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RÉSUMÉ

Au cours de nos travaux, nous avons étudié et résolu les problèmes suivants :

1. Platitude des systèmes de contrôle à deux entrées linéarisables dynamiquement via une pré-intégration :

Nous avons donné une caractérisation géométrique complète des systèmes affines par rapport aux contrôles, à deux entrées, définis sur un espace d'état de dimension n, linéarisables dynamiquement via une pré-intégration d'un contrôle adéquate. Ils forment une classe particulière de systèmes plats : ils sont de poids différentiel n + 3. Nous avons décrit les formes normales, compatibles avec les sorties plates minimales, et présenté un système d'EDP à résoudre afin de trouver toutes les sorties plates minimales. Nous avons illustré nos résultats en analysant deux exemples : le moteur à induction et le réacteur chimique.

Platitude des systèmes multi-entrées linéarisables dynamiquement via une préintégration :

Nous avons généralisé les résultats concernants les systèmes de contrôle à deux entrées, plats de poids différentiel n + 3, où n est la dimension de l'espace d'état. Nous avons donné une caractérisation géométrique complète des systèmes multientrées, affines par rapport aux contrôles, linéarisables dynamiquement via une pré-intégration d'un contrôle bien choisi. Ils forment une classe particulière de systèmes plats : ils ont un poids différentiel de n + m + 1, où m est le nombre de contrôles. Nous avons présenté des formes normales compatibles avec les sorties plates minimales et décrit toutes les sorties plates minimales. Nous avons appliqué nos résultats à deux exemples : le quadrirotor et le réacteur chimique.

Caractérisation des systèmes multi-entrées statiquement équivalents à une forme triangulaire compatible avec la forme multi-chaînée et leur platitude xmaximale :

Nous avons étudié la platitude des systèmes affines par rapport aux contrôles, avec m + 1 entrées, pour m ≥ 1, définis sur un espace d'état de dimension n = km + 1. Tout d'abord, nous avons donné une description géométrique complète des systèmes multi-entrées statiquement équivalents à une forme triangulaire compatible avec la forme chaînée, si m = 1, ou avec la forme multi-chaînée, si m ≥ 2. Ensuite, la platitude de ces systèmes a été analysée et résolue. Nous avons discuté les singularités dans l'espace de contrôle et déterminé toutes les sorties plates, si m = 1, et toutes les sorties plates minimales, si m ≥ 2. Nous avons

INTRODUCTION

Dans cette thèse, nous nous intéressons aux systèmes de contrôle nonlinéaires. Le contrôle de tels systèmes représente un domaine très actif de recherche en mathématiques appliquées, ainsi qu'en automatique. Un système de contrôle nonlinéaire est donné par une équation de la forme :

Ξ : ẋ = F(x, u), où x est l'état du système défini sur un ouvert X de R n (ou plus généralement sur une variété différentielle X, de dimension n), appelé espace d'état. Les valeurs du contrôle u (appelé également l'entrée ou la commande) sont dans un sousensemble U de R m , appelé espace du contrôle ; dans les problèmes abordés dans ce mémoire U est un ouvert de R m , très souvent R m entier. Le point désigne la dérivée par rapport à une variable indépendante, notée généralement par t et qui représente le temps. Un système de contrôle nonlinéaire est donc un système d'équations nonlinéaires décrivant l'évolution temporelle des variables d'état du système sous l'action d'un nombre fini de variables indépendantes (les contrôles) qui peuvent être choisies librement afin de réaliser certains objectifs.

Les systèmes que nous étudions dans cette thèse sont principalement des systèmes affines par rapport aux contrôles. Ces systèmes admettent la forme suivante :

Σ : ẋ = f (x) + m ∑ i=1 g i (x)u i = f (x) + g(x)u, où g = (g 1 , • • • , g m ) et u = (u 1 , • • • , u m ) ⊤ .
Si la dérive f est identiquement nulle, i.e., le système est de la forme suivante :

Σ lin : ẋ = m ∑ i=1 g i (x)u i = g(x)u,
alors le système sera appelé linéaire par rapport aux contrôles.

Équivalence des systèmes par bouclage statique

Un problème important en théorie du contrôle est de savoir si deux systèmes se ressemblent. Plus précisément, on souhaiterait savoir si les deux systèmes appartiennent à la même classe pour une certaine relation d'équivalence. En général, une 10 CONTENTS telle relation d'équivalence est définie par une classe des transformations sur les systèmes, deux systèmes étant équivalents s'ils peuvent être transformés l'un en l'autre par une transformation de la classe.

Deux systèmes sont équivalents dans l'espace d'état, s'ils sont liés par un difféomorphisme (dans l'espace d'état). En conséquence, leurs trajectoires (correspondant aux mêmes contrôles) seront liées par ce même difféomorphisme. Lorsque nous considérons l'équivalence dans l'espace d'état, le contrôle reste inchangé. Cependant le rôle du contrôle est crucial dans l'étude des systèmes de contrôle (qu'ils soient linéaires ou non) et nous souhaitons le prendre en compte dans les relations d'équivalence. L'équivalence par bouclage augmente la classe des transformations considérées précédemment (transformations dans l'espace d'état) en permettant également la transformation des contrôles.

Considérons deux systèmes Ξ : ẋ = F(x, u), x ∈ X, u ∈ U, et Ξ : ẋ = F( x, ũ), x ∈ X, ũ ∈ Ũ. Les systèmes Ξ et Ξ sont équivalents par bouclage statique (ou statiquement équivalents), s'il existe un difféomorphisme χ : X × U → X × Ũ de la forme ( x, ũ) = χ(x, u) = (φ(x), ψ(x, u)) qui transforme le système Ξ en Ξ, i.e., Dφ(x)F(x, u) = F(φ(x), ψ(x, u)).

Remarquons que le difféomorphisme χ est triangulaire : en effet, φ dépend uniquement de l'état et joue le rôle d'un changement de coordonnées sur X, alors que ψ, appelé le bouclage, change les coordonnées dans l'espace du contrôle d'une manière dépendante de l'état. Les ensembles des trajectoires des deux systèmes coïncident, cependant ils sont différemment paramétrés par rapport aux contrôles u et ũ.

Pour les systèmes de la forme Σ : ẋ = f (x) + ∑ m i=1 g i (x)u i = f (x) + g(x)u, afin de préserver la forme affine du système, nous restreignons la classe des bouclages aux bouclages affines ũ = ψ(x, u) = α(x) + β(x)u, où α = (α 1 , • • • , αm ) ⊤ et β(x) est une matrice de taille m × m, inversible, et ũ = ( ũ1 , • • • , ũm ) ⊤ . Notons par u = α(x) + β(x) ũ la transformation inverse et soit Σ un autre système de contrôle défini par Si les transformations précédentes sont définies localement, autour des points x 0 ∈ X et x0 ∈ X fixés, alors Σ et Σ sont dits localement équivalents par bouclage statique.

Σ : ẋ = f ( x) + m ∑ i=1 gi ( x) ũi = f ( x) + g( x) ũ,
Pour les systèmes linéaires par rapport aux contrôles, i.e., de la forme Σ lin : ẋ = ∑ m i=1 g i (x)u i = g(x)u, l'équivalence par bouclage statique coïncide avec l' équivalence des distributions engendrées par les champs de vecteurs g i et gi .

La linéarisation par bouclage statique est un sous-problème de l'équivalence par bouclage statique et consiste à transformer un système nonlinéaire sous la forme la plus simple possible, c'est à dire sous la forme d'un système linéaire. Si nous sommes en mesure de compenser les nonlinéarités par le bouclage, alors le système transformé possède toutes les propriétés d'un système linéaire. Ainsi, nous pouvons résoudre des problèmes, très compliqués en général, qui deviennent plus simples pour les systèmes linéaires. La linéarisation par bouclage statique est donc un outils très important et puissant dans l'étude des systèmes nonlinéaires. Du point de vue mathématique, si nous souhaitons classifier les systèmes de contrôle nonlinéaires, un des problèmes les plus naturels est alors de caractériser les systèmes nonlinéaires qui sont statiquement équivalents à un système linéaire.

Un système Σ est statiquement linéarisable (ou linéarisable par bouclage statique) s'il est équivalent par bouclage statique à un système contrôlable de la forme Λ : ż = Az + Bv, où A et B sont des matrices constantes de taille n × n et n × m. Le problème de la linéarisation statique d'un système avec une seule entrée a été formulé et résolu par Brockett [START_REF] Brockett | Feedback invariants for nonlinear systems[END_REF] (pour le bouclage restreint u = α + ũ). Ensuite, Jakubczyk et Respondek [START_REF] Jakubczyk | On linearization of control systems[END_REF] et, indépendamment, Hunt et Su [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF], voir aussi [START_REF] Hunt | Design for multi-input nonlinear systems[END_REF], ont donné les conditions nécessaires et suffisantes suivantes, résolvant ainsi le problème de la linéarisation par bouclage statique d'un système affine avec un nombre arbitraire de contrôles. Considérons les distributions suivantes, associées au système Σ,

D i+1 = D i + [ f , D i ], où D 0 = span {g 1 , • • • , g m }.
Le système Σ est localement linéarisable si et seulement si pour tout i ≥ 0, les distributions D i sont de rang constant, involutives et D n-1 = TX.

Platitude

La notion de platitude a été introduite en théorie du contrôle dans les années 1990 par Fliess, Lévine, Martin et Rouchon [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] (voir aussi [START_REF] Aranda-Bricaire | Some explicit conditions for a control system to be feedback equivalent to extended Goursat normal form[END_REF][START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]) et a attiré beaucoup d'attention grâce à ces multiple applications dans les problèmes de suivi et de planification de trajectoires [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Pereira Da Silva | Relative flatness and flatness of implicit systems[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF][START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF][START_REF] Van Nieuwstadt | Differential flatness and absolute equivalence of nonlinear control systems[END_REF]. Toutes les solutions d'un système plat peuvent être paramétrées par un nombre fini de fonctions et de leurs dérivées. Ceci représente la propriété fondamentale des systèmes plats.

Considérons un entier p ≥ -1, nous lui associons X p = X × U × R mp et ūp = (u, u, . . . , u (p) ). Si p = -1, alors X -1 désigne simplement l'espace d'état X et ū-1 est vide.

Definition 0.0.1. Le système Ξ est plat en (x 0 , ūp 0 ) ∈ X p , où p ≥ -1, s'il existe un voisinage O p de (x 0 , ūp 0 ) et m fonctions lisses ϕ i = ϕ i (x, u, u, . . . , u (p) ), 1 ≤ i ≤ m, définies dans O p , satisfaisant la propriété suivante : il existe un entier s et des fonctions lisses γ i , 1 ≤ i ≤ n, et δ j , 1 ≤ j ≤ m, tels que x i = γ i (ϕ, φ, . . . , ϕ (s) ) et u j = δ j (ϕ, φ, . . . , ϕ (s) ) le long de chaque trajectoire x(t) définie par un contrôle u(t) tel que (x(t), u(t), • • • , u (p) (t)) ∈ O p , où ϕ dénote le m-tuple (ϕ 1 , . . . , ϕ m ) et est appelé sortie plate.

CONTENTS

La platitude est étroitement liée à la linéarisation par bouclage statique ou dynamique. Les systèmes statiquement linéarisables sont clairement plats. En général, les systèmes plats ne sont pas statiquement linéarisables, cependant ils peuvent être vus comme la généralisation des ceux-ci. En effet, un système est plat si et seulement s'il est linéarisable par bouclage dynamique inversible et endogène. [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF]. Nous expliquons par la suite ces différentes notions.

Le système Ξ : ẋ = F(x, u) est linéarisable dynamiquement si et seulement s'il existe un pré-compensateur inversible et endogène de la forme

Θ : ẏ = G(x, y, v), y ∈ Y ⊂ R r , v ∈ V ⊂ R m u = ψ(x, y, v)
tel que le système pré-compensé

Ξ • Θ : ẋ = F(x, ψ(x, y, v)) ẏ = G(x, y, v)
soit linéarisable statiquement. Un pré-compensateur Θ est endogène si l'état y du pré-compensateur est une fonction de l'état d'origine x, du contrôle d'origine u et ses dérivées, i.e., s'il existe une fonction µ et un entier ρ, suffisamment grand, tels que y = µ(x, u, . . . , u (ρ) ). Un pré-compensateur est inversible si on peut exprimer le contrôle du pré-compensateur v comme une fonction de l'état du précompensateur y, de l'état d'origine x, du contrôle d'origine u et de ses dérivées, i.e., v = ν(x, y, u, . . . , u (ρ) ), ce qui, dans le cas d'un pré-compensateur endogène, donne v = ν(x, u, . . . , u (ρ) ).

Remarquons quelques propriétés des systèmes linéarisables par bouclage dynamique inversible et endogène. Tout d'abord, constatons que la dimension de l'état n'est pas préservée par bouclage dynamique endogène. En revanche la dimension de l'espace du contrôle est conservée. Deuxièmement, l'hypothèse pour φ d'être un difféomorphisme (hypothèse demandée dans le cas de la linéarisation statique) n'est plus requise. Finalement, les trajectoires de Ξ sont en bijection avec celles d'un système trivial, i.e., m fonctions libres ϕ 1 , • • • , ϕ m (les sorties plates) et sans dynamique.

Si u (r) , avec r ≤ p, est la dérivée la plus élevée du contrôle impliquée dans les expressions de ϕ i , alors le système est appelé (x, u, • • • , u (r) )-plat. Dans le cas particulier, ϕ i = ϕ i (x), pour 1 ≤ i ≤ m, le système est appelé x-plat.

Le nombre minimal de dérivées de ϕ i utilisées pour exprimer x et u est appelé le poids différentiel de la sortie plate ϕ (voir [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) et est formalisé comme suit.

Par définition, pour toute sortie plate ϕ de Ξ, il existe des entiers s 1 , . . . , s m tels que x = γ(ϕ 1 , φ1 , . . . , ϕ De plus, nous pouvons choisir (s 1 , . . . , s m ) tels que (voir [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) si pour un autre m-uplet (s 1 , . . . , sm ) nous avons x = γ(ϕ 1 , φ1 , . . . , ϕ alors s i ≤ si , pour 1 ≤ i ≤ m. Nous appelons ∑ m i=1 (s i + 1) = m + ∑ m i=1 s i le poids différentiel de ϕ. Une sortie plate de Ξ est appelée minimale si son poids est le plus petit parmi toutes les sorties plates de Ξ. Le poids différentiel d'un système plat Ξ est égal au poids d'une sortie plate minimale de Ξ et permet de déterminer la plus petite dimension possible d'un pré-compensateur linéarisant dynamiquement le système. En effet, la dimension r d'un tel pré-compensateur satisfait r ≥ ∑ m i=1 s i -n. On voit et on dit que le poids différentiel mesure la plus petite dimension possible d'un précompensateur linéarisant dynamiquement le système.

Premièrement, le but de cette thèse est de donner une caractérisation complète des systèmes de contrôle qui ne sont pas linéarisables statiquement, mais qui le deviennent après l'application d'un bouclage dynamique aussi simple que possible. Ce sont les systèmes plats qui se rapprochent le plus des systèmes linéarisables statiquement et ils forment une classe particulière de systèmes plats : ils sont de poids différentiel n + m + 1. D'un côté, nous souhaiterions donner des conditions nécessaires et suffisantes vérifiables (par exemple, des conditions de type involutivité) et d'un autre côté, nous voudrions décrire et comprendre la géométrie de cette classe de systèmes (présenter des formes normales, donner la description de sorties plates, etc.). Dans un premier temps, nous donnons des conditions nécessaires et suffisantes pour qu'un système devienne statiquement linéarisable après la prolongation d'un contrôle bien choisi (ou de manière équivalente, pour qu'il soit plat de poids différentiel n + m + 1). Les conditions présentées sont vérifiables et leur vérification nécessite uniquement des dérivations et des opérations algébriques, sans nécessiter la résolution d'EDP ou mettre le système sous une forme normale. Ensuite, nous présentons les formes normales, donnons la description de sorties plates et en déduisons un système d'EDP à résoudre afin de calculer les sorties plates. La platitude a donc deux niveaux de difficulté : le premier consiste à donner une caractérisation géométrique des systèmes plats (et nos résultats donnent des conditions nécessaires et suffisantes vérifiables-sans résoudre des EDP-pour caractériser les systèmes plats de poids différentiel n + m + 1) alors que le second correspond au calcul des sorties plates et pour cela nous sommes obligés de résoudre des EDP. Deuxièmement, nous souhaiterions généraliser la platitude des systèmes linéaires par rapport aux contrôles avec deux entrées, problème résolu par Martin et Rouchon [START_REF] Martin | Feedback linearization and driftless systems[END_REF], au cas affine : nous donnons la caractérisation et analysons la platitude des systèmes statiquement équivalents à une forme triangulaire compatible avec la forme chaînée. Puis, nous étendons ces résultats aux systèmes statiquement équivalents à une forme triangulaire compatible avec la forme multi-chaînée.

Troisièmement, nous introduisons le concept de platitude x-maximale (la propriété selon laquelle chaque dérivée successive de ϕ permet de gagner le nombre maximal de fonctions (composantes) de l'état x). Nous montrons que dans la classe des systèmes linéaires par rapport aux contrôles, un système est x-maximalement plat si et seulement s'il est statiquement équivalent à la forme multi-chaînée. Puis nous généralisons ce résultat en montrant que dans la classe des systèmes affines dont le sous-système linéaire est statiquement équivalent à la forme multi-chaînée, les seuls systèmes x-maximalement plats sont les systèmes statiquement équivalents à la forme triangulaire compatible avec la forme multi-chaînée.

Par la suite, nous présenterons chapitre par chapitre les résultats obtenus dans CONTENTS cette thèse.

Chapitre 1. Platitude des systèmes de contrôle à deux entrées linéarisables dynamiquement via une pré-intégration

Les résultats de ce chapitre on été présentés à NOLCOS 2013, [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF], et ont été soumis au European Journal of Control, [START_REF] Nicolau | Two-inputs control-affine systems linearizable via one-fold prolongation and their flatness[END_REF].

Dans ce chapitre nous étudions la platitude des systèmes affines par rapport aux contrôles, à deux entrées, définis sur un espace d'état de dimension n, linéarisables dynamiquement via une pré-intégration d'un contrôle bien choisi. Ce sont les systèmes plats qui se rapprochent le plus des systèmes linéarisables statiquement.

Les systèmes linéarisables par bouclage statique sont plats. Effectivement, ils sont équivalents par bouclage statique à la forme canonique de Brunovský :

(Br) [START_REF] Brunovsky | A classification of linear controllable systems[END_REF]) et sont plats avec ϕ = (z 1 1 , • • • , z m 1 ) une sortie plate minimale (de poids différentiel n + m). Une façon équivalente de décrire les systèmes statiquement linéarisables est le fait qu'ils sont plats de poids différentiel n + m. Par conséquent, le poids différentiel d'un système plat, qui n'est pas linéarisable statiquement, est strictement supérieur à n + m et mesure la plus petite dimension possible d'un pré-compensateur linéarisant dynamiquement le système.

         żi 1 = z i 2 . . . żi ρ i -1 = z i ρ i żi ρ i = v i où 1 ≤ i ≤ m et ∑ m i=1 ρ i = n (voir
En général, les systèmes plats ne sont pas linéarisables par bouclage statique, à l'exception des systèmes avec une seule entrée, pour lesquels la platitude se réduit à la linéarisation par bouclage statique. Les systèmes plats peuvent être vus comme la généralisation de systèmes linéaires. Notamment, ils sont linéarisables par bouclage dynamique, inversible et endogène (voir [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF]). Notre objectif est de décrire complètement les plus simples systèmes plats qui ne sont pas linéarisables statiquement : les systèmes affines par rapport aux contrôles, à deux entrées, linéarisables dynamiquement via une pré-intégration d'un contrôle. Ils forment une classe particulière de systèmes plats : ils sont de poids différentiel n + 3. Dans ce chapitre, nous donnons une caractérisation géométrique complète de cette classe de systèmes.

Considérons le système de contrôle

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x), (1) 
où x ∈ X et u = (u 1 , u 2 ) ⊤ ∈ R 2 . Nous lui associons les distributions suivantes D i+1 = D i + [ f , D i ], où D 0 = span {g 1 , g 2 }. Supposons que Σ n'est pas linéarisable statiquement. Cela se produit s'il existe un entier k tel que la distribution D k est non involutive. Par la suite, k désigne le plus petit entier vérifiant cette propriété.

Proposition 0.0.1. Les conditions suivantes sont équivalentes :

(i) Σ est plat au point (x 0 , ūp 0 ), de poids différentiel n + 3; (ii) Σ est x-plat au point (x 0 , u 0 ), de poids différentiel n + 3;

(iii) Il existe, localement, autour de x 0 , une transformation inversible u = α(x) + β(x) ũ ramenant Σ sous la forme Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 g2 (x), telle que la prolongation Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 g2 (x) ẏ1 = v 1 soit linéarisable statiquement, où y 1 = ũ1 , v 2 = ũ2 , f = f + αg et g = gβ, avec g = (g 1 , g 2 ) et g = ( g1 , g2 ).

Notre résultat principal est donné par les deux théorèmes suivants correspondants au cas k ≥ 1 (Théorème 0. (A3) Les distributions H i , pour i ≥ k, sont involutives, où

H k = D k-1 + span {ad k f g c } et H i+1 = H i + [ f , H i ], pour i ≥ k ;
(A4) Il existe ρ tel que H ρ = TX. Le Théorème 0.0.1 donne des conditions nécessaires et suffisantes pour qu'un système Σ soit plat de poids différentiel n + 3, et donc pour qu'il devienne statiquement linéarisable après la prolongation d'un contrôle bien choisi. La propriété structurelle fondamentale de ces systèmes est l'existence de la sous-distribution involutive H k , de corang un dans D k . Le théorème précédent nous permet également de définir le contrôle à prolonger afin d'obtenir un système Σ(1,0) statiquement linéarisable. Le champ de vecteurs non nul g c ∈ D 0 peut être exprimé comme g c = β 1 g 1 + β 2 g 2 , où β 1 et β 2 sont des fonctions qui ne s'annulent pas simultanément. On en déduit que le contrôle à prolonger afin de linéariser dynamiquement le système est donné par u p (t) = β 2 (x(t))u 1 (t)β 1 (x(t))u 2 (t).

Si k = 0, un résultat similaire peut être formulé, mais dans ce cas, la distribution H 1 n'est pas définie de la même manière que H k+1 , mais par H 1 = G 1 , où G 1 = D 0 + [D 0 , D 0 ] (comparer les conditions (A3) et (A3) ′ ). De plus, les systèmes plats avec k = 0 possèdent des singularités dans l'espace du contrôle (voir Section 1.3 pour la définition de l'ensemble des contrôles singuliers U sing , i.e., les contrôles pour lesquels le système cesse d'être plat). CONTENTS Theorem 0.0.2. Supposons k = 0 et D 0 + [D 0 , D 0 ] = TX. Le système Σ, donné par (1), est x-plat au point (x 0 , u 0 ) ∈ X × R 2 , de poids différentiel n + 3, si et seulement si les conditions suivantes sont satisfaites (A1)' rk D 0 = 3 est involutive;

(A2)' rg (D 0 + [ f , D 0 ] = 4, impliquant l'existence d'un champ de vecteurs non nul g c ∈ D 0 tel que ad f g c ∈ G 1 ;

(A3)' Les distributions H i , pour i ≥ 1, sont involutives, où

H 1 = G 1 et H i = H i-1 + [ f , H i-1 ]
, pour i ≥ 2;

(A4)' Il existe ρ tel que H ρ = TX;

(CR) u 0 / ∈ U sing (x 0 ).

Si D k + [D k , D k ] = TX, nous distinguons deux cas (correspondants à la façon dont D k perd son involutivité) : d'une part [D k-1 , D k ] ⊂ D k et [ad k f g 1 , ad k f g 2 ] / ∈ D k , d'autre part [D k-1 , D k ] ⊂ D k .
Dans le premier cas, nous montrons que le système est plat de poids différentiel n + 3 sans aucune condition additionnelle. Dans le deuxième cas, le système doit vérifier quelques conditions supplémentaires similaires à celle du Théorème 0.0.1. Si D k + [D k , D k ] = TX, la condition (A2), nous permettant de définir le champ de vecteurs g c (et, en conséquence, la sous-distribution involutive H k ), n'a pas de sens. Par conséquent, nous devons définir H k d'une autre manière. Pour cela nous utiliserons la distribution caractéristique de D k (voir Théorème 1.3.4, Section 1.3).

Nous caractérisons ensuite toutes les sorties plates minimales des systèmes de poids différentiel n + 3. Soit µ le plus grand entier tel que corang de l'inclusion H µ-1 ⊂ H µ soit deux et ρ le plus petit entier tel que H ρ = TX. Proposition 0.0.2. Considérons un système de contrôle Σ, de la forme (1), x-plat en x 0 (en (x 0 , u 0 ), si k = 0), de poids différentiel n + 3.

(i) Supposons D k + [D k , D k ] = TX ou D k + [D k , D k ] = TX et [D k-1 , D k ] ⊂ D k . Une
paire de fonctions lisses (ϕ 1 , ϕ 2 ), définies dans un voisinage de x 0 , est une sortie x-plate minimale au point x 0 si et seulement si (à une permutation près)

dϕ 1 ⊥ H ρ-1 dϕ 2 ⊥ H µ-1 et dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (x 0 ) = 0 (à une permutation de ϕ 1 et ϕ 2 près).
De plus, la pair (ϕ 1 , ϕ 2 ) est unique, à un difféomorphisme près, i.e., si ( φ1 , φ2 ) est une autre sortie plate minimale, alors il existe des fonctions lisses h 1 et h 2 inversibles (h 2 par rapport à son premier argument), telles que

φ1 = h 1 (ϕ 1 ) φ2 = h 2 (ϕ 2 , ϕ 1 , L f ϕ 1 , . . . , L ρ-µ f ϕ 1 ). Si ρ = µ, alors φi = h i (ϕ 1 , ϕ 2 ), 1 ≤ i ≤ 2, et h = (h 1 , h 2 ) est un difféomorphisme. (ii) Supposons D k + [D k , D k ] = TX et [D k-1 , D k ] ⊂ D k .
Une paire de fonctions lisses (ϕ 1 , ϕ 2 ) définies dans un voisinage de x 0 est une sortie x-plate minimale au point x 0 si et seulement si (dϕ 1 ∧ dϕ 2 )(x 0 ) = 0 et la distribution involutive L = (span {dϕ 1 , dϕ 2 }) ⊥ satisfait

D k-1 ⊂ L ⊂ D k .
De plus, pour toute fonction ϕ 1 , satisfaisant

dϕ 1 ⊥ D k-1 et (L ad k f g 1 ϕ 1 , L ad k f g 2 ϕ 1 )(x 0 ) = (0, 0),
il existe ϕ 2 tel que la pair (ϕ 1 , ϕ 2 ) soit une sortie x-plate minimale. Étant donné une telle fonction ϕ 1 , le choix de ϕ 2 est unique, à un difféomorphisme près, c'est à dire, si (ϕ 1 , φ2 ) est une autre sortie plate minimale, alors il existe une application lisse h, inversible par rapport à son deuxième argument, telle que φ2 = h(ϕ 1 , ϕ 2 ).

Tout d'abord, la proposition précédente nous permet de vérifier si une paire de fonctions (ϕ 1 , ϕ 2 ) est une sortie x-plate minimale d'un système de poids différentiel n + 3. De plus, elle répond à la question : y-a-t-il beaucoup de paires (ϕ 1 , ϕ 2 ) qui sont des sorties x-plates minimales ? Finalement, elle nous permet de construire explicitement un système d'équations aux dérivées partielles du premier ordre à résoudre afin de trouver toutes les sorties plates minimales (voir Section 1.5).

Enfin, nous décrivons les formes normales compatibles avec les sorties plates minimales et appliquons nos résultats à deux exemples : le moteur à induction et le réacteur chimique.

Chapitre 2. Platitude des systèmes multi-entrées linéarisables dynamiquement via une pré-intégration

Les résultats de ce chapitre on été présentés à CDC 2013, [START_REF] Nicolau | Multi-input control-affine systems linearizable via one-fold prolongation and their flatness[END_REF], et ont été soumis au SIAM Journal on Control and Optimization, [START_REF] Nicolau | Flatness of multi-input control-affine systems linearizable via one-fold prolongation[END_REF].

Ce chapitre est dédié à la généralisation des résultats décrits dans le chapitre précédent. Nous étudions les systèmes multi-entrées, affines par rapport aux contrôles, définis sur un espace d'état de dimension n, linéarisables dynamiquement via une pré-intégration d'un contrôle bien choisi. Ils forment la classe des systèmes plats les plus simples, qui ne sont pas linéarisables statiquement. Les systèmes statiquement linéarisables sont plats et une façon équivalente de les décrire est la suivante : ils sont plats de poids différentiel n + m. Par conséquent, pour tout système plat, qui n'est pas statiquement linéarisable, le nombre minimal de dérivées des sorties plates utilisées pour exprimer toutes les variables d'état et du contrôle est strictement supérieur à n + m. Les systèmes plats, qui se rapprochent le plus des systèmes linéarisables statiquement sont les systèmes linéarisables dynamiquement via une pré-intégration d'un contrôle. Ils forment la classe particulière des systèmes que nous caractérisons dans ce chapitre : les systèmes plats de poids différentiel n + m + 1.

CONTENTS Considérons un systèmes de contrôle

Σ : ẋ = f (x) + m ∑ i=1 u i g i (x), (2) 
où x ∈ X et u = (u 1 , • • • , u m ) ⊤ ∈ R m .
Supposons que Σ n'est pas linéarisable statiquement. Cela se produit s'il existe un entier k tel que le distribution D k soit non involutive. Par la suite, k désigne le plus petit entier vérifiant cette propriété.

Proposition 0.0.3. Les conditions suivantes sont équivalentes :

(i) Σ est plat au point (x 0 , ūp 0 ), de poids différentiel n + m + 1; (ii) Σ est x-plat au point (x 0 , u 0 ), de poids différentiel n + m + 1;

(iii) Il existe, localement, autour de x 0 , une transformation inversible u = α(x) + β(x) ũ ramenant Σ sous la forme Σ : ẋ = f (x) + m ∑ i=1 ũi gi (x), telle que la prolongation Σ(1,0,...,0) :

   ẋ = f (x) + y 1 g1 (x) + m ∑ i=2 v i gi (x) ẏ1 = v 1 est linéarisable statiquement, où y 1 = ũ1 , v i = ũi , pour 2 ≤ i ≤ m, f = f + αg et g = gβ, avec g = (g 1 , • • • , g m ) et g = ( g1 , • • • , gm ).
Notre résultat principal est donné par les deux théorèmes suivants correspondant au cas k ≥ 1 (Théorème 0.0.3) et au cas k = 0 (Théorème 0.0.4). Par la suite, nous supposons rg D krg D k-1 ≥ 2 (voir Section 2.7 où nous montrons que ce cette condition est nécessaire pour la linéarisation dynamique via une pré-intégration, et donc pour la platitude de poids différentiel n + m + 1). Pour les deux théorèmes, nous supposons corg (D k ⊂ [D k , D k ]) ≥ 2, le cas de ce corang égal à 1 sera discuté plus tard.

Theorem 0.0.3. Supposons k ≥ 1 et corg (D k ⊂ [D k , D k ]) ≥ 2. Le système Σ, donné par (2), est x-plat au point x 0 , de poids différentiel n + m + 1, si et seulement si les conditions suivantes sont satisfaites : (A1) Il existe une sous-distribution involutive H k de corang un dans D k ;

(A2) Les distributions H i , pour i ≥ k + 1, sont involutives, où H i = H i-1 + [ f , H i-1 ];

(A3) Il existe ρ tel que H ρ = TX.

L'existence de la sous-distribution involutive H k de corang un dans D k est la propriété structurelle fondamentale de ces systèmes. Afin de vérifier si les conditions du Théorème 0.0.3 sont satisfaites, il faut prouver que D k admet une sous- distribution involutive H k de corang un. Nous expliquons en Section 2.3 comment vérifier l'existence de la sous-distribution involutive H k et comment la calculer ex- plicitement, si elle existe. La condition corg (D k ⊂ [D k , D k ]) ≥ 2 implique l'unicité de H k .

Le théorème précédent nous permet également de définir le contrôle à prolonger, qui est défini à une fonction multiplicative près, pour que le système prolongé associé Σ(1,0,...,0) soit statiquement linéarisable. Nous montrons en Section 2.7 que la sous-distribution H k permet d'identifier une unique sous-distribution involutive H de corang un dans D 0 telle que H k = D k-1 + ad k f H. C'est la sous-distribution H qui nous permet ensuite de définir le contrôle à prolonger. Nous expliquons cela dans la Section 2.3.

Si k = 0, un résultat similaire peut être formulé, mais dans ce cas, la distribution H 1 n'est pas définie de la même façon que H k+1 , mais comme

H 1 = G 1 + [ f , H 0 ], où G 1 = D 0 + [D 0 , D 0 ] (comparer (A2) et (A2) ′ ).
De plus, les systèmes plats avec k = 0 possèdent des singularités dans l'espace du contrôle (voir Section 2.3 pour la définition de U sing , l'ensemble des contrôles singuliers, pour lesquels le système cesse d'être plat). Theorem 0.0.4. Supposons k = 0 et corg (D 0 ⊂ [D 0 , D 0 ]) ≥ 2. Le système Σ, donné par (2), est x-plat au point (x 0 , u 0 ), de poids différentiel n + m + 1, si et seulement si les conditions suivantes sont satisfaites : (A1)' Il existe une sous-distribution involutive H 0 de corang un dans D 0 ; (A2)' Les distributions H i , pour i ≥ 1, sont involutives, où

H 1 = G 1 + [ f , H 0 ] et H i = H i-1 + [ f , H i-1 ]
, pour i ≥ 2;

(A3)' Il existe ρ tel que H ρ = TX.

(CR) u 0 / ∈ U sing (x 0 ).

Considérons maintenant le cas corg (D k ⊂ [D k , D k ]) = 1. Si la distribution D k contient une sous-distribution involutive de corang un, celle-ci n'est jamais unique. La perte d'involutivité de D k peut se réaliser de deux manières différentes : 

d'une part [D k-1 , D k ] ⊂ D k , d'autre part [D k-1 , D k ] ⊂ D k et il existe 1 ≤ i, j ≤ m tels que [ad k f g i , ad k f g j ] / ∈ D k . Si [D k-1 , D k ] ⊂ D k ,
[D k-1 , D k ] ⊂ D k et il existe 1 ≤ i, j ≤ m tels que [ad k f g i , ad k f g j ] /
∈ D k , alors toute sous-distribution involutive H k de corang un dans D k peut être utilisée pour définir le contrôle à prolonger (distributions différentes donnant des contrôles différents) afin d'obtenir un système prolongé Σ(1,0,...,0) statiquement linéarisable. [START_REF] Aranda-Bricaire | Some explicit conditions for a control system to be feedback equivalent to extended Goursat normal form[END_REF], est x-plat au point (x 0 , u 0 ), de poids différentiel n + m + 1, si et seulement si les conditions suivantes sont satisfaites :

Theorem 0.0.5. Supposons corg (D k ⊂ [D k , D k ]) = 1 et [D k-1 , D k ] ⊂ D k . Le système Σ, donné par
20 CONTENTS (C1) rg C k = rg D k -2, où C k est la distribution caractéristique de D k ; (C2) rg (C k ∩ D k-1 ) = rg D k-1 -1; (C3) Les distributions H i , pour i ≥ k, sont involutives, où H k = C k + D k-1 et H i+1 = H i + [ f , H i ]; (C4) Il existe ρ tel que H ρ = TX.
Ensuite, nous introduisons deux formes normales, compatibles avec les sorties plates minimales. Ces résulats ont été présentés à ECC 2014, voir [START_REF] Nicolau | Normal forms for flat control-affine systems linearizable via one-fold prolongation[END_REF].

Finalement, nous caractérisons toutes les sorties plates minimales des systèmes plats de poids différentiel n + m + 1. Notre résultat (voir Proposition 2.5.1, Section 2.5) nous permet de vérifier si un m-uplet de fonctions (ϕ 1 , • • • , ϕ m ) est une sortie x-plate minimale de poids différentiel n + m + 1 et répond à la question : y-a-t-il beaucoup des m-uplets (ϕ 1 , • • • , ϕ m ) qui sont des sorties x-plates minimales ? De plus, il nous permet de construire explicitement un système d'équations aux dérivées partielles du premier ordre, à résoudre afin de trouver toutes les sorties plates minimales. Finalement, nous illustrons nos résultats via deux exemples : le quadrirotor et le réacteur chimique.

Chapitre 3. Caractérisation des systèmes multi-entrées statiquement équivalents à une forme triangulaire compatible avec la forme multi-chaînée et leur platitude x-maximale

La première partie de ce chapitre est consacrée à la platitude d'une classe particulière de systèmes affines par rapport aux contrôles, avec m + 1 entrées, où m ≥ 1, définis sur un espace d'état de dimension n = km + 1, k ≥ 1. Les résultats de cette partie ont été réalisés en collaboration avec ShunJie Li (Zhejiang University) et ont été soumis au International Journal of Control [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF].

La platitude des systèmes linéaires par rapport aux contrôles, à deux entrées, i.e., de la forme

Σ lin : ẋ = u 0 g 0 (x) + u 1 g 1 (x),
défini sur un ouvert X de R n , a été résolue par Martin and Rouchon [START_REF] Martin | Feedback linearization and driftless systems[END_REF] (voir aussi [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF][START_REF] Li | Flat outputs of two-input driftless control systems[END_REF][START_REF] Martin | Feedback linearization and driftless systems[END_REF][START_REF] Murray | Nonholonomic motion planning: Steering using sinusoids. Automatic Control[END_REF][START_REF] Samson | Control of chained system: application to path-following and timevarying point stabilization of mobile robots[END_REF]). Ils ont montré que, sur un ouvert dense X ′ de X, le système Σ lin est plat si et seulement si la distribution G = span {g 0 , g 1 } est une structure de Goursat ou, de manière équivalente, si et seulement si le système est localement équivalent par bouclage statique à la forme chaînée. Giaro, Kumpera et Ruiz [START_REF] Giaro | Sur la lecture correcte d'un résultat d'Elie Cartan[END_REF] sont les premiers à avoir remarqué l'existence de points singuliers dans le problème de la transformation d'une distribution de rang deux sous la forme normale de Goursat. Puis, Murray [START_REF] Murray | Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems[END_REF] a donné une condition de régularité permettant de transformer un système Σ lin sous la forme chaînée autour d'un point arbitraire x * . Li and Respondek [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF] on montré qu'un système dont la distribution associée est une structure de Goursat est x-plat seulement aux points où la condition de régularité est satisfaite. Ils ont également décrit toutes les sorties plates.

Dans ce chapitre, nous généralisons ces résultats : nous caractérisation les systèmes affines statiquement équivalents à la forme triangulaire suivante :

TCh k 1 :              ż0 = v 0 ż1 = f 1 (z 0 , z 1 , z 2 ) +z 2 v 0 ż2 = f 2 (z 0 , z 1 , z 2 , z 3 )+z 3 v 0 . . . żk-1 = f 2 (z 0 , • • • , z k ) +z k v 0 żk = v 1
Remarquons que dans le système de coordonnées z, dans lequel les champs g 1 et g 2 sont sous la forme chaînée, la dérive f a une forme triangulaire très spéciale. C'est la raison pour laquelle nous appelons TCh k 1 la forme triangulaire compatible avec la forme chaînée.

Ensuite, nous étendons ces résultats aux systèmes statiquement équivalents à une forme triangulaire compatible avec la forme multi-chaînée. Nous caractérisation les systèmes affines avec m + 1 entrées, où m ≥ 2, statiquement équivalents à la forme normale obtenue en remplaçant, dans TCh k 1 , chaque état z i par le vecteur

z i = (z i 1 , • • • , z i m ), les fonctions lisses f i par f i = ( f i 1 , • • • , f i m ) et le contrôle v 1 par le vecteur (v 1 , • • • , v m ).
Cette forme sera notée par TCh k m . La caractérisation des systèmes statiquement équivalents à la forme multi-chaînée a été étudiée et résolue dans [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF] (voir aussi [START_REF] Mormul | Multi-dimensional Cartan prolongation and special k-flags[END_REF][START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF][START_REF] Shibuya | Drapeau theorem for differential systems[END_REF][START_REF] Yamaguchi | Contact geometry of higher order[END_REF]). Il est immédiat que ces systèmes sont x-plats et toutes leurs sorties plates minimales ont été décrites dans [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF].

Considérons le système affine

Σ : ẋ = f (x) + m ∑ i=0 u i g i (x), (3) 
défini sur une variété X, de dimension n = km + 1, où m ≥ 1. Nous lui associons la distribution G = span {g 0 , • • • , g m } et la suite de distributions définie par

G 0 = G et G i+1 = G i + [G i , G i ], i ≥ 0.
On note par C i la distribution caractéristique de G i . Nous rappelons ci-dessous la définition de la distribution caractéristique.

Considérerons une distribution D. Un champ de vecteur c ∈ D est dit caractéristique pour D si [c, D] ⊂ D. La distribution caractéristique C de D est la distribution générée par tous les champs caractéristiques. L'involutivité de la distribution caractéristique C est une conséquence directe de l'identité de Jacobi.

Notre résultat principal est donné par les deux théorèmes suivants correspondant au cas m = 1 (Théorème 0.0.6), respectivement au cas m ≥ 2 (Théorème 0.0.7). Theorem 0.0.6. Considérons le système Σ, donné par (3), avec m = 1, et fixons x * ∈ X. Le système Σ est statiquement équivalent, autour de x * , à la forme triangulaire TCh k 1 si et seulement si les conditions suivantes sont satisfaites :

(Ch1) G k-1 = TX; CONTENTS (Ch2) G k-3 est de rang constant k -1, contient C k-2 , la sous-distribution caractéristique de G k-2 , et le corang de C k-2 dans G k-3 est constant, égal à un; (Ch3) G 0 (x * ) n'est pas contenue dans C k-2 (x * ); (Comp) [ f , C i ] ⊂ G i , pour 1 ≤ i ≤ k -2, où C i est la distribution caractéristique de G i .
Les conditions (Ch1)-(Ch3) caractérisent la forme chaînée (voir [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF]) alors que la condition de compatibilité (Comp) prend en compte la dérive f et donne les conditions de compatibilité pour que f soit sous la forme triangulaire, dans le bon système de coordonnées, i.e., dans le système des coordonnées z dans lequel les champs contrôlés g i sont sous la forme chaînée.

Nous traitons maintenant le cas m ≥ 2. Afin de simplifier l'écriture, nous utilisons la notation suivante : zi = (z

1 1 , • • • z 1 m , z 2 1 , • • • z 2 m , • • • , z i 1 , • • • z i m ), pour 2 ≤ i ≤ k.
Le Théorème 0.0.7 donne des conditions nécessaires et suffisantes pour qu'un système Σ, avec m ≥ 2, soit statiquement équivalent à la forme triangulaire suivante :

TCh k m :                  ż0 = v 0 ż1 1 = f 1 1 (z 0 , z2 ) +z 2 1 v 0 • • • ż1 m = f 1 m (z 0 , z2 ) +z 2 m v 0 ż2 1 = f 2 1 (z 0 , z3 ) +z 3 1 v 0 • • • ż2 m = f 2 m (z 0 , z3 ) +z 3 m v 0 . . . . . . żk-1 1 = f k-1 1 (z 0 , zk ) +z k 1 v 0 • • • żk-1 m = f k-1 m (z 0 , zk ) +z k m v 0 żk 1 = v 1 • • • żk m = v m
Theorem 0.0.7. Considérons le système Σ, donné par (3) avec m ≥ 2, et fixons x * ∈ X. Le système Σ est statiquement équivalent, autour de x * , à la forme triangulaire TCh k m si et seulement si les conditions suivantes sont satisfaites :

(m-Ch1) G k-1 = TX; (m-Ch2) G k-2 est de rang constant (k -1)m + 1 et contient une sous-distribution involutive L, de corang constant, égal à un, dans G k-2 ; (m-Ch3) G 0 (x * ) n'est pas contenue dans L(x * ); (m-Comp) [ f , C i ] ⊂ G i , pour 1 ≤ i ≤ k -2, où C i est la distribution caractéristique de G i .
Les conditions (m-Ch1)-(m-Ch3) caractérisent la forme multi-chaînée et (m-Comp) prend en compte la dérive f et donne les conditions de compatibilité pour que f soit sous la forme triangulaire souhaitée dans le bon système de coordonnées.

La caractérisation de la forme chaînée diffère de celle de la forme multi-chaînée (comparer les conditions (Ch1)-( Ch3) et (m-Ch1)-(C-mCh3)), mais les conditions de compatibilité sont les mêmes (comparer (Comp) et (m-Comp)). La sous-distribution involutive L, qui est cruciale pour la forme multi-chaînée, n'est pas présente dans les conditions de compatibilité, cependant elle joue un rôle très important dans le calcul des sorties plates minimales et des singularités (voir Section 3.1.4).

Ensuite, nous discutons la platitude des systèmes de contrôle statiquement équivalents à TCh k 1 , si m = 1, ou à TCh k m , si m ≥ 2, et déterminons toutes les sorties x-plates, si m = 1, et toutes les sorties x-plates minimales, si m ≥ 2 (voir Theorems 3.1.3 et 3.1.4, Section 3.1.4). Les systèmes équivalents à TCh k 1 ou à TCh k m sont x-plats et manifestent des singularités (dépendantes de l'état) dans l'espace de contrôle. L'ensemble des contrôles singuliers (pour lesquels le système cesse d'être plat) est défini de manière invariante à l'aide de la dérive f et des distributions caractéristiques C i , ainsi que de la sous-distribution involutive L, si m ≥ 2.

Nous montrons que la description des sorties plates des systèmes statiquement équivalents à TCh k 1 (respectivement des sorties plates minimales des systèmes statiquement équivalents à TCh k m ) coïncide avec celle des sorties plates de la forme chaînée (respectivement avec celle des sorties plates minimales pour la forme multichaînée). A un cas particulier près, la dérive (sauf pour ce cas particulier) ne joue donc aucun rôle dans la caractérisation des sorties plates, mais elle intervient dans la définition des contrôles singuliers. La Proposition 3.1.2 (respectivement la Proposition 3.1.4), Section 3.1.4, nous permet d'en déduire explicitement un système d'EDP à résoudre afin de trouver toutes les sorties plates (respectivement toutes les sorties plates minimales).

En fin, nous souhaiterions appliquer ces résultats à un système mécanique : une pièce qui roule sans glissement sur une table en mouvement. Nous nous sommes posés la question suivante : quand ce système est-il statiquement équivalent à la forme triangulaire compatible avec la forme chaînée ? Nous avons montré que le système peut se mettre sous la forme TCh k 1 si et seulement si la dynamique de la table est décrite par les équations suivantes : ẋ = cy + e ẏ = -cx + f où c, e et f sont des constantes réelles.

Dans la deuxième partie de ce chapitre, nous introduisons le concept de platitude x-maximale. Ces résultats ont été réalisés en colaboration avec ShunJie Li et ont été présentés à MTNS 2014, [START_REF] Nicolau | Control-affine systems compatible with the multi-chainedand form and their x-maximal flatness[END_REF].

Considérons un système

Ξ : ẋ = F(x, u), où x ∈ X ⊂ R n et u ∈ U ⊂ R m , plat au point (x * , ūp * ) ∈ X p . Soit (ϕ 1 , .
. . , ϕ m ) une sortie plate. Étant donné que pour tout l ≥ 0, toutes les dérivées successives des sorties plates ϕ

(j) i , 1 ≤ i ≤ m, 0 ≤ j ≤ l, sont indépendantes, à la dérivation suivante nous obtenons m nouvelles fonctions indépendantes ϕ (l+1) i = ϕ (l+1) i (x, u, u, . . . , u (p+l+1) ), 1 ≤ i ≤ m.
Nous nous intéressons au problème suivant : combien des nouvelles fonctions dépendantes de l'état uniquement, obtenons-nous après chaque dérivation successive ? Un système de contrôle est x-maximalement plat si le nombre de nouvelles fonctions d'états indépendantes exprimées à chaque dérivation successive des sorties plates est le plus grand possible. Afin de formaliser ceci, pour deux codistributions

E et F , nous définissons leur intersection ponctuelle E ∩ F par (E ∩ F )(x) = E (x) ∩ F (x), pour x ∈ X, et nous introduisons les notations : CONTENTS Φ j = span {dϕ i , • • • , dϕ (j) i , 1 ≤ i ≤ m}, A j = Φ j ∩ T * X = span {dϕ i , • • • , dϕ (j) i , 1 ≤ i ≤ m} ∩ T * X, et définissons a j (ξ) = dim A j (ξ), où ξ = (x, u, u, ü, • • • ).
Le vecteur (a 0 (ξ), a 1 (ξ), • • • , a ρ (ξ)) sera appelé x-vecteur de croissance de la suite des codistributions

Φ 0 ⊂ Φ 1 ⊂ • • • ⊂ Φ ρ , où ρ est le plus petit entier tel que A ρ = T * X.
Definition 0.0.2. Un système Ξ plat en (x * , ūp * ) ∈ X p , pour p ≥ -1, est appelé x-maximalement plat en (x * , ūp * ) s'il existe une sortie plate en (x * , ūp * ) pour laquelle les codistributions A j ne dépendent pas du contrôle où des dérivées du contrôle et, si dans un voisinage de x * , la suite (a 0 (x), a 1 (x), • • • , a ρ (x)) est constante et la plus grande possible parmi tous les systèmes plats avec dim U = m et dim X = n. Tout d'abord, remarquer que les systèmes x-maximalement plats sont simplement les systèmes statiquement linéarisables avec les indices de contrôlabilité ρ i = n m , pour 1 ≤ i ≤ m, (Proposition 3.2.1, Section 3.2.2). En effet, pour ces systèmes, le nombre de nouveaux états gagnés à chaque dérivation successive des sorties plates est m, le plus grand possible. En général, un système plat n'est pas statiquement linéarisables, néanmoins, nous pouvons nous intéresser à la platitude x-maximale d'une classe particulière de systèmes. Par la suite, nous supposons que le nombre de contrôles est m + 1 (et pas m). Nous verrons que, effectivement, un contrôle joue un rôle particulier.

Un système plat Σ lin : ẋ = ∑ m i=0 u i g i (x), linéaire par rapport aux contrôles, définie sur un espace d'états de dimension n = km + 1, n'est jamais statiquement linéarisable (sauf s'il a autant d'états que des contrôles). Par conséquent, il ne peut pas admettre un x-vecteur de croissance (m + 1, 2(m + 1), 3(m + 1), • • • ). Le x-vecteur de croissance peut commencer par m + 1 (si le système est x-plat), mais, étant donné que le système est linéaire par rapport aux contrôles, les dérivées φi , pour 0 ≤ i ≤ m, font nécessairement intervenir le contrôle. Donc le nombre maximal de nouvelles fonctions dépendantes uniquement de l'état que les dérivées φi , pour 0 ≤ i ≤ m, peuvent fournir est au plus m. Ainsi, la deuxième composante du x-vecteur de croissance peur être au plus 2m + 1. Le x-vecteur de croissance maximal est donc (m + 1, 2m + 1, 3m + 1, • • • , km + 1) et il est réalisé par les systèmes statiquement équivalents à la forme multi-chaînée, voir Proposition 3.2.2, Section 3.2.2.

Une question naturelle se pose : à quelles conditions la platitude x-maximale de Σ lin est-elle préservée si nous perturbons le système Σ lin (statiquement équivalent à la forme multi-chaînée) en ajoutant une dérive f et obtenant de cette manière un système affine par rapport aux contrôles Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x) ? Autrement dit, quelles sont les conditions satisfaites par la dérive f afin que le x-vecteur de croissance associé au système Σ a f f (dont le sous-système linéaire Σ lin est statiquement équivalent à la forme multi-chaînée) soit (m + 

= α(x) + β(x) ũ transforme le système Σ a f f sous la forme Σa f f : ẋ = f (x) + ∑ m i=0 ũi gi (x), où f = f + gα et g = gβ, avec g = (g 0 , • • • , g m ) et g = ( g0 , • • • , gm ). A Σa f f , nous associons la (k -1)-prolongation Σ(k-1,0,...,0) a f f :                  ẋ = f (x) + y 1 g0 (x) + m ∑ i=1 u p i gi (x) ẏ1 = y 2 . . . ẏk-2 = y k-1 ẏk-1 = u p 0 avec y 1 = ũ0 , u p i = ũi , pour 1 ≤ i ≤ m, obtenue en prolongeant k -1 fois le contrôle ũ0 comme u p 0 = ũ(k-
= span {g p0 , • • • , g pm } et D i+1 p = D i p + [ f p , D i p ]
. Le résultat suivant est valide pour les deux cas, m = 1 et m ≥ 2, et caractérise la forme triangulaire compatible avec la forme multi-chainée du point de vue de la platitude x-maximale (si m = 1 la forme multi-chainée désigne simplement la forme chainée). L'ensemble des contrôles singuliers sera noté par U sing a f f . Theorem 0.0.8. Considérons la classe C des système affine par rapport aux contrôles

Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x) dont le sous-système linéaire Σ lin : ẋ = ∑ m i=0 u i g i (x
) est statiquement équivalent à la forme multi-chainée. Pour Σ a f f ∈ C, les conditions suivantes sont équivalentes:

(Aff 1) Σ a f f est x-maximalement plat en (x * , ūr * ), pour r ≥ -1, dans la classe C; 

(Aff 2) Σ a f f est x-maximalement x-plat en (x * , u * ) dans la classe C; (Aff 3) Σ a f f admet une sortie plate en (x * , u * ) dont le x-vecteur de croissance est constant, égal à (m + 1, 2m + 1, 3m + 1, • • • , km + 1) et les codistributions A j , pour 0 ≤ j ≤ k -
(Aff 5) Le système Σ a f f satisfait, autour de (x * , u * ), avec u * (x * ) ∈ U sing a f f (x * ), les condi- tions suivantes : (m-Ch1)' G k-1 = TX; (m-Ch2)' G k-2 est de rang constant (k -1)m + 1 et, si m ≥ 2, contient une sous- distribution involutive L de corang constant un dans G k-2 ; (m-Ch3)' G 0 (x * ) n'est pas contenue dans L(x * ), si m ≥ 2 (ou n'est pas contenue dans C k-2 (x * ), si m = 1); (m-Comp) [ f , C i ] ⊂ G i , pour 1 ≤ i ≤ k -2, où C i est la distribution caractéristique de G i .
CONTENTS (Aff 6) Il existe, autour de x * , un bouclage statique inversible u = α(x) + β(x) ũ, qui transforme le système Σ a f f sous la forme Σa f f : ẋ = f (x) + ∑ m i=0 ũi gi (x), telle que les distributions D i p associées à la (k -1)-prolongation Σ(k-1,0,...,0)

a f f satisfassent : pour tout 0 ≤ i ≤ k -2, les distributions D i p ∩ TX ne dépendent pas de y, sont involu- tives, de rang constant m(i + 1) et D k-1 p ∩ TX = TX.
Nous ne prétendons pas qu'un système Σ a f f satisfaisant une des conditions cidessus soit x-maximalement plat. De toute évidence, les systèmes x-maximalement plats sont les systèmes linéarisables statiquement. Le théorème précédent décrit les systèmes x-maximalement plats parmi les systèmes de la classe C des systèmes affines dont le sous-système linéaire est statiquement équivalent à la forme multichaînée. De même que pour les systèmes linéaires, le x-vecteur de croissance commence par m + 1, et, étant donné que le sous-système linéaire est statiquement équivalent à la forme multi-chaînée, sa deuxième composante peut être au plus 2m + 1. Les conditions (m-Ch1)'-(m-Ch3)' et (m-Comp) regroupent les deux cas, m = 1 et m ≥ 2, et donnent les conditions nécessaires et suffisantes pour que le système soit statiquement équivalent à la forme triangulaire TCh k m . Supposons maintenant que Σ a f f soit x-plat et que son sous-système linéaire soit statiquement équivalent à la forme multi-chaînée. Nous souhaiterions savoir si Σ a f f satisfait les conditions du Théorème 0.0.8. Autrement dit, un système x-plat, affine par rapport aux contrôles, dont le sous-système linéaire est statiquement équivalent à la forme multi-chaînée, est-il nécessairement équivalent à la forme triangulaire TCh k m ? La réponse à cette question est négative comme le démontre l'exemple présenté en Section 3.2.4.

Introduction

In this paper, we study flatness of nonlinear control systems of the form

Ξ : ẋ = F(x, u),
where x is the state defined on a open subset X of R n and u is the control taking values in an open subset U of R m (more generally, an n-dimensional manifold X and an m-dimensional manifold U, respectively). The dynamics F are smooth and the word smooth will always mean C ∞ -smooth.

The notion of flatness has been introduced in control theory in the 1990's by Fliess, Lévine, Martin and Rouchon [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] (see also [START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]) and has attracted a lot of attention because of its multiple applications in the problem of trajectory tracking and motion planning (see, e.g. [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatness-Based Approach[END_REF][START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Pereira Da Silva | Flatness of nonlinear control systems and exterior differential systems[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF][START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF][START_REF] Schlacher | Construction of flat outputs by reduction and elimination[END_REF]).

The fundamental property of flat systems is that all their solutions may be parametrized by m functions and their time-derivatives, m being the number of controls. More precisely, the system Ξ : ẋ = F(x, u) is flat if we can find m functions, ϕ i (x, u, . . . , u (r) ), for some r ≥ 0, called flat outputs, such that x = γ(ϕ, . . . , ϕ (s) ) and u = δ(ϕ, . . . , ϕ (s) ),

(1.1)
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for a certain integer s and for all solutions of Ξ, where ϕ = (ϕ 1 , . . . , ϕ m ). Therefore all state and control variables can be determined from the flat outputs without integration and all trajectories of the system can be completely parameterized.

It is well known that systems linearizable via invertible static feedback are flat. Their description (1.1) uses the minimal possible, which is n + m, number of timederivatives of the components of flat outputs ϕ i . For any flat system, that is not static feedback linearizable, the minimal number of derivatives needed to express x and u (which will be called the differential weight) is thus bigger than n + m and measures actually the smallest possible dimension of a precompensator linearizing dynamically the system. Any single input-system is flat if and only if it is static feedback linearizable (and thus of differential weight n+1), see [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]. Therefore the simplest systems for which the differential weight is bigger than n + m are systems with two controls linearizable via one-dimensional precompensator, thus of differential weight n + 3. They form the class that we are studying in the paper: our goal is to give a geometric characterization of two-input control-affine systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control.

The paper is organized as follows. In Section 1.2, we recall the definition of flatness and define the notion of differential weight of a flat system. In Section 1.3, we give our main results. We characterize two-input control-affine systems linearizable via one-fold prolongation of a suitably chosen control, that is flat systems, of differential weight n + 3. We present in Section 1.4 normal forms compatible with the minimal flat outputs and give a system of first order PDE's to be solved in order to find all minimal flat outputs in Section 1.5. We illustrate our results by two examples in Section 1.6 and provide proofs in Section 1.7.

Flatness

Flat systems form a class of control systems, whose set of all trajectories can be parametrized by a finite number of functions and their time-derivatives. Fix an integer l ≥ -1 and denote U l = U × R ml and ūl = (u, u, . . . , u (l) ). For l = -1, the set U -1 is empty and ū-1 in an empty sequence. Definition 1.2.1. The system Ξ : ẋ = F(x, u) is flat at (x 0 , ūl 0 ) ∈ X × U l , for l ≥ -1, if there exists a neighborhood O l of (x 0 , ūl 0 ) and m smooth functions

ϕ i = ϕ i (x, u, u, . . . , u (l) ), 1 ≤ i ≤ m, defined in O l ,
having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ m, such that

x i = γ i (ϕ, φ, . . . , ϕ (s) ) u j = δ j (ϕ, φ, . . . , ϕ (s) )
along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t), . . . , u (l) (t)) ∈ O l , where ϕ = (ϕ 1 , . . . , ϕ m ) and is called a flat output.

