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Résumé

Contexte et objectifs

La théorie des systémes dynamiques & événement discret a été développée de maniére con-
séquente au cours de la deuxiéme moitié du siécle passé. Le formalisme des réseaux de Petri
en fait partie et est encore activement étudié aujourd’hui.

Dans sa thése présentée en 1962, Carl Adam Petri introduit les réseaux de Petri de
maniére & obtenir un modéle général de systémes discrets, concurrents et distribués. Ces
réseaux sont des graphes bipartis dynamiques dont le nombre d’états est potentiellement
infini. Tout état du systéme est défini par un ensemble d’états locaux, chaque état local
étant représenté par une place accueillant des jetons. Le systéme change d’état via les tirs
de transitions. Ces réseaux permettent de modéliser les phénomeénes de concurrence, conflit
et synchronisation.

Le formalisme trés expressif des réseaux de Petri n’est pas Turing-complet et bénéficie
de la décidabilité de nombreux problémes importants. Il existe de nombreuses extensions
de ce modéle, prenant en compte le temps ou encore des processus stochastiques, ce qui
autorise notamment 1’évaluation de performances et les techniques d’ordonnancement. De
tels avantages justifient l'utilisation des réseaux de Petri pour la spécification et la véri-
fication, avec de nombreuses applications & I'ingénierie des protocoles, la modélisation de
systemes biologiques, systémes embarqués et ateliers flexibles, la conception de circuits ...

Les systémes embarqués doivent préserver toutes leurs fonctionnalités sur de longues
périodes tout en utilisant une quantité de mémoire limitée. De telles garanties sont fon-
damentales pour les applications. Les propriétés associées dans les réseaux de Petri sont
appelées vivacité (ou liveness), et mémoire bornée (ou boundedness). De plus, les sys-
témes réels ont souvent besoin d’éviter une phase d’initialisation généralement cotiteuse, et
doivent avoir la possibilité de retourner & leur état initial & partir de tout état accessible. La
propriété correspondante dans les réseaux de Petri est appelée réversibilité (ou reversibility).

Dans les réseaux de Petri, les jetons représentent les données locales de maniére ab-
straite, non valuée. De maniére similaire, les valeurs de I’état global du systéme sont
abstraites par un vecteur de jetons, le marquage. Les propriétés de ces réseaux dépendent
des évolutions possibles de leurs marquages.

En représentant les buffers par des places, les sous-programmes par des transitions et
les interactions de sous-programmes par des arcs & poids, les réseaux de Petri sont adaptés
a la modélisation d’applications embarquées, permettant de garantir les propriétés com-
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portementales requises dés la phase de conception. Cette approche évite les simulations
coliteuses qui sont généralement effectuées a posteriori.

Cependant, la grande expressivité des réseaux de Petri induit en contrepartie une forte
complexité d’analyse. Notamment, les problémes de 1’accessibilité et de la vivacité sont
EXPSPACE-hard. De sorte & contourner ce probléme, un compromis entre expressivité
et complexité est souvent privilégié et limite 1’étude & des sous-classes de réseaux. Des
heuristiques sont aussi fréquemment employées.

L’objectif principal de cette thése est de fournir les premiéres méthodes efficaces qui
assurent la vivacité et la réversibilité de plusieurs sous-classes de réseaux de Petri pondérés
(aussi appelés généralisés), dans l'optique de la conception de systémes embarqueés.

Des modéles connus d’applications

Nous rappelons ci-aprés différents modéles connus d’applications, a savoir les graphes de
Kahn et les graphes Synchronous Data Flow (SDF). Leurs principaux avantages et incon-
vénients sont exposés, ainsi que leur lien avec les réseaux de Petri, et nous motivons notre
choix du modéle réseau de Petri dans cette thése.

Les graphes de Kahn. Ces graphes, aussi appelés Kahn Process Networks [Kahn 74],
ont une trés forte expressivité et peuvent modéliser des applications dataflow (a flux de
données). Cependant, ils ne fournissent pas de méthodes d’analyse raisonnables : la vivacité
d’un graphe de Kahn est indécidable et il n’est pas possible de trouver une borne sur
la capacité des buffers. De telles difficultés motivent l'utilisation de nouveaux modéles
qui combinent une expressivité suffisante avec une complexité d’analyse faible, de sorte &
concevoir des applications embarquées fonctionnelles.

Dans un graphe de Kahn, les sous-programmes sont appelés acteurs et envoient des
données aux autres acteurs via des buffers FIFO infinis. Chaque buffer possede au max-
imum un écrivain et un lecteur. Chaque acteur peut bloquer en lecture sur I'un de ses
canaux d’entrées, en attente de nouvelles données. De plus, deux exécutions basées sur des
entrées identiques ménent au méme résultat, induisant une forme de déterminisme.

Sur la Figure 1, 'acteur A; envoie des données & As si = 0, auquel cas elles sont

stockées dans le buffer (A1, Ay), sinon I'acteur les envoie & As, auquel cas elles sont stockées
dans le buffer (A;, As).
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z=0 Acteur A;
si (z = 0) alors
e envoyer une donnée a As
sinon
z<>0 envoyer une donnée 3 As

Figure 1: Un graphe de Kahn et le pseudo-code de 'acteur Aj.

Les graphes Synchronous Data Flow (SDF) et Cyclo-Static Data Flow (CSDF).
Le formalisme Synchronous Data Flow, introduit en 1987 par Lee et Messerschmidt, ainsi
que son extension par des phases, nommeée Cyclo-Static Data Flow (CSDF) [Engels 1994,
sont des modéles dataflow pour des applications concurrentes exécutées sur des architectures
paralléles. Ils ont été utilisés dans de nombreuses applications, souvent multimédia.

De maniére similaire aux graphes de Kahn, les graphes SDF peuvent bloquer en attente
de la lecture de nouvelles données en entrée. De plus, chaque buffer posséde au maximum
un écrivain et un lecteur. Cependant, contrairement aux graphes de Kahn, les SDF ont
une expressivité trés réduite : les sous-programmes lisent et écrivent une quantité fixe
de données de maniére inconditionnelle. En conséquence, le systéme a un comportement
régulier, malgré 'existence possible de blocages, appelés deadlocks.

La faible expressivité de ce modele a l'avantage d’autoriser des méthodes efficaces (en
temps polynomial) pour assurer la vivacité d’'un SDF et évaluer les tailles de buffers néces-
saires & son exécution [Marchetti 2009].

La Figure 2 représente un graphe SDF avec 3 acteurs qui communiquent via des buffers
intermédiaires. Ils lisent et écrivent des quantités fixes de données —indiquées par les poids
sur les arcs—dans ces buffers. Quand 'acteur A; termine, il envoie 2 données dans le buffer
(A1, A2) et 'acteur Ay est autorisé a& démarrer lorsqu’au moins 3 données sont présentes
dans ce buffer.

Figure 2: Un graphe Synchronous DataFlow avec 3 acteurs.
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Lien avec les réseaux de Petri. Les réseaux de Petri s’avérent trés utiles pour mod-
éliser les systémes a événements discrets avec conflits, synchronisations et concurrence. Ils
ont un fort pouvoir expressif et leurs principales propriétés comportementales sont décid-
ables, contrairement aux graphes de Kahn, ce qui en fait un modéle attractif. Par ailleurs,
ils peuvent modéliser les graphes SDF en remplacant les acteurs par des transitions et les
buffers par des places, ce qui est illustré par la Figure 3. La sous-classe des réseaux de Petri
pondérés correspondant & la structure des graphes SDF est celle des T-systémes & poids.

Figure 3: Le graphe SDF sur la gauche est représenté par un réseau de Petri sur la droite.

Des applications importantes

Les réseaux de Petri & poids sont connus pour modéliser les ateliers flexibles ainsi que
les systémes embarqués. Les poids rendent possible la modélisation de consommation et
production de ressources par paquets, des situations qui apparaissent fréquemment dans
ces systémes |Teruel 97, Lee 87b|. De plus, en comparaison avec les réseaux non pondeérés,
les poids permettent une représentation beaucoup plus compacte du systéme.

Les ateliers flexibles. Un atelier flexible est une usine qui manipule des matériaux
composés d’entités discretes et qui peut gérer une grande variété de produits en paralléle,
ainsi que de nouvelles familles de produits. Un atelier flexible est généralement constitué de
trois éléments : un ensemble de machines flexibles (des stations de travail), un systéme de
transport automatique et un systéme de décision. Un processus de travail est une séquence
d’opérations effectuée pour la fabrication d’un produit. Une ressource est une partie de
I'usine qui peut manipuler des produits, par exemple pour leur transport.

Les processus de travail d’un atelier flexible entrent en compétition pour un méme
ensemble de ressources, créant éventuellement des blocages des commandes de production.

Pour un atelier flexible, la propriété de vivacité assure la terminaison de chaque proces-
sus de production et préserve la possibilité d’ajout de nouveaux produits & fabriquer. La
propriété de réversibilité garantit ’existence d’un comportement cyclique.

Pour plus de détails, les ateliers sont présentés dans [Silva 90, Ezpeleta 95, Teruel 97],
en faisant ['usage de poids.
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Les systémes embarqués. Ces systémes doivent préserver toutes leurs fonctionnalités
au fil du temps avec une mémoire bornée. De plus, ils doivent le plus souvent éviter une
phase d’initialisation cofiteuse et toujours avoir la possibilité de retourner & leur configu-
ration initiale ; en effet, cette propriété autorise des ordonnancements périodiques et peut
faciliter la récupération du systéme aprés une erreur, ainsi que ’étude du comportement
du systéme et I’évaluation de ses performances.

Les fonctionnalités peuvent intuitivement étre modélisées par des transitions, et leurs
interactions par des places et arcs a poids. Ces poids représentent des quantités de données
lues ou écrites. La préservation de toutes les fonctionnalités est une exigence comportemen-
tale qui est formalisée par la propriété de vivacité. La possibilité de retour a I’état initial
a partir de tout état accessible, autorisant ainsi une réinitialisation du systéme, définit la
réversibilité.

Les graphes SDF ont été utilisés pendant de nombreuses années dans le domaine des
systémes embarqués pour modéliser des applications diverses, notamment des programmes
embarqués de traitement du signal [Lee87a, Pino 95, Sriram 09].

Les graphes CSDF étendent les graphes SDF en affinant les acteurs avec des phases,
permettant ainsi la description d’applications dont le comportement change cycliquement.
Ils ont été introduits dans [Bilsen 94, Engels 95] o ils sont utilisés pour modéliser un
encodeur vidéo. Ils se sont avérés utiles pour modéliser des applications de lecture MP3
[Wiggers 07b| ainsi qu'un programme de décodage Reed-Solomon [Benazouz 10|. De tels
exemples montrent l'importance de ce modéle dans le domaine du traitement de signal.
Ces graphes sont aussi utilisés dans le compilateur dataflow congu pour répartir un graphe
CSDF sur la grille de 256 processeurs paralléles de la société Kalray!.

Plusieurs méthodes efficaces d’évaluation de la vivacité ont été proposées pour les
graphes SDF [Marchetti 09] et CSDF [Benazouz 13|, en opposition avec la plupart des
méthodes connues qui utilisent une exécution symbolique (généralement exponentielle) du
graphe, telles celles présentées dans [Anapalli 09].

Cependant, dans ces systémes, la propriété de réversibilité est induite par la vivacité et
la mémoire bornée [Lee 87b, Teruel 92, Bilsen 95|, ce qui n’est plus le cas pour les classes
plus larges [Teruel 97|. Cette constatation motive I’étude de la propriété de réversibilité
sous I’hypothése de vivacité dans des classes plus expressives.

Kalray. Manycore processors for embedded computing. www.kalray.eu.
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Des sous-classes de réseaux de Petri importantes pour les applications

Dans cette thése, nous présentons des résultats originaux concernant le comportement de
plusieurs sous-classes expressives des réseaux de Petri généralisés, qui autorisent plusieurs
écrivains et plusieurs lecteurs de mémes buffers, permettant une forme d’indéterminisme.
Nous nous focalisons notamment sur la classe des systémes Equal-Conflict, qui contient
les systémes Choice-Free, Fork-Attribution et les T-systémes. Celle clagse généralise large-
ment celle des T-systémes, et donc aussi les graphes SDF. Nous étudions par ailleurs la
classe des systémes Join-Free, qui n’est pas une sous-classe des systémes Equal-Conflict.

Les systémes Equal-Conflict. Cette classe est définie en tant que restriction struc-
turelle de la classe entiére des réseaux de Petri pondérés. Elle impose en effet que les
transitions ayant une entrée commune possédent les mémes entrées, et que tous les poids
en sortie d’une méme place soient égaux, et ce, pour chaque place. Cette contrainte d’égalité
des poids en sortie des places est appelée homogénéité.

Les systémes Choice-Free et les T-systémes. Ces systémes forment une sous-classe
des systémes Equal-Conflict dans laquelle chaque place du systéme posséde au plus une
sortie. Les places des T-systémes possédent au plus une entrée et une sortie. Les T-
systémes forment donc une sous-classe des systémes Choice-Free.

Les systémes Join-Free. Dans tout systéme de cette classe, chaque transition posséde
au plus une entrée.

Les systémes Fork-Attribution. Dans tout systéme de cette classe, chaque transition
posséde au plus une entrée et chaque place posséde au plus une sortie. Il s’agit donc de

I'intersection des classes Choice-Free et Join-Free.

Ces différentes classes sont illustrées en Figures 4 et 5.

Figure 4: Le systéme a gauche est Equal-Conflict. A droite, le systéme est Choice-Free.
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Figure 5: Le réseau sur la gauche est un systéme Fork-Attribution. Le réseau du milieu est
un Join-Free. Le réseau sur la droite est un T-systéme.

Nos contributions a I’étude des réseaux de Petri généralisés

Les SDF, ou T-systémes, ont été largement utilisés pour modéliser des applications embar-
quées. Cependant, de nos jours, les fonctionnalités deviennent de plus en plus sophistiquées
et I’expressivité des modéles doit alors étre étendue. Un objectif est de généraliser des résul-
tats communs aux SDF et T-systémes de maniére a traiter des applications plus complexes
autorisant des choix, dans 'optique d’obtenir des méthodes d’analyse efficaces.

Plus précisément, nous nous focalisons sur des extensions des T-systémes et SDF qui :

e sont strictement plus expressives structurellement, telles que la classe Choice-Free qui
autorise plusieurs sous-programmes & écrire dans un méme buffer;

e permettent une forme de non-déterminisme, tels que les systémes Join-Free et Equal-
Conflict, dans lesquels les choix effectués lors des exécutions successives ne sont pas
fixés et dépendent des données.

Le chapitre 1 forme l'introduction de cette thése, tandis que le chapitre 2 définit le
formalisme des réseaux de Petri & poids, ainsi que les sous-classes étudiées dans cette thése
et des rappels de résultats importants associés. Le plus souvent, nous nous focalisons sur
I’étude de réseaux dont la structure assure 'existence d’'un marquage initial vivant et garan-
tit la mémoire bornée pour tout marquage initial ; une telle structure est dite bien formée,
ou well-formed.

Nos contributions sont ensuite réparties dans les chapitres 3, 4 et 5.
Dans le chapitre 3, nous présentons de nouvelles transformations de réseaux de Petri.
L’étude de la propriété de vivacité est détaillée dans le chapitre 4. Finalement, les résultats

sur la propriété de réversibilité forment le sujet du chapitre 5. Le chapitre 6 constitue notre
conclusion et plusieurs perspectives.

Nous détaillons ci-aprés nos contributions, qui ont fait 'objet de trois publications in-
dexées (1), (3) et (4) en annexe. La publication (2) est un travail non détaillé dans cette
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theése mais dont le sujet est connexe et qui étudie la vivacité des CSDF.

De nouvelles transformations polynomiales (Chapitre 3) - Publications (1),

(3) et (4)

De nombreuses propriétés comportementales des réseaux de Petri induisent un coiit
d’analyse élevée [Cheng 1993, Esparza 1994]. Dans cette thése, nous nous focalisons sur
les problémes de la vivacité et de la réversibilité, connus comme décidables [Hack 1976,
Araki 1977, Mayr 1984]. Cependant, le probléeme de la vivacité est EXSPACE-hard [Hack
1974, Lipton 1976], tandis que la complexité du probléme de la réversibilité n’est pas connue.

De maniére & simplifier I’étude du comportement, le systéme peut étre transformé ef-
ficacement tout en préservant des propriétés fortes. L’analyse est ensuite effectuée sur le
systéme transformé. De nombreuses transformations existent [Berthelot 1986, 87, Murata
1989, Colom 2003| et sont généralement définies comme des régles qui s’appliquent a des
motifs spécifiques et locaux du graphe, ce qui réduit souvent la taille du graphe et méne a
des conditions suffisantes efficaces. Cependant, dans de nombreuses situations, ces régles
ne réduisent pas la complexité d’analyse.

Nous présentons plusieurs nouvelles transformations polynomiales en temps pour les
réseaux de Petri pondérés (géneéralisés) qui préservent de fortes propriétés structurelles et
comportementales, simplifiant ’analyse des propriétés de ces systémes.

Premiérement, nous généralisons des méthodes qui furent précédemment développées
dans le contexte des T-systémes généralisés [Marchetti 2009].

Nous introduisons le scaling des réseaux de Petri par un vecteur, une transformation
qui s’applique a tous les réseaux de Petri et modifie uniquement les poids et le marquage
initial. L’idée est de multiplier ces valeurs localement au niveau de chaque place par certains
rationnels strictement positifs. Cette opération préserve le langage et la structure bien
formée, et en conséquence, les propriétés de vivacité et réversibilité.

Nous étendons la notion de jetons utiles, permettant de réduire le marquage initial de
tout réseau de Petri tout en préservant le langage. Nous montrons que les jetons utiles au
systéme, a savoir ceux qui vont servir & effectuer des tirs de transitions, doivent constituer
dans chaque place un multiple du plus grand commun diviseur des poids entourant cette
place.

Nous définissons 'opération d’équilibrage, nomimée balancing, qui est un cas partic-
ulier du scaling s’appliquant & tout systéme conservatif et menant a un systéme token-
conservative, dont le nombre total de jetons est invariant. Lorsque le nombre de jetons est
constant dans un systéme, ’étude de propriétés comportementales est grandement simpli-
fice. Cette méthode s’applique en particulier & tous les réseaux de Petri bien formés, car
ils sont conservatifs [Sifakis 78, Memmi 80].

Nous rappelons ensuite la normalisation des T-systémes et la comparons avec ['opération
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d’équilibrage. L’opération de normalisation fut introduite dans [Marchetti 2009] de sorte a
ce que le T-systéme normalisé obtenu posséde un nombre invariant de jetons dans chacun
de ses circuits, simplifiant ainsi ’étude de sa vivacité.

Ces transformations sont présentées dans notre publication (1).

Par la suite, nous présentons une transformation de tout réseau de Petri pondéré en
systéeme Free-Choice pondéré (une classe qui généralise les Equal-Conflict), préservant le
langage et la structure bien formée. L’idée est de compléter les arcs manquants entre places
et transitions de maniére adéquate en utilisant le scaling, de sorte & ce que le comportement
soit préservé. Il devient ainsi possible d’étudier des propriétés du nouveau systéme, dont
la structure est plus simple que celle du systéme initial, pour déduire des propriétés du
systéme initial.

Enfin, nous introduisons la transformation place-splitting, qui s’applique a tout sys-
téme Choice-Free bien formé pour obtenir un T-systéme bien formé qui préserve de fortes
propriétés structurelles et comportementales. L’ensemble des T-semiflows est notamment
préservé. Nous montrons par ailleurs 'inclusion du langage du T-systéme obtenu dans celui
du systéme Choice-Free initial. Cette transformation permettra la simplification de ’étude
du comportement des Choice-Free dans les chapitres suivants, et est présentée dans notre
publication (4).

Une étude de la vivacité (Chapitre 4) - Publications (1) et (3)

Dans ce chapitre, nous nous focalisons sur les systémes Join-Free et Equal-Conflict
pondérés bien formés (well-formed), ainsi que sur certaines de leurs sous-classes, com-
prenant notamment les systémes Choice-Free, Fork-Attribution et les T-systémes. Des
caractérisations de well-formedness polynomiales en temps existent pour toutes ces classes
[Teruel 1994, 96, 97, Recalde 95, 96, Silva 98, Amer-Yahia 99a|. Ainsi, le probléme de
décision de la well-formedness de tels modéles d’applications est résolu efficacement.

Une fois qu’un réseau bien formé a été concgu, le défi est de construire un marquage
initial vivant. L’hypothése de well-formedness implique ’existence d’un tel marquage.

Cependant, seules des caractérisations exponentielles en temps de vivacité sont connues
pour les circuits bien formés & poids. La complexité de décision de la vivacité d’un circuit
pondéré est une question ouverte fortement liée au probléme de Frobenius, qui est connu
pour étre difficile [Chrzastowski-Wachtel 93, Ramirez-Alfonsin 96]. En conséquence, cette
difficulté se propage a toutes les classes plus larges et nous cherchons des marquages initi-
aux polynomiauz pour plusieurs classes expressives. Un marquage polynomial posséde un
nombre polynomial de jetons et est calculé en temps polynomial.

A ce jour, il existe des méthodes qui construisent des marquages initiaux vivants pour
les systémes Equal-Conflict et la plupart de leurs sous-classes, avec un nombre exponentiel
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de jetons initiaux ou en temps exponentiel [Teruel 1993, 96, 97]. Dans le cas des T-systémes
pondérés, il existe des conditions suffisantes polynomiales [Marchetti 2009]. Concernant les
systemes Join-Free bien formés, il n’existait jusqu’a présent aucune méthode dédiée.

Nous utilisons les transformations du chapitre 2 pour obtenir les premiéres conditions
polynomiales suffisantes de vivacité pour les Join-Free et Equal-Conflict bien formés, con-
trastant avec les précédentes méthodes exponentielles de la littérature. Ces résultats orig-
inaux permettent de construire des systémes vivants bornés efficacement avec une taille
raisonnable de configuration initiale.

Nous obtenons tout d’abord la premiére condition suffisante polynomiale de vivacité
qui s’applique aux Join-Free équilibrés, dans lesquels la quantité totale de jetons reste
invariante. Nous en déduisons des marquages polynomiaux vivants pour tous les Join-Free
bien formés.

Nous rappelons ensuite des théorémes connus concernant la vivacité des Equal-Conflict
bien formés. Nous utilisons alors un théoréme de décomposition pour construire les premiers
marquages polynomiaux de cette classe, qui inclut les systémes Choice-Free.

De plus, nous utilisons la transformation de place-splitting pour déduire une autre condi-
tion suffisante de vivacité pour les Choice-Free bien formés, ainsi qu’une version polynomiale
en temps de cette condition, et nous comparons ces nouvelles méthodes.

Finalement, nous montrons que ces conditions ne sont pas nécessaires dans le cas
pondéré.

Ces résultats sont en partie présentés dans nos publications (1) et (3).

Une étude de la réversibilité (chapitre 5) - Publications (1) et (4)

Dans ce chapitre, nous étudions la propriété de réversibilité sous ’hypothése de vivacité
dans les systémes fortement connexes bien formés Equal-Conflict et Join-Free. Dans cer-
tains cas, nous étudions aussi les systémes Equal-Conflict qui ne sont pas nécessairement
bien formés.

Dans le chapitre 4, nous avons déterminé des conditions suffisantes polynomiales de vi-
vacité pour les systémes Equal-Conflict et Join-Free bien formés, permettant de construire
efficacement des systémes expressifs & la fois vivants et bornés. Une fois que les propriétés
fondamentales de vivacité et mémoire bornée sont assurées, la réversibilité est la prochaine
propriété & étre considérée car elle est souvent requise par les applications réelles. De plus,
une fois qu’un systéme est connu comme étant vivant réversible, 1’étude de son graphe
d’accessibilité peut étre grandement simplifiée.

Les propriétés de vivacité et réversibilité ne sont pas intimement liées : il existe des
systémes vivants qui ne sont pas réversibles et des systémes réversibles qui ne sont pas
vivants [Murata 1989]. La réversibilité a déja été étudiée sous 'hypothése de vivacité et
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mémoire bornée dans plusieurs sous-classes de réseaux de Petri pondérés. Dans le cas des T-
systémes, la réversibilité est induite par la vivacité et la mémoire bornée. Cette implication
n’est plus vraie pour les systémes Fork-Attribution [Teruel 1997] car il existe des systémes
Fork-Attribution vivant bornés qui ne sont pas réversibles.

Des méthodes polynomiales construisent des marquages vivants pour les T-systémes
|Marchetti 2009 et la réversibilité est ainsi efficacement assurée pour cette classe. Les mar-
quages réversibles, ainsi qu’une caractérisation de réversibilité, existent pour les systémes
Choice-Free vivants bornés [Teruel 1997] ; cependant, de tels marquages vivants réversibles
sont construits en temps exponentiel ou en temps polynomial avec un nombre exponentiel
de jetons initiaux.

L’existence de marquages réversibles a été prouvée dans les systémes Equal-Conflict vi-
vants bornés [Teruel 1993] bien qu’aucune caractérisation de réversibilité et aucune méthode
dédiée pour construire des marquages réversibles ne soient données.

Premiérement, nous présentons les premiers marquages initiaux polynomiaux & la fois
vivants et réversibles pour la classe des systémes Fork-Attribution bien formés. Ce résultat
est détaillé dans notre publication (1).

Ensuite, nous étudions la classe plus générale des systémes Choice-Free, pour laquelle
nous présentons une nouvelle caractérisation de réversibilité par décomposition et déduisons
les premiers marquages polynomiaux vivants réversibles, en utilisant les marquages trou-
vés pour la sous-classe Fork-Attribution. Nous donnons aussi une autre condition suffisante
polynomiale originale de vivacité et réversibilité, ainsi qu'une version polynomiale en temps
de cette condition, avec I'aide de la transformation place-splitting. Nous comparons finale-
ment ces nouvelles conditions. Ces résultats sont explicités dans notre publication (4).

Par la suite, nous étudions la réversibilité des systémes Equal-Conflict vivants consis-
tants. Avec l’aide d’un contre-exemple, nous montrons tout d’abord que notre méthode de
décomposition développée pour les systémes Choice-Free ne peut étre étendue a la classe
des systémes Equal-Conflict. Ce fait nous motive a développer la premiére caractérisation
non-triviale de réversibilité pour les systémes Equal-Conflict supposés vivants consistants,
incluant les systémes Choice-Free and Join-Free homogénes. Cette caractérisation étend
une condition qui fut développée pour le cas particulier des systémes Choice-Free [Teruel
1997]. De plus, ce résultat méne aux premiers marquages polynomiaux vivants réversibles
pour les systémes Equal-Conflict bien formeés.

Finalement, nous utilisons ces nouvelles méthodes pour obtenir les premiers marquages
polynomiaux vivants réversibles pour les Join-Free well-formed, dans lesquels la contrainte
d’homogénéité n’est pas imposée.

Ainsi, nous étendons ’expressivité des modéles utilisables dans les applications réelles,
dont la vivacité, mémoire bornée et réversibilité peuvent étre assurées efficacement.
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Les perspectives de cette thése

Questions ouvertes. Deux questions fondamentales restent ouvertes.

Premiérement, la complexité du probléme de la vivacité du circuit pondéré n’est pas
connue et est liée au probléme diophantien de Frobenius, qui est connu pour étre difficile
|Chrzastowski-Wachtel 93, Ramirez-Alfonsin 96]. On se pose la question d’une éventuelle
amélioration de nos conditions suffisantes polynomiales de vivacité et réversibilité.

Deuxiémement, des caractérisations non-triviales de réversibilité pour les Join-Free
pondérés non-homogénes n’existent pas encore. Cette classe retire la primitive de synchro-
nisation des réseaux de Petri. En 'absence de cette primitive, les transitions qui attendent
que toutes leurs conditions en entrée soient satisfaites ne sont pas permises; la contrainte
d’avoir au plus une place en entrée des transitions rend les conditions indistingables. Bien
que cette classe soit définie comme le dual de la classe Choice-Free, et que la structure et le
comportement des systémes Choice-Free soient bien compris, seuls des résultats structurels
peuvent étre déduits via dualité, et le comportement des systémes Join-Free n’est pas com-
plétement maitrisé.

