1.5 ms will be 

introduced. This time resolved imaging gives mainly an insight to the question of when the soot for-

mation and oxidation mechanisms start in a Spray A. Following that, soot volume fractions of the 

quasi-stationary Spray A and its parametric variants will be presented. This study mainly shows the 

effects of ambient temperature and oxygen concentration on soot mechanisms in Spray A. 

5.6.3 Transient Spray A 

For imaging the transient soot cloud in Spray A, natural soot luminosity and the LEM-calibrated LII 

method were used. The results are given in Fig. 46 for seven instants of the spray flame development. 

The natural luminosity images on the left hand side cover 80 mm axial distance downstream of the 

nozzle. The LII images on the right hand side are limited to 60 mm which indicates the limit of the 

central part of the laser light sheet. The timing of these measurements with respect to start of injec-

tion is given in the figure. The actual injection duration is 1.5 ms, therefore, all the images in this time 

sequence show the soot behavior while no additional fuel is injected into the system. The ignition 

delay is around 0.4 ms, therefore, the injection duration of 1.5 ms is longer than the ignition delay, 

and this case is identified as negative ignition dwell in spray research [35]. 
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Fig. 46: Soot luminosity and LII imaging of the Spray A at seven times after SOI. Luminosity images are captured 

with a 50 µs camera gate. All luminosity images share the same color scale. The calibrated LII images have unique 

color scales giving the soot volume fraction. 

Each luminosity image on the left column, is an ensemble average of three individual measurements. 

They are captured instantaneously with the identical camera settings of LII system. At such short gate 

durations with the given camera gain, lens and filter setup, soot luminosity is the only detectable 

process. Luminescence such as CH* emission or cool flame luminescence is too weak to significantly 

contribute to the signal. These images are not calibrated and are shown for qualitative comparison 

only. They are also used for background correction of the LII images (gate width is scaled to 50 ns with 

a linear assumption). LII images, on the right column, are also ensemble averaged. At each time, four 

LII images were captured from individual experiments. For all measurements a unique camera setting 

is used. After the LEM calibration, pixel intensities are converted into soot volume fraction in particles 

per million (ppm) units. For better illustration of the various measurement instants, different color 

scales are applied.  

LII images at 0.9 ms after SOI shows that the soot volume fraction at this instant is very low (below 

0.2 ppm). LII imaging was also conducted at 0.6 ms after SOI; however, no detectable signal is found 
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with the given camera setting. It is difficult to comment that soot formation in Spray A starts at the 

instant of 0.9 ms after SOI. Soot formation most probably starts at a slightly earlier instant and could 

be detected with a higher camera gain setting but the amount of soot would be marginal. Neverthe-

less, it can be concluded that soot volume fractions in Spray A reach considerable values first at 0.9 

ms after SOI. Both luminosity and LII images at this instant also show the first-soot distance. It can be 

seen that this noticeable amount of soot formation occurs around 30 mm downstream of the nozzle 

orifice. Additional information captured from the soot images at 0.9 ms is the radial location of the 

soot cloud in the spray. Because luminosity images include line-of-sight-integrated data, it is difficult 

to identify the radial distribution of soot. The LII images, on the other hand, reveal the soot volume 

fraction within a cross section. It is observed that during the early phases, soot is located at the pe-

riphery of the jet, i.e., in the vicinity of the non-premixed flame zone where the temperature is ex-

pected to be higher than the reactions in the core of the jet. In the central region of the jet at lower 

temperature and richer mixture, there is almost no traceable soot. 

At 1.2 ms the soot volume fraction increased more than 10 times with respect to previous time step. 

Qualitative luminosity images also verify this increase. The LII images show that at this time soot is 

still preferentially located at the jet periphery. The center of the jet has still not reached soot for-

mation temperatures or residence times. The LII image at 1.5 ms shows that soot formation domi-

nates over oxidation and therefore soot volume fractions are slightly higher with respect to 1.2 ms. 

Soot formation at the spray center is enhanced at this instant and the soot volume fraction is in-

creased in this region. Images at 1.8 and 2.1 ms show that a systematic global decrease in the soot 

volume fraction has already started. This is attributed to oxidation of soot. As the air entrainment 

increases with penetration and time, soot first starts to oxidize in oxygen-rich high-temperature zones 

such as the boundaries of the jet. Therefore it can be seen in these images that the soot volume frac-

tion is higher in the core area but it has already diminished at the periphery in contrast to the previous 

time steps. The reduced intensity at 1.8 ms with respect to earlier and later measurements is unex-

pected and is considered random because of the limited number of measurements and the jitter that 

causes a random variation in signal intensity. At 2.4 and 2.7 ms, the soot cloud has already left the 

observed area and only the tail of the soot cloud can be seen.  

5.6.4 Quasi-stationary Spray A and parametric variation 

Extinction measurements (cf. section 5.5) and transient Spray A imaging have shown that a spray with 

4 ms injection duration shows a quasi-stationary behavior after the first ~3 ms of injection upstream 

of 60 mm. While investigating the impact of different ambient boundary conditions on the soot vol-

ume fraction, such quasi-stationary sprays allow easier evaluation of these ambient condition effects. 
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The steady state may also be more convenient for modeling comparison. Fig. 42 showed, however, 

that the turbulent fluctuations still occur in the quasi-stationary state, therefore soot volume fraction 

at a location may change strongly from spray to spray, i.e. cyclic variations. To suppress this, at each 

condition resulting soot volume fraction images are ensemble averaged. At Spray A conditions 30 

single-shot images, and at other conditions 10 single-shot images are used. 

Fig. 47 gives soot volume fractions of Spray A together with its ambient temperature and oxygen par-

ametric variants. 50 ns gate duration LII images are taken 3.2 ms after injection triggering where the 

spray flames are in a quasi-stationary phase within the laser sheet domain. Soot volume fractions are 

determined from extinction-calibrated LII images. For all the conditions a single calibration constant 

is used as measured for Spray A (cf. Fig. 44). Figures are presented in a contour plot color scale with 

seven equally spaced isolines appropriate for each condition. For each parametric variation, only a 

single boundary condition was modified and all the other boundary conditions were kept constant. 

The flame lift-off length is an essential parameter to interpret the effects of ambient conditions on 

soot volume fraction. The measured lift-off length is given as red vertical solid lines in Fig. 47. These 

lift-off measurements were not performed simultaneously with the soot measurements, but are the 

ensemble averaged results of five measurements. Measured lift-off lengths over a wider range of con-

ditions are given in Fig. 48, where mean values are presented with 95% confidence intervals (vertical 

error bars). As known from past research [36,41,47], decreasing ambient temperature or oxygen con-

centration increases the lift-off length. With enough increase in lift-off length (at 800 K ambient tem-

perature or 11% ambient oxygen concentration), the LII experiments could not detect any discernible 

signal, indicating low or no soot concentration within the measurement domain.  
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Fig. 47: Ensemble-averaged soot volume fraction images during quasi-stationary combustion for Spray A and its 

ambient temperature and oxygen parametric variants. Plots are labeled with nominal temperatures (actual tem-

peratures are indicated in the parenthesis). Lift-off lengths for each condition are given as solid vertical line with 

95% confidence intervals in dashed lines. 

For all conditions displayed in Fig. 47, the soot formation begins well downstream of the lift-off length. 

The Spray A condition at the top shows soot concentrations reaching measureable amounts between 

30 and 40 mm of axial length to nozzle. After this distance soot concentration gradually increases and 

reaches a plateau between 50 and 60 mm. The plateau indicates that soot oxidation and soot for-

mation are in balance. Based on soot measurements at identical conditions but with different fuels, it 

is known that soot oxidation continues downstream of 60 mm and there is a gradual decrease in the 

soot concentration [38,110]. 

Fig. 47 shows that quasi-stationary Spray A is a moderately sooting jet. Maximum soot volume frac-

tions of around 3 ppm are obtained at the nominal temperature of 930 K. Taking into account the 

peak soot volume fraction of around 1 ppm obtained at 880 K, a maximum value of around 2–3 ppm 

is expected at 900 K for Spray A conditions. This result confirms that signal trapping is not significant 

for Spray A conditions (cf. section 5.6.2). Also when increasing the ambient temperature to 1030 K, 

the soot level remains moderate since its peak value is below 12 ppm. 
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These soot levels can be compared to recent measurements at Spray A conditions using a more heav-

ily sooting fuel [38,110]. In these studies a mixture of 23% m-xylene and 77% n-dodecane was the 

fuel, rather than pure n-dodecane as the Spray A standard. Maximum soot volume fraction in the jet 

increased from 5 ppm at 900 K to 25 ppm at 1000 K, indicating higher soot levels for the m-xylene-

mixed fuel compared to n-dodecane, which is consistent for a fuel with higher aromatics. The soot 

measurements presented here for n-dodecane are therefore consistent with expectations based on 

ambient temperature and fuel type. 

 

Fig. 48: Average lift-off lengths at varying ambient temperature and oxygen concentrations. The dashed red line 

shows the temperature changes (x axis at the top) and the solid blue line shows ambient oxygen concentration 

changes. Vertical error bars give 95% confidence intervals. 

When ambient oxygen is varied, the region of soot formation and oxidation tends to shift upstream 

(increasing ambient oxygen) or downstream (decreasing ambient oxygen) [37]. For example, at 21% 

oxygen the peak soot concentration is at 40–50 mm and soot oxidation consumes nearly all soot by 

60 mm. In contrast, at 13% oxygen, soot formation processes are delayed and pushed downstream in 

comparison to the Spray A condition. When only the ambient temperature is varied, the soot for-

mation zone tends to advance towards the injector with increasing ambient temperature [39]. 

To account for the variation in ambient oxygen concentration, and hence the total oxygen entrained 

into the spray at the lift-off length or downstream, it is helpful to consider the soot measurements in 

a coordinate system with equal oxygen entrainment or oxygen ratio, Ω [37]. As discussed in sec-

tion 5.3.5, model jet scaling laws are applied to understand the total oxygen entrained into the jet, 

which transforms the axial coordinate into a more universal “flame” coordinate. For the calculation 

of these flame coordinates, the spray angle is taken as 21° and nozzle-related flow coefficients that 
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were shown in ref. [121] (label of the nozzle: 210678) are used. Shown in Fig. 49 are two different 

analyses of the soot datasets: Fig. 49a shows integrated soot masses in thin (1 mm) radial cross-sec-

tions inside the jet are presented as a function of axial distance. To calculate the total mass of soot 

present within the jet, Eq. 23 is used as given in [36]:  

𝑚soot = 𝜌soot ∫ ∫ 𝑓v2π𝑟 𝑑𝑟 𝑑𝑥
𝑅

0

𝑥2

𝑥1

 ( 23 ) 

where the integral term represents the volume of soot within certain axial limits (x1 to x2) over the 

cross section of the jet, and 𝜌soot is the soot density, assumed to be 1.8 g/cm3 [36]. Fig. 49b shows 

the same integrated soot masses as a function of flame coordinate determined for each unique 

boundary condition.  

 

Fig. 49: Soot mass for various boundary conditions in thin (1 mm) cross-sections of the jet  

as a function of axial distance (a) and flame coordinate (b). 

Fig. 49a shows that increasing the ambient temperature leads to an increase in the peak soot mass as 

well as a shift of this peak point towards the nozzle. Fig. 49b shows that as the ambient temperature 
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increases, soot formation occurs in more fuel-rich regions. These results are consistent with previous 

studies [39], shown to be the consequence of the combined effects of a shortened lift-off length, an 

increase in the soot formation and oxidation rates, and a shift in the balance between formation and 

oxidation axially along a fuel jet as temperature increases. 