When necessary to indicate the number of derivatives of u on which the flat outputs ϕ i depend, we will say that the system Ξ is (x, u, • • • , u (r) )-flat if u (r) is the highest derivative on which ϕ i depend and in the particular case ϕ i = ϕ i (x), we will say that the system is x-flat. In general, r is smaller than the integer l needed to define the neighborhood O l which, in turn, is smaller than the number of derivatives of ϕ i that are involved (in our study r = -1 and l = -1 or 0). The minimal number of derivatives of components of a flat output, needed to express x and u, will be called the differential weight of that flat output and is formalized as follows.

By definition, for any flat output ϕ of a flat system Ξ there exist integers s 1 , . . . , s m such that x = γ(ϕ 1 , φ1 , . . . , ϕ

(s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ).
Moreover, we can choose (s 1 , . . . , s m ) such that (see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) if for any other m-tuple (s 1 , . . . , sm ) we have

x = γ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ), then s i ≤ si , for 1 ≤ i ≤ m. We will call ∑ m i=1 (s i + 1) = m + ∑ m i=1 s i the differential weight of ϕ. A flat output of Ξ is called minimal if its differential
weight is the lowest among all flat outputs of Ξ. We define the differential weight of a flat system to be equal to the differential weight of any of its minimal flat outputs.

Consider a control-affine system of the form

Σ : ẋ = f (x) + m ∑ i=1 u i g i (x), (1.2) 
where f and g 1 , . . . , g m are smooth vector fields on X. The system Σ is linearizable by static feedback if it is equivalent via a diffeomorphism z = φ(x) and an invertible feedback transformation, u = α(x) + β(x)v, to a linear controllable system

Λ : ż = Az + Bv.
The problem of static feedback linearization was solved by Jakubczyk and Respondek [START_REF] Jakubczyk | On linearization of control systems[END_REF] and Hunt and Su [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF] who gave geometric necessary and sufficient conditions. The following theorem recalls their result and, furthermore, gives an equivalent way of describing static feedback linearizable systems from the point of view of differential weight.

Define inductively the sequence of distributions

D i+1 = D i + [ f , D i ], where D 0 = span{g 1 , • • • , g m }.
Theorem 1.2.1. The following conditions are equivalent: (i) Σ is locally static feedback linearizable, around x 0 ∈ X;

(ii) Σ is locally static feedback equivalent, around x 0 ∈ X, to the Brunovský canonical form (Br)

żi j = z i j+1 żi ρ i = v i where 1 ≤ i ≤ m, 1 ≤ j ≤ ρ i -1, and m ∑ i=1 ρ i = n;
(iii) For any i ≥ 0, the distributions D i are of constant rank, around x 0 ∈ X, involutive and D n-1 = TX;

(iv) Σ is flat at x 0 ∈ X, of differential weight n + m.

The geometry of static feedback linearizable systems is given by the following sequence of nested involutive distributions:

D 0 ⊂ D 1 ⊂ • • • ⊂ D n-1 = TX.
It is well known that a feedback linearizable system is static feedback equivalent to the Brunovský canonical form, see [START_REF] Brunovsky | A classification of linear controllable systems[END_REF], and is clearly flat

with ϕ = (ϕ 1 , • • • , ϕ m ) = (z 1 1 , • • • , z m 1 )
being a minimal flat output (of differential weight n + m). Therefore, for static feedback linearizable systems, the representation of all states and controls uses the minimal possible, which is n + m, number of time-derivatives of ϕ i and an equivalent way of describing them is that they are flat systems of differential weight n + m.

In general, a flat system is not linearizable by invertible static feedback, with the exception of the single-input case where flatness reduces to static feedback linearization, see [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF]. Flat systems can be seen as a generalization of linear systems. Namely they are linearizable via dynamic, invertible and endogenous feedback, see [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]. Our goal in this paper is to describe the simplest flat systems that are not static feedback linearizable: two-inputs control-affine systems that become static feedback linearizable after one-fold prolongation, which is the simplest dynamic feedback. They are flat systems of differential weight equal to n + 3. In this paper, we will completely characterize them and show how their geometry differs but also how it reminds that given by the involutive distributions D i for static feedback linearizable systems. We will also give normal forms compatible with the minimal flat outputs (thus generalizing the Brunovský normal form) and provide a system of first order PDE's to find all minimal flat outputs.

Main results

Throughout, we will consider two-input control-affine systems of the form

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x), (1.3) 
where x ∈ X, u = (u 1 , u 2 ) t ∈ R 2 and f , g 1 , and g 2 are C ∞ -smooth vector fields on X and that are not static feedback linearizable.

We make the following assumption:

(Assumption 1) From now on, unless stated otherwise, we assume that all ranks involved are constant in a neighborhood of a given x 0 ∈ X.

Remark 1.3.1. All results presented here are valid on an open and dense subset of either X or X × U and hold locally, around a given point of that set.

Flat systems of differential weight n + 3 form a particular class of dynamic feedback linearizable systems, namely, they become static feedback linearizable after one prolongation of a suitably chosen control. More precisely, we have the following result:

Proposition 1.3.1. Consider a two-input control-system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x).
The following conditions are equivalent:

(i) Σ is flat at (x 0 , ūl 0 ), with the differential weight n + 3, for a certain l ≥ 1; (ii) Σ is x-flat at (x 0 , u 0 ), with the differential weight n + 3;

(iii) There exists, around x 0 , an invertible static feedback transformation u = α(x) + β(x) ũ, bringing the system Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 g2 (x), such that the prolongation

Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 g2 (x) ẏ1 = v 1
is locally static feedback linearizable, where y 1 = ũ1 , v 2 = ũ2 , f = f + αg and g = gβ, where g = (g 1 , g 2 ) and g = ( g1 , g2 ).

A system Σ satisfying (iii) will be called dynamically linearizable via invertible one-fold prolongation. Notice that Σ(1,0) is, indeed, obtained by prolonging the first control ũ1 one time as v 1 = u1 and not prolonging ũ2 (which explains the notation). The above result asserts that for systems of the differential weight n + 3, flatness and x-flatness coincide and that, moreover, they are equivalent to linearizability via the simplest dynamic feedback, namely one-fold prolongation. Recall that the system Σ is assumed not static feedback linearizable. This occurs if there exists an integer k such that D k is not involutive. Suppose that k is the smallest integer satisfying that property. Moreover, the condition rk D krk D k-1 = 2 is for dynamic linearizability via one-fold prolongation and thus for flatness of differential weight n + m + 1, as asserts Proposition 1.7.1, in Section 1.7. Therefore throughout we will suppose the following:

(Assumption 2) k is the smallest integer such that D k is not involutive and rk D k -rk D k-1 = 2.
Our main result describing flat systems of differential weight n + 3 is given by two following theorems corresponding to the first noninvolutive distribution D k being either D 0 , i.e., k = 0 (Theorem 1.3.2) or D k , for k ≥ 1 (Theorem 1.3.1). For both theorems, we assume that 

D k + [D k , D k ] = TX. The particular case D k + [D k , D k ] = TX (met
H k = D k-1 + span {ad k f g c } and H i+1 = H i + [ f , H i ], for i ≥ k ;
(A4) There exists ρ such that H ρ = TX.

The geometry of the systems described by the previous theorem can be summarized by the following sequence of inclusions:

D 0 ⊂ 2 • • • ⊂ 2 D k-1 ⊂ 2 D k ⊂ 1 D k 1 ⊂ = H k ⊂ 2 H k+1 ⊂ 2 • • • ⊂ 2 H µ ⊂ 1 H µ+1 ⊂ 1 • • • ⊂ 1 H ρ = TX
where all the distributions, except D k , are involutive and the integers beneath the inclusion symbol "⊂" indicate coranks. According to condition (A1), only one Lie bracket can stick out from the noninvolutive distribution D k , thus the loss of involu- tivity of D k is minimal. Moreover, if we take the brackets of D k with f , we gain only one new direction, see (A2), implying the existence of a distinguished vector field g c in D 0 that allows us to define the subdistribution H k . Notice that the existence of the corank one involutive subdistribution H k in D k is the main structural property of flat systems of differential weight n + 3. Indeed, H k takes the role of the noninvo- lutive distribution D k and moreover, its successive brackets with the drift are again involutive (replacing the distributions D k+i ). (S) :

   ẋ1 = x 2 ż1 = 1 2 z 2 3 + z 2 ẋ2 = x 3 ż2 = z 3 ẋ3 = u 1 ż3 = u 2
which is not dynamically linearizable via one-fold prolongation. A way to see it is that the system is composed by two independent single-input subsystems, the first one linear and the second one that cannot be dynamically linearizable. Another way to see it is that (S) is in fact the prolongation (obtained by prolonging twice the first control) of the following control system ( S) :

   ẋ1 = ũ1 ż1 = 1 2 z 2 3 + z 2 ż2 = z 3 ż3 = ũ2
which has been shown in [START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF] (Theorem 3.1, case 2) not to be linearizable by endogenous dynamic feedback. Hence, ( S) is not flat and we deduce that (S) is not flat as either, and in particular, not flat of differential weight n + 3. The first nonivolutive distribution is 

D 1 = span { ∂ ∂x 2 , ∂ ∂x 3 , ∂ ∂z 3 , ∂ ∂z 2 + z 3 ∂ ∂z 1 }, so k = 1
H 1 = span { ∂ ∂x 3 , ∂ ∂z 3 , ∂ ∂z 2 + z 3 ∂ ∂z 1 }
and is clearly noninvolutive. So all conditions, except the involutivity of H 1 , are verified, however, the system is not flat of differential weight n + 3, proving that if we skip the assumption of the involutivity of H 1 , the result does not hold anymore. Theorem 1.3.1 enables us to define the control (given up to a multiplicative function) to be prolonged in order to obtain a locally static feedback linearizable Σ(1,0) . The vector field g c ∈ D 0 (see (A2)) can be expressed as g c = β 1 g 1 + β 2 g 2 , for some smooth functions (not vanishing simultaneously) on X. We define the to-beprolonged control as u p (t) = β 2 (x(t))u 1 (t)β 1 (x(t))u 2 (t) and it is the control that needs to be preintegrated in order to dynamically linearize the system, that is, we put

v 1 = d dt (β 2 u 1 -β 1 u 2 ) = d dt ũ1 .
If k = 0, i.e., the first noninvolutive distribution is D 0 = G 0 , then a similar result holds, but in the chain of involutive subdistributions

H 0 ⊂ H 1 ⊂ H 2 ⊂ • • • (playing the role of H k ⊂ H k+1 ⊂ H k+2 ⊂ • • • ), with H 0 = span {g c }, the distribution H 1 is not defined as H k+1 but as H 1 = G 1 = G 0 + [G 0 , G 0 ] (compare (A3) and (A3) ′ ).
Moreover, flat systems with k = 0 exhibit a singularity in the control space (created by one-fold prolongation of the to-be-prolonged control) which is defined by

U sing (x) = {u ∈ R 2 : (g 1 ∧ g c ∧ [ f + u 1 g 1 + u 2 g c , g c ])(x) = 0},
and excluded by condition (RC), where the vector fields g 1 and g c are such that D 0 = span {g 1 , g c }. Notice that the set of singular controls is non empty due to condition (A2) ′ . Theorem 1.3.2. Assume k = 0 and D k + [D k , D k ] = TX. Consider the two-input control system Σ, given by (1.3). Σ is flat at (x 0 , u 0 ), of differential weight n + 3, if and only if the following conditions hold:

(A1)' rk D 0 = 3 ; (A2)' rk (D 0 + [ f , D 0 ]) = 4,
implying the existence of a non-zero vector field g c ∈ D 0 such that ad f g c ∈ G 1 ;

(A3)' The distributions H i , for i ≥ 1, are involutive, where

H 1 = G 1 and H i = H i-1 + [ f , H i-1 ], for i ≥ 2;
(A4)' There exists ρ such that H ρ = TX;

(RC) u 0 / ∈ U sing (x 0 ).

Recall that we have assumed that the rank of all distributions involved is constant in a neighborhood of x 0 . Thus item (A1) ′ implies that we actually have

D 0 = G 1 = D 0 + [D 0 , D 0 ].
A similar result can be formulated for the singular case when both vector fields ad f g 1 and ad f g 2 vanish modulo D 0 = G 1 at x 0 and the di-

rection completing H 1 = G 1 to H 2 = G 1 + [ f , G 1 ] is given by ad f [g 1 , g 2 ].
In this case, item (A2) ′ should be replaced by rk

(D 0 + [ f , D 0 ]) = 4 and rk (D 0 + [ f , D 0 ])(x 0 ) = 3.
The existence of a non-zero vector field g c ∈ D 0 such that ad f g c ∈ G 1 is no longer redundant and we have to add it explicitly in the conditions of the theorem.

The conditions of both theorems are verifiable, i.e., given a two-input controlaffine system, we can easily verify whether it is flat with the differential weight n + 3 and verification involves derivations and algebraic operations only, without solving PDE's or bringing the system into a normal form.

The cases k = 0 and k ≥ 1 are similar, but they have slightly different geometries. Even if at first sight, it seems not possible to merge them (due to the different definitions of the distributions H 1 and H k+1 and to the existence of singularities in the control space for k = 0), the following result enables us to unify them. Theorem 1.3.3 is based on the observation that in both cases, we actually have H k+1 = D k (by definition of H 1 , for k = 0, and as a direct consequence of the definition of H k+1 , for k ≥ 1, see the comment after Theorem 1.3.1).

Theorem 1.3.3. Assume D k + [D k , D k ] = TX.
Consider the two-input control system Σ, given by (1.3). Σ is x-flat at (x 0 , u 0 ), of differential weight n + 3, if and only if

(A1)" rk D k = 2k + 3; (A2)" rk (D k + [ f , D k ]) = 2k + 4, implying the existence of a non-zero vector field g c ∈ D 0 such that ad k+1 f g c ∈ D k ; (A3)" The distribution H k = D k-1 + span {ad k f g c } is involutive, where D k-1 is empty if k = 0; (A4)" The distributions H i , for i ≥ k + 1, are involutive, where H k+1 = D k and H i+1 = H i + [ f , H i ], for i ≥ k + 1 ;
(A5)" There exists ρ such that H ρ = TX.

(A6)" rk (D k + span {ad k+1 f +gu g c })(x 0 , u 0 ) = 2k + 3, where f If k = 0, condition (A3) ′′ is clearly verified and item (A6) ′′ immediately implies that (g

+ gu = f + u 1 g 1 + u 2 g c .
1 ∧ g c ∧ [ f + u 1 g 1 + u 2 g c , g c ])(x 0 , u 0 ) = 0, thus u 0 / ∈ U sing (x 0 ). If k ≥ 1,
it can be easily shown that (A6) ′′ does not depend on the control and that we have ad k+1 f g c (x 0 ) ∈ D k (x 0 ). From this and since ad k+1 f g c ∈ D k and rk D k = 2k + 3, we

deduce that D k = D k + span {ad k+1 f g c } = H k + [ f , H k ], giving the condition that H k+1 = H k + [ f , H k ],
which at first glance, seems missing in the statement of Theorem 1.3.3.

Let us now consider the case

D k + [D k , D k ] = TX. The involutivity of D k can be lost in two different ways: either [D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] / ∈ D k or [D k-1 , D k ] ⊂ D k .
As asserts Theorem 1.3.4 below, in the first case, the system is flat of differential weight n + 3 without any additional condition whereas in the second case, the system Σ has to verify some additional conditions analogous to those of Theorem 1.3.1. Since the condition (A2), enabling us to compute the involutive subdistribution H k , has no sense in that case, we have to define H k in another way. To this end, we introduce the characteristic distribution of D k , defined as follows. For a distribution D, we call c ∈ D a characteristic vector field of D if [c, D] ⊂ D. The characteristic distribution C of D is the distribution spanned by all its characteristic vector fields. It follows directly from the Jacobi identity that the characteristic distribution is always involutive.

In the case k = 0 and D k + [D k , D k ] = TX, the singular controls are not defined by U sing (x) but as

U ′ sing (x) = {u ∈ R 2 : dim span {g 1 , g 2 , ad f g 1 + u 2 [g 2 , g 1 ], ad f g 2 + u 1 [g 1 , g 2 ]}(x) = 3. Theorem 1.3.4. Assume k ≥ 0 and D k + [D k , D k ] = TX. Then (i) either [D k-1 , D k ] ⊂ D k and then Σ is flat at any x 0 ∈ X such that D k+1 (x 0 ) = T x 0 X (flat at any (x 0 , u 0 ) ∈ X × R 2 , such that u 0 / ∈ U ′ sing (x 0 ), if k = 0). Moreover, if Σ is flat, it is flat of differential weight n + 3. (ii) or [D k-1 , D k ] ⊂ D k , then k ≥ 1 and Σ is flat of differential weight n + 3 at x 0 ∈ X if
and only if Σ satisfies around x 0 the following conditions

(C1) rk C k = 2k, where C k is the characteristic distribution of D k ; (C2) rk (C k + D k-1 ) = 2k + 1; (C3) The distribution H k = C k + D k-1 is involutive; (C4) H k+1 = TX, where H k+1 = H k + [ f , H k ].
The assumptions of Theorem 1.3.4 (i), i.e.,

D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k ,
imply that the state-space is of dimension n = 2k + 3 and that the rank of D k+1 (which is feedback invariant in this case) is maximal and equal to n = 2k + 3 on an open and dense subset of X. Although, D k+1 (x 0 ) = T x 0 X on an open and dense subset of X, in order to prove flatness at x 0 ∈ X, we have to suppose that that condition is satisfied at x 0 and not only on an open and dense subset.

It can be shown that in the case [D k-1 , D k ] ⊂ D k (no matter whether D k + [D k , D k ] = TX or not), the involutive subdistribution H k can always be defined as above, i.e., the definition of H k given by item (A3) of Theorem 1.3.1 and that provided by conditions (C1) -(C3) of the above theorem are equivalent if

[D k-1 , D k ] ⊂ D k . In other words, under [D k-1 , D k ] ⊂ D k , Theorem 1.3.4 holds with no extra assumptions. This is not valid anymore if [D k-1 , D k ] ⊂ D k ; indeed, in that case C k = D k-1 , condition (C2) is not verified and (C3) would give H k = D k-1 .

Normal forms

The following proposition gives two different (although static feedback equivalent) normal forms for the class of two-input flat systems of differential weight n + 3 (below U sing is to be replaced by

U ′ sing , if D 0 + [D 0 , D 0 ] = TX). For i = 1, 2, denote zi j = (z i 1 , • • • , z i j )
. The integers ρ i and µ i that show up in the normal forms are related to ρ and µ defined via the nested sequence of distributions D i and H i . Let µ be the smallest integer such that corank (H µ ⊂ H µ+1 ) is one and ρ is the smallest integer such that H ρ = TX. It follows that µ ≤ ρ and ρ

+ µ + 1 = n. Define two pairs of indices (ρ 1 , ρ 2 ) and (µ 1 , µ 2 ) by ρ = max(ρ 1 , ρ 2 ) = k + max(µ 1 , µ 2 ) and µ = min(ρ 1 , ρ 2 ) = k + min(µ 1 , µ 2 ). We have ρ 1 + ρ 2 + 1 = n and µ 1 + µ 2 + 2k + 1 = n, implying ρ i ≥ k + 1 and µ i ≥ 1. It follows that µ ≥ k + 1 and the equality ρ = k + 1 holds if and only if µ 1 = µ 2 = 1 corresponding to D k + [D k , D k ] = TX.
Proposition 1.4.1. Consider a flat two-input control-affine system Σ, given by (1.3). The following conditions are equivalent:

(i) Σ is flat at x 0 (at (x 0 , u 0 ), such that u 0 = (u 10 , u 20 ) / ∈ U sing (x 0 ), if k = 0) of differential weight n + 3;

(ii) Σ is locally, around x 0 , static feedback equivalent to the following normal form in a neighborhood Z of z 0 ∈ R n :

(NF1) :

               ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 ρ 1 -1 = z 1 ρ 1 ż2 ρ 2 -1 = z 2 ρ 2 ż1 ρ 1 = ũ1 ż2 ρ 2 = a(z) + b(z) ũ1 ż2 ρ 2 +1 = ũ2 where either k ≥ 1 and then a = z 2 ρ 2 +1 , b = b( z1 ρ 1 -k+1 , z2 ρ 2 -k+1 ) and ( ∂b ∂z 1 ρ 1 -k+1 , ∂b ∂z 2 ρ 2 -k+1
)(z 0 ) = (0, 0) or k = 0 and then b = z 2 ρ 2 +1 and a = a(z) is any function and, moreover, ∂a ∂z 2 ρ 2 +1 (z 0 ) + ũ10 = 0.

(iii) Σ is locally, around x 0 , static feedback equivalent to the following normal form in a (NF2) :

                             ẇ1 1 = w 1 2 ẇ2 1 = w 2 2 . . . . . . ẇ1 µ 1 -1 = w 1 µ 1 ẇ2 µ 2 -1 = w 2 µ 2 ẇ1 µ 1 = w 1 µ 1 +1 ẇ2 µ 2 = d( w1 µ 1 +1 , w2 µ 2 +1 ) ẇ1 µ 1 +1 = w 1 µ 1 +2 ẇ2 µ 2 +1 = w 2 µ 2 +2 . . . . . . ẇ1 µ 1 +k = ũ1 ẇ2 µ 2 +k = w 2 µ 2 +k+1 ẇ2 µ 2 +k+1 = ũ2 where d is either of the form d = c( w1 µ 1 , w2 µ 2 +1 ) + w 2 µ 2 +1 w 1 µ 1 +1 , with ( ∂c ∂w 2 µ 2 +1 + w 1 µ 1 +1 )(w 0 ) = 0, or d = d( w1 µ 1 +1 , w2 µ 2 +1 ) such that ∂d ∂w 2 µ 2 +1
(w 0 ) = 0 and

∂ 2 d ∂(w 1 µ 1 +1 ) 2 (w 0 ) = 0; if k = 0, we put w 1 µ 1 +1 = ũ1 and only the case d = c( w1 µ 1 , w2 µ 2 +1 ) + w 2 µ 2 +1 ũ1 is possible.
Moreover, the minimal x-flat outputs and the normal forms (NF1) (resp. (NF2)) are compatible: if (ϕ 1 , ϕ 2 ) is a minimal x-flat output at x 0 , then there exists an invertible static feedback transformation bringing the system Σ into (NF1) with ϕ 1 = z 1 1 and ϕ 2 = z 2 1 (resp. into (NF2) with ϕ 1 = w 1 1 and ϕ 2 = w 2 1 ).

Remarks. Each of the above normals forms has its importance and we below discuss them.

1. Both normal forms are the closest possible to Brunovský canonical form. In fact, only one nonlinearity is present, which is due to the fact that the noninvolutivity of D k is minimal: D k is squeezed between two involutive distributions H k and H k+1 and both inclusions are of corank one (see the sequence of inclusions summarizing the geometry of flat systems of differential weight n + 3), so only one direction of D k sticks out of D k .

2. The normal form (NF1) (resp. (NF2)) is valid around

z 0 ∈ R n (resp. w 0 ∈ R n ),
which may be zero or not. Therefore both forms can be used around any point (equilibrium or not).

3. It is immediate to see that (NF1) and (NF2) are flat with ϕ = (z 1 1 , z 2 1 ) (resp. ϕ = (w 1 1 , w 2 1 )) being minimal flat outputs and a simple computation shows that their differential weight is, indeed, n + 3.

4.

It is clear that (NF1) becomes locally static feedback linearizable after a one-fold prolongation of ũ1 . Moreover, if we replace ũ1 by û1 = β(z) ũ1 , with β(z) = 0, and we prolong û1 instead of ũ1 , the prolonged system is also locally static feedback linearizable.

5. The normal forms apply to both cases k ≥ 1 and k = 0, independently of whether

D k + [D k , D k ] = TX or D k + [D k , D k ] = TX, the latter correspond- ing to µ 1 = µ 2 = 1.
6. The nonivolutive distribution D k is easier to be analyzed with the help of (NF2). Firstly, the integer k is explicit. Secondly, we see that the involutivity of D k can be lost in two different ways, either

[D k-1 , D k ] ⊂ D k or [D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] ∈ D k ,
corresponding to the two possible definitions of the function d (see item (iii)).

7. Notice that for k = 0, (NF1) and (NF2) coincide. It is clear from them that in the case k = 0 (and only in that case!), the precompensator creates singularities in the control space (depending on the state). Indeed, the controls ũ0 satisfying the condition ∂a A natural question appears: to what extent is the form (NF1) canonical? In other words, when two systems, both brought into (NF1) determined, respectively, by two functions a and â, if k = 0, or by b and b, if k ≥ 1, are static feedback equivalent?

In order to answer this question, we define the notion of structure preserving diffeomorphism.

Definition 1.4.1. A diffeomorphism ψ : Z → Ẑ is called (NF1)-structure preserving (shortly, SP-diffeomorphism) if there exists a (local) feedback transformation û = α(z) + β(z) ũ such that ( ẑ, û) = (ψ, α + β ũ) maps (NF1) into ( N F1)          ˙ẑ i j = ẑi j+1 , 1 ≤ i ≤ 2, 1 ≤ j ≤ ρ i -1, ˙ẑ 1 ρ 1 = û1 ˙ẑ 2 ρ 2 = â( ẑ) + b( ẑ) û1 ˙ẑ 2 ρ 2 +1 = û2
where â and b satisfy the same conditions as the functions a and b (see Theorem 1.4.1(ii)).

We will indicate the drift and the control vector fields of the normal form by the subindex NF, i.e., (NF1) : ż = f NF (z) + ũ1 g 1 NF (z) + ũ1 g 2 NF (z). Moreover, we can almost always suppose that ρ 1 ≥ ρ 2 . Indeed, if ρ 1 ≤ ρ 2 , then around any point at which the function b does not vanish, we can apply the invertible static feedback ū1 = a + b ũ1 and ū2 = ũ2 transforming the system into a new form for which the chain of pure integrators is of length ρ 1 ≥ ρ 2 . The following proposition, in which we assume ρ 1 ≥ ρ 2 , gives necessary and sufficient conditions for a diffeomorphism ψ to preserve the structure of (NF1).

Proposition 1.4.2. Assume D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k . (i) The diffeomorphism ẑ = ψ(z) is a SP-diffeomorphism, preserving (NF1), if and only if ẑi j = L j-1 f NF ϕ i , for 1 ≤ i ≤ 2, 1 ≤ j ≤ ρ i , and ẑ2 ρ 2 +1 = L ρ 2 f NF ϕ 2 , if k ≥ 1, or ẑ2 ρ 2 +1 = L g 1 NF L ρ 2 -1 f NF ϕ 2 , if k = 0, where (ϕ 1 , ϕ 2 ) is a minimal x-flat output of (NF1).
(ii) (NF1) and ( N F1), given, respectively, by a and â, if k = 0, or b and b, if k ≥ 1, are feedback equivalent if and only if there exist two smooth functions ϕ 1 (z 1 1 ) and

ϕ 2 (z 1 1 , • • • , z 1 ρ 1 -ρ 2 +1 , z 2 1 ) such that a(z) = â(ψ(z)), if k = 0, or b(z) = b(ψ(z)), if k ≥ 1, where ẑi j = ψ i j = L j-1 f NF ϕ i , for 1 ≤ i ≤ 2, 1 ≤ j ≤ ρ i , and ẑ2 ρ 2 +1 = L ρ 2 f NF ϕ 2 , if k ≥ 1, or ẑ2 ρ 2 +1 = L g 1 NF L ρ 2 -1 f NF ϕ 2 , if k = 0.
According to item (i), minimal flat outputs determine all structure preserving diffeomorphisms which have a very particular form. So, to compute them we, first, have to calculate minimal flat outputs. In Section 1.5 below, we answer the question of whether a given pair of smooth functions on X is a minimal flat output and provide a system of PDS's to be solved in order to find all minimal flat outputs: if

D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k , the pair (ϕ 1 , ϕ 2
) is a minimal flat output at x 0 if and only if (after permuting ϕ 1 and ϕ 2 , if necessary)

dϕ 1 ⊥ H ρ-1 , dϕ 2 ⊥ H µ-1 and dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (x 0 ) = 0 (
where ρ and µ are defined just before Proposition 1.4.1).

For the particular case ρ 1 ≤ ρ 2 and b(z 0 ) = 0, as well as for the normal form (NF2), a similar analysis can be done. We do not present those cases here.

Flatness singularities in the control space

For locally static feedback linearizable systems, even if flat outputs are defined locally around a given x 0 , they are always global with respect to the control, so we never face singularities in the control space. For flat systems of differential weight n + 3, a prolongation may create singularities in the control space and this is always the case if k = 0. Indeed, we have seen that if the first noninvolutive distribution is D 0 , then the system ceases to be flat for some singular controls. Let us now further analyze the set of singular controls. Recall that an invariant description of the singular controls is given by

U sing (x) = {u ∈ R 2 : (g 1 ∧ g c ∧ [ f + u 1 g 1 + u 2 g c , g c ])(x) = 0}, where D 0 = span {g 1 , g c }, if D 0 + [D 0 , D 0 ] = TX, or by U ′ sing (x) = {u ∈ R 2 : dim span {g 1 , g 2 , ad f g 1 + u 2 [g 2 , g 1 ], ad f g 2 + u 1 [g 1 , g 2 ]}(x) = 3, if D 0 + [D 0 , D 0 ] = TX.
The set of singular controls involves both the drift and controlled vector fields. As for the characterization of flatness of differential weight n + 3, the vector field g c plays a crucial role in describing singularities and a direct calculation of singular controls can be performed using U sing , if D 0 + [D 0 , D 0 ] = TX (resp. U ′ sing , if D 0 + [D 0 , D 0 ] = TX). For k ≥ 1, there are no singular controls (like for the static feedback linearizable case). An explanation of this is that the normal form (NF2) can be seen as a prolongation of a subsystem which is static feedback linearizable. Indeed, the normal form (NF2), with k ≥ 1, is the prolongation of the subsystem given by the first µ 1 equations of the w 1 -chain and the first µ 2 equations of the w 2 -chain and for which w 1 µ 1 +1 and w 2 µ 2 +1 are the new controls. To obtain (NF2), the first control has to be prolonged k times, while the second one k + 1 times. The reduced system is static feedback linearizable, so without singularities in the control space. Consequently, (NF2) does not exhibit singularities either.

CALCULATING FLAT OUTPUTS

Calculating flat outputs

In this subsection, firstly, we answer the question whether a given pair of smooth functions on X forms a flat output and, secondly, provide a system of first order PDS's to be solved in order to find all minimal flat outputs. In particular, we will discus uniqueness of flat outputs for flat systems of differential weight n + 3. Recall the definition of integers µ and ρ given just before the statement of Proposition 1.4.1.

Proposition 1.5.1. Consider the control system Σ, given by (1.3), that is flat at x 0 (at (x 0 , u 0 ), if k = 0), of differential weight n + 3.

(i) Assume D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Then a pair (ϕ 1 , ϕ 2 ) of smooth functions on a neighborhood of x 0 is a minimal x-flat output at x 0 if and only if (after permuting ϕ 1 and ϕ 2 , if necessary)

(Fo1) dϕ 1 ⊥ H ρ-1 and dϕ 2 ⊥ H µ-1 ; (Fo2) dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (x 0 ) = 0.
Moreover, the pair (ϕ 1 , ϕ 2 ) is unique, up to a nonlinear reparametrization depending on L f ϕ 1 , . . . , L ρ-µ f ϕ 1 , i.e., if ( φ1 , φ2 ) is another minimal x-flat output, then there exist smooth maps h 1 and h 2 , smoothly invertible (h 2 with respect to its first argument), such that

φ1 = h 1 (ϕ 1 ) φ2 = h 2 (ϕ 2 , ϕ 1 , L f ϕ 1 , . . . , L ρ-µ f ϕ 1 ). If ρ = µ, then φi = h i (ϕ 1 , ϕ 2 ), 1 ≤ i ≤ 2, and h = (h 1 , h 2 ) is a diffeomorphism. (ii) Assume D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Then a pair (ϕ 1 , ϕ 2 ) of smooth functions on a neighborhood of x 0 is a minimal x-flat output at x 0 if and only if

(Fo1)' (dϕ 1 ∧ dϕ 2 )(x 0 ) = 0; (Fo2)' The involutive distribution L = (span {dϕ 1 , dϕ 2 }) ⊥ satisfies D k-1 ⊂ L ⊂ D k ,
implying the existence of a nonzero vector field g c ∈ D

0 such that L = D k-1 + span {ad k f g c }; (Fo3)' (L ad k+1 f g c ϕ 1 , L ad k+1 f g c ϕ 2 )(x 0 ) = (0, 0).
Moreover, for any function ϕ 1 , satisfying dϕ 1 ⊥ D k-1 and (L ad k f g 1 ϕ 1 , L ad k f g 2 ϕ 1 )(x 0 ) = (0, 0), there exists ϕ 2 such that the pair (ϕ 1 , ϕ 2 ) is a minimal x-flat output; given any such ϕ 1 , the choice of ϕ 2 is unique, up to a diffeomorphism, that is, if (ϕ 1 , φ2 ) is another minimal x-flat output, then there exists a smooth map h, smoothly invertible with respect to the second argument such that φ2 = h(ϕ 1 , ϕ 2 ).

In the case D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k ,
there are as many flat outputs as functions of three variables. Indeed, the distribution D k-1 is involutive and of corank three. According to item (ii), ϕ 1 can be chosen as any function of three independent functions, whose differentials span (D k-1 ) ⊥ and then there exists a unique ϕ 2 (up to a diffeomorphism) completing it to a minimal x-flat output. This reminds very much non-uniqueness of flat outputs of two-control driftless systems [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF].

As an immediate corollary of Proposition 1.5.1, we obtain a system of PDE's whose solutions give all minimal x-flat outputs. In the case

D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k ,
the vector field g c is well defined (and is given up to a multiplicative function). So chose g 1 and g c such that D 0 = span {g 1 , g c } and for any 1

≤ j ≤ µ -1 and 1 ≤ j ′ ≤ µ, denote v j = ad j-1 f g 1 , v µ+j ′ = ad j ′ -1 f g c , v 2µ = ad µ-1 f g 1 , v 2µ+1 = ad µ f g c and (only if µ 1 = µ 2 ) complete them, for 1 ≤ i ≤ ρ -µ, by v 2µ+1+i = ad µ+i-1 f g 1 , if µ 1 > µ 2 , or by v 2µ+1+i = ad µ+i f g c , if µ 2 > µ 1 .
We thus have defined n -1 vector fields v 1 , . . . , v n-1 satisfying H µ-1 = span {v 1 , . . . , v 2µ-1 } and H ρ-1 = span {v 1 , . . . , v n-1 }. In this case the result follows immediately and is stated as item (i) of proposition below.

If D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k , then for 1 ≤ j ≤ k = µ -1, denote w j = ad j-1 f g 1 and w k+j = ad j-1 f g 2 .
Clearly, D k-1 = span {w 1 , . . . , w 2k } but we have to construct one more vector field w, as described in item (ii) below. Proposition 1.5.2. Consider the control system Σ that is flat at x 0 (at (x 0 , u 0 ), if k = 0), of differential weight n + 3.

(i) Assume D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Then a pair (ϕ 1 , ϕ 2 ) of smooth functions on a neighborhood of x 0 is a minimal x-flat output at x 0 if and only if (after permuting ϕ 1 and ϕ 2 , if necessary) they satisfy

L v j ϕ 1 = 0, 1 ≤ j ≤ n -1, L v j ϕ 2 = 0, 1 ≤ j ≤ 2µ -1,
and dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (x 0 ) = 0. (ii) Assume D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Then a pair (ϕ 1 , ϕ 2 ) of smooth functions on a neighborhood of x 0 is a minimal x-flat output at x 0 if and only if (after permuting ϕ 1 and ϕ 2 , if necessary) ϕ 1 is any function satisfying

L w j ϕ 1 = 0, 1 ≤ j ≤ 2k,
and (L ad k f g 1 ϕ 1 , L ad k f g 2 ϕ 1 )(x 0 ) = (0, 0) and, for any ϕ 1 as above, ϕ 2 is given by

L w j ϕ 2 = 0, 1 ≤ j ≤ 2k, L w ϕ 2 = 0, where w = (L ad k f g 2 ϕ 1 )ad k f g 1 -(L ad k f g 1 ϕ 1 )ad k f g 2 and (dϕ 1 ∧ dϕ 2 )(x 0 ) = 0.
EXAMPLES Clearly, the distribution L spanned by w and D k-1 is of corank two and, as can be proved, involutive thus implying that for any ϕ 1 we can solve the system of equations for ϕ 2 . Different choices of ϕ 1 lead, in general, to different involutive distributions L and thus to different functions ϕ 2 and, as we have mentioned, there are as many choices as nondegenerate functions of three variables.

Examples

Induction motor: first model with θ, the mechanical position

Consider the induction motor (called direct-quadrature model in [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF]), see [START_REF] Delaleau | Modeling and control of induction motors[END_REF][START_REF] Martin | Two remarks on induction motors[END_REF], described by the following control system with 2 inputs and 6 states:

Σ I M 6 :                      θ = ω ω = µψ d i q -τ L J ψd = -ηψ d + ηMi d ρ = n p ω + η Mi q ψ d i d = -γi d + ηMψ d σL R L S + n p ωi q + ηMi 2 q ψ d + u d σL S i q = -γi q - Mn p ωψ d σL R L S -n p ωi d - η Mi d i q ψ d + u q σL S
where u d , u q are the inputs (the stator voltages), i d and i q are the stator currents, ψ d and ρ are two well-chosen functions of the rotor fluxes (see [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF] for their precise expression), θ is the mechanical position of the rotor and ω is the rotor speed. All other parameters of the motor (the inductances L S and L R , the coefficient of mutual inductance X, the rotor moment of inertia J, the load-torque τ L , etc.) can be supposed constant and known.

After applying a suitable static feedback transformation (which has also a physical interpretation, see [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF] for more details) the model of the induction motor is transformed into the following form:

ΣIM 6 :                  θ = ω ω = µψ d i q -τ L J ψd = -ηψ d + ηMi d ρ = n p ω + η Mi q ψ d i d = ũd i q = ũq .
This system is not static feedback linearizablee, however it becomes static feedback linearizable via one-fold invertible prolongation, thus it is flat, a property that has been already observed and applied in [START_REF] Delaleau | Modeling and control of induction motors[END_REF][START_REF] Martin | Two remarks on induction motors[END_REF]. Indeed, the distribution

D 1 = span { ∂ ∂i d , ∂ ∂i q , ηM ∂ ∂ψ d , µψ d ∂ ∂ω + η M ψ d ∂ ∂ρ } = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d , ∂ ∂ω + ηM µψ 2 d ∂ ∂ρ }
1.6.2 -Induction motor: second model, without θ, the mechanical position is not involutive and

D 1 + [D 1 , D 1 ] = D 1 = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d , ∂ ∂ω , ∂ ∂ρ } = TX. It is easy to see that ad 2 f ∂ ∂i d ∈ D 1 , thus ∂ ∂i d
plays the role of the distinguished vector field g c defined by condition (A2) of Theorem 1.3.1. We can now construct the sequence:

H 1 = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d } ⊂ 2 H 2 = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d , ∂ ∂ω , ∂ ∂ρ } ⊂ 1 H 3 = TX,
where all distributions H i are clearly involutive. It follows that all conditions of The- orem 1.3.1 are verified, therefore the system is flat of differential weight n + 3 = 9 and it becomes static feedback linearizable after a one-fold prolongation of ũq .

Let us now compute its minimal flat outputs (ϕ 1 , ϕ 2 ). Since k = 1 and D 1 + [D 1 , D 1 ] = TX, we are in the first case of Proposition 1.5.1 with ρ = 2 and µ = 1, so (ϕ 1 , ϕ 2 ) should satisfy dϕ 1 ⊥ H 2 , dϕ 2 ⊥ H 1 and the regularity condition. It follows that (ϕ 1 , ϕ 2 ) = (θ, ρ) and the pair (ϕ 1 , ϕ 2 ) is unique up to a diffeomorphism.

Induction motor: second model, without θ, the mechanical position

Let us now consider the following model (see [START_REF] Chiasson | A new approach to dynamic feedback linearization control of an induction motor[END_REF]), obtained from the first one, for which we do not take into account θ, the mechanical position of the rotor.

Σ I M 5 :                  ω = µψ d i q -τ L J ψd = -ηψ d + ηMi d ρ = n p ω + ηMi q ψ d i d = -γi d + η Mψ d σL R L S + n p ωi q + ηMi 2 q ψ d + u d σL S i q = -γi q - Mn p ωψ d σL R L S -n p ωi d - ηMi d i q ψ d + u q σL S
After applying a suitable static feedback transformation, the system is transformed into the following form:

ΣIM 5 :              ω = µψ d i q -τ L J ψd = -ηψ d + ηMi d ρ = n p ω + ηMi q ψ d i d = ũd i q = ũq .
We will next compare the two different models of the induction motor. In particular, we will see how omitting θ as a state variable changes properties of flatness and we will show the surprising fact that, contrary to the first case, for the second one the flat outputs are no longer unique.

As for the first model (with θ, the mechanical position), the system without θ is not static feedback linearizable, however it becomes static feedback linearizable via onefold invertible prolongation, thus it is flat of differential weight n + 3 = 8. Indeed, as EXAMPLES above, the distribution

D 1 = span { ∂ ∂i d , ∂ ∂i q , ηM ∂ ∂ψ d , µψ d ∂ ∂ω + ηM ψ d ∂ ∂ρ } = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d , ∂ ∂ω + ηM µψ 2 d ∂ ∂ρ } is not involutive, but now D 1 + [D 1 , D 1 ] = D 1 = TX and [D 0 , D 1 ] ⊂ D 1 .
Thus we are in the first case of Theorem 1.3.4, with k = 1, and the system is flat without additional conditions.

According to Propositions 1.5.1(ii) and 1.5.2(ii), the system admits many flat outputs (their choice being parameterized by a function of three well defined variables) and let us calculate some of them. Recall that a pair of two independent functions

(ϕ 1 , ϕ 2 ) is a minimal x-flat output if and only if the involutive distribution L = (span {dϕ 1 , dϕ 2 }) ⊥ satisfies D 0 ⊂ L ⊂ D 1 . Hence the distribution L has to be of the form L = span { ∂ ∂i d , ∂
∂i q , h}, where h is any vector field of the form

h = α ∂ ∂ψ d + β( ∂ ∂ω + η M µψ 2 d ∂ ∂ρ
) such that L is involutive and for any smooth functions α, β satisfying (α, β) = (0, 0).

Let us first take

L = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d }.
The associated flat outputs are independent functions of ω, ρ and we can take (ϕ 1 , ϕ 2 ) = (ω, ρ).

Using the same procedure, let us now give some less intuitive minimal flat outputs

. Choose L = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ω + η M µψ 2 d ∂ ∂ρ }.
Any two independent functions ϕ 1 and ϕ 2 depending on ω, ψ d , ρ whose differentials annihilate L, that is, satisfying

∂ϕ i ∂ω + ηM µψ 2 d ∂ϕ i ∂ρ ≡ 0, for 1 ≤ i ≤ 2,
can be taken as minimal flat outputs. Solving those equations, we get

ϕ i = ϕ i (ψ d , ηM µψ 2 d ω -ρ). We can choose, for instance, (ϕ 1 , ϕ 2 ) = (ψ d , ηM µψ 2 d ω -ρ). Finally, let L = span { ∂ ∂i d , ∂ ∂i q , ∂ ∂ψ d + ∂ ∂ω + ηM µψ 2 d ∂ ∂ρ }.
The functions ϕ 1 and ϕ 2 depend on ω, ψ d , ρ and satisfy

∂ϕ i ∂ψ d + ∂ϕ i ∂ω + η M µψ 2 d ∂ϕ i ∂ρ ≡ 0, for 1 ≤ i ≤ 2. Solving those equations, we obtain ϕ i = ϕ i (ρ + ηM µψ d , ψ d -ω). We can choose (ϕ 1 , ϕ 2 ) = (ρ + η M µψ d , ψ d -ω).
Notice that while for the first model (with θ, the mechanical position), the minimal flat outputs are unique, for the reduced one there are many minimal flat outputs (the choice being parameterized by a function of three well defined variables ω, ρ, ψ d ).

Recall that for the first case, the minimal flat outputs are (θ, ρ) and can been seen as the counterparts of (ϕ 1 , ϕ 2 ) = (ω, ρ) for the second model (since θ = ω). 

Polymerization reactor

Consider the reactor [START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Rouchon | Necessary condition and genericity of dynamic feedback linearization[END_REF]:

Σ PR :                      Ċm = C mm s τ -(1 + ǭ µ µ+M m C m ) C m τ + R m (C m , C i , C s , T) Ċi = -k i (T)C i + u 2 C ii s V -(1 + ǭ µ µ+M m C m ) C i τ Ċs = u 2 C si s V + C sm s τ -(1 + ǭ µ µ+M m C m ) C s τ μ = -M m R m (C m , C i , C s , T) -(1 + ǭ µ µ+M m C m ) µ τ Ṫ = θ(C m , C i , C s , µ, T) + α 1 T j Ṫj = f 6 (T, T j ) + α 4 u 1
where u 1 , u 2 are the control inputs and C mm s , C ii s , C si s , C sm s , M m , ǭ, τ, V, α 1 , α 4 are constant positive physical parameters. The functions R m , k i , θ and f 6 are not wellknown and can be considered arbitrary: they derive from experimental data and semi-empirical considerations and involve kinetic laws, heat transfer coefficients and reaction enthalpies.

After applying the change of coordinates

Cm = µ + M m C m Ci = C i - C ii s C si s C s Cs = -k i (T)C i -(1 + ǭ µ µ+M m C m )( C i τ - C ii s C si s C s τ ) - C ii s C si s C sm s τ , μ = 1 τ (M m C mm s -(1 + ǭ)µ -M m C m ), T = T Tj = θ(C m , C i , C s , µ, T) + α 1 T j
and a suitable static feedback transformation, we obtain: ΣPR :

         Ċi = Cs Ċm = μ Ċs = ũ1 μ = b( Cm , Ci , Cs , μ, T) Ṫ = Tj Ṫj = ũ2
where b is a smooth function depending explicitly on T = T.

If ( ∂ 2 b ∂ T∂ Cs , ∂ 2 b ∂ C2 s ) = (0, 0), then the distribution D 1 = span { ∂ ∂ Cs , ∂ ∂ Ci + ∂b ∂ Cs ∂ ∂ μ , ∂ ∂ Tj , ∂ ∂ T } is noninvolutive, rk D 1 = 5 and D 1 = TX. Consequently, we are in the case of Theorem 1.3.1 with k = 1. Let us suppose that ∂ 2 b ∂ C2 s = 0. Therefore, [D 0 , D 1 ] ⊂ D 1
and the corank one involutive subdistribution H 1 can be computed in two different ways (see the condition (A3) of Theorem 1.3.1 and the comment following Theorem 1.3.4). We will calculate H 1 by applying the procedure given by Theorem 1.3.1 (see [46] where we apply Theorem 1.3.4 to construct H 1 ). The distribution

D 1 + [ f , D 1 ] = span { ∂ ∂ Cs , ∂ ∂ Ci , ∂ ∂ Tj , ∂ ∂T , ∂ ∂ μ , ∂b ∂ Cs ∂ ∂ Cm } PROOFS is of rank 6 (provided that ∂b ∂ Cs does not vanish) and g2 = ∂ ∂ Tj satisfies ad f g2 ∈ D 1 .
Therefore, item (A2) of Theorem 1.3.1 is verified and g2 plays the role of g c .

Thus the corank one subdistribution H 1 is given by

H 1 = D 0 + span {ad f g2 } = span { ∂ ∂ Cs , ∂ ∂ Tj , ∂ ∂T }
and is clearly involutive. We have

H 2 = H 1 + [ f , H 1 ] = span { ∂ ∂ Cs , ∂ ∂ Ci , ∂ ∂ Tj , ∂ ∂T , ∂ ∂µ }
involutive and H 3 = TX. The system ΣPR satisfies all conditions of Theorem 1.3.1, hence the corresponding prolongation (obtained by prolonging ũ1 )

Σ(1,0) PR          Ċi = Cs Ċm = μ Ċs = y μ = b( Cm , Ci , Cs , μ, T) ẏ = v 1 Ṫ = Tj Ṫj = v 2
where y = ũ1 and v 2 = ũ2 , is locally static feedback linearizable. Indeed, all its linearizability distributions D i p , for the prolonged system Σ(1,0) PR , for i ≥ 0, are involutive, of constant rank and rk D 3 p = 7. Therefore, the prolonged system can be brought into the Brunovský canonical form with Cm =

M m C m + µ, Ci = C i - C ii s C si s
C s playing the role of top variables.

Let us now compute the minimal flat outputs (ϕ 1 , ϕ 2 ) of ΣPR . We are in the first case of Proposition 1.5.1, with ρ = 3 and µ = 2. Since the differential of ϕ 1 annihi- lates H 2 , it follows that

ϕ 1 = ϕ 1 ( Cm ) with ∂ϕ 1 ∂ Cm = 0. The differential of ϕ 2 annihi- lates H 1 and satisfies dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 = 0. This yields ϕ 2 = ϕ 2 ( Cm , Ci , μ) with ∂ϕ 2 ∂ Ci = 0. Hence, a choice of minimal flat outputs is (ϕ 1 , ϕ 2 ) = ( Cm , Ci
). This is conform with the fact that Cm and Ci are the top variables of the Brunovský canonical form (see the above remark).

Proofs

Notations and useful results

Consider a control system of the form Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 h 2 (x). By Σ (1,0) we will denote the system Σ with one-fold prolongation of the first control, that is

Σ (1,0) : ẋ = f (x) + y 1 g 1 (x) + +v 2 h 2 (x) ẏ1 = v 1 1.7.
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with y 1 = u 1 and v 2 = u 2 . Throughout this section,

F = n ∑ i=1 ( f i + y 1 g 1i ) ∂ ∂x i
stands for the drift and

G 1 = ∂ ∂y 1 , H 2 = n ∑ i=1 h 2i ∂ ∂x i
denote the control vector fields of the prolonged system.

To Σ (1,0) , we associate the distributions

D 0 p = span {G 1 , H 2 } and D i+1 p = D i p + [F, D i p ]
, for i ≥ 0, (the subindex p referring to the prolonged system Σ (1,0) ).

We start by stating and proving two propositions needed in the proofs of our main results, but also having an independent interest. Proposition 1.7.1. Consider a two-input control-affine system Σ, given by (1.3), defined on a n-dimensional manifold X, dynamically linearizable via invertible one-fold prolongation and let D k be the first noninvolutive distribution. The following conditions are satisfied:

(i) D k is feedback invariant; (ii) If k ≥ 1, then rk D k -rk D k-1 = 2; (iii) If D k = TX, then n = 2k + 3.
Proof. We first prove (i). It is well known that the involutive distributions D i , for i ≤ k -1, are feedback invariant. Let us show that this is also the case for the first noninvolutive distribution D k . By definition

D k = D k-1 + span {ad k f g 1 , ad k f g 2 }. We first show that D k is invariant under the transformations of type f = f + α 1 g 1 + α 2 g 2 ,
where α 1 and α 2 are smooth functions. We have:

ad f g i = [ f + α 1 g 1 + α 2 g 2 , g i ] = ad f g i mod D 0
and by induction, we get ad k-1

f g i = ad k-1 f g i mod D k-2 .
From this, we deduce

ad k f g i = [ f + α 1 g 1 + α 2 g 2 , ad k-1 f g i mod D k-2 ] = ad k f g i mod D k-1 which yields Dk = Dk-1 + span {ad k f g 1 , ad k f g 2 } = D k-1 + span {ad k f g 1 , ad k f g 2 } = D k .
Let us now study the transformations involving the controlled vector fields, i.e., of the type g1 = β 11 g 1 + β 21 g 2 and g2 = β 12 g 1 + β 22 g 2 , where β = (β ij (x)) is an invertible matrix. We have:

ad f g1 = β 11 ad f g 1 + β 21 ad f g 2 mod D 0 , ad f g2 = β 12 ad f g 1 + β 22 ad f g 2 mod D 0 , PROOFS
and by induction, we get

ad k-1 f g1 = β 11 ad k-1 f g 1 + β 21 ad k-1 f g 2 mod D k-2 , ad k-1 f g2 = β 12 ad k-1 f g 1 + β 22 ad k-1 f g 2 mod D k-2 .
It follows that

ad k f g1 = [ f , β 11 ad k-1 f g 1 + β 21 ad k-1 f g 2 mod D k-2 ] = β 11 ad k f g 1 + β 21 ad k f g 2 mod D k-1 , ad k f g2 = [ f , β 12 ad k-1 f g 1 + β 22 ad k-1 f g 2 mod D k-2 ] = β 12 ad k f g 1 + β 22 ad k f g 2 mod D k-1 . and Dk = Dk-1 + span {ad k f g1 , ad k f g2 } = D k-1 + span {β 11 ad k f g 1 + β 21 ad k f g 2 , β 12 ad k f g 1 + β 22 ad k f g 2 } = D k-1 + span {ad k f g 1 , ad k f g 2 } = D k .
The distribution D k is thus invariant under the considered classes of transformations. We have shown that D k is feedback invariant.

We know turn to item (ii). Assume rk D krk D k-1 = 1 and let l be the smallest integer such that rk

D l -rk D l-1 = 1. It is clear that 1 ≤ l ≤ k. Since Σ is dynamically linearizable via invertible one-fold prolongation, there exists an invert- ible static feedback transformation, u(x) = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 h2 (x), such that the prolongation Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 h2 (x) ẏ1 = v 1
with y 1 = ũ1 and v 2 = ũ2 , is locally static feedback linearizable. For simplicity of notation, we will drop the tilde, but we will keep distinguishing g 1 from h 2 (which could also be denoted g 2 ) whose control is not preintegrated.

Since Σ (1,0) is locally static feedback linearizable, for any i ≥ 0 the distributions D i p are involutive, of constant rank, and there exists an integer ρ such that rk D

ρ p = n + 1. We have D 0 p = span { ∂ ∂y 1 , h 2 }, D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 + y 1 [g 1 , h 2 ]}. Since k ≥ 1, the distribution D 0 = span {g 1 , h 2 } is involutive, thus [g 1 , h 2 ] ∈ D 0 and D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 }. It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ l -1, D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h 2 , • • • , ad i f h 2 },
and thus

D l p = span { ∂ ∂y 1 , g 1 , • • • , ad l-1 f g 1 , h 2 , • • • , ad l f h 2 }.
We distinguish two sub cases:

ad l f h 2 ∈ D l-1 = span {g 1 , • • • , ad l-1 f g 1 , h 2 , • • • , ad l-1
f h 2 } (and in this case rk D l p = 2l + 1) and ad l f h 2 ∈ D l-1 (and in this case rk D l p = 2l + 2).

Let us first assume ad l f h 2 ∈ D l-1 . We have:

D j p = span { ∂ ∂y 1 } + D j-1 , for j ≥ l,
and the involutivity of D j p implies that of D j-1 . For j = k + 1, it follows that D k is involutive, which contradicts the fact that D k was supposed nonivolutive.

Let us now assume ad

l f h 2 / ∈ D l-1 . Since rk D l = 2l + 1, we deduce that D l = span {g 1 , • • • , ad l-1 f g 1 , h 2 , • • • , ad l f h 2 }. Moreover, we have D j p = span { ∂ ∂y 1 } + D j , for j ≥ l and the involutivity of D j p implies that of D j . For j = k, it follows that D k is in- volutive, which contradicts the assumption of noninvolutivity of D k . Therefore, rk D k -rk D k-1 = 2. Consequently, rk D k = 2k + 2. Finally, we prove item (iii). Suppose D k = TX. Due to (ii), rk D k = 2k + 2 (if k = 0,
this is still true, since the controlled vector fields are assumed independent). For the prolonged system Σ (1,0) , we have

D k+1 p = span { ∂ ∂y 1 , g 1 , • • • , ad k f g 1 , h 2 , • • • , ad k+1 f h 2 }. The distribution E = D k+1 p ∩ TX = span {g 1 , • • • , ad k f g 1 , h 2 , • • • , ad k+1 f h 2 } is involu- tive (
as intersection of involutive distributions) and its rank is 2k + 3, otherwise we obtain E = D k and D k would be involutive. Since D k ⊂ E and E = 2k + 3, we deduce D k = E . On the other hand, D k = TX and from this, it follows immediately that n = 2k + 3.

Proposition 1.7.2. Consider a two-input control system Σ, given by (1.3), and let D k be the first noninvolutive distribution. Assume k ≥ 1 and D k satisfies the conditions (A1)

-(A2) of Theorem 1.3.1. If the distribution H k = D k-1 + span {ad k f g c } is involutive, where g c is defined by item (A2), then all distributions H i = D i-1 + span {ad i f g c }, for 1 ≤ i ≤ k -1, are involutive.
Proof. Let us first show that under the conditions (A1) -(A2) of Theorem 1.3.1, there exists a non-zero vector field g c ∈ D 0 such that ad k+1 f g c ∈ D k . Due to (A1) and (A2), we have rk

D k = 2k + 3 and rk (D k + [ f , D k ]) = 2k + 4, thus
we can always assume (permute g 1 and g 2 , if necessary) that ad k+1 f g 1 ∈ D k .

Hence there exists a smooth function α, defined in a neighborhood of x 0 , such that PROOFS

ad k+1 f g 2 = αad k+1 f g 1 mod D k . It follows that ad k+1 f g 2 = ad k+1 f (αg 1 ) mod D k , which
gives ad k+1 f (g 2αg 1 ) = 0 mod D k . The vector field g c = g 2αg 1 is clearly nonzero (since g 1 and g 2 are independent everywhere on X) and satisfies ad k+1 f g c ∈ D k .

We can now show the involutivity of the distributions

H i . Assume that H k-1 = D k-2 + span {ad k-1 f g c } is not involutive. Since D k-2 ⊂ H k-1 ⊂ D k-1
, where D k-2 and D k-1 are involutive and both inclusions are of corank one, it follows rk H k-1 = 2k and the new direction completing H k-1 to its involutive closure is given by a vec- tor field of the form [ad l f g i , ad k-1 f g c ], with 1 ≤ i ≤ 2 and 0 ≤ l ≤ k -2, and is necessarily collinear with ad k-1 f g 1 modulo H k-1 . Hence, there exists a smooth function β, defined in a neighborhood of x 0 , not vanishing at x 0 , such that [ad

l f g i , ad k-1 f g c ] = βad k-1 f g 1 mod H k-1 .
From this, applying the Jacobi identity and the involutivity of H k , it follows

[ad l f g i , ad k f g c ] = [ f , [ad l f g i , ad k-1 f g c ]] -[ad l+1 f g i , ad k-1 f g c ] = [ f , βad k-1 f g 1 ] mod H k = βad k f g 1 mod H k .

Proof of Proposition 1.3.1

We will show the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). Consider a flat control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x), of differential weight n + 3, and let

ϕ 1 = ϕ 1 (x, ūp 1 , ūr 2 ) and ϕ 2 = ϕ 2 (x, ūs 1 , ūq 
2 ) be its minimal flat outputs, defined in O l , a neighborhood of (x 0 , ūl 0 ), with p, r, s, q ≥ -1 and at least one of them non negative, and such that ϕ 1 (respectively ϕ 2 ) depends explicitly on u 2 ). We can always suppose (after permuting ϕ 1 and ϕ 2 or u 1 and u 2 , if necessary) that p is the highest control derivative on which the flat outputs may depend, i.e., p is the maximum of p, r, s and q.

We will denote by k 1 (respectively k 2 ) the order of the highest derivative of ϕ 1 (respectively ϕ 2 ) involved in the expression of x and u i.e.,

x = γ(ϕ 1 , • • • , ϕ (k 1 ) 1 , ϕ 2 , • • • , ϕ (k 2 ) 2 ) and u = δ(ϕ 1 , • • • , ϕ (k 1 ) 1 , ϕ 2 , • • • , ϕ (k 2 )
2 ).