Des méthodes polynomiales dans des classes plus grandes. Des caractérisa-
tions polynomiales de well-formedness n’ont pas encore été trouvées pour tous les réseaux
de Petri pondérés. Une telle caractérisation existe pour les réseaux Equal-Conflict ; cepen-
dant aucun résultat similaire n’a été obtenu pour les Free-Choice & poids. Dorénavant,
cette question devrait étre étudiée. Par la suite, la vivacité et la réversibilité peuvent étre
étudiées dans cette classe plus expressive, pour obtenir d’éventuelles conditions suffisantes
polynomiales. De plus, notre transformation de réseaux de Petri pondérés en Free-Choice
pondérés pourrait autoriser la propagation et la généralisation des propriétés de cette sous-
classe a tous les réseaux de Petri.

Propriétés des réseaux de Petri temporisés. Les applications réelles ont besoin
de la notion de temps, qui est modélisée dans certaines extensions des réseaux de Petri.
Quand le temps est décrit dans le modéle, une évaluation des performances du systéme peut
étre établie. Des bornes polynomiales du débit du systéme existent pour les T-systémes
a poids [Benabid-Najjar 2012] et peuvent étre étendues a des classes plus larges que nous
avons identifiées, incluant les systémes Choice-Free.

Dans les classes qui modélisent des choix, les politiques de routage doivent étre étudiées,
de maniére similaire au travail de [Bouillard 05a]. L’évaluation des performances peut aussi
suivre la piste des réseaux de Petri stochastiques [Bouillard 05b].

La modularité. Beaucoup de systémes réels peuvent étre vus comme ’assemblage de
plusieurs modules. De telles méthodes compositionnelles ont été explorées dans le domaine
des réseaux de Petri, composant des modules adéquats tout en préservant les propriétés
désirées, définissant des classes pondérées qui sont plus expressives que le modéle T-systéme
a poids [Recalde 1996, Recalde 98].

Dans la communauté Dataflow, de telles méthodes existent aussi. Les SDF déterministes
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avec mémoires FIFO partagées |Tripakis 2013] et les SDF basés sur une interface [Piat 2009]
sont des généralisations compositionnelles des graphes SDF.

Plusieurs techniques d’affinement furent développées par ailleurs, qui consistent & rem-
placer des noeuds particuliers par un réseau, selon des régles spéciales qui préservent les
propriétés voulues. Par exemple, les graphes CSDF étendent le modéle SDF en affinant les
acteurs avec plusieurs phases [Bilsen 1995]|. Les techniques d’affinement furent de méme
étudiées dans le contexte des réseaux de Petri [Suzuki 1993, Brauer 1990].

Une unification de toutes ces techniques de synthése et d’affinement devrait étre possi-
ble, liant ainsi les différentes communautés.

Liste des publications

Revue internationale avec comité de lecture :

(1) Thomas Hujsa, Jean-Marc Delosme, and Alix Munier-Kordon. Polynomial sufficient
conditions of well-behavedness and home markings in subclasses of weighted Petri nets.
Transactions on Embedded Computing Systems (TECS), Vol. 13, No. 141, pages 1-25,
July 2014. ACM New York, NY, USA.

Cette publication est une extension de (3), détaillant les transformations (Chapitre 3 de
cette thése), améliorant les marquages vivants polynomiaux (Chapitre 4) et fournissant les
premiers marquages vivants réversibles polynomiaux pour les systémes bien formés Fork-
Attribution (Chapitre 5).

Conférences internationales avec comité de lecture :

(2) Mohamed Benazouz, Alix Munier-Kordon, Thomas Hujsa, and Bruno Bodin. Live-
ness evaluation of a cyclo-static DataFlow graph. In proceedings of the 50th Annual Design
Automation Conference (DAC’13), pages 1-7, Austin, Texas, June 2013. ACM New York,
NY, USA / EDAC / IEEE.

Cette publication fournit les premiéres conditions suffisantes polynomiales de vivacité pour
les graphes CSDF, qui affinent les graphes SDF avec I'ajout de phases. Une méthode orig-
inale de calcul des capacités quasi-optimales assurant la vivacité est aussi présentée.

(3) Jean-Marc Delosme, Thomas Hujsa, and Alix Munier-Kordon. Polynomial Sufficient

Conditions of Well-Behavedness for Weighted Join-Free and Choice-Free Systems. In pro-
ceedings of the 13th International Conference on Application of Concurrency to System

XVI



Design (ACSD’13), pages 90-99, Barcelona, Spain, July 2013. IEEE.

Cette publication présente de nouvelles transformations & temps polynomial des réseaux
de Petri & poids, préservant des propriétés fortes (Chapitre 3 de cette these), et fournit les
premiéres conditions suffisantes polynomiales de vivacité pour les systémes Choice-Free et
Join-Free bien formés (Chapitre 4).

(4) Thomas Hujsa, Jean-Marc Delosme, and Alix Munier-Kordon. On the Reversibility
of Well-Behaved Weighted Choice-Free Systems. In proceedings of the 35th International
Conference on (Petri Nets’14), pages 334-353, Barcelona, June 2014. Springer, LNCS.

Cette publication étudie la propriété de réversibilité des systémes vivants Choice-Free bien
formés. Pour cette classe, une nouvelle caractérisation de réversibilité et les premiéres
conditions suffisantes de vivacité et réversibilité sont présentées (Chapitre 5 de cette thése).
Une transformation originale des systémes Choice-Free bien formés en T-systémes bien
formeés éclaire leur comportement (Chapitre 3).

XVII



XVIII



XIX



Abstract

Many real systems and applications, including flexible manufacturing systems and embed-
ded systems, may be modeled by weighted Petri nets. The behavior of these systems can
be checked on their model early on at the design phase, thus avoiding costly simulations on
the designed systems. Usually, the models should exhibit three basic properties: liveness,
which states the possibility of keeping all the functionalities active over time; bounded-
ness, which ensures that the system can perform all operations with a bounded amount of
ressources; and reversibility, which avoids a costly initialization phase.

The analysis of these properties has however been proved difficult since most existing
methods have an exponential time complexity. By focusing on several expressive subclasses
of weighted Petri nets, the first polynomial algorithms that ensure liveness, boundedness
and reversibility for these classes have been developed in this thesis. By polynomial, we
mean in polynomial time with a polynomial number of initial tokens.

First, we provide several polynomial time transformations that preserve structural and
behavioral properties of weighted Petri nets, while simplifying the study of their behavior.
These transformations allow to delineate several subclasses of weighted Petri nets that
are important for applications, encompassing the well-formed Petri nets, whose structure
ensures the existence of a live and bounded initial marking.

Second, we use these transformations to study the liveness of Join-Free and Equal-
Conflict systems. We propose the first polynomial sufficient condition for token-conservative
Join-Free systems, whose overall number of tokens is constant. We also present several
polynomial sufficient conditions of liveness for well-formed Join-Free and Equal-Conflict
systems, which include Choice-Free systems. Moreover, we compare these different condi-
tions.

Finally, the transformations also prove useful for the study of the reversibility property
under the liveness assumption. We propose the first polynomial live and reversible mark-
ings for well-formed Fork-Attribution systems. Then, we prove a new characterization of
revergibility for well-formed Choice-Free systems and derive original polynomial live and
reversible initial markings for this class, as well as a polynomial time sufficient condition of
liveness and reversibility. We also provide the first characterization of reversibility for live
consistent Equal-Conflict systems, deduce the first polynomial live and reversible initial
markings for well-formed Equal-Conflict systems, and construct such polynomial markings
for well-formed Join-Free systems.

This thesis highlights several expressive subclasses of weighted Petri nets that are use-
ful for the modeling of applications. For all these classes, we provided the first polynomial
initial conditions that ensure the liveness and reversibility properties. Moreover, these con-
ditions are scalable and can be easily implemented in real systems.
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Chapter 1. Introduction

1.1 Context and main objective

A large part of the theory of Discrete Event Dynamic Systems (DEDS) has developed in
the second half of the past century. Automata and Petri net formalisms, among others,
belong to this theory and are still flourishing today.

In his PhD thesis, presented in 1962, Carl Adam Petri introduced the places/transitions
nets (Petri nets) in order to obtain a general model for discrete concurrent and distributed
systems. These nets are directed bipartite graphs with local states, described by places
containing tokens, and state modifiers, called transitions, that allow for the modeling of
concurrency, conflicts and synchronizations, as well as an infinite number of states. This
highly expressive formalism is not Turing-complete and benefits from the decidability of
many interesting problems. There exist many extensions of Petri nets, some of which add
a notion of time or consider stochastic processes, allowing for performance evaluation and
scheduling, non-exhaustively. Such advantages justify the use of Petri nets for specification
and verification, with many applications to software and protocol engineering, biological
systems, the design of circuits, embedded systems and flexible manufacturing systems...

Embedded systems must be kept fully functioning over long periods of time. They have
to preserve over time the entirety of their functions and use a limited amount of mem-
ory. Such guarantees are fundamental for applications. The corresponding properties in
Petri nets are ltveness and boundedness. Moreover, real systems often need to avoid costly
initialization phases and to have the possibility to return to their initial state from any
reachable state. The associated property in Petri nets is called reversibility. In Petri nets
data is abstracted through the use of tokens, indicating the presence of data items while
leaving out their values. Likewise, the values of a system’s state are left out in the Petri
net model, which uses only the bare bones of the state under the form of a vector of tokens,
the marking. Properties of Petri nets relate to the possible evolutions of their markings.
Representing buffers by places, subprograms by transitions and interactions of subprograms
by arcs, Petri nets are well suited to model embedded applications, making sure that useful
behavioral properties are satisfied at the design phase. This approach avoids the costly
simulations that usually occur afterwards.

However, the particularly appealing expressiveness of Petri nets comes at the cost of
a high analysis complexity. The reachability and liveness problems, among others, are
EXPSPACE-hard. In order to alleviate this problem, a trade-off between expressiveness
and complexity is often considered by restricting to proper subclasses. Heuristics are also
commonly used in many cases.

The main objective of this thesis is to provide the first efficient methods that ensure the
liveness and the reversibility of several expressive subclasses of weighted Petri nets with a
view toward the design of embedded systems.



1.2. State of the art

This introductive chapter is organized as follows. In Section 1.2, we present the state
of the art regarding some well-known models and we motivate our choice of the Petri net
model. We highlight applications of weighted Petri nets. We also review the main results
on Petri nets that deal with our issue. In Section 1.3, we detail our contribution and the
organization of the thesis.

1.2 State of the art

1.2.1 Existing models

We briefly review the formalisms of Kahn graphs and Synchronous Data Flow graphs (SDF).
We relate the SDF model, which has been widely used for the modeling of embedded
applications, to a well-known subclass of weighted Petri nets, namely the T-systems. We
finally motivate our preference for the Petri net formalism.

1.2.1.1 Kahn graphs

Kahn graphs [Kahn 1974 have a strong expressive power and can model dataflow appli-
cations. However, they do not provide reasonable analysis possibilities: the liveness of a
Kahn graph is undecidable and it is not possible to find a bound on the capacity of the
buffers [Parks 1995|. Such difficulties motivate the use of new models that combine suffi-
cient expressiveness with tractability, in order to build functional embedded applications.

In a Kahn graph or “Kahn Process Network”, the subprograms are named “actors” and
send data items to other actors under certain conditions. Since two executions that are
based on identical inputs lead to the same results, these systems benefit from a kind of
determinism.

Data items move from one actor to another via an infinite FIFO buffer, which is rep-
resented by an arc. Each actor may block when reading one of its input channels, waiting
for new data items. In Figure 1.1, the actor A; sends data items to Ao if x = 0, in which
case they are stored in the buffer (A;, As), and otherwise it sends them to As, in which
case they are stored in the buffer (A4;, A3).

z=0 Actor Ay
if (x = 0) then
e send a data item to Ag
else
x<>0 send a data item to Ag

Figure 1.1: A Kahn graph and the pseudo-code of the actor Aj.
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1.2.1.2 Synchronous DataFlow (SDF) and Cyclo-Static DataFlow (CSDF)

The formalism of Synchronous Data Flow (SDF) [Lee 1987a, Lee 1987b| and its extension
to Cyclo-Static Data Flow (CSDF) by adding phases [Engels 1994, Bilsen 1995| are spe-
cial data flow models for concurrent applications to be executed on parallel architectures.
They have been used in many—often multimedia—applications, such as MP3 playback
|Wiggers 2007a].

In contrast with Kahn graphs, SDFs have a very restricted expressiveness: subprograms
read and write a fixed amount of data unconditionally. They can wait for data on their in-
put channels. Moreover, each buffer has at most one writer and one reader. Consequently,
the system has a regular behavior, although blocking (deadlock) may occur. Figure 1.2 rep-
resents an SDF with 3 actors that communicate through intermediate buffers. They read
and write fixed amounts of data—indicated by weights on the arcs—into these buffers.
When actor A; terminates, it sends 2 data items to the buffer (A4, A2) and actor Ag is
enabled for starting when at least 3 data items are present in that buffer.

Figure 1.2: A Synchronous DataFlow with 3 actors.

The low expressiveness of this model has the advantage of inducing efficient methods—
typically in polynomial time—to ensure the liveness of an SDF and evaluate the buffer sizes
necessary for its execution |Marchetti 2009].

1.2.1.3 Relationship with Petri nets

Petri nets have proved useful to model discrete event systems possibly with conflicts, syn-
chronization and concurrency. They have a great modeling power while, in constrast with
Kahn graphs, many of their properties are decidable [Murata 1989, Esparza 1998|. In par-
ticular, they can model an SDF by replacing actors with transitions and buffers with places.
Figure 1.3 illustrates this property.

5



1.2. State of the art

Figure 1.3: The SDF on the left is represented by the Petri net on the right.

Petri nets such that each place has at most one input and one output are called
(weighted) T-systems, or (generalized) event graphs. The modeling power of T-systems
subsumes that of the SDF. Consequently, studying extensions of T-systems amounts to
doing the same for SDFs.

In this thesis, we study the Petri net formalism. Our choice has been determined by
the existence of a large Petri net community and of a very rich literature on the structure
and behavior of these nets.

1.2.2 Applications of weighted Petri nets

Weighted Petri nets are a well-known model for Flexible Manufacturing Systems (FMS)
and embedded systems. The weights make possible the modeling of bulk consumption or
production of resources, situations that appear frequently in these systems [Teruel 1997,
Lee 1987b|. Moreover, comparing with ordinary (non-weighted) nets, the weights allow a
more compact representation of the system.

1.2.2.1 Flexible Manufacturing Systems (FMS)

A manufacturing system, also called discrete production system, is a factory that handles
materials made of discrete entities.

A flexible manufacturing system can handle concurrently a large variety of product
families at a given time, and can easily manage new product families. An FMS is generally
composed of three parts: a set of flexible machines (workstations), an automatic transport
system and a decision making system.

A working process (WP) is a sequence of operations performed in order to manufacture
a product.

A system resource is an element of the system that is able to hold a product, e.g. for
transport.
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The concurrent working processes of an FMS compete for a same set of resources,
inducing possible deadlocks that block production orders. For FMS, the liveness property
ensures the termination of every production process and preserves over time the possibility
to add new products to be manufactured. The reversibility property ensures the existence
of a cyclic behavior.

For further reading, manufacturing systems are studied in [Silva 1990, Ezpeleta 1995,
Teruel 1997], making use of weights.

1.2.2.2 Embedded systems

Embedded systems have to preserve all their functionalities over time within bounded
memory. Moreover, they often need to avoid a costly initialization phase and to have the
possibility of returning to their initial configuration, since this property allows periodic
schedules, may facilitate error recovery, behavior analysis and performance evaluation.

Functionalities can intuitively be modeled by transitions, and their interactions by
places and weighted arcs. The weights on the arcs represent amounts of read or written
data. The preservation of all functionalities is a behavioral requirement that is formalized
as the liveness property. The possibility to return to the initial state from every reachable
state (a reset of the system) is called reversibility.

SDF graphs have been used for many years in the domain of embedded system design
for modeling numerous applications, including embedded Digital Signal Processing (DSP)
applications |Lee 1987a, Pino 1995, Sriram 2009].

CSDF graphs extend SDFs by adding phases, allowing for the description of applica-
tions with a cyclically changing behavior. They have been introduced in [Engels 1994,
Bilsen 1995], where they are used for modeling a video encoder. They have proved useful
to model MP3 playback applications [Wiggers 2007b| and a Reed-Solomon Decoder appli-
cation [Benazouz 2010]. Such examples show the importance of this model in the context
of DSP systems. These graphs also prove useful in the dataflow compiler designed to map a
CSDF graph on the Massively Parallel Processor Array (MPPA, 256 processors) developed
by Kalray company’.

Several efficient methods for liveness evaluation have been proposed for SDF graphs
[Marchetti 2009] and CSDF graphs [Benazouz 2013], in contrast with most of the known
methods which use a costly symbolic execution of the graph [Benazouz 2013, Anapalli 2009)].

However, in these systems, the reversibility property is implied by the liveness and
boundedness properties [Lee 1987b, Teruel 1992, Bilsen 1995], which is not the case for
larger classes [Teruel 1997|. This fact motivates the study of the reversibility property in
more expressive classes under the liveness assumption.

Kalray. Manycore processors for embedded computing. www.kalray.eu.
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1.2.3 Overview of relevant results on Petri nets

We present here the state of the art regarding our issue and motivating our work. We first
review classical decidable problems, with some of their (high) complexity lower bounds.
We depict informally some well-studied subclasses of weighted Petri nets that are more
expressive than the T-systems, thus more expressive than the SDF graphs. We then focus
on the structural and behavioral properties related to liveness and boundedness, as well
as the reversibility and the associated results. Finally, we recall classical methods for the
study of the behavior in Petri nets.

Some classical problems in Petri nets. The deadlock problem consists in deciding
whether there exists a reachable state—a marking—that is a deadlock, meaning a state not
allowing any action—the firing of a transition. The liveness problem consists in deciding if
a Petri net is live, meaning that all transitions can be fired after a finite number of steps
from any reachable marking.

Deciding the attainability of a given marking starting from a particular initial marking
defines the reachability problem. A home marking is a marking that is reachable from
every reachable marking. Deciding if a particular reachable marking is a home marking
defines the home marking problem, or home state problem. Deciding if the initial marking
is a home marking solves the reversibility problem, a particular case of the home marking
problem.

Many Petri nets problems are decidable, although not tractable. As a matter of
fact, the deadlock, liveness and reachability problems are EXPSPACE-hard [Lipton 1976,
Cheng 1993]. The home marking and reversibility problems are decidable |[Araki 1977,
de Frutos Escrig 1989] although their complexity remains open.

Expressive subclasses. In order to alleviate the high complexity of most interesting
problems, proper subclasses have been studied. Weighted S-systems can be viewed as dual
of T-systems; while in a T-system a place cannot have more than one input and one output,
the same is true for a transition in an S-system. These S-systems model choices since their
places may have several outputs, thus inducing a form of non-determinism.

Weighted Choice-Free systems augment the expressiveness of T-systems by allowing
places to have several inputs. Weighted Join-Free systems expand the modeling power
of S-systems as they do not constrain the number of transition outputs. The systems
belonging to both of these larger classes, hence inheriting their structural properties, are
called Fork-Attribution (FA) systems.

Equal-Conflict systems extend the Choice-Free class by allowing restricted choices and
do not include all the Join-Free systems.
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Well-formedness. Well-formedness ensures that there exists at least one initialization of
the net yielding a system whose functionalities are preserved—the liveness property—while
a limited use of memory is ensured—the boundedness property. The structural notions
of consistency and conservativeness are known necessary conditions for well-formedness
[Sifakis 1978, Memmi 1980)].

Well-formedness is characterized in polynomial time for several subclasses of weighted
and ordinary (non-weighted) Petri nets. The well-formedness of ordinary Free-Choice
nets, which are structurally more permissive than weighted Choice-Free nets but lack-
ing weights, can be decided in polynomial time [Desel 1995]. This is also the case for
Equal-Conflict nets, which generalize weighted Choice-Free nets |Teruel 1996] and ordi-
nary Free-Choice nets. For several other weighted classes, there exist polynomial time
necessary or sufficient conditions of well-formedness and sometimes complete character-
izations |Recalde 1995, Recalde 1996, Silva 1998]. For the classes studied in this thesis,
namely weighted Join-Free and Equal-Conflict nets with their subclasses, well-formedness
is decided in polynomial time [Teruel 1994, Recalde 1996, Teruel 1997, Amer-Yahia 1999a].

Well-behavedness. The next challenge is to find efficiently an initialization ensuring
liveness and boundedness, a combination of properties called “well-behavedness”. Polyno-
mial time characterizations of well-behavedness are not known for weighted classes, even for
weighted circuits, and may not exist. This problem is related to the diophantine problem of
Frobenius [Chrzastowski-Wachtel 1993|. Thus, finding sufficient—although not necessary—
conditions of well-behavedness that are polynomial in time and initial number of tokens
would constitute a significant advance. In this thesis, we shall simply qualify such conditions
as “polynomial”. However, even such relaxed conditions are not easy to discover. One has
been found recently for T-systems [Marchetti 2009]. In weighted Choice-Free systems and
some larger classes, only costly conditions have been proposed [Recalde 1996, Teruel 1997],
using exponential time algorithms or an exponential number of initial tokens, forbidding ap-
plication to real systems. Necessary but not sufficient conditions for liveness and bounded-
ness also exist [Amer-Yahia 1999b]. Other results encompass polynomial characterizations
of liveness for several ordinary classes [Barkaoui 1992, Chao 2001, Alimonti 2011]| and non-
polynomial ones if weights are allowed with some restrictions [Barkaoui 1996, Jiao 2004].
Well-behavedness is also not fully understood for weighted Join-Free systems.

Home markings and reversibility. Home markings are markings that can be reached
from any reachable marking; they reflect a kind of cyclicity. Used as an initial data dis-
tribution in the system, they avoid a transient phase. This reversibility property is often
required in embedded applications that need a steady behavior. Besides, such markings
simplify the study of the reachability graph. They may also be useful in protocol val-
idation. However, reversible markings are not necessarily live and live markings are not
always reversible [Murata 1989], even in non-weighted Petri nets, witnessing to the difficulty

9
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of designing live and reversible systems. Under the liveness and boundedness hypothesis,
weighted T-systems are known to be reversible [Teruel 1992] while some other particu-
lar weighted classes, such as the well-behaved Equal-Conflict systems, always have home
markings [Teruel 1993, Teruel 1996, Recalde 1998, Silva 1998]. Their existence is stated,
and even completely characterized for Choice-Free systems |[Teruel 1997]. However, poly-
nomial time algorithms that build live home markings with a polynomial number of initial
tokens do not exist for most weighted classes, including Fork-Attribution systems.

Well-known methods. A common approach to the study of the behavior considers
particular subclasses of nets. However, even in the very restricted class of the well-formed
weighted circuits, the complexity of the liveness problem is not known and the size of the
state space is exponential. Therefore, several methods were developed that avoid naive
enumerations, namely transformations and structural techniques.

Transformations aim at modifying the net efficiently while preserving behavior or other
strong properties, so that the analysis cost is lower on the transformed net. Many trans-
formations are defined as rules that apply to special local graph patterns and often reduce
the size of the net, leading to efficient sufficient conditions [Berthelot 1986, Berthelot 1987,
Murata 1989, Colom 2003|.

Structural techniques study to what extent the structure and the initial marking impact
on the behavior. Such methods are useful notably for structurally defined subclasses. Net
decomposition theories have been developed for particular classes of nets and improve the
understanding of their dynamics.

1.3 Contributions and thesis organization

The SDFs, or the T-systems, have been widely used to model embedded applications.
However, as functionalities become more sophisticated, model expressiveness has to be
extended. An objective is thus to generalize results common to SDFs and T-systems in
order to treat more complex applications involving choices, with a view to offering efficient
analysis methods. More precisely, we focus on extensions of the T-systems and SDFs that

e are strictly more expressive structurally, as are the Choice-Free and Equal-Conflict
classes, which allow several subprograms to write in the same buffer, with optional
(restricted) choices;

e permit a kind of non-determinism, as are the Join-Free and Equal-Conflict systems,
in which the choices that are made during successive executions are not fixed and
depend on the data items.

Our contributions are described next.

10
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Transformations. We present several new polynomial time transformations for weighted
Petri nets that will prove useful for the study of behavioral properties.

First, we generalize methods that were developed in the context of weighted T-systems
in [Marchetti 2009]. The scaling transformation applies to all Petri nets and modifies only
the weights and the initial marking while preserving language and well-formedness. We also
extend the notion of useful tokens, allowing to reduce the initial marking while preserving
the feasible sequences.

We define the balancing transformation, a particular scaling that allows the number
of tokens to remain constant in the entire system, simplifying the study of behavioral
properties.

Then, we show that every weighted Petri net can be transformed into a weighted Free-
Choice system, while retaining the behavior and the well-formedness.

Finally, we present the place-splitting transformation that applies to a well-formed
Choice-Free system to obtain a well-formed T-system with strong properties.

Study of the liveness property. We use the new transformations to obtain the first
polynomial sufficient conditions of liveness for well-formed Join-Free and Equal-Conflict
systems, which are particular markings with a polynomial number of tokens determined in
polynomial time.

To find these conditions, we first obtain a polynomial sufficient condition that applies to
balanced Join-Free systems. We deduce from it polynomial live markings for all well-formed
Join-Free systems. We use a known decomposition theorem for well-formed FEqual-Conflict
systems to build the first polynomial markings for this class, which includes the Choice-Free
systems. Moreover, we use the place-splitting transformation to deduce another sufficient
condition of liveness for Choice-Free systems, as well as a polynomial time version of the
condition, and we compare the different methods.

These new results allow to build well-behaved systems efficiently with a reasonably sized
initial data distribution, and contrast with the prior exponential algorithms of the literature.

Study of the reversibility property. We present the first polynomial live and reversible
initial markings for the class of Fork-Attributions systems. We then study the class of well-
formed Choice-Free systems, for which we present a new characterization of reversibility
and deduce the first polynomial live and home markings, using the marking found for the
Fork-Attribution subclass.

We also provide another original sufficient condition of liveness and reversibility for well-
formed Choice-Free systems, as well as a polynomial one, with the help of the place-splitting
transformation. We compare all these conditions.

Thereafter, we study the reversibility of live consistent Equal-Conflict systems. We show
that our methods dedicated to Choice-Free systems do not apply to this more expressive
class. This fact motivates us to develop the first non-trivial characterization of reversibility

11
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for live consistent Equal-Conflict systems, encompassing Choice-Free systems and homoge-
neous Join-Free systems. This new condition generalizes a characterization of reversibility
that was known for Choice-Free systems. This result leads to the first polynomial live and
home markings for well-formed Equal-Conflict systems.

Finally, we use these new methods to obtain the first polynomial live and reversible
markings for well-formed Join-Free systems, in which the homogeneity constraint is re-
moved.

Thus, we extend the expressiveness of the models usable in real applications, whose
well-behavedness and reversibility can be ensured efficiently.

Thesis organization. First, in Chapter 2, we recall the formalism of weighted Petri nets,
with definitions and examples. We also recall important results regarding the subclasses
studied in this thesis. The transformations form the subject of Chapter 3. The study of the
liveness property is detailed in Chapter 4. Finally, the results on the reversibility property
are presented in Chapter 5. Chapter 6 forms our conclusion and several perspectives.

12
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Chapter 2. Weighted Petri nets

In this chapter, we recall the formalism of weighted Petri nets and classical definitions
regarding their structure and behavior. We also provide additional definitions and nota-
tions that may be less common. Then we present the main classes of Petri nets investigated
in this thesis, namely Equal-Conflict and Join-Free nets, as well as some of their subclasses
and their relationships. Finally, we recall known theorems of well-formedness for these nets
and the covering of well-formed Equal-Conflict and Join-Free nets by components.