Furthermore Fig. 49a shows that when the ambient oxygen concentration decreases from 21 to 15%, 

the soot mass first increases. By further decreasing the ambient oxygen concentration from 15 to 

13%, a reduction in the soot mass is observed. This initial increase and then decrease of soot mass 

with reducing oxygen concentration is known as “soot bump” [35,36], and it is related to the compe-

tition between residence time and soot formation rates [36]. The maximum soot mass observed at 

15% oxygen concentration in this work is comparable to the results of [36] in the same temperature 

range. With reducing oxygen concentration soot processes also shift downstream. However Fig. 49b 

indicates that, although the magnitude of soot level may be different, the soot formation happens at 

similar flame coordinates. Unfortunately, the soot oxidation region is not within the measurement 

domain for most datasets (except 21% oxygen), and so this region is not represented in the flame 

coordinate in Fig. 49b. However these results are again consistent with previous studies [36,37] where 

it was found that dilution and reduced flame temperature can greatly reduce soot formation (and 

oxidation) rates, thereby lowering the soot concentration.  

5.7 Conclusions 

The work performed in this part of the thesis was the first attempt to measure the soot volume frac-

tion of Spray A within the ECN community. Measurements are conducted for transient and quasi-

stationary conditions. The relation between lift-off length and soot processes was also examined. For 

diagnostics, LEM coupled with LII and OH chemiluminescence methods were used. Measurements are 

also extended to parametric variations of the Spray A pre-defined in the ECN. Consistent with the 

literature results, it is shown that ambient temperature and ambient oxygen concentration have sig-

nificant impact on soot processes. The following conclusions are drawn from the measurements: 

A precise setting of operating conditions to the standard Spray A conditions in this study could not be 

achieved. For all soot measurements, the ambient density was about 1 kg/cm3 lower and the ambient 

temperatures were about 30 K higher than the target values. Therefore for future references, it is 

recommended to take these variations into account. The difficulties in setting operating conditions to 

the standard Spray A conditions, which found to be caused by a lack of characterization of the ambient 
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temperature before pre-combustion, lead to an error in the density of the pre-combustion gas mix-

ture. It is therefore also recommended to carefully characterize the temperature and take it into ac-

count when monitoring the gas mixture of ECN pre-combustion vessels. 

Significant statistical error was observed in the present LII experiment. It was shown that jitter be-

tween the laser and the camera was the main contributor. It is therefore recommended for future 

ECN soot experiments to minimize the jitter. 

Soot volume fraction measurements showed that Spray A is a moderately sooting spray. Maximum 

soot volume fractions around 2–3 ppm are obtained at near Spray A temperature (930 K) and 12 ppm 

at elevated temperature (1030 K). As a result, significant signal trapping of LII radiation does not occur. 

This was confirmed by a linearity analysis of 𝐾𝐿LEM and 𝐾𝐿LII as well as the measured laser transmis-

sion loss due to the extinction below 35% leading a 𝐾𝐿LEM value below 0.5. This measured value at 

the peak soot volume fraction region of Spray A is well below those values mentioned in the literature 

where signal trapping takes place. Therefore, 2D soot volume fraction measurements based on the LII 

method can be done without significant signal trapping or laser attenuation correction. 

The temporally-resolved imaging of the Spray A showed that soot formation begins after autoignition 

during the premixed burn phase at a finite distance to the lift-off length. Cross-sectional images reveal 

that soot formation initially starts close to the spray periphery whereas the core region has no soot 

at early formation timings and locations. The expansion of soot formation process into core region 

happens only a finite time after the first soot formation. These transient images also show that 1.5 ms 

of original injection duration of Spray A is too short to establish a quasi-stationary mode of jet flow 

and combustion between the soot formation and oxidation zones. 

With a 4 ms injection duration of Spray A, as the jet continues to penetrate downstream, a quasi-

stationary region is established upstream of the penetrating transient head of the jet. The soot meas-

urements in the quasi-stationary region show that the soot concentration in a fuel jet initially in-

creases with axial distance downstream of the lift-off length and reaches a peak value or a plateau. 

However, the soot oxidation processes for Spray A could not be captured in this study entirely. For an 

attempt to analyze this process, a laser sheet covering all the way downstream the jet axis is neces-

sary. The effect of ambient temperature and oxygen concentration variations were found to be con-

sistent with previous studies. 
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6 Particle-size imaging at Diesel engine conditions 

6.1 Sensitivity analysis for in-cylinder particle-size imaging 

In this section, a model-based analysis is performed to identify an optimum strategy for particle-size 

imaging at engine relevant conditions. The methodology and the simulations designed for 60 bar were 

already introduced in section 3.1. For practicality, the LII signal library (Fig. 3b) and the simulation 

parameters (Tab. 1) used in this section are reprinted below in Fig. 50.  

 

Fig. 50: LII signal “library” showing normalized time-dependent LII-signals for various primary soot particle di-

ameters (𝑑p) at 60 bar and simulation parameters for the LII model. 

6.1.1 Sensitivity to boundary conditions 

A reference LII model function is generated for all subsequent comparisons that is calculated for 

mono-disperse soot particles with 30 nm diameter with the boundary conditions shown in Tab. 1. 

Using this signal and the identical boundary conditions as input for the curve-fitting procedure, the 

original 30 nm size is reproduced. By systematically changing one individual boundary condition (and 

keeping all others fixed) in the curve-fitting routine, the sensitivity of the system to the respective 

variable can be determined from the deviation in the evaluated results. Sensitivities of the LII particle 

sizing to the thermal accommodation coefficient, bathgas temperature, peak temperature, aggregate 

size and ambient pressure are shown in Fig. 51. Each plot has two x-axes: The axis on the top shows 

the nominal value of the modified variable whereas the axis on the bottom indicates the relative 

change of the variable with respect to the control boundary conditions. The y-axes show the relative 

change in the calculated particle diameter with respect to the original diameter, dp = 30 nm.  
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The thermal accommodation coefficient, denoted by 𝛼T, describes the efficiency of energy transfer 

during molecular collision in the heat conduction mechanism. Various values from 0.07 to 1.00 were 

reported in the literature. A larger value of 𝛼T leads to a more efficient loss of energy to the surround-

ing atmosphere and, hence, a faster signal decay at the same collision rate [14,133]. 𝛼T is a dimen-

sionless coefficient and depends on temperature as well as on particle morphology [134]. Therefore, 

it cannot be directly measured in real systems. In this study, the control signal is simulated with a 

value of 0.25, and various values from 0.1 to 0.4 with 0.01 increments are tested for particle-size 

evaluation. Fig. 51a shows that a too small value of 𝛼T results in smaller evaluated particle sizes be-

cause it causes the simulated signal decays to become too slow. To match the input data, this slow 

decay is compensated by a small particle size, hence faster decay, by the curve-fitting algorithm. Vice 

versa, for too large 𝛼𝑇 values, too large particle sizes are returned. A 40% inaccuracy in 𝛼T causes as 

a 20% inaccuracy in the evaluated results. 

The bathgas temperature (Fig. 51b) is a physical property of the system. It affects both the radiative 

and the conductive heat transfer rates and it defines the initial temperature of the soot particles be-

fore the laser heat-up. Therefore, the peak temperature of soot and the evaporation rate also depend 

on the bathgas temperature. To understand how the particle-size evaluation is influenced by incorrect 

assumptions of the gas temperature, these mechanisms are investigated independently. During laser 

heating with a constant laser fluence, the peak temperature of the particles increases with increasing 

gas temperature. This slightly increases the radiative heat flux which remains, however, negligible 

compared to conductive cooling. For conduction, the bathgas temperature has competing effects. 

While increasing the gas temperature enhances the thermal conductivity and the heat capacity of air, 

and thus increases particle air energy transfer, the overall conduction-related heat flux reduces due 

to a smaller temperature difference T between particle and surrounding gas. Additionally, depend-

ing on the laser fluence, the increased bathgas temperature may eventually cause the particle tem-

perature to exceed the evaporation threshold and therefore causes additional energy loss. Fig. 51b 

shows that with increasing gas temperature at moderate laser fluence, the decrease in heat conduc-

tion due to a reduced T is larger than the sum of enhancing effects in the other mechanisms. There-

fore, smaller particle sizes are evaluated to compensate the reduced LII signal decay rate when higher 

gas temperatures are assumed. According to this evaluation, a 20% error in T causes as a 20% error 

in the evaluated particle sizes.  
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Fig. 51: Sensitivity of the particle-size evaluation on 

the thermal accommodation coefficient (a), bathgas 

temperature (b), heat-up temperature (c), aggregate 

size (d), and pressure (e). 

 

 

 

The particle heat-up temperature (Fig. 51c) reached during the laser pulse depends on the laser flu-

ence chosen for the experiment. As in the case of bathgas temperature, the signal decay and therefore 
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the size evaluation is influenced by the heat-up temperature via radiation, conduction, and evapora-

tion. In all three heat transfer mechanisms, an overestimated heat-up temperature causes faster LII 

decay that then leads to the prediction of too large particle sizes. The sensitivity of the particle sizing 

to heat-up temperature is largest in the evaporation regime because the large heat loss encountered 

with evaporation. Fig. 51c shows that the heat-up temperature has the lowest sensitivity for moderate 

peak temperatures between 3400 and 3900 K. Tuning the laser fluence to this target temperature 

range minimizes the uncertainty in size evaluation for the case calculated here at 60 bar.  

Soot aggregates can be described as random fractal structures. When modeling LII-signal traces, the 

laser absorption rate, the change in internal energy and the heat loss due to radiation are not affected 

by aggregation as long as the individual particles remain in the Rayleigh regime. The signal scales lin-

early with the number of primary particles within an aggregate, Np, and hence the mass [29]. However, 

heat conduction is affected by aggregation. A primary soot particle within an aggregate cools down 

more slowly than an isolated one because collisions with gas molecules are reduced by the surround-

ing particles. This phenomenon is known as shielding. Fig. 51d shows that an underestimation of the 

Np causes too fast simulated LII decays resulting in an overestimation of particle sizes. The greatest 

change occurs when switching in LIISim from isolated particles to the aggregate model. Np, however, 

is a difficult parameter to measure. The variable range (1–100) investigated here is based on a statis-

tical analysis of TEM measurements of thermophoretically sampled soot obtained from high-pressure 

combustion processes [95,110]. The ambient pressure is a significant parameter for the shielding-

related change in heat flux [29]. 

The ambient pressure (Fig. 51e) is also a physical property of the system under investigation. In a 

combustion chamber it is spatially uniform and can be measured by pressure transducers. The pres-

sure affects both conductive cooling and evaporation, while the latter effect is negligible. When the 

pressure is underestimated, a slower heat exchange, and hence longer signal lifetime is modeled. In 

such case, the curve-fitting compensates this slower decay by returning smaller particles. The devia-

tion in the particle size was not greater than ±4% for an error of ±10% in pressure. Nevertheless, the 

pressure and the signal lifetime have a logarithmic relation (cf. section 6.1.4 and Fig. 60). Around 60 

bar, the influence of pressure on particle sizing can be marginal whereas at pressures lower than 10 

bar, small deviations can lead to large discrepancies. 

Besides its direct effect, the pressure influences the sensitivity of the particle sizing to the other ex-

periment and modeling parameters. To determine the effect of pressure on the influence of the 

bathgas temperature, the analysis shown in Fig. 51b was repeated at pressures from 1 to 80 bar. All 
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the other modeling parameters were kept constant. Fig. 52a shows that, as pressure increases, the 

sensitivity of the evaluation to the input data reduces. When the bathgas temperature is assumed 

20% lower than the actual temperature, the error on the evaluated size is around 30% at atmospheric 

pressure whereas this error reduces below 15% at pressures above 60 bar. The same analysis is re-

peated for the heat-up temperature and shown in Fig. 52b. At atmospheric conditions, a 20% higher 

heat-up temperature can cause errors above 60%, whereas the same variation causes only 5% error 

at pressures above 40 bar. This reduction in the sensitivity can be attributed to the fact that at higher 

pressures the normalized LII signal decay traces of different particle sizes fall into narrower envelopes 

and curves resulting from different environmental conditions become closer. 

 

Fig. 52: Sensitivity of particle sizing to the bathgas temperature (a) and heat-up temperature  

(b) at various pressures. 