Throughout we will use the following notation φk

i i = (ϕ i , • • • , ϕ (k i ) i ). Since the differ- ential weight equals n + 3, we have k 1 + k 2 = n + 1. 1.7.2 -Proof of Proposition 1.3.1
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There are two cases to be considered: the first corresponds to p ≥ 1, i.e., ϕ 1 involves at least a control derivative; the second deals with p = 0, i.e.,

ϕ 1 = ϕ 1 (x, u 1 , u 2 ). Let us first suppose p ≥ 1. Since ϕ (l) 1 depends explicitly on u (p+l) 1
, for l ≥ 0, it follows that x and u and ϕ (l)

1 are independent for any l ≥ 0, and consequently to express all states x and controls u in function of the flat outputs and their time derivative, at least, ϕ 2 , • • • , ϕ (n+1) 2 are used. Therefore, k 2 ≥ n + 1 and the differential weight of the system is greater than n + k 1 + 3. Hence, the only possible case is k 1 = 0, i.e., γ and δ involve only ϕ 1 and not its time-derivatives. Thus assume k 1 = 0. If s ≥ 1 or q ≥ 1, we repeat the same procedure and we find that k 2 should also be zero, which is impossible. It follows that s ≤ 0 and l ≤ 0, i.e., ϕ 2 = ϕ 2 (x, u 1 , u 2 ). If ϕ 2 depends explicitly on u 1 (respectively on u 2 ), we can apply the invertible feedback

v 1 = ϕ 2 (x, u 1 , u 2 ) and v 2 = u 2 (respectively v 2 = ϕ 2 (x, u 1 , u 2 ) and v 1 = u 1 )
, then all states and the remaining control should be expressed only in function of ϕ 1 and its time derivatives, which is impossible, since k 1 = 0. Therefore, ϕ 2 = ϕ 2 (x).

Let ρ be the relative degree of ϕ 2 , i.e. ϕ (ρ) 2 is the first derivative of ϕ 2 involving explicitly the control. More precisely, the relative degree ρ i of a component

ϕ i = ϕ i (x) of a flat output (ϕ 1 , ϕ 2 ), defined on a neighborhood X of x 0 , is the smallest integer such that L g j L q f ϕ i ≡ 0, 1 ≤ j ≤ 2, 0 ≤ q ≤ ρ i -2, L g j L ρ i -1 f ϕ i (x) = 0,
for some 1 ≤ j ≤ 2 and for some x ∈ X .

By introducing

z i = L i-1 f ϕ 2 , for 1 ≤ i ≤ ρ, we get: żi = z i+1 , for 1 ≤ i ≤ ρ -1, żρ = L ρ f ϕ 2 + u 1 L g 1 L ρ-1 f ϕ 2 + u 2 L g 2 L ρ-1 f ϕ 2 .
and according to (Assumption 1), we have (L

g 1 L ρ-1 f ϕ 2 , L g 2 L ρ-1 f ϕ 2 )(z 0 ) = (0, 0) and assume L g 1 L ρ-1 f ϕ 2 = 0 (otherwise permute g 1 and g 2 ). Applying v 1 = L ρ f ϕ 2 + u 1 L g 1 L ρ-1 f ϕ 2 + u 2 L g 2 L ρ-1 f ϕ 2 and v 2 = u 2 , we obtain ϕ (ρ) 2 = v 1 . If ρ < n,
at least one state and a control should be expressed using ϕ 1 and its time derivatives, which is impossible. It follows that ρ = n, but in this case, the system Σ would be static feedback equivalent to the linear single-input system żi = z i+1 , for 1 ≤ i ≤ n -1, żn = v 1 which gives a contradiction.

We have thus proved that we cannot have p ≥ 1 and then, the only possible case is p = 0, i.e.,

ϕ i = ϕ i (x, u 1 , u 2 ), for 1 ≤ i ≤ 2, with ∂ϕ 1 ∂u 1 = 0. It is immediate that rk ∂ϕ ∂u = 1, where ∂ϕ ∂u denotes the matrix ( ∂ϕ i ∂u j ), 1 ≤ i, j ≤ 2, otherwise apply the invertible static feedback ũ1 = ϕ 1 (x, u 1 , u 2 ) and ũ2 = ϕ 2 (x, u 1 , u 2 ), which transforms PROOFS the system Σ into the form Σ : ẋ = f (x) + ψ 1 (x, ũ1 , ũ2 )g 1 (x) + ψ 2 (x, ũ1 , ũ2 )g 2 (x),
where ( ũ1 , ũ2 ) is a flat output. It is clear that the state coordinates x cannot be represented in terms of flat outputs, contradicting the flatness assumption.

Apply the invertible static feedback ũ1 = ϕ 1 (x, u 1 , u 2 ) and ũ2 = u 2 which brings the system into the form Σ : ẋ = f (x) + ψ(x, ũ1 , ũ2 )g 1 (x) + ũ2 g 2 (x) with ϕ 1 = ũ1 and ϕ 2 = ϕ 2 (x, ũ1 ). Since ϕ 1 = ũ1 , all states and the control ũ2 have to be expressed with the help of ϕ 2 , it follows that ϕ 2 involves at least n + 1 derivatives, i.e., k 2 ≥ n, and since

k 1 + k 2 = n + 1, we deduce k 1 ≤ 1. If ϕ 2 depends explicitly on ũ1 = ϕ 1 , then ϕ (n) 2 would explicitly depend on ϕ (n)
1 and the differential weight would be at least 2n + 2, which contradicts our assumption. We deduce ϕ 2 = ϕ 2 (x).

Now we proceed as above: introduce

z i = L i-1 f ϕ 2 , for 1 ≤ i ≤ ρ,
where ρ is the relative degree of ϕ 2 , and complete them to a coordinate system (z

1 , • • • , z ρ , • • • , z n ). We have żi = z i+1 , for 1 ≤ i ≤ ρ -1, żρ = L ρ f ϕ 2 + ψ(x, ũ1 , ũ2 )L g 1 L ρ-1 f ϕ 2 + ũ2 L g 2 L ρ-1 f ϕ 2 . If ϕ (ρ)
2 depends explicitly on ũ2 , apply the invertible static feedback

v 2 = L ρ f ϕ 2 + ψ(x, ũ1 , ũ2 )L g 1 L ρ-1 f ϕ 2 + ũ2 L g 2 L ρ-1 f ϕ 2 and v 1 = ũ1 . We obtain ϕ 1 = v 1 , ϕ (ρ) 2 = v 2 . If ρ < n,
at least one state would not be represented as function of ϕ (j) i , contradicting the flatness assumption. If ρ = n, then Σ would be static feedback equivalent to a linear single-input control system, which is a impossible. It follows that ϕ

(ρ) 2 = żρ = a(z, ũ1
), where a is a smooth function depending explicitly on ũ1 .

Moreover, we should be able to express all the remaining coordinates z ρ+1 , • • • , z n and the control ũ2 with the help of ϕ

(ρ+i) 2 , for 0 ≤ i ≤ k 2 -ρ. Recall that k 2 ≥ n and notice that each derivative ϕ (ρ+i) 2 involves explicitly ϕ (i)
1 . In the best case, k 2 = n and then the highest derivative of ϕ 1 involved is that of order nρ, i.e., z = γ( φ1

n-ρ , φ2 n ) and ũ = δ 2 ( φ1 n-ρ , φ2 n ).
The above expressions involve 2nρ + 2 derivatives of the minimal flat outputs. Since the differential weight of the system is n + 3, we deduce that ρ = n -1 and the system Σ can be written as follows: Σ :

             ż1 = z 2 . . . żn-2 = z n-1 żn-1 = a(z, ũ1 ) żn = b(z, ũ1 , ũ2 )
with a (respectively b) depending explicitly on ũ1 (respectively ũ2 ) and (ϕ 1 , ϕ 2 ) = ( ũ1 , z 1 ) being a minimal flat output. It is easy to see that Σ is in fact static feedback linearizable (apply the invertible static feedback

v 1 = a(z, ũ1 ) and v 2 = b(z, ũ1 , ũ2 )), thus of differential weight n + 2 (with ( φ1 , φ2 ) = (z 1 , z n ) an x-flat output of differen- tial weight n + 2), contradicting the minimality of (ϕ 1 , ϕ 2 ) = ( ũ1 , z 1 ).
This finishes the proof of the second case p = 0. For both cases, p ≥ 1 and p = 0, we have found a contradiction with our assumptions. It follows that the minimal flat outputs ϕ 1 , ϕ 2 depend only on x and thus the system is x-flat.

(ii) ⇒ (iii). Let us consider an x-flat control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) and let (ϕ 1 , ϕ 2 ) be a minimal x-flat output, defined in a neighborhood X of x 0 , whose differential weight is n + 3. We will denote by k 1 (respectively k 2 ) the order of the highest derivative of ϕ 1 (respectively ϕ 2 ) involved in the expression of x and u i.e., x = γ( φ1

k 1 , φ2 k 2 ) and u = δ( φ1 k 1 , φ2 k 2 )
, where φi

k i = (ϕ i , φi , • • • , ϕ i (k i ) ). We clearly have k 1 + k 2 = n + 1.
Let µ and ρ, the relative degree of ϕ 1 and ϕ 2 . We thus have

L g j L p f ϕ 1 ≡ 0, for 0 ≤ p ≤ µ -2, and L g j L q f ϕ 2 ≡ 0, for 0 ≤ q ≤ ρ -2. It is well known that dϕ (i) 1 and dϕ (j)
2 are independent at x 0 , for any i, j ≥ 0, thus we can put

w i = L i-1 f ϕ 1 , z j = L j-1 f ϕ 2 , for 1 ≤ i ≤ µ and 1 ≤ j ≤ ρ, and complete them to a coordinate system ξ = (w 1 , • • • , w µ , z 1 , • • • , z ρ , z ρ+1 , • • • , z ρ+ν ), where n = µ + ρ + ν.
Consider the decoupling matrix D = (D ij ) 1≤i,j≤2 given by

D = L g 1 L µ-1 f ϕ 1 L g 2 L µ-1 f ϕ 1 L g 1 L ρ-1 f ϕ 2 L g 2 L ρ-1 f ϕ 2
By definition of the relative degree, we have 1 ≤ rk D(x) ≤ 2 and according to (Assumption 1), rk D(x) is constant in a neighborhood of x 0 . It is easy to see that rk D(x) = 1. Indeed, if rk D(x) = 2, the flatness assumption would imply that the system Σ is locally static feedback linearizable thus of differential weight n + 2, contradicting the fact that Σ is flat of differential weight n + 3. Therefore, we can always assume rk D(x) = 1, ∀x ∈ X ′ , where X ′ is an open dense subset of X , and

L g 1 L µ-1 f ϕ 1 (x 0 ) = 0 (if not, permute g 1 and g 2 ). Applying the invertible static feedback transformation ũ1 = L µ f ϕ 1 + L g 1 L µ-1 f ϕ 1 u 1 + L g 2 L µ-1 f ϕ 1 u 2 ũ2 = u 2 , we get: ẇ1 = w 2 ż1 = z 2 . . . . . . ẇµ-1 = w µ żρ-1 = z ρ ẇµ = ũ1 żρ = d(w, z, ũ1 ) with (ϕ 1 , ϕ 2 ) = (w 1 , z 1
) and d a smooth function, affine with respect to ũ1 and depending explicitly on ũ1 . Since ϕ (µ)

1 = ũ1 and ϕ (ρ) 2 = d(z, ũ1
), we have to express all the remaining coordinates z ρ+1 , • • • , z ρ+ν and the control ũ2 with the help of ϕ

(ρ+i) 2 , for 0 ≤ i ≤ k 2 -ρ, but each derivative ϕ (ρ+i) 2 involves explicitly ϕ (µ+i) 1 . In the best case, k 2 = ρ + ν and then the highest derivative of ϕ 1 involved is that of or- der µ + ν -ρ = n -ρ, i.e., we have z = γ( φ1 n-ρ , φ2 ρ+ν ) and ũ = δ 2 ( φ1 n-ρ , φ2 ρ+ν ).

PROOFS

The above expressions involve n + ν + 2 derivatives of the minimal flat outputs. Since the differential weight of the system is n + 3, we deduce that ν = 1. Hence, after applying a static invertible feedback transformation (leaving ũ1 unchanged an that we continue to denote by ũ), the system Σ can be written as follows:

ẇ1 = w 2 ż1 = z 2 . . . . . . ẇµ-1 = w µ żρ-1 = z ρ ẇµ = ũ1 żρ = a(w, z) + b(w, z) ũ1 żρ+1 = ũ2 with ϕ 1 = w 1 and ϕ 2 = z 1 being a minimal flat output. Flatness implies ( ∂a ∂z ρ+1 + ∂b ∂z ρ+1 ũ10 )(ξ 0 ) = 0, where ξ 0 = (w 0 , z 0 ).
If D 0 is involutive, then ∂b ∂z ρ+1 = 0. It follows that ∂a ∂z ρ+1 (ξ 0 ) = 0 and we can introduce new coordinates z 1 i = w i , for 1 ≤ i ≤ µ, z 2 j = z j , for 1 ≤ j ≤ ρ, and z ρ+1 = a and apply a suitable invertible static feedback, to get Σ :

             ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 µ-1 = z 1 µ ż2 ρ-1 = z 2 ρ ż1 µ = v 1 ż2 ρ = z 2 ρ+1 + b( z1 µ , z2 ρ )v 1 żρ+1 = v 2 where (ϕ 1 , ϕ 2 ) = (z 1 1 , z 2 1 ) and zi j = (z i 1 , • • • , z i j ).
Notice that, in this case, the system is x-flat for any u 0 ∈ R 2 , so we do not face singularities in the control space.

If D 0 is noninvolutive, then ∂b ∂z ρ+1 (ξ 0 ) = 0 and we can introduce new coordinates

z 1 i = w i , for 1 ≤ i ≤ µ, z 2 j = z j
, for 1 ≤ j ≤ ρ, and z ρ+1 = b and apply a suitable invertible static feedback, to get Σ :

             ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 µ-1 = z 1 µ ż2 ρ-1 = z 2 ρ ż1 µ = v 1 ż2 ρ = a( z1 µ , z2 ρ+1 ) + z 2 ρ+1 v 1 żρ+1 = v 2 where (ϕ 1 , ϕ 2 ) = (z 1 1 , z 2 1
). Contrary of the previous case, now, there exist singular controls: the system is x-flat at (z 0 , v 0 ) such that ( ∂a

∂z 2 ρ+1 + v 10 )(z 0 ) = 0.
It is immediate that, for both cases, the prolongation Σ(1,0) , obtained by prolonging v 1 is locally static feedback linearizable.

(iii) ⇒ (i). Consider a control systems

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x)
dynamically linearizable via one-fold prolongation, i.e., there exists an invertible
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where y 1 = ũ1 and v 2 = ũ2 , is locally static feedback linearizable.

Σ(1,0) is equivalent via a diffeomorphism z = φ(x, y 1 ) and an invertible transformation, v = α(x, y 1 ) + β(x, y 1 ) v, to the Brunovský canonical form:

żj i = z j i , 1 ≤ j ≤ ρ i -1, żρ i i = vi where 1 ≤ i ≤ 2 and ρ 1 + ρ 2 = n + 1, for which ϕ = (z 1 1 , z 1 2 ) is a minimal flat output of differential weight n + 3. Since z j i = ϕ (j-1) i , the original variables can be expressed as (x, u 1 ) t = γ( φρ 1 -1 1 , φρ 2 -1 2 ) and u 2 = δ 2 ( φρ 1 1 , φρ 2 2 ). We deduce that ϕ = (ϕ 1 (x, u 1 ), ϕ 1 (x, u 1 )) is a minimal flat output of Σ of differential weight n + 3.

Proof of Theorem 1.3.1

Necessity. Consider a control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) and assume that it is flat of differential weight n + 3. According to Proposition 1.3.1, there exists an invertible feedback transformation u = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 h2 (x), such that the prolongation

Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 h2 (x) ẏ1 = v 1
with y 1 = ũ1 and v 2 = ũ2 is locally static feedback linearizable. For simplicity of notation, we will drop the tilde, but we will keep distinguishing g 1 from h 2 (which could also be denoted g 2 ) whose control is not preintegrated.

Recall that to Σ (1,0) , we associate the distributions

D 0 p = span {G 1 , H 2 } and D i+1 p = D i p + [F, D i p ]
, for i ≥ 0, where F (respectively G 1 and H 2 ) denotes the drift (respectively the control vector fields) of the prolonged system. Since Σ (1,0) is locally static feedback linearizable, for any i ≥ 0 the distributions D i p are involutive, of constant rank, and there exists an integer ρ such that rk D

ρ p = n + 1. We have D 0 p = span { ∂ ∂y 1 , h 2 }, D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 + y 1 [g 1 , h 2 ]}. Since k ≥ 1, the distribution D 0 = span {g 1 , h 2 } is involutive, thus [g 1 , h 2 ] ∈ D 0 and D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 }. It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ k, D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h 2 , • • • , ad i f h 2 }. PROOFS Since the intersection of involutive distributions is an involutive distribution, it follows that D i p TX = span {g 1 , • • • , ad i-1 f g 1 , h 2 , • • • , ad i f h 2 } is involutive, for 1 ≤ i ≤ k. We deduce that H k = span {g 1 , • • • , ad k-1 f g 1 , h 2 , • • • , ad k f h 2 } is involutive. It is immediate that D k-1 ⊂ H k ⊂ D k
, where both inclusions are of corank one, otherwise H k = D k and D k would be involutive or H k = D k-1 and rk D krk D k-1 would be equal to one, which contradicts our hypotheses. The involutivity of

D k+1 p = span { ∂ ∂y 1 , g 1 , • • • , ad k-1 f g 1 , ad k f g 1 , h 2 , • • • , ad k f h 2 , ad k+1 f h 2 } implies that of D k + span {ad k+1 f h 2 }. It yields D k = D k + span {ad k+1 f h 2 } and rk D k = 2k + 3, where D k is the involutive closure of D k . This gives (A1).
Recall that

H i = H i-1 + [ f , H i-1 ], for i ≥ k + 1. We thus have D k+1 p = span { ∂ ∂y 1 } + H k + [ f , H k ] = span { ∂ ∂y 1 } + H k+1
and, by an induction argument,

D k+i p = span { ∂ ∂y 1 } + H k+i , i ≥ 2.
Consequently, the involutivity of D k+i p implies that of H k+i , for i ≥ 1. Moreover, rk D ρ p = n + 1, implying that rk H ρ = n, i.e., H ρ = TX, which proves (A3) and (A4). 

It remains to show that rk (D k + [ f , D k ]) = 2k + 4. We have D k+1 p = span { ∂ ∂y 1 } + D k . Assume ad k+1 f g 1 ∈ D k , if not,
D k + [ f , D k ] = D k .
Therefore for the prolonged system we obtain

D k+2 p = span { ∂ ∂y 1 } + D k + [ f , D k ] = D k+1 p thus contradicting the existence of ρ such that rk D ρ p = n + 1 (recall that D k = D k + [D k , D k ] = TX)
and implying that Σ (1,0) is not static feedback linearizable. By Proposition 1.3.1, the system Σ would not be x-flat and thus rk

(D k + [ f , D k ]) = 2k + 4
and (A2) holds.

Sufficiency. Consider a control system

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) sat- isfying (A1) -(A4). Transform Σ via a static feedback into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 g c (x)
, where g c is defined by condition (A2). For simplicity of notation, we will drop the tilde and we will keep distinguishing g 1 from g c . By Proposition 1.7.2, the involutivity of

H i = D i-1 + span {ad i f g c } follows for 1 ≤ i ≤ k -1. It is immediate to see that the prolongation Σ (1,0) : ẋ = f (x) + y 1 g 1 (x) + v 2 g c (x) ẏ1 = v 1
with y 1 = u 1 and v 2 = u 2 is locally static feedback linearizable. Indeed, the linearizability distributions D i p , associated to Σ (1,0) , are of the form

D i p = span { ∂ ∂y 1 } + H i , i ≥ 1.
The involutivity of H i implies that of D i p . Moreover, rk H ρ = n, thus rk D ρ p = n + 1 and Σ (1,0) is locally static feedback linearizable. By Proposition 1.3.1, the system Σ is flat of differential weight n + 3.

Proof of Theorem 1.3.2

Necessity. Consider the control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) and assume that it is flat of differential weight n + 3. According to Proposition 1.3.1, there exists an invertible feedback transformation u = α(x)

+ β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 h2 (x), such that the prolongation Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 h2 (x) ẏ1 = v 1
with y 1 = ũ1 and v 2 = ũ2 is locally static feedback linearizable, around (x 0 , y 0 ). For simplicity of notation, we will drop the tilde, but we will keep distinguishing g 1 from h 2 (which could also be denoted g 2 ) whose control is not preintegrated.

Since Σ (1,0) is locally static feedback linearizable, for any i ≥ 0 the distributions D i p are involutive, of constant rank, and there exists an integer ρ such that rk D

ρ p = n + 1. We have D 0 p = span { ∂ ∂y 1 , h 2 }, D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 + y 1 [g 1 , h 2 ]}. Since k = 0, the distribution D 0 = span {g 1 , h 2 } is noninvolutive, thus [g 1 , h 2 ] ∈ D 0 and D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , [g 1 , h 2 ]}. We clearly have ad f h 2 ∈ G 1 = D 0 + [D 0 , D 0 ]
, consequently, a non zero vector field g c ∈ D 0 such that ad f g c ∈ G 1 , whose existence is claimed in (A2) ′ , can be taken as g c = h 2 . D 1 p has constant rank around (x 0 , y 10 ), it follows that rk (span

{g 1 , h 2 , ad f h 2 + y 1 [g 1 , h 2 ]}(x 0 , y 10 )) = 3. This yields (g 1 ∧ g c ∧ [ f + u 10 g 1 + u 20 g c , g c ])(x 0 ) = 0

and proves (RC).

The involutivity of D 1 p implies that of H 1 = G 1 and gives (A1) ′ . The rest of the proof follows the same line as that of Theorem 1.3.1.

Sufficiency. Consider a control system

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) satisfying (A1) ′ -(A4) ′ and (RC). Transform Σ via a static feedback into the form Σ : ẋ = PROOFS f (x) + ũ1 g1 (x) + ũ2 g c (x)
, where g c is defined by condition (A2) ′ . For simplicity of notation, we drop the tilde, but we keep distinguishing g 1 from g c . It is immediate to see that the prolongation

Σ (1,0) : ẋ = f (x) + y 1 g 1 (x) + v 2 g c (x) ẏ1 = v 1
with y 1 = u 1 and v 2 = u 2 is locally static feedback linearizable. Indeed, we have

D 0 p = span { ∂ ∂y 1
, g c }, which is clearly involutive, and

D 1 p = span { ∂ ∂y 1 , g 1 , g c , ad f g c + y 1 [g 1 , g c ]}. Since u 0 ∈ U sing (x 0 ), where U sing (x) = {u ∈ R 2 : (g 1 ∧ g c ∧ [ f + u 1 g 1 + u 2 g c , g c ])(x) = 0}, it follows that rk (span {g 1 , g c , ad f g c + y 10 [g 1 , g c ]}(x 0 )) = 3. Now, recall that ad f g c ∈ G 1 = span {g 1 , g c , [g 1 , g c ]}. These observations yield span {g 1 , g c , ad f g c + y 1 [g 1 , g c ]} = G 1 ,
around (x 0 , y 10 ). Therefore, the distribution D 1 p is given by

D 1 p = span { ∂ ∂y 1 } + G 1 and is involutive. Recall that H 1 = G 1 and H i+1 = H i + [ f , H i ],
thus the linearizability distributions D i p , associated to Σ (1,0) , are of the form

D i p = span { ∂ ∂y 1 } + H i , i ≥ 1.
The involutivity of H i implies that of D i p . Moreover, rk H ρ = n, thus rk D ρ p = n + 1 and Σ (1,0) is locally static feedback linearizable. By Proposition 1.3.1, the system Σ is flat of differential weight n + 3.

Proof of Theorem 1.3.4

We start by proving the first item (i). Consider a two-input control-affine system

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x), defined on a n-dimensional manifold X. Assume k ≥ 1. Under the assumptions D i involutive and [D k-1 , D k ] ⊂ D k , we necessarily have rk D k = 2k + 2 (otherwise, we would have D k = D k-1 + span {v}, where v is either ad k f g 1 or ad k f g 2 , and the noninvolutivity of D k would imply [D k-1 , D k ] ⊂ D k ). We deduce rk D i = 2(i + 1), for 1 ≤ i ≤ k -1, and since D k + [D k , D k ] = TX, it follows that n = 2k + 3. It is clear that there exists local coordinates z = (z 0 , z 1 1 , • • • , z 1 k+1 , z 1 2 , • • • , z k+1
2 ) in which Σ (after applying a suitable invertible feedback) takes the form: Σ :

             ż0 = α(z 0 , z1 2 , z2 2 ) ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 k = z 1 k+1 ż2 k = z 2 k+1 ż1 k+1 = v 1 ż2 k+1 = v 2 1.7.5 -Proof of Theorem 1.3.4
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with α a smooth function. We have

D k-1 = span { ∂ ∂z 1 2 , • • • , ∂ ∂z 1 k+1 , ∂ ∂z 2 2 , • • • , ∂ ∂z 2 k+1 } D k = D k-1 + span { ∂ ∂z 1 1 + ∂α ∂z 1 2 ∂ ∂z 0 , ∂ ∂z 2 1 + ∂α ∂z 2 2 ∂ ∂z 0 }. Since [D k-1 , D k ] ⊂ D k , it follows ∂ 2 α ∂(z 1 2 ) 2 = ∂ 2 α ∂(z 2 2 ) 2 = ∂ 2 α ∂z 1 2 ∂z 2 2 = 0
and thus α is an affine function of z 1 2 and z 2 2 and can be written as

α(z 0 , z1 2 , z2 2 ) = a(z 0 , z 1 1 , z 2 1 )z 1 2 + b(z 0 , z 1 1 , z 2 1 )z 2 2 + c(z 0 , z 1 1 , z 2 1 )
where a, b, c are smooth and verify ( ∂b

∂z 1 1 + a ∂b ∂z 0 -∂a ∂z 2 1 -b ∂a ∂z 0 )(z 0 ) = 0. The last condi- tion is due to the fact that [ad k f g 1 , ad k f g 2 ] ∈ D k . From D k+1 (x 0 ) = T x 0 X, we deduce rk D k+1 (z 0 ) = 2k + 3. Suppose ad k+1 f g 1 (z 0 ) ∈ D k (z 0 ), otherwise permute v 1 and v 2 . This condition is invariant with respect to invertible feedback transformations of the form v 1 = β 11 ṽ1 + β 12 ṽ2 , v 2 = β 22 ṽ2 . Since the vector field ξ = ∂ ∂z 0 a(z 0 , z 1 1 , z 2 1 ) + ∂ ∂z 1 1
is non zero at any z 0 , there exists a smooth function ψ : R 3 → R, depending on z 0 , z 1 1 , z 2 1 , such that ∂ψ ∂z 0 (z 0 ) = 0 and

L ξ ψ = ∂ψ ∂z 0 a + ∂ψ ∂z 1 1 = 0. We put w 1 1 = ψ(z 0 , z 1 1 , z 2 1
) and obtain Σ :

             ẇ1 1 = b(w 1 1 , z 1 1 , z 2 1 )z 2 2 + c(w 1 1 , z 1 1 , z 2 1 ) ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 k = z 1 k+1 ż2 k = z 2 k+1 ż1 k+1 = v 1 ż2 k+1 = v 2 Since [ad k f g 1 , ad k f g 2 ] = [ ∂ ∂z 1 1 , ∂ ∂z 2 1 + b ∂ ∂w 1 1 ] = ∂ b ∂z 1 1 ∂ ∂w 1 1 ∈ D k , we get ∂ b ∂z 1 1
(w 0 , z 0 ) = 0 and applying the invertible change of coordinates

w 1 i = L i-2 f b, 2 ≤ i ≤ k + 2, w 2 i = z 2 i , 2 ≤ i ≤ k + 1 and
a suitable invertible static feedback transformation (leaving v 2 unchanged and thus preserving the fact that ad k+1 f g 1 (z 0 ) ∈ D k (z 0 )) we get

(NF * ) :              ẇ1 1 = w 1 2 w 2 2 + c( w1 2 , w 2 1 ) ẇ1 2 = w 1 3 ẇ2 1 = w 2 2 . . . . . . ẇ1 k+1 = w 1 k+2 ẇ2 k = w 2 k+1 ẇ1 k+2 = ṽ1 ẇ2 k+1 = ṽ2 60 PROOFS with (w 2 2 + ∂ c ∂w 1 2
)(w 0 ) = 0, which is clearly flat of differential weight n + 3 = 2k + 6 at w 0 and we can take (ϕ 1 , ϕ 2 ) = (w 1 1 , w 2 2 ) as a minimal x-flat output. If k = 0 and D 0 + [D 0 , D 0 ] = TX, the same arguments apply with D k+1 replaced by span {g 1 , g 2 ,

ad f g 1 + u 2 [g 2 , g 1 ], ad f g 2 + u 1 [g 1 , g 2 ]} and ad k+1 f g 1 by ad f g 1 + u 2 [g 2 , g 1 ].
We do not develop this case here.

Let us now show (ii).

Necessity. Let us consider a control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) and assume that it is flat of differential weight n + 3. According to Proposition 1.3.1, there exists an invertible feedback transformation u = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 h2 (x), such that the prolongation

Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 h2 (x) ẏ1 = v 1
with y 1 = ũ1 and v 2 = ũ2 , is locally static feedback linearizable. For simplicity of notation, we will drop the tilde, but we will keep distinguishing g 1 from h 2 whose control is not preintegrated.

Since Σ (1,0) is locally static feedback linearizable, for any i ≥ 0 the distributions D i p are involutive, of constant rank, and there exists an integer ρ such that rk D

ρ p = n + 1. We have D 0 p = span { ∂ ∂y 1 , h 2 }, D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 + y 1 [g 1 , h 2 ]}. Since k ≥ 1, the distribution D 0 = span {g 1 , h 2 } is involutive, thus [g 1 , h 2 ] ∈ D 0 and D 1 p = span { ∂ ∂y 1 , g 1 , h 2 , ad f h 2 }.
It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ k,

D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h 2 , • • • , ad i f h 2 }.
Since the intersection of involutive distributions is an involutive distribution, it follows that

D i p ∩ TX = span {g 1 , • • • , ad i-1 f g 1 , h 2 , • • • , ad i f h 2 } is involutive, for 1 ≤ i ≤ k. We deduce that the distribution E = span {g 1 , • • • , ad k-1 f g 1 , h 2 , • • • , ad k f h 2 } is involutive. Next we will prove that E = H k = C k + D k-1 , where C k is the charac- teristic distribution of D k . It is immediate that D k-1 ⊂ E ⊂ D k
, where both inclusions are of corank one, otherwise E = D k and D k would be involutive, which contradicts our hypotheses. Applying Jacobi identity, it can be proved that

[ad k-1 f h 2 , ad k f g 1 ] ∈ D k , which gives immediately [ad k-1 f h 2 , D k ] ∈ D k , i.e., ad k-1 f h 2 ∈ C k , where C k is the characteristic distribution of D k . Moreover, since D k = E + span {ad k f g 1 } is noninvolutive and [D k-1 , D k ] ⊂ D k , we deduce [ad k-1 f g 1 , ad k f g 1 ] ∈ D k . 1.7.5 -Proof of Theorem 1.3.4 61 
The involutivity of

D k+1 p = span { ∂ ∂y 1 , g 1 , • • • , ad k-1 f g 1 , ad k f g 1 , h 2 , • • • , ad k f h 2 , ad k+1 f h 2 } implies that of D k + span {ad k+1 f h 2 }. It yields D k = D k + span {ad k+1 f h 2 } and rk D k = 2k + 3, where D k is the involutive closure of D k . Therefore, rk C k = 2k
(this gives (C1)) and the new direction

[ad k-1 f g 1 , ad k f g 1 ] completing D k to D k has
to be collinear with ad k+1 f h 2 . Hence there exists a smooth function

α such that [ad k f h 2 , ad k f g 1 ] = α[ad k-1 f g 1 , ad k f g 1 ] mod D k . It follows [ad k f h 2 -αad k-1 f g 1 , ad k f g 1 ] = 0 mod D k . It is easy to show that C k = D k-2 + span {ad k-1 f h 2 , ad k f h 2 -αad k-1 f g 1 }, which yields H k = C k + D k-1 = span {g 1 , • • • , ad k-1 f g 1 , h 2 , • • • , ad k f h 2 } and rk (C k ∩ D k-1 ) = 2k -1, showing (C2). Now recall that the involutive subdistribution E is given by E = span {g 1 , • • • , ad k-1 f g 1 , h 2 , • • • , ad k f h 2 }, it follows immediately that we actually have E = H k = C k + D k-1 , implying the involutivity of H k and proving (C3). Moreover, since D k = TX = D k + span {ad k+1 f h 2 }, we deduce that H k+1 = TX, which shows (C4).
Sufficiency. Consider a control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) defined on a n-dimensional manifold X, and satisfying (C1) -(C4). Since rk C k = 2k and D k is not involutive and its rank is at most 2k + 2, we deduce that rk D k = 2k + 2 and we actually have

D k = span {v 1 , v 2 } + C k . Since D k + [D k , D k ] = D k = TX, we have n = 2k + 3.
We will prove that conditions (C1) -(C2) enable us to define a nonzero vector field g c ∈ D 0 such that the involutive subdistribution

H k = D k-1 + C k can be written as H k = D k-1 + span {ad k f g c }. In order to define g c , notice that clearly D k-2 ⊂ C k and since rk (C k ∩ D k-1 ) = 2k -1, we have C k ∩ D k-1 = D k-2 + span {v}, with v of the form v = α 1 ad k-1
PROOFS which gives, as claimed,

H k = D k-1 + span {ad k f g c }.
The involutivity of H k implies that of all distributions H i = D i-1 + span {ad i f g c }, for 1 ≤ i ≤ k -1. The proof of this statement follows by the same line as the proof of Proposition 1.7.2.

We are now in position to show that the control Σ is dynamically linearizable via one-fold prolongation. Transform Σ via a static feedback into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ũ2 g c (x), where g c is defined as above. Applying the same arguments as in the proof of Theorem 1.3.1, it is immediate to see that the prolongation

Σ(1,0) : ẋ = f (x) + y 1 g1 (x) + v 2 gc (x) ẏ1 = v 1
with y 1 = ũ1 and v 2 = ũ2 is locally static feedback linearizable and by Proposition 1.3.1, the system is flat of differential weight n + 3.

Proof of Proposition 1.4.1

We will prove the implications (i)

⇒ (ii) ⇒ (iii) ⇒ (i). (i) ⇒ (ii). Consider a flat control system Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x)
, of differential weight n + 3 and denote by (ϕ 1 , ϕ 2 ) its minimal flat outputs, defined in a neighborhood of x 0 . By Proposition 1.3.1, it is x-flat and according to the proof of the implication (ii) ⇒ (iii) of Proposition 1.3.1, the system Σ can be transformed by a change of coordinates and an invertible static feedback into the form Σ :

               ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 ρ 1 -1 = z 1 ρ 1 ż2 ρ 2 -1 = z 2 ρ 2 ż1 ρ 1 = ũ1 ż2 ρ 2 = a(z) + b(z) ũ1 ż2 ρ 2 +1 = ũ2 where ρ 1 + ρ 2 + 1 = n, (ϕ 1 , ϕ 2 ) = (z 1 1 , z 2 1 ) and ∂a ∂z 2 ρ 2 +1 (z 0 ) + ∂b ∂z 2 ρ 2 +1 (z 0 ) ũ10 = 0. If the first noninvolutive distribution is D 0 , then b = z 2 ρ 2 +1 and a = a(z) is a function satisfying ∂a ∂z 2 ρ 2 +1 (z 0 ) + ũ10 = 0. If the first noninvolutive distribution is D k , with k ≥ 1, then we put a = z 2 ρ 2 +1 and b = b( z1 ρ 1 , z2 ρ 2 ). Moreover, the involutivity of D i , for 0 ≤ i ≤ k -1, implies b = b( z1 ρ 1 -k+1 , z2 ρ 2 -k+1
). The involutivity of D k can be lost in two different ways: either

[D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] ∈ D k and in this case ∂b ∂z 1 ρ 1 -k+1 + b ∂b ∂z 2 ρ 2 -k+1 ≡ 0 and ∂b ∂z 2 ρ 2 -k+1 (z 0 ) = 0 1.7.6 -Proof of Proposition 1.4.1 63 or [D k-1 , D k ] ⊂ D k and in this case ( ∂b ∂z 1 ρ 1 -k+1 + b ∂b ∂z 2 ρ 2 -k+1 )(z 0 ) = 0.
We have obtained the normal form (NF1).

(ii) ⇒ (iii). If k = 0, then (NF1) and (NF2) coincide. We can thus suppose k ≥ 1. Since D k is noninvolutive, of rank 2k + 2, it follows immediately that ρ 1 , ρ 2 ≥ k + 1, thus there exits two integers µ 1 ≥ 1 and

µ 2 ≥ 1 such that ρ 1 = µ 1 + k and ρ 2 = µ 2 + k.
By a direct calculation, we can check that the involutive distribution D k-1 is an- nihilated by

µ 1 + µ 2 differentials dz 1 i , 1 ≤ i ≤ µ 1 , and dz 2 j , 1 ≤ j ≤ µ 2 . Since rank D k-1 = 2k and n = µ 1 + µ 2 + 2k + 1, there exists a function ψ = ψ( z1 µ 1 +1 , z2 µ 2 +1
) such that dψ is independent at z 0 of dz 1 i , dz 2 j and annihilates D k-1 . It follows

L ad k-1 f g 2 ψ = ∂ψ ∂z 1 µ 1 +1 + b( z1 µ 1 +1 , z2 µ 2 +1 ) ∂ψ ∂z 2 µ 2 +1
= 0 and since dψ and dz 1 i , dz 2 j are independent at z 0 , we deduce

∂ψ ∂z 2 µ 2 +1 (z 0 ) = 0. Define ẑ2 µ 2 +1+j = L j f ψ, for 0 ≤ j ≤ k,
a valid change of coordinates and, after applying a suitable invertible static feedback transformation, bring the system into the form:

                             ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 µ 1 -1 = z 1 µ 1 ż2 µ 2 -1 = z 2 µ 2 ż1 µ 1 = z 1 µ 1 +1 ż2 µ 2 = d( z1 µ 1 +1 , z2 µ 2 , ẑ2 µ 2 +1 ) ż1 µ 1 +1 = z 1 µ 1 +2 ˙ẑ 2 µ 2 +1 = ẑ2 µ 2 +2 . . . . . . ż1 µ 1 +k = v1 ˙ẑ 2 µ 2 +k = ẑ2 µ 2 +k+1 ˙ẑ 2 µ 2 +k+1 = v2 with ∂d ∂ ẑ2 µ 2 +1 (z 0 ) = 0 and (ϕ 1 , ϕ 2 ) = (z 1 1 , z 2 1 
).

We will next analyze the conditions satisfied by the function d. To simplify the notation, we will write z (respectively v) instead of ẑ (respectively v). We have

D k-1 = span { ∂ ∂z 1 µ 1 +1 , • • • , ∂ ∂z 1 µ 1 +k , ∂ ∂z 2 µ 2 +2 , • • • , ∂ ∂z 2 µ 2 +k+1
} and

D k = D k-1 + span { ∂ ∂z 1 µ 1 + ∂d ∂z 1 µ 1 ∂ ∂z 2 µ 2 , ∂ ∂z 2 µ 2 +1 }. If [D k-1 , D k ] ⊂ D k , then it follows immediately that ∂ 2 d ∂(z 1 64 PROOFS Since [ad k f g 1 , ad k f g 2 ] ∈ D k , ∂d 2 ∂z 2 µ 2 +1 (z 0 ) = 0.
It is easy to see that L g i L j f d 2 = 0, for 1 ≤ i ≤ 2 and 0 ≤ j ≤ k -1. Moreover, the functions L j f d 2 are independent, for 0 ≤ j ≤ k, then the following change of coordinates z2 µ 2 +1+j = L j f d 2 , for 0 ≤ j ≤ k, is valid and, after applying a suitable invertible static feedback transformation, it brings the system into the form:

                             ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 µ 1 -1 = z 1 µ 1 ż2 µ 2 -1 = z 2 µ 2 ż1 µ 1 = z 1 µ 1 +1 ż2 µ 2 = d( z1 µ 1 +1 , z2 µ 2 , z2 µ 2 +1 ) + z2 µ 2 +1 z 1 µ 1 +1 ż1 µ 1 +1 = z 1 µ 1 +2 ż2 µ 2 +1 = z2 µ 2 +2 . . . . . . ż1 µ 1 +k = ṽ1 ż2 µ 2 +k = z2 µ 2 +k+1 ż2 µ 2 +k+1 = ṽ2 with (ϕ 1 , ϕ 2 ) = (z 1 1 , z 2 1
). This is the normal form (NF2) corresponding to the case

[D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] ∈ D k .
Note that we have also proved that the minimal x-flat outputs and the normal forms (NF1) (resp. (NF2)) are compatible. Indeeed, if (ϕ 1 , ϕ 2 ) is a minimal x-flat output at x 0 , then there exists an invertible static feedback transformation bringing the system Σ into (NF1) with ϕ 1 = z 1 1 and ϕ 2 = z 2 1 (resp. into (NF2) with ϕ 1 = w 1 1 and ϕ 2 = w 2 1 ).

(iii) ⇒ (i). Consider a control system Σ static feedback equivalent to the normal form (NF2). It is clear that Σ is flat, with (ϕ 1 , ϕ 2 ) = (w 1 1 , w 2 1 ) minimal flat outputs of differential weight n + 3.

Proof of Proposition 1.5.1

Consider the control system

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) that is x-flat at x 0 (at (x 0 , u 0 ), if k = 0), of differential weight n + 3.
We start by proving item (i

) corresponding to D k + [D k , D k ] = TX or D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Necessity. Let the pair (ϕ 1 , ϕ 2 ) be a minimal flat output, defined on a neighborhood X of x 0 . According to Proposition 1.4.1 and its proof, there exists a valid lo- cal change of coordinates in which the system, after applying a suitable feedback, takes the form (NF2), with (ϕ 1 , ϕ 2 ) = (w 1 1 , w 2 1 ). Recall that ρ and µ are defined as

ρ = k + max(µ 1 , µ 2 ), µ = k + min(µ 1 , µ 2 ).
It is easy to check that (after permuting ϕ 1 and ϕ 2 , if necessary)

dϕ 1 ⊥ H ρ-1 dϕ 2 ⊥ H µ-1 and dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (x 0 ) = 0 are valid on X .
The distributions H i are feedback invariant which proves necessity of the conditions. Sufficiency. Since Σ is x-flat with of differential weight n + 3, it follows, by Proposition 1.4.1, that it is locally static feedback equivalent to (NF2). Bring Σ into the form (NF2), around w 0 . In coordinates w we have

D i = span { ∂ ∂w 1 µ 1 +k-i , • • • , ∂ ∂w 1 µ 1 +k , ∂ ∂w 2 µ 2 +k+1-i , • • • , ∂ ∂w 2 µ 2 +k+1 }, for 0 ≤ i ≤ k -1, D k = D k-1 + span { ∂ ∂w 1 µ 1 + ∂d ∂w 1 µ 1 ∂ ∂w 2 µ 2 , ∂ ∂w 2 µ 2 +1 }, where d satisfies ∂d ∂w 2 µ 2 +1 (w 0 ) = 0. First notice that the new direction completing D k to D k = H k+1 is necessarily ∂ ∂w 2 µ 2
and is collinear with ad k+1 f g 2 . It follows that g 2 plays the role of g c defined by item

(A2) of Theorem 1.3.1, if D k + [D k , D k ] = TX. Moreover, if D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k , then we have [ad k-1 f g 1 , ad k f g 1 ] ∈ D k and [ad k-1 f g 2 , D k ] ⊂ D k , there- fore the vector field g 2 is such that the distribution H k , defined by conditions(C1) - (C3) of Theorem 1.3.4 (ii), is given by H k = D k-1 + span {ad k f g 2 }. Let us suppose µ 1 < µ 2 .
The same reasoning applies if µ 1 > µ 2 or µ 1 = n and we do not develop these cases here. We have

H k+µ 2 -1 = H ρ-1 = span { ∂ ∂w 1 1 , • • • , ∂ ∂w 1 µ 1 +k , ∂ ∂w 2 2 , • • • , ∂ ∂w 2 µ 2 +k+1 }, H k+µ 1 -1 = H µ-1 = span { ∂ ∂w 1 2 , • • • , ∂ ∂w 1 µ 1 +k , ∂ ∂w 2 µ 2 -p+2 , • • • , ∂ ∂w 2 µ 2 +k+1

}.

Since dϕ 1 ⊥ H ρ-1 , it follows that we choose ϕ 1 as a function depending on w 2 1 only and satisfying

∂ϕ 1 ∂w 2 1 (w 0 ) = 0. We deduce that L j f ϕ 1 , for 1 ≤ j ≤ µ 2 -1, are independent functions and that L j f ϕ 1 depend on w 2 1 , w 2 2 , • • • , w 2 j+1 .
Since

dϕ 2 ⊥ H µ-1 and dϕ 2 ∧ dϕ 1 ∧ dL f ϕ 1 ∧ • • • ∧ dL ρ-µ f ϕ 1 (w 0 ) = 0, where ρ -µ = µ 2 -µ 1 , we choose ϕ 2 = ϕ 2 (w 1 1 , w2 µ 2 -µ 1 +1 ) and ∂ϕ 2 ∂w 1 1 (w 0 ) = 0. We deduce that L j f ϕ 2 , for 1 ≤ j ≤ µ 1 + k -1, are independent functions of w 1 1 , • • • , w 1 j+1 , w 2 1 , • • • w 2 µ 2 -µ 1 +j+1
. We apply the following change of coordinates

w1 j = L j-1 f ϕ 1 , 1 ≤ j ≤ µ 1 + k, w2 j = L j-1 f ϕ 2 , 1 ≤ j ≤ µ 2 ,
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and an invertible static feedback transformation, to get

                             ẇ1 1 = w1 2 ẇ2 1 = w2 2 . . . . . . ẇ1 µ 1 -1 = w1 µ 1 ẇ2 µ 2 -1 = w2 µ 2 ẇ1 µ 1 = w1 µ 1 +1 ẇ2 µ 2 = d( w1 µ 1 +1 , w2 µ 2 +1 ) ẇ1 µ 1 +1 = w1 µ 1 +2 ẇ2 µ 2 +1 = w 2 µ 2 +2 . . . . . . ẇ1 µ 1 +k = v 1 ẇ2 µ 2 +k = w 2 µ 2 +k+1 ẇ2 µ 2 +k+1 = v 2 This is the normal form (NF2), with ϕ 1 = w1
1 and ϕ 2 = w2 1 as minimal x-flat outputs. It follows that (ϕ 1 , ϕ 2 ) is also a minimal flat output of the original system Σ.

Let us now show that the pair (ϕ 1 , ϕ 2 ) of minimal flat outputs is unique, up to a diffeomorphism. We have already proved that the minimal x-flat outputs and the normal form (NF2) are compatible, i.e., if (ϕ 1 , ϕ 2 ) is a minimal x-flat output at x 0 , we can introduce new coordinates in which the original system Σ takes, via an invertible static feedback transformation, the form (NF2), with ϕ 1 and ϕ 2 playing the role of the top variables w 1 1 and w 2 1 . Let ( φ1 , φ2 ) be another minimal flat output. Clearly, ( φ1 , φ2 ) is also a minimal flat output of (NF2). We have just proven that

d φ1 ⊥ H ρ-1 d φ2 ⊥ H µ-1 .
The distribution H ρ-1 is of corank one in TX so dϕ 1 and d φ1 are collinear and thus there exists a function h 1 such that φ1 = h 1 (ϕ 1 ), where h ′ 1 (•) = 0. We have

(H µ-1 ) ⊥ = span {dϕ 2 , dϕ 1 , dL f ϕ 1 , • • • , dL ρ-µ f ϕ 1 } = span {d φ2 , d φ1 , dL f φ1 , • • • , dL ρ-µ f φ1 } = span {d φ2 , dϕ 1 , dL f ϕ 1 , • • • , dL ρ-µ f ϕ 1 }, implying that dϕ 2 and d φ2 are collinear modulo dϕ 1 , dL f ϕ 1 , • • • , dL ρ-µ f ϕ 1 , thus there exists a function h 2 , invertible with respect to ϕ 2 , such that φ2 = h 2 (ϕ 2 , ϕ 1 , L f ϕ 1 , • • • , L ρ-µ f ϕ 1 ).
We now turn to item (ii) corresponding to the case

D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k .
Necessity. Let the pair (ϕ 1 , ϕ 2 ) be a minimal flat output of Σ, defined on a neighborhood X of x 0 . According to Proposition 1.4.1 and its proof, there exists a valid local change of coordinates in which the system, after applying a suitable feedback, takes the form

(NF2) :              ẇ1 1 = w 1 2 ẇ2 1 = d( w1 1 , w2 2 ) + w 1 2 w 2 2 ẇ1 2 = w 1 3 ẇ2 2 = w 2 3 . . . . . . ẇ1 k+1 = ũ1 ẇ2 k+1 = w 2 k+2 ẇ2 k+2 = ũ2 where ( ∂d ∂w 2 2 + w 1 2 )(w 0 ) = 0 and (ϕ 1 , ϕ 2 ) = (w 1 1 , w 2 1 ) (permute ϕ 1 and ϕ 2 , if necessary). It is clear that (dϕ 1 ∧ ϕ 2 )(w 0 ) = 0. Moreover, we have L = (span {dϕ 1 , ϕ 2 }) ⊥ = span { ∂ ∂w 1 k+1 , • • • , ∂ ∂w 1 2 , ∂ ∂w 2 k+2 , • • • , ∂ ∂w 2 2 },
which is clearly involutive and satisfies D k-1 ⊂ L ⊂ D k , where both inclusions are of corank one. The vector field

g 2 = ∂ ∂w 2 k+2 is such that L = D k-1 + span {ad k f g 2 } and since ( ∂d ∂w 2 2 + w 1 2 )(w 0 ) = 0, we have L ad k f g 2 ϕ 2 (w 0 ) = 0.
Sufficiency. Since Σ is x-flat at x 0 , with the differential weight n + 3, it follows, by Proposition 1.4.1 that it can be locally transformed into the form

(NF2) :              ẇ1 1 = w 1 2 ẇ2 1 = a( w1 1 , w2 2 ) + w 1 2 w 2 2 ẇ1 2 = w 1 3 ẇ2 2 = w 2 3 . . . . . . ẇ1 k+1 = ũ1 ẇ2 k+1 = w 2 k+2 ẇ2 k+2 = ũ2
Applying the following change of coordinates:

w = w 2 1 -1 2 w 1 1 w 2 2 z 1 i = w 1 i z 2 i = w 2 i+1
for 1 ≤ i ≤ k + 1, we get the following symmetric form (NF2) :

             ẇ = a(w, z 1 1 , z 2 1 ) + 1 2 z 1 2 z 2 1 -1 2 z 1 1 z 2 2 ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 k = z 1 k+1 ż2 k = z 2 k+1 ż1 k+1 = ũ1 ż2 k+1 = ũ2
for which the vector fields g 1 and g 2 play the same role (this will be useful for computing the distribution L).

Since the involutive distribution L = (span {dϕ 1 , ϕ 2 }) ⊥ satisfies D k-1 ⊂ L ⊂ D k , it is immediate that both inclusions are of corank one (otherwise either L = D k and D k would be involutive or L = D k-1 and rk D krk D k-1 would be equal to one). It follows that L can be written as

L = D k-1 + span {α 1 ad k f g 1 + α 2 ad k f g 2 },
where α 1 , α 2 are two smooth functions non vanishing simultaneously. Since g 1 , g 2 play the same role for the form (NF2), there is no loss in generality in assuming

α 2 (w 0 , z 0 ) = 0. Thus, L = D k-1 + span {ad k f (g 2 + αg 1 )} = D k-1 + span {ad k f g c }.
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where α = α 1 α 2 and g c = g 2 + αg 1 . Applying the invertible static feedback transformation ũ1 = v 1 + αv 2 and ũ2 = v 2 , we get (NF2) :

             ẇ = a(w, z 1 1 , z 2 1 ) + 1 2 z 1 2 z 2 1 -1 2 z 1 1 z 2 2 ż1 1 = z 1 2 ż2 1 = z 2 2 . . . . . . ż1 k = z 1 k+1 ż2 k = z 2 k+1 ż1 k+1 = v 1 + α(w, z)v 2 ż2 k+1 = v 2 for which g 2 = g c = ∂ ∂z 2 k+1 + α(x, z, w) ∂ ∂z 1 k+1
, where g c is the vector field defined above.

By an induction argument, it can be shown that

D i = span { ∂ ∂z 1 k+1-i , • • • , ∂ ∂z 1 k+1 , ∂ ∂z 2 k+1-i , • • • , ∂ ∂z 2 k+1 }, for 1 ≤ i ≤ k -1, and
ad k f g 1 = (-1) k ( ∂ ∂z 1 1 + 1 2 z 2 1 ∂ ∂w ), ad k f g c = (-1) k ( ∂ ∂z 2 1 - 1 2 z 1 1 ∂ ∂w + α( ∂ ∂z 1 1 + 1 2 z 2 1 ∂ ∂w )) mod D k-1 , then L = span { ∂ ∂z 1 2 , • • • , ∂ ∂z 1 k+1 , ∂ ∂z 2 2 , • • • , ∂ ∂z 2 k+1 , ∂ ∂z 2 1 - 1 2 z 1 1 ∂ ∂w + α( ∂ ∂z 1 1 + 1 2 z 2 1 ∂ ∂w )}.
Since L = (span {dϕ 1 , dϕ 2 }) ⊥ is involutive, we deduce that α, ϕ 1 and ϕ 2 are functions of z 1 1 , z 2 1 and w, only. Moreover, ϕ i satisfies

∂ϕ i ∂z 2 1 - 1 2 z 1 1 ∂ϕ i ∂w + α( ∂ϕ i ∂z 1 1 + 1 2 z 2 1 ∂ϕ i ∂w ) = 0, 1 ≤ i ≤ 2.
Since

dϕ 1 ∧ dϕ 2 (w 0 , z 0 ) = 0 and TX = L + span {ad k f g 1 , [ad k f g 1 , ad k f g 2 ]}, it follows rk L ad k f g 1 ϕ 1 L [ad k f g 1 ,ad k f g 2 ] ϕ 1 L ad k f g 1 ϕ 2 L [ad k f g 1 ,ad k f g 2 ] ϕ 2 (w 0 , z 0 ) = 2.
We have

[ad k f g 1 , ad k f g 2 ] = ∂ ∂w mod span {ad k f g 1 }. Therefore, the above rank becomes rk   ∂ϕ 1 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 1 ∂w ∂ϕ 1 ∂w ∂ϕ 2 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 2 ∂w ∂ϕ 2 ∂w   (w 0 , z 0 ) = 2.
This implies rk 

  ∂ϕ 1 ∂z 1 1 ∂ϕ 1 ∂w ∂ϕ 2 ∂z 1 1 ∂ϕ 2 ∂w   (w 0 , z 0 ) = 2,
= ϕ 1 (z 1 1 , z 2 1 , w) and z1 1 = ϕ 2 (z 1 1 , z 2 1 , w):                      ẇ = (z 1 2 -αz 2 2 )( ∂ϕ 1 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 1 ∂w ) + a ∂ϕ 1 ∂w ż1 1 = (z 1 2 -αz 2 2 )( ∂ϕ 2 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 2 ∂w ) + a ∂ϕ 2 ∂w ż2 1 = z 2 2 ż1 2 = z 1 3 ż2 2 = z 2 3 . . . . . . ż1 k = z 1 k+1 ż2 k = z 2 k+1 ż1 k+1 = v 1 + α(x, z, w)v 2 ż2 k+1 = v 2 with (ϕ 1 , ϕ 2 ) = ( w, z1 1 ). Since (L ad k f g 1 ϕ 1 , L ad k f g 1 ϕ 2 )(w 0 , z 0 ) = (0, 0), we have ( ∂ϕ 1 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 1 ∂w , ∂ϕ 2 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 2 ∂w )(ξ 0 ) = (0, 0)
, where ξ 0 = ( w0 , z 0 ), and we can assume, without lose of generality that

∂ϕ 2 ∂z 1 1 + 1 2 z 2 1 ∂ϕ 2 ∂w (ξ 0 ) = 0. Therefore, the following change of coordinates z1 i = L i-1 f ϕ 2 , for 2 ≤ i ≤ k + 1 is
valid and brings the system into the form

             ẇ = a( z1 1 , z 2 1 , w) z1 2 + b( z1 1 , z 2 1 , w) ż1 1 = z1 2 ż2 1 = z 2 2 . . . . . . ż1 k = z1 k+1 ż2 k = z 2 k+1 ż1 k+1 = ṽ1 ż2 k+1 = ṽ2 with (ϕ 1 , ϕ 2 ) = ( w, z1
1 ). In these coordinates, we have

D k = span { ∂ ∂z 1 1 + a ∂ ∂w , ∂ ∂z 1 2 , • • • , ∂ ∂z 1 k+1 , ∂ ∂z 2 1 , • • • , ∂ ∂z 2 k+1 }. Since [ad k f g 1 , ad k f g 2 ] ∈ D k , it follows that ∂a ∂z 2 1
(w 0 , z 0 ) = 0 and we put z2 i = L i-1 f a, for 2 ≤ i ≤ k + 1, and apply a suitable invertible feedback transformation, to get

             ẇ = z2 1 z1 2 + b( z1 1 , z2 1 , w) ż1 1 = z1 2 ż2 1 = z2 2 . . . . . . ż1 k = z1 k+1 ż2 k = z2 k+1 ż1 k+1 = v1 ż2 k+1 = v2 with (ϕ 1 , ϕ 2 ) = ( w, z1 1 ). We have L = D k-1 + span { ∂ ∂ z2 1 } = D k-1 + span {ad k f g 2 }
, so g 2 plays the role of the vector field g 2c and from (L ad k+1

f g 2c ϕ 1 , L ad k+1 f g 2c ϕ 2 )(w 0 , z 0 ) = (0, 0), it follows that ( z1 2 + ∂b ∂ z2 1
)(w 0 , z 0 ) = 0. This is the normal form (NF2) with (ϕ 1 , ϕ 2 ) = ( w, z1 1 ) a minimal x-flat output of differential weight n + 3. It remains to study the uniqueness of (ϕ 1 , ϕ 2 ). The results of Proposition 1.5.2 show that for a given arbitrary function ϕ 1 satisfying

dϕ 1 ⊥ D k-1 and (L ad k k g 1 ϕ 1 , L ad k k g 2 ϕ 1 )(x 0 ) = 0,
PROOFS there always exists a function ϕ 2 , independent with ϕ 1 such that (ϕ 1 , ϕ 2 ) is a minimal flat output of Σ at x 0 (respectively at (x 0 , u 0 ), if k = 0). We have already proved that the minimal x-flat outputs and the normal form (NF2) are compatible, i.e., if (ϕ 1 , ϕ 2 ) is a minimal x-flat output at x 0 , we can introduce new coordinates (permute ϕ 1 and ϕ 2 , if necessary) w 1 1 = ϕ 1 and w 2 1 = ϕ 2 and complete them to a coordinate system in which the original system Σ takes, via an invertible static feedback transformation, the form (NF2) with ϕ 1 = w 1 1 and ϕ 2 = w 2 1 . Suppose that there exist another function φ2 such that (ϕ 1 , φ2 ) = (w 1 1 , φ2 ) is a minimal flat output of Σ. By Proposition 1.5.2, φ2 must satisfy

d φ2 ⊥ D k-1 and L w φ2 = 0, where w = (L ad k f g 2 ϕ 1 )ad k f g 1 -(L ad k f g 1 ϕ 1 )ad k f g 2 = -∂ ∂w 2 2 . It follows that φ2 = h(w 1 1 , w 2 1 ) = h(ϕ 1 , ϕ 2 )
, where h is a smooth function such that ∂h ∂w 2 1 (w 0 ) = 0, i.e., h is invertible with respect to w 2 1 = ϕ 2 .

Proof of Proposition 1.5.2

Proof of (i). It is an immediate consequence of Proposition 1.5.1 (i).