2.1 The model

In this section, we present the formalism of weighted Petri nets. After an overview of
notations for weighted nets and their subclass of ordinary nets, we provide definitions
relevant to markings and firing sequences, and their relationships.

2.1.1 Weighted and ordinary nets

A (weighted) net is a triple N = (P, T, W) where:
— the sets P and T are finite and disjoint, T' contains only transitions and P only places,
— W (PxT)U(T x P)+— Nis a weight function.

P UT is the set of the elements of the net.

An arc is present from a place p to a transition ¢ (respectively a transition ¢ to a place
p) it W(p,t) > 0 (respectively W (t,p) > 0). An ordinary net is a net whose weight function
W takes values in {0,1}.

The incidence matriz of a net N = (P,T,W) is a place-transition matrix C' defined as
vp eEP Vte T7 C[pat] = W(tap) - W(])a t)

where the weight of each non-existing arc is 0. The weight function W can be repre-
sented by two place-transition matrices Pre and Post defined as follows: Vp € P, Vt € T,
Pre[p,t] = W(p,t) and Post[p,t] = W(t,p). Consequently, the incidence matrix can be
defined as C' = Post — Pre. Regarding notations for matrices, if C denotes a matrix, « a
subset of rows and [ a subset of columns, we note C|a, 3] the largest submatrix of C' whose
each element belongs to a row of o and to a column of 5.

The pre-set of the element x of P UT is the set {w|W (w,z) > 0}, denoted by ®z. By
extension, for any subset £ of P or T, *E = | . *z.

The post-set of the element x of P UT is the set {y|W(z,y) > 0}, denoted by z°.
Similarly, E* = (J,cp 2°.
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Figure 2.1 presents a weighted net with its incidence matrix, with notations.

p3
‘ b1 to 13
tq
y41 11 -2
() t3 po| 011
P3| -1 0 1
to

Figure 2.1: A weighted net and its incidence matrix. The pre-set of py is {t1,t2} and its
post-set is {t3}.

2.1.2 Markings, systems, firing sequences and reachability graphs

A marking M of a net N is a mapping M : P — N. We shall also denote by M the column
vector whose components are the values M (p) for p € P.

A system is a couple (N, Mp) where N is a net and My its initial marking. Figure 2.2
pictures a weighted system.

A marking M of a net N enables a transition ¢t € T'if Vp € *t, M(p) > W (p,t). Gener-
alizing to sets, a set A of transitions is enabled by M if every transition of A is enabled by
M. A marking M enables a place p € P if ¥Vt € p*, M(p) > W (p,t). Generalizing to sets,
a set A of places is enabled by M if every place of A is enabled by M. The marking M’
obtained from M by the firing of an enabled transition ¢, noted M Sy Vi , is defined by
Vp € P,M'(p) = M(p) = W(p,t) + W(t,p).

A firing sequence o of length n > 1 on the set of transitions 7' is a mapping {1,...,n} —
T, written o = t1ty - - - t,. A sequence is infinite if its domain is countably infinite. A firing
sequence o = tity---t, is feasible in the system (N, M) if the successive markings ob-
tained, My 2N M, 1ZN Mo --- In, M,,, are such that M;_1 enables the transition ¢; for each
i€ {l,---,n}. We note My % M,. The language of a system is the set of all its finite
feasible sequences.

A marking M’ is said to be reachable from the marking M if there exists a feasible firing
sequence o such that M 7 M’. The set of reachable markings from M is denoted by [M).

The Parikh vector & : T — N associated with a finite sequence of transitions o maps
every transition ¢ of T to the number of occurrences of ¢ in o.

16



Chapter 2. Weighted Petri nets

The reachability set of a system S = (N, Mp), noted R(S), is the set of all the markings
reachable in S. The reachability graph of a system S = (N, Mp), noted RG(S), is a rooted
and labeled directed graph (V, E, vg), where V' is the set of the markings of R(S), the root
vo is the initial marking My and E = {(M,t,M’) | M,M' € V and M N M'} is the set
of labeled arcs connecting every reachable marking to each of its successor markings. A
reachability graph is pictured on the right of Figure 2.2.

b3

9 =
t1 t /\

002—)101—)200—)0,1,1

‘ ts \ lt
1

to
1,1,0

Figure 2.2: A weighted system S = (IV, My) whose initial marking My equals (0,0,2). The
transition ¢; is initially enabled whereas to and ¢3 are not. The sequence o = t1 t1, whose
Parikh vector is & = (2,0,0), is feasible in S and leads to the reachable marking (2,0, 0).
The reachability graph of S is pictured on the right.

2.2 Structural and behavioral properties

In this section, we present fundamental properties of Petri nets that will be used throughout
this thesis.

2.2.1 Deadlocks, liveness and boundedness

A deadlock is a situation in which no transition is enabled in the system. A marking that
causes a deadlock is often called a dead marking. A system is deadlock-free if no reachable
marking is dead.

Intuitively, liveness and boundedness are two properties ensuring that all transitions
of a system can always be fired and that the overall number of tokens remains bounded.
These properties are described formally next.

A system S = (N, My) is live if for every marking M in [My) and for every transition
t, there exists a marking M’ in [M) enabling ¢.
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S is bounded if there exists an integer k such that the number of tokens in each place
never exceeds k. Formally, 3k € N VM € [My) Vpe P, M(p) <k.

S is k-bounded if, for each place p € P, k > max{M (p)|M € [My)}.

A marking M is live for a net N if the system (N, M) is live. The same definition
applies to boundedness and any other behavioral property.

A system S is well-behaved if it is live and bounded.

These properties are presented in Figure 2.3. Liveness implies absence of deadlock,
however the converse does not hold in general, as pictured in Figure 2.4.

Figure 2.3: The circuit on the left is bounded, not live, and with a dead marking. The
circuit in the middle is live, bounded and 4-bounded in particular, hence it is well-behaved.
The last circuit is live and not bounded.

Figure 2.4: This system is deadock-free, since every reachable marking enables a transition.
However, it is not live, since no reachable marking enables the transitions #; and #4.
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2.2.2 Well-formedness

The structure of a net N may be studied to ensure the existence of an initial marking My
such that (N, Mp) is live and bounded:

— N is structurally live if a marking M exists such that (N, Mp) is live.
— N is structurally bounded if the system (N, M) is bounded for each Mj.

— N is well-formed if it is structurally live and structurally bounded.

The leftmost circuit in Figure 2.5 is well-formed: it is structurally live, since there
exists a live marking for this net in the second circuit, and it is structurally bounded since
its number of tokens remains constant for every initial marking after every feasible firing
sequence.

2.2.3 Home markings and reversibility

A home marking is a marking that can be reached from any reachable marking. Formally,
M is a home marking in the system (N, M) if VM’ € [My), M € [M'). A system is re-
versible if its initial marking is a home marking. A consequence of this definition is that
a system is reversible if and only if its reachability graph is strongly connected. In the
particular case of a dead initial marking, the system is reversible since the reachability
graph contains only one element and is thus strongly connected.

The marked circuit in the middle of Figure 2.5 is well-behaved and reversible, while
the circuit on the left is deadlocked and reversible. The system of Figure 2.4 is reversible,
deadlock-free and not live.

3,1,0 < 4,0,0

/ R t t:%T

2,20 —>1,3,0—0,4,0—0,0,4
t t to

1
1
t1 s tST
f 0:226=1,1,26—20,2
2

Figure 2.5: The leftmost circuit is well-formed and marked with the empty marking, thus
its reachability graph contains only the empty marking and is strongly connected, implying
reversibility. The second circuit is well-behaved and reversible, since its reachability graph,
depicted on the right with the grey initial state, is strongly connected.
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2.2.4 Semiflows, consistency and conservativeness

In the following, we denote by P the set of places and T the set of transitions of the net
considered. We will denote by Z(V') the set of the indices of the vector V. The support of
a vector V', noted |V, is defined as the largest subset of Z(V') being associated to non-zero
components of V', meaning that Vi € |V|, V[i| #0 and Vi € Z(V) \ |V|, V]i] = 0.

Semiflows are particular left or right annulers of the incidence matrix C that is supposed
to be non-empty:

— A P-semiflow is a non-null vector X € NI”’l such that *X - C = 0.

— A T-semiflow is a non-null vector Y € NIl such that C'-Y = 0.

A P-semiflow is minimal if the greatest common divisor of its components is equal to 1
and its support is not a proper superset of the support of any other P-semiflow. The same
definition applies to T-semiflows.

We denote by 1" the column vector of size n whose components are all equal to 1.

The conservativeness and consistency properties are defined as follows using the inci-
dence matrix C of a net N and particular semiflows:

— N is conservative if a P-semiflow X € NIP| exists for C such that X > 1/71.
— N is consistent if a T-semiflow Y € NITI exists for C such that Y > 171

The net on Figure 2.6 is conservative and consistent.

i[ o 11-20 ;
p3 ps 1 0-220 0
2| 1010 | = |}
1 00-12 0
Ll oo1-2
11-20 0
0-220 % 0
1010 51 =10
00-12 1 0
00 1-2 0

Figure 2.6: This weighted net is conservative (the left vector (2,1,2,1,1) is a P-semiflow
and its components are > 1) and consistent (the right vector ¥(2,2,2,1) is a T-semiflow
and its components are > 1).
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Chapter 2. Weighted Petri nets

2.3 Additional definitions and notations

In this section, we present suplementary definitions and notations for weighted Petri nets.
First we focus on some keywords in relation with the expressiveness of the model, such
as choice-places and join-transitions. Then we define subsequences, as well as particular
subnets and, by extension, particular subsystems defined by subsets of places or transi-
tions. We provide notations regarding the weights and present the homogeneity property,
a restriction on the output weights of choice-places. Finally, we define source places and a
particular notion of graph connectedness.

2.3.1 Conflicts and choice-places, synchronizations and join-transitions

The expressiveness of Petri nets allows conflicts, characterizing a situation in which two
transitions ¢; and ¢ share a common input place such that the firing of ¢; disables ts.
The purely structural counterpart of a conflict is a choice, meaning that some transitions
have a common input place. Formally, two transitions ¢ and ¢’ are in choice relation, if
*tN°t' # 3. A choice-place is a place with at least two output transitions, thus modeling
a choice.

Petri nets allow the modeling of synchronizations, meaning that some places have a
common output transition. A join-transition is a transition with at least two input places,
which thus models a synchronization.

These definitions are illustrated in Figure 2.7.

ty to t

p b1 b2

Figure 2.7: On the left, transitions ¢; and t9 are in conflict and p is a choice-place. On the
right, ¢ is a join-transition, modeling a synchronization of its input places p; and po.

2.3.2 P-(T-)subnets, P-(T-)subsystems and subsequences

The sequence o’ is a subsequence of the sequence o if ¢’ is obtained from o by removing
some transitions of o. The restriction of o to the set T' C T of transitions is the maximum
subsequence of o whose transitions belong to T, noted o7v. For example, the restriction
of the sequence o = t1 tatste to the set {t1, t2} is the sequence t; to ta.
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The net N' = (P, T",W') is a P-subnet of N = (P,T,W) if P’ is a subset of P,
T' =°*P"U P'* and W’ is the restriction of W to P’ and T".

Similarly, the net N’ = (P',T',W’) is a T-subnet of N = (P,T,W) it T" is a subset of
T, P =*T"UT' and W' is the restriction of W to P’ and T".

The system S = (N’, M{)), with N = (P',T',W"), is a P-subsystem of S = (N, M)
if N is a P-subnet of N and its initial marking M] is the restriction of My to P’ i.e.
M{ = My|pr. Figure 2.8 displays two P-subsystems of a system.

Similarly, the system S" = (N’, M{), with N' = (P",T",W'), is a T-subsystem of S =
(N, Mp) it N’ is a T-subnet of N and its initial marking M) is the restriction of My to P,
i.e. M} = My|p:. Figure 2.9 shows two T-subsystems of a system.

ps3 Ps

jaNig e

Figure 2.8: Two P-subsystems of the system on the left are pictured on the right. The
leftmost P-subsystem is defined by the subset of places {p1, p2, p3}. The rightmost P-
subsystem is defined by the subset of places {p4, ps}.

T4

Figure 2.9: Two T-subsystems of the system on the left are shown on the right. The
leftmost T-subsystem is defined by the subset of transitions {t1, ta, t3}. The rightmost
T-subsystem is defined by the subset of transitions {¢4}.

22



Chapter 2. Weighted Petri nets

2.3.3 The notations max, and gcd,

We denote by maxi,v the maximum output weight of p in the net N and by gcdév the
greatest common divisor of all input and output weights of p in the net N. The simpler
notations max, and gecd, are used when no confusion is possible. In Figure 2.9 on the
facing page, max,, =2 and ged,, = 1.

2.3.4 Homogeneity

A place p is called homogeneous if all its output weights are equal, meaning V¢, t' € p®,
W(p,t) = W(p,t'). A net N is homogeneous if every place p of N is homogeneous. Fig-
ure 2.10 pictures a homogeneous net.

Figure 2.10: All the places of the net are homogeneous, hence the net is homogeneous.

2.3.5 Source places

A source place is defined as a place with at least one output transition and without input
transition. Figure 2.11 pictures a source place.

o—1

p t

Figure 2.11: The place p is a source place.

2.3.6 Well-connectedness

A net is well-connected if it is connected and every place and transition has at least one
input.
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2.4 Particular subclasses

In this section, we present the main subclasses of weighted Petri nets studied in this thesis.

2.4.1 Asymmetric-Choice nets

Anet N = (P,T,W) is Asymmetric-Choice if ¥pi,p2 € P, p{Np3 # @ = p§ C p$ or p§ C p.
Figure 2.12 on the next page depicts three Asymmetric-Choice nets.

2.4.2 Free-Choice nets

A net N = (P, T,W) is Free-Choice if Vt1,ty € T, *t1 N *ty # & = *t1 = *t2. Equivalently,
the net is Free-Choice if Vpi,p2 € P, p} Np5 # @ = p] = ps.

In general, Free-Choice nets are considered as ordinary nets. There exist other def-
initions of Free-Choice nets, as the Eztended Free-Choice nets. We have presented here
the most general of these definitions, the same as in [Desel 1995], encompassing Extended
Free-Choice nets. In this thesis, we consider weighted Free-Choice nets, defined by the
same structure and arbitrary weights. Other names for the class of weighted Free-Choice
nets can be found, such as Topologically Extended Free-Choice |Teruel 1996].

Free-Choice nets constitute a proper subclass of Asymmetric-Choice nets.

Figure 2.12 pictures two weighted Free-Choice nets, on the left and right sides.

2.4.3 Equal-Conflict nets and sets
A net N = (P, T,W) is an Equal-Conflict (EC) net if for all transitions ¢ and ' of N, the
following implication is true: *tN*t' # @ = Vp € P,W(p,t) = W(p,t').

A consequence of this definition is that Equal-Conflict nets are homogeneous weighted
Free-Choice nets.

Figure 2.12 contains an Equal-Conflict net.

Definition 1 (Equivalence relation, equivalence classes). A binary relation ~ on a set X
15 called an equivalence relation if and only if it is reflexive, symmetric and transitive.
Equivalently, Ya,b,c € X, a ~ a (reflexivity), if a ~ b then b ~ a (symmetry), if a ~ b
and b ~ ¢, then a ~ c (transitivity). The equivalence class of x under ~, denoted by [x], is
defined as [z] ={y € X | x ~ y}.

The following definition presents an equivalence relation on the transitions of a net.
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3] to tq

b1 D2 b1 b2

Figure 2.12: The net on the left is an Equal-Conflict net. In the middle, *t; = {p1,p2} #
{p2} = *t2, hence the net is not Equal-Conflict, however it is a homogeneous Asymmetric-
Choice net. On the right, the pre-sets of both transitions are equal, thus the net is weighted
Free-Choice, however it is not Equal-Conflict since it is not homogeneous: the output
weights of p; are not all equal.

Definition 2 (Equal conflict relation [Teruel 1996|). Consider a net N = (P,T,W). Two
transitions t and t' of T are in equal conflict relation if Pre[P,t] = Pre[P,t'] # 0PI, It
is an equivalence relation on the set of transitions, and each equivalence class is an equal
conflict set. The set of all equal conflict sets of a net N is noted E(N).

We deduce that an equal conflict set is enabled by M if and only if at least one transi-
tion of this set is enabled by M.

2.4.4 Choice-Free nets and T-nets

A net N = (P,T,W) is a (weighted) Choice-Free net if each place has at most one output
transition, meaning that Vp € P, [p°®| < 1.

Choice-Free nets form a proper subclass of Equal-Conflict nets.

A T-netis a Choice-Free net N = (P, T, W) such that each place has at most one input
transition, meaning that Vp € P, |*p| < 1 and |p®| < 1.

Hence, T-nets form a proper subclass of Choice-Free nets. Figure 2.13 shows a Choice-
Free net and a T-net.

2.4.5 Join-Free nets and S-nets

A net N = (P, T,W) is a (weighted) Join-Free net if each transition has at most one input
place, meaning that Vt € T, |*t| < 1.

Thus, Join-Free nets form a proper subclass of (weighted) Free-Choice nets: they can
be defined as Free-Choice nets in which synchronizations are not allowed. Homogeneous
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SRR X

Figure 2.13: On the left, a Choice-Free net that is not a T-net. The net on the right is a
T-net.

Join-Free nets are particular Equal-Conflict nets.

An S-net is a Join-Free net N = (P,T, W) such that each transition has at most one
output place, meaning that V¢t € T, [t*| <1 and |*t| < 1.

Hence, S-nets form a proper subclass of Join-Free nets.

Figure 2.14 pictures an S-net and a Join-Free net.

Y Y

Figure 2.14: On the left, a Join-Free net that is not an S-net. The net on the right is an
S-net.

2.4.6 Fork-Attribution nets

A Fork-Attribution net (or FA net) is both a Join-Free and a Choice-Free net.
Hence, in these systems, synchronizations and choices are not allowed.

Since a transition of a T-net may have several input places, T-nets are not included in
FA nets. Similarly, since a place of an S-net may have several output transitions, S-nets are
not included in FA nets. Conversely, FA nets allow transitions having several outputs, also
known as splits or forks, and are thus not included in S-nets. FA nets allow places having
several inputs, also known as attributions, a construction that is not possible in T-nets.
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Chapter 2. Weighted Petri nets

Figure 2.15 pictures a Fork-Attribution net.

Figure 2.15: A Fork-Attribution net, in which a place may have several inputs and a
transition may have several outputs.

2.4.7 Inclusion relation of the main subclasses

Figure 2.16 represents the inclusion relations between the special classes of weighted Petri
nets considered in this thesis.
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Weighted Petri nets

Asymmetric-Choice

Free-Choice

Equal-Conflict

Choice-Free
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Figure 2.16: Some classes and subclasses of weighted systems.



2.5. Duality

2.5 Duality

The dual of a net is defined by reversing the arcs and transforming places into transitions
and transitions into places. This transformation amounts to transposing the incidence
matrix.

The Choice-Free and Join-Free classes are dual. The S and T classes are also dual;
while in a T-system a place cannot have more than one input and one output, the same is
true for a transition in an S-system. The duals of the nets in Figure 2.14 are pictured in
Figure 2.13 on page 26.

2.6 Expressiveness and applications

Equal-Conflict and Join-Free systems are appealing not ounly from a theoretical point of
view but also because they can model a variety of useful applications.

2.6.1 Join-Free systems

Such systems model choices since their places may have several outputs, thus inducing
a form of non-determinism. They are closely related to Basic Parallel Processes (BPPs,
context-free multiset rewrite systems, commutative context-free processes) [Mayr 2000].
Results on Join-Free systems with a weight restriction, named communication-free, have
served to gain insight into commutative context-free grammars and BPPs [Esparza 1997].

2.6.1.1 S-systems

They are a simple subclass of weighted Petri nets, in which programs read or write in a
single memory, while memories can be shared between programs. They allow to model asyn-
chronous parallel algorithms on several processors. Asynchronous methods cut down the
number of synchronization points between processors, eliminating idle time at the expense
of extra computations, yet they may perform better than their synchronous counterparts.
Computational models as well as an associated convergence theory have been developed
[Frommer 2000]. A powerful and simple model reads data from a shared memory, computes
a function and overwrites data in the common memory with the corresponding updated
values. This computational model applies to a wide range of problems, including solving
nonsingular linear systems, and is represented by a Petri net in Figure 2.17.
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Figure 2.17: The S-net models one shared memory as the place m, in which four asyn-
chronous parallel processors read and write to compute an asynchronous iteration. Weights
denote amounts of read or written data.

2.6.2 Equal-Conflict systems and subclasses

Flow applications are usually modeled with weighted T-systems (or with SDFs) [Lee 1987b].
The weighted Choice-Free model adds the possibility to write asynchronously in a memory,
thus is strictly more powerful than the T-system model. The weighted Equal-Conflict model
adds restricted choices to the Choice-Free model.

2.7 Polynomial time characterizations of well-formedness

In this section, we recall polynomial time characterizations of well-formedness for the sub-
classes of weighted Petri nets studied in this thesis. We first present a characterization of
well-formedness dedicated to Choice-Free and Join-Free nets. Then, we give another condi-
tion for Equal-Conflict nets, which generalize Choice-Free nets and homogeneous Join-Free
nets.

2.7.1 Choice-Free and Join-Free nets

The next theorem expresses a necessary and sufficient condition of well-formedness for
Choice-Free and Join-Free nets. Moreover, this property can be checked in polynomial
time.

Proposition 1 (Well-formedness [Recalde 1996, Teruel 1997]). Suppose that N is a weighted
strongly connected Choice-Free or Join-Free net. The properties

1. N 1is consistent and conservative
2. N is well-formed

are equivalent. Moreover, consistency implies conservativeness in strongly connected Choice-
Free nets and conservativeness implies consistency in strongly connected Join-Free nets.

Figure 2.6 on page 20 shows a well-formed Choice-Free net.
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2.7.2 Equal-Conflict nets

A polynomial time characterization of well-formedness for Equal-Conflict nets is recalled
next.

Proposition 2 (Well-formedness (|[Teruel 1996])). Let N be a strongly connected Equal-
Conflict net. The following propositions are equivalent.

o N is well-formed;

o N is consistent and conservative, and the rank of its incidence matriz is equal to
|E(N)[ - 1.

Figure 2.18 pictures a well-formed Equal-Conflict net illustrating this proposition.

¢ 21 2-21 .
}1 1-100 0 8
51loo-1101]=10
11l -333-30 0
Ll 100 0-1 0
21221

1-1000 % 8
00-1101|[1]=10
-333-30 1 0
1000-1|L1 0

Figure 2.18: This Equal-Conflict net N is consistent (bottom equality) and conservative
(top equality). The equal conflict sets are {¢1, ta}, {t2}, {ts3} and {t5}, thus |[E(V)]| = 4.
Moreover, the rank of its incidence matrix equals 3 = |£(N)| — 1. Thus, N is well-formed.

The following proposition recalls that well-formedness is a necessary condition of well-
behavedness for Equal-Conflict systems.

Proposition 3 ([Teruel 1993]). A well-behaved Equal-Conflict system is well-formed.

2.8 Structure of well-formed EC and Join-Free nets

In this section, we recall properties regarding the structure of well-formed Equal-Conflict
nets and their Choice-Free subclass, as well as well-formed Join-Free nets.

The next proposition states the existence of a unique minimal T-semiflow in well-formed
Choice-Free nets and is illustrated in Figure 2.19.
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Proposition 4 (Unique minimal T-semiflow [Teruel 1997]). If N = (P,T,W) is a well-
formed strongly connected Choice-Free net, then N has a unique minimal T-semiflow Y.
Moreover, the support of Y is the set T.

p3 Ps
b1 1o 13 14
ml 1120 0
P2l 0-220 % 0
P3| -1010 51 =10
Paf 00-12 1 0
ps| 00 1-2 0

Figure 2.19: This weighted Choice-Free net is strongly connected and consistent, thus
well-formed (Proposition 1 on page 29). The minimal T-semiflow is ?(2,2,2,1).

We present next the union of subnets of a net and the covering of a nets by subnets.

Definition 3 (Union of subnets and covering). Consider two nets N1 and No that are
subnets of a net N. The union of Ny = (Py,T1,W1) with Ny = (P2, To, Wa) is the net
N' = (P, T",W') such that P' = P, U Py, T' =Ty UT5, and the new weight function W'
inherits the weights of the arcs defined by W1 or Wy. Generalizing inductively to a set C
of subnets, the union of C = {C1,...,Cy} is the union of C1 with the result of the union
of C\ {C1}. A net N is covered by a set C' of subnets if N is the union of C.

A decomposition theory has been developed for Equal-Conflict systems [Teruel 1996]
and specialized for Choice-Free systems [Teruel 1997], allowing to gain insight into their
structure and behavior by studying particular subsystems. The next result shows the
relevance of FA P-subnets to the study of well-formedness in Choice-Free nets.

Proposition 5 (Structure and FA P-subnets [Teruel 1997]). Consider a strongly connected
well-formed Choice-Free net N with unique minimal T-semiflow Y. If Ny, = (Py, Ty, W)
18 a strongly connected FA P-subnet of N then N, is well-formed, with a unique minimal
T-semiflow Yy, and Y|, is a multiple of Yy. Moreover, N is covered by such FA P-subnets.

This proposition is illustrated on Figure 2.20.

For weighted Petri nets, we define next some particular subnets named components.

Definition 4 (Components [Teruel 1996]). A (weighted) P-component N’ of a net N is a
strongly connected and conservative Join-Free P-subnet of N. A (weighted) T-component
N’ of a net N is a strongly connected and consistent Choice-Free T-subnet of N.
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()=
w

t1 t2 t3
tq
b1 11-2 1 0
‘ ts P2l 0-2 2 11=10
P3| -1 0 1 1 0
to
t3 t4
t3 ty pal -1 2 { 9 ] B [ 0 }
D5 | 1 -2 17710

Figure 2.20: Two well-formed strongly connected FA P-subnets of the well-formed Choice-
Free net of Figure 2.19 whose minimal T-semiflow is Y = ?(2,2,2,1). Their minimal
T-semiflow is pictured on the right of their incidence matrix. The restriction of Y to the
set {t1, to, t3} is Y1 = ¥(2,2,2), which is a multiple of (1,1,1), the minimal T-semiflow of
the first P-subnet. The restriction of Y to the set {t3, t4} is Y2 = £(2,1), which is equal to
the minimal T-semiflow of the second P-subnet.

It follows from this definition that each P-component of an Equal-Conflict net is a ho-
mogeneous Join-Free net.

The next proposition states that well-formed Equal-Conflict nets are covered by P-
components and T-components, and indicates their relationship with minimal semiflows.

Proposition 6 (Coverings of Equal-Conflict nets [Teruel 1993]). Consider a well-formed
Equal-Conflict net N. N is covered both by a set of T-components, each of them inducing
the support of the associated unique minimal T-semiflow, and by a set of P-components,
each of them inducing the support of the associated unique minimal P-semiflow.

We deduce from the previous proposition that every well-formed Choice-Free net N is
covered by P-components which are FA nets.

A similar kind of result is deduced from [Teruel 1997], where structural properties of

well-formed Join-Free nets are deduced from the properties of well-formed Choice-Free nets
by duality. The covering of well-formed Join-Free nets by components is stated next.
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Proposition 7 (Coverings of Join-Free nets [Teruel 1997]). Consider a well-formed strongly
connected Join-Free net N. N is covered by a set of FA T-components, each of them
inducing the support of the associated unique minimal T-semiflow. Moreover, the unique
P-component of the net N is N itself, inducing the support of the unique minimal P-semiflow
of N.