6.1.2 Particle-size dependent heat-up temperature 

Within the Rayleigh regime, 𝜋𝑑p/λex < 0.3, (with ex the laser wavelength) the energy absorbed by a 

particle depends on its volume [22]. Independent of the particle size, the same energy density is 

reached and all particles in a poly-disperse ensemble should reach a uniform heat-up temperature as 

long as no energy losses occur during heat-up. These losses, however, can be significant at high pres-

sure. Recent studies [27,44] showed that the particle-size dependent energy loss during heat-up 

causes temperature differences among the different particle-size groups in the ensemble because 

small particles loose energy faster than larger particles. To quantify these deviations at 60 bar, simu-

lations were performed for the evaporating and non-evaporating regime for particle diameters from 

2 to 50 nm at conditions given in Tab. 1.  
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Fig. 53: Particle-size dependent peak temperatures, 𝑇ℎ𝑒𝑎𝑡–𝑢𝑝 ; (a) non-evaporating regime (0.08 J/cm2),  

(b) evaporating regime (0.2 J/cm2). 

For low laser fluences (Fig. 53a) the peak temperature difference between the 10 and 40 nm particles 

is ~400 K while for the high-fluence regime (Fig. 53b) it is above 600 K. As shown in section 6.1.1, such 

deviations in heat-up temperature can have dramatic effects on particle sizing. This effect also limits 

the reliability of the pyrometric determination of heat-up temperatures that are used for two-color 

LII measurements where the modeling of the laser absorption is omitted and the measured temper-

ature is used as an input for the simulation [29,44,56,97,135]. In particle-size measurements that in-

clude heat-up modeling, the variation in peak temperatures is automatically considered because a 

unique peak temperature, hence a peak LII signal, is calculated for each trace with the net energy 

gain. Nevertheless, uncertainty still remains for poly-disperse soot where the acquired experimental 

signal trace (or signal ratio in particle-size imaging) consists of radiation from various particle-size 

groups. Uncertainties related to poly-dispersion are discussed in section 6.1.6. 

 

Fig. 54: Dependence of particle heat-up temperatures on bathgas temperatures for various particle sizes. 
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Fig. 55: Look-up table of dp vs. signal ratio for gas temperatures, 𝑇bathgas, between 1400 and 2300 K  

with a laser fluence of 0.15 J/cm2. 

The relation between particle size and peak temperature can also influence evaporation. For a given 

laser fluence, depending on the bathgas temperature, the peak temperature of small particles may 

remain below the evaporation threshold whereas larger particles may start to evaporate. The depend-

ence of the peak temperature to the bathgas temperature for different diameters are presented in 

Fig. 54. The simulations are performed with the parameters shown in Tab. 1. 10 nm particles cannot 

reach evaporation regardless of the bathgas temperature in the investigated temperature range. On 

the other hand, 40 nm particles reach the evaporation threshold for gas temperatures above 2000 K 

eventually causing an accelerated heat loss for larger particles and affecting the LII signal trace after 

the peak, thus the sensitivity of the particle sizing on the various parameters changes for different 

size groups. This influence on the cooling phase can be seen in Fig. 55, where the look-up table of the 

particle size vs. signal ratio is given for gas temperatures between 1400 and 2300 K with 100 K incre-

ments and for particle sizes between 1 and 60 nm. The remaining parameters are those from Tab. 1. 

For the analysis, a delay of 5 ns between the two detection gates is considered. In the particle-size 

domain smaller than 35 nm, for a given signal ratio, larger particle sizes are determined at smaller gas 

temperatures. Nevertheless, low and high gas temperature curves show different characteristics: For 

large particles at high gas temperatures the ratio of the two time-gated signals falls below the simu-

lations for lower gas temperature. This is related to a combined effect of the onset of evaporation 

and particle-size dependent peak temperatures. Results for particle sizes below 4 nm are shaded be-

cause they are beyond the limit of particle sizing with the conventional signal simulation provided by 

LIISim. To avoid the complications of the particle-size dependence on the peak temperature, Char-

wath et al. [44] proposed faster short-pulse laser heating to temporally separate from particle cooling. 

However, Michelsen [136] reported that rapid heating with conventional picosecond lasers brings 
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new complications to the particle sizing and requires new modeling approaches. Unconventional laser 

sources with pulse durations of ~1 ns would potentially be a good compromise, but they are not read-

ily available and have not yet been explored for LII. 

6.1.3 Effects of laser attenuation 

Sooting high-pressure flames provide strongly absorbing environments that can affect laser-based di-

agnostics. Attenuation of the laser beam causes a spatial variation in laser fluence along the beam 

propagation direction. Strategies that rely on ratioing of two signals often reduce or avoid the de-

pendence of the signal of interest on laser fluence. While this works with strategies where the signal 

linearly depends on the laser fluence, such as two-color laser-induced fluorescence methods [137], it 

is not applicable to LII because the fluence affects the signal and its decay characteristics in multiple 

ways. The magnitude of laser attenuation depends on the optical density of the soot cloud, 𝐾𝐿, which 

is linearly proportional to the soot volume fraction along the laser path. A comprehensive explanation 

of laser attenuation in sooty environments is given in Refs. [47,138]. Laser attenuation eventually 

causes a spatial variation in the heat-up temperatures of the particles within the imaged area. Fig. 56 

shows the dependence of the peak temperature on laser fluence. Simulations were performed for 

Tab. 1 conditions. The variation of Theat-up with particle size at the low-fluence limit and the slopes 

observed for the investigated particle sizes are due to the dependence of the energy-loss rates during 

the heat-up on the particle size (cf. section 6.1.2). The influence of laser fluence on the peak temper-

ature is more significant in moderate or low-fluence LII. In the high-fluence regime (>0.25 J/cm2) the 

sensitivity decreases due to the very strong heat loss through evaporation.  

 

Fig. 56: Particle peak-temperature as a function of laser fluence for 10, 15, and 20 nm particle diameter. 
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Fig. 57: Error in the evaluated particle size as a function of laser attenuation (conditions of Tab. 1). 

Fig. 57 shows the effect of laser attenuation on the evaluated particle size for 30 nm particles for Tab. 

1 conditions. When laser attenuation is not taken into account, the heat-up simulation calculates too 

high peak temperatures resulting in too fast signal decays. To compensate, the curve-fitting routine 

yields too large particles. To eliminate the attenuation-related uncertainty, the effective laser fluence 

at each pixel should be known. Although it is relatively easy to measure the total attenuation, it is not 

trivial to measure the fluence gradient along the soot environment. To achieve this, temperature gra-

dients of heated soot particles can be measured via two-color pyrometry imaging and resulting tem-

perature can be used to calculate the effective laser fluences. Nevertheless, the gas temperature and 

particle-size variations also affect the peak temperature as previously described which reduces the 

precision of the fluence measurements (For two-color pyrometry imaging of heated particles, cf. sec-

tion 6.1.7). 

6.1.4 Gating strategies 

Optimizing timing and width of the two detector gates is crucial to optimize the sensitivity of the signal 

ratio to particle size and to maintain good signal-to-noise ratios. Both images must be acquired during 

the signal lifetime and record information at different points in time. Three gating strategies are in-

vestigated in this section: 

Reference strategy 

In order to understand the effect of the gate width on the determination of particle sizes, the signal-

ratio method is investigated analytically. In an experiment where heat conduction is the dominant 
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heat transfer mechanism, the LII signal of a mono-disperse class of particles, either isolated or aggre-

gated, decays nearly exponentially [31]. With this assumption, the approximated signals collected by 

two gates with identical width can be calculated as 

𝐼1 = ∫ 𝑒−𝑡/𝜏𝑑𝑡
∆𝑡

0
=  −

1

𝜏
(𝑒−∆𝑡/𝜏 − 1)  ( 24 ) 

𝐼2 = ∫ 𝑒−𝑡/𝜏𝑑𝑡
𝛿+∆𝑡

𝛿

=  −
1

𝜏
𝑒−𝛿/𝜏(𝑒−∆𝑡/𝜏 − 1) 

( 25 ) 

Where ∆𝑡 is the gate width, 𝜏 is the lifetime and 𝛿 is the delay for the beginning of the second gate 

with respect to the signal peak. The ratio R of the two signals, 

𝑅 =
𝐼2

𝐼1
=  𝑒−𝛿/𝜏 

( 26 ) 

is independent on the gate width. Nevertheless, to minimize the detection of background signal (e.g., 

flame luminosity), the gates should be as short as possible. On the other hand, the camera gate should 

be long enough to collect sufficient signal to minimize the signal-to-noise ratio. In recent experiments, 

15 ns were identified as the shortest gate that yields sufficiently strong signal at conditions compara-

ble to Tab. 1, and therefore, this value is taken as the base gate width in this study. Nevertheless, 

depending on the camera, the optical setup, the laser fluence, the laser sheet thickness, and the soot 

volume fraction, optimum gate widths may change.  

To optimize the delay 𝛿 between the detection gates for highest sensitivity to particle size, further 

calculations are performed. The best sensitivity is given in the case with the strongest variation of the 

signal ratio vs. particle size. Therefore, the dynamic range, DR, of a signal-ratio curve is evaluated over 

the entire range of particle sizes. Based on Eq. 26, DR can be calculated for a given 𝛿 as 

𝐷𝑅 = 𝑅(𝜏𝐿) − 𝑅(𝜏𝑆) = exp −𝛿
𝜏𝐿

⁄ − exp −𝛿
𝜏𝑆

⁄  ( 27 ) 

where the subscripts L and S represent the largest and smallest particles in the measurement domain, 

respectively. DR is 0 at 𝛿 = 0 and it increases with increasing 𝛿, since 𝜏𝐿 is larger than 𝜏𝑆. However, 

as 𝛿 goes to infinity, DR converges to 0. Hence, DR reaches a maximum at a certain 𝛿 (𝛿∗, optimum 

delay) and this value can be calculated from the zero value of the derivative of DR with respect to 𝛿: 

𝑑𝐷𝑅

𝑑𝛿
= −

1

𝜏𝐿
exp −𝛿∗

𝜏𝐿
⁄ +

1

𝜏𝑆
exp −𝛿∗

𝜏𝑆
⁄  = 0 

( 28 ) 

From Eq. 28, the optimum delay for the second gate is 

𝛿∗ = (ln(𝜏𝐿)  − ln(𝜏𝑆)) (
1

𝜏𝑆
 −  

1

𝜏𝐿
)⁄  

( 29 ) 
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Eq. 29 indicates that the optimum delay yielding the highest sensitivity is solely related to the lifetime 

of the LII signal which depends on various parameters and needs to be simulated. Therefore, to de-

termine 𝛿∗ for the conditions shown in Tab. 1, a model-based analysis was performed. For the first 

analysis the starting time of the first gate was fixed to the peak signal to confine the input data to the 

cooling part of the LII signal where the simple exponential approximation is valid (cf. Eq. 24 and 25). 

Delaying the first gate leads to a loss in signal and the signal contribution from the smallest particles 

will be reduced. Advancing of the first gate with respect to the peak signal will be considered later. 

This analysis is targeted to identify the optimum timing of the second gate that provides the highest 

sensitivity to particle sizing and that provides sufficient signal. Therefore, the second gate is swept 

along the modeled data library with a delay from 1 to 20 ns with respect to the first gate. A look-up 

curve that relates the signal ratio to particle size and thus indicates the sensitivity of the measurement 

strategy is created for each delay 𝛿 (cf. Fig. 58a). 

 

Fig. 58: (a) Look-up curves for various delays of the second gate 𝛿 with fixed 15 ns gate width and the first gate 

starting at the signal peak, (b) dynamic range of signal ratios for particles from 4 to 40 nm diameter for different 

delay scenarios (solid blue curve) and the integrated signal intensities with the second gate for an average ex-

pected particle diameter of 20 nm (dotted red curve). The signal-intensity curve is normalized to the signal at 𝛿 

= 1 ns. 