Proof of (ii). Necessity. Assume that ϕ 2 ) be its minimal flat output defined in a neighborhood X of x 0 . By Proposition 1.4.1 we can bring Σ into the form

Σ : ẋ = f (x) + u 1 g 1 (x) + u 2 g 2 (x) is an x-flat control system of differential weight n + 3 and such that D k + [D k , D k ] = TX and [D k-1 , D k ] ⊂ D k . Let (ϕ 1 ,
(NF2)              ẇ1 1 = w 1 2 ẇ2 1 = a( w1 1 , w2 2 ) + w 1 2 w 2 2 ẇ1 2 = w 1 3 ẇ2 2 = w 2 3 . . . . . . ẇ1 k+1 = ũ1 ẇ2 k+1 = w 2 k+2 ẇ2 k+2 = ũ2
with ϕ 1 = w 1 1 and ϕ 2 = w 2 1 . By a direct computation, we get L w j ϕ i = 0, for 1 ≤ j ≤ 2k and 1 ≤ i ≤ 2, where

w j = ∂ ∂w 1 k+2-j , for 1 ≤ j ≤ k, and w k+j = ∂ ∂w 2 k+3-j , for 1 ≤ j ≤ k,
and L w ϕ 2 = 0, where w = -∂ ∂w 2 2 . Thus proves the desired relations on X .

It remains to prove that for i = 1 or 2 we have (L ad k f g 1 ϕ i , L ad k f g 2 ϕ i )(x 0 ) = (0, 0). Bring Σ, locally around x 0 ∈ X , into the form (NF2), which is always possible by our assumption. Then the equations, that we have just proved on X , implies that

dϕ i ⊥ D k-1 , for 1 ≤ i ≤ 2. Assume L ad k f g 1 ϕ i (w 0 ) = L ad k f g 2 ϕ i (w 0 ) = 0, for 1 ≤ i ≤ 2 (
otherwise the condition that we want to show holds). It follows that rk

L ad k f g 1 ϕ 1 L ad k f g 2 ϕ 1 L [ad k f g 1 ,ad k f g 2 ] ϕ 1 L ad k f g 1 ϕ 2 L ad k f g 2 ϕ 2 L [ad k f g 1 ,ad k f g 2 ] ϕ 2 (w 0 ) = 1
contradicting the independence of flat outputs. Indeed, since (dϕ

1 ∧ dϕ 2 )(w 0 ) = 0 and TX = D k-1 + span {ad k f g 1 , ad k f g 2 , [ad k f g 1 , ad k f g 2 ]}
, the above rank must be 2. Sufficiency. In order to find ϕ 1 , we have to solve the following system of first order PDE's L w j ϕ 1 = 0, 1 ≤ j ≤ 2k, (L ad k f g 1 ϕ 1 , L ad k f g 2 ϕ 1 )(x 0 ) = (0, 0), which always possesses solutions, since D k-1 = span {w j , 1 ≤ j ≤ 2k} is involutive. Moreover, since the corank of D k-1 in TX is three, the space of solutions is that of functions of three variables.

To find the second component of the flat output, ϕ 2 , we have to solve the following system of n -2 = 2k + 1 equations

L w j ϕ 2 = 0, 1 ≤ j ≤ 2k, L w ϕ 2 = 0, where w = (L ad k f g 2 ϕ 1 )ad k f g 1 -(L ad k f g 1 ϕ 1 )ad k f g 2 .
Notice that ϕ 1 solves this system and recall that we are looking for a solution ϕ 2 independent with ϕ 1 . By Frobenious theorem, the above system has two independent solutions if and only if the distribution

L = span {w, w j , 1 ≤ j ≤ 2k} = D k-1 + span {w} is involutive.
Below, we will prove that L is, indeed, involutive. To this end, it is sufficient to show that [ad 

j f g i , w] ∈ L, for any 1 ≤ i ≤ 2 and 0 ≤ j ≤ k -1. Since [D k-1 , D k ] ⊂ D k , it
L [ad j f g i ,ad k f g l ] ϕ 1 = α j il L ad k f g 1 ϕ 1 + β j il L ad k f g 2 ϕ 1 . On the other hand, L [ad j f g i ,ad k f g l ] ϕ 1 = L ad j f g i L ad k f g l ϕ 1 -L ad k f g l L ad j f g i ϕ 1 = L ad j f g i L ad k f g l ϕ 1 .
We have

[ad j f g i , w] = [ad j f g i , (L ad k f g 2 ϕ 1 )ad k f g 1 -(L ad k f g 1 ϕ 1 )ad k f g 2 ] = (L ad k f g 2 ϕ 1 )[ad j f g i , )ad k f g 1 ] -(L ad k f g 1 ϕ 1 )[ad j f g i , ad k f g 2 ] +(L ad j f g i L ad k f g 2 ϕ 1 )ad k f g 1 -(L ad j f g i L ad k f g 1 ϕ 1 )ad k f g 2 = (L ad k f g 2 ϕ 1 )(α j i1 ad k f g 1 + β j i1 ad k f g 2 ) -(L ad k f g 1 ϕ 1 )(α j i2 ad k f g 1 + β j i2 ad k f g 2 ) +(α j i2 L ad k f g 1 ϕ 1 + β j i2 L ad k f g 2 ϕ 1 )ad k f g 1 -(α j i1 L ad k f g 1 ϕ 1 + β j i1 L ad k f g 2 ϕ 1 )ad k f g 2 mod D k-1 = ((α j i1 + β j i2 )L ad k f g 2 ϕ 1 )ad k f g 1 -((α j i1 + β j i2 )L ad k f g 1 ϕ 1 )ad k f g 2 mod D k-1 = (α j i1 + β j i2 )w mod D k-1 = 0 mod L,

Introduction

In this paper, we study flatness of nonlinear control systems of the form

Ξ : ẋ = F(x, u),
where x is the state defined on a open subset X of R n and u is the control taking values in an open subset U of R m (more generally, an n-dimensional manifold X and an m-dimensional manifold U, respectively). The dynamics F are smooth and the word smooth will always mean C ∞ -smooth.

The notion of flatness has been introduced in control theory in the 1990's, by Fliess, Lévine, Martin and Rouchon [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], see also [START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF], and has attracted a lot of attention because of its multiple applications in the problem of constructive controllability and motion planning (see, e.g. [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Pereira Da Silva | Relative flatness and flatness of implicit systems[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF][START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF][START_REF] Schlacher | Construction of flat outputs by reduction and elimination[END_REF][START_REF] Van Nieuwstadt | Differential flatness and absolute equivalence of nonlinear control systems[END_REF]). Flat systems form a class of control systems whose set of trajectories can be parametrized by m functions and their time-derivatives, m being the number of controls. More precisely, the system Ξ : ẋ = F(x, u) is flat if we can find m functions, ϕ i (x, u, . . . , u (r) ), for some r ≥ 0, such that x = γ(ϕ, . . . , ϕ (s-1) ) and u = δ(ϕ, . . . , ϕ (s) ),

(2.1)
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for a certain integer s, where ϕ = (ϕ 1 , . . . , ϕ m ) is called a flat output. Therefore the time-evolution of all state and control variables can be determined from that of flat outputs without integration and all trajectories of the system can be completely parameterized. A similar notion, of systems of undetermined differential equations integrable without integration, has been studied by Hilbert [START_REF] Hilbert | Über den Begriff der Klasse von Differentialgleichungen[END_REF] and Cartan [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF], see also [START_REF] Van Nieuwstadt | Differential flatness and absolute equivalence of nonlinear control systems[END_REF], where connections between Cartan prolongations and flatness were studied.

Flatness is closely related to the notion of feedback linearization. It is well known that systems linearizable via invertible static feedback are flat. Their description (2.1) uses the minimal possible, which is n + m, number of time-derivatives of the components of the flat output ϕ. In general, a flat system is not linearizable by static feedback, with the exception of the single-input case where flatness reduces to static feedback linearization, see [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF] and [START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]. For any flat system, that is not static feedback linearizable, the minimal number of time-derivatives of ϕ i needed to express x and u (which is called the differential weight [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) is thus bigger than n + m and measures actually the smallest possible dimension of a precompensator linearizing dynamically the system. Therefore the simplest systems for which the differential weight is bigger than n + m are systems linearizable via one-dimensional precompensator, thus of differential weight n + m + 1. They form the class that we are studying in the paper: our goal is to give a geometric characterization of control-affine systems that become static feedback linearizable after a one-fold prolongation of a suitably chosen control.

The paper is organized as follows. In Section 2.2, we recall the definition of flatness and define the notion of differential weight of a flat system. In Section 2.3, we give our main results: we characterize control-affine systems that become static feedback linearizable after a one-fold prolongation. They form a particular class of flat systems, that is, flat systems of differential weight n + m + 1. We present their normal forms in Section 2.4 and describe all minimal flat outputs in Section 2.5. We illustrate our results by two examples in Section 2.6 and provide proofs in Section 2.7.

Flatness

The fundamental property of flat systems is that all their solutions may be parametrized by a finite number of functions and their time-derivatives. Fix an integer l ≥ -1 and denote U l = U × R ml and ūl = (u, u, . . . , u (l) ). For l = -1, the set U -1 is empty and ū-1 in an empty sequence. Definition 2.2.1. The system Ξ : ẋ = F(x, u) is flat at (x 0 , ūl 0 ) ∈ X × U l , for l ≥ -1, if there exists a neighborhood O l of (x 0 , ūl 0 ) and m smooth functions ϕ i = ϕ i (x, u, u, . . . , u (l) ), 1 ≤ i ≤ m, defined in O l , having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ m, such that

x i = γ i (ϕ, φ, . . . , ϕ (s-1) ) and u j = δ j (ϕ, φ, . . . , ϕ (s) )

along any trajectory x(t) given by a control u(t) that satisfies (x(t), u(t), . . . , u (l) (t)) ∈ O l , where ϕ = (ϕ 1 , . . . , ϕ m ) and is called a flat output.

Whenever necessary to specify the number of derivatives of u on which the components of the flat outputs ϕ depend, we will say that the system Ξ is (x, u, • • • , u (r) )flat if the rth-derivative is the highest involved. In the particular case ϕ i = ϕ i (x), for 1 ≤ i ≤ m, we will say that the system is x-flat.

In general, r is smaller than the integer l needed to define the neighborhood O l which, in turn, is smaller than the numbers of derivatives of ϕ that are involved. In our study, r is always equal to -1, i.e., the flat outputs depend on x only, and l is -1 or 0.

The minimal number of derivatives of components of a flat output, needed to express x and u, will be called the differential weight of that flat output and is formalized as follows. By definition, for any flat output ϕ of Ξ there exist integers s 1 , . . . , s m such that

x = γ(ϕ 1 , φ1 , . . . , ϕ

(s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ).
Moreover, we can choose (s 1 , . . . , s m ) such that (see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) if for any other m-tuple (s 1 , . . . , sm ) we have

x = γ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ), then s i ≤ si , for 1 ≤ i ≤ m. We will call ∑ m i=1 (s i + 1) = m + ∑ m i=1 s i the differential weight of ϕ.
A flat output of Ξ is called minimal if its differential weight is the lowest among all flat outputs of Ξ. We define the differential weight of a flat system to be equal to the differential weight of a minimal flat output.

Consider a control-affine system

Σ : ẋ = f (x) + m ∑ i=1 u i g i (x), (2.2) 
where f and g 1 , • • • , g m are smooth vector fields on X. The system Σ is linearizable by static feedback if it is equivalent via a diffeomorphism z = φ(x) and an invertible feedback transformation, u = α(x) + β(x)v, to a linear controllable system Λ : ż = Az + Bv.

The problem of static feedback linearization was solved by Jakubczyk and Respondek [START_REF] Jakubczyk | On linearization of control systems[END_REF] and Hunt and Su [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF] who gave geometric necessary and sufficient conditions. The following theorem recalls their result and, furthermore, gives an equivalent way of describing static feedback linearizable systems from the point of view of differential weight.

Define inductively the sequence of distributions

D i+1 = D i + [ f , D i ], where D 0 is given by D 0 = span {g 1 , • • • , g m }.
Theorem 2.2.1. The following conditions are equivalent:

(i) Σ is locally static feedback linearizable, around x 0 ∈ X;

(ii) Σ is locally static feedback equivalent, around x 0 ∈ X, to the Brunovský canonical form (Br) :

żj i = z j+1 i żρ i i = v i
where 1 ≤ i ≤ m, 1 ≤ j ≤ ρ i -1, and ∑ m i=1 ρ i = n; (iii) For any i ≥ 0, the distributions D i are of constant rank, around x 0 ∈ X, involutive and D n-1 = TX;

(iv) Σ is flat at x 0 ∈ X, of differential weight n + m.

The geometry of static feedback linearizable systems is given by the following sequence of nested involutive distributions:

D 0 ⊂ D 1 ⊂ • • • ⊂ D n-1 = TX.
It is well known that a feedback linearizable system is static feedback equivalent to the Brunovský canonical form, see [START_REF] Brunovsky | A classification of linear controllable systems[END_REF], and is clearly flat

with ϕ = (ϕ 1 , • • • , ϕ m ) = (z 1 1 , • • • , z 1 m
) is a minimal flat output (of differential weight n + m). Therefore, for static feedback linearizable systems, the representation of all states and controls uses the minimal possible, which is n + m, number of time-derivatives of ϕ i and an equiv- alent way of describing them is that they are flat systems of differential weight n + m.

In general, a flat system is not linearizable by static feedback, with the exception of the single-input case. Any single input-system is flat if and only if it is static feedback linearizable, see [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF], and thus of differential weight n + 1. Flat systems can be seen as a generalization of linear systems. Namely they are linearizable via dynamic, invertible and endogenous feedback, see [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF]. Our goal is thus to describe the simplest flat systems that are not static feedback linearizable: controlaffine systems that become static feedback linearizable after one-fold prolongation, which is the simplest dynamic feedback. They are flat systems of differential weight n + m + 1, see Proposition 2.3.1 below. In this paper, we will completely characterize them and show how their geometry differs and how it reminds that given by the involutive distributions D i for static feedback linearizable systems. We will also give normal forms compatible with the minimal flat outputs (thus generalizing the Brunovský normal form).

Main results

Throughout, we deal only with systems that are not static feedback linearizable. This occurs if there exists an integer k such that D k is not involutive. Suppose that k is the smallest integer satisfying that property and assume rk D krk D k-1 ≥ 2 (see Proposition 2.7.1, in Section 2.7, asserting that the latter is necessary for dynamic linearizability via one-fold prolongation and thus for flatness of differential weight n + m + 1). We also assume m ≥ 3. The case m = 2 is studied in details in [START_REF] Nicolau | Two-inputs control-affine systems linearizable via one-fold prolongation and their flatness[END_REF][START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF] and will be briefly discussed at the end of this section.

We make the following assumption: (Assumption 1) From now on, unless stated otherwise, we assume that all ranks involved are constant in a neighborhood of a given x 0 ∈ X.

Remark 2.3.1. All results presented here are valid on an open and dense subset of either X or X × U and hold locally, around a given point of that set.

The proofs of all results of this section are given in Section 2.7 (except that of Proposition 2.3.1 which is presented in Appendix 2.A).

Proposition 2.3.1. Consider a control system Ξ : ẋ = F(x, u). The following conditions are equivalent:

(i) Ξ is flat at (x 0 , ūl 0 ), of differential weight n + m + 1, for a certain l ≥ 1; (ii) Ξ is x-flat at (x 0 , u 0 ), of differential weight n + m + 1;
(iii) There exists, around x 0 , an invertible static feedback transformation u = ψ(x, ũ) bringing the system Ξ into Ξ : ẋ = F(x, ũ) = F(x, ψ(x, u)), such that the prolongation

Ξ(1,0,...,0) : ẋ = F(x, y 1 , v 2 , • • • , v m ) ẏ1 = v 1 is locally static feedback linearizable, with y 1 = ũ1 , v i = ũi , for 2 ≤ i ≤ m.
Moreover, if Ξ is actually a control-affine system of the form Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), then the equivalence (i) ⇐⇒ (ii) ⇐⇒ (iii) holds with the general feedback u = ψ(x, ũ) being replaced by u = ψ(x, ũ) = α(x) + β(x) ũ, the system Ξ by Σ : ẋ = f (x) + ∑ m i=1 ũi gi (x) and the prolongation Ξ(1,0,...,0) by

Σ(1,0,...,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i gi (x) ẏ1 = v 1 with y 1 = ũ1 , v i = ũi , for 2 ≤ i ≤ m, f = f + αg and g = gβ, where g = (g 1 , • • • , g m ) and g = ( g1 , • • • , gm ).
To simplify the understanding of the paper, from now on, we will consider only the control-affine case. The generalization for the control-nonlinear systems is straightforward.

A system Σ satisfying (iii) will be called dynamically linearizable via invertible one-fold prolongation. Notice that Σ(1,0,...,0) is, as indicated by the notation, obtained by prolonging the control ũ1 as v 1 = u1 and keeping v i = ũi , for 2 ≤ i ≤ m. The above results asserts that for systems of differential weight n + m + 1, flatness and xflatness coincide and that, moreover, these properties are equivalent to linearizability via the simplest dynamic feedback, namely one-fold preintegration.

Let A and B be two distributions of constant rank and f a vector field. Denote

[A, B] = {[a, b] : a ∈ A, b ∈ B} and [ f , B] = {[ f , b] : b ∈ B}. Clearly, [A, B] = [A, B] + A + B (because
we take all a ∈ A and all b ∈ B and not just generators) and although the right hand side is more detailed, we will use the left hand side that is more compact. We will use that notation throughout. If A ⊂ B, we will write cork (A ⊂ B) to denote rk (B/A). So, frequently used cork

(D k ⊂ [D k , D k ]) simply means rk ([D k , D k ]/D k ) = rk (([D k , D k ] + D k )/D k ).
Recall that k is the smallest integer such that D k is not involutive. The integer k plays an important role in our study. Our main result describing flat systems of differential weight n + m + 1 is given by the two following theorems corresponding to the first noninvolutive distribution D k being either D 0 , i.e., k = 0 (Theorem 2.3.2) or D k , for k ≥ 1 (Theorem 2.3.1). For both theorems, we assume that cork

(D k ⊂ [D k , D k ]) ≥ 2.
The particular case cork (D k ⊂ [D k , D k ]) = 1 will be discussed at the end of this section (Theorem 2.3.4).

Theorem 2.3.1. Assume k ≥ 1 and cork (D k ⊂ [D k , D k ]) ≥ 2.
A control system Σ given by (2.2), is flat at x 0 , of differential weight n + m + 1, if and only if it satisfies around x 0 : (A1) There exists an involutive distribution H k ⊂ D k , of corank one;

(A2) The distributions H i , for i ≥ k + 1, are involutive, where

H i = H i-1 + [ f , H i-1 ]

;

(A3) There exists ρ such that H ρ = TX.

The geometry of systems described by the previous theorem can be summarized by the following sequence of inclusions:

D 0 ⊂ • • • ⊂ D k-1 ⊂ D k ⊂ D k 1∪ ∩ H k ⊂ H k+1 ⊂ • • • ⊂ H ρ = TX where all distributions, except D k , are involutive, D k is the involutive closure of D k
and the inclusion H k ⊂D k is of corank one. The main structural condition is the existence of a corank one involutive subdistribution H k in D k . Under the hypotheses cork

(D k ⊂ [D k , D k ]) ≥ 2,
the subdistribution H k is unique and can be explicitly calculated [START_REF] Bryant | Some aspects of the local and global theory of Pfaffian systems[END_REF][START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF]. Its construction will be described in Proposition 2.3.2, after stating Theorem 2.3.2. Moreover, under the assumption cork

(D k ⊂ [D k , D k ]) ≥ 2, the condition (A1) implies (via the Jacobi identity) the inclusion D k-1 ⊂ H k . The latter yields D k ⊂ H k+1 which gives D k ⊂ H k+1 (since H k+1 is involutive by (A2)). It is clear that in the particular case D k = TX, we have ρ = k + 1.
The previous theorem enables us to define, up to a multiplicative function, the control u p , which is given up to a multiplicative function, to be prolonged in order to obtain Σ(1,0,...,0) that is locally static feedback linearizable. According to Proposition 2.7.2(ii) in Section 2.7, to H k we can associate a unique corank one subdistribution

H in D 0 such that H k = D k-1 + ad k f H. Since rk H = m -1, we can find m functions β 1 , . . . , β m (not vanishing simultaneously) such that u p (x) = u 1 (x)β 1 (x) + • • • + u m (x)β m (x) = 0 if and only if ∑ m i=1 u i (x)g i (x) ∈ H(x)
. The to-be-prolonged control u p (becoming ũ1 after feedback) that needs to be preintegrated in order to dynamically linearize the system is

u p = ũ1 = u 1 (x)β 1 (x) + • • • + u m (x)β m (x) and we put v 1 = d dt u p = d dt ũ1 .
If k = 0, condition (A4) ′′ immediately gives u 0 / ∈ U sing (x 0 ). If k ≥ 1, it can be easily shown that (A4) ′′ does not depend on the control and that the directions in D k + [D k , D k ] that are not in H k are in fact spanned by the vector fields ad k+1 f h j , implying that D

k ⊂ H k+1 = H k + [ f , H k ]. Theorem 2.3.3 is a direct consequence of
Theorems 2.3.1 and Theorem 2.3.2 and we do not present its proof here.

In order to verify the conditions of Theorem 2.3.1 (respectively Theorems 2.3.2 and 2.3.3), we have to check whether the distribution D k (respectively D 0 ) contains an involutive subdistribution H k (respectively H 0 ) of corank one. Now we will explain how to do it. Consider a distribution D of rank d, defined on a manifold X of dimension n and define its annihilator

D ⊥ = {ω ∈ Λ 1 (X) : < ω, f >= 0, ∀ f ∈ D},
where Λ 1 (X) is the space of smooth differentials 1-forms on X. Let ω 1 , . . . , ω s , where s = nd, be differential 1-forms locally spanning the annihilator of D, that is D ⊥ = I = span {ω 1 , . . . , ω s }. The Engel rank of D equals 1 at x if and only if D is non involutive and (dω i ∧ dω j )(x) = 0 mod I, for any 1 ≤ i, j ≤ s. For any ω ∈ I, Although the distributions W (ω i ) depend on the choice of ω i 's, the distribution V does not and we have the following result [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF] based on [START_REF] Bryant | Some aspects of the local and global theory of Pfaffian systems[END_REF]. Moreover, that involutive subdistribution is unique and is given by H = V.

we define W (ω) = { f ∈ D : f dω ∈ D ⊥ }, where is the interior product. The characteristic distribution C = { f ∈ D : [ f , D] ⊂ D} of D is given by C = ∩ s i=1 W (ω i ).
(ii) Assume r = 2. The distribution D contains a corank one subdistribution L satisfying [L, L] ⊂ D if and only it verifies (ISD1)-(ISD2). In that case, L is unique and given by L = V. Moreover, L = V is the involutive distribution H of corank one in D if and only if L = L.

(iii) Assume r = 1. The distribution D contains an involutive subdistribution of corank one if and only it satisfies the condition (ISD2). In the case r = 1, if an involutive subdistribution of corank one exists, it is never unique.

The above conditions are easy to check and a unique involutive subdistribution of corank one can be constructed if r ≥ 2. As a consequence, the conditions of Theorems 2.3.1, 2.3.2 and 2.3.3 are verifiable, i.e., given a control-affine system, we can verify whether it is flat with the differential weight n + m + 1 and verification involves differentiation and algebraic operations only, without solving PDE's or bringing the system into a normal form.

Let us now consider the case r = 1, that is, cork

(D k ⊂ [D k , D k ]) = 1.
If the distribution D k contains a corank one involutive subdistribution, the latter is no longer unique (see (iii) of Proposition 2.3.2). The involutivity of D k can be lost in two differ- ent ways: either

[D k-1 , D k ] ⊂ D k or [D k-1 , D k ] ⊂ D k and there exist 1 ≤ i, j ≤ m such that [ad k f g i , ad k f g j ] / ∈ D k . As asserts Theorem 2.3.4 below, in the case [D k-1 , D k ] ⊂ D k
, the corank one involutive subdistribution H k can be uniquely identified by another argument. Namely,

H k = C k + D k-1 , where C k is the characteristic distribution (de- fined above) of D k , i.e., C k = { f ∈ D k : [ f , D k ] ⊂ D k }.
The subdistribution H k has to verify some additional conditions analogous to those of Theorem 2.3.

1. If [D k-1 , D k ] ⊂ D k and there exist 1 ≤ i, j ≤ m such that [ad k f g i , ad k f g j ] /
∈ D k , any corank one involutive subdistribution H k may serve to define a control (different distribu- tions yield different controls) whose prolongation gives a static feedback linearizable system.

Theorem 2.3.4. Assume cork (D k ⊂ [D k , D k ]) = 1 and [D k-1 , D k ] ⊂ D k . A control system Σ, given by (2.
2), is flat at x 0 , of differential weight n + m + 1, if and only if the following conditions are satisfied:

(C1) rk C k = rk D k -2, where C k is the characteristic distribution of D k ; (C2) rk (C k ∩ D k-1 ) = rk D k-1 -1;
(C3) The distributions H i , for i ≥ k, are involutive, where

H k = C k + D k-1 and H i+1 = H i + [ f , H i ];
(C4) There exists ρ such that H ρ = TX.

It is clear that the above result can be applied only for k ≥ 1, otherwise

[D k-1 , D k ] ⊂ D k would not have any sens. It can be shown that in the case [D k-1 , D k ] ⊂ D k (no matter what is the value of cork (D k ⊂ [D k , D k ]
)), the involutive subdistribution H k can always be defined as above, i.e., the computation of H k using the procedure given by Proposition 2.3.2 and that provided by conditions (C1) -(C3) of the above theorem are equivalent if

[D k-1 , D k ] ⊂ D k . This is not valid anymore if [D k-1 , D k ] ⊂ D k ; indeed, in that case, we have D k-1 ⊂ C k , the condition (C2) is not verified and (C3) would give H k = C k . Notice that in the case [D k-1 , D k ] ⊂ D k , the inclusion C k ⊂ H k is always satisfied and is of corank one if additionally cork (D k ⊂ [D k , D k ]) = 1, i.e., H k = C k + span {g}, where g is a vector field belonging to D k , but not to D k-1 .
Let us now compare the above results with the case of two-input control-affine systems, i.e., m = 2, in which any corank one involutive subdistribution H k of D k satisfies cork (D k ⊂ H k+1 ) = 1, therefore, D k = H k+1 and we necessarily have 

cork (D k ⊂ [D k , D k ]) = 1.
= 2 but only if [D k-1 , D k ] ⊂ D k .
In [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF], we treat the case m = 2 in its full generality. Namely, we define (by another method) the involutive subdistribution H k in all cases satisfying D k = TX (no mater whether [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF], that the system is flat of differential weight n+3 without any additional condition.

[D k-1 , D k ] ⊂ D k or [D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] ∈ D k ). Moreover, in the particular case D k = TX and [D k-1 , D k ] ⊂ D k , the subdistribution H k is defined as in Theorem 2.3.4. Finally, if D k = TX and [D k-1 , D k ] ⊂ D k , we have shown, in

Normal forms

It is well known [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF][START_REF] Jakubczyk | On linearization of control systems[END_REF] that any static feedback linearizable and controllable system is feedback equivalent to the Brunovský canonical form that consists of m independent chains of integrators of length

ρ 1 ≥ ρ 2 ≥ • • • ≥ ρ m (called controllability indices).
We will prove that systems dynamically linearizable via one-fold prolongation can be brought into a normal form generalizing that of Brunovský. For multiinput control systems at most m -1 components (at most only one component for each chain) are replaced by arbitrary (nonlinear) functions involving a certain number of variables that depends on k and on the length of each chain. Each normal form contains at least one linear chain. We will denote by r the number of linear chains. We have r ≥ 1.

Before presenting the normal forms, let us introduce some notations. Let z j = (z 1 j1 , • • • , z 1 jd ) be a subset of coordinate functions and let ρ j = (ρ j1 , • • • , ρ jd ) be a multiindex. Then z (ρ j ) j = c j denotes the following system

żq ji = z q+1 ji , 1 ≤ q ≤ ρ ji -1 żρ ji ji = c ji , 1 ≤ i ≤ d.
composed by d chains. We will consider two cases: c j = ũj and c j = a j + b j ũ1 . In the first case, z (ρ j ) j = ũj is just the Brunovský canonical form, the chains will be called linear and the components ρ ji of ρ j (which are simply the controllability indices ) will be called lengths of the linear chains. In the second case, z (ρ j ) j = a j + b j ũ1 is followed by the derivation żρ j +1 j = ũj which stands for (

żρ j1 +1 j1 , • • • , żρ jd +1 jd ) = ( ũj1 , • • • , ũjd
), the chains are nonlinear (for each chain only one component, before the last one, can be nonlinear) and their lengths are ρ j1 + 1.

Throughout, z q j , where q = (q 1 , • • • , q d ), stands for the subset of coordinates z q j = (z

q 1 j1 , • • • , z q d jd ) and zq j denotes zq = (z 1 1 , • • • , z q 1 j1 , • • • , z 1 jd , • • • , z q d jd ). If q i ≤ 0, then z 1 i , • • • , z q i
i is absent in zq . For an integer s, we will denote by q + s the vector q + s = (q for the matrix given by ( The following proposition gives two different (although static feedback equivalent) normal forms (NF1) and (NF2) for the class of two-input flat systems of differential weight n + m + 1. Recall that the first non involutive distribution is D k . Before stating our result, let us discuss the notations used for each normal form.

1 + s, • • • , q d + s). Let β(z) = (β 1 (z), • • • , β p (z)) a p-
∂β l ∂z q ji ), 1 ≤ l ≤ p, 1 ≤ i ≤ d.
For (NF1) we define four subsets of coordinates z j , 1 ≤ j ≤ 4, with the following properties:

(1) dim z 1 = dim ũ1 = 1.

Thus, according to the above notation, we simply have z 1 = z 1 11 . The z 1 -chain is the special linear chain whose control ũ1 has to be prolonged in order to obtain a static feedback linearizable prolongation. Its length

ρ 1 = ρ 11 satisfies ρ 11 ≥ k + 1. (2) dim z 2 = dim ũ2 = r -1.
According to the above notation, we have

z 2 = (z 1 21 , • • • , z 1 2r-1
) to which we associate the lengths ρ 2 = (ρ 21 , • • • , ρ 2r-1 ). The z 2 -chains denote the remaining linear chains. Their lengths ρ 2j , 1 ≤ j ≤ r -1, are arbitrary. If r = 1, i.e., dim z 2 = 0, then there is only one linear chain given by z 1 .

(

) dim z 3 = dim ũ3 = p -r, where r + 1 ≤ p ≤ m. 3 
The z 3 -chains correspond to the nonlinear chains whose lengths are at least k + 2, i.e.,

ρ 3i ≥ k + 1, for 1 ≤ i ≤ p -r. (4) dim z 4 = dim ũ4 = m -p.
The z 4 -chains correspond to the nonlinear chains whose lengths are lower than k + 1, i.e., ρ 4i ≤ k, for 1 ≤ i ≤ mp. If p = m, there is no nonlinear chain of length lower than k + 1.

If k ≥ 1, we suppose, without loss of generality, that

ρ 31 ≥ ρ 32 ≥ • • • ≥ ρ 3p-r ≥ k + 1 > k ≥ ρ 41 ≥ ρ 42 ≥ • • • ≥ ρ 4m-p . The integers ρ ji satisfy ∑ 4 j=1 ∑ dim z j i=1 ρ ji + m -r = n.
Similarly, for the normal form (NF2), we define four chains w j , 1 ≤ j ≤ 4, satisfying:

(1)' dim w 1 = dim ũ1 = 1.

The w 1 -chain is the special linear chain whose control has to be prolonged in order to obtain a static feedback linearizable prolongation. Its length is denoted by µ 1 + k, where µ 1 ≥ 1.

(2)' dim w 2 = dim ũ2 = r -1.

We have w 2 = (w 1 21 , • • • , w 1 2r-1 ) to which we associate the lengths

µ 2 + k = (µ 21 + k, • • • , µ 2r-1 + k).
The w 2 -chains denote the remaining linear chains. Their lengths are arbitrary, i.e., the integers µ 2i , 1 ≤ i ≤ r -1, are such that µ 2i + k ≥ 1 and can be negative.

(3)' dim

w 3 = dim w 4 = dim ũ3 = m -r.
The length of the w 3 -chains is denoted by µ 3 and that of all w 4 -chains equals k + 1.

The integers µ ji satisfy ∑ 3 j=1 ∑ dim w j i=1

µ ji + rk + (m -r)(k + 1) = n.
Proposition 2.4.1. Consider a control-affine system Σ that is not static feedback linearizable.

The following conditions are equivalent:

(i) Σ is flat at x 0 (at (x 0 , u 0 ), such that u 0 / ∈ U sing (x 0 ), if k = 0) of differential weight n + m + 1;

(ii) Σ is locally, around x 0 , static feedback equivalent to the following normal form in a neighborhood of z 0 ∈ R n :

(NF1) z

(ρ 1 ) 1 = ũ1 z (ρ 2 ) 2 = ũ2 z (ρ 3 ) 3 = a 3 (z) + b 3 (z) ũ1 z (ρ 4 ) 4 = a 4 (z) + b 4 (z) ũ1 żρ 3 +1 3 = ũ3 żρ 4 +1 4 = ũ4 (a) either k = 0 and then rk ∂b ∂(z ρ 2 2 ,z ρ 3 +1 3 ,z ρ 4 +1 4 ) (z 0 ) ≥ 1, and rk ∂(a+b ũ1 ) ∂(z ρ 3 +1 3 ,z ρ 4 +1 4 ) (z 0 , ũ0 ) = m -r, where b = (b 3 , b 4 ) and a + b ũ1 = (a 3 (z) + b 3 (z) ũ1 , a 4 (z) + b 4 (z) ũ1 ),
implying that for all pairs of functions (a ji , b ji ), we can always normalize one of them to z

ρ ji +1 ji ; (b) or k ≥ 1 and then a 3 = z ρ 3 +1 3 , a 4 = z ρ 4 +1 4 , b 3 = b 3 ( zρ 1 -k+1 1 , zρ 1 -k 2 , zρ 3 -k+1 3 , zρ 4 -k+1 4 ), the i-component of b 4 , for 1 ≤ i ≤ m -p, is given by b 4i = b 4i ( zρ 1 -ρ 4i +1 1 , zρ 1 -ρ 4i 2 , zρ 3 -ρ 4i +1 3 , zρ 4 -ρ 4i +1 4 
) and rk

∂b 3 ∂(z ρ 1 -k+1 1 ,z ρ 1 -k 2 ,z ρ 3 -k+1 3 ,z ρ 4 -k+1 4 ) (z 0 ) ≥ 1.
(iii) Σ is locally, around x 0 , static feedback equivalent to the following normal form in a neighborhood of w 0 ∈ R n :

(NF2) w

(µ 1 +k) 1 = ũ1 w (µ 2 +k) 2 = ũ2 w (µ 3 ) 3 = d( wµ 1 +1 1 , wµ 2 2 , wµ 3 3 , w 4 ) w (k+1) 4 = ũ3
where rk D(w 0 ) = mr, with D = ∂d ∂w 4

, and rk

∂D ∂(w µ 1 +1 1 ,w µ 2 2 ,w 4 ) (w 0 ) ≥ 1; if k = 0,
we put w µ 1 +1 1 = ũ1 , the functions d i are of the form d i = a i (w) + b i (w) ũ1 and rk D is calculated at (w 0 , ũ0 ).

Remarks. Each of the above normals forms has its importance and we below discuss them.

The normal form (NF1) (resp. (NF2)) is valid around z

0 ∈ R n (resp. w 0 ∈ R n ),
which may be zero or not. Therefore both forms can be used around any point (equilibrium or not).

2. It is easy to see that (NF1) (resp. (NF2)) is flat with the top variables ϕ = (z 1 , z 2 , z 3 , z 4 ) (resp. ϕ = (w 1 , w 2 , w 3 ) being minimal flat outputs of differential weight n + m + 1.

3. It is clear that (NF1) becomes locally static feedback linearizable after a onefold prolongation of ũ1 , which is the to-be-prolonged control. Moreover, if we replace ũ1 by û1 = β(z) ũ1 , with β(z) = 0, and we prolong û1 instead of ũ1 , the prolonged system is also locally static feedback linearizable. 5. Notice that if p = m, then the length of all nonlinear chains of (NF1) is at least k + 2; if r = 1, then only one chain of (NF2) (given by w 1 ) is linear.

6. The nonivolutive distribution D k is easier to be analyzed with the help of (NF2), since the integer k appears explicitly.

7. It is clear from (NF1) (and from (NF2) as well) that in the case k = 0 (and only in that case!), the precompensator creates singularities in the control space (depending on state). Indeed, the controls ũ0 satisfying rk

∂(a+b ũ1 ) ∂(z ρ 3 +1 3 ,z ρ 4 +1 4 
) (z 0 , ũ0 ) < mr are singular for (NF1) (we have the same condition for (NF2) with (z

ρ 3 +1 3 , z ρ 4 +1 4 
) replaced by w 4 ). An invariant description of that set of singular controls is given by U sing .

8. The minimal x-flat outputs and the normal forms (NF1) (resp. (NF2)) are compatible: if ϕ is a minimal x-flat output at x 0 , then there exists an invertible static feedback transformation bringing the system Σ into (NF1) with ϕ = (z 1 , z 2 , z 3 , z 4 ) (resp. into (NF2) with ϕ = (w 1 , w 2 , w 3 )).

Calculating flat outputs

The goal of this section is to answer the question whether a given m-tuple of smooth functions forms a minimal x-flat output.

Recall that if k = 0, we can construct the following sequence of inclusions of involutive distributions:

H 0 ⊂ H 1 ⊂ • • • ⊂ H ρ-1 ⊂ H ρ = TX,
where H 0 is an involutive corank one subdistribution of D 0 , the distribution H 1 is defined by

H 1 = G 1 + [ f , H 0 ], with G 1 = D 0 + [D 0 , D 0 ], and H i+1 = H i + [ f , H i ], for 1 ≤ i ≤ ρ -1,
and ρ is the smallest integer such that H ρ = TX.

If k ≥ 1, according to Proposition 2.7.2 (in Section 2.7 below), we can construct as for the case k = 0, the following sequence of inclusions of involutive distributions:

H 0 ⊂ H 1 ⊂ • • • ⊂ H k ⊂ • • • ⊂ H ρ-1 ⊂ H ρ = TX,
where H 0 is the involutive corank one subdistribution of D 0 associated to H k and 

H i = D i-1 + ad i f H, for 1 ≤ i ≤ k -1 (
H i = H i-1 + [ f , H i-1
]. We will denote by r i the corank of the inclusion

H i-1 ⊂ H i , for i ≥ 0. We clearly have m ≥ r 1 ≥ r 2 ≥ • • • ≥ r q ≥ 1.
We can now state our result describing all minimal x-flat outputs of differential weight n + m + 1. The following proposition answers the question whether a given m-tuple of smooth functions (ϕ 1 , • • • , ϕ r 1 , ψ r 1 +1 , • • • , ψ m ) forms a minimal x-flat output and holds for both cases k = 0 and k ≥

1. If r 1 = m, then in the m-tuple (ϕ 1 , • • • , ϕ r 1 , ψ r 1 +1 , • • • , ψ m ) the components ψ j are missing.
Proposition 2.5.1. Consider the control system Σ, given by (2.2), that is flat at x 0 (at (x 0 , u 0 ),

if k = 0), of differential weight n + m + 1. Then a m-tuplet (ϕ 1 , • • • , ϕ r 1 , ψ r 1 +1 , • • • , ψ m ) of smooth
functions defined on a neighborhood of x 0 is a minimal x-flat output at x 0 if and only if (after permuting them, if necessary):

(FO1) dϕ r i+2 +1 , • • • , dϕ r i+1 ⊥ H i , for 0 ≤ i ≤ ρ -1, with r ρ+1 = 0; (FO2) dLϕ (j i ) i
and dψ j are independent at x 0 , where r l+1

+ 1 ≤ i ≤ r l , 0 ≤ j i ≤ l -1, 1 ≤ l ≤ ρ, r 1 + 1 ≤ j ≤ m;

Examples

Quadrotor helicopter

A quadrotor is a four rotor helicopter. Assume that a body frame is fixed at the center of gravity of the quadrotor, with the z-axis pointing up-wards. The body frame is related to the inertial frame by a position vector (x, y, z) and 3 angles (θ, ψ, ϕ) representing pitch, roll and yaw, respectively. The equations of motion are given by the following control system (see [START_REF] Altug | Control of a quadrotor helicopter using visual feedback[END_REF][START_REF] Beji | Trajectory generation and tracking of a mini-rotorcraft[END_REF]):

Σ QH :                            ẋ1 = x 2 ẋ2 = u 1 (cos ϕ sin θ cos ψ + sin ϕ sin ψ) ẏ1 = y 2 ẏ2 = u 1 (sin ϕ sin θ cos ψ -cos ϕ sin ψ) ż1 = z 2 ż2 = -g + u 1 (cos ϕ cos ψ) θ = u 2 ψ = u 3 φ = u 4
The control u 1 represents the total thrust on the body in the z-axis, u 2 and u 3 are the pitch and roll inputs and u 4 is the yawing moment. The quadrotor helicopter has been shown to be flat, with (x 1 , y 1 , z 1 , ϕ) a flat output (see [START_REF] Beji | Trajectory generation and tracking of a mini-rotorcraft[END_REF]). The system is not static feedback linearizable, but it becomes static feedback linearizable after a one fold prolongation. To illustrate our results, fix ξ 0 ∈ X such that (cos θ cos ψ cos ϕ(cos ϕ sin θ cos ψ + sin ϕ sin ψ))(ξ 0 ) = 0. Applying the invertible feedback transformation ũ1 = u 1 (cos ϕ sin θ cos ψ + sin ϕ sin ψ) ũi = u i , 2 ≤ i ≤ 4, we get: ΣQH : 

                 ẋ1 = x 2 ẏ1 = y 2 ẋ2 = ũ1 ẏ2 = ũ1 a(θ, ψ, ϕ) θ = ũ2 ż1 = z 2 φ = ũ4 ż2 = -g + ũ1 b(θ, ψ, ϕ) ψ = ũ3
D 0 = span { ∂ ∂x 2 + a ∂ ∂y 2 + b ∂ ∂z 2 , ∂ ∂θ , ∂ ∂ψ , ∂ ∂ϕ }
is not involutive. Indeed, the vector fields g i , 1 ≤ i ≤ 4, [g 1 , g 2 ] and [g 1 , g 3 ] are independent at ξ 0 (provided that cosθ 0 cos ψ 0 cos ϕ 0 = 0, which is verified according to our assumption), thus we obtain

G 1 = D 0 + [D 0 , D 0 ] = span { ∂ ∂θ , ∂ ∂ψ , ∂ ∂ϕ , ∂ ∂x 2 , ∂ ∂y 2 , ∂ ∂z 2 }.
Here k = 0 and cork (D 0 ⊂ [D 0 , D 0 ]) = 2, consequently we are in the case of Theorem 2.3.2. It is immediate to identify the unique corank one involutive subdistribution of D 0 , that is

H 0 = span { ∂ ∂θ , ∂ ∂ψ , ∂ ∂ϕ }. We have H 1 = G 1 + [ f , H 0 ] = G 1 (since [ f , g i ] = 0, for 2 ≤ i ≤ 4)
, which is clearly involutive, and H 2 = TX. The system ΣQH satisfies all conditions of Theorem 2.3.2, hence the corresponding prolongation given by Σ(1,0,0,0)

QH :                  ẋ1 = x 2 ẏ1 = y 2 ẋ2 = ũ1 ẏ2 = ũ1 a(θ, ψ, ϕ) u1 = v 1 θ = v 2 ż1 = z 2 φ = v 4 ż2 = -g + ũ1 b(θ, ψ, ϕ) ψ = v 3
where v i = ũi , for 2 ≤ i ≤ 4, is locally static feedback linearizable. Indeed, applying the following change of coordinates θ = ũ1 a(θ, ψ, ϕ) and ψ = -g + ũ1 b(θ, ψ, ϕ) (which is valid in a neighborhood of ξ 0 and for ũ10 = 0) and a suitable feedback transformation, we get Σ(1,0,0,0)

QH :                  ẋ1 = x 2 ẏ1 = y 2 ẋ2 = w ẏ2 = θ ẇ = ṽ1 θ = ṽ2 ż1 = z 2 φ = ṽ4 ż2 = ψ ψ = ṽ3
which is the Brunovský canonical form with (x 1 , y 1 , z 1 , ϕ) playing the role of the top variables. From this, it is obvious that (x 1 , y 1 , z 1 , ϕ) is a minimal flat output, i.e. of differential weight n + m + 1 = 14. 

Polymerization reactor

The control system that we consider in this example has two-inputs. Recall that, according to the statement made at the end of the Section 2.3, Theorem 2.3.4 covers also the case m = 2, but only if [D k-1 , D k ] ⊂ D k (which is the case for the polymerization reactor), where D k is the first noninvolutive distribution. That is illustrated by the following example which has been also treated in [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF]. In that paper, the involutive subdistribution H k , that plays a crucial role in our analyses, was defined by another method.

Consider the reactor (see [START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Rouchon | Necessary condition and genericity of dynamic feedback linearization[END_REF]):

Σ PR :                      Ċm = C mm s τ -(1 + ǭ µ µ+M m C m ) C m τ + R m (C m , C i , C s , T) Ċi = -k i (T)C i + u 2 C ii s V -(1 + ǭ µ µ+M m C m ) C i τ Ċs = u 2 C si s V + C sm s τ -(1 + ǭ µ µ+M m C m ) C s τ μ = -M m R m (C m , C i , C s , T) -(1 + ǭ µ µ+M m C m ) µ τ Ṫ = θ(C m , C i , C s , µ, T) + α 1 T j Ṫj = f 6 (T, T j ) + α 4 u 1
where u 1 , u 2 are the control inputs and C mm s , C ii s , C si s , C sm s , M m , ǭ, τ, V, α 1 , α 4 are constant positive physical parameters. The functions R m , k i , θ and f 6 are not wellknown and can be considered arbitrary: they derive from experimental data and semi-empirical considerations and involve kinetic laws, heat transfer coefficients and reaction enthalpies.

The system has been proved to be flat [START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Rouchon | Necessary condition and genericity of dynamic feedback linearization[END_REF], see also [START_REF] Nicolau | Two-inputs control-affine systems linearizable via one-fold prolongation and their flatness[END_REF]. Below we will show how our results apply to it. After applying the change of coordinates

Cm = µ + M m C m Ci = C i - C ii s C si s C s Cs = -k i (T)C i -(1 + ǭ µ µ+M m C m )( C i τ - C ii s C si s C s τ ) - C ii s C si s C sm s τ , μ = 1 τ (M m C mm s -(1 + ǭ)µ -M m C m ), T = T Tj = θ(C m , C i , C s , µ, T) + α 1 T j
and a suitable feedback transformation, we obtain: ΣPR :

         Ċi = Cs Ċm = μ Ċs = ũ1 μ = b( Cm , Ci , Cs , μ, T) Ṫ = Tj Ṫj = ũ2
where b is a smooth function depending explicitly on T. The characteristic distribution of D 1 is:

If ( ∂ 2 b ∂ T∂ Cs , ∂ 2 b ∂ C2 s ) = (0, 0), then the distribution D 1 = span { ∂ ∂ Cs , ∂ ∂ Ci + ∂b ∂ Cs ∂ ∂ μ , ∂ ∂ Tj , ∂ ∂T } is noninvolutive and cork (D 1 ⊂ [D 1 , D 1 ]) =
C 1 = span { ∂ ∂ Tj , ∂ ∂T - ∂ 2 b ∂T∂ Cs ( ∂ 2 b ∂ C2 s ) -1 ∂ ∂ Cs }
and satisfies the conditions (C1) and (C2). Indeed, rk C 1 = 2 ans rk (C 1 ∩ D 0 ) = 1.

The corank one subdistribution

H 1 = C 1 + D 0 = span { ∂ ∂ Cs , ∂ ∂ Tj , ∂ ∂T }
is involutive. We have

H 2 = H 1 + [ f , H 1 ] = span { ∂ ∂ Cs , ∂ ∂ Ci , ∂ ∂ Tj , ∂ ∂T , ∂ ∂µ }
involutive and H 3 = TX. The system ΣPR satisfies all conditions of Theorem 2.3.4, hence the corresponding prolongation given by ũ1 = y, ẏ = v 1 , and ũ2 = v 1 is locally static feedback linearizable. Indeed, all associated distributions D i p , for i ≥ 0, associated to the prolongation Σ(1,0) PR , are involutive, of constant rank and rk D 3 p = 7. Therefore, the prolonged system can be brought into Brunovský canonical form with Cm , Ci playing the role of top variables (and thus of minimal flat outputs, of differential weight n + 3).

Proofs

Notations and Useful results

Consider a control system of the form

Σ : ẋ = f (x) + m ∑ i=1 u i g i (x) = f (x) + u 1 g 1 (x) + m ∑ i=2 u i h i (x),
where the change of notation is to distinguish the first control (respectively the first vector field g 1 ) from the remaining controls u i (respectively remaining vector fields g i ), for 2 ≤ i ≤ m. By Σ (1,0,••• ,0) we will denote the system Σ with one-fold prolongation, that is

Σ (1,0,••• ,0) : ẋ = f (x) + y 1 g 1 (x) + ∑ m i=2 v i h i (x) ẏ1 = v 1 with y 1 = u 1 and v i = u 2 , for 2 ≤ i ≤ m. Throughout this section, F = n ∑ i=1 ( f i + y 1 g 1i ) ∂ ∂x i
stands for the drift and

G 1 = ∂ ∂y 1 , H j = n ∑ i=1 h ji ∂ ∂x i , for 2 ≤ j ≤ m, 90 PROOFS
denote the control vector fields of the prolonged system.

To Σ (1,0,••• ,0) , we associate the distributions D 0

p = span {G 1 , H 2 , • • • H m } and D i+1 p = D i p + [F, D i p ]
, for i ≥ 0, the subindex p referring to the prolonged system Σ (1,0,••• ,0) .

In our proofs we will need the two following technical results. Consider a control system Σ, given by (2.2), and let D k be the first noninvolutive distribution. Proposition 2.7.1. Assume that Σ is dynamically linearizable via invertible one-fold prolongation

. If k ≥ 1, then rk D k -rk D k-1 ≥ 2.
Proof. Assume rk D krk D k-1 = 1 and let l be the smallest integer such that rk D lrk D l-1 = 1. It is clear that 1 ≤ l ≤ k. Since Σ is dynamically linearizable via invertible one-fold prolongation, there exists an invertible static feedback transformation, u(x) = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ∑ m i=2 ũi hi (x), such that the prolongation

Σ(1,0,••• ,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i hi (x) ẏ1 = v 1
with y 1 = ũ1 and v i = ũi , for 2 ≤ i ≤ m, is locally static feedback linearizable. For simplicity of notation, we will drop the tildes, but we will keep distinguishing g 1 from h i (which could also be denoted g i ) whose controls are not preintegrated.

Since Σ (1,0,••• ,0) is locally static feedback linearizable, for any i ≥ 0 the distributions D i p are involutive, of constant rank, and there exists an integer ρ such that rk D ρ p = n + 1. We have

D 0 p = span { ∂ ∂y 1 , h j , 2 ≤ j ≤ m}, D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j + y 1 [g 1 , h j ], 2 ≤ j ≤ m}. Since k ≥ 1, the distribution D 0 = span {g 1 , h j , 2 ≤ j ≤ m} is involutive, thus [g 1 , h j ] ∈ D 0 , for 2 ≤ j ≤ m, and D 1 p = span { ∂ ∂y 1
, g 1 , h j , ad f h j , 2 ≤ j ≤ m}. It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ l,

D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h j , • • • , ad i f h j , 2 ≤ j ≤ m}. We have D l-1 = span {g 1 , • • • , ad l-1 f g 1 , h j , • • • , ad l-1 f h j , 2
≤ j ≤ m} and by the definition of l either ad l f h j ∈ D l-1 , for all 2 ≤ j ≤ m, i.e., ad l f g 1 ∈ D l-1 , or there exists an integer 2 ≤ s ≤ m such that ad l f h s ∈ D l-1 . In the first case:

D j p = span { ∂ ∂y 1 } + D j-1 , for j ≥ l,
The involutivity of the distribution D j p , associated to the prolonged system, implies that of D j-1 . For j = k + 1, it contradicts the fact that D k is noninvolutive.

In the second case, there exists an integer 2 ≤ s ≤ m such that ad l f h s / ∈ D l-1 . Since rk D l = rk D l-1 + 1, we deduce that D

l = span {g 1 , • • • , ad l-1 f g 1 , h j , • • • , ad l-1 f h j , ad l f h s , 2 ≤ j ≤ m}. Moreover, for Σ (1,0,••• ,0) , we have D j p = span { ∂ ∂y 1 } + D j , for j ≥ l,
and the involutivity of D j p implies that of D j . For j = k, it follows that D k is involutive, which contradicts the assumption of noninvolutivity of D k . Thus l, if it exists, satisfies

l ≥ k + 1 and rk D k -rk D k-1 ≥ 2.
Proposition 2.7.2. Assume k ≥ 1 and suppose that D k contains an involutive subdistribu- tion H k , of corank one.

(i) If cork (D k ⊂ [D k , D k ]) ≥ 2, then H k satisfies D k-1 ⊂ H k . (ii) If H k satisfies D k-1 ⊂ H k ,
then there exists a distribution H, uniquely associated to H k , such that H ⊂ D 0 , of corank one, and

H k = D k-1 + ad k f H. Moreover, all distributions H i = D i-1 + ad i f H, for 0 ≤ i ≤ k -1, where D -1 is empty and H 0 = H, are involutive. Remark. Notice that for 1 ≤ i ≤ k -1, we actually have H i+1 = H i + [ f , H i ] and if we denote by r i the corank of the inclusion H i-1 ⊂ H i , for i ≥ 0, we clearly have m ≥ r 1 ≥ r 2 ≥ • • • ≥ r k .
Proof of (i). Since cork (D k ⊂ [D k , D k ]) ≥ 2, according to Proposition 2.3.2, if the distribution D k contains an involutive subdistribution H k , of corank one, then H k is unique. Using Jacobi identity, it is easy to show that D k-2 ⊂ H k . Suppose D k-1 ⊂ H k , i.e., there exists a vector field

v ∈ D k-1 , of the form v = ∑ m i=1 α i ad k-1 f g i mod D k-2 , satisfying D k = H k + span {v},
where α i are smooth functions, not vanishing simultaneously and such that there exists an integer i verifying α i = 0 and ad k-1 f g i ∈ D k-2 . The vector field v can also be written as

v = ad k-1 f (∑ m i=1 α i g i ) mod D k-2 and we put g c = ∑ m i=1 α i g i , i.e., v = ad k-1 f g c mod D k-2 . Therefore, D k = H k + span {ad k-1 f g c }.
We can always assume, without restriction of generality, that α 1 is nonzero and

ad k-1 f g 1 ∈ D k-2 and since g c = ∑ m i=1 α i g i , we clearly have D 0 = span {g 1 , g 2 , • • • , g m } = span {g c , g 2 , • • • , g m }.
By abuse of notation, we will write g 1 instead of g c , i.e.,

D k = H k + span {ad k-1 f g 1 }.
From this, we deduce that the involutive subdistribution H k is given by for some i such that 1 ≤ i ≤ m, and since cork (D k ⊂ [D k , D k ]) ≥ 2, there are at least two integers i satisfying this property. Suppose

H k = span {g 1 , • • • , ad k-2 f g 1 , ad k f g 1 , g j , • • • , ad k f g j , 2 ≤ j ≤ m}.
[ad k f g s , ad k-1 f g 1 ] ∈ D k ,
where s = 1 (according to the above remark, such integer s always exists). Applying Jacobi identity, we obtain

[ad k f g s , ad k-1 f g 1 ] = [[ f , ad k-1 f g s ], ad k-1 f g 1 ] = [[ f , ad k-1 f g 1 ], ad k-1 f g s ] + [ f , [ad k-1 f g 1 , ad k-1 f g s ]] = [ad k f g 1 , ad k-1 f g s ] mod D k
and since the vector fields ad k f g 1 and ad k-1 f g s belong to H k , which is involutive,

[ad k f g 1 , ad k-1 f g s ] ∈ H k . It follows immediately that [ad k f g s , ad k-1 f g 1 ] ∈ D k
, which contradicts our assumption. Therefore, the inclusion D k-1 ⊂ H k holds.

Proof of (ii). Let us first show the existence of the distribution H.

Denote cork (D k-1 ⊂ D k ) = r and suppose that the vector fields g i ∈ D 0 , for

1 ≤ i ≤ r, satisfy D k = D k-1 + span {ad k f g i , 1 ≤ i ≤ r}.
Thus there exist smooth functions α i j such that

ad k f g j = r ∑ i=1 α i j ad k f g i mod D k-1 , for r + 1 ≤ j ≤ m. It follows ad k f (g j - r ∑ i=1 α i j g i ) = 0 mod D k-1 . Denote h j = g j -∑ r i=1 α i j g i , for r + 1 ≤ j ≤ m. We clearly have D 0 = span {g 1 , • • • , g r , h r+1 , • • • , h m }, with h j such that ad k f h j ∈ D k-1 , for r + 1 ≤ j ≤ m.
Since D k-1 ⊂ H k and H k ⊂ D k , of corank one, there exist smooth functions λ i j , for 1 ≤ i, j ≤ r, such that the r × r-matrix Λ = (λ i j ) is invertible and the distributions H k and D k verify

H k = D k-1 + span { r ∑ i=1 λ i j ad k f g i , 2 ≤ j ≤ r}, D k = H k-1 + span { r ∑ i=1 λ i 1 ad k f g i }.
Denote g1 = ∑ r i=1 λ i 1 g i and h j = ∑ r i=1 λ i j g i , for 2 ≤ j ≤ r. We put

H = span {h j , 2 ≤ j ≤ m},
which is clearly of corank one in D 0 = span { g1 , h j , 2 ≤ j ≤ m}, and satisfies

H k = D k-1 + ad k f H.
We will prove next the involutivity of all distributions H i , for 0 ≤ i ≤ k -1. Assume that the distribution H k-1 given by

H k-1 = D k-2 + ad k-1 f H = D k-2 + span {ad k-1 f h j , 2 ≤ j ≤ m} is not involutive. Since the inclusion H k-1 ⊂ D k-1 is of corank one and D k-1 is invo- lutive, it follows H k-1 = D k-1 . Moreover, conditions D k-2 ⊂ H k-1 and D k-2 involu-
tive imply that the new direction completing H k-1 to its involutive closure is given by a vector field of the form [ad l f h i , ad k-1 f h j ] or of the form [ad l f g1 , ad k-1 f h j ], where 2 ≤ i, j ≤ m and 0 ≤ l ≤ k -1, and is necessarily collinear with ad k-1 f g1 mod H k-1 .