2.9 Conclusion

In this chapter, we presented the model used throughout this thesis, the weighted Petri
nets. We recalled the main structural and behavioral properties, as well as definitions and
notations regarding these nets. We defined the main subclasses investigated in this thesis
and showed their inclusion relationships. We noted that the structural notion of duality
applies for example to Choice-Free and Join-Free nets. We gave insight into the expres-
siveness of the subclasses and some possible applications. Finally, we recalled the existence
of polynomial time characterizations of well-formedness for Equal-Conflict, Join-Free and
Choice-Free nets. We also highlighted results regarding the semiflows and components of
Equal-Conflict nets and Join-Free nets.
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Chapter 3. Polynomial time transformations of weighted Petri nets

Many behavioral properties of Petri nets are intractable [Cheng 1993, Esparza 1994].
In this thesis, we focus on the liveness and reversibility problems, which are known to be
decidable [Hack 1976, Araki 1977, Mayr 1984]. The liveness problem is EXPSPACE-hard
[Hack 1974, Lipton 1976], while the complexity of the reversibility problem is not known.

In order to simplify the study of the behavior, the system may be efficiently trans-
formed while preserving the behavior or other strong properties. The analysis of behav-
ioral properties is then achieved on the transformed system. Many transformations exist
[Berthelot 1986, Berthelot 1987, Murata 1989, Colom 2003|. They are generally defined as
rules that apply to special local graph patterns and often reduce the size of the net, leading
to efficient sufficient conditions. However, in many situations, these rules do not reduce the
analysis complexity.

In this chapter, we present several new polynomial time transformations for weighted
Petri nets. One of them applies to a particular subclass of weighted Petri nets, the well-
formed Choice-Free systems, leading to a well-formed T-system while preserving strong
structural properties. The other transformations apply to either all Petri nets or conser-
vative ones and preserve the feasible firing sequences and the well-formedness, generalizing
methods that were developed in the context of weighted T-systems in [Marchetti 2009].
These transformations will prove useful in the sequel as they will greatly simplify the study
of behavioral properties.

This chapter is organized as follows. First, in Section 3.1, we define the scaling of a Petri
net by a vector. We show that this polynomial time transformation preserves the language
of the system and consequently the liveness and reversibility properties. Moreover, the
well-formedness is also preserved. Then, we introduce in Section 3.2 a particular scaling,
called a balancing transformation, that can be applied to a system when it is conservative
to obtain what we call a token-conservative system, whose total number of tokens is invari-
ant. This method applies in particular to all well-formed weighted Petri nets, since they
are conservative [Sifakis 1978, Memmi 1980]. In Section 3.3, we recall the normalization of
T-systems and compare it to balancing. We present in Section 3.4 the useful tokens prop-
erty, which allows to reduce the initial number of tokens of any Petri net while preserving
the language. In Section 3.5, using the previous transformations, we obtain a polynomial
transformation of any Petri net into a weighted Free-Choice system which preserves lan-
guage and well-formedness. Finally, Section 3.6 provides a polynomial time transformation
of a well-formed Choice-Free system into a well-formed T-system that preserves the set of
T-semiflows and induces a language inclusion. Section 3.7 concludes.

3.1 Scaling of systems

In this section, we present the scaling transformation, which may be applied in polynomial
time to any weighted Petri net. This transformation modifies only the weights and the
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initial marking. We then show that the language is preserved by the transformation and
study the repercussions on the liveness and reversibility properties, as well as on T-semiflows
and reachable markings. We also show that well-formedness is preserved.

3.1.1 Definition

We define the scaling, which multiplies weights and initial markings by positive (meaning
> 0) rational numbers.

Definition 5. The multiplication of all input and output weights of a place p together with
its marking by a positive rational oy, is a scaling of the place p if the resulting input and
output weights and marking are integers. If each place p of a system is scaled by a positive
rational oy, the system is said to be scaled by the vector o whose components are the scaling
factors ay,.

Figure 3.1 shows the scaling of a marked place by 2.

I B
1 1

Figure 3.1: The marked place on the left is scaled by 2, yielding the place on the right.

3.1.2 Properties
We study below several properties of the transformation.

Theorem 1 (Language preservation). Let S = ((P,T,W), My) be a system and @ a vector
of |P| positive rational components. Scaling S by « preserves the feasible sequences of

firings.

Proof. Let S" = ((P,T,W'), M) be the system obtained when scaling the system S =
((P,T,W), My) by . Let 0 = o1t be a finite sequence of firings. We prove by induction
on the size of o that o is equivalently feasible in S and S’.

The property is true if o is empty. Now suppose that o; is feasible in both S and S’.
The firing sequence o is feasible in S if and only if

et Mo(p)+ Y. Witp) - 31(t) — 3. Wipt)-61(t:) = Wi(p,1)

t;€%p t,Ep®
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which gives after scaling
Vp € *t, ap - Mo(p Z ap - W(ti, p) Z ap - <01(ti) > o - W(p, t)
t;€%p t,Ep®

and is equivalent to

Vp € ot Mi(p)+ > W(ti,p) Gi(t) — > W (p,t:) Gi(t:) > W (p.t).
t,€°p t,€p®
Thus, t is equivalently enabled in S’ ]

As shown in the previous theorem, the operation of scaling does not change the language
of the system. We deduce easily that the liveness property is preserved as stated by the
following corollary.

Corollary 1 (Liveness preservation). A system is live if and only if its scalings are live.

The next result shows that the transformation preserves some strong algebraic proper-
ties of the incidence matrix of the system.

Theorem 2 (T-semiflows preservation). Scaling preserves the set of T-semiflows.

Proof. Consider a system with incidence matrix C and a scaling vector a. When the system
is scaled by «, the incidence matrix C” is obtained which satisfies C'[p] = «, - C[p] for every
place p. These multiplications of rows by non-zero coefficients ay, preserve the kernel (or
null space) of the matrix. O

The following result shows that the system obtained by firing a feasible sequence ¢ and
then scaling it by a vector «, is the same as the system obtained by first scaling the initial
system by « and then firing o. Thus, firing and scaling commute (see Figure 3.2).

Theorem 3 (Commutativity). Consider a system S with initial marking My and a feasible
sequence o. Call M the reachable marking such that Mo — M. Let o be a scaling vector
for S and S’ be the associated scaled system with initial marking M} = o o My, where o
is the component-wise product (Hadamard product). The reachable marking M’ in S’ such
that M} =5 M’ satisfies M = aco M.

Proof. The vector « scales S = ((P,T,W), M) to S" = ((P,T,W'), M{;) while preserving
the sequences of firings (Theorem 1). Let o be a sequence feasible in both S and S’, then
for every place p and rational scaling coefficient a;, > 0,

M'(p) = Mi(p)+ > W'(ts,p) - 6(t:) — > Wip.t;) - 6(t;)

t;€®p t;€p®

=y (Mop) + D W(tiup) - G(t) = Y. Wipti) - (k)

ti€%p t;Ep®

39



3.1. Scaling of systems

Mé L} M/
Figure 3.2: Scaling and firing commute: M{j = oo My and M’ = a o M.

Since
M(p) = Mo(p) + Y W(ti,p)-&(t:) — »_ W(p,t:) - G(t:),

it follows that M'(p) = ay - M(p). O
We deduce from the previous theorem the preservation of the reversibility.

Corollary 2 (Reversibility preservation). A system is reversible if and only if its scalings
are reversible.

Proof. Consider a system S = (N, Mp) and the system S" = (N, M{)) obtained when scaling
S by a vector v. By Theorem 1 on page 38, any sequence o that is feasible in S is feasible
in S’. We note My —>+ M in S and M} —Z+ M’ in S’. Hence, suppose that S is reversible:
there exists a sequence o’ that is feasible in (N, M) such that M LN My. The sequence o’
is then feasible in (N’, M"), with M’ 2+ M". We note o, = 0 0’. By Theorem 3, M" is
equal to the result of scaling My by v, which is M, implying the reversibility of S’ O

Corollary 3 (Boundedness preservation). A system is bounded if and only if its scalings
are bounded.

Proof. Consider a system S = (N, M) that is bounded and S” = (N’, M) the scaling of
S by a vector v such that S’ is not bounded. Thus, there exists a place p which is not
bounded in S’. Denote by k the maximum marking of p over all reachable markings in S.
There exists a marking M’ reachable in S’ such that M'(p) > v(p) - k-2, thus a marking M
is reachable in S such that M’ = v o M (Theorem 3) thus M'(p) = v(p) - M (p), implying
that M(p) > k- 2, a contradiction with the upper bound & of p. O

We deduce next the preservation of structural liveness and boundedness, which may
be used for example when scaling a system having an empty marking, thus scaling the
underlying net.

Corollary 4 (Structural liveness and boundedness preservation). A system is structurally
live if and only if its scalings are structurally live. A system is structurally bounded if and
only if its scalings are structurally bounded. As a consequence, a system is well-formed if
and only if its scalings are well-formed.
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Proof. By Corollary 1 on page 39, the liveness property is preserved by the scaling opera-
tion, thus if a live marking My exists for a net N, every scaling of (N, My) leads to a live
system (N’, M), which is therefore structurally live.

Suppose there exists a structurally bounded system S = (N, My), My being the empty
marking, and " = (N’, M{)) is a not structurally bounded scaling of S. Denote the scaling
vector transforming S into S’ by v and the inverse vector transforming S’ into S by v~!.
There exists a marking Mj such that S} = (N’, M7) is not bounded. Hence, for every
marking larger than M7, the system obtained is not bounded; in particular, a marking M{
exists such that S} = (N’, M{) is not bounded and can be scaled by v~! (multiply M/ by
the least common multiple of the denominators of v™1), leading to the system Sy = (N, My).
Since N is structurally bounded, S; is bounded, a contradiction with Corollary 3 on the
preceding page. The preservation of the well-formedness follows by definition. O

We presented a general polynomial time transformation, namely the scaling, that pre-
serves several structural and behavioral properties of weighted Petri nets. In the next
section, we present a particular scaling, the balancing operation.

3.2 Balancing and token-conservation

When the total number of tokens in a system is preserved when its transitions are fired,
the study of its behavioral properties is greatly simplified. This property, which is a spe-
cial case of conservativeness, has been introduced under the name 1-conservativeness in
[Jones 1977]. It is also sometimes called strict conservativeness, and, in this thesis, we shall
call it token-conservativeness or, even better, token-conservation, since its meaning is then
readily understood. In the following, balancing is defined as a scaling that yields token-
conservative systems. We highlight the correspondence between conservative systems and
balanceable systems by means of simple linear algebra arguments.

3.2.1 Definition

We define below token-conservative transitions and nets, as well as the balancing transfor-
mation.

Definition 6. A transition t is token-conservative if

> Wipt)=> Wi(tp).

pe®t pet®
If all the transitions of a net are token-conservative, the net is said to be token-conservative.

This definition is illustrated on Figure 3.3.

Now we define balancing, which transforms a system into a token-conservative system. This
definition is illustrated in Figure 3.4.
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Oy,
O4l—>C>

Figure 3.3: On the left, a token-conservative transition ¢. On the right, a non token-
conservative transition ?.

Definition 7. Balancing a system S consists in scaling S by a vector of positive rational
numbers such that the resulting system s token-conservative.

Balancing
by
[2,2,1]

b1

Figure 3.4: The system on the left is not token-conservative, since the transition ts is
not token-conservative. The token-conservative system on the right is obtained by an
appropriate system scaling.

3.2.2 Properties

The balancing transformation can help gain insight into conservative systems as shown by
the next theorem.

Theorem 4. A system is conservative if and only if it can be balanced.

Proof. Consider a conservative system with incidence matrix C, then by definition there
exists a vector X > 1!7I of natural numbers such that * X -C' = 0. Multiplying every compo-
nent C[p,t] by X, yields an incidence matrix C’, whose elements are integers, satisfying for
every transition ¢, ‘1/P . C’[t] = 0. The new initial marking contains only natural numbers
and the new system is balanced.

Conversely, if a system can be balanced, there exists a vector X of positive rational
numbers that annuls every column of its incidence matrix. The multiplication of X by the
least common multiple of the denominators of its components gives a conservative vector,
hence the system is conservative. O

The balancing operation is a particular scaling, thus inherits its properties, including
liveness and reversibility preservation.
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Corollary 5. A conservative system is live if and only if its balancings are live.

Corollary 6. A conservative system is reversible if and only if its balancings are reversible.

3.2.3 Polynomial complexity

The balancing transformation applies to all conservative weighted Petri nets. Since conser-
vativeness is a known necessary condition for well-formedness [Sifakis 1978, Memmi 1980],
balancing applies to all well-formed weighted Petri nets, which constitute a wide range of
models for real applications, including embedded systems.

Finding an adequate (conservative) balancing vector for a conservative net with inci-
dence matrix C consists in finding a solution to tX-C' =0, X > 1/Pl ortC- X =0, X > 1/l
where the entries of C are integers and those of X are natural numbers. A Petri net modeling
an application is very likely to be conservative. In a conservative system, a positive rational
solution X can be found with a linear program in weakly polynomial time [Megiddo 1987].
Multiplying the components of X by the product of their denominators leads to a solution
whose components are positive natural numbers with a polynomial increase of the number
of bits. However, the values obtained and thus the number of tokens can grow exponen-
tially, inducing an exponential increase of the buffer sizes. Consequently, the transformed
system should not be used by itself for the design of an application, but only to deduce
properties of the original system.

3.3 Normalization and its relation to balancing

Normalization was introduced in the context of weighted T-systems to obtain a polyno-
mial time sufficient condition of liveness in [Marchetti 2009]. By applying this transforma-
tion, the number of tokens remains constant in every circuit of the T-system, simplifying
the study of its behavior. Normalization can be performed in polynomial time with the
Bellman-Ford algorithm [Marchetti 2009]|. Here this transformation is explicited in a dif-
ferent way, starting from the notion of consistency of a well-formed T-system. It is then
compared to balancing in S-systems. We finally present the properties of liveness and re-
versibility preservation through normalization.

The following definition is illustrated in Figure 3.5.

Definition 8. A fransition t is normalized if all the input and output weights of t are
equal. A net, or a system, is normalized if all its transitions are normalized. Normalization
transforms o system into o normalized one by means of an appropriate system scaling.

The next theorem shows that normalization can be performed on consistent T-systems.

Theorem 5 ([Marchetti 2009]). If a weighted T-system is consistent, then il can be nor-
malized.
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O4l—>C>

Figure 3.5: The transition ¢ on the left is normalized. On the right, ¢ is not normalized.

Proof. Suppose that S = (N, My) is a weighted consistent T-system with incidence matrix
C'. There exists by definition a vector Y > 1171 of integers such that C'- Y = 0.

Since S is consistent, its places either have one input and one output transition or are
isolated. Only non isolated places need be considered for normalization.

Denote by K the least common multiple of the values Y[t], t € T. We observe that,
since any place p has exactly one input transition ¢ and one output transition ¢,

W(t',p)-Y[t]=W(p,t)- Y[t

and we set
K K

T W) Y W YE
Now we prove that the weighted T-system S’ = (N’,M{) obtained by scaling S with
(a1, -+, ayp)) is normalized.
Consider a transition ¢, then for every place p € *t

K
W (p,t) = ap - W(p,t) = Nk

Similarly, for any place p € t°,

/ . _th‘ _
WAGE) = WD) =5 ) Vi ~ Vil

Thus every transition ¢ is normalized and S’ is normalized. O

Well-formed strongly connected T-systems are consistent and conservative (Proposi-
tion 1 on page 29), thus they can be either normalized or balanced. When a system is
normalized, the number of tokens is invariant in every circuit while, when it is balanced,
its total number of tokens is kept constant. Figure 3.6 shows the difference between a
normalized T-system and a balanced T-system.

S-systems constitute a subclass of Join-Free systems. As shown next, the normalization
that was developed for T-systems coincides for S-systems with balancing.

Theorem 6. A strongly connected S-system is balanced if and only if it is normalized.

44



Chapter 3. Polynomial time transformations of weighted Petri nets

Figure 3.6: Consistent T-systems can be normalized. Since they are also conservative they
can be balanced as well. The T-system on the left is normalized but not balanced and all
circuits preserve their number of tokens when firing, take e.g. the circuit py t1 p2 t2. The
equivalent T-system on the right is obtained by multiplying p; by 2: it is balanced but not
normalized and the total number of tokens remains constant after any sequence of firings.

Proof. As each of its transitions has just one input and one output place, the system is
balanced if and only if each transition’s unique input weight equals its unique output weight,
characterizing a normalized system. O

However, the outcomes of balancing and normalization differ in other weighted classes,
even if the considered systems are well-formed, consistent and conservative. Figure 3.7 de-
picts a normalized and balanced S-system on the left, and, on the right, a Fork-Attribution
system, that is balanced but neither normalized nor even normalizable.

Figure 3.7: Ability to normalize or balance a system depends on its structure. Conservative
systems can be balanced, hence all well-formed systems can be balanced. A well-formed
balanced FA system may not be normalized nor normalizable.

As normalization is a particular scaling, corollary 1 on page 39 and corollary 2 on
page 40 induce the following ones for the preservation of liveness and reversibility.

Corollary 7. A system is live if and only if its normalizations are live.

Corollary 8. A system is reversible if and only if its normalizations are reversible.
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3.4 Useful tokens

We show that some tokens do not impact the behavior of a system and hence can be
removed without modifying the language of the system. The idea of useful tokens was first
introduced in [Marchetti 2009]. We generalize this approach to all weighted Petri nets.

Definition 9. A weighted Petri net is said to satisfy the useful tokens condition if every
place p s initially marked with a multiple of ged,.

The following theorem shows that any initial marking can be modified to satisfy this
condition in such a way that the set of feasible sequences is not modified.

Theorem 7. The marking My(p) of every place p of a system S = (N, M) can be replaced
by

LMO(P)

- ged
ged, J gedp

without modifying the feasible firing sequences of S.

Proof. From the initial marking My of the net N we construct a marking M}, according to

)

Vp e P, Mj(p) = L gedy, .

Let rp be the remainder of the division of My(p) by gedp, hence My(p) = M| (p) + rp. We
prove by induction on the size of a firing sequence o that o is feasible for My if and only if
o is feasible for M.

The property is true if o is empty. Otherwise, suppose o7 is feasible in both systems,
with My =% M and M 2L M, and consider o = o1t. Denote

vp= Y W(ti,p)-G1(t) = Y W(p,ti) - G1(t:)-

t;e® t;ep®

Since all input and output weights of p are multiples of gcd,, v, is a multiple of ged,.
By definition of My, we have the following equivalence on the possibility to fire ¢ in both
systems after the firing of o;:

Vp € *t, My(p) + vp > W(p,t) <= Vp € °t, My(p) + rp + v, > W(p,1).

Since My(p), v, and W(p,t) are multiples of ged, for every place p, while r, is strictly
smaller than gcd,, we deduce

Vp € *t, Mi(p) + v, > W(p,t).
Therefore t can equivalently be fired at M’, which completes the proof. O

This theorem is illustrated on Figure 3.8.
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Figure 3.8: The gcd of the places equals 2. The marking on the left does not fulfill the
useful tokens condition, hence it can be reduced while preserving the language. On the
right, the place fulfills the condition and induces the same language.

3.5 Transformation into weighted Free-Choice systems

In this section, we present a method which transforms any weighted Petri net into a weighted
Free-Choice system while preserving the language and the well-formedness. For that pur-
pose, we use the scaling transformation, and introduce new arcs and new tokens, in order
to complete the input sets of transitions and satisfy the Free-Choice structure.

We first prove the next theorem, illustrated in Figures 3.9 and 3.10, which presents a
simple transformation that preserves strong properties. The idea consists in completing the
missing arcs between a set A of transitions and a place p.

Theorem 8 (A local transformation). Consider a system S = (N, My), with N = (P,T,W),
such that My contains only useful tokens and there exists a place whose output set is not
T. Consider the following transformation of S that leads to a new system S’. Select a
non-empty subset of transitions A and a place p such that A contains only transitions that
are not outputs of p:

1. if ged, = 1, then scale p by 2;

2. For every transition t in A:
add an arc with weight 1 from p to t; if an arc with weight w > 0 exists from t to p,
then replace w by w+ 1, otherwise add an arc with weight 1 from t to p;

3. add one token to p.

Then, S and S’ have the same language. Moreover, if S is well-formed, then S’ is well-
formed.

Proof. The first step may scale a place, an operation that has been shown to preserve the
language of the system (Theorem 1 on page 38) and the well-formedness (Corollary 4 on
page 40). Moreover, scaling preserves the useful tokens condition, supposed to be satisfied
by the initial marking M. After the potential scaling of p and before adding new arcs, the
place p satisfies ged, > 2. Hence, the token added becomes a useful token only when the
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t t t !
[
add arcs
_>
3 and a token @ 3
p p

Figure 3.9: A first example of the transformation, with A = {t}. On the left, the initial
system to be transformed. Since ged, = 3, the place p needs not be scaled. Finally, arcs
are added between p and t and a token is added to p.

t t/ t t/ t t
- 2 add arcs 3
scale p by 2 —
3 6 and a token 6
p p p

Figure 3.10: A second example of the transformation, with A = {t}. On the left, the initial
system to be transformed. Since ged, = 1, the place p is scaled by 2, leading to the second
system. Finally, arcs are added between p and ¢ and a token is added to p. Since an arc
already linked ¢ to p, 1 is added to its weight 2, leading to the new weight 3.

output arcs of p with weight 1 are added. Moreover, in the final transformed system, any
firing of an output transition removing the new token sends this token back to the place.
Thus, for every marking M reachable in the new system, M (p) is of the form k- c+ 1,
where k and c are natural numbers such that ¢ > 2, and the output arcs with weight 1 are
the new output arcs. We deduce the language preservation.

Finally, by the properties of the scaling operation, if the initial system is well-formed,
then the scaled system is also well-formed. The new arcs only check for the presence of a
token, restricting the firing possibilities in the new system. Thus, structural boundedness
is preserved. The preservation of structural liveness comes from the language preservation.
It follows that well-formedness is preserved. O

We are now able to deduce a polynomial time transformation of weighted systems into
weighted Free-Choice systems which preserves the language and the well-formedness. The
algorithm follows, supposing that the initial marking contains only useful tokens, otherwise
it must first be reduced.
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Corollary 9 (Transformation into a weighted Free-Choice system). Consider a system
S = (N, My), with N = (P, T,W), such that My contains only useful tokens. Consider
the following transformation of S that leads to a new system S’: For every place p whose
post-set is not the set T of all the transitions:

1. if ged, = 1, scale by 2 the place p;

2. For every transition t that is not an output of p then add the arc (p,t) (with weight
1). Then, if an arc with weight w from t to p already exists, replace w by w + 1,
otherwise, add one arc (t,p) with weight 1.

3. add one token to p.

Then, S and S’ have the same language, and S’ is a weighted Free-Choice system. Moreover,
if S is well-formed, then S’ is well-formed.

Proof. The algorithm iterates the transformation of Theorem 8 on page 47 on every place p
whose output set is not 7. We deduce that the language and well-formedness are preserved.
After the transformation, the input set of every transition is the set of all places P. Thus,
all transitions, and in particular the transitions sharing an input place, have the same input
set. Consequently, the transformed system is a weighted Free-Choice system. O

Figure 3.11 pictures the transformation.

Po P1

Figure 3.11: The system on the left is not even Asymmetric-Choice: py and p; have a
common output transition ¢; while p§ € p} and p € p§. The transformation leads to the
weighted Free-Choice system on the right with the same language. On the left, ged,, =1
and pg is not an input of all the transitions, hence it is scaled by 2 and a token is added.
We then build the two arcs between pg and t2. On the left, gcd,, = 2, thus on the right
p1 is not scaled. We then add a token and an arc from p; to tg. We finally add 1 to the
weight of the arc from ¢y to p;.

We deduce the next corollary.

Corollary 10 (Liveness and reversibility preservation). The transformation into a weighted
Free-Choice system preserves the liveness and reversibility properties: the initial system is
live (resp. reversible) if and only if the transformed system is live (resp. reversible).
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Proof. The liveness preservation comes from the language preservation. Then, by Corollary
2, the scaling operation preserves reversibility. Finally, firings of transitions having new
input arcs with weight 1 put the new added tokens back in their initial place. O

3.6 The place-splitting transformation

In this section, we propose a polynomial time transformation of a well-formed Choice-Free
system into a well-formed T-system with the same set of T-semiflows. The idea is to deduce
behavioral properties of the Choice-Free system from the study of the T-system obtained,
with the benefits of polynomial time methods that exist already for T-systems.

First, we present the transformation. We then show several important properties of this
transformation that will prove useful when studying the behavior of well-formed Choice-
Free systems in the next chapters.

3.6.1 Definition

We present here the place-splitting transformation. In order to obtain a T-system from
a Choice-Free system, one has to get rid of the situations in which places exist that have
several inputs, since this pattern is not allowed in T-systems. For that purpose, we propose
a local transformation that consists in splitting such places into several ones, meaning that
we add places to the system and modify the arcs such that each new place has at most one
input and one output. Moreover, in order to relate the properties of one system to those of
the other, we provide a formula that computes the new weights surrounding the new places
and takes into account the minimal T-semiflow of the initial well-formed Choice-Free sys-
tem. An objective is to maintain the structure from the T-semiflow point of view. Finally,
we compute a new marking based on the new weights.

In the following, we define the transformation on a strongly connected and well-formed
Choice-Free system S = ((P,T,W), Mp). By Proposition 4 on page 31, S has a unique
minimal T-semiflow Y whose support is 7. We denote by U the least common multiple of
the components of Y. The system S’ = ((P',T,W’), M) has the same set of transitions
and is obtained from S as follows.

Splitting of particular places. Every place p having at least two input transitions
t1...t, and an output ¢ is replaced by k places p; ... pg in P’ such that, for everyi € 1...k,
p; is an output of ¢; and an input of t. This operation is illustrated in Figure 3.12.
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%
place-splitting

b1
W' (t1,p1)

23

W (tw, pr)

Figure 3.12: The place p on the left has k input transitions. The splitting of place p leads
to k places on the right.

New weights. For every place p split into k places p; ... pg, for every ¢ € 1...k, all the
weights surrounding the place p; are determined as follows:

<

(t:)

Since the support of Y is T, the division by Y (¢) > 1 is allowed. Moreover, by definition

of U, % € N, thus W' (p;,t) € N. All other weights are kept identical.

The idea is to separate the flows of tokens that go through the place p, hence preserving
some kind of proportionality between the old weights and the new ones. To preserve the
minimal T-semiflow, we have to satisfy the equality W'(p;,t) - Y(t) = W'(ti,p:) - Y(t:)
for every place p; resulting from the splitting operation. For example, in Figure 3.12, the
equality W' (p1,t) - Y (t) = W'(t1,p1) - Y(t1) has to be satisfied.

New marking. The initial marking M is computed from the marking My according to:

Mo(p) -U - W (ti,p) - Y (t:)
gedy, - W(p,t) - Y (1)

This equality can be written equivalently as follows:

Mq(pi) = L J - gedy, .

Mo(p) - W' (pi,t)
ngpi ' W(p7 t)

My(p) = [ J - gedy, -

The new initial marking of a new place p; is obtained from the old marking by applying
the ratio of the new output weight to the initial output weight. The idea is to preserve
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3.6. The place-splitting transformation

a kind of firing potential of the output transition ¢ relatively to the initial marking. Fi-
nally, the value is rounded down to a multiple of gcd,,, since we consider only useful tokens.

The whole place-splitting transformation is illustrated in Figure 3.13.

9 b1
t ¢ . 21-37717_T10
Po 201|l4]=|0
D 3 0-12JL2] Lo
t
1 ® ’ 80-4]rq7 [0
; kL
b2 (3 0-12]t24 [o
1 p2

Figure 3.13: The Choice-Free system on the left has the minimal T-semiflow (1,4, 2), thus
U = 4. Applying the transformation, W' (t1,pp) = 2-4, W' (te,pj) = 1-4, W (pj, t3) = 8-1/2
and W’(pg,t3) = 4-4/2. The marking of p1 and py does not change. Since ged, = 4,
W(t2,po) = 1, gedyy = 4 and W(t1,po) = 2, we get My(py) = 4 and Mp(py) = 8. We
obtain the T-system on the right with the same minimal T-semiflow.

3.6.2 Properties

The transformation clearly preserves strong connectedness. As shown next, it also preserves
the set of T-semiflows and well-formedness.