The dynamic range DR of each look-up curve is calculated for the particle-size range expected for 

engine-like combustion (4–40 nm). The solid blue curve in Fig. 58b shows that a delay of 5 ns yields 

the largest dynamic range, (signal ratio varies in the 0.06–0.73 range between 4–40 nm) hence the 

highest sensitivity is reached for Tab. 1 conditions. Remembering the 15 ns width for both gates, this 

results in a 10 ns overlap of both gates. The reason of the reduction in sensitivity at longer delays is 

that small particles cool down to the ambient temperature within the delay time and thus, the second 

gate cannot capture any signal from these particles anymore. This can be seen through the decreasing 

slopes of the look-up curves for increasing delay in the particle domain smaller than 10 nm diameter 
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in Fig. 58a. In contrast, when the delay is too short, both images capture too similar information. 

Therefore, the ratio of the images converges to 1 and the sensitivity is reduced.  

While searching for the maximum dynamic range DR, it is also important to consider the signal inten-

sity in the delayed gate. Depending on the experimental parameters (see above), too long delays lead 

to insufficiently weak signal and thus increased signal-to-noise ratios. The red dotted curve in Fig. 58b 

shows how the signal intensity declines relative to a 1 ns delay scenario for a particle diameter of 20 

nm (expected average particle size). At a delay of 5 ns, which was calculated as the delay yielding the 

largest dynamic range, the theoretical signal intensity in the second gate is 53% compared to the case 

with the minimum delay (1 ns). Concerns, however, are related to the nominal signal intensity (photon 

counts) and the actual signal-to-noise ratio. The nominal signal changes from system to system, and 

it is therefore not easy to speculate a universal relative threshold that still provides acceptable signal. 

Ideally, the signal strength in both channels should be comparable. In this study it is decided that 

second-gate signals lower than 5% of first-gate signals are considered too low. The sections of the 

signal ratio curves (in Fig. 58a) that are below 0.05 are therefore not taken into account.  

The influence of the ambient pressure on 𝛿∗ is investigated by evaluating the above-mentioned max-

imum points on dynamic range curves which are created with unique libraries for different pressures 

as shown in Fig. 59. Optimum delay 𝛿∗  is plotted on a log-scale. For each library the remaining condi-

tions from Tab. 1 are used. When the pressure increases, the lifetime of the LII signal and therefore, 

𝛿∗ decreases as shown in Eq. 29. 

 

Fig. 59: Optimum delay 𝛿∗ for the second gate at various ambient pressures (The first gate starts at the signal 

peak) 
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It can be also seen that the rate of change in 𝛿∗ reduces with increasing pressure. In conduction cool-

ing, the heat flux from particle to the bathgas is proportional to the pressure. Thus the lifetime is 

inversely proportional to the pressure. The relation between signal lifetime and pressure for soot ag-

gregates with 30 nm diameter particles at Tab. 1 conditions is shown in Fig. 60. After the first few ten 

bar, the lifetime shows an asymptotic behavior and does not change significantly with increasing pres-

sure. Therefore, from 20–60 bar, 𝛿∗ changes only by 3 ns. 

 

Fig. 60: LII-signal lifetime as a function of pressure. 

Gate-advancing strategy 

In the previous strategy the second gate always provides much weaker signal than the first gate. Shift-

ing the second gate to early times in contrast reduces the sensitivity because of a large overlap of the 

detected signals. An alternative strategy is advancing the first gate to start before the signal peak is 

reached. This allows to increase the signal in both gates with a limited effect on the sensitivity. Up to 

a certain advancing time the sensitivity slightly reduces but with further increasing of advancing time, 

the sensitivity recovers and exceeds its initial value. Obviously, it does not make sense to advance the 

first gate to times before the onset of the laser pulse; therefore, the discussion is limited to advancing 

times between –7 and 0 ns before the signal peak. 

The theoretical analysis of these cases requires model libraries that include the simulation of the heat-

up phase (cf. section 6.1.2). In contrast to the LII-signal decay, the slope of the LII signal on the heat-

up side is almost identical for all particle sizes. The relative contribution of signal from small particles 

therefore increases when advancing the gate. Fig. 61a shows the variations in signal intensity of the 

first gate (blue curves) and the second gate (red curves) at the respective 𝛿∗ as a function of advancing 

times for 4 nm (dashed curves) and 40 nm (solid curves) particles. Each curve is normalized to the 
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respective value without advancing the gate. Advancing the first gate increases the signal in the first 

gate (up to 70 and 21% for 4 and 40 nm particles, respectively). For each position of the first gate, the 

second gate is swept up to a delay  of 20 ns relative to the first gate. For each position of the first 

gate, there is a unique “best” 𝛿∗ derived from the maximum of the dynamic-range curves in Fig. 61b. 

The relative signal increase in the second gate with respect to the original case is substantial (up to 

1480% and 52% for 4 and 40 nm particles respectively). Advancing the first gate up to –4 ns slightly 

reduces the sensitivity of particle sizing (maximum dynamic range is reduced by 5%). However from –

4 to –7 ns, the sensitivity starts to increase (maximum dynamic range reaches 8% more of the original 

case at –7 ns advancement).  

 

Fig. 61: (a) Integrated signal intensities with both gates at various advancing times for two different particle 

sizes. Each curve is normalized to the respective value without advancing the gate. (b) Dynamic range DR of the 

signal ratio R for particles from 4 to 40 nm diameter with advanced first gate. 

With increasing time advancing of the first gate, the relative increase in signal intensity in the second 

gate (at 𝛿∗) is substantially larger than in the first gate for small particles. Nevertheless for larger 

particles, the signal intensity increase in both gates is comparable. Therefore, the signal ratio increases 

more for small particles than for large ones and the look-up curves become flatter (the dynamic range 

decreases). This continues up to –4 ns. At an advancing time greater than –4 ns, the integrated signal 

intensity in the first gate starts to decrease for larger particles with increasing time advancing whereas 

it keeps rising in the second gate (cf. Fig. 61a) due to shifting towards the peak. This leads to a rapid 

increase in the signal ratio at the large particle classes. In this time range the increasing signal ratio at 

the small particle classes remains marginal relative to the increase in large classes. As a result, the 

dynamic range, and hence, the sensitivity of particle sizing, increases slightly from –4 to –7 ns (cf. Fig. 

61b). The analysis shows that advancing of the first gate to the start of laser heating (–7 ns) and a 

delay of 11 ns between the two gates is the optimal gate strategy. This strategy enhances the signal-
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to-noise ratio as the signal intensity in both channels increases. It also increases the sensitivity of 

particle sizing by 8% with respect to the original case without gate advancement. 

Asymmetric gating strategy 

A further enhancement of the signal-ratio based particle sizing is possible by using asymmetric gate 

widths. For the delayed gate, the original 15 ns may be too short to collect signal leading to poor 

signal-to-noise ratios. Starting with the optimum strategy mentioned above (first gate at –7 ns, 11 ns 

delay between both gates), the width of the second gate is extended from 15 to 55 ns with 1 ns incre-

ments. For each gate width, a look-up curve is created (Fig. 62). The extension of the second gate has 

no impact on the signal ratio of the small particle classes because the original 15 ns duration was 

sufficient to capture all the signal information of these small particles. For larger particles, however, 

the signal increases when increasing the gate width. This leads to an increase of the signal ratio for 

the large particle classes, hence an increase of the particle-size sensitivity. After a certain gate width, 

the second-gate signal becomes stronger than the first-gate signal and the ratio R exceeds unity.  

 

Fig. 62: Look-up curves for asymmetric gate widths. The width of the second gate is extended from 15 to 55 ns 

with 1 ns increments. The first gate is fixed to –7 ns and has a constant 15 ns width. The second gate is fixed to 

11 ns after the first gate. The sensitivity increases with increasing gate width. 

By extending the second gate from 15 to 35 ns, the dynamic range and hence the sensitivity increase 

by 50%. Fig. 62 shows that the further effects when extending the gate from 35 to 55 ns (from yellow 

to dark red) are marginal. In contrary, such long gates might negatively impact the accuracy because 

of the increasing contribution of background (e.g., flame luminosity).  

After all, the ultimate strategy can be defined as: The first gate should be advanced to the start of 

particle heating (–7 ns in this study). The width of the second gate should be about twice as long as 

the first gate (here: first gate: 15 ns, second gate: 35 ns) and it should start 11 ns after the first one. 
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As previously explained, all these nominal timing values (given here for the conditions given in Tab. 1) 

depend on the experimental conditions.  

6.1.5 Effects of timing jitter 

In practical experiments jitter might occur between the laser pulse and the gated signal detection. 

Due to the short LII signal lifetime at high pressure, even a small jitter can cause considerable errors. 

For the analysis, the 5 ns delay between the two detection gates is considered fixed and it is assumed 

that the laser is the source of the jitter. The effect of shifting the laser pulse relative to the detection 

event by –4 ns up to +4 ns was simulated with 0.5 ns increments (positive values: Laser fires later than 

expected). For each time-shift a new look-up curve is created and for a given “true” particle size of 30 

nm an “evaluated” particle size is determined by using the original look-up curve without jitter.  

 

Fig. 63: Effect of laser timing jitter with respect to camera gates on the evaluated particle size;  

the delay between the two gates is fixed. 

Fig. 63 shows the strongly asymmetric effect. With a positive jitter, the first camera gate starts before 

the signal peak leading to a signal loss relative to the second gate, thus increasing the gate #2/gate #1 

ratio resulting in an overprediction of the particle size. A +2 ns jitter leads to an overprediction by 

10%. With a negative jitter both detection gates are shifted into the range of decaying signal. In this 

case, smaller signal ratios and an underpredicted particle size are determined. Compared to the pos-

itive jitter, the discrepancies associated with the negative jitter are marginal. This is because the jitter 

has a similar effect on both gates and shifting along the nearly exponential decay; the gate ratio is 

better preserved. Nevertheless, this analysis does not consider the influence of the reduced signal-to-

noise ratio when the jitter reduces the overall signal intensities. With negative laser jitter, the LII signal 

can decrease drastically in both channels. 
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If jitter cannot be fully avoided for any reason, to minimize jitter-related uncertainties a temporally-

resolved acquisition working simultaneously with the imaging system can be implemented. By reading 

the actual laser and camera timings, identical delays can be taken into account when creating the 

look-up curves. By this means, measured and simulated signal ratios will be related to the same LII 

signal theoretically. Such evaluation algorithm will be effective only if the heat-up modeling is in-

cluded in the signal library. When the absorption part of the LII signal is missing, the gate convolution 

on the model library with positive laser jitter encounters zero signal on the left side of the peak signal, 

whereas, on the experiment side, cameras still collect strong signal during the heat-up phase. 

6.1.6 Influence of poly-dispersity 

Heat conduction is the dominant cooling mechanism of soot particles at high pressure heated below 

the evaporation temperature. Along this cooling, the decay rate remains unchanged for a mono-dis-

perse sample and therefore it can be approximated by a single-exponential decay. In a poly-disperse 

ensemble, each size group has a unique LII signal decay rate. During a measurement, the signals of 

these different groups superimpose resulting in a deviation of the acquired signal from the single-

exponential decay. The relative contribution of each size group is linearly proportional to its relative 

soot volume fraction. In a particle-size evaluation with the conventional time-resolved entire signal 

fitting approach, additional information about the different size groups can be extracted by using a 

pre-assumed distribution [27]. However, it should be noted that it is generally challenging to fit poly-

disperse distributions to LII signals due to the fitting problem being ill-posed [28,62]. Instead, the sig-

nals can be fitted with mono-disperse model signals and therefore the evaluated result for the signal 

acquired from the poly-disperse soot ensemble is an averaged mono-disperse equivalent mean parti-

cle size. Comparisons with TEM measurements showed that the mono-disperse equivalent size is al-

ways larger than the count median diameter of the poly-disperse TEM distribution, due to the fact 

that fitting with mono-disperse assumption biases the average results towards larger sizes [62]. The 

reason of this bias can be attributed to the dominance of the contribution of the large particles to the 

collected signal due to their longer and stronger incandescence as stated above. At high pressure, the 

particle-size dependent peak temperature (cf., section 6.1.2) causes additional bias towards the larger 

sizes since their contribution increases with temperature to the fourth power. The difference in the 

magnitude of the signal can be seen in Fig. 64 with LII curves modeled for the conditions in Tab. 1. 
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Fig. 64: LII signal traces for particles of different size. The magnitude of the signal is proportional to the third 

power of the particle diameter and fourth power of its temperature. 