Let us suppose that there exists two integers 2

≤ i, j ≤ m such that [ad l f h i , ad k-1 f h j ] ∈ H k-1 . The same reasoning applies if [ad l f g1 , ad k-1 f h j ] ∈ H k-1 .
Hence, there exists a non zero smooth function α such that

[ad l f h i , ad k-1 f h j ] = αad k-1 f g 1 mod H k-1 .
From this, applying Jacobi identity and the involutivity of H k , it follows

[ad l f h i , ad k f h j ] = [[ad l f h i , [ f , ad k-1 f h j ]] = [ f , [ad l f h i , ad k-1 f h j ]] -[ad l+1 f h i , ad k-1 f h j ] = [ f , αad k-1 f g1 ] mod H k = αad k f g1 mod H k .
On the other hand, [ad l f h i , ad k f h j ] ∈ H k , and consequently ad k f g1 ∈ H k , which contradicts our assumption, otherwise D k = H k and D k would be involutive. Therefore, H k-1 is involutive. Following the same line, the involutivity of

H i implies that of H i-1 , for 1 ≤ i ≤ k -1.
The following result is of independent interest and will be used to obtain the normal form (NF2), so we will give its proof in Section 2.7. Necessity. Let us consider a flat control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), of differential weight n + m + 1. According to Proposition 2.3.1, there exists an invertible feedback transformation u = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ∑ m i=1 ũi hi (x), such that the prolongation

Σ(1,0,••• ,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i hi (x) ẏ1 = v 1 ,
with y 1 = ũ1 and v j = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable. For simplicity of notation, we will drop the tildes, we will keep distinguishing g 1 from h j (which could also be denoted g j , 2 ≤ j ≤ m) whose controls are not preintegrated. Since Σ (1,0,••• ,0) is locally static feedback linearizable, D i p are involutive, of constant rank, for any i ≥ 0, and there exists an integer ρ such that rk D ρ p = n + 1. We have

D 0 p = span { ∂ ∂y 1 , h j , 2 ≤ j ≤ m}, D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j + y 1 [g 1 , h j ], 2 ≤ j ≤ m}. Since k ≥ 1, the distribution D 0 = span {g 1 , h j , 2 ≤ j ≤ m} is involutive, thus [g 1 , h j ] ∈ D 0 and hence D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j , 2 ≤ j ≤ m}.
It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ k,

D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h j , • • • , ad i f h j , 2 ≤ j ≤ m}. Define H k = span {g 1 , • • • , ad k-1 f g 1 , h j , • • • , ad k f h j , 2 ≤ j ≤ m}.
Since the intersection of involutive distributions is an involutive distribution,

H k = D i p ∩ TX = span {g 1 , • • • , ad i-1 f g 1 , h j , • • • , ad i f h j , 2 ≤ j ≤ m} is involutive, for 1 ≤ i ≤ k. We deduce that H k is involutive. It is immediate that D k-1 ⊂ H k ⊂ D k ,
where the second inclusion is of corank one, otherwise H k = D k and D k would be involutive or H k = D k-1 and rk D krk D k-1 = 1, which contradicts our hypothesis. Recall that

H i = H i-1 + [ f , H i-1 ], for i ≥ k + 1. We have D k+1 p = span { ∂ ∂y 1 } + H k + [ f , H k ] = span { ∂ ∂y 1 } + H k+1
and by an induction argument

D k+i p = span { ∂ ∂y 1 } + H k+i , i ≥ 2.
Consequently, the involutivity of D k+i p implies that of H k+i , for i ≥ 1. Moreover, rk D ρ p = n + 1, proving that rk H ρ = n, i.e., H ρ = TX. Sufficiency. Consider a control system satisfying (A1) -(A3) and let H 0 = span {h j , 2 ≤ j ≤ m} be the distribution defined by Proposition 2.7.2(ii). This system is static feedback equivalent to

Σ : ẋ = f (x) + u 1 g 1 (x) + ∑ m i=2 u i h i (x)
. By the same proposition, the involutivity of

H i = D i-1 + ad i f H follows for 0 ≤ i ≤ k -1. It is immediate to see that the prolongation Σ (1,0,••• ,0) : ẋ = f (x) + y 1 g 1 (x) + ∑ m i=2 v i h i (x) ẏ1 = v 1
with y 1 = u 1 and v j = u j , for 2 ≤ j ≤ m, is locally static feedback linearizable. Indeed, the linearizability distributions D i p , associated to Σ (1,0,••• ,0) , are of the form

D i p = span { ∂ ∂y 1 } + H i , i ≥ 0,
and the involutivity of H i implies that of D i p , because H i does not depend on y 1 . Moreover, rk H ρ = n, thus rk D ρ p = n + 1 and Σ (1,0,••• ,0) is locally static feedback linearizable. By Proposition 2.3.1, the system Σ is flat of differential weight n + m + 1.

Proof of Theorem 2.3.2

Necessity. Let us consider a flat control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), of differential weight n + m + 1. According to Proposition 2.3.1, there exists an invertible feedback transformation u = α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ∑ m i=1 ũi hi (x), such that the prolongation

Σ(1,0,••• ,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i hi (x) ẏ1 = v 1 ,
with y 1 = ũ1 and v j = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable, around (x 0 , y 0 ). For simplicity of notation, we will drop the tildes, we will keep distinguishing g 1 from h j (which could also be denoted g j , 2 ≤ j ≤ m) whose controls are not preintegrated.

Since Σ (1,0,••• ,0) is locally static feedback linearizable, D i p is involutive, of constant rank, for any i ≥ 0, and there exists an integer ρ such that rk D ρ p = n + 1. We have

D 0 p = span { ∂ ∂y 1 , h j , 2 ≤ j ≤ m} involutive. It follows immediately that H 0 = span {h j , 2 ≤ j ≤ m}
is involutive (as intersection of involutive distributions H 0 = D 0 p ∩ TX) and of corank one in D 0 . This shows (A1) ′ . The distribution

D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j + y 1 [g 1 , h j ], 2 ≤ j ≤ m}
is involutive and we deduce that [g 1 , h j ] ∈ D 1 p and ad f h j ∈ D 1 p . Thus

D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j , [g 1 , h j ], 2 ≤ j ≤ m} = span { ∂ ∂y 1 } + G 1 + [ f , H 0 ], PROOFS where G 1 = D 0 + [D 0 , D 0 ]. The involutivity of D 1 p implies that of H 1 = G 1 + [ f , H 0 ], because H 1 = D 1 p ∩ TX is the intersection of two involutive distributions. Moreover, D 1
p has constant rank around (x 0 , y 10 ), it follows that rk (span {g 1 , h j , ad f h j + y 10 [g 1 , h j ], 2 ≤ j ≤ m})(x 0 ) = rk H 1 (x 0 ).

Recall that k = 0, i.e., D 0 = span {g 1 , h j , 2 ≤ j ≤ m} is noninvolutive and that the rank of the right hand side could a priori drop at y 10 . From this, it is immediate that u 0 ∈ U sing (x 0 ), where U sing

(x 0 ) = {u 0 ∈ R m : rk (span {g 1 , h j , [ f + u 10 g 1 + ∑ m i=2 u i0 h i , h j ], 2 ≤ j ≤ m})(x 0 ) < rk H 1 (x 0 )}, implying (RC).
The rest of the proof follows the same line as that of Theorem 2.3.1.

Sufficiency. Consider a control system Σ : ẋ = f (x) + u 1 g 1 (x) + ∑ m i=2 u i h i (x) satisfying (A1) ′ -(A3) ′ and (RC), where the corank one involutive subdistribution is given by H 0 = span {h j , 2 ≤ j ≤ m}. It is immediate to see that the prolongation

Σ (1,0,••• ,0) : ẋ = f (x) + y 1 g 1 (x) + ∑ m i=2 v i h i (x) ẏ1 = v 1 with y 1 = u 1 and v i = u 2 , for 2 ≤ i ≤ m, is locally static feedback linearizable, around (x 0 , y 0 ). Indeed, we have D 0 p = span { ∂ ∂y 1
, h j , 2 ≤ j ≤ m}, which is clearly involutive, and

D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j + y 1 [g 1 , h j ], 2 ≤ j ≤ m}.
Since u 0 ∈ U sing (x 0 ), we have

rk (span {g 1 , h j , [ f + u 1 g 1 + m ∑ i=2 u i h i , h j ], 2 ≤ j ≤ m})(x 0 , u 0 ) = rk H 1 (x 0 ),
where

H 1 = G 1 + [ f , H 0 ]. Moreover, span {g 1 , h j , [ f + u 1 g 1 + m ∑ i=2 u i h i , h j ], 2 ≤ j ≤ m}) ⊂ H 1 .
This yields

span {g 1 , h j , [ f + u 1 g 1 + m ∑ i=2 u i h i , h j ], 2 ≤ j ≤ m} = H 1 ,
around (x 0 , u 0 ), and the involutivity of H 0 = span {h j , 2 ≤ j ≤ m} implies

H 1 = span {g 1 , h j , ad f h j + u 1 [g 1 , h j ], 2 ≤ j ≤ m},
around (x 0 , u 0 ), and thus

D 1 p = span { ∂ ∂y 1 } + H 1 .
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It follows, by induction, that all linearizability distributions D i p , associated to Σ (1,0,••• ,0) , are of the form

D i p = span { ∂ ∂y 1 } + H i , i ≥ 1.
and the involutivity of H i implies that of D i p . Moreover, rk H ρ = n, thus rk D ρ p = n + 1 and Σ (1,0,••• ,0) is locally static feedback linearizable. By Proposition 2.3.1, the system Σ is flat of differential weight n + m + 1.

Proof of Theorem 2.3.4

Before giving the proof of Theorem 2.3.4, notice that under the assumption D i in- volutive, for all 0 ≤ i ≤ k -1, we have D k-2 ⊂ C k , where C k is the characteristic distribution of D k . We will use that property in our proof.

Necessity. Let us consider a flat control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), of differential weight n + m + 1, and assume cork 

(D k ⊂ [D k , D k ]) = 1 and [D k-1 , D k ] ⊂ D k . We clearly have k ≥ 1, otherwise the condition [D k-1 , D k ] ⊂ D k would
= α(x) + β(x) ũ, bringing Σ into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ∑ m i=1 ũi hi (x), such that the prolongation Σ(1,0,••• ,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i hi (x) ẏ1 = v 1 ,
with y 1 = ũ1 and v j = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable, around (x 0 , y 0 ). For simplicity of notation, we will drop the tildes, we will keep distinguishing g 1 from h j (which could also be denoted g j , 2 ≤ j ≤ m) whose controls are not preintegrated.

Since Σ (1,0,••• ,0) is locally static feedback linearizable, D i p is involutive, of constant rank, for any i ≥ 0, and there exists an integer ρ such that rk D

ρ p = n + 1. Since k ≥ 1, the distribution D 0 = span {g 1 , h j , 2 ≤ j ≤ m} is involutive, thus [g 1 , h j ] ∈ D 0 and hence D 1 p = span { ∂ ∂y 1 , g 1 , h j , ad f h j , 2 ≤ j ≤ m}.
It is easy to prove (by an induction argument) that, for 1 ≤ i ≤ k,

D i p = span { ∂ ∂y 1 , g 1 , • • • , ad i-1 f g 1 , h j , • • • , ad i f h j , 2 ≤ j ≤ m}.
Since the intersection of involutive distributions is an involutive distribution,

D i p ∩ TM = span {g 1 , • • • , ad i-1 f g 1 , h j , • • • , ad i f h j , 2 ≤ j ≤ m} is involutive, for 1 ≤ i ≤ k. We deduce that the distribution E = span {g 1 , • • • , ad k-1 f g 1 , h j , • • • , ad k f h j , 2 ≤ j ≤ m} is involutive. Next we will prove that E k = H k = C k + D k-1 , where C k is the charac- teristic distribution of D k . PROOFS It is immediate that D k-1 ⊂ E ⊂ D k
, where the second inclusion is of corank one, otherwise E = D k and D k would be involutive, which contradicts our hypotheses.

Applying the Jacobi identity, it can be proved that [ad k-1 f h j , ad k f g 1 ] ∈ D k , for all 2 ≤ j ≤ m, and since E k is involutive, we immediately have

[ad k-1 f h j , D k ] ∈ D k , for 2 ≤ j ≤ m. Thus ad k-1 f h j ∈ C k , for all 2 ≤ j ≤ m, where C k is the char- acteristic distribution of D k . Moreover, since D k = E k + span {ad k f g 1 } is nonin- volutive and [D k-1 , D k ] ⊂ D k , we deduce that the new direction completing D k to D k is given by [ad k-1 f g 1 , ad k f g 1 ] ∈ D k . Hence there exists smooth functions α j such that [ad k f h j , ad k f g 1 ] = α j [ad k-1 f g 1 , ad k f g 1 ] mod D k , for 2 ≤ j ≤ m. It follows [ad k f h j -α j ad k-1 f g 1 , ad k f g 1 ] = 0 mod D k . It is easy to show that C k = D k-2 + span {ad k-1 f h j , ad k f h j -α j ad k-1 f g 1 , 2 ≤ j ≤ m} which yields H k = C k + D k-1 = span {g 1 , • • • , ad k-1 f g 1 , h j , • • • , ad k f h j 2 ≤ j ≤ m}, rk C k = rk D k -2 and rk (C k ∩ D k-1 ) = rk D k-1 -1.
The rest of the proof follows the same line as that of Theorem 2.3.1.

Sufficiency. Consider a control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x) satisfying (C1)-(C4). We start our proof with the observation that the conditions (C1)-(C2) enable us to define a distribution H such that H ⊂ D 0 , of corank one, and

H k = D k-1 + ad k f H.
To this aim, let us denote by r the corank of D k-2 ⊂ D k-1 . Assume that the vector fields g i ∈ D 0 , for 1 ≤ i ≤ r, satisfy

D k-1 = D k-2 + span {ad k-1 f g i , 1 ≤ i ≤ r}.
Using similar arguments to those used in the proof of Proposition 2.7.2(ii), we can defined mr vector fields h j , for r

+ 1 ≤ j ≤ m, such that D 0 = span {g 1 , • • • , g r , h r+1 , • • • , h m } and ad k-1 f h j ∈ D k-2 , for r + 1 ≤ j ≤ m. It is clear that D k-2 ⊂ C k and since rk (C k ∩ D k-1 ) = rk D k-1 -1, we have C k ∩ D k-1 = D k-2 + span {c j , 1 ≤ j ≤ r -1},
where the vector fields c j are of the form

c j = r ∑ i=1 λ i j ad k-1 f g i = ad k-1 f ( r ∑ i=1 λ i j g i ) mod D k-2 ,
with λ i j smooth functions such that the matrix Λ = (λ i j ), for 1 ≤ i ≤ r and 1 ≤ j ≤ r -1, is of full rank. Denote h j+1 = ∑ r i=1 λ i j g i , for 1 ≤ j ≤ r -1, and suppose, without loss of generality, that they are independent from g 1 .

Since ad

k-1 f h j ∈ C k , for 2 ≤ j ≤ m, we have [ad k-1 f h j , D k ] ⊂ D k . From this, it can be shown, applying the Jacobi identity, that [ad k-1 f g 1 , ad k f h j ] ∈ D k , for 2 ≤ j ≤ m.
Therefore, the new direction completing

D k to D k = D k + [D k-1 , D k ] is given by [ad k-1 f g 1 , ad k f g 1 ] and there exist smooth functions α j such that [ad k f h j , ad k f g 1 ] = α j [ad k-1 f g 1 , ad k f g 1 ] mod D k , for 2 ≤ j ≤ m.
This gives [ad k f h jα j ad k-1 f g 1 , ad k f g 1 ] = 0 mod D k and it can be easily verified that the characteristic distribution C k is given by

C k = D k-2 + span {ad k-1 f h j , ad k f h j -α j ad k-1 f g 1 , 2 ≤ j ≤ m}. It follows immediately H k = D k-1 + span {ad k f h j , 2 ≤ j ≤ m} = D k-1 + ad k f H,
where the corank one subdistribution H of D 0 is given by

H = span {h j , 2 ≤ j ≤ m}.
The involutivity of H k implies that of all distributions H i = D i-1 + ad i f H, for 0 ≤ i ≤ k -1, where D -1 is empty and H 0 = H. The proof of this statement follows by the same method as that used in the proof of Proposition 2.7.2(ii).

We are now in position to show that the control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x) is dynamically linearizable via one-fold prolongation. Transform Σ via an invertible static feedback into the form Σ : ẋ = f (x) + ũ1 g1 (x) + ∑ m i=2 ũi h i (x), where the vector fields h i are defined as above. Applying the same arguments as in the proof of Theorem 2.3.1, it is immediate to see that the prolongation

Σ(1,0,••• ,0) : ẋ = f (x) + y 1 g1 (x) + ∑ m i=2 v i h i (x) ẏ1 = v 1 ,
with y 1 = ũ1 and v j = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable.

Proof of Proposition 2.4.1

Proposition 2.7.3 is used to obtain the normal form (NF2), so we will start with its proof.

Proof of Proposition 2.7.3. We give the proof of Proposition 2.7.3 only for k ≥ 1. If k = 0, then the same arguments apply. Since Σ is dynamically linearizable via invertible one-fold prolongation, it satifies conditions (A1) -(A3) of Theorem 2.3.1. We will show that in the case D k = H k+1 and H k+1 = TX, condition (A3) implies that the inclusion H k+1 ⊂ H k+1 + D k+1 is of corank one. Since there exists an integer ρ ≥ k + 2 such that H ρ = TX and H k+1 = TX, we clearly have H k+1 H k+2 .

If D k = H k+1 , then it follows, from the definition of H k+1 , that

D k = span {g 1 , • • • , ad k f g 1 , h j , • • • , ad k+1 f h j , 2 ≤ j ≤ m}
with H k+1 = TX and H = span {h j , 2 ≤ j ≤ m} defined by Proposition 2.7.2(ii). Thus the distribution D k+1 p associated to the prolonged system

Σ (1,0,••• ,0) is D k+1 p = span { ∂ ∂y 1 } + D k .
PROOFS Assume also ad k+1 f g 1 ∈ H k+1 , if not, the inclusion in question is, indeed, of corank one. Hence for any vector field ξ ∈ D k , we have [ f , ξ] ∈ D k . By successive application of the Jacobi identity, it follows immediately that D

k + [ f , D k ] = D k .
Therefore, for the prolonged system we obtain

D k+2 p = span { ∂ ∂y 1 } + D k + [ f , D k ] = D k+1 p ,
and we deduce H k+1 = H k+2 , which gives a contradiction.

Proof of Proposition 2.4.1.

We will prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). Consider an x-flat control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), of differential weight n + m + 1 and let (ϕ 1 , • • • , ϕ m ) be a minimal flat output, defined in a neighborhood of x 0 . It can be shown (see proof of Proposition 2.3.1 in Appendices 2.A) that the system Σ can be transformed by a change of coordinates and an invertible static feedback, around z 0 , into the form żi 1

= z i 2 żj 1 = z j 2 . . . . . . żi ρ i -1 = z i ρ i żj ρ j -1 = z j ρ j żi ρ i = ũi żj ρ j = a j (z) + b j (z) ũ1 żj ρ j +1 = ũj for 1 ≤ i ≤ r and r + 1 ≤ j ≤ m, where ∑ m i=1 ρ i + m -r = n, (ϕ 1 , • • • , ϕ m ) = (z 1 1 , • • • , z m 1 )
, the functions a j and b j are smooth such that D k is noninvolutive and satisfying the following condition: rk D(z 0 , ũ0 ) = mr, where D stands for the Jacobi matrix

D jl = ∂(a j + ũ1 b j ) ∂z l ρ l +1 , for r + 1 ≤ j, l ≤ m. Since rk D(z 0 , ũ0 ) = m -r, it is
immediate that we can always normalize a j ou b j to z l ρ l +1 . If k = 0, then there exist integers s and q, where 2 ≤ s ≤ m and r + 1 ≤ q ≤ m, such that

∂b q ∂z s ρ s = 0, if 2 ≤ s ≤ r, or ∂b q ∂z s ρ s +1 = 0, if r + 1 ≤ s ≤ m. This is the form (NF1), for k = 0.
Let us now consider the case k ≥ 1. We have

∂b j ∂z i ρ i = 0, for 2 ≤ i ≤ r,
and
∂b j ∂z l ρ l +1 = 0, for r + 1 ≤ l ≤ m. It follows that D jl = ∂a j ∂z l ρ l +1
, for r + 1 ≤ j, l ≤ m, thus rk D is calculated at z 0 only and equals mr. Hence we can introduce local coordinates zj ρ j +1 = a j (z) (to simplicity we will drop the tilde) and apply a suitable invertible feedback that brings the system into the form żi 1

= z i 2 żj 1 = z j 2 . . . . . . żi ρ i -1 = z i ρ i żj ρ j -1 = z j ρ j żi ρ i = ũi żj ρ j = z j ρ j +1 + b j (z) ũ1 żj ρ j +1 = ũj for 1 ≤ i ≤ r and r + 1 ≤ j ≤ m, with (ϕ 1 , • • • , ϕ m ) = (z 1 1 , • • • , z m 1 ). Since rk D k - rk D k-1 ≥ 2 and D k is noninvolutive, a direct computation shows that there exists at least one integer r + 1 ≤ j ≤ m such that ρ j ≥ k + 1, if ρ 1 ≥ k + 1, or at least two integers r + 1 ≤ j ≤ m such that ρ j ≥ k + 1, if ρ 1 ≤ k.
Suppose, without loss of generality,

ρ r+1 ≥ ρ r+2 ≥ • • • ≥ ρ p ≥ k + 1 ≥ k ≥ ρ p+1 ≥ • • • ≥ ρ m , where r + 1 ≤ p ≤ m, (if p = m,
the length of all chains z j is greater than k + 2). We next prove that we can always assume that

ρ 1 ≥ k + 1. Indeed, if ρ 1 ≤ k, the noninvolutive distribution D k is given by D k = D k-1 + span { ∂ ∂z i ρ i -k , ∂ ∂z j ρ j -k+1 , p ∑ j=r+1 b j ∂ ∂z j ρ j -k , r + 1 ≤ j ≤ p, ρ i ≥ k + 1, 2 ≤ i ≤ r}
and since the rank of D k is constant in a neighborhood of z 0 , it follows that there exists at least one integer r + 1 ≤ s ≤ p such that b s (z 0 ) = 0. We apply the invertible static feedback transformation v 1 = z s ρ s +1 + b s (z) ũ1 and v i = ũi , for 2 ≤ i ≤ m and i = s, to get 

ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 żj 1 = z j 2 . . . . . . . . . . . . ż1 ρ 1 = -1 b s z s ρ s +1 + 1 b s v 1 żi ρ i = v i żs ρ s = v 1 żj ρ j = z j ρ j +1 - b j b s z s ρ s +1 + b j b s v 1 żs ρ s +1 = v s żj ρ j +1 = v j for 2 ≤ i ≤ r, r + 1 ≤ j ≤ m, with j = s and (ϕ 1 , • • • , ϕ m ) = (z 1 1 , • • • , z m 1 ). The following change of coordinates z1 l = z s l , 1 ≤ l ≤ ρ s , zi l = z i l , 2 ≤ i ≤ r, 1 ≤ l ≤ ρ i , zs l = z 1 l , 1 ≤ l ≤ ρ 1 , zs ρ s +1 = -1 b s z s ρ s +1 zj l = z j l , r + 1 ≤ j ≤ m, j = s, 1 ≤ l ≤ ρ j , zj ρ j +1 = z j ρ j +1 - b j b s z s ρ s +1 , r + 1 ≤ j ≤ m, j = s is valid
≥ k + 1. Recall that we assumed ρ r+1 ≥ ρ r+2 ≥ • • • ≥ ρ p ≥ k + 1 ≥ k ≥ ρ p+1 ≥ • • • ≥ ρ m .
The involutivity of D l , for 0 ≤ l ≤ ρ m -2, implies that all functions b j , for

r + 1 ≤ j ≤ m depend on zi ρ i -l-1 , zj ρ j -l , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ m. We have D ρ m -1 = span { ∂ ∂z 1 ρ 1 , • • • , ∂ ∂z 1 ρ 1 -ρ m +2 , ∂ ∂z i ρ i , • • • , ∂ ∂z i ρ i -ρ m +1 , ∂ ∂z j ρ j +1 , • • • , ∂ ∂z j ρ j -ρ m +2 , ∂ ∂z 1 ρ 1 -ρ m +1 + b m ∂ ∂z m 1 + ∑ m-1 j=r+1 b j ∂ ∂z j ρ j -ρ m +1 , 2 ≤ i ≤ r, r + 1 ≤ j ≤ m}. Since D ρ m -1 is involutive, it follows that b m is a function of zi ρ i -ρ m , zj ρ j -ρ m +1
, for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ m. The only z m -coordinate that can be involved in the expression of b m is z m 1 . Moreover, b m is no longer present in the expression of D i , for i ≥ ρ m . Therefore, the involutivity of D i , for ρ m ≤ i ≤ k, does not imply any additional condition on b m .

In the same way, by induction, it can be shown that all functions b s , for r + 1 ≤ s ≤ p, depend on zi ρ i -k , zj ρ j -k+1 , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ m, respectively all functions b t , for p + 1 ≤ t ≤ m, depend on zi ρ i -ρ t , zj ρ j -ρ t +1 , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ t.

The noninvolutivity of the distribution

D k = span { ∂ ∂z 1 ρ 1 , • • • , ∂ ∂z 1 ρ 1 -k+1 , ∂ ∂z i ρ i , • • • , ∂ ∂z i ρ i -k , ∂ ∂z j ρ j +1 , • • • , ∂ ∂z j ρ j -k+1 , ∂ ∂z 1 ρ 1 -k + ∑ p j=r+1 b j ∂ ∂z j ρ j -k , 2 ≤ i ≤ r, r + 1 ≤ j ≤ m}.
yields the existence of some integers s, i and j, such that r

+ 1 ≤ s ≤ p, 2 ≤ i ≤ r, j = 1 or r + 1 ≤ j ≤ m, satisfying ( ∂b s ∂z i ρ i -k , ∂b s ∂z j ρ j -k+1 ) = (0, 0).
(ii) ⇒ (iii). If k = 0, then (NF1) and (NF2) coincide. We can thus suppose k ≥ 1. Since ρ j ≥ k + 1, for j = 1 and r + 1 ≤ j ≤ p, there exist integers µ j ≥ 1 such that ρ j = µ j + k, for j = 1 and r + 1 ≤ j ≤ p. We distinguish two cases: k = 1 and k ≥ 2.

Let us first assume

k = 1. Since 1 ≤ ρ l ≤ k, for p + 1 ≤ l ≤ m, it follows that ρ l = 1. Using the above notations (NF1) is given by ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 . . . . . . . . . ż1 µ 1 +1 = ũ1 żi ρ i = ũi żs µ s +1 = z s µ s +2 + b s ũ1 żl 1 = z l 2 + b l ũ1 żs µ s +2 = ũs żl 2 = v l
where all functions b s , for r + 1 ≤ s ≤ m, depend on z i ρ i , z j µ j +1 and z l 1 , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ p and p + 1 ≤ l ≤ m.

Since the vector field

g 1 = ∂ ∂z 1 µ 1 +1 + ∑ m s=r+1 b s ∂ ∂z s ρ s
is non zero, there exists smooth independent functions ψ s , for r + 1 ≤ s ≤ m, depending on zi ρ i -1 , zj µ j +1 and z l 1 , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ p and p + 1 ≤ l ≤ m, such that L g 1 ψ s = 0 and the matrix given by ( ∂ψ s ∂z q µ q +2

), for r + 1 ≤ s, q ≤ m, is of full rank, where µ q = 0, for p + 1 ≤ q ≤ m. We introduce new coordinates zq µ q +1 = ψ q , zq µ q +2 = L f ψ q , for r + 1 ≤ q ≤ m, where µ q = 0, for p + 1 ≤ q ≤ m, and apply a suitable invertible static feedback bringing (NF1) into

ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 . . . . . . . . . ż1 µ 1 = z 1 µ 1 +1 żi ρ i -1 = z i ρ i żs µ s = d s (z) ż1 µ 1 +1 = v 1 żi ρ i = v i żs µ s +1 = zs µ s +2 żl 1 = zl 2 żs µ s +2 = ũs żl 2 = v l
all smooth functions d s involve only zi ρ i -1 , zj µ j +1 and z l 1 , for 2 ≤ i ≤ r, j = 1 and r + 1 ≤ j ≤ p and p + 1 ≤ l ≤ m, and are such that the matrix ( ∂d s ∂z t

µ t +1 ), for r + 1 ≤ s, t ≤ p, is of full rank. Since D 1 = span { ∂ ∂z 1 µ 1 +1 , ∂ ∂z i ρ i -1 , ∂ ∂z i ρ i , ∂ ∂ zj µ j +1 , ∂ ∂ zj µ j +2 , ∂ ∂ zl 1 , ∂ ∂ zl 2 , ∂ ∂z 1 µ 1 + ∑ p s=r+1 ∂d s ∂z 1 µ 1 +1 ∂ ∂z s µ s
, for 2 ≤ i ≤ r, r + 1 ≤ j ≤ p and p + 1 ≤ l ≤ m} is noninvolutive, it follows that there exist s, i, j and l, with r

+ 1 ≤ j ≤ m, 2 ≤ i ≤ r, r + 1 ≤ s ≤ p, j = 1 or r + 1 ≤ j ≤ m, such that ( ∂ 2 d s ∂z i ρ i -1 ∂z 1 µ 1 +1
,

∂ 2 d s ∂ zj µ j +1 ∂z 1 µ 1 +1 , ∂ 2 d s ∂ zl 1 ∂z 1 µ 1 +1
) = (0, 0, 0), where z1 µ 1 +1 stands for z 1 µ 1 +1 . This is the normal form (NF2) for k = 1.

Let us now suppose k ≥ 2. Using the notations ρ j = µ j + k, for j = 1 and r + 1 ≤ j ≤ p, we have:

(NF1)            ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 żl 1 = z l 2 . . . . . . . . . . . . ż1 µ 1 +k = ũ1 żi ρ i = ũi żs µ s +k = z s µ s +k+1 + b s ũ1 żl ρ l = z l ρ l +1 + b l ũ1 żs µ s +k+1 = ũs żl ρ l +1 = ũl where ρ r+1 ≥ ρ r+2 ≥ • • • ≥ ρ p ≥ k + 1 ≥ k ≥ ρ p+1 ≥ • • • ≥ ρ m , for r + 1 ≤ p ≤ m. All functions b s , for r + 1 ≤ s ≤ p, depend on zi ρ i -k , zj µ j +1
and zl ρ l -k+1 , for 2 ≤ i ≤ r, PROOFS p + 1 ≤ l ≤ m, j = 1 and r + 1 ≤ j ≤ p and all functions b t , for p + 1 ≤ t ≤ m, depend on zi ρ i -ρ t , zj µ j +k-ρ t +1 and zl ρ l -ρ t +1 , where 2 ≤ i ≤ r, p + 1 ≤ l ≤ t, j = 1 and r + 1 ≤ j ≤ p.

The proof of this case (for which we give only the main ideas) consists in redressing all involutive distributions D i , for 0 ≤ i ≤ k -1. To this end, we first eliminate ũ1 from the equations of żs µ s +k and żl ρ l , by introducing the following change of coordinates (which is clearly valid in a neighborhood of z 0 ):

zs µ s +k = z s µ s +k -b s z 1 µ 1 +k zl ρ l = z l ρ l -b l z 1 µ 1 +k zs µ s +k+1 = L f zs µ s +k zl ρ l +1 = L f zl ρ l for r + 1 ≤ s ≤ p and p + 1 ≤ l ≤ m.
Applying a suitable invertible static feedback transformation, we get:

ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 żl 1 = z l 2 . . . . . . . . . . . . ż1 µ 1 +k-1 = z 1 µ 1 +k żi ρ i -1 = z i ρ i żs µ s +k-1 = zs µ s +k + b s z 1 µ 1 +k żl ρ l -1 = zl ρ l + b l z 1 µ 1 +k ż1 µ 1 +k = v 1 żi ρ i = v i żs µ s +k = zs µ s +k+1 żl ρ l = zl ρ l +1 żs µ s +k+1 = v s żl ρ l +1 = v l
Next we eliminate z 1 µ 1 +k from the equations of żs µ s +k-1 and żl ρ l -1 , by applying a similar change of coordinates (that we will also denote by z):

zs µ s +k-1 = z s µ s +k-1 -b s z 1 µ 1 +k-1 zl ρ l -1 = z l ρ l -1 -b l z 1 µ 1 +k-1 zs µ s +k = L f zs µ s +k-1 zl ρ l = L f zl ρ l -1 zs µ s +k+1 = L 2 f zs µ s +k-1 zl ρ l +1 = L 2 f zl ρ l -1
for r + 1 ≤ s ≤ p and p + 1 ≤ l ≤ m. Then we repeat this process ρ m -3 times transforming the z s and z l -chains into

żs 1 = z s 2 żl 1 = z l 2 . . . . . . żs µ s +k-ρ m +1 = zs µ s +k-ρ m +2 + b s z 1 µ 1 +k-ρ m +2 żl ρ l -ρ m +1 = zl ρ l -ρ m +2 + b l z 1 µ 1 +k-ρ m +2 żs µ s +k-ρ m +2 = zs µ s +k-ρ m +3 żl ρ l -ρ m +2 = zl ρ l -ρ m +3 . . . . . . żs µ s +k = zs µ s +k+1 żl ρ l = zl ρ l +1 żs µ s +k+1 = ṽs żl ρ l +1
= ṽl with z 1 -chain and z i -chains remaining unchanged. The function b m , associated to the z m -chain, depends on zi ρ i -ρ m , zj µ j +k-ρ m +1 and zl ρ l -ρ m +1 , for 2 ≤ i ≤ r, p + 1 ≤ l ≤ m, j = 1 and r + 1 ≤ j ≤ p. It is clear that for the z m -chain, the nonlinearities have been "pushed" to the last possible level, the top equation being żm 

1 = zm 2 + b m z 1 µ 1 +k-ρ m +2 . Since the vector field ξ = ∂ ∂z 1 µ 1 +k-ρ m +1 + ∑ p s=r+1 b s ∂ ∂z s µ s +k-ρ m +1 + ∑ m l=p+1 b l ∂ ∂z l ρ l -ρ m +1
(z 0 ) = 0. By introducing ẑm 1 = ψ m , ẑm 2 = L f ψ m , • • • , ẑm ρ m = L ρ m -1 f
ψ m and applying a suitable feedback transformation, we linearize the z m -chain.

By repeating this argument for all z l -chains, for p + 1 ≤ l ≤ m, all distributions D i , for 0 ≤ i ≤ ρ p , can be redressed. We continue to redress the remaining involutive distributions D i , for ρ p + 1 ≤ i ≤ k -1, by transforming the z s -chains in a very similar way (that we will not detail here). Finally, we will get

ż1 1 = z 1 2 żi 1 = z i 2 żs 1 = z s 2 ˙ẑ l 1 = ẑl 2 . . . . . . . . . . . . żs µ s -1 = z s µ s . . . . . . żs µ s = d s (z) . . . ˙ẑ s µ s +1 = ẑs µ s +2 . . . . . . . . . . . . ż1 µ 1 +k-1 = z 1 µ 1 +k żi ρ i -1 = z i ρ i ˙ẑ s µ s +k-1 = ẑs µ s +k ˙ẑ l ρ l -1 = ẑl ρ l ż1 µ 1 +k = v1 żi ρ i = vi ˙ẑ s µ s +k = ẑs µ s +k+1 ˙ẑ l ρ l = ẑl ρ l +1 ˙ẑ s µ s +k+1 = vs ˙ẑ l ρ l +1 = vl
where the functions d s involve only zi

ρ i -k , zj µ j +1 , zl ρ l +1-k , for 2 ≤ i ≤ r, p + 1 ≤ l ≤ m, j = 1 and r + 1 ≤ j ≤ p,
and are such that the matrix given by ( ∂d s ∂ ẑt

µ t +1
), for r + 1 ≤ s, t ≤ p, is of full rank at z 0 .

A simple computation shows that the noninvolutivity of D k implies the existence of some integers s, i, j and l, with 2 ≤ i ≤ r, r + 1 ≤ s ≤ p, j = 1 and r + 1 ≤ j ≤ p, p + 1 ≤ l ≤ m, such that (

∂ 2 d s ∂z i ρ i -k ∂z 1 µ 1 +1 , ∂ 2 d s ∂ ẑj µ j +1 ∂z 1 µ 1 +1 , ∂ 2 d s ∂ zl 1 ∂z 1 µ 1 +1
) = (0, 0, 0), where ẑ1

µ 1 +1
stands for z 1 µ 1 +1 . We have obtained (NF2), for k ≥ 2.

(iii) ⇒ (ii). Consider a control system Σ static feedback equivalent to the normal form (NF2). It is clear that the system is flat, with ϕ = (w 1 , w 2 , w 3 ) a minimal flat output of differential weight n + m + 1.

Proof of Proposition 2.5.1

Before giving the proof of Proposition 2.5.1 we will show that for both cases, k = 0 and k ≥ 1, we can identify an involutive distribution E in C ∩ H 0 (where

C is the characteristic distribution of D 0 ) of corank r 1 -1 in H 0 , with r 1 = cork (H 0 ⊂ H 1 ), such that [ f , E ] ∈ G 1 = D 0 + [D 0 , D 0 ]. For k ≥ 1, we have C = D 0 , C ∩ H 0 = H 0 and G 1 = D 0 .
Let us first consider the case k = 0. Recall that we can construct the following sequence of inclusions of involutive distributions:

H 0 ⊂ H 1 ⊂ • • • ⊂ H ρ-1 ⊂ H ρ = TX,
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where H 0 is an involutive corank one subdistribution of D 0 , H 1 is defined by

H 1 = G 1 + [ f , H 0 ], with G 1 = D 0 + [D 0 , D 0 ], and H i+1 = H i + [ f , H i ], for 1 ≤ i ≤ ρ -1,
and ρ is the smallest integer such that H ρ = TX. We denote by r i the corank of the inclusion H

i-1 ⊂ H i , for i ≥ 0. We clearly have m ≥ r 1 ≥ r 2 ≥ • • • ≥ r q ≥ 1.
We will show that we can identify an involutive subdistribution E in C, the characteristic distribution of D 0 , of corank r 1 -1 in H 0 and such that

[ f , E ] ∈ G 1 . Let D 0 = span {g 1 , h 2 , • • • , h m }, where H 0 = span {h 2 , • • • , h m }. Assume rk G 1 = m + p -1, with p -1 ≥ 2 (this is due to the assumption cork (D 0 ⊂ [D 0 , D 0 ]) ≥ 2)
. By permuting h j , 2 ≤ j ≤ m, we can suppose that the vector fields [g 1 , h i ], for 2 ≤ i ≤ p, are independent and satisfy [g 1 , h i ] ∈ D 0 , for 2 ≤ i ≤ p. For 1 ≤ j ≤ mp, there exist some smooth functions α i j such that

[g 1 , h p+j ] = p ∑ i=2 α i j [g 1 , h i ] mod D 0 .
From this, we deduce

[g 1 , h p+j - p ∑ i=2 α i j h i ] = 0 mod D 0
and it is immediate that the vector fields hp+j = h p+j -∑ p i=2 α i j h i , for 1 ≤ j ≤ mp, are characteristic for D 0 , i.e., [ hp+j , D 0 ] ⊂ D 0 , and C = span { hp+1 , • • • , hm }. We have C ⊂ H 0 and the corank of this inclusion is p -1. Let us now assume rk (G 1 + [ f , C]) = m + p -1 + q, i.e., there are q vector fields of the form

[ f , c], c ∈ C, independent modulo G 1 . Since G 1 + [ f , C] ⊂ H 1 = G 1 + [ f , H 0 ]
and rk H 1 = m -1 + r 1 , we obviously have p + q ≤ r 1 ≤ m. Suppose that the vector fields [g 1 , h p+s ], for 1 ≤ s ≤ q, are independent and [g 1 , h p+s ] ∈ G 1 , for 1 ≤ s ≤ q. There exist smooth functions αs

l such that, for 1 ≤ l ≤ m -(p + q), [ f , h p+q+l ] = q ∑ s=1 β s l [ f , h p+s ] mod G 1 , implying [ f , h p+q+l - q ∑ s=1 β s l h p+s ] = 0 mod G 1 .
Thus the vector fields hp+q+l = h p+q+l -∑ q s=1 β s l h p+s are in C and verify

[ f , hp+q+l ] ∈ G 1 . Put E = span { hp+q+1 , • • • , hm }. The distribution E satisfies [ f , E ] ∈ G 1 .
We can always assume, without loss of generality, that

H 0 = span {h 2 , • • • , h p , h p+1 , • • • , h p+q , h p+q+1 , • • • , h m }, where C = span {h p+1 , • • • , h m } and E = span {h p+q+1 , • • • , h m }. If p + q = m
, the distribution E is simply empty. Now, we prove that the corank of E in H 0 is r 1 -1, i.e., we necessarily have r 1 = p + q. Recall that for flat systems of differential weight n + m + 1, the following regularity condition should be satisfied: According to the above assumption and notations, this relation can be written as

rk span {g 1 , h j , [ f + u 1 g 1 + m ∑ i=2 u i h i , h j ], 2 ≤ j ≤ m}(x 0 , u 0 ) = rk H 1 (x 0 ).
rk span {g 1 , h j , ad f h i + u 10 [g 1 , h i ], ad f h s , 2 ≤ j ≤ m, 2 ≤ i ≤ p < s ≤ p + q}(x 0 ) = m -1 + r 1 .
The rank of the left hand side of this expression is at most m + p -1 + q and since p + q ≤ r 1 , it follows that the above equality holds if and only if r 1 = p + q.

Next we prove that the distribution

E = span {h p+q+1 , • • • , h m } is involutive. First, observe that, since E ⊂ C and [ f , E ] ∈ G 1 , we have [ f , [h i , h j ]] = [[ f , h i ], h j ] + [h i , [ f , h j ]] = 0 mod G 1 , for all p + q + 1 ≤ i, j ≤ m.
Suppose that E is not involutive. Hence there exist at least two integers p + q + 1 ≤ i, j ≤ m such that [h i , h j ] ∈ E . Since E is contained in C, which is involutive, it follows that there exist smooth functions α l , for p ≤ l ≤ p + q, not vanishing simultaneously, such that [h i , h j ] = ∑ p+q l=p+1 α l h l + e, where e ∈ E . Then,

[ f , [h i , h j ]] = [ f , p+q ∑ l=p+1 α l h l + e] = p+q ∑ l=p+1 α l ad f h l mod G 1 .
Recall that [ f , [h i , h j ]] = 0 mod G 1 and the vector fields ad f h p+1 , • • • , ad f h p+q are independent modulo G 1 , which contradicts the existence of l such that α l = 0. Therefore, the distribution E is indeed involutive.

To summarize, we have the following sequence of inclusions of involutive distributions:

E ⊂ q C ⊂ p-1 H 0 ⊂ r 1 H 1 ⊂ r 2 • • • ⊂ r ρ-1 H ρ-1 ⊂ r ρ H ρ = TX, with r 1 = p + q.
Let us new consider the case k ≥ 1. According to Proposition 2.7.2 (in Section 2.7.1 above), we can construct as for the case k = 0, the following sequence of inclusions of involutive distributions:

H 0 ⊂ H 1 ⊂ • • • ⊂ H k ⊂ • • • ⊂ H ρ-1 ⊂ H ρ = TX,
where H 0 is the involutive corank one subdistribution of D 0 associated to H k (see Proposition 2.7.2 for details), H i = D i-1 + ad i f H and ρ is the smallest integer such that H ρ = TX. We denote by r i the corank of the inclusion

H i-1 ⊂ H i , for i ≥ 0. We clearly have m ≥ r 1 ≥ r 2 ≥ • • • ≥ r q ≥ 1.
We show that we can identify an involutive distribution E in H 0 , of corank

r 1 -1, such that [ f , E ] ∈ D 0 . Let D 0 = span {g 1 , h 2 , • • • , h m }, where H 0 = span {h 2 , • • • , h m }. Then H 1 = span {g 1 , h j , ad f h j , 2 ≤ j ≤ m}.
Since cork (H 0 ⊂ H 1 ) = r 1 and g 0 ∈ H 0 , we deduce that the vector fields ad f h j , for 2 ≤ j ≤ m, add r 1 -1 new directions. Assume ad f h i ∈ D 0 , for 2 ≤ i ≤ r 1 , where all ad f h i , for 2 ≤ i ≤ r 1 , are independent. It follows that there exist smooth functions α i l such that

ad f h r 1 +l = r 1 ∑ i=2 α i l ad f h i mod D 0 , PROOFS for 1 ≤ l ≤ m -r 1 . We deduce [ f , h r 1 +l - r 1 ∑ i=2 α i l h i ] = 0 mod D 0 , for 1 ≤ l ≤ m -r 1 . We put hr 1 +l = h r 1 +l -∑ r 1 i=2 α i l h i , for 1 ≤ l ≤ m -r 1 , and define E = span {h r 1 +1 , • • • , h m }. It is clear that E is of corank r 1 -1 in H 0 and satisfies [ f , E ] ∈ D 0 . If r 1 = m, the distribution E is simply empty.
We can always assume, without loss of generality, that

H 0 = span {h 2 , • • • , h r 1 , h r 1 +1 , • • • , h m }, with E = span {h r 1 +1 , • • • , h m }. For all r 1 + 1 ≤ i, j ≤ m, it is easy to check (by applying Jacobi identity) that [ f , [h i , h j ]] ∈ D 0 .
Let us prove that E is involutive. Suppose that there exist two integers

r 1 + 1 ≤ i, j ≤ m such that [h i , h j ] = ∑ r 1
l=2 α l h l mod E , with α l smooth functions non vanishing simultaneously. Then,

[ f , [h i , h j ]] = [ f , r 1 ∑ l=2 α l h l mod E ] = r 1 ∑ l=2 α l ad f h l mod D 0 .
Since there exists l such that α l = 0, it follows that [ f , [h i , h j ]] ∈ D 0 , which contradicts the above observation. Therefore, the distribution E is involutive.

Proof of Proposition 2.5.1

We give the idea of the proof for the case k ≥ 1. If k = 0 similar arguments apply. Consider a control system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x) that is x-flat at x 0 of differential weight n + m + 1. Throughout we will use the notations introduced in Section 2.5.

Necessity. Let (ϕ 1 , • • • , ϕ r 1 , ψ r 1 +1 , • • • , ψ m )
be a minimal flat output, defined on a neighborhood X of x 0 . According to Proposition 2.4.1 and its proof, there exists a valid local change of coordinates in which the system, after applying a suitable feedback, takes the form (NF1) on X ′ , an open and dense subset of X , with ϕ i and ψ j playing the role of top variables. Moreover, if r 1 ≤ m -1, there exist mr 1 linear chains of length 1 and we can always suppose that the flat outputs corresponding to these chains are ψ j , for r 1 + 1 ≤ j ≤ m. We easily deduce that the conditions (FO1)-(FO2) hold on X ′ . Since all functions ϕ i and ψ j , for 1 ≤ i ≤ r 1 , and r 1 + 1 ≤ j ≤ m, as well as all distributions involved in the above conditions are defined on X , by continuity (FO1)-(FO2) are valid on X .

Sufficiency. Bring the system Σ into the form Σ

: ẋ = f (x) + ũ1 g1 (x) + ∑ r 1 i=2 ũi h i (x) + ∑ m l=r 1 +1 ũl h l (x), with H 0 = span {h 2 , • • • , h r 1 , h r 1 +1 , • • • , h m } and E = span {h r 1 +1 , • • • , h m }.
To simplify notation, we will drop the tildes.

Let ϕ 1 , • • • , ϕ r 1 , ψ r 1 +1 , • • • , ψ m any functions satisfying conditions (FO1)-(FO2).
According to the definition of the sequence of distributions H i and to the condition (FO1), it can be shown that the differentials dϕ i , • • • , dL ρ i -1 f ϕ i are independent at x 0 and annihilate the distribution H 0 , for r l+1 + 1 ≤ i ≤ r l , with ρ i = l, 1 ≤ l ≤ ρ and r ρ+1 = 0. Consider some functions ψ 2 , • • • , ψ r 1 such that their differentials are independent of dϕ i , • • • , dL

ρ i -1 f ϕ i and such that dψ j ⊥ E , for 2 ≤ j ≤ r 1 . Introduce 2.7.6 -Proof of Proposition 2.5.1 109 z i j = L j-1 f ϕ i , 1 ≤ j ≤ ρ i , for r l+1 + 1 ≤ i ≤ r l , with ρ i = l, 1 ≤ l ≤ ρ,
r ρ+1 = 0, and w j = ψ j , for 2 ≤ j ≤ r 1 , and let w s , for r 1 + 1 ≤ s ≤ m, be any functions completing them to a coordinate system. In these coordinate the system reads:

               żi 1 = z i 2 ẇp = L f ψ p + u 1 L g 1 ψ p + ∑ r 1 j=2 u j L h j ψ p żi 2 = z i 3 ẇs = a s + u 1 b s + ∑ r 1 j=2 u j c js + ∑ m j=r 1 +1 u j d js . . . żi ρ i -1 = z i ρ i żi ρ i = L ρ i f ϕ i + u 1 L g 1 L ρ i -1 f ϕ i for r l+1 + 1 ≤ i ≤ r l , with ρ i = l, 1 ≤ l ≤ ρ, r ρ+1 = 0, and 2 ≤ p ≤ r 1 , r 1 + 1 ≤ s ≤ m.
There exists an integer i such that L g 1 L ρ i -1 f ϕ i (x 0 ) = 0 and we suppose i = 1 (if not permute the functions ϕ i ). Moreover, the matrices (L h j ψ p ), for 2 ≤ j, p ≤ r 1 , and (d js ), for r 1 + 1 ≤ j, s ≤ m, are of full rank at x 0 . We apply the invertible static feedback transformation

ũ1 = L ρ f ϕ 1 + u 1 L g 1 L ρ-1 f ϕ 1 , ũp = L f ψ p + u 1 L g 1 ψ p + ∑ r 1 j=2 u j L h j ψ p , 2 ≤ p ≤ r 1 , ũs = a s + u 1 b s + ∑ r 1 j=2 u j c js + ∑ m j=r 1 +1 u j d js , r 1 + 1 ≤ s ≤ m, to get              ż1 1 = z 1 2 żi 1 = z i 2 ẇp = ũp ż1 2 = z 1 3 żi 2 = z i 3 ẇs = ũs . . . . . . ż1 ρ 1 -1 = z 1 ρ 1 żi ρ i -1 = z i ρ i ż1 ρ i = ũ1 żi ρ i = a i + b i ũ1 for 2 ≤ i ≤ r 1 , 2 ≤ p ≤ r 1 and r 1 + 1 ≤ s ≤ m.
By assumption k ≥ 1, i.e., the first noninvolutive distribution cannot be D 0 , so all functions b i depend on z only. Recall that the distribution E is such that [ f , E ] ∈ D 0 . In these coordinates we have

H 0 = span { ∂ ∂w 2 , • • • , ∂ ∂w m } and E = span { ∂ ∂w r 1 +1 , • • • , ∂ ∂w m }. It follows that ∂a i ∂w s = 0, for 2 ≤ i ≤ r 1 , r 1 + 1 ≤ s ≤ m.
Moreover, since cork (H 0 ⊂ H 1 ) = r 1 , we deduce that the matrix ( ∂a i ∂w t ), for 2 ≤ i, t ≤ r 1 , is of full rank at x 0 . We introduce new coordinates z i ρ i +1 = a i , for 2 ≤ i ≤ r 1 , and apply a suitable invertible static feedback transformation to get

                   ż1 1 = z 1 2 żi 1 = z i 2 ẇs = v s ż1 2 = z 1 3 żi 2 = z i 3 . . . . . . ż1 ρ 1 -1 = z 1 ρ 1 żi ρ i -1 = z i ρ i ż1 ρ 1 = v 1 żi ρ i = z i ρ i +1 + b i ( z1 ρ 1 , • • • , zr 1 ρ r 1 )v 1 żi ρ i +1 = v i
for 2 ≤ i ≤ r 1 and r 1 + 1 ≤ s ≤ m. Now, by condition (FO2), dψ j , for r 1 + 1 ≤ j ≤ m, and all dz i j are independent. Hence, we can introduce new coordinates ws = ψ s PROOFS and apply a suitable invertible static feedback to get exactly the above form with w replaced by w and for which z i 1 = ϕ i and ws = ψ s is a minimal x-flat output of differential weight n + m + 1.

If r 1 = m, there are no functions ψ s and the same proof holds. We will find the same normal form as above, but without the linear chains of length 1 corresponding to ws .

Appendices 2.A. Proof of Proposition 2.3.1

We will show the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). Consider a control system Ξ : ẋ = F(x, u) and assume that Ξ is flat at (x 0 , ūl 0 ), of differential weight n + m + 1. Let ϕ = (ϕ 1 , • • • , ϕ m ) be a minimal flat output. We will denote by s i the order of the highest derivative of ϕ i , for 1 ≤ i ≤ m, involved in the expression of x and u, i.e.,

x = γ(ϕ 1 , φ1 , • • • , ϕ (s 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , • • • , ϕ (s 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (s m ) m ), where ∑ m i=1 s i + m = n + m + 1. We will use the notation d.w.(ϕ) = n + m + 1. Denote X = span {dx 1 , • • • , dx n } and U = span {du 1 , • • • , du m }. Assume that there exists ϕ l = ϕ l (x, u, u, • • • , u (r) ), where r ≥ 1.
The differential weight of ϕ being n + m + 1 implies that, clearly,

s l = 0. Indeed, if s l ≥ 1, then dϕ l ∧ • • • ∧ dϕ (s l ) l = 0 mod (X + U ) and d.w.(ϕ) would be n + m + s l + 1 > n + m + 1. Denote η = ϕ l (x, u, u, • • • , u (r)
). If there exists a flat output ϕ i such that dϕ i ∧ dη = 0 mod (X + U ), then d.w.(ϕ) would be at least n + m + 2. We thus have ϕ i = ϕ i (x, u, η), for 1 ≤ i ≤ m, and we separate the components ϕ i that depend explicitly on η by permuting ϕ i such that ϕ i = ϕ i (x, u), for 1 ≤ i ≤ p, and ϕ j = ϕ j (x, u, η), for p + 1 ≤ j ≤ m, where ∂ϕ j ∂η = 0. We assume, without loss of generality, that l = m, i.e., ϕ m = η. Clearly,

s j = 0, for p + 1 ≤ j ≤ m (if not dϕ j ∧ d φj = 0 mod (X + U ) contradicting d.w.(ϕ) = n + m + 1). Let ρ i , for 1 ≤ i ≤ p,
be the smallest integer such that the derivative ϕ (ρ i ) i depends explicitly on the control u. In particular, ρ i = 0, if ϕ i depends explicitly on u. We have ϕ

(ρ i ) i = c i (x, u) and denote rk ( ∂c i ∂u l ) = p 1 ≤ p, for 1 ≤ i ≤ p and 1 ≤ l ≤ m. By a suitably static feedback, we get (S1) ϕ (ρ i ) i = v i , 1 ≤ i ≤ p 1 , (S2) ϕ (ρ i ) i = c i (x, v 1 , • • • , v p 1 ), p 1 ≤ i ≤ p.
We will consider separately the cases p 1 = p and p 1 < p.

If p 1 = p denote z j i = L (j-1) F ϕ i , 1 ≤ j ≤ ρ i , 1 ≤ i ≤ p, (z j i are absent if ρ i = 0),
and let w be the complementary coordinates, dim z + dim w = n. The system in (z, w)-coordinates reads

(S) ż = Az + Bv ẇ = d(z, w, v)
where (A, B) is in Brunovský canonical form with pr chains, where r = rk ( ∂ϕ i ∂v l

), for 1 ≤ i ≤ p, 1 ≤ l ≤ m, i.e., rk B = pr. The w-part is nonempty since it has to involve the controls v p+1 , • • • , v m absent in the z-part (recall that p < m) and thus dim w = q ≥ mp.

Denote

Φ = span {dϕ

(j) i , 1 ≤ i ≤ p, 0 ≤ j ≤ s i }, N = span {dϕ i , p + 1 ≤ i ≤ m} (recall that, for p + 1 ≤ i ≤ m, ϕ i = ϕ i (x, u, η) and s i = 0). Clearly, span {dw 1 , • • • , dw q , dv p+1 , • • • , dv m } ∩ Φ = 0. Notice that rk N = m -p. By def- inition of flatness, we should have X + U ⊂ Φ + N , but there are at least q ≥ m -p variables among w 1 , • • • , w q , v p+1 , • • • , v m whose differentials are lost in Φ + N . Now suppose p 1 < p. We have dη ∈ X + U and since d.w.(ϕ) = n + m + 1, we deduce Φ + N = span {dη} + X + U , so differentiating one more time (S2), we conclude ϕ (ρ i +1) i ∧ dη = 0 mod (X + U ), for p 1 + 1 ≤ i ≤ p. It follows that only one column of the matrix ( ∂c i ∂v l ), p 1 + 1 ≤ i ≤ p, 1 ≤ l ≤ p 1 ,
is nonzero and we may assume that ∂c i ∂v 1 = 0, so ϕ

(ρ i ) i = c i (x, v 1 ), p 1 + 1 ≤ i ≤ p.
Since d.w.(ϕ) = n + m + 1, it follows, firstly, that η = η(x, v, v1 ) and, secondly, that

rk ( ∂ ċi ∂v j ) = p -p 1 , p 1 + 1 ≤ i ≤ p, p 1 + 1 ≤ j ≤ m.
Recall that p < m so there are mp components (after a permutation)

v p+1 , • • • , v m such that dv p+1 ∧ • • • ∧ dv m = 0 mod (X + Φ), where Φ = span {dϕ (j) i , 1 ≤ i ≤ p, 0 ≤ j ≤ s i }. Define z j i = L (j-1) F ϕ i , 1 ≤ i ≤ p, 0 ≤ j ≤ ρ i , and put Z = span {dz j i }. Let w 1 , • • • , w q coordinate functions such that dw 1 ∧ • • • ∧ dw q = 0 mod (Z + span {dc i , p 1 + 1 ≤ i ≤ p}),
where the exterior product is nonzero at one, and thus at almost any, value of v 1 (since controls enter independently into the system). Clearly, span {dw

1 , • • • , dw q , dv p+1 , • • • , dv m } ∩ Φ = 0. Since s i = 0 for ϕ i , p + 1 ≤ i ≤ m, it follows, like in the case p 1 = p, that there are at least q ≥ m -p variables among w 1 , • • • , w q , v p+1 , • • • , v m that cannot be expressed as functions of ϕ (j) i , 1 ≤ i ≤ m, 0 ≤ j ≤ s i .
It remains to consider the case of Ξ being (x, u)-flat. Let ρ i the relative degree of ϕ i , that is, the smallest integer such that the derivative ϕ (ρ i ) i depends explicitly on the control u and let r 1 denote the rank of the decoupling matrix r 1 = rk ( ∂ϕ

(ρ i ) i ∂u j ), 1 ≤ i, j ≤ m. Put r 0 = rk ( ∂ϕ i ∂u j ), 1 ≤ i, j ≤ m. Clearly r 0 ≤ r 1 and let r 0 + (m -r 2 )
112 PROOFS be the number of ϕ i whose relative degree ρ i is zero. After permuting the ϕ i 's and applying a static invertible feedback u = u(x, v), we get

ϕ i = v i , 1 ≤ i ≤ r 0 , ϕ (ρ i ) i = v i , r 0 + 1 ≤ i ≤ r 1 , where ρ i ≥ 1, ϕ (ρ i ) i = c i (x, v 1 , • • • , v r 1 ), r 1 + 1 ≤ i ≤ r 2 , ϕ i = η i (x, v 1 , • • • , v r 0 ), r 2 + 1 ≤ i ≤ m.
The system is (x, u)-flat, so r 0 ≥ 1. Define

z j i = L (j-1) F ϕ i , r 0 + 1 ≤ i ≤ r 2 , 0 ≤ j ≤ ρ i
, which are functions on X by the definition of the relative degree. We have

żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , r 0 + 1 ≤ i ≤ r 1 , żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = c i (x, v 1 , • • • , v r 1 ), r 1 + 1 ≤ i ≤ r 2 . By d.w.(ϕ) = n + m + 1, we can differentiate ϕ (ρ i ) i =
żρ i i only one time to produce independent controls and, moreover all c i can depend on one (the same for all c i ) control, say, v l . It follows that rk

( ∂ ċi ∂v j ) = r 2 -r 1 , where r 1 + 1 ≤ i ≤ r 2 , r 0 + 1 ≤ j ≤
m, (at one and thus at almost any value of (v l , vl )). Then there exist functions z

ρ i +1 i , for r 1 + 1 ≤ i ≤ r 2 , independent of z j i , 0 ≤ j ≤ ρ i , such that rk ( ∂c i ∂z ρ j +1 j ) = r 2 -r 1 , for r 1 + 1 ≤ i, j ≤ r 2 .
By applying a static invertible feedback, the overall system becomes

żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, ẇ = d(z, w, v) żρ i i = v i , r 0 + 1 ≤ i ≤ r 1 , żρ i i = c i (z, w, v l ) żρ i +1 i = v i , r 1 + 1 ≤ i ≤ r 2 ,
where w = (w 1 , • • • , w q ) are any functions completing z j i 's to a coordinate system. The system is supposed to be (x, u)-flat with a flat output

ϕ i = v i , 1 ≤ i ≤ r 0 , ϕ i = z 1 i , r 0 + 1 ≤ i ≤ r 2 , ϕ i = η i (z, w, v 1 , • • • , v r 0 ), r 2 + 1 ≤ i ≤ m.
Notice that the number of controls equals the number of the components of flat outputs and is m ≥ r 2 .