Theorem 9 (T-semiflow preservation). Consider the well-formed strongly connected Choice-
Free system S and the transformed T-system S’. Both systems have the same set of T-
semiflows and S’ is well-formed.

Proof. S and S’ have the same set of transitions T. The system S, being well-formed, has
a unique minimal T-semiflow Y, whose support is T (Proposition 4 on page 31). For every
transition t;, Y (t) - W (p;,t) = Y (¢;) - W/(t;,pi), thus Y is a T-semiflow of S’. We deduce
that S’ is consistent and strongly connected, thus well-formed (Proposition 1 on page 29)
and it has a unique minimal T-semiflow with support T (Proposition 4 on page 31). Since
Y is a T-semiflow of S” and the ged of its components is 1, there is no smaller T-semiflow
in ', thus Y is the unique minimal T-semiflow of S’. As each T-semiflow is a multiple of
Y, the set of T-semiflows is preserved. O

This property is illustrated by Figure 3.13, where both systems are well-formed and
have the same set of T-semiflows, including the unique minimal one.
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The next property compares the number of initial tokens in both systems.

Theorem 10 (Marking bound property). Consider a well-formed strongly connected Choice-
Free system (N, My) and its transformation (N', My). The following inequality is satisfied
for each place p transformed into k places py ... py:

k

> My(pi) < Mo(p) - U .
=1

Proof. By definition of M|, we obtain:

N Mop) U Wik p) - Y (0
2 M= 3 | e Wi v )

i=1...k i=1...k
Z My(p) - U -W(ti,p) - Y ()
T L5 W(p,t) - Y (t)
U - My(p
S W— Z W va )
i=1...k
Since S8 W (ti,p) - Y(t;) = W(p,t) - Y(¢), the claim is proved. O

On Figure 3.13 on the preceding page, M/ (py)+M((py) = 12 while My(p)-U = 3-4 = 12.

The inclusion of the language of S” in the language of S is shown below.
Theorem 11 (Language inclusion). Every sequence that is feasible in S is feasible in S.

Proof. We prove the claim by induction on the size of a sequence o that is feasible in
S" = (N', M).

If o is empty, then it is also feasible in S = (N, My). Hence suppose that o = o1t has
size k > 1 and the property is true for o1, thus oy is also feasible in S. We note My — M,
and M} 7% M .

If no input of t has been modified by the transformation, then for each of its input places
p, the weights surrounding p have not been modified and the corresponding transitions have
been fired the same number of times, thus M/ (p) = M;i(p) and t is enabled by M; in S.
Otherwise, the same argument applies to any non-modified input place of ¢, and for every
input place p of ¢t that has been transformed into places p; ... pg, we show that if the places
pi, © = 1...k, are enabled by M7 in S’ then p is enabled by M; in S. It is equivalent to
show that M'(p;) > 0, Vi € {p1,...,pr}, implies M(p) > 0 where M, Y5 M. For every
such place p;, i € {1,...,k},

Mg (pi) + W' (ti, pi) - G(t;) = W' (pi,t) - &(t) > 0.
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From the definition of W', we get

My(pi) + U - W(ti,p) - G(t;) = U - W (ty, p) - -d(t) > 0.

Y(t) -

By summing the preceding inequality over places p; ... px, we obtain

2 Mi(pi) +U- ( > Witip) - 6(t:) — ( W(ti,p) Y () - ;:'(t)) >0

i=1...k i=1...k i=1...k (t)

Since 3,y W(ti.p) - Y () = W(p.) - Y (£),

S M) + U (D Wltinp) - F(t) — Wip, ) - 5(1)) = 0

i=1..k i=1..k
From the marking bound property (Theorem 10 on the preceding page), it follows that

U (Mo(p) + 3 Wtinp) - 6(t:) = Wi(p,t) - 3(8)) > 0
i=1...k

thus U - (M1 (p) — W (p, t)) > 0 and o is feasible in S. 0

In Figure 3.13 on page 52, the sequence t3ty toto t3 is feasible in the T-system and also
in the Choice-Free system. However, the sequence t3t; t2 t3 is feasible in the Choice-Free
system whereas it is not feasible in the T-system.

The language inclusion property will prove useful in studying behavioral properties of
Choice-Free systems in the next chapters. Indeed, this property intuitively states that what
can be done in the T-system can also be done in the Choice-Free system, which thus inherits
a more constrained underlying behavior. We will benefit from the lower expressiveness of
T-systems to study the properties of Choice-Free systems.

3.7 Conclusion

We generalized to all weighted Petri nets several polynomial time transformations that were
developed for weighted T-systems [Marchetti 2009).

We showed several important properties of the scaling transformation, namely the
preservation of the language, the T-semiflows as well as the liveness and reversibility prop-
erties, and the well-formedness.

We introduced a particular scaling, namely balancing, which transforms every conserva-
tive system into a token-conservative system, inheriting the properties of the scaling while
the number of tokens is invariant over the set of reachable markings. As the conservative-
ness property is known to be necessary for well-formedness, the balancing transformation
applies to all well-formed weighted Petri nets.
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Chapter 3. Polynomial time transformations of weighted Petri nets

We also presented a transformation of any weighted Petri net into a weighted Free-
Choice Petri net preserving the language and the well-formedness.

Finally, the polynomial place-splitting transformation applies to well-formed Choice-
Free systems and benefits from strong properties, namely the preservation of the T-semiflows
and well-formedness, as well as the inclusion of the language of the transformed system into
the language of the initial system.
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Chapter 4. Polynomial sufficient conditions of liveness for well-formed
Join-Free and Equal-Conflict systems

In this chapter, we focus on well-formed and weighted Join-Free and Equal-Conflict
systems, and also on some of their subclasses: Choice-Free systems, T-systems, S-systems
and Fork-Attribution systems. Polynomial time characterizations of well-formedness ex-
ist for all these classes [Teruel 1994, Recalde 1995, Recalde 1996, Teruel 1996, Teruel 1997,
Silva 1998, Amer-Yahia 1999a|. Consequently, the problem of deciding the well-formedness
of such models of applications is tractable.

Once a well-formed net has been designed, a challenging question is to build a live
initial marking. The well-formedness assumption implies the existence of such a marking.
Only exponential time characterizations of liveness are known for well-formed weighted
circuits. The complexity of deciding the liveness of a weighted circuit is an open ques-
tion and is strongly related to the Frobenius problem, which is known to be difficult
[Chrzastowski-Wachtel 1993, Ramirez-Alfonsin 1996]. Consequently, this difficulty propa-
gates to all larger classes and we are interested in finding polynomial, meaning in polynomial
time with a polynomial number of initial tokens, live initial markings for several expressive
classes.

To date, methods exist that build live initial markings for Equal-Conflict systems and
most of their subclasses, either with an exponential number of initial tokens or in exponen-
tial time |Teruel 1993, Teruel 1996, Teruel 1997], except in the case of weighted T-systems,
for which polynomial sufficient conditions are known [Marchetti 2009]. In the case of well-
formed Join-Free systems, dedicated methods have not been developed until now.

In this chapter, we use the transformations of Chapter 2 to obtain the first polynomial
sufficient conditions of liveness for well-formed Join-Free and Equal-Conflict systems. This
allows to build well-behaved systems efficiently with a reasonably sized initial data distri-
bution. These new results contrast with the prior exponential methods of the literature.

This chapter is organized as follows. First, in Section 4.1, we provide the first sufficient
condition of liveness for token-conservative Join-Free systems, in which the total amount
of tokens remains invariant. We deduce from this result another sufficient condition for the
more general class of all well-formed Join-Free systems. In Section 4.3, we recall known the-
orems concerning the liveness of well-formed Equal-Conflict systems. Then, we exploit these
results to provide the first polynomial sufficient conditions for well-formed Equal-Conflict
systems. In Section 4.4, with the help of the place-splitting transformation, we present
another polynomial time sufficient condition of liveness for the special case of well-formed
Choice-Free systems. We compare all these liveness conditions in Section 4.5. Finally, we
show in Section 4.6 that these conditions are not necessary in the weighted case.
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4.1. Polynomial sufficient conditions of liveness for well-formed Join-Free
systems

4.1 Polynomial sufficient conditions of liveness for well-formed
Join-Free systems

Observing that a well-formed Join-Free system is necessarily balanceable, we express a
first sufficient condition of liveness on a balanced version of the system. Then we examine
the special case of ordinary well-formed Join-Free systems for which we derive a simple
necessary and sufficient condition of liveness. We then propose a live marking that imposes
a distribution of the initial tokens among all places. Moreover, every larger marking is also
live.

4.1.1 Well-formedness and balancing

We consider in this section conservative Join-Free systems, which are well-formed by Theo-
rem 1 on page 29. According to Theorem 4 on page 42 these systems may also be balanced,
which can be done in polynomial time. Hence we shall restrict our study to Join-Free
balanceable systems.

4.1.2 A polynomial sufficient condition for balanced Join-Free systems

The following technical lemma expresses a simple sufficient condition for the existence of
enabled places.

Lemma 1. Let S = ((P,T,W),My) be a balanced strongly connected Join-Free system
satisfying the useful tokens condition and the inequality

Z My(p) > Z(ma:cp —gcdy) . (4.1)

peEP peP
Then for every marking M in [My), there exists a place p € P which is enabled by M.

Proof. As M fulfills the useful tokens condition, it follows that for every place p, My(p) is
a multiple of ged,. Since the input and output weights of every place p are also multiples
of ged,,, M(p) is a multiple of ged), for every reachable marking M and every place p.
Now suppose, by contradiction, that M is a fixed reachable marking that does not
enable any place. Then
Vp € P,M(p) < maz, — gcdy,

hence

Z M(p) < Z(ma:np — gedy) (4.2)

peEP peEP

Since S is balanced, every transition firing maintains the number of tokens in the system,

implying that
> M(p) = Mo(p).
peEP peEP
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Inequality (4.2) is therefore equivalent to

> Mo(p) <> (maz, — gedy),

peP peEP

contradicting inequality (4.1). O

We are now able to prove that inequality (4.1) provides a sufficient condition of liveness.

Theorem 12. A balanced strongly connected Join-Free system S = (N, My) satisfying the
useful tokens condition is lve if

Z My(p) > Z(maxp — gedy) .

peP peEP

Proof. Let S be a Join-Free system meeting the conditions of the theorem. We show that
S is live, that is, for every reachable marking M and every transition ¢, there exists a finite
and feasible firing sequence starting at M that leads to a marking M’ enabling ¢. For that
purpose, we prove that Algorithm 1 on the following page computes such a sequence and
terminates. Tokens are arbitrarily numbered to ensure its convergence.

If M(p) > W(p,t) then t is enabled. The algorithm terminates and o is the requested
firing sequence.

Now consider the alternative. The place p is not enabled. L is not empty by Lemma 1
on the preceding page and thus, p’ exists. Moreover p # p’ since p ¢ L.

At every step of the loop, a firing occurs so as to reduce the minimal distance between
the mobile token with smallest number and the place p. Note that a firing can move several
tokens at once on different paths, taking some of them away from p. Such a firing is always
possible when p is not enabled, since by Lemma 1 there exists at least one enabled place
at any reachable marking. In so doing, a new marking M’ is reached, inducing the new
shortest distances of dM'. We prove that dM >, dM/, following the lexical order on N°.
The firing of ¢’ ensures that d < dM. At this step, as the numbers of the other displaced
tokens are greater than i, the inequality d™ >, dM' is true, even though d;-” may increase
for j > i. Now, as the lexical order is well-founded over N’ the algorithm terminates, o is
finite and ¢ is enabled. O

Figure 4.1 on page 63 shows the application of this theorem to a balanced Join-Free
system. The system represented satisfies ) (mazy — ged,) = 14140 = 2. The inequality
becomes >, Mo(p) > 2 and is satisfied by the marking on the figure.

The sufficient condition of Theorem 12 obtained for balanced FA systems is the same
as the one developed for weighted balanced circuits in [Marchetti 2009]. Consequently, the
condition of Theorem 12 cannot be improved while preserving a polynomial time complexity
unless the complexity for the circuit can be improved.
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systems

Algorithm 1: The algorithm computes a feasible firing sequence starting at M so as
to enable any fixed transition t.

N

Data:
— The current reached marking M, which contains § tokens arbitrarily numbered
1,...,6;
— The unique input place p of t;

— The é-tuple ™ = (d,...,d}"), which associates the shortest distance d from
token i to the place p according to the marking M;
Result: A finite firing sequence o such that M % M’ and M’ enables t.
o = ¢, the empty sequence;
while M (p) < W(p,t) do

Let L be the set of the places enabled by M and J = {i...4x} the set of the
numbers of the tokens in the places of L at M;

Let p’ be the place of L containing token i where 7 is the smallest value in J;
Let u=p',t',p",...,p be a shortest path from p’ to p;

Fire ¢’ such that token 7 is sent to p”;

Update M and d™;

oc:=0t

end
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p1

Figure 4.1: The initial marking of this balanced Join-Free system fulfills the conditions of
Theorem 12 and is thus well-behaved.

4.1.3 The special case of ordinary Join-Free systems

We show that the sufficient condition of liveness for well-formed Join-Free systems becomes
a necessary and sufficient condition of liveness for ordinary well-formed Join-Free systems,
which are S-systems.

Theorem 13. An ordinary strongly connected well-formed Join-Free net is an S-net.

Proof. By contradiction, suppose that there exists an ordinary well-formed strongly con-
nected Join-Free net N and a transition ¢ with |¢*| > 1. N is strongly connected, thus there
exists a circuit ¢ = tpitipats ... prty passing through ¢ with ¢, = ¢t. As N is conservative
by Theorem 1 on page 29, there exists X > 1!Pl such that *X - C = 0, where C is the
incidence matrix of N. Since by assumption [¢t*| > 1, there is at least another place p’ € ¢*
with p’ # p;. Thus
Xipr] =Y X[p] > X[p1].
pet®

Generalizing over ¢ € {1,...,k — 1}, X|[p;] > X|[pit1], implying X[p1] > X|[pg], which
contradicts X [px] > X[p1]. O

This result and the inequality of Theorem 12 on page 61 taken together induce the fol-
lowing simple necessary and sufficient condition of liveness for ordinary well-formed strongly
connected Join-Free systems, which are S-systems.

Corollary 11. An ordinary, well-formed and strongly connected Join-Free system (S-
system) S = (P, T,W), My) having at least one place and one transition is live if and

only if > ,cp Mo(p) > 1.
4.1.4 Polynomial live markings for well-formed Join-Free systems

The next theorem, illustrated by Figure 4.2, is a specialization of the previous sufficient
condition for all well-formed and weighted Join-Free systems. This theorem gives a con-
struction of a class of live markings Mjp, a live marking for each choice of place pg.
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Moreover, every marking that is larger than a marking of this class is also live, inducing an
associated sufficient condition. This condition is pictured on Figure 4.2.

Theorem 14 (The set of polynomial live markings Mjp). Let S = (N, Mp) be a weighted,
strongly connected and conservative (well-formed) Join-Free system. S is live if the following
conditions hold:

— for a place py, Mo(po) = mazp,
— for every place p in P —{po}, Mo(p) = mazx, — gcdp, .
Moreover, every larger marking is also live.

Proof. By Theorem 4 on page 42, there exists a balancing vector a > 171 for S such
that « contains only positive natural numbers. Scaling S by « yields the balanced system
S’ = (N', M{)). Consequently,

Vp € P, max, — ged, = oy, - (maxy, — gedy,)

with maz), — ged, € N. We deduce that

Z My(p) > Z (mazx), — gedy,) + maz), > Z(ma:ﬁ; — gedy) .
peEP pGP—{pQ} peEP

Moreover, for every place p, maz, is a multiple of ged,. Thus M fulfills the useful tokens
condition and by Theorem 12 on page 61 the balanced Join-Free system S’ is live. According
to Corollary 5 on page 43, balancing a system preserves the property of liveness, thus S
is live. Larger markings are also live since their balanced version also satisfies the above
inequalities. O

p1

Figure 4.2: Since the initial marking of this well-formed, unbalanced, Join-Free system
fulfills the conditions of Theorem 14, the system is well-behaved.
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4.2 Previous results on the liveness of Equal-Conflict systems

In this section, we recall a known characterization of liveness and its monotonicity for well-
formed Equal-Conflict systems. As a consequence, if a live marking is found for this class,
any larger marking is also live.

4.2.1 A characterization of liveness for well-formed systems

By Proposition 1 on page 29 and Proposition 6 on page 32, every well-formed Equal-Conflict
system is covered by a set of well-formed P-components, which are strongly connected and
conservative homogeneous Join-Free P-subsystems. The next theorem states the liveness
of a well-formed Equal-Conflict system by observing the liveness of its P-components.

Proposition 8 ([Teruel 1996]). Consider a strongly connected well-formed Equal-Conflict
system S = (N, My). S is live if and only if for every (well-formed) P-component N' =
(P, T'",W') of N, the system (N', My|p:) is live.

This characterization of liveness in terms of subsystems does not trivially lead to an
efficient algorithm for checking liveness, as one may have to check an exponential number
of subsystems.

4.2.2 Liveness monotonicity of bounded systems

The liveness property is not always monotonous, even in well-formed classes, as pictured
in Figure 4.3, which is taken from [Heiner 2010|. However, the structure of the well-formed
Equal-Conflict systems ensures this monotonicity, as recalled by the next theorem.

Theorem 15 (|Teruel 1996|). Let (N, Myp) be a bounded Equal-Conflict system. Consider
a marking M), such that M) > My. If (N, My) is live then (N, M) is live.

Hence, if a polynomial live marking is provided for a well-formed Equal-Conflict net,
then every larger marking is also live.

4.3 Polynomial live markings for well-formed Equal-Conflict
systems

In this section, we exploit the properties and the results obtained in previous sections to
deduce the first polynomial live initial marking for well-formed Equal-Conflict systems.
Moreover, by the liveness monotonicity of Theorem 15, every larger marking is also live.
We also deduce from these new results a sufficient condition of liveness that was formerly
developed for T-systems [Marchetti 2009).
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Figure 4.3: This Asymmetric-Choice Petri net is live and does not benefit from liveness
monotonicity: adding a token in place p4 allows firing of the sequence t1 t1, which leads to
a deadlock.

4.3.1 Polynomial live markings

The subclass of Equal-Conflict nets allows transitions with several input places. The fir-
ing of such transitions may occur only when all their input places are enabled. We build
on the previous results on Join-Free P-subnets to construct a polynomial live marking for
well-formed Equal-Conflict systems.

When an Equal-Conflict net has no join-transition, it is an homogeneous Join-Free net
and the live marking of Theorem 14 on page 64 applies. The interesting case deals with at
least one join-transition.

We first prove a technical lemma on the structure of the strongly connected Join-Free
P-subnets of well-formed Equal-Conflict nets.

Lemma 2. Let N be a strongly connected and well-formed Equal-Conflict net with at least
one join-transition. Every strongly connected Join-Free P-subnet of N contains at least one
wmput place of a join-transition.

Proof. Suppose there exists a strongly connected Join-Free P-subnet N, containing only
transitions having a unique input place in N. Then, either N,, is equal to N which would
then be a Join-Free net, a contradiction, or N,, is a proper subnet and there exists a
node n in N,, and a node n’ in N — N,,, such that n is an input of n, since N is strongly
connected. The node n cannot be a place, otherwise IV,,, would not be a P-subnet. Hence n
is a transition with at least two input places: the one in N,,, N,, being strongly connected,
and n’. Thus N,, contains a transition that is a join-transition of N, a contradiction. [
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We are now able to provide the first polynomial live marking for well-formed Equal-
Conflict systems, as described by the following theorem. The systems studied in this
theorem are not Join-Free, since this case has been considered in Theorem 14 on page 64.

Theorem 16 (Polynomial live marking Mgc). Let S = (N, My) be a well-formed Equal-
Conflict system that is not a Join-Free system. S is well-behaved if for all input places p;
of all join-transitions, My(p;) = maxy, and for all other places p, Moy(p) = maz, — gcdy, .
Moreover, any larger marking also provides well-behavedness.

Proof. Let S,, = (N,,, M{"") be any of the P-components of N, where N,, = (P, T,,., W)
and M{" is the restriction of My to P,,. By definition of P-components and by Proposition 1
on page 29, S, is a conservative well-formed Join-Free P-subsystem of N. Moreover, by
Lemma 2, every strongly connected Join-Free P-subnet of N contains at least an input
place of a join-transition, hence contains at least a place p such that My(p) = maz,. Thus,
by Theorem 14 on page 64, S,, is live. We deduce that My makes every P-component live
and S is well-behaved by Proposition 8 on page 65. Moreover, by Theorem 15, any larger
marking makes the system well-behaved. O

Figure 4.4 depicts a well-behaved Equal-Conflict system. Indeed, this system is well-
formed (see Figure 2.18 on page 30), each input place p; of a join-transition has a marking
equal to mazx,, and all the other places p contain max, — gcd, tokens. Figure 4.5 shows all
the well-behaved P-components of this system.

Figure 4.4: The Equal-Conflict system is well-formed, thus the live initial marking of
Theorem 16 makes the system well-behaved. In order to construct this live initialization,
notice that ¢; and t4 are the only join-transitions, thus their input places p; and ps are
initially marked by max,, = 2 and max,, = 3 tokens. It is then sufficient to mark every
other place p with max, — gcd,, tokens: in this example, no other place needs to be marked.
Moreover, adding tokens does not destroy its well-behavedness.
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Figure 4.5: The well-behaved P-components of the Equal-Conflict system of Figure 4.4.

4.3.2 Special case of normalized T-systems

For T-systems, a sufficient condition of liveness was expressed in [Marchetti 2009]. We show
that this result can be viewed as a consequence of Theorem 12 on page 61 and Proposition 8
on page 65.

We need the following simple lemma on the structure of T-nets.

Lemma 3. All strongly connected Join-Free P-subnets of a strongly connected T-net are
cireusts.

Proof. Consider a strongly connected Join-Free P-subnet N of a strongly connected T-net
and suppose by contradiction that a transition ¢ of N has at least two output places p;
and ps. Let p be the unique input place of t. Places p; and po belong to two different
paths leading to p since the net is strongly connected. These paths are not allowed to
merge as two inputs of a place since the net is a T-net. They cannot merge as two inputs
of a transition either, since the subnet N is Join-Free, and NN is not strongly connected, a
contradiction. O

We recall a known sufficient condition of liveness for T-systems that we prove now,
differently from [Marchetti 2009].

Theorem 17 ([Marchetti 2009]). Let S = ((P,T,W), My) be a strongly connected and
normalized T-system that fulfills the useful-token condition. S is live if every circuit Sc of
S satisfies

Z My(p) > Z (max, — gedy) ,

pePc pePc
where Po is the set of places of the circuit Sc.
Proof. By definition of the normalization, if (P, T, W) is a normalized T-net then its circuits
are balanced. Moreover, balanced circuits are strongly connected balanced Join-Free nets,

thus Theorem 12 on page 61 applies. T-nets are Equal-Conflict nets and S is strongly
connected. By Lemma 3 and Proposition 8 on page 65, the claim is proved. ]
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4.4 Sufficient conditions of liveness for Choice-Free systems

In this section, we recall properties regarding the liveness of Choice-Free systems and T-
systems. We provide a new sufficient condition of liveness for the particular subclass of well-
formed Choice-Free systems with the help of the place-splitting transformation of Chapter
3. We deduce a polynomial time version of this condition by using a sufficient condition of
liveness developed in the context of weighted T-systems |[Marchetti 2009].

4.4.1 Known results on the liveness
We recall the two following propositions related to the liveness property.

Proposition 9 (Characterization of liveness for Choice-Free systems [Teruel 1997]). Con-
sider a Choice-Free system S = (N, My), its set of transitions T and the incidence matriz
C of N. S is live if and only if there exist a reachable marking M € [My) and a sequence
o that is feasible in (N, M) such that & > 1171 gnd C - > 0.

Proposition 10 (Necessary condition of liveness for T-systems [Teruel 1992|). Consider a
T-system S = (N, My), with set of transitions T and incidence matriz C of N. If S is live
then for all Y > 1171 such that C - Y > 0 there exists a sequence oy that is feasible in S
such that oy =Y.

4.4.2 A sufficient condition of liveness by place-splitting

We show that the place-splitting transformation induces a sufficient condition of liveness
for strongly connected well-formed Choice-Free systems.

Theorem 18 (Sufficient condition of liveness). Consider a strongly connected well-formed
Choice-Free system S. Denote by S’ the T-system obtained by applying the place-splitting
transformation to S. If S’ is live, then S is live.

Proof. By definition of the place-splitting transformation, both systems have the same set of
transitions T'. By the preservation of T-semiflows (Theorem 9 on page 52) and Proposition 4
on page 31, S and S’ have a common T-semiflow Y > 1171, 8" is live, thus a sequence oy
such that ¢y =Y is feasible (Proposition 10). By the language inclusion (Theorem 11 on
page 53), oy is also feasible in S, which is consequently live (take M = My and 0 = oy in
Proposition 9). O

This sufficient condition of liveness is illustrated in Figure 4.6.

4.4.3 Deduction of a polynomial time sufficient condition

The polynomial sufficient condition of liveness of Theorem 17 for well-formed T-systems,
whose checking complexity is O(max{|P| - |T|,|P| - log(minyep maxy)}) [Marchetti 2009],
leads to a polynomial time sufficient condition of liveness for well-formed Choice-Free sys-
tems.
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Figure 4.6: The place-splitting transformation is applied to the Choice-Free system on the
left, leading to the T-system on the right with the same set of transitions. Since this
T-system is live, the Choice-Free system is live.

Theorem 19 (Polynomial time sufficient condition of liveness). Consider a strongly con-
nected and well-formed Choice-Free system S. Denote by S’ the T-system obtained by
applying the place-splitting transformation to S. Then S’ can be normalized, leading to a
normalized system S”. Moreover, if S” satisfies the liveness condition of Theorem 17 on
page 68 for T-systems, then S is live.

Proof. Since S is well-formed, S’ is well-formed by Theorem 9 on page 52, thus consistent
and conservative by Theorem 1 on page 29. Consequently, S’ can be normalized (Theorem
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5) in polynomial time while preserving the liveness property (Corollary 7). We deduce that
the liveness of S” implies the liveness of S, which induces the liveness of S by Theorem 18
on page 69. Finally, the condition of Theorem 17 on page 68 applies to S” and leads a
polynomial time sufficient condition of liveness for S. 0

This theorem is illustrated on Figure 4.7.

Figure 4.7: This normalized T-system is obtained from the system on the right of Figure 4.6
on the preceding page and satisfies the sufficient condition of Theorem 17 on page 68, which
can be checked in polynomial time, implying the liveness of the Choice-Free system on the
left of Figure 4.6 on the preceding page.

4.5 A comparison of the liveness conditions

For balanced FA systems, we compare the polynomial time sufficient conditions of liveness
of Theorem 12 on page 61 and Theorem 19 on the preceding page. We show that neither
one of these sufficient conditions subsumes the others.

Indeed, Figure 4.8 shows a live balanced FA system whose liveness is detected by the
condition of Theorem 12 on page 61 but not detected when checking the condition of
Theorem 19 on the preceding page.

Figure 4.9 shows a live balanced FA system that does not fulfill the condition of Theo-
rem 12 on page 61, while the condition of Theorem 19 is satisfied.
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Figure 4.8: The balanced FA system on the left satisfies the condition of Theorem 12 on
page 61 (3_,cp Mo(p) =5 > > p(max, — gedy,) = 4), while the place-splitting transfor-
mation results in the non-live normalized T-system on the right. Hence, the condition of
Theorem 19 on page 70 does not subsume the condition of Theorem 12 on page 61.

Figure 4.9: On the left, the live and balanced Fork-Attribution system does not satisfy
the condition of Theorem 12 on page 61: Zpep(maxp — gcdy,) = 2, the condition requires
three tokens whereas two tokens are sufficient for liveness. The system in the center is the
well-formed unnormalized T-system obtained by the place-splitting transformation. On the
right, the normalized version of the T-system is obtained from it upon scaling the place po
by 2. Since two tokens are present on every circuit C' of the normalized T-system while
Zpec(mazvp — gedy) = 1, the liveness condition of Theorem 17 on page 68 is fulfilled and
the condition of Theorem 12 on page 61 does not subsume the condition of Theorem 19 on
page 70.