When sizing particles using the ratio of two gated signals, decay rates are not directly accessible and 

the signal interpretation results from the comparison with pre-calculated look-up tables. These are 

based on signal libraries that are created from simulations for the behavior of mono-disperse soot. 

The evaluation of the signal acquired from poly-disperse soot again yields averaged mono-disperse 

equivalent mean particle sizes. In this section, the magnitude of this bias towards larger sizes based 

on the signal-ratio method is investigated for the conditions shown in Tab. 1. Fig. 65a shows lognormal 

soot particle-size distribution functions (related to the respective particle volume) for three different 

counter mean diameters, 𝑑cmd = 10, 20, and 30 nm, but with identical geometric width, 𝜎g = 1.4, and 

each data point on the curve represents the probability density of a 1 nm-wide bin. Using these dis-

tribution functions and the particle-size-dependent signals from Fig. 64, LII signal traces for the re-

spective poly-disperse ensembles were calculated. After applying the convolution with the gate tim-

ings shown in section 6.1.4, an averaged mono-disperse equivalent mean particle size was evaluated 

from the look-up tables in Fig. 2 and shown as vertical dash-dotted lines. By using the same method-

ology, in Fig. 65b, the bias towards larger sizes are shown for particle-size distribution functions with 

𝜎g = 1.2, 1.4, and 1.6 with identical 𝑑cmd at 20 nm. 
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Fig. 65: (a) Lognormal distribution functions of particle sizes (related to soot particle volume) for three count 

mean diameters; fixed geometric width at 1.4, (b) lognormal distribution functions of soot particle sizes for three 

different geometric widths; with dcmd = 20 nm. Vertical dash-dotted lines show the mono-disperse particle size 

evaluated by the signal ratio method for the LII signal input of soot ensembles having the distribution function 

with the respective color. 

In all cases, the evaluated mono-disperse equivalent mean particle sizes are larger than the mean of 

the input distribution. In a lognormal distribution, the weight of larger particles in the probability den-

sity function increases with the increasing lognormal mean. This can be seen in Fig. 65a with the ex-

tending tail of the distribution for larger dcmd. As a result, the bias in the evaluated particle size in-

creases because the relative contribution of the small particles to the ensemble signal is lower than 

the larger ones. Fig. 65b shows that the bias is getting smaller for narrower distributions. Neverthe-

less, it should be noted that the magnitude of the bias in the signal-ratio method directly depends to 

the delay for the second gate as shown in section 6.1.4. As the delay increases, the contribution of 

smaller particles in the second gate further decreases and the bias increases.  

To investigate the additional bias at high pressures due to the particle-size dependent peak tempera-

ture, seven different signal libraries were created with ambient pressures from 1 to 60 bar with Tab. 

1 conditions. From each library, a poly-disperse signal was created by using the lognormal distribution 

with dcmd = 15 nm and 𝜎g = 1.5. For each pressure the optimum delay for the second gate shown in 

Fig. 59was used and the mono-disperse equivalent mean particle size with the signal ratio were cal-

culated, shown in Fig. 66. The temperature difference between small and large particles increases 

with increasing ambient pressure. Therefore, at higher pressure the relative contribution of the 

smaller particles in the ensemble poly-disperse signal reduces causing the bias of the mono-disperse 

equivalent mean particle size to increase. 
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Fig. 66: Bias of the mono-disperse equivalent mean particle size (vertical dash-dotted lines) towards larger par-

ticles at different pressures. The distribution function of soot particle volume is a lognormal with dcmd = 15 nm 

and 𝜎g = 1.5. 

6.1.7 Gating effects on two-color pyrometry 

In cases where the laser fluence changes locally, e.g., because of laser attenuation, it is advantageous 

to measure the spatial distribution of heat-up temperatures which allows to consider the local condi-

tions during data evaluation. Two-color pyrometry imaging of the particle temperature during laser 

heating can provide the required information. At high pressure, however, a compromise must be 

found: The short lifetime of the incandescence signal requires an as short as possible detection exactly 

at the peak to avoid biasing of the measurement towards lower temperatures. On the other hand, 

sufficient signal must be detected for low-noise measurements, which prevents the use of short gates. 

Furthermore, jitter of the laser timing relative to the detector gates could strongly affect the meas-

urement when the gates are very short. To analyze the influence of the gate lengths and the measured 

apparent peak temperature, time-resolved temperature information is extracted from the control LII 

signal with 30 nm particle size with the boundary conditions given in Tab. 1. The expected signal in-

tensities within two detection bands centered at 425±15 and 676±14.5 nm are calculated using 

Planck’s equation [60] (cf. Fig. 67a).  
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Fig. 67: (a) Time-dependent temperature and thermal emission at 425±15 and 676±14.5 nm calculated for the 

respective temperature, (b) evaluated apparent temperature for gate widths from 1 to 20 ns, the instantaneous 

peak temperature is shown with the red dot, (c) evaluated apparent temperature with a fixed 15 ns gate width 

for jitter from –5 to +5 ns.  

To investigate the effect of the time-averaging within realistic camera gates, the calculated thermal 

emission for the two detection bands is convoluted with gate width from 1 to 20 ns (starting at the 

signal maximum). The resulting signal ratio is then evaluated based on Planck’s law. Fig. 67b shows 

the evaluated apparent temperatures on the y-axis for each gate width. The red dot shows the 

instantaneous peak temperature. As the gate width increases, the apparent peak temperature re-

duces. For a 15 ns gate, the evaluated temperature is underpredicted by roughly 200 K. Fig. 67c shows 

the effect of laser jitter up to ±5 ns for a gate width of 15 ns. Each bar shows a different jitter scenario 

and the actual timings can be read on the x-axis. If the gates start at a point before the signal peak, 

the apparent temperature is closer to the actual temperature. In a case where detection starts after 

the peak, the particles may already have lost some part of their energy and therefore, the calculated 

temperature can be substantially lower. To minimize the jitter-related uncertainty in an experiment, 

the gating timing can be set to a couple of nanoseconds before the signal peak so that the tempera-

ture measurement will be less sensitive to timing. This will also reduce the bias of the method towards 

lower temperature.  

6.1.8 Conclusions 

The applicability of laser-induced incandescence particle size for high-pressure conditions (such as 

Diesel combustion) was studied based on a detailed numerical analysis. At high pressure the LII-signal 

lifetime is short because of efficient conductive cooling of the laser-heated particles. Various gating 

strategies were compared. To deduce the primary particle size from LII imaging, a look-up table 
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method based on the ratio of two pre-calculated time-gated signals was used. This method was eval-

uated by applying the data evaluation strategy to simulated signal traces where various parameters 

were modified systematically. This allows to assess quantitatively the sensitivity of the particle-size 

determination to the assumed boundary conditions, such as bathgas temperature, pressure, heat-up 

temperature, aggregate size, and thermal accommodation coefficients. By systematically changing a 

single boundary condition at a time, the LII signal trace was simulated via LIISim, convoluted with the 

characteristics of the detection gates and an apparent particle size was determined from the resulting 

simulated signal ratio from the look-up table. The evaluated differences between the resulting appar-

ent sizes and the initial particle size provided information about the sensitivity of the method to the 

respective variable. 

It was observed that at elevated pressures there is a substantial difference between the decay rate of 

isolated soot and aggregated soot. However once the aggregation is considered, the impact of the 

aggregate size is marginal. The bathgas temperature has a multifaceted effect on particle sizing 

through conductive cooling and the level of the resulting heat-up temperature. It was identified that 

the particle-size evaluation has the lowest sensitivity to the uncertainties of heat-up temperatures 

between 3400–3900 K. The sensitivity analysis for bathgas temperature and heat-up temperature 

were performed for 1–60 bar and it is observed that for elevated pressures the sensitivity of the LII 

evaluation to the boundary conditions is strongly reduced. This is attributed to the fact that at higher 

pressures the normalized LII signal traces of different particle sizes fall into a narrower envelope and 

curves with different conditions become more similar. 

The dependence of the heat-up temperature on the particle size at high pressure is well known. The 

discrepancy between particles with 10 and 40 nm diameter at 60 bar was calculated as high as 400 K 

for a moderate laser fluence. To reduce the uncertainties in particle sizing arising from this effect, the 

heat-up phase should be included in the simulation rather than imposing a single peak temperature 

value (such as derived from two-color LII).  

In soot clouds with significant optical density, laser attenuation may cause additional non-uniformity 

in the spatial distribution of the heat-up temperatures. In a measurement with moderate laser flu-

ence, attenuation up to 20% causes an error on the particle size less than 3%. For stronger attenua-

tion, however, the error increases. Spatial variation in laser fluence can be measured by soot pyrom-

etry imaging and effective laser fluences can be evaluated from heat-up temperatures. 

To find an optimum gating strategy, time-resolved model signals were convoluted with varying gate 

widths or at varying delays. In the first attempt both gates are confined to the cooling part of the LII 

signal, and to maximize the signal intensity, the first gate is fixed to the time of maximum signal. It is 
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analytically shown that for mono-disperse soot ensembles there is an optimum delay for the second 

detection gate. This optimum delay depends on the signal lifetime and therefore depends on pres-

sure. In the second attempt the sensitivity of particle sizing is boosted up to 8% by advancing the first 

gate to the starting point of the laser-heating and by positioning the second gate to the respective 

optimum delay. This strategy also provides a significant enhancement to signal-to-noise ratio, yet it is 

possible only if heat-up modeling is included in the simulations. In the third attempt an extension of 

the second gate width is added. It is found that a second gate width as two times long as the first one 

yields an additional 50% increase in the sensitivity along with an additional increase in the signal-to-

noise ratio. In a measurement where the signal lifetime and gate widths are short, timing jitter can 

influence the evaluated results strongly. The effects of timing jitter for particle sizing and heat-up 

temperature measurements were shown.  

Particle-size imaging based on time-gated signal ratios is inherently a mono-disperse evaluation tech-

nique since the necessary information for a more detailed analysis is lost during the convolution and 

gate delay. The mono-disperse equivalent mean particle size is always biased towards larger sizes. 

The reason of this bias is due to the dominance of the large particles’ contribution to the collected 

signal due to their longer and stronger incandescence. At high-pressure applications the particle-size 

dependent peak temperature may cause additional bias towards the larger sizes. These biases are 

evaluated for different pressures and distributions. 

Similar optimum gating strategies were assessed for two-color pyrometry imaging. It is shown that 

measured heat-up temperatures with such method are biased to lower temperature. At 60 bar, a bias 

of 200 K was calculated for a particle with 30 nm diameter. 

6.2 Measurements at Diesel engine conditions 

LII particle-size imaging is conducted for the Diesel engine-relevant conditions and the applicability of 

the method is assessed in comparison to results of sampling measurements. At the time of measure-

ments, the optimum gating strategy showed in section 6.1.4 was not fully developed and therefore 

concepts of gate-advancing and asymmetric-gating were unknown and were not employed in these 

experiments. To relate this research to other similar works in the literature, the experiments are again 

conducted for the standard ECN conditions. 

6.2.1 Experiment setup 

The LII measurements were performed in the same high-pressure high-temperature vessel introduced 

in section 5.1 several months after the soot volume fraction measurements. In the interim Malbec et 
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al. [123] provided a fine characterization of the vessel and the injector used in this particle-size imag-

ing study. To achieve the ECN targets, the identical vessel settings shown in ref. [123] are used. A good 

match with ECN’s database was confirmed from the lift-off length measurements via OH* chemilumi-

nescence for Spray A [20,48,123]. 