We will consider the cases depending on whether the control v l (whose derivation vl is involved since v l is present in all c i (z, w, v l )) satisfies 1 ≤ l ≤ r 0 or

r 0 + 1 ≤ l ≤ r 1 .
Consider that case r 0 + 1 ≤ l ≤ r 1 and notice that the first r 0 controls v 1 , • • • , v r 0 and the last mr 2 controls v r 2 +1 , • • • , v m (existing if r 2 < m) do not affect the zsubsystem, so they are present in the w-subsystem. Therefore, we have dim w = q ≥ mr 2 + r 0 .

Denote the set of indices

I = {1, • • • , r 0 } ∪ {r 2 + 1, • • • , m}. Notice that s i = 0, for ϕ i such that i ∈ I (since ϕ i = v i , for 1 ≤ i ≤ r 0 , and ϕ i = ϕ i (z, w, v 1 , • • • , v r 0 ), for r 2 + 1 ≤ i ≤ m).
Therefore, for flatness we should have X + U ⊂ Φ + N , where Φ = span {dϕ j i , r 0 + 1 ≤ i ≤ r 2 , 0 ≤ j ≤ ρ i + 1} and N = span {dϕ i , i ∈ I}. Clearly, dw 1 , • • • , dw q and dv i , i ∈ I, are in X + U ; are independent modulo Φ and thus there is q + r 0 + (m -r 2 ) of them. Since the controls v i , i ∈ I, are independent, q cannot be smaller than the cardinality of I, which is r 0 + mr 2 . So for flatness, we need

q + r 0 + m -r 2 ≥ 2(r 0 + m -r 2 ) ≥ r 0 + m -r 2 ,
(r 0 + mr 2 being rk N ), which holds if r 0 + mr 2 = 0. This holds if and only if r 2 = m and r 0 = 0, but the latter is impossible since ϕ is an (x, u)-flat output implying r 0 ≥ 1. Now we will consider the case 1 ≤ l ≤ r 0 . Without loss of generality we may assume l 0 = r 0 . So we rewrite ż(ρ i

) i = c i (z, w, v r 0 ), for r 1 + 1 ≤ i ≤ r 2 .
We will distinguishing those flat outputs ϕ i , i ≥ r 2 + 1, that depend on (z, w) and v r 0 only from those that depend also on other controls. After a permutation, we may assume

ϕ i = ϕ i (z, w, v r 0 ), for r 2 + 1 ≤ i ≤ r 3 , ϕ i = ϕ i (z, w, v 1 , • • • , v r 0 -1 , v r 0 ), for r 3 + 1 ≤ i ≤ m,
where each ϕ i , i ≥ r 3 , depend non trivially on at least one v j , 1

≤ j ≤ r 0 -1. It follows that s i = 0, for r 3 + 1 ≤ i ≤ m, but s i = 1, for r 2 + 1 ≤ i ≤ r 3 (since we can differentiate one time v r 0 = v l ).
For flatness, we should have X + U ⊂ Φ + N , where Φ = span {dϕ r 0 , d φr 0 } + span {dϕ

(j) i , r 0 + 1 ≤ i ≤ r 1 , 0 ≤ j ≤ ρ i } + span {dϕ (j) i , r 1 + 1 ≤ i ≤ r 2 , 0 ≤ j ≤ ρ i + 1} and N = span {dϕ i , d φj , i ∈ I, r 2 + 1 ≤ j ≤ r 3 }.
Notice that the definition of both Φ and N is slightly different because now 1 ≤ l ≤ r 0 implying that dϕ r 0 and d φr 0 are added to Φ and N contains also d φr 2 +1 , • • • , d φr 3 for which s i = 1.

Notice that the first r 0 -

1 controls v 1 , • • • , v r 0 -1 and the last m -r 2 controls v r 2 +1 , • • • , v m (existing if r 2 < m)
do not affect the z-subsystem, so they have to affect the w-subsystem, implying that dim

w = q ≥ r 0 -1 + m -r 2 . Clearly, dv 1 , • • • , dv r 0 -1 , v r 2 +1 , • • • , v m and dw 1 , • • • , dw q
are in X + U ; are independent modulo Φ and thus there are q + r 0 -1 + (m -r 2 ) of them. We have rk N = r 0 -1 + (m -r 3 ) + 2(r 3 -r 2 ). So for flatness, we need

q + r 0 -1 + m -r 2 ≥ 2(r 0 -1 + m -r 2 ) ≥ r 0 -1 + (m -r 3 ) + 2(r 3 -r 2 ), which is equivalent to 0 ≥ -(r 0 -1) -(m -r 3 ).
This is the case if and only if r 0 = 1 and m = r 3 . This implies that system is of the form

żj i =z j+1 i , 1 ≤ j ≤ ρ i -1, żj i =z j+1 i , 1 ≤ j ≤ ρ i -1, ẇ=v i , r 2 + 1 ≤ i ≤ m, żρ i i =v i , 2 ≤ i ≤ r 1 , żρ i i =c i (z, w, v 1 ) żρ i +1 i =v i , r 1 + 1 ≤ i ≤ r 2 ,
which is, indeed, (x, u)-flat of differential weight n + m + 1, with the flat output being

ϕ 1 = v 1 , ϕ i = z 1 i , 2 ≤ i ≤ r 2 , ϕ i = ϕ i (w, v 1 ), r 2 + 1 ≤ i ≤ m, where rk ( ∂ϕ i ∂w j ) = m -r 2 , r 2 + 1 ≤ i, j ≤ m.
PROOFS Now we will show that it is also x-flat with the differential weight n + m + 1. To this end, observe that (by the definition of the relative degree) ∂c i ∂v 1 = 0, in particular

∂c r 1 +1 ∂v 1 = 0. Apply the static feedback ṽ1 = c r 1 +1 (z, w, v 1 ) to get żρ r 1 r 1 +1 = ṽ1 żρ i i = ci (z, w, v 1 ) żρ i +1 i = v i , r 1 + 2 ≤ i ≤ r 2 .
By permuting z

ρ i i , we have rk ∂ ci ∂z ρ j j = r 2 -r 1 -1, r 1 + 2 ≤ i ≤ r 2 , r 1 + 1 ≤ j ≤ r 2 .
Now rename ṽ1 by v r 1 and v r 1 by v 1 , as well as z ρ r 1 r 1 +1 by w 1 . We get the system

żj i =z j+1 i , 1 ≤ j ≤ ρ i -1, żj i =z j+1 i , 1 ≤ j ≤ ρ i -1, ẇ1 =v 1 żρ i i =v i , 2 ≤ i ≤ r 1 + 1, żρ i i = ci (z, w, v 1 ) ẇi =v i , r 2 + 1 ≤ i ≤ m. żρ i +1 i =v i , r 1 + 2 ≤ i ≤ r 2 ,
This system is x-flat, with the differential weight n + m + 1 ,with x-flat outputs being

ϕ 1 = w 1 , ϕ i = z 1 i , 2 ≤ i ≤ r 2 , ϕ i = w i , r 2 + 1 ≤ i ≤ m.
(ii) ⇒ (iii). Consider an x-flat control system Ξ of differential weight n + m + 1 and let ϕ = (ϕ 1 , • • • , ϕ m ) be a minimal x-flat output. We will denote by s i the order of the highest derivative of ϕ i , for 1 ≤ i ≤ m, involved in the expression of x and u, i.e.,

x = γ(ϕ 1 , φ1 , • • • , ϕ (k 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (k m ) m ) u = δ(ϕ 1 , φ1 , • • • , ϕ (k 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (k m ) m ), where d.w.(ϕ) = ∑ m i=1 s i + m = n + m + 1. Denote X = span {dx 1 , • • • , dx n } and U = span {du 1 , • • • , du m }.
Let ρ i be the relative degree of ϕ i , for 1 ≤ i ≤ m, i.e., ϕ

(ρ i ) i is the lowest derivative involving explicitly the control. Define z j i = L j-1 f ϕ i , for 1 ≤ i ≤ m and 1 ≤ j ≤ ρ i ,
and let w complete them to a coordinate system. Put c i = L ρ i f ϕ i , where c i = (z, w, u). Form the decoupling matrix D = ( ∂c i ∂u j ), for 1 ≤ i, j ≤ m, and denote by r its rank. Flatness of differential weight n + m + 1 implies 1 ≤ r ≤ m -1. Indeed, if the rank were m, by a suitable invertible static feedback we could transform the system into the form żj

i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , 1 ≤ i ≤ m,
and get a static feedback linearizable system, thus of differential weight n + m. Suppose that the r first lines of D are independent and apply the invertible static feedback

transformation v i = c i , for 1 ≤ i ≤ r, v i = u i , for r + 1 ≤ i ≤ m. The z-subsystem reads żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , 1 ≤ i ≤ r, żρ i i = c i (z, w, v 1 , • • • , v r ), r + 1 ≤ i ≤ m.
Observe that, for q ≥ 1, c

i depends on v

(q) 1 , • • • , v (q) 
r . Recall that d.w.(ϕ) = n + m + 1 and notice that, obviously, dv (q) i are independent modulo X + U . It follows that in order to produce the remaining controls v r+1 , • • • , v m , we are allowed to differentiate c i , for r + 1 ≤ i ≤ m, only one time and, moreover, only one control among

v 1 , • • • , v r , say v 1 , can be present in all c i , for r + 1 ≤ i ≤ m. Let z ρ i +1 i , for r + 1 ≤ i ≤ m, be any functions completing z j i , for 1 ≤ j ≤ ρ i , 1 ≤ i ≤ m,
to a coordinate system (we replace w by z

ρ i +1 i ). Applying a suitable invertible feedback (to controls v r+1 , • • • , v m ) we get żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , 1 ≤ i ≤ r, żρ i i = c i (z, v 1 ) żρ i +1 i = v i , r + 1 ≤ i ≤ m.
Obviously the system becomes static feedback linearizable via the preintegration

v 1 = y 1 , ẏ1 = ṽ1 , ṽi = v i , 2 ≤ i ≤ m.
(iii) ⇒ (i). Suppose that the first prolongation of Ξ : ẋ = F(x, u), given by

Ξ (1,0,••• ,0) : ẋ = F(x, y 1 , v 2 , • • • , v m ) ẏ1 = v 1
where u 1 = y 1 and u i == v i , 2 ≤ i ≤ m, is locally static feedback linearizable. Hence, Σ is flat.

Ξ (1,0,••• ,0) is equivalent via a diffeomorphism z = φ(x, y 1
) and an invertible transformation, v = ψ(x, y 1 , ṽ), to the Brunovský canonical form

żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , 1 ≤ i ≤ m, where ∑ m i=1 ρ i = n + 1, for which ϕ = (z 1 1 , • • • , z 1 m ) is a minimal flat output of dif- ferential weight n + m + 1. It follows that z = γ(ϕ 1 , φ1 , • • • , ϕ (ρ 1 -1) 1 , • • • , ϕ m , φm , • • • , ϕ (ρ m -1) m
), thus for the original variables x and the first component of u,

we have (x, u 1 ) t = φ -1 • γ(ϕ 1 , φ1 , • • • , ϕ (ρ 1 -1) 1 , • • • , ϕ m , φm , • • • , ϕ (ρ m -1) m ). More- over, v = δ(ϕ 1 , φ1 , • • • , ϕ (ρ 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (ρ m ) m ) and we deduce that u i = δ i (ϕ 1 , φ1 , • • • , ϕ (ρ 1 ) 1 , • • • , ϕ m , φm , • • • , ϕ (ρ m ) m ), for 2 ≤ i ≤ m, yielding that ϕ is a flat output of Ξ of differential weight n + m + 1.
Notice that if the original system Ξ is the control-affine system Σ : ẋ = f (x) + ∑ m i=1 u i g i (x), then the distribution F = Im ∂F ∂u does not depend on u and thus the

116 PROOFS distribution F = Im ∂ F ∂v of the system żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żj i = z j+1 i , 1 ≤ j ≤ ρ i -1, żρ i i = v i , 1 ≤ i ≤ r, żρ i i = c i (z, v 1 ) żρ i +1 i = v i , r + 1 ≤ i ≤ m.
does not depend on v (see Lemma 2.7.1 below) implying that c i (z, v 1 ), for r + 1 ≤ i ≤ m, are actually affine functions of v 1 , that is,

c i (z, v 1 ) = a i (z) + b i (z)v 1 .
Lemma 2.7.1. Consider a control system Ξ : ẋ = F(x, u), where x ∈ X and u ∈ U, and define its associated distribution by F (x, u) = Im ∂F ∂u (x, u). The dependency or not of F on the control u is invariant by invertible static feedback transformations.

Proof. Apply the invertible static feedback transformation u = ψ(x, v) that brings the system

Ξ into Ξ : ẋ = F(x, v), with F(x, v) = F(x, ψ(x, v)). We have ∂ F ∂v = ∂F ∂ψ ∂ψ ∂v implying that F (x, v) = Im ∂ F ∂v (x, v) = Im( ∂F ∂ψ ∂ψ ∂v )(x, v) = Im ∂F ∂ψ (x, v) = Im ∂F ∂u (x, u) = F (x, u).
Therefore F does not depend on u, i.e., F = F (x), if and only if F does not depend on v and F (x) = F (x).

Introduction

The notion of flatness has been introduced in control theory in the 1990's by Fliess, Lévine, Martin and Rouchon ( [START_REF] Fliess | Sur les systemes non linéaires différentiellement plats[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], see also [START_REF] Isidori | A sufficient condition for full linearization via dynamic state feedback[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Martin | Contribution à l'étude des systèmes différentiellement plats[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]) and has attracted a lot of attention because of its multiple applications in the problem of trajectory tracking, motion planning and constructive controllability (see, e.g. [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Lévine | Analysis and Control of Nonlinear Systems: A Flatness-Based Approach[END_REF][START_REF] Martin | Flat systems, equivalence and trajectory generation[END_REF][START_REF] Pereira Da Silva | Flatness of nonlinear control systems and exterior differential systems[END_REF][START_REF] Pomet | On dynamic feedback linearization of four-dimensional affine control systems with two inputs[END_REF][START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF][START_REF] Schlacher | Construction of flat outputs by reduction and elimination[END_REF]).

The fundamental property of flat systems is that all their solutions may be parameterized by m functions and their time-derivatives, m being the number of controls. More precisely, consider a nonlinear control system

Ξ : ẋ = F(x, u)
where x is the state defined on an open subset X of R n , u is the control taking values in an open subset U of R m (more generally, an n-dimensional manifold X and an m-dimensional manifold U, respectively) and the dynamics F are smooth (the word smooth will always mean C ∞ -smooth). The system Ξ is flat if we can find m functions, ϕ i (x, u, . . . , u (r) ), for some r ≥ 0, called flat outputs, such that x = γ(ϕ, . . . , ϕ (s) ) and u = δ(ϕ, . . . , ϕ (s) ),

for a certain integer s and suitable maps γ and δ, where ϕ = (ϕ 1 , . . . , ϕ m ). Therefore all state and control variables can be determined from the flat outputs without integration and all trajectories of the system can be completely parameterized. In the particular case ϕ i = ϕ i (x), for 1 ≤ i ≤ m, we will say that the system is x-flat.

The minimal number of derivatives of components of a flat output ϕ, needed to express x and u, will be called the differential weight of ϕ (see Section 3.1.2 for precise definitions).

The problem of flatness of driftless two-input control-linear systems of the form

Σ lin : ẋ = u 0 g 0 (x) + u 1 g 1 (x),
defined on a open subset X of R n , has been solved by Martin and Rouchon in [START_REF] Martin | Feedback linearization and driftless systems[END_REF] (see also [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF][START_REF] Martin | Feedback linearization and driftless systems[END_REF] and a related result of Cartan [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF]). According to their result, on an open and dense subset X ′ of X, the system Σ lin is flat if and only if, its associated distribution G = span {g 0 , g 1 } can be locally brought into the Goursat normal form, or equivalently, the control system Σ lin is locally static feedback equivalent to the chained form:

Ch k 1 :              ż0 = v 0 ż1 = z 2 v 0 ż2 = z 3 v 0 . . . żk-1 = z k v 0 żk = v 1 where n = k + 1.
The first who noticed the existence of singular points in the problem of transforming a distribution of rank two into the Goursat normal form were Giaro, Kumpera and Ruiz [START_REF] Giaro | Sur la lecture correcte d'un résultat d'Elie Cartan[END_REF]. Murray presented in [START_REF] Murray | Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems[END_REF] a regularity condition that guarantees the feedback equivalence of Σ lin to the chained form Ch k 1 around an arbitrary point x * . In [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF], Li and Respondek studied and solved the following problem: can a driftless two-input system be locally flat at a singular point of G? In other words, can Σ lin be flat without being locally equivalent to the chained form? Their result shows that a Goursat structure is x-flat only at regular points of G. They also described all xflat outputs and showed that they are parametrized by an arbitrary function of three variables canonically defined up to a diffemorphism.

In this paper we give a generalization of these results. Our goal is to characterize control-affine systems that are static feedback equivalent to the following triangular form

TCh k 1 :              ż0 = v 0 ż1 = f 1 (z 0 , z 1 , z 2 ) + z 2 v 0 ż2 = f 2 (z 0 , z 1 , z 2 , z 3 ) + z 3 v 0 . . . żk-1 = f 2 (z 0 , • • • , z k ) + z k v 0 żk = v 1
compatible with the chained form. Indeed, notice that in the z-coordinates the distribution spanned by the controlled vector fields is in the chained form (Goursat normal form) and the drift has a triangular structure.

We will completely characterize control-affine systems that are static feedback equivalent to TCh k 1 and show how their geometry differs and how it reminds that of control-linear systems feedback equivalent to the chained form. Then, we will extend this result to the triangular form compatible with the m-chained form, i.e., we will characterize control-affine systems with m + 1 inputs, where m ≥ 2, that are static feedback equivalent to a normal form obtained by replacing z j , in TCh k 1 , by the vector

z j = (z j 1 , • • • , z j m ), the smooth functions f j by f j = ( f j 1 , • • • , f j m
) and the control v 1 by the control vector (v 1 , • • • , v m ). This form will be denoted by TCh k m . Its associated distribution G = span {g 0 , • • • , g m }, where g i , for 0 ≤ i ≤ m, are the controlled vector fields, is called a Cartan distribution (or a contact distribution) for curves [START_REF] Bryant | Exterior Differential Systems[END_REF][START_REF] Olver | Equivalence, Invariants and Symmetry[END_REF][START_REF] Vinogradov | Geometry of Jet Spaces and Nonlinear Partial Differential Equations[END_REF]. The problem of characterizing control-linear systems that are locally static feedback equivalent to the m-chained form (or equivalently, that of characterizing Cartan distributions for curves) has been studied and solved ( [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF], see also [START_REF] Mormul | Multi-dimensional Cartan prolongation and special k-flags[END_REF][START_REF] Pasillas-Lépine | On geometry of control systems equivalent to canonical contact systems: regular points, singular points, and flatness[END_REF][START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF][START_REF] Shibuya | Drapeau theorem for differential systems[END_REF][START_REF] Yamaguchi | Contact geometry of higher order[END_REF]). It is immediate that systems locally feedback equivalent to the m-chained form are flat and in [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF], all their minimal flat outputs (i.e., those whose differential weight is the lowest among all flat outputs of the system) have been described.

It is easy to see that the normal form TCh k 1 (respectively TCh k m ) is x-flat at any point of X × R 2 (respectively X × R m+1 ) satisfying some regularity conditions and we describe all its x-flat outputs (respectively all its minimal x-flat outputs). Their description reminds very much that of control-linear systems feedback equivalent to the chained form, for m = 1, respectively to the m-chained form, for m ≥ 2, although new phenomena appear related to singularities in the state and control-space.

Since TCh k 1 andTCh k m are flat, the paper gives sufficient conditions for a system to be x-flat. We will also show that these conditions are not necessary for x-flatness of control-affine system whose associated distribution spanned by the controlled vector fields G = span {g 0 , • • • , g m } is feedback equivalent to the m-chained form. Indeed, we show that there are x-flat control-affine systems for which there exist local coordinates in which the distribution spanned by the controlled vector fields has the m-chained structure but the drift is not triangular (see Example 3.1.5.1).

The triangular form TCh k 1 was considered in [START_REF] Li | Characterization and flatness of the extended chained system[END_REF], where its flatness was observed but its description was not addressed. A characterization of TCh k 1 has been recently proven by Silveira [START_REF] Silveira | Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica[END_REF] and by Silveira et al. [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF], where a solution dual to ours (using an approach based on differential forms and codistributions rather than distributions) is given. Our aim is to treat in a homogeneous way the two-input case of TCh k 1 and the multi-input case of TCh k m , using the formalism of vector fields and distributions, as well as to describe all flat outputs and their singularities (which are more natural to deal with in the language of vector fields).

The paper is organized as follows. In Section 3.1.2, we recall the definition of flatness and define the notion of differential weight of a flat system. In Section 3.1.3, we give our main results: we characterize control-affine systems static feedback equivalent to the triangular form TCh k 1 , for m = 1, and to TCh k m , for m ≥ 2. We describe in Section 3.1.4 all minimal flat outputs including their singularities and we study also singular control values at which the system ceases to be flat. Moreover, we give also in that section a system of first order PDE's to be solved in order to find all x-flat outputs, for m = 1, and all minimal x-flat outputs, for m ≥ 2. We illustrate our results by two examples in Section 3.1.5 and provide proofs in Section 3.1.6.

Flatness

Fix an integer l ≥ -1 and denote U l = U × R ml and ūl = (u, u, . . . , u (l) ). For l = -1, the set U -1 is empty and ū-1 is an empty sequence. Definition 3.1.1. The system Ξ : ẋ = F(x, u) is flat at (x * , ū * l ) ∈ X × U l , for l ≥ -1, if there exists a neighborhood O l of (x * , ū * l ) and m smooth functions

ϕ i = ϕ i (x, u, u, . . . , u (l) ), 1 ≤ i ≤ m, defined in O l ,
having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ m, such that

x i = γ i (ϕ, φ, . . . , ϕ (s) ) and u j = δ j (ϕ, φ, . . . , ϕ (s) )

along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t), . . . , u (l) (t)) ∈ O l , where ϕ = (ϕ 1 , . . . , ϕ m ) and is called flat output.

When necessary to indicate the number of derivatives of u on which the flat outputs ϕ i depend, we will say that the system Ξ is (x, u, • • • , u (r) )-flat if u (r) is the highest derivative on which ϕ i depend and in the particular case ϕ i = ϕ i (x), we will say that the system is x-flat. In general, r is smaller than the integer l needed to define the neighborhood O l which, in turn, is smaller than the number of derivatives of ϕ i that are involved. In our study, r is always equal to -1, i.e., the flat outputs depend on x only, and l is 0.

The minimal number of derivatives of components of a flat output ϕ, needed to express x and u, will be called the differential weight of that flat output and will be formalized as follows. By definition, for any flat output ϕ of Ξ there exist integers s 1 , . . . , s m such that

x = γ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ),
Moreover, we can choose (s 1 , . . . , s m ) such that (see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) if for any other m-tuple (s 1 , . . . , sm ) we have x = γ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ

(s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ), then s i ≤ si , for 1 ≤ i ≤ m.
We will call ∑ m i=1 (s i + 1) = m + ∑ m i=1 s i the differential weight of ϕ. A flat output of Ξ is called minimal if its differential weight is the lowest among all flat outputs of Ξ. We define the differential weight of a flat system to be equal to the differential weight of a minimal flat output.

Main results: characterization of the triangular form

From now on, we will denote the number of controls by m + 1 (and not by m) since, as we will see below, for all classes of systems that follow one control plays a particular role.

Consider the control-affine system

Σ a f f : ẋ = f (x) + m ∑ i=0 u i g i (x), (3.2) 
defined on an open subset X of R n , where n = km + 1 (or an n-dimensional manifold X), where f and g 0 , • • • , g m are smooth vector fields on X and the number of controls is m + 1 ≥ 2.

To Σ a f f we associate the following distribution G = span {g 0 , • • • , g m }. We define inductively the derived flag of G by

G 0 = G and G i+1 = G i + [G i , G i ], i ≥ 0.
Let D be a non involutive distribution of rank d, defined on X and define its annihilator D ⊥ = {ω ∈ Λ 1 (X) : < ω, f >= 0, ∀ f ∈ D}, where Λ 1 (X) stands for the collection of smooth differential 1-forms on X. A vector field c ∈ D is called characteristic for D if it satisfies [c, D] ⊂ D. The characteristic distribution of D, denoted by C, is the distribution spanned by all its characteristic vector fields, i.e.,

C = {c ∈ D : [c, D] ⊂ D}
and can be computed as follows. Let ω 1 , . . . , ω q , where q = nd, be differential 1forms locally spanning the annihilator of D, that is D ⊥ = span {ω 1 , . . . , ω q }. For any ω ∈ D ⊥ , we define W (ω) = { f ∈ D : f dω ∈ D ⊥ }, where is the interior product. The characteristic distribution of D is given by

C = q i=1 W (ω i ).
It follows directly from the Jacobi identity that the characteristic distribution is always involutive.

Our main results describing control-affine systems locally static feedback equivalent to the triangular form compatible to the chained form and to the m-chained form, are given by the two following theorems corresponding to two-input control-affine systems, i.e., m = 1 (Theorem 3.1.1), and to control-affine systems with m + 1 inputs, for m ≥ 2 (Theorem 3.1.2). Let us first consider the case m = 1, which has also been solved, using the formalism of differential forms and codistributions, by Silveira [START_REF] Silveira | Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica[END_REF] and by Silveira et al. [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF]. Theorem 3.1.1. Consider a two-input control-affine system Σ a f f , given by (3.2), for m = 1, and fix x * ∈ X, an open subset of R k+1 . The system Σ is locally, around x * , static feedback equivalent to the triangular form TCh k 1 if and only if the following conditions are satisfied:

(Ch1) G k-1 = TX; (Ch2) G k-3 is of constant rank k -1 and, moreover, the characteristic distribution C k-2 of G k-2 is contained in G k-3 and has constant corank one in G k-3 ; (Ch3) G 0 (x * ) is not contained in C k-2 (x * ); (Comp) [ f , C i ] ⊂ G i , for 1 ≤ i ≤ k -2, where C i is the characteristic distribution of G i .
It was stated and proved in [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF] that items (Ch1)-(Ch3) characterize, locally, the chained form (or equivalently the Goursat normal form). Therefore, they are equivalent to the well known conditions describing the chained form [START_REF] Murray | Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems[END_REF] (see also [START_REF] Kumpera | Sur l'équivalence locale des systemes de Pfaff en drapeau[END_REF][START_REF] Martin | Feedback linearization and driftless systems[END_REF][START_REF] Montgomery | Geometric approach to Goursat flags[END_REF][START_REF] Mormul | Goursat flags: classification of codimension-one singularities[END_REF][START_REF] Pasillas-Lépine | On the geometry of Goursat structures[END_REF]): 

(Ch1)' rk G i = i + 2, for 0 ≤ i ≤ k -1, (Ch2)' rk G i (x * ) = rk G i (x * ) = i + 2, for 0 ≤ i ≤ k -1,
where the distributions G i form the Lie flag of G and are defined by

G 0 = G and G i+1 = G i + [G 0 , G i ], i ≥ 0,
and assure the existence of a change of coordinates z = φ(x) and of an invertible static feedback transformation of the form u = β ũ, bringing the control vector fields g 0 and g 1 into the chained form.

Item (Comp) takes into account the drift and gives the compatibility conditions for f to have the desired triangular form in the right system of coordinates, i.e., in coordinates z in which the controlled vector fields are in the chained form.

Since the distribution G, associated to Σ a f f , satisfies (Ch1) ′ , all characteristic distributions C i of G i are well defined, for 1 ≤ i ≤ k -2. Indeed, recall the following result due to Cartan [START_REF] Cartan | Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes[END_REF]:

Lemma 3.1.1. (E. Cartan) Consider a rank two distribution G defined on a manifold X of dimension k + 1, for k ≥ 3. If G satisfies rk G i = i + 2, for 0 ≤ i ≤ k -1,
everywhere on X, then each distribution G i , for 0 ≤ i ≤ k -3, contains a unique involutive subdistribution C i+1 that is characteristic for G i+1 and has constant corank one in G i .

The conditions of the above theorem are verifiable, i.e., given a two-input controlaffine system and an initial point x * , we can verify whether it is locally static feedback equivalent, around x * , to TCh k 1 and verification (in terms of vector fields of the initial system) involves derivations and algebraic operations only, without solving PDE's.

Next, we consider the case m ≥ 2 and extend the above result to a triangular form compatible with the m-chained form. An (m + 1)-input driftless control system Σ lin : ż = ∑ m i=0 v i g i (z), defined on R km+1 , is said to be in the m-chained form if it is represented by

Ch k m :                  ż0 = v 0 ż1 1 = z 2 1 v 0 • • • ż1 m = z 2 m v 0 ż2 1 = z 3 1 v 0 ż2 m = z 3 m v 0 . . . . . . żk-1 1 = z k 1 v 0 żk-1 m = z k m v 0 żk 1 = v 1 • • • żk m = v m Denote zj = (z 1 1 , • • • , z 1 m , z 2 1 , • • • , z 2 m , • • • , z j 1 , • • • z j m ), for 2 ≤ j ≤ k.
Our goal is to characterize the following triangular normal form

TCh k m :                  ż0 = v 0 ż1 1 = f 1 1 (z 0 , z2 ) + z 2 1 v 0 • • • ż1 m = f 1 m (z 0 , z2 ) + z 2 m v 0 ż2 1 = f 2 1 (z 0 , z3 ) + z 3 1 v 0 ż2 m = f 2 m (z 0 , z3 ) + z 3 m v 0 . . . . . . żk-1 1 = f k-1 1 (z 0 , zk ) + z k 1 v 0 • • • żk-1 m = f k-1 m (z 0 , zk ) + z k m v 0 żk 1 = v 1 • • • żk m = v m
with m + 1 inputs, m ≥ 2. Theorem 3.1.2 below gives necessary and sufficient conditions for a control system to be locally static feedback equivalent to TCh k m .

Theorem 3.1.2. Consider a control-affine system Σ a f f , given by (3.2), on an open subset X of R km+1 , for m ≥ 2, and fix x * ∈ X. The system Σ a f f is locally, around x * , static feedback equivalent to the triangular form TCh k m if and only if the following conditions are satisfied:

(m-Ch1) G k-1 = TX;
(m-Ch2) G k-2 is of constant rank (k -2)m + 1 and contains an involutive subdistribution L that has constant corank one in G k-2 ;

(m-Ch3) G 0 (x * ) is not contained in L(x * );

(m-Comp) [ f , C i ] ⊂ G i , for 1 ≤ i ≤ k -2, where C i is the characteristic distribution of G i .
In order to verify the conditions of Theorem 3.1.2, we have to check whether the distribution G k-2 contains an involutive subdistribution L of corank one. Checkable necessary and sufficient conditions for the existence of such an involutive subdistribution, together with a construction, follow from the work of Bryant [START_REF] Bryant | Some aspects of the local and global theory of Pfaffian systems[END_REF] and are given explicitly in [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF]. We present in Appendix 3.1.A the conditions for the existence and construction of L. In our case, if such a distribution exists, it is always unique. As a consequence, all conditions of Theorem 3.1.2 are verifiable, i.e., given a control-affine system and an initial point x * , we can verify whether it is locally static feedback equivalent, around x * , to TCh k m and verification involves derivations and algebraic operations only, without solving PDE's.

Conditions (m-Ch1)-(m-Ch3) characterize the m-chained form [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF] (see also [START_REF] Pasillas-Lépine | On geometry of control systems equivalent to canonical contact systems: regular points, singular points, and flatness[END_REF][START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF]) and assure the existence of a change of coordinates z = φ(x) and of an invertible static feedback transformation of the form u = β ũ, bringing the control vector fields g i into the m-chained form. We define the diffeomorphism φ and the feedback transformation β in Appendix 3.1.B. The diffemorphism φ defines also the coordinates in which the system takes the triangular form TCh k m . Item (m-Comp) takes into account the drift and gives the compatibility conditions for f to have the desired triangular form in the right system of coordinates, i.e., in zcoordinates in which the controlled vector fields are in the m-chained form. Formally it has the same form as (Comp) in the case m = 1.

The characteristic distributions C i , for 1 ≤ i ≤ k -2, are well defined and have corank one in G i-1 . Indeed, recall the following result stated in [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF]: Lemma 3.1.2. Assume that a distribution G defined on a manifold X of dimension km + 1 satisfies the conditions (m-Ch1)-(m-Ch3) of Theorem 3.1.2. Then G i has constant rank (i + 1)m + 1, for 0 ≤ i ≤ k -2, and contains an involutive subdistribution L i of corank one in G i . Moreover L i is the unique corank one subdistribution satisfying this property, for 0 ≤ i ≤ k -2, and it coincides with the characteristic distribution C i+1 of G i+1 , for 0 ≤ i ≤ k -3.

It has been shown in [START_REF] Respondek | Transforming nonholonomic control systems into the canonical contact form[END_REF] (see also [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF]) that all information about the distribution G is encoded completely in the existence of the last involutive subdistribution L k-2 (being, actually, the involutive distribution L of item (m-Ch2) of Theorem 3.1.2) which implies the existence of all involutive subdistributions L i = C i+1 , for 0 ≤ i ≤ k -3.

The characterization of the chained form (conditions (Ch1)-(Ch3) of Theorem 3.1.1) and that of the m-chained form ((m-Ch1)-(C-mCh3) of Theorem 3.1.2) are different, but compatibility conditions are the same, compare (Comp) and (m-Comp). The involutive subdistribution L, which is crucial for the m-chained form, is absent in the compatibility conditions, but plays a very important role in calculating minimal flat outputs and in describing singularities (see Section 3.1.4).

Flatness and flat outputs description

In this section, firstly, we discuss flatness of control systems static feedback equivalent to TCh k 1 , respectively to TCh k m . Secondly, we answer the question whether a given pair (respectively an (m + 1)-tuple) of smooth functions on X is an x-flat output for a system static feedback equivalent to TCh k 1 (respectively a minimal x-flat output for a system static feedback equivalent to TCh k m ) and, finally, provide a system of PDS's to be solved in order to find all these flat outputs. In particular, we will discuss their uniqueness, their singularities, and compare their description with that of flat outputs for the chained form (respectively for the m-chained form). 

∂ f i ∂z i+1 (z * ) + v * 0 = 0, for 1 ≤ i ≤ k -1, where v * = (v * 0 , v * 1 )
. Therefore control systems equivalent to TCh k 1 are x-flat and exhibit a singularity in the control space (depending on the state) which we will describe in an invariant way as follows. For

C 1 ⊂ C 2 ⊂ • • • ⊂ C k-2 , the sequence of characteristic distributions C i of G i , for 1 ≤ i ≤ k -2, see Lemma 3.1.1, choose vector fields c 1 , . . . , c k-2 such that C i = span {c 1 , . . . , c i }. For each 0 ≤ i ≤ k -3, define U i sing (x) = u i (x) = (u i 0 (x), u i 1 (x)) ⊤ : [ f + u i 0 g 0 + u i 1 g 1 , C i+1 ] ⊂ G i .
The controls u i (x) exist, are smooth, and for any 0 ≤ i ≤ k -3 define (for any fixed x ∈ X) a 1-dimensional affine subspace of U = R 2 . To see those three properties, notice that [ f , c i+1 ], [g 0 , c i+1 ], and [g 1 , c i+1 ] span a distribution of rank one modulo G i (since all three belong to G i+1 and corank(G i ⊂ G i+1 ) = 1) and either [g 0 , c i+1 ] or [g 1 , c i+1 ] (or both) does not vanish modulo G i . To calculate U i sing (x) explicitly, assume that we have chosen (g 0 , g 1 ) such that

g 1 = c 1 . Then [g 1 , c i+1 ] = [c 1 , c i+1 ] ∈ G i and [ f , c i+1 ] = α[g 0 , c i+1 ] mod G i ,
for some smooth function α. We put u i 0 (x) = -α(x) and u i 1 (x) arbitrary. It is clear that the definition of (u i 0 (x), u i 1 (x)) does not depend on the choice of c 1 , . . . , c k-2 and is feedback invariant (independently of whether we have chosen g 1 = c 1 or not). Indeed, if u i (x) ∈ U i sing (x), then for the feedback modified system ẋ = f + g ũ, where f = f + gα and g = gβ, it is the feedback modified control ũi = β -1 (-α + u i ) that, clearly, satisfies ũi ∈ U i sing .

Let L be any involutive distribution of corank two in TX such that L ⊂ G k-2 . Fix l ∈ L such that l ∈ C k-2 and put

U k-2 L-sing (x) = u k-2 (x) = (u k-2 0 (x), u k-2 1 (x)) ⊤ : [ f + u k-2 0 g 0 + u k-2 1 g 1 , l] ∈ G k-2 .
If G 0 (x * ) ⊂ L(x * ), where x * is a nominal point around which we work, then the controls u k-2 (x) exist, are smooth, and (for any fixed x ∈ X) form a 1-dimensional affine subset of U = R 2 because G k-2 is of corank one in TX and either [g 0 , l] or [g 1 , l] is not in G k-2 . If G 0 (x * ) ⊂ L(x * ), then under the assumption, which we will always assume, (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0, where the functions ϕ 0 and ϕ 1 are such that L ⊥ = span {dϕ 0 , dϕ 1 }, we have u * ∈ U k-2 L-sing (x * ) and in X * × R 2 , where X * is a sufficiently small neighborhood of x * , the set U k-2 L-sing (x) consists of two connected components that define, for each fixed value x ∈ X * , x = x * , an affine subspace of U = R 2 .

Clearly U k-2 L-sing is feedback invariant and does not depend on the choice of l ∈ L but it depends on the distribution L. Define

U k-2 sing = L U k-2 L-sing
where the intersection is taken over all L as above, that is, involutive distribution of corank two in TX, satisfying L ⊂ G k-2 . Define

U sing = k-3 i=0 U i sing ∪ U k-2 sing and U L-sing = k-3 i=0 U i sing ∪ U k-2 L-sing .
We will use both sets in Theorem 3.1.3 describing controls singular for flatness and in Proposition 3.1.1 comparing flat outputs of the triangular form TCh k 1 with those of the associated chained form Ch k 1 . Theorem 3.1.3. Consider a two-input control-affine system Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x), defined on an open subset X of R k+1 , where k + 1 ≥ 4. Assume that Σ a f f is locally, around x * ∈ X, static feedback equivalent to TCh k 1 . Then we have:

(F1) Σ a f f is x-flat at any (x * , u * ) ∈ X × R 2 such that u * ∈ U sing (x * ).

(F2) Let ϕ 0 , ϕ 1 be two smooth functions defined in a neighborhood X of x * and g be an arbitrary vector field in G such that g(x * ) ∈ C k-2 (x * ). Then the following conditions are equivalent in X :

(i) The pair (ϕ 0 , ϕ 1 ) is an x-flat output of Σ a f f at (x * , u * ) ∈ X * × R 2 , where X * is a neighborhood of x * ;

(ii) The pair (ϕ 0 , ϕ 1 ) satisfies the following conditions:

(FO1) (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0, where φi = L F a f f ϕ i , for i = 0, 1 and F a f f = f + u 0 g 0 + u 1 g 1 ; (FO2) L c ϕ 0 = L c ϕ 1 = 0 and (L g ϕ 0 )(L [c,g] ϕ 1 ) -(L g ϕ 1 )(L [c,g] ϕ 0 ) = 0, for any c ∈ C k-2 ; (FO3) u * ∈ U L-sing (x * )
, where L = (span {dϕ 0 , dϕ 1 }) ⊥ .

(iii) The pair (ϕ 0 , ϕ 1 ) satisfies the following conditions:

(FO1) ′ (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0 , where φi = L F a f f ϕ i , for i = 0, 1,
and

F a f f = f + u 0 g 0 + u 1 g 1 ; (FO2) ′ L = (span {dϕ 0 , dϕ 1 }) ⊥ ⊂ G k-2 ; (FO3) ′ u * ∈ U L-sing (x * ).
Notice that since Σ a f f is locally, around x * , static feedback equivalent to TCh k 1 , its associated control-linear system Σ lin : ẋ = u 0 g 0 (x) + u 1 g 1 (x) is locally, around x * , static feedback equivalent to the chained form Ch k 1 . The next result shows how the similarities and differences between two-input control-linear systems and controlaffine systems locally equivalent to TCh k 1 are reflected by their flatness. It turns out that flat outputs of Σ lin are flat outputs of Σ a f f (independently of the choice of f although singular control values depend on f ) and most of flat outputs of Σ a f f are flat outputs of the corresponding Σ lin but not all, as the following proposition explains. Define U char (x) = u(x) = (u 0 (x), u 1 (x)) ⊤ : (u 0 g 0 + u 1 g 1 )(x) ∈ C 1 (x) . Proposition 3.1.1. Consider a two-input control-affine system Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x), defined on an open subset X of R k+1 , where k + 1 ≥ 4, and its associated control-linear system Σ lin : ẋ = u 0 g 0 (x) + u 1 g 1 (x). Assume that Σ a f f is locally, around x * ∈ X, static feedback equivalent to TCh k 1 . Then we have:

(F3) Σ lin is x-flat at any (x * , u * ) ∈ X × R 2 such that u * ∈ U char (x * ).
(F4) A pair (ϕ 0 , ϕ 1 ) of smooth functions defined in a neighborhood X of x * is an x-flat output of Σ lin at (x * , u * ) ∈ X * × R 2 such that X * ⊂ X is an open neighborhood of x * and u * ∈ U char (x * ) if and only if it satisfies the conditions (FO1)-(FO2) or, equivalently, (FO1)'-(FO2)' of Theorem 3.1.3, where φi , for i = 0, 1, is understood as φi = L F lin ϕ i and F lin = u 0 g 0 + u 1 g 1 ;

(F5) If (ϕ 0 , ϕ 1 ) is a flat output of Σ lin at (x * , u * ), where u * ∈ U char (x * ), then (ϕ 0 , ϕ 1 ) is a flat output of Σ a f f at(x * , ũ * ), where ũ * ∈ U L-sing (x * ) with L = (span {dϕ 0 , dϕ 1 }) ⊥ .

(F6) Let g be an arbitrary vector field in G such that g(x * ) ∈ C k-2 (x * ). If (ϕ 0 , ϕ 1 ) is a flat output of Σ a f f at (x * , ũ * ), where ũ * ∈ U L-sing (x * ), with L = (span {dϕ 0 , dϕ 1 }) ⊥ , and satisfies (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0), then (ϕ 0 , ϕ 1 ) is a flat output of Σ lin at (x * , u * ), where u * ∈ U char (x * ).

choices of (ϕ 0 , ϕ 1 ) and consisting, for each fixed x ∈ X, of the union of k -2 onedimensional affine subspaces of U = R 2 ) and of U k-2 L-sing , which is a one-dimensional affine subspace of U = R 2 that depends on (ϕ 0 , ϕ 1 ) since L = (span {dϕ 0 , dϕ 1 }) ⊥ . All those k -1 affine subspaces are, in general, different although some of them may coincide and, indeed, in the control-linear case all of them coincide and reduce to the linear-space of U = R 2 containing the characteristic controls u c that correspond to the characteristic distribution C 1 , that is, the corresponding trajectories remain tan- gent to C 1 . Moreover, if we apply an invertible feedback u = β ũ (which always exists and can be explicitly calculated) such that C 1 = span { g1 } and G 0 = span { g0 , g1 }, a control ũc is characteristic, that is, singular for flatness of Σ lin , if and only if the feedback modified control is ũc = β (-1) u c = (0, ũc,1 ) T . Now it is clear that the control-affine system Σ a f f is flat if we avoid the universal singular set k-3 i=0 U i sing as well as the set singular for all choices of flat outputs (ϕ 0 , ϕ 1 ), that is the set U k-2 L-sing (the intersection taken over all L), which explains different statements for a fixed choice of (ϕ 0 , ϕ 1 ) in item (F2)(ii) and an arbitrary choice of (ϕ 0 , ϕ 1 ) in item (F1).

Notice that Theorem 3.1.3 is valid for any k ≥ 3 (thus for a system defined on a manifold X of dimension at least 4). In fact, in item (ii), we use the characteristic distribution C k-2 of G k-2 , but if dim X = 3, i.e., k = 2, such a distribution does not exist and item (ii) does not apply to that case. Item (iii), however, is well defined even for dim X = 3 and remains equivalent to (i).

As an immediate corollary of Theorem 3.1.3, we obtain a system of first order PDE's, described by Proposition 3.1.2 below, whose solutions give all x-flat outputs. Like for systems equivalent to the chained form (see [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF]), x-flat outputs for the systems feedback equivalent to the triangular form TCh k 1 are far from being unique: since the distribution C k-2 is involutive and of corank three, there are as many func- tions ϕ 0 satisfying L c ϕ 0 = 0, for any c ∈ C k-2 , as functions of three variables. Indeed, according to the following proposition, ϕ 0 can be chosen as any function of the three independent functions, whose differentials annihilate C k-2 , and if more- over, < dϕ 0 , G 0 > (x * ) = 0, then there exists a unique ϕ 1 (up to a diffeomorphism) completing it to an x-flat output. Proposition 3.1.2. Consider a two-input control-affine system Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x), defined on a manifold X, of dimension k + 1 ≥ 4, that is locally, around x * ∈ X, static feedback equivalent to TCh k

1 . Let C k-2 = span {c 1 , • • • , c k-2 } be the char- acteristic distribution of G k-2 such that c k-2 (x * ) ∈ C k-3 (x *
) and g be an arbitrary vector field in G such that g(x * ) ∈ C k-2 (x * ). Then (i) For any smooth function ϕ 0 such that

(Flat 1) L c i ϕ 0 = 0, 1 ≤ i ≤ k -2, and < dϕ 0 , G k-2 > (x * ) = 0, the distribution L = C k-2 + span {v} is involutive, where v = (L g ϕ 0 )[c k-2 , g] - (L [c k-2 ,g] ϕ 0 )g.
(ii) A pair (ϕ 0 , ϕ 1 ) of smooth functions defined on a neighborhood of x * is an x-flat output at (x * , u * ) with u * ∈ U L-sing (x * ), if and only if (after permuting ϕ 0 and ϕ 1 , if necessary) ϕ 0 is any function satisfying (Flat 1) and ϕ 1 satisfies

(Flat 2)    (dϕ 0 ∧dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0, L c i ϕ 1 =0, for 1 ≤ i ≤ k -2, L v ϕ 1 =0.
(iii) If in (Flat 1), we replace < dϕ 0 , G k-2 > (x * ) = 0 by < dϕ 0 , G 0 > (x * ) = 0, then for any function ϕ 0 satisfying L c ϕ 0 = 0, for any c ∈ C k-2 , and < dϕ 0 , G 0 > (x * ) = 0, there always exists ϕ 1 such that the pair (ϕ 0 , ϕ 1 ) is an x-flat output of Σ a f f ; given any such ϕ 0 , the choice of ϕ 1 is unique, up to a diffeomorphism, that is, if (ϕ 0 , φ1 ) is another minimal x-flat output, then there exists a smooth map h, smoothly invertible with respect to the second argument, such that φ1 = h(ϕ 0 , ϕ 1 ).

Remark. Notice that for a function ϕ 0 satisfying < dϕ 0 , G k-2 > (x * ) = 0 (and not the stronger condition < dϕ 0 , G 0 > (x * ) = 0, or equivalently L g ϕ 0 (x * ) = 0, see Proposition 3.1.2(iii)), it can be impossible to find, among all solutions of

L c i ϕ 1 = L v ϕ 1 = 0, 1 ≤ i ≤ k -2, a function ϕ 1 satisfying (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0
and therefore item (iii) does not hold, in general, under the weaker condition < dϕ 0 , G k-2 > (x * ) = 0. This is, for example, the case of control-linear systems.

As expected, the system of PDE's allowing us to compute all x-flat outputs of a system locally static feedback equivalent to TCh k 1 does not depend on the drift f and it is the same as that provided in [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF] for x-flat outputs in the case of controllinear Σ lin feedback equivalent to the chained form. For more details and the proof of Proposition 3.1.2 in the case L g ϕ 0 (x * ) = 0, we refer the reader to [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF].

Finally, it turns out that almost all x-flat outputs are compatible with the triangular form TCh k 1 (as are x-flat outputs of the chained form). In fact, for any given flat output (ϕ 0 , ϕ 1 ) of a system Σ a f f feedback equivalent to TCh k 1 , verifying (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0), we can bring Σ a f f into TCh k 1 for which ϕ 0 and ϕ 1 serve as the two top variables, as the following proposition assures. The following result is technical and will be useful in our proofs, but it has its own interest. Proposition 3.1.3. Assume that Σ a f f is locally, around x * , static feedback equivalent to the triangular form TCh k 1 and let (ϕ 0 , ϕ 1 ) be an x-flat output around (x * , u * ), such that (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0), where g is an arbitrary vector field in G such that g(x * ) ∈ C k-2 (x * ). Then we can bring Σ a f f to TCh k 1 around z * such that z 0 = ϕ 0 and z 1 = ϕ 1 (after permuting ϕ 0 and ϕ 1 , if necessary).

Remark. The above proposition is valid around z * which is not necessary equal to 0. If we want to map x * into z * = 0, then an affine transformation of flat outputs may be needed. More precisely, we can bring Σ a f f to TCh k 1 around z * = 0 such that z 0 = ϕ 0 and z 1 = ϕ 1 + k 0 ϕ 0 (after permuting ϕ 0 and ϕ 1 ), where k 0 ∈ R.

Flatness of control systems static feedback equivalent to TCh k m

We now turn to the case m ≥ 2. It is clear that

TCh k m is x-flat, with ϕ = (z 0 , z 1 1 , • • • , z 1 m ) being a flat output, at any point (z * , v * ) ∈ R km+1 × R m+1 satisfying rk F l (z * , v * ) = m, for 1 ≤ l ≤ k -1,
where F l = (F l ij ), for 1 ≤ l ≤ k -1, is the m × m matrix given by

F l ij = ∂( f l j + z l+1 j v 0 ) ∂z l+1 i , for 1 ≤ i, j ≤ m.
Therefore, flat systems equivalent to TCh k m exhibit singularities in the control space (depending on the state) defined in an invariant way by

U m-sing (x) = k-2 i=0 U i m-sing (x),
where

U i m-sing (x) = {u(x) ∈ R 2 : rk (G i + [ f + gu, L i+1 ])(x) < (i + 2)m + 1}, with L i+1 = C i+1 , for 0 ≤ i ≤ k -3, where C i+1 is the characteristic distribution of G i+1
, and L k-1 = L, the involutive subdistribution of G k-2 and gu = ∑ m i=0 u i g i . This singularity is excluded by item (m-F1) of the next theorem describing all minimal x-flat outputs of control-affine systems feedback equivalent to the triangular form TCh k m . Theorem 3.1.4. Consider a control-affine system Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x), with m ≥ 2, defined on an open subset X of R km+1 , where k ≥ 2, that is locally, around x * ∈ X, static feedback equivalent to TCh k m and its associated control-linear system Σ lin : ẋ = ∑ m i=0 u i g i (x).

(m-F1) Σ a f f is x-flat, of differential weight (k + 1)(m + 1), at any (x * , u * ) ∈ X × R m+1 such that u * ∈ U m-sing (x * ).

(m-F2) If (ϕ 0 , • • • , ϕ m ) is a minimal x-flat output of Σ a f f at (x * , u * )
, where u * ∈ U m-sing (x * ), then there exists an open neighborhood X * of x * and coordinates

(z 0 , z 1 1 , • • • , z 1 m , • • • , z k 1 , • • • , z k m ) on X *
in which Σ a f f is locally feedback equivalent to the triangular form TCh k m , such that ϕ 0 = z 0 and ϕ i = z 1 i , for 1 ≤ i ≤ m, after permuting the components ϕ i of the flat output ϕ, if necessary.

(m-F3) Let ϕ 0 , ϕ 1 , • • • , ϕ m be m + 1 smooth functions defined in a neighborhood of x * . The following conditions are equivalent:

(i) The (m + 1)-tuple (ϕ 0 , ϕ 1 , • • • , ϕ m ) is a minimal x-flat output of Σ a f f at (x * , u * ), where u * ∈ U m-sing (x * ); (ii) The (m + 1)-tuple (ϕ 0 , ϕ 1 , • • • , ϕ m ) is a minimal x-flat output of Σ lin at (x * , ũ * ), where ũ * is such that ∑ m i=0 ũ * i g i (x * ) ∈ C 1 (x * )
, where C 1 is the characteristic distribution of G 1 ;

(iii) The (m + 1)-tuple (ϕ 0 , ϕ 1 , • • • , ϕ m ) satisfies the following conditions in a neighborhood of x * :

(m-FO1) dϕ 0 ∧ dϕ 1 ∧ • • • ∧ dϕ m (x * ) = 0; (m-FO2) L = (span {dϕ 0 , dϕ 1 , • • • , dϕ m }) ⊥
, where L denotes the involutive subdistribution of corank one in G k-2 .

Moreover, the (m + 1)-tuple (ϕ 0 , ϕ 1 , • • • , ϕ m ) is unique, up to a diffeomorphism, i.e., if ( φ0 , φ1 , • • • , φm ) is another minimal x-flat output, then there exist smooth maps h i such that φi = h i (ϕ 0 , m . They are, however, the only that possess the minimality property, i.e., when determining, with their help, all state and control variables, we use the minimal possible number of derivatives, which is (k + 1)(m + 1), see the proof of Theorem 3.1.4. According to item (ii), their description coincides with that of minimal x-flat outputs of Σ lin . Indeed, conditions (m-FO1)-(m-FO2) are the same as those given in [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF] for control-linear systems feedback equivalent to the m-chained form. The presence of the drift has no influence on characterizing minimal x-flat outputs, but, analogously to the case m = 1, it plays a role in describing singularities in the control space.

ϕ 1 , • • • , ϕ m ), 0 ≤ i ≤ m, and h = (h 0 , h 1 , • • • , h m ) is a local diffeomorphism.
For control-affine systems, it is the drift f , the characteristic distributions C i , for 1 ≤ i ≤ k -2, and the involutive subdistribution L of corank one in G k-2 , that describe singularities in the control space. Although L is not involved in the compatibility conditions (see item (m-Comp) of Theorem 3.1.2), it plays an important role in determining the singular controls at which the system ceases to be flat. The description of the set of singular controls U m-sing is also valid for driftless systems, i.e., for f = 0, but it is redundant. In fact, the set of singular controls u c for control-linear systems can be described using the first characteristic distribution C 1 only: the singular controls u c are such that the corresponding trajectories are tangent to the characteristic distribution C 1 , that is, u c verifying ∑ m i=0 u c,i (x)g i (x) ∈ C 1 (x). Clearly, they form, for any x ∈ X, an m-dimensional linear subspace of U = R m+1 . If we apply an invertible feedback u = β ũ such that C 1 = span { g1 , • • • , gm } and G 0 = span { g0 } + C 1 , then the singular controls ũc are of the form ũc = (0, ũc,1 , • • • , ũc,m ).

Finally, it turns out that minimal x-flat outputs and the triangular form TCh k m are compatible: in fact, for any m + 1 smooth functions ϕ 0 , ϕ 1 , • • • , ϕ m that form a minimal x-flat output of a system Σ a f f feedback equivalent to TCh k m , we can bring Σ a f f into the form TCh k m for which ϕ 0 , ϕ 1 , • • • , ϕ m play the role of the top variables, as item (m-F2) assures. An analogous result is also valid for minimal x-flat outputs and the m-chained form, see [START_REF] Li | The geometry, controllability, and flatness property of the n-bar system[END_REF].

As an immediate corollary of Theorem 3.1.4, we get the following system of PDE's

Application to mechanical systems: coin rolling without slipping on a moving table

Consider a vertical coin of radius R rolling without slipping on a moving table, see Figure 3.1. Assume that the surface of the table is on the xy-plane and denote by (x, y) the position of the contact point of the coin with the table, and by θ and φ, respectively, the orientation of the vertical plane containing the coin and the rotation angle of the coin. Then the configuration space for the system is Q = SE(2) × S 1 and is parameterized by the generalized coordinates q = ((x, y, θ), φ). Assume that the table moves with respect to the inertial frame obeying the differential equations ẋt = α(x t , y t ) ẏt = β(x t , y t ).

(3.3) for a smooth vector field (α, β) ⊤ on R 2 .

Therefore the nonholonomic constraints of rolling without slipping can be represented by ẋ sin θ -ẏ cos θ = 0 ( ẋα) cos θ + ( ẏβ) sin θ = R φ, (3.4) which leads to the kinematic model of the coin on a moving table as

Σ coin :     ẋ ẏ θ φ     =     cos θ(α cos θ + β sin θ) sin θ(α cos θ + β sin θ) 0 0     +     0 0 1 0     u 1 +     R cos θ R sin θ 0 1     u 2 . (3.5)
The system is control-affine because the nonholonomic constraints are affine (and not linear) as a result of the motion of the table with respect to the inertial frame. 

    ẋ ẏ θ φ     =     ω cos θ(x sin θ -y cos θ) ω sin θ(x sin θ -y cos θ) 0 0     +     0 0 1 0     u 1 +     R cos θ R sin θ 0 1     u 2 , (3.6) 
which coincides with the model given by T. Kai [START_REF] Kai | Extended chained forms and their application to nonholonomic kinematic systems with affine constraints: control of a coin on a rotating table[END_REF].

Proposition 3.1.5. The coin on a moving table Σ coin , given by (3.5), is feedback equivalent to the triangular form TCh 

= c ỹt ẏt = -c xt .
The only motions of table that lead to the triangular form TCh 

G = span {g 1 , g 2 } = span            0 0 1 0     ,     R cos θ R sin θ 0 1            and f =     cos θ(α cos θ + β sin θ) sin θ(α cos θ + β sin θ) 0 0     .
A straightforward calculation shows that We get α = α(y), β = β(x) and then by the equality ∂α ∂y = -∂β ∂x , we have

g 3 = [g 1 , g 2 ] =     -R sin θ R cos θ 0 0     , g 4 = [g 1 , g 3 ] =     -R cos θ -R sin θ 0 0     . Therefore G 1 = G 1 = span {g 1 , g 2 , g 3 } and G 2 = G 2 = span {g 1 ,
α ′ (y) = -β ′ (x) = c,
where c ∈ R is a constant. This gives

α = cy + d β = -cx + e
where c, e, f ∈ R are constants and the motion of the table is described by

ẋt = cy t + d ẏt = -cx t + e, (3.7) 
or, equivalently, xt = c ỹt ỹt = -c xt , which proves the proposition. Proof. Necessity. Consider a two-input control-affine system Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x) locally, around x * , static feedback equivalent to TCh k 1 and bring it into the form TCh k 1 , around z * . By abuse of notation, we continue to denote by f , g 0 and g 1 , the drift and the controlled vector fields of TCh k 1 . The distribution G = span {g 0 , g 1 }, associated to TCh k 1 , is given by

Proofs

G = span { ∂ ∂z k , ∂ ∂z 0 + z 2 ∂ ∂z 1 + • • • + z k ∂ ∂z k-1
}. 

G i = G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , ∂ ∂z 0 + z 2 ∂ ∂z 1 + • • • + z k-i ∂ ∂z k-i-1
}.

Thus G k-1 = TX and the distribution G k-3 is of constant rank k -1. The characteristic distribution C i of G i is given by

C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2.
So it is immediate to see that C k-2 is contained in G k-3 , this inclusion is of corank one and G 0 (z * ) ⊂ C k-2 (z * ). This shows (Ch1)-(Ch3).

Moreover, we have

[ ∂ ∂z k , f ] = ∂ f k-1 ∂z k ∂ ∂z k-1 ∈ G 1
and 

[ ∂ ∂z k-i+1 , f ] = ∂ f k-i ∂z k-i+1 ∂ ∂z k-i mod span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k } which is clearly in G i , for any 2 ≤ i ≤ k -2. It follows that [ f , C i ] ⊂ G i , for 1 ≤ i ≤ k -2,
, C i ] ∈ G i (since C i is characteristic for G i ), for 0 ≤ j ≤ 1, 1 ≤ i ≤ k -2, and thus (Comp) is invariant under feedback of the form f → f + α 0 g 0 + α 1 g 1 .