4.6 The sufficient conditions are not necessary

The comparison of the polynomial sufficient conditions in the previous section shows that
the T-system obtained by the place-splitting transformation needs not be live to ensure
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the liveness of the Choice-Free system (see Figure 4.8 on the preceding page). Thus, this
sufficient condition is not necessary.

The other sufficient conditions of liveness are based on Theorem 12 on page 61, which is
not necessary, as shown on the counter example of Figure 4.10, which has been developed
in the context of T-systems [Marchetti 2009]. A live circuit is pictured that does not fulfill
the sufficient condition of Theorem 12 on page 61. Indeed,

Z(maxp —gedy) =(14—-2)+ (21 —-7)+ (6 —3) =29.
P

ty D2

Figure 4.10: This circuit is live but does not fulfill the polynomial sufficient conditions of
the previous sections.

The reachability graph of Figure 4.11 shows that every transition can be fired from any
reachable marking after a finite firing sequence, thus the circuit of Figure 4.10 is live.

t t t t
[0, 28, 0]«— [14, 14, 0]«— 28, 0, 0}—{22, 0, 6]«————[16, 0, 12]

t t
tsl TtQ
(5

t
81462141 [10,0,1§

to TtQ
te te t t
6,7, 15)——[12, 7, 9|—8, 7, 3|—[, 21, 3———[1,0, 24

Figure 4.11: The reachability graph of the circuit shows all the feasible sequences. Start-
ing from any reachable marking, there exists a finite feasible sequence containing every
transition, thus implying liveness.
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4.7. Conclusion

4.7 Conclusion

We applied the balancing transformation to the well-formed Join-Free nets. For this class,
and for well-formed Equal-Conflict nets, we obtained the first polynomial sufficient condi-
tions of liveness. All these conditions and markings have a polynomial time complexity,
and require only a linear number of initial tokens, whereas prior methods used exponential
time algorithms or an exponential number of initial tokens.

We also exploited the place-splitting transformation to provide another polynomial time
sufficient condition of liveness for well-formed Choice-Free systems, which constitute a
subclass of Equal-Conflict systems.

Finally, we compared these conditions and showed that neither one of them subsumes
the others, making all of them worthy of interest.
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

In this chapter, we study the reversibility property under the liveness hypothesis in
strongly connected well-formed Equal-Conflict and Join-Free systems. In some cases, we
also study Equal-Conflict systems that are not necessarily well-formed.

In the previous chapter, we provided polynomial sufficient conditions of liveness for
well-formed Equal-Conflict and Join-Free systems, allowing to build well-behaved expres-
sive systems efficiently. Once the fundamental properties of liveness and boundedness are
ensured, reversibility is the next property to be considered since it is often needed by real
applications. Moreover, once a system is known to be live and reversible, the study of the
reachability graph may be greatly simplified.

The liveness and reversibility properties are not tightly related: there exist live systems
that are not reversible, and reversible systems that are not live [Murata 1989]. Reversibility
has already been investigated under the well-behavedness hypothesis in several subclasses of
weighted Petri nets. In the case of T-systems, reversibility is induced by well-behavedness.
This implication is no longer true for Fork-Attribution systems |[Teruel 1997], since there
exist well-behaved Fork-Attribution systems that are not reversible. Polynomial methods
exist that build live markings for T-systems [Marchetti 2009], hence reversibility is also ef-
ficiently ensured for this class. Home markings, as well as a characterization of reversibility,
exist for well-behaved Choice-Free systems |Teruel 1997|; however, such live home markings
are built either in exponential time or in polynomial time with an exponential number of
initial tokens. The existence of home markings in well-behaved Equal-Conflict systems has
been proved [Teruel 1993], although no characterization of reversibility and no dedicated
method to build home markings are given.

Our contributions are organized as follows. First, in Section 5.1, we present the first
polynomial live and reversible initial marking for the class of Fork-Attribution systems.
Then, we study the more general class of Choice-Free systems, for which we present a new
characterization of reversibility and deduce the first polynomial live home markings, using
the marking found for the Fork-Attribution subclass. We also provide another original
sufficient condition of liveness and reversibility, as well as a polynomial one, with the help
of the place-splitting transformation. We then compare all these conditions.

Thereafter, in Section 5.2, we study the reversibility of live consistent Equal-Conflict
systems. With the help of a counterexample, we first show that our decomposition method
for Choice-Free systems cannot be extended to the Equal-Conflict class. We also show that
well-behavedness of a homogeneous S-system does not imply its reversibility, giving insight
into which supplementary assumption should be made to ensure the reversibility of this
class. We consequently obtain the first non-trivial characterization of reversibility for live
consistent Equal-Conflict systems, encompassing Choice-Free systems and homogeneous
Join-Free systems. We compare this characterization with a known one in the particular
case of Choice-Free systems. This result leads to the first polynomial live home markings
for well-formed Equal-Conflict systems.
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5.1. Reversibility of well-behaved Choice-Free systems

In Section 5.3, we use these new methods to obtain the first polynomial live reversible
markings for well-formed Join-Free systems, in which the homogeneity constraint is re-
moved.

Finally, in Section 5.4, we test our characterization of reversibility for Equal-Conflict
systems in larger classes.

5.1 Reversibility of well-behaved Choice-Free systems

In this section, we first recall several properties of Choice-Free systems, that obviously apply
to their Fork-Attribution subclass. Building on these results, we provide a polynomial live
and reversible initial marking for the Fork-Attribution class.

Then, under the well-behavedness hypothesis, we provide for Choice-Free systems a
new necessary and sufficient condition of reversibility that is expressed in terms of the
reversibility of particular subsystems, namely strongly connected FA P-subsystems. This
result extends a known liveness condition for well-formed Choice-Free systems, improving
our understanding of their behavior from the decomposition point of view. To prove this
condition, we exploit a known characterization of reversibility as well as a property of the
sequences that are feasible in P-subsystems. Moreover, this approach allows to construct,
for these systems, a polynomial, meaning in polynomial time with a polynomial number
of tokens, live and reversible initial marking, whereas the older characterization gives no
direct solution to this problem. We compare our result to the liveness and reversibility of
the T-system subclass, in which the interesting P-subnets are circuits.

Finally, we provide a sufficient condition of liveness and reversibility that is based on
the place-splitting transformation. We deduce a polynomial time sufficient condition of
liveness and reversibility that we compare with the previous polynomial markings, which
can also be seen as polynomial sufficient conditions since every larger marking is also live
and reversible.

5.1.1 Previous results

We recall properties of Choice-Free systems that arise from their absence of conflicts and
deal with liveness, reversibility and languages.

Liveness by decomposition. A decomposition theory has been developed for Equal-
Conflict systems |Teruel 1996] and specialized for Choice-Free systems [Teruel 1997], allow-
ing to get insight into their structure and behavior by studying particular subsystems. The
next result shows the relevance of FA P-subsystems to the study the liveness in Choice-Free
systems.

Proposition 11 (Characterization of liveness [Teruel 1997|). Consider a Choice-Free sys-
tem S = (N, My) without source places. S is live if and only if all the strongly connected
FA P-subsystems Sy = ((Px, Ts, W), Mo|p,) of S are live.
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

Proposition 11 on the preceding page may be partly seen as a specialization of Propo-
sition 8 on page 65 for Equal-Conflict systems when restricted to Choice-Free systems, in
which case the well-formed Join-Free P-subsystems become well-formed Fork-Attribution
P-subsystems.

Reversibility under the well-behavedness hypothesis. A characterization of re-
versibility for well-behaved Choice-Free systems, presented in [Teruel 1997], is recalled be-
low. This statement relies on the feasibility of a sequence whose Parikh vector is equal to
the minimal T-semiflow.

Proposition 12 (Characterization of reversibility [Teruel 1997|). Consider a well-behaved
and strongly connected Choice-Free system S = (N, My) with unique minimal T-semiflow
Y. S is reversible if and only if a sequence oy such that &y =Y is feasible at M.

Persistent systems and confluence. A system is persistent if every reachable mark-
ing M that enables two transitions ¢; and t2 enables the sequence t1t5. Persistent sys-
tems encompass the structurally persistent Choice-Free systems and have a confluent lan-
guage [Keller 1975, Lien 1976, Teruel 1997, Best 2008|. This property is also known as the
Church-Rosser property in the context of rewriting systems. A constructive theorem of
confluence for persistent systems exists [Best 2008|, however, we only need the following
one, illustrated in Figure 5.1.

Proposition 13 (Confluence ([Teruel 1997])). Consider a Choice-Free system (N, My). If
My and My are reachable markings such that My 75 M and My s My then a marking

Ms exists such that My —— Ms and Mo i> Ms, where the feasible sequences o and 3
satisfy the following conditions for every transition t:

&(t) = max{G(t), 7(t)} — &(t)
B(t) = max{3 (1), 7(t)} — 7(t)
Mg T) M1

My ——— M3

Figure 5.1: If the sequences ¢ and 7 are feasible in the Choice-Free system, then the feasible
sequences « and [ exist and reach the same marking Ms.
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5.1. Reversibility of well-behaved Choice-Free systems

5.1.2 Preliminary definitions and results

Sequences whose Parikh vector equals a T-semiflow are strongly related to the reversibility
property, since such sequences return to the same marking. Starting from this fact, we
study particular sequences that are smaller than some T-semiflows. We provide below
definitions that will simplify our study of reversibility and deal with such sequences, as well
as technical lemmas.

Definition 10 (Transient sequences and systems). Let S = (N, My) be a system having a
T-semiflow Y. A sequence o is transient relative to Y if its Parikh vector is smaller but
not equal to' Y, that is 3(t) < Y (t) for every transition t and G(t') < Y (¢') for at least one
transition t', noted ¢ < Y. The firing of o in S, when feasible and leading to a marking
M, induces o transient system denoted by the quadruple (N, M,o0,Y).

This definition is illustrated in Figure 5.2.
In order to simplify our study of transient sequences and systems, we partition the
places and transitions into ready and frozen ones, as specified below.

Definition 11 (Ready or frozen). Consider a transient system S = (N, M,0,Y). A tran-
sition ¢ is ready in S if 6(t) < Y (t), otherwise the transition is frozen in S, in which case
a(t) = Y(t). A place is ready in S if it is an input of a transition that is ready in S,
otherwise it is frozen in S.

Figure 5.2 pictures ready and frozen nodes.

Figure 5.2: These circuits have the unique minimal T-semiflow Y = (4, 1,2). The feasible
sequence o = t ¢ty is transient relative to Y since ¢ = (2,1,0) < (4,1,2) = Y. Thus,
the firing of ¢ in the system on the left leads to the system on the right, which is transient
relative to Y. All transitions on the left are initially ready relative to Y. On the right, the
transition to is frozen since & (t2) = 1 = Y (t2). Consequently, all the input places of ¢y are
frozen, namely the place ps.

Remark. Applying the previous definitions, all input places of a ready transition are
always ready in any Petri net, even if these places have some output transitions that are
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

frozen. Thus, in the general case, places that are inputs of a frozen transition may not
always be frozen. However, in the particular case of (strongly connected) Choice-Free sys-
tems, the type of a place is defined by the type of its unique output transition: all ouput
transitions of the ready places are ready, all ouput transitions of the frozen places are frozen.
These facts are pictured in Figure 5.3.

t to 3] 2 t

p

Figure 5.3: Starting from the left, the first system shows a place having a ready output and
a frozen output, thus the place is ready. The second system shows a place with only frozen
outputs, thus the place is frozen. The other two systems represent the particular case of
places having only one output: the place has the same type as its output.

As the following lemma shows, a frozen place in a transient system cannot contain more
than its initial number of tokens.

Lemma 4. Consider a system S = (N, My) with N = (P,T,W) and a transient sequence
o such that My - M and there exists a frozen place p in S’ = (N,M,0,Y). If all input
transitions of p are frozen in S’, then M (p) = My(p), otherwise M (p) < My(p).

Proof. The sequence o is transient thus &(t) < Y (¢) for every transition ¢t. Besides, p is
frozen thus every output transition ¢ of p has fired exactly Y (¢) times: Vt € p®,d(t) = Y (1),
and every input transition ¢; of p has fired at most Y (¢;) times.

We deduce that
M(p) = Mo(p) + Y W(ti,p) - 3(t:) = »_ Wi(p,t:) - &(t:)

< Mo(p) + Y W(ti,p)-Y(t:) = Y Wip,t:) - Y (t:) = Mo(p).
ti€®p t;€p®

The equality M(p) = My(p) is obtained when all input transitions ¢; are frozen and
thus have been fired Y (¢;) times. The inequality is strict when at least one of them has
been fired a strictly smaller number of times. O

An example is pictured on the right of Figure 5.2: ps is frozen and cannot contain more
than 2 tokens ; moreover, its input transition t; is ready, thus po must contain strictly fewer
than 2 tokens. Indeed, it does not contain any token in this example.
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5.1. Reversibility of well-behaved Choice-Free systems

The following technical lemma deals with the inputs of particular frozen places in tran-
sient Choice-Free systems.

Lemma 5. Consider a strongly connected and transient Choice-Free system S = (N, M,0,Y).
If S contains at least one frozen place, then it contains a frozen place with at least one ready
input in S.

Proof. Since S is transient, it contains a ready place. As S is strongly connected, there
exists an elementary path from a ready place to a frozen place. Moreover, the unique
output transition of any ready place is ready. Consequently, a frozen place on the path has
at least one ready input transition. O

The transient system on the right of Figure 5.2 contains the frozen place py, which has
a ready input ¢;.

5.1.3 Polynomial markings for well-formed Fork-Attribution systems

Fork-Attribution systems form a subclass of Choice-Free systems from which they in-
herit their properties. Strongly connected well-formed Choice-Free nets are shown in
| Teruel 1997| to have exactly one minimal T-semiflow whose support is the set of all tran-
sitions (Proposition 4 on page 31); it follows that such a T-semiflow also exists for strongly
connected well-formed Fork-Attribution nets. Moreover, a live initial marking is a home
marking if and only if it enables a firing sequence whose Parikh vector is equal to the
minimal T-semiflow (Proposition 12 on page 79).

We use previous properties on transient sequences, as well as a new technical lemma
about enabled places, to show that the live markings of Theorem 14 on page 64 (for well-
formed Join-Free systems) allow to fire a sequence whose Parikh vector is equal to this
minimal T-semiflow in well-formed FA systems. We deduce that these live markings, de-
noted by Mga, are also home markings for these FA systems. Finally, we note that this
proof cannot be trivially extended to Choice-Free or Join-Free systems, due to the existence
of synchronizations or choices, respectively.

We show next that for a well-formed FA net initially marked by ]\70, which represents
any of the live markings of the set Mpa, there is at least one enabled ready place after any
transient sequence.

Lemma 6 (Enabled ready place). Consider a strongly connected and well-formed FA system
Soa = (N, My) with N = (P,T,W) and a sequence o that is transient relative to a T-
semiflow Y such that My — M. Then there exists at least one enabled ready place in

(N,M,0,Y).

Proof. Let S, = (N, ]/W\, 0,Y). On one hand, since o is transient, there exists at least one
ready place in S;. On the other hand, since the system .S, is live by Theorem 14 on page 64
and places have exactly one output transition, there exists at least one enabled place in S, .
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

The claim of the theorem is clearly true if all places are ready in S,. The remainder of
the proof deals with the case where some places are not ready in S, .

The system S, is conservative hence, according to Theorem 4 on page 42, it can be
balanced. Let S/ = (N, J\/Zé), with N’ = (P, T,W'), be a balancing of S,,. The sequence
o is feasible in S/, by Theorem 1 on page 38, hence there exists M’ such that ]\/4\(’] 75 M.
By Theorem 2 on page 39, S, and S/, have the same unique minimal T-semiflow Y, hence
o is transient in both systems and, consequently, M and M’ have the same sets of ready
and frozen places.

Thus, there is at least one ready place in S/, = (N/, M, 0,Y).

Considering the transient sequence o, the set of frozen places having only frozen inputs
(potentially empty) is denoted by Py, the set of the frozen places having at least one ready
input (not empty by assumption and by Lemma 5) by Pj. and the set of ready places (not
empty by assumption) by P.. As depicted in Figure 5.4, Pf, Py and P, form a tri-partition
of the places of S, and 5] :

S W) =S Wp)+ S M)+ Y M),
peEP pEPy PE Py pEP;

hence

SSMp) = M@p - Y Mp). (5.1)

pEP; peP pEP;UPy,

..
Pir Pr
'_-_-_-_"" ===’ Sea=mmm
frozen place with only frozen place with ready place
__frozen inputs at least one ready input with frozen
M'(ps) = My(py) M'(ps) < My(psr) or ready inputs

Figure 5.4: The frozen nodes are shaded, while the ready nodes are white. The dashed
nodes can be either frozen or ready. The places of the transient system are tri-partitioned
into frozen places having only frozen inputs (the set Py), frozen places having at least
one ready input (the set Pp.) and ready places (the set P.). The number of tokens in a
frozen place p is bounded above by ]\76 (p). As the number of tokens in the system remains
constant, this tri-partition provides a lower bound of the total number of tokens in ready
places.
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5.1. Reversibility of well-behaved Choice-Free systems

This is also true for the initial marking:
DoMip) =) Myp) — Y M. (5-2)
pEP, peEP pEPfUJDfT

Since the number of tokens remains constant in 5], > cp ]\//.76(]3) = pep M'(p), and
the first terms on the right-hand side of the above two equations are equal.

By Lemma 4 on page 81,

e, M(p) = X pep, Mi(p)
and, since P is not empty,

> per, M'(p) < Xpep, Mo(p),

hence the last terms on the right-hand side of the equations satisfy

ZpEPfUPfT M'(p) < ZpEPfUPfT My(p) -

Thus the right-hand side of eqn. (5.2) is strictly smaller than the right-hand side of
eqn. (5.1) and

S M) > > Mylp) = Y (max), — gedy),

peP: pEP; pEP:
where the last inequality follows from the definition of ]\/4\6

Recall that the tokens of M’ are all useful tokens, since ]/\4\6 contains only useful tokens.
Thus, at least one place of P, is then enabled by ]/\4\’, having ma:v; or more tokens in M.
The language of the system is preserved (Theorem 1 on page 38) and every feasible sequence
is transient relatively to the same minimal T-semiflow (Theorem 2 on page 39), thus ready
places enabled in S/ are also ready and enabled in S,. ]

The following result states that the polynomial live markings of the set Mga (Theo-
rem 14 on page 64 when restricted to FA nets) are also home markings for every strongly
connected and well-formed FA net. We denote by My any of the live markings of Mpa.

Theorem 20 (The set of polynomial live home markings Mpga). If N,, is a weighted,
strongly connected and conservative FA net, then the system S,, = (N,,, My) is live and
reversible. Moreover, every larger initial marking is also live and reversible.
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Proof. The system is live by Theorem 14 on page 64. According to Lemma 6 on page 82,
for any transient sequence o with My — M, at least one ready place is enabled by M.
Moreover, every transition has only one input place. Thus, a ready transition is enabled
by M and a sequence oy whose Parikh vector equals the minimal T-semiflow of S,, can
be fired exactly. By Proposition 12 on page 79, the claim is proved. By Theorem 15 on
page 65, liveness is monotonous in well-formed FA systems. Moreover, any larger marking
also enables oy, and hence preserves the reversibility. O

An extension to more expressive classes is not trivial. An extension of this proof
to all well-formed Choice-Free nets would show that after any transient sequence, a ready
transition is enabled, even if only join-transitions are ready. However, it is not clear that the
coverability of the Choice-Free net by live and reversible strongly connected FA P-subnets
induces the existence, after any transient sequence, of a ready transition whose input places
are all enabled. Thus, the proof cannot be easily extended to well-formed Choice-Free nets.

Well-formed Join-Free nets do not benefit from a characterization of home markings
such as the one given in Proposition 12 on page 79 for Choice-Free nets. Thus, the proof
cannot be applied to Join-Free nets either.

Towards a generalization. In later sections, we develop original methods to study the
reversibility of larger classes of nets. In this section, we focus on well-formed Choice-Free
nets, which are covered by well-formed FA P-subnets (Proposition 5 on page 31), and we
provide the first polynomial live home markings for FA systems. The idea is therefore
to express the reversibility of a Choice-Free system in terms of the reversibility of FA P-
subsystems. For that purpose, we need to study first the relationship between the sequences
feasible in a system and the subsequences feasible in its subsystems.

5.1.4 A result about subsequences and P-subsystems

We present a general technical result about the restriction of sequences to P-subsystems.
Such subsequences have been used in [Teruel 1996].

Lemma 7. Consider a system S = (N, My), where N = (P, T, W), together with one of its
P-subsystems S" = (N', My|p), where N' = (P, T',W'). For every feasible sequence o in
S, the subsequence o1 is feasible in S'. Moreover, if Mo — M in S and M| pr ki Vil
in S’, then M|pr = M.

Proof. We prove the claim by induction on the size of a feasible sequence of size k in S. If
o is empty, it is feasible in both systems and the marking is unchanged.
Hence, suppose that ¢ = o1t is feasible in .S, where o1 has size k — 1, and that the claim

is true when the size of the sequence is strictly smaller than k. We note M LM, N Mo
in S. By the induction hypothesis, oy is feasible in S, we note My|pr —5 M| in 5,

and for every place p in P/, M;(p) = Mj(p).
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5.1. Reversibility of well-behaved Choice-Free systems

As S is a P-subsystem of S, a transition belongs to 7" if and only if it is an input or
output of at least one place of P'.

If ¢ is not in 7" then o177 equals o7, which is thus feasible in S’. Moreover, t does
not modify the marking of places in P’, thus M{ = M |p:.

Otherwise ¢ belongs to 7" and is enabled in (N, M7). Moreover, M;|p = M, implying
that the input places of ¢ that belong to P’ are enabled in (N', M]), thus t is enabled in
(N', M{). We note M| N M). Finally, a place p in P’ is an input or output of ¢ in N if
and only if it is one or the other in N’ thus My |p = M. O

This lemma is illustrated in Figure 5.5.

ps3 b5

Figure 5.5: The P-subsystem on the right is obtained from the system on the left by
considering only the place p;. The sequence o = t4t1 t1 t3ty is feasible in the system on the
left. Consequently, the subsequence o’ obtained by restricting o to the set of transitions
{t1tats}, that is ¢ t1 t3, is feasible in the P-subsystem on the right.

5.1.5 A necessary condition of reversibility for Choice-Free systems

As mentioned earlier, we focus on strongly connected well-behaved Choice-Free systems.
We present here the necessity part of our characterization of reversibility. For that purpose,
we need the following lemma, deduced from |Teruel 1997].

Lemma 8 (Sequence reordering [Teruel 1997]). Consider a strongly connected and well-
formed Choice-Free system S = (N, My) with minimal T-semiflow Y. If there exists a
positive integer k, k > 1, and a feasible sequence o in S such that & = k -Y, then there
exists a feasible sequence oy in S such that Gy =Y. Consequently, the sequence (oy ) is

feasible in S.

The name reordering in the lemma comes from the existence of another feasible se-
quence, oy concatenated k times, with Parikh vector obviously equal to the Parikh vector
of 0, leading therefore to the same marking as o.

86
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We are now able to prove the necessary condition of reversibility.

Theorem 21 (Necessary condition of reversibility). Consider a strongly connected well-
behaved Choice-Free system S = ((P,T,W),My). The reversibility of S implies the re-
versibility of each of its strongly connected FA P-subsystems.

Proof. By Propositions 1 on page 29 and 4 on page 31, S is well-formed and has a unique
minimal T-semiflow Y, whose support is the whole set T'. S is reversible, thus by Proposi-
tion 12 on page 79, there exists a sequence oy that is feasible in S and whose Parikh vector
is equal to Y. Consider S, = ((Px, Tk, Wi), My|p,) a strongly connected FA P-subsystem
of S, with minimal T-semiflow Y,. The sequence oy |p, is feasible in S, by Lemma 7 on
page 85. Moreover oy |y, = Y |7, and Y|z, is a multiple of Y, by Proposition 5 on page 31.
We deduce that o'y |7, is a multiple of Y,. Thus, by Lemma 8, there exists a sequence oy,
feasible in S, and with Parikh vector equal to Y,. By Proposition 12 on page 79, S, is
reversible. O

5.1.6 A new characterization of reversibility for Choice-Free systems

We prove the sufficiency part of the characterization, stating that the non-reversibility
of the whole system implies the existence of a non-reversible FA P-subsystem. For that
purpose, we provide an intermediate characterization of reversibility which involves firing
sequences. Then, using decomposition arguments, we prove the main characterization of
reversibility.

In a system which is transient relative to a T-semiflow Y, the firing of a ready transition
reduces the number of steps to attain Y. However, ready transitions may not be enabled,
in which case the possibility to reach again the initial marking may be compromised. We
formalize next the notion of blocking system, whose ready transitions cannot be fired.

Definition 12 (Blocking system). A transient system is blocking if it contains no enabled
ready transition.

Figure 5.6 pictures an FA system and an associated blocking system.

Therefore, we focus on strongly connected well-behaved Choice-Free systems, which
are well-formed (Proposition 1 on page 29) and have a unique minimal T-semiflow, whose
support contains all transitions (Proposition 4 on page 31). Thus, the Parikh vector of
any feasible sequence is smaller than some multiple of the minimal T-semiflow Y. If such
a system S = (N, M,0,Y”’) is blocking then liveness induces the existence of an enabled
frozen transition in S and Y’ is the smallest multiple of Y greater than &. For these systems,
the following characterization of reversibility is an alternative to Proposition 12 on page 79
using the notion of blocking system.

Theorem 22 (Intermediate characterization of reversibility). Consider a strongly connected
well-behaved Choice-Free system S. S is reversible if and only if no feasible sequence in S
leads to a blocking system.
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5.1. Reversibility of well-behaved Choice-Free systems

Figure 5.6: Two well-formed FA systems with minimal T-semiflow (1,1,1). Relatively to
this T-semiflow, the transient FA system on the right, obtained by firing the sequence t;
in the system on the left, does not contain any enabled ready transition (white transitions)
since the only enabled one is ¢, which is frozen (dashed transition). Consequently, this
transient system is blocking.

Proof. To prove that the system is reversible, it suffices to consider the empty sequence,
which is transient relative to the unique minimal T-semiflow Y (Propositions 1 on page 29
and 4 on page 31). The corresponding transient system is not blocking, thus a ready
transition is enabled. Firing only ready transitions, every reached marking enables a ready
transition until a sequence with Parikh vector equal to Y is fired. By Proposition 12 on
page 79, the system is reversible.

If S = (N, M) is well-behaved and reversible, there exists a feasible sequence oy with
Parikh vector equal to the minimal T-semiflow Y such that My =% My (Proposition 12 on
page 79). Thus, for every k > 1, the sequence oy = (oy)¥ is feasible.

Consider a feasible sequence o and the smallest integer k such that o is transient relative
to the T-semiflow Y}, = k- Y with My = M. The confluence property (Proposition 13 on
page 79) states the existence of two feasible sequences « and 3 such that M %5 M, and

M L My, satisfying, for every transition ¢,

O_Z(t) = max{&'ky(t),é’(t)} — 5ky(t) = 5ky(t) - 5ky(t) =0
B(t) = max{Gry (1), 5()} — F(t) = Frv(t) — (t).

The feasible sequence 8 completes the transient sequence o up to the T-semiflow Y,

1.e. 0+ 5 =k -Y and we note M i M. This particular use of confluence is illustrated
in Figure 5.7. We deduce that the transient system (NN, M, 0, Y}) contains an enabled ready
transition, hence is not blocking. O

The following lemma shows the existence of a blocking FA P-subsystem in a blocking
Choice-Free system with the help of graph-theoretic arguments and without considering
the liveness property.
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Figure 5.7: If both sequences oty and o are feasible, then there exists a sequence 5 such
that o.8 is feasible and &y = & + B.