Best conditions for LII measurements are present in cases with locally high soot volume fractions (𝑓𝑣) 

in a restricted area in the measurement plane but an overall low soot mass (𝑚s) to minimize laser 

attenuation and signal trapping. Among the target conditions for Diesel sprays defined by the ECN (cf. 

Tab. 6), a variant of ECN’s Spray A, where the fuel is injected into a gas mixture with 21% O2, provided 

the best combination of high 𝑓𝑣 in the center and limited soot mass 𝑚s (cf. Fig. 47 and Fig. 49a). This 

is labeled as “reference condition” in this study. To investigate the effects of varying boundary condi-

tions on the measured particle size, additional experiments were carried out where injection pressure, 

temperature, and O2 concentration deviated from the reference spray case (Tab. 10). To make sure 

that sufficient soot are deposited on TEM grids during the sampling, in all experiments the fuel injec-

tion duration is fixed to 6 ms. 

Tab. 10: Experimental conditions. Case 1 is the reference used in this paper, case 4 is ECN’s Spray A. 

Case O2 / % T / K Fuel injection p / bar Fuel injection t / ms 

1 (Reference) 21 900 1500 6 

2 21 1000 1500 6 

3 21 900 1000 6 

4 (Spray A) 15 900 1500 6 

 

Fig. 68 illustrates the arrangement of the experiment. The fuel is again injected horizontally into the 

vessel with the Bosch injector (no: 201.01) [123]. For particle heating, the fundamental of a Nd:YAG 

laser at 1064 nm is used with a pulse width of 7 ns. A set of cylindrical lenses forms a horizontal laser 

sheet, and a 1 mm slit aperture crops the laser sheet into a rectangular shape that is relay-imaged 

into the probe volume with a pair of spherical lenses creating a nearly top-hat intensity profile. The 

laser sheet intersects the spray axis between 28 and 62 mm downstream of the nozzle. The laser is 

fired 3.5 ms after the start of injection. 
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Fig. 68: Experimental arrangement. 

For particle-size imaging the LII signal is selected via a bandpass filter (425±15 nm) and imaged at 90° 

by f = 50 mm, f/1.4 lenses onto the chips of an intensified CCD (camera 1, PI-MAX 2, 512×512 pixels 

after 2×2 binning) and an intensified EMCCD (camera 2, PI-MAX 4, 512×512 pixels). To measure the 

jitter between the laser pulse and signal detection that affects the data interpretation, the LII signal 

is additionally detected with a fast photomultiplier (Hamamatsu R7400U-04, rise time ~0.78 ns) and 

stored together with the camera gate signals on a 1 GHz oscilloscope.  

To optimize image mapping for both cameras, three strategies were compared: 

(1) Positioning the cameras at opposite sides of the vessel was discarded because signal trapping 

of the randomly-oriented soot cloud significantly affected both images individually and thus 

influence the signal ratio.  

(2) Observing the probe volume with both cameras from one side via a 50% beam splitter pro-

vided a perfect geometric overlap that minimizes the influence of signal trapping on the in-

tensity ratio but the 50% signal loss resulted in an unwanted deterioration of the signal-to-

noise ratio.  

(3) As the best compromise, both cameras were positioned next to each other detecting signal 

through the same window but at slightly different angles to the spray axis (Fig. 68). For map-

ping of the slightly distorted images a strategy developed by Tea et al. [139] was used.  

Based on the numerical analysis described in section 6.1.4, a combination of detection gates was cho-

sen, one starting at the signal peak and the other with a 5 ns delay (as mentioned above, additional 

benefits from gate-advancing and asymmetric-gating could not be utilized). For condition 1, 3, and 4 

(cf. Tab. 10), the gate width of both cameras was set to 15 ns, whereas a 10 ns gate was sufficient for 

condition 2 with a larger fv.  
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For two-color pyrometry, spectral bands were selected according to the recommendation of [65] and 

the bandpass filter of camera 1 was replaced with a 676±15 nm filter while the filter of camera 2 was 

kept. The relative sensitivity of both detectors was calibrated against the well-documented tempera-

ture of a non-premixed ethylene/air Santoro flame (cf. section 3.3.2) operated under standard condi-

tions. Because this calibration is based on soot emission, the emissivity ratio in eq. 2 in section 3.1 is 

identical in calibration and the actual measurements (assuming that emissivity does not change with 

soot temperature and morphology). Pyrometry imaging was used to determine LII heat-up tempera-

tures where both cameras were activated at the LII signal peak with 15 ns gate times.  

Ex-situ soot analysis 

Soot was sampled from various locations of the soot cloud by thermophoretic deposition on a carbon-

coated copper grid that stays in a steel grid-holder probe that is attached to the side wall opposite to 

the injector at variable distance from the injector. Grids were purchased from Tedpella (Product No: 

01813) [111]. The grid-holder probe and a direct imaging of sampling at three different axial distances 

are shown in Fig. 69 (injector is attached to left side wall). 

The probe is placed slightly above the main jet flow axis (upper half of the jet impinges onto the probe 

but the lower half of the spray is undisturbed) to minimize flow disturbance. The particle-laden flow 

enters the probe through a 1-mm diameter hole and soot particles are deposited on the grid. The 

restricted flow passage ensures flame quenching and also protects the grid against excessive heating 

[79]. The sampling location was chosen as the position of maximum soot emission along the spray axis 

as determined for each condition from soot luminosity images. For the four cases of Tab. 10, these 

locations are 45, 42, 41, and 60 mm downstream of the injector orifice. For case 1, additional samples 

were extracted at 36 and 60 mm to probe zones of soot formation and burn-out. To prevent cross-

contamination, the probe and the high precision tweezers were cleaned with ethanol in an ultrasonic 

bath in between experiments.  
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Fig. 69: (a) The steel grid-holder probe for soot sampling device attached to the side wall of the vessel opposite 

to the injector. (b) With a telescopic design, the grid can be positioned at variable distance from the injector. (c) 

Direct imaging of sampling at three different axial distances. Upper half of the jet impinges onto the probe but 

the lower half of the spray is undisturbed. 

The samples were investigated by high-resolution transmission electron microscopy (HR-TEM: JEM-

2100F, operating voltage: 200 keV, point resolution: 0.19 nm) equipped with a CCD camera, Gatan 

Ultrascan 1000/First Light (resolution: 2048×2048 pixels, physical pixel resolution: 14 µm) at the 

School of Science and Technology, Meiji University, Japan. The TEM grids were investigated without 

any thermal or chemical pre-treatment to maintain the properties of the soot particles sampled in 

Diesel flames as much as possible. Details of sample treatment and analysis are described in [79]. 

More than five TEM images were taken at five different locations on each TEM grid with clear distance 

with a magnification of ×20,000. The time between the sampling and the TEM investigation was 

slightly longer than one month. Aizawa et al. [79] reported that the delay has no impact on the 

measurements. 

6.2.2 Results 

6.2.2.1 Pyrometry imaging  

The particle heat-up temperature depends on the local laser fluence, the optical properties of soot, 

the surrounding gas temperature, and heat transfer with the environment. It is on the other side the 

determining quantity in LII measurements that can be influenced through choosing laser fluences that 

provide strong signals while avoiding particle evaporation. 
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Across the measurement plane the local laser fluence can vary due to inhomogeneous laser profiles 

and laser attenuation. Additionally, the absorption properties of soot can change during aging of soot. 

The gas temperature is mostly related to the mixture fraction and thus typically varies within the 

measurement domain. The combined effects can lead to a non-uniform distribution in particle heat-

up temperatures which was investigated by two-color pyrometry imaging. The temperature was de-

rived for each pixel from the ratio of signal intensities within two spectral detection bands. As dis-

cussed in section 2, heat transfer during the laser pulse causes an inhomogeneous temperature dis-

tribution within the poly-disperse particle ensemble with pyrometry preferentially measuring the 

high-temperature end of the distribution. Furthermore, the lifetime of the LII signal is only marginally 

longer than the gate duration required for the collection of sufficiently strong signal. Therefore, an 

instantaneous measurement of the peak particle temperature cannot be achieved and the actual re-

sults are biased towards lower temperatures because significant cooling of the particles during the 

measurement interval. The model-based analysis in section 6.1.7 leads to an estimated bias for the 

near Spray A conditions of ~200 K. Therefore, temperatures obtained from pyrometry were increased 

by 200 K before using them for the evaluation of LII signals. 

The best-suited laser fluence for the experiments was chosen based on the measured heat-up tem-

peratures as a function of laser fluences (varied by changing the Q-switch delay of the Nd:YAG laser). 

At each laser fluence, 15 experiments were conducted and an ensemble average was calculated. Each 

data point in Fig. 70 represents a mean value determined in a 2×2-pixel square at the maximum value 

found in the ensemble-averaged images (increased by 200 K according to the discussion above). The 

error bars represent the spatially-averaged pixelwise-recorded standard deviation in temperature, 

based on shot-to-shot variations. To suppress the influence of background signal, i.e., line-of-sight 

integrated flame luminosity, 20 experiments without laser heating were taken under identical condi-

tions and the ensemble-averaged signals were subtracted from the respective channels. The pixel-to-

pixel variation in the measurement domain of the ensemble-averaged image was 6% of the mean 

showing that the temperature distribution was fairly homogeneous. The maximum laser fluence in 

the experiment was 0.2 J/cm2 which is not sufficient at 60 bar to reach the maximum particle temper-

ature limited by sublimation. For all particle sizing measurements, the laser fluence was set to ~0.15 

J/cm2 because this yielded sufficient signal with limited evaporation. Note that similar laser fluences 

cause noticeably higher peak temperatures at atmospheric pressure.  
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Fig. 70: Effect of the laser fluence on the peak temperature. Vertical bars represent the standard deviation of 

the ensemble average, based on variations between individual experiments.  

To determine the bathgas temperature within the laser sheet in the center of the jet, mixture-de-

pendent adiabatic flame temperatures are calculated using a simple fuel/air-entrainment model [47] 

and additionally the CFD results of a similar spray [140] are used. These models yield a temporally-

averaged temperature distribution, and therefore do not reflect instantaneous variations. Both ap-

proaches showed that the gas temperature along the jet axis increases with increasing distance from 

the orifice. 

6.2.2.2 Particle-size imaging 

To correctly evaluate the measured LII signal ratios, information about local conditions (temperature, 

gas composition, pressure, optical properties of soot, morphology) are necessary for modeling the 

heating and cooling processes. Because these spatially and temporally varying conditions are not 

known, a phenomenological approach is used assuming homogeneous conditions for any measure-

ment instant (cf. Tab. 11) where conditions are only modified in case reliable information about the 

expected variation exists. The pressure was measured for each experiment and the standard deviation 

from 950 experiments was less than 0.6% of the target value. Therefore, for all measurements in case 

1, 3, and 4 (Tab. 1), an ambient pressure of 61 bar was used, whereas in case 2, this value was 68 bar. 

For temperatures, based on the simulations mentioned above, the measurement domain (x = 28–

62 mm) was divided into nine equal segments with 50 K increments from 1600 to 2000 K while as-

suming invariant temperatures along the radial direction (cf. Fig. 71). For each segment a unique LII 

model-library was created.  
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Tab. 11: Boundary conditions for particle sizing in the reference case. 

LII model input 

Ambient pressure 61 bar 

Detection range 410–440 nm 

Gas temperature 1600–2000 K 

Laser fluence 0.15 J/cm2 

Laser pulse duration 7 ns 

E(m) 0.4 

Aggregate size 50 

Thermal accommodation coefficient 0.25 

 

 

Fig. 71: Bathgas temperature used as input parameters for libraries. The measurement domain is divided into 

nine equal segments with 50 K increments from 1600 to 2000 K while assuming invariant temperatures along 

the radial direction. 