Sufficiency.

Consider a two-input control-affine system Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x) satisfying the conditions (Ch1)-(Ch3) and (Comp). As proved in [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF], the items (Ch1)-(Ch3) assure the existence of an invertible static feedback transformation u = β ũ and a change of coordinates z = φ(x) bringing the distribution G 0 into the chained form, which transform the system Σ a f f into

         ż0 = a 0 (z) + ũ0 ż1 = a 1 (z) + z 2 ũ0 . . . żk-1 = a k-1 (z) + z k ũ0 żk = a k (z) + ũ1
with a i smooth functions. Applying the invertible static feedback v 0 = a 0 (z) + ũ0 and v 1 = a k (z) + ũ1 , we obtain

         ż0 = v 0 ż1 = f 1 (z) + z 2 v 0 . . . żk-1 = f k-1 (z) + z k v 0 żk = v 1
where f i = a i -z i+1 a 0 . In these coordinates, we have 

G i = G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , ∂ ∂z 0 + z 2 ∂ ∂z 1 + • • • + z k-i ∂ ∂z k-i-1 }, 0 ≤ i ≤ k -
C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2. From [ f , C i ] ⊂ G i , for any 1 ≤ i ≤ k -2, it follows immediately that ∂ f i ∂z j = 0, for i + 2 ≤ j ≤ k and 1 ≤ i ≤ k -2,
which gives the triangular normal form TCh k 1 .

Proof of Theorem 3.1.2

Proof. Necessity. Consider a control-affine system Σ : ẋ = f (x) + ∑ m i=0 u i g i (x) locally, around x * , static feedback equivalent to TCh k m and bring it into the form TCh k m , around z * . To simplify the notation, we continue to write f and g i , 0 ≤ i ≤ m, for the drift and the controlled vector fields of TCh k m and we denote

span { ∂ ∂z i } = span { ∂ ∂z i 1 , • • • , ∂ ∂z i m }. The distribution G 0 = span {g i , 0 ≤ i ≤ m}, associated to TCh k m , is given by G 0 = span {g 0 , ∂ ∂z k }.
By an induction argument, it is immediate that

G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , g 0 }, 0 ≤ i ≤ k -1.
It follows that G k-1 = TX, the distribution G k-2 has constant rank (k -1)m + 1 and contains an involutive subdistribution of constant corank one given by

L = span { ∂ ∂z 2 , • • • , ∂ ∂z k }, and G 0 (z * ) is not contained in L(z * ). This shows (m-Ch1)-(m-Ch3). The characteristic distribution of G i is given by C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2,
and we have, for any k Sufficiency. Consider the control-affine system Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x) satisfying the conditions (m-Ch1)-(m-Ch3) and (m-Comp). According to Theorem 5.6 in [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF], the items (m-Ch1)-(m-Ch3) assure the existence of an invertible static feedback transformation u = β ũ and of a change of coordinates z = φ(x) (see Appendix 3.1.B where we explain how to construct the diffeomorphism φ and the feedback transformation) bringing the distribution G 0 into the m-chained form and thus the system

-i + 1 ≤ l ≤ k and 1 ≤ j ≤ m, [ ∂ ∂z l j , f ] = ∂ f l-1 1 ∂z l j ∂ ∂z l-1 1 + • • • + ∂ f l-1 m ∂z l j ∂ ∂z l-1 m mod C i which is clearly in G i . Thus [ f , C i ] ⊂ G i , for 1 ≤ i ≤ k -2, which proves item (m -Comp).
Σ a f f into                  ż0 = a 0 (z) + ũ0 ż1 1 = a 1 1 (z) + z 2 1 ũ0 • • • ż1 m = a 1 m (z) + z 2 m ũ0 ż2 1 = a 2 1 (z) + z 3 1 ũ0 ż2 m = a 2 m (z) + z 3 m ũ0 . . . . . . żk-1 1 = a k-1 1 (z) + z k 1 ũ0 • • • żk-1 m = a k-1 m (z) + z k m ũ0 żk 1 = a k 1 (z) + ũ1 • • • żk m = a k m (z) + ũm
with a i j smooth functions. Applying the invertible static feedback v 0 = a 0 (z) + ũ0 and

v i = a k i (z) + ũi , for 1 ≤ i ≤ m, we get                  ż0 = v 0 ż1 1 = f 1 1 (z) + z 2 1 v 0 • • • ż1 m = f 1 m (z) + z 2 m v 0 ż2 1 = f 2 1 (z) + z 3 1 v 0 ż2 m = f 2 m (z) + z 3 m v 0 . . . . . . żk-1 1 = f k-1 1 (z) + z k 1 v 0 • • • żk-1 m = f k-1 m (z) + z k m v 0 żk 1 = v 1 • • • żk m = v m
with f i j = a i j -z i+1 j a 0 . In the z-coordinates, we have

G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , g 0 }, 0 ≤ i ≤ k -1. The characteristic distribution of G i is given by C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2, and the corank one involutive subdistribution of G k-2 by L = span { ∂ ∂z 2 , • • • , ∂ ∂z k }. We have, for 1 ≤ i ≤ k -2, [ ∂ ∂z k-i+1 j , f ] = m ∑ l=1 k-i-1 ∑ s=1 ∂ f s l ∂z k-i+1 j ∂ ∂z s l mod span { ∂ ∂z k-i , • • • , ∂ ∂z k-1 } and since [ ∂ ∂z k-i+1 j , f ] ∈ G i , for any 1 ≤ j ≤ m, we obtain f s l z k-i+1 j = 0, for any 1 ≤ j, l ≤ m, 1 ≤ s ≤ k -i -1
It follows that f exhibits the desired trangular form TCh k m .

Proof of Theorem 3.1.3

Proof of (F1). Consider the two-input control-affine system Σ : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x) locally, around x * , feedback equivalent to TCh k 1 and bring it into the form TCh k 1 , around z * . To simplify notation, we continue to denote by f , respectively by g 0 and g 1 , the drift, respectively the controlled vector fields of TCh k 1 . It is clear that TCh k 1 is x-flat, with ϕ = (z 0 , z 1 ) being a flat output, at any point

(z * , v * ) satisfying ∂ f i ∂z i+1 (z * ) + v * 0 = 0, for 1 ≤ i ≤ k -1, where v * = (v * 0 , v * 1 )
. Recall that, in coordinates z, we have

G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , ∂ ∂z 0 + z 2 ∂ ∂z 1 + • • • + z k-i ∂ ∂z k-i-1 }, for 0 ≤ i ≤ k -1,
and

C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2.
Notice that for each 0 ≤ i ≤ k -3, the only nontrivial condition for

[ f + u i 0 g 0 + u i 1 g 1 , C i+1 ] ⊂ G i to be satisfied for TCh k 1 is [ f + v i 0 g 0 + v i 1 g 1 , ∂ ∂z k-i ] ∈ G i implying [ f , ∂ ∂z k-i ] -v i 0 ∂ ∂z k-i-1 ∈ G i and hence ∂ f k-i-1 ∂z k-i (z) + v i 0 = 0.
The latter is feedback invariant because [ f + u i 0 g 0 + u i 1 g 1 , C i+1 ] ⊂ G i is feedback invariant as explained just after the definition of U i sing in Section 3.1.4. Another argument proving feedback invariance is that we look for the vector field f (x) + u 0 (x) i g 0 + u 1 (x) i g 1 belonging to the affine distribution f (x) + G 0 (x) which, obviously, is feedback invariant. To summarize, v * ∈ k-3 i=0 U i sing (z * ) if and only if

∂ f k-i-1 ∂z k-i (z * ) + v * 0 = 0, 0 ≤ i ≤ k -3.
To analyze the condition

[ f + u k-2 0 g 0 + u k-2 1 g 1 , l] ∈ G k-2 , where l ∈ L and l ∈ C k-2 , take l = ∂ ∂z 2 . Then [ f + v k-2 0 g 0 + v k-2 1 g 1 , l] = [ f , ∂ ∂z 2 ] -v k-2 0 ∂ ∂z 1 ∈ G k-2 , if and only if ∂ f 1 ∂z 2 (z) + v k-2 0 = 0.
The definition of U k-2 L-sing is feedback invariant (for the some reasons as those giving invariance of U i sing , 0 ≤ i ≤ k -3) and thus v * ∈ U k-2 L-sing if and only if

∂ f 1 ∂z 2 (z * ) + v * 0 = 0, where L is such that G 0 (x * ) ∈ L(x * ). If L is such that G 0 (x * ) ∈ L(x *
), we will show 3.1.6 -Proofs 141 when proving the equivalence (i) ⇐⇒ (ii), that under the assumption (which we always assume) (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0, where L ⊥ = span{dϕ 0 , dϕ 1 }, we have u * ∈ U k-2 L-sing (x * ) and in X * × R 2 , where X * is a sufficiently small neighborhood of x * , the set U k-2 L-sing (x) consists of two connected components that define, for each fixed value x ∈ X * , x = x * , an affine subspace of U = R 2 . Now observe that the set of the singular control values U k-2 L-sing (at which (ϕ 0 , ϕ 1 ) ceases to be a flat output for TCh k 1 ) is determined by L which, in turn, is uniquely associated to the choice of the flat output (ϕ 0 , ϕ 1 ) by L ⊥ = span{dϕ 0 , dϕ 1 }. Different choices of (ϕ 0 , ϕ 1 ) lead, in general, to different distributions L and, consequently, to different singular control values and the system is not flat only at those that are singular for all choices of L. Hence

U sing = k-3 i=0 U i sing ∪ U k-2 sing where U k-2 sing = L U k-2 L-sing .
Proof of (F2). It was shown in [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF] that conditions (FO2) and (FO2) ′ are equivalent (for control-linear systems Σ lin but notice that (FO2) and (FO2) ′ do not involve the drift f ). We deduce immediately that (ii) ⇔ (iii). We will now prove that (ii) ⇒ (i).

First consider the case (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0). By [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF], a pair (ϕ 0 , ϕ 1 ) satisfying (FO1) -(FO2) forms a flat output of the control-linear system Σ lin and, also by [29], (ϕ 0 , ϕ 1 ) is compatible with the chained form so there exists a local static feedback transformation bringing Σ lin into the chained form with z 0 = ϕ 0 and z

1 = ϕ 1 + k 0 ϕ 0 , k 0 ∈ R, which thus transforms the control-affine system Σ a f f into ż0 = f 0 (z) + v 0 ż1 = f 1 (z) + z 2 v 0 . . . żk-1 = f k-1 (z) + z k v 0 żk = f k (z) + v 1
Replacing v 0 by v 0 -f 0 and v 1 by v 1 -f k and using [ f , C i ] ⊂ D i , we conclude (repeating the proof of (F1)) that the system is in the triangular form and thus, flat at

(x * , u * ) such that u * ∈ U L-sing = k-3 i=0 U i sing ∪ U k-2 L-sing
, where L = (span {dϕ 0 , dϕ 1 }) ⊥ . Now consider the case (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0). Since Σ a f f : ẋ = f (x) + u 0 g 0 (x) + u 1 g 1 (x) is locally, around x * , feedback equivalent to TCh k 1 , we can assume that Σ a f f is in the triangular form TCh k 1 around z * = 0:

TCh k 1              ż0 = v 0 ż1 = f 1 (z 0 , z 1 , z 2 ) + z 2 v 0 ż2 = f 2 (z 0 , z 1 , z 2 , z 3 ) + z 3 v 0 . . . żk-1 = f k-1 (z 0 , • • • , z k ) + z k v 0 żk = v 1 The characteristic distribution C k-2 takes the form C k-2 = span { ∂ ∂z 3 , . . . , ∂ ∂z k },
and the condition L c ϕ i = 0, for any c ∈ C k-2 , given by (FO2) implies that ϕ

i = ϕ i (z 0 , z 1 , z 2 ), for i = 0, 1. Condition (FO1) implies that dϕ 0 ∧ dϕ 1 (x * ) = 0, that is equivalent to rk    ∂ϕ 0 ∂z 0 ∂ϕ 0 ∂z 1 ∂ϕ 0 ∂z 2 ∂ϕ 1 ∂z 0 ∂ϕ 1 ∂z 1 ∂ϕ 1 ∂z 2    (0) = 2.
Notice that the condition (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0) implies that ∂ϕ 0 ∂z 0 (0) = ∂ϕ 1 ∂z 0 (0) = 0 and thus we get rk

   ∂ϕ 0 ∂z 1 ∂ϕ 0 ∂z 2 ∂ϕ 1 ∂z 1 ∂ϕ 1 ∂z 2    (0) = 2.
We assume ϕ 0 (0) = ϕ 1 (0) = 0 (if not, replace ϕ 0 by ϕ 0ϕ 0 (0) and ϕ 1 by ϕ 1ϕ 1 (0)). We will introduce new coordinates ( z1 , z2 ) = (ϕ 0 , ϕ 1 ) in two steps. Assume that ∂ϕ 1 ∂z 2 (0) = 0 (if not, permute ϕ 0 and ϕ 1 ) and put z2 = ϕ 1 (z 0 , z 1 , z 2 ). Then the two first components become

ż1 = f1 (z 0 , z 1 , z2 ) + a(z 0 , z 1 , z2 )v 0 ż2 = f2 (z 0 , z 1 , z2 , z 3 ) + b(z 0 , z 1 , z2 , z 3 )v 0 , where f2 = L f ϕ 1 , b = L g 0 ϕ 1 and a = z 2 = ϕ -1 1 (z 0 , z 1 , z2
) is the inverse of ϕ 1 with respect to z 2 . Notice that b = L g 0 ϕ 1 = ∂ϕ 1 ∂z 0 + ∂ϕ 1 ∂z 1 z 2 + ∂ϕ 1 ∂z 2 z 3 is affine with respect to z 3 and ∂ϕ 1 ∂z 2 (0) = 0 so zi = L i-3 g 0 b, for 3 ≤ i ≤ k, is a valid local change of coordinates in which the system, under the feedback ṽ1 =

L f L k-3 g 0 b + v 0 L k-2 g 0 b + v 1 L g 1 L k-3 g 0 b, takes the form ż0 = v 0 ż1 = f1 (z 0 , z 1 , z2 ) + a(z 0 , z 1 , z2 )v 0 ż2 = f2 (z 0 , z 1 , z2 , z3 ) + z3 v 0 . . . żk-1 = fk-1 (z 0 , z 1 , z2 , • • • , zk ) + zk v 0 żk = ṽ1 . Now put z1 = ϕ 0 (z 0 , z 1 , z 2 ). We get ż1 = L f ϕ 0 + v 0 L g 0 ϕ 0 .
Notice that L g 0 ϕ 0 is affine with respect to z 3 and L f ϕ 0 is, in general, nonlinear with respect to z 3 since so is f2 .

Omitting " ∼ " we get

ż0 = v 0 ż1 = f 1 (z 0 , z 1 , z 2 , z 3 ) + (A + Bz 3 )v 0 ż2 = f 2 (z 0 , z 1 , z 2 , z 3 ) + z 3 v 0 . . . żk-1 = f k-1 (z 0 , z 1 , • • • , z k ) + z k v 0 żk = v 1 , (3.8) 
where A and B depend on z 0 , z 1 , z 2 only. Observe that for (3.8), we have

ϕ 0 = z 1 , ϕ 1 = z 2 and C k-2 = span { ∂ ∂z 3 , . . . , ∂ ∂z k }, therefore the condition (L g ϕ 0 )L [c,g] ϕ 1 = (L g ϕ 1 )L [c,g] ϕ 0 gives A + z 3 B = z 3 B
and thus A ≡ 0 everywhere. Notice that the function f 2 (z 0 , z 1 , z 2 , z 3 ) can always be expressed as

f 2 (z 0 , z 1 , z 2 , z 3 ) = f 20 (z 0 , z 1 , z 2 ) + z 3 f 21 (z 0 , z 1 , z 2 , z 3 )
for some smooth functions f 20 and f 21 and thus

ż2 = f 2 (z 0 , z 1 , z 2 , z 3 ) + z 3 v 0 = f 20 (z 0 , z 1 , z 2 ) + z 3 ( f 21 (z 0 , z 1 , z 2 , z 3 ) + v 0 ). Define the new control ṽ0 = f 21 (z 0 , z 1 , z 2 , z 3 ) + v 0 and denote η = f 21 , then (3.8) becomes ż0 = ṽ0 -η ż1 = f1 (z 0 , z 1 , z 2 , z 3 ) + z 3 B ṽ0 ż2 = f2 (z 0 , z 1 , z 2 ) + z 3 ṽ0 . . . żk-1 = fk-1 (z 0 , • • • , z k ) + z k ṽ0 żk = v 1 , (3.9) 
where f2 = f 20 and fi = f i -z 3 Bη, for i = 2.

Note that Σ a f f is assumed to be locally, around x * ∈ X, static feedback equivalent to TCh k 1 , hence the conditions [ f , C i ] ⊂ G i hold, for 1 ≤ i ≤ k -2, and are invariant under change of coordinates and feedback. Clearly, for (3.9

), C k-2 = span { ∂ ∂z 3 , . . . , ∂ ∂z k } and thus [ f , C k-2 ] ⊂ G k-2 implies [ f , ∂ ∂z 3 ] ∈ G k-2 and yields f , ∂ ∂z 3 =    -∂η ∂z 3 ∂ f1 ∂z 3 0    = α   1 z 3 B z 3   + β   0 B 1   , modulo C k-2
, for some smooth functions α, β which gives ∂ f1 ∂z 3 = 0. Therefore f1 = f1 (z 0 , z 1 , z 2 ) and thus (3.9) is, actually, in the following form

ż0 = ṽ0 -η ż1 = f1 (z 0 , z 1 , z 2 ) + z 3 B ṽ0 ż2 = f2 (z 0 , z 1 , z 2 ) + z 3 ṽ0 . . . żk-1 = fk-1 (z 0 , • • • , z k ) + z k ṽ0 żk = v 1 , (3.10) 
with (ϕ 0 , ϕ 1 ) = (z 1 , z 2 ). Define a new variable y = z 3 ṽ0 . Notice that, although y = z 3 ṽ0 is not a valid control transformation (since z * 3 = 0), it is a system's variable under the assumption that the differentials dy = z 3 d ṽ0 + ṽ0 dz 3 is nonzero at (z * , ṽ * 0 ). Actually, φ0 and φ1 are functions of the system variables z 0 , z 1 , z 2 and y. Recall that

ϕ 0 = z 1 and ϕ 1 = z 2 . The condition rk ∂(ϕ, φ) ∂(x,u) (x * , u * ) = 4 together with ∂(ϕ, φ) ∂(x, u) = ∂(ϕ, φ) ∂(z 0 , z 1 , z 2 , y) • ∂(z 0 , z 1 , z 2 , y) ∂(x, u) implies that rk ∂( φ0 , φ1 ) ∂(z 0 ,y) (z * , v * ) = 2.
By the implicit function theorem, we can express

z 0 = ζ 0 (ϕ 0 , ϕ 1 , φ0 , φ1 ) y = ζ y (ϕ 0 , ϕ 1 , φ0 , φ1 )
in a neighborhood of (z * , v * ), for some smooth functions ζ 0 , ζ y .

We have ż0 = ṽ0η = v 0 and ż2 = f2 + z 3 ṽ0 = f2 + z 3 (v 0 + η). Recall that f2 depends on z 0 , z 1 , z 2 only. So knowing ż0 = v 0 and ż2 , we can calculate z 3 using the implicit functions theorem if v 0 + η + z 3 ∂η ∂z 3 = 0. Then ż3 gives z 4 if v 0 + η + ∂ f 4 ∂z 4 = 0 and so on, proving that indeed (ϕ 0 , ϕ 1 ) is an x-flat output at (x * , u * ).

To conclude the proof, we have to show the implication (i) ⇒ (ii). When proving Proposition 3.1.3, we will show that any flat output (ϕ 0 , ϕ 1 ) of a system Σ a f f feedback equivalent to TCh k 1 satisfies (dϕ

0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0 and L c ϕ 0 = L c ϕ 1 = (L g ϕ 0 )L [c,g] ϕ 1 -(L g ϕ 1 )L [c,g] ϕ 0 = 0, for any c ∈ C k-2 . If (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0),
we conclude in the same way as for item (F1) that the singular control values v * coincide with v * ∈ U L-sing (z * ).

Let us consider the case (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0). Since the conditions

L c ϕ 0 = L c ϕ 1 = (L g ϕ 0 )L [c,g] ϕ 1 -(L g ϕ 1 )L [c,
g] ϕ 0 = 0 are valid everywhere on X, we repeat the proof of (ii) ⇒ (i) and bring the system into the form (3.10), around z * = 0, with (ϕ 0 , ϕ 1 ) = (z 1 , z 2 ). Now we will show that the singular control values v * at which the procedures of calculating z 0 and v 0 fail, given by rk

∂( φ0 , φ1 ) ∂z 0 ,y (z * , v * ) ≤ 1 and v * 0 = -(η + z 3 ∂η ∂z 3 )(z * ), coincide with v * ∈ U k-2 L-sing (z * ) and v * ∈ U k-3 sing (z * ), respectively. To this end, calculate U k-2 L-sing (z) = {v(z) = (v 0 , v 1 ) ⊤ : [ f + v 0 g 0 + v 1 g 1 , l] ∈ G k-2 }. Since dϕ 0 = dz 1 and dϕ 1 = dz 2 , we have L = (span {dϕ 0 , dϕ 1 }) ⊥ = span { ∂ ∂z 0 , ∂ ∂z 3 , ∂ ∂z 4 , . . . , ∂ ∂z k } and G k-2 = L + span {B ∂ ∂z 1 + ∂ ∂z 2 }. Thus [ f + v 0 g 0 + v 1 g 1 , l] ∈ G k-2 , for any l ∈ L, holds (taking the only nontrivial case l = ∂ ∂z 0 ) if and only if [ f , ∂ ∂z 0 ] + v 0 [g 0 , ∂ ∂z 0 ] ∈ G k-2 which is equivalent to [( ∂ f 1 ∂z 0 + v 0 z 3 ∂B ∂z 0 ) ∂ ∂z 1 + ∂ f 2 ∂z 0 ∂ ∂z 2 ] ∈ G k-2 and thus to [( ∂ f 1 ∂z 0 + v 0 z 3 ∂B ∂z 0 ) ∂ ∂z 1 + ∂ f 2 ∂z 0 ∂ ∂z 2 ] ∧ (B ∂ ∂z 1 + ∂ ∂z 2 ) = 0. This yields v * ∈ U k-2 L-sing (z * ) if and only if ∂ f 1 ∂z 0 (z * ) -B ∂ f 2 ∂z 0 (z * ) + v * 0 z * 3 ∂B ∂z 0 (z * ) = 0 which coincides with rk ∂( φ0 , φ1 ) ∂(z 0 ,y) (z * , v * ) ≤ 1. Notice that under the assumption (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(z * , u * ) = 0, we have ∂ f 1 ∂z 0 (z * ) -B ∂ f 2 ∂z 0 (z * ) = 0 and, since z * = 0, it follows that v * 0 ∈ U k-2 L-sing (z * ). Moreover, since ∂B ∂z 0 = 0 (otherwise G k-1 = TX), for each fixed value x = x * in X * , a sufficiently small neighborhood of x * , we get (v 0 , v 1 ) ∈ U k-2 L-sing (z * ) with v 0 = ψ(z 0 ,z 1 ,z 2 ) z 3
, where

ψ = ( ∂ f 1 ∂z 0 )( ∂B ∂z 0 ) -1
, and v 1 any. Thus in X * × R 2 , the set U k-2 L-sing (x) consists of two connected components that define, for each fixed value x ∈ X * , x = x * , an affine subspace of U = R 2 . Proof. In [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF], the equivalence of the following conditions has been proven for any two-input system feedback equivalent to the chained form and for a pair of smooth functions (ϕ 0 , ϕ 1 ):

To analyze v

* 0 = -(η + z 3 ∂η ∂z 3 )(z * ), notice that for (3.10), C k-2 = span { ∂ ∂z 3 , • • • , ∂ ∂z n } and G n-3 = C k-2 + span { ∂ ∂z 0 + z 3 B ∂ ∂z 1 + z 3 ∂ ∂z 2 }. It follows that [ f + ṽ0 g0 + ṽ1 g1 , C k-2 ] ∈ G n-3 is equivalent to [ f + ṽ0 g 0 + ṽ1 g 1 , ∂ ∂z 3 ] ∧ ( ∂ ∂z 0 + z 3 B ∂ ∂z 1 + z 3 ∂ ∂z 2 ) = 0 mod C k-2 , which yields -∂η ∂z 3 + ṽ0 ( ∂ ∂z 1 + z 3 ∂ ∂z 2 ) ∧ ( ∂ ∂z 0 + z 3 (B ∂ ∂z 1 + z 3 ∂ ∂z 2 ))) = 0 implying z 3 ∂η ∂z 3 + ṽ0 = z 3 ∂η ∂z 3 + η + v 0 = 0. Thus, indeed, v * 0 = 3.1.6 -Proofs 145 -(z 3 ∂η ∂z 3 + η)(z * ) if and only if v * ∈ U n-3 sing (z * ).
(i) The pair (ϕ 0 , ϕ 1 ) is an x-flat output of Σ lin at (x * , u * ), where u * is such that

u * 0 g 0 (x * ) + u * 1 g 1 (x * ) ∈ C 1 (x * );
(ii) The pair (ϕ 0 , ϕ 1 ) satisfies the following conditions:

(FO1 lin ) dϕ 0 ∧ dϕ 1 (x * ) = 0; (FO2 lin ) L c ϕ 0 = L c ϕ 1 = L c ( L g ϕ 1 L g ϕ 0 ) = 0, for any c ∈ C k-2
, where the functions ϕ 0 , ϕ 1 are ordered such that L g ϕ 0 (x * ) = 0, which is always possible due to item (FO3 lin );

(FO3 lin ) (L g ϕ 0 (x * ), L g ϕ 1 (x * )) = (0, 0);
(iii) The pair (ϕ 0 , ϕ 1 ) satisfies the following conditions:

(FO1 lin ) ′ dϕ 0 ∧ dϕ 1 (x * ) = 0; (FO2 lin ) ′ L = (span {dϕ 0 , dϕ 1 }) ⊥ ⊂ G k-2 ; (FO3 lin ) ′ G 0 (x * ) ⊂ L(x * ).
In the view of the above, item (F3) is obvious. So is (F6) because (FO1) ′ yields (FO1 lin ) ′ , the condition (L g ϕ 0 (x * ), L g ϕ 1 (x * )) = (0, 0) implies (FO3 lin ) ′ , and (FO2) ′ and (FO2 lin ) ′ coincide.

To show (F5), notice that (FO2) ′ and (FO2 lin ) ′ coincide. To prove that (ϕ 0 , ϕ 1 ) satisfies (F01), we can bring, see [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF], the control-linear system Σ lin into the chained form compatible with the flat output (ϕ 0 , ϕ 1 ) (which is assumed to be a flat output of Σ lin ), that is, Ch k 1 with z 0 = ϕ 0 and z 1 = ϕ 1 . In the z-coordinates, the drift takes the triangular form for TCh k 1 . By a direct calculation, we can check that (dϕ

0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(z * , v * ) = 0, where v * ∈ U L-sing (z * ) and L = (span {dϕ 0 , dϕ 1 }) ⊥ . Hence (ϕ 0 , ϕ 1 ) is an x-flat output of Σ a f f at (x * , ũ * ) where ũ * ∈ U L-sing (x * ).
It remains to prove (F4). If (ϕ 0 , ϕ 1 ) is a flat output of Σ lin , then the conditions (FO1 lin ) -(FO3 lin ) are satisfied and thus so are (FO1) -(FO2) because (FO2) and (FO2 lin ) coincide and (ϕ 0 , ϕ 1 ) being a flat output of Σ lin satisfies (FO1) with φi = L F lin ϕ i , i = 0, 1.

To prove the converse, we have to show that condition (F01) (dϕ 0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0, where φi , for i = 0, 1 is understood as φi = L F lin ϕ i and F lin = u 0 g 0 + u 1 g 1 , implies that (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0).

Bring Σ lin into the chained form Ch k 1 around z * = 0 and let (ϕ 0 , ϕ 1 ) be a flat output. Since

L c ϕ 0 = L c ϕ 1 = 0, for all c ∈ C k-2 = span { ∂ ∂z 3 , • • • , ∂ ∂z k }, it follows ϕ i = ϕ i (z 0 , z 1 , z 2 )
, for i = 0, 1. Assume (L g ϕ 0 , L g ϕ 1 )(0) = (0, 0), otherwise the claim holds. Thus ∂ϕ i ∂z 0 (0) = 0, for i = 0, 1, and since (dϕ 0 ∧ dϕ 1 )(0) = 0, we deduce rk ∂(ϕ 0 ,ϕ 1 ) ∂(z 1 ,z 2 ) (0) = 2. Assume that ∂ϕ 1 ∂z 2 (0) = 0 (if not, permute ϕ 0 and ϕ 1 ) and put z2 = ϕ 1 . Notice that b = L g 0 ϕ 1 = ∂ϕ 1 ∂z 0 + ∂ϕ 1 ∂z 1 z 2 + ∂ϕ 1 ∂z 2 z 3 is affine with respect to z 3 and ∂ϕ 1 ∂z 2 (0) = 0 so zi = L i-3 g 0 b, for 3 ≤ i ≤ k, is a valid local change of coordinates in which the system, under the feedback ṽ1

= v 0 L k-2 g 0 b + v 1 L g 1 L k-3 g 0 b, takes the form ż0 = v 0 ż1 = a(z 0 , z 1 , z2 )v 0 ż2 = z3 v 0 . . . żk-1 = zk v 0 żk = ṽ1 .
where

a = z 2 = ϕ -1 1 (z 0 , z 1 , z2 ). The condition (L g ϕ 0 )L [c,g] ϕ 1 = (L g ϕ 1 )L [c,g] ϕ 0 yields ∂ϕ 0 ∂z 0 + a ∂ϕ 0 ∂z 1 = 0.
So omitting the tildes, we obtain φ0 = ∂ϕ 0 ∂z 2 z 3 v 0 = ∂ϕ 0 ∂z 2 φ1 . Therefore the differentials satisfy d φ0 = φ1 d ∂ϕ 0 ∂z 2 mod span {d φ1 } and since φ1 (0) = 0, we get (d φ0 ∧ d φ1 )(0) = 0, which contradicts the independence of flat outputs and their differentials. Thus (L g ϕ 0 , L g ϕ 1 )(0) = (0, 0). Now it is obvious that L c (

L g ϕ 1 L g ϕ 0 ) = 0 is equivalent to (L g ϕ 0 )L [c,g] ϕ 1 = (L g ϕ 1 )L [c,g] ϕ 0
, where L g ϕ 0 (x * ) = 0 (after permuting ϕ 0 and ϕ 1 , if necessary).

Proof of Proposition 3.1.2

Proof. For the proof of Proposition 3.1.2 in the case L g ϕ 0 (x * ) = 0, we refer the reader to [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF]. Let us consider the case L g ϕ 0 (x * ) = 0. Bring the system Σ a f f into the form TCh k 1 , around z * = 0. The characteristic distribution C k-2 takes the form C k-2 = span { ∂ ∂z 3 , . . . , ∂ ∂z k }, and the condition L c ϕ 0 = 0, for any c ∈ C k-2 , implies that ϕ 0 = ϕ 0 (z 0 , z 1 , z 2 ). From < dϕ 0 , G k-2 > (0) = 0, we deduce ∂ϕ 0 ∂z 2 (0) = 0. Introducing the new coordinate z2 = ϕ 0 and following exactly the proof of item (F2) of Theorem 3.1.3, we get (omitting the tildes for z)

ż0 = ṽ0 -η(z 0 , z 1 , z 2 , z 3 ) ż1 = f1 (z 0 , z 1 , z 2 , z 3 ) + a(z 0 , z 1 , z 2 ) ṽ0 ż2 = f2 (z 0 , z 1 , z 2 ) + z 3 ṽ0 . . . żk-1 = fk-1 (z 0 , • • • , z k ) + z k ṽ0 żk = v 1 , (3.11) 
with

ϕ 0 = z 2 . The condition [ f , C k-2 ] ∈ G k-2 implies ∂ f 1 ∂z 3 = -a ∂η ∂z 3 . In these coordinates we have v = (L g ϕ 0 )[c k-2 , g] -(L [c k-2 ,g] ϕ 0 )g = z 3 ∂ ∂z 2 -( ∂ ∂z 0 + a ∂ ∂z 1 + z 3 ∂ ∂z 2 ) mod C k-2 . The distribution L = C k-2 + span { ∂ ∂z 0 + a ∂ ∂z 1 } is, indeed
, involutive and of corank two in TX. Thus there exists a smooth function ψ = ψ(z 0 , z 1 , z 2 ) such that ∂ψ ∂z 1 (0) = 0 and ∂ψ ∂z 0 + a ∂ψ ∂z 1 = 0 and we put z1 = ψ. Then ż1 Proof. Consider Σ a f f static feedback equivalent to TCh k 1 and let (ϕ 0 , ϕ 1 ) be a flat output at (x * , u * ), such that (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0), where g is an arbitrary vector field in G such that g(x * ) ∈ C k-2 (x * ). Form the decoupling matrix D = (D ij ),

= L f ψ + ∂ψ ∂z 2 z 3 ṽ0 = 3.1.6 -Proofs 147 f1 (z 0 , z 1 , z 2 , z 3 ) + z 3 B(z 0 , z 1 , z 2 ) ṽ0 . From [ f , C k-2 ] ∈ G k-2 , it follows that f1 = f1 (z 0 , z 1 , z 2 ). We have ż0 = ṽ0 -η ż1 = f1 (z 0 , z 1 , z 2 ) + z 3 B ṽ0 ż2 = f2 (z 0 , z 1 , z 2 ) + z 3 ṽ0 . . . żk-1 = fk-1 (z 0 , • • • , z k ) + z k ṽ0 żk = v 1 , with ψ = z1 and ϕ 0 = z 2 . The pair (ϕ 0 , ψ) = (z 2 , z 1 ) is an x-flat output at (z * , v * ), with v * ∈ U L-sing (z * ), if and only if ( ∂ f1 ∂z 0 -B ∂ f2 ∂z 0 )(0) = 0, i.e., (dψ ∧ d ψ ∧ dϕ 0 ∧ d φ0 )(0) = 0.
where D ij = L g j ϕ i , 0 ≤ i, j ≤ 1. The involutive closure G 0 of G 0 is TX, so 1 ≤ rk D(x) ≤ 2. If rk D(x) = 2 
, then via a suitable feedback transformation φi = ṽ, i = 0, 1, which contradicts flatness. Thus rk D(x) = 1 in a neighborhood of x * , since (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0). We have dϕ 0 ∧ dϕ 1 (x) = 0 so put z 0 = ϕ 0 , z 1 = ϕ 1 and, after applying feedback, the first two components of the transformed system ż = f + v 0 g 0 + v 1 g 1 become ż0 = v 0 , ż1 = a 1 (z) + b 1 (z)v 0 . The successive time-derivatives ϕ (l)

1 of ϕ 1 = z 1 cannot depend on v 1 , for 0 ≤ l ≤ k -1 (it would contradict flatness) and the k-th derivative depends explicitly on v 1 , otherwise we would obtain a contradiction with the independence of flat outputs and their timederivatives at (x * , u * ). Notice, however, that ϕ (l)

1 is a polynomial of degree l, with respect to v 0 , with the leading coefficient being L l-1 g 0 b 1 . Since ϕ (l)

1 does not depend on v 1 , for 1 ≤ l ≤ k -1, it follows that L g 1 L l-1 g 0 b 1 = 0 for 1 ≤ l ≤ k -2. We claim that the functions z 0 , z 1 , b 1 , . . . , L k-2
g 0 b 1 are independent at any point of an open and dense X ′ ⊂ X. If not, take x 0 and its open neighborhood V ⊂ X\X ′ and let s be the largest integer such that z

0 , z 1 , b 1 , . . . , L s g 0 b 1 are independent in V. Assume s ≤ k -3. Introduce new coordinates z i = L i-2 g 0 b 1 in V, for 2 ≤ i ≤ s. We get: ż0 = v 0 ż1 = a 1 (z) + z 2 v 0 ż2 = a 2 (z) + z 3 v 0 . . . żs+1 = a s+1 (z) + z s+2 v 0 żs+2 = a s+2 (z) + b s+2 (z 0 , . . . , z s+2 )v 0 ż = f + ḡ0 v 0 + ḡ1 v 1
where z = (z s+3 , . . . , z k ). Notice that the vector field [g 0 , g 1 ] is of the form

∑ k i=s+3 α i ∂ ∂z i
, with α i smooth functions. We deduce that G 0 , the involutive closure

of G 0 = span {g 0 , g 1 }, satisfies G 0 ⊂ span {g 0 , ∂ ∂z s+3 , • • • , ∂ ∂z k }. This yields G 0 = TX,
which contradicts the fact that for Σ a f f , static feedback equivalent to TCh k 1 , we have G 0 = TX. Thus s = k -2 and we put z 2 = b 1 , . . . , z k = L k-2 g 0 b 1 , and replace v 1 by

L f L k-2 g 0 b 1 + v 0 (L k-1 g 0 b 1 ) + v 1 (L g 1 L k-2 g 0 b 1
). We get

g 0 = ∂ ∂z 0 + z 1 ∂ ∂z 2 + • • • + z k-1 ∂ ∂z k and g 1 = ∂ ∂z k .
Using exactly the same arguments as in sufficiency part of the proof of Theorem 3.1.1 (the forms of G i and of C i and the condition [ f , C i ] ∈ G i ) we conclude that on X ′ , open and dense in X, the system is locally in the triangular form

TCh k 1 :          ż0 = v 0 ż1 = f 1 (z 0 , z 1 , z 2 ) + z 2 v 0 . . . żk-1 = f k-1 (z 0 , . . . , z k ) + z k v 0 żk = v 1
The flat output (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ) satisfies

L c ϕ 0 = L c ϕ 1 = (L g ϕ 0 )L [c,g] ϕ 1 -(L g ϕ 1 )L [c,g] ϕ 0 = 0, where c ∈ C k-2 = span { ∂ ∂z 3 , . . . , ∂ ∂z k
} and g is any vector field such that G 0 = span {g, c 1 } where c 1 = ∂ ∂z k is the characteristic vector field of G 1 . In order to prove that we can bring the system into the triangular form TCh k 1 , around any x * ∈ X (and not only on X ′ ), notice that the characteristic distribution C k-2 is defined everywhere (not only on X ′ ) so, by continuity, the conditions

L c ϕ 0 = L c ϕ 1 = (L g ϕ 0 )L [c,g] ϕ 1 -(L g ϕ 1 )L [c,
g] ϕ 0 = 0 hold everywhere on X implying that if we put the control system Σ a f f , around an arbitrary point x * ∈ X, into the triangular form TCh k 1 , then for the flat output (ϕ 0 , ϕ 1 ), we have ϕ i = ϕ i (z 0 , z 1 , z 2 ), 0 ≤ i ≤ 1, on X ′ and thus on X.

Since we have assumed that (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0), we can apply the following change of coordinates (permute ϕ 0 and ϕ 1 , if necessary)

z 0 = ϕ 0 , z 1 = ϕ 1 and z i = L i-2 g 0 ψ, for 2 ≤ i ≤ k, where ψ = L g 0 ϕ 1
L g 0 ϕ 0 , in which the control vector fields are in the chained form with (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ). The system Σ a f f is assumed to be feedback equivalent to the triangular form TCh k 1 , hence satisfies the compatibility condition (Comp). Using the z-coordinates and applying the feedback

f → f -(L f ϕ 0 )g 0 -(L k-1 f ψ)g 1 , we transform Σ a f f into the triangular form TCh k 1 with (ϕ 0 , ϕ 1 ) = ( z0 , z1 ) around any x * ∈ X.
Notice that we have proved, in particular, that any flat output (ϕ 0 , ϕ 1 ) of a system Σ a f f feedback equivalent to TCh k 1 satisfies (dϕ Proof of (m-F1). Consider a control-affine system Σ : ẋ = f (x) + ∑ m i=0 u i g i (x) locally, around x * , static feedback equivalent to TCh k m , and bring it into the form TCh k m , around z * . For simplicity of notation, we continue to denote by f , respectively by g i , for 0 ≤ i ≤ m, the drift, respectively the controlled vector fields of TCh

0 ∧ dϕ 1 ∧ d φ0 ∧ d φ1 )(x * , u * ) = 0 and L c ϕ 0 = L c ϕ 1 = (L g ϕ 0 )L [c,g] ϕ 1 -(L g ϕ 1 )L [c,g] ϕ 0 = 0, for any c ∈ C k-2 , that is, conditions (FO1) -(FO2) of Theorem 3.1.3.
k m . It is clear that TCh k m is x-flat, with ϕ = (z 0 , z 1 1 , • • • , z 1 m ) being a flat output, at any point (z * , v * ) ∈ X × R m+1 satisfying rk F l (z * ) = m, for 1 ≤ l ≤ k -1, where F l , for 1 ≤ l ≤ k -1, is the m × m matrix given by F l ij = ∂( f l j + z l+1 j v * 0 ) ∂z l+1 i , for 1 ≤ i, j ≤ m. Moreover, the differential weight of ϕ = (z 0 , z 1 1 , • • • , z 1 m ) is (k + 1)(m + 1), since ex- pressing z and v involves ϕ (j) i , for 1 ≤ i ≤ m and 0 ≤ j ≤ k. Recall that in coordinates z, using the notation span { ∂ ∂z i } = span { ∂ ∂z i 1 , • • • , ∂ ∂z i m }, we have G i = span { ∂ ∂z k-i , • • • , ∂ ∂z k , g 0 }, 0 ≤ i ≤ k -1, C i = span { ∂ ∂z k-i+1 , • • • , ∂ ∂z k }, 1 ≤ i ≤ k -2, and L = span { ∂ ∂z 2 , • • • , ∂ ∂z k }. We have C 1 = span { ∂ ∂z k 1 , • • • , ∂ ∂z k 1 }, and thus G 0 + [ f + gv, C 1 ] = G 0 + span {[ f + gv, ∂ ∂z k j ], 1 ≤ j ≤ m} = G 0 + span { ∂( f k-1 1 +z k 1 v 0 ) ∂z k j ∂ ∂z k-1 1 + • • • + ∂( f k-1 m +z k m v 0 ) ∂z k j ∂ ∂z k-1 m , 1 ≤ j ≤ m},
where gv = ∑ m i=0 g i v i . By induction, we obtain

G i + [ f + gv, C i+1 ] = G i + span { ∂( f k-i-1 1 + z k-i 1 v 0 ) ∂z k-i j ∂ ∂z k-i-1 1 + • • • + ∂( f k-i-1 m + z k-i m v 0 ) ∂z k-i j ∂ ∂z k-i-1 m , 1 ≤ j ≤ m}. Therefore for any 0 ≤ i ≤ k -2, we have rk F i+1 (z * , v * ) = m if and only if rk (G i + [ f + gv, C i+1 ])(z * , v * ) = (i + 2)m + 1, for 0 ≤ i ≤ k -3, and rk (G k-2 + [ f + gv, L)(z * , v * ) = km + 1. It follows that the original system Σ a f f is x-flat at (x * , u * ) such that u * ∈ U m-sing (x * ), of differential weight at most (k + 1)(m + 1).
As we have noticed, (ϕ 0 , . . . , ϕ m ) = (z 0 , z 1 1 , . . . , z 1 m ) is an x-flat output of TCh k m of differential weight (k + 1)(m + 1) since expressing z and v involves ϕ (j) i , for 0 ≤ j ≤ k. Now, we will show (which is interesting as an independent observation) that the differential weight of any x-flat output of Σ a f f : ẋ = f + ∑ m i=0 u i g i , with m + 1 controls and km + 1 states, is at least (k + 1)(m + 1). Let (ϕ 0 , . . . , ϕ m ) be an x-flat output of Σ a f f . Define D = (D ij ), where D ij = L g i ϕ j and put r(x) = rk D(x). Clearly, r(x) is constant on an open and dense subset X ′ of X (so denote it r(x) = r) and choose x 0 ∈ X ′ . By a suitable (local) change of coordinates and static invertible feedback, we get ż0 = v 0 ż1 = A 1 (z) + B 1 (z)v 0 ż2 = A 2 (z) + B 2 (z)v

where dim z 0 = r, dim z 1 = mr + 1, z 0 0 = ϕ 0 , . . . , z 0 r-1 = ϕ r-1 and z 1 r = ϕ r , . . . , z 1 m = ϕ m . Due to flatness we can express (with the help of the flat outputs ϕ i and their timederivatives) mk + 1 components of z and m + 1 components of v, i.e., m(k + 1) + 2 functions. Using ϕ i = z 0 i and φi = v 0 i , 0 ≤ i ≤ r -1, we express 2r system variables. The remaining m(k + 1) + 2 -2r system variables (that is, the components of z 1 , z 2 and the remaining components of v) depend on derivatives of ϕ i , r ≤ i ≤ m. Denote by s i the maximal order of the derivative ϕ (s i ) i , r ≤ i ≤ m, that is involved. Put s = max{s i : r ≤ i ≤ m}. By taking the time-derivatives of ϕ i up to order s i ≤ s, we can express at most (s + 1)(mr + 1) functions. This number cannot thus be smaller than the number of functions that remain to be expressed, that is, we need (s + 1)(mr + 1) ≥ m(k + 1) + 2 -2r, which is equivalent to m(sk) ≥ (r -1)(s -1). Now, three cases are possible. It is clear that if s < k, then the left hand side is negative, so the inequality is not satisfied. If s = k, then either r = 1 or s = 1. The latter is impossible since s ≥ 2. In the case r = 1, we have dim z 0 = dim v 0 = 1 and in order to express all m(k + 1) + 2 variables of the system, we will use s = k derivatives v 0 , v0 , v0 , . . . , (v 0 ) (s-1) . Thus the differential weight of ϕ is at least m(k + 1) + s + 1 = m(k + 1) + k + 1 = (m + 1)(k + 1).

Finally, if s > k, then there exists ϕ j , for some r + 1 ≤ j ≤ m + 1, that we differentiate s times so it involves at least s -1 time derivatives of φj = A 1 j (z) + B 1 j (z)v 0 , where A 1 j is the j-th component of A 1 and B 1 j is the j-th row of B 1 . The involutive closure G 0 of the distribution G 0 is TX so B 1 j is nonzero. It implies that ϕ (s) j depends nontrivially on (at least one) component of (v 0 ) (s-1) . To summarize, we use mk + 1 functions to express z, m + 1 functions to express v, and we also use the s -1 derivatives v0 , v0 , . . . , (v 0 ) (s-1) , which gives at least (k + 1)(m + 1) + 1 functions (since s > k). Therefore the differential weight is higher than (k + 1)(m + 1) on X ′ and thus on X.

It remains to prove that the differential weight of any flat output (not necessary an x-flat output) cannot be smaller than (k + 1)(m + 1). Let (ϕ 0 , . . . , ϕ m ) be an (x, u, u, . . . , u (p) )-flat output of Σ a f f . Denote by s i the highest derivative of ϕ i , for i , 0 ≤ i ≤ m, 0 ≤ j i ≤ s i }. Let s i * be the largest among the integers s i . Either ϕ i * depends on u (l) , with l ≥ 1 (but not on derivatives of u higher than l) or ϕ i * depends on u (but not on derivatives of u) or ϕ i * depends on x only. Then the differentials ϕ (j) i * are independent modulo X + U , for 0 ≤ j ≤ s i * (in the first case), for 1 ≤ j ≤ s i * (in the second case) and for 2 ≤ j ≤ s i * (in the third case, since φi * depends on u because G 0 = TX). It follows that X + U ⊂ Ψ = span {dϕ i * , d φi * , dϕ

(j i ) i , 0 ≤ i ≤ m, i = i * , 0 ≤ j i ≤ s i }.
We claim that s i * ≥ k. If not, then s i ≤ s i * ≤ k -1, for 0 ≤ i ≤ m (recall that s i * = max{s i : 0 ≤ i ≤ m}),which implies rk Ψ ≤ mk + 2 < m(k + 1) + 2 = rk (X + U ), contradicting X + U ⊂ Ψ. Thus s i * ≥ k.

We have X + U ⊂ Φ (by flatness) and d φi * , • • • , dϕ

(s i * ) i *
belong to Φ and are independent modulo X + U , so rk Φ ≥ rk (X + U ) + k -1 = m(k + 1) + 2 + k -1 = (m + 1)(k + 1) proving that the differential weight of ϕ is at least (m + 1)(k + 1). Notice that rk Φ = (m + 1)(k + 1) if and only if s i * = s i = k, for any 0 ≤ i ≤ m, implying that with ϕ i , i = i * , we express mk system variables and the remaining two variables are expressed with ϕ i * . We deduce immediately that, in this case, all ϕ i depend on x only.

Proof of (m-F2). Let (ϕ 0 , • • • , ϕ m ) be a minimal x-flat output for Σ a f f . When proving (m-F1) we have shown that we can bring the system into the form ż0 = v 0 ż1 = A 1 (z) + B 1 (z)v 0 ż2 = A 2 (z) + B 2 (z)v

where z 0 = ϕ 0 and z 1 1 = ϕ 1 , . . . , z 1 m = ϕ m and dim z 0 = dim v 0 = 1, being a consequence of the minimal differential weight (k + 1)(m + 1) of ϕ. For i ≤ i ≤ m, denote by k i the minimal integer such that ϕ (k i ) i depends explicitly on at least one v j , for 1 ≤ j ≤ m. Since Σ a f f is static feedback equivalent to TCh k m , it follows that k i ≤ k. In order to prove that k i = k, for 1 ≤ j ≤ m, suppose that there exists k i < k and assume, for simplicity, that k 1 < k. Denote ϕ

(k 1 ) 1 = v 1 (with v 1 depending on v 0 , • • • v (k 1 -1) 0 ).
Like in the the proof of (m-F1), notice that due to flatness we can express (with the help of the flat outputs ϕ i and their time-derivatives) mk + 1 components of z and m + 1 components of v, i.e., m(k + 1) + 2 functions. Using ϕ 0 = z 0 and ϕ 1 = z 1 1 , we can express 2 + k 1 + 1 = k 1 + 3 variables of the system. The remaining m(k + 1) + 2 -(k 1 + 3) system variables depend on derivatives of ϕ i , 2 ≤ i ≤ m. Denote by s i the maximal order of the derivative ϕ (s i ) i , 2 ≤ i ≤ m, that is involved. Put s = max{s i : 2 ≤ i ≤ m}. By taking the time-derivatives of ϕ i up to order s i ≤ s, we can express at most (s + 1)(m -1) functions. This number cannot thus be smaller than the number of functions that remain to be expressed, that is, we need (s + 1)(m -1) ≥ m(k + 1) + 2 -(k 1 + 3), which is equivalent to m(sk) ≥ sk 1 .

We have k 1 < k so the inequality can be satisfied only if s > k, but this give the differential weight of ϕ at least m(k + 1) + 2 + s -1 ≥ (k + 1)(m + 1) + 2, implying that ϕ is not a minimal flat output. It follows that for all 1 ≤ i ≤ m we must have k i = k (and the inequality is satisfied only in this case). The distribution L = (span {dϕ 0 , • • • , dϕ m }) ⊥ is involutive (as annihilator of exact 1-forms) and satisfies L ⊂ G k-2 (because all k i = k), as well as G 0 (x * ) ⊂ L(x * ) (since g 0 (x * ) ∈ L(x * )). It follows that G 0 is in the m-chained form in z-coordinates, where z 0 = ϕ 0 , z j i = L j-1 g 0 ϕ i , for 1 ≤ i ≤ m, 1 ≤ j ≤ k (see Appendix B). The compatibility condition (m-Comp) implies that Σ a f f is in the triangular form.

Proof of (m-F3). We will prove the implications: (i) ⇒ (iii) ⇒ (ii) ⇒ (i).

(i) ⇒ (iii). Assume that the system Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x) is x-flat at (x * , u * ), where u * ∈ U m-sing (x * ), and let (ϕ 0 , • • • , ϕ m ) be its minimal x-flat output defined in a neighborhood X * of x * . It is well known that the differentials of flat out- puts are independent at x * , thus implying (m-FO1). By item (m-F2), that we have just proven, we can bring Σ a f f , around any point x ∈ X * into the triangular form compatible with the chained form TCh k m , with (ϕ 0 , • • • , ϕ m ) = (z 0 , z 1 1 , • • • , z 1 m ) and x * transformed into z * ∈ R km+1 . In coordinates z, the corank one involutive subdistribution L of G k-2 is given by (iii) ⇒ (ii). Suppose that the (m + 1)-tuple (ϕ 0 , • • • , ϕ m ) fulfills conditions (m-FO1)-(m-FO2). We apply the change of coordinates and the invertible feedback transformation presented in Appendix 3.1.B (with φ i replaced by ϕ i and ũ by v) that bring the control-linear system Σ lin : ẋ = ∑ m i=0 u i g i (x) into the m-chained form, with z 0 = ϕ 0 and

L = span { ∂ ∂z 2 , • • • , ∂ ∂z k },
z 1 i = ϕ i , for 1 ≤ i ≤ m. Thus (ϕ 0 , • • • , ϕ m ) = (z 0 , z 1 1 , • • • , z 1 m
) is a minimal x-flat output of Ch k m at any (z * , v * ), with v * = 0. It follows that (ϕ 0 , • • • , ϕ m ) is a minimal x-flat output of Σ lin at any (x * , ũ * ), with ũ * such that ∑ m i=0 ũ * i g i (x * ) ∈ C 1 (x * ).

(ii) ⇒ (i). Assume that the system Σ lin : ẋ = ∑ m i=0 u i g i (x) is x-flat at (x * , ũ * ), where ũ * is such that ∑ m i=0 ũ * i g i (x * ) ∈ C 1 (x * ), where C 1 is the characteristic distribution of G 1 . Let (ϕ 0 , • • • , ϕ m ) be its minimal x-flat output defined in a neighborhood X of x * . It is known, see [START_REF] Li | The geometry, controllability, and flatness property of the n-bar system[END_REF], that the minimal flat output satisfies L ⊥ = span {dϕ 0 , • • • , dϕ m }. By the construction given in Appendix 3.1.B, bring the system into the m-chained form Ch k m such that (ϕ 0 , • • • , ϕ m ) = (z 0 , z 1 1 , • • • , z 1 m ) and z j i = L j-2 g 0 ψ i , for 2 ≤ j ≤ k and 1 ≤ i ≤ m, where ψ i = L g 0 ϕ i L g 0 ϕ 0 . The system Σ a f f is assumed to be feedback equivalent to the triangular form TCh k m , hence satisfies the compatibility condition (m-Comp). Using the z-coordinates and applying the feedback f → f -∑ m i=0 α i g i , where α 0 = L f ϕ 0 and α i = L k-1 f ψ i , we transform Σ a f f into the triangular form TCh k m . We have proved, when showing (m-F1), that (ϕ 0 , • • • , ϕ m ) = (z 0 , z 1 1 , • • • , z 1 m ) is an x-flat output of Σ a f f at (x * , u * ) such that u * ∈ U m-sing (x * ).

Appendices

3.1.A. Involutive subdistribution of corank one

Consider a non involutive distribution G of rank d, defined on a manifold X of dimension n and define its annihilator G ⊥ = {ω ∈ Λ 1 (X) : < ω, f >= 0, ∀ f ∈ G}. Let ω 1 , . . . , ω s , where s = nd, be differential 1-forms locally spanning the annihilator of G, that is G ⊥ = I = span {ω 1 , . . . , ω s }. The Engel rank of G equals 1 at x if and only if (dω i ∧ dω j )(x) = 0 mod I, for any 1 ≤ i, j ≤ s. For any ω ∈ I, we define W (ω) = { f ∈ G : f dω ∈ G ⊥ }, where is the interior product. The characteristic

distribution C = { f ∈ G : [ f , G] ⊂ G} of G is given by C = s i=1 W (ω i ).
It follows directly from the Jacobi identity that the characteristic distribution is always involutive. Let rk [G, G] = d + r. Choose the differential forms ω 1 , . . . , ω r , . . . , ω s such that I = span {ω 1 , . . . , ω s } and I 1 = span {ω r+1 , . . . , ω s }, where I 1 is the annihilator of [G, G]. Define the distribution

H = r ∑ i=1 W (ω i ).
We have the following result proved by Bryant [START_REF] Bryant | Some aspects of the local and global theory of Pfaffian systems[END_REF], see also [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF]. Moreover, that involutive subdistribution is unique and is given by H.

(ii) Assume r = 2. The distribution G contains a corank one subdistribution L satisfying [L, L] ⊂ G if and only it verifies (ISD1)-(ISD2). In that case, H is the unique distribution with the desired properties.

(iii) Assume r = 1. The distribution G contains an involutive subdistribution of corank one if and only it satisfies the condition (ISD2). In the case r = 1, if an involutive subdistribution of corank one exists, it is never unique.

3.1.B. Constructing coordinates for the m-chained form

In [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF], the following characterization of the m-chained form was stated and proved: An (m + 1)-input driftless control system Σ lin : ẋ = ∑ m i=0 u i g i (x), with m ≥ 2, defined on a manifold X of dimension km + 1, is locally static feedback equivalent, in a small neighborhood of a point x * ∈ X, to the m-chained form if and only if its associated distribution G = span {g 0 , • • • , g m } satisfies conditions (m-Ch1)-(m-Ch3) of Theorem 3.1.2.

The prove of this result provides a method to compute the diffeomorphism bringing any control system, for which it is possible, to the m-chained form. Now, we will explain how to do it.

The involutive subdistribution L is unique and can be explicitly calculated (see Appendix 3.1.A). Choose m + 1 independent functions φ 0 , φ 1 1 , • • • , φ 1 m whose differentials annihilates L, that is span {dφ 0 , dφ 1 1 , • • • , dφ 1 m } = (L) ⊥ , and a vector field g ∈ G 0 (which always exists due to condition (m -Ch3)) such that g(x * ) ∈ L k-2 (x * ). Without loss of generality, we can assume g = g 0 and L g 0 φ 0 0 (x * ) = 0 (otherwise permute the vector fields g i or the functions φ 1 i ). Define the coordinates

     z 0 = φ 0 z 1 i = φ 1 i , 1 ≤ i ≤ m, z j i = φ j i = L g 0 φ j-1 i L g 0 φ 0 , 1 ≤ i ≤ m, 2 ≤ j ≤ k,
and the feedback ũ0 = u 0 L g 0 φ 0 and ũj = m ∑ i=0 u i L g i φ k j , 1 ≤ j ≤ m.

In the above coordinates, the distribution G takes the form

G = span { ∂ ∂z k 1 , • • • , ∂ ∂z k m , ∂ ∂z 0 + m ∑ j=1 k-1 ∑ i=1 z i+1 j ∂ ∂z i j }
and, equivalently, Σ lin takes the m-chained form.

control-linear systems, the only x-maximally flat systems are those that are static feedback equivalent to the m-chained form (see Proposition 3.2.2). Thirdly, we generalize that result from control-linear systems to control-affine systems whose controllinear subsystem is static feedback equivalent to the m-chained form. We prove that they are x-maximally flat if and only if the drift is triangular in the system of coordinates in which the controlled vector fields are in the m-chained form (see Theorem 3.2.1). In other words, they are x-maximally flat if and only if they are static feedback equivalent to a triangular form compatible with the m-chained form. That triangular form has been recently characterized by Silveira, Pereira da Silva and Rouchon [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF] (for m = 2) and by the authors [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF] for m ≥ 2. We also show that if we skip the assumption of the x-maximal flatness, the compatibility condition is not necessary for x-flatness of control-affine system whose associated control-linear subsystem is static feedback equivalent to the m-chained form.

The paper is organized as follows. In Section 3.2.2, we recall the definition of flatness, we introduce the notion of x-maximally flat system and we study the x-maximal flatness of general and then of control-linear systems. In Section 3.2.3, we give our main result: we describe x-maximal flatness of control-affine systems whose controllinear subsystem is static feedback equivalent to the m-chained form. We illustrate our results by an example in Section 3.2.4 and provide proofs in Section 3.2.5.