Lemma 9 (Existence of a blocking subsystem). Consider a strongly connected transient
Choice-Free system S = (N, M,0,Y). If S is blocking then it contains a non-empty strongly
connected FA P-subsystem (N, M |p,) with N, = (Pyx, Tx, W) such that the transient system
(N, M\p,,01.,Y |1,) is blocking.

Proof. To illustrate the proof, we depict in Figure 5.8 a Choice-Free system and the asso-
ciated blocking system obtained by firing a particular feasible sequence. The same system
will be used in the rest of the proof to highlight the key points.

[Z
1
1
ts 1y

Figure 5.8: The well-behaved Choice-Free system on the left is not reversible. The firing of
the sequence t; {9 t3 t5 in this system leads to the blocking system on the right, in which
ready transitions are white and frozen transitions are trellised. No ready transition is
enabled since the grey places are not enabled. The minimal T-semiflow, whose components
are all equal to 1, is indicated on the left.

We prove the claim by induction on the number n of join-transitions. If n =0, .S is an
FA system and we are done.

Otherwise, let t be a join-transition. Fither t is ready or it is frozen. If it is ready,
denote by p one of its non-enabled input places; such a place exists since the whole system
is blocking. Otherwise, t is frozen. Since S is strongly connected and blocking, thus
transient, there exists in S an elementary path (i.e. that does not contain two occurrences
of the same node) from a ready transition to ¢ containing an input place p of ¢. Figure
5.9 pictures such an elementary path, where ¢ = ¢3, whose input place to be preserved is
P =Dps.

A new system S’ is obtained by deleting all input places of ¢ except p. Denote by R
the reduced graph of S’, i.e. the directed acyclic graph in which each node is obtained
by contracting all the nodes of a maximal strongly connected component of S’ into one
node and each arc (u,v), u and v being two nodes of R, corresponds to an arc (a,b) of
S’ such that a belongs to u and b belongs to v. Let G be a node of R without input.
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5.1. Reversibility of well-behaved Choice-Free systems

Figure 5.9: The elementary path t4p4ts starts from the ready transition ¢4 and leads to
the frozen transition ¢3. The place py4 is preserved and the other inputs of t3, namely po,
are deleted.

Denoting by Ng = (Pg,Ta, Wq) the subnet of S’ corresponding to G, we show that
G = (Ng,M|p,,0\14,Y |1), which is strongly connected, is a non-empty blocking P-
subsystem of S. An example is depicted in Figure 5.10.

To show: G is blocking

Figure 5.10: On the left, the transient system in which an input place of the frozen transition
t3 has been deleted. On the right, the reduced graph represents the system on the left. G
is shown to be blocking.

G is a non-empty P-subsystem of S. Since S has a T-semiflow, it contains at least
one place and one transition. Moreover, S is strongly connected and the only inputs of
nodes that have been deleted are inputs of the transition ¢, which has one input after the
deletion. Thus, every node of S” has at least one input so that S’ is well-connected. We
deduce that G contains at least one place and one transition. For every place p of G in §’,
all inputs of p in S’ belong to G since G has no input in R, while the unique output of p
in S’ belongs to G since G is strongly connected. Thus, G is a P-subsystem of S/, which is
a P-subsystem of .S since only places were removed. Hence G is a non-empty P-subsystem
of S.
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

G is blocking. Assume that S is obtained from Sy = (N, My) by firing 0. Since G is
a non-empty P-subsystem of S, Y|, is a T-semiflow of G' and o7, is feasible in Gy =
((Pg,Tg,Wg), My|p,) by Lemma 7 on page 85. Moreover, for every transition ¢ of Tg,
7|1, (t) = &(t), thus if ¢ is ready in 5, it is ready in G. We show first that G contains a
ready transition.

Suppose that G contains only frozen transitions, and consider a frozen transition ¢y in
G. Since S is strongly connected, an elementary path c from a ready transition ¢, to ¢
exists in S. This path does not exist in S’ since G has no input, thus ¢ contains a deleted
input place of t. We note ¢ = ¢; tcaty. The elementary path ¢ co tf exists in S” and belongs
to G since G has no input in R. If ¢ is ready, we have a contradiction. Otherwise t is frozen,
and by the choice of its deleted input places, there exists an elementary path ¢; from a
ready transition ¢, to t in S’. The path ¢ ¢} t c2 belongs to G, which thus contains a ready
transition, a contradiction. Figure 5.11 depicts this case.

Figure 5.11: The system S’ is obtained by deleting the crossed place p’. Since ¢t and ¢ are
frozen, the elementary path t. ¢} t belongs to G, thus G contains the ready transition ¢...

We deduce that G' contains at least one ready transition and o7, is transient relative
to Y |1, in Go. Moreover, all the transitions of G have the same inputs in G as in S’. Thus,
if ¢ belongs to G and is ready then its input place was chosen to be non-enabled, which
is the case in G. The other ready transitions of S’ are not enabled either, thus no ready
transition of G is enabled and G is blocking. Figure 5.10 shows an example of a blocking
P-subsystem G.

Finally, G is a strongly connected blocking Choice-Free P-subsystem of S contain-
ing strictly fewer join-transitions than S. Applying the induction hypothesis on G, a
non-empty FA P-subsystem F' = ((Ps, Ti, Wi), (M |pg) |p,s (0176) |7, (Y15 ) |1,) Which is
strongly connected and blocking exists in G, thus exists in S such that (M |p,) lp, = M|p,,
(o116) |7, = o1 and (Y1) |, = Y|r.. Figure 5.12 shows a blocking FA P-subsystem F.

O
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5.1. Reversibility of well-behaved Choice-Free systems

Figure 5.12: The strongly connected FA P-subsystem F' is blocking.

We are now able to prove the characterization of reversibility.

Theorem 23 (Characterization of reversibility). Consider a strongly connected well-behaved
Choice-Free system S = ((P,T,W), My). S is reversible if and only if each of its strongly
connected FA P-subsystems Sy, = ((Py, T, Wy), My|p,) is reversible.

Proof. The necessity comes from Theorem 21 on page 87. We prove the sufficiency next.
If S is empty or contains a unique place or transition, then the claim is true. Hence
we suppose that S has a place and a transition. Suppose that S is not reversible, then
by Theorem 22 on page 87 a sequence o is feasible in S such that My — M, leading
to the blocking system S® = ((P,T,W), M, 0,Y), where Y is a T-semiflow of S. Besides,
Lemma 9 on page 89 applies and S® contains a non-empty strongly connected blocking
FA P-subsystem S° = ((P., T\, W.),M|p,,01,,Y |1,), obtained by firing o7, in S, =
((Py, T, W.), My|p,). By Propositions 5 on page 31 and 11 on page 78, S, is well-behaved.
Applying Theorem 22 on page 87, S, is not reversible. Figure 5.13 gives examples of such
subsystems. O

Comparison with the special case of weighted T-systems. T-systems form a proper
subclass of Choice-Free systems. When strongly connected and well-formed, their liveness is
equivalent to the liveness of all their circuit P-subsystems [Teruel 1992]. A characterization
of reversibility for these systems is recalled next.

Theorem 24 (Reversibility of T-systems [Teruel 1992]). If a weighted strongly connected
T-system 1s well-behaved, then it is reversible.

We deduce that a well-behaved T-system is reversible if and only if all its circuit P-
subsystems are live, thus reversible, constituting a particular case of Theorem 23. In the
general case of Choice-Free systems, the well-behavedness of the whole system ensures the
well-behavedness of all its FA P-subsystems, which may however not be reversible. This
contrast is illustrated in Figure 5.14.
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Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

Figure 5.13: The blocking system St on the left is obtained by firing the sequence t; to t3 ts
in the initial system S on the right and contains the blocking FA P-subsystem S°. The
initial system S on the right contains the associated FA P-subsystem S,. The restriction
of ty tatsts set T = {ta,t5,t6} is the sequence t5, which is feasible in S, and leads to St

O O * O

Figure 5.14: On the left, the well-behaved Choice-Free system is not reversible and contains
an FA P-subsystem that is well-behaved and not reversible (bottom left). On the right, the
well-formed T-system is well-behaved and reversible, as well as all its circuit P-subsystems.

5.1.7 Polynomial markings for well-formed Choice-Free systems

We provide the first polynomial live and reversible initial marking for strongly connected
well-formed Choice-Free systems. To achieve this construction, we use the set of polynomial
live home markings My of Theorem 20 on page 84 (for well-formed FA systems).

We denote by Mcr the polynomial live marking Mgc of Theorem 16 on page 67 when
applied to the well-formed Choice-Free systems which are not FA. We show that Mcr is
also reversible.

93



5.1. Reversibility of well-behaved Choice-Free systems

Theorem 25 (The live home marking Mcr). Consider a strongly connected and well-
formed Choice-Free net N that is not an FA. The system S = (N, Mcr) is well-behaved
and reversible. Moreover, any larger initial marking makes the system well-behaved and
reverstble.

Proof. Every non-empty strongly connected FA P-subsystem S, = (N, M,) of S contains
at least one input of a join-transition, by Lemma 2 on page 66. Since M, is the restric-
tion of Mcr to the places of N, we deduce that a place p in S, contains max, tokens,
while all other places p’ of S, are assigned at least max, — gcd, tokens. Thus, M, is
greater than or equal to a marking of Mps and by Theorem 20 on page 84, S, is live
and reversible. Thus, all strongly connected FA P-subsystems of S are live and reversible.
Applying the characterization of Theorem 23 on page 92, the Choice-Free system S is
live and reversible. Besides, since well-formed Choice-Free systems constitute a particular
case of bounded Equal-Conflict systems, Theorem 15 on page 65 applies and liveness is
monotonous in these systems. Since S is well-formed, it has a unique minimal T-semiflow
Y (Proposition 4 on page 31) and there exists a feasible sequence oy such that 5y =Y
(Proposition 12 on page 79). Any larger initial marking enables the sequence oy, thus
preserves the reversibility property (Proposition 12 on page 79). O

This theorem is illustrated on Figure 5.15, where a well-behaved and reversible Choice-
Free system is pictured, along with its two well-behaved and reversible strongly connected
P-subsystems.

p3 Ps p3 Ps

O O t O O
@ O O O

Figure 5.15: On the left, a well-behaved and reversible Choice-Free system satisfying the
condition of Theorem 25. On the right, its well-behaved and reversible strongly connected
FA P-subsystems.

th
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5.1.8 A sufficient condition of liveness and reversibility

Previously, we presented two new necessary and sufficient conditions of reversibility for
well-behaved strongly connected Choice-Free systems. For this class, the decomposition
into FA P-subsystems induces polynomial markings which are reversible. However, these
markings impose a distribution of the initial tokens over the entire system. In particular, ini-
tially empty places may not exist, which may cause difficulties in designing specific systems.

94



Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

We show next that the place-splitting transformation induces a sufficient condition of
liveness and reversibility for strongly connected well-formed Choice-Free systems, allowing
more flexibility in the initial distribution of the tokens.

Theorem 26. Consider a strongly connected and well-formed Choice-Free system S. De-
note by S’ the T-system obtained by applying the place-splitting transformation to S. If S’
15 live, then S is live and reversible.

Proof. Both systems have the same unique minimal T-semiflow Y and S’ is well-formed
(Proposition 4 on page 31 and the T-semiflow preservation of Theorem 9 on page 52). If
S’ is live, then it is reversible (Theorem 24 on page 92) and a sequence oy, with Parikh
vector equal to the minimal T-semiflow Y of both systems, is feasible in S’ (Proposition 12
on page 79). By the language inclusion (Theorem 11 on page 53), oy in also feasible in S,
which is consequently live (take M = My and o = oy in Proposition 9 on page 69) and
reversible (Proposition 12 on page 79). O

5.1.8.1 Deduction of a polynomial time sufficient condition

The polynomial time sufficient condition of liveness of Theorem 17 on page 68 for normal-
ized T-systems leads to the following polynomial time sufficient condition of liveness and
reversibility for well-formed Choice-Free systems.

Theorem 27 (Polynomial time sufficient condition of liveness and reversibility). Consider
a strongly connected and well-formed Choice-Free system S. Denote by S’ the T-system
obtained by applying the place-splitting transformation to S. Then S’ can be normalized,
leading to a normalized system S”. Moreover, if S” satisfies the liveness condition of The-
orem 17 on page 68 for T-systems, then S is live and reversible.

Proof. Since S is well-formed, S’ is well-formed by Theorem 9 on page 52, thus consistent
and conservative by Theorem 1 on page 29. Consequently, S’ can be normalized (Theorem 5
on page 43) in polynomial time while preserving the liveness property (Corollary 7 on
page 45). We deduce that the liveness of S” implies the liveness of S’, which induces both
liveness and reversibility of S by Theorem 26. Finally, the condition of Theorem 17 on
page 68 applies to S” and we obtain a polynomial time sufficient condition of liveness and
reversibility for S. O

This theorem is illustrated on the right of Figure 5.16, where the normalized T-system
obtained is live, implying that the FA system (resp. Choice-Free system when considering
the place py4) is live and reversible.

5.1.8.2 The sufficient condition is not necessary

The liveness of the T-system is not necessary for the liveness and reversibility of the Choice-
Free system, since that was already the case for the single property of liveness in the previous
section. Another counter-example is highlighted on the left in Figure 5.16.
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Figure 5.16: On the left, the well-formed FA system (resp. Choice-Free, with the dotted
part), marked with a marking of Mpa (resp. the marking Mcr) hence live and reversible,
is transformed into a non-live T-system. On the right, the initial marking of the FA (resp.
Choice-Free) system is not greater than or equal to any marking in Mpa (resp. the marking
Mcr), since maz,, —ged,, = 3—1 = 2. However, the transformation leads to a well-behaved
T-system, satisfying the sufficient condition, and the FA (resp. Choice-Free) system is live
and reversible. Notice that the T-systems have been normalized.

5.1.8.3 Comparison with the polynomial live home markings

The example on the left in Figure 5.16 shows that the live and reversible markings of Mpa
for FA systems are not always detected by the sufficient condition. The same holds for
Choice-Free systems that are marked with Mcr, as pictured on the left when considering
the dotted place py. Moreover, there exist markings that are live and reversible without
being greater than or equal to some marking of Mg, while detected by the polynomial
sufficient condition, as pictured on the right in Figure 5.16. This is also the case for the
marking Mcr, when the dotted place py4 is added.

Thus, the set of markings detected by one method neither is included in the other set
nor includes it, considering either the polynomial version of the second condition or the
non-polynomial one.

5.2 Reversibility of live consistent Equal-Conflict systems

The well-formedness, liveness and reversibility properties of Equal-Conflict systems have
been studied in [Teruel 1993, Teruel 1996], where it is proved that the well-behavedness
assumption induces the existence of reachable home markings, although no non-trivial
characterization of such markings is proposed. Similar results have been found for larger
classes of weighted Petri nets [Recalde 1998, Silva 1998|.
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In the absence of reversibility characterizations, a naive exponential algorithm testing
the reversibility of a well-behaved system, whose reachability graph is finite by bounded-
ness, would build the whole state space and check if it is strongly connected.

In this section, we improve our understanding of the reversibility property for live con-
sistent Equal-Conflict systems in order to obtain, at the end, efficient constructive methods
for home markings. In some cases, we focus on well-formed Equal-Conflict systems, which
are consistent by Proposition 2 on page 30.

In a previous section, we developed a new characterization of reversibility for well-
behaved Choice-Free systems by means of a decomposition into FA P-subsystems.

We first show through a counter-example that this kind of decomposition cannot be
extended to well-formed Equal-Conflict systems.

We then define T-sequences and provide an example of a well-behaved homogeneous
S-system which is not reversible and does not enable any T-sequence, giving insight into
the relationship between T-sequences and reversibility.

In the context of Choice-Free systems [Teruel 1997], T-sequences were implicitly used
and shown to imply both liveness and reversibility. We show with a counterexample that
it is not the case anymore in homogeneous S-systems, emphasizing the importance of the
liveness assumption when studying the reversibility property of Equal-Conflict systems.

Thereafter, we derive, using feasible T-sequences, the first non-trivial characterization
of reversibility for live consistent Equal-Conflict systems. This new condition extends a
characterization of reversibility for Choice-Free systems.

Finally, using our characterization of reversibility for Equal-Conflict systems as well as
particular Choice-Free T-subsystems, we obtain the first polynomial live home marking for
well-formed Equal-Conflict systems, which encompass homogeneous Join-Free systems.

5.2.1 Reversibility is not induced by reversible P-components

As recalled in Proposition 6 on page 32, well-formed Equal-Conflict systems are covered
by well-formed P-components, namely conservative homogeneous Join-Free P-subsystems.
In a previous section, we provided a new characterization of reversibility for well-behaved
Choice-Free systems, stating their reversibility in terms of the reversibility of all their
strongly connected FA P-subsystems, which are actually their P-components. We already
know, by Proposition 8 on page 65, that a well-formed Equal-Conflict system is live if
and only if all its P-components are live. An intuitive generalization would state that a
well-behaved strongly connected Equal-Conflict system is reversible if and only if all its
P-components are reversible. However, we highlight in Figure 5.17 an example of a well-
behaved and non-reversible Equal-Conflict system whose P-components are all live and
reversible.
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Figure 5.17: This well-behaved Equal-Conflict system is not reversible.

PAZAE NN

Figure 5.18: The two P-components of the well-behaved Equal-Conflict system of Figure
5.17 are well-behaved and reversible.

5.2.2 T-sequences and reversibility

We introduce next the notion of T-sequences, which will prove useful in our study of re-
versibility.

Definition 13 (T-sequences, partial T-sequences). Consider a Petri net with set of tran-
sitions T'. A T-sequence is a sequence whose Parikh vector is equal to a T-semiflow whose
support is T. A partial T-sequence is a sequence whose Parikh wvector is equal to a T-
semiflow whose support is different from T.

The feasible (partial or not) T-sequences can be found under the names of feasible /
realizable T-semiflows / T-invariants. The existence of a (partial or not) T-sequence that
is feasible at the initial marking defines weak reversibility in [Teruel 1992]. We introduce
the name T-sequence to emphasize the fact that it denotes a firing sequence associated to
a T-semiflow.

If a system S is live, then there exists a finite feasible sequence that fires every transition
at least once. Consequently, if this system S is reversible, it enables a T-sequence. Thus,
under the liveness hypothesis, the existence of a feasible T-sequence is a necessary condi-
tion for reversibility. We also deduce that the live and reversible Petri nets are necessarily
consistent.

It is more difficult to determine if the existence of a feasible T-sequence, under the
liveness hypothesis, implies reversibility for all weighted Petri nets. It is known to be true
for well-formed Choice-Free [Teruel 1997] and ordinary Free-Choice systems [Desel 1995].
However, similar results have not been found for larger classes. Other particular classes
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have been studied in [Lopez-Grao 2013], which investigates the relationship between the
reversibility property and the existence of reachable markings that enable a partial T-
sequence associated to a minimal T-semiflow.

In the rest of this section, we show that the existence of a feasible T-sequence implies
the reversibility of live consistent Equal-Conflict systems. We show moreover that this
condition is no longer sufficient when considering all weighted Petri nets, even if they are
well-behaved.

5.2.3 A well-behaved homogeneous S-system that is not reversible

A well-behaved and non-reversible homogeneous S-system, hence a particular Equal-Conflict
system, is pictured in Figure 5.19. Note that there exists a feasible sequence, t; tg, with
Parikh vector equal to a T-semiflow, while no feasible T-sequence exists.

Figure 5.19: This homogeneous S-system is well-behaved and non-reversible.

5.2.4 Feasible T-sequences do not imply liveness

While in consistent Choice-Free systems, all the feasible sequences whose Parikh vector is
equal to a T-semiflow are T-sequences |Teruel 1997], this is no longer the case in Equal-
Conflict systems (see Figure 5.19). In a well-formed Choice-Free system, the fireability
of a T-semiflow, hence the existence of a feasible T-sequence, implies both liveness and
reversibility (|Teruel 1997]). However this is not the case in homogeneous S-systems, as
shown in Figure 5.20, where a T-sequence is feasible in the well-formed S-system but not
live.

5.2.5 A characterization of reversibility

Using feasible T-sequences, we present the first non-trivial characterization of reversibility
for live consistent Equal-Conflict systems. We first need to prove a theorem regarding the
fairness property, defined next, then we introduce new notations and prove a lemma.
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Figure 5.20: This homogeneous S-system is not live (fire 1 t3) although a T-sequence is
feasible (ﬁre tl tl t4 t2 tQ t3).

Taking inspiration from |[Teruel 1996], we define a fairness property dedicated to the
Equal-Conflict class.

Definition 14 (Fairness in Equal-Conflict systems). An infinite firing sequence is globally
fair if it fires every transition of the system an infinite number of times. An infinite firing
sequence is locally fair if every time an equal conflict set is enabled, one of its transitions
s fired after a finite number of firings, and if all the transitions of the equal conflict sets
containing o transition that fires an infinite number of times are fired an infinite number of
times.

The following theorem is similar to a result of [Teruel 1996] that deals with a slightly
different definition of fairness and uses the boundedness and strong connectedness assump-
tions instead of our liveness assumption.

Theorem 28 (Fairness in live Equal-Conflict systems). Let S be a live Equal-Conflict
system. A sequence o that is feasible in S is globally fair if and only if it is locally fair.

Proof. If o is globally fair, it is easy to see that o is locally fair. Let us prove the converse.
Denote by @ the set of the equal conflict sets containing a transition that occurs infinitely
often in ¢ and by Q the set of the other equal conflict sets. The set @ is non-empty since
there is only a finite number of equal conflict sets and o is infinite.

Now suppose that o is locally fair and Q is non-empty. By definition, all the transitions
of the sets in @) are fired an infinite number of times in o, while all the transitions of the
sets in @ are fired a finite number of times and become forever non-enabled after the firing
of a sufficiently large finite prefix sequence gg of 0. Denote by M the marking reached
by firing o in S and by ¢’ the infinite suffix sequence of o satisfying ¢ = ogo’. By the
liveness assumption, there exists a transition ¢ in Q and a finite sequence oy feasible at
M such that o1 contains only transitions of ) and enables t. Moreover, only transitions
of Q are structurally allowed to remove tokens from the inputs of . We deduce that a
sufficiently large finite prefix sequence oo of ¢’ exists such that ¢y > &1. Consequently,
t becomes enabled after the firing of the finite sequence oy o9, contradicting the fact that
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every transition of Q) stays forever non-enabled after the firing of og. Thus, @ is empty and
o is globally fair. O

Notations. For any transition ¢, we denote by E! the equal conflict set containing t. We
introduce 0 to denote the infinite concatenation of the sequence o. The notation K}’ (o),
n > 1, or more simply K7 (o), denotes the largest prefix sequence of o preceding the n-th
occurrence of ¢, in o, thus containing n — 1 occurrences of t,. For example, considering the
sequence o = tl t2 tl t3 tl tz If3, Kt31 (0) = Ifl tQ tl t3 and Kt13 (U) = tl tQ tl.

Before proving the characterization of reversibility, we show the following lemma, which
is illustrated in Figure 5.21.

Lemma 10. Consider a live Equal-Conflict system S = (N, M), with N = (P,T,W).
Suppose there exists a feasible T-sequence o, in S. For every transition t enabled by My
such that My N M, there exists a sequence o, that is feasible at M with o0 = to. and an
integer k > 1 such that o s a T-sequence satisfying G =k - G,.

Or

G

My — M

0"

Oc

Figure 5.21: If the sequence o, is supposed to be feasible, then one can build the sequence
o. feasible at M.

Proof. Tn the rest of the proof, we note K! = K/(0,) the largest prefix sequence of o,
preceding the first occurrence of ¢, meaning that o, is of the form K ¢ o5, while the sequence
K" does not contain any occurrence of t. This sequence is well-defined since the support
of 6, 1s T.

If ¢ is the first transition of E! to be fired following the order of o,, meaning that K
does not contain any occurrence of transitions in E?, then the sequence K'! does not use
any token from the input places of ¢, thus one can execute K' after the firing of the first
occurrence of ¢ and the sequence t K'! oy is feasible at My. Hence, 0. = K 0.

Otherwise, t is not the first transition in E* to be fired following the order of o,., mean-
ing that K contains at least one occurrence of another transition of Ef. We show next
that Algorithm 2 builds the sequence o, that returns to the initial marking. We illustrate
the proof on a example in Figures 5.22 and 5.23.

Study of the first loop. This loop aims at firing the transitions different from ¢ in

E?! until the number of their occurrences in 7 equals that in K. Intuitively, the transition
t has been initially fired whereas other transitions of E* should have been fired first if one
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Algorithm 2: Computation of the feasible sequence o,

10
11

12
13

14
15
16
17

Data: The system (N, M) obtained by firing ¢ in S, the feasible sequence o,.
Result: A sequence o, that is feasible in (N, M) such that M 2% M.

T:=1;
while 3¢’ € E'\ {t}, K'(¢') > 7(t') do

while the equal conflict set E is not enabled do
Among the transitions that belong to enabled equal conflict sets, fire the
transition t; whose (7(f;) + 1)-th occurrence appears at the smallest position
in (0,)%;
T = Tlg;
end
Among the transitions of E* different from ¢, fire the transition ¢, satisfying
K'(t,) > 7(t,) and whose (7(t,) + 1)-th occurrence appears at the smallest
position in K ;
T =Tty

end

Let a be the smallest natural number such that 7 < « - &,;
(078

We denote by k the sequence (o,)%;
while 7 # K do
Fire the transition ¢, whose (7(¢;) + 1)-th occurrence appears at the smallest
position in k;
T =Tty
end
7 is of the form to;
return o,
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Figure 5.22: The homogeneous S-system on the left is well-behaved and enables the T-
sequence o, = t1totstststytsts. As first action, t = t3 is fired, leading to the system on
the right. Since the first output transition of p; to be fired in o, is t; # t3, the algorithm
constructs the sequence o, returning to My, starting from the system on the right. Thus,
before the first loop, 7 = t3 and K' = KtIS(O'T) = t1 to.

wanted to follow the order of o,.. In this algorithm, every time E’ is enabled, a firing occurs
in this set that follows the order of K' until completion. The inner loop aims at firing
transitions that do not belong to E! by following the associated order in (0,)* so as to
enable E. Let us show that the inner loop always terminates and enables E!. First, by the
liveness assumption, every reachable marking enables at least one equal conflict set. Now
suppose that the inner loop does not terminate. Consequently, an infinite feasible sequence
v is fired that never enables E'. Since the firings in the loop follow the order of (o)
and the support of o, is T, the sequence v is locally fair, thus globally fair by Theorem 28
on page 100, contradicting the fact that E! never becomes enabled. We deduce that E*
becomes enabled and the inner loop terminates.

We now prove the termination of the complete first loop. Since the inner loop always
terminates, a transition ¢, is fired at the end of every iteration of the outer loop such that
K! (ty) > 7(ty) and t, is concatenated to the current 7, decreasing the number of remaining
steps to attain I?l(ty). Hence the outer loop terminates.

Study of the second loop. We show that after the termination of the first loop,
the current sequence 7 can be completed up to & by following the order of the remaining
unfired occurrences in k. We first introduce the function MinPos(E?, 7, k) defined only if
the largest subset A of E! such that every transition ¢ € A satisfies 7(t') < R(t') is not
empty and 7 < K: MinPos(E', 7, k) returns the transition ¢ of A whose (7(¢') + 1)-th
occurrence appears at the smallest position in .

We prove the following loop invariant (k) to be true for k > 0:

I(k): "at the end of iteration k, for every transition ¢, such that 7(t,) < K(t,) and
t, = MinPos(E", 7, ), then for every transition t, of E™, 7(t,) = K (t,), where K denotes
the sequence K'(k) and m is the value 7(¢,) + 1".