Because the measurements of the heat-up temperatures did not show significant spatial variations, 

absorption-related parameters, i.e., laser fluence, laser-pulse duration and absorption properties 

(E(m) = 0.4 [8]) were kept uniform for all the pixels in all the simulations. For the thermal accommo-

dation coefficient, 𝛼T, a constant value of 0.25 was used for all the simulations [15,133]. Based on a 

statistical analysis of previous TEM measurements of soot morphology for comparable conditions 

[79], an aggregate size of 50 is chosen for all simulations assuming the properties of graphite-like 

material [98]. For heat conduction, Fuchs’ approach was chosen in LIISim and calculations were done 

for mono-disperse soot. The measured actual gate times relative to the laser pulse were used to cre-

ate virtual gated signals in the modeling. The gate profiles were assumed to be rectangular. 

Fig. 72 shows evaluated particle sizes for four conditions (cf. Tab. 10) as ensemble averages of 20 

measurements. Areas with pixel values below 5% of the maximum intensity in each image were dis-

carded when determining the ratio. Strong cyclic variations were observed in the particle-size images 
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at all conditions. In Fig. 73, the ratio of the standard deviation calculated from 20 experiments to the 

ensemble mean is shown for the reference condition. The spatially-averaged value of the relative 

standard deviation is 40%. These variations can be related to the turbulent nature of the Diesel com-

bustion process. Furthermore, the actual deviations in the assumed boundary conditions for size eval-

uation can cause different results in each individual experiment. 

 

Fig. 72: Spatially-resolved particle-size distributions from LII for case 1-4 in Tab. 10. 

 

Fig. 73: Cyclic variations: Ratio of the standard deviation calculated during the ensemble averaging of 20 

sprays to the ensemble-averaged image at reference spray conditions in percentage. 

6.2.2.3 Electron microscopy results 

Fig. 74 shows the normalized size distributions from a TEM analysis of soot sampled in the reference 

spray at three different axial locations. In the zone with increasing fV (x = 36 and 45 mm), the size of 

650 particles was evaluated. In the oxidation zone (x = 60 mm) only 272 particles could be measured 

due to the sparse soot deposition on the grid. Fitting a log-normal distribution to each of the curves 

revealed count median diameters (dcmd) of 14.7, 9.9, and 7.3 nm at x = 36, 45, and 60 mm, respectively. 

In contrast, LII obtained arithmetic mean values of 13.7, 13.3, and 19.6 nm for the same areas, re-

spectively, as determined from a 1-mm2 field on the centerline of the ensemble-averaged images. 

These results derived by LII are shown as vertical bars in Fig. 74. Fig. 75 shows the TEM-derived nor-
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malized size distributions for soot sampled at each experimental conditions given in Tab. 1. The meas-

ured count median diameters are 9.9, 13.1, 9.1, and 9.1 nm for case 1 to 4, respectively. The particle 

sizes derived from LII imaging are shown as vertical lines in Fig. 75 with arithmetic mean values of 

13.3, 24.2, 32.1, and 20.2 nm, respectively. 

 

Fig. 74: Particle-size histograms from TEM analysis of soot sampled at three locations along the spray axis for 

case 1 (Tab. 10). The size distributions are normalized and the integral of distribution curve is equal to unity.  

Vertical lines represent the spatially-averaged particle-sizes from LII for the respective axial positions. 

 

Fig. 75: Particle-size histograms from TEM analysis of soot sampled at the position of maximum soot emission 

along the spray axis for case 1-4 in Tab. 10. The size distributions are normalized and the integral of distribution 

curve is equal to unity. Vertical lines represent the spatially-averaged particle-sizes from LII for the respective 

location and conditions. 
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6.2.3 Discussion 

Particle sizes determined from LII and TEM show substantial differences. Both measurements contain 

several sources of uncertainty. One major problem of LII particle sizing is related to the fact that small 

particles are underrepresented in the measured signal intensity at the high pressures relevant for 

Diesel combustion. TEM measurements from the present study and comparable situations [12,110] 

show that the mean primary particle size is ~15 nm. With such small particles the LII-signal lifetime is 

too short for capturing signal contributions from those particles by the delayed-gate technique ap-

plied here. Furthermore, the poly-disperse nature of the soot and the strong dependence of the LII 

signal on particle size cause a strong bias towards the larger particles in the ensemble (cf., sec-

tion 6.1.6). Due to the size-dependent cooling of particles, larger particles are hotter than the smaller 

particles at any instant within the LII signal lifetime.  

To demonstrate this, the analysis performed in section 4.6.3 is repeated here with the Diesel jet meas-

urement results: A phantom LII signal of a poly-disperse soot cloud is simulated using the actual par-

ticle-size distribution derived by the TEM analysis of the reference spray at x = 45 mm, and the particle 

size is evaluated by forming a signal ratio on this simulated LII trace. The gated LII-signal ratio method 

yields a mono-disperse equivalent mean size of 21.5 nm, whereas the dcmd of the size distribution 

evaluated from the TEM measurements was 9.9 nm. This result shows that the LII bias towards larger 

particles more than doubles the measured particle-size compared to the mean size in the distribution 

determined from TEM for the present conditions (as shown in Fig. 66, the bias towards larger particle 

sizes at high pressure is greater than the atmospheric conditions). In the ensemble-averaged particle-

size distribution images (cf., Fig. 72), a systematic variation of the particle size along the jet axis related 

to soot formation and oxidation could not be seen. This result is in contrast to previous 𝑓𝑣 measure-

ments in the same spray (cf., section 5.6.4) and to the TEM results. The reason of such uniformity 

across the imaged spatial spray domain can be again attributed to the bias towards larger particles in 

the LII method. At each local zone only the largest particles contribute to the measurement and infor-

mation from the smaller particles is lost. The slight variation in particle size in radial direction is be-

lieved to be caused mainly by errors due to imperfect image mapping. 

Additional uncertainty in LII particle sizing is caused by the assumptions made for the local bathgas 

conditions because detailed knowledge of the instantaneous and local conditions is not available. For 

soot morphology related properties, i.e., E(m), 𝛼T, and aggregate size, the input parameters can spa-

tially vary. Small variations in all these parameters may have substantial effects on the evaluated par-

ticle-sizes. When changing the assumed bathgas temperature from 1600 to 2000 K at a given location 

in the reference case, the evaluated mean particle-size is reduced by 25%. Additional uncertainties 
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should be considered in imaging applications due to shot noise, deviation of the gate profiles from 

the assumed top-hat shape, and imperfect image mapping. 

One important aspect in the present study is the correction for timing jitter. To quantify the error 

when neglecting jitter, the size evaluation is performed with a first gate fixed to the peak signal and a 

second gate with a fixed 5 ns delay in the model library. This changed the evaluated spatially-averaged 

particle size by more than 20%, whereas the deviation at some local pixels was up to 50%. The en-

semble-averaged distribution of the particle-size variation due to the timing jitter is shown in Fig. 76. 

The jitter correction is effective only if heat-up modeling is included in the signal library. 

 

Fig. 76: Variation of particle sizes evaluated without consideration of the actual timing jitter in the system. 

It must, however, be considered that uncertainties also exist in TEM measurements where the probe 

can interfere with the dynamics and the combustion of the Diesel jet and the deposited soot on the 

grids can further oxidize leading to smaller-than-expected sizes. Additional operator-biased errors can 

occur in the analysis of the micrographs [101]. In this study the amount of soot deposited on the TEM 

grid was very limited leading to a small number of analyzed particles. A quantitative analysis of these 

uncertainties was not possible in these measurements. However, the evaluation of the bias towards 

larger particles for LII shows that in engine conditions, due to the small size of the particles and the 

high pressure, the application of LII is very uncertain, and – besides all limitations – TEM analysis of 

soot samples should be preferred. However, because TEM sampling does not provide spatial infor-

mation and can strongly interact with the Diesel jet, the LII imaging technique was specifically chosen 

because of its imaging capabilities (rather than TiRe-LII that would provide a more detailed analysis of 

fast processes), it is difficult to directly compare pros and cons.  

6.2.4 Conclusions 

Two-dimensional particle-size imaging with laser-induced incandescence was attempted in a high-

pressure Diesel combustion vessel. The main purpose of the study was to investigate the accuracy of 
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the method experimentally for the high-pressure conditions, and to optimize its performance. An ad-

ditional purpose was to investigate effects of varying spray conditions on the evaluated soot particle-

size and its spatial distribution. The experiments were conducted under the well-defined conditions 

of ECN’s Spray A and its parametric variants to benefit from accumulated previous information and to 

further contribute to the database. The method in this work was based on simulations of the signal 

ratio from two gated portions of the LII signal trace acquired at different timings and using LII model-

ing to deduce the local particle size from the measured signal ratio. As an important input for model-

ing the LII signal trace, soot heat-up temperatures were determined via two-color pyrometry imaging. 

To correct for timing jitter in the experimental gate timing, a fast photodiode and oscilloscope rec-

orded the LII signal event and camera gates simultaneously with the imaging system and necessary 

time corrections were made in the modeling. For ex situ characterization, soot particles were sampled 

at multiple axial locations. Particle-size distributions were derived from TEM measurements and com-

pared to the LII results. Substantial discrepancies were observed between results from both methods.  

The strong non-linear dependence of the LII intensity on particle size and temperature causes a strong 

bias towards information from larger particles in the acquired signal. In this study, it can be seen that 

this bias is more severe for high-pressure conditions because the small particles quickly loose energy 

already during the laser heat-up leading to lower peak temperatures and also cool down quickly af-

terwards. The combined effect makes them almost invisible during the LII decay. An additional source 

of uncertainty arises from that fact that spatially- and temporally-resolved information about bathgas 

conditions and materials properties is not available. Due to the combined effects, a quantitative par-

ticle-size analysis with LII imaging could not be accomplished at the >60 bar conditions of the present 

experiments. 
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7 Outlook 

This work was intended to contribute to the soot and spray diagnostics communities. It focused on 

theoretical and experimental work on particle-size dispersion, soot volume fraction and particle-size 

imaging in a flame at atmospheric pressure, and in Diesel spray combustion at engine-relevant condi-

tions. Some open questions in each of these topics could be answered, and the original conclusions 

were presented in this thesis. Nevertheless, in each field, open questions still exist. 

LII model and particle-size dispersion 

The LII model used in this thesis, LIISim, allows the simulation of signal traces also for high-pressure 

conditions. Nevertheless, in this work it was realized that the aggregate sub-model embedded in 

LIISim performs an incorrect treatment of shielding effects in soot aggregates, and further investiga-

tion is necessary. Even though LIISim includes an evaporation sub-model, it should be noted that the 

current understanding of evaporation is not accurate, especially at elevated pressures. This routine 

should be further improved. 

For the analysis of particle-size dispersion, a simplified signal-processing method, two-exponential 

reverse fitting (TERF), is proposed in this thesis. The analysis performed on the simulated phantom 

signals showed that information about the size distribution can be evaluated accurately. Neverthe-

less, the accuracy of the method could not be tested with the experimental data acquired from the 

non-premixed flame successfully because the TEM measurements of the sampled soot were found 

unreliable. To verify the validity of TERF, LII experiments should be performed with particles with 

known size distributions. 

Soot volume fraction 

The soot volume fraction was assumed to be linearly proportional to the time-gated LII signal acquired 

with the camera. Such assumption can be valid only if the heat-up temperature, the primary particle-

size, and the aggregate-size distributions are homogenous. At high laser fluences, the uniform heat-

up temperature distribution condition can be fulfilled. However, TEM analysis indicated that the par-

ticle and the aggregate size can change from one location to another. For higher accuracy in soot 

volume fraction measurements, the linear proportionality assumption between the soot volume frac-

tion and the time-gated LII signal intensity should be replaced with a relation in which particle and 

aggregate size changes are also accounted for.  
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Likewise, the non-dimensional optical absorption coefficient ke was assumed to be uniform across the 

Diesel jet in this work. This value depends on the morphology of the soot and a spatial variation of 

this value should be expected as well. A further analysis of the spatial variation of ke is necessary. 