Preliminaries and motivation

The fundamental property of flat systems is that all their solutions can be parametrized by a finite number of functions and their time-derivatives. Fix an integer r ≥ -1 and denote X r = X × U × R mr and ūr = (u, u, . . . , u (r) ). For r = -1, we put X -1 = X and ū-1 is empty. Definition 3.2.1. The system Ξ : ẋ = F(x, u) is flat at (x * , ūr * ) ∈ X r , for r ≥ -1, if there exists a neighborhood O r of (x * , ūr * ) and m smooth functions ϕ i = ϕ i (x, u, u, . . . , u (r) ), 1 ≤ i ≤ m, defined in O r , having the following property: there exist an integer s and smooth functions γ i , 1 ≤ i ≤ n, and δ j , 1 ≤ j ≤ m, such that

x i = γ i (ϕ, φ, . . . , ϕ (s-1) ) and u j = δ j (ϕ, φ, . . . , ϕ (s) )

along any trajectory x(t) given by a control u(t) that satisfy (x(t), u(t), . . . , u (r) (t)) ∈ O r , where ϕ = (ϕ 1 , . . . , ϕ m ) is called a flat output.

In the particular case ϕ i = ϕ i (x), for 1 ≤ i ≤ m, we will say that the system is x-flat. In our study, the flat outputs will always depend on x only and r is 0 or -1.

The notion of differential weight of a flat system, introduced in [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF], was discussed in [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF][START_REF] Nicolau | Multi-input control-affine systems linearizable via one-fold prolongation and their flatness[END_REF] in the context of system linearizable via one-fold prolongation. The differential weight of a flat output ϕ is, roughly speaking, the minimal number of derivatives of components of ϕ needed to express x and u and will be formalized as follows. By definition, for any flat output ϕ of Ξ there exist integers s 1 , . . . , s m such that x = γ(ϕ 1 , φ1 , . . . , ϕ Moreover, we can choose (s 1 , . . . , s m ) such that (see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]) if for any other m-tuple (s 1 , . . . , sm ) we have x = γ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ) u = δ(ϕ 1 , φ1 , . . . , ϕ (s 1 ) 1 , . . . , ϕ m , φm , . . . , ϕ (s m ) m ), then s i ≤ si , for 1 ≤ i ≤ m. We will call ∑ m i=1 (s i + 1) = ∑ m i=1 s i + m the differential weight of ϕ. A flat output of Ξ is called minimal if its differential weight is the lowest among all flat outputs of Ξ. We define the differential weight of a flat system to be equal to the differential weight of a minimal flat output. Here we propose another way of looking at this property. Suppose that the control system Ξ : ẋ = F(x, u) is flat at (x * , ūr * ) and let (ϕ 1 , . . . , ϕ m ) be a flat output around (x * , ūr * ). It is well known (see e.g. [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]) that for any l ≥ 0, all time-derivatives ϕ (j) i , 1 ≤ i ≤ m, 0 ≤ j ≤ l, of flat outputs are independent at (x * , ūr * ). So successive time-derivatives provide m new independent functions ϕ (l+1) i = ϕ (l+1) i (x, u, u, . . . , u (r+l+1) ), 1 ≤ i ≤ m. The problem that we are going to study is how many new functions of the state x do successive derivatives of the flat outputs provide?

To formalize that problem, for any j ≥ 0, we denote

Φ j = span {dϕ i , • • • , dϕ (j) i , 1 ≤ i ≤ m}, A j = Φ j ∩ T * X = span {dϕ i , • • • , dϕ (j) 
i , 1 ≤ i ≤ m} ∩ T * X, and define a j (ξ) = dim A j (ξ), where ξ = (x, u, u, • • • ).

The vector (a 0 (ξ), a 1 (ξ), • • • , a ρ (ξ)) will be called the x-growth vector of the nested sequence of codistributions Φ 0 ⊂ Φ 1 ⊂ • • • ⊂ Φ ρ (equivalently, the growth vector of A 0 ⊂ A 1 ⊂ • • • ⊂ A ρ ), where ρ is the smallest integer such that A ρ = T * X. For two codistributions E and F , we define their pointwise intersection E ∩ F by (E ∩ F )(x) = E (x) ∩ F (x), for x ∈ X. Definition 3.2.2. A system Ξ flat at (x * , ūr * ) ∈ X r , for r ≥ -1, is called x-maximally flat at (x * , ūr * ) if there exists a flat output at (x * , ūr * ) for which all codistributions A j do not depend on the control or the control derivatives and, in a neighborhood of x * , the sequence (a 0 (x), a 1 (x), • • • , a ρ (x)) is constant and the maximal possible among all flat systems for which dim U = m and dim X = n.

Flatness is closely related to the notion of feedback linearization. The control system Ξ : ẋ = F(x, u) is linearizable by static feedback if it is equivalent via a diffeomorphism z = φ(x) and an invertible feedback transformation, u = ψ(x, v), to a linear controllable system Λ : ż = Az + Bv. Jakubczyk and Respondek [START_REF] Jakubczyk | On linearization of control systems[END_REF] and Hunt and Su [START_REF] Hunt | Linear equivalents of nonlinear time varying systems[END_REF] gave geometric necessary and sufficient conditions for a control system to be static feedback linearizable. It is well known that systems linearizable via invertible static feedback are flat. The expression of all states and controls uses the minimal possible, which is n + m, number of time-derivatives of the components of flat outputs ϕ i . The following proposition gives an equivalent way to describe static feedback linearizable systems using the notion of x-maximal flatness. Consider a control system Ξ : ẋ = F(x, u), with m inputs and defined on a state space of dimension n = km. Let us first introduce some notations. To Ξ, we associate F = {F u : u ∈ U}, where F u = F(•, u), i.e., F stands for the family of all vector fields corresponding to constant controls u of Ξ. Define the following sequence of distributions on X: D 0 (x, u) = Im ∂F ∂u (x, u) and D i+1 (x, u) = D i (x, u) + span {[F u , g] : F u ∈ F , g ∈ D i }, for i ≥ 0. If Ξ is a control-affine system, i.e., of the form ẋ = f (x) + ∑ m i=1 u i g i (x), (i) Ξ is x-maximally flat at (x * , ūr * ), for a certain r ≥-1;

(ii) Ξ is x-maximally x-flat at x * ;

(iii) There exists a flat output of Ξ for which the x-growth vector is constant and equals (m, 2m, • • • , km);

(iv) Ξ is static feedback equivalent to a linear system and, in particular, to the Brunovský canonical form (Br)

żj i = z j+1 i żk i = v i where 1 ≤ i ≤ m and 1 ≤ j ≤ k -1.
(v) The distribution D 0 does not depend on u and for any 0 ≤ i ≤ k -1, the distributions D i are involutive and of constant rank (i + 1)m.

According to item (iii) of the above result, a control system is x-maximally flat if the number of new states (state functions) gained by successive derivations of the flat output is, at each step, the largest possible, which is m. For x-maximally flat systems, flatness and x-flatness coincide and moreover, both properties are equivalent to linearizability via an invertible static feedback transformation, and, in fact, one can bring the system into the Brunovský canonical form, see [START_REF] Brunovsky | A classification of linear controllable systems[END_REF], with all controllability indices equal k. Item (v) recalls the geometric necessary and sufficient conditions for a general nonlinear control system to be static feedback linearizable, see [START_REF] Respondek | Introduction to geometric nonlinear control linearization, observability, decoupling. Mathematical Control Theory[END_REF]. If the considered control system is affine with respect to controls it is clear that D 0 does not depend on u.

In general, a flat system is not linearizable by static feedback (with the exception of the single-input case, where flatness reduces to static feedback linearization, see [START_REF] Charlet | Sufficient conditions for dynamic state feedback linearization[END_REF]) and therefore it is not x-maximally flat. We can be interested, however, in xmaximal flatness within a particular class of systems C. We will say that the system Ξ is x-maximally flat within the class C if it satisfies the conditions of Definition 3.2.2 with the sequence (a 0 , a 1 , • • • , a ρ ) being the maximal possible among all flat systems belonging to the class C for which dim U = m and dim X = n. From now on, we will denote the number of controls by m + 1 (and not by m) since, as we will see below, for all classes of systems that follow one control plays a particular role. Consider a control-linear system

Σ lin : ẋ = m ∑ i=0 u i g i (x),
where the control u takes values in an open subset U of R m+1 , the state space X is of dimension n = km + 1 and g 0 , • • • , g m are smooth vector fields on X. To Σ lin we (Aff 6) of the above result is very similar to condition (Lin 6) of Proposition 3.2.2 but, in addition to (Lin 6), it requires that the involutive distributions D i p ∩ TX, associated to the prolongation Σ(k-1,0,...,0) a f f , do not depend on y = ũ0 . For control-linear systems, adding that condition would be redundant, because it is a consequence of the involutivity and the proper growth vector of D i p ∩ TX, but for control-affine systems just involutivity and rank conditions do not give the desired triangular form. Actually, for any x-flat system whose prolongation Σ(k-1,0,...,0) a f f possesses involutive distributions D i p ∩ TX of proper growth vector, the dependence (or not) on y = ũ0 distinguishes between a general x-flat system and the class treated here.

3) According to item (Aff 4), the only x-maximally flat control-affine systems, compatible with the m-chain form, are those that are static feedback equivalent to the triangular form TCh k m . Item (Aff 5), together with (m-Ch1)-(m-Ch3) assumed for the control-linear subsystem Σ lin , provide an invariant geometric characterization of TCh k m . For two-input control systems, an equivalent description was given in [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF]. In [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF], the authors show that conditions (m-Ch1)-(m-Ch3) and (m-Comp) are necessary and sufficient for a control affine system to be static feedback equivalent to TCh k m , for any m ≥ 1, and discuss flatness of that class of systems. While conditions (m-Ch1)-(m-Ch3) characterize the m-chained form, (m-Comp) takes into account the drift and gives the compatibility condition for the drift f to have the desired triangular form in the right coordinates, i.e., in those in which the controlled vector fields are in the m-chained form. The involutive subdistribution L (which, for m ≥ 2, is crucial for the m-chained form) is absent in the compatibility conditions, but plays a very important role in calculating minimal flat outputs and in describing singularities (see [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF]). In order to verify the conditions (m-Ch1)-(m-Ch3), we have to verify whether the distribution G k-2 contains an involutive subdistribution L of corank one. Checkable necessary and sufficient conditions for the existence of L (together with a construction), based on the work of Bryant [START_REF] Bryant | Some aspects of the local and global theory of Pfaffian systems[END_REF], were given in [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF] and is discussed in [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF]. 4) A natural question is whether the above theorem describes flat systems whose x-growth vector is (m + 1, 2m + 1, 3m + 1, • • • , km + 1) (without assuming that their control-linear subsystem is static feedback equivalent to the m-chained form). The answer is negative and the problem of characterizing those systems will be discussed elsewhere.

5) Now assume that Σ a f f is x-flat with Σ lin being static feedback equivalent to the m-chained form. Does Σ a f f satisfy the conditions of Theorem 3.2.1? In other words, are x-flat control-affine systems necessarily static feedback equivalent to TCh k m if the control-linear subsystem is static feedback equivalent to Ch k m ? The answer is negative as shown by the following example. system Σ a f f takes the form

               ż0 = v 0 ż1 i = f 1 i (z) + z 2 i v 0 ż2 i = f 2 i (z) + z 3 i v 0 . . . żk-1 i = f k-1 i (z) + z k i v 0 żk i = v i
where 1 ≤ i ≤ m. Since dv 0 ∈ Φ 1 , the codistribution A 1 = Φ 1 ∩ T * X is given by A 1 = span {dz 0 , dz 1 i , ω i , 1 ≤ i ≤ m}, where ω i is the 1-form appearing as the i-th line of the vector Ω = ( ∂ f 1 ∂z 2 + v 0 Id)dz 2 + ∑ k j=3 ∂ f 1 ∂z j dz j , where Id denotes the identity matrix, ∂ f 1 ∂z j is the matrix

∂ f 1 ∂z j = ( ∂ f 1 i ∂z j q
), for 1 ≤ i, q ≤ k, and dz j = (dz Notice that each ω i can be written as ω i = (

∂ f 1 i ∂z 2 i + v 0 )dz 2 i + η i
, where η i is a 1-form not involving v 0 . Since the codistribution A 1 = span {dz 0 , dz 1 i , (

∂ f 1 i ∂z 2 i + v 0 )dz 2 i + η i 1 ≤ i ≤ m}
does not depend on v, we have A 1 (z, ṽ0 ) = A 1 (z, v0 ), for any fixed ṽ0 = v0 .

It follows that ((

∂ f 1 i ∂z 2 i + ṽ0 )dz 2 i + η i ) -(( ∂ f 1 i ∂z 2 i + v0 )dz 2 i + η i ) = ( ṽ0 -v0 )dz 2 i ∈ A 1 , for 1 ≤ i ≤ m, thus dz 2
i ∈ A 1 and η i ∈ A 1 , for 1 ≤ i ≤ m. From this and the fact that A 1 is of rank 2m + 1, we deduce A 1 = span {dz 0 , dz 1 i , dz 2 i , 1 ≤ i ≤ m}, and since η i ∈ A 1 , 1 ≤ i ≤ m, it follows that η i cannot involve dz j q , for j ≥ 3. Hence ∂ f 1 i ∂z j q = 0, for 1 ≤ i, q ≤ m, 3 ≤ j ≤ k, i.e., f 1 i = f 1 i (z 0 , z 1 , z 2 ), implying Ω = ( ∂ f 1 ∂z 2 + v 0 Id)dz 2 , and the matrix ( ∂ f 1 ∂z 2 + v 0 Id) is of full rank at (z * , v * 0 ). By induction, we show that the drift f is triangular and that the regularity condition u * ∈ U sing a f f is satisfied. (Aff 4) ⇒ (Aff 5). See [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF].

(Aff 5) ⇒ (Aff 6). In [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF], we have shown that conditions (m-Ch1)-(m-Ch3) and (m-Comp) of item (Aff 5) assure the existence of a change of coordinates z = φ(x) and of an invertible feedback transformation and u = α(x) + β(x)v that transform the system Σ a f f into TCh k m . Bring the system into TCh k m and prolong (k -1)-times the control v 0 . The obtained prolongation

             ż0 = y 1 ż1 i = f 1 i (z 0 , z2 ) + z 2 i y 1 ẏ1 = y 2 ż2 i = f 2 i (z 0 , z3 ) + z 3 i y 1 . . . . . . ẏk-2 = y k-1 żk-1 i = f k-1 i (z 0 , zk ) + z k i y 1 ẏk-1 = v p 0 żk i = v p i
where 1 ≤ i ≤ m, y 1 = v 0 and v p i = v i , for 1 ≤ i ≤ m, clearly satisfies (Aff 6). (Aff 6) ⇒ (Aff 1). Assume that there exists, around x * , an invertible static feedback transformation u = α(x) + β(x) ũ, such that distributions D i p associated to the (k -1)fold prolongation Σ(k-1,0,...,0)

a f f
, defined just before Theorem 3.2.1, do not depend on y, are involutive and of constants rank m(i + 1), for any 0 ≤ i ≤ k -2, and D k-1 p ∩ TX = TX. For simplicity of notation, we will drop the tildes.

Recall that the linear-control sub-system associated to Σ a f f is assumed to satisfy the conditions describing the m-chained form. An equivalent way to characterize the m-chained form is the following (see [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF]): for 0 ≤ i ≤ k -1, each element G i of the derived flag has constant rank (i + 1)m + 1, contains an involutive subdistribution L i ⊂ G i of corank one and each element G i of the Lie flag, where G i+1 = G i + [G 0 , G i ] and G 0 = span {g 0 , • • • , g m }, has constant rank (i + 1)m + 1. Moreover, the involutive subdistribution L i , for 0 ≤ i ≤ k -3, is the characteristic distribution C i+1 of G i+1 , i.e., C i+1 = L i . We will use that characterization to prove that control systems verifying item (Aff 6) are, in fact, feedback equivalent to TCh k m and hence, x-maximally flat. To this end, we will show that the involutive distributions D i p ∩ TX, for 0 ≤ i ≤ k -2, are, in fact, of corank one in G i , so let us denote L i = D i p ∩ TX.

For Σ , g i , 1 ≤ i ≤ m}, thus the distribution L 0 = D 0 p ∩ TX = span {g i , 1 ≤ i ≤ m} is involutive and of corank one in G 0 . From this and since rk G 1 = rk G 1 = 2m + 1, it follows that we necessarily have G 1 = span {g 0 , g i , [g 0 , g i ], 1 ≤ i ≤ m}, where all brackets [g 0 , g i ] are independent modulo G 0 . We have D

1 p = span { ∂ ∂y k-1 , ∂ ∂y k-2
, g i , ad f g i + y 1 [g 0 , g i ], 1 ≤ i ≤ m}, thus the distribution L 1 = D 1 p ∩ TX = span {g i , ad f g i + y 1 [g 0 , g i ], 1 ≤ i ≤ m}, does not depend on y, is involutive and of rank 2m. Since L 1 does not depend on y, we have L 1 (x, ỹ1 ) = L 1 (x, ȳ1 ), for any fixed ỹ1 = ȳ1 . It follows that (ad f g i + ỹ1 [g 0 , g i ]) -(ad f g i + ȳ1 [g 0 , g i ]) = ( ỹ1 -ȳ1 )[g 0 , g i ] ∈ L 1 , for 1 ≤ i ≤ m, thus L 1 = span {g i , ad f g i , [g 0 , g i ], 1 ≤ i ≤ m}. Since rk G 1 = rk (span {g 0 , g i , [g 0 , g i ], 1 ≤ i ≤ m}) = 2m, we obtain ad f g i ∈ G 1 and we actually have L 1 = span {g i , [g 0 , g i ], 1 ≤ i ≤ m}. Thus we have just shown that [ f , L 0 ] ⊂ G 1 . From the fact that L 1 is involutive, we deduce that L 1 is the corank one involutive subdistribution of G 1 .

Repeating this argument, we prove that the involutive distributions L i = D i p ∩ TX, for 0 ≤ i ≤ k -2, are of corank one in G i and [ f , L i-1 ] ⊂ G i . According to the above remark, we deduce that C i = L i-1 = D i-1 p ∩ TX and that we actually have [ f , L i-1 ] = [ f , C i ] ⊂ G i . It follows that the system Σ a f f satisfies item (Aff 5) and thus, see [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF], is static feedback equivalent the form TCh k m , which is clearly x-maximally flat.

  où x ∈ X et ũ ∈ Ũ. Les systèmes Σ et Σ sont équivalents par bouclage statique si et seulement si f = φ * ( f + gα) et g = φ * (gβ).
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  0.1) et au cas k = 0 (Théorème 0.0.2). Pour les deux théorèmes, nous supposons D k + [D k , D k ] = TX. Nous notons par D k l'adhérence involutive de D k . Theorem 0.0.1. Supposons k ≥ 1 et D k + [D k , D k ] = TX. Le système Σ, donné par (1), est x-plat au point x 0 ∈ X, de poids différentiel n + 3, si et seulement si les conditions suivantes sont satisfaites : (A1) rg D k = 2k + 3; (A2) rg (D k + [ f , D k ]) = 2k + 4, impliquant l'existence d'un champ de vecteurs non nul g c ∈ D 0 tel que ad k+1 f g c ∈ D k ;

  alors nous définissons la sous-distribution involutive H k de façon unique, en utilisant la distribution caractéristique C k de D k (voir le Théorème 0.0.5 ci-dessous). Considérerons une distribution D. Un champ de vecteur c ∈ D est dit caractéristique pour D si [c, D] ⊂ D. La distribution caractéristique C de D est la distribution générée par tous les champs caractéristiques. L'involutivité de la distribution caractéristique C est une conséquence directe de l'identité de Jacobi. Si
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 222 +1(z 0 ) + ũ10 = 0 are singular for (NF1) (resp. ∂c ∂w +1 (w 0 ) + ũ10 = 0 for (NF2), the functions a = c being the same), see Section 1.4.1.
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  follows that there exist smooth functions α mod D k-1 for any 1 ≤ i ≤, l2 and 0 ≤ j ≤ k -1, and thus
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  It follows directly from the Jacobi identity that the characteristic distribution is always involutive. Let rk (D + [D, D]) = d + r. Choose the differential forms ω 1 , . . . , ω r , . . . , ω s such that I = span {ω 1 , . . . , ω s } and I 1 = span {ω r+1 , . . . , ω s }, where I 1 is the annihilator of D + [D, D]. Define the distribution
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 232 Consider a distribution D of rank d and let rk (D + [D, D]) = d + r. (i) Assume r ≥ 3. The distribution D contains an involutive subdistribution H of corank one if and only if it satisfies (ISD1) The Engel rank of D equals one; (ISD2) The characteristic distribution C of D has rank dr -1.

  tuple of smooth functions. We use the notion∂β ∂z q j
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1 .

 1 It follows, see Proposition 2.3.2(iii), that an involutive subdistribution of corank one in D 1 cannot be unique. Let us sup- pose that ∂ 2 b ∂ C2 s = 0. Therefore, [D 0 , D 1 ] ⊂ D 1 . Consequently, we are in the case of Theorem 2.3.4, with m = 2.

  new directions, completing D k to D k , where D k is the involutive closure of D k , are obtained with [ad k f g i , ad k-1 f g 1 ]
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 276 is non zero, there exists a smooth function ψ m , depending on the same variables as b m , Proof of Proposition 2.5.1 105 such that L ξ ψ m = 0 and ∂ψ m ∂z m 1
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 141 Flatness of control systems static feedback equivalent to TCh k 1 Let us first consider the case m = 1. It is clear that TCh k 1 is x-flat, with ϕ = (z 0 , z 1 ) being a flat output around any point (z * , v * ) satisfying

Theorem 3 . 1 .

 31 4 indicates how flatness of control-affine systems locally equivalent to TCh k m reminds, but also how it differs from, that of control-linear systems locally equivalent to the m-chained form Ch k m . While Theorem 3.1.3, associated to the case m = 1, allows us to compute all x-flat outputs of TCh k 1 , Theorem 3.1.4 describes all minimal x-flat outputs of TCh k m . Functions whose differentials annihilate L are clearly not the only x-flat outputs of TCh k
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 31 Figure 3.1 -The coin on a moving table

3 1

 3 are thus constant speed rotations around a fixed point (e/c, -d/c). Proof. The system Σ coin is feedback equivalent to the triangular form TCh k 1 if and only if it satisfies the conditions (Ch1)-(Ch3) and (Comp) of Theorem 3.1.2 or, equivalently, conditions (Ch1)'-(Ch2)' and (Comp). Consider the associated distribution G and the drift f given by:
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 16 Proofs 151 0 ≤ i ≤ m, involved in expressing the state x and the control u, that is, by flatness, X + U ⊂ Φ, where X= span {dx 1 , • • • , dx n }, U = span {du 0 , • • • , du m } and Φ = span {dϕ (j i )

  because it is unique and we immediately haveL ⊥ = span {dϕ 0 , • • • , dϕ m },which gives (m-FO2) on X * .
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 316 Consider a distribution G of rank d and let rk [G, G] = d + r. (i) Assume r ≥ 3. The distribution G contains an involutive subdistribution of corank one if and only if it satisfies (ISD1) The Engel rank of G equals one; (ISD2) The characteristic distribution C of G has rank dr -1.
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 321 we actually haveD 0 = span {g 1 , • • • , g m } and D i+1 = D i + [ f , D i ].Proposition The following conditions are equivalent:

j 1 , dz j 2 ,

 12 • • • , dz j m ) ⊤ , for 2 ≤ j ≤ m.

(k- 1

 1 ,0,...,0) a f f , we have D 0 p = span { ∂ ∂y k-1

  p et, respectivement, par g pi , où 0 ≤ i ≤ m. Les distributions du système prolongé seront notées en utilisant le sous-index p, i.e., D 0 p

	prolongé	0 Σ(k-1,0,...,0)	1)	. La dérive et les champs de vecteurs contrôlés du système

lin seront notés par f

Theorem 1.3.1. Assume

  k ≥ 1 and D k + [D k , D k ] = TX. Consider the two-input control system Σ, given by (1.3). The system Σ is flat at x 0 , of differential weight n + 3, if and only if the following conditions hold:

	(A1) rk D	k = 2k + 3;
	(A2) rk (D such that ad k+1 k + [ f , D k ]) = 2k + 4, implying the existence of a non-zero vector field g c ∈ D 0 f g c ∈ D k ;
	(A3) The distributions H i , for i ≥ k, are involutive, where
	in applications, see Example 5.1) will be discussed at the end of this section (in Theorem 1.3.4). We will denote by D k the involutive closure of D k , i.e., the smallest involutive distribution containing D k .

  It is easy to check that D k = H k+1 . Indeed, by definition, H k+1 = D k + } and is involutive. Moreover rk H k+1 = 2k + 3, otherwise we obtain H k+1 = D k and D k would be involutive. Since D k ⊂ H k+1 and rk H k+1 = 2k + 3, it follows that D k = H k+1 . Thus the direction completing D k to D

	span {ad k+1 f g c k has to be colinear with ad k+1 f g c modulo D k .
	Example 1.3.1. The following examples shows that the existence of the involutive subdistribution H k in D k plays indeed a crucial role. If we do not assume its existence and define the sequence of distributions by H k+1 = D k and H i+1 = H i + [ f , H i ], for
	i ≥ k + 1, then the result is not true anymore as shown by the following two-input
	control system:

  3.2 (if k = 0) applies to the case m = 2. On the other hand, Theorem 2.3.4 covers the case m

Thus, neither Theorem 2.3.1 (if k ≥ 1) nor Theorem 2.

  see Proposition 2.7.2 for details). For i ≥ 2, we actually have

  not have any sens. According to Proposition 2.3.1, there exists an invertible feedback transformation u

  ≤ i ≤ r and r + 1 ≤ j ≤ m, with ρ1 = ρ s ≥ k + 1 and (ϕ 1 , • • • , ϕ m ) playing the role of top variables. Hence we can always assume that ρ 1

	102					PROOFS
	into	żi 1	= zi 2 . . .	żj 1	= . . .	zj 2
		żi ρi -1 = zi ρi	żj ρj -1 =	zj ρj
		żi ρi	= ṽi	żj ρj	=	zj ρj +1 + b j ( z) ṽ1
				żj ρj +1 = ṽj
	for 1					

and after applying a suitable invertible static feedback, transforms the system

  Assume that α = -ωy t , β = ωx t , that is, the motion equation of the table is ẋt = -ωy t ẏt = ωx t , meaning that the table rotates around its center point with the angular velocity ω. Substituting α = -ωy, β = ωx into (3.5), we obtain the model of the coin on a rotating table as

	Remark 3.1.1.

  3 1 if and only if the motion of the table is described by ẋt = cy t + d ẏt = -cx t + e where c, d, e ∈ R are constant. Notice that introducing xt = x t -e/c and ỹt = y t + d/c, we obtain: ẋt

	Remark 3.1.2.

  g 2 , g 3 , g 4 } which gives that rank G 1 = G 1 = 3 and rank G 2 = G 2 = 4 and thus conditions (Ch1)'-(Ch2)' hold. Moreover, it is easy to see that C 1 = span {c} where c = g 2 and a direct computation gives[ f , c] = [ f , g 2 ] = -The condition (Comp) of Theorem 3.1.2 requires that [ f , c] ⊂ G 1 implying that the vector fields [ f , c] and g 3 are colinear and this is the case if and only if γ ≡ 0.

											We thus
	have to solve									
	cos θ	∂α ∂x	cos θ +	∂β ∂x	sin θ + sin θ	∂α ∂y	cos θ +	∂β ∂y	sin θ = 0.
	Dividing the above equation by cos 2 θ and denoting w = tan θ, we get
					∂α ∂x	+	∂α ∂y	+	∂β ∂x	w +	∂β ∂y	w 2 = 0,
	which implies that							
					∂α ∂x	= 0,		∂β ∂y	= 0,	∂α ∂y	= -	∂β ∂x	.
												γR cos θ	
											  	γR sin θ 0	   ,
											0
	where	γ = cos θ	∂α ∂x	cos θ +	∂β ∂x	sin θ + sin θ	∂α ∂y	cos θ +	∂β ∂y	sin θ .

On the other hand, [ad l f g i , ad k f g c ] ∈ H k , and consequently ad k f g 1 ∈ H k , which contradicts our assumption, otherwise D k = H k and D k would be involutive. Therefore, H k-1 is involutive. Following the same line, we prove that the involutivity of H i implies that of H i-1 , for 1 ≤ i ≤ k -1.

f g 1 + α 2 ad k-1 f g 2 , where α 1 and α 2 are smooth functions not vanishing simultaneously.It follows v = ad k-1 f (α 1 g 1 + α 2 g 2 ) mod D k-2and we put g c = α 1 g 1 + α 2 g 2 . We can always suppose α 2 (x 0 ) = 0 (otherwise permute g 1 andg 2 ). Since ad k-1 f g c ∈ C k , we have [ad k-1 f g c , D k ] ⊂ D kand it can be shown, by the involutivity of D k-1 and applying the Jacobi identity, that [ad k-1 f g 1 , ad k f g c ] ∈ D k . Therefore, the new direction completing D k to D k = TX is given by [ad k-1 f g 1 , ad k f g 1 ] and there exists a smooth functionα such that [ad k f g c , ad k f g 1 ] = α[ad k-1 f g 1 , ad k f g 1 ] mod D k . This gives [ad k f g cαad k-1 f g 1 , ad k f g 1 ] = 0 mod D kand it can be easily verified thatC k = D k-2 + span {ad k-1 f g c , ad k f g cαad k-1 f g 1 },

µ 1 +1 ) 2 (z 0 ) = 0. We have obtained the normal form (NF2) for the case[D k-1 , D k ] ⊂ D k . On the other hand, if [D k-1 , D k ] ⊂ D k and [ad k f g 1 , ad k f g 2 ] ∈ D k , we obtain ∂ 2 d ∂(z 1 µ 1 +1 ) 2 = 0. Thus d( z1 µ 1 +1 , z2 µ 2 +1 ) = d 1 ( z1 µ 1 , z2 µ 2 +1 ) + d 2 ( z1 µ 1 , z2 µ 2 +1 )z 1 µ 1 +1 .
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If k = 0, i.e., the first noninvolutive distribution is D 0 = G 0 , then a similar result holds, but in the chain of involutive subdistributions

(compare (A2) and (A2) ′ ) and satisfies an additional nonsingularity condition (RC).

In fact, flat systems with k = 0 exhibit a singularity in the control space (created by one-fold prolongation of the to-be-prolonged control) defined by

and excluded by (RC), where H 0 = span {h 2 , . . . , h m } and D 0 = span {g 1 , h 2 , . . . , h m }.

Theorem 2.3.2. Assume k = 0 and cork (D 0 ⊂ [D 0 , D 0 ]) ≥ 2. A system Σ given by (2.2), is flat at (x 0 , u 0 ), of differential weight n + m + 1, if and only if it satisfies: (A1)' There exists an involutive distribution H 0 ⊂ D 0 , of corank one;

(A2)' The distributions H i , for i ≥ 1, are involutive, where

], for i ≥ 2;

(A3)' There exists ρ such that H ρ = TX;

(RC) u 0 / ∈ U sing (x 0 ).

Similarly to Theorem 2.3.1, if D 0 = TX, then ρ = 1.

The cases k = 0 and k ≥ 1 are similar, but they have slightly different geometries. Even if at first sight, it seems not possible to merge them (due to the different definitions of the distributions H 1 and H k+1 and to the existence of singularities in the control space for k = 0), the following result enables us to unify them. Theorem 2.3.3 is based on the observation that in both cases, we actually have

] (by definition of H 1 , for k = 0, and as a direct consequence of the definition of H k+1 , for k ≥ 1, see the comments just after Theorem 2.3.1). According to Proposition 2.7.2(ii) in Section 2.7, to H k we can associate a unique corank one subdistribution H in D 0 such that H k = D k-1 + ad k f H. Let g 1 and h j , for 2 ≤ j ≤ m, be vector fields such that H = span {h 2 , . . . , h m } and D 0 = span {g 1 , h 2 , . . . , h m }. A system Σ, given by (2.2), is flat at (x 0 , u 0 ), of differential weight n + m + 1, if and only if it satisfies (A1)" There exists an involutive distribution H k ⊂ D k , of corank one;

(A2)" The distributions H i , for i ≥ k + 1, are involutive, where

(A3)" There exists ρ such that H ρ = TX;

SYSTEMS COMPATIBLE WITH THE MULTI-CHAINED FORM AND THEIR x-MAXIMAL FLATNESS

Abstract

We study flatness of control-affine systems, with m + 1 inputs, defined on a (nm + 1)dimensional state-space. In the first part of this paper, we give a complete geometric characterization of systems locally static feedback equivalent to a triangular form compatible with the chained form, for m = 1, respectively with the m-chained form, for m ≥ 2. They are x-flat systems. We provide a system of first order PDE's to be solved in order to find all x-flat outputs, for m = 1, respectively all minimal x-flat outputs, for m ≥ 2. We illustrate our results by by examples, in particular by an application to a mechanical system: the coin rolling without slipping on a moving table.

In the second part of the paper, we introduce the concept of x-maximal flatness. A control system is x-maximally flat if the number of new states gained by each successive derivation of the flat output is the largest possible. Firstly, we show that the only control-linear systems that are x-maximally flat are those that are static feedback equivalent to the m-chained form. Secondly, we generalize that result from control-linear systems to control-affine systems whose control-linear subsystem is static feedback equivalent to the m-chained form. We prove that they are x-maximally flat if and only if the drift exhibits a triangular form compatible with the m-chained form (and recently characterized in [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF] and [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF]). We also show that if we skip the assumption of the x-maximal flatness, the latter condition is not necessary for x-flatness of control-affine system whose associated control-linear subsystem is static feedback equivalent to the m-chained form. FORM For a pair of functions (ϕ 0 , ϕ 1 ), the conditions to be a flat output are, formally, the same for Σ a f f and the associated control-linear system Σ lin and are given by (FO1)-(FO2) (or, equivalently, by (FO1)'-(FO2)'). Notice, however, that the vector field along which we differentiate changes from F a f f into F lin and thus the conditions change as well. This implies that there is more flat outputs for Σ a f f than for the associated Σ lin . Actually, the condition (FO1) applied to Σ lin implies that (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0) (thus obtaining the same necessary and sufficient conditions as those given in [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF] for two-input control-linear systems ), whereas (FO1) applied to Σ a f f still admits systems for which (L g ϕ 0 , L g ϕ 1 )(x * ) = (0, 0) as the following example shows.

Example 3.1.1. Consider the control-affine system:

which is in the triangular form compatible with the chained form TCh k 1 . We claim that it is x-flat with (ϕ 0 , ϕ 1 ) = (z 1 -z 0 z 2 , z 2 ) as x-flat output around z * = 0, although (L g ϕ 0 , L g ϕ 1 )(0) = (0, 0), for any vector field in G such that g(z * ) ∈ C k-2 (z * ), provided that v * 0 = 0 and (1 -z * 3 v * 0 ) = 0, the latter condition being always satisfied at z * = 0, but not in a neighborhood. Indeed, we have φ0 = z 0 -z 0 z 3 v 0 , φ1 = z 3 v 0 and it follows that φ0 = z 0 (1 -φ1 ), from which we deduce z 0 = φ0 1-φ1 , provided that 1 -φ1 = 1 -z * 3 v * 0 = 0. By differentiating that relation, we get v 0 = ż0 = d dt ( φ0 1-φ1 ) = δ 0 ( φ2 0 , φ2 1 ), where

). Then, ż3 gives z 4 = γ 4 ( φ3 0 , φ3 1 ) and so on. Finally we get z k = γ k ( φk-1 0 , φk-1 1 ) and v 1 = δ 1 ( φk 0 , φk 1 ). Thus (ϕ 0 , ϕ 1 ) = (z 1 -z 0 z 2 , z 2 ) is indeed an x-flat output of the system around z * = 0 such that z * 3 v * 0 = 1. Let us now consider the chained form Ch k 1 and take g = g 0 . We compute L g ϕ 0 = -z 0 z 3 v 0 , L g ϕ 1 = z 3 v 0 and we clearly have (L g ϕ 0 , L g ϕ 1 )(0) = (0, 0). Since the condition (L g ϕ 0 , L g ϕ 1 )(z * ) = (0, 0) is necessary for (ϕ 0 , ϕ 1 ) to be an x-flat output for the chained form, see [START_REF] Li | Flat outputs of two-input driftless control systems[END_REF], we deduce that (ϕ 0 ,

For control-linear systems Σ lin , the choice of a flat output is not unique (different choices are parameterized by an arbitrary function of three variables whose differentials annihilate C k-2 , as assures Proposition 3.1.2 below) but all flat outputs exhibit the same singularity in control space (see item (F4) of Proposition 3.1.1), which is the control u c , where u c ∈ U char such that u c,0 g 0 + u c,1 g 1 ∈ C 1 ( for any x ∈ X, it defines a onedimensional linear subspace of U = R 2 ). In the control-affine case, the nature of sin- gularities changes substantially: each choice of a flat output creates its own singularities in the control space. More precisely, a flat output (ϕ 0 , ϕ 1 ) ceases to be a flat output for controls u * belonging to U L-sing which is the union of k-3 i=0 U i sing (universal for all whose solutions give all minimal x-flat outputs for control-affine systems static feedback equivalent to TCh k m . Denote by v j , for 1 ≤ j ≤ (k -1)m, the vector fields spanning the distribution L (for their computation see Appendix 3.1.A). Proposition 3.1.4. Consider a control-affine system Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x), with m ≥ 2, defined on an open subset X of R km+1 , where k ≥ 2, that is locally, around x * ∈ X, static feedback equivalent to TCh k m . Let L = span {v j , 1 ≤ j ≤ (k -1)m} be the involutive subdistribution of corank one in G k-2 . Then smooth functions ϕ 0 , ϕ 1 , • • • , ϕ m , defined in a neighborhood of x * , form a minimal x-flat output at (x * , u * ),

and

Examples and applications

Example: TCh k 1 is not necessary for flatness

In the previous section we have seen that systems locally static feedback equivalent to the triangular form TCh k m , m = 1 or m ≥ 2, are x-flat and we have described all x-flat outputs. Therefore being static feedback equivalent to TCh k m , m = 1 or m ≥ 2 is sufficient for x-flatness. A natural question arises: is static feedback equivalence to TCh k m necessary for flatness, provided that the control-linear subsystem is static feedback equivalent to the chained form? The next example gives a negative answer to this question. Consider the following control-affine system whose control-linear part is already in the chained form Ch 4 1 , but whose drift f does not satisfy the compatibility condition (Comp) and thus the system cannot be transformed into TCh 4 1 :

where a is a smooth function depending on z 0 , z 1 , z 2 , z 3 . The pair (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ) is an x-flat output. Indeed, we have

These expressions allow us to calculate z 2 and z 3 via the implicit function theorem as

for some functions γ 2 , γ 3 , where φl denotes (ϕ, φ, • • • , ϕ (l) ). By differentiating z 3 , we deduce z 4 = γ 4 ( φ3 0 , φ3 1 ) which yields v 1 = δ 1 ( φ4 0 , φ4 1 ). So we have expressed all state and control variables as functions of ϕ 0 and ϕ 1 and their derivatives proving that (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ) is, indeed, an x-flat output. 

x-Maximal Flatness of Control-Affine Systems Compatible with the Multi-Chained Form Abstract

In the second part of the paper, we introduce the concept of x-maximal flatness. A control system is x-maximally flat if the number of new states gained by each successive derivation of the flat output is the largest possible. Firstly, we show that the only control-linear systems that are x-maximally flat are those that are static feedback equivalent to the m-chained form. Secondly, we generalize that result from control-linear systems to control-affine systems whose control-linear subsystem is static feedback equivalent to the m-chained form. We prove that they are x-maximally flat if and only if the drift exhibits a triangular form compatible with the m-chained form (and recently characterized in [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF] and [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF]). We also show that if we skip the assumption of the x-maximal flatness, the latter condition is not necessary for x-flatness of control-affine system whose associated control-linear subsystem is static feedback equivalent to the m-chained form.

Introduction

We study flatness of nonlinear control systems of the form

where x is the state defined on a open subset X of R n and u is the control taking values in an open subset U of R m (more generally, an n-dimensional manifold X and an m-dimensional manifold U, respectively). The dynamics F are smooth and the word smooth will always mean C ∞ -smooth. The system Ξ : ẋ = F(x, u) is flat if we can find m functions, ϕ i (x, u, . . . , u (r) ), for some r ≥ 0, called flat outputs, such that x = γ(ϕ, . . . , ϕ (s-1) ) and u = δ(ϕ, . . . , ϕ (s) ), (3.12) for a certain integer s, where ϕ = (ϕ 1 , . . . , ϕ m ). Therefore the evolution in time of all state and control variables can be determined from that of flat outputs without integration and all trajectories of the system can be completely parameterized.

The differential weight of a flat output ϕ is, roughly speaking, the minimal number of derivatives of components of ϕ, needed to express x and u (see [START_REF] Nicolau | Flatness of two-inputs control-affine systems linearizable via one-fold prolongation[END_REF][START_REF] Nicolau | Multi-input control-affine systems linearizable via one-fold prolongation and their flatness[END_REF][START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF].

Here we propose another way of looking at that property. It is well known (see e.g. [START_REF] Fliess | A Lie-Bäcklund approach equivalence and flatness of nonlinear systems[END_REF][START_REF] Jakubczyk | Invariants of dynamic feedback and free systems[END_REF][START_REF] Pomet | A differential geometric setting for dynamic equivalence and dynamic linearization[END_REF]) that for any l ≥ 0, all time-derivatives ϕ

of flat outputs are independent. So the successive time-derivatives provide m new independent functions ϕ

The problem that we are going to study is how many new functions of the state x do successive derivatives of the flat outputs provide? The system Ξ will be called x-maximal flat if each successive time-derivative of the flat output provides the largest possible number of independent functions of the state.

Observe, first, that x-maximally flat systems are simply static feedback linearizable systems (see Proposition 3.2.1). Secondly, we show that, within the class of associate the following distribution G = span {g 0 , • • • , g m }. We define inductively the derived flag of

A flat control-linear system Σ lin is never static feedback linearizable (unless the number of controls, m + 1, equals the dimension of the state space) and therefore, according to Proposition 3.2.1, cannot admit a flat output with the x-growth vector (m + 1, 2(m + 1), 3(m + 1), • • • ). In fact the x-growth vector may start with m + 1 (if the system is x-flat) but, since the system is control-linear, the derivatives φi , for 0 ≤ i ≤ m, necessarily involve the control, hence the second component of the xgrowth vector can be, at most, 2m + 1. So the maximal possible x-growth vector is (m

and it is, indeed, realized by control-linear systems static feedback equivalent to the m-chained form. An (m + 1)-input driftless control system Σ lin , defined on a manifold X of dimension km + 1, is said to be in the m-chained form if it is represented by

Is is clear from this representation that one control, v 0 in this case, is indeed "special". To simplify the notations, from now on, z i stands for

The problem of characterizing systems that are locally static feedback equivalent to the m-chained form has been studied and solved in [START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF] (see also [START_REF] Aranda-Bricaire | Some explicit conditions for a control system to be feedback equivalent to extended Goursat normal form[END_REF][START_REF] Darboux | Sur le problème de Pfaff[END_REF][START_REF] Frobenius | Ueber das Pfaffsche Problem[END_REF][START_REF] Libermann | Sur le probleme d'équivalence des systemes de Pfaff non completement intégrables[END_REF][START_REF] Mormul | Multi-dimensional Cartan prolongation and special k-flags[END_REF][START_REF] Pasillas-Lépine | On geometry of control systems equivalent to canonical contact systems: regular points, singular points, and flatness[END_REF][START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF][START_REF] Shibuya | Drapeau theorem for differential systems[END_REF][START_REF] Yamaguchi | Contact geometry of higher order[END_REF]). It is immediate to see that systems locally feedback equivalent to the m-chained form are flat with ϕ = (z 0 , z 1 1 , • • • , z 1 m ) being a flat output, at any point (z * , v * ) ∈ X × R m+1 with v * 0 = 0, and in [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF] all their minimal flat outputs have been described. Flat systems equivalent to Ch k m exhibit singularities in the control space defined by U sing lin (x) = {u(x) ∈ R m+1 : ∑ m i=0 u i (x)g i (x) ∈ C 1 (x)}, where C 1 is the characteristic distribution of G 1 , see [START_REF] Respondek | Symmetries and minimal flat outputs of nonlinear control systems[END_REF]. Clearly, v * 0 = 0 describes that singularity for Ch k m . An invertible static feedback u = β(x) ũ transforms the system Σ lin into the form Σlin : ẋ = ∑ m i=0 ũi gi (x), where g = gβ, with g = (g 0 , • • • , g m ) and g = ( g0 , • • • , gm ). To Σlin we associate the (k -1)-fold prolongation Σ(k-1,0,...,0) 

The following result characterizes control-linear systems that are locally static feedback equivalent to the m-chained form, from the point of view of x-maximal flatness.

Proposition 3.2.2. The following conditions are equivalent:

(Lin 1) Σ lin is x-maximally flat at (x * , ūr * ), for a certain r ≥ -1, within the class of controllinear systems C;

(Lin 2) Σ lin is x-maximally x-flat at (x * , u * ) within the class of control-linear systems C;

(Lin 3) There exist a flat output of Σ lin at (x * , u * ) for which the x-growth vector is constant and equals (m

(Lin 4) Σ lin is locally, around x * , static feedback equivalent to the m-chained form (m-Ch2) G k-2 is of constant rank (k -1)m + 1 and contains an involutive subdistribution L that has constant corank one in G k-2 ;

(m-Ch3) G 0 (x * ) is not contained in L(x * );

(Lin 6) There exists, around x * , an invertible static feedback transformation u = β(x) ũ, bringing the system Σ lin into the form Σlin : ẋ = ∑ m i=0 ũi gi (x), such that for any 0 ≤ i ≤ k -2, the intersections D i p ∩ TX are involutive, of constant rank m(i + 1), and D k-1 p ∩ TX = TX, where D i p are the distributions of the (k -1)-fold prolongation Σ(k-1,0,...,0) lin . Proposition 3.2.2 states that the only control-linear systems that are x-maximally flat are those that are locally static feedback equivalent to the m-chained form and, as expected, x-maximal flatness and x-maximal x-flatness are equivalent. Conditions (m-Ch1)-(m-Ch3) are formally the same, independently of m = 1 or m ≥ 2. Notice, however, they are checkable only if m ≥ 2 because in that case L, if it exists, is unique and can be calculated (see [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF] and [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF]). If m = 1, then two equivalent verifiable reformulations of the conditions (m-Ch2)-(m-Ch3) are:

contained in G k-3 and has corank one in G k-3 ;

or more classically (see [START_REF] Murray | Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems[END_REF]):

Conditions (m-Ch1)-(m-Ch3) characterize the m-chained form [START_REF] Respondek | Canonical contact systems for curves: A survey[END_REF] (see also [START_REF] Pasillas-Lépine | On geometry of control systems equivalent to canonical contact systems: regular points, singular points, and flatness[END_REF][START_REF] Pasillas-Lépine | Contact systems and corank one involutive subdistributions[END_REF]) and assure the existence of a change of coordinates z = φ(x) and of an invertible static feedback transformation of the form u = β(x) ũ, after which the control vector fields are in the m-chained form. The set of singular controls U sing lin , i.e., the controls at which the system ceases to be flat, has been described in [START_REF] Pasillas-Lépine | On geometry of control systems equivalent to canonical contact systems: regular points, singular points, and flatness[END_REF], where it was also shown that all singular controls u are mapped into v = (v 0 , v) such that v 0 = 0.

In item (Lin 6), the system Σ(k-1,0,...,0) lin is obtained by prolonging (k -1)-times the control ũ0 as

and it is clear that if we bring the original system Σ lin into the m-chained form and we prolong the control v 0 , the associated prolongation verifies all conditions of (Lin 6). Moreover, in this case, it is easy to see that the associated (k -1)-prolongation is, actually, static feedback linearizable. Since for any i ≥ 0, D i p ∩ TX are involutive, it can be shown that all distributions D i p are, in fact, involutive and thus Σ(k-1,0,...,0) lin is static feedback linearizable. Notice that item (Lin 6) is actually the dual of (Lin 3). Indeed, in the sequence of involutive distributions D i p ∩ TX at each step we gain m new directions, which is the maximal possible and which is also the case for the x-growth vector (a 0 , a 1 , a 2 , • • • ).

A natural question arises: under which conditions is x-maximal flatness of Σ lin conserved if we perturb the system by adding a drift f , thus obtaining a controlaffine system Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x)? In other words, what are the conditions that the drift f should satisfy in order that the x-growth vector associated to Σ a f f (whose control-linear subsystem Σ lin is static feedback equivalence to the m-chained form) is given by (m + 1, 2m + 1, 3m + 1, • • • , km + 1)? The next section of this paper answers that question and therefore generalizes Proposition 3.2.2 to the control-affine case.

Main result : x-maximal flatness

The purpose of this paper is to generalize Proposition 3.2.2 from control-linear systems Σ lin to control-affine systems

defined on an open subset X of R km+1 , with f and g 0 , • • • , g m smooth vector fields on X and such that the associated control-linear subsystem Σ lin : ẋ = ∑ m i=0 u i g i (x) satisfies Proposition 3.2.2.

In order to describe x-maximal flatness of control-affine systems whose controllinear subsystem is static feedback equivalent to the m-chained form, consider the following triangular form generalizing the m-chained form:

), for 2 ≤ j ≤ k. This form has been recently introduced and characterized by Silveira, Pereira da Silva and Rouchon [START_REF] Silveira | A flat triangular form for nonlinear systemes with two inputs: necessary and sufficient conditions[END_REF] (for m = 1) and by the authors [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF] for m ≥ 1. It not only exhibits a formal compatibility of the triangular structure of the drift with the structure of the controlled chains but also a striking compatibility of its x-maximal flatness with that of the m-chained form. This is seen in Theorem 3.2.1 below, which is the main result of the paper, where counterparts of conditions (Lin 1)-(Lin 6) are given as (Aff 1)-(Aff 6) for the control-affine case.

It is clear, see [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF], that TCh k m is x-flat, with ϕ = (z 0 ,

Therefore, flat systems equivalent to TCh k m exhibit singularities in the control space (depending on the state) defined by (see [START_REF] Li | Multi-chained form with triangular drift and its flatness[END_REF])

L-sing where the intersection is taken over all involutive distributions L of corank one in G k-2 and satisfying G 0 (x * ) ⊂ L(x * ), where x * is a nominal point around which we work.

An invertible static feedback u = α(x) + β(x) ũ, transforms the system Σ a f f into the form Σa f f : ẋ = f (x) + ∑ m i=0 ũi gi (x), where f = f + αg and g = gβ, with g = (g 0 , • • • , g m ) and g = ( g0 , • • • , gm ). To Σa f f , we associate the (k -1)-fold prolongation Σ(k-1,0,...,0)

The linearizability distributions of the prolonged system Σ(k-1,0,...,0) a f f will be denoted using the subindex p, i.e., D 0 

) is static feedback equivalent to the m-chained form, that is, satisfies the conditions (m-Ch1)-(m-Ch3) of Proposition 3.2.2. For Σ a f f ∈ C, the following conditions are equivalent: (Aff 1) Σ a f f is x-maximally flat at (x * , ūr * ), for a certain r ≥ -1, within the class C;

(Aff 2) Σ a f f is x-maximally x-flat at (x * , u * ) within the class C;

(Aff 3) There exists a flat output of Σ a f f at (x * , u * ) for which the x-growth vector is constant and equals (m

and all codistributions A j (x), for 0 ≤ j ≤ k -1, do not depend on the control or control derivatives;

(Aff 4) Σ a f f is locally, around x * , static feedback equivalent to the triangular form TCh k m , compatible with the m-chained form, given by

(Aff 5) System Σ a f f satisfies, around (x * , u * ), with u * (x * ) ∈ U sing a f f (x * ), the following condition:

(Aff 6) There exists, around x * , an invertible static feedback transformation u = α(x) + β(x) ũ, bringing the system Σ a f f into the form Σa f f : ẋ = f (x) + ∑ m i=0 ũi gi (x), such that for any 0 ≤ i ≤ k -2, the intersections D i p ∩ TX do not depend on y, are involutive, of constants rank m(i + 1) and D k-1 p ∩ TX = TX, where D i p are the distributions of the (k -1)-fold prolongation Σ(k-1,0,...,0) a f f . Remarks:

1) We do not claim that Σ a f f satisfying one of the above conditions is x-maximally flat. Clearly, x-maximally flat control-affine systems are those that are static feedback linearizable, as assured by Proposition 3.2.1. The above theorem describes xmaximally flat systems within the class C of control-affine ones whose control-linear subsystem is static feedback equivalent to the m-chained form.

2) Theorem 3.2.1 generalizes Proposition 3.2.2 and shows how x-maximal flatness of control-affine systems compatible with the m-chained form reminds, but also how it differs from, that of control-linear systems. As for control-linear systems, xmaximal flatness and x-maximal x-flatness are equivalent. Thus the x-growth vector starts with m + 1, but since the control-linear subsystem is static feedback equivalent to the m-chained form, the second component can be at most 2m + 1. Condition

Example

Consider the following control-affine system whose associated distribution G 0 is al- ready in the chained form:

where b is a smooth function non involving z 4 . Let us show that the pair (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ) is an x-flat output. Indeed, we have ϕ 0 = z 0 , implying φ0 = v 0 , and

. From these two relations, we express z 2 and z 3 , via the implicit function theorem, as:

) and z 3 = γ 3 ( φ2 0 , φ2 1 ), where φj denotes (ϕ, φ, • • • , ϕ (j) ) and γ 2 and γ 3 are smooth functions. By differentiating z 3 , we deduce z 4 = γ 4 ( φ3 0 , φ3 1 ) which yields v 1 = δ 2 ( φ4 0 , φ4 1 ). So we have determined all state and control variables with the help of ϕ 0 and ϕ 1 and their time-derivatives and it follows that (ϕ 0 , ϕ 1 ) = (z 0 , z 1 ) is, indeed, an x-flat output. However, the first derivative of ϕ = (ϕ 0 , ϕ 1 ) gives no function depending only on the state z and the system is clearly not x-maximally flat. Moreover, the x-growth vector of the system is the maximal possible, i.e., equals (m + 1, 2m + 1, • • • , km + 1) = (2, 3, 4, 5), but the codistribution A 1 = span {dz 0 , dz 1 , dz 3 + v 0 dz 2 } depends on the control. Equivalently, if we study the prolongation Σ (3,0) of the system, obtained by prolonging the control v 0 three times, we have D 1

, where y 1 = v 0 , which clearly depends on y. The above example shows that there are x-flat control-affine systems whose linear subsystem is static feedback equivalent to the m-chained form and whose drift is not compatible with the latter, i.e., the drift f does not admit the desired triangular form in the system of coordinates in which the controlled vector fields exhibit the m-chained structure.

Proof of Theorem 3.2.1

(Aff 1) ⇒ (Aff 2). Assume that Σ a f f is x-maximally flat at (x * , ūr * ) and let (ϕ 0 , • • • , ϕ m ) be a flat output such that the associated x-growth vector (a 0 , a 1 , a 2 , • • • ) is the maximal possible at any x in a neighborhood of x * . We deduce immediately that a 0 = m + 1 implying that all components ϕ i of the flat output are functions of x only and thus the system is x-maximally x-flat.

(Aff 2) ⇒ (Aff 3). Assume that Σ a f f : ẋ = f (x) + ∑ m i=0 u i g i (x) is x-maximally xflat at (x * , u * ) and let ϕ = (ϕ 0 , • • • , ϕ m ) be an x-flat output such that the associated x-growth vector (a 0 , a 1 , a 2 , • • • ) is the maximal possible at any x in a neighborhood of x * . There exists open neighborhoods X of x * and U of u * such that ϕ is an x-flat output for any (x, u) ∈ X × U .

Recall that the control-linear subsystem Σ lin : ẋ = ∑ m i=0 u i g i (x) is static feedback equivalent to the m-chained form. Thus G 0 , the involutive closure of the distribution

Therefore, on an open and dense subset X ′ of X , for any flat output ϕ i , 0 ≤ i ≤ m, there exists at least one vector

x-MAXIMAL FLATNESS OF CONTROL-AFFINE SYSTEMS COMPATIBLE WITH THE MULTI-CHAINED FORM field g j , 0 ≤ j ≤ m, such that L g j ϕ i (x) = 0. If not, then there exists i such that L g j ϕ i = 0 on X , for 0 ≤ j ≤ m, and by successive applications of Jacobi identity, it can be shown that L g ϕ i = 0 for any g ∈ G k-1 = TX, implying that ϕ i is identically zero, which contradicts flatness of ϕ = (ϕ 0 , • • • , ϕ m ). 

(Aff 3) ⇒ (Aff 4). Let ϕ = (ϕ 0 , • • • , ϕ m ) be a flat output at (x * , u * ) such that condition (A f f 3) is satisfied. Since a 0 = m + 1, it follows that ϕ i = ϕ i (x), 0 ≤ i ≤ m (in other words the system is actually x-flat in a neighborhood of x * ).

There exists an open neighborhood X of x * and an open neighborhood U of u * such that ϕ is an x-flat output at any (x, u) ∈ X × U . Since the differentials of the components of flat outputs are independent at x * , we can introduce new coordinates z 0 = ϕ 0 , z 1 i = ϕ i , for 1 ≤ i ≤ m, and complete them to a coordinate system (z 0 ,

We have just seen that for any flat output ϕ i , 0 ≤ i ≤ m, there exists at least one vector field g j , 0 ≤ j ≤ m, such that L g j ϕ i (x) = 0, on an open and dense subset X ′ of X .

Let us now show that there exist integers i and j such that L g j ϕ i (x * ) = 0. Suppose that for any flat output ϕ i , we have L g j ϕ i (x * ) = 0, for 0 ≤ j ≤ m. We can always assume u * = 0 (otherwise, apply the invertible feedback ũ = uu * transforming u * into ũ * = 0). We get φi = f i (z) + ∑ m j=0 g j i u j , for 0 ≤ i ≤ m, where g j i (z * ) = 0, for 0 ≤ i, j ≤ m. This yields d φi = d f i (z) + ∑ m j=0 (u j dg j i + g j i du j ), which evaluated at (z * , u * ) = (z * , 0) gives d φi (z * , 0) = d f i (z * ), for 0 ≤ i ≤ m. Thus Φ 1 (z * ) = span {dϕ i (z * ), d φi (z * ), 0 ≤ i ≤ m} = span {dz 0 , dz 1 i , d f i (z * ), 0 ≤ i ≤ m} and is clearly of dimension 2m + 2, because the differentials of flat outputs and their derivatives are independent everywhere. It follows that A 1 (z * ) = Φ 1 (z * ) ∩ T * Z(z * ) = Φ 1 (z * ) and a 1 (z * ) = dim A 1 (z * ) = 2m + 2, contradicting the fact that a 1 is constant and equals 2m + 1.

Without loss of generality, suppose L g 0 ϕ 0 (x * ) = 0. After applying around x * a suitable invertible feedback, u = α(x) + β(x)v, transforming u * into v * , we get φ0 = ż0 = v 0 , φi = ż1 i = a 1 i (z) + b 1 i (z)v 0 , 1 ≤ i ≤ m, where a 1 i and b 1 i are smooth functions. We continue to denote by f and by g i , 0 ≤ i ≤ m, the drift and, respectively, the controlled vector fields of the feedback modified system. Since the x-growth vector grows always by m, it is immediate that ∂ϕ (j) i ∂v l = 0, for 1 ≤ i, l ≤ m and any 1 ≤ j ≤ k -1. Now, using the fact that the control-linear subsystem Σ lin : ẋ = ∑ m i=0 u i g i (x) is static feedback equivalent to the m-chained form, it can be shown that z0 = ϕ 0 , z1 i = ϕ i , z2 i = L g 0 ϕ i , • • • , z k i = L k-1 g 0 ϕ i , for 1 ≤ i ≤ m, is a valid local change of coordinates (to simplify notation, we continue to write z instead of z) in which Σ lin is in the mchained form, and after applying a suitable invertible feedback transformation, the