Before starting the loop, £ = 0. We consider two cases for every t, satisfying 7(t,) <

K(t,) and t, = MinPos(E%, T, k). If t, does not belong to Ef, then all firings of E'u
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ty t3 ts K=o0,=11 to t3 15 ts tg t3 tg
X X X

T=13 15 15 4 1

=ty t3 tg

Figure 5.23: On the left, the system obtained at the end of the first loop and the correspond-
ing value of 7 on the right. The crosses denote the occurrences of transitions x that have
not yet been fired in 7. Before starting the first loop, K' = t1 to and the output transitions
of p1 represented in K are t;. Consequently, the first loop fires the output transitions of p;
that should have been fired before the first occurrence of ¢3, meaning one occurrence of ty,
and terminates. However, the loop starts on the right system in Figure 5.22 where the only
enabled equal conflict set is {t5}. Thus, the first loop terminates when 7 equals 3 t5 t5t4 t1,
leading to the system on the left. After the first loop, a = 1, Kk = ¢,.. The second loop fires
the subsequence of x made of the occurrences that have not yet been fired in 7 following
the order of k. Thus, the second loop has to fire the sequence 7/ = tot3tg. On the right,
the sequences 7 and k are represented as computed after the first loop and before starting
the second loop. The sequence 7’ is fired in the second loop. Finally, 0. = t5 t5 t4 t1 to t3ts.

appeared in the same order and are as many in 7 as in K in the inner loop. We deduce
that every transition ¢, of E* satisfies 7(t,) = K (t,). Otherwise, t, belongs to E* and the
first loop fired precisely all the occurrences of E that belong to K, in addition to the first
unique firing of ¢. Thus, every transition t, of E' satisfies 7(t,) = I?(ty).

Now assume that k iterations of the loop occured and I(k) is true. During iteration
k + 1, a new transition ¢, is fired following the order of k. At the end of iteration k + 1,
for every transition t, such that 7(t,) < &(t,) and t, = MinPos(E", 1, ), denoting by
K’ the sequence K (k) where m’ = 7(t,) + 1, we consider two cases. First, if ¢, does
not belong to E=, then K’ is the same sequence as in the previous iteration and for every
transition t, of E', 7(t,) has not changed either, thus 7(t,) = X’(ty). Otherwise, if ¢,
belongs to E'=, implying E'* = E' then K’ contains the same number of occurrences of
every transition t, of E'* as in the K associated to ¢, in the previous iteration, except for
t, whose number has been incremented by one. Besides, the only transition whose number
of occurrences in 7 has been incremented by one is t,. Consequently, for every transition
ty of Bt F(t,) = f’(ty). We deduce finally that all the equalities that are supposed to be
true at the end of iteration k remain true at the end of iteration k 4 1.

Hence, the invariant is true at every iteration of the loop. Moreover, by definition of
the ¢, chosen at every step, for which we define the current value m = 7(t,) + 1 and the
sequence K = K!'(k), all the occurrences in K are already present in the sequence 7 of
the current iteration. Thus, at the beginning of every iteration, for every transition t, € T,
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#(ty) > R(ty).

Moreover, the sequence K is feasible at My and leads to a marking that enables ¢, by
definition of the feasible sequence k. Thus, 7 fired the input transitions of the input places
of t, at least as many times as in K. Then, the invariant implies that the transitions of
E'= fired exactly as many times in K as in 7. Thus, the input places of ¢, received at least
the number of tokens they would receive by firing K from My, implying that ¢, is enabled.
We deduce that the loop completes T up to K and terminates. As an example, in Figure
5.23, the second loop fires the crossed transitions following the order of x: initially, ¢, = 2,
m=7(t2) +1=1, K = K} (k) = t; and 7 has already fired an occurrence of ¢, while no
occurrence of to was fired in 7, thus ¢s is enabled. After the firing of to, in the next iteration,
tx = t3, T = t3t5t5t4t1t2, ’7'/ = t3t6, m = F(tg) + 1= 2, K = Kgg(li) = t1t2t3t5t5t4
and 7 has already fired all the occurrences of K. Moreover, 7(t;) = 1 = K(¢;) and
7(t3) = 1 = K(t3), thus t3 is enabled.

Finally, since & is of the form (o,)* for an integer a > 0, the feasible sequence t o, is a
T-sequence. ]

We use this lemma to deduce the next characterization of reversibility for live Equal-
Conflict systems.

Theorem 29. Consider a live Equal-Conflict system S = (N, My) such that N = (P,T,W).

The system S is reversible if and only if it enables a T-sequence.

Proof. The simple case is the necessity. Suppose that S is live and reversible. By the
liveness assumption, there exists a feasible sequence oy whose support is the set of all
transitions. By the reversibility assumption, there exists a feasible sequence o returning
to My. Thus, the feasible sequence og oy is a feasible T-sequence.

We prove the sufficiency next. Suppose there exists a feasible T-sequence o, in the live
system S. We show that after the firing of any feasible sequence o, with My — M, there
exists a feasible sequence o* that leads to the initial marking. For that purpose, we show
by induction on the length n of o the property P(n):

“If a sequence o of length n is feasible in a live Equal-Conflict system S = (N, My) and
a feasible T-sequence, noted o, exists in S, then there exists a feasible sequence o* such

that My 25 My.”

If n =0, 0 and ¢* are empty sequences and the initial marking is reached.

Otherwise, suppose n > 0, with o = to’, note My —— M <, M’ and assume the
property P(n — 1) to be true. Applying Lemma 10 on page 101, there exists a sequence o,
that is feasible at M such that M 2% M, and the sequence to. is a T-sequence. Thus,
the T-sequence ot is feasible at M. Applying the induction hypothesis on the sequence
o’ of size n — 1, which is feasible in the live system (N, M), we obtain a sequence o4 that
is feasible at M’ and returns to M. Thus, the sequence o* = 040, is feasible at M’ and
leads to Mj.
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Or
O t 0_/
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We deduce that after the firing of any feasible sequence in S, there exists a feasible
sequence that returns to the initial marking. We conclude that .S is reversible. O

5.2.6 Monotonicity of reversibility in well-behaved systems

The new characterization of reversibility of Theorem 29 on the preceding page implies
the monotonicity of the reversibility property in the case of well-behaved Equal-Conflict
systems, as stated by the following theorem.

Theorem 30 (Reversibility monotonicity). Consider a well-behaved Equal-Conflict system
S = (N, My) that is reversible. Then, for any marking M) > My, the system (N, M) is
also well-behaved and reversible.

Proof. By Proposition 15 on page 65, (N, M}) is also well-behaved. Moreover, Theorem 29
on the preceding page applies, meaning that a T-sequence o is feasible in S. The system
(N, M{)) clearly enables o and is consequently reversible by Theorem 29. O

5.2.7 Polynomial live home markings for well-formed systems

We use the new characterization of reversibility for live Equal-Conflict systems to show
that the polynomial live marking Mgc of Theorem 16 on page 67 is also reversible for
well-formed Equal-Conflict systems.

We will need the next simple technical lemma, illustrated in Figure 5.24, when con-
sidering T-subsystems, in which places may have fewer surrounding weights than in the
complete system.

Lemma 11. Consider a Petri net containing a place p having at least one output. Let S’
be any subsystem (subgraph) containing p and at least one of its inputs or outputs. Denote
by max, the mazimum output weight of p in S, by maaz’; the mazimum output weight of
p in S, by gedy, the ged of p in S and by ged, the ged of p in S'. Then maz, > max,,
gedy < ged,, and mazx, — ged, > maxy, — ged,,.

Proof. Since the place p may have fewer ouputs in S’ than in S, maz, > max;,. If there is
no more output, then 'max; = 0. Since the place p may have fewer ouputs or inputs in S’
than in S, the gcd of a non-empty subset of the weights surrounding the place may only
be larger or equal, thus ged, < gcd;. We deduce easily the last inequality. O
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Figure 5.24: On the left, gcd, = 1, max, = 6 and max, — gcd, = 5. In the T-subsystem
on the right, ged, = 2, maz, = 4 and mazx, — gcd, = 2.

We prove the following result that deals with the previous polynomial markings Mgc
and M, as well as T-components.

Theorem 31. Consider a strongly connected system S = (N, My) that is covered by T-
components. If S is not Join-Free, suppose that My is greater than or equal to the marking
Mgc. Otherwise, if S is Join-Free, suppose that My is greater than or equal to a marking
of Mjr. Then, S enables a T-sequence.

Proof. We illustrate the ideas by examples throughout the proof.

If no T-component of S is an FA T-subsystem of S, then all T-components are initially
marked by Mcr or a larger marking by definition of Mpc and by Lemma 11 on the facing
page, thus they are made well-behaved and reversible by Theorem 25 on page 93. Denote
by Cj...C} all the k T-components covering the system. Since every sequence which is
feasible in a T-subsystem is also feasible in the whole system, and every T-component C;,
it =1...k, enables in S a partial T-sequence o; whose Parikh vector is equal to the minimal
T-semiflow of C; (Theorem 12 on page 79), the sequence o = o1 ... 0 is a T-sequence that
is feasible in S. An example is pictured in Figure 5.25.

Figure 5.25: This (Equal-Conflict) system is marked by Mgc, and its two T-components
C; and Cy, defined respectively by {t1, ta, t3, t4} and {5, ts}, have each an initial marking
obtained by projection that is larger than or equal to Mcr, thus are live and reversible.
Consider the (partial) T-sequence o1 = t3t1 taty that is feasible in C; and the (partial)
T-sequence o1 = t5tg that is feasible in Co. Then, the sequence o = o1 09 is a feasible
T-sequence for the whole system.

Now consider that some T-components are FA T-subsystems. If the system is not
Join-Free, then it contains a Choice-Free T-component that is not FA, My is equal to or
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greater than Mgc and every Choice-Free T-component that is not FA is live and reversible.
Otherwise the system is Join-Free, My is equal to or greater than a marking of Mjp,
at least one place p satisfies My(p) > max, and the system contains an FA T-component
whose initial marking, obtained by projecting My on its places, is greater than or equal to a
marking of Mp, and is thus live and reversible (Theorem 20 on page 84). Consequently, in
all cases, we can suppose that S contains at least one well-behaved reversible T-component.

As seen before, one can fire a partial T-sequence by concatenating smaller partial T-
sequences over all the T-components that are initially live and reversible. However, there
may exist FA T-components that are not initially live and reversible, meaning that they
do not contain any place enabled by projection. We prove next that, for every such T-
component C', there exists a sequence that is feasible at My, fires all the transitions of C' and
returns to My. Figure 5.26 illustrates this fact with the feasible sequence t3 t5 t7 tg tg t4 t1 to,
where C5 the FA T-component defined by {¢7, tg} plays the role of C'

Figure 5.26: The Choice-Free T-component C; that is not FA, defined by {t1, to, t3, t4},
is made initially live and reversible by projection. The two FA T-components Co and Cj
defined respectively by {t5, t¢} and {t7, ts} are non-live. However, firing the transition t3
adds a token to the place p, making Cs live and reversible, while the firing of the sequence
t3 t5 makes C3 live and reversible.

By hypothesis, there exists in S at least one enabled place that is an input of an
enabled transition. Select an elementary path g of the form potg ... py where py is an
enabled place, to is the only transition of x enabled by My and p; belongs to C. Such a
path exists by strong connectedness and the previous assumptions. For exemple, consider
the path pgt3pts py in Figure 5.26.

Since p is an elementary path, each of its places and transitions are visited once. Denote
by o the sequence made of the successive transitions following the order of p, thus starting
by tg. Among all the possible sets of T-components whose union contains the path u, select
a set D of minimum cardinality v and containing C', implying that every transition of u
belongs to at most two elements of D. Define the elements of D ordered following the path
p as the sequence D;, ¢ = l..u, with D, = C. In our example, D; = C, Dy = (s and
D, = C3. Now the path ;1 can be rewritten as dy ...d,—1 py where, for every ¢t =1...u—1,
d; starts with a place and ends with a transition, d; starting with po, py = d is the only
non-empty subpath of p that belongs to C', and d; is the longest subpath of u that belongs

108



Chapter 5. Reversibility of live Equal-Conflict and Join-Free systems

to D; but contains no node that belongs to D;11. In our example, d; = pgts, do = pts,
dy = d3 = py.

We first show that o is feasible in S. By definition of o, its first transition £ is enabled.
Moreover, every place p; of p1 contains at least max,, — gcd,, tokens in S. Suppose that o
is not feasible, meaning that it is of the form 7¢ 71, where 7 can be fired in S and contains
to, leading to a marking M that does not enable t. Since the path is elementary, ¢ has
not been fired previously. We have two cases. If ¢ is a join-transition, then it was enabled
by My, which is impossible by the choice of u, which contains only one initially enabled
transition, the transition t3. Thus ¢ has a unique input place p. If ¢ is the unique output
of p, then no transition of 7 removed tokens from p, thus p contained at least max, — gcd,
tokens at My and is thus enabled by M because of the firing of one of its input transitions
in 7, and t is enabled, a contradiction. Now suppose that another output ' of p exists in
S. If ¢’ is a join-transition, then p and ¢t were initially enabled, contradicting the definition
of pu. Thus, every output of p has p as its unique input. If an output ¢’ of p has been fired
in 7, then its unique input place p has already been visited, a contradiction with the fact
that p is an elementary path. Thus, no output of p has been fired in 7. We deduce that ¢
is feasible.

Thus, in all cases, t is enabled by M. We deduce that o is enabled.

Now, we prove by induction on u that the marking M, reached by firing ¢ makes C
live and reversible, and that it enables a sequence ¢* whose transitions all belong to the
components Dj ... D, 1 and which returns to M.

If w = 2, then o fires a sequence in D1, which is live and reversible, leading to a marking
M that enables the place py. The projection of M on the T-component C is greater than
or equal to a marking of Mpa, implying its liveness and reversibility. Then, a sequence
0* is enabled by M completing the sequence o up to the minimal T-semiflow of D;. In
Figure 5.26, if C' = (s, the firing of ¢ = t3 enables p, making C5 live and reversible, and
the sequence o* = t4t1 to is feasible that leads to M.

If w > 2, suppose that the property is true for w — 1. The prefix sequence v of o
corresponding to p; = dp ...dy_o is feasible at My—yu1 being an elementary path from an
enabled place to a place of D,_; and in which the only transition enabled by Mj is toc—and
it leads to a marking M that makes D,_; live and reversible. Moreover, the sequence
V' associated to d,_; is feasible at M and enables py, making C live and reversible at a
marking M’. Then, since D, is live and reversible, a sequence v is feasible at M’ such
that /1" is a partial T-sequence whose Parikh vector is equal to the minimal T-semiflow
of Dy—1 and thus leads to M. Applying the induction hypothesis, a sequence v, whose
transitions all belong to the components D ... D,_o, is enabled by M that leads to M.
Consequently, the sequence v v is feasible at M’, leads to My and contains only transitions
of the components D1 ... D, 1.

We deduce that the property is true for every w > 2. Finally, from this property we
deduce that, for every T-component C; that is not initially live and reversible, there exists a
sequence o feasible at My leading to a marking M, that makes C; live and reversible, hence
there exists a sequence o; whose Parikh vector is equal to the minimal T-semiflow of C; and
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is feasible at M, that returns to M.. Then, a sequence ¢* is feasible at M., returning to Mj.
Denote the concatenation of such sequences by v, = o g; 0*. Since the system is strongly
connected, covered by T-components with at least one of them initially live and reversible,
then by concatenating all such partial T-sequences ~;, for every T-component C; that is
not initially live and reversible, together with those that initially fire partial T-sequences in
the reversible T-components, we obtain a feasible T-sequence for the complete system. [

We deduce next that the polynomial live markings Mgrc and Mjg are reversible for
well-formed Equal-Conflict and homogeneous Join-Free systems, respectively.

Theorem 32 (Polynomial live home markings). Let S = (N, My) be a strongly connected
well-formed Equal-Conflict system. If S is not Join-Free, suppose that My is equal to the
marking Mgc. Otherwise, if S is Join-Free, suppose that My belongs to Mjp. Then, in
both cases, S is well-behaved and reversible. Moreover, any larger marking also leads to
well-behavedness and reversibility.

Proof. Every well-formed Equal-Conflict net is covered by T-components by Proposition 6
on page 32. Since the marking My satisfies the conditions of Theorem 31, it enables a
T-sequence. Applying the characterization of reversibility for Equal-Conflict systems of
Theorem 29 on page 105, the system S is reversible. Morever, liveness of well-formed
Equal-Conflict systems is monotonous (Proposition 15 on page 65) and the same applies to
reversibility (Theorem 30 on page 106). O

5.3 Reversibility of well-behaved Join-Free systems

There exists no non-trivial characterization of reversibility for well-formed Join-Free sys-
tems. This class extends the expressiveness of homogeneous Join-Free systems by removing
the homogeneity constraint. Thus, Join-Free systems do not constitute a proper subclass
of the Equal-Conflict class. However, we are able to construct next the first polynomial
live home markings for this class without any new characterization.

5.3.1 Polynomial live home markings

We show that the polynomial live markings M jr of Theorem 14 on page 64 for well-formed
Join-Free systems are also reversible. As shown in the study of the liveness property of
Chapter 4, balanced Join-Free systems that meet the conditions of Lemma 1 on page 60
have the property that every reachable marking enables a place. Since the language of a
system is preserved by the balancing operation, the markings M jp also satisfy this prop-
erty. All the output transitions of an enabled place being enabled in a Join-Free system, the
choices that follow the order of a T-sequence intuitively lead to reversibility, the enabled
places playing the role of enabled equal conflict sets. We prove this fact by adapting the
results found for Equal-Conflict systems. In order to avoid redundancy, we only prove the
parts that need new arguments.
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We first need the following lemma, illustrated on Figure 5.27. This is a counterpart of
Lemma 10 on page 101 for the live well-formed Join-Free systems whose every reachable
marking enables a place.

Lemma 12. Consider a strongly connected, live and well-formed Join-Free system S =
(N, My), with N = (P,T,W) and such that every reachable marking enables a place. Sup-
pose there exists a feasible T-sequence o, in S. For every transition t enabled by My such

that M N M, there exists a sequence o. that is feasible at M with o =t o. and an integer
k > 1 such that o is a T-sequence salisfying & = k - &,.

Or

G

M0—>M

R~

Oc

Figure 5.27: If the sequence o, is supposed to be feasible, then one can build the sequence
o. feasible at M.

Proof. We adopt the same notations as in the Equal-Conflict case. We note K' = K/ (o)
the largest prefix sequence of g, preceding the first occurrence of ¢, meaning that o, is of the
form K't oy, where K' does not contain any occurrence of t. This sequence is well-defined
since the support of &, is T. We note p the unique input place of ¢.

If ¢ is the first transition in p® to be fired following the order of ¢,, meaning that K*'
does not contain any occurrence of transitions in p®, then the sequence K' does not use any
token of the input place of ¢, thus one can execute K! after the firing of the first occurrence
of t and the sequence t K oy is feasible at My. Hence, 0. = K! o9.

Otherwise, t is not the first transition in p® to be fired following the order of o,., mean-
ing that K' contains at least one occurrence of another transition of p®. We show next
that Algorithm 3 builds the sequence o, that returns to the initial marking. This is Al-
gorithm 2 on page 102 in which enabled equal-conflict sets are replaced with enabled places.

We show that the inner loop always terminates and enables p. By assumption, every
reachable marking enables a place. Now suppose that the inner loop does not terminate.
Consequently, an infinite feasible sequence v is fired that never enables p. This means that
all the input transitions of p are fired a finite number of times in v. Since the firings in the
loop follow the order of (o,)* and the support of o, is T', and the system is bounded, then
for every place p’ having an output transition fired a finite number of times, all the outputs
and inputs of p’ are fired a finite number of times. By strong connectedness, we deduce
that no transition is fired an infinite number of times, a contradiction. Thus, p becomes
enabled and the loop terminates.

The rest of the proof is deduced from the proof of Lemma 10 on page 101. Finally, since
k is of the form (o, ) for an integer « > 0, the feasible sequence t o, is a T-sequence. [J
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Algorithm 3: Computation of the feasible sequence o..

10
11

12
13

14
15
16
17

Data: The system (N, M) obtained by firing ¢ in S, the feasible sequence o,.
Result: A sequence o, that is feasible in (N, M) such that M 2% M.

T:=1;
while 3¢’ € p* \ {t}, K'(¢) > 7(t') do
while the input place p of t is not enabled do

t, whose (7(t;) + 1)-th occurrence appears at the smallest position in (o)
T = Tlyg;
end

Among the transitions of p*® different from ¢, fire the transition ¢, satisfying
K'(t,) > 7(t,) and whose (7(t,) + 1)-th occurrence appears at the smallest
position in K ;

T 1= Tty

end

Let o be the smallest natural number such that 7 < o - &;;

Denote by k the sequence (0,)%;

while 7 # R do
Fire the transition ¢, whose (7(¢;) + 1)-th occurrence appears at the smallest
position in k;
T =Tty

end

7 is of the form tog;

return o,

Among the transitions that are outputs of enabled places, fire the transition

0.
Y
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We use this lemma to deduce the next characterization of reversibility for the well-
formed Join-Free systems whose every reachable marking enables a place.

Theorem 33. Consider a live, well-formed strongly connected Join-Free system S = (N, Mp)
such that N = (P,T,W) and every reachable marking enables a place. The system S is
reversible if and only if it enables a T-sequence.

Proof. The proof is similar to the proof of Theorem 29. In the inductive case, denoting by
M the marking reached by firing ¢, we notice that every marking reachable from M enables
a place. Finally, Lemma 12 applies. O

We deduce that the well-formed Join-Free systems whose initial marking belongs to
M are live and reversible.

Theorem 34 (Polynomial live home markings Mjr). Let S = (N, My) be a strongly
connected well-formed Join-Free system whose initial marking My belongs to Mjp. Then,
S is live and reversible. Moreover, every larger initial marking is also live and reversible.

Proof. The existence of a feasible T-sequence has been recalled previously to be a necessary
condition of reversibility for the live Petri nets. We prove next the sufficiency.

We show that S enables a T-sequence. The system S is covered by well-formed FA
T-components by Proposition 7 on page 32. Moreover, it is strongly connected, and The-
orem 31 on page 107 applies. Thus, S enables a T-sequence. Besides, by Lemma 1 on
page 60, every reachable marking enables a place. Theorem 33 applies and S is reversible.
Every larger marking is live (Theorem 14 on page 64), makes every reachable marking
enable a place (Lemma 1 on page 60) and enables a T-sequence. Thus Theorem 33 also
applies and every larger marking is live and reversible. O

5.4 Reversibility and T-sequences for other classes

We construct several examples of Petri nets whose expressiveness is not far from the Equal-
Conflict class and which are live and non-reversible while enabling a T-sequence. We will
also show that a well-behaved Petri net enabling a T-sequence is not necessarily reversible.

Figure 5.28 pictures ordinary strongly connected live systems that allow the firing of a
T-sequence. The example on the left, which is taken from [Desel 1998], is bounded when
My(ps) = 0. If initial tokens are present in py, then the system becomes unbounded. In
all cases, if we modify only the tokens of the place p4, the system remains live and re-
versible. We obtain the system on the right by deleting the two "checking" arcs between
ts and py, and fixing My(ps) = 0. This system is live, not bounded, not reversible and al-
lows a T-sequence which is also feasible in the system on the left for any initial number in p4.
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Figure 5.28: In the system on the left, changing the number of initial tokens in the place py
modifies its behavior: if My(ps) = 0, then it is live, bounded and reversible ; if My(pyg) > 1,
then it is live, not bounded and reversible. On the right, we fix My(ps) = 0, and delete
the arcs between t3 and p4 ; the system obtained is live, not bounded, not reversible and
allows the T-sequence tgt3toty.

In these systems, when they are not bounded, the place py is the only unbounded place.
The firing of tg is necessary to enable o, but one can fire t3 without firing ¢5. Firings of
ts enable ¢; which generates tokens in p;. Thus, if My(ps) = 1, one can fire the sequence
(t3t1)* for any positive integer k, which implies the unboundedness of p;. On the left, if
My(ps) = 1, then there is a way to decrease the number of tokens in pi: one can fire ¢y
twice as often as t1, leading to the initial marking.

We propose in Figure 5.29 a modification of the net on the right of Figure 5.28. We
add the place ps, with one initial token, whose role is to bound the firings of ¢; and thus
to bound the place p;. We scale the place pg by 2 in order to balance the net, which is
consequently structurally bounded. We obtain a well-formed, well-behaved, non-reversible
system that still allows the firing of a T-sequence.

However, the system in Figure 5.29 does not belong to the Asymmetric-Choice class
since po and py are both inputs of tg, p§ = {to, t1}, p§ = {to, 3}, thus p§ Z p§ and p$ < p}.
We picture in Figure 5.30 an ordinary Asymmetric-Choice net that is live, non-bounded,
non-reversible and enables a T-sequence. This example is obtained by deleting the arcs
between pg and t; in the system on the right of Figure 5.28.
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n-Free systems

Figure 5.29: The balanced system on the left is well-formed, w

2,2,1,0,0,0

0,2,1,0,1,1

ell-behaved, non-reversible

and allows the T-sequence tgtstat;. Its reachability graph is given on the right. We can

see that every reachable marking enables a T-sequence.

Place p

Output set p*

Po
P
p2
p3
2!

Figure 5.30: This ordinary Asymmetric-Choice system is live, n
and allows the T-sequence tg t3ts t;.

to

to
to, t3
t1, t2

ta

ot bounded, not reversible

Figure 5.31 contains another example! of a Petri net that is live, not reversible and en-
ables a T-sequence. In addition, it is well-behaved. The idea is to allow for the number of
tokens of the place py to decrease so that it becomes impossible to get the tokens back. For
example, the sequence t3 ¢ leads to the marking (1,1,0, 1,0) from which it is impossible to
reach the initial marking. However, the T-sequence t3to ¢ tg returns to the initial marking.

! This example, with a different layout, is taken from a Petri net course of Pr. Javier Campos, Universidad

de Zaragoza, Spain.
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to t1 to t3

Po 1-11 -1
p1 01 0 -1
P2 0-10 1
3 1 0-10
pPsl -1 0 1 O

Figure 5.31: This Petri net is well-behaved, not reversible and enables the T-sequence
tsto t1tg. Its incidence matrix, on the right, shows that it is not conservative (add column
to to t2), thus not well-formed. However, it is consistent (the vector (1,1,1,1) being the
Parikh vector of the T-sequence).

We do not know yet if live Join-Free systems that allow the firing of a T-sequence are
necessarily reversible. We propose, in Figure 5.32 an example of a weighted Free-Choice
system that contains only one join-transition, with only two inputs. Thus, the structure of
this net may be considered as not far from the structure of a Join-Free net. However, it
may be difficult, if not impossible, to express the two conditions of the synchronization by
means of weights without synchronization.

ps3

Figure 5.32: This Free-Choice Petri net is live, not bounded, not reversible and enables the
T-sequence t; t3ta tg. Moreover, it contains only one join-transition £y, which has only two
inputs. The place p; is not bounded while the place pg is 3-bounded. Thus, two consecutive
firings of ¢; are not possible, and tg is either enabled by a firing of ¢; followed by a firing of
ts, or by two firings of ts.
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Finally, Figure 5.33 highlights several subclasses for which we have presented counter-
examples. The crosses represent systems appearing in previous figures. An L indicates
that the system considered in the example is live, a B states its boundedness and an R its
reversibility. Finally, the letter T indicates that there exists a T-sequence that is feasible
at the initial marking. The negation of these properties is expressed by overlining the cor-
responding letters.

Weighted Petri nets

Asymmetric-Choice

Free-Choice

Equal-Conflict

Figure 5.33: The cross 1 represents the counter-example of Figure 5.30, which is an ordinary
Asymmetric-Choice system satisfying: L B R T. The cross 2 represents the transformation
of the counter-example of Figure 5.29 into a Free-Choice system, which is consequently a
well-formed weighted system satisfying: L. B R T (by Corollary 9 on page 48 and Corol-
lary 10 on page 49). The cross 3 represents the counter-example of Figure 5.32, which is a
weighted Free-Choice system having only one join-transition and satisfying: L B R T.
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5.5