Particle-size imaging with LII 

The sensitivity of the evaluated particle size to the model input parameters imposed in LIISim was 

shown for different ambient pressures. For accurate spatially-resolved particle-size information, it is 

imperative to perform the evaluation at each local point with the actual respective conditions. In the 

analysis of Diesel jet combustion, the bathgas temperature was determined with computational mod-

els which yield a temporally-averaged temperature distribution. To take the spatially-resolved instan-

taneous temperature variations into account, an advanced temperature characterization at the LII 

plane should be performed concurrently. Nevertheless, such temperature characterization in a soot-

ing set is a non-trivial task. Two-dimensional Coherent anti-Stokes Raman spectroscopy (2D-CARS) 

[141] can be a suitable method for this kind of temperature measurements. 

The convolution of the time-resolved model signals with the virtual detector gates is an essential step 

in particle-size imaging. In this work, the actual time profiles of the camera were unknown and they 

were assumed to be in a top hat (rectangular) shape. Likewise, the temporal profile of the laser was 

also not known and a Gaussian profile was assumed. In the next attempt, the time profiles of the 

cameras and the laser used should be measured, and these profiles should be used in convolution and 

simulation of the library signals.  

The sampling of the soot in the high-pressure high-temperature vessel was a non-trivial task. A best 

effort was given during the design stage of the grid holder probe for a least amount of perturbation 

of the jet combustion. The design has also considered the quenching of reactions after the deposition 

of the soot on the grids. However, the steel probe was attached to the vessel body which was con-

stantly at 473 K. After each spray event, a minimum of 5 to 10 minutes was necessary to disassemble 

the probe and to take out the grid. One can expect a further mass loss of soot within this time period 

at elevated temperature. The sampling operation can be enhanced with a probe design that includes 

a cooling system. 
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8 Summary 

Soot formation is a result of incomplete combustion of carbon-based fuels. Soot particles have serious 

adverse effects on human health and the climate. To control particulate matter emissions, limits on 

vehicle exhaust emissions have been imposed. Meeting these regulations requires an insight into soot 

formation and oxidation. Measuring soot volume fractions, primary particle sizes, and their spatial 

distribution with in situ techniques during Diesel combustion is of high interest for understanding the 

underlying mechanisms and for developing combustion strategies that reduce pollutant formation. A 

combination of laser-induced incandescence (LII), line-of-sight laser extinction, multi-color pyrometry, 

and transmission electron microscopy measurements of thermophoretically sampled soot (TEM) is 

used for soot diagnostics in this study. 

The principal aim of this work is to optimize two-dimensional particle sizing via LII imaging for Diesel 

engine conditions and to assess its applicability. Two major preliminary studies were performed: The 

first study was a point-wise particle-size distribution analysis in a non-premixed flame at atmospheric 

pressure, and the second study was two-dimensional soot volume fraction measurements in a Diesel 

jet and the analysis of the effects of boundary conditions on the soot volume fraction. Both studies 

formed the basis for the strategy of particle-size imaging for Diesel engine conditions.  

Particle-size dispersion 

Flame soot is usually poly-disperse and its characterization with a single average particle size is often 

insufficient. Information about the size distribution is important for a better understanding of soot 

formation and oxidation. In this study a signal-processing method, called two-exponential reverse fit-

ting (TERF), was developed for time-resolved LII signals (TiRe-LII) in poly-disperse soot that provides 

information about the size range and the relative weight of the small and the large fraction of the 

particle ensemble. The method separates the signal contribution of small and large particles from the 

overall signal by approximating the LII signal from size classes with narrow size distributions with 

mono-exponential decays. A mono-disperse equivalent mean particle size is then evaluated for both 

size classes, and the relative ratio of the number densities of both groups is determined. The method 

does not require an assumption of the shape of the distribution and its fast evaluation makes TERF 

suitable for real-time analysis. 

The accuracy of the method is verified by analyzing phantom LII signals that are simulated using as-

sumed particle-size distributions. Suitable application ranges for the TERF method were determined. 
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The TERF method was then applied to analyze TiRe-LII signal traces that were acquired at multiple 

locations in a non-premixed atmospheric laminar ethylene/air Santoro burner flame. The LII measure-

ments were supported by two-color pyrometry of particle heat-up temperatures. In addition to aver-

age small and large particle sizes, at each location a mono-disperse equivalent mean particle size was 

determined. 

In the same flame, particle-size distributions were derived from TEM measurements of thermophoret-

ically sampled soot and compared to the LII-derived results. It was observed that the TERF method 

provides sizes for the large particle class that are in good agreement with the TEM measurements. 

Substantial discrepancies were observed, however, between LII and TEM results for the small mode. 

The discrepancies were mainly associated to the biased sampling and TEM operations that omits the 

analysis of small size classes. The effect of varying exposure times of the TEM grid to the flame was 

analyzed.  

Soot volume fraction 

Line-of-sight laser extinction coupled LII imaging was performed to derive the soot volume fraction in 

a high-temperature high-pressure constant-volume pre-combustion vessel under the Engine Combus-

tion Network’s (ECN) "Spray A" conditions with parametric variations of gas temperature and compo-

sition. 

At the initial step, ambient gas temperature at the spray zone at the time of injection, liquid fuel 

penetration, vapor fuel penetration and lift-off lengths were measured by thin thermocouples, diffuse 

back-illumination (DBI), schlieren imaging, and OH* chemiluminescence imaging, respectively. Results 

were compared to the ECN benchmark, and the validity of Spray A conditions was verified. A precise 

setting of operating conditions to the standard Spray A conditions in this part of this study could not 

be achieved. For all soot measurements, the ambient density was about 1 kg/cm3 lower and the am-

bient temperatures were about 30 K higher than the target values. For future references, it is there-

fore recommended to take these variations into account. Nevertheless, the difficulties in setting the 

operating conditions to the standard Spray A conditions have been overcome after this experiment, 

and in the succeeding steps the operating conditions were matched precisely with the standard. It 

was also found that the random timing jitter between the laser and the camera was another major 

error source for the LII measurements. Remedies were taken to mitigate jitter-related problems after 

this experiment but minimizing the jitter in future experiments is important.  

Soot volume fraction measurements showed that Spray A is a moderately sooting spray. Maximum 

soot volume fractions around 2–3 ppm are obtained at near Spray A temperature (930 K) and 12 ppm 

at elevated temperature (1030 K). As a result, significant signal trapping of LII radiation does not occur 
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and planar soot volume fraction measurements based on the LII method can be done without any 

signal trapping or laser-attenuation correction. Soot formation begins after autoignition during the 

premixed burn phase at a finite distance to the lift-off length. Soot formation initially starts close to 

the spray periphery, whereas the core region has no soot at early formation timings and locations. 

The expansion of soot formation process into core region happens only a finite time after the first 

soot formation. The relation between lift-off length and soot processes was also examined. The effect 

of ambient temperature and oxygen concentration variations were found to be consistent with pre-

vious studies. The ideal conditions of injection duration, ambient temperature and oxygen concentra-

tion for low laser fluence particle-size imaging with LII were found. 

Particle-size imaging with LII 

The preliminary studies of particle-size imaging with LII were conducted in the non-premixed atmos-

pheric laminar flame from a Santoro burner with time-gate sweeping technique. The accuracy of the 

measurements was verified by comparing the constructed decay curve with a PMT acquired high-

temporal resolution LII signal. To deduce the primary particle size from the image sequence, a look-

up table method based on the ratio of two pre-calculated time-gated signals was used. The measure-

ments provided a quantitative analysis of effects of imposed modeling inputs parameters and gate 

timing on the evaluated particle sizes. This study formed a basis for the measurements at Diesel en-

gine conditions. 

Particle-size imaging for Diesel engine conditions was performed in two-stages. First, the applicability 

of the technique for high-pressure conditions was studied based on a detailed numerical analysis. By 

applying the data evaluation strategy to simulated signal traces with known parameters, the sensitiv-

ity of the particle-size determination to the assumed boundary conditions was assessed quantita-

tively. The sensitivity analysis for bathgas temperature and heat-up temperature that were performed 

for 1–60 bar showed that for elevated pressures the sensitivity of the LII evaluation to the boundary 

conditions is strongly reduced. This is attributed to the fact that at higher pressures the normalized 

LII signal traces of different particle sizes fall into a narrower envelope and curves with different con-

ditions become more similar. 

The well-known dependence of the heat-up temperature on the particle size at high pressure was 

evaluated and possible remedies were discussed to reduce the uncertainty related to this phenome-

non. In soot clouds with significant optical density, laser attenuation may cause additional non-uni-

formity in the spatial distribution of the heat-up temperatures. In a measurement with moderate laser 

fluence, attenuation up to 20% causes an error on the particle size less than 3%. For stronger attenu-

ation, however, the error increases. 
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Based on an analytical and a numerical approach, various gating strategies have been assessed quan-

titatively for two-time step LII imaging. The optimum gating strategy has been identified as the case 

where the first gate starts together with particle heating, and the second gate starts at an experiment 

setup-dependent delay time with almost twice as long gate width than the first gate. The effects of 

timing jitter were investigated. Pre-calculated look-up tables are based on signal libraries that are 

created from simulations for the behavior of mono-disperse soot. The evaluation of the signal ac-

quired from poly-disperse soot again yields averaged mono-disperse equivalent mean particle sizes. 

The mono-disperse equivalent mean particle size is always biased towards larger sizes. The magnitude 

of these biases were evaluated for different pressures and distributions. Systematic errors in pyrom-

etry imaging at high pressure were evaluated. 

In the second stage, following the outcomes of numerical analysis and the soot volume fraction meas-

urements, 2D particle sizing measurements with LII were performed in near Spray A conditions in the 

high-temperature high-pressure vessel to investigate the accuracy of the method experimentally, and 

to optimize its performance. By two-color pyrometry imaging the effects of laser fluence on LII signal 

and the heat-up temperature was analyzed. With a concurrent acquisition of the temporally-resolved 

LII signal, a timing-jitter correction was implemented to the particle-size evaluation algorithm. It is 

calculated that in a measurement where the jitter is neglected, the error in the evaluated particle-size 

can be as high as 50%. For ex situ characterization, soot particles were sampled at multiple axial loca-

tions. Particle-size distributions were derived from TEM measurements and compared to the LII re-

sults. Substantial discrepancies were observed between results from both method, and they were 

discussed to analyze uncertainties and related error sources of the two diagnostics.  

In the ensemble-averaged particle-size distribution images, a systematic variation of the particle size 

along the jet axis related to soot formation and oxidation could not be seen. This result is in contrast 

to previous fv measurements in the same spray and to the TEM results. The reason of this uniformity 

across the imaged soot domain can be attributed to the bias towards larger particles in the LII method. 

At each local zone only the largest particles contribute to the measurement and information from the 

smaller particles is lost. TEM measurements show that the mean primary particle size is ~15 nm. With 

such small particles and the high pressure, the lifetime of LII signal was less than 20 ns from soot 

particles that were heated with moderate laser fluence under the Spray A conditions. This signal life-

time is too short for capturing signal contributions from small particles by the delayed-gate technique. 

Experiments were conducted with parametric variations of injection pressure, gas temperature, and 

composition to investigate effects of varying spray conditions on the spatial distribution of particle 
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size. However a systematic variation of the particle size among different spray conditions could also 

not be observed. 

Particle-size imaging based on time-gated signal ratios is inherently a mono-disperse evaluation tech-

nique since the necessary information for a more detailed analysis is lost during the convolution and 

gate delay. The strong non-linear dependence of the LII intensity on particle size and temperature 

causes a strong bias towards information from larger particles in the acquired signal. At high-pressure 

applications, the particle-size dependent peak temperature may cause additional bias towards the 

larger sizes. An additional source of uncertainty arises from that fact that spatially- and temporally-

resolved information about bathgas conditions and materials properties is not available. Due to the 

combined effects, a quantitative particle-size analysis with LII imaging could not be accomplished at 

the >60 bar conditions. 
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